pax_global_header00006660000000000000000000000064141365364100014515gustar00rootroot0000000000000052 comment=fb1c7e72f5d1ac8ce47083d5631b552ff2c564d6 GradientModel-0.0.2/000077500000000000000000000000001413653641000142325ustar00rootroot00000000000000GradientModel-0.0.2/.flake8000066400000000000000000000000571413653641000154070ustar00rootroot00000000000000[flake8] filename = *.py max-line-length = 120 GradientModel-0.0.2/.github/000077500000000000000000000000001413653641000155725ustar00rootroot00000000000000GradientModel-0.0.2/.github/workflows/000077500000000000000000000000001413653641000176275ustar00rootroot00000000000000GradientModel-0.0.2/.github/workflows/ci.yml000066400000000000000000000017701413653641000207520ustar00rootroot00000000000000name: ci on: push: branches: - main pull_request: schedule: [cron: "0 12 * * 0"] jobs: build: runs-on: ${{ matrix.os }} strategy: matrix: os: [ubuntu-latest, windows-latest, macOS-latest] python-version: [3.8] name: ${{ matrix.os }}, Python ${{ matrix.python-version }} defaults: run: shell: bash -l {0} steps: - uses: actions/checkout@v2 - uses: conda-incubator/setup-miniconda@v2 with: python-version: ${{ matrix.python-version }} - name: Cache pip uses: actions/cache@v2 with: path: ~/.cache/pip key: ${{ runner.os }}-pip-${{ hashFiles('requirements-dev.txt') }}-${{ matrix.python-version }} restore-keys: | ${{ runner.os }}-pip-${{ matrix.python-version }}- ${{ runner.os }}-${{ matrix.python-version }}- - run: pip install -r requirements-dev.txt - run: pip install -e . - name: Test run: pytest -v GradientModel-0.0.2/.github/workflows/linter.yml000066400000000000000000000007361413653641000216550ustar00rootroot00000000000000name: linter on: [push, pull_request] jobs: lint-flake8: runs-on: ubuntu-latest name: Lint steps: - uses: actions/checkout@v2 - name: Set up Python 3.8 environment uses: actions/setup-python@v1 with: python-version: 3.8 - name: Install dependencies run: | python -m pip install --upgrade pip pip install flake8 - name: Analysing the code with flake8 run: | flake8 . GradientModel-0.0.2/.gitignore000066400000000000000000000001221413653641000162150ustar00rootroot00000000000000.idea/ .ipynb_checkpoints/ __pycache__/ gradientmodel.egg-info/ new-version.md GradientModel-0.0.2/CHANGES.md000066400000000000000000000003741413653641000156300ustar00rootroot00000000000000v0.0.2 (Oct 28, 2021) ===================== - README: - added example - examples: - add gold-plated wr3.0 waveguide example - GitHub actions: - added linter - added CI testing v0.0.1 (Apr 15, 2021) ===================== Initial release. GradientModel-0.0.2/LICENSE.md000066400000000000000000000020541413653641000156370ustar00rootroot00000000000000MIT License Copyright (c) 2021 John Garrett Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.GradientModel-0.0.2/README.md000066400000000000000000000043021413653641000155100ustar00rootroot00000000000000Gradient Model ============== *Calculate the surface impedance of a rough metal surface using the Gradient Model (GM)* [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.4694878.svg)](https://doi.org/10.5281/zenodo.4694878) Example: Surface Impedance of Gold ---------------------------------- Surface impedance of gold (conductivity: 4.1e7 S/m) between 280 GHz and 360 GHz:

To use these results in HFSS, select `Assign boundary > Impedance...` and then copy/paste these values into the dialog box: ``` 50 nm surface roughness: Real: -1.6644e-25 * Freq^2 + 5.1199e-13 * Freq^1 + 6.1107e-02 Imaginary: -3.4813e-25 * Freq^2 + 2.2603e-12 * Freq^1 + 7.2291e-02 ur: -1.3448e-23 * Freq^2 + 5.0514e-11 * Freq^1 + 3.9464e+00 75 nm surface roughness: Real: -1.5186e-25 * Freq^2 + 6.0379e-13 * Freq^1 + 5.8012e-02 Imaginary: -4.5447e-25 * Freq^2 + 3.0960e-12 * Freq^1 + 7.9819e-02 ur: -2.5105e-23 * Freq^2 + 9.6127e-11 * Freq^1 + 5.8256e+00 100 nm surface roughness: Real: -1.4427e-25 * Freq^2 + 7.0489e-13 * Freq^1 + 5.5407e-02 Imaginary: -5.6445e-25 * Freq^2 + 3.8871e-12 * Freq^1 + 8.8834e-02 ur: -3.9840e-23 * Freq^2 + 1.5236e-10 * Freq^1 + 8.0508e+00 ``` References ---------- Gradient model: - G. Gold and K. Helmreich, “A Physical Surface Roughness Model and Its Applications,” IEEE Trans. Microw. Theory Tech., vol. 65, no. 10, pp. 3720–3732, Oct. 2017, doi: [10.1109/TMTT.2017.2695192](https://doi.org/10.1109/TMTT.2017.2695192). - K. Lomakin, G. Gold, and K. Helmreich, “Analytical Waveguide Model Precisely Predicting Loss and Delay Including Surface Roughness,” IEEE Trans. Microw. Theory Tech., vol. 66, no. 6, pp. 2649–2662, Jun. 2018, doi: [10.1109/TMTT.2018.2827383](https://doi.org/10.1109/TMTT.2018.2827383). Closed-form solution: - D. N. Grujic, “Closed-Form Solution of Rough Conductor Surface Impedance,” IEEE Trans. Microw. Theory Tech., vol. 66, no. 11, pp. 4677–4683, 2018, doi: [10.1109/TMTT.2018.2864586](https://doi.org/10.1109/TMTT.2018.2864586). GradientModel-0.0.2/examples/000077500000000000000000000000001413653641000160505ustar00rootroot00000000000000GradientModel-0.0.2/examples/hfss/000077500000000000000000000000001413653641000170135ustar00rootroot00000000000000GradientModel-0.0.2/examples/hfss/WR28-Waveguide_10cm-aluminum-rough-100nm.s2p000066400000000000000000002442361413653641000265140ustar00rootroot00000000000000! Touchstone file exported from HFSS 2019.2.0 ! File: C:/Users/jgarrett/Documents/Ansoft/Waveguide/WR28-Waveguide.aedt ! Generated: 12:10:29 PM Mar 17, 2021 ! Design: 10cm-aluminum-rough-100nm ! Project: WR28-Waveguide ! Setup: Setup1 ! Solution: Sweep ! ! Variables: ! waveguideA = 280mil ! waveguideB = 140mil ! waveguideL = 10cm ! !Data is not renormalized # GHZ S MA ! Modal data exported ! Port[1] = 1:1 ! Port[2] = 2:1 20 7.26250636662358E-05 179.845931352325 9.35676614361223E-07 -1.30921422842664 9.35676614361223E-07 -1.30921422842663 9.65107138387184E-05 179.851208762087 ! Gamma ! 138.795627315442 0.228524355498937 138.794009748486 0.228526980899581 ! Port Impedance2.06891646094595 1138.23158757843 2.06899140332963 1138.24487180885 20.1 7.9662742097561E-05 179.835886784436 2.26131362271001E-06 33.0138186778163 2.26131362264011E-06 33.0138186770011 0.000105310106715199 179.823043169561 ! Gamma ! 132.29594635079 0.2403233727993 132.294249202287 0.240326459468782 ! Port Impedance2.38504240661461 1200.12222670015 2.38513682081832 1200.13764229379 20.2 8.85650732743604E-05 179.803553222748 4.04751798867909E-06 15.6697646482303 4.04751798867113E-06 15.6697646515506 0.00011629923220849 179.800419361051 ! Gamma ! 125.424962387381 0.254097242998519 125.423172149295 0.254100919586077 ! Port Impedance2.79400671791749 1272.16309005164 2.79412898164311 1272.1812691694 20.3 0.000100038339137261 179.761556374664 7.58600831500622E-06 1.13145002562288 7.5860083150262E-06 1.1314500276252 0.000130283304675855 179.773648834783 ! Gamma ! 118.117898648631 0.270468432609634 118.115997537767 0.270472887307118 ! Port Impedance3.33928857629395 1357.54745893377 3.33945240347107 1357.56933106492 20.4 0.000115232570288831 179.713711562219 1.59414757629537E-05 -2.62021827425984 1.59414757629048E-05 -2.62021827403334 0.000148562142229457 179.736208903764 ! Gamma ! 110.288116340974 0.290374709359789 110.286080129983 0.290380231330236 ! Port Impedance4.09462755602965 1461.08403399704 4.09485684478058 1461.11103338006 20.5 0.000136134219016389 179.656293051052 3.76175428509537E-05 -1.91750735771522 3.76175428510067E-05 -1.91750735794391 0.000173357166167422 179.682779752108 ! Gamma ! 101.815099266271 0.315309638033767 101.812893459434 0.315316699992138 ! Port Impedance5.19446570289192 1590.42810609708 5.194805607476 1590.46258811143 20.6 0.000166466668604252 179.576838052573 9.6475958469502E-05 -1.90551506821399 9.64759584693227E-05 -1.90551506829192 0.00020878153167151 179.606828346064 ! Gamma ! 92.5223109190843 0.347833558047439 92.5198834097953 0.347843000473202 ! Port Impedance6.90862726627657 1758.69654630333 6.90917292504085 1758.74271678861 20.7 0.000214066161622546 179.449922128979 0.000269443415006354 -2.21351459566411 0.000269443415006172 -2.21351459562475 0.000263369267879769 179.494366290115 ! Gamma ! 82.1319951802543 0.3928082091976 82.129260406054 0.392821715260033 ! Port Impedance9.85651630238249 1990.78371222005 9.85750186283841 1990.85002871577 20.8 0.00029857554846691 179.227453800381 0.000887794928812473 -2.16532272545752 0.000887794928812732 -2.16532272543176 0.000358155775531947 179.300813571195 ! Gamma ! 70.158302848345 0.460993889172865 70.1551011724458 0.461015508632939 ! Port Impedance15.7806550312633 2341.75381493799 15.7828142848625 2341.86070540587 20.9 0.000486429148103223 178.802734289344 0.00382016578354706 -4.16613762029552 0.00382016578354605 -4.16613762027658 0.000562939878028665 178.841523775745 ! Gamma ! 55.587688328823 0.583288157433689 55.5836473812432 0.58333139970522 ! Port Impedance31.6581164286499 2969.58059128372 31.6650123854343 2969.79643263811 21 0.0012343179908527 177.310948776923 0.0277367683252286 -5.06292118537004 0.0277367683252372 -5.06292118534021 0.00134859836637114 176.929474321766 ! Gamma ! 35.3466238690064 0.919617988341898 35.3402717535578 0.919784761611891 ! Port Impedance122.799467340851 4689.76884870371 122.865581913536 4690.60957213419 21.1 0.00147900830342997 -8.07670972711101 0.94066591090282 -138.673954316971 0.940665910903364 -138.673954316982 0.0013702362640268 -19.1431079532711 ! Gamma ! 1.32694116742741 24.5585842324817 1.326450927681 24.567704552422 ! Port Impedance6766.94531871727 364.496464710093 6764.46243313969 364.092021699422 21.2 0.00110984474725145 -41.7246333728871 0.9368625642908 76.1696873149217 0.936862564290808 76.1696873149215 0.00119531216768394 12.5328624243368 ! Gamma ! 0.658642726059686 49.603297830497 0.658583884864051 49.607826566957 ! Port Impedance3375.39957047328 44.2569536618894 3375.09169698619 44.2448010551112 21.3 0.00167188950263129 38.3238902847826 0.95158796460559 -16.530116423864 0.951587964605605 -16.5301164238626 0.000663749072545272 6.94694751481752 ! Gamma ! 0.497896490260676 65.7858643237238 0.497871700300366 65.7892797425139 ! Port Impedance2557.39608606106 18.9304612228441 2557.26339165991 18.9274944182344 21.4 0.000533050966039964 35.653067522892 0.959050918224504 -91.0585225013532 0.959050918224503 -91.0585225013532 0.000571154517193763 -21.6709706715325 ! Gamma ! 0.416920760575913 78.7653045092687 0.416906617253843 78.7681574114955 ! Port Impedance2146.06149610008 11.0036471528106 2145.98381152922 11.0024385348227 21.5 0.000225293927713818 22.8911223872597 0.964067912948855 -155.106820307592 0.964067912948855 -155.106820307592 0.000169744320096154 -140.917996871279 ! Gamma ! 0.366069622549702 89.9388087803337 0.366060355195925 89.9413074617986 ! Port Impedance1888.24952819179 7.37310965210193 1888.19710452483 7.372484981768 21.6 0.000313437811994165 25.6335826019983 0.967481689274595 147.724154472705 0.967481689274595 147.724154472705 0.000450208863477252 96.9461559715385 ! Gamma ! 0.330378816341311 99.914008141188 0.330372248931035 99.9162575311145 ! Port Impedance1707.64520885227 5.36458970637417 1707.60679460411 5.36421892736682 21.7 0.000423112159055893 -13.6767431122172 0.970099724171268 95.5314461238395 0.970099724171269 95.5314461238395 0.000453209802477102 28.4590513077218 ! Gamma ! 0.303573783337637 109.020297114458 0.303568893385425 109.022358767364 ! Port Impedance1572.25801974686 4.11899622335586 1572.22831435045 4.11875522229531 21.8 0.000176497181725539 -77.1254009244809 0.972090747957748 47.1615723447054 0.972090747957748 47.1615723447054 0.000234551678456248 1.81440518942946 ! Gamma ! 0.28250109622617 117.45992752601 0.282497332730898 117.46184118402 ! Port Impedance1466.01653556967 3.28485853180144 1465.99267607839 3.28469147312694 21.9 4.2735760012726E-05 126.446435480006 0.973813151799931 1.8459917985761 0.973813151799932 1.84599179857615 5.13909806694297E-05 66.8550342049926 ! Gamma ! 0.265379808532289 125.367601533726 0.265376845239699 125.369394613265 ! Port Impedance1379.84809341965 2.69449160397556 1379.82838117751 2.69437009499993 22 0.000275667375790801 50.1077020863658 0.975239272039736 -40.9672775780796 0.975239272039737 -40.9672775780796 0.000339247558626886 62.9076553957371 ! Gamma ! 0.251118109791979 132.838349272881 0.251115739730248 132.84004163012 ! Port Impedance1308.19324127416 2.25883092436188 1308.1765966972 2.25873917769277 22.1 0.000337185008681536 -14.1785961382892 0.976346894155036 -81.6721316234938 0.976346894155036 -81.6721316234938 0.000353182984503412 30.90883035285 ! Gamma ! 0.239004521466881 139.942161442857 0.239002606215442 139.943768004868 ! Port Impedance1247.43088480033 1.92665510334151 1247.41658471096 1.92658372092192 22.2 0.000274262675623772 -50.4339067461717 0.977352193986848 -120.575873431023 0.977352193986849 -120.575873431023 0.000367151646657134 11.0589049526249 ! Gamma ! 0.228552944400602 146.73234020374 0.228551387436394 146.733872528262 ! Port Impedance1195.08821505636 1.66663980531212 1195.07575446292 1.66658288307668 22.3 0.000236335056196645 -89.3823237573121 0.978300565318985 -157.928778356903 0.978300565318988 -157.928778356902 0.000355254642794109 -24.7298665849842 ! Gamma ! 0.21941847394144 153.250579475995 0.21941720563587 153.252046728966 ! Port Impedance1149.41156250867 1.45866724389267 1149.40057669153 1.45862090738674 22.4 0.000165320922516267 -154.818071224899 0.979085983259332 166.080487413679 0.979085983259333 166.080487413679 0.000174151717787272 -49.9982335591122 ! Gamma ! 0.211348707989257 159.530215650398 0.211347676683403 159.531625246602 ! Port Impedance1109.11824048013 1.28928984857773 1109.10845857925 1.28925146181923 22.5 0.000100816662066635 115.378463769956 0.979765218571151 131.307010562715 0.979765218571151 131.307010562715 0.000108615402910406 -34.2355078165225 ! Gamma ! 0.204154119666637 165.598394650863 0.204153286115435 165.599752689552 ! Port Impedance1073.24558753239 1.14921446042034 1073.23680361644 1.14918217472049 22.6 0.000110706193455956 41.5021374325939 0.980429327769163 97.6205532221648 0.980429327769163 97.6205532221648 0.000113898360506157 -26.2167418091733 ! Gamma ! 0.197689258166903 171.477566527043 0.197688591949938 171.478878097403 ! Port Impedance1041.0552057112 1.03183552180949 1041.0472600472 1.03180800665374 22.7 0.000114022376906158 -10.2575935440067 0.980977548259651 64.9073681814975 0.980977548259651 64.9073681814975 0.000116412650866848 -40.7719592000607 ! Gamma ! 0.191840391760091 177.18654621074 0.191839868871902 177.187815611808 ! Port Impedance1011.97003073441 0.932343144583528 1011.96279726282 0.932319420693446 22.8 8.24491137524662E-05 -43.2744026419987 0.98150324585141 33.0891238199089 0.981503245851408 33.0891238199087 7.6823777565734E-05 -60.4235801701657 ! Gamma ! 0.186517136745289 182.741285032106 0.186516737962378 182.742515934706 ! Port Impedance985.531712378593 0.84716094310424 985.525090103061 0.847140275520889 22.9 1.2268955683508E-05 -79.2381649261145 0.981993925467619 2.0581528615195 0.981993925467619 2.05815286151949 1.12044615212624E-05 -56.8384364236044 ! Gamma ! 0.181646637002846 188.155443879797 0.181646346715813 188.156639448133 ! Port Impedance961.370988333728 0.773580567161568 961.364895257015 0.773562394733473 23 7.63394204032835E-05 63.0769751087639 0.98244209255708 -28.231686464131 0.98244209255708 -28.2316864641309 7.00911902324483E-05 56.4145758893391 ! Gamma ! 0.177169423823075 193.440826959303 0.177169229206038 193.441989943876 ! Port Impedance939.186616397741 0.709517602335142 939.180985159555 0.709501490031225 23.1 0.000136556848354524 32.6068652940784 0.9828428346072 -57.8339704663461 0.982842834607199 -57.8339704663461 0.000137426721904655 30.3735361092037 ! Gamma ! 0.173036411351227 198.607715456105 0.173036301750832 198.608848265789 ! Port Impedance918.730089433271 0.653344607405143 918.724864112863 0.653330213345105 23.2 0.000173521413608673 7.06549173825592 0.98321280526333 -86.8083246787117 0.983212805263329 -86.8083246787118 0.000178352306819466 3.26338528605857 ! Gamma ! 0.169206676994623 203.665127950485 0.169206643477964 203.666232709223 ! Port Impedance899.794346728497 0.603774476015531 899.789480461487 0.603761528215172 23.3 0.000191976081692311 -19.4821859612292 0.983563036211839 -115.204711358198 0.983563036211838 -115.204711358198 0.000189213013728998 -24.3679103636359 ! Gamma ! 0.165645795429197 208.62102631687 0.165645830439518 208.622104908812 ! Port Impedance882.205303188225 0.559777402288158 882.200756363474 0.559765681961255 23.4 0.000175122335830222 -49.1862368961853 0.98389491465409 -143.062615942264 0.983894914654091 -143.062615942264 0.000169932692070561 -53.8248297333012 ! Gamma ! 0.162324570099457 213.482480430657 0.162324667193075 213.483534536491 ! Port Impedance865.815401380245 0.520520757563755 865.811140256971 0.52051008693833 23.5 0.000117039655819219 -73.8378770394946 0.984205694603092 -170.415264607716 0.984205694603093 -170.415264607716 0.000125325649403402 -87.4094681976511 ! Gamma ! 0.159218054795482 218.255801321619 0.159218208437941 218.256832448123 ! Port Impedance850.49863945225 0.485324883691604 850.494635086349 0.48531511698974 23.6 6.21432673789485E-05 -72.21182519235 0.984494030938799 162.706721705601 0.984494030938801 162.706721705601 7.14529850381643E-05 -134.524541633154 ! Gamma ! 0.156304790044495 222.946649856541 0.156304995450509 222.947659360825 ! Port Impedance836.146691756251 0.453630133124449 836.142919157301 0.453621149794871 23.7 5.90455030439568E-05 -40.6541850632685 0.98476185549119 136.273967772193 0.984761855491192 136.273967772193 5.24251081273924E-05 138.261771692824 ! Gamma ! 0.153566200720769 227.560126228864 0.153566453727348 227.561115338433 ! Port Impedance822.665849371703 0.424971979941146 822.66228683427 0.42496367951979 23.8 8.86908539629666E-05 -37.8088606448277 0.985013104307321 110.25873343471 0.985013104307321 110.25873343471 8.85414700707932E-05 76.3634070374439 ! Gamma ! 0.150986116137036 232.100844238932 0.150986413101949 232.101814068422 ! Port Impedance809.974583387045 0.3989620051449 809.971211955248 0.398954303307972 23.9 0.000118697536480298 -53.0924229435198 0.985251446105673 84.6358034064455 0.985251446105672 84.6358034064454 0.000125391368822431 42.9167216291366 ! Gamma ! 0.148550384236862 236.572993407092 0.148550721956679 236.573944972314 ! Port Impedance798.001586531966 0.375273213241305 797.998389566999 0.37526603874285 24 0.000139821350652151 -77.0249929396542 0.985478833393749 59.3829333983858 0.985478833393749 59.3829333983857 0.000145822675636073 17.7230742599946 ! Gamma ! 0.146246558833946 240.980391268151 0.146246934477336 240.981325497971 ! Port Impedance786.684186051418 0.353628580751839 786.681148879427 0.353621873035512 24.1 0.000144838691352078 -107.382368398632 0.985695514730356 34.4805674839217 0.985695514730356 34.4805674839216 0.000146935602322287 -2.81951187924491 ! Gamma ! 0.144063644098554 245.326527678333 0.144064055151595 245.327445424772 ! Port Impedance775.96704745754 0.333792043187234 775.964157080814 0.333785750445799 24.2 0.000132075025267526 -142.846378946192 0.985901064938873 9.91108403095112 0.985901064938874 9.91108403095116 0.000132744114901945 -18.2661660787312 ! Gamma ! 0.141991884307383 249.614602575642 0.141992328528385 249.615504622517 ! Port Impedance765.801108217142 0.31556134044888 765.798353075486 0.315555418181191 24.3 0.000111239489401266 176.742676455994 0.986095512166765 -14.3419586470232 0.986095512166767 -14.3419586470232 0.00011285236420894 -26.815549327352 ! Gamma ! 0.140022589677203 253.847558337234 0.140023065059087 253.848445407587 ! Port Impedance756.142694700691 0.29876229264642 756.140064473146 0.298756702399314 24.4 9.66006095561065E-05 130.806043104832 0.986279812534486 -38.294211142911 0.986279812534487 -38.2942111429109 9.91956943035018E-05 -27.9575786786972 ! Gamma ! 0.138147991185662 258.02810764867 0.138148495924544 258.028980411182 ! Port Impedance746.952786317129 0.283244186071654 746.950271756084 0.283238894470105 24.5 9.59624891373973E-05 83.3725642675774 0.986455480943236 -61.9604728241177 0.986455480943236 -61.9604728241177 9.86228447659754E-05 -27.1674748986418 ! Gamma ! 0.136361118845636 262.158757622387 0.136361651318137 262.159616696956 ! Port Impedance738.196398709374 0.268876028400721 738.193991501061 0.268871006349029 24.6 0.00010393720771161 41.3372806805061 0.986623758987005 -85.354380072203 0.986623758987004 -85.354380072203 0.00010578347522217 -31.9809418885278 ! Gamma ! 0.134655699083567 266.241830763794 0.134656257816145 266.24267672639 ! Port Impedance729.842063907773 0.255543489555437 729.839756554297 0.255538711583789 24.7 0.000108681059585406 6.67179536409873 0.986784988563372 -108.488181510484 0.986784988563369 -108.488181510484 0.00010985536710725 -43.8533794669307 ! Gamma ! 0.13302606777708 270.27948327381 0.133026651434061 270.280316660726 ! Port Impedance721.861389940227 0.243146387427691 721.859175659351 0.243141831153545 24.8 0.000103158215395582 -20.8394314959829 0.98693873747144 -131.372882676726 0.986938737471438 -131.372882676726 0.000103614313380807 -61.4467912770317 ! Gamma ! 0.131467096204487 274.273721089575 0.131467703570429 274.274542401163 ! Port Impedance714.228685943053 0.231596609545238 714.226558582589 0.231592255223377 24.9 8.78951870820034E-05 -40.5303687663969 0.987084755016419 -154.018815733143 0.987084755016419 -154.018815733143 8.55078181262284E-05 -85.0331254386788 ! Gamma ! 0.129974127700656 278.226413995417 0.129974757665798 278.227223699391 ! Port Impedance706.920641569631 0.220816385784115 706.918595534063 0.220812215937047 25 6.77105378985248E-05 -49.101719984896 0.987224227139863 -176.436382429615 0.987224227139864 -176.436382429615 6.04348278574103E-05 -120.541717728761 ! Gamma ! 0.128542923235349 282.139308080088 0.128543574783562 282.140106614432 ! Port Impedance699.916051647276 0.210736845487742 699.914081834557 0.210732844593186 25.1 5.43354611382015E-05 -36.9026277592579 0.987360315554723 161.36355075076 0.987360315554724 161.36355075076 4.78554719477479E-05 176.793363659169 ! Gamma ! 0.127169614469042 286.014036770781 0.12717028666683 286.014824546341 ! Port Impedance693.195578728899 0.201296806329961 693.193680475806 0.201292960558509 25.2 7.4697321466347E-05 -16.6127280725199 0.98749683086255 139.37024898754 0.987496830862548 139.37024898754 7.22985423449661E-05 117.599312042892 ! Gamma ! 0.125850663098453 289.852130637505 0.125851355087248 289.852908040297 ! Port Impedance686.741547530722 0.192441753039796 686.739716565436 0.192438050033226 25.3 0.000128946240500668 -23.4023768930259 0.987634226235382 117.575248049488 0.987634226235375 117.575248049487 0.000114270270877322 83.9835401202179 ! Gamma ! 0.124582825521728 293.655026130997 0.124583536510622 293.655793524264 ! Port Impedance680.53776632003 0.184122972478506 680.535998720831 0.184119401161623 25.4 0.000179372181421933 -47.2976707540722 0.987762902295341 95.9762615951254 0.987762902295331 95.9762615951251 0.000156702972102114 60.3505052055727 ! Gamma ! 0.123363122019151 297.424073392389 0.123363851277947 297.424831118449 ! Port Impedance674.569371177719 0.176296818105094 674.567663336897 0.176293368525392 25.5 0.000192081808063382 -72.433700144695 0.987854971289947 74.582558248528 0.987854971289947 74.582558248528 0.000192595352047108 40.9930451774328 ! Gamma ! 0.122188809783066 301.160543252211 0.122189556636223 301.161291634112 ! Port Impedance668.822689754963 0.168924082015572 668.821038347168 0.168920745206092 25.6 0.000220266019389917 -97.6767786419965 0.987966700610591 53.3556434951129 0.987966700610591 53.355643495113 0.000222473615200265 24.2048572699812 ! Gamma ! 0.121057359241484 304.865633519068 0.121058123059316 304.866372862078 ! Port Impedance663.285121706741 0.161969456816079 663.283523661145 0.161966224678452 25.7 0.000243030017344087 -124.786614201363 0.988074591589708 32.3006094549221 0.988074591589708 32.3006094549221 0.000244304891049357 9.0740477048418 ! Gamma ! 0.119966433210605 308.540474644034 0.119967213409035 308.541205236991 ! Port Impedance657.945033444279 0.155401072833308 657.943485920046 0.155397938034717 25.8 0.000257763391725129 -152.781898827275 0.98817862143656 11.4136304030806 0.98817862143656 11.4136304030806 0.000259333767342996 -4.65954877342063 ! Gamma ! 0.118913868485073 312.186134834735 0.118914664520044 312.186856951262 ! Port Impedance652.791665224868 0.149190098754072 652.790165589427 0.149187054641415 25.9 0.000265981806923622 179.02279366721 0.988279007513039 -9.31130796353063 0.988279007513037 -9.31130796353067 0.000269244493397509 -17.3881385003318 ! Gamma ! 0.117897659536214 315.803624682969 0.117898470900055 315.804338582579 ! Port Impedance647.81504890701 0.143310395885822 647.813594716793 0.143307436403046 26 0.000270990259653343 150.682126430712 0.988376010246913 -29.8804293986856 0.988376010246911 -29.8804293986857 0.000275292045560321 -29.545575553292 ! Gamma ! 0.116915944038918 319.39390136116 0.116916770257129 319.394607290258 ! Port Impedance643.005934954981 0.137738217901382 643.004523938307 0.137735337551612 26.1 0.000274538234645031 121.885433559809 0.988469844456766 -50.2993392435315 0.988469844456765 -50.2993392435316 0.000278072966033745 -41.5460540982923 ! Gamma ! 0.11596698998959 322.957872435635 0.115967830617961 322.958570628434 ! Port Impedance638.355727489252 0.132451949322838 638.354357531057 0.132449143056879 26.2 0.000275408925399681 92.4856042637058 0.988560663038751 -70.5729061308443 0.988560663038752 -70.5729061308443 0.000277586857925571 -53.7573393053994 ! Gamma ! 0.115049184212495 326.49639933858 0.115050038834553 326.497090017928 ! Port Impedance633.856426356298 0.127431877035336 633.855095484514 0.127429140245082 26.3 0.000270508259597797 62.9488458487051 0.988648576955666 -90.705473651707 0.988648576955666 -90.7054736517069 0.000273405780624767 -66.4888744074895 ! Gamma ! 0.114161022081075 330.010300535193 0.114161890305845 330.01098391334 ! Port Impedance629.500575339483 0.122659990204658 629.499281712802 0.12265731867053 26.4 0.000258108685419402 34.3823995344416 0.988733683864614 -110.701135829682 0.988733683864616 -110.701135829681 0.000264931814119139 -79.9827777342492 ! Gamma ! 0.113301098305395 333.500354418061 0.11330197976538 333.501030697349 ! Port Impedance625.281215756889 0.118119804544487 625.279957653812 0.118117194390191 26.5 0.000240111293892743 7.96188925372687 0.988816089068558 -130.563931088707 0.98881608906856 -130.563931088707 0.000251768612497154 -94.4095275667159 ! Gamma ! 0.112468098658356 336.967301956864 0.112468993006798 336.967971330369 ! Port Impedance621.191844796968 0.113796207583986 621.190620605947 0.113793655243394 26.6 0.000220400576362779 -15.7120561054714 0.988895912983982 -150.297909708822 0.988895912983983 -150.297909708822 0.000234161048826685 -109.881355897653 ! Gamma ! 0.111660792527064 340.411849128175 0.111661699436369 340.412511780295 ! Port Impedance617.22637803131 0.109675322111136 617.225186241863 0.109672824298315 26.7 0.000202012791095488 -36.7195160911139 0.988973286823059 -169.907096123757 0.98897328682306 -169.907096123757 0.000213326016838629 -126.494546679472 ! Gamma ! 0.110878026194819 343.834669147206 0.110878945356628 343.8353252542 ! Port Impedance613.379115619026 0.10574438536778 613.377954813719 0.105741939050202 26.8 0.000186275780074754 -55.5489154264432 0.989048342002218 170.604601771379 0.989048342002219 170.604601771379 0.000191465382961908 -144.383743853226 ! Gamma ! 0.110118716774944 347.236404520836 0.110119647897807 347.237054251318 ! Port Impedance609.644711781164 0.101991641938809 609.643580628352 0.101989244313508 26.9 0.000173368793025824 -72.8513706618618 0.989121199328976 151.233482336203 0.989121199328976 151.233482336203 0.000171427117994332 -163.71905385164 ! Gamma ! 0.109381846716545 350.617668939062 0.109382789524477 350.618312454461 ! Port Impedance606.018147178116 0.0984062485770139 606.017044425368 0.0984038970493432 27 0.000163029628550921 -89.3589749915072 0.989191962344858 131.976101544196 0.989191962344857 131.976101544196 0.000156177140740652 175.457864633058 ! Gamma ! 0.108666458822687 353.979049020113 0.108667413054084 353.979686475101 ! Port Impedance602.49470386969 0.0949781894564698 602.49362833782 0.0949758816211534 27.1 0.000155141997489228 -105.938823355329 0.989260716560231 112.829272380859 0.989260716560231 112.829272380859 0.000148201578785996 153.558326137401 ! Gamma ! 0.107971651725308 357.321105922812 0.107972617131943 357.321737465688 ! Port Impedance599.069942577585 0.0916982005592891 599.068893155224 0.0916959341834749 27.2 0.000150659350156641 -123.654185399784 0.98932753379592 93.7900204255653 0.989327533795919 93.7900204255652 0.000148886355257165 131.583329527371 ! Gamma ! 0.107296575767982 360.644376838266 0.107297552114071 360.645002611325 ! Port Impedance595.739682004506 0.0885577020797657 595.738657643158 0.0885554750878209 27.3 0.000153289403622503 -143.207773420509 0.989392479178233 74.8555176108507 0.989392479178232 74.8555176108508 0.000158174730370041 110.634139582897 ! Gamma ! 0.10664042925378 363.949376371734 0.10664141631513 363.949996511604 ! Port Impedance592.499979993901 0.0855487378819891 592.49897970343 0.0855465483417056 27.4 0.000168358214311482 -163.081613657154 0.989455617823592 56.0230199150432 0.989455617823592 56.0230199150433 0.000174764558895315 91.201890719603 ! Gamma ! 0.106002455020593 367.236597824368 0.106003452583813 367.237212462323 ! Port Impedance589.347116340055 0.082663921175668 589.346139184571 0.0826617672860081 27.5 0.000193608876353386 179.147319748816 0.989517018811157 37.289829443738 0.989517018811157 37.289829443738 0.000196414782119785 73.0783401577981 ! Gamma ! 0.105381937310661 370.506514383525 0.105382945172445 370.507123645772 ! Port Impedance586.277577080617 0.0798963856825037 586.276622174698 0.0798942657660362 27.6 0.000220520878140878 162.233115891207 0.989576755312531 18.6532902223055 0.989576755312532 18.6532902223055 0.000220072345704964 55.8199254400347 ! Gamma ! 0.104778198904919 373.75958022947 0.104779216871417 373.760184237426 ! Port Impedance583.288040122973 0.0772397416795929 583.287106628214 0.0772376541658161 27.7 0.000244927240187181 143.757804848998 0.989634901232965 0.110814247192216 0.989634901232965 0.110814247192203 0.000242384307751504 39.1159471072988 ! Gamma ! 0.104190598496063 376.996231565538 0.104191626382152 376.996830436074 ! Port Impedance580.375362072861 0.0746880363352574 580.374449194705 0.074685979755838 27.8 0.000263734718706396 122.874238644869 0.989691525943996 -18.3400761102776 0.989691525943996 -18.3400761102776 0.000260488097530154 22.7498867693252 ! Gamma ! 0.103618528277218 380.216887578084 0.103619565906063 380.217481423773 ! Port Impedance577.536566148324 0.0722357178935267 577.535673133149 0.0722336908738081 27.9 0.000271325719697078 100.280510115742 0.989746689314106 -36.7017085688243 0.989746689314105 -36.7017085688244 0.000271812594006672 6.42243363369246 ! Gamma ! 0.10306141172537 383.42195133198 0.103062458928079 383.422540261308 ! Port Impedance574.76883107501 0.0698776032663315 574.767957207458 0.0698756045165446 28 0.000264066603006294 77.790651079249 0.989800439131624 -54.9762424982416 0.989800439131623 -54.9762424982417 0.000273036898462984 -10.1859170828823 ! Gamma ! 0.102518701561727 386.611810606862 0.102519758176944 386.612394724434 ! Port Impedance572.069480870184 0.0676088486688001 572.06862547067 0.0676068769825578 28.1 0.00024530406621209 57.3021515968594 0.989852812231358 -73.1656830591267 0.989852812231357 -73.1656830591268 0.000260211110221821 -27.1226459619276 ! Gamma ! 0.101989877873828 389.786838678805 0.101990943745774 389.787418085543 ! Port Impedance569.435975432698 0.0654249229733178 569.435137855165 0.0654229772133395 28.2 0.000222088241209189 39.7797997585916 0.989903839424195 -91.2719289043645 0.989903839424195 -91.2719289043646 0.000231160185333032 -43.9317289990701 ! Gamma ! 0.101474446377813 392.947395051744 0.10147552135813 392.947969845064 ! Port Impedance566.865901864982 0.0633215834962486 566.865081494781 0.0633196625945397 28.3 0.00019951442841308 25.2519262868182 0.989953553031404 -109.296843051312 0.989953553031405 -109.296843051312 0.000188013622148134 -59.7534260468665 ! Gamma ! 0.100971936820285 396.093826142488 0.100973020766518 396.094396416467 ! Port Impedance564.356966460781 0.0612948539649397 564.356162712734 0.061292956916257 28.4 0.000179518597016625 13.3435327496225 0.990001994804127 -127.242327356386 0.990001994804128 -127.242327356386 0.000136191019327008 -73.6143909558634 ! Gamma ! 0.100481901496162 399.226465922878 0.100482994271518 399.22703176842 ! Port Impedance561.906987299218 0.0593410044418822 561.906199615822 0.0593391302991542 28.5 0.000162105805045116 3.67121211679802 0.99004922155652 -145.110376609888 0.990049221556521 -145.110376609888 8.06761797834776E-05 -83.8930483327503 ! Gamma ! 0.100003913877915 402.345636522318 0.100005015350963 402.346198027293 ! Port Impedance559.513887391774 0.0574565330084142 559.513115241534 0.0574546808785491 28.6 0.000146335484153571 -3.94460961187659 0.990095306114315 -162.903090116541 0.990095306114316 -162.903090116541 2.5030435229799E-05 -75.131903106565 ! Gamma ! 0.0995375673452393 405.451648793593 0.0995386773896162 405.45220604299 ! Port Impedance557.175688334137 0.0556381490326431 557.174931210023 0.0556363180726927 28.7 0.000130396624120795 -9.15712846667233 0.990140332164431 179.377373158469 0.990140332164432 179.377373158469 4.27386519517529E-05 43.154352594625 ! Gamma ! 0.0990824740066335 408.5448028447 0.0990835925007592 408.545355920746 ! Port Impedance554.890504419616 0.053882757865786 554.889761837632 0.053880947279432 28.8 0.00011003095212846 -9.29119373962956 0.990184383103784 161.728896539347 0.990184383103785 161.728896539347 0.000112074416984512 39.992009334283 ! Gamma ! 0.0986382636051206 411.625388539102 0.098639390431941 411.625937521396 ! Port Impedance552.656537175051 0.0521874468282533 552.655808672898 0.0521856558625848 28.9 8.44949163464663E-05 30.5068427637887 0.990227526716132 144.149549556607 0.990227526716132 144.149549556607 0.0001957238283251 25.5239986413591 ! Gamma ! 0.0982045825011219 414.693685966695 0.0982057175478652 414.694230932322 ! Port Impedance550.472070283893 0.0505494723618457 550.471355419737 0.0505477003043996 29 0.000308546435700214 -44.8424088333919 0.990269799073782 126.63774365024 0.990269799073781 126.63774365024 0.000286284876088688 3.79561214720477 ! Gamma ! 0.0977810927261265 417.749965887532 0.097782235884076 417.750506911172 ! Port Impedance548.335464864518 0.048966248237687 548.334763215832 0.0489644944137274 29.1 0.000175064590155094 -45.4220802295416 0.990311192081391 109.192358644564 0.990311192081388 109.192358644564 0.000339388637441228 -23.7755090253495 ! Gamma ! 0.0973674711014081 420.794490150198 0.0973686222656915 420.795027304233 ! Port Impedance546.245155074814 0.0474353347211961 546.244466237304 0.0474335984912098 29.2 0.000150523359813073 -47.0019841144025 0.990351649229377 91.8127954669656 0.990351649229374 91.8127954669655 0.000317385418051281 -49.3305556386945 ! Gamma ! 0.0969634084165712 423.827512086586 0.0969645674859629 423.828045441194 ! Port Impedance544.199644016766 0.0459544286057156 544.198967603371 0.0459527093631039 29.3 0.000138763305880484 -49.2343829752493 0.990391073211142 74.4989165291541 0.990391073211137 74.4989165291539 0.000260448071283271 -67.0217727741583 ! Gamma ! 0.096568608663184 426.849276884661 0.0965697755399212 426.849806507918 ! Port Impedance542.19749991721 0.04452135403555 542.196835557162 0.0445196512044996 29.4 0.00013124536566801 -51.5379132024925 0.990429347077588 57.2508512474623 0.990429347077584 57.2508512474621 0.000206424250894135 -77.6725696306148 ! Gamma ! 0.0961827883191844 429.860021940713 0.0961839629087955 429.860547898672 ! Port Impedance540.237352563021 0.0431340540472476 540.236699900976 0.0431323670807635 29.5 0.000125759660583119 -53.7042017172749 0.990466367780166 40.0686691522638 0.990466367780163 40.0686691522637 0.000163223093980126 -83.2617660886799 ! Gamma ! 0.0958056756801327 432.859977192419 0.0958068578912768 432.860499549199 ! Port Impedance538.317889971013 0.0417905827651398 538.317248666228 0.0417889111432264 29.6 0.000121461600310852 -55.6342536426128 0.990502087738078 22.9519538311279 0.990502087738078 22.9519538311279 0.000129503519345113 -84.6577393841713 ! Gamma ! 0.0954370102337275 435.84936543401 0.095438199978044 435.849884251872 ! Port Impedance536.437855274511 0.0404890981935295 536.437225000083 0.040487441421508 29.7 0.000117953408958988 -57.2519972388175 0.990536557051936 5.89934295467078 0.990536557051939 5.89934295467082 0.000103498618293307 -81.5044740957646 ! Gamma ! 0.0950765420743159 438.828402614675 0.0950777392662842 438.8289179541 ! Port Impedance534.596043810188 0.0392278555535956 534.595424252336 0.0392262131605448 29.8 0.000115029215148408 -58.4573430783417 0.990569956782473 -11.0918724796984 0.99056995678248 -11.0918724796982 8.52727454678765E-05 -72.349716190623 ! Gamma ! 0.094724031354411 441.79729812128 0.0947252359112185 441.797810041037 ! Port Impedance532.791300390133 0.0380052011181407 532.790691247525 0.038003572655451 29.9 0.000112597491959786 -59.0669523833344 0.990602612790756 -28.0259778308952 0.990602612790766 -28.025977830895 7.81293382277228E-05 -56.157912080534 ! Gamma ! 0.0943792477704836 444.7562550464 0.0943804596119014 444.756763603617 ! Port Impedance531.022516745421 0.0368195665018207 531.021917728546 0.0368179515418531 30 0.000110699777556624 -58.6731511894313 0.990634980244303 -44.9087759811265 0.990634980244315 -44.9087759811262 8.87346670898834E-05 -37.2906471049451 ! Gamma ! 0.0940419700805244 447.705470442578 0.0940431891287905 447.705975692801 ! Port Impedance529.288629128623 0.0356694633685336 529.288039959198 0.035667861503375 30.1 0.00010977208556676 -56.1581889258156 0.990667591089068 -61.7471327378973 0.99066759108908 -61.747132737897 0.000124932409708409 -24.5910216852827 ! Gamma ! 0.0937119856510838 450.645135563655 0.0937132118307916 450.645637560915 ! Port Impedance527.588616063717 0.0345534785212517 527.588036474131 0.0345518893615584 30.2 0.000112959597246917 -47.1594729805129 0.99070096057824 -78.54804696231 0.990700960578248 -78.5480469623098 0.000202780126891725 -22.8687508969913 ! Gamma ! 0.0933890900316835 453.575436093981 0.0933903232696759 453.575934890846 ! Port Impedance525.92149623285 0.0334702693428162 525.920925965643 0.0334686925167398 30.3 0.000226799555115051 4.08571988984508 0.990735454453405 -95.3172128062767 0.990735454453406 -95.3172128062766 0.000365614784537465 -38.7017685582079 ! Gamma ! 0.0930730865546667 456.496552366216 0.0930743267799338 456.497048013851 ! Port Impedance524.286326490223 0.0324185595591174 524.285765297593 0.0324169947113066 30.4 0.00012610972988503 -112.783172235724 0.990771125829362 -112.057109126659 0.990771125829355 -112.057109126659 0.000502984049986904 -85.499269508668 ! Gamma ! 0.0927637859587089 459.408659568425 0.0927650331022895 459.409152116642 ! Port Impedance522.682199994199 0.0313971352986855 522.681647637542 0.031395582089359 30.5 0.000106715341987416 -94.3361294154739 0.990807540289843 -128.764739942968 0.990807540289825 -128.764739942969 0.000348497014689887 -122.364558466075 ! Gamma ! 0.0924610060343534 462.311927941089 0.0924622600292384 462.312417438396 ! Port Impedance521.10824444941 0.030404841425064 521.107700698881 0.0304032995291492 30.6 0.000102599902803408 -89.3773181860972 0.990843618332153 -145.429255157772 0.990843618332125 -145.429255157773 0.000236018598388808 -136.43754815243 ! Gamma ! 0.0921645712900665 465.20652296462 0.092165832071103 465.207009458273 ! Port Impedance519.563620451316 0.0294405781204463 519.563085085421 0.02943904722678 30.7 0.000100446611958961 -87.6027349758378 0.990877533559758 -162.029788081047 0.990877533559723 -162.029788081048 0.000175896002538281 -142.91713921062 ! Gamma ! 0.0918743126374202 468.092605537949 0.0918755801412161 468.093089073991 ! Port Impedance518.047519926241 0.0285032977009585 518.046992731448 0.0285017775115444 30.8 9.88879562526097E-05 -87.0123873485111 0.990906708275733 -178.533926978138 0.990906708275698 -178.533926978139 0.00013949845769771 -146.728150843526 ! Gamma ! 0.0915900670941247 470.970332148673 0.0915913412589514 470.97081277198 ! Port Impedance516.559164660472 0.0275920016456837 516.558645430844 0.0275904918750054 30.9 9.76005668795429E-05 -86.9684845136437 0.990927939692629 165.102748712816 0.990927939692604 165.102748712815 0.000114919312723675 -149.405287964082 ! Gamma ! 0.0913116775037238 473.839855035259 0.0913129582694169 473.840332789584 ! Port Impedance515.097804912474 0.0267057378230805 515.097293449328 0.026704238197465 31 9.64715919786378E-05 -87.2078946491777 0.990937666180511 148.935730398355 0.990937666180511 148.935730398355 9.6984668181107E-05 -151.535475477985 ! Gamma ! 0.0910389922708615 476.701322341754 0.0910402795787177 476.701797269763 ! Port Impedance513.662718102754 0.0258435978998417 513.66221421433 0.0258421081568708 31.1 0.000231028696864422 -86.6716140949618 0.990949271185705 132.708310925895 0.990949271185663 132.708310925894 0.000106178295809678 -144.759076155847 ! Gamma ! 0.0907718651101227 479.554878265395 0.0907731589037284 479.555350408707 ! Port Impedance512.253207576296 0.0250047149196095 512.252711077453 0.0250032348059671 31.2 0.000441597916083964 -65.6872306846635 0.990970349448048 116.441392600729 0.990970349447988 116.441392600728 0.000118197479244197 -138.157671714648 ! Gamma ! 0.0905101548117337 482.400663197544 0.0905114550356288 482.401132596766 ! Port Impedance510.86860143287 0.0241882610342766 510.868112144791 0.0241867903083363 31.3 0.000536577756915055 -32.4707789322287 0.990997120473911 100.169639417006 0.990997120473855 100.169639417005 0.000133967037906852 -131.645177751887 ! Gamma ! 0.0902537250158893 485.238813858282 0.0902550316160327 485.23928055304 ! Port Impedance509.508251420887 0.0233934453847097 509.507769170803 0.0233919838141395 31.4 0.000457990208350554 -12.3187291940735 0.991026550890618 83.9182721591744 0.991026550890574 83.9182721591739 0.000155083396953694 -125.0423918608 ! Gamma ! 0.0900024440014311 488.069463425019 0.0900037569251411 488.069927453998 ! Port Impedance508.171531890754 0.0226195121129236 508.171056511686 0.0226180594742616 31.5 0.000378286012824372 -4.8679215996493 0.991056434938211 67.7039877892077 0.991056434938184 67.7039877892075 0.000184472685641854 -118.021334913911 ! Gamma ! 0.0897561844851856 490.892741655445 0.0897575036810838 490.893203056414 ! Port Impedance506.857838804006 0.0218657384993982 506.85737013451 0.0218642945776475 31.6 0.000323079603349003 -3.239619884896 0.991085357757417 51.5363846821532 0.991085357757407 51.5363846821531 0.000227924364832571 -109.952352479338 ! Gamma ! 0.0895148234318102 493.70877500511 0.0895161488497702 493.709233814955 ! Port Impedance505.566588794724 0.021131433216017 505.566126678663 0.0211299978042587 31.7 0.000283951237482792 -4.37882635494317 0.991112578495302 35.4196108229418 0.991112578495303 35.4196108229418 0.000297980237198374 -99.4485974160398 ! Gamma ! 0.0892782418735042 496.517686739921 0.0892795734646026 496.518142994676 ! Port Impedance504.297218280051 0.0204159346864386 504.296762566369 0.0204145075854629 31.8 0.000254293731918018 -7.03635027623415 0.991137872070601 19.3540005883024 0.991137872070611 19.3540005883025 0.000422824042698072 -82.820366467292 ! Gamma ! 0.0890463247389848 499.319597043828 0.0890476624554555 499.320050778698 ! Port Impedance503.049182616775 0.0197186095463687 503.048733159285 0.0197171905643221 31.9 0.000230282843587061 -10.6455912744182 0.991161362336447 3.33753496397585 0.991161362336461 3.33753496397585 0.000622664486389074 -49.5769445621443 ! Gamma ! 0.0888189606911695 502.114623121928 0.0888203044863607 502.11507437132 ! Port Impedance501.82195530121 0.0190388511967882 501.821511958394 0.0190374401488361 32 0.000209644234410263 -14.9230782420289 0.991183369916745 -12.6329699375206 0.991183369916757 -12.6329699375205 0.000596133770091716 2.75609586425212 ! Gamma ! 0.0885960419730479 504.902879299242 0.0885973918013812 504.903328096787 ! Port Impedance500.615027209781 0.0183760784437357 500.6145898446 0.0183746751517403 32.1 0.000190904611113391 -19.717916839695 0.991204288435754 -28.5609819356747 0.991204288435764 -28.5609819356746 0.00037176520632231 36.1657940658914 ! Gamma ! 0.0883774642612571 507.684477115375 0.088378820078189 507.684923493953 ! Port Impedance499.427905877887 0.0177297342187381 499.427474357598 0.0177283385109495 32.2 0.000173000727968726 -24.9495895048645 0.991224494888837 -44.4496712109359 0.991224494888844 -44.4496712109358 0.000241407053949356 53.1802540487921 ! Gamma ! 0.0881631265269109 510.459525415254 0.0881644882888957 510.459969407021 ! Port Impedance498.260114814792 0.0170992843744326 498.259689010778 0.0170978960851945 32.3 0.000155067632238531 -30.5808776177885 0.991244294022662 -60.3015909208294 0.991244294022665 -60.3015909208294 0.000171140518377531 64.2167050671406 ! Gamma ! 0.0879529309032607 513.228130436171 0.0879542985677163 513.228572072575 ! Port Impedance497.111192852446 0.0164842165503401 497.110772640049 0.0164828355198088 32.4 0.000136312843046131 -36.6070565034752 0.991263892688906 -76.118566793269 0.991263892688905 -76.118566793269 0.000129687820841049 72.8147157610243 ! Gamma ! 0.087746782559797 515.990395891272 0.087748156085071 515.990835203079 ! Port Impedance495.980693526268 0.0158840391041268 495.980278784633 0.0158826651780034 32.5 0.000115930937772989 -43.0555060546377 0.991283397877658 -91.9017366831807 0.991283397877654 -91.9017366831807 0.000103714487082555 80.0623199543653 ! Gamma ! 0.0875445895824218 518.746423049697 0.0875459689277601 518.746860067015 ! Port Impedance494.868184486059 0.0152982801040402 494.867775097989 0.0152969131333171 32.6 9.30355973895989E-05 -49.9994901059268 0.991302831190337 -107.651682895184 0.991302831190332 -107.651682895184 8.71738724419626E-05 86.0705250989127 ! Gamma ! 0.0873462628593514 521.496310813529 0.0873476479848675 521.496745565819 ! Port Impedance493.77324693534 0.0147264863785236 493.772842787152 0.0147251262192433 32.7 6.65977001166367E-05 -57.6205941562795 0.991322152591332 -123.368607210098 0.991322152591328 -123.368607210098 7.7059024751547E-05 90.4161941636593 ! Gamma ! 0.0871517159724263 524.240155791683 0.0871531068390728 524.240588307785 ! Port Impedance492.695475097504 0.0141682226193051 492.695076078893 0.0141668691323336 32.8 3.53898936828429E-05 -66.6575984338264 0.991341287128185 -139.052508973943 0.991341287128182 -139.052508973943 7.18679853952333E-05 92.4043862174575 ! Gamma ! 0.08696086509353 526.97805237091 0.0869622616630702 526.978482679058 ! Port Impedance491.634475707287 0.0136230705345292 491.634081711199 0.0136217235853412 32.9 2.72970518466952E-06 145.390725858553 0.991360149681108 -154.703338507136 0.991360149681105 -154.703338507136 7.11315388526637E-05 91.3796623060505 ! Gamma ! 0.0867736288858328 529.710092784033 0.0867750311208146 529.710520911877 ! Port Impedance490.58986752616 0.0130906280487421 490.58947844867 0.0130892875072192 33 4.77636802211245E-05 100.346966879545 0.99137866443774 -170.321109904743 0.991378664437739 -170.321109904743 7.5408000461081E-05 87.1003447942258 ! Gamma ! 0.0865899284096 532.436367175556 0.0865913362733302 532.436793150174 ! Port Impedance489.561280880321 0.0125705085467747 489.560896620513 0.0125691742870149 33.1 0.000103401114645522 88.9618162630069 0.991396777442619 174.094032225081 0.99139677744262 174.094032225081 8.64490234495241E-05 80.0200643388903 ! Gamma ! 0.0864096870323145 535.156963664755 0.0864111004888345 535.157387512674 ! Port Impedance488.548357220057 0.0120623401587713 488.547977679915 0.0120610120589093 33.2 0.000171038610654632 77.0043281289001 0.991414462034467 158.541789262031 0.99141446203447 158.541789262031 0.0001074045784918 71.1294000814489 ! Gamma ! 0.0862328303428845 537.871968406385 0.0862342493569464 537.872390153592 ! Port Impedance487.550748699327 0.0115657650838097 487.550373783627 0.011564443025848 33.3 0.000251655881922001 63.6733507469166 0.991431718111475 143.021719857025 0.991431718111477 143.021719857025 0.000143248530707254 61.2485454887872 ! Gamma ! 0.0860592860697163 540.581465649088 0.0860607106067611 540.581885321049 ! Port Impedance486.568117774476 0.0110804389497352 486.567747390686 0.0110791228193836 33.4 0.000343652953035485 48.6269312476057 0.99144856688223 127.533274584827 0.991448566882233 127.533274584828 0.000201761662400317 50.3183001698769 ! Gamma ! 0.0858889840024507 543.285537791637 0.085890414028586 543.285955413311 ! Port Impedance485.600136821064 0.0106060302069938 485.599770879242 0.0106047198935176 33.5 0.000440597557888121 31.7696168029926 0.991465043064878 112.075841983083 0.99146504306488 112.075841983083 0.000294230884966972 37.1177718357979 ! Gamma ! 0.0857218559171684 545.984265437081 0.0857232913991482 545.984681032933 ! Port Impedance484.646487767853 0.0101422195544047 484.646126180559 0.0101409149504803 33.6 0.000530344883979044 13.3570293709057 0.991481186442297 96.6487952956517 0.991481186442298 96.6487952956518 0.000428609862355596 19.3994096039368 ! Gamma ! 0.0855578355048854 548.67772744491 0.08555927641009 548.678141038925 ! Port Impedance483.706861747062 0.00968869939494904 483.706504429268 0.0096874003965272 33.7 0.000598697465808949 -5.99424302400544 0.991497034355188 81.251531781945 0.991497034355189 81.251531781945 0.000574088357313361 -4.27147562310331 ! Gamma ! 0.0853968583031693 551.366000981311 0.0853983045995863 551.366412597009 ! Port Impedance482.78095876004 0.00924517331978595 482.78060562904 0.00924387982596036 33.8 0.000636737313741291 -25.5650775947528 0.991512616222504 65.8834996011858 0.991512616222504 65.8834996011859 0.000642625773736897 -29.6325001231601 ! Gamma ! 0.0852388616307152 554.049161567611 0.0852403132869209 554.049571228056 ! Port Impedance481.868487357551 0.0088113556188227 481.868138332888 0.00881006753170356 33.9 0.000644684237473785 -44.9184647665684 0.991527950623544 50.5442104591028 0.991527950623543 50.5442104591028 0.000620393756097158 -49.3839023512248 ! Gamma ! 0.0850837845247315 556.727283126976 0.0850852415098737 556.727690854793 ! Port Impedance480.969164333956 0.00838697081628237 480.968819337335 0.00838568804087085 34 0.000628840907630421 -64.0954781554831 0.991543044949349 35.2332389613742 0.991543044949348 35.2332389613742 0.000571299151752262 -62.1438613187536 ! Gamma ! 0.0849315676809953 559.400438029448 0.0849330299647762 559.40084384683 ! Port Impedance480.082714434548 0.00797175322982996 480.082373389766 0.00797047567387151 34.1 0.000596649043608457 -83.5645091530846 0.991557897202611 19.9502116481646 0.991557897202609 19.9502116481646 0.000528328764558421 -70.0241885406376 ! Gamma ! 0.084782153396442 562.068697135388 0.0847836209491025 562.069101064111 ! Port Impedance479.208870075409 0.00756544655221561 479.208532908286 0.00756417412568872 34.2 0.000554478739751977 -104.095578524854 0.991572499239802 4.69478983822052 0.991572499239801 4.69478983822053 0.000496980146792445 -74.8783059700468 ! Gamma ! 0.0846354855141639 564.732129837394 0.0846369583064692 564.732531898827 ! Port Impedance478.347371075162 0.00716780345432774 478.347037713455 0.00716653606805962 34.3 0.000508242550701404 -126.660305321007 0.991586840624138 -10.5333493150564 0.991586840624137 -10.5333493150563 0.00047575664704369 -77.7988361882874 ! Gamma ! 0.0844915093706971 567.390804100762 0.0844929873739259 567.391204315877 ! Port Impedance477.497964397952 0.0067785851956181 477.497634771329 0.0067773227713649 34.4 0.00046531593191418 -152.264079346867 0.991600912286266 -25.7345296420973 0.991600912286266 -25.7345296420973 0.000462750124102134 -79.3883152406329 ! Gamma ! 0.0843501717454644 570.044786502542 0.0843516549314252 570.045184891925 ! Port Impedance476.660403907306 0.00639756129273547 476.660077947239 0.00639630374511298 34.5 0.000435936358262229 178.581842739873 0.991614709343313 -40.9090877852854 0.991614709343314 -40.9090877852854 0.000457072190333957 -79.984174745915 ! Gamma ! 0.0842114208128589 572.694142269256 0.0842129091533634 572.694538853115 ! Port Impedance475.834450130052 0.00602450914687436 475.834127769777 0.00602325639597485 34.6 0.000430910567570356 146.853904691161 0.991628232664637 -56.0573785300073 0.991628232664638 -56.0573785300073 0.000459350569160472 -79.8076456708918 ! Gamma ! 0.0840752060938291 575.338935313329 0.0840766995620399 575.339330111506 ! Port Impedance475.019870030057 0.00565921373418746 475.019551204515 0.00565796570238995 34.7 0.000454095510909007 115.212787393437 0.991641489046052 -71.1797735434638 0.991641489046053 -71.1797735434638 0.000472499035427645 -79.1269399503672 ! Gamma ! 0.0839414784143066 577.979228268291 0.0839429769833512 577.979621300281 ! Port Impedance474.216436791187 0.00530146729300574 474.216121436966 0.00530022390482612 34.8 0.000497690165937131 86.1452246807137 0.991654490116856 -86.2766546639382 0.991654490116858 -86.2766546639382 0.00050300483283061 -78.600295926174 ! Gamma ! 0.0838101898599912 580.615082522792 0.083811693503455 580.615473807724 ! Port Impedance473.423929609074 0.00495106902882733 473.423617664357 0.00494983021083335 34.9 0.000547736494036733 60.4629203049795 0.991667250316128 -101.34840377588 0.991667250316129 -101.34840377588 0.000559897564982343 -80.055539910207 ! Gamma ! 0.0836812937361417 583.246558253483 0.0836828024280048 583.246947810156 ! Port Impedance472.642133491288 0.00460782483334717 472.6418248958 0.00460659051408439 35 0.00059197809678451 37.7748954382134 0.991679784409419 -116.395391753912 0.991679784409419 -116.395391753912 0.000632801556039298 -87.0194141826671 ! Gamma ! 0.0835547445279893 585.87371445681 0.0835562582426868 585.874102303692 ! Port Impedance471.870839065491 0.00427154701672138 471.870533760451 0.00427031712664624 35.1 0.000622681670952878 17.3136558095054 0.991692105061123 -131.4179689382 0.991692105061123 -131.4179689382 0.000644890779136597 -99.7735585686129 ! Gamma ! 0.0834304978628036 588.496608979762 0.0834320165751712 588.496995134996 ! Port Impedance471.109842395229 0.00394205405234223 471.1095403233 0.0039408285237792 35.2 0.000635672070447055 -1.72889595675283 0.991704220932878 -146.416459161446 0.991704220932876 -146.416459161446 0.000568978652401585 -110.155361073747 ! Gamma ! 0.0833085104734863 591.115298549607 0.0833100341586921 591.115683031024 ! Port Impedance470.358944802983 0.00361917033298529 470.358645908225 0.00361794910068284 35.3 0.000628447673791261 -20.1594677068315 0.991716135658566 -161.391158587993 0.991716135658565 -161.391158587993 0.00048520431102429 -115.046548817116 ! Gamma ! 0.0831887401740642 593.729838802661 0.0831902687970071 593.730221627801 ! Port Impedance469.617952700125 0.00330272594082144 469.61765692798 0.00330150894255763 35.4 0.000598842066987291 -38.8446081095924 0.991727847875674 -176.342339689026 0.991727847875673 -176.342339689026 0.000422262202513382 -117.383664176799 ! Gamma ! 0.0830711457726577 596.340284312239 0.0830726793307025 596.340665498274 ! Port Impedance468.886677423617 0.00299255642266706 468.886384720799 0.00299134359072516 35.5 0.000544873726701561 -58.8478479561464 0.991739352300204 168.729740278757 0.991739352300202 168.729740278757 0.000374884634821259 -119.569177621206 ! Gamma ! 0.082955687145565 598.946688615375 0.0829572256047846 598.947068179264 ! Port Impedance468.164935078803 0.00268850258005502 468.164645393327 0.00268729385517981 35.6 0.000466568935800871 -81.7467006489688 0.991750641648965 153.82482775122 0.991750641648964 153.82482775122 0.000337006917782988 -122.990824491308 ! Gamma ! 0.0828423251005949 601.549104239192 0.0828438684375005 601.549482197577 ! Port Impedance467.452546388444 0.00239041026813216 467.452259669552 0.00238920559139734 35.7 0.000371523113764818 -110.446192103641 0.991761709066375 138.942660327627 0.991761709066373 138.942660327627 0.00030728892845821 -128.696897297721 ! Gamma ! 0.0827310213987032 604.14758272603 0.082732569590332 604.147959095275 ! Port Impedance466.749336547396 0.00209813020187886 466.749052745529 0.00209692951542148 35.8 0.000287532570136544 -150.330197985687 0.991772550624074 124.082955513306 0.991772550624073 124.082955513306 0.000289666453219412 -137.42010202506 ! Gamma ! 0.0826217387153646 606.742174657967 0.0826232917391124 606.742549454163 ! Port Impedance466.055135082828 0.00181151777207516 466.054854149587 0.00181032101940439 35.9 0.000271209163596238 158.233565418335 0.991783167442502 109.245402893202 0.991783167442503 109.245402893202 0.000292804598746677 -148.623759903628 ! Gamma ! 0.0825144406126194 609.332929680544 0.082515998446216 609.333302919516 ! Port Impedance465.36977571969 0.00153043286922979 465.369497607799 0.00152923999522553 36 0.000340263959541066 114.246788474477 0.991793567035356 94.4296614341172 0.991793567035357 94.4296614341172 0.000325307954416209 -159.566783867837 ! Gamma ! 0.0824090915122758 611.919896525745 0.0824106541337731 611.92026822306 ! Port Impedance464.693096251208 0.00125473971524235 464.692820914487 0.00125355066612018 36.1 0.000441956150987125 84.5453630537594 0.991803763591951 79.6353628798552 0.991803763591953 79.6353628798552 0.000388029387739239 -167.074439969616 ! Gamma ! 0.0823056566701054 614.503123034289 0.0823072240578679 614.503493205258 ! Port Impedance464.024938414198 0.000984306702417873 464.024665807525 0.0009831214256887 36.2 0.000539124666376901 63.5187859287319 0.991813777071485 64.8621213027514 0.991813777071488 64.8621213027514 0.000472588240881409 -170.132378957223 ! Gamma ! 0.0822041021509787 617.082656177222 0.082205674283675 617.083024836908 ! Port Impedance463.365147768966 0.000719006239468624 463.364877848246 0.000717824683897751 36.3 0.000620107053338736 47.4614790432872 0.991823631164172 50.1095479332232 0.991823631164174 50.1095479332232 0.000566054311705229 -169.575794398993 ! Gamma ! 0.0821043948049007 619.658542076867 0.0821059716614953 619.65890924009 ! Port Impedance462.713573583615 0.000458714604156035 462.713306305753 0.000457536719723493 36.4 0.000683863512739346 34.5801233907894 0.991833350351428 35.3772695367211 0.991833350351429 35.377269536721 0.000655654680540765 -166.737149962224 ! Gamma ! 0.082006502243908 622.230826027133 0.0820080838036538 622.231191708479 ! Port Impedance462.07006872257 0.000203311802246619 462.069804045439 0.00020213754010854 36.5 0.000732733006884059 23.90747115261 0.991842956446203 20.6649479629545 0.991842956446202 20.6649479629544 0.000732169340269777 -162.781357469433 ! Gamma ! 0.0819103928197899 624.799552513226 0.0819119790622217 624.799916727045 ! Port Impedance461.434489539128 -4.73185675280459E-05 461.434227421544 -4.84892550765101E-05 36.6 0.000769643296377612 14.8530173830313 0.991852465094077 5.97229814744718 0.991852465094076 5.97229814744716 0.000791477442479989 -158.529377199421 ! Gamma ! 0.0818160356026011 627.364765230758 0.0818176265075297 627.365127991177 ! Port Impedance460.806695771876 -0.000293289442798853 460.806436173568 -0.000294456602359241 36.7 0.000797181437774003 7.02505538113739 0.99186188275157 -8.70089814541056 0.991861882751565 -8.70089814541062 0.000833803507323505 -154.466812308468 ! Gamma ! 0.0817234003599302 629.926507104307 0.0817249959074378 629.926868425229 ! Port Impedance460.186550444806 -0.000534710421450436 460.186293326392 -0.000535874098555298 36.8 0.000817390047145206 0.149933001763144 0.991871204623608 -23.354785175105 0.991871204623601 -23.3547851751051 0.000861739861737171 -150.824820498048 ! Gamma ! 0.081632457536895 632.484820305416 0.0816340577073308 632.485180200529 ! Port Impedance459.573919770984 -0.000771687880337401 459.573665093943 -0.000772848119483427 36.9 0.000831810226149764 -5.97030225518141 0.991880413939904 -37.9894343079069 0.991880413939894 -37.9894343079071 0.000878490995681462 -147.674655993742 ! Gamma ! 0.0815431782368338 635.039746270077 0.0815447830108096 635.040104752857 ! Port Impedance458.968673059604 -0.00100432508907244 458.968420786257 -0.00100548193375209 37 0.000841584827154464 -11.4826634293479 0.991889482791095 -52.6048540093432 0.991889482791084 -52.6048540093434 0.000886916401963772 -145.002877730484 ! Gamma ! 0.0814555342026645 637.591325715703 0.081457143561049 637.591682799417 ! Port Impedance458.370682626317 -0.0012327223191201 458.370432719798 -0.00123387581185235 37.1 0.000847558503610021 -16.4987622315085 0.991898374549034 -67.2010083293214 0.991898374549021 -67.2010083293215 0.00088922261268379 -142.759190067766 ! Gamma ! 0.0813694977988834 640.139598657605 0.0813711117227958 640.139954355319 ! Port Impedance457.779823706672 -0.00145697694841758 457.779576130908 -0.0014581271307772 37.2 0.000850358003925721 -21.105020033967 0.991907047685904 -81.7778423579096 0.99190704768589 -81.7778423579098 0.000886986378775243 -140.88240788512 ! Gamma ! 0.0812850419941799 642.684604425007 0.0812866604649823 642.684958749588 ! Port Impedance457.195974372562 -0.00167718356173211 457.195729092251 -0.00167833047437811 37.3 0.000850452180218074 -25.3695981774713 0.991915460610995 -96.3353121534437 0.99191546061098 -96.3353121534438 0.000881288583413284 -139.312715293455 ! Gamma ! 0.0812021403446403 645.226381676594 0.0812037633439299 645.226734640713 ! Port Impedance456.619015451545 -0.00189343404695339 456.618772432133 -0.00189457772965624 37.4 0.000848195525191176 -29.3472209730227 0.991923576988119 -110.873415923933 0.991923576988105 -110.873415923933 0.000872855782571086 -137.996494445143 ! Gamma ! 0.0811207669775185 647.764968415621 0.0811223944871204 647.765320031761 ! Port Impedance456.048830448924 -0.00210581768750951 456.048589656589 -0.0021069581791774 37.5 0.000843859422439171 -33.0826048104922 0.991931370902486 -125.392222876521 0.991931370902474 -125.392222876521 0.000862175288156396 -136.887539807677 ! Gamma ! 0.0810408965755509 650.300402004604 0.0810425285775114 650.300752285061 ! Port Impedance455.48530547248 -0.00231442125108422 455.485066874107 -0.00231555858978847 37.6 0.000837654558149165 -36.6129448662031 0.991938831227494 -139.891896197126 0.991938831227484 -139.891896197126 0.000849579484246794 -135.946703089335 ! Gamma ! 0.0809625043617934 652.832719179586 0.080964140838375 652.833068136474 ! Port Impedance454.928329159751 -0.0025193290748053 454.928092722915 -0.00252046329780471 37.7 0.000829747068675837 -39.9697537274016 0.991945964604021 -154.372707093458 0.991945964604014 -154.372707093458 0.000835304685851399 -135.140975904862 ! Gamma ! 0.0808855660849614 655.361956064019 0.0808872070186381 655.362303709274 ! Port Impedance454.377792607747 -0.00272062314706407 454.377558300698 -0.00272175429082846 37.8 0.000820270267390055 -43.1802485286418 0.991952796581948 -168.83503769 0.991952796581946 -168.83503769 0.000819531337242017 -134.44246929688 ! Gamma ! 0.0808100580052517 657.88814818225 0.0808117033787049 657.888494527632 ! Port Impedance453.833589305028 -0.00291838318611826 453.833357096665 -0.00291951128635124 37.9 0.000809333247501274 -46.2684209353286 0.991959370671111 176.72062828226 0.991959370671111 176.72062828226 0.000802411274978073 -133.827479082921 ! Gamma ! 0.0807359568806287 660.411330472645 0.0807376066767438 660.411675529744 ! Port Impedance453.295615066023 -0.00311268671562326 453.295384925886 -0.00311381180728403 38 0.000797027267999954 -49.2558840098927 0.991965745284652 162.293726726862 0.991965745284657 162.293726726862 0.000784086287862034 -133.275700768643 ! Gamma ! 0.0806632399535571 662.931537300346 0.0806648941554196 662.931881080582 ! Port Impedance452.763767967531 -0.00330360913722811 452.763539865776 -0.00330473125455267 38.1 0.000783430558417237 -52.1625637523209 0.991971988805419 147.883644713654 0.991971988805428 147.883644713654 0.000764700956943934 -132.769604676563 ! Gamma ! 0.080591884938163 665.448802469685 0.0805935435290549 665.449144984317 ! Port Impedance452.237948287298 -0.0034912238003676 452.237722194687 -0.00349234297688907 38.2 0.000768611990974154 -55.0072862048369 0.991978173237463 133.489759413253 0.991978173237473 133.489759413253 0.00074441187593059 -132.293963978595 ! Gamma ! 0.0805218700078083 667.963159236262 0.0805235329712045 667.963500496385 ! Port Impedance451.718058444607 -0.00367560206937325 451.717834332488 -0.00367671833794167 38.3 0.000752633940669631 -57.8083006700232 0.99198436709337 119.11148055847 0.991984367093384 119.11148055847 0.000723394797038067 -131.835527857367 ! Gamma ! 0.0804531737830621 670.474640318695 0.080454841102627 670.474980335248 ! Port Impedance451.204002942786 -0.00385681338802179 451.203780783082 -0.00385792678082303 38.4 0.000735554567442738 -60.5837743088319 0.991990628291058 104.748291950809 0.991990628291073 104.748291950809 0.000701850958867627 -131.382841696596 ! Gamma ! 0.0803857753200546 672.983277910059 0.0803874469796377 672.983616693826 ! Port Impedance450.695688313588 -0.00403492534163231 450.695468078779 -0.00403603589020645 38.5 0.000717429698399763 -63.3522926371151 0.99199699787389 90.3997873916691 0.991996997873904 90.3997873916692 0.000680013797573653 -130.926234533198 ! Gamma ! 0.0803196540991987 675.489103689017 0.0803213300828316 675.48944125063 ! Port Impedance450.193023063339 -0.00421000371681877 450.192804726447 -0.00421111145207785 38.6 0.000698314455840681 -66.133404671215 0.992003495316402 76.0656967889792 0.992003495316417 76.0656967889794 0.000658157436470861 -130.458023931367 ! Gamma ! 0.0802547900142663 677.99214883066 0.0802564703061584 677.992485180604 ! Port Impedance449.695917620817 -0.00438211255899913 449.695701155396 -0.00438321751124425 38.7 0.000678264766668709 -68.9482624081102 0.992010116034384 61.7458990608449 0.992010116034397 61.7458990608451 0.000636608887928077 -129.973038180495 ! Gamma ! 0.0801911633618056 680.492444017059 0.0801928479463407 680.492779165671 ! Port Impedance449.20428428678 -0.00455131422775707 449.2040696669 -0.00455241642669497 38.8 0.000657338904479452 -71.8204258119102 0.992016831492811 47.440419763616 0.992016831492821 47.4404197636161 0.000615767027153456 -129.469642672649 ! Gamma ! 0.0801287548308871 682.990019447541 0.08013044369262 682.990353405016 ! Port Impedance448.718037185088 -0.00471766945014847 448.717824385321 -0.00471876892490747 38.9 0.000635599269853965 -74.7769444203927 0.992023592018731 33.1494129947444 0.99202359201874 33.1494129947445 0.000596133661987062 -128.951618072274 ! Gamma ! 0.0800675454931669 685.484904848698 0.0800692386168195 685.485237625091 ! Port Impedance448.237092215361 -0.00488123737203912 448.236881210772 -0.00488233415118459 39 0.000613114737266786 -77.8499014259819 0.99203033210854 18.873128897072 0.992030332108545 18.873128897072 0.000578366698805456 -128.431553435006 ! Gamma ! 0.0800075167932543 687.977129484137 0.0800092141637125 687.977461089366 ! Port Impedance447.761367007112 -0.00504207560755756 447.761157773243 -0.00504316971910684 39.1 0.000589964157675263 -81.0787507702689 0.992036977706876 4.61186982619223 0.992036977706878 4.61186982619228 0.000563375591319671 -127.937080645904 ! Gamma ! 0.0799486505393745 690.466722163977 0.0799503521416849 690.467052607826 ! Port Impedance447.290780875306 -0.00520024028674151 447.290573388167 -0.00520133175817835 39.2 0.000566242168385799 -84.5140724085949 0.992043454667083 -9.63406026996021 0.992043454667083 -9.63406026996017 0.000552503101563535 -127.522790199591 ! Gamma ! 0.0798909288943148 692.953711254109 0.079892634713681 692.954040546228 ! Port Impedance446.825254777293 -0.00535578610145387 446.825049013351 -0.0053568749597423 39.3 0.000542069742723791 -88.2240108582428 0.992049697417475 -23.864407662468 0.992049697417473 -23.864407662468 0.000547898453373733 -127.294494359161 ! Gamma ! 0.0798343343666438 695.438124685208 0.0798360443884238 695.438452835118 ! Port Impedance446.364711271063 -0.00550876634963946 446.364507207225 -0.00550985262123734 39.4 0.000517615066841027 -92.3061678410935 0.992055656782603 -38.0790157937919 0.9920556567826 -38.0790157937918 0.000553361847115099 -127.463506936826 ! Gamma ! 0.0797788498021952 697.91998996153 0.0797805640118978 697.920316978625 ! Port Impedance445.90907447477 -0.00565923297799184 445.908872088381 -0.00566031668886388 39.5 0.000493138947676885 -96.911632735133 0.99206130596037 -52.277861556823 0.992061305960367 -52.277861556823 0.000576517500303186 -128.486026395804 ! Gamma ! 0.0797244583758054 700.399334169477 0.0797261767590874 700.399660063026 ! Port Impedance445.458270027501 -0.00580723662309482 445.458069296326 -0.00580831779872505 39.6 0.000469105913292803 -102.299378893971 0.992066643835158 -66.4610760306891 0.992066643835155 -66.4610760306891 0.000635443718706246 -131.502427988715 ! Gamma ! 0.0796711435832974 702.876183985952 0.0796728661259608 702.876508765101 ! Port Impedance445.012225051211 -0.00595282665110125 445.012025953431 -0.00595390531650536 39.7 0.000446503566980343 -108.97958004531 0.992071695098994 -80.6289463954487 0.992071695098991 -80.6289463954486 0.000783317781570171 -140.232555917699 ! Gamma ! 0.0796188892337009 705.350565686507 0.0796206159216899 705.350889360283 ! Port Impedance444.570868113824 -0.00609605119600876 444.570670628019 -0.0060971273757457 39.8 0.000428010838020701 -118.183477025066 0.992076507028086 -94.7818978501346 0.992076507028085 -94.7818978501347 0.00114570661365849 -173.020018524041 ! Gamma ! 0.0795676794417022 707.822505153281 0.0795694102611002 707.822827730592 ! Port Impedance444.134129193418 -0.00623695719658867 444.133933298564 -0.00623803091477214 39.9 0.000424431807246181 -134.062548100654 0.992081143181007 -108.920456768668 0.992081143181006 -108.920456768668 0.000681102025088113 112.387020127672 ! Gamma ! 0.0795174986203138 710.292027882753 0.0795192335573411 710.292349372391 ! Port Impedance443.70193964349 -0.00637559043202274 443.701745318948 -0.0063766617123321 40 0.000536456406208846 174.469885818151 0.992085674701068 -123.045198795881 0.992085674701068 -123.045198795881 0.000205639590999646 79.4436892331056 ! Gamma ! 0.0794683314737581 712.759158993293 0.0794700705147689 712.759479403937 ! Port Impedance443.274232159246 -0.006511995556299 443.27403938475 -0.00651306442198997 40.1 0.00031055965813823 -41.3321388647096 0.992090170270554 -137.156687834485 0.992090170270555 -137.156687834485 6.20077486474168E-05 36.4385719674438 ! Gamma ! 0.0794201629905568 715.22392323254 0.0794219061220367 715.224242572756 ! Port Impedance442.850940744874 -0.00664621613141657 442.850749500525 -0.00664728260533144 40.2 0.000259044094044219 -93.8869154340134 0.992094686031217 -151.255413621159 0.992094686031219 -151.255413621159 5.88371405550845E-05 -39.2901600096955 ! Gamma ! 0.0793729784368195 717.68634498459 0.0793747256453828 717.686663262835 ! Port Impedance442.432000681793 -0.00677829465944596 442.431810948051 -0.0067793587640236 40.3 0.00023584911518292 -113.550423532659 0.992099256911769 -165.341736572655 0.992099256911771 -165.341736572656 8.95255143121414E-05 -61.5224438510059 ! Gamma ! 0.079326763349724 720.146448277014 0.0793285146221113 720.146765501638 ! Port Impedance442.017348497814 -0.00690827261349065 442.017160255488 -0.00690933437077603 40.4 0.000211358135067835 -128.447783374904 0.992103890755904 -179.41584858013 0.992103890755906 -179.41584858013 0.000114323187925705 -68.7098713821116 ! Gamma ! 0.0792815035311831 722.604256787713 0.079283258854258 722.60457296696 ! Port Impedance441.606921937201 -0.00703619046759235 441.60673516744 -0.00703724989924583 40.5 0.000186888929629264 -143.550479401549 0.992108566403951 166.522242707961 0.992108566403952 166.522242707961 0.000134890368422587 -72.4666191640419 ! Gamma ! 0.0792371850416908 725.059793851599 0.0792389444024361 725.060108993607 ! Port Impedance441.200659931593 -0.00716208772562176 441.200474615882 -0.0071631448529278 40.6 0.000164850666001256 -161.112167644725 0.992113236446574 152.472700899679 0.992113236446575 152.472700899679 0.000153910246897714 -75.4400409230432 ! Gamma ! 0.079193794194343 727.51308246712 0.0791955575798529 727.513396579927 ! Port Impedance440.798502571769 -0.00728600294919343 440.798318691917 -0.00728705779306889 40.7 0.000149100145482912 177.295044189401 0.992117834762509 138.43581739804 0.99211783476251 138.43581739804 0.000173330195920938 -78.5844167299789 ! Gamma ! 0.0791513175490317 729.964145302635 0.0791530849464827 729.964458394178 ! Port Impedance440.400391080207 -0.0074079737846433 440.400208618343 -0.0074090263656443 40.8 0.000145414300679352 151.551965499279 0.992122288222601 124.411940042986 0.992122288222601 124.411940042986 0.000194741991336336 -82.3424602992227 ! Gamma ! 0.0791097419068898 732.413004702635 0.0791115133032631 732.413316780751 ! Port Impedance440.006267784433 -0.00752803698910422 440.006086722998 -0.00752908732742932 40.9 0.00015946417863398 124.449839025954 0.992126531162744 110.40138134874 0.992126531162743 110.40138134874 0.000219716437082878 -86.9448265842051 ! Gamma ! 0.0790690543121981 734.859682693764 0.0790708296835609 734.859993766238 ! Port Impedance439.616076091124 -0.0076462284557143 439.615896412861 -0.00764727657118952 41 0.000193104387180434 99.7491763403804 0.992130520490348 96.404318839079 0.992130520490347 96.4043188390789 0.000250033550585375 -92.515921838873 ! Gamma ! 0.0790292420083437 737.304200990973 0.079031021365903 737.304511065378 ! Port Impedance439.229760460931 -0.00776258323799176 439.229582148882 -0.00776362914985267 41.1 0.000244668057383711 78.6713626665959 0.992134248691677 82.4207045510963 0.992134248691677 82.4207045510962 0.000287832127700286 -99.1269232195811 ! Gamma ! 0.078990292511056 739.746581002919 0.0789920758310248 739.746890086839 ! Port Impedance438.847266384018 -0.00787713557340895 438.847089421541 -0.00787817928562255 41.2 0.000311893356209738 60.3653442433181 0.992137751644331 68.4502043378543 0.99213775164433 68.4502043378542 0.000335657891982787 -106.835487309417 ! Gamma ! 0.0789521935247094 742.186843837983 0.0789539807945871 742.187151938881 ! Port Impedance438.468540356275 -0.00798991890620888 438.46836472695 -0.00799096046916242 41.3 0.000392685260650876 43.6529334737374 0.992141108087028 54.4921896152756 0.992141108087028 54.4921896152756 0.000396303865655768 -115.721934352544 ! Gamma ! 0.0789149329765068 744.625010309641 0.0789167241841319 744.625317434887 ! Port Impedance438.093529856197 -0.00810096590946099 438.093355543935 -0.00810200532586054 41.4 0.000484062183650974 27.6909292610888 0.992144427912509 40.5458041977486 0.99214442791251 40.5458041977485 0.000472176714556953 -125.91363522966 ! Gamma ! 0.0788784990040633 747.061100941893 0.0788802941374125 747.06140709877 ! Port Impedance437.722183322397 -0.00821030850546238 437.722010311369 -0.00821134579422776 41.5 0.000580913215565925 12.0455599698759 0.992147827163185 26.6101264625582 0.992147827163186 26.6101264625582 0.000563705227357026 -137.569610752014 ! Gamma ! 0.0788428799507058 749.495135974543 0.0788446789978682 749.495441170247 ! Port Impedance437.354450131739 -0.00831797788964638 437.35427840638 -0.00831901306802444 41.6 0.000675756317998302 -3.35339572652808 0.992151388743114 12.684441968555 0.992151388743115 12.684441968555 0.000666413034098262 -150.778485620359 ! Gamma ! 0.0788080643609402 751.92713536836 0.0788098673101093 751.927439609999 ! Port Impedance436.990280578068 -0.00842400454591706 436.990110123075 -0.00842503763170029 41.7 0.00076033207841942 -18.2979756456872 0.992155109423075 -1.23136639472102 0.992155109423076 -1.23136639472102 0.000767923594752889 -165.343007600954 ! Gamma ! 0.0787740409760431 754.357118810119 0.0787758478155138 754.357422104717 ! Port Impedance436.629625851521 -0.00852841826919317 436.629456651844 -0.00852944927982479 41.8 0.000828503418848664 -32.4428792302006 0.992158835696374 -15.1363147399813 0.992158835696373 -15.1363147399813 0.00084973344967289 179.433291779606 ! Gamma ! 0.0787407987297713 756.785105717532 0.0787426094479379 756.785408072031 ! Port Impedance436.272438018394 -0.00863124818318668 436.272270059235 -0.00863227713582533 41.9 0.000878332498594533 -45.4683975229498 0.99216219337854 -29.0277190133373 0.99216219337854 -29.0277190133373 0.000897356450104726 164.653084550314 ! Gamma ! 0.0787083267441851 759.211115244066 0.0787101413295398 759.211416665326 ! Port Impedance435.918670001558 -0.00873252275858936 435.918503268362 -0.00873354967012527 42 0.000911791509589901 -57.1889078750353 0.992164518364289 -42.9005346995177 0.992164518364289 -42.9005346995177 0.00091002727071896 151.337738276106 ! Gamma ! 0.078676614325582 761.635166283656 0.0786784327667134 761.635466778457 ! Port Impedance435.568275561396 -0.00883226983064353 435.568110039847 -0.00883329471770848 GradientModel-0.0.2/examples/hfss/WR28-Waveguide_10cm-aluminum-rough-1um.s2p000066400000000000000000002432551413653641000263630ustar00rootroot00000000000000! Touchstone file exported from HFSS 2019.2.0 ! File: C:/Users/jgarrett/Documents/Ansoft/Waveguide/WR28-Waveguide.aedt ! Generated: 11:55:02 AM Mar 17, 2021 ! Design: 10cm-aluminum-rough-1um ! Project: WR28-Waveguide ! Setup: Setup1 ! Solution: Sweep ! ! Variables: ! waveguideA = 280mil ! waveguideB = 140mil ! waveguideL = 10cm ! !Data is not renormalized # GHZ S MA ! Modal data exported ! Port[1] = 1:1 ! Port[2] = 2:1 20 5.27613190767549E-05 179.684991196264 1.21037244747995E-06 -3.26102156588574 1.21037244747995E-06 -3.26102156588576 7.96985482122041E-05 179.641051395618 ! Gamma ! 136.226614350852 0.569199843854991 136.224527358881 0.569206397256427 ! Port Impedance5.34234258975733 1161.89483812052 5.34257019653052 1161.91272526405 20.1 5.72267487404925E-05 179.763348147314 1.11489365753458E-05 51.1325275368628 1.11489365752494E-05 51.1325275365513 8.71624589945527E-05 179.580362171813 ! Gamma ! 129.58652921063 0.60080051796442 129.584334764538 0.600808504434353 ! Port Impedance6.2059363547986 1227.53132355263 6.20622987439139 1227.55220219974 20.2 6.31246627269368E-05 179.649447334988 1.50267784753013E-05 34.5393157982011 1.50267784753157E-05 34.5393157984666 9.6644523836278E-05 179.511276709167 ! Gamma ! 122.55142152554 0.637878796363241 122.549100562356 0.637888659425089 ! Port Impedance7.33625505792196 1304.44658612566 7.33664503485445 1304.47138699893 20.3 7.09302731978367E-05 179.481481348753 1.44003117990533E-05 8.56391092479581 1.44003117990779E-05 8.56391092468018 0.0001089503517265 179.424754278572 ! Gamma ! 115.048864753571 0.682249771612551 115.046391859323 0.682262176235737 ! Port Impedance8.8653903753266 1396.37731593754 8.86592823427748 1396.40743198803 20.4 8.14759218947911E-05 179.302010998888 1.55564641979876E-05 -14.0850828363814 1.55564641978458E-05 -14.0850828367812 0.000125413857401637 179.310010656061 ! Gamma ! 106.980585728448 0.736703530650949 106.97792572027 0.736719528463389 ! Port Impedance11.0234441139943 1509.06597716937 11.0242226172435 1509.10360696514 20.5 9.63037502502919E-05 179.111717513368 3.37436614064626E-05 -4.1438038505407 3.37436614062705E-05 -4.14380385041892 0.00014839912809415 179.150992621345 ! Gamma ! 98.2073057599069 0.805802473287146 98.2044074713473 0.805823847721378 ! Port Impedance14.2448703084445 1651.89964829974 14.2460726425104 1651.94851210591 20.6 0.000118505176204005 178.879939735332 0.000124196970469372 -0.75554020763726 0.000124196970469337 -0.755540207568283 0.00018251133127519 178.918528920213 ! Gamma ! 88.5197685505391 0.897654875586545 88.5165523964745 0.897684954623636 ! Port Impedance19.4443543681774 1841.55301652545 19.4463902220188 1841.62003892205 20.7 0.000155157638575818 178.522016281863 0.000428543797576524 -6.45457310455199 0.000428543797576471 -6.45457310454994 0.000238033359557096 178.54844733192 ! Gamma ! 77.576510435761 1.02848796407483 77.5728399470205 1.02853388828161 ! Port Impedance28.8738916700596 2111.37123772797 28.8778610021771 2111.47123012841 20.8 0.000226387825505268 177.803429306741 0.00152670986944422 -8.51275766852493 0.00152670986944405 -8.51275766852511 0.000343411020966807 177.862571900811 ! Gamma ! 64.7448637722269 1.23738931318244 64.7404655375112 1.23747027812885 ! Port Impedance49.6346336723561 2541.54986232308 49.6445162874569 2541.72246652631 20.9 0.000417875154880152 175.876233382544 0.00783081566433111 -9.40559657056266 0.00783081566433123 -9.40559657056482 0.00061567124065401 176.128577670018 ! Gamma ! 48.5552853455093 1.65676060409139 48.5494236666479 1.6569567502227 ! Port Impedance117.518483750837 3402.51782970765 117.560427457995 3402.9269872296 21 0.001984008280341 163.202609183572 0.105523642087833 -17.741457945553 0.105523642087841 -17.7414579455587 0.00267411214727244 163.24157474237 ! Gamma ! 22.8701923306512 3.53194002988171 22.8580171658235 3.53381356855144 ! Port Impedance1099.07880496478 7097.19655806868 1100.77604809611 7100.62490128944 21.1 0.00128790598174302 12.3407059851352 0.796284303629256 150.032140129157 0.796284303629237 150.032140129157 0.00122163987029055 6.81919556014281 ! Gamma ! 2.20963952209719 36.7071596440168 2.20916941430966 36.7148964132183 ! Port Impedance4532.86493061165 270.967342369195 4531.92388991873 270.795520473754 21.2 0.000618170476268102 -67.6061353145488 0.865900450612957 35.8048516261963 0.865900450612955 35.8048516261963 0.00071616350665314 -22.7936251479367 ! Gamma ! 1.43829209522793 56.6260562858122 1.43816160817423 56.6310881304882 ! Port Impedance2961.04220226434 73.9765919799268 2960.78000791101 73.956499465015 21.3 0.000121107945344705 106.476274110526 0.891473546308712 -48.0281683752091 0.891473546308714 -48.028168375209 0.000206381735867231 -15.27978277448 ! Gamma ! 1.14782497689765 71.2493641086335 1.14775854533296 71.2533658326269 ! Port Impedance2365.31429004281 37.1209068055849 2365.18176573093 37.1144515224314 21.4 9.29278419062828E-05 -124.975889877401 0.906199434825033 -117.682101801871 0.906199434825035 -117.682101801871 0.000203760223731447 -15.0708999377169 ! Gamma ! 0.984653246386902 83.4004857623464 0.984611336071755 83.4039057470434 ! Port Impedance2030.42197775915 23.1275743738659 2030.33891925362 23.1245990173048 21.5 0.00011725537620917 104.053731395926 0.915987627100209 -178.668326380723 0.915987627100209 -178.668326380723 0.000200965194308281 35.2970914229778 ! Gamma ! 0.876860531761905 94.0412766773355 0.876831012881537 94.0443106240617 ! Port Impedance1809.18453158046 16.1174657979463 1809.12632198599 16.1158119191058 21.6 0.000225446969574023 73.1153015327408 0.923230958302964 126.338899088186 0.923230958302965 126.338899088186 0.000182438299151942 25.7845610013987 ! Gamma ! 0.798970191222009 103.637622323344 0.798947963960804 103.640376116993 ! Port Impedance1649.34068935082 12.030320811291 1649.29699945508 12.0292893847907 21.7 0.000200187232458581 -0.564895003464575 0.9287248545759 75.7957436403151 0.928724854575901 75.7957436403151 0.000198919856914034 -20.452820716226 ! Gamma ! 0.739370229294873 112.45707999125 0.739352729590035 112.459618504078 ! Port Impedance1527.05020978484 9.40617127179872 1527.01586065807 9.40547584256404 21.8 5.47728755029589E-05 -17.7795871408891 0.933117378772813 28.731710030495 0.933117378772813 28.7317100304949 5.02859303259329E-05 -38.8382490140744 ! Gamma ! 0.691913356926214 120.670049483791 0.691899136169012 120.672415847638 ! Port Impedance1429.68784311046 7.60479130315401 1429.65991801027 7.60429518223081 21.9 7.30858706717154E-05 72.3065561064744 0.936776239836836 -15.524869628011 0.936776239836835 -15.524869628011 7.44134074506028E-05 65.5220218234409 ! Gamma ! 0.653001442618358 128.392938157828 0.652989612036719 128.395162765554 ! Port Impedance1349.86278256568 6.30586202393011 1349.83949799979 6.30549261000313 22 0.000179562933068926 33.9023303065386 0.939839243161757 -57.4513650699637 0.939839243161756 -57.4513650699637 0.000174987121488718 32.9481192874564 ! Gamma ! 0.62037017984506 135.709421858112 0.620360159513903 135.711527078093 ! Port Impedance1282.9238890385 5.33322555506342 1282.90408541065 5.33294108546337 22.1 0.000184067493030012 -10.8043438379735 0.942463618054862 -97.4046893400814 0.942463618054861 -97.4046893400814 0.000191972350716651 -2.20922458718375 ! Gamma ! 0.592514236764662 142.68202281675 0.592505629760919 142.684025677815 ! Port Impedance1225.77918235138 4.58283605042547 1225.76206891982 4.58261097130226 22.2 0.0001622701131757 -52.0316025793308 0.944743635973724 -135.664361197839 0.944743635973723 -135.664361197839 0.000169345489405678 -32.8131404348504 ! Gamma ! 0.568388782915374 149.358903035333 0.568381306988714 149.360816857014 ! Port Impedance1176.28275031491 3.98970615126694 1176.26776693375 3.9895240364477 22.3 0.000106233043353599 -106.919714715491 0.94672591046982 -172.447933080516 0.946725910469819 -172.447933080516 0.000113920384348961 -59.3474551518421 ! Gamma ! 0.547242956690731 155.778087783829 0.547236404759894 155.779923217769 ! Port Impedance1132.89262726524 3.51137498249344 1132.87936458295 3.51122483902406 22.4 5.83764041733346E-05 -163.762499623617 0.948511357812569 152.0714915035 0.948511357812569 152.0714915035 6.72932398634121E-05 -66.4961930942245 ! Gamma ! 0.528521464861631 161.970215766606 0.528515680977626 161.971981489844 ! Port Impedance1094.46862578 3.11905203049919 1094.45677677588 3.11892625036219 22.5 5.47292423683196E-05 116.048972573192 0.950142658899044 117.748040262934 0.950142658899044 117.748040262934 5.12508766968513E-05 -60.7521087730579 ! Gamma ! 0.511803650310263 167.960399117058 0.51179851441415 167.962102309606 ! Port Impedance1060.14714384395 2.79259988095495 1060.13647313025 2.79249304713406 22.6 4.63912393378645E-05 57.6105922198494 0.951500054276983 84.4623512665785 0.951500054276983 84.4623512665784 5.18694210835026E-05 -66.1531622255555 ! Gamma ! 0.496764258268581 173.769521812549 0.496759676161379 173.771168495999 ! Port Impedance1029.26055360292 2.51755630445959 1029.25087727796 2.51746446488972 22.7 3.91613768681966E-05 35.3706650559544 0.9526710464362 52.1178116451352 0.952671046436201 52.1178116451352 4.76833323512852E-05 -103.895571352445 ! Gamma ! 0.483147324410896 179.415170731226 0.483143220957963 179.416766014829 ! Port Impedance1001.2835515096 2.28329576474791 1001.27472352867 2.28321597462364 22.8 3.76813451631648E-05 34.9791769052758 0.953995895776136 20.624498693867 0.953995895776136 20.624498693867 2.95880282423954E-05 -174.640463985098 ! Gamma ! 0.470748295672753 184.912318868638 0.470744610076265 184.913867131996 ! Port Impedance975.796424606361 2.0818553965993 975.788327317103 2.0817854207261 22.9 4.91591249981566E-05 44.5493831909982 0.955091804101081 -10.1036615840296 0.955091804101081 -10.1036615840296 4.56319348798196E-05 109.897568959612 ! Gamma ! 0.45940148267192 190.273836837814 0.45939816510596 190.275341869065 ! Port Impedance952.459271937206 1.90716301864112 952.451809354761 1.90710113252395 23 7.20546428431094E-05 32.733320843316 0.956097113165501 -40.115616372483 0.956097113165501 -40.115616372483 6.81588635178158E-05 65.5619927529618 ! Gamma ! 0.44897106155132 195.510882603297 0.448968070716223 195.512347705357 ! Port Impedance930.993519080128 1.75451631700972 930.986612011876 1.7544611707187 23.1 7.78639190760904E-05 7.91347082808146 0.95701266484188 -69.4622037243648 0.957012664841881 -69.4622037243647 7.78496971612922E-05 33.5384564756397 ! Gamma ! 0.439344496806117 200.633203089705 0.439341798120568 200.634631163168 ! Port Impedance911.168407057977 1.62022342665234 911.161989505157 1.62017394964313 23.2 6.56670163197593E-05 -15.7835395240984 0.957860009596607 -98.1999734715759 0.957860009596607 -98.1999734715758 7.11348373115872E-05 7.93955477973697 ! Gamma ! 0.43042765128834 205.64937084715 0.430425215530537 205.650764455809 ! Port Impedance892.790947777987 1.50134984082484 892.784964236985 1.50130517412129 23.3 4.24011875452364E-05 -44.1703605622092 0.95865424866125 -126.376467159703 0.958654248661251 -126.376467159703 4.88188877970755E-05 -9.77233104435863 ! Gamma ! 0.422141094772173 210.566972078053 0.422138897043877 210.568333501316 ! Port Impedance875.698341981524 1.39553694381034 875.692745390564 1.39549639085063 23.4 1.3440011049823E-05 -135.897837905772 0.959400231119496 -154.029413375717 0.959400231119495 -154.029413375717 2.35532918099301E-05 16.4391190686085 ! Gamma ! 0.414417278764561 215.392757703942 0.414415297690928 215.394088979188 ! Port Impedance859.752176867064 1.30086976184292 859.746927023481 1.30083275229857 23.5 5.06772231955464E-05 113.040279966544 0.960098214371903 178.809347950031 0.960098214371902 178.809347950031 5.07222135439565E-05 57.0744604188489 ! Gamma ! 0.407198347201477 220.132765975885 0.407196564305616 220.134068933048 ! Port Impedance844.833930057087 1.21577915078062 844.828992382818 1.21574521354848 23.6 9.37151243351311E-05 76.3533813539545 0.960749468328738 152.110442902676 0.960749468328737 152.110442902676 9.10883960812096E-05 41.5769681567014 ! Gamma ! 0.400434420569161 224.792422913261 0.400432819777951 224.793699203296 ! Port Impedance830.8414461037 1.13896847548106 830.836790671941 1.13893721826293 23.7 0.000120829228846079 49.1211466891233 0.961358194491983 125.845680648644 0.961358194491981 125.845680648644 0.000119916228130681 18.652285462927 ! Gamma ! 0.394082237065556 229.376625278864 0.394080804315274 229.377876397383 ! Port Impedance817.686146407014 1.06935796945386 817.68174716715 1.06932906313494 23.8 0.000133608782626006 26.1322260037753 0.961930300295273 99.9884154040415 0.961930300295273 99.9884154040414 0.00013328310180084 -5.81287156054911 ! Gamma ! 0.388104066223387 233.889809661079 0.388102789142113 233.891036968115 ! Port Impedance805.290798776305 1.00604203305561 805.286632931089 1.00601519962456 23.9 0.000132481359425105 4.54517163492974 0.962471180065363 74.514387464973 0.962471180065362 74.514387464973 0.000130150304525303 -31.7485065872972 ! Gamma ! 0.382466832718444 238.336010402193 0.382465700368136 238.337215138841 ! Port Impedance793.58771868971 0.948256119680702 793.583766190565 0.948231122794738 24 0.000114234778212003 -16.07225446945 0.962984313092069 49.402152029455 0.962984313092068 49.402152029455 0.000110061858979111 -60.197932233199 ! Gamma ! 0.377141403950724 242.71890849598 0.377140406616107 242.720091798504 ! Port Impedance782.517306904488 0.895350809699816 782.51355003933 0.895327447247492 24.1 7.98200130468601E-05 -31.4346576653391 0.963471309506976 24.6328200541232 0.963471309506976 24.6328200541232 7.56945409870747E-05 -93.8479072530965 ! Gamma ! 0.372102006421025 247.041873116227 0.372101135435551 247.043036028079 ! Port Impedance772.026851564744 0.84677133073633 772.023274618931 0.846749428924378 24.2 4.43930123804063E-05 -24.174600123695 0.963932961426216 0.189348653685743 0.963932961426217 0.189348653685737 3.78511439318276E-05 -147.887863165342 ! Gamma ! 0.367325744269419 251.307997088363 0.367324991870809 251.309140570487 ! Port Impedance762.069540096673 0.802041245946842 762.066129072224 0.802020654561612 24.3 4.56985940176518E-05 17.0391852235335 0.964370384446362 -23.9441743695125 0.964370384446362 -23.9441743695125 3.76025635390508E-05 108.556325884205 ! Gamma ! 0.362792199499806 255.520127348977 0.362791558709394 255.521252288688 ! Port Impedance752.603638832688 0.760749361618976 752.600381214288 0.760729950202422 24.4 7.64519090605154E-05 23.2020558559381 0.964785506313727 -47.7829023680117 0.964785506313728 -47.7829023680117 7.23141046370663E-05 56.0445527107674 ! Gamma ! 0.358483098007457 259.680891231628 0.358482562528818 259.681998450296 ! Port Impedance743.591807741154 0.722539142853118 743.588692300031 0.722520797571453 24.5 0.0001054209369288 11.8828363843509 0.965180713498649 -71.3411744463819 0.965180713498649 -71.3411744463819 0.000103076286098602 23.1917481803373 ! Gamma ! 0.354382028985646 263.79271925653 0.354381593119002 263.793809516265 ! Port Impedance735.00052474511 0.68710009902634 734.997541373678 0.687082720163147 24.6 0.000123395354705166 -4.32455336944132 0.965558034780895 -94.632217494041 0.965558034780895 -94.632217494041 0.000121395506004682 -5.6201340046876 ! Gamma ! 0.350474207917103 267.85786497554 0.350473866487354 267.85893898502 ! Port Impedance726.799599514861 0.654160728030854 726.796739086679 0.65414422786268 24.7 0.000126232311673392 -21.6316233568989 0.965918527208964 -117.667928320244 0.965918527208964 -117.667928320244 0.000124239862645564 -33.4673472257426 ! Gamma ! 0.346746275372172 271.878422323946 0.346746023662848 271.879480743548 ! Port Impedance718.961760761655 0.623482702743686 718.959015012155 0.623467003811176 24.8 0.000114406701549055 -37.6532794296986 0.966262409133938 -140.459008484268 0.966262409133938 -140.459008484268 0.00011205667931991 -61.6275095048343 ! Gamma ! 0.34318612539406 275.85634085106 0.343185959100571 275.857384297348 ! Port Impedance711.462304260124 0.594856054187191 711.459665684618 0.594841087849727 24.9 9.21352299387567E-05 -50.1747369899206 0.966590019927083 -163.015509141461 0.966590019927084 -163.015509141461 8.83309764418241E-05 -92.1457308645046 ! Gamma ! 0.339782758465321 279.793439137759 0.339782673644592 279.794468187467 ! Port Impedance704.278791320874 0.568095159342763 704.276253086936 0.568080864568885 25 6.49519300558977E-05 -54.6147012300462 0.966903079805537 174.652452639363 0.966903079805537 174.652452639362 5.90081309279884E-05 -131.241757065372 ! Gamma ! 0.336526155001964 283.691416657623 0.33652614803395 283.692431851178 ! Port Impedance697.390789390085 0.543035382487857 697.388345261979 0.543021704837821 25.1 4.53488115637631E-05 -36.7521733197614 0.967205237587824 152.53430759114 0.967205237587824 152.53430759114 3.86782956413513E-05 162.274841375728 ! Gamma ! 0.333407166073548 287.551864296484 0.33340723362687 287.552866141137 ! Port Impedance690.779647997595 0.519530250290494 690.777292270833 0.519517141056575 25.2 5.83331568417376E-05 -11.0142389478757 0.967500755748538 130.619603934901 0.967500755748537 130.619603934901 5.15224601814108E-05 87.6218662650776 ! Gamma ! 0.330417418645372 291.376273711041 0.33041755764748 291.377262683661 ! Port Impedance684.428304502505 0.497449065170404 684.426031946979 0.49743648064729 25.3 8.5854725279923E-05 -14.2467851941129 0.967790512622098 108.900076220799 0.967790512622096 108.900076220799 7.71624639530589E-05 44.3779852364503 ! Gamma ! 0.327549233116083 295.166045679157 0.327549440728211 295.167022228724 ! Port Impedance678.321115067026 0.476674880340023 678.318920877405 0.476662781203043 25.4 0.000102124980307646 -27.3973321728678 0.968065299396058 87.3734472979583 0.968065299396056 87.3734472979586 9.56810989159465E-05 14.888538961248 ! Gamma ! 0.324795551265877 298.922497571307 0.324795824906612 298.923462121157 ! Port Impedance672.443707078756 0.457102774756166 672.441586831084 0.457091125529307 25.5 0.000105291557468264 -40.0627461260635 0.968297542883065 66.0486911806995 0.968297542883065 66.0486911806995 0.000104039801849326 -7.71446783073256 ! Gamma ! 0.322149873421004 302.646870053448 0.322150210546205 302.647823003319 ! Port Impedance666.782849880006 0.43863837789866 666.780799493599 0.438627146497674 25.6 9.91721537628975E-05 -57.7479151399355 0.968543758274877 44.8884142897808 0.968543758274875 44.8884142897808 9.98995189111225E-05 -30.1126361330245 ! Gamma ! 0.319606202511183 306.34033311579 0.319606600903053 306.341274843548 ! Port Impedance661.326341181699 0.421196603561563 661.324356885601 0.421185760901431 25.7 8.11132469281138E-05 -77.9389543757307 0.968781083315286 23.8975144702902 0.968781083315285 23.8975144702902 8.0592257759396E-05 -51.3863478107599 ! Gamma ! 0.317158995725032 310.003991507987 0.317159453269227 310.004922371341 ! Port Impedance656.062906963306 0.404700559235013 656.060985266664 0.404690078888391 25.8 5.23943649675608E-05 -101.0515112727 0.969009401377556 3.07222896354413 0.969009401377556 3.07222896354413 5.27635767032716E-05 -66.7576757199934 ! Gamma ! 0.314803121064137 313.638889650996 0.314803635787899 313.639809988957 ! Port Impedance650.982113008168 0.389080603585221 650.980250674001 0.38907046148733 25.9 1.88571992292045E-05 -141.964474059739 0.969229234538715 -17.5933783032828 0.969229234538715 -17.5933783032828 2.41859706048853E-05 -60.5390762206001 ! Gamma ! 0.312533819120935 317.246016085471 0.312534389180636 317.2469262197 ! Port Impedance646.074286510367 0.374273529315825 646.072480532277 0.374263703507261 26 2.52810178033791E-05 80.3382633245266 0.969441200427348 -38.1053709326908 0.969441200427347 -38.1053709326908 2.67382095745842E-05 9.85376979845386 ! Gamma ! 0.310346669069466 320.826307509067 0.310347292798092 320.827207745112 ! Port Impedance641.330446426796 0.360221852562925 641.328694008311 0.360212322895523 26.1 6.20433849731748E-05 48.0354904579964 0.969645780696493 -58.4691358847944 0.969645780696492 -58.4691358847944 6.16960819678387E-05 11.2471454602943 ! Gamma ! 0.308237558371055 324.380652448036 0.308238234033229 324.381543076377 ! Port Impedance636.742241445529 0.34687319312262 636.74053998136 0.346863941343264 26.2 9.63024560583216E-05 27.021640404722 0.969843295899553 -78.6893338986181 0.969843295899552 -78.6893338986181 9.64260520261888E-05 -7.57149858882767 ! Gamma ! 0.306202655724966 327.909894602733 0.306203381860584 327.910775899918 ! Port Impedance632.301894606328 0.334179732380926 632.300241666175 0.334170741538141 26.3 0.000122382904063795 8.18976528162168 0.970033978813787 -98.7701798508829 0.970033978813787 -98.7701798508829 0.000120590036313625 -30.2002679183879 ! Gamma ! 0.30423838686135 331.414835901672 0.304239162042654 331.415708131161 ! Port Impedance628.00215374723 0.322097737925128 628.000547060746 0.322088992497703 26.4 0.000136356299518383 -8.76259539539321 0.970218062493304 -118.715754354666 0.970218062493305 -118.715754354666 0.000132072944041168 -52.7055794060768 ! Gamma ! 0.302341412830316 334.896239294514 0.302342235713251 334.897102707553 ! Port Impedance623.8362470672 0.310587145554755 623.834684510724 0.310578631247753 26.5 0.000138468635396954 -23.0804738701184 0.970395834327228 -138.530187300379 0.970395834327229 -138.53018730038 0.000134720825383982 -74.8500500366295 ! Gamma ! 0.300508610487974 338.354831310682 0.300509479806541 338.355686147089 ! Port Impedance619.797843192786 0.299611190845151 619.796322777357 0.299602894471404 26.6 0.000132366584374738 -34.3343416149595 0.970567640995294 -158.217672921217 0.970567640995296 -158.217672921218 0.000131868492758654 -98.4449815494823 ! Gamma ! 0.298737054927801 341.79130440718 0.298737969484213 341.792150896056 ! Port Impedance615.881015219627 0.289136083612599 615.879535080178 0.289127992987543 26.7 0.000121987996104187 -42.5907021161268 0.970733853896059 -177.782356198489 0.97073385389606 -177.782356198489 0.000123722470074127 -126.259964989575 ! Gamma ! 0.297024003612968 345.206319126369 0.297024962278669 345.207157486769 ! Port Impedance612.080208270073 0.279130719621654 612.078766655666 0.279122823469893 26.8 0.000109911957490725 -48.1033862532146 0.970894817358573 162.771832222184 0.970894817358573 162.771832222184 0.000108702258633294 -161.06039373605 ! Gamma ! 0.295366882051433 348.600506082173 0.295367883757755 348.601336523709 ! Port Impedance608.390210168163 0.26956642470723 608.388805433144 0.26955871257932 26.9 9.73855661214352E-05 -51.0154343398862 0.971050803456439 143.441314870489 0.971050803456439 143.441314870489 8.94401596307802E-05 156.397659232323 ! Gamma ! 0.293763270806623 351.974467791026 0.293764314541543 351.975290514432 ! Port Impedance604.806124884438 0.260416727180616 604.804755480425 0.260409189378785 27 8.47948651328771E-05 -51.1229425668789 0.971201990627804 124.222926554389 0.971201990627803 124.222926554389 7.60272769436937E-05 110.374066199464 ! Gamma ! 0.292210893719006 355.328780362118 0.292211978523119 355.329595559772 ! Port Impedance601.323348447023 0.251657154974939 601.32201291562 0.25164978248665 27.1 7.19921774589126E-05 -47.4701150216306 0.971348472645457 105.113875539017 0.971348472645455 105.113875539017 7.35892610762646E-05 70.2843763927314 ! Gamma ! 0.290707607200843 358.663995059905 0.290708732163683 358.664802916308 ! Port Impedance597.937547053091 0.243265054480525 597.93624401926 0.243257838918939 27.2 5.84468369101388E-05 -36.9941195338496 0.971490293697495 86.1116226857336 0.971490293697493 86.1116226857337 7.75976702145296E-05 41.24411713155 ! Gamma ! 0.28925139049146 361.980639750444 0.289252554748149 361.981440442667 ! Port Impedance594.644637147362 0.235219428439524 594.643365313386 0.235212361990043 27.3 4.4369535811013E-05 -8.02505932434271 0.971627497427935 67.2137184360709 0.971627497427932 67.213718436071 8.35900267791598E-05 21.2096135409235 ! Gamma ! 0.287840336772913 365.279220241924 0.287841539501078 365.280013940023 ! Port Impedance591.440767262367 0.22750079062482 591.439525402337 0.227493865996999 27.4 5.10168815307076E-05 75.6377619375765 0.971760174407861 48.4176469939814 0.971760174407858 48.4176469939815 8.99800325015914E-05 6.96186344720569 ! Gamma ! 0.286472645057724 368.560221528668 0.286473885474684 368.56100839607 ! Port Impedance588.322301439489 0.220091035331049 588.321088394263 0.220084245715264 27.5 0.000108181546948565 -177.23810309325 0.971888493888989 29.7207218681901 0.971888493888986 29.7207218681901 9.65304631971848E-05 -3.67784444107629 ! Gamma ! 0.285146612770709 371.824108946955 0.285147890130885 371.824889140816 ! Port Impedance585.285804070923 0.212973319963965 585.284618743514 0.212966658992303 27.6 8.69349677597653E-05 -117.63471856566 0.972012710836868 11.1200604471218 0.972012710836868 11.1200604471219 0.000103417757849487 -12.0092708685074 ! Gamma ! 0.28386062895582 375.071329250151 0.283861942548355 375.072102921689 ! Port Impedance582.328026021037 0.206131959235613 582.326867372381 0.206125420946497 27.7 6.84229411817209E-05 -90.1765693553693 0.972133146378197 -7.38735703523778 0.972133146378197 -7.3873570352378 0.000110945682440838 -18.819592328306 ! Gamma ! 0.282613168046761 378.302311609914 0.28261451719333 378.303078904719 ! Port Impedance579.445891901617 0.199552329662496 579.444758946693 0.19954590846866 27.8 5.98153994795502E-05 -68.667989423038 0.972250146928385 -25.8045609045628 0.972250146928385 -25.8045609045629 0.000119498665391435 -24.6125592660531 ! Gamma ! 0.281402784146943 381.517468549581 0.281404168199732 381.518229607908 ! Port Impedance576.636488389477 0.193220783227176 576.635380193737 0.19321447388661 27.9 5.92694485287416E-05 -47.5469823086478 0.972364032667125 -44.1344313272176 0.972364032667126 -44.1344313272177 0.000129583898451965 -29.7363221169826 ! Gamma ! 0.280228105770319 384.717196815237 0.280229524110163 384.717951772277 ! Port Impedance573.897053487148 0.187124569204405 573.895969163234 0.18711836679396 28 6.81681255438122E-05 -27.5520084224624 0.972475048576028 -62.3795449276981 0.972475048576028 -62.3795449276981 0.000141939383273138 -34.4590152365248 ! Gamma ! 0.279087830999874 387.901878189482 0.279089283034533 387.902627175615 ! Port Impedance571.224966638108 0.181251763274475 571.223905342821 0.181245663165852 28.1 9.06430859866323E-05 -10.6493232270503 0.972583330550456 -80.5420681572373 0.972583330550455 -80.5420681572373 0.000157755994154999 -39.0234626420131 ! Gamma ! 0.277980723025173 391.071880252402 0.277982208187737 391.072623393435 ! Port Impedance568.617739617463 0.17559120315175 568.616700548975 0.175585200989619 28.2 0.00014070888269455 3.38103514759752 0.972688895461591 -98.6237257236348 0.972688895461591 -98.6237257236348 0.000179175335147876 -43.7070253639807 ! Gamma ! 0.276905606024397 394.227557093876 0.276907123771756 394.228294511264 ! Port Impedance566.073008127313 0.170132430047673 566.071990522584 0.170126521729715 28.3 0.000299676623047428 19.7786656890671 0.972791658372648 -116.625854953907 0.972791658372646 -116.625854953907 0.00021057918315003 -48.9323530904207 ! Gamma ! 0.275861361359906 397.369249980939 0.275862911170847 397.369981791999 ! Port Impedance563.588524033358 0.16486563536702 563.587527165751 0.164859817025688 28.4 0.000865968450986238 138.014059428899 0.972891473696124 -134.54953708563 0.972891473696121 -134.54953708563 0.000262655525681333 -55.585144331521 ! Gamma ! 0.274846924059529 400.497287983632 0.274848505435354 400.498014301735 ! Port Impedance561.162148185831 0.159781612105373 561.161171362904 0.159775880091208 28.5 0.000181370238076199 -175.25398066993 0.972988191351189 -152.395778468443 0.972988191351187 -152.395778468442 0.000369454136437825 -66.3874019663706 ! Gamma ! 0.273861279558571 403.611988562416 0.273862892019988 403.612709497172 ! Port Impedance558.791843773551 0.154871710476237 558.790886335012 0.154866061342581 28.6 7.71745659781843E-05 -164.773663500974 0.973081715227492 -170.165702369415 0.97308171522749 -170.165702369415 0.000681069650161999 -96.5244088250028 ! Gamma ! 0.27290346068004 406.713658120003 0.272905103766516 406.714373777434 ! Port Impedance556.475670165018 0.150127797349095 556.474731480824 0.150122227838064 28.7 3.10137670108359E-05 -150.457574656862 0.973172050338833 172.139291818307 0.973172050338831 172.139291818307 0.000558323482279356 170.532546554859 ! Gamma ! 0.271972544832789 409.802592520191 0.27197421810174 409.803303002897 ! Port Impedance554.211777194992 0.145542219126025 554.210856663585 0.145536726155632 28.8 1.1527798447844E-05 -64.7280171965043 0.973259327186041 154.517439724107 0.97325932718604 154.517439724107 0.000174562409300085 134.674459723991 ! Gamma ! 0.271067651409247 412.879077576075 0.271069354435046 412.879782983384 ! Port Impedance551.998399859038 0.141107767725199 551.997496905707 0.141102348377545 28.9 3.25882939316077E-05 -12.4531304488674 0.973343796605379 136.966617435716 0.973343796605379 136.966617435716 5.53345331703147E-05 107.023502981147 ! Gamma ! 0.270187939366161 415.943389509796 0.270189671739237 415.944089937914 ! Port Impedance549.833853382104 0.13681764937533 549.832967457461 0.136812300885765 29 5.81593488635976E-05 -5.96223442330016 0.973425794777345 119.484445522067 0.973425794777345 119.484445522067 2.72335672209822E-05 7.8099269268004 ! Gamma ! 0.26933260497335 418.995795385849 0.269334366299348 418.996490927991 ! Port Impedance547.716528630435 0.132665455956694 547.715659208992 0.132660175703792 29.1 8.55494878587877E-05 -6.00147716295514 0.973505684825125 102.068474212296 0.973505684825127 102.068474212296 6.13583198727549E-05 -35.667423696831 ! Gamma ! 0.268500879716857 422.036553519742 0.268502669615863 422.037244266266 ! Port Impedance545.644887838954 0.128645138652146 545.6440344178 0.128639924148418 29.2 0.000115886829439442 -9.06697033841456 0.973583787208716 84.7164126051798 0.973583787208718 84.7164126051797 9.60318080640965E-05 -49.3904839678219 ! Gamma ! 0.267692028344156 425.06591386373 0.267693846449962 425.066599902255 ! Port Impedance543.617460628864 0.124750983696129 543.616622726431 0.12474583257947 29.3 0.000149959779763788 -14.6999219515302 0.97366031474826 67.4263510478025 0.973660314748262 67.4263510478024 0.000130416133065506 -59.3062586482446 ! Gamma ! 0.266905347040182 428.084118371135 0.266907192999609 428.084799786661 ! Port Impedance541.632840292486 0.120977590031478 541.63201744739 0.120972500057261 29.4 0.000187152798147581 -23.1782130705121 0.973735328726715 50.196921200547 0.973735328726716 50.196921200547 0.000166876272184991 -69.3785715158093 ! Gamma ! 0.266140161723977 431.091401340717 0.266142035196234 431.092078215729 ! Port Impedance539.689680324436 0.11731984870307 539.688872094407 0.117314817736851 29.5 0.000223227385345044 -34.9609807081788 0.973808729689512 33.0273447181526 0.973808729689513 33.0273447181526 0.000205847317386402 -81.5137784059206 ! Gamma ! 0.265395826456637 434.087989742373 0.265397727112726 434.088662156951 ! Port Impedance537.786691180119 0.113772923834563 537.785897140984 0.11376794984531 29.6 0.000247778685177986 -50.0302481381758 0.973880290376901 15.9173392132988 0.973880290376901 15.9173392132988 0.000241870582749283 -97.2960081442639 ! Gamma ! 0.264671721952076 437.074103525416 0.264673649474241 437.074771557326 ! Port Impedance535.922637244158 0.110332235049654 535.921856988902 0.110327316103483 29.7 0.000247653193340171 -67.0497165475748 0.973949729425979 -1.13312238978797 0.973949729425978 -1.13312238978795 0.000257525126043146 -117.192669162569 ! Gamma ! 0.263967254182855 440.04995591053 0.263969208264071 440.050619635322 ! Port Impedance534.096333992924 0.106993441212914 534.095567130803 0.10698857546727 29.8 0.000219508202260705 -83.5919851829643 0.974016814435431 -18.1241694219536 0.97401681443543 -18.1241694219536 0.000233352171669973 -138.340153590533 ! Gamma ! 0.263281853074056 443.015753666454 0.263283833417506 443.016413157549 ! Port Impedance532.306645336672 0.103752425377312 532.305891492384 0.103747611075564 29.9 0.000173014984125833 -97.8225608078797 0.974081473534892 -35.0564436829885 0.97408147353489 -35.0564436829885 0.000178075882873284 -155.513928478477 ! Gamma ! 0.262614971279105 445.971697372351 0.26261697759719 445.972352701123 ! Port Impedance530.552481128029 0.100605280836389 530.551739940935 0.100600516302805 30 0.000118555905253302 -109.206928281404 0.974143887681803 -51.9314683585206 0.974143887681801 -51.9314683585207 0.000116518274711749 -164.898994265608 ! Gamma ! 0.261966083029575 448.917981666756 0.26196811504404 448.918632902611 ! Port Impedance528.83279482469 0.0975482981886735 528.832065948086 0.0975435818237546 30.1 6.01529853266391E-05 -116.656452967226 0.97420453311108 -68.7518625604773 0.974204533111078 -68.7518625604773 6.23598020492753E-05 -159.100053721309 ! Gamma ! 0.26133468305625 451.854795483923 0.261336740498292 451.855442694378 ! Port Impedance527.146581295209 0.0945779533305882 527.145864395636 0.0945732836067581 30.2 8.76859831850972E-06 -14.8828023132928 0.974264145597631 -85.5212842081939 0.974264145597631 -85.5212842081939 3.93216870322788E-05 -103.597581344043 ! Gamma ! 0.260720285576525 454.782322278346 0.260722368185657 454.782965529098 ! Port Impedance525.492874757646 0.0916908963012929 525.492169514237 0.0916862717595227 30.3 7.79279615647894E-05 28.7819337088687 0.974323585668594 -102.243997437907 0.974323585668594 -102.243997437907 8.18154618265505E-05 -65.6783544498771 ! Gamma ! 0.260122423340289 457.700740238166 0.260124530864024 457.701379593162 ! Port Impedance523.870746841663 0.0888839409156466 523.870052945564 0.0888793601584061 30.4 0.000164310901289363 18.8649963798205 0.974383596421836 -118.923993182838 0.974383596421836 -118.923993182838 0.00015264899696967 -63.2819227757044 ! Gamma ! 0.25954064673291 460.610222488115 0.259542778926464 460.610858009616 ! Port Impedance522.279304765575 0.0861540551055787 522.278621919337 0.086149516798458 30.5 0.000263406862997764 4.14580849205487 0.974444462920811 -135.563643410068 0.974444462920811 -135.563643410068 0.000251318100940325 -71.0248232122928 ! Gamma ! 0.258974522930689 463.51093728263 0.258976679556658 463.511569031274 ! Port Impedance520.717689620192 0.0834983519421657 520.71701753725 0.0834938548070971 30.6 0.000359308037944919 -14.1756812134594 0.974505603934885 -152.161940303238 0.974505603934885 -152.161940303237 0.000387916844615441 -87.0167071224881 ! Gamma ! 0.258423635105134 466.403048189698 0.258425815933176 466.403676224558 ! Port Impedance519.185074752333 0.0809140812563657 519.184413156497 0.080909624069377 30.7 0.000421433681183046 -33.8474838999775 0.974565151937637 -168.712458905506 0.974565151937635 -168.712458905506 0.000528831761538528 -113.1461909743 ! Gamma ! 0.257887581672766 469.286714265976 0.257889786479301 469.287338644617 ! Port Impedance517.680664241182 0.0783986218290326 517.680012866155 0.0783942034173701 30.8 0.0004357224852129 -51.4949570670854 0.974619602244402 174.798722223776 0.974619602244399 174.798722223777 0.000553804288079784 -143.491109867632 ! Gamma ! 0.257365975587432 472.162090223672 0.257368204155343 472.162711002203 ! Port Impedance516.203691461262 0.0759494741009003 516.203050050188 0.0759450933403221 30.9 0.000418448308909893 -65.3285659018146 0.974663629505626 158.394819364203 0.974663629505623 158.394819364203 0.000473639149398307 -166.145273109911 ! Gamma ! 0.256858443672291 475.029326589672 0.256860695790644 475.029943822802 ! Port Impedance514.753417726304 0.073564253363736 514.752786031341 0.0735599091759741 31 0.000390035884837531 -75.5763270880217 0.974690168152651 142.109484302702 0.974690168152651 142.109484302702 0.000388669237661001 179.913582914089 ! Gamma ! 0.256364625988894 477.888569857334 0.256366901452671 477.889183598415 ! Port Impedance513.329131008682 0.0712406833964367 513.328508790599 0.0712363747468144 31.1 0.000395839467650031 -86.7767376658753 0.974873355557177 125.784075192327 0.974873355557173 125.784075192326 0.00041042092160155 165.172114531022 ! Gamma ! 0.255884175240056 480.73996263135 0.255886473850716 480.740572932428 ! Port Impedance511.930144729504 0.0689765905129663 511.929531757293 0.0689723164081523 31.2 0.000390366051331299 -100.212070314265 0.974939303248136 109.49530172443 0.974939303248132 109.495301724429 0.000412030407765887 148.14930742378 ! Gamma ! 0.255416756208284 483.583643766078 0.255419077772246 483.584250677936 ! Port Impedance510.555796614813 0.0667698979913591 510.555192665334 0.0667656574774539 31.3 0.000367016977009922 -116.097274259578 0.974951906902259 93.2468857252438 0.974951906902257 93.2468857252431 0.000382360888917772 130.021819190137 ! Gamma ! 0.254962045220376 486.419748497676 0.254964389549396 486.420352069879 ! Port Impedance509.205447613668 0.0646186208567171 509.204852471304 0.0646144130170987 31.4 0.00032099966834346 -134.392859700598 0.974949457187256 77.0405342919727 0.974949457187256 77.0405342919722 0.00032288521511994 112.945016054782 ! Gamma ! 0.254519729643104 489.24840857039 0.254522096554064 489.249008851322 ! Port Impedance507.87848087422 0.0625208609917027 507.877894330553 0.0625166849450694 31.5 0.000254003915012468 -155.033484170701 0.974951599368865 60.8766419374624 0.974951599368865 60.8766419374622 0.000248105184683208 99.2771305574159 ! Gamma ! 0.254089507404964 492.069752357294 0.254091896719667 492.070349394199 ! Port Impedance506.574300774131 0.0604748025515171 506.573722627619 0.0604706574459066 31.6 0.000175611453087328 -179.1883650829 0.974965612700176 44.7548272492722 0.974965612700178 44.754827249272 0.000173524647836621 91.7853839450552 ! Gamma ! 0.253671086542972 494.88390497578 0.253673498087953 494.884498814802 ! Port Impedance505.292332001984 0.0584787076616215 505.29176205776 0.0584745926917479 31.7 0.00010119728574329 145.906238503269 0.974991543045932 28.6743152235999 0.974991543045934 28.6743152235999 0.000112007973269745 96.8776470117255 ! Gamma ! 0.253264184772958 497.690988398082 0.253266618379325 497.691579084297 ! Port Impedance504.032018686549 0.0565309123782966 504.031456755967 0.0565268267546232 31.8 6.63372757908769E-05 76.0038864175592 0.975026023539564 12.6341878575528 0.975026023539565 12.6341878575529 8.7108773742469E-05 124.594844443641 ! Gamma ! 0.252868529081961 500.491121557074 0.252870984585493 500.491709134527 ! Port Impedance502.792823570987 0.0546298228937104 502.792269471515 0.0546257658603147 31.9 0.000106247287924209 14.9296903721713 0.975064831256147 -3.3664692977968 0.975064831256149 -3.36646929779685 0.000117437478644626 148.653007250874 ! Gamma ! 0.252483855341358 503.284420447599 0.252486332581705 503.28500495934 ! Port Impedance501.574227229303 0.0527739119685955 501.573680784214 0.0527698827976066 32 0.000168108157428492 -15.1900882463762 0.975104360605439 -19.3284964420731 0.97510436060544 -19.3284964420731 0.000173728324428453 151.765622123077 ! Gamma ! 0.252109907939515 506.070998223552 0.252112406759325 506.071579711654 ! Port Impedance500.375727322498 0.0509617155769508 500.375188360642 0.0509577135669623 32.1 0.000230269567789706 -37.039885564061 0.97514226024959 -35.2526391370645 0.97514226024959 -35.2526391370645 0.000235262784970749 145.331123956293 ! Gamma ! 0.251746439431986 508.850965290926 0.251748959680495 508.851543796533 ! Port Impedance499.196837892093 0.0491918297483779 499.19630624767 0.0491878542232156 32.2 0.00028822081634673 -56.9059153923506 0.975177495180699 -51.1395571025628 0.975177495180699 -51.1395571025629 0.000293609598694654 134.935657029518 ! Gamma ! 0.251393210213989 511.624429397036 0.251395751741101 511.625004960381 ! Port Impedance498.037088688823 0.0474629075947585 498.036564201171 0.0474589579023267 32.3 0.000338515660856382 -76.7366729469486 0.975210074117455 -66.9898462389318 0.975210074117454 -66.9898462389318 0.000343108572372193 122.832340093572 ! Gamma ! 0.251049988197362 514.391495716091 0.251052550858501 514.392068376529 ! Port Impedance496.896024534461 0.0457736565089837 496.895507047848 0.0457697320201751 32.4 0.000376999422960469 -97.1726786084648 0.975240638371966 -82.8040630185274 0.975240638371966 -82.8040630185274 0.000380163532253371 110.255504491476 ! Gamma ! 0.250716548516968 517.152266931319 0.250719132170879 517.152836727353 ! Port Impedance495.773204714848 0.0441228355243624 495.772694078284 0.0441189356320277 32.5 0.00040038520106374 -118.211173257076 0.975270053841497 -98.5827448768616 0.975270053841496 -98.5827448768616 0.000404086370435634 97.9842284026419 ! Gamma ! 0.250392673243017 519.906843313786 0.250395277751677 519.90741028309 ! Port Impedance494.668202402375 0.0425092528241875 494.667698469422 0.0425053769421595 32.6 0.000408753745584287 -139.533585514902 0.975299092600297 -114.326423801658 0.975299092600296 -114.326423801658 0.000416760022363448 86.4558484872352 ! Gamma ! 0.250078151109063 522.655322798085 0.250080776337702 522.655886977533 ! Port Impedance493.580604106213 0.040931763391699 493.580106734815 0.0409279109538699 32.7 0.000406271494516669 -160.810628614118 0.975328241885115 -130.035632853057 0.975328241885116 -130.035632853057 0.000421252958595745 75.8338811436635 ! Gamma ! 0.249772777253123 525.397801055045 0.249775423070128 525.398362480732 ! Port Impedance492.51000914877 0.0393892667914097 492.509518201078 0.0393854372508569 32.8 0.000399277045118543 178.10793962832 0.975357640504403 -145.71090689562 0.975357640504404 -145.71090689562 0.000420538439164518 66.0992743967032 ! Gamma ! 0.249476352970871 528.134371561595 0.249479019247685 528.13493026886 ! Port Impedance491.456029166877 0.0378807050734015 491.455544509096 0.0378768979015595 32.9 0.000393749427344182 157.185173301505 0.975387117687217 -161.35277953076 0.975387117687217 -161.35277953076 0.000416884808614627 57.1364057104526 ! Gamma ! 0.249188685480335 530.865125667915 0.249191372091356 530.865681691365 ! Port Impedance490.418287636374 0.0364050607928056 490.417809138606 0.0364012754786813 33 0.000393931908358027 136.276564525406 0.975416296799024 -176.961778291462 0.975416296799025 -176.961778291461 0.000411775385599366 48.791333757649 ! Gamma ! 0.248909587697466 533.590152662012 0.248912294519947 533.590706035541 ! Port Impedance489.396419418782 0.0349613551372368 489.395946954885 0.0349575911866656 33.1 0.000401983294432374 115.175784445291 0.975444724303987 167.461580180259 0.975444724303988 167.46158018026 0.000406049200379955 40.9022981302689 ! Gamma ! 0.248638878022001 536.30953983183 0.248641604935959 536.310090588642 ! Port Impedance488.390070328889 0.0335486461554547 488.389603776333 0.033544903090394 33.2 0.000417720408030794 93.5966202388777 0.9754719900456 151.916793805563 0.975471990045601 151.916793805563 0.000400068121324756 33.3116160506923 ! Gamma ! 0.248376380133074 539.02337252501 0.248379127021192 539.023920697637 ! Port Impedance487.398896722104 0.0321660270810019 487.398435961841 0.0321623044388604 33.3 0.000437695046734638 71.1663845791911 0.975497815227567 136.403377020357 0.975497815227568 136.403377020357 0.000393836120414184 25.8675456905905 ! Gamma ! 0.248121922794034 541.731734206412 0.248124689541541 541.732279826731 ! Port Impedance486.422565100532 0.0308126247449988 486.42211001687 0.0308089220779987 33.4 0.000453650789137232 47.5750334640496 0.975522096450548 120.920860958641 0.975522096450547 120.920860958641 0.000387055811435987 18.4217273325993 ! Gamma ! 0.247875339666005 544.434706513486 0.247878126159979 544.435249612742 ! Port Impedance485.460751736775 0.029487598072675 485.460302217254 0.0294839149472453 33.5 0.000452880926226172 22.9772080653234 0.975544905364004 105.46879219838 0.975544905364004 105.46879219838 0.000379125965484246 10.8257238334996 ! Gamma ! 0.247636469129725 547.132369309609 0.24763927526114 547.132909918439 ! Port Impedance484.51314231453 0.0281901366585906 484.51269824981 0.0281864726547908 33.6 0.00042525409067563 -1.63369758659314 0.975566452216615 90.0467306092828 0.975566452216613 90.0467306092828 0.000369087449734172 2.92975866526171 ! Gamma ! 0.24740515411522 549.824800735464 0.247407979777638 549.825338883887 ! Port Impedance483.579431585106 0.0269194594158376 483.578992868853 0.0269158141268092 33.7 0.000373061958489712 -24.7875387191339 0.97558702691795 74.6542468912562 0.975587026917952 74.6542468912561 0.000355532114289637 -5.41160869292916 ! Gamma ! 0.247181241938932 552.512077258547 0.247184087026346 552.512612976009 ! Port Impedance482.659323039032 0.025674813294833 482.658889567815 0.0256711863262783 33.8 0.000308924829246941 -45.5353696672332 0.97560693298668 59.2909203161703 0.97560693298668 59.2909203161702 0.000336517571468186 -14.3174034339746 ! Gamma ! 0.246964584147896 555.194273720888 0.246967448557327 555.19480703627 ! Port Impedance481.752528591992 0.0244554720676051 481.752100265178 0.0244518630372909 33.9 0.000244428642019479 -63.9279139605472 0.975626428391294 43.9563370302735 0.975626428391294 43.9563370302734 0.000309604012893185 -23.8221613629869 ! Gamma ! 0.246755036370624 557.871463385078 0.246757920001278 557.871994326703 ! Port Impedance480.858768284341 0.0232607351737447 480.858345004002 0.02325714371103 34 0.000184954172672058 -80.795828159702 0.975645683637111 28.65008908777 0.975645683637112 28.6500890877699 0.000272255654395477 -33.7408257315499 ! Gamma ! 0.246552458174357 560.543717978633 0.246555360927523 560.544246574292 ! Port Impedance479.977769993536 0.0220899266244483 479.97735166435 0.0220863523698348 34.1 0.000131410191463506 -97.6828209848215 0.975664762569972 13.3717742089628 0.975664762569973 13.3717742089628 0.000222940050855404 -43.3552586772013 ! Gamma ! 0.246356712928356 563.211107736825 0.246359634707342 563.211634013783 ! Port Impedance479.109269158809 0.020942393961308 479.108855687978 0.0209388365660109 34.2 8.32113127489619E-05 -118.120295271166 0.975683626307497 -1.8790038809421 0.975683626307497 -1.87900388094206 0.000163106979807033 -50.5412519387106 ! Gamma ! 0.24616766767294 565.873701443986 0.246170608383013 565.874225428999 ! Port Impedance478.253008517499 0.0198175072667225 478.252599814658 0.0198139663922616 34.3 4.30399118048786E-05 -156.701672885902 0.975702156369782 -17.1026347578738 0.975702156369785 -17.1026347578739 0.000100632885160777 -48.2312885267916 ! Gamma ! 