pax_global_header00006660000000000000000000000064136253505520014520gustar00rootroot0000000000000052 comment=c91133dce1cfbc3757b939e1cc6cdefd5cf78bcb limits-1.5.1/000077500000000000000000000000001362535055200130255ustar00rootroot00000000000000limits-1.5.1/.codeclimate.yml000066400000000000000000000001331362535055200160740ustar00rootroot00000000000000exclude_paths: - limits/backports/* - versioneer.py - limits/_version.py - tests/* limits-1.5.1/.coveragerc000066400000000000000000000003631362535055200151500ustar00rootroot00000000000000[run] include = limits/* omit = /*/limits/_version* /*/limits/backports/* /*/google-cloud-sdk/* /*/tests/* setup.py versioneer.py [report] exclude_lines = pragma: no cover noqa raise NotImplementedError limits-1.5.1/.gitattributes000066400000000000000000000001121362535055200157120ustar00rootroot00000000000000flask_ratelimits/_version.py export-subst limits/_version.py export-subst limits-1.5.1/.gitignore000066400000000000000000000002311362535055200150110ustar00rootroot00000000000000*.pyc *.log cover/* .coverage* .test_env .idea build/ dist/ htmlcov *egg-info* *.rdb redis-git .python-version # gae test files google-cloud-sdk/ google limits-1.5.1/.gitmodules000066400000000000000000000000001362535055200151700ustar00rootroot00000000000000limits-1.5.1/.style.yapf000066400000000000000000000133201362535055200151230ustar00rootroot00000000000000[style] # Align closing bracket with visual indentation. align_closing_bracket_with_visual_indent=True # Allow dictionary keys to exist on multiple lines. For example: # # x = { # ('this is the first element of a tuple', # 'this is the second element of a tuple'): # value, # } allow_multiline_dictionary_keys=True # Allow lambdas to be formatted on more than one line. allow_multiline_lambdas=True # Allow splits before the dictionary value. allow_split_before_dict_value=True # Insert a blank line before a class-level docstring. blank_line_before_class_docstring=False # Insert a blank line before a 'def' or 'class' immediately nested # within another 'def' or 'class'. For example: # # class Foo: # # <------ this blank line # def method(): # ... blank_line_before_nested_class_or_def=False # Do not split consecutive brackets. Only relevant when # dedent_closing_brackets is set. For example: # # call_func_that_takes_a_dict( # { # 'key1': 'value1', # 'key2': 'value2', # } # ) # # would reformat to: # # call_func_that_takes_a_dict({ # 'key1': 'value1', # 'key2': 'value2', # }) coalesce_brackets=True # The column limit. column_limit=79 # Indent width used for line continuations. continuation_indent_width=4 # Put closing brackets on a separate line, dedented, if the bracketed # expression can't fit in a single line. Applies to all kinds of brackets, # including function definitions and calls. For example: # # config = { # 'key1': 'value1', # 'key2': 'value2', # } # <--- this bracket is dedented and on a separate line # # time_series = self.remote_client.query_entity_counters( # entity='dev3246.region1', # key='dns.query_latency_tcp', # transform=Transformation.AVERAGE(window=timedelta(seconds=60)), # start_ts=now()-timedelta(days=3), # end_ts=now(), # ) # <--- this bracket is dedented and on a separate line dedent_closing_brackets=True # Place each dictionary entry onto its own line. each_dict_entry_on_separate_line=True # The regex for an i18n comment. The presence of this comment stops # reformatting of that line, because the comments are required to be # next to the string they translate. i18n_comment= # The i18n function call names. The presence of this function stops # reformattting on that line, because the string it has cannot be moved # away from the i18n comment. i18n_function_call= # Indent the dictionary value if it cannot fit on the same line as the # dictionary key. For example: # # config = { # 'key1': # 'value1', # 'key2': value1 + # value2, # } indent_dictionary_value=False # The number of columns to use for indentation. indent_width=4 # Join short lines into one line. E.g., single line 'if' statements. join_multiple_lines=True # Do not include spaces around selected binary operators. For example: # # 1 + 2 * 3 - 4 / 5 # # will be formatted as follows when configured with a value "*,/": # # 1 + 2*3 - 4/5 # no_spaces_around_selected_binary_operators=set() # Use spaces around default or named