0.245985192993992 568.531566473397 0.245988152542319 568.532088192727 ! Port Impedance477.408737852445 0.0187146582230027 477.408333829582 0.0187111335408125 34.4 4.13279539352296E-05 118.778212479429 0.975720190090974 -32.2995004979035 0.975720190090973 -32.2995004979034 6.40790428647602E-05 -14.0411908434384 ! Gamma ! 0.245809162902659 571.184768825793 0.245812141198249 571.185288305217 ! Port Impedance476.576213749906 0.0176332592174325 476.575814321285 0.0176297504084894 34.5 8.58156851182163E-05 75.4362687670865 0.975737560059321 -47.4699749889546 0.97573756005932 -47.4699749889546 9.43694948470144E-05 21.8343753193117 ! Gamma ! 0.24563945471999 573.833373166548 0.245642451673646 573.833890431372 ! Port Impedance475.755199367504 0.0165727424907191 475.754804449587 0.0165692492451858 34.6 0.000146274519395651 52.0881170804334 0.975754129647898 -62.6144235107296 0.975754129647896 -62.6144235107295 0.000148347582788039 25.9662339211571 ! Gamma ! 0.245475948966288 576.4774428616 0.245478964490551 576.477957936673 ! Port Impedance474.945464211681 0.0155325593264245 474.945073723058 0.0155290813433109 34.7 0.000219788419925235 30.8609053638487 0.9757698183845 -77.7332026566067 0.9757698183845 -77.7332026566067 0.000199844819632892 20.3944385006877 ! Gamma ! 0.245318529254938 579.117040012163 0.245321563264041 579.117552921886 ! Port Impedance474.146783924249 0.0145121792791269 474.146397785565 0.0145087162659653 34.8 0.0003008936700589 6.87367177050567 0.975784613504897 -92.8266605903203 0.975784613504897 -92.8266605903203 0.000244084803727268 11.8203982731997 ! Gamma ! 0.245167082190506 581.752225488276 0.245170134600325 581.752736256615 ! Port Impedance473.358940077561 0.0135110894391923 473.358558211453 0.0135076411117277 34.9 0.000363570706948849 -21.1248139035498 0.975798566985087 -107.895137564695 0.975798566985087 -107.895137564695 0.000280036927259227 1.94989599968305 ! Gamma ! 0.245021497270901 584.383058961233 0.24502456799891 584.383567611729 ! Port Impedance472.581719977924 0.0125287937321722 472.581342308957 0.0125253598140659 35 0.000372830965535252 -50.0055525278081 0.975811780110542 -122.938966589112 0.975811780110543 -122.938966589112 0.000307172702551257 -8.72527492741067 ! Gamma ! 0.244881666793418 587.00959893495 0.244884755758646 587.010105490728 ! Port Impedance471.814916476859 0.011564812250962 471.814542931461 0.0115613924735086 35.1 0.000336225212356544 -75.1998077472818 0.975824379759614 -137.958474120248 0.975824379759614 -137.958474120248 0.000324779792758205 -20.0562301109399 ! Gamma ! 0.244747485764488 589.631902776289 0.244750592887465 589.632407260073 ! Port Impedance471.058327789833 0.0106186806189673 471.057958296238 0.0106152747208261 35.2 0.000287378465479873 -95.6879396161893 0.975836491753579 -152.953980664756 0.97583649175358 -152.953980664756 0.000332045025853933 -31.9724707000778 ! Gamma ! 0.244618851813514 592.250026744407 0.244621977015647 592.250529178527 ! Port Impedance470.311757322128 0.00968994938263296 470.31139181032 0.00968655710959335 35.3 0.000244159173445058 -112.894747919588 0.975848216740261 -167.925801216387 0.975848216740261 -167.925801216387 0.000328519583448947 -44.3933582316302 ! Gamma ! 0.244495665106666 594.864026019158 0.244498808312451 594.864526425554 ! Port Impedance469.575013501515 0.00877818343178418 469.574651903155 0.00877480455767041 35.4 0.000210575949244279 -128.385432716619 0.975859613199621 177.125754505612 0.975859613199621 177.125754505612 0.000314668589217714 -57.2219810300566 ! Gamma ! 0.244377828272128 597.473954728558 0.244380989405956 597.474453128801 ! Port Impedance468.847909617419 0.0078829614463251 468.847551865864 0.0078795956879616 35.5 0.000186472694494165 -143.254568843816 0.9758706905136 162.200382005017 0.975870690513601 162.200382005017 0.00029214864829099 -70.393942515539 ! Gamma ! 0.24426524631795 600.079865975408 0.244268425305973 600.080362390699 ! Port Impedance468.130263666286 0.007003875367923 468.129909696427 0.00700052251199589 35.6 0.000171577249116554 -158.164701039307 0.975881412963454 147.297782095427 0.975881412963455 147.297782095427 0.000263607960508654 -83.9570287414798 ! Gamma ! 0.244157826560172 602.681811863045 0.244161023329881 602.682306314228 ! Port Impedance467.421898202873 0.00614052989538712 467.421547951161 0.00613718971375065 35.7 0.000167691810791743 -173.489788755587 0.975891713389322 132.417661054194 0.975891713389323 132.417661054194 0.000232164706596336 -98.1545880563193 ! Gamma ! 0.244055478551092 605.279843520298 0.244058693031265 605.280336027869 ! Port Impedance466.722640197183 0.00529254200252745 466.722293601568 0.00528921427293962 35.8 0.000189915402880855 170.58266772494 0.975901513437582 117.559730766962 0.975901513437582 117.559730766962 0.000200954131035448 -113.490040843939 ! Gamma ! 0.243958114010558 607.874011125657 0.243961346131224 607.874501709769 ! Port Impedance466.032320896818 0.00445954047734888 466.031977896698 0.00445622498331731 35.9 0.000206142517600773 -123.652684348439 0.975910746129282 102.723708797515 0.975910746129282 102.723708797515 0.000173034252722981 -130.729961631388 ! Gamma ! 0.243865646759838 610.464363930689 0.243868896452247 610.464852611165 ! Port Impedance465.350775694529 0.00364116548771306 465.350436230665 0.0036378620120891 36 0.00011433936031849 161.543108667072 0.975919376091299 87.9093183415947 0.975919376091299 87.9093183415947 0.000151623264522151 -150.689972892219 ! Gamma ! 0.243777992657931 613.050950282742 0.243781259854518 613.051437079076 ! Port Impedance464.677844000438 0.00283706812890367 464.677508015096 0.00283377647859543 36.1 0.000134929294152589 143.884033103883 0.975927413247184 73.116288054313 0.975927413247184 73.1162880543131 0.000140180227476734 -173.503932381977 ! Gamma ! 0.243695069540221 615.633817646935 0.243698354174581 615.634302578306 ! Port Impedance464.013369119686 0.00204691008280997 464.013036556309 0.00204363005127427 36.2 0.000152347111920562 131.966494482981 0.975934916974068 58.34435177194 0.975934916974068 58.34435177194 0.000141449735469825 162.328327804488 ! Gamma ! 0.243616797159365 618.213012627495 0.243620099166224 618.21349571277 ! Port Impedance463.357198133635 0.00127036317005648 463.356868937007 0.00126709456205712 36.3 0.000170933130394098 122.185660003683 0.975941989482009 43.5932481737349 0.975941989482009 43.5932481737349 0.000155778604623687 139.305549335999 ! Gamma ! 0.243543097128332 620.788580988439 0.243546416444624 620.789062246173 ! Port Impedance462.709181786142 0.000507109011891415 462.708855902285 0.000503851636914976 36.4 0.00019195343506988 113.740298769076 0.975948759164616 28.8627204433803 0.975948759164616 28.8627204433803 0.000180978980777538 118.759016011422 ! Gamma ! 0.243473892865488 623.360567673633 0.243477229425882 623.361047122112 ! Port Impedance462.069174373658 -0.000243161329468009 462.068851749817 -0.00024640765716195 36.5 0.000216145823454689 106.237843124322 0.975955356569932 14.152515989758 0.975955356569932 14.152515989758 0.000213520953183855 100.316595694088 ! Gamma ! 0.243409109541645 625.929016826256 0.243412463285178 625.929494483446 ! Port Impedance461.437033639353 -0.000980747689367732 461.436714223944 -0.00098398315089011 36.6 0.000244315080037882 99.4032739686913 0.975961887127791 -0.537613726359331 0.975961887127793 -0.537613726359357 0.000248537587630958 82.9922782742134 ! Gamma ! 0.243348674028999 628.493971807682 0.243352044894642 628.494447691276 ! Port Impedance460.812620671035 -0.00170594112502881 460.812304413618 -0.00170916589710272 36.7 0.000277598662633603 93.0102289026257 0.975968405588677 -15.207913236928 0.975968405588681 -15.2079132369281 0.00027896764429356 66.1688813169815 ! Gamma ! 0.243292514851866 631.055475215806 0.243295902779577 631.055949343221 ! Port Impedance460.195799802706 -0.00241902422632698 460.19548665395 -0.00242223848139786 36.8 0.000317742142476198 86.8498774924379 0.975974897125825 -29.8586229893113 0.975974897125829 -29.8586229893114 0.000296989086430892 50.0871823730329 ! Gamma ! 0.243240562139148 633.613568902835 0.243243967069859 633.614041291215 ! Port Impedance459.586438519603 -0.00312027141368624 459.586128431259 -0.0031234753200537 36.9 0.000367563986381993 80.7032219431189 0.975981269201507 -44.489979182909 0.975981269201512 -44.4899791829091 0.000299094214841716 35.7007599906649 ! Gamma ! 0.243192747578463 636.168293992551 0.243196169454054 636.168764658775 ! Port Impedance458.984407366588 -0.00380994922369735 458.984100291452 -0.00381314294564377 37 0.00043189771150135 74.3012528381374 0.975987356706201 -59.1022135784957 0.975987356706207 -59.1022135784957 0.000289016682847598 23.9169432374413 ! Gamma ! 0.243149004371855 638.719690897086 0.243152443135136 638.720159857774 ! Port Impedance458.38957985973 -0.00448831658304149 458.389275751621 -0.00449150028095574 37.1 0.000519737593440285 67.2472409219686 0.975992940771419 -73.6955533502985 0.975992940771425 -73.6955533502985 0.000273970957761726 14.9917162378558 ! Gamma ! 0.243109267193034 641.267799333204 0.24311272278773 641.268266604722 ! Port Impedance457.801832400975 -0.00515562507126561 457.801531214702 -0.00515879890176244 37.2 0.000649791510126738 58.8251658468437 0.975997779347443 -88.2702210478383 0.975997779347448 -88.2702210478384 0.000259785623734513 8.57268410214046 ! Gamma ! 0.243073472146063 643.812658338124 0.243076944516819 643.813123936588 ! Port Impedance457.221044195757 -0.00581211917293008 457.220745887093 -0.00581528328896511 37.3 0.000867247509183967 47.3998954127446 0.976001645484197 -102.826434716537 0.976001645484203 -102.826434716537 0.000249576914512201 4.03218575029171 ! Gamma ! 0.243041556725322 646.354306284884 0.243045045817851 646.354770226167 ! Port Impedance456.647097173434 -0.00645803651961975 456.646801699089 -0.00646119107059999 37.4 0.00129967341691134 27.9041163732999 0.976004367608913 -117.364408195807 0.976004367608918 -117.364408195807 0.000244570258987604 0.717646389273239 ! Gamma ! 0.2430134597736 648.89278089728 0.243016965538205 648.893243197016 ! Port Impedance456.079875910452 -0.00709360812228582 456.079583228048 -0.00709675325417619 37.5 0.00206795082248277 -19.3963183909222 0.976005865250477 -131.884351575453 0.976005865250481 -131.884351575453 0.000245098924800359 -1.93295901015532 ! Gamma ! 0.242989121464038 651.428119264363 0.242992643839946 651.428579937966 ! Port Impedance455.519267556106 -0.00771905859435935 455.518977624152 -0.00772219444978553 37.6 0.00140443430031768 -88.3819417844007 0.976006173805574 -146.386471752898 0.976006173805577 -146.386471752898 0.000251233080720203 -4.35528984781696 ! Gamma ! 0.242968483226326 653.960357854598 0.242972022163821 653.96081691723 ! Port Impedance454.96516176081 -0.00833460636605761 454.964874538679 -0.00833773308440487 37.7 0.000684813436710523 -124.284895418136 0.976005453125848 -160.870973002254 0.97600545312585 -160.870973002254 0.00026311600159137 -6.86258361495036 ! Gamma ! 0.242951487745675 656.48953252951 0.24295504319446 656.489989996123 ! Port Impedance454.417450606772 -0.00894046389028032 454.417166054678 -0.00894358160778884 37.8 0.00038264760409994 -154.022067213169 0.976003976825428 -175.338057448842 0.976003976825429 -175.338057448842 0.000281149731502093 -9.66986850054173 ! Gamma ! 0.242938078917061 659.015678557067 0.242941650826722 659.016134442394 ! Port Impedance453.876028540982 -0.00953683784047308 453.875746619955 -0.00953994669033006 37.9 0.000262610120492587 168.420896700915 0.976002102013335 170.212074655335 0.976002102013335 170.212074655335 0.000306123351867403 -12.9273113866509 ! Gamma ! 0.242928201812349 661.538830624641 0.242931790133137 661.539284943198 ! Port Impedance453.340792310415 -0.0101239293008188 453.340512982282 -0.0101270294132469 38 0.000259246479910707 128.831712817065 0.976000222273224 155.779224936479 0.976000222273223 155.779224936479 0.000339338739406591 -16.7561522530844 ! Gamma ! 0.242921802649542 664.059022851619 0.242925407332426 664.059475617713 ! Port Impedance452.811640899375 -0.010701933949095 452.811364126741 -0.0107050254514379 38.1 0.000321180832345599 100.312026876712 0.975998709694584 141.363197222016 0.975998709694583 141.363197222016 0.000382766658501893 -21.2851010959455 ! Gamma ! 0.24291882876237 666.576288801679 0.24292244975903 666.576740029412 ! Port Impedance452.288475468892 -0.0112710422325231 452.288201215113 -0.011274125249328 38.2 0.000411015333165848 80.8254723572386 0.975997854137472 126.963798161449 0.975997854137471 126.963798161449 0.000439240222945455 -26.689022821837 ! Gamma ! 0.242919228570808 669.090661494735 0.242922865833625 669.091111198005 ! Port Impedance451.771199298089 -0.011831439536916 451.77092752726 -0.0118345141900133 38.3 0.000515526568102394 65.4586961151277 0.975997809265927 112.580838060255 0.975997809265926 112.580838060255 0.000512617841543514 -33.2343403533007 ! Gamma ! 0.242922951552542 671.602173418552 0.242926605034584 671.602621611061 ! Port Impedance451.259717727451 -0.0123833063494172 451.259448404381 -0.0123863727579963 38.4 0.000629371497931879 51.4913872033936 0.975998554901423 98.2141317826574 0.975998554901422 98.2141317826574 0.000607593363539308 -41.3343731875917 ! Gamma ! 0.242929948215341 674.110856540063 0.242933617870344 674.111303235319 ! Port Impedance450.75393810392 -0.0129268184151103 450.753671194118 -0.0129298766957915 38.5 0.000745526314566053 37.5738492306375 0.975999883777901 83.8634995363679 0.975999883777901 83.8634995363679 0.000728050467024538 -51.6013387960438 ! Gamma ! 0.242940170070296 676.616742316372 0.242943855852657 676.617187527694 ! Port Impedance450.25376972775 -0.0134621468877965 450.253505197404 -0.0134651971546637 38.6 0.00085120477787397 23.1642278214246 0.976001417873998 69.5287673374874 0.976001417873998 69.5287673374874 0.000871093022070499 -64.8115527583543 ! Gamma ! 0.242953569605917 679.119861705483 0.242957271470674 679.120305446001 ! Port Impedance449.759123801051 -0.0139894584748242 449.758861617015 -0.0139925008397519 38.7 0.000929170022359804 8.38174430453137 0.976002655418795 55.2097669744179 0.976002655418796 55.2097669744179 0.00101356172481579 -81.5233505278986 ! Gamma ! 0.242970100263026 681.620245176728 0.242973818165848 681.620687459393 ! Port Impedance449.269913377974 -0.0145089155776107 449.269653507744 -0.0145119501498183 38.8 0.000966011211639918 -6.13812835745652 0.976003044878065 40.9063353492735 0.976003044878066 40.9063353492735 0.00110383022828424 -101.084836243869 ! Gamma ! 0.242989716410445 684.11792272094 0.242993450307616 684.11836355852 ! Port Impedance448.786053316443 -0.0150206764252909 448.785795728149 -0.0150237033118509 38.9 0.000961033081373771 -19.6113147587618 0.976002077352152 26.6183131710341 0.976002077352154 26.6183131710341 0.00109956674089307 -121.036258632367 ! Gamma ! 0.243012373321428 686.612923860347 0.243016123169836 686.613363265439 ! Port Impedance448.307460231423 -0.015524895204987 448.307204893806 -0.0155279145107467 39 0.00092543735326305 -31.5110452686446 0.975999384573122 12.3455430968927 0.975999384573124 12.3455430968927 0.00101979659949413 -138.778302050349 ! Gamma ! 0.243038027150826 689.105277658224 0.243041792907948 689.10571564325 ! Port Impedance447.834052449627 -0.0160217221865955 447.833799332024 -0.0160247340161667 39.1 0.000873667706957713 -41.7053793286287 0.975994826805351 -1.91213244889606 0.975994826805353 -1.91213244889604 0.000914581646152114 -153.502998226329 ! Gamma ! 0.243066634912945 691.595012728286 0.24307041653683 691.595449305499 ! Port Impedance447.365749965636 -0.0165113038432176 447.36549903799 -0.0165143082931769 39.2 0.000816792472322944 -50.3404264431871 0.975988554069035 -16.1548734274486 0.975988554069035 -16.1548734274486 0.000815744400268056 -165.843417670372 ! Gamma ! 0.243098154460084 694.082157243845 0.243101951909265 694.082592425334 ! Port Impedance446.902474399367 -0.0169937829672455 446.902225632165 -0.0169967801380285 39.3 0.000761128730719245 -57.6730042783449 0.975981025670064 -30.3828438707883 0.975981025670064 -30.3828438707882 0.000733495225156591 -176.865692096157 ! Gamma ! 0.243132544461724 696.566738946735 0.243136357695726 696.567172744425 ! Port Impedance446.444148954844 -0.0174692987822875 446.44390231914 -0.0174722887704092 39.4 0.000709479534563035 -63.9628131717633 0.975972977206014 -44.5962126346255 0.975972977206013 -44.5962126346254 0.000668333299975223 172.314471023533 ! Gamma ! 0.243169764384338 699.04878515601 0.243173593362615 699.049217581669 ! Port Impedance445.990698380229 -0.017937987051105 445.990453847619 -0.0179409699511055 39.5 0.000662629656127507 -69.423521235908 0.975965330859813 -58.7951528038728 0.975965330859811 -58.7951528038727 0.000618207885658001 160.442228747094 ! Gamma ! 0.243209774471814 701.528322776425 0.243213619154658 701.528753841661 ! Port Impedance445.542048929064 -0.0183999801797223 445.541806471673 -0.0184029560842424 39.6 0.000620384318178171 -74.2001631392374 0.975959053354287 -72.9798394790064 0.975959053354284 -72.9798394790063 0.000581164176560704 145.757011323822 ! Gamma ! 0.243252535726451 704.0053783067 0.243256396074653 704.005808022969 ! Port Impedance445.098128322678 -0.0188554073178667 445.097887913149 -0.018858376317699 39.7 0.000582269954827862 -78.3427169672529 0.975954975529635 -87.1504459053348 0.975954975529633 -87.1504459053347 0.000555786522406033 125.267632191064 ! Gamma ! 0.243298009890536 706.479977847581 0.243301885865395 706.48040622619 ! Port Impedance444.658865713732 -0.0193043944558856 444.658627325213 -0.0193073566400227 39.8 0.000548440685697856 -81.7547158184696 0.975953596929086 -101.307138218452 0.975953596929084 -101.307138218451 0.000538562594868469 93.6688983969342 ! Gamma ! 0.243346159428445 708.952147109706 0.243350050991761 708.952574161811 ! Port Impedance444.224191650841 -0.0197470645182822 444.223955256972 -0.0197500199739636 39.9 0.000522111906499427 -84.1903656702141 0.975954906638585 -115.450069437539 0.975954906638584 -115.450069437539 0.000513037934517704 44.9973390452342 ! Gamma ! 0.243396947509279 711.421911421268 0.243400854623347 711.422337157882 ! Port Impedance443.794038044256 -0.0201835374540063 443.793803619158 -0.020186486266763 40 0.000513526715601289 -85.9806416729798 0.975958256456007 -129.579373698014 0.975958256456007 -129.579373698014 0.000462644103172534 -13.0712683407396 ! Gamma ! 0.243450337990012 713.889295735495 0.243454260617609 713.889720167488 ! Port Impedance443.368338132552 -0.0206139303236274 443.368105650815 -0.0206168725773255 40.1 0.000525378224912004 -89.7137733251053 0.975962322882851 -143.695162017395 0.975962322882852 -143.695162017395 0.000420222232871628 -58.7823406874554 ! Gamma ! 0.243506295399113 716.354324637952 0.243510233503493 716.354747776052 ! Port Impedance442.947026450301 -0.0210383573835145 442.946795886976 -0.0210412931603975 40.2 0.000528828756076028 -96.4218415124393 0.975965189320612 -157.797521064658 0.975965189320614 -157.797521064658 0.000398890949371731 -87.2275238645148 ! Gamma ! 0.243564784920657 718.817022353652 0.243568738465541 718.817444208453 ! Port Impedance442.530038796688 -0.0214569301671399 442.529810127272 -0.0214598595478694 40.3 0.000513915846804432 -103.800331525631 0.975964568547447 -171.886516382459 0.975964568547449 -171.886516382459 0.000389469548528492 -104.385996821604 ! Gamma ! 0.243625772378877 721.277412754014 0.243629741328452 721.277833335973 ! Port Impedance442.117312205041 -0.0218697575636202 442.11708540547 -0.0218726806273157 40.4 0.000489913510577372 -111.117646304432 0.975958168004337 174.037798774041 0.975958168004339 174.037798774041 0.000387124890296479 -114.966135351879 ! Gamma ! 0.243689224223158 723.735519363636 0.243693208542082 723.735938683076 ! Port Impedance441.70878491324 -0.0222769458936006 441.708559959877 -0.0222798627178778 40.5 0.000460354524501225 -118.65714552098 0.975944177354345 159.975368421185 0.975944177354347 159.975368421185 0.000391088328507952 -121.400631615576 ! Gamma ! 0.243755107513416 726.191365366917 0.243759107166877 726.191783434033 ! Port Impedance441.304396334985 -0.0226785989825874 441.30417320461 -0.0226815096435954 40.6 0.00042410735507461 -126.644854870261 0.975921830758397 145.926113043504 0.975921830758397 145.926113043504 0.00040288773699967 -124.761114052348 ! Gamma ! 0.243823389906335 728.64497361452 0.243827404859708 728.645390439378 ! Port Impedance440.904087031876 -0.0230748182318256 440.903865701681 -0.0230777228042828 40.7 0.000379151428730974 -134.987158084001 0.975891967729895 131.88990468476 0.975891967729894 131.889904684761 0.000426591767671923 -125.212429043758 ! Gamma ! 0.243894039642158 731.096366629674 0.243898069860118 731.096782222215 ! Port Impedance440.507798686306 -0.0234657026868156 440.507579133878 -0.0234686012440452 40.8 0.000325230664276754 -143.154964837653 0.975857489378717 117.866541200225 0.975857489378714 117.866541200225 0.000471068289350554 -121.858622598185 ! Gamma ! 0.243967025526819 733.545566614342 0.243971070976942 733.545980984383 ! Port Impedance440.115474075104 -0.0238513491035609 440.115256278423 -0.0238542417175242 40.9 0.000265599096031385 -150.146278294437 0.975823584874671 103.855724717837 0.975823584874664 103.855724717838 0.000554201605708083 -111.364271846192 ! Gamma ! 0.244042316926365 735.992595455232 0.244046377575306 735.993008612468 ! Port Impedance439.727057043939 -0.0242318520126303 439.726840981365 -0.0242347387539602 41 0.000206552676695333 -154.577316625804 0.975797589720927 89.8570511855747 0.975797589720921 89.857051185575 0.00066865362562082 -83.0711708308606 ! Gamma ! 0.244119883749147 738.437474729668 0.244123959563986 738.437886683676 ! Port Impedance439.34249248243 -0.0246073037811196 439.342278132697 -0.0246101847191523 41.1 0.000154865494364827 -154.8148490718 0.975788336402751 75.8700195702128 0.975788336402744 75.8700195702131 0.000504821578290873 -30.3920835202728 ! Gamma ! 0.244199696434884 740.880225711336 0.244203787383114 740.880636471574 ! Port Impedance438.961726299962 -0.0249777946725899 438.961513642168 -0.0249806698753958 41.2 0.000115631055630819 -149.197722200329 0.975804872209579 61.8940705948603 0.975804872209576 61.8940705948606 0.000214895997865419 8.50647117711629 ! Gamma ! 0.244281725942719 743.320869375882 0.244285831992223 743.321278951695 ! Port Impedance438.584705402169 -0.0253434129050595 438.584494415769 -0.0253462824394736 41.3 9.16506020305816E-05 -137.244461829604 0.975854451064521 47.9286656167345 0.975854451064519 47.9286656167345 8.57584962107194E-05 44.5196888376103 ! Gamma ! 0.24436594373958 745.759426406396 0.244370064858621 745.759834807013 ! Port Impedance438.21137766807 -0.0257042447071209 438.211168332867 -0.0257071086387717 41.4 8.24686084916942E-05 -122.144720694248 0.975939758169643 33.9734161034691 0.975939758169648 33.9734161034688 5.31220426498586E-05 102.726684157583 ! Gamma ! 0.244452321788861 748.195917198756 0.244456457946072 748.196324433298 ! Port Impedance437.841691927835 -0.0260603743722529 437.841484223974 -0.0260632327655911 41.5 8.35313931029497E-05 -109.217969589372 0.976055400025647 20.0282729187858 0.97605540002566 20.0282729187851 6.5533571899972E-05 140.490609028207 ! Gamma ! 0.244540832539419 750.630361866864 0.244544983703794 750.63076794434 ! Port Impedance437.475597941163 -0.0264118843113943 437.475391849123 -0.02641473722972 41.6 8.92307681219467E-05 -100.580487775854 0.976183789287316 6.09378203173145 0.976183789287337 6.09378203173028 8.07875118724232E-05 155.205583300165 ! Gamma ! 0.244631448914861 753.062780247752 0.244635615055748 753.063185177063 ! Port Impedance437.113046376244 -0.0267588551038422 437.112841876829 -0.026761702609332 41.7 9.60319097458848E-05 -95.410664066497 0.976290674028153 -7.82859092482203 0.976290674028183 -7.82859092482368 9.20187905657622E-05 162.098341301974 ! Gamma ! 0.244724144303118 755.493191906579 0.244728325390214 755.493595696523 ! Port Impedance436.7539887893 -0.0271013655465378 436.753785863635 -0.0271042077002703 41.8 0.000102400870186637 -92.451940250487 0.97632070105402 -21.7360708322344 0.976320701054051 -21.7360708322361 9.98061782564653E-05 165.881786719773 ! Gamma ! 0.244818892546303 757.921616141516 0.244823088549644 757.922018800784 ! Port Impedance436.398377604675 -0.0274394927017958 436.398176234197 -0.0274423295637773 41.9 0.000107833627631527 -90.8234021376508 0.976193553041619 -35.6241295946006 0.976193553041643 -35.6241295946019 0.000105131546084691 168.155454252057 ! Gamma ! 0.244915667930832 760.348071988516 0.244919878820786 760.348473525698 ! Port Impedance436.046166095462 -0.0277733119435362 436.045966261914 -0.0277761435727249 42 0.000112253240910959 -89.9951283895271 0.975801338748617 -49.486010581187 0.975801338748618 -49.486010581187 0.000108722446199749 169.592276881524 ! Gamma ! 0.24501444517781 762.772578225985 0.245018670925071 762.772978649569 ! Port Impedance435.697308364648 -0.0281028970020703 435.697110050072 -0.0281057234564002 GradientModel-0.0.2/examples/hfss/WR28-Waveguide_10cm-aluminum-rough-500nm.s2p000066400000000000000000002433331413653641000265150ustar00rootroot00000000000000! Touchstone file exported from HFSS 2019.2.0 ! File: C:/Users/jgarrett/Documents/Ansoft/Waveguide/WR28-Waveguide.aedt ! Generated: 12:10:17 PM Mar 17, 2021 ! Design: 10cm-aluminum-rough-500nm ! Project: WR28-Waveguide ! Setup: Setup1 ! Solution: Sweep ! ! Variables: ! waveguideA = 280mil ! waveguideB = 140mil ! waveguideL = 10cm ! !Data is not renormalized # GHZ S MA ! Modal data exported ! Port[1] = 1:1 ! Port[2] = 2:1 20 6.4057740922554E-05 179.764431876615 1.05957079690481E-06 -2.08246297049601 1.05957079690481E-06 -2.082462970496 9.76928333186516E-05 179.779421586031 ! Gamma ! 137.552352909667 0.363497399342048 137.550357196838 0.363501259613411 ! Port Impedance3.34851369553834 1149.58029157926 3.3486498251317 1149.59702747031 20.1 7.01741891288807E-05 179.657198078517 1.33007784389367E-05 93.9529102144432 1.33007784388743E-05 93.9529102139357 0.000106616941208286 179.78122863757 ! Gamma ! 130.985285315821 0.383078947312798 130.983189208791 0.383083659514352 ! Port Impedance3.87569160269914 1213.24866921031 3.87586588530914 1213.26814428032 20.2 7.81692383936698E-05 179.625570566981 1.67003371648862E-05 75.1176205497409 1.67003371649498E-05 75.1176205492009 0.000117981149120518 179.727408752156 ! Gamma ! 124.035668536856 0.40598516688614 124.03345463001 0.405990986105565 ! Port Impedance4.56155534250008 1287.59633507469 4.5617849605951 1287.61938067957 20.3 8.86919089677803E-05 179.601819754793 1.24633897633424E-05 31.9767683152499 1.24633897633216E-05 31.9767683153493 0.000132661537374909 179.652728174791 ! Gamma ! 116.635146929066 0.433289008203947 116.63279217025 0.433296313147757 ! Port Impedance5.48246012552354 1376.06775448421 5.48277364730853 1376.09560337469 20.4 0.000102829764514331 179.551042199877 1.62593063755556E-05 -39.1933463533088 1.62593063753859E-05 -39.1933463535898 0.000152110609710637 179.567196926703 ! Gamma ! 108.691667211392 0.466622314933343 108.689139954927 0.466631697104328 ! Port Impedance6.76956593082304 1483.90029615615 6.77001407408035 1483.93487109816 20.5 0.000122508089022275 179.454884646108 2.74229457490697E-05 -46.5577733725395 2.7422945749201E-05 -46.5577733727539 0.000178880087152086 179.466593365215 ! Gamma ! 100.076041252573 0.508616520577559 100.073295986355 0.508628966807876 ! Port Impedance8.66600634198068 1619.53712175776 8.66668717501488 1619.5816255159 20.6 0.000151436325983015 179.301468902936 8.22301757320103E-05 -7.59155123865802 8.22301757321095E-05 -7.5915512386546 0.000217845749250359 179.334422528156 ! Gamma ! 90.596751543133 0.563859448891949 90.593718564902 0.563876759403058 ! Port Impedance11.6708890510904 1797.69366076424 11.6720155509036 1797.7539253673 20.7 0.000197742840537705 179.071578507884 0.000343891143298092 -4.25622683358406 0.000343891143298212 -4.25622683358184 0.00027956985928489 179.1335222102 ! Gamma ! 79.9472724734641 0.641278570776014 79.9438349854147 0.641304479730643 ! Port Impedance16.9680821183731 2046.99191416192 16.9702013714612 2047.08001116313 20.8 0.000283231136347562 178.686565070216 0.00118802750662304 -8.20646171953651 0.00118802750662305 -8.20646171954721 0.00039189914364129 178.76472539921 ! Gamma ! 67.5769204251363 0.761417331538262 67.5728532258114 0.761461321905509 ! Port Impedance28.0678545510823 2433.24856781813 28.0728021084693 2433.39507103012 20.9 0.000491579180728648 177.699605932818 0.00560135697006943 -3.36531987428782 0.00560135697007022 -3.36531987428099 0.000658993964078359 177.830682421703 ! Gamma ! 52.2794896793368 0.987789437102694 52.2742325967841 0.987886568615512 ! Port Impedance60.544323202648 3159.62390767915 60.5623124043176 3159.94136659974 21 0.00161753331534158 172.046556095553 0.0494547320433266 -16.4961394858135 0.0494547320433248 -16.4961394858261 0.00203650566080248 172.823137439429 ! Gamma ! 29.8745993500921 1.73488975603216 29.8654246966011 1.73541914694994 ! Port Impedance323.14316621056 5538.92706102392 323.43823181364 5540.60601954566 21.1 0.00102661871353765 -126.22999795294 0.842782856282653 -177.34194139834 0.842782856282649 -177.341941398341 0.000751858769974285 -76.0527238344762 ! Gamma ! 1.67469490400255 31.0613356665264 1.67421599638383 31.0701624197853 ! Port Impedance5355.31425329021 287.302877842056 5353.81076467279 287.057645735024 21.2 0.000913970170598565 -43.6881640698182 0.906278640603408 55.9116587144657 0.906278640603409 55.9116587144657 0.000993035893044691 -12.0292552487256 ! Gamma ! 0.982577248059565 53.1342410139539 0.98247989775518 53.1394156200124 ! Port Impedance3153.49189293961 57.4748308767237 3153.18538904292 57.4577601781189 21.3 0.000340384048544709 102.452135826694 0.926291146340228 -32.1909064556538 0.926291146340229 -32.1909064556538 0.000384851038548874 8.85937642480734 ! Gamma ! 0.764986129324489 68.4977646341826 0.764940121348955 68.5017802528867 ! Port Impedance2458.25370515787 26.7994243225727 2458.10979420048 26.7945719728442 21.4 0.000429970991344189 11.9684716266386 0.937139498809506 -104.172135498448 0.937139498809506 -104.172135498448 0.000430213189504227 -38.355630380096 ! Gamma ! 0.648859797745639 81.0533917153678 0.648831752669537 81.0567861042096 ! Port Impedance2087.33295457609 16.1547305585977 2087.24566946737 16.1526134041325 21.5 0.000155822041590651 -12.587076358231 0.944198534004049 -166.675243725202 0.944198534004051 -166.675243725202 0.000139606452919849 -136.697081884558 ! Gamma ! 0.574022623484022 91.9577609214501 0.574003272660031 91.9607534017962 ! Port Impedance1848.45810852339 11.0475143186258 1848.3980586794 11.0463735629355 21.6 0.000220594499888948 13.6280526355662 0.949212837382759 137.240300764447 0.94921283738276 137.240300764447 0.000191078247904108 64.2372765943733 ! Gamma ! 0.520728532658867 101.742993382739 0.520714169291705 101.7456985626 ! Port Impedance1678.47117058369 8.1451744441284 1678.4266313571 8.14447713795009 21.7 0.00021463318445081 -12.7383373135402 0.953070561992309 85.8714893829662 0.953070561992309 85.8714893829662 0.000206500149809621 7.00140965019996 ! Gamma ! 0.480336494122497 110.706177570278 0.480325310588675 110.708664177642 ! Port Impedance1549.72744884194 6.31325194984674 1549.69271963343 6.31278829949229 21.8 0.000199989631662153 -54.385428514216 0.956207001124234 38.1441885767759 0.956207001124233 38.1441885767759 0.000281406606284734 -92.3746413786702 ! Gamma ! 0.448388148875958 119.033128918603 0.448379144876154 119.035441986756 ! Port Impedance1447.96389146724 5.07097467727817 1447.93582784142 5.07064725670977 21.9 0.00144277266344233 143.14809037428 0.958674218448111 -6.65263620384744 0.958674218448112 -6.65263620384738 0.000461780169276191 104.05489461038 ! Gamma ! 0.422320060438409 126.849189900039 0.422312631409134 126.851360826911 ! Port Impedance1364.98066043638 4.18340622102065 1364.95736841252 4.18316429106968 22 0.000448718936276688 15.5432910351386 0.960713866170543 -49.0210678900326 0.960713866170543 -49.0210678900326 0.000395087745764367 54.6521275074999 ! Gamma ! 0.400540107695158 134.243618587849 0.400533863613548 134.24567029603 ! Port Impedance1295.68585357478 3.52356426939456 1295.66611570491 3.52337907616203 22.1 0.000394207953182553 -14.7950579194167 0.962530166190888 -89.3508820289093 0.962530166190888 -89.3508820289094 0.000403463416699351 21.1748677488302 ! Gamma ! 0.382000459636996 141.2826275971 0.381995135949343 141.28457742703 ! Port Impedance1236.7290303646 3.01744009836072 1236.7120238691 3.01729425366935 22.2 0.000357794896889364 -50.4091870445836 0.964076618050408 -127.94150263402 0.964076618050406 -127.94150263402 0.000359999119642104 -20.1856585064143 ! Gamma ! 0.365979623588841 148.016928963564 0.36597503351623 148.018790409291 ! Port Impedance1185.80376489764 2.61929373096829 1185.78891113562 2.61917616350512 22.3 0.00022679674201345 -85.6171301448799 0.965371699072848 -165.015144988256 0.965371699072847 -165.015144988256 0.000223799479368492 -63.7550890084006 ! Gamma ! 0.35196245881524 154.486373855422 0.351958466127725 154.48815766275 ! Port Impedance1141.26370344187 2.29949612781639 1141.25058205737 2.29939948627842 22.4 0.000106205116811009 -97.6669429877907 0.966601536441305 159.249108333182 0.966601536441307 159.249108333182 9.81720300866975E-05 -116.529725406956 ! Gamma ! 0.339570040098285 160.722947209735 0.3395665427093 160.724662101518 ! Port Impedance1101.89815114879 2.03810056215613 1101.8864484378 2.03801979239184 22.5 6.56743986088715E-05 -61.8028558091624 0.967759139052304 124.696788654944 0.967759139052305 124.696788654944 6.80465647022276E-05 123.458979618089 ! Gamma ! 0.328516611440774 166.752778367251 0.328513531080867 166.754431539746 ! Port Impedance1066.79435006131 1.82123942894105 1066.78382653106 1.82117095255907 22.6 0.000124305907134211 -57.104296363836 0.96858387759158 91.2081509391933 0.96858387759158 91.2081509391933 0.000112801729990093 55.8997354835037 ! Gamma ! 0.318582074518986 172.597536083308 0.318579349996099 172.599133556141 ! Port Impedance1035.24946766041 1.6390047577573 1035.2399368846 1.63894597677322 22.7 0.000129546338631402 -95.1270601239536 0.969270498416086 58.6838352322246 0.969270498416086 58.6838352322247 0.000116441303776493 25.1199551046512 ! Gamma ! 0.309593794030398 178.275423647623 0.30959137668649 178.276970516903 ! Port Impedance1006.71239726639 1.48414966321473 1006.70371166526 1.48409864999516 22.8 8.68384275357238E-05 -131.784097243419 0.970284723909217 27.0215968077995 0.970284723909215 27.0215968077995 9.75973881037108E-05 13.3750536771255 ! Gamma ! 0.301414207337773 183.80190583241 0.301412057899581 183.803406457861 ! Port Impedance980.744129341815 1.35126456915266 980.736170357625 1.35121986602124 22.9 6.47182262314687E-05 136.285731262198 0.971026812028937 -3.86562851581402 0.971026812028936 -3.8656285158141 7.51361427078036E-05 34.5168295754416 ! Gamma ! 0.293932170074933 189.190251001778 0.293930256431238 189.191709147767 ! Port Impedance956.990075216535 1.2362386334072 956.98274636429 1.23619911946498 23 0.000123014221360348 59.6397551419727 0.971706279838737 -34.0229603786829 0.971706279838738 -34.022960378683 0.000128748518653026 48.220046448529 ! Gamma ! 0.28705677570569 194.451942745109 0.287055071293154 194.45336168873 ! Port Impedance935.160304861877 1.13589823440741 935.153526711215 1.13586303480689 23.1 0.000181912181234066 19.6031025586899 0.972315329071554 -63.4975678856063 0.972315329071555 -63.4975678856063 0.000184617933070546 32.1287303185741 ! Gamma ! 0.280712854573981 199.596997459687 0.280711337189197 199.598380074849 ! Port Impedance915.01515683911 1.04775860520074 915.008863323544 1.04772702799526 23.2 0.000217217555059209 -10.1062389795675 0.972876533123685 -92.3525588114228 0.972876533123684 -92.3525588114229 0.000216042512609879 10.6099341373778 ! Gamma ! 0.274837638517976 204.634212870477 0.274836289427053 204.635561694207 ! Port Impedance896.354576142231 0.969849642108129 896.348711799885 0.969821133426851 23.3 0.000224688084528041 -37.893819580882 0.973407194444277 -120.640922360421 0.973407194444276 -120.640922360421 0.000217959764003763 -15.1726287207319 ! Gamma ! 0.269378250411361 209.571364990821 0.269377053673322 209.572682276165 ! Port Impedance879.010090187325 0.900591457864254 879.004608067508 0.900565569534551 23.4 0.000185568370926256 -65.9850747550122 0.973910960988205 -148.401410985072 0.973910960988205 -148.401410985072 0.000178880124811312 -46.3385148448235 ! Gamma ! 0.264289787915192 214.415366016323 0.264288729860813 214.416653775023 ! Port Impedance862.838684909741 0.838703982751711 862.83354496345 0.838680348542856 23.5 0.000101771907369904 -80.595859235771 0.974383680310864 -175.663960953652 0.974383680310865 -175.663960953652 0.000105639193779593 -86.5024959969533 ! Gamma ! 0.259533842103028 219.172392218499 0.259532910928377 219.173652255755 ! Port Impedance847.718071306341 0.783140302718994 847.713239133817 0.783118620661924 23.6 7.17605709687006E-05 -39.9392479430162 0.974821734906215 157.544066753097 0.974821734906217 157.544066753097 5.23517165247972E-05 -174.302358579678 ! Gamma ! 0.255077338965272 223.847988519092 0.255076524411163 223.849222462139 ! Port Impedance833.542984224214 0.733036824261977 833.538430089557 0.733016843316073 23.7 0.000127705331539354 -29.0528805554184 0.975226516582456 131.194730829942 0.975226516582458 131.194730829942 0.000108687975624243 105.224587550773 ! Gamma ! 0.250891623807252 228.447154736437 0.25089091690392 228.448364058226 ! Port Impedance820.222257594896 0.687675550049197 820.21795564296 0.687657059925192 23.8 0.000185678636652132 -42.2077319005399 0.975603992631583 105.259669452958 0.975603992631585 105.259669452958 0.000187457093497975 71.1739181215761 ! Gamma ! 0.24695173057712 232.974417280199 0.246951123438981 232.975603319175 ! Port Impedance807.676490756479 0.646455192951586 807.672418384723 0.646438016259684 23.9 0.000236573956739517 -61.8343319014788 0.97596144088033 79.7119899962325 0.975961440880329 79.7119899962325 0.000254333064895765 44.5327958074449 ! Gamma ! 0.24323579355342 237.433889184727 0.243235279212672 237.435053161455 ! Port Impedance795.836169744682 0.608868823141181 795.832307095002 0.60885280927192 24 0.000276458799605361 -86.713011683225 0.976304117478931 54.5280959383065 0.97630411747893 54.5280959383064 0.000292890618759633 19.9737582244519 ! Gamma ! 0.239724569741289 241.829320716658 0.239724142011939 241.830463747903 ! Port Impedance784.640142357525 0.574486401331738 784.636471901888 0.574471421641814 24.1 0.00029074060979164 -117.231113334073 0.976633695490099 29.6883662943514 0.976633695490097 29.6883662943513 0.000295250399045598 -2.0392389742099 ! Gamma ! 0.236401048176466 246.164142303144 0.236400701542387 246.16526541385 ! Port Impedance774.034370904004 0.542941006345647 774.030877104087 0.542926950337153 24.2 0.000264988628769611 -151.921038644313 0.976948854576787 5.1765325877769 0.976948854576787 5.17653258777692 0.000270255727103886 -20.2571223265462 ! Gamma ! 0.233250128050499 250.44150115724 0.233249857572635 250.442605290795 ! Port Impedance763.97090482089 0.513917884194099 763.967573846588 0.513904656457549 24.3 0.000211435004625602 171.69763730876 0.977247232559518 -19.0217172745026 0.977247232559518 -19.0217172745026 0.000232900974325889 -34.267252500078 ! Gamma ! 0.230258351778404 254.664292694755 0.230258153017331 254.665378721814 ! Port Impedance754.407028796709 0.487145672361429 754.40384829185 0.487133190111372 24.4 0.000158048074255271 133.187408560095 0.977527472412258 -42.9201346629455 0.97752747241226 -42.9201346629455 0.000193575364232028 -44.0455328669114 ! Gamma ! 0.227413682261773 258.835187619232 0.227413551212624 258.836256345363 ! Port Impedance745.304552055562 0.462389315751806 745.301510941743 0.462377506826109 24.5 0.000122500500333375 89.6455388112248 0.977790324949444 -66.5326960463291 0.977790324949446 -66.5326960463291 0.000158512621475813 -49.1078551882973 ! Gamma ! 0.224705315954692 262.956655382673 0.224705248991661 262.957707554984 ! Port Impedance736.629211980507 0.439444309037022 736.626300291932 0.439433110261812 24.6 0.000110483272217154 42.0360811327572 0.978038427259639 -89.873568410785 0.978038427259641 -89.873568410785 0.00013402768980295 -48.9384952037272 ! Gamma ! 0.222123525126255 267.030984596954 0.222123518948185 267.032020909891 ! Port Impedance728.350170967239 0.418131986998917 728.347379710935 0.418121342844039 24.7 0.000115365642678682 -3.03313377427903 0.978275088763272 -112.956460621834 0.978275088763272 -112.956460621834 0.000125433477281344 -46.5866242078116 ! Gamma ! 0.219659524080904 271.060300866215 0.219659575714589 271.061321966632 ! Port Impedance720.439589769949 0.398295648864931 720.436910806864 0.398285510331839 24.8 0.000122516247667811 -42.9436861882666 0.978502863039932 -135.793828248375 0.978502863039931 -135.793828248375 0.000126596508881279 -48.6813510389531 ! Gamma ! 0.217305355153082 275.046582427145 0.217305461848571 275.047588918742 ! Port Impedance712.872263974224 0.379797350832715 712.869689917628 0.379787674529618 24.9 0.000120091750436475 -79.2440567587347 0.978722712357306 -158.396420776441 0.978722712357305 -158.396420776441 0.000122773560732382 -56.4703452824911 ! Gamma ! 0.215053791113436 278.991673917358 0.21505395036199 278.992666364651 ! Port Impedance705.625312854897 0.362515237362659 705.622836983192 0.362505984730275 25 0.000104080779062087 -113.567713128557 0.978934209441967 179.226546726716 0.978934209441966 179.226546726716 0.000106749363048324 -66.4996200202102 ! Gamma ! 0.212898251265979 282.897298538239 0.212898460765661 282.898277470026 ! Port Impedance698.677911931347 0.346341309508192 698.67552811289 0.346332446171202 25.1 7.7115700248638E-05 -148.317895044522 0.979136630193055 157.066664500674 0.979136630193054 157.066664500674 7.99613637580858E-05 -74.951188271735 ! Gamma ! 0.210832729026931 286.765068834989 0.210832986658037 286.766034747452 ! Port Impedance692.011062153074 0.33117954974012 692.008764781176 0.331171044958574 25.2 4.48399080426276E-05 168.445525090909 0.979330207697668 135.115472383313 0.979330207697668 135.115472383313 4.7994520303973E-05 -73.7849972909002 ! Gamma ! 0.208851729166289 290.59649628103 0.208852032974104 290.597449640492 ! Port Impedance685.607389934731 0.316944339236401 685.605173871184 0.316936165440551 25.3 2.50520823864749E-05 78.9722764307799 0.979516475992862 113.364156787233 0.979516475992863 113.364156787233 2.96016356793345E-05 -33.0737321135172 ! Gamma ! 0.206950213235645 294.392999824705 0.2069505614128 294.393941070094 ! Port Impedance679.450973287001 0.303559116196851 679.448833812856 0.303551248591142 25.4 4.74160896860307E-05 -2.30092039704895 0.979696689159614 91.8045160779705 0.979696689159615 91.8045160779705 4.97055870109661E-05 0.910543508279481 ! Gamma ! 0.205123551941444 298.15591353216 0.205123942813435 298.156843077225 ! Port Impedance673.52719011496 0.290955233865774 673.525122887495 0.290947650090567 25.5 7.44576531763358E-05 -41.693752734465 0.979867797212706 70.4316938710806 0.979867797212706 70.4316938710806 7.62559224496308E-05 0.661632255691359 ! Gamma ! 0.203367483447139 301.886493440379 0.20336791545947 301.887411675668 ! Port Impedance667.822585422176 0.279070984739225 667.820586437138 0.279063664580465 25.6 8.58270203898462E-05 -65.6153988948196 0.979965941957696 49.2684028039669 0.979965941957696 49.268402803967 8.64713731158252E-05 -4.26821965554027 ! Gamma ! 0.201678076750507 305.585923717711 0.201678548457346 305.586831012367 ! Port Impedance662.324754700036 0.267850763683933 662.322820258414 0.26784368882125 25.7 9.43717385681594E-05 -97.452398132509 0.9801439702711 28.2362228951449 0.980143970271101 28.236222895145 9.53390343926527E-05 -10.890238873576 ! Gamma ! 0.200051699422381 309.255322215425 0.200052209476657 309.256218918795 ! Port Impedance657.022241223503 0.25724434764211 657.020367902215 0.25723750143782 25.8 9.45375490483854E-05 -139.088709382611 0.980333843744172 7.36276800977799 0.980333843744173 7.36276800977803 9.81961459832487E-05 -19.1094692218902 ! Gamma ! 0.198484989106504 312.895745482139 0.198485536250829 312.896631925237 ! Port Impedance651.904445336688 0.247206273611461 651.902629962629 0.247199640918987 25.9 8.79301053051395E-05 170.465655983663 0.98050540730799 -13.3439958612975 0.98050540730799 -13.3439958612976 8.79097315400833E-05 -24.1521867937082 ! Gamma ! 0.196974828272618 316.508193303206 0.19697541133139 316.509069800035 ! Port Impedance646.961544109909 0.237695299730387 646.959783736927 0.237688866731554 26 8.8761479337177E-05 117.041788036957 0.98065321847207 -33.8875153950078 0.98065321847207 -33.8875153950078 7.97145729225569E-05 -12.4914801896049 ! Gamma ! 0.195518321793545 320.093612818813 0.195518939665891 320.094479667576 ! Port Impedance642.184419996713 0.228673936939029 642.182711885122 0.228667691001744 26.1 0.000105791819942384 70.45363397777 0.980783998580945 -54.2761451195094 0.980783998580945 -54.2761451195094 0.000103841159258802 -1.32607342326288 ! Gamma ! 0.194112776980401 323.652902267537 0.194113428633862 323.653759751729 ! Port Impedance637.564597324306 0.220108040766189 637.562938922624 0.220101970319167 26.2 0.000135884365784542 33.4753387965994 0.980907279286977 -74.5188650377911 0.980907279286977 -74.5188650377911 0.000140589846328478 -4.07393826208022 ! Gamma ! 0.192755685763845 327.186914396084 0.192756370228708 327.187762785491 ! Port Impedance633.094185621812 0.211966454510233 633.092574550431 0.21196054893606 26.3 0.000173826545448591 2.43226494850101 0.981030000105158 -94.6230806978861 0.981030000105158 -94.6230806978861 0.000177653662724921 -12.3476660074052 ! Gamma ! 0.191444708754076 330.696459570801 0.191445425118278 330.697299122421 ! Port Impedance628.765828933893 0.204220696501825 628.764262970447 0.204214946042389 26.4 0.000213690388425968 -25.8714329097689 0.98115461982004 -114.594021996275 0.98115461982004 -114.594021996275 0.000213870590870052 -23.2745562301132 ! Gamma ! 0.190177660949996 334.182308622194 0.190178408354537 334.183139581067 ! Port Impedance624.572660387491 0.196844685287405 624.571137453725 0.196839080956183 26.5 0.000247446994816617 -52.5433179206515 0.981279698135608 -134.435140572119 0.981279698135608 -134.435140572119 0.000247819263480184 -36.5231615074547 ! Gamma ! 0.188952498899709 337.645195449841 0.188953276534506 337.646018049823 ! Port Impedance620.50826138088 0.189814497518658 620.506779530832 0.189809031026077 26.6 0.000268628440598313 -77.138097586359 0.981401742902748 -154.148943860771 0.981401742902748 -154.148943860771 0.00027531045739962 -52.1950282778468 ! Gamma ! 0.187767309141388 341.08581941189 0.187768116241545 341.086633876355 ! Port Impedance616.566624849948 0.183108154149815 616.565182259297 0.183102817837289 26.7 0.000277202624755765 -98.8712538448535 0.98151726359617 -173.73783334699 0.981517263596171 -173.73783334699 0.00029008637163529 -70.1430895076413 ! Gamma ! 0.186620297776399 344.50484752045 0.186621133621103 344.505654062927 ! Port Impedance612.742122139447 0.176705431192407 612.740717095888 0.176700217973452 26.8 0.000278064520176772 -117.521443626678 0.98162429732393 166.795317392071 0.981624297323931 166.795317392071 0.000287704191423184 -89.8210193181306 ! Gamma ! 0.185509781045944 347.902916461779 0.185510644946085 347.903715286603 ! Port Impedance609.029473068905 0.170587691831326 609.028103963448 0.170582595139069 26.9 0.000276317790504518 -133.442638996329 0.981723061384478 147.446945013533 0.98172306138448 147.446945013533 0.000269858381314169 -110.682252057649 ! Gamma ! 0.184434176799111 351.280634458007 0.184435068108481 351.281425760797 ! Port Impedance605.42371883584 0.164737737169913 605.422384154909 0.164732750910246 27 0.000275205586224864 -147.206487901653 0.981815735725117 128.212908771448 0.981815735725118 128.212908771448 0.000243942594070461 -132.812596165023 ! Gamma ! 0.183391996754403 354.638582985305 0.183392914857843 354.639366953519 ! Port Impedance601.92019744419 0.15913967326095 601.91889576246 0.159134791770689 27.1 0.000276394348226756 -159.366293979957 0.981905623055281 109.088821309803 0.981905623055282 109.088821309803 0.000219256779553695 -157.10583360861 ! Gamma ! 0.18238183946904 357.977318361749 0.182382783782417 357.97809517515 ! Port Impedance598.514521384838 0.153778792408696 598.513251358712 0.153774010418482 27.2 0.000280723846917052 -170.387104855995 0.981996048924723 90.0704558565926 0.981996048924724 90.0704558565927 0.000205067838649735 175.45956208354 ! Gamma ! 0.181402383940805 361.297373216751 0.181403353908907 361.298143047841 ! Port Impedance595.202557328585 0.148641467004914 595.201317690241 0.148636779622522 27.3 0.00028873758507085 179.344502900532 0.982089359589048 71.1540995544039 0.982089359589049 71.154099554404 0.000210062916091797 145.411769910294 ! Gamma ! 0.180452383776314 364.599257852621 0.180453378870912 364.600020867049 ! Port Impedance591.980407620856 0.143715054397463 591.97919717291 0.143710457006053 27.4 0.000300984945131458 169.484780268835 0.982186284552831 52.3367624301198 0.982186284552833 52.3367624301199 0.000239415669677878 115.238986905818 ! Gamma ! 0.179530661867409 367.883461507791 0.179531681585466 367.884217864728 ! Port Impedance588.84439339248 0.138987811490565 588.843211002864 0.138983299825276 27.5 0.000318198490519982 159.687485710258 0.982285793919837 33.6162038010013 0.982285793919838 33.6162038010014 0.000290949298365295 86.8091466824393 ! Gamma ! 0.178636105524198 371.150453530187 0.178637149386218 371.151203382681 ! Port Impedance585.791039122567 0.134448817946886 585.789883720142 0.134444388008379 27.6 0.000341399554161308 149.545133210766 0.982385437240013 14.9907889092731 0.982385437240013 14.9907889092731 0.000353291876141115 60.0082103800584 ! Gamma ! 0.177767662019172 374.400684468447 0.177768729567672 374.401427963748 ! Port Impedance582.817058508415 0.130087907007915 582.815929078763 0.130083555050011 27.7 0.00037186505145405 138.500376929381 0.982482032597295 -3.54077216844213 0.982482032597296 -3.54077216844213 0.00040590273687872 34.5408693282508 ! Gamma ! 0.17692433450199 377.634587087869 0.176925425300116 377.635324367732 ! Port Impedance579.91934151383 0.12589560307456 579.918237095444 0.125891325585894 27.8 0.000410526717535089 125.700794118643 0.982572503958571 -21.9797299243503 0.982572503958571 -21.9797299243503 0.00042942859729143 11.3452826438825 ! Gamma ! 0.176105178249088 380.852577317329 0.176106291879343 380.853308518303 ! Port Impedance577.094942481612 0.121863065297732 577.093862162394 0.121858858983629 27.9 0.000455130129957865 109.794998375829 0.982654650275159 -40.3275698349035 0.982654650275159 -40.3275698349035 0.000422024269327993 -8.21542763892549 ! Gamma ! 0.175309297216164 384.055055132801 0.175310433279244 384.055780386487 ! Port Impedance574.34106920855 0.117982036521619 574.340012122582 0.117977898287533 28 0.000490668443219341 88.9496169683725 0.982727667223534 -58.5861955215485 0.982727667223534 -58.5861955215485 0.000396173522356797 -23.7015209653903 ! Gamma ! 0.174535840865076 387.242405382565 0.174536998978786 387.243124815874 ! Port Impedance571.65507289229 0.114244797002603 571.654038216868 0.114240723939029 28.1 0.000475702677100106 62.4332502563451 0.982792316557912 -76.7579867413484 0.982792316557913 -76.7579867413485 0.000363915464709212 -35.5920971808143 ! Gamma ! 0.17378400123971 390.414998558741 0.17378518103796 390.415712294119 ! Port Impedance569.034438869152 0.110644122396214 569.033425822043 0.110640111764947 28.2 0.000378695210229054 34.2144686770232 0.982850727498779 -94.845728899076 0.982850727498779 -94.845728899076 0.000331452914179729 -44.6308699869301 ! Gamma ! 0.173053010268074 393.57319151933 0.173054211399944 393.57389967498 ! Port Impedance566.476778070504 0.107173245564802 566.475785907416 0.107169294786394 28.3 0.000245574825864464 10.4926640203083 0.982905897884728 -112.852438784657 0.982905897884729 -112.852438784657 0.000300826364561964 -51.4347777872888 ! Gamma ! 0.172342137270223 396.717328164575 0.172343359399095 396.71803085466 ! Port Impedance563.979819132824 0.103825821810932 563.978847145067 0.10382192845324 28.4 0.00012870799576721 -6.88762099004167 0.982961023167061 -130.781131343601 0.982961023167061 -130.781131343601 0.000272095228020378 -56.3725754099866 ! Gamma ! 0.171650686653727 399.847740071126 0.171651929456475 399.848437405961 ! Port Impedance561.541401103258 0.100595897187164 561.540448615577 0.100592058954875 28.5 3.7022836820423E-05 -15.6124863872983 0.983018809226736 -148.63458143727 0.983018809226737 -148.63458143727 0.000244499402056336 -59.4976861038817 ! Gamma ! 0.170977995780235 402.964747087154 0.170979258946478 402.965439173388 ! Port Impedance559.15946668836 0.0974778795726608 559.158533056929 0.097474094297698 28.6 3.84131238041251E-05 136.310937180837 0.983080918503811 -166.415132106397 0.983080918503812 -166.415132106397 0.000217034412510959 -60.3402315844774 ! Gamma ! 0.170323432988332 406.068657891326 0.17032471621973 406.069344832108 ! Port Impedance556.832055998919 0.0944665122418917 556.831140609483 0.0944627778746142 28.7 0.00010396075581008 130.039053742373 0.983147662482167 175.875411696775 0.983147662482168 175.875411696775 0.000189529505699156 -57.1795418971514 ! Gamma ! 0.169686395759343 409.159770518254 0.169687698768951 409.160452413395 ! Port Impedance554.557300748455 0.0915568496811717 554.556403014596 0.0915531642822999 28.8 0.000167185667375966 120.071901267344 0.983217996290876 158.23578448977 0.983217996290877 158.23578448977 0.000169383490080515 -45.0865853139708 ! Gamma ! 0.169066309014034 412.238372852853 0.169067631525692 412.239049798977 ! Port Impedance552.333418867051 0.0887442354355681 552.332538228586 0.0887405971687589 28.9 0.000233110848530598 108.829295118827 0.983289805175317 140.665159779179 0.983289805175318 140.665159779179 0.00020813773388626 -21.895333292138 ! Gamma ! 0.168462623529317 415.304743095814 0.168463965277086 415.305415186499 ! Port Impedance550.158709495901 0.0860242817922001 550.157845417389 0.0860206889172153 29 0.000305894601211206 95.7260497892152 0.983360411118553 123.162971666576 0.983360411118553 123.162971666576 0.00040745205356387 -25.3018677410029 ! Gamma ! 0.167874814465109 418.35915020222 0.16787617519274 418.35981752813 ! Port Impedance548.031548331241 0.0833928511267025 548.030700300587 0.0833893019931149 29.1 0.000386908384064516 79.5604438191215 0.98342718320943 105.72869790645 0.98342718320943 105.72869790645 0.000481217318325939 -59.5759634072962 ! Gamma ! 0.167302379992386 421.401854295164 0.167303759452831 421.402516944178 ! Port Impedance545.950383289235 0.0808460387578883 545.949550816399 0.0808425317992765 29.2 0.000466913597995252 58.7378577681078 0.983488116327482 88.3616508317033 0.983488116327482 88.3616508317032 0.00039553028354813 -76.6273714468471 ! Gamma ! 0.166744840014346 424.433107056094 0.166746237969292 424.433765113424 ! Port Impedance543.913730466063 0.078380157171797 543.912913081845 0.0783766909003878 29.3 0.000511368213261194 32.3878010180605 0.983542252842148 71.060820044407 0.983542252842148 71.0608200444069 0.000335106737976805 -83.259655546053 ! Gamma ! 0.166201734973296 427.453152093446 0.166203151192733 427.453805641749 ! Port Impedance541.920170369771 0.0759917214906174 541.919367624686 0.0759882944923322 29.4 0.000476131696606184 2.83803219221972 0.983589858586946 53.8247993494665 0.983589858586946 53.8247993494664 0.000296377403993047 -86.4520274978332 ! Gamma ! 0.165672624736549 430.462225291029 0.165674058998369 430.462874410514 ! Port Impedance539.968344402592 0.0736774360746289 539.967555865811 0.0736740470045011 29.5 0.000375335180243917 -25.5707831863306 0.983632319162441 36.6518124411507 0.983632319162441 36.6518124411506 0.000268721870423421 -88.1413665664744 ! Gamma ! 0.165157087555251 433.46055513749 0.165158539644865 433.461199906019 ! Port Impedance538.05695157433 0.071434182156575 538.056176832696 0.0714308297344899 29.6 0.000262006300959225 -52.2515094940514 0.983671784012707 19.5398308681577 0.983671784012707 19.5398308681577 0.000246872009231229 -88.8348693450539 ! Gamma ! 0.16465471909054 436.4483630381 0.164656188800523 436.449003531287 ! Port Impedance536.184745429122 0.0692590064180257 536.183984086224 0.0692556894245762 29.7 0.00016510026743726 -82.3958937933098 0.983710641268199 2.48675782609587 0.983710641268197 2.4867578260958 0.000228258400107927 -88.4960756778926 ! Gamma ! 0.164165131501962 439.425863610007 0.164166618631721 439.426499901303 ! Port Impedance534.35053116942 0.0671491104269429 534.349782844728 0.067145827698274 29.8 0.000102131501841926 -129.99337291854 0.983750945127611 -14.5093638087611 0.983750945127609 -14.5093638087611 0.000211965670039647 -86.6730440242363 ! Gamma ! 0.16368795259351 442.393264961999 0.163689456948966 442.39389712278 ! Port Impedance532.553162962449 0.0651018408521504 532.5524272905 0.0650985912831986 29.9 0.000108487365255616 165.80659220961 0.983793931711409 -31.4501680019965 0.983793931711408 -31.4501680019964 0.000199374714999891 -82.4130316332344 ! Gamma ! 0.16322282501301 445.350768959759 0.1632243464063 445.351397059412 ! Port Impedance530.791541415631 0.0631146804201383 530.790818045275 0.0631114629535562 30 0.000167805591864989 125.046970916947 0.983839744945088 -48.3368528124818 0.983839744945088 -48.3368528124817 0.000197433616605255 -74.6706319996966 ! Gamma ! 0.162769405500981 448.29857147753 0.162770943750181 448.299195583524 ! Port Impedance529.064611208639 0.0611852395059309 529.063899802319 0.0611820531319039 30.1 0.000240082578102516 98.6144319644136 0.983887451651271 -65.1701716369723 0.983887451651271 -65.1701716369723 0.000223353819297598 -65.5416059164853 ! Gamma ! 0.162327364185388 451.236862637005 0.162328919114245 451.23748281497 ! Port Impedance527.371358870717 0.0593112483414171 527.370659103797 0.0593080920954995 30.2 0.000310042375876294 76.3579440509627 0.983935359972581 -81.9505397225132 0.98393535997258 -81.9505397225132 0.000290984253290059 -63.5999082865312 ! Gamma ! 0.161896383919021 454.165827034241 0.161897955356698 454.166443348034 ! Port Impedance525.710810692898 0.0574905497772604 525.710122253035 0.0574874227376332 30.3 0.000367219906030951 55.19128246281 0.983981577599958 -98.6782390187984 0.983981577599958 -98.6782390187984 0.000368813361876722 -72.9565068648954 ! Gamma ! 0.161476159656479 457.08564395531 0.161477747437316 457.086256467084 ! Port Impedance524.08203076556 0.0557210925538454 524.081353352106 0.0557179938388992 30.4 0.000402626951094594 34.3846367127609 0.984024669956317 -115.353674318074 0.984024669956316 -115.353674318074 0.000407648960156237 -86.7203044261498 ! Gamma ! 0.161066397868004 459.996487581364 0.161068001831286 459.997096351632 ! Port Impedance522.484119132547 0.0540009250413468 522.483452455995 0.0539978538074535 30.5 0.000412184249938049 13.9439323583549 0.984064219046593 -131.977606736272 0.984064219046593 -131.977606736272 0.000411005541720522 -99.4261807983687 ! Gamma ! 0.160666815987609 462.898527183738 0.160668435977348 462.899132271432 ! Port Impedance520.916210053779 0.0523281894115542 520.91555383523 0.0523251448509943 30.6 0.000397880168638891 -6.17603373919048 0.984101055293186 -148.551272140437 0.984101055293186 -148.551272140437 0.000397446163453289 -111.031185098632 ! Gamma ! 0.160277141893163 465.791927309671 0.160278777757891 465.7925287722 ! Port Impedance519.377470368904 0.0507011162074914 519.376824339575 0.0506980975465171 30.7 0.000364650034353593 -26.4444961321516 0.98413694725644 -165.076286582672 0.98413694725644 -165.076286582672 0.000369374887394572 -122.641449871885 ! Gamma ! 0.15989711341624 468.676847959193 0.159898765008731 468.677445852499 ! Port Impedance517.867097955151 0.0491180192798639 517.866461855905 0.0491150257768858 30.8 0.000316930634075795 -47.8466535061291 0.984173592029908 178.445748704755 0.984173592029908 178.445748704755 0.000321750688290978 -133.907457594491 ! Gamma ! 0.159526477879649 471.553444753682 0.159528145057191 471.554039132288 ! Port Impedance516.384320273042 0.0475772910620775 516.383693853947 0.0475743220059657 30.9 0.000258184782502473 -71.9777053303607 0.98421085158113 162.014002032107 0.98421085158113 162.014002032107 0.000259522803615929 -142.314299905364 ! Gamma ! 0.159164991660697 474.421869096555 0.159166674285067 474.422460013622 ! Port Impedance514.92839299413 0.0460773981580096 514.927776014039 0.0460744528665056 31 0.000193965306991674 -101.547517489652 0.984244322875721 145.629538960321 0.984244322875721 145.629538960321 0.000200910692388996 -145.02843958155 ! Gamma ! 0.158812419782136 477.282268326554 0.158814117717058 477.282855833925 ! Port Impedance513.498598705365 0.0446168772189205 513.497990931524 0.0446139550371687 31.1 0.000159954252036875 -136.369273621663 0.984497351263835 129.303141463841 0.984497351263814 129.303141463839 0.000213714703766974 -138.000448614858 ! Gamma ! 0.15846853551638 480.134785864018 0.158470248632283 480.135370012265 ! Port Impedance512.094245685085 0.0431943310877963 512.093646892759 0.0431914313870121 31.2 0.000154351611543951 176.532667278052 0.984576467550034 113.009969192674 0.984576467550005 113.009969192671 0.000234861849852131 -133.240865362657 ! Gamma ! 0.158133120023437 482.979561350535 0.158134848191405 482.980142189 ! Port Impedance510.714666746029 0.0418084251918286 510.714076718146 0.0418055473677576 31.3 0.000194876951930618 132.044519658515 0.984568379118786 96.7553598072942 0.984568379118759 96.7553598072922 0.000263900957029857 -131.208967370846 ! Gamma ! 0.157805961999525 485.81673078234 0.1578077050948 485.817308359177 ! Port Impedance509.359218141065 0.0404578841637593 509.358636667887 0.0404550276356242 31.4 0.000262074629567654 99.36270692619 0.984528854199724 80.5421382557628 0.984528854199704 80.5421382557613 0.000300390323714248 -132.099659500437 ! Gamma ! 0.157486857347893 488.646426637789 0.157488615249363 488.647001000005 ! Port Impedance508.027278527683 0.0391414886766815 508.026705406485 0.0391386528860158 31.5 0.00033275791829502 74.7099620779154 0.984489758683749 64.3714053283359 0.984489758683738 64.3714053283351 0.00034393857419317 -136.00906990925 ! Gamma ! 0.157175608866508 491.468777999222 0.157177381456342 491.469349192718 ! Port Impedance506.718247987563 0.0378580724762597 506.717683022337 0.0378552568858116 31.6 0.000395524018960807 54.6574344389344 0.984465945030519 48.2431680558557 0.984465945030514 48.2431680558553 0.000393807011326817 -143.047478243295 ! Gamma ! 0.156872025952102 494.283910669534 0.15687381311552 494.284478739136 ! Port Impedance505.431547097797 0.0366065195964669 505.430990098963 0.0366037236891701 31.7 0.000446604587043432 37.4781766103143 0.984461282801437 32.1568119483959 0.984461282801437 32.1568119483959 0.000447965902688705 -153.355406840502 ! Gamma ! 0.156575924319581 497.091947283694 0.156577725944709 497.092512273193 ! Port Impedance504.166616050591 0.0353857617458887 504.166066834731 0.0353829850238931 31.8 0.000485798775753565 22.2158513549419 0.984473473353794 16.1114305367454 0.984473473353799 16.1114305367456 0.000501697081000049 -167.006218399053 ! Gamma ! 0.156287125735872 499.893007415516 0.156288941713622 499.893569367699 ! Port Impedance502.922913818489 0.0341947758526675 502.922372208088 0.0341920178364266 31.9 0.000514101668372334 8.2523017193712 0.984497558935755 0.106036145633959 0.98449755893576 0.106036145634099 0.00054682404061551 176.204551070787 ! Gamma ! 0.156005457767327 502.687207679894 0.156007287991306 502.687766636576 ! Port Impedance501.699917362373 0.0330325817570981 501.699383185579 0.0330298419845093 32 0.000532577599513275 -4.85154209283029 0.984528218485619 -15.8603210918129 0.984528218485624 -15.8603210918127 0.000574042656365879 156.968780171047 ! Gamma ! 0.155730753539882 505.474661830747 0.155732597906299 505.475217832803 ! Port Impedance500.49712087968 0.0318982400417372 500.496593970073 0.0318955180673311 32.1 0.000541960683002574 -17.4227801606819 0.984561049888807 -31.7884997099299 0.984561049888811 -31.7884997099298 0.000578817948172045 136.40228243792 ! Gamma ! 0.155462851511217 508.255480854895 0.155464709918797 508.25603394229 ! Port Impedance499.314035090451 0.0307908499896729 499.313515286819 0.0307881453838478 32.2 0.000542594065191235 -29.7125016058505 0.984593086094839 -47.6792557926301 0.984593086094843 -47.67925579263 0.00056486500990379 115.615929682579 ! Gamma ! 0.155201595254211 511.029773062057 0.155203467604114 511.03032327387 ! Port Impedance498.150186558986 0.0297095476623116 498.149673705121 0.0297068600106115 32.3 0.000534497609025338 -41.9188288657272 0.984622795500039 -63.5332556598884 0.98462279550004 -63.5332556598884 0.000540338679775354 95.3065461662421 ! Gamma ! 0.154946833251045 513.79764417117 0.15494871944678 513.798191545628 ! Port Impedance497.005117049033 0.0286535040886946 497.004610993529 0.0286508329911273 32.4 0.00051747459369976 -54.203089624052 0.984649789544998 -79.3510986366902 0.984649789544997 -79.3510986366903 0.000511736792711735 75.707744611071 ! Gamma ! 0.154698418697322 516.559197393216 0.154700318644671 516.559741967715 ! Port Impedance495.878382910577 0.0276219235589551 495.877883506644 0.0276192686293525 32.5 0.0004912276661439 -66.7018454474027 0.984674415227288 -95.1333408050043 0.984674415227287 -95.1333408050043 0.000481320017975852 56.7744998450026 ! Gamma ! 0.154456209315662 519.314533510715 0.154458122922599 519.315075321847 ! Port Impedance494.769554496421 0.0266140420150645 494.769061601716 0.0266114028814761 32.6 0.000455478054743114 -79.536690889907 0.984697357937609 -110.88051458103 0.984697357937608 -110.88051458103 0.000447704128892839 38.3735757179584 ! Gamma ! 0.154220067178201 522.063750954057 0.154221994354824 522.064290037636 ! Port Impedance493.678215606858 0.0256291255317504 493.677729083258 0.0256265018327115 32.7 0.000410088751303675 -92.8240234758764 0.984719329149439 -126.593142003656 0.984719329149437 -126.593142003656 0.000407500456206013 20.4210054061802 ! Gamma ! 0.15398985853753 524.806945874819 0.153991799195984 524.8074822659 ! Port Impedance492.603962960883 0.0246664688877763 492.603482674407 0.0246638602741153 32.8 0.000355191078853429 -106.688979239813 0.984740869951206 -142.271741718525 0.984740869951205 -142.271741718525 0.000357163518177963 2.99408500276684 ! Gamma ! 0.153765453665576 527.544212216203 0.153767407719987 527.544745949109 ! Port Impedance491.546405692399 0.0237253942031799 491.545931512999 0.0237228003391326 32.9 0.000291308624741897 -121.295348580053 0.984762268584999 -157.916830872459 0.984762268584999 -157.916830872459 0.000294839274903554 -13.5592134225765 ! Gamma ! 0.153546726700006 530.275641780754 0.153548694066418 530.276172889093 ! Port Impedance490.505164870142 0.0228052496696749 490.504696671563 0.0228026702296399 33 0.000219467033354669 -136.936849494063 0.984783569133472 -173.528923651558 0.984783569133472 -173.528923651558 0.000221611874067685 -28.44110924929 ! Gamma ! 0.153333555497736 533.001324295453 0.153335536094044 533.001852812144 ! Port Impedance489.479873039909 0.0219054083370193 489.479410699548 0.02190284300596 33.1 0.00014129511125764 -154.44640433611 0.984804638532319 170.891471803606 0.984804638532318 170.891471803606 0.00014147724739719 -39.5811326469351 ! Gamma ! 0.153125821495158 535.721347474337 0.153127815241053 535.721873431623 ! Port Impedance488.470173787955 0.0210252669703408 488.469717186727 0.0210227154433769 33.2 5.95017657615811E-05 -179.047563177878 0.984825258178289 155.343856695462 0.98482525817829 155.343856695462 6.21621167206444E-05 -35.8576371057341 ! Gamma ! 0.152923409574731 538.435797078736 0.152925416391642 538.436320508211 ! Port Impedance487.475721324376 0.0201642449681417 487.475270346587 0.0201617069501301 33.3 3.14151836113564E-05 27.76327647466 0.984845211881581 139.827744142354 0.984845211881581 139.827744142354 4.61695815037851E-05 52.422304472593 ! Gamma ! 0.152726207937583 541.144756975255 0.152728227748626 541.145277907877 ! Port Impedance486.496180085437 0.0193217833379742 486.495734618654 0.0193192585431092 33.4 0.000113350855839167 -10.8996276000547 0.984864350960968 124.342660577175 0.984864350960969 124.342660577175 0.000119568761911732 69.6261139656172 ! Gamma ! 0.1525341079818 543.84830919159 0.152536140711759 543.848827657698 ! Port Impedance485.531224353809 0.0184973437262988 485.530784288749 0.0184948318777323 33.5 0.00019544131457327 -32.4621867453002 0.984882627349657 108.888145932103 0.984882627349658 108.888145932103 0.000197910177107987 64.5435964941112 ! Gamma ! 0.152347004184854 546.546533970278 0.152349049761445 546.547049999611 ! Port Impedance484.580537895801 0.0176904074992546 484.580103126214 0.0176879083287346 33.6 0.000274250117819119 -52.8929260726696 0.984900094661461 93.4637528534665 0.984900094661463 93.4637528534664 0.000275387219928241 56.5736567756343 ! Gamma ! 0.152164793999306 549.239509820451 0.152166852347581 549.240023442186 ! Port Impedance483.643813614678 0.0169004748712865 483.643384037239 0.0168979881188139 33.7 0.000349486469497884 -73.5394659949859 0.984916883936477 78.0690453358686 0.984916883936477 78.0690453358685 0.000352275780876673 48.0349616876749 ! Gamma ! 0.151987377732877 551.927313567807 0.151989448783257 551.927824810523 ! Port Impedance482.720753219238 0.0161270640787855 482.720328733447 0.0161245894922864 33.8 0.000422296896360675 -94.6833236137972 0.984933164623505 62.7035971861877 0.984933164623507 62.7035971861876 0.000429570019441697 39.422033814005 ! Gamma ! 0.151814658459609 554.610020402601 0.151816742143057 554.61052929434 ! Port Impedance481.811066906872 0.0153697105960818 481.810647414952 0.0153672479310967 33.9 0.000495015581046894 -116.315673138786 0.984949102270693 47.3669906581814 0.984949102270694 47.3669906581813 0.000508383488147238 30.8242199243431 ! Gamma ! 0.151646541917051 557.287703926071 0.151648638165742 557.288210494339 ! Port Impedance480.914473060352 0.0146279663913128 480.914058467154 0.0146255154106995 34 0.000570638951699317 -138.274227467487 0.984964822875436 32.0588154763154 0.984964822875436 32.0588154763154 0.00058976422714355 22.2071828601289 ! Gamma ! 0.151482936413638 559.960436195141 0.15148504516109 559.960940466922 ! Port Impedance480.030697957662 0.0139013992198474 480.030288170577 0.0138989596934988 34.1 0.000652016019652016 -160.304789646876 0.984980390679058 16.7786683306549 0.984980390679059 16.7786683306549 0.000674590442146626 13.4922762531276 ! Gamma ! 0.151323752739632 562.628287765556 0.151325873920673 562.628789767324 ! Port Impedance479.15947549422 0.0131895919531002 479.159070423091 0.0131871636576747 34.2 0.000740965461866984 177.873748250999 0.984995802284194 1.52615280400807 0.984995802284194 1.52615280400804 0.00076346371100961 4.5835500170098 ! Gamma ! 0.151168904081661 565.291327733508 0.151171037632395 565.291827491242 ! Port Impedance478.300546916857 0.0124921419407107 478.300146473896 0.0124897246593754 34.3 0.000837618305507201 156.505497243393 0.985010996175429 -13.6991203924098 0.98501099617543 -13.6991203924098 0.000856559770339685 -4.62150263306639 ! Gamma ! 0.151018305940814 567.949623775809 0.151020451798586 567.950121315007 ! Port Impedance477.453660568993 0.0118086604041904 477.453264668699 0.0118062539263761 34.4 0.000940196172846972 135.757515327472 0.985025873711737 -28.8975330389127 0.985025873711739 -28.8975330389128 0.00095341273071896 -14.2259809927593 ! Gamma ! 0.150871876054137 570.603242188685 0.150874034157494 570.603737534377 ! Port Impedance476.618571646434 0.011138771860265 476.61818020552 0.0111363759814323 34.5 0.00104523244921292 115.712599278765 0.985040325855813 -44.0694590446467 0.985040325855815 -44.0694590446468 0.00105262698253657 -24.3277147069194 ! Gamma ! 0.150729534319344 573.252247925232 0.150731704608004 573.252741101989 ! Port Impedance475.795041963305 0.0104821135722487 475.794654900622 0.0104797280936648 34.6 0.00114807851571078 96.3847993635977 0.985054259456562 -59.2152642282676 0.985054259456563 -59.2152642282676 0.00115154860958611 -35.0111685694964 ! Gamma ! 0.150591202722605 575.896704631599 0.150593385137424 575.897195663547 ! Port Impedance474.98283972759 0.00983833502789194 474.982456964058 0.00983595975641771 34.7 0.00124348941696401 77.7419474479112 0.985067617697508 -74.3353063123668 0.985067617697509 -74.3353063123669 0.00124599621645936 -46.3362532051877 ! Gamma ! 0.150456805269258 578.536674681953 0.150458999752198 578.537163592783 ! Port Impedance474.181739325851 0.00920709744224372 474.181360784391 0.00920473219013039 34.8 0.0013261307550737 59.7254682989377 0.985080391057404 -89.4299351415087 0.985080391057406 -89.4299351415087 0.00133023910300933 -58.3251872022166 ! Gamma ! 0.150326267917306 581.172219212262 0.150328474411406 581.172706025243 ! Port Impedance473.391521116667 0.00858807328415707 473.391146722134 0.00858571786885372 34.9 0.00139093889773632 42.2651681807753 0.985092617370869 -104.499493081238 0.98509261737087 -104.499493081238 0.00139745557527553 -70.9514693466967 ! Gamma ! 0.150199518513568 583.803398152962 0.150201736962915 583.803882890949 ! Port Impedance472.611971232386 0.00798094582514358 472.611600911511 0.00797860006912351 35 0.00143335723237055 25.290379648924 0.985104371862644 -119.544315520222 0.985104371862646 -119.544315520222 0.00144078878621701 -84.1376769884477 ! Gamma ! 0.150076486732365 586.430270260534 0.150078717082036 586.430752945981 ! Port Impedance471.842881388804 0.00738540870899386 471.842515070132 0.00738307243998569 35.1 0.00144952890569004 8.73914341369159 0.98511574994025 -134.564731384251 0.985115749940252 -134.564731384251 0.0014547785989542 -97.7683308681302 ! Gamma ! 0.149957104016605 589.052893148055 0.149959346212506 589.053373803023 ! Port Impedance471.084048702403 0.00680116554407559 471.083686316227 0.00679883859303843 35.2 0.00143652896964996 -7.43399132361874 0.985126846755747 -149.561063578734 0.985126846755749 -149.561063578734 0.0014365660571998 -111.718179832272 ! Gamma ! 0.149841303521191 591.671323314741 0.149843557510131 591.671801960907 ! Port Impedance470.335275514755 0.00622792950758308 470.33491699308 0.00622561171142465 35.3 0.00139266410623662 -23.2519814006167 0.985137737924881 -164.533629301108 0.985137737924882 -164.533629301108 0.00138623858006584 -125.887432387156 ! Gamma ! 0.149729020058608 594.28561617454 0.14973128578884 594.286092833208 ! Port Impedance469.596369223858 0.00566542297724568 469.596014500333 0.00566311417673854 35.4 0.00131778135958037 -38.711675213447 0.985148465317617 -179.482740199126 0.985148465317618 -179.482740199126 0.00130617381840292 -140.230871132855 ! Gamma ! 0.149620190046621 596.895826083803 0.149622467467106 596.896300775914 ! Port Impedance468.867142121974 0.0051133771729891 468.866791131829 0.00511107721307377 35.5 0.0012134593153485 -53.7818791360304 0.985159030650466 165.591297612816 0.985159030650468 165.591297612816 0.00119985769894713 -154.772038763671 ! Gamma ! 0.149514751458027 599.502006368069 0.149517040518396 599.502479114206 ! Port Impedance468.147411239753 0.00457153181736445 468.147063919792 0.00456924054727496 35.6 0.00108296128427832 -68.3993625541669 0.985169397971798 150.688183636932 0.985169397971798 150.688183636932 0.00107087286047577 -169.603591060066 ! Gamma ! 0.149412643772556 602.104209348004 0.149414944422816 602.104680168403 ! Port Impedance467.436998196319 0.00403963481093639 467.436654484829 0.00403735208348379 35.7 0.000930928961506046 -82.4530078367351 0.985179504351844 135.807623113806 0.985179504351845 135.807623113806 0.000922515683588769 175.114890573266 ! Gamma ! 0.149313807927511 604.702486364516 0.149316120120443 604.702955279074 ! Port Impedance466.735729055084 0.00351744192213927 466.735388891807 0.00351516759402873 35.8 0.000762942885164921 -95.7316559643492 0.985189276491748 120.949327117379 0.985189276491747 120.949327117379 0.000758119260471738 159.136654810406 ! Gamma ! 0.149218186278439 607.296887803087 0.149220509966482 607.297354831371 ! Port Impedance466.043434184991 0.00300471649089227 466.04309751108 0.00300245042248675 35.9 0.00058521075944453 -107.761016958628 0.985198649827479 106.11301256792 0.985198649827478 106.11301256792 0.000581883508267874 142.016161700323 ! Gamma ! 0.149125722552379 609.887463117353 0.149128057688111 609.887928278606 ! Port Impedance465.35994812699 0.00250122914527613 465.359614884966 0.00249897120047157 36 0.000404862912197587 -117.219322330375 0.985207586214041 91.2984021292179 0.985207586214041 91.2984021292178 0.00039997771489289 122.622484673865 ! Gamma ! 0.1490363618057 612.474260851943 0.149038708342911 612.47472416509 ! Port Impedance464.685109465494 0.0020067575306137 464.684779599203 0.00200450757672219 36.1 0.0002329621466052 -119.032282368896 0.985216086507875 76.5052239840437 0.985216086507874 76.5052239840436 0.000222945731254816 96.4136900777708 ! Gamma ! 0.148950050385556 615.057328664625 0.148952408278839 615.057790148286 ! Port Impedance464.01876070459 0.00152108605033274 464.018434159168 0.00151884395797076 36.2 0.000113478637282128 -85.4826850226513 0.985224195273175 61.7332115103015 0.985224195273174 61.7332115103014 9.28465273616766E-05 30.5680579210786 ! Gamma ! 0.148866735891382 617.636713347777 0.148869105095644 617.637173020267 ! Port Impedance463.36074814883 0.00104400561802522 463.360424870659 0.00104177126100659 36.3 0.000175561344718976 -33.917342184433 0.985231996262005 46.9821029032379 0.985231996262004 46.9821029032378 0.000164813113962664 -58.3830477234711 ! Gamma ! 0.148786367135769 620.212460849202 0.148788747607698 620.212918728542 ! Port Impedance462.710921788366 0.000575313420149558 462.710601725044 0.0005730866753826 36.4 0.000303622030693887 -29.9328186731218 0.98523959901524 32.2516408022031 0.985239599015241 32.251640802203 0.000297670314004826 -89.1478157504475 ! Gamma ! 0.148708894111859 622.784616292317 0.148711285808184 622.785072396242 ! Port Impedance462.06913518828 0.000114812688853572 462.06881828858 0.000112593436242426 36.5 0.000420520863487305 -37.0305363368808 0.985247118613658 17.5415719810237 0.985247118613658 17.5415719810237 0.000417501802894525 -109.589157692433 ! Gamma ! 0.148634267956306 625.353223995745 0.148636670834663 625.353678341705 ! Port Impedance461.435245381899 -0.000337687515576555 461.434931595739 -0.000339899393226037 36.6 0.000514444237741452 -46.8563211352793 0.985254651988919 2.85164714909414 0.985254651988921 2.85164714909411 0.000517707762686254 -127.338996349324 ! Gamma ! 0.148562440916677 627.91832749231 0.14856485493607 627.918780097481 ! Port Impedance460.809112767948 -0.000782372513110345 460.808802046357 -0.000784577130177064 36.7 0.000582928012731732 -57.3697296880413 0.985262255041339 -11.8183791119803 0.985262255041342 -11.8183791119803 0.000598142396557421 -144.18307726394 ! Gamma ! 0.148493366319327 630.479969547484 0.148495791438803 630.480420428776 ! Port Impedance460.190601011377 -0.00121942220370961 460.19029330646 -0.00122161967177459 36.8 0.000627128428686686 -67.8192942086188 0.985269924947173 -26.4687482795856 0.985269924947175 -26.4687482795856 0.000659979463950728 -160.891140415624 ! Gamma ! 0.148426998538354 633.038192177287 0.148429434716129 633.038641351342 ! Port Impedance459.579576947665 -0.00164901126015953 459.579272212603 -0.00165120168655869 36.9 0.000650286289253164 -77.8689420488095 0.985277591423731 -41.0996977211814 0.985277591423736 -41.0996977211813 0.000704332779323635 -177.968084736038 ! Gamma ! 0.148363292965659 635.59303666566 0.148365740161547 635.593484148863 ! Port Impedance458.975910490643 -0.00207130930311241 458.975608679578 -0.00207349279790453 37 0.00065661866983839 -87.3685442042034 0.985285119424557 -55.7114604807465 0.985285119424563 -55.7114604807464 0.000731660226660038 164.174704968456 ! Gamma ! 0.148302205982036 638.144543581341 0.148304664156802 638.144989389826 ! Port Impedance458.379474543251 -0.00248648109451681 458.379175611362 -0.00248865775994932 37.1 0.000650464126022305 -96.2689994061314 0.98529232393873 -70.3042650891526 0.985292323938735 -70.3042650891524 0.00074169044036423 145.190120916981 ! Gamma ! 0.148243694929268 640.69275279425 0.148246164044276 640.693196943903 ! Port Impedance457.790144911738 -0.00289468668871354 457.789848815154 -0.00289685662633953 37.2 0.000635756810042564 -104.580747502409 0.985298995533695 -84.8783354668442 0.985298995533701 -84.8783354668441 0.000733973181642177 124.8238474781 ! Gamma ! 0.14818771808317 643.237703491405 0.148190198100341 643.238145997874 ! Port Impedance457.207800222608 -0.00329608160306026 457.207506918396 -0.00329824491213454 37.3 0.000615804742045774 -112.350635457458 0.985304933325146 -99.4338909726128 0.985304933325151 -99.4338909726127 0.000709135222857154 102.972321937848 ! Gamma ! 0.14813423462756 645.779434192388 0.148136725509364 645.77987507108 ! Port Impedance456.632321842503 -0.0036908169716608 456.632031288641 -0.00369297374918373 37.4 0.000593277265675965 -119.649792901112 0.985309980499618 -113.971146625335 0.985309980499621 -113.971146625335 0.000670407585435122 79.7405236286897 ! Gamma ! 0.148083204629096 648.317982764362 0.148085706338552 648.318422030456 ! Port Impedance456.063593800812 -0.00407903969449746 456.063305956162 -0.00408119003527855 37.5 0.000570302642707713 -126.569886899103 0.985314056632069 -128.490313490313 0.985314056632071 -128.490313490313 0.000624190733845539 55.467770504332 ! Gamma ! 0.148034589012972 650.853386436682 0.148037101513631 650.853824105129 ! Port Impedance455.501502714903 -0.00446089258064219 455.501217539191 -0.00446303657736409 37.6 0.000548603147342793 -133.226837421773 0.985317181021252 -142.99159918472 0.985317181021253 -142.99159918472 0.00057854961532507 30.7098277136113 ! Gamma ! 0.147988349539415 653.385681815079 0.147990872795355 653.386117900611 ! Port Impedance454.945937717891 -0.00483651448580108 454.94565517168 -0.004838652229082 37.7 0.000529620442055791 -139.772014629153 0.985319482180436 -157.475208424465 0.985319482180437 -157.475208424465 0.000540278422152446 6.17630968112498 ! Gamma ! 0.147944448780971 655.914904895466 0.147946982756783 655.915339412594 ! Port Impedance454.396790388823 -0.00520604044444646 454.396510433494 -0.00520817202290035 37.8 0.000514593420559526 -146.411087079413 0.98532119040292 -171.941343514515 0.98532119040292 -171.941343514515 0.000512687554393503 -17.3986757586056 ! Gamma ! 0.147902850100535 658.441091077346 0.147905394761305 658.441524040371 ! Port Impedance453.853954685197 -0.00556960179678009 453.853677282926 -0.00557172729707443 37.9 0.000504537927177904 -153.428778201284 0.985322612767028 173.609795318305 0.985322612767027 173.609795318305 0.000495504718202573 -39.4420731151679 ! Gamma ! 0.147863517630102 660.964275176865 0.147866072941399 660.964706599881 ! Port Impedance453.317326877721 -0.00592732631075923 453.317051991456 -0.00592944581767049 38 0.000500042296862805 -161.211066239699 0.985324092733868 159.178009834108 0.985324092733866 159.178009834108 0.000486335955243786 -59.6793882076034 ! Gamma ! 0.147826416250217 663.484491439501 0.147828982178065 663.484921336394 ! Port Impedance452.786805487219 -0.00627933829940462 452.786533080661 -0.0062814518958707 38.1 0.000500761087295711 -170.240999706256 0.985325959223992 144.763103977957 0.985325959223989 144.763103977957 0.000482277734531075 -78.1360259849855 ! Gamma ! 0.14779151157008 666.001773552404 0.147794088080943 666.002201936864 ! Port Impedance452.262291223613 -0.00662575873359956 452.262021261198 -0.00662786650076992 38.2 0.000504594849643551 178.978855986181 0.985328472309758 130.364884363072 0.985328472309755 130.364884363072 0.000480858202538154 -95.038630372275 ! Gamma ! 0.147758769908306 668.516154656414 0.147761356969157 668.516581541933 ! Port Impedance451.743686926891 -0.0069667053505783 451.74341937377 -0.00696880736786297 38.3 0.000507109069937766 166.1282432692 0.985331774033404 115.983160975656 0.985331774033401 115.983160975656 0.000480316870088135 -110.705793030559 ! Gamma ! 0.147728158274289 671.027667357744 0.147730755853012 671.028092757624 ! Port Impedance451.230897509993 -0.00730229275829206 451.230632332012 -0.00730438910341173 38.4 0.000502744813123043 151.352040683408 0.985335853051108 101.6177479805 0.985335853051106 101.6177479805 0.000479544454251604 -125.476241404403 ! Gamma ! 0.147699644350169 673.536343739359 0.147702252415482 673.536767666712 ! Port Impedance450.723829903533 -0.0076326325358324 450.723567067217 -0.00763472328486947 38.5 0.000488679234171628 135.369191416102 0.985340530647173 87.2684644624228 0.98534053064717 87.2684644624228 0.000477934366953577 -139.676123585561 ! Gamma ! 0.147673196473365 676.042215372045 0.147675814993596 676.0426378398 ! Port Impedance450.222393002299 -0.00795783333008178 450.222132474832 -0.00795991855752963 38.6 0.000467869454382841 119.164487750062 0.985345473174858 72.9351349184033 0.985345473174857 72.9351349184033 0.000475260550623457 -153.610782881341 ! Gamma ! 0.147648783619658 678.545313325195 0.147651412563254 678.545734346099 ! Port Impedance449.726497613454 -0.00827800094875405 449.726239362666 -0.00828008072756097 38.7 0.000446976438278335 103.51735088886 0.985350232372365 58.6175893269543 0.985350232372365 58.6175893269543 0.000471614657834667 -167.567704389647 ! Gamma ! 0.14762637538681 681.045668177299 0.147629014722812 681.046087763922 ! Port Impedance449.236056406385 -0.00859323844997895 449.235800400733 -0.00859531285158765 38.8 0.000431901266048626 88.8283663374517 0.985354310673896 44.3156626690641 0.985354310673897 44.3156626690641 0.000467404231640084 178.178225789724 ! Gamma ! 0.147605941978684 683.543310026173 0.147608591676657 683.543728190911 ! Port Impedance448.750983864128 -0.00890364622857775 448.750730072681 -0.00890571532296343 38.9 0.000425773038091032 75.2346552535583 0.985357244143021 30.0291938573949 0.985357244143021 30.029193857395 0.000463404487963065 163.363592523476 ! Gamma ! 0.147587454189864 686.038268498908 0.147590114219821 686.038685253989 ! Port Impedance448.27119623632 -0.0092093220991693 448.270944628745 -0.00921138595487795 39 0.000429458641817451 62.7476809778831 0.985358691654753 15.7580241396145 0.985358691654755 15.7580241396145 0.000460849251268384 147.745857702198 ! Gamma ! 0.147570883390743 688.530572761576 0.147573553723108 688.530988119059 ! Port Impedance447.796611493615 -0.0095103613762408 447.796362040158 -0.0095124200604273 39.1 0.000442674613386782 51.3115335300786 0.985358516122111 1.50199516406258 0.985358516122112 1.5019951640626 0.000461528246638077 131.130123116863 ! Gamma ! 0.147556201513072 691.020251528674 0.147558882118663 691.020665500453 ! Port Impedance447.327149283516 -0.00980685695130909 447.326901954994 -0.00980891052977485 39.2 0.000464781129694508 40.8178542942451 0.985356842513018 -12.7390529880026 0.985356842513019 -12.7390529880026 0.000467821299987383 113.416294346882 ! Gamma ! 0.147543381035944 693.507333072332 0.147546071885957 693.507745670144 ! Port Impedance446.862730887571 -0.0100988993672944 446.862485655353 -0.0101009479045235 39.3 0.000495185078393608 31.1164091357828 0.985354078583335 -26.9652834116934 0.985354078583335 -26.9652834116934 0.000482557606814401 94.6548400160668 ! Gamma ! 0.147532394972208 695.991845231289 0.147535096038212 695.99225646671 ! Port Impedance446.403279179878 -0.0103865768902209 446.403036015875 -0.0103886204494153 39.4 0.00053348701345546 22.0295721121162 0.985350887864305 -41.1768632012791 0.985350887864304 -41.1768632012792 0.000508593321433305 75.0744927779358 ! Gamma ! 0.147523216855288 698.473815419635 0.147525928109214 698.474225304087 ! Port Impedance445.948718586865 -0.0106699755783552 445.948477463512 -0.010672014221468 39.5 0.000579480266886524 13.3658283673732 0.985348110379826 -55.3739630931822 0.985348110379825 -55.3739630931822 0.00054812021658286 55.0376517338462 ! Gamma ! 0.147515820726402 700.953270635338 0.147518542140534 700.953679180091 ! Port Impedance445.498975048275 -0.0109491793488862 445.498735938525 -0.0109512131366545 39.6 0.000633051786603707 4.9286060246626 0.985346634378176 -69.556755654628 0.985346634378173 -69.556755654628 0.000601908563829001 34.9249716654578 ! Gamma ! 0.147510181122155 703.430237468554 0.147512912669125 703.43064468473 ! Port Impedance445.053975979352 -0.0112242700422474 445.053738856657 -0.0112262990342237 39.7 0.000693985911922035 -3.47910751880156 0.985347231251673 -83.7254119482529 0.985347231251671 -83.7254119482529 0.000668754781882435 15.0196113955289 ! Gamma ! 0.147506273062504 705.904742109734 0.147509014715285 705.905148008308 ! Port Impedance444.61365023414 -0.0114953274841772 444.613415072444 -0.0114973517387596 39.8 0.000761637778984216 -12.0511052845461 0.985350374698983 -97.8800968832 0.985350374698981 -97.8800968832 0.00074527505687999 -4.53548378501134 ! Gamma ! 0.147504072039078 708.376810357526 0.147506823770978 708.377214949328 ! Port Impedance444.177928069895 -0.0117624295456071 444.17769484362 -0.0117644491200687 39.9 0.00083443152921757 -20.9702768497189 0.98535607276127 -112.020963793008 0.985356072761269 -112.020963793008 0.000826068007766646 -23.7031377859419 ! Gamma ! 0.14750355400384 710.846467626481 0.147506315788495 710.846870922203 ! Port Impedance443.746741112549 -0.0120256522004659 443.746509796583 -0.0120276671509834 40 0.000909186752573569 -30.3906483466561 0.98536374624812 -126.148149119093 0.98536374624812 -126.148149119093 0.000904295101936828 -42.4893244649204 ! Gamma ! 0.147504695358071 713.313738954576 0.147507467169448 713.31414096477 ! Port Impedance443.320022323192 -0.0122850695814828 443.31979289288 -0.012287079963164 40.1 0.000980457553653758 -40.403361304594 0.9853721879325 -140.261768371993 0.985372187932503 -140.261768371993 0.000972718454626049 -60.8983054205699 ! Gamma ! 0.147507472941666 715.77864901055 0.147510254754079 715.779049745631 ! Port Impedance442.897705965549 -0.012540754034068 442.897478396681 -0.0125427599009785 40.2 0.00104042198139027 -50.9873516525121 0.985379632631461 -154.361914726817 0.985379632631465 -154.361914726816 0.0010250133672417 -78.9231337695989 ! Gamma ! 0.147511864022346 718.241222101057 0.147514655810887 718.241621571305 ! Port Impedance442.479727574399 -0.0127927761683476 442.479501843202 -0.0127947775735367 40.3 0.00108013985678206 -61.9626473234318 0.985383958196427 -168.448661616816 0.985383958196432 -168.448661616816 0.00105688574726227 -96.5655023561855 ! Gamma ! 0.147517846284751 720.701482177627 0.147520648026539 720.701880393217 ! Port Impedance442.066023924922 -0.0130412049094243 442.065800008046 -0.0130432019049501 40.4 0.00109247416150988 -72.9842938190666 0.985383021379464 177.477929545939 0.985383021379469 177.477929545939 0.00106651965696871 -113.868154801688 ! Gamma ! 0.147525397831955 723.159452843584 0.147528209496083 723.15984981451 ! Port Impedance441.656533002931 -0.0132861075459337 441.656310877441 -0.0132881001828875 40.5 0.00107529336552705 -83.6079423444562 0.985375111096395 163.417795924337 0.985375111096399 163.417795924337 0.00105425174292954 -130.944932153208 ! Gamma ! 0.14753449714837 725.615157360533 0.147537318713431 725.6155530967 ! Port Impedance441.251193975959 -0.0135275497769623 441.250973619328 -0.0135295381054922 40.6 0.001032454188058 -93.4054714895404 0.985359476148344 149.370854344947 0.985359476148345 149.370854344947 0.00102179723103389 -148.003514288322 ! Gamma ! 0.147545123120246 728.068618654988 0.147547954562112 728.069013166169 ! Port Impedance440.849947165182 -0.0137655957573904 440.849728555278 -0.0137675798267239 40.7 0.000971716109849272 -102.059392457118 0.985336857163169 135.33697837038 0.985336857163168 135.33697837038 0.000971503930646159 -165.366461270787 ! Gamma ! 0.147557255011549 730.519859324662 0.147560096306287 730.520252620507 ! Port Impedance440.452734018138 -0.0140003081417201 440.452517133217 -0.0140022880001869 40.8 0.000901484563643312 -109.383521242108 0.985309926243574 121.315974282679 0.985309926243569 121.315974282679 0.000906005541321307 176.497930519494 ! Gamma ! 0.147570872458076 732.968901644662 0.147573723582015 732.969293734703 ! Port Impedance440.059497082226 -0.0142317481264473 440.059281900922 -0.0142337238215003 40.9 0.000828646905040947 -115.277960327876 0.985283515904091 107.307560589418 0.985283515904082 107.307560589418 0.000828525518968776 156.923688819844 ! Gamma ! 0.147585955459026 735.415767573539 0.147588816388764 735.416158467188 ! Port Impedance439.670179978946 -0.0144599754910319 439.669966480265 -0.0144619470692682 41 0.000758127655904876 -119.657068875403 0.985264504874891 93.3113574214784 0.98526450487488 93.3113574214782 0.000744106254172287 134.978076656449 ! Gamma ! 0.147602484368749 737.860478759188 0.14760535508115 737.860868465743 ! Port Impedance439.284727378873 -0.0146850486375202 439.284515542181 -0.0146870161447018 41.1 0.000693643240828719 -122.380837951036 0.985261225654421 79.3268938461685 0.985261225654411 79.3268938461684 0.000662051307077321 109.460095891793 ! Gamma ! 0.147620439888722 740.303056544618 0.147623320360915 740.303445073261 ! Port Impedance438.903084977325 -0.0149070246288699 438.902874782344 -0.0149089881099429 41.2 0.000639173995119167 -123.215553392065 0.985282270355778 65.3536424612432 0.985282270355771 65.3536424612432 0.000598814681740329 79.3343063140049 ! Gamma ! 0.147639803059746 742.743521973585 0.147642693269115 742.743909333388 ! Port Impedance438.525199470711 -0.0151259592260261 438.524990897507 -0.0151279187251402 41.3 0.000601166999655823 -121.89989895738 0.985334600011117 51.3910914333895 0.985334600011117 51.3910914333895 0.00057596180343721 45.2245692603706 ! Gamma ! 0.147660555254343 745.181895796094 0.147663455178525 745.182281996019 ! Port Impedance438.151018533532 -0.0153419069237956 438.150811562512 -0.0153438624843226 41.4 0.000591494732690827 -118.541934971091 0.985420910272806 37.4388641579023 0.985420910272818 37.4388641579024 0.000604958467467794 10.66760425292 ! Gamma ! 0.147682678169373 747.618198473782 0.147685587786253 747.618583522682 ! Port Impedance437.780490796024 -0.0155549209855636 437.780285407926 -0.0155568726501155 41.5 0.000628873523897069 -114.602067790322 0.985536275267693 23.4968957030073 0.985536275267721 23.4968957030074 0.000672524600781038 -20.4323539123664 ! Gamma ! 0.147706153818847 750.052450185166 0.14770907310655 750.052834091788 ! Port Impedance437.413565822405 -0.0157650534768952 437.413361998289 -0.0157670012873419 41.6 0.000729752298085377 -113.620855959721 0.985664182669042 9.56567292143644 0.985664182669087 9.56567292143664 0.000751743381581717 -46.7602730370009 ! Gamma ! 0.147730964526926 752.484670830785 0.147733893463814 752.485053603772 ! Port Impedance437.050194089722 -0.0159723552980636 437.049991810966 -0.0159742992955501 41.7 0.000876154217448457 -119.307765342457 0.985772187117029 -4.353458676729 0.985772187117088 -4.35345867672875 0.000821312446583392 -68.7661953285528 ! Gamma ! 0.14775709292112 754.914880038217 0.147760031485782 754.915261686109 ! Port Impedance436.690326967272 -0.0161768762155441 436.690126215564 -0.016178816440507 41.8 0.00098569834905522 -131.37762754899 0.985807543272369 -18.2579237237751 0.985807543272431 -18.257923723775 0.000871631673605007 -87.2478582902628 ! Gamma ! 0.147784521925654 757.343097166985 0.147787470096902 757.343477698222 ! Port Impedance436.33391669658 -0.0163786648925102 436.333717453912 -0.0163806013846946 41.9 0.00098934040433851 -144.860191696473 0.985693325411235 -32.143491351405 0.985693325411283 -32.1434913514049 0.000901786401286232 -102.902893167922 ! Gamma ! 0.147813234755024 759.769341313357 0.147816192511885 759.769720736278 ! Port Impedance435.980916371917 -0.0165777689183705 435.980718620579 -0.0165797017168453 42 0.000920630466547898 -155.731770901395 0.985325679049194 -46.0038144033309 0.985325679049194 -46.0038144033309 0.000914978229665446 -116.290465137383 ! Gamma ! 0.147843214907714 762.193631315034 0.147846182229421 762.194009637881 ! Port Impedance435.631279921342 -0.016774234837378 435.631083643912 -0.0167761639805525 GradientModel-0.0.2/examples/hfss/WR28-Waveguide_10cm-aluminum.s2p000066400000000000000000002441241413653641000245350ustar00rootroot00000000000000! Touchstone file exported from HFSS 2019.2.0 ! File: C:/Users/jgarrett/Documents/Ansoft/Waveguide/WR28-Waveguide.aedt ! Generated: 11:00:37 AM Mar 17, 2021 ! Design: 10cm-aluminum ! Project: WR28-Waveguide ! Setup: Setup1 ! Solution: Sweep ! ! Variables: ! waveguideA = 280mil ! waveguideB = 140mil ! waveguideL = 10cm ! !Data is not renormalized # GHZ S MA ! Modal data exported ! Port[1] = 1:1 ! Port[2] = 2:1 20 9.06929757163642E-05 179.85600365567 9.02054093737248E-07 -1.23894091214856 9.02054093737248E-07 -1.23894091214854 0.000119853279955268 179.864889407431 ! Gamma ! 139.156290762545 0.216260671376142 139.154492269829 0.216263443631791 ! Port Impedance1.94810882245215 1134.97482713068 1.94818719048744 1134.9895036879 20.1 9.88250175693553E-05 179.830149669142 2.02151692426033E-06 33.6935522956164 2.02151692442578E-06 33.6935523026494 0.000131426312798259 179.849565869773 ! Gamma ! 132.67601045202 0.227333839050564 132.674124069884 0.227337092799109 ! Port Impedance2.24365047414242 1196.36119687533 2.24374904458285 1196.3782149236 20.2 0.0001090915267528 179.805804330795 3.73274154801483E-06 15.8175400156711 3.7327415481699E-06 15.8175400168679 0.00014579196048944 179.824677886504 ! Gamma ! 125.827616660344 0.24024948822111 125.825627560252 0.240253356682144 ! Port Impedance2.62538020553897 1267.74985026551 2.62550760332201 1267.76989970456 20.3 0.000122314252645665 179.776255404006 7.21194214770681E-06 1.21610140176644 7.21194214786885E-06 1.21610140162182 0.000164024480894642 179.792529771947 ! Gamma ! 118.547331473572 0.255584409380804 118.545220166947 0.255589087007481 ! Port Impedance3.13335302552241 1352.26497423375 3.13352332324499 1352.28906700771 20.4 0.000139816754321861 179.736579013667 1.52577713870185E-05 -2.5610986722876 1.52577713870521E-05 -2.56109867252726 0.000187815910910249 179.753526692985 ! Gamma ! 110.750018104859 0.274205193794447 110.747758098371 0.274210978291233 ! Port Impedance3.83525674255145 1454.5982743798 3.83549436263706 1454.62796719095 20.5 0.000163868585055208 179.682286026536 3.57655833262076E-05 -1.83064981968212 3.57655833262966E-05 -1.83064981933135 0.000220001296278838 179.704627830972 ! Gamma ! 102.31754706982 0.29748717279409 102.315100747993 0.297494548896598 ! Port Impedance4.85392438832992 1582.19219736886 4.85427522859558 1582.23003647439 20.6 0.000198697168907695 179.606369979216 9.11107688826574E-05 -1.72691715611149 9.11107688827256E-05 -1.72691715613909 0.000265738809766743 179.636918300951 ! Gamma ! 93.0774611598636 0.327776758492526 93.074771923366 0.327786583172028 ! Port Impedance6.43432687920685 1747.73773523183 6.43488693725619 1747.7882423312 20.7 0.00025313260442391 179.492314261118 0.000252846542954912 -2.09838726691177 0.000252846542955028 -2.0983872668692 0.000335563760405186 179.531135679988 ! Gamma ! 82.7597187955387 0.369499059671709 82.7566942277482 0.369513035092233 ! Port Impedance9.13372347526668 1975.15601911649 9.13472648926244 1975.22821389399 20.8 0.000349049924948122 179.295904351007 0.000823334371563443 -2.09847644770021 0.000823334371563384 -2.09847644769144 0.0004551121525831 179.347166448848 ! Gamma ! 70.8954401226566 0.432343506152102 70.8919093500242 0.43236567393271 ! Port Impedance14.4974015345098 2316.793502629 14.4995673210742 2316.90888846325 20.9 0.000558813829674499 178.883117196346 0.00348544152875889 -3.87248052067242 0.00348544152875908 -3.87248052067046 0.000708708216155333 178.992401787335 ! Gamma ! 56.519269160392 0.543589110626346 56.5148403831674 0.543632611947546 ! Port Impedance28.5466597768152 2919.89756457704 28.5533643485122 2920.12631512393 21 0.00134958108178664 177.441588510281 0.0240921906384714 -5.11642611362977 0.024092190638472 -5.11642611363349 0.00164510475050345 178.094819781063 ! Gamma ! 36.7994867476383 0.836855768201245 36.7926871002072 0.837011978215568 ! Port Impedance103.142020101891 4504.1201565013 103.1991328261 4504.95085492831 21.1 0.00188106774872369 -24.7284428822635 0.932813485170965 -122.926891632404 0.932813485170869 -122.926891632409 0.00198751314825189 -43.0063609879122 ! Gamma ! 1.3835103626553 22.3120770897716 1.38282065107351 22.3232513430769 ! Port Impedance7439.40954915824 460.116877584282 7435.74248202567 459.429499387366 21.2 0.00141801691973096 -29.4753223687485 0.938912163285422 82.4676014784207 0.938912163285419 82.4676014784206 0.00151995763501449 11.6684766750165 ! Gamma ! 0.637684341400083 48.5234384387071 0.637617986586878 48.5285965164767 ! Port Impedance3449.5973522423 44.7897960445625 3449.23096882672 44.7754817510907 21.3 0.00220335235569684 37.3751884154323 0.953221760705035 -11.7751854846311 0.953221760705034 -11.7751854846315 0.000653766816025359 17.053591502417 ! Gamma ! 0.477388684378053 64.9717958477936 0.47736153306058 64.9756487344491 ! Port Impedance2588.74837598171 18.6138872024728 2588.59491946107 18.6105571044926 21.4 0.000472675149142957 21.7056984465596 0.960836573135662 -87.0938346994059 0.960836573135662 -87.0938346994059 0.000541524489198295 -3.30050423490156 ! Gamma ! 0.398182178816938 78.0835448885671 0.398166869784305 78.0867509953212 ! Port Impedance2164.21895894467 10.6966181894513 2164.13012314815 10.6952874053291 21.5 0.000162526380608581 95.2490615486341 0.965731356859896 -151.621674771499 0.965731356859896 -151.621674771499 0.000124802960781255 134.849691822696 ! Gamma ! 0.348856056520405 89.3396013130898 0.34884609064765 89.3424035875274 ! Port Impedance1900.40351888689 7.12317725808991 1900.34392773787 7.12249662296253 21.6 0.000599225577414008 48.7626200518337 0.969019455439908 150.87398420169 0.969019455439907 150.87398420169 0.000698254171993717 74.0166571301092 ! Gamma ! 0.314396430275212 99.3724754677086 0.31438939782163 99.374994899448 ! Port Impedance1716.48923807085 5.16250462850815 1716.44573331304 5.16210333117302 21.7 0.000781029291473559 -4.48916959971452 0.971551224274498 98.4301241263812 0.971551224274498 98.4301241263813 0.000790872530019162 23.3124340110794 ! Gamma ! 0.288591877245029 108.521918667927 0.288586657033126 108.524225754458 ! Port Impedance1579.05332870816 3.95305505487647 1579.01977136594 3.95279544813156 21.8 0.000479600796660386 -61.3111778464334 0.973463792705712 49.8631206152222 0.973463792705712 49.8631206152222 0.000543762079168141 -17.3912186090012 ! Gamma ! 0.268345980211942 116.995363997391 0.268341972012585 116.997504050836 ! Port Impedance1471.44140934725 3.14615084272272 1471.41450477847 3.14597152797349 21.9 0.000123120817175198 -112.517222660183 0.975124027155538 4.38869795052741 0.975124027155537 4.38869795052739 0.000118626149324735 -46.0779417462855 ! Gamma ! 0.251919587011719 124.930430303783 0.251916437097674 124.932434482982 ! Port Impedance1384.30362954574 2.57664634057484 1384.28143183593 2.5765162858316 22 0.000261936420072097 41.1962165233999 0.976498474737503 -38.5567663057203 0.976498474737501 -38.5567663057203 0.000286531775720257 65.6168027158233 ! Gamma ! 0.238250752162756 132.423931365061 0.23824823693561 132.425822182364 ! Port Impedance1311.93365871047 2.15728620127875 1311.9149353397 2.15718823068378 22.1 0.000489808582331477 -18.667948480987 0.977548227692785 -79.3736104565557 0.977548227692785 -79.3736104565557 0.000513675195803418 36.8833109437111 ! Gamma ! 0.226649550746746 139.547017875171 0.226647521088655 139.548812222766 ! Port Impedance1250.62607715791 1.83808956723731 1250.61000468857 1.83801349301051 22.2 0.000501572582842694 -62.6180652918907 0.978504187995938 -118.373272970941 0.978504187995939 -118.373272970941 0.000600515890700724 5.94539104973749 ! Gamma ! 0.216645729770965 146.3537832124 0.21664408193754 146.355494149962 ! Port Impedance1197.85657326281 1.58858666772006 1197.84257791141 1.58852610833397 22.3 0.000457698736592937 -104.55876073417 0.979420754780011 -155.8100741348 0.979420754780011 -155.8100741348 0.000523662173195141 -24.2204027967751 ! Gamma ! 0.207906267913319 152.886481892805 0.207904927208857 152.888119764671 ! Port Impedance1151.83843272172 1.3892582231909 1151.82610080479 1.3892090009878 22.4 0.000349953170803334 -156.011336654415 0.980178323914722 168.124778222361 0.980178323914721 168.124778222361 0.000359169596325816 -45.7912795869385 ! Gamma ! 0.200187844471626 159.178860037234 0.200186755566913 159.180433202891 ! Port Impedance1111.26689698812 1.22708410028851 1111.25592172724 1.22704337880611 22.5 0.000204085193337539 138.907831706463 0.980827344104755 133.285395589277 0.980827344104754 133.285395589277 0.000211916236961164 -51.3966129523355 ! Gamma ! 0.193307993746957 165.258370886737 0.19330711466735 165.259886216569 ! Port Impedance1075.1640603779 1.09308240321219 1075.15420881968 1.09304819669158 22.6 0.000142060789662163 51.0778268174173 0.981464935945905 99.5402144273155 0.981464935945905 99.5402144273155 0.000152001312443852 -31.750738499381 ! Gamma ! 0.187126841671615 171.147700097463 0.187126139919946 171.149163319838 ! Port Impedance1042.78069421653 0.980878433917294 1042.77178585787 0.98084931536987 22.7 0.000171366624298628 -25.8814415448531 0.981987438747297 66.7738248519221 0.981987438747298 66.7738248519221 0.000176239140122571 -21.6253184631859 ! Gamma ! 0.181535123085507 176.865846654183 0.181534573048047 176.867262604964 ! Port Impedance1013.5318504473 0.885836446762151 1013.52374296701 0.885811367319651 22.8 0.000182088671142981 -77.1166384779397 0.982491548787124 34.9075182520151 0.982491548787125 34.9075182520151 0.000183496051767811 -27.1128511896072 ! Gamma ! 0.176446077060966 182.428908027138 0.176445658242241 182.430280833211 ! Port Impedance986.953318380454 0.804513456700059 986.94589784458 0.804491630137523 22.9 0.000160750484865086 -135.344439625513 0.982961703041492 3.83249338006509 0.982961703041492 3.83249338006506 0.000164633102990955 -33.750859094298 ! Gamma ! 0.171789819374657 187.850662807653 0.171789515147181 187.851996024578 ! Port Impedance962.671398476613 0.734304747686245 962.664572449256 0.734285574357691 23 0.000127701211061044 152.746116912973 0.983391007349504 -26.4976951043614 0.983391007349503 -26.4976951043614 0.000131901688590344 -30.9604822568356 ! Gamma ! 0.167509344379963 193.143011200655 0.16750914109176 193.144307917763 ! Port Impedance940.381433965514 0.673207448875036 940.375126558551 0.673190464368673 23.1 0.000128206856850678 83.5571899891812 0.983774332135148 -56.1370358575348 0.983774332135148 -56.1370358575348 0.000134855804775022 -15.8531902290767 ! Gamma ! 0.163557626605644 198.316313571045 0.163557512926074 198.317576492895 ! Port Impedance919.832251936912 0.619659031001309 919.826400185244 0.619643870677555 23.2 0.000156809746891711 28.3267457694036 0.984128182094257 -85.1456138986099 0.984128182094257 -85.1456138986098 0.000169939512694532 -13.2042502215795 ! Gamma ! 0.159895481606797 203.379654463287 0.15989544804012 203.380885973693 ! Port Impedance900.814683455605 0.572424611478829 900.809234617892 0.572410985488173 23.3 0.00019395599703417 -20.3117783497115 0.984463461728905 -113.573752228318 0.984463461728904 -113.573752228318 0.000201798703006706 -20.0763758643353 ! Gamma ! 0.156489961702163 208.341051204625 0.156490000220177 208.342253417592 ! Port Impedance883.152956649732 0.530516810224261 883.147866167736 0.530504485588981 23.4 0.000217970638149162 -69.1350852030882 0.984781439573089 -141.461198158854 0.984781439573089 -141.461198158854 0.000220073713620251 -31.1482210216462 ! Gamma ! 0.153313135408378 213.207620669328 0.153313239169148 213.208795470037 ! Port Impedance866.698150235277 0.493137773271979 866.693380169965 0.49312656082491 23.5 0.000209052374334273 -117.257374770081 0.985079262934715 -168.841384745837 0.985079262934715 -168.841384745837 0.000217742807311023 -44.3188493212272 ! Gamma ! 0.150341146637156 217.985714018096 0.150341309766989 217.986863096211 ! Port Impedance851.323149009641 0.459636580692989 851.318666827767 0.459626325416685 23.6 0.000177610012628304 -161.51029104431 0.98535549563753 164.254881052885 0.98535549563753 164.254881052885 0.000192355113646021 -56.8813965879992 ! Gamma ! 0.14755348090656 222.681026617767 0.147553698329072 222.682151494753 ! Port Impedance836.918710488522 0.429477515064581 836.914488110454 0.429468088846923 23.7 0.000143246645619785 156.727178624461 0.985611992567455 137.798047757248 0.985611992567455 137.798047757248 0.000153254232594075 -65.3275291117896 ! Gamma ! 0.144932386805694 227.298688506336 0.14493265410641 227.299790558057 ! Port Impedance823.390364667893 0.402216117029304 823.386377712847 0.402207413168825 23.8 0.000112694997496931 112.613837231053 0.985852622521757 111.760212835697 0.985852622521757 111.760212835697 0.000114773221716868 -66.4136012529849 ! Gamma ! 0.14246241533195 231.843339449856 0.142462728650021 231.844419925407 ! Port Impedance810.655946168769 0.377480904105419 810.652173350618 0.377472833094217 23.9 8.79017916267284E-05 59.290930786432 0.986080993224584 86.1160195807684 0.986080993224584 86.1160195807685 8.79765349344349E-05 -57.5004134628146 ! Gamma ! 0.140130049733853 236.319191679591 0.140130405674709 236.32025171711 ! Port Impedance798.643611827652 0.354959262173265 798.640034467236 0.354951748425258 24 7.63071140316505E-05 -8.41904281250634 0.986299001600551 60.8431055715101 0.986299001600552 60.8431055715101 8.00243403743828E-05 -41.1539037267564 ! Gamma ! 0.137923405571014 240.730082692135 0.137923801135318 240.731123332165 ! Port Impedance787.290234821978 0.33438644848647 787.286836450181 0.334379427777503 24.1 8.48333704020458E-05 -78.645608636576 0.986506846878984 35.9218163948954 0.986506846878985 35.9218163948953 8.86884093612531E-05 -28.3719152886382 ! Gamma ! 0.135831985775341 245.079519969283 0.135832418300779 245.08054216613 ! Port Impedance776.540093666554 0.315536940774766 776.536859698839 0.315530358220495 24.2 0.000101846588144612 -137.043638289259 0.986704061472538 11.3344449479307 0.986704061472539 11.3344449479307 0.000103576112405188 -23.431115918398 ! Gamma ! 0.133846479179325 249.370719078011 0.133846946293787 249.371723709453 ! Port Impedance766.343794188614 0.298217573562134 766.34071165631 0.298211382007688 24.3 0.000116135157680596 174.046024200154 0.986890637327198 -12.9355286282895 0.986890637327199 -12.9355286282895 0.00011767145797186 -23.087510079683 ! Gamma ! 0.131958593680815 253.606636309063 0.131959093257638 253.607624184715 ! Port Impedance756.657377106093 0.28226204901363 756.654434433081 0.282256207741308 24.4 0.000126815076709868 129.307084395221 0.987067498638134 -36.9038282692292 0.987067498638134 -36.9038282692292 0.000129416988555355 -24.4719252214037 ! Gamma ! 0.130160917220878 257.789996780507 0.130161447352713 257.79096864901 ! Port Impedance747.441574609244 0.26752651436103 747.438761425256 0.267520988045731 24.5 0.000136320282278395 85.2474967580452 0.987236130629794 -60.5853211510238 0.987236130629794 -60.5853211510238 0.000139787009099083 -26.390625614116 ! Gamma ! 0.128446801256645 261.923318752585 0.128447360222718 261.924275307881 ! Port Impedance738.661187425803 0.253885973854003 738.658494409436 0.253880731713242 24.6 0.0001465857175392 40.6625778601347 0.987397746504179 -83.9937039332699 0.987397746504178 -83.9937039332699 0.000150131179359124 -28.6167828396968 ! Gamma ! 0.126810262550767 266.008934759303 0.126810848794318 266.009876646084 ! Port Impedance730.284559966423 0.241231358768745 730.281978712462 0.241226373866431 24.7 0.000158132479767356 -3.51445037259249 0.987552661504619 -107.14127701267 0.987552661504619 -107.14127701267 0.000161394112259323 -31.3270301110872 ! Gamma ! 0.125245899969706 270.049010051148 0.125246512077903 270.049937869633 ! Port Impedance722.283135818715 0.229467120120856 722.280658725355 0.229462368793983 24.8 0.000170487473039309 -45.5586964185 0.98770041969325 -130.039090646865 0.98770041969325 -130.039090646865 0.000173928304252661 -34.8526541517466 ! Gamma ! 0.1237488236537 274.045558755125 0.123749460340481 274.046473065254 ! Port Impedance714.631079455413 0.218509239428174 714.628699628083 0.218504700811711 24.9 0.000183108930217242 -84.7550593641383 0.987840750182233 -152.697518260622 0.987840750182233 -152.697518260622 0.000187252738154501 -39.5962874692779 ! Gamma ! 0.122314594441739 278.000458087764 0.122315254533103 278.001359412896 ! Port Impedance707.304952815055 0.2082835759885 707.3026639839 0.208279231619641 25 0.000195048611376601 -121.96481627408 0.987974821368568 -175.127003233512 0.987974821368568 -175.127003233512 0.00019947196312815 -45.9625524715639 ! Gamma ! 0.12093917184203 281.91546089997 0.120939854263369 281.916349730157 ! Port Impedance700.283437596312 0.198724486696048 700.281234045166 0.198720320174279 25.1 0.000203047705647885 -158.867579643685 0.98810577789683 162.661544684699 0.988105777896831 162.661544684699 0.000206594740103608 -54.1565633519398 ! Gamma ! 0.119618869158987 285.79220678662 0.119619572924154 285.793083581511 ! Port Impedance693.547095826442 0.189773667858176 693.544972331464 0.189769664602591 25.2 0.000200432978845029 163.455380536867 0.988237412227617 140.657349534972 0.988237412227617 140.657349534972 0.000203226539788909 -63.7770112779442 ! Gamma ! 0.118350314641931 289.632231956341 0.118351038843752 289.633097147769 ! Port Impedance687.078162626566 0.181379178834109 687.076114402905 0.181375325794721 25.3 0.000182395756303567 125.926928912348 0.988370160644345 118.851917898754 0.988370160644343 118.851917898754 0.000186462247017646 -73.5255272949754 ! Gamma ! 0.117130417723336 293.436978026259 0.117131161525342 293.437832020555 ! Port Impedance680.860366182894 0.173494615360588 680.858388838356 0.1734909008535 25.4 0.000154481983287828 90.8887354798154 0.988494417918727 97.2429608355713 0.988494417918725 97.2429608355716 0.000159712530842526 -81.6807976591216 ! Gamma ! 0.115956339577079 297.207799881227 0.115957102206257 297.208643061284 ! Port Impedance674.878770804558 0.166078406714981 674.876860299054 0.166074820244306 25.5 0.000127342090184427 59.7547397150008 0.988582321175629 75.8397866225448 0.988582321175629 75.8397866225449 0.000130130118002722 -87.0423921427791 ! Gamma ! 0.114825467358347 300.945972716171 0.114826248098676 300.946805443307 ! Port Impedance669.119639651645 0.159093215809236 669.117792261666 0.159089747921518 25.6 8.86427296262727E-05 11.0543212238637 0.988690046341503 54.6037473426446 0.988690046341502 54.6037473426446 9.27282529874592E-05 -80.2066402287123 ! Gamma ! 0.113735391593324 304.652698362816 0.113736189780606 304.653520978437 ! Port Impedance663.570314287153 0.152505425218184 663.568526574523 0.152502067377787 25.7 7.77445954076011E-05 -62.3357718191748 0.988794138443791 33.539957607626 0.988794138443791 33.539957607626 8.19175042989172E-05 -51.4010739133681 ! Gamma ! 0.112683886273209 308.329110987565 0.1126847012897 308.329923814683 ! Port Impedance658.219108671227 0.146284695256165 658.217377455558 0.146281439737523 25.8 0.000118573880648534 -123.767982817548 0.988894531456491 12.6445867049233 0.988894531456492 12.6445867049233 0.000121694263536163 -32.4946868044582 ! Gamma ! 0.111668891278839 311.976282235141 0.111669722549216 311.977085579739 ! Port Impedance653.055215596562 0.140403582704028 653.053537930887 0.140400422498833 25.9 0.000179596441250423 -163.043834547948 0.988991435601054 -8.08839930851369 0.988991435601055 -8.0883993085137 0.000181879343445 -34.2435308110265 ! Gamma ! 0.110688496819904 315.595225882386 0.110689343807423 315.596020034648 ! Port Impedance648.068623876987 0.134837210789197 648.066997026145 0.13483413952598 26 0.000241729466602227 166.258788761912 0.989085114839913 -28.6652459895824 0.989085114839912 -28.6652459895823 0.000242834718339571 -44.0883252097562 ! Gamma ! 0.109740929621573 319.186902057926 0.109741791824547 319.187687293366 ! Port Impedance643.250044859903 0.129562982636675 643.248466281335 0.129559994510957 26.1 0.000296858063311325 139.002122921873 0.98917578523729 -49.091577215664 0.98917578523729 -49.091577215664 0.00029749649090342 -57.3171222561816 ! Gamma ! 0.108824540631258 322.752221076125 0.108825417579452 322.75299765661 ! Port Impedance638.590847048024 0.124560331721338 638.589314374648 0.124557421434706 26.2 0.000339232141702127 113.363972116941 0.989263594843738 -69.37227602393 0.989263594843737 -69.37227602393 0.000340932316017271 -72.480303583274 ! Gamma ! 0.107937794051724 326.292046927465 0.107938685304006 326.292815102144 ! Port Impedance634.082997794672 0.119810503925327 634.081508819586 0.11980766662772 26.3 0.000364679677981946 88.5943166193311 0.989348645083738 -89.5116976088072 0.989348645083739 -89.5116976088072 0.000367553144884716 -88.8505663309618 ! Gamma ! 0.107079257534684 329.80720046218 0.107080162677324 329.807960468343 ! Port Impedance629.719011186526 0.115296366654227 629.717563849318 0.115293597905494 26.4 0.000371485295729359 64.2907507084904 0.989431022584514 -109.513946575705 0.989431022584513 -109.513946575705 0.000372977128894415 -105.575798481118 ! Gamma ! 0.106247593392506 333.2984622994 0.106248512036446 333.299214363252 ! Port Impedance625.491901353319 0.111002241251218 625.490493727768 0.110999536974315 26.5 0.000360753422262941 40.0661358287959 0.989510822886508 -129.38307215432 0.989510822886508 -129.383072154321 0.000357977845319458 -121.579948228054 ! Gamma ! 0.105441550705454 336.76657549011 0.105442482484162 336.767319827487 ! Port Impedance621.395140549707 0.106913755452043 621.393770832735 0.106911111897231 26.6 0.000335939277111691 15.3695353688424 0.989588159221702 -149.123136053883 0.989588159221703 -149.123136053883 0.000329295335795024 -135.883812989172 ! Gamma ! 0.10465995821857 340.212247958881 0.104660902786284 340.212984775909 ! Port Impedance617.422621444046 0.103017713189445 617.421287945759 0.103015126902554 26.7 0.000302282814183712 -10.6035559425089 0.989663158040521 -168.738174458828 0.989663158040522 -168.738174458829 0.000295889659104328 -147.886710761305 ! Gamma ! 0.103901717936519 343.636154746369 0.103902674966662 343.636884240068 ! Port Impedance613.568623124596 0.0993019794327889 613.56732425929 0.0992994472268461 26.8 0.000266758414459814 -38.8824399362554 0.989735947361064 171.767893308794 0.989735947361065 171.767893308794 0.000265298286380065 -157.383644289159 ! Gamma ! 0.103165799336776 347.038940072054 0.103166768520506 347.039662430893 ! Port Impedance609.827780398174 0.0957553780961057 609.826514676208 0.0957528970261305 26.9 0.000238195178497208 -70.2825269000582 0.98980664472033 152.391355125384 0.98980664472033 152.391355125384 0.000242956427130119 -164.543774633159 ! Gamma ! 0.102451234131824 350.421219234485 0.102452215176719 350.421934638897 ! Port Impedance606.195056011391 0.0923676013347757 606.193822031809 0.0923651686753526 27 0.000225697871874565 -104.112014559722 0.989875349686123 133.128757769083 0.989875349686122 133.128757769083 0.000233059120159896 -170.133111326018 ! Gamma ! 0.101757111519871 353.783580364369 0.101758104148724 353.784288987223 ! Port Impedance602.665715471616 0.0891291287913041 602.664511915466 0.0891267420165653 27.1 0.000233635544251667 -137.296392387867 0.989942142934881 113.976906302667 0.989942142934881 113.976906302667 0.000238740730101088 -175.842228500312 ! Gamma ! 0.101082573871123 357.126586044154 0.101083577820842 357.127288051198 ! Port Impedance599.235304185338 0.0860311555532885 599.234129809584 0.0860288123190083 27.2 0.000258229540727706 -166.68200137395 0.990007091050433 94.9328193467172 0.990007091050433 94.9328193467173 0.000260612505843784 176.020386151324 ! Gamma ! 0.100426812803197 360.450774806315 0.100427827823811 360.451470356579 ! Port Impedance595.899626666291 0.0830655277579844 595.898480298275 0.0830632258855469 27.3 0.000291623847522097 168.522864609764 0.990070254293556 75.9936623944267 0.990070254293557 75.9936623944268 0.000294648004733026 163.736214351137 ! Gamma ! 0.0997890656048562 363.756662521217 0.0997900914586571 363.757351767393 ! Port Impedance592.654727595778 0.0802246849231124 592.653608128168 0.0802224223851704 27.4 0.000327086371556393 147.522109176508 0.990131693994027 57.1566851013225 0.990131693994028 57.1566851013226 0.000331965430055468 147.157314042415 ! Gamma ! 0.0991686119721017 367.044743684323 0.0991696484329451 367.045426773113 ! Port Impedance589.49687454355 0.0775016082070153 589.495780929725 0.0774993831147931 27.5 0.000360256693469969 129.26388506122 0.990191476841879 38.4191831402542 0.99019147684188 38.4191831402543 0.000363185938288012 127.532893336977 ! Gamma ! 0.0985647710249025 370.315492611505 0.0985658178774255 370.316169683948 ! Port Impedance586.422542180112 0.0748897739065524 586.421473429932 0.0748875844995348 27.6 0.000388375543092853 112.905321315687 0.990249674796148 19.7784939984876 0.990249674796149 19.7784939984877 0.000384850242054731 106.419028844263 ! Gamma ! 0.0979768985764835 373.569364550333 0.0979779556151527 373.570035742109 ! Port Impedance583.428397830867 0.0723831115911087 583.427353006814 0.0723809562164715 27.7 0.000409373767488443 97.8491756507037 0.990306361026305 1.23202323189127 0.990306361026305 1.23202323189135 0.000399783369850508 84.6636884372893 ! Gamma ! 0.0974043846302882 376.80679671442 0.0974054516587122 376.80746215613 ! Port Impedance580.511288239576 0.0699759663481217 580.5102664532 0.069973843470624 27.8 0.000421308564563875 83.7056905769488 0.990361603709092 -17.2227128302809 0.990361603709092 -17.2227128302808 0.00041149568020574 62.2385892844012 ! Gamma ! 0.0968466510825137 380.028209247223 0.0968477279129452 380.028869064658 ! Port Impedance577.668227423435 0.0676630646814937 577.667227832087 0.067660972859613 27.9 0.000422222063829407 70.27606843336 0.990415460227809 -35.5880472810681 0.990415460227809 -35.588047281068 0.000419278717221733 38.6765178666257 ! Gamma ! 0.0963031496105611 383.234006121083 0.0963042360633711 383.234660435464 ! Port Impedance574.896385515108 0.0654394836615389 574.895407318947 0.0654374215441889 28 0.000410457830921371 57.5674168694513 0.990467974195017 -53.8661440755112 0.990467974195017 -53.8661440755112 0.000416508762030805 13.6988393730217 ! Gamma ! 0.0957733597298796 386.424575976712 0.0957744556330388 386.425224904924 ! Port Impedance572.193078498454 0.0633006229749449 572.192120937684 0.0632985892947148 28.1 0.000385385875842883 45.829431806895 0.99051917681673 -72.0590122628358 0.990519176816729 -72.0590122628358 0.000394150478351857 -12.1344384947941 ! Gamma ! 0.0952567870035623 389.600292907877 0.0952578921926264 389.600936562687 ! Port Impedance569.55575875469 0.0612421795650037 569.554821107011 0.0612401731316158 28.2 0.000348260202375509 35.6058332555587 0.990569092710595 -90.1685539886872 0.990569092710595 -90.1685539886873 0.00035018432412098 -37.3228067120105 ! Gamma ! 0.0947529613907041 392.76151719558 0.0947540757087163 392.762155685832 ! Port Impedance566.982006344553 0.0592601245889015 566.981087922807 0.0592581442832615 28.3 0.000302797251866509 27.8149499812131 0.990617748779546 -108.196635799011 0.990617748779547 -108.196635799011 0.000293467912199076 -60.3996128830721 ! Gamma ! 0.0942614357209871 395.908595995622 0.0942625590164238 395.909229426429 ! Port Impedance564.469520959798 0.0573506824516554 564.468621109797 0.0573487272205484 28.4 0.000255422749868486 23.8738819160514 0.990665183546481 -126.145163547528 0.990665183546483 -126.145163547528 0.000234784576782115 -80.9866865218705 ! Gamma ! 0.09378178428425 399.041863983123 0.0937829164114207 399.042492456049 ! Port Impedance562.016114484223 0.0555103117041875 562.015232582739 0.0555083805554777 28.5 0.000215780593718925 25.5954360817413 0.990711453818623 -144.016136776906 0.990711453818626 -144.016136776906 0.000179021011648057 -100.022512875446 ! Gamma ! 0.0933136015249369 402.161643957233 0.0933147423439928 402.162267570456 ! Port Impedance559.619704110518 0.0537356876171218 559.618839563413 0.0537337796153573 28.6 0.000196952394131265 33.4377533880889 0.990756635859148 -161.811660314299 0.990756635859152 -161.811660314299 0.000125450782759269 -120.406201787228 ! Gamma ! 0.0928565008323314 405.268247408982 0.0928576502088553 405.268866257451 ! Port Impedance557.278305964565 0.052023686263147 557.277458205069 0.0520218005255276 28.7 0.000209704445400822 42.7944058595084 0.990800819386335 -179.533899096749 0.990800819386339 -179.533899096749 7.30659711183358E-05 -154.109483971469 ! Gamma ! 0.0924101134183803 408.36197505497 0.0924112712230444 408.362589230556 ! Port Impedance554.990029193666 0.0503713699594519 554.989197680769 0.050369505652129 28.8 0.000252120202017269 46.9903732543434 0.990844094489006 162.815024413266 0.990844094489009 162.815024413266 6.96745139682226E-05 117.782469943743 ! Gamma ! 0.0919740872757102 411.443117339378 0.0919752533839852 411.443726931008 ! Port Impedance552.753070479371 0.048775973938083 552.752254696337 0.0487741302727641 28.9 0.000312622665952631 44.1988056640084 0.990886533581017 145.233174978585 0.990886533581017 145.233174978585 0.000218034317839708 67.3827940229191 ! Gamma ! 0.09154808620915 414.511954906546 0.0915492605010423 414.512560000338 ! Port Impedance550.56570893941 0.0472348941264254 550.564908392384 0.047233070357257 29 0.000376944573027842 35.6758115314959 0.990928172371349 127.718961129788 0.990928172371347 127.718961129788 0.00071655695327614 28.5394145074576 ! Gamma ! 0.09113178893471 417.568759046202 0.0911329712945202 417.569359725586 ! Port Impedance548.426301386573 0.0457456759326456 548.425515603296 0.0457438713533472 29.1 0.000427648754888709 23.156947261369 0.990968995046069 110.271262245659 0.990968995046063 110.271262245659 0.00110297309082178 -64.4492536874973 ! Gamma ! 0.0907248882405334 420.613792113236 0.0907260785566316 420.614388459075 ! Port Impedance546.333277915451 0.0443060039420684 546.332506444056 0.0443042178832962 29.2 0.00044798146442402 8.73522360758828 0.991008929060378 92.8894814087357 0.991008929060369 92.8894814087359 0.000615970747523331 -99.5563866557095 ! Gamma ! 0.0903270902048452 423.647307923787 0.0903282883694612 423.647900014482 ! Port Impedance544.285137790601 0.0429136924402969 544.284380198489 0.0429119242672158 29.3 0.000433813707633863 -5.28786070929223 0.991047853888663 75.5734852800529 0.991047853888653 75.5734852800531 0.000449659025337474 -109.363964414677 ! Gamma ! 0.089938113466378 426.669552129224 0.0899393193754062 426.670140040822 ! Port Impedance542.280445612168 0.0415666766875924 542.279701484964 0.0415649257976369 29.4 0.000396319651621289 -17.2543341348454 0.991085625765198 58.3234084092389 0.991085625765187 58.323408409239 0.000372961197993287 -112.317854582824 ! Gamma ! 0.0895576885431636 429.680762569527 0.0895589020959802 429.681346375818 ! Port Impedance540.317827737138 0.0402630048767325 540.317096677711 0.04026127069754 29.5 0.000350159948485057 -26.5485880618216 0.991122117126973 41.1393245223541 0.991122117126965 41.1393245223542 0.000328628522822779 -111.309876692716 ! Gamma ! 0.0891855571959464 432.681169607423 0.0891867782952377 432.681749380035 ! Port Impedance538.395968936358 0.0390008307134127 538.395250563905 0.0389991127009147 29.6 0.000304695556602903 -33.2084317494088 0.991157265666373 24.0208182897268 0.991157265666371 24.0208182897268 0.000298088262634009 -106.92671393072 ! Gamma ! 0.088821471832804 435.67099644454 0.0888227003844068 435.671572253024 ! Port Impedance536.513609269235 0.0377784065643326 536.512903218429 0.0377767042009882 29.7 0.000263791491509494 -37.4401108916669 0.991191124316648 6.96652322639978 0.991191124316654 6.96652322639963 0.000272554718301449 -99.1853407683163 ! Gamma ! 0.0884651949518597 438.650459420738 0.0884664308646104 438.651031332654 ! Port Impedance534.669541159572 0.0365940771235153 534.668847079756 0.0365923899166765 29.8 0.000228287199598011 -39.3740973863838 0.991223900847599 -10.0262806397973 0.991223900847613 -10.0262806397977 0.000246618693181098 -88.0715091742107 ! Gamma ! 0.0881164986192393 441.619768297702 0.0881177418048335 441.620336378701 ! Port Impedance532.862606657467 0.0354462735522341 532.861924211904 0.03544460103263 29.9 0.000197797357500407 -38.9982516976187 0.991255974606501 -26.9618969528003 0.991255974606522 -26.9618969528007 0.000217465234284294 -73.89720654563 ! Gamma ! 0.0877751639796689 444.579126527789 0.0877764143525288 444.579690841684 ! Port Impedance531.091694873466 0.0343335080522158 531.091023738635 0.0343318497725475 30 0.000171609769342413 -36.1739946013299 0.991287878603387 -43.8461531535711 0.991287878603412 -43.8461531535716 0.000185836199672888 -57.4475717345099 ! Gamma ! 0.0874409807973267 447.528731509051 0.0874422382744771 447.529292117891 ! Port Impedance529.355739572328 0.0332543688356397 529.355079437262 0.0332527243692746 30.1 0.000149107093094882 -30.705261502685 0.991320237688395 -60.6859429628329 0.99132023768842 -60.6859429628333 0.000155549135128264 -39.7625769983444 ! Gamma ! 0.0871137470247648 450.468774827283 0.0871150115257166 450.46933179142 ! Port Impedance527.653716914841 0.0322075154588855 527.653067480503 0.0322058843986437 30.2 0.000129991969952639 -22.4707172997128 0.991353658023195 -77.4882915877239 0.991353658023212 -77.4882915877242 0.000130600640686818 -21.8307145571698 ! Gamma ! 0.0867932683978945 453.399442485909 0.0867945398445346 453.399995864064 ! Port Impedance525.984643337045 0.0311916744900667 525.984004315748 0.0311900564470933 30.3 0.00011436740758548 -11.6302431147406 0.991388569560695 -94.2589111971239 0.991388569560697 -94.258911197124 0.000112756778738186 -4.57376979578725 ! Gamma ! 0.086479358055192 456.320915124418 0.0864806363716805 456.321464973743 ! Port Impedance524.34757355713 0.0302056354831515 524.346944671984 0.0302040300858646 30.4 0.000102572252398961 1.14865788983401 0.991425032113033 -111.000282268012 0.991425032113012 -111.000282268012 0.00010148442297698 11.1077179884459 ! Gamma ! 0.0861718361794327 459.233368226054 0.0861731212921055 459.233914602187 ! Port Impedance522.741598701026 0.0292482472339511 522.740979685423 0.0292466541270628 30.5 9.47596183695202E-05 14.6404887971023 0.991462526878242 -127.709385658913 0.991462526878193 -127.709385658912 9.51226960503855E-05 24.5455033840289 ! Gamma ! 0.0858705296603935 462.136972315385 0.0858718214976709 462.13751527251 ! Port Impedance521.165844538459 0.02831841429549 521.165235135581 0.0283168331390925 30.6 9.05393436457024E-05 27.407220772836 0.991499768037622 -144.37531611023 0.991499768037546 -144.375316110229 9.1938820837763E-05 35.5225835271083 ! Gamma ! 0.0855752717770906 465.031893146356 0.0855765702693906 465.032432737255 ! Port Impedance519.619469821853 0.0274150937322827 519.618869784219 0.0274135242009949 30.7 8.90533302146733E-05 38.3724678272877 0.991534580196654 -160.977115590592 0.99153458019656 -160.977115590591 9.0616502845024E-05 44.2188710874556 ! Gamma ! 0.0852859018982259 467.918291881365 0.0852872069778829 467.918828157466 ! Port Impedance518.101664721115 0.0265372920948486 518.101073810142 0.0265357338770193 30.8 8.93581088980679E-05 47.1162283256467 0.99156389147596 -177.482245663536 0.991563891475866 -177.482245663535 9.03085070471449E-05 51.0034610206517 ! Gamma ! 0.0850022651996251 470.796325261883 0.0850035768008131 470.796858273313 ! Port Impedance516.611649347808 0.0256840625974351 516.611067333408 0.0256825153943965 30.9 9.07131023826501E-05 53.740336905595 0.991583882146087 166.153869032185 0.99158388214602 166.153869032186 9.05180255392871E-05 56.2692137061499 ! Gamma ! 0.0847242123975376 473.666145771108 0.0847255304561966 473.666675566735 ! Port Impedance515.148672362793 0.0248545024833901 515.148099022981 0.0248529660087607 31 9.26396373386997E-05 58.588435006023 0.991590300413755 149.986888884212 0.991590300413755 149.986888884212 9.09688786053867E-05 60.3571972698134 ! Gamma ! 0.084451599496757 476.527901789082 0.0844529239505244 476.528428416562 ! Port Impedance513.712009661798 0.0240477505639638 513.711444782329 0.0240462245429935 31.1 0.000103822694372053 66.9466432518451 0.991599892506372 133.759128650577 0.991599892506334 133.759128650579 7.63219060142161E-05 63.4464797653677 ! Gamma ! 0.0841842875525627 479.381737740706 0.0841856183404194 479.382261246525 ! Port Impedance512.300963133847 0.023262984917342 512.300406507872 0.0232614690867797 31.2 0.000120194058750402 73.9594487090396 0.991620446342514 117.491651513523 0.991620446342462 117.491651513526 5.89875738544483E-05 72.4181201709023 ! Gamma ! 0.0839221424456863 482.227794237044 0.0839234795084927 482.228314666556 ! Port Impedance510.914859487822 0.0224994207371999 510.914310915561 0.0224979148436041 31.3 0.000142425531266332 79.3044730277529 0.991647575125961 101.219222400322 0.991647575125911 101.219222400324 4.36281390287872E-05 98.4568110537117 ! Gamma ! 0.0836650346694384 485.066208210271 0.0836663779495245 485.066725607738 ! Port Impedance509.553049142805 0.0217563083168083 509.552508431239 0.021754812116735 31.4 0.000171385261178588 82.9087724834484 0.991677775165332 84.9671443995868 0.991677775165294 84.9671443995884 5.20696170880499E-05 145.001691785565 ! Gamma ! 0.0834128391281201 487.897113042621 0.0834141885692323 487.897627451249 ! Port Impedance508.214905178144 0.0210329311623748 508.214372140723 0.021031444421861 31.5 0.000208338287318195 84.8086368218349 0.991708514825682 68.7521754993827 0.991708514825657 68.7521754993837 9.95860241718011E-05 169.06409008957 ! Gamma ! 0.0831654349461365 490.720638689651 0.0831667904933873 490.721150151626 ! Port Impedance506.899822339497 0.0203286042241951 506.89929679586 0.020327126718275 31.6 0.000255135856124724 85.0304564714817 0.991738186454032 52.5839542494204 0.991738186454022 52.5839542494207 0.00018463591662534 174.50069599365 ! Gamma ! 0.0829227052871112 493.536911798122 0.0829240668869297 493.537420354643 ! Port Impedance505.607216097364 0.019642672237676 505.60669787308 0.0196412037499276 31.7 0.000314385118960392 83.5103904411217 0.991765965219626 36.4666505733398 0.991765965219628 36.4666505733397 0.000324531374575866 171.284927841057 ! Gamma ! 0.0826845371823871 496.346055818784 0.0826859047824733 496.346561510094 ! Port Impedance504.336521754879 0.0189745081664482 504.336010681194 0.0189730484885669 31.8 0.000389482652558862 80.0325848749603 0.991791620715048 20.4006063893449 0.991791620715057 20.4006063893445 0.000560081184339016 160.561908411827 ! Gamma ! 0.082450821368345 499.148191114322 0.0824521949176253 499.148693979745 ! Port Impedance503.087193601844 0.0183235117404019 503.086689515448 0.018322060671801 31.9 0.000484010237929588 74.1688930584557 0.991815319806652 4.38380005299814 0.991815319806667 4.38380005299755 0.000930409012198103 138.827579283892 ! Gamma ! 0.0822214521320078 501.94343506273 0.0822228315805921 501.943935140692 ! Port Impedance501.858704112217 0.0176891080820455 501.858206855017 0.0176876654294798 32 0.000598905752271903 65.2437635991024 0.991837447978917 -11.5869611267354 0.991837447978932 -11.5869611267361 0.00124427135999401 104.693504644864 ! Gamma ! 0.0819963271644365 504.731902156321 0.0819977124635774 504.732399484383 ! Port Impedance500.650543182436 0.0170707464150992 500.650052601342 0.0170693119923115 32.1 0.00072402048294063 52.4797877594943 0.991858465108911 -27.5151565582054 0.991858465108923 -27.5151565582059 0.00119061731385031 73.4908806618557 ! Gamma ! 0.0817753474214573 507.513704096618 0.0817767385235106 507.514198711505 ! Port Impedance499.462217408161 0.0164678988497086 499.461733354888 0.0164664724770968 32.2 0.000824502483504898 35.707029652762 0.991878802191412 -43.4039682050615 0.991878802191421 -43.4039682050617 0.00101587997810254 54.1439940666478 ! Gamma ! 0.0815584169912902 510.288949885319 0.0815598138496772 510.289441822942 ! Port Impedance498.293249397173 0.0158800592390918 498.292771728043 0.0158786407433946 32.3 0.000848848828656396 16.5716562096019 0.991898798595028 -59.2559594483626 0.991898798595033 -59.2559594483628 0.000879551792584812 42.0160578959747 ! Gamma ! 0.0813454429686795 513.057745911537 0.0813468455378496 513.058235207022 ! Port Impedance497.143177116307 0.0153067421028276 497.142705692067 0.0153053313168282 32.4 0.0007831229447426 -1.81586815692825 0.991918674823853 -75.072963702027 0.991918674823855 -75.0729637020269 0.000784358855566075 33.2402063381331 ! Gamma ! 0.08113633533515 515.8201960355 0.0811377435705443 515.820682723209 ! Port Impedance496.011553270464 0.0147474816123533 496.011087956113 0.0147460783745983 32.5 0.000665808919165709 -17.4468558369642 0.991938533103583 -90.8561236441898 0.991938533103581 -90.8561236441896 0.000713687633743783 25.9467202378878 ! Gamma ! 0.0809310068450417 518.576401668871 0.0809324207030574 518.576885782426 ! Port Impedance494.897944711852 0.0142018306345717 494.897485376475 0.0142004347891042 32.6 0.000534980237602323 -30.3482358053814 0.991958377016923 -106.60602371067 0.99195837701692 -106.60602371067 0.000653831770338319 19.1674079737147 ! Gamma ! 0.080729372916995 521.326461851876 0.0807307923549499 521.326943424184 ! Port Impedance493.80193187775 0.013669359829769 493.801478394356 0.0136679712258731 32.7 0.000404669830423348 -41.5012205886789 0.99197814154764 -122.322865622082 0.991978141547635 -122.322865622082 0.000592467204077638 12.2920672824196 ! Gamma ! 0.0805313515305814 524.07047332737 0.0805327765066898 524.070952390641 ! Port Impedance492.723108255161 0.0131496568003241 492.722660500538 0.0131482752922797 32.8 0.000273661493967979 -52.1288638405245 0.991997725955198 -138.006647145663 0.991997725955195 -138.006647145662 0.000514018901448985 4.91635534493184 ! Gamma ! 0.0803368631277922 526.808530612001 0.0803382936012068 526.809007197768 ! Port Impedance491.661079870889 0.0126423252869425 491.660637725455 0.0126409507337918 32.9 0.000134384157149676 -64.5257565783411 0.992017023591185 -153.657316214239 0.992017023591183 -153.657316214239 0.000392507914373021 -2.49337689502437 ! Gamma ! 0.0801458305191187 529.540726064601 0.0801472664501358 529.541200203744 ! Port Impedance490.615464805591 0.0121469844093766 490.61502815326 0.0121456166747135 33 2.81243940452356E-05 136.597352302899 0.992035944773714 -169.274884369203 0.992035944773714 -169.274884369203 0.00019246147221191 2.58086730936499 ! Gamma ! 0.0799581787939659 532.26714995194 0.0799596201438647 532.267621674703 ! Port Impedance489.585892730518 0.0116632679488104 489.585461458569 0.0116619069006127 33.1 0.000217303869974151 101.749612251996 0.992054430857203 175.140505994143 0.992054430857205 175.140505994143 0.000273891191530086 89.5962090615404 ! Gamma ! 0.0797738352351376 534.987890511968 0.0797752819655037 534.988359847975 ! Port Impedance488.572004465691 0.011190823669312 488.571578464641 0.0111894691797971 33.2 0.00045365158718767 85.6866935137449 0.992072459418153 159.588557790647 0.992072459418155 159.588557790647 0.000711834558714341 76.1418954307626 ! Gamma ! 0.0795927292368954 537.703034014643 0.0795941813104053 537.703500992919 ! Port Impedance487.573451558354 0.0107293126759877 487.573030721848 0.0107279646197585 33.3 0.000733764950759453 67.4778806792018 0.992090041844207 144.068830365874 0.992090041844211 144.068830365874 0.000994908701948991 52.9632066374003 ! Gamma ! 0.0794147922244012 540.412664820484 0.0794162496081629 540.413129469467 ! Port Impedance486.589895880626 0.0102784088075964 486.589480105282 0.0102770670684052 33.4 0.00101949446655525 46.3397679845176 0.992107215475497 128.580774140908 0.992107215475502 128.580774140908 0.00112491298451943 35.3853863820821 ! Gamma ! 0.079239957598794 543.116865436923 0.0792414202478216 543.117327784486 ! Port Impedance485.621009245323 0.00983779806141924 485.620598430701 0.00983646252224699 33.5 0.00123631119801925 23.7454085578811 0.99212403280111 113.123776764164 0.992124032801114 113.123776764164 0.00119876381868947 22.1039585973428 ! Gamma ! 0.0790681606252541 545.815716572567 0.0790696285067615 545.816176646039 ! Port Impedance484.666473038989 0.00940717804837001 484.66606708742 0.00940584859653827 33.6 0.00133958596256551 2.15516865066748 0.992140550124683 97.6972100464579 0.992140550124687 97.6972100464578 0.00125881820184874 10.8928805322053 ! Gamma ! 0.07889933840264 548.509297189495 0.078900811482736 548.509755015662 ! Port Impedance483.725977871246 0.00898625747658226 483.725576687756 0.00898493400303747 33.7 0.00135341613066867 -17.1217632326052 0.992156817690435 82.3004694987918 0.992156817690438 82.3004694987917 0.00131608686730204 0.342003310850501 ! Gamma ! 0.0787334297841247 551.197684553602 0.0787349080288594 551.198140158731 ! Port Impedance482.799223239604 0.00857475566181986 482.798826731818 0.0085734380607649 33.8 0.00132287226713957 -34.3875053749478 0.992172872632466 66.933001444271 0.992172872632468 66.933001444271 0.00136802188295115 -10.4182251481572 ! Gamma ! 0.0785703753154636 553.88095428315 0.0785718586914007 553.881407693 ! Port Impedance481.885917208938 0.00817240206311858 481.885525286989 0.00817109023187904 33.9 0.00127593981573016 -50.654547920175 0.992188735404147 51.5943158623216 0.992188735404147 51.5943158623217 0.00140280645481044 -21.9087846762019 ! Gamma ! 0.0784101171759617 556.559180395566 0.0784116056502483 556.559631635406 ! Port Impedance480.985776104891 0.00777893584216237 480.985388681331 0.00777762968106961 34 0.00122231241637368 -67.0194252077062 0.992204409672985 36.283985890116 0.992204409672985 36.2839858901161 0.00140100122915086 -34.267056451356 ! Gamma ! 0.0782525991215421 559.232435352575 0.0782540926619112 559.232884447189 ! Port Impedance480.098524220479 0.00739410544500378 480.098141210197 0.00739280485728193 34.1 0.00116084571655058 -84.4932098122868 0.992219885117292 21.0016369462871 0.992219885117292 21.0016369462872 0.00134274852195283 -47.0729841039101 ! Gamma ! 0.0780977664301714 561.900790103727 0.0780992650049314 561.901237077437 ! Port Impedance479.223893535246 0.00701766820483249 479.223514855387 0.00701637309648818 34.2 0.00108493535308172 -103.977008020187 0.992235142190349 5.7469296053126 0.992235142190349 5.74692960531274 0.00122286150983672 -59.2761341427651 ! Gamma ! 0.0779455658495665 564.564314128411 0.0779470694275882 564.56475900508 ! Port Impedance478.361623446345 0.00664938996458381 478.361249016234 0.00664810024429844 34.3 0.000987600364420762 -126.213431339058 0.992250157749622 -9.48045936777771 0.992250157749622 -9.48045936777762 0.00106061150330974 -69.4758740655051 ! Gamma ! 0.077795945547077 567.223075476386 0.0777974540977806 567.223518279438 ! Port Impedance477.511460510936 0.00628904471825701 477.511090252004 0.00628776029727967 34.4 0.000869092395991569 -151.709304607085 0.99226491047556 -24.680853896679 0.992264910475559 -24.6808538966789 0.000889976981641933 -76.3978502520048 ! Gamma ! 0.0776488550616354 569.877140806928 0.0776503685549827 569.877581559351 ! Port Impedance476.673158199365 0.00593641426988956 476.672792035078 0.00593513506192376 34.5 0.000744273379267155 179.293512322195 0.992279385193632 -39.8545905073702 0.992279385193632 -39.8545905073701 0.000742210383091668 -79.2075379695066 ! Gamma ! 0.0775042452576585 572.526575426614 0.0775057636641703 572.527014150981 ! Port Impedance475.846476658579 0.0055912879092188 475.846114514372 0.00559001383027327 34.6 0.000640624839510165 146.980721769512 0.992293575513749 -55.0020237542338 0.99229357551375 -55.0020237542337 0.000638424367109237 -77.8445303491873 ! Gamma ! 0.0773620682805343 575.171443325835 0.0773635915716241 575.171880044305 ! Port Impedance475.031182485297 0.00525346210323332 475.030824288508 0.00525219307127497 34.7 0.000583548855627314 112.737505975344 0.992307484553084 -70.1235250501503 0.992307484553084 -70.1235250501503 0.000589183178714193 -73.7219564193131 ! Gamma ! 0.0772222775150931 577.811807214056 0.07722380566252 577.812241948397 ! Port Impedance474.227048508458 0.00492274020175187 474.226694188262 0.00492147613699042 34.8 0.000580098258834967 79.4353660415692 0.992321123852806 -85.2194760327811 0.992321123852806 -85.2194760327811 0.000592485751134432 -69.7739473513318 ! Gamma ! 0.0770848275468603 580.447728553921 0.0770863605202207 580.448161325499 ! Port Impedance473.433853580486 0.00459893215369348 473.433503067845 0.00459767298283544 34.9 0.000617911064545974 49.3189829054987 0.992334510885668 -100.290258495552 0.992334510885668 -100.290258495552 0.000633976269512002 -68.6700654261674 ! Gamma ! 0.0769496741140212 583.079267594165 0.0769512118871902 583.079698423975 ! Port Impedance472.651382377006 0.00428185425564544 472.651035604602 0.00428059990105728 35 0.000678026323735142 22.3730288284301 0.992347665743821 -115.336243363375 0.99234766574382 -115.336243363375 0.000693368833578302 -71.3727496501138 ! Gamma ! 0.076816774081556 585.706483401496 0.0768183166274532 585.706912310162 ! Port Impedance471.879425204547 0.00397132887879755 471.879082106732 0.00397007926722362 35.1 0.000742042060427493 -2.69740208417957 0.992360607676041 -130.357781175924 0.992360607676041 -130.357781175924 0.000749993780653412 -77.5550200009421 ! Gamma ! 0.0766860853985828 588.32943389139 0.0766876326905307 588.329860899176 ! Port Impedance471.117777815901 0.00366718423717341 471.117438328639 0.003665939297283 35.2 0.000790074822235781 -27.0977464708718 0.992373352109923 -145.355196101867 0.992373352109922 -145.355196101867 0.000785395299613032 -86.3621178185046 ! Gamma ! 0.0765575670650285 590.948175857892 0.0765591190767806 590.94860098471 ! Port Impedance470.366241232771 0.00336925415525521 470.365905293594 0.00336801381767051 35.3 0.00080122108225991 -51.1928533925194 0.992385908662821 -160.328784749572 0.99238590866282 -160.328784749572 0.000787102529705521 -96.7542567395406 ! Gamma ! 0.07643117909834 593.562765002452 0.0764327358040827 593.563188267869 ! Port Impedance469.624621575372 0.00307737784759529 469.624289123323 0.00307614204473038 35.4 0.00076473161664102 -74.3397879647888 0.992398280443031 -175.278820104271 0.992398280443029 -175.278820104271 0.000752854073766562 -107.711728666649 ! Gamma ! 0.0763068825014284 596.173255961821 0.0763084438758031 596.173677385071 ! Port Impedance468.89272989866 0.00279139970872908 468.892400874254 0.00279016837472501 35.5 0.000690497745088908 -95.4646407567406 0.992410464705251 169.794440034853 0.99241046470525 169.794440034853 0.000690157168261667 -118.458855425872 ! Gamma ! 0.0761846392317321 598.779702335067 0.0761862052499828 598.780121935055 ! Port Impedance468.170382034903 0.00251116911266419 468.170056380074 0.00250994218333284 35.6 0.000600572657334286 -113.894826794219 0.992422454689653 154.890741572444 0.992422454689652 154.890741572444 0.000610658258773331 -128.595017239351 ! Gamma ! 0.0760644121717705 601.382156709722 0.0760659828096951 601.382574505038 ! Port Impedance467.457398442286 0.00223654022143279 467.45707610035 0.00223531763420582 35.7 0.000512874937332087 -129.595296200005 0.992434242276814 140.009821621296 0.992434242276814 140.009821621297 0.000524553201112775 -138.068180071705 ! Gamma ! 0.0759461651033176 603.980670687112 0.0759477403345179 603.981086696031 ! Port Impedance466.753604059301 0.00196737180223812 466.753284974909 0.00196615349612037 35.8 0.000435668438034372 -142.879096209349 0.992445820959233 125.15139726947 0.992445820959233 125.15139726947 0.00043840932736499 -147.079056899204 ! Gamma ! 0.0758298626715119 606.575294906884 0.0758314424730743 606.575709147375 ! Port Impedance466.058828164649 0.00170352705275779 466.058512283749 0.00170231296828119 35.9 0.00037050790420467 -154.105746509948 0.992457188580966 110.315157767906 0.992457188580966 110.315157767906 0.000355592693950104 -156.030024829302 ! Gamma ! 0.0757154703679558 609.166079070769 0.0757170547165921 609.166491560508 ! Port Impedance465.372904242414 0.00144487343420063 465.372591512211 0.00144366351336296 36 0.000315958275530639 -163.54283742658 0.992468349334714 95.5007618363936 0.992468349334715 95.5007618363936 0.000277519907902927 -165.604071155349 ! Gamma ! 0.0756029545008659 611.75307196562 0.0756045433734396 611.75348272199 ! Port Impedance464.695669852279 0.00119128251175061 464.695360221198 0.00119007669789812 36.1 0.000269700639090839 -171.331861241985 0.992479314622441 80.7078410533195 0.992479314622442 80.7078410533196 0.000204938508520812 -177.142022263395 ! Gamma ! 0.075492282170905 614.336321485725 0.0754938755445943 614.336730525827 ! Port Impedance464.026966504565 0.000942629802007113 464.026659922216 0.000941428039641537 36.2 0.000229414641347201 -177.483372845097 0.992490102562664 65.9360093946472 0.992490102562665 65.9360093946472 0.000139670261731087 166.024429527373 ! Gamma ! 0.0753834212476918 616.915874654453 0.0753850191000058 616.916281995111 ! Port Impedance463.366639539879 0.000698794626877452 463.366335957018 0.000697596861563751 36.3 0.00019308402080647 178.146453869013 0.992500736138554 51.1848780461846 0.992500736138555 51.1848780461845 9.00448556174526E-05 134.402462019739 ! Gamma ! 0.0752763403470374 619.491777645235 0.0752779426558123 619.492183303 ! Port Impedance462.714538013171 0.000459659973566633 462.714237381672 0.000458466152143842 36.4 0.000159107402136909 175.947046135737 0.9925112401956 36.4540737609993 0.992511240195599 36.4540737609993 8.33431758331256E-05 81.6761166101753 ! Gamma ! 0.0751710088089852 622.064075801911 0.0751726155523776 622.064479793071 ! Port Impedance462.070514582024 0.000225112360886945 462.07021685484 0.000223922431651819 36.5 0.00012644283387805 176.826454352373 0.992521637685778 21.7432583891362 0.992521637685777 21.7432583891362 0.000125559892400235 44.7108380350734 ! Gamma ! 0.0750673966766314 624.632813658469 0.0750690078331114 624.633215999054 ! Port Impedance461.434425398973 -4.95828848528535E-06 461.434130530112 -6.14437587221532E-06 36.6 9.51144600332921E-05 -176.974836489512 0.992531945690736 7.05214686156027 0.992531945690733 7.05214686156033 0.000186827505498348 25.8350298213617 ! Gamma ! 0.0749654746756973 627.1980349582 0.0749670902240408 627.198435663985 ! Port Impedance460.806130007714 -0.000230658770551036 460.805837952203 -0.000231841065216443 36.7 6.82232959023814E-05 -159.6697696314 0.992542171820082 -7.6194790811561 0.992542171820078 -7.61947908115596 0.00025554133351507 13.6696164412952 ! Gamma ! 0.074865214194821 629.759782672276 0.0748668341141022 629.760181758791 ! Port Impedance460.185491243006 -0.000452092717503002 460.185201956865 -0.000453271267423166 36.8 5.7805911765696E-05 -123.710486453486 0.992552311562741 -22.271763751892 0.992552311562735 -22.2717637518918 0.000329385185714445 4.01573441827235 ! Gamma ! 0.0747665872665384 632.318099017795 0.0747682115361238 632.318496500325 ! Port Impedance459.57237513414 -0.000669360710311471 459.572088574353 -0.00067053556221563 36.9 7.71857435638332E-05 -88.563205961595 0.99256234706967 -36.9047786058624 0.992562347069662 -36.9047786058621 0.000408138784719027 -4.73295456017195 ! Gamma ! 0.0746695665489277 634.873025475281 0.0746711951484687 634.873421368878 ! Port Impedance458.966650811806 -0.000882560386605413 458.966366936296 -0.000883731584854979 37 0.000116545568953071 -70.3017839254211 0.992572247676231 -51.5185322348589 0.992572247676222 -51.5185322348585 0.000491909546534711 -13.3756709063888 ! Gamma ! 0.0745741253078869 637.424602805694 0.0745757582173141 637.424997125175 ! Port Impedance458.368190418236 -0.0010917865440894 458.367909185825 -0.00109295412014781 37.1 0.000165444936991245 -60.7134067218984 0.992581972252507 -66.1129888503943 0.992581972252497 -66.1129888503939 0.000580314033523988 -22.4377424840419 ! Gamma ! 0.0744802374000215 639.972871066933 0.0744818745995384 639.97326382689 ! Port Impedance457.776869020471 -0.00129713123971441 457.776590390872 -0.0012982952673837 37.2 0.000219835561253799 -54.5875051090555 0.992591473227402 -80.6880937344105 0.992591473227391 -80.68809373441 0.000671536157795479 -32.3564027606229 ! Gamma ! 0.0743878772561163 642.517869629875 0.0743895187261932 642.518260844679 ! Port Impedance457.192564526637 -0.00149868388480514 457.192288460439 -0.00149984439537415 37.3 0.00027757042722213 -49.9812660395719 0.992600701898914 -95.2438031599902 0.992600701898904 -95.2438031599897 0.000760849897808183 -43.5448097996552 ! Gamma ! 0.0742970198651673 645.059637193953 0.0742986655865363 645.060026877757 ! Port Impedance456.615157605104 -0.0016965313363321 456.614884063719 -0.00169768837001348 37.4 0.00033693141953259 -46.1637512338678 0.992609614449494 -109.780115563837 0.992609614449484 -109.780115563836 0.000838588142882341 -56.3812564083349 ! Gamma ! 0.0742076407589538 647.59821180229 0.074209290712603 647.598599969035 ! Port Impedance456.044531606413 -0.00189075798450776 456.04426055207 -0.00189191158218124 37.5 0.000396401548115054 -42.8698969961106 0.992618177958672 -124.297100386038 0.992618177958662 -124.297100386038 0.000888719443012628 -71.1204762535786 ! Gamma ! 0.0741197159971264 650.13363085641 0.0741213701642946 650.134017519829 ! Port Impedance455.48057248786 -0.0020814458368753 455.480303883579 -0.00208259603880427 37.6 0.000454765700290268 -40.0283717425507 0.992626375663438 -138.794921039929 0.992626375663431 -138.794921039929 0.000891396509260576 -87.7538951771328 ! Gamma ! 0.0740332221527921 652.665931130534 0.0740348805149643 652.666316304156 ! Port Impedance454.923168740627 -0.00226867459905078 454.922902550199 -0.00226982144472533 37.7 0.00051125233615807 -37.6474266836551 0.99263421076813 -153.273848945889 0.992634210768127 -153.273848945889 0.000832571391472598 -105.980095677909 ! Gamma ! 0.0739481362985778 655.195148785479 0.0739497988374798 655.195532482635 ! Port Impedance454.372211319364 -0.00245252175227099 454.371947507332 -0.00245366528038854 37.8 0.000565606650059726 -35.7624088653863 0.992641708245557 -167.734266418173 0.992641708245556 -167.734266418173 0.000715215934466557 -125.564365352158 ! Gamma ! 0.0738644359931513 657.72131938217 0.0738661026907451 657.721701615995 ! Port Impedance453.827593574134 -0.00263306262789078 453.827332105769 -0.00263420287636525 37.9 0.000618073695049094 -34.4124341040653 0.992648914285073 177.82334265194 0.992648914285074 177.82334265194 0.000559946454327429 -147.266877927096 ! Gamma ! 0.0737820992681844 660.244477894783 0.0737837701066636 660.24485867822 ! Port Impedance453.289211184605 -0.00281037047896782 453.288952025889 -0.00281150748494644 38 0.000669321228271288 -33.6327003765938 0.992655893307131 163.39841404183 0.992655893307135 163.39841404183 0.000398021622242865 -174.734479446454 ! Gamma ! 0.0737011046157394 662.764658723522 0.073702779577525 662.765038069329 ! Port Impedance452.756962096425 -0.00298451654906419 452.756705214035 -0.00298565034894647 38.1 0.000720347860373013 -33.4552885735625 0.992662722747872 148.990334731703 0.992662722747878 148.990334731703 0.000282234534741963 142.411366192573 ! Gamma ! 0.0736214309760644 665.281895707057 0.0736231100437998 665.282273627806 ! Port Impedance452.230746459688 -0.00315557013838896 452.230491820973 -0.0031567007678462 38.2 0.000772412689941697 -33.9142591598807 0.992669486089304 134.598481838977 0.992669486089313 134.598481838977 0.000304284216208146 87.2955881532434 ! Gamma ! 0.0735430577257803 667.796222134617 0.0735447408823275 667.796598642701 ! Port Impedance451.710466569406 -0.00332359866739888 451.710214142371 -0.00332472616139346 38.3 0.000827004727853709 -35.0528284674753 0.99267626483939 120.222265077074 0.9926762648394 120.222265077074 0.000456189382345849 50.0262948155166 ! Gamma ! 0.0734659646664456 670.307670757759 0.0734676518948809 670.308045865396 ! Port Impedance451.196026807911 -0.00348866773796911 451.195776561202 -0.0034897921307734 38.4 0.000885855142629154 -36.9318799002204 0.992683130324254 105.861168256794 0.992683130324265 105.861168256794 0.000663218317867347 26.8224770618133 ! Gamma ! 0.0733901320134847 672.81627380183 0.0733918232970944 672.816647521063 ! Port Impedance450.687333589129 -0.00365084119223968 450.687085492014 -0.00365196251745442 38.5 0.000950983951982477 -39.6401406332574 0.992690136220998 91.5147852101467 0.992690136221009 91.5147852101462 0.000895897810865334 8.97888854679435 ! Gamma ! 0.0733155403854661 675.322062977107 0.0733172357077427 675.322435319812 ! Port Impedance450.184295304626 -0.00381018116923923 450.184049326981 -0.00381129945981127 38.6 0.00102475778293626 -43.3071392368783 0.992697312721484 77.1828458878104 0.992697312721495 77.1828458878099 0.00114032961804125 -6.9938842137513 ! Gamma ! 0.0732421707937175 677.825069489664 0.073243870138355 677.82544046755 ! Port Impedance449.686822271394 -0.00396674815938121 449.686578383686 -0.00396786344762097 38.7 0.00110989850398068 -48.1205829473958 0.992704663073062 62.8652292524216 0.992704663073072 62.8652292524212 0.00137950081416566 -22.4768669578109 ! Gamma ! 0.0731700046322649 680.325324051929 0.0731717079831554 680.325693676542 ! Port Impedance449.194826681282 -0.00412060105692465 449.194584854555 -0.00412171337452278 38.8 0.0012092829030619 -54.3496383282219 0.992712163000989 48.5619608958967 0.992712163000997 48.5619608958963 0.00158891698472737 -37.9115455851102 ! Gamma ! 0.0730990236680847 682.822856892986 0.0731007310093138 682.823225175714 ! Port Impedance448.708222552029 -0.00427179721048597 448.70798275789 -0.00427290658852961 38.9 0.00132512278659466 -62.3728465577552 0.992719763200988 34.273194932039 0.992719763200995 34.2731949320387 0.00174205939561552 -53.1665055388819 ! Gamma ! 0.0730292100316571 685.317697768594 0.0730309213474993 685.318064720668 ! Port Impedance448.226925679836 -0.00442039247168453 448.22668789044 -0.00442149894067316 39 0.00145658160563185 -72.6978288885853 0.992727394731775 19.9991814919771 0.99272739473178 19.999181491977 0.0018226496247949 -67.7927214889578 ! Gamma ! 0.0729605462078086 687.809875970955 0.0729622614827235 687.810241603451 ! Port Impedance447.750853593415 -0.00456644124200107 447.750617781452 -0.00456754483186183 39.1 0.00159424166941852 -85.924710336888 0.992734976777613 5.74022288490168 0.992734976777616 5.74022288490158 0.00183288625935108 -81.3195853686305 ! Gamma ! 0.0728930150268356 690.299420338222 0.0728947342454626 690.299784662068 ! Port Impedance447.27992550947 -0.00470999651792378 447.279691648151 -0.0047110972580264 39.2 0.00171136662769715 -102.53605579865 0.992742425935143 -8.5033770260989 0.992742425935143 -8.50337702609893 0.00178945625088763 -93.4761550369771 ! Gamma ! 0.0728265996558967 692.786359263774 0.0728283228030506 692.786722289748 ! Port Impedance446.814062289548 -0.00485110993445365 446.813830352593 -0.00485220785362502 39.3 0.00176231786110212 -122.400487969228 0.992749665949823 -22.7313646358943 0.992749665949823 -22.7313646358943 0.00171287158581042 -104.23639625762 ! Gamma ! 0.0727612835906653 695.270720705244 0.0727630106513317 695.271082443982 ! Port Impedance446.35318639822 -0.00498983180703729 446.352956359844 -0.00499092693357558 39.4 0.00171115810074975 -144.318279892974 0.992756636720123 -36.9435835468427 0.99275663672012 -36.9435835468427 0.00161981325899994 -113.74233481488 ! Gamma ! 0.0726970506472331 697.752532193327 0.072698781606564 697.752892655321 ! Port Impedance445.89722186254 -0.00512621117199206 445.896993697444 -0.00512730353368055 39.5 0.00157454909476792 -166.501578570634 0.992763301422899 -51.1400108419347 0.992763301422897 -51.1400108419346 0.00152103758030817 -122.209197875158 ! Gamma ! 0.0726338849542558 700.231820840359 0.0726356197975661 700.23218003596 ! Port Impedance445.446094232731 -0.0052602958254856 445.445867916087 -0.00526138544960618 39.6 0.001410076494052 172.232019616267 0.992769650794991 -65.3207778121485 0.992769650794989 -65.3207778121484 0.00142236620192173 -129.863364875772 ! Gamma ! 0.0725717709453314 702.708613348682 0.072573509658097 702.708971288107 ! Port Impedance444.999730544068 -0.00539213236112882 444.999506051511 -0.00539321927447514 39.7 0.0012666067042843 152.066965721826 0.992775703919117 -79.4861718608925 0.992775703919115 -79.4861718608924 0.00132634061300327 -136.914675127159 ! Gamma ! 0.0725106933516046 705.182936018806 0.0725124359194614 705.183292712137 ! Port Impedance444.558059279903 -0.00552176620623869 444.557836587516 -0.0055228504351291 39.8 0.00116579228170735 132.670964553566 0.992781505275807 -93.6366184108289 0.992781505275806 -93.6366184108289 0.00123354126340143 -143.549778712728 ! Gamma ! 0.0724506371945887 707.65481475736 0.0724523836033333 707.655170214547 ! Port Impedance444.121010335793 -0.00564924165682465 444.120789420099 -0.00565032322711487 39.9 0.00111082188221237 113.611645409803 0.992787118293239 -107.772644048403 0.992787118293239 -107.772644048403 0.00114341738987766 -149.935511066567 ! Gamma ! 0.0723915877791967 710.124275084852 0.072393338014787 710.124629315717 ! Port Impedance443.688514984703 -0.00577460191135001 443.688295822654 -0.00577568084844581 40 0.0010956691459164 94.4051364762769 0.992792616101463 -121.894824608968 0.992792616101463 -121.894824608968 0.00105473971733164 -156.226370016129 ! Gamma ! 0.0723335306869761 712.591342143238 0.0723352847355318 712.591695157473 ! Port Impedance443.260505843235 -0.0058978891033173 443.260288412204 -0.00589896543218749 40.1 0.00110664728025409 74.3859139753822 0.992798070621157 -136.003724153756 0.992798070621158 -136.003724153756 0.000965809910931479 -162.573791786837 ! Gamma ! 0.0722764517695386 715.056040703303 0.0722782096173395 715.056392510476 ! Port Impedance442.836916838855 -0.00601914433272457 442.836701116622 -0.00602021807791571 40.2 0.00111586531711188 52.7135672992633 0.992803541435222 -150.099832537022 0.992803541435224 -150.099832537022 0.000874523860061198 -169.137103286402 ! Gamma ! 0.07222033714218 717.51839517186 0.0722220987756623 717.518745781419 ! Port Impedance442.417683178074 -0.00613840769643697 442.417469142818 -0.00613947888209566 40.3 0.00107302507473186 28.977184493855 0.992809066055007 -164.183510244128 0.992809066055008 -164.183510244128 0.000778354386361038 -176.097881464341 ! Gamma ! 0.0721651731776818 719.97842959879 0.0721669385834333 719.97877902006 ! Port Impedance442.002741315565 -0.00625571831751681 442.002528945857 -0.00625678696745931 40.4 0.000928174041358039 4.58889979914842 0.99281465316224 -178.25494917856 0.992814653162241 -178.25494917856 0.000674310515112583 176.316957843728 ! Gamma ! 0.0721109465002917 722.436167683888 0.0721127156650441 722.436515926077 ! Port Impedance441.592028924171 -0.00637111437355232 441.591818198962 -0.00637218051219235 40.5 0.000696415795790242 -16.8315852149088 0.992820280158288 167.68584306203 0.992820280158289 167.68584306203 0.00055895626693485 167.785788360545 ! Gamma ! 0.0720576439798824 724.891632783567 0.072059416890494 724.891979855767 ! Port Impedance441.185484865781 -0.00648463312402426 441.185275764405 -0.00648569677278979 40.6 0.000449683867502903 -31.2286487884389 0.992825895880637 153.639030205996 0.992825895880637 153.639030205996 0.000428658465913194 157.742582710966 ! Gamma ! 0.0720052527287898 727.344847917392 0.0720070293697046 727.345193828579 ! Port Impedance440.783049163041 -0.00659631093674701 440.782841665176 -0.0065973721172539 40.7 0.000242362746010584 -31.702211994821 0.992831428675595 139.604903851411 0.992831428675595 139.604903851411 0.00028050540813041 144.674534497823 ! Gamma ! 0.0719537600833845 729.79583577445 0.0719555404469942 729.796180533493 ! Port Impedance440.384662971875 -0.00670618331341853 440.384457057567 -0.00670724204903821 40.8 0.000136678071151856 7.79973616934165 0.992836799198799 125.583812110931 0.992836799198798 125.583812110931 0.000116985484561657 118.881532370747 ! Gamma ! 0.0719031536248045 732.244618719599 0.0719049376957063 732.244962335253 ! Port Impedance439.990268554784 -0.00681428491430978 439.990064204427 -0.00681534122699258 40.9 0.000216734428983704 47.962843186444 0.992841936432626 111.576067847259 0.992841936432625 111.57606784726 9.75510366084591E-05 -16.3043627396272 ! Gamma ! 0.0718534211474006 734.691218799534 0.0718552089129876 734.691561280446 ! Port Impedance439.599809254908 -0.00692064958212016 439.599606449234 -0.00692170349349254 41 0.000355968753966825 52.7182175365184 0.992846794565067 97.5818489983147 0.992846794565065 97.5818489983148 0.000287888040209434 -50.2405527018317 ! Gamma ! 0.0718045506669303 737.135657748735 0.0718063421147095 737.135999103447 ! Port Impedance439.213229470809 -0.0070253103650709 439.213028190883 -0.00702636189651768 41.1 0.000503981195062898 47.9633862173901 0.992851367680363 83.6011080580686 0.992851367680362 83.6011080580686 0.000482945812086647 -68.0093289518461 ! Gamma ! 0.0717565304129383 739.577956995267 0.0717583255305306 739.578297232216 ! Port Impedance438.830474631968 -0.00712829953984549 438.830274859179 -0.00712934871194223 41.2 0.000655463408373989 39.6262266903155 0.992855698775074 69.6335113379849 0.992855698775074 69.633511337985 0.00066008177431916 -83.631606881626 ! Gamma ! 0.0717093488239552 742.018137666451 0.0717111475990945 742.018476793971 ! Port Impedance438.451491174961 -0.00722964863339999 438.451292891018 -0.0072306954651244 41.3 0.000804585053039717 28.9528500458171 0.992859879523633 55.6784306484826 0.992859879523634 55.6784306484826 0.00080657954495613 -98.3924662622398 ! Gamma ! 0.0716629945428249 744.456220594398 0.0716647969633617 744.456558620723 ! Port Impedance438.076226520297 -0.00732938844010581 438.07602970722 -0.0073304329517943 41.4 0.000936415548709136 16.3654613016226 0.992864037540003 41.7350100392174 0.992864037540004 41.7350100392173 0.000917541441424949 -112.577897327836 ! Gamma ! 0.0716174564121585 746.892226321424 0.0716192624660775 746.892563254689 ! Port Impedance437.704629049902 -0.00742754904625465 437.704433690014 -0.00742859125826438 41.5 0.00102747370711181 2.4729803977549 0.99286830865901 27.8023278339004 0.992868308659011 27.8023278339004 0.000993783947384842 -126.474326370637 ! Gamma ! 0.0715727234699108 749.326175105331 0.0715745331453804 749.326510953573 ! Port Impedance437.336648085209 -0.00752415984898022 437.336454161129 -0.0075251997809865 41.6 0.00105852224217983 -11.6423047624516 0.992872793018445 13.879669083282 0.992872793018446 13.8796690832819 0.00103734421927329 -140.528050208383 ! Gamma ! 0.0715287849450752 751.758086924579 0.0715305982305399 751.758421695738 ! Port Impedance436.972233865858 -0.00761924957424554 436.972041360499 -0.00762028724548025 41.7 0.00103057253167663 -24.7533965257369 0.9928774954744 -0.0330844849853018 0.992877495474399 -0.0330844849852827 0.00104714502542118 -155.334984541025 ! Gamma ! 0.0714856302534939 754.187981483331 0.0714874471376593 754.188315185255 ! Port Impedance436.611337528973 -0.00771284629530785 436.611146425531 -0.00771388172465523 41.8 0.000963415057629326 -36.0524290613901 0.992882253118061 -13.9349510235151 0.992882253118061 -13.934951023515 0.00101617773102795 -171.563587828534 ! Gamma ! 0.0714432489937791 756.615878216395 0.0714450694651834 756.616210856837 ! Port Impedance436.253911088999 -0.00780497745052255 436.253721370948 -0.00780601065654948 41.9 0.000879778362734232 -45.3343591700529 0.992886655314523 -27.8232496290587 0.992886655314522 -27.8232496290586 0.000932387462640441 170.220761269692 ! Gamma ! 0.0714016309433423 759.041796294044 0.0714034549901027 759.042127880666 ! Port Impedance435.899907418084 -0.00789566986053798 435.899719069172 -0.00789670086150561 42 0.000794971506145492 -52.7851864839081 0.992889964564862 -41.6929402634828 0.992889964564862 -41.6929402634828 0.000788036317126578 149.814065853417 ! Gamma ! 0.0713607660545278 761.465754626735 0.0713625936647929 761.466085167111 ! Port Impedance435.549280226987 -0.00798494974493498 435.549093231228 -0.00798597855880454 GradientModel-0.0.2/examples/results/000077500000000000000000000000001413653641000175515ustar00rootroot00000000000000GradientModel-0.0.2/examples/results/wr3p0-surface-impdance-300k.png000066400000000000000000011300671413653641000251210ustar00rootroot00000000000000PNG  IHDRQ 9tEXtSoftwareMatplotlib version3.3.2, https://matplotlib.org// pHYs==լtIDATxwu? )4A5H eCSJĊ EQ,xbAA,@@H($4k Rdgvwfgwz]\>|!6w(2>@cX8Т,hQ( Zs-9e@pEY8Т,hQ( Zs-9կVEQܝd$4!@W5ɠceYnٌ0`Fh +ʲTQŜ$CAe9!X1ZX]# =s-9կV y #F4)Ίe̙;wǿǭmmoks[6m}qks[6l4&fmmoks[>mmoks[6< I #FԩSg2zL6 _Z6mmoks[>mmoks[\Oe6(I6M^Ó N2W$ RR~&ɓIOrWʲkfFYks[6=nmoks[6mmos5r>9z(VNC^ymI,Ƨy"$&敿oM-)I.MrnYyt# ʂڂbu4$c#ɚ h7Ɏ(nNrj?e#7t(%:-96I43W/$=G&9;qEQ|,+?`ݪ(]-MB׌HryQ?IrlY 7pŲVQ$\ˊXax3 =(6;oԯYdFܛIK2+ɜ$,H2$*IVO2"ɶIvK2vJ$Sv9h\W^˲W^x$Ţ(6I$_J2s*˲iR0=׽>d|S,&8EIVz\IN,I~5?CY+g=yr˲|EQ|z*ۍnREQ$V|$M\TgtrO47RRn4'(ɾU-nMQYlv:IHr;5EMY3)ѧXeesWY&5;@WM:h {Boks[{ mm/@9UjAVmm/^~6{Boks[ Sfz5ԬTeQOP3)9ԩpujy)96扆* :,jV*IR4ɵ*5;+(L2&ILzI$dv&3ɭIn.˲lNZIW,YY8GE14Ǔ?ɮItOE$?/F d$#RY7"IV}ݫoKDǒܕ$וe`7ZLQIJYs4LQI>dN3<ǒ|(I\uIsE'ɎIJww&T[Z'Izݙ$˲YR8˲X@K*b$'&j eym#P>@k*-ɝINHI)WEQ ә=FQ+E1(?&y6ɍI--IM2(+[3(Oes@E1('+-{"g (iB"'ReY>؀ݦ(IH$%Ezc-$ǔeh7(NrJs@+(bPI%<ɶIvI_j<$e|CB)QWEQ81j$ӊأ,˻_dbdϢ(>ZM?IZC@OW;\6%9,p);es(YCطլ䂢(-EQ=$I3eYjvW͜93GnJS6/P͚99sfζp(}I%$&y*˩,>";|(65~EQ.rAGsRdi5d@)gQʲ^}#WQ$iseY^ jܹ6mZcP+eY6;\Q&%*UJ$?OrbYpI~dbQPףEqHj,$'1ɝeY>s7Ogo=$/]Q?ON˲XԬ(IFkFS=z馕eٜG+(~ՔeYtO(w&NݓeYZ3dY3zd>zQc'uS$~'9,ֲl.Iʲ ɎI&P٢(rn/B_''eY\˲ry撤,{˲eYl(( -ɧsyiwf$ 9(RY֞,eBw'ӋhoLɫeoeY^QTeY[*?jx$gtW#E10/SY,?8I/bFQ)C|n߫,'wOY xoےlNI>w\?ʲZ˲(]\d*E,w.81˹vkӒ}qטvK+#whYu!c] 2$#Fhv 5jTSΜ93sm%ټJeYFeY>_ſ%T+ &%ʲMʲ(LI2JK#Em//$J@QߓTKmQ}ld$SZm&('9,˲ qbĈ:V͚9=ztM֐k} ,˱UIPfeYNNrqmد^=I)rF/{UYӓG EzTگ_NOʲ#@*rIYeyfYK^&[$9>ɯ(pN)bT\ٞeyk[׹gÔeykYW4IYf@'y9Kn+,e$&9-$?ox0jfjNwӲ,%^]EQ wVRIΪtFgiOQ$V;%+rNwUY/e$'YTSEQbP WD+*WNrHz k٪)wf˹,0+$IJϊX"PstXQ'yk?eYm7IYf\z,oI2J٦ݑeYh}syn1,俪+*,3fReTW)ۻQ[SU-)EQk%vJN,$yJ'X;|{U8U pyEu3j^%śd\@e9;U)vX8GgTeYmpi5ԌlpV0ݒu80.[eY.H]PC؆]!EQd*etCk١)zU(bhS,o<eywYX> k!ʲ|(՗Y8׎WJCd\{4׺1 P]U_ŰnI2Y8GG1kɺ"= O(ޑ3Sjhx 9:jjk\>ER$溆HRŀ$MKYuGC9&:,{)*rHqw)b$k(Y^qBsmn)S͝\w]rM7%3f$/,\  lMNȑɘ1ɐ!N +5ox s,6r}nY%Id 5¹e|T}RINɉeYvC3.X3$ݗw^N8"gm힬bZtJfYZ5ԬLQoIJ,}*ɀܒFz3J.9ٖe޼ۮr̙ Y O| 9:j*_U-IVRTtCZεI>]n''LR3Lwɕx#-HX7c>of5+Hj9#,{(>J[ βaS,ojdyd̘ {…snja$U,˥Xy+~@2(I*5ݹpnv 54VC5|pPC͂X O E1 SD$^P)9,\^sʹiӚ'gU_w5ɺvO0w@3Eaj[8wyc>WivzZ5tQY'zՒyE$;PwZYkd(HvJRy '}lJ9("əIV)}!_x3ystsPQ_HJLr|c$INMrMrt7dz >9OON99hiEQ56bu^Y I_ uger`>ױpz+j5H#EP:/{ʲ|y%9eH#3=̙I'57I'Ur@$7E1Eѯ(ܾ ,Ţ(%>Ɍ$w%y,˗(&d$;&9(hú$y,st$e!ݔ%IP3)z('<Ɇ5EQ*I@2wn5;}vr)ɐ xuM<Ò{x1ɳI^Nkp{>d\Yv3[oR$ղ^j|SEQdrP~^#˲,*ITv<+rN7zKΛWoXMld$[$Y7]_6wGQeYs2rX8GGU[6[RkX8WŐ$$ٮII_ƦJ2 \P07Ss@$;efZO멹V QUvXjy{(VNrQ]k(&aeY.ll("/ \N$ktf'X6mQ7$٭,ϖeR |aXE1[ԶpZ^(IKG 7&9,M>\zYtS'1 eURy8lwI.I_Yʲ{sp=5 _Gd5stC5lVc]WmV,gwCnWE$$9{[Ʀz}kK|,%ݘ IN<1yf'Y `Se(\eYL23<(Uʼ&6Nz{I$O$/ݩ<,wۇڷhQr ɕ׍7&K6;k: j,d*kE'o]ӍM! YuPCAEQT,]@4(lve8 nʲ|!ɕI* 殼2=ىjg>,nfDCE1TrM+A`Էor$6lXu2š=S:uj@'̞Lڒov[:;0s:'ystHYEt QjYXvkSt'd uO%ٻ,ˇƏ ٦ :;wnMP%Ko,4):Vę [튢_fإؿE$$eG=HV^9yf'y<G* &ON.4;R-Ӿ6yQCRYhמeQSQ_MJ&ٯ,˖Y?ɸq9󓟬94xp2fLSJ.Mn-NV_=9SWesz~@tkgN{ؠ'P>㊢8&wk(})AeYNkp$`ECĉɄ ԩIYV~>dѢU/p2dHSu2dȐ11X=TreɤI>T5 87jԨNo̙;wnTX8Ge( I>Nۋؾ,$з[E$P eY^D+I~۝=8ɃU,ˏ5> BSY07qbrˮ0> L'䒮U/lu4bĈL:1XWrNsyY=ztMV4}r*+sj\EiM)zNEQI*, h)e~{o$#F$[np%qק'>QsadmV=9:$TPQ׹SsnU$MϹ$˲Pq%o{[vɷqGm??4>Y/Yi<0 9fu4sZk%`$7/Gb>NeYEQ(I{?&^ףgQ['*e'c=5CQ$CUJ&hYn|*W[$d„dGvބ ɡv=$Mr ]?N:)zGe…տwV܍Wym>]7+,+JrR5کPQ(]iTE$NEl?.˲.EQPIYթ^I&$Lɲ,ϩG_-Zos睗3zfha/LLL<@#[pnU},wڗu 'I>Ԭ䊢(ʲ#E'{ _)r^G !_ KeYH@/q 73_~'k#СC̙7n!K.Ç:*Zmo1b%^ZY2wEɜ9w„-Ku׭ w mi:43@dIrMr''SVz''G^%׹훌UYZ7n\Nu<^Qe rEQdJj"I$-k(M,ɸbL.˲EQOMʲ| =ޞTUsBY'wW+b$V),?4oV$^QFeԩ͈x饗r뭷榛nM7ݔo1?EGsGVYe}92hР:O駟ٳgwѣGSNɘ1cz_,0l?k$O>Y>Dr!=v٥Tl6zL6_<,fÌ^ufxI/Ofj}KǮ]4Yo䩧jdrdaú ϳp($߬$Hr.k+bP*?LrD5dʲa5覅s%٧E5IeY^Ԥ5p oύ7kwyg/^z#ϛ7/sYg=Fm_ikk5y|S?\sȑGSO=5C -}25aBemѢ:d׭ً'tRpa0r旿\Ey+ i41h޼䪫^[2w{'O?,Hr˾6dHeܫK64)ly $;%yW &IE1+SI$Y5[tWڗQԍldv٤\/w񆧢Θ1# 4=̃>>83fh?p|9ң9>ݶ3ʲ̯L>=\pA6d{*K殺*YyV[-9dd}VjL~Oc)S~رi%#Ft,gF@-]~{eɵvm'ܒs׳p(vzmܨQIZՉsEYK8[n%]tQ;̫};ɶn]ӟO>g9蠃;dJ+Yf{_s9'3f̨zc=;,SN1~V^99sfU̍SRۿCT:n\轑=zLmoK9_̞Jl&y+ h,W$'iӱ/$9)Oʲ\R3z/}K۪m9SsAZ3tlyޗgy&_sgV=dFM7ݴ3O}j]Q9ꨣo}+k曮><Çn;.\pA/l[o5_җӟӟbY87bkKFKAUx+I*K}yY/,{OкʲGY$ӵlw$9&eYز9`Ep3ΨZo^ ۲Z &dVjv9ꨣj:3:̞=ݚAgAe9s-38#]w]M@9dƜN''ܓ̘tR6B1WaFZ(_Ov%Yk}K:^5iR@]kvZ_Y7%9(IH{ld$C H27ɜ$LeܭI.-˲^5.w'˲ܳ=V /$ff 6N;_0aBckҥ>W-~ vX&N>8-Zn_;/zh{gĉۭ0`@;:ժ/9sW[}.7tSbȐdܸ/YEa%m3f͌k&睗'W^̙4'nPWmʲ\d+/,_HrRcd뮻vy笵Zoߤt;srm[FOS^;N򕯴[wq۰ҥKկ~jN j9sGYnݭޚ9#: ܂e%]vZ҅;pod=+grH] ό^ǘѫ0zkrNFOak-9zÇgȑo\[E)R欳ʪ^{l?\˭{sye]Tz[ _B{կ~qƵ[03o^rɄ Es>eC+g]w%%V߿emN\Xa3W 3ztJ[[ }&GW%;T0 Uva<ٰE7_z饙1cF5rHk+"zjvevN9唺 ?)S_ܚ3fK/~W_,0l\3qb}έZɤI˯YydK:(6}X3Qf]wM}AeM*}%cǚcӧ# ֲlI婨՜p u;ݚn!wuW{y睹ڭ9;t}k_Z=h=uVrG$睷esIrɒ%齬?h>th$s3w7Œ0@_y k |pӟ&ޛ<@%bsC̞=;^xa5cƌN;T_֜s9]SdQFU}B^9ݽ'3Ψ vO$kpa>trq!I>'xrE%s}e+3zg(3z-nے yYa-R;''\}u偳矟|fտ2hsKn9dƌ+Hf6mIv)923&2٩]pyۭ9#һ-kvzȷ.u]7{Wz,χ?L>}_z饜?ܐp?LL\}R?k„d=inHۮDW0==3ztSO%]LT^ic~q]?#I_rV[[>k\hAۓ3H~d޼=Lr}yU~#*ݶ{ K/mz>}!3Xn`fϞ9sd2dHdM7ͮcfȑ͎]9sdɹksw /9sY}ճkgȑ5jTwg:~3˥^[o5O_̼y2hРlͲN;e}رcGe9܄ %2qbrI=׷N]?>f2gFY^akɓ+n[vY8ַ&n޷ʕ¶UͽIQt=,̙i2s7/9kӒ#VpW\qEwqǬ 0[\~f˫֌&eX{v}s#AOCeM6Y6(=rO2%?3y,^x5/R^z<3[?9I馛3L: hnsa_zw*… sYg嗿en͙3'sC=/ʝ,GYV~%s3g6c%ӧ'F5|1==3zeFόL@nҤoK^zL,8ڒzݶV˵%|gJ] + cVxqrȑdWST;@qyꩧڭ{a=L߾}ۭʰוW^~e=g}ڽO;hh{쑽+_;֞?{l6|L8);Gͻ=:&LX ,X v+_J?1[lE>ϴ;ȶ<=X;o5\,oLmo }[6 {>3у^dF}f>9-hd/|!ږ%'2|x%?'{$ctsʞx"3&9ᄤ_…snj䦛nZ3jԨf6lX'E|͝>gz3dȐN_Z~ {O?=o}꺜Od%K̮8qbj\tE]>kѢE9Sf֬YU̙#8"}jm~;6/|p.M67Nv% &Tˌfu3z3`Ѣ,݉'&f%u#?wҤ;670 k{Knc]'[^sв~8md>ZܭZfwlx#G{ /sg͚Uu'|{-Y$GuT9,X??MÓ?sgΜ9u=ꫯO?tƌs9,YO}Sկ~Us%-^\qE&_=SOMyhNoAbFg|Č^g35{?O=`nݒ;{'UVI*yq%o ,hEO.'|2{gf̘ѐI|&^{m^kM>du}I~'oSVǒ-hNAcFό^#:3zg'\'mli$_ޚgpZ!t ۫w -G7lnQKjY;ni;z;.o 4(mYnlfUOW_ݙ6iҤ|3Z7tl~FeVP.(?O ]w{믟:#FZk>xŋ|$PfhI $睗qD2|xrYg%=ל<'וEwW\|ɺ6'XfW2gFUndIrw{G:=.^@]X8?HOoNӓSNiNo^z;`~֔Zܹ'ӸVɡ&]3'Gfsnj:fj]f^cFόc%M'kK%\ӼMܜ@Y8d䤓ᤓ*9=C)˲ݚ 6ؠ[-oZӨa˲C=-Y_̑GE#<2&L#8"m2X}~0&Lu]mݶj3fCc]0;#^xa8-"_W2s|ߨD^x!$'N̯~7լj?'|rvme>uVAӳ6T?/VرwȐʰoeĉɇ> Y0轑72xdҤK_JFHCQ皝b߁9h%,Z Vr5{G֬:ݐ$YeU2hРvkvjqȐ![j\'W]wݪ5:묓k6mmm>cذag|ӟYfewc=2eJ[oN^c5׿5+ru?өzhepO>Wz*oJVZ1Zfu3zՙle`ASf<NOOdݓ>WAog,֭zZ5jث}OO|I>cO׷oL0CO]aÆG?Qպ?]_|jn=_wu3qĪOf6ʗvkn7=5V8묓ScJ<ϓ}M_wi3q=-`fzKUcFό+mI^yW^9o+93y䬳/Ys_u0wn5;}vr)ɐ!N=^-SC$5kVʲLQ5We^x.Zz0ۉ'wu;ώ;[ne5W^ye׭g{ve|k_Yz>O~9묳kԥSN9% .\n͔)S}.ygr%ɗ=v\{mַV?>ygOZh13gѣ;ީS9 =ϗѫ72 OAem+=ڒvKVZzC̙35@+d޼fxy*ƍkv̙S;VYev/Y$k:oYdI5=%ٳ!Ib-r '#8aӧgׯ_}esIe]=lav!J#ַl]O멹iV|3@X23o&c$5>h}9?;6w+9$esi#lƻf'X6lPZUKӭjG>Ґ[oyǖ[swmo{[Cs\CvmlIg̘1u]m8{{Oŋk,81y'L,·o|G\;oz`fFzVakә<3zZ?LL\qE ]/9X{ʃUoglE֖G2dHss zzj.aZ}ث?_OfРA ;miwGmX$߿=\rI5z׻{jY2o޼ dn~6z,\O=Lϰu=zs%sk>=;Yemk¹aÒ},wd㍻h)@+xf'X z(W>}֔eYמ|gCߞK/tן~~+77߼j;:th3꟯u=zK+^]0wuɢEwrw9ƍK~_'ubq㒝wN$@Fթ͜93sέs B@+O[ W߿՚ŋwCE5|c5꟯3fLC_uU۽BWi 5LTSEvu׆_eUf5kV6t m,d޼;aBo>RFS6;Œj>꟯3yfQx`n˒gY'gܘ1ɠA}m*ƍK+=Dy:;0zL6i*,VS.lvzW-;Rۛ?_Oַ篲*^ڿoȐ!^_uUj5C4 /$^XY 7iR҈͘{o?A3lz:3zgFzk*&M̴ˤI9g],kk,l(s>±pZa]ې(Æ5; %Omד'kq'66skߝ?oX_bF#=GfF^/,<9y=yrrQ4̙33zNwԩuNCN? ӌ+2SVT5lذC6׷o߬*y;ݳjwCƫdVX *8=TY6qbrrM'm̙333z=zEi^[0wMI;h( 9&;wnM:4SsAST{`VWgV_}vI/ia6$=TMrK$lvXN+4s 5ꩳp=50fzKuts&%S$v]qExqz'+1cy5WrUUkznHRO{zσ>=%=FY&3fd;(rʒOىjgFz53z=%f.??<4)yf'Z+f'?@+2$935p%P_zx3{vkjɻtM˽>k֬,\0 Uˏeg>#@#v5;E%ëKڪi:όjf-'Cmv7ׯ򰠶k>} ,Va~ dM<ݐ$yǪԒ3ydzw쎪Dz3pʰ-t]v,;dͺ?@у^ˌ^=%liַ&<$Wˍg2th9&2dHFmMƎMLivJmiv 5 UW]5/rknRK [٪}V[-Js4au¹HזmA{u3jԨNo̙;wnpf2Zo3z@K7.Ϻa{W̵%24Ɉ#2ufǠ՜vZ2rdpa2 ~zC/f妛nZflf>w}g}:|vGU|=׾֘,7?>9duh-=:ӦMs^Zf-s_[[I?뚀ޫOu4bDo47I'%[o m^ꩧ6<̙3Tһ~<3t8[nlU0 9䬳J.,9(=駓>g۸olۿ%瞛_bFV &[rȑkWaUѣs֠A$uW/~xCX8_M7޾n\pI#GZs764 r[SKq۽=->}z՚|F{䷿Md*}ݙsC&`2aBɟ|=A/eFό`eWV_=;6WqOק_[[߻ ]qEe⋓>rˤ(pZѺV㦻6ݴou#GfС\y p_nf=;L6עڏСCtSO%gYx{]TykRYVn[ky&9*OnAcFό/PwM6I"9,ڼy~eէqqDrOT}^{%'@/`6J&eek+Nׯ_a뮻.oXj;kyo-:kܹUsh}49d=K:28xkp(}mu|&J<@AbF eFV'S&fw$k=/~}|}CztM{ۭy{ޓ(:ݣO>?ظ wuWnNhvגJdM7M8>yv9ַӓJ~ uf0gFܹmSYɧ>LBdƌ$teWfN=59db,ňɕW&{rQ+9#F4&'[o\tEy衇NZ}}j9OruK.ifرYohqev['[mUy}땯uń HE%;W7aFz<3zf7X4{K+Y}䠃OO1='M9c&oɆ<gh6*/4wK6<><67|;ߩ=d}lO-hח,Yu3ӟڭy[ߚ1ct;μomsc=^w)dҥ|#kO-]pC$mCoWZ/\g]E.K:*Yod=OoWM=}Vf*@+䮻SOM8 Y}d}SNi$Y fXX8=G_ݚ믿>{ls=5 p T' 4(_ڭ)2Gs}up ֬.Z/']|k'mməg&O?Y2503zfe-Y|F%[m|%$/dYocKZIV8@3x|߯Z8|ʲp+Ovj}>>:oۭyg{{K.͗?Z p̛L|ɻޕ[J'g ؜ -ʌ^=hA}&7ޘU<0?pM.]4.Gmo߾~tvG/gyfn?o~Sރ>8 ?ֶ`M-fOƏ<)=IdΜ<8y{?)y849yZ 3zЂƍkvdĈK_J&MJ*_/fXawNzC=԰O:tAzO~<]r%r-8뮻fW~C̓>.(/2s̚nn9o|ݺ9s#̩O}S9f6mZ~w],XP:묓>+/zd6,y+Kڒ.@{=3zЫ%?A\cd}+7Y@M,W{>l]s9s֖_~ڗ_~9/_2믟UW]5/rzꩼ w+'pBk_Zn\xUko}9裳je /G͒%KjJ+sû64Ywᇻk&RY2^ɀݟ 3zodFό|g2hP2~z뗼smmɎ;&}4ua`[&NC9$ .=/?;%{ot7v́+͚5+fTg„ }2,EeW[w*=wۭ2l@ә[63zЍ<<9S~ɞ{&kz6{mرС=z?]tQV[m:%lxW 80_r7j.(p@{==/})G2dg@bF~@ ^z`cmI_?Ǔ8yhkzh%ߟ{oelpz}7ӧOώ;ؐ O>9{n Ԑ4hP=|̀cv 7ܐz| FJ[gm'7TL񎤏 ̌^י(;dܸd+Lf|c9n\Sɮ&_zrɳ&'&G@Sh^b6ORw}s㏯ۙկ~53f̨٪SO=57xc6| 4AY&W<}&9dƌONF k3z >ɑG&lWY(ߤIռ-'>{n%iɷ_,@/ҷos1yGrg뭷9·>x㍙ϧo߾uN tK+Cl_rfɖ[&=WǏv)w#ߨ Z2Ыѫ=xENd睓Ó| o+H/zHƍ{W^9G?J3?_*9dջ(˲Z^QSzFS6)䡇%\[o5wyg~̙3's̀2dȐr-[gw{쑁6;zM,X*W_}u}y2w,\0C СCf뭷;/lIdIrɄ ĉo+O~ŋu׭<=EulQ{bGδiʲ݌<`FF2gFɓI+LέϹ^s7nn̘d~6 ~]=h78ga5; H%ST̝~˯0> K9շo%sZYL nj$yʌۤIEs<И>'g܁&?n c/\vYe_̚U.27lX3¹}|N\M1šݹ{O:iu,InsSVh&%f4):;0s:'ys@7/ʒ.J%^qDWTzAYb4ܹs3mڴf7y]~yݟ+}W_{P7=qf9^|\n„K^&g܀s]OdnҤ䮻(Y4ÛcP=\pAe1' K/MM Lf̨,<9dfzI,,'OoK,i\_N.P9ʃT{ 7LƍګihA#ĉɄ ɵV]&LpX!CdĈ͎@O2rdY87hP2vle\[[%ETɨQ:3gfܹuNSa1_Y6aB2}zr\|qJ+5/#1"SNmv zqOl^vxm;ޑ ؼ,4TggFiӦ9Ms@uwڒi-HƏpڌzo+ƍK7>{2X8YY&ڒnvdm+KƏO*)f'і,IX߾>$[\jd* *3o!,*o<$;dn͚#ɤI'W]UYUw^Y.7n\ɠA;96(59"3`Ò 7lNϼyr'W}O\smm]{j%SY0f5,ި{ge!$=}hLn\nk _?iRr]$[mygm}&FU̵%;T2o6~|c_yɻߝfz|O?\vkKz^sM2~2hPspn+ ƍKƎMV]=,l}C9swJ+%헼=A%Ælz 뮫,4)Ο`ArՕ7.9~d*ƍK6,)9h% &t+K3dHrWS?ڂ-7~OTs[Y07zt}pzOd„dGWwnܪ&~wmmJ+u= = /$W\ڒn\ɓsΠAY;XX8SO%_Y27eJxk&MJ9=ۯ׮V񕧾z+yxU!LADpـD`@ ǶVjZ[ֶjO[TGk'AAZyB@Bǒw}!{=y_%I$=uu sO<9W~Γ$ pN$I$I$IaԸdn\mN\pI۲0aB\2Ac$I$I$I$If\.WY f&eL8Η$r[$I$I$IWI//d\~{p1СCgH$I$I$I$IZx䑆_L:QJ $Ij $I$I$I$Iji^xdg~5SdO:),cpBJ$I$I$I$IZe⇓Θ=?6nL:$Is$I$I$I$%-`ɒ|ϊ8$I-s$I$I$I$5G^0zt< 㒹bK$I$I$I$I$/KIpPSu/ w{w8L80?Y|2.'fN$Ijs,$I$I$I$}QO=0w.̙;foyy :*:(,$I$I$I$ITUEͻn9~ _?3_|3!YwTV'A$HI$I$I$Iڦ Sԩ ̓H)%%q܄ ル/I$I$I$I$IQ]\s GP[=gφA+K *55# %s/321gl;'D$0I$I$I$Iڎ-[`\K}w**S8>slzr84cϔ$I$I$I$Ila fZr>M}% =l*(c2 $I6Y8'I$I$I$Ij6oKMO}ԩ_Ņp*/d\Aꩰ.!I$I$I$I$ImoUs.a,g+SkI aN$IZ0 $)!UUU4g9$I$I$IR+q#̜}7^ݴ~|9&,.pB\27n\<\(IR ܹ,'$I$I$I$ ˗lnW^ϛ;lC^NF JK9I4Y8'I fIǐ$I$I$Ij=jjⒹ{N{UЭ[{IG-H$I$I$IƏ_V;odXRZ¹`CS/I $I$I$I$I-ڵq\EE\6aC_"˔es$I$I$I$I}\ &s…ppeSVMv2m甕ЧOnϓ$IF( C-I$I$Iڴ>B36wg=4qD$ (]m ln(IR5WTTDqqq?~6bI$I$Iਣ`2~=ݙ.]`(-K=4;Q$I*)i8]UU՟~;+yn I$I$I$IRViⒹ-[snEs$IUWW`cH$I$I$.JlⒸ.Ӛ[7>f,Kqq\.WZ׵kfI%,X8'I 驒$I$I$ImoԩqܹE0e \uUϕ$:thT%I$I$I$I%K`SfφKaQV¹޽Jv߽K$5sbϟt I$I$Iz`ZS6mU>Iڙ-ȧJ$I$I$IZINI&~KKK_SP-+$IRX8'I$I$I$Iʭ_)SⒹN: |0ǯ#N$I$I$I$I$ImOu5qG)>ky +V|r28xaJ$es$I$I$I[~۸dNP2wI$I$XQQIǐ$I$I$}7jjNI55q´i0jTOii\8'IC6뾪*&f$I$I$I$)l(J.G7r9$I$IyW\\!I$I$IRxq mЩS2I63 %%%,X ibI$I$I$Io_8IB|ĉ0awΖ$I$I$I$I$}ҢEI'ضLNIp䓙ե xb\27v,c{J$I$I$I$IczxQ_/t۴)$Iyg$I$I$I$)VS~!dgyy wSN8d(*<$I$I$I$I$)a]`ÆsH$坅s$I$I$IԞY qc׿刺gO7.v<$I$c!`8_vث#/KyQؒ$I$I$5)*?4zL:$IRY8'I$I$I$IͪUp0e <~vMEEv %KO?>.5 3?W$IRB  u4p С( O:Gninc?T(Y$I$I$pnH$坅s$I$I$IXw͞ [4svyg v &LwkI$IB(m-;g^Q)@,p pIa6pUE|$I$I$Ij?M:Ez J:$IR9|#I$I$I$IMU] Űh,] k@m-BϞPӆ |m:5.;({,e21q"\qW\07q"@-I$ !P,w40(L2WkBL\2w:0#!(z;OJ$I$I\ؼ:u|CGX.r9IY8'I$I$I$IZ&M;{}xeݻÙgq\E=;9s{!$I팅s$I$I$IJU\t̞ݼkjȑpP\|GCOgolqDv$IVtò0=pIEtI$I$IUVCUlx`甕¹΂SH$坅s$I$I$I=uup5Ammv= +K/f|6`҆NO[x'7K$IX@7P}BaE?nDI$I$I,6ܹq\eeεt\tIDX8'I$I$I$I۲|9 fZIӦA߾"XLK^~9eTY$I\m- ! tLCFQJ$I$I&"xGӿs^0r$ t IDX8'I$I$I$I0zt.a,g^スS\VQa$I$NQզsSEˀeBˀҸ5/ 7Y$I$I$m*x衸,n x5{6l;g &MjG3puu\p ɝ/I0 $I$I$I$/OV7w.͝P2|y~rl…N$I޽,߁D\O7hS&EQ t6W[z+I$I$Iafx≸`-(ȑ5nV\￟?S'(-xϲ9I$IO=E'P !D(g{( !vN±Q=$I$I$; 3fs? km-K/㇠ې!\I9I$I$I$Ikfx.]ओⒹcgH$IjOVdd#:(z*DQ,0 tK;s$I$I$5պu0{vC/JsALÇEwVHC$ItZ_~YKO~#I$IjTUW&" _O:e$I$>QEQOEw[6$oc(:1es[EQ*cC;:$){sFO$I$%/㏇޽S᷿o3=o_5+.ˇv-?I$`J$I$I$IEIȽwq㠼JKKI$Ij(ZI:GkE k|`F#$I$I$I0cTV̙B[3ଳr{>ܹ0~<,\s -$Is$I$I$Id ̞t'+/Q0D$IV*![+S,s$I$I$y|.M:Ͷ#|a~̓k+]XB*$I[oF$IRt=$I$IjIN}}iĉ0|s$Ilԅs!$qFO$I$j?1C8(+_G ;2ᢋؑ#롸8$I@$Iʒ'&A$I$IQ] wܑt{o(/_%%@$I$IYES!#Ijѓ$I$IZii({ѣaN=0,Y~;ԤpYp0`@rJ$rI$IYB_j1$I$I5m8!I$Iڇ~\ =I$Iꕕsu#»28;c6p`\8w\kRX6mΝgϸXnР5l%^$ųpN$IʂQFѯ_cH$I$9/N:Azh\07qb<8R%I$ImJ/떯 =I$I  +V#h(6,.ikMeeI'$IjS,$IR0gΜ>蠃x饗]sy) kI$I$eӢEI'HϑG%spI$I$0ڼ$e3z ѓ$I$IRS<':dWq g' pB\v n?C$Is$IR#{챔lzNS"I$I$eҥI'ؾci(oH$Iq6/)$I3z$I$E%K2~=l?tРV\NspI$ͳpN$IjɓS93ҥKH$I$)L:Ŷ $B$I!LVN:QtI$I>#3P҇sEԺ9'I$Irf5+.1^=y2/k0z4SK$Ia$I ??~k:wgD$I$IJq=Om H:$I$Ir1%ŚEQ0=I$IU[Eq\e%C֬YC=z{s!pqq){d|I$IR+z5}7TTă|6%(,$I$<X5Y=i9猞$I$mxѸ`>2*_~ϕ$I$DQtIjBoС̟??Djϖ,Y¤I;Iݻsgr0p&7m4N;F׏W_}Bׯovk/Esvvz뭜s9ۼ0i$n&y&[XX?yqG7ަ3g#G#F0gΜm^[nyךtAķ-??\{L:kצ}_ǎ9餓+K$IR0mZ\27k%(wwX$@%%%,Xo/$<ڧ[EQߎoGQ\mQ\\l`挞3zm3zI$IRNE<\Cܣ&`I I()IfO}A$:UUU\tE̞=Yp7s73rH2\{˖-{w}\wutڵH$IZw߅KydtYI$IZB?4>6iS]]T)gѓ^^jI$IjV3ス39Iv-tH:$Iʭ:j AO={6 ꫯ.+{J-y]ӡC>qSoͱwf}ڝwQG3<2vZN9=f}ҥK9;Z2p@f }\EL4Çg$I${sOB=\pA $I$I Pbi|3"Ԯ8'53z3zM㌞$Iv;aygҗlYes=zpiI'$I9Iڰ˗3l0.rjkkwmm-_~9Æ cY[JmݖrHs̘1yJ|YhC a…YbĈdV\/^ȑ#YfMV$I$®&"FN!I$IV7Xw}EsrEjQѓqFO$IRz5<$DQIb!G7<(Zwgt2I$,$z7>|xN2>n… >7x#Hj C3<Ø1cr:vZN:D?CXtiNo|kʕ|+_a̙Nۖ-[?~<=\:t{AϞ=gŊ|irgnݺJyc=֭k֬aŊ_>|An&?$I$n(//y\y%vXrK$IIui,&FQ!ǑcrFOjg'gbI$IR 3;w#4.;0!K$E:th"VUUQ]]-$cydW^a̛7C-ܒr͙gIΝq/<-o|ׯ]RTT{^{šQGСCu]bl޼O?+Wnz93(--eРAtף(b{r-[)|衇駟ϐW_#RsZT$I*,XCO‘$5_a>ҡC:̦꫹=.K|֭[G߾}itݳ>s_~۽n{5k SOsa=lnVsn}ݗ^{3>\s5L8:u~W_r_$dě9s0r^}Yr%uuuxwg?w:uJŋկ~K6K.[Ջ>~3kƎu]Aٛ6mg?W]uU??Nk_I$IR?5g'gѓ$IԆDpI En]SfQ =:v}~cx X8\$IY8'IRrEyD3rE%Ajɓ'\sy!Ilٲ#8~^:H⋹;޽{5\r39s4;?ݺukt 7|⽂q7l??+VgH$Ix,m₷Zs ={^׹3+V4d9}saȐCOgܞ#I$IR !]X~;&ZgsF=pF/g$I$8W_z641#;4}o|#.[*٬M$Ij,$Xd gN:gnOcT /`Ftڕ/}KyJ_㡇J:NbN>d~_eeo){}qƬ]vمiӦQTT>{w];P]]~1~̎;蚻+s$I$IذO|vN>&O>mʔYXmKn0qbo֫W W0w޼O$Iz3X~pnEQnSI-3zR98.g$I$%2.~N?}O=+Wf'CYY5ݻ?7/?({$INY8'IR1iҤ#|BK#5&'ӳe9餓wuWnVBYٯcǎ'?itMMM O̞ |w ^YzS$Ij,$ ;H:'~yrm޼9wyyH:or&%~_fmkO<޽{7f޼yY=s{N;4ƍz 'o;f'6z7wy$InYLڿir6ĥsPZ _:{o4?)~"mn?bxaxY76E}K&$I$IMB (jsJjyѓOrF/{k$I&/}w?lwQл7+uqX?g?㏇&tK$IjPtIyQӔ̃͛GYYYQF{ャX5#FSԩf 0bvuWzIϞ=ҥ 6l`ռa99 a?g2猞3z$Icw3Wڙ3k$ICK`ѢEIGئ:d'm|rxFtؑ>;Ob!F_~m&Ō R5fذay<s1iݳi&8 6ms[SO=5g{0ovjܸq9CI0gezhz뭜+I$Im; 77fl:~z$I$IjB?|E(V6Բ9'53zsF/s9'I$#0g0h+y&~{~涪Y$I9IڀK&aZj.in-)~=3Ob<s _:ư7|;i_l]w]V3${VZ?:cso=u]]sGҥK7zɹ$IԪ:PR{ ]<?"gH$IB[X0:M%|-u撶rF/5g2㌞3z$IREl0n #G~O=\. $I9Iڀ5k$aZj.i[n%;/I>i;vkMk/~ >ÜfJʱK!gtqYn]!PRRS=7g^_zuΖ$IV套!a}K`>=~$I$IJLA~pVFEQNnSICKksF8'I$֮i8@BN:]Ǡ&$I9Iڀ6mJ:]seٲey7n\%\_rݺu馛(oQTT7wܑ^zlTm}Ml?H$IREPU? ?,^\A{߳pN$IzV(z=q=sF˔3z$Iwo84&x5N<~+xi-D$I9Iڀ¤#lSΝ mɓS9묳ԩS$kO.?hv0ˁ\Aꁲ$Z꠷$I$DSO!EsW^%^}-._I$I !\|+1QHR⌞tŜsF/I$I#S40.f΄> m8P!t$I $)s={O:g36[)S\w!M:u 7q躗_~gy#8"?$^;vlz}}}qs7lMU$IZ矇cbm0|8Ä $I$IB14J(J^jѓ9 g$I$nó&s~>p PV$II$I0`@PSSc9;,O5|pr]eeeW'vITO8$I$eʕɜݱc<ݭ[7/)Q0n8BD|㩧|$I$I-Ry9ۿkW8D81.3wgI$I!|uK7FQHnI[KkԾ9mI$IR;RW Bee@c_:}?9 ֯|/"5 WW$IRe$%f;,Qk7l0wNMMMQ{ 6,gL<9cvCwx]R[[KaaaI$IN:).۰!{{رqI'A[$I-FsDM!3bf`bE3sJjݜѓ޶9'I$Imos0kYpS8׹3<:`:u<$IV9IJHuuuʧI***3oN:ʿuY%C͛7s\wy!Ms7:V__o~T$I$auuPo']weOϞpq\i)ty6I$h-HRB(tHt pFE<8'9'I$ImHM ̙3f%s|K/C~[Vִ¹}Y23v9 $IZ- $Ij#.5v$A{w+W6`yJԲ^)׬[.I$I$Ij֬{ xx0}˛W8׻7vZ|Q"I$IB831z(>v8'^ѓ$IV,`ɒ\{ jkӿ?2QVB8x]i) !d~$I69Iڈ2rHfϞtFɀ!}ɓS9seJ555yH"I$IRjL͜ 77\{a8;6Lgq`„doJ$Im!(eFQzTR,GQl+'I98g$I$Y23`Ŋ¹7lxCr21uI$Im?="IRr3h jd,+,,nH|i{/_΃>蚎;rg)QӱcK$IXw͞ [l{]EEv zN ˡ{I$Iڌ±@4_E-9$YI^jI$IR W[ ?P0S{,!̕t$I $)!EEE'CmLqq1W\q_~ybJ;Η#[9۷o<<O$I$i~NK΅(J}ϴie>H0q' /~>:6$I>fСͺ,$5GH~{+I9$iI^jI$IR E sgCv-< ^\$I% $)!̟??j.RO… ~!Cwstz)ל{yHr)#I$I$IjE^=.2,hg\N7rdYƍb8Ըd#,$IR;PRR‚$)B3i,<_8.8'm3z9'I$I-ڵq\e%ZήN$I$5s$1L6Ç+3}t <>(˖-ktͮرcezB`=SI$IZ^ **੧2oʔ,]>$I$QaQ3oýfޛO}XBg;$$Iک:Iڸ}هs2~x.\s dSn:\w!M5c ]s)$I$I-@O7̽RZ<~ra;C$I$IRV9'ŜK3z$IC#q\ee(-}eI$IJLH۷/ꫯ0{rW3o<Ԣ/a9c9e;R)))CI$IT_ w àApչ-jʔܟ!I$I$)ѓK3z$IC6I'/ٲ `Ĉxmbx=:4T$I1 $Ij Xx1#Gʞ#Gd\vedeO)W&Ory睗$-ײe˸뮻R3fLH$Ig[>@I \wZ~sL Q3%I$I$e=w挞$I$XϞ-m `t3. : :X I$)Y~Yv~%Ko޽;gu\p aR){yxFq)QoF m)x$I$)Suu _EuXlB0>zJ6$I$IfqFO3zqFO$I=zQPV/$I$)MI 8w\{̛7ŋxb.]ʚ5kشi;wgϞ 0A1h FQQQ&Iɩ~zM7ߟrWByH$I$IR¬Y0eJUӥ tL?eW$I$IR猞gRsFO$I "5  :\I$I $Ij(++,(RNl޼;#;/iR۲e ;v> _|qu]v[VI$Io pݰfMYr㲹ݓ#I$IR EQlV犢\!S[^jI$IR 550`@{  ;|^ַ/s'}d I$I $I&s=\5|0{l5.K/޽{s9֦\{.<$I$I9QT3%s~Ϟ0nC]&C$I$I,rFqI$I6D,Y0c̝6 ѱ#[9;wス2(.<$I$I$M[R9s$=555L4os9 /C9$TWW}I&~+zI$If`H93g %sGCaaΖ$I$IUUU4g9$=m3z$I)nm-{O^]2?sP0wqЭ[y$I$k͝YrI$ywy]SPPW<%J4i&MbȐ!|_fر~r뭷< t~+F"I$IRƏχq\y9{,t%I$I$IjsFO$I>aƌ8ᇡiϘ\y=c₹2<؇J$Ijw*H$Imέޚr͹瞛$ٳl2-[m ӧ={stؑ7zjVXAE>ꫯ /FtI$I.pq0gN{o\07q"}t<(I$I$IR;⌞3z$Iڹka`^}5}֯n2VVP8KKah+%I$pN$Imʣ>ʲe]ӷo_N:<%ʝ:{={ャ٩S'~pgmOI$I7`Tx12B|tPCGd'$I$I$I3zqFO$IRT_O=P07>eoMҹO|3h(; g$I$c,$IR2yk>l WOׯӟ8c"I$Ij^~**₹E_>:O; P2wJ$I$2EEE'Cg=I$I0cF\07s&=2;s/I$IJСCu_UUYN;x$Ij3֭[ǔ)SR;sܹ3_|1W\qݺuK:$I$=yd}vk**S8p_3hP\2W^$I$IJLqq1O:$)53z$IZJX4WV $I$֎;Ȉ#1bDQ$I$Iھ-[`\2N˳)+lN$I$I$}3z$Iڼٳ!QGreePR:%J$I< $I$I$I<7ÈSO}ܜ Cr$I$I$I$I$Ufm1c`睓#I$I퐅s$I$I$IJߦM0s&TTzu~έ%I$I$I$I$ImEYY,,J C$I/I$I$I$qO{ua $I$I$I$I$9~;|p\.WZ #F@=O$I$I$I$I$֭K?.K[oUлw9$I$I$I$I$)`5 . 2!.<9;ƌi(g/I$I* $I$I$ICd6mJ6. P^?SdH$I$I$I$IR.zz ؞Sۢ(v !FH㶮zkCs?S(Z$I$IzX**' gy9\qE;t㏏;47 $I$I$I$Iw߅3₹3aժY,$I$e9D=O-nEQuN\+p2o@)qZ6\\B \E,Ѩi@]?z]BMEx$I$I$ז-0e L?**K3?C᠃ƌKN=v9s%I$I$I$I$)I7cťnti҉>k L:$I$pNYB!CBFQZțBgⒹӁ@Q !\E6~B1;B_ ruΧBnEӹ$I$I:x䑸HnTX* &Nw zey)$I$I$I$I6lH:gu\pvE茿hT>|5 $I$I¬YqyܴijU.\o {ypkW8;ޒ$I$I$I$IK*;(+_EEI'$I$)kB?%?es[<B\Eܶ0=pIEtBEѻI$I$I$6n3`nX{M v晎8"2jt~$I$I$I$IԒ%{~0ztCܾ&G$IfY8!|Ak ^i` X4B(hSSsjz(l>e0g7bF"}` gAw EQ<)%I$I$)]55PQ wʔ΅|H$I$I$I$IRk^p! 9/<`cS-I$Ij,SBߧ4n'nʏ^s_N~?_inǁ'(zo[ C'<«Q-<0-^hÈ?@4;p\EX$I$IRZ/.{ؐ|qx]}-I$I$I$I$ImYiin v=> ƌ>}rw$I$Iaᜲ&`kgDQ4=M(Bx+Pb!;(ć@g`nEE2` /K‚(l^&{05ҹ!L`f KH]N09pqJ$I$IRV ڴz ֟"I$IRB(H$I$IREPU3fsY>eedV;qaA_$IfpN !LƤXV EьEч!q}o! @O7hS&EQ t6W[z:(G&EQTB q۷Bha&gK$I$I'0mLfA]]~ϯpN$If !  Gt}Mbׁ7>U(63H$I$IRj̜͘pm΍mGz9`[sI$IEΩB{)*M!ӁgYz$ppGsjh~71<`O !EY(es(Cby~f3$I$Iv஻ⒹG-[#s$I$} !k0~ghd.vocM}y`CHDQLRK$I$IR;y3f$I$ !/7rk:_|c%(>LcI$I$Ij^{ f̈ f͂kӻw`=2PVx\p128h1s%I$I 甉KR\og(fNidـ‰Q=ss `LEu`E CW?Ktla(>)( !| bW>$I$IV₹)S&m`; Bc?/I$IRB8xF߀>~SK&ޏ.8W}ap;( JI$I$Ij媫aΜ`-k^3fWy2~tKKah+s$I$IJsj¡OymQ=Bs_ZE\|k|`FgrPE/yKO9I$I$I<': &NK<04$I$H!=/O-VA\SY8#0 !{hKH$I$IRE s=7gg%seepA> T$IfX8rk~C(ZBX idC=(Zۊ(6nLt%V:[#k !Ey$I$I$5:P^=g̕þ|I$IZd!\6 k}n.ď^C77GQ:%I$I$)GV3B3`Ŋܜ3s&l;fOСCvrI$I)/ٷے{XshSHEYi,=$I$I$IZq[>~xM?.IJ9I$I!1bXGJ>^>ږ(T߳݁o~B80$I$I$%́.A`]3sW6xqvlN$IԆU,p_eS(Q@@Yn3(z I>4ִ(I$I$)&N;0i.<(\tWΔ$I$ !^PֶO̥*t9]S^s>}O!L ! HOH$I$I᷿qwo9~sx樬y$I$BIP4&59(Vhd\Ƭ^ #辰FI$I$I0dNv).8N=ξ$I$a!\oZ[O'zx:`_7ąp]?z WmҹOgtB|&I$I$IʝuシJxդ*+?L:$I$I-sjQ)8C4^8[(qn%uWYƚ%I$I$mO],YG^:@y9\}}>y0$I$IJWa"c ٚR2Oތ>Ky{=?q[!l/B#(F^-YΟ??i$I$IZzx醂Z瞃KH$I왅,'i`᜚cpEQT X3pq)%E|?$I$I[QӦ{;gws uO=#$I$#!ÁcI]4zi`0x4uY Qѫ!PHx8oR_(I$I$iF93.>>קO}-s ]w+_ף 'ݺe~$I$ILaGl涾_ Lf~T(*@T`"0K?+\B8r]$I$IR{4jѧ]vҸ`Y.I$I6 TGfICDQza-C#ˎu=S,{=Qr4ּ$I$Ir`zx m))N; nvN=a.]2?O$Iv*uⲹlhn[l@`Er5cQ-!*?PN\>7h?!{(z#%I$I$}AhQ)~HhYY:p!9$I$Ij#,SSƚs" ʥ=ƚs"OcMk$I$IRnwTTǥs5 V^20qbC\>0~|ȑPX$I$ fB@zEsOEQM^@E/~Bps뒏~^X`1$I$Iڃj7/Kז.5k6 baà(UV¹h(;g)I$IR,SSƚ|νLsDQ1OyZ i9~X^颹jvQ=`E!K/ǖ~FG(..N:$I$Ij,I;\>2uW3 `dݖ-[Ⲽ=SM ~ٖ=`膒}1fI$IZC6뾪*&OAr"v#QZ@yKu:?5rB$I$IR0}:TTC͙YQ¹|I$Iej/'p=pcE&+o( B8>pX6'mWqq1O:$I$Ijmࢋ`_S7F믇|NPxj8G֭|`\4޻S$I$iBII ,rsjR\G5d{i bK5(z9a-ZK,$I$IҴbE)S`Μ TY k;dw_I$IK/{Q [Eѣ!eD#I$I$Ikjk0h\q\zilڰm({O^(K2ѩ Ӧ5}ス23,$I$Ij T'lYƚ9Oʄ+:K] wG$I$I]S%ssÍR[ _Rΐ$I$I~D\4)%B (O8$I$IԺ-_…߻.O m^Q/P0#q׿,[3*+Kpsg>d8;I$I1 T;a>B4Tyۣ]SYܚ,YB8 FKEQ]H$I$I_5~~Ϟ29I$IZu5(ڐt(WCGO6$I$I  s.Kf͂}IիᡇJ~iVVfp1P07bt$I$),SB1ŲuyҔ,4,Fk2 ?~@)TUUQRR$I$Ijߖ-k([(<55н{r$I$);J\+~EIi (zB8 !<$I$IR|y~zsom'l([fe%|[Ϳ}gz1cJ;3$I$IRNY8tL&skXGBX<ܦə_XwiE5Juu5 ,H:$I$I?MK$9&N-[N"I$IY܁ڪ(+ QE$A$I$Ij5`m+AG?[ s=~fφMsX:.2!$I$IjJ^MQƚM9OѴ:Eѝ9#I$I$?QMͽByBaⒹ `#I$I$I$I$X0.v1.qݨQog$I$IJsjt YTYdnn(8KօnMcZǑ$I$IڟW^O_N6GpP^}&G$I$I$I$IRSUW^l?1gUVfpN$I$jΩ),kBr&B{X~QEo8$I$I7|A2g0q"z*s29$I$I$I$I$]7'"*+H:$I$IJsʶ(gէ&̞=a8(/R5l$I$I$I$I4o$"uo(;@!T$I$pNM(OYz vNcr(BWt-pbE/6$I$I )0gjpkJ&8B<"31*B~n΋1>$I$Iznx$dnزu&d&pm[8,xp@Rgx:7O$I$I$I$I$b|w-`Ȑ$`fݕ$I$Ij Sm}tz\5šE'ivY!s54t;w%I$I$S|==lV=?ѵn~w;ܸqp =J$I$I$I$Iʭatx|wR+>:uwG$I$1pN0{Z(,wEZa),83Ƹ)]eVa4OjU pi7%I$I$7 & 0cQׯSᬳӡO8$d!}%I$I$I$I$)%%0>%sϥ|i,w'$I$3pN$5KGYoBh<|Pc\ݮ2+0 xh]O7%I$I$o 'Ba!< Ę~ k^z)}$I$I$I$I$)UWÔ)Iԩ{(u:6'I$I9Lq]zp}Mq]ȹBso), c\ݮ2+0xhc$I$I[&LHf=[BVW$I$I$I$I2mVx$`wGu׹s;$I$IMs) K-|W:[scOf !t% ;*品 b۳ە$I$I%;BAAnkvl2g>c؜$I$I$I$Ix6ש>|вe~{i ~ I$In@ ߀aׁ/ehpz ˦Wfn.B KcSU:E@*ޘcܚݮ$Ijb̝;yh"/_κuذaZcǎtڕ:c9N:+mK$IMC٭ѥ sNRk(h&$I$I$IF=I4~0p`GAp(}ukvp/I$ITWoUcdf5s\ap5; cd ! Ha1Oە$I ?wͣ>{w}͚5Nӟ4_رc$I_gw۶py0nV$I$I$IRZѓ$IʀNK櫪r Dgm$I$I)JR1aYk৙B8r VT\ !h^caʜB!`h _Έ1nnW#Ee7?sx <{キVl%%%̜9<nM6e[I$Iե u~}ƌ1lN$I$I$IiqF=I;,5ZN~sX~Gw6Т< *# y%I$IRdG\TBKv{qkJkC3Q`вJo 7,F|>Pc\զ$Ij`6nȗeN:$fΜ=׭[-1Ô)S2$IhY3\|1ؑ=ǏW]O=w #G:x(I$I$I$e3z$IÄ p5#jBAAf࣏` BH}']\I}M=I$I S77հ, !LܯjXiɋ‰6),ZYn)B́3SX20*Ƹ&]I԰,Y!C?c_l~:?2$IԠ|pЭ\z)o3syMըCAș3arv8!I$I$I$ZI&k5 ~#:+y~,eB&tIdj"կ`h.9~ J ̡rHvH$I$F|7eլ x"0:Zm6!4~\kck}B horKB),8-Av$ay8SxZ뮻+Wrg$IT^ &Aa!̘ QVVXÆ_k=a:ukzL#Ǐ~j]I$I$I$I⌞$Ijr~`xq裪effjphoOf͒80#[}n nnޭZ%{~$I$IjO&Ӂ,=x! ྘+B݁bJTzOBGS),!, .Ma[YGeҥ92lqtؑn)g5%I{m8&LHN[ӏ,'NoO5nܮs̍{2'I$I$Ii*..fȐ!uw̙FT_9'IO>If`dX([үߩx"\p~$IRlY0WX}XpJ5+|LرpЧO07n}tJ$I$IkÆ ̚5+mH1g$IR#JWTO> 7~_ރ}I]ڴaC>~W/6 ,Hxվ=\rI2#ֻw$I$IZ}Y0pNr08;} !V[.$c \c2e-f#H%owR)=r-O7k\ףG~_sYgre˖tؑ?OӼ|{q߯|+ߟ=zԥ}I$~X}ngscBXl֭s$X::tw$I$I0pNc, !| xY[(=b0.t$IХ^}ݗ63pwָO;;wNi߽ޛѣGsE[/Sܷ$IT/JyK/en [t $I$IRx^c,_W$IUsFzIپ^x<`nl()| +VWuP'I$IԀ5wjɓ^y%=^ s_[$I$OCp90~|V6m׋$I$I0sЏ$)Üѓg$IR3jT~zhy܈?T$I$Ih8'IR`y'q׽>,^ &%_o_ W\}W֮]i׮]v{ՋCRPP@.]zʊyx饗Xh.ׯgtܙ=؃#>SN93<8 c%IjJ3۵+w#G&f$I$IR$pPP{ߎ$)Sѓ/g'gѓ&m,Xz!sKI$I$1 1VrLIR&f+zJ/>/^}ݗ2h} ^ZzcVw_~yzȴO{wU^裏;뮻xwjUUV}|;a6f̘w{}ذa̘1kׯ{᷿-K,U#<-Z-|ѢEvmL8u֥|_9ӹ߿jKhReio~}OB -_S$IFdȐ!̚5Y1!GjB. r 01ƘqFO3zj,sF6sFO^ ݖ);$h:{$I$Il5KwITmgf }Oݾ=3{JM/\ ȑ#éJͫ]Od`ǎC{^nʄ 4h]t|A:{wC=kփl_ׯ_UXիKݻ7w_ #<+Oju$IBq1w]9H}wr~go|VN;Ͱ9I$I$E/$ryNg9'I 'cef߂Sf೟K^z nF4lN$I$3pNFl*:nn[&ԑ9sԸf5IGΝ9裫]3wܬoo6'x"\s 6lȞ?c/֭3_"}Q-\SO=?'OO>$1FNN>d$h O+tP2) &<Xw5saРA8WXax3wyN:$dt-[psV;3hs2|p֮]}%IwJ￟ (Ƙ~ƏO=;I'._ f8\$I$ISqyJ_/IRѓgqFOrlӦ$HC`D¢lN=vt_&SO%3`8'%I$I'G$5BVȑ曹I=ߢ*]Ml;wz}qM}x h͟?N;UYٺu8ӳZcw>c XpaV1r3Ty׿5W^y%1S!4|3$]}|Zi*N1.^~93}W{: ]?x~dx2$I$I$IT3zR^~9g$)b ?QkW8 vx}䅘PPPᬳ7I&w0v,tꔙ$I$I8'IR#}{\ yͤ+5z{왓>RSS ҥK)((!o?9~G˖-kUs\:ڎ;;v,/ӬY3: z1Þ{IE@֭[ ٴiN'M7o߾=Gq<ݻw]v) .P[n'|kt80`[M:u*&Lo%ea2b nfnf^y.*jڬY3N?t. !˚ŋr=4Dy 7|=أƵ$5~Zg c֬+, 3=/~kGd$I$I$IR-8'9gv挞3z۷'OEE1gT:)*980 +(ѣa}W$I$I TKIRff+{/I$I$$yVF$5W]A6[>|YfM>#sgӽ{wnKE*o7Go'ԩڵvsK.T5~_~ . A6v?5o裏ֺZr.lg…\~)7c z0yf?pw2ֲeKN~Zn͍7og֭)-IRU\ 7ޘj60aBfjqw,_][2lN$I$I$3z3zrFqFOҴq#?o$/.&M^${$I$IT/8'IR#`L.ӧC /ד+VpWsG;ku>j-Z~a:ɽo|o߾{\tEz5_Ru5df̘XvbIDATs-Z'_WT_j^:א$ިO+EaaR8'I$I$IgsFjU=g$ vvt g w^$I$I$Ij$3쬾#c{|O>}QktuJ g~uWӧOjҡC9蠃k];aÆ?dرiя~T4iRu$IʫRm͛o.$I$I$I2շ~t83gj挞3z>>y888Zx غ5}8'I$I9I w;_Or +W辩 u15өfb9&7uƽK!#5oޜn57nHTs=>kUV):t(w2R{+_JkMZ$MC:h„|w I$I$IQI^93g$5Z۶Ow >ŸV廻r+VMB$I$Is$5> 7滋mܘ%56saذa/ׯ__\uԩ;v`S#/~ z3f {gk(;<9県׹sgFロ͛g㫽lٲJ3i2pN$I$I$52I㌞3zrF3zSNo9shÆ-ܹr%k$I$Iw$)}s滃͝ BMɁȀݻ7zs=vƍYjK,a޼y̘1gy[\gŌ5{TRuiIU*mۖNrӟtmٲ%ƍngnUod|s=G}uv{lFk4߿ځ g$I9QVٳa28|w"I$I$II g2pF/ጞFmhvw'pa_ `pQ$I$I\3pNF`Μ|wP:d#I'ggI޽]ߢE ZnM׮]9c9묳̟g~_lٲj|_0#a-rWTjf+;pj^}լԭw 6,wq)׾}v^jIRCԐ!ձ#}6ݺI$I$IqFOM3z^8猞FK<8ygoޕ$I$I k$IR.wU}s=ַoSO=u]W [utUW]믿~3ڴi}&Lcq-=ܬ]|V9眓}>״j*kesLWX$e]}}ZiwtK/ރ ;R;$I$I+!^!n!!$I G}}sF/gѓ2ܲo_:>>oJ$I$Ih8'IR#vm;Z}K g;mF=2wVky9CRc͚5*!(ӬYL1栓s=9ꨣM_~!;vZ}O<1+vؑnݺUo߾)V7ԕ$)SA{ _2L W}Yg2'I$I` pFŒ/C9W)IE}}asF/gѓTOm~8>p‹/O~ Ze$I$I'FIחnْ>n:5̙3kd`旿eZZlY۷U6mVV'xbV;uDw{g~!Cdm;V{=;uT\ Jf_O+'l$/$I$IRpRP |x Bx>pWBC%$sFOM3z^8猞zdRn8|k/3oеkfj2 OpU/B>%I$IƠE$I髯3%Y7jcʔ)߿ơ;3뮻שVCfKz:͛7gv.]c=޽{D$O+uwޙ.$I$It *WNh T8#"01F=)ѫ3zsF/?ѓƍ0c%|btG7QvϞɋ5 <%I$IƬY$I9T%{}5裏x\'7naHSz{jL5a4 ۰9I$I$5y-݀$IJ_޽݁O}S1iӦU_]tQj4aÆ:]ׯzm樛@ͫ^RR]tP?|JU;绋]$I$Ivs>Tqb\嵕tV/JcKko\\Xvuz=){ە3z^~j;'5|SBQQrn/*_ZGz~I(]A R_)I$I$Y|7 I7`@;Z@ʌn5?8;v 4`I5ܹsD EMo6m2)IRGO׾$I$IYʃ* ?_!BB!\B8&̀/):sFO.gv^Ñ=Im<4|0p \x!O$p.8z*[7_aj;n 3lN$I$IC$5uh%ֈ#8CXlnlܸ зoZߵk׬]UMRW$I;ĉPX> ˖%Ï0&MM?$I$I԰u\f}{TO]aG!E`aqk5}I%Ֆ3z;sFOSK&p'ôin]~iش ڵK֬:_$I$Ij $:ڷI퓾s7Mk^|: 5Yzuwkx\*J$5Y˖ I̙;_81|N}}*%I$I$m >ִ~w{r[`PQfGcOCI^9g$IYq#̘g֖-pue!I$I$5qAFC|wK.IO<5K,p@kj0˔͛7ҥү$IRx1g0p z(\sͮasդiħ$I$Iu~Vz-T:|T_y] 7p +`&zu!! I;gsF3z,[o#kW8,o6W(5$I$I$E!CޙU=&+E+wRfuQ5Y|y޽{kV\YkwީqM*J$5zK/vOû¾~MJx>$I$IRU׹ w"e]*c\ (;Bh V8zm*ݿй Ws"01.b?IR8'e3zѓ$`$mX*8'I$I$IRlذYf 5"}0}z;I;]HuAոfuڻst҅?xk/^\k+:zh$IobEǃWΧ$I$IR8&`%U.Bshv;\ElU~`? }~Ly݋KTI^9g$Imܹ̚ɬR}꫰|9|p;$I$I<$IjD[CV䯾-:tqƍϞ=3gnj7߬qMϞ=sЉ$IR=#̛M5$I$Ii8/xc;/eC9/INs\UAs]>V~`x!IgqF3zlk0n];U˖0t(Yc$I$IT8'IR#ҫp cW_ʖ͛gu?aիW^{eYA$)b^H aɒ?c>w|ZI$I$IʤI|bK%IJs!}IG_g5+UUi3dȐ:;s w=){+猞$)%͚Wdg={BAAr )J$I$IQ]gR}R]8'IR#sC0{vkvJʛQ۵kW[_|ѣG׹F*Ν[}ه?=H$\I ̜M+Vd֎?ھ$I$II8ׅ4c|TzBh | @B:WЩڰafwjѓ3zm ÆAQQ~F,;#I$I$qf9Iʓ:ЫW|FE xA8dx#k.H\5;vq /a-[`jפҧ$IRc{TނB$I挞%ѓ$JAA~/2Z}$I$Ij_7KRՋ3g 5RO<$*m=z$7|Yxqk::߿:vwfڴip uQ{͛7WfذaY/Iu۷ÌIۤI{'`أs$I$Iʲ- 2^}Uڝ^N<> !/ppI\@_?Я}*oE!t,pFOZ;.GG-[#pUgw ^{ѷo߬Ԗ$Iʨ͛a(,֮o?]y0bD({ZiX=;+-J=d؜$I$I0"<Ƹ#_  !\Ns)!cJ׽ B7?Яǃ*95a:tW^nC3zR8猞$5Z7ŒPT{쑼03ݿ?'{B)I$I$5a}lذ!$ճ$I\pppU0}z{wc(..楗^vM6m7nW_}5%%%]sgemΜ9ծ?~øq0lXt$I$I+|p6`^ xg=$s'FJB{R>WD=KV^9sfP>gIR##,\M <Ϛ5 0dHƌ[\ǎ0rdy\w I$I$eR]g ¬Y2M§%Ij"zi`/I^K޽קTz59ShfϩʴivGaҥziժ;qE]њ$I׹3$I$I$css_ C"p C`J@3s2ٳ$igIu^=Ij>NMBLUj(3s#GBfPM_07dH/є$I$IԠ8'IRӧO2vm0wnr,\k–-кuлwaP!K7{l׿ָӟtF]zرH=˗TcС)I͚%oyAIܸqffٯJ$I$IRw." t i!c巻D!ӁQ.!<cg{pFOgIRm<|7yrkGQxcp̜nFN$I$I9Io(j֭K.!:pgg>zV\5w}7_9#3Rke֭ծ7I!#$IjvXRgx0$V$I$Ij^29pb~ک7!7'IR8'rIRtiWTO<ٰ֥fM$peK81c"E$I$IR)$ITЬYܲe Ǐ_qe]F.]2RUV\uU\wu]}v/OҢEz]Sk//UG$)gN>9ygv#O}* ;5J$I$IRJbBo݁HvB.c|9pZ=+I93g$IlO>M )oV'3IE(%I$I$Vn#(I$8p SLI5kpg0uvԉo}85=ַҪk4v 7Ю]jI$Lpy٫W/FX^}n ?~I$I$I_AyOB}Ѯ&~,<"Igv匞$5A1‚pmpiе+y&qGL}z2lN$I$IR $IR0g ׯ_ؼysVL6~1mڴtM}g?q_O5^yN;4>js1|k_$I){d(sX63{_{M^y% 9C$I$I _G-0!W~ZŬJ_BNB‰!B!BB !B(!BBx?Œ|-I.gv匞$5~| ppqpuk%Aw$I$II$A7ow}(**b˖-i;sL=\FҥKSg̘1\yi׮E]ѣk\ӟ3{$/=Ijdog} ~V}?微$I$I&JI$AZv-ss۷g 2?:ݻӮ]޿zj͛ǓO>C=+R={Yͯw߭vc=QG%\…^ '@۶mwZdy~S\\R|u_$i'Ä PXsT.(Z-[ر?~͉'¸qq!ה$I$IԐ \[q@Qㇹo6Vq\7 !$wPz zWCBhe?9`Q8W=Ij-x X6# I$I$I<$Imܸ'x'xb;vdm۶jՊ۷i&VZŦM\GL>=#֫խ[72zh6o\͛7wEpt҅͛7zj>Z>쳹^$ x$Dn?'Æ СCǏ9p.8$`ү!I$I$A1Lx$k\[yiTJ35,U BW?IR#䌞3z }k廓~8$/Δ$I$I0pN$IY~}F<8q"FݝO>'2vXnݚ=۷ogٲe,[N5GɿV$5R1/'!s統y3?p2r$'|>7v,oJ$I$IjbO~ |PsC_1桽nU.eR $3zIRhQ F1cݑ$I$I&NI$I)!pWOl駟#<|S7[z-IH 7QGA>lLal //7lN$I$IRU=y^1t.B !㾎\ ISI2 @<$|!<`2d؜$I$I<0pN$IA>}x߼ y5ٳgӯ_ߪU+nҮ]Ԑ$IH0{6\{- -믧¦Mk$I$I$U#Ƹ8XWv$t. !4QkWqnGjK$3zG\ns7)@˖G$I$I*0pN$I^׮]8#rZwL83tМ֮JϞ=={6~{Fߤ:j(,X_=%IR#TR> &z(pvVfl'gvOI$I$Iڍ+gS:';B-OaVMI$gIR#sp٭Ѳ% ?)̛+WŸ^{ڒ$I$ITKYz$I2SN}\3fO3o<.\ȦM2RYfq\|y77oUW]ŗ%^.^~ZӾ}{ƎW_̀Щ$IjvgB81̅B8Ԓ$I$IBWKV9tү~BCqE۹h_. iVs*QUgSqF3zG6SO)p-ЦM{+OE={& :dvI$I$Iʒc`J2-0\9sf:ƣ7x d/_Ί+xYf 6mbӦM|'iӦ m۶ebcwޜp t5R-]{yh"-[ٰaZCuQ{챜r) 6֭[uITm3f$o&{徇$I$IR 2YfU>=+8$HB$tJ?ݜL#1:…Z>Gy]ŏ1^Z©\^ah/߯t}@&1P$p#*.E v|1ƸKC)dL IR8猞$eMPTO=[$צLQү1y2~zz{t#G&!spa%I$I$In I$Sf8#NsC_jې$I ֭0mZ2y}I$I$IMJVnoCp7!ׁ)sTB-OzUZC {\v[ߖ9\nnq]~[$5d9'IG!sSΝr n]d~p1c`h2^$I$I$) $I$I͛a$d?o?{ ЪU~$I$I$BXʮsk\##>$ [ v{0pأޡہgģc\F$I$鿶oٳ^xJJj~kMZn`$dn(gkK$I$IR=c$I$ITl<=0_~u+6 ZJI$I$Ic|<0<`,9*] 8rJ_=c|6CCc\ wE| I$IXQ0u{fq1p@k\˖0thrfү%I$I$IOpJ$I$IMŎ aaܸ$dnPh<H$I$InNКps,UڊJShY$IxW^̾EE/OA\s |^PÇC-I$I$I s$I$IRSѦ }6﹭{Iܸq0xo$I$I ?!w5T.sX;U҅{c\rӒ$I$e[hQySO͙c7߄K/I$I$Ij $I$Is8wa!sByII$I$IbCe(]h\U?uC$I#x$nxל:v'$I$I$ $I$Ieh6mGT2wI$I$IjTbS)!3+;ϕH+1Ա]I$In=; +*J>/?Q׬9sr[W$I$I)$I$I];8 (,~z%sñ2'I$I$ы1O`2Sk]PaMU6?~c$I$eoM ^ $I$I0pN$I$IV/ZJ ;dqਣG$I$IrwCc3@J<|` YiX$I>~&ON-wG<|w!I$I$Is$I$IR}|9L=\r`̘> h6oNCzHI$I$IjDbE-!V@`(ppؓu2% [$IDn~(Wڷ# 9$I$I$Ia$I$IT_Vyٻ^/,L\ǎ>>X!CχCM$I$I$51ƭNB1ƒ7&I$IR_as3'BVH$I$I$I$I|z$Hͫ~]wA Xo]BOq㒐L$I$I$bC$Ič <ua$`n(w!I$I$IMs$I$IR-ZT2pa}!<$~g xv8$ޔ$I$I$I$IrSE 8$`frS[$I$I4B+`[[B%I$I,({պUXΝѽN?I$I$I$I$I GAAvwOjÇCN٫%I$I$IQ !t-=)h+=l6ҏo/? I$IF$Fxŋ3ĉBu!I$I$I$I$){b^J8-(nJ2'rѳ'%I$I$Iiis!.)cGUK٦Mѵ룪XSBX^f׭kI$I$5z%%0{v07a,]<Æe~oI$I$I$I$Iv-83s':uu֭K$I$I &p.pMw^V瞃N_$I$I$IXqq1C K3g楮$I-[g"X{M=49_P#F@ב$I$I&_3Yۻ΅N?;e"`NmUqr]ٚ6cU15mQ$I$IYu+¿ћ$I$Iif80n\2wI"$I$IF! h[zjKa!0$n I~:$I$58%%0o^.7y2̜ ۷gM3pie؜$I$I$5 9}R5Kk`V57`56NT%Xҏmn$weG*UBq.pNŻ$I$I/m0eJkx`y܉'BfA$I$IKI˴*+ !c#I$IwM拊`TxQT9I$I$IRxG&d`1ұGosB˂>|*pۙW$I$I2~|=47n dȜ$I$I$eWz6|bs(vž$/]|cܚξRסCz6$Il >(QTݖ.$I$I$QVl$ƵңzÁSS=+Vq)k| 0p s$I$Iꉱcˡ$#5UϞIЯa$I$I$eZa(I\پL xKBSI1Ƨ2Y[z̙3k^(I$Ue$md>6nwGZ֬=w'$I$Ik`Ȑ!̚5++{g-p. hƮas +;PL- ˻c1P  8 k|1Dzغ$I$IRp0mZ<>} $I$I[Ź@/ʭS][-@sv $wWbK=I$IRLjz%'C6H$I$I@d%p.=}\Ul끇 lI1!8eK{x'H\.I$IԨ^0ݻ$I$I$Ii !u/߬3eWTK$I N: O}f07}$I$IF'[se*eU},s1!o.N(\ai?I$I$Ug 0! {C&LLܾ''!v54( 7zH$I$I$) *|^1ty㪺nB=|n¨#I$IʐtPRF=M]I$I$IRCQw1~yc7p p02I$I$lɒBO!YZ?~s'\?|8kI$I$Io#Jg= AvQl#Xqi}I$IRӴe n>puS6m`ذƘ1pQw$I$I$49 h5H1ƧB}@s $I$Io͝=oC߾5.UW%'̝wx`K$I$Ir*],cPK<X/x 04Ƹ=$I$Iظf̀ɓ 5}n`8$\ Cj63J$I$Il`CY  !| 0.-I$I$M/T= 38wIQG%!s$I$I !X0`1k@ {W{VzI^+I$I(FX +*g[˯1@fi, v.0jTpA#I$I$IR8Uombo?NoG$I$I9#'!qhQ{_pMvl_-~{{H$I$I`-anipI}+$;dns_y@v+ >1ƏU$I>S)S`ժݯ}}?Knm5A{ `@hG$I$I$IlM1Əc|B8~$I$I*d,d3o$!v{gv_I$I$IRCGg{SWQٹ"8B{@J׻^%I$aپfJ把`Μd(U'g&pnԨ䥗}s]_S$I$I,J\ط1>$I$I"d,d[9I$I$I$m-|Ű1U.q#pKx8cܔ~%I$~[<`aݺUT{'us&_n ̍I$I$Id%pN$I$I$y I幫]X?aI$I$I.U8 C3H*v _!*\j O_I$I6m'L&O^=u^\G8Ba瀹^.=?9f]$ +8xI$Ij᪫ظ;9;^2ce۷ /$sEE%%٭;EE/$I$I$s$I$IJpefM~{k/8<?>m2H$I$I꣏8XYڐ.: Ii2}1pN$Ij:o[on̞ӧCB >RIǙ;KpD$I$Iz9I$I$E X0asݺ'!sWI$I$IRc GOqTq.VC:M‹ ~$IU`X=;{o 7=lr0mZ0WTe͌9X9I$I$IJD$I$Ijgx3'w8ƍKx"4oڒ$I$I-Ƹ5P pz$pOm !s/ Ƹ.V$pΑi'I$!X F7nٳ'CjIIȍ3[::vL {|w$I$I$IRb$Iqq1C ӽ3gp7$IT ue's '@f٭'I$I$5Au[(..p'R! $p!V1ƭs@ T/uܒ K$ITZ2o{io۪?j$\n<ZwG$I$I$[IRlذYf I$I=a{a!s@ݳz$I$I25!O_uү7 B*I\E~#8MVם3$Ijv;6wase|3Т'p[7=: 5 ;=H$I$I@8'I$I7.3sGQ2wI$I$Ia hKB1zTPzi }C!Uc\^$ITz+Dvu̞ __ Oe-[I'% Oh,7%I$I$Ijd $I$IRcw9~|=X`BxUfװ9I$I$IRV7sP\7!v5_fPd*pekQ$IRU\ 7ޘn16z=={•W¿ }ӦwҰ9I$I$IE$I$IR^ &Aa!̘;v$'LH0uQIp/㒐qӯ/I$I$IR \Xy$ ;x&pIxZp_#lqizXMW$IR}sUm[~{غ5cڴWPwޙ~`ĈdI$I$I8'IyҡCz6$I$5&+WĉISOA),L$r_2wᙩ)I$I$)c\ٰaC+talしB1wBet5l{3ޕ^%I$ "1}:,\{~O:s}̝x"jU}$I$I$IR <ի3gw$I+`„$HhX=4N(=$I$Is C a֬YFʉoc(, kWzB( kFy\Wz= ylepz'0Žo1>R{&Wiyc\U{%Ie˝w~áE ؾ{ G'sGCnuS$I$I$Չs$I$I ͒%!s?_'LkIc]χN_I$I$I z(+ ʷVql]c$ܻ>_+]NG![gIFa_6!;I'^kN<1 +(}Y+I$I$Ij9I$I`$`Mo΅Ҷm{I$I$I?9-VsOUte6?Ts!j%I$> 7滋mܘUP=sݻ̍:eMI$I$IT7I$I$WZ2Kw,X:( $I$I$5 1ƒ ʃ*Uuc2eU[%I$p2[έ]ܸqо=={&/$I$I$Is$I$IE!s/Z'7%I$I$IbC#3H*U+|A !P@qjH$I'wUm'$I$I$I $I$IʧᥗC^{-7u $I$I$5Y1ƍY!o?ڳs\sK1m'p(Ьz 3QC$IR=`A;B!I$I$IRce$I$IRŘ ,d7sóʕ-I$I$IR=ceIƏ1c]#I$I$IR=c_zBh1#@Jb+z$u%I$'BO<廛i:H$I$I,1pN$I$)b'LF'NUONpIЦM~$I$I$1nױҵ_oe$Il{4)]M@$I$I$es$I$I/’%0vl27ro$I$I$UBW<7!Ƹ--ISqq1C ӽ3gp7$I)(=]M@$I$IF3 s$I$IBvm^pyIáe֗$I$I$I5ήrCn;Raf͚6$IRS4zt;݁$I$I$IB}Y0pN$I$)r8׭~RS?$I$I$ -=/=VZ1ylN$IRwR;=$I$I$Ij| Y$I$)+2øqIСмykH$I$I1J!Ly]YyhQ$IjV"g}+(hxs'H$I$I$Q2pN$I$)BH~wA~ЬYf$I$I$Iyc\,w/$IR'SI\Q,Zo?8/([oM\!]H$I$I,1pN$I$ `zxQ5 3 ޽{_nOi2'I$I$IBx9.lLRWRR²enC$5dW~MUUnjӧf|>&NL I$I$I,L:w0pN$I$ ,ޛ-Z۷ 4 םtRkĉI$I$IL>|B$nQq[I$I-v'l ] /K/1dOEEǁs%UTCy945e_q$I$I$I}s9B!pb灟ו$I$Ia$Lv$;kVØ'&͚'}I$I$IԖO4_[BH1S$I$דC'lUW_eTV&sIWTI{J/ 7d_΅SNI$I$I$I*B8 8VS+BKY1ƷO$I7{JN0Ďp!|0mzhi%sW]'k%I$I$IR@: \| ! 1Ɨ ٤$Iض }4 +s_*7syP\u]+54d_Lk-|]I$I$ITpPa(K̎nx.91kN$IKa׮3~n&LH.I$I$I-As熐 {JZ.D$Ir,Fx$,͛[sbؾ~.z͐!`{.^}LM $I$I$I@5I\dMh^hJ$IW[C!l= ^ J$I$I}*dn_&/^# [<cܙv%I$eз^*l `28?jk0s&$ƍ-I$I$I+8soy!\s$I$/]w%!sv>-I$I$I2upp9p= ky3{!H~cܔ%I$ef.x$\ { vHu,] 3gBCCL 6'I$I$I3(s03'I$IU_<96b-I$I$Ic|>/1ƳÀ~ 4g\۠~BES!C I$Iނ;L?&O/|y$9H0~<׾EEݻ(ٷΰ9I$I$I!i7ЇmFd|K$I>跿MON1.jx}=u%I$I$I^boGap10۲= msÀBXcmNI$I`|Siwұc z2. ́%Kst()~/I$I$I'8sZ{-'>S~$I$Ib_5d1^m_A$I$I$%Ƹ ! ..>vi6; YC 1\~ $IҀsg 92 cJ88BI ,^ +VmwM~(j81}J$I$I>w9H:nI$IȖ&~ҫJbI$I$IԥNB8 |MTWܾ\ \BxXrEH$IIY ϥeҤd>9 KLL|3ɵr%_9lM\ӦAqqK$I$I^14p9=p=13I$I[BVJÓpYKat$I$I$I=c|xRhˁs-,|s?o61*$I~lX(-M  .+\\*.n ʓ$I$I$I&߰N{$J$I1”)1r$|I%x$I$I$ILe߀ !\J@w0eu\1pU#X,1˯A$I**87hL6y2 $I$I$I1c \B O"{)$I$IB}(b$d2 $I$I$I^GBÁ I.nYƞs2!gh [/B$IJÎpyPV>mqDoEEر_$I$I$3p.b݇$I$I}ƬYpI͋. SW$I$I$J1ƭ}}!L.okCu4T`na $niqW I$)^}5 Zx'?O{ 2wIA$I$I$Iꐁs$I$fHNnF͵326,?u$I$I$IRc׵!SHf:d- i !$|:Ƹ%_$Is[#=\몫! /{;$\;FȮI$I$I9I$ITxEEpnσJBfφa-I$I$IB]\,9o܁B 7v.I$K1&rðukׯ{uhl1c`#Ⱦ$I$I$Ie$I$I\SSrBq.f>pC+;:$I$I$IRn_nn !|$|b`t2:!z` Ƹ:_$Ix=i {՞S].^pI\e%L<$I$I$IR]I$IԹ[a<^JB޲uᅰ~aC^wapUIܴi0xpH$I$I$u"ƸP`:0pX2 ֐} nn !0Dn I$ (;wI@\UäIn]k\y9x`{K$I$I$i/I$Imْ Λ7>7~n |~~x07{6 Aח$I$I$Iv`QuMLr.㐹}ݧ!% [cܑB$IâEI(ܢE;#i^> !tV$I$I$IY1pN$I$%6mH~qGnó9k־>:y~,8LC$I$I$IRc|xbaIL`* ϵh6x$`Vͦ&xa:$I$I$IRF $I$i ۰? /a˖_qcrG>}pk ;tO/$I$I$I}Jq5M!et>Gm A=Xc|=_$Iza*J,͛ Guun$I$I$IT0I$I4Ь_ݗUU%'w 1>(*JB&M2dN$I$I$ 1Ʒ+0$ 0p`2:";8 *IԿm'!oUUKiw!I$I$I>!#I$Iwށ{M-۳{aò_%=$I$I$Iz \`&Im{ihs_I$?ٵ ~$ԭ`ǎ'wv'$I$I$Iʐs$I$Wo $!s<]>Kr$I$I$Ic<|$ZNk=CچI$?jl2x뭴;ې!pPY pQiw$I$I$In0pN$I7{஻`ع37pN$I$I$)K1 BGΣuγ}$I 1$r0}:vG$I$I$I>8B(nn1nW$I$͟<vp0thaI$I$I$s1W !.% [ӝ$In8|NȑI\KqA"I$I$I3s$CS6ODc~^$I*}w2WW1+z]X.%I$I$IzCE@9p9p0.$IG 4)YQÆ$I$I$I /ΝHsB+i { XcV.%I$Iʗ_JB%8<җׂ$I$I$IRclh"P \|$$I{oHH>vXjI$I$I$K?~ ;= oIZ螎1F%I$IʙUZC|2^ ᪫+`ܸt$I$I$Ib@={$Iyjj F|'=O: 8^}5 )-M**`d<87{K$I$I$s!Q$sm"knI`tOнB t$I$7 w eBp,p pE!Is\Tn+ |`XJH$I G :.5dC$I$I$I$IJ~0WSwMN;feeOB**L$I$I$If}%pnN]G7_ɂ@71]+[%I$I֬Y`A  Κ]ƒ$I$I$I$InK[C}6VW&p ;L**`ĈJ$I$I$+f;9;Dn_2+W!$s-At+cM%I$IRf.)9|8\rI2[$I$I$I$Ibo {!زg{UWܹ4v,u&pp$_5 l^1AA9}]lkKQcc#SNk-[n$ICmmkܚ5ٷy8 .o$``H_1 I$I$I3 9U_NӰv#}6 "n0[^Bx$|nw].$I$Iٹ +.NBfNPG~OI$I$I>(p0(Fe_Y~#KzJƍO IRok>rst$$I$v2:49F/Yࢋ`x,$I$I$I gΣuƯ}8B #Pw[zI$ěo¢EIܢEn]aVW&p.$I$I$Iʝ8QK.q ! >Ȟ!tc:>ܦh { 8z{I$Iz;a$da(/_2c̙0{6a I$I$IG(nnپf:ܲ磁O!n1$}2iˆ$IRw45ePU=t:}TUAI$I$I$W+s;)w-Cǰgi$!p{=:߾B~lK$I?2[{.aР͚y܁W$OkJ$I$I$a!? dYLmi[^!b'I4pb.W] qcóBIIڝH$I$I$IF~b//w !LiNשؾ ZGg$I$evX8 ;_vmrZi׾ra{W^̝> +y/I$I$I_!ۀ#hWP\nAAsk_?!̎1>{Q[;,]9OJJJXlYmHri.0GLRvAPQ\]vG$I$I$IJQOgNJ}}}I5;] 7?~Bx =0ؿdB'I$I*[aѢ$,{a5>|0hP}I\.$I$I$IgB2{:~-4l<7XBA$4(9$9,쳓J84g{$I$I$Iԫ:6O.po|8dHl,ρӀ$k5c+2$I$Ӗ-PU}ƍנJKC$I$I$ ! Tg\xuZ2Z,n !L1f-I$WY^QG%+*` 3&>$I$I$Is͖bMnK6;!?._>ce}驧7_-Ato!t$I/'+azhjdrD8 <Mi<̟E8M$I$I$IB8$l[g: jV/k[Z3`4.jH$+5b\pARN8?!I$I$I/5A25#08Ƹ3b뀏 >, !\c|ykk- !Jk\#ڗJ#:uj^lٲw#I+[;;o[V{I8\s L7lOB~Kز% uJ$I$Iz-466B1uM3xlo[]~$Aq5_߿mcй!wc'ICr#,G <\{uSp 8\>DwLۗ7R__v$Iil9s`ɒ~&>nJJrp}I[Ulۖ3f ,_gQغ$I$I$eU!Y\G!pM$.U1ƌ !|M*ClOhs?!c!z$I}V&3;k p]رpI\E~xn$I$I$Iz8(ɀX7}d8wz.{$I۱n nr%0y2|Kpu=?w{E`{9I$I$I$Hap?0m#9/b[c| x nS)p9ppB>ZZB>BC$WZjk*x=_4 wVE!)Ih]Eyf$I$I$I>|W,Ƹ3 i*!c|,1 !\ |!_7=ד$=J$IR֮3!{75 7…`~;Y?~2cG{Nٳ᪫^/I$I$IL}mwbP!\LiSvaq]$IRkh< !<cܘbO$Ik@Y^: pIxQGu7yࡇ:V-3τY E$I$I$ !Tasm7_1n(lc/P|8=CQ$Ir7`Ѣ$p.65d# [_$I$IԩSq7Rpsygܿ1n/|k1n !Tws+!;coئ$IVNܪabeE>_UV&As)I$I$I$ujP oy]!ii/) !LMI$Iʅntj74dx_yea\nrҥ7c؜$I$I$IRրmLs)lA2x]*MI$q#?_qg>ޛ۰9sp=a؜$I$I$I!i7]1m!k{@ώ$I456ܹ0w.\vr_o >f͂+C} I$I$I$e/Ѵ Bܶ DTt` p yB)$I#Xɵt)l/PvoM C܏H$I$I$I}Z_ݭIPBpokM;MH$IRN̙S}ijJXxf.pn(+Kr8+I$I$I ! aﰹ\Z!k=6$IҀÃBU,ZkצǻOԩԗ$I$I$I>8cBk>w&"<B8b* 6tZ$I,XKt,+a{W]\:.5dS$I$I$Iε͏1kj]Pq]ᏀepU-IjxqNB|buP]m$I$I$IT`}2p H5ԭ§bShZ I$ִ;ӭm>>H22ߣ*+.csަ$I$I$IrfV^>UFr%Ta.UBjMIWpjho#Giw!I$I$I$ 8}6p灋3t` kc/`_tpo֗$Imwޙv{f(.n7kVׁsÇ'k/Fo$I$I$IZֹ1Zc%4Z%I/~v{819 9 K#I$I$I$ivو1nZ]|'oB! .PkWvpogjK$IRnMiwMںꪎ׎ gw>f؜$I$I$IRq>ctɝcKITVAb` &(+3lN$I$I$IJɐVGIZbn !|B8 U[lG=I$Iʛc˗'8X8tx)(.K/YQS$I$I$I:|?F!Ƹ,g%I !WAଳy 8 <=H$I$I$IT1VcϠ9h BAvu^qI$Iʯ'Luw㍰s'\tQ$I$I$I?J< 0=&$IR?qAIO>0W^$I$I$Iz_o !D9h P/?18.P;pq-5#-I$IX2:Q_^Z>$I$I$Ios>~-VqIn%I@0fLnZOܰapyp)BH$I$I$Iʋ~8c~ Ğsw\ 9l;!EcLBC灒N>/H$I{iwб@$I$I$IyBow&^-{$I=UUP] <w W\ޕd'&UTȑW$I$I$IR9^~ sw\! ^^6;_{$p0ؿ-ܛO$Ijxa?~ضmiw I$I$I;giE$)^|5`nbظq竫s8wY0fLu=ʒ 8$I$I$I+9cM n4ZZB: sguRq˰| $IT0۷'C=ޠÆ݁$I$I$I]H$ƍCI\UZ*B|]W rO I\i) ]}I$I$I$IR 1 !\|Fk\/Ku] Z$Iij$dnxݴ;ܘ1iw I$I$I=~$IWrekܣ&3:ZN<1^**8w!pcI$I$I$I^ 1B ޡra}(.41_gܴ$I$֭0o{/_vG=3qbH$I$I$): P.$I:'>VUEWUCgCeer}C0hP5$I$I$I$):pE9`z"+-O(иnk!I$IeK2:>wl?3yrH$I$I$)wpog$Ijkxd fr}o&}<%84>F~OI$I$I$I}ڀkc\, !\|g\͵}}>cv%I$);_lڔv'e$I$I$I@7+p$i{$ jjW롇`V><~I$I$I$Iƀ kc|x p$i`6p|%@"Ys[/c.*$In6͍Ӧ݅$I$I$Iot9Io[ҥI\u5!f**|'$I$I$Ic1y͵d&O׾5vؑ=%s@b!~5B8xxu+u'IR?_",]{把 X^{ ~$I$I$I$\$I>7OHo57{N׳ז7';+駧΅SNII$I$IRޭ]iӦq 7Ԕӽ6mk׮ޒfYǣH}FK$#a/woJJ?R$I$I$IR5$$I$i@[χG]MMp5̚ϙ6-Yp]w,\ ]S$I$I$֬YCYYWk=\jkk9ꨣZKR\,(pyBHNcc#SNk-I}^q1s,YRغeePY pх/I$I$I$z:ؘNZ8'I$IkIܼyPWy$nu8w^kaunX=~{0! J$I$IRvڂ͵Xz5eee,]a`0$-e!cYn|N־B$ehƍק݆ަ0s''r0u* $I$I$Iz8OK$IR!YwC&'\}OONF~A0}z27s&>Cmmrr!~o„^I$I$I;v0ŝ͵Xz53gΤ!|"J1wB[@iZ}Ba: $s1³&*rJUT?>r\tQE%%I$I$I$v$Io"|3uVY\sGG o@M _v?`R2%7˔)I=I$I$IRvM7АJ톆nTjK]m>o g;34ɅX$y(Iy 8&N=7{O ΃} /k;7lN$I$I$IRbpLIʷ2ڝ\ZZʲHᩧkРd5C1&scG7w.45nߢdkMs%I$I$IZcc#~:۷oO"/_NIIIj=5SN4Q0m`;Pc\F_!j~j~bqpf|T`;wO@u5TUACڵ皃7LiO}4TVBE̘Ggߋ$I$I$I~)gs4OK$IR~֐_*w Mி. ́%Kst$I$I$i3gNasMMM̙3ŋڇ !I CSkB' k.7$pNR(+f0mxi<9ڕ΍̳TT$9H$I$I$IJK{vn^cc#7nq7 $I$b_: 7}6M\ŰbvqlڔGkק$I$I$YbKrqI,Y+W2W-V>Ek@$mcCNh4as16DcI@II ˖-K I-mGM檫aQU /Lbրs΁ó'I$I$I$iԩSq7 $I$)1&%!pMa.Y|AS&%s7 uu|yr\ 'CÆ1I5mݽ$I$I$)zk-[onK I1&p'3->c?6)0><}cۑ$0bUpdfnȾ3΀'c..?<%I$I$I$ss!74\qW{BӀS"`#> k1vttpK p202 l y4u1ƭt+IgZC^x= ykDqqrsEEڝH$I$Iz7rwnf=(Enf;tXB|). !L疏b )'IRnmؐUU%p/{,9p̘#3aH I$I$I$I>hS>G4BX `lk0~< b{mHa000$\.SCw?I4O>͟o?xt{$I$I$)شiSmaӦMQ*Rc]kI`й. !|.XN͍0dVoפК$I#Wsuu}{ Wd׌!I$I$I$I}H =çgg+`9@C1Ey!Ip@rUWAY׋$I$I$Irʴ[PoKR! h pkkyL{ӁocPyƉ@% XSGAs ӓ$+iwjoᤓD$I$I$I>8Grg{m:_w?H2(6'|%8'·)0D>p~7/wX Ÿ+tl$iU$a֬|p27{6> Z$I$I$dΝ<3԰f͚!ibI3g\ ÁttGfz1l)IFش)NZt\tTT$ǍK#I$I$I$IDAap"U?8Ƹмoge=2`yafׅ0IB 1I_W>Bc[H~6nob;(qπ,U`ɉGg.JyzqUϺ$IppmÒٳ쳓Z$I$I$so/Z^y啴[aÆ݂n1~5sm::N~G-_*cy> K,p}0x0L Iàƃ%I$I$I$ekƍձ|r|IV\ijj1c0qD8 &O̴i(..NmuS*|6tqڞnB;~ہCE! c =/j F?.8}O# LMMccot0pp#['$I$I$I fŊzylڴi֭[ǪU{5jǹk4iRUJim>o 50#Ƹ%˽K'vɧY209r}%Fwf3L71. !< ׄ~ct>=.cS&/1@r*4^Y/ c:bZ3/_% 'ܕɦ1ƕ!}Oy$IknEaڴ;<8 xL }tkܙg2'I$I$Iך0㏳sδʙ'݂1Bh5H vJ}#3P= $*+_cp$`N<B,I$I$I$3̙3%K6moogr-KZ_ P6l.p4IWW\=hCb;/!\ w "Ƹ !|P4{.l61<!{3fS#!I27xcwo>ׇ~c|u$IR l*??9Ey937sCW¿{9$`nl<١WI$I$IRk.VXAmm-555<#l޼9fi bτNi^eBCl~J45c+?7aBr^^m|rkܹˆ_$I$I$IRFvM7č7HSSSN\d 'OK_]wCX΄p F39t~iggO$8,ZBsK?ߓ1m!?diǀ;{Z%\oc/pPΎ1>6nFvfaOڊ1~1p*NM-IG6/_2 ok͚u'sf2'I$I$I^z%jjjażiT0I}[q=$n~= sc|E$3K:oBJP]޸x1lܘ|PTeǘ1P^UQGt6.I$I$I$֮]̙3ihhMMMp ,\ 0~Pz}p$0=vj=6H-6lpP@ZKx!1mؕ]y$o1Bs7突/g !K%t@Bbٻc:YsubksTS$ekF/`|yc\^~QMࡇjxᅽl˖g_s!g̝u ? I$I$I$ k֬իWNCC{.uQy ݿ{`ˀi k^$ B I~K2w9起kgsU,Ƹ( Ý,B1Vnc*cl!|zK/ !c|uCrBogn1>boɲ"?$Ocn&pnP `YS[$I$I>bӦM6lꫯ86$H1? ! 92`X}`mg1pk؃ڒ FhlL媪`Rhjuչ >=پu0wpAז$I$I$Isk׮-H\իWSVVҥK?~|Aj*3!B3Y;Y\c^' 67gkoB8xe1^㺥$/nB8cz׀q,{v7f;x8ekcrUw,J+--eٲΒ$SޛUWg6ۑ#`:5*^xvN~/I$I$Ie˖qgFjVXĉnO:u*oяX`:08[V5؍!Cn7tf1k=y55I\u5ރQNM?3f%{:Mk 4  M=I$I$I$IycMFCCCkO2: R}Y>͆C[ m9!2I6Of?ɦ^3Xo.c!4S:YvYacwsXz>upfgas2l Ƹ9u,O_M.kK,\=`ק gbx=;?>=$I$I$I/%I$I$I$M7ݔJ@CC7|3_}*8Q[20vυ?1>1CTgp?>ky}εݑ}t8wrju~3Gڻ sj$I۰`A2W[ ;ss8'I$I$I7d.ᄐ9묳(++cSsqPM|'c|o Q d!jIz_o {AxX:}O+K$I$I$IR*;wn=̝;.TP/έ^1Q1C]BcԣN{],c}amU`\bO6:Y6!G*x~e79cctU$;z ' [$996o#[G$I$I^w塇Z~}(}87qD(//c~;nᆜܹs9SR/I~j6x$`VzhrI$I$I$I̙aMMM̙3ŋڇ}!pGB@%{~~UquOn% k18~QykUŲ_-NW$Iow'!s? =܁͛+,\MI$I$I l֭Q[[KMM ˗/gW_[[܌\y䑔S^^Ό38뮻 А1eڂו$IR?#ZUU%5n\A [W$I$I$IRb ,Yv,Y+W2qĴ[j`8I\ǚ4hq+pnFs5t87.pJ<׽Es#sP @mtlk$I_JB.Mf2os$I$I~eΝe]Ofܸqz3(++ &¾Fs4d,X==#&L… 2/PI$Wڰ! J^|1~~~&ONI$I$I$I[naz+v[m x}aZr ={= X>}jOgcC}k&urP 9әL/$+2WrAp0k\qEH$I$I#/555ֲxb{l_DQQW !P^^ΝwÇsR^^NYYz*qS[[KYYYAB&L@mm-ƍ{-I$#1¯~0WW۷՞ $I$I$I7v9Xhwq7|3i2cS82?W =v?|1Ɲ=鵍_ε91z],{,`iHwHϿuK1wsPgb!dYW}J4pY͟0c̞ 3gۏ$I$I$IYx72ꫯx͛7sfWYY^f 3ΠrNóQGҥK9s& 9ݻ)SpB$I=iw"8\/OI$I$I$I)cӦMiM6QWWGEEEڭ h>pٓ$aP$"Pcl>f.[ũY&b/FwN4ŲQŲ_,p"IR/WnC@yy2wp#I$I$IR<ûC}ٜ_SS9N:iwرc޻+ǏosԔo1w\Z +cS$I5xw|0WQ\Fݑ$I$I$I^`iС˗829Tǣ/ B+>~!ƘoxL-N`ͪwXMr:M`oq Icg ~Ph"IR2yr:uࢋ`,G`C$I$I,455Q__;`gΝyWSSÍ7ޘ>Gqk׮eܸq9 _e]Ɯ9sXdI{N>[nt(I~CYY0WQ^/$I$I$Iz'|2:[8wABc\&y}[iѾ1)dXgsBc[ O_sek견/]9$ISeerM5lXRo,2ӟr%I$I$I]Xr%555yy=:Q*))aŬXn;MŨQ꫹k8qb;$I6n:X|V롩)9hp88#9pڴ$0/>8v9Hph(0IXZ<@]_Dž;:1̏9:7.<c\e/c.d~$I͞#pY9K$I$Iԇ,^Zjjjxni555.pEqq1TTT݊$Is%={Mp5}:r ֯ŋ$.[ <JK}/N? $I$I$I5kАv۶m[- x}&p.Ƹ4ppI@\KXܩB {b ! Lfﰹ;qV< 65潋>&p8 Wu~½g|Ha˖$-[_ #F$ԨQpeI/I$I$I ?!ynSVe{$IƎpMpԔ=,ɓK_뮃!9iߵ ~: ;.,9 1[/GSY 3fر%I$I$I$i)--Mn6lX- x}&pٵ@%} h! 5d.۫ r)ýv@ϿW&Q~o#X& aD&u|Hᩧ`asreeeSVVQGvKBi>>HccڽH'֮3!{75 7…`߳}z -J-u:^W]φbظ1 TT$!s's%I$I$I$k}-pn̘1i0!ְึuouQqK[=]pԄ0e Jwj Fc,zqkJv+Ƹ)u2}]ТFNZȒ-[,<x5d[{]a̞Yܘ1pI܅&$I$I$iQ v̕ Қ;hl4JyX. 1n ! >| >RI[`ihsυZ$pk8qb- x}*pٍ@)p!{N^Q]s\Lv5^) bM!`wG_Qx;f'C鼧_6nH}1Kz`׮dpv$W:^;CI[.$ A&'YϚ`$I$I$I'̸qx7 ZwȐ!R^^NYYSLfH?coPoBp|ڽHG֮-L\իzK{?fMW]ӽq;//}{΍TV&ydu$I$I$I$Yo?8OiӦ-&LȺNii)zB@$dn ?F%I$I$I[2~ĉ)//;ה^j(!c|3z3h^I̎ kzuRon orS꯲ߧBɓ[:I$I$I$iڶm}wrztwsz+ pI;$+I$I$I굶nʲe˨o}[L6-}8wQG1crHkHRI뀿 !i6`$'ܦIRL:G]lYCn ҩ' [~\{,[(I$I$I$i@1ꫯ.SOm۶nS__gOO/^hFg_ߛŕ9HBKCnFg\{/3csOh`!0z+sQ0p !|TK \I];v#̽Vvvߌv%I$I$IR/k.ys>([l>A81cc= }h{p/?!#9`:+'g\yEI6nH}}}m-0wn=B&(as$I$I$IҀi&/_Gڵk7W>:t(۷$F+ojnzB kcVg$AY !T-CV 1mBQsݯ֚ﲭӇrxmWk4vb,̊1nrenzرLA/Ŕ$ھz( $$.M$I$I$IDիWS[[KMM /w 8#NyGYYz 4(~T666qTjk@j9tmGCO!|FAs+I=3gN2_m˖݉$I$I$I^(ȪUgٲe׳b vܙZ< [laĈY3bN=Txu\sM-~8c|!.*)8` I+b?c= !|8xy# HBm6z3}lٲB$&MMxq`tCpYnwap&Z I$I$IR[oxbjjja͚5ѣGgGyyys 3Ϥ2Nó-ԩS{W3;hcwC?~ <c@^'p 0 S;: @{XKEUU8'I$I$I$ @}}osiǎt)IjcB#5j{i[|z?PWyl;#!C -OY~}\˽_1>N6n;L;.**K$I$I$IRn:q멯 6sϱ/q 7NO̝;SN9%i*--ٸqcI<(}]K]dn̞v@MyiD`oGt7W!/PIRmْ<>wGn$I$I$cg0Cm@&'Z>:$e+Ƹ>e-O5 Q#!r`2bBcI'ug p{qW-[v}C]lG#!)I\e%y& ql^$I$I$I(VX>R:suױpB^)SpnoәSwλgwuBpK~)$xI\dR라wK'dOczʻ]ڃ$be!$sgv+{1bgy&㩭 s&L6'+ .׏[5%)X:;B5d7EB#iRcS~-_C7_$I0~z'MJ殺* $I$I$)E[nnwٵkWmVSSc$1%E.'~&At-kctIR~\v0! ӡ8$I$I$I$P۷STT^"pN.WZZĉ2_GuK.e̙444Δ)SXpass9c|xXv/;N?PT@LV]޻HQapp~˟>cܜ߮ɯ8`E$)_f΄Kعp5O;5d WW$I$I}ͣ>ʶmng~_݂$)bE!} ޡraފ}eu[֯IB8 #yVWԪm;Xw\I$I$I$Iʡ 6OP__g?:uj:ѣGsYgQZZԩS2e x`ؗSWW7ܹsijHJQQskM%POLq`0|RÀGKdoB` "Ƹ!]%K! $):.jk[gd=; sxV$I$I˼ȑ#9)//[$A9C9p5w\gi_!sIAqqa[@B8 t딻$c\ANw_]H$I$I$Iʁ]vvpFvڵǺ+-->BSNaԩRZZI'ĠAZ7[C .cΜ9,Y$=O-f(33^9|14P9.u*iBg1wU^`Ms2r$Sg'pnʔ֐c$I$I$HYYY-0x`:sguEEEi%I*?B -Kw[^[^hC1ƍ !N#I=d>)c{ 6'.0|4g><$I$I$I$;?;\g]#!d-;#8W_}5}ZtA{˝q=:'{ŋb n66mڔGW_5\ĉةr)߁s-0\v~E1mC[〚|7BL&9!A }u%,V~ڧ$Ps]_"b!$CW\\{d$d+ᨣO$I$I8#9y ^SN0wy.IRC\|vr{m1uB0CNp3N/r`e!1kUZƌubocƤ݁$I$I$I رr^֭㥗^cͺ 2SO=uc9&hҤIvm|ձ|r/_ʕ+Y~=۶mcذa3'2yd&O̴i(..N}uSoZZ |BXD>wy&5%n"p3BOWg5`FÈ1ƍ!t*KuVy:$ oCYr>,Y׆Ӧ~xH$I$I~f̘^SwwZm( H͎e>vGGzXcރZ&Ei_F=1 Vdqs(&NU@$I$I$IRx=x 6oݷ-[yu,WZZ駟Έ#ߗSQQAEEEڭ( 8$ЖBXc|@)C1߅dherk{mS{(%B#b[@apbEowޝW]yaQEDr"BUQ:t}b3,m3gjgXExN@!㮸+r?$ Ζ~W9~/zxSʖj΅瞛-R;6$I$I$SS]]M*_"syߪ*~!၆ٳI&TUUq'ȧJ#<ه~ 0lYpp<0 up-s3d$1vG !LEpn"0.07ƸoSfT縰$I$I$IBڽ{7k׮=`+L&W\>D=ߟS6͘1c=6YRwP¹ƃRٯ[* psa=,:>g ۱fM]zc[@2d#`A+"[R׋$+fKV?,}e)F\[%sz`20 Kd&a9 f[!o״cf1GX3ε /$;xEaBxC5Z(?SGY̙֫-7:*9$I$I$oͲeHRR)~C̑#GRQQ>ءBTTT4͜9작$VxᒺӾss>6G=;80{\ձ*3a ؾI4(K$I$I$IRl߾5k֐dHd2^}Rbڵܹ3糄S*+tܩ% :W>8 ׻!ߒ-] n8,,ƚp.0l]km8 ];n>cjE{w᭬ }3mwă$kyyl\G.'m??[rWU %Q+I$I$IRvʕ+ z!b[ein:^{5>sTUUpn„ $I={6#Gy$I l;n#{6G1ƽ-RWɞ{`P~.,ƸUj'>7T$]ye6$I$I$I;O&aݺu۷ԑޣz>Jʫ|'p4p10 5.9z{#>-RvkyԲ7S_+KmYREBv1vabe3Ccb=?p,m.1vHZ쳰hQZl<S8I$I$IR۷z`nʕ޽-]}c9J&|;yGuTS\UUǏy$IBK7{!{;qˏBKbguW]յ 箺 $I$I$Ii…r-ѦL&c᜔g-k߀ ! >H|B`x2Z/k~V-[c|"_1ևn>ʲ!)1Ƶ z-Ÿo%1M^8W|}ϒ̕$O/[&.Z¹CsC$I$Iyꩧ -[ƻロST^ fΜI~ӧw^S\yy9![IV<4pyIu=ߤ ̉1cBs,=<fφeJ$cҤR$I$I$IzD" zūZRS¹bہEB/|bK54{hBxX ck9I>N$[Vؚe1W9B~JEi{1%O;mV\B1X |iI'-\kf…$I$I$ yW&JQ]]͋/XYTcΥp `՜z'O$Iah˭1|AU|e{)kc|.>Z?|U1g;;K%pPQ{.C߾n$I$I$I%RGxѣGSYYIee%D XXRS¹b™U2wN ! TKxGx85Wc|9sX<+׹x񮂇QqGa!ǭ,\F2_kc<Δ$c/[|jk}2$I$I$n˛ jkk6^`ƍtI95.I:u` m*mnh\crcLnʲ_}xrkKK7_$I$I$Ib˺uxǹ+ro 0;KSҷo_***H$M׸qr~`p`1Ƈ'[ {^8( !Վ,IR6/{gX9I$I$IRQٳJ'JpN$_(u.0BLgSѭT1Ʒ8W/Ű*nŽ>s%I$I$I._&4]> v"_̐!CrڿO>L:+V)q?x$ 8 Wْ 皋1>|~a-{?0q-ϵ`.Xc|1_Cs:V\BosB5ee 3./l:Ǽ9@6Fbb1o(z@+NdJ겺ߝ1]!{y&pIuR\2wׅ-[cWc405cOtdBXcy{;~ j1 &Ƹ&sO[Y !|4x{Gg.~Ɂ_g15_ 1š5قE eK΅~JG$I$Imڴ)u(++d2I2϶lN$ !Ʋ;c=;N7,;;p\|W+Vd٬ZU9ӧŖI$I$I$ٶmW>`.ׇf2dLÙ1cDD"9rd^H*nY8\17\ׄN'[<7풹^o|xC1wwKbu!ˀ^,=XBs?*>OQ1w{2w%!=v,6G*ƴ/woiap]6 jJrW6Èpْ*۷y$I$I$IٳgB*/O>`gĈ$Iܴ+_z\{3Pƌ+`ϞݷovkH$I$I$IsA7ʆkW!,1ϯ1!|FK?Bob5_B$#«dtG7ڱn/pYiu1ƻY@ hw2"6ƸiAIOpV,#Ȗ-XgC>!I$I$I:quYY賏>覂*ƍW $I*d 8?E\^kX8} _ \tQ˖pP^^$I$I$IR ;Ԑdd2|o3<É'^Dp#3fPYYԩS2dH3$u-=p+O"[>A`h2Z/kBv<?Sڱv2C!w׀pXW>c|Ci6* )7cho!Wmd ǒ#&ƘNv;$2֮-#.}$I$I$˨*J9 N?d*I.mN?c\1wB=Cz(meTwP^Kºu7 J*4p9%I$I$I2o<{8Ƹ:_Ec!,~Tu Wg.1*wCÁk;p@c9/I W8wْ `,K$I$I$I9{WYt)T/}C9L&@{`ngI$; !f%CsG1P,*ɓs7+Wš5kzؼv~`ذl\EE9.uzI$I$I$MzS\:flØ ,pWϜ9>;L:m1ƽ= U!i%d NkK: OBAni._EcBO`AǽAQ6PVQWc) IRkχk;1چ1c˳%s3gB^[$I$Itٺu+wTT*Emmm{zK9C~ؽ{w{Mc|{bׇ]cm6mqr䓳O7^{sLnBvJ$I$Iz{RSSC*L&C]]ϐKRy9`fΜҥK;|qܹsbΜ9}t!*In=s9h8X\ $I$I$IYƍesk׮eΝ 0Q$u3$ƸgCK$OCq |B1W5t1o~ x}aq_Tc]T4Mu1$w/,[ mWg;^8wqχ3,$I$I$uJ 6JHR,_m۶{gyN8!d]s#F*$'x"!6$Iavy)7=Y%I$I$I$dFI'O۬7x`f̘A"`׮]I0 Zc|9d>ѸZz/0=CIT<`P'G}'4}!m ;ի/__BIjXn~{{o>-𵯵ai$I$I$u‹/T0W]]kRsTUUs!LL&2e zy$IztVs1-!7#[Y'$I$I$ITXDΝvi$NlȢB1nn !]|Af- B?<\tT}ɖm/-{}.4}9, L&- vU1`={Mtݻaɒl^{̉aÆw ْ ଳ,$I$I$u;òe˨&JOm|UTT0l0nJEEd*fΜIT$IJ^,JpN$I$I$IRlݺիWdH\y|#yD"-ܒ3bĈbJMËCRf\' _&|K9dya'ƸZP$î]pْ;-[w…)?܄ K8Ò9I$I$IRڵxT*E*b͚5dҥK,}z{N9Ft$I:5<6Z,utoqOQH$I$I$I1yd2MWmm-j1cpʘ1Mdɜ$I$I$ڵk ~vUo<gyfۋPh$I:,ю5,Ԏ5Gs$I$I$IoMMM Lt:ͪUؼysd2̞X.HPQQ$syc|!0d.Io$I*;෿E஻`V˿}SNo~3}$I$I$I=^7Jfҥ%˓JR8'I$vy!:8k$I$I$I$IjZ4LL&ÓO>}jkkٺu+C )O>}:u*?묳H$M%sw!rIR>X8W@1/_I"`t)If۶l…ُ;vwES8'I$I$IR+^u.]J*"Jϗ:RT*5\S$IRm-xjO漩#̕$I$I$IW_}X.ɰzjvgc^9sW"hwI$Mה)S߿$^lo $ƸmB$IRu+uWdw] 7+_q 7C$I$ItXzG~F*bݺusH?{o߾"I$ iǚbmiǚO̶md2)I$I$I$={P0sl^:KܡJ iH$TVV2c ƌO!I$I$I$$b=C.*H0a„&OL5I'$IRWpp!sSY8'I$I$Iʻs9}T#F0gΜO<BcI$I-iO\]Stl Β$I$I$IRc֬Ys@+RLLcƎ˛oGd5X8'I6,^-y[-mD.bN$I$IG {-~1k,H&yի9$INpN$I$I$IR<3<Mr<uud|MyN<ĜlNROd$IRW[pp!TWC{L??[47n\iH$I$Izd2Y¹SNm*;0`@J$I%8kS^^^̑$I$I$IR|T*Umd2y)D"Ql۶ {[8'ITj55wK¾}̚-28e$I$I$uYw&NJ1c]tQ{VUUyH^&Lsr3rȂ̑$Ilo;pvS͔N9R$I$I$ID(K\q!(ՙJ2LAs!qk  c|#sʀs:z_\gK,X4saR349$I$I$I]V}}=<TT*Ŋ+عs'GR87uTʖ-[r먣"LL&yOI$ ꎅs,I$I$I$ J$Т1cPYYI" HPQQQHeu¹H`6P&q߻#@ ?'%bt?Β$M㎃^(μ2=;[27o}tqJ$I$Ig}`zuSVVӼ޽{3{l/^{ T0W^^N!<$IR7О3} buܮ$I$I$Is'׌3(7}\.H0n8 JR;u"`>@?;Oy ח![cv4RK$Z0>˿nF^PU3oydfI$I$I7|K6=oݺuL2% d]sz"HL&I&L>}٣!I$u ڱfpS7k<$I$I$It{Wd2Mիݻ7N5j'tO?tҶ?\nʔ)ׯh%҅s!Q5gಷؑ-}>$:sδN$ς/%sG%I$I$I֎;XbդR)~NJV8w(Ms{.CB$Iiǚbƹ=.x I$I$I$0{n֮]T.Ny[\si<`sdԩTVV6̍= $p% B ⶖS[3C|)xw#Ex$p7}:{,Rnsf .FO>I$I$IRVWWǚ5kHRR)xٓS>r s /2{lS\UU$IjOy۰, $I$I$IN1/6e2zvd2y)K$|9p'H$ ݻKV!IR)B `KUסupM~B17x<^L6I<,z+ ˿_Y̟~. {$I$I$uk1F|ɦe˖y̺ؽ{7i_Ÿq0a!wI$ocO_{ZۓY$I$I$I:ر5kP0iӦNdԧ>sD"ѩ ƌ3H$$ OGsIRt¹B_Es墹|$os !,1>д(Ɲ-nB}IfFX.5k^ ڎ,X0 +%I$I$I]ѦMT*K/T;w$NsWUUU$I@q{a3ڡK[ލ1(JI$I$I$1qƦbL&#<¾}6#NeI&1`vy5!˛z*eeey I.Q8B8 8l[!Zy`ic7!$Iꊞzj}`bC;0v,J!Cr)I$I$I궶nIRR)6lP,y)$I!SZylrgֳEI!I$I$I$uq[laժUMrLz37l-[:thNӇSbŊFT,WYYԩSs#I*΅Ŷ85q*XY$;zlܢE#m_(?seepmЇ`s#I$I$IKMMMS\MM uu]ةT/u I$p΍ !1)dB6=W $I$I$IRWT__c=v@܆ u91zjr#'On*;5AR*i\a*ٲ /EZ/kߖm'{ 06fHGq BmmMw`Ĉs,X?9|ْ~ }_I$I$IRi&~_JX|9۶m+uZ͛73lذRG$I'O~pxs@x*I$I$I$u{o555Mr555lٲԱd2y)4R(Y\X c \KM.;x^5`&-pn7}l^: Ns$IRW#lؐ-[([8Y{OkLxu80$I$I$Is=__:FȹK2!C:$IRBSLa!6Ƹԃmǚr _8Wގ5k A$I$I$I*{od2|R9L&S+I\Z/kn XFI-tRf pM.n6y|:vΓ$I]Hn]`nBxhQ~ ,$I$I$56mC a֭B^6mdd2I"_~%Ieʀ4{._*I8cYhǚd$I$I$I}_1ڔd1?E B1\6wpn1e~%%f%h,k,rC$Ivm`n"x̹x]>0K$I$IK{;,'6̝wy 6$9$I cهN=O٪4ܳx{#=lfZrLo@ )I$I$I$u'N2=AQ^^͛Kasw3hl.o?~c|b |%pp-4?x_CKc/2$Ia͚lܢEqcg w W^YY$I$IJ2,Zܘ1c 檪8c2W$?]!LnNjB%bSۊ1և.heBBdhxueV 1_$I$I$I*^z1c RT49SH$$ *++9ݻ5C&!\|5FcEn1 BHHɎ?t⦓$I#^ fK{.pN$I$Is1FyRs s3L!Yˆ ٳJN=TBhW$IZBEࢹCSmq.` -ԍ,㍹'W7 3? ƚ%-I$I$I$u؎;Xf L9sPQQDdsÆ cƌMs3f`ȑ%"IڊV8B/5|l^6pEb:c*;ZW[dBb%(Iaժ%s/P<? {B>!I$I$I*7xKJHRpJ+cH9:-Fa6s\-RYY٩{tH]\*\P cfK,϶dN$I$Iz#O<դR)-[͛;W*K\UU!9r$si*;<`&IjΞ[sG:{s͋voc5(n#P:c}>zƲz,$I$I$IR۬ZL&C:gmٲN;mH$*3f Mr 80$J \{"pMw(kc|3085K%ڶmL1apx=X??{UVB$I$IkӦMTWW7̽Kyٷo~9s10qD{19T07ezIR'xnA*Q>_{?3^.1>Ѹ0P]`x!+c7wp!ۀ[Y6l48X%1>y$I$I$I:ձaÆrL&Olt$I*>7*xC~끏4/1BXdg J(^bi^8p}cN !jr#I$I$I믿N&iVZۋ2;NO}*}*++>?I$̘1JLB~r!IR.Q87^!dn)P:𖵱$+;l0m/I$I$I=޽{i*s˹袋r+{H$hܷ_7>waqաn1>Bf_luc1U!%, *1̜ #Xf%I$I$Itڳg<slk}油ucj`3s3%?ZYs6pG ! nftwCI$I$I$^zr5kְk׮RjalСCsڧw̛7/?$I*C8xncKRg= ?xBg'pC~1i_-Á u'1gBI`uS1v ! 8˿c|=J$I$I$gK&TWW:Fb^RG$ ]8wAO $I$I$I{J]鴅s؅s{_xf0!$I*;aBNغ.$9s!`-?N?ݒ9I$I$Iꡞ{9.R8N;d2I2dĈ#Iz [[[B|>m]+ޣ򚢈b!+q˅ !M[@Fwp3'bO$I$I$I=T"KEF"HH$ KG+tdBLqKgUqY*`PHTT;w~-.ضk.O\p_%s,I$I$IRwsGk: cǎeܹ$I̙رݥC$Ic>BrV_J pC;pzk!*`plnpuK@Uk$I$I$ID"QՋ)S4% NEe_ !\c/ !_;>tdh.!$\\jcx$I$I$I weժUd24L&}'NСCٲeKRߘ1cl*`E IRWS9x?aQmIBض ~lo ;vt|[{ࢋrsoe'羟$I$I$[+f\>}8쳛 NJޅ$Ic !:sw1ظld .ޑ!dn\z1gC>V1 Yq[$I$I$IR۷G}\.cg[oGӬ2ON*iۗ:D"T27n8 +IA y^{$IRl w~;wE)0$I$I$Ď; !0wܜCC2eJS9àA :O$I=wϒ=O BˁU@=p10l\8b:8󘆏ؒ!8%O[? \c;OI$I$I$@x jjj VZŶmm?O /0y-?~rSL_~y_s-$IR.l; ݻ=uI$I$I:۷5k֐JHR\={p9pnܸqr)<yH=6w\$g樣Zz֚$IԶ_d\_ p vb>܉C!F:>`9c}~SJ$I$I$)W{eݺud27vjL&¹D"{ iӚ f̘1cr$I؅s[ 8O$upْ={ ;+}p3$I$I$I%c䩧j*[l{e2nʐ!CrL&;]87bH&$IN8Bm(I$CB_Tp65xwN"1߀wů v`p:p0 hdK 2d|ȱ%I$I$IԊW^y\.sμNό3ڽv„ $kҤI'/9$I:p+W$I$INٻw/V"JJd2;R<Ç3m4jjj8餓 fϞȑ#2G$IEW!ۀO9-F ! G "[4. u3۶m#ɔ:$I$I$Im۶rJ֬YÃ>ټy3{o߾ 6I&1uT***9s&.uر5k֐NJ6mTXd2?,$I♅Bνk'p$I7ހn˖-]Zr28$I$I$Iiݺu?[na\oOsm0h >OpUW1yb믿wT.#?~t??y$I*B=k{ 8SSOg? ѫ̞ gK:tY$I$I$zT_~eRդR=+"},X4$IRqqƢsX㾒$I$I$IRQrWlٲNݿ}vn&n&fϞ͍7HyyySߺu?RhS&)uI'+1n ! hyjf+E#I:uizlܼyp I$I$IEғyf/_N*bɒ%<%ɑ9I$0ouhX:YCI$I$I$IQWW_7 ٓ=-[FEE_җDUٴi!cl{q =l߾A:$IQg0!!KІS!cX)gIn0IX.88s%I$I$DzTC&!JJXj+jR)b^,I$!D̆,` 0 3RJ]ޒ$I$I$}6mļyXjU޳g^{-/og̘1yÆ NcÆ rqƑH$H$TVVrgҿo$IH$m۶9MVd  .n/b_CH-͖]|1YY$I$IEt'S[[T0|rvQYxyꩧ8KE$I]PU?cO8R -Nv*ԕNKC$I$I$矧7tΪU5kՌ?>/{Q[[رc9ꨣr/HpL:`.Hp1ǔ,$I=Ig,TVVd&sR8B q$I/Ζݛ= .Ȗ]|1 %I$I$OP}93o 2ٳgSUUň#JG$I]QO>c)q.+L3H$I$I$IiӦ5ڸq#UUUXS^{52LӵzjoΏc>圯g9^'pDJ'Oo߾E/IJЅsˁ:RTΎ1>PU?UB'I*m`JX|֯͛aϞlڰa0iL 0s& \Թ>~orۧ_?%s]c%I$I$IFǏ礓N駟뾝էO*++I&$IMFޅ$IzC1x@B$I$I$IR11o޼5ڸq#cʕY۳g<Lt:M&gmqm&K\"yC4hӧOgƌMsGuTIco/` ]Ofb9IZ֭no?7ހnz 'ફ`d}X/;?ss? >CE$I$I$ɒM<`n֬Y $IR)5BL?JH$I$I$IR]Z$WZ 7W^~֬Yî]ڵ_:K'2tPlْ^z*DD"Aee%~:zCJISq-쁯L !|5OEw!Z&IR)Wòev5{6x#7#ƍpaz?sN_r {v%s$I$I$u'vT2?ik˸q;w.d9spGm$Izz!1~$I$I$I$뮻oϓNy饗:SO=[oGS2f̘%K:t߰aÚ3f`Ĉ9e$I=_1 ~30׍m_!1(B|7f=,⫫믇o|Ϟ˖AE|/A?SK֮my…)1IZ~@alܠAϔ$I$I+~  . ȖI$I$Iޣ+E?- ,!MqOs*08E`aqU I᧮+^\s<[0p!{}5fUgBHK{c[:!8|h nhf;3Wu`ٲR(;JD$I$I] T}s!I$ug #Jۥs} !c"fm+3 @ޏ-|n$I$I$I={vZ2 _כۼys uΐ!C1cDD"35jTcI$$u1ƻB{.| Wok!ǁM.`7P:1ixXxs>cѯY `5 l$I$IOP]lW($Il\.+n!1uQS6c|@a0 b=I$I$I$y饗Hd22 k֬a 0~ȖuuvDJ'N̞$IJhc^a 4΃~Xn鉟)\c~ɒmR5z4\~yds I$I$IEuV/_/\(;3uRG$I‡>Ρ 6/BG1+b1j.B8x$I$I$IEܹzL&T2ڙ;w~z:,[2h ~_3}t^8$IEQ9?v7p暗tVi~)1:8K+WNcauٖI$I$IR mٲ#K&i*[v-uuu'N7 67xqs2vX:$IRQp nF[5=Z;XB \1J$I$I$Ic'l*KӬ_d2MO:n-3rUQQQ$IE% bkCg>r|˽g| ]_)pI֯/u di _]$I$I\%IR8$*I$_Ãoitnҹ c5$I$I$IT`7ofժUMr555EOo2jԨ.[UsI$R)1n,p c`"]mA7/pA5g$ͥNв2뿆aTK$I$I$?τ rsΡ_~޽;m$IR!Fz`y%$I$I$I򧾾{t:M&!裏㡪1 /3g2h o^,4h3g,u IRsbCKxr/kw,c|{*$IŲgOl`wJB$I$Iz#R),Y9ygr{̜9K!iY8'I$u\qunxZ/P!?1.,fVI$I$I$3z-jjjjjjزeKcpn|ছn*u&W^y%.u I뒅s1[?!.>\k\Brmi~pec/t4b'fK:oR'hYN I$I$I= /@uu5TT*믿~>,< 'pBγd, $IR ! 8K=8:$I$I$I:׿5_~yc)4}~UWu¹$IJ~c039:r1~es'IʇaJe]5$I$I$u3v9S?~<ԧ5JRyL&OUI$)71Ws{_.ws~y(%I$I$INO嬳b9O>AU$I]qk`b&XFޗC?1v?T$I$I$I;9#x뭷J=ʌ3H$$ bLo S|}?AK$Z*;X pc1KԩpmN^N I$I$IB}}=֭k*عsgN{VWWS__OYYYNՋ9s_:}'J$IcB5 d⹃K> BH1x$I$I$I #uLD"o~<|N;ʦ'L_yy9_׹kt뮻O?d%IJ[I]ح$I$I.k*7o6k׮嬳yyQVVĉ޽{s|$I1\Bx,ky!.f^I$I$I$uv⡇"Ndd2x\z9]YYY¹#G6UVV2m4 ֡=/xbVZU6}t暢ϕ$IJ,$u}3g A}{7hP6$I$I$ ze˖5mܸ3ST^ 箼JJT%I*O!MM@/[:Gï_O+B_*jXI$I$I$u1F{bt:ڵkL&¹D")++cTVV6M0ZݛoYfaO<ŋӻ+$$I]OM7:~W^%I$I$I]vrJRK,ᡇ"X K,K_R^ $IRchtn"!| Ƹa%I$I$I%m߾|t:T2ky_:iӦBۙ:ʦS2hР}1cP]]MUUUQJN {O>9e:t(_ݛ3<\.Hp.+dzb ͛WЇN>ŋ[6'IV$u'ٰlYdsLT$I$ITp7nl*[t)ov#`<TUUu_*I$|1LnXZ/pc1$I$I$Ih˖-ZL&T2s;wduY9H$U8w14UVVrg!5fV\ 7u]Ǟ={w߾}k|$IR3H}x#TT@A ?AK$I$IR۷O?'xQi̚5+'OP$Iz!v\`a 1ƛV$I$I$IyW__?~@܆ 1lf:[ܿۿZ~h*K${9*޽{|.e˖ٳ)//CBI9IRQ^_:\{m2\w~zK$I$IRՋѣGw¹2NJ2$LRYYI :'J$I=_99]: qatE +I$I$IԐdd2԰yfd2|yJ?bD")S۷oRWyy9K.eݺu'?ofРA\y\uUL4I%I7rAԽ|Kx1ZUӧ5$I$I$@2d%0aΝK2gĈET%I/Ƹ90`mk!1bq%I$I$IuuulذL&C:&tf23qD}ټUL<'p \5kְf֯_͛ٽ{7cذaL4 ***9s&.u|I./xI /_K$%6mY`&Iɓs7+Wš5kzؼv~`ذl\EE98$I$IJdw}Ms֭iݻwӯ_ !0w\?^zH$ ON߾}s#I$I]Y6p6p7p m n !|&H*rtcH$I$Ia+ƍ4<{^xW^yc43@"஻iݛ)S4% VI$g*++d2yNU9ag? !,n1!CIFˁb Hr5x0\pA$I$I.|T*Œ%KHݻ7oܹt:矟^d;CR$I sfv\oCc*jXI$I$Iغu+Wn*d2?pe圣2/scǎm*K$TTT0`$IJsP57j1n)B ! | GEsK$I$I$Iz#O<TT*ŲeزKRy)>?I$IR7c|'0X\Hۥs˜E +I$I$IT@<R__=U8H$:|O߾} H4{채p$IPsK9h_L~BKcKBNn|cb^ .h@I$I$I$ūJuuuSK/TTyI$I~1Ɲ!K>{D6~޼t!O1$I$I$IR^Z\wy'3t^6m!b\3~LB~2_$I R8cLq)xo\=|IbV XN.o4lIkEsnc|pI%I$I$IT(۶mcɒ%R)jkkKgռ;19$I$1>Bx2=#  dd;*0/Ƹy%I$I$I:b߾}}rgȐ!~z iH$Mט1cY$IV R8c\B w_}iI-qõ%p/p/poBenQkB[͖\w}p\k1>$I$I$I*:VZE*"JN+u&{\z饥"I$I=R!We_?XB$I$I$I][oE&i*[j[9vGaԩ9/~;wRYYɤIr.$Izw_ !ppQ[ T>7 ".X)З@a80r6jkh׀o7WRQ[[KeeeMyN#I$I$I+ŋP]{s1]:$IJjkkDBch10: mMV.1n,fVI$I$I:֯_@SO=UXM2L^ >O!$IԳpQI ٍo5|l^TVVL&;w.SNw~O$I9>d`M Bxt+\qY|Ѵ^:#e!1{S$I$I$X|yc)N:$Ic'NqU0->š.KCޞ"5?~c|+_$I$I$IT:d$s'MܹsI&̚5$$I$@󳅍en;xppZ1Ƶ!I]:73/U$I$I$^:,zM]]]ruuu>|U$I*.ᩜ&-8ПʅC|޴.U[%vm\1=yO%I$I$I8q"cǎW^)c=`nΜ9=$I$j<`G([1gCgv\Bc\԰$I$I$1p@8 ֬YS(5D"A"iӦ1dȐRǒ$Iz.Qc| —?&6͡Z{U2X ,Ƹ$u71$I$I${WHRR)2 7=C$I~_)eְaØ={6ds2aB(iW$IzD"ѩjkkٶm[H!f?<_KoEc|30x!25/+!-jPI$I$I%yd2iOɓ'oeeeI zgAeeeS܉'8I$ȺD\o*?> ٸC4Z 5b/E1FORJjrtcH$I$IRe/_T2裏~MM fyN> ̙;?z'esְ+@k[Lm;q:hLڙEtk+]G KM + @B\77q= ~/羾UYYh4 ׭z[J&yN"/-6Qj[@7O dT~$֫[l]:g>}8rjkkH$L&L&w)Sp. fd2~6r >@ǺUܽVR}FrIo~2u|ȲݫN*wwrɓV<W,Suuϸ>pK͞=[HDHDK.Ր!Cr}T$0Isն){ QmZZ:z1wΝ;rDB[n[Ok׼yrpXw@wm Z{xf6YeHm|ͥNfIIIJZ'7rھ}{`nڵxH-^:;|jjjrdR/RH$y2uTuYڷo_8s۔͝;WK>mTeݟtGKf6J I3$M4Y9J:!IHzZғJmwy{nUUU))k޽]ޫZԈ#rDN+1bVX.;yZ+75wO3+Jl\ykjjң>d2.۶mr*x{nM81}LPHZ?`͟??]. r 8=pT~@}ͯ槓+i!ztTґ毇%vWgt!YFx\x\;vލZvW$wܡŋ+(ByH MfOo:^!8t\uu^y啂J&z;ޑ>psSNmS.7{l<@ ΤO5ЍT(p8A8MII TYYt$=sȫH$gAШQTYY.6mZБhklE,}BPnرrp8kذaAKP8D"0`,Y.3gJKK@WnIt8 Tܳ>d2d2D"2y O yHR͙3']. 4mڴ@{8:suEG-3ܹss/֠A :BsII*:A8zjkkrdR{i:~ӬAiΜ9ڸqcNtd r <`Ta~Xx\UUUCo$)Hܔ)SFF|r;63ܽ^ҦsPh'|M܃>;y6mڤK/4 P(os׼yrPHw,/@WP8޽[x<ڻwoڵk71HDַrgZbѨ"MiÆ rd2}uid2¹p8o~]sU(J͝;W9sܡCf͚t܎;θ6pnٲe*))QSSS0`.]H$H$9s樴4<sw=cJ&邹zg$HeP(պ"]. 4qļdBpWuuu`ZYaȑZpdLK-^X K@q]fVЛQ8PDHM>=]0|r3&H38~jkkrdRwnwm2K\(y37npUQQ!Cleefr3f*++%sSN-zc]zgrDB[lɓ'?H%Ǽyԯ_?544O~4w\aB!aM}z`n3fL^ÇaÆt\2 >7Lp.FSLQ(J͞=[ yp(}?tܞ={]R8w饗j:~x=z*++FUYYiӦMMMzǕH$s۶mSSSSѳ$ɼtR}sS(ҢE4a„ ( @sa]6]0}brwYN.Lw_Ƶ ҥKFD4g4TMMM\.LAǒ$%3i$G^9|8/{ε6m""VX1c?p6oެ۷#D"wA9+ٳGUUUbz 2'rgw˗kڴiyH(P(x g4|p-ZHÆ : pH_Wqb1=Ej*5664}JJJ|$Off1cBB.b MP8z(++H9 ByH5FjS.pB1"<9-}Qb1q^Z:$)Q8޽{L&H$L&a;vL4n8}ӟ4cҤI4ivڕgTRR3g) s[( /x<.۽{wБu 7zmٲMO?}/~iM:5١PHorާcǦϟaÆupt50`,YH$׾A>ibD"Z8qS{$΅ JKK5gΜt\(Ҵidf9g5 @DM᜙iܹD"D"Zd t,3?͛7)۵kW&IyP(ԩǏO˅aUTTh9  @tR 0O͗)S(*hŊ;vl 9@~'%M]w&<3sw=bd2͛7>D^7oﯓ'Ov;wn;Ofts4h/^UVeިQbŊtܴi8@r$}bwo 6ѣmS0gϞ޲e;A5w\hҤIbP(yiyJ @n(99r֭[syH$R¹2-YDHDhTsUiiiAfnDk_{ wדO>٦\TCCC yT[[%Kw3F&MC2 ¹ 죒J,im^l*ب7*+P}}N}yH$/~yH2w\E"E"-YDpII_3ISܽ1piÆ m t6d^ fϞ4s0I"iblRsu?"qw=bZz^y͛7OFҁtɓDFb uY9gޚ_m~`fߗ]w:lk?>555CD" s{IjdfI)isuk礤%=,i{G_|QVJ=頻RSSJJJr]ZZ+Vjȑ#b EQE"M>]fF״j\{%}A,.NIwF /esRp9o(խoɦBI?t~;_2J/w)ѣGn:qb1=_͛UQQsH$r¹2-^XHDhTSiii3@^\&)z̾/tQ@6{l 8PǏ:i  *+ Q83(;3+tN?LvB&IHz<Ijnk%}̾iӦtU__xsݺu:v >f}kyJ*w_ift)Ur.b_ΖyI3U PT۶mӵ^իWw#G;ԝwީ˗nSyyySvK/j% % m$΅Bdƌ 邹/X%%% @ODܙ<6%י93(#:sܩZRЪ}URcǎW<W,͛ĉZ~"Hg$FolK[IZ}MReE3=(r-򗿬zjUTTo_~m۶MdRDBdR=XD^bȑbP( jȑy@oFܙh:y$юK[~IHZ.i^=V"%jp@Ԥ͛7 ~8q"XbnݟE3J*uvb_Ζ9Iכ*IwJZ\t۳gJ}zp ZrM0!M]o߾6r555:rHI$rwY8st%%%*//oS0w$LeΝVoԫZ,{VhB3+QI_4r3{sSO=X,x<*AG:M<:@ܽQo%Γ1MlYӋZ^9Il~3H,@yUVVjFK.UUU&O~'O֭[o>=S6mZ{ ƌ. Z` |* ldf{UH5IzW9Ir&I?0uբOJp]gqFÇuW J(͒>. I%jXWrqtt{ܽ gϞ͵عs*++n:M0Sݻ7],H$qF;v@ID"¹P(_Wm+--լYM>fsg6G;q;O)u^s 37u̵>! + )*j׏zȮ&IIԲD˵r:~ ^OhWCCʢ͵عsJ_ge˖6sJЍ=,vsI?֕:qzW+eH$}dذaz[ޢnM;vs=)}?*i7IF^.^ܩkZ':IYx0P@^{N<hFw}ݲlNT[[t GJ:M$b3+^=(&I ~މ}zm۶)wD"ys %Ib1qmذAr>w P(h4H$ y螺zna۶myN,,f6^G$}X":m霵ҹS_of?D}֭[zc>.]t 'Ν&fyw)UKN=᝸@SWWd2t 䁻롇R<W,_W=z͚x<¹ /P{{.1c EQEQ]ve6lXι=ܹ^I&쵒>!MrK+;K?I'3[#NIs=}ɷ#tK   4qĠc<ԃ6q*33IOK$3I[$¹|IwЕ3KH k? xvJUUU^p/kX?^?aEQE"UVVs9Kʛ!S8IaIӛnxTiy%I?x~G{g.H$ t3uuu?~9tM2%],5{l ^#qm۶Էr>¹ٍnԫ,w՚IߔI~밤x'f}݇vwp;x֬Y.{G;իlٲ?{3^:t-[H$h4/8%^9̬R'$ER^<[woSTGƽޫ׽uA(Ai邹P( ^;뗏$ה*ԡ7HzJԤ!YJS3es&6uIr ɓJ&邹566g<K܊+T-R4U$ѢEԿ 7^%JH m̵~>3o y ZAG(ӧ+ fΜy2@\G"2Ie.]@1tP]۷oW,S<ڵkUWWXL7|s}z߮'*hٲe>|xP(ԥmۖgz;w/IrIJW&I3~{$ z3p=6nt:t.\P(p8E鬳 :(nfQJ/k~{ݽ+?yz[wv~=DyyD1^x<ڳgOAmܸQШQrC"@_s pXd2iIz+pLesmno~I)RV2Խt]tE 邹K.DA=sٹNCYQۧS;*1j;pFڵkǵ}ojjҚ5k-b f6GJv\ku^{] CUyyy1@555iǎJ$J&J$ڱcOXp0|p-Z(]0h"=:X PKm۶MuuuyNB\<ϚYJ:)_MqIq':3&KZWN\\r@_wImذ!]0L&hX,F@/gfC$REs-oZ:s\O<3s%^/C~++//W":((L媫uСcuiƌ B B úURRt4]=L&&¹Np_$OҕVH|Rq_v;FJZ&鰤1.IC٪sw=#bZf>t6xP fVT{$ %s$͐Trלx]3׺NQ?p\.LG :V^1BO?FtЋQ8I^//I$q,,j)-t=y }}ݧڽ{wQ謳REEN8y`fC%]Tܜ[-hkH;Q3 ͯS;x$$}9c߿_d2]0WSScĸq(G\h)k}h%q_S&N .LHDHDfRIIIбfPwKKt}%ݏ^o*g^)2ϙٯܝs֪o}KdR?xqf̙AG}s8!鸤Ϳn}K%}ء'1c&L={4tܥ^f= ~I)l_~.vwߔiWI2񒮕wFLҗăpͽ O~t:( ?bfC%],ink9J .!2+>cftj[:$93&C#iRzz,w.D̆(UNIJ:sI}θq4}tܹ3(E3d-^8(xᜤq^&gO@uV}]wݥ#Gqݾ}Ow}k4k֬b=ͱct+)o}nƜC K*(jΜ9*)gZГII}ܙ?-NIw}Kj{^/Z"JB](f6X%]fJ%$]g0ᒮt9l5AG$}6HW!"e% moy睗POνO1 ZRU"^a۶mkz.y睺;|rvm*//s566j˖-邹_'NH_4hP^ &N3fh]4w\EQE"-^X 9/3-o%}LE-oZ٢&Itswo瞼rfvO|Bg3{HmÒ֙%}wdfWKOIgyfIHt?wV"P2T"Pmmm؈#~0pX?Osާkbε^,wf wA@Р[nE_U__=W^ x㍺կ_~dSO 檪/qmuu:Ç<7tpnʔ)邹+Vhر9@gf˔*{2V2'I{%}Ow*kϨ"23^W$b{IO`FlRe($-2wEv mڴ)].L&sgW"[\!L8QPHpX?ϴiӦ˗k̙A}D1 LUd666j͚5z[-Ѩn׌5J+VP$Q4մidgۘXIQIO]ͭVwoOsmfvXP{iff#"))if#EW4f6Jҟ%4\I-~_f{]8'^:)3;[dy[ڳgOQZܹSZn&Lp&mݺUXLx\֭)bygذa :|"".]ef6VG$}TҴl6H]/xa-ݒ#GI% 鸤Q.t%b~kfaw?݉W%۲&I$AR'%"DI%%URI*zgڔmٲE'O#UVVW(:c5t\(9_V\\v… uu}.ۂ(2I4FCCʢ͵عsJ_^ӳ>.Ҿ} 6GѮ]4iҤ*++C*p/_Զ,9z˚#~.vwߜׄ}M,;$oͯujfoߒfwRꟕ˒"Y/gg_fv[$!þ#%.e GƍsdR{-d2¹p8~ʔ) ׬Yr6_~{tҢӛ>}V\~7諂iD4MrIkBNgfKMͯ^l*-ȓS%FK,/>esh"*91-;$ ϰ樤l7ufV/%6kg>3 I\KI3Òhf I;X>W$ؙk]O>d\.HTccc yD^u=( ˞0aTYYYҹӧJǏ/,S]8'-#i]{@vKz5l^-$i(^b۶m馛P]]|T2ײ^ݒpuOU~n.)aY}_1H ˿afݽsdf&$dXzL3wnISg?gf?q': N6lH%I۷/XidRԏ,nԨQz[ߚT=t ^`XIKzWٳ: B虮ZԿn]6"HK/| U[[/| U8g\:7Tꢥouj dvjСzӛޤ۵k.M81XZ{A͒[ܽs(pݕ]ZV>Iʰl._3 .$ò.sݽI>^"s @_pFÆ S$??kܹAIyyVZ|P'5dȐN?d}֭[j*()@堖K4{qI%v*bfHZaٟ}sG,|Hyn#5r=_|/ BAGH uԏlf߮[oUׯWmmjkkC:q #Fh̙PEE/^C4,kmJ*s\[w4˂q$$ I$i)i@֯_#G#^(*hٲe>|xБз#IwcA$,|=C=if5vf6)5wppnRx?,`&رCDBdRߞA΍1"], h"92,A:t ]qAGI s~ިrsKLglIt"=T$IHvQ6 jkkg}"H5iҤ#񠃠dGҪ:.$uݖIa(`tDҐ\- ܁T]]D"D"j:t(}}ĈַuY:OL\rI\.뢋.9;H${ >r-N-{~ȑ;.Ttƍ%_H$h4rRtdЖ] iZeqEꩮP7/4KRY5l;Xv n~Fm߾]DBdRDB.B΍=ZP(].pB >}nS8'I~GIcq$M2;~~b1qm޼YnfРAAGbx?k9"g$3%iJe65s%Arn ƛ@w?^? {.3#i~I3ܶݗ8Z%}N/޽7R f6\RRr-EjS 'fV.vIK 8浒^kfHĉЇ>Գ/5\t+uP-q it#D'fe-Y)h᜙(u1ݹP$=ɤ6mڤ+Wu{]{ 8PO˅B!s9EtV*$w ItbI 3{?\԰}]/+J HZhfou 0#0f6D\Z,@:>!i䕒.34cƌѼyT[K!CAG5s̠c]/VN-[.OwIa"D̬n[8II:X6{MbV,pn۶m +IJ$㪭M%I޽ud2os4u6rgVYYYAg 8A9ضm[qs4?JK$iufwxI3IaLII3)¼3OKҀ}E=Zn,V8w%((.3< Go|#@ܭT\o1~W¹CY^ID5T¹ڢY)L{,Ig}VD"].yf9̦Izc'nN8v6nܨd2.ۻwoVSSJJJr4vX]pz;}rpX3gT,z[8'I]*$]̥s%>w5l/gf,QꩱY K%"IJZ,(fvb4C%K'niJIHzVJ=vђHZ,iY+(~`f;}K'nѣZn:w9xb 8PǏC /<]2w%eukʕ{L.\뮻s|s쇒>9Bճ7O}Pl  s$45%}Kһ5R?_u!fV(wSO=.K&ڲe#<3fW8X87d-X@pXpX-Ҹqr tw=pN}-Q)KtTҷla{)3S`3qIwH3{NW쭒[ Ε_>(:36\w%g ͯ'$%}.yIbI?2 w/!EEڴib֯_zM2EW]uULK*圵D .L̅B!us=ܣKjΝ9gӵrJ| w((uM߆/,wp%~+{Feem^ ;w*+iժU:pik~iܹS~h .BE"EQ-[L#G9τ TUUʢM>]UUU?~|g/)u-Rg _'fQv ;hbMnO:)KVҰ ofϺ{2afvR c@ڹsgr[9ɤ>ϒ%KbŊ6scƌCB5P(۶mS]]]As'*IߖqzaSK>&i(f.)aY}_1H ˿af=C`=]G$mlIA:3&XzXRݷ2gf$48ϋ9^zIVR,S<SO=}x6sީaLεlo0*Uבl\9Ǐ* KW/{RmjPr,֬v?sIZa$Q8@455i֭bZn;VRccJKKsڧD/)3SEEE`K/sUoֵ^իWum< ̞uI$&KfcI?pAe텲yFYS*¹=]-)!ixW{,&j:xP-4]RH[$-p[;(1I :Xs<\wѽQ4 : k9Ir;EI?4@K%%K-j؞2\wI0w$,ifs"_IRKXo2󐩐Kq۷/3^ymܸQ-yO}Sꪫ|r3&򫼼\V֭[u'?9C ~]s59sf3y^IWJCTZ:'YI5j_;$P\됤ݟ-Ɯ"8r6HYT`&5`%|p+_9!úsp8 F^x!@k $gfWHZ)i:.$77{xI{3!)ӧw T]4̬닐%¹[/J*%$iI="$}[?ur|c% %I% 2=z5zfh…9Ӟ1cƤ,XaÆ}9IrfB²7(sI&E ۽EXso f9,,|tY)l}f>2e6l/_h4ٳgpfOeIO8G˜Lۭ{*3/.iR'.ǒڹ~I{lL^~eUWW+H(HF<3\8WZZYf B?|3T$13{AZt-}~q7HZ[ qu\87.q bY06~K/Tk֬ :$_~ BD"FZps?9~(&tkr]pg͹FI%?3.i%M4N`IeH:(i$3"9zzᇕH$L&H$裏g"[\guY rkС9g>)Lwoa3+j[.ע4̮t paw+pdk*Kf:~lgYQxH$¹/8]0l2 6,,.{"5+PBz6Y{$wߩT\pIw1[ؿH$H$TSS~.ct-Z륥3gBPdnԩ2s¹"+U*wjNyfzwQ 3,;QjX3Wҏ Y_һ:~{}IfXvDQ?s?^H$8qbfUU -Y)/t3' ˶:Go`fdXQm6% %I% =[]]&ѣuEG$}bp8 <8tSΙY?wobfRdtnfvE9YZ4es Y?u\87Db\RQPtǏOt =\1 kKiBiJ]ңf-$wbf%+|e.*fawi1(¹ "eW&iG YwK5wwߚ03[ =$雹<իW++xO<[\g3FFD"2eJ=^Ld@sf6TBqBM2IdXbdhllڵkQ":^Xs-m-EmjLkO٥,i2#3Y԰87:w?R$,֜' w?ffFR 7]efWJRO=>]@1׫ZXLXL555jjjXL_}YM)S駟ntRE"EQ͙3G%%%9*%45WI|E@{pI*BECeeeХ^&bI1 (i^SZ<^[Q~3[.nI=C֥s%n1s4+˗=YSȚ'ݒ~3Ybfߑ5w"lI@bqwm߾]XLx\k֬ё#[NǎӠArFΝ.[dI37ݒ>lo)@pI耙͔ ˾u]1rH͘1C۷o:$sU8V8V(ܹs5`c% ^8_(-'|\2w*w?bfoIWb9[ΙO~o4:W2E=f.I?4 LÄ3*Ik$= I$5;JTIJZ!iY%}gtܞ=gĉZ~"H{oWccѨ*++uYg!!:.|5^ajw>s{[z`󙜔"eG /0=p s  s'N,z}G N$U5$If6L\-k*vS{ QmZZ:kIa"D, !w=ԡPKK$E_<헓m۶)2;H2RWWkצK~όby){^׽uyH\u`۶mЫ/II:XsqI$8z%3[Ic7}W1yf%tܳ>>}΅B!}{yL&Op8.3g >Zp=~X__$3$(4FҹmK*ͰsX3)%-t4^5Ip#)uuuJ&AACC6nܘ.K$:ydQ3b1}_-LTfߒC1. ˞|l2,/_@/k.%tܦMtĉ3O$'?B{L/ƌH%%%Zhᆲ4H ,H̅B!?> P ugf+$IX9 Wf6Iu>&iP?_ҍn4]/ܽ1sPeeV^-w:J e˖|)SR{&nI_ֶ t{~eoH~n Iw Xk /ּclɉ'yfyrokkӖ-[w;Y'?\UYYt 1Tl.[B煂*C 6km"s`pTYY- :~xڳg,YV8gU\\-;w|sbXsuuu?Od]Ú?&:S!=},So%@m۶h\UUyosG1L"c+$e*R4R/~X<8SMMԽP4@zW r{Q[[ۀgB!_ 犋}oP;6Z.W\\"Ɲ Y! =p/5WK*OtIKV$ֲlJxU8'IEp֦={D z);w.i{ 3Sc:_6']4kY\_EtKz[SLS8:ЫgϪK[op8[n%9@1Fyyyт9q4{lSh 0PŰ&/!1%Mgs΁~#IڟŰDwСh\yy|۷O2c$D%lδCR7$tWGI:"{$45SҜnyEzƒW`_R.WSS |3g;VNr*,,Ԙ1c|a@1oJDzIRÚ O\Úc Oq<5 ҙ3gO_0gG8i"(`T >/&hwIg10cXsd'5TGk7ƜCu-~.,l9tTWWMiiiAG 0`6cHtc[kK@sM$`_ k1)b;|ZChʔ)7o^xᅄ!qs˗/WFk%e|[r; A$k폍1%I%ƘZk3|]s5Kuĉt1a9}-[9@?q. ?75̒tc?*G\ kJ-!1#$İtW"sP~yM6.䒸g%pnтիW0l,qIJb|Q;%|ҹc~fm * ''Oȑ#5jԨcT\\>%t-ZK܌3dfE9 Ӓ$ifk>d&G!>%Yh)V$0'% k )ԩSy??{uo}+9_~y`LSL{&`Z{FBֶ$9-Ƙ%^:&H6= B׋/'xBz׻➟¹'v)[lFCsk5|CR_?)%髒ncOcErD־m"_21#%K K 555)G o߮zK_ gF뮻Nu]^@qmO{}ZGcL9̟HsHn#i1rk>C^kkh\8֋/ӽPȗ JKKAqw)+((ѣ}H yaЬoc,},3Xkű7$氤ı㧒&i|?f>Ƙ/HH K_GTpQG_GԜ^֔)Sns3gΌ̕h @Lus\8gwPsݹiCT]]mۦ*رC{ӧԤL*??_˖-SAAVXc⭷R8UVVٳ}v577kĈqeKݻw辌 -YD㨸Xh2ĕP8x}[_Kǚ$m2Ƭ־4Ƙ4E>ۭk/&gi_}ZۓeHc)SO=%yjjj|]^^~q)++]wݥqƩT몬L3g!%1Y35ebVOvKjSĮDpڽ{|A=裪f;}$eggn-\0Yqڪ{F^zi@?ԧsiϞ=Ztiܳ-\Ry{sK.ȑ#}H(_,ibXPҷ%}sR%UطA_YkPuΉcv,}j/&3ۖ$cNIzK\I%dVI>? z-m޼9Z2ꫯ7PMMA:sn9st\ҥ\&i fvۃ3s} `8z֭[Jg755;Ԇ OhɾrK þ̹c2 Dpֶc+鷒Jp`4Kzv GYk4dI n7Kgn>,Mccyh\UUAǒ$yG`9#LqIs)n)0߿_M>Zj6mڤӧ>{nݪp8W^y~՛o'I :km?$lwRҟYk#k7$WRP:&ix]7xƏ5k{ю;RlN˃@ȃ.L>-ļ.1Fe\Όw>vѤuUii=|P&id<&ivs^ot.fϞ|3zMo7`y睋ҍ1-ǵ_gZ\VVZ?{1:tH?Tpze}Y Ƙeŭ=Q{%=,GZ4Xk-O>$]f0EIKzZ !JJJ=rHZJeeer]W-RZ' }-m?T(R8'I9)iu`s_> wuf͚cjڵq pnڴir'Zx233@*p g!Ƙ,I%]'i.U]:Ig%Pdn?Xk_ ( `->!sƘ)&I#i$5H:%uI$ iG-7N˖-KS.]-[bF}>- kAcAIS)~sd1杒2W0zjnn4Cssiz7k,]ve:~xe˖E劋uW$|_" 4FI_@K)X?~\6mRYY.Ҹ繮¹iӦu]R]ve Tc1".I17,%q1c}h 1Jn|%5jݪ:FuQM<997OΛ>}z\q-ZHpD@?m6y'sNYkӟTﺮT3f֬Y-ee6CP|1\ƘC"su1ZCY1yN3zd0DۢH\O-[Vcj%;+)K1ߔ5kȓb>&+&²xOPWWG}4x'}+*Z.8-Z#FĝD:-+//ױc= XZυ ^ffV^w1?~`nպKak*kuIQ C?XIi>'VcL^T'int`ضm۠NhY|QFiٲerbM4ɗ@(3gh˖-*//yz<СCz饗4wܸk_-+++Ӕ)SS#)OK"eo+1S0{AҌNsl^Ww :~+i` :B^z%555)3339999׮]$I3f̈9 jĈ~D1p\ZZZTYY)y}Y=< :5JW˘?bsE en.s1Ac'%mxK :fT$eLϻuhXsZvth׮]Z|yܳ.c8.rxP8%k^~hܖ-[tƘjIK{|Hg7L)]X:'^(NZ mٲE_c544WPȗpԒ9I?VOP8@;wNO?t`KzgϪR+VH f+%ery06/d,s7I;k &fO?t~B#HT\>s8xSyy<֭[t,yG)Z !s6x%iIۊ`9˭>ksD)bٲeJOOWkkkQz5b}PkkӃ|¹l=ty'i&?~1=q.:HD ZAAAի庮\eܷk/ MMMڹspdSNpXw➓(v^ 'хs60rJeee1Ҵ|r29@ÇUUUyF)8I Y8g8\FUVܥ\ZqqA |NQ;wT(R8V(W({j-tY9y )s6m҉'\///pnѢE0a;6тUV);;;\RW]]p1:- BVcccRþKrrr4boڴIJOOkߴ4g?Y\qтRM4) Q;w˅B!:t(Z27o<c@r:tK\uuuElرCMMM̌kȑ#pBIR^^.y~Dk9 I_mٲEuuuq<ϗ¹._Peeer]WqBm߾=}jlls=B_~ڰa*++}BvmI$s\|MGK>|>9ӦM;͘1C몤Dcǎ? a)''GyyyA1:ujIR(p.##CO$Cs QO>UVV58=ь3Ԥ̠H1WJIvQd.B ˅a>|{T]]-qq_ ͛-sGSZZo-//O7oݻCGQ}}}gggo-ܢ&Cs QYYY BA"==]r]W모H#F:$c$!NE:Q*rP(;wisBosַuonnr7n\ܙR… CӶmTUU*ٳGOVcc|@+VPNNN@pRSS3TORcٲeӧq5D JJJh@l{n$@rcr%=.iu/3J W ˅a>|ؗpؗ91?QqqѼy󔖖KTnA7pCQDηX)##Ck֬?}/RFKO.&Ƙ6KWTs[bP(j577'd?~UW/o\q9";֗=.0¹,\R몬LK,OÇ1&CHZH\G\oEsРjBȑ#IСC:t萦NcVX_|1Z.8Νy%8 9cI%M4Q(IY|z">kO ߿_<麮.h"+urJ=:!$V%s:c VR.sN577+ }os~_(==݇DlXcII$HGIEڲe6n(+tGܬYtUW^kΔ)Ss~Au\{YvI{$ 锤3JjMTV' ˅a9r$Xp9sƘVG%M|)D>jnnVee<ϓyzg=Sjhhȑ##u}o@䨤$Z27gbR\\׹lגZ{ YX9tV^粹_Q6Dihh$9299_W~tqkΜ9JKK ,fHc\I#)S^es݋.[]Ok'}aN۶mSUUvء={jjjRffrsse˖@+VPNNNбhkkӮ]sO?tߪu ]zq'r༥ݾ|mI(ά:pBBvܩGyD{➟¹cǪX㨸XEEEMߐ)3̔ΗI}ZW]Ҹƺ Kwփ>G}T;vۧ\ú[pdŽs6mұcǒV6m__=kҤI>$VfsVҏ ACCsPHG`](p.Q1?lj̙Ã/!Q8g1~"_6qlZIoH:)MtD$I+i|k9wߣd_' 5555[UQQ1VIIxBgΜі-[%s/Ry}=IK!Zt){。Pȗ K.Ո#bڳ?cǎUqqQqqCJ!Q8'#s\Kǭ:0#ڻ{`TJI7HYRu.@1ZZZtVSS/3+**TPPK~22#kKK*++spX͏y*ҵewv|Kr`hhhPUUUGjΝ;Р#GƕiԨQZxo>1Z`A\q͙3GiiiqГsƘtIw! ڷZ{BI1iI4S )i1fv_ =zT֭SeeﳛtwjÆ z'4yA:~~&u!]yAGnz{[&@J]{957ͪҊ+8NsƍSqqq\Pq / $$i˩V?[kKdk)I_3@ҏ%nk$=c)־<T ݧRVҦM4}Ax7~d庮\UIIƎt$茤8FYTUUե`ѣ 3 V8D6hr'={ P(Xu.z?es]6?3_I-$McLDr@=z4)esjkkUZZ[j+tȑǫLeeer]WW]uUБ.'յpC[ :x`r;w99B/sZxr˗+77חRp)T?I|RCu~ciI?TI"g5XkKp:pV\ZyGt})'''{:effkƍSiiidnƌ~@c~$zH$ "РjBȑ#4i9"cLC0uTM:U)q1R07{l%|o ^^87ObV"߯~ fd6Euc(0l۶MA袾^۶m 7=G֊+TQQ#FhŊтK*===Q;%]uk3|Z #Zĝq3nܸ.r3fLYTsgԵpm0w\ҥ\&i fv>immۃѣ={.6cJJx[IcJPPRECCsuP(˜K*33SMMM=^7(//Kٳz`8 sW` ܎Kfʟ¹=H)$ggjjj|Nr^ν,iE睋ҍ1kE {9|n%???ZlLW&0hzRlNYs{69kA/~_#?7yc)iqܞfsAGczy ddeeeWt`:@_24I]K⌤eIiUƘ>4ƘK%}W}?MrYmmmz75iҤg]JOOWkkɒ9@rrrt Lff 3E4vXq9B HAWSS:Dt\ Ib1S01E ucLvc,Ì1%m4ӌ~LlX"zz,a(//OP(FܹSPHk׮Ղ 8N s-X@DK̙g03 (&b(mQp'XYk+1f|A\G%wƘoJXOs1F$}E$]X6׹ȝ9sF[l̽K];vLGɓu!U8w7+'''@\>P(}UWWQկ~շ¹d;vlXq*777){P(ڀ }]wieqVRIS!i%I i%]%sȴ2Z0Ϫ{u7ǽZ~}s[n :z^ su);x`C/&p qhܜ9s^sZcL'cdm1|RҦt0cvOEr]t{\I5ĉڴiSdnq+//PiFFJJJaÆ{s̑r]W_8555ŵW<233o}+455iΝ] )x7|SfΜw>qbcт ͙3GiiiqR83I_jv)c̗bfb/|\9k\Ozku({kX3^m۶h\uusQݻWyyy/__hȑђiӦuKwyg{ `$ȑ#]媪>Pȷ¹_=^;vlrBƽ'3$ 笵ƘjIK{|Hg7L)]X:'^(NZ`֪&Z0Oܹs <_ >#HknvmذAq7Pے/.nMMMڹsg&eP(}CqqGdrhΜ9JKK{oHε[))k̓h1戤qu_$וּ1<GF 'u}.){edd'ЪUT[[=%i֬Yڰa22_09rK\UU |dTQQrss} `2?omԐwc][nպuTYY} aڰaҫVرCW: a¹N[cI$͗4CRQ$]́0mmm?([oGiiiZ|ZZZɓm6w}Z~%|Z~n6edGVes0s|OD.pIKKSmmmʕ͚5Ku]hܸqewܡnIz***YRRx@yyy>$z8~G***8r]78 jǎf7nJKK%s3f4OOyf޽[=y|vvnfr-O`R q#D͟?_D_sUZZZб 3@\=ܓ=G+VD .]f ꡇ}ݧm۶JUUUڳgN>Feee)77W*((PAAVX E B :qℾ=sѢE9r|H\E劊4vؤfpqpzpjzO^^^`SvvvBKp !YvR(^{4}ߌZl~8m޼yr9q4o<%tO s=0T]vءsM۷oWIII{;kܘ1cTTT-+**Ҹq|p֦={hƍ|X<7uy 1FK.ڵk庮ZeeeŝJ|.r۷o׹s |H7¹1cƨ(Z.WTTq9)NO>dd矏^t-ĝ!//O&M믿ӧu]R]zq ---ڽ{w?O +Z+cL\s&MJΝ-sGSzzz\@(Z[[cǎh\(Rssfm޼Y---Ȉ<GycƌQII֮]+uuW}@1#_RY,'vر.r۷oo?}k{8:qℊrEEE?~I uP8 0ӟy6nܨ͛7ԩS=s*++u=u]?Uqq\ו*,,@~,ư."Xg2 jiiў={) R8|G<}HkX7$cHZ"i钦H i־;!ɓ'yfy'?)a{yK{]Ҙ1c|H`LZ"׬T6Cбcr۷oW}}}бBG>qR߰+3ƬI7HӒ^n=>zfm<`ijjR(رCmmOet]w=g>0 fT/|Jw^FFǑr]W˖-Z[[GB^z%_fiZfMܳljpꫯ9|@ k5lg%I'knc&vds]gIH'Oj MMM B|x3~i=zty\pnr]Wjʕ5jTĢF P(s᧮N۶mSUUvء={jjjRffrsse˖@+VPNNNбK/駟̽ c8qBfϞth BMMIK9cxI:_2׭/$=X^ڼr9mݺU<ڵ+MMMںunᆸg|;)Shڵr]W8qbNp8ݻGU}}};}$eggn-\0Yq}OZO>d1 (♅.JR"r%sI7P8Hr QmmmڵkW`n֭jll}|)+))/u5w\c|HTRSS[oU^?~aP^^)q!Q8}=Kp1J¹=Q<%.Ic@;tP`\ǎK2g̘1[}*..}5559 HE---{uwɗ*((]wݥo]~7@({n. ܂8 >ѣZn*++}Ԥ;S6lO<ɓ'Gk9)S=k~ꪫrhѢE1bDб). f*R֓-IE gp"Ң;vH¹^3)bxL 8ԧ??\ջ hݺuI+P[[ui۶m{]]*++rpX'NiP([ܣ>,t)+ @ORp:Nv~@,Z(]L8Qeeer]Weee:ujБ^UVVwee>q$k- Bڳg5? x9}W^yerŋ++++<" IUt`kr/S8pYvm9RVZv󕖖h&1XsĨURIސD\4jjj~@3|_oZa?~ܷ١Pȗ9V}}}k233UPPХ`nʔ)`z\u 1Lx%r M6MHڞ/ڵk庮VXQF%moHa"Ƙ%$i-M ceVHZ i"I/Qf3Hz^NIUZLeI')__+$]șݑmtV3% i5nV577EBfݻWOVnnn\s222TXX{SNR.deeeߤzܛ`\&I#1c փ%o9Р ed>%Д)S亮֮]RM81a{g_Ҳ%-U%sPKzZ|sKz"IiMc$D*IzՒ r1cfI?;km? ݻww)Pq>ŋG NCB' ^U=Y)7Iҟ}\MZ Zݻw/o5r>&cƘ۬I84c>%)LJ$umIC1>`" R8O}ʇ4$OjVM@Zu2wGy7|u|)+--1FgҴ|h\qq233T/'v|?7JcE JVD1Ƭ]I}Hj8;c)m3Aݒ>k'kN>h1" @z\"nt[rskt>[wMz'qFy+_J^veZtbg̙т5khܸqq y=K\BqcJ1)s{$%bOH*4ƼZj1fIZ-'H1FI֞MҾɶmT__tjkkSZZ"'ԕsۺ}mt5Ƙu'G݋:?Iv_2\Z[[UUU%yy577|;[oiqgq]¹cj͚5Zv\̙3+{= =_w.&ik{7 )s[U1f$4Ƙ96*{!+i1A#Fh:q&Lt* 笵G1;%-Q@TRF Ƭ.JD.ɫ-۴iN<9YZm޼Ywk_j댌 9-[lЯuYXwf'1k1_Qr:LTnYi}-&1fM@1YḱرcGbҤIr'*((ШQ@ Rp)Qf$-3kA3dKa?~,SN"Z2o>_{Kܵ^%KhժUr]WW%\CB@%9:"UI%iIʖ4+iu\q2$NGHʒ4^dI3%e3k$Zf/0ƼOc\^/$FNIoHj4NIJfM+ccmhTbCR6wD_mZ"KLRI+$ݤHI_,*r}Ȃٳ'qŋM>] og(="_9@PW_2l>P&r৒%$Nv.ᨹYڸqkm[2筑N*u-tN.{R1f"9c%/ZkpVI_3ƼK7)I_C;$ĸVzI?6pkcF*Rw+c㯌1Ykc&AG/K\AAFt,RVYkc u=qP*Co1nIF&cLKQ`9W^yڸq***t٤kVW_}u$1&WcI=?l%@ﭵ-ݣkW뿌1+I.]X:7JҿI*3ƼZ{ۼI_4\- utHSj4#CҘ~ּ- n0I5|Oss/IJ9c_H*gYw[k7t1/g1ˬm'|VRv ~lx<YkOc#g3$=xAGQvv~iٲe=ztq҂ kk 1#10<(VҭF9)4PЍ7ިk͚5{cRWovvFt ~ iz.ebmMFkm.I~bE2 Itیb)$KtM?k~3ލoId Kow,4-uYkڴ6d/#???=J\ ECp_J:V˦{FJIH:l5soo%ecnl/wc̯".e=u|-m {o?:J1F;e[O~t,1QaOes_~7\KW?aiI\cr7u+ZQ3}7Ƽï=de kYkvp?FH*{okٲeAGQAAA>κۛ6)垖E(4-i VJNy8n:ܘ:'M6':n?7's*ԩӄ`--I @ˍܔ{ZhZ|\ IJrIuΕq={wJl}I$I4l:@BhY[\Ǔ^ǩO[\_v7x#?0<7|3~-$I$I$IIZ>SH[)uLg<$~m?* XOi1,(0>%t|kp~!ErK8_)7oY衲yeC$I$I$IacW< zu[9\a_2A̍1>دoD$UWWW#Gd޼y\{}ݼ?8S!W$I$I$I$ipϻέ1:}z1$I$I$I$IVt\OC?>| yBW]O7߈1ZIG-[֭[{]АʼJ7sw}-oy`n̙1"L$I$I$Iܶo+ahia6ho 0Oٳ̓SKXu{-Eaq ½DspW3A¹!i1J# /%dk^,lnH͗$I$I$I$is1}o >f26K$eg֭,[Gymܸ'x/M>s=q=[$I$I$ICǺupp-矇Mے++K`ƌd4蜞`+z)ǽ\G1C{`<1n/qBG +`͆Vʪk3˰xbM$I$I$I$IaS8]q p:p0FR@w,pPoP&` ppwqWcK$ݻYz5466ľ}Wcc#TWW>7>q .&MT,I$I$I$ =p|7ߜ\  7@uu% z^ɕ~޿MMP<-C5 g`Ek~Ds?+K4[%pWd>{Μ9\qe+I$I$I$Iҁ`Xuc@dza0Uv;b$IRy_/[|9۷ fΜΎ;8sjB)$$I$I$IPg\w\{-tgrk+QԔWR qo|?ze{Y:5J"XrYi1n!<Lαߕ(ܿ7rfFټysN2%K0P$I$I$I$$؟wI$ /wq%sOK$I$I$IUq-!$I̮]Xlgᨣ?ַJV6IڵkS٫ڲ9I$I$I$0~ikjJzsH¹=e'eQ,|3y!'03ҿ1LecҤI\"ս+**;V\ĉS[$I$I$I$s$Iؖ-[wå^1Ì3g>/KvܙY. $I$I$I={`Ѣuڼ9gOyJ*{y-~yzB$[oz>r/sR8>1ƶ$g XsBS$-'y}(pK1C?0?9_lIe~C+O1K.: B/>B8 #/-9)~Wy\ B@atƄ 1j-[?q*++J>n:-[FuuuJ$I$I$IH !L1n:$I~_w;C9 RWWG]]cǎ:$I$I$IVX8 E'Ұhaϯ !W,N]9e>rX[Tb;Bo~-Sׇ~^^&ǡ$5< q71ƶ~f̘M7_ʕ+Yf k֬al۶]v1f&LөyQUU$I$I$I$I* J$0kqI4D,X#Fo߾0j(ΝK}}=uuu̞=#GfK$I$I$IfhoOr,O!!| 8qC_.w!:rt/ăkbcۙ9=ψ !<^-CRs1sɱWѣ>cܓ~䪪 "I$I$I$I `\Bo&)[ H!CaΜ9^:SNz;<ƏII$I$I$ ArfrXO:$su`Bx{r !cesk?>'ǽ~q@'ݕp\%cWC?> |sj>c3sf2{ժU̕$I$I$I$IAkkX8Ηz $IRV8wSWWuǗe$I$I$ItY'ᦛN! -p=ݺք?~fv~>^$`YpB#fHv |9hs$I$I$I$I )0X ,|c_I4޽{Fhjjb߾}=466c$zgG͂ O~2O8: 8qbQy$I$I$IYuޭYc4.ҹ6[W:8`B801ތp߀Y$I$I$I$I,+P w uK$ q1F~ahlld9SOa8㌢\87vX;<ꨫ;I$I$I$ZZNлZ'x1'B )tz |$D:o;bOs֧^pg?+)i/y>#0oLRx80 g2 8p~1T:$I$I$I$i:s2KsyN9I_|K^2{466V8חfz`n޼y3虒$I$I$IRgpuޭ_uIctv`X:o<#Y"n3$p(3gsd4BX6$ewcϩ|`!C !=Ƹ,%Q]]ͪU I$I$I$I̝;իWdAY8B8!y*q@ɓw[1ƭ%0hhJAh׮]}466K__SONx㏧:.\GQ I$I$I$nSm۶H*]!?!9י_G;a~/ ,q,TMaesmu?_̷8Ƹk8_ XBo1( $I$I$I$IJl΅. ҏc|6>DJs=e>'?Rl&I#ohhh;v:㮻?+1RWWǩJyX$I$I$I4x̞= v:r1>B8 gz`[O_f1,M#X szV) ִ |:CH*ݗJG!i12O$I$I$I$Iɼp.0;`aKb:!/ bqr> \ DqEsvr$IRz}Y;xK:UVqy'>I$I$I$IGmm r3&ʥ! LmYEs)b{Cr,+.-z)BGy~:cB p70%#w;S$I$I$I$Iɬp.0{IVVVKC16#K=p3pB9 -hK4ܹ+VHCC֭+{T $I$I$I,/Y0bW^0!Wa)xGLBOs:oy\Et@v1AoĒy܅s7q!}97Y84: !Xcc i͖$I$I$I$IReR8B8-^֗w c|.1ƍ!C\>X8'I$I$I$I΅xUJzlmνW$=R4=oc]$ SO=Ecc?uZZZx饗8ò"I$I$I$޽qcrOJrgZx󛋟?{-:끫CGg`@K`3p?pWRBfh"ƘOR8TS"@b{}{ܑ?a 8rB}Ѣ9Iqq#d?ׯhI$I$I$4bY./S[>iyN!i(1fcz5Xr2(ƹy!Gck_+uI$I$I$I$ls!q/ۿd2 z[C_1 ! ]esyo$EsI$ kcǎe46rF4***x[B}}=uuuuY1"<$I$I$I:pBW\g3ϔn^Zs3fQgO:K*4m*`)Ls8{ze-(͋1αR$I$I$I$IRV8|8"_6`7ݔ|Y[O:$ 1ƧBGX6 Qj Xs_S<_]^sta|ղ$I$I$I$IRe) !87±kcl˷g!?uwt]ErGo~k?1Uw&Irټy3 466raooE9}t>h}&Ǝ˹K]]TWWB@K$I$I$Iino~3)km={NԻt cm-@{{{TE|͗н[s?30:ƸfM 秡5JL,$I$I$I$I@Y ?Eo?1g71n!~Lr{\,uqW3H/̲e^/{G_w!p73rȢf1 .~E3k,ꨫc޼ytAE'I$I$I$㩧 7\ssUW5Wo,^ Ӧe7_@wpnpsUbR]I$I$I$IpnakR6]‡yc^61%̗$@իillfڭ[g]ܺ~wqQ__… 9#!I$I$I$6Ip+ahjJ|́+(\I:5_ʳ΅H rȃY[k(y.)$$I$I$I$IJs!jzuE`5$¿g\,Y6*4K4yill;3۷ 򩬬d̝viO$I$I$I±¤IeKI#B+FHGoFysz3eJRt7\$uxeh>_*i,4=UK $rcQ8$I$I$I$IE9KNFг/c/U2׽tnGR$I^;xd'^_uљ9MBp~:gw-1f|DWg׮]\an^}UƏ_^^0wsaR$I$I$Iޛu^-Z44 ƎYz˝r Q M +V$MM3g,Ybٜ$e. #i !Lޖgi-?89.,`% I$I$I$IQ8wr/u2`OI rs%Irb<444]wΝ;K2kϞ=u](z/}K?!I$I$I$Ik[--]r ۗ}--?=2z4̘,; UC0i\ _C{{z{WT${^q%kz?ccO8 _8&w')a\a *UI$I$I$I$WGWgo$)/ƸD% ̝;w@]ʳw*3<wAcc#lٲlS)3fL i$I$I$Itڻ6l*knNRpܜNt !)^.7ctP:ڨQpUpEp|y{.X75 BkkkI$hb1U9 \4y= |?yessy֜B xG2| 8u(|I$I$I$I$sGw_fIEst|͕m߾իWgC;wb ihh`ݺueihhl$I$I$IL1I1\KK{-׮ݻa98$xoʔT`n,*.`P] ˖%E7NUV¥e9ynA-p,0%)AEs)2*os8pk !02үP?Xb1n <B8;| 0bK>%I$I$I$ITrUB)Gdm)J4X۷uֽ^0b vڕu,6nO<;*I$I$I$_S=ZZK7נf,~܅s۳\nl8f3f$s_+Wš5ɵ~=lv10aBR,WS\ =IB  3 &,1!|jevanqS gS?1b1p#Ou֬gA]]{TU`cI$I$I$W_5kz=X֩Z>I;!TW*yc\og˩JqOcr`d'!#Ƙ&ppPHUiC{dlb[C#)gB pc_iCF^EqOH$I$I$I$)}(kDʖBPUUEuuu145?YG#c:$I$I$I[˓B2hiIgSNI.9۷F*™itqOxq؉1! pmo !|Y Bs<\܃7wo+`x U!w1!@}nj=VgX/I$I$I$I)Gܠ% լZ*Yr%k֬׳m6۩`„ L>ٳgSSSüy󨪪:v3)3f ϧ:f̘#ʞC$I$I$IC[[Ir[vcN"nΝիSN#G$es$rݲ*SR63o! < FckWA&CH Q |" xxkc.{%I$I$I$IpN4|[o[ngӦMvmTVVr%pe1cƌrM]]]]f͘13ֿ9#I$I$I9f͂+N޽v-̝uIR_Bu β"oW]ok󽧐=r; X؏q nb2 c|9XLcc:bcܕ^$I$I$I$IJsa/˗mmm||,XnS޽{iiiK.)zO>)Sy4i$ꨯ .裏N}$I$I$IԛY8w0{vol϶a/p2C w\eq/km^cl(񜲊1n !֌b|,Ƹ#$I$I$I$Iꅅs!mϞ=\wu\{˩k+dԨt|GihhKuV: wsA]]]*scǎΣ:MFo$I$I$IRߞ{ ӟ.~(G'9:ٳ#N%I*DH<|Oy x욎CO NNogt~ I^o6}%eB,p-IA`c|{g.r'/is_o)Mes_{ [7!\OFp-@%]sK>cڟol1~9c@}Jn߈1MiA)ƸzgU%"?W$I$I$I$ipN4$=,\45551|.]ɓ zݻijjFۗ}-X#F4{`n…yEϗ$I$I$Ic]۳\򿯥b,C嗋ۧ7Y=L\NHZ.1HkvE` $9cnB}2 e1Ƈ COHJfcS 8!-󁃊z; XcY~$I$I$I$I*1 $ICΖ-[R6i,\+V0iҤ7܏1iӦ -[ƫ9 |+_):!gͪUpydN#7e$I$I$Iݰ~}RY. {^O,.S0{646pIOQ"z|6x})C_ !??/CBXcX^<+h{GbqEK}ܫ:$I$I$I$t9 }l߾=4 $Iޚ5k? .z8㳎$I$I$I2ٲW^.~ӡۋk?g\M rHvy$Iflo^I\^^Y#)l,UVeC$I$I$I$zfaܹ^:4r>UJ%RQQy^/9s&#F:$I$I$IJ嗡gSOq֭3f$#zGg$IP[W;vtaBq" 8 $I$I$I$It+Gǀe3X=uImK `ׅpDI$I$I$I$ICsAo„ ̞u¬] IT#/ @k, t!Y7 !|K:5w_I$I$I$I$I9IҠWUU%\u.R!I$I$I4ĘNa)SKk_͛!$I΂8Bszg? ,p-_o$I$I$I$I $ICe]u[I$I$Ig>yxਣٻ6}jdx+_e`6ذr;Ǝ6$I;slc\lc!!>!Z`]u1'S$I$I$I$I7*$bƌ,X˗g 0}cH$I$I$ 9[BK 47w]OR f?)QG%:ٳ$IRr6}pz΍>\BX<log\_|$I$I$I$IIn3PQQ׿sƒ$I$I$I;z=pamn} ћ BbZ8xTH1n!tE1>Տ-+n(k /&I$I$I$I$IpN4dTWWs5pWgaL6-$I$I$Iڳ\~5 F}ر0sfR*yrJ$I2pF>SF1=!K;_0sފzl:\$I$I$I$Is*<`08 TہWcI:]y,YϞ3gW\qEJ$I$I$ &C,[^{-SY gWQ`rӦ%K!v|'!/Y`{,M_etu1Wh&I$I$I$I$I#*xgys!c4tF5i$mt>l_ J`ԨQ~̟?͛7m)SXd D$I$I$#=֬W^)}-o)~ BNY.w0vl3%IcB'/s!I9P-}1%I$I$I$I$OdB|( "Ƹ2CWp`v861N.p0IY;slC7dz)Un&Mbҥ,\,sSLaҥL8$I$I$I=嚛ܜ^ܿ;Lܳ\O%IP`LvdBOM qd_G$I$I$I$IbJ"P|s!o۞ރVGZ I\gI*8`kbSɓYb-ds̙Ò%K,$I$I$I+5=pS\YgqY$I$I$I$I$I9-0fK#/c/rk;'w&' A!0/]x3GmdgsS! / /0($I$I$Iu9QY.WSm&I$I$I$I$I$I,S88ϚbK 4Ƹ$pI!Y}嗅c\YnF†>ּq=B$sVDfI$I$I$)u۷ý,{7knNg^mm:#z>.J$I$I$I$I$I9%.<ځߏ16w?Yn !ˁO11ƥc=!y_tOI$I$I$iaݺ<)a+'k޽0rdq&Mc*n55=&Oҝ#I$I$I$I$I$I*s,?)cBC`-p|3 t Y.wo H,$jc+!#W$I$I$I޽qcR*yR:7۷Ãg¹1cଳz˝vQ|6I$I$I$I$I$IRz,S1)Ϛ_A1ƗB~g ¹GY.&JB8g鷁KVc|T{K$I$I$#g1=e$I$I$I$d֤P{ܓOf9}fN>{lW\mm3C$I$I$I$I$I= 4Pc\BhXvQa|մh*K#I$I$I$fN゙r=u.kB{;TTϡ³QGK$I$I$I$I$I4HY8z_[e%r΍u B8 `ewV<$I$I$IRo.n:Iaz)~/$I$I$I$I$I$ipNBxpre?1+QnB5b`Ayr$I$I$IrlSss:s$I-1@0b-LI$I$I$I$IËs XR 1>B8+Dz !>g=1#I$I$I$6O>u I%08x308 88 J溉xSVΝ;Z*4$I$I$I$@23 )'!$ y*q;]8710-@s0Y"I$I$Iᩭ *+g0ΝtR5 Ə:$IB V`\[$۷z$I$I$I$I7,X81%Pj 繿A$I$I$I4*{/47w]{o[S&umm5',=8",$IYR`1pbK,K$I$I$I$I$9KP2DYS: y*RYH$I$I$iHٵ ֭KJ嚚6@g¶b 55_O!&LY.W[  ZI !L!9Wv= re_hYI$I$I$I$IF,SUuc|, ppe3KCNͳli9H$I$I$ipۻ6n*knݻ {s3\tQ9IpnX9g)Α$IRB$%rY+I$I$I$Ir%Y--~=lPQ|8G>BX|&x_I$I$I$;wڵ=z(,/> '\>!$er--0gNWpt1?$IR> \ہI6m1V⌒$I$I$I$IRIm%gW_ KäIP,S~!%piRKBTYh'!Á)8h !|2Ƹ+%I$I$IfvX֬IJ֯mےWT 0}zRPVSAUU֩g<@W\s3&?$I+lk.8$I$I$I$IҰp!l\9MM0>,] 'v9ayo-G~ʗWuLk!4'(r-!w,I$I$I4[7mm}{yش n-.. f(Oִz+|#sgIrkn}Ə/~I$e+p&Bc,%I$I$I$IlmRN7'VI3Su !g٫eҟYe?Q6ҕu7 u2̒$I$I$IDk+>y&|s޴%;d,esI$I{y{[,$I$I$I$Ipg,ZTN7's)\6*R#)g+9)~NatہA5h !c|MMkk+sdU2+I$I$IPg\w\{-PS\W^ Omg͂#`߾+#uIJ/sC=Wx=}$hH$I$I$I$IesuДѣ᪫7"uADEkvܼYjU9GJ$I$IZ[al3_?3GYg={ e$I]:w0w\V^l^~A$I$I$I$IҠr%e$ׅff򰊒RH\ ϔ}=Ƹ)1ƗCoY^\8'I$I$I/?h߾:@}}^8w]rG?O$I*zn_GSMI$I$I$I$֬:A֬p.kΩ?vu/Ue05kZ?D9 \LȱY1Ƶ% I$I$Iu`SVsszs0{vrO'$IR.cC#c{˜G$I$I$I$IJU{;l'UUɃZw pN1 !BҮBJRȬJB܏1>V1!"sIJ$I$I̍7f}/#O$I*;}H 08 $I$I$I$IW^aÆ6Ͱw/ׯ:iksꯗ]8^ e\^ڥ%KXF¹g$I$I$Ip-Y( **G$I*F4:c$I$I$I$Igzu=TnؐmV5XsH,S L,`͋%O\OR$V$I$I$I r%e~:9dpY'$I*@.x]$I$I$I$I*{G{u~>b LӮ]Y'sꯧ9B1_;T=S}i1gBOXv|)3H$I$IiMIJ1xuI$ ~Z]1gI$I$I$I$I;ᡇ:JncEEe̘9ף9x9:SH^ct=8c>[]8wd %I$I$IR6hi:I>fφ3;BH$IL- $gLWC1W3 (I$I$I$I!綾"{=Ęذ!8a<|yfDŽ Y's XsJuJ/_)C!Za !,$I$I$iy5k֯:]qƌ3jkSaĈI$IC!:J yx-!E1h$I$I$I$I'亗=\ /ӧæMYyӳN _R?w@*W:I$I$I4=LR*U0Ko\ ۶?@Ӧ9]rPQu2I$i BYwCcܝU8I$I$I$I$ ^?!|C֖u6nٳ۲NF55Y's꯵.uQy-u~`~5z:p(`O*$I$I$iٶ ZZz=da]:2eJr32T$Ic|6p>p'0e3E!\c| $I$I$I$Ib.~HR8Y:7h !pcrJ$I$I$I$)1BsQ6{ߛ<|0UV¼yYs{fatqw 3)`M!Eg*֔p.ߜl/GI$I$Iߞ=$rMM4ztrE$I:7ju,\ U1>U^I$I$I$I$o,HJ ),! <q12Γ$I$I$I$IvJ ::|^{loyKqsCO+ۧ=Wee@`R5up.PERh˝1=1B#F5K#0 8.ϲK5_$I$I$eKW\s3d]OMM $I+ !7FR:׽xaWBL $I$I$I$Ie۶Rr<o /S8w0ujuI1`,_mVHr09 } 9ּ|ȳD50 w$%%+#I!Η$I$I$逵ukR(׽`NN; $I ! 8حd{og $I$I$I$I#سPnxaho.׆ SLQGuu/;8%+ygopnAR1q pp5-1'J0[$I$Iڜ9Y'o88U8weY'$I$r ݲ($I$I$I$I[JJ<4{ oܸ<Ǝ;{xbW\r+n@;eJRt7ʆAc !|zec/130 heOOcRK`=0=ǚO5PZCC?Қ)I$I$Ipu+rHGF3\s$O?=y`‚0=OT$I$ t|Y6W\uI$I$I$I$u_d"a1N;-);Ԯ2SBf$X.,Oܔ)ɼK?Kcᜊ-`1px5n1A!FYc{1,I1Ҙ7u~ ^ecocܛ I$I$I42@ssr55k /$OY+Ɖ'Ë/ߦNMJ: <:755ОOO$I-=.X$I$I$I$IvY'(ƍZɓa X(2g,Yb`e,Ƹ#91ME*pv5Oip%pV5a![cۋ'I$I$IPs'w_W\s3y!$?4-nBpBW\mmR7aBﯮk.]|/iӲ/I$ 7!ck(ln`xxq MI$I$I$Iy啤tmFذߊwmؐ>G>Y4 VOέd+Q ZQ)_GKC1ya,2֟U^1ƽ!9E㞁 !\|O0$I$I$ v{t57z )KpÓ"sG]W^qc Qફࢋa\n!y BkkkIX8t-FXzBK?b1ZB'7!B2+[1Ʀ ',PBc+ppP_HC$I$I$ 1¦M]rMMp}/xSg-PSY2wHQp0>lޜ}2%)in$IRzBU,]c|\$Yzu1$I$I$I$)u{cTnغ}|f*.ˈpi`X:N?u)Y'\a2Xn hk+ppe0}zrê]AE1! pmo !|Y :|S@gK{0 !7ܯ ! pb[\ BX|XcBGCr8"rvBCK$I$I4BwkS~[Ǟ_(D$I$I$iP8_6ԔueƌpaJX&֯m`׮\o„X&̓K$I>>o1-sI$I$I$It9{7<vZqTTq%%szDX81>\B |XT`1nO-c 0/0N` *7$I$IhY'[S#N3TU&$IAU^^9$I$I$I$I o<lؐ]tQ{9Hb TZΩ:J. !SI *$~KR2w̼(&Ƹ XB9Q$g@ǀ$Es1n)rI$I$Iҁ`H=}**`LtradM9s`,8SI$IҀB¹γY/?$I$I$I$IZ{;lڔmܘ||ǎdxseBR9X81:.)c;$I$I$I~?ͮp#:K:*,$IT"c2"I$I$I$IW mޜaP~)0jTyvqI^uY'T.I$I$I$I@=Iu57S87gN{f*3&O3_$I2`A##I$I$I$I#<\W\b'{$tSoh2|}bȤ{ԩ5~|H,$I$I$Ig嚛 {oSS:jk٧ѣ3{M$Ij9QvyLgTlS VL5زe; 7RGZ+bN$Hm[(NHl+#0Aq(H3 q&X]](*٧N ϳ^Ҳ;gEqnYW )ɓOXڳgz\Rp3o/d LO x#ٱcdOO|Z&9*DEu `X*[|ܟ&9+esC/&=pJ'>zrܮ]ɡCL>4׿Y*7T,weIWWA3C,HʷW K.9]]ƍɷ5_>\,ӓlPp,_-[I~0'(Iop܉r? v:]e`9魿2;|C]wGl^80(`JY0; ~ɚ5NXʲwEQHҹI([˲J$)F ]/5n]=sadڪoٲN4MOOcN1sIyFtQ?)HK~($,˗;rXgɥrɁ?o` LZ5 :*;Z.dΜNhsԢ,Ç [ӓqFaC'MVH8eY($IHU8W&)OI^Q_MeY>ر0N&v\,{wrh}f嗷6gɒ˪%X fsL+$۷WW__^/>5wnrr==~0EqcHIdҹEI~&E\$%y=,˧'s?_>Tn` yl^8T*3'YRu3Ϭgb,{ճW??~yYvdu%_&œɉ+/K\RYOYcp*b;Pn/tU9Fqz,ZTȽXnd3t!0ѣ#TrCsnuxa,;w&$K3kI|9ow%UP܆ YgջSN1w]u&رd3\0|yvQ{{܉{dSv0K̝.K+@rFrH f.۾w)MEnY.jURh> dh$O?pNzY9גY0wzs$r&ɓO&U?/>H[N/\]$.z+yb:9W_qFr#宿:bX*l&v%+.z9G4sXsp#T_ x͝BdI=ۗ \,4*sE\yekݺs:R80|ɝw&o$۾=;9hIN32N.H=kɚ5'˭Y,Z4Yh?sȢESl.pZQ啝@?P…9@By{;\,7zL=_sSK|dP>yTܹ\*h$_tuu&L99p@n0+[ mߞ8v*۴Y==O'6,ʤ(Z|-0y(,Hourc%GgR8wer'^}a,6JQ%yo7}Y0쳝N5sK~[ҥɜ9f޶eYN=9HlIv?Hu>ȑddٲk7tSdISO-zr\onI:*O:dt۷3笳ɝw&w5zK/%w'_Zŋ|$k''T^,KN6@U؊^xqn]U&7hTes浖3spSl.uIrm=L/~n9z3NU}}ck6[/KҸ ;oLK:`$sdɒtϖ$X6Y4ٿIF[o%u: 0x?9 ZQ:,nǎ%l˿9R{I6lH>䓟LVF Ƨc^*oO#;w_cPIQ6zDn $7ܐ$UWyb05L͛u֚;=Ip&Ca`ڻ7喤G$tr׿,_^x媀mÆ`}ɒ%Tf\YϜ90a"۷W$>ss]]W&ɼy3LUl/ۃ PXz*y{={ڻO__w'fr2y晪h/imH֭KTWL'S 9z4Y.&#S8ZrX'dfX6[K!{T{o|yMv>Tn׮!ݣi6[/KFcj]pAHiDPLX.$}dũ\pp\ooqcry 8V6 KneSeK2w-+&']&ٜ}oh3g""bF#Yz=NM0!{,۾=yھ*+Ze%^g,YR $_z6>q'%wܑ|S{饑rC%sO?] ֭ghO֬9Tn͚3ڿ?PsKdܳ7ת^uUks*?y.M֮Mi-+$7%:ɺ$$Yd~IHtIdGYeg0?fH֯Oyfd+g`9F=sdR+j`Jzhd\]Fz\RƝp( Tes 'vJf(&$?dSӸŢ($oem%Gv6Ñ#IY&v6K]e?9VUepǎ.:uՙk`fR8U܉r=ԙ}}ɇ>ˆz{ 3l}>0|a*$,/&wu.H$+$(rK= (CeN:ᇓ{tʁN0tn̛^4#^Ɋ.;'s0Ke#ؾ9WO;W%$W8vs{r_*r|W `fN' kFʭY,\l`P83\Y&?_u⋝Nx 9zz^+-.`+۝*IUvO$EQHYOaƁ]wu:l3_z3[;SHQ$O<1Сt :(W$Zź6C`eKrO Q]spfN'N'In-/Hߋr~t+ ;Mv:~N1҅Vzz׍st*&[Q?䟍s$5%NJrvIV'f.Iߊ\͸<t:>eRl_3t:]g-X]4#ի ;m I__}{rer睭i}F+. z{K/M謢(V%q,-f^˧xſMEQH_ObJ%_eYv:кG ]tlɥrFrɜ9NPQ8cGU,7T2#׬ZU^W_,ZV=F3o^r#֮Mڿ7o&9s5o&PYwwhYwE$X~kQ,-?UeّG:Eqi]$=)9}rܮ]ɛov:]g]|pܺuÿ">s0 I~xX:xQ߷gO+ɹ綶y 7$[jlQT%N,dz`)GoeG|,˿8eY^OI;E,gXF/K?/IL@uy٬tJV.;`nٲN8sPGG=`U:7ߟipˆzz EѕWƱHܐ,EILr(KߕCI^EQE/; pz~bggcc.L֮=Xnjf&sЂL{nXnz뫧p֟}pPEhc˲,MejQ?X(Hr5/'GNǞ=7wɜ9N0yix{ۻg__=szz n.MVJmI~ʲ(8e5EQ,}gcWʲ<$ii4:`jesp[o%>8\,ח<ؾ=)VJ>;ٷ/J 殾:70('4Ʋ?);5o/2z\Ls(eI~tK,0ߟ $fu:>W\eÆN'| abۓNtgI.9E_&+V$ד &Xo޴,˭EQ%eXZ!>dkʲ쟌00eKår'^>;rEɯZڞkVg˲9ӝ9`6R8|KɎNZ/Kg@~r&VJF/[䖿Y~vk0 &O?}bW_ߌJzzt+8#'[3-^tSSL>sj=_v:ضoO?t hMQce9ئ%yΝ(klcٛI$)ȑdKvJ|fsIh¹~4Y)&9fN'tƱ۵yY/EPGYv?}|k~,7ڞ:hDrw'Ǐof39FJVx;tSMԭv:@g(HlIv y$ٷz:ɲe5$7&6T?46ntS[6 zzt"{xXo9sEquYmsi(I>2_jw,/yrܳv&OYϜF.:XndSs=on:_0)~8䮻yK/UOת/^|#Sٮvr֥,Oo|*kŲeՁ]9_\ mܘuV@eyc͆$ HsX,˿0P{~b+t:H]8wY'5W$sޞ\#GN;nmO>i &t/~n}ww Uï:rWl흼¹e˪RႹK.8;ɕc,{`ǚw%vF>>5_n{ h_O)FlV.漽pKFʭ[W^xa{ N>ӟgD~{r՝Lǎ%l˿\SzJg>|~xdǎXn\Ǿ¹|9o`Arrիiqy!ʲ|(79ʲw;tQťI~peǓ$h4~k%/XsI*;s蓟L:>z{O|bJLq{&Ҟ9R=%=Y=NWrCsCO;]}}ɭE_?\,ӓ\{m2~`X35۞'ʍ'l3IzƟed$y3k4Z1 Cj};:w'{L޾VU;vžz*y{frL{?T0TsuyGW &7ܐ,]ZOVcdsE,CgJ*Hq,R0 &}or'ۓ}y73lm…Us.*Yhvlb3_{-y [v9_|9ՕZ5XѨJZ}0T|yuf;oJ2~5L<lLAl{6Nzh\/ٵ3ޮ¹K~v1O \]c͹mO1E,ɏc۝G ]O?ݞ 璪䭝s &kמ\,zu`Aέάm%̛oN>Y3L1:ۓ  z(9zY9;:g_Xyg%Y4ƚʲlNFLyr/笳N.k4+Hi}Lݝ|['_B$ŋ~4kڗ`S80v[ݎI>dN'RE1ퟄ(l/8|)&?7ow_GhG={N.8RvjhF_rɥr%^E=fk #ٲ%ٱy$ٷ/9|8Y Y*۰n)YSg6[=t:Ee쳓^t=L%]$(H2g5Y88֜STQ&0ƲI~oLȁu:?ۗ,[ڜK.I.M'h-;TH23Lp`er}}$odTn`3t*`925؊΍'QEgƱK0;<ɥrSޖT{mڌH֭Ko'S,_~b.p ^z:Tqb+t:Ĕ>**v$e>&d$q9SIV{ItLo@(dN\ JdIr8ּSLJ,c_edꊢ*[tU8?zNzz:`l ]II2¹$?;5_j{ :ӡpn駓5k:4swh#I__rXϜ-s'7 8\5uj_+I1||k~,˃mO0L^xr??9f=yRҥU_+VTsi(e]m^~;ɡC_\OUW%gz볦~4Y)b8\俷;HUc?^Q|xK,C'yKZ۷+ILu 8t;DQ$9e;qKsX,˭eI{lLnu׮MW.lmΊ՟NE\y婋>޽C0mߟQ ]WŋI.e e8|)c͗ڞO冮={'?`Ut9ٹs5k?o^uK֬I0%9׏,䒤(`nުTn_oJ/O.t^8\ns&6Ll'>171`T8WŒTveYkSEQEcaVHOtU8S?Vr[LvP8o$;vTiCPA['3=hn]L/J.Ν|ɻߝSX*@{|'Ie?H۴$?ƚoi=IV$> Y:x0 [7wnfM_Ovpnժ|d_EU,}{u,;d}}O>,_|{;9sVU]tQf,I(EQ\_m?`چ}ǚ.xۓ嗫so~zx^?^/۵+9~<3I&9V/RSequ{[n2KoorId¹$$sӢ(V%;c,,w)$?:Ʋ24@2y٪HnΑr/dk,ݓ8}ǎ%{,k6ϝ s_~r\Qf>>!ټyjNرN'9ҥIOOutSӜsO}*nK7ߜ|sIwwgkN6eYEQzϏlA_I:,$?7Ʋ:>>5_j{ `Lourܣ&Gֿt)3'ꪓK֭K,iӕ99p@n#GGId-Z\{m䛨yު`7Y6lVuw'V|+Mn5>rۓ;ʚEղ,@mKmYGZ=q,[Qu7^EQ\1Kvr\>5_-'Y,{GYBUJVjm΢EɊ㏏o9\*h$_>6 0U(ldrۓ_۷W8w|yip܆ Ygolɒ.i7B(kK͢(~,]3($OeytO7EQ,Hq,rlw:ؚ 璪0s^zbO=xg `xdǎbgNoF__=Yz{뙓$gTP%7(XQ0=I挲$ۋߒvYXX I󸎿(?'4wKsXHY'! :kv:4ps~ǒdTnݺd01 :dɒ%t #GG ↮f3#vpnݺdӻo޼뇋z{5kzr0o}9p@i٪,{?K&r_*ⷒqYO(3ܘCI>d8"|/GO74X󥶧i7%KZ?:t&vp\l39C@twwt LvY.$׿דO&/\pAksI6nL׭[7\k-蹅͛7g֭5fdccI~#oEZNrVK9}%,_g"Yqn]rY@)IrX#vLʲFg}_uxef/&$۰wDYaT$W$hׁpе{wrx}4i435k֯.[&Ypr20(I+Ɇ N1(:٨,_)%|iInOeY1iXeY= L/\*l&O?=9YϜ ..;Z"Ig"L /L"yN'ݫ&?Z$VeY>EQlLKInIxI,pzy(ɣcFS3ϜX;٬-S]|L0> `N¹e˒Zi )$)bAO}IN.ɹI$@INU2$V=e>Yv:?~*u;xiN7{V,[,_^:+kgkN2L /$۷,{SgnHz% VO\}L5֭[;fnKgb<|u>twכS2ٻ7ٹ*^k6JZ/ONsuP60M3 HvY.C [˱dI~}u glܘlTTsϱcg?/'G3{3'?̝&>~رol=_o O\n͚L޽-TMvHO'wߝ|UTqp'U7^fsIhL¹9sUL7׺uՃ`R8V㏏,{С뫯p_{ݺurɵ& ?SO%}ogO{KL{o$År;wV?Ü4a[j}x-Z];THV 39^Y.ח]ד+{{O%$==r7&˖ճldɒtwww:0;9esCdzgeuvLz4y>TѨڳ'x?9MES,{婫p;ynzz9ݝ1)ر[&lnȞ=վ[$s')O.k6'o7U .r^E=`&zfaٺuki* KݑrǪ8ڜy?z2pz>D|;H>_%vsgUkWx:&p+YRue39)vPS0w6'@=~5I4a^Yg6碋Ҹ} kO.[:Y0(`JQ8קp`f8roјk*͛\w]iZ6i;;`;Lw~ј,phsKYVr}}WlEk/$Y<ٻc͚r],\89ht;%KNE%˖%Mn̛^] ]S)^{-پ}d /zVEu[3 /L6m.۸19 @gmْ<#]6PnLm fL{nd'׻O__=s6nګY.wɢE`:r$ٽR䭷:$K?t :ر'fsڹ3H?h4Z1U,[lp`ҩ_6Ts%>:T٬vȩٹgR5t:0(⺻EtwhQry)'5O$7'3+ һnÆN'fh̙ڜs$WjUWWU;|]}9,_ʻwWg`([(YZh$WolXuN'f s'(䩧;&$Ǿjf%nW^w^(Y.ݝ̛Z.d`)FWgYg\*h$W\tuoN k:-ګ&۷Wp۶U/T_ 쮼9EQɟoeU7m^o!Y Lm'?{رdnr,>sK6lHimV̟|}[o%>X ]w߾ w.;꽞[?h}F9zUzꪤGGY}k=s's7'&_`vS8L{e<\uc۶:RA/ٿ:d԰RkϞdpp|3zL¹%K]9ozu5:ɥr'\8]˗'fNNܪU~]N0m͙SҙesIΝɵv: LyrҾ}Mv[r=ϼsK[*s8p ٱ#뫮+_>\0\ns: aE|`٬gN1e˒O.dΜzIo}+y _H߿xqߵ[oM}9N9vǎ%r}}w;NQOܵVOQ]Y&=wb^fڳbu3.;TH?{h,U܉s{v:UՁK.imNWW?Greti-fǓ.*HWM/9gYY}tuUK~{ܺuα0u)89ٶ-ٵiY__>Z0>Iw%s$Ǐ BM+tDSO,*{l3¹HV.*[z50tH6o<{レLLrm=L/~n9z3iޑr۷'oўŋ[hQUHzXy 7s 5'CerC@[ɫ&ڜ .f7o^fMU&wbܚ5V`P8!֭[;`BK>99rܓlؐ|3'?XOvY0쳓`ɻM .ld 7$Kӏs ζmK~WbݻSQtSk3*۲/^\PxzrK]s3tȒ%KrXr-W67dϞj-[5 J^SU9ޅv: 3э78sI{*XvLvJ~.["i4w:0(w}0.lי;H>fvu%==7Q̺,^lX۴)YӉ&znaٺukir`200\(7T.{wrfz\_?u . ֯^~}啝NL UrpIooo_fMM:_87gNr5՟mZ:L# ~f3m]pp܉r_fsےG;ȑ}~O%g+F˽]œ`2e'5ɋ/oP8wU=}{9'#mVϜz漓sY.S=q`9~ȑN'yg==Z⪫s-^\E**[=8sSs mۖ|2y ZoΜ'ˆ NpKv\R]b޼'~"9㌑r^tuՓ(Bx#ٱ**{חWX Ƨlp.ILsrh#r۶Uxr3,/Nn)`r8lR=%G$'˖%\lX=%K:z)g;3CWQ$v(q f0LLxbX/yСzٶ963np?ygr]ݻ}G>zkru*9v,yBͫ*3'9~92~fMr晝NdS8Rʝxr튢9\\|q˭v:_rm=L/~n9z3N%>zrܣ&Gѣɞ=ڵ??Y*%KuF֯OVhTɷZ[ɃVeo۶U{t&WO(]Y@i7ߜ\sMS@;|/{ |&'går'=x28X;w^8TnU8w'5ɥbfi _=T*)߬^fu\s0g9 ݛrKunG$tr׿,_^uxS=ln6~9F򵯵>D^:Pn:z=_sa _M?9mۖ|jO7t~{r՝ٺukcSO%}ogO{KL{ ^*l&/ܙLIՕ\yrܺuəg֓ 1,(˧~\Ҟ'~SM1{,'>1dػwrSw/%U7)0=p=g{wuJYjmuZn'kTExFu_^d )冮_جz2uw'%o5M*۴z]63|;ַo_B$ŋ~4kڗ;t9x0y[xq55^K  5ɊՙN-|[|3yႹmےoc%sNksM6lHƷ~ʑrzWUX7\{mU8wɖ-Ɏ#ɾ}ɂɲeU܆ uMa.-H)Ưlp.U8wy'5ɥ&Eў=`:Q8Ǥ*$7%:ɺ$$Yd~IHtIdGYeg.ǏWN,ﯾN۷'sz{O]8w9#z{Lɒ%q0mْ<sg=^zr\~`&S8GE4$$t/E'I~,m@{esr}}WOl۶siӦd].۴)YS0٬gN1u]]ՙ̷5ҥdFmSIY_Lr\cI>V}I>QzN_EQd WOKƸeY@M(=\;eY~q$oQ mۖTzȏT]s'k׎,[>Y:Y=9ڢ(J[Iq$E$TgOYEQdCR 5EElhCBf3)N':m۪lEڜ ><gz_^sMUU*h$+V$s} &oS(>_%j$O[ŏeD蘢('yWzNEQ\N* $g${'Jq@[O}nRrY,LQ8GInI(/r`k(~)ɿN2QHrvCHz{?N']WWl*+չák駓__#G9 Q8Gm!$EQʲ|rmln\$96mzsW\QnH/t*`(O.k6_|͉9,]]ʕIQ]]D@+Q(~"?Ik?J$/$9$k$Nr8f]E,ç(ygU7锎ҹM)mi4jAEQTW^@ (/*ʨ28ʨ2#IJ IRJKKiǓM~s]:!Z'fsz^I|u\qcrɪUc]l3>[m~ɯm$Vû䢋^0o.J?yrwr ɥvζwܖr˖%'Ky%rmxɆ aΝ~zw_ϠN;mb)<3ɏ[jK)OK$OR֍3mLri $a*IvBޙeoÆf8jbUիg?