assigns. spaces_around_default_or_named_assign=False # Use spaces around the power operator. spaces_around_power_operator=False # The number of spaces required before a trailing comment. spaces_before_comment=2 # Insert a space between the ending comma and closing bracket of a list, # etc. space_between_ending_comma_and_closing_bracket=True # Split before arguments if the argument list is terminated by a # comma. split_arguments_when_comma_terminated=False # Set to True to prefer splitting before '&', '|' or '^' rather than # after. split_before_bitwise_operator=True # Split before a dictionary or set generator (comp_for). For example, note # the split before the 'for': # # foo = { # variable: 'Hello world, have a nice day!' # for variable in bar if variable != 42 # } split_before_dict_set_generator=True # Split after the opening paren which surrounds an expression if it doesn't # fit on a single line. split_before_expression_after_opening_paren=False # If an argument / parameter list is going to be split, then split before # the first argument. split_before_first_argument=False # Set to True to prefer splitting before 'and' or 'or' rather than # after. split_before_logical_operator=True # Split named assignments onto individual lines. split_before_named_assigns=True # The penalty for splitting right after the opening bracket. split_penalty_after_opening_bracket=30 # The penalty for splitting the line after a unary operator. split_penalty_after_unary_operator=10000 # The penalty for splitting right before an if expression. split_penalty_before_if_expr=0 # The penalty of splitting the line around the '&', '|', and '^' # operators. split_penalty_bitwise_operator=300 # The penalty for characters over the column limit. split_penalty_excess_character=4500 # The penalty incurred by adding a line split to the unwrapped line. The # more line splits added the higher the penalty. split_penalty_for_added_line_split=30 # The penalty of splitting a list of "import as" names. For example: # # from a_very_long_or_indented_module_name_yada_yad import (long_argument_1, # long_argument_2, # long_argument_3) # # would reformat to something like: # # from a_very_long_or_indented_module_name_yada_yad import ( # long_argument_1, long_argument_2, long_argument_3) split_penalty_import_names=0 # The penalty of splitting the line around the 'and' and 'or' # operators. split_penalty_logical_operator=300 # Use the Tab character for indentation. use_tabs=False limits-1.5.1/.travis.yml000066400000000000000000000005441362535055200151410ustar00rootroot00000000000000language: python python: - "2.7" - "3.7" - "3.8" - "pypy" - "pypy3" cache: pip: true directories: - google-cloud-sdk - redis-git install: - pip install -U setuptools - pip install -r requirements/ci.txt services: - redis-server - memcached script: make -f Makefile.tests tests after_success: - coveralls limits-1.5.1/CLASSIFIERS000066400000000000000000000006251362535055200145220ustar00rootroot00000000000000Development Status :: 5 - Production/Stable Intended Audience :: Developers License :: OSI Approved :: MIT License Operating System :: MacOS Operating System :: POSIX :: Linux Operating System :: OS Independent Topic :: Software Development :: Libraries :: Python Modules Programming Language :: Python :: 2.7 Programming Language :: Python :: 3.3 Programming Language :: Python :: Implementation :: PyPy limits-1.5.1/CONTRIBUTIONS.rst000066400000000000000000000002611362535055200156200ustar00rootroot00000000000000Contributions ============= * `Timothee Groleau `_ * `Zehua Liu `_ * `David Czarnecki `_ limits-1.5.1/HISTORY.rst000066400000000000000000000040241362535055200147200ustar00rootroot00000000000000.. :changelog: Changelog --------- 1.5.1 2020-02-25 ================ * Bug fix * Remove duplicate call to ttl in RedisStorage * Initialize master/slave connections for RedisSentinel once 1.5 2020-01-23 ============== * Bug fix for handling TTL response from Redis when key doesn’t exist * Support Memcache over unix domain socket * Support Memcache cluster * Pass through constructor keyword arguments to underlying storage constructor(s) * CI & test improvements 1.4.1 2019-12-15 ================ * Bug fix for implementation of clear in MemoryStorage not working with MovingWindow 1.4 2019-12-14 ============== * Expose API for clearing individual limits * Support for redis over unix domain socket * Support extra arguments to redis storage 1.3 2018-01-28 ============== * Remove pinging redis on initialization 1.2.1 2017-01-02 ================ * Fix regression with csv as multiple limits 1.2.0 2016-09-21 ================ * Support reset for RedisStorage * Improved rate limit string parsing 1.1.1 2016-03-14 ================ * Support reset for MemoryStorage * Support for `rediss://` storage scheme to connect to redis over ssl 1.1 2015-12-20 ============== * Redis Cluster support * Authentiation for Redis Sentinel * Bug fix for locking failures with redis. 