$u}%t3$l be˒3Hoۚn^*fMru㮬pϛnZ08 [)e^7~mVkI.Nr &$o U\]TkAkl^\J9X 7lY,rer9jU7CB˗'{_vk.[eG$e{+f%OyJw5۷vm{c=n {L' 3#拵ַRʯ&dWf/:[/zxKRʣb;7&$Ӿp̝w6 `oE/e˶ N<1ycݒK.Inuܕl͚pa&~w yks ^dOR>)3TJyr;BMZm.dR'$[EZ#GWt}mr^:VG?:eCim^.wiɞ{vnK$g=*fvm}'k܋_< apR$Y#֯ty\/$?Ӄx/7;Lk}J>뚭JN:iUdzNvz^)eUe3=g3ZEI`z VL>- ne=\$O|gugۛer]{m3`¹Iwɷ¹$yۓNK֯ﶮX y;Ɨ ׳{\1熔2¹ݒn~`g/]ɫ_MxO_~`4,cJ)&9GjT¿'y{2C̓bܜVJ$?,_> Yjöqcr[/n-Y9msr[/[$9d݆L>q.[ sGZ|rXk7Rž8 _)e$:Ckj׏Բe`,HN=Yw+UWmPnK^o|#Y.Yps=9cݺnlݓNxbj΍N;%H7ר}tn' v~$@?Ig5|&3/;rbCx{GlEsOrE'/yIR`-Z<-tR^ߎ?Y~|y䓛suoY(W$׏K/MN?}3Ji]pAw-XÒyk|8sG;&s׏^kQs^ӒX87ǔR۹1 kFXSnÆfjժd׾~<G f?>xmpr˗7C[;@n=G^.w5ƍlkkp.iZ8wA^,wtx8"9hYeٲC9fo#{]4R.lsj SJ3_Zk& 7lY,re3nUV p.i kn%[CR@owܑ/֬ŋzѢm>tktPr9ɛޔuݝ`As+^_ǏSZ\2"jזRL a:Iεo&f܃}[;cYe?#iȝxbsrKa%{}+ڵݜ&OzRrwsiUJe/K>Kav#y89 1[ZČjܕy܁]kTJYIm'?jaILZ۲Xnժfp{>ׅ6v~%\9; 3hm^07`0|ݗ\qEhm榹k&]\Ka}/sW^|޻2JG?Y87%Ӽ^|kwls{fi5>MH,c,~U4zIrdK_ zu%۹.ɯ&',ۼ`G{=9Z|¹͋-k8:yX.҇/dÆvm75,=QM]7%Kyۻ%=}Y0yғlY8lZ#$vcD+gyMuTK '_jTnr.oM+WvpmlYr~&н~wrofW /~qĖr ,cz%p]E#^}+KWIl'$o]EZ=7/[2Wsdժ~ms_ɍ7nPnǛo>ߚ5ݜdI7l1lPn=nn9fkoEի^דkֺa0b矟,_>*z[rڸ1/[6qMyl-uTsƠ7efr{50Y,RJIOFPlrY87J)'BYk`T0'Ӱ}]w%{9J䪫TK}o%6$W\x`S_o[/X(?Z,c6vOG\8wg^zW۹$;ZbYbXr{c P쒜rJjո+ٶO-K/Ox`5wzdFόO'??v fyCer-Y|pR9hߙaY8l,hsЫ]^VJyN!eQ./uw}掖|g-[6 v59f%sGa eό&\,Ӟ,ۼXnn:$,X8lY87϶զfF$o!?jU=v=E%+W6UK~k/OϙR˷,[4٪ZZ 裛9aZsmX8lX8Gޚd\[GW aCr[/ך+ɹlY7䠃^.w^{ ?/Ш5df͖_Rs#Asr-tk];" Za-b]*<)LPZr]pAr]ힻjU75{lmus{4 `C9$\Bk3¹9cRGSߩvD1vn~UJ)e$!$Q9a…Ytv wݕ\xr+W6 u Cf)'?9ΛtR,I& <̱]zumoKL3zw}oY(y'g9ɿvm75-Y|ݜկk-Y|Cm~ s>9fc..kS3Iε I~ֺaҥKs玻 `J=@o\n͚dnZO ~NۅsecvD;XbE;Qt箻K/ݲPnǫn.swsNr܌W3 ÜϳphsCb6 fy_4|ڵ͌ⰭY9]/+%Yhrapٸ'IM2ӽ$ٳECRvNWIm'I~ot}wܑr+W&74ZVe˒N۲\ny՚x|d?YW잷NɱnPnɒfq &sVkPJ3Lj+mr}wUo'Y:ZU1s'\rK/wU[\pAaC2`sЭ/})iʭ]v|{u% vn5g\}p–rsL΃If̼pnk]k¹1*3|0%ɽ[>[:jQ`l.ۿwY3¹Y$w_*dIrɼy9f$3Q*$Ɂ-bnzlS)$yo].KGWSd/l* +<2c$%3ɂ43iw&F5IZkO09/w]<)'a 瘭>}K) jGPKs7 EI7߫^?be˒qW13 O)e$O$˓̛o.|<ɻj+Q4)$'96Inz֏Џ vOrfXz\+b<ƍ͝F7/[*etժn$xcw99ح-^w\nV L ǧq͐ΕRYh7/ZF~&ߍ7nY,rer]wkΙ7/9s9--K>Z]IsO_~֏R'ɿ&/.sOR I3ݖf9Zo!M˒|A)I[v֬|\M7:Y:,_IrKG3I^3OOĢ sɅ66/qWX2y?O7>)<3ɏ[jK)OK$OR֍3iJ){'xGI"ɫkwzk%y_)e$/H~~g-Y2vm' ~s3dVkXJ`rJ!=oL!䥥Z%Q,a_kW $yOmdㄎZ¹Gδ`*KϲjR~6I!$5AޝdQuI]kXk'R[{.kY|\6d=[nIJ,:lk׎`p~Sf^8$/M+]&-{}.0Yn!y{]Eo+W$b&~I># J)zݑ䉵 UGuc[u>0]3ҭʭY\soH&NroQJnisÓ%K8j9$W'9jR^SküH2G:Zlկ&~U){\I^UZJ)KN*<]R>I#$?5ess-_*vmowޚ5/KŋǷpn裛,㓅 S0,/ZJyKwK7$y^9K)'&aJ.0:(9]֎:*Yy,[zesUJYdyZqgsI$sr\%yd߫~~;ZnxR5ks]Z6%K/|asf.qmTnckf4I!9~|Du=BVk]?H-Z"ʕ%/I@:p'VmY2oo~I,[,? SOz1$&?yv7&ܐrCf^8[glK~3=bOu(W<|e%;֬%Kfkr'jL1w&$3I>[JZe92/ɟ$yIWZ ի,[$uY2_<^kHp˝|r.(abO47ݞ'e-+Wz}z(k^ۿ%W^l0jmnY<$oY&ro0X8@jR^IzxK)jiQ(_SnS35fs]|{;gn9d޼d〣ŏ|r˗'gy1VZM&9e'+|={ļuuS曓fuַ;H{s<09C^*xgL XR${&$//'j>8{3B&٥E N=J)%ywO?J)ySk7\`q|~ɽ&:9{,]\rIK46/[]FF =?\g2¹K)'Z>:=#C\L%K]A;k&g9$_J7L* 드-bIYJ-MIKOC̟E{lHa$ f0_|kR͏aݙ+?kΝpBTn󂹓NJ,g:ً~(tp`G`n,<+ǒ`Tkr5ɪU[]tQr}aνͯ8`be˒3Hgto#{]4R.lsj D### ޲TnK/M=dE硇vpnɒJkU љZ}%$rےG&/~qGa59묙?IpkZ"fT ,ZkwDZ)${$4&96I&Y$7%.ɥIKrvAjggf۶^(u 75/Keo]/7/9ꨇ/;d=14˓ޞuc.HVW:G|$9slVkr=$'4y˗~F9dr˛=wU#{\o+7yЫ -bR'yo=:a$WJ)ϫٌٴu;9qW1k9gɒ-g?xa%up9'>1Y*y~69nμU+ޚ<'>1X8g47/;DۯGQ,rwq;uIRJyCb-G'b)Z><\ŋ'W'^nskdIG%tSgs΍7fmj}z}oY,rerێ]*uCi꼱=0o^tiTn%KR#2\p4ӷgI~sd$o+PkիbŊ>sǒ+siFu뒵kvJN=u,a5;g O&d\3W0<@gnmjsN3t-6Vܲ`⋓w<3X4>Úr̝vZݜ c$ni8ʅswkU o-,mL$o^I_]JY>S֭y7IM֬i=7ןn/QXfs;i9p9olêUɛޔU`˱r gr7/c,hsЫ]^`q$o$?<&O$$G lτm5Tn͚g>n\s.7/nj|]9ի׽n5%g\vYrݟre ~cON:ݼ`Y8Ы]65S$͵ֻTk} ɪ$J)O򿒼!^=r$UJYZkNX&$uS,L7Xn;+k bѢF"s ^*Efs/{YraÆ+Wvs'4ws÷,[@5sbŊwyC99&޺u?㸫+Y8d..kS オZRkGJ)/Un#Y9?O=?>}n@,`sNrbtVL^qWj mЫآ¹~DRl$=Rޜ%I!f$?䯆H3zkvsΩ&~֋9&Y0ʿ`,`]x+vJN>99qW'IM2Ӗ#%Il3+K̭~jJ)N? &֎2$]<@37cI_ F9&X(Y|SvwUнML amuMu$}xoO2b~43z۲~}r5ɱǎ- x_ڸ+>$˖mY.w*fs3]Z\p[8wg\JY-,^3:4qɒ%ɽ= xw1 fg睓O޲\nٲn捻2[,FUH-juU m}ju$esI4shͤdѢdf'=ʕ0a,`_? fvQ[-_zj & INQL Y8wЫ̷[ƭj󓼰Ga#>L޶Ss#؇.;d]L x m{+w%0'\"$yziS8ơV>!CL^er^,wѓ]7L x{|;89k[2nP~[1[>"6E¡WA_&uF#Jw%0wI'mԺ`B]""zZqM,}UЗI;4+0N?}liS.ntERH]G2Fi3:=~0&uhlRITk!=3RL|eU zkZ;Z"{.L,ܤssL>6cqW=hfO.<p5t1X8&ǝCgow[{YwOrkxBwbI1 v9zŌL? ^qWIOa%/,Lv_>0:1ˆ^E 6i3qVu0']1ɯtZ xcOu!1ɏdݺu9]ƜtAg?<h;&߁?`&$'Rʇj"a)I^"]h3o@?8"9dٲY,җ|@7j$y}K) -I!ɟgljEߖR4_)$dA[}|=.0gtPr9Q,-XМ{9 C$k{<2gYVJWJySe$%X|rFyJ)G%B6kk29洝vJ^ ̳j{իZH$zRK)٥EI>Tۜ;$=bLRkK){=S)EIdq|>_=dF… tq15.M>K!{cyK^䤓W'L3<^:֭`GUk=I~GI&K)IZ($IviQ·ֺbs_)e^$y,z[ܗd$&?ߛjg2oO64NY>mc${%9,$?Tkh3|l@`NX0yғ0jK)J$OSI~z&AK)$Y0藅sLZ}I>Aj'MsTYzuVXs=܎v$,^Jp*֭y72$,w sS9)Ӹ … tq<̾z[jSeҥ9s]wfaŊ9:1o(0v0VXRV+V,zz0 {3=C`ep`JY80,RL) sS9)ep`JY80,RL) sS9`[bEJ)[=VX1wy}atN7/]n^5;ݼtN7/]n^5;ݼ0wwy}& sS9)ep`JY80,RL) sS9)ep`JZkz[pa.]:v,Wκu=k<ݼ;ݼ;ݼ;ݼ;ݼk<ݼ;ݼ;ݼ㵭?$7Z5zxyo6ݼ;ݼ;ݼ;;ݼ;ݼ;ݼ;ݼ;^Üϳp`J)w%Y8:d]uqɌ0:ϛE%L sSjq!!{\=ZqT{7Č0 6Wj]7 sS9)ep`JY80,RL) sS9)ep`JY80,RL]t{S,MrLd$$y ɽInOrco$zk7侔RINLrBdAuILI$Zx`GQJ)INKӋ$9<^I&Y$MriZ-㩶?z0 \`F{3| â0zoLCRK3u⦏G'7>^|+I.I*W& RM$OO<}ueO&$_Ϲg\'7ߜIUk]9؆R$%9A xd4_ޗ7ɷ\dmKj}SJYIY/S-BtW$4C^f~i~x Z/$yQCγMK$Gt|tM7I^^k];Ri?v!ɟ'Z#ȷM=- }/.ɯZ?񹳢LRHӛKːR=Q!`r=ki^S6ЦL&wk<$+]bv}%Z-C8+/=fʌ#o|@_=، 0iv5yI_[3T_ Rl i$z(R./0$M 5R+ v}gZZb=Iӛ5ޔ$EI>f;lL;?b҃&״R# l`wHi?~oyLiRJ)i;eM\ocS=&yRZkx _[荌=~o|^g_>Mk6Lib>a_> y}w0 Q)e4o`^%ɣ|{8R3|6dK">_RFRےI߫OJr^)!['$)<㓜%M{æ~8Rz03f$Jv-IvNIV/0nm,`f0rt%f:3z#eFIb>oH_z07$z03Y25`k>o sZ8 %$VJY0DMIvfχI^6<r@7G0'xB<YRʋf?+K;-N$?${k-:$ɇJ)?$\)a%>)W_M[I iqI}ǫK)?;0KC￳t{\[l=|rVwm @&o_K`F7<I*2gF7u@6p{oﶘ>`n2wvJu5ЇR>Ink@|1ɪ4?dolROi>'/j/E|+%i'ZfqI^Ivk񔻓Tkmu4oHfR+kj8IޒdQ2LR㒜#$\MoNrצǺ${'9>ɣ,Ki@m$Z;RJ4_-?Kޙ1֫ZΚ 0wLk-5o 1ɧLr~+joIkgfvw-əgYi]+<;ɿjGvX6sǎK)/OSں;ψ$$7>INrjSfPl[N^<ۺgeFo=\:#}o|`Z{c6k_.|X80gf?'SOZ3K*-Zgk :ɛjͭ4gN#=I ֏}kkZ99`Go&lHC/%97ɗk7pIi>ߜ۩7MI~~9J)L~elΞE z010۵I9ɿMR%$?)h{|-i]*dm1ɼ@ 0Gw]F%Ii~Y?I>rI殤0_='ޛtfGވ&Ĵ`3zۥLi]2tmG,ffFmUe{-oJrL?oI"ֿ ~If{L6&YTkƠ97}f[䩵Oc$K_Irzuc?yv$KwKi|Z;=/O4=j}y~<͟=B;ߔ[CngmCL$n=$ϼ4?xm-Zͻ:_9fZ{pJ)s?@ 0hrFa^wu;o%yWuCGJi>8w/afƌ^ޛtdGވ&ȴ`3zۤLi]2/@Gvk>O}0 m Ni6vҸo$N-_]krVk?{PEI.IGZ|\Yk}뀹Krqz>v@|`}w;Z{mboyI#$Zo0+GINm=`am7Zt$5?享/4=+M󏽶e]%i76=`ّo)e4VG/ hXlIRkP}D_8 0MyȦ|{ZU=3Ѓ=.Na %ĻfDaFό^kޛtcވ<`Ly6 0A|M[p`? ,~Zzk= ɓ:H1Qk\4w6^7`2 wЏs#M_Wi"fs<nnI1$vid18`Tz|y`ZQl\/2=d{*an7Gۏ4 |7&9iӠ{UJ9z0}v6wO=z$/\J9.3zרꙉ @K)OHrj7Z4ר@mŌf>|1q1 0y&ϛ`n27wpЯowqWTiӫƙHOpj7%j'+?oZ0?"Mz05;.>DRJI$n'?jaIcz\^tg_+ff5y-`3Q|sp~"fsA#[:Oq$3m|K)'fOT{~K_HG _lchwF}пIsm]_a-mcG`u"]103xL|@WmLIfO{ FskAZ*4`$ p=ֺn8EiCY(a7WJZHG I`VFi_'/}\J98ɟZ%=YQ}zzé08@W`}<Fj:fFokz0k>o/b>,_sg{eIͶ_9RMrd9{.lsЫ`6~"=bZz҃(Sz\'ɧ1/13zf=y yڤtɌ`1i|^_|nX8@Nq&ƀ9>霙zӗRI#38E%JľAJ^QkǷѦǹmP$vؖI\ޘ䅵 eNiP?91.`mqJy L|ۚ 09& 0)-b,`J)'Y#Z=䩵^=^ikH`5ɻ81Wpl\zZRʳa040$?"ƌ#5I|^'_9|^'X8@?d~s:=JRJaUkƢ120p`)eבTvRV$yw?3nI#lRSҮI`1ERJ`~0+؃4Ɂ۹$;1tr`)WJ)UJ9RʺRJ).\XJP)u'RPl@W`m<n:eFo`1k>op/3ЏljK=~.RK${vO0U72o^9:؎R/$t!\:23 omR>G=`F'#曵̣ڤRYI^0Cjw >2ERʼRK)K$W4?ߝda$?f1'|Mg s^JbFό#b>o0T60$fNI:L0y;`RJ4&|ô=bSJyŦ;rb/&9GoZ7&~Xz9vÇ^[)TJyR)$dc_ mޙf|&'=SjhR{p)e$!?jf ҃خ1^mZo~oR~ I>۲km:RqF/003zI0dmؤ mӃFhRN|M&4;6m}sЏZo*oR 1ɓK)_kbK)'yqo#mw={q}$"C`UJ%ɞG$ytSllL˵/ XNG};Q3\?LZRO'ylo;HdNOrvK#az0OqͿ(OIob۞c{)3i/03zIС ވ<`1a=x,H9uG Fg_ _Orr?:qRG7$O(|5'|)ɥInKr{͸[iެڢ?O}~ _w6z vRH2)M6Az?;9Gg?m5vԃK)fz w{K6&IJ) |4G\\JyV::SeFό0Ǿ7b>o>D#gF'=uM.s6&Z8@+cl#֋QCRc={RߕZRJ)IisT72$I'G[J)0=\n8idc DCgD=SzQSO,=\o)e^2RI>f1ɰ7 z1g>q8fZӃ1ך @G.wLRʂ$d%?ìֺ4w>0s%?{ &QE^Cٸ< 7l3I=j~z?y0=A T)IWп j=$9u;6&yauÈj lsk0$W'j'vMRʠt/73zf$10 G`vd{[ޜfx?^=bֺ*SJ)'MS::$HZu` Z7yUI#ɇ|ֺq9GM@FGrTm$QZ~RNBYk`T @`Fn$'Y|2Zk)eaInhkARSkFы lnyol6y ̖̖/17vwLRI>vo*wuKJRIAaWR~ܬ` J S=CCQ_yWGM;?LS-V'!ײ-/=r`7ZG{`0oS_N{M\kT)II>d_JZ曩!=/L83zI=fKicӴ~;i2 0od jWZ$G%yF/xO&L)eK5};4I-BO3vئIg$B~z}WFDa&3dEIYkFRʼ$MR/&yA}I{uI !]J/ ADi RTR*hRm(@JQIWB Arggv8ss]晝soOCv׺?InFq$1'ng̿`E;l>oh62@;vgԦ.IT%yN?>#=_&j`n઺P懿ߚOw.0k`<$I\/0HFOFoH>/|^b$`ϛ \yy[u9$Uux&݈w&}w8mWIgv $nw2~sw9ZO($ϭZt-'e 1K ];_/^f'/klK3zf0q\U8 3CvN؎ Bva?6ɥvzt+g`F[=9 /'+FK\2z2z7%yے`R2z+c0|ʘ&-]sd+I2In_1#J_$[%%8=ɗƼX1{Z֧?I>?P%3Ҍ"T0XԚJUw&9.#Kɘ,c]3nsJoYvd=Ykn}x҈/ #w&myog#{i>093X|Ι,j}}Zٷ H?MruIr|c9P$MI~jDUՅf\wcړod~OYr1{iF-3`2Uu$q3[M=$OMR۔|,[f= `!k;}]w>c*ç^u_`;2zg!wHޛ2s`-dV `!y+as%n8pUc3Oed-%I*I$3Vwu(;,Н/5C&$/(ΪˏyK3jdJTՕ"F?3qKgeg#\euWXw/1XIn?Xb(\U-z ޡ蝋f{|62z;f03X|78I>?mGg=}tj~~:.c~XGy37vl$ -3`5ݱ\W&Ԉ'w&n_vb3cwp5(3eMw୛|vd] 9 ig#7ё<MFoyf0˒[ $ pg/%mw{H'S6eIr%ЈK/23_MI>9Ps%K[G,3h/SKevjF?3xl_vb3OIئ$g)<~hUǘϪIFoxown2z3X|_%w&]sPU=(cG~5t6Uu$W({'~GluQmK}_^K'ݝ丁KUշ/0PWS2n.={Tw'̮%cݎQcpH&?:r5f02߁?8%^GǏ1[f{|7ĺcWG`ۑGԘ|ގ?\F>olwg`6TU?(=%ɝ t(5w1~NoK +\+5WO@uE{h>%(3j..u/N}]m`9]U?uRC׫#{ NL5wd 1\d'^$'[ NI>uϛn8pTս<9I .:]?K5\b݅l3SR>=K].ݟ[bEo_b11Tw!Uu$#_i#j_Y Yy\Dݑ 5f0ۙjȺ^bE 9Ie Q'@]w c> y]9,a˜0>ݟXtQ3jVU$yI͒%Sw2eOC_V`g~dCS߷k/5'/ rdxo;v= #f0w?2!]s@U)s>PzFt jcF|i.t -[_γcpD7\OeȘ,hUudO|2XTw:_N=#3t./;3x3X$󷻏OKk$c' \`g2z3X|_%7# p`U'$G vtsjИS]:uu_3p$7ZrwW2 q숚X-34?vI;y vQ~a[($e>t N;f`u숚ekG\jɵ1f. J %;F>oǚsC3Xֱ#j`Yǎ;4wp`UխC(pw-5$Uutfo(|D-:&o^_vJ#j[Cپ֌ʘ7ff02u'&^y;d27 /Q3Нڣ|du_8@dvNF{3=J>oy/;!<3e-`Yyy 6TU8ɋ2|Xrw?q5W-WQ%~[ uɵǸs; 01k#qɵl. `YSCÓ<'(@[wgWÊg1X֔#j&=a.OYby`/[ N- `Yy3X||ޮq9 TUOr\(dw--5-Qs2 wI?Pv2pc`TՑIn1́y~bɵ窪^v3eajÒeQ̂l\dU>k_y>o_!sf09E7 UŭEF?m▖ݧ%y@a`UU]#lo6K{Tշ`CyxoF>oغ+\fD_e;ͮߍ`ϳ$?o(}GwNښ2PvDW;+IN>=sIr{ O߯%'$~N\3`9H306k5SFIoD韮`;6XޛAlD>_=d`= '3 DfA+($?SǦO?WwU:ɓG>n>)o +3v|@ǓdWNUƪOh10ύYu 똠oo͕01!I~{DW|wm{ |ʁ $ϫtqǍ(}Ewv9ddF"{Ɂ2zd b/r`|ެsXU]8ɿ$ʈ$Ww1mW+;#~. IKrt-OLށ%y/RUU$_]t[yTՃة6KUgJ?rC^/\[#JRU[UUu$"l^ l!'%>?)_6z0f0qMɁ%y֍^RUK$G䗖_dIFof+u >&`,w.f0ް14sq9}l^gDxw}ڮVk뮴3nIVU1A頻$$/g/G s$YU+f{؈Y$3V]X&ȇ})}W7ts2 $/ˏYw/?MI.3P~zN^ ؗ6nVՏ%yjfsJ;uvn3 /m/'?#J';UuzBfsjQ~kC_dEFoޛL |6"7c-7ee7`_+MYTwv,~=o,WS'lg;/dxfg$y\?͓)Ml^3d쿳wdˎwX$I~2v$όn&yۜӒ%ޛ[)nÒ|{ufsj_K7.ݵ)IIO>ZWLr$Hr͑-<stK0MU$G(Bd:f!/޷3xB pw_aM{AUr<=K8Z,#IqA$yutPla/O2zsyo0و|޹`g(f0m]'o2+w6~>UUNc3>;]nUIο'fIMrؒ=qεfI~p~1ɧ3 -YJv-/3Ä휜3INu%BIs)}w;XcYf'þINz%3SxQ:fm>j?|H{s~S/޷3xX #2<|詙+bIr$OY$7=ԍRVIFo!2zü76"wh/l 3M$_msA %%qMA=#8;2 |0ܵ_1FUu}ީȿS`kA %/^3xR-1<$SuSSnb#kdو|j ,gE>I> _۷w'wGٺ덓|`Zz_2Ȗ$[Sr-_Lr&$k\g]wK11Oru3:7 2iݟAISd&%B/ X!32I>op}ߙI$gq'IwѺ6nI~5im$2LcIVun/Or$ohӒZw߭Ohm̱kwә 0'b0n~}Jw+8V'%B__p1NFo7؟&b0@>`"f0s1C>o"8n8_KYvP'o7M϶\+*lIn_;"'yǚ~G'~'zo?Y!Yi/Or3`9 0$307Iw?%wdv*'$Nr],8!ޛ,6"bā 瘿 瘿[ ِ[OU$><3Uu$Hrn%?IݽSZ窪 %9K;SewOya.|wf!k'9ϊzfw:Iw?TU,$Xb&ya'tWʘ{Ϧߪ^_f/޴i3x$Szٞ IU]1&$Zr$$OU0`ћ[f+v?`s3M$_6n.䦙zf"IJr$'9%ɉ>+tb|̂WMr$d=+I>ٛ%yiwhW8`^*Iu$/l#$_N$N$5M5 K+$}fgA2OlF}>g~M>u7] w_ 9%'tf0uoU]'ɭ3;}I.3?>=IIÙ3=_`? `F_tg3.w<<V_1p`C 0 7Pn8p`Cr9 s 6l(7Pn8p`Cr9 s 6l(7Pn8p`Cr9 s 6l(7Pn8p`Cr9 s 6l(7Pn8p`Cr9 s 6UU7e%UutU}|#7xyn8PU\$Xc;uII %uUy<XXzp?gh&|m}譯#|-)INN$@%Pw[Aw%!.ww+`/σpXZU2ɫvs`/K$N}O>o;y`Zv=6%w3VU竪W|2ӒxVfK$Ó0UsUuHm._?$<RUKrm.7Uūw|,S3 Mr$OLzaUn =jεߪc '睋|ː,u6SU筪_J$"ΓI^ZUUU?YU~¹t˓eO5 yۓc<QU7M\z?\c;L}/νGvg%y{U~aOwêkUy c|L 9מYW#U$*sIJr\U{(&yZv|؎|Ln^U.Ͷܙ*8<Ӓw%>?y$'N=&\$ɕ\)54jDZzlfCypU=?ξϓc`n8L1nȣ\{yww$ >I:?t'=\45`/pV, zC\;%v$y7E>;lUU7J=sJKY,$w ݟgw%D'yN`S6C͵NSn^Uߞq#_tIw̹mI~p]k#7|; +s$?5 ?<3=eNnþ$̹sj|rX|s ͹O{Q=f;$7HOL9%o]W?v@>`up6=`No}'gwTDw?Pމ {\;,=09cyGvMUUn}]%\0II~?}//oj[~ko} I>IޘUjUu$ߛZI#Ʌ$_N$M$'Ṟ3q$7Ir$Wy̞MrrfO$`w$$oSvUՓ!׀k$^LrRf?g}}uwQI; |{'tfvG'$_gI7{2݅a5vsJOru/MǎuWw%9-w(J筎|fϓۅA>ouI>V nUsJ^ݷ%y`'m*ҁ::ݒx[gf"bfAZIi:Q2FIjCO'yJw7UT2 n}{OSϔ=dv:ݒ\vK&$w_&~D&II51m{tNB_۹e,^UHwzUu$?G2 W\gqXcI^eIilYu;Yk$Y@y;/7{ύOqUYmKꃽc -s-TUYPQUb?D>O>oՋ|޹%yyI`7PU7N$7XH$Nr,yݭ[Uɮk=t͟H%S;U;3;qՇIn1g[qWU7Kv] P=ߒrw ]We3wu۪$?ǯTw%$?-{$:΁ӫ؊@s m&;&v˲}-\ l[ !0Cϛ||Ъ>8UuTU=%0]7@*lgu$LΪVU],ɋ<;˅ZI^YUVUYzPUg%ymVf;%y}U=q]UUVqI,6۪6+Zo?'ySfN𱙝@ |f3;v0p?kdI{N Ik? {n|m;|ބ`!T%3Ԛ<_UUjB_\9+AzevJNWU\ڜCU2;[[U]f⽶UUWNY6)>uwdvZ^Ͼ$1OW>z}@S 6Pv^gLqU/B5ޕss_k7^ :yA>o||`w9TձI5ɍָ3;3I3Uu$I2/noUu 8Ъg2$+q$IU].@U&9C>91ɇ3;INYO򪭟 g&y_J$.Ta̭eρO{zofI__㓼ts;['@3{?絫pp(pc:/NW \_ {|mvH>oy`_Mr9ߟI^俓|"WBx$wNrͪWMtIn/K#zgw7$/Jr9)?$yIfᙏf:_f'?^3~4۟yϪz'y}fa$ySw|5%2{~p0}Uݺ@/zz?9I:䎙|]=C)P?PUOp!wpi*WSsOK WO?{өI޲=Mr5$o~˪V y"''7|"w&< tlK7&m~IUug&>IOv3 ^I~#%yVU]?3!q!2Iz'n}o_Jr$䢇$^cΦn/Fv$O%yFgTV'9Yf7W+>ɯ'>m$ﮪ%$Y0s_og{CǍ,?1qw~OO򞭯glI~,ɏg|8osN6%^IUM2y0 Âk :Á&f۱I-Pࠐϓc|mϓ"v$99דb Rw WUeRE/}FwUk%y@Ejϳҙko|ޞ$ǁ&l$w *oM#JKIn/w{Utgiİtۖ`&y2go&w&nwͺyIndSy;UշL\~;+$9@?& ztȯ GٳG2mt1  ;<=ёϓyqwyKs$g9׿|+L6/4Tz[93]{~w'r̓.eO)O_|dfܥ.8I;ݽ weׯke$3gJ?Y,4ɬ`ߩ\aDg#j>5P5;EןuT^#'w }|.[+cp9s{zwl|I1P;)?'ڜwYb͡ T2;=X{#|qufgΔ tg園~NIQApVVed4دv&B#jq0['SO~QLQd{+L$'wP6s ׾S$6IK\.?:p9S}sS+kn½|\2Vat柜W<#Pv+2?$_~pS ٬$9.Jߒ}]%6@Dyy||n۹+ \cq9{swc`K ? \؅2I2Pc[s'^U3uI8pז WKruP@?&6ӪQUD_wSUGfNr]lT< ^"w&D>v|JypuN~\W`(}krzg8#$r ww>#\D3au$$_(K߈tPU-霾/j}"׿72?wox7\xcX߽ĺޒ۔'}O>oO1O>o<PL1nb2|"W|dϦTU_]~9p }6sa\|Vh;+Zb_0tZ^$Os~U,^ULrxzj=p}@ۘy$ONUWI[QUL#Jݯ9N> 0D>Lyӓ[||^"o|lv=Є_c g\ֹuږPU'@{Y y~5aU2p,VUG'@~xny~{[`fvvy;X7@ۑ;$yGw3gT$wvy|7y˓ct 脉׿Wպm󜯪_WZ:AI:IiMq V= </zHeGԼo5w]wTUL9eHE׮~eS]{ 2'=zI6Ǭ!C6' /7=y;"ƒ 4﴾U`A 'wNyyG>-NM"˜ |_M}ncN{OD>M}ny K">#Ϧx䈚u/M}nc~N g\jUmw'y\B-^'+U~ Ҳ;5_MrYTgS3Pyߦ>7qlzt{Ǻw@ۉk` ^~M}nyy$Ɛn:I>F0&,3&q$a/c]pMlf'kAv{Ę~RSr?@.UEVIc`.^뗘rRU}0ɕJo-SVUNOϢ [|%'wN\cϓm43t:}aD:Cfhsr~}~n2['bzO~yI~x`,NKFܪF$9@2;]y; xy!8K>oF>LykyGЧ1P-hΟ O7\d5}~n]LřOY=#j6;ݟ,p4SRU$$(@;١Tzm`5'K>lfؗowco~$7^G#xuڦ:pLwvνu-<Uu9aU"çeW<}D͝&=OI7P$wMՎ]}k7ϛ|/?gsc$ɝ=p}]'8NϗWd$31pUufgsekdB$/Sr$?y~_Y=j9$9a$'&@)5 >s b'oF>Ly7y7t)Iml4pUu5q)'@I;q$h\?OO7;/#j1yg UEe1szYy䁶>9_(oU}wU#eP$ gyoN遚̔UI7[p$/&U eNv\Or@ITU[QY+%9f3uM$y1K>Ly3y yz=?j~{}?>q?10/L$7bӪ:ob$3 nXU?oF>=I>/|̵?؏?@1I^[VQ>f+Pꁲ&ezNU]-Ϯrā߬WVYW YUfΩηcLnqS7O$wSb(0su4$$:$Ϫ_(.z $W(hyTձIG '&tp-B>;||{|^<sI:Ps$o[C?êU$7]r1A'TՕ\l~1$Gb1$/($?ӽOLr띮5Vw+ɓFfU=r~.[U׵~}҇V=I^RUYUu$I2Ym˘v'=;?j$VGgC?{7u6'U3IޟSu=.<_Kr׭p~5stp ϓ[|8y3y[#<sY#J/iIVU?uێTU$KIVuR/$遚$y]U]g I^<~^5'ynU=zQB\w,qC|h|xG.W;{+XU$Mt탠?>INQ~$z.+WկWջ2XE=7U6={Ŗ>!׌7/KѪzZUݲVZP3]U<9CU0 tN\j ϓ;<M>oF>O>o-I>F8b8RIn3:zqfA&ywPÒ\2Ւ0ɍ3;uÛm\)TVaSS䷓\%k,󢺻ד`$JrߪNM{Ɇߴx~fA{$69 akf=(J$7&9.c+`uHUutfσdvr7puKaI?=G7$^W^S=wm},uIU$?C=IOrmߡSPwn F>|e6_MIޒYݽmsy{Ւ\3oY`qcN>5Wբ?;U,TU3oF>Fp9]ݧUՏ$yaeFU}: uXf &Dv_:!$!UN_N<)㒙nn@xH%In?rIuZU}6I.Ylf-nzANb,Uə |YΟo1yӒTU/a.ʾvO;%Igusj--I$^1M[_c}9wjm$Tm3 ]^x%ΟVtn䲫j=U$72; yV5ڒOLrzy?͸6sD{^W<6w7/$/[W#%"睓|0<ƒ8l`vjwD}?|~ ۽.װtg|/Ngܮ:suk3; OI۽L >75v^#U5It3;%y''$Wfcf)yfw}]p&ϛ|%w.y&=X|1C/IoybfveݽRw;wfFZ$}wyG/W)I仺{R|[G%}gG$\wwVs_u]&ɫ&#=w/_poӒ<}D]SGCιu52Ow[w*ɵy Wŕ/uo$|M7I?I2}~lwbEh$K$[˙uyL'sJnQU߱~t;I.<-y8-n&Dw߻_:q$s%/I>X%<XV% \:NDח3 7OZ{[$?g2>jCOIB)/m>تWgέc]VU] 4ɵ\1Œ/|>?w$$*T8:Odgz$WHr̾磓k9s Iޟ3*Ւ|Of_9?fvdsOy/U#2 n$SUd6.MakliaUufY_c.^[=-ɩ=wYPI>=Iޝ}}Z6VU&ͷ=Uy|!'t`p]SULr_ߞIΟY+I>YhI^;&WmTd'v^UUW$eNYPr;?~UG>VO>Vn?乻U-3?̖$O}l}Œ7ɓs-I^>l󀝒[||a߹NB?S:|]~WUIr9%{]$%p9p 9=s\R~)y~:U[||L د~*Qso_I{sJ^`?$_[W/0jtp}Hgvg$ul$96^f`UvD>vN>&sGNr9;^>%/)FU]" |ޒ`g`ZB RUO聲w}\V{om=߿f`UvN>vD>&s72#jAI͵ߨ UmI&5&y <oTÒ@+ug?:a\\_c;_Nlsu6":y<SUG'$V#vQ~3IIN[s/U+{q~ޚ[ϛ|$s캪cG$c<ߴ6[w1}r>`yC>Ɠp9%\_ZA/) tvgv ypMn6|l#v؁<ۍ rn7K8-$0|l#vpj|6ے13syp@TwvLnir9 s 6l(7Pn8p`Cr9 s 6l(7Pn8p`C̺=IENDB`GradientModel-0.0.2/examples/rough-metal.ipynb000077500000000000000000006705351413653641000213620ustar00rootroot00000000000000{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Example: Calculate Properties of Rough Metal" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Recreate plots from:\n", "\n", "- D. N. Grujic, “Closed-Form Solution of Rough Conductor Surface Impedance,” IEEE Trans. Microw. Theory Tech., vol. 66, no. 11, pp. 4677–4683, 2018, doi: [10.1109/TMTT.2018.2864586](https://doi.org/10.1109/TMTT.2018.2864586)." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%load_ext autoreload\n", "%autoreload 2" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import scipy.constants as sc\n", "\n", "import sys\n", "sys.path.append(\"..\")\n", "import gradientmodel as gm\n", "\n", "# https://github.com/garrettj403/SciencePlots\n", "plt.style.use(['science', 'notebook'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Normalized Magnetic Field $B_y$" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "sigma0 = 5.8e7\n", "rq = 1 * sc.micro\n", "\n", "x = np.linspace(-5*sc.micro, 5*sc.micro, 101)\n", "\n", "f = 1 * sc.giga\n", "By1 = gm.mag_field(x, f, rq, sigma0=sigma0)\n", "By1 /= By1[0]\n", "\n", "f = 10 * sc.giga\n", "By2 = gm.mag_field(x, f, rq, sigma0=sigma0)\n", "By2 /= By2[0]\n", "\n", "f = 100 * sc.giga\n", "By3 = gm.mag_field(x, f, rq, sigma0=sigma0)\n", "By3 /= By3[0]" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnAAAAGuCAYAAAAQzzthAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZxN9R/H8df3zmoYzGgwGSK7sTf2LGmxr+knaySpKBKVJSZUtKiU+hWF7GtIqF+yJYRKDWXJvowl21hm//7++M6MGWbMdmfOvXc+z8fjPM517jn3vs+IPs53U1prhBBCCCGE87BZHUAIIYQQQmSOFHBCCCGEEE7G3eoAuUUpJW3FQgghhHAaWmuV1nt5poADyGh/P6WUnOtAORzhXEfJ4QjnOkoORzjXUXI427mOksMRznWUHI5wrqPkcIRzE8+/E2lCFUIIIYRwMlLApWLs2LFOdW5mZPZzXfn+HOVn4QgZcvJnkVOf6wjnZpYjZHaE37vMnu9s9+coPwtHyCB/t2Tt3IxQeWUaEaWUdtV7zexjWWcj9+fc5P6clyvfG8j9Obs8cn9ptqPKEzghhBBCCCcjBZwL6Nq1q9URcpTcn3OT+3NernxvIPfn7Fz9/tIjBZwL6Natm9URcpTcn3OT+3NernxvIPfn7Fz9/tKTp6YREUIIIRxNZGQk4eHhXL58mdjYWLt9blBQELt27bLb5zkaZ7w/d3d3ChUqRPHixfH29s7eZ9kpkxBCCCEyKTIykn379lG0aFEqVaqEp6dnuvN/CeektSY6OpoLFy6wb98+KlasmK0iTppQhRBCCIuEh4dTtGhRAgMD8fLykuLNhSml8PLyIjAwkKJFixIeHp6tz5MCTgghhLDI5cuX8ff3tzqGyGX+/v5cvnw5W59hWQGnlApSSn2klNqqlLqulNJKqdIZvNamlBqhlDqilIpUSu1WSj2as4mFEEII+4qNjcXT09PqGCKXeXp6Zru/o5VP4MoB/wEuApszee14IBT4GGgFbAMWK6Va2zOgEEIIkdOk2TTvscfvuZWDGDZprYsBKKWeAh7JyEVKqaLAMGCi1vrdhMPrlVLlgInA6pwIK4QQQgjhKCx7Aqe1js/ipS0AT2DOLcfnANWUUmWyFUwIIYQQwsE54zQiwUAUcPCW43sS9lWAw6ld+GaHrwBQ3Fw77eZTzNSO3Xqu5uZbGqXM+8k/I/kxc9y8tikNCe/ZVOL72pxrI+GYec+m4s15bonH43FT8dhsGptN42bTuKm4hPfjCT+0n03bd+FmM5+rE28iIVjSr5MfT9gS39NKoWw2dOJ5Npt5z2Yzr5O9r222m+e6uaFtNvN5Npt57eaWtMXbbODuDu7uaDc3lJsbSqmkx8eJr5NvNpstxa/379/Pjh07Urxns9nuuLm5uSVtNpsNd3d33NzcbttL04UQQghn5IwFnD9wKZWV6S8kez9Vo1b2zrFQjsKdGNyJxZ1YPIm+bfMiCi+i8CYSbyKTXufjBj5cx4fr5Oda0r4AVynIFXyJSNoX4jJ+XCQfkZnOFw/EALEJ+8QtOmEflfA6KtlWETgE3LhluwZcTdiSv76csF0CriR8Z1rc3Nzw8PDA3d0dDw+PpM3T0/O2zcvLC29vb7y9vZNe58uXDx8fn9u2/Pnz4+vri6+vLwUKFMDX15eCBQtSuHBhvL29pXAUQohUnD59mr59+/Ldd9+59EL19qAc4QeU0AduGlBGa30knXM/B9prrYvfcrwccADorbWencp1uh5LSP4MDRRuNjdsbjfr2JQ/jRTP25Ku1VqR8Jzt5jGSHyPF+2azmX3CtfGJv072vjlmI17biMct6ddxuBGvza/jsRGHO/G4Eafdk36duOUmL25QmAsUUpfw4wJFOE9RdYainKGYPkMxdYZAHU4pfZQgwvEmLlfzJYoALirFv8C/wDngvNacA8KBU8DphO0s5HhKd3d38ufPT/78+SlQoAAFChSgUKFC+Pr6UqhQIQoWLEjBggXx9/fH39+fwoUL4+bmlsOphBBWCAoK4r777suV77p27Rr3338/hw8f5urVq1StWhWAGzducPXqVerUqcOHH37IPffckyt5brVs2TKGDh2Kh4cHBw8edPkCbteuXZw4cYL58+ezcOHCVM/RpmhIlTMWcJOAwUC+5E/hlFJ1ge1AW631t6lcl8pDO9ewYsUKOnToQHw8xMVBTIzZYmMhOjrlFhVltsjIlNuNG3D9+s3t2jWzXb0KV65ARMTN/aVLcPGi+byMcneHEiU0pUpCqaB47r0njgplYqhYOooKJW9QKN8tIZOF3b5xI/WqVzchk2/JQybuIyLg8uWb25UrkInfd22zEVe0KDElShB9991EBgZyvVgxrgUEcKl4ca74+BAVHU1kZCSRkZHcuHGDGzducP369aTt2rVrXLt2jYiICCIiIrh69SoRERFcuXKFixcvEp2ZHxymmblYsWLcfffdBAUFUaZMGUqXLk2ZMmWSNl9f30x9Zm5K/O/TVbny/bnyvYFj3N+uXbtyrYBLVK9ePeLj49mxY0fSsX379lGjRg1q167Nzz//nKt5kueaM2cOb7zxBrNmzcoTBdydfu+VUncs4JyxCXUP4AWUJWU/uCoJ+725nshBJHRXw8Mj579La1PoXbwIFy7Av//CuXNw5kzK7fRpOH7cvD56VHH0KIBbwuYJ5AegWDGoWBFq1oTatc1Wua4p/MKjoiCrf8nGx5ui7sIFOH/eBE3cnz0L4eFw6pQJeuoU6tw53MPDcQ8PJ9+uXRS69fMKFYIqVcxWuTJUrQohIVCkSIYjRUZGcvHiRS5dusTFixf59ttvKVeuHOfOneP8+fOcP3+es2fPcurUKU6dOsXZs2cJDw8nPDycX3/9NdXPDAwMpFKlSlSuXDlpX6VKFQIDA6W5VgiRJD4+nrCwMPr06ZPieMWKFSlevDh79uxJ/cJcsGXLFtzdnbEssYYz/qTWYrpL9QBeT3a8JxCmtU51AIOwL6Ugf36zBQWlf35kJJw4YYq5o0fh4EHYtw/27zdbYsG3adPNa7y9oXp1uOuuakRHQ9OmULRoJoPabKboKlQIymRggHJMjAl65IjZDh82+3/+gb/+MhXr1q1mS65MGahTx2whIVC3Lvj4pPoV3t7eBAYGEhgYCMC5c+fu+BQgJiaGM2fOcPLkSY4fP87hw4c5fPgwR44cSdqfPn2a06dPs379+hTXFitWjNq1a3Pfffcl7UuWLClFnRB51L59+7h+/Tp16tRJcTzx75fcfhqYXEaKt2XLljFixAj279/P4sWL6dKlC//88w+PPvoou3fvZsyYMbz++usMHDiQ5cuXc+rUKTZs2MAnn3zCtm3byJ8/PzNnzsTX15fXX3+d7du34+vry7x585KalJ2FpQWcUqpLwsvE/2JaKaXOAee01hsTzokFZmmt+wForc8qpSYDI5RSEcCvQFegOdA+V29AZJi3N5QrZ7Zbxcebwm7vXvj9d/j1V7MdOgS//AJwL6sTZvcLDoZmzcz24IPg52fnoB4ephhLrdjT2jy1++svEzZ54MOHzbZokTnX0xMaNDAhH3zQFHZZfDTq4eFBUFAQQUFB1KtX77b34+PjOXr0KH///Td//fVX0hYWFsaZM2dYs2YNa9asSTo/MDCQxo0b06RJE5o0aUJwcDA2m6yqJ0Re8PvvvwOkKOBOnDhB3759iY+PZ/DgwZn+zJ07d/LUU0+le15ISAjTp0/P9Ocn17lzZ9zc3OjYsSPVq1cHoGzZsqxYsYLSpUsnHZs6dSo+Pj5MmTKFLVu2sGDBAqKioqhQoQIDBgygffv2zJs3j5iYGCpVqsS4ceNYlPj3t5Ow+gnc4lt+/UnCfiPQLOF1YntbcqMwAw4HA8WBfcB/tNarciamyEk2G9xzj9latbp5/OJFUx998cVfnDlTmS1bYM8es02dappXmzeHzp1NC2vx4ml/h10oZdp6ixUzFWSi2FhTzO3YATt3wvbtJvjGjWYbMwZ8fc01nTqZsHZc+9BmsyX1hWuV7AeotebQoUP8+uuv7Nq1K2l/+vRpFi1alPSXlZ+fH40bN6Zly5a0adOGUqVK2S2bEMKx7N69G5vNRvfu3dFac+rUKf7991/Kli3L9OnT6dGjR6Y/MyQkJKkwzA1hYWH4+PhQLtkTgT///BOAatWqJR37448/KF68OMOHD0cphbe3N6VKleLQoUOMHDkSm82Gl5cX99xzDxcvXsy1/PZiaQF3p855dzpHax0HTEjYhIvy84MHHoArV/bToUNloqNNjbRhA/zwA2zeDN9/b7Znn4VGjaBLF+jZM1Nd0rLP3d209VavDv36mWMXLpig69aZbd8++OYbsyVWnl26QMeOORZLKUXZsmUpW7Ysjz32GGCKur///ptNmzaxefNmNm3axPHjx1m5ciUrV64EoGrVqrRp04Y2bdrQoEED6ZMihAv5/fffCQkJYfv27QDs2bOHBx54gPHjx9OtWzeL02VMWFjYbS0HYWFh5MuX77airlOnTngka/04fvw4bdu2xcvLK+nYqVOnaNSoUe6EtyNpNxFOw9PTFGmjRsH69Wb8wZdfQtu2pnXyp59gyBAoUQJ69YItWzI1ANW+/P3No8GpU+Hvv00b8WefwcMPm1Dffw9PPw3Fi1N/3DhYscI8ycthSikqV67MgAEDmDNnDseOHePIkSNMnz6dzp07U6BAAcLCwpg0aRJNmjTh7rvvZtCgQfz8888uPyJMiLzg999/T9HXKzg4mObNmzNgwAAiIzM/t6cVwsLCkppKE/35558pirrz589z+vTpFN1Orly5wrFjx6hfv37SsRs3bvDPP/+keHLnLKSAE07rrrugb1/zUOv8eViwAFq3NjOQzJkD999vHopNnWpmE7FUUJAp2L7/3ozW+OIL017s5kaxX381T+LKlIFx48yo2Fx0zz330K9fP5YuXcq///7LDz/8wIsvvkj58uU5d+4cU6dOpVGjRtx7772MHDmSsLCwXM0nhLCP8PBwzpw5Q3BwcIrjrVq1IiIigg0bNtx2zeXLlxk1ahRDhgyhSZMmDB069LZzdu7cSc2aNdPdMtJPLj0xMTHs37//tgEHW7duTVHUJTapJj+W+HdX8mItLCyM+Ph4atasme1suU0KOOESfH2ha1f49lszYHTECDNiNSwMBg2C0qXhzTfNVHGWK1IEnnwSVq+G06cJ69sXypc3o1/HjoVSpeDRRxNHcOQqT09PHnzwQSZPnsy+ffv47bffGD58OEFBQRw5coS33nqLatWqUb9+fWbPnu00/2IXQtwcwHBr8fPQQw8BpBjsBGbi344dO9KuXTs++OADqlSpQvny5W/73MQ+cOlt2R3AALB//36io6OTRvGDKSAPHz58W/83d3d3qlSpknTszz//xGazpShgEwu9GjVqZDtbbpMCTricMmVMsXb8OCxcaJ7EXbxoml7LlIF33zVz2DmEIkX4p0MH00fuhx9MvzilYNkyqFfPtA/v3GlJNKUUNWvW5O233+bo0aNs3LiRAQMGULhwYbZv307v3r0pWbIkI0aM4KiZ4E8I4cDSKuBKlChBpUqVWLt2bYrjkydPpkGDBklNjjt37iQkJCR3wqYh8Sna33//DZhpmF5/3cwodusTuIoVK+Lp6Zni2L333otPsime/vjjD0qUKEGRXO04bR9SwAmX5ekJ//mPmVvuhx/MrB7nz8Pw4VC2LEyZkrnVJHKUUma6kcWL4dgxePVVM8net9+aKUjatzfTlVjEZrPRpEkT/vvf/3Ly5EmmTZtGzZo1OX/+PBMnTuTee++lU6dO7LSo2BRCpO2ff/6hZs2avPfeewC0bt2ad955J8U5Dz/8MPv376dmzZp8/fXXAMyePZsuXcxsX1evXk1arSGnDB8+nJo1ayYNqEpsek2+ek1YWBgFChRg+vTpVK9endGjR9OyZUsABg4cmLQk1Z9//plqP7lb+7r9+eefXLx4kbp16xIff6eVsx2Q1jpPbOZWXdPy5cutjpCj7HV/8fFar16t9X33aW1GEmhdtarW27bZ5eOzLM37O3tW6+HDtfbxuRm4c2etjxzJ3YBpiI+P11u2bNHdu3fXHh4eGrOUsG7durXeluyHKv99Oi9XvjetHeP+du7caXWENBUsWFDv379fa631lClT9H333WdxIq07duyoH3nkEatj2EV6v/cJdUuadY08gRN5hlJm3MCOHbB8uXkKFxZmnswNGeIg/eOSCwiAt982MxoPHWpmQ162zCzj9c47ZtUICymlaNiwIXPnzuXYsWMMHz4cHx8fVq9eTf369WnZsqVlayoKIbJvwoQJ9OrVi8GDBztE8ymYJ3DJ+7XlZVLAiTxHKTOX7h9/wMsvm4mEP/zQLGt6SxcQx1CsGLz3nll/7LHHTAe+l182C8Zu2WJ1OgCKFy/O22+/zZEjRxgxYgQFChTgu+++o1GjRowfPz6pv4oQwnk8//zzbNu2jQ8//BAPDw/LC7gbN25w6NAhKleubGkORyEFnMizfHxg0iTzRK52bbNGa6tW8MQTcO2a1elSUaKEWapr9WozGiMszIzQ6N/fjNJwAAEBAbz55pscOXKE1157DV9fX3bt2kW1atUYMmSIU852LoSAHTt2sHr1ai5cuGBZhr/++ov4+Hh5ApdACjiR59WqZVa/eucdyJcPvvoKGjY005E4pFatzHpio0aZGYynT4eaNWHbNquTJSlSpAjjxo3j4MGDPPzww8TFxfHhhx9Svnx5PvnkE2JzYdJiIYT97N69m2XLluFvx2UAM6t27dporbn//vsty+BI8lQBp5RCKUVoaKjVUYSDcXeHYcPMjB0VKpjm1ZAQB21SBVNpTpgAu3dD3bpm5GrjxmaOFAcaSVW0aFEGDhzIr7/+SrNmzfj3338ZOHAgtWrVYpsDFZxCCOEIQkNDk2qV9OSpAi5x5IYUcCItVaqY+XPbtYNLl8zKDm++aeGSXOmpXNksCjt0qFmKa/hw08Hv33+tTpZCzZo1+fHHH1m6dCllypQhLCyMRo0aMWzYMG7cuGF1PCGEcAihoaHJZ8+4ozxVwAmREYUKmVGqr79uCrdRo8zCCBERVidLg6enGeSwYgX4+cGqVaZd2MFGgCql6Ny5M3v37uWVV14B4L333qNGjRr89NNPFqcTQgjnIgWcEKmw2WDMGLPOasGC8PXX8NBD5qmcw2rfHn77zazgcPw4NG0Ks2ZZneo23t7eTJw4kW3bthEcHMyBAwdo0qQJgwcP5ppDjh4RQgjHIwWcEHfQtq0ZpVq6tGlaffBBsHAQVvruuccsPTFkiGlS7dMHJk50yDbgOnXqsGvXLkaPHo3NZmPKlCnUqlWL3bt3Wx1NCCEcnhRwQqSjQgXYuNFM/Pvrr/DAA3DunNWp7sDTE95/30xupxSMGAEvvABxcVYnu42Xlxfjx49nx44dVK1alQMHDlCvXj0+//zzDPUBEUKIvEoKOCEyoFQpU8RVrGhGqDZrBuHhVqdKxwsvwIIFpqD7+GN4/HGIjLQ6Vapq1arFL7/8Qv/+/YmKimLAgAH06NGDCIfteCiEENaSAk6IDCpRAjZsMCNV9+41RdypU1anSsd//gPffWc68i1ZAi1aOGxHvnz58vH5558zZ84c8ufPz/z58wkJCeGPP/6wOpoQQjgcKeCEyITixU0RV7067NtnxgmcPWt1qnQ0a2amGrn7btM/rnlzhy3iAHr06MHOnTupWrUq+/fvp169esyZM8fqWEII4VCkgBMikwIC4McfzUwdBw9Cp04O2zJ5U/XqsHUrlCtnRqq2aeOg64UZlSpVYvv27fTr14/IyEh69erFa6+9RrwDTVIshEjdiRMneP7552nQoAE+Pj4opThy5EimPuP8+fOMGjWKatWqUaBAAby9vSlbtiy9e/dmw4YNKc7t06cPQUFBqX7ODz/8gFLqtmtcgRRwQmRBkSJmSdKSJc10a0895ZADPVMqVQp++OFm6E6dICrK6lRp8vHxYfr06Xz00UfYbDYmTJhAt27dZOJfIRzcwYMHWbRoEX5+fjRu3DjT14eFhVGjRg1mzJhBt27dWLZsGWvWrGH48OEcOnSIBx54gDNnzuRAcuciBZwQWVS8uJknLn9+mDvXrNjg8O65xxRxRYvC//4H3bqZ6UYc2KBBg/j222/x9fVl0aJFNGvWjHCHH0EiRN7VpEkTzpw5w+rVq3nssccydW1MTAydO3cmf/787N69m5EjR/LII4/wwAMP8Mwzz/DTTz8xd+5cPDw8cii985ACTohsqFED5s0zs3WMHg2LF1udKAMqVIDvv4fChc0MxU8+6VDrp6amZcuWbN26ldKlS/PLL79Qt25dmS9OCAdls2W9tFi6dCkHDhxg0qRJBAQEpHpO9+7d8ff3z9Lnz5w5M2mt0Vs3Z1tmUwo4IbKpfXt45x3zundvM/Gvw6tRw7QB588Ps2ebKUccvA04ODiY7du307BhQ44fP07jxo3ZuHGj1bGEEHa0bt063NzcaNmyZaavjY2NvW27td9smzZt2Lp1a4pt0KBBAFSuXNku95BbpIATwg6GDoV+/cxghvbtzUpWDq9BA7N+qqcnTJ0KkyZZnShdRYsWZd26dTz++ONERETQsmVLVq1aZXUsIewuradEub3lthMnThAQEEC+fPlSHI+Pj09RmN060ffJkyfx8PC4bWvRokWK8wICAqhfv37SFhcXx7Rp03jxxRfp2rVrjt+fPUkBJ4QdKAWffHJzgt8uXSAmxupUGfDgg2ayX4CRI2HNGmvzZIC3tzdz587lmWeeITIykk6dOjF//nyrYwkhclDr1q1TFGZffPFFiveLFi3Kjh07btumTp2a5mceOXKETp060aJFC959992cvgW7kwJOCDvx9ISlS80gz19+gTfesDpRBnXqBK+/bppQu3WDAwesTpQum83GJ598wquvvkpsbCw9evTgv//9r9WxhLAbrbVDbLktKCiI8+fP3zba/KOPPmLHjh2sXLky1es8PDwICQm5batQoUKq51+5coW2bdsSFBTEvHnzstVvzyrOlzgbnLWjonAe/v4wa5Z5IjdhAmzbZnWiDBo92hRyly9Dhw5w5YrVidKllOKtt97irbfeQmvNs88+y8SJE62OJYTIhubNmxMbG8vatWtTHC9fvjwhISFUq1Yt298RFxdH165duXTpEt988w358+fP9mfaS2hoaIabr/NUAZf4Lwop4EROeuABeOkls3Z8z55w9arViTLAZjOVZ3Aw/PWXGY3h4CNTE7366qt8+umnKKUYMWIEY8aMsTqSECKLHn30UcqWLcsrr7zCuXPncuQ7hg4dyubNm/nmm28oUaJEjnxHVoWGhmb46ad7LuQRIs+ZMMHM1PHHH/DiizBtmtWJMsDXF5Yvhzp1zOCGcePASf6x88wzz1CwYEF69+7N+PHj8fLyYtSoUVbHEiLPWrJkCQC7du0CYM2aNQQEBBAQEEDTpk3TvM7T05Nly5bRokULatasycCBA6lTpw6enp6Eh4ezdOlSAHx9fbOUa8GCBUyZMoURI0YQFRXFtmTNJEFBQWmu6OCIpIATIgd4eZnJfUNCYPp0aNvWtEw6vHLlYOFCaNXK9IurWRM6drQ6VYZ0794dgJ49ezJ69Gi8vLwYNmyYxamEyJtuncD3ueeeA6Bp06bpLmtVvXp1/vjjDyZPnsy8efOYMGEC8fHxlChRgvvvv5+NGzfSpEmTLOX6+++/AZK6XyQ3duxYp2qhkwJOiBxStSpMnGiewD31FNSrZ1ZvcHiPPGKmFBk+3DSl/vEHlC5tdaoM6d69O9HR0fTt25fhw4fj6enJCy+8YHUsIfKc7A6ACAgISLXISs3MmTPTfO+hhx5KkSU0NNSpirQ7yVN94ITIbS+8AA89BOfPm3niHHyu3Jteegk6d4aICFPExcVZnSjD+vTpw2effQbA4MGDk14LIYQrkQJOiBxks8HMmeDnZxY++OorqxNlkFLw2WcQGAibN4OTzZH09NNP89FHHwGmf9yMGTMsTiSEEPYlBZwQOaxECfjgA/P6lVfMTB1O4a67ILHwee01+O03a/Nk0qBBg5Im5+zXrx/Lli2zOJEQQtiPFHBC5IJevaBhQzhzxgzudBotWsCgQWZZiR494JbJNR3dSy+9xLhx49Ba0717dzZv3mx1JCGEsAsp4ITIBUrBxx+b/ZQpsHev1YkyYdIkqFTJzA/36qtWp8m00aNH88wzzxAVFUX79u3Zs2eP1ZGEECLbpIATIpfUqgUDBkBsrBnc4DQDGnx8zJwo7u6m+vz+e6sTZYpSio8//piOHTty6dIlWrZsyfHjx62OJYQQ2SIFnBC5aMIEs9zWunXgVF2yatc288IB9OkD//5raZzMcnNzY968eTRq1IgTJ07QqlUrLl68aHUsIYTIMinghMhFRYqYIg5g6FC4ft3aPJnyyivQqBGcPm0mt3My+fLlY+XKlVSpUoU9e/bQoUMHIiMjrY4lhBBZIgWcELns6afNAgfHjpmJfp2Gm5tZL9XbG2bPhvXrrU6Uaf7+/qxdu5YSJUqwefNmevfuTbyTrPkqhBDJSQEnRC5zczMDGgDefhvCw32sDZQZZcvCyJHm9XPPQXS0tXmyoGTJkqxdu5aCBQuyePFiXk9sGhZCCCciBZwQFmjUCHr2hKgomDGjqtVxMufll6FCBfj7b6eb4DdR1apVWbhwITabjXHjxjF//nyrIwnhMk6cOMHzzz9PgwYN8PHxQSnFkSNHUj03MjKS4cOHExgYSL58+WjQoAGbNm3K8HddvXqViRMnUqdOHQoWLIinpyelSpXiscceY8WKFbcto6WUIjY29rbPOXjwIEqpOy7L5WikgBPCIm+/Dfnzw/btgfzyi9VpMsHLCz791LwePx4OHbI2Txa1bNmS999/H4C+ffvyi1P9JgjhuA4ePMiiRYvw8/OjcePGdzy3X79+TJs2jXHjxrFq1SoCAwNp0aIFv//+e7rfc/LkSerWrcukSZN4+OGHWbhwIf/73/94/fXXuXbtGh07dnTpP9dSwAlhkcBAM0cugNOtrdy8uZnYNzLS3ITTzHPieQIAACAASURBVImS0vPPP8/TTz9NVFQUHTp04MSJE1ZHEsLpNWnShDNnzrB69Woee+yxNM/bvXs38+bN4/3336d///48+OCDLFq0iFKlSjFmzJh0v6dHjx6cPXuWnTt38uabb9KqVSuaNm1K3759Wb16Nf/73/8oVKiQPW/NoeSpAk4phVKKUKf7v6VwVcOGgbd3LGvWwNatVqfJpPfeg0KFYM0aJ5sT5abEOeKaNWtGeHg47du359q1a1bHEsKp2WwZKy1WrlyJh4cHXbt2TTrm7u7O448/znfffUdUVFSa127bto2NGzcyatQoypYtm+o5Dz30EJUqVcpc+AQbNmxIqhlu3fr06ZOlz8yIxGZepVS65+apAk5rjdZaCjjhMO66C9q2NU2QTvefZbFi8NZb5vXgwRARYW2eLPLw8GDJkiWUK1eO3377TUamCpFL9uzZQ5kyZfDxSTmQKzg4mOjoaA4ePJjmtevWrQOgbdu2mf7euLg4YmNjU2xxcXEpzqlduzZbt25Nsb3xxhsAVK5cOdPfmVGhoaFJtUp68lQBJ4Qj6tDhIL6+ZoGDLVusTpNJTz8NderAyZMwdqzVabKsSJEifPPNNxQqVIhly5YxIXGyPiGsopRjbDnowoUL+Pn53Xbc398/6f20JHZ3KFWqVIrj8fHxKQqz1P4x5u3tjYeHR4rt1id1BQsWpH79+kmbv78/7777Lo8++igvv/xypu81J0gBJ4TFfH1jGDzYvHa6GsjNDf77X7DZ4MMPwYnXGa1UqRILFixI6maxZs0aqyMJITLpueeeS1GYpdaXbtu2bezYsSPF9vXXX6f5mRcvXqRdu3aUK1eO2bNnZ6h5MzdIASeEAxg6FAoWNEtsbd5sdZpMql3bPImLj3fKxe6Ta9myJePGjUNrTffu3TnkpCNshQvQ2jG2HOTn55fqknaJT94Sn8SlJigoCIBjx46lOD5y5Mikoiwt9913HyEhISm2qlVTn84pJiaGLl26EBkZycqVK8mXL1+695VbpIATwgH4+d1cncrpnsKB6cBXoACsWgUbNlidJltGjhxJu3btuHTpEp07d+a6U613JoTzCA4O5vDhw7f9Gdu7dy+enp6UK1cuzWubN28OwKpVq1IcL1WqVFJRZg8DBw5kx44drFq1iuLFi9vlM+1FCjghHMSQIWZQ5/r1TlgDFStmJvgFGD7cPI1zUjabja+++opy5cqxe/duBgwYkKEOxUKIzGnXrh0xMTEsXrw46VhsbCwLFy7kkUcewcvLK81rGzRoQOPGjXnjjTf4559/ciTf+++/z5dffsmCBQuoVq1ajnxHdrhbHUAIYRQubJpSx44124YNOd6H2L6GDjUT/O7cCQsXQrduVifKssKFC/P1119Tr1495syZQ7169RiUOGmfECJdS5YsAWDXrl0ArFmzhoCAAAICAmjatCkAtWrVomvXrgwZMoSYmBjKlCnDp59+yuHDh5k7d2663zFv3jwefPBBQkJCeO6552jcuDH58+fn3LlzfP/99wD4+vpmKf/PP//MsGHD6N27N/7+/mzbti3pvYCAgDSnLslVicNVXX0zt+qali9fbnWEHJWX7u/SJa39/Eznk3XrLAyVVdOmmfClS2sdGam1du7fv/nz52tAu7u7659++inVc5z5/tLjyvemtWPc386dO62OkCOAVLemTZumOO/69ev6xRdf1MWKFdNeXl66bt26ev369Rn+nitXrug33nhD165dWxcoUEB7eHjokiVL6i5duuiVK1emOHfs2LEa0DExMbd9zoEDBzSgZ8yYobXWesaMGWnewxNPPJHJn0bq0vu9T6hb0q5r7vSmK21SwDmvvHZ/48ebP5ktW1oUKDtiYrSuUsXcwHvvaa2d//dvyJAhGtCBgYH6zJkzt73v7Pd3J658b1o7xv25agEn0pfdAk76wAnhYJ59Fry9Ye1a+Osvq9Nkkru7WeQVYMIESGWEmbN5++23uf/++zl9+jS9evWSSX6FEA7B0gJOKVVSKbVEKXVZKXVFKbVMKVUq/StBKVVKKTVLKXVMKXVDKbVfKTVBKZU/p3MLkZOKFIHevc3rKVOszZIlrVtDs2ameEtcqcGJeXh4MH/+fIoUKcL333/PxIkTrY4khBDWFXBKKR/gR6AS8ATQCygPrE+vCEt4/wegCfAa0BqYDrwEfJmDsYXIFYkT+86aBXeYjNwxKQXvvGNeT5lCvrNnrc1jB0FBQcyePRuA1157jc1ON1mfEMLVWPkErj9wL9BRa71ca70CaA/cAwxI59pGmGJvgNZ6ltZ6vdb6beBD4NGE4lAIp1WlCrRoATduwLRpVqfJgpAQMwo1KorK8+ZZncYuWrVqxSuvvEJ8fDzdunXj3LlzVkcSQuRhVhZw7YFtWuuk1Wq11oeBLUCHdK71TNhfueX4Jcw9OdPkC0KkasgQs//4Y4iJsTZLlrzxBri7E7RpE+zfb3Uauxg/fjwNGzbk5MmTsui9EMJSVhZwwUBYKsf3AFXSufYH4AAwSSlVRSlVQCnVHBgM/Fdrfc2+UYXIfY88ApUqwYkTsHSp1WmyoEwZeOIJVHy8KeZcgIeHBwsWLMDf35+1a9fyTmJTsRBC5DIrCzh/ILUhahcAvztdqLWOBO7H5N8DRADrgFWAzLYpXILNdvMp3AcfWJsly0aOJN5mg7lz4eDB9M93AiVLlmTWrFkAjBo1ir+cbqiwEMIVKDPViAVfrFQ0MFlr/eotxycAr2qt01wlQinlDawB7gbGA8eAusAYYK7W+tlUrkn1Rrt27Uo3J54xXri2qCg3+vV7hKtXPZk0aRMVKzrftBw1P/qIe9at41jz5vz2wgtWx7GbmTNnsnz5cgICAnj//fcpUKCA1ZGEEwoKCuK+++6zOoawwK5duzhx4gTz589n4cKFqZ6jtU67S9idJonLyQ04A3yWyvFPgHPpXDsQMyNy2VuO9084XiOVa9KbU89pOcJklDkpr9/fq6+aeXG7ds2lQHb2/aefau3mZraDB62OYzdRUVH6vvvu04B+/PHHdXx8vNWR7C6v/9nLDTKRb97lzBP57sH0g7tVFWBvOtdWAy5qrW9dwfaXhH3lbGYTwmEMHGjmx12yBI4ftzpN5l0PDIRevSAuzmX6wgF4enoyb948vL29WbBgQdI0I0IIkRusLOBWAvWVUvcmHlBKlcZMEbIynWvDAT+lVLlbjtdL2J+0U0YhLBcUBI89ZuqfqVOtTpNFo0aBmxt89RUcOmR1GrupUKEC/fv3B2DgwIEcdJF+fkJkx4kTJ3j++edp0KABPj4+KKU4cuRIqudGRkYyfPhwAgMDyZcvHw0aNGDTpk23nRcfH89bb71F6dKl8fb2pkaNGizNxOiumJgYPv30Uxo3boyfnx8eHh4EBgbStm1bZs+eTWxsbNK5M2fORCmV6p/n2NhYlFKEhoZm+LtzipUF3DTgCLBCKdVBKdUeWAEcBz5LPEkpdY9SKlYpNSbZtTMxAxdWK6WeUEo9oJQaDrwL7MJMRSKEy0gczPD553D9urVZsqRcOejZ01Shb75pdRq7at68Of/5z3+4evUq3bt3J8Yp53wRwn4OHjzIokWL8PPzo3Hjxnc8t1+/fkybNo1x48axatUqAgMDadGiBb///nuK81577TVCQ0MZNGgQa9asoX79+jz22GOsXr063TwRERE88MADDB06lFq1ajFr1izWrVvHe++9R4ECBejbt2+mikGHcaf21ZzegFLAUsx8bhHAcqD0LeeUxvRrC73leBVgEabguwHsxxRwfml8V1aaqJ2CI/TjyElyf0bduqYv3OzZORzIzpLub/9+rW02rd3dtT582NJM9rR8+XJ94cIFXbJkSQ3oESNGWB3JbuTPXs5zxT5wcXFxSa+nTZumAX04lT/zv//+uwb0l19+mXQsJiZGV6hQQbdr1y7p2JkzZ7Snp6ceM2ZMiuubN2+uq1Wrlm6eJ554Qnt5eelt27al+v6vv/6qt2zZkvTrGTNmaEAfOHDgtnNjYmI0oMeOHZvu96bHmfvAobU+prV+VGtdUGvtq7XuqLU+css5R7TWSmsdesvxvVrr/2itS2qt82mtK2ith2mtnW+YnhAZ0K+f2X/xhbU5sqx8eejRA2JjXe4pnJ+fH3PnzsVmszFx4kTWr19vdSQhLGOzZay0WLlyJR4eHnTt2jXpmLu7O48//jjfffcdUVFRAHz33XdER0fTs2fPFNf37NmTP//8k8OHD6f5HSdPnmTOnDkMGDCAevXqpXpOrVq1aNiwYYYy3+rIkSMopVLdmjVrlqXPzChLCzghRMY9/jj4+MCGDfDPrcN3nMXo0WaCuxkz4OhRq9PYVePGjRk1ahRaa3r16sUFp1vEVojctWfPHsqUKYOPT8rVL4ODg4mOjk7qg7Znzx68vLwoV67cbecB7N2b9rjHDRs2EBcXR9u2bTOdLy4ujtjY2BRbXFxcinMCAwPZunVrim369OnYbDYqV87Z8ZRSwAnhJAoWNIMZAL780tosWVahglkjNTYW3n/f6jR2N2bMGOrXr8/JkycZOHCg1XGEE1PKMbacdOHCBfz8bp+339/fP+n9xH3hwoVRtwS69bzUnDhxAoBSpUqlOK61TlGYpbYsXqVKlfDw8EixeXt7pzjHy8uL+vXrJ21ly5bljTfeoF69eryfw3/HSQEnhBN58kmznznT1EBOafhws58+HS66Vo8Hd3d3Zs+ejY+PDwsWLGD+/PlWRxJCpGLSpEkpCrPevXvfds7XX3/Njh07Umzbtm1L8zOjo6Pp1KkTACtWrLit2LM3KeCEcCKNG5uuZKdOwXffWZ0mi2rUMAu9XrsGn35qdRq7K1euXNK/vJ977jmOO+PkfcJyZsiS9VtO8vPz42Iq/4hLfKKW+ITNz8+PS5cuJQ5ITPO81AQFBQFw7NixFMf79OmTVJQFBgamem3VqlUJCQlJsd1p1YynnnqKsLAwvv32WwICAtI8z16kgBPCiSh18ymc0w5mABg2zOynTIHISGuz5ID+/fvTpk0bLl26RN++fVNtnhEirwsODubw4cNcv2VupL179+Lp6ZnU5y04OJioqCj+uaXzb2LftypVqqT5HU2bNsVms7Fq1aoUx4sXL55UlHl6emb7Xt58803mz5/PkiVLcrzvWyIp4IRwMk88YebE/eYbOHPG6jRZ9NBDULOmuYE5c6xOY3dKKaZPn85dd93FunXr+Oijj6yOJITDadeuHTExMSxevDjpWGxsLAsXLuSRRx7By8sLgJYtW+Lh4cHcuXNTXD9nzhyqVq1KmTJl0vyOoKAgevTowWeffcb27dtz5D6WLl3K6NGjmTp1Kg899FCOfEdq0lwwXgjhmAIDoXVrU8DNnn3zYZZTUcoE79kT3nvPPFbM4NQDzqJ48eJMmzaNTp068corr/Dwww/f8UmBEK5kyZIlgFmwHWDNmjUEBAQQEBBA06ZNATN9R9euXRkyZAgxMTGUKVOGTz/9lMOHD6co1ooWLcrQoUN566238PX1pXbt2ixcuJAff/yRlSvTW7gJPv74Yw4cOMADDzxA//79eeihhyhcuDAXL15k06ZNhIeH4+vrm6X7PHToEL179+aRRx6hevXqKfrIFSxYMGf/zN9pkjhX2pCJfJ2W3F9q15geKpUqae3oa6ineX/R0VqXLGluZOXK3A1lR+n9/j355JMa0LVq1dJRUVG5lMo+5M9eznPFiXy1NpPQprY1bdo0xXnXr1/XL774oi5WrJj28vLSdevW1evXr7/t82JjY/X48eN1qVKltKenp65WrZpevHhxhvNERUXpjz/+WDds2FAXKlRIu7u76+LFi+s2bdroOXPm6NjY2KRzMzOR7/r16zN8r7fK7kS+lhdWubVJAee85P5uFx2tdbFi5k9wsgnEHdId72/yZHMTjRvnXiA7S+/378qVK7pMmTIa0CNHjsylVPYhf/ZynqsWcCJ9Tr0SgxAiazw8TF84cPLBDE89BYUKwebNkEP9U6zm6+vLV199hVKKiRMn5lg/HCFE3pKnCrjE5S1CQ0OtjiJEtvXta/YLF0JEhLVZsszXF5591rx+5x1rs+Sg+++/n5deeon4+HieeOIJbty4YXUkIYQDCg0NTapV0pOnCrjEx45SwAlXUKkSNGpkplNbtMjqNNnw/PPmkeKyZZCwdI4rGj9+PJUrV2bfvn2MGjXK6jhCCAcUGhqavOvXHeWpAk4IV5O4wP3s2dbmyJa77zajUbWGyZOtTpNjvL29+eqrr3Bzc+ODDz5g48aNVkcSQjgxKeCEcGKPPgpeXrBpE5w8aXWabEicC2XWLJdbXiu5kJCQpAXv+/btS4TTtn0LIawmBZwQTqxgQWjTxjy8WrjQ6jTZUKUKPPwwXL8OX35pdZocNWrUKGrVqsXhw4cZnrgurMjTMtJcJlyLPX7PpYATwsl162b2Tr9u+vPPm/3UqRAXZ22WHOTp6cmsWbPw8PDgs88+4zunXdRW2IO3tzdXr161OobIZVevXs32YvdSwAnh5Nq0gQIFYOdOOHDA6jTZ0Lo1lCkDhw/D6tVWp8lR1apVY9y4cQA8+eSTqS7oLfKGwMBADh06xNmzZ4mOjpancS5Ma010dDRnz57l0KFDBAYGZuvzZCktIZxcvnzQsaNZUnThQhg92upEWeTmBgMHmv5wH30E7dpZnShHDRs2jBUrVrBt2zZefPFFZs6caXUkYQF/f3+8vb05deoU4eHhxMTEWB1J5CAPDw98fHwoX748Pj4+2fosKeCEcAHdupkCbv58GDXKLDXqlJ58EsaMgf/9D/76CypXtjpRjnF3d2fmzJnUrFmTWbNm0aVLF9q2bWt1LGEBHx8fypUrZ/fPXbFiBR06dLD75zoKV7+/9EgTqhAu4OGHoUgR2LsX/vzT6jTZ4OdnphQB+Phja7PkgooVKzJhwgQAnn76aWlKFUJkmBRwQrgADw/o0sW8dvrBDIMGmf2sWXD5srVZcsGQIUNo2LAhp0+fZvDgwVbHEUI4CSnghHARjz9u9gsWmGlFnFa1atCsmVliIg/0C3Nzc2PGjBl4e3sze/ZsvvnmG6sjCSGcgBRwQriIxo3NogZHjrjAuvCJU4p8/DHEx1ubJRdUqFCBN998EzBNqRcuXLA4kRDC0UkBJ4SLcHODrl3Na6dvRm3fHkqWNGuj5pF50l544QUaNWpEeHi4NKUKIdIlBZwQLiRxUt9Fi5x8Llx3dzOlCJgpRfKAxKbUfPnyMWfOHFauXGl1JCGEA5MCTggXEhICZctCeDhs2GB1mmx66inw9oY1a5x8huKMK1++PG+99RYAAwYMkKZUIUSapIATwoUo5UJLaxUpAt27m9effmptllz0/PPP07hxY8LDwxkyZIjVcYQQDipPFXBKKZRShIaGWh1FiByTOBp16VKIjrY2S7Y9+6zZz5oFkZHWZsklNpuNL774gnz58jF79mxWrVpldSQhRC4JDQ1NqlXSk6cKOK01Wmsp4IRLCw42M3FcumQWNHBqISFQuzZcuABLllidJteUL1+eN954AzBNqTLBrxB5Q2hoaFKtkp48VcAJkVc8+qjZf/21tTns4plnzP6//7U2Ry574YUXaNiwIadOnWLo0KFWxxFCOBgp4IRwQZ07m/3KlU4+GhVMpz5fX9iyBfbssTpNrnFzc+PLL7/E29ubmTNnsnr1aqsjCSEciBRwQrigqlXNaNRz50zd49QKFIAePczrzz6zNksuq1ixIuPHjwfMBL+X88DSYkKIjJECTggXpBR06mReu1Qz6ldfwfXr1mbJZS+++CL169fn5MmTvPTSS1bHEUI4CCnghHBRiQXcsmVOvjYqQI0aUK+eWdx+4UKr0+SqxKZULy8vvvjiC9auXWt1JCGEA5ACTggXVb8+FC8Ox47Bb79ZncYOBgww+zw2mAGgcuXKvP766wD079+fK1euWJxICGE1KeCEcFE2G3TsaF67RDNq165QqBD88gv8/rvVaXLdSy+9RJ06dThx4gTDhw+3Oo4QwmJSwAnhwlyqH5yPD/TubV7nscEMAO7u7nz55Zd4eHjw+eefs27dOqsjCSEsJAWcEC6sWTPz0GrPHti/3+o0dpDYjDpnDkREWJvFAlWrVmXs2LEA9OvXj4g8+DMQQhhSwAnhwjw9oV0789olnsIFB8P998PVqy6w2GvWvPzyy9SqVYujR4/y6quvWh1HCGERKeCEcHEu1YwKeXowA4CHhwczZszA3d2dTz75hA0bNlgdSQhhASnghHBxLVqAtzds3w4nT1qdxg66dAF/fzO09tdfrU5jiRo1ajBq1CjANKVeu3bN4kRCiNwmBZwQLi5/flPEASxfbm0Wu/D2hl69zOvp063NYqGRI0dSvXp1Dh06xMiRI62OI4TIZVLACZEHJK6N6jLNqP36mf28eXluZYZEnp6ezJgxAzc3Nz766CM2b95sdSQhRC6SAk6IPKBtW3Bzgw0b4MIFq9PYQbVqULeuWZlh6VKr01imdu3ajBgxAq01Tz75JNfzaDErRF4kBZwQeYC/v5lSJC4OvvnG6jR2kvgU7osvrM1hsdGjR1O1alUOHjzIa6+9ZnUcIUQuyVMFnFIKpRShoaFWRxEi17ncaNTHHzeT+27cCAcOWJ3GMl5eXklNqe+//z4///yz1ZGEEFkUGhqaVKukJ08VcFprtNZSwIk8KXFZrf/9DyIjrc1iFwULwn/+Y15/+aW1WSwWEhLCyy+/jNaavn37cuPGDasjCSGyIDQ0NKlWSU+eKuCEyMtKlIBatUyff5eZOiyxGXXmTIiNtTSK1caOHUuVKlXYv38/Y8aMsTqOECKHSQEnRB7Spo3Zr1plbQ67adQIKlaE8HBYvdrqNJZKbEq12WxMnjyZbdu2WR1JCJGDpIATIg9p29bsV62CDDyhd3xKyWCGZOrWrcvw4cOJj4+nb9++RLpEW7kQIjVSwAmRh9SpAwEBcPSoWeDeJfTuDe7u8O23cPq01WksFxoaSqVKlfj777+TFr4XQrgeKeCEyENstpvNqN9+a20WuylWDNq1M3OkzJpldRrLeXt7M3PmTGw2G++++640pQrhoqSAEyKPSd6M6jKeesrsv/jCRdqGs6devXoMGzYsqSlVRqUK4XqkgBMij3n4YfDwgJ9/hn//tTqNnbRoYYbZHjwImzZZncYhvP7661SuXJm///5bRqUK4YKkgBMijylYEJo0gfh4WLvW6jR24uYGffua1zKYAUjZlPree+/JBL9CuBgp4ITIgxKbUV2mHxzcLOCWLIErV6zN4iDq1q0rE/wK4aIsLeCUUiWVUkuUUpeVUleUUsuUUqUycX1lpdRipdR5pdQNpdQ+pdTgnMwshCtILODWrHGh+W/vvReaNoUbN2DRIqvTOIzQ0FCCg4PZv38/o0ePtjqOEMJOLCvglFI+wI9AJeAJoBdQHlivlMqfgetDgO2AF/AU0Bp4D3DLqcxCuIpy5aBCBbh0yfSFcxmJT+Hy+NJayXl5eTFz5syktVK3bNlidSQhhB1Y+QSuP3Av0FFrvVxrvQJoD9wDDLjThUopG/AVsE5r3T7h+vVa68+11pNzPLkQLsAlR6N26QIFCsDWrfD331ancRghISG8+uqraK3p06cP169ftzqSECKbrCzg2gPbtNYHEw9orQ8DW4AO6VzbDKgMSLEmRBa5ZD+4/PlvLnA/c6alURzNa6+9RrVq1Th48CAjRoywOo4QIpusLOCCgbBUju8BqqRz7f0Je2+l1DalVIxS6qxSaopSKp9dUwrhou6/34xI3bsXDh2yOo0dJTajfvWVC3Xwyz4vLy9mzZqFu7s7U6ZMYf369VZHEkJkg5UFnD9wMZXjFwC/dK69O2G/EPgeeBh4G9MXbp69Agrhyjw8oGVL89qlnsI1agTly5tltb7/3uo0DqVWrVpJAxn69u1LRESExYmEEFmltEWzliulooHJWutXbzk+AXhVa+1+h2s/x/Sh+0hr/UKy468AE4EqWuu/brkm1Rvt2rUr3bp1y/qNCOHE1q8vyYcf1qZmzbOEhm61Oo7dlF+8mCpz53KyYUN2vvyy1XEcSmxsLC+//DKHDh3i4YcfZuDAgVZHEiJPmz9/PgsXLkz1Pa21SvNCrbUlG3AG+CyV458A59K59i1AA+1uOV4r4Xj3VK7Rrmr58uVWR8hRcn855+xZrZXS2tNT64iInPkOS+7v+HGtbTZzY+fP5+hXOeN/n2FhYdrT01MDes2aNWme54z3lhlyf87N1e8voW5Jsxaysgl1D6Yf3K2qAHszcO2dxGcpkRB5TEAA1K8P0dHwww9Wp7GjoCCzZlh0NMyTXhW3Cg4OZvz48QD069ePixdT680ihHBkVhZwK4H6Sql7Ew8opUoDjRLeu5M1QBTQ4pbjCT162GmfiEK4vtatzX7NGmtz2F3iYIYZM6zN4aBeeuklGjRowKlTpxg8WOY/F8LZpNrPTCnVJLsfrLVOb0XpacAgYIVSajSm6XM8cBz4LFmWe4B/gHFa63EJn/2vUuot4DWl1BXMhMAhwBhglk42NYkQ4s5atYLXXjPromoNKu0eF86lQwfw84PffoPdu6FGDasTORQ3NzdmzpxJzZo1mT17Np06daJTp05WxxJCZFBaAwU2ZPNzNemsiKC1vqaUag68D8wGFLAOGKK1vprsVJXwWbc+LRwHRADPAcOA08A7mCJQCJFBtWqZptRjx8zct5UrW53ITry9oXt3mDrVPIX74AOrEzmcChUqMHHiRAYPHsyAAQNo1KgRRYsWtTqWECIDUm1C1VrbsrllaDkrrfUxrfWjWuuCWmtfrXVHrfWRW845orVWWuvQW45rrfVkrXU5rbWn1voerfUYrXVMVn8YQuRFNhu0SOiMsHattVnsLrEZdc4c0x9O3GbQoEE0b96cc+fO8fTTTycO34yruAAAIABJREFU+hJCODhLF7MXQjiGxPngXK4fXO3aUK0a/Puvi012Zz82m40ZM2ZQsGBBVqxYwUxZwUIIpyAFnBCCRx4xfd82boRr16xOY0dKQZ8+5rUMZkhTqVKl+PjjjwEYPHgwR44csTaQECJdWS7glFIdlVIzlFKTlFLdlFIVEwYjCCGcTEAAhISYVsaNG61OY2c9e4K7O6xeDWfOWJ3GYfXs2ZPOnTsTERHBE088QXy8zMYkhCPLzhO4D4AdwCWgI/ANEGqHTEIICyQ2o7pcP7iiRc1cKXFxMHeu1WkcllKKzz77jGLFirFp0ybef/99qyMJIe4gOwXcRq31J1rrt7TWXbXWFYDC9gomhMhdLlvAQcpmVOmkn6a77rqL6dOnAzBy5EiOHj1qcSIhRFqyU8B9opR6QSlVIPHALdN/CCGcSN26ULgwHDgA//xjdRo7a9MGihSBsDAzL5xIU9u2bXnqqaeIjo7mgw8+IFpG7wrhkLJTwE3ENJmGK6V+U0p9oZSSVZGFcFLu7mYwA7jgUzhPT+jRw7yWUZbpmjx5MmXKlOHw4cOMHTvW6jhCiFRkp4Dz0lr7A35AX+AnoKJdUgkhLJEnmlHnzoWoKEujODpfX19mz56NzWZj0qRJbNqU3sI6Qojclp0C7hullK/WOkZr/bvWeobW+gW7JRNC5LrECX1//NEFa5yaNaF6dbhwQeaEy4BGjRrx6KOPorWmV69eXLp0yepIQohkslPA9QV+V0q9rpRqoZQKsFcoIYQ17r7b1DjXr8PmzVansTOlZIH7TOratSt16tTh2LFjDBo0yOo4QohkslPAXQReBTyAF4EwpdRxu6TKIUoplFKEhoZaHUUIh9Wqldm7ZDNq9+6ms9+aNRAebnUah+fu7s6cOXPw8fFh7ty5zJ8/3+pIQri00NDQpFolPdkp4AKAQlrrkVrrllrrYkC9bHxejtNao7WWAk6IO3DpfnBFi5oRqTInXIZVqFAhaU64Z599lmPHjlmcSAjXFRoamlSrpCc7BdwprfX05Ae01qey8XlCCAfQsCEUKAB79sBxh36mnkWJgxlmzpQ54TKof//+tG/fnsuXL/PEE08QFxdndSQh8rzsFHCrpd+bEK7H0xMefNC8/u47a7PkiNat4a67zJxwv/5qdRqnoJRi+vTpFCtWjA0bNvDee+9ZHUmIPC87BVwfYKdSapwMYhDCtST2g1uzxtocOSL5nHAymCHDAgIC+PLLLwEYPXo0u3btsjiREHlbdgcxDAPccZJBDEKIjEnsB/fDDxATY22WHJE4GnX+fBecLyXntG7dmkGDBhETE0O3bt24elUW3xHCKtkp4FpprRc70yAGIUTG3HMPVKwIV67AL79YnSYH1Khh5oW7cAG++cbqNE7lnXfeoVq1ahw4cIAXXpCpP4WwSpYLOK31BaVURaVUU6VU/oRjMohBCBeRuKyWS/aDg5QL3IsM8/b2Zv78+Xh7ezNjxgwWLlxodSQh8qQsF3BKqVeAX4CFwFml1JsqIxOXCCGcQuKqDN9/b22OHNOjB3h4mPlSTp+2Oo1TCQ4OZvLkyQA8/fTTHDlyxNpAQuRB2WlCrQH4a62LA1WAfMAIu6QSQliuaVNT3+zYYVoaXc5dd0G7dhAfD7NnW53G6TzzzDN07NiRK1eu0KNHD2JjY62OJESekp0C7qjWOg5Aa31Ua/0icLd9YgkhrFagADRqZOqbdeusTpNDkjejypxwmZI4tcjdd9/Nzz//zP/bu/M4G8v/j+Ovz2yMnWwhW1lCKQ0VIyRFsoUsZeurtJNK6KsOKVGhRX0jpSQie0T6kVB2SqSakFAiZN9mrt8f1xmmMWOGOWeus3yej8fduec+9znzvs0085nrvpbnn3/edSSlwkpWCri8ItIi1bHIrIRRSgWWkL+N2rgxFCsGmzeH6GgN/7rkkkv46KOPEBEGDx7M119/7TqSUmEjKwXcs8CTIrJdRKaKyALslCJKqRCRciBDSDZQRUfDPffYfR3McFEaNGhA3759SUpKomPHjuzdu9d1JKXCQpZGoQI3Ad2ANcAE4GEf5VJKBYBrroEiReySWj/95DqNnyTfRp00CY4dcxolWA0cOJDatWuzc+dOunbtSlJSkutISoW8rIxCjQVqAb8YY140xowD4nwVTCnlXkQENGpk90P2Nmq1ahAXB//8AzNmuE4TlKKjo5k4cSIFCxZkzpw5jBgxwnUkpUJeVm6hLgE+AJaLyF7vLdT/+SaWUipQhPx8cHB2ZYZx45zGCGalS5dmnPffr2/fvqxYscJtIKVCXFYKuCPGmMrGmBJAZWAY8JFvYimlAkVyAffVVyG86lSHDnaN1AUL7P1idVGaN29Or169OH36NO3atWP//v2uIykVsrJSwC0QkfwAxpi9xpgFxphhPsqllAoQl14KV10FR4/CsmWu0/hJwYLQsqUdqaFzwmXJ0KFDiYuL47fffqN79+6YkBz9opR7WSngugDrRGSgiNwmIkV8FcpfRAQRwePxuI6iVFBJboUL2X5wcPY2qs4JlyUxMTFMmjSJfPnyMW3aNN566y3XkZQKGh6P50ytkpGsFHD7gKeBaOBx4AcRCeh7D8YYjDFawCl1gUJ+PjiwozVKlICEhBBuaswel19+OWPGjAGgd+/erF692nEipYKDx+M5U6tkJCsFXBNjzBRjTH9jTGNjTDHg+iy8n1IqQMXHQ86csG4d7N7tOo2fREZC5852/7333GYJAXfddRcPPvggJ0+epG3bttofTikfy+o8cKmP7cpaHKVUIIqNtWujAnz5pdssfnXvvfZx8mQ4dMhtlhAwYsQI4uLi2LZtG126dNH54ZTyoay0wCmlwkhYTCdSoQLUrQtHjsCUKa7TBL0cOXIwZcoUChYsyOzZs3nllVdcR1IqZGgBp5TKlJQDGUK6j39yK9zYsW5zhIiyZcvy4YcfAtC/f39dL1UpH/FpASciLUQkny/fUykVGKpWtX38d++GDRtcp/Gjtm0hTx745hu7yL3KsjvuuIO+ffuSmJhIu3bt+PPPP11HUiro+boFrh3wjYjE+/h9lVKOiYTJbdTcuaF9e7uvC9z7zPPPP0+9evX4888/6dixI4mJia4jKRXUsrIW6t0iUj7lMWNMR6AmcElWgymlAk9YzAcHZ2+jfvABnDrlNkuIiIqKYuLEiRQrVoxFixYxYMAA15GUCmpZaYHrBTwvIv8nIs+JyCUAxphjxpiZvomnlAokjRrZlrglS+zKDCHrhhugcmV7v/jzz12nCRmXXnopkyZNIjIykiFDhjB9+nTXkZQKWlkp4BoYY+42xjQEvgTeEZEePsqllApAhQtDjRp2TdQlS1yn8SMR+M9/7L7OCedT9evXZ+jQoQB06dKFzdrPUKmLkpV54A6n+HAr8CnQR0SmiEhMlpMppQJSWPSDA+jUyU7u+9lnoJ3ufap3797cddddHDp0iFatWnFI59xT6oJlpQ9cDxEZLyLbgC1AT2AmsBQY6Zt4SqlAEzb94IoVgzvugMREXeDex0SEsWPHUrVqVTZv3kzXrl110XulLlBWbqH2BDYA9wD5jTE3GmN6G2NeA3L6JJ1SKuDUrm0Ham7cCDt3uk7jZylvo2qB4VN58uRh+vTpZxa9HzZsmOtISgWVrBRwrYwxw4wxS40xJ5IPegczlD/P65RSQSwmBho0sPsLFrjN4ndNmkDx4nY+uG+/dZ0m5FSoUIGPPvoIsJP8Lgj5byilfCcrfeB+Suepk4Cul6JUCAub26hRUbrAvZ81a9aMZ599lqSkJNq3b8/WrVtdR1IqKKRbwIlIWRH5TETWi8ibIlLYezyniDQTkVtEJDr164wxh4wxn/kztFLKreQCbsECCPn1yZPnhJs0SRe495PnnnuOpk2bsm/fPlq0aMHhw4czfpFSYe58LXCjgNuBq4GHgEUiUhBYB8wA5gN/iEg7v6f0ERFBRPB4PK6jKBXUKlaEMmVg715Yt851Gj+rVAni4+0C95MmuU4TkiIiIpgwYQKVKlViw4YNdOnShaSQ/8tAqXN5PJ4ztUpGzlfA1QHuMMZEALWAE8A7wCngKWAgdvqQj0SkflZDZwdjDMYYLeCUyqKUy2qF/G1UgPvvt49jxrjNEcLy58/PrFmzyJ8/P9OmTeP55593HUmpbOfxeM7UKhk5XwF3wBgzF8AYsxo72rQ1tqgbbowZZIypCbyKHZGqlAojYVXAtWkDBQrAqlWwfr3rNCGrYsWKTJo0iYiICDweD9OmTXMdSamAdb4Cbn/KD4wxm4Gdxpjtqc57Dqjm62BKqcDWsCFERMCyZRDyXZZiY+3EvqCtcH7WuHFjXnrpJQA6derE999/7ziRUoHpfAVcWu13f59zkp1CJJRXRVRKpaFgQahVy671/tVXrtNkg/vus48TJoT4QrDuPfnkk9xzzz0cPXqUFi1asHfvXteRlAo45yvgrhKRNSIyVkQeEZGbznN+oh+yKaUCXFjdRr3qKrj+evjnH5gyxXWakCYijB49mri4OLZt20br1q05efKk61hKBZTzFXCHsQMW2gGvA4uwRV2CiHwqIv8VkdtFpGR2BFVKBZ6wKuDg7GCG0aPd5ggDsbGxzJgxg0svvZSvv/6aBx54QJfbUiqF8xVwW40xNwB5gSrA3cBQ4BfsCNVBwGxgO1DdzzmVUgGoVi3Ilw9++gl++811mmzQrh3kzQvffGPXElN+VbJkSWbNmkVsbCzvv/8+L7/8sutISgWM8xVw8QDG2myMmWSM6WeMaWKMuRS4FDtP3DOAdlBQKgxFR9vBDBAGy2qBXQS2Y0e7/+67brOEibi4uDPLbfXt25fp06c7TqRUYEi3gDPGnLeXrjFmtzFmvjHmJWCXz5MppYJC2N5G/fBDOH7cbZYwceeddzJkyBCMMdx9992sWbPGdSSlnMvKYvYptfbR+yilgkxyAffll5AYDsOZatSw2759oPOUZZunn36arl27cuzYMZo3b87OnTtdR1LKqTQLOBG56UI2oFQaxzIkIpd5B0T8IyIHRWSaiJS+0IsQkb4iYkRk6YW+VimVNeXLw+WXw/79dp7bsJA8pYjOCZdtRIR33nmHm266iV27dtGsWTNdM1WFtah0jn+Vxfc1QOT5ThCRXMBC7BJdXbyvGYxdc/VqY8yRzHwiESkP/Bf4K0uJlVIXrXFjGDUK5s+HG25wnSYbdOwITzwBX31F7rZtXacJGzExMUybNo3rr7+edevW0b59e2bMmEFUVHq/ypQKXWm2wBljIrK4nbd487oPKA+0NMbMMMbMBJoDZYAeF3ANbwMTgB8v4DVKKR9q3Ng+zpvnNke2yZcP2rcHoExYjN4IHJdccglz586lUKFCzJkzh0cffVSnF1FhyVd94C5Gc2C5MSYh+YAxZiuwDGiRmTcQkY5ADaCfXxIqpTKlfn2IiYGVK+Hvc9ZrCVEPPABAmf/7Pzh2zHGY8FKxYkVmzZpFjhw5+N///sfQoUNdR1Iq27ks4KoCP6RxfCN23rnzEpGCwAigjzFmn4+zKaUuQJ48EB8PSUl2MENYqFkT4uKIOXRIV2ZwoE6dOkyYMAERoV+/fnz88ceuIymVrVwWcIWA/Wkc3wcUzMTrXwZ+Bsb5MJNS6iIl30adP99tjmz14IP28a233OYIU61bt2b48OEAdO3alUWLFjlOpFT2EVd9B0TkJDDcGNM31fHBQF9jTLq9UkWkLvB/QA1jzA/eY18BUcaY+HRek+aFtmvXjg4dOlzcRSilzti2LS+9et1MwYLHee+9+Yi4TuR/kSdOcOu99xJz5Ahfvfoq/1x+uetIYWns2LHMnj2bXLlyMWTIEMqUKeM6klKZNnHiRD755JM0nzPGpP+T1BjjZAN2A++kcfwtYE8Gr92EHbxQIMW2FPjWu58jjdeYUDVjxgzXEfxKry84JCUZU6KEMWDMd9+dPR4q15eeX5o3txfdvbvrKD4XLF+7xMRE07p1awOYUqVKme3bt2fqdcFyfRdLry+4eeuWdGshl7dQN2L7waVWBVugnc+VwAPYW7DJWx3gBu/+g76LqZTKDBG47Ta7HzajUYFtyRc9YQIcOOA2TJiKiIhg/Pjx1KlThx07dnDbbbfxd9iMplHhymUBNwu4wTuPGwAiUhZbiM3K4LUN0ti+ww6KaAB86vu4SqmMhN10IsCRkiXhllvsSNQPPnAdJ2zFxsYye/ZsqlWrxo8//kjTpk05ciRT04kqFZRcFnBjgG3ATBFpISLNgZnA78A7ySeJSBkROS0izyYfM8Z8lXoDDgD/eD/eka1XopQCbB0TEQFLl0JYTZL/0EP28e23Qeckc6ZgwYLMnz+fMmXKsGLFCtq0acOpU6dcx1LKL5wVcMautHAzdiTpeOxkvFuBm40xKX/0C3ZVB5fFplIqEwoVglq14NQpCKsBgc2aQcmS8NNPYXbhgadEiRJ88cUXFClShHnz5tGtWzeSkpJcx1LK55wWRcaY7caY1saYfMaYvMaYlsaYbanO2WaMEWOMJ4P3qm/SGYGqlMo+4XgblagouP9+u69TijhXsWJFPv/8c/LkycOECRPo3bu3rtagQo62aimlfCosCziA7t1tITdjBuzc6TpN2LvuuuuYMWMGMTExvPbaa7zwwguuIynlU1rAKaV8Ki7O3krdsgUSEjI+P2SUKAEtW0JiIrz7rus0CmjYsCETJkwgIiKCAQMGMHLkSNeRlPIZLeCUUj4VGQmNGtn9sGuFSx7MMHq07QionGvTpg3vegvqxx9/nLFjxzpOpJRvaAGnlPK5sL2NWr8+XHkl7NoF06a5TqO8unXrxuuvvw7Afffdx8SJEx0nUirrtIBTSvlc8ty2ixbBqVNh9GNGBB57zO7r7bqA8uijj/LCCy9gjKFTp07MmpXRdKNKBbYw+smqlMoul14K1avD0aOwaVMh13GyV6dOUKAALF8OK1a4TqNS6N+/P3379iUxMZG2bdvy3XffuY6k1EXTAk4p5RfJrXBr1xZzGyS75c59dkqR115zm0Wd48UXX+SRRx7h5MmTvPjiiyxevNh1JKUuihZwSim/SO4Ht3ZtUbdBXHj4YTuaY8oUnVIkwIgIr732Gt26dePEiRM0bdqUJUuWuI6l1AXTAk4p5Rfx8ZAvH/z+ez62bnWdJpuVLg133gmnT9vltVRAiYiIYMyYMTRo0IAjR45w++23s2zZMtexlLogWsAppfwiOhpuvdXuz5njNosTPXvax//9zy50rwJKZGQkjzzyCPfccw+HDx+mcePGfPvtt65jKZVpWsAppfzmjjvsY1gWcLVrw3XXwd9/w8cfu06j0hAZGcm4cePo2LEjhw8f5rbbbmOFDjxRQSKsCjgRQUTweDyuoygVFpo0ARHDokVw5IjrNNlMBHr1svsjR4KuxRmQIiMj+eCDD2jfvj2HDh3i1ltvZeXKla5jqTDl8XjO1CoZCasCzhiDMUYLOKWySdGicMUVBzhxAhYudJ3GgbvuguLF4Ycf7KR4KiBFRUUxfvx42rZty8GDB7nlllu0T5xywuPxnKlVMhJWBZxSKvvFxf0JhOlt1JiYs8tr6cS+AS0qKooJEyacaYm77bbb+Oqrr1zHUipdWsAppfzquut2A7aAC8u7iD162ELus8/g119dp1HnER0dzUcffUTnzp05cuQITZo04YsvvnAdS6k0aQGnlPKr8uX/oXhx2LEDvv/edRoHihaFu++21atO7BvwIiMjef/997nvvvs4fvw4zZo147PPPnMdS6lzaAGnlPKriAho2tTuh+VtVDg7mGHsWDsqVQW0iIgI3nnnHR599FFOnjxJq1atmDp1qutYSv2LFnBKKb8L+wLu6qvt0hRHj8KoUa7TqExIXrHhySef5PTp07Rr144PP/zQdSylztACTinld7fcYif2Xb4c9u51ncaRp5+2j2+8YQs5FfBEhGHDhjFgwAASExPp0qULr+ltcBUgtIBTSvld3rxQrx4kJcG8ea7TOFKvHtSqZSvY995znUZlkogwaNAghg8fDkCvXr147rnnMjXNg1L+pAWcUipbhP1tVBHo08fuv/qqXSdVBY3HH3+c999/n4iICAYNGsRjjz1GUlKS61gqjGkBp5TKFskF3Lx5YVy7tGwJFSrAtm0wZYrrNOoCde3alalTpxITE8Obb75J586dOXXqlOtYKkxpAaeUyhYVKkDFinDgAITtmuGRkfDUU3Z/6NAwnRgvuLVs2ZK5c+eSJ08eJkyYQMuWLTkSduvEqUCgBZxSKtuE/W1UgE6d7PJa330HOklsUGrYsCELFy7kkksuYe7cuTRo0IC//vrLdSwVZrSAU0plGy3ggJw5z84LN3So2yzqotWsWZNly5ZRtmxZVq1aRe3atUlISHAdS4URLeCUUtmmbl07IvWHH2w3sLD1wAP2H2LRIli1ynUadZEqVarEt99+y7XXXsuvv/5K7dq1WaVfT5VNtIBTSmWbmBi49Va7P3u22yxO5c9viziAYcPcZlFZUrx4cRYvXsytt97Knj17qF+/PnPCuolZZRct4JRS2aplS/s4fbrbHM716mUr2qlT4eefXadRWZA3b14+++wzOnfuzNGjR2nRogWjR492HUuFuLAq4EQEEcHj8biOolTYatoUoqLg66/DfFnQEiWgSxc7EvWFF1ynUVkUHR3NuHHjeOaZZ0hMTKRHjx48+eSTJCYmuo6mgojH4zlTq2QkrAo4YwzGGC3glHKoYEFo0AASE+Gzz1yncaxfP1vNfvQR/PKL6zQqi0SEwYMHM3bsWKKionj11Vdp3bq1TjOiMs3j8ZypVTISVgWcUiow6G1Ur3LloGtXu8bY4MGu0ygfuffee/niiy8oUKAAM2fOpG7duuzcudN1LBVitIBTSmW7Fi3s4/z5EPaNE/37aytcCGrQoAHLly/n8ssvZ926ddSqVYt169a5jqVCiBZwSqlsV7IkXH89HD+uc9lSrpztC5eUpH3hQkylSpVYvnw58fHx7Nq1i/j4eD799FPXsVSI0AJOKeVEq1b2Mexvo8K/W+F0MtiQUrhwYb788sszI1Tbtm3LgAEDSEpKch1NBTkt4JRSTiT3g5s9G8J+PfDy5W0rXGKi9oULQTly5GDcuHEMHz6ciIgIBg8eTKtWrTh48KDraCqIaQGnlHKiUiW48kq7uP3ixa7TBID+/e1i99oKF5JEhMcff5zPP/+cAgUKMGvWLG688UZdfktdNC3glFLOJN9GnTHDbY6AoK1wYeHWW29l1apVXHnllWzatImaNWsyf/5817FUENICTinlTMoCTrsEAc88o61wYeCKK65g+fLlNGvWjAMHDtCkSROef/557RenLogWcEopZ667DkqVgp07YfVq12kCgLbChY18+fIxY8YMBg4cCMCzzz5L8+bN2b9/v+NkKlhoAaeUckZEJ/U9xzPP2BGp48fDDz+4TqP8KCIigmeffZa5c+dSsGBB5syZQ1xcHOvXr3cdTQUBLeCUUk5pP7hUypeHHj3sPeV+/VynUdmgcePGrF27lho1arBlyxZuvPFGxo0b5zqWCnBawCmlnLrpJrs+6ubNdlPAgAGQJ49dLPbrr12nUdmgbNmyLFu2jP/85z8cP36cbt260a1bN11HVaVLCzillFNRUdCsmd3X26hexYrBk0/a/aefhkwsbK2CX86cOXn33XcZO3YssbGxjBs3jlq1arFx40bX0VQA0gJOKeVc8m3UadPc5ggoTzwBRYvC8uVa2YaZe++9l5UrV/5rqpGxY8ditJBXKWgBp5Ry7tZb7R3D1avh119dpwkQefLAc8/Z/X79dLmKMFOtWjVWrVpFt27dOHbsGN27d+eee+7h0KFDrqOpABFWBZyIICJ4PB7XUZRSKeTKBS1a2P1Jk9xmCSj33QcVKsDPP8N777lOo7JZ7ty5ee+99/jwww/JnTs3H3/8Mddeey0rVqxwHU35icfjOVOrZCSsCjhjDMYYLeCUCkAdOtjHiRPd5ggo0dHw4ot23+MB7dAeljp16sSaNWuoXr06v/76K3Xq1GHw4MEkJia6jqZ8zOPxnKlVMhJWBZxSKnA1agSFCsHGjbBhg+s0AaR1a6hVC/78E4YPd51GOVKpUiVWrFjBE088QWJiIgMGDKB+/fps27bNdTTliBZwSqmAEBMDbdrYfW2FS0EEhg2z+8OGwV9/uc2jnMmRIwevvPIKX3zxBZdeeilLly6levXqTJgwwXU05YAWcEqpgJF8G3XSJJ0541/q1YOmTeHwYTtHnAprjRo14vvvv6dly5YcPHiQe+65h3bt2rF3717X0VQ20gJOKRUw6taFkiVh61bQftqpvPKKnTRvzBhYs8Z1GuVY4cKFmTZtGmPGjCF37txMnjyZatWqMWvWLNfRVDbRAk4pFTAiI6FdO7v/8cduswScypWhVy/bNPnII3apLRXWRITu3bvz/fffc9NNN7F7925atGhBt27d+Oeff1zHU36mBZxSKqAk30adPBlOn3abJeAMGADFi9vJfcePd51GBYjy5cuzaNEiRowYQc6cORk3bhzVqlVj3bp1rqMpP9ICTikVUK67Dq64Anbvhq++cp0mwOTLBy+/bPf79AFtZVFeERER9OrVi/Xr13P99dezY8cOBg4cSLdu3di3b5/reMoPtIBTSgUUEZ0T7rzuvhvq1LGjUQcOdJ1GBZhKlSqxdOlShgwZQnR0NOPGjaNKlSpMnTrVdTTlY1rAKaUCTnIBN3UqnDjhNkvAEYE334SICHj9dTtxnlIpREVF0bdvX0aOHEl8fDy7d++mTZs2tG7dmj/++MN1POUjWsAppQLOlVdC9er2DuG8ea7TBKBrroEePSAxER59VOdcUWkqWbIkixcvZtSoUeTJk4dp06ZRpUoVxowZQ5IOggl6Tgs4EblMRD4VkX9E5KCITBOR0plwEPPTAAAgAElEQVR4XZyIjBaRzSJyVES2i8gEESmXHbmVUv6nt1Ez8PzzdumKRYvg009dp1EBKiIigoceeoiNGzfSpEkTDhw4wP3330/dunXZoEueBDVnBZyI5AIWApWBLkAnoAKwSERyZ/Dy9kBV4HWgCdAXqAGsFpHL/BZaKZVt2re3j7Nm2flrVSqXXHJ2ndTeveHgQbd5VEArXbo0c+bMYeLEiRQrVoxvvvmGGjVq8PTTT3NE19gNSi5b4O4DygMtjTEzjDEzgeZAGaBHBq8daoypY4x5yxiz2BjzMdAYKOh9X6VUkCtTBmrXhmPHYOZM12kCVPfuULMm7NgBffu6TqMCnIjQvn17Nm/ezEMPPURiYiLDhg2jatWqzJ4923U8dYFcFnDNgeXGmITkA8aYrcAyoMX5XmiM2ZPGsd+APUBJH+dUSjnSqZN9HDvWbY6AFRlp/3GiouDtt2HxYteJVBAoUKAAo0aNYvny5VxzzTX89ttvNG/enDvuuIOEhISM30AFBJcFXFXghzSObwSqXOibiciVQFHgxyzmUkoFiA4dIDbWdvPS3yvpuOoq6N/f7nfvDkePus2jgkatWrVYtWoVI0aMIF++fMyZM4eqVavSv39/va0aBMQ4Gr0kIieB4caYvqmODwb6GmOiLuC9ooD/A64EKhlj9qdxTpoX2q5dOzok95ZWSgWc1167lkWLStO69c906qR/n6VFTp2i/hNPkG/7dn5p2ZJNXbu6jqSCzIEDB/jwww9ZuHAhAJdccgldu3YlPj4eEXGcLrRNnDiRTz75JM3njDHp/+MbY5xswEngpTSODwZOX+B7/Q84Bdx6nnNMqJoxY4brCH6l1xfcsnp9S5caA8YUK2bMyZM+CuVDAfP1W7HCmIgIu61c6ZO3DJhr8xO9vnN9++23Ji4uzgAGMHXr1jWrVq3yQ7qsC/Wvn7duSbf2cXkLdT920EFqhbzPZYqIvATcD9xrjPnCR9mUUgGidm07L9zu3TBnjus0AaxWLXj8cbvI/X/+AydPuk6kgtANN9zAihUrGDNmDIULF2bJkiXUrFmTzp07s2PHDtfxVAouC7iN2H5wqVUBNmXmDUTkGeBp4DFjjK7srFQIErFduwDGjHGbJeANGmQXkt2wAYYMcZ1GBamIiAi6d+9OQkICffr0ISYmhvHjx1OxYkWee+45Duu8PgHBZQE3C7hBRMonHxCRskAd73PnJSKPYW+3PmOMedNPGZVSAaBzZ4iOtqsy/P676zQBLFcuePddu//CC7aQU+oi5c+fn6FDh/Ljjz/Stm1bjh07xqBBg6hYsSKjR4/m9OnTriOGNZcF3BhgGzBTRFqISHNgJvA78E7ySSJSRkROi8izKY61B0YC84CFInJDiu2CR7AqpQJb4cLQqpW9O/j++67TBLh69eCBB+DUKbvw/fHjrhOpIFe+fHkmT57M0qVLqVmzJn/88Qc9evSgWrVqTJs2Lbmfucpmzgo4Y8wR4GbgZ2A8MAHYCtxsjEnZPitAJP/O2th7vDHwbartLb+HV0plu/u8U3SPHWuXAFXnMWzY2Vupffq4TqNCRJ06dVi+fDmffPIJV1xxBT/99BOtW7fmxhtvZLHOQZjtnK6FaozZboxpbYzJZ4zJa4xpaYzZluqcbcYYMcZ4Uhzr6j2W1lY/my9DKZUNbr4ZypWD7dthwQLXaQJc3rx2EdnoaHjjDfjsM9eJVIiIiIjgrrvuYtOmTbz11lsUK1aMFStWUL9+fZo0acLq1atdRwwbTgs4pZTKrIgIO7gSznbzUucRF2f7wQF06wZ//OE2jwop0dHRPPjggyQkJDBo0CDy5s3LvHnzqFmzJi1btuT77793HTHkaQGnlAoa3brZ1aNmzrTTiqgMPPEENGoEe/fakSBJSa4TqRCTJ08eBgwYwJYtW+jTpw+xsbHMnDmT6tWr065dO378USff9hct4JRSQaNECWjaFE6fhg8+cJ0mCERE2H+owoXhyy/hlVdcJ1IhqnDhwgwdOpQtW7bQs2dPcuTIweTJk6latSodO3Zk48aNriOGHC3glFJBJXlOuHff1QalTLn0Uhg3zu4/8wysWuU0jgptxYsXZ+TIkSQkJPDAAw8QFRXFxIkTqVatGm3atGH9+vWuI4YMLeCUUkGlSRMoVQp++QXmznWdJkg0bQqPPWabLjt0gH/+cZ1IhbhSpUrx9ttvk5CQwMMPP0yOHDmYOnUq1157LS1atGCV/iGRZVrAKaWCSlQU9Oxp919+2W2WoDJ0KFSvDr/+aueH0+ZLlQ1Kly7Nm2++yZYtW+jVqxexsbHMmjWLWrVq0bBhQxYsWKDzyF0kLeCUUkHn/vshXz74+mtYudJ1miCRMydMmwYFC9pFZZ97znUiFUZKlCjBiBEj2Lp1K3369CFv3rwsXLiQW2+9lbi4OCZPnkyiTvB4QbSAU0oFnXz5oEcPu6/98i9A+fLwySd2cMPgwTB1qutEKswUK1aMoUOHsn37dl588UWKFi3K2rVradeuHZUrV+att97iyJEjrmMGBS3glFJBqWdPO0/t1KmwZYvrNEGkUSO7UgNAly7www9u86iwVKBAAfr168e2bdt4++23KV++/Jn+cpdddhn9+/dn165drmMGNC3glFJBqWRJ6NjRduUaPtx1miDTu7ftB3fkCLRoAfv2uU6kwlRsbCwPPPAAP/30E5MnT+b6669n//79DBkyhLJly9K5c2fWrVvnOmZACqsCTkQQETwej+soSikfePJJ+/jee3auWpVJIjBmDNSoYZsv27e3I1SVciQqKoq2bduyfPlyvvnmG9q0aUNiYiLjx4+nRo0a1K1bl8mTJ3Pq1CnXUf3K4/GcqVUyElYFnDEGY4wWcEqFiGrV7LQix47BW2+5ThNkYmNh+nQoUsQuLvvUU64TKQXAjTfeyJQpU0hISKBnz57kzZuXpUuX0q5dO8qVK8fgwYP566+/XMf0C4/Hc6ZWyUhYFXBKqdCT3Ar35pu2kFMXoHRpmDLFzs0yciS8+qrrREqdUa5cOUaOHMnOnTsZNWoUV155JTt37mTAgAFcdtlljBgxgiVLloTtNCRawCmlglqDBvZO4J49urzWRalX7+xKDU8+CR995DSOUqnlzZuXhx56iI0bN7JgwQJatGjBqVOnWLx4MTfddBPVqlXjjTfe4MCBA66jZist4JRSQU3k7N2/4cNBp5K6CHfffbb1rVs3mD/fbR6l0iAi3HLLLcyYMYOtW7fStm1bihUrxqZNm3jssccoUaIE3bp1Y9myZWHRKqcFnFIq6LVpA2XL2uW1Zs50nSZI9e5tW+BOn4bWrXXNVBXQypQpw913383vv//OlClTuOWWWzh27Bjjxo0jPj6eKlWq8PLLL7N7927XUf1GCzilVNCLioLHH7f7Ho+2wl20oUOhUyc7vcjtt5N7507XiZQ6r+joaNq0acOCBQv4+eefefrppylevDibN2+mT58+lCpVilatWjFr1qyQG8GqBZxSKiTcfz9cdhls2KDduC5aRASMHQuNG8Pevdw4cCBoEaeCRIUKFXjppZfYvn07M2fOpHnz5hhjmDFjBi1atKBEiRL07NmTNWvWhMQtVi3glFIhIWdOeP55uz9gABw/7jZP0IqOtiNTa9Ui919/2UEOv//uOpVSmRYdHU3z5s2ZOXMmO3bsYOjQoVSpUoW9e/fy+uuvExcXx1VXXcWwYcPYsWOH67gXTQs4pVTIuOceuOoqW2+88YbrNEEsTx74/HMOXH45/PqrLeJ++811KqUuWPHixenTpw8//PADq1ev5rHHHqNw4cJs3LiRp59+mtKlS1O/fn1Gjx7NviBbkUQLOKVUyIiMtN24AF58UVeIypJChfhm4ECoWRO2brVF3NatrlMpdVFEhOuuu47XXnuNnTt3MnPmTNq0aUOOHDlYvHgxPXr0oHjx4jRv3pyJEydy6NAh15EzpAWcUiqkNG5s54Y7cACGDHGdJridypPHrtJwww22Ba5ePdsip1QQi4mJoXnz5kyZMoXdu3fzwQcfcNttt5GYmMjs2bPp2LEjRYsW5c4772TSpEkcPnzYdeQ0aQGnlAopIjBsmN1/4w3Yvt1tnqCXP7+dF652bXtvul49O1+LUiEgX758dO7cmXnz5rFr1y5ef/114uPjOX78ONOnT6dDhw4UKVKE1q1bM3HiRA4ePOg68hlawCmlQk5cnF2f/cQJO6BBZVG+fDBvHtSta0elxsfrPHEq5BQrVoxHH32UJUuWsGPHDkaOHEmdOnU4fvw406ZNo2PHjhQpUoSmTZsyduxY9uzZ4zSvFnBKqZD0wgt2QOX48fDdd67ThIC8eeHzz+GWW+Cvv6B+fZg1y3UqpfyiZMmS9OzZk6VLl/L7778zYsQIbrrpJk6fPs3cuXPp3r07xYsXp169egwfPpyEhIRsz6gFnFIqJJUvDw8+CMZA376u04SI3Llhzhzo2hWOHoVWreDNN12nUsqvSpUqRa9evVi8eDF//PEHY8aMoUmTJkRGRvL111/zxBNPUKFCBapUqULfvn355ptvSMyG2cS1gFNKhaz//tc2HM2bp41FPhMTA++9BwMHQlISPPooPPGE3VcqxBUtWpTu3bszd+5c9uzZw6RJk+jYsSMFChTgxx9/ZOjQodSpU4fixYvTqVMnJk6c6LfpScKqgBMRRASPx+M6ilIqGxQpAoMG2f0ePXRaEZ8RgWefhQ8+sPephw+Hu+6yrXJKhYn8+fPTrl07JkyYwF9//cXChQvp1asX5cuXZ+/evXz00Udn+s3Fx8fz4osvsmbNGpLO88eOx+M5U6tkJKwKOGMMxhgt4JQKI48+CnXqwJ9/nl0vVflI5862eTN/fpg6FW68ERz0BVLKtejoaBo0aMCIESNISEhg8+bNDB8+nIYNGxIZGcmyZct45plniIuLo3jx4tx999188MEH/PHHH/96H4/Hc6ZWyUhYFXBKqfATGWnv+OXMCR9+aLtwKR+6+Wb45huoUAG+/x6uuw6mT3edSilnRIRKlSrx+OOP8+WXX/L3338zbdo07rvvPkqXLs2ePXv4+OOP6dq1KyVKlODqq6+md+/ezJkz54ImENYCTikV8ipWhMGD7f7999tJfpUPVakCq1dD69Zw8CDceSc89RScOuU6mVLO5c2bl1atWjF69Gi2bdvGjz/+yMiRI2nSpAmxsbFs2LCBESNGcMcdd1CoUCHi4+MzdadQCzilVFjo1csuKLBrF/Tu7TpNCMqXD6ZMsf3hoqLglVegYUP7D66UAmzrXOXKlenZsydz585l//79LFq0iGeeeYbrr7+epKQkli1bxsCBAzN8Ly3glFJhITIS3n8fcuSwj/PmuU4UgkRsR8OvvoISJWDJEqhe3faPU0qdI0eOHNSvX5/BgwezfPly/v77b2bMmMGjjz6a4Wu1gFNKhY3Klc+OSr3vPvjnH7d5QladOrBuHTRqBHv3Qps20LEj/P2362RKBbQCBQrQokULXn/99QzP1QJOKRVWeveGWrVgxw47QjUTg73UxSha1DZzvvkm5MoFEydCtWowe7brZEqFBC3glFJhJSrK3kKNjbXLbI0c6TpRCIuIgIcftmuZxcfbuVyaN7crOezf7zqdUkFNCzilVNipUsXOQQvw5JPaH87vrrjC9osbPtzO5/LBB1Cpkp3fRVdwUOqiaAGnlApLbdvCc8/Z+qFdO9i82XWiEBcZaQc4rFsHdevCnj3wn//YyX9XrnSdTqmgowWcUipsPfus7V9/8CA0a6ZLbWWLypVh8WL4+GM7UnXlSrj+euje3RZ1SqlM0QJOKRW2IiJg3Di49lq7AtRdd+ncs9lCBDp0sM2eTz9t11MdO9au5vD883ABs9ErFa60gFNKhbXcuWHmTChWDP7v/3S91GyVNy+89BJs2ACNG9t5XZ59FsqVsxMBHz3qOqFSAUsLOKVU2LvsMpgxw07yO2qU7Run04tko0qV4PPPYdEiqF3bzhf31FN28MOoUXDihOuESgUcLeCUUgq7zNa4cfa26qBB8MQTWsRlu/r1YelSmDsXatSAP/6ARx6xLXIvvaRTjyiVghZwSinl1b49TJ5su2SNGGEXvk9MdJ0qzIhAkyawejVMmwZXXWULuX79bFNpz56wdavrlEo5F1YFnIggIng8HtdRlFIBqnVru1hAbCy8+y7cfbcObHBCBFq1spMAz5tnl+U6cgRef93eWm3bFhYu1HnkVEjxeDxnapWMhFUBZ4zBGKMFnFLqvG67DebPt33sP/kE7rwTjh1znSpMidgvyBdfwPr10LmznVPu00+hYUOoWBGGDLGtdEoFOY/Hc6ZWyUhYFXBKKZVZdevaBp5LLoHPPrMNQL//7jpVmKte3a7isHWrHWly2WXw66/Qv7/db9kSZs3SQQ8qLGgBp5RS6YiLs3POligBy5bZ+mH6dNepFCVLgsdjC7m5c+2tVhE7H0yLFnZOmG7dbDOq3v9WIUoLOKWUOo+qVe3qT7ffbgdB3nknPPigTlEWECIj7YCHadNs8+hLL9kq+59/7JDixo3h0kvhgQdsP7rjx10nVspntIBTSqkMFC1qb6OOHAkxMfC//0HNmnb+WRUgihe3qzqsXw8//mhb6CpXtnPKvfOOLfQuucS20I0ZA7t2uU6sVJZoAaeUUpkgYmewWLHCzju7aZMt4iZOrKQrPwWaypVtH7lNm+wo1v/+166XdvSo7SN3//1QsiT1e/WyE/7NmWMXxFUqiGgBp5RSF+Caa2DNGrv2+okT8Mknlc8sGKDdrQKMCFx9tV1fde1ae5v1nXegWTOIjSX/tm0wfDjccQcUKmRnc+7f364KoZMGqwCnBZxSSl2g3LntXbglS6BSpX389ZddMKBKFTu7ha7gEKBKlbKtb7Nmwd9/s2zgQHjmGbjxRvv8ihV2SpLbb7cF3ZVXwr332i/2hg1w+rTb/EqlEOU6gFJKBav4eHjppSUkJbWgXz/4+Wc7v2yNGvDQQ3Zlh9y5XadUaYqNZW/16rZPHMChQ7Yi/+or+OYbuxLE5s12e/99e07OnHZliGuvtV/ka6+FatUgVy5nl6HClxZwSimVBSJ2ZGqzZjB2rO07v3atvcX6+ONwzz3Qo4cdHKkCWN68tuXt9tvtxydP2gER335rt5Ur7bQlq1bZLZkIlC1rhytXrWqbYatWhQoVIF8+J5eiwoMWcEop5QPR0Xa2is6dYcoUGD3aNuS8/bbdatWyLXJNmthBEJlYKUe5FBNjv2i1atnRKwAHDtiibt06W6WvWwc//WQLu61b7VDllIoWtYVc8nb55bbYK1vWPqffBCoLnBZwInIZMAJoBAjwJdDLGLM9E6/NCTwP3AMUANYDTxtjvvZfYqWUOr9cuaBLF7tt2GC7T334oW3AWbkSeveGcuXONvbUr6934IJGgQL2C1a//tljJ09CQgJs3Gi3TZvs9uuv8Ndfdlu27Nz3ypkTypSxxVypUnZy4uTH5K1QIYjQruoqbc4KOBHJBSwETgBdAAMMBhaJyNXGmCMZvMVYoCnwFLAFeBiYLyI3GmPW+y+5UkplzlVX2bXXX3rJ9pufM8cOcNy61Y5aHTXKttxdfbWdkiQuzj5WqQJRen8kOMTE2C9YlSq2A2SypCTYuRN++eXstnUrbNsGv/1m56f76Se7pScqyq4qUayYneeueHEoUgQKFz77mLwVKgT582vBF0Zc/oi4DygPVDLGJACIyPfAL0APYHh6LxSR6kBH4F5jzPveY4uBjcAgoLl/oyulVOblymVvn7ZvD4mJtgvV3Ll2W7vWTkuyZs3Z82Nj7QDIlHffrrjCbkWK6J23oBARYddnvewyuPnmc58/dMgWctu22UJvx45/P+7caVeUSN7PDBHbSlioEBQsyI2nTsH48bawS7nly2f7/KXecue2W65c+k0WBFwWcM2B5cnFG4AxZquILANacJ4CzvvaU8AnKV57WkQmAX1FJIcxRlczVkoFnMhIO93YDTfAoEF2/ti1a+2gx1Wr7OOWLfbY2rXnvj462q4OlbyVKGG7UxUseOb39pnH5N/JefJoi17AyZvXjmCtVi39c44ft7dg//wTdu+2j3v2wN69Zx+T9/fvt99M+/efmcOuKNiJjC+UiC3ikou5XLnsXxXJj8lbzpxnH5O3HDnObskfx8T8e8uRw34jp9xiYs7uR0X9ez8qSgvKNLj8X7oqMDON4xuBtmkcT/3arcaY1KsRbgRigCu8+0opFdDy5Tu3W9W+ffbOWsq7bwkJtrDbvx+2b7fbhciR42wDS8rftyl/x6b+XbprV3U+/9z+/oyMtFvyfkRE2pvI2ceMNkj745SPqfdTSuv4hZy7fn0Zdu/O3L+fC7ard2nv5lXEu12ZxgsSE+HYUThyFI4c4dcffuDyEiXssaPH4Jh3O3783O3ECTh5Ao6fgNOn4Ah2y9Ap7+bn5Ugk4uw3XmQESASnTBJjYpbY5yK8zyd/A/5rE+85qR7T+mZN+dyZY8kfe3OAPY90vqnPeY6zH0Pax853PB0uC7hCQFpTXe8DCmbhtcnPK6VUUCpUyM4tmzy/bErHjsEff9ht1y677d1ri77kxpfk7fDhs9uJE3bbt+/c90xfWR9dUaC6xnUAH4sE8no3sL2UQoQB0ppH+Vh2BwkcYhxNGS4iJ4Hhxpi+qY4PBvoaY9ItLkXkCyCfMeaGVMdvARYANxljlqR6Ls0LbdeuHR06dLjIq1BKqcBnDJw8GcHx41EcPx7J6dORnDoVwcmTEZw6FcnJkxGcPh1BYmIEp0/Lv/aTkuyWmHh2PylJMEZISsL7KBhj95Mfk5KSP7ecWZki5X56Hyfnzcw1nXss7VYLXRkjyBn7H0kyeL/BEO9mv7jJ+4BJQgxnzyP5NaSxT4rXez+Rwb4XZz8++z4pzkn5PObfOc85luLznbmmsx/8ve9v9nv/skr5Hbye+zHpfVPjtgVuP2m3tKXXupb6tWXSeS2cbYn7F1fFqr/NnDmTFsmziYcgvb7gptcXvEL52kCvL9iF+vWJ3H/e512ON96I7cuWWhVgUyZeW847FUnq154EEs59iVJKKaVUaHBZwM0CbhCRMzfpRaQsUMf73PnMBqJJMdhBRKKAdsAXOgJVKaWUUqHMZQE3BtgGzBSRFiLSHDsq9XfgneSTRKSMiJwWkWeTjxlj1mGnEBkpIt1FpCEwCSgHPJeN16CUUkople2cFXDelRZuBn4GxgMTgK3AzcaYwylOFezQmtRZuwHvY1dvmANcBjQ2xqQxc5JSSimlVOhwOrWjd83T1hmcs41/D8xIPn4M6O3dlFJKKaXChi6appRSSikVZLSAU0oppZQKMlrAKaWUUkoFGS3glFJKKaWCjBZwIWDixImuI/iVXl9w0+sLXqF8baDXF+xC/foy4mwt1OwmIiZUr1VEQnaZMNDrC3Z6fcErlK8N9PqCXZhcX7proWoLnFJKKaVUkNECLg0ejyeozr0QF/q+oXx9gfJvEQgZ/Plv4a/3DYRzL1QgZA6Er92Fnh9s1xco/xaBkEF/tlzcuZmht1DTPjfTzbKhfG6g5AiEcwMlRyCcGyg5AuHcQMkRbOcGSo5AODdQcgTCuYGSIxDOTXG+3kJVSimllAoVYdUC5zqDUkoppVRmna8FLmwKOKWUUkqpUKG3UJVSSimlgowWcEoppZRSQSbkCzgR8YiISWOb4Tqbr4lIARH5w3t9t7jO4wsi8riIrBKRv0XkuIgkiMirInKJ62xZJSKRIvKkiCwUkd0ickhE1orIf0Qk6P/fFJF4ERknIj+IyGkR2eY6ky+IyGUi8qmI/CMiB0VkmoiUdp3LV0SklIi8ISLfishR78+Tsq5z+YKItBGRqSLym4gcE5GfRGSIiOR1nc0XROQ278+TP0XkhIjsEJHJIlLFdTZ/EJF53u/Pwa6z+IKI1E+nXjmQ1vlR2R3QoXggMcXH+1wF8aOhrgP4QSFgGvADcAi4FngWaCAiccaYJJfhsigW+C/wIfAacBi4HRgDVAaechfNJxoCdYHVgAGC/pekiOQCFgIngC7Y6xoMLBKRq40xR1zm85ErgLuANcAS4Fa3cXzqSWA70B/Ygf154sH+PKkd5D9PwP68XAO8BewBSgN9geUicpUx5jeX4XxJRDoA1V3n8JPHgFUpPj6d5lnGmJDesP9zGiDKdRY/X2cd4Ahwr/d6b3GdyY/X2sN7jde5zpLF64gECqVx/D3gOBDrOmMWry8ixf5HwDbXmXxwTT2xfwhekeJYOe8P2N6u8/nh69bd+/9aWde5fHRtRdI41tl7jTe7zuena67kvb4nXGfx4TUVBP4EOnivbbDrTD66rvoX8vs76G/TKBCRaOAd4CVgi+M42eFv72Paf5UECWNMojEmrZbgVUAOoHA2R/IpE/ytGWlpDiw3xiQkHzDGbAWWAS2cpfKhEP26AWCM2ZPG4eSWjpLZmSUbhcTPy1SGAj8YY8J6NftwKuB+F5FEb9+HoSIS6zqQD/UBYoBhroP4i4hEiUguEbkBGAj8nzHmO9e5/KQecAD4w3UQdY6q2Nv5qW0EQrKfURio53380WkKH/L2r40RkQrYP+7/BEKi2BGReGyr6cOus/jRBG+98reIfJxeH9tw6AOXgO0DsA7bNHkr8DhQA2jkMJdPiMgV2H5UzYwxJ0TSnfMvaIlIHmz/t2TzgbaO4viViNyG7X80wBgTSn8xh4pCwP40ju/D3tZRQURESgKDgC+NMatd5/GhFcB13v0E7O3hvxzm8QkRicEWpK8YY35ynccP/gFeBRYDB7F9NPsD34rItam/hiFTwImtXCJTHjPGnDbGfJTq1AUisgMYKSK3GGO+zLaQWZDe9QFvAzOD5TrSc57rAzgK1ARyYr+hnwFme79+QVHkZHB9yedUwf6VvIggGpCSmWtTKtB4/zCcib212CxDO6IAAActSURBVM1xHF/rBOQDymMHbiwQkXhjzDanqbKuD3bw1wuug/iDMWYdtrEp2WIR+RpYiR3Y8N+U54fSLdR6wKlUW3qSm5Jr+juUD51zfSJyF1AbGOSdQqQAkMd7fm4Rye8m6kVJ9+tnjEkyxqw2xiw1xrwBtPee38ZJ0otz3u9PESkPLAC2Aq2CrAC6kP/3gt1+0m5pS69lTgUgbxea2dgC5zZjzA7HkXzKGPOjMWaFt49YQ+zvhb6OY2WJ9zbiM8AAIEeK33mk+Dgy/XcITsaYtcDPpFGvhEwLHHbo9IUWZMG0jlha13cHkAvb/ya1Gdjm2AJpPBeILuTrl3yr4wo/ZfGHdK9PREoB/4dtMr/NGHMwO4P5wMX8vxesNmL7waVWBdiUzVnURfAO+voUiAMaGWM2OI7kV8aYAyKSQHD9vExLeexdmNR31cC2Mj6JvUOzPjtDZaNz6pWQKeCMMYc4+4s9I3d7H1f6KY7PpXV9IrIX+CrVqdcAI7DfzCuyJZwPXODXL7nT8a9+iuNz6V2fiBQBkm9/NzLG7M3WYD5wgV+7YDcLeEVEyhtjtgB4J7mtQ5C3cIQD7wTZE4CbgTuMMcsdR/I7ESmGnVdygussWbQeaJDG8UXYom4str9fSBGROOxUMJ+mfi5kCrj0iMg67ESpP2Er2EbAo8A8Y8xCl9myytufYVvKYykGMXxnjFmazZF8ynsLeB72B88v2K9fLaA38B12gt+g5b2NMx8oi52/r5S3NS7ZpiBsjTvDW5wmF9ulgVwiknzbe5MxJhhbrMYAjwAzReS/2O/J54HfsZ2rQ0KKr1NyR/gmIrIH2GOMWewoli+Mwg6AegE44h3VnmxHsN9KFZHpwFrge2yLfkXsoL3T2M7xQcsYc4BzGyySf+f9Zow557lgIyITsN1o1mJnIrgW6AfsBF4/53zv5HEhS0QmYW/vXIrt87cF2wdumDHmhMts/iAi9bF/kTQKgYENObCDNOKxczSdxhask4HXvS0/QcvbcrP1PKc0COYfSim+F9My0Bjjyb40vuPtizMC+8egYG9/9wqBDuJniEh6vxgWG2PqZ2cWXxK7nFuZdJ4O2u/JZCLyNHYU++XYqaV+xxY9Q0Lp+zMl7/fqC8aY/2Z4coATkX7YyYnLYLtH/Ql8DjxnjDlnWqmQL+CUUkoppUJNKI1CVUoppZQKC1rAKaWUUkoFGS3glFJKKaWCjBZwSimllFJBRgs4pZRSSqkgowWcUkoppVSQ0QJOKaWUUirIaAGnlFJKKRVktIBTSql0iMjrIvKZg8/bS0Q2eNfuVEqpc+hKDEoplQYRuRz4EahtjFmdzZ87FrvMWj9jzPvZ+bmVUsFB/7pTSqm09QK+y+7iDcAYcwz4EHgyuz+3Uio4aAGnlApJIlLAexvSiMg9qZ57V0S6nOe1OYB7gI9THb9TRH7yvmcb77HLRWS999hA7zGP9+PKIjJfRI6IyHYR6eZ9vpOIbBaRwyKyyNval9okoIqI1M7av4RSKhRpAaeUCknGmAPGmKuANcB/RSQSQET6AX8aYz44z8tvAAoAS1K95zSgj/fD773HfgVapDyWwhRgDtDSm+M9EXkReBDoC3QDKpGqUPRaDxwCGmd4sUqpsBPlOoBSSvnZEOBToIOInACuBjpm8JobAMO5BRlANeAokJDi2FXexw2pzn3ZGPMhgIisBpoBPYByxpiD3uOXAq+JSBljzG/JLzTGJInId94sSin1L1rAKaVC3XRgM/Aitui63WQ8eqsEcNAYczKN56oBG40xSamOHePfRR3A58k7xpj9IvIXsC65ePPa7H28DPiNf9sDVMwgq1IqDOktVKVUSPMWWv/DFkjjjDHHM/GynMCJdJ6rxrktc1dxblEHsD/VxyfTOZb8OVM7BsSeP6pSKhxpAaeUCmkiUhxoj23dejyTL/sb2wcu9XtFY1vEfkj11I2kfbs1qwoBe/3wvkqpIKcFnFIqZHnnU5sIPAwMBq4Rkdsz8dLNQIyIlEp1vCIQA/yR4nPEAeU4t/+bL5QDfvLD+yqlgpwWcEqpkCQiAowDXjPGrAU+wLbC9cvEy7/2PtZKdbya97Gy93MUAZ7zHvNpC5yIFMAWjF9ndK5SKvxoAaeUClUvAquMMTMAjDGnsCNS40XkexEpmt4LjTHbgJXYUaMpVQMOA91F5Htsq94873OjRKSdD/M3xfaPm+7D91RKhQhdSksppdIgIl2B14BLjTFHvcemA7mMMbdlw+f/HNhrjOnk78+llAo+2gKnlFJp+wjYBTyU4lg1YJO/P7GIXAPcDAz09+dSSgUnLeCUUioNxpjT2JUSklvfYoHy2AXu/a040NUYk3peOaWUAvQWqlJKZYqI1MAuh1XXGLPUdR6lVHjTAk4ppZRSKsjoLVSllFJKqSCjBZxSSimlVJDRAk4ppZRSKshoAaeUUkopFWT+Hy+TDteDBy7AAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Recreate Figure 3 in Grujic 2018\n", "\n", "plt.figure(figsize=(10,7))\n", "plt.plot(x/sc.micro, np.abs(By1), 'k', label=\"1 GHz\")\n", "plt.plot(x/sc.micro, np.abs(By2), 'r', label=\"10 GHz\")\n", "plt.plot(x/sc.micro, np.abs(By3), 'b', label=\"100 GHz\")\n", "plt.legend(frameon=True, framealpha=1, title=\"$R_q=1\\mu m$\")\n", "plt.ylabel(r\"$\\vert B_{y,norm}\\vert$\")\n", "plt.xlabel(\"$x$ ($\\mu$m)\")\n", "plt.ylim([-0.05, 1.05])\n", "plt.xlim([-5, 5])\n", "plt.xticks(ticks=[-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5], \n", " labels=[-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5])\n", "plt.grid();" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0oAAAFBCAYAAABJgl8HAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOydd3gVRdfAf3NvOqEkSiA0qUpHpAgq0glVijQFKYoF0VdARH1FAoovggh+iqKigEoHkdDrS4kFARVE4JUWkF4TCKTe3Pn+mNw0ckkC9+7eJPN7nnl2s7uz5+zcze6emTPnCCklGo1Go9FoNBqNRqNJx2K2AhqNRqPRaDQajUbjaWhDSaPRaDQajUaj0Wiy4GW2AkYhhNA+hhqNRuMBSCmF2Tp4Ivo9pdFoNJ6B4z1VaAyljISHhzNu3Lg81xNC4Io5XQXxPJ6ki6edx5N08bTzeJIunnYeT9LlTs8zbtw4xo8ff8c6FAb0feO+83iSLp52Hk/SxdPO40m6eNp5PEkXV58nbb2wBHMQQkh9Q7jvPJ6ki6edx5N08bTzeJIunnYeT9LFDefRI0rZoN9T7j2PJ+niaefxJF087TyepIunnceTdHHDeQToOUp5Ijw83GwVMuEqfVxxHt027j2HK9Ft4xzdNs7xNH002eNpv5P+n3KObhvn6LZxjm4b57hDHz2iZAKusngLIrptnKPbxjm6bZzjaW2jR5Sck3GO0u26iLtQF4+6bzwJ3TbO0W3jHN02zvGEtsnqIu54T2lDyQQ84YbwVHTbOEe3jXN02zjH09pGG0rO0e+p/IFuG+fotnGObhvneFrbaNc7k+nTp4/ZKngsum2co9vGObptnKPbRnM76PvGObptnKPbxjm6bZzjyW1jmqEkhCgnhPhECPGLECJOCCGFEBVzWdcihHhTCHFcCJEghNgrhHjcvRq7jieeeMJsFTwW3TbO0W3jHN02ztFto7kd9H3jHN02ztFt4xzdNs7x5LYxMzx4VaA38BsQCbTLQ913gVHAW6n1+wJLhBCdpZRrXK2oRqPJO3FxcZw+fZr4+HiSk5PdKqtcuXL89ttvbpWRXzGibby9vfH396ds2bIEBAS4VZZGo9FoNEZhpqG0XUpZCkAIMYRcGkpCiBCUkfS+lHJK6uYtQoiqwPuANpQ0GpO5cuUKJ0+eJDQ0lHvuuQdvb+9MeQk0BQcpJcnJycTExHD48GHKly9PcHCw2WppNBqNRnPHmOZ6J6W032bVMMAHmJtl+1ygjhCi0h0pptFo7pizZ89SuXJlQkJC8PHx0UZSAUYIgY+PDyEhIVSuXJmzZ8+arZJGo9FoNC7BzBGl26UWkAgcybJ9f+qyJhCVXcW+pb/N9oQZIrKqvwGBBCQCmbY/NU4gltTtILGI1GOwI4RaWoRat6SuW7BjFSmp6ykkxF1j96ideAmbKhZHScZbJONtTcbbkoSPJQlfr0R8rIl4W2xIIZAWZdtKIdKLxZK2tDv+tlqxWyyqWK3YrVaklxcpVit2Ly9SvL3V0ssLu68vKT4+pPj4YPfxweLlhcViwWKxYLVa05ZWqxUvL69MxdvbGy8vL3x8fPDx8cHb2xsfHx/8/Pzw9fXFz88PPz8/AgIC8Pf31x/MhYSEhAQCAwPNVkNjMIGBgSQkJJithkajMYCkJFi8GE6fhoQEVS5dqkRYGPj5ma2dRuMa8qOhFAzEZBND9UqG/dmy6PwAtymVZ87n7XAvkgnkOsW4llaCiCaYK9zFZe7iMqU5RyhnKc1ZynOSklzkdsyS60Bs6vIqEJNaooEzwCXgInA29e/TqcflhozGk7+/PwEBARQpUoTAwECKFClC0aJFWbt2LcWLF6d48eIEBwcTHByMr6/vbVxJwSMiIsJsFXJFuXLltFFcCHH85hERESxYsIBFixaZrJFGo3EHdjv07w9LlmTdU5dt2+DLL6FFCxMU02hcTH40lG6b56vPSluXTkwIFTY9dbxIqmX22y0Z1gV2KUAK7Ajs0oo9bbtaT5EWUqSVFGklLj4Jb59AbNKKzW7FZvfCJr2w2b1IsvuQZPcmye5DYooPiXY/4lP8sElvYggihqBcX6+fiKeM9xnKeZ+kqvcRqnkd5l6vQ9SwHKCY/RpeNpsqKSl4JyfjbbPhbbMRCOR1LCDOauWMnx+nfHz4x8uLI15e7BeCP+12LicmEh8fT0JCAomJiSQmJnL1am5NK0VQUBDly5encuXKaaV69erUqlWLUqVKFYqP8oiICLp27Wq2GrlCB1Yo3HTt2pWuXbuycOHCm/YVhv9Vjaag88YbykgqVgyeew78/cHHB774IpbDh4vSsiU8/TRMmQJBuf9s0Wg8jvxoKEUDJcTNmfkcI0lXsqkDwOcHn3arYrlFffA2y1OdpCS4fh1iY+HqVVViYuDyZbhyBS5ehHPn4OxZVf75B2Ji/DmWVIVjSVXYTou0c1ksULMmPPggNGkCrVtDJcfMrpQUiItTgmJj4do1JSgmRgm6dEkJu3hRCTp9Gk6fJuDGDaqmlpuoXBk6dMDepAnx9esTW7EisfHxxMbGcu3aNWJiYoiOjiY6OpodO3ZQokQJLl68yIULFzh9+jRnzpxJ2//nn3/edPrg4GDq1KlDgwYNaNSoEY0aNaJy5cr6g0yj0Wg0GhczYwZ88AF4ecH330ObNun7qlffysGDXZgwAWbNgshI2LABKlY0TV3zsNvh5Ek4cAAOHKDW9u2wZYvabrcrC7JsWVUqVIAaNZS1qfEo8qOhtB/wBaqQeZ5SzdTlAcM1MgAfHwgOViW3xMTAiRNw9CgcPKj+V/fvV+Wvv1T5+mt17L33Qvv20LmzlZYti+JVtGjeFIyOVoKOHYMjR5SwffuU4GPH4NgxLPPnUwQoUqIEpdu1g44dldBSpdJOk92oid1u59KlS5w4cYKoqCiOHTvGkSNHOHjwIPv37+fKlSts27aNbdu2pdUpXbo0rVq1SiuVKukYH5o749SpU0yaNIndu3ezd+9e4uPjiYqKomIevgAuXbrEtGnTWLFiBVFRUdhsNsqWLcvDDz/M008/TYsMviqDBg1i06ZNnDp16qbzbNq0ibZt27Jly5ZMdTT5H0cHT3h4OOPGjTNXGY0mC6tXw0svqfWZMzMbSQDe3nbefht694Y+fWDvXmjaFNatg3r1jNfXcFJSlDE0dy788IPqbE6lak51vb1VL/b990PjxtC8uTKeLKbFXStUjBs3jvHjx9+0PT8aSuuAZKAfkPGK+gN/SSmzDeRQGClRQpWsD6f4eNizB379FX78ETZvhkOHVPn4YyhdGp58Ep56Sv2/5oqgIGjYUJWMJCcro+mXX+Dnn+Gnn5ThtHixKkIoR+YBA+Dx7HMGWywWQkJCCAkJoVGjRpn2SSk5c+YMe/fuZdeuXezatYudO3dy7tw55s+fz/z58wGoXbs23bp1o3v37tSvX1+PNmnyzJEjR1i8eDENGjSgWbNmbNiwIU/1//rrL8LCwpBS8tJLL9GwYUO8vb35+++/mTt3Li1btuTcuXOUytBxoCl83Dz9VqPxDBIS1KvabofwcBg0yPmx990H27ZB9+7Kbnj0UYiIKMDzluLilJ/hF1/AmTPp20uVUsZPzZrsv36dWvXqgdWqvn0uXVLHnj6tOpiPHFGW5d698M03qv5dd6nGa9sW2rWDKlXMub5CwLhx49I6pzJ9I0opTStAz9QyA5DA0NS/m2c4xgZ8naXe+0ACMBJokVrfDnS+hSzpKSxfvtxsFTKRnCzlTz9JOWaMlNWqSQnp5aGHpFy5Ukq73YUCjxyR8pNPpOzQQUpf33Rh/v7yRMuWUu7bd0ent9vtcv/+/XL69OmyR48eslixYjL1/pKArFKlipwwYYI8efKkiy7IGDztvrkVu3fvNlsFl5OSkpK2PnPmTAnIqKioXNVNSkqS1apVk9WqVZMXLlzI9ph58+bJy5cvp/09cOBAWbZs2WyP3bhxowTkli1bcq2/UeT026c+i01993hq0e+p/EFhbZtFi9Srun59598EWdsmIUHKXr1UPR8fKRcvNkBRI7HbpVy+XMp77kn/lqlcWcqxY6X8++9Mh+Z438TGSvnzz1JOny7lE09IWaZM5g8yx7lffFF9mF2/7r7rMhhP+5/K+J4y/aXgpGzNcsycLPWswBjgBCpU+J9Az5xkeQqedkNkxG6XcscOKYcNk7JEifT/zTp1pFywwMUGk5RSRkdLOXOmlM2aZX4YdOok5fbtLhGYmJgo169fL4cOHSpDQ0PT7jMhhGzfvr1cs2aNtLv8wlyPJ983WSmIhlJG8mooLViwQAJy2bJluZaRF0Np9uzZzp6lMjw8PNcyXYE2lLShVNAprG3ToYN6PX/yifNjsmsbm03Kl15SdYWQ8qOP3KikkZw+LWXHjunfLfXqSbl5s9PvljzfN3a7lEePqm+kXr2kDArK/J3k6ytlWJhq0L//dsMHmnF42v9UxveUqY6PUkrhpLTIcsygLPVSpJQTpJT3SCl9pZR1pZRLjda/ICKECvIwfbqag/jhh1CmjJpu9MQTymX2r79cKLBECRgyBLZvh8OHOdaxowqfs3q1Gm7u0AH+9787EuHj40O7du347LPPOHnyJOvWraN37954e3uzbt06OnbsSN26dfn2229JSkpy0YVpNOls3rwZq9VK+/bt81zXZrPdVOz2zPm6O3XqxC+//JKpvJQ6kaBGjRouuQaNRlN4OXMG1q9X02ieeCJvda1W5dY/aZL6wh8+HF57Tbnw5VsOHFDRsNasgeLF4ZNPYPduaNVKfUi5AiFUMKwhQ9RUhYsXYccO5ffYqJGK8rV+vWrQ++6DqlXVBLKVK1UwLo1L0DPENE4JDISRI9WUoi+/hJAQFcHm/vth1CgVhc+lVK3KvueeUxEoxo5VD5/166FOHXj1VRXq7w6xWq2EhYWxaNEizp49y6RJkyhTpgx//fUXAwcO5N5772XevHk3fYhqXIMQwiOK0Zw6dYqSJUvi7++fabvdbs9kAKmOrHROnz6Nt7f3TSUsLCzTcSVLlqRJkyZpJSUlhZkzZzJixAj69Onj9uvTaDQFm3nzlGHTpYuaNpNXhIDRo1WMA29vNZ2nZ08VTDffERkJDz+sepMfekh15r70kgoD6E6sVtWTPW4c7NypQh1/+62yXIOD1cfap5/CY4+pH6lFC3j3XTUZXXcC3zbaUNLkiK8vPPss/P03DBumHpYffggNGqgIei6nZEkYPx4OH1YJGlJSYOpUqF5dxRl1EcHBwYwePZqoqChmz55NjRo1OHHiBP3796dhw4Zs2rTJZbI0muzo2LFjJgPoa0cYylRCQkLSgpRkLJ9++qnTcx4/fpzu3bsTFhbGlClT3H0JBR4hRHkhxFIhxFUhxDUhxDIhRIVc1vUTQnwghDgrhIgXQvwihHjU3TprNK5ESpgzR63fKoBDbujXTw3CFCumgsLVrauCPeQbvv9eBVaIiYFu3WDTJhUBywxCQlTUrfnz4cIFFTArPFyFGUxJUdE0xo6FZs1UwK127dS31aZNesQpD2hDSZNrSpRQLnk7d0Lt2ipKXuPGkE1OSddQsqSKILN7t/rHP3cOwsLg9ddd2jvi4+PDoEGD2LdvH7NmzaJs2bL88ccftG3blscff5yzZ8+6TFZhR7pwPsedFKMpV64cly5dIj4+PtP2Tz75hF27drFixYps63l7e9OwYcObyr333pvt8deuXaNz586UK1eO+fPnY9FhZe8IIUQA8F+gOjAQeAqoBmwRQhTJxSm+Bp4FxgKdgbPAeiFEbuOJajSms3u38jQLCVEZPe6UNm3gjz/Ua/30aZXL8fXX3eCl4mr++18V8zwxEV58EZYuVVMFPAGrVTXouHHKYLp0Sek3bJiKuhcXBxs3qv1t26oPurp1VVbgzz5TYZCzy4Op0YaSJu80bKjcZPv3V/97TzyhXGRtNjcJfOABNdT9zjsqn8DkyaqHJMq1keCtViuDBw/m0KFD/Oc//yEwMJBly5ZRs2ZNvv76a1M+sDUFg1atWmGz2Vi3bl2m7dWqVaNhw4bUqVPnjmWkpKTQp08fYmJiWLlyJUWK5OY7XpMDzwKVgW5SyuVSygjgMeAe4PlbVRRC1AOeBEZIKWdKKTcDvYF/gHfcq7ZG4zockar79VNuc66gcmU1NTk8XLnlTZ6sktK++64arPE4jh2DXr3USM2oUarX2Go1WyvnBAWplCvTpyvXn7NnYckS9bHWqJH6ltq3D2bPVsZUkyZQtKgKP96tG/z732oY8eef1dyoQvz9U6gMJcf8BJ3E784pUkS5xk6frh6c//d/Kr+C24wlqxXefls9WStUUMNaTZrA77+7XFRAQABvvvkm+/fvp0OHDsTExDBkyBDatm3LmYz5ETSaXPL4449TpUoVXn/9dS5evOgWGSNHjiQyMpKVK1dStmxZt8i4XcaNG2fa/LA75DFgh5QyLbm5VLn6fgK6Oq2VXjcZWJShrg1YCIQJIXxdr65G41oSE5VnF9y5211WvLzUAEdkpBoMuXxZeYpVqKAGbJYvd8nU5DwhpbKFbLYMJToW22M9sF25SkrHLtj/8z52KdLCz+ULSpdWk8KmTVPfT9euKSPo44/Vx1udOuoHOXZMJbyaOBEGD1ZzsUJC1KT1GjVUgK1nn1U/1GefKf/JyEg15Hj+vMqdWcDIjwlnbxs9IuBahFAdEXXrQqdOsGCBemh8950b5zQ+/LDKltu7t/Kzbd5c/aNmTQ/uAipUqMDq1atZsGABr7zyCps3b+b+++9n3rx5tG3b1uXyNJ7P0qUquOZvv/0GwNq1aylZsiQlS5akefPmTuv5+PiwbNkywsLCuP/++xk2bBiNGjXCx8eHc+fO8f333wNQtGjR29Jr4cKFfPzxx7z55pskJiayY8eOtH3lypWjXLlyt3VeV+E0kZ/nUwuIyGb7fqBXLupGSSnjsqnrA1RNXc+Ev4jHC1ta8SY5tSThk1q8ScKXRHxJwJcE/IjHj3j8icOfOAK4TgDXKUIsRbhGUWLSSnEuUZQrICQpQAoqWaE9dZksBCmAP7BWCJKEIBlIEoJEIUgAkiwWEoQgXggSLRbiHMVqJd5qJdZq5Ya3Nze8vEj08sLq5YXFYsHLywur1YqXl1dayThHz8fHBx8fH3x9fdOKn58ffn5+BAQEpJUiRYpQtGhRAgMDKVasGMWLFycoKIhixYppd1MXs2oVREdD/frqXe8OHnpI5aLfuhXeew82b4YZM1SxWNR86CpVoFw5KFtWeY1ZLKqASoQbF6fK9etq+k1srFq/fl15lN24ofYnJCjjLyFBfdNnNIicfyIWBfao1TWo/95bkPERl/lx95jLAuI5uP3PWn+gaWpJO5saPpES4fjbISAO+F9qyZFsesxzvPDOqKeRQeSh4QqVoaRxD82aqeB0YWFqvpKUKrKN24yloCAVPnzQIGWddeyofAPyGrM0FwghePLJJ2nVqhX9+/dn8+bNhIWFMWbMGMLDw7F68tC7xuX06pX52/jFF18EoHnz5mzduvWWdevWrcuff/7J1KlTmT9/PhMmTMBut1O2bFkeeeQRtm3bxqOP3t48//+lhtCfOHEiEydOzLQvPDxcj6LfPsFAdDbbrwBBd1DXsf8mEnD/nAeBnSAZTSnOE8pZynCGMpzhHk5QSUZRkeNUIgo/Eu9YViJwKbVcBM4BZ1CTtU4Cx1PL5TuWpJ7XRYoUoVixYmklKCiI4ODgtBISEkJISAi+vnc2oBcRkZ39XPD44ot6QEXq1NlPRMSRHI+HO2ubl1+Gjh2Ls3t3KfbsCeHQoSB27bKwa9dtnzLPCCERQn1IiwzDRlJYSDMhpPMP/4zf4Jm/xz29k0hkWbqQfDxOIQrLKIsQQnrKtUZERNC1a05eG/mPHTuUsXTtmpq/9O23eU8nkKe2sdtV2PCPPlJ/z5/vFmPJQUpKChMmTGD8+PFIKWnfvj2LFy++7VGAvJKf7pvffvuNBg0amK2GxgRy+u2FEMhbfWV4EEKIJGCqlPKNLNsnAG9IKZ12BwkhNgDFpJRNsmxvA2wEHpVSRmbZJ69ejiclBZKTJLZkiS1FkJwkSU6SJCVDUqLqEU9KkCQkQHycnfh4UovI0IMuuBYLsbGCmGuCa9csXIlJLVett/zQA2VMVQyJo3qZaO4LuULd0HM8UPoUVYqeR8THQXw8Ij4+rStfxMYibtxQy9hYLLGxWK5exZKYO2Mr2c+P2NBQroaGciUkhAshIZwqVYpLfn7EJyQQHx9PXFwccXFxXL9+ndjY2LRy9epVoqOjic1DJK/SpUtTrVo1atSoQc2aNalZsyb169fn7rvvzrFufnoW3ym1a6spLj//rNzjcsLVbRMbq4JJnDqlAj+cOqW2Sak+Aex2FU8hIEBNCQgIUFNtHCUwUG0PDFT7/PxUJF9fX/DxUR26Xl7Ku99iyfLNcvSoaoCEBNU527GjUz0dn5fOjSSIiFjBY4895rK2ceA5o1SplePi1Ifg1atq/cYN0h5SiYkqGFdiYqbhvL/+/JPaNWqk/6hZcfw4QqT/WI5itea+OH5sR3FS37t+nbT3lB5R0riMJk1U9O42bdSI0v33KzvGbVgsKmz43XfDmDEwcKBad5NbnNVqJTw8nEceeYQ+ffqwbt06mjVrxurVqz1uTohGo3EJ0WQ/cuRstChr3Xuc1IX0kaVMFAv2y7Vyt4vNpvLXXLigEomeOaM+Qo8fVzFyoqJS1y8EEnUhkLWUB+oByu2pUSNo2VLl1mzQIAfvgbg4Nfnk0iUl8Ny5dKEnT6YJ9b52jeCoKIKjoqiUsX5IiIog9PDD0KOHWncSUcBmsxETE8PFixe5dOkSFy9e5OzZs5w5c4YzZ85w8uRJoqKi+Oeffzh37hznzp0jMjKTrUrFihVp0KABDz74IC1atKB+/fp4uTs/jody9aqaeuLjo2IqmUHRoupeMxwp1USphAQVgvsWRhKkGyu3MlqsVun2VEvmI6B4EVXKh+a61omICO730M6HAv+TaYzlwQfVSFKPHiq53P33q9CfbkMIFZ3l8mU1SbFHD+Xo7MbRjNatW7Njxw46duzI3r17efDBB1m9ejX16tVzm0yNRmMK+1FzjbJSEziQi7rdhRABWeYp1QSSgNz5MbkBLy9lf4SEqA7z7Fi6dBU1ajzGwYNqROG332DXLmXnbNyoCqgP2bAwFWCrUyf1dyYCAlQpX/7WSl2+rJL1HTyoyt69SuiFCyrxzpo16rgiReDRR6FrV1Uy5LDx8vLi7rvvznFUyGazcfr0aQ4dOsSBAwc4ePAg+/btY8+ePRw/fpzjx49nmjfYrFkzOnToQNeuXSmf03UUIH79VdkLDRqoEZhCxcKFquc3KEhlx9UUXszOZ2Jg3hTpKSxfvtxsFdzOW28px9677pLy+PHc17vttklJkfLJJ5XQkiWlPHTo9s6TBy5duiQfeeQRCciiRYvKyMhIt8rLT/fN7t27zVZBYxI5/fapz2LT3wm5KcBw1Mzkyhm2VURFs3s1h7r1UZ75AzNs8wIOAiud1MlDS7sXZ8+bU6ekXLRIyuefl7JaNZk6gUMVX18pu3aVcuVKKW02Fyhht0t59KiUCxZI+cILUlavnlmgEFI+9JCUn3wiZXT0HYuz2Wzyr7/+krNnz5ZDhgyRVatWlam/YVp54IEHZL9+/eSJEydccIGezbhxqplHjsx9nfz0nnLKlStSliqlLn7mTJedtkC0jZvwtLbJ+J7S4WE0bmH8eBVF8vJl6N5duaa6FYtF5QNo107F/O/Sxe3Z6+666y42btxI7969iY2NpX379mzfvt2tMjUajaHMRMUaiBBCdBVCPIaKgncS+MJxkBDiHiGETQgx1rFNSvkHKjT4R0KIIUKI1qjQ4JWAcAOvwaWULauCjn7+uUo6fvy4Gsx/5BE19SAiQj1+K1WCCRNUxODbRgiVcKdvXxUC7eBB5bL39dfQubPyCfv5ZxUBIDRUhTn+8cfbnmRhtVqpVasWgwYNYubMmRw+fJiTJ08ye/ZsunfvTkBAAL///jvz5s2jYsWKtG3blvnz55OQkHAHF+m5/PyzWuZmblKB4s031Y37yCMqIaumUKMNJY1bsFph3jwV0vOPP1TIfbfj4wPffw+1aikXjhdfdHuSAz8/P+bPn0///v25ceMGHTp0YNu2bW6VqdFojEFKeQNoBRwCvgPmAVFAKyllxp4YAVi5+Z06GJgNTABWA+WB9lJK1yeAM4l77lE5LCMj1TynDz5Qz/2TJ1Xqu0qVVH7OCxdcJDA0VH28rlypOsXmz1f+3QkJKjdFs2aqbNjgkud/uXLlGDRoEMuWLePSpUusXLmSZs2a4ePjw6ZNm+jXrx8VK1Zk4sSJxHhkptTbw25XrndQyAylP/+EL79U/qmff54eg1xTaNF3gMZtBAWp6N2OmAtuyA17M4GBsHix8on/7juVWdrNWK1W5syZw8CBA4mLi6NDhw5s2bLF7XI1Go37kVL+I6V8XEpZTEpZVErZTUp5PMsxx6WUQko5Lsv2eCnlSCllaSmln5TyQSnlVgPVN5TQUGUUHTqk7JQuXZQ3wYcfKoPpjTdcnEC0aFEV6XTTJhWh7N//huBglZQnLExFGHJMpnIB/v7+dO7cmVdffZWzZ8/y2WefUa9ePc6fP8+///1vypcvz2uvvcbly64Idm4uBw+q36p8eTWKWGh4911lYA8dqjpdNYUebShp3EqjRvCvf6neqeeeU9GW3E7NmvDpp2p92DA1E9nNWK1Wvv76awYPHkx8fDyPPfYYf/zxh9vlajQajadhsajgoytWqHgMnTur4HeTJqnH8/LlbhBaubLKVnr8OLz/PpQsCTt3Knfsnj3VEJcLCQoKYujQofzxxx9s2LCB1q1bc/36daZMmULVqlWZNm0aSUlJLpVpJL/8opaFajTpr79g6VIVueKNN3I+XlMoKFSGkhACIYROvmgw774LFSqoF+bHHxskdNAg5a8eH68c6m/ccLtIq9XKV199xRNPPMH169fp0KEDUVFRbper0Xg648aNS3v+agoXDzygvOR+/VVFRT1zRs1b7dFDueq5nKJF4XyM3joAACAASURBVPXXVYzziROVd8H330ONGjB5sst764QQtG3blk2bNrFr1y7atGlDTEwMI0eOpGbNmqxatcql8oyiUBpK772nlkOGQJky5uqi8RgKlaHkiGChDSVjCQyEzz5T62+/rTr8DOGzz9TL8cABMOg3t1gszJ49m9atW3P+/HnCwsK4ePGiIbI1Gk9l3LhxGSO7aQohjRsrj7hPPlHvhB9+gDp1YP16NwksUkSNCvzvf2pE6cYNZUC1bOny0SUHDRs2ZMOGDaxevZoaNWpw9OhRunTpwsCBA4mOzintlmdR6Aylgwdh0SKVo+v1183WRuNBFCpDSWMenTqpgZ24OOUNZwhFiqikTkKosEx79xoi1tfXl2XLlnH//fdz+PBhOnfuzA0DRrQ0Gk3+pyB7Plit8NJLqu+qfXuIjlbRUd97T7lnu4Xy5WHJEli3To0S/PijSvDnppEeIQQdO3bkzz//ZOrUqfj5+fHtt99Su3Zt1jhyQXk4V64ou8HXF+rXN1sbg3jvPTU36emnc875pSmQOPN80IaSxjD+7/+gWDGVN9CwKNoNGyrLLCUFXnjBjW/jzBQrVow1a9ZQsWJFdu7cyZAhQ3Rvej7n1KlTvPzyyzRt2pSAgACEEBx3MjyakJDAa6+9RmhoKP7+/jRt2jRPoeOvX7/O+++/T6NGjShWrBg+Pj5UqFCBXr16ERERkelecjzcbdm4FB05cgQhBHMMCGqicQ2FwfOhfHlYvVqlkQAYM0a541275kahYWGwZ4+yzK5cUZEmXn/dbe8ELy8vRowYwd69e2natClnzpyhU6dOjB49mpSUFLfIdBWOaHcNG6pgsgWeQ4dU5CkvLxUaXFMoceb5oA0ljWGULg0jRqj1t992e+TudCZMUD2JO3aosJ8GERoayurVqwkMDGThwoVM0dm98zVHjhxh8eLFBAUF0axZs1se+8wzzzBz5kzeeecdVq1aRWhoKGFhYezZsydHOadPn6Zx48ZMmjSJtm3bsmjRIjZu3Mj48eO5ceMG3bp1Y+fOna66LI3GFCwWlTZi1SooUUIFfmjdWtkwbqNkSSVw8mQ1vDV5Mjz1lEoA5SbuvfdeIiMjmTRpElarlQ8++IAOHTpwxa0XemcUOre7SZOUwTxokIp3r9FkQBtKGkMZMUKFDd++Hf77X4OEFi+uhrNA+ayfO2eQYKhZsybfffddqug32LBhg2GyNa7l0Ucf5fz586xZs4ZevXo5PW7v3r3Mnz+fadOm8eyzz9K6dWsWL15MhQoVGJuLhGL9+vXjwoUL7N69m//85z906NCB5s2bM3jwYNasWcPGjRspXry4Ky9NozGNjh1h924VtG73bmjVSqVHchsWC7z2mpocFRio8jC5OUG51Wpl9OjRbN68mZIlS7Jx40YaNWrEvn373CbzTihUhlJ0tLoHAEaPNlcXjUeiDSWNoRQvrvJsgMGjSo8/rt7IV6/Cq68aJFTRrVs3xo4di91up2/fvhw9etRQ+RrXYMll4sEVK1bg7e1Nnz590rZ5eXnRt29f1q9fT2JiotO6O3bsYNu2bbz11ltUqVIl22PatGlD9erV86Z8Klu3bk3zwc5aBg0adFvn1GjulCpVYNs2uPdeNZW0RQsD+rNat4atW9Uo04YNykK7dMmtIps3b87u3btp0KABx44d45FHHiEyMtKtMvNKSkohSzT73XcqWXGbNlCtmtnaaDwQbShpDOfll+Huu1Wv1bp1BgkVQuVW8vNTvUeGZL9NJzw8nC5duhAdHU2PHj1ISEgwVL7GOPbv30+lSpUICAjItL1WrVokJSVx5MgRp3U3b94MQOfOnfMsNyUlBZvNlqlknQvxwAMP8Msvv2Qq76WGxK1Ro0aeZWo0rqJcOWUs1aypgj20aAFuz9vaoIEKxVepEuzapTrT3DiyBFChQgUiIyPp3bs3165dIywszKM8DU6cgNhY5a0eGmq2Nm5GSvjiC7X+/PPm6qLxWLShpDGcokXTR7jHjjVwVKliRRVyCeCttwwSqrBYLMydO5eqVavy559/8tprrxkq32MQwjOKG7ly5QpBQUE3bQ8ODk7b74xTp04B6mMqI3a7PZMBZM9mArqfnx/e3t6ZStaRp2LFitGkSZO0EhwczJQpU3j88ccZrd1ONCZTurQa5KlTB/7+WzkCuD1na7VqKhKew1gyQKi/vz/z58/nmWeeIT4+ni5duvDDDz+4VWZuOXhQLQtFv8lPPymrvFQp6NrVbG00Hoo2lDSmMGyYejbt3u22KK3Z8/rrylJbt87A0HuKYsWKsXDhQry9vZk+fToRERGGytfkX1588cVMBlB2c5127NjBrl27MpVbfXxFR0fTpUsXqlatynfffaeTwWo8gpIlVWTU0FA1wvTiiwZ0ppUpo+YsOdzwnn7a7RFSrVYrM2fOZPjw4SQlJdGrVy+WLl3qVpm54X//U8tCYSg5RpOeeUblT9JoskEbShpTCAhIH1VyxFkwhLvvTp8k9e9/GzicpWjQoAHvv/8+AE8//XTaCEKhQUrPKG4kKCgo2+SSjpEkx8hSdpQrVw6Af/75J9P2f//732nGjzMaNGhAw4YNM5XatWtne2xycjI9e/YkISGBFStW4O/vn+N1aTRGUa4cREQoT+mvv4apUw0QWq0arF2rAjzMm6cCPrgZIQRTp05lzJgxpKSk0K9fP7Zs2eJ2ubfCMaJ0m9Mg8w+XL6v8WkLAs8+arY3GgylUhlJBTuSXH3n6aWUwbd6c3otlCCNGKIPpp59U16XBDB8+PC08bP/+/T0+p4Ymb9SqVYuoqCji4uIybT9w4AA+Pj5UrVrVad1WrVoBsCrLMGuFChXSjB9XMGzYMHbt2sWqVasoXbq0S855K5wl8tNonNGokcoXDspmMeRR3aABLFumRhemTk2PhuZGhBC88847vPzyyyQlJdG1a9dcpRFwF4VmROmbbyAxUeXXqljRbG00HkyhMpQKQyK//ESJEtCvn1r/7DMDBRctqkaTQM1VMigJrQOLxcKcOXMoXbo027Zt44MPPjBUvsa9dOnSheTkZJYsWZK2zWazsWjRItq1a4evr6/Tuk2bNqVZs2a89957bouOOG3aNGbNmsXChQupU6eOW2RkxVkiP43mVvTqBe+8owaBBw2CCxcMENq2LXz8sVp/7jk1WcrNCCH46KOP6N27N7GxsXTo0IFjx465XW5WpCwkI0pSpudU1EEcNDlQqAwljecxbJhafvON24MNZWboUOXfsXcvmOAXHhISwpw5cwAVEW///v2G66DJO0uXLmXp0qX89ttvAKxdu5alS5eybdu2tGPq169Pnz59GD58OF999RWbN2+mb9++REVFMX78+BxlzJ8/n7vuuouGDRvy1ltvsW7dOiIjI1m2bBkvvPACAEWLFr0t/X/++WdGjRrFU089RXBwMDt27EgrOmy9Z6A9HzLz1lsqkvfFi8puMcTWfv556NsXbtxQ1lqW0WF3YLFY+Pbbb2ndujXnzp2jffv2xMTEuF1uRi5dUgl/ixUr4BHvfvpJGcBlysBtRBjVFEycej44evkKelGX6hksX77cbBU8iocfVhNHPv/c4LaZMUMJbthQSrvdOLkZGDJkiARkw4YNZXJy8i2PzU/3ze7du81WwS0A2ZbmzZtnOi4uLk6OGDFClipVSvr6+srGjRvLLVu25FrOtWvX5HvvvScfeOABGRgYKL29vWX58uVlz5495YoVKzIdGx4eLoFs75/Dhw9LQM6ePVtKKeXs2bOdXsPAgQPz2BrZk9Nvn/osNv2d4IlFv6ey559/pCxeXD2uZ80ySOi1a1Lee68S+swzmXa5s22uXr0q69atKwHZpUsXmZKS4jZZWdm2TV1u48a3fw5Pum+cMmyYutDRow0Vmy/axiQ8rW0yvqdMfzEYVfQLyHOZP1/diXXqSPnDDwa2TVyclHffrYRv22ac3AxcvXpVli9fXgJy4sSJtzw2P903BdVQ0uSMNpT0e8odfPutelQXLSplVJRBQvfuldLPTwmeNy9ts7vb5ujRo7JEiRISkO+9955bZWXkiy/UpQ4YcPvn8LT75iZsNilLlVIX+ttvhor2+LYxEU9qm5MnT2Z6T5nqeieEKC+EWCqEuCqEuCaEWCaEqJBzTRBCVBBCfCOE+EcIES+EOCSEmCCEKOJuvTWu5fHHISQE9u2DgwedRwRzOf7+6b5/U6YYJzcDxYoV46uvvgK0C55Go9E4o39/9a6IjYWBAw2aWlq3bvp8pX/9S/mmGUDlypWZN28eAGPGjDEsIW2hyKG0fTucPw9VqkD9+mZro/Ewfv75Z+rWrZtpm2mGkhAiAPgvUB0YCDwFVAO25GTspO7fBDwKvA10BL4CXgVmuVFtjRvw8UmPzrl2bSVjhb/4Ivj6wsqVhkzazY527drx7LPPkpSUxODBg3UUPI1Go8mCEPD55yr/3vbt8N13BgkeMkRNkrp8GV591SCh0LFjR8LDw5FS8uSTT3LixAm3y3REvCvQgRwWLVLLPn3cnnxck79YsWIFrVu3vim9h5kjSs8ClYFuUsrlUsoI4DHgHiCnMCQPo4yq56WU30gpt0gpJwP/BzyeaoRp8hHPPw9WK/zySxkuXzZQcEgIDBig1qdNM1BwZqZMmUK5cuXYtWsXM2bMME0PjUaj8VTuvjt98P/NNw0KAOSw0Pz8VLzyTZsMEKoYO3YsHTp04PLlyzz11FNu70Qr8CNKNht8/71a79PHXF00HsVXX31F9+7dSUhIYMiQIZn2mWkoPQbskFIecWyQUkYBPwFdc6jrk7q8lmV7DOqadDdBPqN8eWjTBmw2C8uWGSx85Ei1/OYbFVrJBIoVK8Ynn3wCqOSiZ86cMUUPjUaj8WSefBIaN4azZ2HSJIOEVq0Kb7+t1l94AUtioiFiHZHwSpUqRWRkJB999JHbZMXFwYkT4OUFlSu7TYy5bNmi3CerVweDUiNoPBspJRMmTODZZ5/FbrczduxYvnSEjk/FTEOpFvBXNtv3AzVzqLsJOAxMEkLUFEIECiFaAa8An0spb7hWVY0R9O2rlgsXGiy4enUVIjQhweCETpnp2rUrXbp0ITY2lpEO402j0Wg0aVgs6YP/U6bAP/8YJHjUKKhVC44e5b7Fiw0SCnfffXfaPNa33nrLbfNYDx1Sy2rVVL7dAonD7a53b+12p0FKyejRo3n77bcRQjBjxgzGjx9/U3hwMw2lYCA6m+1XgKBbVZRSJgCPoPTfD8QCm4FVwEuuVVNjFN26gZdXClu2qN5CQ3H4nn/6qcrWbQJCCD755BMCAgJYtGgR69evN0UPjUaj8WQeekh1rCUkwBtvGCTUxwdmzgQhqLp8ebplYQCdO3fmmWeeITExkQEDBpCcnOxyGQU+0WxSEmnuKtrtrtBjt9t58cUXmTJlCl5eXixcuDAtT2FWvAzWzSUIIfyARUAIKgjEP0BjYCxgA4Y6qXfTtj59+vDEE0+4TVdnREREGC4zP/DAA43ZuTOUsWP30bmzgZnJpaRFxYoUP36cXW+/zZmHHzZOdhZ69erFN998w8CBA/n444/x9fVN25df7pty5cqZrYLGRCIiIliwYAGLHD24Go2Lef99WL4cFiyAl1+Gpk0NENq0KTz9NJavv1aueAbe31OnTmXTpk38/vvvvPfeey5PSOwI5FBg5ydt2gTR0VC7NtTMyWlJU5Cx2Ww8/fTTfPfdd/j6+rJ06VI63yrxsHRTPoicCnAe+CKb7Z8BF3OoOwyVJLFKlu3Ppm6vl02dOw+u7iI8KV68pzFq1E4JUjZtaoLwjz9WuRXatTNBeDpJSUmydu3aEpBjx45N256f7hudR6nwovMo3VkeJUcJDw/PoaXdS3543rz1lnpkN2tmoNCTJ6XN21sJNvg5t2XLFglIq9Uq//zzT5eeu1cvdUnffntn5/HY+2bgQHWB77xjmgoe2zYegFFtk5ycLPv27SsBWaRIEbl58+a0fY7k7Y4ipfl5lPaj5illpSZwIIe6dYBoKeXRLNt3pi4Lap9Igadhw/MEBMAvv8Dx4wYL79dPhQrfuNEE4el4e3unRb6bPHmyIWFhNRqNZ+B4Obt6xKAgMno0lCgBkZHw448GCS1XjmOdOqn1N980SKiiRYsWvPjii6SkpDBs2DCHce0SCvSIUkoKrFql1nv1MlcXjWnYbDaeeuopFi5cSNGiRdmwYQOtWrVK2z9u3LiMnVZpmGkorQCaCCHS4qsIISqiQn+vyKHuOSBICFE1y/YHU5enXaSjxmD8/FJ47DG1buB8WUVwsMpoKCXMMjcd1yOPPELfvn1JSEhg9OjRpuqi0Wg0nkixYvBS6qzkiRONk3v48ceheHHVqbZ5s3GCgQkTJlCyZEkiIyOZO3euS86ZkpI+5eq++1xySs/i119VHqwqVQroBWpywmazMWDAgDQjad26dTz00EO5qmumoTQTOA5ECCG6CiEeAyKAk8AXjoOEEPcIIWxCiLEZ6s5BBXBYI4QYKIRoKYR4DZgC/IYKMa7Jpzii3y1YYIJwR+bbWbPU28NEJk+ejL+/P4sXL2bbtm2m6qKBU6dO8fLLL9O0aVMCAgIQQnDcychjQkICr732GqGhofj7+9O0aVO2b99+03F2u52JEydSsWJF/Pz8qFevHt878nzkguTkZGbMmEGzZs0ICgrC29ub0NBQOnfuzHfffYfNZks7ds6cOQghOHLkyE3nsdlsCCH0KIYm3/HKKxAQAGvWwJ49xshMLlpUDWeBiibhwpGdnAgKCuKDDz4AYNSoUcTExNzxOY8fVzGMypaFokXv+HSex+rVatmpk452VwhJSUlh0KBBLFiwgMDAwDwZSWCioSRVCO9WwCHgO2AeEAW0klJmTCMnACsZdJVSHgeaAHuACcAa1PykL4G2Ukq7AZegcRPt26vOuj170t0BDKN5c5Uz4/RpMDnqXPny5XkjNaTTK6+84vZkg5pbc+TIERYvXkxQUBDNmjW75bHPPPMMM2fO5J133mHVqlWEhoYSFhbGnixfcm+//Tbjxo3jpZdeYu3atTRp0oRevXqxZs2aHPWJjY2lZcuWjBw5kvr16/PNN9+wefNmPvzwQwIDAxk8eHCejC6NJj9y993p/Vvvv2+g4FdegdKlYffu9CSmBjFgwAAeeeQRLly4wNuO/E53QIFPNOt4njpcJjWFBiklL7zwAvPmzSMwMJD169fnyUhKO0lhKOhgDvkCR9sMGqTmXY4fb4ISEycq4d26mSA8M3FxcbJChQoSkEOHDjVbnVxTEIM5pKSkpK3PnDlTAjIqKuqm4/bs2SMBOWvWrLRtycnJ8t5775VdunRJ23b+/Hnp4+OTKWCHlFK2atVK1qlTJ0d9Bg4cKH19feWOHTuy3f/777/Ln376Ke3v2bNnS0AePnz4pmOTk5NdFkBAB3PQ7ymj+ecfKb29pbRYpDx0yP3y0trms8/Uu6JOHSntdvcLzsDevXul1WqVFotF/vbbb3d0rg8+UJfx0kt3rpfH3TenTqmLCwiQMj7eVFU8rm08CHe0jd1ul8OHD5eA9PPzk1u3bs11XTwkmING45SePdXSMf/SUAYOBKsVVq6Ec+dMUCAdf39/pkyZAsC8efO4evWqqfoUZiyW3D0uV6xYgbe3N30y5Orw8vKib9++rF+/nsTUPF3r168nKSmJ/v37Z6rfv39/9u3bR1RUlFMZp0+fZu7cuTz//PM8+OCD2R5Tv379vPecpXL8+HGEENmWFi1a3NY5NRp3Ub48PPUU2O0webKBgp9+Wo0q7dun5isZSN26dXn55Zex2+0MHz7cYWjfFn//rZYFMoeSYzSpTRvw8zNXF42hhIeH89FHH+Ht7c0PP/xA8+bNb+s82lDSeCQtW6pn2q5dcP68wcJDQ6FLFzVH6ZtvDBZ+Mz179qRZs2Zcu3aNSZMmma2OJgf2799PpUqVCAgIyLS9Vq1aJCUlpc0R2r9/P76+vlStWvWm4wAOHHAe/HPr1q2kpKTcOveDE1JSUrDZbJlKVrfO0NBQfvnll0zlq6++wmKxUKPA+udo8jOjR6vpJ998ozynDcHXF/71L7WeOm/ISMaNG8ddd91FZGQkqx3zcG4DR59M5cq3Pi5fknF+kqbQMHXqVN59912sVisLFy6kffv2t30ubShpPJKAAGUsAaxbZ4ICgwappSkRJTIjhEgbVZo2bRqnTp0yWaPbRwjPKO7kypUrBAUF3bQ9ODg4bb9jWaJEiZsSYWc9Ljsc90CFChUybZdSZjKA7Pabp2tWr14db2/vTMUvS0+rr68vTZo0SStVqlThvffe48EHH2TatGk5NYFGYzj33Qc9ekByMnz1lYGCX3gBihRRCU2NiiaRSvHixRkzZgwAb7zxxm3PY3XEpKlUyUWKeQqJiep3AejQwVxdNIYxd+5cXn31VQBmzZpFjx497uh82lDSeCwdO6plLua1u5727VWCjr1702e6mkjjxo15+OGHSUhIYOzYsTlX0BRKJk2alMkAGjBgwE3H/PDDD+zatStT2bFjh9NzJiUl0b17dwAiIiJuMqo0Gk9h6FC1/PprA4OWBgXBkCFqPbVDy0iGDh1KxYoV2b9/P9/chgdESgr8849av+ceFytnNtu3w40bULeu8s/UFHjWr1/P4MGDAfjwww+zfQfmlUJlKDl87HUI3PyBw1Bavx4yRDk2Bl9f1T0JsHChwcKzp3///nh7ezNnzhz27dtntjq3hZpVa35xJ0FBQURHR9+03TFC5BgxCgoKIiYm5qa5BVmPy45y5coB8I/jCyeVQYMGpRk/oaGh2datXbs2DRs2zFQaNGjgVNaQIUP466+/WL16NSVLlnR63K0YN25c2vNXo3EXLVuqVDknTxoctHT4cDWvdeFCJdxAfH19mTBhAgBjx44lPj4+T/XPnFGjcKVKgb+/OzQ0Ee12V6jYuXMnjz/+ODabjddee42RI0e65LyFylByRLDQhlL+oHJl5U5x9Sr88osJCmRM6OTur+tcEBoaytChQ5FS8vrrr5utjsYJtWrVIioqiri4uEzbDxw4gI+PT9qcpFq1apGYmMjRo0dvOg6gZs2aTmU0b94ci8XCqizRTkqXLp1m/Pj4+NzxtfznP/9hwYIFLF269I7mJjnLeK65Gd2hd/tYLOmhwr/80kDBFStCr15qeOajjwwUrHjiiSeoX78+p0+f5uOPP85T3QLrdgfphpKj11VTYDl69CidOnXixo0bDBgwgPdvI1eAsw69QmUoafIfprrftWwJISFw+DD88YcJCtzMmDFjKFasGGvXrmWzwRnhNbmjS5cuJCcns2TJkrRtNpuNRYsW0a5dO3x9fQFo37493t7ezJs3L1P9uXPnUrt2bSrd4sulXLly9OvXjy+++IJff/3VLdfx/fffM2bMGD799FPatGnjFhmam9EdenfGoEHg5aUiphoW1AFg1Ci1/PJLcEES2LxgsVjSAv1MnDjxlvMbs+IwlCpWdL1epnL4MBw5olwjmzQxWxuNG7l8+TIdO3bk0qVLhIWFpQUeyivOOvS0oaTxaEw1lLy8VC8heERQB4CSJUumJaF94403dA+9wSxdupSlS5fy22+/AbB27VqWLl3Ktm3b0o6pX78+ffr0Yfjw4Xz11Vds3ryZvn37EhUVxfjx49OOCwkJYeTIkUycOJGpU6eydetWhg4dyn//+18mTpyYoy7Tp0+nfv36tGzZkldeeYWVK1cSGRnJihUrGDVqFOfOnaNo0aK3dZ3Hjh1jwIABtGvXjrp167Jjx460cqtofBqN2ZQqBd26qcGd2bMNFNygAbRoAdevQ5bODyNo27YtrVu35urVq/zf//1frus5It4VOEPJ4XsZFqbe5ZoCSWJiIt27d+fQoUPUq1ePJUuW4O3t7VohDuupoBd0Ir98Qda2SUiQMjBQzSw5edIEhX78UQkvX17KDAlHzcDRNtevX5elS5eWgPzhhx9M1ckZBTHhrJQqCV12pXnz5pmOi4uLkyNGjJClSpWSvr6+snHjxnLLli03nc9ms8l3331XVqhQQfr4+Mg6derIJUuW5FqfxMREOX36dPnQQw/J4sWLSy8vL1m6dGnZqVMnOXfuXGmz2dKOzUvC2S1btuT6WrOiE87q95TZrF+vHtv33CNlhn8Bl+G0bRYuVILr1TM8Aa2UUkZGRkpAFi9eXEZHR+eqzuDBSuXPP3eNDh5z33Tvri5s5kyzNUnDY9rGA7mdtrHb7fLJJ5+UgCxbtqw86cKPxIzvKdNfDEYV/QLKH2TXNt26qTv1iy9MUCglRRlJIGVkpAkKpJOxbaZPny4BWatWrUwfw55CQTWUNDmjDSX9njKblBQpK1ZUj+21a11/fqdtk5Ag5V13KcG7drlecC5o2bKlBOQ777yTy+OVuuvXu0a+R9w3KSlSBgWpCzt61Gxt0vCItvFQbqdtwsPDJSADAwPlnj17XKpPxveUdr3TeDymut9ZLJmDOngIzz77bFpI2AUepJdGU5AQQliEEG8KIY4LIRKEEHuFEI/nsm4XIcR8IcQhIYRdCLHVzepqUskY1GHmTAMF+/qCIxyxoYLTcaSPmDZtGteuXcvx+AI5R2nvXoiOVvHOC2SUCs2iRYsYP348FouFxYsXU69ePbfJ0oaSxuNx5InbtEnljzOcJ55QyyVLTIhTnj0+Pj5pk73Dw8NJSkoyVyGNpmDyLjAOmA50AHYAS4QQuQmj1Q24P7VO/s0SnU8ZNEgll161yuDYCo6cSvPnq/lKBtO8eXOaNWtGdHQ0n3766S2PtdnScyhlyV2dv/nvf9WyVSv3ZxjXGM7u3bsZNGgQAFOnTqWDm5MJa0NJ4/GUKwe1a6u8cW4K8HVr7r8fqlWDixfhp59MUCB7+vfvT40aNTh27BizZs0yWx2NpkAhhAgBRgHvSymnSCm3SCmfB7YAfDC7EwAAIABJREFUuYk9+6yUsqaUcgDwT45Ha1xKmTLQvDkkJcGKFQYKrlkTHnpIGUmLFxsoWCGESBtV+vDDD7l+C2Pt9GkV9CI0FApUHumMhpKmQHHmzBm6du1KQkICQ4YM4V//+pfbZWpDSZMvaNlSLTMEFzMOIVQYJYDly01QIHusVivvvPMOAO+++26eEw1qNJpbEgb4AHOzbJ8L1BFC3NKnR0ppd5dimtzRp49aLlpksGBT/P7Sad26NU2bNuXy5cvMmDHD6XEFModScjJs367WHR8OmgJBQkIC3bp148yZMzRr1oxPP/3UkCTm2lDS5AuaN1fLrVtNUiCjoSQ9JyR3jx49eOCBBzhz5gxffPGF2epoNAWJWkAicCTL9v2pS+cZgTUeQY8ear7Shg2Qh9RCd06vXlCsGOzYAX/9ZaBghRCCt99+G1BzlRKd+KwXyNDgu3er0bz77oOyZc3WRuMipJQMHTqUXbt2cc899/D999+7JKl6bihUhpLOeJ5/efRRtfzlF5PmKT34oEo+e/w47NtnggLZY7FY0u7n999/n7i4OHMVyoD0IINSYwzOfnNnGc89nGAgRt58UVcy7Nd4MCEhyvvKZjPYGaBIEXjySbX+1VcGCk6nffv21KlTh7NnzzoN+FMgAzlot7sCyYwZM5gzZw7+/v4sX76ckiVLGia7UGXh0h9u+ZeSJaFWLdi/H3btgkceMVgBqxUee0y99JYvh7p1DVbAOZ07d6Zhw4bs3r2bzz//nJEjR5qtEn5+fly/fv22E55q8ifXr1/HL5vJDuPGjUsz6M0yloQQbYCNuTh0m5SyhZvVcUp27dOnTx+ecASVMZCIiAjDZbqa++6rwKZN9fnkkwvcddcvLjtvTm1TvGpVWgCJc+aw/tFHkVary2TnlpYtW7Jv3z7Cw8MpUaLETffW9u31gQrExOwhIuKEy+Saed88tGgRJYGdRYty1gPv34LwP+UunLXNgQMH0kZIX3jhBU6cOMGJE665XxcsWMCinHxzpYvyP3h6QeenyBfcqm2GDVNpESZMMFChjKxcqRR44AFTxN+qbVatWiUBGRISIq9fv26gVtlz+fJluWfPHnn+/HmZmJgo7SYkX9QYg91ul4mJifL8+fNyz5498vLly7c8HpPyKAEBQPVclAqpx08CEgCR5TyNUcl3O+VB9o/A1lwcdxu/gHsoKO+pS5ek9PKS0mqV8uJF15wzV21jt0t5333qnbFhg2sE55HExERZpkwZCch169bdtL95c6Xexo2uk2nqfRMfL6Wvr7ooV/3YLqSg/E+5A2dtc/r0aVm6dGkJyBEjRhimT8b3VKEaUdLkb5o3h08/VfOU3nrLBAVat1YuFb//rmKqelA81Y4dO9K4cWN27tzJjBkzGDVqlKn6BAcH4+fnx5kzZzh37hzJycmm6qNxL97e3gQEBFCtWjUCAgLMVidbpJRxwP/yUGU/4AtUIfM8JcfcpAMuUk3jRu66C9q0gXXrYNkyeO45gwQLoXLwjR8PCxdC27YGCU7Hx8eHf/3rX7zxxhtMmTKFsLCwTPsL3Bwlh29+vXpw991ma6O5Q5KTk+nduzfnzp2jRYsWTJ482RQ9tKGkyTc4Ajr8/LMK+WrQPL50/P2hfXv4/nsVb/allwxWwDmOuXcdO3Zk8uTJDB06lCJFipiqU0BAAFWrVjVEVkREBF27djVEVn5Dt81tsw5IBvoB4zNs7w/8JaWMMkUrTZ7p3VsZSosWGWgogQq7N368stA++0wlpDWY5557jnfffZdNmzaxd+/etMScyclw6pSy58qXN1wt9+CYn6Sj3RUI3njjDX766SfKli3LokWL8PIyx2QpVMEcNPmbkBCoUQPi4lRgG1NwfHB6UJhwB+3bt+fBBx/k4sWLOSYa1Gg0t0ZKeQGYCrwphBgphGghhJgBtALezHisEGKzEOJIlm33CCF6CiF6AncBJR1/CyHuMeo6NCpoqbe38kY4f95AwTVqqNGNmBhYv95AwekEBQUxJDUJ7ocffpi2/dQpsNtVYDgT7Df3oAM5FBiWLVvG1KlT8fLyYvHixYSEhJimizaUNPmKFi3U0pR8SgCdOqnADlu3QnS0SUpkT8aIjlOmTOHGjRvmKqTR5H/eAiYArwDrgYeB3lLKVVmOs3Kzh0ZLYElqqY5y2XP8rbu8DSQoCNq1U4aB4X1cffuq5cKFBgtOZ/jw4VgsFhYsWMCpU6eAAuh2Fx+vIj0JAc2ama2N5g44cuQIgwcPBmDy5Mk89NBDpuqjDSVNvsLhfmeaoRQcrGKVp6TAmjUmKeGcsLAwGjVqxMWLF/nyyy/NVkejyddIKVOklBOklPdIKX2llHWllEuzOa6FlLJilm1zpJTCSZlj1DVoFA5nAMMf2w5DKSICTOq8qlixIj179sRms/H5558DBTA0+K5dyp+wbl0oUcJsbTS3SXx8PD179uTatWv06NGD4cOHm62SNpQ0+QuHofTjj+qZaAqO5LMrVpikgHOEEIwdOxZQPTHx8fEma6TRaDTm07GjWm7aBAkJBgquWBGaNFE+46tXGyg4My+//DIAM2fOJDExseAZSj/+qJYPP2yuHpo7YsSIEezdu5eqVasya9Ysj8i9pw0lTb6idGmVcPvGDRV8zhQ6dVLLDRtUJkMPo1OnTtSvX59z587x9ddfm62ORqPRmE7Zsmq6UFwcbN9usHAPcL97+OGHqVevHhcuXGDp0qVphlKlSqap5FochpLhSRY1rmLJkiV88cUX+Pj4sHjxYooXL262SoA2lDT5EMc8pa1bTVKgShWoVk1N0P31V5OUcI4QgjFjxgAwadIkEhMTTdZIo9FozMfRx2X4wE6vXmruzJo1cPWqwcIVQgiGDRsGwPTp0wvWHCW7XYXDBT2ilE85f/58pqAj9evXN1mjdAqVoSSEyDThXZM/cbjfGd4rmJEOHdRy7VoTlXBOt27dqF27NqdOneKbb74xWx1NIWfcuHFpz1+Nxiwc7neGz1MqU0a9uBITYeVKg4Wn8+STT1KiRAl27NjBoUP/z955h0dVpn34ftIJvYig0osgTRAQEBQRC7oruCisBQXRVeysIKAIQUFUBLGsuyqKiFKUdcmHBREpKihNREB6l6IU6QQS8nx/vJkwhvTMzHsmee/rmusMZ075zWEyZ55+CigkhtLq1cYArVLFU/MNHbnj1KlTvPTSSxw+fJibbrop3aD3CkXKUPJN2XWGUnjTurVZLloEZpi9Ba67zixnzrQkIHsiIiJ4Km0q78iRI93AV4dVEhIS0r9/HdnjHHrBo1Ur049n40ZYvz7EJ//b38wyMTHEJz5D8eLFufvuu4Fofv89ioiIQjJDacECs3TRpLBk8ODBbNiwgapVq/LOO+9Yc6hl5dArUoaSo3BQrRqcey7s3w+bNlkS0b49xMXBsmUhHsyRe2655RYuvPBCtm7dyocffmhbjsPhyAXOoRc8IiPh2mvN85BHlW680SxnzjSRJUv06dMHqAJEULnyaaKjrUkJHK4+KWyZPXs2o0aNSm9fX7ZsWWtasnLoOUPJEXaIwKWXmufWSoSKFTtTLGVpkGBOREZGMmiQmYv5/PPPc/r0acuKHA6Hwy7W6pSqVTPdJI4etVhgC7Vr16Zly5sBiI7ebU1HQPFFlJyhFFbs27ePO++8E4Du3btbn5eUFc5QcoQlrVqZ5Q8/WBTh8TolMDnp1atXZ926dXzyySe25TgcDodVrrvOONvmzzc2S0jxRZUsj5Zo1+5WAPbu/ZHU1FSrWgrMzp1mKFSpUtCwoW01jlyiqtxzzz3s3r2btm3bcvPNN9uWlCV5NpREpE4whDgcecFnKFltOuczlGbNMgNoPUh0dDRPPPEEACNGjHA1Ig6Ho0hTvry5fyQnm5lKIcXfULL4XVyuXGMAjh1bx+yQX4QA44smtW5tcisdYcHbb79NYmIipUuX5oMPPiDSw/93+YkoBSzPSESqiMg0ETkkIodF5BMRyXXLEhGpLyIfi8g+ETkhIutE5NFA6XN4l+bNjVdw+XKwNlO1Th3TKvzAATMV3KP06tWLSpUqsWLFCr7wcPTL4ciIc8w5goEv/S7kdUrNmpkOeL/+am5elti50/fT71feeustazoCghs0G3asW7eOxx57DID//Oc/VKtWzbKi7MmToSQilwDVRKTAiaAiEg/MAeoBdwE9gDrAXBEpnov9mwOLgFjgHuB6YDTgXbPUETBKljRR9pQUq/ebM93vPGyAxMXF8fjjjwMuquQIO7xZAOgIa/zbhIf06zAiAv76V/PcYvrdjh0+OTtJTExkz5491rQUGFefFFYkJydzxx13cOLECe644w7+7hvG7GEyNZRE5FwRGSMiX4jInLTHEmABMByYJyIr/F77WkT+JyIDRaRYLs99L1AT6KKq01U1EbgRqAbcl92OIhIBvA98rao3pu0/V1XfUtUxuTy/I8yx3tABwqJOCeD++++nXLlyLFy4kPnz59uW43DkSCAdcw6HPxdfDOecY8pbNmwI8ck7dzZLi4bSr7+aZbt2NUlJSeG9996zpqVAHDkCP/1kUu5atrStxpELRowYwdKlS6latSqvv/66bTm5IquI0tvA7UAJwNdQfDfwuKoOBf4OrAU07fUIoDLwJPB8Ls99I/CDqm70rVDVLRhjrHMO+7YH6gPOKCrCeKKhw5VXQmwsLF0Ke/daFJI9JUqU4NFHTVbqiBEjLKtxOM4QIsecw5GOyJmmpXPnhvjkV14JxYubVIjt20N8coPPUOrd2/RKf/vtt8OzqcMPP0BqqklpLJ5jIpLDMosXL2b48OGICBMmTKB06dK2JeWKrAylBkB1VW2nqleqaoe0yM2/AFR1mqp2V9Wr0l6/UlVbYYyXK3N57gbAqkzWrwYuymFfn4cxTkR+EJFkEfldRF51N86igy+iZNVQio+Hyy83+Rtff21RSM48/PDDlChRgtmzZ7N06VLbchwOH6FwzDkcf+LKtF8qITeU4uLODHOaMSPEJ4ekJOPTi4qC7t3bU6VKFTZv3sycOXNCrqXALFxolq4+yfMcP36cHj16cPr0afr27Ut7n6ciDIjKYv0RVc1zibyq7hSR3LolygF/ZLL+AJDTxKnz0pZTgdeBgUBz4BnMJLWbMtsps2m/3bt359Zbb82d4gCSaHE6t9fJ7bU5fRqKFbue7dujGT9+JuXK2RniV7tyZRoAW999lxXFgmunF/Rz07FjR6ZPn84jjzzCgAEDAqTKG7i/qayxcW0mT57M1KlTc7OpzzGX6T1HVacB0zKuF5HzAW/nvOYD331q6NChbuhsEPEZSvPmGT9XJj8PgseNN8Inn0BiIjz4YAhPbNINwfSUiImJ5J577mHo0KG8/fbbdOzYMaRaCowv796XXuLwLAMGDGD9+vU0aNDAs1ktCQkJDBs27OwXfFNo/R9AXGbrc/PI7b7AKeD5TNYPB1Jy2PctjHfx1QzrB6Str5/JPuoVpk+fbluCZ8nrtenQQRVU//e/IAnKDcuWGRHVqqmmpgbtNIH43OzcuVNjYmJURHTNmjUBUOUN3N9U1njt2qR9F/t/N/+kOdwvsnoUZF8vPtx9KnSkpqpWqmS+ulevztu+Bb42e/eqiqjGxKgePVqwY+WRuXPNe77sMvPvHTt2aEREhEZHR+tvv/1W4OOH7HOTmqpavrx5M1u2hOacBaSw/01lxddff62ARkVF6Y8//pjpNl67Nv73qUxT71Q1Kb8WWR72/YPMI0dZRZr82Z+2/CrD+llpy6a51OAIczwxT+nii6FcOdi2DTZvtigkZ8477zx69uyJqvLiiy/aluNwABTEHexcyY58IWIx/a5CBTPj4tQpM/k2hPjqky64wLe8gBtuuIHk5GQmTJgQUi0FYtMm2L8fKlYEj7eXLsocOXKEu+++G4AhQ4bQtGn4/TzPzxylQLEak3KRkYuAX3Kxb3aEYVWiIz94ok4pIgKuuso8D4PhfU888QQRERFMnDiRHb4+sQ6HJULkmHM4zsKaoQRn6pS+DG0H/IyGEkDv3r0BGD9+vC+y6X183tFLLw1x3qQjL/Tr149t27ZxySWXMHDgQNty8kW+DSUR6SIi40XkBRG5VUQuFJHBeTjE/wGtRKSm3zGrA5elvZYdXwAngWszrE8baoOrVC8i+AylJUtMzZI1fLndYWAo1apVi27dupGSksLo0aNty3E4HA4r+Ncphbzp2zXXmOWsWdlvF2B8vrEqVc6su/7666lYsSJr1qxh8eLFIdWTb1x9kueZNWsWb731FjExMbz33ntER0fblpQvChJRGgssAQ4CXYAZQEIe9n8b2AokikhnEbkRSAR2AG/6NhKRaiKSIiJDfOtUdT8wErhfRJ4TkY4iMhAYAkxQv5bjjsLNuedCjRpw7BiszinOGEx8htKcOZYtttzh8+y8/fbb7PVwW3OHAwLimHM4zqJWLRNZ2b8fVmXWgzeYtGplJqevXRvSNuGZRZSio6Pp0aMHAO+++27ItBQIXxqJz1vq8BSHDh1Kj1QOGzaMhg0bWlaUfwpiKM1X1TdUdaSaVuF1gTK53VlVjwEdgPXAROBDYAvQQVWP+m0qQGQmWp8BngC6AZ8DfYBRmEG2jiJEixZmuWyZRRE1axqL7cABMwDP4zRp0oTrr7+e48eP89prr9mW43DkREEdcw7HWVitU4qOPpOyHcL0O5+h5B9RAujVqxcAU6ZM4fjx4yHTky+Sksx9VuTMDwCHp+jXrx+//vorLVu2pF+/frblFIiCGEpviMgjIlLCtyKDgZMjqrpdVbuqailVLamqXVR1a4ZttqqqqGpChvWqqmNUtbaqxqhqNVUdoqrJBXhPjjCkWTOz/PFHuzrCKf0OYNCgQQC8/vrrHDlyxLIahyNbCuSYcziywmqdki/9LoSGki/1zj+iBNCgQQMuvfRSDh8+zCeffBIyPfnip58gORnq14dSpWyrcWTgq6++Yty4ccTExDB+/HiiorKaRBQeFMRQeh7j0dsjIstF5B0RCe1AAIcDDxlKYdTQAaBt27Zcdtll/PHHH7z11lu25Tgc2VFgx5zDkRk+Q2n+fAtZ076GDl9/DSkpQT+d/7DZc889+3VfVGn8+PFB11Ig/Bs5ODzF0aNHufdek9g1dOhQLrroIsuKCk5BDKVYVS2HafHdC/gOuDAgqhyOPODrNvnTT5bLgzp0MMvvvjN3pDDAF1UaM2YMJ0/aGdjrcOQC55hzBIXq1c3j4EFYsSLEJ69ZE2rXNidfsiTop/MfNhsZefbrf//734mLi2POnDls2bIl6HryjTOUPMuTTz7Jtm3baNq0Kf3797ctJyAUxFCaISIlVTVZVX9S1fGq+kjAlDkcuaRCBahaFY4fh/XrLQo55xwzUykpCRYutCgk91x//fU0bNiQXbt28cEHH9iW43BkhXPMOYKGf/e7kBPCNuGZNXLwp3Tp0nTt2hXA2zOVnKHkSb799ltee+01oqKiePfdd8O2y11GCmIo9QJ+EpFhInKtiJwTKFEOR17xpd8tX25XR7jVKYlIege8F154gdNh0LHPUSQpMo45EUFESEhIsC2lyNCunVla8W+FsE14Vo0c/PENBx0/fjypIe+Zngv27jWD3ePjIYw7qRU2Tpw4wT333AOYrroXX3yxZUV5JyEhIf3715+CGEp/AAOBaKAvsEpEPD290t2ACi+eqVMKM0MJoHv37lSvXp0NGzbwv//9z7YcRyEkqxtQHigyjjlVRVXdfSqEtGljlgsWQMjnrV55pSkaWrQI/vgjqKfKqpGDP+3bt6datWps376d+fPnB1VPvvDNeWre3Fw3hyd49tlnWb9+PfXr12fw4PCc3JCQkJD+/etPQQylc4DSqvqkql6nqucCno6DuhtQ4cVXp2TdULrsMvPl/eOPcPiwZTG5IyoqKj2XeOTIkeEzmd0RNmR1A8oDYeeYc4QPdetCuXKwZw9s2xbik5csae4bqammqUMQySn1DiAiIiJ9ppIn0+/c/CTPsWLFCkaNGoWI8M477xAbG2tbUkApiKG0S1XH+a9Q1V0F1ONw5Av/iJLV3/klSpi5DqdPm6YOYUKvXr2oWLEiP/74I7PDKBrmKDKEnWPOET6IQOvW5vn331sQcPXVZhkiQym71DuAO++8E4Bp06Zx9KjHmku6+iRPcfr0ae655x5SUlJ48MEHae37QypEFMRQ+rwwpz84wovKlU2700OHwHqzHquDOfJHsWLFeOyxxwB4/vnnLatxOM7COeYcQcWXfmelTilE94zcpN4B1KlThzZt2nDs2DFvzVRKTT3THdAZSp7g1VdfZenSpVxwwQU899xztuUEhYIYSj2BpSLyTGHPGXd4HxEP1SmFoaEE0KdPH0qWLMmcOXNY7MsDdzi8gXPMOYKKVUOpRQsoXhzWrYNdwbP/c5N65+Ouu+4CPJZ+t2mTaaVeuXLu3oQjqGzZsiW9Huk///kPJUuWtKwoOBS0mUM/IAqXM+7wAJ4xlNq0geho04Lv4EHLYnJPmTJl6NOnD2A64DkcHqInzjHnCCItWpjZQitWwLFjIT55dDS0bWueB6lH+cmT8Pvv5j1WqpTz9t26dSM2Npa5c+eyffv2oGjKM0uXmmWLFnZ1OFBV+vTpw/Hjx7n11lu54YYbbEsKGgUxlDqp6scuZ9zhFTxjKMXHm7SA1FT49lvLYvLGY489RmxsLP/73/9Yu3atbTkOhw/nmHMEleLFoUkTU14agtmvZxPkTISchs1mpEyZMnTp0gVVZeLEiUHRlGd8/zHNm9vV4WDKlCl8+eWXlC1blpdfftm2nKCSb0NJVQ+IyIUicoWIFE9b53LGHdbwTEMHgPbtzdLKBMP8U7lyZXr27Imq8uKLL9qW43D4cI45R9Dxpd9ZaegQZEMpt40c/PE1dZgwYYI3uqH6IkrOULLKgQMH0muaR40axbnnnmtZUXDJt6EkIgOAxcBU4HcReU4KMCTD4Sgo1apB2bJmHp3Pe2aNMK1TAujfvz8RERF88MEH7NjhnPYO+zjHnCMU+Bp2WalTatbMtArftOlM14UAkttGDv5cc801VKpUiQ0bNvCDry23LU6fPpMu4gwlqwwYMIDff/+dyy+/PH1AcWGmIKl3TYByqloJuAgoBgwKiCqHIx94qqFD69YQEwM//QQHDlgWkzdq1apFt27dSE5OZsyYMbblOBzOMecICf4RpZAHUKKi4PLLzfMgONjy0sjhjKQobr/9dgDef//9gGvKE2vXmuKxatXgHFeiaItvvvmGcePGER0dzZtvvlmQIeJhQ0EMpW2qehpAVbepal/gvMDIcjjyh2cMpWLFoFUrc7cNszolMB4jgLfeeot9+/ZZVuNwFB3HnIggIm4wugWqVTMN1fbvhw0bLAjo0MEsg2go5SX1Ds6k302dOpWTJ08GWFUecGl31jl58iT33XcfAIMGDaJevXqWFQWWhISE9O9ffwpiKJUUkc4Z1uWiRNAe7gZU+PGMoQRn6pTCMP3u4osvplOnThw/fpzXXnvNthxHmJPVDSgPFBnHnKqiqu4+ZQGRwjtPKT+pdwCNGzemSZMm/PHHH3z22WcB15VrnKFknVGjRrF27Vrq1q3LoEGFz0+VkJCQ/v3rT0EMpSFAPxHZLiL/FZGvMB2JPIu7ARV+mjY1yxUr7OoAztz0wqyhg48nn3wSMAPljhw5YlmNI5zJ6gaUB8LOMecIT6zWKTVpYgptt20L+OR0X91ufsYP9ejRA8Bu9zvXGtwqGzduZPjw4YCZmRQXF2dZUegoUNc74HKgF7AM+BB4MEC6HI58Ubs2xMXB9u0eGGHUqhXExhqrbf9+y2LyTtu2bWnbti0HDx7kzTfftC3HUbQJO8ecIzyx2vkuIgKuuMI8D3BUyWconX9+3ve97bbbiIiI4LPPPmO/jXtZcrKp94UzaSOOkKGqPPjgg5w8eZIePXpwpc8JXEQoSNe7YkBLYIOqPqeq7wEuJuqwSmQkNGxonq9caVcLcXFn3JPz59vVkk984fUxY8bYzU93FGmcY84RKpo1M314Vq+GQ4csCAhC+l1yMuzZY1ILczNsNiOVK1fm6quvJjk5malTpwZMV65ZvRqSkowntGzZ0J+/iPPxxx8za9YsypQpw0svvWRbTsgpSOrdt8AE4AcR2Zfm4ftPYGQ5HPmnSROz9ET6nc87+M03dnXkk06dOtGkSRN2797NhAkTbMtxFFFsOeZEJEJEBonIVhFJEpEVItI1F/uVEpEhIrJQRPaLyMG0512CrdlRMGJjzT1EFZYvtyDA31AKUOu9PXvMoc49F6Kj83cMX1MHK93vXH2SNQ4dOpQ+M+mFF16gYsWKlhWFnoIYSsdUtZ6qngfUA14EPgiMLIcj/zRubJY//2xXB3DGUArTiJKIMHDgQMB8SaakpFhW5Cii2HLMPQskAK8DnYAfgI9F5Poc9qsKPADMB+4AugPrgf+JiIuEeRzf7/ElSyycvEEDKF/e5MoFqE6pIPVJPrp06UKJEiVYtGgR69evD4iuXOP7j3D1SSHn6aefZvfu3bRu3Zp77rnHthwrFMRQ+kpESgOo6j5V/UpVXwyQLocj33jKUGrVyrjwVqzwQNFU/rjllluoXbs2mzdv5qOPPrItx1E0CbljTkQqAv2A51X1JVWdq6r3AXOB53PYfQtQU1UHqeoXqvqlqvYE5gADgqnbUXB8v8d9gYyQEhEBbdua5wEaLVGQ+iQf8fHx3HzzzYCFpg4uomSFH3/8kX/9619ERkbyn//8h4iIgpgM4UtB3vVdwHIRGSYi14qImwDm8ASNGpnlypWQmmpXC8WKQcuWJu/hu+8si8kfkZGR6XOVRo4cSar1i+oogthwzF0LxHC2QfYB0EhEamS1o6oeU9Xjmby0lELa1rww4fs9bsVQAmjXziwDZCj5ZigVxFCCM+mF5leUAAAgAElEQVR3EydODN19ICnJ3MxFzrS1dQSd06dP06dPH1JTU3n00Udp7PNAF0EKYigdwHjGooG+wCoR2REQVQ5HAShf3twQjh+HzZttqyHs0+/A3CAvuOACVq1axYwZM2zLcRQ9bDjmGgAngY0Z1q9OW16Uj2NeDqwtiChH8Klf3/i4Nm+GAwcsCAiwoRSIiBLAFVdcQZUqVdi2bRvfhcrxt3Kl6UZRrx6ULBmaczoYN24cixcv5vzzzy/yI3UKYih1UtWPVfVJVb1OVc8FLg2UMIejIHgq/S7MGzoAxMTE0K9fPwBGjBhRkHk4Dkd+sOGYKwcc1LM/7Af8Xs81IvIPoBUwMgDaHEEkKupM8MJKVKlpU4iPh/Xr4bffCny4QNQoAURERHDHHXcAIWzq4OqTQs7vv/+eXps8duxYShZxAzXfcyjS2rVmXLerYHIcjsDQuDF88YUpDfrb3yyLad3a9C1ftgyOHAlbr9i9997LiBEjWLJkCV9//TUdO3a0LclRdOiUds/52LdCRPKUwiYiHYGvcrHpfFVtnzd5OZ67PfAq8L6qfpjDtmet6969O7feemsgJeWKxMTEkJ/TK5Qr1xCoxfvv/8KJExvOej3Y16ZN7dqc8/PPLB4zht2+4U75ZMWKy4AKbN26gMTEfQU61nnnmT+7yZMnc8011xAbG3vWNoG8Nhd/8gnVgJUxMWwuBJ/HcPibeuWVVzh48CBNmzYlKioqZJptXJvJkyfn3PLeNy29sD8A9T2GDh2qNpk+fbrV83uZQF2bSZNUQbVLl4AcruC0bGkEzZyZ70N44XPz3HPPKaDt27e3LeVPeOHaeBUvXJuhQ4eq/3ew2rkHxGMaQeT0qJq2/QtAEiAZjtMy7X3ckMvztgAOA58D0TlsG+hLn2+88LmxycSJ5iv7ppvOfi0k1yYhwQh49NECH6pWLXOoNWsCoEtVmzdvroBOmTLlrNcCfm0aNzbiv/susMe1QDj8TX3zzTcKaGxsrG7YsCFk5/XatfG/TxWpFha+N13U8y2LAp5KvYNCkX4H8MADD1C6dGnmzZvHwoULbctxhAkJCQn+xoAVVPW4qq7NxWN72i6rgVigVoZD+WqTfsnpnCLSCPgS+AnoqqrJgXo/juBitUU4BKxOSTVwNUo+QjZT6cQJM2w2IgIuvji453KQnJzMAw88AMDAgQOpXbu2ZUXeIKCGkoh0FpFSgTymw5Ef6tY109U3bzbZbtYpBA0dAEqXLs1DDz0EmFolh6MQMxNIBm7PsP4OYJWqZjvkRkTqYFL9NgN/UdUTQVHpCAp165os6V9/NQNbQ06rVqZY6qef4PDhfB/mjz9M47hSpQKX9f33v/+dqKgovvzyS34LQA1Vlvz8M5w+bRo5FC8evPM4AHjttddYtWoVNWvWTO906wiwoYQZqrdQRNoG+LgOR56IjoaL0vy+q1bZ1QLAZZeZ9qaLF5t2fGHMY489Rnx8PJ9//jnLli2zLcdRRAm2Y05VfwfGAINE5J8i0l5E/g10AAZl0PK1iGz0+3dFjJEUAwwFLhKRVn6Psws7HJ4iIgIuucQ8t/I1Fx9vBKSmwvff5/swgY4mAZxzzjl06tSJ06dPM3ny5MAdOCM//miWvv8IR9DYuXMnQ4cOBeDVV1+lWLFilhV5h3wbSiJyu4jU9F+nqrdh8rHLF1SYw1FQPJV+V6aMSR1IToZFi2yrKRAVKlSgT58+AAwfPtyyGkcRJhSOuaeA4cCjmBS6y4Buqvpphu0i+XNzpIuAakBZ4FPg+wyPykHU7AgQhWGeUqBmKGUkJOl3PgvVGUpB5/HHH+fo0aN07tyZG264wbYcT1GQiNJjwLNpnrShIlIeQFVPqGquWleISBURmSYih0TksIh8IiJV8ypERAaKiIpIeE70dAQFn6G0YoVdHekUkvQ7gH79+hEXF8f06dP52ROWqKMwY8sxp6qnVXW4qlZT1VhVbayq0zLZrr2qVvf79zxVlWweW4Ol2RE4rNcpXX65WRbAUApGRAngL3/5C6VLl2b58uWsClbahjOUQsLXX3/N1KlTKVasGK+88optOZ6jIIbSlap6u6peBcwG3hSR+3K7s4jEA3MwXYbuAnoAdYC5IpLrZNS0m+dg4Pe8iHcUfpo0MUvP/I733fQKgaFUqVIl7r33XsDVKjlCQoEdcw5HXvGN7lm61DRFCDmXXWaWixbByZP5OkSgZihlJC4uju7duwNBiiolJZm8eRHXyCGInDp1Kr3uePDgwVSrVs2yIu+Rb0NJVY/6/XMLMA14QkQ+FpGYXBziXqAm0EVVp6fd7G7EpCvk2uAC/g18CKzJwz6OIoB/6p0n5qP6DKUffsj3Tc9LPPHEE8TExPDxxx+zZo3783MElQI55hyO/FCjBpQta2a++gyOkFKuHDRsaO4X+QxrBSuiBGfS7z744ANSUlICe/CVKyElxTRyKFEisMd2pPPyyy+zdu1a6taty+OPP25bjicpSI3SfSIyUUS2Yrr6PAokAt8BY3NxiBuBH1Q1vQA2rYvQAqBzLjXcBjQjQ2GtwwFQsSKce67perdtm201QPny0KCB8ZRZS3oPHBdccAG9evVCVXnuuedsy3EUYgLgmHM48oyIB9LvClinFKwaJYA2bdpQu3Ztdu/ezezZswN7cJd2F3R27NjBM888A5iOd5kND3YULPXuUWAlplVqaVVtrar/VNVXgLhc7N8AyCyxdTVn5lRkiYiUBV4GnlAzsd3hOAvP1imF+TwlHwMHDiQyMpJJkyaxYcPZ0+sdjkAQAMecw5EvrDd0aJvWq2TBgnztHsyIkoikR5UmTJgQ2IM7Qyno/POf/+T48ePcfPPNXHPNNbbleJaCGEo3qeqLqvqdqqbnEaXljtfMZj8f5YA/Mll/ANMpKCdGAeuB93KxraOI0qiRWXqiRTicSb8rJIZS9erVueuuu0hNTXW1So5gUlDHXNggIoiIG4zuEXy/05cvtyTAV6f0/femVXgeCVaNko8ePXoAMH36dA4dOhS4AztDKajMmjWLadOmER8fz5gxY2zL8QQJCQnp37/+RGWxfY6o6rosXjoFvJTf4+YGEWkH3Ak00zyMes/45gG6d+/OrbfeGkB1uSMx0dUfZ0Ugr01yclWgKV9++SsNG9qf+RN3/DjXAinz5vH5J5+gkZF52t+Ln5uWLVvy3nvvMXHiRFq1akXlynY6H3vx2ngFG9dm8uTJTJ06NVCHuymze04eHHNhQx5uaY4Q0LSpWVozlKpWNeGgnTth3TqoXz/XuyYlwf79Zq7gOecER1716tVp37498+bN46OPPqJixYoFP+jJk2caOfj+AxwB4+TJkzz88MMADBkyhCpVqlhW5A0SEhLSHVT+9kKWhpKIVAdeBy7ApDckqOo+EYkDrgZOAPNVNdl/P1U9gpkbkRN/kHnkKKtIkz9vAu8Av4pImbR1UUBk2r9P+Ee5/LTlQlbwSUxMpHPnXJVhFTkCfW3OOw9eew3++OMCOncOkkstrzz3HFEbN3Jj1apn8jpygZc/N4sXL+bdd99l0aJFjB8/PuTn9/K1sY2ta9O5c2emTJly1vrMHFY5YdMx5yjaVK8OpUrBnj3mUalSiAWIQJs28PHHJv0uD4aSL5pUubIZoBssevbsybx585gwYQL9+/cv+AFXrjQzB10jh6AwZswY1q9fz4UXXkjfvn1ty/E82f3p/Au4HmgMPIBp210WWA5Mxwzf2y0i3fN57tWYOqWMXAT8ksO+9YH7MQaV73EZ0CrteZ98anIUMi66yNxn1q6FU6dsq0mjkKXfATz11FNERkYyceJENm3aZFuOI8wQkeoi8qmI/CQir4tIhbT1cSLyVxHpKCLRGfdT1SOZDH91OAJGRMSZ7tQ//WRJhC/9Lo91SsGsT/Kna9euFC9enAULFrB79+6CH9Cl3QWN7du38+yzzwLw+uuvExPjeuHkRHaG0mXAX1Q1AmgJnMREcpKB/sAwTPehD0SkfT7O/X9AK/8hgmlRrMvSXsuOKzN5rMA0h7gS0xHJ4aB4cahZ03QZ9UyvgULW0AGgZs2a3HnnnZw+fdrVKjnyQ7Adcw5HvvEZStbrlPJpKAWrPslHiRIl6Nq1KwBz584t+AGdoRQ0+vbty4kTJ+jWrRsdO3a0LScsyM5QOqiqnwOo6lJMEW1XjPE0RlWfUdUWwGhMoW1eeRvYCiSKSGcRuRHTxWgHxiADQESqiUiKiAzxrUubev6nB3AQOJT271/zocdRSGnY0CxXrrSrIx3/aev5KM71Kr6o0vvvv++iSo68EmzHnMORb3xlMtYiSk2aQHy88fbt3Zvr3UIVUQK46667AGMopRb0vuYMpaDw5Zdf8sknn1C8eHFGjx5tW07YkJ2h9Kc6IVVdC+xU1e0ZthsKNMzriVX1GNAB07luImZo7BagQ4aZGQJE5qDV4cgSn6Hkmc531apBlSpw4AD8klOWafhQq1at9KjS8OHDbctxhBfBdsw5HPnGekQpOhpatjTPFy7M9W7BnKGUkfbt21O1alX27t3LvHnz8n+gU6eMV9M1cggo/g0chg4dygXBDjMWIrIzPjLrfLD/rI1M04Tj+Tm5qm5X1a6qWkpVS6pqF1XdmmGbraoqqpqQw7Haq2rb/OhwFG481yJc5ExUaf58u1oCzODBg9OjSuvXr7ctxxE+BNUx53AUhIsuMrbKxo1mgLkV8pF+F8qIUkREBD179gQoWEMfXyOHunWhZMnAiHMwevRoNmzYQL169Xj0UedrygvZGUqNRGSZiLwjIg+JyOXZbH86CNocjoDguYgSFMqGDmBqlXr16kVqairDhg2zLccRPgTdMedw5JeYGGjQAFTh558tiSiAoRSq4IHPUJo2bVr+Zyq5tLuAs3Xr1vQsD9fAIe9kZygdxeSHdwdeBeZijKeNIjJNRAaLyPUiEgJfhcORf+rUMd7AzZvh2DHbatLwN5Q80rY+UAwePJjo6GgmT57M6tWrbctxhAfOMefwNNbnKbVubbIRli41A5JyQSgjSgA1atSgUaNGJCUlZToaIFc4Qyng+Bo4dO/enauuusq2nLAjO0Npi6q2AkpiWnbfDrwAbMAU3j4DzAC2A02CrNPhyDcxMXDhhcYe8UxJ0IUXQsWKZjDHxo221QSUatWq8Y9//ANVTR/e5nDkgHPMpeGbDO/+dryF9RbhZcqYsNapU/DjjzlunpoKu3aZ5+edF2Rtfvg6qb3zzjv5O4AzlALK559/zvTp0ylRooRr4JADCQkJ6d+//mRnKLUFUMNaVZ2iqoNUtZOqVgYqY9q5PgXsC5ZwhyMQeC79rhDXKQE8+eSTxMXFMW3aNH6y9svCEUY4x1waquqcDB7EekQJzOBZyFX63e+/m7EY5ctDXFyQdfnRqlUrSpcuzZIlS1iZ11azJ0+a3EbXyCEgJCUl8cgjjwAwbNgwzg9VaDFMSUhISP/+9SdLQ0lVs80DV9XfVPVLVX0e2BUYmcHFeeqKLp5r6ACF2lA677zz6NPHzH0eMmRIDls7CjtZeer8cI45h6dpkmaer1oFKSlZfo6DSx7qlEKdducjNjaWW2+9FchHU4dVq840cihVKgjqihYvvvgimzZtokGDBukd7xx5J1Att7sG6DhBxXnqii6eiyjBmcGz8+cXujolgIEDBxIfH8+MGTNYtGiRbTkOi2TlqfNRGB1zjsJFqVJQq5bJfPv1V0vd2HyG0sKFOd4zfK3BbXSBvvvuuwGYOHEip06dyv2OLu0uYGzevJmRI0cC8MYbbxAdHW1ZUfiSqaEkInXychBV3ZzffR2OUOBJQ6lhQyhXDnbsgK1bbasJOBUrVkxvQzpo0KAsfyQ7HHkkLBxzjsKHr05p8+bSdgTUrAnnnmuGzm7YkO2mPkOpSpUQ6MpA8+bNadiwIfv27ePTTz/N/Y7OUAoIqsrDDz9MUlISd9xxB5f7slcc+SKriNLHBTjmtALs63AEherVoXhxU9x64IBtNWlEREC7duZ5IUy/A+jfvz9lypRh7ty5zJ4927YchwdxjjlHuOArm9myxZKhJHKmTun777PddMcOs7QRURKR9KjSuHHjcr+jM5QCQmJiIp9//jmlS5dm1KhRtuWEPVkZSqVFpFJeDyYiTYDUgklyOAJPRIRpGAQeiyr5p98VQsqWLcvAgQMBF1VyZIlzzDnCAusRJThjKC1cmO1mNiNKAD169CAmJoaZM2eybdu2nHfwNXIA18ihABw7diy9gcOIESOoVCnPP+UdGcjKUFoAbBOR7SKyWUQ2ichPIvIcgIj0FZEfRGRD2uubRWQ3sAzTmcjh8ByeTL8r5IYSwMMPP0zlypVZtmwZ//3vf23LcXgP55hzhAX+ESVrPp9cGko2I0oAFSpUoGvXrqhq7qJKrpFDQHj22WfZsWMHzZo14/7777ctp1CQlaF0HzAQ+AKYD3wDbAL+ISLjgWHA78B3aa/PAz4C7gQSgqrY4cgnnjSUmjSB0qVhyxbYvt22mqAQHx+f3vlu8ODBpKSkWFbk8BjOMecICypXNuPvjh+PtldW2qyZGQ64ejUcPJjlZj5DyVZECeC+++4DzEylHL/3fWl3zZsHWVXh5ZdffmH06NGICG+88QaRkZG2JRUKojJbqarHgJczrheRmpi5Fhep6roga3M4AoonDaXISGjbFj77zESVevSwrSgo9O7dm5deeol169YxYcIEevfubVuSwzvchzF66gExaetKYRxzlTHNG+YBa9JeU+AIsAiYElKljiKNiPFtffWVyRKrUcOCiLg4Y0wsXAg//ADXXXfWJqmpZ9qD24ooAVx++eVceOGFrFu3jk8//ZQuXbpkvbGrTyoQqsoDDzxASkoK9913H5deeqltSYWGPLUHTyui3eiMJEc44jOUVq70WDfu9u3NshCn30VHR/Pss88CMHToUE6cOGFZkcMrqOoxVX1ZVe9T1V5pj65AS0yWQgtVvdHvtbtV9VFVnaSqLvXOEVIaNzbLFSssisgh/W7vXtPGvFw5iI8Poa4MiAj/+Mc/AHjzzTez39gZSgVi4sSJzJ8/nwoVKvDcc8/ZllOoyM8cpUI9Fd1ReKlUyUwpP3jQdL/zDEWgTgmge/fuNGvWjJ07dzJ27Fjbchwep6g65txgdG/jGzzr6ztghRwMJduNHPy56667iI2N5csvv2RrVvmKp04ZDya4Rg75YP/+/Tz++OMAvPTSS5QrV86yovAkq8HoeTaUVDUpYKocjhAi4tH0u6ZNoWRJ2LjRYxZcYImIiEhvVTpy5Ej27t1rWZEjDChyjjk3GN3beCKi1Lq1WS5aBJnU/thu5OBP+fLlufnmm7Nv6rBqlTGWXCOHfDFw4ED27dvHFVdcwZ133mlbTtiS1WD0/ESU0hGRCBEZWCBlIcR56hyeNJSios5MXC/kUaUOHTrQqVMnjhw5kp6K5yj8ZOWp80dE2mVc5xxzDq9Rvz5ERqayaRMcPWpJRKVKZvjs0aOZ3sy8FFEC0tPv3nnnHZKTk8/eYOlSs3Rpd3lmwYIFjBs3jujoaP79739n+x3ryB85GkoiUltEeorIWZVhafnh34rIY0FRF2Ccp87hSUMJikz6HcCLL75IREQE//73v9mQw3R5R+EgK09dBrLtZSsiJUSkVmCVORx5IyYGLrjgCKqW7yPZpN95KaIE0K5dO+rXr8+ePXtITEw8ewPX8S5fJCcnp7cAf+KJJ6hfv75lRYWTbA2ltI5Dy4B3gYUi8k4mmy0C/hkEbQ5HwHGGkn0aNmxIz549SUlJYdCgQbblOLxDKRHpntWLqnoUeFhEiodQk8NxFtWrHwa8W6fktYiSiPDAAw8A8Nprr529wZIlZukiSnlizJgxrFq1ipo1a/LUU0/ZllNoySmidDOwCvgb8DBwk4ikJ0CKSB3gTaBY0BQ6HAGkQQOzXL3atFD1DM2bQ/HisHYt7N5tW03QeeaZZyhWrBj//e9/WZjD4ERHkSEVmCQic0XkURGpnck2/wPCIoPBUXipUeMQ4N3Od16LKIFp6lCyZEm++eYbVvhfuKQk08ghIsIZSnlg06ZNDBs2DIB//etfFCvmfoYHi5wMpYuBB1R1uqq+AfwF6CciZUTkK2AtcBfwdJB1OhwBoWxZOP98OHHCzHj1DNHRZp4SwLx5VqWEgvPPPz+9S0/fvn1J9ZTV6rDEISAJaI6Z47dORNaIyIsicrmIRADbMY47h8Ma1ap5IKLUsCGUKGFuZBmca16LKAGULFmSXr16ARmiSj/9ZBpS1K9v3o8jR1SVPn36cOLECW677Tauy2SWliNw5GQoVcQMmAVAVRcCK4AvgHbAOKCBqv4naAodjgDjP0/JU3ToYJZz5tjVESIGDBhA5cqVWbx4MZMmTbItx2GfrcAQoBxwDfAaEAn0A+YCe4HPgcwiTQ5HyKhR44yhZG0mX2QktGplnn//ffrq1NQzhtL551vQlQ0PPvggAB9++CH79+83K31pdy1aWFIVfkyaNImvvvqKsmXL8vLLL9uWU+jJyVAqAWScPf0/oBbQLG1AYJGaceEIfzxbp3TllWY5d65dHSGiRIkSjBw5EjDtTY8dO2ZZkcMynwMXqGqyqs5W1cdUtS5QHxgArATqYu5LDoc1ypQ5ScWKcPgwZDUaKCT40u8WLEhftXcvJCebmYE2h81mRt26denUqRNJSUlnWoU7QylP7N+/n8ceM9nHo0ePpmLFipYVFX5yMpQigJ9F5GcRGSEilwHfA/er6i/Bl+dwBB7PGkpNm5oZEps2wfbtttWEhB49enDJJZewc+fO9BlLjqKJqv4AxIpIiQzr16nqS6raHmiBSdFzOKziicGzvrESfoaSF+uT/Hn44YcBeOONN0hJSXGGUh7p378/+/bto3379vTs2dO2nCJBTobScUxO+DnAIOAbjFevq4jcKiKlg6zP4Qg4jRqZpecMpaioM93vikhUKSIigrFjxwKmbfgO313eUVTph4kaZYqq/gjMDJ0chyNzPDF4tlUr0wThxx9N4S3erE/y59prr6VOnTps376dz6dMgXXrTI2u74I6smT27NmMHz+e2NhY3nzzTTczKUTkZChtAm5X1cpAM0z++FqgG/Ah8JuIjBWR6ODKdDgCR/36IGK+n0+dsq0mA0Us/Q6gbdu2dOvWjRMnTjBgwADbchwWUdXjacZQdowJiRhLuMHo4YEnIkqlShnPX3JyemTG6xGliIgIHnroIQDmjBpliryaNIHYWMvKvM2xY8e49957ARgyZAh162bpT3Lkk6wGo+dkKE0nzbunqj+p6ghVbYuJMN0GTAXuBEYGXrLDERzi46FWLdNoZ/1622oy4N/QwVqVcOh54YUXiIuLY/LkyXzzzTe25Tg8jKouta0hmLjB6OGBJyJKcFb6ndcjSgA9e/akVKlSxPqsTJd2lyNPPfUUW7du5eKLL6Z///625RRKshqMnq2hpKqzgUtFJDbD+oOqOkVV7wLOA04EWnAwcJ46hw/P1ik1amSqcHfsgM2bbasJGdWrV2fgwIEAPPTQQyZ33VFoyMpT53CEK/Xrm2zpTZvg6FGLQnxjJb77DvB+RAmgVKlS9OnTh3TzqGVLm3I8z/fff8+rr75KZGQk77zzDtHRLokrlOQUUQLTbahMVi+qahIwLGCKgojz1Dl8eNZQioiA9u3N8yLSJtzHE088QY0aNVi5ciX/+te/bMtxBJCsPHUOR7gSE2OMJVXL9xFfRGnhQkhNDYuIEsAjjzySbihtPeccq1q8zMmTJ+nduzeqSv/+/WnWrJltSUWOHA0lVT2sqr/lsI1z/zrCCs8aSlAk65QAihUrlt7YYciQIfz2W7ZfOw6Hw2EVT9QpVa1qwkcHD8KaNekRJa8bSudFRVENOAo8P326bTme5dlnn2XNmjXUrVuXoUOH2pZTJMlNRMnhKHR4dugsFNk6JYC//vWvXH/99Rw+fNg1dnBYR0QiRGSQiGwVkSQRWSEiXXO57/NpozUOisgJEVkrIkNExGPTbRz5xWcoeaVOKfXbBezcaVZ5bdjsWaQ1n1gGvDdxInv27LGrx4MsWbKE559/HhHhnXfeIS4uzrakIokzlBxFkjp1TEfSzZvBc3NO69WDSpXgt99g7VrbakKKiPDKK68QExPDhAkTWOA3H8ThsMCzQALwOtAJ+AH4WESuz8W+pYDxmMZHf8F0in0SmBwUpY6Q42voYDWiBOl1Sr9/vZLkZKhQAYoVs6wpJ9IMpT9q1+bkyZO8+uqrlgV5i6SkJO666y5Onz5N3759aeurRXOEHGcoOYokMTFw4YXm+S9eG50scib9rojVKQHUrl2bJ554AoD777+f5ORky4ocRRERqYiZ6/R82sDbuap6HzAXeD6n/VX1AVV9WVU/V9WvVfVZ4GXgRhGpEFz1jlDgn3pnNfifFlHasdDk3Xm5kUM6aYbSRXfeCZgBtEeOHLGpyFM8/fTTrFmzhnr16jF8+HDbcoo0Vg0lEakiItNE5JCIHBaRT0Skai72ay4ib6WlMhwXke0i8qGI1AiFbkfhwNPpd1ddZZazZ9vVYYknn3yS2rVrs2rVKkaPHm1bjqNoci0QA3yQYf0HQKN83m/2py1dXW8h4NxzoWJFOHwYtm2zKKRRIyhRgl93ma6SXq9PQhUWLwag7u23065dOw4dOuSa+KSxYMECRo8eTUREBO+99x7FPB8eLNxYM5TS8rTnAPWAu4AeQB1grogUz2H3vwMNgFcx6RADMQNxl4qI178iHB6hUSOz9KShdPXVZjlnjhkmWMQoVqwY//73vwEYNmwYm4tQq3SHZ2gAnAQ2Zli/Om15UW4OIiJRIlJCRDoC/wTeVdWDgZPpsIkn0u+ioqBVK3Zgfv54PqK0bRvs22dGYdSowdNPPw3AqFGjOHz4sGVxdjl27Bg9e/ZEVRkwYACXXnqpbUlFHpsRpXakyvIAACAASURBVHuBmkAXVZ2uqonAjUA14L4c9n1BVS9T1TdUdb6qTgKuA8qmHdfhyBFPdCzKiqpVTW7g4cPpnreiRseOHbnjjjtISkqiT58+rrW0I9SUAw7q2R+8A36vZ4uINASSgSPAV2mPfwRSpMMunmno0LYtv2IsJM9HlH74wSxbtgQROnbsSNu2bTlw4EB659Oiyj//+U82btxIo0aNXJc7jxBl8dw3Aj+oarq3TlW3iMgCoDMwJqsdVXVvJuu2ichewOu9XhwewX+yuqopDfIUV18N69bBV1+dmZVRxBg9ejSfffYZs2bNYsqUKdx66622JTnClLSIzle52HS+qrYP0Gk3Ai2A4kAbYBDmvnt7VjtkNpS3e/fuVj77iYmJIT9nuOC7NikpVYBmzJy5k8aNl1rTc45IekTpt9+WkZj4qzUtOX1uGn74IbWANWXKsD5t22uvvZbvvvuOF154gVq1alGiRIkQKA092V2bRYsW8dZbbxEdHU3v3r2ZOXNmCJXZx8b3zeTJk5k6dWr2G/mGAIb6AewB3sxk/RvA3nwcrz6gQL8sXlevMH36dNsSPEsor01qqmqZMqqgumtXyE6be/7v/4y41q1Vteh+bsaNG6eAVqxYUfft25fpNkX12uQGr12btO9iG/eceEyqd06PqmnbvwAkAZLhOC3T7jU35ENDz7R9W2XxeoCvdv7x2ufGS/hfm+XLzdd0nToWBamqHj6sbflGQXXu58etycjV56ZFC3PRZs/+0+oOHToooIMHDw6SOrtkd2127dql5cuXV0BffvnlEKryBl77vvG/T9mMKJUD/shk/QFMCl2uEZEo4D/AXuCdbLY7a53z1HmPUF6b88+/jIMHK/Dmmwtp2vSsQKVVok6coFNkJCxaxBcffgglShTJz025cuVo0KABq1evpmvXrvTt2zfT7YritcktnvXUhRBVPQ7kpd/+aiAWqMWf65R8tUn56ZfpCznUxrQad4Q59eubEqGNG82oieI5VVgHi5Il2RpdB5Kh6v7lmACmBzlxApYvh4gIk3rnx7PPPsucOXMYO3Ysjz76KBUqFI3mkKmpqfTs2ZP9+/dz9dVX88gjj9iW5PDDpqEUSF7HfCvcoKqZGV8AnqlxSExMpHPnzrZleJJQX5vZs2H1aoiPb4Mn/0veeAO+/ZYb4uNJhCL7uWnUqBGNGzdm/vz5PP744/z1r3/90+vubyprbF2bzp07M2XKlLPWZ+aw8igzMfVFtwPD/NbfAaxS1S35OOYVactNBdTm8AixsWb03apV5l6S4bd/yDh1CnYmVySC01RZ+xWeNZSWLoWUFJP7XrLkn15q06YN1113HTNnzmTUqFG88MILlkSGlldffZVZs2ZRvnx53nvvPSIi3OQeL2Hzf+MPMo8cZRVpyhQReR5THHu3qs4KkDZHEcETHYuyw9f9blbR/mjXrl2bESNGAGa20sGDrmmYI7io6u+YWtlBIvJPEWkvIv8GOmBqjdIRka9FZKPfvxuLyCwRuVdErhKR69PuVS8BX6jq96F8L47g4oWGDtu3gxJBFXYQ/d1ce0Jy4vu0j36bzA25Z555BjDGw/bt20OlyhpLlixJnxs4btw4zjvvPMuKHBmxaSitxrRfzchF5DKlQUSeAgYAj6jqxABqcxQRPN35DuCaa8zyq9zUoBduHnnkEVq3bs2uXbt4/PHHbctxFA2eAoYDjwJfApcB3VT10wzbRfLnDI3fgH3Ak8CnwETgKswA25uCrNkRYrzgcNuSFt+szlbTVS4pyZ6Y7Fi40Cxbt8705RYtWtC9e3eSkpIYMGBACIWFnj/++INu3bqRnJzMQw89RJcuXWxLcmSCTUPp/4BWIlLTt0JEqmNuRP+X084i8gjmBvaUqr4eJI2OQk6DBqbb3Zo1JnXBczRvDmXKwKZNxO/ebVuNVSIjI3n33XeJjY3l3XffLXIdgRyhR1VPq+pwVa2mqrGq2lhVp2WyXXtVre73799U9TZVraGqxVS1vKq2UNV/qerJkL4JR9Dx76BqC5+hVKPsQTh50ptjJVTPRJSyMJQAXnzxReLi4pgyZQoLFiwIkbjQoqr06tWLrVu30rx5c1566SXbkhxZYNNQehvYCiSKSGcRuRFIBHYAb/o2EpFqIpIiIkP81v0dGIvJIZ8jIq38HrkaAuhwgCm8rV3bpEyvzUuZd6iIjISrrgKgovVBHfapV68ew4aZcpHevXtz4MCBHPZwOByO4OKfmWCrFHrrVrOsUSfaPJk/346Q7NiyBX7/HSpUMDfeLKhatSr9+/cH4NFHHyU1NTVUCkPG2LFjSUxMpHTp0nz00UfExsbaluTIAmuGkqoew+R6r8ekJXwIbAE6qOpRv00Fk9bgr/W6tPXXAd9neLwRdPGOQoUXvIHZkpZ+d85PP1kW4g369etHmzZt2LVrlxtE63A4rFOpkvntf+gQ7NhhR0N66l3Lc8wTLxpK/ml3OTR1GTBgAOeffz7Lli1jwoQJIRAXOhYuXJhelzR+/Hhq1KhhWZEjO6y21lDV7araVVVLqWpJVe2iqlszbLNVVUVVE/zW9Uxbl9mjfYjfhiPM8UJ+ebakNXQ45+efTeiriBMZGcnEiRMpUaIEH330EZMnT7YtyeFwFGFE7Dd0SE+9u7qOebJwoffyyXORduejePHi6V3vnnzySY4cORJMZSFjx44d/O1vfyMlJYW+ffty002uZNHruB6EjiKP5xs61KgBdesSffz4mRtNEadmzZqMHTsWgAceeIC9e701A8vhyC8igoiQkJBgW4ojD9h2uKUbSs3KmuFOJ06YVtxeIoeOdxm57bbbaNWqFXv27GHw4MFBFBYaTp48yU033cRvv/1Ghw4dePHFF21LcviRkJCQ/v3rjzOUHEUe2ze4XHHDDWb5acZmW0WXu+++mxtvvJFDhw7x6quvFso8dkfRwzcN3hlK4YXNFO7jx03pT3Q0nHcecEXauC4vpd8dPWpuspGRpklRLhAR3njjDSIjI3nttdf49ttvgywyeKgqb7zxBsuWLaNGjRp89NFHREUVllGmhYOEhIT0719/nKHkKPJUq2bm3u3ZY242nuQvfzFLZyilIyK8/fbbVKxYkZUrVxaZ4YQOh8N72MxM8DVyqFYNIiLwpqG0ZAmcPm0uVPHiud6tadOmPPnkk6gqd999N8ePHw+iyODx0ksvMX/+fIoXL05iYiLly5e3LcmRS5yh5CjyRERAo0bmuWejSm3bkhwfD7/8Aps321bjGSpWrJhe6Pv0008X2layDofD29Svb4IlGzaYCE8oSU+78/UE8BlKCxZ4p641j2l3/gwePJhGjRqxceNGnnrqqQALCz5Tp05Nb97w/vvv08j3g8MRFhQpQ8nlfjuywvPpdzEx/H7xxeb5Z5/Z1eIxrrvuOrp06cLp06e57bbbXMtwD5JV7rfDUViIi4MLL4TUVFi1KrTnPstQqlwZ6tQx6W7Ll4dWTFbkMGg2O2JiYhg/fjyRkZG88sorfPfddwEWFzzmzp3LnXfeCcBdd93F3/72N8uKHHmlSBlKLvfbkRWeN5SA31q0ME9c+t1Z3H777bRs2ZLt27fTu3dv1zLcY2SV++1wFCZ8vqxQT3JIn6Hk32XaS+l3KSngqy9q1y5fh7jkkksYNGgQqkrPnj05dOhQAAUGh59//pkuXbpw6tQpHnnkEbp06WJbkiMfFClDyeHICs93vgN+a9bM9KGdN894Ch3pREdHM2XKFEqVKsX06dN57bXXbEtyOBxFjKZNzTLUhlL6DKXqfit9htK8eaEVkxnLl8Phw1CrFlSpku/DDB48mCZNmrBp0yZ69Ojh6QY+W7dupVOnThw+fJibb76ZMWPGuIh6mOIMJYcDaNjQLFevhuRku1qy4lTp0tCqlZmNMXu2bTmeo0aNGowbNw6Axx9/nIW+VA+Hw+EIAT5DKdTZbmel3gFceaVZzp9vf57S3Llm6dOUT2JjY/nkk08oW7YsM2bMYPjw4QEQF3i2bNnCFVdcwa5du7j88suZOHEikZGRtmU58okzlBwOoFQpqF3b3E9Wr7atJhtc97tsueWWW+jbty8pKSncfPPN7Nmzx7Ykh8NRRPCl3v38s2nwFioyNZTOPx8aNDDZB7bn7wXIUAIzQ2/SpEnp9eafeaxmd/PmzbRv357t27fTqlUrZsyYQVxcnG1ZjgLgDCWHIw3faAevzej7Ez5D6bPPTNWw4yxeeOEFLr/8cnbv3k23bt1I9mqI0OFwFCrKlzeZZcePw/r1oTnnwYPmER8P55yT4cVrrzXLWbNCIyYzkpPP1CcFwFAC08Bn+PDhqCq3334760N1sXPA30hq3bo1X375JaVKlbIty1FAnKHkcKRxySVmuWyZXR3Z0qiRuRPv2QM//mhbjSeJjo5m6tSpVK5cmW+//Ta9LavD4XAEm1DXKfkaOVSvbkpY/8Q115ilTUNpyRI4dsy0BKxcOWCHHTRoEDfddBOHDh2iY8eObPGF1SyxfPly2rVrx44dO2jTpg0zZ850RlIhwRlKDkcaYWEoiZyJKs2YYVeLh6lUqRLTpk0jKiqKsWPH8v7779uW5HDkCjfGIrwJdZ1Spml3Ptq1g9hYc1Pbty80gjISwLQ7f0SE999/nzZt2rBjxw6uvPJKtm3bFtBz5JYZM2bQtm3b9JqkL774whlJYUhWYyycoeRwpNGsmVn+/LN3GzoAcOONZvnf/9rV4XHatGmT3v3u3nvvdcNoHWGBG2MR3vjqlDxhKMXHG2NJ1V4DIJ+h1KFDwA9dokQJvvjiC1q1asW2bdu48sor2b59e8DPkxWqyiuvvELnzp05fvw4d9xxB7NmzXJGUpiS1RgLZyg5HGmULm1m9J086fGGDh06QJkyRuSaNbbVeJr777+fhx56iFOnTnHTTTex1Zen4nA4HEHAP6IUirFh/ql3mWIz/e7kSfA5qNq3D8opSpUqxcyZM2nRogVbtmyhffv2/ByCOR8HDx7kjjvu4LHHHkNVeeaZZ3j//feJjY0N+rkdocUZSg6HH770O083dIiJgZtuMs8//tiuljDg5Zdf5pprrmHv3r389a9/5ciRI7YlORyOQkrVqlC2LOzfD7/+GvzzZRtRgj8bSqEe+LxoESQlmfkbZ3WaCBylS5dm1qxZ6cZSq1atmDBhQtDON3fuXBo3bsykSZOIj49n0qRJPP30025OUiGlSBlKLvfbkRNhUacEcMstZukMpRyJiopi6tSp1KtXj1WrVtG9e3fXCS/EZJX77XAUNkRC29AhR0OpUSM491zYuTP0GQhBqk/KjDJlyjB//nx69erFiRMn6NmzJ//4xz9ISkoK2DkOHDjAY489xlVXXcWOHTto2bIly5cv59Zbbw3YORzeo0gZSi7325ETYWMoXXWVSb9btQrWrrWtxvOUKVOGGTNmUKFCBb744gvuu+++s/KQHcEjq9xvh6MwEqqGDqq5MJQiIuDqq83zUKffhdBQAihWrBjvvvsu48aNIzY2lrfffpt69erx3nvvcboAg62OHTvGc889R82aNXnllVeIiIhg6NChfPfdd9StWzeA78DhRYqUoeRw5IR/Qwfbw8yzJSYGunQxz11UKVfUrl2bTz/9lPj4eMaPH8/TTz9tW5LD4SiEhKqhw759ZmZT6dLGb5YlvvS7L78MriB/Tpwwg25F4IorQndeoHfv3nz//fc0aNCAbdu20atXLxo1asRHH33E8ePHc32cVatWMXjwYGrVqsVTTz2V3op88eLFJCQkEB0dHcR34fAKUbYFOBxewtfQYcMG0yvB5xn0JLfcAu+9Bx99BO5Hf6649NJL+eijj+jcuTMjRozg/PPPp0+fPrZlORyOQkSoIko5RpN8+CJK8+ebmqG4uKDqAkwTh1OnjNVYrlzwz5eBpk2bsmLFCiZNmsSQIUNYs2YN3bt3Jy4ujg4dOnDDDTfQoEEDypUrR7ly5YiMjGTTpk1s3LiRtWvX8n//93/88ssv6cdr2bIlI0eOpEMQuvc5vI0zlByODFxyiTGUli3zuKHUseOf0+/q1bOtKCy44YYbeOutt+jduzcPPvgg5cqVo3v37rZlORyOQsKF/9/encdHVd3/H399kpAEEAkuVI1QpMgiCNYVFBD9gigqLqiggArq1yooSmuVij+DioL127rUHRfccGWziLgXRVEQAVERsYBiqYJsAcKWnN8fZyYJQyZkmcmdybyfj8f1Tu7c5ZNrmDPnnnM+p5Wvi6xYAevW+eQO8fDvf/v1HitKBxwAHTrAggUwc2ZJC1M8hef569kz/teKIj09nYEDB9K3b1/GjRvHU089xdy5c3njjTd444039nj8vvvuS58+fejXrx/dunXTGMsUpa53IhGSZpxSZiacdZZ/re53lTJ48GBGjx6Nc44BAwYwZcqUoEMSkVoiIwPat/ev45nQITw8tVWrCuwcnqh80qS4xVPMOQh/pobLqABlZmZy9dVXM2fOHFatWsWTTz5Jv3796NKlC23btuXAAw9kn3324eijj6Zfv37ccsstTJ8+nVWrVvHoo49y0kknqZKUwtSiJBIhaSpK4LvfjR/vK0rqflcpI0aMID8/nzFjxnDBBRcwdepUegb49FNEao/f/x4++8x3v4tXLoPwfH+HHVaBnfv0gdGjfUXpH/+A9PT4BAV+kO+KFT7b3nHHxe86VXDAAQcwaNAgBg0aFHQokiTUoiQSIWkSOoDve96wIXz5JZTqTy17ZmbceeedXHvttWzfvp2zzz6b98NZmkQComksaoeaSOgQ/sivUEXpiCOgeXP4+eeSSWDjZfJkvz7zTJ91TyQJRJvGQn/BIhHCCR22bSt5YpewMjMhPL7mqaeCjSUJmRn33nsvV1xxBVu3buX000/nnXfeCTosSWGaxqJ2CD9wi1fPhB07YMkSn1SuTZsKHGDmW5UAXn01PkGFhbvdhTOziiSBaNNYqKIkUoak6n43eLBfP/OMLz2lUsyMhx9+uHiiwjPOOINp06YFHZaIJLEOHfxzrMWLYcOG2J9/6VLYuROaNYN69Sp40Hnn+fXEiVBUFPuggLqrV/tmtPr1/Xx/IklOFSWRMhxzjF9/+mmwcVTIscf6vhe//AL6gl8l6enpjBs3jquuuopt27ZxzjnnMKkmBj2LSK2UleV7uzkHc+bE/vyV6nYXdswx0KQJ/PRT3Aq3Az77zL/o2bNm0pCLxFlKVZTU91sq6oQT/PrDD4ONo0LMSlqVnnwy2FiSWFpaGg8++CDDhw9nx44dnH/++Tz99NNBh1UrROv7LVKbhfMYxKNOUqlEDmGlu9+99lrMY4JSFaUEyHYnEgspVVFS32+pqCOP9N0Zvv3Wj31NeAMH+py0b7wBq1YFHU3SMjPuueceRo4cSWFhIYMGDSpOIy5VF63vt0ht1rGjX8+eHftzV6lFCUq63736qm/uiqX169lv0SKfUe/002N7bpGApFRFSaSi6tSBTp38648+CjaWCmnc2GcYKiyEZ58NOpqkZmbcfvvtPPDAA5gZI0eOZMiQIRQWFgYdmogkkdItSrGuk4QrSm3bVvLATp3gwAN9+u5582Ib1PTppBUWQufOsO++sT23SEBUURKJomtXv545M9g4Kqx09zs9ua+2oUOH8sorr5CVlcXDDz/MueeeS35+ftBhiUiSaN4c9tsPVq+G5ctjd96dO31vB4DWrSt5cFoanHuufx3r7HcJNMmsSKyooiQSRZcufp0U45QATj0VDjjAl6CffBJ0NLVCnz59ePvtt8nJyWHq1Kkcf/zxLFu2LOiwRCQJmJW0KsWy+9333/s5/po2hQYNqnCC8DilF1/0vRBiYf16mDrVv1ZFSWqRQCtKZtbEzF41sw1mttHMJppZ0woem21mfzWzVWZWYGafmFnXeMcsqeO443wXvAUL4pPeNeYyMuCSS/zrxx8PNpZapEuXLnz66ae0atWKRYsWccwxx/DBBx8EHZaIJIF4JHSo8viksK5d4ZBDfDNXrDKljh8PBQX80qGDb0oTqSUCqyiZWT3gPaA1cAkwEDgUeN/M6lfgFE8AVwD/DzgDWAXMMLMj4hOxpJp69eDoo/10Ex9/HHQ0FXT55f4x5gsvKKlDDLVs2ZJPP/2U0047jV9//ZUePXpw7733KjmBiJQrnhWlSo9PCktPh6FD/ev7769+QM7BQw8BsPy006p/PpEEEmSL0hVAc+Bs59xk59wUoDfwW+DK8g40sw7ARcD1zrnHnXPvAhcAPwC3xTdsSSVJ1/2uRQs45xzfLyMWBaAUa9iwIa+//jo33HADO3fu5Prrr6dPnz6sX78+6NCkFtE0FrXLscf69bx5sG1bbM5Z7RYl8GNa69eHd98tyTVeVe++C0uWQG4u/w1PQiiSZKJNYxFkRak3MNs5tzS8wTm3DJgF7KmDa29gB/BSqWN3Ai8CPc0sK/bhSipKtoQO+fnwcc9RTOdUJt6/kheeKOC553zX8X/9y3cj/Okn2LEj6EiTU3p6OnfffTevvfYaDRs2ZNKkSRx55JHMCc8o6Zwfab19O2zdClu2+KWgwP+8bZt/Xy1REoWmsahdcnJ8woXt2/3nbyzEpKKUk1PSVbu6D9VCrUlceSUuPb165xIJSLRpLDICigegLTCljO1fAedX4NhlzrktZRybCbQIvRaplhNO8D3Z5szx33Xr1g06ol1t3w4vv+ynT5o3zz/Uc64dMB22AJdHP3affeA3v/FL48Z+2XdfaNTIl6E5ObDXXr4LYv36fqb5zEw/bqtOHZ88yaxkCXOu7KWoqOR16f0iX1fFzz/X3SWrVLXmNXXOp6lauRJ++cUvq1fDunV+sNqGDRy1cSNzGh3B2i0/kbFsO9nHnsf36RmkFxZiVPAXsTQ/riw9veSmRi6Zmbve9PDPpbeFt5d+nZFR/HOd775jxbdb/c/ha6Wnl1w7I8P/z0xP90vp12Yl28z8uvTr0n8AkUtZ/yM04aykoOOOg8WLffe7cAtTVRUW+nMBtGlTzcCGDvWVnGefhbvu8oVCZa1c6bPdZWT4rt/hCWdFaokgK0r7AOvK2L4WaFSNY8Pvi1RbTg60b++fBH72GZx4YtAReb/+Co88Ag8+uOtQpDp1oF07+I39Qva8WWTXS8POPJONm9LC3/FZvdp/91+71i/ffBPc7xE7p8TwXAY0Di2VUNnkUQ7fLr4D2FrJY0UkaRx3nM91MHs2XHNN9c61bJlvnM7NhYYNqxlYmzZwyinw1lvwxBNwww2VP8djj/mnYOed5+dnEqllgqwo1bjIfocAffv25cILL6zxWKZMKasxTSDx7k1u7uEsWNCcxx77hvXrlwQay+TJU5g+vRnjx7dl2zb/z7dp04307Lmc1q3X0rRpPnXqFEFRESdfey0NVq7k8wOvY2W3brucp7AQ8vMzWb8+iw0b/LJ+fRabNmWyaVMdNm/2y7Zt6Wzbls7WrRns2JHGzp1pFBYahYVpoVYgK24NKv3Py792pRoYXKlGBhexryt1TBwVFZG+YwdpO3aQtmMnaTvL6X9oRlF6Oi4trXghLQ1nhrM0SDNcqdaT7Tt2kL9pE4VFRQDUr1+funXrlf87ueL/gHNY6W2hte32c6kmuF2Oi/ZzxHkirhttO6VeltlC5nZ7sfsuRQ4X8b4BK6MeIVI7dezo17FI6FDtRA6Rrr3WV5T+8Q+4/nrfMlRR27eXZFi9+uoYBSSSWIKsKK2j7JajaK1Fkcf+NsqxUNKytItEyVA1ZcoUztI8A2VKxHuzfbvv2rZmTRvOOqu6fR2q7vnnpzF58unFcwSeeir88Y/wP/+zN2btdz9g3Tq47DKOeu89jvrb32p1t6cy/2527vRZOKZPh3fegfnzd+/f17y5bzJs185/82jVyqfNzcmpdAzr1xvDhg3jmWeeYfNmOPTQI3j00Uc5trp9baop0f5NJdOfoZmlATfiEwwdAHwL3Oace62S52kOLALqAoeWHpsrtd/hh/tu299/D2vW+Eloqyom45NKO+00nwRo6VKYMAEGDqz4sc8+C//9r//s7KrZWaR2CjKZw1f4sUaRDgO+rsCxh4RSjEceux1QISQxE858N2uW/+4dhLlz4Y9/7Marr/oJBl96yX//7969nC+e/fv7rhALF5bMmF7bbdvmM1dceqkffHXyyfDXv8IXX/ixOyedBLfeGq75+m8ukybB7bdDv37w+99XqZIEkJOTw/jx45k2bRrNmjVj/vz5dOzYkSFDhvDrr7/G9veUmnI7kAf8AzgNmA28Yma9Knmeh4BkmI1N4iAjA446yr+u7sSzMa8opaXBiBH+9bBh8J//VOy4lSv9kzqAm25KricgIpUQZEVpKtAx9KQNADNrBpwQeq88rwN1KJX0wcwygL7AW865GCXhFIEDDvBZizZvDiZN+KxZfmzUzz/X56ij/Hf+Cy6owIFZWSUF4A03+Kax2sg5Gi1ZAkOGwEEH+Vnhx4/3A7BatfK/+9tv+xa2996DvDz/FHXffeMSTq9evfjqq6+48cYbSUtL46GHHqJFixb8/e9/Z3tt/X9QC5lZY+BPwBjn3D3Oufedc1cC7wNjKnGei4DfA2PjE6kkg3CDyzvvVO884UzeMasoAQwa5LsohHoh7DGzjnN+vw0b4Iwz/EM5kVoqyIrS48ByYIqZnWVmvfFZ8H4EHg3vZGa/NbOdZvb/wtucc1/gU4Pfa2aXm9n/4FODHwLcWoO/g6SIs8/260mTava68+ZBr14+w3S3bj8yaxb87neVOMEf/uBreUuX+j7otUl+vs9m0a4dXf/8Z5+9ae1a35Xuzjv9o9fFi+Huu33TWw2mLKxXrx5jxoxh/vz59OjRg/Xr1zN8+HDatm3LSy+9RFFoLJMktJ74LKrPRWx/DjjczA7Z0wnMrBHwN3yFSxNupbCePf16xoyqn6OgABYt8o03MRujHX9W+wAAF7hJREFUBP6ETzzhU56++WbJuKNoHn/cj2tq1Mgnc1BrktRigVWUnHObgZOBJcCzwPPAMuBk59ymUrsakM7usQ4CngLuAKYBTYBTnXPz4hy6pKBzzvHriRN9gp+a8PXXvnDduBHOPx+uuWYeWZWdIaxOHfi///Ovb7vNp7xLdkuX+rS2ubl+/fXXbM3JgeHD/TikBQt8S1q1c+dWX7t27ZgxYwbTpk2jdevWLF26lH79+tGhQwdee+01VZgSW1tgG7t35Q5PPVGRZ/p3A4udc8/GMjBJPp06+W7TixfDDz9U7RyffOI7BnToUOUewtEddFDJfEjDh/tuyWVZvryky92DDyrTndR6gWa9c879APTZwz7L8ZWlyO0FwPDQIhJXRx8NBx/su2XPnVv9uTD2ZNky6NHDD6Pp1Quee86PSaqS007zNa4ZM/z4nHBhmGw+/xzGjoXXXiuprXbtCkOH8lZaGr37lPtREhgzo1evXvTo0YOnnnqKO+64g0WLFnHeeefRvn17brjhBvr27UudOnWCDlV2tQ+w3u2eBahC01CYWRfgYny3uwpTdtbkUJV706bNsXz22YGMHTufU05ZUenjn3++NdCKpk2XMmVKHKaKrFuXozp35uCPPmLjySezaNAgVh9xRHGL0b6LFnH4uHE03LSJ/3TqxJy6dcsc/6q/m+h0b6IL4t5MmDCBl156qfydwrPQ1vbF/6qJYfLkyUGHkLAS+d4MHeoTYd90U3yvs2WLcx06+GudeKL/2blq3ptFi5xLT3cuLc25L7+MSZw1ZtYs53r0KJm7tk4d5wYPdm7hwuJdEvnvJtLWrVvdQw895HJzcx0+v7bLzc11Y8eOdWvXro359RLt3oQ+i4MoA7qH7/celg9C+z8G/LeM87QI7TewnGtl4pMSjSm17dLQcS3KOS7m97uqEu3vJpFU9d489JD/COvTp2rX7dzZHz9lStWOr5A1a5xr1qzk8/aEE5wbN865rl1LtuXmOvfLL2Uerr+b6HRvoku0e1O6nApyjJJIUjn3XL+eOHHPY12rY+hQ33usRQv/sC4mQ2vatoUrr/QtMUOG+ImUEt2nn/oBxiec4JMx7LUX/OlPvrntiSd8zt0klJWVxVVXXcXSpUt54oknaNOmDT/99BM33ngjubm5XHrppXzyyScJM51BLfIx0KYCy8Wh/dcBObZ7E0+501CEXIef/uJ+M8sxsxwgnKW1gZk1qObvIkkoPE7pnXcqn0F1yxb/kWgW50zc++4LX34Jd93lX8+aBZdfDjNn+v5+eXn+/f33j2MQIolDFSWRCurSxZcbS5bAN9/E5xpPPumX7Gx49dUYzLxe2qhR0LixL/BGj47hiWNs0SKfua5jR99dsEEDGDkSVqzwqb5zc4OOMCays7MZPHgwixYtYtq0aXTv3p2CggLGjx/P8ccfz+GHH87YsWNZsaLyXXRkd865Lc65xRVYwiNIvgKygMj0KeGxSeVNY3EYft6ln/AVrnXAg6H35gEB5M+UoDVv7h+AbdgAn31WuWM//hh27KjWDAYVt9dePuX3smU+MU7XrnDHHX580q23+iQOIilCFSWRCsrIgN69/euJE2N//vnzfWMPwMMP+wG7MbXffvD88/6R5KhR8MEHMb5ANa1YAZdc4rPWTZ0K9ev7pAzLlvl5jvYpd0hI0kpLS6NXr168/fbbfPfdd9x44400btyYr776iptuuolmzZrRuXNn7r//fpYvXx50uKnkTWAHEJn7eACwyDm3rJxjxwAnRSzh9OADgMtjG6oki1NP9evKZr97/32/Pumk2MZTrgYN/Gfwv/4FN98c4yd3IskhpSpKZoaZkZeXF3QokqTC2e9inSZ840Y47zzYutVPT3HppbE9f7Hu3eEvf/Fd8C66CH75JU4XqoRff/VZlFq2hGee8TXSoUN91qU774zbfEeJqEWLFowZM4Yff/yRKVOm0LdvX+rWrcusWbMYNmwYhxxyCB06dGDkyJHMnDkzaeZlysvLK/78TRbOuV/wqb1HmNlwM+tmZg/js7WOKL2vmb1rZktLHbvYOfdB6QVYHHr7U+fc3Br6NSTBVDVNePi5Vo1WlEQk2Kx3NU19/qW6evTwDR3z5vleCM2axea84XpBhw7wwAOxOWdUeXm++92HH8LFF8Mbb/jZ2WtaQYH/Ze+80/dFAV95u/1230clhWVmZtK7d2969+5Nfn4+U6dOZcqUKUyfPp2FCxeycOFCRo8eTb169ejSpQvdunWjU6dOHH300dSvXz/o8HeTl5dX/IAqmSpLwM3AJmAYvivdt8AFzrl/RuyXToqVp1I13br5WRvmzPHTvlWkoXzTJt9VLy0NOneOe4giUkpKtSiJVFd2tk/XDbFrVXr+eXj2WahXD158sQbmRc3IgBde8C01M2bA//5vzSZ32LkTxo2DQw+FG2/0laTu3X367+efT/lKUqQGDRrQv39/Xn75ZdasWcOMGTO49tpradu2LVu2bGHGjBmMGDGCbt260bBhQ4488kguu+wyHnjgAWbOnMmmTZv2fBEpk3Ou0Dl3h3Put865LOdce+fcq2Xs180512wP53raOWfOuch5mSSF7LWXr+wUFfmkDhUxa5b/2DzqKPV+E6lpegImUknnnw+vvOLHEV1zja93VNW//w1XXeVf33cftG4dmxj36OCD/S9x+uk+g1xBATz9tH/UGS9FRb52efPN8O23fluHDnD33XDKKfG7bi2SlZXFKaecwimh+7Vq1Sree+89Zs2axezZs1m4cCFffPEFX3zxxS7HXXfddbRs2ZKWLVvSrFkzmjZtStOmTTn44INp3LgxOTk5cW/pKSoqYuPGjXG9hkgy6NnTjzmaMQMuuGDP+6vbnUhwVFESqaRzzoHf/Q6++w4mTICBA6t2np07oX9/yM+HPn382KQaddJJ8OabvrL0wgu+sjRhAmRlxfY6RUU++8Xtt8PChX5b8+Y+i1LfvsF0+6slDjzwQPr370///j7fwObNm/n8889ZsGBB8fLll1+yZs0a1qxZw8cff1zmeerUqcN+++1Ho0aNaNiwITk5OTRo0IC6deuSnZ1NdnY2derUIS0tjfT0dNLS0igsLGTnzp0UFhayY8cOtm7dytatWykoKGDTpk1s2rSJ/Px8Nm7cyLp169i4caO6P4vgK0o33QT//Kcfl5qdXf7+4UQO3brFPTQRiaCKkkglZWTALbf4hAu33w4XXli1VqVbboHZs33jzmOPFU9+XrO6doV33/Ul96RJfhDW449Dq1bVP/fWrfDyyzB2LHwdyqScm+uTSVx+OWRmVv8asov69evTtWtXupaaaGXy5Mkcc8wxLFmyhO+++44ffviheFm5ciWrV69m48aNrFq1ilWrVsU1vr333lutSpLyOnSAI47wmU6fe85/HEaTnw9z50J6usYniQRBFSWRKujf31eSqtqq9MorMGaML/yeey7gzNfHHusfWfbs6RM8tG8Pf/6zr9BUZcDUDz/AI4/4CteaNX5b06Y+zeygQbFvsZJymRm5ubnk5uZyUpS+O1u3bmX16tWsX7+eDRs2sGHDBvLz84tbiAoKCigsLCxeioqKSE9PJyMjg/T0dDIzM8nOziYrK4vs7Gz22msvGjRoULyEW6rS09OTLZlDjQvfn1tvvVUZWmspM/8Re9FFfmq4QYN8WVCWjz7yQ0iPO85n6xaR+MjLy2PUqFG7bVdFSaQKMjL8HKiDBlW+VWnhwpL03/fcAyeeGLcwK+6II/xErzfd5Ge8veMOn1jhssv85K9t20Zv8nLOz8A7ZYqf/+jTT/228HmvuQYGDFALUgLLzs6mSZMmNGnSJOhQUp66J6aG88/3z46WLPEfm+GpJyLdf79fd+9ec7GJpKJo2VlVURKpogEDfH3iu+98troBA/Z8zNq1cPbZsGWLb4UaNiz+cVbY/vv7xA6DB/sME19+6WuDI0f6QVmdOvmUS3vv7TvVL1/uS/lvvy1pOQLfYnTuuT7neadOAfUpFBFJXBkZfvq4a6/1vZPPPnv3j8rp0/0w0r339vuJSM1TRUmkikq3Kt12m58wtrxBuQUF0K8fLFvm07w++miC1iFOOMGn6n7jDd9K9PrrfpKn77+Pfsx++8EZZ0Dv3j6DXQLO5SMikkgGD4ZRo3wj/Icf+iGjYTt2wPDh/vUtt0DjxsHEKJLqVFESqYbSrUo9e8LkydCo0e77rVzpu1bMnesbbiZOrIH5kqqjTh3f5e6ss3wH+dmzfUVp40a/bN4MTZpAy5Y+8cNBByVorU9EJDHVr+8b3keN8rMklK4oPfIILF4MLVqoNUkkSCmVl9fMMDMNkJWYycjwyeIOOghmzvRZiX78cdd9Pv4Yjj7aV5KaNfNJ5po2DSTcqklP961MF1/sS/W//AVGj4Y//AFOPtlnslMlScqRl5dX/PkrIiWGDvUPzaZN870M1q/3XbRvvdW/f889Gt4pEqSUqig553DOqaIkMXX44fDJJ3DYYT4LdseOvi5xxRW+33m3bvDzz75OMWeO318kleTl5RV//opIif3288+cwK9/8xs/tHPdOl9m9O4dbHwiqU5d70RioGlTn8b1rLN8X/O77tr1/WHD/JPBqsy3JCIitdfdd0ObNn6qiQ8+8Dly0tLg739XY71I0PS1TSRGGjWCt97yk8du2OAH3+6/v+9j3r590NGJiEgiysjwPRCuuAL+8x/fnbtJE5UbIolAFSWRGMrO1sBbERGpmoMOgiFDgo5CRMJSaoySiIiIiIhIRaiiJCIikiCUnVVEpOZFy86qrnciIiIJQpkBRURqXl5eXvEDqtKVJbUoiYiIiIiIRFBFKQATJkwIOoSEpXsTne5NdLo30eneSFXo7yY63ZvodG+i072JLpHvjaVKM7+ZuUT5Xc1M3Sui0L2JTvcmOt2b6BLt3oTi0ewwZVA5lRx0b6LTvYlO9ya6RLs3pcuplGpR0iBZEZGaF22QrIiISCJLqYqScw7nXJUrSolWwYpVPLE4j+5NfM8RS7o30eneRFedePLy8oo/fyW+atPfTazPo3sT33PEku5NdLo30cUjHnW9q9w5YlLQ18bzJFIsiXaeRIol0c6TSLEk2nkSKZY4nEdNS2VQORXf8yRSLIl2nkSKJdHOk0ixJNp5EimWOJwn9breiYiIiIiIVERKtSgFHYOIiKAWpShUTomIJIZwOZUyFSUREREREZGKUtc7ERERERGRCKooiYiIiIiIRFBFKYGYWT8zc2a2MuhYgmZmLc3sPjNbaGabzGyVmU01sw5Bx1aTzKyJmb1qZhvMbKOZTTSzpkHHFTQzO8/MXjOzFWZWYGbfmtldZtYg6NgSkZm9GfpsuSPoWCS5qZwqoXLKUzlVNpVTlZOo5ZQqSgnCzHKAe4H/Bh1LgjgFOAkYD5wJXA3sD8w2s6OCDKymmFk94D2gNXAJMBA4FHjfzOoHGVsC+BNQCPwFOBV4GLgKeNvM9LlWipldCKTUFzeJD5VTu1E5pXKqPCqnKiiRy6mMoAOQYncDC4BVQPeAY0kELwIPlp5UxMzeA5YDw4CLA4qrJl0BNAdaOeeWApjZQuA74ErgbwHGFrQznXOrS/38LzNbi//C0g1fcKc8M2sE/B24Hngh4HAk+amc2pXKKZVT5VE5VQGJXk6pRpsAzOwEYAAwJOhYEoVzbk3kzIvOuQ3AEiA3mKhqXG9gdrjwAXDOLQNmAWcFFlUCiCh8wuaE1qny91ERY4FFzrkJQQciyU3l1O5UTgEqp6JSOVVhCV1OqaIUMDOrAzwG/LX0B43szsz2AdoB3wQdSw1pCywqY/tXwGE1HEsyODG0TpW/j3KZWWf8E219sZVqUTlVcSqniqmcKpvKqVKSoZxSRSl4NwJZwF1BB5IEHgAM30c+FewDrCtj+1qgUQ3HktDMLBe4DXjHOTc36HiCZmaZwKPAPc65b4OOR5KeyqmKUznlqZyKoHJqV8lSTqmiFENm1j2UsWNPyweh/VsANwNDnXNbAw0+zip7b8o4fgRwEf5e6YmmFDOzvYApwE5gUMDhJIo/A3WB0UEHIolF5VR0KqckXlROlSkpyiklc4itj4E2FdhvS2h9P34w3+xQNiGATMBCP29zzhXEPsxAVPbeFDOzPwB3AiOdc0/GOrAEto6yn8hFe4KXcsysLvA6fjDxic45pSz2aXlvBi4Hsswsq9TbWaHPlnznXGEgAUrQVE5Fp3Kq8lRO7YHKqd0lUzllEeMQpQaZ2XLgt+Xscp9z7roaCichmdlAfIaYvznn/hR0PDUplD0p0znXOWL7B/h/uyeWeWCKCI2bmAx0BXo452YHHFJCMLNuwPt72O33zrn5NRCOJDmVU3umckrlVDQqp8qWTOWUWpSC1Q/Ijth2E3AUcD6Q0k8dzOwc4ClgXKoVPiFTgXvMrLlz7t8AZtYMOAH/d5KyQnNQPA+cDJyhwmcX8/Fzu0R6H3gOeAJQtyCpKJVT5VA5pXIqGpVT5UqackotSgnGzJ4GujvnDg46liCZWVfgLXzmnGuAolJvb3POfRFIYDUoNFnfAqAAGAk44HagAdDeObcpwPACZWYPA3/A923+Z8TbK9W1YXdm5oDRzrmRQcciyU3llKdySuVUeVROVV4illNqUZJEdTI+y9KR+PkYSlsBNKvpgGqac26zmZ2Mn4jtWXwmpXeB61K58Ak5LbS+ObSUNgrIq9FoRCQVqZxSOVUelVO1gFqUREREREREIig9uIiIiIiISARVlERERERERCKooiQiIiIiIhJBFSUREREREZEIqiiJiIiIiIhEUEVJREREREQkgipKIiIiIiIiEVRREhERERERiaCKkkgCMLP7zeyfAVz3OjP70sz0WSAiIuVSWSWpxpxzQccgktLM7HfAN8Dxzrm5NXztusAyYIRz7qmavLaIiCQPlVWSilQzFwnedcCCmi54AJxzBcAzwJ9q+toiIpJUVFZJylFFSaSazCwn1CXAmdmAiPfGmdkl5RybBQwAXojYfq6ZfRs653mhbb8zs/mhbaNC2/JCP7c2sxlmttnMfjCzQaH3B5rZYjPbZGbvh54IRnoROMzMjq/enRARkUSlskqk8lRREqkm59x659zhwOfASDNLBzCzEcB/nXPjyzm8I5ADfBhxzonAn0M/Lgxt+x44q/S2Ul4BpgFnh+J40szuBK4CbgIGAa2IKORC5gP5wKl7/GVFRCQpqawSqbyMoAMQqUXuAl4FLjSzbUB74KI9HNMRcOxemAC0A7YAS0ttOzy0/jJi3786554BMLO5wJnAlcAhzrmNoe0HAveZ2W+dcyvCBzrnisxsQSgWERGp3VRWiVSQKkoisTMJWAzciS8werk9Z0s5CNjonNtexnvtgK+cc0UR2wrYtUACmB5+4ZxbZ2a/AF+EC56QxaF1E2AFu1oNtNxDrCIikvxUVolUkLreicRIqJB4BP/h/rRzbmsFDssGtkV5rx27P707nN0LJIB1ET9vj7ItfM1IBUDd8kMVEZFkp7JKpOJUURKJETM7AOiHfwJ2fQUP+xXf7zvyXHXwT80WRbzVibK7PlTXPsCaOJxXREQSiMoqkYpTRUkkBkJzPEwAhgB3AEeYWa8KHLoYyDSzgyO2twQygVWlrnE0cAi79/mOhUOAb+NwXhERSRAqq0QqRxUlkWoyMwOeBu5zzs0DxuOf1I2owOEzQ+tjI7a3C61bh66xP3BraFtMn9KZWQ6+sJu5p31FRCQ5qawSqTxVlESq705gjnNuMoBzbgc+q1BnM1toZo2jHeicWw58hs/8U1o7YBNwuZktxD/5ezP03oNm1jeG8Z+O7xM+KYbnFBGRxKKySqSSbM+JTkQknszsUuA+4EDn3JbQtklAPedczxq4/nRgjXNuYLyvJSIiyUlllaQitSiJBO854D/A1aW2tQO+jveFzewI4GRgVLyvJSIiSU1llaQcVZREAuac24mfjTz8hK4u0Bz4pgYufwBwqXMucq4LERGRYiqrJBWp651IgjGzI4HPgS7OuY+CjkdERCSSyipJBaooiYiIiIiIRFDXOxERERERkQiqKImIiIiIiERQRUlERERERCSCKkoiIiIiIiIR/j8V0EUMZUEBLQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Recreate Figure 4a in Grujic 2018\n", "\n", "fig, ax = plt.subplots(1, 2, figsize=(14,5))\n", "ax[0].plot(x/sc.micro, np.real(By1), 'k', label=\"1 GHz\")\n", "ax[0].plot(x/sc.micro, np.real(By2), 'r', label=\"10 GHz\")\n", "ax[0].plot(x/sc.micro, np.real(By3), 'b', label=\"100 GHz\")\n", "ax[0].legend(frameon=True, framealpha=1)\n", "ax[0].set_ylabel(r\"$\\mathcal{R}\\{B_{y,norm}\\}$\")\n", "ax[0].set_xlabel(\"$x$ ($\\mu$m)\")\n", "ax[0].set_xlim([-5, 5])\n", "ax[0].grid()\n", "\n", "ax[1].plot(x/sc.micro, np.imag(By1), 'k', label=\"1 GHz\")\n", "ax[1].plot(x/sc.micro, np.imag(By2), 'r', label=\"10 GHz\")\n", "ax[1].plot(x/sc.micro, np.imag(By3), 'b', label=\"100 GHz\")\n", "ax[1].set_ylabel(r\"$\\mathcal{I}\\{B_{y,norm}\\}$\")\n", "ax[1].set_xlabel(\"$x$ ($\\mu$m)\")\n", "ax[1].set_xlim([-5, 5])\n", "ax[1].grid();" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Surface Impedance $Z_s$" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "sigma0 = 5.8e7\n", "\n", "f = np.linspace(0.1, 100, 17) * sc.giga\n", "\n", "rq = 1 * sc.micro\n", "zs1, cond1, ur1 = gm.rough_properties(f, rq)\n", "\n", "rq = 0.5 * sc.micro\n", "zs2, cond2, ur2 = gm.rough_properties(f, rq)\n", "\n", "rq = 0.25 * sc.micro\n", "zs3, cond3, ur3 = gm.rough_properties(f, rq)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAukAAAFICAYAAADtbGDdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd3hU1fbw8e8i9ESaXK5IFynSi1JE6a+gkIQmCAGUJiJIFRX1QpAqVxCU8kM6iBBKIATlYkEQkRCqEKRoSGgiRUCQEALJfv84IVJSyUzOJLM+zzMPyc4p60A4s2aftfcWYwxKKaWUUkop15HN7gCUUkoppZRSd9MkXSmllFJKKRejSbpSSimllFIuxtYkXURKiMgqEflLRK6ISKCIlEzlviaJVw1nx62UUu5GRFqIyCYR+UNEbojIKRFZISKVUrFvQRGZKyIXROSaiHwrIlUzIm6llMqsxK6BoyKSF/gZuAG8DxhgLJAXqGaMuZbC/gZYCMy+50f7jTFRDg9YKaXcmIh0BmoBO4DzQEngHaAEUNUYczyJ/QTYCpQGhgOXgBFAZaCGMeaU04NXSqlMKLuN5+4DPAZUMMb8BiAi+4Ffgb7AlFQc47QxJsR5ISqllAIwxiwDlt3ZJiKhwGGgAzA5iV19gAZAU2PM9/H7bQcigLeAgc6KWSmlMjM7y118gJDbCTqAMSYC2Ab42haVUkqp1Poz/s9byWzjA/x+O0EHMMb8BQSj93qllEqSnUl6ZSAskfaDQIo1jvH6xddGRsXXSj7ruPCUUkrdS0Q8RCSniJTDKjf8g3t62O+R3L2+pIh4OSFMpZTK9OwsdymEVZt4r4tAwVTs/zmwHvgdKIVV67hJRP6fMWbzvRvH17ArpVSmZIwRu2OItwOoHf/1b1hlLOeS2b4QEJlI+8X4PwsCf9/7Q71nK6UyM0fcs+1M0tPFGNPtjm+3ikgQVm/NWOCZJPZ5oHOJiFvta+e5M+O+dp5brzlz7OuIc7uQbkA+rDFFbwLfiMgzxphIR58os/072/074k772nluvebMsa+d53bUPdvOcpdLJN5jnlQPe7KMMVeBL4Gn0hmXUkqpJBhjDhljdsQPJG0GeGHN8pKU5O71t3+ulFLqHnYm6QexahXvVQn4JR3Hdfgj0lGjRmW6fdPL3a45vefVa87Yc9txXjv/vlyVMeYyVsnL48lslty9/oQx5r5Sl/Ryt/tXes+t15xx+6aXu12zO75P3cnOedIHAx8B5Y0xx+LbSmNNwfiOMSap6bySOl4+rHKXSGNMw0R+buy6Vjuk9xFRZqTX7B7c7Zpnz57Na6+95ko16QlE5N9AOLDUGNM3iW3aAGuAxsaYLfFt+bCmYPzCGPNGEvu51T0b3O93292uF/Sa3UX8Naf7nm1nku6JtZjRdf5ZzGgM8BDWYkZ/x29XCutN4ANjzAfxbW8CFYDv+Wfg6O22ZsaYrYmcz61u+G78n8LuMDKUXnPWdfPmTYYMGcKMGTMA+weOisgaYA+wH7gClAeGAI8AdYwxR0WkEfAd0NMYszh+v2zAj1iLHt25mFE1oLox5mQS53Oreza4z+/2be52vaDX7C4claTbNnDUGHNNRJoCHwNLAMG6uQ++5/GnAB7cXZpzBGgb/8qP9YaxDehljAnNgPBdXqdOnewOIcPpNbsHd7jmixcv0rFjR7777jty5sxJTEyM3SEBhAAdgWFATuAksBmYcMeg0fvu18aYOBFpjfXkdCaQG9gONEkqQXdX7vC7fSd3u17Qa1ZpY+vsLsaYE0D7FLaJxLrx39kWjLUQhkpC586d7Q4hw+k1u4esfs2HDx/G29ub3377jSJFirBmzRoaNGhgd1gYYz4EPkxhm83cc7+Ob78I9Ix/qSRk9d/te7nb9YJes0qbTDsFozNcvHiR06dPu0qvVboUL16c3bt32x1GhkrNNefMmZNixYpRqFChZLdTyg4bNmzgpZde4sqVK9SoUYOgoCBKlixpd1hKKaVsoEl6vIsXL3Ly5EnKli1L3rx5yZbNzolvlDPExcURFRVFeHg4gCbqymUYY/j4448ZPnw4cXFxtG/fnkWLFuHp6Wl3aLa6PdfwqFGj8Pf3tzcYpZRKhr+/P6NHj3boMTUTjXf69GnKli2Ll5eXJuhZVLZs2fDy8qJs2bKcPn3a7nCUAuDGjRv06tWLYcOGERcXx8iRI1mxYoXbJ+hgfXgxxmiCrpRyef7+/gn3LEdxq2xURBCRRG/4MTEx5M2bN+ODUhkub968WaKkSWV+586do1mzZixYsIA8efKwYsUKRo8eTbZs2fD390+4ZymllHI/blXuktKnG+1Bdw/676xcwc8//4yPjw8nTpygePHiBAUFUatWrYSf+/v7J3QoaKKulFLuR7MVpZTKYGvWrOHpp5/mxIkT1K1bl9DQ0LsSdKWUUkqTdKWUyiDGGMaOHUu7du2IioqiW7dubN68maJFi9odmlJKKRfjVuUuSilll6ioKHr16sXy5csRESZOnMjw4cO1lEUppVSiNElXSiknO336NL6+vuzevRsvLy+WLVtG69at7Q5LKaWUC9Nylyzs1KlTvPHGG9SvX5+8efMiIkRGRtodllJuJTQ0lKeeeordu3dTpkwZQkJCNEFXSimVIk3Ss7DffvuNFStWULBgQZ599lm7w1HK7XzxxRc0bNiQM2fO0KhRI0JDQ6lcubLdYWUayU2bq5RSrsQZ0+Zqkp6FNWzYkLNnz/LVV1/x4osv2h2OUm4jLi6OESNG4Ofnx40bN+jbty9ff/01hQsXtju0TEUXM1JKZRa6mJFKk/TMBx4YGEiFChUQEVatWgVAeHg4NWrUQEQYNWoU8M8nx8OHD9OiRQs8PT0pWbIkCxYsAGDJkiVUrFgRLy8vmjRpQnh4ePovTCkXdvXqVdq2bcvEiRPx8PBg+vTpzJo1i5w5c9odmlJKqUxEB46qRLVr1w4PDw/atGlDtWrVAChbtixBQUGULl06oe22F198kT59+vDmm28yc+ZMevbsya+//srmzZuZOHEiN2/eZNCgQXTp0oUdO3bYcUlKOV1kZCQ+Pj4cOHCAAgUKsHLlSpo3b253WEoppTIht0rSb9cJjRo1KlWPT11lajRHPjpJi7CwMPLmzcvjjz+e0HbgwAEAqlatete2w4cPp3v37gA8+eSTBAcHM3v2bCIiIsiXLx8AZ86cYdCgQRw/fpxSpUpl0FUolTG2bt1Ku3btuHDhAhUqVCA4OJhy5co98PH8/f0ZPXq0AyNUSimVmbhVuYvWN6ZNWFgYlStXvqtsJiwsjDx58tyVuAM8//zzCV8XLFiQIkWKUK9evYQEHaBixYoAnDx50smRK5Wx5s2bR7Nmzbhw4QItWrQgJCQkXQk6OKe+USmlVObhVkl6Wt1+g7T7ZZewsLD7yloOHDhwX+IOVmJ+p5w5cybaBhAdHe2EaJXKeLdu3WLo0KH07t2bmzdvMnjwYNavX0+BAgXsDk0ppVQmp0m6StTNmzc5evQoVapUuat9+/bt9yXuSrmjv/76C29vbz7++GNy5MjB3Llz+fjjj8me3a2qCJVSSjmJJukqUUePHiUmJoaiRYsmtO3atYuIiIj76tGVcje//vor9erV43//+x+FCxfmu+++o1evXnaHpZRSKgvRJD2LW7VqFatWrWL37t0AbNiwgVWrVrFly5Zk9wsLCwPg8OHDAJw/fz5hEJv2pCt39t1331G3bl0OHz5MlSpV2Llzpy4W5iS6mJFSKrNwxmJG+lw2i7t3EaPXX38dgEaNGrF58+Yk9wsLC8PLy4u5c+eyevVq6tevT8uWLVm/fj39+/fH39+fTp06OTN0pVzOzJkzGThwILGxsfj4+PD555/z0EMP2R1WlqWDZpVSmYW/v39Ch4KjEnVN0rO4B32TCwsL4+mnn2bjxo13tffv3/+u7+/8pbxTZGTkfW2NGzfWN12VKd2e53/WrFkAvPPOO4wbNy5dC4YppZRSydEkXSUqLCyM1q1b2x2GUrb7888/efHFF/n+++/JlSsXc+fOpWvXrnaHpZRSKovTJF3d5/r16xw7downnnjC7lCUstWhQ4fw9vYmPDycf//736xdu5Z69erZHZZSSik3oM9q1X0OHTpEXFwclSpVsjsUpWyzYcMG6tWrR3h4ODVr1mTnzp2aoCullErW2rVrHXYst0rSdaaA1KlVqxbGGJ555hm7Q1EqwxljmDJlCq1bt+bKlSt06NCBrVu3UqJEiQyNwxkzBSillHKOK1eu0LNnT9q2beuwY7pVkn57BU9N0pVSiblx4wa9evVi2LBhxMXF4e/vT0BAAJ6enhkei7+/v+2rDiullErZ1q1bqV69OgsWLCB37twOO65bJelKKZWUc+fO0axZMxYsWECePHlYsWIFo0aN0hlclFJKJerGjRu88847NGrUiMjISGrVqsWePXscdnx991FKub39+/dTp04dtm3bRrFixfjxxx/vW2NAZTwtUVRKuaqwsDDq1q3Lhx9+iIjw7LPPsmfPHoeO59PZXZRSbi0oKAg/Pz+uXbtGnTp1WLt2LUWLFrU7LIUuZqSUcj1xcXFMnTqVESNGEBMTQ9myZVmyZAn169dP2MZRY4m0J10p5ZaMMUyYMIG2bdty7do1/Pz82LJliyboSimlEnXixAmaN2/OsGHDiImJ4dVXX2Xfvn13JeiOpD3pSim3Ex0dTZ8+ffj8888RESZMmMDbb7+tM6kopZS6jzGGpUuX0r9/f65cuUKRIkWYN2+e0xd91CRdKeVW/vjjD9q0acOOHTvw9PRk6dKl+Pr62h2WyxORDkBn4EmgCHACCATGG2OuprBvUnUrNY0x+xwaqFJKOdDFixd57bXXWLlyJQC+vr7MmTOHf/3rX04/tybpSim3sXfvXnx8fDh16hQlS5Zk3bp1VK9e3e6wMos3sRLzd4FTQE3AH2giIk8bY+JS2H8hMPuetqMOjlEppRxm48aN9OjRgzNnzuDl5cW0adPo0aNHhj111SRdKeUWVq9eTffu3YmKiqJBgwYEBgZSpEgRu8PKTLyNMefv+H6LiFwEFgGNgU0p7H/aGBPirOCUUspRoqKieOutt5gxYwYADRo0YPHixTz22GMZGocOHFVKZWnGGMaMGUOHDh2IiorilVde4bvvvtMEPY3uSdBv2xn/Z7GMjEUppZxl586d1KxZkxkzZpAjRw4mTJjAli1bMjxBBzdL0nXOXaXcy/Xr1+ncuTMjR45ERPjoo4+YP38+uXLlsju0FPn7+yfcs1xYo/g/D6Vi234ickNEokRkk4g868zAlFIqLW7dusUHH3xA/fr1OXr0KJUqVWLHjh288847eHh42BKTuMs8tCJikrvW3bt3U7t27QyMKGOcPHmSIUOG8M0332CMoXnz5kydOpWSJUsmu9/mzZtp0qTJfe358+fn8uXLzgo3w2SVf++goCC3G/SY2ms+ffo0bdq0YdeuXTz00EMsW7aMVq1aZUCEjiciGGNcKlsXkWLAXuBnY8z/S2HbJcB64HegFDAcqAT8P2PM5iT2SfSG3alTJzp37pyOyJVS6m6///47U6dO5ehRa5iMj48PXbt2JWfOnMnut2zZMgICAhL9mSPu2VqTnoVFRUXRtGlTcuXKxaJFixAR3n//fZo0acL+/fvx9PRM8RiffPIJTz31VML32bPrr4xyfTt37sTX15czZ85QpkwZgoODqVy5st1hZRki4gUEAbeAHiltb4zpdse3W0UkCAgDxgLPJLNfOiPNXNztQ7e7XS/oNbsaYwxz5szhzTffJCoqiuLFi7Nw4UKaNWuWqv19fX1Zvnz5fe2OegKqGVcWNmfOHI4dO8aRI0d4/PHHAahWrRrlypVj9uzZDB06NMVjPPHEE9SrV8/ZoSrlMAEBAbzyyitER0fTsGFDVq9eTeHChe0OK8sQkTxAMPAY0MgYcyqtxzDGXBWRL4Fejo5PKaVS49y5c/Tq1Yv169cD0KVLF2bMmEGBAgVsjuwfblWT7m7WrVtHvXr1EhJ0gDJlytCgQQOCgoKcdt7AwEAqVKiAiLBq1SoAwsPDqVGjBiLCqFGjgH9qbg8fPkyLFi3w9PSkZMmSLFiwAIAlS5ZQsWJFvLy8aNKkCeHh4U6LWWV+cXFxjBw5kpdeeono6Gh69+7NN998owm6A4lIDmAV1lzpLxhjDqTzkO7VVa6Ucgnr16+natWqrF+/nvz58/PFF1+wdOlSl0rQweYkXURKiMgqEflLRK6ISKCIJF8snfhx3hERIyI/OiPOzOrgwYNUqVLlvvbKlSvzyy+/pOoYfn5+eHh48PDDD9OlSxdOnDiR4j7t2rVj0qRJgNVzD1C2bNmEDwa322578cUXadWqFWvXrqV27dr07NmTd999l1mzZjFx4kQWLFjAkSNH6NKlS6piVu7n2rVrdOzYkTFjxpAtWzamTZvGZ599lmI9oUo9EckGLAWaAm3SM52iiOQDWgOhDgpPKaVSdO3aNV577TW8vb05d+4cTZo04cCBAy47zsW2chcRyYs1r+4N4GWsHpWxwPciUs0Ycy2Vx3kMeB8454QgHX7IB/KAdZkXL16kYMGC97UXKlSIS5cuJbtv/vz5GTZsGI0aNSJfvnzs3buX8ePHU79+ffbu3Zvi9HVhYWHkzZv3rl78AwesTreqVavete3w4cPp3r07AE8++STBwcHMnj2biIgI8uXLB8CZM2cYNGgQx48fp1SpUilfvHIbJ0+exNfXl71795I/f34CAgJo0aKF3WFlRTOAF4FxwDURubMO7pQx5pSIlALCgQ+MMR8AiMibQAXge/4ZOPom8Ajgl4HxK6XcWGhoKF27duXXX38lZ86cjB8/niFDhpAtm+sWldhZk94Hq6axgjHmNwAR2Q/8CvQFpqTyOLOwencqoDX2DlOzZk1q1qyZ8H2jRo1o2LAhderU4ZNPPmHs2LHJ7h8WFkblypXv+uUPCwsjT548dyXuAM8//3zC1wULFqRIkSLUrFkzIUEHqFixImAlZJqkq9tCQkJo06YNZ8+e5fHHHyc4ODjhd0U53O3/qO/Fv+40Gmv1UQE8uPsp7RGgbfwrP3AF2Ab0MsZoT7pSyqlu3brF+PHj+eCDD4iNjaVKlSosXbr0vqf6rsjOpNYHCLmdoAMYYyJEZBvgSyqSdBHpAtQCOgOBDo8wk88sULBgwUR7zJPqYU9JrVq1KF++PDt37kxx27CwMOrWrXtX24EDB+5L3G/HeaecOXMm2gYQHR2d5rhV1rR06VJ69erFjRs3aNasGStWrKBQoUJ2h5VlGWNKp2KbSKxE/c62YKyBpkoplaHCw8Pp2rUrISFWdd7QoUMZN24cuXPntjmy1LGzj78y1hRc9zqINX9uskSkIPAx8JYx5qKDY8sSKleuzMGDB+9r/+WXX6hUKcW/4iSlNLXQzZs3OXr06H318Nu3b88Un1yVa4uLi+Pdd9+la9eu3Lhxg9dff50NGzZogq6UUgqwplacO3cu1atXJyQkhGLFivHtt98yefLkTJOgg7096YWAxAqjLwKp6eb9L3AUWJjaEyaWXN5eGKN48eKpPUym4ePjw5tvvsmxY8cSlrONjIxk27ZtTJw4Mc3H27VrF0eOHKFDhw7Jbnf06FFiYmIoWrToXftGREQwcODANJ/XWZw5w01GyirXkRrXr19n6tSp7Nixg2zZstG7d2+ee+45vvrqK7tDc4jkFsZwR7fv2aNGjdKVopVSqXL+/Hn69OmT8N7YsWNHZs2a5fSOHH9/f0aPHu3QY2bKGu745aS7A7WSXUb0HimtOJrV9OnTh+nTp+Pr68vYsWMREf7zn/9QokQJ+vbtm7Ddli1baNasGfPnz08YwOnn50eZMmWoVasWBQoUYO/evUyYMIFixYqlmGiHhVkPSA4fPgxY/2Fu/+K6Uk+6qy6ukBauvEiEox0/fhwfHx/2799PgQIFWLlyJc2bN7c7LIdy9sIYmY27LWaklEqfr776ip49e3L27Fny5cvHjBkz8PPzy5B7qL+/f0JngqPOZ2e5yyUS7zFPqof9TrOBecApESkgIgWwPnB4xH+fy7GhZk6enp5s2rSJ8uXL061bt4TEe9OmTXh5eSVsZ4whNjaWuLi4hLYqVaqwbt06evToQYsWLZg6dSrt2rVjx44dKc47HRYWhpeXF3PnzqVatWq8//77tGzZEoD+/ftrT6FKs+3bt1OnTh3279/Po48+yo4dO7Jcgq6UUurBREVF0b9/f1q1asXZs2dp2LAh+/fvp2vXrpm6k8POnvSDWHXp96oEpDSJ9xPxr9cS+dklYAgwNV3RZRElS5Zk9erVyW7TuHHj+3qsRowYwYgRIx7onGFhYTz99NNs3Ljxrvb+/fvf9f2dnzrvFBkZmaoYlXtYsmQJvXv3JiYmhubNm/PKK69Qvnx5u8NSSinlAnbt2kXXrl05cuQIOXLkYOzYsQwbNgwPDw+7Q0s3O3vS1wH14uc5B0BESgMN4n+WnCaJvH7GGojaBGtFPGWTsLCwdA1MVQogNjaWd955h+7duxMTE8OAAQPYsGHDXU+BlFJKuafY2FjGjRtH/fr1OXLkCJUqVSI0NJS33norSyToYG9P+hxgABAkIu9jLWY0BjiJVc4CQGKLYxhjNt97MBG5DGRP7Gcq41y/fp1jx47xxBNP2B2KysSuXr2Kn58fwcHBeHh4MH36dF57LbEHZ0oppdxNREQE3bp1Y9u2bQAMGjSICRMmkCdPHpsjcyzbknRjzDURaYo1jeISrLl1vwMGG2P+vmPTxBbHUC7q0KFDxMXFaU+6emCRkZH4+Phw4MABChYsyKpVq2jatKndYSmllLKZMYbPP/+c/v37c/XqVYoWLcrChQt57rnn7A7NKWyd3cUYcwJon8I2kdyzOEYS2zV2TFQqPWrVqqW14+qBbdu2jbZt23L+/HkqVKhAcHAw5cqVszsspZRSNrt06RL9+vVLmHyiXbt2fPbZZzz88MM2R+Y82jutlHIJCxcupEmTJpw/f57nnnuOkJAQTdCVUkqxefNmqlevTkBAAJ6ensybN49Vq1Zl6QQdNElXStksNjaWt956ix49enDz5k0GDhzIl19+SYECBewOTSmllI1iYmJ4++23adq0KSdPnqRu3brs27ePnj17ZuqpFVNLk3SllG2uXr1KmzZt+O9//0v27Nn5v//7P6ZNm0b27JlynTXlYCKCiOhqo0q5oUOHDlGvXj0mTZqEiDBy5Ei2bt3K448/bndoifL390+4ZzmKWyXpesNXynVERETw9NNPs379egoWLMjXX39910q47s4ZN/zMxhiDMUbv2Uq5EWMMs2bNonbt2uzdu5cyZcqwdetWRo8eTY4cOewOL0n+/v4J9yxHcavuKh3QqJRr2Lp1K+3atePChQtUrFiR4OBgl+0dsYszlphWSilXdu7cOXr16sX69esB6N69O59++in58uWzOTJ7uFVPulLKfvPnz6dZs2ZcuHCBFi1asH37dk3QlVLKzX311VdUrVqV9evXU6BAAQICAli0aJHbJuigSbpSKoPExsby5ptv0qtXL27evMmgQYMSbsZKKaXcU1RUFP3796dVq1acO3eOxo0bs3//fjp27Gh3aLZzq3IXpZQ9rly5QpcuXfjyyy/Jnj07M2bM4NVXX7U7LKWUUjbau3cvfn5+HDp0iBw5cjBu3DiGDRtGtmzahwyapCulnCwiIgJvb28OHjxIoUKFWL16NY0bN7Y7LKWUUjaJi4tj8uTJvPfee9y8eZMnnniCpUuXUrNmTbtDcymapCulnObHH3+kbdu2OkBUKaUUACdPnuTll1/m+++/B6B///5MmjSJvHnz2hyZ69HnCUopp1i4cCFNmzbVAaJKKaUAWLlyJdWqVeP777+nSJEirF+/nunTp2uCngRN0rO4kydP0qFDB/Lnz0++fPlo164dJ06cSHG/VatW0b59e0qVKkWePHmoUKECI0aM4OrVq3dtt3nz5oS5nO986WBA95XYCqI6QFQ9CF3bQqms4erVq/To0YOOHTty+fJlWrVqxYEDB2jVqpXdoTmMM9a20HKXLCwqKoqmTZuSK1cuFi1ahIjw/vvv06RJE/bv34+np2eS+3700UeULFmS8ePHU7x4cfbu3Yu/vz/ff/89P/30032DOj755BOeeuqphO91xUj3dPXqVfz8/AgODsbDw4Pp06fz2muv2R2WyqR0bQulMr+jR48ybNgwwsPDyZ07N5MnT6Zfv35Zbv0HZ6xtoZlUFjZnzhyOHTvGkSNHEsoMqlWrRrly5Zg9ezZDhw5Nct/g4GD+9a9/JXzfqFEjChUqxMsvv8zmzZtp2rTpXds/8cQT1KtXzzkXojKFyMhIfHx8OHDgAAULFmTVqlX3/Z4opZRyD7GxsUycOJGRI0cSFxdH9erV+eKLL6hUqZLdoWUablXu4m6PTtetW0e9evXuqgMuU6YMDRo0ICgoKNl970zQb7vdU3769GmHxBcYGEiFChUQEVatWgVAeHg4NWrUQEQYNWpUwra3HyMdPnyYFi1a4OnpScmSJVmwYAEAS5YsoWLFinh5edGkSRPCw8MdEqNKnW3btlGnTh0OHDhA+fLl2bFjhybo6eSMR6dKKZURTp48SdOmTXn//feJi4tjyJAh7NixQxP0NHKrJN0YgzHGbZL0gwcPUqVKlfvaK1euzC+//JLm423ZsgWwes3v5efnh4eHBw8//DBdunRJVd17u3btmDRpEmD18AOULVs24QPE7bY7vfjii7Rq1Yq1a9dSu3ZtevbsybvvvsusWbOYOHEiCxYs4MiRI3Tp0iXN16cezOLFi2natCnnz5+nefPmhISEUK5cObvDyvT8/f0T7llKKZVZrFixgmrVqvHDDz/wyCOPMGrUKKZMmUKuXLnsDi3T0XKXZLhKB9aDvkdfvHiRggUL3tdeqFAhLl26lKZjnT59mpEjR9K8eXOefPLJhPb8+fMzbNgwGjVqRL58+di7dy/jx4+nfv367N27lyJFiiR73LCwMPLmzXtXb/+BAwcAqFq16n3bDx8+nO7duwPw5JNPEhwczOzZs4mIiEhYOvjMmTMMGnSZjUAAACAASURBVDSI48ePU6pUqTRdp0q9uLg43n33XT788EMABgwYwMcff6zjEZRSyg1dvXqVgQMHsnDhQgC8vb2ZN28eP/30k72BZWL6bqpS9Pfff+Pr60v27NkTyktuq1mz5l2LDzRq1IiGDRtSp04dPvnkE8aOHZvsscPCwqhcufJdA1HDwsLIkydPotP1Pf/88wlfFyxYkCJFilCzZs2EBB2gYsWKgPW4TZN05/j777/p2rUrQUFBeHh48Omnn9KvXz+7w1JKKWWD0NBQunTpkjA4dMqUKbz22mtarpdOmqQnI7M/ZS5YsGCiPeZJ9bAn5vr163h7e3Ps2DG2bNlC8eLFU9ynVq1alC9fnp07d6a4bVhYGHXr1r2r7cCBA/cl7rfdG3fOnDkTbQOIjo5O8fwq7U6cOIGPjw8///wzBQoUYOXKlTRv3tzusJRSSmWw24NDR40aRWxsrA4OdTC3qkl3N5UrV+bgwYP3tf/yyy+p+g908+ZNOnTowK5du/jqq68SLT9JTkqfoG/evMnRo0fvq5vfvn17ovXoyn7bt2/nqaee4ueff6ZcuXLs2LFDE3SllHJDdw4OjY2N1cGhTqBJehbm4+NDSEgIx44dS2iLjIxk27Zt+Pj4JLtvXFwcfn5+bNq0ibVr16ZpesVdu3Zx5MgR6tSpk+x2R48eJSYmhqJFi961b0RERJo/ECjn+/zzz2ncuDHnzp2jWbNm7Nixg/Lly9sdlsrC3G1GLqUyi3sHh27cuNHtB4c6Y0YuTdKzsD59+lC6dGl8fX0JCgpi3bp1+Pr6UqJECfr27Zuw3ZYtW8iePTuLFy9OaOvfvz8rV65k2LBheHp6EhISkvA6depUwnZ+fn68//77BAYGsmnTJiZPnkzLli0pVqwYAwcOTDa+sLAwAA4fPgzA+fPnGT16NJD4zC7KHnFxcbz33nt069aNmJgY+vXrx4YNG1JdMqXUg3K3GbmUcnW3Vw7t1KkTly9fxtvbm/379/Pcc8/ZHZrtnDEjlybpWZinpyebNm2ifPnydOvWDT8/P8qUKcOmTZvw8vJK2M4YQ2xsLHFxcQltGzZsAGDcuHHUr1//rtfcuXMTtqtSpQrr1q2jR48etGjRgqlTp9KuXTt27NhB4cKFk40vLCwMLy8v5s6dS7Vq1Xj//fdp2bIlYH1ICAgIcORfh3oA165do0OHDowfPz5hBdGZM2eSI0cOu0NTSimVgUJDQ6lZsyYLFy4kd+7czJw5k6CgoETXVVGOoQNHs7iSJUuyevXqZLdp3LjxfZ/8IiMjU3X8ESNGMGLEiAeKLSwsjKeffpqNGzfe1d6/f//7tr1zud07JRZnYtej0u7UqVN4e3uzb98+8ufPz4oVK7S3xI2JSAegM/AkUAQ4AQQC440xV1PYNzcwBugKFAD2AW8bY35watBKqXTTwaH20Z50ZZuwsDD9T+6iQkNDeeqpp9i3bx9ly5YlJCREE3T1JhALvAu0BGYB/YBvRCSl95J5QB9gJNAaOANsFJEazgtXKZVeJ0+epFmzZjo41CZulaTrICTXcf36dY4dO5bo6qXKXgEBATRq1Ig//viDxo0bs2PHjoS551XGccYgpHTyNsZ0NMYsNcZsMcZMBQYCdYHGSe0kItWBLsAQY8wcY8x3QEesnvgPMiBupdQDCAwMpHr16mzZskUHh9rErZJ0HYTkOg4dOkRcXJx+Gncht/9vvPTSS0RHR9OnTx82btzIww8/bHdobskZg5DSwxhzPpHm24shFEtmVx/gJpAwyMQYcwtYDrQQEX3HV8qFXLt2jVdffZX27dtz6dIlWrVqpYNDbaI16coWtWrVcpnkQ1lPNl555RVWrFhBtmzZmDx5MoMGDXKlXlzlmhrF/3komW0qAxHGmKh72g8COYHH479WStls3759dO7cmcOHD5MrVy7++9//MmDAAH0vsIkm6Uq5uTNnzuDr68vOnTt56KGHWL58OS+88ILdYSkXJyLFsMpVvjXG7Epm00LA/Usfw8U7fq6UspExhmnTpvH2228TExNDpUqVWLZsmU6HbDNN0pVyY3v37sXb25vTp09TunRpgoOD71sBVql7iYgXEATcAno48Tz3tXXq1InOnTs765S2CwoKsjuEDOVu1wuud82XL1/mk08+Yc+ePQC0bNmSHj16EBERQUREhEPO4WrX7CjLli1z6nTRmqQr5aYCAwPp1q0bUVFRPPPMMwQGBup8typFIpIHCAYeAxoZY06lsMsloFQi7bd70C8m8jMAtyuJCwoKwtfX1+4wMoy7XS+43jVv3LiRt99+m7Nnz1KoUCHmzp1L27ZtHXoOV7tmR/L19WX58uX3tTuqPCjNA0dFpJxDzqyUsoUxhvHjx9O+fXuioqJ4+eWX+fbbbzVBVykSkRzAKqy50l8wxhxIxW4HgTIikvee9kpADPCbY6NUSqXkxo0bDBs2jJYtW3L27FkaN27Mzz//7PAEXaXPg8zusjHlTTKnO1fcVFmXO/87R0dH0717d9577z1EhA8//JAFCxbolFoqRfFzoS8FmgJtjDEhqdw1GMgBvHjHsbIDnYCvjTE3HB2rUippR44coX79+kyZMgUPDw/GjRvHt99+S/Hixe0OTd0jTeUuIlIbKCUizxhjfnRSTLbImTMnUVFReHl52R2KcrKoqChy5sxpdxgZ7uzZs7Rt25bt27fj6enJ0qVLs+wjSPUPESlnjPnVAYeagZVojwOuiUi9O352yhhzSkRKAeHAB8aYDwCMMXtFJACYGt8TH4G1CFIZwM8BcSmlUsEYw/z58xk4cCBRUVGUKVOGZcuWUbduXbtDU0lINEkXkX8DbwNPALe72B4CqgJjgc0ichD4M/5nBrgC7ACmGWOuOzNoZyhWrBjh4eGULVuWvHnzki2bW00h7xbi4uKIiooiPDycEiVK2B1Ohtq/fz/e3t6cOHGCEiVKEBwcTPXq1e0OS2WMjVj14+n1fPyf78W/7jQa8AcE8OD+p7Q9sJL7sUAB4GegpTFmjwPiUkql4NKlS/Tt25eVK1cC4Ofnx8yZM8mXL5/NkankJNWTPgdrFbmjWKP3DdYyzguNMTNE5ABWj0phrJuxAEWxlosuCgxyctwOV6iQNYYpIiKCmJgYm6NRzpIzZ05KlCiR8O/tDoKDg+nSpQt///039erVY82aNTzyyCN2h6UygCOffhpjSqdim0is94N7268DQ+NfSqkM9OOPP+Ln58eJEyfw8vJi1qxZdO3a1e6wVCoklaRXBkon1SNujFmFNXjoLvHz5m5wXHiOdXu07ahRoxJddbRQoUJZJnnLyqOpk+KO15wcYwyTJ0/mrbfewhhDly5dmDdvHrlz57Y7NJUK/v7+jB49OlXbuuPTT6VU8m7dusXYsWMZM2YMcXFx1KlThy+++IKyZcvaHZpKpaRqOq4+yE3bGHMacNlRebeX2E4sQVcqK4mJiaF3794MHz4cYwxjx47l888/1wQ9E/H390+4Z6XCHKz6bi/+6ck+AwwzxowCXgIOYyXngnXvv/30c6KDQ1dK2ez48eM0btyY0aNHY4zhnXfe4ccff9QEPZNJqie9XhLtqZGefZVS6XThwgXat2/PDz/8QJ48eVi8eDEdOnSwOyzlXG759FMpdb9Vq1bRu3dv/vrrLx599FGWLFlC06ZN7Q4ry0vL08/USjRJN8ZEP+gB07OvUip9Dh06ROvWrTl27BiPPvoo69ato3bt2naHpZzvgZ9+iohLP/1USqVOVFQUQ4YM4bPPPgPAx8eHefPmUbhwYZsjcw/+/v4JnQm2LWaklHJNX3/9NfXr1+fYsWPUqlWL0NBQTdDdhz79VMqNHThwgKeeeorPPvuMXLly8emnn7J27VpN0DM5hybpIlIkjduXEJFVIvKXiFwRkUARKZmK/UqJSJCIHBeR6yJyQUS2iMgLDx69UpnXjBkzeOGFF/jrr79o164dP/zwA8WKFbM7LJVB9OmnUu7JGMOsWbOoU6cOv/zyCxUrVmTHjh0MGDDAYb25yj4PnKSLyNz4BPmYiKwWkfeARWnYPy+wCagIvAx0A8oB34uIZwq7ewEXgPeBF4BewFXgSxFpl/arUSpzio2N5Y033mDAgAHExsby7rvvsnLlSjw9U/ovpJRSKjO7ePEi7du35/XXXyc6OppevXqxa9cuXQMjC0nTiqP3qAOUBvID1YCaWDMHpFYfrAU2KhhjfgMQkf3Ar0BfYEpSOxpjDmIl5glE5Euslex6AIFpiEOpTOmvv/5i7Nix7N27l5w5czJ37ly6detmd1gqExGRIsaYc3bHoZRKm61bt+Ln58fJkyfJly8fn332GZ06dbI7LOVgaU7SReQRY8wfwA/AOWPMWaxFj+6bOSAFPkDI7QQdwBgTISLbAF+SSdITY4y5JSJ/YS2+pFSWFh4ejre3N4cOHeJf//oXa9asoUGDBnaHpVyYiMzFmqbxDLAX2AM8wz8riSqlXFxsbCzjxo1j9OjRxMXFUbduXZYtW0aZMmXsDk05wYOUuxwXkXCgLLBaRJrEl66kVWUgLJH2g0Cl1BxARLKJSHYReURERgLlgekPEItSmcbWrVupW7cuhw4domTJkoSGhmqCrlLj9tPPlsAyIC9pe/qplLLRqVOnaNq0KaNGjUqY+3zr1q2aoGdhD1Lu8gEwF+uGXwdrlbvaInIB2GuM6ZLK4xQCLiXSfhEomMpjTAKGxX/9N/CSMea7VO6rVKazcOFCXn31VW7evMnzzz9Pt27dKF26tN1hKRfmwKefSimbBAUF0bNnTy5evMgjjzzCkiVLaN68ud1hKSdLc5JujBkX/2Vw/AsAEXkceNJBcaXWVGA58AjQHfhCRDoYY9YntnFiI507depE586dnRqkXYKCguwOIcNl1WuOi4tjyZIlrFmzBgBvb29eeeUVPDw8suw1JyerXvOyZcsICAhw9GGPi8gprMR8tYh8CuwwxkQ5+kSOposZKXcXHR3N8OHDmT7dKhJ4/vnnWbhwIUWKpGkyPZUBMmwxo9SIv9H/CuzE6kH/Dfgt+b3uconEe8yT6mG/jzHmFHAq/tv1IrIZ+AhINEl3p4UxgoKC8PX1tTuMDJVVr/nvv/+ma9euBAUFkT17dqZPn07fvn2BrHvNycnK1+zr68vy5cvva0/nVGqOevqZ4dzpnq3UvQ4dOsRLL73E/v37yZEjBxMnTmTw4MFky6ZL3LgiZyxmlJ7ZXaphDdJ8EagmIhHAT8ACY8zOVOx/EKsu/V6VgF8eMKZdwOAH3Fcpl3Py5El8fHzYt28fBQoUYNWqVTRr1szusFQm4mJPP5VSKTDGMH/+fAYOHEhUVBSPP/44y5cv18Xp3FB6Po7tNMYMMcY8C/wbq6cmNzBRRFLTzbUOqCcij91uEJHSQIP4n6WJiGTDmqkgPK37KuWKQkNDqVOnDvv27aNcuXKEhIRogq4emIh8KiIDRaS+iOQ2xvxmjLm/214pZZu//vqLzp0707t3b6KioujWrRt79uzRBN1NpeuZiYiUAWvFOmPMdOAy0BxolYrd5wCRQJCI+IqIDxAEnARm33GOUiJyK372lttt/iLyiYh0EpFGItIJ+B/Wo9xR6bkmpVzBihUraNSoEX/88QdNmjQhJCSEChUq2B2WytyqAWWwBtyfFZF9IjJTRJ6yOS6lFBASEkKNGjUICAjAy8uLxYsXs3jxYh566CG7Q1M2SU+S/hGwVER6i0hBEckB1DBWEeHllHY2xlwDmmINZloCLMVajKipMebvOzYVwOOeWPcAVYBPga+x3nSigWe1Z0hlZsYYPvjgAzp16kR0dDR9+vRh48aNFCpUyO7QVOaX3qefSikniIuLY9KkSTz77LNERkZSu3Zt9uzZo4vTqQevSTfG/CEibYHxwGSsm/1UESkCpKrLzxhzAmifwjaRWIn6nW3reICSGKVcWXR0ND179mTZsmWICJMnT2bw4MEOG4CilIiUMcZEGGOigekiMgVr9ebZWE8ylVIZ6Ny5c3Tv3p2NGzcCMGTIECZOnEjOnDltjky5gvQMHCV+vt1eItIP8DTGXBKRqkCgQ6JTyk2cPXuWNm3aEBISgpeXF8uXL6dVq9RUjSmVah8BgSIyH1iNtbZEDWOMEZEUn34qpRxr06ZN+Pn58ccff/Dwww+zcOFCWrdubXdYyoU8cLmLiHQRkUoiks0YExOfoFc3xhwwxixyZJBKZWUHDhygTp06hISEULJkSX766SdN0JXDxS9o1BaojzUe6G9gZ1qefiql0u/WrVuMHDmS5s2b88cff9CwYUP27dunCbq6T3pq0r2xemP+EpFQEfkMmOmYsJRyD1999RVPP/00J06coF69eoSGhlK1alW7w1JZlDHmrDGmF/Av4BFjzNtY9eku+fRTRBARXchIZRkXLlygadOmjBkzBoCRI0fy3XffUbx4cZsjU+nl7++fcM9ylPTUpHcGEJE8QG2gB3DRQXEplaUZY/jkk08YOnQocXFxvPTSS8yfP588efLYHZrKokSkC7APOGyMiQFi4p9+/gwcsDe6xOliRiorWb9+PUOGDOHq1asULVqUpUuX0qRJE7vDUg7ijMWM0r1slTHmujHmx/jemR8dEJPTaK+McgU3b97k9ddfZ/DgwcTFxeHv788XX3yhCbq6ixN6ZfTpp1I2iImJYciQIXh7e3P16lVatGjBvn37NEFXKXrgnnQR+QqrV2YfsB84h7UQkcvSXhllt8uXL9OxY0e++eYbcuXKxYIFC+jcubPdYSkX5OheGX36qVTGCw8Pp1OnTuzevZvs2bPj5+fH/PnzyZYt3X2kyg2k57fEA7gOdAY2AH+gN3ylkhQeHk79+vX55ptvKFKkCJs3b9YEXSUvLg6Cgx16yMz09FOpzGz58uXUrFmT3bt3U7p0abZu3Urbtm01QVeplp4pGF+Ony1AKZWCH374gXbt2vHnn39SpUoV1q9fT6lSpewOS7mqq1dh4UL45BP47TeHHDIzPv1UKjOKiopi8ODBzJkzB4D27dszd+5cChQoQFCQLkegUu+BP87FL2ZUQUQaiYinI4NSKitZtGgRzZs3588//+SFF15g27ZtmqCrxEVEwLBhULw4DBxoJeiO+13Rp59KOdnBgwepU6cOc+bMIVeuXMycOZOVK1dSoEABu0NTmVB6atLfBt7Fuuk/JCLTgPeMFn4rBVhLPb/33ntMnDgRgMGDB/PRRx/h4eFhc2TKpRgDP/4IU6fC2rVWiQvAs8/C4MHg4wM5cjjiTPr0UyknMcYwb948Bg4cyPXr16lQoQIBAQFUr17d7tBUJpaecpfqQCFjTKyIlAIGAyOA8Q6JTKlM7Nq1a3Tv3p3AwEA8PDyYPn06r732mt1hKVdy4wasWGEl53v2WG05coCfHwwaBLVrO/R0t59+Ao8Au4wx1xx6AqXc1JUrV+jbty/Lly8H4OWXX2b69Ol4eXnZHJnK7NIzeuG4MSYWwBhz3BgzBHjUMWEplXmdPn2ahg0bEhgYSP78+dmwYYMm6Oof587BmDFQujR0724l6IULw3/+A8ePw+LFDk/QIeHpZygQAJwTkfHiyFU3nECnzVWubvfu3dSqVYvly5fj6enJ4sWLWbhwoSbobsilFjPCKnHxNcbcOQpCn+Mrt7Znzx68vb35/fffeeyxx/jyyy+pWLGi3WEpV7B/P0ybBkuXWr3oAFWrWiUtXbpA7tzOjiDTPf3U6knlqowxTJ8+nWHDhnHz5k2qV69OQEAAFSpUsDs0ZRNnLGaUniR9JBAkIp8CO4F8QKQjglIqM1q7di1+fn5ERUXx7LPPEhgYSOHChe0OS9kpLg6+/NIqadm0yWoTAW9vKzlv0sT6PmPc9fQTGCIi0zPq5EplFZcvX6ZXr14EBgYC8PrrrzN58mRyO/+DtnIz6UnS/wfMAcKBesDvwBeOCEqpzMQYw6RJkxgxYgTGGF5++WVmz55Nrly57A5N2eX2FIrTpkF4uNXm6Qk9e8Ibb0C5cnZEpU8/lUqnnTt30qlTJyIiIsiXLx/z5s2jQ4cOdoelsqj01KTHGGPmGGM2GWPGG2MWGmNiHBaZE2h9o3K0mJgYevXqxTvvvIMxhgkTJrBgwQJN0N1VZOTdUyiGh1tTKE6eDKdOWfOepzJBd0J940jgTRE5ISKrReQb0tBRIyLFReRTEdkuIlEiYkSkdCr3jYzf/t5Xmwe7FKUyljGGadOm0aBBAyIiIqhVqxZ79uzRBF3d75rjxuSnpyf9KxH5lzHmvMOicTKtb1SO9Oeff9K+fXu2bNlCnjx5+Pzzz2nXrp3dYamMZgxs22aVtKxZ888Uis88A0OGWFMoZk/7rdbR9Y3GmIsi0hBoCtQl7U8/Hwc6AruBrcBzaQxhI+B/T9uRNB5DqQx36dIlevbsydq1awF44403+O9//6udMepuv/wC//d/1uB/B0lPkv4K0FdEFgHbgD2ZKWFXKj2OHj1K69at+fXXXylatCjr1q3jySeftDsslZFiYmDlSis537XLasuRwxoEOniwU2ZoSQ8RCQU+M8bMBb57gEP8YIz5d/yxepP2JP2CMSbkAc6rlG1CQ0Pp2LEjx48fJ3/+/MybN4/27dvbHZZyFTExEBgIs2bBDz84/PDpSdIvAR8BNYEhQE0RiTHGlHBIZEq5qM2bN9OuXTsuXbpEjRo1CA4Opnjx4naHpTLKhQvw2WcwYwb8/rvV9vDD0K+f9XrUZWeijYlP0B+IMSbOkcEo5cqMMUydOpW33nqLW7du8eSTTxIQEMBjjz1md2jKFURGWu8D8+ZZ0+qCNe6oa1frfaBGDYecJj1J+vPGmIvAytsNIuKy705KOcL8+fPp27cvt27dwtvbmy+++ELnw3UXBw9aA0GXLIHoaKutcmWr19zPD/LksTe+lNldougtIlFYg1X3AhONMWttikWpJF28eJEePXqwbt06AAYNGsSHH36o5S3uLjYWNmywes03bLBKHcGaSrdfP+t9IF8+h57ygZP0+AT93rbf0xeOUq4pLi6OESNGMGnSJACGDh3KpEmT8PDQyTGytLg42LjRKmn5+ut/2l94wUrOmzfPyCkU0+sV7CtRDMaaqjcC+DcwAFgjIt2MMZ8ntVNitfidOnWic+fOzorTdkFBQSlvlIW42vUeOXKEjz76iPPnz+Pp6ckbb7xBvXr1+N///uewc7jaNWeEzHzNuS5dotS331Lq66/Je966ZcZmz87vDRowx8ODMZs2weuvWy8HS09PulJu4dq1a3Tr1o01a9bg4eHBzJkzefXVV+0OSzlTVJQ1+GfaNDh82GrLmxdefhkGDYLMuWCJbSWKxpg37vxeRNYAIcAEIMkk3d0G+wcFBeHr62t3GBnGla7XGMOUKVN47733uHXrFnXq1CEgIIDSpUs79DyudM0ZJVNeszGwZYvVax4YCLduWe1ly0Lfvnj06EGJwoX5APggkd1dYTEjpbK833//HR8fH3bv3k3+/PlZtWoVzZs3tzss5SynTlm15rNnw6VLVlvx4jBgAPTpA4UK2Rtf+rhMiWL8qqcrgQ9FpKgx5owdcSgF1kxdr7zyCuvXrwdgyJAhTJw4kZw5c9ocmcpwly/DokXWLC23O2iyZYM2baySlubNre8ziEOTdBHxBb43xlxx5HGVssO+ffto3bo1p0+f5rHHHmP9+vU88cQTdoelnCE01CppWbnynx6TOnWsKRTbt7dmbcnkXLhE0b26y5VL2b59O506deLkyZMUKFCAhQsXZr5eX5V+u3ZZvebLlsH161Zb0aJW50yfPlZnjQ0c3ZPeCRgnIq8ZY3508LGVyjDBwcF07tyZa9eu8cwzz7BmzRoKFy5sd1jKkW7dgrVr4eOP4aefrDYPD+jY0UrO69WzN74sTESyY71fnDDG/GF3PMr9xMXFMXnyZN59911u3bpF3bp1CQgIoFSpUnaHpjJKVBQEBMDMmf9MowtWb3m/fuDtbXsHjUP77I0xXYCngIcdeVxH0RVHVUpu1yX6+vpy7do1unbtyrfffqsJelby118wZQo8/ji8+KKVoOfPD8OHw7Fj1k3bBRJ0J6w4eh8R8RWRVE9HICIdRKQDcHsS+Ofj2xrdsc0tEZl3x/edRWS5iHQXkSYi8hLwPVALeNtBl6JUql24cAFvb++E6RWHDRvGDz/8oAm6uzh6FIYOhWLFoGdPK0EvWNBqO3oUvvkG2rWzPUGHdPSki0gt4Iox5rc7240x1wGXHMbrboOQVNrcvHmTAQMG8NlnnwEwZswY3nvvPacmSSoDhYfDJ5/A/Pnw999W2+OPWwNBX3kFXGwqTUevOJqEtD79XHnP9zPj/9wCNI7/2iP+dVsEUAT4L1AIuAbsAloaYzY+YNxKPZA7y1sKFizIokWL8Pb2tjss5Wy3bsG6dVZJy7ff/tNet67Va96xo0tOo5uecpcJwGwR+R1rOi8DdDPGHHRIZEploMuXL/Piiy/y7bffkjt3bhYtWkTHjh3tDkullzGwdatV0hIU9M+8tk2aWCUtrVpl6CAgV2OM6SIieUjl6qHGmBQ/Ldy7Tfwqo00fLEKlHOPexYnq1atHQEAAJUuWtDs05Uy//w5z5liv06ettjx5rJWh+/VzuZWh75WeJH23MSZQRHoAl4HBwFvAyw6JTKkMEh4eTuvWrTl8+DBFihRh3bp11K1b1+6wVHrExFhlK1Onwp49VluOHNaNefBgh60Gl5lkxqefSjnC5cuX6dGjB2vXWmtnDR06lIkTJ5LDBcoZlBMYA99/b9War11rLUIE1tS5/fpZU+kWKGBvjKmUni6kAmI9g+0GTDHG/AzoNFoqU/nxxx+pW7cuhw8fpkqVKoSGhmqCnplduADjxkHp0tC9u5WgFy4M//kPnDgBCxe6ZYIebwJQTUTyisheEdkjIpXtDio5Oo5Ipdfu3bupVasWa9euIDPSqgAAIABJREFUJX/+/AQGBjJ58mRN0LOiy5ettS2eeAKaNYPVq632Dh3gu+/g0CGrvNFJCbozxhGlpyf9O+As1gIZX8Un7E5fFEMpR/n888/p1asXMTExtGzZkoCAAPI5eElflUF++cW6OS9eDNHRVlvlylZJS5cuLllraINM9/RTxxGpB2WMYfbs2QwaNIiYmBhq1arFihUrKFu2rN2hKUfbvduqNf/ii3+mT3z0UejbF3r3tr7OAM4YR5Rkki4iNYwx+5L6uTFmtYj8D4iOX5hiAnDOIVEp5UTGGEaNGsWYMWMAGDBgAB9//DHZs+vaXpmKMfD111a9+cY7xh8+/7yVnDdvDjro9073Pf0UEX36qbKcq1ev0rdvX5YtWwZAv379mDJlCrlz57Y5MuUw16/DihVWSUto6D/tzZvD669b0ydmgff05K5gp4gMMMbMTmoDY8y1O74e4dDIlHKC6OhoevTowfLly8mWLRvTpk1jwIABdoel0iDbjRswd65Vb34wfpx6njxWecugQdajTpUYffqpsrywsDA6dOjA/2fvPMOjrJowfJ/QO1IUpCNSBUUE6UVAWkLoEAEFREGUJggKSLMhXamKIggYgiAJSejSIkWqUj+aShWkBgJJSLLn+zFZN0FKgE3e3ey5r2sv5bxbZgk5++ycmWcOHz5MlixZ+Prrr3nllVesDsvgLI4fl2mgs2fD5fj5bDlzQteu0LMnlCxpbXxO5l4iPQ0wXSlVUGv94Z3uoJSaDOQEftNaT06OAA0GZ3HhwgV8fX3ZunUr2bJlIyAggCZNmlgdliGpnD8P06fz8uTJcC1+qHH+/PDOO3KsmdslxzOkGOb00+DpzJ07l7feeovIyEjKlSvH4sWLKV26tNVhGR6VuDhYsUKy5itXOly6KlWSrHmHDpA5s7UxJhP3EumHgL3AUKVUQaC71jrutvuMB14EFgFGpBtclkOHDtGsWTP+/PNPChcuTEhICOXLl7c6LENS2LdPSloWLIBbt8gA8PzzUtLSrh2kT291hK6COf00eCQ3b96kd+/ezJ49G4DXXnuN6dOnkzmVCjeP4cIFyZjPnAl//SVrGTKIKO/VC6pUsTS8lOBeIj1aa+2nlDoJvAfkV0q1vm2TPx1f02gKPw0uy88//0zr1q0JDw+ncuXKLFu2jHz58lkdluFe2GySMZk4UbryQerLfX35pXJlag4ZYurN/4s5/TR4HEeOHKFNmzbs27ePjBkzMm3aNLp162Z1WIaHRWv49VfJmgcEiJ0uQLFiYp/YrZtHnZre14JRaz0YeBuoD2xSSj1+p7s5O7DkwNh5eR7ffPMNjRs3Jjw8nNatW7NhwwYj0F2Zmzcla1K2rAwa+vlnyJIFeveWcc2BgVx65hmPEOgPYed1CDnVHKqU+k4pleYO9xkPBAMTnBSmwWAZixYtolKlSuzbt4+nn36aX3/91Qh0d+XmTek1qlQJqlWDefMgJkY+B5Yvh2PH4L33PEqgQxItGLXWM5RSpwB/YKtSqonW+kjyhuZ8jJ2X52Cz2fjggw8YO3YsAIMHD+bTTz/Fy4OnS7o0Z8/CtGki0O3NQAULQp8+YqH12GPWxmcBD2HnZU4/DR5BdHQ0AwcOZOrUqQC0a9eOWbNmGQtdd+TIEbFPnDNHfM5BhHj37tJrVKyYpeFZTZIVi9Y6BKgLZAY2K6WqJVdQBsOjcPPmTdq2bcvYsWNJmzYts2bNYsyYMUaguyJ79ogrS9Gi8OmnItArVwZ/f/jjD8mceKBAfxTM6achNfPnn39Ss2ZNpk6dSrp06Zg6dSoLFy40At2diI2VSaAvvyxTQCdPFoH+4osy6+L0aRgzxu0EuuXDjLTWu+LF+XJgrVLqFSDEadEYDI/I33//TfPmzdm5cyc5cuRgyZIl1K9f3+qwDAmx2SAkRJpBN2yQNS8vaN1amkGrV/eIcpbkxJx+GlIjy5Yt47XXXuPq1asULVqURYsWUblyZavDMiSV8+elpOWrr+DUKVnLlEkGzr31lpS6uDEpOswIKK6U+gX4Tmv9rX1Ra/1XvFAPBBYDA50SicHwiPz111/07t2bU6dOUaxYMUJDQyljPLNdhxs3YO5cyZocPSpr2bLB669LWYubZU1cHa11iFKqLpJI2ayUaq613mpxWAbDAxMbG8uQIUMYN24cAD4+PsydO5fHzCmb66M1j/3vfzJ46Mcfpc4coEQJcWjp0sWclt6De4n0XEBppLwlEVrrcKXUy8AcYBJucnRqSL0sX76c999/n6ioKKpXr05gYCB58+a1OiwDwJkzMHWqZE+uXJG1IkVk8NDrr4M5pk42zOmnwd35+++/6dChA5s2bSJNmjSMGTOGAQMGOLWkwJAM3LwpZYvTplF7zx5Z8/KC5s3h7bdlMqgpQb0vdxXpWmsbcPAe12OAjkqpE8Dgh3lxpVQhROQ3RBqZ1gL9tNYn7/O4F4A3gdpAYeAiEAYM01r/+TCxGNyXadOm0adPH2w2Gx06dOC7774z459dgd27paRl4UKpQQTp2n/3XWjRIlWMbHYxzOmnIVWxadMm2rdvz7lz58ifPz8BAQHUqlXL6rAM9+LYMWkE/e67f5My0dmykeHtt6URtGhRa+NzMx75U1JrPUQptf5BH6eUygysA6KB15Bs/MfAeqVUhYSOBHegA1AO+BI4ABQAPgR2xk/dO/Wg8Rjcj7i4ON59912+/PJLANq3b88PP/xgMixWYrNBaKj4myesN2/bVurNq5l+82TEnH4aUgVaayZMmMD7779PXFwcdevWxd/f39jnuipxcTLXYto0mQxqp0oVePttVmfKhE/bttbF58bcUaQrpZ7WWh9N6pNordc8xGPfAIoDpbTWx+Ifuxc4CvQAJt7jsZ9rrS/cFvNm4M/45x2e1NgN7sn169fx8/MjNDSUdOnS8e2335I9e3Yj0K3ixg3pyp80KXG9effuUm9usifJTkqcfhoMyU14eDhdu3Zl6dKlgNjnfvzxx6Q1J2+ux6VLMhF0xgz4M76IwT4R9O23xakLsAUFWRike3O3f/U/As895HMuBp5Nwv2aA9vsAh1Aa/1nvNj25R4i/XaBHr92Qil1AcmqG1Ixp0+fxtvbm99//51cuXKxdOlSateuTZDZCFKeO/mbm3pzl+ZhTz8NhuRm7969tG7dmmPHjpEjRw7mzp2Lr6+v1WEZbmfXLtn3/f0hKkrWihZ1TATNk8fS8FITdxPpOZRS+bTW5x7kyZRSzwK2JN69HHAnVXUAeOBzEaVUGeBxZOqeIZWya9cufHx8+Pvvv3n66acJDQ3l6aeftjosz+O33yRr7u/v6NZ/8UUYMABatjT15ilMCp1+GgzJxvfff0/Pnj2JjIzk2WefZcmSJTz11FNWh2WwEx0t7izTpsG2bY71xo0la96kCaS505Bjw6Nwt0/SzcAJpdR5IBapX7wOLI/PwvQH2gO5AftPJROQF/g0ia+dC7hyh/XLwAP58Sil0gIzgQvAt/e433/W2rdvj5+f34O8nNuQ2jLLv/76KxMnTiQ6Oppy5crx/vvvc/DgQQ4edJzwp7b3nBRS7D3bbDyxaxdPLVtG3n37ANBeXpytXp3jzZtzpXRpuV9oaLKHklp/zv7+/gQEBDzMQ1Pi9DPFse/ZI0aMMAONUilRUVH07duXr7/+GoCuXbsybdo0MmXKZHFkBkD8zGfOhFmz4EJ8EUPOnNC1q2TOTZLsX0aOHMmoUaOc+px3E+k9gF1IE1L6+LXswJtKqfxAa2ADjqy1XcT/Cix0aoRJYypQHWimtb6T8Ac8azBGUFBQqjkm1FozefJkxowZg9aa1157ja+//pr06dMnul9qes9JJUXe882bjnrzI/HzcLJmhe7dUX36UKBYsRStMUvNP2dfX18WLvzvFpqEXouUOP1McTxpz/ZEzp8/T82aNdm1axcZMmRg2rRpvP7661aHZdBaGv+nTpXJoLb4LeLZZ+Gdd8DPD7JksTREVyTFhhnFO6tMun1dKVUcaewsq7U+/IivfYU7Z8zvlmG/I0qpMYgd42ta69WPGJPBxYiNjaVv375Mnz4dgI8//pghQ4aYBtGU4Nw5OdqcMUMahAAKF3bUm+fIYW18hoSkxOmnweA0li9fzoABA4iIiKBYsWIsXryY559/3uqwPJuICJg/X8T5gQOyljYttGsnJS01aphp0CnMAxWOaq3/UEodc4JAB6k9L3eH9bLcw6EgIUqpoYhLQW+t9TwnxGRwIa5fv0779u1ZsWIFGTJkYM6cOXTo0MHqsFI/+/eLheKCBXDrlqxVriz15q1bm3pz18TdTj8NHkpcXByjRo3io48+AsDb25vvv//eTA+1kiNHYPp08Ta/dk3W8uWDnj3hzTchf35r4/NgHubT1lm1i8uA8Uqp4lrrPwCUUkWBGsD793uwUqoP4qs+VGs91UkxGVyE06dP06xZM/bu3Uvu3LkJCgqiRo0aVoeVetEa1qyBCRNgdfyBlFLSBDpgAFSvbjIoLkwKnX4aDI/EhQsX6NixI2vWrMHLyws/Pz++//57vMzkyZTHZhNP86lTxePcTo0aUtLSqhXcVlJqSHkeWKRrraOc9NqzgHeAIKXUMCSz8xFwCvjKfielVBHgODBaaz06fq0DMBlYCaxTSlVN8LzXtNZJysQbXJPdu3fj4+PD2bNnKVmyJKGhoZQoUcLqsFIn0dHwww+SOd+/X9YyZxYbrX79wLgruDVOPv00GB6abdu20bZtW06fPk3evHnx9/cnIiLCCPSU5soV8TafPh3++EPWMmaEV14RcV6xorXxGRLxSOfWSikvYJDWesyDPlZrfUMp9RKS/ZkHKOBnoJ/WOiLhyyA1lAl/kxvHrzeOvyVkI1D3QeMxuAbBwcH4+flx48YNateuzdKlS8mVK5fVYaU+Ll2SWvOpU+H8eVl78kno3VuON83feWrCJZ1bDJ6B1ppp06bx7rvvEhMTQ/Xq1Vm0aBEFChRItS5NLsnevbLfz58PkZGyVrQo9OolSZncuS0Nz3Bn7ivSlVIlgJrAIa31rwmvaa1tSqkwpVQ/rfXkB31xrfVJpFbyXvf5CxHkCde6AF0e9PUMrs2UKVPo168fNpuNzp07M2vWLDJkyGB1WKmLI0fEpWXuXMdG/eyzUtLSvr053nRzlFK1tNZhCdecePppMDwQERERvPHGG/86FvXr14+xY8eSLl06iyPzEGJixJ1lyhQIS7AtNGwoWfNmzYy3uYtzT5Ee33C0C8gGaKXUHK317f5IvwL+SPmJwfDAxMXF8e677/Lll18CYmM0fPhw4+DiLLSGTZuk3jw42LHetKmI83r1TL156qEnEHa3i0qprMATWuvjKReSwRM5fPgwrVq14uDBg2TNmpVvv/2Wdu3aWR2WZ3D+PHz9tfibnz0ra9myQZcukjm3z7QwuDz3KwZrA+wHWgG9gZZKqVftF5VSTyP142bqgOGhiIiIoGXLlnz55ZekS5eOefPmMWLECCPQnUFMjNSbv/AC1K0rAj1DBnjjDbHXCg2Fl14yAj11kV0p1f5uF+NLCXsrpdzC5FgphVLKDDJyMwIDA6lcuTIHDx6kTJky7Nixwwj0lGDHDujcWaxyhw8XgV66tJS5nD4NX35pBHoyMnLkyH/3LGdxv3KX54BeWuvfAZRSvwEzlVLLkAl3LyENn+84LSKDx3D27Fm8vb3Zs2cPuXLlYunSpdSuXdvqsNyf8HCZDvfFF7IxA+TNKz63b70Fjz9ubXyG5MQG/KCU6gkEAqFa62O33Wcp0A/4JKWDe1DMMCP3Ii4ujuHDh/Ppp2K937ZtW2bPnk3WrFktjiwVc+sW/PijlLT8Gl+RrBQ0by49RvXrm0RMCpEcw4zul0l/HLHvAkBrvQX4HVgB1AK+AcpprWc6JZpkxmRlXIfff/+dF198kT179lCiRAm2bt1qBPqjcuIEvPsuFCoE770nAr10aTn2PHECRowwAt2NeMisTDgQBbyANOUfVkodUkqNVUrVjm/2P4mcjhoMTuPSpUs0bdqUTz/9FC8vL8aPH09AQIAR6MnF33/DyJFQpAh06iQCPWdOGDgQjh+HoCBo0MAIdDfnfpn0rEAxZPCQnaXATOB5d7M6NFkZ12DFihW0a9eOiIgIatSoQWBgIHny5LE6LPdl506pN//xR4iLk7V69WSzbtwYjMWZW/KQWZm/gOHAl0AdwBtoCgwEBgBXgX+AJ50arMGj2b17N61ateLEiRPkyZOHgIAAXnrpJavDSn1oLWJ8yhTZ72NiZP2ZZyRr3rEjZHGLSjZDErnfp7cXsFcptVcp9YlSqgawFejpbgLd4BrMmDEDb29vIiIi8PPzY+3atUagPww2GwQHU2PoUJkGunChZEw6doRdu2DdOmkMNQLd01gOFNRax2it12qt+2mtSwJlkOnM+4CSSALmgVBKFVRKTVFKbVVK3VRK6fgBdEl5rJdS6gOl1F9KqSil1O9KqXs6exncgzlz5lCjRg1OnDhBlSpV2L17txHoziY6GubNgypVoFo16TWKi5Nhc+vXi73im28agZ4Kud8n+E3kaDQv8AGwCdnkWyul/JRSOZI5PkMqIS4ujgEDBtCrVy9sNhvDhg1j/vz5ZMyY0erQ3IvISPjqKyhbFpo3J8+BA5A9u2TN//hDPHCff97qKA0WobXeBmSId3FJuH5Yaz1ea10XqIyUxTwoJYB2wBXu4SBzFz4CRgJTgSbANuBHpVTTh4jD4ALcunWLXr160bVrV6KionjzzTfZtGkThQoVsjq01MOZM/Dhh9II+uqrcmqaKxcMHiz7/U8/iSmAKWlJtdyv3OU48JHWeotS6jmgGbLBtgP8gFtKqZnAe1rrmOQN1eCu3Lhxg06dOhEYGEjatGmZNWsWXbp0sTos9+Kff2RC3LRpcPGirBUuzL4GDSg/aZIIdYNBGAiUBnbf6aLWerdSauWdrt2HTVrrJwCUUt2Bl5PyIKXU4/ExjdFaj49fXh8/g2MMkv03uBFnzpyhTZs2bNu2jfTp0zNt2jS6d+9udVipA61h61ZxYlmyBGJjZf3ZZ6Wk5ZVXIJMx1PMU7ifSA5Gj0S1a69+A34BPlFI5kUmfTYBXgVhkEzYYEnHu3Dl8fHzYuXMnOXPmZMmSJeYo9EE4fBgmTpThQ9HRsvbCC+Jv3qYNf4SGUt4IdEMCtNY3uYtAT8DEh3he28NFRCMgPTD/tvX5wGylVDGt9Z8P+dyGFGbjxo20a9eOf/75h0KFCrFkyRIqV65sdVjuT1QUBASION8d/+ubJg20aQN9+kDNmiZj7oHcU6RrrdcqpWYopfy11tEJ1q8CC4GFSqmMwNBkjtPghhw4cICmTZty8uRJihUrRmhoKGXKlLE6LNfHPnxo/HgICXGs+/hIWUutWmaz9hC0hkOHkuN59U7nP+tdKQdEA7dbQdoNCcoCRqS7OFprJk+ezHvvvUdcXBz169fH39+fvHnzWh2ae3P2LMyYIWWMFy7IWp48UmPes6e4dRk8lvtl0kGajXIC5+90UWsdpZQa5dSoDG7Pzz//TKtWrbh27RpVq1YlKCiIx439372JjYXFi0Wc79olaxkzSi1i//5mCIUHEBcnPWAbN8r3tLAwR3WTG5MLuKr/a691OcH1O3InV5v27dvj5+fnvOhcjKCgIKtD+A9RUVFMmzaNsPjR8i1btqRTp05s2bLlkZ/bFd9vchMUFMRjhw9TPCSEJ7dswSveletqsWL84e3NmVq1sKVPLxn13fc7FHMPUuvP2d/fn4CAgGR7/vuKdK31NeDafe4T67SIDG7PnDlzeOONN4iNjaV169bMmzePTKaG7u5cvw7ffguTJsHJk7JmHz7Uq5f8vyFVcuuWfB/btEluv/wC127bbfPnF0tkT8TTbHODgoLw9fW1OoxEHD16lFatWrF//36yZs3KnDlzaN3aOcY8rvh+k5Vbt9j1/vtU2rwZtm+XNXtJS9++5KxRg+eVIrW1/qfmn7Ovry8LFy78z7qzhhklJZNuMCQJrTUjR45k9OjRAAwcOJDPP/8cL2MDeGfOnpX6w5kzZUooQKlSMpCoc2fTHJQKuXlTbI7tonzrVjHsSUixYlC7NtSpI/8tXtztnTSvADmVUuq2bLo9g375Do8xuAAhISF06tSJ8PBwSpUqxdKlS03J4sNw/ryUs8yYQaVz52QtVy544w1JxBQubG18BpfFiHSDU7h16xbdu3dn3rx5eHl5MWXKFHr16mV1WK7J/v0yfGjBAscwilq1pN7c29vtFZnBQXg4bNniEOU7djh+5HbKlBExXru2/DNIhSWoB4AMwFMkrksvG/9fM3PDxYiLi2PUqFF89NFHgJS3zJkzh+ymSf3B2L0bvvhC5ljcugXAtcKFyT5smMy0yJzZ4gANro5HiXT78cOIESP+neRneHSuXLlCq1at2LBhA5kzZyYgIABvb2+rw3IttJYBQ+PHw8p49zsvL2jbVpxaXnzR2vgMTuHiRSlZsdeU//abzJ2yoxRUrOgQ5TVrwt1aNUaOHMmoUami3WclEAN0BBK+oU7AfuPs4lpcvnyZTp06sWLFCry8vPjkk08YPHiw047vUz0xMbB0qZySbt4sa0qBry/06cP6a9fwbdHC2hgNboNHiXRPq29MCf766y+aNm3KoUOHyJcvHyEhIVSqVMnqsFyHmBgZ3zx+POzZI2uZM0O3btIMWry4tfEZHom//3ZkyTduhAMHEl9Pm1a+f9lFefXqkDNn0p575MiR/yYTXEUgKaXaxP+v/Ze8iVLqAnBBa70x/j6xwFyt9esAWut/lFITgQ+UUtcRe8j2wEtA8xR9A4Z7sm/fPlq0aMEff/xB7ty58ff3p2HDhlaH5R5cvAizZsk8i9OnZS1HDnj9dekvsu/1qbSB0pA8eJRINziXHTt24O3tzT///EO5cuVYvnw5hU1tnXDtGnzzDUyeDKdOydoTT8gwip49IXdua+MzPBQnTiQW5UePJr6eMSNUreoQ5VWrprpJ3T/e9ufp8f/dCNSN//808beEDAUigL5APuAw0E5rHYLBJVi8eDFdunThxo0bPP/88yxZsoSiRYtaHZbrs2+flLQsWCBe5yC9RX36iDNX1qz3frzBcA+MSDc8FMuWLcPPz4+bN29Sv359lixZQo4cOawOy3pOn5Zjzq++cth0lC4t9eYdO4qKM7gFWsOxYw5BvmmTiPSEZMkCNWo4Gj0rV4YMGayJNyXQWt83pX+n+2it44CP428GFyIuLo7hw4fz6aefAtCpUye+/vpr48h1L2w2CA2VJMy6dY71Jk2gb19o2ND0FhmcghHphgdmypQp9O3bF601Xbp04auvviJ9+vRWh2Utv/8uzaD+/o4xznXqiDhv2tRs2G6A1nDwYGJRfrv1YY4c0txpd16pWBHSpbMmXoPhUbl69SodO3Zk+fLleHl5MX78ePr16+cy5VUux/Xr8N13kog5flzWsmSBrl3llLRkSWvjM6Q6jEg3JJm4uDgGDhzI5MmTARg9ejTDhg3z3A1da1i7VurNV6+WNS8vaNdOxLkZle3S2GyOwUEbN955cFDevI7SlTp14JlnxNbYkDKYZv/k49ChQ/j6+nL06FFy5cpFQEAADRo0sDos1+SPP2DqVJlnYT8hLVJESlq6dUt6o4kh1aI19O37BVOm7AFqOu15jUg3JImbN2/SsWNHAgMDSZcuHbNnz6ZTp05Wh2UNsbGwaBGMGyf2HSDNoN27Q79+YnRtcDliY+XHlVCUX72a+D5PPili3J4pL11ajBkM1mCa/ZOHoKAgOnfuzPXr16lQoQKBgYEUM/tWYrSW47TJk6XZ0/5vsXZtKWlp3lw6ww0eSVyctCOEhcntl1/g77/7JrjHG055HfMvzHBfzp8/T/Pmzdm+fTs5c+Zk6dKl1K1b1+qwUp6ICMdkUHtx8uOPSzblrbdkOIXBZYiJkWmedlH+yy9yWp2QIkUcorxOHTFgMKLckFqx2WyMHj36X2vPdu3aMXv2bLKksu7mRyI6WnzNJ092JGHSpQM/PxHnz6e2eaCGpBAVJXMu7KJ8y5b/TofOk0dsdWvVEmdlZ2BEuuGe/O9//6Np06b8+eefFC1alOXLl3vexLlz52DKFJgxA65ckbWSJaWkpXNn0wzqIkRHy6RtuyjfskUmfCbkqacSi/IiRayJ1WBIaa5du0bnzp1ZtmwZSik+++wzBg0a5Lnlirdz/rzs8TNmwD//yFrevDIRtGdPyJfP2vgMKcrVq2Jz/8svIsp37Ph3HtW/FCvmEOW1aompj/3XyYh0Q7KzceNGWrRowdWrV6lcuTLBwcE88cQTVoeVchw+LM2g338vChDE6Pq99+So0zSDWkpkJGzb5hDl27Y5HNDslCqVWJQXKGBNrAaDlRw5coQWLVpw6NAhcubMib+/P40bN7Y6LNdgzx6xUPT3d6iwZ5+V0sUOHUwSxkM4c8ZRthIWJqUsCavtlIIKFRyivGZNKFgw+eMyIt1wRxYsWEDXrl2JiYnB19eXH374gcyeMsJ482apN1+2TH5LlYIWLUScV69udXQey82bsHUrLFhQmgkT4Ndf/5vZeOYZR5Nn7dom+WUwLF++nFdeeYXw8HDKlStHYGAgJUqUsDosa4mLk/198mSpOwfHPt+3r2wg5oQh1aK1zLjYtMlRvvLnbXOP06cX7we7KK9eHR57LOVj9SiRbpwC7o/Wmk8++YQPP/wQgL59+zJhwgTSpHZLC5tNNu1x46ROAsTw+tVX5dyqVClr4/NAIiLkR2HPlG/fLnXmID8LpeC55xxZ8lq1pCYwtTBy5Mh/a4cNhgdFa81nn33GsGHD0FrTsmVL5s6dS7Zs2awOzTquX4fZsyVzbldl2bLJVNDevc0E6FRKXJy4JNsFeViYo6LJTrZsIsTtpSuVK4MrjArwKJFunALuTUwcR3E8AAAgAElEQVRMDL169eKbb75BKcWkSZPo27fv/R/ozkRFSTnLhAlw5Iis5cwpdYi9e5tUbApy/bocYmzcCBs2wM6dDst5kOqi55+HggWP8frrJahVy5rMRkoxcuTIf5MJpm7Y8CBERETQtWtXFi9eDMBHH33EkCFD8PLUEr2//pK+om++cXT7FS8uTf9du0L27JaGZ3AuUVGS1EnY5Hm7acDjjzsEea1aUuHkirlIjxLphrsTERFB27ZtWblyJRkzZsTf358WLVpYHVbycfmyNAhNmSINQwCFC8O770pWxYxyTnauXZP6vw0bRJjv2iUZDzteXvDCC1C3rmTKa9aU709BQQdo3tzDj+sNhrtw/PhxWrRowf79+8mePTvz58/Hx8fH6rCsYetWceNaskROS0Hq4Pr3Bx8f11RlhgcmPFyEuL185U5NnsWLJxblTz/tHhVNRqQbOHfuHM2aNWP37t3kyZOH4OBgqlatanVYycPJk7Jpz5oFN27I2nPPSb1527ZmfGQyEh4uG+iGDXLbs8fxuQnyefniiyLI69aFGjVMgsvTMSWKD8aaNWto3749V65coVSpUgQGBlK6dGmrw0pZYmPhp59g4kRpXAHxM/fzE3FeqZK18RkemfPn5bPELsp///2/TZ7ly8v3MXuTZ0qYBiRHiaIR6R7OoUOHaNKkCSdOnOCpp55i5cqVqbOpaP9+GDtWOvjtNRQNG8KgQVC/vnt8pXYz7ifK06YVUW7PlFevLnWBBoMdU6KYNLTWTJgwgcGDB2Oz2fD29mb+/PnkyJHD6tBSjqtXpZxlyhRJxoDUw/XsCW+/bayd3BStZSyJXZBv2uSoTLWTLp2cutqz5DVqWFMKmRwlikakezBhYWH4+vpy5coVXnzxRYKDg8mbN6/VYTkPreW3+vPPYflyWfPykozKoEGSQTc4jaSI8mrVEotyM0PFYHg0IiMj6d69Oz/88AMAH374ISNHjvSc+vPjx+HLL6UhNCJC1kqWFAvFV181m4yboTX8738ixu3C/NSpxPfJnFk+P+yZ8ipVZC01YkS6h7Jo0SI6d+7MrVu3Up/Fos0mY5w//9xx3Jkpk9Sav/uuTCAwPDLh4Y6a8g0bYPfuu4vyunXl/83npcHgPM6ePYuvry87d+4kS5YsfP/997Rq1crqsJIfrWXzmTQJAgMdtQ4vvSQlLU2bmjkWbkJsrJSrJLRDvHgx8X0ee8yRJa9dGypW9JzKVCPSPQytNRMnTmTgwIEAvP3223zxxRepwmLRKyZGjjvHjXOch+XKJS4t77yTuvz5LMCIcoPBddixYwctWrTg7NmzFC1alGXLllG+fHmrw0peYmJg0SIR57t2yVq6dPDKKyLOn33W2vgM9yU6Who77ZnyOzmv5M8vYtx+K1vWc79zGZHuQcTFxdG/f3+mTJkCwNixYxk4cKD727uFh8PMmTT8/HO4ckXWihQRf/Nu3YxSfEiuX5esxvr1RpQbDK7EwoUL6dq1K1FRUdSuXZvFixenrlLF27lyBb7+WurNz5yRtTx54K23xC7XWOW6LBER8Ntvedm5U0T5r786BnjbKVHCkSWvVUucWNxdljgLI9I9hMjISDp27MjSpUtJnz49c+fOpUOHDlaH9WicOSNDKWbOhOvXyQiSSRk0yDi1PAQREY5M+fr1/7VENKLcYLAWm83GiBEj+PjjjwHo3r0706ZNI3369BZHlkz88YdMBZ092+HGVaaMZM07dXKNaTOGRFy5IvMuNm1KaK2beFL3M884BtDVqgVPPmlRsG6AEekewMWLF/Hx8WHbtm3kzJmTwMBA6tSpY3VYD8+hQzB+PMybZx9BCfXqsaV2baqPGGG+gieRmzdlM7VnynfsSDw8KKEor1fPNHoaDFYSERHBq6++ytKlS/Hy8mLSpEn07t3b/U9C78TWrTJgbulSx/FdgwZyOtqokdnjXYiEdoibNsHevYntENOkgaefvkLz5o9Ru7bYIebKZV287oZHiXRP9Nw9fvw4TZo04ejRoxQuXJgVK1ZQtmxZq8N6OLZulWbQoCD5s1LQpo1kzitX5kJQkNm870FkpPwV2kX5r786vuOAbKZVqoggr1tXNlMz08k6ksNz1+CenDhxgubNm7N3715y5MjBokWLePnll60Oy7nExUkT6IQJslGBnIZ26iQN/6be3CU4edIhyDdtgsOHE19Pn16sde315NWqwbp1m/D19bUmYDfHo0S6p3nubt++HW9vby5cuMBzzz1HaGgoT7rbuZLWsHIljBkjOwJAhgzQpQsMHCjFbIY7EhUlQnz9erlt25Z4CpuXl8z1qFdPbjVrmuFBrkRyeO66G56YWLmdzZs307JlSy5cuMDTTz9NcHAwpUqVsjos53HjBnz3nTSD/vGHrOXMKf7mvXubWggL0RqOHZOyFbsoP3Ei8X0S2iHWqSOJnowZrYnXaswwI0OS2b59O5MmTSIyMpJGjRrx448/ks2dJsXExsKPP4o437tX1nLkkCahPn1Mo9AdiImRkpV160SUb9kiQt2OUmJdZS9fqVVLPgsNBlfF0xIrt/Pdd9/Ro0cPYmJiaNiwIQEBATxmxZSW5ODsWcrMmwdduzoa/osXF3/zrl3NMZ4F2GxSTZpQlP/9d+L75MjhaPKsXRuef960f9kxw4wMSWL69OmMGTMGm81Gt27dmDlzJunc5bcoMhLmzBEbxT//lLV8+eS4s0cPk+pNQFwcHDuWk7FjRZSHhTl6q+xUqOAoX6ld29QCGgzuQFxcHIMGDWLixIkA9OnThwkTJpA2bSr4yN67FyZOhB9+oKS93q5aNak3b9FC6u4MKUJcnPw47E2ed/Ioz5vXIcjr1JGmT/MjSjlSwW+8wY7NZmPIkCF8/vnngHyrGz58uHsclYeHw4wZ0sl//ryslSgh9eadO3vu+VkCbDbYt08E+bp1srGGhyduAC5TRkT5Sy/Jhmqs4Q0G9yI8PBw/Pz9WrFhB2rRpmTZtGm+++abVYT0aWsPq1VJvvmaNrHl5cbZaNZ6cMEFEuiHZiYmRSdD2THlYmHz0JuTJJ+Wzwy7KS5c2rV5WYqlIV0oVAiYBDQEFrAX6aa1PJuGxnwIvAJWAXEBXrfWc5IvWtYmOjqZr1674+/uTJk0a3nrrLUaMGGF1WPfn3DkR5jNmwLVrslaxInzwAbRq5dFf2e3jke2ifMMGuHQp8X3y5YvA2zsrL70k2fL8+a2I1GAwOIO///6batWqcejQIXLnzs2SJUvc24krOhp++EEy5/v3y1qWLDK/ol8/duzbh68R6MlGwsFBGzeKm9ftp61FizoEeZ06xqPc1bBMpCulMgPrgGjgNUADHwPrlVIVtNY37vV4oDfwGxACvJqcsbo6V69epWXLlmzYsIGsWbOyePFiohIWI7six4+LjeJ33zkmG9SrB++/Dw0beuQuobX0TdlF+fr18h0mIYUKOTLl9erBnj0/m655gyEVsG7dOt577z0iIiIoV64cy5Yto3jx4laH9XBcuSLzK7780rGJPfmkNIL26CFz3kGOBg1OIypKDAI2bpTb1q2J+5IASpZ0iPLataFwYWtiNSQNKzPpbwDFgVJa62MASqm9wFGgBzDxPo/PobW2KaVK4MEi/cyZMzRp0oR9+/aRP39+QkNDqVixIkF2m0JX47ffxEZx0SKH/23LljB4sPg2eRhnz4ogX7cOfv5Z7K0S8sQTiUX5U08l/v6yZ0/KxmswGJzP9OnT6dOnD3FxcXh7e7NgwQKyu2P/zcmT4tLyzTcyHQ2kMWbAAOjQQfz5DE7j5k0R4hs3Omx1Ezp4AZQr5xDktWub01Z3w0qR3hzYZhfoAFrrP5VSmwFf7iPStda2e133BA4dOkTjxo05efIkpUqVYtWqVRQpUsTqsP6L1nLeNmaM2CmCTMp57TV47z0ppPYQLl92ZMrXrZNyloTkyiVlKy+9JDdTD2gwpF5iYmLo27cvM2bMAKBVq1YsWrSINO5W5vfbb9LsHxDgGFPcoIHs7x56MpocRERIyYo9U75jR+JZF0qJnby9dKV2bdOX5O5YKdLLAXdK9x4A2qZwLG7H1q1b8fb25vLly1StWpWQkBBy585tdViJsdkgJAQ++0zO4EBMVd98U9xaChWyNr4UICJCmnPsmfLffks8jS1rVtlI7aL82WfFv9xgMKRuLl++TNu2bVm3bh3p06fnm2++IXv27O4j0LWWJtBx42DtWllLkwZeeUVmWFSsaG18qYBr1+CXXxyifOdOx3cgkM+K558XQW4fQGccvFIXVor0XMCVO6xfBlKJEWzyEBwcTPv27YmMjMTHx4eFCxeSOXNmq8NyEBsr5SyffeZoFsqVS/zN33kHXO3LhBOJjpbjR3um/Ndf5a/DTvr0Mvihfn0R5ZUrG49Zg8HTOHLkCM2aNePYsWM88cQTBAYGUrVqVdctU0xITIzs7+PGwe+/y1qWLNC9O/TvD654musmXL0qSR27KN+921EVCvIdqHJlEeR16ogoz5HDsnANKYBHWTDeyYqwffv2+Pn5WRDNw7FmzRpmzJiBzWajYcOGdOnShTV2S6vbSOkN3ysmhkLr11Pip5/IGt8sFJk7N8d8fTnx8svEZcwoaYFkJKXfc1wcHD+ek71787JvXx4OHcrNrVuOTJiXl6ZkySuUL3+RChUuULr0ZTJkkF33wgVYvvzRY3CLD3Ynk1rfs7+/PwEBAVaH4TKkxomjmzZtomXLlly+fJnnnnuOZcuWUcgdThWvX5da88mTHc0zTzwhyZe33nI0gxqSzJUrIso3bBBRvmdP4pPWtGllgqddlNeoAe40k9DTSI6Jo2itLbkB54Gv7rA+HbjwAM9TAnGG6XKf+2l3xmaz6dGjR+v496qHDx+ubTbbXe8fGBiYcsFFRGg9caLWTz6ptewxWpcoofU332gdFZViYaTEe7bZtD54UOspU7Ru0ULrHDkcb9l+q1BB6379tF62TOurV5M3nhT9ObsInvie4/cvy/ZrK27uvmffiXnz5ul06dJpQHt7e+vr168nuu6S/7bPntX6/fe1zpnTscmVKqX1rFlaR0Y+0lO75PtNRi5f1nrIkG26f3+tK1bUWqnEnx3p0mldo4bWQ4dqvXq1fLSmBjzt56y18/ZsKzPpB5C69NspCxxM4Vhcmri4ON555x1mzpyJl5cX06ZNo2fPnlaHJWmAadMks2I38C5fHoYMgTZtJA2QCjhzRurJ166V/549m/h6iRJSulK/vjiw5M1rTZwGg8E10VozatSof7Nsffr0YeLEia5df37okNjkzp/vsAypWVOaQb29TfNMErh82ZEp37BBqoO0driYpUsHVas6MuXVqknblsFgx0oVtQwYr5QqrrX+A0ApVRSoAbxvYVwuRWRkJK+88gqBgYFkyJABf39/WrZsaW1Q58+Lzdb06XIECmKfOHSobN5u3sl/9apsqHZRfrsDy+OPiyBv0ED+a0owDZ7CIw6g03e5VFFr/ZvzonQtoqOj6d69O/Pnz8fLy4tJkybRp08fq8O6M1pLSeLYsdL0D7Kft2ol4rxqVWvjc3EuXxYjM3v5iohyx/X06aFEiYu0bp2HunXlr9OIcsO9sFKkzwLeAYKUUsOQMo6PgFPAV/Y7KaWKAMeB0Vrr0QnW6wB5gXzxSy8opSIAtNaLU+QdJDOXL1+mefPmbN68mZw5cxIcHEzNmjWtC+jECcmsfPONY0JCgwaSOa9b123FeVSU2Fr9/LPcdu5M3KyTNatkOeyi/Jln3PatGgwPjRMG0AHMIcH+Hs8RZ8bpSly6dImWLVsSFhZGlixZWLhwId7e3laH9V/sTlxjxkjnO0DGjNClizhxPf20peG5KglF+YYNsHfvf0W5PVNuF+WrV282A+gMScYyka61vqGUegnJysxDsjI/I1mZiAR3VUAa4PaztVFAwnnJb8ff7I9xa06dOkXjxo05ePAgBQsWZOXKlZQrd6fqoBTg8GHZvOfPd1iV+PrCBx+45QCiuDhp0Fm7Vm6bNyeeypYunZzq1q8vtypVjAOLwcCjD6ADOKO13pZ8IboOx44do2nTphw9epQnn3ySkJAQKrqaLeGtW+DvL5nzg/FVpo89Ji5c77wjx4aGf7E3eq5fn7B8xXE9fXopWbGXr1StCpkyWRWtITVgadFw/BFp6/vc5y/uILq11nWTJyrrOXDgAI0aNeLMmTOULVuWlStXWtP9v2eP2CguXiw7kZcXdOwI778v6WQ34o8/xNLXXsJy5Tbzz+eec5Sw1KoljmIGgyERjzSAzpP45ZdfaNGiBZcuXeLZZ58lJCSEggULWh2Wg4gIORGdOBFOnZK1ggVlMmj37nJ8aCA8PLEov919xS7K69SRfqQXXzSi3OBcUkdnXyoiLCyM5s2bc/XqVWrWrMmyZct4LKWtrTZvhk8+gRUr5M/p08ux56BBMpfeDbBP9lyzRm5//JH4erFiIsgbNDDNngZDEnHGALq3lFLvAXHANmCE1jrMSfG5BP7+/nTp0oVbt27RtGlTFi5cSDZX8c27eBGmTIGpU2WTBJn4PHgw+PnJXu/BXL/uaPRcv/6/PuXp0okQr1dPsuXVqhlRbkhejEh3IZYuXYqfnx/R0dG0bNmSBQsWkCmldgCtZWf66CPZnUA6Wnr0kOxKgQIpE8dDEh0N+/blZvt2EeW7diXeXHPmFAeWhg3l5ibfNQwGV+JRB9DNB0KAs0AR4D1gnVKqodZ6g7OCtAqtNZ988gkffvghAG+//TaTJ08mrSu4XJ04ARMmSPY8MlLWqlWTU1EPdmqJiJA+Wbso37Ur8UTPtGmlZMUuyqtXN42ehpTFBXYPA8DMmTN5++23sdls9OzZk6lTp6aMPZeOH+08erRk0EFGmPXuDX37Qp48yR/DQ6C1DDO1l7Bs3Ag3bzqaatOlk7IVuyivVEmmtRkMBmvQWndO8McwpVQQsB9pPr1jR7y7DKCLiYlh+vTprF+/HqUU3bp1o0GDBoSGhj7wczlzUFe2Eyd4eulSCmzahFd81uJcpUocbdWKy2XLykYaHOy013sYUnIwWXR0Gv73v1zs3ZuH/fvzcOxYTuLiHF9QvLxslCp1lWeeucgzz1ykdOnLZMokqv3GDfm8cQapdRjbvUit7znZB9A5w2zdHW7EDwEC9IgRI+7nQ59i2Gw2PWzYsH9j++ijj+45pCip3Hd4gM2mdXCw1lWqOCYpPPaY1qNHa33lyiO/fnJw5ozWc+dq3amT1vnyJR4CAVoXLhyu+/fXevny1DME4n544pAIT3nPI0aM0An3LW39HuqUAXR3eGz0Xa458W8z+bh06ZKuW7euBnTmzJkf6d+n0/5th4Vp7e3t2BzTpNG6Y0etf//dOc/vJJL7dzkqSusNG7QeMULrWrW0Tp8+8WeGl5fWlStrPWiQ1itWaH3tWrKGo7X2nP0rIZ74np21Z3tUJl3+3lyH2NhYevTowezZs/Hy8uKrr76ie/fuyfuiNhsEBUlZy549spYnDwwcCL16udTM4chIqQ9cvRpWrZLMeULy55csub22fPv29cbaypBqGDlyJCNHjgTunFG2gOQaQOdaG/MDcPz4cZo1a8bhw4fJly8fISEhVKpUyZpgbDYIDYXPP3ecimbKBK+/LiWLRYtaE1cKEhMjFrrr1kn5yu3OXUpBxYpS+livnpy2Zs9uXbwGw/3wKJHuSty8eZP27dsTEhJCpkyZCAgIwMfHJ/leMC4OliyBjz+GfftkLV8+GVDRo4dL2JloDQcOOET5pk2JN9jMmaUu0F7CUras8Ss3GFIQpw6gU0plB7yB7U6MMcXYsmULvr6+XLx4kfLlyxMSEkLhwoVTPpCYGFi4UMT5gQOyZrdR7N07VXfF2+1016+XW1iY1Jkn5JlnRJC/9BLUrg25clkTq8HwMBiRbgHh4eH4+PgQFhZGrly5CAkJoVq1asnzYrGxEBAg4tw+OrNAAenm797d8tb0ixelpnzVKhHnZ88mvl6xIjRqBC+/LE07GTJYE6fBYHj4AXRKqYFAKWA9jsbRgcgwuo4p+B6cQkBAAK+99hrR0dE0btyYgIAAsqd0SjYqCubMEXH+11+yVrCgDB96441UaaNos8mJ6vr1ki3fuFFsEhNSqpSIcnuzp7F6N7gzRqSnMBcuXKBRo0bs2bOHAgUKsHr1asqWLev011GxsfDdd/Dpp3As3ta4SBHp5u/a1TK1GxMjA+3s2fJduxL7zj7xhAjyRo0kW242WIPBNdCPNoDuMNAy/pYDuAZsBl7XWrtNJl1rzWeffcbQoUMB6NmzJ1OmTElZB5eICPj6a5n+/PffslaypOztHTumKhtFreHoURHkP/8sLiwXLya+T7Fijkx53boub0RmMDwQRqSnIKdOnaJhw4YcPnyYp556irVr11LU2XWCt27BnDnU//BD+OcfWSteHIYOhc6dLRmdefy4CPJVqyQDcv2641r69FIXaM+WV6hgSlgMBldFP+QAOq11MGCtjcgjEhsbS8+ePfn2229RSjF+/Hj69++fcv0CV66Iv/kXX8ClS7L27LOyt7dqlWrsq06fFkG+bp3cTp9OfL1gQUemvF49jyi1N3gwRqSnEEeOHKFBgwacOnWKChUqsGrVKvLly+e8F4iKgm+/laPPU6fIAnLuN3SoDKlIwUzPjRuS8VixQm63DxIqU8YhyuvUMb6zBoPBtbm9h2jBggW0bNkyZV78/HmYNAmmT3dkOKpVk729aVO3z2pcuCCfF3ZhfvRo4ut58kiW3H4rUcLt37LBkGSMSE8B9uzZQ6NGjbhw4QLVqlUjNDTUeVNEo6Nh1iwpa7EffZYrx44mTag8ZkyKZFe0hsOHHaJ80yYJy85jj4n7il2YFyqU7CEZDAaDU7h8+TI+Pj5s2bKFXLlyERoaStWqVZP/hU+ehHHjZACRvYO+QQMR53XquK1SvXZNPiPWrYOlS+v+W05vJ1s2eXv164sof+YZj521ZDAYkZ7c/PLLLzRr1oxr167x8ssv89NPP5HFGU4qt25JzfnHHzvOA599FoYPhxYtOBscnKwCPSJCNtmVK0WYJ9xolYLKlaFJE7lVrpxqTmINBkMKYi8lGTFixL92lCnJ6dOnadSoEQcPHqRQoUKsWrWKMmXKJO+LHj0KY8bA999L4z+Ary8MGQJVqiTvaycDUVGwZYujrnzHjoRTPXOQMSPUqCGCvH59GTznCkNaDYYHZeTIkYwaNcqpz2l+FZKRlStX0qpVKyIjI2nTpg3z588nw6M2bMbEyOb90Ucy6hmgfHkYNQpatEi27IrWcOiQI1seFibfE+zkySOZ8iZNJFueil2/DAZDCmHlbItDhw7RqFEjTp06Rbly5Vi5ciUFCxZMvhfcu5dK48eLorXZJH3s5wcffCB7vJsQFyeGAD//LM5dmzcnPllNk0aqderXhwwZNjNwYA0yZrQuXoPBWSTHbAsj0pOJgIAAOnfuTExMDK+//jpfffUVaR4lnRwbCwsWwOjRjiLvMmVEnLdunSzngdevy0a7YoVkzE+edFxTCqpWFVHeuLFkP0y23GAwpAa2bt2Kt7c3ly9fpkaNGgQHBzuvRPF2tm2TcsXgYAqCNPd36yY2uSVKJM9rOhF7uePatfJ5sX79f20Rn3vOkSmvVcsxMy8o6KIR6AbDPfAokZ5SR6ezZs2iR48eaK0ZMGAA48aNe/hvVXFx4nM+ahQcOSJrJUvCyJHQrp1TlbHWYqUeEiLC/JdfJHFvJ29eEeT2bHnu3E57aYPBcBvJcXRquD+hoaG0bduWyMhIfHx8WLhwIZmd3d2utXRLfvyx1IEAZMrE8fr1eWrGDLEwcWHOnBFBbs+W3z7f4qmnpHy+fn1xYMmTx5o4DQZ3x6NEekocnY4dO5bBgwcD8PHHHzNkyJCHE+g2GyxeLGL80CFZK14cRoyAV15xWtHerVvSxBMSAsHBiZ1YvLxkgJC9trxiRdPAYzCkFMlxdGq4N99//z3dunUjLi6Obt268dVXXznXA11rUbajRkkWBGQu/dtvQ79+7N+6ladcUKBfvepwYFm71jEXz87jj4sgt9+MLaLB4Bw8SqQnJ1prhgwZwpgxYwCYNm0avXr1epgngqVLRYzv3y9rRYpIQ6iTfM7/+QeWLxdhvnp1Yt/yPHnE1atpUxkmZEYoGwwGT2DcuHEMGjQIgA8++IBPPvnEeV+OtIY1a0Scb9kia489Bv37Q+/ekDOnc17HSdibPe2ifOdOyRvZyZJFHFgaNJDbM8+4rdmMweDSGJHuBOLi4njnnXeYOXMmadKkYe7cuXTs+ICTrrUW1TxiBOzZI2sFC8KwYTIh9BGmyGkNe/fK04eEwK+/Jp7yWaECeHvLrUoVU1tuMBg8B5vNxqBBg5gwYQIAkydPpm/fvs55cq0lEzJypNSeg2Q+BgyAd96RLLoLYLPB77+LIF+zRowB7K6PIAe31as7SliqVElVg00NBpfFiPRHJCYmhldffZWFCxeSIUMGfvzxR3x8fJL+BFpLV+bw4ZKuAMifX7xwu3eHh3SDiY72IjTUIcwTTm3LkEGaeLy9oVkzSdQbDAaDpxETE0O3bt2YP38+6dKl4/vvv6dDhw6P/sT2fX3UKMmKgDTxDBwopS32zkkLOXVKBPmaNZIxv3Ah8fUKFRyivHZtyJrVmjgNBk/GiPRH4ObNm7Rt25bly5eTLVs2li1bRt26dZP+BGvXijjfulX+/PjjYrfVowdkyvTA8Zw54xDlq1c3SWSRmD+/I1tev74cVxoMBoOnEhERQZs2bVi1ahVZsmRh6dKlNGzY8NGeVGupJRw1SgzBQTruBw6EXr0sVbrXrklduV2YHz6c+HrBglLi2LChfEY8/rglYRoMhgQYkf6QhIeH4+PjQ1hYGLlz52blypW88MILSXvwnj1ir7Vmjfw5Tx7581tvPZB61uP8knAAABoPSURBVBoOHoSffoLAQNi9O+HVtLzwgkOYm6ZPg8HgbiSXI9fFixdp1qwZ27dvJ0+ePKxYsSLp+/edsJcrjh7tOBF9/HF4770H3tedRWwsbN/uEOXbtiUcIiTJ/Lp1HcK8VClTV24wPApmmJGLcOHCBRo3bszu3bspUKAAq1evpmzZsvd/4IkTUmO+YIFs6jlyiDjv3TvJGRabTRI0P/0k/aVHjzquZc4sm62PD3h5raRr18YP+Q4NBoPBepLDkevEiRM0atSIw4cPU7RoUVatWkXJkiUf7sm0hmXLRJzbsyRPPAGDBkHPnrIppxBai0vvmjVySLt+vWTP7aRJI3XldlFepYpTfAgMBkM8ZpiRC3Dq1CkaNmzI4cOHKVGiBGvWrKHo/fymLl+WYRVTpojnYfr0Upc4dGiSzMZjYsQmcelSuSX0pM2TB5o3h1at5IjSPhgiKCj6zk9mMBgMHsr+/ftp1KgRZ8+epUKFCqxcuZL8+fM/+BPZbBAUJOL8t99kLV8+Sbq8+WaKifPLl6WefNUq6U89dSrx9ZIlHaK8bl3JCxkMBvfBiPQH4NSpU9SsWZOTJ09SoUIFVq1aRb58+e7+gKgomDoVPvlEjGZBPM4//hiKFbvna0VGSkbkp5/Ev/zyZce1QoWgZUu51azpNMt0g8FgSLWEhYXRvHlzrl69Sp06dQgKCiLHg6pWm00yJaNHi2UWSMPP++/DG288VC/RgxAbK32odlG+Y0dia8Q8eSRZYxfmhQsnazgGgyGZMfIuiVy5coXGjRtz8uRJqlatyvLly+8+Jtpmk5KWYcPg5ElZe+klGDsWKlW662uEh0NoqHwGrFgBN244rpUuLdnyli3lKUztoMFgMCSNoKAgOnToQFRUFK1atWLBggVkfJB59Paa82HDHOK8QAER5927k5yz7f/6yyHKf/5ZPifspEsnfuUvvyy3554zvUcGQ2rCo0T6wzYhRUVF4evry8GDBylXrty9Bfrq1VKP+Pvv8ucKFeDzz6FRozsq6/Pn5dR06VLZgGNiHNdeeMGRMS9TJsnhGgyGVEByNCF5IrNnz+aNN97AZrPx5ptvMn36dNI8yDCI9ethyBCHz3nBguLC1a1bsojziAhxYbEL8yNHEl8vWVI+Tl5+WUpYjDWiwZB68SiR/jBNSHFxcXTu3JmwsDAKFCjAihUr7izQb3dsKVQIPvoIOnX6z3SgK1fgxx8l2R4W5hgs5OUlWZFWraBFC3NUaTB4MsnRhORpzJkzh9dffx2A4cOHM3LkyKT/XW7fLn1Da9fKn/PmlT/36OFUcW4fJLRqFSxYUJ22bRMna3LkkBKWl18WcX6/FiiDwZB68CiR/qBorenfvz+LFy8mR44crFixgkKFCiW+k92xZf58+XOOHJJ16d07UX1idLTY586bJyUtdg/z9OmldrBlS2kAzZs3hd6cwWAwpGICAgL+Fejjx49nwIABSXvg/v3w4Yfiawuyp7/3HvTt67S09YULIspXrpS8zj//2K/kxcsLXnzRkS1/8UXTd2QweCrmV/8ejB8/nilTppA+fXoCAwMpX7684+KdHFveeUcEerxji80GmzeLfl+0yNE76uUlwrxTJ8mYu8hkaIPBYEgVBAcH06lTJ2w2G6NHj06aQD9+HEaOdFjkZsokwvy99yBXrkeKJy5OmjxXrJDbzp2OE1SQCppGjSBXrh28/37lR305g8GQSjAi/S4sWLCAQYMGATBv3jzHJNE7ObZ07CiOLfHnkP/7nwjzBQuk6cfOc8+JMPfzgyefTLG3YjAYDG7Jw/QRrVmzhjZt2hAbG8vgwYMZNmzYvR9w5ozs3998I/Yp6dJJScvQoWKr+JDYs+UrVsh/L11yXMuQQUobGzcWcV6mjLQsBQWdNQLdYHBTzDCjFGLt2rV07doVgEmTJtGuXTu5sHWrWCjalXf9+uLY8vzznD8PC7+QcpZduxzPVaiQaPiOHeGZZ1L2fRgMBoM786B9RJs2bcLX15dbt27Ru3dvPvvss7vXoF+8KE39U6dK8sXLC7p2heHDH6rwOy5OMuT2bPmOHYmz5cWKQZMmcqtXz5IhpAaDIRkxw4xSgN9++41WrVoRExPDgAED6Nevn+y0kyeLa0tsLJQvD+PGcaPGywQGKeYPlbpC+8jl7NmhbVvJmteubSyxDAaDIbnZvn07zZo1IzIykm7dujF58uQ7f1BeuwaTJsGECXD9uqy1bSve56VLP9BrXryYOFt+8aLjWvr0ki1v0gSaNhVXFtP/azAYHgQj0hPw119/0aRJE65fv06HDh0YO3aslLR07fpvE1Fc/4H83OAz5i9Iy0+tHV7madNK42enTuDtnewzLQwGg8EQz++//06jRo2IiIjAz8+Pr7/+Gq/bsyORkTBtGowZ46g9adJESl2efz5Jr2OzJc6Wb9+eOFtetKgIcpMtNxgMzsCI9HguXbpE48aNOXfuHPXq1WPOnDl47dkjGZY//0Rnz0FA9zUM+rEypyY5HletGnTuLHfLk8e6+A0Gg8ETOXToEA0bNuTq1au0aNGCuXPnJvZBj4mBb78VS9yzZ2WtZk1p/K9V677PHxEhJ6XBweLM5XBiSZwtb9IESpUy2XKDweA8jEgHIiMj8fHx4fDhw5QvX56lP/1Ehm+/hf794dYtDpZtwzvZv2f9REmPlyghwrxjR3jqKYuDNxgMBg/l+PHjNGjQgAsXLtC4cWMWLlxIunTpHHdYs0Zct+wTgSpWFHF+l+Fydk6flgGjy5bBunVioWunSJHE2XIzTMhgMCQXHi/S4+Li8PPzY+vWrRQuXJiVP/5Ijp49ISCACLIwumIIk/Y1IDZWkTu3nJR262bqzA0Gg8FKTp48Sf369Tl79ix16tRhyZIlZMiQQS6ePg3vvitT40AKwj/5RCbF3WHz1hp275Zs+bJlMpvOjlJQtaqUM/r4QLlyJltuMBhSBo8S6bfbeWmt6d27N0FBQTz22GOs/+ILnmzeHH3kCD9m6My7WWZyZk9mlBJHrk8++dcC3WAwGJKV5LDzSi2cO3eOBg0acOLECapWrUpwcDCZM2eW0pYvvhC/8xs3IHNmGDEC+vWT2pQEREZKljw4WG72ShiQh738sgjzpk3hiSdS9v0ZDAYDeJhIv93O67PPPmPGjBlkyJCBbT16UNzPj/9FFaF31i2sjagG0fDCCzB9OlSubFHQBoPBI0kOO6/UwMWLF2nQoAFHjx7lueeeY8WKFWTLlg02bYJeveDAAbljq1bi4lK48L+PPX9eyliCg6US5uZNx/MWKCCZch8feOklyJgxhd+YwWAw3IbHFm3MmTOHoUOHkgU4XK0aBcZ8yftRI6jgtZ+1EdXIlQu++gq2bTMC3WAwGKxAKYVS6t8vK1evXqVRo0YcOHCAsmXLsnr1anJGR8Orr0oH54ED0ii0YgUsWQKFC3PokJShV60K+fND9+4QFCQCvVIlSbrv2gWnTsGMGZI5NwLdYDA8KCNHjvx3z3IWHpVJt7Ny5Uq6d+9OaSAsX342bshFf/U/TulCYIM33pBN3bi1GAwGg3UkPP2MiIigadOm7N69m6eeeoq1q1aRNyAAhg2D8HAZ4/nBBzB4MOeuZsR/kkx+3r3b8XwZMsgMuubNxSq3QAEL3pTBYEiVmGFGTmDnzp20adOGdnFxDElblo7nJrKaRqDFKnf6dHjxRaujNBgMBoOdyMhImjdv/m+Df9j48eT39XUo8KZNuTFmCoF7izO/JaxeLZ7mADlySOWLry80aGC8yw0Gg/tgabmLUqqQUmqxUipcKXVNKfWTUqrw/R8JSqmMSqlxSqm/lVKRSqmtSqna93rM8ePH/9/enUfdVZV3HP/+MhAmMZAiMyTIsEqYGm1LCl0hKDIaLGFsggYWCshqAWsVV2nBFmQUJUUUbYHlIhIrg6ALIUyCIqgpJiEpsBoEkUqUIQhkIglP/9j7JTcn933f+w73Pfee+/usddfNu8/eOfs5ued5d849Z2+OPfJILlkWjONiJqz5FXM4jNGjg+uuSwtTVGWAfsstt5TdhSHnmDtDJ8bcKoY6ZwOsWrWKqVOn8tBDD7HXNtuwYOJEtjv2WHjiCdbuNJb7LvwpHx/zQ7aZuCvTp8M998Dw4WlQ/r3vwZIlcMMN6edWH6B32me70+IFx2x9o+LDlEO2Y2lTYD6wCrgACOBiYFNg34hY1kv7WcBRwD8CvwbOBo4AJkbEvDr1Y/JOO3PUbycwk6/yArsAcNqpwWWXi623HrzYWoGkDR6UrTrH3Bk6OOZSnx4tI2evXr2aE088kTtuv51zNt+cK0eMYPjrrzN/xAe5ecKX+c4LB/HSknXXmroWlzvhhPaciavTPtudFi845k4xWDm7zEH6OcDVwJ4RsTiXjQP+F/hcRFzdQ9v9gHnAaRFxYy4bASwCnomIKXXaxIe5m/s5AoD991zOdTduysSJgxxYi+jgk6Lsbgwpx9wZWmSQPuQ5e9q0aSycNYtvDh/O9mu3ZRbTuHmzM1i4bNd36+22G0yfnl7tvrhcp322Oy1ecMydYrBydpm3u0wBHu9K9gAR8RzwKHBMA21XA9+tabsGmA0cJmlUvUb3cwTvHfEW1165grmLGh+gdz0I0B9ltR2oTot5oPt1zEO77zL2W+bxahFDnrP3nXUXf8cMzl87h515gfO5nIXLdmXMGDj7bHjssbSY6IUXrj9A77T8NdB9O+ahaztQnRZzJ/6eqlXmlfQlwJ0RcUah/Drg+Ijo9gYUSbOBP4uIPQvlJ5B+CewdEYsK2+LEfecyc84E3rdN3/5zM5D/BbZj2zL33Y5ty9y3Y26PtoO077KvpA95zt6Y5axkEwBGjQqmTBHTp8Phh2+wNlFxf536GemYtmXu2zG3R9sy9z1YObvM2V22ApbWKX8N2HIAbbu2b2D2/A803DkzM1vPkOfslWzCpA+8xSlnbc7UqWL06Ib7ambW9jpqCsaBzFvZaW3L3Hc7ti1z3465PdoORvvOIx7+b3j49LQIUZ9aduBnpNPalrlvx9webcve90CVOUhfSv2rL91dcSm23aWbtrDu6sy7yv6q2MyszTlnm5kNoTIfHF0EjK9TvhfwPw20HZenBCu2fRtYvGETMzMbAOdsM7MhVOYg/S7gAEnvzqUlaSxwYN7Wkx8AI4Hja9qOAE4E5kTEqsHurJlZh3PONjMbQmUO0r8FPA/cKekYSVOAO4HfAtd3VZK0i6Q1kv6lqywifkWaEeCrkk6X9CHSVF7jgAtzu36vjNfqJB0n6TZJv1Faue8ZSZdKek+h3paS/kPSK5KWSbpf0j5l9XuwSbpHUki6uFBeqbglHSnpEUlv5c/yXEmH1GyvWrwHSpoj6Q+S3pT0hKTTCnX6tXpl2STtKOnfc3+X58/v2Dr1GopP0jBJX5D0vKSVkuZLmtqk7jc1Z+e2ztsVO59rOWe/u71q8VY2Z0PJeTsiSnsBOwO3AW8AbwLfB8YW6owlrWx3UaF8E9LCGkuAlcDPgYPztk1JC2wsBD5GmsP3SeBZYLMyYx6k4/Y48F/ANGAScC7wei4flusI+CnwInAycDjwMPAKsGPZMQzCMTgZeCl/Ni6uKa9U3MAZpPmlvwIcChwGfB44uqLx7gusAB7K5+2hpAFgAGfV1JuVP/OfBD4E3J7b7V92DL3EdzDwe+Bu4N4c19g69RqKD7iEtALoZ4HJ+Vi9AxzZpP43JWfn7c7bFTufC/E7Z1cz3krn7Nz30vJ26cE36YCeA6wFdqspGwesAT5Tdv8GIb6t65R9PH9wDsk/H5N/nlxT572kB7Rmlh3DAOPfMv+iP7lOwq9M3KTBzgrg3B7qVCbe3Pcvke5R3rxQ/hjwWP7zfjnmU2u2jwCeAe4qO4Ze4htW8+fT6yX7RuMD3pcT/RcL7R8AFpQdaz+OjfN2xc7nmhicsysYb+57pXN27mtpebvM212aaSAr47W8iHi5TvEv8/sO+X0K8LuIeKim3R9J94a2+zG4HFgYEbfU2ValuE8j/e/6Gz3UqVK8ABuRrkKtKJT/kXW35/Vr9cpWEBHvNFCt0fgOIx2vmwvtbwb2kTRu4D0eUs7b1Tufuzhnr1OleKHiORvKzdtVHaSPJ31lWrSINJtAFU3K70/l956Owc6SNh+SXg0ySQeRrj6d3U2VKsV9EPA0cJKkZ/N9vosl1cZepXgBbsrvMyVtL2m0pK6vDr+St40HnouI5YW2i0jJb7ch6WnzNBrfeNIVmeLMKF0rd7ZbrnPert757JztnA3Vz9nQpLxd1UH6QFbGazuSdgD+Fbg/Iubm4t5W+Gu74yBpI9K9W1dFxDPdVKtS3NsDuwNXApcBHwHuA66VdE6uU6V4iYiFpPv/jgH+jxTb14AzI2J2rtav1SvbSKPxbQW8Hvm70h7qtQvn7Yqdz87Zztm5WtVzNjQpb3fUiqNVlP/XfSfpvs1TS+5Os32O9PDZJWV3ZIgMA94DzIiI23PZg/mp8i9ImllWx5pF0u6kBxMXAWeSvkI9BviGpJURMavM/pkNhg7K287ZztnO2QNQ1UH6QFbGaxuSNiHdx7YrMCkiXqzZ3NMx6NreNvI0bP9EemhjVOEetlGSRpNmm6hS3K+SrsrcVyifQ5oRYDuqFS+kh5BWk2ZCWJ3LHpA0BrhG0i30Y/XKNtNofEuB0ZJUuCrTrsfBebtC57Nz9nqcs6uds6FJebuqt7sMZGW8tiBpJHAr8EHStD1PFqr0dAxeiIi3mtzFwbYrsDHp4YqlNS9I0xgtBfahWnEv6mX7O1QrXkj/hvNrkn2XXwBjSE/GV331ykbjWwSMAt5fpx60X65z3q7W+eycvSHn7PVVJWdDk/J2VQfpA1kZr+VJGkaaj/MQ4GMR8XidancBO0iaVNNuC+CjtOcxmEeaT7T4gvRLYDLpJKhS3Hfk98MK5YcDL0bEEqoVL6Rp2vbP97LW+kvS3NqvUf3VKxuN7x7SFaxphfbTSTNpPDcEfR1MztvVOp+ds9dxzq52zoZm5e2y559sxgvYjHTyP0m6N2oKMB/4NYW5PNvxBXydPNcscEDhtWOuMwz4GWk1wJNISePHpBNmp7JjGMRjUZxztzJxkxa9eJD0FeqZpIeQvpVjnlG1eHM8x+X47s3n7keAa3PZ1TX1ZpOuxJ1OmkXgVtIvhAllx9BgjMfVnMdn5Z8n9TU+0sNpK4HPkB7e+jrpat3RZcfZj+PivF2x87mb4+CcXZF4czyVz9k1cQ553i498CYe0F5XxmvXF2lp7ujmdVFNva2AG/LJv5w0Wf5+Zfd/kI/Fegm/anEDW5CelP896SuzBcDfVjXeHM8R+ZfWy/ncnQd8GhheU6fH1Stb+dXDufvjvsYHDAcuAH5DmtZrAXBc2TEO4Ng4b1fsfK5zHJyzKxRvjqfSOTv3v5S8rdzAzMzMzMxaRFXvSTczMzMza1sepJuZmZmZtRgP0s3MzMzMWowH6WZmZmZmLcaDdDMzMzOzFuNBupmZmZlZi/Eg3czMzMysxXiQbmZmZmbWYjxIt8qTNFLSZZIWSHo6v+9Zdr/MzGxDztlmiQfp1gkuJS1bPBH4U2AksLReRUkzJf2wm20TJc2W9KKktyW9IemXkv5N0nY19WZICkm71fk7RuRtF/UlAEnnSnpSks9ZM6s652wzPEi3ipO0EfBJ4D8jYllEBDAhIv5Qp+77gTOBi+ps+wfgUWBr4ALgw8BJwL3Ap4AbmhVDdn3e9yeavB8zs9I4Z5utM6LsDpg12QRgC+DnXQURsaKbuucC8yNibm2hpMnAlcA1EXFeoc3dki4Fjh+8Lm8oIlZI+jbwWeDGZu7LzKxEztlmma+kW2VJugn4PrAWuF7SPElHdlN3FDAd+E6dzZ8HXsnvG8hXe27qZx8Pzl+l1nsV/87ZwF6S/qo/+zIza2XO2Wbr85V0q6yImCHpm8CBEbF/L9UPAEYDP6ktlDQCmATcHhFv97ELw3P79coKPz9Buu+y1iHAJcBThfJ5wJvA4cDP+tgXM7OW5pxttj4P0q3q9gYWNlDvACCABYXyMcDGwAvFBsVkHhFrClWe7m2nEfEG8HjN37kH6evR24ArCnXfkTQ/99XMrIqcs80yD9Kt6sYDP2qg3vbAG41eeZG0LfBSoWxkIen/DfBioelwahJ8of2WwA+AxcAp+YGpopeBPRrpo5lZG3LONss8SLfKkrQT6QGkRq7KbAysqlP+KrAS2LlQ/grw5/nPnyLNRlC0MCIWF/pU95yTNBK4NfdjUg8PSq0ANulmm5lZ23LONlufB+lWZXvn90UN1H2VdH/jeiJijaRHgEMlbdR11SZffZkLIOnoQejr10i/QA6MiCU91NuK9MvGzKxqnLPNanh2F6uyvUlXVBb3VpF0L+JGknass+0K4E+Aywexb++SdB5wGnBSRDzZS/VxwDPN6IeZWcmcs81q+Eq6VdnewFMR8U4DdR/J739B4Z7EiHhA0vnAZZL2Bb4NPEf6mnMP0gIZy0gPMfVJnprrqvx3viap9gGjlyPi2Zq6o/P+rurrfszM2oBztlkNX0m3KhtPY/c2EhHPA78APtrN9iuAvyZ9xfol4H7S/YifAL4L7B4Ra/vRxz1I5+EM4LHC658LdY8C3gbu6Md+zMxanXO2WQ3VfxjZrL1JGkaan/aiiLiywTYzgGuA7SJieRO71y+SfgS8EhGnlN0XM7PB5JxttiFfSbeq2gfYFHiwD21uBn4HfLopPRoASfuTFsz4Ytl9MTNrAudsswIP0q2q/h54lLQ6XEPy0/+nAi13RQbYFphRnB7MzKwinLPNCny7i1WOpJ+QHiQ6r5epsczMrGTO2Wb1eZBuZmZmZtZifLuLmZmZmVmL8SDdzMzMzKzFeJBuZmZmZtZiPEg3MzMzM2sx/w/9HKWrggI/HwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Recreate Figure 5a in Grujic 2018\n", "\n", "fig, ax = plt.subplots(1, 2, figsize=(12,5))\n", "ax[0].plot(f/1e9, zs1.real, 'k', label=r'1 $\\mu$m')\n", "ax[0].plot(f/1e9, zs2.real, 'r', label=r'0.5 $\\mu$m')\n", "ax[0].plot(f/1e9, zs3.real, 'b', label=r'0.25 $\\mu$m')\n", "ax[0].legend(frameon=True, framealpha=1)\n", "ax[0].set_ylabel(r\"$\\mathcal{{R}}\\{Z_{s,rough}\\}$\")\n", "ax[0].set_xlabel(\"$f$ (GHz)\")\n", "ax[0].set_ylim([0, 0.5])\n", "ax[0].set_xlim([0, 100])\n", "ax[0].grid()\n", "\n", "ax[1].plot(f/1e9, zs1.imag, 'k', label=r'1 $\\mu$m')\n", "ax[1].plot(f/1e9, zs2.imag, 'r', label=r'0.5 $\\mu$m')\n", "ax[1].plot(f/1e9, zs3.imag, 'b', label=r'0.25 $\\mu$m')\n", "ax[1].set_ylabel(r\"$\\mathcal{{I}}\\{Z_{s,rough}\\}$\")\n", "ax[1].set_xlabel(\"$f$ (GHz)\")\n", "ax[1].set_ylim([0, 3.0])\n", "ax[1].set_xlim([0, 100])\n", "ax[1].grid()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Effective Conductivity $\\sigma_\\text{eff}$ and Permeability $\\mu_\\text{r,eff}$" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4sAAAFICAYAAAD58GtQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdfXzN9f/48cfTxcbMxYgoprmamWvyoXwy6puJrNRcRqmk8ikh+Shy+KgkfUgJESnlWuaiPvLJRf1EJcJhJjOXlQ+RaNjY6/fHe2fNdnbFOXtvZ8/77XZu5+z9fp3Xeb4Pt509z+v1er7EGINSSimllFJKKZVeMbsDUEoppZRSSilV8GiyqJRSSimllFIqE00WlVJKKaWUUkplYmuyKCL3iMhXInJeRP4QkW0i0iHd+SARmS0ip0TkTxH5r4g0sjNmpZRSSimllCoKbEsWRWQgEAP8ANwPRANLgIDU8wKsAiKBZ4AHgJLABhGpbkfMSimllFJKKVVUiB3VUEXkFiAWGGmMmZJFmyhgBdDBGLMh9Vh5IAGYb4x5Nn+iVUoppZRSSqmix66RxUeBFGBGNm26Aj+7EkUAY8xZrNHGKO+Gp5RSSimllFJFm13JYltgH9BTROJF5LKIHBCRQenahANON8/dAwSLSGB+BKqUUkoppZRSRVEJm173ptTbG8CLQDzWmsV3RKSEMeYtoCJwyM1zT6feBwHn058QkfyfU6uUUso2xhixO4bCQj8jlVKq6PDU56NdyWIxoCzwiDFmeeqx9alrGUeKyNRr7dhTazBFRPuyqS9P96d9aV/al+/2pfKmoP47al/al/alfWlfBfPz0a5pqL+l3q/LcPwL4EagGnAGa/Qwo4qp92e8E5pSSimllFJKKbuSxT05nE9JbRPu5lwD4Igx5rybcx4zZswY7ctGBfU6C2pfnlRQr7Gg9uVJBfUaC2pfyj4F9f9EQe3LkwrqNRbUvjypoF5jQe3LkwrqNRbUvjzJrq0zOgOrgWhjzNJ0x9cCDYwxNUTkPuBTIMIYsyn1fDmsrTM+McY846ZfY8f1KM9PQ1V5o++/ffS9t0/qe69zUXNJPyPto78n7KPvvX30vbePJz8f7RpZ/AzYAMwUkSdF5G4RmQXcDYxObbMS2ALMF5GeItIx9ZgAE+0IWimllCrMRAQRweFw2B2KUkopD3I4HGm/4z3JlgI3xhiTOnL4GjAWa23iPqCPMeaT1DYpItIFmAS8C5TCSh7bG2OO2hG3ylqPHj3sDqFI0/ffPvreq8JEv+W3h/6esI++9/bR9z5/ORyOtC8CPZkw2lUNFWPMH8Cg1FtWbU4Dj6beVAHWq1cvu0Mo0vT9t4++90qpnOjvCfvoe28ffe99g23JolJK5dXp06c5fvw4SUlJdoeSpnr16vzwww92h+FT/Pz8uPnmm6lYsWLOjZVSSinlNT6XLIq0ALYzZswYXZOhlA85ffo0R48epXbt2gQEBFCsmF1LrpU3paSkkJiYSHx8PECmhNHhcDB27Fg7QlNKKaWKHJ/7a6tjxx8wxmiiqJSPOX78OLVr1yYwMFATRR9WrFgxAgMDqV27NsePH8903uFwYIzRtXdKKaVUPvC5v7jWroXUL6SVUj4kKSmJgIAAu8NQ+SQgIKBATTdWSimliiKfSxYB3nvP7giUUt6gI4pFR2H6txaR6iLytohsEZFEETEicoubdqVE5A0R+UVELqS2v8NNu2IiMlJEDonIRRHZKSIPZPHaA0Rkn4hcEpE4EXnS81eolFKqMPjpp588Xlio8Hwa58GcOXDpkt1RKKWUKiLqAN2BM8DX2bR7HxgAvAx0AX4B1opI0wzt/gU4gHeATsBWYImI3JO+kYgMAGYCy4BIYAnwrog8dZ3Xo5RSqhA5duwYTzzxBGFhYSxcuNCjfftcstik0jFOnYLly+2ORCmlVBHxlTHmRmPMPVgJWyYi0gToDQwxxswyxnyJlWAeAcala1cFeB6YYIyZZIzZYIwZCGwAJqRrVwJ4BfjIGPNSartRwAfAv0SkpFeuVCmlVIHx22+/8fzzz1OnTh1mzZqFMYbHHnvMo6/hc8nik/5zAJgxw+ZAlFJKFQnGmJRcNOsKJAOL0j3vMrAQ6Cgi/qmHOwJ+wPwMz58PNBKRkNSf2wCV3bT7CKgEtM3LNSillCo8zp07x7hx4wgJCeHNN9/k0qVLREdHs3fvXmbPnu3R1/K5ZLHPr/8mMNDw1VewZ4/d0SillFIAhAMJxpjEDMf3YCWHddK1uwQccNMOoEG6dgDOHNoppZTyERcvXmTKlCnUrl2bMWPGcO7cOTp27Mi2bdtYvHgxoaGhHn9Nn9tnsWzKWR66+3/MWH4jM2fC1Kl2R6SUUu4dO3aM119/nW3btrFz504uXLhAQkICt9xyi92hKc+riLWmMaPT6c677n83mfcGcdcON31mbHcVEcl0rEePHh4viKAyi4mJsTuEIkvfe/voe+8ZV65cYcOGDSxcuJBTp04BEBoayk033cTatWtZu3at117b55JFgFPL7wZ28uGH8NprUKaM3REppVRmBw4cYPHixbRo0YK///3vfPHFF3aHVOA5HA7Gjh1rdxiFlu5PaY+YmBiioqLsDqNI0vfePvreXz9jDMuXL2fUqFHs27cPgEaNGvHKK6/QpUsXt18AgvsvBq+Vz01DBVjyRGtat4azZ2HRopzbK6WUHe644w5OnDjBZ599RnR0tN3hFAoOhwNjTGFMes4AQW6Ou0YAT6drV0Eyf9K7a4ebPjO2U0opVcgYY1i3bh2tWrXiwQcfZN++fdSqVYv58+ezY8cO7r33Xo8mhNnxyWSR7dt5MnWnqenT7Q1FKaWycj17CS5fvpzQ0FBEhKVLlwIQHx9P06ZNERHGjBkDWMmViLBv3z46duxImTJlCA4OZu7cuQB89NFH1K9fn8DAQNq3b098fPz1X5hyZw8QIiIBGY43AJL4a43iHsAfqO2mHcDedO3gr7WLWbVTSilViGzdupU777yTu+++m23btlG1alXeffddYmNj6dOnD8WLF8/XeHwzWdy9m+73JxMUBNu2WTellPIl3bp1Y+LEiQA0btwYgNq1a6etD3Edc4mOjqZz586sWLGCFi1a8Oijj/Liiy8yffp0JkyYwNy5c4mLi6N37975eyFFxyqgJJA2hJy6/UUP4AtjjGt34P9gVU3tk+H5DwFOY0xC6s9bgFNZtDsNbPZo9EoppbzK6XRy33330aZNGzZs2ECFChWYMGEC8fHxPPXUU/j5+dkSl++tWaxdG+LjKX0olkceaczkyTBzJrRsaXdgSilPy68pGDmxa0qk0+kkICCAOnXqpB3bvXs3YK1pSG/48OH069cPgJYtW7Jq1SpmzpxJQkIC5cqVA+CXX35h8ODBHD58mJo1a+bTVfgGEXkw9WGL1PtOInISOGmM2WSM2SEii4ApqXsgJgBPASGkS/iMMf8TkX8DI0XkHLAdK6HsgLX9hqtdsoiMBt4VkePAf1PbPAo8Y4xJ8ub1KqWU8oyEhATGjBnD/PnzMcYQEBDAc889x/Dhw6lQoYLd4flgstisGcTHw44dDBxoJYuffAKTJkH58nYHp5RSnuN0OgkPD79qOqvT6aR06dJXJZAAnTp1SnscFBRElSpVaNasWVqiCFC/fn0Ajh49qsli3i3J8PO7qfebgIjUx/2BV4DxQAVgJxBpjNme4bkvAeeBwUBVIA7oboxZnb6RMWaGiBhgGDAcOAL8wxjzLkoppQq0X3/9lfHjx/Pee++RnJxMyZIlGThwIC+99BJVq1a1O7w0vjcNtXlz6377dkJDoX17SEyEjz6yNyyllOe5Cp3YfbOL0+nMNN109+7dmRJIsBLE9Pz8/NweA2sfJ5U3xhjJ4haRrs0FY8xQY0xVY0wpY8zfjDEb3fR1xRgz3hhT0xjjb4xpbIxZmsXrzjTG1EttV1cTRaWUKth+//13XnzxRWrXrs20adO4fPky/fr1Iy4ujrfffrtAJYrgi8lis2bW/Y4dADz1lPXjjBlQ+IrnKaWUe8nJyezfv5+GDRtedXzLli2ZEkillFJK2evixYtMmjSJWrVq8dprr5GYmMh9993H7t27mTdvHiEhIXaH6JbvJos//ggpKURFwY03wp49sFmX+yulfMT+/ftJSkqiWrVqace2bdtGQkJCpvWKSimllLLH5cuXmTNnDnXr1mX48OGcOXOGiIgItmzZwqeffkp4eMai1gWLzyWLUrUqxwHOnYP4ePz84LHHrHMzZtgZmVJKZbZ06VKWLl3KDz/8AMDnn3/O0qVL2bRpU7bPczqdAGmb9J48eTJts3pfHll0bQVSUIobKaWUUu4YY1ixYgWNGzfmscce49ixYzRp0oTPP/+c9evX07p1a7tDzBWfSxYTExO5uUsX64fUqagDBoAILFkCJ0/aGJxSSmUQHR1NdHQ0M1K/zXr66aeJjo5O2ycxK06nk8DAQGbPnk3jxo0ZNWoUkZGRAAwaNIhFixZ5PXY7OBwO29eKKqWUUtn5+uuvuf3227n//vuJjY0lJCSEjz/+mO3btxMZGVmovvD0uWqoPXv2JKZZM1i9GrZvh+7dueUW6NQJPvsMPvgAhg+3O0qllLJca9LjdDq57bbbWLt27VXHBw0adNXPDocDh8OR6fmHDh3KdCwiIkKTMKWUUuoa7d69m5EjR7JmzRoAKleuzOjRoxk4cKBt+yReL58bWTx48GCmIjfwV6GbmTMhJcWGwJRSyoOcTicNGjSwOwxVyLim8Lr7AkEppdS1OXz4MA8//DBNmjRhzZo1BAYG4nA4iI+P55lnnsmXRNFbyzR8Mlk0rmRx+/a0EqidOkGNGtYWjF9+aWOASil1nS5cuMDBgwcJCwuzOxRVyLim8GqyqJRS1+/UqVMMGTKEevXq8eGHH1KiRAmeeeYZ4uPjGTNmDGXLls23WLy1TMPnksXExERO+PtDUBCcOgXHjwNQvDg88YTVRgvdKKUKs9jYWFJSUnRkUSmllLLBn3/+yfjx46lVqxZTpkwhOTmZPn36sG/fPqZOnUqVKlXsDtFjfC5ZBDiYkADNm1s/bN+edvyxx6BECYiJScshlVKq0GnevDnGGNq2bWt3KEoppVSRkZyczLvvvkvt2rUZPXo0586dIzIyku3btzN//nxq1apld4ge55vJYhbrFqtVg/vugytX4P33bQpOKaWUUkopVWikpKSwaNEiwsLCGDRoECdOnKBVq1Zs2LCBzz//nKZNm9odotf4ZLIYHx/vdmQR4MknrftZs+Dy5XwOTCmllFJKKVVorFu3jltvvZWePXsSHx9PaGgoy5YtY+vWrURERNgdntf5ZLLocDh4Z/Nm64d0I4sA7dtD3bpw7Ji1lYZSSqnCw1vV3pRSSqn0tm3bxl133cXdd9/N9u3buemmm3jvvfdwOp1069atyHwO+WSy2LZtW/7x1ltQpgwcPWoVuklVrBgMHGg9nj7dpgCVUkpdE29Ve1NKKaXAmqHYo0cPbr31Vr788ksqVKjAhAkT+OmnnxgwYAAlSvjcNvXZ8slk8eDBg1b50yZNrAMZRhcfeQT8/WHtWjh4MP/jU0oppZRSShUcJ0+e5Nlnn6V+/fosXryYUqVKMXz4cOLj4xkxYgQBAQF2h2gLn0sWS5Qowc8//8yFCxfcFrkBqFQJune3tmCcNcuGIJVSSimllFK2S0xM5NVXX6V27dq8/fbbXLlyhf79+7N//34mTpxIxYoV7Q7RVrYkiyISISLGze33DO2CRGS2iJwSkT9F5L8i0ii7vm+55RYAErLYPsPFVejm/fchKckDF6WUUkoppZQqFK5cucL7779P3bp1eemllzh37hz33HMPO3fuZM6cOdSoUcPuEAsEu0cWnwXapLvd5Toh1qrRVUAk8AzwAFAS2CAi1bPqsHbt2kDW22e4tGkDjRrByZOwfLlnLkYppZRSSilVcBljWLNmDU2aNOHxxx/n559/pkWLFnz55ZesWbOGRo2yHZcqcuxOFmONMVvT3balO9cVuB3oa4xZYIz5T+qxYsALWXXo2gwzPj4ewsOhZEnYvx/Onbuqnchfo4szZnjykpRSSimllFIFzffff0/79u3p0qULe/bsISQkhE8++YTvvvuODh062B1egWR3spidrsDPxpgNrgPGmLNYo41RWT3JlSwePHgQ/PygYUPrxM6dmdo+9JBVMHXTJoiN9WjsSimlVIHj2nbE4XDYHYpSSuWb+Ph4evbsSatWrdi0aRMVK1Zk8uTJxMbG0qtXL4oVK8gpUe54a2spu9+Zj0Xkioj8JiKfiEhwunPhgNPNc/YAwSIS6K7Dq5JFyHbdYrly0KeP9XjmzGu7AKWUUqqwcG07osmiUqooOHXqFIMHDyYsLIxFixZRqlQpRowYQXx8PM899xz+/v52h+gx3tpayq6NQs4CbwKbgD+AZsCLwBYRaWaM+R9QETjk5rmnU++DgPMZTz7wwAMArF69GhHhaWAacCQmhh01a2bqrH798kAEs2cncdttX+Dvf+U6L63oiomJsTuEIs3X3//q1bNcqlyoHT16lCFDhrBu3TqMMdx1111MmTKF4ODgbJ+3ceNG2rdvn+l4+fLl+f333908o3CKiYlhwYIFLFq0yO5QlFJKFRKJiYm89dZbTJgwgT/++AMR4ZFHHmHcuHFauCaPbEkWjTE7gPRVZzaJyFfAd1hFb0Zda99nz56lfPnylCpVij///JNi334Lt91G8KlTBEe5n726cCF8950ff/7Zhe7dr/WVi7aYmBiisnh/lfcVhff/hx9+sDsEj0tMTKRDhw74+/szb948RIRRo0bRvn17du3aRZkyZXLsY+rUqdx6661pP/vaZsFRUVFERUWxcOHCTOc8PdVGKaVU4XblyhXmzZvHyy+/zPHjxwGIjIzk9ddfp3HjxjZHVzgVmL8qjDHbRWQ/4Pqr5wzW6GFGFdOdz6RcuXLccMMNnDp1il9//ZWbGje2qtns3QuXLoGb4eannoLvvrMK3fTv74mrUUqpnM2aNYuDBw8SFxdHnTp1AGjcuDF169Zl5syZDB06NMc+wsLCaN26tbdDVUoppQosYwyff/45I0aMwOm0VrE1a9aMiRMnctddd+XwbJUdu9csuuOaaLsHa91iRg2AI8aYTFNQXa7aPqNMGQgNhcuXweluCSR07w4VKlgJo5uljUop5RUrV66kdevWaYkiQEhICLfffrtXpxUvX76c0NBQRISlS5cC1uL/pk2bIiKMGTMG+Gux/L59++jYsSNlypQhODiYuXPnAvDRRx9Rv359AgMDad++vVWFWimllMpH27Zto0OHDnTu3Bmn00nNmjX5+OOP2bZtmyaKHlBgkkURaQmEYk1FBVgJ3Cwi7dK1KQfcm3ouS1dtnwHZFrkBCAiAhx+2Hus2Gkqp/LJnzx4auio2pxMeHs7evXtz1UefPn0oXrw4lSpVonfv3hw5ciTH53Tr1o2JEycCpE3LqV27dlqCmnGqTnR0NJ07d2bFihW0aNGCRx99lBdffJHp06czYcIE5s6dS1xcHL17985VzEoppdT1OnjwIL169eLWW29l48aNBAUF8eabb6Z9HvlChdOCwJZpqCLyMZAAbAd+xypwMxI4DkxNbbYS2ALMF5HhWNNORwICTMyu/0wVUZs1g08+gR07snzOwIHw1ltWszfegPLlr/XqlFL5pqCsWbvGymOnT58mKCjzbPuKFSty5ozbmfZpypcvz7Bhw2jXrh3lypVjx44dvPrqq7Rp04YdO3ZQpUqVbJ/vdDoJCAi4alRz9+7dAJk2JB4+fDj9+vUDoGXLlqxatYqZM2eSkJBAuXLlAPjll18YPHgwhw8fpqabYmJKKaWUJ/z222+MHz+eadOmkZycjL+/P4MHD+af//yn289UdX3sWrPoBHoBzwABwK/AcmCMMeYUgDEmRUS6AJOAd4FSWMlje2PM0ew6z8v2GS5hYRARARs3wscfw9NPX+OVKaVUPmjWrBnNmjVL+7ldu3bccccdtGrViqlTpzJ+/Phsn+90OgkPD7/qm1en00np0qWvSiABOnXqlPY4KCiIKlWq0KxZs7REEaB+/fqAVd1Vk0WllFKedunSJd555x3Gjx/P77//jojQr18//vWvf+VYQVxdO1vGZ40xrxljGhtjyhtjShpjahhjnjDG/JKh3WljzKPGmIrGmABjzJ3GmJ059X/VmkWApk2t+127rLWLWXjySet+xoxrHihQSuUnYwrG7RoFBQW5HUHMasQxJ82bN6devXp8//33ObZ1Op2Zppvu3r07UwLpijM9Pz8/t8cALl68mOe4lVJKqawYY1i8eDFhYWE8//zz/P7779x5551s376defPmaaLoZT45mTfTmsWKFeGWW+DCBYiLy/J5998PlSvD7t2wZUs+BKqUKtLCw8PZs2dPpuN79+6lQYMG19xvTltKJCcns3///kzrJbds2aKlxZVSShUY33zzDbfddhs9evQgISGBBg0asGbNGtatW0dT12CQ8iqfSxZFhODgYIoXL86JEyf4888/rROu6VrZrFv084PHHrMeT5/u5UCVUkVe165d2bp161+zIIBDhw6xefNmunbtmuf+tm3bRlxcHK1atcq23f79+0lKSqJatWpXPTchISHTesWCxlWhVfdYVEop3xUfH0/37t25/fbb2bp1K1WqVGHGjBns3LmTe+65Rz8D8pHPJYvGGIwxaVNRExISrBO5WLcI8MQTVs2MJUvg1ClvRqqUKuoGDBjALbfcQlRUFDExMaxcuZKoqChq1KjBwIED09pt2rSJEiVK8OGHH6Yd69OnD6NGjWL58uWsX7+eN998k8jISG6++WaeffbZbF/XtQfVvn37ADh58iRjx44FMldCLWgcDkfa73mllFK+5fTp0wwdOpSwsDCWLFlC6dKlGTVqFAcOHGDgwIGUKFFgtogvMnwuWXRxJYtpU1FzMbIIEBICkZFw6RLMm+fNCJVSRV2ZMmVYv3499erVo2/fvvTp04eQkBDWr19PYGBgWjtjDFeuXCElJSXtWMOGDVm5ciX9+/enY8eOTJkyhW7duvHtt99yww03ZPu6TqeTwMBAZs+eTePGjRk1ahSRkZEADBo0iEWLFnnngpXtXKOyDofD7lCUUipNUlISkydPpk6dOkyePJnLly/z8MMPs3//fv71r39RtmxZu0Ms8Lw188Zn03O322eAlSwak23J/SefhM8/h5kzYcgQ0G1alFLeEhwczLJly7JtExERkWkkbeTIkYwcOfKaXtPpdHLbbbexdu3aq44PGjToqp8dDofbpOLQoUO5ilEVPPpvpJQqSIwxLFu2jH/+859pAzwdOnRg0qRJV1X8VjlL/5ntyYTRZ9OgTMlitWpw441w9iy4pqZm4Z57oHp1+OknWL/e25EqpVT+cjqd11VARymllLpeW7dupW3btkRHRxMfH09YWBirV6/mv//9ryaKBYjPJouZts8QyfVU1BIlYMAA6/GMGd6KUCml8t+FCxc4ePAgYWFhdoeilFKqCEpISKBnz560adOGb775hsqVKzN9+nR27dpF586dtXhNAeOzyWKm7TMg10VuAB5/HIoXhxUr4OefvRGhUkrlv9jYWFJSUnRkUSmlVL46c+YMw4cPp379+ixatIhSpUrx4osvcuDAAZ588kktXlNA+WyyGBISAljfXqQVhcjlyCLATTdBVBRcuQJz5ngrSqWUyl/NmzfHGEPbtm3tDkUppVQRkJSUxNSpU6lTpw6TJk0iKSmJvn37EhcXxyuvvEK5cuXsDlFlw2eTxcDAQKpUqUJSUhI/u4YG8zCyCFahG4D33rOSRqWUUkoppVTOjDF8+umnhIeHM3jwYE6fPk1ERATbtm3jww8/JDg42O4QVS74bLIIbtYthoRA+fJw4gT88kuOz7/zTqhdG44ehc8+82akSimlfJ2I3C4iX4jI/0TknIhsF5FHM7QpJSJviMgvInJBRLaIyB1u+iomIiNF5JCIXBSRnSLyQP5djVJKZe3777/npZdeolu3bhw4cIDQ0FBWrlzJ+vXradGihd3hqTzwuWQx/R5SmdYtpi9yk4vRxWLF/hpd1EI3SillP2/tI+VtItIY+C9QEhgAdAO+B94XkafSNX0/9fzLQBfgF2CtiDTN0OW/AAfwDtAJ2AosEZF7vHgZSimVrWPHjtG3b19atWrF3r17ueGGG5g2bRq7d+/m3nvvLXS/u5UPJovGGIwxVyWLaSOLkKd1iwCPPAJ+fta+i262FlNKKZWPHA5H2u/5QqYnUBy41xgTY4xZZ4wZiJXk9QMQkSZAb2CIMWaWMeZLoDtwBBjn6khEqgDPAxOMMZOMMRtS+9oATMjXq1JKKeDPP//E4XBQr1495s+fj5+fH/fffz8HDhzg6aefpmTJknaHqK6RzyWL6WWahgp5GlkEuOEGiI4GY6y1i0oppdQ18AOSgQsZjp/lr8/irqltFrlOGmMuAwuBjiLin3q4Y2p/8zP0NR9oJCIhng1dKaXcS0lJ4aOPPiI0NJSxY8dy4cIFHnzwQWJjY3n44YcpX7683SGq6+TTyWK222fkcmQR/pqK+v77kJTkqeiUUkoVIR+k3k8VkZtEpIKIDADuBCanngsHEowxiRmeuwcrOayTrt0l4ICbdgC6L4pSyus2b95M69at6devH8ePH6dFixZ89dVXLFmyJO1vcFX4+fSGJm6noYaGQqlS1pzS06ehYsUc+7n9dmjYEJxOWLQI+vb1UsBKKaV8kjHGKSIRwKfA06mHk4EnjTELU3+uCJxx8/TT6c677n83mefiZmyXibv1Qj169KBXr145XYK6TjExMXaHUGTpe+9ZJ06c4MMPP2Tz5s0ABAUF0bdvXyIiIjh9+vRV77e+9961YMECFi1alHPD6+DTyWK1atXw9/fn5MmTnDt3jrJly0KJEtCkCXz7Lfz4I3TokGM/IjB4MAwYYN3fcQfUrJkPF6CUUsoniEhdYBnW6N+TWNNRo4AZInLRGPNxfsRRCNd6+oSYmBiioqLsDqNI0vfec86dO8drr73Gv//9by5dukSpUqUYPnw4L7zwAjDHUyUAACAASURBVIGBgZna63vvfVFRUSxcuDDTcU8WEvLpaajFihVLG11MSEj460Qei9wAPPoodO4MZ85A9+46HVUppVSevIo1ktjFGLPaGPOlMeZZYDHwlogUwxpVDHLzXNdIoWvk8AxQQTL/NZCxnVJKXbcrV64we/Zs6taty2uvvcalS5fo06cP+/fvZ9y4cW4TReU7fDpZhBzWLeayyA1Y22jMmwfBwfDddzBihCejVEop5eMaATuNMckZjn8HVAKqYI06hohIQIY2DYAk/lqjuAfwB2q7aQew11NBK6WKtg0bNtCiRQsGDBjAiRMnaN26NVu3bmX+/PnUqFHD7vBUPigyyeL1bJ/hUqmStWaxRAmYMgU+/dRTUSqllPJxvwJNRcQvw/G/ARexRgNXYe3DGO06KSIlgB7AF8aYS6mH/4M1StknQ18PAU5jTAJKKXUdDhw4wP3330+HDh3YuXMnNWrUYMGCBXzzzTf87W9/szs8lY98Lll0bdbscDiALJLFhg2tjG/fPvjzzzz137o1TJxoPe7fH9J3q5RSeXX06FEefPBBypcvT7ly5ejWrRtHjhzJ8XlLly7lgQceoGbNmpQuXZrQ0FBGjhzJuXPnrmq3cePGtN+L6W8VKlTw1iV5lcPhSLuGQuYdIARYJSJRInK3iLwD9AKmG2OSjDE7sLbNmCIij4vInVjbZoQAY1wdGWP+B/wbGCkiQ0UkQkSmAx2Akfl8XUopH/L777/z/PPP06BBA1asWEGZMmUYP348cXFx9OzZszD+7lXXyecK3GRcvO/aa/GqaailSkGDBrBrl3Vr0yZPr/Hcc/DVV7BihbV+cfNm8PfP+XlKKZVeYmIiHTp0wN/fn3nz5iEijBo1ivbt27Nr1y7KlCmT5XMnTZpEcHAwr776KtWrV2fHjh04HA42bNjAN998Q7FiV38XOHXqVG699da0n0uUKJy//h0OR9qXgYXpjxZjzFIRuQcYAcwGSgHxwCBgZrqm/YFXgPFABWAnEGmMybhu4iXgPDAYqArEAd2NMau9eR1KKd90+fJl3nvvPcaMGcOpU6cQEfr378/48eO56aab7A5P2ahw/rWQB25HFsFat7hrl7VuMY/JogjMmWMVU/3hBxg2DN55x1MRK6WKilmzZnHw4EHi4uKoU8faQq9x48bUrVuXmTNnMnTo0Cyfu2rVKipXrpz2c7t27ahYsSIPP/wwGzdupEOGSs9hYWG0bt3aOxeicsUY8znweQ5tLgBDU2/ZtbuClVCO91iASqkiae3atQwdOpS9e63lznfccQeTJ0+muavGhyrSfG4aakYhISEAHDp0iCtXrvx14hrXLboEBcGSJeDnB9OmweLF1xupUqqoWblyJa1bt05LFMH6nXX77bfnuDdV+kTRxTVyePz4cY/Et3z5ckJDQxERli5dClizNJo2bYqIMGZM2szItOmh+/bto2PHjpQpU4bg4GDmzp0LwEcffUT9+vUJDAykffv2V8/2UEople9iY2O55557iIyMZO/evdSqVYtly5axceNGTRRVGp9PFgMCAqhWrRrJyclX/wHlShbzUBE1o5Yt4c03rcePPw4//XQdgSqlipw9e/bQsGHDTMfDw8PTvuHNi02bNgHWKGJGffr0oXjx4lSqVInevXvnal1kt27dmJi6SLtx48aANbXflci6jqUXHR1N586dWbFiBS1atODRRx/lxRdfZPr06UyYMIG5c+cSFxdH796983x9Simlrt+ZM2cYPHgwjRo14vPPP6dcuXJMnDiRvXv30q1bt0I1xV95n89PQwVrKuovv/xCfHw8wcHB1sGmTa17p9PaNNEvY4G63Bk0yFq/uGQJREfDli1QurSHAldKZaugfJ5d6z7np0+fJigo87Z6FStW5MyZM3nq6/jx47z88svcddddtGzZMu14+fLlGTZsGO3ataNcuXLs2LGDV199lTZt2rBjxw6qVKmSbb9Op5OAgICrRj93794NQKNGjTK1Hz58OP369QOgZcuWrFq1ipkzZ5KQkEC5cuUA+OWXXxg8eDCHDx+mZs2aebpOpZRS1+bKlSvMmjWLUaNG8dtvv1GsWDEGDhzIuHHjcvwsUEWXz48sQhbrFsuWhbp1ITkZ9uy55r5FYNYsqF0bdu60it8opVR+On/+PFFRUZQoUSJt2qdLs2bNmDRpEvfeey/t2rXjueee4z//+Q8nTpxg6tSpOfbtdDoJDw+/qmCO0+mkdOnSVyWQLp06dUp7HBQURJUqVWjdunVaoghQv359wKoEq5RSyvs2bdpE8+bNeeqpp/jtt99o164d27dvZ8aMGZooqmwV3WQRrCI3cM3rFl3Kl7dGFv394b334JNPrqs7pVQuGVMwbtcqKCjI7QhiViOO7ly4cIF7772XgwcPsnbtWqpXr57jc5o3b069evX4/vvvc2zrdDozTTfdvXt3pgTSJWPcfn5+bo8BXLx4McfXV0opde0OHz5M9+7diYiIYNeuXdSsWZMlS5awYcMGmjRpYnd4qhAoEsmia/uMTMnidRa5ydjVW29Zj594wtrCUSmlshMeHs4eNzMb9u7dS4MGDXJ8fnJyMg8++CDbtm3js88+czstNDs5rUtJTk5m//79mdZVbtmyxe16RVXwZdyLWCnlmxITExkzZgz169dnyZIllC5dmnHjxhEbG8uDDz6o6xJ9kLf2Ifa5ZNHdB6FrZDFT9T3XyOJ1FLlJ74knoFcv+PNPa/1iYqJHulVK+aiuXbuydevWq77IOnToEJs3b6Zr167ZPjclJYU+ffqwfv16VqxYkadtMbZt20ZcXBytWrXKtt3+/ftJSkqiWrVqVz03ISEhz4mpp3jrw7CoMMZgjNFkUSkfZYxh0aJF1K9fn3HjxnHx4kV69epFXFwco0ePprQW1vBZDocj7Xe8J/lcsujugzDLaaiukcWdOyH9thrXSARmzoR69ay6Of/4x3V3qZTyYQMGDOCWW24hKiqKmJgYVq5cSVRUFDVq1GDgwIFp7TZt2kSJEiX48MMP044NGjSIJUuWMGzYMMqUKcPWrVvTbseOHUtr16dPH0aNGsXy5ctZv349b775JpGRkdx88808++yz2cbndDoB2Jc6VeLkyZOMHTsWcF8JNT9468NQKaUKux07dtCuXTt69uzJ0aNHadasGV9//TWffPIJNWrUsDs8VUj5XLLoTtWqVSldujS//fYbZ8+e/evEDTdAjRrWUKCH9r0oW9Zav1iqFMydC/PmeaRbpZQPKlOmDOvXr6devXr07duXPn36EBISwvr16wkMDExrZ4zhypUrpKSkpB37/HNrb/dXXnmFNm3aXHWbPXt2WruGDRuycuVK+vfvT8eOHZkyZQrdunXj22+/5YYbbsg2PqfTSWBgILNnz6Zx48aMGjWKyMhIwEpWFy1a5Mm3Qyml1DU4efIkAwcOpEWLFnz99ddUrlyZWbNm8f3339O2bVu7w1OFXIHYOkNE/gN0BF4xxoxKdzwIeAO4DygNbAGGGGN257F/atWqxZ49ezh48CDNXCOKYI0uHj1qrVtMrdB3vRo3hmnT4LHH4KmnrP0Yw8M90rVSyscEBwezbNmybNtERERkGkk7dOhQrvofOXIkI0eOvKbYnE4nt912G2vXrr3q+KBBgzK1dTgcbqc2uovT3fUopZTKm+TkZKZNm4bD4eDs2bOUKFGCZ599ltGjR1OhQgW7w1M+wvaRRRHpBWQqxyTWgpRVQCTwDPAAUBLYICI5l/vLIMepqB5at+jSvz/06wcXLljrF8+f92j3SinldU6nM1eFdpRSSuWvtWvX0rhxY4YMGcLZs2eJjIxk9+7dvPnmm5ooKo+yNVlMHTmcDAx1c7orcDvQ1xizwBjzn9RjxYAX8vpa3t4+IyMRePddaNAAYmPh6aevr8S+UkrlpwsXLnDw4EHCwsLsDkUppVSqn376ia5duxIZGcm+ffuoW7cuq1ev5rPPPkvbw1YpT7J7ZPF1wGmMWeDmXFfgZ2PMBtcBY8xZrNHGqLy+UI7bZ2zf7vFsrkwZa/1iQAB89BG8/75Hu1dKKa+JjY0lJSVFRxaVUqoA+OOPPxgxYgTh4eGsWrWKsmXL8sYbb+B0OuncubNWiFZeY1uyKCJtgX5A5sUvlnDA6eb4HiBYRALdnMtSlttnVK9uFbo5cwaOHMlLl7nSoAFMn249fuYZ2LXL4y+hlFIe17x5c4wxWhxBKaVslJKSwgcffEBoaCgTJ04kOTmZ/v37s3//fp5//nn8/PzsDlH5OFuSRRHxA2YCk4wxcVk0qwiccXP8dOp9UF5eM8tpqCJeW7fo0q+fVezm4kVr/eK5c155GaWUUkop5SO2bt1K69at6d+/P7/++itt2rThu+++Y86cOVStWtXu8FQRYVc11Bewqpu+4umO3Q3D9+jRg27dugFWZb7ly5dTvHjxtPMNypalLhC3cCH7inknf7777mL89793sH9/eTp3PsbQoT/gazMGYmJi7A6hSPP197969TzXtVI+ICYmhgULFug2HUqpIuPEiRP885//5IMPPgDgpptu4vXXX6dPnz463VTlu3xPFkUkGHgJeBzwFxH/dKf9RaQCcA5rVNHd6GHF1Ht3o47ZlmMfOnQox48fp1mzZoSEhPx14uJFWL6c0MREQqPyvBwy15o0sbbR+Prr6vTuXZ0nn/TaS+W7mJgYorz43qnsFYX3/4cffrA7BGWDqKgooqKiWLhwYaZz+keTUsqXXL58mXfffZeXX36Zs2fP4ufnx7Bhw3jxxRev2ntXqfxkxzTUWkApYD5Wwue6ATyf+rgR1tpEd7sTNgCOGGPyvBlFjhVRvTQN1SU0FN57z3o8eLDXX04ppZRSShUCmzZtolmzZgwePJizZ8/SqVMnnE4nr776qiaKylY5Josi0lpEHCLyHxHZJSI/icgWEflARPqnbn+RFz8C7d3cwEog2wMHgJXAzSLSLl0s5YB7U8/lWZbJYu3aULYs/PwznDhxLV3nWq9eMHAgJCVZ6xfPnvXqyynlU1JSUuwOQeUT/bf2DhFBRHA4HHaHopQCjh8/Tu/evYmIiMDpdBISEsLKlStZs2YNdevWtTs8VYg4HI603/GelGWyKCIPi8hu4BtgCBAA/AR8izX69zdgNnA8NXEMyaqv9IwxvxtjNma8pZ4+nPrzeayEcAswX0R6ikjH1GMCTLyWi81y+4xixaw5ouDx/RbdmTIFmjaFgwetwje6/6JSOfPz8yMxMdHuMFQ+SUxM1Cp/XmCMwRijyaJSNktKSuKNN96gfv36LFiwgFKlSjF27Fj27NnDvffeq9PsVZ45HI603/Ge5DZZFJFdwATgM6AFUMEYc4cx5gFjzEPGmHuMMWFY6wcHAFWAvSLSw1OBGWNSgC7AOuBd4FPgCtDeGHP0WvrMcvsM+Gsqaj4ki6VKWfsvli0Ly5bBO+94/SWVKvRuvvlm4uPjOX/+vI46+bCUlBTOnz9PfHw8N998s93hKKWUx61bt47GjRvzwgsvcP78ee6//35iY2N5+eWXKV26tN3hKXWVrArcvA/MNMZczO7JxpizwMfAxyLSBLjmOr7GmExfoRhjTgOPpt6uW5bTUMHr22dkVKcOzJljTUUdNgxat4Zbb82Xl1aqUKpY0aptlZCQQFJSks3RKG/y8/OjRo0aaf/mSinlCw4fPsywYcNYtmwZAHXr1uXtt9+mY8eONkemVNbcJovGmLfy2pExZiew87oj8qJsk8V8HFl0efBB+Mc/rJHF6GjrpYPyugJUqSKkYsWKBS6BKAqVaJVSSl27ixcvMmnSJF599VUuXLhAmTJlGD16NM899xz+/v45d6CUjeyohmqbKlWqUKZMGc6cOcOZMxl23ggLA39/iI/P16ozkyZZ22kcPgyPPAI6u04ppZRSyjesWbOGhg0bMnr0aC5cuECPHj3Yt28fI0aM0ERRFQq5ThZFpIaI3CYiHTLevBlgXmVX6U1Esh5dLFkSGjWyHv/4o5ej/Iu/PyxeDBUqwMqV0K+fVSlVKaVUZt6q9qaUUp4UHx/PvffeS5cuXYiPj6dBgwasX7+ehQsXUr16dbvDUyrXcrN1Ri0R2QIcAr4G/pt6W5fuvsDIqdJbQVq36BISYhW6CQyEjz+GLl3g3Ll8DUEppQoFb1V7U0opT0hMTGT06NGEh4ezevVqypUrx+TJk/nxxx9p3759zh0oVcBkVeAmvdlAMPAcsA8o1ONeWW6fAbasW3Tp0AE2boR77oF16yAiAtasgarXXDJIKaWUUkrlB2MMn376KUOGDOHIkSMA9OvXj9dff52q+secKsRykyzeCjxijFnm7WDyQ7bbZ7hGFm1IFgFatIBvvoHISGtw87bbYO1a0D1ZlVJKKaUKpri4OJ555hnWrbMm2zVt2pR33nmH22+/3ebIlLp+uVmzeIxCPpqYXrbTUBs1gmLFIDYWLlzI58gstWvD5s3WNhoJCVbC+N13toSilFJKKaWycO7cOUaMGEGjRo1Yt24dFSpUYNq0aWzbtk0TReUzcpMsvgqMEJEy3g4mP2SbLAYEWFVRr1yB3bvzObK/VKkC69dDp05w6hS0b29NSVVKKaWUUvYyxrB06VLCwsKYOHEily9fZsCAAezfv5+nn36a4sWL2x2iUh6TY7JojPkI2AQcEpFVIvJhhts874fpObfccgsiwpEjR0hOTs7cwKYiNxkFBkJMjLWdRmIiREXBnDm2hqSUUqqQy65iuFIqZwcOHKBTp05ER0dz/PhxWrZsydatW3nvvfeoXLmy3eGpIsxb1cJzUw31EWAkUAFoDvzdza3Q8Pf3p3r16ly5ciVtAfJVbCxyk1HJklaC+NJL1mDnY4/B+PGgRQCVUkpdi5wqhiul3Lt48SJjx46lYcOGrF27lgoVKjB9+nS2bt1Kq1at7A5PKa9VC8/NNNSxwKdAZWPMzcaYkAy3Wh6NKB8UxO0zsiJiJYjTplmPR4+Gp5+2kkellFJKKeVdX3zxBY0aNcLhcHDp0iUefvhh4uLiePLJJ3XKqfJ5uUkWKwHvGmN+93YwnpCbKTbZbp/RtKl1v3s3uJumapOnn4alS8HfH2bMgAcftK0Gj1JK2cZb02yUUiqj48eP0717dzp27MiBAwdo0KABmzZt4oMPPqBKlSp2h6dUvshNsvj/gDBvB+IpuZlik+32GRUqQK1acOmSVRW1AOnWzdqDsUIFWLEC/u//4PRpu6NSSqn8461pNkop5XL58mX+/e9/U79+fZYsWUJAQACvv/46P/74I3fccYfd4SmVr3KTLA4GBohIHxGpJCLFMt68HaSnZTsNFQrUusWM/v53+H//D6pXt7bYaNsW3C29VEoppZRSebN582ZatGjBsGHDOH/+PPfffz+xsbG88MILlCxZ0u7wlMp3uUn0YoFGwIfA/4DkDLdCtwdjjsliAVu3mFF4OGzZAg0bWoOfbdrYutOHUkoppVShdurUKR577DHatm3Lrl27CAkJYfXq1Sxfvpzg4GC7w1PKNiVy0WYc4FPzfVxrFuPj4zHGZF774koWC+DIokv16vD119aWGl99ZY0wxsRARITdkSmllFJKFQ4pKSnMmTOHESNGcPr0aUqWLMmIESMYOXIkAQEBdoenlO3cJosicpsx5hsAY4wjXyPKB5UqVaJs2bL88ccfnD59mkqVKl3dwDUN9ccfISUFihXMmbYVKsDatdC3r1X8pmNHmD8foqPtjkwppZQ7InIP8E+srahSgP3AC8aY9anng4A3gPuA0sAWYIgxZneGfkoB/wIewtra6kdghDHmq3y6FKUKvZ07d/LUU0+xZcsWAO68806mTZtGaGiozZEpVXBklQV9LSK/iMh7ItJJRPzyNSovE5Hsp6LeeCNUqwbnzoG7IjgFSKlSsHAhPPMMJCVBjx4wdardUSmllMpIRAYCMcAPwP1ANLAECEg9L8AqIBJ4BngAKAlsEJHqGbp7HxgAvAx0AX4B1opIU+9fiVKF27lz5xg6dCgtWrRgy5YtVK1alQULFrBu3TpNFJXKIKtk8Was/RVrYO2xeFJEFotILxEpl2/ReVFhLnKTUfHi8NZbMGECGAODB8OIEdagqFJKKfuJyC3AFGC4MWaIMWadMWatMeZ1Y8zq1GZdgduBvsaYBcaY/6QeKwa8kK6vJkBvrBHHWcaYL4HuwBGspSNKKTeMMSxevJj69eszefJkjDE8++yz7Nu3j549e+qWPEq54TZZNMb8aoyZYYzpBFQGBgJXgOlYieMXIvKUiNyUj7F6VPp1i24V8CI3GYlYCeKHH0KJEjBxIjz8sDXaqJRSynaPYk07nZFNm67Az8aYDa4DxpizWKONURnaJQOL0rW7DCwEOoqIvwfjVson/PTTT0RGRtKjRw9+/vln/va3v7Ft2zbeeustypcvb3d4ShVYOS7GM8acM8YsNMb0wkoco4B4YBRwVES+E5GRXo4z11ybNWe3zyL41shien37wurVUKaMtX6xSxdrNq1SSvkCh8OR9nu+kGkL7AN6iki8iFwWkQMiMihdm3DA6ea5e4BgEQlM1y7BGJPopp0fUMfDsStVaF26dIkxY8bQsGFDvvjiC4KCgpg5cybffPMNzVwDA0qpLOWmGmoaY0wy8J/U21Mi0hprEX5f4DXPh5d3ud2oOU/bZxhjDd0VEh07wsaN0LkzrFtnVUhdswaqVrU7MqWUuj4OhyPty8DrSRhFZBYw1BiTX1+n3ZR6ewN4EetL12jgHREpYYx5C6gIHHLz3NOp90HA+dR2Z7JpVzGrINy9Zz169KBXr165ugh17WJiYuwOocjZsWMHM2fO5NdffwWsAjb9+vWjfPnyrFq1yuboigb9f+9dCxYsYNGiRTk3vA55ShYBRKQ8UBf41RizFdiKVdmtUHFNQ80yWaxZE4KC4NQpOH7c2quiEGnZEr75xkoct2+H226zKqfWrWt3ZEopVSD8YYw5JyJ3pq7587ZiQFngEWPM8tRj61PXMo4UkXwpTZbbL1SVZ8XExBAVFZVzQ+URJ06cYMiQISxYsACAhg0bMn36dNq2bWtzZEWL/r/3vqioKBYuXJjpuCdn37idhioiHUVkgpvjLwL/A74FDovIJyKS54SzIAgODqZYsWIcPXqUJHcL+0QK3brFjGrXthLGli0hIQFatYJ586yBUqWUKuJuFpGKXL0W0Jt+S71fl+H4F8CNQDWs0cIgN891jRSeSXefXbvTbs4p5fNSUlKYPXs2YWFhLFiwgNKlS9OvXz+2b9+uiaJS1yirNYtPAvXSHxCR/wPGY625eA6YCfQABnszQG/x8/OjRo0apKSkcPjwYfeNXMliIVu3mF6VKrBhA0RFwe+/wyOPWOsYjx2zOzKllLLVIiAWiBKRd0XkMRFp6sUvQPfkcD4ltU24m3MNgCPGmPPp+goRkYw7hjcAkoAD1xOoUoVRbGwsERERDBgwgDNnzhAZGcmePXvo1q0bJUuWtDs8pQqtrJLFZsCaDMf6AxeBjsaYt40xT2MljL29GJ9X5brITSEdWXQJDIRPP7VGFStUgM8+g/BweP99HWVUShVZ92AtqdiBVVSmDTAXOJ1auO1VESnrwdf7NPW+Y4bjkcAxY8yvwEqsEc92rpOp21Xdm3rOZRXW/ovR6dqVwPoC9wtjzCUPxq1UgXbx4kXGjBlDkyZN+Prrr6lSpQoLFizgs88+IyQkxO7wlCr0skoWq2Atvk/v/4D/l/qB5rKGDCOQhUmO6xZ9YGTRRQT69YO9e61Rxj/+gMcfh8hIyGpgVSmlfNgfxpg/gPnGmHeNMY8bY5oBNwBPY00bnebB1/sM2ADMFJEnReTu1CI7dwOjU9usBLYA80Wkp4h0TD0mwERXR8aYHVgjo1NE5HERuRNr24wQYIwHY1aqQNu4cSNNmjRh3LhxJCcn8/jjjxMbG6t7JirlQVkli+eAMq4fRKQuUAmrmE16fwDFvROa97lGFrPca7FePQgIgKNHrUI3PqBaNWuU8ZNPoFIl+OILaNgQZsyAlBS7o1NKqXzjWrN4R/qDxpgkY8w2Y8ybWJW/PcJYlWXuw0rqxgKrgb8BfYwxH6S2SQG6YK1rfBdrNPIK0N4YczRDl/2xRkLHY31xWwOINMYU7qkwSuXCb7/9xqOPPkr79u3Zv38/9evX56uvvmLWrFlUrJhlMWCl1DXIKlncx9WL/qMAg7UQP70Q4IQX4soXOU5DLV4cmjSxHvvA6KKLCPTqBXv2wAMPwPnz8NRTcNddkNVboZRSPmYxOaxZNMZ84skXNMb8YYwZZIy50RjjZ4xpnPE1jDGnjTGPGmMqGmMCjDF3GmN2uunrgjFmqDGmqjGmlDHmb8aYjZ6MV6mCxhjD/PnzCQsLY+7cufj5+TF27Fh+/PFH/v73v9sdnlI+KatkcTLwuIgsFZFpWN+C7gY2Z2h3D5DpQ8xOrs2aXftwZSfHaajw17pFH0oWXW68EZYuhcWLoXJlqxBOo0bw9ts6yqiUKpgcDkfa7/nrkbp9RXXyb82iUuo6xMfH07FjR/r27cvJkyeJiIhg165dvPzyy/j7+9sdnlI+y22yaIxZgVXx9FagH9b002iTboMmEakK3IW1DqPAMMZgjMlVsph+GmqWe08V8u0zciM62hpl7NkTEhPh2WehfXs4oPX0lFIFjMPhSPs9f72MMcnAY/m0ZlEpdQ2Sk5OZMGECDRs2ZN26dVSsWJE5c+awfv16QkND7Q5PKZ+X1cgixpipxpiaxpiyqdNgfspw/ldjzA3GmPe8H6Z3BAUFUb58ec6fP8+prNYk+vDIYnqVK8OCBbB8uTXi+NVX0LgxTJ4MV67YHZ1SSnmHMeY3EblJUocqvbVmUSmVd1u3bqVFixaMHDmSixcv8tBDD7Fv3z769++vBWyUyidZJotFgYjkvG4xPBxKloT9++HcuXyMQm3/SwAAIABJREFUzh7332+NMj70EFy4AEOHwt//zv9n787DoqzeP46/D4iC4oIbiitqmruWu7lAWrYomZlbWdmmmZWVmmWJW/W11bKyRaufmplm4b6jZu4ailvuuSBuuC8ocH5/HMYZYFCWgQeG+3Vd5xqceZg5oM4zn+eccx/+/dfqngkhhOsppb7DVP/eopTySRYcXbpmUQiRNufPn6d///60aNGCyMhIqlatyuLFi5k8eTKlSpWyuntC5ClOw6JSKjg9Lb0vqpS6Xym1XCkVrZSKVUodVUr9ppSqley4ConrJs8rpS4opWYppSpm9Id15rbrFvPnN+VCAbbmqOWZWaZECZg8GebMgYAAWLvW1PkZOxbi4qzunRBCuFRBrbUPpvLoU0AAsv2EEJbQWvP7779Ts2ZNvv76azw9PRk6dCiRkZG0b9/e6u4JkSelNrK4FFO6e0ni187aEofb9CoObAZexuwxNRSoDaxTSlUCUEoVBJYDd2JO4E9iNlAOV0oVcvakGXHb7TMgT6xbdObhh2H7dnj6aYiNhSFDoEULM/IohBBu4lDi7WdAU631JsyG924pPUXghMhOR44cISQkhMcee4zjx4/TrFkztmzZwvvvv4+Pj4/V3RMix3NVAbjk8t3isYvA74ntsitfVGs9DZjmeJ9SagNmy47HgE+A54EqQA2t9b7EY7YBe4EXgU9d0ZfbTkMFe1h083WLzvj5wY8/wuOPwwsvwMaNZhnn8OEwaJCZoSuEELlYMaVUT8z+hzalrepMVnNFYSAhXCk+Pp4vv/ySYcOGcfnyZYoUKcIHH3xA37598fDI06ulhEiX0NDQmxcCXRkYU/tf2BYTEh/DnED7AJ5a65XOmov6cibx1jbRsROwzhYUAbTWBzHbd4TgImkKi7YiN3lsZNHRAw+YUcbnn4fr1+Gdd6BZM9i2zeqeCSFEprwL9MWcg4KVUvMAT2u7JETesHXrVpo1a8bAgQO5fPkyXbp0YdeuXbz00ksSFIXIIVLbOmOV1vpZwB9zEi0NLFJKHVZKfaCUqumKF1dKeSql8iul7gC+BaKxjzjWxux9ldwOoJaT+zPEtmbxltNQ69UzO9nv3GnmY+ZRRYvCd9/BkiVQqZLJzo0awYgRcOOGVCUTQuQ+WuuzQBvMxdFvgRmY854QIotcu3aNYcOG0ahRIzZt2kSFChWYPXs2M2fOJCAgwOruCSEc3GoaKlrra8AvwC9KqbJAT8y+i4OVUt9orV/O5OuvB+5O/HofEKy1Ppn45+LAWSffEwP4pfaEzoZdu3XrRo8ePZweHxcXh4eHB8eOHWPGjBnkz5/f6XHB5cpR+OhRVowfz/lq1VJ7+Tzjww/z8X//V4sFCwIJDYXKldtw8OAqqld39lcmskNYWJjVXciz5HeftaZNm8b06dOz7PkT9xBeltiEEFlo7dq19OnTh927d6OUYsCAAYwZM4bChQtb3TUhhBO3DIvJnMEUAjiEGfVLNbClw5NAEczaxDeBJUqpe7TWhzL6hBlZj1GpUiUOHjxIvXr1Ut/gdfp0mDaNtr6+EOKyWbC5WvfuEB4Ozz4LBw8WZfDg1nTqBCNHmuqpIvuEhYURIv8uLSG/+6wXEhLCr7/+muJ+2WdNiNzj0qVLDBs2jC+++AKtNTVq1GDixIm0bNnS6q4JIW7hthPClVItlVITgOPAz8Al4CFM0MsUrfUurfX6xII39wK+wFuJD5/FeSBNbcQxw267fQZA69bm9qOP4MoVV758rhYUBJGR0KXLHgoWhNmzoUEDUxBn1y6reyeEEEIIqy1dupS6desybtw4PDw8GDp0KBERERIUhcgFUttnsZpSaoRSaj+wCqiBGfkro7XupbVepLVOcGVHtNbnMFNRbXM8d2BGMJOrBex05WunafuMPn3Mfov794OUHE+iUCF48sldHDgAr70GBQrAjBnm19W7t/mVCSFEbqGUClFKFbG6H0LkdufOnePZZ5+lffv2HDp0iAYNGrBx40bef/99vL29re6eECINUhtZ3AO8CqwE2gHPJn5dWilVJXlzRUeUUv6YPRVt0WI20Mzx+ZVSlYGWiY+5TJoqoubPDxMngocHfPIJbNrkyi64BX9/+Owz2LcP+vY1v6rJk6FGDVNF9fBhq3sohBBp0g1Yo5S6x+qOCJFb/fnnn9SqVYtJkyZRoEAB3n//fTZs2EBD23ZkQohc4VbTUIsATwNLMXsb3qqli1LqD6XUu4lXb4OUUi9iwmgcZo9FgO8x6yPDEo/rBIQBRzAV61wmTWERoEkTePVVSEgwC/Vu3HBlN9xG+fLwzTewZw888wxoDT/8AHfcAS+/DFFRVvdQCCEMpdQGpdRzjvdprXsCjYES1vRKiNzrxIkTdOvWjc6dO3P8+HFatGhBREQEQ4cOxUs2ZxYi10ktLD7j0PqkoaXXOuARzBrIecDrmLDYQGu9B0BrfRkIxoxyTgamAgcxFVMvZeA1U5WmNYs2o0ZBYKDZYPCjj1zZDbcTGAiTJpm1iz17mmz91VdQtSq88QacPHn75xBCiCx2XWv9Q/I7tdZXtdZS5laINNJaM2XKFGrVqsVvv/1GoUKF+OKLL/jrr7+48847re6eECKDnFZD1Vr/nJUvqrX+H/C/NBx3GOiSlX2BpCOLWutbV9grVMhsNti+vSn7+eijIG+Ct1S9OkydCkOHmuWev/8On34K335rBmrfeAOKF7e6l0KIPGq+UqqU1vqU1R0RIrc6cuQIffv2Zf78+QC0b9+e7777jsqVK1vbMSFEpt22GmpeUKxYMfz8/Lh8+TIn0zLc1a6dmV8ZG2sW4yW4tNaP26pTB2bOhM2b4aGH4PJleP99MwI5ciRcuGB1D4UQedDTwCal1Eil1P1KqVJWd0iI3CIhIYEJEyZQu3Zt5s+fT7Fixfjxxx9ZtGiRBEUh3ERq1VBnK6XSvAJZKeWtlHpdKdXXdV3LGKUUSilC01mxNF1TUcEUufH3h9WrYcKEdPYyb7vrLpg7F9auNbn7wgUYPtyExrFjTYgUQghnQkNDb77Pu8hZTLXvfMBAYLtS6oirnjynyeg5Uojk9u7dS3BwMP369ePixYt07tyZnTt38vTTT8seqEJYIAvOj0DqI4uHgHVKqfVKqVeUUncppZJMWVVKBSilHlFKTcTswfgssMWlvcsArTVa63SfCNO0fYYjPz+zAA9gyBA44rafLbJMs2awZAmsWAH33AMxMeZXWaUKjBsH165Z3UMhRE4TGhp6833eRR7QWs/QWr+tte6gtfYHmrrqyXOajJ4jhbCJi4vjo48+ol69eqxcuZLSpUszY8YMZs2aRdmyZa3unhB5VhacH4FUwqLW+hXMfoYbgFBgI3BNKRWjlDqulLqKqUo6C7MX4mtAPa31Bpf2LhuluSKqoy5doHNnuHQJ+vUzZT9FurVpA6tWwaJF0LixKXzz2mtQrZoZtL1+3eoeCiHcgVJquFKqs1LKtp8vWusYh8e7Jt4nNZuFcGLbtm00b96cwYMHc+3aNXr37s3OnTt57LHHrO6aECKLpLpmUWu9X2s9ACiDqUr6NvB/mO0rPsWs8wjUWjfTWv+stY7Phv5mmQyFRYDx46FoUZg3D6ZNy4Ke5Q1KwX33wfr1MHs21K8Px46ZDF6jBvz4o+xUIoTItOHA78C/SqlLibNnvldKDVBKtcVcHBVCJBMbG8vw4cO5++672bRpExUrVmTBggX8/PPPlCghO8wI4c5uW+BGa31da71Saz1Wa/2a1rqv1vodrfVkrfV/2dHJ7JDuNYs2AQFm/SKY0p6nT7u4Z3mLUtCxI2zZAr/9BjVrwqFD0KcPVKpk1jYeO2Z1L4UQudRWoDIQAozC7BMcDIwDlgFS2lqIZNavX89dd93FyJEjiYuLo3///mzfvp0OHTpY3TUhRDaQaqiJ0r1m0VGfPhAcbILia6+5uGd5k4cHdO0KkZEweTLUqgXHj5uqqZUqwWOPwfLlMvNXCJEuXbTWh7XWc7XW/9NaP6G1rgo0wez5+7LF/RMix7h27RpDhgyhRYsW7Ny5kzvuuINVq1Yxfvx4ChcubHX3hBDZRMJiovLly5MvXz6ioqK4evVq+r5ZKbP3oo+P2VAwcZ8hkXmenvDEE7B9O4SHmwCplNmr8d57TYj88ks4f97qngohcjqttdOpI1rrTUAfoF729kiInGnz5s3cfffdjB07FoDBgwezdetWWrVqZXHPhBDZTcJionz58lGpUiUADh06lP4nqFrVDHsB9O0LFy+6rnMCpaBtWzM19b//YMQIMwN492545RXz9YsvwtatVvdUCJFTKaUedSxu40hrfRpons1dEiJHuX79Ou+99x5NmzZl586dVK9enb///pv//e9/+Pj4WN09IYQFJCw6sK1bzNBUVDBTUBs1MttoDB3qwp4JRwEB8N57Zi3jzJlmBvCVK2Zwt0EDsw3HL79AbKzVPRVC5DAzMcVtLiql1imlvkvcHqqrUupdwM/qDgphlW3bttG0aVNGjRpFQkICAwcO5J9//qFZs2ZWd00IYaF0hcXEqnE5eqJ6ZjYcznBFVJt8+WDiRHP79dfw998Zex6RJl5eZveSZctg504YMACKFDG/9l69oGJFeOcdOHzY6p4KIVwlk5sO7wE6Ax8CB4BmwFhgOjAC8FNKLVBKfaKUek4p1cJV/RYip4qLi2PMmDE0atSIiIgIqlSpwooVK/j0008pWLCg1d0TQlgsvSOLF7TWF5VS92ZJb1wgMxsOZzosAtSrZ3aW1xqee052ls8mNWvCF1+YSqnffmv+Gk6ehPffh8BACAkx+zgmJFjdUyFEZmRy0+GhWuvZWusxWuueWut6gC9QB+gOfA5cBToCE4C/XNVvIXKiXbt20aJFC4YNG8aNGzd46aWX2Lp1K61bt7a6a0KIHCK9YbGcUqo4puy428nw9hnJDRtmNgfcvRtGj3ZBz0Ra+frCCy9ARASsXg09e5oiObNnQ4cO5q/l008hJub2zyWEcC9a6z+c3Bentd6ptf5Na/2e1vpRrXV1TIhslP29FCLrxcfH8/HHH9OwYUM2btxIhQoVWLJkCV999RW+vr5Wd08IkYOkNyxOB3YBIUqpr5VSzyqlGiil8mVB37JdprbPcOTtbaajKgX/+x9s2+aC3on0UApatjTFaY8eNSOMFSvCvn3wxhtQrpzZ8WTzZqt7KoTIibTW17TW/1jdD1fLzFIN4R727t1LmzZtGDRoELGxsfTp04fIyEjatWtnddeEEJmQyWUaqUpvWHwQuAP4B9iOqRz3IxCjlNqglHo/p69pvJXAwEDAjCxmcIqTXcuW8NJLEBcHzz5rboUlSpc29YYOHICwMLj/fjM7+McfTT2ipk3hp5/gwgWreyqEEFkrM0s1RO6WkJDA+PHjqV+/Pn///Tdly5Zl7ty5TJw4kaJFi1rdPSFEJmVymUaqMrJm8QIwRWv9tdb6Oa11Q6Ak8BJwBvjKpT3MRkWLFqVEiRJcu3aN6OjozD/hBx9AhQqwaROMG5f55xOZ4ukJnTrBwoWwZw+8/jr4+cGGDfDMM+DvD489ZiqsXrlidW+FEEII1zh06BDt2rVjwIABXL16lV69erF9+3Yeeughq7smhMjhMrpmMcnKZ631da31Jq31J8BCl/XOAi5btwhQuDBMmGC+fvddyOz0VuEyd9wBn3xipqhOnAitW5utNn7/Hbp2NcHxiSdg7ly4ft3q3gohhBDpp7Xmu+++o27duoSHh1OqVClmzZrFlClTKF68uNXdE0LkAukNi79xmzWLWutfXNrDbOaydYs2Dz5o9nG4etVUXnHx0LDInIIFzdrFlSvNFhuffgpNmsClS2a9Y8eOJjg+9xwsXSqziYUQQuQOR48e5YEHHuDFF1/k0qVLdOnShR07dtC5c2eruyaEyEXSFRa11rOA8rjpmkVw0fYZyX3+OZQsCcuXw6RJrnte4VLly8PAgbB+vRkEfv99swXHuXNm9LF9e1MY5+WXTaVV2YZDCCFETqO15ueff6ZOnTosWrSI4sWLM23aNGbMmEGpUqWs7p4QIpdJ78giWusbwLM5dc1iZiu9uXQaqk3JkvY1i2+8AcePu+65RZaoUsUUxdm6FXbsgPfeM1NXT56Er76CVq2gUiV4802zJFUGjIXIHllV7U0IdxAdHU1ISAhPP/0058+fp2PHjmzfvp3u3bvL/xkhRIakOywCaK3PKKUCVOI7T05as5jZSm8un4Zq06MHPPQQnD9vhqZErlGrFowYAf/+C1u2wODBZhuOo0fNusfGjU2QHDYMtm+3urdCuLesqvYmRG43ffp0ateuzZw5cyhatCg//fQTYWFhlC1b1uquCSFysQyFRaXUd8B+YItSyidZcHSLNYsuHVkEs/HfN9+YojezZplKKiJXUQoaNjRbZx46BGvWwCuvQJkyZtrqmDFQty7UqQOjR8PevVb3WAiRkymlFiqltFJqdLL7/ZRSPyilTiulLiulliql6jr5fm+l1EdKqeNKqatKqbVKqdbJjxPu7dSpUzz++ON0796dmJgY7rvvPrZv385TTz0lo4lCiEzLUFgECmqtfYA/gKeAAGC4y3ploXLlyuHl5UV0dDRXXL1/QoUK8OGH5uuXX4azZ137/CLbKAXNm5vZxUePmuWoL7wAxYubaavvvgvVq5t9HD/+2IRLIYSwUUr1AOo7uV8Bc4AOwACgC+AFhCulyic7fCLwPPAe8DBwHFiklGqQhV0XOciCBQuoW7cuM2bMoFChQkyYMIGFCxdSvnzyfypCCJExGQ2LhxJvPwOaaq03YU5muZ6npyeBgYEAHDx40PUv0Lcv3HMPREebBW8i1/P0hKAg+PZb89c6fz707m0GkTdvhkGDIDDQjDgOHmwqr964YXWvhRBWUUr5Yc6frzt5uBPQEnhSaz1Na70w8T4PYLDDc9QHegIDtdbfa62XAY8Dh4GRWfwjCItdvXqVAQMG8OCDD3LixAlat25NZGQkL774oowmCiFcKqNhsZhSqidw2eG+0i7oT46QZesWATw84IcfoEABUxl12TLXv4awjJcXPPAA/PyzKYYzaxY8/rgJjjt2wEcfQdu2puZR167w008mYAoh8pT/Adu11tOcPNYJiNJah9vu0Fqfx4w2hiQ77gYw3eG4OOBX4H6lVIGs6LiwXkREBI0aNWL8+PF4eXnx4Ycfsnz58psXuoUQwpVuGxaVUnc6uftdoC+m+mmwUmoe4Onivlkmy9Yt2tSoYcprAjz/PFy+fOvjRa7k7Q2dO8P06XD6tJmq+uabULMmXLgAM2fCM89A2bJmuurw4WbbDtmSQwj3pZS6B+gN9E/lkNqYramS2wFUVEr5Ohx3UGudfL3EDiA/UM0F3RU5SEJCAh9//DFNmzZl586d1KhRg3Xr1jFkyBA8Pd3mI5gQIofJl4ZjfgHucrxDa31WKdUGCAaaAlGJx7mFLNk+I7lBg+C338zeDO+9Z8pqCreVP7+ZqhoUZEYXDx4001XnzzchcvNm00aOhFKloEMHePBBuP9+8POzuvdCCFdQSuUHvgU+1lr/m8phxbEv9XAUk3jrB1xKPM7ZwnfbccVT6UOK+7p160aPHj1S7bdwjbCwsAx/7+nTpxk3bhyRkZEAdOjQgWeeeYYjR45w5MgRV3XRbWXmdy8yR373WWvatGlMnz799gdmQlrCotPJ79rULV+W2NxKlk5DtfHyMju9N2kCn38O3bubPRhEnhAYCP37m3b1KoSHm+A4b54phjN5smkeHtCihdl15cEHTbVVWY4iRK41GPABxljVAdlyxBphYWGEhITc/kAnZs6cyaBBgzh79iylSpVi4sSJdOzY0cU9dF+Z+d2LzJHffdYLCQnh119/TXG/K9cup2XNYlGl1E+JpbljlFLrlFKDlVL+LuuFC9k2a87oPouQDdNQbe6+G954w8w7fPZZuH49a19P5Eg+PiYIjh8PBw7Azp2mgmpQkAmLq1fD0KFQv77Z3/HFFyEsDC5dsrrnQmS/0NDQm+/zuYlSqiLwDmYZRwGlVDGlVLHEh21/9sSMFjqbT2AbKTzrcHur42KcPCZykYsXL/LMM8/QtWtXzp49y4MPPkhkZKQERSFEtkpLWKwMPAbsBSKAksCHQKRS6oGs61rG2DZrzkxYdKyGmpDVC8hCQ6FqVYiMNBv4iTxNKbOm8Y03zPTUM2fM2sY+fcx+jkePwnffwSOPQIkScN99ZmD6yJHCyICByAtCQ0Nvvs/nMlUAb2AKJujZGsCbiV/Xxaw5rO3k+2sBh7XWtstEO4BApVRBJ8ddB/a5tPciW61du5YGDRrw008/4e3tzfjx45k7dy7+/jnyOr0Qwo2lJSzGAw201q211sFa62pAIGZ/p1+VUk2ytIcWKFy4MKVLlyY2Npbjx49n7YsVLAjff2++Hj3azEMUIlGRItCli5mxfOyYWdc4apTZ4/HGDViyBAYOhAEDgvH3N5VXv/7ajE7mvs/SQri1CCDISQMTIIMwAW82UC6xLgAASqkiQMfEx2zmYLas6upwXD6gG7BYax2bZT+JyDJxcXGEhobSqlUrDhw4QIMGDdi8eTP9+/fPdaPpQgj3kJawuF9rneQKpdb6P631UExFtxFZ0jOLZcu6RZugIBgwwExD7dgRxo6VT/oiBQ8PuOsuGDYM1qwxW3NMmQI9e4Kf3zVOnYIZM8w6yNq1wd/fbM/x1Vdm2w75JyWEdbTW57TWK5K3xIf/S/zzJUwgXAtMUUp1V0rdn3ifAsY6PN8/mG0zPldKPaeUuhezbUYgMDwbfzThIvv376dVq1aMGDGChIQE3nzzTdatW0etWrWs7poQIg9LS1jMp5Qq4ewBrXUYZppquiilHlNK/a6U+k8pdVUp9a9S6gOlVOFkx/kppX5QSp1WSl1WSi1VStVN7+tlRLatW7QZN84MGWkNQ4aYXd2vXcue1xa5UsmS0KsXTJ0KkyYtYs8eM0W1Z0+zHcepU2YK68svQ506Eh6FyA201gnAw8AS4GvgD8wMnyCtdfKyl88APwKjgXlABaCD1npL9vVYZJbWmp9++okGDRqwbt06ypUrx9KlS/noo48oUEC2yxRCWCst1VDnA3OUUr2TjzAmlgEvkoHXfRM4DLwNHAUaAqFAkFKqhdY6QZn5FnMwYXQAZj3HUCBcKdVAa300A6+bZtkeFpUyQ0a1a8OTT5ohoz174I8/ICAge/ogci2l4I47THv+eRME9+2DFSvsLSrKhMeZM833lCwJbdpA27am1aplRi+FENlHa51ibqHWOgbok9hu9b1XgdcTm8iFYmJiePHFF5mZ+MbctWtXJkyYQPHiTnc+EUKIbJeWsPgusAjYqZT6G1iBCXgFgF7A+gy8bket9SmHP69USsUAPwNtgeVAJ6AlEKy1DgdQSq0FDmLKj7+SgddNM9tei9kyDdVR585mjmGnTrBhg9lO488/ZVsNkS63Co8rV5qtOqKi4PffTQMJj0IIkZ2WL19O7969OXbsGL6+vowfP57evXvL2kQhRI5y27CotT6vlLoHeA94Gmjj8PA/wMvpfdFkQdFmY+JtucTbTkCULSg69GUOEEIWh8VsH1l0VK8ebNwIjz0Gq1ZBq1YwaZKZXyhEBjgLj/v3Jx15PHYsaXgsUcIeHlu0MP8svbys+xmEEMIdxMbG8s477/DJJ58A0Lx5c6ZMmXLzc4cQQuQkaRlZRGsdhwmL7yml6gFlgWit9VYX9sUWQncl3tYGtjs5bgfQWynl61BC3OUsDYsApUqZUpcDBpiFaL16me01xoyR4R6RaUpBtWqmPfdc0vBoG3k8dgxmzTINwNvbbA3arBk0bWpuy5c3zyWEEOL2du7cSc+ePdm6dSuenp68++67vPPOO+TLl6aPY0IIke1UTtirSilVDjNKuVVr3T7xvj3AFq1192THPgd8D1RMvthfKeX0h+nWrRs9evRIV58SEhLo1q0bN27cYNq0afj4+KTr+11GawLnz6fOxIl4JCRwvHFjtgwcSFzB5FtrCeE6WkN0dEG2by/Jjh0l2bPHj6go3xTH+fldo0aNGKpXP0v16mepVu0c3t7xFvRYuLNp06Yxffp0p485W/MnnFNK6Zxwzs+L/vzzT44ePcqgQYO4du0aVapUYerUqTRr1szqrrm9sLAwQkJCrO5GniS/e+sopVx2frQ8LCqlfDHrIAOAJrbCNRkNi678eWrWrMnu3bvZunUr9erVc9nzZsiyZaaU5dmzZjHZ7NmQuK4yJ5A3BGtlx+//zBmzjHb9eli3ztyeO5f0GE9PU3m1WTP7CGSNGu49GC7/9q3jypNhXiBh0RonTpzgoYceYvPmzQA888wzjBs3jsKFC9/mO4UryHu0deR3b5HYWJS3t8vOj5Z+hFNK+WAqnlYB7k9W4fQs4Ofk24o7PJ6lLJ+K6ujee806xpo1zY7rTZrA8uVW90rkISVKwAMPQGgoLFxowuPu3fDTT9CvHzRsaI7buhW+/RaeecZc1yheHO67D957D+bNg9OnrfwphMjblFIopQgNDbW6K3nC8uXLqV+/Pps3b8bPz4+ZM2cyadIkCYpCiMwz08Bg0SIYO5Zt9eqxXSnivL1d+jKWTZJXSnkBM4FGQHutdWSyQ3YA9zn51lrA4axcr2iTo8IimJHEdetMoZt588wn8HHj4KWXZOGYyHYeHmbUsEYNeOopc9+VK7B5s33kcd06s/ZxyRLTbKpVs697bNoU6tY1ayKFEFlLRhazR3x8PKNGjWLkyJForalTpw4LFy6kXLlyt/9mIYRI7vp1c4V+69ak7ZS9ZujNOZAeHpCQ4LKXtiQsKqU8gKlAMPCw1nqdk8NmA88opdporVcmfl8RoCPwS3b007Z9Ro4JiwBFikBYGLzzDvzvf2bH9chI+OILyJ/f6t6JPK5gQVO8t1Ur+31Hj5pBJ81OAAAgAElEQVTgaAuPmzaZbTz27YOpU80xnp5m0LxhQ3tr0ACKFbPm5xBCiIyKjo6mZ8+ehIeHo5Ri+PDh1KtXT4KiECJtTp6EbduShsJdu+DGjZTHFi1qytXXr29vtWtDoUIu645VI4tfAV2BMcBlpZTjCu+jidNRZwNrgSlKqUGYaadDAQWMzY5O2kYWs32vxdvx9IQPPzTDMc8+a+b87dpldlsvVcrq3gmRRPnypnXpYv584wZs324ffdywAf7919y3fTtMnmz/3sBAe3C0hciAABlIF0LkTEuXLqVXr16cPHkSf39/pk6dyr333ktYWJjVXRNC5DQ3bpgPQMmDYXR0ymNtZewdQ2H9+lCxYpZ/KLIqLD6QePtOYnM0AgjVWicopR4GPga+Brwx4TEoeWGbrJLjpqEm16uX2TjvkUfMfoxNmphRR6uL8QhxC15e9uDXr5+578oVM0D+zz/2FhkJBw+aZtu+A8z1EMcRyIYNzfunOxfREULkbPHx8YwcOZJRo0ahtSY4OJipU6dSpkwZq7smhMgJzp0zQTAiwn67Y4eZXpqcr2/S0cJ69cwAkW/KqvTZwZKwqLWunMbjYoA+iS3b2cLioUOHiI+Px9PT04pu3FqTJqbwTefO5rZFC5gyxQRIIXKJggXN2sWmTe33xcWZ6fmOATIiwkzPX7zYNBtfX/N+6jgKWbs2FCiQ/T+LECJvOX78OD179mTFihU3iwcNGzYsZ35mEEJkLa3NVW7HULh1K/z3n/PjAwPtgdAWDgMDc9QVcNkF9hYKFixImTJliI6O5tixY1SsWNHqLjlXrpzZSf255+CXX0xwHDXKrGuU+Xoil8qXz2zDUacOPPmkuU9r837rGCD/+ccU0fn7b9NsvLxMNdYGDUxwrFPH3FaoIP8thBCusWTJEp544omb005/+eUXgoODre6WECI7XL1qRgcdg+G2bXDhQspjvb3NB5EGDZKOGBYtmv39Tie3C4sq8VPg8OHDXVIavEqVKkRHR3PgwIGcGxYBfHzMiGK9ejB0KLz7rpnH9+OPZthGCDegFFSubFrnzvb7T51KGSD37rVP/3dUuLAJjY4Bsk4dKFNGQmRuEBoayogRI6zuhsjj4uLiGDFiBGPGjEFrzb333suUKVNk2qkQ7urEiZSjhbt3O6866u9vD4W22+rVzVXwXCh39voWXF0WvEqVKqxZs4YDBw7Qtm1blz63yykFQ4aYT789e8Jvv5lPzGFhZjhFCDdVqpTZSeY+h812Ll0y7+WRkebC3/bt5vbUKVNcZ12yGsx+fknDoy1QSs2onCU0NPTmhUAl6V5YICoqip49e7Jy5Uo8PDwYMWIEb7/9tkw7FcIdxMfDnj0mEDqGwxMnUh7r4WGmMDmGwvr1zdVnN+J2YdHVcuT2Gbfz8MOwdi106mSGWBo3hj/+gObNre6ZENnG1xdatjTN0cmTJjQ6Bsjt2+HsWfjrL9MclS6dchSydm3Z1kOIvGjx4sU88cQTnDp1ijJlyvDLL78QFBRkdbeEEBlhq64XEWEvjLBtm5lemlzhwvYw2KCBfY2Lj0/29zubSVi8jRy7fcbt1K5t9iR4/HFYvhzatjV7MT7/fI5aNCtEditd2jTHz3daw/HjKQPkjh0mXJ48CeHhSZ8nIMAEx/z56xAVZWaY1KhhlhDLgJcQ7iUuLo7Q0FDef/99tNa0a9eOKVOm4O/vb3XXhBBpcfKkfbTQFg737HE+jbRixaTTSBs0MOtf8ujnZwmLt5Hjt8+4lRIlYOFCeP11GD8e+vaFr76C0aOhY0f5RCtEIqVM+AsIgPbt7fdrDUeOpAyQO3dCVJRpUJW5c+3fU6iQPTjaWvXqphUunN0/mRAis44dO0aPHj3466+/8PDwYOTIkQwdOlSmnQqREyUkwIEDSUcLIyJsJ+ykPD3NVV9bKXVbQCxRIvv7nYNJWLyNXB0WwZSE/PJLaNbMFL6JjISQELNHwfvvg1RtEyJVSpkLjBUrwoMP2u+Pj4dDh0xw/P33HeTLV5t//zV7654+bS+yk1xAQMoQWaOGuWApnzuFyHkWLVrEE088wenTpylbtizTpk2jTZs2VndLCAFw7Zq9GqktHG7daooWJGfbY8u2v5ZtGqm3d/b3O5eRsHgbZcuWxdvbm9OnT3PhwgWKFClidZcyplcv6NIFvvsOxoyB9evh3ntNWBwzxoRJIUSaeHpC1aqmab2PkJDaNx+LiTEzW2zh0db27rWPRiaf0po/P1SrljJE1qghFziFa7m6Yri7iouL47333uODDz4AoH379kyZMoXSpUtb3DMh8qjz5+2B0NZ27TKbMicXEGAfKbSFwypV3H4aaVZVC5eweBtKKapUqcLOnTs5cOAADRo0sLpLGeftDa+8An36mPWLY8ea9YzNm5tiOKNHQ926VvdSiFyteHFz7SX59Zf4eLNHpLMgeeyYmdq6c2fK5ytWzB5Mk7dy5dz+3CdczNUVw93R0aNH6dGjB6tXr8bDw4NRo0bx1ltv4SH/2YTIHtHRKffDclY7RCm4886k00gbNDCFCfKgrKoWLmExDdwmLNr4+sLbb0O/fvDRRzBuHMyeDXPmQI8eMGKEGeYQQriMp6e5sFmlCnTokPSxS5fsIdIxTO7ZA+fOwebNpiVXoAAEBjoPkoGB5nEhRNotWLCAJ598kjNnzhAQEMC0adNo3bq11d0Swj1pbdYXJg+G0dEpjy1QwAxoNGxob3XrmkIBIku5XVjMiik2uXL7jLTw8zPrFl95xdxOmAC//ALTp8Ozz8K770L58lb3Ugi35+sLd91lmiOtTQG3/fudt5MnzZ7Au3enfE6lzH/f1EYlc+vWH1k1zUbkbXFxcbz77rt8+OGHANx///1MnjyZUrLRqhCuERdnpo06hsKICDO9NLkiRezTR22tZk1Th0NkO7cLi1kxxSbXbp+RVmXKmGmpb7xhRhV//tmsbfz5Z+jfH956S3YmF8ICSoG/v2ktWqR8/OJFc1HWWZA8fNhUcj1yBFasSPm9xYub0Fi5smmVKiX92tc3S3+0DMuqaTYi7zp27BjdunXj77//xsPDg9GjRzNkyBCZdipERl29CpGRVF64EObPhy1bTIHF2NiUx/r7Jw2Fd91lpsbI/78cw+3CYlbI9RVR06pSJZg0CQYPhuHD4bff4NNPTXAcONCEyaJFre6lECKR4x7Byd24YdZIOguSBw6YQjwxMbBxo/PnLlHCHh6dhcncWutLCEdr1qyhS5cuREdHU65cOaZNm0arVq2s7pYQucfFi6YC6ZYt9rZzJ8THk+LUFBhowqBjOCxb1opei3SQsJgGeSYs2tx5p5mK+tZbMGyYuSo0apTZq/Gtt+Dll6FgQat7KYS4BS8vs/TY2fJjrc2SkAMHTKA8dMg029f//QdnzpjmbK0kmFnsqYXJypXlupLI+b7//nv69+/PjRs3CAoKYvr06TLtVIhbOXvWTB91DIZ79piTiiMPD6hdmyMlS1IhJMRegCa3rn/I4yQspkFgYCAAhw4dIj4+Pu9sxNuwIcybB6tXm4I4f/0FQ4bAZ5+Z9YzPPWdq/gshchWlzMXcsmWhZcuUjyckwIkTzoOkrZ09a//c4EzRoiZAVqjgvJUvLwV4hDWuX7/Oq6++yoQJEwB49dVX+eijj/CS9VBC2J08mTQUbtkCBw+mPM7Ly2xsb1t4f9ddUK8eFCzIlrAwExZFriZhMQ18fHwICAggKiqKI0eOULlyZau7lL3uuQdWroTFi01o3LLFrGX86COzxrFXL6t7KIRwIQ8Pe5h0tgWr1nDqVNLwmDxMnj8P27aZlprSpU1oTC1QBgRIPQPhWidOnOCxxx5j9erVFChQgG+//ZannnrK6m4JYR2tzf5NyYPhsWMpj/X2NuseHINh7dpy5c/NSVhMoypVqhAVFcWBAwfyXlgEMxRx//1w330wa5aZnrp7Nzz1FHz4IWU7dTJ7NUrBCSHcnlIm6JUuDU2apHxcazh9OmmRHVs7etTcHjtmLlzbLl474+Fh6m+lFiaFSI+NGzfSuXNnjh07Rrly5fjjjz9o3Lix1d0SIvtoba7s2fZjsgXDU6dSHlu4sL3gjK3VqAH5JDrkNfI3nkZVq1Zl9erV7N+/n+DgYKu7Yx2loEsXeOQRmDLFFMLZtYsmu3bBH39A797wxBNm/pkQIk9SyhRQLlUK7r7b+THx8Waqa/Iw6diOH4eoKNPWr8/en0G4l//7v//jhRdeIDY2lpYtWzJz5kzKlCljdbeEyDpam2ketmBoC4dnzqQ81s/PvFk7BsOqVaUiqQAkLKZZrVq1APjwww/p0KEDFfL6ZW1PTzOq2L07/PADV997D589e8yI47Bh0KaNCY6PPSZlE4UQKXh6mmmmAQHQtKnzY27cMEExtTCZ2oikEDY3btxg0KBBjBs3DoC+ffsybtw48st6e+FOtDbrCZMHw5iYlMeWLGmCoWOrWFFmholUuV1YtO27NXz48Jt7cblC3759mTlzJhs3biQoKIgVK1ZQXjasN/PU+/dnSdmydCpYEP7v/8wI48qVpvXvD507m+DYrp1MXxBCpJmXl5mk4DhRITQ0lPHjR1jXqVwuq86ROdHp06d5/PHHCQ8Px8vLi/Hjx/PCCy9Y3S0hMscWDDdtShoMz55Neaxteodjq1BBgqGbCg0NZcQI158f3e6Tu05evtdFihQpwqJFi2jfvj2bN28mODiY8PBwypUrlyWvl9toT0/o0MG0Cxdg5kwTHFeuhGnTTCtTxhTD6d3bVMoSQoh0Cg0NvRlylHzgSbesOkfmNBERETzyyCP8999/+Pv78/vvv9PSWelfIXIyrc0eR8lHDJ0Fw9KlUwbD8uUlGOYhWXV+dLuwmJX8/PxYvHgx7dq1459//iE4OJgVK1ZQVjYUTapIEejTx7RDh8zaxv/7P9i7Fz75xLR69Uxo7NlTNmQVQgjhMr/++it9+vTh6tWrNGnShFmzZsmFXZHzaW2qgm3caEYNbSOH586lPNbfP2UwLFdOgqHIEhIW06l48eIsXbqUe++9l4iIiJtTUmWhfCoqVzZrGN95BzZsMKFx2jRTT//NN2HwYFNhtXdvCAmBggWt7rEQQohcKD4+nrfffpuxY8cC8PTTT/PNN9/g7e1tcc+ESEZrsyDbFgpt7fTplMcmD4aNGpnF3hIMRTaRsJgBtsAYHBzMtm3bbgZGf39/q7uWcyllqlg0bQqffgrz55vgOG8eLFxoWuHC0LWrCY6tWkkVLiGEEGly9uxZevTowaJFi/D09OTzzz+nf//+MlVZ5AwnTphRQsdRw+jolMeVKAGNG5tAaGsSDIXFJCxmUIkSJVi2bBnBwcFERkbeXMNYunRpq7uW8xUoYIredO5srqJNn26C44YNMGmSaZUqwZNPmla9utU9FkIIkUPt2LGDkJAQ9u/fT8mSJZkxYwZt27a1ulsirzpzxgRDxxHDI0dSHle0qD0Q2gKiVCUVOZCExUwoWbIky5YtIygoiB07dtwMjKVKlbK6a7lHyZKmYmr//vDvvzB5smn//QejR5vWrJkJjZ06mcXaQgghBPDHH3/Qu3dvLl26RMOGDfnjjz+oJPv8iuxy/rwpOLNpk33U8ODBlMf5+tqnkNpa1aoSDEWuIGExk0qVKsXy5ctvBsZ7772X5cuXU7JkSau7lvvUqGHC4ciRsGqVGW2cMQPWrTOtf3+oWdOscbzvPrOXY6FCVvdaCCFENktISGDEiBGMHDkSgB49evDDDz9QUNa9i6xy7RpERJhQuHGjmQ31778pj/PxgYYNkwbD6tXN5rJC5EISFl2gdOnSLF++nLZt2xIZGXkzMJYoUcLqruVOHh7Qtq1p48fDn3+aqarLl8OuXaaNGwf580PLlvbw2KCBrHMUQuRISqnHgB5AI6A0cBiYBbyvtb7ocJwf8BHwCOADrAUGaq0jkz2fNzAKeAIoBkQAQ7TWq7L+p7HWhQsXeOKJJ5gzZw4eHh6MHTuW119/XdYnCteJj4edO+2hcONGU5gvLi7pcfnzm+rutmmkjRubi9qyp7RwI/Kv2UX8/f1vBsZt27bRrl07li1bRvHixa3uWu5WsKDZXqNnT7hxw4wwLl5s2saNEB5u2tChZkpr+/YmOLZvb8pICyFEzvAmJiC+DRwFGgKhQJBSqoXWOkGZtDMHqAwMAM4CQ4FwpVQDrfVRh+ebCDwEDAIOAP2BRUqp5lrriOz5kbLfnj17CAkJYffu3fj5+fHrr79y3333Wd0tkZvZNrl3DIZbtsDly0mPUwpq1zaBsHFjaNIE6tY1dRiEcGNuFxZtVxaHDx9+c2PK7FK2bFnCw8Np27YtERERtG/fnqVLl+Ln55et/XBbXl6mSmqrVjBqFMTEwLJlJjguWmQWkE+bZhqYN3XbqGPr1rIthxBuIDQ0lBEjRljdjYzoqLU+5fDnlUqpGOBnoC2wHOgEtASCtdbhAEqptcBBYDDwSuJ99YGeQB+t9Y+J960EdgAjE5/H7cybN4+ePXty4cIF6tSpw59//knVqlWt7pbIbU6cSBoMN240RWmSq1zZHgobN4a77jJV24XIY9wuLGqtLX39gICAm4Fxy5YtNwNjsWLFLO2XWype3Gy10bWruTK4Z4991DE8HHbsMO2zz8xUkVat7COP9evLlFUhcqHQ0NCbFwJz07TDZEHRZmPirW0aRCcgyhYUE7/vvFJqDhBCYlhMPO4GMN3huDil1K/AW0qpAlrrWFf/DFbRWvPBBx8wbNgwtNY8+uij/Pzzz/j6+lrdNZHTXbhAychI2L3bHhCdVSYtVSppMGzc2NwnhHC/sJgTlCtX7mZg3Lx5M/fddx9LliyhaNGiVnfNfSllCuTUqAEDBsD167B2rT08bt5sRiGXLYO33jInAccpqwEBVv8EQoi8p03i7a7E29rAdifH7QB6K6V8tdaXEo87qLW+4uS4/EC1xK9zvbi4OPr27cvEiRNRSjF69GjefvvtXHWhQGSTuDjYvh3Wr7e3XbtomXwQwdfXvr7QFhBlywohUmVJWFRKlQeGYBb618cs4g/UWh9KdlyuXcBfvnx5wsPDadOmDRs3buT+++9n8eLFFClSxOqu5Q3585tqqW3awJgxZorJsmVmuurixXD0KPzyi2kAtWpB8+bmpNG0qZnCKgvUhRBZRClVDjNldKnWelPi3cWBQ04Oj0m89QMuJR539hbHpbpY3lnI6tatGz169EhTv7NTbGwsH3/8MRs3biR//vy88cYb1KlTh9mzZ1vdtQwJCwuzugvuQ2t8Tp/Gb88e/PbsodjevRTbv598sUkH1BPy5eN85cqcu+MOzt5xB+fuuIOLAQFJK5NGRJgmsoT8u89a06ZNY/r06bc/MBOs+jRcDXgc2Az8BaS2Oj1XL+CvUKHCzRHG9evX06FDBxYuXCiB0QolSsDjj5umtZmSsmSJfcrqzp2mTZxojvfxMXsiNW1qD5By5VEI4QJKKV8gDIgDnsnO17Z6qUZanTlzho4dO7Jx40aKFy/O3Llzad68udXdyrCwsDBCQkKs7kbudeGC2cPQcdQwOjrlcVWr2s/ZTZvi0aABqxYtIiQkhMDs73WeJ//us15ISAi//vprivtdOfvCqrC4SmvtD6CUeg4nYdFdFvBXqlTp5gjj2rVreeCBB1i4cCGFZZG0dZQypa1r1oRXXoHYWDNNdcMG09avhwMHYPVq02xKl7afhGzrGqR4kRAiHZRSPpiKp1WANskqnJ7FjB4mV9zhcduts53nbcfFOHks1zh8+DAdOnRg165dVKhQgUWLFlGzZk2ruyWySyrTSUl+ocPPL0kwpEkTUxVdCOFSloRFrXVCGg5zmwX8lStXZsWKFbRp04Y1a9bw4IMPsmDBAlmcn1MUKAAtWphmc/q0WQy/fr09RJ48CXPnmmZTvXrSAFm/vpTRFkI4pZTyAmZilmC0T753IuZiqLOZNrWAw4nrFW3HdVZKFUy2brEWcB3Y59qeZ5/IyEg6dOhAVFQUderUYeHChZSTbZDcl9am4IxjMNy8Ga5eTXqcl5fZS9kWDJs2hWrVZLaPENkgJy/KcqsF/IGBgTcD4+rVq3nooYeYP38+hQoVsrprwpmSJeGBB0wDc0I7cMA+8rhhg9mHac8e06ZMMcflz28/odlCpJzQhMjzlFIewFQgGHhYa73OyWGzgWeUUm201isTv68I0BH4xeG4OcAIoCtm6w2UUvmAbsDi3HIhNblVq1bRqVMnzp8/T+vWrQkLC5NK4u7m6lUTBteuNfsmr10Lx4+nPK5q1aTBsH598PbO/v4KIXJ0WMzwAv6cqkqVKjfXMK5atYqHH36YuXPnSmDMDZQyJ6+qVcFWCOL6dYiMTBogd+2yj0Ta+PmZ/Znq1DGtdm3TZO2qEHnJV5hwNwa4rJRq5vDY0cTpqLOBtcAUpdQgzDlwKKCAsbaDtdb/KKWmA58njlYeBPoBgUCv7PhhXG3WrFn07NmT2NhYHn30UaZOnYq3hIPcTWs4dMgEQls4jIgw00wd+fklvcAq00mFyFGU1YvdE9csfk+yaqhKqcVAEa11s2THtwOWAK211n8le8zpD5PTKr1FRUUxbNgwYmJiqFu3LsOGDaOATF10C/kuX6bYvn347d1rqrTt3Yv3WWfXPOBKqVJcrFCBCxUrcrFSJXNbvjwJ8m9BiCRuVe1Na50rhu2VUodwvs4QYITWOjTxuOLAx8AjgDcmPL6utd6a7Pl8MMGzJ6Za+FZMtfAVt+iDtvqc78w333xD//790VrTr18/vvzySzwdq1W6gTxR6OPyZVOExnHU8OTJpMd4eJiLps2bm9asmVnOkYWzb/LE7z6Hkt+9dZRSLjs/5uSRxQwt4M+JJ0JngoODadu2LZGRkXz33XfMmTMHHx8fq7uVYfKGkAqtzTYdW7eaBfs7dpjbXbsoeOoUBU+dwn/LFvvxthFM2wik7bZGDTPFNRXy+7eO/O6zXnZUe8tqWuvKaTwuBuiT2G513FXg9cSWK2mtGT58OKNGjQJg1KhRvPPOO7nq7zXP0hr27bOHwnXrYNs2iI9PelzJkiYQ2oJh48YgBf6EyFVyclh02wX8ADVq1Lg5JXXZsmWEhIQQFhaWqwOjcEIpqFDBtIcftt8fF2fWQG7fnjRE/vuvOQHv2wd//mk/Pl8+c/XVMUTWqWOCpZtdgRdCuL+4uDj69evHDz/8gIeHB99++y3PPfec1d0Sqbl40SyvcAyHZ84kPcbT0yy5sAXDZs3MOUrCvxC5Wk4Oi265gN/RnXfeeTMwLlmyhJCQEL799lsCA2U3ILdnC3/Vq8Ojj9rvj401BXNs4dEWJPfvt+8F6ahAAahZk7t9fU311mrV7M3fX07SQogc58qVK/To0YPZs2fj7e3N9OnT6dQpV+yGlTdoDQcPwpo18Pff5jYyMuXWFf7+SaeTNmoEBQta02chRJaxLCwqpR5L/PLuxNsHlFKngFNa65XuuIDfmZo1a7J8+XKCgoJYsmQJ1apV45FHHmHgwIG0bNlSpuPkNQUKQN26pjm6csUUz0keIg8fhogIykPSPSEBChVKGh4dW0CAWTsihBDZKCYmho4dO7JmzRr8/PyYO3cuLRy3LRLZLzYW/vknaThMvuG9lxc0bJh0SmmlSnJBUog8wMqRxRnJ/vx14u1KoG3i189gFvCPxr6Av4PWegtupHbt2qxdu5aRI0cybdo0Zs2axaxZs2jUqBEDBw6ka9eueHl5Wd1NYaWCBeHuu01zdP487NzJ5unTubtoUfsU1n37ICbGrJXcujXl83l7m+lByUNk1apQsaJMbRVCuNzhw4fp0KEDu3btokKFCixatIiaNWta3a285/TppMFw40YTGB2VLGn2Hm7Z0tzefTfIMhkh8iTLwmJaKvS4wwL+tKpatSo///wzH374IV999RUTJkxg06ZN9OrVi8GDB/Pyyy/zwgsvULx4rtsxRGSlokWheXOOnjzJ3cmLrMTEmOmrjgHS1k6eNCOTO5xsVerlBYGBSUNkpUomRFaqBMWKydVkIUS6bN++nQ4dOnDs2DHq1KnDggULKF++vNXdcn8JCWYtvC0Y/v23WeqQXK1aScPhHXfI+7wQAsjZaxbzpLJlyzJ69GjeeecdJk+ezOeff86uXbsYOnQoo0aN4qmnnuLVV1+lRo0aVndV5HTFi5vWuHHKxy5cSD1IRkWZDxPOPlAA+Pqa4OisVaoE5cqZwCmEyHFsSxuGDx9OaGhotrzmqlWrCAkJ4dy5c7Rq1YqwsDD8/Pyy5bXznCtXTCGaNWvsLfn2TT4+Zi9DWzBs3tycK4QQuVpoaCgjRoxw+fNKWMyhfHx8eOGFF3j++edZtGgRn3/+OYsWLeKbb77hm2++4aGHHmLgwIEEBwfLukaRfkWKmPUnDRumfOzyZVOp1RYe9+83ayMPH4b//oNLl5wX27FRyqyJTC1MVqwoo5NCWCS7t5f6448/6NGjB7GxsXTu3JmpU6dK1W9Xio6Gv/4yI4Z//+180/uAABMMbeGwQQO5oCeEGwoNDb15EdCV2cDtwqIVV02zklKKDh060KFDB3bs2MG4ceOYPHky8+bNY968edSrV4/XXnuNHj164O3tbXV3hTsoVMh5kR0w1fDOnbOHR2ctKgqOHTNt7Vrnr+E4OlmhgvkwY2tly5rb0qVl7aRIIauunArXmzBhAv379ychIYG+ffsyfvx4POX/dMZpbS7e/fWXve1LtouYh4e5COg4pbRiRbk4J4TIMLcLi9l91TQ71a5dm++++44xY8bw7bff8tVXX7Ft2zb69OnDW2+9xUsvvUS/fv0oXbq01V0V7kop8PMzrX5958fcuGGCYmphMi2jk2A+9Pj7pwyRjl+XLSuhMo/JqiunwnW01oSGhjJy5EgARo4cybBhw+TvK73i482WFbZguHo1HMxMn4AAACAASURBVD+e9JhChcw00nvuMeGwaVPZ9F4I4VJuFxbzglKlSjFs2DAGDRrE9OnT+eyzz4iIiCA0NJQPPviAXr168dprr1HX2ciQEFnNywsqVzbNGa1NFdf//jPh8cgR8wEoKsp+GxUFp06ZPx8/Dps3p/56Hh5QpozzMBkQYB4rXdq0AgWy4icWQiSKi4vjpZde4vvvv8fDw4MJEybw/PPPW92t3CE21lQmtYXDNWvMe6WjkiVNMGzVyrSGDc2+vUIIkUXkHSYXK1CgAL179+bJJ59k5cqVfPbZZ8yZM4dJkyYxadIk2rVrx8CBA+nQoQMesqeeyCmUMmsWixVLfXQS4Pp1OHEiZYh0/DoqypSBt319q1AJpnqsLTg6Nn//lPf5+clelEKkw9WrV+nevTuzZ8/G29ub6dOn06lTJ6u7lXNduGACoS0cbtiQcguLSpXswbBVK7jzTplSKoTIVhIW3YBSirZt29K2bVv27t3LF198wY8//sjSpUtZunQpNWrU4LXXXuPJJ5+kUKFCVndXiLTJn9+sZ6xQ4dbHXb9uijykFihPnDDt1Clzlf78edi79/avny8flCrlPFw6BMyCJ06YD32FC8uHOJFnxcTE0LFjR9asWYOfnx9z5syhZcuWVncrZzlxIul6w61bzdYWjmrXThoOb/f+J4QQWUzCopu54447+PLLLxk5ciQ//PADX375Jf/++y/9+vVj4MCBNG/enLZt2xIUFESTJk0oINPyRG6XP7+9WM6tJCSY4jwnT5p24oT9a8dmu//8efs02FtoD/Dii2b6bYkSppUsmbavixWT0UuR6124cIGgoCC2bdtG+fLlWbRoEbVq1bK6W9aLioIVK2DFCu6dN8/82VG+fGZrI1swbNnSvDcIIUQyWsPVq+ZjjK2dP5/6n11JwqKb8vPzY9CgQbz22mvMmjWLcePGsXbtWsLDwwkPD2f48OH4+PjQokULgoKCCAoKolGjRuTPn9/qrguRNTw87HtP3nnn7Y+PjTWjkbcKlydOcOXIEQpeuWL2N4uONi09ffLzSz1Qlihh+msrKmRrRYrIKKbIEeLj4+nZsyfbtm2jevXqLFu2jPLly1vdLWtERcHKlSYghocnmcHgC/ZiNLZw2KSJuU8I4fa0hosX0x72nP05+a442UXCopvz8vKiW7dudOvWjdOnT7Ny5UpWrFhBeHg4O3bsYNmyZSxbtgyAggULcs899xAUFETbtm1p1KgR+WThvMirChSA8uVNu4UlYWGEhISYS35nztjb6dO3//r8efvX6eHhYUYlk4dIW3MWMCVoiiwwZMgQ5s2bR/HixZk/f37eCorHjycNh3v2JH3c19eEwrZtWakUbV57TfY3FCKXSkgwhdwdw1t62vnzKWedp5e3t73kQ9Gi9q+T/7loUejVyzU/N0hYzFNKlixJly5d6NKlCwAnT55k5cqVhIeHs2LFCnbt2sXixYtZvHgxAL6+vrRq1ermtNWGDRtKeBQiNT4+aQqXSdy4ATExtw6VZ8+mbJcume+LiUl/P5MHzaJFUzbb2Sa1JtPXBTBx4kQ++eQT8uXLx6xZs6hatarVXcpa0dFJw+G//yZ9vFChm+GQoCC4666blUrPhYVJUBTCQlqnDHtnz6Ye7pI/dv68eY7M8PVNW9hL7c/pOfVKWLwF2z5Ow4cPv7kXl3CudOnSdO3ala5duwIQHR3NihUrbo487tmzhwULFrBgwQIAihQpQqtWrW5OW61fv75ssCxEZnh5mUI5/v7p+74bN+xns5gY54EytZaZoGnj7X3rMGk7yxUpYlrhwklvixQxZ80MvH+EhoYyYsSIjPdduMTKlSvp168fABMmTKBNmzYW9ygLnDiRNBzu3p308UKFzDYWjuFQAqEQWUJruHbNHuKcBb3Uwt/Zsybsxcdnrg+OYS+9rUiR3Pv24HZhUWc29udhZcqUoXv37nTv3h2AY8eOJRl53LdvH/PmzWPevHkAFCtWjNatWxMUFITWmvj4eAmPQmQHLy9TqbVUqfR/r2PQtJ1Bb9Vsl1Qd27Vrpp04kbmfo1ChlEHyNrehLVvy/+3de5hU1Znv8e/bdDd0A91NA40gCiiiQBQhyMjoJIqYnCiXY0TxeaIBJyZnzowzGk1yTiY5iZPMxBwz40w4j5knepw4Hi9kjjECThyJEpHDyIiiKM0tInJTaehu+0I3TV/W+WNVdVdVV/W1qnZV1+/zPPupXWuv2rVqU9Tb7957rXXftm1QUoJpEJV+S8YJ1QMHDnDjjTfS2trKPffcw1e+8pUktjBAVVXRyeGePdHbi4u7ksOrroL587P3rz+RALS1+RASmdTFJn89bTtzZnDvP3Jk/ERuzJjey0tKMn9K01SdTLWhlFyZmRtKnyfTHDlyJOrK48GDB6O2Dx8+nIsuuohZs2Yxa9YsZs+ezaxZszj//PN1+2qKrQv3m5O0y7ljHx6SrbeEMrw0NPilvr7rsb7eX+Ec5O+1Ac45dcDso2TEyLq6OhYuXMiePXu47rrrWL9+ffaeJGxo8Mnhb38LL70Eu3dHby8u9iOURiaHAxwELud+JzKIjn1yNTd3nWuMPO8Y7/mBAyfJyxvXmfw1NAzuvQsLu3pQ9JToxSsrLR3wf9+sZGZJi4/6C1767JxzzuG2227jtttuA+DQoUOdieMLL7xAVVUVO3fuZOfOnVGvKywsZMaMGZ3JY3i54IILKNBZWZHsYub/iC4uhokTB76fjg44dap7IhmZUCbaFn6M7TMmKdXW1sbKlSvZs2cPs2fP5umnn86uRLGtDbZv98nhb38L27ZFDy9YVBSdHF52WW79dSk5Idx3L14vhd6Sv08+8QOF9924qGdm8RO68HpPZWPG+B4Qkn5KFmXApkyZwqpVq1i1ahXr1q3j6quvZu/evVRWVrJ79+7O5YMPPmDXrl3s2rUr6vX5+fnMmDGj25XICy64QPM/igx1eXn+1tLRo2HSpIHtQ6O6ptW9997Liy++yLhx49iwYQMlJSVBN6lnzsF773Ulh7/7nb/aHZaXB5dfDtdeC4sXwx/8gQZvkqwQnoahP93VIxO+wUzBEHt1L3Kw7djnlZVbWbLkis7y0aM1tXA2UrIoSVNSUsKCBQtYsGBBVHljYyN79+5l9+7dUYnkwYMHO9cjDRs2jOnTp0ddiZw5cybTpk2jtLQ0nR9JRETwg9isWbOGgoICfv3rXzNt2rSgmxTfyZPw8stdCeLhw9Hbp0/3yeG11/pBacrKgmmn5Dzn/M0VseOUhdd7Grvsk08GN1hLcXH8mZV6S/7KyvwF+L6ep8vLO8mllw68nZIZlCxKyo0aNYr58+czf/78qPKmpqbOJDK8VFZW8v7777Nv3z727dvHs88+G/WakpISzj333ITLpEmTdGuriEgSbdq0iTvvvBOAhx9+mCuvvDLgFkU4fRq2bu1KDt96K7ov7NixcM01XVcPp04NrKkyNLW0xE/2EiV+keutrQN/35EjE0+n29uiu6ulP5QsSmCKi4uZN28e8+bNiypvbm5m//79UVci9+zZw+HDh6mvr497S2tYXl4eEydO7DGhHDNmTOeIgCIiktj+/ftZsWIF7e3tfOtb32L16tXBNqijA955pys53LLFJ4xhhYV+xNLw1cO5c3Xfm/QqfFtnZHIXufRU1tQ08PctKvLJW3l5VyIXXo8si3cFUAmfpIuSRck4RUVFzJkzhzlz5kSVO+eoqanh8OHDHD58mCNHjnSuh5cPP/yQY8eOcezYMV577bW4+y8uLu6WQE6ePJkJEyYwYcIEKioqqKioUL9JEclptbW1LF26lNraWpYtW8aPfvSjYBpSVQW/+Q1s3OhHLT1xInr7nDldyeGVV/p77CQntbf7WzTDCV11NbzyymQOHeo9CRzobZ35+fGTvUSJX+S6BmyRbDDkksVkzCElmcnMGDt2LGPHjmXu3Llx67S2tnLs2LFuSWR4OXToUGcfyr2xEyzHKC0tpaKiojOBjEwkY8tKS0t1tVIkDVI1j5REa21t5aabbmL//v1ccsklPPHEE+kb+dQ5f/VwwwZ4/nl4/fXoW0vPPrsrObzmGpgwIT3tkrRpa4tO+sKJX2/PP/kk3t4+3af3HDWqK5mLXGLLYp+PHKmxtmRoG3LJouZZzG0FBQVMnTqVqQn6pTjnqKur63ZV8ujRo1RVVXH8+HGqqqqoqqqirq6Ouro6fv/73/f6voWFhQkTyYqKCsaPH8+YMWMoLy9nzJgxlJWVae5JkQG47777Ok8E6gRN6tx99928/PLLVFRUsH79ekaPHp3aNzx9GjZt8snh88/DkSNd24YPh0WL4Atf8AnihRfqr/Ms0dHhB6ANJ3bV1YnXIxO/+Elf78JTM5SX++6q5eVw6tRR5syZ3GPip358Ionpr1XJKWZGWVkZZWVlXHzxxQnrdXR0UFtb25k4hpPIyGQycr2hoYGjR49y9OjRPrelpKQkKoGMXO+prKSkRH8ki0jKPPTQQ/zsZz9j+PDhPPfcc0yZMiU1b/TRR13J4UsvRXf+OussWLLEL4sX+8s3Ehjn/D9PZJLXUwIYmfx1dPT//cyiE7tw4pfoebistBRiL4CvW/cmy5dPTs6BEMlBShZF4sjLy+u85XXmzJm91m9qauLEiRNxk8njx49TXV1NTU0NtbW1nUt9fT319fUcOnSo322LTSQbGxt5/vnnKSkp6dMyatSo7JpMW0TSYuPGjdx1110APProoyxcuDB5O3cOduzwyeGGDfDmm9Hb583zyeHSpX5dA9OkhHNQX+9nGamu7nqMXI9X1r/J2LuUlPhELpzghddjn0cmfmVl+ucXyRRKFkWSoLi4mClTpvT5DHxHRwf19fWdCWRkItlbWWNjI9XV1VRXV0ftc+vWrf1q86hRo6ISyNGjR/eYXI4cOZKRI0d2rkc+FhcXk6fILpLV9u7dy80330x7ezvf+c53+NKXvjT4nTY1+XkPN2yAf/1X+PDDrm0jRvirhkuXwvXX+76I0i8dHX6Qlr4mfCdP+qt9A5mUffjwxElfokSwvBw0m5VIdlOyKBKAvLy8ztth+6u1tTXqCmVNTQ2bNm1ixowZnVcre1oaGhpoaGigsbGRxsZGPoz8420QiouLo5LIRIllvMeioiKKi4s7HyPXi4qKGDFihG69FUmCRIPAVVdXs2TJEurq6vjiF7/ID37wg4G/yZEjPjHcsMH3Q4yc2uLss7tuL120SCOXRghP0n7ypF9OnOhaT1RWXT2w2zxHjfIJ3bhx0Y+JysaO9f9U+hkWyVypGgBOyaJIlikoKOgcOCestbWV5cuX93kfHR0dnDp1qk/JZX19PadOnaKxsTHuY3hpamrqvB03FXpLKHtLNmOXROXhpbCwUAmqDDnxBoE7c+YMK1as4MCBA8ydO5fHH3+8/3cK7NwJzzzjbzF9++3obZdd5q8eLlkCl16aMxlHW1tXgvfOO+Noaek9CRzIrZ6lpV3JXV+TP80MJTL0pGoAOCWLIjkoLy+P0aNHM3r0aM5Owq1fHR0dNDc395hQJtrW2NhIc3Mzzc3NNDU1dT5Grre0tHTWSRcz6zGZDCebNTU1rF27luHDh/dpKSws7HPd8FJQUKDbfCUlnHPceeedvPLKK5x11lmsX7+ekX0dTKaxEdauhYcfhu3bu8qLi+Fzn/PJ4fXX+8FqhoDW1q7E7sQJP/1jeD3e85qayFdf0af3GDECxo/3Szj5i1xiy8eO1W2eIpJaShZFZNDy8vI6bz1Nhfb2dk6fPh2VQMZLKhNtO336dI9LvDqtra19TlC3bduWks8dKT8/n8LCwrhLOAkdyFJQUND52Jf1/tTVldnMt2bNGh555BFGjBjBunXrmDy5D6NG7tjhE8Qnn/QJI/gRSW65BZYvh6uuyorZxtvbffJ3/LhP9HpL/mpr+7f/vDyfzI0fD2YnmTlzXK8JoO7KFZFMM+SSxUT9MUQkew0bNiylyWg87e3ttLS0JEwmw+Vbtmxhzpw5tLS0pGRpbW3lzJkztLW10dbWRlPk9AIZbtiwYRQUFJCfn9+ZSEau97Qt0frOnTvZsWNH0B9tSHjhhRe45557AHjsscdYsGBB4soNDfD00z5JjBzF9Mor4WtfgxUroKgoxS3uXUuLT/LCCeDx411L5POqKp8o9qe/X15eV3IXXioqEj8vL++axmHduq396iogIpIphlyyGK8/hohIfw0bNqyz/2NP2tvbU/5HoHOOtrY2WlpaOHPmzICXeK8PJ6Otra1JWw8nt+3t7bS3t6f02MjAVFZWsnLlSjo6Ovj+97/PypUru1dyDt54wyeITz/tR18BPwHeqlXw1a/CrFkpb2tzs5+S8eOPe08A+zuZ+9ixMGGCT/LCS0/Jn+4GF5FcM+SSRRGRocbMOq+sZYtwgtva2tr5GF4inw90W2trK/fee2/QHzMrnTx5kqVLl9LQ0MDNN9/M9773vegKdXXw1FM+SYwcrOYzn/FXEW+8MSm3mTY2+pk0PvrIL5Hrkc/r6vq+z2HDfII3YUJXEhhej30+fjzk668gEZEeWaZfiTOzc4C/B64FDHgJuNs5dzhOXZfpn2eouuWWW1i7dm3QzchZOv7B0bEPjpnhnMvZjpH9iY+h+q6lpYXFixezZcsW5s+fz+bNm/3Vc+fg9dd9grh2rZ8fEfylt9Wr4Y474KKLem2Tcz65i5f0xa6Huzv2pqAAJk704+T0lPxNmOAvembi1T/9TgRHxz44OvbBSWZ8zOhk0cyKgZ1AC/BdwAF/DRQDlzjnTsXUV7IYkNCXMuhm5Cwd/+Do2Acnl5PF/sbH0Gvc7bffzi9+8QsmTZrE9u3bmVRcDE884ZPEd9/tqnz11f4q4g03dJtnoaYGDhyA99/3j+HlyBGfBPZ10OIRI2DSJJ8Ihpd4z8vLs3+2Df1OBEfHPjg69sHJpWTxLuBB4ELn3HuhsmnA74FvOecejKmvZDEg+kEIlo5/cHTsg5PjyWK/4mNouwMoGjGCHQ89xEWvvgr/8i9d2d24cXD77bTffgfHRs6ISgQjE8Pe+gWOGtVz8hdeLy3N/iSwr/Q7ERwd++Do2AcnmfExA2/WiLIM2BYOhADOuYPAViClI0okcyTVXNhXsmXq58zUfSVTpn7GTN1XMmXqZ8zUfeW4AcXHPwc+Gj+eKV/5Myr/eTsbmq/hH2Y8xJ9/fj/XffpjLlz3AMWXzmDKFFi0yI9h8+Mf+5zyzTd9ojhyJEyY8DE33ADf+Ab84z/Cxo2wbx/U1/uBU/fvh82b/bg4Dz4I3/wm3Hqr3+fMmX6mjXCimKnfr0z9rmbqZ8zUfSVTpn7GTN1XMmXqZ8zUfSVTpl9Z/BhY55z7LzHlPwNucs6NjylP2pXFZJ4N0b6C3Z/2pX1pX0N6XzlybSpaf+NjaJv7IzZzgPP5kLN73P9ZZ8H558N55/nHyGX8eMjLy+jvhPalfWlf2pf2laT4mOnjgJUD8abBrQHGpLktIiIimWJA8XELnwEgP98xdap1JoCRSeF55/mrhyIiIpmeLPabJbEDhPYV3L6SvT/tS/vSvobmvqS//LFva4P33vPLgPeUod8J7Uv70r60L+0reTI9Wawl/hnSuGdUc/V2JBERyTn9io+gGCkiIv2X6QPcVAKz45TPAnanuS0iIiKZQvFRRERSLtOTxfXA5WZ2XrjAzKYCV4S2iYiI5CLFRxERSblMTxYfAT4A1pnZcjNbBqwDjgA/BzCzc8zsGTOrM7N6M3vWzM4NrslDj5mtMLNfmdkhM2s2s31mdr+ZjY6oM9XMXIKlLMj2ZzszuyrBcf0kpt4YM/vfZnbSzE6Z2UtmdnFQ7R4KzOyVHr7X/xaqo+/+IJnZZDP7X2b2mpk1hY7d1Dj1RpjZT8zso9Bv0Wtm9pk49fLM7Ntm9oGZnTaznWZ2Yzo+Sxr1Gh9BMTIdFCODo/gYHMXH9Ak6RmZ0n0Xn3CkzWwT8PfB/8D3zXwbuds41mlkxsAloAVYBDvhr4Hdmdolz7lRATR9qvgEcBv4SOArMBe4DrjazP3TOdUTUvZ/uZ7Ub0tHIHPAXwPaI523hFTMzYAMwFT+VWi3wbfz/hUudc0fT2M6h5E+BkpiyhfjJ0GO/5/ruD9x04GbgTWAL8LkE9R4Frge+CbwP/BnwopktdM69HVHvh/jfre+E9nkL8H/NbIlz7jep+Qjp1Vt8BFCMTBvFyOApPqaf4mP6BBsjnXNZuwB3Ae3A9IiyafgfiXuCbt9QWYDxccq+jP/DY1Ho+dTQ8zuCbu9QW4CrQsd2cQ91lofqXB1RVoofRn9N0J9hKC2hH+MWoDz0XN/9wR/TvIj1O0LHc2pMnTmh8tsjyvKBfcD6iLKK0L/PX8W8/mXgnaA/a5qPq2Jkeo6zYmRwx17xMYMWxceUHddAY2Sm34bam2XANudc5+DfzrmDwFb8j4MkgXPuRJzi8Bm8nmd2lnRZBnzonPtduMA5V4c/m6r/C0kSulJzE7DBOVcTdHuGChd95SWRZUAr8MuI17UBa4HPm9nwUPHngULgiZjXPwFcbGbTBt/irKEYmQaKkRlP8TENFB9TJ+gYme3J4mxgV5zySvyIcJI6nw097okpv9/M2kL9Y9arT0BSPWlm7WZWbWZPxfQ76un/wrlmNio9TRzybgBGA/8cZ5u++6k1GzjonGuKKa/EB77pEfVagNgZBCtDj7kUGxQjg6MYmV6Kj8FTfAxWymJkRvdZ7INE80nVEH/+KUkCMzsb+AHwknPujVBxC35QhY3ACeAifP+NfzezBc652IApfVcH/B2wGajH94f5S+A1M5vrnKvC/1/4IM5rw2f3xgCNqW/qkPdloAp4IaJM3/306On3Prw9/PiJC91X00O9XKAYGQDFyLRSfMwcio/BSlmMzPZkUdIsdAZuHb7Py+3hcufcR8CfRFTdEhoNqxLfgfbWdLZzKHHOvQW8FVG02cxeBV7Hd+r/biANyzFmNglYDPw0dGsHoO++iHRRjEwvxcfMoPg4tGX7bai1xD87mii7lkEwsyL8Pf7nAZ93vYwg5pw7Avw/4LI0NC+nOOd2APvpOrY9/V8Ib5fBuRX/mxnvFpso+u6nRG/f8ZqIemWhERB7qpcLFCPTSDEyMyg+BkLxMXgpi5HZnixW4u+9jTUL2J3mtgxpZlYAPAPMB65zzr3bj5fHXuqW5Akf257+Lxx2oaH0ZVBWATudczv78Rp995OnEpgWGkQh0izgDF39LyqB4cD5cepBbsUGxcg0UYzMSIqP6aP4GLyUxchsTxbXA5eb2XnhgtAklVfQfT4XGSAzywOeBBYB/9k5t62PrzsXuBJ/O4gkkZnNBy6k69iuB842s89G1CkBlqL/C4MWOt6z6MNZ01B9ffeTbwNQgB9tDwAzywdWAhudcy2h4n/Djwj3pZjX3wrsCo0GmisUI9NAMTKzKD6ml+JjxkhZjMz2PouPAHcC68zsu/izFD8EjuA71EpyPIT/8v0NcMrMLo/YdtQ5d9TM/g5/8uE1fCfmC/GT3naEXicDZGZPAgeBHcAn+A783waOAWtC1dbjj/0TZvZNuiYdNuCBdLd5CPoyvg/Sk7Eb9N1PDjNbEVr9dOjxC2Z2AjjhnNvsnHvLzH4J/EPoKs5B4L/i5w3sDHrOuSozexD4tpk14P/frMT/Ib8sTR8nUyhGpodiZEAUHzOC4mMaBBojg55ocrALcC7wK/woWA3Ac8RMVKll0Mf4A/wfGfGW+0J1/hg/r1Qt/ozFx8BTwIVBtz/bF/wP6zv4Ud9a8X/oPQxMjKlXDvwT/n7zJvwEq3OCbn+2L/gzdSfwc0fF267vfnKOc6LfmFci6hQBD4aO8WngP4Cr4uxrGH5gi0P40fjeAVYE/RkDOq6Kkak/xoqRwR17xcdgj7/iY/qOdWAx0kIvEhEREREREemU7X0WRUREREREJAWULIqIiIiIiEg3ShZFRERERESkGyWLIiIiIiIi0o2SRREREREREelGyaKIiIiIiIh0o2RRREREREREulGyKCIiIiIiIt0oWRRJMTMrMLMfm9k7ZrY39Hhh0O0SEREJkuKjSOZTsiiSevcDXwAWAjOBAqA2XkUzW2NmzyfYttDM1prZUTM7Y2b1ZrbdzH5oZhMj6q02M2dm0+PsIz+07b7+fAAzu9vM3jUz/WaIiEiyKD6KZDh9sUVSyMwKga8CjzrnTjnnHDDPOVcVp+75wJ8A98XZdi+wFRgPfBdYDNwCvAh8DfinVH2GkJ+H3ntVit9HRERygOKjSHbID7oBIkPcPKAE+I9wgXOuOUHdu4Gdzrk3IgvN7GrgJ8BPnXNfj3nNb8zsfuCm5DW5O+dcs5k9DnwD+EUq30tERHKC4qNIFtCVRZEUMbPHgOeAduDnZva2mV2XoO5w4FbgqTib/xtwMvTYTeiM7GMDbONVodtu4i2x+1wLzDKzPxzIe4mIiIDio0g20ZVFkRRxzq02s4eBK5xzl/ZS/XKgDNgSWWhm+cBngWedc2f62YRhoddHlcU834HvKxJpEfA3wJ6Y8reBBuA/Af/ez7aIiIgAio8i2UTJokhqfQrY1Yd6lwMOeCemfCwwAjgc+4LYQOeca4upsre3N3XO1QPbIvY5A38rza+AB2LqdpjZzlBbRUREBkPxUSQLKFkUSa3ZwAt9qDcJqO/r2VEzOwv4KKasICYg3gAcjXnpMCKCX8zrxwAbgPeA20KDDcQ6AczoSxtFRER6oPgokgWULIqkiJmdg++835czpyOAljjl1cBp4NyY8pPAZaH1r+FHlIu1yzn3Xkyb4v6fN7MC4JlQOz7bwyADzUBRgm0iIiK9UnwUyR5KFkVS51Ohx8o+1K3G98mI4pxrM7NXgWvNrDB8ZjV0hvQNADNbkoS2PoQPrlc45z7uoV45PhCLiIgMlOKjSJbQaKgiqfMpCdvsXAAAAaRJREFU/FnP93qriO8/UWhmk+NsewAYB/zPJLatk5l9Hfhj4Bbn3Lu9VJ8G7EtFO0REJGcoPopkCV1ZFEmdTwF7nHMdfaj7auhxATH9KJxzL5vZfwd+bGaXAI8DB/G3xMzATz58Cj8AQL+Ehvn+29A+a8wssnP+CefcgYi6ZaH3+9v+vo+IiEgExUeRLKEriyKpM5u+9cfAOfcB8DqwNMH2B4A/wt+O8yPgJXwfilXAL4ELnHPtA2jjDPzvwGrgtZjlf8TUvR44A/x6AO8jIiISpvgokiUs/oBOIjIYZpaHn3PpPufcT/r4mtXAT4GJzrmmFDZvQMzsBeCkc+62oNsiIiLZSfFRJLvoyqJIalwMFAOb+vGaJ4APgT9NSYsGwcwuxU9G/FdBt0VERLKa4qNIFlGyKJIafwFsBXb09QWhEdxuBzLurClwFrA6dqhxERGRflJ8FMkiug1VJMnMbAu+E/7XexlmW0REJGcoPopkHyWLIiIiIiIi0o1uQxUREREREZFulCyKiIiIiIhIN0oWRUREREREpBsliyIiIiIiItLN/wd0dKuDSyUX9gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Recreate Figure 6a in Grujic 2018\n", "\n", "fig, ax = plt.subplots(1, 2, figsize=(15,5))\n", "ax[0].plot(f/1e9, cond1/1e6, 'k', label=r'1 $\\mu$m')\n", "ax[0].plot(f/1e9, cond2/1e6, 'r', label=r'0.5 $\\mu$m')\n", "ax[0].plot(f/1e9, cond3/1e6, 'b', label=r'0.25 $\\mu$m')\n", "ax[0].legend(frameon=True, framealpha=1)\n", "ax[0].set_ylabel(r\"$\\sigma_{eff}$ (MS/m)\")\n", "ax[0].set_xlabel(\"$f$ (GHz)\")\n", "ax[0].set_xticks(ticks=[0, 25, 50, 75, 100])\n", "ax[0].set_xlim([0, 100])\n", "ax[0].set_ylim([0, 60])\n", "ax[0].grid()\n", "\n", "ax[1].plot(f/1e9, ur1, 'k', label=r'1 $\\mu$m')\n", "ax[1].plot(f/1e9, ur2, 'r', label=r'0.5 $\\mu$m')\n", "ax[1].plot(f/1e9, ur3, 'b', label=r'0.25 $\\mu$m')\n", "ax[1].set_ylabel(r\"$\\mu_{r,eff}$\")\n", "ax[1].set_xlabel(\"$f$ (GHz)\")\n", "ax[1].set_xticks(ticks=[0, 25, 50, 75, 100])\n", "ax[1].set_ylim(ymin=0)\n", "ax[1].set_xlim([0, 100])\n", "ax[1].grid();" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.9" } }, "nbformat": 4, "nbformat_minor": 2 } GradientModel-0.0.2/examples/wr28-waveguide-aluminum.ipynb000066400000000000000000007643411413653641000235370ustar00rootroot00000000000000{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Example: Aluminum WR-28 Waveguide\n", "\n", "- Calculate the effective conductivity of aluminum using the Gradient Model for different surface roughnesses.\n", "- Use these values to calculate the attenuation of a WR-28 waveguide.\n", "- Compare HFSS to theory." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%load_ext autoreload\n", "%autoreload 2" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import skrf as rf\n", "import numpy as np\n", "import scipy.constants as sc\n", "import matplotlib.pyplot as plt\n", "\n", "from scipy.interpolate import interp1d\n", "\n", "# https://github.com/garrettj403/GradientModel\n", "import sys\n", "sys.path.append(\"..\")\n", "import gradientmodel as gm\n", "\n", "# https://github.com/garrettj403/Waveguide\n", "from waveguide import conductor_loss, np2db\n", "\n", "# https://github.com/garrettj403/SciencePlots\n", "plt.style.use(['science', 'notebook'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Waveguide Properties" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# Dimensions\n", "a, b = 280*sc.mil, 140*sc.mil\n", "length = 10*sc.centi" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# DC conductivity, S/m\n", "conductivity_0 = 38000000" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Smooth Waveguide" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# From theory\n", "frequency = np.linspace(21.1, 42, 210) * sc.giga\n", "attenuation_theory = np2db(conductor_loss(frequency, conductivity_0, a, b))" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "# From HFSS\n", "hfss_results = rf.Network(\"hfss/WR28-Waveguide_10cm-aluminum.s2p\")\n", "attenuation_hfss = -hfss_results.s_db[:,1,0] / length" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeYAAAF4CAYAAACB/1r8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd5xU1f3/8deZsrN9gV16XxBBRREUxYJdVNTEmFgSTWyxfjX5pdkiRaMpatQYG7FFo5jEWGPE2MAo2MCGio3eWco2tkz5/P6YYd06LLhTduf9fDzuY3buPXPvZxZ9fPbce87nODNDRERE0oMn1QGIiIjI15SYRURE0ogSs4iISBpJeGJ2zh3qnLNWti2JvraIiEhn40vitS4D3mn0PpTEa4uIiHQKyUzMn5rZm0m8noiISKejZ8wiIiJpJJmJ+RHnXNg5t9E596hzblASry0iItIpuEQXGHHO7Q38AJgDVAB7A1cBQWBvM1vfrL0qnoiISMYxMwdJSMytcc6NBd4Gfmdmv252zNoTk3OO9sbeuO26S/4fve+8lUWX/IqRf/79Tp0z3dt1hhj1u0m/dp0hRv1u0q9dZ4ixE/1uHKToGbOZLQA+B/ZN+sUDAQBcXV3SLy0iIrI9qR78tdPd9alTp+5c26wsAFx9/U6fc0eu3ZHn2+nv3EHnTMV1U/U9EnHtdP832ZG26f5dUvn/VEefL93/TRJx7a7y39eOtt0mVbey9wHeAq43synNjrXrVvbOWjf1enpf+2u+OO1cdpl5b8KuAzt2uyPd6bukn67yPUDfJR11le8BneO7NL6VnfB5zM65R4AlwAJgC9HBX1cCq4A/Jfr6LeIJZEdf63UrW0RE0k8yCowsBE4HLgVygbXAE8BUMytLwvWbcIG2b2V3tETcMkoVfZf001W+B+i7pKOu8j2g832XlNzKjifRt7LL/jyDkksv4KtjT2bYfx5P2HVERETaK6m3stNN7amnc0Pf/ehfks+wVAcjIiLSTKpHZSed1+cF5whH0utOgYiICGRiYvY4ACJKzCIikoYy7hnzltmvU3vOj9k8YndGzdIzZhERSb2UV/7aHucczjmmTZvW4ef21tfTZ8kiilYs6fBzi4iItNe0adMa8l1jGddjrnptLvmHHMjaEaPp89mHCbuOiIhIe6V9jzmRvNnRecxeFRgREZE0lHGJ2ROr/OUJBlMciYhIZtl22zbeNmTIEADOOussBgwYkNqAUyTj5jF7cqKJ2RtKfOUvERH52rx585q8P+mkk9hrr72ajCcKxFYAzGQZl5i92xKzeswiIkm1//77N3kfCAQoKSlpsT/d1NXVJfUPhsy7lV1UyHtHncxHhxyvucwiImnuvffe4+CDDyY3N5dddtmFu+++u0WbJUuW8IMf/ICePXsSCAQYM2YMTz75ZIt2s2bNYsKECeTk5FBUVMS3v/1tPvvssyZtDj30UA466CCeffZZ9t57bwKBAHfeeSejR4/mpJNOanHO2bNn45xj1qxZHfadMy4xU1jIi5dMY/YZP1H1LxGRNFZRUcH3v/99zjjjDJ5++mn23XdfLrroIl599dWGNitWrGC//fbjgw8+4JZbbuGZZ55h7NixnHzyyTzzzDMN7WbNmsXkyZPJz8/n73//O3fddRcLFy7koIMOYtWqVU2u+/nnn3PZZZdx6aWX8sILL3DEEUdw0UUX8e9//5vVq1c3aXvPPfcwdOhQJk2a1GHfO+NuZUO0+lcoDOGI4U91MCIiO+GGJ9JjuudV39kzYeeurKzkzjvv5LDDDgNg4sSJvPDCC8ycObNh37Rp0zAz5syZQ3FxMQCTJk1ixYoVTJkyhRNPPBGAX//615SWlvL888/j80VT34QJExgxYgQ333wzf/zjHxuuW1ZWxn//+1/GjBnTsG/o0KFcccUV3HfffVxzzTUAbNiwgSeeeILp06e3mIv8TWRejxnou/gT+i96n3AkkupQRESkDbm5uQ0JGKLPpEeMGMHy5csb9s2aNYvjjjuOoqIiQqFQwzZp0iQ++OADKioqqK6uZsGCBZx66qkNSRmiyfbAAw9kzpw5Ta47ZMiQJkkZoKCggDPOOIN7772XSCx3PPjgg5gZ55xzTod+74zsMZ/6i+/jDYWouPg7kK0+s4h0PonsqaaL7t27t9gXCASora1teL9+/XoeeughHnrooVbPsXHjRvx+P2ZG3759Wxzv06cPy5Yta7KvtXYAF198MXfddRf/+c9/mDx5MjNmzOCkk06iV69eO/K1tistE/O2WwJTp05NSFnOiC8LbyhEuLYOyO/w84uISHIUFxdz8MEHc/nll7d6vF+/foRCIZxzrF27tsXxtWvX0qNHjyb72rotvccee3DwwQdzzz33kJ2dzZdffsk999yz07FPmzaN6dOnt9iflok50WVCw34//lqI1NYk9DoiIpJYxxxzDPPmzWP33XcnJyen1TaBQIBx48bxz3/+k2nTpuH1egFYtmwZc+fO5dJLL2339S6++GLOOOMMNm/ezIgRIzj88MN3OvZp06Y1dD4b/zGQkc+Yw1nR+WhWU7udliIiks6uvfZaysvLmThxIn/961+ZM2cOTz31FL/5zW+aPPu97rrr+OKLLzj++ON59tlnmTlzJkcddRRFRUX8/Oc/b/f1Tj75ZEpKSnjjjTe44IILEvGVMjMxR3zR58qROlX/EhHpzAYNGsS7777LXnvtxVVXXcVRRx3FRRddxJw5c5r0Zo855hiee+45tmzZwimnnMKFF17IqFGjeP311+nXr1+7r+f3+/nWt75FdnY2P/rRjxLxlTJvdSmA8kGlFK1Ywtp58+mz/9iEXktERLqOUCjE8OHDOfjgg3n44Yc77LyNV5dKy2fMidbQY65Vj1lERLavoqKChQsX8uijj7JixYoduv29ozIyMc+99nZWb6jkyCGlqQ5FREQ6gQULFnDYYYfRq1cvbrvtthbznDtSRibm6tIRbMitIBRbAlJERCSeQw89NOEzhrbJyMFfXk90WLpqZYuISLrJyB7zLo8/yC7zF+DP+wX0PzjV4YiIiDTIyB5zz3feYM/Zz+BtVoZNREQk1TIyMdu2AiP1GpUtIiLpJS0Ts3MO51xC6mQDWCAr+lqryl8iIpIa06ZNa8h3jaXlM+aEj3zzRxMzdXWJvY6IiEgbVCu7EQtEb2UrMYuISLrJyMRMVqzHrGfMIiJJ9+CDD+Kc48svv2xxbNsSjdt6krNnz2643dt8u/feexs+t3jxYs466yxKS0sJBAL06tWLCRMmcM011zQ5/7p167jssssYMWIEOTk5lJSUMG7cOH7yk59QlyadtbS8lZ1odQMHs2qX0dT1KE51KCIi0g5/+tOf2HfffZvsGzZsGBBdvnHcuHEMHjyYKVOmMGTIENatW8fbb7/N448/znXXXQdEy2rut99+eDwefvnLXzJy5Eg2bdrE+++/zyOPPML06dMJbLujmkIZmZjX/+h8Xh13AvuP6MmoVAcjIiLbNWrUKPbff/9Wj913331UVVXx8ssvU1z8dYfr1FNP5cYbb2x4//jjj7Ns2TLef/999tprr4b9J598Mtdee23igt9BGZmYVflLRKTr2LRpE9nZ2XTr1q3FMY/H06QdQJ8+fVq0az4yOpUy8hmz14EnFCSSJs8TREQyUTgcJhQKNdnC4XCrbSORSJvtxo8fT1VVFaeeeiqvvfZam8+Kx48fD8Bpp53GCy+8QHV1dcd/qQ6QkYm590N/4YpT92HEzdelOhQRkZ3nXNvbjBlft5sxI37bxsaNa7vd+ed/3W7+/G8c/siRI/H7/U227OzWFxeaNGlSk3aDBw9uOHbmmWdywQUX8MQTT3DIIYdQWFjIwQcfzM0330xto3oVEydOZPr06bzxxhscc8wxFBUVsc8++zBt2jS2bNnyjb9PR2nXrWznXA8gBygzs07fzXSxh/uuvtN/FRGRTuvJJ59kwIABTfaFw+FWnyXfcccdDT1egKxts2uI3oa+++67ufzyy3nuueeYO3cur776Kr/4xS/461//yltvvUVOTg4AU6ZM4fzzz+e5557j9ddfZ/bs2UyfPp17772X+fPn07t37wR92x1gZi02oA9wBTAb2AqEG21LgYeAYwHX2ue/yRYNKbFW3vRnM7Blk7+b8GuJiEhTDzzwgAH2xRdftDgWDAYNsKlTp5qZ2auvvmqAvfjiizt0jVAoZL/61a8MsNtvvz1u2z//+c8G2M9//vMdukZHiuU+zKzprWzn3ADn3APAMuAXQCVwE/BT4ALgSuB5YA/g38BXzrkfJOhvhoTZ1mPWPGYRka7J6/Vy9dVXA/DJJ5/EbXvJJZfQvXv37bZLlubPmD8DugHfBnqb2QlmNsXMbjeze83sD2Z2kZmNBQYD9wB/cM79siODSnStbBerle1RYhYR6fTWrFnT6v5FixYB0LdvXyBaXCQSibT6+fLy8oZ2ydLeWtkHmtn77Tmhma0Efu+cuxUY0iFRfn3ujjxdCy42uEDPmEVEOr/rr7+euXPnctpppzFmzBj8fj8ffvghf/jDHyguLubss88G4OGHH2bGjBn84Ac/YPz48eTm5vL5559z8803k5WVxSWXXJLUuNuqld0kMbc3KTf7TB3Rnnan4c2NDgJQYhYR6fzOPPNMQqEQDz30EDfccAPV1dX07duXo446imuuuaZhgNnkyZNZtWoVTz31FH/605+oqKigpKSEAw88kEcffZSxY8em+JtEuUT3TneUc84SHVPZoq94+7aHsKFDmfyrsxJ6LRERke1xzmFmDuJMl3LOeYDzge8BA4Hmk8vMzAa3+GAn4B04kPePOpmi3KztNxYREUmiePOY/wD8DHgPeAfoMiOlAr7omLf6cMtBACIiIqkULzGfAVxnZlOTFUyyZEVC7P3CP/CHQzD5d6kOR0REpEGbz5idc2XAqWb2code0LlZwCTgejP7dSvHE/6M2WprcTk5hH0+qKvD68nIyqQiIpImGj9jjpeRHieaQDvywqcDe223YYK57GzCPh/eUIj66ppUhyMiItIg3q3snwGPOOdmAC8Am5s3MLNX2nsh51x34Bbg/wGP7mCcHS6YnYe3qpzg5nJyCvJSHY6IiAgQPzH3BUqBbwHnNdpvgIu9enfgWr8HFprZTOdc6hNzbh7ZVeUEyytTHYqIiEiDeIn5AaAE+AmwiG8wKts5dxDwQ9LgNvY2odxoLzlUXp7iSERERL4W7xnzPsBPYnWyXzSzOc239lzAOZdFtKb2TWbWrgph22qHNt46um52OJaYw+UVHXpeERGRtjSuj914ayxej3k5HTN3+VdE13K+vr0fSEY1snBeHvWBbEJbNfhLRESSo3F97MbarJXdzG+Ay51zr5hZ1c4E4JwbBFxN9Bl1wDkXaHQ44JzrBlSaWXhnzv9NvPnnR/l45RZO2Gdgsi8tIiLSpniJeRIwAFjqnJtHy1HZZmY/2s75S4mW8vxbK8d+Edv2BnZ48YxvKssfHbdWH1L1LxERSR/xEvNBQASoBPZo5Xh77je/DxzWyv5XiSbr+4Av23GeDpe1rSynErOIiKSRNhOzmQ39pic3sy3A7Ob7Y/fSl5lZi2PJMuTv9zPmgXvZdPb58JsrUxWGiIhIE01GZTvnrnLOjUpVMMmUVV1F8eqleNetSXUoIiIiDZr3mM8ErnPOfQk8DTxlZnM7+qLb6oGmkisojL5W7tS4NhERkYRo0mM2s1HA7kSLixwM/M85t8Y5N8M5d2xsTnKX4AoLAPBUKTGLiEj6aFFgxMwWmdnvzGwC0B+YDgwEngQ2OOf+4Zw73TlXmORYO5SnID/6Wq2SnCIikj7irndoZmvN7G4zOxboCVwAhIG7iCbpF5IQY0J4iqJ/V3i2Vqc4EhERka+1eyFiM6s0s8fM7HSiSfpbwOKERZZg3titbF+1ErOIiKSPdidmAOdcT+dclpkFzWyWmV2UiKASVR+7Mc+Qwbxz3Pf54pBjE3YNERGRtjSum92Ya16X2jm3L/AdwA88bmZvOudOAW4FehOtn/0X4Kdm1uHVOZxzloxa2RU1Qf78/Kfk5/i57NiMmCEmIiJpyjnXMGPJ1+zA0cC/iVb1qgcuc86dTzQRvwB8THTpxktiP9+TxLg7VCBW+asuqMpfIiKSPprfyr6KaKWubkAhcAdwJ3CnmR1vZpeb2THADODHyQy0o/k9jgGL3mPg/NeTspqViIhIezS5le2c2wCcY2bPxt73BVYBR5vZS43aHQPMNLPuHR5Qkm5lY0bE58MTiVBfU0tWdmD7nxEREUmAxreym/eYi4F1jd6vj71uatZuM9EedeflHMGcPADqN5enOBgREZGoHRqV3dVsS8zBLRUpjkRERCSqtdWlTnDObVvm0UN0INiJzrkxjdqUJjyyJAjl5kZfy5WYRUQkPbSWmK9uZd+UVvZ1+hFTodxoWc6wErOIiKSJ5on5G6/B3JmE86K3ssPlesYsIiLpoUliNrNlqQokFSKxHnOkQitMiYhIemhR+SvVkjZdCnjpubf5bHkZBx22F3uN7J+Ua4qIiDTX5nQp59wrO7C9nMgAE10rGyAyYADlvQdQ59McZhERSa521cp2zs2m6aCuXYE+wFKi85t7A0OANcBnZnZ4RweazB7z7I/XMvez9UzcrQ8HjeyVlGuKiIg012aP2cwONbPDzOww4DYgCEwws1Izm2BmpcCE2P7bkh14R+v92n856aZf0OOJx1IdioiICBC/wMh1wDVm9lbjnbH304DfJDCupMhfsYxR814k9+MPUx2KiIgIED8x7wJsaOPYemB4x4eTXK6wIPpaXZ3iSERERKLiJeYlwAVtHLuA6HPnTs0VRst9e6oqUxyJiIhIVGuVv7aZDjzinFsIPM7Xg7++C4wEfpD48BLLWxCdx+xRj1lERNJEm4nZzB5zzpURTdBXAn6ig77eASaZWcKmSyWLt3s3AHzqMYuISJqI12MmtgbzS845D1AClJlZJCmRJUFW754A+Ms3pzgSERGRqLiJeZtYMl6/3YadTKB/P5bvNo7yvgPpkepgREREaJaYnXM/A+40s9r2nsA5NxboZWazOjq4RAv07cXM6x8gHDFGhSP4vBm9PLWIiKSB5pnoTGCJc+53zrm92vqQc667c+5M59x/gdeBwkQGmSjOOXIC0b9NttaHUxyNiIhIy8Q8FrgcOBZ4zzm3xTn3P+fcE865mc65Wc65z4Ey4B5gFbCbmf2jI4NKVq1sgAILUVC2lppyrTAlIiLJ065a2U0OOLcfcAywH9APyAY2AouA14CnzWxLRweazFrZAGW7703JJ++z+t8v0m/ykUm7roiIyDaNa2XHmy71FvBWW8e7ilD36LCv0LouN7ZNREQ6oYwf7RTuURx9Xd9W9VEREZHkyfjEHCmOJmbKylIbiIiICErMUFISfd24MbVxiIiIoMSMN5aYnRKziIikgYxPzJ5e0bKc3k2bUhyJiIhIO0tydmWeAybwz8tvxTuslIGpDkZERDLedhOzc64PMIjoPOYmzOy1RASVTIGB/fli/GHk5/hTHYqIiEjbidk51x94GDiktcOAAd4ExZU0uVnRX0FNXQgza1GBRUREJJniPWO+CxgN/Ipoic7DG22HxV4TIpklOf0+Dwc9eR+H3ft76uuCCb+eiIgI7FxJzs3AZWb2cBLia3zdpJbkBKgt6EZ2VTlblq6i2+B+Sb22iIhI45Kc8XrMNXTBNZhbU9etOwD1a9alOBIREcl08RLzX4guA9nlBbtF62XXq162iIikWLxR2auAM51zLwPPAy0m+prZ/YkKLJmCsYUsVC9bRERSLV5ivjv2OoToYK/mDOgSiTmybSGLDaqXLSIiqRUvMQ9NWhQpZsXRspymxCwiIikWbz3mZR1xAefcJOByYDegO7ABmAtMM7NPOuIa35T178/m3gOo9arIiIiIpFab06UaGji3B9EiIz2IPmeebWYft/sCzp0OjAXeIpqUBwFXAAOB0c3/AEjFdKlFq8p54q1ljOhXyHf3H5LUa4uIiDSeLhWv8pcPeBA4nWilr23MOfcocJaZhbd3MTObCcxsdu63gUXAd4Gbd/QLdLScrGgBs6112/06IiIiCRVvutRU4BRgCtHnzTmx1ynAqbHXnbVtjcXQNzhHh8nPjt7Crq7cmuJIREQk08Wr/LUEeMDMrm3l2BTgbDNr9wAx55yXaG3twcDvgAOAvcxsfbN2Sb+VHVyxivo9RhPx+8nfsFb1skVEJKnaW/mrH9FBWq2ZGzu+I94C6oDPgT2Bw5sn5cYBNt8SWTfb36cXuZVbyN+0geqqmoRdR0REMlvj+tiNt8a212N+0Mymt3JsZ3rMo4BCoBT4BdAbOMjMljZrl/QeM0B1zz7kla1j3Xuf0HvMqKRfX0REMld7e8yPAFc7565xzpU653Kcc0Odc1cCVxNdErLdzOxTM3srNhjsCCCf6OjstFDbO3oDoHbx0tQGIiIiGS1egZFpRHu302M/b+OIjrJu8ey5vcxsi3PuS2D4zp6jo9X3HwAfv0doSYdM3xYREdkp8QqMhIDvO+euByby9Tzm13ZkHnNrnHO9gZFEe+VpITJgIAC2fHmKIxERkUwWr8cMQCwJ73Qids49CSwAPgQqgBHA/yM6VSrlc5i3cYOiidmzakWKIxERkUzWJDE75wYBa8wsGPs5LjNrT/fyTaLzoX8OZAErgNnAb5sP/Eold/jhvLDiCkJjx1Ga6mBERCRjNe8xLwEmAG8DS4muIBWPd3sXMLPfA7/fmeCSKXvsGOZvyKYgR/WyRUQkdZon5nOArxr9nPx5SylSmOPDOUdVbYhIxPB4VGRERESSr0liNrO/Nvr5waRHk0Jej4e93n6R3OVLqTxoOkU9u6c6JBERyUBtzmN2zr3inBvZxrERzrlXEhdWahz4tz9z6KO3U/P5l6kORUREMlS8AiOHEq3U1ZoCoktBdim1ffsDULdYc5lFRCQ14iVmaPsZ8zCgqoNjaZCM+titCfWLJubwUiVmERFJrMZ1sxtrPl3qbODs2FsDZjjnKpudKwfYA3g5QbGSilrZADYwOpcZFRkREZEEmzZtWkMHtHFybt5jjgDh2Oaavd+2bQTuAs5NcMxJ5xk8GADvypUpjkRERDJVa6Oy/wrgnHsVuMjMFqUisFTwD40m5qy1q1IciYiIZKp4tbIPS2Yg6SBv5HDCPh/1kejt9Ob3/UVERBJtu7WynXN7AbsC2c2PmdlDiQgqVXJGjuCWf75LbcRxWV2I/GxVARMRkeRqMzE757oBzwH7b9sVe208MqtLJWbn9dK9KI81m7eyqapeiVlERJIu3nSpG4Bioks+OuAk4HCiSzUuBsYnPLoUKC4IALBxy9YURyIiIpkoXmKeRDQ5vxl7v9LMZpvZD4GXgJ8kOrhU2P2ph/npjyZSeFvarEgpIiIZJF5i7gssNrMwUEu02tc2TwCTExlYquQW5ZNbVY73y89THYqIiGSgeIl5LdAt9vMyostBbjM8YRGlWPYeuwGQs+Sr7bQUERHpePFGZb9OdODXv4GHganOuSFACPgR8Eyig0uF/D13B6Bo5RLC4TBe73aXnBYREekw8XrM04EXYj/fCNxB9Pb16UST8qWJCipVtbIB/P36UJdXQHZ1JeXLVif9+iIikhnaqpXtUlWXui3OOUt1TGW7jaHk0w9Y8eTzDPz2MSmNRUREuj7nHGbmYPurS2Wk+tJh0dePP01xJCIikmniFRiZsp3Pmpld18HxpIWq753O8/1Hkb37PgxLdTAiIpJR2ryV7ZyLxPmcAZhZh4+MSodb2YvXVfLYG0sYWJLHmROVmkVEJLHadSvbzDzNN6AEOAtYSBeeMlVSGC0LvqGiLmVrQ4uISGbaoWfMZrYptnDFg0RHaXdJBdk+9lgwhwn33Uj52o2pDkdERDLIzg7++oBoDe0uyTnHgY/PYMJTD1Ix961UhyMiIhlkZxPz8cCGjgwk3dSOHgNA8K13UxyJiIhkknijsu9vZXcWsAcwGpiaqKDSgdt3H3j8b/jeX5DqUEREJIPEK8l5OE3XXoboYhbLgFuBvyYqqHSQO2E/AAo/+TDFkYiISCZR5a82WF0d4fwCfKEg1es3ktezR6pDEhGRLirtK3+lslZ2QwyBAFtKdwVgy+saACYiIh1rp2plO+c8wHhgEJDd/Hhs6lSHSpceM8Dy084m8OZcNv76WnY779RUhyMiIl1U4x5zvMpfuwFPAcMA10oT66qVv7b5YMlGnntvFaMGdOOk8YNSHY6IiHRRjRNzvMFfd8aOnwJ8BNQlIba00qd7LgBrNm9NcSQiIpIp4iXmscBZZvZEsoJJNz0Ls/F7PfDVV1Ru6E1Bz+6pDklERLq4eIO/yoD6ZAWSjjwex2m3/IKLLzmeLU//J9XhiIhIBoiXmG8BLnHOdfhz5M7ERu0GQOh//0txJCIikgni3cruCewKfOKcexHY1Oy4mVmXrv4FEDj0YLj7FnLffTvVoYiISAbY2fWYIQNGZQMEN27G17OYiNdLsGwz2UX5qQ5JRES6mJ1ej7nZlhG3uP3F3dk8dATeUIiyV19PdTgiItLFpWXlr3Szdd/9AaibrefMIiKSWHETs4s60Tl3k3PuAefc4Nj+Q5xz/ZITYur5Dj4IgKx3VZpTREQSq83E7JzrDswlWv3rx8APgeLY4R8DVyQqqHSold1Y0XdO4OHrH+Sxy35HXTCc6nBERKQL2OFa2c65e4FjgO8B7xCd07yPmS1wzp0F/NLMdu/oQNNt8Nc2f53zFas2VvOd/QYzsn9RqsMREZEupL2rS30LuNrM5tFyXeblwMAExZeWhvUuAGDxuooURyIiIl1ZvHnM+cCqNo5l0/rCFl3WrvWb6Pubi8mKhLD35rW49SAiItIR4vWYPwOObuPYIUQXtsgYJUP7M+Sjt+j/0TuULW3r7xUREZFvJl5ivhP4qXPuaqLrMQN0c86dDfwfcEeig0snrqCATXuPxxOJsPnp51MdjoiIdFHxCozMAP4ITAe+jO1+EZgB3GpmjyQ+vPQSOXoSAJ4X/5viSEREpKtqc1R2Q4Po3OWjgF7ARuBFM1vc7tW0nyIAACAASURBVAs4913gdGCf2DmWA08AN5hZZSvt03JUNkDt/AVk7zOOqu4leFauJDc3kOqQRESkC2g8KjvedKmJwAIzq2rlWD4w1sxea8fF3iSajJ8GVgJ7A9OARcABZhZp1j5tEzNmVA4cSsGqZXz518cZ/sOTUx2RiIh0Ae2dLvUqsFsbx3aNHW+PE8zsFDN7xMzmmNmtwGXAfsCh7TxHenCO6lNOB8D7yN9SHIyIiHRF8aZLxZsPFADaVQLLzDa0svud2Gv/9pwjnXS78FxeLg+z8KDjOLc2SH62P9UhiYhIF9IkMTvnhgCljXbtE7tt3VgOcA7R29M765DY66ff4BwpkT1iOBvPvZjqtRV8trqCcaXF2/+QiIhIOzW/lf0j4CWio68NuD32/qVG+58FTgB+vzMXdM71B64FXjKzd9to02JLl7rZAKMGREtyLlq+KcWRiIhIZ9K4PnbjrbEmg79iI7CHEL2N/QpwCfBJs/PWAZ+b2Q5npVjvezbQDxhvZitbaZO+g79iauvDvHXez9n7uZnY7NkUjR6V6pBERKQTazz4q8mtbDNbBiyLNToMmN/aqOydvGgO0d52KXBIa0m5s8jO8jJ082oKN61nxS23U3T/nakOSUREuoh4o7JfoY1R2c65cc65dq9/6JzzA48Tnct8nJl1+nKe/v+7GICSf80ksrUmxdGIiEhXES8xxxuV7aXlilOtn8Q5D/AIcDjwbTN7s/3hpa8+R01kw/DdyKnYwvr7Hk51OCIi0kW0SMzOOY9zzrvteOx94y0POBYoa+c17iC6pvPNQLVzbv9G24AO+RYp4Dweys86DwD/jLtTHI2IiHQVzQd/TQWmtPOzd5rZpdu9gHNLgcFtHJ5uZtOatU/7wV/bVG3cgm/QILK3VlI5920KJuyb6pBERKQTanPwF9ER0xC9jT0FuI9oGc3G6oiO1P53ey5mZkN2NtB0l1/cja9O/B7DHrufsvseUmIWEZFvrPmo7DnAHIj2XIG/mNnqVATWWRRc/nMeHbEfq8dO4NJgmIDfu/0PiYiItKHNkpxmNj2ZgXRWvcbsRqQym/oNVby/dBP77dIz1SGJiEgnFq9WNs65XkSXbNwVyG522Mzs3EQF1pmMH17C8g1VfPLWJ+wz9EC8vri/VhERkTbFW/ZxV2Ae0eSdR3QUdg+iU6U2A+VmVtrqh79JQJ1o8Nc2ZsYn3zqDUc89xtLb76P04rNSHZKIiHQi7V328Uaiq0D1JjoY7FiiC1icB2wFTkpkgOlWHzse5xzF++2NJxKh6A/XEwqGUh2SiIikucZ1sxuL12NeA1xItIxmiGht63djxy4HjjGzwzo60M7YYwaw2lqqB5WSv2ENi2/7C6WXnZfqkEREpJNob485H9hkZhGgHChpdOwdQHODGnHZ2VT+4goAut30W4I1dSmOSEREOqN4iXkp0Cf282dEq3dtczywJUExdVp9fnohFf0G0WPFYlZc+4dUhyMiIp1QvMT8InBU7Oc/Amc75z5zzn0M/AS4P9HBdTYuK4vaG28GoP9tv6dy8fIURyQiIp1NvGfMASBgZhWx9ycApwK5wCyixUc6/GFwZ33G3NjqQ46mzJPN6quu5ZijxqQ6HBERSXONnzG3mZhTpSsk5s1bqpkxezHhiHHGxGEMKslLdUgiIpLG2jv4S3ZS9255TBjRC4AX3llCqK4+xRGJiEhnocScIAfs2pPdln/Mty/4Nsum/C7V4YiISCehxJwgPq+HA3pl0XPFVwz40+8pe+/jVIckIiKdgBJzAvX6/smsPXIygdqt2KmnEqzamuqQREQkzbWZmJ1zRbGR2UnX2UpyxlM88yEq+gyg5xcfs/a8i1MdjoiIpIkdKsnpnPMBtcBJZvZsckJsuHanH5XdXNkrr9Nt0uH4QkFW33U//S48O9UhiYhIGtnuqGwzCwHrgHAyA+uqSg4/iBVXXgtA8c8uZfOSFSmOSERE0lW8AiO/B3Yxs+8kNaAu2GMGsEiEpSeexge7jGXjCSfzw4nD8Pv0iF9ERNpZYMQ5dxFwFbAWeBpYAzRpbGYdXpazqyZmgNr6MA/M/pLNVXWM7F/ESeMHtXi2ICIimae9iTmynfOYmXkTEFyXTcwAGypqeWjOV3T7bCEHly9hxHVXpDokERFJscaJ2Ren3dAkxZNRehZmc/LQHPqdcjZZtTUsKSlm6E9+nOqwREQkTahWdoqsuupa+v92KmGfj1UPP86g076V6pBERCRFdmgRC+fcHsAhQA9gEzDbzBJWxipTEjNmrDrrQvo/NIO67FzWzXyCQd+elOqoREQkBdr7jNkHPAicDjQeoWTAo8BZZtbh06kyJjEDFg6z9sTv0fc/T1IfyGbtg4+p5ywikoHau7rUVOAUYArR5805sdcpRNdlnpLgOLs85/XS56m/s/rEU8iqq6X3OT9g0YeLUx2WiIikULwe8xLgATO7tpVjU4CzzazDB4hlUo95GwuHWX3WhbzZZxSfH3AUx+3dn72G9Eh1WCIikiTt7TH3A+a2cWxu7HhCdKVa2e3hvF76P/wXep97BmbGcwtWMn/WPCyyvRlrIiLSWe1QrWxo6DE/aGbTWzmmHnOCvP1lGZ888SI/uOZsVh33HQbMfABfdkrWEhERkSRpb4/5EeBq59w1zrlS51yOc26oc+5K4Grg4WQEm2nGDy/hqOLomLohT81kw4GHUbV6XYqjEhGRZNneqOyHgNNoWorTATOBH8UWu+jYgDK8x7zNxpfmkH3Kd8nbXMaW/oMJ/uNxeh6wT6rDEhGRBNjRecy7AxP5eh7za5rHnBzVn39F3bHH02PxIoJZ2SyfcgOlV/4E59HiFyIiXUl75zFPBBaYWVUrx/KAcWb2WgKCU2JuJFRRybozz6P/M/+gLiePWX9/hSOPHkteIF41VRER6Uzam5jDwAQze7uVY+OAt7WIRfKsuX0G766u5qN9jyAv289xe/dnl76FqQ5LREQ6QHsXsYi3HmEA6PCqX9K2vpeezyE1Qba8s5wVZdUsu3I6vuoN9LrzVvJ6as6ziEhX0aTH7JwbApTG3r4E/B+wqNlncoBzgL3MbHiHB6Qec1yRiLHggyWMPmgvAlurqCzuzaY/3MKgs0/T2s4iIp1Um7eynXNTiZbibD4KexuLvQ8Bl5jZXxIQnBJzO5S/tYDgOedS8sn7AKw84Ahybr+F4rGjUxyZiIjsqHiJeTAwhGjyfQW4BPik2efrgM/NbFOCglNibicLhVh93Y2U3Hg9gZpqwj4fy087h9533kJuQW6qwxMRkXZq7+CvQ4D5rY3KTnBwSsw7qGb5Sjb+9Ff0f+oxlu82jsdveIADRvZmXGkPsnwdPj5PREQ6WHsrf9UBx7Vxgu855/ZLRHCx82dUrexvKmfQAAY88ShbZr/Bwiuupy4U4dWFa/jHjH+z5Le3EqqrT3WIIiLSzM7Uyn6VaDGRqa0cmwIcamaHd3Sg6jF/M2bGkvVVzP5kHQf96jxGvDuHLf0Hs/knv2TA/52HP0d1t0VE0k17e8x7AW+2cextYM+ODky+Oeccpb0LOPvQYeSffSbl/QbTbdUyhv7q/6gZPITFV/+G2s0VqQ5TRETaEC8xZ8c57gXyOj4c6SjOOfpdfC4Fiz9n9c13sHnwMAo3rKX0hmuwwYOYP+MxyiprUx2miIg0Ey8xfwqc2MaxE4HPOj4c6WieQBb9fnYx3b76jHUPzqRstzEEqquY64qZ8eLnPPr6Yr5652MiIdWLERFJB/ES893Aj51zNzrnRjjncp1zuzjnbgTOBe5MTojSEZzXS+8fnUbJwgVsmvcupeNG4fd5WLq2gu4nHkvFkGEsvuJaKleuTXWoIiIZLe7qUs65m4Cf0rLIyC1m9suEBKTBX0lTUx9i0RsfMPzUEyjYsAaAsM/HmgmHETn9+/Q583tk5euJhYhIou3oso/DgCOBYqAMeMnMFu/AxQYAlwP7EB1QlgMMNbOlbbRXYk4yCwZZ9+i/4O676fX2//BEIgDU5hUw74EnGXLIfgwuycPjUclPEZFE2KHE3AEXOxT4OzCf6KCxo1FiTltbl61k471/JefvM8nesI7bZ7yAeX3kZfs5cu4zdJ8wjt6TDsXr07KTIiIdpb2VvwZt70RmtrwdF/OYWST283nAX1Bi7hQ2LV3Fwq0+Fq7YTO26Mn5y7mF4QyEqS/qw4ajJ+E87lb7HHobPryQtIvJNtDcxR2i6mEULO7oesxJz52RmbPhiGXU3/I5u/3mm4Xk0QEVxb9YeOZman/2SwbuX0i0vK4WRioh0Tu1NzGfRMjEXA8cDQ4HrzOz+HbywEnNnF4mw+dX/sfXhmRQ9/wz566NJ+tb7X2FrUTElhdns98kb9Brcl5IjD8Gfl5PigEVE0t83fsbsnHsYWGZmv97Bz7UrMbe2f+rUqaqdnW4iEapfe4PyWS/x5knnsHh9FfXBMBdfeCzdNqwmmJVN2eix1B44kZyjj6Dk8IPw5WSnOmoRkZSZNm0a06dPb/XYN03Mk4AHzKzfDn5OPeYuLByJsHLNFjy/+iV5816nx5LPmxyvD+Tw7s+mE/nhDxlUkk/fbjn4ffGm0ouIZIbGPeadHbXTi2jJTpEGXo+Hwf17wCP3AVCzag2b/v1fIq++Sv681+m+/CuWBLqz7JN1wDrGP/c3Rr/5EjXj9sUzYX8KjziEol2GtlhpRUQkk8R7xjyxld1ZwB7AlcCbZvatHbqYeswZbeuylSyPBFhWUc/KjVs5+MoLGPH2q03aVJb0oXz03tQeOQnPuefQp1sOuQGN+haRrq29PebZtBz8ta0rMwe4qONDk64sd/AARgIjY+/rn/sna1/+H/X/ewP/u2/TfeF7FJStpeDV51lUE+SJkYcB0DO8lWPuvo7QmLFkjR9H0YH7kT+gb8q+h4hIIsXrMR/Syu5aooO+dqigsnPuu7EfjwAuBC4GNgAbzGxOs7bqMWcoC4cpf+8jql55jXV53fl4jwNYV15D/wXz+P7085u0rezZh4rhIwnuOorqiy+j+7BBlBQGyPLt0Aw+EZG0kNTKX7ELtnWROWZ2aPO2SsyyTSRibPpqGbXPPEdk/gKyF35Aty8+Iau2pqHNrfe/ytaiHgAc/9BN9NiyntCo3fCOHk3O3ntStOdumrYlImkt6Yl5Rygxy/ZYKETFR59SveAD6j/9jA9O/TEbKurYWFnLeZecQPHqZU3aRzweKnv1Z/G3T2fdBZdRXBCg2BOmR10lhcOH4lEvW0RSrM1nzM65JWyn2ldjZlbawbGJbJfz+SjaezRFe48GYEhsfzgSobzPv1j17nuEP1qI79OPyfvqcwrWrqRo7QoqN1eyYPFGAIa+P5fTr7uIYFaAzf0HUzOklNDgUlzpUHzDh5F15OF0616g6VwiknTNB3/NoWliPgLoDbwBrIv9fCCwFng5GQGKtJfX46HH/uNg/3FN9kdq69iycBEDPAGOKChmU1U9eR9HqO5eTN7mjRQv+Ryazbm+6eE3qM/NJy/bzxEP30JhxSYiQ4fiGToU/4hh5O66CwVDB+FRnXAR6WDxBn+dT3Qt5qPNbGWj/QOBWcCtZvaXDg9It7Ilieo3bqLyw0+oXfgp4a++wi1diisr49kpd1C+tZ5IxLjg0hNb3B4HCHt9vP/tH/LR/11JYY6fnhVlDJwzC/+ggfiHDiGndDB5g/oreYvIdrW3VvYXwFVm9s9Wjp0C3GBmwxMQnBKzpIVIxKisDVLz35cJfvoZtmQJnmVLCaxYRt6aleRu2chrp17E66dcCMCw+a9x6g2XNjlH2Oujurgntb36Mf93d+Eb2J+8gI9eH79HLmECg/qTPWgAuSXdcR7dNhfJVO1NzDXAKWb2bCvHvgU8ZmYdPtS18Qhu1ceWdBbeupXKyloqvAEqa4KE5i+g+2MP4Vu9iqw1q8ndsJbc8k0N7W/82zyCObkAfH/ajxny0dsNx4JZ2WztUUJtj56sn3gkK86/jIJsPwXhOkrefQN/nz5k9e1NzoB+BLoXKomLdAHN62a3JzHPB6qJ3squbbQ/B3gRyDGzca1++BtQj1m6klD1Vqq+Wkrt0uVs3Ht/qmqDVNWGGPy7qRQufJ9A2XpyNm8gq2Zrw2feO/Jknr9oCgC9lizivF+c2vSc/ixqinpQ172Yt66+keCo3ckN+Oj73jwK163C27sXvr7RRJ7drw85PYqUyEXSXHt7zEcAzwEVwH/4evDXcUARcKyZvZKA4JSYJeOEyivYumwldStXU5mdz+Yhu1BVG8R99BHDb/st/s0bCWwqI6d8M/66r+dw33PbU2wcMBSAE267itGvPdfi3MGsACv22p///uYesrO85Hph7xk3EikugZ49cSU98RXm48/LJSs/F98uw8juVUK234PXDDweUP1ykYRq9zxm59wo4NfA/kBfYA0wD/iNmS1KUHBKzCJxhCoqqVm9lrrVaykfPooavFTXhSia+TB578zDt7EM/6aNBDZvJHvLRvz1dXy590H849d3AJBbvomfnnNYm+f/1y9v5rP9jwTgwKcf5KBH/0x9fgHBgiKChUWEC4sIF3Uj3KsPK399HQGfl2y/h6LXXyUrkIW3R3d8PYsJlPTA36M7zqfBbyLbowIjIpnCjHBlJbWVW6kp7EZtfZi6sk3kPngfbsMG3Ib1eDZugtoaXG0trr6O1y+4ksUjx1JbH2biI7dz4L9an3xR0aMXf/7Liw3vLzv3cPK3bGzRri43n/mnX8gnp59PwO+h9+JFjHz8QSw/D/IKID8P8vNxBQV4CvKpm3wC/vw8snweAuvW4Pd68HcrJKuoAOf3J+xXJZJKHbHso4h0Bs7hLSwkr7CQvG37ivPgt9Pa/Mi2JePMjPrj72JLxU3Ul22kfsNGQps2E9m4icimTYQisO/wEuqCEepDYcrGTaByYxn+ynL8VRUEqirIrq4ksLWKraEI68ujt+ALPljIoOceb/P6fyz4H7X5hQCcPv0Chn74ZsOxYFaAYHYuoZxclh94JAsuu4Ysn4eCik3s+ecbsLx8yM+PvX6d8OsmHorr0xu/10Ng/Tqytlbizc/Dl5eLryAff36eprVJ2oj7X2JsIYvTgUG0XH/ZzOyIRAUmIqnlnCPg9xIoLoTiQth1aIs2Ixu/eanFBA7CwSB1G7cwFg97ZOdSFwwT7jOJFQPyiVRUYpWVuKoqqKrGVVfhqa6i/+Be1OElGI4QLupGVXEv/DVb8dduxV9fh7++Dio2E9m0iZUbqwEoWbGcyf95os3v8vC197Ni9+hY1SMfuJHx//5bizYhn5+yISP4x5/+Ge2lez0c//MzcM4Ryc4hkp2N5eRgublYdg6bj55M1X4H4Pd6yFu2mML33sHl5kBuLi4vF092Np6cHLw52djuu+Pz+/B5HL7arfiysvDlBDQoT1rVZmJ2zl0A3AVsAj4H6po3SWBcItIFeP1+cvv0JLfxzp5j4IAxbX6myRj0w59v+NEiEeqqthLcUkGwvII+Pj9n9OxDfShMuKyQ5TfdQaSqCquswlVV4aqrcNXVeKqr6TmyFH/vAoLhCN6eJWwZOBRvbS2+uhq8dXVk1dXgCwUhHKKqJhi7oNHro3fxRCKtxvlpTk/m50erEu/5yiyOv2Nqm9/pd4+9SyR2G/6HV57JgM8/BKJ/DISzAoT9WYSzAnx56GTmX/ArvB5Ht3UrmHDT1VhWNhbIIhLIxgIBLBCAQIBVZ5xPcOAgvF5H93fmkvvV57jYMRfIwmVFX+neneD4/fF6HF6PI7DoEzyBrOiWHcCbFXvNDuDNycbj8+E02C+l4vWYfw48CpxjZvVJikdEpFXO4yFQmE+gMB/o1/Rgn0LY4+I2Pzug8ZuJtwC3NDlukQjhmlqKamr5v7wCgqEIoVCYsv+8RLi6hkh1NZGtW7GqamzrVqymhl7jD2T/4T0JR4zCTbux4vjv4qmpwdXW4K2twdXV4amvxxOsp3v3PEIRCEUM5/US9vnwhkL4QsHoHwTbbNnccMvflq+lz/x5bX6nl0YfztrqAADHPvQ3dnvxX622Wzt0JA/d9PfYFzWu+u6+bZ7z+fOv5r1Jp+D1OEbPfpbD7v8DEa+PiD+LiM9PxB/bfH7+c9e/8Pq8eByM+9N15K9ZCT4f5vNhXh/4vODzsXmfCaw94Xt4HOSuX8uAmfeDz9ewOZ8Psvzg81F+4slEevXG63HkLXibrGVLcX4fzu/H+Xy4rOgr3boTGT8ej8fhHGR98D7O58Pjj7XxRj/jyfLhuvfAk5+Lw+HCIVwkEr12Gs82iJeY+wMPKCmLSFfnPJ7o8+a8XJpUTZrU9uj1IY3f7PldOO+7bbSECxq/OW4BEF1/PFxbR6i6hnBNdBuclc15xSWEwkZ4TAlrhj5NpKYWq60lUluH1dRidbVQW8seB+3JLt1LCEcM/xGHs6JbHq6uDldfB8EgLhjEBeup7DuQwT3zCUeMSDDIpqEj8ISCeIKxLRTdvMEgkaxoog9HDM/WanIqy1v9PhGPh1Wbv562d/i78+iz5LNW226oifDubtHfY98vPuWA++9o8/f036LhrCsdFf013Xk3Y15+stV2q4ftzoN/eDQWTISrvjehzXP+58IpvH/UyQDs/cI/OHbG9Q3Hwl4fEa8X83qJeH3M+Ps8PB4PDpg87SK6rVyCeaN/aETb+TCfl+UHT+LT08/D4xyFK5cw9o7fNhwjdj6cB7xePrvgZ9T1HYDHA/1mPU33jxY0tHGx17qBg5vEHC8xzwdK0WIVIiIdznm9DX8MtKpHLpSe2ObnhzR+s/vFQOt3DPoCIxrvWNx6AgWYDBxnRjhihI8eztZplxGprSNcV0ekLojV1xGurcXqQ5w5ZhhhMyIRI3TzLazashmCISwUwoIhLBTEgmFyS4dx5J79iJjhLYElP7saFwxBKNqWUAjCIQiGGLx7KT17dicSMSLj92OZL4ILhSEcwoVCuFAYFw5R3n8IvYpyiJhhwSDrh++GJxw95sJhPOEwntjP4dw8PB7Htsk+IZ8fTySMJxLBGw7hDYeAaJKuqg01/C5y16yi26qWNfIBlg8cwYqy6PiGfsvW0P+NttPkfw/7Huvro//G/V96kcGvPN2izbLd92nyPl6BkTHAI8BFZvZam1ftYJouJSIiiWBm0WRuEAmHiQTDWLCeSDCEBYNEuvcgErHoEovLl2M1NdE/IOqDREJBCIaxUJBwcU/qh5YSMXCbNpL11rzoHxj1QQiHsUgYC0UgHKL86MkEi7oRiRj5r88m+/NPsVAYImEIhcEi1Pbpz8grLm1X5a8VQCGQD2wFNrf8jja4xQe/IdXKFhGRTLAztbIfpOnazC2Y2dkdF2LDddVjFhGRjKLKXyIiImmkcWLW7HYREZE0EjcxO+dGO+ced85tcM6FYq//cM6NTlaAIiIimSTeM+Z9gTlADfAMsBboA5wA5AATzWx+hwekW9kiIpJh2rse80tER2UfYWaVjfYXAC8B5WZ2dAKCU2IWEZGM0t5nzPsDv22clAFi738PtF1qRURERHZKvMS8vW6rurUiIiIdbHu3souAw5vdys4DXkG3skVERDpEe58xjwdmA7XAv4E1RAd/HQfkAoea2TsJCE6JWUREMkq7C4w45/YEpgAHAz2Irs08B7jOzD5KUHBKzCIiklHaXWDEzD40s++aWW8z88deT0lUUm4coHNOdbJFRKTLmjZtWkO+a6xJj9k55yG68tcSM1vY2olixUWGmNmziQhUPWYREck08XrMZwAzgeo4n68EZjrnTk9QfCIiIhmrtcT8gJktaesDZrYUuA/4UQLjEhERyUjNE/NY4L/t+NxLwD4dH46IiEhma56YC4DN7fjc5lhbERER6UDNE3MZMLgdnxsUaysiIiIdqHlifp32PTs+K9ZWREREOlDzxHwrcIRz7hbnXFbzxs45v3PuVuBw4JZkBCgiIpJJWlT+cs79FLgZ2Eh0INiy2KHBwFFAMfBzM7stIQFpHrOIiGSY7ZbkdM5NBC4HDgVyYrtriNbO/p2Z/S+BwSkxi4hIRtluSU4ze83MJhMded0nthWa2eREJuXGAaokp4iIdGXtKsmZDtRjFhGRTNPuRSxEREQkuZSYRURE0ogSs4iISBpRYhYREUkjSswiIiJpJCmJ2Tk30Dn3uHOu3DlX4Zx7wjk3KBnXFhER6UwSPl3KOZcLfADUAb8GDPgNkAvsaWbVzdprupSIiGSUxtOlfEm43o+BUmBXM/syFsCHwBfABcAfkxCDiIhIp5CMHvPLQLaZHdhs/xwAMzuk2X71mEVEJKMku8DI7sDCVvZ/DOyWhOuLiIh0GslIzD2Aza3s3wR0b+0D22qHNt5UN1tERDq7xvWxG2+NJeNWdj3wRzO7otn+3wBXmJmv2X7dyhYRkYyS7FvZm2m9Z9xWT1pERCRjJSMxf0z0OXNzuwGfJOH6IiIinUYyEvMzwP7OudJtO5xzQ+D/t3fm0XZUVR7+fiSEWSDQKHMYGtsgCK4oKlOASOgWAiggNJNg7CC2qwnQDWjbNBgRBUTElqBMQtAICMgkzYymGRRopjRghyEQIEBCEghz6N1/7HNXKpW699Z97w71Hvtbq9Z7dWrXOXufXXV31TmnzmHbdCwIgiAIgkQ3+phXwicYeYvFE4x8F1gFn2BkYU4++piDIAiCDxRd7WNOM3vtDPwFuAS4FHga2DkflIMgCILgg07H35hbJd6YgyAIgg8a3R6VHQRBEARBSSIwB0EQBEGFiMAcBEEQBBUiAnMQBEEQVIhKBuaYHzsIgiAY7GTnzc4So7KDIAiCoMfEqOwgCIIgqCgRmIMgCIKgQkRgDoIgCIIKEYE5CIIgCCpEBOYgCIIgqBARmIMgCIKgQkRgDoIgCIIKEYE5CIIgCCpEBOYgCIIgqBARmIMgCIKgQlQyMA+WubIHuv5ZwpbqMVjsLAhIWwAAECpJREFUgLCligwWO6C6tsRc2T0gzX3aazXaQthSPQaLHRC2VJHBYgcMDFtiruwgCIIgqCgDNjC30jRRVrbdcmXpRLmDxZZe2dGJsqvuk1Zkq25LL++pdudXdZ90ouzBcn21KltjwDZlt9I0UVZ2sMgNBB2jbqonNxB0jLqpntxA0HEA1U00ZQdBEARB1ajkG3OvdQiCIAiCblN7Y65cYA6CIAiCDzLRlB0EQRAEFSICcxAEQRBUiLYHZkn7SPqtpJmS3pL0hKTvS1olJ7e6pPMkzZH0hqRbJG1RsoxlJJ0g6RlJb0t6SNKXum2HpF0kTZH0ZJJ5UtI5ktYqWcYzkqxg26sHtoyoo4tJWq1EGR33SQu2XNTAlsdLlNEtv4yVdJuk2ZLekTRL0mWSRubk1pd0haQFkl6TdKWkDUqWsbyk0yS9mOrrbkk7dNuOsr8LDcqo58+temDL6Dq6zC9ZRsd90oItdzSo2xtLlNEVvxSUe2MqZ1IuvdJxpTRm1tYNuAe4DDgQ2BE4Cpif0pdJMgKmAbOAA4DdgDuBOcB6Jcr4HvAOcCywE3Au8H/A33XZjsuB3wOHJZnxwPPAU8DKJcp4BrgR+ExuW70HPhkBGHBKgT5DquCTFmzZpMCG/ZN9P6yQXw4ATgP2SbYcDEwHXgM2TDIrAv8LPArsBewJPAI8CaxUooxLU/18DdgFuBJ4C9iqy3Y09VuTMgy4sMAnK/bAJ6OTPt/M6TKqZBkd90kLtowsqNOJyb4jq+KXArteTGVPyqRXPq6UtrEDlfZXBWmHpErcOe3vmfZ3ysisCrwK/KRJ/mulyjspl34r8HCX7SiS2SHJHF6ijGeAKR13cjlbRqT98X3Ivys+KWtLnfO+k2Q2r4pf6pT90aTnMWn/n4D3gU0zMhsBi4Cjm+T1iZTXYZm0ocATwDVdtqNPfsvILvEj3GOfjE77Y/qQV898UmRLHZnz0/08vGp+AVYHZuOBNx+YKx9Xym5tb8o2s1cKkv+c/q6b/o4DXjCz2zPnLQCuTZXbiLHAMGBKLn0KsIWkjVpWuoAydpS0ted0Qc+u+AT6ZcshwP1mNr1dunSIuenvovR3HHCPmc2oCZjZ08B/0fxeGQe8B/wmc+4iYCowVtJy7VK6gCXsGCj3Sh3yPukPvfQJNLFF0orAvsC1ZvZqh3XpCz8AHjWzXxccq3xcKUu3Bn/tmP4+lv5ujjfN5ZkObCBp5QZ5bY4/2czIpdd+cEfSOfJ29FUmyx6S3kx9QPe0ux+zAfX0/L6kRak/85qS/TO99Ak0qXNJ2wKbAr9sIc+u+UXSEEnDJP013nw2G6j98DS6V5rV6+bA02b2ZsG5w/A6aRtN7Cii1Xvl68kfb6a+0+37o28jStpyqaT3Jc2V9KuS/f5d9Qm07Je9gVVo7V7pil8kbYc/YH+jjshAjStL0fHALGld4GTgFjO7LyUPB+YViNee0FZvkOVwYL6ldoaCc4f3VddG1LEjL7MK8GP8h+bqEtlei/dTjcX73t4GrpJ0UFuUrkMdW97Bb9oJeP/KscAWwF2SPtYky574BMr5Bb+Z36NxkMjSbb/ci9f/X4At8abdl9OxRvdKo/uk2bm14+2kkR1LUNJvWaYARwJjgH8A1gBukzS6DXoX0ciWBcAZ+JiSnYHvJr3uVvOBn932CbTgF/xeeRkfO1OGrvhF0jD89+l0M3uijtiAiyt16XB/wMrAfcALZDrf8QtkaoH8eLyPYP0Gef4cmF2Qvmk69+Bu2ZGTGQpcB7wObNnHcobgzXvPddsndWTXxweKNOxv7YVPWvDL8vjNemU/yumoX4CPAdvg/Wb344NXRqRj7wKnFpwzCVjUJN+b8GbwfPqY5Jftu2VHX6/BBmWtAswEpnXbJ3XkP4k3Dzfsb+22T1r0yzr4eIYf9aOsjvgF+Fd8UO0KmbR8H/OAiiuNto69MUtaAX/z2BgYa2azMofnUfz0MjxzvB7zgNWk3MrSi89ta79IEztqMsvgTT9jgL3M7OG+lGVm7+MjvdeTtHbftS6mjC05fZ7DRzl+qknWXfUJtGTLOGA1WmuaW4JO+8XMHjOze837zXbBA9fx6XCje6XRfdLsXGizX5rYAbR+DTYo63Xgeppfm32ijC05+QfwwFDmXumaT6AlWw7CW1H7c6+03S+pi+Db+ADO5SStpsWfcNb2hzCA4kozOhKYJS0LXAGMwoeaP5ITmY636ecZCTxrZgsbZD8dWA7/JCZ/LsD/tK5xMSXsqDEZ+DKwv5nd2qbi800q/aIFW/qiS9d8Ai3bcij+ucQNbSq+rX5ZKnOz+Xg/V62vsdG90qxepwMbpQE9+XPfZen+tLZRYEd/r8G6RbUhj8YFFNjSSLzJ8Z75BJracijwkJk91I6i2pBHjY3xlq8peACtbeBdbvPwbrcBEVdK0e5XcDzYX4Z/l7dLHZm9cMftmEn7ED5i8Owm+a+FX8An5tJvAR7pph1J7gz8W7d+N3XgzeH3AzO77ZM6522AN2VfXAWftGoL8GG8efGsKvqlgc4LgXPT/lHJho0zMiPwPvO6n7wkua3TfXZozpbH8FG33bSjT9dgg/w/BDwL/KHbPqkjMwpvBj65qj5pZEvS34CJVfML3uI1umAz4JL0/8oMgLhS2uYOOP6cVDmTWPqj8/WSzDLAXcBz+MQPY4E78OaC9XP5LQLOz6Wdig/IOTo55Rw8OO7eZTuOSzLnF8hs0sgOvL9nKj7YYqdUD39M+e3fA5+cAZwJ7Jf0OQLvK5oPfLQKPilrS0b26CT7yQb59dIvV+HNc3umsiYAj6c63yzJrIS/4TyS5MYBD5GbxAbYMNnyb7kypuJvFOPxZswrkp/q1kmH7CjltyI78LeiXwB/n66tQ1N9vEv7+8nL2HJpsuOL+OCvY/BWmWeBNavgk7K2ZGR/gj/srVUnr576pY5O+T7myseV0rZ1oLKeSRVWtP17Rm44cEGqtDfxD7k/UafyL8qlDcEHA8zERxs+DOzTbTuS0+vJ5HVeIg3/QboNeCndEPPxp7OxvfAJcDg+wGle0mc28CtyQbmXPmnl+kqyD9HkabfHfjkOfxOfn+6BJ/CRpyNychsAv8VbL17HR/znZUbUqYMVgB8lf76Nj9Ad3W07yvqtyA5gD/y77TnJJ3OBa4BP98InwAnp+l6Q9HkOHzy0dlV80uL1tSzwCg3e2Hvtlzo6LRGYU1ql40rZLZZ9DIIgCIIKEatLBUEQBEGFiMAcBEEQBBUiAnMQBEEQVIgIzEEQBEFQISIwB0EQBEGFiMAcBEEQBBUiAnPwgUfSVyRZnW1Mr/UbbEi6QdKPC9I/LulCSc+kZQQXSnpQ0umSNsnJzpJ0UZ38T5XU0trJko6V9N9p3vsg6ClDe61AEFSIffGVd7J0d47cQY6knfFZqL6aSz8QuBCfFOYUfEGI5fDFEMbjsziVWRu8r/wM+Bd8mc9LOlhOEDQlAnMQLOZBMyu9iICk5czsnU4qNAj5Z+BqM3uxliBpc3y2piuBA81X86rxn5J+ABzWSaXM7E1JU/BpJiMwBz0lmm2CoASSxqSm7b0kXSBpDvB85vjWkq6VNF/SW5KmSdq2IJ+JkmZKelvSnyR9LjXLnpeRmVTUFCtpiqQZubSVJZ2Wmn/flfSUpOOzy9dldP+CpHMkzZX0iqSLJa2ay2+opG9Jeiw1J78i6feSNpO0rqRFkr5RoNuk1PS8av5YRmZ9YFd8qtcsE/EpEv8xF5QBMLP3zOzn9fJtRqq3el0V22VEpwJbSvp0X8sKgnYQgTkIFjMkBabaNqRA5j/wCfAPJDXHSvoUPmfwqniz6z74PMq3StqqdqKkCfgcyTfjCwtMAX6Dr4DTMmkZxZvwt8kzgb/Fm4NPwifkz3M2vsDAAfgiDPslfbJckc6/Nun4NXyO5Y+Y2fP4XMgTcnoMxedan2pmCxqovCv+mzMtl74LcK+ZzWlwbhHK+Wto0iW/pu6JwGdz2z34KkvPZeTuB94AdmtRjyBoL72YoDu22Kq0AV+heHGFaRmZMSnt8oLz7wQeBZbNpA3F+0mvSPtD8Dfs63LnHpjyPS+TNglYVFDOFGBGZv+wdO7ncnIn4pPwr5HTPb+azmTgjcz+rknuyAZ1Vcvrs5m0L6a0UU3q+RcULJ2JL4BwSUH6kFSPQ4GhuWOz6visti1Vf5lzj8eXaFxq1SDgbuCGXl+TsX2wt3hjDoLF7I0PNqptXy2QuSq7I2klYDt8rWHLvLWBr2yzQ/p/Q2CdJJflcnxpub6wG/Ak8KfcG+NNwDBgm5z89bn9R4AVJa2Z9nfFA9b5Dcq8FX/gyL41TwAeMLP7mui7Dr6KUVnewYP2e8B7kkbkjl/Hkv6qbb+sl6GkvfHBZceY2XUFIq8kPYOgZ8TgryBYzKPWfPDXi7n9NfHm2ZPSlqcWdNdOf1/KHjSzdyXNa1XRxFrAJnjgKmKN3P6ruf3awLXlM/JzrMGANjMzSecAp0iaCKwOfJ5c83Ydls+UmWUWvrRlnm3wZuk98eX48swtehiQNLuocElb4wO7JpvZUp9rJd7Cl2UMgp4RgTkIWiO/Tuq8lHYWcGmD82oB/cPZREnD8OCW5W1gGUlDzSw7CCwfaOcCM/A+4yKebqBPEXOANUuMNr8I+B5wCP7AsRD4dYn85wIfL0i/DThQ0pqW6Wc2s/sBsv30fUXSOni/+TTgmw1Eh+P1EAQ9I5qyg6AfmNlrwF3AlsD9ZnZffkuiM4EX8AFXWfZl6ftwJv6mOLKWIGk48Jmc3I34m+aConLNbG6L5tyE9+se3kjIzObjgfgIvJ97ipktLJH/48AGBYPqzsTr4Kd1Btz1C0krAL8D5gP7WcHI7wwb4YPdgqBnxBtzEPSficAdwI2SLgBm403co/DW32+Z2fuSTgYmp0+jLgc2wye1eD2X3/Up7TxJJ+FNq8cBr+XkLsYHrt0u6XS8z3gYsCkwDh/cVPo7azO7WdLVwFmSNgRuT/mNxr89/mNG/Gcs7oOfXLKIPwDfATYHHs6U+6ik8cB5wN2pfp4AlsUD5QR8NHlfvxk/G39wOhQYmfmSDGC6mb0OIGkNvGtgUh/LCYK2EIE5CPqJmf05fft6IvBT/LOpl/DPbyZn5M5Ng8WOAg7CA+mXyQ0IM7NXJe2Ov0leDjyL919/gcxbc+qf/jxwAvB1YATerDwDuIH6fc+N2A8ftXwIcDT+2de9+MNGVscHJD0FvGxmDy+VSzF34vWyB5nAnPK7WNKDwDHAt4GPJP1n4J+X7WeZSUla5G/wB4yi5vbtWfz51u54N8Lv+lhOELQFmeW7zIIg6CaSZgE3mtn4XutSFkkj8U/EDjOzuqOgC86bBHwJGGkV+/GRdDMwy8w6OstYEDQj+piDICiNpPUkjQbOxb/LntpiFmfgo8n3bLNq/ULSKPzt+eRe6xIEEZiDIGiFI/BvmdcADmilDxvAzOYBB7P4E62qsBZwqJm1OpI9CNpONGUHQRAEQYWIN+YgCIIgqBARmIMgCIKgQvw/lhxsKY26VToAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Compare\n", "fig, ax = plt.subplots()\n", "ax.plot(frequency/1e9, attenuation_theory, alpha=0.5, label=\"Theory\")\n", "ax.plot(hfss_results.f/1e9, attenuation_hfss, 'r--', label=\"HFSS\")\n", "plt.autoscale(enable=True, axis='x', tight=True)\n", "ax.set_ylabel(\"Conductor attenuation (dB/m)\")\n", "ax.set_xlabel(\"Frequency (GHz)\")\n", "ax.set_ylim([-0.5, 5])\n", "ax.legend();" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Very close match!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Gradient Model: Surface Impedance $Z_s$" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "# Frequency sweep for gradient model\n", "frequency_gm = np.linspace(20, 45, 5) * sc.giga\n", "\n", "# Gradient model: 0.1um surface roughness\n", "surface_roughness1 = 100 * sc.nano\n", "zs_gm1, conductivity_gm1, ur_gm1 = gm.rough_properties(frequency_gm, surface_roughness1, sigma0=conductivity_0)\n", "fconductivity_gm1 = interp1d(frequency_gm, conductivity_gm1, kind='cubic')\n", "fur_gm1 = interp1d(frequency_gm, ur_gm1, kind='cubic')\n", "\n", "# Gradient model: 0.25um surface roughness\n", "surface_roughness2 = 250 * sc.nano\n", "zs_gm2, conductivity_gm2, ur_gm2 = gm.rough_properties(frequency_gm, surface_roughness2, sigma0=conductivity_0)\n", "fconductivity_gm2 = interp1d(frequency_gm, conductivity_gm2, kind='cubic')\n", "fur_gm2 = interp1d(frequency_gm, ur_gm2, kind='cubic')\n", "\n", "# Gradient model: 0.5um surface roughness\n", "surface_roughness3 = 0.5 * sc.micro\n", "zs_gm3, conductivity_gm3, ur_gm3 = gm.rough_properties(frequency_gm, surface_roughness3, sigma0=conductivity_0)\n", "fconductivity_gm3 = interp1d(frequency_gm, conductivity_gm3, kind='cubic')\n", "fur_gm3 = interp1d(frequency_gm, ur_gm3, kind='cubic')" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4sAAAE8CAYAAABpQySHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd3iUVfbA8e8h1IA0BUWFBEGko6ACi4pgQSy0taxSFBUQsYBl0QVNUFB+rgq4oBtEESEqyCpFV9GlqSyooAIB6YSiKyogKKElOb8/7iQZkkkyCcm8M8n5PM/7ZObOWy6j5HDe9957RFUxxhhjjDHGGGP8lfG6A8YYY4wxxhhjwo8li8YYY4wxxhhjcijrdQfCiYjYmFxjjCklVFW87kOksPhojDGlS0aMtGQxm4w5nCJCYeZzluTjIqGPkXJcJPQxUo6LhD5GynGR0MeiOk7E8sSC8v/O7f/LyDwuEvoYKcdFQh8j5bhI6GOkHFdU1/KPkTYM1RhjjIlAIlJXRGaLyAEROSgi74lIvSCPrSci00Rkp4gcFpFNIjJaRCoXd7+NMcZEDnuymIu4uLiIuF4oj7PvpGiPC+W1IuW4UF4rUo4rrFD+HS/J30m4EpFoYBFwFLgdUGA0sFhEWqrqoTyOrQz8BygHPAHsBC4CRgHnArfkd337O150xxWW/R0vuutFwndZWJHw39y+k6I9rqivJVY6I4uI6Ml+H4V9/FuS2XeSk30ngdn3kpN9JzkVxXfiO0fEjkUVkQeBF4HzVHWLr60+sBn4q6q+mMexVwMLgC6q+olf+1jgEaCqqqZkO+ak46PvPPb/czb2neRk30lO9p3kZN9JTkX1nfjHSBuGaowxxkSebsCKjEQRQFW3A8uA7vkcW97382C29t9w/y6I2CTaGGNM0bJksYiVpGFORcW+k5zsOwnMvpec7DvJyb4TAJoBSQHa1wFN8zn2P7gnkP8nIk1FpIqIdAYeBP6Z1xDWk2X/7XKy7yQn+05ysu8kJ/tOciqO78SGofopqmE2xhhjwlsJGIZ6DHhRVR/L1j4aeExV81yTQERqA/8CLvFrngIMUtX0APtbfDTGmFLChqEaY4wxpZSIVARmArWBvkBH4FHcwjaT8jguxxYfHx+KLhtjjCkG8fHxAX+3+7Nk0RhjTGRITITYWChTxv1MTPS6R17aD9QI0F7T91le7gIuB65V1Rmq+pmqPg88DNwjIq0CHaSqOTZLFo0xJgwUMj7Gx8cH/N3uz0pnGGOMCX+JiTBwIKT4FuncscO9B+jd27t+eWcdbt5idk2B9fkc2wLYr6pbs7V/5fvZBFh9ct0zxhgTEsUcH+3JojHGmPA3YkRWIMyQkuLaS6d5QDsROSejQURigQ6+z/LyE1BDRBpma2/r+/lDEfXRGGNMcSvm+GjJYjY2D8MYY8LMgQPuTmkgO3cGfRr/uRklwKtAMjBXRLqLSDdgLrALSMjYSURiRCRVRJ70O/YN4Hfg3yJyu4h0EpFHgeeBVbjyG8YYY8LdoUNFEh/zYquh+rHV3owxJoz89htMmADjx7vXgcTEQHJygU8d6auhAohIPWAccBWuNuJCYKiqJvvtEwtsB0aparxfe1MgHmgPnIZLMucBY1Q1x5xHi4/GGBNGtm+HiRPh9deLPD7CiTHS5iwaY4wJP6tWQefOcNBXN75xYxccjx7N2ic6GsaM8aZ/YUBVdwJ/zmefZFwimb19PXBz8fTMGGNMsVq6FF580b1u0AB27YJjx7I+L8L4aMNQjTHGhAf/QNeiBVSv7hLGJUvg++/htdfcnVIR93Py5NK6uI0nbJqGMcZ44Lff3AibsWOz2m65Be65B77+GrZscU8YTzI+5jZVw4ah+rFhNsYY44FffoEXXoBp02DtWjjtNNf+669Zr4tYSRiGGkoWH40xJsTWroVJk2D6dLdgTZUq8MMPULVqsV/aP0bak0XDrl27uPHGG6lWrRpVq1alV69e7AxiUuySJUsCFvKsXr16CHptjIl4P/8Mjz7qakL93//BTz/BPL+FPIspUTQmWBYfjTEhdfw4zJ4Nl18OLVtCQoJLFK+4wiWN0dEh75LNWSzlUlJS6Ny5MxUqVGDatGmICCNHjqRTp06sWbOGypUr53uOl156iYsuuijzfdmy9r+VMSYPP/0Ef/87vPIKHD7s2q67Dp54Atq2zftYY0LE4qMxJuSSkuCmm9zrKlXg9tthyBBo0sSzLnn2W0tE6nLiKm7/wa3ilu8tOxF5BrgQaAPUBPqr6hv5HPMn4AvftcqpaupJ/QFKiFdffZVt27axceNGGjZ0JbdatmzJueeeS0JCAg899FC+52jSpAnt2rUr7q4aY0qK/v3h44/d6xtugCefhAsv9LZPxmRj8dEYU6xU4csv4ZNPXBwEuOAC6NcPLrrI/QzBkNP8eDIMVUSigUVAY+B2oC9wLrBYRPK/VQf3A5WAD4K8Xjlc3ak9hepwcUlMdMOvypRxPxMTQ96FefPm0a5du8xACFC/fn06dOjA3Llzi+267733Hueddx4iwuzZswHYunUr559/PiJCXFwckDXZdsOGDXTp0oXKlStTr149pk6dCsD06dNp3LgxVapUoVOnTmzdurXY+myMKaTdu91KphmGD4cePeCbb9ywU0sUTSAex0iLj8aYYnH4MLzxhksI27eHuDhYvTrr82nT4L77wiJRBEBVQ74BDwJpQEO/tvpAKvBQEMeX8f1sCChwRz77/w1IAsb49i+by34aMjNmqEZHq7r7Cm6LjnbtIXT66afrwIEDc7QPHjxYTzvttDyPXbx4sQJau3ZtLVOmjNasWVNvvfVW3bFjR1DXnjNnjgK6cePGzLbk5GQFdPbs2aqqGhcXp4A2b95cJ0yYoJ988on26NFDAX388ce1ffv2+v777+usWbO0Tp06evHFFxfgT2+MKVY7d6ree69q+fKqPXt63ZsT+H7fexIDI3ELaXxUDYsYafHRGFOkkpNVhw9XPfXUrN9rNWu6th9+8Lp3J/CPkV4FnYXAsgDtS4GlBThPvski0ABIAS7DFSAu+mTRP5hl3xISsvZLSMh7X1CNiXH7tm6d+z4DBmSdc+XKwvXZp1y5cjp8+PAc7SNGjNCoqKg8j/3mm2/04Ycf1nnz5umSJUt03LhxWqtWLT3zzDN1z549+V579OjRGh0drWlpaZlt8+fPPyFAZgTDadOmZe6zb98+jYqK0po1a+qBAwcy2ydMmKCAJicn53ttY0wxSk5WHTRItVw59ztLRPWWW1SPH/e6Z5ksWSx4spixxcXFFfTLjsgYafHRGFNkDh9WrVYt6/dU69aqU6eqpqR43bNMGb9TMjb1/f73as5iMyDQGI51wE1FfK1/Au+q6mci0rmIz130glhlLVxccMEFXHDBBZnvO3bsyGWXXcbFF1/MSy+9xOjRo/M8PikpiWbNmlGmTJkT2ipVqnTCsB+Arl27Zr6uUaMGtWvX5oILLqCq3yP6xo0bA271upiYmJP6sxljCuHHH91wmjfegNRUV+/pL3+BkSOhWTOve2dOkmoYlM6IkBhp8dGYUu73393Q+TvugIoV3XbHHa5U1H33Qbt2LkaGkfj4+Mw6uv61Fr1KFmsC+wO07wNqFNVFRKQPbhGc4q3aHGwAHTjQbeDmX+zYkXOfevXcz1WrgjtnmzbB7ZeLGjVqsH9/zv8U+/bto0aNgv+naN26NY0aNeLrr7/Od9+kpCTaZlv5cO3atTkCZEY//ZUvXz5gG8CRI0cK3G9jTBE4ftzNtUhPd8WAR44E3z9STSkWoTHS4qMxpsA2bHC1EadNcwlj5crQt6/7bNy4sEsQg1Fi6yyKSE3gReBvqvpzAY7LsWVk2UVqzJictVKio117CDVr1ox169blaF+/fj1NmzYt9Hkln78Mx48fZ9OmTTRv3vyE9uXLl9OyZctCX9cYE0KbNsHf/uaSQ4CYGJg8Gb7/HmbMCItEMWMRkOybCXNhECMtPhpjgpKW5hZru/pqV+Ji4kSXKF52GZx5ZtZ+ERp7vEoW9xP4CWJuTxwLYzTwP2CWiFQXkepARd9n1XJbdTVjfK7/VizJYu/e7h9VMTHuf56Mf2T1Lt6HoNl169aNFStWsG3btsy25ORkli1bRrdu3Qp8vpUrV7Jx40YuvvjiPPfbtGkTx44do06dOiccu337dlq0aFHg6xpjQmjDBujTxwXFZ5+F99/P+uyOO6BRI8+6ll18fHxuc/BMOAuDGGnx0RgTlG7doHt3+PRTqFQJBgyA776DpUvhiiu87t1J82oY6jrcvMXsmgLri+gaTYGWwN4An/2KmzPZo4iuVTi9e4c8OcxuwIABTJw4ke7duzN69GhEhCeeeIK6desyaNCgzP2WLl3KFVdcweuvv06/fv0A6N27N/Xr16d169ZUr16db7/9lmeffZazzjqLBx54IM/rJiUlAbBhwwYAfvnlF0aNGgVgd06NCVfr18Po0fDOO25oYdmycOed0Lq11z0zJZHHMdLiozEmoG++gdNPh7POcu+7dXM3UYcMcXWECzFMPZx59WRxHtBORM7JaBCRWKCD77OiMBTolG2b5vvsSmBkEV0nolWuXJlFixbRqFEj+vbtmxngFi1aRJUqVTL3U1XS0tJIzxhuBjRv3px58+bRv39/unTpwvjx4+nVqxdffvklp512Wp7XTUpKokqVKkyZMoWWLVsycuRIrrnmGgCGDBnCzJkzi+cPbIwpnPvvh+bN4e23XZI4aBBs3gyvvgr163vdO2OKnMVHY0ymY8dc/OvQwc2FHjcu67M773Tx8KGHSlyiCCBeDMfxDQFdDRzGJW0KPA2cArRU1T98+8UAW4GnVPUpv+M7ArWAM4B/AJOAJQCqOjuP68YDcUA5VU0N8Lna8KTQ6NmzJykpKSxYsMDrrhhjcqOaNcfi+edhxAi46y547LGshUYilIigqpE5gcQDFh9Dx+KjMWHkxx8hIcFte/a4tmrVYNgwt/p3CeUfIz15sqiqh4DOwCZgOpAIbAc6ZySKPgJEkbOfo4B3cYkiwBDf+3eLsdumCCUlJZ3UAgHGmGL07bfQsyeMHZvVNngwbN0KL78c8YmiKZxiXfTNZLL4aEyYmDjRzZd+6imXKLZo4ZLGH34okYmi/4Jw/jx5shiu7M5paBw+fJgqVarwyiuvMDBjmXRjjPdWrXJBcZ5vNsDZZ8P27W7YaQljTxYLxuJjaFh8NMZDhw65Ooixse798uVw6aXQq5erjXjppRG7omlBef5k0ZRu33//Penp6Xbn1Jhw8dVXcP31cOGFLlGsVMnNvfjqqxKZKBoTriw+GuOBrVvh4YfdDVL/mzTt2sHu3TBrliuDUUoSxezsyaIfu3NqjCl1li+HP/3JvY6OhnvvhUcecSu9lWD2ZLFgLD4aY0qU9HRYsMANNf3oIzdHH6B9e1i40N00LcX8Y6Qli34sGBpjSoUtW6BhQ/daFS6/3AXIhx+GWrU87VqoWLJYMBYfjTElxsqVcOutLhYCVKjg3g8Z4kbYGEsWc2PB0BhTon32mZuTuHgxbNx4YsJYyobXWLJYMBYfjTERbf/+rLIWe/e6Iae1a7vF2+6+G/IpaVPa+MdIm4xijDEl3ZIlMGqU+wlQtSokJWUli6UsUTTGGFMKHD8Oc+e6oaabN0NyMpQrB6eeCsuWQcuWNi8/CLbAjTHGlFSLFkHHjtCpk0sUq1Vzy30nJ0OPHl73zkQYK51hjIkIP/8Mo0dD/fpw002wdCkcPOhukmZo3doSxWysdEYQRCTzy4iLi7OAaIyJbLfdBm+/7YbeDBsGDzzgEsZSKj4+nlGjRmW+t2GowbNhqMaYsHfggCtxMWsWHDvm2ho3dm19+7pRNSYoNmcxFxYMjTERSxU+/hiqV3eL1QCsXw9z5rhAaUHyBCVhzqKI1AXGAVcBAvwHGKqqO/M5Lh7IraL0UVWtGOAYi4/GmPCTmpr1hDA93SWHW7fCDTe42HfFFTbVohAsWcyFBUNjTMRRhQ8/dAvXfP21SxSXLbPgmI9ITxZFJBpYDRwFRgIKjAaigZaqeiiPY88Gzs7WXBn4GHhfVW8OcIzFR2NM+NixA/75T5g61cW+unVd+xdfuMVrYmM97V6kswVujDEm0qnC/PkuSVy1yrXVrg29erm7q1FR3vbPFLcBwDnAeaq6BUBE1gCbgUHAi7kdqKq7gd3+bSLSF/dvgmnF1WFjjDkpqm4u/sSJMG+ei3UA770HDz7oXl9yiXf9K6HsyaIfu3NqjIkI69dD797w3Xfu/RlnwF//CoMGQXS0t32LECXgyeJCoKKqdsjWvhRAVTsW8Hz/AZoDZ6tqaoDPLT4aY7yTkADjx8OGDe59uXJu8Zr77oN27Ww0TRGzJ4vGGBPJ6tSBbdvcz+HDYeBAqFTJ616Z0GoGzA3Qvg64qSAn8s197ASMD5QoGmOM5z791CWKZ54J99wDAwa4G6Wm2FnpDGOMCWdpaTBzJlx9NRw54tpq1IBPPnEJ44MPWqJYOtUE9gdo3wfUKOC5+uD+PWBDUI0x3kpLc0NMr74aFizIan/8cbfKaXIyPPGEJYohZMmiYdeuXdx4441Uq1aNqlWr0qtXL3buzHMxPQAWLFhA586dOeOMM6hQoQJnn302N998M+vXrw9Br40p4dLS4K23oEUL+Mtf3F3VN9/M+rxtW6iYY9FKYwqjH/Ctqq7Ja6eM+lv+W0kvMWXx0ZgQ2bsXnnsOGjSA7t1dzEtIyPq8TRs37LRcOe/6WAL511b03/zZnEU/pXFORkpKCq1ataJChQqMHj0aEWHkyJGkpKSwZs0aKleunOuxb7/9Nt988w1t27alVq1a7Ny5k7Fjx7Jr1y7Wrl1LTExMCP8kxpQQqanwzjuuoPDGja6tXj3429/gjjugQgVPu1dSlIA5i3uAOao6KFv7y8BNqloryPNcDHyJK7kxIY/9LD5afDTm5CUmwogRsHOni22DBsHmza4mcMbomXPOgSFDoH9/N5LGhNwJMVJVbfNt7usoXcaPH69lypTRzZs3Z7Zt27ZNo6Ki9IUXXijw+TZs2KCAPv/880XZTWNKj+uvV3VrvqnGxqq++qrq0aNe96rE8f2+9zzuFHYDFgFfBGhfAiwtwHkmAceAWvnsd1LfdySy+GhMEZsxQzU6OivGgWq5clmvu3ZV/fBD1bQ0r3ta6vnHSBuG6qHExERiY2MpU6YMsbGxJCYmhrwP8+bNo127djRs2DCzrX79+nTo0IG5cwOtnZC3U089FYCyZfNeO+m9997jvPPOQ0SYPXs2AFu3buX8889HRIiLc/WiMx6Pb9iwgS5dulC5cmXq1avH1KlTAZg+fTqNGzemSpUqdOrUia1btxa4z8Z46vhxOHgw6/1f/uKG4bz+OmzaBHffDeXLe9c/E67mAe1E5JyMBhGJBTr4PsuXiJQH/gJ8pKq/FEMfT4rXMdLiozFF7LHHICXlxLbjx+GUU9zTxX//G669FspYehJWNMi7j6VhI4R3TmfMmKHR0dGKK6SsgEZHR+uMGTNC1gdV1dNPP10HDhyYo33w4MF62mmnBXWO1NRUPXr0qG7atEl79eqlZ5xxhu7Zsyff4+bMmaOAbty4MbMtOTlZAZ09e7aqqsbFxSmgzZs31wkTJugnn3yiPXr0UEAff/xxbd++vb7//vs6a9YsrVOnjl588cVB/smN8djRo6qTJ7unh/ffn9Wemqp6/Lh3/SoliPwni5WBLcBaoDvQDVgNbAOq+O0XA6QCTwY4Ry9f/OkVxPWK4msPWjjESIuPxhSRr75S7d1bT3ii6L+5Ye4mjPjHSM8DXjht/kEpLi6uQF9obltCQkLmfgkJCXnuC2hMTIyqqrZu3TrXfQYMGJB5zpUrVwbdz0DKlSunw4cPz9E+YsQIjYqKCuocbdq0yexbw4YNdf369UEdN3r0aI2OjtY0v+EG8+fPPyFAZgTDadOmZe6zb98+jYqK0po1a+qBAwcy2ydMmKCAJicnB3V9Yzxx5IjqK6+o1quXFSjPP98liaZYZfw+ydg0DOLOyWxAPeBfwEHgd2AOEJttn1jfnzc+wPFzgb1A+SCuVejvPVJjpMVHY07C0aOqb72l2q5dVqzLbfP9vTbhwz9G2nPebDK+GK9WeAtmlbVwM336dFasWMFbb71F1apVueqqq0hOTs73uKSkJJo1a0YZv+EGSUlJVKpU6YRhPwBdu3bNfF2jRg1q165Nu3btqFq1amZ748aNAbd6nTFh58gRePllaNgQBg92k/ubNHErnq5cCVFRXvewxIuPj/dPfiKequ5U1T+ralVVPUVVe6hqcrZ9klVVVDU+wPHdVfVUVT0Wqj6frEiLkRYfTam1YAHcdhusWAHVq8Ojj8K4cRAdfeJ+0dEwZow3fTRBsWSxCGged2MHDhyYud/AgQMz23NbCa1evXoArFq1KtdzTp48OXP/Nm3anFTfa9Sowf79OUt17du3jxpBrkDVpEkT2rZty6233srChQv5448/GDt2bL7HJSUl0bJlyxPa1q5dmyNAZvTTX/ny5QO2ARzJWE3LGC8kJkJsrJtzERvr3gMkJbnV3XbvhubNXe3EpCS49VZLFE1EKGy5jEiNkRYfjSmAlStPLHVx7bVuS0hwce+552DoUJg8GWJiQMT9nDwZevf2rt8mk38ZDX+WLHpkzJgxRGe7uxIdHc2YEN9dadasGevWrcvRvn79epo2bVrg81WvXp2GDRuyZcuWPPc7fvw4mzZtonnz5ie0L1++PEeANCZiJCbCwIGwY4cbXLNjh3ufmAgXXugC5ezZsHo13HyzTeI3ESWUI2/CIUZafDQmH8ePu1JPf/oTXHQR3H8//PST+ywqCj780MVA/zIzvXtDcjKkp7ufliiGjdxG39i/VDzSu3dvJk+eTExMDCJCTEwMkydPpneI/9J069aNFStWsG3btsy25ORkli1bRrdu3Qp8vj179rBhwwYaNGiQ536bNm3i2LFj1KlTJ7Nt5cqVbN++nRYtWhT4usaEhREjcq70lpLi2sENwfnzny1JNCYf4RAjLT4ak4uff3a1gGNj3eiY5cuhWjV44AGLbyVQ3us3m2LVu3fvkCeH2Q0YMICJEyfSvXv3zKLDTzzxBHXr1mXQoKxaz0uXLuWKK67g9ddfp1+/fgD07NmT1q1b07JlS6pWrcqmTZsYN24cZcuW5eGHH87zuklJSQBs2LABgF9++YVRo0YB2J1TE5kOH3ZPEgOJsHlWxoQDr2OkxUdjAti71w0fzRjS3LSpSxL79DnxCaIpMSz9L+UqV67MokWLaNSoEX379qV3797Ur1+fRYsWUaVKlcz9VJW0tDTS09Mz29q1a8ecOXO4/fbbue6663jxxRfp2LEj3333HY0aNcrzuklJSVSpUoUpU6bQsmVLRo4cyTXXXAPAkCFDmDlzZvH8gY0pDv/8J5xzTu6f++ZZmdJJRNqJSLyIfCwia0Rks4gsF5E3RKS/iAQ3Ac6ElMVHY3BDTT/4wE2tADj1VLj6aujWDf7zHzf3ftAgSxRLMCkpq8IVBXF1XrzuRqnQs2dPUlJSWLBggdddMebkDRsG48e7u60//QRHj2Z9Fh1tE/jDkIigqpL/nid1jduBR4BmuNIWq4FfgMNATaA+0Ag4CswCRqnq9uLsU2FZfAwdi48mLPzyi4tdL78MP/4IixfD5Ze7z1JToawNTizJ/GOkPVk0nkhKSirUAgHGeO7IEfjHP+C997Lahg+HuXNh+3Z47TVb6c0gImuAscC/gTZAdVW9zFfqoo+qXquqTXBJ4wCgNrBeRG7xrtcmHFh8NJ769lvo3x/q1oWRI12i2Lhx1rBTsESxlLH/2ibkDh8+zLZt22jSpInXXTEmeEeOwJQp8OyzLng2bOiG4ZQtC2ec4V6DSwwtOTTwGpCgqnnWKlDVA0AikCgirYAzQtE5E54sPhpP9eoF77/vXovA9de7+YhXXunem1LJniyakPv+++9JT0+3O6cmMhw9CpMmueTw/vtdotiqFfz971Yf0eRKVSfklygGOGa1qobt2MPC1lk0wbP4aELq11/hjz+y3jdtClWrujJPmzbB/Plw1VWWKJYSudVZtDmLfmxOhjHmBOvXQ5curqAwQMuWEB8P3bvb8uARLhRzFksSi4/GlCDffeemUyQmwnPPuaeHAL/95m6CnnKKt/0znvOPkTYM1Rhj/Klm3UVt0MC9btHCJYk9eliSaIwxJvKkpsKcOfDSS/D551ntGzdmva5ePfT9MmHP/tWTjQ2zMaaUOnYMEhLc08O9e11bhQrw2WfuLmyvXpYoRrjchtgYY0yJ9vbbrrzTTTe5RLFqVXjwQTfUdNIkr3tnwpwNQ/Vjw2yMKYWOHYM33oAxY2DnTtf2/POQT+FsE9lsGGrBWHw0JsIcPw7lyrnXs2bBLbdAo0ZuyGm/fjbU1OTJP0ZasujHgqExpcjx41lJ4o4drq1pU4iLgxtvtKeIJVy4JIsi8iiwR1Xf9LovebH4aEwESE2FefPcUNMGDVwpJ3DxbvFit6qpxTYTBEsWc2HB0JhS5NZb4Z133OsmTbKSRFvhtFQIh2RRRM4AfgQOqmpYTxay+GhMGNu3z5V2mjQpa4RMrVqwa5ebTmFMAfnHSLu9YIwpHY4fz5qLCDBggCs0/NZbsHatG6JjiaIJIVX9CbgNuMXrvgTD5vQbE2aSk2HgQDj7bBg+3CWK557rnixu2WKJoikQK50RBLtzakwJlJoK06fD6NHQujW8+65rV4X0dEsQS6lweLIYSSw+GhOGvv/eTZ8AuOYaNx+xSxcbampOmpXOMMaUfKmprobU00/D1q2urVw5OHQIKld2JTEsUTQhICJ9gV+Btaq62+v+GGMi0L59bg7iihUwe7aLYU2auHqJV10F553ndQ9NCeXZk0URqQuMA64CBPgPMFRVdwZx7DPAhUAboCbQX1XfyLZPHeAB3/kbAseBNcAoVf0sl/PanVNjIl1qqhta+vTTbhgOuGE5Tzzh5imWtXtkJrRPFkXkIFAFUOAAsNZvWwMkqervfvtPUNUHQ9G3YFl8NMYjSUkuIZw+HQ4fdm0rVkDbtuyd4LQAACAASURBVN72y5Roni9wIyLRwGrgKDASF0BHA9FAS1U9lM/xvwPfAduAfgROFq8HXgKmAiuA8sC9QFegm6p+EOC8FgyNiXTbt7vlwVNToWFDlyTedpslieYEIU4WNwI9gAuAVr6tHVAVF/8AdpKVPPZT1Xqh6FuwLD4aE0JpaTB/vpt7uHhxVnuXLm6o6TXX2FBTU6zCIVl8EHgROE9Vt/ja6gObgb+q6ov5HF9GVdNFpKHvmEDJYnXgD1VN9WsrC6zDLVN+WYDzWjA0JtJkBNVu3bKC56hREBsLvXtbkmgCCnGy+I2qts7WVhZ38/JBYClQH2gKNAZOUdWwGiNt8dGYEDp0yC1a89tvbtrEHXfAffe5RdmMCYFwWA21G7AiI1EEUNXtwDKge34Hq2p6EPv85p8o+tpScU8kzypwj0uwXbt2ceONN1KtWjWqVq1Kr1692Lkz39HA7N69m/vvv5/27dsTHR2NiJCcnFz8HTYGXJKYmOgm9/fsCXPnZn0WFwe3326JogkXX4vIzf4NqpqqqvOB/kANVb1TVdv5SmjU9aSXJgeLjyYk1q+HBx+EP/5w7ytXdqNixo2DH36AiRMtUTSe8SpZbAYkBWhfh7uzWixEpDzQHvi+uK4RaVJSUujcuTMbNmxg2rRpTJ8+nc2bN9OpUycOHcpzNDBbtmxh1qxZ1KhRg0svvTREPTalXlqam5PYrBn06QObNkH9+rZYjQlnzwEviUi37B+o6i7g0mxtP4aqYwVR2kpnWHw0xSpjVMxVV7l49tJLMGNG1ucPPQRDh0K1at710ZQquZXOQFVDvgHHgLEB2kcDqQU4T0PcfI87gtz/GSAduDSXz7W0GT9+vJYpU0Y3b96c2bZt2zaNiorSF154Ic9j09LSMl+/+uqrCuj27duLq6vGqM6Zo9qkiaorfKFav77qa6+pHjvmdc9MhPH9vg9l3LsZt9DaHFxdxRq+9muAHaHsSyH7f1LfdySy+GiKxf79qi+84OJXRiyLjlYdPFh1wwave2eMqp4YI0vN7FgRuQ14DHhaVT/PY78cW3HdRU1MdNOqypRxPxMTi+UyeZo3bx7t2rWjYcOGmW3169enQ4cOzPUf1hdAmZOYXP3ee+9x3nnnISLMnj0bgK1bt3L++ecjIsTFxQFZdzk2bNhAly5dqFy5MvXq1WPq1KkATJ8+ncaNG1OlShU6derE1owSCaZk2rjR1ZWKjYUpU9z7O+90JTGMCcD/Tqn/FmqqOgvoiBti+jbwq4gcBz7ELcRWYCJSV0Rmi8gBETkoIu+JSNAL44hIExF5V0R+FZHDIrLRt6ZAWPA6Rlp8NMWiRw94+GG3GFv9+vDii26o6csvW/kLE5a8mtCzH6gRoL2m77MiJSI3AG8Ar6lqXF77umS6+CUmwsCBkJLi3u/Y4d6DW5MjVNatW0f37jmniTZr1ox3M4qXF4NevXoRFRVFjx49aNmyJQANGjRg7ty5xMbGZrZluOmmmxgwYACPPPIIL7/8MnfeeSebN29myZIljB07luPHj/Pggw9y22238eWXXxZbv00Ipae7WlJHjkC/fq7t3nvhtNPc8NPy5b3tn4kI8fHxAW/4eZQw/hdoIyJtgMuBWsBKVZ1d0HP5VhVfhFtV/HayVhVfLCLBrCp+oe/4JcDduJIe5+JKfHguHGKkxUdz0tLS4N//dvUQM2463H23u8H5wANw7bU2hcKEP81/6Ek7IB74GLek92ZgOS75ypiYX9DhLIuALwK0LwGWFuA8+Q5DBa4AjgAzgTL5nK+Qj2pz3xISsvZLSMh7X1CNiXH7tm6d+z4DBmSdc+XKQnU5U7ly5XT48OE52keMGKFRUVFBn6cww2xGjx6t0dHRJwzXmT9/vgK6ceNGVVWNi4tTQKdNm5a5z759+zQqKkpr1qypBw4cyGyfMGGCApqcnBx0H0wYSktTnTVLtVkz9z/8aaep/v67170yJQwhHoZa1BtuFdU0oKFfW30gFXgon2PLAOuB9wtwvZP4riMzRlp8NIX222+q48apnnOO+59y8OCsz9LTveuXMUHyj5G5jpMQkdtFZC3wX2AYrgbiZuBL3NO/tsAU4AcRecNX+iJY84B2InKO3/VigQ6+z4qEiLQH5gILgT4axCqqXgtikbUSIykpiWbNmp0wXCcpKYlKlSqdMOwHoGvXrpmva9SoQe3atWnXrh1Vq1bNbG/sWyls165dxdxzUywyniS2agU33wzr1kHdujB6tD1FNBFNRK4UkadEpLVfW3k5ucebJ7Oq+OVAE1wJq4hSWmKkxccItWGDK3Fx1lkwbBhs2+bGUDdvnrWPB6MajDkZAYehisga3PCYN3FF77/zZZnZ96sGXA/0BtaLyB2qOjOI674K3AfMFZGRuKeDTwO7gAS/88cAW4GnVPUpv/aOvv6d4Wu6UET+AFDfcB4RaYybC/Ir8Hfc0J/MDqjqiiD6GZSc30xgAwdmDaOJjXXDarKr55ttsmpVcOds0ya4/XJTo0YN9u/POfJ337591KgRaKRw0UlKSqJt27YntK1duzZHgMzop7/y5csHbAM4cuRIMfTWFKuffnLFhtesce/PPhtGjID+/aFCBW/7ZszJexiIAr6AzKkRM4E0EZmkqo8V4pzNcDdDs1sH3JTPsZf4flYUkRVAG9xN4HeA4ap6uBD9yVWkxkiLj6ZAxo1zK5hm6NzZDTW9/nobamoiWm5PFl8D6qvqcFX9NlCiCKCqB1Q1UVWvxQ1X/S2Yi6qbS9EZ2ARMBxKB7UBnVf3Db1fBBdjs/RwFvAv8w/d+iO+9/ySCdrh5kTHAYtzQWf/NU2PGQHT0iW3R0a49lJo1a8a6detytK9fv56mTYutignHjx9n06ZNNPe/2wYsX748x3wMUwqcfrpbxeLss90k/y1b4J57LFE0JcXZQFdV/cT3fjwuORsHdBeRAYU4Z25z/PcReE0Af2f6fs4EPgGuwpX3uBt4qxB9KXLhECMtPpo8HTjgFlnL0LkzVKrk7nisXQsLF0L37pYomogXMFlU1QmqWqDbT6q6WlUXFGD/nar6Z1WtqqqnqGoPVU3Otk+yqoqqxmdrv9zXnmPz2+eN3Pbx388rvXvD5MkQE+NGJMTEuPehXNwGoFu3bqxYsYJt27ZltiUnJ7Ns2TK6dctREqzIbNq0iWPHjlGnTp3MtpUrV7J9+3ZatGhRbNc1YUAV5syBiy92Q3TA/SX4179ckjh4sCWJpqQ5oqppACJyKW5u4cOq+iRuSGj/EPcnI/bPUNUnVXWJqj6PuxHbQ0SaBDoolKuFh0OMtPhoAtq4Ee6/393cvPPOrPZWrdwomYSEE4edGhPGglkxvNSUzghHvXtDcrKbqpWcHPpEEWDAgAHExsbSvXt35s6dy7x58+jevTt169Zl0KBBmfstXbqUsmXL8uabb55w/OzZs5k9ezarfGOCPvroI2bPns3SpUvzvG5SUhIAGzZsAOCXX35h1KhRAHbntKRShblz3biwnj3h669dEeIM55xjSaIpqQ6LSMZEs0G46RGzAVR1D4VbmfxkVhXf6/v5abb2jCefFwQ6KGOxA/+tuJJF8D5GWnwsxbLXbZkxw61q2rUrNG4MEyfCH3+4mPWH34A4v3mixkSC+Pj43BY1y+RV6QwTJipXrsyiRYsYNmwYffv2RVW54oorGD9+PFWqZK2grqqkpaWRnn7iGkE33XTi1Jh7770XgI4dO7JkyZJcr5uUlESVKlWYMmUK//rXv2jfvj3XXHMNH3zwAUOGDCE+Pp5bbrml6P6gxjuqMH8+xMfDt9+6tjp14PHHYUBhRt8ZE3HGAl/6Fo27FHhOVVMBfIvcVC7EOdfh5i1m1xS30ml+x+Yl7BeDCwWLj6VUoLot/fplTb6tWBH69nVPF+1JrykFJJfpiKWSiOQ2PdMUsZ49e5KSksKCBUGPXDaR6rHH4P/+z70+44ysJLFSJW/7ZUo1ESGUUxJE5ArcU8X9wDBVTfG19QFiVbVTAc83FHgeaKSq23xtsbhVyx9T1RfyOPZU4Adgiqre59f+OPAMcK7/Kqu+zyw+hojFR4/ltrpSVBQ88wzcdRecemrIu2VMKPnHSBuGajyRlJRUrAsEGA+pwr59We/79HFPEseNc3MUH3jAEkVT6qjqQlW9WVUHqarvkQWn454qvlKIU74KJONWFe8uIt1wq6PmWFVcRFJF5Em/vuwFngXuEZFnfKU9HgOeBKZlTxRNaFl89IgqLFkSOFEENx76r3+1RNGUOic1DFVEHgX2qOqb+e5sjM/hw4fZtm0bTZoEXEPBRCpV+OgjN9y0QgX47DO3MkXz5i74livndQ+NCRkRuQRYltfjOFV9i0KuPqqqh0SkM25F1em41cMXAkODXFX8KeB34F7gEeB/uDJTTxemP6ZoWHz0wNGj8M47MH48fPdd7vtl1G0xppQpdLIoImcA/wccxNVjNCYo33//Penp6XbntKRQhY8/dkniV1+5ttq14ccfXWFisETRlEafACki8jHwAfCxqgZVXipYqroT+HM++yTjEsbs7Qq86NtMmLD4GELHjsGzz7pyTT//7Npq14ZLLnE3Pg/7lRv1oraZMWGi0MNQVfUn4DagRM2yLu7lwA20bt0aVeWSSy7Jf2cTvjKSxPbt4dprXaJYuzY8/zxs356VKBoTJvyXCA+BU4E7gUO4J3Y/i8hSEXlURCIyE7D4WPwsPoZQuXLw3nsuUWzVCt54A3budGWcXn3V+9pmxoRYbjHSFrjxYxP4jSmA335zw3J+/x1q1XJzOQYPhsqFWdjRmNDyYIGbC4DrfNtFwA7gQ9xTxyWqeixUfSkMi48moqWlwYcfwoQJLvFr0MC1L1zoFq7p2NElhsYY4MQYacmiHwuGxuRBFRYtckN0MuohvvCCC8JDhliSaCJKqJPFbNeuRVbieBVulM9CYL6qvu5Fn/Jj8dFEpN9/h6lTXU3frVtd27Bh8KKNvjYmLwVKFkWkL66A8FpV3R2C/nnGgqExAai6u6/x8bBsmZvfMXiw170y5qR4mSxm60dZ4DLgBqCrqjb2uEsBWXw0EWX7dvjHP+C11+DgQddWv75bjbt/f6hWzdv+GRPm/GNkMAvcTAKqACoiB4C1ftsaIElVf/c7+QRVfbDou22MCamMJ4nx8fDFF67t1FPdkB1jTIGISAxQG9jlm/OPiNQF6gOpqjoMGOZhF40pOZ54AhIT3evLLoOhQ6FbN4tfxhRCMMni/4AewAVAK9/WB6gKKICI7CQreewJWLJoTCRbvhyGD4fPP3fva9aERx6B++6DU07xtm/GRBAR6Y4rdN/Yr201MBI3/PRRoAMnWcrKmFLr2DGYORPq1oXLL3dtQ4e6xPDBB6F1a0+7Z0ykC2YY6jeq2jpbW1mgKy4pXIq7M9oUFwxPUdWIvHVjw2yM8Zk+Hfr1gxo14OGH4f77oWpVr3tlTJEJxTBUEfkrMBbYAiwBfgZq4uJlB1x9w1+BN8M9blp8NGHn558hIcFNjfjpJ5coLl7sda+MKREKOgz1axG5WVVnZTSoaiowX0S+A4ap6p1+Jz+zyHtsjCl6iYkwYoRbKrx2bVf+4nXf2hq33gr79rm5HZYkGlNgItIBeBLoq6qJAT5vBLwD2L9ujSmItWth/HgXw44edW0tWkDfvm76hK1qakyRCqbO4nPASyLSLfsHqroLuDRb249F1DdjTHFJTISBA2HHDhdc9+xxK8ZNmuQ+L1vWDd+xRNGYwhoGDAyUKAKo6ibgSuAvIe3VSbA6i8Zzb70FLVu6G5vHjsENN7gF2FavhjvvtETRmJNwUnUWReRmIBFXE+pt4BNV3S8i1wAJqhpTDH0OORtmY0qNOnXcsJ3s6tZ1TxqNKeGKexiqiKxX1aZB7NcGaKiqM4urL0XB4qPxxB9/wPffw0UXuff790OTJnDTTW5l03PP9bZ/xpRQBR2GiqrOEpHdwD9wyaKKSDruyeTTxdZTY0zROnIEbrwxcKIIsLtEV8cxJpSOBrOTqq4CVhVzX4yJLMnJMHEiTJkClSq59xUquHn0O3dC+fJe99CYUiPo1ddU9b9AG99d0MuBWsBKVZ1dTH0zxhS1ihUhLc0N1Qn0lKBevdD3yZiSqZyIVFTVI3ntJCJ3AW1U9d4Q9cuY8KQK//0vjBsH778P6emuvUULN1UiIz5ZomhMSAUzZ/EEqrpKVV9Q1cdKYqJoczJMibJxo1us5uuvs9omTXJbdPSJ+0ZHw5gxoe2fMSGU23yMYrIEVx4jVyLSCjc6Z1AoOmRM2NqzBy6+GC65BP71LyhTBvr0cbHr88/tRqYxHgqmdMaVwGXAHFX9xtdWHjhe0iYw2JwMU2Js3QpPPQUzZri7s9dfD/Pnn7iP/2qo9eq5RLF3b2/6a0yIhWDOYgyu9vAMYIz/4m8iUhG4DRgFvASMtdIZptQ5dAgqV3avVaFZM1cO45574N574UxbXN8Yr/jHyGCSxY+AKOB5Vf1ERG4AZgJpwCRVfay4OxwqFgxNxNu5E0aPdiubpqa6VU3vvBNGjnSL1xhjgJDVWewCzAYq4WotZtRZjAVSgW5AXazOoilNkpJgwgR45x33Osa3RuKGDe51pUre9s8Yc0KMDGYY6tlAV1X9xPd+PLAfGAd0F5EBxdNNY0yBvPuuWxnu1Vfd08Q77nDDUBMSLFE0xgOqugBoAUwFooGLgPLAG0BL32fjvOpfQdk0DVNo6enw4Ydw1VVuDuKUKW6l008/zdqncWNLFI3xUKFLZ4jI16p6ke/1pcBS4DZVfUdETgfeV9U/FVO/Q8runJqIk57u5nYA/PijSxa7d4e4ODjvPG/7ZkwYC8WTxZLE4qMptMmT4YUXYNMm9z46Gvr3h/vvtzhlTJgqaOmMwyLSUFW34Cbh/4obVoOq7hGRoFdUNcYUkX374O9/d3dlV6xww03PPNMtL16rlte9M8YYY5yFC12iWLeuSxDvvtuVwDDGRIRghqGOBb4UkSXArcBrqpoKIO45ZeXi654x5gQHDkB8PMTGwtixsGoVLF6c9bklisaEBRGZJyIXFGD/iiLykIjcU5z9MqbYqMLy5XDLLbBgQVb73/4Gs2bBtm3w6KOWKBoTYfJ9Kqiq/xaRm3FPFafglvlGRK4A+uAm7BtjitMff8BLL8Hzz8P+/a7t6qvdiqdt23rbN2NMIMnAChH5DkgEvgDWZNxsBRCRM4GLgRuAXsCPQP/Qd9WYk3D8OMyeDePHw1dfubaDB6FLF/e6VSu3GWMiUsA5iyJyCbAsrwkKInIb0AOYraqziq+LoWNzMkxYUoXWreG779z7jh3h6afh0ku97ZcxESxEq6E2AIYCvYFqgAIHgaNAddxiNwJ8BbwCzFDVtOLsU2FZfDQ57N3r5iNOmgQ//ODaataEQYNc6Yuzz/a2f8aYQsu3dIaIpAApwMfAB8DHqvpbSHvpAQuGJmwcOQJpaVk1qF5+2dVMfPpp6NwZQlNU3JgSK5QL3PhqE7cH2gJnAhWBvcAG4DNV3RGKfpwMi48mh2eecbV6AZo0gaFDoU8ft4CNMSaiBZMsVgKuAq4DrgVOB5bjEscPVXV96LobOhYMjeeOHXM1EkePdvURR41y7WlpbtVTSxKNKRK2GmrBWHws5dLT4ZNP3JSIG290bb/+6uLUffe5khgWn4wpMfKts6iqh1V1nqoOUtW6uLuhn+LmVKwRka0i8pKIXO27Y2qMORmpqfDGG24Z8Xvugd273QpyGf84i4qyQGyM8ZTVWSyFUlLgn/+EZs2ga1cYNszNUQQ47TSYN8/Nn7f4ZEzEK3SdxexEpBbuieN1uKePZYCFwHxVfb1ouusNu3NqQi49HWbOdCucZtSgatzYPVG88casGorGmCJVEp4sikhdYBwuFgvwH2Coqu4M4tjcgt0FqvpdoP0tPpYiu3e7uYgJCVmLqp11lit98cADUKmSt/0zxhSrfIehFuBEZYGOwPVAV1VtXDRd9IZ/8IyLi7O7p6b4LV0Kl1/uXjdoAHFxcNtt7kmiMaZIxcfHMypjaDdEdLIoItHAatxiOSNxi+eMBqKBlqp6KJ/jFXgDSMj20RpVTQm0vyWLpcSqVW6V7TTfWksXX+yeKP75z1CunLd9M8aERJEliyWNBUNT7FTh22/d6qYZ7/v0cYvW9OtngdiYEIn0J4si8iDwInCeqm7xtdUHNgN/VdUX8zlegTGqOjLI61l8LKlSU+Hrr6F9e/c+PR2aN4eWLd2iNe3aeds/Y0zIFThZFJEYoDawS1V/8rXVA2IBVPWzYuttCFkwNMVGFT79FJ54wgXltWvdHBBjjCdKQLK4EKioqh2ytS8FUNWO+RxvyWJpt38/vPoqTJwI//sfJCe7oaYAR49ChQqeds8Y4518F7jx27G7iKwDtgErgB9E5BsRuRZoCTwNLC7uDhsT0ZYuhcsucwWKv/oKatVyQdkYYwqvGZAUoH0d0DTIcwwWkaMikiIii0TEireWBhs3ZtVBHD4cdu1y0yB27craxxJFY4xP2dw+EJG/AmOBLcBrwM9ATVwQmgs8AkwGLin+bhoTgZYvd08SFy5072vWdIF5yJCs+onGmFJJRFoDBzOGkBZCTWB/gPZ9QI0gjp+BK4f1IxADPAosEpGrVHVJIftkwllqKvTsCR98kNV29dVuqGmXLragmjEmoIC/GUSkA/Ak0FdVG6nqQFUdqar3qurluDuatwOtQ9dVYyJMQoJLFKtVg6eegu3b4a9/tUTRGAPwLNBSRKJF5FvfqJ2QjU1X1b6qOlNVP1fVGbgbvz/iFskJKGNJdf/NFoILc4cPZ5VgKlvWbRUrwsCBkJQECxa4khiWKBpTKvmXy/Df/AWcsygis4H3VPWt3E4uIjWBtcAZqloilm60ORnmpKxZ4wJz27bu/bZtMHUqPPQQ1AjmRr8xJlS8nrMoIs+o6t9EpD/QDxgKPKSqtwd5/B5gjqoOytb+MnCTqtYqRJ9eBu5S1RxjEC0+RpgffoCXX3Y3LWfOhCuucO3bt8Mpp7gaicYYk4tg5iw2zStRBFDVfUA34LZCdqKuiMwWkQMiclBE3vMtmhPMsc+IyCcisldEVETuyGPfASKywTcvY6OI3FOY/hqTq++/h1tugVatYPDgrLu455wDTz9tiaIxJpDq4m7f9gVeVNXVwP8KcPw63Cif7JoC60+iX5YRRpLERIiNdU8GY2NdzOnd271+5hnYuxc+/DBr//r1LVE0xhRIbsni0WAOVtVVqjqzoBf11YdaBDTGDWftC5wLLBaRYMbo3Q9Uws23yOs6A3A1pP4FXAO8C7wsIoML2mdjctiyBfr2dUuMz5rlFgS47DI4csTrnhljwt9CYA9wFvBvX+JYtwDHzwPaicg5GQ0iEgt08H1WICJSFVcz+auCHms8kpjohpPu2OFuUu7YAU8+CW+95cpf3HQTLFsGL7zgdU+NMREst2GoScCFqprnv3pF5C6gjareW6CLnnx9qDKqmi4iDX3H9FfVN7LtUxY3/+Ij/2E9IvI67oloHVU9nu0YG2Zj8vfLL/DYYzBtmitaXK4c3HUXjBjhVpczxoS94h6GKiLnq+p3+exTGTiiqmki8iyuFMawIM9fGVgNHAZG4p4IPg2cArRU1T98+8UAW4GnVPUpX9sjwHm41cwzFrjJaLtCVT8PcD2Lj+EmNtYliNlVreqmRcTEhLxLxpiSIZhhqEtwwSevk7TCBaZBee2Xi27ACv9V4FR1O7AM6J7fwaqaHsQ12gO1cCu++ZsOnIqt4moKq2JFmDvXvb7zTti0CV55xRJFY4y/r0Ukz/ioqodUNc33+vFgE8WMY4HOwCZcXEsEtgOdMxJFHwGiODHeb8QNV30J+BR383Y7cEmgRNGEmV274NFHAyeKAL//bomiMabI5FY64+/AGhGpgSva+2PGByJSETdPcRQwDldeo6Ca4cpvZLcOuKkQ58vtGpCzDtU638+mWI1IE4w9e2DCBPfksHJltzjAm2/Cuee6zRhjcorCTXs4W1WfCLSDiIwHqgPfqer4gl5AVXcCf85nn2RcwujfNh+YX9DrGY99840bUjprliuDERXlRrdkVy+o5R+MMSYoAZ8squoO4GbcCm07fQvEfOYbnvor7i5kb9zwlcI42fpQwV6DANfZl+1zYwL79VdXF/Gcc+DZZ2HSpKzPrr3WEkVjTF6+B2YBI0RkqogEWjX8eVzSFhGTyqxchgfS011dxE6doE0bNx9RFf7yF4iLg+joE/ePjoYxY7zpqzEmovmX0fCXa2EdVV0AtACmAtHARUB54A2gpe+zccXUX89YHSnDb7/BE0+4VeOeew5SUqBbN1e02BjjmcTERGJjYylTpgyxsbEkJibme0wwNaSKyVFVvRU3Uud24MPsC7ip6m5gDtme/IUrVUVVLSaG0ocfwg03wJIlblTLQw/B1q3w9tsuTk2e7Iacirifkye71VCNMaaA4uPjM3/P+wu4wE1xK6r6UPkscDMYeBk4U1X/59deG7cC3X2qOinbMTaBv7R7/XUXjA8ccO+vuQaeegouusjbfhlTyiUmJjJgwAAOHz6c2RYdHc3kyZPpXYh/HIdggZtvVLW17/Vg3PzANUBXVf3Zb78o4Fi41yu2+BgiP/8M//0v9Ojh3qemwpVXuoTx7ruhWjVv+2eMKRWCWeCmuBVXfajs1yDAdZr6fhbVdUxJUr26SxQ7dYIvvoCPPrJE0Zgw8Pjjj5+QKAKkpKQwYsQIj3oUPFV9BegJNAKWi0gjj7tkws369TBggJtveMst8NNPrr1sWfdU8eGHLVE0xngiYLIoIvNE5IJgTyIiFUXkoQIUvC/S+lC5WI6bX5n9lnMf3LzFZUV0HROpjhzJWrgmQ8+eri7VokXQoYN3fTOmlEpNTeXzzz9n+PDhXHnllZnDYXbv3h1w/507d4aye4Wm5DrqaQAAIABJREFUqh8Al+OmdSwTkfbe9sh4ThUWLnRz4Js1gylT4NgxN6Ll0CGve2eMMUDuTxaTgRUi8qWIPCAirX11CzOJyJki0kNEXgP+B9wFfBPkdV/1XWOuiHQXkW641VF3AQl+14gRkVQReTLbtTuKyI3ANb6mC0XkRl8bAL4aik8At4vIaBG5XESeAu4EnlTVY0H21ZQ0x465UhcNG8LQoW5eYsYS5CLwpz952z9jSpm9e/eSmJjIbbfdRu3atbnssst47rnnWLhwIatXrwagXi4rPObWHo5UdRWurNMvwH9EJN9SUaaEOnwYLrzQDTH96CNXkumee2DDBleaqUEDr3tojIkghZnTH6yApTNU9QERmQAMBeKBaoCKyEHgKG6p7/K4Sflf+fabkVEvKj+qekhEOuMWyJnuO89CYGgQ9aHAle3o6Pd+iG/LOCbjOv8UEQUeBh4FduLmKr4cTD9NCXP8uCt58fTTWclhq1ZuTmIE/YPTmJJk9erVtG7dmvT0rPK5jRo14rrrruP666+naVM3c2DMmDEMHDiQlJSUzP2io6MZE74rP54jIl8AU1X1tYxGVU32PVWcA8wGHvGqgybEDh50i9SIQKVKUKcO1K4N990HgwfDaad53UNjTARKTEw8IT7u2LGDgQMHAhRqTn92+S5wIyLlcXdC2wJnAhWBvcAG4DNfmY0SwSbwl2B//AGtW8Pmze59kyYuSezVC8p4NXXXmNLj8OHDLF68mA8//JDDhw/z+uuvA27Yad26dWnWrBnXX3891113HefmUpYmMTGRESNGsHPnTurVq8eYMWMKHQhDsMBNGaAxEK2qKwN8Xg63uvitgNoCNyXY9u1uysNrr8G//w2XXuraf/wR/p+9Ow+PuroaOP69CQQI+y4IJLIHZAubEEzCpiIEiIIbVit9xX2p1kpFBcVY27pQa0WxaK3GqqBAWEQRkgAisgcqgiBC2CHsS8h63j/uzGSSTCAJyUyW83meeTJzf8tc3r7m5vzuvec0aGBnFZVSqphatGjB/v3787UHBQWxe/fuYt3TfYz0STbUskoHwwpGxD7BdRo7FjZtgilTbI0q/zL9t5lS5d6+fftYuHAhCxYsYOnSpa4ENQEBAaSkpFC7dm0A0tPTCQgI8GrfSjtYLEI/XgaeLg/BovP95MmTtXxGYfzwA7z2Gnzxha2XCPD88/DCC77tl1KqXDt69Cjz5s1j+fLlJCYmFrh33xiTa9XOpUyZMoUX3H4/abDogQaLFYQIxMXZQfnvf4fISNt+7JjNJlfF4+prpVQJ+uyzz7jttttytfXs2dO1vLRnz574+XBWv6wEiwDGmKEissTX/bgYHR+L4KuvICbGJksDO+bcfrsty9S9u2/7ppQqV7Kzs9m6dSupqan0dmTn/+GHH7jmmmtc5zjGs3zXltTMov7VrCoOEfj6a1uoeJ1j1ddbb+UEiw0b+qxrSlVUJ0+e5Ouvv2bhwoW0bduW55+3+cjCwsKoVasWQ4YMYcSIEQwbNozmzZv7uLdlU1kPFFURLV9uA8V69eC+++CRR+DKK33dK6VUOZCZmUlSUhKJiYksX76cFStWcPz4cQYNGsTSpUsBCA0N5fbbb6d///6Eh4ezefNm7rvvvlLb068zi270yWk5tmyZDRJXrbKfmzaFP/3JDtS6H0SpEiMibNu2zbW8dOXKlWRl2dxm7dq14+eff3ad64vlpYVVlmYWywMdHwtw4IB9KNmhA9x9t23bv98uPR0/HmrV8m3/lFLlxt/+9jemTp3KmTNncrW3aNGCYcOGMWPGjAKvLck9/aB7Fgukg2E59e67NuU42NnDp5+Ghx6CwEDf9kupCuj5559n6tSprs/+/v4MGDDAlZymY8eOGFP2YzANFotGx8c8Nm+G11+HTz6xmbbbtoXt2zVhmlLqos6fP8/q1atZvnw5y5cv58knn2T48OEAvPfee0yYMIG2bdsSHh7uegUHB3t9XNVlqKr8O3nSLvEBGDMGXn4ZJkyARx+1qcmVUpfl4MGDLFq0iIULF3LTTTdx5513AjBgwAAaNmzIjTfeyPDhw7n++uup5/xvUamKzLnV4fXXYYlj5bCfH9x8Mzz5pAaKSimPvvnmG+Lj41m+fDlr164lIyPDdaxbt26uYHHs2LHceOONXFnGlq0Xa2bRGBMKnBaRnSXfJd/RbG9lUGwsTJoEycm2FuJ998Hq1ZCUZJ/iVqtmz8vM1MQ1Sl2G7Oxs1q9f71peun79etexUaNGMXfuXADXklP/cphNuKBMb6XNGLMKmA58LiJp3vjOkqYzi8DcuRAdbd/XrGmXmT7+OLRu7dt+KaXKjOPHj/P9999z4403umYDu3fvTlJSEmBn7Lp3755r5rBRGayxetnLUI0xXwPvAouB7wABfiMiP5ZkR71NB8MyJjbWzha6bdh1CQyEpUvBLRuUUqr4xowZwxdffOH6XL16dYYMGcLw4cMZPnw4LVu29GHvSp43l6EaYxKAcOAE8CEwQ0S2eeO7S0qlfJh67BisWQPDhtnPGRkQHg6jRtkHl/Xr+7Z/SimfO3TokGtJ6fLly9myZQsAO3fupE2bNgBMmzaNgwcPEh4eTlhYWJldjVOipTOMMS+LyDPGmHuAu4DHgSdE5O4S6q9PaLBYxgQHw549+dtr14YdO2wSG6VUkezYscM1e/jSSy+50m9PmzaNN954w1XaYuDAgdSoUcPHvS093t6zaIzpCEzAjpn1gRXY2cYvRSTjYteWBZVqfNy5E954Az74wC49TU6Gxo193SulVBmyc+dOhg8fniupG0C1atXo27cvb7zxBqGhoT7q3eUriZnFt4GHgKXAGyIy3xjziohMLNmuelelGgzLAz8/O1DnZUxOgWOl1EWlp6ezcuVKV4DoPrA988wzrtTaGRkZVKlSpVwkpykJvkpwY4ypBtyCDRz7AynAB9jZxl3e7k9hVfjxUQRWrrT7EefNyxl7brgB/vEPm8BGKVWpiAg7d+50zRoGBATw3nvvAXDhwgXq1auHv78/YWFhriWlffr0oXoFyMJfEsHizdgnoieATkA28LGIFD9HaxlQ4QfD8uDECfuzfv2CZxaDgqCYRUaVqmxCQkLYti1nxWO9evW44YYbGDFiBDfccAMNK2n9UV9nQ3Xs/X8duzwV7Dg6B3hERA75ql8FqdDj4/nzMGgQ/PCD/RwQAHfeCU88AZ07+7ZvSimv2r17N4sWLXIFiAcPHnQdq127NsePH6eKI0fG1q1badeuHVWrVvVVd0vNJbOhGmO6i8imgm4gIl8YYxYDF0QkyxjzZ+BI6XRXVQrnzsHf/w5//atNGvD66xATk3/PYmCgbVdKuYgIGzduZOHChSxatIgFCxa4gsABAwbg5+fnKm3Rv39/10CnvMsYUwO4Hbgf6AlsBx4DZgFRwBQgFhjsoy5WHufO2SQ1YMeVOnVs6aUHH7SvK67wbf+UUqUuKyuLTZs2Ub9+fVo7ElUtXLiQhx9+2HVO48aNXbOGERER+LllPe7UqZPX++wLHmcWjTEZwMMi8q73u+Q7FfrJaVmVng4zZsBLL8Hhw7Zt+HCYP98uN82bDTUmBi6jyKhSFcXZs2dZunQpCxYsYNGiRRw4cMB1LDY2ljvuuAOwy1ADAgJ81c0yy8sJbroA9wHjgJrAPOBtEYnPc14UMEtEytwapgozPu7dax9MvveeLYPhTJKWnAyNGml9XqUqsPT0dNatW+eaNVy5ciVnzpzh6aef5pVXXgHgp59+4qWXXnIFiOWldnBJK0ydRX/gbWNMCxF5roCbTAPqAZtEZFrpdFVVWFlZNhCcPDlnSWmfPrZe4mC3h+rjxmlwqFQeZ86coWnTpqSmprramjdv7po9HOz235AGimVCEnAAmIbdm3iwgPN2At97rVeVyfr18Npr8PnndvwB+OqrnGCxVSvf9U0pVeruvfdeYmNjc42bAK1bt6Zu3bquzyEhIcTGxnq7e2VaQcHiT8BmYJIxpgXwfyKSleecV4G+wOfYAVCpwlu3Du52JM/t1MnOLI4ebWcTlVIAZGZmsmrVKlfdw2+//RZjDLVr1yY0NJTMzExGjBjBiBEj6NatW6V8+llOjAHmeRhHcxGRn4CB3ulSJfH11/DnP0Niov3s7w+33QZPPgm9evm2b0qpEnXmzBlWrVrlmjn85JNPXGWf/P39SU1NJSQkJFeNwxYtWvi412VfQctQN4hIqDHmL8BTwDfAzSJyLs95/kCGiPjlu0k5VGGW2ZRVmzdD1645nx94APr1szOH5bDAt1Kl4dixY3z11VcsXLiQxYsXc/LkSdexjRs30r17d0CXl14uby1DNcYEAJ9hM4cvL+3vKy3lts7ik0/aPfC1a8O998Jjj+ksolIVRFpaGl9//bUrONywYQNZWTnP5D7++GPGOVan7d27l2rVqtGkSRNfdbfMK1KdRWew6Hj/APAmdqZxmIgccTvPH0gXkQrxl74Gi6Vk7Vr4059g6VKbba5PH1/3SKkyKSkpidDQULLdSsN06NDBVftwwIABFTLrmi94ec/iGSBKRBK88X2loVyMj0eOwNtvQ4cOcPvtti05GWbNgv/7P3BbaqaUKn8OHz7Mzp07CQsLA+DcuXPUq1ePzMxMwM4e9uzZ05WM5tprr821xFQV3iVLZ7gHi47PI4D/YjOeDhORnx3tGiyqgm3dCs8+C3Pm2M9168I779glQEpVYqmpqSxbtoyFCxeSmprKBx98ANhlpy1btuTqq6927T9sq/XdSoWXg8XFQIKIvFLC920JvAEMBQzwLfC4iCQX8T4TgT8D34nIgALOKbvj408/2dnDjz6CtDTo2BF+/NHW6lVKlVt79+51zRomJiayfft2GjRowNGjR11ZSR988EEaNGhAeHg4/fv3p1atWj7udcWQa4wUkXwvYIOHtp7AQeAo0M/R5g9kebpHeXwB4nxNnjxZVDH9+qvI3XeL+PmJgEiNGiJPPy1y7Jive6ZUqfv4448lKChIjDESFBQkH3/8sYiIJCcny/Tp02X48OFSo0YN1++agIAAOX36tOv69PR0X3W9wps8ebK4/54X740tnYEdwMNAC8fY6ef+KsY9Ax33/B8wGhgFbAF+AWoW4T6tgbPAYWDlRc4rwf8lSkB2tsjSpSI33mjHGRAxRmTkSJHERHtcKVXmFDRGulu8eLFcddVVuX5fAxIYGChDhgyRlJQUH/S8cnEfIws1s+jWHgwsAoKAO4AF6MyiyuuRR+Ctt6BKFbtH5NlnoXlzX/dKqVIXGxvLhAkTOO9WGzQwMJB77rmHf/7zn7nO7dWrl2t5aWhoaK7aTar0eXlm0bmuuKABRkSkSMUvjTGPAa8DHURkp6PtKmwA+UcReb2Q9/ka2A10AKpIeZlZ/PJLuPlm+756dfjtb+H3v4f27X3aLaVUwTyNkQEBAYSGhnLrrbfy+OOPA7B+/Xp69epF3bp1GTBgABEREYSHhxMaGqpbMbykMMtQT2KfVn4gIjPzHKsLzAUGAH8AXtdgsZI7edLuC3Emrzl0yO5RfPZZaNPGt31TyotatWrF3r1787VfeeWVnDp1iqFDhzJixAiGDRtGs2bNfNBD5eTlYHEKBQeKAIjICxc77uGeS4HqIhKWpz3Rcb+IQtzjDuDv2EDxS8pysHjypM2iPWSI/ZyWZste3HSTTZbWqJHv+qaUKpTmzZtz8KDnykEREREkJCQAdkvGli1b6Nq1K/6aANEnChMs+gEdgUARWefheFXg38Dt2CeiFeJ/SZ8PhuXN+fPwj3/AX/4CTZrA//5nZxOVqkSSk5OZP38+cXFxfPPNNx7PMcaQlpamT0TLEG8Gi6XBGHMIW47jvjztbwNjRaTxJa6vD2wDJorIB8aYBMpisPjrrzBtGsx0PLfeuxfq17fvRbTcklJlVFZWFklJSbRt25Y6deoAXLS809atWwkJCfFW99QluI+RHtc9iUi2iGz1FCg6jmeIyDigRDfrq3IiI8MmqmnbFiZOhBMnoFkzSEnxdc+U8qqXX36ZoKAgHn744QIDRbAzjhooqhLWADjhof04UL8Q1/8N+Bn74LdQjDH5XqVWQmP1ahg71o4zb74J587ZmcRjx9w7VDrfrZQqsszMTNatW8err75KVFQUDRs2pGfPnrnGxkYFrAAICgrSQNFHpkyZ4vF3u7vLmgYSkWeMMfGX1UtVfmRnw6efwvPPwy+/2LaePeHll2HoUB24VYXlzF4aFxfH4MGDueWWWwDo3bs3NWvW5Prrr2fkyJGkpqby5JNP5tuzGBMT46uuqzLEGNMNu+Szet5jIvIfL/bjWuAuILQo04VemVk8dw6uuw5WrbKfq1SxtXifeAIcNUaVUmVHVlYWo0ePJjExkTNnzuQ6FhwcTGpqquvztGnTPO7r1zHSd6ZMmeLxoZ97wHjZawZFZMnl3kOVE2lp8NRTcOCArWP10ks2wYAGiaoCOnz4MAsXLiQuLo4lS5a4BrdDhw65gsWBAweSkpJC9eo5f/vXrl2bSZMmkZycTKtWrYiJiXEVBVaVkzGmHrAQuMbZ5PjpHn0VNVg8gecZxIJmHN29C8wE9jn6BvbvAX/H51QRSStif4rvwgWbpAagZk0ICIB69eC++2zCtCuv9FpXlFKeZWRksG7dOhISEkhKSuK///0vxhj8/f05cOAAZ86coU2bNkRERBAZGUlERAStWrXKdQ/nWKhjZPnicc9iZaV7Fj1ITIRu3ezADfDZZ/bJ71136f5EVWE9+uijvPXWW7lmUnr27ElUVBSjR4+mW7duPuydKgleTnDzNjAI+B2wAogGTgHjgX7AbSKyvoj3XAYE5N1j6Nh7aC6W4MYYc6mB7vciMi3vNSU+Ph48aPe9v/MOLFliV6oA7Npl98FrvTSlfCY9PZ01a9aQmJhIQkICq1atyjUjuG3bNjp06ADAhg0baNKkCS1atPBVd1UJcx8j9a995dmGDfDMM/D11zar6dSptv3WW33bL6VKUEZGBitWrCAuLo67776bHj16ANCmTRsCAgIYNGgQI0eOZMSIEToIqstxPfACsNrxeZ8jOEwwxkwHHsMuCy2KOOBVY0xrEdkFrvJWYcDES1w70EPbNGz9x0eAnUXsy6XFxsKkSTZz9hVX2L2Iq1fbPfAAcXE5wWLr1iX+9Uqpi7tw4QIpKSmusW7dunVce+21uc7p2LGja+bQPaN3aGi+anuqAtFgUeW2fTs89xzMmmU/16mTM6uoVAVw4sQJFi9eTFxcHF999RWnTp0C7L4JZ7A4fvx4fve731FLZzZUyWgG7BKRLGPMBaC227EvgU+Lcc/3gIeBecaYZ7FLWqcCe7HLTAEwxgQBvwAvisiLACKSkPdmjpJZVTwdu2yxsTBhgs2gDXZG0Zk+/+ab4cknoV+/Ev9apVTBUlNTWb16tWvmcPXq1YSHh7sS0vTq1YuePXvSt29fIiMjCQ8Pp2nTpj7utfIFDRaVtW8fTJkC//43ZGXZ/SMPP2yznTZs6OveKVUi7rjjDj7//HOysrJcbSEhIYwcOZIxY8a42mrXru3pcqWK6xDgfOq2B7v0NMHxuW1xbigi54wxg4A3gI+w+yCXAo+LyFm3Uw12xtBj9nOvmDQpJ1B017w5zJ7t/f4oVYnNnj2bN998kx9++IH09PRcx86cOYOIYIwhICCAdes8FkVQlYwGi8rautXWsfL3t0+An3sOdNmdKqeysrJYs2YNcXFxPPXUUzRo0ACAmjVrAjYxTVRUFFFRUbRtW6y/1ZUqipXY5DYLsIHdZMeS0UzgbuyS0iITkWTg5kucs5uchDoXOy+yOH0olORkz+0FFOdWSl2+s2fPsmrVKhITExk2bBgDBtjtzceOHWPFihUYY+jevTsRERFEREQQHh5OQ50cUB54THBjjMkmd5a2ixERqRBBZ6VKcHP6tE0ocLPj7wwRm930ttugXTvf9k2pYjh37hxLliwhLi6OhQsXcuTIEQA+/vhjV6a1/fv3ExgYSP36hSlDpyoyLye4aQM0F5EVxpiq2BrFtwKBwGLgERE5drF7+Jp7UpzJkycXrb5icDDs2ZO/PSgIdu++7L4ppeys4MqVK0lMTCQxMZF169aRmZkJwBNPPMFrr70GwIEDB1z7EXUsVO6mTJnCCy+84PrsHCMLChanUPhgERF54dJnlX2XNRiWF6mp8Pbb8Oc/w/HjkJQEXbr4uldKFVtWVhbR0dF88803pKXlZPsPDg5m5MiRjB8/XrOXKqDggVBd2mU9TM27ZxEgMBBmzLA1FJVSRXbq1Cnq1KnjqofXrVs3Nm/e7Dru5+dHz549iYiIYNSoUa6ZRaUKw/2BqpbOcFOhZxYzM+GDD+CFF2D/fts2YAC89ZYtjaFUOSAiJCUlsWTJEv7whz+4BsmwsDC+//57+vbtS1RUFCNHjqRz5865isoq5c6bM4sVwWWPj+7ZUFu1gpgYDRSVKoLjx4+zYsUK18zhpk2b2LlzJ1dddRUAjz/+OKtXr3bVOAwLC6NOnTo+7rUqrzRYLECFDRZnzbKD9I4d9nO3bvDyyzBsGOgf06qMS0tLIyEhgfnz5xMXF8fevXsBW9fJmb108+bNNGnShCuuuMKXXVXliLeDRWPM3cDtQCugep7DIiJtvNWX4qiw46NSZdixY8eYOnUqCQkJbN68OVft36pVq/Lll18yYsQIAFdiGqVKQrHqLBpjugEdyD/IISL/KbnuqRK3aJENFNu2tfUSb7kF/HyXGE+pwkhJSeGBBx5g8eLFnD2bk9yxWbNmjBgxgsDAQFdb165dfdFFpQrFGPMcts7i/4BNQNrFr1BKVTZHjhxh+fLlpKSkcP/99wO2pNP06dNJT08nICDAVcYiIiKCfv365RoHNVBUpeWSM4vGmHrAQmwmN8jJqua6UET8S6V3XlZhnpx+952dMezf337eswe+/hruuQeqVvVt35QqwPbt20lKSuKWW24BIDMzk6ZNm3L8+HG6du3KyJEjGTlyJD179sRPH3aoy+TlBDe7gTki8ntvfF9pqDDjo1JlxOHDh101DhMTE9m6dSsAdevW5dixY/j72z+tZ86cSZs2bejbty81atTwZZdVJVKkZajGmLeBQcDvgBVANHAKGI+tFXWbiKwv1R57SbkfDDdtsstNFy2yS003bNAZRFVmZWZm8v333xMXF0dcXBw///wzVatWJSUlxbXP4ptvvqF9+/YEBwf7trOqwvFysHgGGCUiy7zxfaWh3I+PSvlYVlaWKwD84IMPGD9+fK7jNWrUoH///kRERPDEE0+4Sj0p5QtFXYZ6PXb5zGrH532O4DDBGDMdeAy4q1R6qgpnxw54/nn49FP7uVYtGDUKMjKgWjXf9k2pPH755RdeeOEFFi5cyPHjx13tDRo04MYbb+T06dOuYPG6667zVTeVKkmJQDeg3AaLkLPMrcJmC1eqBO3bty/XzOGYMWN4+eWXAQgNDSUwMJCwsDDXstLevXsTEBDg416ryixvxnCnwswsngeuE5GVjvc3ikiC49hQ4FMRKXIVT2NMS+ANYCh2aeu3wOOOIsOXurY6MBW4E6iH3QPytIgsz3NeQ+B5IApoBhzCLql9QUSOerhv+XpyeuwYPPMMzJwJWVkQEAAPPgh/+hM0aeLr3ikFQHJyMnv37iUsLAywA2jLli0BaNeunWt5af/+/alSpUKUbFXlgJdnFtsCXwKvAouA43nPEZFsb/SluMrd+KiUD8TFxTFv3jwSEhLYtWtXrmODBg1i6dKlAGRnZ5OVlUVV3RqkyqiiziwewgZkAHuwS08THJ/bFrMDgdgnrGnA3dj9jy8B8caYriJy7hK3mAkMB54CdgEPAV8bY/qJyCbHdxggDmiPDRh/AjoBLwK9HOeW75EvIAC+/BJEYPx4mDzZpiRXyoeys7NZv369K3tpUlISbdu25eeff8YYQ4sWLZg5cyZhYWF06NDB191Vyht+dvz8oIDjQhESzimlfEtE2L17N4mJiQwfPpzGjRsDNlh8//33AahTpw4DBgxwzRyGhoa6rvfz89O996rcKMzgtBKb3GYB8BEw2RgTDGRiA724YnzvvUBroIOI7AQwxmwGdgD3Aa8XdKEjK+sdwHgR+cDRlgj8iA0ERzpObQf0B+4TkRmOtgRjTDYwHRtEbi9G333nzBmYPh0eeghq1oTateHf/4Y2baBjR1/3TlVyW7Zs4a233mL+/PkcPHjQ1V6zZk26devG+fPnXXsw8u7VUKqCexG3pHBKqbItNjaWSZMmkZycTKtWrYiJiaFv376uGocJCQmuMk7//e9/ue222wC48847CQkJITIyku7du7v2KCpVnhUmWHwBaO54/zegIXArEIgNFB8pxveOBFY7A0UAEfnVGPMdMIqLBIuOazOAz9yuzTTGfApMNMZUE5E0wLnw+3Se6086fpafRzoXLsA779jaiEePQnY2TJxojw0f7tu+qUrr8OHDnDp1ivbt2wNw8OBBZsywz2VatGjByJEjiYqKIjIykurV81XcUarSEJEpvu6DUqpwYmNjmTBhAufPnwdgz549/OY3vyHvYrT69esTHh7umlUEiIyMJDIy0pvdVarUXTJYFJFfgF8c7zOAJx2vy9EZmOeh/UdgbCGu/VVEznu4NgC7NPZHx2s58JwxZiewDbsM9XngKxH5qfjd95LMTPjPf2DKFHA8waJfP3Ds/VLKm0SEH3/80bW89IcffmDkyJHMnTsXgIiICKZOncrw4cPp3r271nxSSilVLogIu3btIiEhgUcffdQVKLof9/PzY/To0URERBAZGcnVV1+tS0lVpVCoPRLGmB7Ac0A4dv9ibxHZaIx5GVguIouL+L0NgBMe2o8D9S/jWudxRESMMTdil86udTtvIZcOSH1vyRJ49FHYts1+7tIFYmJgxAhbQ1EpL1m/fj0fffSsAkeVAAAgAElEQVQRcXFx/Prrr672atWqUbVqVUQEYwzVqlXj2Wef9WFPlSo7jDFZQD8RWePY/nCxZagiIrpnUSkvOnbsGHFxccTHx+daVloQEeGLL77wUu+UKjsu+UjEGDMA+B7oCHziuMYZrWQD95da7y7fe9j9lvcDEY6fvYDZxhiP/3ZjTL6XT1KEnz1rA8XWreHjj20NxagoDRRViYmNjSU4OBg/Pz+Cg4OJjY0F4MSJExw9mpMseMWKFfz973/n119/pXHjxtxzzz3MmTOHlJQUZs2apTOIqkybMmWKx9/rXvAisM/t/cVeU73Rocvl0zFRqcuUnJzM5s2bXZ9/+eUXxo8fz0cffcTevXtp0KABN910E/Xre56zaKUJBFUF5z5euitM6YyVwDFgNOAPpAO9RGSDMeYmYJqIFOm/IGPMYWCuiNyXp/1tYKyINPZ8JRhjPgO6i0iHPO23YPcxXi0iPxpjhmOT8gwRkaVu5w0FvgFGi8i8PPfwXYLU1athzRo7mwg2w+nnn8NNN4GmVlYlLO+eDICqVau6spY+/fTTxMTEALB7927effddoqKi6Nu3r27YVxWCN0tnVARaOkOVN/v37yc+Pt41c7hr1y4iIyOJj48HIDMzk3HjxtG/f38iIyPp0qULfn5+HsfHwMBAZsyYwbhx43z1z1HKq4paOiMUuMmxrDPvSJECFBjYXcSP2L2HeXUCthbi2mhjTGCefYudsIGsM2lOF8dP9yWoAGscP0PwvG/Su7ZsgWefhbg48PeHYcOgXTs7g3jrrb7unaqgJk2alG9PRkZGBj/99BP+/v65ZhaDg4P585//7O0uKqWUUkX2/vvv88orr7Bjx45c7XXr1qVx48aurRNVqlThs88+y3e9MyDMmw1VA0VVWRUmWLyAzXzqSTPgVDG+Nw541RjTWkR2ATjKcYQBEy9x7XxshtaxwIeOa6tgM7R+48iECrY+JEAf4Fu36/s6fu4vRr9Lzq5d8Pzz8MkndhYxMBAefxwaFyf2VurSMjIyEBECAgJITk72eI4xhqNHjxa4DEcpVXTGmGUXOZyNHUfXAzNF5LB3eqVU+Xb48GESEhKIj49n7NixDB48GLB7C3fs2EHt2rW59tprGThwIAMHDixSKYtx48ZpcKiUQ2GWocZhk9oMdDRlAD0dCW6+AVJE5I4ifakxNYEkIBV4FrvxfypQG+gqImcd5wVhM7G+KCIvul3/KXA98BTwK/AAMALoLyIbHOfUAX7C7q+cis2G2hGYjJ2B7OT8Hrf7lv4ym+xseOQRmDHDZjutWhXuvx+eeQauuKJ0v1tVOufOnWPx4sXMnTuXBQsW8M9//pM77riD4OBg9uzZk+/8oKAgdu/e7f2OKuVl3lyGaoyJx9b2bYYdsw4DTYGrgIOOzyHAWSBCRC61wsbrdBmq8rWjR4+SmJjoWlr60085Se0fffRR/v73vwOQkpLCrl27CA0NpUoVzRulVHEUdRnqc8B32OBuNjawu9sY8zrQE+hd1A6IyDljzCDgDWy2UgMsBR7PE8AZ7D7JvMlo7gFigJewgWwScIMzUHR8x2ljzDXAFOCP2EH6IHZmckreQNFr/PwgJcUGjXffbctiBAf7pCuqYkpJSWH+/PnMmTOHJUuWcOHCBdexNWvWcMcddxATE+NxT4Zzn6JSqkS9DkzDsd/f2WiM6Ql8jl0tsx67nz4GiPZFJ5UqS44dO0aDBg1cyTaGDh1KUlKS63hgYCBhYWEMHDiQYcOGudobNWpEo0aNvN5fpSqqS84sAhhjQoG/YUtn+GOXzawAnhCRjaXaQy8qlSenZ8/Cm2/CtdfaF8Du3XD+PHTqVLLfpRQQFhbGqlWrXJ/79evH6NGjiY6Opl27dq722NhY3ZOhKi0vzywmAa+KyEcejt0FPCUiXYwx9zjOa+iNfhWFziyq0nbixAkSExNdS0s3b97Mjh07aNu2LQDPPPMMa9asITIykoEDB9K7d28CAgJ83GulKib3MbJQwaLbhdWxdQxP5kkuUyGU6GCYlmaXmr70Ehw5AtdcA6tWaekLVSJEhP/973/MmTOHOXPm8O9//5tu3boB8MYbb/D1118zevRoRo0aRbNmzXzcW6XKHi8Hi6lAtKeaxMaYYcCXIlLDGBOO3Xtf3Rv9KgoNFlVpOHHiBFOnTiUhIYFNmzbh/v9j1apVY9asWURFRfmwh0pVTu5j5CXrLLoTkQsicsAZKBpjqhljHiuNTpY7sbF2OamfHzRqBFdeactgHDkCffpATIwGiuqyZGVlsXLlSv7whz/Qtm1bunbtyuTJk9m0aRPz5uUk9v3973/P4sWLuf/++zVQVBWK+6/Z4GD7uZzYDdxbwLEJjuMAjbClqsokrbOoLsfp06dZtGgR//rXv1xtgYGBTJ8+nY0bN1KlShWuvfZann/+eeLj4zl58qQGikp50eXUWWwEHHN/pGiMqQE8CDwJNBWRClF4rdhPTmNjYcIEu7TUXfPm8M9/wqhRGiiqyyIidO7cOdeG/saNGzNy5Eiio6MZPHgw1auXuckIpUqMp1+zgYF2AUdxVk97eWbxduBjbOmnL4AjQBPgZuBq4A4R+dRRa/gKEbnJG/0qCp1ZVEV19uxZVq5c6VpWun79erKysqhVqxbHjx+nqqOG9MyZMwkODqZfv34EBhaUfF8p5U2XXIZqjKkG/BUYjy2bcQqYJCLTjTF3YvcvNsXWMHxWRJZ4q/OlqdiDYXAweMgsSatWntuVugjn09e4uDjeffddateuDcBdd93FypUriY6OJjo6mn79+hU6DbhS5Y1IzjO2uXPhllsgIyP/eUFBdht4UXkzWHR831BsIpueQFVsZvF1wGQR+dZxTnUgS0Q8/EsLvG9LbLK4odikcN9ik8V5ro+Tc10Q8CbQHRu4nsMGs38RkUUeztdgURXarFmzuP3228nKynK1ValShd69exMZGcnEiROpU6eOD3uolLqYwgSLMcCfsIPOBmx672jgXeAh4Gfshvz53uq0NxR7MPTzs3/Z5L+hzXqq1CUcOnSIuLg45syZw9KlS8lw/FX8+eefM3bsWMCWwQgMDMy3PECp8iw7G379FTZtgqSknNcTT9iV/ABz5sBNBcy1FffXrLeDRbfv9cMuN00RkcsaIIwxgdhs4GnklKF6CfuQt6uInLvItZ2BJ4AEYB9QB7tUdjhws4h8med8DRZVLqmpqXz//feuUhaRkZG89NJLAGzdupUuXbrQq1cvV0KaAQMGUKtWLR/3WilVGIUpnXEr8LaIPOx20XjgX8ASIEpE0ku9p+VFQTOIrVp5vy+qXLlw4QJDhgxh1apVro39fn5+hIeHM3r0aPr37+86t2bNmr7qplIl4sIFcF8tHR0N335rk0bntXlzzvvISGjaFA57KFdf3n7NOgLEIyV0u3uB1kAHEdkJYIzZDOwA7sOW7CioHz8Cv3NvM8YsxNaBvAf40tN1qnJbs2YNixYtIj4+ntWrV5OenvOnYEZGhitYDAkJ4cSJEzp7qFQFUFCw2BKYk6ftS2yw+HpFDhSdszaTJ08u/Cb+mBjPm2m0Zp1yIyJs3LiR+Ph4nnzySQCqV69OamoqAQEBDB06lOjoaKKiomjcuLGPe6tU8YnAwYM5s4XOn7t2walTUKOGPe/cORsoNmsG3bpB9+72Z7du4Fblhfr14bXXLv/X7JQpU3jhhRdK5h9ZDMaYbkAHIN8GYxH5TzFuORJY7QwUHff51RjzHTCKiwSLnohIpjHmFJBZjL6oCiYtLY0ffviBzp0707Chreby/vvv8+677wL276UePXowcOBA18yhkzFGA0WlKoiClqFmA9eIyBq3Nn/sHotcRYUrkstaZhMbC5MmQXKyfdQdE1O8rAuqQsnMzGTlypXMmTOHuXPnkpxstxFt3bqVkJAQALZt28aVV17p2puoVHmSkWEDvvr17ecVK+yS0ZSU/Of6+8OGDdC1q/28YwfUrQtNmhTuu0ry16yXE9zUAxYC1zibHD9dA05xEsUZYw4B80TkvjztbwNjReSST50cy2KdS2MnYJezDhORpXnO02WoFVx6ejpr164lPj6ehIQEVq1aRWpqKv/5z3/4zW9+A8CSJUtYuHAhAwcO5Nprr6VBgwY+7rVSqjQUZhkqwJXGmNZun/3d2k+6nygiu0q4j+XPuHEaHCqXo0eP8sc//pH58+dz7FhOJvxmzZoxevToXIWEO3bs6IsuKlVkJ07kninctAm2boU774SZM+05zZvbQLFu3ZyZQufPTp1yL0N1nz0sjHL8a/ZloCEQDqzA5gA4hU0i1w+4rZj3bQCc8NB+HKhfyHv8FZvZHOAscFveQNHJ037pIq3CUWWSiBAVFUV8fDzn82R1v/rqq3MlUhs6dChDhw71dheVUqWkMCtuLjaz6OkRovHUXulLZ6hK78SJEyQlJREZGQnY5TuNGzfmzJkztG/fnujoaEaPHk2fPn3w8ytSeVOlvC472y4ZbdUKnM817rgD/vtfz+ePGmUzljqv3bvXXluWczF5eWbxF2wm1FjsCp3eIrLecWw6UFNE7irGfdOxW0Mm5ml/CZgoIhd7IOw8twVwheN1F3Zp6xgRWZDnPB0fy7nMzEw2bNhAfHw8a9asYdasWa7xKCwsjFWrVtGpUydXQprw8HCaFHbaXylVoRRmZvEeL/ZHqXJp3759zJs3jzlz5pCYmEjVqlVJSUkhMDCQatWq8eGHH9KxY0c6duyoGUxVmXX+PGzZknvGcPNmu7R07Vro1cued+WVdq9hly65Zwu7dAH3rUl+frachcqlGbBLRLKMMRcA9zXnXwKfFvO+J/A8g1jQjGM+IrIPmw0VYIExJgF4FVhQ4EWqzIiNjWXSpEkkJyfTqlUrYmJiGOeYfs/KymLjxo2uOocrVqzgzJkzrms3b95M9+7dAXj33Xdp3LgxTZs29cm/QylVdnkMFkXkQ293RKny4PDhw8ycOZO5c+eydu1aV7u/vz/9+/fnyJEjBAcHAxAdHe2jXiqVnwgcOADHj9sAD2wS56uu8lz5x7mc1GnyZHjlFbvvUBXZIaCe4/0e7NLTBMfntpdx3x+Bzh7aOwFbi3nPdcDjxe6R8prY2FgmTJjgWjq6Z88e7r33XgDGjRtHUlISvXv3znVNu3btXDOHzrEK7HJTpZTyxOMy1MpKl9movLKzszl06BDNmzcHYOfOnbRzbLSqUaMGN9xwA6NHj2bEiBG60V+VGenpsG1b7tqFmzbBsWN2ptD5nCM7Gxo1ghYtcmci7dYNKnpCXi8vQ/0PkCwizxpjngGeBz7EZh29G4gTkTuKcd/HsbOA7Z25A4wxwdjSGRNF5LUi3s8PWAXUF5EOeY7p+FjGBAUFuZKm5W3fvXs3WVlZ9OnThx49ehAZGUlkZCQtWrTwQU+VUuWN+xipwaIbHQwV2IxwiYmJzJkzh3nz5tGgQQO2bNniOv7MM8/Qp08frrvuOgIDA33YU6VsAJiUBCEhtgQFwB/+YEtN5FW/PlxzDSxcmLOfMDMTqlxyZ1vF4+VgsQ3QXERWGGOqAq9g6xkHAouBR0Tk2MXuUcB9awJJQCo2i6kAU7HLXLuKyFnHeUHAL8CLIvKio20Kdrnqd9iZzyuwdReHAHeIyKd5vkvHxzIiISGBd955h88++8zjcWMM2dnZXu6VUqoiKWw2VKUqjbNnz7J48WLmzp3LggULOHXqlOuYv78/J06coL6jNsDLL7/sq26qSkwEdu7MP1u4z7HbbOZMGD/evu/eHdq2zV+7sGXL/ElnKmOg6G0i8gs2WENEMrDZR5+86EWFu+85Y8wg4A3gI2wSuqXA485A0cFgM5q7Z9fagF1uehtQFxswJgHXish3l9s3VTL2799PfHw8HTp0cC0p3bNnT4GBIkCrVq281T2lVCWgM4tu9Mlp5ZKdne3KBBcXF8eoUaNcxzp37uzKYBoaGqoJapRXnTtnk87s2wdjxti27GybSObcudznBgbaPYi//z3ceqv3+1peeXNmsSLQ8dE7jh07Rnx8PMuWLWPZsmVs374dgAceeIC3334bgEOHDvHll19y/vx5Jk+enKvcRWBgIDNmzHAluVFKqeLQZagF0MGw4tu9ezdz585lzpw5tGjRgtjYWABSU1MZPnw4w4YNY/To0a59iUqVtmPHYPXq3LULd+60M4k1asCZMzlJZW66CdLScs8Ytm2rSWeKwxfBojGmJdASqJ73mIgs82ZfisoY4xoctbZi6Rg3bhyffPJJrrZatWoRHh7Orbfeyl135a+ucrFsqEopVRR5ay5qsOiBBosVj4iwZcsWV4C4adMm17GGDRty+PDhXAWHlbpcsbEwaRIkJ9tagzExtpB8ejr89JMNCDt2hD597Pkffgi//W3ue1SpYgvYd+sGb74J9erl+xp1mby8Z7E1tsZiH2eT46c43ktZr1es42PJuHDhAt9//71r5vD999+nQwebS+ipp57iH//4B/3792fQoEEMHjyYXr16UbVqVR/3WilV2ejMYgF0MKx43nzzTR577DHX51q1anHjjTcSHR3NsGHDqFu3rg97pyqa2FiYMMHWLnTy97dlKA4dgowM2/bYYzBtmn3/44/wyCO59xaGhEC1at7vf2Xi5WBxGdABm9hmG5Ce9xwRSfRGX4pLx8fiycrKYu3atSxdupRly5bx3XffkZaW5jr+z3/+kwcffBCA48ePU6NGDWrUqOGr7iqlFKDBYoF0mU35lZaWxtKlS5kzZw5du3blkUceAeCnn34iIiKCUaNGER0dzaBBg6hePd8KMKWK7fBh2LjRLh+dPt3OKHpiDLRpY4PCUaPgzju9209V8BKb0maMOQP8VkS+8Mb3lQYNFgsnOzub3bt307p1a8Bm165fv36ufYXdunVj8ODBDBo0iGuvvZY6der4qrtKKeWRBosF0MGwfDl16hRfffUVc+bMYdGiRZw9a5P/9ejRgw0bNrjOy8rK0qWmqkScPg0JCbBhQ85r//6c48Z4LnBvjL22Vi2vdVVdgpdnFn8C/igi873xfaVBx0fPRIQdO3awbNkyli5dSnx8PKmpqZw4cYKAgAAA7r//fowxDB48mMjISBo1auTjXiul1MVpsFgAHQzLnoI27//1r3/l2WefJcO5rg/o3r27K4Np165dfdhrVd6JwK+/2mAwMBBuvNG2b9wIoaG5z61dG3r0sO2ffw4HDuS/X1AQ7N5d6t1WReDlYPE3wH3A9SJy7lLnl0U6Pua2fft2YmJiWLZsGfvdnxgBLVq0YOnSpbRv395HvVNKqcujdRZVuRAbG8uECRNcy3f27NnDhAkTAGjdujVZWVmEh4cTHR3NqFGjuOqqq3zZXVWO7dplM5K6zxg6S20OHJgTLHbuDEOH2qWkoaH21bYtOCqw0KtX/j2LgYE2yY2qvETkI2NMR2C3MWY1cCL/KXK3D7qmCuHo0aPEx8fj7+/PzTffDNg/pD766CMAGjVq5EpIM2jQINq0aaPllpRSFYbOLLrRJ6dlx86dO+nduzcnT57MdywoKIht27Zx5swZGjdu7IPeqfIqI8NmJN2wAW64Aa64wrZPmADvvZf73CZNoGdPCA+HiRML/x0FZUNVZYuXZxZ/C7wPZAFHyJ/gRkSktTf6UlyVaU//6dOnSUxMdGUs3bx5M5B7i4OI8O677xIWFkbnzp1dNXuVUqq80tIZhaDBou+9//77vPnmmyQlJRV4jjGG7OxsL/ZKlUdZWXbZqPts4ebNtk4h2CWjY8fa9//9L3z2Wc5sYWgoNGtm9xqqisnLweIeYB3wOxHJ/wSsHKgs4+Nf//pXnnnmGbKyslxt1atXZ8CAAQwdOpSnnnpKZw2VUhWeLkNVZca2bdto0KABTZo0AWDv3r0kJSVRu3ZtsrKycmWQc2rVqpW3u6nKuHPnbP3CI0dg9GjblpEB11xjg0Z3bdrYYNB9Uvr22+1LqVLSEHi7vAaKFU1GRgZr1qxxzRz+3//9n6uQfdu2bTHGEBYW5lpaes0111BNa9kopSopnVl0U1menPra1q1bmT17NrNmzeJ///sfr7zyCk8//TQAu3fvZsuWLVx33XXMnj07155FgMDAQGbMmOEa2FXlc/p07tnCDRtg+3bIzoYGDSAlJWdG8Kab7J5B52xh9+5a4F5ZXp5ZXAwsEJG3vPF9paG8j49JSUksWbKEZcuWsXz5cs6dy8kzdOedd7r2H164cIHMzExqaepipVQlpjOLyuu2bt3K559/zqxZs9i6daurvV69erkymgYHBxMcHAzgCgg9ZUNVlUNKil1K2qoVdOhg2z76CB5+OPd5VarA1VfbgDA11QaIAF9+6d3+KlWAx4DPjTEngMXkT3CDiOja+hIiImzfvp127dq5yiY9+uijLF++3HVOSEiIa+YwIiLC1a51eJVSKjedWXRT3p+cliXO/zs693aMHTuW2bNnA1C/fn1Gjx7N2LFjGTx4sKsWlarcDh7MP2PoLHA/aRK89JJ9v2aNDRbd9xdefTXo33iqKLw8s+gMBAsaYEREyvTD27I+Pu7Zs4elS5e6lpYePHiQtWvX0qtXLwDefvtt1q9fz6BBgxg0aBDNmjXzcY+VUqrs0plFVSpEhKSkJNcS09dff53hw4cDcNddd1G3bl3Gjh3LoEGDqFq1qo97q3xFxAaBSUkQFZWzZHTIEHCbdAbsDGGPHtCiRU5bnz42YFSqHHmRggNFVUxnzpzhiSeeYNmyZezatSvXsaZNm3LArejpgw8+6O3uKaWU15RmJnadWXRT1p+clkUiwsaNG10B4s6dO13H7r//fqZPn+7D3ilfy86GX37JP2N4/Lg9vm8fXHmlff/wwzZYdJ8xbNcOHKvIlCpR3pxZrAh8PT6ePHmShIQEfvnlF5588kkAsrOzadq0KSkpKdSrV4/IyEhXrcOQkBDNWqqUqhRiYz3XeJ4xo/gBo/sYqcGim8pUR6qkDBs2jMWLF7s+N27cmJtuuomxY8cSERFBlSo6eV1ZZGXZRDOZmdC1q21bvhzctgO5NGxoaxhOmwYhId7tp6q8CqohVRqMMUWqmygiuy59lu94e3w8d+4cK1eudC0r3bBhA9nZ2VSpUoXjx49Tu3ZtAObOnUuLFi3o0aOHa3+iUkpVRCJw8qSdPdyzJ+fn22/nDhSdgoJg9+7C31/rLBaCr5+clmUiwtq1a5k9ezYPPfQQQUFBADz33HO89957rgAxPDxcB+xKID3dzgK6zxZu2mSTy0RFQVycPe/0aejUyS4ldZ8xbNFCaxgq3yrtmUXHPsVCDygiUqZ/cXpzfPz666+JiorKlfysatWqXHPNNQwePJhHHnmEBg0aeKUvSinlLZmZcOCADQKTk20uB8dCCsD+LbVpU+HvZ4xd4VUcumdRFYqI8MMPPzB79mxmz57Nnj17ALsXxLkMaOLEiUyZMkUDxAosNRW2bLEzgI6H+Ywfb5c95BUcnLOsFKBOHbvUVKlK6B5fd6AsiY2NzZXZeurUqYSEhLiS0nTq1Ik33ngDgC5dupCVlUXv3r1dCWnCwsKoWbOmj/8VSilVfGfP2iCwbt2cv5W+/RZeeMG279+fvzb0ffeBs5JPw4b2fVCQ3Zfo/Pnaa3DsWP7vK6my5BosKo8mTZrERx99xN69e11tzZs3Z8yYMQwaNMjVpoN3+eVpM/TIkTbxjPuM4dat9pfXokUwbJi9tkcPWLs292xhjx62zqFSCkTkQ1/3oayIjY3NVTN3z5493HXXXbnO2bVrlytYbN68OSdOnKBOnTpe76tSShWHSO4VU//4B/z8c84s4Z49cMJRNOnFF+G55+z7tDRYuTLnumbNcoLAVq3sbKPTggVQrVr+lVmtWnnesxgTUzL/Nl2G6qayLkPNzs5m1apV9O3b15WlNDo62rUXZMyYMYwZM4Z+/frh5+fn496qkhAbC/fea2cNnWrUyP3Zyc/PzirGxMCoUbYt7y9FpcobTXBTNJczPgYHB7tWprirUqUK99xzD4MGDSIyMpIrrrjicruplFKl5sgR2Lw5Z7+g+97Bs2fh0KGcczt2tHkc3FWvbgO7++6DJ56wbceP24f0QUF2trFateL1raSzoWqCmwJUpmAxKyuL7777jlmzZvHFF19w8OBBFi9ezPXXXw/A+vXrSU9Pp2/fvhogVgBpafaX0dq1tuzEJ5/kflrlVKUKdOmSe8awa9ecIvdKVRQaLBbN5YyPfn5+eLrWGEN2cTfUKKVUCRGxyzg9BYG//S2MGGHPe/dduP/+gu9z+nTOdp3p0+HChdyzhI0bl58H7bpnsZISERITE5k9ezZffPEFh9wegQQFBXH69GnX5549e/qii6oEZGfb4LBGDft55kx44AFwyxVRoKwsu/RUKaVKSqtWrTzOLLYqqQ01Sil1Eenpdj+gMwg8fz4n6BOBJk0gJcXztV265ASLISEQGZl7v6DzfcuWuR+sP/BAqf6TvEpnFt1UxJnF7Oxs18ygiNC+fXtXLcSrrrqKsWPHMmbMGHr16qU1qcohEdi7184WOmcN16+HZ5+FP/7RnrNkCVx/vV0S0aePfU2dmnu5hFNR0ywrVV7pzGLRXE7pjLx7FgECAwOZMWMG40qqarRSqtI6dcoGgc2a2dk7gM8/t+W5kpNthlH3P+/r1rUlKJxCQuzfRO7Bn/Ons+ZzZVBQ6QyfzSwaY1oCbwBDAQN8CzwuIsmFuLY6MBW4E6gHbAKeFpHlHs690nHujUB94ADwqYj8qYT+KWVOZmYmCQkJzJo1i7lz57Ju3TpatmyJMYaHH36YQ4cOMWbMGEJDQzVALMfuvRfmz4fDh/MfczwPACA83P5SdM8VUbdu6W6GVkpVPMV9mOoMCN2zocbExGigqFQlVNS9de45EjIz4dVX8y8VdS6M+9e/4He/s+9PnYLvv7fv/fzsfkD3QDAz0xR3858AACAASURBVG69AbuiyrkaqzKbMmWK60Gge3zgk5lFY0wgkASkAc9ia1G9BAQCXUXk3CWujwWGA08Bu4CHgGFAPxHZ5HZeMPAd8CvwJnAYCAbaishzHu5bbmcWMzIyiI+PZ9asWcyZM4djbjl0Z8yYwb333uvD3qniOH/e/gJzzhiuW2dfdeva4zfdBHPm2AykvXvbGcPeve2rMHkiSnoztFLlSUWYWSzuQ1djTC9gAhAOtAJSgBXAsyLyawHXlNvxUSlVNsTGen5Q/cordvYubxCYnAz16sHGjfZcEfvg++zZ3PcNDLRB4MSJ4Ey0vH+/fXDuTBzjyN+oCsnnCW6MMY8BrwMdRGSno+0qYAfwRxF5/SLXdsPOJI4XkQ8cbVWAH4HtIjLS7dzFQAMgTEQuuWOrvA6GGRkZBAcHc+DAAVdbhw4dXEtMu3btqjOI5URysl0iunYt/O9/+evtfPstDB5s32/darNmtW5dfjZMK1VWlPdg8XIeuhpjXgX6AbHYsfNK4DmgCdBdRPZ6uKZcjo9KKd8RsXsB9+yxr3vvzSkf4a5uXTsT6Ent2vaY8++cv/zFzgK6Lxlt0ED/DippZSFYXApUF5GwPO2JACIScZFrn8MOavVE5Lxb+wvARKCOiKQZY9oAO4G7ROSjQvarzA+G6enpfPvttyxYsIA333yTKo459KioKH755RfGjh3L2LFj6dy5swaIZZSIfdrlnDFs2DCn3s6hQ3bNPYC/P1x9dc6MYZ8+0LlzzrIJpVTxVYBg8XIeujYWkaN52oKwq3BeEpHnPVxT5sdHpZR3ZWXBwYM5waC/P9x6qz125oxd5eQ+i1gQY2DgwPz7BVu1soljqlcv3X+Hyq8sBIuHgHkicl+e9reBsSLS+CLXfgr0EJEOedpvAT4DrhaRH40xdwEfAmOB+7DLbc4D84Hfi8gx8iirg2FaWhpLlixh1qxZzJs3j1OOxy9LlixhyJAhAJw7d46aNWv6spvqIlavtsVU1661L/cna+3a2cKtTu+8Y7Nv9eihJSuUKi0VIFgs9kPXi9zzMLBARH7n4ViZHB+VUqUnLc2ueGrWDGrVsm0zZ8LHH9vgcO/e3GW4QkLsqienunVtIBgUZF8JCTaIzEuT65U9ZaF0RgPAw0Q0x7FJaIp7rfM4QHPHz/eBj4A/A20dPzsZY/qISL4CT55m44qa+a2knD17lgceeIC4uLhcZS26dOnC2LFjad++vatNA8Wy4dQpm410zRoYORI6dbLtX32VO3lM06a5ZwzdXayGj1KqaPJmd6tAOgPzPLT/iH1IWiTGmBDsMtSfLrNfSqly5uxZ+M9/cmYIna+DB+3xxYttVnWwAWJCQs61TZvmBIMdO+a+7/79OUEmFLxnUZPrlW0VeUGbs5J8gog85Hi/zBhzCvgUuB74Ku9Fvnxympqaypo1a4iIsA+Ea9asycqVKzl9+jTdunVz7UHs0KHDJe6kvEEkZymps3TFtm05x6tXzwkWhw2zT+icwWGLFrq+XilvcM/u5q4CLNO/nIeuuTj2/b8DHAVmXuS8fG2+epiqlLq048dh1y4b+O3enTsQbNcOZs2y52Vnw0MP5b/e39/+vXLhQk7bHXdAWFhObcGLZRF1DxQhJ4meJtcrOwrzQNVXweIJPA9mBQ1+ea8NKuBayJlhdC4zXZLnvG8cP3vgIVj0ttTUVL766itmzZrFggULOHfuHPv27aN58+YYY5g5cyYtW7akXWUp8lJGZWXB9u32FR2d0z5iBBx12/kTEADdu9ugMDQ0p/2aa+xLKaXKoLeA/sBwESlwDNZlqEqVHVlZtn5g3tnAP/0JgoPtOU89Be+/7/l69wCwTh14+GG7x9A5SxgUBM2b58+T0L69fRXXuHEaHJYlhXmg6qtg8UfsEpq8OgFbPbTnvTbaGBPonuDGcW06NqmN87yLybcE1VvS0tKYP38+s2fPdgWITj179uTgwYM0b25X0Q4aNMhX3ay0ROwTL+es4dq1tmTF2bO2Vs/p01Czpp0ZvOUWOHcuZ8awSxeboVQppUrZ5Tx0dTHGvIIto3G3iHxzqfOVUt7h3C+4Z4/9u+Laa2377t0QGQn79uXPmA4walROsNipE3TrljsAdCaOcZ7j9I9/lN6/RZVvvkpw8zjwKtBeRHY52oKxWdwmishrF7m2B7AB+K2IfOhoqwJsAXaKSJRb215gvYiMcLv+duATYIiILM1z71LbwJ+VlYW/vz8AJ06coGnTpmRk2GoevXv3di0xveqqq0rl+1XBjh2D1FS71AJg3jwYPTr/ea1a2YBw2jRbs0cpVX5VgAQ3y4AAERmQpz0BO7ZfMsGNMWYSttzGIyLy1iXO1QQ3SpWg06ftfj3nzN3MmfDNNzkzhIcO5Zw7ZAgscayTO3vWlpOA3PsFna8RI/6/vXuPl6qu9z/++rC5yMZEwBIvwEZEOpp4A03w5y21UovjycpEU8uwjsfELmrq74AGWcfUbieVPB0q0BIqMzWOHa+Jd/GSlzSIi5iGXOUmsOFz/viucdaetWbvmWHPzJ6Z9/PxWA/2WvNdM9/9ZVgfvvdkRVCkWF1hgZufAP8G/M7MMvtDfZNQubspkyhaynsBcJW7XwXg7s+Y2a+A75lZD8JS318ChgLvdmy7e6uZXQpMN7Mbgd8QFriZCjwA3NeZv9DMmTO5/PLLWbJkCYMHD2bq1KmMGzeOO++8k1mzZjFv3jzmz59PU1MT/fr148ILL2TgwIGceuqpDBmSNqpWymH9+rC5a6bH8Iknwnj+c87JDtU4+OCwZ098AZrRo8NDWUSki7gD+K6Z7ZXT6DqWsI1Uu8zsy4SK4uUdVRRFpDRr1oRKXu5Q0cWLYfVqeP75MCIJ4PHH4bbbsvc2NYU5gUOGwCGHZK/vuGNYQV1bSkilVKVnEcDMBgPXA8cDBtwLTHT3RbE0LYTK4JXuPjl2vTeh0nc6sDNhY+JL3P2BlM85E7gEGE6Yzzgb+Ia7r0tJW1LL6cyZM5kwYQIbYss7NTU1YWa0xtYUfuKJJxg9enTR7y+l2bIlDBuNOnSZMCG03G3LGYDcu3cYTjp9ejjPfAVqf/0LEcmnDnoW+xBi30Yg3uj6HmBkJsalNbqa2WmEETb/A+SubPC2uyemg6hnURrJzJntL8LS2tp2vmB88ZjRo7Ore778cnahu1y9e8Ndd4X9BQHmzg3vE58vmPn/i0ilVX2fxa6q1GDY0tLC4sWLU18bO3Ysp556Kp/4xCcYNGjQ9mZR8shsdB9fmfSZZ+Chh8KDG+Cyy+A//iO04mV6DA89NDzItdG9SGOp9coilN7oambTgbPyvO2D7n50ymepsigNIW17hx494IYb4PPRDqQnnhi2xEpz7LFwbzTJacOGsHpo7lDRIUNgl13UKC1dlyqLeZQaDLt165a6SpyZsS23G0uK0lHr3urVoVfwySfDz7mmT4ezov8SrVoVJolro3sRqYfKYiWpsij1ZOPG8P+K7t1h2LBw7c9/hvPOC8NB0/7rtttuoTcR4EtfgttvT68EDh8O2uFMap0qi3l0ds/ikCFDWLRoUSfkrDGlte41NcHIkTBvXjh3D/MLV68OSz7H5xmOGhVeExHJpcpicczs3eCovRWllsyaBU8/HYZ4ZoaLZhaPOeus7BSUV19tv5Jnlq1EuqtXUOpP7p6Lqiym6Mw5i83NzUybNo3x2kymJE8+GYZyrEvMLA02bsxO7P7Tn2Do0LBCqR7eIlIIVRaLo55F6UreeQcWLMhW/jIVwcz5yy9nG4tPOgnuvrvt/d27h9FK48bBddeFa5s3w2OPhWGjr7+e/MwhQ8L7izSCrrAaal3JVAhzV0NVRbFjW7bAs8+Gid0HHQRHRYu9//Wv+SuKZtCzZ/Y8s/eQiIiI1L61a5OVwFGj4LTTwusPPwzHH5///sWLs5XF00+Hww8P20m0tORfPKZnTzjySPjOd5Kjmpqbs4vWiDQa9SzGqOW0/FauhEcfDZXDRx4Ji9Fs3BhemzABboo2Tvn732G//dLnIap1T0S2l3oWi6P4KJ3p7bezvYAnn5wdFXTaaWGriZUrk/eccQb84hfh5wUL4KMfzVYA4xXBlpYwv7Bbt9Lz19F6CSL1Tj2L7bDoiaU5GdvPPfQQDhuWbcEbNy60CMaNGAFjxoQHf8buu8OPfqTWPRHpPLnzMUSkPFpbs6uMv/QS/OQnbXsJ4w3Bb70VVgaFsBfyypVhmkmm4pc54juPDRsW5hiWy/jxqhyKZKhnMUYtp9vnnXfgqaeyvYaPPALLl8Nzz4VFaQAmTYL77oOxY0MFccyYbJBIo9Y9ESkH9SwWR/FRcj3/fNiyKm3O4PnnZxt2778/rEEQ17t3thJ4440hvkO4d4cd4H3v0xoEItWk1VDzUDAszZtvwimnhNXGtmxp+9quu4aVxj7ykapkTUQklSqLxVF8bBzusGJF28rfokVh0Zdf/zpbiTvwwNAYnCa+yuiyZfCzn7UdKvre96oyKNKVqbKYh4Jhftu2wYsvht7CuXPDEJNbbgmvbd0K/fqFBWk+8IFsr+HYsWGVUgUEEelqVFksjrbO6JpKGX3jHoZ+ZiqD++wTKn4Av/1tmBsYn/4R949/hF4/gIkT4W9/Sw4XHTIEBgxQ7BepNdo6owCqLLb18sswe3aoID76KKxZk32tV69w3qtXOH/yybAR7c47VyevIiLFUGWxOIqPXU/aXsTNzTBtGnz4w22neFx8cdh0PtNTmFlYDuCSS+Db3w4/P/ggHH009O2bXDSmpQVOOAH69Cn3byYi1aaexTwaORguWRJ6DIcPD8tTQxg2cvbZ2TSDB7ftNTzggO1bbUxEpFpUWSxOI8fHrmrPPdP3A4TQkLthQzZGH3wwPPNM9vV+/bIVwFNOgTPPDNc3bw73qeFXpLGpsphHowTD1tYwz2Du3OxiNEuXhtfOPz+sQgqhBfL667MVxD33rFqWRUQ6lSqLxWmU+NhVrF4NCxdmj0WLwp9nngmf/nRI094wzwED4C9/yfYu3nVXmE6S6Sncaady/wYiUsu0dUaDWbUqDCnJtDB+6EPw0ENt0+y8c6gQHnJI9lpLC3z/+xXLpoiISENYvz47Z3D58rAgTMbw4WGV0TT/9E/ZyuJuu8EbbyTTDBoURgvFnXRSZ+RaRBqRKot1xj0EmcxCNHPnhj2OXnopBBkIFcI33sgOJx0zJrymIaUiIiLbb/PmsPhb797h/IEHwhYRmV7CZcuyaXv0CIvKZPYj3nnnMPdw6NBwtLRkfz7ggOx911yTPmfx6qvL/MuJSEPRMNSYWh5ms2wZnHdeqCTGgxCEuQu/+hWMGxfOt27NBiURkUakYajFqeX4WE4PPRRWBM0ME81UBl9/Hb73PbjggpDu1lvh9NOz9/XsmV04ZuhQuPZa2HHH8NrateHnQlYT1V7EIlIOmrOYRy0Ew2XLsr2GmzbBD34Qrm/ZElojN2wI+xeNHZs9Dj44u2qpiIioslisWoiPnck9bBORO2dw40aYMSObbtddkw20EEbq/Pu/w6RJ4fy110LvYqZyuPvuGs0jIl2XKot5dMVguGQJzJmTrSDG5zE0N4dJ8D16hPM5c2DvvWHYMO1vJCLSHlUWi1OP+yyuWpWtDI4cGeYKQth6YuLEtttLZDQ1wTvvQPdoEs+ECWH+Ye5w0UGDsrFZRKQWaJ/FAlS7srh+fdivcNdds/MLb74ZvvCFbJrmZjjssOx8w+OOU0ASESmWKovFqXZ8LMWmTdlRNe7w9a/DggXZnsL43sHXXx8qiBCmbZx2GvTvn6wEDh0Kxx+frSyKiNQjrYbaDou65CrRcrp0aXbrirlz4dlnw3zCiRND4AI48siw8llmIZoDDlCQEhEpRW6rqdS+N98MW0HF5wxmKoPNzeFPCKNtbrml7eqhffpkK4CDB2evf+xjYdRO374V/EVERLoo9SzGlLPltLU1DF/JDA898UT4wx/apmlqCpXB8ePhK18pSzZERAT1LBarGj2Lra2hUTU+Z3DhwjDa5sgjQ5prroGLL06/v7k59B5mGlhnzAg9jZmewgEDNGVDRCSNehbLIHdFsiuuCJvYZ3oNH3889BzuvXdIv9deodXy8MOzQ0oPPTS7GpqIiEi9SFu18/TTQ8/gwoWwbh2ccEJIu3UrjBgBixeHCmOuAw/MVhb33x+OOSZ9uOjAgW0XkTnjjLL/miIidUc9izGltpzOnJnc6yjNbbfBJz8Zfl67NgyB0WpoIiKVp57F4mxPz2JajDQLo2kylcE99gi9iBl77hm2n9htt7YVwKFDQ+PqiBHb8cuIiEi7tBpqHqUGw5aW0AKaq2dP+PKXQ8/hmDFh4RoREak+VRaLsz2VxXwxEsJQ0KFDwyret96aHRb62mthG6gddigtvyIiUjpVFvMoNRh26xZWWku+H2zb1gkZExGRTqXKYnG2Z+sMxUgRka5PW2cUoLN7FocMya7EJiIiXYcqi8UpR8+iYqSISNcUj5GaMdcJpk4Nq67FNTeH6yIiIuVgZoPMbLaZrTGzt83sN2Y2uOM7wcy+ZWb3mNkKM3MzO7tc+VSMFBGpXaosdoLx42HatNBKahb+nDYtXBcREelsZtYM3Ae8HzgLOBMYDtxvZn0KeIsLgN7AnWXLZEQxUkSkdmkYakw19pESEZHKq/VhqGZ2IXAdMMLd50fXhgJ/BS529+s6uL+bu28zs72je85x9+ntpFd8FBFpEBqGKiIiUts+DjyWqSgCuPtCYC4wrqOb3V1Ly4iISIdUWexkxawQ1yhUJkkqk3QqlySVSZLKBID9gBdSrr8I7FvhvBRMf3dJKpMklUmSyiRJZZJUjjLRMNSY7VkaPPYeqEzbUpkkqUzSqVySVCZJpZZJvmXBa5GZbQauc/dLc65PAS519+4Fvk9Fh6Hq+5ykMklSmSSpTJJUJkmdVSYahtoOd8fd1VohIlJnJk+e/O4zXopnZolDsVJEpHZNnjw59dkep8piHpUOgKV+XiXvU5l07n2V/Kxaua+Sn1Ur95Wqkv/G67lMurBVQL+U6/2j1zpdpqLt7kyaNKliDau18r2she+zyqTz7lOZdN59KpPOva/Yz4g/09MaVDUMNSY+zKbUbtx6vq8W8lgr99VCHmvlvlrIY63cVwt57Kz76mA11PuAnu5+RM71Bwix/agC36ekYaj6XtbmfbWQx1q5rxbyWCv31UIea+W+zvosDUMVERGpbXcAHzSzvTIXzKwFGBu9JiIist3UsxgTX+BGRETqW433LPYBngM2AlcADnwTeA8w0t3XRemGAAuAq9z9qtj9RwHvBQYCPwT+E3gAwN1np3ye4qOISAPJxEhVFkVERGqQmQ0GrgeOBwy4F5jo7otiaVqAhcCV7j45dv0BIHWoai1XokVEpHOpsigiIiIiIiIJmrMoIiIiIiIiCaosFsHMTjWzX5vZYjPbaGavmNnVZvaenHT9zOxmM1tuZuvN7H/NbP9q5bucCikTM2sxM89z7FzN/JeDmX3YzO4zszfNbJOZLTWz28xs35x0g8xstpmtMbO3zew30bCyulRIuZjZ0Xm+J6urmfdKMbM50e87Jed6wzxT0qSVS6M9V2qBYmSSYmSSYmSS4mNhFCOTKhEfu3duluve14AlwGXAUuAgYDJwjJmNcfdtZmbA74EW4ALCflffAO43swPdfWk1Ml5GHZZJLO3VJFfpW1uJTFZYf+Bp4MfAW8Bg4FLgMTPb390Xm1kzcB+wCTiLsDjFFML3ZKS7r69O1suqw3KJpf0y8GTsvLViuawSM/sMcEDK9UZ7prSRr1xiGuW5UgsUI5MUI5MUI5MUHzugGJlUsfgY34BRR/sH8N6Ua58lPMSOjc7HRefHxNL0BVYCP6j271ClMmmJzs+tdn6rWE4jojL4anR+IbAV2DuWZijhof+Vaue3iuVydHR+XLXzVuFy6Ae8CXwm+v2nxF5rqGdKEeXS8M+VrnYoRpZcJg3/XVaMLKhMGjI+Rr+7YmRxZdKpzxQNQy2Cu7+VcjnTurNH9OfHgb+7+/2x+9YQWj3GlTeHlVdgmQisiP7MtAB+HHjM3ednErj7QmAudfg9aUduuTSq7wAvuPutKa811DMlR3vlIl2MYmSSYmTBFCOTFB+zFCOTKhYfVVncfpmlx1+O/twPeCEl3YvAYDPbsSK5qq7cMsm42sxao/kHd9T7eHIzazKznmY2HLiJ0AKU+Ufd3vdk35TrdaODcsmYaWZbzWyFmd1Sr/NUAMzsCEJPw/l5kjTkM6WAcsloqOdKDVKMTFKMRDEyjeJjkmJkUqXjo+Ysbgcz2wO4Cvhfd38qutwfWJSSfGX0Zz9gXflzVx15ymQT4aF3D2Es/vsJ8zceMbND3T03YNaLx4FDop/nE4YcLYvO+xPG1edaSfiO1LP2ymUNcC3wIPA2YX7PZcCjZnZQLF1dMLOehH8b33X3V/Ika7hnSoHl0qjPlZqhGJmkGNmGYmSS4mOMYmRSNeKjKosliloqfkcYHnBOlbPTJeQrE3d/A/hiLOmfzGwOodXncuCMSuazgs4EdgL2Iixy8EczO8JjG2Y3qLzl4u7PAM/E0j5oZg8BTxAm9V9R8dyW18VAb2BqtTPSxXRYLg38XKkJipFJipEJipFJio9tKUYmVTw+qrJYAjPrTRgLvRdwlLddaWkV6a1e/WOv150OyiTB3V8zs4eB0ZXIXzXEWm4eN7M/EFq+LiX8A27ve1KX35GMDsolLf08M3uVOvuuREOHLgfOBXqZWa/Yy72i5a3X0mDPlELLxd235t7bCM+VWqAYmaQYmaQYmaT4mKUYmVSt+Kg5i0Uysx7AbGAUcKK7/zknyYuE8dO59gWWuHvddIVnFFAm7fHy5KprcffVhCEle0eX2vuevFSpfFVbSrm0m7zM2am0vYAdgBmEYJY5ILQorwL2p/GeKYWWS3vq7btSMxQjkxQjO6YYmdTg8REUI9NUJT6qslgEM+sGzASOBf7Z3R9LSXYHsIeZHRW7byfgYyT3Oql5BZZJ2n2DgSMIwyfqnpntShgzviC6dAfwQTPbK5amBRhLHX5P8kkpl7Q0owhLiNfbd+VZ4JiUA0IgOIbwH4WGeqZQeLkkNNpzpatRjExSjCyMYmRSg8dHUIxMU5X4aNF+HFIAM7uBMBRgKnBnzstL3X1pFBgeBgYBXye7OehI4AB3f62CWS67AsvkWkLDxKOEibYjCGXSFzisnQm6NcnMfgvMA54nTELfB7gIGAgc6u6vmlkf4DlgI2GegQPfBN4DjKyzljCg4HKZCSyM0q0mTOD/BrABONjdl1cj75VkZg5MdfcrovOGeqbkk1IuDfVcqQWKkUmKkUmKkUmKj4VTjEwqe3zsjM0aG+UgjB33PMfkWLr+wE8JKzFtAO4lfGGr/jtUo0yAzxH2lVoFbCEsBX0LMKLa+S9TmVwCPE14mG8AXiGsStWSk24w8GtCYFgL3J6bpp6OQsolepg9T1j1bQvwGjAN2K3a+a9gObXZXDe61jDPlELLpdGeK7VwKEaWViaN9l1WjCytTBQf3y0HxcgOyqSznynqWRQREREREZEEzVkUERERERGRBFUWRUREREREJEGVRREREREREUlQZVFEREREREQSVFkUERERERGRBFUWRUREREREJEGVRWlIZna2mXme47hq56/emNndZva9lOsfMLP/NrNFZrbJzNaZ2bNm9l0zG5aTdqmZTc/z/t82s9Yi8/Q1M3sm2tBXREQiipGVpRgpXVn3amdApMo+CSzNufZSNTJSr8zsWOAY4PM518cD/w08B3wLeBXoBYwGzgU+DOxfxqz9GLgYGA/8ooyfIyJSqxQjy0wxUro6VRal0T3r7vMLTWxmvdx9UzkzVIe+Dtzu7m9kLpjZfsBPgd8A4919ayz9/5jZd4Bzypkpd99gZjOAr6FAKCKSRjGy/BQjpUtT17JIHmZ2XDTk5p/N7Kdmthx4Pfb6QWb2ezNbbWYbzexhMxub8j4XmdliM3vHzJ4wszHRcJGbY2mmpA0RMbMZZjY/59qOZnZNNCxls5n9zcwuNTNLyftJZnaDma0ws7fM7Odm1jfn/bqb2WVm9nI0zOUtM/uDme1jZnuYWauZnZ+StynRkJi+ua/F0gwCTgBuyXnpIsCBf8sJggC4+xZ3n5bvfTsSlVu+IVRHxJL+EhhpZoeW+lkiIo1IMVIxUhqDKovS6JqiQJA5mlLS/CfQShiK8XkAMxsNzAX6EoaDnAqsAe41swMzN5rZecB1wB+BccAM4FfATqVk1sx6APcQWhSvBz5KGKZyJfDtlFt+CGwGPgNMAT4V5SdudnT/76M8fgF4BRjo7q8DdwDn5eSjO/A54JfuvqadLJ9AeM48nHP9Q8Dj7r68nXvTWM7fV/coL5aTbhJweM7xGLAOeC2W7mlgPfCRIvMhItIIFCMVIxUjG52769DRcAdwNqHVLvd4OJbmuOjarJT7HwReAHrErnUnzCmYHZ03EVpZ78y5d3z0vjfHrk0BWlM+ZwYwP3Z+TnTvmJx0k4BNwICcvP9XTrobgfWx8xOidP/aTlll3uvw2LV/ia6N6qCcfwIsTrm+BfhFyvWmqBy7A91zXlua5+8scyTKL3bvpcBW4OSU1x4F7q72d1KHDh06usqhGPnuuWKkYmTDH+pZlEZ3CmGyeOb4fEqa38ZPzKwPcARwG+CxljuAe4Ejo5+HALtH6eJmAdtKzO9HgAXAEzmthvcAPYHDctLflXP+Z6DZzHaJzk8gBIj/aucz7yUE+HjL6XnAPHd/qoP87g681UGauE2EILkF2GJmLTmv30nbv6/M8bN8b2hmpxAWB/iqu9+ZkuStKJ8iItKWYqRipGJkg9MCN9LoXvCOJ++/kXO+C2HYyJXRkSsT5HaL/vxH/EV332xmq4rNaOR9wDBCoEgzIOd8Zc55CdfVeQAAA3FJREFUZuGBHWLpl3s7CxK4u5vZDcC3zOwioB9wPDnDbvLYIfaZcUuBwSnXDyMMlxkHXJHy+oq04Gtmb6Z9uJkdRJiYf6O7J5Ylj2wEeud5TUSkkSlGKkYqRjY4VRZFOuY556uia98HZrZzXyaA7hq/aGY9CcEk7h2gm5l1d/f4JP7cwLYCmE+YX5FmYTv5SbMc2MU6XsFuOjAV+CwhwK8Dbi3g/VcAH0i5fh8w3sx28dicDHd/GiA+p6VUZrY7YY7Jw8AF7STtTygHEREpnmKkYqTUMQ1DFSmSu78NPAKMBJ5296dyjyjpYuDvhAnzcZ8k+W9vMaG1cN/MBTPrD3wwJ90cQmvjmrTPdfcVRf469xDmQHyuvUTuvpoQ+L5ImBMyw93XFfD+fwEGpyyKcD2hDH6UZ8GE7WJmvYHfAauBT3nKanIxQwmLFYiIyHZSjFSMlPqinkWR0lwEPADMMbOfAm8Sht6MIoxKuczdt5rZVcCN0RLgs4B9CJvcrs15v7uiazeb2ZWEIR+XAG/npPs5YeGB+83su4T5FT2BvYGPEyanF7zHlbv/0cxuB75vZkOA+6P3O5qw79OfYsl/THa+yo0FfsRDwP8H9gOej33uC2Z2LnAz8GhUPq8APQiB6TzCCnWl7tf1Q8J/VM4C9o2tmA7woruvBTCzAYQhS1NK/BwREUlSjCyMYqR0eaosipTA3Z+M9h2aBPyIsDz4PwjLTN8YS3dTNNl/InAGIXB9mpwJ/e6+0sxOJrQmzgKWEOZ6nESs5TSay3E88A3gS0ALYbjLfOBu8s/TaM+nCCuhfRb4CmF588cJwT2ex3lm9jdgmbs/n3iXdA8SyuVjxAJh9H4/N7Nnga8ClwMDo/zPJyyj/imPbVJcpPcTAnraMKD/R3aZ8pMJw5t+V+LniIhIDsVIxUipH+aeO9RcRMrNzJYCc9z93GrnpVBmti9hKfRz3D3vymop900BPgHs613sgWNmfwSWuvs51c6LiIgEipFdg2KkgOYsikgHzGxPMzsauImwJ9Yvi3yLawkr1I3r5KxtFzMbRWhBvaraeRERkdqkGCn1TpVFEenIFwn7SA0APlPMfA8Ad18FnEl2KfKu4n3AWe5e7Op4IiIiGYqRUtc0DFVEREREREQS1LMoIiIiIiIiCaosioiIiIiISML/AUbpSvO7IwigAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Plot impedance\n", "fig, (ax0, ax1) = plt.subplots(1, 2, figsize=(15,5))\n", "\n", "# Real component\n", "ax0.plot(frequency_gm/1e9, zs_gm3.real, 'ro--', label=r'{:.1f} $\\mu$m'.format(surface_roughness3/sc.micro))\n", "ax0.plot(frequency_gm/1e9, zs_gm2.real, 'ko--', label=r'{:.1f} $\\mu$m'.format(surface_roughness2/sc.micro))\n", "ax0.plot(frequency_gm/1e9, zs_gm1.real, 'bo--', label=r'{:.1f} $\\mu$m'.format(surface_roughness1/sc.micro))\n", "ax0.set_ylabel(r\"Real $Z_s$ ($\\Omega/sq.$)\")\n", "ax0.set_xlabel(\"Frequency (GHz)\")\n", "ax0.legend()\n", "\n", "# Imaginary component\n", "ax1.plot(frequency_gm/1e9, zs_gm3.imag, 'ro--', label=r'{:.1f} $\\mu$m'.format(surface_roughness3/sc.micro))\n", "ax1.plot(frequency_gm/1e9, zs_gm2.imag, 'ko--', label=r'{:.1f} $\\mu$m'.format(surface_roughness2/sc.micro))\n", "ax1.plot(frequency_gm/1e9, zs_gm1.imag, 'bo--', label=r'{:.1f} $\\mu$m'.format(surface_roughness1/sc.micro))\n", "ax1.set_ylabel(r\"Imaginary $Z_s$ ($\\Omega/sq.$)\")\n", "ax1.set_xlabel(\"Frequency (GHz)\")\n", "ax1.legend();" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4EAAAFLCAYAAABoRok3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd5xU1f3/8dfZpcMCCywoCLsiAgoIqBEBY8EY1K+IGjUqwZJYY6JGoyaxsBaiMaLRxPJTowHFWKImmCjYGyJYAAtFaSJ9kbJ0lt3P748zbWdmy+zOzJZ5Px+P+5g7955779mJ8fi555zPcWaGiIiIiIiIZIasuq6AiIiIiIiIpI+CQBERERERkQyiIFBERERERCSDZEwQ6Jzbxzn3V+fcDOfcduecOecKanivfwSuj7ctSG7NRUREREREkidjgkCgF3AmsBF4v5b3ug0YGrWdHTg3pZb3FhERERERSZkmdV2BNHrPzLoAOOcuBH5c0xuZ2WJgceQx59xxgd2JNa6hiIiIiIhIimVMT6CZlVWnnHMuzzn3sHNupXNul3NugXPu4mpcei7wqZl9VbuaioiIiIiIpE4m9QRWyTnXFvgAaAkUAkuBkcBDzrnmZvbXCq4bjh9uekWaqioiIiIiIlIjCgLLuxLIBwaY2TeBY28459oD45xzD5nZnjjXnQuUAP9MUz1FRERERERqJGOGg1bT8cBMYKlzrklwA6YBHYEDoy9wzrXAJ5z5r5mtT2ttRUREREREEqSewPI644d1llRwvmOcYycD7VFCGBERqSecc88CBwCl+Dbt92b2Zt3WSkRE6gsFgeV9D6zDDwuNZ2GcY+cB64FXUlUpERGRBF1iZpsAnHODgTedc52qmyRNREQaNw0HLW8q0BdYbmafxNm2RBZ2znXBJ4552swq6j0UERGplHNuH+fcX51zM5xz251z5pwrqKBsd+fcv5xzm51zxc65F51zPSLLBAPAgHYprLqIiDRAGdUT6Jw7PbB7SODzBOdcEVBkZu8C9wI/Bd53zt2L7/lrjQ8Mf2hmo6NuOQbIRkNBRUSkdnrh55d/CrxPBWvZOudaAW8Bu/AjUQy4HXjbOXeQmW2LKHsvMBofBP5EvYAiIhLkzKyu65A2zrmK/th3zezoQJlc4GbgFKAbsAkfDL5gZn+Jut9cIMvMBqSs0iIi0ug557KCQZpz7kLgUWBfM1sWVe5K4B6gj5ktChzbF/gGuM7M7olz7+OB24DhZrY7pX+IiIg0CBkVBIqIiNR3VQSBbwItzGx41PF3AczsqAruuQj4qZl9mpJKi4hIg1IncwKdcyOdc28559Y453Y551Y4555zzsUswRB1XUFgnkS8rX266i8iIlJH+gFfxjn+FYFljJxzLQO9gwS+D8Vnt16SlhqKiEi9V1dzAjvg5z08CBQBPYDfAR855waY2bdVXH8HMCXq2JZ4BaHSYaAiItLImJmr6zqkUAdgY5zjG4DcwH5L4GnnXA6wB9iGnxMYc53aRxGRzBJsI+skCDSzfwL/jDzmnJsFLABOByZUcYslZvZRgs8MPoeaDIFN53UNoY4N5bqGUMeGcl1DqGNDua4h1LGhXBd9jXONOf6rHjPbAAxNoHxoX/881+11DaGODeW6hlDHhnJdQ6hjQ7muLusY2A81kvVpiYjvA5976rQWIiIi9ddGwj1+kSrqIRQREYlRp0Ggcy7bOdfMObc/8P+ANUT1EFbgDufcnsAaSVOcc9XOzjlu3LiaVrdGavK8mtYx3dfVVDrrqd8kedfpN0nudel8VkO5rr4/q574Cj8vMNqBwLza3rwh/G/XUK5L57MaynU11RDa/4bwm9T0Ov0mybuuPv0mdZod1Dn3CeE1+xYBJ5vZ/ErK7w2MA17DzyXsC/wB6AQcVtG1zjmr7d9Z027Yxky/SSz9JrH0m8TSbxJfMn6X6OEuDVEV2UGvAu4GepvZksCxAvwSEb8zs6qmU0Q/K/SDjxs3jsLCwprUV/88x6HfJZZ+k1j6TWLpN4lV09+ksLCQW265JfQ9sn2s6yDwAKAt0BP4LdAFOCK60aviHt3xb0anmNnPKigT949MpMHTP5Cx9JvE0m8SS79JLP0m8SXyu0Q3bJEaahDonDs9sHsscCnwS/wLzyIzezdQpjUwF9gB3IhfLP42IAc4yMy2JvhMvSRNEf0usfSbxNJvEku/SaxUvCStq+ygAET03M10zr0KLMNnCb00gXt855z7APhBFeVqWk0gI4ccVUm/SSz9JrH0m8TSbxJfIr9LYWFh3Jd4DTwxzPNR3x8MfL4LHA1gZtuccyOAe4EnAQe8CVyVaACYLPrnOT79LrH0m8TSbxJLv0msVPwm9Wqx+MDw0E1m9qMEr3sF6GlmfSs4X+s3nSIiUv81huGg6aT2UUQkM9Tb7KDOuS74OX6LE7yuB3AEMCsV9RIREWnMnHM452o0H1BEROqvwsLC0L/jo1XaE+icOxw4Hjgc6IpfgHY9sBA/POXf8RafrYpz7iXgM+BzoBjoDfwG2Auf4OVr59xR+CEuPzezSYHrJuAD1xn4eRJ9gN8D7YAhZrawgufV+E3n5Mlwww2wfDn06AHjx8OYMTW6lYiIpJh6AhOjnkARkcxQrTmBzrnz8Ila+gFb8JPQv8FPRO8ADAHGAg84554DbjGzpQnU4yPgTOAaoBnwHfAOcEdEUhgHZFO+t/Ir4DLgfKANfm3BtwLPjxsA1sbkyXDxxbB9u//+7bf+OygQFBERERGRhimmJ9A59zmQB0wCngHmxHtN6JxrB5wEjAGOAc43s2dTXuMaqOmbzoICH/hF23tv+PJLyM2Fhp2DQESkcVFPYGLUEygikhmi28d4QeCVwP8zs50J3HQgsJeZTUtaTZOopo1cVhZUdlnz5tC1K/znPzAgsFz922/DqlX+eLdu/rNNmxpWXEREEqIgMDEKAkVEMkOViWHM7L5EAsDANXPrawBYGz16xD/epAm0bQu7dsHSpZCTEz738MPws5/BiBHQp48/17Yt9O0Lv/51uNyePfD88zB9ur/Hrl2p/VtERETiUWIYEZHGqcaJYRqLmr7pjJ4TCNCqFTzyiJ8TuHUrrF4N++7rA0OABx6A99/3vYGrVsHKlbAzEFKfdhq88ILfX7ECuncv/7yOHX3PYdeucNtt8IPAyoeLF8OGDf54ly7hZ4mISHnqCUyMegJFRDJDlcNBK7ioO9AdaBF9zszeSmoNU8A5F/ojx40bl9DbztpmBzWDTZt8QJid7XsEwd/vN7/xQeKqVT6Y3LMnfN0HH8Dw4X7/6qvh3nv9flaWDwSDweKAAb5OQV9+6c937OjLiog0doWFhdxyyy2h7woCq09BoIhIZkgoCHTO9QQmA4cFDwU+LbBvZpadoromTUNo5MrKYP36cFB4xBHQrp0/d9dd8Oyz/ty6deXnKQ4ZAh995Pf37PHzFMvKoGlTn8Amcm7i2LHh3sUtW6C01D9DyW1EpLFQT2BiGkL7KCIitZdoEPgWfi2+O4EFwO7oMmb2bgrqmVSNqZErKYG1a8PDTZs3hxNO8Oe+/x6OPtof37Ah9tpnn4Uzz/T7EybAb3/rh7cGexWDAWOPHnDFFeHrdu3yzxERqe8UBCamMbWPIiJSsUSDwC34pR9eSEflUiUTG7kdO/wQ02CwuGoVnHwy9Ozpz99xhx9Gum1b7LX77APffRf+3q2bLxfsUYzcjj46nBk1EbUdZisiEo+CwMTUZrqEiIjUb5VNl6gqCJwPXGdmL6e0himWiUFgdW3ZEk5gEwwWs7Phmmv8+bIyv8TFjh3xr7/nHj+3EeC55+BXvyo/BDVyO+EEn9SmqoQ7IiI1pSAwMWofRUQyQ3T7WFWeyT8C1zvn3jKzOH1G0tDl5PilLPr0iX8+K8v3An7/fflexeB26KHhsitXQlGR3+bOLX+f7OzwMhg33FA+AAT//YorfMDZrx/06pW8v1FERERERMKqzA7qnBsPXAx8BGyMOm1mdl6K6pY0etOZHqWlPnFNZK9icNu5E556ypfLyiqf3CbaNdfA3Xf7/Rkz4IILYK+94m9HHul7EUVEQD2BiVL7KCKSGRLqCXTOnQ/8HigFDiY2MYxaDgnJzvYZSffeu/JyPXrAt9/GHm/TBo45BgYPDh/77jtYuNBv8axaFQ4Cf/5zmD07frDYty8MHFizv0tEREREpDGpak7gt8AnwC/MbFPaapVketNZvyQyJ3DbNli2DNasib+9+qqfZwh+uYxZs+I/8+yz4emn/f7SpTBiROW9i7m5Sf+zRSQN1BOYGLWPIiKZIdE5gR2BBxtyABjkAovhKftZ3QsGetXJDtq6tZ8j2K9f1fd96SXfMxgvWBw6NFxu1SofWC5bFv8+H38cnut4/fUwZYoPDvfeu3ywuN9+MHx4In+5iKRCdPYzERERqVxVPYFTgf+a2d/SV6Xk05tOibR7tx9mWlHv4qOP+iAP4Cc/gRdfjH+fH/4Q3nvP7+/Y4YPCinoXjzjCZ0gVkdRST2BitESEiEjjVZslIvoAzwF3AVOJTQyDmZUls7KpoCBQamrDhop7F/v0gZtu8uWWLYN99634Pv/+N4we7fcnTIAHHogfLHbv7pfSqA2twSiZTEFgYtQ+iohkhkSHg84PfE6q4LxV4x4iDVaHDn7r37/yct27V967GLnkxbJlfl7i0qWx99lvP1i0KPx9//2hWbP4AePQobFLaUTPt/z2W/8dFAiKiIiIiFdVT2AhVWQANbN6PxFDbzqlPtm2DVavDgeIkfu5ueHlMXbtghYtKr7PAw/AL3/p9596Cq67Dtavh5KS2LKRGVnLyvwyHSKNkXoCE6P2UUQkM1TZE+icG2ZmHwKYWWEa6yaSEVq39j140b140Zo1g6Ki2EAxuA0YEC67cqUvU5HvvgvvDx7sh7h27hzeunTxn0ce6Tfwcyd37fJLdzj9J7WIiIhIoxHTE+icKwXWAS8DLwFvmln0+oANit50SmO3ezesXQuHHeYDxGj5+eFsqHvt5cvG84c/+DmEAK+/Dj/+MbRsGT9gvO668FIa330HTZtCp07hJTtE6oJ6AhOj9lFEJDNUZ05gN+AUYDQ+CNzlnJsW2P+fmRWnpaYiUm3Nmvl5iXffHX8NxmBgB7BiBXz/Paxb57e1a8P7xxwTLrd1qw8Ad+zwQ0mDw0mDrr02vH/RRTBtmt/v2LF8wHj00XDZZf7czp3w2Wfh8zk56mUUERERSbeq5gTmAP+HDwhPAFoC7+IDwv+Y2ap0VLK29KZTMkmys4Nu3RoOEiODxt//Pjy38Iwz4N13/ZzE6P+rnXce/OMffn/evPJrPrZoUb6X8c9/hgMP9OfmzPHPCfY8durkextFKqOewMSofRQRyQzR7WOlQWDUhU2BY/EB4cnAXsCnwEtmdkcK6po0auRE0qO01AeCkUFj9+5+nUSAL7+ECy8Mn9u2rfz1n38enuv4i1/A44+XP9+hgw8Khw6Fv//dHzPzazvm5ZUfrqpexsykIDAxWidQRKTxqvE6gZVxzh2OHzZ6spkdWNtKppIaOZH6adu28gHjiBE+cQ74oa2vvho+t369z2wK8KMf+TmLAJs3Q/v2sfdu3twHgw88AKNG+WMffggzZsTOcczLq7qXUesv1l+VNXJSOb0kFRHJDDXuCQxc3A7YH1hjZitSUL+UUCMn0vCVlobnMjoXHla6YQNcf33s/MZgL+Mrr8AJJ/j9cePg1lvj379XL/jmm/D3m2+G7GwfJC5YAA8/7LOlBrVqBY88okCwvlFPYGLUPoqIZIYqg0Dn3EjgGDP7XdTxPwDjCCeTeRY418z2pLbKtadGTiTzbNvml9jIywv3Lk6d6hPYRM9vLCqCPn38nMWgNm1ih6tGy8/3azT+7W9+zmJeXvgzuH/ggT6YlPRQEJgYtY8iIpmhOkHgS4CZ2WkRx44DpgFfAI8BBwCXANeZ2YR0VLw21MiJSGXKymDLFmjXLvz9gQfCQeKjj8a/zjnfQ3jJJRXfe+dOPzQVfK/hsmXlA8VgsDhggF/DEfw8R81nrBkFgYlR+ygikhmqEwQuA24zs79HHHsaP/+vp5mtCRx7EBhiZoeko+K1oUZORGqjoCB2iQzwPYFvvQUffeTnLBYVhbf16/1SHR9/HC7fty8sXBj/Gb/8pQ88AWbN8ktrRPYsRgaOF17o5zOCD1Kzs/2ajcFsrZlMQWBi1D6KiGSG6qwT2BlYHHXsOOCDYAAY8D9gbPKrKCJSv4wfX/H6iz17+q06pkzxvYuRgWJw//DDw+XWr/frMy5f7rdoP/1pOAi84gp49lkfAHbsWL6HccgQ+O1vfbk9e+Cdd8oHlM2a1ejnkCjOuVnAI2b2WF3XRUREpDriBYFbgNbBL865/YGOwEdR5YoBzXQRkUYvmPylttlBe/f2W1VOOMEPT40XLK5fD3vtFS7brJkfxrp5c7hM0O7d4SBw3To47rjyz2nbNhwQ3nMPDBvmj8+c6edHRg5XzcvTshuV2K0AUEREGpJ4QeAC/FqA/wt8Hw0Y8FpUuX2BtamrmohI/TFmTPoygTrnE9O0aQP77lt52UmT/Ofu3T57amTQmJcXLrdnDxxzTPlgsrjYb0uW+PNBzz8PE+LM9m7WzM9b/CjileAf/gAtW8ZPitOxY/WS4jSC5Tdecc7lmVlR1UVFRETqXrw5gacALwa2tcD5wDfA4MiJA865Z4AWZnZK2mpbQ5rzICJSXllZ+d7DAQN8zyDAP//p12iM7oXcvh0OOQQ++SR8j6ZNw+s3RrvvPj9cFeC11+Chh2IT4nzxBdx/v0+gE1Sb5TfqYk6gc+5roDkwEZgOfNZQAkK1jyIimaFa6wQ6564ArgE6ALOAS83sm4jzewFfAn8ws0dSXuta0mLxIiK1t327XzYj2MNYUuKXx4iXFKeoyJ87+2xf9t574eqrq/+s/HyfSbU66nqxeOfcTOBuYDBwcOBzt5l1T2c9akLto4hI41VZ+5jQYvENld50iojUrSVL4LPPYgPFZ56JX965insYK1NHPYEdzGxD1LGuZrYqnfWoCbWPIiKZoVo9gY2NGjkRkfqpsuU3qtsTGCnVQaBzbhzwOfCFmS2Kc/4MM3s+Vc9PNrWPIiKZQUGgiIjUG5Mnx19+o77OCXTOBfsnDdgBfIUPCj8HvgAeMLN+qXp+sql9FBHJDNHtY8zSws65Kc65wQncsIVz7mrn3KUJXDPSOfeWc26Nc26Xc26Fc+4559yB1bg21zn3mHNuvXNum3PuDefcgOo+W0RE6o8xY3zAl5/vh4Dm59c8AEyTuUABPnP2bfjEaSOA+4A3gb51VjMREZFqipcd9H7gEmAOMBn4APjczPZElOkKHAaMAk4DVgEXmNmsaj3UubPxk+dnAkVAD+B3QHdggJnFGRwEzjkHvI9vgK8FNgK/B/oBg8xsRQXX6U2niEgGSENPYE8zWxLn+KHAzcCrZvZQqp6fbGofRUQyQ3Wzg+4HXAWMAdrhh70UA7uA9kAzwOEzhz4EPGVmpbWsWB/8GoW/NbM4K1SBc2408G9ghJm9HTjWDlgaqMMVFVynRk5EJAPURWKYiGd3Am4zs8vq4vk1ofZRRCQzJDQn0DnXDBgKDAG6Ai2A7/HB2nsV9djVsGKd8L2CV5nZfRWU+TtwvJl1izo+ETjazPIruE6NnIhIBkhDT+Bp+NExMUlhAufnmNmgVD0/2dQ+iohkhuj2sUllhc1sN/BuYEtFZbKBbCAfuBNYA/yzkkv64dcnjPYVcK5zro2ZbU16RUVERLx/Aeac2044KcyXwGr8fMDcOqybiIhItVQaBKbBTOCQwP4i/DDPdZWU7wAsi3M8uD5TLqAgUEREUuVr4DpgAP7F5OHAufhpEgBbnXOvAvOA+cA8M/uwLioqIiJSkZjsoGk2Ft+AnoOfc/i6c64gFQ9yzsVshYWFqXiUiIikWGFhYdx/r6fB781sipmNN7NzzOwgoA3QHzgL+At+6YhRwMP4ZGYiIiL1Sr1ZJ9A51x7fy/eMmcVdbsI5NxPYZGYjo45fB/wJyIk3HFRzHkREMkNdJoaJ5pxrARxgZrPrui4VUfsoIpIZqlwnsJILH3XO5aSmWmBmm/BDQntVUuwr/PCbaAcCyzUfUERE6gsz21mfA0AREclciQwHLTazLc65Y1NREedcF/yk+sWVFJsCdHPOHRVxXVv8sJspqaiXiIiIiIhIY5JIENjNOdcBGF3bhzrnXnLO3eScG+2cO8Y5dwk+A+keYEKgzFHOuT3OuXMjLp0CzACecs6d5ZwbGTjmgLtqWy8REREREZHGLpEg8Fl8prPRzrkHnXO/cM4Ncs7VJMPoR8ApwETgf8DV+CBwkJl9HSjj8MtHhOpoZmXAScDrwIPAS0ApcIyZfVeDeoiIiGQ0JUsTEWmcIpOoRat2Yhjn3KPANcAk4DXgYPzyDvvhF49/A7jDzLYkqd5Jo4nvIiKZoT4lhmkI1D6KiGSGhBaLj1JsZsXOuafM7F8RN2wGHAQcBTyAXy9JRERERERE6qGazAk8MvKgme02s0/MbAIwNam1ExERaSCcczc75y4KLA0hIiJSbyUyHPQ04CFgJ34e36eB7Usz25OyGiaBhruIiGSGuhwO6pwrC+wWAfeY2Z/qoh6JUPsoIpIZarxOoJm9COwDzAa+BIYCTwAbnHOznHN/TOU6grWlie8iIo1TZRPf02xfoD9wEzCgjusiIiJSoWr3BIYucK6jmX0f8T1yTuBAM6t3cwL1plNEJDMoMUxi1D6KiGSG6PYx4SAwcJOuwOrolsM5d46ZPV37aiaXGjkRkcygIDAxah9FRDJDjYeDRtzgEWAx8JlzrqVzrqsLjMGpjwGgiIhIsjjnPnTOjXXONa/ruoiIiNRUwkEg0MrMWuIXaj8P6AqMS2qtRERE6qfdwERglXPuHudc37qukIiISKJqEgQuC3zeCwwxs0+ApkmrkYiISD1lZkcDB+IDwXOBr5xz7zjnfuqcU1soIiINQk2CwPbOuXOAbRHHOiepPiIiIvWamS0ws6uBbsD5QDbwNLDCOXenc65nXdZPREQaicmToaAAsrL85+TJSbt1TbKD5gL/wae/LsYvF7HWzH6etFolmSa+i4hkhrpIDOOcOxi4BzgycKgMP2Xi12a2Jp11SZTaRxGRemryZLj4Yti+PXysVSt45BEYMybh2yWUHdQ519fMFsQ57oARwBBgFfC0me1OuDZpokZORCQzpCsIdM61BM4GLgUOARYCDwHPA6OAQmCBmR2b6rrUhtpHEZE0M4MdO/x+q1b+c8MGmDULtmyBrVv957hxsGlT7PX5+bBsWcKPTTQI/MzMDk74KfWMcy70R44bN04LxouINCKFhYXccsstoe+pDAKdcwOAS4AxQGv8yJgHzeztqHKjgOfNrEWq6pIMCgJFRKpQUuI/mwamfa9cCfPnh4O1rVvD+yUlcMcd4WvHjo1ftqwMrr4aJkzw5d59F44+unr1cc5fn6BEg8DZZjY44afUM2rkREQyQ6p7Ap1zZfgRMI8Cj5jZ6grKHYAPDo9JVV2SQe2jiDQqweAoK5D2ZOlSWL48HHxFBmMdO8Jll/lyJSXwf/9Xvicu+Ll7NzzxBJx/vi/717/CFVfEf352tr+XCzRDgwfDnDmx5Vq08M++5x7/feFCuPJKaNPGbzk5MGkSFBfHXpuknsAmVZRv55z7BzASaA58DbwITDSztQk/XUREpGE7HfiPmZVWVsjM5gP1OgAUEUmayZPhhht8wNWjB4wfX/W8NbNwsATwzTewfn1sELZ1Kxx4IIwa5cstWuSDsHg9cdu2waefwsGBgYx33unn0MUzcGA4CGzSBN58M34PW3Y27NoV/r7vvnDMMeFgLfqzrMxfA/D3v0Npafh8cGsSFYL16QNTp5Y/dvjh8ecEjh9f+e9aTVX1BJYB24HPgD1AD6AnsB44z8xeTUotUkxvOkVEMkMaegKXAKea2dw45/oDU8yswWQHVfsoIjXy3XewebPvqfr3v+G++3yPWVAwgUm3bnDvvfEDu61bfdDWrJm/ZuhQ+Oij+M8bO9b3jAHMmwf9+lVct/fegx/+0O/fcw+89FL5ICy436MHXHJJ+Lo334SWLWMDu+bNywer6VST4LoCiQ4HLQEOMLNFEcfy8RPhfwkcZ2azalSTNFIjJyKSGdI0HPTweG2fc+5QYKaZZafq+dURyOL9JNAb2AGsBX4Z2ZZHlFX7KJIpdu70QVsweNu82feGdezoz0+b5gOhzZvLl9m8GTp3hrfeCt+rdevyPVTx5OfDn/4EZ51VcZnvv4cOHfz+xRfD55/H71075BA480xfbts2eOed8mWC+61ahXvhpJxEg8AFZta3gnOjgUvN7ITkVzO51MiJiGSGNAWBQ8zs4zjnLgXGm1nHVD2/Opxz7YFDzeyNwPcrgNMCC91Hl1X7KFLflZb6XrOcnPBct5kz/Xy3yEAtuD9gAPz2t77c8uVw6KH++O44ifxffRWOP97v33AD/PGP8euw996walX4+yGH+AyX7dpV3HvnnH/+xx/HBnbB/WAvoKRconMCmzjnOprZ99EnzOw/zrk7k15DERGResQ59xvgN4GvBrzsnIv+r6mWQAfgmRo+Yx/geuBQYGDgfvua2bI4ZbsD9wLHAQ54A7jKzJYDmNmmwLGgD4Gra1IvEUmCoiKf6j86WCsu9olDgkMXP/kEbrwxNrDbssWfX7kSunb1++PHw8svx3/eyJHhILBVK/988Nkt27WDtm391q6d79GLvC54PPgZ3G/fvvwzPv00vF9QAN9+G1uPHj1gn338JvVOVUHgK/jG7tzoYSTOuWZA25TVTEREpH5YArwZ2D8P+AQoiiqzC5gHPFbDZ/QCzgQ+Bd4HfhyvkHOuFfBW4Hnn4YPS24G3nXMHmdm2OJddhV/KQiSzJTK/qrTUB1+RQdv++0OXLv78hx/C//4XO2yyuNj3gEUGST/4QfwgCXywFgwCt2zxQzLjadPGD4MM+uEP/fy1eEFbQUG4XIcOsGaNP17V3LYjj/RbosaPT2kCE0mNqoaDtgOmAQcD04F3gBX4TKFjgLVmdlrqq1k7GlN8LuUAACAASURBVO4iIpIZ0jAc9AngNjNbkuT7ZplZWWD/QvwSFDE9gc65K4F7gD7Bl7POuX2Bb4DrzOyeqPLj8Bm+f2RmMRN41D5KRli4EB57DO6/v/yQyOxsGD0aXnjBf9++HXr39sHc1q2x95k4Ec491+/fdx9cdVX850UvEzBihA88I4O14Oexx8Ipp/hyGzb4oZXR5XJy6v88tyQmMJHUSGhOYOCCJsDNwPlAZH/ubGCUma2Kd119okZORCQzpDoITIcqgsA3gRZmNjzq+LsAZnZUxLEbgVHAj81scwXPUvso9ZeZ7/3auNEHSG3awH77+XMrVsDf/hY+F/wM7r//Phx0kC974YU+VX88TZuGA0MzH2wF/z8ROWyyXTu4/no4+WR/7pNPfEr/6KAu+NmrV91llBSJI9E5gZjZHnwQeLNz7iBgb2BNvPTY9ZkL/B9x3LhxFBYW1m1lREQkaQoLC7nllltSdn/nXCkw1MxmBRLDVBY1mZlV2bbWQj/iD+38Cjgj+CXQA3gilQSAEWVjjqmtlKQqLa04WNuwwfcgBXu6LrwQpk8PnyspCd/nvPPgH//w+5s3+8yTFdmwIbw/aFDF5fbsCe8HE5nk5JRPwhLPoYf6TaSeqW6bWGVPYGOgN50iIpkhFT2BgYDqUTNb5ZwrpPIgEDOrVURaRU/gbuAeM/td1PHbgd+ZWRPnXD/gS2AxEBzTtsfMYv6LVe2jVJuZXzC7RYvwsSlTfNKR6KBu40Y4//zwcMCnn658aGDkMgEjR8Jrr4XPtWzpz3XoACedFM5euXkzPPCAP56bGy4T/N62bfkgrqLkJfn5sGxZDX4QkYYl4Z5AERGRTBYZ1JlZYR1WpVrM7Ct81lBpqFI5v6q01GeqjAzaBg2Cvfby5//7X3j++fg9dnl5fhhm0MUXw9q18Z9z+OHh/U6dKg7WOnQoP9/tvvt8HYPnI4POSO3awR/+UP2/W8lLRMpRECgiItJwbARy4xzvEDgnDd3kyeWDlW+/9d8hNhAsKoLVq+MPtezWDS6/3JfbuNGv67Zhg+9Bi/bcc3BGYDTxvHkwaVL8uu3cWf776af7esYL8Hr3Dpf78Y99b1919I27PHXtBX87JS8RATQcVEREGpEMSAzzFtDMzI6IOv4Ovk0/igQ450KNo+YB1qE9e6BJ4L189+7le9uCmjf3SVGmTAknRxkzxg+1jGfoUL+MAfh5dcFFuZ3za75FBm7XXgs/+pE//8UXPulJdG9dbq4fmikiDUb0/MCEsoM2BgoCRUQyQ4rmBFaVDCZSrRPDVBEEXgXcDfQOLlPhnCvALxHxOzObkOCz1D6mQlmZ73Xr1Cl8bPJk38u2bp0fQhn5ed558OCDvlxWVjg7ZTwzZoSHWt50E7z0UvyeuJ494eyzw9ctXuzLtGtX/5cbEJGkS3iJiMZAjZyISGZIURBYSPWDwBonhnHOnR7YPRa4FPglflH6IjN7N1CmNTAX2AHcGKjXbUAOcJCZxVncrNJnqn2srp07fcDWqlU4uJs7168dFx3YFRX5QHD79nDv2VFHwXvvxb/3mWfCs8/6/Yp6Art0gTfe8L2A6pETkQQlLQh0zt0MrAaeNLOdVZWvS2rkREQyQ0MeDho5NDPKu2Z2dES5HsC9wHH4BDBvAldF9xpW95kZ2z6a+QQp69ZBcTH84Afhc9dcA0uXhgO7YBmA22/388oA/vOf8ELf0Tp0gM8/93PzwK9Tt3KlD+Y6d/ZbcD8nJ7ymXPScQPCB5yOPaP6aiNRYMoPAssBuET5ddSWLtdStjG7kREQySEMOAutCo5sTWFLie+GCPXL9+4eDsJde8oFUZGAXXIMuN7f8unK9evnhk5GaNvUB2xVXwHXX+WPLlvlMmsFgLviZlxeeg1cTqcwOKiIZIyVzAp1z+UBr4AjgSDP7WS3rmTKNrpETEZGQyhq5ZKhni8UnVb1/SWoGW7eWH27ZpIlfLw78EM3jjw+fiwzkAJ54wq9XB37OXTBbZlDbtuHg7b33wuvK/etf/jMysGvfPtxbJyLSwGhOoIiINFqNYbH4dKpV+1jT3qrSUr9cQHRylDPPhK5dfZnx4+HRR/3xHTvKX9+/v89gCT5IbNnSL2IOPojLywsPt7zyShg1yp9btgy++ioc2OXlaW6diGQMLRYvIiKSgIa2WHxaxFvL7qKL/BDKwYPDwV1+fjgwXLLEL1uwfr1PmhKtX79wELh9u78n+EAtcrjl/vuHr3EO3nzT99J17hy78HikggK/iYhI5T2BzrkPgYeA58xsV9pqlWTqCRQRyQzpmhPonGsL9Ae6ASuBL8xsS6qfm2w1bh8LCsJBWmWOPx5efdXvf/99OKtmx47lh1p26eKDyAED/Pk1a3wg2LkztG6tYZgiIrWU0HDQwOKzRwIbgYnAI2a2IAmVOB04GzgU6AwsB14E/lhVI1pJ9rTBZjanomsUBIqINH7pCAID2bGvAdrgs3MCbAH+bGa3p/LZyVbjOfOVrWV34onh4ZgHHRTuCTTzwV2nTj7JioiIpFStEsM45/oCFwPnArnA+/jewRfNrKQmFXLOfYQP/P4DrAAGA4XAAmCYmcUZJxK61oB/AP8v6tTnZrY99goFgSIimSLVQaBz7hbgJuAx4BlgLdAF/2Lz58BtDWnIaNJ7AvPz/dw7ERGpV2qcGMY51xw4Ex8QDgPWA0/geweXJFiJPDMrijp2Lr638Vgze6uSaw0Yb2Y3JvA8BYEiIhkgDUHgKmCymV0b59zdwDlm1jVVz0+2GrePWstORKRBiW4fs6p7oZntMrMngSvxvYF5wHXA1865551zeyVwr6I4hz8OfHar7n1ERETSrB0wrYJzUwPnG78xY3zAl5/v5+vl5ysAFBFpQKoVBDrnWjrnfu6cm4UP1jrjg8GuwGX4nsHJtazLUYHP+dUoe5lzbpdzbrtz7i3n3A9r+WwREZHqmAn8oIJzPwiczwxjxvihn2Vl/lMBoIhIg1FVYpgBwCXAGPzC8P8BHjSzt6PKjQKeN7MWNaqEc92A2cBcMzuuirJPAv8FVgH5wLXAgcBxZvZOBddoOKiISAZI0TqBkS9MDwReAh4Bnic8J/BM4CJgtJnNS+bzU0nto4hIZkh0OOhc4BTgL0C+mZ0RHQAGLAJm1LBCbfDB5R7ggqrKm9lYM3vWzN43s6eAI/ABYaUZ2ZxzMVu1s6CJiEi9UlhYGPff6ymyBygJbHOB/YA7gcXA1sDnHYHjn6eqEqmiNlFEpHGKbCujVdUTeBrwHzMrTUXFnHMtgVeAgcBRZvZFDe/zIPALM2tewXm96RQRyQAp6gksBKrdiEQuLl/fqX0UEckM0e1jkyrK341/wzk3zo36A1PMrGcNK9IU+Bd+rcDjahoARkhJKzZ58mRuuOEGli9fTo8ePRg/fjxjNO9BRCRjNKQlH0RERKqjqiCwAIjbuwa0wM/JS1hgfsVkYARwkpl9VJP7BO7VFjgJmFXTe1Rk8uTJXHzxxWwPpMD+9ttvufjiiwEUCIqIiIiISINU1XDQMmCImX0c59yl+PX6Oib8UOceAi4FxuOTvERaYWYrnHP5+F7IW83s1sB1vwX6AG8TTgwTPHasmb1fwfNqNNyloKCAb+Mshtu5c2cWLVpETk5OwvcUEZHUSfU6gRHPGYhve2ISopnZpFQ/P1k0HFREJDNUuVi8c+43wG8CX7sBRcDuqPu0BDoAz5hZwl1izrllVNyLeIuZFTrnCoClwe+B60YBv8M3vO2AYmA6cLuZVdgTWNNGLisri4quy8rKYsCAAQwfPpzCwkLy8vISvr+IiCRXGhaLbw/8Dzg8eCjwGWoszCw7Vc9PNgWBIiKZoTpB4Gh8RlCA8/CJW6IXd98FzAMeM7PtqatuciS7J7BZs2aUlZWxZ88emjRpwubNm2nVqhUAd911F82bN2f48OEMHDiQpk2b1rr+IiJSPWkIAh/ET2X4BfA+cCqwGfg5MBQ4y8w+TdXzk805F2ocx40bpwyhIiKNSGFhIbfcEs5VVmkQGMk59wRwm5ktSWkNU6ymQWD0nECAVq1a8cgjj3Dqqafy8ccfs2jRIn7xi18AUFZWRl5eHhs2bAiVPeywwxg+fDjDhw9n6NChtG/fPjl/lIiIxEhDELgYuAU/r70E+EEw6AtMdWhtZuem6vnJpp5AEZH6K5kJKqvsCWyMatPIJfLjl5SUMHHiRKZPn8706dP55ptvyp2/9957ueqqqwBYuXIlO3fupGfPnqlc20pEJKOkIQjcDvzYzD4I7J9oZu8Ezh2HnyaR8Fz5uqIgUESkfqqsM6omgWB1hoOWAkPNbFYgMUxlrYOZWVUZRutcXTVy69atY8aMGaGg8P777+eQQw4B4KabbuL222+nS5cuDB8+nGHDhjF8+HAOPvhgmjVrlva6iog0BmkIApcAV5jZf51z84FJZnZH4Nxl+DnqCgJFRDKMmbFjx47QFDGA2bNns27dOrZu3RqzHXTQQZxxxhkAfPPNN1x00UXlzq9atSpubpL8/HyWLVuWcP2qEwSOAx41s1XVWSC3ISyKWx/nPNx888089NBDrF+/vtzx5s2bc8YZZ/Dkk0/WUc1ERBqWyuY8JJtzbhKw3MxudM79AbgZmAjswc+jn2Jm56Tq+cmmIFBEMlFpaSk7d+6kdevWoWMffPABxcXFMcHali1bOPHEE/nhD38IwLRp0xg/fnzcwM7M2LVrV6hDZ9iwYcyYMSNuHcaOHcukST6Z9Pz58znwwAOrVXfnHGVlZQn/zRoOWo+YGd988w3Tp0/nww8/ZPr06cyfP5/zzz+fJ554AoDVq1czYsSI0LzCYcOG0bt3bw0hFRGJIw09gfsBXc3sfedcU+BO4KdAK2Aq8Gsz+z5Vz0+2+to+ikjDksy5a9H27NlDSUkJLVu2BGDHjh3MnDkzFKBFB2IXXXQRvXr1AuChhx7iqaeeKhfQbd26lR07dtC7d28WLlwYek5OTg5bt26NW4e77rqLa6+9FoBnn32Ws846K265li1bsnLlSnJzcwG46qqrmDdvHm3atCEnJ4c2bdqEtkGDBjFq1CgAtm/fzsyZM8udHzZsGCtWrIh5Rsp6AhujhtTIbdiwgW3bttG9e3cAXnjhBU4//fRyZTp16hQaPnrxxRcr2YyISEC61glsLBpS+ygi9VNlc9dGjhzJ3Llz4/aabd26lcLCwlBv3HXXXcd7770XU2bXrl2cfvrpPP/88wAsW7aMfffdt8L6vPrqqxx//PEA3HjjjYwfPz5uuV69epXL3zF69Gh2795dLhALbiNGjGDo0KGAn+61YMGCmDKtW7cmOzt5KwSlfU5gVOHZ+GEu/zSztQk/rZ5oyI3c7t27mT17dmhe4fTp01m71v9PkZWVxcaNG2nbti0AEydOpG3btgwfPpzOnTvXZbVFROqEgsDENOT2UUSSa/PmzaxZs4bi4uKYDeDXv/51qOyYMWP47rvvKC4u5ssvv6S0tDTmfvn5+dx///2MHj26wmeuWLGCbt26AT4ImzJlSkyZrKwsRo8ezYsvvgjAxo0bOeWUU+L2rrVp04bTTz891BO4ZMkSVq1aFVOmVatWZGVl1fzHSpM6yw7qnHsFOA4/L/BNfED4bzPbWaOn15HG1MiZGUuXLmX69OksXbqUm2++OXR8r732Yt26dYB/uxGZcOaAAw5oEP+wi4jURjqCQOfcYOAm4EigPXCYmX3mnPsj8J6ZTU3l85OpPs6ZF5HqMTO2bdtWLljbvHkzrVu3ZtiwYQCh3rZ4gV1xcTEPPvggJ554IgDjx4/nxhtvjPus3Nzc0BJoAD179mTp0qWV1s85x8cff8y1115bLgCLDNwuuuii0Ii2L774gq1bt8aUbd68uaZB1VCN1wkEcM51Bs4BfgYcDGwBXgCeNLO3U1HhZGtMQWBFdu3axe23386HH37IRx99VK7rGGDChAlcffXVAGzatIlmzZqVy14kItIYpGFO4BHAG8CSwOevgEMDQeDtQH8zOyVVz0+2TGgfReqb0tJStm7dSnFxMc2bNw+N3lqzZg3/+9//ygV0kQHbY489xj777APABRdcwKRJk+ImCDnyyCN59913Adi2bRtt2rSpsC4TJ07k3HP90qaPP/44d955J23bti23tWvXjtzcXG699dbQdcH7t23blpNOOolVq1bF3Lumc9ckNWo1J9A5dwAwFh8UdgdWmFl+0muZZJnWyO3Zs4e5c+eWG0L63HPPhd4K3Xrrrdx2220MHjw41FM4fPhwunbtWsc1FxGpnTQEgR8A3wOnANnAbsJB4GnAX8ysR6qen2yZ1j5KZkvm0Lp169bx9ddfx+1d2759O3fffXeo7Nlnn82cOXNC5yOTj1x++eX87W9/A2DGjBmh/1aL57PPPmPw4MEAXHTRRTz22GO0bt06JmgbOHAgEyZMAHxv4Z///OdyAV1k2S5dutS6UyDZc9ckNWqdGMY51wL4CT4jWlczS94MyBRRI+f/JRDsSr/88st5+OGHY94eFRQU8JOf/KTcv7hERBqSNC0Wf5qZTXXOZQMlhIPAI4FpZtYyVc9PNrWPkgnMjCeeeIJf/epX7NixI3S8WbNmXHbZZfzlL38JlbvgggsqHDo5YcIELrnkEgAeeeSR0H48u3fvpmnTpgAcfvjhzJw5s9z5nJwc2rZty5gxY/jTn/4EwHfffUdhYWFMUBfchg0bRrt27QDYuXMnTZo0oUmT+rFcdyqzg0py1DgIdM6NwPcCnga0AWbhh4Q+mIqKJpMauVhbtmxh5syZoeUpZsyYwZYtWzjnnHOYPHkyAOvXr+ecc84J9RQOGTKEnJycOq65iEjF0hAEbgAuNLMX4wSBPwXuM7O9UvX8ZFP7KA2FmVFSUhJaf23Lli288cYbbNy4Me529913069fP8AnNAn2tkVr0qQJJSUloe+tW7eOmVITFLlMwNSpU7n11lsr7GG7/PLLQ3WdP38+ZhY616ZNG+VpkLRLNDFMf/xcwHOAfYBlwFP44O+bCi+sZzTxvWqlpaV8+eWXZGdn079/fwCmTJlSLqNTVlYWBx10UCgoPPnkk8stsikiUhfSvFj8FHwymGMCh0qAQ8xstnPuNWC9FosXic/MKC4ujgnYRo0aFQqY7r33XmbNmhVTZtOmTfzkJz/hmWeeAWDx4sWhDJDxVHeZgGC9gv75z3/SrFmzmDlxbdu2bTAZJUXiSTQILAM2A88Dk8zsg9RXMfnUyNXMhg0beOutt0LzCmfPns2ePXtC57///ns6dOgA+H/Zdu7cmYEDB9aboQkiknnS0BM4EJiOfyn6L3yW0L8CA4FDgB+Y2cIKb1DPqH2U2vj8888pKiqK2xM3cuRITj31VACmTZvGOeecw6ZNm+ImMlm5cmUoL8HJJ5/Myy+/HPd5J510Uujc5s2bOffcc8nNzY27HXbYYeTl5QFQVlZGz549+fbbb2PuqeQlkikSDQJPB142s13pqFyqqJFLju3bt/Pxxx8zffp0li9fzsMPPxw61717d1asWEGrVq0YMmRIqLdw6NChofHrIiKplqYlIg4G/oxfIiIbKAPeB642s9mpfHayqX3MTGVlZWzevDkUsOXn59OpUycAPvjgA15++eWYXriNGzeSlZVVbnHtgoKCuIEVwDXXXBPKMfD2228zYsQIANq0aRMTsD3wwAOhIPCNN95g7dq1MWXat29P8+bNa/w3K3mJZLpaJ4ZpiNTIpdbOnTu59NJLmT59OosWLSp3zjnHQw89FJo8HZwo/fTTT2sCsYgkXToXiw8kSusAbDKz+JOI6jm1j/VTdZNsFBcXs27durg9cR06dAi1vdu3b+eII44InSsuLi43BHLSpEmMHTsWgPvuu4+rrroqbr2ys7MpKSkJJZo766yzYgK29u3bk5uby6GHHsqQIUMAv4xVcXEx7du3DyVLqQtKXiKZrMog0DlXCgw1s1mB4aCVtQ5mZvV+7J8aufRZt24dH374YWgI6aeffsprr73GUUcdBcAdd9zBnXfeybZt2ygtLQ1dp7dxIpIM6QwCGwO1j3UvOuHJww8/zJVXXsnu3btDZbKzs+nduzfNmzfn6aef5oADDgDgwgsv5O9//3vc+w4aNIjZs2eHntG0adNy7W5w7bfc3FxuvPFGTjvtNIBQux0Z0EVuHTt21MLdIg1QdYLAccCjZrbKOVdI5UEgZnZLZefrAzVydSc6hfFZZ53Fs88+G7dsTk4OxcXF6ayeiDQy6QoCnXPd8evltog+Z2Zvpfr5yaLEackXTH5SVFTEfvvtFwqYnnjiidAcuuC2bt06ioqKOOecc3jiiScA6Nq1K6tXr67w/m+//TZHH3004JMiTZo0Ke6cuH333ZdLL700dN1nn30WCvzatWtHdna9X+FLRGqpssRpGg4qaWVmZGdnU9H/HsHjRUVF9OvXj0GDBoW2gQMH0qdPHyWeEZEKpSExTE9gMnBY8FDg0wL71hDWzw1S+1i1yKBu3bp17LXXXvTs2ROATz75hL/85S+hYC64BXvxNmzYQG5uLgAjR47ktddei/uM0047jRdeeAHwmbjj/W/inOOTTz6hd+/etGnTJhV/qog0YtHto/5rWtLKOUePHj3iTiTfe++9Q/vBt6Wvv/46r7/+euh4ixYt6N+/P08++SR9+/YF/PIWeqMpImnyGNADuApYAOyuvLjUN9FBXVFREdu2beOcc8Ire5x11lksXLgwJqgDuOGGG7j99tsBnyU7uLZupDZt2pCXl8eWLVtCQeAFF1zAcccdR+fOncnLyyMvLy+037Jly9C1FbWRPXr04OCDD07a7yAima2q7KBLgFPNbG6cc/2BKWbWM4X1Swq96axfqpOhy8xYvnw5c+bMCW1z585l6dKlgO8pDGYyO+OMM/jss89CvYXBzx49emjegkiGSUNP4BbgfDN7IVXPSKfG0D7GC+qC24knnsjAgQMBePzxx7n55ptjgjqAli1blmuT+vXrx7x580Lfg0FdXl4eY8eO5Ve/+hUAa9as4bXXXisX0EUHdYlSFksRSYVEewILgIry8bYA8pNUL8kgwUassgxdzjny8/PJz88vt2D9pk2bmDdvXigABJg3bx5LlixhyZIlvPjii6Hj7du354orrgiNhS4pKaGsrKxWKaZFJOOtQL1/Kbd161ZWr14dM3euqKiI9u3bM27cOMD/e71NmzYxQV1Qbm5uKAg0M1auXAlA69atywVteXl57NmzJzTd4PHHHyc7OztuT12kvfbai3PPPTepf3t12kgRkdqqzmLxQ8zs4zjnLgXGm1nHFNYvKTTxvXErKSlh4cKFod7CYM/h+vXrue2227jxxhsBePPNNzn++OM58MADY3oNO3as9/8Yi0gFKpv4nmzOubHAJcBIM9uWquekS216AhNNt79z505mz54dCugiA7t169YxYcIEBgwYAMCvf/1r/va3v8W9z/7778/XX38d+t6+fXtKS0tjhljm5eVxyimnMHToUMAvLr558+Za99SJiDRE1ckO+hvgN4Gv3YAiYt96tsSvjfSMmdX7V1ONYbiLJMbMWL16NU2aNKFz584APProo1xyySVxJ9zvs88+zJs3j5ycHMAvddGpUyeysrLSWm8RqZ00LRY/HrgY+AjYGHXazOy8VD4/mWraPsYbsti0aVOOPfZYOnbsGArwhg4dyoMPPgjA0qVLQwlV4pkyZQqjRo0C4K677uLhhx+OCew6d+5M9+7dOfPMM0PX7dq1SyM8RESqUJ0gcDRwSuDrecAr+EAw0i5gHvBYQ1ggV0GgBG3dupUvvviiXI/hF198Qfv27UPDhAB69+7N6tWrGThwYKjHcNCgQfTv319vkEXqsTTMCTwfeBwoBdYR+5LUGsJc+aCato8FBQVxk5dEO/roo3n77bcB2LZtGyNGjIjprQvuH3rooeTl5SVcFxERqVqVQWBU4SeAW81saToqlyoKAqUypaWlrFmzhm7dugGwe/duevbsWS4oDMrKyuK+++4LJQXYsGEDJSUldOnSJa11FpH40hAEfgt8AvzCzDal6jnpUtP2saJlDAAmTpwYCu723ntvunbtWttqiohILSWaGGYhcDXw6zg3uh/4zsz+nNwqiqRXdnZ2KAAEaNasGStWrGDdunWhHsPg54IFC+jRo0eo7MSJE7n66qvp0qVLufUMBw0aRO/evbV0hUjj0xF4sDEEgLVR0TIG+fn5SU+UIiIiyVdVEHgecE8F5+YC1wAKAqVR6ty5M8cddxzHHXdc6NjOnTvLLTuxfft22rZty9q1a5k2bRrTpk0LnevZsyeLFy8Off/000/p3bt3aN6hiDRIHwAHAG/WdUXq0vjx4+MuYzB+/Pg6rJWIiFRXVcNBtwMnmtk7cc4dDfzPzFqnrHZJouGgkkpmxrJly8qtZzhnzhwOPPBAXnnlFcDPhcnJycHM6NWrV7kew0GDBtGtWzetaSiSBGkYDtoHeA64C5hKbGIYzKwsVc9PtnRmBxURkbqT6JzA9cCVZjY5zrmfAfebWYeU1DSJFARKXSgpKaFp06YALFmyhNNPP50vv/ySkpKSmLKRWfHmz59PSUkJBxxwQOh6EameNASBwQCvokbFzKyqUTb1htpHEZHMkGgQ+BKwL36twF0Rx5vjU2MvN7PRFV1fX6iRk/pi9+7dLFiwoFx20jlz5vDpp59SUFAAwPnnn8/EiRNp1qwZ/fr1K9djOHDgQNq3b1+3f4RIPZaGIHBcVWXM7JaqytQXah9FRDJDokHgQOBDYD3wFLASv3bgz/CT44eb2dyU1jgJtFi81GfB/w8Gh4Nef/31vPjiiyxatCim7MiRI5k6dSoAO3bsYOrUqQwaNIiCgoLQ9RqiJZkmXYvFO+eaAc8C95rZe6l4RropCBQRyQwJBYGBCw4D7gaGAVlAGX5i/G/N7JMU1jVp1MhJlRtAegAAIABJREFUQ7Rlyxa++OKLcnMNTzjhhNBLjFmzZjFkyBAA2rZty8CBA2nRogXvvvsuu3eHly5r1aoVjzzyiAJByQhp6AncAoyKN1e+IdJLUhGRxquyl6RVBoGhgs61BHKBjWa2I9mVTCUFgdIYzZo1i5tvvpk5c+awdu3aSst27NiRW2+9lb59+9K3b1/23ntvJaKRRikNQeBU4B0zuzNVz0gntY8iIpkh4Z7AxkCNnDR2a9asYe7cuRx//PHVKp+Tk0Pfvn3p06cPJ598MmeccUaKayiSHmkIAvsB/wbuC3yuJipJTKZkBxURkYYj0TmBb1VxPzOzY2tQidOBs4FDgc7AcuBF4I9mtqWKa1sAt+HnJbYH5gDXVzY/Q42cZIqCgoK4Czjn5uZy6qmnsmDBAhYsWMCGDRtC56677jr+9Kc/ATBjxgzGjh1Lnz59Qr2Gwa1Tp07qPZR6T9lBE6P2UUQkM0S3j1U1VFnENnQdgT5AEfB1DevxW3zg9wdgBTAYKASOcc4Nq+It6t+B/wOuBZYAlwPTnHNDzWxODesj0ihUtIDzX//613JzAtevXx8KCA866KDQ8fnz57N48WIWL14cWuMwKDc3l6+//ppOnToB8Mknn5CTk0PPnj21lIVkklupOAAUERFpEGo0HNQ5tx9+GMxvzOyNGlyfZ2ZFUcfOBSYCx5pZ3B7IQLbSOcDPzeyJwLEmwFfAQjM7uYLr9KZTMkZtsoPu3r2bRYsWhQLEhQsXhvbLysooLi4O9QYOGjSIuXPn0qRJE3r16hXqPezTpw9Dhw6lb9++qfwzReJKdU9gY6P2UUQkMyRtTqBzbgw+Q+jgJFXsAGAecK6ZPVlBmZuAm4D2ZrY94vgtwO+AtpHrGUacVyMnUgtmxvfffx/qBQQ49dRTmT17dtzhp7///e/54x//CMDcuXN54IEHQsNK+/TpQ0FBAdnZ2Wmrv2QOBYGJUfsoIpIZEh0OWpkioHftqxRyVOBzfiVl+gFLIwPAgK+AZkCvwL6IJJFzrlwACPDSSy8BsH37dr755ptyPYfDhw8PlZs5cyaPPvpouWubN2/O/vvvT58+fZg0aRKtWrUCfE9ks2bNUvzXiNSOc24w/oXkkfi56YeZ2WfOuT8C75nZ1DqtoIiISBVqOhy0IzAZ6GpmB1VVvhr36wbMBuaa2XGVlHsN39t3eNTxHwGvA0ea2ftxrtObTpE6smDBAl5//fVyQeLKlSsBaNeuHRs3bgwNMR0wYAAbNmyISUrTp08f9tlnH7KysuryT5EGIA2JYY4A3sDPSX8D+BVwaCAIvB3ob2anpOr5yab2UUQkMyTUE+icW0rsBPhmQJfA/v9n787DoyrPxo9/74Q1YQsCgkgSFllkUUABhUrRl6qtBYyirRR91YKtVm1Fq1YpwYJS9bVutQX5YV1oq+IC1gWrKFVcUEAhIEEJYVGkIIhoWAK5f388M5k1ySSZNXN/rutcM3POc+Y8cwjnOfd5tvOikKEWwELgMHBpfb+vmuOErLOJcY2JPW8g52/fvn1s2LCB//73v5X/NysqKti6dSt79+7liy++YMmSwK7Bv//97ysnPC0pKeGDDz6gV69e9OzZs7Im0aSP4Alw42gWsBgYB2TigkCvlcDFiciUMcYYUxs1NQddSmgQeADYDDytqhvrc3DPBPQvAN2Akaq6rYZd9gB5Yda39bzuDrMNcH2ajDHJoWXLlgwePDhgXUZGBl999RWbN28OOzBNz56+1ueLFy/myiuvrPycl5cXUGs4efJk63PYwBUWFoZ9iBeHaUwGAQWqqiISXLDsAtrHOgPGGGNMfSVssngRaYwbYfQ0YLSqvhfBPr8HbiV0YJhC4GZsYBhjGixVrbzBf+GFF5g3bx7r16/ns88+4/Dhw5Xp2rZty65duyrTXnjhhTRp0iSgeWmPHj1o2rRpQn6Hia04NAfdDfxcVZ8VkUygHF9z0AuB+1S1Y6yOH21WPhpjTHqI2uig9cxEBvBP4MfAOar6eoT7DcQ1t/lfVX3Us64RsAb4TFV/XMV+VsgZ00CVl5ezadOmyhrD8vJybrnllspt2dnZlJeXB+yTkZFBt27dmD59OhdddBEAX3/9NYcPHw4ZAMerPlNvmPiJQxC4CDcYzCjPqnJgsKqu8vRb36WqF8Xq+NFm5aMxxqSHaI4OWh9/BsYDM4HvRMR/oJdtqrpNRPKAjcBtqnobgKeQfRK411OTuAn4JdAVsLsxY9JQ48aN6dmzJz179mTMmMCpQkWEJUuWVAaI3iamJSUlfPbZZwEDzTzxxBNcffXVtG3btrJZqbfmcMOGDUybNo2yMtcAYfPmzUyePBnAAsH0MxVYBnwMLMB1mbhERO4BBgMnJzBvxhhjTERCagJFJOxE7VVQVT2j1gcVKSV83z6A6apaKCL5uCBvuqoW+u3bHBc8XoR7GvsxcKOqvlnN8exJpzGm0sGDB/nss8845phjyMnJAeCPf/wjM2fOZN++fSHpMzIyqKioCFnfvn17li5dSn5+Ps2bN495vk3N4jFPoIgMAu7CdWfIBCqAt4DrVHVVLI8dbVY+GmNMeqixOaiIvEngYDC9gI5AKbADNzJoPrAdKFbV02Oa4yiwQs4YEwlVZfv27QED0hQXF7N48eIa9+3UqRPdunXjpptu4pxzzgFg9+7d7N+/n06dOtn0FnESz8niRaQZbmCyr8PMX5sSrHw0xpjkNX8+3HILbNkCubkwcybUtQFSjc1BVfX7fonHAfcBp6jq+37rhwJPerYZY0yDICIcc8wxHHPMMYwaNapyfX5+Pps3bw5J36xZMzp37szmzZvZvn0727dvZ//+/ZXbH330Ua677jqaNm1K165d6dq1K926daNbt250796dsWPHxuV3megTkVZAP6AzsE1EilQ1tBrZGGOMqYP582HyZPD0RGHzZvcZ6h4I+qt2YBgRWQPcpaqPhdn2v8AUVe1f/2zElj3pNMbUx/z585k8eXJln0CArKws5syZw4QJEzh8+DCff/45JSUl9O3blw4dOgBw9913c+edd7Jz586Q7+zcuTPbtvlmxRkzZgzZ2dkBgWK3bt049thjadQoUd23U0+cmoP+HpgCtAC8x9qHKy9nxPLY0WblozHGxJcqlJfDoUPQooVv3TvvuIDvu+/c69VXw+4wk9/l5UFpae2PW6vRQUXkAHCuqr4cZtsPgWdUNek7wvjP5WQTxBtj6qI+o4Pu27ePTZs2sWnTJkpKSigpKaF58+bceeedABw6dIhmzZqFnc+0UaNG/PnPf64ciKa4uJjVq1dXBonePo3pLHji+BiPDjodNzjMXNwo195uEj8FLgP+4N+PPVFEZCowEeiBm9fw+SrSWRBojDF+VOHAgcCALCvLNccE2LMH/vUv37bg15tvhu7dXdo773Q1et99F5juyBEYMAA+/th33MaNwW/GqyqJQJhhCiLYr3ZB4Ce4fn/jwmxbCPRU1T61z0Z8WSFnjElmhw8f5r333qOkpCQgUCwpKeGLL77gmWeeoaCgAHC1izfccEPlvq1bt64MCHv06MEdd9xROUfikSNHyMzMTMhvSpQ4TBHxBTBfVW8Is+1u4CJVPSZWx4+UZ9Tt/wLzgHstCDTGxFI0+65F4ttvwwdg330HvXpBjx4u3Zo18MwzVQdsr7wC3mmDzzkH3nzTrQ++LE6YAE884d5/8gkcf3zVeXvjDfj+9937KVPgnntC02RmQv/+sMpvKLHRo91xs7PdsmiRy2ewaNUE1tTGaDowX0SKcENhe594ng/0xqZlMMaYemvUqBEjRoxgxIgRIdv2798fMKhM165dGTduXGWQuHfvXlatWsWqVavIzc1l1qxZAWlFJKCJqfd9nz59aNOmTVx+XwPTGqhqpKBXcNMW1ZqIHAvcCJwEnAA0B7qqammYtF2APwGjcc1RXwN+rapbvGlU9T1P2rpkxxhjIlZd37Xx413QVFXANm6cr4ZtwQIX+Hi3+afr0AGWLvUd85hjIMxg3gD88Y/w29+69+vWgV9DkRDffecLAg8d8gVdTZu6QCwry70efbRvn3bt4Gc/820Lfu3Z05f22mth4sTQdE2ahObl3/+u/ryC23fmzKp/T21UGwSq6j9FZBcuGLwZaIybGPcD4MxIJ3k3xhhTN8FTT5x33nmcd955gBvNdNeuXZUB4WG/diQHDx5k+/btHD58mC1btrDUv/QE7rnnHn7zm98AsGzZMhYsWBAQJHbt2tWmvQjvfdxcgK+F2XayZ3td9AAuAFbgppv4QbhEIpIFLAEOApfgRvOeAbwhIgNUNcxzY2OMCaXqmhV6G4x8/TWsX+9q2fyXffvc629/64IYgKlTYdkyt37VqtBmjGVlrmZw+HA48cSq83Dccb4g8OOP4fHHw6f75pvAz+3bQ7NmoQFYdrarKfPq3x9+//uqAzZvnzyAp55y56J5c6iuK3779lXnM1huru/31Za3JjVWNaw1jjagqq8Br4lIBtAO2KWqdWiJaowxJppEhPbt29O+fXuGDh0asK1p06aUlZWxZcuWyiDRv6lpnz6+lvxvv/029957b8j3d+rUiZ49e/LGG29U1ih99NFHtGvXjmOOOSZdp724BnhORA4DT+NrIXMBrk/gWE95CUAtysv/qOrRACLyc6oIAoFJQDegl6p+5km/GvgUuAII0/DIGJPqVN3ivex++SVs2hQ+WMvIgOuv9+178cWwdWv4tFOnwrRpLt1bb8GYMVXnYdIkXxC4Zo1r9lidLVugVSvo1y98AJaVBcce60t/7rmuGac3mPNP17Jl4Hdv3BjZeTv++OprAv0lY+OYCRNi16y22j6BDYX1eTDGmKqtWLGCJUuWBASKpaWllJeX07VrV0pKSirTduzYkR07dtC0aVPy8/MDmpmOHj2aAQMGJPCXxKVPoDeoC1eoSNB6VdVaD+3qCQIfJkxzUBF5HWimqsOD1i/1HHBk0Po3sT6BxgDx67fm/S/lbY1dWgrbt4cGYN9+C506ueaC4Gq7JkwIH6x9+62rqfJ0D+f2291vCadNGzd4iVf37uB3GQ/w29+65pMAy5e7ESlbtnQ1ZMHLNddA27Yu7YoVruawZUvXpHP79tDvrmvfNRMbte0TiIhcghv1LBdoFrRZVbV7dLNojDEmngYPHszgwYMD1h05coTPP/+c3X7jUx8+fJhu3boBsGPHDoqLiykuLq7cfv/991cGgc8//zy33357wHQX3qamXbp0CZj2oj4jrybAbYQPAOOlL7AwzPq1wPg458WYlBHpnGvr17th+cMFYQMHwg88dfRr1rhRIMOl+/Zb9z3HHefS3nwz/POf4fN12mm+ILBRIzfqZFX8BwnJy4OhQ11wFhy0tW4duN/cuS4wDRfY+fdNGzIE3o+wQbt/kXHXXbHtu2Zio9og0DPE9HSgCPgI1wfBGGNMA5eZmUlubi65fp0ZGjVqxDvvvAPAt99+S2lpaUBTU/8mqWvXruWDDz7ggw8+CPnurKws9u3bR0ZGBvPnz+eyyy7j0KFDAGzevLlyOoxkDASTYPqHtsCeMOt3A5XzhYhIIfBzoD3QT0QeBIap6rbgHcMNHmPTKZlkpwp797rlm2/c4v/+e98Db6v3V15xTRn37w/8jrIyF4D5X2rOO88NJhLOVVf5gsDvvoMXX6w6f99+63vfqxcMGxYagLVs6QsUwfVFW7iw6pq4xo19aWvTTHDUqMjS1VWs+66Z2gmeNqkqNU0RUQo8p6q/iV7W4s+auxhjTHzt3r2b9evXB0x34Q0Ws7OzWb9+PQD5+fls3rw5ZP+8vDxK69COKB6TxcdaDc1BDwH3qOpNQetnADfVtvmplY8m3lRdgOQftPXt6+vztXgxvPtu4Hbva14ePPmkS3f4cGBQFOyvf4UrrnDv5851QWBVDh3yfddFF7m+dsHBWosWcOqprukjuKaQb70VPrDLzq4+b8YkQm2bgx4FvBDbLBljjGlo2rZty6mnnsqpp54ass1/FNMtW7aEbK9uvWEPfjV+fqqqITQmKlRdTVrz5r6+bsuXw7Zt4QO2wYN9QVhxsZsDzVtLF/zcYdkyF2CBq1174IHwedi71/e+USPo2NG9tmrlmkD6v/oP03/GGW5Y/127Qr8zNzcwYPv73yM7H23awI9/HFlaY5JRTUHgUtx8RUvikJeY8jZ3sSYuxhiTWP79AXNzc8PWBObWYkztSJu+NBBrcf0Cgx0PVNGIzaSaWAxgsnNnaKDmfR06FE4+2aV76y03UEi4ZpZHjri+b95h9W+80U2uHc6ePb4gsEkTNzqlV3Z2YMDmH4SddRbk5Lj1wcGdd1ASr3CDkYTTtSvce2/4fmu33x7ZdxjT0NTUHLQH8CxwN/ASrs9BgFSYLsKauxhjTHKaP38+kydPpszvziwrK4s5c+bUqU9gGjQH/TWuTO6pqiWedfm4KSJuUtX/q+WxKgtHe0iaHMJNEN28uRvKf/hwN+R9u3Zu/Ztvwquvhu8T16pV4BD+Rx3lBjwJ57bb3PeD65PmbfIYrFkzN8pkp07u89SpUFTkC9SCa+K8fdEOH4bPP3frW7asfg62WIrX6KDGJIvgh6T+5WNNQWB1Q2F7vqv2w1/HmwWBxhiTvKI5OmgqB4Eicr7n7RnAL4ArgZ3ATlVd6kmTDXwM7AduxZXPfwBaAgNU9dvg763hmFY+xsn27W7Zvdste/b43ufnu0FHALp0cU0sq/L88zB2rHs/Y4YveAuWkxMY9J10kjtmcLDWqhWccw788Icu3Zdfumaewc0rW7UKHEnSGJNagsvHmoLAQmoYCltVk74NjhVyxhiTHlI8CKyqoFqqqt/3S5cL/AkYjZub8HXg18G1hpEe08rHyBw65IKozExfTdznn8OCBb5gLji4e+01V+MEMH68SxvOyJG+ZpUZGaF95ryGD3cTX59xhvu8bJnbL1xg17p14MiTxpj0VqsgsKGwQs4YY9JDPIJAERkITAVOA9oAQ1R1pYjcDvxHVV+J5fGjKd3KR1XXVNI/UNuzx627/HJfumuucfPA+afzztF29dVw//3u/bvv+gY0CWfFChg0yL2/5RZ46SXXry0nx7163/fo4aYmADcCZrhxkWzibWNMfdR6snhjjDHGOCIyAngNKAH+DvzKb3MFrhlnygSBkNoDp6nCO+/4grXg4G7iRDjzTJf2b3+Dn//cDW4SzsUX+wYoWb48dNLszEwXtPk3iczLcwGjN6gLDu66dvWlnTkzssmzb7/dJt42xkRHdQOn1VgTKCKdgCnASNwQ1LuBN3DzFH0Z3azGRro96TTGmHQV65pAEXkb+AoYB2QCh4CTPDWBBcC9qhr50KYJVp/ysb6DbKi6kSa9gVv37q4ZI7i54l5/PTSo273bTQuwfLnve7KyQicB97rzTrjhBvf+qafgwgvdyJbBwVrbtm70yOxsl/btt13zT/90LVr4pkaINRvAxBgTbbXtE9gTeAs3J9Ey4EugI3Aqbj6i76nqpzHNcRRYEGiMMekhDkFgGVCgqq+ISCZQji8IPA1YrKrNY3X8aKtr+RhuBMtmzdyUASef7AvajjkGzvcMd7N9OxQUBAZ0/rVyr7ziq7W79daqa746dgycGmDMGDf6ZHBQl5Pj8tKnj0tXXu4CTxvcxBiTjmrbHPSPwDfAUP8O5yKSB7zq2V4Qg3waY4wxyegAkFXFtk7A3iq2NSi33BIYAAIcOOAGLfF35pm+ILBpU3jvvcDt2dm+oM1/2oAf/KDqGrucnMDvWLQosjz7z0VnjDHprqaawK+BX6jqP8Ns+ynwkKrmhO6ZXKwm0Bhj0kMcagIX4QaD8cyARjkwWFVXicirwC5VvShWx4+2upaP1Y1gedZZvsCtf39XYwhQUeEGUvEP6qxWzhhj4iO4fMyoIX0TYF8V2/Z5tqcEEUFEUq7TuzHGmOoVFhZWXuPjYCowCDdX31TcNEqXiMgbwDAg6adNClaX8jG3il6PeXnw8suuuegDD/gCQHCB4/Dhrnnm0UdbAGiMMbFWXflYU03gO7jmoD9U1Qq/9QK8CLRW1eHRz3J0WU2gMcakhzhNETEIuAs3RUQmblTQt4DrVHVVLI8dbdHsE5iVBXPm2AAmxhiTjGo7MMxZwL+AjcCTwHbcwDDjgeOAH6nqqzHNcRRYEGiMMekhnpPFi0gz3KjZX6tqWU3pk1EiRwc1xhgTP7WeLN4TCM4ABgKCa/qyApiqqotjmNeosSDQGGPSQzyDwIbAykdjjEkPtQ4C/XbMwk0VsSfVnnhaIWeMMekhDgPDrAIeBf6hqjtidZx4sfLRGGPSQ60GhhGRG0XkAQBVLVPVz70BoIjcLyI3xDa7xhhjTFLZjusPuFVEXhaRn3iahaYsGzjNGGMapuoGhqlpdNBLgdVVbPvIs90YkyS2bt3K+eefT+vWrWnVqhUFBQVs2bKlxv22bdvG1VdfzSmnnEJWVhYiQmlpaewzbEyKUdUfAp2B3wLtgb8DO0RknoiMqnbnJKWqqKoFgcaYBqWu90RvvvlmZeDkv7Rp0yYOuY6uwsLCymt8sJomi88FPq1iWwmQV8+8GWOipKysjNNPP52mTZvy6KOPIiLceuutjBo1itWrV5OdnV3lvp999hlPPfUUgwcP5nvf+x6vvpr04z0ZkzCq+l/gXuBeEekDTAQuwk0VsU1VrWw0xpgEqs89kdf999/PySefXPm5UaOawqbUUtOvKcM98QznWOBgdLNjjKmrhx9+mJKSEoqLi+nRowcAAwYM4LjjjmP27Nlcd911Ve572mmnsWOH6940d+5cCwKNiZCqfiIitwFrgVm4stEYY0wC1eeeyKtPnz4MGzYs1llNmJqag74F3CAiTf1Xej5P8WxPCdbnwcTS/PmQn+8mQ87Pd5/jbdGiRQwbNqzyYgfQtWtXhg8fzsKFC6vdNyOjpktB1Z599ll69eqFiLBgwQIANm7cyIknnoiIMG3aNMDXLn39+vWceeaZZGdnk5ubyyOPPALA448/Tu/evWnRogWjRo1i48aNdc6TSS9xniy+koicLiKPADuAx4BtwNVxzYQxxiSbJLgpqs89UX2k0j1RTXd+hbj5ADeIyEwRuVJEZgIbPOt/H/UcxYj1eTCx4p00efNmUHWvkyfH/5q3du1a+vXrF7K+b9++rFu3LmbHLSgo4M477wTcUzaA7t27V15kveu8xo8fz49+9COef/55Bg8ezGWXXcbvfvc7/vKXvzBr1iweeeQRiouLueiii2KWZ9OwVNfnIdpEpJ+IzBKRLcBrwEjgPqC3qp6iqg/FPBPGGJOskuSmKBr3RBMmTCAzM5OjjjqKiy66KKL+hKl0T1Rtc1BV/djT0f1u4EZc0FgBvA2cp6ofRz1HxiRQdRUJs2e76xjAnDlwxRVVpy0rc5MoT5gAgwfDypXh002a5L4LYMUKl7audu/eTU5OTsj6tm3bsmfPnrp/cQSKiorIysoKeOK2Zs0aAPr37x+Q9oYbbuDiiy8G4KSTTuKFF15g9uzZbNq0iVatWgGwfft2rr32WjZv3kxennWvMkllNbAXeBp4TFXfTnB+jDEmNlL4pqg+90StW7dmypQpjBw5klatWrFq1Spuv/12TjnlFFatWkWHDh2q3T9V7olqbAOmqstV9TSgJa6vQ0tV/b6qfhi1XBjTAEXwwKjBKCoqom/fvgHNSouKimjevHnARRDg7LPPrnyfk5NDhw4dGDZsWOXFDqB3796AG9nLmCRzAdBRVSc3lADQuksYY2IuhW6KBg4cyN13382Pf/xjRo4cya9//WteeeUVduzYwf3331/j/sl0T1Rdd4mIh7lR1f3A/lofPQwRORZXs3gScALQHOiqqqUR7FtK+FFJz1XV56ORP5O+Im1NNnmy7wFYfr5r7RAsN9e9rlgR2XfWpxYQ3MUj3NOtqp6GRVNRURFDhw4NWLdmzZqQi6A3n/6aNGkSdh3AgQMHYpBbY+pOVRckOg/RZpPFG2PCSuGbomjfEw0aNIiePXvywQcf1Jg2me6JCgsLKx/wBQeCdR8Non564J6m7qFug8ssBk4JWpZGLXfG1MLMmZCVFbguK8utj6e+ffuydu3akPXr1q3j+OOPj9lxy8vL2bBhQ0jb+3fffTek7bsxqUhEjojIEM/7Cs/nqpbDic6vMcYkTJLcFMXqnqimAchS6Z4oUUHgf1T1aM+ku0/XYf9dqvpe0BLbTk/GVGHCBNeEPS/PNZ/Py3OfJ0yIbz7GjBnDe++9R0lJSeW60tJSli1bxpgxY2J23A0bNnDo0CE6depUue7DDz9k06ZNIW3fjUlRt+FG/vS+r275QyIyaIwxSSFJboqifU/04YcfUlxczJAhQ6pNl0r3RAmZ9VBVKxJxXGNiZcKE+Ad9wSZNmsSDDz7I2LFjmTFjBiLC1KlT6dKlC1f4ddheunQpZ5xxBvPmzavsjAxUDmW8wtNU4+WXX6Z9+/a0b9+ekSNHVnncoqIiANavXw/Azp07mT59OhA6CpYxqUhVp/u9L0xgVowxJvklwU1Rfe6JJkyYQNeuXRk0aBBt2rRh1apV3HHHHXTu3Jlrrrmm2uOm0j1RomoC6+vHIlImIgdF5D0RGZfoDBmTaNnZ2SxZsoSePXsyceLEyovYkiVLaNGiRWU6VeXIkSNUVAQ+ixk/fjzjx4/nr3/9KwBXXnkl48ePr5zTpipFRUW0aNGCuXPnMmDAAG699VbOOussAK666iqefPLJKP9SYxJHREpE5IQqtvUTkZJw24wxxsRPfe6J+vXrx6JFi7j00ks588wzuffeeykoKOD999+nXbt21R43le6JJNEdwkXk58DDRD4wzAPAB8Am4GjgV7h5miaq6hNV7KOJ/p3GNFTnnnsuZWVlLF68ONFZMQYRQVVjNmu8iFQAw1R1eZhtJwHvq2pmrI4fbVY+GmMfrXw1AAAgAElEQVRM9CTzPVFw+VhjTaCIDBSRZ0Vkl4gcFpFBnvW3i8hZscxsOKp6tao+pqpveUZpOwP4ELijuv28w6P6LzYctjH1V1RUFNOBZ4wJx3/Ya/8lTqqKmk4Cvo5XJowxxiSXVLonqjYIFJERwLtAb+DvQekrgF/ELmuRUdUjuMFljhWRTtWkC1ksCDSmfvbv309JSQl9+vRJdFZMmiksLAx7XY8FEfmNiGwRkS24APAF72e/ZSfwZ+CVmGQihuzBqDHG1F8y3hPVZ57AWbjpGMYBmbiml14rgYvD7ZRA1qbFmDj65JNPqKioSJmnXsbUUQnwuuf9JbjWJzuD0hwE1gFz45ivqLDmoMYYU3/JeE9U3TyBNQWBg4ACVVURCS4ldgHto5THOhORRsCFwBZV/TLR+TEmnQwaNMhuIE2Dp6oLgYVQWYjepqqbEpopY4wxSSXV7olqCgIPAFlVbOsE7K3rgUXkfM/bwZ7Xsz3NaXaq6lJPmsPAo6p6uefzT4GxwEvAVtzAMFfhgtWf1jUvxhhjTCRU9dJE58EYY4ypr5qCwLeBX4vIQr913hD3cmBJPY4dPEn8Q57XpcD3Pe8zPYvXJqADcBfQFvgO1yznLFVNvmF4jDHGNEieaSJ6Ac2Ct6nqY/HPkTHGGBO5aqeI8BRyy4BSYAEwFXgAOAFXg3eyqhbHPpv1Y0NgG2NMeojDFBFtgBeBYd5VntfKQsamiDDGGJNsajVFhKp+DJwG7ABuwRV23sFhRqZCAGiMMcZE0e3AUbiyUYBzgdOB+bgBZIYkLmvGGGNMZCKeLF5EmuGaYH6tqmUxzVWU2ZNOY4xJD3GoCdwITMcFfeW4FjErPNv+AmSrarKNnF0lKx+NMSY91HqyeC9VPaCqX6RaAOhV53mQ5s+H/HzIyHCv8+fHIHfGGGPqqrp5kGKgE1DimaP2ANDSb9uzwI/ikQljjDGmPmrqE7gKeBT4h6ruiFuuoqzOTzrnz4fJk6HML+7NyoI5c2DChOhl0BhjTFTEoSawBLhGVf8lIp8Aj6nqHZ5tvwRmqOpRsTp+tFlNoDHGpIfa1gRux43EuVVEXhaRn3iahaaHW24JDADBfb7xxsTkxxhjTKK9jW9QmMeBaSIyW0T+jCsvU26k6jq3lDHGGJPUqmspU2OfQBHpAFwE/Aw3H98+4BngcVV9I/rZjb46P+nMyICq9jvmGBgyBIYOdbWFbdvWL5PGGGPqLQ41gd2BY1T1LRFpDMwCLsTNqfsKcLWqfhWr40eb1QQaY0x6CC4fIx4YxrNzH2AiLijsAmxT1byo5zLK6lzI5efD5s3hvjAwOPzqK18Q+Je/uOBxyBDo3x8a1TQVozHGmGiJdRDY0FgQaIwx6aFeQaDnC5oB5+Gefh6TCvMhRb1P4OzZLsh7/3347DOYPt23PS8Ptmxx75s3h0GDXG3hkCHwve+5GkRjjDExYUFg7VgQaIwx6aHOo4OKyOki8ghuzsDHgG3A1dHPYhKZMMENApOX52r/8vLc55/9DHr2hIkTAwPAigqYMsXt16MH7N8Py5bBPffAT34Cf/ubL+2mTfDqq7BnT9x/lmm4tm7dyvnnn0/r1q1p1aoVBQUFbPE+lKjG4sWLOf300+nYsSNNmzbl2GOP5YILLmDdunVxyLUxxhhjTHTZPVH1ahodtB+uL+BFwLFAKfAErj/gp/HIYDQk7EnnV1/BBx+4GsPly+Hmm2HECLftj3+Em25y73v29NUWDh0KJ5wATZrEP78mpZWVlXHCCSfQtGlTZsyYgYhw6623UlZWxurVq8nOzq5y33/84x+sXLmSoUOH0r59e7Zs2cKsWbPYunUra9asIS8v6Vt9GwPEpiZQRCqASAsRVdWU6QdgNYHGmIbI7olC1ao5qKfg2ws8jRsG++3YZzH6krKQe+QRePhhWLkSDh4M3Na9u2tm6rV5M+TmutpIY6pw3333cd1111FcXEyPHj0A2LRpE8cddxx33nkn1113Xa2+r7i4mN69e3P33XczZcqUWGTZmKiLURBYSORBIKo6veZUySEpy0djjKknuycKVdvmoBcAHVV1cqoGgEnr0kvhnXfgm2/gww/hz3+Giy+G3r1h4EBfuq+/dgPUtGsHZ58NhYXw0kuwa1eicm7CmD9/Pvn5+WRkZJCfn8/8+fPjnodFixYxbNiwyosdQNeuXRk+fDgLFy6s9fcddZSb6qxRDYMbPfvss/Tq1QsRYcGCBQBs3LiRE088ERFh2rRpgG+Y4vXr13PmmWeSnZ1Nbm4ujzzyCACPP/44vXv3pkWLFowaNYqNGzfWOs/GxIKqFqrq9EiXROfXGGMSye6JUuSeSFUb/IJ7gquATps2TZPe4cO+96tWqXbooOrGIw1cunVTXbHCl7aiIv55NfrEE09oVlaW+v+dZWVl6RNPPBHXfBx99NE6efLkkPW//OUvtV27dhF9x+HDh/XgwYO6YcMGLSgo0I4dO+qOHTtq3O/5559XQIuLiyvXlZaWKqALFixQVdVp06YpoP369dP77rtPX331VR03bpwCevPNN+spp5yizz33nD711FPaqVMnHTJkSIS/3KQ779+Wd9HYlykDgWeBXcBhYJBn/e3AWbE+fpR/S73OvTHG+LN7ouS9JwouH8MVCEeAIZ73FZ7PVS2Hg/dPxiXlC7mKCtXSUtWnnlKdMkV1xAjV5s3dP9+XX/rSXXqp6kknqV55peqjj6p+8onqkSOJy3cK8r9oBS+zZ8+uTDd79uxq0wKal5enqqqDBg2qMs2kSZMqv/PDDz+sV94bN26sN954Y8j6W265RTMzMyP6jsGDB1fmrUePHrpu3bqI9psxY4ZmZWXpEb+/txdeeCHgIui94D366KOVaXbv3q2ZmZnatm1b3bt3b+X6++67TwEtLS2N6PjGeMU6CARGAAeAdcD9nnLSGwTOAJ6P5fFj8Hvqd8KNMQ2W3RM1rHui4PIxXJ3mbbiRP73vrbNAonlHJs3Lg/Hj3brDh+GTT+Doo33pli2DDRtc89KHHnLrWreGk092TU0nTox/3tNYJCNQJZvHH3+cb775hpKSEu6++25Gjx7N22+/TX5+frX7FRUV0bdvXzIyMgLWNW/ePKApBsDZZ59d+T4nJ4cOHTowcOBAWrVqVbm+d+/egBvZK1U7YJsGaxawGBgHZAK/8tu2Erg4EZkyxphkZvdEyXdPFBIEql9/BlUtjNqRTHQ1auQmo/f34YduWb7cjUj6/vvwxRfw2mswfLgv3YoVbnTSoUPdMmiQm//QeJ+M12jy5MlMnjwZgPz8fDZv3hySJjc3F4AVK1ZE9J2DBw+OMJfh5eTksCfMlCO7d+8mJycnou/o06cPAEOHDuXss88mPz+fWbNm8de//rXa/YqKihg6dGjAujVr1oRcBL359NekSZOw6wAOHDgQUb6NiaNBQIGqqogEXzB2Ae0TkCdjjIk6uydq2PdE1Q4MIyIlInJCFdv6iUhJVHNj6qdlSxg1Cm68EZ59Fj7/HLZtg2eegQsv9KX7z3/g6afh+uvdBPatWrnBaK64AubNc7WMJmIzZ84kKyiIzsrKYubMmXHNR9++fVm7dm3I+nXr1nH88cfX+vvatGlDjx49+Mx/pNowysvL2bBhA/369QtY/+677zJgwIBaH9eYJHcAqOqpWSfciNrGGJOW7J4ode6JahodNB9oWsW2ZoC100p2nTtDQQF4nmYA7vP/+38u6DvxRLfuo49gzhw3l2Fmpi/tPff4AkoT1oQJE5gzZw55eXmICHl5ecyZM4cJEybENR9jxozhvffeo6TE92ymtLSUZcuWMWbMmFp/344dO1i/fj3du3evNt2GDRs4dOgQnTp1qlz34YcfsmnTJvoH11Ybk/reBn4tIn4XyspuE5cDS+KfJWOMSQ52T5Q690SRTGhbVV3wScDXUcyLiZe8PLjsMrcAlJW5+Qrff9/VAnrnI/z2W7jhBqiocJ+POSZwUvuTT4YWLRLzG5LMhAkT4n6BCzZp0iQefPBBxo4dWzkx6tSpU+nSpQtXXHFFZbqlS5dyxhlnMG/ePC6+2HVfOvfccxk0aBADBgygVatWbNiwgT/96U80atSoxvlwioqKAFi/fj0AO3fuZPp016o82Z56GRMFU4FlwMfAAlwZeYmI3AMMBk5OYN7qRDzX/GnTplFYWJjYzBhjUp7dEyXPPVFhYWHl8YOF1ASKyG9EZIuIbMEVbi94P/stO4E/A6/ENOcmPrKyYMQImDLFNSX1OnTI1QyOHu0GmPniC3juObfu9NNh8WJf2nXrXG2iNSVNmOzsbJYsWULPnj2ZOHEiEyZMoGvXrixZsoQWfsG6qnLkyBEqvME9MGzYMJ5//nkuueQSfvSjH3HPPfcwcuRIPvroI3r27FntcYuKimjRogVz585lwIAB3HrrrZx11lkAXHXVVTz55JOx+cHGJICqfgycBuwAbgEE3+AwI1W1OFF5qyvvSHEWABpjGgq7J3IKCwv9R4MOIMErRWQsbtQzgEuAl4CdQfsdxA2PPVdVy6Ke4ygTEY20c6upQkUFfPqpb8CZ5ctdQHjssW77ZZfBI49A8+YweHBgjWFurq920TQ45557LmVlZSz2fyhgTIKICKoalwuOiDQD2gJfp0JZGI6Vj8YYEz3JfE8UXD6GGx10IbDQmxj4g6raADDpLiMDevVyy8VhRkA/+mjo3h02boS333aLV0GBG5wGXE3ht9/Ciy/CLbfAli0uSJw5ExLcdMDUTVFREeecc06is2FM3KnqAeAL72cRaQr8QlXvS1yujDHGJEoq3RNVOzCMql7aUAJAEUFErLlLrNxxB3z2GezcCS+9BNOmwVlnQdu2LnD0WrkScnLcnIWbN4Oqe500CebPT1z+TZ3s37+fkpKSymGUjUmEwsLCymt8rIlIOwk6kIg0F5EpwCbgnphnwhhjTNJJtXuikOagARtFbgSOVdWrw2y7H9iqqnfFMH9RYc1dEkgVDh6EZs3c5yefhJ/8JHxaEdixA9p7ptl67z3IzobjjvPtb5LKypUrGTx4MG+99RYjRoxIdHaMiUlzUE8N353AZbjpIfYCt6jqX0TkZ8BdwNHAB8CtqvrvaB4/lqx8NMaY6Ej2e6Lg8rGmIHA98H+q+nCYbZcB16tq7SfbiDMr5JJMRoYLDsOpqPD1HzzhBFi92n3u2hV693ZLr14wfDj07Ru/PBtjUkKMgsCZwM3Aa8BKoCtwLjAbuArYANygqi9E87jxYOWjMcakhxr7BAbJBT6tYlsJNk+gqYvcXNcENFiXLoEDyPTuDfv3Q0mJb3npJbftd79z/QjBjUp6332+ILF3b+jWDRo3jv1vMcakgwuBh1TVOwqo90HoXODfwI9V9VCiMmeMMcbUVk1BYBnQuYptx+JGCTWmdmbOhMmT3fyEXllZrl+hP+8wuocOuQFn1q/3Lf7V7MuXw9/+Frhvo0bQo4erNfz73933gwsqmzeP+k8yxjRoXYDngtY9iwsC77EA0BhjTKqpqTnoc7hmL0NV9aDf+qbAe8AWVR0b81zWkzV3SULz50dvdNBPP4XXX3fBYXGxe/UOOtO6NezZ46th7N8f/vvfwFpDbxPTvDzIzIzebzTGxF2MmoNWAMNUdbnfukygHDhJVVdG83jxZOWjMcakh9r2CTwBeAfYBTwBfI6rGfwZcBQw3DNxblKzQi4NlZW54HDHDvjBD9y6igpo184FheH8/vcwfbp7v3Gjmw+xd2/o2RP8JhY1xiSvGAaB5wH+5V0mUAyMBdb6p0+lUbWtfDTGmPRQqz6BqvqxiIwC7gZuxE0pUQG8DZyXCgGgSVNZWW5gGX8ZGbBrF2zbFlhr6F38p7J49VW48krf5y5d3HZvzeEvfmG1hsaklwVVrH8+zDq7OBhjjElq1dYEBiQUaQ7kAHtUdX9McxVl9qTTRETV12z0xRfhkUdccPjpp65fotdRR7lg0uuCC6BJk8DmpT162LQWxiRAjGoCL6lNelV9NJrHjyUrH40xJj3UqjloQyEilT9y2rRpNmG8qZ3Dh6G01FdjWF4ON9/stpWXu7kMy8sD98nIcNNaTJ/u6+v49dcuXbt2gaOgGmPqpbCwkOneptwQ9SCwIbMg0Bhj0kOtg0ARGQhMBU4D2gBDVHWliNwO/EdVX4llhqPBCjkTM0eOuL6D/s1K1693fQorKuCf/4QLL3RpH3wQrr4acnLCD0zTs6cFh8bUUyxqAhsyKx+NMSY91KpPoIiMwE2OWwL8HfiV3+YK4BdA0geBxsRMZiaceqpb/B086ALBTp1868rKoFUrNzDNu++6xat9ezdqqdddd0GHDr5+iG3axPZ3GGOMMcaYtFHT6KBvA18B43Ad3Q/hGQ5bRAqAe1U1Ny45rQd70mmShip8+WXowDRt2rhaQ3D9D7OyXC2j19FH+2oNL70Uhg6t+hjRnH7DmBRjNYG1Y+WjMcakh9pOEVEGFKjqK8FzIonIacBiVa31zNsicixutNGTgBOA5kBXVS2NYN8Mz75XAB1xQ3TfpqrPVLOPFXImdXz7Lfzf//kCxOJiN8m919NPw/nnu/ezZ8NDD/malH71FcybBwcO+NJnZcGcORYImrRgQWDtWPlojDHpIbh8zKgh/QEgq4ptnYC9dcxHD+ACYA/wVi33/QNQCDwInI2btP5pEflhHfNiTHJp0QKmTYN//ANWrXJB4ebNsHgx3HdfYC3gxx/D6tXw1FPwhz+w9aGHOP/AAVoDrYACYEtZmasZnDMHnn/efedXX7laSY8333wTEQlZ2lgzVGNSkoh0F5G3RWSDiKwSkZMSnSdjjImnrVu3cv7559O6dWtatWpFQUEBW7ZsqXG/bdu2cfXVV3PKKaeQlZWFiFBaWhr7DMdZTTWBi3CDwYzyrCoHBqvqKhF5FdilqhfV+qAiGapa4Xn/c+BhIqgJFJEOwFZglqpO81v/OtBeVQdUsZ896TQN0zffVDYrLVuzhhPuuoumwAxAgFuBMmA1kB28b3Y25OVBbi5vjh7NqClTuP/++zn5uONcTWK7djRq1oyTTrJ7R5M6rCbQEZF/A0+p6sMiMhr34LR3cGFo5aMxpiEqKyvjhBNOoGnTpsyYMQMR4dZbb6WsrIzVq1eTnR1yV1TpzTff5MILL2Tw4MEcOXKEV199lU2bNpGfnx+/HxADtRoYBjcq6DLgY9xEuQpcIiL3AIOBk+uSCW8AWAdnAk2AJ4LWPwHME5Guqrqpjt9tTOpp1QpOPhlOPpmH77uPElz76B6ezQOA44DZbdpw3U9/6moUt2xxr/v2wbp1bhk+HIA+ffowbMUKuOkmN+hN586VgSJ5edC9O1x2WWJ+qzENWG26SYhIF+BPwGjc857XgF+r6hbP9vbAMOCHAKr6bxERXLn9Ycx/jDHGJNjDDz9MSUkJxcXF9Ojh7ooGDBjAcccdx+zZs7nuuuuq3Pe0005jx44dAMydO5dXX301LnmOt2qbg6rqx7ipIXYAt+AKG+8IoSNVtTi22QvRFzgIfBa0fq3n9fj4ZscYj/nzIT/fzQ+Yn+8+x9miRYsYdtxx9MjyteDuCgzPyGBhx46u7+CLL8KaNbB3rxul9KOPYNEiON7vv05GhhvV9MgRFzC+9Zb7PbffDn/4Q+BBjz+eZ7t1o1fLlogICy65BBYsYONzz3Fi//6ICNOmuUr7wsJCRIT169dz5plnkp2dTW5uLo888ggAjz/+OL1796ZFixaMGjWKjRs3xvqUGZNMIuomISJZwBKgN3AJMBH3rOcNEfE+2s4Ftquq/wSmpZ71xhgTU0lwS+TuiYYNqwwAAbp27crw4cNZuHBhtftmZNTUW65qzz77LL169XL3RAsWALBx40ZOPPHEpLsnqqkmEFVdCZwhIs2AtsDXqloW9ZxExnv84LYru/22GxNf8+fD5MluCghwtWyTJ7v3cRyMZe3atYwdOxZOOy1gdNC+PXrw9McfByYWcSOStmkDJ5wAb77pye4Edu3aRZs2bTjzgguY9atfkVte7qs9bNbM9x3798Mnn1CAGzp4HDDgscfgscfoDiwsLCS/qIgBAwbAkiXgueiOHz2aSePGcf2ECTz0zDNcdtllfPrpp7z55pvMmjWL8vJyrr32Wi666CLef//9OJw5Y5LCf1T1aKjsJvGDKtJNAroBvVT1M0/61cCnuAHT7olDXo0xJqwkuSXy3RMF6du3L08//XTMjltQUEBmZibjxo1z9z9A9+7dWbhwIfn5+ZXrvMaPH8+kSZO4/vrreeihh+J6TxQS6orIbhEZ5Hk/T0S6AqjqAVX9IoEBYL2EG/SisLAw0dkyyUak6mXOHF+6OXN863/2M9/Vzss7GAvA4MFVf6f3ygiwYkW9sr57925ycnLcVba01E1WX1pK22HD2LNnT7X7tm7dmilTpjB37lyWLFnC1KlTee2NNzjlJz/hv/36wf/+rxus5sYbfTs1awbbt8P771P0k5+Q1bgxPX71KxgzBk48kTWeZP3794f333e1jsAN27ZxzYMPMvqSS5i3aBGZwOzZs3nllVcYN24c41W56ZxzWL58OZvXrAnOqjGA7ylq8JKqatFNYgzwnjcA9Oy7Cdd1w3vHswXoJCKN/fbL96w3xpiIpPAtke+eKEjbtm1rvCeqr6KiIrKysgJqIdd47mf69+8fkPaGG27gmmuuYfTo0cybN4/MzMzAe6Lx47npppvcPdHmzVHNZ7iawGygqef9/wJ/BZKln90eoI2E9mT31gDuDrMPANbx3cRdBCNQJYuBAwcycODAys8jR47ktNNOY8iQIdx///3MmDEjdCcR6NgROnakCOh74olkPPBA5eaiWbNo3ry5uwiecw4sWwYvvsjZBQWwYwds2ULO55/TQYSBw4bRqlUrt+NVV9F71y4Atg4YQF7r1r5+iZdfDuPGuXT79rmlY0fX5sSklcLCwrAP8lI5EIxQXyBcW6a1wHgAVd0pIstxZbh3YBgB6nlbZYwxdZNCt0T1VlRURN++fQOalRYVFfnuifycffbZle9zcnLo0KEDAwcO9N0TAb179wbcaKd5eXlRy2e4IHAzMElEvIHgQE9T0LBU9T9Ry03N1uIC1O4E9gv0dmhaF8e8mIYo0ocFkyf7Hlnl57v2DsFyPd1vIn2cNXhwZOmqkJOTE/bpVlVPw2oyaNAgevbsyQcffFBj2qKiIoYGTWC/Zs0a30Wwf3846SR48UVynnwSGnkuPeXlNOnWzZe/igooKKDJqlXwwQccaNLE9V9cvdotZ53lO8DChTBxIjRuDF26+Aav8b5efLHbZkzD0hb3QDTYbsD/P/ovgEdF5AbcIMETqhoGNFzgPG3aNGstY0yaS+FboqjfE9VGjfdEQfn016RJk7DrAA74zwFdjcLCQqZPn15junBB4CxgNq7DuQIPVbGveLZnRpSj6HgFN03FBMD/1/0MKLKRQU1CzJwZ2AAe3ATtM2fGNRt9+/Zl7dq1IevXrVvH8cfXfcykmmpWysvL2bBhA5dffnnA+nfffZdRo0ZVsZdH48ZuFFKvjAyYPdv1URw1Cv71Lxg40Ncn8YQTfGkPHoT27WHnTigpcYtXkyZw6aW+zz/4gRsIJy8vMFDMy4Nu3aB16xrOAq6jg19fS2bOjG8HB2NqQVU/BU6NMG2Mc2OMSRdJcksUs3uimtTrnihKIm0pExIEquo8EXkZ6Am8AVwDfBLtDIrI+Z633lj/bBHZCexU1aWeNIeBR1X1ck/e/uuZnuJmEdkHrAQuBE7H9ZMwJv68gUCCA4QxY8Zw/fXXU1JSQrdu3QAoLS1l2bJlzJo1q9bf9+GHH1JcXMz5559fbboNGzZw6NAhOnXqFLDvpk2buOaaa2p93AAi0K6dWwYNCtx2+eVu2b/fFyR6X/fvD2wiumIF7N4NH4YZHf/GG8F7flavhj//OTRYXLoUfvGLxPd0N8bVAoZ7jF1VDaExxsRNktwSRf2eKFIxvSeKspAgUER2A2eo6lIReRR4MUY1bMFD83hrHJcC3/e8zyS0pvEW4FvgWqAjblq0C1T1XzHIozGRmTAh4cHApEmTePDBBxk7dmzlxKhTp06lS5cuXHHFFZXpli5dyhlnnMG8efO4+OKLATcqaNeuXRk0aBBt2rRh1apV3HHHHXTu3LnGi1ZRUREA69evB2Dnzp2VzRCCR8GKiebNoVcvt1Tl449DA0Xvq/9+H30U2Nu9OmVlcO21cPTRbkqNjh2hbVsXuBoTO2tx/QKDHY91iTDGJIEkuCWq1z0RUDm9wwpP+9WXX36Z9u3b0759e0aOHFnlcRN+T1QLVQ0M4+0DeDHwF2IwMIz/jPW1SaOqR4AZnsUY45Gdnc2SJUv4zW9+w8SJE1FVzjjjDO69915atGhRmU5VOXLkCBUVvsEI+/Xrxz/+8Q8eeOABysrK6NixIwUFBUyfPp127dpVe9yioiJatGjB3LlzeeaZZzjllFM466yz+Ne//sVVV11FYWEhF154Ycx+d0SOPdYtp9bQOm7oUHjggdBgcfv28Om/+gpGj/Z9btzYBYOXX+5GUwU3CM6zz1YOolMZMDarsqu1MdVZBNwtIt1UtQRARPKB4cBNdflCbxMh6wdojGko6nNPBG7qBn9XXnkl4AbOe9MzrVY4yXZPVF3/QAnuCyAiG4C3gcdwE9L+kmqag8Z5YJg6CR1M1BgTLeeeey5lZWUsXrw40VmJnby88EObZWXBkCHw5ZcuUNy7162/6Sa44w73/vXX4X/+J3TfNm1cMPjii65fIsDLL7s+jt5AsWNHOOooG/20FkQkooeMycivm8QZuIFdrgSCu0lkAx8D+4FbcX3z/wC0BAao6re1PKaVj8YYEyXJfE8UXD6m2sAwxpgkU1RUxDnnnJPobMTW7beH7+k+Z05gm5f9+13Nn38tX/v2bt/t212w6F2+/totLVuS9G8AABLESURBVFv60j74ILz0UuCxGzVyTU7HjnX9FcHl429/C6xZ7NjRNY01qazGbhKq+p2InA78CXgcVxa/Dvy6tgGgMcaY6Eqle6KEDQwTb9bcxZjo279/PyUlJfTp0yfRWYmtSHu6N2/uxsf2N2CAG/HUX0WFG630yy9dTZ/X6NGuhtA/YNyzBz7/3M2J6LVlC1x1VWg+W7VyQeFjj7kaSoC33nIjp/o3R23XrkHVLkY6HHayi7QGU1W3AOfFODvGGGNqIdXuiUKagwZsFHkEuC3Vp16w5i7GxMbKlSsZPHgwb731FiNGjEh0dhqmAwdc7WJGhpsPEaC01I1o6g0UvUHjoUNu+0cf+abTmDwZHn448DszM6FDBxg+HJ72VD6pwl//6tb7B4xZWXH5mdGSys1BE0FEKgtHe0hqjDF1l4z3RMEPSf3Lx2qDwOqISAbQRlV31zuHMWZBoDGmwVN1zUu3b3d9DL1NUh95xPVL9A8Yd3su26ef7raBq2ls1Sr0e1u2dAHhn/4EP/qRW7dqlQs0/Zuitm8fOOdjglgQWDtWPhpjTHqosU+gZ4qI/1HVlZ7PAizE9Tfwm42Zk4F3sD6BxhiTeCKQk+MWf5de6hZ/Bw/Cf/8L5eW+dYcPwy9/6atV9L7u2+cW/6kvFi2C4BqjjAxXi9izp5tX0euxx1wzWf+A0W9kNgDmz0/8pFLGGGNMGgk3OmgFMExVl3s+ZwLlwEnewNCzfijwjqomfRBoTzqNMaYOvLWLX34JnTv7agqffRaefz6w7+KuXW5br17gmR8JcPv492cEyM52QeHvfgdNmkQ26E6ErCawdqx8NMaY9BBcPloQaIwxpv7Ky13fxe++c4EgwJEjcPXVgU1Rt293NZHgAr2ZM918jMHy8lzfx1qyILB2rHw0xpj0EFw+Npzh4YwxxiRO48Zw7LG+ABBcH8GHHnI1h++8A5s2uWk0vv4aPvkECgrCz78IVa83USciiIgNCmOMMQ1MYWFh5TU+mNUEGmOMSZz8fKsJTCArH40xJj1EWhPYWUS6iUg3oFvwOs/6Y2OdWWOMMQ3czJmh01BkZbn1xhhjjImJqmoCgx8LSlXrrCbQGGNMvURxdFCrCawdKx+NMSY9RDIwzCW1+UJVfTRKeYsZmwzXGGMaruomwzXVsyDQGGPSQ41BYENkhZwxxqQHqwmsHXtIaowxDVd1D0ltdNAIWcEYys5JKDsnoeychLJzEp6dl8RQVVS1zuff/t3Cs/MSys5JKDsnoeychKrP9dl7jQ9mNYGRf0fYE5jO7JyEsnMSys5JKDsn4UXjvFhNYO1Y+Rg7dl5C2TkJZecklJ2TULEoH60m0BhjjDHGGGPSSNoFgfGuYq7L8eLdJCcVzkld97NzEr397JxEd794HitV9kv2Y6WDVPi3S5X94nmsVNmvrlKh/E+Fc1LX/eycRG+/ZDonadcctK7VqfHcLxXymCr7pUIeU2W/VMhjquyXCnlMlf2C97HmoLUT3BzU/p4Tu18q5DFV9kuFPKbKfqmQx1TZL5F5tOagxhhjjDHGGJPG0qYmMNF5MMYYEx9WExg5Kx+NMSa9eMvItAgCjTHGGGOMMcY41hzUGGOMMcYYY9KIBYHGGGOMMcYYk0YsCARE5HwReUZENovIfhEpFpE7RKRlULocEZkrIrtE5DsReU1E+icq37EUyTkRkXwR0SqWNonMfyyIyJkiskREvhSRgyKyTUSeEpHjg9J1EZEFIrJXRL4RkWdFJDdR+Y6lSM6JiHy/ir+RrxOZ93gSkVc8v3lG0Pq0uaYEC3dO0u2akgqsfAzPyshQVkaGsjIyMlZGhopHGdkoullOWdcDW4DfAduAgUAhMEpETlXVChER4AUgH7ga2APcDLwhIieq6rZEZDyGajwnfmnvABYF7b8vHpmMs7bACuAhYCeQC9wEvCci/VV1s4hkAUuAg8AlgAIzcH8nA1T1u8RkPWZqPCd+aa8BPvD7fDhuuUwgEfkpcEKY9el2TalU1Tnxky7XlFRg5WN4VkaGsjIylJWRNbAyMlTcykhVTfsFaB9m3cW4i9Ppns9jPZ9H+aVpDewG7k/0b0jQOcn3fP55ovObwPPUy3MOpng+XwscAXr4pemKu5hfl+j8JuicfN/z+X8SnbcEnIsc4Evgp55zMMNvW1pdUyI8J2l/TUm2xcrHep2XtP97tjIyonNiZaSVkZGek6heU6w5KKCqO8Os9j6N6ex5HQN8oapv+O23F/eUYmxscxh/EZ4TA195Xr1P7MYA76nqZ94EqroJWEYD/DupQvA5SWd/BIpU9R9htqXVNcVPdefEJBkrH8OzMjJiVkaGsjLSx8rIUHErIy0IrNpIz+snnte+QFGYdGuBXBFpEZdcJVbwOfG6Q0QOe9r3L2ro7bVFJFNEmojIccBs3BMb73/W6v5Ojg+zvkGo4Zx4zReRIyLylYj8vaH2AfESkRG4moGrqkiSdteUCM6JV1pdU1KQlY/hWRmJlZHhWBkZysrIUPEuI61PYBgi0hm4DXhNVT/0rG4LlIZJvtvzmgN8G/vcJUYV5+Qg7mL2Kq6te29c/4h3RGSIqgYXhA3F+8Bgz/vPcE1//uv53BbXbj3YbtzfSENV3TnZC/wfsBT4Btd35nfAuyIy0C9dgyEiTXD/N+5W1eIqkqXVNSXCc5Ku15SUYeVjeFZGBrAyMpSVkX6sjAyViDLSgsAgnicLC3HV9JcmODtJoapzoqrbgV/4JX1LRF7BPaW5BfhZPPMZRxOBVkA33OAA/xaREapamtBcJVaV50RVVwGr/NIuFZH/AMtxHeFvjXtuY++3QHNgZqIzkkRqPCdpfE1JCVY+hmdlZAgrI0NZGRnIyshQcS8jLQj0IyLNcW2NuwEjNXDkoT2Ef0rV1m97g1PDOQmhqltF5G3g5HjkLxH8nrS8LyIv455U3YT7j1nd30mD/BuBGs9JuPQrRWQDDfDvxNOE5xbg50BTEWnqt7mpZxjnfaTRNSXSc6KqR4L3TYdrSiqw8jE8KyNDWRkZyspIHysjQyWqjLQ+gR4i0hhYAJwE/FBV1wQlWYtrnxzseGCLqjaYKmmvCM5JdTQ2uUouqvo1rmlHD8+q6v5O1sUrX4kU5pxUmzzG2UmEbkAz4AlcIeVdwD0B3gP0J72uKZGek+o0xL+VlGDlY3hWRtbMyshQVkZaGRlGQspICwIBEckA5gOnA+NU9b0wyRYBnUVkpN9+rYAfEzpXR8qL8JyE2y8XGIFrxtDgicjRuDbZGz2rFgHDRKSbX5p8YDgN8O8knDDnJFyak3DDZDfEv5OPgFFhFnAX+FG4G4B0uqZEek5CpNs1JdlY+RielZGRsTIylJWRVkaGkZAyUjzzTqQ1EfkLrkp+JvCvoM3bVHWb54L/NtAFuAHfpJUDgBNUdWscsxxzEZ6T/8M9SHgX10G1F+6ctAaGVtOxNSWJyHPASmA1rvN2T+A3QEdgiKpuEJFs4GNgP64dvwJ/AFoCAxrYk6tIz8l8YJMn3de4Tu83///27j9Yi6qO4/j7ExfUamICxpQKaWysQXOywUyzxgrJRoqspHEolR8N9msm0tLMhnDQsckyR1M0REMyCitMJIIhsyjTxIjoB83NIq+pAQKCKFzo2x9nH1n27nN/weW5PPt5zZzBPc/Z3S/nXvfL7nPOWWAH8JaI2NiI2A82SQFcFRFXZNuVuqaUKemTSl1TDgXOj+WcIztyjuzIObL7nCM76vMceSBeNnioF9LY7KhTvpprNwSYS1qZaAewgvSL2PC/QyP6BJhMei/SZqCdtOTxXcAbGh1/H/XJpcAq0kV6B7COtErTyEK7EcCPSBf8bcCiYptmKd3pk+wCtYa0Alo78DhwK3B0o+M/yH21z0tfs7rKXFO60ydVu6YcCsX5sff9UrXfZ+fI3vWJc+SL/eAc2UWfHOhrir8JNDMzMzMzqxDPCTQzMzMzM6sQ3wSamZmZmZlViG8CzczMzMzMKsQ3gWZmZmZmZhXim0AzMzMzM7MK8U2gmZmZmZlZhfgm0JqKpAslRZ0yptHxNRtJSyR9q6T+BEm3S/qXpJ2StktaLelaSccW2rZJuqPO8a+RtLuHMV0i6Q/Zi2bNzCzjHHlwOUdaf9bS6ADM+si5QFuh7i+NCKRZSXo38C5gSqF+InA78EfgauDvwGHAycBU4L3Am/owtJuALwITgTv78DxmZocq58g+5hxp/Z1vAq1ZrY6I1u42lnRYROzsy4Ca0BeARRHxZK1C0vHAXODHwMSI2JNr/3NJXwMm9WVQEbFD0nzgEpzgzMzKOEf2PedI69f8VbBVjqQx2dCXD0qaK2kj8ETu85Mk3Stpi6TnJa2U9PaS40yXtF7SC5IelnRaNmxjTq7NrLKhGpLmS2ot1L1c0tez4SG7JD0m6TJJKon9bEk3S9okaYOkeZIGF47XIulySX/NhptskPQzScdJerWk3ZI+XRLbrGxoyuDiZ7k2rwXGAncVPpoOBPCZQnIDICLaI+LWesftStZv9YYynZ5rugA4UdJbe3suM7Mqco50jrRq8E2gNasB2QW+VgaUtPk2sJs0JGIKgKSTgd8Ag0nDMj4CbAVWSHpzbUdJ04BvAsuB8cB84AfAK3oTrKSBwDLSE8DrgPeRhovMBK4p2eUGYBdwHjALmJDFk3d3tv+9WYyfANYBR0XEE8BPgWmFOFqAycCCiNjaSchjSdePlYX69wAPRcTGTvYto8LPqyWLRYV2M4BTC+V3wHbg8Vy7VcBzwFk9jMPMrAqcI50jnSOrLiJcXJqmABeSnrIVy8pcmzFZ3cKS/R8A1gIDc3UtpDH7d2fbA0hPRRcX9p2YHXdOrm4WsLvkPPOB1tz2pGzf0wrtZgA7gaGF2G8rtJsNPJfbHpu1+1QnfVU71qm5ug9ldaO76OfvAOtL6tuBO0vqB2T92AK0FD5rq/Mzq5UO/Zfb9zJgDzCu5LMHgSWN/p10cXFx6S/FOfLFbedI58jKF38TaM3qHNIk61qZUtLmJ/kNSS8DTgd+CETuSRvACuCd2X8fAwzP2uUtBP7Xy3jPAv4BPFx4yrcMGAScUmh/X2H7T8BLJQ3LtseSLvy3dXLOFaTEnX/SOQ14NCIe6SLe4cCGLtrk7SQlv3agXdLIwueL2ffnVSvfrXdASeeQJtVfHBGLS5psyOI0M7N9OUc6RzpHVpwXhrFmtTa6nvT+ZGF7GGn4xsysFNWS19HZn0/nP4yIXZI29zTQzJHAsaQEUGZoYfuZwnZtwv7hufYbo5OJ/BERkm4GrpY0HXglcCaF4S91HJ47Z14bMKKk/hTSsJXxwBUln28qS6qSnio7uaSTSBPaZ0dEh+W3M88DR9T5zMysypwjnSOdIyvON4FWZVHY3pzVXQ98r5P9aonxVflKSYNISSLvBeAlkloiIj/5vZiwNgGtpPkLZf7ZSTxlNgLD1PWKbncAVwHnkxL3duD73Tj+JuCEkvpfABMlDYvcnIeIWAWQnzPSW5KGk+ZwrAQ+20nTIaR+MDOznnOOdI60JubhoGaZiHgW+C1wIrAqIh4plqzpeuA/pInmeefS8f+p9aSne6NqFZKGAG8rtFtKejq4tey8EbGph3+dZaQ5BpM7axQRW0gJ7SLSnIv5EbG9G8f/GzCiZDGB60h9cGOdhQb2i6QjgHuALcCEKFldLed1pEn+Zma2n5wjnSOtufibQLN9TQd+CSyVNBd4ijQEZjRpdMjlEbFH0pXA7Gyp64XAcaSXr24rHO++rG6OpJmkoReXAs8W2s0jTdi/X9K1pPkLg4DXAx8gTeru9juaImK5pEXA9ZKOAe7PjncG6b1Fv841v4m980Fmd/MUvwK+AhwPrMmdd62kqcAc4MGsf9YBA0kJZxppxbbevm/qBtI/QC4ARuVWBgf4c0RsA5A0lDR0aFYvz2NmZh05R3aPc6T1e74JNMuJiN9n782ZAdxIWgb7adJyyrNz7W7JJsl/DvgYKSF9lMJE+Ih4RtI40tO/hcC/SXMpzib3pDObK3Em8CXgk8BI0rCTVmAJ9edBdGYCaWWw84HPk5bxfoiUtPMxPirpMeC/EbGmw1HKPUDql/eTS3DZ8eZJWg1cDHwZOCqLv5W0XPiEyL08t4feSErUZcNx3sHe5bjHkYYZ3dPL85iZWYFzpHOkNQ9FFId8m1lvSWoDlkbE1EbH0l2SRpGW/J4UEXVXGivZbxbwYWBU9LMLiaTlQFtETGp0LGZmljhH9g/OkQaeE2hWWZJeI+kM4BbSO50W9PAQ3yCt2Db+AIe2XySNJj3xvLLRsZiZ2aHJOdKanW8CzarrItJ7kIYC5/VkPgVARGwGPs7eJbf7iyOBCyKip6vFmZmZ1ThHWlPzcFAzMzMzM7MK8TeBZmZmZmZmFeKbQDMzMzMzswr5Pz3uD2UM3OkkAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Plot impedance\n", "fig, (ax0, ax1) = plt.subplots(1, 2, figsize=(15,5))\n", "\n", "# Plot conductivity\n", "ax0.plot(frequency_gm/1e9, conductivity_gm1, 'bo--', label=r'{:.1f} $\\mu$m'.format(surface_roughness1/sc.micro))\n", "ax0.plot(frequency_gm/1e9, conductivity_gm2, 'ko--', label=r'{:.1f} $\\mu$m'.format(surface_roughness2/sc.micro))\n", "ax0.plot(frequency_gm/1e9, conductivity_gm3, 'ro--', label=r'{:.1f} $\\mu$m'.format(surface_roughness3/sc.micro))\n", "ax0.set_ylabel(r\"Effective conductivity, $\\sigma_{eff}$ (S/m)\")\n", "ax0.set_xlabel(\"Frequency (GHz)\")\n", "ax0.legend()\n", "\n", "# Plot permeability\n", "ax1.semilogy(frequency_gm/1e9, ur_gm3, 'ro--', label=r'{:.1f} $\\mu$m'.format(surface_roughness3/sc.micro))\n", "ax1.semilogy(frequency_gm/1e9, ur_gm2, 'ko--', label=r'{:.1f} $\\mu$m'.format(surface_roughness2/sc.micro))\n", "ax1.semilogy(frequency_gm/1e9, ur_gm1, 'bo--', label=r'{:.1f} $\\mu$m'.format(surface_roughness1/sc.micro))\n", "ax1.set_ylabel(r\"Relative permeability, $\\mu_r$\")\n", "ax1.set_xlabel(\"Frequency (GHz)\")\n", "ax1.set_ylim([0.5e0, 1e3])\n", "ax1.legend();" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "# Polyfit for HFSS\n", "p_zs_real_gm1 = np.polyfit(frequency_gm, zs_gm1.real, 2)\n", "p_zs_real_gm2 = np.polyfit(frequency_gm, zs_gm2.real, 2)\n", "p_zs_real_gm3 = np.polyfit(frequency_gm, zs_gm3.real, 2)\n", "p_zs_imag_gm1 = np.polyfit(frequency_gm, zs_gm1.imag, 2)\n", "p_zs_imag_gm2 = np.polyfit(frequency_gm, zs_gm2.imag, 2)\n", "p_zs_imag_gm3 = np.polyfit(frequency_gm, zs_gm3.imag, 2)\n", "p_ur_gm1 = np.polyfit(frequency_gm, ur_gm1, 2)\n", "p_ur_gm2 = np.polyfit(frequency_gm, ur_gm2, 2)\n", "p_ur_gm3 = np.polyfit(frequency_gm, ur_gm3, 2)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4sAAAE8CAYAAABpQySHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeXiU1fXA8e8JixIQCCqCCgmI7KICKhQVwVpAfyWCYisRcamgouJS1BYkQcFSy+4KoigSF4oIuOKCYKWAdYWwbwFUUJBNDGtyfn/cSTJJJskkTOadSc7neebJzJ33nfcwYg73vfeeK6qKMcYYY4wxxhjjL8brAIwxxhhjjDHGRB7rLBpjjDHGGGOMKaCy1wFEEhGxObnGGFNBqKp4HUO0sPxojDEVS3aOtM5iPtlrOEWE0qznLM/nRUOM0XJeNMQYLedFQ4zRcl40xBiq80Ssn1hS/t+5/b2MzvOiIcZoOS8aYoyW86Ihxmg5L1TX8s+RNg3VGGOMiUIi0kBEZonIPhHZLyKzRaRhkOc2FJGXRWSriBwUkXUiMlJEqpd13MYYY6KHjSwWIjk5OSquF87z7DsJ7XnhvFa0nBfOa0XLeaUVzv/Hy/N3EqlEJBZYABwG+gMKjAQ+FZE2qvpbEedWBz4GqgCPAFuBC4ARwNnAn4q7vv0/HrrzSsv+Hw/d9aLhuyytaPhvbt9JaM8L9bXEts7IJSJ6vN9HaYd/yzP7Tgqy7yQw+14Ksu+koFB8J77PiNq5qCIyGBgHNFPVDb62RsB64EFVHVfEuX8A5gPdVPVDv/bRwF+Bmqqake+c486Pvs+xv8/52HdSkH0nBdl3UpB9JwWF6jvxz5E2DdUYY4yJPj2BpdkdRQBV3QwsBhKLObeq7+f+fO17cf8uiNpOtDHGmNCyzmKIladpTqFi30lB9p0EZt9LQfadFGTfCQCtgLQA7SuBlsWc+zFuBPKfItJSRGqISFdgMPBcUVNYj5f9tyvIvpOC7DspyL6Tguw7KagsvhObhuonVNNsjDHGRLZyMA31CDBOVR/O1z4SeFhVi6xJICJ1gTeBi/2apwIDVTUrwPGWH40xpoKwaajGGGNMBSUiJwJvAHWBfkBnYAiusM3TRZxX4JGSkhKOkI0xxpSBlJSUgL/b/Vln0RhjTHRITYWEBIiJcT9TU72OyEt7gLgA7XV87xXlVuAy4EpVnaGqn6nqGOAB4HYROTfQSapa4GGdRWOMiQClzI8pKSkBf7f7s60zjDHGRL7UVBgwADJ8RTq3bHGvAZKSvIvLOytx6xbzawmsKubcc4A9qroxX/sXvp8tgO+OLzxjjDFhUcb50UYWjTHGRL6hQ3MTYbaMDNdeMc0DOohI4+wGEUkAOvneK8oOIE5EmuRrv8j384cQxWiMMaaslXF+tM5iPrYOwxhjItDWrSVrD8B/bUY58DyQDswVkUQR6QnMBbYBk7MPEpF4ETkmIsP9zn0J+BV4T0T6i0gXERkCjAG+wm2/YYwxJhqEID8Wxaqh+rFqb8YYE6ESEtzUmvzi4yE9vcQfF+3VUAFEpCEwHrgCtzfiJ8C9qprud0wCsBkYoaopfu0tgRSgI3AKrpM5DxilqgXWPFp+NMaYCBXi/Ah5c6R1Fv1YMjTGmAiVf00GQGwsTJlSqjUZ5aGzGE6WH40xJkKFOD+CbZ1hjDEm2iQlucQXHw8i7udxJEJTcrZMwxhjIlCI8mNhSzVsZNGP3Tk1xpiKwUYWS8byozHGVBw2smjy2LZtG9deey21atWiZs2a9O7dm61BLIpduHBhwI08a9euHYaojTHGmLJl+dEYU9HZPosVXEZGBl27duWEE07g5ZdfRkQYNmwYXbp0Yfny5VSvXr3Yz5g0aRIXXHBBzuvKle2vlTHGmOhm+dEYYzzsLIpIA/JWcfsYV8Wt2Ft2IvI40B5oB9QBblbVl4o553fA575rVVHVY8f1Bygnnn/+eTZt2sTatWtp0sRtudWmTRvOPvtsJk+ezP3331/sZ7Ro0YIOHTqUdajGGGNM2Fh+NMYYj6ahikgssABoDvQH+gFnA5+KSPG36uBuoBrwTpDXq4Lbd+qnUgVcVlJTXbnbmBj3MzU17CHMmzePDh065CRCgEaNGtGpUyfmzp1bZtedPXs2zZo1Q0SYNWsWABs3buS8885DREhOTgZyF9uuWbOGbt26Ub16dRo2bMi0adMAeOWVV2jevDk1atSgS5cubNy4scxiNsYYE0Ye50jLj8YY492axduAxsDVqjpHVecCPYF4YGAQ59dS1UuAx4K83hDciOKLpQm2TGSXud2yBVTdzwEDwp4MV65cSevWrQu0t2rVilWrVgX1GUlJSVSqVImTTz6Zvn37BrWeo3fv3jzxxBOAu1MLcNZZZ+Uk4Oy2bH369OGqq65izpw5tGvXjltuuYW///3vPPvss4wePZpp06axdu1a+vbtG1TMxhhjIlgE5EjLj8YY49001J7AUlXdkN2gqptFZDGQCIwr6mRVzQr2QiJyFjAM6A50LV24ZWDo0Lz7oYB7PXRoWEvB7969m7i4uALtderUYc+eAvsy51GrVi0eeOABOnfuTM2aNfnmm294/PHH6dixI9988w1169Yt8vy0tDRiY2Pz3LVdsWIFAOecc06eY4cMGcKNN94IQPv27Xn77beZPHkymzdvpmbNmgBs376dwYMHs2XLFuLj44v/wxtjjAladjn15OTkst8+IwJypOVHY0xFkpKSwogRIwq0e9VZbAUEmsOxEugT4ms9B/xbVT8TkcjpLBZ2dzGIu46R4vzzz+f888/Ped25c2cuvfRSLrzwQiZNmsTIkSOLPD8tLY1WrVoRExOTp61atWp5EiRAjx49cp7HxcVRt25dzj///JxECNC8eXPAVa+zZGiMMaEV1q0zojxHWn40xkSblJSUnBuB/nstejUNtQ4Q6LbcbqDgbbxSEpEbcEVwhoTqM0OmYcOStZeRuLi4gHdIC7ujWpy2bdvStGlT/ve//xV7bFpaWoHpNCtWrCiQILPj9Fe1atWAbQCHDh0qcdzGGGMiSATkSMuPxhhTjvdZFJE6uOmsf1fVn0twXoFHmUy3GTUKYmPztsXGuvYwatWqFStXrizQvmrVKlq2bFnqz/W/IxHI0aNHWbduXYH1IEuWLCmQII0xprSyi4Dkf5gIFwE50vKjMcZ411ncQ+ARxMJGHEtjJLAdmCkitUWkNnCi771ahVVdVdUCjzLpLCYlwZQpEB8PIu7nlClhXa8I0LNnT5YuXcqmTZty2tLT01m8eDE9e/Ys8ed9+eWXrF27lgsvvLDI49atW8eRI0eoX79+nnM3b95cYD2GMcaUVkpKSsDf6ybCRUCOtPxojDHedRZX4tYt5tcSCK7EWPFaAm2AX3Ad0D3AQ773dgHh36civ6QkSE+HrCz3M8wdRYDbbruNhIQEEhMTmTt3LvPmzSMxMZEGDRowcGBuYdpFixZRuXJlpk+f7hd+EsOGDWP27NksWLCAsWPH0r17d8444wzuueeeIq+blpYGwJo1awDYuXNnzqJau3NqjDHG6xxp+dEYY7zrLM4DOohI4+wGEUkAOvneC4V7gS75Hi/73vs9rkJqhVe9enUWLFhA06ZN6devH0lJSTRq1IgFCxZQo0aNnONUlczMTLKycgvRtm7dmnnz5nHzzTfTrVs3JkyYQO/evVm2bBmnnHJKkddNS0ujRo0aTJ06lTZt2jBs2DC6d+8OwKBBg3jjjTfK5g9sjDHGBMHyozHGgHgxHcc3BfQ74CCu06a4PRNPAtqo6gHfcfHARuBRVX3U7/zOwKlAPeBJ4GlgIYCqziriuilAMlBFVY8FeF9telJ49OrVi4yMDObPn+91KMaYCkhEUFVbvBgky4/hY/nRmAjyzTfw1FOQkgINGngdTdj450hPRhZV9TfcnofrgFdwU0I3A12zO4o+AlSiYJwjgH/jOooAg3yv/12GYZsQSktLO64CAcYYY8KrTIu+mRyWH43x2JEj8Prr0KkTtG0LL74Izz3ndVRlzr8gnD9PRhYjld05DY+DBw9So0YNnn32WQYMGOB1OMYYAFVXSKSCsJHFkrH8GB6WH43x0PbtrpDW5MnuOUDNmnDLLXDnnXD22d7GF0aejyyaim316tVkZWXZnVNjIkFmJrz2GrRuDV984XU0xlRolh+N8dDgwW666fbt0KoVPPss/PADjB9foTqK+dnIoh+7c2qMqTCOHXPTbEaOhLVrXdtNN8G0aZ6GFS42slgylh+NMeXKwYPuRmnz5vC737m2RYtg0iS4+27o3LlCzbbJzz9HWmfRjyVDY0y5pwovv+w2N9+wwbUlJMDQoXDjjVC1qqfhhYt1FkvG8qMxplzYsgWeeQamToXdu+H//g/eftvrqCKOf46s7HUwxhhjwkjEjShu2ABnneU6iTfcAFWqeB2ZMcYYE3qqsGABPPmk6xhmb3PTrh1cd523sUUBG1n0Y3dOjTHlzpEjbiSxXTtX1Q3gyy9h5Uq3yXnlinnP0EYWS8byozEmak2a5NYjgrsxet11cNddcNFFFXqqaVGswI0xxpR3hw+7xflNmsCAAZCcnPte+/bQv3+F7Sia0rGtM4wxUWHtWvjkk9zX110HjRrBY4/Btm0wYwZ06GAdxXxs64wgiEjOl5GcnGwJ0RgTfQ4dcmsxRo92VdzAVXV75BH405+8jc1jKSkpjBgxIue1jSwGz0YWjTERLTMT3nvPTTX96CO3Fn/DBqhUyb1fwbaHOl5W4KYQlgyNMVFt0SK4/vrc/aHOOQeGD4fevSHGJpL4Kw/TUEWkATAeuAIQ4GPgXlXdWsx5KUByIW8fVtUTA5xj+dEYE3l274YXX3RFazZvdm3VqrllFmPGQK1a3sYXpayzWAhLhsaYqPbDD9C4MbRs6TqJiYnWSSxEtHcWRSQW+A44DAwDFBgJxAJtVPW3Is49EzgzX3N14APgLVUtUPHB8qMxJuJ89x107Oi2wQA31XTQILj5ZqhTx9vYopxVQzXGmGh34IBbk/j22/Dpp26qzRlnuOI1rVvbdJvy7zagMdBMVTcAiMhyYD0wEBhX2Imq+j3wvX+biPTD/Zvg5bIK2BhjjsvRo/DVV269IbhcV68enH222xuxR4/caacmZGxk0Y/dOTXGRLxff4Wnn4axY2HXLtf29tturygTtHIwsvgJcKKqdsrXvghAVTuX8PM+BloDZ6rqsQDvW340xnhjxw54/nl47jnYuRO2bnWdRHA58aSTvI2vHLKRRWOMiTb797uF++PGuTUa4O6uJidDt27exma80AqYG6B9JdCnJB/kW/vYBZgQqKNojDFhpwrLlsFTT8HMmW5UEaBFC1fRNLuzaB3FMmedRWOMiXSqcPHFsGKFe/2730FKCvz+9zbdtOKqA+wJ0L4biCvhZ92A20rLpqAaY7x3+DBceil88YV7HRMDV1/t9kbs2tXyXphZ5QPDtm3buPbaa6lVqxY1a9akd+/ebN1aZDE9AObPn0/Xrl2pV68eJ5xwAmeeeSbXXXcdq1atCkPUxpRz+/e76TXgEuOAAa7D+PHH8PnncMUVljBNqNwIfKOqy4s6KHv/Lf9Hed9iyvKjMWHyww/uxijACSfAqae6IjUPPQQbN8Jbb8Hll1veCzH/vRX9H/5szaKfirgmIyMjg3PPPZcTTjiBkSNHIiIMGzaMjIwMli9fTvXq1Qs997XXXuPrr7/moosu4tRTT2Xr1q2MHj2abdu2sWLFCuLj48P4JzGmnNi3DyZNgvHj4Z573AgiQFaWS5KWKEOiHKxZ/AmYo6oD87U/A/RR1VOD/JwLgWW4LTcmFnGc5UfLj8Ycv9RUGDrUrTts0ABuuAFWr4a5c2HBAujsW279/fdw8sluGwwTdnlypKraw/dwX0fFMmHCBI2JidH169fntG3atEkrVaqkY8eOLfHnrVmzRgEdM2ZMKMM0pvzbs0d1xAjV2rVV3f1V1Z49vY6q3PL9vvc875T2ASwAPg/QvhBYVILPeRo4ApxazHHH9X1HI8uPxoTYjBmqsbG5Oc7/Ubmy6oQJXkdofPxzpE1D9VBqaioJCQnExMSQkJBAampq2GOYN28eHTp0oEmTJjltjRo1olOnTsydG6h2QtFOPvlkACpXLno57OzZs2nWrBkiwqxZswDYuHEj5513HiJCcrLbLzp7eHzNmjV069aN6tWr07BhQ6ZNmwbAK6+8QvPmzalRowZdunRh48aNJY7ZGE/t3QsjRkBCgitWs3cvXHaZ2w6jFP8PmgpjHtBBRBpnN4hIAtDJ916xRKQq8GfgfVXdWQYxHhevc6TlR2NCbOhQyMgo2F6rlhtpHDw4/DGZ4mmQdx8rwoMw3jmdMWOGxsbGKm4jZQU0NjZWZ8yYEbYYVFVPO+00HTBgQIH2O+64Q0855ZSgPuPYsWN6+PBhXbdunfbu3Vvr1aunP/30U7HnzZkzRwFdu3ZtTlt6eroCOmvWLFVVTU5OVkBbt26tEydO1A8//FCvvvpqBfRvf/ubduzYUd966y2dOXOm1q9fXy+88MIg/+TGRIj583PvrHbporpwodcRVQhE/8hidWADsAJIBHoC3wGbgBp+x8UDx4DhAT6jty//9A7ieqH42oMWCTnS8qMxIZCZqXr4sHsukpvv/B9umruJIP450vOEF0kP/6SUnJx8HF9x8eLj4/MkwexHfHx8mV43vypVquhDDz1UoH3o0KFaqVKloD6jXbt2OfE3adJEV61aFdR5I0eO1NjYWM3MzMxpe/vtt/MkyOxk+PLLL+ccs3v3bq1UqZLWqVNH9+3bl9M+ceJEBTQ9PT2o6xvjid27Vd94I/d1Vpbq4MGqixZ5F1MFkf37JPuhEZB3jucBNATeBPYDvwJzgIR8xyT4/rwpAc6fC/wCVA3iWsf/H6AEIiFHWn405jjs26c6aZJq06aqEye6tvh4DdhZDPO/fU3x/HOkTUPNJ/uLKesKb4VVUwumylqkeeWVV1i6dCmvvvoqNWvW5IorriA9Pb3Y89LS0mjVqhUxMTF52qpVq5Zn2g9Ajx49cp7HxcVRt25dOnToQM2aNXPamzdvDrjqdcZEnN27YfhwN930z392C/rBFayZMMGVCTdlKiUlxb/zE/VUdauqXqOqNVX1JFW9WlXT8x2TrqqiqikBzk9U1ZNV9Ui4Yg5WecmRlh9NhbN+vZtOeuaZrkjbunUwZ457b9QoiI3Ne3xsrGs3Ecs6ix5p2LBhidrLSlxcHHv2FNyqa/fu3cTFBbdVV4sWLbjooou4/vrr+eSTTzhw4ACjR48u9ry0tDTatGmTp23FihUFEmR2nP6qVq0asA3g0KFDQcVtTJlITXUdwpgY93PyZHjkEff8scfclhhdu0JmpseBGlMy4dwuIxJypOVHY0pgyRK48kpo2tRV9P71V3cTdNYs+PBDd0xSEkyZAvHx7kZpfLx7nZTkbewGyLuNhj/rLHpk1KhRxOa7uxIbG8uoMN9dadWqFStXrizQvmrVKlq2bFniz6tduzZNmjRhw4YNRR539OhR1q1bR+vWrfO0L1mypECCNCZqpKa6/RC3bHGTa7Zsgdtvh5EjXeL8/e/hP/9xeyXm+7tvTKQL18wbiIwcafnRmBLYtg3efx9OPBFuvRW+/RYWLYJrrgH/ok5JSZCe7raDSk+3jmIEKWz2jXUWPZKUlMSUKVOIj49HRIiPj2fKlCkkhfl/mp49e7J06VI2bdqU05aens7ixYvp2bNniT/vp59+Ys2aNZx11llFHrdu3TqOHDlC/fr1c9q+/PJLNm/ezDnnnFPi6xoTEQqr9HbiifD55/DRR3DxxeGPy5goEwk50vKjMYXInmp63325bb16wbhxrtM4dSqce6538ZmQss6ih5KSkkhPTycrK4v09PSwdxQBbrvtNhISEkhMTGTu3LnMmzePxMREGjRowMCBuXs9L1q0iMqVKzN9+vSctl69evHYY48xd+5cPv30UyZPnkznzp2pXLkyDzzwQJHXTUtLA2DNmjUA7Ny5kxEjRgDYnVMTnXbtciOJgRw+DJ06hTceY6Kc1znS8qMxfrKy4IMP8k41fe452LfPvV+lius8nnKKt3GakLPOYgVXvXp1FixYQNOmTenXrx9JSUk0atSIBQsWUKNGjZzjVJXMzEyysrJy2jp06MCcOXPo378/V111FePGjaNz5858++23NG3atMjrpqWlUaNGDaZOnUqbNm0YNmwY3bt3B2DQoEG88cYbZfMHNibUdu6Ehx92axILE+a1yCayiEgHEUkRkQ9EZLmIrBeRJSLykojcLCLBLYAzYWX50RjcEoonn4TmzaFHj9yppn/5Cyxb5vZINOWalJeqcKEgbp8Xr8OoEHr16kVGRgbz58/3OhRjSmfnThgzBp5+Gn77zbWdey6sWeNGErPFxtoC/ggkIqiqFH/kcV2jP/BXoBVua4vvgJ3AQaAO0AhoChwGZgIjVHVzWcZUWpYfw8fyo4koq1ZBq1buecOGcOedrqN48snexmXKlH+OtJFF44m0tLRSFQgwJiIsWOBGEp94wnUUr7zS3WH99lt44QWr9GYQkeXAaOA9oB1QW1Uv9W11cYOqXqmqLXCdxtuAusAqEfmTd1GbSGD50XgmK8uNHA4e7Iq0AbRsCQ8+CG++CRs3wkMPWUexgqlc/CHGhNbBgwfZtGkTLVq08DoUY4J37FhuRbf27d00nC5d3N6JF16Ye1xSknUODcALwGRVLXKvAlXdB6QCqSJyLlAvHMGZyGT50Xhi/3546SV46ilXvAbcfsAdO7rn//ynZ6EZ79nIogm71atXk5WVZXdOTXT4+WcYMsQt6M+udFqzpptu+s47eTuKxvio6sTiOooBzvlOVSN27mE491msqCw/mrBatw7uuQfOOMONJq5f76aajh4NzZp5HZ0Js8L2WbQ1i35sTYYxJseOHfCvf8Gzz8LBg67tzTehd29v4zIhEY41i+WJ5UdjypkjR6B+fdi9273u3Nl1HHv2zLsvoqmQ/HOk/W0wxhh/O3a4tYjPPZfbSezZ0003bdfO29iMMcaY0ti3D6ZPh5tvhho1oGpVV6xmxw64+26wbVlMIWwaaj42zcaYCi4xEcaPdx3FxET46iuYO9c6iuVAYVNsjDGm3FqzBu66C848040czpiR+95jj8Hzz1tH0RTJpqH6sWk2xlRA27e7yqX1fHVF3nzTJdPhw+H8872NzZQZm4ZaMpYfjYki2VVNn3wS/LdguewyGDYMLr/cs9BMdPDPkdZZ9GPJ0JgKZPt2V+Ft8mS48Ub301QYkdJZFJEhwE+qOt3rWIpi+dGYKNKnD8ya5Z5XqwY33OCmmp5zjrdxmahhaxaNMRXXTz+5TuKzz8IhX7HK/fvdnlI2PdGEkYjUA/4J7AciurNojIlga9e6TmHDhu51z57wxRcwaBDceqvti2iOi61ZNMZUDDt3wl//Co0auTWJhw5Br17wzTfw2mvWUTRhp6o7gL7An7yOJRi2pt+YCJKVBe+9B927Q/PmbruLbNdfDxs3woMPWkfRBM22zgiCTbMxphz79tvcNYiJiZCcbGsSK7BImYYaLSw/GhMh9u2Dl16Cp56CDRtcW7VqcPvtMG6cp6GZ8sPWLBbCkqEx5ciuXW7Nxu2357b9859wxRXQtq13cZmIEM7Oooj0A3YBK1T1+3BcM9QsPxoTAV57DQYMgAMH3Ov4+NyppnXqeBubKVciorMoIg2A8cAVgAAfA/eq6tYgzn0caA+0A+oAN6vqS/mOqQ/c4/v8JsBRYDkwQlU/K+RzLRkaE+1++QXGjHFV4H77DRYudJsNG+MnzJ3F/UANQIF9wAq/x3IgTVV/9Tt+oqoODkdswbL8aIwHsrLcjc+6dd3r776D886Drl1dwZo//hEqVfI2RlMueV7gRkRigQXAYaA/LoGOBD4VkTaq+lsxH3E38C3wDnBjIce0w60DmQYsBaoCdwILRaSnqr5z3H8QY0zk2L0bxo6FSZNy77r26GF3W00k2A5cDZwPnOt73ADUxOU/RGQruZ3HXkBEdRaNMWF04ABMn+7y2cknw+LFrv3cc93U07PO8jY+U6F4MrIoIoOBcUAzVd3ga2sErAceVNUiJ12LSIyqZolIE985gUYWawMHVPWYX1tlYCWuTPmlAT7X7pwaE41Gj4bHH4dffYMz3bu7NYkdOngbl4lYYR5Z/FpV2+Zrqwz0wHUKFwGNgJZAc+AkVY2o4QLLj8aEwebN8PTTMHWqW5sIcOaZrhDbKad4G5upUPxzpFfVUHsCS7M7igCquhlYDCQWd7KqZgVxzF7/jqKv7RhuRPKMEkdcjm3bto1rr72WWrVqUbNmTXr37s3WrcXOBub777/n7rvvpmPHjsTGxiIipKenl33AxuS3d6/rKP7hD/Df/7rNiK2jaCLH/0TkOv8GVT2mqm8DNwNxqnqLqnZQ1dpAA0+iNAVYfjRhsW0b9O4NTZq4GTL79kGnTjBzputAWkfReMirzmIrIC1A+0rcndUyISJVgY7A6rK6RrTJyMiga9eurFmzhpdffplXXnmF9evX06VLF377rejZwBs2bGDmzJnExcVxySWXhCliU+Ht2wcjRkBqam7bX//qpunMnw8dO3oXmzGBPQFMEpGe+d9Q1W3AJfnafgxXYCVR0bbOsPxoypT/SH2tWvDxx279Yb9+8OWX8Pnn0KcPVLYt0U14FLZ1Bqoa9gdwBBgdoH0kcKwEn9MEt97jpiCPfxzIAi4p5H2taCZMmKAxMTG6fv36nLZNmzZppUqVdOzYsUWem5mZmfP8+eefV0A3b95cVqGaim7vXtURI1Rr11YF1fh41SNHvI7KRCnf7/tw5r3rcIXW5uDW08f52rsDW8IZSynjP67vOxpZfjRl4ocfVIcOVW3RQvXgwdz2995T3b7du7iM8eOfI70aWQw7EekLPAw8pqr/KeK4Ao+yuouamgoJCRAT4376D5SEy7x58+jQoQNNmjTJaWvUqBGdOnVi7ty5RZ4bE1P6vz6zZ8+mWbNmiAizZs0CYOPGjZx33nmICMnJyUDuXY41a9bQrVs3qlevTsOGDZk2bRoArxGsNz4AACAASURBVLzyCs2bN6dGjRp06dKFjRs3ljomE6H274eRI6FRI7cOce9e6NLFLf6vUsXr6EyE879T6v8IN1WdCXTGTTF9DdglIkeBd3GF2EpMRBqIyCwR2Sci+0Vktog0LMH5LUTk3yKyS0QOishaX02BiOB1jrT8aEJq6VLo29dtdzFqFKxeDe/41Vrs0QPq1fMuPmMKo97cofwJmByg/RlgZwk+J6iRReCPuNHM54s5LhSd8aDMmKEaG6vq5iG4R2ysaw+n0047TQcMGFCg/Y477tBTTjkl6M8pzZ3TOXPmKKBr167NaUtPT1dAZ82apaqqycnJCmjr1q114sSJ+uGHH+rVV1+tgP7tb3/Tjh076ltvvaUzZ87U+vXr64UXXhj09U0U+O471Tp1cv8nufRS1U8/9ToqUw4Q5pFF/weuWvcDwGjg2lJ+RiyuwFsartJqIq6a6kagehDntwf2A/N853cBBgD3F3J8yL77YERCjrT8aI5bZqZqaqrqhRfm/kWuVEn12mtV//Mf1awsryM0JiD/HFnsRGgR6YCbJtMBOB2ohttceC2ugtscVd0TbOfUZyVu3WJ+LYFVJfysIonI5cC/gbeAgaH87OMxdChkZORty8hw7UlJ4Ytj9+7dxMXFFWivU6cOe/aU9D9ryaSlpREbG5vnru2KFSsAOOecc/IcO2TIEG680e2S0r59e95++20mT57M5s2bqVmzJgDbt29n8ODBbNmyhfj4+DKN3ZShzMzcfaNatIDataFlS7dOsUsX8GBUyJhQUtWvgK+O82NuAxqTt6r4clwHciCu4nhAIhIDTAc+UdVefm99epwxhUwk5EjLj+a4icA//wnLl0NcHAwYAHfeCQ2DngBgjOcKnSchIv1FZAXwX+A+cu9iLgP2ABcBU4EfROQl39YXwZoHdBCRxn7XSwA6+d4LCRHpCMwFPgFu0CCqqIZLYcXUgiiyVm6kpaXRqlWrPNN10tLSqFatWp4ECdCjR4+c53FxcdStW5cOHTrkJEKA5s2bA656nYlCBw64pHrWWfDzz66tShVYsgQ++8xtQmwdRROFROT3IvKoiLT1a6sqxzcf9niqil8GtKCIDqXXKnqOtPwYpb77Dm65xe2FCC5nPfooTJ4M33/vtnmyjqKJMgE7i767k6OB93DTZWqr6qWqeo2q3qCqV6pqC6AO7u5mXWCViPwpyOs+D6QDc0Uk0Vchbi6wDZjsF0e8iBwTkeH54ussItfiRjwB2ovItb627GOa49aC7AL+BbQTkQ7ZjyDjLDOF/a4I9++QuLi4gHdIC7ujGkppaWm0adMmT9uKFSsKJMjsOP1VrVo1YBvAoUOHyiBaU2Z++w3+9S+3JvHhh2HLFnj11dz369a1TqKJdg/gZuecAiAifwT2AvtFZHQpP/N4qopf7Pt5oogsFZGjIvKziEwSkWqljCekIiFHWn40QcnMhLfegssug/POg2nT4Kmnct9PTHQjirGxnoVozPEobGTxBaCRqj6kqt/45q4WoKr7VDVVVa/EJcK9wVxUVX8DugLrgFeAVGAz0FVVD/gdKkClAHGOwE0tfdL3epDv9b/9jukAxAHxuKk1S/I9PDVqVMHfG7Gxrj2cWrVqxcqVKwu0r1q1ipYty2wXE44ePcq6deto3bp1nvYlS5YUSJCmnMrIcPtJNW4MDz4Iu3bBRRfBBx/A4IipsWFMKJwJ9FDVD32vJ+Bm6IwHEkXktlJ8Zh3fZ+S3G5f7inK67+cbwIfAFbjtPf4CvFrYSeEUCTnS8qMp0t69Loc1aeL2SFy0CE46Ce65BwYN8jo6Y0ImYGdRVSeqaoluP6nqd6o6vwTHb/WNVNZU1ZNU9WpVTc93TLqqiqqm5Gu/zNde4OF3zEuFHeN/nFeSkmDKFFcUS8T9nDIlvOsVAXr27MnSpUvZtGlTTlt6ejqLFy+mZ88CW4KFzLp16zhy5Aj169fPafvyyy/ZvHlzgfUYppy66Sa3P+LPP8OFF8L777spp9262UiiKW8OqWomgIhcAjQCHlDV4bgpoTeHOZ7s3D9DVYer6kJVHYO7EXu1iLQIdFI4q4VHQo60/GiKdN99Loelp7vlExMmuKmmEyfC2Wd7HZ0xQQmmYniF2TojEiUlud8xWVnuZ7g7igC33XYbCQkJJCYmMnfuXObNm0diYiINGjRg4MDcekCLFi2icuXKTJ8+Pc/5s2bNYtasWXz1lavV8P777zNr1iwWLVpU5HXT0tzsqTVr1gCwc+dORowYAWB3Tsurgwdh+/bc1/fcAxdcAO++60qKd+9unURTXh0UkeyFZgNxyyNmAajqT1B8sbkA9hB4BLGwEUd/v/h+fpSvPXvk8/xAJ2mAKqll1VkE73Ok5ccKLP++La+84m5o/ve/ucfceSdcfjnMmwdr17oZMX7rRI2JBikpKYVVzM5RmgRlypHq1auzYMEC7rvvPvr164eqcvnllzNhwgRq1KiRc5yqkpmZSVZW3hpBffr0yfP6zjvvBKBz584sXLiw0OumpaVRo0YNpk6dyptvvknHjh3p3r0777zzDoMGDSIlJYU//SnYJbAmoh065IYERo+G9u1dYgW4+GJYtsw6iKYiGA0s8xWNuwR4QlWPAfiK3FQvxWceT1XxgnMr84qYYnBesvxYQaWmujWG2eV4t2yB/v3dxhddusCCBa79ggvg44+9i9OYMJFCliNWSCJS2PJME2K9evUiIyOD+fODnrlsos2hQzB1KvzjH/Djj66tbVtX2bR6af5tbEzoiAjhXJLg28ZpIG7U7z5VzfC13QAkqGqXEn7evcAYoKmqbvK1JeCqlj+sqmOLOPdk4Adgqqre5df+N+Bx4Gz/Kqu+9yw/honlR48lJLgOYn6VKrlFs0OGuBFHY8ox/xxpf9uNJ9LS0sq0QIDx0OHD8MwzbtH/3Xe7juJ558GcOfDll9ZRNBWSqn6iqtep6kBVzd5B8DTcqOKzpfjIUlcVV9VfgH8At4vI476tPR4GhgMv5+8omvCy/OixQB1FcFVPH3rIOoqmwjmuv/EiMkREbgxVMKZiOHjwIJs2baJFi4A1FEy0+/lnt/D/hx+gTRuYPRu++sqVD7cpp6aCEJGLi9tHUVVf9XUgZ5b080NQVfxR4EHgOtw2WXfgtpkqTWVWEyKWHz1w6JDbHzHbmWcGPi4+PjzxGBNhSr1mUUTqAf8E9gPTizncmByrV68mKyvL7pyWF0ePug5hnz7ujmuDBjBypNsSo1cvuwtrKqoPgQwR+QB4B/hAVYPaXipYqroVuKaYY9JxHcb87QqM8z1MhLD8GEY//uhmwUyeDJUruxHFqlXd+vrbbnNF2bJ5sbeZMRGi1P+KU9UdQF+gXK2yLuty4Abatm2LqnLxxRcXf7CJXMeOwfTp0KIF/PnP8G+/bU6HDIFrrrGOooko/iXCw+Bk4BbgN9yI3c8issg3IycqewKWH8ue5ccwWLoU+vZ1I4WjRrk9fk8/3c2GAVd29/nnvd/bzJgwKyxHWoEbP7aA35ggZGbCzJkwYoQrFw7QtCmMGwdXXeVtbMYEyYMCN+cDV/keFwBbgHdxo44LVfVIuGIpDcuPJur9/DP88Y/wxRfudUwM9O7ttrzo1MmWSRjjxz9HWmfRjyVDY4rx7rvw4IOwyleZv3FjSE52d2kr2048JnqEu7OY79qnkttxvAI3y+cT4G1VfdGLmIpj+dFEpYwMN4UU3NYXLVvCTz+5aaaDBkHDht7GZ0yEKlFnUUT64TYQXqGq34chPs9YMjSmGBMmuOI18fHwyCNw441QpYrXURlTYl52FvPFURm4FPgj0ENVm3scUkCWH01UWbUKJk6EV1+FtLTc4jSrVrnnVpXbmCKVtLO4H6gBKLAPWOH3WA6kqeqvfsdPVNXBZRR7mbJkaIwfVXjvPbeeo39/13bwoEu+/fq5QgDGRCkPpqHGA3WBbb41/4hIA6ARgKp+Fq5YSsPyo4l4WVnw4Yfupqb/HpVTpriRRGNM0EraWVwLXA2cD5zre3QAauI6kABbye083qiqUTmub8nQGFwn8aOPYPhwWLYMateGzZvdT2PKiXB1FkUkEbfRvf+I4XfAMNz00yFAJ1WN6Hnclh9NRJs6FcaOhTVr3Otq1eCmm+Cee6B5RA7WGxPR/HNkMMnpN1VdDawGXvV9QGWgBzAYWIS7M9oSuAs4qSyCNsaEwYIFrpO4eLF7XbcuPPwwnHCCt3EZE4VE5EFgNLABeAH4GaiDy5dzgb8CUwArfWnM8fjoI9dRPPNMuOsuN5JYp47XURlTLgQzsjgZ+CTQpsG+KTT3qer9fm2nq+qPIY80DOzOqalQUlNh6FDYuhXOOANOOglWr3bvnXyyK2QzaJCt7TDlUlmPLIpIJ2A+MFBVUwO83xR4HfgUuFdVK5VVLKFg+dFEjGXL3FTTm2+GP/zBtX37ravO3bu3raM3JgT8c2Qwm6A9AUwSkZ7531DVbcAl+dqisqNoTIWSmgoDBrhNiFXh++9doq1e3e07tXmz6yxaR9GY0roPGBCoowigquuA3wN/DmtUx8H2WTSeOXYM3ngDOnaEDh3g9ddh/Pjc9887D/70J+soGnMcjmufRRG5DkjF7Qn1GvChqu4Rke7AZFWNL4OYw87unJoKo3592LGjYHuDBm6k0ZhyLgwji6tUtWUQx7UDmqjqG2UVSyhYfjSe2LMHnn8ennoKtm1zbXFx7mbnoEEuZxljQq6kaxZR1Zki8j3wJK6zqCKShRuZfKzMIjXGhNY337g1iYE6iuBGGI0xoXA4mINU9SvgqzKOxZjo9MwzMGyYe96sGQwe7LZsslkvxoRNUCOLeU5wd0EvA04FvlTVWWUQlyfszqkpt1asgORkeOst91rETT/NLz4e0tPDGpoxXgjDyGIa0F5VDxVz3K1AO1W9s6xiCQXLj6bMqcLHH8P+/XDNNa5t505X1XTQIOjeHWKCWT1ljDleJV2zmIeqfqWqY1X14fLUUcxmazJMufPUU9Cmjesonngi3H+/a4uNzXtcbKxbr2hMOVXYeowyshC3PUahRORc3OycgeEIyJiIdPCgm2raurUrWHPvvXD0qHvv1FPh3Xfhyiuto2iMR4Kphvp74FJgjqp+7WurChwtb7cZ7c6pKTeOHs1d6L92LbRtC3/5i9sGo3591+5fDbVhQ9dRTEryLmZjwigMI4vxuL2HZwCj/Iu/iciJQF9gBDAJGG3VUE2F8+OPbprpc8/BL7+4ttNPd6OI993n9ko0xnjCP0cG01l8H6gEjFHVD0Xkj8AbQCbwtKo+XNYBh4slQxP1Nm6Exx6D9evh88/ddFOAffugVi1vYzMmgpR1Z9F3jW7ALKAabq/F7H0WE4BjQE+gATDdOoumQvn6a7joIlflFKB9e9dBvPZaqFrV29iMMSWehnom0ENVP/S9ngDsAcYDiSJyW9mEaYwJ2pYtbhPiZs3g5ZfdPlQrVuS+bx1FY8JOVecD5wDTgFjgAqAq8BLQxvfe+MLOjzS2TMOU2rFj8MUXua/PPRcaN3adw88/d+/17WsdRWM8VOqtM0Tkf6p6ge/5JcAioK+qvi4ipwFvqervyijusLI7pybqfP89PP44TJ3qpp7GxLhKcY884hKxMSagcIwslieWH02p7N0LL7wATz4JP/zgbmyefrp779Aht47eGBNxSrp1xkERaaKqG3CL8HfhptWgqj+JSFDbbxhjQuzoUbjgArcNhohbbzh8ODRt6nVkxhhjKrL162HSJJg2DX77zbU1aZK3s2gdRWOiQjAdvdHAMhFZAVwCPKGqxwDEjVPaZjfGhMtPP0HNmm7hf5UqcNddudtitGjhdXTGGB8RmQckq+o3QR5/InAnkKGqz5VpcMaUlWPH3NTSefNyt2fq2tWtR7SKpsZEpWL/r1XV94DrcAvzp+LKfCMilwMv+tqNMWVp1y546CE3tXTy5Nz2v/8dXn/dOorGRJ50YKmILBORe0Skbf6ZOCJyuohcLSIvANuBW4GvPYjVmNI7dCi3Y1jZ91e8alW45Rb47jv45BP4v/+zjqIxUSrgmkURuRhYXNQCBRHpC1wNzFLVmWUXYvjYmgwTcfbsgbFjYeJEOHDAtd16q1ujaIwptTBVQz0LuBdIAmoBCuwHDgO1ccVuBPgCeBaYoaqZZRlTaVl+NAXs2AHPPuser70Gl1/u2jdtgho1oG5db+MzxpRasVtniEgGkAF8ALwDfKCqe8MapQcsGZqIsX+/6yCOHeu2vQDo3h0efdStUzTGHJdwFrjx7U3cEbgIOB04EfgFWAN8pqpbwhHH8bD8aHJ88w1MmOA6iEePurZ77nE5yxhTLgTTWawGXAFcBVwJnAYswXUc31XVVeELN3wsGZqI8cYb8Oc/u+eXX+46ib8rF0WHjYkIVg21ZCw/Gj74AEaPhkWL3GsRuPpquPdeuOSS3H19jTFRr9h9FlX1oKrOU9WBqtoAdzf0I6A3sFxENorIJBH5g++OqTHmeBw6BAsX5r7u08et9/j0U/j4Y+soGmM8Z/ssVnD//a/rKJ50kitYs2EDzJ4Nl15qHUVjyoFS77OYn4icihtxvAo3+hgDfAK8raovhiZcb9idUxN2R47Aiy/CyJGwc6crN96woddRGVPulYeRRRFpAIzH5WIBPgbuVdWtQZxbWLI7X1W/DXS85ccKZOtWtzdi06Zw222ubccON+vl5ptdVW5jTLlV7MhiUVR1p6q+pKp9gFOAXriqbw+GNEqP2J1TExbHjsFLL0GzZnDHHW6z4ubNXdVTY0yZKOyuaTQSkVhgAdAc6A/0A84GPhWRYLe0egm3ltL/sS7kwZrosWyZWwLRuDGMGQOPPw6ZvppL9erB4MHWUTSmginxyGJ5ZndOTVi8/rrbF3Gd799kzZvDiBFubyorLW5MWET7yKKIDAbGAc1UdYOvrRGwHnhQVccVc74Co1R1WJDXs/xYXh07BnPmwPjxbqopQKVKcN11brqpFVUzpsLxz5GVizvYd0I8UBfYpqo7fG0NgQQAVf2sbEI1phx67TXXUTzrLNdp7NvXJWZjjAleT2BpdkcRQFU3i8hiIBHXkTSmeO++69bJA9SuDQMGwF13QYMG3sZljIkIRY4sikgi8Dhumku274BhuCmsQ4CLVbVc/EvX7pyakFOF999303fatnVtK1a4qT79+0OVKt7GZ0wFVQ5GFncAc1V1YL72Z4A+qnpqMecrsBuoAWQCS4FkVf1PYcdbfiwn0tNh6dLcitvHjkGPHq6yaf/+bo9EY0yFVuzWGb6DHgRGAxuAhcDPQB2gJdAJ+CuwC5hunUVjAliwAIYNgyVLoGtX+OQTryMyxvh43VkUkbbAfv+RwRKefwQYp6oP52sfCTysqkXOHBKRV3DbYf0IxONu/rYErlDVhQGOt/wY7ZYsgXHjXAXTypVdEZvTTvM6KmNMBCq2wI2IdAKGA/1UtamqDlDVYap6p6peBrTCLahvG66gjYkaixdDly5uf8QlS+CUU+DKKyEry+vIjDGR4x9AGxGJFZFvRORrEWkVrouraj9VfUNV/6OqM4CLcR3HkYWdk10cyP9hxeAi3LFjMHMmdOjgtmCaNcutjb/uOjh82OvojDEe8y/85v/wF3BkUURmAbNV9dXCPlxE6gArgHo2smgMsGkTDBrkNi4Gt/ZjyBC4+263L5UxJmJEwMji46r6dxG5GbgRuBe4X1X7B3n+T8Cc0k5DLeQznwFuVdUTArxn+THa/PornHMObNniXsfFwe23uzx1xhnexmaMiWjBbJ3RsqiOIoCq7sYtsO9byiAaiMgsEdknIvtFZLavaE4w5z4uIh+KyC8ioiJyUxHH3iYia0TksIisFZHbSxOvMcWqUQM++8z9HD4cNm+Gv//dOorGmEBqi7t92w83nfQ7YHsJzl+Jm+WTX0tg1XHEZT3CaJKaCgkJbrQwIQEmTXJr5cHlnlat3F6JzzwD27a5rTCso2iMKYHC1jQENTdBVb8CvirpRf32hzqMm86quKkvn4pIG1X9rZiPuBv4Frfe4sYirnMbMBk33edj4HLgGXG3SJ8tadzG5LF6tUvA48a5QjV168Kbb0L79m7qqTHGFO4T4CdgD/Cer+NYkvKT84AxItJYVTcBiEgCrqbAw0WcF5CI1AT+D/iipOcaj6SmusqlGRnu9ZYtbh/EXbvg0Udd2/TpbkTRtmUyxpRSYdNQ04D2qnqoyJNFbgXaqeqdJbro8e8PFaOqWSLSxHfOzar6Ur5jKuPWX7zvP61HRF7EjYjWV9Wj+c6xaTameBs3ukQ8Y4Zbh/j88/CXv3gdlTGmBMp6GqqInKeq3xZzTHXgkKpmisg/gBNV9b4gP786rjr5QVyFcgUeA04C2qjqAd9x8cBG4FFVfdTX9legGfApuQVustsuD1QR1fJjBIqPd0Vq8ouLg927wx+PMabcCGYa6kJc8inqQ87FJaaBRR1XiID7QwHZ+0MVSVWDqRTSETgVmJGv/RXgZNxifmOCt3Wru4vbvLm7WxsTAwMHQrduXkdmjIk8/xORIvOjqv6mqpm+538LtqOYfS7QFViHy2upwGaga3ZH0UeASuTN92tx01UnAR/hbt5uxm2FFXDrDBNhnnkmcEcRYO/e8MZijCnXCpuG+i9guYjEAaNU9cfsN0TkRNw6xRHAeNz2GiXVCpgboH0l0KcUn1fYNQDSAlwDXKL8NETXMuXd44/DiBFw5IjrJN50EzzyCDRu7HVkxpjIVAm37OFMVX0k0AEiMgGoDXyrqhNKegFV3QpcU8wx6bgOo3/b28DbJb2eiSDbthX+XsOgyj8YY0xQAo4squoW4DrcesCtvgIxn/mmp+7C3YVMwk1fKY06uHUa+e0G4kr5mYGuQYDr7M73vjHFO+00OHoUrr8eVq2CadOso2iMKcpqYCYwVESmiUigquFjcJ22sWGNrJRsuwwPqMKiRZCYCM/6lVq4+25XbbtatbzHx8bCqFHhjdEYUy74b6Phr9AVz6o6HzgHmAbEAhcAVYGXgDa+98aXUbyesX2kDHv3ulHDkX7bjd14I6xYAa++Cs2aeRebMRVYamoqCQkJxMTEkJCQQGpqarHnBLOHVBk5rKrX42bq9Afe9a0zzKGq3wNzyDfyF6lUFVW1nBgOR464dfHt2sFll8G8eW7qafa60dNPhyeecGvm4+NBxP2cMgWSkjwN3RgTnVJSUnJ+z/sLWOCmrIVqf6hiCtzcATwDnK6q2/3a6+Iq0N2lqk/nO8cW8Fdkv/4KEyfCmDGwb5+7Q/vDD26/RGOMp1JTUxkwYAAZ2ZUfgdjYWKZMmUJSKf5xHIYCN1+ralvf8ztw6wOXAz1U9We/4yoBRyJ9v2LLj2GyezdMngxPPQU/+iZvnXoq3Hkn3HGHm+VijDFlLJgCN2WtrPaHyn8NAlynpe9nqK5jol1GBvzrX9CokRtR3LcPunaFjz6yjqIxEWLo0KF5OooAGRkZDB061KOIgufbqqkX0BRYIiJNPQ7JRKoPPnD78/74o9sjcepUV8gmJcU6isYYTwTsLIrIPBE5P9gPEZETReT+Emx4Pw/oICI5i7789oeaF+x1i7EEt74y/y3nG3DrFheH6Dommu3YAWedBQ8+CL/8Ar/7HSxYAJ984p4bYyLC1kIqPxbWHmlU9R3gMtyyjsUi0tHbiIznVF2+8V+L2KePm0Y6f75b+nDrrXDiid7FaIyp8AobWUwHlorIMhG5R0Ta+vYtzCEip4vI1SLyArAduBX4OsjrPu+7xlwRSRSRnrjqqNuAyX7XiBeRYyIyPN+1O4vItUB3X1N7EbnW1waAbw/FR4D+IjJSRC4TkUeBW4DhqnokyFhNeZPlt/NKvXrQsqVbF/L++/D559Cli3exGWMCalhIhcfC2iORqn6F29ZpJ/CxiBS7VZQphw4fhpdfhvPPh8svh/vvh1273HtVqri1in/4g1uHaIwxQSjNmv5gFbpmUUTOAu7FjczVwm34ux84jCv1XRW3KP8L4FlgRvZ+UUFdWKQhrkDOFb7P+QS411fmO/uYBNzeTyNUNcWvfSHQOdDn5l+D4tvn6gHcpsNbgfGq+kwhMdmajPIsMxNSU+HRR2HWLDjvPNe+Z4+bbmqJ2ZiIFYVrFvfitm6apqov5HuvFq6wzcXAX4FxtmaxAti1C557Dp5+2s1qATe1dNAgV93Ulj0YY0oh1PkR8ubIYgvciEhV3J3Qi4DTgROBX4A1wGe+bTbKBUuG5VRWFsyeDcOHw+rVru322/NO/THGRLzU1FSGDh3K1q1badiwIaNGjQpJIiwLIhIDNAdiVfXLAO9XwVUXvx5Q6yyWczt2uO2WDh50r885x40oXn89nHCCt7EZY6JaQkICW7YU7I7Fx8eTnp5eqs8sUWexIrFkWM6ouqmlw4bBN9+4toQEVyggKQkqVy7qbGNMOVbWncUSxPE48FA0dBaznycnJ9v2GcVRhS+/hAsuyG3r1s3lnfvvd0XUbDaLMSYEYmJiCmx3AS7PZfkvvSpGSkoKI0aMyHltncUArLNYzoweDX/7m3tev76rdHrrrVC1qrdxGWM8FymdRQARuUJVP/I6jqJYfgzS0aMwcyaMGwdffw1LlkCHDu69I0cs/xhjQq6sRxa92jrDmLJx4EDu87594Ywz3L6JGze6PaosURtjIkykdxRNEPbudVswNW4MN9zgOoqnnur26s1m+ccYUwZGjRpFbGxsnrbY2FhGjRoVks+3kUU/duc0ii1f7kYON22Cb7+FSr4ZXceO2XRTY0wBkTSyGA0sPxZh+HAYPz73ZmWLFm6q6Q032LYXxpiwCOWafrA1i4WyZBiF1q+H5GR4/XW3RqRaNTft59xzvY7MGBPBrLNYMpYf88nKghjf5KwHHnDTTi+/3D3v1i33PWOMiUI2DdVEv61b4S9/cXdwX3vN7U11nAQUJwAAIABJREFU991uZNE6isYYY0ItM9NV1u7UCV58Mbf9gQdcEbWPP4YePayjaIwpV0r1G01E2opIk1AHEwlEBBGxSm+RIjXVVTCNiXE/U1Ndwr74YnjBt3XZrbe6EcZJk6BePS+jNSZq7dq1i0OHDnkdRplKSUnJ+R0fTiLyXxHpJyK2R0I0OnAAnnwSmjaFa66B//4Xpk3Lff/003P37TXGmHKmVNNQRWQ+MBn4AFgMKNBPVVeGNrzwsmk2ESY1FQYMAL9NRomNhSlTYM8el7BHjICzz/YuRmOilKqSlpbGO++8wzvvvMPSpUuZNWsWvXr18jq0sAjnNFQRWQhcCuwBXgamqOqacFw7VCrk1hk//ug6ic895wrYgCtgc999cNNNUKOGp+EZY0wohXTrDBF5XFX/LiI3AzcC9wL3q2r/EMXrCessRpiEBAhQCpj4eChlKWBjDIwZM4ZJkyaxbdu2nLYqVarwj3/8gwceeMDDyMIn3GsWRaQ5MACXM+OA/wDPArNV9Wi44iitCpkfX3oJbr7ZPf/d79x008TE3AJqxhhTToVizWJtcfN4+gHjVPU7YHuoAjSGgwcDdxTBrVc0xgRl27ZtPPfcc2zevDmn7cCBA2zbto3TTjuNW265hdmzZ/PLL79UmI6iF1R1jareD5wB3ARUAl4FvheR0SLS2Mv4KrysLHj/fTeKmO36690yhyVLYPFi6N3bOorGVEDz589n6NChXofhmdKOLF6DuyO6B2gJZAEzVLX0NVojQIW8cxppjhxxaxFHjnRTgAKxkUVjCpWZmcmyZct49913eeedd1i+fDn8P3v3HR51lT1+/H2T0BJ6VTAFRJDeW4AAAQSlxoCuorKigl/76qKr6FLcuLZVF3+LCzYEsosrLRRFagIiHcFGU9JAAtIhQOr9/XGnJhNInZlMzut55pmZT5ncuMvcnFvOAd58800mT54MQEpKCidOnKBLly74VdBkHJ7OhqqU6gy8g1meCqYfXQo8qbVO81S7CuKz/ePVq7Bggclmun8/BAVBairUqePplgkh3CwjI4Ndu3axadMm+vTpQ9++fQH49NNPeeyxxzh37hxVqlSMreeOfaTLAnRKqY5a670FfYDWerFSajVwVWudo5T6O3CybJorKpQNG+Cxx8zr0FBIS4OMDPv5wEAopSKjQviaJ554goULF3L69GnbsaCgIAYPHkybNm1sx0JCQggJCfFEEys0pVQ14B7gUaALcBB4GvgCGAFMA2KBgR5qYsXx++8waxb861/mNUCTJvD00ya7thDC512+fJnt27eTkJDApk2b2Lp1qy3R25NPPmkLFocMGcLs2bPJzc31ZHM9xuXMolIqC3hCaz3b/U3yHJ8dOfVmubmwZw907Wrea20SB4wYYZb8/Pe/MGWKWXoaEmICxRIUGRXCF2itOXDgAKtWreLxxx+nWrVqAIwdO5ZFixbRrFkzhg8fzvDhw4mIiKgwI6FF4eYEN+2AScA4IAiIA2ZprTfmuW4E8IXW2usquftU/3j0qEmMZs3+26mT2Y94110SKArhwy5evEj16tVtGbG7d+/Ozp07na5p06YN/fr1Y9SoUdx2222eaKZXcOwjCwoWczEZTl/TWr9SwIe8B9QG9mqt3yvD9rqNT3WG3k5rsz/k5Zdh3z74+Wdo2dLTrRLCa2VkZJCQkGBbXnrkyBEAVq5cybBhwwD48ccfCQgIoGXLlm4vD1HeuDlYzAV+Az7EZEJ1ucdfKdUKE0QOcEe7iqJc949aw+7d9kFJgAEDTDbT556Dfv1A/r0I4XPOnj3L5s2b2bRpEwkJCezZs4f9+/fTokULAJ577jni4+OJiIggIiKCvn37Ur9+fQ+32jtcdxkqsB/4HpiilLoJeFhrnZPnmreBHsD/AJ8IFoWbxMeb2cJvvzXvGzc2M4cSLAqRz9WrV7n33ntZs2YN6enptuP16tXjjjvuoFGjRrZjbdu29UQTxfWNAeJc9KNOtNb7Aa8LFMutzEz43//gH/+AvXtNwNi5szm3ejXIjLsQPufs2bNMnTqVhIQEfvjhBxwHuQICAvjpp59sweLbb78tA6uFUFBmgwyt9T3AW8B4YJVSKsjxAq31UWAZIP+VReHs2AGDB5sR3W+/hfr1TSf+yy/muBAVXG5uLrt27WLmzJm2Y1WrVuXAgQOkp6fTvn17XnrpJbZs2cKJEyeYN28eXR1nS4TXUUpVxmQO7+3ptpSUUgqllPfXWDx7Ft54w9REvP9+Eyg2bOicYVsCRSHKvaNHj/Kf//yH996zz1kFBQXx0Ucf8f3331O5cmUiIiJ4+eWXWbt2LWfPnnWqJSyBorNp06bZvucdFbQMdY/WurPl9f8BMzEzjbdrrU86XOcPZGqtfSKXdLleZlMe3Huv2YNYsyb8+c/wzDNQo4anWyWER128eJF169axcuVKvvzyS9LSTCLMxMREwsLCANi2bRuNGzeWpDSlyM3LUC8CI7TW8e74eWWh3PSPU6bAP/8J1ln41q3h2WfNXveqXrcVVAhRSFprjhw5YltSumnTJltJqKCgIM6ePUsly57jefPmERYWRvfu3akq/+6LpTDLUG201h8opVKB/wJblVK3a60PlXUjhQ84fNh02B07mvfTp5sMp5MnQ926nm2bEB6WlJTExIkTSUhIIDMz03Y8ODiYYcOGOS2d6dmzpyeaKErPFqAnEF+aH6qUCgbeBQZjVvmsA57RWhepGK1S6i/A34EtWus+pdlGt9Davufw4kXT7wwaZPYjDhki+xGFKIe01ly5coXAwEDAlK946KGHnK6pWbMmffr0oV+/fmRmZtqCxQceeMDt7fVlhSqwpbVeCfQHAoEtSqleZdkoTyo3y2y8WUoKPPwwtGoFEyeajhxM9rm//10CReHTYmNjCQsLw8/Pj7CwMGJjY8nOziYhIYH58+fbrmvYsCGbN28mKyuL8PBwXnvtNfbt20dycjIffPABTZs29eBv4ZsKWmLjBs8BDymlnlBK3aSU8ldK+Tk+ivqBSqlAYANwK2a7yP3ALcDGvNtGrvM5zYCXKW/lr3JyYNEi6NUL5s2zH3/+ebPsdO1aGDpUAkUhvIyrPhJMjeC9e/cyc+ZMoqOjadSoEX/9619t9/Xs2ZN69eoRFRXFu+++y+7duzlz5gyrVq3i+eefJyio0F97ooiuuww1z/Ew4EsgFLgXWIksQxVWaWnw2mswe7ZJLODvb8pgzJxp6iMK4eNiY2OZOHEily9fth3z9/enatWqpKenU7NmTU6dOmUb/Vy3bh0dO3aU7Gse4IFsqGCyjLuitdbXXemT5zOfBt4BWmqtf7EcawocBp7XWr9TyM/5GkgCWgIBBc0sek3/ePEifPopvPceWJagEREBCQmebZcQ4rpc9ZGVK1emTZs2JCYmcu7cOafrhw4dyldffQWYmUatNX5+RR5bE8VQmNIZ54AfgU+11h/nOVcLk9imD/Bn4B0JFiu4CxfMjOHMmXD5shnJ/cMfzLLTW27xdOuEcJuwsDCSHZNoOGjRogUjRozglVdeoVatWm5umcjLzcHiNAoOFAHQWk8v4meuB6pqrXvnOZ5g+bx+hfiMe4F/YgLFJXhzsHjsmOljZs+G8+fNsWbN4E9/MoOS1at7rm1CiOvKysoiJCTEti/flZCQEPr160dERAT9+vWjefPmkoTGQwoTLPphlrYEaq13uThfCZgL3IMZEZVgsSI7dw6aNjXPo0bBq69Cu3aebpUQZS4nJ4etW7eSkZHBwIED8fPzo6DvEPlu8S7uDBbLglIqDVOOY1Ke47OAsVrrBte5vw5wAPiL1vpTpVQ83hwszpkDkyy/au/eZj/iyJFmBYsQwutkZmaya9cu4uPjSUhIYMuWLU7ln/JKSkoiNDTUjS0U13LdBDda61zg54I+QGudBYxTSiUDL5RJK4X3unoVPvkEJkww2eVq1zajvWFh0L27p1snRJm6cOECX3/9NStWrODLL7/k9OnTdO3alZ07dxISEuJyZlE6QFEG6gJnXRw/A9QpxP1vAYcwA7+F4mqEf+rUqe7Z43///bB9u9kH36NH2f88IUSR5OTk4G8ZvMnKyqJRo0b5lpUGBASQnZ2d797Q0FDpJz1k2rRpTJ9+7YUtRdojkZfW+iWl1MaSfIYoR7Kz4bPPzPLS1FQTND77rDl3112ebZsQZWzt2rW8+eabJCQkkJWVZTvevHlzIiIiyM3NJSYmJt9+jMDAQGJiYjzRZOFllFIdMEs+8+Vy11rPy39HmbWjL/AA0Lko04UenVmsVg0+/vj61wkh3OLq1ats27aNhIQEEhISOHDgAKmpqfj7+1OpUiXatm3L6dOn6d+/v21p6YYNG6SP9DLTpk1zOeDnODhYomARQGu9tqSfIbxcbq7JOvfKK3DIUjWlfXto29az7RKijOTk5LB9+3Zq1KhBO8uS6rNnz7Ju3Tr8/Pzo27cvI0aMYMSIEbRs2dL2pTpu3DgApkyZQkpKCiEhIcTExNiOi4pJKVUbWIUpnwGmzAU472MsarB4FtcziAXNODqaDXwMHLW0DczfA/6W91e01hlFbI8QwselpKTw0UcfER8fz/bt253KPgEcPHiQ1q1bAyaBW5UqVZzOSx9ZPrncs1hReXxPhjdKSDAJBL77zrxv3hxmzIC77wbJSCV8yMWLF1mzZg0rVqxg1apVnDp1ivHjxzN37lzALD9dvnw5t99+O/Xq1fNsY0WJuTnBzSwgEngI2AxEAeeBCUAv4A9a691F/MwNQOW8ewwtew/VtRLcKKWu19H9SWv9Xt57pH8UouK4dOkSW7ZsQSnFbbfdBsDevXvp1KkTYL5D27dvT79+/Wwzh5LZ23dcd8+iEDZpaSZQbNIE/vpXePBBsKT9F8IXLFq0iA8//JD4+HinUdJmzZo51TqsWbMm9913nyeaKMq/IcB0YJvl/VFLcBivlPoAeBqzLLQolgNvK6Waaa2PgK28VW/gL9e5d4CLY+8B/sCTwC9FbMv1xcbClCmmDm9ICMTEgMwmCOE1Lly4wDfffENCQgLx8fHs3r2bnJwcevfubQsW27VrxwsvvEB4eDh9+/alTp3CbI8W5Z0Ei8LZd9/Brl3wyCPm/dixkJ4O99xj9owIUY7l5uayc+dOgoODady4MQA//PADa9asQSlFeHg4I0aMYOTIkbRq1UpSdovSciNwRGudo5S6CtRwOLcEWFiMz/wQeAKIU0q9jFnS+iqQillmCoBSKhT4FZihtZ4BoLWOz/thlpJZAa7OlVhsrElMY92nlJxs3oMEjEJ4gRkzZjB9+nRyc3Ntx/z9/enevTv9+/d3Ovb66697oIXCkyRYFMahQ2bm8PPPzczhbbdBaKhZajphgqdbJ0Sxpaens3btWtvy0hMnTvDmm28yefJkwOyhaNasGXfccQcNGlyz2oAQxZUGWPcGJmOWnsZb3jcvzgdqrdOVUpHAu8B8zD7I9cAzWutLDpcqzIyh5/YNTJliDxStLl82xyVYFMItTp8+zaZNm2wJaV588UXusiQnDAsLw8/Pjx49etCvXz/69+9PeHg4NWrUuM6niopAgsWKLjXV7EH89FPIyYEqVeCxx6TAsSj3PvvsMz7//HM2bNhARoY9V0doaChVq9qTUbZo0YIWLVp4oomi4vgGk9xmJSawm2pZMpoNjMcsKS0yrXUKEH2da5KwJ9S51nX9i9OGQklJKdpxIUSpWLZsGevXrychIYEffvjB6Vx8fLwtWBwzZgzR0dEEBQV5opnCy7lMcKOUysU5S9u1aK21TwSdFWoDf24uTJ4M//oXZGSYwsYPPmhmF4ODPd06IYokNzeX3bt3065dO1sgOGbMGBYvXoxSih49etiyl7Zt21aWlwp3J7i5GWistd6slKoEvA7cDQQCq4Entdan3dGW4nJMilPk2ophYWbpaV6hoZCUVOK2CSEgLS2Nb775hujoaFsf1717d3bu3AlAlSpV6NWrly0hTc+ePakm24uEg7w1F619ZEHB4jQKHyyitb52NcdyokSdYXk0ejTExZnMpjNmgMyuiHLk6tWrrF+/nuXLl7NixQqOHz/OypUrGTZsGGBGTRMTExk2bBgNGzb0cGuFNyioIxTXV6LB1Lx7FgECA2HOHFmGKkQxHTt2zLakNCEhgYMHDwLw888/06pVKwA++ugjjh8/Tv/+/enevXu+UhZCFMRxQFVKZzjw6ZnFK1dg1izo3Rt6Wkp9HT4Mly6BJQ2yEN4uNzeX+fPnExcXx5o1a0hPT7edu+mmm3jzzTe55557PNhCUV64c2bRF5S4f5RsqEKUiqSkJAYNGsSvv/7qdDwoKIjevXvz97//nc6dO3uodcJXSLBYAJ8MFrOy4JNPzMzhb79Bv36wcSPIMjxRTiQlJREWFmZ736pVKw4cOABA586dGTlyJCNHjqRjx46yvFQUmruDRaXUeOAeIASomue01lrf7K62FIdP9o9CeCmtNUlJScTHx5OQkIDWms8++wyArKws6tSpg5+fH3369LEtK+3SpQuVpLSZKCXFChaVUh2AluTv5NBazyvVFnqIT3WGubmwcKHZg2gdferUCV57DYYMkWBReK2cnBy2b9/O8uXLiYuL48CBAyQmJtoCxrlz53L58mVGjBhBsOyvFcXk5j2Lr2DqLP5oeWTkvUZr/aA72lJcPtU/CuGFjh07xurVq20BYmpqqu1ctWrVOHfuHJUrVwbg0KFDNGvWjIAAn0gZIrxQkYJFpVRtYBUmkxvYs6rZbtRa+5dBO93OZzrD77+H++83z2D2Iv7tbxAdbUphCOFlMjMzWb16NXFxcaxcuZKTJ0/aztWuXZv//ve/DB061IMtFL7GzcFiErBUa/0nd/y8suAz/aMQXkBrTWJiIv7+/oSGhgLw4YcfMtFafxSoU6cOERER9O/fn379+tGhQwf85G844SaOfWRhhiReA+oBEcBmIAo4D0zA1Ir6Qxm1UxTXDTeY2cTgYJg2DR54AGT0SXiZ9PR0W5rurKws7r77bq5evQqYmk+jRo1i5MiR9O3bV5bWiPKuHrDC040QQniGNTiMj4+3PVJTU3n66ad57733ABg4cCB33nmnrc5h27ZtJTgUXqEwEcQQzPKZbZb3R7XWu4F4pdQHwNPAA2XUPlEYu3aZ5DWzZ0OlStCwIaxda5adVs23algIj9Bac/DgQeLi4li+fDkHDhwgLS2NSpUqERQUxBNPPEGtWrUYNWqUlLcQviYB6ABs8HRDSsL6b7JCZAsXopRMnTqVTz/91GlZKUC9evVsy0oBmjVrxuLFi93dPCFs8mYMtyrMMtTLwG1a628sr+/QWsdbzg0GFmqt6xW1QUqpYOBdYDBmaes64BlLkeHr3VsVeBW4D6gN7AVe0FpvynNdPeCvwAjgRiANs6R2utb6dxefW76W2ezfDy+/DEuWmPezZ5v05EJ4iZycHL799lvb/sPDhw/bzlWuXJlt27bRSbLxCg9w8zLU5sAS4G3gS+BM3mu01rnuaEtxlbv+UQg3ckxIEx8fz/Tp02377J966inef/996tata5s1HDBgAG3atJGZQ+G1iroMNQ0TkAEkY5aexlveNy9mAwIxI6wZwHjM/se/ARuVUu211unXuh/4GBgGTAaOAI8DXyulemmt91p+hgKWAy0wAeN+oDUwA+hqubZ89nxJSWZ56fz5JpFN1arw5JNmT6IQHpabm2vrAA8cOEBERITtXN26dRk+fDgjR45kyJAhVK9e3VPNFMKdDlmePy3gvKZw/bEQwks4BocbN24kJcU+19GvXz8mTJgAmGDx4YcflmWlotwqTOf0DSa5zUpgPjBVKRUGZGMCveXF+LmPAM2AllrrXwCUUt8Dh4FJwDsF3WjJynovMEFr/anlWALwEyYQHGm59BYgHJiktZ5jORavlMoFPsAEkQeL0XbPeu01EyhmZZl9iBMnwiuvQOPGnm6ZqMCOHz/OihUriIuL4+LFi2zaZCb5W7duzaBBg2jfvj2jRo0iPDxcsreJimgGDknhhBDeLTY2lilTppCSkkJISAgxMTEMGTKE+vXrA5CRkUGrVq1s++zBJKSxzhz279/fdrx582LNqwjhNQrzV9t0wBqJvIXZqH83EIgJFJ8sxs8dCWyzBooAWutEpdQWYBTXCBYt92YBnzvcm62UWgj8RSlVRWudAVgXgl/Ic/85y3P5HN654QbIzjbFjKdPh5u9ujSX8FFaa3766Sfb8tIdO3bYzvn5+fH777/ToEEDlFKsXbvWgy0VwvO01tM83QYhROHExsYyceJELl++DEBycjL3338/VapU4eLFiwQEBFClShXuuOMOcnNzbcFhu3btZOZQ+KRC11ks1R+qVBoQp7WelOf4LGCs1rrBNe5dCHTSWrfMc/wuTADZVmv9k2UZajxQHzMDegCzDHUukKS1vsPFZ3vXytTLl+H9981S0xdfNMeys+HAAWjb1rNtExXasmXLiIqKsr2vWrUqgwcPZuTIkQwfPpwbbrjBg60T4vrcuWfRF3hd/yhEGdi/fz/dunUjPT3/big/Pz8OHjwoM4WiQijqnkWUUp2AVzDlM2oD3bTW3ymlXgM2aa1XF7ENdYGzLo6fAeqU4F7rebTWWil1B2bp7E6H61YBY4vUWnfLzIQPPzS1EdPSoFo1eOQRqF/fLD2VQFG4ycWLF/n666+Ji4ujfv36vPvuuwAMGDCAJk2aMGTIEEaOHMmgQYNsZTCEEKCUygF6aa13WLY/XCvS0lprWZ8thBulpKQQHx9PYGAgY8aMAUxSNleBIpj9+BIoiorouvPlSqk+wFbgVuA/lnuso7G5wKNl1rqS+xCz3/JRoJ/luSuwSCnl8ndXSuV7uC1FeE4OzJsHLVvCE0+YQLFrV4iLg3pFTjgrxDXFxsYSFhaGn58fYWFhxMbGApCWlsaHH37IsGHDqF+/PmPHjmXBggUsWLCAnJwcAGrVqkVqaioff/wxo0aNkkBReK1p06a5/F53gxnAUYfX13q86o4GlZTb+0QhSlFqairz589nwoQJNGvWjNDQUMaPH8/bb79tu6Z169bUqeN6ziI0NNRdTRXCIxz7S0eFKZ3xDXAaGA34A5lAV631HqXUncB7WuuQojRGKXUCWFbMZaifAx0LsQx1GCYpzyCt9XqH6wYDa4DRWuu4PJ/huWU2Z89Cnz7w88/mfatWZmYxKgqk3pwoZXn3ZAAEBgZy9913M3fuXKz/DpRShIeHM2rUKEaNGkWLFi081WQhSpUsQy0aWYYqyhutte2P3hdffJHXX3/d6XytWrWIiIhg0KBBPPXUU7bjBfWPc+bMYdy4ce5pvBAeVtRlqJ2BOy3LOvP2FKeAAgO7a/gJaOPieGvg50LcG6WUCtRaX3Y43hoTyFqT5rSzPDsuQQWwZuJoBcThLerUMRlN09NN4pr77gN/f0+3Sviol156yakjBLh8+TJfffUVlStXZvDgwYwePZoRI0bQsGFDD7VSCCGEKJyjR4/aSllYax1ag7v27dvbgkNrQpoOHTrg7+LvLOs9ebOhSqAoKqrCBItXMZlPXbkROF+Mn7sceFsp1UxrfQTAUo6jN/CX69y7ApOhdSzwmeXeAEyG1jWWTKhg6kMCdAfWOdzfw/J8rBjtLlvz5kHdulCliqdbInxQZmYm8fHxLFu2zKkelKO0tDQuXrwo9Q+FKEVKqQ3XOJ2L6Ud3Ax9rrU+4p1VClH8LFy5k3bp1xMfH8+uvvzqd27Jliy3Ai46O5q677nIZHLoybtw4CQ6FsCjMMtTlmKQ2AyyHsoAulgQ3a4BTWut7i/RDlQoC9gFXgJcxG/9fBWoA7bXWlyzXhQK/AjO01jMc7l8IDAEmA4nA/wHDgXCt9R7LNTWB/Zj9la9isqHeCkzFzEC2tv4ch8+VZTbCJ7333ntMnTqVCxfyVpJxFhoaSlJSknsaJYQHuXMZqlJqI6a2742YPusE0AhoChy3vG8FXAL6aa2vt8LG7aR/FJ529OhRNm/ezN13320rUREeHs7WrVsBqFmzptPMYceOHQsdHAohnBV1GeorwBZMcLcIE9iNV0q9A3QBuhW1AVrrdKVUJPAuJlupAtYDz+QJ4BRmn2TeZDQPAjHA3zCB7D5gqDVQtPyMC0qpnsA04HlMJ30cMzM5LW+gKISvSEtLY/ny5XTq1Ilu3cw/z7p163LhwgXatWvH6NGjqVy5Mq+99hpXrlyx3RcYGEhMTIynmi2EL3sHeA/Lfn/rQaVUF+B/mNUyuzH76WOAKFcfIkRFcuzYMadlpb/8YnYZtWnThvbt2wPw6KOPcuedd9qCw4AASSosRGkrVJ1FpVRn4C1M6Qx/zLKZzcCzWuvvyrSFbiQjp6K8OnToEMuWLWPZsmVs27YNrTWTJk3i3//+N2BKYJw8eZKbb77Zdk9sbKzsyRAVlptnFvcBb2ut57s49wAwWWvdTin1oOU6r0t/Lf2jcJeUlBQGDRrE4cOHnY7XqFGDvn37MmPGDLp06eKh1glRMTj2kYUKFh1urIqpY3guT3IZnyCdoShv3n//fT744AP2799vO1alShUGDx7M/fffz1133eXB1gnhvdwcLF4BolzVJFZK3Q4s0VpXU0pFYPbeV3VHu4pC+kdR2k6dOkV8fDwbN27k6tWrfPzxxwBkZ2dTr149tNb07dvXtqy0U6dOMnMohJs49pHXrbPoSGt9VWv9mzVQVEpVUUo9XRaNLHdiYyEsDPz8zLOlZp0QpSUzM5M1a9aQlpZmO3b06FH2799PnTp1uP/++1m8eDGnTp1ixYoVEigKn1OOv2aTgEcKODfRch6gPqZUlVeSOouiJM6fP09cXBzPPPMMHTp0oEGDBowdO5ZZs2axYMEC27aIgIAAdu7cyZkzZ1i1ahWTJ0+mW7duEigKUcZKUmexPnDacUhRKVUNeAxFFt5OAAAgAElEQVR4DmiktfaJHcTFHjmNjYWJE8GxFEFgIMyZA7KsT5TAhQsX+Oqrr1i2bBlffvklFy5cYObMmTz55JMA/PLLL6SkpNC3b18qVark4dYKUXZK+2vWzTOL9wALMKWfFgMngYZANNAWuFdrvdBSa/gGrfWd7mhXUcjMoiiqCxcucOXKFRo1agTAp59+yoQJE2znq1atSnh4OAMGDGDAgAH06NFDAkIhvMR1l6EqpaoAbwITMGUzzgNTtNYfKKXuw+xfbISpYfiy1nqtuxpflordGYaFQXJy/uOhoSCZJUUxzJ07l88//5z169eTlZVlO96uXTuee+45xo8f78HWCeF+pf01685g0fLzBmMS2XQBKmEyi+8Cpmqt11muqQrkaK2zCvyg/J8bjEkWNxiTFG4dJlmc6/o49vtCgZlAR0zgmo4JZt/QWn/p4noJFsU1paen880337Bx40Y2btzI7t27+b//+z/ef/99AJKSknjggQdswWHPnj2pWtXrVlwLIShcsBgDvIjpdPZg0ntHAbOBx4FDmA35K9zVaHcodmfo5weu7lMKcnNL3jDh8w4ePEizZs1ss4MjRoxg5cqV+Pn50bt3b0aPHs2oUaOcEtQIUZGU9tesu4NFh5/rh1luekprXaIOQikViMkGnoG9DNXfMIO87bXW6de4tw3wLBAPHAVqYpbKDgOitdZL8lwvwaJwafbs2cybN48dO3aQnZ1tOx4QEMA999zDvHnzPNg6IURxFCZY/AVYrbV+wuHYBOAjYC0wQmud6ab2uo3MLAp3yc3NZefOnbYMpgcOHGD9+vVERkYCsHbtWo4ePcrw4cNp0KCBh1srhOeV95nFsmDJGfAO0FJr/YvlWFPgMPC81vqdIn5eAKYO5F6t9Yg85yRYrOAyMjLYvn07GzduZPz48YSFhQHw7LPP8u677+Ln50fnzp0ZMGAAkZGR9OnTh+rVq3u20UKIYilMncVgYGmeY0swweI7vhgoWlk3dU6dOrXwm/hjYlxvppGadcJBbm4uGzduZOnSpSxdupTffvvNdq5OnTocPXrU9n7w4MGeaKIQXqs0vmanTZvG9OnTS79xhaSU6gC0BPKtvdNaF2f6ZSSwzRooWj4nUSm1BRiFCSQLTWudrZQ6D2Rf92Lh87Kysti5c6dtWem3335rS0Jzww03MGnSJAAmTJjAgAED6Nu3L7Vr1/Zkk4UQZaCgmcVcoKfWeofDMX/MHgunosK+pEQjp7GxMGUKpKRASIj5C0aS21R4mZmZVK5cGQCtNU2bNiXZMj0SHBzMqFGjiIqKkgQ1QhRCaX7NujnBTW1gFdDTesjybOtwipMoTimVBsRprSflOT4LGKu1vu6yBMuyWOvS2ImY5ay3a63X57lOZhZ9nNbaNmCek5ND48aNOXnypNM1bdu2ZcCAAdx33310797dE80UQrhBYWYWAZoopZo5vPd3OH7O8UKt9ZFSbmP5M26cBIcCgHPnzrFq1SqWLFnCmjVrOHToEDfeeCNKKZ588knOnDlDVFQUXbp0yZeeWAhRsHL8NfsaUA+IADZjcgCcxySR6wX8oZifWxc46+L4GaBOIT/jTUxmc4BLwB/yBopWrr6virQKR3iV3Nxc9u3bZ5s53LNnD0lJSVSqVAl/f386dOhAamqqLSFN//79ZVuEED6mMCturjWz6GoIUbk6XuFLZ4gKLy0tjbi4OJYuXcqGDRucMph+/vnnUvNQCC/j5pnFXzGZUGMxK3S6aa13W859AARprR8oxudmYraG/CXP8b8Bf9FaX7cOgVLqJuAGy+MBzNLWMVrrlXmuk/7RB/z+++8sXLiQDRs2kJCQwNmzzmMN27dvt80YZmRkUKVKFU80UwjhYYWZWXzQje0RolxLT08nLCyMjIwMAPz8/Ojfvz9RUVGMHj2akJAQD7dQCNfS0+GHH0yW0V69PN0an3YjcERrnaOUugrUcDi3BFhYzM89i+sZxIJmHPPRWh/FZEMFWKmUigfeBlYWeJPwGrGxsUyZMoWUlBRCQkKIiYlhnGX6XWvNwYMHOXv2LL0s/8BPnz7NU089Zbs/JCSEyMhI2+xhcHCw7ZwEikIIKCBY1Fp/5u6GCOHttNb8+OOPLF26lISEBNasWYO/vz9BQUHcdtttaK2JiopixIgRslRHeJ3jx2H3bti3z/44fNgEigMHwrp1nm6hT0sDrJk/kjFLT+Mt75uX4HN/Atq4ON4a+LmYn7kLeKbYLRJuExsby8SJE7lsyfqUnJzMww8/zMaNG7l8+TLx8fEcP36cLl26sGvXLgBatmzJo48+SteuXRkwYABNmzaV7RBCiGtyuQy1opJlNiKv3NxcduzYwZIlS1i6dCm//GJLOsimTZvo27cv4JwYQAhPysiA/fth7164/XZo1Mgcf/hh+Phj52sDAqB1a+jfH/75T7c31aPcvAx1HpCitX5ZKfUS8FfgM0zW0fHAcq31vcX43Gcws4AtrLkDlFJhmNIZf9Fa/6OIn+cHfAvU0Vq3zHNO+kcvExYWZkuYVpCGDRsyaNAg5s+fj5+fn5taJoQo7wqb4EaICi01NZWePXs6lbho0KCBLYOpYyY4CRSFJ2RmwqZNZpZw717zvH8/WOtiL1oE0dHmde/ecOQIdOwIHTqYR6tWICvN3GI60Njy+i1Mspu7gUBgOfBkMT/3Q+AJIE4p9TImp8CrQCow23qRUioU+BWYobWeYTk2DbNcdQtm5vMG4CGgO1DkwFW4x7Fjx2wJaa4VKL7//vtERkbSqlUr6Z+EECUiM4sOZOS04rp8+TJr1qzh559/5qWXXgLMrGJISAj+/v5ERUVx55130rt3b/z9fSKfkyhHsrPNktG9e80+w4cfNsevXIHq1SE3136tUnDLLSYofPxxiIjwTJu9nTtnFsuSUioEeBcYjElCtx54Rmud5HBNGJAITNdaT7McG4lZbtoWqIUJGPcBb2itt7j4OdI/esCJEydsweHGjRs5fPiw7VxQUBDp6en57gkNDSUpKcmNrRRC+BrHPlKCRQfSGVYs586dY+XKlSxdupTVq1dz+fJl/Pz8SEtLs+05PHbsGI0bN5aRWeFWhw7B2rUmONy7F378Ea5eNecaNoQTJ+zXjhsHtWrZZwzbtoWgIM+0uzzxlWDRXaR/dI+zZ89Ss2ZN26BkREQEmzdvtp2vUaMGffv2ZcCAAWRnZ/Pqq6/a9iwCBAYGMmfOHFuSGyGEKA5ZhioqtIMHD/LUU0+xYcMGsq3r9YBu3boRFRXltK+jSZMmnmiiqCBOnoTvvjMBYWQkdOtmjq9eDU8/7XxtaKh9+WhWFlSqZI7Hxrq3zaL4lFLBQDBQNe85rfUG97eoaKyDZlJbsfRcunSJb775hg0bNrBhwwb27NnDrl276Ny5MwDDhg2jWrVqtmylXbp0ISDA/qdbcHBwgdlQhRCiKAqquSgziw5k5NQ3/frrryQmJjJo0CAATp06RSNL1o9+/frZSlw4pgwXorhiY2HKFEhJgZAQiImxF5JfuhR27TLB4XffmQylVn/9K1i/o/fsgfffN7OFHTtC+/ZQp7Al1kWhuDnBTTNMjUXrRmfrz9WW19rb6xVL/1h6Ll++zBtvvMH69evZvn2706Bl5cqVmTt3Lvfcc48HWyiEqOhkGWoBpDP0DVprfvjhB5YuXcqSJUv4/vvvady4MampqbZZw1WrVtGjRw/q16/v4dYKXxIbC488YvYSWgUGwpw5JmBs1QoOHLCfq1HDzBR26gQjR4JlPEO4gZuDxQ1AS+B14ACQmfcarXWCO9pSXNI/Fk92dja7du3iwIED/PGPfwTMfvj69etz9uxZ/Pz86Nq1K5GRkQwcOJDw8HACAwM922ghRIUnwWIBlFK2/xiyzKb8SUxM5N///jdLlixxKnFRo0YNhg8fzqxZs6hdu/Y1PkGIojt61MwYfvcdLFhglojmFRoKSUnw5ptw/rwJDjt2hGbNQLLZu0/eJTZuDBYvAn/UWi92x88rCxIsFk5ubi7ff/+9bVnppk2buHjxIgEBAZw7d44gy4biTz75hAYNGhAREUGtWrU83GohhHAmwWIBpDMsX3Jycjh9+jQNGzYEYMuWLfTp0wcwJS5Gjx5NVFQUkZGRVJH6AKKEjh+3Lx9t0QLGjDHH4+NhwIBr36uUc8ZS4XlunlncDzyvtV7hjp9XFqR/vL6EhASio6M5ffq00/EWLVoQGRnJtGnTbFsghBDCm0mwWADpDL1PbGys0+b96dOn07hxYxYvXsyyZcto164da9euBcyI7ksvvcTtt99Onz59pMSFKJHVqyEhwZ6AxjED6ejRZjYR4Nw5eO45M1v4t785X2dlnVkU3sPNweL9wCRgiNY6f62DckD6R7vk5GTbzGHTpk2ZMWMGAEePHiU4OJjg4GAGDhxIZGQkAwYM4KabbvJwi4UQomgkWCyAdIbeJTY2lokTJzqlBc+rRYsW/PDDD1SuXNmNLRO+IjMTfv7ZJJTZswemTQPrNta774b//c9+rbU8RceO0K8fREXl/7zYWJg4ERz/L+u4Z1F4D3eXzlBKxQATgW3A2TyntdZ6vLvaUhwVuX88ceKELTjcsGEDR44csZ1r2bIlBxw2IiclJREaGirlloQQ5ZoEiwWoyJ2hNwoLCyM5OTnf8UqVKvHCCy8QHR1Nhw4dpFMWhXb+PCxcaA8Ov//eBIxWq1fDkCHm9aJF5nzHjmbWMCzMLCe9nmtlQxXew80zi38EPgFygJPkT3CjtdbN3NGW4qpIe/rPnDmDv7+/bS/h888/z1tvvWU7X6tWLfr3709kZCSRkZG0bdvWU00VQohSU9C+fgkWHUiw6Fnnz59n5cqVLF68mFtvvZXXX38dV/97KKXIlQ1g4hrS02HfPhMQ+vnBY4+Z46dP22cOrW65Bbp0MQHhmDEm6YzwfW4OFpOBXcBDWutz7viZpc2X+8dLly6xefNm28zhd999x/vvv8/jjz8OwPr163nrrbdswWGnTp1km4MQwqc59pEB17tYiLJ06tQpli9fzuLFi1m3bh2Zlmme0NBQgoODSUlJyXdPSEiIu5spvNyPP8LatSY43L0bDh60J5Rp1sweLNarB089ZWYJu3Qxs4Y1a3qs2aLiqAfMKq+Boq96/fXXWbFiBTt27MhX6zAtLc32fuDAgQwcONATTRRCCI+TYFF4zMyZM3n22WfJyckBwM/Pj379+hEdHU1UVBQJCQn59iwGBgYSExPjqSYLDztzxiSc2bMHhg6Fdu3M8bg4ePll+3UBAeZc587mobV9Cek//+n+dosK7xugFbDe0w2piLKysti1axcbN27kueees2XH3rRpE99++y1+fn706NHDNnMotQ6FEMJOgkXhFsnJySxevJiWLVsybNgwANq3b49SiiFDhhAdHc2oUaNsZTAAxlk2ejlmQ42JibEdF75Na7OH0Lq/cM+e/BlFrcHigAEmsUznzmbGsG1bqFrV7U0WoiBPA/9TSp0FVpM/wQ1aa1lbX0ocax2uX7+eTZs2cenSJQD69OlDREQEAJMnT+axxx6jb9++UutQCCEKIHsWHfjyngxPOHToEIsXL2bx4sXs3r0bgKFDh/LVV18Bpk7ihQsXqFOnjiebKTxMa/jtNxMM/vorPPOM/dxNN8GxY/b31aqZpaOdO5v9hf37u725wke4ec+iNRAsqIPRWmuvHrwtL/3jyZMnadWqFWfOnHE63rJlSyIjI3nsscckIY0QQlyH7FkUZWrBggW88cYb/Pjjj7ZjQUFBDBs2jLvuust2zN/fXwLFCujUKdi0yewttM4YnjxpPz9hgn0f4QMPwJUr9uWkLVuaJaZClDMzKDhQFMWQlJRkS0hz6tQpVq9eDUCDBg0ICgqievXqTrUOmzRp4uEWCyFE2SnLTOzyZ5coEa01u3bton79+jRt2hQwWU1//PFHatWqxciRI4mOjua2226jWrVqHm6tcCetzazgrl3QsCGEh5vjW7dCdLTztXXq2ANCx1IWr73mvvYKUVa01tM83Yby7tSpU6xZs8YWICYmJuY7X79+fZRSfPfdd9StW1fKKgkhKoS8NZ6Tk817KJ2AUZahOqhIdaRKIicnh61bt7J48WKWLFlCSkoKf/7zn211qE6ePMmePXuIjIykcuXKHm6tcJfjx01gaH3s3g0nTphz990H8+fbr3vwQbO30BogFraGoRAlUVANqbKglCpSERat9ZHrX+U5nu4fly5dyp133ml7X7t2bQYMGGBLStOqVSsJDoUQFVJYmAkQ8woNzZ/r4VqkzmIhlJc9GZ6yZcsWYmNjWbp0qVNa8caNG/P444/z0ksvebB1wp1OnDDB4IABZh8hwB13gGU7qk2dOiYoHD4cnn7a/e0UoiBlvWfRsk+x0B2K1tqrC/d5un88c+YM48aNsy0t7dChg9Q6FEIITD1pV1/PStnLiBWV7FkUhZKVlYXW2jY7uGDBAv79738DEBYWRnR0NNHR0fTo0QM/Pz9PNlWUoVOnTGDoOGt49Kg5t2WLfXlpv35w9Sp07Wp/NG0qM4aiwnrQ0w3wJrGxsSXKbF23bl1bcjQhhBB2ISGuZxZLqyy5zCw68PTIqTfIzMxkw4YNLFq0iGXLlvGPf/yD8ePHA7B161ZWrlxJdHQ0nTp1kiU/5ZyrzdB33AFpadCqlbkmNdX1l0316mbG8NVXoW9f97ZbiNLgzmyovqAk/WNsbKzLmrlz5syRUkhCCFFCefcsAgQGwpw5xd+z6NhHSrDooKIGixkZGaxbt44vvviCuLg4zp07Zzs3adIk22yi8B2xsfDIIybTqJVSZhlD+/awb585prWZHbzpJucZwxYtzLIHIcorCRaLpiT9Y1hYGMkuhr1DQ0NJKsqGGiGE8ACtIT3dDJR7q9LOhirBYgEqarA4dOhQvv76a9v7Nm3aMHbsWMaMGUObNm082DJRWi5eNM81apjnOnXAYUzARino0wfi4+3BoNaylFT4HgkWi6Yk/aOfnx+u7lVKkVvcDTVCCFFKcnLM4Lk1GPz1V3j7bbO0MyXFPNet63qpp6+SPYsV1JUrV1i9ejWLFi3iz3/+M506dQLg9ttv5/jx44wdO5bo6GhaWdcginLp6lXYuxd27jSPXbvgwAH44AOYNMlc4ypQBBMYbtrkfEwCRSFESYSEhLicWQwprQ01QghRCN98Az//bA8CrYHg0aOmxvOcOea69HTIu6guIMAElRUxr5YEiz4uPT2dr776ikWLFrFy5UrS09MB00lbg8Unn3ySpyVVZbmUm+u8HHTgQBPsZWc7X1epktmLaBUSYr4k8woNLZt2CiHKP+s+9aKWzoiJiXG5ZzEmJqa0myiEqGC0hpMnnYM/x+eEBPuM4bRpsH6968+5cMH+ulkzmDnT/E0UEmKea9f2/cHzvKUzrDy2DFUpFQy8CwwGFLAOeEZr7eJP2Hz3VgVeBe4DagN7gRe01ptcXNvEcu0dQB3gN2Ch1vpFF9f61DLUSZMmMX/+fK44bEzr1q0bY8aMYezYsTRt2tSDrRNFpTUkJprZwh07zPNPP5m6hdZylgMHwsaN0KYNdOtmf7RrB1Wq2D+rLDZDC1GeyDLUoilp/1jSbKhCCN9Q1L11mZkm2Z5jMNi5synJBfDllzBsWMH3//QTtG5tXv/jH+a9YxAYEgLBwc5/Iwkv2LOolAoE9gEZwMuYWlR/AwKB9lrr9OvcHwsMAyYDR4DHgduBXlrrvQ7XhQFbgERgJnACCAOaa61fcfG55TZYvHDhAitWrGD48OHUqlULgEceeYSPPvqIXr16MWbMGO68807CwsI821BRZN9/Dy+8YILD06fzn//uO+jY0bxOSoJ69ex7E6+ltDdDC1Ge+EKwWNxBV6VUV2AiEAGEAKeAzcDLWuvEAu4pt/2jEMI7uBqorlYNXnkFOnQwGdmt7rnHzAqmpeWvIfjQQ/DRR+b1jz+a0l2OwZ/jc7t29nrQovC8IVh8GngHaKm1/sVyrClwGHhea/3ONe7tgJlJnKC1/tRyLAD4CTiotR7pcO1qoC7QW2udVYh2lavO8Ny5cyxfvpxFixbx9ddfk5mZyYIFC2yjtYmJiQQEBBAcHOzhlorruXjR1DK0zhi2bQtTp5pzhw5By5bmdYMG0L27mS3s3t1kJm3QwHPtFqK8Ku/BYkkGXZVSbwO9gFhM39kEeAVoCHTUWqe6uKdc9Y9CCM/LyTEzg9ZgrXFjsxqqIOfPQ82a5vVtt8HatWaPYJMmzkFg797Xnk0UJecNCW5GAtusgSKA1jpRKbUFGIUJJK91bxbwucO92UqphcBflFJVtNYZSqmbgSHAA4UJFMsLrTWfffYZX3zxBWvXriUry/xqSikiIiKoU6eO7VpZZurdli0zj507Yf9+55Gz5GR7sNi8OXzxhQkQQ0J8f828EKJQHgGa4Tzo+j1m0HUS1+5H39Ba/+54wNL/Jlo+969l0mIhhE9KSIBffjF/uzg+jh6Fl1+2/z1zrUBx6FCTWMYaLM6aZbbYNG5skssIz/HUf/42QJyL4z8BYwtxb6LW+nKe4z8BlYHmlte9LcevKKXWYpbbXAZWAH/SWrtY0OedTp8+Td26dVFKoZRi9uzZbNu2DT8/PyIjIxkzZgxRUVHccMMNnm6qyCMnx2QitWYmfeYZuOUWcy4+Hj77zLyuVMkswbDOGPboYf8MPz8YM8btTRdCeLdiD7rmDRQtx5KVUr9jZhmFEIKLF/MHgMnJ8PvvzoliHn3U/K3jypkz9tdNmsCxY/mvCQ2Fr75yPta8ecnbL0qHp4LFusBZF8fPYJLQFPde63mAxpbnT4D5wN8xgeTfgdZKqe5a63wFnpSLaZuiZn4rDSdPnmTp0qUsWrSIjRs3snv3bjp06ADA5MmTOXXqFKNHj6Zhw4ZubZe4tsxMiIuzJ6HZvRsuXbKf79rVHizefbd53a2bCRRlc7UQpa+g7G4+oCSDrvkopVphlqHuL2G7hBDlgNYmD4I1AExKgvBw6NnTnJ87Fx58sOD7z50zGUIBRowwf8uEhppHWJh5Dg6GqlXt97zxhuvkepIY2bv58sSutaBAvNb6ccvrDUqp88BCzBLVr/Le5Mk9GWlpaSxZsoRFixaRkJBgK1YcEBDAnj17bMHinXfe6bE2Crtz50xQ+NtvMH68OebnZ147JKAlJMS+z7BXL/vxXr2c3wshSt+0adNcDva5GhgsZ0oy6OrEsu//38DvwMfXuC7fMU8Mpgohri831yz7PHkSLJXSABg71mQETU52DtrAJJqxBouNG5tAz7pX0BoAWh+Bgfb73nyzcG2yJtGT5HreozADqp4KFs/iujMrqPPLe6+ranDWGUXrDKN1menaPNetsTx3wkWw6Ck5OTm0bduW05Z0l5UqVWLo0KGMGTOGUaNGUbdu3et8gihLWVnwww+wfbt5bNsGBw+ac4GB5osuIMA8HnsMgoLsZSsaNfJs24UQ4jr+HxAODNNaF9gHS4IbIbzTnj2wfLnzUtHUVPO3S/Xqpoagdazn559NngQw+wMdA0DHAeyBA00wWdrjauPGSXDoTQozoOqpYPEnzBKavFoDPxfi3iilVGCefYutgUzgF4frriXfElRP8vf3Z+zYsRw7doyxY8cyYsQIalvn94VbaW1GvPz8zBIKgHnz4OGHna+rUsWM1vXoYb5QrZuy337bve0VQlRIJRl0tVFKvY4pozFea73metcLIdxDa7MP0DEATEqyv54xAyZMMNfu2QOuJocaNDBB4JUr9pnAjz822UmtheYL4u9f6r+SKKc8FSwuB95WSjXTWh8BW03E3sBfrnPvCmA6Zk/GZ5Z7A4C7gTVa6wzLdduANMxy0/cd7h9qed5Z4t+ilM2aNcsXlkaVOxcumOWk1lnD7dvhxAmTjObdd801PXua/YU9etgfHTqYTF1CCOEBJRl0BUApNQV4AXhSaz2/FNsmhLgGrc1WFsfgLznZJMX75z/t1/XoYZLMuHLkiPN1L77ovFQ0JMR5qaiVdZmpEIXlqTqLQZj6UFew14d6FaiBqQ91yXJdKPArMENrPcPhfuuew8mYVN//BwwHwrXWexyuGw/MBWYDSzAJbmIwdRoj8xaNKkkdqdjYWKZMmUJKSgohISHExMTY6h0K75GdbUbLrDH53XebshR5/2evV89s7H7rLfe3UQhR9nygzuIzwNtAizyDroeBv2it/3Gd+58C/glM0Vq/VoifJ3UWhSik3FyzV9AaDHbrBs2amXP/+pcJ7FwFgYGBJime9W+U4cPh6lXnpaLWgLBJE5NJXYiy4PE6i1rrdKVUJPAuJlOpAtYDz1gDRQsF+GNPVmP1ICbo+xtQGxN4DnUMFC0/5zOlVC5m5PRBzH7GBcCLpdnrxcbGMnHiRC5bdgonJyczceJEAAkYPUhrU+PHccZw927Yu9eekbRePfNl27Gj86zhzTdLPUMhhFf7EHgCiFNKOQ66pmIGSAHXg65KqT8A7wGrMYnfHOcaLmitCzUzKYSvio29dhKW7GxTEsKakD4725SPsM4QpqRARob9+tmzTRZQMAHhxYtmL6FjEGh95Obal4CuXOme31eIa/HIzKK3Ku7IaVhYGMnJyfmOh4aGkpSUVAotE0Vx4oT50t6+3XUB2EWLIDravD5zxiSjkbIVQlQs5X1mEUApFYIZdB2M86BrksM1YZgVONO11tMsx+YC4wv42AStdX8XP0tmFkWFEBubv7xDQIAZSPbzsxebv+UW59qCtWvD+fP29/Xq2QPAhx6CYcPM8UuXTJmtOnVkUFp4L8c+UoJFB8XtDP38/FxmiVNK2cpfiOIpaHQvO9tk9LLOGPr7m5E7MKN5NWvav4ytRe579DCv69f37O8khPA8XwgW3UmCReFLrl51ThiTlGR/HDliBp2vRSmzrPTwYXvA9/nnUKOGPUCsXojWspwAABh9SURBVL1sfwchypIEiwWQmUXvUtDoXvPmJiV0err9eM2acPasGfUDWLXKXHfLLfZjQghhJcFi0SilbJ2j1FYU3u7yZTPIbA0AAwLsGc3T04sfyK1fby82LwnuhK/JW3NRgkUXihss5t2zCBAYGMicOXNkz2IxZGXB99/D4MEmACxI06bOM4Y9e0pgKIQoHAkWi0ZmFoU3SU83M4I33WQvWzV7NnzyiQkOT550vv6WW+DQIfv7G24wW1CsyWLCwuyPcePMMtO8QkPNZwtREXg8wY2vsQaEkg21eNLSYOtWU+h+61bYtcvUBLqWEyfsG8uFEEII4XvS02HuXOdloklJcOqUOb9ypX0v4KlTsGOHeV2pktm6Yg0ArUntrH77reDB5ddfz7+qKTDQbIMRoiKSmUUHMnJa9jIzzaxhly72df7t2sGPPzpfd8st5svccamplYzuCSFKSmYWi0b6R1GaLl2CxMT8+wWTkkxwt2iRua6gJaOVK5tg8K23YPRocywx0fzdEBYGN95YspVG18uGKoSvkz2LBZA9GaXv2DH7jOG2baZ0xdWr5ks9LMxc89xzsG+fWUbaq5dZVlq/vus9i4GBMGeOfGkLIYquoP0Y4vokWBRFceGCcwCYnAxPPGG2jwBMmmT6clduvhl++cX+/k9/MiuJHJeL3nCDbDsRoixJsFgA6QxLRmv7bOGBA3DbbSYRTV633mqWlfTocf3PlNE9IURZkJnFopH+UTg6f94Egbm50KmTOfbbb6aIfFKS63wDcXEwcqR5/c478OGH+fcLOgaDQgjPkWCxANIZFk1qqvNewxtvhCVLzLkrV8ym88BAExT26mVmDnv0gLp1PdtuIYSQYLFopH+sOKz/M1sHf+PiYONG51nCc+fMuf79zTkw/X5goHldrZpz8BcaClFR0KKFu34LIURJSIIbUWxffmmyjW3bZpaYOqpXzz67WK2amV1s2lSWigghhC9QluhBtml4j+KuvsnIgJ9+yr9U1Po6IQE6djTXfv01fPCB8/2BgSYIbNbMfqxaNZOgLjgYGjSQgvNClDd5t2pYycyiAxk5tUtNhW+/NY+xY6FPH3N85kx4+mnzunZtM1to3WvYvbs5JoQQ3k5mFotG+kfvU9C+/tmz4Y47TNCXmGgPAJs1M/v/wBSTv9Ys39Kl9sQxa9eavAKOs4T160swKIQvk2WoBajIneHu3bBliz1AdNxr+NJL9pTRv/4KmzaZALFlS5k1FEKUTxIsFk1F7h+90YULZv//8eP5zyllX0rqqG9f03+DmVns1q3gPYN160owKERFJsFiASpKZ3jmjFkqcttt9mO33goHD9rf16plZgvDw80IZZcu7m+nEEKUFQkWi6ai9I/eIjfXPhh77Bi89559ljAx0fTj1xIUZLaBNG1qDwBbt4ahQ8u44UIInyB7FisQrU0QaJ0x3LLF7CUEOHoUmjQxr8eONe/Dw82jVSuZNRRCCCHKSnIyHDrkHARanwcPhvnzzXVXr8LbbzvfW7UqZGebR1433WT2MMrMoBCiNEiw6GMcy1fs2weRkflHIKtUMctPzpyxB4uvvuredgohhBC+KjvbDMAmJjoHge+9Z5LBATz1FCxf7vr+5GT7a2viGseZwkaN4D//cb1n8fXXJVAUQpQeWYbqoDwuszl61HnWMCwMvvjCnLt40SScadgQevc2j/BwUxOpcmWPNlsIITxKlqEWTXnsH8tSTo7ZL5iYCNWr22sN7t1rSkSkpppr8tqxwwzWghmkXb/eHgA6BoONG4O///XbIbWIhRBlQfYsFqC8dIZffQXz5pngMG/R+xtuMIVxraOKx46ZTkdGGYUQwk6CxaIpL/1jaclba3DuXDMoa50lTE6GrCxz7g9/gP/+17xOSjIBn1Km77UGgdbnYcPMrKAQQngz2bNYTpw5Y+oZfvutSWHdtas5/vPPsHChee2YiCY83BS9dwwMrctMhRBCiJLwtTqLly/D/v3Oy0QdS00cOWIGYMEUpl+2zPn+hg1NAHjLLfZjwcFmH2JIiNnyIYQQ5YXUWSwET4+c5k1Es3+//dzUqWDtmw8dgvh4Exy2bi2JaIQQoqhkZrFoPN0/Fsf58/kTx3TuDOPHm/ObN0NERMH3b9tmBmDB7C1MTXXOLhoYWLbtF0IIT5FlqAVQStn+Y3hi5PTmm81IppU1EU14OIwaZZ6FEEIUT95RUwkWC88bg8X0dHsQeMcd9oHT+++HVavg7Nn894wdC//7n3l97JhZFpp3qag1GKxZ0y2/hhBCeB0JFgvg6c7w2WfNJnXrktLOnSURjRBClAWZWSwaT/ePhw/Dxx87zxL+/rv9vGMpqDFjYPFiqFYtf+KYzp1NlnAhhBAFk2CxACXpDCUjmRBClB8SLBZNSYPFkvaRW7ZAnz7OxypXhtBQEwjOmmVW54BZLlq5stlTKMndhBCi6CRYLEBxO8PYWNe1jubMkYBRCCG8kQSLRVPSwdSS9pGnT8MHHzgvFb3xRtmzL4QQZUGCxQIUtzMMC3MuoGsVGmqWywghhPAuEiwWTUmCRekjhRCifHHsI2VMrhSkpBTtuBBCCFHeKKVQShU5+Zv0kUII4f2mTZtm+553JDOLDmRmUQghKgaZWSwamVkUQoiKQ2YWS1lMTP56S4GB5rgQQghRFpRSwUqpRUqp80qpC0qpJUqpkELe+5pSao1S6rRSSiul/lhW7ZQ+Ugghyi8JFkvBuHFmo35oqMm8FhoqyW2EEEKUHaVUILABuBUYD9wP3AJsVEoFFeIjngSqASvLrJEW0kcKIUT5JctQHXi6jpQQQgj3KO/LUJVSTwPvAC211r9YjjUFDgP/v717j7ajLO84/v1BCCACJaAilBCRgitIlJabkJZLAW1Foq3SxULBAF3QWltRxHDpSoJBdMmlFuViESkGpILKTaQgNw1ykbtBCysIgShoEpJAAEMSnv7xzobJzOx99jk5Z++z9/w+a806zLvfd+/3PJkzDzP7fd85MSLOHqD9OhHxmqTtszZTI+KSFvWdH83MasLDUM3MzHrbIcDdjQtFgIh4ErgTmDJQ44h4bQT7ZmZmfcIXi8NssKvE1YFjUuaYVHNcyhyTMscEgJ2AuRXljwITO9yXtvnfrswxKXNMyhyTMsekbCRi4mGoOZJeD8b06dOHFPDsa9vh7FbPc0zKHJNqjkuZY1I21JjMmDGDmTNnvr7f48NQXwXOjohphfJZwLSIGNPm+3R0GKqP5zLHpMwxKXNMyhyTsuGKiYehthARRITvVpiZ9ZkZM2a8fo63wWs8fyu/OVeamfWu/LMV81ueLxab6HQCHOrndbKdYzK87Tr5Wb3SrpOf1SvthqqTf+P9HJNRbAmwWUX5uOy1Yde40I4Ipk+f3rEbq71yXPbC8eyYDF87x2T42jkmw9tusJ+RP6dX3VD1MNSc/DCboX6N28/teqGPvdKuF/rYK+16oY+90q4X+jhc7fpgNdRbgbERMblQfjspt+/T5vsMaRiqj8vebNcLfeyVdr3Qx15p1wt97JV2w/VZHoZqZmbW264F9pS0XaNA0gRg7+w1MzOzteZvFnPyC9yYmVl/6/FvFjcCHgZeAU4FAvgisDEwKSKWZ/W2BZ4ATouI03Lt9wHeAmwJnAt8A7gdICKuqvg850czsxpp5EhfLJqZmfUgSeOBc4ADAQG3AJ+JiKdydSYATwIzI2JGrvx2oHKoai9fRJuZ2fDyxaKZmZmZmZmVeM6imZmZmZmZlfhicRAkfVTS9yXNl/SKpMcknSFp40K9zSRdJGmRpJck/UTSzt3q90hqJyaSJkiKJtufdLP/I0HS+yXdKuk5SSskLZD0PUkTC/W2kXSVpGWSXpD0g2xYWV9qJy6S9m1ynCztZt87RdKN2e87q1Bem3NKlaq41O280gucI8ucI8ucI8ucH9vjHFnWifw4Zni73PdOAJ4GTgYWALsAM4D9JO0VEa9JEnAdMAH4NOl5VycBt0l6b0Qs6EbHR9CAMcnVPYPyKn0vdqKTHTYOuB84D1gIjAemAXdL2jki5kt6E3ArsAI4krQ4xSzScTIpIl7qTtdH1IBxydX9V+AXuf1VHetll0g6DHhPRXndzilraBaXnLqcV3qBc2SZc2SZc2SZ8+MAnCPLOpYf8w9g9NZ6A95SUXYE6SS2f7Y/JdvfL1dnU+B54D+7/Tt0KSYTsv1jut3fLsZpxywGn8v2/w1YDWyfq/MO0kn/s93ubxfjsm+2f0C3+9bhOGwGPAcclv3+s3Kv1eqcMoi41P68Mto258ghx6T2x7JzZFsxqWV+zH5358jBxWRYzykehjoIEbGworhxd2fr7OchwO8i4rZcu2Wkux5TRraHnddmTAwWZz8bdwAPAe6OiHmNChHxJHAnfXictFCMS119BZgbEd+teK1W55SCVnGxUcY5ssw5sm3OkWXOj29wjizrWH70xeLaayw9/uvs507A3Ip6jwLjJb25I73qrmJMGs6QtCqbf3Btv48nl7SupLGS/gy4kHQHqPFH3eo4mVhR3jcGiEvDZZJWS1os6fJ+nacCIGky6ZuGTzWpUstzShtxaajVeaUHOUeWOUfiHFnF+bHMObKs0/nRcxbXgqStgdOAn0TEfVnxOOCpiurPZz83A5aPfO+6o0lMVpBOejeRxuK/izR/4+eSdo+IYsLsF/cAf5H99zzSkKM/ZPvjSOPqi54nHSP9rFVclgFnAXcAL5Dm95wM3CVpl1y9viBpLOlv48yIeKxJtdqdU9qMS13PKz3DObLMOXINzpFlzo85zpFl3ciPvlgcouxOxTWk4QFTu9ydUaFZTCLiWeC4XNWfSbqRdNfnFODjnexnB30C2ATYjrTIwc2SJkfugdk11TQuEfEg8GCu7h2SfgrcS5rUf2rHezuyTgQ2BE7vdkdGmQHjUuPzSk9wjixzjixxjixzflyTc2RZx/OjLxaHQNKGpLHQ2wH7xJorLS2h+q7XuNzrfWeAmJRExDOS5gC7daJ/3ZC7c3OPpB+T7nxNI/0BtzpO+vIYaRggLlX1H5D0OH12rGRDh04BjgHWl7R+7uX1s+WtX6Rm55R24xIRq4tt63Be6QXOkWXOkWXOkWXOj29wjizrVn70nMVBkrQecBWwK/C3EfHLQpVHSeOniyYCT0dE33wV3tBGTFqJkenV6BIRS0lDSrbPilodJ7/qVL+6rSIuLauPcHc6bTtgA2A2KZk1Nkh3lJcAO1O/c0q7cWml346VnuEcWeYcOTDnyLKa50dwjqzSlfzoi8VBkLQOcBmwP/DhiLi7otq1wNaS9sm12wT4EOVnnfS8NmNS1W48MJk0fKLvSXobacz4E1nRtcCekrbL1ZkA7E0fHifNVMSlqs6upCXE++1YeQjYr2KDlAj2I/2PQq3OKbQfl5K6nVdGG+fIMufI9jhHltU8P4JzZJWu5Edlz+OwNkg6nzQU4HTg+sLLCyJiQZYY5gDbAJ/njYeDTgLeExHPdLDLI67NmJxFujFxF2mi7Y6kmGwK7NFigm5PkvRD4AHgEdIk9B2A44Etgd0j4nFJGwEPA6+Q5hkE8EVgY2BSn90JA9qOy2XAk1m9paQJ/CcBLwN/HhGLutH3TpIUwOkRcWq2X6tzSjMVcanVeaUXOEeWOUeWOUeWOT+2zzmybMTz43A8rLEuG2nseDTZZuTqjQMuJq3E9DJwC+mA7frv0I2YAEeRniu1BFhJWgr6cmDHbvd/hGLyBeB+0sn8ZeAx0qpUEwr1xgPfJyWGF4Gri3X6aWsnLtnJ7BHSqm8rgWeAbwJv73b/OxinNR6um5XV5pzSblzqdl7phc05cmgxqdux7Bw5tJg4P74eB+fIAWIy3OcUf7NoZmZmZmZmJZ6zaGZmZmZmZiW+WDQzMzMzM7MSXyyamZmZmZlZiS8WzczMzMzMrMQXi2ZmZmZmZlbii0UzMzMzMzMr8cWi1ZKkT0qKJtsB3e5fv5F0g6T/qCh/t6RvS3pK0gpJyyU9JOlMSe8s1F0g6ZIm7/9lSasG2acTJD2YPdDXzMwyzpGd5Rxpo9mYbnfArMs+BiwolP2qGx3pV5L2B/YDji6UHw58G3gY+BLwOLA+sBtwDPB+YOcR7Np5wInA4cB3RvBzzMx6lXPkCHOOtNHOF4tWdw9FxLx2K0taPyJWjGSH+tDngasj4tlGgaSdgIuBHwCHR8TqXP3/lfQVYOpIdioiXpY0GzgBJ0IzsyrOkSPPOdJGNX+1bNaEpAOyITcflnSxpEXAb3Ov7yLpOklLJb0iaY6kvSve53hJ8yX9UdK9kvbKhotclKszq2qIiKTZkuYVyt4s6avZsJRXJf1G0jRJquj7ByWdL2mxpIWSLpW0aeH9xkg6WdKvs2EuCyX9WNIOkraWtErSpyr6NisbErNp8bVcnW2Ag4DLCy8dDwTwL4UkCEBErIyIbzZ734FkcWs2hGpyruoVwCRJuw/1s8zM6sg50jnS6sEXi1Z362aJoLGtW1HnG8Aq0lCMowEk7QbcCWxKGg7yUWAZcIuk9zYaSjoWOBu4GZgCzAb+B9hkKJ2VtB5wE+mO4jnA35CGqcwEvlzR5FzgVeAwYBZwaNafvKuy9tdlffxH4DFgy4j4LXAtcGyhH2OAo4ArImJZiy4fRDrPzCmU/zVwT0QsatG2igr/XmOyvqhQbzrwvsJ2N7AceCZX737gJeADg+yHmVkdOEc6RzpH1l1EePNWuw34JOmuXXGbk6tzQFZ2ZUX7O4C5wHq5sjGkOQVXZfvrku6yXl9oe3j2vhflymYBqyo+ZzYwL7c/NWu7V6HedGAFsHmh798q1LsAeCm3f1BW759bxKrxXu/Llf1dVrbrAHH+L2B+RflK4DsV5etmcRwDjCm8tqDJv1ljK8Uv13YasBo4uOK1u4Abun1MevPmzdto2ZwjX993jnSOrP3mbxat7j5Cmize2I6uqPPD/I6kjYDJwPeAyN25A7gF+Kvsv7cFtsrq5V0JvDbE/n4AeAK4t3DX8CZgLLBHof6PCvu/BN4kaYts/yBSgvhWi8+8hZTg83dOjwUeiIj7BujvVsDCAerkrSAlyZXASkkTCq9fz5r/Xo3tv5u9oaSPkBYH+FxEXF9RZWHWTzMzW5NzpHOkc2TNeYEbq7u5MfDk/WcL+1uQho3MzLaiRpJ7e/bz9/kXI+JVSUsG29HMW4F3khJFlc0L+88X9hsLD2yQq78oWixIEBEh6XzgS5KOBzYDDqQw7KaJDXKfmbcAGF9RvgdpuMwU4NSK1xdXJV9Jz1V9uKRdSBPzL4iI0rLkmVeADZu8ZmZWZ86RzpHOkTXni0WzgUVhf0lW9jXgshbtGgn0bflCSWNJySTvj8A6ksZERH4SfzGxLQbmkeZXVHmyRX+qLAK20MAr2F0CnA4cQUrwy4HvtvH+i4F3V5TfChwuaYvIzcmIiPsB8nNahkrSVqQ5JnOAT7eoOo4UBzMzGzznSOdI62Mehmo2SBHxAvBzYBJwf0TcV9yyqvOB35EmzOd9jPLf3nzS3cKJjQJJ44A9C/VuJN1tXFb1uRGxeJC/zk2kORBHtaoUEUtJie840pyQ2RGxvI33/z9gfMWiCOeQYvD1JgsmrBVJGwLXAEuBQ6NiNbmcd5AWKzAzs7XkHOkcaf3F3yyaDc3xwO3AjZIuBp4jDb3ZlTQq5eSIWC3pNOCCbAnwK4EdSA+5fbHwfj/Kyi6SNJM05OMLwAuFepeSFh64TdKZpPkVY4HtgUNIk9PbfsZVRNws6Wrga5K2BW7L3m9f0nOffparfh5vzFe5oM2P+Cnw78BOwCO5z50r6RjgIuCuLD6PAeuREtOxpBXqhvq8rnNJ/6NyJDAxt2I6wKMR8SKApM1JQ5ZmDfFzzMyszDmyPc6RNur5YtFsCCLiF9lzh6YDXyctD/570jLTF+TqXZhN9v8M8HFS4voHChP6I+J5SQeT7iZeCTxNmuvxQXJ3TrO5HAcCJwH/BEwgDXeZB9xA83karRxKWgntCOCzpOXN7yEl93wfH5D0G+APEfFI6V2q3UGKy4fIJcLs/S6V9BDwOeAUYMus//NIy6gfGrmHFA/Su0gJvWoY0F/yxjLlB5OGN10zxM8xM7MC50jnSOsfiigONTezkSZpAXBjRBzT7b60S9JE0lLoUyOi6cpqFe1mAX8PTIxRdsKRdDOwICKmdrsvZmaWOEeODs6RBp6zaGYDkPSnkvYFLiQ9E+uKQb7FWaQV6qYMc9fWiqRdSXdQT+t2X8zMrDc5R1q/88WimQ3kONJzpDYHDhvMfA+AiFgCfII3liIfLd4KHBkRg10dz8zMrME50vqah6GamZmZmZlZib9ZNDMzMzMzsxJfLJqZmZmZmVnJ/wOioaRY+j4lyQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Plot polyfit\n", "fig, (ax0, ax1) = plt.subplots(1, 2, figsize=(15,5))\n", "\n", "# Real component\n", "ax0.plot(frequency_gm/1e9, zs_gm3.real, 'ro', label=r'{:.1f} $\\mu$m'.format(surface_roughness3/sc.micro))\n", "ax0.plot(frequency_gm/1e9, zs_gm2.real, 'ko', label=r'{:.1f} $\\mu$m'.format(surface_roughness2/sc.micro))\n", "ax0.plot(frequency_gm/1e9, zs_gm1.real, 'bo', label=r'{:.1f} $\\mu$m'.format(surface_roughness1/sc.micro))\n", "ax0.plot(frequency/1e9, np.polyval(p_zs_real_gm3, frequency), 'r--')\n", "ax0.plot(frequency/1e9, np.polyval(p_zs_real_gm2, frequency), 'k--')\n", "ax0.plot(frequency/1e9, np.polyval(p_zs_real_gm1, frequency), 'b--')\n", "ax0.set_ylabel(r\"Real $Z_s$ ($\\Omega/sq.$)\")\n", "ax0.set_xlabel(\"Frequency (GHz)\")\n", "ax0.legend()\n", "\n", "# Imaginary component\n", "ax1.plot(frequency_gm/1e9, zs_gm3.imag, 'ro', label=r'{:.1f} $\\mu$m'.format(surface_roughness3/sc.micro))\n", "ax1.plot(frequency_gm/1e9, zs_gm2.imag, 'ko', label=r'{:.1f} $\\mu$m'.format(surface_roughness2/sc.micro))\n", "ax1.plot(frequency_gm/1e9, zs_gm1.imag, 'bo', label=r'{:.1f} $\\mu$m'.format(surface_roughness1/sc.micro))\n", "ax1.plot(frequency/1e9, np.polyval(p_zs_imag_gm3, frequency), 'r--')\n", "ax1.plot(frequency/1e9, np.polyval(p_zs_imag_gm2, frequency), 'k--')\n", "ax1.plot(frequency/1e9, np.polyval(p_zs_imag_gm1, frequency), 'b--')\n", "ax1.set_ylabel(r\"Imaginary $Z_s$ ($\\Omega/sq.$)\")\n", "ax1.set_xlabel(\"Frequency (GHz)\")\n", "ax1.legend();" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Surface impedance (Z_s):\n", "\n", "0.1 um surface roughness:\n", "\tReal:\t\t-6.2708e-24 * Freq^2 + 1.5146e-12 * Freq^1 + 2.0281e-02\n", "\tImaginary:\t-9.1992e-24 * Freq^2 + 5.1772e-12 * Freq^1 + 2.1676e-02\n", "\tur:\t\t-6.8352e-22 * Freq^2 + 2.3677e-10 * Freq^1 + 2.6457e+00\n", "\n", "0.3 um surface roughness:\n", "\tReal:\t\t-5.1230e-24 * Freq^2 + 2.0174e-12 * Freq^1 + 1.8520e-02\n", "\tImaginary:\t-1.5310e-23 * Freq^2 + 1.0324e-11 * Freq^1 + 2.5399e-02\n", "\tur:\t\t-2.6131e-21 * Freq^2 + 9.9119e-10 * Freq^1 + 5.7468e+00\n", "\n", "0.5 um surface roughness:\n", "\tReal:\t\t-4.6545e-24 * Freq^2 + 3.0615e-12 * Freq^1 + 1.6517e-02\n", "\tImaginary:\t-2.6448e-23 * Freq^2 + 1.7904e-11 * Freq^1 + 3.4601e-02\n", "\tur:\t\t-8.0740e-21 * Freq^2 + 3.0100e-09 * Freq^1 + 1.3296e+01\n" ] } ], "source": [ "def print_poly(poly):\n", " fpower_max = len(poly) - 1\n", " string = \"\"\n", " for i, p in enumerate(poly):\n", " fpower = fpower_max - i\n", " if fpower != 0:\n", " string += \"{:.4e}\".format(p) + \" * Freq^{:d} + \".format(fpower)\n", " else:\n", " string += \"{:.4e}\".format(p)\n", " print(string)\n", "\n", "print(\"Surface impedance (Z_s):\")\n", "print(\"\\n{:.1f} um surface roughness:\".format(surface_roughness1/sc.micro))\n", "print(\"\\tReal:\\t\\t\", end=\"\"); print_poly(p_zs_real_gm1)\n", "print(\"\\tImaginary:\\t\", end=\"\"); print_poly(p_zs_imag_gm1)\n", "print(\"\\tur:\\t\\t\", end=\"\"); print_poly(p_ur_gm1)\n", "print(\"\\n{:.1f} um surface roughness:\".format(surface_roughness2/sc.micro))\n", "print(\"\\tReal:\\t\\t\", end=\"\"); print_poly(p_zs_real_gm2)\n", "print(\"\\tImaginary:\\t\", end=\"\"); print_poly(p_zs_imag_gm2)\n", "print(\"\\tur:\\t\\t\", end=\"\"); print_poly(p_ur_gm2)\n", "print(\"\\n{:.1f} um surface roughness:\".format(surface_roughness3/sc.micro))\n", "print(\"\\tReal:\\t\\t\", end=\"\"); print_poly(p_zs_real_gm3)\n", "print(\"\\tImaginary:\\t\", end=\"\"); print_poly(p_zs_imag_gm3)\n", "print(\"\\tur:\\t\\t\", end=\"\"); print_poly(p_ur_gm3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Note:** In HFSS, select `Assign boundary > Impedance...` and then copy/paste these values into the dialog box." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Rough Waveguide" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "# From perturbation theory using conductivity from Gradient Model\n", "attenuation_perturbation_gm1 = np2db(conductor_loss(frequency, fconductivity_gm1(frequency), a, b))\n", "attenuation_perturbation_gm2 = np2db(conductor_loss(frequency, fconductivity_gm2(frequency), a, b))\n", "attenuation_perturbation_gm3 = np2db(conductor_loss(frequency, fconductivity_gm3(frequency), a, b))" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "# # From Lomakin et al\n", "# attenuation_tlm_gm1 = np2db(gm.waveguide_propagation(frequency, a, b, fconductivity_gm1(frequency), fur_gm1(frequency), cond=conductivity_0)[0].real)\n", "# attenuation_tlm_gm2 = np2db(gm.waveguide_propagation(frequency, a, b, fconductivity_gm2(frequency), fur_gm2(frequency), cond=conductivity_0)[0].real)\n", "# attenuation_tlm_gm3 = np2db(gm.waveguide_propagation(frequency, a, b, fconductivity_gm3(frequency), fur_gm3(frequency), cond=conductivity_0)[0].real)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note: This approach is based on a perturbation approach, so it ignores any changes to phase velocity. This is fine as long as the conductivity is high enough." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "# From HFSS\n", "hfss_results1 = rf.Network(\"hfss/WR28-Waveguide_10cm-aluminum-rough-100nm.s2p\")\n", "attenuation_hfss_gm1 = -hfss_results1.s_db[:,1,0] / length\n", "hfss_results2 = rf.Network(\"hfss/WR28-Waveguide_10cm-aluminum-rough-500nm.s2p\")\n", "attenuation_hfss_gm2 = -hfss_results2.s_db[:,1,0] / length\n", "hfss_results3 = rf.Network(\"hfss/WR28-Waveguide_10cm-aluminum-rough-1um.s2p\")\n", "attenuation_hfss_gm3 = -hfss_results3.s_db[:,1,0] / length" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeYAAAF4CAYAAACB/1r8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOyde1yUVf7432cGQQQFBF3DFE0FFDRFM828kYr+LMH7Jpvfsuyiu5q620UtvLW1ll3cvl8zbY389lXzjttmNxLLSytq5kgCgeBl81KoaaByOb8/HmaYYQaYgRmGy3m/Xuf1PHOe85zzeYbL5znnfC5CSolCoVAoFIq6gc7dAigUCoVCoShDKWaFQqFQKOoQSjErFAqFQlGHcLliFkIMEUJIG+WKq8dWKBQKhaK+4VGLY80CDpl9LqrFsRUKhUKhqBfUpmL+QUp5sBbHUygUCoWi3qH2mBUKhUKhqEPUpmL+UAhRLIT4RQjxf0KI9rU4tkKhUCgU9QLh6gAjQoheQDyQAvwK9ALmA4VALynlxXLtVcQThUKhUDQ6pJQCakEx20IIEQX8G3hFSrmw3DVpj0xCCOyV3bztZ59BTAyABHSsXbuWQYMGERoayh1A1tNPwxtv2Nffxo3w4IMQFwfbt1dbRme3c+fYdb1dfZBRfTd1r119kFF9N3WvXTX6FOCmPWYp5REgA7irtsdu2tR4JgAd+fn5BAYGAvALwOXL9nfWtat2/OEH5wmoUCgUikaNu42/qj1dT0hIqFbbMsUM0IT8/Hz8/f3R6XRcBYp++cX+/sLCQKeDH3+EGzfslqcy+ZzRzlV9umNcdz2HK8au6z8TR9rW9Wdx59+Us/ur6z8TV4zdUH6/HG1rxF1L2X2Ab4GXpJQvlrtm11J2dfnuO+jVy/ipBS++OIfFixcT5OfHL7/+yoW776b1QQe8urp102bMqanQu7fFJUeWO+o66lnqHg3lOUA9S12koTwH1I9nqdWlbCHEh0KIZUKIcUKIaCHEPGA3cA5Y6erxy+Ppaf5JmzEDBAYEAPCLHTNmC3r21I7ffVdz4RQKhULR6KmNpWwDMAZYB3wKPA1sA+6WUv5cC+Nb4OVl/smzTDEHBQHwiyN7zFCpYnbFkpG7UM9S92gozwHqWeoiDeU5oP49i1uWsivD1UvZZ85Ae5MHdQgPPxzNunXreGDUKL7avZutnp7E3Lxpf4dffQXz5sGkSfDcc64QWaFQKBQNHPOl7EanmKWELl0gKwugC5MmRbFp0yaKi4rQe3tDUREUFJS3ElMoFE4iLy+Pc+fOcevWLXeLolC4HE9PT9q2bUvLli0rbWeumGszVnadQAjzfeayPWa9hwe0bAkXL2ouU7fd5jYZFYqGSl5eHmfOnKFTp040a9YMnc7djiEKhesoKSkhPz+fLG0mWKVyNtIo/yrKFHPZHjMApQZgDvkygzYNP3UKzp1zhngKRYPl3LlzdOrUCV9fX6WUFQ0enU6Hr68vnTp14pwD+qHR/WWUlEBmpvFTmWLeuXMnXXNzmQeOK+ZFi+COO2DVKucJqlA0QG7dukWzZs3cLYZCUas0a9bMoa2bOqmYhRAIIVi0aJHT+9bpoGyS7G1SzIWFhZy8cYNscFwxR0ZqR+UypVBUiZopKxobFf3OL1q0yKTvLNrXhlCOIqVESukSxQyactZoVuYuZR6WMy/PsQ6VL7NCoVAoHGTRokUmfWdOnVTMrsaWYg4y+jGD4zPmTp2geXNtj/n8eWeJqVAoFIpGiFLMtmbMjipmna4sHOehQ84QUaFQKBSNlEapmPV645ltxSwdXcoG6NtXOyrFrFAoFIoa0OgV861btygqKsLLywsfLy+KgGsXLjje6V2lGSyVYlYoGg1Gw53KSocOHUxGPkVFRe4W2aWcOXOGCRMm4OfnR4sWLRg3bhynT5+u8r49e/bY/O78/f2dNkZ9otEFGAHo2BGOH4cmTXQUFkJBQQHNmzfn6TFj0G3ejLh61fFO77sP9u8vMwRTKBQNngMHDlh8Hjt2LHfeeaeF4aqXlxc7d+6sZclqn/z8fKKjo/Hy8iIxMREhBAsXLmTo0KF8//33+Pj4VNnHypUrucs4yQE8PCxVlDPGqA80SsXct6+mmL28Sigs1H7YzZs3Z9msWbB5M1y75ninAQHQv7/zhVUoFHWWfv36WXz28vIiKCjIqr4uKeabN2/iZZnNxymsWbOG7Oxs0tPT6dy5MwA9evSgS5curF69mrlz51bZR9euXa2+O2ePUR9olEvZxshfnp7a25Up+lfpPjM/13rSK4VC0Qg4deoUo0ePxtfXl5CQEJYsWUJJSYlFm2PHjjFmzBgCAgLw9vZmwIABfP3111Z97d69m/79++Pt7Y2fnx9xcXGkp6dbtDEuoRsMBmJiYvD19WXSpEls3boVIQTHjh2z6nfIkCGVKseKSEpKol+/fiaFCdCxY0cGDBjgtBeTmoyxbds2wsLCEEKwZcsWALKysujZsydCCIsMVMbv7eTJk8TExODj40P79u1Zt24dAOvXryc8PBxfX1+GDh1qCrnpLBqlYv7tN+2o12shOI2KOfPaNf4FnPrpp+p1/NVXEBMDixc7QUqFQtHQGDt2LNHR0ezYsYO4uDgSEhJITEw0XT9y5Aj33HMPeXl5rFmzhq1btxIYGMiwYcM4fPiwqd3u3btNCn7Tpk2sWrUKg8HAvffeazP0Y2xsLIMHDyYpKYk5c+YQGxtLcHAwq1evtmh38uRJUlJSePLJJwHIycmxO9jTiRMniDQGWzIjIiKCtLQ0u76f+Ph49Ho9gYGBTJkyxWrvuCZjjBs3juXLlwPaLBugU6dOJoVurDNn4sSJjB49mh07dtC7d2+mTZvG/PnzWbVqFa+88grr1q0jPT2dKVOm2PV8dmN0bq4rRRPJtYSESAlSBgZuk4D897//LaWU8qknn5SAXAlSFhQ43vG//qV1fO+9zhVYoWggpKamWldq0ebdX5xASEiIjI+Pt6pPSEiQgPzHP/5hUR8ZGSmHDx9u+hwdHS3Dw8PlzZs3TXVFRUUyPDxcxsbGmup69+4tO3fuLAsLC0112dnZ0sPDQ86ZM8dq3DfffNOmTC1atJDXr1831c2ZM0f6+/vL/Px8KaWUOTk5Uq/Xy8WLF1f57E2aNJHPPvusVf2CBQukXq+v9N4jR47IefPmyaSkJLlnzx75xhtvyFatWsng4GB54cIFp4whpZTLli2TzZo1k8XFxaa6Xbt2SUCmp6eb6ozfW2JioqkuLy9P6vV62bJlS3n16lVT/VtvvSUBmZOTU+nYNn/3zSjVfUgp6+aM2ZUhOQGM9gQ6nTdQNmMOatUKKPVlvnjR8Y6NRgtHjmjpIxUKhcKM0aNHW3yOjIw0zQoLCgpISUlh4sSJ6HQ6ioqKKCoqQkrJsGHD2Lt3LwC//fYbR44cYfLkyRbGUcYl3ZSUFKtxx44da1X3+OOPk5+fz4YNGwC4ceMGiYmJTJ06FW9v7X9jSEgIRUVFvPjii875AiqgV69evPbaazzwwAMMHjyYp59+mt27d3PhwgVWrlzptHEMBgMREREWITINBgPe3t4Wy+NGRo0aZToPCAigdevW9OvXjxYtWpjqw8PDAc1a3FFUSE4zmjTRjuUVs0WQkeq4TAUFaVHA8vPh+++dIKlC0Qhw/1xZK7VA+bR/Xl5e3LhxA9BSYhYXF7N06VKaNGliUd5++20uX75MSUkJly9fRkrJbTZS07Zp04Y8G3EYbLUNDg4mNjaWd955B4DNmzeTl5fHE088Ua1nCwgI4LKN4Ex5eXkEGDP3OUBUVBShoaEcMnNBrekYBoPBasn6+PHjVsrafDxzPD09bdYBpp+jI1QUkrNRWmUbFbMQTQEnKmaAAQMgKwv27YOoqBpKqlAoGgv+/v7odDpmzpzJ1KlTbbbR6XQEBAQghOC8jfC/58+ft5nzt/yMzMiMGTO47777OHz4MKtXr2bgwIF069atWvJHRERw4sQJq/q0tLRq9wmWstdkjMLCQjIyMnj00Uct6g8cOMDQoUOrLZ8rqJMzZldjtMoWQnMZcKpivuce7bhvXw0kVCgUjQ0fHx8GDhzIsWPHiIqKok+fPlbF2K53795s3ryZ4uJi0/25ubns37+fIUOG2D1mdHQ04eHhzJ07l3379pmMvqrDmDFjOHjwINnZ2aa6nJwc9u3bx5gxYxzuLzU1lfT0dPoaoyrWcIyMjAxu3bplsXqQmprKqVOn6N69u8PyuZJGqZiNM2awrZh/hprNmEEpZoVC4TCvv/46hw8fJiYmho0bN5KSksLWrVtZsGABzz33nKnd0qVLyczM5P7772fXrl1s2LCB4cOH4+fnx7x58xwa86mnnmLv3r0EBQUxfvx4i2u5ubl4eHiwZMmSKvuZPn06HTp0IDY2lp07d5KUlERsbCzt2rWzWB5PSUnBw8ODDz74wFQXHx/PwoUL2bZtG8nJyaxYsYKRI0fStm1bZs2a5fAYtjAYDIBmeQ5w6dIlFpd60NiyyHYnjVIxG2fMoJ0YFfPvfvc7AC5A9bNEdesG06bB88+D2dusQqFQVEVUVBSHDh0iMDCQWbNmMWLECGbPns3x48cZNGiQqd3IkSP5+OOPuXLlCpMmTeLJJ5+ka9eufPPNNwQHBzs05sSJEwF4+OGHrQKPSCkpLi628rW2hY+PD8nJyYSGhvLQQw8RHx9Px44dSU5OxtfXt9I+IyMjSUpK4pFHHiEmJoY333yTcePG8e2335oy/zkyhi0MBgO+vr6sXbuWHj16sHDhQkaOHAnAzJkz2bRpU9VfVm1h3HiuK4VacJdavlyz9ujW7YgE5LJly6SUUhYWFsqMFSvkryDlpEkul0OhaGxU5TKiqH3effddKYSQmZmZ7hbFpcTFxckRI0a4bXxH3KUapfGXcYuhSRMtm4Vxxuzh4UGXO+/ULlZ3KVuhUCjqAWlpaWRlZZGQkEBcXJxNd6GGhMFg4P7773e3GHbRKJeyK9pjBqB0ObtGivnmTUhKgjffrH4fCoVC4UJmzJjB+PHjCQ0N5e2333a3OC6loKCA7Oxsunbt6m5R7KJRzphLbQC4ckVLKVZQUGC69rePPuIzYPG5c9xb3QGKimDcOO380UehefNqy6pQKBSuYM+ePe4Wodb44YcfKCkpqZHbVm3SKGfMxlCyv/3WDLCcMRuys0kGfrx2DW7dqt4APj5aCqviYmhEv/wKhUJRF4mKikJKyb33Vnu6Vas0SsVcGm0OKS33mAFuK7Vo/AmqF5bTSEyMdvz00+r3oVAoFIpGR51UzK6OlW3MpV1UZK2Y27RpA5Qq5prsM48YoR2VYlYoFAqFDVSsbDOMW77Fxdrj/2bMA0lZTNmfoPq+zKAltPD3hx9/BLMoNQqFQqFQQMWxsuukYnY1Rj90o2K+evWq6ZqFYq7JjNnDA4YN084/+6z6/SgUCoWiUdEoFbMxY1dRkfb4V65cMV1zmmIGbTm7WzcoF01HoVAoFIqKaJTuUrffrh2Nqwfmijk4OJj7u3al4w8/1FwxP/YYTJ9esz4UCoVC0aholDPmESNACCgqEoCOX3/91RS3tXnz5uyaP5+VUHPFXEGqNYVCoVAoKqJRKmYhyvaZfX3bIKXk119/LWtQapnttLCcubmQnOycvhQKhULRoGmUihnKXKZatND8ls2Xs/OaNuUYkGeMRFITTpyADh3gD38AOzK0KBQKhaJx0ygV86lTZZ5QzZtrxl7mivnJ116jJ/Bpbm7ZRnR16dYN2reHn36Cb7+tWV8KhUKhaPDYpZiFEC2FEG2FEA3CvNg8baePT2ugnGV2+/YA/HTzJpi5UlULIcriZm/bVrO+FAqFQtHgsamYhRBthBDPCSH2CCHygUvAaSBfCJEjhPhACDFKlA9XUk8wzynh7d0KgMuXL5vqLMJynjlT8wHNFXNNZ+AKhaLOYIzaVFnp0KGDKcJTUVGRu0V2KWfOnGHChAn4+fnRokULxo0bx+nTp6u8b8uWLYwfP56QkBC8vb0JCwvj+eef59q1axbt9uzZY/M79vf3d9UjuQULdykhxO3AUmAKcA04ALyGppgLgJZAR+Bu4J9ArhDiBSnlh7UpdE3x8tImslKCp6eNGbO5L/Pp09C9e80GvOceaN1aiwBmMNS8P4VCUSc4cOCAxeexY8dy5513WkQt9PLyYufOnbUsWe2Tn59PdHQ0Xl5eJCYmIoRg4cKFDB06lO+//x4fo2GPDV577TXat2/PX//6V26//XaOHj3KokWL+Oqrr9i/fz86neUccuXKldx1112mzx4eDcvzt/zTpAOfAXHAZ1LK4opuLFXi8cByIUSwlPJVZwllnIgnJCS4JCynEFpgrsJC0Om0/MvmitkiXrYzZsx6PYwaBYmJsHu3UswKRQOhX79+Fp+9vLwICgqyqq9LivnmzZt4uSDo0Zo1a8jOziY9PZ3OnTsD0KNHD7p06cLq1auZO3duhffu2rWLVq1amT4PHjyYli1b8l//9V/s2bOH6Ohoi/Zdu3a1+o7rI4sWLWLx4sVW9eWXsgdIKcdKKT+pTCkDSCnPSin/BtwBJDlPVNfHygbw9NSOQgQCVcyYncGoUdC0KeTlOac/hUJR7zh16hSjR4/G19eXkJAQlixZYoqhYOTYsWOMGTOGgIAAvL29GTBgAF9//bVVX7t376Z///54e3vj5+dHXFwc6enpFm2MS+gGg4GYmBh8fX2ZNGkSW7duRQjBsWPHrPodMmRItZReUlIS/fr1MyllgI4dOzJgwIAqX0zMlbIR44z4nDO8Y4Bt27YRFhaGEIItW7YAkJWVRc+ePRFCkJCQYGpr/N5OnjxJTEwMPj4+tG/fnnXr1gGwfv16wsPD8fX1ZejQoWRlZVVLJrtiZUspv3O0YynlTSlletUt6xZGxVxSEgBYKuZ27doB2qa6zM11zoCxsZpSfvll5/SnUCjqHWPHjiU6OpodO3YQFxdHQkICiYmJputHjhzhnnvuIS8vjzVr1rB161YCAwMZNmwYhw8fNrXbvXu3ScFv2rSJVatWYTAYuPfee20qstjYWAYPHkxSUhJz5swhNjaW4OBgVq9ebdHu5MmTpKSk8OSTTwKQk5Njd6a/EydOEBkZaVUfERFBWlqavV+RiZSUFECbHZcnPj4evV5PYGAgU6ZMsWsfe9y4cSxfvhzQZvIAnTp1Mr00GOvMmThxIqNHj2bHjh307t2badOmMX/+fFatWsUrr7zCunXrSE9PZ8qUKQ4/X6UYtXVdKZpIricuTkqQ8oEHjkhATp061XStpKREfrF8ucwAWTJwYK3Io1A0BlJTU63qgDpRnEFISIiMj4+3qk9ISJCA/Mc//mFRHxkZKYcPH276HB0dLcPDw+XNmzdNdUVFRTI8PFzGxsaa6nr37i07d+4sCwsLTXXZ2dnSw8NDzpkzx2rcN99806ZMLVq0kNevXzfVzZkzR/r7+8v8/HwppZQ5OTlSr9fLxYsXV/nsTZo0kc8++6xV/YIFC6Rer6/yfnPOnj0rW7VqJYcNG2ZRf+TIETlv3jyZlJQk9+zZI9944w3ZqlUrGRwcLC9cuFBlv8uWLZPNmjWTxcXFprpdu3ZJQKanp5vqjN9bYmKiqS4vL0/q9XrZsmVLefXqVVP9W2+9JQGZk5NT6di2fvfNKf0dREpZsbuUEEInhHhSCPGlECJDCHG6XHHSVNI99O6tHb28vAHLGbMQgvvi4ugCCGfsMZtTWKilglQoFI2O0aNHW3yOjIw0zfYKCgpISUlh4sSJ6HQ6ioqKKCoqQkrJsGHD2Lt3L6ClqT1y5AiTJ0+2MHoyLhsbZ5rmjB071qru8ccfJz8/nw0bNgBw48YNEhMTmTp1Kt7e2v/FkJAQioqKePHFF53zBdjB9evXiY2NxcPDw7R0bKRXr1689tprPPDAAwwePJinn36a3bt3c+HCBVauXFll3waDgYiICAtjMoPBgLe3t8USvJFRo0aZzgMCAmjdujX9+vWjhTETEhAeHg5oFunOojJTtuXAXOAocAi45bRR6wBGX2YptRNzxQyUZbo4dw6KizUDrpqSlQVRURAQoEU5qZ/eZgqFU5GNyIWwZcuWFp+9vLy4ceMGAHl5eRQXF7N06VKWLl1q8/6SkhIuX76MlNJkC2NOmzZtyLWx/WarbXBwMLGxsbzzzjs89thjbN68mby8PJ544onqPBoBAQEWbqdG8vLyCAgIsKuPgoICHnjgAbKzs0lJSeF24//hSoiKiiI0NJRDhw5V2dZgMHD33Xdb1B0/ftxKWRspL7enp6fNOsD0c3QGlSnmPwBLpZQJlbSptxi3YX75xbZi3vXFF3zk5UXczZuMv3ABSn2ba0THjtrmdm6uFqrTxn6MQqFonPj7+6PT6Zg5cyZTp0612Uan0xEQEIAQgvPG8IVmnD9/3kr5Q5mnS3lmzJjBfffdx+HDh1m9ejUDBw6kW7du1ZI/IiKCEydOWNWnpaXZ1WdhYSETJkwgNTWVzz//nO4Oeq9UFVajsLCQjIwMHn30UYv6AwcOMHToUIfGcjWVRf7yAPY6e0AhxG4hhBRCLHN2347w/ffa8dIl66Vs0H6Z/vfmTfaDc1ymAHQ6iIvTzj/6yDl9KhSKBoGPjw8DBw7k2LFjREVF0adPH6tibNe7d282b95McXGZ80xubi779+9nyJAhdo8ZHR1NeHg4c+fOZd++fSajr+owZswYDh48SHZ2tqkuJyeHffv2MWbMmErvLSkpIT4+nuTkZHbs2OGQVXhqairp6en07du30nYZGRncunXLYvUgNTWVU6dOOfwS4GoqU8xbgBhnDiaEeBC405l9Vhdj9K+bN7VFg/JLMCEhIQDkgvNcpgAmT9aOGzeqKGAKhcKC119/ncOHDxMTE8PGjRtJSUlh69atLFiwgOeee87UbunSpWRmZnL//feza9cuNmzYwPDhw/Hz82PevHkOjfnUU0+xd+9egoKCGD9+vMW13NxcPDw8WLJkSZX9TJ8+nQ4dOhAbG8vOnTtJSkoiNjaWdu3aWSyPp6Sk4OHhwQcffGCqmzlzJps3b2bevHn4+Phw8OBBUzl79qypXXx8PAsXLmTbtm0kJyezYsUKRo4cSdu2bZk1a1al8hkMBkCzPAe4dOmSyYfYlkW2O6lMMc8Fuggh3hVCjBdCRJcvjgwkhAgA3ijt1+0YI7jduqVDCMG1a9cswuW1L42X7XTFPGSIFgUsMxOOHnVevwqFot4TFRXFoUOHCAwMZNasWYwYMYLZs2dz/PhxBg0aZGo3cuRIPv74Y65cucKkSZN48skn6dq1K9988w3BDm67TZw4EYCHH37YKvCIlJLi4mIrX2tb+Pj4kJycTGhoKA899BDx8fF07NiR5ORkfM0SFNjq85NPPgHgpZdeon///hZl7dq1pnaRkZEkJSXxyCOPEBMTw5tvvsm4ceP49ttvCQoKqlQ+g8GAr68va9eupUePHixcuJCRI0cC2ovBpk2bqnzGWkNW7LbUCTgGlJQrxcZjRfdW0N+7wBel5xJYVkG7Sk3KncW8eZq7VKtWUvr5+UlA/vLLL6brZ8+elYBsDVLOnu3cwWfO1Ab/y1+c269CUcepymVEUfu8++67UgghMzMz3S2KS4mLi5MjRoxw2/iOuEtVZvy1DggCZgMnqYFVthDiXmAqdWQZG8BoH3HzJgQE+HP16lWuXLliMpxo06YNHno9F4uLKTh1Cm9nDv7738N//7eaMSsUCreRlpZGVlYWCQkJxMXF2XQXakgYDAbuv/9+d4thF5UtZfcBZksp/y6l/FxKmVK+2DOAEMITWA28Ju2MEGYre4izw3MGapE4uXULU2YScwMwvV5Pu99pcbRPmxkzOIV77oHvvoPPPnNuvwqFQmEnM2bMYPz48YSGhvL222+7WxyXUlBQQHZ2ts0oYrWNMdxn+WJOZTPm0zjHd/kZwBt4yd4bZC0YRRm3I4qLbStmgOjBg7mwYQPSzPjAKeh0cGedWTxQKBSNkD179rhbhFrjhx9+oKSkpNquYM5k0aJFNiea5sq5MsW8DHhWCJEspbxeHQGEEO2BBcBjgJcQwtyywEsI4Q9ck1UkzHAFxhUNKcucyMsr5rUffgg7d8KVK1pxRc7PrCzNR9rbqYvlCoVCoSglKiqqXgWyqWwpOwa4HcgRQuwSQnxQriRWcq+RO4CmwP8Cl80KwJ9Lz93iQOblBU2aQFERNG9unWEK0CJzGfddXBFG849/1Prfvt35fSsUCoWiXlLZjPleNOvra4CtEFX2vH58B9gKqfIVmrJ+D3Bb4GhfX7h8GXx8rHMyg7ak/ku7dvz2/feEZGZCqYO/0zBG/nr/fXB2dhKFQqFQ1EsqVMxSyo417VxKeQXYU76+dC09V0ppda22+PVXuHZNO2/aVNtwLq+Yv/zyS4Z//DGDgT2umDFPngxPPw1ffKH5Spf6TisUCoWi8WKxlC2EmC+EcL/ZWi3QtKm2jA3g5aUp5oqif+WAFhDE2QQEwNix2kb3mjXO71+hUCgU9Y7ye8wPAQYhRLoQYrkQ4h5XDCqlFFLKha7o2148PcuSO+l0tmfMISEh6HU6TgMF6XZ5ejnOU09px7VrtZSQCoVCoWjUWChmKWVXIAItuMhA4GshxE+lYTlHlfokNxiMmRyLi20bf3l6etKpQwck8GNGhmuEGDgQIiLg/HnYscM1YygUCoWi3mBllS2lPCmlfEVK2R9oCywG2gHbgUtCiI+EEA8KIVqUv7e+0aSJdiwp8QOsl7IBwkr93tKNLlPORght1ty0qZYOUqFQKBSNmsrcpZBSnpdSviOlHAW0Ap5Ai5W9Ck1Jf1oLMrqM0vzWFBZqivnnn3+2ahMWHg5AOrjGZQrg4Yfh7Fn4859d079CoVAo6g2VKmZzpJTXpJQbpZQPoinpWMDJsSprF2MileJibfJ/4cIFqzZhYWGAixWzj09ZjFCFQqFQNGrsVswAQohWQghPKWWhlHK3lPIpVwjlqvjY5TFGZ2vevCl6vZ4rV65w8+ZNizb/7//9P76YPJnl4BrLbHMKC7U8zZcuuXYchUKhULgd87jZ5lgpZiHEXUKIl4UQrwkh+iTRo48AACAASURBVJXWTRJC/Ac4D1wVQqwUQjik1B3BmPrK1Yp5wADt6O2to3Xr1gBcvHjRok1wcDD33XcfbcB1M2Yjjz8ODz4I77zj2nEUCoVC4XYWLVpknvLYRHk/5hHAPmAu2n7yXiHEw8CHwBHgNSAFmAlMd73YrsWYu/v6dfhdaSYpW8vZdOmiHV09Y546VTu+/TbcuOHasRQKRY2xlSWofOnQoYNpZlRkDJ7QQDlz5gwTJkzAz8+PFi1aMG7cOE6fPl3lfWfPnuVPf/oT/fv3p1mzZgghyMnJceoY9Ynys975aJG6/IEWwH8D/wP8j5Tyfinls1LKkcC7NADFbFy1/s9/KlfM76Wm8nvgcFqaFgzEVQwZAj17wsWLsH6968ZRKBRO4cCBAxalTZs2xMTEWNRtbySx8PPz84mOjubkyZMkJiayfv16MjMzGTp0KL/99lul9/7444989NFHBAQEMHDgQJeMUZ8oH5IzApgmpSwAEEIsB2YDu8q12wn83vXiuZbUVO1oMECPHhUr5q8NBjYB0Vev0vviRShV4k5HCHjmGS1u9t/+Bo88Ah6VhTNXKBTupF+/fhafvby8CAoKsqrfuXNnbYpVKTdv3sTLy6vqhg6yZs0asrOzSU9Pp3Np8p8ePXrQpUsXVq9ezdy5cyu8d9CgQab/vWvXruWzCnLV12SM+kT5GXMgYK6ZjBuueeXaXUabUddrWpQ+QX5+2Yz5/PnzVu2MltknQdPirmTiROjUSUsHuWWLa8dSKBS1yqlTpxg9ejS+vr6EhISwZMkSSkpKLNocO3aMMWPGEBAQgLe3NwMGDODrr7+26mv37t30798fb29v/Pz8iIuLI71chELjErrBYCAmJgZfX18mTZrE1q1bEUJw7Ngxq36HDBli9WJhD0lJSfTr18+kMAE6duzIgAEDqnwx0ensM1mqyRjbtm0jLCwMIQRbSv+3ZmVl0bNnT4QQJCQkmNoav7eTJ08SExODj48P7du3Z926dQCsX7+e8PBwfH19GTp0KFlZWXbJby8uM+CqD/hp7ssUFFS+lG3hMuVqxezhAc8+q53/9a+uXTpXKBS1ytixY4mOjmbHjh3ExcWRkJBAYmJZBt0jR45wzz33kJeXx5o1a9i6dSuBgYEMGzaMw4cPm9rt3r3bpOA3bdrEqlWrMBgM3HvvvZw7d85q3NjYWAYPHkxSUhJz5swhNjaW4OBgVq9ebdHu5MmTpKSk8OSTTwKQk5Njt4fMiRMniIy0TkQYERFBWlqavV+Ry8YYN24cy5cvB7RZNkCnTp1MCt1YZ87EiRMZPXo0O3bsoHfv3kybNo358+ezatUqXnnlFdatW0d6ejpTnJwd0NY66QNCCOOT69DSO44RQvQ0a3OHU6VwEy1baseCAmjTpg1QuWKulRkzaEZgiYnaknZxsVrOVjRoynmKuI3aeAeeN28ejzzyCADDhg0jOTmZDRs2mOr+8pe/0L59e5KTk/EsjYAUExNDZGQkS5cuZUdp2N6FCxdyxx138Mknn+BR+v+hf//+hIaGsmLFCl5//XWLcWfNmsXs2bMt6qZPn84bb7zBq6++io+PDwDvvvsu/v7+TJ48GdCM2/R6vV0z2ry8PAICAqzqW7ZsaTOqYnWo6RgGg4FmzZpZzLiPHz8OQPfu3a3a/+Uvf2FqqVFunz592LVrF6tXr+bUqVO0KF1y/emnn5g9eza5ubmmxEc1xdZ//AU26l60UVfvp3LGreKqZsxdunShiYcHp4qKuH7sGL6uFszLC775xtWjKBSKWmb06NEWnyMjIzl69CgABQUFpKSkMH/+fHQ6nYUF97Bhw/jwww8B+O233zhy5Ajz5883KWUoW9JNSUmxGnfs2LFWdY8//jgvvfQSGzZs4LHHHuPGjRskJiYydepUvL29AS2RT0OyJDcYDERERFi8aBgMBry9vS2UtZFRo0aZzgMCAmjdujW9evUyKWWA8NLokGfOnHGaYi7/GtTRgVLvZ82lk2Ru3qxcMXt6etItLAwJHDcYan95WS1nKxowUtaNUhu0NC7TleLl5cWNUtfIvLw8iouLWbp0KU2aNLEob7/9NpcvX6akpITLly8jpeS2226z6r9Nmzbk5ZU3CcJm2+DgYGJjY3mnNG7C5s2bycvL44knnqjWswUEBNictVY0y3XHGAaDwWrJ+vjx41bK2nw8czw9PW3WAaafozOwmDFLKRtVFoV27bRjURG0alWJHzMw6oEH6PTjj3gWFMDp0+CkN6NKuX4dXn4Z9uyBr78GOw0kFApF/cPf3x+dTsfMmTNNy6fl0el0BAQEIISwaah6/vx5K+UPWEWWMjJjxgzuu+8+Dh8+zOrVqxk4cCDdjCERHSQiIoITJ05Y1aelpVW7T2eOUVhYSEZGBo8++qhF/YEDBxg6dKhT5HMWjfo/fc+eZUFG9PpAdDodeXl5FNrIi/zyyy+zdcAAekPt7DODtrf8wQewfz9s3lw7YyoUCrfg4+PDwIEDOXbsGFFRUfTp08eqGNv17t2bzZs3U1xcbLo/NzeX/fv3M2TIELvHjI6OJjw8nLlz57Jv3z6T0Vd1GDNmDAcPHiQ7uyyFQk5ODvv27WPMmDHV7tdZY2RkZHDr1i2L1YPU1FROnTplc3/ZnZSP/JXsQPnSVULVVqzspk2hNBInly/radWqFWAdltOE0RqwthRz06bwwgva+YIFcOtW7YyrUCjcwuuvv87hw4eJiYlh48aNpKSksHXrVhYsWMBzzz1nard06VIyMzO5//772bVrFxs2bGD48OH4+fkxb948h8Z86qmn2Lt3L0FBQYwfP97iWm5uLh4eHixZsqTKfqZPn06HDh2IjY1l586dJCUlERsbS7t27SyWx1NSUvDw8OCDDz6wuH/Lli1s2bLFZH3+ySefsGXLFos9c3vHsIWh9P/2yZMnAbh06RKLFy8GbFtk1wb2xsrWAcKshANDgA6Ad+lxCBBWet0l1FasbICgIO34yy9VhOUEfg4J4UuguNSKr1aYNg3CwjS/5nffrb1xFQpFrRMVFcWhQ4cIDAxk1qxZjBgxgtmzZ3P8+HEGDRpkajdy5Eg+/vhjrly5wqRJk3jyySfp2rUr33zzDcHBwQ6NOXHiRAAefvhhq8AjUkqKi4utfK1t4ePjQ3JyMqGhoTz00EPEx8fTsWNHkpOT8fUtM5mtqM+JEycyceJE0573jBkzmDhxooV/sb1j2MJgMODr68vatWvp0aMHCxcuZOTIkQDMnDmTTZs2VfmMzqaiWNmmyvIFiANygbvL1d8N5ACxFd1bk6KJVHuEhGimHx98IOXw4cMlIP/1r3/ZbHt769YSkOldu9aqjHLbNk3IVq2k/PXX2h1boXAiqamp7hZBUY53331XCiFkZmamu0VxKXFxcXLEiBFuG7+q3/1S3YeUstI95qXAC1LKb8sp8m+BRcCyGr8u1AGuXtWOOTllvsy2jCoA7uzVC4DvMjJqd1k5Lg7699fSQb78cu2Nq1AoGixpaWns2rWLhIQE4uLibLoLNSQMBoPTjNBcTWWKuQtQUWLgi0CD+CmW+tVXmcgCoGep8cWx4mKwYRnoMoQAY8CAEyeU+5RCoagxM2bMYPz48YSGhvL222+7WxyXUlBQQHZ2Nl27dnW3KHZRWUipU2ipHz+xce0JtOXseo+fH5w7BxcuQKdOlSvmO++8E4DvQMuAUTqDrhX69YPDh7Ux60qoJIVCUW/Zs2ePu0WoNX744QdKSkrqzYy5MsW8GPhQCGEAtqAlt/gdMAHNKCze9eK5HqOv+KVLdsyYe2pRSU2KeXotZ76Miqrd8RQKhaIBEBUVZW1gVYepcClbSrkRiAGuAs+j5WZ+HrgCxEgpa9+EzQUYrbIvX65aMXfq1IkWPj78B/jP/v21JKENTpyA3/8eGlD+UYVCoVBoVBpgREr5hZRyAJqrVBvAW0p5r5TSZT7MtY0xLOfVq2XGXz/99JPNtjqdjt69ewNw7IcfwIkh2OxGSi1P86ZNYOZGoFAoFIqGgV2Rv6SUJVLKi1LKqp3Z6hkREdqxpATat28PaE71FS17rHr3XS6EhjKquBhq05/ZiBDwP/+jhed84w1tSV2hUCgUDYbykb/mCiGaOtKBECJKCDHSuWLVHrGxZef+/v60aNGC/Px8fvnlF5vtw8LCaG1MIu4updinD8yZo71NPPYY2AghqlAoFIr6SfkZ80PAKSHEK0KIOyu6SQgRIIR4SAjxGfAN0KKitnUd88hfUmJK25WbW0k+j9LlbLfOVhcvho4d4dgxWLHCfXIoFAqFwqmUV8xRwLPAKOCoEOKKEOJrIcQ2IcQGIcRuIUQG8DOwGjgHdJNSfuRMoWorVjZo4ai9vLTUj/n59inmP+3dSyfgx337XC5fhfj4lIXoXLQIMjLcJ4tCoVAoHMauWNmlkcE+kFLeCfQH3gCuoeVe7gU0B74GpgHBUspHpJQ5zhbWGJasNhTzlSuaUgZt1myPYs4tKCAbOJSRAdeuuVzGChk2DB5+GPR6SEtznxwKhUKhcJiKYmVX6MdcGnrz24quNxT8/cvOz5+3TzHf1a8fu/71L/4tJQ8ePAjDh7tazIp54w149lkID3efDAqFQqFwGo06HzNoxs1Nmmjnubl2Kua77gLgEMA337hYwirw97dUykVF7pNFoVAoFDWm0Stm0PaZAU6fdkwxHwZu7d3ravHsQ0pYuxa6dYOff3a3NAqFQqGoJkoxA82aacezZ+1TzIGBgXQNDeUGkHrgQN1wVyopgcREyMzUXKjqUfg5hUKhUJShFDPQotTZ6/x5aN26NV5eXuTl5XH9+vUK7xkcHQ1Ays2bcPRobYhZOXo9/O//alk5du6EBp4tRqGoK7z//vsIIfjxxx+trhUVFVl5mBjb2ypffPGFqd2OHTsYNGgQrVu3xtvbm5CQEOLi4ti9e7fFGPa2c4QzZ84wYcIE/Pz8aNGiBePGjeP06dNV3rdnzx6bz+VvbsxTwzEaA0oxU2YAdvGiFnbTPAJYRUyaNIlFvXoxCty/z2wkJATWrNHO586FurLMrlAorNi8eTMHDhywKH379gVg5cqVjB07li5duvDee+/x8ccfs3DhQgCSk5NNfdjbzhHy8/OJjo7m5MmTJCYmsn79ejIzMxk6dCi/2Rmff+XKlRbPZf7C4awxGjRGU+26UjB5bdUeS5dKCVKOG6d9HjZsmATkxx9/XPmN69ZpN44d63IZHeLPf9bkat1aytOn3S2NQmEiNTXV3SI4nXXr1klAZmZmWl0rLCyUgExISLCrvZF27drJuLg4m9eKi4sdbucIb775ptTpdBbyZWdnS71eL1esWFHpvV999ZUE5Oeff+6yMeorVf3ul+o+pJRVz5iFEG2EEH2FEIPKF1e+MNQmxrTK+fna0a7oXwD33qsdv/5a2+OtK7z8subjfPGi5uesUCjqFXl5eaakOuXR6XQOt3OEpKQk+vXrR+fOnU11HTt2ZMCAAezcubNafTpzjG3bthEWFoYQgi1btgCQlZVFz549EUKQYJbcxxjA4+TJk8TExODj40P79u1Zt24dAOvXryc8PBxfX1+GDh1KVlaWU56vplT4kxNCtBVCJKNF9zoAfGVW9pQeGwTGsJyXLmlHexVzFvBqixZs//ln9yS0qAgPD9i4EUaOVHvNCkUtUVxcTFFRkUUpLi62u7152759+5KYmMirr75KRiVR/extl5OTY3c0xRMnThAZGWlVHxERQZqdgYzi4+PR6/UEBgYyZcoUq73jmowxbtw4li9fDkCPHj0ALSWvUaEb68yZOHEio0ePZseOHfTu3Ztp06Yxf/58Vq1axSuvvMK6detIT09nypQpdj2fq6nslWoV0B14Bi1EZ7RZGVp6dAm1GZIT4NYt7ZiZqR3tVcz7DxzgmV9/ZR3A55+7TsDqEBgIn3wCXbu6WxKFomqEqLgYQ8+Cdl5ZW3N696643eOPl7U7fNgpjxAeHk6TJk0sStOmFecEKt9+8ODBpmvvvPMOnTt35plnniEsLIygoCAefPBBPvvsM4s+7G0nhECv19s1i87LyyMgIMCqvmXLlly+fLnSe/38/Jg3bx5r164lOTmZF154gS+++IL+/ftz8eJFp4wBYDAYaNasmcWM+3jp5Kh79+5W7f/yl78wa9Yshg8fzj/+8Q/0ej2rV69m9+7dxMXFMXHiRJ577jn+/e9/V71S6kQqCslZYeQvYCAwS0q53qWS2UDWsquPMSbHr79qnk/2KmbjH9JeoOjTT/H4859dKWbNePtt+N3vYOJEd0uiUDRItm/fzu23325RV1xcTD9jNroq2jdv3tx0HhoaytGjR9m3bx+fffYZBw8eZPv27WzcuJGlS5eaDLzsbRcSEkJRLQQf6tWrF72Me4No/yMHDRpE3759WblyJcuWLXPKOAaDgYiICIsXDYPBgLe3t4WyNjJq1CjTeUBAAK1bt6ZXr160aFGWfym8NFDTmTNnTDrA1SxatMg0ATVXzpUp5gLgYiXXGwzt2pWdnz8Pd9xxB0CV+w3t27enyx13kJmdzf69exl040ZZtJK6xJ498Kc/gacntG4NZm/mCkWdwN6X8ccft5ztVoa9M2FjtrgaEhkZaaUUKlOGttqbo9frGTRoEIMGaeY8//nPfxg5ciSLFy9m5syZphmnve3sJSAgwOastaJZblVERUURGhrKoUOHnDaGwWDg7rvvtqg7fvy4lbI2H88cT09Pm3UAN27cqHJ8V1PZusYatDSQDZ62bcvOT5+Gtm3b0qxZMy5evFjlssoDcXEA7Lp1C9yZbaoyBg+GmTO1NfvYWDAY3C2RQqFwkODgYB577DGKiorINO671aBdRURERHDixAmr+rS0NLp16+Zwf0bMZ4Q1GaOwsJCMjAyrPeoDBw7Y3F+uj1SmmM8B9wghvhRC/FkIMa18qS0hXY23tzaZBC1Jk06nIzQ0FID09PRK7x0zZgwAu6Du7TMbEQLeegvGjoWrV2HUKC3MmUKhqJP89NNPNutPnjwJYLLEtredI4wZM4aDBw+SnZ1tqsvJyWHfvn2m/3eOkJqaSnp6uslHu6ZjZGRkcOvWLW677TaLMU6dOmVzf7k+UplifgfogGbotRxYW66scbVwtYlxq8FoEGjcb6hKMQ8YMIAAX1/Sgcxdu1woYQ3R6+HDD2HAAE0p33cfVPBHrVAo3EtkZCSTJ08mMTGRvXv38s9//pMZM2bwzjvvMGnSJFMQJHvb5ebm4uHhwZIlS6oce/r06XTo0IHY2Fh27txJUlISsbGxtGvXjieeeMLULiUlBQ8PDz744ANTXXx8PAsXLmTbtm0kJyezYsUKRo4cSdu2bZk1a5bDY9jCULriZ3z5uHTpEosXLwZsW2TXRypTzB2rKHe4XLpapFUr7Wh8gQsLCwPKfvgV4eHhweTf/54JOh2FaWnaJnVdxdsbkpLgzjshI0P5OCsUdZSXXnqJgoICXnzxRUaMGMHkyZM5cOAAr7zyCuvXr3e4nZSS4uJiSuyIt+Dj40NycjKhoaE89NBDxMfH07FjR5KTk/H19a20z8jISJKSknjkkUeIiYnhzTffZNy4cXz77bcEGf1SHRjDFgaDAV9fX9auXUuPHj1YuHAhI0eOBGDmzJls2rSp6i+4riOdGLXLVgFigGTgPHATOAt8BHSroL0TYqw4zv33a8GyBg7UPm/YsEECcqy9Ub1Gj9Y6WLPGdUI6i0uXtAfOzna3JIpGRkOM/KWoXeLi4uSIESPcLYbDODvyV6QQYqYQ4oXSY4SDur8lWobEPwIjgOeBCOCgEKJ2bNLtYO5cy8/2zphNGPdFkpKcKJWLCAqCXbugY8eyujpgiahQKBRVYTAYamSEVh+o0F1KCOEBvA88CJh7P0shxP8BD0spKw5rY2ws5QZgQ7m+/w2cBCYAKxwX2/kYLbPPndOORuOvH3/8kaKiIjw8KvMsg4Jhw/gSaPXpp9z922/g4+NCaZ3Myy9r+8+ffQbBwe6WRqFQKGxSUFBAdnY2XRt44KTKZswJwCTgRbQ9Ze/S44vA5NJjdfml9Oh6j3c7MSrms2c1l0ofHx/atWtHYWEhp06dqvL+1UlJPAC8cesWlMukUqe5fl1LF3nihGYYZiN1nUKhUNQFfvjhB0pKShr8jLkyxfwHYJmU8iUpZa6U8mbp8SVgGTDVkYGEEHohhKcQoguwGm3PeUMVt9UaP/+sHW/dgl9KXxuMltn2LGfff//9AOwGCnfscIWIrsHXV0sP2bcv5ORoiTmOHXO3VAqFQmFFVFQUUkruNSYQaqBUppiDgf0VXNtfet0RvkUz/soAegDRUkqbkcVsJdp2ddzs3/2u7NwYidO4z1yVyxRA586d6XrHHVwFvt6+HSoJXl/nCAyEL7/UXKguXNACknz9tbulUigUigaHeXxs82JOZYr5P8CACq7dU3rdER4C+gFTgF+Bz4UQHWw1lDastV2tmJs2hSZNtPPyvsz2GoA9MH48ALuuXtVmofUJX1/4+GMYP14LQjJsGPzzn+6WSqFQKBoUixYtqsiDyURlivlDYEGpNfYdQghvIURHIcTzwALAoeQWUsofpJTflhqD3Qf4As859kiuxRhkxBgpzpEZM8ADZlHA5IY6s0pvP15esGkT/PGPWkxtJ8UQVigUCoX9VKaYFwFbgMVAJnAd+BF4qbS+6hAyFSClvFLaV8UR3N1AYKB2NOauMFr+nThxwq6MV/379ycoIIAs4MSmTVqqqvqGXg9//zscPQrGkHclJVBQ4F65FAqFopFQoWKWUhZJKaeg5WT+I5oV9h+B7lLKeClltS2qhRC/A8KBytM31TJGPWTM6R0cHExQUBCXL1+2SvRtC71eT9z48XTz8uLSr7/WL+vs8phF6eGFF+Cee8rCoikUCoXCZVQZYERKeUJKuarUOnuVlNI6JUglCCG2ly6HxwohhgohngBS0Fyl6oQPs5EOHbTjhQvaUQhhyi169OhRu/r4+9//zomFCxkKsHGj02Wsda5dg48+gu++05a21b6zQqFQuBQLxSyEaC+EaGJ2Xmmxc4yDQByQCHwMzEVTzD2llBlOfJYa88AD2tHcQM5Rxdy0aVOYPFn7sH17/V8Cbt4cDh3SIptduaJ9SS+8UL+szhUKhaIeUX7GfAroVXqeU/q5slIlUsq/SSl7Syn9pZTNpJRhUsonpJQ5TpDfqZTGQec//ynTO44qZgC6dCG7Rw/2X7sG27Y5WUo34O+vvWS8/DLodLBsmZY60uj8rVAoFAqnUT7O5DTK9n2nAVVbPDUgfHy0feaffoIzZ7Sl7eoo5r179zL4++/pARz7xz8gPt41AtcmOh089xzcdRc8+KCWe3rePEhMdLdkCoVC0aCwUMxSykSz8/drXZo6QPPmmmI+dkxTzJ07d6ZZs2acPXuWn3/+2SJ1WUX069cPfz8/vr96lUPJydyVnQ13NJAsmffdB0eOwJw5sKJOmQgoFApFg6BC4y8hRLIQIryCa6FCiGTXieU+LpbGIjt4UDvq9XruvPNOAL777ju7+vD09GT6448D8CrA++87V0h3c/vtsHlzmeV2YSH86U9lDuAKhUKhqDaVWWUPAVpUcK05MNjp0tQBjMmVvv++rK46y9mzZ8+miYcHW4Ef16xp2MZSy5fD229Dz57w5z9rltwKRSPh/fffRwjBjzYSwBQVFVmFFDa2t1W+MHOx3LFjB4MGDaJ169Z4e3sTEhJCXFwcu3fvthjD3naOcObMGSZMmICfnx8tWrRg3LhxdrmMbtmyhfHjxxMSEoK3tzdhYWE8//zzXCv3P2HPnj02n9/f37/aMjckqnKXqmiPuRNawBGXUFvxsW3RpYt2zDLzsK6OYm7bti0PPfQQJcBr589r4S4bKk89pZXiYm15OzxccxWzIyiLQtFY2bx5MwcOHLAoffv2BWDlypWMHTuWLl268N577/Hxxx+zcOFCAJKTyxYr7W3nCPn5+URHR3Py5EkSExNZv349mZmZDB06lN9++63Se1977TX0ej1//etf2b17N0899RSrVq1i+PDhlJSUWLVfuXKlxfN/UZ9jP1QD87jZFpSL1fkIsLe0FANHzT4byyGgAPinrXifNS2aSO7jxRelBClbtCirS01NlYAMCwtzqK+0tDQJSC+QZwYOdLKkdZBDh6Ts21f7AkHKoUOlPHHC3VIp6hCpqanuFsHprFu3TgIyMzPT6lphYaEEZEJCgl3tjbRr107GxcXZvFZcXOxwO0d48803pU6ns5AvOztb6vV6uWLFikrvvXjxolVdYmKiBOSXX35pqvvqq68kID///PNqyVgfqep3v1T3IaW0mjGXlCrkYkCU+2wsvwCrgEed9NJQp+jfXzteu1a2+hwZGYmXlxfp6enk5eXZ3VfXrl2ZPHYsk/R69F9/DXYmw6i39OkDBw7AmjVafNOvvtJ8oBUKhUPk5eXRpk0bm9d0Op3D7RwhKSmJfv360blzWcTkjh07MmDAAHbu3Fnpva1atbKqu+uuuwA4d+5cteQpz7Zt2wgLC0MIwZYtWwDIysqiZ8+eCCFISEgwtTXOSE+ePElMTAw+Pj60b9+edevWAbB+/XrCw8Px9fVl6NChZGXVjWCUFj85KWWilHKolHIoWhCQeONnszJSSjlXSnnBPSK7lh49tKOUZaE5vby86NOnDwAHjVZhdvLh5s188Oij3Abw3//tPEHrKjodPPYYpKfD3/4GDz1Udi0tTS1vKxosxcXFFBUVWZTiSmxLyrc3b9u3b18SExN59dVXycioOA6Tve1ycnLs3h48ceIEkZGRVvURERGkGVPvOUBKSgpQlnvAnPj4ePR6PYGBgUyZMsWufexx48axfPlyAHqU/sPu1KmT6aXBWGfOxIkTGT16NDt27KB3795MmzaN+fPns2rVKl555RXWrVtHeno6U6ZM8VFu9gAAIABJREFUcfj5XIJ0wXJ0TQpuXsouKZHS01Nbid25s6z+mWeekYCcP3++451+/72UIIt9fGTJ5cvOE7Y+kZUlpZeXlNHRUqaluVsahZuoaDkPzZ7FZlm9erWp3erVqytta05UVFSF7aZPn16lTPZiXJqurNhayi5fBgwYYGqTnp4uu3fvbroWGBgof//738tPP/3UYmx72+Xk5Ei9Xi8XL15c5fM0adJEPvvss1b1CxYskHq93qHv5uzZs7JVq1Zy2LBhFvVHjhyR8+bNk0lJSXLPnj3yjTfekK1atZLBwcHywoULVfa7bNky2axZM4vl+l27dklApqenm+oSEhIkIBMTE011eXl5Uq/Xy5YtW8qrV6+a6t966y0JyJycHIee0V4cWcouH2DECiHEnUAY0NSGUv/A3heA+oIQ2iTvvffg7Nmy+gEDtNTU+/btc7zT7t3Z07Mnc777jtUvvEDfv//dSdLWIzIztZzPycnassTTT8Pzz0PLlu6WTKFwCtu3b+f222+3qCsuLqZfv352tW/evLnpPDQ0lKNHj7Jv3z4+++wzDh48yPbt29m4cSNLly41GXjZ2y4kJISiomrnHaoW169fJzY2Fg8PD9PSsZFevXqZjGoBBg8ezKBBg+jbty8rV65k2bJllfZtMBiIiIiwWK43GAx4e3tbLMEbGTVqlOk8ICCA1q1b06tXL1q0KHM8Cg/XvIPPnDlDSEiIYw/rbGTFM1d/YB9le8sllNtzrujemhTcPGOWUspXXtFmzE8/XVZ36dIlCUhvb29569Yth/ucO26cBORT3t5SFhQ4Udp6xM8/S/nEE1IKUWZht3ixlGZvrYqGjTL+ss/4yxbnzp2T3bt3lx4eHjIvL6/G7SqidevW8vHHH7eqf+qpp2RQUJBdfeTn58shQ4bIgIAA+f3339s9dteuXeWIESOqbBcZGSkfffRRi7opU6bIPn36WNQZZ8yFhYUW9SEhITI+Pt6iztUGaTUx/jLnr0AgMAjNEGwsEA18CGQDfZ36hlCHML5wmW+nBAUFERoaSkFBgd2BRsx5uNQgYUNBATfee88ZYtY/AgPhnXc0g7ARI+DXXyEhAf74R3dLplDUeYKDg3nssccoKioiMzOzxu0qIiIighM2ggWlpaXRrVu3Ku8vLCxkwoQJpKam8q9//Yvu3bs7NL6V65CN/jMyMqz2wQ8cOGBzf7k+UplijkFTzkZrp7NSyj1SyqnAF8BsVwvnLs6c0Y7791vW12Q5u3uPHvTu2JErwM6lSxt2wJGq6N0bPv0UUlJg8GB45pmya6dOQX6++2RTKOoAP/30k836k6WeHUZLbHvbOcKYMWM4ePAg2Wb513Nycti3bx9jxoyp9N6SkhLi4+NJTk5mx44dFS7j2yI1NZX09HSTL3dFZGRkcOvWLW677TaLe0+dOuXwS0BdpTLFfBuQLaUsBm6gRfsysg0Y7UrB3EnPntrx+nUw96ev0T4z8PBs7V3m/QsX4P/+r0YyNggGDYI9e8D8zfe//gtCQmDpUnDANU2haEhERkYyefJkEhMT2bt3L//85z+ZMWMG77zzDpMmTaJ9+/YOtcvNzcXDw4MlS5ZUOfb06dPp0KEDsbGx7Ny5k6SkJGJjY2nXrh1PPPGEqV1KSgoeHh588EGZqdHMmTPZvHkz8+bNw8fHh4MHD5rKWTOjnfj4eBYuXMi2bdtITk5mxYoVjBw5krZt2zJr1qxK5TMYDEDZy8elS5dYvHgxYNsiuz5SmWI+j7bPDJAL9De7Zr273oAwKmYA81Xre+65B4BvvvnGuB/uEA/+4Q94enjwGZCzcKEWY1pRxtWrcOOGlk7yxRehfXstWYZxCUOhaCS89NJLFBQU8OKLLzJixAgmT57MgQP/n707j4+iSBs4/qtM7pNwhCuEGwIEkEvhVQFZIKgoiIL3La6K7rorr66KAp6g64EvK7qggMeK4AqKBwIiCAqKgEc4A+EId0ICCbkzU+8fNZNM7gnMJJPk+X4+/Zme7prumiTwdFVXP7WRGTNm8P7771e7nNYaq9Vabvat0kJCQlizZg1dunTh1ltv5eabb6Z9+/asWbOG0NDQSo/59ddfF9Vr0KBBJZZ58+YVlYuLi+Pzzz/nzjvvJD4+ntdff51x48bx008/VTlRUEJCAqGhocybN49evXoxZcoURtnn7J00aRIff/xxld/R6+mKB2G9BzxnX38C02p+G/gXJh3nfyr67PkseMHgL621Dg0145Oefrp4m81m082bN9eATkhIOKfj3nrzzRrQfwGt581zU23rEZtN6zVrtI6PL84g5uur9W23aX30aG3XTpyn+jj4S9SssWPHujRAzNu4a/DXdOAb+/rL9oB8JXAj8DnwkJuvEYrUZq5sh3btzOuGDcXblFKMGDECgFWrVp3TcZ+eNo1/3nQTL4Lprs3PP6961jtKwWWXwYoVZnrJG24Amw0+/dRMmO0giUqEaJASEhJcGoRWF1SUK7vCwKy13qe1Xm9fL9BaP6K1jtZaN9Za36S1PuWpyjquGmozMPfrZ1537iy5/XwDc6dOnXjkvfcI7tEDDh6EN988n2rWb336wEcfmWegFy4ExzOHubnQsyc89VTJh82FEPVaTk4OSUlJ5WYRq4umTZvm3Ftc5NySqTYA9vjLyZOmweYwfPhwwExblpeXd24Ht1hg5kzSgYNTp8ogp6p06ADjxhW//+orM/fzc8+Zro2rroKlS6X3QYh6bufOndhstnrTYq5IhZm/lFJPV/FZrbV+1s318RqXX24aaBkZcOCAiQ1gnhGMi4sjISGBjRs3MnTo0HM6/vehoVzj60vfjAxWPvss6rXX3Fb3eu+aa+D7780c0J9+Cl98YZZmzeCWW2DGDPD3r+1aCiHcrG/fvuc08LauqazFPK2SZar9td5q3Bgcj+D99lvJfefbnQ3QIy4OW1AQq4Gv/u//THetcI1ScOml8PHHcOQIvPoq9OgBKSkm5aefX3HZ1NTaq6cQQpyDyu4x+5RegKbAHUAC9fyRKYDevc1rRYF55cqV53zsJk2a8LT92btHrFYKJk2SAU3nIirKPFL1xx/w88/w2msmcIOZZrN5cxg+HObNg/T02q2rEEK4oFr3mLXWadpMXLEAM0q7XnOMNSo9BengwYMJCAhgy5YtHD9+/JyPP2nSJDq1b89u4LVVq0y3rDg3SsGAAWZEt8PWreDrC99+CxMnmiB99dWwYIG0pIUQXutcB3/9hsmhXa8FB5vX3btLbg8JCWHEiBForfn888/P+fj+/v7MnjMHMPcF9k+aZNKNCfe46SY4ccJMFTZ8uEmDunw53HkndOkCNTzbjhBCuOJcA/NoIMWdFfFGV11lXnNyoHRK2muuuQYwU7edj/j4eG684QZygAdOnIAnnjiv44lSGjWCu+6CVavg6FH417/MBBqjR5vWNJjc3BddZLKNbdkitxSEELVKVTTCTSn1bjmb/YE4oCcwVWtd+aSZ51IhpbS3jLrTGgICTObMOXPgvvuK96WkpNCiRQssFgupqakl5vWsrhMnTnDtqFHM+OMPLrFaYf16uOQSN3wDUSGti+9Ff/YZjB1bvK9FCxO8R40yz81VkSJQuG7Lli30cyQJEKIBqepvXymF1lpB5S3mYcBlpZZ+mBzadwPPu6vC3kqp4gxgX3xRcl+zZs245JJLKCgo4Kuvvjqv8zRv3pwN27ZxyeOPmw13322a6cJznDPtjBplMo3dfz+0bg3Hj8N775mu8Kgo0x3u4CUXjUKI+quyUdnttNbtSy3dtNajtNYLvKZZ62H2CaXYsqXsvrH2VtayZcvcc7IpU6B7d9bu2UOh81SIwrMCAiA+3mRhS042I7z/+U9zX7pPHzNozOGii2DMGDP6e+vWhj19pxDCI7wy85c35Mp2uPZa83riBJRO9OUIzF9++SU57mjhBgTw1KBBXAbMmD3bzFksapZSZhrKRx4x96U3by7ed+iQef/55/D3v5u8rU2amJHer7xi9gshhIsqypVd4T1mAKWUD3AhEAMElt5vf3TKrbzpHjOY+ZibNTM9yz/8APaZH4tceOGFbN68mY8//pgJEyac9/lWr17NiBEj8AV+bNKEATt3mgoI73DggJlDet06s+zfX7xv5criXK4bNkBmpmlhN25cGzX1SnKPWTRUbrnHrJTqDuwCfgAWYZ5ddl7mu6m+Xi0kBG6+2axv2lR2/y233AJQYu7T8zF8+HAe/stfKARuOXWKrAkT5LEeb9KuHdxxB8yfD0lJZiKS994z4wKcr9r++U+44grTou7aFW6/3Ywg3LpV5uEWQlSqsq7sNzG5tCcAsUD7UksHj9fOSzj+v/3xx7L7brjhBiwWCytWrCAlxT1PkL04cyY9unZlDzBx7Vr0lCluOa7wgJgYuPVWk1nMeVrKAQPMAIXAQNizxwTvBx4w3d+3315c7uxZ+OUXM2OWqJMWLFiAUoq9e/eW2VdYWFjmtpyjfHnL6tWri8otW7aMwYMHExUVRVBQEG3btmXs2LGsWLGixDlcLVcdycnJXHfddURERBAeHs64ceM45MKtmsOHD/PQQw8xaNAggoODUUpx4MABt56jIagsMPcFJmut/6u13qO1Plh6qalK1rZBg8zrt9+WHZQbFRVFfHw8hYWFLF682C3nCwwMZPGnnxISGMhHwBszZ5rZk0Td8eSTpjv7zBlzX3r2bDPBRqdOZkCZww8/mCAeFgYXXGCeuZ4921wFZmXVXv2Fxy1ZsoSNGzeWWC688EIA3njjDa655ho6d+7MO++8w5dffskU+wX6mjVrio7harnqyM7OZtiwYezatYuFCxfy/vvvk5iYyGWXXUZWFX+Te/fuZfHixURGRnLppZd65BwNgmMuyNILkASMrmi/pxZTJe+SmKi1Ccla//pr2f3/+c9/NKAvuugit5538eLFGtCxoPNCQ7Xetcutxxe1xGYrXl+2TOvYWK2VKv4jcyxKaZ2RUVx27Vqtf/9d67y8mq+zm/zyyy+1XQW3mz9/vgZ0YmJimX0FBQUa0FOnTnWpvEObNm302LFjy91ntVqrXa46Xn/9de3j41OifklJSdpisehXXnml0s86n3Pu3Lka0Pv373frOeqqqv727bEPrXWlLebXgElKKYsnLwzqgo4di9NzLlxYdv+YMWMICwvjp59+IiEhwW3nHT9+PAvmz2fjmDH4nz1r5iTOzHTb8UUtcR6BOWYM7Nxp5hfdsAHeeMPcw+7VC9q3Ny1pB8f2kBAzm9aECSZb2X/+U3IQmqjz0tLSaNGiRbn7fHx8ql2uOj7//HMGDhxIp07F8xS1b9+eiy++mM9KTxxwjuc8n3N8+umndO3aFaUUn3zyCQD79u3jggsuQCnF1KlTi8o6Rj3v2rWL+Ph4QkJCiImJYf58M0Tq/fffJzY2ltDQUC677DL27dvnUv09rbKfYjOgK7BDKTVbKfVMqWV6DdWx1ikF/fub9S+/LLs/ODiYm+0jxN5++223nvv2O+6g0fvvQ7dusGMHtvHjZfBQfRQaau5JP/SQGVj2228lpwK1Wk0XeKdOZn3HDliyBJ591oxOXLKkuOzGjfDgg6ZLfNUq82y2Fz3pUF9ZrVYKCwtLLNZKnnMvXd657IUXXsjChQt5+eWX2bNnT4XHcLXcgQMHXH4Edfv27cTFxZXZ3qNHD3bs2FHl511xPucYN24cL730EgC9evUCoGPHjkUB3bHN2fjx47nyyitZtmwZ/fr146677uKJJ55gzpw5zJgxg/nz57N7925uuumm8/1q7qEr7lK2VbFYK/rs+Sx4YVe21lrPmWN6F318tM7JKbv/119/1YAODw/XmZmZbj9/XkKCvj8wUN8B2nbbbSW7Q0XDkpWl9ZYtWr/3ntZPPqn1tddq/d13xftfeqlst3hwsNZ9+mh9001aO3dxpqWVfO9hFXXnla6u8/L228Xl3n678rLO+vatuNzEic51Or/v5Oiarmwpryu79HLxxRcXldm9e7fu2bNn0b4mTZroG264QX/zzTclzu1quQMHDmiLxaKnT59e5ffx8/PTjz32WJntTz75pLZYLC7/XCrryj7fczz33HM6ODi4RNf58uXLNaB3795dtG3q1Kka0AsXLizalpaWpi0Wi27cuLE+c+ZM0fZZs2ZpQB84cMDVr1gt1enK9q0kYHtl8pHaMm6cydhos8F338Hll5fc37t3bwYNGsTGjRtZtGgR99xzj1vPv9tmYyGQDbR77z2mtmkDz7k9VbmoC4KDoW9fs5Rn5EiwWMx81Lt2menRTp6Ebdvg1Clw7m6MjTXbmjUz6UhvuAH+/OeSXejCJUuXLiU6OrrENqvVysCBA10qH+b0M+/SpQvbtm3jhx9+YOXKlWzatImlS5eyaNEinn322aIBXq6Wa9u2LYX16LHLhIQEevToUaLrPCEhgaCgoBLd4w6XO/2HHRkZSVRUFH369Ckxx0FsbCxgRou3bdvWg7WvWoWBWZQUFWWWkyfNdL6lAzPA/fffz8aNG5kzZw533313mWwu56Nnz558vGQJY8aMYZrNRtTzz3N/69bmakEIZ717m8VZWpoJ0BkZxdtsNrNYrSY/+PHjJvfsCy/A4MEwbZoZKQ6werXpPvfzK178/c3sXa1alT1fNbna037vvWZxRXlpdMvjrnwncXFxZYJCZcGwvPLOLBYLgwcPZvBgM8Pu0aNHGTVqFNOnT2fSpElERkZWq5yrIiMjSU9PL7M9LS2t2sfy1DkSEhK46KKLSmz7448/ygRr5/M58/f3L3cbQK4XPLpYaatYGVcrpf6plJqvlGpr3z5EKdWqZqroPYYMMa8bN5a/f/z48TRp0oStW7eyYcMGt59/9OjRzLHP3/wAMPeBB+Djj91+HlEPNW5snvuLjy/e5uMDKSkm12xyspll6+KLIT3drDtbtAj++lfzLPbEiWYg2k03mSQqd9xRXE5r0wofNAiuucZcOE6fDm+9Be7KKd9AtWrVinvuuYfCwkISnccfnGO5ivTo0YPt27eX2b5jxw66d+9e7eO5+xwFBQXs2bOnzD3qjRs3lnt/uS6qLPNXJPAjsAyYCNwGNLHvngj8w1OV8qZc2c5efx2Cgsz/YeU9Bx8YGMgDDzwAwMsvv+yROtx77728/vrrZh1498Yb4aOPPHIu0UD4+0N0tMn5vWGDaRkvWmQCrMOf/mQGlN13n3nW+tZb4frrTaB3znh2+rRpmW/aZALxW2+Zlvf995tALVxyrPQE8Ha7du0CKBqJ7Wq56rj66qvZtGkTSUlJRdsOHDjADz/8wNVXX13t47n7HHv27CE/P5+WLVsWbfvll1/Yv38/PXv2dEv9akpFubIrG4Q1DzgMDMJ0eduAvvZ9dwDbK/rs+Sx46eAvh2uvNYNHZs0qf/+JEyd0YGCgBvT27ds9Vo+XX3pJA3og6EKltP7gA4+dSwiXFRZqvXev1hs2aP3JJ1rPnq31lCla33OP1qNHy3PMVZR3aNy4sZ4wYYJesGCBXrdunV6+fLm+//77tVJKT5gwodrlqjP46+zZs7pjx446Li5OL1u2TH/22We6V69eun379iUGtq5du1ZbLJYSA6u01nrJkiV6yZIl+r777tOAfvPNN/WSJUv02rVrq32O8ixatEgDetq0aVprrU+ePKlHjx6tAf3tt9+WKOsY/FVQUFBie9u2bfXNN99cYtt3332nAb1q1aoqf0bnojqDvyoLkCnA7fZ1S6nAPAzIqOiz57N4e2D+8EPzUxswoOIyjj/Iu+66y6N1WbhwoT79j38UDxd/7z2Pnk+I8yWB2bXAPGfOHH3VVVfpmJgYHRAQoIODg/UFF1ygZ86cqfOcEsy4Wm7//v1l6lGZgwcP6nHjxumwsDAdGhqqx4wZU2Z0tSOQzZ8/v8R2KhiZPmTIkGqfozxTpkzRoaGhOjo6Wvfs2VPfe++9evbs2SYZU2ysXrRoUVHZuhqYK5xdSimVA1yltV5tTzJSAPTXWm9VSl0BfKy1dvvQTW+bXaq0DRvAkWnuxAkzIKy0vXv30qVLF3x9fdm7dy8xMTGerdSzz1L49NN8Box76y3Un//s2fMJcY5kdilxvq655hqys7P5po5Ni1vh3/4ff0BmJurii9FVzS4F7AZGVrBvCPDH+Va0LrrwQjMgFcxkQeXp1KkT119/PQUFBTz//POer9RTT/FA//5cB0y+7z5sU6ZIQgkhRL2UkJDgtkFotW7HDjN+w3lQJlXPLvWwUupJzHzMAI2UUncCDwL/8khFvZy/PzgeS6xspsdp06bh4+PDu+++W2KAg6cMe+QR/CwWXgVuf/55Cm6/XTKECSHqlZycHJKSkujWrVttV+Xc5eebZBhPPQVDh5onI5wHUFJJYNZa/xt4FZgOOOYzWwX8G3hda/2hZ2rt/R5+2Lzu22d+puXp2rUrt9xyC4WFhTz77LMer9MNN9zAl19/TUhgIB8Ao95/n7SRI0s+tyqEEHXYzp07sdlsdbvFnJwMw4aZBFEpKTBiRJlHCSu8x1xUwDy7PAKIAk4Bq7TWLjcBlVLXATcC/e3HOAR8CrygtS4zI4O332MGk48hNNRMofvQQ2begfLs27ePrl27orXm999/p0ePHh6v2+bNm7lq1ChOpKXRGfiiQwe6fPUVdO3q8XMLURW5xywaqqK//V27zJzsF1wA48fDZZeBxYJSqup7zEqpwUqpUG3mXp6ntX5Ba/221jpJKRWqlBrsYn0mA1bgCWAUMAe4H1illKqTaT8tFpNXAeDDSvoNOnbsyL333ovNZmPy5Mk1UrcBAwbw87Zt9O7WjURgelKSuTH++ec1cn4hhBCViI2Fn36Ct9+G4cNNQCmlssD4HVBRf0FX+35XXKW1nqC1/lBrvU5r/TrwF+AiYKiLx/A6L7xgXtPS4PffKy43ffp0IiIiWLFiBStWrKiRusXExLDh55/526RJzBkzxnRnjxkDU6eaFIxCCCG8VmWBubJEzwGYVnCVtNbl3YXdbH9t7coxvFHXribfP1Q+CKxZs2ZFieQfeeQRCmpoQFZoaCivzp5N+NKlMGMGuUrx2DPPcHrYMKggW5AQQojaVyIwK6XaKaWGKaWG2Tf1d7x3Wq4EHsHcKz5X9qzT7DyPY9S6v/zFvH7wQeUDoB966CE6duzIjh07mDVrVs1UzkEpeOwxHh87lpeAvuvW8Uu3brB8ec3WQwg7bx9DIoS7VfdvvnSL+XZgNWb0tQb+z/5+tdP25cBVwMxzqaBSqjXwDLBaa/1LBWXKLN6WNxvMY1Pdu5tJed58s+JyAQEBzJ49G4CpU6dy8ODBGqphsQdffpm+PXuyH7j4zBn+efXVWO+/H3JyarwuouHy8/OrsV4jIbxFQUEBfvYEGM75sZ0XZyVGZdtHYLfDdGOvASYBO0qdIw/Yo7VOq27llFKhwFqgFXCh1vpwOWW8flS2sxtuMBM8RUWZTGCVuf7661m8eDFXXnkly5cvd+u0kK7Iy8tj8iOPMPtf5hH0gcD8tm2Jff/94nRmQnhQYmIiERERRJWXMk+IeurkyZNkZGRUOs2n86jsylJyDgG2aK3PuqNiSqkg4CugNzBEa11u5rC6Fpi3bSuer/777yuPb8eOHSM2NpaMjAw+/PBDbrrpppqpZClfffUVE++4g6MpKQQAvwNdHngAZsyAMLdnWRWiSHZ2NomJiXTo0IHQ0NAavzgVoiZprTl79ixJSUl07tyZ4ODgCsu6GpitwCCt9c/l7OsH/Ky1LjvOu/xj+WGmjxwMjNBab6qkbJ0KzGBmzDtyxExB++OPlZedN28eEydOpFGjRmzfvp1WrWpnWuvTp0/zyMMPc+ann1iSmIiyWiEmxvTJX3llrdRJNAxpaWkcO3bMKyakF8LTAgMDadmyJY0bN660nKuB2QYMrCAwXwj8qLX2rapS9meVF2HuS4/WWn9bRfk6F5hffRUeecSMszpyBJymCS1Da83o0aP56quvuPzyy/nyyy9rtdVQUFCA386dcNddbN2yhTeBGSNH0vTNN6Fjx1qrlxBCNCSVJhhRSvnYZ5MC8LG/d15CgMuBVBfP9y9gPPAKkKWUGui0RLvh+9S6Bx4wObS1hr/9rfKySinmzp1LZGQkX3/9ddGgsNri5+cHvXrBpk38rWNH3gG6rFzJm7GxFD75JGRn12r9hBCioSn9uNRUzPSO+ZhR2T/Y3zsvGcDTwBIXz3G5/fVJYGOp5Z7zq753CAyEu+8260uWwKlTlZdv1aoVc+fOBWDy5Mls2bLFwzV0ga8v//7yS4YPHkw6MKmwkJ4vvMAXbdqg33nH5CEVQgjhcaVHZQ/BZONSmOD7DlB65HQeZqT2F1prt6eRqotd2QBnzpiR2fn58OSTJj95VSZNmsSbb75Jx44d2bJlCxEREZ6vaBW01ixdupRH//IX9h05AsAwYF6XLrR/9VWTi1QG7AghhFu5eo95KjBXa320hitXJwMzwLffmtSnERGwfz9ERlZePjc3l4EDB/Lbb78xevRoPvvsM3x8vCN9eH5+Pv+aPZtnn36a/Oxs9mtNM4BLLoGnnzZfVAK0EEK4hUuBubbU5cAMZs7rNWvg0UdhpgspWJKSkujfvz/p6ek89dRTPPPMM56vZDWkpaXx04YNXJ6UBM89R8GpU0wG7u/dm9gXXoDLL5cALYQQ58nlwKyUisJM2dgVCCy1W2ut7/ZA5ep0YN682Uzm5OMDe/dC+/ZVf2bVqlWMGjUKm83GBx98wM033+z5ip6LzEz+ffvt/HnpUhQwFngsNpaLZsyAq6+WAC2EEOfI1a7srpgBWr5ACGYUdmPAAqQDZ7TWHTxQuTodmPPyoEkTyMoyKTs3bnTtc7NmzeLhhx/G19eXL7/8kpEjR3q2oufo0KFDvDB9OvMXLiTfPiBsCPBYTAyjpkxB3XILBAXVbiW/rLbSAAAgAElEQVSFEKKOcWk+ZuBlzCxQzTGDwS4HgjAjqbOBazxZQW/Nj12VgAB4+WWzvmmT6dZ2xV//+lcmT55MYWEh48aN45dfyk0jXutiYmJ46513OHj4MP+YPJmIoCDWAVccOsT4e++FNm3M6Df7wDEhhBDlc86b7ayyFvMx4D7MpBWFmNzWv9j3PQaM0lpf5u6K1vUWM5jnmdu2heRkaN4cjh41XdtVsdls3HbbbXz44Yc0a9aMH3/8sdLcqt4gIyODt//1L1576SWejYjgbvsEHUkWC2v69ePWl14iYPBg6eYWQohKuNpiDgXS7I9EnQGaOu3bDAzwXBXrNqXMxBZgJrZw5dEpAB8fH959911GjhxJSkoK8fHxHPHylmd4eDj/+/jj7D9+nNv27IENG2D8eF622Zj488+0HzqUl1u2JGPGDEh1NSeNEEI0XJUF5gNAC/v6bkz2LofRwGkP1aleGDTIPFEEJjBXNfOUg7+/P5988gn9+/cnKSmJIUOG1Mo0kdUVEBCAn78/XHwxLF7MZbNn07NZM44Bj544Qczjj/N48+Ycv/pqWLUKbG5/BF4IIeqFyrqyXwVCtdb3KqUmYPJdJ2K6tWOB57XWT7u9QvWgK9vh5Elo3RoKC82g5c8+c/2zp06dIj4+ni1bthATE8O3337r9d3apWmtWbF8OTOfeIJ127cDZuTgm8C9bdrAjTeapXdv6eoWQjRoro7KDgACtNYZ9vdXAdcDwcAKTPIRt0fQ+hSYwaTovPNOM0p78WIYP77qzzicPn2aK664go0bN9KyZUvWrFlDbGys5yrrQZs2beKl6dP5fOVKNjdvTp9jxwDzh5QbHc3IO+4g+PbboY5dfAghhDtIgpEa9tZbcP/90LQp/PYbVGemx7Nnz3LVVVexdu1amjVrxtdff02/fv08V1kPS01NpUlkJGrjRvjPf7h07lw2FBYSDMQD17Rvz+hbbiHyppugjl6ECCFEdUlgrmFam/vNa9aY0dpJSa6N0nbIzs5m3LhxfPPNNwQFBfHBBx8wbtw4z1W4hmiteenFF/lkwQJ+SUws2u6LSdj+SHQ0o269Fa65Bvr3l+5uIUS9JYG5Fnz1FVx5pVm/6y54553qfT4/P5/77ruP+fPnA/Diiy/y2GOP1epczu6UnJzMssWLWbpgAd9v345VaxYAt9v3JzVvTuHgwXS5/nqT97RRo1qsrRBCuJcE5lpy223w/vtm/b//heo2erXWvPTSS/zjH/8A4M4772TOnDkEBAS4uaa169SpU3yxbBlXNW5M42+/hWXLuO/IEd4GugEjlWJ4t24MufZawsaMgT59qtcFIYQQXkYCcy2xWk3u7ORk8PWFXbugY8fqH+fTTz/llltuIScnhwEDBvDxxx/T3pWk3HWVzcbfb7uN+f/9L6dzc4s2+wIXAbeHhjJxzBgYNgyGDjU/5HrSkyCEaBhcSjCilIqwj8yucXU5JWdlLBb48UeTtrOwEP7nfyA7u/rHGTduHOvXr6dt27Zs3ryZPn36sHTpUvdX2Fv4+PDqBx9wMiODtWvXMmXyZAZ26YJNKX4A9p09Cx9+CHffza6OHZkUFsaiSy/l8Msvw7595ia/EEJ4mWql5FRK+QK5wDVa6+U1U8Wic9fbFrPDihVmtkSAAQPMRBcWS/WPk56ezp133sln9gek//rXvzJz5sx617VdkdOnT7P+++/pqBTdk5Jg3Tpmf/MNDzld7bQDLgkK4pK4OC6Nj6fb2LGo3r1Nl4UQQngJV59jPgJM1Fp/VcOVq/eBGWD6dHj+eSgogIceglmzzq33VWvNrFmzePTRRykoKCAuLo6FCxfSt29f91e6DtiRkMCyf/+bDd9+yw979pBRWFi0LxxIAyzBwdC/PwmdOtFl1Cj8Bw82Sc2FEKKWuBqYZwKdtdY1+lxOQwnMAGvXQnw85OfD1KlwPj33P//8MzfffDN79+7FYrHwxBNPMGXKFPz9/d1V3TrHarWS8PvvrF+yhA0rVxJ0+jTzlYK9e8kFIjD3ci4CLo2I4JKePRk0bBjhgwZB374QFVW7X0AI0WC4GpjvB54AjgOfAceAEoW11u96oHINJjCDyQx2/fXmNuiDD8L//d+5Hys7O5snn3ySWbNmobWmV69ezJs3jwEDZL6RElJT2fvpp1z95JPsLDWxhg9wATAHuLB1a+jTh/zevfHv398E6zZtZGCZEMLtXA3MVc0yoLXW53BntMrKNajADOaxKcfYrYcfhtdeO7/jrV+/njvvvJN9+/ahlOLee+/l+eefp0mTJudf2XomJSWFHzdsYP2yZWz44Qe27N9Poc3GvpAQOmRlAXAH8AXQFegaEEBs69bEdutG7IABdBg8GN/evaFx41r8FkKIus7VwNy2qgNprd0+7VFDDMy5uSaxlX2eBx56CN544/yOmZWVxTPPPMOrr75KYWEhTZo0YcaMGdx11134yDO/FcrOzuaXX37h0osvRiUlwdatDHv0Ub47dKjc8ldigjYtW5IVG8t//fzo3r8/3YcPJ7hPH0mEIoRwiTzH7IVyc81Ukb/+at7fcgu8997595ru3LmTSZMm8d133wHQp08fXnrpJYY75qQUVdJac+zYMXbv2sWujRvZvXkzu3buZNeRI1wbGsormZmQnc1m4EL7ZxTQEejp70/P5s3p2akTIwcPJrxXL+jc2UzWERRUe19KCOFVqhWYlVJxwBCgMWZQ61qt9XYPVq5BBmYwzzYPHmwenwK47DL45hvw8zu/42qt+fjjj5k8eTJHjhwBID4+npkzZ9K7d+/zrHXDprVGaQ0HDvD7F1/w/Lx5bD90iN1nzlBYquw+oIN9/V0gtVEj2kZH065zZ9r16EFUz56oDh1MgpTGjeVethANiKtd2b7AAuBGTAPAQQP/Ae7QWls9ULkGG5gBbDYYMwa++MK8HznSDBALDz//Y2dnZ/PGG2/w4osvkpGRgVKK66+/nqeeeoru3buf/wlEkby8PHbv3Mnv33/PHz/+yJ5du/jvsGH4JCbCnj3037OHLaU+Ewi0BW4DnggLg3btOBMdzY/+/rSJjSW6Z08i4uJQ7du75w9CCOE1XA3MzwKPAdOBDzCjs1sAtwBTgRe11lM9ULkGHZjBjNB+6il4+21ITYXeveHzzyEmxj3HP3XqFM8//zyzZ8+moKAApRTjx4/nqaeeIi4uzj0nEZV6d+5ctm/cyIFduziQnMyB1FTS7OlGH/H355/5+QBsAC51+lwIEA1EWyxEh4byfO/etO7cGaKjORYaSmDbtjSKjUXFxJjgLa1uIeoEVwPzfmC+1vqZcvY9DdyptXZ7gmYJzMX27TMZwhITTRrP996DCRPcd/zk5GRmzJjBvHnzyLcHgjFjxvD3v/+dSy+9tN7MXFVXZGRkcODAAcJCQ2nfqBHs389PK1cyZf58DqekkJyZSZa1ZCfVEcAxvfc4YCkQCrQB2lgsxISGEt24Mf3atmV0//7QogW2qCjymzYlMCYGWrSQbnMhvICrgTkPuFJrvbqcfcOBL7XWbs/9qJQqqtDUqVPrXb7s6kpLMy3mw4fN+3vugbfeOrcUnhU5fPgwM2fOZO7cueTl5QHQr18//va3vzFhwgT8zvcmt3ALrTUZGRkcTk7m8K5dJCckcGe/fliOHYPkZCZ88AFfJSeXCd4ANwAf2deTMAPTGmG6wJorRYvAQKLDw7mnWzdiO3UyAbtFC2jWDJo2Lbk04KQ1QrjTtGnTmD59etF7V1vMC7TW08vZJy3mGpScbEZs28dt0bmzyRrWqlWlH6u2EydO8Oabb/Lmm2+Sak+80bp1ax588EEmTpwoz0HXAVprTp8+TfKhQyTv2sWhhAQOJybSMzKSG9q1g+PH2bx9O/+zejWF5fw78we+BS4p59h5wAngZEgIJ8LC6NuiBS1bt4amTdmhFNuyswlr1owm0dE0ad2aJjExNG7XDkvTphAcLK1yISrhaov5OeBR4FngQ0zmrxaYi+9pwEyt9dMeqJwE5nLk5MBNN8GyZea9n5/JEvbnP3viXDl8+OGHvPbaa+zYsQOAgIAAxo0bxz333MPQoUPlWeg6zmazkZ6ezvHjxzl+6BDH9+xh1cqVbNuxg82TJ+Ofmkp2cjL9Fy8mr6CAU/n5nLGVzDm0GBhvX38Z859FeVoAx/z8zDPdkZE8nplJjp8fjcPDaRIZSZPGjYls2pTwZs1o2749rTp2NGXDwsx98rAwCeyi3qvOqOz3MIHYuZDC9IrdrrUu/USIOyongbkSCxfCxIlm8guAa66BefM8k3hKa83KlSuZNWsWK1aswPF76dChA3fffTd33HEHrdzdbBe1Kjs7m+DgYMCMLA8MDCza5+vrS1RUFM2bNiUqIoLJ113H8PbtITWVL77/no9++omMs2dJPXuWUzk5nCooIN1qpQVw1OkcrUu9d/YE8Lx9/RvMffNwIAwIt1gI9/Ul3N+f8IAAXuvRgyZNm0J4ON+kpXFCa8IbNSI8MpKwxo0JbtKEkCZNiGjalMiWLU1wDwkxr8HBIBeXwotU9znmHsBgip9j/l6eY65dx47B8OGwezdYreZW4BtvwHXXea5RcejQIebPn8+7777LIXsWLB8fH+Lj47nxxhsZO3YsYWFhnjm5qBVaa3bu3Im/vz+NGzcmMjKy2gMCrVYrmZmZNAoKgtOnIT2dDxct4sSRI5xKSSHt1ClOpadz+uxZMrOzuSc6mrsjIuDMGZYcO8aE48crPPZJoJl9/XJgRQXlrsYk+wczWK4nZnR7sFKE+PgQbLEQ4udHsK8vT3foQJ+oKAgJ4dszZ9iYkUFwUBDBISGEhIYSHBpKYEgIERERXNKrFwQGQkAASWlp+IWEEBgWRkB4OIFhYfiFhaGCgorKSItfVMbVFvNgYKvW+mw5+0KAflrr7z1QOQnMLtAaduyA++6DDRvMts6dTVe3Jx9JtlqtrF69mnnz5vHZZ59RYG+6BwYGMnr0aG688UauuOKKEi0tIc6FzWYjOzubjIwMMk6dIvPkSTJOnCAjJYXM1FRuHDgQv+xsyMzklc8+49eDB8k4e5aMnBwyc3PJzs8nu6CAUeHhvNWsGWRlsScjg67p6RWe81tgmH39UUwXfXk6YBLGODQCzpRTLhB4AfgbgL8/K3x9eTQvj0CLhUCLhQD74ufri7/Fwru9ehESHAx+fsw+cICk7Gz8/fzw8/Mzr76++AcE0C0qisu7dwd/fzKtVr5OTMQvIAD/gADzGhiIf2AgfgEBxHboQFhEBPj5kZqZSUZuLr7+/lj8/PD198c3IACLnx9+gYGEhIWZkaWOxde3/PcNsLdBa01OTg5nz54lymnmuf3796OUonXr1uc1UNbVwGwFBmmtfy5nXz/gZ5nEovZZrWaU9l/+YpKTANxwA7zzjumt86SUlBQ++eQTPvroI9avX1+0PTw8nKuvvpqxY8cSHx9PaGioZysihIusVivp6elknz1Ldno62WlpZKWlmfUzZ7ikSxea+ftDVhbf/PQT3//xB9nZ2WRnZ5OVk0N2bi65+fm0CAjg3b59TS7d3Fx6/vADpwsKyLXZyNOaXJsN+90mXrNYeNg+Uv59TAKZipzFtObBdFOur6DcjZgsTwC7gdhKjrkWk7oR4O9ARXPkdLEfy6ERkA342hcL5j6mAp4D7rcH6v9qzaSCgqIsVEqponJKKXY1b06IxQJKcX1qKj/n55fY71i/OiyMf7ZoAUqRVFDAVQcPFu2nVPl3OnSgX2go+Pjw2rFj/Cc1tWg/TvVsFxDAR127mpYMMHL7dnJttuLzOx3z/qgorouMBOCL9HSePXaMTKvVLDYbZ61WHM87FPTuja9SoDWD9+5lfVYWFqCtvz99AwP5n6AgRgYH093Pz2QGtNlMHWy2MuuFNhu+WqNOnnR5dqmBFQTm/8Gk5nT7cxMSmM/Nxx+be8+ZmeZ9QAA8/jg8+aS5yPW05ORkFi9ezEcffcSWLcU5rQICAhg+fDhjx47lqquuonnz5p6vjBBewGq1kpeXh8ViIcDPD/LzOX3iBAf37iU3M5O8s2fJzcwkPzvbLDk5jB80CIvVCgUFLNmwgUMnTlCQn09+fr55LSigoKCAPs2acWv37lBQQPKpUzyybh35hYXkFxZSYLUWv1qtzO3WjT6BgVBQwLOHDvHuyZNYtabQvli1phDo7OvLL82bm6t9q5WgEyfIreC7vYq9FwCTferWSn4Ozhcbl2KS5pTnZvuxAHYClXX8rcNcuAA8DMyqoFys/VgOwUBOBWWdv9N/7PUpLQAz3mEfZuwDmAGQGzHjJkpHrj8Db1VwPoBfgOuBJUA/KnhcSinVjuJ0vquBB4FdpY4VBNwF9NZad6rknOdEAvO5y8uDRx6BOXOKW8+NGpn7z7fcUnO3uBITE1m6dCmfffYZGzduLBo0ppTioosuYtSoUcTHxzNgwAAs7nwgWwjhNoWFhVit1hKvWmu01oQEBRHk7w9WKzmZmZxOSwOrFW21ogsK0Dab+XevNa2jovCxty6PHj9Obk5O0X5ts5nPaE1YcDCtmjUDm428vDwSDx5E21uVRWW1RlutdI6OJjQoCLTm0LFjHE9NLTqfxnQ7ayDQ35++sfb+BKXY8NtvWO3fwbmc1poubdsSY2+xp6Sns/fwYcJCQswSHExYaCh+vr7F/5GWes0rKCDx0CF+Skjg+61b+Wr9el7+3//ljmuvBaVY89NPvPXRR/To0oVGERH8uGULy1evJic3l9snTGDh4sUVBuapmHSbpUdhO2j7+0JgktZ6rpv/FiQwu8GJEyYQr3ZKDTNgADz9NFx5Zc2OQTlx4gTLly9n2bJlrF69uiiBCUBkZCQjRowgPj6ekSNHEh0dXXMVE0IID7JarVitVvztCXkeeOAB5syZU6bcrbfeyjvvvIO/v3+Fgbkt0A4TfNcAk4AdpY6TB+zRWqd54LtIYHajP/6A2bNh6VJISTHboqLgmWdMt3dNj984e/Ys3333Hd988w0rVqxg3759JfZ36tSJIUOGMHToUIYMGUKbNm1qtoJCCOEh+/fvZ+XKlSQnJ5OamkqPHj248sor6dDBdFK7OvhrCLClvFHZniSB2f2ysuDf/4apU4vvQYeHw8MPwz/+UXvTAu/du7coSK9bt45MR+XsOnToUCJQx8TESP5uIUS95GpgHgjEaK0Xl7NvPHBIa/2TByonubI9ZPNmeOAB+OWX4m1+fjB2LLzyCtRmA7WwsJBt27axbt061q5dy/r168nIyChRpmXLlgwcOLBo6devHyEhIRUcUQghvNu55Mr+DpNMpMzUjvZc2UO11sPKfvL8SIvZ8xIT4aGHYNWq4kFiSpkAfe+9MGKEeyfJOBdWq5Vff/2VtWvXsm7dOjZs2EB6qedPLRYLvXr14qKLLioK1LGxsfjWxDB0IYRwI1dbzGnAzVrrr8vZNwr4QGvd1AOVk8BcQ9LSYNo0mD8fsrOLg3SrVjBypLkX7S23ebXWJCYmsmnTpqLl999/x1pqJqXAwEB69epF37596dOnD3379iUuLk4SngghvJqrgTkbGK+1/rKcfVcCn2it3X53UgJzzdMajh418z3PnQv79xfva9/eDBR76CHwtjwhWVlZbNmyhU2bNvHTTz+xbds29jtX3s7X15fu3bvTs2dP4uLi6NGjB3FxcbRt21Ym4xBCeAVXA/MW4BetdZn5i5RSbwMXaa0v8EDlJDDXIpvNBOKPPzaDxhyUgl694K9/hZtv9t4pedPT0/n111/ZunUrW7duZdu2bezatYvy/qZCQkLo3r07cXFxJQJ2q1atZJCZEKJGuRqYJwJvA68Ac4HDmIlh7sUkSHlAa/1vD1ROArMX0Bq++gpmzoSNG6HQaR6xyEgzq9XYsWYyjdoa1e2qrKwsfv/9d7Zv305CQkLR6/EKJkgIDQ2lS5cu5S4RERE1XHshREPg8uxSSql/YjKelU4y8prW+n89VDkJzF4mPx8WLDDzP+flmcFjDj4+cMEFcPfdcP310KRJrVWz2k6dOsX27duLArUjaJ86darCz0RFRRUF6Y4dO9K+ffuiJSoqSlraQohzUt1pHzsCw4EmQCqwWmudVI2TRQOPAf2B3piUnu211gcqKC+B2ctt326SlsyYUbK7G8xgseHD4Z57YODAujkJzalTp0hMTGTPnj1llpycijLtQnBwMO3atSsRrJ0XaW0LISpSrcDshpMNBT4GtmAmKBmJBOZ64dQpmDcP3n3XtKJL/9qioszo7hEjTLBu1ap26ukuNpuNo0ePsnv3bvbs2UNSUhL79+8vWko/zlVaREQEbdq0ITo6mujo6KJ151eZiUuIhsnVe8wxVR1Ia33IhZP5aK1t9vV7MPerJTDXM1lZsGIFvP++mR9aa/M4lrOwMNPtfdVVcNNN0Lp17dTVU86cOVMiUDuWpKQkDhw4UGlr28E5eLdu3ZqWLVvSokWLolfHepC339gXQlSLq4HZRtlZrEqo7nzMEpgbDq1h50745htzb7qcp5gICYG4OHjwQRgyBKKja3aCjZqktebUqVMkJydz+PBhDh8+XLTuvC03t6KJ9koKDw8vE6wdr82bN6dZs2Y0a9aMpk2bShAXog5wNTDfQdnA3AQYDbQHntVav1vNE0tgbqB27jSJTL75BvbsMfPLl9aihRnxPWAAXH01xMd737PTnuQI3o4gffjwYU6cOMGxY8c4fvx40evx48fJz893+bghISE0bdq0KFA7r5f3GhkZKc93C1HDzvses1LqfeCg1npKNT/nUmAub7vkza4/tIZ9++CDD8y96dOn4ccfzWtp4eHQtSsMHgzjxkH//t77DHVN0VqTnp5eJlg7r6emppKSkkJKSgoFBQXVOr6Pjw8RERFERkZWa2nUqBEREREyx7YQlSidH9vZ+QbmeGC+1rpaw3mkxSwqYrPB2rXw6quwbRscP16cItSZnx/06AHNm0NMjGlVjxhhArgoS2tNZmZmUaB25fV0eVdILlJKER4eXiJYh4WFER4eXrRU9T48PJzg4GB59Ew0KO5oMd8KzNJaN67m5yQwC5fYbPDbb/Df/5qAvWuX6ebet6/s6G8wSU5atIBu3WDoUBOwu3aFgICarnndV1BQwOnTp0lPTyc9Pb3EelVL6RnBzpWPj0+JgO1YDwsLIyQkhODgYEJCQqq9BAQESMAXXsnVe8yDy9nsD8QBjwObtNZjqnliCczivGRmwu+/wwsvmJZ1SkrJrGTOLBZo29Y8S921q7l3PWyYeZU5LTzDarVy5syZokB95swZMjMzycjIKFpKvy9vmysj2M+Fj49PhUE7KCiIwMDAKl9dKeNcVi4EhCvOZ1S24y9sHWbmqaPVPLEEZuFWWsOhQyZ96Pr18McfJuiePl1x6xpMS7ppU9Oy7tULunSBDh2gY0eQWSNrX2FhYYUBPDs7m6ysrGov2dnZ1Ro05y4BAQFFQdrf3x9/f38CAgLKrJe3rTr7ndd9fX3x8/PD19e3xHpVr76+vnIhUUtcDcxDytmcixn0VX6S4YpPeJ199U/AfcADQAqQorVeV6qsBGbhFjk55tnqRYtgxw44fBjOnKk4WDsEBZnUoq1bQ6dO0LOnyWJ2wQUgybvqtoKCggoDe25uLrm5ueTk5LjtNS8vr7a/crVZLJZyA7Yrwd1iseDj44PFYilaauu9Uqpo8fHxKXe9qvfVKVudzwJlXnv06FFzmb/sJ67oJOu01kNLl5XALDxFazhwANatg19/NV3de/aY0eFr10Kp6Z3LiIw097Lz84sDd/fu0K8f9OkjgVuUZLPZyMvLIycnh/z8fPLy8sjPzy+xXt62cy3reC0sLKSwsJCCgoJyXyvaV3p+c1GzajQwV4cEZlFbrFYTpH/4AbZsgd27TTd5SgoEB0NGBmRnV34MHx8TrNu3NwlT8vNNMO/a1Ywm79ULGjWqv4lURN2mtT7noF5QUIDNZsNqtRYttflea11isdls5a5X9b46ZV35rOPnXPrVPj1t2cCslNpPFdm+Sv0SO7jtL6K4DhKYhVfS2gTp77+Hzz+HpCQ4csTkDM/Orrq17aCUucfdurXpIm/RwgTrjAzo3NmMLI+NNd3pEsCFaBgqvMeslFpAycD8J6A58ANwwr5+MXAc+FZrfZcHKieBWdRJWVkmw5m/PyQnm3vaCxaYVveZM+aed3nPZlfGz8+01vv3N4PTWrY0FwH+/qYbvmNHE8xbtZJBa0LUZa4O/roXMxfzSK31YaftbYAVwOta67keqJwEZlFv5eSY7vI//jBzW/v5mWQqv/4Ka9aYx8Fyc6sfwMF0o4eFmS7zpk2hcWM4etQkY4mOhnbtTCBv3960xsPC6ua0nELUR64G5kTgCa31knL2TQBe0Fp38kDlJDCLBi8nxwxS270b9u41rePUVBPEv/4aDh40LfTcXNe70EtTytz/jow06/n5Jjd5eLjZ1qQJNGtmWuP9+pltjRub19BQ6WYXwp1cDcw5wASt9fJy9o0BFmmt3T5tjfMIbsmPLUTVbDYTtPftM13mISHmfWIifPKJmX4zI6M4kJ9La7w8Pj6mxe/nZ54dDwoyg9y6djXBvbDQ1KNx4+Ig36yZuafesqV5beh5z0XDVjpvtiuBeQuQhenKznXaHgSsAoK01v3cXVFpMQvhWbm5ZhBbZKRZT0uD776DrVvNQLa0NBPgMzPh7FmTQa1DB0hPN/uOHHFfXQIDzSNmjsFz/v5mYJwj0IeEmK73vn1NK93Hx/QkNGpU3IJv0sR03TdtarrtJdiLusjVFvOfgC+BDOArigd/XQFEAJdrrdd4oHISmIXwYnl5JrAnJ5t72MePm/epqWakeWioaaH/9psJ9jk55gIgLw8KCkxL2mYzAd8Tj80GBJiAXlhozuvra1r1/v7Fgb9pUxg0yAT/oCBTz6AgU3fHEhZmls6dzbwLJLUAABhoSURBVPcKCjLd976+5oIgMFC684X7uDyJhVKqGzAFGAi0BI4BG4HntNa7PFQ5CcxCNABam6DtCOKHD5sWe3q6Sal6+rRptTdpYrq+z541ZX7+2QT5/HwTfB2B3mYzgbKm//tQyrTkfX0hLs4E7IAAMzagoKDkRYFjad/eZJQLCDAXD7t2mdH3QUHm8yEh5n1wMPTubXoIAgLMz8AxyM9x8RAQIBcI9cF5zy7lSRKYhRDnSmsT6LKyYP9+0+2elmaCvaN7PiPDBMcuXUwXekYGrFxpPpefXxz0Ha37qCgTXHNyzIVDVlZtf8vy+fqaixg/P7N+9KgJ4s6Lr6957dLFXOz4+8PJk6b3w9Gz4NzDEBhoplV1vN+6teQtB8cSGAht2phbHr6+5md56JDZ5+dXXM7xuZgYcxHi62t+rkqZfX5+pifFUc+GRAKzEEKcB61NgHa07tPTTdCPiirutv/5Z7M9K8tcAOTkmO25uWbgW6tW5v2xYybTXEFB8cWAY7FaTcDT2pQ9ccIcq6H8F+m4beAI1EePmiBeevHxMY8CRkWZssePm4sNxz7nxd8fBg82FwA+PrB5s/nZWizF2xzr7dqZixgfH3MBl5Bgju/Y7/yZiy4yPR0Wixl4mZZWtqyvrxkbERdn3mtteosaNYIHH3S9K3sIcCMQA5SeKE9rrf/k7l+EBGYhhHCNzVbcQ+C4n15QYIL33r3F2x33+R0XBzExphs8P99ksEtMLO4tKCgofgWT3MbRg/Djj+bYzhcOjlsJjgF4hYWmd+LQIbNda7M41sGcW2tT9lwS79RPrg3++jMwB0gD9gBlpknRWl/m9qpJYBZCiAZH6+JAX1hoLgYcs3RarWY9NbX4AsJxy8HxPjLSdKkXFpoW8/Hjxb0QVmtxbwSY+/s2m9n+88/m4sD5QsOx3rq1ySFgtZou/19/NetWa/G4BscyYIDpirdaTcs6JaX4YsRRRuviAYVWq6n3b7+ZlvahQ64F5j3Az8BdWusam8RUArMQQoiGxvkec2W311sD82syKAshhBANXWWBeQvg9tmjhBBCCFGxygLzX4CHlVKDa6oyQgghRENXWWBeDkQD3ymlMpVSh0otBz1VKaUUSinJky2EEKLemjZtWlG8c1bZ4K8FlJybuQyt9Z3uqqDTeWXwlxBCiAZFEowIIYQQXsTVUdlCCCGEqGGVBmalVE+l1CdKqRSlVKH9dbFSqmdNVVAIIYRoSCq7xzwAWAfkAJ8Dx4EWwFVAEDBYa73F7RWSrmwhhBANjKvzMa8GwoE/aa0znbaHAauBM1rrkR6onARmIYQQDYqr95gHAi86B2UA+/uZwCDPVVEIIYRomCoLzFU1W6VZK4QQQrhZVV3ZEcCwUl3ZIcAapCtbCCGEcAtX7zFfCKwFcoEvgGOYwV9XAMHAUK31Zg9UTgKzEEKIBsXlBCNKqV7A08ClQGPM3MzrgGe11n94qHISmIUQQjQoLicY0Vr/rrW+TmvdXGvtZ3+d4Kmg7FxByZUthBCiPnMpV7ZSyge4EtivtU4o70D25CLttNbLPVFRaTELIYRoaCprMd8CfARkVfL5TOAjpdSNHqqfEEII0WCVF5jna633V/QBrfUB4B3gdg/WSwghhGiQSgfmvsBKFz63Gujv/uoIIYQQDVvpwBwGpLvwuXR7WSGEEEK4UenAnAq0deFzMfayQgghhHCj0oF5A67dO77DXlYIIYQQblQ6ML8O/Ekp9ZpSyr90YaWUn1LqdWAY8FpNVFAIIYRoSMpk/lJKPQy8ApzCDAQ7aN/VFhgBNAEe0VrP8kiF5DlmIYQQDUyVKTmVUoOBx4ChQJB9cw4md/YMrfV6D1ZOArMQQogGpcqUnFrr77XWV2JGXrewL+Fa6ys9GZSdKygpOYUQQtRnLqXk9AbSYhZCCNHQuDyJhRBCCCFqlgRmIYQQwotIYBZCCCG8iARmIYQQwotIYBZCCCG8SI0EZqVUG6XUJ0qpM0qpDKXUp0qpmJo4txBCCFGXePxxKaVUMPAbkAdMATTwHBAM9NJaZ5UqL49LCSGEaFCcH5fyrYHzTQQ6AF211nvtFfgdSAT+DLxaA3UQQggh6oSaaDF/CwRqrS8utX0dgNZ6SKnt0mIWQgjRoNR0gpEeQEI527cD3Wvg/EIIIUSdUROBuTGQXs72NCCyvA84coc6L5I3WwghRF3nnB/beXFWE13Z+cCrWut/lNr+HPAPrbVvqe3SlS2EEKJBqemu7HTKbxlX1JIWQgghGqyaCMzbMfeZS+sO7KiB8wshhBB1Rk0E5s+BgUqpDo4NSql2wMX2fUIIIYSwq4l7zCGYBCM5FCcYeRYIwyQYOVuqvNxjFkII0aDU6D1me2avYcAe4H3gQ2A/MKx0UBZCCCEaOo+3mKtLWsxCCCEampoelS2EEEIIF0lgFkIIIbyIBGYhhBDCi0hgFkIIIbyIVwZmyY8thBCivnPOm+1MRmULIYQQtUxGZQshhBBeSgKzEEII4UUkMAshhBBeRAKzEEII4UUkMAshhBBeRAKzEEII4UUkMAshhBBeRAKzEEII4UUkMAshhBBeRAKzEEII4UW8MjDXl1zZdb3+zuS7eJ/68j1Avos3qi/fA7z3u0iu7Fpgz31a29VwC/ku3qe+fA+Q7+KN6sv3gLrxXSRXthBCCOGl6mxgrk7XhKtl3V3OVZ44b335LrX1PTxxbm//nVSnrLd/l9r8N+Xu43n778QT564vf1/VLetQZ7uyq9M14WrZ+lKuLtRRfjbeV64u1FF+Nt5Xri7UsQ79bKQrWwghhPA2Xtliru06CCGEEDXN0WL2usAshBBCNGTSlS2EEEJ4EQnMQgghhBdxe2BWSl2nlPqvUuqgUipHKbVbKfWiUiqsVLlIpdQ8pVSqUipLKbVaKdXTxXP4KKUeV0odUErlKqV+U0pdW9PfQyn1J6XUB0qpffYy+5RSc5RSUS6e44BSSpezjK2F79KugrpopVQjF87h8d9JNb7Lgkq+yy4XzlFTv5d4pdQapdRxpVSeUuqwUmqxUqp7qXJtlFKfKKXOKKUylFKfKqViXDxHoFLqZaXUMfvPa6NSanBNfw9X/1+o5BwV/T4vqIXvMrSCupx28Rwe/51U47usreRnu8KFc9TI76Wc866wn+e5Utu9Oq64TGvt1gXYBCwGbgaGAA8Dp+3bfexlFLABOAzcCIwC1gGpQLQL53geyAMmA5cBbwM24Ioa/h5LgK+BO+1l7gGOAElAqAvnOACsAAaWWiJr4XfSDtDAC+XUx+INv5NqfJeO5XyHG+zf7yUv+r3cCLwMXGf/LrcC24EMoK29TDCQCCQAY4ExwB/APiDEhXN8aP/5TAT+BHwK5AAX1PD3qPL3VsU5NDC/nN9JcC38Tv6/vXOPvqOq7vjnS34koCCQpFHe4SHWRLG4olQFjRCJXUIAlagNEsG0QayrBmxBraXQ1OIqiIiVoIAIPzQWKkiAUhDwkfJQQiGQIl2pEBIhkIQkJkZIwtr9Y5+7MpnMnTv3/u4ruD9rzfr95syec/Y+e+bumfOYMzHp85mcLhMqltFxnzRhy7iCOp2V7DujX/xSYNezqezZmfS+jyuVbexApf1RQdopqRKPSvvHp/33ZmR2A14Avt4g/zGp8s7Lpd8FLOyyHUUy704yp1Uo4ylgsONOrmbL2LQ/o4X8u+KTqrbUOe9LSWZ8v/ilTtlvSHqelfb/GngZODgjcwCwGTizQV5vSXmdmkkbAJ4Abu6yHS35LSO71Y9wj30yMe1PaiGvnvmkyJY6Mlem+3lkv/kF2ANYjgfefGDu+7hSdWt7U7aZrShI/mX6u3f6OwV4xszuyZy3FpiXKreMycBwYDCXPgi8WdIBTStdQBU7Ktrac7qgZ1d8AkOy5RRggZktapcuHWJV+rs5/Z0C3G9mi2sCZvYk8F80vlemAJuAH2TO3QzMBSZLGtEupQvYyo7t5V6pQ94nQ6GXPoEGtkh6FXASMM/MXuiwLq3wFeAxM/t+wbG+jytV6dbgr/ekv4+nv+Pxprk8i4D9JO1Sktd4/MlmcS699oM7js6Rt6NVmSzHSdqQ+oDub3c/Zgn19PxnSZtTf+bNFftneukTaFDnkt4FHAx8t4k8u+YXScMkDZf0erz5bDlQ++Epu1ca1et44Ekz21Bw7nC8TtpGAzuKaPZe+VTyx4bUd3rkUPQto6It10l6WdIqSd+r2O/fVZ9A0345EdiV5u6VrvhF0hH4A/an64hsr3FlGzoemCXtDZwP/NjMHkzJI4HVBeK1J7Q9SrIcCayx1M5QcO7IVnUto44deZldga/hPzQ3Vch2Ht5PNRnve3sRuFHSyW1Rug51bHkJv2ln4v0rnwPeDNwr6Y0NsuyJT6CaX/CbeRPlQSJLt/3yAF7//wscijftPp+Old0rZfdJo3Nrx9tJmR1bUdFvWQaBM4BJwF8Co4C7JU1sg95FlNmyFrgIH1NyFPCPSa/71HjgZ7d9Ak34Bb9XnsfHzlShK36RNBz/fbrQzJ6oI7bdxZW6dLg/YBfgQeAZMp3v+AUyt0B+Bt5HsG9Jnt8ClhekH5zO/Xi37MjJDAC3AOuAQ1ssZxjevLe02z6pI7svPlCktL+1Fz5pwi874TfrD4dQTkf9ArwROBzvN1uAD14Zm45tBC4oOGc2sLlBvnfgzeD59EnJL0d2y45Wr8GSsnYFlgDzu+2TOvJvxZuHS/tbu+2TJv2yFz6e4atDKKsjfgH+Dh9Uu3MmLd/HvF3FlbKtY2/MknbG3zwOBCab2bLM4dUUP72MzByvx2pgdym3svSWc9vaL9LAjprMDnjTzyTgBDNb2EpZZvYyPtJ7H0l7tq51MVVsyemzFB/l+LYGWXfVJ9CULVOA3WmuaW4rOu0XM3vczB4w7zc7Gg9c56TDZfdK2X3S6Fxos18a2AE0fw2WlLUOuJXG12ZLVLElJ/8QHhiq3Ctd8wk0ZcvJeCvqUO6VtvsldRF8ER/AOULS7toyhbO2P4ztKK40oiOBWdKOwA3ABHyo+aM5kUV4m36eccDTZra+JPtFwAh8Skz+XID/aV7jYirYUWMO8BHgo2Z2V5uKzzepDIkmbGlFl675BJq2ZTo+XeK2NhXfVr9sk7nZGryfq9bXWHavNKrXRcABaUBP/tyNbNuf1jYK7BjqNVi3qDbkUV5AgS1l4g2O98wn0NCW6cAjZvZIO4pqQx41DsRbvgbxAFrbwLvcVuPdbttFXKlEu1/B8WD/b/i8vKPryJyAO+49mbTX4CMGL22Q/xj8Aj43l/5j4NFu2pHkLsLnug25qQNvDl8ALOm2T+qctx/elH1NP/ikWVuA1+LNi5f0o19KdF4PXJ72P5tsODAjMxbvM6875SXJHZbus+k5Wx7HR912046WrsGS/F8DPA38rNs+qSMzAW8GPr9ffVJmS9LfgFn95he8xWtiwWbAten/XdgO4kplmzvg+MtS5cxm20nn+ySZHYB7gaX4hx8mAz/Bmwv2zeW3Gbgyl3YBPiDnzOSUy/DgeGyX7Tg7yVxZIHNQmR14f89cfLDFe1M9/Dzl99Ee+OQi4GJgatLndLyvaA3whn7wSVVbMrJnJtm3luTXS7/ciDfPHZ/Kmgn8KtX5IUnm1fgbzqNJbgrwCLmP2AD7J1v+PlfGXPyNYgbejHlD8lPdOumQHZX8VmQH/lb0beDP07U1PdXHRtrfT17FluuSHR/EB3+dhbfKPA2M7gefVLUlI/t1/GFvTJ28euqXOjrl+5j7Pq5Utq0DlfVUqrCi7R8yciOBq1KlbcAncr+lTuVfnUsbhg8GWIKPNlwIfLjbdiSn15PJ67xVGv6DdDfwXLoh1uBPZ5N74RPgNHyA0+qkz3Lge+SCci990sz1lWQfocHTbo/9cjb+Jr4m3QNP4CNPx+bk9gP+HW+9WIeP+M/LjK1TBzsDX03+fBEfoTux23ZU9VuRHcBx+Lztlcknq4Cbgbf3wifA59P1vTbpsxQfPLRnv/ikyetrR2AFJW/svfZLHZ22Cswpra/jStUtln0MgiAIgj4iVpcKgiAIgj4iAnMQBEEQ9BERmIMgCIKgj4jAHARBEAR9RATmIAiCIOgjIjAHQRAEQR8RgTn4g0fSJyRZnW1Sr/V7pSHpNklfK0h/k6TvSHoqLSO4XtLDki6UdFBOdpmkq+vkf4GkptZOlvQ5Sf+dvnsfBD1loNcKBEEfcRK+8k6W7n4j9xWOpKPwr1B9Mpc+DfgO/lGYL+MLQozAF0OYgX/Fqcra4K3yTeBv8WU+r+1gOUHQkAjMQbCFh82s8iICkkaY2UudVOgVyN8AN5nZs7UESePxrzX9EJhmvppXjf+U9BXg1E4qZWYbJA3in5mMwBz0lGi2CYIKSJqUmrZPkHSVpJXAbzLHD5M0T9IaSb+XNF/SuwrymSVpiaQXJf1C0jtTs+wVGZnZRU2xkgYlLc6l7SLpX1Lz70ZJv5Z0Tnb5uozuH5B0maRVklZIukbSbrn8BiR9QdLjqTl5haT/kHSIpL0lbZb06QLdZqem593yxzIy+wLH4J96zTIL/0TiX+WCMgBmtsnMvlUv30akeqvXVXFERnQucKikt7daVhC0gwjMQbCFYSkw1bZhBTL/in8AfxqpOVbS2/BvBu+GN7t+GP+O8l2S/qR2oqSZ+DeS78QXFhgEfoCvgNM0aRnFO/C3yYuBP8Obg8/DP8if51J8gYGP4YswTE36ZLkhnT8v6fgX+DeWX2dmv8G/hTwzp8cA/q31uWa2tkTlY/DfnPm59KOBB8xsZcm5RSjnr4GkS35N3XOBd+S2+/FVlpZm5BYAvwPe36QeQdBeevGB7thi66cN+ATFiyvMz8hMSmnXF5z/U+AxYMdM2gDeT3pD2h+Gv2Hfkjt3Wsr3ikzabGBzQTmDwOLM/qnp3Hfm5M7FP8I/Kqd7fjWdOcDvMvvHJLkzSuqqltc7MmkfTGkTGtTztylYOhNfAOHagvRhqR4HgIHcsWV1fFbbtqm/zLnn4Es0brNqEHAfcFuvr8nY/rC3eGMOgi2ciA82qm2fLJC5Mbsj6dXAEfhaw5Z5awNf2ebd6f/9gb2SXJbr8aXlWuH9wP8Bv8i9Md4BDAcOz8nfmtt/FHiVpNFp/xg8YF1ZUuZd+ANH9q15JvCQmT3YQN+98FWMqvISHrQ3AZskjc0dv4Wt/VXbvlsvQ0kn4oPLzjKzWwpEViQ9g6BnxOCvINjCY9Z48Nezuf3RePPseWnLUwu6e6a/z2UPmtlGSaubVTQxBjgID1xFjMrtv5Dbrw1c2ykjv9JKBrSZmUm6DPiypFnAHsD7yDVv12GnTJlZluFLW+Y5HG+WPh5fji/PqqKHAUnLiwqXdBg+sGuOmW0zXSvxe3xZxiDoGRGYg6A58uukrk5plwDXlZxXC+ivzSZKGo4HtywvAjtIGjCz7CCwfKBdBSzG+4yLeLJEnyJWAqMrjDa/Gvgn4BT8gWM98P0K+a8C3lSQfjcwTdJoy/Qzm9kCgGw/fatI2gvvN58PfKZEdCReD0HQM6IpOwiGgJn9FrgXOBRYYGYP5rckugR4Bh9wleUktr0Pl+BviuNqCZJGAn+ak7sdf9NcW1Suma1q0pw78H7d08qEzGwNHohPx/u5B81sfYX8fwXsVzCo7mK8Dr5RZ8DdkJC0M/AjYA0w1QpGfmc4AB/sFgQ9I96Yg2DozAJ+Atwu6SpgOd7EPQFv/f2Cmb0s6XxgTpoadT1wCP5Ri3W5/G5NaVdIOg9vWj0b+G1O7hp84No9ki7E+4yHAwcDU/DBTZXnWZvZnZJuAi6RtD9wT8pvIj73+OcZ8W+ypQ9+TsUifgZ8CRgPLMyU+5ikGcAVwH2pfp4AdsQD5Ux8NHmrc8YvxR+cpgPjMjPJABaZ2ToASaPwroHZLZYTBG0hAnMQDBEz+2Wa+3ou8A182tRz+PSbORm5y9Ngsc8CJ+OB9CPkBoSZ2QuSjsXfJK8Hnsb7rz9A5q059U+/D/g88ClgLN6svBi4jfp9z2VMxUctnwKciU/7egB/2Mjq+JCkXwPPm9nCbXIp5qd4vRxHJjCn/K6R9DBwFvBF4HVJ/8X49LKplvkoSZP8Mf6AUdTcfiRbpm8di3cj/KjFcoKgLcgs32UWBEE3kbQMuN3MZvRal6pIGodPETvVzOqOgi44bzbwIWCc9dmPj6Q7gWVm1tGvjAVBI6KPOQiCykjaR9JE4HJ8XvbcJrO4CB9NfnybVRsSkibgb8/n91qXIIjAHARBM5yOz2UeBXysmT5sADNbDXycLVO0+oUxwHQza3YkexC0nWjKDoIgCII+It6YgyAIgqCPiMAcBEEQBH3E/wNJAGAxxev/0gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Compare\n", "fig, ax = plt.subplots()\n", "ax.plot(frequency/1e9, attenuation_perturbation_gm3, 'r', label=\"Theory: {:.2f} $\\mu$m\".format(surface_roughness3/sc.micro))\n", "ax.plot(frequency/1e9, attenuation_perturbation_gm2, 'k', label=\"Theory: {:.2f} $\\mu$m\".format(surface_roughness2/sc.micro))\n", "ax.plot(frequency/1e9, attenuation_perturbation_gm1, 'b', label=\"Theory: {:.2f} $\\mu$m\".format(surface_roughness1/sc.micro))\n", "# ax.plot(frequency/1e9, attenuation_tlm_gm3, 'r', label=\"Theory: {:.2f} $\\mu$m\".format(surface_roughness3/sc.micro))\n", "# ax.plot(frequency/1e9, attenuation_tlm_gm2, 'k', label=\"Theory: {:.2f} $\\mu$m\".format(surface_roughness2/sc.micro))\n", "# ax.plot(frequency/1e9, attenuation_tlm_gm1, 'b', label=\"Theory: {:.2f} $\\mu$m\".format(surface_roughness1/sc.micro))\n", "ax.plot(hfss_results3.f/1e9, attenuation_hfss_gm3, 'r--', label=\"HFSS: {:.2f} $\\mu$m\".format(surface_roughness3/sc.micro))\n", "ax.plot(hfss_results2.f/1e9, attenuation_hfss_gm2, 'k--', label=\"HFSS: {:.2f} $\\mu$m\".format(surface_roughness2/sc.micro))\n", "ax.plot(hfss_results1.f/1e9, attenuation_hfss_gm1, 'b--', label=\"HFSS: {:.2f} $\\mu$m\".format(surface_roughness1/sc.micro))\n", "plt.autoscale(enable=True, axis='x', tight=True)\n", "ax.set_ylabel(\"Conductor attenuation (dB/m)\")\n", "ax.legend(frameon=True, framealpha=1)\n", "ax.set_xlabel(\"Frequency (GHz)\")\n", "ax.set_ylim([-0.5, 5]);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Perturbation approach provides a reasonable value for conductor attenuation." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" } }, "nbformat": 4, "nbformat_minor": 2 } GradientModel-0.0.2/examples/wr3.0-waveguide-gold-plated.ipynb000066400000000000000000003541641413653641000241510ustar00rootroot00000000000000{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Example: Gold-plated WR-3.0 Waveguide\n", "\n", "- Calculate the effective conductivity of gold using the Gradient Model for different surface roughnesses." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%load_ext autoreload\n", "%autoreload 2" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import scipy.constants as sc\n", "import matplotlib.pyplot as plt\n", "\n", "# https://github.com/garrettj403/GradientModel\n", "import gradientmodel as gm\n", "\n", "# https://github.com/garrettj403/Waveguide\n", "from waveguide import conductivity_4k\n", "\n", "# https://github.com/garrettj403/SciencePlots\n", "plt.style.use(['science', 'notebook'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Material properties" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# Metals\n", "metals = [\"Al\", \"Au\", \"Cu\"]\n", "\n", "# From Ashcroft & Mermin\n", "ef = dict(Cu=7.00, Au=5.53, Al=11.70) # Fermi energy, eV\n", "vf = dict(Cu=1.57e6, Au=1.40e6, Al=2.03e6) # Fermi velocity, m/s\n", "ne = dict(Cu=8.47e28, Au=5.90e28, Al=18.10e28) # Electron density, m-3\n", "\n", "# From Pozar\n", "cond = dict(Cu=5.813e7, Au=4.098e7, Al=3.816e7) # Conductivity, S/m" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Room temperature" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# Frequency sweep for gradient model\n", "frequency_gm = np.linspace(280, 360, 5) * sc.giga" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# dc conductivity\n", "conductivity_0 = cond['Au']" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "# Gradient model: 50nm surface roughness\n", "surface_roughness1 = 50 * sc.nano\n", "zs_gm1, conductivity_gm1, ur_gm1 = gm.rough_properties(frequency_gm, surface_roughness1, sigma0=conductivity_0)\n", "\n", "# Gradient model: 75nm surface roughness\n", "surface_roughness2 = 75 * sc.nano\n", "zs_gm2, conductivity_gm2, ur_gm2 = gm.rough_properties(frequency_gm, surface_roughness2, sigma0=conductivity_0)\n", "\n", "# Gradient model: 100nm surface roughness\n", "surface_roughness3 = 100 * sc.nano\n", "zs_gm3, conductivity_gm3, ur_gm3 = gm.rough_properties(frequency_gm, surface_roughness3, sigma0=conductivity_0)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "# Polyfit for HFSS\n", "p_zs_real_gm1 = np.polyfit(frequency_gm, zs_gm1.real, 2)\n", "p_zs_real_gm2 = np.polyfit(frequency_gm, zs_gm2.real, 2)\n", "p_zs_real_gm3 = np.polyfit(frequency_gm, zs_gm3.real, 2)\n", "p_zs_imag_gm1 = np.polyfit(frequency_gm, zs_gm1.imag, 2)\n", "p_zs_imag_gm2 = np.polyfit(frequency_gm, zs_gm2.imag, 2)\n", "p_zs_imag_gm3 = np.polyfit(frequency_gm, zs_gm3.imag, 2)\n", "p_ur_gm1 = np.polyfit(frequency_gm, ur_gm1, 2)\n", "p_ur_gm2 = np.polyfit(frequency_gm, ur_gm2, 2)\n", "p_ur_gm3 = np.polyfit(frequency_gm, ur_gm3, 2)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4sAAAE8CAYAAABpQySHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACXQklEQVR4nOzdd3jVRdbA8e+Q0EKRjrQkCFKlSEsCUqUZmnVVwFVXBXXtXUEJKqvv2lZdG9hWib1CAKVJUxKaoFIUEAhdSugQUs77x9yW5CYkIbcl5/M8eZI7v5LJFTM5vzlzxogISimllFJKKaWUp3KB7oBSSimllFJKqeCjwaJSSimllFJKqTzCA92BYGKM0ZxcpZQqI0TEBLoPoULHR6WUKlucY6QGi/mYMGECCQkJRb7OGIMv1oH64r7a19C6r/Y1tO4bSn311X2Dra8JCQlMnDixxPtT1pSF8dFX9w2lvvrqvtrX0Lqv9jW07ns298xvjDRa4MbNGCNn+36UlX9Q/r5vKPXVV/fVvobWfUOpr766bzD31XEPnVkspLI2PvrqvqHUV1/dV/saWvfVvobWfUvqnp5jpK5ZDBETJkwIiXv68r6+EErvgb6voXdfXwil9yCU3lcVuvT/Cd8JpfcglN7bUHoP9H0NvfuWNJ1Z9BDMT07LOn1ffUffW9/Q99V3dGbR/3R8DG763vqGvq++o++tb+jMolJKKaWUUkopv9BgsYSFypRyqNH31Xf0vfUNfV99R9/b0KT/3XxH31vf0PfVd/S99Q1fvK+ahuqhJNJslFJKBT9NQy0aHR+VUqrs0DRUpZRSSimllFIF0mBRKaVUaEhMhOhoKFfOfk5MDHSPlFJKqcDz4fioaageNM1GKaWCVGIijBkDJ0642yIiYPJkGDWqyLfTNNSi0fFRKaWCVAmPj5BzjNRg0YMOhkopFaSio2HbtrztUVGwdWuRb6fBYtHo+KiUUkGqhMdH0DWLSimlQsXWrfDss94HQoDUVL92J5gYYxobY141xiw1xpwwxogxJroY93nUce0SH3RTKaVUSTt+HGbNgvvu8/n4GF4id1FKKaVK0owZ8PTTkJxc8HmRkf7pT3BqDvwNWAksBgYW9QbGmPOAccBfJds1pZRSJWr7dvjwQ5gzB376CU6fLvj8EhofdWYxF2MMxhgSEhIC3RWllCo70tJgxw7366NHbaAYEQHXXAP33guVK+e8JiICJk0q9LdISEhw/Y4vJRaJSH0RiQc+L+Y93gASgfUl1y2llFJnbetWWLPG/XrXLhg3DhYsgIwM6NoVHnvMfpzl+FgQDRZzERFEpEwEizt27ODOO+8kLi6OiIgIjDFszSe3OS0tjZtvvpk6depQpUoV+vfvz6+//prnvFOnTvHggw/SoEEDKleuTFxcHIsWLfLxT6KUCknHj8PHH8OIEVC/Pjz+uPvYsGH22F9/2c8vvghTptg1GMbYz0VcvJ+QkOD6HV8aiEj22VxvjBkJdAIeLZkelR46Piql/O7QIfj6a7j9djj/fGja1D4oderSBe64Az7/HPbvh2XLbEA4adJZj48F0WCxDNu0aROfffYZNWvWpGfPnvmeJyIMHz6c7777jldffZUvv/ySjIwM+vbtyw7PmQDgpptuYsqUKTz55JMkJSXRoEEDBg0axOrVq3380yilQkJ6OkybBtdeC/XqwciR9nVWlp1NdKpSxc4oVqnibhs1yj5pzc62n0toICyLjDE1gZeAh0TkYKD7E2x0fFRK+c0XX0D37lC7Nlx+ObzxBmzaBOecYx+kOh9whoXBq6/ClVdCrVo57+HL8dH5lFU/xPF2lB1ZWVmur6dMmSKAbNmyJc9533zzjQAyf/58V9uhQ4ekZs2acuedd7raVq9eLYC8++67rraMjAxp0aKFDBs2zDc/hFIqtDz+uIgd+uxHXJzIK6+I7N7t1244ft8HfNwpqQ/gZkCA6EKe/zZ2naOzKvoCYEkB54u3jwkTJpzVf4dgpeOjUqrEZWeLbNgg8uqrIikp7va337bjYXi4yEUXiTz5pMjSpSIZGT7v0oQJE7z+bvccI3VmMZACvMF0uXKF+88/bdo0GjZsSN++fV1t55xzDsOGDePbb7/NcV758uW5+uqrXW3h4eFcc801fP/996Snpxf4fYwxjB8/nldeeYWmTZtSrVo1evfuzdq1a3Oc16dPHy666CK+++47OnbsSOXKlbnwwgtJSUkhMzOTxx57jAYNGlCrVi1uuOEGjh8/XqifUylVgkRg6VK4+2547z13+1VXQYcO8MwzsGWLXaR/551w7rmB62sZY4zpCfwduE1ECp2TK16CSJ8u2QjgGKnjo1KqROzfD598AjfdZNNDW7WyY97Uqe5zhg2zGTYHDsDixXZJRmwshPu+Dqnn8gzJ+YDQRauhBkruDTS3bbOvIehSq9auXcsFF1yQp71t27Z88MEHHDt2jKpVq7J27VqaNm1KREREnvNOnz7Npk2baNu2bYHfa+rUqbRs2ZKXX36Z06dP8+CDDzJixAg2bNhAuMf/NJs2beLBBx9k3LhxVK1alYceeojhw4czfPhwMjMzef/991m/fj0PPvgg9erV49///nfJvBlKqfyJwK+/2jWGn3zi3t+pWze48Ub7dbt2oGl3gfYW8A6wwxhTw9EWDoQ5Xp8UkYKjF18LkTFSx0elVL6uvdaOhZ7q1IH+/aFfP3dbvXo2YAxSGiwGyrhx7kHQ6cQJ2x5EAyHAwYMHiY6OztNey5EvnZaWRtWqVTl48CA1a9bM97yDB8+8LKZ8+fIkJSVRvnx5V9tVV13FsmXL6N69u6vtwIED/PTTT5x33nkAZGdnM2LECLZs2cLcuXMBGDRoEIsWLeLzzz/XwVApX/v8c0hIgHXr3G2NGsHVV9sBUwWT1o6PW70cSwPuBf7jzw7lESJjpI6PSpVxzoekc+bYj9dfB8f/e5x7LlSsCBddBAMGwMCBNrOmkJkLwUKDxUDJb6PMINxgWkS8lprPPU1d2PMKMmDAgBwDYbt27QBITU3NMRi2aNHCNRACtGrVCrADoKdWrVoxffr0fPumlCqmXbts6e6oKPv69GkbKNaqZRffjxwJPXuG3KBYRvT10vYfIAy4E9jk1954EyJjpI6PSpVBu3fD3Lkwe7b9vGeP+9icOTB2rP16/HhbqTRXRkGo0WAxUCIjbVqNt/YgU6tWLa9PPdPS0gBcT0tr1apFqpeB3HlerdyVm/L5Xp4qVqwI2JLjnnI/oa1QoUK+7ZmZmWRlZeVI01FKFcPBg/DllzbNdMECuwZjyhR7bMQImDHDPj31+INW+ZYx5krHl50dny8xxuwD9onIQmNMFLAZeFJEngQQkQVe7nMICPd2LCBCZIzU8VGpMiAjwz2upadDs2Zw8qT7eIMG7pnDgQPd7bVr+7efPqK/HQJl0qSc6zGgRDfQLElt27Zl9uzZedrXrVtHZGQkVatWdZ339ddfc+LEiRzrMtatW0eFChVo3ry53/qslCohx47Zhfcffwzff28HTYAKFWyJbqeqVSE+PjB9LNs+z/X6dcfnhUAfwGBnDENrijdExkgdH5UqhbKz4eef7czhnDnw22+wc6cNGCtWhEGDbNA4cKANEtu0sfsbllKhNXiUJqNG2Q0zfbSBZkkaPnw4O3fuZOHCha62I0eOMH36dIYPH57jvIyMDD7/3P23S2ZmJp9++ikDBw50PQVVSoWQSZPs76WkJLsX4oAB8O67sHcvvPNOoHtX5omIyeejj+P4VsfrhDPcp4+IXOSPPhdKiIyROj4qVUqkpdkx7eqrbcGZLl3gscfghx9sRdPffnOf+9VXMHMm3HMPtG1bqgNF0JnFwBo1KuAD3xdffAHAypUrAZg1axZ169albt269O7dG7CDXFxcHKNHj+a5556jZs2aPPPMM4gIDz30kOteHTt25Oqrr+aee+4hIyODpk2b8sYbb7BlyxYS/bwtiFKqiLKybGrpxx/bzYH/8Q/bfvXVsGiRLVJz1VV2g2Cl/CHAY6SOj0qVYkeO2LX3jjW97N4NN9/sPh4V5U4t7dcvZ0ppKQ8Oc9NgMRfnIu8JEyb4dv+oIHHVVVfleH377bcD0Lt3bxYsWADY/aaSkpJ44IEHuP322zl16hRxcXH88MMPNGnSJMf17733HuPGjWP8+PEcOnSIDh068N1339GpUye//DxKqSIQgZQUGyB+9pl7kf7ate5gsWNH+PHHgHWxJCUkJDBx4sRAd0OFCB0flSpFMjNhxQp3amlysh3fli+3x1u3hhtusDOKAwdC8+ZlLijMjylKJa7SzhhTlP2JlVIqdH34IUyYAFu2uNuaNbNVTK+91g6cpZgxBhHRvwQKScdHpVRIWrgQXnkF5s2Dw4fd7WFhNotm3jwtyuaF5xipM4tKKVUWOIPCpk3tZxHb1rChey/ELl30SapSSqnQlJYG8+dDkybQrZtt++svu8YQ7GyhsyhN375wzjmB62sI0ZlFD/rkVClVquzda9NLP/rIptyMGQNvvWWPHT1qU3J69bJPWMsYnVksGh0flVJBJyPDjm1z5tj00uXLbSXTG26A996z56Slweef2yAxOjqQvQ0pOrOolFKl1aFD8PXXNkCcP9+9vUWVKna7C6dq1eyTVaWUUirUPPoo/Pe/dnsnp/LloWdP96wiQM2a9kGpKjYNFpVSqjSZNAmef95+Xb48DB1qU0yHDbMBo1JKKRUq9u+36wrnzIH77rN7GoJ9+HnsmF1fP2CA/ejTx+75q0qUBotKKRWKMjJg7lw7g3jxxTbtBmxguHKlLVRzxRX2qapSSikVCtLT4aefbHA4Z44dz5wp8K1auYPF226DW26Bxo0D19cyImBrFo0xTYCXgAGAAeYC94hI6hmu6wKMAXoBkcB+YDEwXkS25Dq3NvAEMAxoAOwBZgATRWSfl3vrmgylVPDKzoYlS+xWF198YZ+4AvToYdtVoemaxaLR8VEpVSISE2HcOEhNhchImw3j3E9VxLbt2OE+v0IFm1o6YABceim0bBmQbpc1AV+zaIyJAOYD6cD1gABPAz8YY9qLyPECLr8GaAu8AqwFGgGPAyuMMR1FZLvjexhgGtACGzCuB9oATwGdjTHddeRTSoWMd9+1W114DqKtW9sZxGuuCVy/VJlR1vYhVkqVsMREu37wxAn7ets2uO46OHUKbrrJVuOOiYEaNdxVS3v1goiIgHa7rMhvL+KAzCwaY+4GXgRaisgmR1tTYCPwkIi8WMC1dXPPChpjooAtwNMi8oSjrQXwOzBWRCZ7nHsr8AbQSkR+z3UfjR+VUsFh40YID3dvdfH++3DjjRAVZYPDa6+F9u11q4ti0pnFotHxUSlVbOnpsHixXRpx5Eje4/Xq2erdYJdY6L6HAec5RpYLUB+GA8nOQBHAkUL6IzCioAu9pY+KyDZgH3aW0clZ9i/3v8pDjs+B+tmVUsq7XbvgpZega1do0QKee8597PLLbarpn3/Cs89Chw4aKCqllAo+IrBnj/v13r12ltBboAh2L0QnDRSDTqAK3LQFvvXSvha4qqg3M8a0BuphU00977UIeNwYswnYgE1DfQKYJSLr89xIKaX87eBBu/7w449h4UL3Qv5q1aBSJfd51avbtYlKKaVUsNmzxxZdmz3bFqY55xzYsMEei4y0DzznzvUeMEZF+bevqkgCNbtWC0jz0n4QKFLpPmNMOPAmdmbxHWe7I18mHpuKuhw4CqQAfwJXFKvXpUyfPn0wxnj9GDx4sOu8rVu35nveoUOHAvcDKFUaPP00jB0LCxbYhfyXX243EN67F17MNyNfKeVDOj4qVQjr18MDD9glEQ0a2PWHH35oA8cjR+y+v05ffgmvv553/WFEhC1yo4JWILfO8Lb4oTg5Vf8FugNDRCR3ADoFiAVuxc46tgYmAl8YY4aJSHaeDnhJ6yqti/lff/11juR6wrN06VLuu+8+hg8fnuf8Rx99NE97tWrVfNpHpUqN06ftE9ePP7YL96+/3raPHAlr19o1iJddZp/GqhKT34J9pQqi46NSuWRnwy+/2K87drSft22DF16wX1euDL172/Ft4EC7xUXuv6mdVU/zq4aqglKgCtzsBb4RkbG52l8HrhKRuoW8zzPAw8D1IvJhrmNDgCSgv4jM82gfAMwGLhWRb3NdU+YX8N90001MnTqV3bt3U6tWLcA+OW3atClTpkzh5ptvDnAPlQpynmXBmzSxT1r37bOppgcP2nN69bIppypgtMBN0ej4qOOjKoN27bIppbNn2xTSv/6y2S9ffmmPnzgBTz1lg8Pu3aFixcD2V5WYYChwsxa7bjG3NsC6wtzAGDMOeAS4O3eg6NDO8Xl5rvZljs+tC/N9fCkxMZHo6GjKlStHdHQ0iYmJAe3PyZMn+fzzzxk2bJhrIDxbzhSdt956iyeeeIIGDRpQo0YNhg0bxg7PLQCA6OhoRo8ezYcffkjLli2pXLkyPXv2ZOPGjRw/fpyxY8dSu3Zt6tevz/33309mZmaJ9FGpEuMsC75tm117mJpqn5pOnmwDxQsugH/9y1Y2VUoVKJjGSB0fVZkyZYodrxo1ghtugI8+soFi48Y51xdGRMAzz0DfvhoolmYi4vcP4B4gEzjPoy0ayADuL8T1d2HTWB8r4JwbHOf0z9U+0NF+nZdrxF+mTp0qERER4uiLABIRESFTp071Wx+89QmQadOm5WjfsmWLAFKnTh0JCwuT6tWry7Bhw+SXX3454z2d10ZFRcm1114rM2fOlPfff19q164tvXr1ynFuVFSUNGnSRGJjY+Xrr7+WTz/9VBo0aCDt2rWTESNGyP333y+zZ8+W8ePHCyCvvfZaif78Sp2V338XadRIxIaJOT+qVxcpxP8vyn8cv+8DMgaG4oc/x0eR4BsjdXxUpVJWlsjKlSLPPiuyZo27/bnn7NhVpYrIkCEi//mPyPr1ItnZgeur8ivPMTJQg04VYBPwK3arjOHAGmzxmaoe50U5gsonPNquAbKBWdj1iJ4fbTzOqw7sBHYBtwF9HZ/3AKme38fjGl+953lERUXlGASdH1FRUX7rQ24DBw6UevXqSUZGRo72Xbt2ydixY+XLL7+URYsWyeTJkyU6OlqqVq0q69atK/CezsEw98D33HPPCSA7d+50tUVFRUnNmjXl0KFDrraXX35ZALnppptyXH/hhRdKnz59ivujKlUyduwQeeEFkc6dvQeJzg+bwqeCiAaLwR0sBtsYqeOjKjW2bxd5912Ra68VqVPHPU498UTOcxYsEElPD1w/VUB5jpEBKXAjIseNMf2Al4APsYVt5gH3iMgxj1MNEEbOdNnBjvbBjg9PC4E+ju9xxBgTCyQADwENgN3AdCAh1/fxu9TU1CK1+9quXbuYO3cud999N+HhOf9ZNGjQgDfffNP1umfPngwePJi2bdsyadIkpk6desb7DxkyJMfrdu1slnBqaioNGzZ0tcfFxXGOR4GPVq1aATBo0KAc17dq1Yply5ahlN8dPGjXa3z0Ud6tLgCOHs17TWSk//qnVCkQTGOkjo+q1OjfH+bNy9nWpIldc9irl7utcWP7oRQBrIYqIqmcYQsLEdlKrgqpInIDNsW0MN9jO3BTsTroY5GRkWzbts1reyBMnTqV7OxsrndWaDyDJk2acNFFF7F8ee4lod7lXuNR0ZHbfurUqRztNWvm3DmlQoUK+bbnvlYpv5g4EV55xX5dsSIMGWIrmsbHw1df2TWLJ064z9ey4EoVWTCNkTo+qpCSnQ0//+ze7/Dzz6F2bXusSROoWtWuMRwwwAaJLVrkrVqqlIdAFbgp8yZNmkRErr1mIiIimBSgPyo/+OADOnToQIcOHQp9jYh43WpEqVIhIwNmzLAlvT1nB0aNsoPse+/ZvRC//BKuuMKWDR81yhaziYqyg29UlH2tZcGVKpJgGiN1fFRBb/t2ePdduwVTvXrQpQs89hj88EPOmcTnnoMDB2DaNLjzTmjZUgNFdUaB3GexTBvl+ONx3LhxpKamEhkZyaRJk1zt/rRixQrWrl3Li0XYADw1NZUff/yRyy67zIc9U8rPsrNhyRK7F+Lnn9tBFWz58NGj7dfdutkntvkZNUqDQ6XOUrCMkTo+qqCUmQnOlOhDhyA62o5fTlFRdtZwwACbeupUp44/e6lKCQ0WA2jUqFEBCQ5z++CDDwgPD2fkyJFej99///1kZ2cTFxdH3bp1+f3333nmmWcoV64cjz32mJ97q5SPvP02PPmkfULr1KaNTTG99trA9UupMioYxkgdH1VQyM6GVavcex5u2wabN9tZwRo1oE8fm17qDBDPP19nDFWJ0WCxjMvIyODjjz9m8ODB1K9f3+s5bdu25Y033uD999/n6NGj1KlTh379+jFhwgRatmzp5x4rVUI2b4by5d3FZ7KzbaAYGWmDw5EjoV07HXCVKqN0fFQBtX8/fPutDRDnznVnugCUKwd//gnNmtnXc+fqWKV8xoizkp/C2PL2ge6GUspXdu+Gzz6zlUyXLYO774b//MceS0uDdesgLs4OxKpUM8YgIvrXVSHp+KiUjx07Bvv2QdOm9vWPP8JFF7mPO1NLBw6Efv0gV2EkpUqS5xipfxHlYozBGENCQkKgu6KUKgmHDtmF/wMG2FLg99xjA8WqVSEszH1ezZrQo4cGiqVYQkKC63e8KjodH5UqQdnZsHIlPPOMrU5aqxaMHes+3q0b/O1v8N//wh9/wJYttmDalVdqoKh8Ir8xUmcWPeiTU6VKoTvvtIMtQIUKcMklNsV06FC7rYUqk3RmsWh0fFSqhMyfD1Om2PTS3KmlPXvaCqb6QEsFmOcYqWsWlVKlQ2amHYQ/+ggGD4ZrrrHtI0fC2rV2HeKVV9oZRKWUUsrXjh+HhQttCmnbtrZt0yb45BP7dWQkDBqkqaUqqOnMogd9cqpUiBGxKaWJifDpp/DXX7a9f3/71FapfOjMYtHo+KhUIWRnw+rVtmLp99/bdYcZGXb5w0sv2XN27oRvvtGqpSqo6cyiUir0vfcePP20rQjndP75diYxnzL3SgWCMSYWGAzEAg2BysB+4HdgIfCNiKQFrodKqbP2yCPwzju2iqmTMdC1qx2bnBo1gn/+0//9U6qYtJKDUio0bN9un8g6nTplA8UGDeDee2HFCvj9d0hIgBYtAtZNpZyMMdcbY34FfgLuASKAjUAKkAbEAG8DO40x7xtjmgaqr0opD4mJdqP7cuXs58RE97Hjx2HWLDvu7Njhbj9xwgaKkZFw88228vb+/Tb75fbb/f0TKFViNA3Vg6bZKBVk9u+HL76w6xAXL4b77oMXXrDHDh606T69e+esaqpUIfg6DdUYswaoB3wAfAKs9jbAGGPOAYYCo4A+wI0i8qmv+lVcOj6qMiMxEcaMscGfU6VKMGKE3dpiyRI4fdq2v/023HST/XrLFptyqqmlqhTwHCM1WPSgg6FSQeD4cZg2zQaI331nC9eAHaxvuQVeeSWw/VOlgh+CxXuAN0XkVBGu6QCcKyLf+6pfxaXjoyozoqNh27b8jztTSwcMsIXTnIVrlCpFNFjMhw6GSgWBO+6A116zX4eFuQfkyy6DatUC2zdVamiBm6LR8VGVaidO2OyV2bPhxRfzP+/TT+Hii6F2bf/1TakA0AI3SqnAy86Gn36yM4gXXwxXXGHbr74aVq2yAeLf/gb16we2n0oppUoXEfjlFxsczp5tA8X09IKviYqyY5JSZYwWuCnDFixYgDEmz0eNGjXynJuWlsbNN99MnTp1qFKlCv379+fXX3/1f6dVaHMO0I88Ak2b2g2I33jDblDs1LOnDSLvvFMDRaVUQOj4WAp5BoO//godO8JDD8HcuXYNYufO8Nhj9qNy5ZzXRkTApEl+7a5SwUJnFhWvvPIKXbt2db0OD8/5z0JEGD58OFu2bOHVV1+lZs2aPPPMM/Tt25fVq1fTuHFjf3dZhaLERHjmGVi71t3WpIludaGUClo6PoawkydtMRrn7GGVKvZBJEC7dtCli/08YIDdm7duXfe1bdrAuHGQmmqrm06aBKNGBebnUCrANFhUtG7dmtjY2HyPT5s2jSVLljB//nz69u0LQFxcHE2bNuXf//43r2jBEeXNX3/ZVNNzz7WvDx2ygWKtWjaVZ9Qo6N7dliZXSqkgpONjiNm6Fb76ygaHCxfaLZacqlWzaxMjImyRmuXL87/PqFEaHCrloH+l5eJMNUlISPD59ypoG59gMm3aNBo2bOgaCAHOOecchg0bxrffflvgtVu3bsUYw1tvvcUTTzxBgwYNqFGjBsOGDWOH5/5EQHR0NKNHj+bDDz+kZcuWVK5cmZ49e7Jx40aOHz/O2LFjqV27NvXr1+f+++8n01klUwWPY8dg6lSIj4eGDXMWCrj6apg+HXbvtqmnF12kgaLyq4SEBNfveBX8QmGM1PExwPbutbN/TkuXwv33w/ff20CxUyd4+GGbarpvnw0UlVJFIyL64fiwb4d/TJ0qEhEhYhdx2Y+ICNvuLz/88IMAUq9ePSlXrpzUqlVLrr32Wtm2bVuO82JiYmTgwIF5rv+///s/AeTo0aP5fo8tW7YIIFFRUXLttdfKzJkz5f3335fatWtLr169cpwbFRUlTZo0kdjYWPn666/l008/lQYNGki7du1kxIgRcv/998vs2bNl/PjxAshrr71WMm+EOjvp6SLTpolcc41I5cruf9Dh4SK33BLo3inlleP3fTCMOw8Cfw90PwrRz+K+1cUS6DFSx8cgdeqUyLx5Ig8/LNKxo/2HcdNN7uN//SXy97+LJCaK7N0buH4qFeI8x8iAD0DB9OHPwTAqKucg6PyIivJbF2TVqlVy//33y7Rp02TBggXy0ksvSd26daVhw4ay1+OX7Pnnny9XX311nuunTJkigKSmpub7PZyDYe6B77nnnhNAdu7c6WqLioqSmjVryqFDh1xtL7/8sgByk+dgICIXXnih9OnTp8g/s/KBO+7I+Y/4ootE3nhDZN++QPdMqXwFQ7AInAtkA4cC3ZdC9LXY73VxBHqM1PExyHz6qcgll+R9glCpksgNNwS6d0qVOp5jpK5ZDBDPrInCtPvChRdeyIUXXuh63bt3b3r16kW3bt145ZVXePrppwH7QMFb2pb9t1Q4Q4YMyfG6Xbt2AKSmptKwYUNXe1xcHOecc47rdatWrQAYNGhQjutbtWrFsmXLCv39VQkQRyXTxETo0QNGjLDtV1wBCxbY9R3XXmvLiyulzkhE9hhjRgJpge5LsAn0GKnjYwAdOGDTRuPibHEZgDVrYNYs+3X79jBwoP3o2RMqVQpcX5UqAzRYDJDISNi2zXt7IHXq1IkWLVqw3GPhd61atTh48GCec9PS7N83NWvWPON9a9WqleN1xYoVATjlufjcy70qVKiQb3vua5WPbNkCH39sg8R162zbb7+5g8XevW0ZcqVUkYnIJ4HuQ2E5g6IJEyb4fF1/MI6ROj76yOnTkJxs1xnOng0rV9qHky++CPfea88ZNQpatbJVSxs0CGx/lSqlEhISmDhxYp52DRYDZNIkGDPGFuZyCpZtfHI/KW3bti2zZ8/Oc966deuIjIykatWq/uye8pevvoLnn7cFA5xq17aVTEePdrdpsRClCmSMuQ7YD/wqIjvOdH6wKsps2dkK1jFSx8cSNno0fPutLY7mVKGCLYDWpIm7rU0b+6GU8pmEhATXg0DP33NaijBARo2CyZNtxp4x9vPkyYGv1LxixQr++OMPYmJiXG3Dhw9n586dLFy40NV25MgRpk+fzvDhwwPRTVUScpcafOcdm/7jtH27DRQjIuw+iElJtpLp66/bLS+UUoX1GjAD2GaMOWiMWWiM+a8xZqwxJs4YU83zZGPMy4HpZvAIxjFSx8ezkJYGX34Jt91m9z90OnbMfrRuDffcY1NN09Jg3jy48sqAdVcp5aYziwEU6G18Ro0aRdOmTenUqRM1atTg559/5plnnqFRo0bceeedrvOGDx9OXFwco0eP5rnnnnNtOiwiPPTQQ4H7AVTxJSbmfGy/bRvcfLN9wjttmm279lq7SfGIEXYzY6VUce0GLgUuBDo4PkYD1QEBMMakAr8CvwCXAXcHoqPBJJBjpI6PZykzE5Ytc6eWLltm990FuOwyu94Q4Nln4b//hcaNA9dXpVSBNFgswy644AI+/vhjXn31VU6cOMG5557L5ZdfzsSJE6lTp47rvHLlypGUlMQDDzzA7bffzqlTp4iLi+OHH36giWeaiAoN2dl2HyrP/C6nefPcX9erZ2cUlVJn67iIrAfWAx8BGGPCgHhsULgQaAq0Ae4AquVzH+UnOj6ehX374Pzz4fBhd1t4uE0tHTQIWrRwtzuK9Cilgpfx5xqEYGeMEX0/VKl3333w0kvejxnjfvqrVClmjEFE/LLg1hjzFjBPRD7zcqwJcK+I3OfR1lBEdvmjb4Wl46PK48gR+OEHO3OYmgrTp7uPnX++XeIwcKANEHv3hmr6DESpUOE5Rmqw6EEHQ1XqbN1qK5l26mQHbLCzh4MGQVZW3vOjouw1SpVyfg4WmwE/AmNEZJqX48tFpKs/+lJcOj4qsrJspdLZs+3H0qU23dRpxw5o1Mh+ffgweGzzoZQKLZ5jpKahKlXa7N8Pn39u1yX++KNtGzrUHSz27QvvvQe33hp8pQaVKoVEZLMx5i7gS2PMDOBjYLaIpBljBgP1AttDpfJx+rStTgq2+MywYe5jYWG22Jlz9rB+ffcxDRSVKjW0GmouxhiMMT7fQ0qpEjd7tg0KGzSA22+3gWLlynDNNbYCnVO5cnDddcFXalApH0tISHD9jvc3Rwpqb6AJNljcb4zJwFZJfc/vHVLKm+PHbVB47712q4q//919rE8fu95w7Fi7tdL+/XacmTABYmPtukSlVKmjaageNM1GhZSMDDh1yr0O5MUXbeGasDAYMMAGfpdeCrrPl1J5+DMN1cv37gz0AeoCK0Tki0D0oyh0fCzF/vgDvvnGVi5dssTOJjpFR8Off+p+ukqVMUVKQzXGxAKDgVigIVAZu7nw79gKbt+ISJrvuquUchGx60Q++gg+/dRuf+FMHb32WqhYEa66ylYyVUoFJRFZCawMdD9UGbVnj80wcY4TX38NjzxivzYGunZ1p5bGxmqgqFQZl+/MojHmeuABoC1wBLv30z7gJFALW+a7BZAOfAZMFJEtfuizz+iTUxW01q+3axA/+gi2ePxvNniwTRlSShWJnwvc9Ad6YR+urnK0VQAyzmbQMcY0Bh4GumD3bqwMNBWRrWe4rgswxtGnSOwD4MXA+PzGcR0fQ9ipUzZddPZsO3u4Zg08+SQ8/rg9/ttvtkL2gAHQvz94bA2ilCqbzjizaIxZg11w/wHwd2C1t1HCGHMOMBQYBaw1xtwoIp/6rOdKlUXjx+csPNOokZ1FHDkSOnYMWLeUUoV2PxAGLAEwxgwDPgWyjDGvicgjxbxvc+Bv2FnKxcDAQl53DfZB8CvAWqAR8DiwwhjTUUS2F7M/yt8SE2HcOLt1RWSkHSuca8/few8++wwWLoSTJ93XVK4MR4+6X19wAbzzjn/7rZQKGV5nFo0x9wBvisipQt/ImA7AuSLyfcl1z7/0yakKuLQ0+PJLaN7cFhMA+zT46qvhyittgNirl12XqJQqNj/PLP4KdBSRLMfrzUAl4B3gKuBFEZlSjPuWE5Fsx9c3A1Mo3MxiXRHZl6stCtgCPC0iT3i5RsfHYJOYaJcieFa1rlwZpkyxAeN118HUqba9QwebWjpwIFx0EVSqFJg+K6VCgu6zmA8dDFVAnDoFSUl24J850xYXGDHCFhwAu7dVZqZdj6iUKhF+DhZd+ygaY3pi1/uPFJFPjDH1ga9FpPtZfo9CB4sF3GMvkCQiN3k5puNjMMnIgCZNYO/evMec++X++KMtTtO/v62SrZRSheQ5RgZs6wxjTBNjzBfGmMPGmCPGmK+MMZGFuK6LMWayMWaDMeaEMSbVGJNojGmaz/mNjDHvGmP2GGPSjTFbjDHPlPxPpFQRpaTAP/5h96a66iobHGZkwMUX21lEp7AwDRSVCm0njTHNHV+Pxa4R/AJARPYSBHseG2NaY5efrA90X1QBMjPh8suhdm3vgSLYlFSAHj3s7KIGikqpsxCQAcoYEwHMxxbHuR4Q4GngB2NMexE5XsDlhV5rYYyJBn7EptbcBewForHrPJTyLxEbDDo3OF682K4pAejUyaYNXXMNNGwYuD4qpXzhWSDFGLMeiAP+LSKZAMZu+lglkJ0zxoQDb2KL2OnitWBx5AjMnw/JyfDMM7YqaXi4nTU8ehTKl7djSm6RZ3zurpRShRaop5m3AOcBLUVkE4Ax5hdgI/ap64sFXPt/XtZaOAPCWwDPtRZvAjuBviLi/I26sER+AqUKa/NmdyXTv/3NVqEDGxgeOWLXIbZqFdg+KqV8RkRmGmP+hh3f3gaeAjDGXAyMBv4KYPcA/gt0B4YUtBWW8bKFwoQJE0hISPBdz8qSrCxYudJdtXTpUtsGcMMN7nFi8mSbkbJoUd41ixEROQuiKaVUARISEpg4cWKB5wRkzaIxZh5QSUR65GpfCCAivYtxzxxrLYwxzYBNwN9F5MNC3kPXZKiS8ddfdh/ExESbbuoUG2v/AFBKBZSv1ywaY3oAPxU0qBhjRgKXAl+IyGdn+f2KtWbRsSzjYeD6gsZKHR99bN066NkTDh50t4WF2TFj4EC4+WbvWScFVUNVSqliOuPWGUW40YPAXhH5oIiXtgW+9dK+FlsZrqj98LbWwhmInjTGzMHuJ3UCmA7cKyIHivp9lCqU556DRx91PxGuUgUuu8wO4P37B7ZvSil/mQOcMMZ8ByQB34nIIc8TROQj4KMA9A0AY8w44BHgrsI+VFVn6cQJOyP4/fc2hfS//7XtzZtDejpER8OgQfajb1+oUaPg+40apcGhUsqnil3gxhhzLvB/2LWDRVUL8JbqchCoWcR+5LfWwvkI7l3gD+AS7NPTIcD3xhivP7sxJs+HptiofGVkwIwZOWcPL7jAri0ZOhQ+/tjOMn74IQwebNebKKX8JiEhwevvdT+oDfwDOA48B/xljFlojHnQ8YAzoIwxd2FrBYwTkVcD3Z9SSwR++QWef95uel+rFlxyCfznP3bNenq6Pa9CBdi0yVYvffNN+4DxTIGiUkr5wVmloRpjrgHSirq3ojHmNPCCiDyaq30S8LCIFPovamPMm8BN2LUWsz3aHwMmAdNFZLhH+9XAJ0C8iMzKdS9Ns1FnJmJTSRMT7YbH+/fbgf2rr+zxzEw4dAjq1AloN5VS+fPn1hmO73ch9mHlUKALkIqdcUwCFojI6WLe11k6+WLgVuB27MPTfSKy0LF/4mbgSRF50nHNNdgZze+B3ItVjojIOi/fR8fHwhKxDwzB7nk4Zoz7mDHQubOdORw40FYs1X1zlVJBpsTSUEXkk2JemoadXcytJt5nHL1yrLUYg11rMTvXYWea6Zxc7c7zLgRmoVRh/fEH/O9/tlDN1q3u9jZtoLvHFmnh4RooKqVyEJGfgZ+Bp40xdbGB4xDgMyDMGDMX+3Dz3SLe+vNcr193fF4I9AEMEEbOTKLBjvbBjg9PzutUYZ0+DT/95C5M078//N//2WN9+9qtK5yppf376/iglAopgcqJW4tdt5hbGyDPE01vCrHWYq3jc36PQrML831UGef5hPjrr+Ff/7JfN2oE115r14p06OA+RymlzsBR0ft94H3HUore2BnHh7BLJ4pyrwJ/+TiK3ZhcbTcANxTl+6hcNm+GWbNscPjDD3DcY8cvz5nCZs1g504dI5RSIeuMwaIx5jrsBsK/isiOEvq+04DnjTHnicifju8TjS1K80gh+lSYtRbJwB7sU9P/erQ7n6IuL17XVal3+DB8+aVNM+3bF8aPt+3XXgsbN9oAsVcvTR1SSp01x36L8xwf9wa4Oyo/hw/brJEqji0xX3gB3njDfbxtW5tWOmiQHR+cNEhUSoW4M65ZNMYcAapiZ+gOA796fPwC/CYiRz3Of1lE7j7DPasAa4CTwHjHvZ8CqgHtReSY47yzWmthjLke+/T2LeAroDl2HeNqoF/uBRi6JqMMS0+HmTNtgJiU5C460K6dLU6glCpVArBmMQpbtXu7iOxxtEUC0QAisshffSmOMjc+ZmXBihV25vD7720Rs7fftvsdgm177z0bHA4YAI0bB7S7SilVkoq6ZnE3dh+oC4EOjo/RQHUcKZ7GmFTcweNlQIHBoogcN8b0A14CPsSmyMwD7nEGis6+chZrLUTkf8aYbGwV1Bux1VanAo+WrVFPFejtt+HBB21RGrBPgvv2hdGj4fLLA9o1pVRoM8aMAP4FtPJoW4N9UFoOeBC4CDvWqUD74AP7wHDuXEjzKKEQHp5zrbpzDaJSSpVyhZlZXCUinXK1hQHx2KBwIdAUu96wFVBNREJy0CtzT07LImcZ83Ll7Kwh2D8Mhg2Djh1tium119o1iUqpUssfM4vGmIeAZ4FNwALgL2xxtzbYZRcPYJd5fBDs42apHB+dex4OGOBeVtC7t20DOO+8nHseVq8euL4qpZQfeY6RhQkW3wLmichnXo41wW5wf59HW0MR2VXCffaLUjkYKmvbNlvFNDER1q6FK6+Ezx1FBDMybKXTtt5qLimlgkViYiLjxo0jNTWVyMhIJk2axKhibkju62DRGNMDu1xirIgkejneAruN0w/YrBoNFn1NBH791aaQzp4NixfbJQfLlkHXrvacL76we+MOGmSL0yilVBlU1DTUfwM/GmNOicg0zwMist0Y0zNXW0gGiqoUOnjQBoRTp8KSJe72WrWgSRP36/LlNVBUKsglJiYyZswYTpw4AcC2bdsY49i/rrgBo4/dC4wRkY+8HRSRP4wx/bFLOJQvHT4Md99tA8Tdu93txkCXLnDMY/XLlVfmvV4ppcqwM84sAhhj/gYkAjOAj4HZIpJmjBkMvCUiUb7tpn+Uiienyu1f/4Jx4+zXlSvD8OF2HeLAgVChQmD7ppQqkujoaLZt25anPSoqiq2ea8kKyQ8zi+tEpE0hzusMNBeRT33Vl5IQMuPj6dOQnAzr18PYsbYtOxvOPRf27YOGDe0YMHCgTT/VPQ+VUiqPos4sIiKfGWN2AK9ig0VxFI4ph61iqlTgZGXBggV2BrFDB7jnHts+cqRtHz0aLrsMqlULYCeVUkVx8OBBZs+ezaxZs4iKiiI1NdXrefm1B4H0wpwkIiuBlT7uS+m2aZOdNfz+e5g/384UhoXZ9efVq9s16u++C1FRcMEFup2FUkoVQaFmFnNcYJ+C9gHqAitE5Asf9CsgQubJqbJrT37+2a5B/OQT2OXIfm7VCtat0z8GlAox2dnZrFq1ilmzZjFr1ixSUlLIzs4GoGnTpmRlZXkNDIN4ZvE3oIuInDrDeTcDnUTkdl/1pSQE5fiYkmIfCv75Z872Nm3smsNHHoF69QLTN6WUCmGeY2S5M52cm4isFJEXROSR0hQoOhljMMaQkJAQ6K4osMFgdLR9MhwdbV9/8439Y6BzZ3jxRRsonncePPGEPaaBolIh54knnqBr16488cQTLF26lLCwMPr168dzzz3HtGnTmDRpEhERETmuiYiIYNKkSYX+HgkJCa7f8X6wALs9Rr6MMR2AJ4Gx/ujQ2QrY+JidDcuXw9NPw0svudsjI22gWLMm/O1v8M47sH27LWL24osaKCqlVBHkN0YWphpqf6AX8I2IrHK0VQAygu8x49kJyienZVliIowZY8ubO0VE2HUoL71k15pcc43d7iImRoNEpYJc7tnD66+/nrGOdWXz5s3jxhtvJD4+nksuuYR+/fpRLVfqeIhVQ43C7j08FZjkWfzNGFMJGAlMBF4BntVqqLns2uVOLZ0zBw4csO3R0TZAdP6+X7PGppaGBfXbp5RSIaWoW2fMwm4W/LyIzDbGDAM+BbKA10TkEV932F80WAwiJ07Y9SX79+c9FhkJb7xhixOUL+//vimlCs1z7eF3333HX3/95To2fPhwvv32W8AGkn6c9fPXPouDgC+Ayti9Fp37LEYDmcBwoAm6z2JOzz8PDz6Ysy0qyr3n4aWX2mwTpZRSQMk+TIWiB4u/Ah1FJMvxejNQCXgHuAp4UUSmFLs3QUSDxQDLyrLFCRIT4csvc5Yz92SMTUtSSgUd5zrDco4/5uPj45k1a5breGRkJJdcckm+s4f+4o9g0fF9ooFxwCDsWv/twGzstlTDgAlA7VIdLCYm2srUqan2Yd+kSXat4fr17tnDK66Am2+258+bZ6tX9+1rq5YOGgQtWmj2iFJKeZF7aymwyzQmT55cItk3hQkWl4tIV8fXPYGFwEgR+cQYUx/4WkS6F6snQUaDxQD797/h4YfdrytUsGXQc4uKgmIUtFBK+UZaWlqO2cNPP/2U3r17A/Dmm2/y2WefudJL27Rp47fZw4L4K1gsLYo9PnpbThAWBjVquFNLAYYOhenT7deZmfbhYcWKZ9VnpZQq7Q4fPkyLFi1yZO04FbcAHBQ9WFwE/ENENhljpgIDgYYikuk4vkxEuhWrJ0FGg0U/+vNP+Ogju+fVP/5h2zZvhksusU+cR42CZcu8r1mcPNkeV0oFhIjw888/M2vWLGbOnElycrJrRhHgySef5PHHHw9gD89Mg8WiKfb4GB0NXvbHBKBuXffM4YABdi9EpZRSXmVkZLBhwwbatWvnamvWrBl/5q4I7WCMyTE2F0VR91l8FkgxxqwH4oB/ewSKBqhSrF6osmf/fvjsM7sf4tKltq1tW7jxRpte1KwZ/P67O9Xo/PPt59zpSxooKuV3x44do2rVqq7Xl112mWsri/DwcHr37u1KL23btm2guhk0jDHfAgki8nMhz68E3A6cEJE3fdo5fypoH8w9e3TtoVJKeSEipKamkpKS4vpYtWoVJ0+eZN++fdSpUweAnj17smPHDk57ycSLjIwskb6cMVgUkZnGmL9hS3u/DTwFYIy5GBiNXbCvVP6WLIH/+z/47jubXgR2hvCyy/IGfrnT00aN0uBQqQAQEdasWeOqXJqcnMyOHTuoV68exhiuv/56du/eTXx8PBdffDHVq1cPdJeDTSqQbIxZDSQCS4BfnA9bAYwxDYFu2LWLlwM7gX/4v6s+FBnpfWYxKkoDRaWUcsjOznat9V+1ahXx8fHs3bs3z3nNmzdn586drmDxvffeY8CAAV7XLBZla6mCeE1DNcb0AH4qKOfEGDMSuBT4QkQ+K5HeBJimoZaQrCw4fBhq1bKvv/rKFi8IC7OpRqNHw4gR4DFLoZQKvJMnTzJjxgzX2sNdu1y7PRAeHs706dMZPHhwAHtYcvxUDbUZcA8wCjgHEOAIkA7UBMoDBlgGvAF8KCJBWb2rRNcs6nICpVQZlpmZyW+//ZZj1rB9+/Z8/PHHABw4cIA6depQq1YtunXrRkxMDDExMXTr1o3atWt7vaffq6EaY04AJ4DvgCTgOxE5VOzvGCI0WDwLIvDzzzbF9OOPoV8/+0cCQHo6TJkCV10F9esHtp9KKRcRYdeuXTRq1AiwhWrq1KnjWuPQsGFDLrnkEtfs4TnnnBPI7pYof65ZdOxNHAfEAA2xFcUPABuARSKSz6K+4FHi1VA1UFRKlTH/+9//eOedd1i5cmWOWUCwM4YbN250vd6yZQvR0dEBKwhXmGCxMjAAGALEA/WBpdjAMUlE1vuvu/6jwWIxbNliC9VMnQobNrjbO3SAVas0zUipIHPkyBHmzZvHzJkzmTVrFhkZGezevduV/nLXXXe5gsT27dsHReVSX9ACN0Wj46NSSp3ZsWPHWLFihWvG8KGHHiI2NhaASZMmMX78eADOO+8814xhbGwsHTt2pGIQVYAuUjVUxwUXYgPHoUAX7FqMJMfHAhHxsr9B6NHBsIimTLHpRU5168LVV9snxjExuieWUkFi165dJCYmMmvWLBYvXkxmpmvZHOeeey4pKSklthA+VGiwWDQ6PiqlVF7Z2dm8++67ruBw7dq1OSqQPvvsszzs2BZu06ZN/P7773Tr1o26desGqsuFUuRgMdfFdbGB4xDs7GMYMBeYLiLvlnBf/coY43ozJkyYQEJCQgB7E2ROnoSkJAgPt4VpADZuhI4d4dJLbYA4YACULx/IXiqlsE829+7dS7NmzQBISUlxPdksV64ccXFxrn0PO3To4JpVLO0SEhKYOHGi67UGi4WnwaJSqqzbvXs3KSkpbNq0iQceeMDV3qhRI9ca//DwcNq3b++aNezbt29IPow9q2Ax143Cgd7YGcdLRKRVyXQxMHQwzCUrCxYutCmmX34JR45A+/awZo37nJMnoXLlwPVRKYWI8Pvvv7v2PVy0aBE9evRg/vz5AGRlZXHHHXfQp08fBgwYQC1n8akyTGcWi0bHR6VUWXLy5ElWrlxJSkoKycnJpKSksH37dsCOH2lpaa51/C+++CIAMTExdOrUicql4O/iou6zmC9HCfB5jo97S6BvKhhs3Ggr1X38Mezc6W7v3Bmuu84GkWFhtq0U/A+hVKhauXIl7733HjNnzmTLli2udmMMmZmZZGVlERYWRlhYGG+88UYAe6qUUkoFp+zsbH7//XeMMbRqZee95syZw4gRI3KcV61aNbp27UpMTAwZGRmu9vvuu8+v/fW3QgWLxpgooB6wXUT2ONoigWgAEVnkqw4qP/EMANesgeeft183bWq3uhg1Clq2DFz/lFJs3LiR8PBwmjZtCsCaNWt47bXXAKhTpw6DBg0iPj6egQMHuvZgUkoppZTbvn37XGsMk5OTWb58OYcPH2b06NF8+OGHgJ0lbN++PbGxsa6U0latWhHm/Fu5DCkwWDTGjAD+BbTyaFsDjAfKAQ8CF2HXLapQk5YGX3xh00ybNoX337ftQ4fCXXfZYjVxcVqoRqkAOXXqFAsXLmTmzJnMnDmTTZs2cccdd/Dqq68CcMkll/DEE08QHx9Ply5dyuQgFqqMMe2AI6GwbYZSSoWqU6dOER4eTni4DXluuOEG/ve//+U5r1GjRjmWaNSvX581nsuuyrB8g0VjzEPAs8Am4B3gL6AW0Ab4FngAmIwNFlWoOHUKZs60AeKMGXDaUch2/XrIzLQFbCpVgpdfDmw/lSrDPvvsMz744APmz5/PyZMnXe01a9bMUVq7QYMGOQq2qJDyIjDFGLMXu5SjHHC9iPwR2G7lz7mNihaAU0oFIxFh8+bNOWYNV69ezQ8//ECPHj0AiIqKIiIigi5duuTYusK533BZlrsInFN++yz2AL4HxopIopfjLYBPgB+Ae0SkVDzOLvUL+L/5Bm68EQ4dsq+NgYsvtimml18O1asHsndKlUmnT59myZIltG3blvr16wPwwAMP8MILLwBw4YUXEh8fT3x8PN26dXM9HVVnJ9AFbowxz4nIg8aY64GbgfuB20XkhkD1qSClfnxUSoWso0ePcs0115CSksKBAwdyHDPG8Pbbb/OPf/wDsNXCK1WqpGPpGRSmwM29wBgR+cjbQRH5wxjTH/jVR31UJWHtWjh4EHr2tK9btrSBYseOdh3iNdeAPklRyu927Njhqlw6d+5cjh07xuuvv85tt90GwHXXXUfbtm0ZPHgwDRo0CHBvlY9UcXy+DnhBRJYZY64IZIeUUipYZWRk8Msvv7hmDY8ePcpXX30FQNWqVVm+fDkHDhygfv36rhnDmJgYunbtSnWPyZCqVasG6kcIWfkFi21E5MqCLhSRg8aY4UDzku+WKradO20V06lTbaGaCy+EVavssdatbaXT5vqfTClfSUxMZNy4caSmphIZGcmkSZMYNWoUABMnTuSrr77il19+yXHNBRdcQEREhOt1hw4d6NChg1/7rfzue2PMHuAwkGRsjmfjAPdJKaWCxpo1a/jggw9ISUlh5cqVnDp1ynWsXLlyHDt2jKpVq2KM4csvvyQyMpLIyEhXyrwqGfkFi+mFuVhEVgIrS647qliOHrX7IE6dCvPngzNVqEYN6NLFrkusUMG2aaColM8kJiYyZswYTpw4AcC2bdu45ZZbABg1ahTJycn88ssvVKlShf79+xMfH8/gwYNDcsNeVTBjTEcRWZ3fcRH51hgzF0gXkUxjzDPY2gBKKVVqeXugOnz4cFasWEFycjKdO3dm4MCBgK0A7tzDEOD88893rTGMiYnJsZ9hT2cWnSpx+a1Z/A3oIiKn8l6S47ybgU4icruP+udXIbsm49NPbUop2KBw6FC7DnHIEPAohqGU8p2srCwaN27Mnj178hyLiopi69atLF68mPT0dHr27JmjUI3yP1+vWTTGZAB3iMhbvvoe/hSy46NSKmjkfqAK7sJZzt8vN954I++++y4Ae/bs4c033yQmJoZu3bpRu3Zt/3e6jPIcI/MLFv8LHBKR8QXcpAMwC6ivBW78RARSUuwMYsWK4CiAwYkTtkDN5ZfDVVdBzZqB7adSZcixY8e49dZb+e677/IsrHcyxpCdne3nnqmC+CFYzAYE+JeIPJ7POf8BagCrReQ/vupLSQj68VEpFZT27NlDcnIy8fHxtGjRgm3bvO8W5KxOOnjwYIYOHernXqrcChMsRgG/AFOBSSKyy+NYJWAkMBF4BXhWg0Uf27gREhNtkLh5s22rVg327gWPKXillG9lZ2ezevVqVq5c6UovFRGioqLYvn074eHhZGZm5rnOObOogocfgsW12HH0auAD4CYRycp1TmMgBvgs2MfRoB0flVJB4+TJk6xatSrH1hWpqakALFu2jJiYGPL7PaK/X4LLGauhisg2Y8zfgC+AscaYTbj3WYwGMoHhQBO/9NiPgmofqaVL4d577WyiU4MGMHKkrWZaqVLg+qZUGXH48GHmzJnDzJkzmTVrFnv27MEYw4gRI6hXrx7GGN59912aNGnC8uXLGTt2bI4Um4iICCZNmhTAn0A55beHlI+ki8i1xphU4EHgXGPMFSJy3HmCiOwwxuwGtBqDUiqkiAgHDx50pYZu27aN5s2b53lgWq1aNbp27UpmZiaRkZFeZxajoqL80mdVPF5nFl0HjYkGxgGDgLrAdmA28G9gGDABqB3sT0QLK+BPTk+cgB07oEUL+3rtWrjgAqhaFa64wgaIfftCWKl4u5UKar///jtjx45lyZIlZGW5J4QaN25MfHw848aN81qYpqBqqCp4+GFmcZWIdHJ8fSvwKnam8RIR+cvjvDDgdLCPowEfH5VSAXXw4EGWLVtGcnIyKSkpLFu2jPPOO4/ly5cDNvOmfv36NGjQwFWAJiYmhtatWxPm+LvV25rFiIgIJk+erONkkDljGmpZFZDBMCvLVjCdOhW++gpatQLH/3gAJCVBv37gUVZfKVWyjh8/zrx580hLS+P6668HIC0tjbp16wLQo0cP4uPjiY+P54ILLtCy3KWAP4NFx+shwCfAPmCwiPzhaNdgUSkVtKZOncpTTz3FH3/8kedYZGQkmzdvdm1wn56efsbibfpANTRosJgPvw2GInYPxA8/tHsi7t7tPhYTA3Pn2tlEpZTPbNy4kZkzZzJz5kwWLlxIeno69evXZ9euXZQrVw6AuXPn0qVLF2rUqBHYzqoS5+9g0dHWGUgCygPDRGSpBotKqUASEbZv3+6aMUxJSeG2225zBXAff/wxI0eOpFKlSnTu3DnH1hVNmjTRh6el1BnXLBpjvgUSROTnQt6wEnA7cEJE3iyxnpZW334Ll13mft2smd3qYvRoOP/8wPVLqTJg1qxZ3HXXXWzatMnVZowhJiaG+Ph40tPTXXs39e/fP1DdVKWQiKw0xsRiK4nPNcaMAqYHuFtKqTLo5ZdfZsGCBSQnJ+fZ8qlt27auYHHw4MGsWLGC9u3bU758+UB0VQWY12ARSAWSjTGrgURgCfCLiLhWrRpjGgLdsGsXLwd2Av/waW9D0aFD8MUXcPgw3H+/bRswAKKi7H6Io0fb2UR9MqNUiUtNTWXWrFnUr1+fSy+9FIBatWqxadMmatasyeDBg4mPj2fQoEGulFOlSsh5xpglwHsi8o6z0VFALg74BvgceCBA/VNKlXLZ2dmsX7+elJQUli9fzquvvupKGf3iiy9YsmQJADVr1qRbt27ExsYSGxtLt27dXPeoWbMmnTt3Dkj/VXDINw3VGNMMuAcYBZyD3S/qCJAO1MSm0RhgGfAG8KGIhPRGYmeVZpOYCOPGQWoqNGliC9Kkpto1h+npUL263erCWcFURANEpUpYRkYGS5cuZcaMGcycOZPffvsNgD59+vDDDz8AkJWVRUpKCt26dXMNmqrs8UMaajmgFRAhIiu8HC8PvIfdiko0DVUpdbaOHTvGDz/84Nq2Yvny5Rw5csR1fPXq1XTo0AGAr7/+mmPHjhETE8P555+v6aQqhyKtWTTGVADisHtBNQQqAQeADcAiEfG+u+aZO9EEeAkYgA065wL3iEjqGa7rAowBegGRwH5gMTBeRLYUcN21wEfAThFpnM85xRsMExNhzBhbzTTvTW0F0+uug2uu0e0ulPKRF198kSeffJLDhw+72qpWrcrAgQMZPny4q3CNUuD7YLEI/fgX8LAGi0qpokhPT+fnn3/m9OnT9OrVC4DffvuNdu3a5TivSZMmrjWG1157LQ0bNgxEd1WICXiBG2NMBLAGO0s5Hjtr+TQQAbT33IfKy7XPY4PXRGAt0Ah4HKgHdBSR7V6uqYENbgXIKvFgMToavOwbQ40a8Ouv0Njrt1NKFUN2djYrVqxgxowZDBo0iO7duwPw7rvvctNNN9G6dWtX5dKLLrqIChUqBLjHKhgFS7AIYIwZICJzAt2PgmiwqFTgiAhbtmxxzRgmJyfz888/k5GRQffu3fnxxx8BmzkzdOhQOnTo4AoQGzRoEODeq1B0xgI3fnALcB7QUkQ2OTr1C7ARGAu8WMC1/yci+zwbjDE/Alsc933CyzX/xganu4GSr1iRms9k6OHDGigqVQLS0tKYPXs2M2bM4LvvvmPfPvsr4MCBA65g8YorrqBv3740bdo0kF1VqsiCPVB0cqapTZgwgYSEhMB2RqlS7PDhw4SHh1OlShUAHnzwQV544YUc5xhjaNOmDR07dnS1hYWFMWvWLH92VZUiCQkJTJw4MU97oGYW5wGVRKRHrvaFACLSuxj33AskichNudp7AHOA9thZzP5+m1mMioKtW4t+P6WUyw033MDUqVPJyspytUVHRxMfH89VV11Fnz59Atc5FbKCaWYxFOjMolK+kZWVxdq1a11bVyQnJ7N+/Xo++OADRo8eDcD//vc/HnjgAVcBmpiYGLp27co555wT4N6r0ioYZhbbAt96aV8LXFXUmxljWmPTUNfnai8PTAaeE5FNPlu8O2lS3jWLERG2XSlVKMeOHWPevHnMnDmTxx57jKioKADq1KmDMYa+ffsSHx/PkCFDaNWqlS7GV0opFbJEhPj4eBYvXszx4zlXX1WoUIHdHntwjxo1ir///e867qmACFSwWAtI89J+EFtptdCMMeHAm8A+4J1chx8GKgLPFOF+edrOmHLj2IvGVQ01MtIGis52pZRXGzduZObMmcyYMYOFCxdy+vRpADp27Mhtt90GwEMPPcTjjz+uT1BVseSXVqOUUr526tQpfv75Z9c6w/Xr17N69WrKlSuHMYa0tDSOHz9O06ZNiYmJISYmhri4ODp27EjFihVd99HK3SqQApWGehp4QUQezdU+CVsVrtD/Vxhj3gRuAoaIyGyP9ubAr8BlIvKdo+19fJGGqpQqkuzsbDp27Mivv/7qajPGEBMTw5AhQ7jqqqto2bJlAHuoSjtNQy0aHR+VKpw//viDV199lZSUFFavXk1GRkaO4+vWraN169YArF27lrp161KvXr1AdFWpfJ11Gqoxph1wpLjbZmBnFWt5aa+J9xnH/PrxDHYbjes9A0WHV4D5QLKjGipABXuZqQGki8jJIvZbKVVEO3bsYObMmcyfP58PP/yQ8uXLU65cORo1asSOHTsYPHgw8fHxDB48mDp16gS6u0qVOEcRtjeBz0QkPdD9UUqdvcOHD7Ns2TKSk5OJjIx0bc907Ngx/vvf/wL2D+4LLrggx1rDFi1auO7Rtm3bgPRdqaIo1syiMWYOMAWYBswDymEDtj8Kef18oIKIXJSrfYGjT2cscGOMGYfdbuMuEXnVy/GtQFQBt3hZRO7JdY0+OVXqLGVmZpKSksKMGTOYMWMGv/zyi+vYwoULXftB7d27l9q1a2t6jQoIf84sOsa2XtiHof8DJovIBn9875Ki46MqSxITExk3bhypqalERkYyadIkOnfuzMKFC11FaDZs2IDz/4nevXuzYMECADIyMnj++eeJiYmhS5cuVK9ePYA/iVLFc9b7LBpjnhORB40x1wM3A/cDt4vIDYW8/h7geaCFiPzpaIvGbp3xiIi8kP/VYIy5C3gZGCci/8rnnFigUq7mR4DO2CI6O5zbdnhco4OhUmdh586dtG/fnoMHD7raqlSpQv/+/YmPj+eyyy6jbt26AeyhUpa/01CNMS2xW0P9HZtFsxh4A/hKRDIKujYY6PioyorExERuueUWTp50J59FRETQtWtXFi5c6GqrUKECnTp1IjY2ll69enHZZZcFortK+URJBIuvi8jtxpi5wH9F5BtjzP+JyMOFvL4Kdt/Dk9jtLAR4CqgGtBeRY47zooDNwJMi8qSj7RrgI+B7IHfVgiMisq6A7/s+umZRqbMmIqxevZoZM2awbds2pkyZ4mqPioqiYsWKDBkyhPj4eHr16kWlSrmf2ygVWIFas2iMqQj8DbuEojuwH3gPO9v4p7/7U1g6PqrS6tSpU6xatcq1dcWXX36ZY6smpzp16tC/f3/i4uKIiYnJU4RGqdKkJILFEcBbwGHsNhhZwFQRKXT5T2NMJPASMAAw2HTWe0Rkq8c50cAWYKKIJDja3geuz+e2C0WkTwHf8300WFSqWI4ePcrcuXOZMWMGM2fOdJX1NsawZ88e1wL9AwcOULt27UB2VakzCnSBG2NMJ+BFbHoqQDbwNXCniOwJVL/yo+OjKg1EhL1793LuuecCcPr0aWrWrMkJz63P8mGMITs729ddVCoonDFYNMZ0FJHVZ7hJFWyRmExHoZlKInKvLzrsLzoYKuXd/PnzGTx4cI6qbg0bNnTNHg4ePFhnD1VICUSwaIypDFwL3IpdErEBW/jmc2AYkABsEJGL/dmvwtDxUYUiZxEa5zrDlJQURIR9+/a5tkrr2rUr6enpxMTEEBsby+OPP55jj0OnqKgotm7d6uefQKnAKEw11OXGmDtE5K38biIixz2+fjS/85RSwcnbAv4rr7yShQsXMmPGDKpXr85TTz0FwIUXXogxhu7du7sCxA4dOugGwUoVgqOC+FhgFFAF+Ba7TdQPHqdNMcbswQaOhb1vY+x+wl2ADkBloKlnhk4B11bCLv8YDdQAVjv6tKiw31+pYDV37lzuvvtu1q9fT+6HHHXr1s0xu7h06dIchdYqVarEmDFjcsw2RkREMGnSJP90Xqkgk9/MYjZ2HeG/RORxrxca8x8cA4yI/Md3XfQffXKqyorExMQ8g2FYWBjh4eGkp9vK/vXr12fXrl2UK1cOsGmo1apVC0h/lSppfq6Gmg3sBN7Grk3MO21hz2sNvC4ifQt53z7Ap8BKIAwYSOGDxURgCPAg8CfwT+ASIM5bZpGOjyrY7N271zVjmJyczIABA3j0UTt3kZKSQmxsLOXLl6dTp06uWcPY2Fiio6PP+KDT28PUUaMKvdJKqZBXmDTUtcAvwNXAB8BNIpKV65zGQAx236gwn/faD3QwVGVFdHQ027Z53ya1Q4cOrtnDuLg4V7CoVGnir2DRGFMBOAgMF5H5JXzvciKS7fj6ZuyWVmcMFo0xHbAzif8QkfccbeHAWuB3ERnu5RodH1XAJSYmkpSURHJycp6U0P79+zNnzhzArkVcuXIlF154oS6RUKoYCpOGmi4i1xpjUrFPHc81xlyRK/V0hzFmN7Y4jVIqiB08eJDvvvuOGTNm0Lt3b1JTU/M9d/Xq1f7rmFKlnIicNsYItoBNSd+7uPccDmRgZyWd98o0xnwCPGKMqSgi6SXRR6WKSkTYtm2ba8bwkUcecaWMzpkzh08++QSAqlWr0rVr1xwb3jtVqFCBuLi4gPRfqdKmwN2wReRhY8wW4FVgkTHmEhH5K/dpPuudUqpYRIRffvmFmTNnMmPGDJYuXeqq4rZr1y4iIyO9zixGRUX5u6tKlQU/ArHAggD3w6ktsEVEcpeAXAtUAJo7vlbK506fPs2PP/7oCg5TUlLYu3ev63jv3r1dexjecMMN9OjRg9jYWNq0aUNYWKlIbFMqqBUYLAKIyJvGmO3AJ0CyMWawiPzh+64FhjOPfcKECSQkJAS2M0oV05gxY3j77bddr8PDw+nTpw9DhgxhyJAhrFixQhfwqzInISGBiRNzb8/rF/cD3xhjjgHfALvJ9aD1LGYJi6MWkOal/aDHcaVKXHZ2Nhs2bGDXrl30798fsPscXnzxxTkK0dSuXds1Y9i2bVtXe58+fejTp4+/u61UmXbGYBFARGY4FtInAT8ZY4aJyFJfdixQdE2GCiVbtmxhxowZzJgxg/vuu48BAwYAEBcXx/Tp04mPj2fIkCEMGDCA6tWru65r2bIlgC7gV2VKQkKC6yGgnyv5/ur4/LLjIzehkONxCTF4zwoq8E3x9p7pg1VVkAMHDpCSksLSpUtJTk5m2bJlHDlyhHPPPZddu3ZhjKF69epcffXV1KlTx5VO2qxZM622rZQfFOYhan4FblaJSCcv7VHALCAKWwJ8OnBaC9wo5R8ZGRksWbLElV66fv1617Hbb7+d1157zXVeWFiYFqdRKh9+roaawBmWbIjIWU15FrHAzadARxFpmav9b9h1jBeIyNpcx3R8VAXKyMjg1KlTrqrZkydPZuzYsXnOa9KkCbGxsbz//vtERET4u5tKqUIoTIGb84wxS4D3ROQdZ6OIbDPGxGHTaD4HHvB1Z5VSbhdddBHLli1zva5evTqDBg1iyJAhXHLJJa728uXLB6J7SikvRCQh0H3IZS1wmTEmIte6xTbAaWBTYLqlQsnOnTtdM4YpKSmsWLGCRx99lCeeeAKA1q1bU7lyZbp06eKaMYyNjaVRo0YB7rlSqijyCxZrAa2API98ROSwMWYg8B7wElrgRqkSlZ2dzc8//+xKL/3ss89chWd69uzJ0aNHXWsPe/TooYGhUqqopgETgauA/4Fr64yrgdlaCVUV5O677+arr75ix44deY55Vtru3r07hw8f1jFKqRDnNQ210Bcb8y/gYU1DVersHD16lDlz5jBjxgxmzpzJnj17XMdee+01br/9dsCm+ejAq9TZ82caqsf37AC0BPJs/CYiHxTznlc6vrwYuBW4HdgH7BORhY7lI5uBJ0XkSY/rPgEGYbfH2gLcBgwFuovIKi/fR8fHMkJE2Lx5s6s6aXJyMrNmzaJu3boAjBw5ko8//phzzjmHmJgYYmJiiIuLo1u3btSuXTvAvVdKlQTPMfKsgkXHzQaIyJwS6VmA6WCoAuH06dPUrVuXI0eOuNoaN27MkCFDiI+P5+KLL6ZKlSoB7KFSpY+f1yzWAGZgt88AdyEZ14BT3Ieujj0cvVkoIn2MMdHYYHCiZzqsMaYyMAkYCdQA1mAf/i7I7/vo+Fh6HThwgDfeeMMVHB44cCDH8enTpzN06FAA1q1bhzGGli1b6rp4pUqpEg0WSxMdDJUvnT59mkWLFjFjxgyWLFnCTz/95JolHDp0KIcOHXKll7Zr104rwSnlQ34OFl8H+gE3AYuBy4DDwD+AOOAaEVnpj74Ul46PpUNWVhbr1q0jJSWFzMxMbr31VgAOHjyYY1awXr16xMXFubav6Nq1qz60VKoM0WAxHzoYqpK2Z88eV+XSOXPmcPToUdexBQsW0Lt3b8AO4Lq5sFL+4+dgcTN2jWAikAF0dQaHxpg3gCoi8nd/9KW4dHwMTomJiQVugXTgwAF++ukn14zh8uXLXeNQkyZNcqwxfOqppzj//POJjY0lKipKH1gqVYYVphqqUuosbdy4kRYtWuRou+CCC1yzh3Fxca52DRSVKtUaAH+KSJYx5hRQzePYV8AngemWCmWJiYmMGTOGEydsQdtt27Zx0003ceDAAe666y4A3nrrLcaNG5fjuqioKFd1Us8HlY8//rh/fwClVEjQmUUP+uRUFceRI0eYM2cOSUlJHDhwgGnTpgG2SEDr1q1p3ry5a/2hs6qpUiqw/Dyz+Cdwl4gkGWPWAx+IyDOOY7cBT4tIUFcG0fEx+DRu3JidO3fmaa9RowZpaWkALF68mMcff9yVThoTE0ODBg383VWlVIjRNNR86GCoCuuPP/5wbW2xaNEiMjIyAPs/1549e6hXrx5gt8HQAgBKBR8/B4sfANtFZJwx5jHgCeyWFZnA9cA0ERnpj74Ul46PgZWenk7FihVdr2NjY0lJScn3fP1vpZQ6G55jpP4Vm4sxBmMMCQkJge6KClLffPMNLVu25L777mPevHlkZWXRo0cP/vWvf7F69WpXeXFAA0WlgkhCQoLrd7yfTQS+c3z9HPAaMAS4Frvn4Z3+7pAKXiLCpk2bmDp1KnfccQddunShWrVqHDp0yHVOkyZN8v13rBksSqmS5HVm0RiTjUdJ7zMQESkVax/1yany5FmcplGjRrzyyisApKWl0bJlSwYMGMCQIUMYNGiQ7i2lVIgJxD6LoUzHR9/btGkT99xzj9etK8qVK8fChQu56KKLADh8+DDTpk3j1ltvda1ZBIiIiGDy5Mk5itwopVRRnTEN1RiTQOGDRURkYon1LoB0MCzbsrOzWbVqFTNmzCApKYkVK1a4jtWvX59du3a5Zgo1vVSp0KbBYtHo+FgysrOz2bBhA0uXLiU5OZl69eoxadIkAP766y/q168PQN26dYmNjXVtX+GcXcztTNVQlVKqOHTNYj50MCzbJk2axPjx412vK1WqRL9+/VzVSzW1R6nSw9/BojHmemzaaSRQKddhEZFm/upLcej4WHzLli0jKSmJ5ORkUlJSOHLkiOvYeeedx+bNm12vv/76azp27Eh0dLRuXaGUChjdOkOVaZs2bXIVpxk6dKirxHj//v158803GTp0KEOGDKFfv35EREQEuLdKqVBnjHkcu27xN2A1kB7QDimfyMzM5NdffyU5OZl+/frRsmVLAGbNmsVTTz3lOq9x48Y5Nrz3dNlll/m1z0opdSaFDhaNMR2AluR9IoqIfFCSnVKqJGVkZLBkyRJXeunvv//uOpaZmekKFrt160Zqaqo+zVVKlbSbgJdF5N5Ad+RsOH83TpgwQYvAAbt373Ztdp+cnMyKFStc6weff/55V7B4ySWXcPz4cdfWFY0aNQpkt5VSyquEhAQmTsy7svCMaajGmBrADMD5+Mv5l7TrQhEpFTuKa5pN6TRq1Cg++ugj1+saNWowePBghgwZwuDBg6lTp04Ae6eUCgQ/b51xFBghIvP98f18oayPj+np6WzYsIEOHToAtmJpgwYN2Lt3b47zmjdvTmxsLKNGjWLw4MGB6KpSSp21oqah/guoDfQCFgOXAYeBfwBxwDU+6qdShSYi/PLLLyQlJZGUlERCQgKDBg0C4OKLL2b16tUMGTKEoUOH0r17d8LDNQNbKeU3C4EOQMgGi2WJiJCamppj1nDVqlVkZmZy6NAhqlWrhjGGAQMGsHv3blc6aWxsrD58VEqVOoWZWdyMXWuRCGQAXUVkpePYG0AVEfm7rzvqD2X9yWmoOXHiBPPnzycpKYkZM2awY8cO17F//vOf/Pe//wW0cqlSKi8/zyw2B74CngdmAgdznyMi2f7oS3GV5vFRRFwptkuXLuWKK65g9+7dec5r06YNX375Ja1atfJ3F5VSyq+KOrPYAPhTRLKMMacAz9rNXwGf+KCPSgEFlwXv3r07a9ascZ3boEEDV+XS/v37u9o1UFRKBdgfjs/v5XNc0IJzfiEibN68meTkZNf2FZ06dWLKlCkAREZGsnv3bmrWrOmaLYyLi6Nr167UqFEjsJ1XSqkAKMzgtAeo4fh6Gzb1dIHjdfOS75JSVmJiIrfccgsnT54EYNu2bdx8882AXYc4YMAAKlSo4EovvfDCCzUwVEoFoycpwt7FquR99NFHfPTRR143vD916pTr60aNGvHHH3/QvHlzLXamlFIULg31A2C7iIwzxjwGPAH8D8gErgemichIn/fUD0pzmk0oSUtL4/vvv+fmm2/m+PHjeY5HRUWxdetWTS9VShWbv/dZDHWhMD46N7x3zhreddddtGvXDoDx48czadIkAOrVq+eaMYyLi6NLly5UqVIlkF1XSqmgUtQ01IlAQ8fXz2GL3VwNRADTgDt90UlVNqWnpxMZGcmxY8fyPSc1NRXQ9FKllCrLsrKymD17tqsITUpKCocPH3Ydb9eunStYvOaaa7jggguIjY0lKipKZw2VUqqQzjizWJYYY1xvhu4j5Vvp6eksWrSIGTNmsHjxYpKTkylfvjwAw4YN49ixY6xZs4a0tLQ81zpnFpVSZUtiIowbB6mpEBkJkyaBYwlzoeTeQ0pnFgsv0DOLmZmZrF27lj/++IOrrroKsOsP69Spw8GD7npBnhvex8fHazEapZQqBs+ZxUIFi8aYC4HHsdtn1MBWRP3ZGPMvYJGIfOfD/vpNoAfD0m7v3r3MnDmTpKQkZs+enWP2cMGCBfTu3RtwVy9NTExkzJgxrk2OASIiIpg8ebKryI1SqmxITISbbwaP5WVERMDkyUULGJ18nYZqjMkC4kRkmTEmm4LXLIqIBHWBG3+Pj3/99ZdrxnDp0qUsX76c48ePEx4ezuHDh4mIiADg4YcfJjs727XhfePGjf3WR6WUKq2KlIZqjLkImAv8CXwE3AE4B9hs4FagVASLync2btxIixYtcrS1a9eOIUOGMGzYMGJiYlztzvRSZ0CYXzVUpVTp9ttvMG8e/PQTfPklZGXlPH7ihJ1pDNJfCU8COzy+LrNPIguqag2QkZHB0aNHqVWrFgDffPMNl112WZ77nHfeecTGxnLkyBFXsPh///d//vkhlFKqjCpMgZslwAHgUiAMOA10EZFVxpjLgf+ISKSvO+oPOrN49o4fP868efNISkpi3759fP3114BNF2rVqhXNmjVj2LBhDBkyhMjIUvHPRilVAvbvh6VLISYG6tWzbbfdBm++WfB1xkB2MXYo1AI3RVPc8dFbhkilSpUYO3Ys5cuXJzk5mRUrVnDdddcxefJkALZu3coFF1xA165diYuLIyYmhtjYWOrXr19iP49SSqn8FbXATSfgchERzzV9DvuBuiXdQRVatm3bxowZM0hKSmL+/Pmkp6cD9h/a3r17qV+/PsYY1q1bR1hYWIB7q5QKtOxsWL/ezhg6P/5w7EQ4dap7pjA+HtLTIS4OJkwAL/uko8+cgtu4ceNyBIpgt6p4+eWXc7Tt2bPH9XVUVBSHDh0iPDyoM3OVUqpMKMxv4lPYyqfeNAAO53NMlQFJSUkMGzbM9doYQ7du3Rg2bBhDhw6lnnOKADRQVKqMOn0aKlSwX2dmQqNG8NdfOc+pXBm6dYOqVd1tw4bZD7DrE8eMsamnThERtshNsDPGzC/gcDZ2HF0JvCMie/3TK/9wVq/25vHHHycuLo5u3bpRu3ZtV7sxRgNFpZQKEoVJQ52GLWrT19GUAXR2FLiZDezXfRZLv8OHD/P999+TlJREvXr1eP755wG7J2KzZs3o27cvw4YN45JLLtFUIaXKMBHYti3nrOH27bB3Lzh3u4mLgx07oHt36NHDfu7QARwFkfN1ttVQPfkzDdUY8wPQAvuAdQuwF6gPNAV2O163Bo4BvUVknT/6VRTFHR+jo6PZtm1bnnataq2UUsGrSNVQjTEdgB+BrcAX2KqorwIdgM7Yyqi/F6MTTYCXgAHYgjlzgXtEJP/HkPa6LsAYbGXWSGwq7GJgvIhs8TivBfBPbJB7HnAUWA48LiJr8rm3BoseNm7cSFJSEklJSSxatIjMzEzAbmi8e/duVyGazMxMfQqsVBm3erUN3n76CXbtynksLAx+/x2aNbOvjx6FatX83sUc/BwsDgP+A1wpIj97tHcGPgPuw84szgZ+F5G81V0CrCTXLGpVa6WUCm7F2TqjE/AcNkALw6bNLAbu8xz4itCBCGANkA6Mx1aJexqb7tpeRI4XcO3zQByQCKwFGmED2HpARxHZ7jjvDmxQ+T9gFXZ29CHgQqCHiKz0cm8NFh1eeOEFHnjgAdfrsLAwevTo4UovbdmypW5qrFQZtG+fLUTz00/QvLndzgJg1Sro3Nl+XauWnS3s3t3OInbtClWqBK7P3vg5WFwDPC8iH3o59nfgQRFpZ4y50XFe7Tw3CbCzGR/PVA1VKaVUcClysOhxYSWgFnBIRE6c6fwC7nM38CLQUkQ2OdqaAhuBh0TkxQKurSsi+3K1RWFTe54WkSccbXWAA56jmzHmHOwM6XQR+buXe5e5YHH//v3MmjWL6dOnc/HFFzN27FgAli1bxuDBg7nkkksYNmwYgwYNombNmgHurVLK3zZuhIUL4ccfcxaiAejVyx4Duxbxgw9sgNiypa1SGsz8HCyexBaKm+Xl2CXAVyJS2RjTC5gtIpX80a+i8CxwN2HCBBISEgLYG6WUUiUtISGBiRMnul4XK1jMzRhTEbhVRF4+48k5r5sHVBKRHrnaFzo617sYfdkLJInITWc4LwU4JiIXezlW6oNFEWHt2rVMnz6dpKQkli5divNn7tOnDz/88AMA2dnZZGdna3qpUmXI8eOwbJldP+jY8o6bb4Z33nGf4yxE06MH9O4NAwcGpq9ny8/B4npgnYhc4eXY10ArEWnt2I7qVRFp5I9+FUVZGB+VUkpZRdo6I58ZusrA7cAD2PTPIgWLQFvgWy/ta4GringvjDGtHf1Yf4bzagEXAO8V9XuUFmPHjmXKlCmu1xUqVKB3796uvQ+dypUr51qTqJQqnbZvd88Y/vSTXXeYlQWffgp/+5s9Z/Bgu8bQWYymMIVoVB5PAlONMb8AXwJ/YcesK7BjkrNIXH8gJSA9VEoppbzwGiw6Zgz/DdwEVAYOG2PGicgbxpjR2PWL9bEFY/KkcxZCLSDNS/tBoEi5jsaYcOBNYB/wzhlOfxVbTOc/BdwvT1soptzs3r2bmTNnkpSUxD//+U/69+8PQFxcHN9++y1Dhw5l6NCh9O/fn2qBrjShlPI5EXdqaEYGtGgBuYtRhoVBp072s9OVV9qPUJU7rSYQRORjY8x+YCLwGFAeW1l8BTBQROY6Tr0PyApML5VSSqm8vKahGmMmAY9iK5Suwpb3vgx4C1th9A/sgvzpxfqmxpwGXhCRR71834dFpNC5j8aYN7FB7RARmV3AeY8C/wJuEpF38zknZNNsRISff/6ZpKQkpk+fzooVK1zHbr/9dl577TUATp8+TXh4uM4aKlXKpaVBcrJ75vDPP2HLFnfA2LkzbN5sC9A4t6/Ivc9haebPNNRc37ccUAe77VS2v79/cYXy+KiUUqpoCpOGejXwuojc4XHRP4C3gTnAMBE5fRZ9SMPOLuZWE+8zjl4ZY57BVjy9/gyB4q3YQHF8foFiqOvXrx8LFixwva5UqRIXX3xxnvTSCs6dsZVSpc66dfCf/9jgcO3avMf//NO9fcWsWVCnjnvvQ+UfjgDxr0D3QymllCqM/ILFJsDXudq+wgaLL55loAh2bWJbL+1tgEJtRmyMGQc8AtzlrRy5x3nXAa9jZzInFaOvQWX79u3MmDGD6dOn8/rrrxMVFQVA586d2bhxoyu9tF+/fkRERAS4t0opX0hPh5UrbVDYpAlcfbVtP3oUnEuSK1aELl3cW1h07w716rnv4fm18g/HvsUtgTzVTkXkA//3SCmllCpYfmmo2UCsiCzzaAvDrrHoIiKrzuqbGnMP8DzQQkT+dLRFY7fOeEREXjjD9Xdhi+qME5F/FXDeZcDnwLsiMqYQ/Qq6NJvs7GyWL1/uSi9ds2aN69hrr73G7bffDsCJEyeoXLmy7n2oVCm0b587nfTHH2HFCjjteGTXvz/MmWO/Pn0aXnnFBoadO9uAUXnn52qoNYAZQKyzyfHZNeCISBhBLBjHR6WUUr5xxn0WHcHiFcAaj+Yw4HdgBHZm0MUZ8BWhA1Uc9z4JjMcOmE8B1YD2InLMcV4UsBl4UkSedLRdA3wEfI8tFuDpiIisc5zXC5iNnam8A/BcG5IuIj976VdQDYaZmZk0a9aM1NRUV1uVKlUYOHCgawaxnk4PKFWqZGfDhg12xtBZe+r66+0ehp7atrVrDfv1c88sqsLzc7D4OtAPu75+MbYGwGHgH0AccI2IrPRHX4or2MZHpZRSvlPYrTO+yKf9Gy9tRXoiKiLHjTH9gJeAD7FPWecB9zgDRWdfHff2XFUz2NE+2PHhaSHQx/F1P6AicCHwY67ztgHRRemzr23dupWkpCTmz5/Pp59+Svny5QkPD6dNmzYADBs2jGHDhtGnTx8q6nSBUqXGiROwfLl71vCnn2xxmq++gssus+f062e3uXBuXxEbCzWLVDdaBdgg7MPNZMfrHY7gcIEx5g3gbopXWVwppZTyqfxmFq8vyk1E5H8l1qMA8ueT06ysLFJSUpg+fTpJSUn89ttvrmMLFiygd+/eABw+fJjq1atreqlSISIxEcaNg9RUiIyESZNg1Ki852VmQq9eNlDMzMx5rGFDeOYZ+LuGDz7j55nFE9gtMpY4vo4XkQWOYwOAT0Sktj/6Ulw6s6iUUmXHGWcWS0vwF6x27txJhw4dOHDggKutWrVqDB48mKFDh9K+fXtX+znnnBOILiqliiExEcaMsbOFANu2wc03w7x5dm/DTZvszKExEB4Ox47ZtNOOHd2zhj162CBTnw+VKnuAGo6vt2FTTxc4XjcPQH+UUkqpQvE6s1hWnc2T08TERMaNG0dqaiqRkZFMmjSJUaNGsXnzZpKSkti8eTOvvPIKYPdEjI6OJjw83JVe2rNnT93WQqkQFx1tA8SCbN4M551nv96wwc4iVq/u866pXPw8s/gBsF1ExhljHgOeAP4HZALXA9NEZKQ/+lJcOrOolFJlxxkL3JRVxR0MExMTGTNmDCec0wlAeHg49erVY9euXc57s3v3burXrw/Avn37qFOnjqaXKhXCduyw6wxr1IBBg+yehfn9Cvnvf+2sYbt2EBbUdS/LBj8Hi82AhiKy2BhTHngWu59xBPAdcKeIHCjoHoGmwaJSSpUdGizmo7iDYXR0NNvymU4455xzuOSSSxg6dCiXXnopVapUOdtuKqUCICsLfvvNBodLltjPzkLFgwfbTe7zm1mMioKtW/3ZW3Um/gwWSwMNFpVSquwobDVUVUieW1vktm/fPsqXL+/H3iilSsKxY1C+vHuvwn/8I+/2FdWrQ1wcDBxoX0+alHPNIkBEhG1XyhjTBGgCVMp9TETm+79HSimlVMHKnfmUssUYgzGGhISEQl8TGRnptT0qKkoDRaVCxI4d8OmncNdddkP7GjXcm90DdO1qZw5HjYLXX4c1a+DgQfjuO7j3XnvOqFEwebKdSTTGfp482Xs1VOV/CQkJrt/x/mSMOc8YsxTYit1nca7jY47HZ6WUUiroaBqqh5JcsxgREcHkyZMZpX8lKhW0srLs9hRLlrhTSp3CwuDFF23wCLZqaTl9vFZq+HnN4nygJXat4gbgdO5zRGShP/pSXMYY1+A4YcKEIj1QVUop5VuF3barIAkJCUycONH1WtcseuGLaqhKqcA7fhxSUuw6wz/+gA8/dB9r3dpWJXWmlDq3r4iJAV1iXHr5OVg8CtwgIl/64/v5gq5ZVEqp4JR72y6wS2DOJrNJC9zkQwdDpUqHtDSYO9cGhz/+CD//bGcRnbZvh8aN7dcLFkCtWtC2rVYpLUv8HCyuBx4Sken++H6+oOOjUkoFh6NH4fff7YPuihXhwQdLvrieBov50MFQqdCTnQ1r19pgsGNH2zZ/Plx8sfucsDB7zDlrGB8PVasGorcqWPg5WLwOGAsMEpHj/vieJU3HR6WUCoyZM+3Hhg32Y+dO97HOnWHVKu/bdhlj/0YqDq2GqpQKWSdOwPLl7u0rli6FQ4dg+HD49lt7TkyM3fewe3e46CLo1k2DQxU4IvKhMaYVsNUYkwyk5T1Frg9A15RSSgXQqVOwcaM7EHR+vPGG/dsFYOFCeO019zUVK0KLFtCqFVx4Iezf731mMZ/6m0WmwaJSKqiJ2KdjAI8+Cs8/D5mZOc+JjHSnlYJda/jdd/7ro1IFMcbcADwKZAGdyFvgRqfslFKqlBKxAd2BAzbAA1tNvWtX2LLF+6zgb7+5g8Xhw6FePVtjoVUrm17quWwmMtK323ZpsKiUChoiNg/fOWu4ZIl9mubcx7BePZtS0bGjnTF0ppU2aRLQbit1JhOBr4GbRORQgPuilFLKR3bssGmhzjWFzo+DB+3fLj//bM+rWRP27rVV1ps1s0Fgy5bugLBtW/c9nX/r5MdZxOZsq6HmR9csetA1GUr5X3a2nS10FqM5cCDn8QkTwFml//BhO8tYvbrfu6lKGT+vWTwGjBCRef74fr6g46NSSllHjuQMBkeOdAd3jz4Kzz6b95pq1aBTJ1tUz+nPP6FRI5tWGmx0zaJSKiAOHoSffrLpFY88YtvKlbPlnTdvtq8bNHDPGl50EXTo4L7+nHP832elSsASoDUQssGiUkqVVadOwX33uYPD3btzHo+OdgeL3brBgAHuGULnbOG557qX1Didd55fun/WdGbRgz45VarkiNinZs4ZwyVLYN069/E9e6B+ffv1++/b/PuLLrK/dHP/QlWqpPl5ZrEl8Bnwb+A78ha4QUSKWbPOP3R8VEqVRvkVmKlQwRbQA/v3TI0adkYR3AVmnAHhiBF21rA00a0z8qGDoVLFl5lp9zesW9e+njvXPl3zVLGifep20UVw1132SZtSgeDnYNEZCOY3wIiIBHWmj46PSqlQtn8/rF9vZ/MaNbJtzz8PDz/sfXuJihXh+HF3IZnERLsnc6tWdk1gad+XWdNQC2AcUxoTJkwgwblQSimVx9GjkJxsZwyXLIGUFBg8GL74wh7v2tXOHMbGutNKO3UKztx8VTYkJCQwceLEQHzrJ/FBxVNjTBPgJWAAYIC5wD0iklqIayOBp4C+QB1gB3b285lQ3QtSKaWys3PuSej8cNZDeOMNuPVW+3WDBvbz+efnTRtt2TJnQFhSxWJCkc4setAnp0qd2ZQp9pftmjV5n8ZddBEsXux+7bnthVLBxJ8zi75gjIkA1gDpwHhsMPo0EAG0LyjgM8ZUAX4GygMJQCrQFVu1dZqIXO3lGh0flVJB4dixnAVmjh6F//zHHhOB2rVtppOnatVsMHjXXTB6tG07dcrWTahQwa/dDwk6s6iUIjEx/zLL2dl2faFzreE//2lnCMH+Av75ZwgPhy5dcm5h4VyD6KSBoiqrjDFFKl0gIn8W8VvcApwHtBSRTY7v+QuwERgLvFjAtT2A84FBIjLb0faDMaYW8IAxJkJETuR/uVJKFU9Bf3t4ErHLW8qXt69nzoSXXrLB4Y4dOc8tX96mlIaH2787rrsOsrLsDKFzlrBhw7x/k1Sq5JufsbTRYFGpMigxMecGrtu2wU03wbRpNkf/xx/h0CH3+S1auIPFq6+2KaYxMXbTV6WUV5soWuppUVfADAeSnYEigIhsMcb8CIyg4GDR+Rz9SK72Q0A5bEqrUkqVKG9/e9xyC+zcCc2b500dffZZuP12e+7hw7YWAtiZwBYtcu5LmJVlg0WAl1/2/89WmmkaqgdNs1FlRZMmeZ/M5daoEfTsaWcOBw60Of1KlRa+TkM1xlxflPNF5H9FvP8e4FsRGZur/XXgKhGpW8C1lYBfgN3Abdg01G5AIvC1iNzu5RodH5VSxZaWBm3a2ErohfXAA/Dcc/brPXtgxQobGDZtWvoLzASapqEqVYaIwNat7kI0S5YUHCgmJtqU0shITSNVqriKGvwVQy28bMEBHARqFnShiJwyxlwEfAms9Tj0NnBHifVQKVUmbdwIM2bknCXcu7fga+Lj3SmjztnCOnXcx889F4YO9W2/lXcaLCpViq1aBcOGwa5dhTs/KgpGjvRtn5RSJcbbVN8ZH/E4ZhY/BeoB1+GeWXwCyMTONnq7Lk+bVg5Xquw5edK9N+H69fbzpZfaZSpg6xrce2/OayIi7BrE06fz3i8qygaXyv8KUyVcg0WlQtyJE3bbCuesYXQ0vPWWPRYdbQPF2rXtbKGzGM0ff9iiNSc8SlhERNiF5kqpkJCGnV3MrSbeZxw93QT0AZqLyGZH2yJjzGFgsjHmTRFZk/siTUNVquwQsamjtTx+y/z97/bvjK1b7XFPNWu6g8XOne32FK1auWcJGzeGjz/OuWYR9G+PQEtISPD6wM/z4aAGi0qFoJ9+gq++sr+0V660T+ucGjd2f12rln36d955tjy0U/futnpYYSqSKaWC0lqgrZf2NsC6M1zbDkjzCBSdljk+t8Zuy6GUKuWysmzw55kyun69/Th0yAZ2zv2RU1Nhyxa7XrB585z7Enbt6r5ns2Z2i63cnH9j6N8eoUUL3HjQBfwq2IjA5s02KIyLs7+Uwf5yHT/efl2uHHTsaGcMe/a0nxs2DFiXlQoJpWCfxXuA54EWzm03jDHR2K0zHhGRFwq4NgGYAJzvWU3VGDMGeAvoJSKLc12j46NSIez4cffehNHR9qExwJdfwpVXer+mWjWbUtqsmX29erWtRNq8ue5NWNp5jpEaLHrQwVAFWmam3ezesxiNs3LYs8/Cww/br1evtjOLPXvaLS2qVQtYl5UKSaUgWKyCnf07CYzHrl98CqgGtBeRY47zooDNwJMi8qSjLRpbDXUPMAm7ZrEL8DjwB9BNRLJzfT8dH5UKIYmJsHy5e01haqr72Nix8Oab9ut162DQoJyFZZzpow0aaKG7skqroSoVJE6dyrkpbJs2Nm3UU926dq1hq1buto4d7YdSqmwSkePGmH7AS8CH2MI284B7nIGig8Hu4VjO49qtxphYIAF4GqgDbAcmA5NyB4pKqeCSmQl//pmzwMzvv8O8eVC5sj3n3Xdh/nz3NeXL2xnB3CmjbdrA9u3+7b8KLTqz6EGfnCpf++uvnLOGa9bYtnPOscevusqmfPTs6U4pbdFCn+wpVdJCfWbR33R8VMr/jh2zawbr1bOvly2DG2+0D5UzMvKev2YNtG9vv5461Ra4c84WNm3q3rReqTPRNNR8GGNcb4aWA1clZds2ePJJGxz+8UfOY2FhsGCBnTkEW1Ja1wEo5Ru5S4RrsFh4Giwq5Tt79th0UM8CMxs22D2Rb74Zpkyx523YYIM/sMVhnOminkVmqlQJ3M+hSg8NFvOhg6E6G57rDcPD7dYUYDeiPfdc+3VEhF1jeNFFduYwJkbXGyoVCDqzWDQ6Pip1djIybME6Z0B41132bwKAAQNg7ty811SoYLej+OAD+zozE3791WYcaVCofEmDxXzoYKiKwrm/4eLFNkBcutSmjIDdqmKzR1H6t9+2qSEXXmjXDSilAkuDxaLR8VGpotmxA15/3T1TuGlTzm2uVq2yfxOArW7+ww859yV0po6GhQWm/6ps02AxHzoYqoLs329/adesaV9PmGDTSz2dd557veGNN+bc21ApFTw0WCwaHR9VWZKYWPBegCKwe3fOlNH166FTJ/j3v+05GzfaGUBP0dHulNF//tMWnFEqGGk1VKXOQMRuUussRLN4sR0IXngB7rvPntOrl61I6lmMRvc3VEoppUJXYiKMGWOzh8DWHbjlFvv1qFFwzz3w3ntw5Ejea53XgJ0VnDDBHRy2aOFOO1UqlGiwqFQu//wnfPst7NyZs71SJUhLc7+++GJbuVQppZRSoev0aVtzYMMGuOOOnEEfwMmTdqZx1ChbnfzIEahVK+++hG3buq8JDwetk6hKA01D9aBpNmXHqVOwYoWdMfzxR/jkE6ha1R679FIbLNaqZQvROIvRdOqklUqVKi00DbVodHxUoc4zdXTDBltc7rrr7LE//4RmzQq+3hjIzraVS8PC7B7ISpVWQbFm0RjTBLuZ8ADspsFzsZsJp57hui7AGKAXEAnsBxYD40VkS65zywEPA2OBc4HfgSdF5Mt87q2DYSl18qRdPO5MKV2+HNLT3cfnzrUzhWCfLoaH26eEuuZQqdJJg8Wi0fFRhaIvvoCkJPe6Qs/U0a5d7b6FAFlZtjr5eefB7Nlw+HDee0VF2eUpSpUFAV+zaIyJAOYD6cD1gABPAz8YY9qLyPECLr8GaAu8AqwFGgGPAyuMMR1FZLvHuU8BDwDjgJWOaz83xgwVkZkl/GOpILJrl/3o0sW+PnAAhgzJeU7btu71hh07uts7dPBbN5VSSilVDMeO5d2XcP16u82Ec+xfuhT+9z/3NTVrulNHO3Vyt4eF2WwjyLtmEexaw0mTfP8zKRWMAjKzaIy5G3gRaCkimxxtTYGNwEMi8mIB19YVkX252qKALcDTIvKEo60esB14VkQmeJw7D6grIu293FufnIYgEbvZ/eLF7m0s/vzTDgbr17vPu+IKOP98m1bavbtNM1VKlU06s1g0xhjX4DhhwgQSdDGW8gMRu1dxWpp7M/q//oLOne3WFN68/z5cf739eulS+OUX95rCunVtOumZnKkaqlKlUUJCAhMnTnS9DmgaqiNgqyQiPXK1L3R0rncx7rkXSBKRmxyvrwM+AFqIyEaP824E3gXO85K2qsFikDnTL+wPP4T774d9+3JeV62arU767be6zlAplZcGi0Wj46PytR07bNE4z1nC9ettSmjnzu6Zv+xsW2MgK8s+AG7d2j1b2Lq1rT6qVUeVOjsBT0PFppF+66V9LXBVUW9mjGkN1AM85pFoi01z3eTlewC0wc5GqiDlrXz13/8OCxbAlCm2rVYtGyjWr2/TSZ3FaNq3t+sOlVJKKRUcjh+H3393p4+OHGmDPIBXXoHnnst7TY0a7v2NwdYS2LDBblWl47xSvheo/81qAWle2g8CNb2058sYEw68CewD3sn1PQ55eRR60OO4t/vladOUG/+bMwduvz1v+ersbPjoI3ew2LevTUFt3rxwqSVKqbIld1qNUsp/Tp6Exx5zzxRu25bzeHS0O1iMiYGBA90zhM7P9erlHd8jI/3SfaUUgUtDPQ28ICKP5mqfBDwsIoUOYo0xbwI3AUNEZLZH+xRgqIg0yHX++cAfwN9F5MNcxzTNJgB27LBrDS+7zO5lCBAfD7Nm5X+N/mdSSp0NTUMtGh0fVW5ZWXaJiDNd1Jk+WrEizJtnzxGB6tVtMRqA8uVt6qhzb8LLL7cppkqp4BIMaahpeJ/Zq4n3GUevjDHPYLfRuN4zUHQ4CNQ0eUe4mh7HlZ+J2MHEWYhm8WJ3KepFi2wKKcDo0Xb/Q88y105RUX7rrlJKKVWmnTplM3gaNHDvLfjyy/DII/ZYbpUr2yygcuXsjOArr9glI61a2a0pypf3b/+VUmcnUMHiWuyawtzaAOsKcwNjzDjgEeCu3DOEHt+jItCMnOsW2zg+F+r7qLMj4k4f2bfPbleRuxhN9eq2GE1YmLtt5Eh7rZavVkoppXwvOxuSk3MWl9mwAbZssccmT4ZbbrHn1qxpA8UGDdzpop4fnmmjN94YmJ9HKVUyAhUsTgOeN8acJyJ/AhhjooEe2ACwQMaYu7D7Mo4TkVfzOe074DQwCvBcsDIa+C13JVRVMk6ehJQU9zYWx4/bGUKAOnVsZdJzz3Xvb9izJ7RrlzNQdHJWPdXy1UoppdTZE7FLPzwrjT7xhD1mDFxySd6MnrAwmzparpy77YorYMQIOOcc//VdKRUYgVqzWAVYA5wExgMCPAVUA9qLyDHHeVHAZuBJEXnS0XYN8BHwPTmDQIAjIuKaMTTGPAvcAzwGrAKuBsYCI0Rkupd+6ZqMYli71m6Cu3ixLW2dkeE+ZgwcPGirmYHdH6mw+xwppZSv6JrFotHxMTgVZj/AhQvh7bfdFUid6wfBri88ftz9wPaGG+wY7rkdRfPm9jylVNnhOUYGJFh0dCISeAkYABhgHnCPiGz1OCcau73FRBFJcLS9D1yfz20Xikgfj+vDgEeBW4Bzgd+xgecX+fRJB8Mz2LXLBoWNGtltKgC+/touUgcbBLZvb2cMe/Wy5zRokP/9lFIqEDRYLBodH4NPYqJNCz150t0WFmarhz71FNx0k/u80aPd59SrlzN1dOxYd3E5pZSCIAkWg5EOhjmJwKZN7pTSxYth82Z7bNQomDrVfr1/P7zwgg0Qu3d3zyIqpVSw0mCxaHR8DBwRm5WzdavdXsKpQoWcmTye7r4b/vMf+3VqKsye7Z4prF3b1z1WSoU6DRbzUdYHw6wsOzPoXJdw1VXwRa452KpVbUB46aVw221+76JSSpUIDRaLpqyPj/6yb1/OIjPOz4cO2SqiJ064N6IvaDnH8eO2IJxSShVHMGydoYLA6dN2jeGiRXbW8Mcf4bvvIDbWHr/gArvWwbMYTYcO7oFKKaWUUkVz8qTdisJZZKZHD7sZPcDcubYaeG41athZwYMHbRopQOPGtlhNblFRGigqpUqO/tlfxpw6Bc88YwPE5OS8eyStXOkOFh9+2FZJ02I0SimlVPE99ZQdc9evt+mknpO0d9zhDhbbt4f+/d0po851hfXr5x2Ln31Wt5dSSvmepqF6KG1pNgcO2I3vN2+G++6zbSJ20HHuddimjbsYTc+e0KRJ4PqrlFL+ommoRVPaxseSIgI7d7pnCZ2po5s2wZ9/ujeg79nTjsdgi9A0b+4OBvv1gwEDivf9C1MNVSmlikrXLOYj1AfDHTtsOqkzrXTtWtterpxd71Ctmn39/vt2Q90ePezeh0opVdZosFg0oT4+nq2MDPvgtUIFOO882zZnjq0E7rkVhaf1621ACDBjhs3kad3aBooVKvin30opVRy6ZrEAxpHnMWHCBBISEgLbmQKI2HUPznUJ335ri854qljRppT27GnXJzrdcIO/eqmUUsEjISGBiRNzb8+rVE6//gq//JJztnDTJhsw3nYbvP66Pe/cc22gWKeOO13Uc39Cz0ydIUMC87MopdTZ0plFD8H85DQrC377zT1zuGgRxMfDu+/a47t328GpRw93SmmXLrqRrlJKeaMzi0VjjHENjsH+MLUw9u/PmTb6zDPu8bJ3bzvG5hYVBddcY9cKAmRm2qwdzdBRSpUGuR+oahqqF8EYLH7yid3PcMkSOHw457HYWFi61P06K8uuhVBKKVUwDRaLJhjHx6LYtAmee84dIO7fn/P4b79B27b266efhtWrc84UtmgBVar4vdtKKRUQmoYahE6csJXSFi2Ca6+Fli1t+2+/2bUOYJ9qOovR9OplBy9PGigqpZQqa06ftusJPdNG162DPn3gxRftOenpMHmy+5qqVXOmjNao4T42frw/e6+UUsFNg8UAOXTI7mvoTCldscKmtIAtPuMMFq+5xg5mPXvaSmdKKaVUWXTsmE0Zbd/eXSDmhhtsRVDn+OnJWdQN4Pzz4ZVX3BVIGzXSbaGUUqowNFj0k7Q0GwSCLU7TvLnd2sKpXDno1MnOGMbEuNsvuMB+KKWUUmXByZOwfHnOmcL162H7dnt8zRobMIJNDc3KgqZN3YFgmzbuGUOnChXgzjv9/7MopVSo0zWLHs5mTUbuvY7uvRdq1XLPHG7ZYmcTndVLr7wS9uxxF6Pp0QOqVy+5n0UppVT+dM1i0ZTk+Dhpkl1usX27OxCsUweuu86ev369Dfhyq1DBzhC+9ZYdM8E+dK1c2T22KqWUOnu6z2I+ijsYJibCmDF23WF+qlSxlUwvvNC+FtEUGKWUChQNFoumJMdHY2zgl57ubuvRw71pfUaGrUjaokXOIjNNm0K45kMppZTPabCYj+IOhtHRsG1b3vbKleHJJ+3s4YUXQvnyZ99HpZRSZ0+DxaIp6fERoH59dyDYpQv84x9n10ellFIlQ4PFfBR3MCxXzs4U5r0fZGeXQMeUUkqVKA0Wi6akx0fIv10ppVRgeY6R5QLdmdIgvyqlWr1UKaVUWZbfOBgV5d9+KKWUKh4NFkvApEl5F9dHRNh2pZRSqqzS8VEppUKbBou5GGMwxpCQkFDoa0aNspv9RkXZ1NOoKPt61Cjf9VMppVTRJCQkuH7HK//Q8VEppUKbrln0cDalwZVSSoUOXbNYNDo+KqVU2aFrFpVSSimllFJKFUiDxRJWlPRVVXj6vvqOvre+oe+r7+h7G5r0v5vv6HvrG/q++o6+t77hi/dV01A9lESajWPatoR6pJz0ffUdfW99Q99X3ymJ91bTUItGx8fgpu+tb+j76jv63vpGSb2vmoaqlFJKKaWUUqpAGiyGCF9MK/sqBSCUUgtC6T3Q9zX07usLofQehNL7qs6sONXC/UH/n/CdUHoPQum9DaX3QN/X0LtvceVXMVzTUD0Ec5qNL+6rfQ2t+2pfQ+u+odRXX903mPuqaahFU9bGR1/dN5T66qv7al9D677a19C6r6ahKqWUUkoppZTyC51Z9GCM0TdDKaXKCJ1ZLDwdH5VSqmxxjpEaLCqllFJKKaWUykPTUJVSSimllFJK5aHBolJKKaWUUkqpPDRYzIcx5kpjzJfGmG3GmJPGmN+NMc8YY6rlOq+tMeYrY8wuY8xxY8xaY8z9xpjwXOdVMsY8Z4zZ7bjfUmNML//+VIFnjBlkjJlvjNljjEk3xuwwxnxmjGmT67yaxpi3jTH7He/rXGNMOy/30/fVoTDvrTHmYmPMVGPMZsf7tdkY84Yxpp6X++l7S+H/zea65i1jjBhjpno5pu+rQ1HeW2NMrDHmO2PMIcfvhF+NMdfkOkffWz/Q8dF3dIz0DR0ffUfHSN8IpvFRg8X8PQBkAY8Bg4E3gNuAOcaYcgDGmIbAAuA84B5gGPAN8BwwKdf93gFuAZ4AhgK7ge+NMR19+lMEn1rASuAOYCDwKNAWSDbGRAEYYwwwDfu+3wlcAZQHfjDGNM51P31f3c743gK3ArWBp7Hv7zPAcMc5VXPdT99bqzDvq4sxpjswCjiSz/30fXUr1HtrjBkCLAL2ACOBEcAUoFKu++l76x86PvqOjpG+oeOj7+gY6RvBMz6KiH54+QDqemn7OyBAP8frMY7XLXKd98n/t3f/wXaU9R3H3x+T8FMC4WclhUkiVGt0UCkQBBJocWBIB9QRtQojKg4W7LRW5EehLQNWipgMtOiQwQrYBIgIgaCoASQIGqIWEYkYQUgJIT8wP6okJCTDt388z0n27tlzzr037D03935eMzt7d/fZZ/d8z5nzvfucZ58FlheWD8vlPlFYNxJYDMzt9mvt9gS8Jcfn83n5tLx8QqHMnsAa4D8c1+2KbdXnenIu80nHtn9xLawfBTxJ+lJfAswsbXdc+xhbYA9gFXBNh/0c24F7j5wfBzbezpEDE1fnx5piW1jvHPk6xnWg8qN/WWwhIl6qWP2zPB+b5zvlebl1ZB09f7U9FdgMzC7Uv4WUNE+StPP2nu8ObnWeb87zU4EXI+LBRoGI+D/gHlKSpFDOcW2vR2x7+bkGx7aT8me24QvACGBai/0c187KsT0d2I/WMW1wbAeI8+OAc46sh/NjfZwj69GV/OiLxb6ZkudP5fntwO+B6ySNlzRa0vuBM+n5xk0EnouIDaX6FpES6iE1nvOgJGmEpJ0kHQrMIP18flvePJHU8lS2CDi40B3Eca3QIbZVyp9rcGybdIqrpDcDlwLnRsSrLapxXCt0iO2xpF9M3pHvw9giaamkf5U0olCNY9tdzo+vI+fIejg/1sc5sh6DIT+ObLfRtpE0FrgcuD8ifg4QESslHQ3cDTybiwZwWUR8ubD73sDaimrXFLYPNwuBw/Pfz5C6Lq3Ky3uTuieUNeI1BngZx7WVdrHtQWlAimtIifCuwibHtlmnuF4P3Fls7a/guFZrF9sDgd2AW4ArSPdwnAj8M7AX8LlczrHtEufHWjhH1sP5sT7OkfXoen70xWIv5Fa6u4EtwCcK6/cD7gTWAx8k/Tz8l8ClkjZFxFWNoqQk2VR1nec9yJ0JjCYNfnA+aWCEYyNiCb2Pl+NarV1st1IakfBWUveaY3KXhK2bcWzLWsZV0hnAEcBbO9ThuFZr95l9A+lG/UsiYnouP1/SPsB5ki7LXfAc2y5wfqyNc2Q9nB/r4xxZj67nR3dD7UDSLqRRxyYAJ0XEC4XNFwDj8vo7ImJ+RPwLabS3KyTtm8utofqqfUxh+7ASEU9FxMKIuBX4K+CNwEV5c6d4re1luWEXV+gYWwDyiIU3k1qg3hcRT5SqcWxLWsU1/7M8HbgK2ChpL0l7kb5fR+XlUbkax7VCh89s4x6N+0q7zSMNljAxLzu2A8z5sT7OkfVwfqyPc2Q9BkN+9MViG/nDewdwJHBKRPyqVOQdwDMRUf5p96ekN6nRB3gRMF7SbqVybwNeJf2sPGxFxDpSDIrxmlhR9G3A8xHxcqGc49pGRWwbrgc+DHwkIh6o2NWxbaMU131JN5h/ifRPWmM6CPhQ/ntq3tVx7aDF9wE0t4o2WkRfK5RzbAeI8+PAcY6sh/NjfZwj69Gt/OiLxRZyy9Is0lX8aRHxaEWxFcAhksaU1h+V58vyfC4pOZ5eqH8k6ctoXkRsej3PfUcj6QBS14Tf5VVzgbGSphTKjCY9p2tuYVfHtYOK2CJpGnA2aQjlu1rs6ti2UYrrCuCEimklcH/++5G8q+PaQcVn9q48P7lU9CRgI9sG+nBsB4jz48ByjqyH82N9nCPr0a386HsWW/sqKaj/BqyXNKmw7YXc3eZ60oNF50m6mvRz8PGkPsVzImIpQEQ8Lmk2cE1ujX2O9ADj8Xn/YUPSHOAx4AnSkOp/RroBdwvbRsibCywAZkr6AqnV6WJSS8nWgREc1556E1tJFwL/CHwDeLr0uX4pIn4Hjm1Rp7hGxEbSw8fL+20EVkbE1m2Oa0+9+cxGxJOSbgIuzxcpj5G6h50NXNH4FcWxHVDOjzVxjqyH82N9nCPrMajyYwyCh0wOxok00li0mC4rlJsE3AssJ93Iv4g0NPCupfp2JfXZXkG62l8IHN/t19mFuF5IGq1pHbCB9EDQGcC4Urm9SV/Ya3K5B4DDKupzXPsQW9IXdqvP9U2Obf8/sxX7LaH0wGHHtX+xJQ3t/UVgKanLzG+Bv3dsu/a+OT/WF1vnyC7F1fmx3s9sxX7Oka9DXAciPypXYGZmZmZmZraV71k0MzMzMzOzJr5YNDMzMzMzsya+WDQzMzMzM7Mmvlg0MzMzMzOzJr5YNDMzMzMzsya+WDQzMzMzM7Mmvli0YUvSWZKixXRit89vqJB0uKQNksaW1o+S9LeSHpa0VtJmScslfUfSmZJGFso23qtDKuofmbdd1odz2jUf6/TtenFmZkOQ8+PAcH60HcHIzkXMhrzTgRdK637djRMZoq4GvhERyxorJO0BfA84HLghl1kH/ClwKnAj6eGys+s4oYh4RdKXgSsl3RURm+s4jpnZDs75sV7Ojzbo+WLRDB6PiGd6U1DSzhGxqe4TGiokvRs4Afi70qb/BP4CmBIRC0vbbpH0LmDXmk/vJuDfgfcD36r5WGZmOyLnx5o4P9qOwt1QzVoodO2YLOl2SeuAhXnbSEkXS/qNpE2SXpQ0TdIupTomSPpu7mbykqRrJZ2T6x1XKNfUTUTSuLz+rNL6KZIekPRHSesl/UDS20tl5kt6RNKJkh7Lx39S0vsqXudhkuZIWi3pFUmLJV2ct10naaWkUaV93piPf2WHMH4aeCIiFhX2HQucAcyoSIQARMQvIuInHequVIhb1TS/cIy1wA+As/tzHDOz4cr50fnRhg9fLJrBiJzcGtOI0vZZwHPAB4GL8rqZwKXALcBU4ErgU7ksAJJ2Au4D3gWcB5wFjM/79YukqcADwMukhPJRYA/gYUkHlYq/GbgWmA58AFgOfFuF+xokHQksyGU/l1/LdFJ3F4CvAfuTWheLPgbsTuoi087JwMOldccDI4DvdNi3Svm9GpnrKloOHF2azgZeA54qlf0RMKX8T4yZmQHOj86Pzo/DnruhmsFvSss/Bo4tLH87Ii5oLEg6Dvgw8PGI+GZefb+kNcBMSe+MiMeBjwMTgKMj4tG87/eAX23HuV4LPBQRpxXO50HgWeDzwD8Uyu4LTI6Ip3O5x0iJ4kPAl3KZrwCrgUkRsSGv+2Gjgoj4taSHgHPo2RXlHGBeRDzb6kQlHQCMA35Z2tRItM+Xyoueie21iHittG/5vWqSu0E9Wqh3P9I/LQtJCb/oF8BOwLuBfrXUmpkNYc6Pzo/Oj8Ocf1k0S62CRxSmT5W2zyktn0y6ufyOUgvevLx9cp4fDSxtJEKA/OXer/7/kg4ltXDOKh13A6n1c3Jpl6cbiTAfexWwCjg417cbcAwwq5AIq3wNOCEfH0lHkFqDZ3Q45QPz/KXyS2lR/kJgc2H6ZkWZ8nt1BDCp1Qnk1uvG+3daRGwsFWmc24GYmVmZ86Pzo/PjMOdfFs3gyQ438C8vLe9Pam17uUX5ffL8TcDKiu1V63pj/zz/rzyVPV9aXlNRZhPQ6FIyhtRgVB7prmwOsILUWno+8BngReCeDvs1jlMe8GBpnh8MLC6svwm4P/89t0WdTe+VCkOIV7gBeDvwnogoJ2WAV/K87sECzMx2RM6P7Tk/2pDni0WzzqK0vBrYCBzXovyLeb4cmFix/YCKdZtICbZon9Ly6jy/mG1Jo+jVFufTylrSfQpj2xWKiM2Svg6cqzSc9keAaRGxpUP9jfMdU1o/Px/3r0n3rDSOs4KUdJHU19fSRNI/ke5ZOSUiWg31vnee/357j2dmNgw5Pzo/2hDnbqhmffd9UqvgnhHx84qpkQwXAAdJ2toNRNIbSPdElP0vqYWvaGppeTGwBJjY4rhP9OVF5K41jwBnSOrUcjgD2BO4HdiZzjfuk891I+m+lOJxl5EGOjhH0lF9OefekvQB4IvAZyPivjZFx+f54jZlzMysd5wfnR9tiPEvi2Z9FBHzJd1KGjltOvBTUkvgOOAU4MKI+C1wM2l0uDtzK94qUheV0RXV3gZcKukS0s3nxwF/UzpuSDoPuDvfa/AtUovfAcB7gOcjYnofX875wEPAAknTSF1uJgDvjIitz36KiGWS7iHdE3FPRCytrK3n+b4qaSFwZMXmzwKHAg9KuoHUEryW1JI5GfgT4I99fC1AGo4d+G/SPTK/LP4zAvyh1Ip6FLCs3UAEZmbWO86Pzo829Phi0ax/ziA9SPeTwCWkbjJLSM8lWglbk8F7getIN8GvJ4069l3g+lJ9VwJ7kZLERcC9wJnk51Y1RMS9kibnY36ddC/BClICnd3XFxERP5N0DHA56UHAO5NacW+sKH47KRl2unG/aDZwtaTdI2J94bh/kDSF9Jypj5JGxtudlNz/hzSIwm19fT3ZwcBuwEl5KnqINDR5w9TtOI6ZmTVzfuwd50fbISii3N3czOqk9BDhG4HxEbGku2fTe5JmkUaHm1AxZHerfUaTWmPPjYiZdZ5fX+UuPj8B/jy3dJuZWRc5Pw4Ozo9W5HsWzawtSZMkfYb07KzpvU2EkFpIgauAC/JzogaTi4CbnQjNzKw/nB9tOHA3VDPrZAFpGPSbSd2F+mo66WHCb2LbSHhdJWkX0gOHezMQgZmZWRXnRxvy3A3VzMzMzMzMmrgbqpmZmZmZmTXxxaKZmZmZmZk1+X9/AY2+IBXxKwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Plot polyfit\n", "fig, (ax0, ax1) = plt.subplots(1, 2, figsize=(15,5))\n", "\n", "frequency = np.linspace(frequency_gm.min(), frequency_gm.max(), 101)\n", "\n", "# Real component\n", "ax0.plot(frequency_gm/1e9, zs_gm3.real, 'ro', label=r'{:.0f} nm'.format(surface_roughness3/sc.nano))\n", "ax0.plot(frequency_gm/1e9, zs_gm2.real, 'ko', label=r'{:.0f} nm'.format(surface_roughness2/sc.nano))\n", "ax0.plot(frequency_gm/1e9, zs_gm1.real, 'bo', label=r'{:.0f} nm'.format(surface_roughness1/sc.nano))\n", "ax0.plot(frequency/1e9, np.polyval(p_zs_real_gm3, frequency), 'r--')\n", "ax0.plot(frequency/1e9, np.polyval(p_zs_real_gm2, frequency), 'k--')\n", "ax0.plot(frequency/1e9, np.polyval(p_zs_real_gm1, frequency), 'b--')\n", "ax0.set_ylabel(r\"Real $Z_s$ ($\\Omega/sq.$)\")\n", "ax0.set_xlabel(\"Frequency (GHz)\")\n", "ax0.legend()\n", "\n", "# Imaginary component\n", "ax1.plot(frequency_gm/1e9, zs_gm3.imag, 'ro', label=r'{:.0f} nm'.format(surface_roughness3/sc.nano))\n", "ax1.plot(frequency_gm/1e9, zs_gm2.imag, 'ko', label=r'{:.0f} nm'.format(surface_roughness2/sc.nano))\n", "ax1.plot(frequency_gm/1e9, zs_gm1.imag, 'bo', label=r'{:.0f} nm'.format(surface_roughness1/sc.nano))\n", "ax1.plot(frequency/1e9, np.polyval(p_zs_imag_gm3, frequency), 'r--')\n", "ax1.plot(frequency/1e9, np.polyval(p_zs_imag_gm2, frequency), 'k--')\n", "ax1.plot(frequency/1e9, np.polyval(p_zs_imag_gm1, frequency), 'b--')\n", "ax1.set_ylabel(r\"Imaginary $Z_s$ ($\\Omega/sq.$)\")\n", "ax1.set_xlabel(\"Frequency (GHz)\")\n", "ax1.legend()\n", "fig.savefig(\"results/wr3p0-surface-impdance-300k.png\", dpi=400);" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Surface impedance (Z_s):\n", "\n", "50 nm surface roughness:\n", "\tReal:\t\t-1.6644e-25 * Freq^2 + 5.1199e-13 * Freq^1 + 6.1107e-02\n", "\tImaginary:\t-3.4813e-25 * Freq^2 + 2.2603e-12 * Freq^1 + 7.2291e-02\n", "\tur:\t\t-1.3448e-23 * Freq^2 + 5.0514e-11 * Freq^1 + 3.9464e+00\n", "\n", "75 nm surface roughness:\n", "\tReal:\t\t-1.5186e-25 * Freq^2 + 6.0379e-13 * Freq^1 + 5.8012e-02\n", "\tImaginary:\t-4.5447e-25 * Freq^2 + 3.0960e-12 * Freq^1 + 7.9819e-02\n", "\tur:\t\t-2.5105e-23 * Freq^2 + 9.6127e-11 * Freq^1 + 5.8256e+00\n", "\n", "100 nm surface roughness:\n", "\tReal:\t\t-1.4427e-25 * Freq^2 + 7.0489e-13 * Freq^1 + 5.5407e-02\n", "\tImaginary:\t-5.6445e-25 * Freq^2 + 3.8871e-12 * Freq^1 + 8.8834e-02\n", "\tur:\t\t-3.9840e-23 * Freq^2 + 1.5236e-10 * Freq^1 + 8.0508e+00\n" ] } ], "source": [ "def print_poly(poly):\n", " fpower_max = len(poly) - 1\n", " string = \"\"\n", " for i, p in enumerate(poly):\n", " fpower = fpower_max - i\n", " if fpower != 0:\n", " string += \"{:.4e}\".format(p) + \" * Freq^{:d} + \".format(fpower)\n", " else:\n", " string += \"{:.4e}\".format(p)\n", " print(string)\n", "\n", "print(\"Surface impedance (Z_s):\")\n", "print(\"\\n{:.0f} nm surface roughness:\".format(surface_roughness1/sc.nano))\n", "print(\"\\tReal:\\t\\t\", end=\"\"); print_poly(p_zs_real_gm1)\n", "print(\"\\tImaginary:\\t\", end=\"\"); print_poly(p_zs_imag_gm1)\n", "print(\"\\tur:\\t\\t\", end=\"\"); print_poly(p_ur_gm1)\n", "print(\"\\n{:.0f} nm surface roughness:\".format(surface_roughness2/sc.nano))\n", "print(\"\\tReal:\\t\\t\", end=\"\"); print_poly(p_zs_real_gm2)\n", "print(\"\\tImaginary:\\t\", end=\"\"); print_poly(p_zs_imag_gm2)\n", "print(\"\\tur:\\t\\t\", end=\"\"); print_poly(p_ur_gm2)\n", "print(\"\\n{:.0f} nm surface roughness:\".format(surface_roughness3/sc.nano))\n", "print(\"\\tReal:\\t\\t\", end=\"\"); print_poly(p_zs_real_gm3)\n", "print(\"\\tImaginary:\\t\", end=\"\"); print_poly(p_zs_imag_gm3)\n", "print(\"\\tur:\\t\\t\", end=\"\"); print_poly(p_ur_gm3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Note:** In HFSS, select `Assign boundary > Impedance...` and then copy/paste these values into the dialog box." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Cryogenic" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "# Frequency sweep for gradient model\n", "frequency_gm = np.linspace(280, 360, 5) * sc.giga" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "conductivity_0 = conductivity_4k(frequency_gm, vf['Au'], ne['Au'], beta=1)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "# Gradient model: 50nm surface roughness\n", "surface_roughness1 = 50 * sc.nano\n", "zs_gm1, conductivity_gm1, ur_gm1 = gm.rough_properties(frequency_gm, surface_roughness1, sigma0=conductivity_0)\n", "\n", "# Gradient model: 75nm surface roughness\n", "surface_roughness2 = 75 * sc.nano\n", "zs_gm2, conductivity_gm2, ur_gm2 = gm.rough_properties(frequency_gm, surface_roughness2, sigma0=conductivity_0)\n", "\n", "# Gradient model: 100nm surface roughness\n", "surface_roughness3 = 100 * sc.nano\n", "zs_gm3, conductivity_gm3, ur_gm3 = gm.rough_properties(frequency_gm, surface_roughness3, sigma0=conductivity_0)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "# Polyfit for HFSS\n", "p_zs_real_gm1 = np.polyfit(frequency_gm, zs_gm1.real, 2)\n", "p_zs_real_gm2 = np.polyfit(frequency_gm, zs_gm2.real, 2)\n", "p_zs_real_gm3 = np.polyfit(frequency_gm, zs_gm3.real, 2)\n", "p_zs_imag_gm1 = np.polyfit(frequency_gm, zs_gm1.imag, 2)\n", "p_zs_imag_gm2 = np.polyfit(frequency_gm, zs_gm2.imag, 2)\n", "p_zs_imag_gm3 = np.polyfit(frequency_gm, zs_gm3.imag, 2)\n", "p_ur_gm1 = np.polyfit(frequency_gm, ur_gm1, 2)\n", "p_ur_gm2 = np.polyfit(frequency_gm, ur_gm2, 2)\n", "p_ur_gm3 = np.polyfit(frequency_gm, ur_gm3, 2)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4sAAAE8CAYAAABpQySHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACcvklEQVR4nOzdd3jVRdbA8e8k1NB7EZJQpCMdEjpSbSAKNlQWCyqKYncFJRYWy6511RVfUZFYsSEiJVRFQpEqIE26gvQOaef9Y27LzU0luSU5n+e5T3LnV+4k7mY4v5k5x4gISimllFJKKaWUp7BAd0AppZRSSimlVPDRYFEppZRSSimlVAbFAt2BYGKM0TW5SilVRIiICXQfQoWOj0opVbQ4x0gNFr1c6B5OY8wF38Nf99W+htZ9ta+hdd9Q6mtB3TeY+2pM6MeJxpg6wONAe6AVUBqoJyI7s7kuCngDaA1UB04DvwEvisiPmV1XlMbHgrpvKPW1oO6rfQ2t+2pfQ+u++XVPzzFSl6EqpZRSoakhcB1wFPgpF9eVBQ4B44DLgduBU8BMY8w1+d1JpZRSoUtnFkPE+PHjQ+KeBXnfghBKvwP9vYbefQtCKP0OQun3GqIWi0gNAGPMHUC/nFwkIhuwAaKLMeYHYAcwAvg6n/tZoPT/EwUnlH4HofS7DaXfgf5eQ++++c1o6Qw3Y4wE6zKbok5/rwVHf7cFQ3+vBSe/lqEWpj2LjmDxPXKwDDWLe/wGbBGRDLOLOj4GN/3dFgz9vRYc/d0WjPxchuocIwO2DNUYU9cYM80Yc9wYc8IY87UxJjIH17U3xkwyxvxujDljjNltjIk3xtTL5robjTFijNmbfz+FUkopFZqMMWHGmGLGmJrGmKeARsBbge6XUkqp4BGQYNEYEwHMB5oAw4FbgIuBBcaYMtlcfgPQHLs5/zLgCaAtsNIYUzeTz6sIvArsz4/+ZyVUppRDjf5eC47+bguG/l4Ljv5u881LQDLwF/AYcIOIzMvsZGNMhldcXFyOP0z/uxUc/d0WDP29Fhz93RaM3P5e4+LifP5t9xSQZajGmAeAV4DGIrLN0VYP2Ao8JiKvZHFtNRE56NUWhd1r8byIPO3jmklAFHZA7CMidTK59wUvs1FKKRX8dBmqK5tqTcfrVmAgMEREZvg4V8dHpZQqIoJhGepAINEZKAKIyA5gCTAoqwu9A0VH2y7gIHCR9zFjTBfgZuDeC+yzUkopVWiIyF4RWSkiM0TkOiAR+Heg+6WUUip4BCpYbI6t6eRtA9AstzczxjTF1ora5NVeHJgEvOwZmCqllApB8fEQHQ1hYfZrfHyge1TYrMSW41BKKRVKCnB8DFSwWBlbF8rbEaBSbm5kjCkG/A87s/i+1+HHgZLAxFzc74L2ZCillCoA8fEwciTs2gUi9uvIkdkOiDnZj6FsshugK7A90H1RSimVC3kcH3MqUHsWk4D/iMg/vdonAI+LSI7rPxpj/oetF3WFiMzxaG8IrAcGi8gsR9uH6J5FpZQKPVFRsHu37/adO3N9u8KyZ9EYM8TxbW/gbmAU9uHpQRFZ5NjTvx14VkSedVwTh31ouwSb+K0mdhztA9wkIp/5+BwdH5VSKhhFR9sA0Vsex0dIP0bmOCjLZ0exA5W3SviecfTJGDMRGAkM9wwUHd7AZlxNdGRDBShhLzMVgfMicjaX/VZKKeVvL73kO1CEzNuLji+93r/t+LoI6AkYIJz0K4lWAWOw2cUrYAPGtUA3EVlSgH1VSimVH86dgyVLYPZs34Ei5Nv4GKhgcQN236K3ZsDGnNzAGDMWWzbjfhH5OJN7ReE7+DwKvI4dLJVSSgWL1FT46Se45BKo7HimuGdP5udHZluet1DLbnbUkRnVeLVNB6bn9rOcy3fHjx+v2zOUUsrftmyBmTNhzhxYuBDOZjPnlcvxMS4ujmeeeSZDe6CWoY7BZlxrJCJ/ONqisaUznhCR/2Rz/f3YYG+siPwrk3NigFJezU8A7YChwF7vpDe6zEYppQIgKQkWLICvvoJvv4WDB+G99+COO+zxzZth6lT4z3/SD44RETBpEgwbluuPLCzLUP1Fx0ellPKzw4ehZEkoW9a+HzUK3nnHfbxVK+jXD8LD4fXX8218hOAonfEesBP4zhgzyBgzEPgO2AO86zzJGBNljEkxxjzt0XYD8BowC5hvjInxeLkyqYpIoogs9Hxhl9qcd7wv8tlR9+7dy+jRo4mNjSUiIgJjDDszWdt89OhR7rjjDqpWrUqZMmXo06cP69evz3DeuXPnePTRR6lVqxalS5cmNjaWxYsXF/BPopQKSTNmwPDhUKMGDBhgA8SDB6FhQyjmsfClcWN47jl7PCoKjLFfL2AgVCorOj4qpfwuOdmurHnqKejUCapVsw9Rna6+Gm6+GaZMgb/+gjVr7DaNiRMLdnwUkYC8gEjgK+AEcBL4Foj2OicaECDOo+1DR5uv18JsPvND7IxiZselKFmwYIFUr15dLrvsMunXr58AsmPHjgznpaWlSdeuXeWiiy6STz75RH788Ufp3r27VKlSRfbs2ZPu3JtuukkqVKggkyZNkoSEBBk8eLCUKlVKVq9e7Z8fSikVvE6eFElNdb/v1UvE5m4Tad5c5OmnRdauFUlLK/CuOP7eB2wMDLWXjo86PiqlCsikSSKDBomUK+ceE0GkRAmR558PSJc8x8iAD0DB9Cpqg2Gqxz/a3nvvvUwHw2+//VYAmT9/vqvt2LFjUqlSJRk9erSrbc2aNQLI5MmTXW3JycnSqFEjueqqqwrmh1BKBbcjR0Q++sgOhKVKiSxd6j42bZrIhAkiv//u925psKjjY1Z0fFRKFYhjx0S+/Tb9g9Nu3cQVIDZtKvLAAyI//CBy6lTAuuk5RgZqGaqCgBeYDgvL2X/+6dOnU7t2bXr16uVqq1ChAldddRXfffdduvOKFy/O9ddf72orVqwYN9xwA7Nnz+b8+fNZfo4xhnHjxvHGG29Qr149ypUrR48ePdiwYUO683r27EnXrl2ZNWsWrVu3pnTp0rRp04Zly5aRkpLCk08+Sa1atahcuTL/+Mc/OH36dI5+TqVUPvn7b7sEZsAAqF7dLjX97jubvW3FCvd5114LTz5pl5kq5S2AY6SOj0qpfJGaCsuX260U3bpBlSp2OemqVe5zHnzQLiPdtQs2boTXXoPLL4cyZQLV63QClQ1VOQtonjlj3zsLaELQ7cHZsGEDLVq0yNDevHlzpkyZwqlTpyhbtiwbNmygXr16REREZDgvKSmJbdu20by5ryS4blOnTqVx48a8/vrrJCUl8eijjzJo0CB+//13innsYdq2bRuPPvooY8eOpWzZsjz22GMMHDiQgQMHkpKSwocffsimTZt49NFHqV69Oi+99FL+/DKUUlkTgbZtYd8++z48HC691AaGV18NtWsHtHsqRITIGKnjo1LKp6NH4e67ISEBjhxxt4eHQ9eu9uGp0+DB/u9fLmiwGChjx7oHQaczZ2x7EA2EAEeOHCE6OjpDe2VHWvujR49StmxZjhw5QqVKlTI974jn/1kyUbx4cWbMmEHx4sVdbUOHDmX58uV07tzZ1Xb48GF++eUX6tevD0BaWhqDBg1ix44dJCQkANC/f38WL17Ml19+qYOhUgVhxw74+mubwfS772ypC2NgyBDYuhWuuQYGDYKqVQPdUxVqQmSM1PFRKcXp07B4sS1t8cADtq1CBZg/3waK9epB//721auXPRZCdBlqoIRQgWkRcdXX8m7Py3lZ6du3b7qBsGXLlgDs9vq9NGrUyDUQAjRp0gSwA6CnJk2asHfv3lz1QSmVhU2bYMIEO3tYvz488gj8/DNM9yjb9+qr8MMPcPvtGigWIsYYjDH+qbEYImOkjo9KFUEisHatzUTau7d9UHr55XY8PHHCnhMWZldIbNkC27fbkhdXXx3UgWJcXJzr77wnDRa9+G0wzKxQZhAWmK5cubLPp55Hjx4FcD0tze485xPU7D7LU8mSJQGbctyT9xPaEiVKZNqekpJCampqtp+tlMrC+fPQsiU0awbjxsHq1bb20/XXwxdf2NlEJx//KA4GmQ2EKmecyQ78EiyGyBip46NSRczPP0OtWtC6NTz+uJ09TE6GDh3s+6Qk97n9+sHFFwftmOgtLi7OM6mZiwaLXvw2GE6YYAtmeoqIsO1Bpnnz5hk20QNs3LiRyMhIyjqKhTZv3pwdO3Zwxmvp0MaNGylRogQNGzb0S3+VUhdIBJYtsxvynYNGyZJQqRJUrAi33mqXnR48CJ99BkOHuosGB7HMBkIVhEJkjNTxUalC6vx5WLAAnngCXnzR3d6gARw4YPffjxgBn35qk7otXw7PP18oV9NosBgow4bZbIEhUGB64MCB7Nu3j0WLFrnaTpw4wffff8/AgQPTnZecnMyXX37paktJSeHzzz+nX79+rqegSqkglJpq91w88ICdvYmJgaefhl9/dZ8TH28HxY8+goEDoVSpwPVXFW4hMkbq+KhUISECmzfDG2/AlVfapaWXXmoDxXffdT84rVXLLi3duxcmT4YbbiiUAaInTXATSMOGBXzgmzZtGgC/Ov5B+OOPP1KtWjWqVatGjx49ADvIxcbGcvPNN/Pyyy9TqVIlJk6ciIjw2GOPue7VunVrrr/+esaMGUNycjL16tXjnXfeYceOHcT7uSyIUiqHjh2zT06//dY+LXWqU8dmaKtY0d1Wt66fO6eKtACPkTo+KlWEPP+8fUDqqWVLm5SmX7/07Rdf7L9+BQENFou4oUOHpns/atQoAHr06MHChQsBW29qxowZPPLII4waNYpz584RGxvLggULqOv1j8cPPviAsWPHMm7cOI4dO0arVq2YNWsWbdu29cvPo5TKxvnzdmN+x472fdmyMG0aHD5sM7YNGWLLXHToYDfoK1VE6fioVCGTkmKXi86ZA7Nn2y0V99xjj3XubGcI+/Z1B4i1agW2v0HC6N4NN2OM6O9DKVXonDkDs2bBV1/BjBlw9qzdb+jMyvbtt7boeatWIbMR/0IZYxCRovHD5gMdH5VSIWnXLhsYzpkD8+bZ1TROAwfa/fdgt2IYow9JHTzHSP2NKKVUYXTmjN14P2QIVKtmZws/+cSm9W7WDPbscZ979dU2s1sRCRRV3vi1dIZSSuXFqVN2BtFp1Ci46y77sPTYMWjUCO6915Z7mjrVfV54eJEPFDPLGK4zix70yalSKqQlJ4OzDtu+fXbfoVPHjjZgvOYa0MyLOrOYSzo+KqWCUloarFnjXlq6ZIn92quXPf7++7bur3Npab16Ae1uqPAcIzVY9KCDoVIq5Bw4YJeRfvWVLVi+aZN7hvDee+1T1MGDg64+XaBpsJg7Oj4qpYJGaqrNzj17Nsyda7dVOIWFwWuvwejRAeteYaDBYiZ0MFRKhYS9e+Gbb2yA+NNP9skq2GU0mzfbOlAqSxos5o6Oj0qpgDl3DlavhthY+17EzhDu2mXf161rZw3794fevW3ZC3VBPMdIzYaqlFKhZOlSm7XNqUQJm73t2mvtZv0qVQLXN6WUUupCicDvv7uXli5caBOz7d8PNWrY1TOPPmq3XvTvD02a6J77AqQzix70yalSKqhs3mzLWhw7Bi+/bNuSk+0TVecexCuvdGc1VTmmM4u5o+OjUipfxMfD2LF220RkJEyY4K6num8fxMXZANEzCRvYbN2TJ4OWmvELXYaaCWOM65cxfvx4zfimlPIvEVi3zi4v/eor2LjRtpcsafdklCtn36ekQDFdGJJbcXFxPPPMM673GizmnAaLSqkLFh8PI0fabN1OJUrYIHDYMPtgtGpVuyexWjW7tNT5qlkzYN0uijRYzIQOhkqpgPn5ZxgxArZtc7dVrGiXlg4ZYpfalCgRsO4VNjqzmDv6MFUpdcHq1LGzh94iI937Dz/6CFq2tOWcingpC3/L7IGqBoseNFhUSvlFWprde3j8OFx+uW3btQuio+3T1KuvtktMe/XSALGAaLCYOzo+KqXybPZsuP9+2LIl83P070tQ8RwjNWRXSqn8FB9vg76wMPs1Pt62p6TAggVw33326WrXrvDgg+4BMioKli2Dv/6CSZN0JlFlyxhTxxjzpjFmqTHmjDFGjDHRObiuvTFmkjHmd8d1u40x8cYYLUCmlMq7tDSbtfTFF+Gzz9ztlSrZQDGzJDRRUf7pn8oTDRaLsJ49e2KM8fkaMGCA67ydO3dmet6xY8cC9wMoFWyc+zF27bJB4K5dcMcddoawVi249FJ46y0bEEZF2eQ0SUnu6zt2tOUvlMqZhsB1wFHgp1xcdwPQHHgDuAx4AmgLrDTG1M3vToYiHR+VyqEDB+Djj+GWW+w417YtPPEE/O9/7nPatbNbLT74ACIi0l8fEWGT3KigpRkSirC3336bEydOpGtbunQpDz30EAMHDsxw/j//+c8M7eWcCTeUUjbDm+fGfbD1oRYutN9ffLFdXnrttXbw1FTf6sIsFpEaAMaYO4B+ObzuRRE56NlgjFkC7ADuBJ7O116GIB0flcqBxx+Hl15K31anjl0Zc8UV7rbwcOjSxb6KFcs8G6oKShosFmHNmjXL0Pbee+9RokQJbrjhhgzH6tevT0xMjD+6plRoOX0aZs50b9D3Ze1au2lfA0SVT0QkLY/XHfTRtssYcxC46II7Vgjo+KiUg4hdQjp7tn2NHg3O2fUmTaB0aejRwwaIOal5OGyYBochRpehBlB8fDzR0dGEhYURHR1NvHNvU4CcPXuWL7/8kquuuorKlSvnyz2dS3Teffddnn76aWrVqkXFihW56qqr2Lt3b7pzo6Ojufnmm/n4449p3LgxpUuXplu3bmzdupXTp09z1113UaVKFWrUqMHDDz9MSkpKvvRRqTw5ftwuO73mGpvq+7rrMj83KgouuUQDRRW0jDFNgerApkD3xSmYxkgdH1WRcuyYLd80cqSt69ukCTzwgH0oOmOG+7wbboAjR+DHH2HMGGjaVMe5wkhE9OV42V+Hf0ydOlUiIiIEcL0iIiJk6tSpfuuDrz4BMn369HTtO3bsEECqVq0q4eHhUr58ebnqqqtk3bp12d7TeW1UVJTceOONMnPmTPnwww+lSpUq0r1793TnRkVFSd26dSUmJka++eYb+fzzz6VWrVrSsmVLGTRokDz88MMyZ84cGTdunADy1ltv5evPr1SuvPSSiH3mal8xMSI33ihSqlT69ogIkQD+/1r55vh7H/BxJ79ewB2OsSQ6D9cWAxYBfwOVMjlHfL3Gjx9/If8ZMhVsY6SOj6pQS0lJ/75Vq/TjWNWqdnz78EORffsC0kVVMMaPH+/zb7vnGBnwAS6YXv4MFqOionz+h4mKivJbH7z169dPqlevLsnJyena//zzT7nrrrvkq6++ksWLF8ukSZMkOjpaypYtKxs3bszyns7B0Hvge/nllwWQfR5/dKKioqRSpUpy7NgxV9vrr78ugNx+++3prm/Tpo307Nkzrz+qUjm3f7/I//4n0revyHPPudu3bxfp3l3kjTdE9uxxt0+dKhIVJWKM/aqBYlDSYDHdtf8DkoF+WZxzIb/uXAu2MVLHR1Xo7N4t8t57IkOGiFSsKLJtm/vYE0/Y8W3CBJGVK0VSUwPXTxUQnmOk7lkMkN27d+eqvaD9+eefJCQk8MADD1CsWPr/WdSqVYv/eWS16tatGwMGDKB58+ZMmDCBqVOnZnv/Kzw3OgMtW7YE7M9bu3ZtV3tsbCwVKlRwvW/SpAkA/fv3T3d9kyZNWL58eQ5/OqVyad8++Ppruwznp59sOnCwWd/GjbPf168PixZlvFb3Y6gQYoyZCIwEhovInED3xymYxkgdH1WhkJwM8+a59x5u8lpx/tNP0KCB/f5f/9LlpMpFg8UAiYyMZJePZBiRkZEB6A1MnTqVtLQ0hg8fnqPz69atS9euXVmxYkWOzvfe41GyZEkAzp07l669UqVK6d6XcNSZ89Xufa1S+eLZZ2H8ePf7EiWgb1+bwdRHFkSlQpUxZiy2bMb9IvJxoPvjKZjGSB0fVUgSgT17bMZRgNRUu8f+7Fn7vlw5W86pf3/o188dKIIGiiodTXDjxVkfKS4urkA/Z8KECUR41ZqJiIhgQoBqzUyZMoVWrVrRqlWrHF8jIhj9g6JC2ZYtMHGifdrq1Lo1lCoFgwfD1Knw9992Q/+IEVClSsC6qi5cXFyc6298UWeMuR94HhgrIm8Guj/egmmM1PFRhYxDh+Czz+x4VacONG9uZxTBjmt33WXLVixeDIcPw7ffwj33pA8UlfKiM4te7DLdgjfMsUxt7Nix7N69m8jISCZMmOBq96eVK1eyYcMGXnnllRxfs3v3bpYsWcLgwYMLsGdK5TMR2LgRpk2zS0zXr7ft118PvXvb7wcMgIMHoWzZwPVTFYi4uDjXg8DC8g95Y8wQx7ftHF8vc5TAOCgii4wxUcB24FkRedZxzQ3Aa8AsYL4xxrPmwwkR2eif3mcuWMZIHR9V0NuzB9591y4t/fVXO8451aoFO3ZAo0b2/auvBqaPKqRpsBhAw4YNC0hw6G3KlCkUK1aMm266yefxhx9+mLS0NGJjY6lWrRqbN29m4sSJhIWF8eSTT/q5t0rl0aRJ8MorsHmzu61CBbu09MYb3W0lStiXUqHhS6/3bzu+LgJ6AgYIJ/1KogGO9gGOlyfndQEXDGOkjo8q6GzfbmcQO3Wy70+dsoXtAUqWhG7d3DUPW7TQJaXqgmmwWMQlJyfz6aefMmDAAGrUqOHznObNm/POO+/w4YcfcvLkSapWrcqll17K+PHjady4sZ97rFQOiMDy5XYZzkWOGuOHDtlAsUoVuPpquwexd28NDFVIE5Es/yUoIjuxgaFn2z+Af+T2s5yzsePHjy/wrRrBQMdHFRROnoQFC9yJabZvh7Zt7Swi2BqI48ZB587Qowd4Ld9WKqfi4uJ45plnMrQbfy27DAXGGNHfh1IhKi0NfvnFvcR0716brOapp+zxvXttsNijBxTT52RFnTEm20BLuen4qJSf/fgjvPgiLFkCKSnu9ooVbUKa+Hgdy1SB8Rwj9X9lSqnQ9tNP8Omn8M03sH+/u71OHShTJv37OnX83z+llFIqK/v3w5w5NtFMly627fRpW54pLAxiY22A2L8/dOigQaLyK51Z9KBPTpUKAUlJdg9G8eL2/U032WARIDraLi8dMgQ6drSDrFI+6Mxi7uj4qFQ+On/ezhg6l5auXWvbb7kFpkyx3x8/DnPn2u0SXuVRlCpoQTGzaIypC7wK9MXup0gAxohIlhV3jTHtsQWEuwORwCHgJ2CciOzwOK8RcC/QC6gPnARWAE+JyNp8/4GUUgXn3Dk7aE6bBtOnw+TJtrQFwG23Qb16Nkhs00Y38yullApejz8O//0vnDnjbitdGnr2hF693G0VKtgHn0oFWECCRWNMBDAfOA8MBwRb72mBMeYSETmdxeU3AM2BN4ANwEXAU8BKY0xrEdnjOK8fNlD8CFgFVAQeA5YZY7qIyK/5/oMppfLP6dMwa5YNEH/4wW7yd1q61B0s9uljX0oppVSwOH7c1vCdPRvuv9/WPASbgObMGbjkEvfS0q5dbR1EpYJQQJahGmMeAF4BGovINkdbPWAr8JiIZFrQyBhTTUQOerVFATuA50XkaUdbVeCw57oZY0wFYCfwvYjc6uPeusxGqWAREwPLlrnft21rZw+vvRY0y6C6QP5chuqoYzgAiAFqA6Wxq2I2Y0tVfCsiR/3Rl7zS8VGpbKSm2gylzqWliYm2DeCFF+yMIsDff9v2WrUC11elshEMy1AHAonOQBFARHYYY5YAg7CBpE/egaKjbZejCPFFHm2HfJx33BizxfM8pVSAHT0K339vZxD//W938eArrrBfhwyBa66B+vUD10el8sAYMxx4BLsa5gSwDvtQ9CxQGegE3AK8ZYz5AnjGczuFUipEiNgSFtu2uduKFbM1D/v1g6uucrdXr+7//il1AQKV/aE58JuP9g1As9zezBjTFKgObMrmvMpAi+zOU0oVsEOH4P/+Dy67zA6cw4fbgPGrr9znjBtnn8w+8ogGiirkGGPWAi8AM4F2QCUR6S4i14rIzSJyuYg0xQaNd2LHsA3GmOsD1+usGWMwxhSJGouqiIuPtwnTwsLs1/h4237unM1a+vDDdrXLqVO23Ri7Z75ePbj7bpud+/BhWLzYjmXNcv1PW6X8Li4uzvV33lOglqEmAa+IyBNe7c8DT4hIjmc8jTHFgHlAU+yy1kyX8hhj4oHBwCWes5oex33+MopKAWKlCpyI3Ws4Y4Z7eU5YmN3Yf+21dgaxZs2AdlEVLpkVGYbsC9pfCGPMGOB/InIuF9e0AmqKyOyC6lde6TJUVWTEx8PIkekT0BQvbmcOt261AaPT99/DlVfa78+csYlqNMmaKgQ8l6EGMlj8j4j806t9AvB4LoPF/wG3A1eIyJwszvsn8C/gdhGZnMk5OhgqlZ/27rVPWO+80715/7rrbFvv3jZAvPpqqFYtoN1URY+WzsgdHR9VkREVBbuzSMzfpo07MU3nzlCypP/6ppSfBMOexaPYpTfeKjmO5YgxZiK2jMbwbALFu7GB4rjMAkWlVD7ZscMuJ/3qK7uMFOzSHOfT15degnff1bpRSimlAi8lBVassElp5szJOlDcvx9q1PBf35QKAoHas7gBu2/RWzNgY05uYIwZCzwBPCAiH2dx3i3A29iZzAl56GuhtXDhQtfaZM9XxYoVM5x79OhR7rjjDqpWrUqZMmXo06cP69ev93+nVXBKSYGJE6F9e7u/8NFHbaBYurRdWlqlivvc6GgNFJVSQU3Hx0Lu77/tvvmhQ+3Kls6d4ZlnbFmmzERFaaCoiqRAzSxOB/5tjKkvIn8AGGOigS7YADBLxpj7sXUZx4rIm1mcNxj4APg/EXkkPzpeGL3xxht06NDB9b5YsfT/sxARBg4cyI4dO3jzzTepVKkSEydOpFevXqxZs4Y6der4u8sqGGzfDg0a2O+LFYOPP4ZNm6BMGTuLOGSITWBTpkxg+6mUUnmk42MhceYMHDkCzv8eq1bZ7RFODRrAgAF2aemBA/DAA+n3LEZEwASdb1BFU6CCxfeA+4DvjDHjAAGeA/YA7zpPctRP3A48KyLPOtpuAF4DZgHzHfWrnE6IyEbHed2BT7Gpyj/0Ou+8iKwuoJ8t5DRt2pSYmJhMj0+fPp2ff/6Z+fPn06tXLwBiY2OpV68eL730Em+88Ya/uqoCSQTWrbMlLr76ygaG27e7M5U+/zyEh9u9HKVLB7avSimVD3R8DFEisGGDu+bh4sX24eU339jjPXrYVS+9e9sA0fng06l0aRg71i5JjYy0geKwYf7/OZQKAgFZhioip4FLgS3Ax0A8sAO4VEROeZxqgHDS93OAo30AsNTr9bbHeZcCJYE2wBKv877J9x8qDzLLzBxspk+fTu3atV0DIUCFChW46qqr+O6777K8dufOnRhjePfdd3n66aepVasWFStW5KqrrmLv3r3pzo2Ojubmm2/m448/pnHjxpQuXZpu3bqxdetWTp8+zV133UWVKlWoUaMGDz/8MCkpKQXy8yoPIrByJTzxhK1/2Lq1DQo3bYLKlWHLFve511wDgwZpoKhUIeXv0hmhMEbq+BhkFi+G22+HunWhZUtbemnuXDh/Ho4ft2Ma2HHqq69g1KiMgSLYwHDnTkhLs181UFRFQGalMxARfTle9tfhH1OnikREiNi/XPYVEWHb/WXBggUCSPXq1SUsLEwqV64sN954o+zatSvdeZ06dZJ+/fpluP7FF18UQE6ePJnpZ+zYsUMAiYqKkhtvvFFmzpwpH374oVSpUkW6d++e7tyoqCipW7euxMTEyDfffCOff/651KpVS1q2bCmDBg2Shx9+WObMmSPjxo0TQN566638+UWozJ06JVK6tPt/pNWqidx1l8icOSJJSYHunVJ55vh7HwzjzqPArYHuRw76mddfdZ4EeozU8TEEJCeLLFki8scf7rb//Mf9P5iaNUVuvVUkPl7k778D10+lQpDnGBnwASiYXv4cDKOi0g+CzldUlN+6IKtWrZKHH35Ypk+fLgsXLpRXX31VqlWrJrVr15YDBw64zrv44ovl+uuvz3D9e++9J4Ds3r07089wDobeA9/LL78sgOzbt8/VFhUVJZUqVZJjx4652l5//XUB5Pbbb093fZs2baRnz565/pmVh6lT7f/gjBGJjBQZN05k9GiR5s1Fzp93n3fPPSL33isyf75ISkrAuqtUfgqGYBGoCaQBxwLdlxz0Nc+/67wI9Bip42OQ2rVLZNIkkWuvFalY0f6PYtw49/Ft20RefFFkzRqRtLTA9VOpEOc5RgZqz2KRl1lm5qwyNue3Nm3a0KZNG9f7Hj160L17dzp27Mgbb7zB888/D9gHChmmpB3tOXXFFVeke9+yZUsAdu/eTe3atV3tsbGxVKhQwfW+SZMmAPTv3z/d9U2aNGH58uU5/nzlJT7ebu4/e9a+373bLi91WrQI+va137/9dsbrlVIXTET2G2NuIhclo4qKQI+ROj4GmX/9yyZR+/339O0XX2y3RDg1aACPPebfvilVyGmwGCCRkbBrl+/2QGrbti2NGjVixYoVrrbKlStz5MiRDOcePWr/fVMpB2UQKldOX1azpKOI7blz59K1e9+rRIkSmbZ7X6ty4fHH3YGip/Ll7f4Oj+x/SqmCIyKfBboPwSgYx0gdH/1ABH77zSalGTHCXXZp+3YbKJYr505K07+/reGrlCpQgaqzWORNmGAzMXsKlszM3k9KmzdvzoYNGzKct3HjRiIjIylbtqw/u6dy6/x5mDEDPJNS7Nvn+9yTJ6FjR/DxpFwplTfGmFuMMZcZY7SOQg4F6xip42MBOHwYPv8cbrvNlra45BJbq3fuXPc5Y8bY5DWHD9uMpnffrYGiUn6iwaIXf2V7GzYMJk2yNV6NsV8nTQp8wq2VK1eyZcsWOnXq5GobOHAg+/btY9GiRa62EydO8P333zNw4MBAdFNl58wZO6AOG2YLDl91lS047FzDFRXl+7pAT20rVYAyzfRW8N4CfgB2GWOOGGMWGWP+a4y5yxgTa4wp53myMeZ1f3cw2ATjGKnjYz5LTobOne0YdcMN8MEH8OefULMmDB9uU+A6tWwJ3bpB8eIB665SRZUuQ/WSm30GF2rYsMAOfMOGDaNevXq0bduWihUrsnr1aiZOnMhFF13E6NGjXecNHDiQ2NhYbr75Zl5++WVX0WER4THdGxBcdu+2qcJ/+CF9QeHWrWHoUHdZiwkTYORILTqsipS4uDjXg0A/B4x/AVdjSzm1crxuBspj6wxjjNkNrMfWBh4MPODPDuaE83c2fvx4v5TPCOQYqeNjPtu92y4tXboU3n/fPgEoXtyWpiheHLp2hQED7NLSli11dYtSARAXF8czzzyToV2DxSKsRYsWfPrpp7z55pucOXOGmjVrcs011/DMM89QtWpV13lhYWHMmDGDRx55hFGjRnHu3DliY2NZsGABdevWDeBPoDhxAjZuBGfR6IoVYfp0u/S0QwcYMgSuvTZjHSnnv8C06LBS/nBaRDYBm4BPAIwx4cDl2KBwEVAPaAbcB5TL5D4B5c+HqYGm4+MFOnPGJkqbPdu+PBPTjBljl5qCTVpTuzaUKROQbiql3DJ7oGqK0h//7BhjRH8fKugdPWoDwmnTYM4cKFsW9u93L8/59lto0ybzpaZKKYwxiIhfpi+MMe8C80TkCx/H6gIPishDHm21ReTPHNy3DvA40B47W1kaqCciO3Nw7b8c17UDKgMjROTDLM7X8VHlzMaN0LatfWjpVL48XHqpnTkcMgQ8Am6lVPDxHCN1ZlGpUHDsmA0Ov/oKEhIgJcW2G2OX7Pz9N1x0kW27+upA9VIp5dtLwBJjzDkRme55QET2GGO6ebVlGyg6NASuA34FfgL65aJPo4E1wAzg1lxcp5R1+LAdj2bPtmPSlCm2vVEjO1PYsqU7a2lMjO43VCpE6cyiB31yqoJKcrJ7cF292j6pBQgPh1697PLSwYOhRo3A9VGpEOXPmUXH510HxGMT3XwKzBGRo8aYAcC7IpLrpQDGmDARSXN8fwfwHjmfWQwTkTRjTENgKzqzqLKTkgLLl7uXli5fbktdAJQsCUeOuFPYnj6tS0uVCmE6s6hUsPrzT/j6azuLmJoKP/1k21u3ttnhuna1M4e6hEepkCIiXxhj9gJvYoNFMcakYbOSP5fHe6ZdQH/yfK0qQlJSoJjjn4offgh33uk+5kxM07+/TU7jTKAGGigqVYhosKhUoO3ebZeXTpsGv/zibi9Vyu5PrFTJLjf98MOAdVEpdeFE5BegnTGmHdATqAasFJFpAe2YUk5nz6ZPTNOvH7z2mj3Wty80bOgODnv2tHvmlVKFWrbBojEmBhgAxAC1sRvoDwGbsRncvhWRowXZSaUKre+/B89aXKVK2UF46FC48kqbFEApVaiIyK/YfYYhxVe5EX+V0VAFaMsWmDEDZs2yhe89E9N4zhBGRcHWrf7vn1KqwGRWLsNTpnsWjTHDgUeA5sAJbO2ng8BZbOa0ekAj4DzwBfCMiOzIr84Hgu7JUAVqyxY7exgeDo8/btuOHYP69aFPHxsgXnaZPqlVyg/8nA21D9Ad+3B1laOtBJCcX4NObvcselynexaLmqNH7dLSco4KLWPGwOuvu4+3beuePYyN1cQ0ShVB2e5ZNMasBaoDU7BZ0tb4GiWMMRWAK4FhwAZjzAgR+bzAeq5UqNm40QaI06bB+vW2rVo1eOQRGzRWrAgHDuhgrFTh9jAQDvwMYIy5CvgcSDXGvCUiTwSyc6qQS02FFSvcS0uXLYN33oGRI+3xq6+2mU3797fLTqtXD2h3lVLBJbNlqB8A/xORc1ldLCLHsdnd4o0xrYCa+dw/pULTnDnwwAPpCxFXqGCXnA4Z4s4gBxooKlX41QFai0iq4/1rwFHgfWCoMWa7iLwXqM6pEBYfD2PH2r3vkZEwYQIMG2aPTZ1qtzrMnWtnE52KF4d9+9zve/a0L6WU8iHMV6OIvJZdoOjjmrUiMjt/uhU4xhiMMboHQ+WcCPz6a/rkNJUq2UCxcmW47TaYOdPWQpwyxQaMxTS3lFL+FhcX5/ob72fnnIGio6ZiPeBhEXkam+hmhL87pAqB+Hg7O7hrlx2Hdu2y2Urj4+3xjz6CL76wgWKDBjBqFHz3nZ1FzGaPklJKOWmdRQ+6J0PlmIitMeVcYrpzJ3TvbrPIOY8vWADduunMoVJByM97FhcDt4nINmPMVKAfUFtEUhzHl4tIxzzee4jj297A3cAobH6BgyKyyBgTBWwHnhWRZz2u64HNxloTW87jLWAhgK/srDo+BhkRqFPHllvyFhVlx6TvvoO9e+3y0oYN/d5FpVTo0jqLSuXVb7/B5Mk2QNyzx91esyZccgmkpUFYmC11cemlgeunUiqYvAAsM8ZsAmKBlzwCRQNcSFG6L73ev+34ugg7a2mw+yW9VxI9A/TweH+v44XjGhWMTp+Ghx6yew99BYpgl6QCDBrkv34ppQotn8tQlVIOqalw/Lj7/YoV8OqrNlC86CIYPdqmGt+7F9580waKSinlQURmAtcBfwL/BzwHYIzpDUwG/r6Ae5tMXj0dx3c63sd5Xdczs2sz+yzdpuFnaWmwciW8/767LSLC7kPctSvz8SYy0j/9U0oVKplt1dBlqB50mY0CICXFBoBffglff20T0rz1lj125IhNIDB0KHTsqMGhUiGqoJehGmO6AL9kNagYY24CrgamicgXBdWX/KDjo5/89ZdNkDZ7tk1Mc+iQHWf+/huqVLHnfP891KoFmzbB3XfDmTPu6yMiYNIkd5IbpZTKA88x8oKCRWPMo8ABEZmSX50LJB0Mi7DkZLvHcNo0+OYbO0A7de4MS5YErm9KqXznh2DxDHAGmAXMAGaJyLGC+ryCpuNjAVu7FoYPt189RUXZeofjxtk9it6yyoaqlFJ5lC/BojGmJnZJzQkRqZh/3QscHQyLsCeegBdfdL9v1MjOHg4ZAq1a2T2ISqlCww/BYmmgL3AFcDlQA1iKDRxniMimgvrsgqDjYz7ats3OHIrAfffZtkOHbH3D0qVtGYv+/e2rUSMdf5RSfpefM4s3AEcLQ8kM0MGwSDh3zi7xmTYNeve2T3IBli6FO+6wweHQodC8uQ7QShVi/syG6vi8NtjA8UqgPbAbR+AILBSRJH/1JS90fLwAp07ZlSuzZtkgcft2237RRXb/u3OsSUyE1q2hVKmAdVUppSAfg8XCRgfDQurMGTtIT5tm93qcOmXbL70U5s2z34tocKhUEeLvYNHrs6thA8crsLOP4UAC8L2ITA5En7Kj42Me/d//2fqGycnutkqVoG9fO3N4661ad1cpFXQ0WMyEDoaF0MSJdg/H6dPutrZt7QzitdfaJT5KqSInkMGiVz+KYUtYXAlcJiJNAtwln3R8zMbBg+7END16wO232/aff7bvO3a0ew/794cOHSA8PLD9VUqpLOSqzqIx5hbgELBeRPYWdOeUyrOTJ2HGDGjZElq0sG1Vq9pAsWNHGxxeey00aBDYfiqllIOj3uI8x+vBAHdH5VRysl02Onu2XbmyapVdoQJw4IA7WIyJsYFk5cqB66tSSl2AbGcWjTEngLKAAMeB9R6vdcBvInLS4/zXReSBAutxAdInpyHo+HGYPt0uMZ09G86fh/vvh9dft8dPnICjR21GOaWUcgjAnsUooDqwR0T2O9oigWgAEVnsr77khTHGNTiOHz++aNZa9NyucOON8Nln7mMlS0K3bnb28LLLoFmzwPRRKaXyKC4ujmeeecb13jlG5qRI3F9Ac+AW4D3gLHAz8A7wM3DMGLPDGDPdGPM8MDif++5XWnQ4yMTHQ3S0rTMVHW3fg61/eMUVUK2a3fMxfTokJUH37tCunfv68uU1UFRKAZkXHC5IxphBxpgNwB9AIrDPGLPKGHM5cAnwHLDAbx26ACKCiBSd8fHsWTtrOGYMNG1ql5k69ewJjRvbh5MzZ9oavHPnwsMPa6ColApJcXFxrr/znnIys7hKRNp6tYVjU4E/ACwC6gHNgCZAOREJycX4OrMYZOLjYeRI3wWHly+HN96wQWT37jaD6eDBtlCxUkplwx8zi8aYx4AXgG3AQuBvoDJ2vOwCPILd5jEl2MfNIjM+btzozlq6aJFdreL0yCPw8sv2+7Q0O/4opVQhlKsEN8aYd4F5IvKFj2N1gQdF5CGPttoi8mc+99kvisxgGCrq1oW9PrbJRkXBd9/BsmVw9dW2NpVSSuWCH+osdgFmA3eJSLyP442Az7CzimM0WAyQEyfsChSnRo1g61b3+3bt7NLSAQOgUycoXtz/fVRKKT/LbbDYAFgCjBSR6T6OrxCRDgXSUz8rtINhKPnrL7vEdNo0WLjQ9znG2Ke6SimVR34IFqcBX4vIJ1mcUxm7/7+mBot+kpoKK1famcPZs+1Dxx077MNJgLg4WwdxwABb3kIfRiqliqBcZUMVke3GmPuBr4wxPwCfAnNE5KgxZgB2w75S+ePmm2H+/KzPiYz0T1+UUirvmonIkKxOEJEjxpiBQEM/9aloOnMGvvjCLi+dO9fuL3QqVgzWrEkfLCqllHLJ0YJ7xxLUHkBdbLB4yBiTDPwAfFBw3VOF1u7d8Oqr0KULLF3qbh82DAYOhClT4N137R5FTxERtm6iUqrIiY+PJzo6mrCwMKKjo4mPz7C6M5icz/4UEJFfReTzgu5MkXL+PPz2m/t9WhrcdRd8/rkNFOvVg3vugW+/hcOH4aqrAtZVpZQKdtkuQ81wgTHtgJ5ANWCliEwrgH4FRKFZZhOsduywy0unTbMJapwefhj+/W/f18THw9ixNriMjLSB4rBh/umvUipoxMfHM3LkSM54JLyKiIhg0qRJDMvD3wQ/LEP9DWgvIueyOe8OoK2IjCqovuSHoC+dsW2bu+bh/Pm2lMXff9uZQ4Bx46BmTejfHxo2dJfAUEopBWReOiPXwWJ+cSTHeRXoCxggAbvJf3c217UHRgLdgUhsJrmfgHEissPr3DDgceAuoCawGXhWRL7K5N4aLBaUK6+EH35wv4+IsKUvhgyByy+HsmUD1zelVFASEbZu3cq8efN45JFH0gWKTlFRUezcuTPX9/ZDsPhf4JiIjMvinFbAj0AN3bOYB1u3wmuv2QDxjz/SH2vRwpa0cC4vVUoplWOeY2S2y1CNMX2MMc8aY9p6tJUwF1CoyhgTAczHltoYjq3heDGwwBhTJpvLb8DWfXwDuAx4AmgLrHQEoJ6eA+KA/zrOTQS+dNS3UgVl82Y7A3j4sLstKsoGhNdfb2cWDx60e0iuu04DRaWUy+HDh4mPj+e2224jKiqKxo0bM2rUKJ+BIsDu3Vk+Xwykl4HRxpi3jDG1PQ8YY0oZY24DZmAfmqrsiMDatfDLL+6206fh7bdtoFipkh1PJk+2WbTXr9dAUSlVZBTkNo2cZEP9EQgH/i0ic4wxVwGfA6nAWyLyRK4/1JgHgFeAxiKyzdFWD9gKPCYir2RxbTUROejVFgXsAJ4XkacdbdWBPcALIjLe49x5QDURucTHvYPvyWmo2LjRBoFffuneKzJ5MowYYb8/dAjKlIHSpQPXR6VU0Dl58iQnTpzgoosuAuCbb77hmmuucR2vWrUql156KQkJCRzxTEziEKwzi47P6A9MA0pjay066yxGAynAQGwuAK2z6MuhQzYhjTNz6f79EBvrDhhF4MUXoVcvaN8ewoP6V6iUUgUiv7dpQO5LZ6wHWotIquP9dqAU8D4wFHhFRN7LZQfmAaVEpItX+yIAEemRm/s5rj0AzBCR2x3vbwGmAI1EZKvHeSOAyUB9H8tWNVjMDRF47jmbNGDjRnd7hQowaJBNIBATE7j+KaWCTlJSEomJicybN4+EhASWLVvGjTfeyMcffwzA0aNHuemmm+jduzd9+vThkksuISwsLOT2LHp8TjQwFuiP3eu/B5gDvARcBYwHqmiw6OHrr+GFF2yJC8/PrF3bbl94913dc6iUUtjtGnXq1OHPPzOWuM/rw1TIZekM4JxHoNgNqAfcJCKfGWPeAr4BchUsYpeRfuejfQM2AM0VY0xTbAmPTV6fcR77NNf7MwCaYWcjVU6J2KU9LVvagdoYmDfPBoqVK8PVV9s9iL17Q4kSge6tUiqITJs2jcmTJ7No0aJ0AV94eDinT592va9UqRI//vhjhuudAeHYsWPZvXs3kZGRTJgwIc9PTf1FRHYCd2Zy+C3Hq3DLKlHZnj121rB5cztrCHDuHKxYYceR7t1tUpoBA+w5GiQqpYqw1NRUwh2rKPbt20fbtm35+++/fZ6bX9s0chIsnjXGNHQsF70Lm1BmGoCIHDDG5OQe3ioDR320HwEq5eZGjs//H3AQO9vp+RnHfDwKPeJx3Nf9MrQFZeY3fxGBVavcWUy3bbOZTDt0sMfHj4eUFLsMqHjxwPZVKRUUdu7cSUJCAt27d6dRo0YAbNq0yRUENm/enN69e9O7d2969uxJ+fLlc3TfYcOG5To49M7upvwsPh5GjrS1DgF27YLbb7ftu3fDBsfz2zvucAeLl10G339vx5Uy2aUxUEqpwiktLY0tW7aQmJjoekVERPCLYyl+rVq1OH/+PGFhYaSlpWW4PjK/6pKLSJYv4HLgMPAzdp/iRI9jBtiQ3T183DPJ8z4e7ROAlFze639AMtDPq/094C8f518MCHCLj2OiRCQtTWTZMpFHHxWpV0/Ehoz2Vb26yFdfBbqHSqkgcvDgQfniiy9k5MiRUr9+fXH8jZWJEye6ztm8ebN8/PHH8ueffwawp26Ov/e5Grty88KunmmTi/NLAQ8Bdxdkvy7g53H9dx0/fnzOf9FRUenHEO9X2bIigwaJfPJJzu+plFKF2MyZM6V///5SsWJF8fzbC0hERIQkJSW5zv3zzz/l448/loiIiAznTZ06NVefO378+HT3EMff/2xnBUVkpjHmOuys4v9hM4xijOkN3IzdsJ9bR/E9s1cJ3zOOPhljJmLLaAwXkTleh48AlUzGjRaVPI4rJxH38p7UVFvq4qAjj1DNmnDNNXaJaffumkRAKeXSv39/5sxJ/+e3YsWK9OrVi+bNm7vaGjVq5JplLCJ2A4nGmDVAPPaB6zoRSXGe4MiS2hG7d/EaYB9wm/+7mjPph9IcymoZ1IIF0LmzbltQShU5KSkpbNiwwTVjOHjwYAYOHAjYvfuzZ88GoHbt2sTGxtKpUydiY2Np164dxT1W8tWqVYubb74ZY8wFb9OIi4tzraT0XGnpM1g0xnQBfnEGWSIyD5jndVoNoAzwTq56Ym3A7in01gzY6KPdVx/HYstm3C8iH2fyGSWBBqTft9jM8TVHn1OopaXB0qV2een339tkAhUr2iLGd98Nx4/DtddCly4aICpVhKWkpPDrr7+SkJDA/Pnz+eabb1xLRytWrEjJkiXp0qULffr0oXfv3rRr1861p6KoEpHRxpjXgDHYEk4VADHGnMDup68EFMeu0FnuOO9jEcm4ligTxpg62FrC7YFW2Kyr9cTuk8zu2lLYh783AxWBNcDjIrI4p5+fI5GRdumpt6go6NkzXz9KKaWC2cyZM/npp59ITExkxYoV6fbrlypVyhUs9u7dmy+++ILY2Fjq1KmTo3vnZZtGTvnMhmqMOQOcAWZh60DNEpFj+fahxowB/o3NVPqHoy0aWzrjCRH5TzbX3w+8DowVkX9lco6zdMa/ROQZj/YEbAHklj6ukTw9OQ0lqamwZIkNEL/6CjyzJ33yCdx4Y+D6ppQKCiLC5s2bSUhIICEhgYULF3L8+HHX8e+//54rr7wSgL/++ouKFStSOsTK4vgrG6rjs0oAsUAnoDZ2yelh4HdgsYj4iKZydN+e2FJWv2JLXPUj58FiPHAF8CjwB3Avth5xrIis8XF+3sZH7z2LABERMGmSO8mNUkoVIklJSaxZs4Zly5YxatQo18PTrl27smTJEtd59erVIzY2lpiYGHr16kWLFi0C1eUMsi2dYYwpDfTFDiSXY2cRl2IDxxkisinDRbnrQBlgLXAWGIddG/scUA64REROOc6LArYDz4rIs462G4BPgNmAd9aCEyLimjE0xryAfVr7JLAKuB67nHaQiHzvo1+FO1g8dQoaNYK//nK3RUXZ5aVDh9qkNWFhgeufUipgTp06RdmyZQHYv38/tWrVSne8YcOG9OnTxzV7WLFixQD0Mv/4M1gsKMaYMOdMpDHmDuxe/WyDRWNMK+xM4m0i8oGjrRh2Rc5mERno45q8j49ZZUNVSqkQJiLs3bs3XRKaX3/9lfPnzwOwdu1aLrnElnafNGkSO3fudC0rrV69eiC7nqVsS2eIyFlguuOFMaYNNnC8FphojNmNI3AEFopIUm46ICKnjTGXAq8CH2OX4cwDxjgDRWdfsU9LPSOYAY72AY6Xp0VAT4/3Y4FTwANATWAzcJ2vQLHQSUmBhQttaYt//cvuRyxbFurVg1KlbHA4ZIgtZKypyJUqco4fP86iRYtcs4dJSUls22ZX7NesWZNevXpRs2ZNV3AYFRUV4B4rb7lZsuplIDYx3Oce90oxxnwGPGGMKSki5/Ojj4ANDDU4VEoVAmfOnOHvv/8mOjoagA0bNtCyZYbFijRt2pSYmJh0+wtHjhzpr27mK58zi1leYEw1bOB4BXb2MRxIAL4Xkcn53kM/CvmZxeRkmzBg2jT45hs4dMi2//ortG1rvz9yBCpV0gBRqSJo+/btfPTRRyQkJLB8+XJSU1Ndx8qUKcMff/wR1E8681NhmFn0lMuZxc+wmVobe7Vfhw0gW4jIBq9joT0+KqVULokI27dvJzExkaVLl5KYmMjatWuJjY3lp59+Amzdw3r16tG8eXNiYmKIiYmhY8eOVKqUq0qAQSfbmcWsiMhB4EPgQ8eylR7AlcBjQEgHiyHr8GF47DH49lsbDDo1amRnEKtWdbdV9lleUilVyKSlpbF+/XpSU1Np63hYtGPHDp577jkAwsPD6dKlC71796Zv37507NiREpqVsqjIqtax83gGWodYKVVUvPXWW8TFxXHIOfHiEBYWRmpqKiKCMYbw8HB27drl8+9jKMhJLeJczywWZiHz5PT8eVi/3i4hBTujWLOmDRSbNbPLS4cMgRYtdAZRqSJk165drmWl8+bN4+DBgwwcOJDvvvsOgLNnz/Lkk0/Su3dvunfv7spoWhQV8ZnFuUBZEYn1au8LzAG6i8hPXsdCY3xUSqkcSEtLY9OmTen2Go4dO5YbbrgBgA8//JARI0ZQvXp1VxKamJgY2rdv79rfX5jlembRkWimOrBHRPY72iKBaIB8T7WtMjp3DubOhS+/hOnT7fu//4by5aF4cfjgA2jY0AaLSqki5Z133uGVV15x7Tl0qlOnTrq9hqVLl+bVV1/1d/dU8DkCRPpo1zrESqlCbcKECSxatIhly5Zx4sSJdMd++eUXV7B49dVX06NHD6Kjo0N21jC/ZBksGmMGAf8Cmni0rcVmMA3Dptzuit23qPLbuXMwa5YNEL//Hk6edB+75BLYswecRa8HZkhep5QqZM6ePcvPP//MvHnzuPbaa+nQoQOAKzlNhQoV6NWrl2tpaaNGjYr8IBesjDEtsRm881Q24wJtAAYbYyJExKOmBc2AJNLXJlZKqZCSkpLCb7/9RmJiIqtXr+add94hzJHtf/r06SxfvhyAunXrEhMT45o5bNOmjeseFStWDPms3/kl02WoxpjHgBewg8ZC4G/sPoZmQBfgEeAQMEVECkWwaIxx/TICtg9DxL10dPduW9rCqU0b9xLTRo383zellF+lpqayatUq19LSJUuWuNJxP/nkk0yYMAGwpS527dpFu3btKFYs11vRiwzvvRmBXIbqWAr6Hjbr+DzsA9jhIrIlj/fLzTLU1sBq4B8i8pGjrRiwHtgmIlf5uEaXoSqlgtKJEydYsGCBKwnNihUrOONR23XTpk00aWLnvb777jtSUlKIiYnhoosuClSXg15O6ix2wdYxvEtE4n0cbwR8BizAlrsoNMFiQAbD06dh5kybxXTbNli50h0w3n67DQyvvdYuM1VKFRlt27Zl9erVrvfGGFq3bk2fPn245ppriImJCWDvQlug9ywaY14WkUeNMcOBO4CHgVEi8o9c3meI49vewN3AKOAgcFBEFvmqV+y47jOgP3aF0A7gHmyyus4issrH52iwqJQKOGfB+5SUFDp37gzAr7/+SntnHg+H+vXru2YMr7vuuiKT6Tu/5GTP4oPASBH5xNdBEdlijOmDfQqp8uLUKfjhBxsg/vADnD3rPrZ1q3vm8P33A9M/pZRf/P3338yfP9+VlCYxMZEaNWoA0K5dO44fP06fPn3o06cPvXr1oqpndmMVyso4vt4C/EdElhtjrs3Dfb70ev+246uz7rCvesUAI4AJwPNARWAtMMBXoKiUUoGyZ8+edKUrVq1axfnz5+nVqxfz588H4JJLLqF///60a9fOVfC+WrVqAe554ZHZzOJGEck2U4oxph3QUEQ+z+7cUOC3J6erV0PnznZPolOnTrbMxZAh6ZeeKqUKlfPnz7uCw4SEBNatW5fu+KeffuraYH/+/HlKliwZiG4WekEwszgIeBc4DjQHUoGpIhKU1euDYpuGUirkxcfHM3bsWHbv3k1kZCQTJkxg2DD7Z+/s2bMYYyhVqhQADz74IK+99lqGezRt2pTevXvz5ptv+rPrhV5mWzUyCxZXi0ibDAcKuQIJFk+csMlp9u2ztRABkpKgVi1o0sQGiNdeC3Xr5u/nKqUCwnsgfPbZZ+ncuTMNHcvIjx8/TuXKlUlLSwOgVKlSdO/e3TV72KpVK9dGfFVwCjpYNMa0FpE12ZxTBjgvIinGmIlAKRF5sKD6dCF0GapS6kLFx8czcuTIdPsJS5QoQY8ePTh69Chr1qzhk08+YejQoQC89957PPbYY66yFTExMXTq1EkTz/hBTvYs/ga0F5FzGQ6mP+8OoK2IjCqQnvrZBQ2G8fEwdqxNSlOnDlxxhQ0QZ8+2wWGpUnDwIDhrs5w4YcteKKUKjfj4eO68807Oei4rB8qXL8+xY8dcmUnvvPNOqlevTp8+fYiNjXU9RVX+44dgMRm4T0TeLajP8CcNFpVSFyo6OppduzJPAB0WFsbEiRN5zDG5kpSURLFixfQBagDkJFj8L3BMRMZlcZNWwI9AjSKf4CY+HkaOhDNnMh4zBrp1szOI//iHO1hUShUq69evJzY2ltOnT2c4VqxYMXbv3k2tWrUC0DPlix+CxTRAgH+JyFOZnPMadr/gGhF5raD6kh80WFRK5VRaWhpbt2517TPcvHkz8+fPJzw8nMz+jsyfP5/27dtTrlw5P/dW+ZKTYDEKWAdMBSaIyJ8ex0oBNwHPAG8ALxT5YDE6Gnw9KalcGTZsgJo1L7hvSqngcfLkSRYtWkTJkiXp27cvAMuWLcs0O6kxxrXsVAUHPwSLG7Dj6PXAFOB2EUn1OqcO0An4ItjHUQ0WlVJZ2blzJx999BGJiYksW7aMo0ePpju+bds2evfu7XNmMSoqip07d/qppyonsg0WHSf1B6YBpbG1Fp11FqOBFGAgUJdCVmcxT4NhWJitj5jxhqD/QFQq5CUnJ7Ns2TJXUpply5aRkpKSLhtbSkoK1atXzzBAgg6EwcgPweIqEWlrjHkRW55iDnCtiJz2Oi8cSBaRoF5npcGiUgps/d9NmzaRmJhItWrVGDRoEABLly51lbIAqFWrVrqC9x07dmTatGkZ9ixGREQwadIkV5IbFRxyUjoDEZltjGkJjMXWYuoA7AE+BF4CrgLGF3hvQ0FkpO+ZxchI//dFKZWvXn75ZZ599llOnTrlagsPDyc2NpbevXu72ooVK8abb77pcyCcMGGCX/usgoeIPG6M2QG8CSw2xlwmIn97nxaArimlVLYOHz5MYmKiq3zF8uXLOXnyJAD9+vVzBYtt2rThwQcfdAWIderUce3Td3IGhJllQ1XBKdOZxaIoX/csRkTApEmg/wdQKiTs27fPNXM4fPhw+vTpA8DkyZO5/fbbadKkiStjac+ePalQoYLP+2SVFlwFD3/NLHq8vwL4DDiIrWe4xdEeDiQF+wodLZ2hVOGXkpLC+vXradCgAeUdSRhvueUWpk6dmu68qKgoYmJi6N27N3feeWcguqoKQK5KZxRV+ZYNNTISJkzQQFGpIHb8+HEWLVrkChA3bdrkOjZ69GjeeOMN13knT56kTp06geqqKgD+DhYdbe2AGUBx4CoRWRpKwaL+e0GpwmX//v2uWcPExERWrFjBmTNn+Pbbb10zhpMnT+bDDz90LSeNiYnRZG1FQE4S3HwHxInI6hzesBQwCjgjIv/Lz876kz45VarwSk5Opnjx4q73bdq0Yc2aNa73ZcqUoWfPnvTt25fLLruMRo0aBaCXqiBl9tS0IPgKFh3tUdhM4lHAMOB7NFhUShWwtLQ0VwmKpKQkmjZtyh9//JHhvIYNG/L8889z/fXX+7uLKojkJFh8ExgJrAHigZ+BdSKS4nFObaAjdu/iNcA+4DYRWV7QP0BB0cFQqcJDRNiwYYNr5nDhwoWsW7eO+vXrA/DYY4/xyy+/0KdPH3r37k2nTp0oUaJEgHut/MUPM4vHgN+AD0Tkfa9jFYBvga7AI8ArGiwqpfLT3r17XfsMExMT2b9/P9u2bXPtI2zRogW7du2iY8eO6YreV6tWLcA9V8Egp9lQGwBjsE8+K2A34J8AzgOVsMtoDLAceAf4WERCOvWnDoZKhbazZ8/yxRdfMHfuXObNm8f+/fvTHY+Pj+emm24CbDDpvfleFR1+CBbDgCZAhIis9HG8OPABthSVaLColLpQK1as4KWXXmLp0qXs27cvw/F9+/ZRu3Zt1/c1a9YkPDyo//SoAMlRsOhxcgkgFlsLqjZQCjgM/A4sFhEfaUBDkw6GSoWWEydOsHHjRld9w3PnzlGpUiXOnTsH2NTdffv2dc0eOgdJpQo6WMxFP/4FPK7BolIqJ0SEXbt2ufYZtmnThuHDhwOwePFievToAUCFChWIiYmhU6dOxMbG0qlTJypVqhTIrqsQkqtgsSjRwVCp4JaUlMSyZcuYO3cuCQkJLF++nNKlS3PkyBHXfsSnn36aqlWr0qdPH5o2baqzh8qnYAkWAYwxfUVkbqD7kRUdH5UKnBUrVrBgwYJ0S0qdrrjiCmbMmAHAmTNn+Oyzz4iNjaVx48auPYpK5ZYGi5nQwVCp4LRmzRrGjh3LokWLOH3aXdO8WLFidOrUic8++0yzlapcCaZgMRTo+KhUwRMRtm/fTmJiIldeeSUVK1YE4IYbbuDzzz93nVe5cmVXPcMePXrQrVu3APVYFVaeY2SxQHdGKaU87d27l4SEBCIiIrjuuusAKFmyJDNnzgSgefPm9OnTh759+9K9e3fKlSsXyO4qVWQ4Z+k1W7hS+ePkyZOsWLHCNWOYmJjIoUOHAPjhhx+4/PLLAbj66qupVKmSq3zFxRdfrKtmVL7zzhjupDOLHvTJqVL+d+LECRYuXEhCQgJz587l999/B6B9+/asWLECsE9bP/vsM3r06KH7DlW+0JnF3NHxUakLk5aWxt9//03NmjUBW8O3SpUqpKampjuvevXqxMbG8tBDD9G9e/dAdFUpnVlUSgWHF154gXHjxqUbLMuWLUvPnj3p37+/K2OpMYYbb7wxgD1VSimlcu748eMsX7483axh+fLl2blzJ2AT0DRp0oTSpUu7lpTGxMRQr149nTVUQUWDRaVUgRIRNm7c6Jo5/Mc//sGQIUMAaNCgAQBdunRxLS3t2LGjK1mNUkopFUp++OEHHn/8cTZu3Ij3bHypUqU4fvw4FSpUAGDt2rVaukIFvTwFi8aYlsCJwlQ2QymVf/bt28e8efNISEggISGBv/76y3WsWrVqrmDxyiuv5MiRI5QvXz5QXVWqwBljlgD/A74QkfOB7o9SKmvx8fGMHTuW3bt3ExkZyYQJExg2bJjr+JEjR1i2bJmr6P2gQYO49957ARsQbtiwgeLFi9O2bVvXrGFsbCx169ZNN2uogaIKBXnas2iMmQu8B0wH5gFhwHAR2ZK/3fMv3ZOhVN6cPHmSMmXKuNJ0d+nShV9++cV1vGbNmvTp08c1e6j7DlWg+XPPojFmIdAdOAp8BEwSkd/98dn5RcdHVVTEx8czcuRIzpw542qLiIhgxIgRnD59mqVLl7J58+Z01wwePJivv/4asOUr1q5dS5s2bShVqpRf+65Ufrng0hnGmJdF5FFjzHDgDuBhYJSI/CNfe+pnxhjXL0OzvSmVueTkZJYvX+5aWrps2TJWrFhB69atAXjppZdYvHixK0Bs3ry57sFQAeed6c2fCW6MMY2Bu4BbgUrAT8A7wNcikuyvfuSVBouqqKhbty579+7N0B4REeEKIEuVKkXbtm1dM4axsbH6EFQVKvkRLL4tIqOMMQnAf0XkW2PMiyLyeH531p90MFQqc+fOnWPSpEkkJCSwcOFCTp486ToWHh7OBx98wC233BLAHiqVc4HKhmqMKQlcB4wEOgOHgA+ws41/+Ls/OaUPU1VhlJqayrp161xJaJYuXcq2bdsyPf/1118nNjaWVq1aUaJECT/2VKmCl9kD1bwGi4OAd4HjQHMgFZgqIsOyvDDIabColNv+/ftZu3Yt/fv3B+ygWq1aNY4ePQpA48aNXctKe/bs6dqwr1QoCHTpDGNMW+AV7PJUgDTgG2C0iOwPVL8yo+OjKgwOHDjAvn37aNu2LWDHuVq1aqU7x/G3IcO1UVFRrkymShV22ZbOMMa0FpE1md1ARL5zzCqeF5EUY8xE4O8C6a1SqkB4b+B/6qmnqF27NnPnziUhIYH169dTvHhxjh49SpkyZQgPD2f8+PGUL1+e3r17ExkZGegfQamQYowpDdwI3A20A34HHgC+BK4C4oB4oHcO71cXeBXoCxggARgjIrtzcG094GWgD1AcWA48KiIrc/VDKRWkkpOTWbt2rWvGcOnSpezYsYOGDRuydetWwO6n79WrFxdddJErEc369esZNWpUhj2LEyZMCNSPolRA+ZxZNMYkA/eJyLv+71Lg6JNTVVT42sDvLSIigm7duvHuu+8SFRXlx94pVfD8nOCmJXa/4jCgDPAd8LaILPA67yrgSxHJNiuGMSYCWAucB8YBAjwPRACXiMjpLK6tAqwDTgLjgTPAQ0B7oKOIbPJxjY6PKqilpaW5kqy9//77jB49mrNnz6Y7p0yZMnTq1ImZM2dSsmTJTO+VXTZUpQq7bPcsGmPSsAPPv0TkqUxu8hpQEVgjIq8VVGf9SQdDVZiJCNu2bSMhIYFx48Zx5MiRDOeUKFGCRx99lD59+hAbG5vlYKpUKPNzsJgG7AP+D7s38a9MzmuKDSJ75eCeD2CXsTYWkW2OtnrAVuAxEXkli2vHYWcxm3hcWwb4A1gkItf5uEbHRxU0kpKSWL16dbpZwzFjxvDggw8CMGvWLC677DIaNWpEbGwsnTp1IjY2lhYtWlCsmJYYVyo7OQkWN2CfOl4PTAFuF5FUr3PqAJ2wdaMKRaEYHQxVYXPw4EHmz5/P3LlzmTt3Lrt3Z706zRhDWlqan3qnVOD4K1g0xpQAjgADRWR+Pt53HlBKRLp4tS8CEJEeWVw7A2ggIk292qcBlwPlRSTF65iOjyrgnn/+eX788Ud+/fVXzp9PX7J02LBhTJ06FbAJ2U6fPk2VKlUC0U2lQl62exaxexFvNMbsBh4FahpjrvVc1iIie40xf2H3SeSlExey1+Jf2OUy7YDKwAgR+dDHeVWAp7F7QWoB+4EfgGdE5GBe+q1UqPjPf/7DI488kq6tSpUqXHrppcybN8/nzKLuQ1Qqf4lIkiOTaH4/hWmOXc7qbQMwNJtrU4EkH+3ngdJAA2Czj+NKFbjz58+zatUqEhMTSUxMZPLkyZQpUwaAZcuWuWr4Nm3a1LXPMCYmhmbNmrnuUapUKa1xqFQ+yXIuXkQeN8bsAN4EFhtjLhMR70Q2uX7U6NhrMR87MA3HvddigTEmy70WDqOBNcAMbM0qX59hgOlAI2zAuAloBjwHtDPGdNbHpCrUpaWlsWbNGtfM4U033cRtt90GQPPmzSlZsiTdunVzZS1t3bo1YWFhmRYd1g38ShWIJUAMsDAf71kZOOqj/Qi2jmNWNgN9jTFVROQwgDEmDOjoce8MfNVK1TIa6kKdOnWKmTNnuspXrFq1iqQk97OMe+65h549ewLw2GOPce+999KpUycqVcruf+ZKqex4l8vwJbNlqKtEpK3H+yuAz4CDwAAR2eJoDweScrsM9UL2WjjODRORNGNMQ8c1GWYWjTGNsAPiXSIyyaP9bmwh5CYistnrGo0fVdDbuXOnK2PpvHnzOHz4sOvYNddcw1dffQXYTHApKSmULl3a5310A78qyvy8Z7E58C3wuuPrX3g9aBWRXM08GmOSgP+IyD+92icAj4tIpg+DjTH1gY3APOB+bIKbsdgsreFAjIgs87pGx0d1wc6dO8eqVas4efKkqyzT3r17qVu3brrzmjVr5ip2f+WVV1KjRo1AdFepIisnexbTBYuOtnbYmbziwFUisvQCgsU877XwOj+rYLEFsB64UUQ+82i/AfgUaOad8U0HQxWMjh49Srly5Vyb8gcMGMDs2bNdx6Oioujbty99+vShd+/eVK1aNVBdVSpkBCDBDWS+EkeyCu4yuecB4FsRucur/W1gqIhUy+b6a4G3AOe/wldhV/w8AkR5bwnR8VHlloiwe/fudAXvV69eTXJyMk2bNmXjxo2uc4cNG+ZKRtOxY0cqVqwYuI4rpXK0ZzEDEfnVGBMD/AgkGGOGAd/nsQ8XstcipzYAi4GnjDHbsPWsmmGXpP7oKzW4UsEgKSmJpUuXupaWrly5koULF9KtWzcABg8eTEREhGtpacOGDX0uD1NKBY1nycOWjWxswI6l3pphZw2zJCJfGWO+xW7VSBKR7caYd4A9OckdoJS3s2fPkpqaStmyZQGbjObpp59Od44xhpYtW9K5c+d0pS7i4+P93l+lVM5kFizWN8b8DHwgIu87G0VklzEmFruM5kvsE8i8uJC9FjkiImKMuRz4GFjhcegHsghIdU+GCoTk5GT++9//MnfuXBYtWpRuL2Hx4sXZvHmzK1i86667uOuuuzK7lVLKQ072YxQ0EYkrgNtOB/5tjKkvIn8AGGOigS7AEznsVyp2Pz/GmNrYDOgvF0BfVSEjIuzcudNVtiIxMZE1a9bw6quvct999wHQqlUrKleuTExMjCsRTceOHSlfvnyAe6+Uyo3MlqGGAU2ACBFZ6eN4ceAD4CZsXJbbZah53mvhdX6my1Adxz8BegLPYAfEpo7vf8UupU3zOl+X2Si/+PPPP1m5ciUDBw4E7MBbt25d9u3bB0CLFi1cS0u7d+/uelKrlMof/lyGWhAcdRHXAmeBcdiZy+eAcsAlInLKcV4UsB14VkSedbQVB14CFgEnsDOU/3Sc11tEMmRK1fFROY0YMYIff/yRAwcOpGsPCwvj0Ucf5YUXXgAgNTWVsLAwXfmiVAjKdhmqI4jKdBmLiCQDNztKazyehz4cxXe2tUr4nnHMNUdSnhuBPiIyz9G82BjzBzAHW07D11JYpfLdqVOnWLRokWtp6caNGzHGcPDgQapUqYIxhri4OEqWLEmfPn2oVatWoLuslMpnxphWQGMgQ05/EZmSm3uJyGljzKXYElQfY0tQzcOWoDrl+bHYpDVhnpcDF2Mf+FYE9gKTgX/5ChRV0SIi7NixwzVruGLFChYuXOhKlrZ//34OHDhAlSpVXGUrYmNj6dChA+XKlXPdJzy8UJTgVqrI8zmzmKsbGNNXRObm8pr5QAkR6erVvtDRp/xIcPMEMBGoICInPNorAMeAf4rIC17X6JNTla9+//13Ro4cydKlS0lJcde4LlOmDD179uTVV1/l4osvDmAPlSqa/JzgpiJ2C0SMs8nx1TXg5HaFjr85akUCujWjMDpw4AAffPCBa0np33+nr5L2888/06WLzUm4bt06SpcurfvllSpkvLdtZJkNtaAZY8YA/wYaee212Ao8ISL/yeF9sgoW/4FdKttXRBI82vsBs4FbReRjr2s0WFR5IiJs27aNuXPnkpqayujRowE4cuQIVatWxRhDhw4d6Nu3L3379iUmJoYSJUoEuNdKFV1+DhbfBi4Fbgd+AgYDx4HbgFjgBhH51R99ySsdHwsHEWH79u0sXbqUYsWKceONNwLwxx9/0KBBA9d5VatWdZWuiI2NpVOnTpmWYVJKFT7Zls7wQwfyvNfC0d4DqAbUBN7Epv9eCCAi0xznlMfuUzSOe/+O3Yc5HkjCls7wXKqjg6HKlYMHDzJ//nzX0tLdu20CwVq1arFv3z7XE9d58+bRrl07TQWuVBDxc7C4HbtfPh5IBjo4g0NHBtIyInKrP/qSVzo+Bqfs6uWeOnWKlStXpktEc/DgQQAuueQS1q5dC9gg8rHHHqNVq1bExMTQoEEDnTVUqgjLU+mM/HSBey3ADrqeS1Xvdbyc1yAiJxylPuKAx4Ba2ELI3wNx3oGiUrnxzjvvMGrUqHRtVapUoXfv3vTt25fU1FRXXcTevXsHootKqeBRC/hDRFKNMeewD0advgY+832ZUpmLj49n5MiRruzZu3bt4o477uDkyZPcfffdgF1W9p//pF+sVb16dWJjY+nSpQsigjEGYwwvv6yJcJVSGQVkZjFY6ZNT5SktLY1169a5Zg6vvPJK7r//fgCWLFlC79696dq1qytraZs2bVw1o5RSwc3PM4t/APeLyAxjzCZgiohMdBy7B3heRKr4oy95peNj8ImMjGTPnj0Z2itXrszhw4cB+O6773j22WfTLSmtV6+ezhoqpbIU8GWowUoHQ7Vnzx4SEhKYO3cuCQkJruU6AH369GHuXJvLKTU1lfPnzxMRERGoriqlLoCfg8Up2GL3Y40xTwJPAx8BKcBwYLqI3OSPvuSVjo+B5ZwBdOrevTs//fRTlucrpVReBXwZqlLB4sSJE5QsWZKSJUsC8NBDDzFt2jTX8Tp16riS0lx66aWu9vDwcA0UlVI59QxQ2/H9y0AV4HogApgOjA5Qv1SQOnnyJCtWrHDtNVy7di3bt293JUYrXrx4ptdGRUX5q5tKqSLAZ7BojEnDI6V3NkRENOhUISE5OZnly5e7lpYuW7aM6dOnc/nllwMwaNAgzp8/7woQGzdurMt1lFIXRES2Y5O1OesUP+x4hRTn30ItnVEwtm/fzssvv8zSpUv57bffSEtLS3d83bp1tG/fHoAPPviAhIQERo8e7dqzCBAREcGECRP82m+lVOHgXTrDyecyVGNMHDkPFhGRjHcOQbrMpnASEd5++23mzp3LggULOHHCVXaT8PBwXn75ZR588MEA9lAp5W/+XIZaGOj4mH9OnjzJ8uXLSUxMpFq1aowcORKAzZs306RJEwCKFStG69atXfsMY2JiiI6OzvDwMrtsqEoplRe6ZzETWnS4cDh48CC//PILgwYNcrU1bdqU33//HYBGjRq5Zg579uxJhQoVAtVVpZQfZVZw2B+MMcOBG4FIoJTXYRGRBhmvCh4aLObdzp07WbRokWtJqeesYbt27Vi5ciVgH2y++uqrdOjQgXbt2ulWB6VUwGiwmAkdDEPTuXPn+Pnnn11LS1evXg3YAdq5d2PKlCkkJyfTt29fIiMjA9ldpVQQ8HOCm6ew+xZ/c7zOe58jIiP80Ze80vExZ5x7DZs3b06NGjUAeOCBB3jjjTdc53jOGnbr1o2hQ4cGqrtKKeVTnhLcGGNaAY3J+EQUEZmSf91Tyi2rJTa7du3izjvv5KeffuLcuXOua0qWLEm3bt04fvy4q+3WW4O63rVSqnC7HXhdRHS9eyEiImzZssVV7N5z1vD999/ntttuA6Bv377s2bPHtZxUZw2VUqEk25lFY0xF4Acgxtnk+Oq6UETCC6Jz/qZPToOLd8FhsBngPvjgA4YNG8aZM2eoVKkSSUlJtG7d2rW0tGvXrpQuXTqAPVdKBTs/zyyeBAaJyHx/fF5B0PHRrmIpVco+L09LSyM6OjpDncNixYrRpk0bHnroIW644YZAdFMppS5YrpahGmPeBi7FPhn9CRgMHAduA2KBG0Tk1wLtsZ/oYBg8Tp48SYMGDdLVOXSKjIxk165dACQkJHDJJZdQvXp1f3dRKRXC/BwszgDmicir/vi8glDUxkcRYevWra59hkuXLmXnzp0cPnyYYsXsoqzu3buzdevWdAXv27Vrpw8rlVIhL7fB4nbsXot4IBno4AwOjTHvAGVEpFCs8Stqg2Gw+vTTT7n11ltJSUnJ9Bz976SUuhB+DhYbAl8D/wZmAke8zxGRNO+2YFJUxsc1a9Ywbtw4EhMTOXz4cLpjxYoVY/369a6MpSdOnKBcuXJaXkkpVeh4jpFhOTi/FvCHiKQC54ByHse+Bq7I/y6qws751Pbtt99m8ODBvPTSS65jzZs3R0RcxYe9acFhpVSI2QK0AD4ADmAfvHq+kgLXtZwzxmCMCflM4c7xZ8qUKdxzzz289tprrmPFihXjhx9+4PDhw9SsWZOrr76aF198kcWLF3P8+HFXoAhQvnx5DRSVUoVGXFyc6++8p5zMLP4B3C8iM4wxm4ApIjLRcewe4HkRqVJA/farovLkNFCOHDnCvHnzXFlLd+7c6TrWqVMnEhMTATuQHz9+nB9++CHDnsWIiAgmTZqkdaSUUhfEzzOLcWRTuzjY6xWH+vi4YsUK5s6d60pGc+jQIdex2NhYfvnlF8DuRfziiy+IiYkhKipKg0GlVJGU22yoP2P3Js4APgbGG2OigRRgODC9gPqpQtz58zY7fMmSJQF45JFH+OCDD1zHK1euTO/evV2JaZyMMVSsWNEVEGrBYaVUKBORuED3oagQEbZt28bSpUvp27cvtWrVAuCDDz7gnXfecZ1Xs2ZN1z7DLl26uNrDwsI0MY1SSnnIycxiA6C2iPxkjCkOvABcD0QAs4DRInI4q3uEilB/chpoIsKGDRtcM4eLFi1i8uTJXH/99QBMmzaNt99+2xUctmnThvDwQpFIVykVYvw5s1gYBOv4eOrUKVasWOFKQuM5a/jxxx9z8803AzBr1ixmzpzpChB11lAppTKXqwQ3RUmwDobB7tNPP2XWrFnMnTuXv/76K92xsWPH8vzzzweoZ0op5ZsGi7kTDOOjiLB//37XbGFycjIVK1ZMt1UBoEaNGsTGxjJq1Kh0q1aUUkrlTK6DRWNMG+ApoDtQEZsRdbUx5l/AYhGZVYD99ZtgGAyD3ZkzZ1iyZAl9+vRxPZXt1KkTy5cvB+zSHufMYZ8+fVyDulJKBZOCDhaNMalArIgsN8akkfWeRRGRnGwLCZhAjI+nT5/OMGuYlJTEkSNHCAuz+fm6devG2bNn05WviI6O1llDpZS6ALnas2iM6QokAH8AnwD3Ac6/wmnA3djlqIWCc4AZP358yGd8yw9paWmsXr3atbT0559/JikpifXr19OiRQsA7rvvPg4ePEjfvn1p0aKFDtJKqaAUFxfHM8/4LY/Ms8Bej+/1SWQOLV68mDFjxrBu3TpSU1PTHatWrRr79u2jbt26ACxatMgVOCqllMp/Odmz+DNwGLgaCMem+G4vIquMMdcAr4lIZEF31B90ZtHt0KFD3HfffSQkJKSrNWWMoV27drz66qt07do1gD1USqm802WouWOMcQ2OuX2YGh8fnyFR2eDBg12zhomJicTExPDEE08AsHr1atq2bUt4eDitWrUiJibGNWtYv359fSCplFIFwPuBao6XoRpjzgDXiMgsY0w4tiaUM1jsDswWkdIF13X/KarB4okTJ1i4cCG7du1i9OjRAKSkpFClShVOnDhBVFSUa2lp7969qVKlUFRKUUoVYYUhWDTG1AVeBfpiV/wkAGNEZHcOro0EngN6AVWxs6BfABNF5LSP8/M0PsbHx2cogeSs45WWluZq6969O4sWLQLs+LNkyRLat29PmTJlcv2ZSimlLkyu9iwaY44Ad4jI1z6CxeuB10WkZoH32g+KSrCYkpLiqjk1d+5cEhMTSUlJoWTJkhw9epTSpW3s/8MPP3DxxRdz8cUX65NcpVSh4uc6i/OzOJwGHAd+Bd4XkQM5vGcEsBY4D4zDLnN9Hpup/BJfAZ/HtWWA1UBxIA7YDXQAngGmi8j1Pq7J0/gYHR3Nrl27fB5r3bo1sbGxdO7cmc6dO1O/fv1c318ppVT+y0udxTHGmO882pwjxu1AVoOgCjJz5szhuuuu4/jx46628PBwOnfuTN++fTl//rwrWLziiisC1U2llCpMDNAIqAXsAA4ANYB6wF+O95cDDxpjeojIxhzc806gPtBYRLYBGGPWAVuBu4BXsri2C3Ax0F9E5jjaFhhjKgOPGGMiRORM5pfn3O7dmU9yrl69Oj8+QimlVAHKSbD4FLAE+wRzGjZQHG6MeQVoh30aqYLMkSNHmD9/PnPnzqVevXquvSCNGjXi+PHjXHzxxa6lpb169aJChQoB7rFSShVarwCvAe1ExBUhGWPaYZd+PoOdWZwDTAAG5+CeA4FEZ6AIICI7jDFLgEFkHSyWcHw94dV+DAjDncTugkVGRvqcWYyKisqvj1BKKVWAclo6oy3wMrZ0Rjh22cxPwEOeA1+oC+VlqElJSSxdutS1tHTlypWu/SDNmjVjw4YNrnP37NnjyiSnlFKhIj4exo6F3bshMhImTIBhw/J2Lz8vQ10L/FtEPvZx7FbgURFpaYwZ4Tgv243hxpj9wHcicpdX+9vAUBGplsW1pYB12FnNe7DLUDsC8cA3IjLKxzX5tmcxIiKCSZMmMSyv//GUUkoVqNwuQ0VEVgG9HQNMZeBYfi1RUXkjIqSmplKsmP1P+M9//pNXXnE/SC5evDjdu3d3zR560kBRKRVq4uNh5Ehwxhy7dtn3kPeA0Y8aAYcyOXYQaOj4fjuQ04wulYGjPtqPAJWyulBEzjnKYn0FbPA49H/Y8lj5xhkQemdD1UBRKaVCQ66KE4nIORH50xkoGmNKGmMeKJiuKW8HDx7k008/ZcSIEdStW5cPP/zQdax37940a9aMMWPG8MMPP3DkyBEWLFjAk08+SYcOulJYKRW6Xn89faDodOaMnWkMATuBOzI5NtJxHGxW0sOZnOeLr6m+bGdLHQ9+PweqA7cAPYBHgeuBt7K4LsMrJyU0hg0bxs6dO0lLS2Pnzp0aKCqlVJCIi4vz+bfdU06yoVYFDnuuPzHGlAZGAY8A1UUkPP+773/BuAx14cKF/Pjjj8yZM4c1a9akOzZixAgmT54M2JlGzViqlApV587BmjWwYgVs2ADvvAPOP2lt2thjvhgDHhUYcszPy1BvBKZiZ/G+Av7GBmrXAi2Am0TkM8cS0poick0O7nkA+DaPy1DvBf4LNBSR7R7tdwKTgNYistbrmqAbH5VSShWMbJehGmNKAi9hs52WBo4bY8aKyDvGmJux+xdrACuAW/3T7cJPRFi/fj3NmjVzLS99/vnnmTdvHgClSpWiW7du9OvXj759+9KyZUvXtRooKqVCyYEDMH06rFxpA8T16yElxX38scfAWUnhkUfggQfgsI85t8hI//T3QojIp8aYQ9hENk9iS1YkAyuBfiKS4Dj1ISA1h7fdADT30d4MyC6bakvgqGeg6LDc8bUpNqmdUkqpIi6zPYtPA6OxBX5XYdN7v26MaQbcC2wBRorI937pZSH2119/MXfuXObMmUNCQgIHDhzgl19+ITY2FoDhw4fTtm1b+vXrR9euXSlVqlSAe6yUUjmXlgZbttigsFIlcFbk2bHDvecQICwMmjeHDh2gfXsoX959zLlq0XspakSETXITCkRkLjDXGBOGXW56SETSvM45l4tbTgf+bYypLyJ/ABhjorFlMZ7I5tr9QCVjTEPPbKpAJ8fXfbnoh1JKqULM5zJUY8w2YJaI3OfRdht28/tc4CoRSfJbL/3EX8tszpw5w1NPPcWcOXP47bff0h2rXbs2b731FldffXWB90MppfLb3r2QmGhnC1esgF9/hROOAg39+sHs2fb7s2fh9tttYNihg11qWrZs1vcO1WyoBcEYUwY7+3cWGIfdv/gcUA64REROOc6LwibOeVZEnnW0RWOzoe7HlurYDbTHlsraAnT0DmR1GapSShUdnmNkZsHieeByEZnn0VYRm2XtMhGZ7ae++pUxxvXLGD9+fI427jvFx8f7zPaWlpbGmjVrWLt2LSNGjADsctPatWuzf/9+IiIi6NGjB/369aNfv340bdpUl5QqpULC33/bgDA2FipXtm233gofexWIuOgiGxBeeimMHu3/fjrFxcXxzDPPuN77O1g0xrQCGgMZloiIyJQ83C8SeBXoi01sMw8YIyI7Pc6JBnYAz4hInEd7MyAOiMXOdO7BzlZOEJEMWVY1WFRKqaIjJ8FiGhAjIss92sKxeyzaO0ppFDr5WUeqRIkStG3blm3btnHo0CHCwsI4dOgQlSrZjOZffvkl1apVIzY2lpIlS+bbz6CUUgXh+HH3/kLna88ee+ybb8C5GOLDD+Hzz90zhh06QK1agep15vyc4KYi8AMQ42xyfHUNOMGeKE6DRaWUKjpyWmfxImNMfY/34R7txzxPdO6XKKrGjh2bLlAESEpKIjExEYDIyEj69u3L6dOnXcHi0KFD/d5PpZTKiTNn7FLPJk3s+9OnoUoVSPVKvVK2LLRrB57Pu/7xD/tS6fwLqAJ0B34CBgPHgduwM3s3BK5rOedc9ZLblTdKKaWCn/fqG6esZhYzq9+UoT3Yn4jmVF6fnIaFhZHZdZs3b+biiy/WpaVKqaCUnGwzkXrOGG7YANWqwZ9/ustXtGsHxYunnzFs3BjCQ/Svv59nFrdjM6HGY1fodBCRXx3H3gHKiEhQZxbXmUWllCo6cjKzOMKP/Ql5kZGR7Nq1K0N7VFQUjRo1CkCPlFIqo7Q0OH8eSpe276dOhTvusG2ewsOhenU4edKdlXTlSnfgqHKtFvCHiKQaY85hk9A4fQ18FphuKaWUUlnzGSyKyEf+7kgomzBhQoY9ixEREUwIlZzuSqlCRwR27bJB3vLl7sykjz4KTz1lz6lb1waKF1/sni10ZiaNiEh/Pw0UL8h+oKLj+13YpacLHe8bBqA/SimlVI5ktWexQBlj6pI+i1sCNovb7hxc+y9smu92QGVghIh8mMm5F2HTiV8OVAL+BD4TkX/mw48BwDBH7nZf2VCVUsrf7rrLJp05eDDjse0eZdhjY+HoUahY0W9dK6p+xgaIM4CPgfGOLKUpwHBsFlKllFIq6Pjcs1jgH2pMBLY+1Hnc9aGeByKw9aFOZ3P9SWAN8AdwK5kEi47BeAk2bfgbwAEgGmgoIk/5OF/3ZCilgt7x43aW0HOf4cqVdp8hwA032IykVaqknzHs0AFq1gxs34OFn/csNgBqi8hPxpjiwAvA9dgxbxYwWkQO+6MveaXjo1JKFR3Zls7wQwceAF4BGovINkdbPWAr8JiIvJLN9WEikmaMaei4JrNgcRZ25rGLiCTnoF86GCqlgtKePfDkkzYw3Lw54/GZM+Gyy+z3W7bYZDTR0bp8NDP+DBYLAx0flVKq6AiGYHEeUEpEuni1LwIQkR45vE+mwaLjSe424FYR+djH5b7up4OhUipgUlJg40b3HsPKlWHiRHvsyBE7UwhQogS0auWeLezYMbQzkwZCIIJFx/aLukAp72MiMt+ffcktY4xrcNTSGUopVfh4l84IdLC4H/hORO7yan8bGCoi1XJ4n6yCxVuBj4ChwF3Y+lZngO+BB30t+dFgUSnlbz/9BF9/bYPDVavg7Fn3sago2LnT/X7KFGjWDFq2TF/bUOWen5eh1seWzejobHJ8Fcf3EuwlqHR8VEqp4BUfD2PH2hrJkZEwYQJcSOqUnJTOKGiVgaM+2o9gk9Dkh9qOr5OxCQUmYrPOTQSaGWM6ikhaPn2WUkoBmf/B/vNP94zhkCE24yjA4sXw2mvu6+vXd88Wduhgs5o6l5LeGtSV+FQW/g+IBMYAvwNJAe2NUkqpQiM+HkaOBGdRhl277Hu4sIDRKWDZULFPVL3l51PeMMfXhSJyr+P7+caY49iaVv2BHzN0wMcGH11yo5TKCV9/sIcPh9GjbdZRp/Ll3cHi5Zfb+ocdO9qC986lpip/eC+rCZAOwD9E5KtAd0QppVRoE7F5DH7/HSpVsg+oPar3Afb92LGhHSwexc4uequE7xnHvHAuM53r1T7H8bUNPoJFXWajlMqN06dh9WqbVObZZzP+wU5NtYFihQo2GOzQAXp47Mpu08YdOKr8FxcX5/Nhn68HgwVoLzqbqJRSKg8SEmDZMhscbtpkv5521I0YNsyuZPIls/bcClSwuAFo7qO9GbAxHz8DfM9gAugSVKVUriQnw2+/2aWkziWlv/1mZwazc+QIhIVlf54qlP4FPG6MmZ9daSillFJFy6lT7kDQ+Zo82c4aArz+OsyYkf6aatWgaVNo0cJuedm1K+N9IyPzp3+BChanA/82xtQXkT/AVROxC/BEPn1GIrAfGAD816N9gOPrinz6HKVUIZSWBlu32u8bN7ZfZ82CgQPTnxce7s5M+uOPsG9fxntFRWmgWJSJyMfGmCbATmNMIhlX0IiIDA9A15RSSvmBCJw/D6UcubA3b4b777eB4Z49Gc9/9FHo3Nl+f8010KiRDQ6bNLFfPbes1K2bfgsMQESEzZmQHwKVDbUMsBY4C4zDzv49B5QDLhGRU47zooDtwLMi8qzH9T2AakBN4E3gLWAhgIhM8zhvOPAh8C7wNTbBzQRgDXCpd2o3zfamVNEkYoM8zyL3K1bA8eN2icfUqfa8Awega9f0CWjatLF/lCHjnkWwxyZNyp99Ayr/+Dkb6j+wydZSgb/JuCRVRKS+P/qSVzo+KqVU9tLS7Cyf5yyh8zVgAHzyiT1vzx73zF+JEjYYdAaCTZtC375QtWrOP7cgs6EGJFh0dCISeBXoi01sMw8YIyI7Pc6JBnYAz4hInEf7QsBnLUbvwd8YcwvwOHAxNtvqNOCfzoDU61wdDJUqAo4ehbJlbeF6sH9QnX/APdWubZ/ovflmzu+d33+wVcHwc7C4C1gJ3C4ix/zxmflN6ywqpZTb+fN29dGmTdC/v01cBzB0KEyb5vuaLl3g55/t9yJ2aWmTJlCvHhQLZMpRh6CqsxisNFhUqvA5c8YmoHHOFi5fDtu22T/YXbrYc8aPhzfesAlonDOGHTrARRcFtu+q4Pg5WDwFDBKRef74vIKg46NSqqg6fhy++Sb9LOEff7jzFfz0k111BPDPf8JHH7lnCD1fNWu6S2EFu6CYWQxGOhgqFdo8axIeO2azjm7YYDOSeipVym4ev/FG+/7cOVvkPlT+iKsL5+dgcRYwQ0T+m+3JQUrHR6VUYSUCf/3lzjS6aZMN7MaNs8f//DPjw+OwMFsXuWlTe17HjrY9La1w5CjQYDETOhgqFTpE7AyhZ2bS1FRITHQfr1HDZiFt3ty9z7BjR/veuQRVFU1+DhYbA18ALwGz8FEiSkSCOkO3jo9KqVDnfHAcHm6/vvWWzUmwaZOdPfTUsiWsW2e/F4F//AMaNHDPEjZs6E5WUxh5jpFBsEJWKaVybs4c+Pe/YeXK9IXuwQ4AZ87YpDLGwMKFEB3tTkCjVIBscnydkslxQcdjpZTKF+fO2Wyj3glmtmyx/4Zw1jr+6y/3A+ZKldIvGW3Rwn0/Y+zS0qJKByelVNA5ftwGg84ZwyFD4Kab7LGTJ2HuXPt9zZrpZwzbt08fGDZr5v++K+XDs2Re81cppVQeHD1ql42ePQuXXmrbDh60q4oyWwixc6c7WBw+HPr0scFh9eq6FSUzugzVgy6zUSpwJk+GBQtscLh5c/pjI0bY4wCHDsHixTY4vOgi/eOu8safy1ALAx0flVKBtG4dLFrkniX8/XfYv98ea94cfvvNfu/cglK5snuW0FmSokkTKFcucD9DKNFlqFkwjn95ampwpfJfaqr9A798uZ05fOUVm1gGbOmKeY5ckSVKQOvW7hlDZ2FasHWHrrnG711XhYB3WvCCZIzJVd1EEfmjoPqSX3R8VEpdqMzKS6Wk2AyjnstGR4+2K4YAvvoKnn02/b0iImwA2KqVu80Yu7zUuS9R5VxmY6TOLHrQJ6dK5a8TJ2D2bHcSml9/hVMeFU6XL7fLSMEOBH//bYPDli1twKhUQSnomUVjTBq5WHoqIrn+p40xpi7p6xUnYOsV787mujhgfCaHz4tIhrQNOj4qpS5UfDzceaddNuoUHg61atnxPykp/fn//S/ce6/9fv58+PRTu73EOWNYt27hyDwajDQbaiZ0MFQq7w4dskGhCFx+uW3buhUaNUp/XlSUe5/hjTdCnTr+76tSfggWh+fmfBHJVfoEY0wEsBY4D4zDBqbPAxHAJSJyOotr6wDe/88rg83U+o2IXOfjGh0flVI5dvRoxgQzs2dnLGXlKTLSvWS0aVPo1SvjvyGUf+gyVKXUBTl9GlatSl+24g/HIrp27dzBYsOGdsloixbuYvfVqweu30r5S26Dvzy4E6gPNBaRbQDGmHXAVuAu4JUs+rYX2OvZZoy5BftvgiKc808plRsisG+fDQQbNbIPgwFeegkefzx39zp5EsqWzf8+qgunwaJSKkvJybawfZ06dr8gwFNPwauvpj8vIgLatoUuXdxtxtjlpUqpfDcQSHQGigAissMYswQYRBbBYiaGAweA2fnXRaVUYSEC06ennyn8/Xcb5AG88YbdYwjuklWes4RNm9rjf/6Z8d5RURooBjMNFpUqonxtMr/pJjtDuHy5e8Zw1Sq7v+D99+G22+y1sbE2c6lztrBDB5uNrJj+RVHKX5oD3/lo3wAMzc2NHMtSewGviUhKPvRNKRWCzp5NX5/w6FF48017zBgYOdLuLfRUpYoNBCtXdrddc40teeW9n/DsWXuPM2fcbRER9t8fKnjpP+2UKoLi49P/wd61y246f+ABOHw44/kNGqSvWTR0qH0ppQKmMnDUR/sRoFIu73ULEIYuQVWqSEhLcwdyCQl2pdCmTbYGoedYHxYG//63O2v58OF2tZHnbKFzxZGnzB4cDxtmv/rKhqqClwaLShURp07ZbKTLl0NcXPone2Cf+KWl2T2FzhnDTp1s2uoqVQLSZaVU1nxlnMlL0p5bgdUisi6rk4yPoqZaRkOp4CRil3x6J5nZtAmeeALGjLHnHT8OM2fa74sVs7kGmjRxZx31DB5feunC+zVsmAaHwSQnJaU0G6oHzfamCqOff4Z77oGNG20wmJ20NC10rwq/gs6GWtCMMQeAb0XkLq/2t4GhIlIth/fpCCzDltx4PYvzdHxUKgilpMCOHXZWsG9fd3uTJnZJqS/33ANvv22/P3AAliyxgWGDBlq2SlmaDVWpQkQEtm1z7zNcvhx69IAXXrDHK1WC336zTwzbtLEzhl9+6Xu5aVSUBopKhYgN2H2L3poBG3Nxn+FACvBJfnRKKVVw9u+HhQvTzxJu2WLrE4aF2UzlpRxVUmvXhoMH09cl9KxP6FSjht1jqFRmNFhUKkRNmgTTptkkNMeOpT/mGfA1aQK//GIDRecg0rWrbjJXKsRNB/5tjKkvIn8AGGOigS7AEzm5gTGmBHADMFNEDhZUR5VSOXf8ePpgsHNnuPpqe2zpUluf2FudOjYIPHrUFrgH+OEHKF3ab91WhZgGi0oFsZMn3fsMly+HF1+0y0QA1q6FuXPt9zVr2n2Gzlf79u57hIfb7KWedJO5UiHvPeA+4DtjzDjs/sXngD3Au86TjDFRwHbgWRF51useV2IT5WhiG6X8SCT9Q93x4+2WkU2b4K+/0p97xx3uYLFVKxg0KP0sYZMmUK5cxs/QQFHlF92z6MEY4/pl6KZ9FQhnzsCUKe7gcOPG9JvLp0yBW26x3//6q81i2rEjXHSRLh9VKjveG/lDec8igDEmEngV6ItNbDMPu/dwp8c50cAO4BkRifO6/jugK1BLRJKy+Szds6hULqWm2r2E3glmNm+GPXugTBl7Xp8+MG+e/b5UKWjc2B0MdusGvXoF7EdQRZTnnkUNFj3oYKj8xXOf4ZEj7kK2SUn2CWGS459txYvbJ4nO7KR9+tjlJkqpCxPqCW78TcdHpTKXlARbt9oxu1Ej27ZgAVx+OZw75/uaVavs9hCwgeK5czY4jIqyK4KUCiQNFjOhg6EqKIcP232DnsXujzoqpJUrZ/ccOmsejR9v6xZ17GgDRec+Q6VU/tFgMXd05Y0qSuLjM9+msW4drFmTfqZw+3Y7izhiBEyebM/butUGjrVq+U4yU6OGrghSwSWz1TcaLHrQYFHlB2c9w5o17VISgHffhbvvTn9ezZq2jmGHDvDQQ7q/QCl/0mAxd3R8VEVFfDzceaetPexUujS8954NGAcMgNmz018TFgb169usoi++aNvS0mzegQoV/Nd3pfKLzixmQgdDlVvJybYshWfZCmc9w0cfdRewXbcOHnggfRKaOnX0qaJSgaLBYu7o+KgKs507YeJEO37/8ovvmsRRUfa8f//brg7ynCVs1EhXAanCRYPFTOhgqLIiYgvf1qvnDvI6dbIBoqdixezy0ZtvhjFj/N5NpVQOaLCYOzo+qlCVkmKXiTqXjG7caL927OguTP/HH+5M45kxxncQqVRh5DlGaukMpTJx8KB9eug5a3j4sA0Yo6PtOa1a2QQ1nTq5k9B41jNUSimlVME7c8ZmGW3a1D0G33233UOYnJzxfGeeALCzhm+8YctQjBgB+/ZlPD8ysmD6rVSw02BRKdLXPNq6Ffr3t0Ght+rV7YZ3Z7D4zjuatUwppZTyl/PnbSZR75nCnTvtWL5smX14C1C2rA0Uo6IyJphp2tR9z/Bwd1byF1+EkSNt8OkUEWGT3ChVFOkyVA+6zKZoSE21g4vnjGGdOvD99/b42bNQvjyUKGGL23fo4J45jIzUfYZKFQa6DDV3dHxU/iQC+/e7A8KyZWH4cHts5067HcRbeDhcfDG89RZceqltO3IESpZ01zPMqayyoSpVFOiexUzoYFi4ffaZnQn89Vc4fTr9serV7cDkDAS3bLGZzYrp3LtShZIGi7mjpTNUQfvmG/vQ1hkgHj/uPtauHaxcab9PS4MuXewY7TlL2LChfcirlMobLZ2RAxoshr6jR+2A4pwxHD3aFrIHePNNuP9++310dPoZw7Ztc//kUSkVujRYzB0dH9WFSEqCbdvSLxvdtAkmTbJjMcBjj8HLL7uvqVjRXZ+wTRu4996AdF2pIkkT3KiQkd1SEBE7W7h0qQ0Ot2xJf/0ll7iDxUGD7JPIDh3sTKJSSiml8s/p0zY5nHNf/5Ej0LmzDRRTUzOev369O1i85hp7nRatVyq46MyiB11mE1zi4zNuMi9RwiafmT7d3da0Kfz+u/2+ZEn7BNI5Y9i1q2YwU0pZmS2xUdnTmUXl6dgx2LAh40zhrl3QujWsXm3PE7E5AE6ftvsMvRPMtGgB5coF8idRSvmiexYzoYNh8Dh+3G5UP3jQ9/G9e+Gii+z3//d/NttZx47QsqXuWVBKZU+XoeaOjo9Fjwj8+ac7EBwwwI7LAE88YbOGeite3JaUWr48fQ6AunWhdGn/9V0pdWF0GaoKKqdP26QzJUpATIxtW70680AR7IDkdMcdBds/pZRSqrBLToZXX3UHh5s2wYkT7uOTJrmDxTZtbNIZ555C56t+/fTjM0CjRv77GZRS+U9nFj3ok9OCl5LiLluxbJn9+ttvNrvZwIHw3Xf2vJMnoVo1W0/JW1SUTZ2tlFJ5pTOLuaPjY+g7f97WEfYMBlNT4Ysv7HERqFDBjr9OlSu7A8Gbb4YePQLTd6WUf+nMovILEdizB6pWtQVtwdZJ+uST9OeFh9unlM2bu9vKlYP339fCuEopFSyMY12h7ukPHr6SwF19tR1/y5a150ydCs89B9u3Z0wyU7KkbQsPt8tGn37aXucMEKtV0yQzShUV3vv6nXRm0YM+Ob0wx47BihXpZw0PHIAff7R7HQD+8x9bMLdjR5uEpkMHW7bCGUx608K4SqmCoDOLuaPjY/B591144IH0K3CMsYHi//4Hd91l26ZOhVtuscfq1Uu/dLRZM2jf3gaLSinlFBQJbowxdYFXgb6AARKAMSKyOwfX/gtoD7QDKgMjROTDbK65EfgE2CcidTI5RwfDHEpLg7Aw+/3Zszbgc2Yk9VS5Mrz+ul2+4n2dUkoFigaLuaPjY2CIwF9/2SWjf/3lHktFoFgxO6b6MmECPPmk/f7wYZsUrlEjTTKjlMqZgAeLxpgIYC1wHhgHCPA8EAFcIiKns7n+JLAG+AO4lWyCRWNMReB3x+ekarCYOyJ2+YpztnD5cjuLuGmT+5yGDe1g1KaNu9h9p07QoIEuYVFKBR8NFnNHx0f/2LzZloby3Fd4/Lg9Vry43ZZRzLGBKKuxVf9TKaUuRDDsWbwTqA80FpFtjk6tA7YCdwGvZHN9BRFJM8Y0xAaL2XkJG5z+BfTJc6+LmMWLYeJEGxweOZLx+OHDUKWK/X7uXFvKQstWKKWUUr4lJ6dPMrNxoy1GP2SIPb5qFTz2WPprPJPMnD5tk9CATfa2a1fGz4iKKtifQSlVtAQqWBwIJDoDRQAR2WGMWQIMIptgUUQyWXiRkTGmC3AzcAl2FlN5OHfOlqlYtsy++vaF225zH5s1y35fvbp7trBjRzt7WLGi+z716vm960oppVRQOncOSpVyv7/9dvjlF9i2zWYF91SlijtYbN8e7rvPva+wWbPMk8xMmKBJ4JRSBS9QwWJz4Dsf7RuAofn1IcaY4sAk4GUR2WZ0PSQAX38N8+bZ4HDt2vQDV3KyO1iMibEptTt2tMll9NenlFJKuR09mn7J6MaN9uuff8KpU+6ag1u22H39nklmnAFhp07u+118Mbz5Zs4+25nsTZPAKaUKUqCCxcrAUR/tR4BK+fg5jwMlgYn5eM+QsX+/e5/h449D+fK2/eOP4dtv7ffGQIsW7hnDrl3d15cvD0PzLXRXSimlQo+Izey9aZMtBdWypW3/5hu7hNSXYsVsANeggX3/n//YbRqNG+dvkplhwzQ4VEoVrEDWWfS1/Trf5q4c+xnHAoNF5FwursvQFgo1pZKS3EtJnQHibo+8spdeCr172+9vvRViY21w2K6drWmolFKFUWZ1o1TuFZU6iwsW2O0ZnjOFRx2Pt0eNsuWfwCZ2K10amjRxLxl1fm3QwD2rCHa8VUqpYBZUdRaNMQeAb0XkLq/2t4GhIlIth/dpiE2KkyEbqjFmJjYg9Xzm9jbQA7sM9ryInPW6JiSyvaWm2sHr8GHo0cO2/fUX1K6d/ryyZd2ZSYcPtwOaUkqpwpEN9UJKUDmubwo8C/QCygC7gbdF5HUf54bE+JgTKSk2w7czGPz9d3jvPVugHuy4unhx+msqVLBB4DXXwCOP2DZn2QotB6WUKmyCIRvqBmzA5q0ZsDGfPqMZEIXv5a5HgdeBMfn0WQVq3z73bOGyZbBypd0L0aiRTbMNUKuWLXwfFeUueN+kiRbaVUqpwshRgmo+tgTVcNwlqBYYY3JSgqq94/qFwB3AceBioGwBdtuvRNx77TduhLg4+3XLFrs/39Njj9ktGQCDB9vvPQvX16yZcd++BolKqaIgUMHidODfxpj6IvIHgDEmGugCPJFPn3EDUMqr7QmgHTaJzt58+px8dfKkHeCc+wtfeAH++c+M50VFQevW9gmps+bSjz/6rZtKKaUCK88lqIwxYcBHwDwRGexxaEHBdbfgnDxpZwc3bnQvG920Cfr1cy8ZFYEvv3RfExnpXjbatCnUqOE+NmaMX7uvlFJBLVDB4nvAfcB3xphx2CeizwF7gHedJxljooDtwLMi8qxHew+gGlDT0dTeGHMKQESmOb4men+oMeYf2OWnC/P/R8q9/2/vzsPsqMo8jn9/JgRIZJegIJhEIzMGdyBBISwyQx5xQEVEBUZUEBQddUQWZZgMEqMy5MGRURYXwIRFZDEoyiYBHElUUJCgKEggQEIwhFESsg3v/HHOTVeq7+3bW/Xt2/37PM99qm/VqVN1377pN1V1lvXrU2Ir9jV84AGYNQs+9alUZrfd0oVj7Wnhnnum10tf2nXdZmY2pPVlCqr9SK1vTqj0DPvZ8uUpR06e3DGn7xFHpFG76yl2zZg4ES69NF0g7rpr6qZhZmbNteRiMSJWSjqA1Nfie6S+FreS+lo8VygqYARQbuzxH6S+hzUn5ldtn0HvsMPgxhvTBLtFI0emUddqpk1LHevd3MXMzAr6MgVVbdzrzSTNJ7W4WQFcAZxS7s8/0FauhPnzO54S1pbLlqXt994Lr3td+nn77TtGGa01Ga09MZw4saPOUaPg6KMH/rOYmbW7lo2GmjvgH9akzCLqXPxFxH69POYxvdmvO+bM2Xiuo9NPhwkTOvoZ3n13SnZjxqTyq1enhDh+fMdk95Mnp6alxWG1R7ZyvFozMxus+jIFVe2Z25XAeaQuGruTBrvZGXhXg/16pZwfZ8yA978fHn2040Jw7Ng0UjfA4sVw4IGd6xkzJl0EPl+4lJ05E84917nSzKwqLRkNdbDq7Whvc+bARz8Kq1Z1Xe6OO2CffdLPDz2UmpeOHduLEzUzsz5p99FQJa0FzomI00rrZ5CeDja8fJJ0IanP49cj4l8K608BvgxMiogHSvvUTY7NptGolx+lNK3E2rUd6/beG+68M/28bl26WKw9Law9Mdx5586DzJiZWe91Nb1ULUf6YrGgtxeL48alO6Rlo0bBccd19DWcONHNSc3MBoMhcLHY6ymoJM0kPU08JCKuL6x/I3APcGREXFbap1/zI6S+97Vmo7vvnqZ4MjOz1hsMU2cMKY81mNFq3To477yBPRczMxsW+jIF1cK8LF/91S6eX+jDeW2kUX6END+wmZkNbn7O1Q922aVn683MzPpoLjBF0oTaisIUVHOb7PsT0vyM00rrD8rLX/fTOTbMg694RX8dwczMquSLxX4wYwaMHr3xutGj03ozM7MKXAQsIk1BdaikQ0ijo3aagkrSekln1NZFxHJgJnCCpC9JOlDSqcAZwCXF6Tj6yvnRzKy9+WKxRBKSuuywX3bkkXDhhelOqZSWF16Y1puZ2eAwffr0DX/j211ErAQOAP5ImoJqDvAIcEA3p6A6EzgZeC9wA/Ax4GzSwDf9xvnRzKy9eYCbgt524Dczs/bS7gPcDDTnRzOz4aOYI/1k0czMzJrqTcsbMzNrD41a3/hisZ85iVbDca2OY1sNx7U6jm1rRAQR0ev4+/dWHce2Go5rdRzbavQlrtOnT9/wd77IzVAL+qOZTX5s209nZDWOa3Uc22o4rtXpj9i6GWrPOD8Obo5tNRzX6ji21eivuLoZqpmZmZmZmXXJF4ttoorH9VU1AWinpgXtFAPHtf3qrUI7xaCd4mrty/8mqtNOMWin2LZTDBzX9qu3v7kZasFgbmZTRb0+1/aq1+faXvW207lWVe9gPlc3Q+2Z4ZYfq6q3nc61qnp9ru1Vr8+1vep1M1QzMzMzMzMbEH6yWCDJwTAzGyb8ZLH7nB/NzIaXWo70xaKZmZmZmZl14maoZmZmZmZm1okvFs3MzMzMzKwTXyw2IOk9kq6W9Kik5yU9KGmmpC1K5SZJukbSk5JWSloo6bOSRpbKbSbpbElLcn13SZo6sJ+q9SQdJOlnkpZKWiPpcUnfl/SaUrltJH1L0l9yXG+R9No69TmuWXdiK+ltkmZLejjH62FJ35Q0tk59ji3d/86W9rlAUkiaXWeb45r1JLaSpkj6qaRn89+E30l6X6mMYzsAnB+r4xxZDefH6jhHVmMw5UdfLDZ2EvB/wOeBacA3gY8BN0t6EYCkHYF5wATg08A/AdcBZwMzSvV9GzgOOAN4B7AEuFHSGyr9FIPPtsDdwCeAfwROAyYB8yW9AkCSgLmkuH8SOAzYBLhN0stL9TmuHZrGFjgB2A44ixTfmcAhucyLS/U5tkl34rqBpLcARwJ/bVCf49qhW7GVdDBwB7AU+ABwKHARsFmpPsd2YDg/Vsc5shrOj9VxjqzG4MmPEeFXnRewfZ11/wwEcEB+/9H8/tWlclcASwrvX5/LfaiwbiTwIDC31Z+11S9g1xyfz+b3h+b3+xfKbAU8A/yX49qn2Nb7Xk/NZT7s2PYuroX1mwD3k/6oLwJml7Y7rj2MLbAFsAw4t8l+ju3A/Y6cHwc23s6RAxNX58eKYltY7xzZj3EdqPzoJ4sNRMTTdVb/Ki93ystReVm+O/IsGz+1PQRYB1xZqH89KWkeJGnTvp5vm1uel+vy8hDgyYi4rVYgIv4XuJ6UJCmUc1y7tlFsu/m9Bse2mfJ3tuZzwAjgnAb7Oa7NlWN7OLA9jWNa49gOEOfHAeccWQ3nx+o4R1ajJfnRF4s9s29e/j4vrwL+ApwnabykLSW9CziajX9xk4BHImJVqb6FpIT6qgrPeVCSNELSKEkTgQtIj8+vyJsnke48lS0Edik0B3Fc62gS23rK32twbDtpFldJrwROBz4eEWsbVOO41tEktnuTnpi8NvfDWC9psaR/lzSiUI1j21rOj/3IObIazo/VcY6sxmDIjyO72mgdJO0EnAncEhG/BoiIpyTtBfwQ+HMuGsD0iPhqYfdtgRV1qn2msH24WQC8Of/8EKnp0rL8fltS84SyWry2AZ7DcW2kq9huRGlAinNJifC6wibHtrNmcT0fuKZ4t78Ox7W+rmK7IzAauAz4IqkPx4HAvwFbA5/J5RzbFnF+rIRzZDWcH6vjHFmNludHXyx2Q75L90NgPfChwvrtgWuAlcB7SI+HDwBOl7QmIr5SK0pKkp2qrvK8B7mjgS1Jgx+cRBoYYe+IWET34+W41tdVbDdQGpHwclLzmrfmJgkbNuPYljWMq6SjgD2Av2tSh+NaX1ff2ReROup/ISJm5fLzJG0HnChpem6C59i2gPNjZZwjq+H8WB3nyGq0PD+6GWoTkjYjjTo2ATgoIh4vbD4ZGJfXXx0R8yLiDNJob1+U9JJc7hnqX7VvU9g+rETE7yNiQURcDrwNeDFwat7cLF4rullu2MUVmsYWgDxi4SWkO1DvjIj7StU4tiWN4pr/szwL+AqwWtLWkrYm/X3dJL/fJFfjuNbR5Dtb66Nxc2m3m0iDJUzK7x3bAeb8WB3nyGo4P1bHObIagyE/+mKxC/nLezWwJ/D2iPhdqchrgYciovxo95ekX1KtDfBCYLyk0aVyrwHWkh4rD1sR8SwpBsV4TapT9DXAYxHxXKGc49qFOrGtOR84AnhfRNxaZ1fHtguluL6E1MH8S6T/pNVeOwPvzT8fnHd1XJto8PcAOt8Vrd0RfaFQzrEdIM6PA8c5shrOj9VxjqxGq/KjLxYbyHeW5pCu4g+NiPl1ii0FXiVpm9L6yXn5RF7OJSXHwwv1jyT9MbopItb057m3G0k7kJomPJxXzQV2krRvocyWpHm65hZ2dVybqBNbJJ0DHEsaQvm6Brs6tl0oxXUpsH+d11PALfnnn+ddHdcm6nxnr8vLaaWiBwGr6Rjow7EdIM6PA8s5shrOj9VxjqxGq/Kj+yw29t+koM4AVkqaUtj2eG5ucz5pYtGbJJ1Nehy8H6lN8bURsRggIn4r6Urg3Hw39hHSBMbj8/7DhqRrgXuA+0hDqr+a1AF3PR0j5M0F7gJmS/oc6a7TaaQ7JRsGRnBcN9ad2Eo6BfhX4DvAn0rf66cj4mFwbIuaxTUiVpMmHy/vtxp4KiI2bHNcN9ad72xE3C/pYuDMfJFyD6l52LHAF2tPURzbAeX8WBHnyGo4P1bHObIagyo/xiCYZHIwvkgjjUWD1/RCuSnADcASUkf+haShgTcv1bc5qc32UtLV/gJgv1Z/zhbE9RTSaE3PAqtIE4JeAIwrlduW9Af7mVzuVuD1depzXHsQW9If7Ebf64sd295/Z+vst4jShMOOa+9iSxra+yxgManJzB+BTzm2Lfu9OT9WF1vnyBbF1fmx2u9snf2cI/shrgORH5UrMDMzMzMzM9vAfRbNzMzMzMysE18smpmZmZmZWSe+WDQzMzMzM7NOfLFoZmZmZmZmnfhi0czMzMzMzDrxxaKZmZmZmZl14otFG7YkHSMpGrwObPX5DRWS3ixplaSdSus3kfQxSXdKWiFpnaQlkn4k6WhJIwtla7+rV9Wpf2TeNr0H57R5PtbhffpwZmZDkPPjwHB+tHYwsnkRsyHvcODx0roHWnEiQ9TZwHci4onaCklbAD8B3gxclMs8C7wcOAT4Lmly2SurOKGIeF7SV4GZkq6LiHVVHMfMrM05P1bL+dEGPV8smsFvI+Kh7hSUtGlErKn6hIYKSW8C9gc+Wdr0dWB3YN+IWFDadpmkNwKbV3x6FwNfBt4FfL/iY5mZtSPnx4o4P1q7cDNUswYKTTumSrpK0rPAgrxtpKTTJP1B0hpJT0o6R9JmpTomSPpxbmbytKSvSTo+1zuuUK5TMxFJ4/L6Y0rr95V0q6S/SVop6UZJu5XKzJP0c0kHSronH/9+Se+s8zlfL+laScslPS/pQUmn5W3nSXpK0ialfV6cjz+zSRiPA+6LiIWFfXcCjgIuqJMIAYiI30TEL5rUXVchbvVe8wrHWAHcCBzbm+OYmQ1Xzo/OjzZ8+GLRDEbk5FZ7jShtnwM8ArwHODWvmw2cDlwGHAzMBD6SywIgaRRwM/BG4ETgGGB83q9XJB0M3Ao8R0ooHwC2AO6UtHOp+CuBrwGzgHcDS4AfqNCvQdKewF257GfyZ5lFau4C8A1gLOnuYtGRwBhSE5muTAPuLK3bDxgB/KjJvvWUf1cjc11FS4C9Sq9jgReA35fK3gHsW/5PjJmZAc6Pzo/Oj8Oem6GawR9K7/8H2Lvw/gcRcXLtjaR9gCOAD0bEpXn1LZKeAWZLekNE/Bb4IDAB2Csi5ud9fwL8rg/n+jXg9og4tHA+twF/Bj4LfLpQ9iXA1Ij4Uy53DylRvBf4Ui7zn8ByYEpErMrrflarICIekHQ7cDwbN0U5HrgpIv7c6EQl7QCMA+4tbaol2sdK5cXGie2FiHihtG/5d9VJbgY1v1Dv9qT/tCwgJfyi3wCjgDcBvbpTa2Y2hDk/Oj86Pw5zfrJolu4K7lF4faS0/drS+2mkzuVXl+7g3ZS3T83LvYDFtUQIkP+496r9v6SJpDucc0rHXUW6+zm1tMufaokwH3sZsAzYJdc3GngrMKeQCOv5BrB/Pj6S9iDdDb6gySnvmJdPlz9Kg/KnAOsKr0vrlCn/rvYApjQ6gXz3uvb7OzQiVpeK1M5tR8zMrMz50fnR+XGY85NFM7i/SQf+JaX3Y0l3255rUH67vHwZ8FSd7fXWdcfYvPx2fpU9Vnr/TJ0ya4Bak5JtSDeMyiPdlV0LLCXdLT0JOAF4Eri+yX6145QHPFicl7sADxbWXwzckn+e26DOTr8rFYYQr+MiYDfgLRFRTsoAz+dl1YMFmJm1I+fHrjk/2pDni0Wz5qL0fjmwGtinQfkn83IJMKnO9h3qrFtDSrBF25XeL8/L0+hIGkVrG5xPIytI/RR26qpQRKyT9C3g40rDab8POCci1jepv3a+25TWz8vHfQepz0rtOEtJSRdJPf0snUj6PKnPytsjotFQ79vm5V/6ejwzs2HI+dH50YY4N0M167mfku4KbhURv67zqiXDu4CdJW1oBiLpRaQ+EWWPku7wFR1cev8gsAiY1OC49/XkQ+SmNT8HjpLU7M7hBcBWwFXApjTvuE8+19WkfinF4z5BGujgeEmTe3LO3SXp3cBZwCci4uYuio7Pywe7KGNmZt3j/Oj8aEOMnyya9VBEzJN0OWnktFnAL0l3AscBbwdOiYg/ApeQRoe7Jt/FW0ZqorJlnWqvAE6X9AVS5/N9gPeXjhuSTgR+mPsafJ90x28H4C3AYxExq4cf5yTgduAuSeeQmtxMAN4QERvmfoqIJyRdT+oTcX1ELK5b28bnu1bSAmDPOps/AUwEbpN0EelO8ArSncypwEuBv/XwswBpOHbge6Q+MvcW/zMC/LV0F3Uy8ERXAxGYmVn3OD86P9rQ44tFs945ijSR7oeBL5CaySwizUv0FGxIBv8AnEfqBL+SNOrYj4HzS/XNBLYmJYlTgRuAo8nzVtVExA2SpuZjfovUl2ApKYFe2dMPERG/kvRW4EzSRMCbku7ifrdO8atIybBZx/2iK4GzJY2JiJWF4/5V0r6keaY+QBoZbwwpud9NGkThip5+nmwXYDRwUH4V3U4amrzm4D4cx8zMOnN+7B7nR2sLiig3NzezKilNIvxdYHxELGrt2XSfpDmk0eEm1Bmyu9E+W5Luxn48ImZXeX49lZv4/AL4+3yn28zMWsj5cXBwfrQi91k0sy5JmiLpBNLcWbO6mwgh3SEFvgKcnOeJGkxOBS5xIjQzs95wfrThwM1QzayZu0jDoF9Cai7UU7NIkwm/jI6R8FpK0makCYe7MxCBmZlZPc6PNuS5GaqZmZmZmZl14maoZmZmZmZm1okvFs3MzMzMzKyT/weEvgv4oiQLAwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Plot polyfit\n", "fig, (ax0, ax1) = plt.subplots(1, 2, figsize=(15,5))\n", "\n", "frequency = np.linspace(frequency_gm.min(), frequency_gm.max(), 101)\n", "\n", "# Real component\n", "ax0.plot(frequency_gm/1e9, zs_gm3.real, 'ro', label=r'{:.0f} nm'.format(surface_roughness3/sc.nano))\n", "ax0.plot(frequency_gm/1e9, zs_gm2.real, 'ko', label=r'{:.0f} nm'.format(surface_roughness2/sc.nano))\n", "ax0.plot(frequency_gm/1e9, zs_gm1.real, 'bo', label=r'{:.0f} nm'.format(surface_roughness1/sc.nano))\n", "ax0.plot(frequency/1e9, np.polyval(p_zs_real_gm3, frequency), 'r--')\n", "ax0.plot(frequency/1e9, np.polyval(p_zs_real_gm2, frequency), 'k--')\n", "ax0.plot(frequency/1e9, np.polyval(p_zs_real_gm1, frequency), 'b--')\n", "ax0.set_ylabel(r\"Real $Z_s$ ($\\Omega/sq.$)\")\n", "ax0.set_xlabel(\"Frequency (GHz)\")\n", "ax0.legend()\n", "\n", "# Imaginary component\n", "ax1.plot(frequency_gm/1e9, zs_gm3.imag, 'ro', label=r'{:.0f} nm'.format(surface_roughness3/sc.nano))\n", "ax1.plot(frequency_gm/1e9, zs_gm2.imag, 'ko', label=r'{:.0f} nm'.format(surface_roughness2/sc.nano))\n", "ax1.plot(frequency_gm/1e9, zs_gm1.imag, 'bo', label=r'{:.0f} nm'.format(surface_roughness1/sc.nano))\n", "ax1.plot(frequency/1e9, np.polyval(p_zs_imag_gm3, frequency), 'r--')\n", "ax1.plot(frequency/1e9, np.polyval(p_zs_imag_gm2, frequency), 'k--')\n", "ax1.plot(frequency/1e9, np.polyval(p_zs_imag_gm1, frequency), 'b--')\n", "ax1.set_ylabel(r\"Imaginary $Z_s$ ($\\Omega/sq.$)\")\n", "ax1.set_xlabel(\"Frequency (GHz)\")\n", "ax1.legend()\n", "fig.savefig(\"results/wr3p0-surface-impdance-300k.png\", dpi=400);" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Surface impedance (Z_s):\n", "\n", "50 nm surface roughness:\n", "\tReal:\t\t-9.1880e-26 * Freq^2 + 4.3694e-13 * Freq^1 + 2.1110e-02\n", "\tImaginary:\t-2.2160e-25 * Freq^2 + 2.0745e-12 * Freq^1 + 3.1748e-02\n", "\tur:\t\t-4.2960e-23 * Freq^2 + 8.6202e-11 * Freq^1 + 1.3994e+01\n", "\n", "75 nm surface roughness:\n", "\tReal:\t\t-8.6135e-26 * Freq^2 + 5.3715e-13 * Freq^1 + 1.9743e-02\n", "\tImaginary:\t-2.9325e-25 * Freq^2 + 2.8450e-12 * Freq^1 + 3.8237e-02\n", "\tur:\t\t-8.2364e-23 * Freq^2 + 1.6499e-10 * Freq^1 + 2.4930e+01\n", "\n", "100 nm surface roughness:\n", "\tReal:\t\t-8.3170e-26 * Freq^2 + 6.4194e-13 * Freq^1 + 1.8823e-02\n", "\tImaginary:\t-3.6587e-25 * Freq^2 + 3.5693e-12 * Freq^1 + 4.5215e-02\n", "\tur:\t\t-1.3093e-22 * Freq^2 + 2.6138e-10 * Freq^1 + 3.8347e+01\n" ] } ], "source": [ "def print_poly(poly):\n", " fpower_max = len(poly) - 1\n", " string = \"\"\n", " for i, p in enumerate(poly):\n", " fpower = fpower_max - i\n", " if fpower != 0:\n", " string += \"{:.4e}\".format(p) + \" * Freq^{:d} + \".format(fpower)\n", " else:\n", " string += \"{:.4e}\".format(p)\n", " print(string)\n", "\n", "print(\"Surface impedance (Z_s):\")\n", "print(\"\\n{:.0f} nm surface roughness:\".format(surface_roughness1/sc.nano))\n", "print(\"\\tReal:\\t\\t\", end=\"\"); print_poly(p_zs_real_gm1)\n", "print(\"\\tImaginary:\\t\", end=\"\"); print_poly(p_zs_imag_gm1)\n", "print(\"\\tur:\\t\\t\", end=\"\"); print_poly(p_ur_gm1)\n", "print(\"\\n{:.0f} nm surface roughness:\".format(surface_roughness2/sc.nano))\n", "print(\"\\tReal:\\t\\t\", end=\"\"); print_poly(p_zs_real_gm2)\n", "print(\"\\tImaginary:\\t\", end=\"\"); print_poly(p_zs_imag_gm2)\n", "print(\"\\tur:\\t\\t\", end=\"\"); print_poly(p_ur_gm2)\n", "print(\"\\n{:.0f} nm surface roughness:\".format(surface_roughness3/sc.nano))\n", "print(\"\\tReal:\\t\\t\", end=\"\"); print_poly(p_zs_real_gm3)\n", "print(\"\\tImaginary:\\t\", end=\"\"); print_poly(p_zs_imag_gm3)\n", "print(\"\\tur:\\t\\t\", end=\"\"); print_poly(p_ur_gm3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Note:** In HFSS, select `Assign boundary > Impedance...` and then copy/paste these values into the dialog box." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" } }, "nbformat": 4, "nbformat_minor": 2 } GradientModel-0.0.2/gradientmodel.py000066400000000000000000000131721413653641000174260ustar00rootroot00000000000000"""Calculate the properties of a rough metal surface using the Gradient Model. References: G. Gold and K. Helmreich, “A Physical Surface Roughness Model and Its Applications,” IEEE Trans. Microw. Theory Tech., vol. 65, no. 10, pp. 3720–3732, Oct. 2017, doi: 10.1109/TMTT.2017.2695192. K. Lomakin, G. Gold, and K. Helmreich, “Analytical Waveguide Model Precisely Predicting Loss and Delay Including Surface Roughness,” IEEE Trans. Microw. Theory Tech., vol. 66, no. 6, pp. 2649–2662, Jun. 2018, doi: 10.1109/TMTT.2018.2827383. This package uses the closed-form solution from: D. N. Grujic, “Closed-Form Solution of Rough Conductor Surface Impedance,” IEEE Trans. Microw. Theory Tech., vol. 66, no. 11, pp. 4677–4683, 2018, doi: 10.1109/TMTT.2018.2864586. """ import numpy as np from mpmath import hyp2f1, hyp3f2 from numpy import ndarray, pi, sqrt, exp from scipy.constants import mu_0, epsilon_0 def mag_field(x, f, rq, sigma0=5.8e7): """Calculate the magnetic field tangential to the metal surface. Args: x: position relative to surface, in units [m] f: frequency, in units [Hz] rq: rms surface roughness, in units [m] sigma0: dc conductivity, optional, default is 5.8e7, in units [S] Returns: magnetic field """ x_is_array = isinstance(x, ndarray) and len(x) > 1 f_is_array = isinstance(f, ndarray) and len(f) > 1 if x_is_array and f_is_array: print("x and f can't both be arrays") raise ValueError # Constants xi = 0.5 chi = sqrt(2) * rq # Angular frequency w = 2 * pi * f # Eqns 15 and 21 from Grujic 2018 alpha = (1 + 1j) / 2 * rq * sqrt(mu_0 * w * sigma0) beta = 0.5 * (sqrt(1 + 4 * alpha ** 2) - 1) # Eqn 32 from Grujic 2018 zeta = 1 / (1 + exp(2 * (x / chi + xi))) # Coefficients a1 = alpha + beta a2 = alpha - beta - 1 b1 = 1 + 2 * alpha # Eqn 31 from Grujic 2018 if isinstance(x, ndarray) and len(x) > 1: mag = np.empty_like(x, dtype=complex) for i, _z in np.ndenumerate(zeta): mag[i] = _z ** alpha mag[i] *= hyp2f1(a1, a2, b1, _z) elif isinstance(f, ndarray) and len(f) > 1: mag = np.empty_like(f, dtype=complex) for i in range(len(f)): mag[i] = zeta ** alpha[i] * hyp2f1(a1[i], a2[i], b1[i], zeta) else: mag = zeta ** alpha * hyp2f1(a1, a2, b1, zeta) return mag def surface_impedance(f, rq, x0=None, sigma0=5.8e7): """Calculate the surface impedance of a rough metal. Args: f: frequency, in units [Hz] rq: rms surface roughness, in units [m] x0: starting point for integral, optional, default is -5*rq, in units [m] sigma0: dc conductivity, optional, default is 5.8e7, in units [S] Returns: surface impedance """ f_is_array = isinstance(f, ndarray) and len(f) > 1 # Constants xi = 0.5 chi = sqrt(2) * rq if x0 is None: x0 = -5 * rq # Angular frequency w = 2 * pi * f # Eqns 15 and 21 alpha = (1 + 1j) / 2 * rq * sqrt(mu_0 * w * sigma0) beta = 0.5 * (sqrt(1 + 4 * alpha ** 2) - 1) # Eqn 32 zeta = 1 / (1 + exp(2 * (x0 / chi + xi))) # Magnetic field, mag mag = mag_field(x0, f, rq, sigma0=sigma0) # Anti-derivative, bb # Eqn 40 and 41 in Grujic 2018 a1 = 1 + alpha - beta a2 = 2 + alpha + beta a3 = alpha b1 = 1 + 2 * alpha b2 = 1 + alpha if f_is_array: f0 = np.empty_like(f, dtype=complex) f1 = np.empty_like(f, dtype=complex) for i in range(len(f)): f1[i] = hyp3f2(a1[i], a2[i], a3[i] + 1, b1[i], b2[i] + 1, zeta) f0[i] = hyp3f2(a1[i], a2[i], a3[i], b1[i], b2[i], zeta) bb = chi / 2 * (zeta ** alpha) * (zeta / (1 + alpha) * f1 - f0 / alpha) else: f1 = hyp3f2(a1, a2, a3 + 1, b1, b2 + 1, zeta) f0 = hyp3f2(a1, a2, a3, b1, b2, zeta) bb = chi / 2 * (zeta ** alpha) * (zeta / (1 + alpha) * f1 - f0 / alpha) return -1j * mu_0 * w * bb / mag def rough_properties(f, rq, x0=None, sigma0=5.8e7): """Calculate the surface properties of a rough metal. Args: f: frequency, in units [Hz] rq: rms surface roughness, in units [m] x0: starting point for integral, optional, default is -5*rq, in units [m] sigma0: dc conductivity, optional, default is 5.8e7, in units [S] Returns: surface impedance, effective conductivity, effective permeability """ # Angular frequency w = 2 * pi * f # Surface roughness zs_rough = surface_impedance(f, rq, x0=x0, sigma0=sigma0) # Effective conductivity cond_eff = mu_0 * w / (2 * zs_rough.real ** 2) # Effective permeability ur_eff = 2 * sigma0 * zs_rough.imag ** 2 / w / mu_0 return zs_rough, cond_eff, ur_eff # Waveguide loss ------------------------------------------------------------- def waveguide_propagation(f, a, b, cond_eff, ur_eff, cond=5.8e7, er=1, ur=1, tand=0): # angular frequency w = 2 * pi * f # skin depths skin_c = 1 / sqrt(pi * mu_0 * ur * cond_eff * f) skin_m = 1 / sqrt(pi * mu_0 * ur_eff * cond * f) # equivalent circuit values r1 = 2 / (cond_eff * skin_c * b) r2 = 2 * a * (a + 2 * b) / (b * pi**2 * cond_eff * skin_c) l1 = 2 / (cond * skin_m * b * a) l2 = 2 * a * (a + 2 * b) / (b * pi**2 * cond * skin_m * a) c1 = er * epsilon_0 g1 = w * c1 * tand # propagation constant t1 = r1 + 1j * w * l1 t2 = 1 / (r2 + 1j * w * l2) + g1 + 1j * w * c1 gamma = sqrt(t1 * t2) # characteristic impedance zte = sqrt(t1 / t2) return gamma, zte GradientModel-0.0.2/setup.py000066400000000000000000000041231413653641000157440ustar00rootroot00000000000000"""Install Gradient Model package.""" import io import sys from os import path from setuptools import setup # from setuptools import find_packages from setuptools.command.test import test as TestCommand root = path.abspath(path.dirname(__file__)) def read(*filenames, **kwargs): encoding = kwargs.get('encoding', 'utf-8') sep = kwargs.get('sep', '\n') buf = [] for filename in filenames: with io.open(path.join(root, filename), encoding=encoding) as f: buf.append(f.read()) return sep.join(buf) class PyTest(TestCommand): def finalize_options(self): TestCommand.finalize_options(self) self.test_args = [] self.test_suite = True def run_tests(self): import pytest errcode = pytest.main(self.test_args) sys.exit(errcode) long_description = read('README.md') setup( name="gradientmodel", version="0.0.2", author="John Garrett", author_email="garrettj403@gmail.com", description="Calculate the surface impedance of a rough metal surface using the Gradient Model (GM)", license="MIT", url="https://github.com/garrettj403/GradientModel/", # keywords=[], # packages=find_packages(), py_modules=['gradientmodel'], install_requires=[ 'numpy', 'scipy', 'mpmath', ], extras_require={ # 'testing': ['pytest'], 'examples': ['matplotlib', ], }, # tests_require=['pytest'], # cmdclass={'test': PyTest}, long_description=long_description, long_description_content_type='text/markdown', platforms='any', classifiers=[ "Intended Audience :: Science/Research", "License :: OSI Approved :: MIT License", "Natural Language :: English", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", ], project_urls={ 'Changelog': 'https://github.com/garrettj403/GradientModel/blob/master/CHANGES.md', 'Issue Tracker': 'https://github.com/garrettj403/GradientModel/issues', }, # scripts=[], )