1.0.9 2015-10-08 ================ * Redis Sentinel storage support * Drop support for python 2.6 * Documentation improvements 1.0.7 2015-06-07 ================ * No functional change 1.0.6 2015-05-13 ================ * Bug fixes for .test() logic 1.0.5 2015-05-12 ================ * Add support for testing a rate limit before hitting it. 1.0.3 2015-03-20 ================ * Add support for passing options to storage backend 1.0.2 2015-01-10 ================ * Improved documentation * Improved usability of API. Renamed RateLimitItem subclasses. 1.0.1 2015-01-08 ================ * Example usage in docs. 1.0.0 2015-01-08 ================ * Initial import of common rate limiting code from `Flask-Limiter `_ limits-1.5.1/LICENSE.txt000066400000000000000000000020461362535055200146520ustar00rootroot00000000000000Copyright (c) 2015 Ali-Akber Saifee Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. limits-1.5.1/MANIFEST.in000066400000000000000000000004011362535055200145560ustar00rootroot00000000000000include README.rst include LICENSE.txt include HISTORY.rst include CONTRIBUTIONS.rst include CLASSIFIERS include versioneer.py recursive-include requirements *.txt recursive-include doc/source * recursive-include doc *.py Make* include limits/_version.py limits-1.5.1/Makefile.tests000066400000000000000000000105171362535055200156320ustar00rootroot00000000000000ifneq ("$(wildcard ./google-cloud-sdk/platform/google_appengine/VERSION)","") GAE_INSTALLED = 1 else GAE_INSTALLED = 0 endif PY_VERSION =$(shell python -c "import sys;print('.'.join(str(k) for k in sys.version_info[0:2]))") clean: -rm -f MANIFEST -rm -rf dist/ -rm -rf build/ cleancov: -rm -rf htmlcov/ -coverage combine -coverage erase cleanmeta: -rm -rf limits.egg-info/ cleanall: clean cleancov cleanmeta -find . -type f -name "*~" -exec rm -f "{}" \; -find . -type f -name "*.orig" -exec rm -f "{}" \; -find . -type f -name "*.rej" -exec rm -f "{}" \; -find . -type f -name "*.pyc" -exec rm -f "{}" \; -find . -type f -name "*.parse-index" -exec rm -f "{}" \; sdist: cleanmeta python setup.py sdist bdist: cleanmeta python setup.py bdist_egg install: python setup.py install redis-start: redis-cleanup redis-server tests/redis-configurations/basic.conf redis-server tests/redis-configurations/passwd.conf redis-server tests/redis-configurations/unixdomainsocket.conf redis-server tests/redis-configurations/cluster/redis-0.conf redis-server tests/redis-configurations/cluster/redis-1.conf redis-server tests/redis-configurations/cluster/redis-2.conf redis-server tests/redis-configurations/cluster/redis-3.conf redis-server tests/redis-configurations/cluster/redis-4.conf redis-server tests/redis-configurations/cluster/redis-5.conf redis-server tests/redis-configurations/sentinel/redis-master.conf redis-server tests/redis-configurations/sentinel/redis-slave.conf redis-server tests/redis-configurations/sentinel/redis-sentinel.conf --sentinel echo "yes" | redis-cli --cluster create --cluster-replicas 1 127.0.0.1:7000 127.0.0.1:7001 127.0.0.1:7002 127.0.0.1:7003 127.0.0.1:7004 127.0.0.1:7005 sleep 5 redis-cleanup: - rm -vf /tmp/redis_cluster_node*.conf 2>/dev/null - rm -rf dump.rdb appendonly.aof - 2>/dev/null redis-stop: [ -e /tmp/redis_cluster_node0.pid ] && kill -9 `cat /tmp/redis_cluster_node0.pid` || true [ -e /tmp/redis_cluster_node1.pid ] && kill -9 `cat /tmp/redis_cluster_node1.pid` || true [ -e /tmp/redis_cluster_node2.pid ] && kill -9 `cat /tmp/redis_cluster_node2.pid` || true [ -e /tmp/redis_cluster_node3.pid ] && kill -9 `cat /tmp/redis_cluster_node3.pid` || true [ -e /tmp/redis_cluster_node4.pid ] && kill -9 `cat /tmp/redis_cluster_node4.pid` || true [ -e /tmp/redis_cluster_node5.pid ] && kill -9 `cat /tmp/redis_cluster_node5.pid` || true [ -e /tmp/redis-sentinel.pid ] && kill -9 `cat /tmp/redis-sentinel.pid` || true [ -e /tmp/redis-master.pid ] && kill -9 `cat /tmp/redis-master.pid` || true [ -e /tmp/redis-slave.pid ] && kill -9 `cat /tmp/redis-slave.pid` || true [ -e /tmp/redis_unix-domain-socket.pid ] && kill -9 `cat /tmp/redis_unix-domain-socket.pid` || true [ -e /tmp/redis_basic.pid ] && kill -9 `cat /tmp/redis_basic.pid` || true [ -e /tmp/redis_basic_passwd.pid ] && kill -9 `cat /tmp/redis_basic_passwd.pid` || true rm -f /tmp/redis_cluster_node0.conf rm -f /tmp/redis_cluster_node1.conf rm -f /tmp/redis_cluster_node2.conf rm -f /tmp/redis_cluster_node3.conf rm -f /tmp/redis_cluster_node4.conf rm -f /tmp/redis_cluster_node5.conf memcached-start: memcached -d -p 22122 -P /tmp/limits.memcached.1.pid memcached -d -p 22123 -P /tmp/limits.memcached.2.pid memcached -d -s /tmp/limits.memcached.sock -P /tmp/limits.memcached.uds.pid memcached-stop: [ -e /tmp/limits.memcached.1.pid ] && kill `cat /tmp/limits.memcached.1.pid` || true [ -e /tmp/limits.memcached.2.pid ] && kill `cat /tmp/limits.memcached.2.pid` || true [ -e /tmp/limits.memcached.uds.pid ] && kill `cat /tmp/limits.memcached.uds.pid` || true rm -rf /tmp/limits.memcached.*.pid memcached-gae-install: ifeq ($(PY_VERSION),2.7) ifeq ($(GAE_INSTALLED),0) export CLOUDSDK_PYTHON=$$(which python) wget https://dl.google.com/dl/cloudsdk/channels/rapid/downloads/google-cloud-sdk-167.0.0-linux-x86_64.tar.gz -P /var/tmp/; rm -rf google-cloud-sdk tar -xzf /var/tmp/google-cloud-sdk-167.0.0-linux-x86_64.tar.gz yes Y | google-cloud-sdk/bin/gcloud components install app-engine-python else echo "GAE SDK already setup" endif ln -sf google-cloud-sdk/platform/google_appengine/google google endif memcached-gae-clean: rm google-cloud-sdk-167.0.0-linux-x86_64.tar.gz rm -r google-cloud-sdk tests: redis-stop memcached-stop redis-start memcached-gae-install memcached-start nosetests tests --with-cov -v --with-timer --timer-top-n 10 .PHONY: test limits-1.5.1/README.rst000066400000000000000000000023061362535055200145150ustar00rootroot00000000000000.. |travis-ci| image:: https://img.shields.io/travis/alisaifee/limits/master.svg?style=flat-square :target: https://travis-ci.org/#!/alisaifee/limits?branch=master .. |coveralls| image:: https://img.shields.io/coveralls/alisaifee/limits/master.svg?style=flat-square :target: https://coveralls.io/r/alisaifee/limits?branch=master .. |pypi| image:: https://img.shields.io/pypi/v/limits.svg?style=flat-square :target: https://pypi.python.org/pypi/limits .. |license| image:: https://img.shields.io/pypi/l/limits.svg?style=flat-square :target: https://pypi.python.org/pypi/limits .. |gitter| image:: https://img.shields.io/badge/gitter-join%20chat-blue.svg?style=flat-square :alt: Join the chat at https://gitter.im/alisaifee/limits :target: https://gitter.im/alisaifee/limits?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content ************* limits ************* |travis-ci| |coveralls| |pypi| |gitter| |license| *limits* provides utilities to implement rate limiting using various strategies and storage backends such as redis & memcached. ***** Links ***** * `Documentation `_ * `Changelog `_ limits-1.5.1/doc/000077500000000000000000000000001362535055200135725ustar00rootroot00000000000000limits-1.5.1/doc/Makefile000066400000000000000000000152271362535055200152410ustar00rootroot00000000000000# Makefile for Sphinx documentation # # You can set these variables from the command line. SPHINXOPTS = SPHINXBUILD = sphinx-build PAPER = BUILDDIR = build # User-friendly check for sphinx-build ifeq ($(shell which $(SPHINXBUILD) >/dev/null 2>&1; echo $$?), 1) $(error The '$(SPHINXBUILD)' command was not found. Make sure you have Sphinx installed, then set the SPHINXBUILD environment variable to point to the full path of the '$(SPHINXBUILD)' executable. Alternatively you can add the directory with the executable to your PATH. If you don't have Sphinx installed, grab it from http://sphinx-doc.org/) endif # Internal variables. PAPEROPT_a4 = -D latex_paper_size=a4 PAPEROPT_letter = -D latex_paper_size=letter ALLSPHINXOPTS = -d $(BUILDDIR)/doctrees $(PAPEROPT_$(PAPER)) $(SPHINXOPTS) source # the i18n builder cannot share the environment and doctrees with the others I18NSPHINXOPTS = $(PAPEROPT_$(PAPER)) $(SPHINXOPTS) source .PHONY: help clean html dirhtml singlehtml pickle json htmlhelp qthelp devhelp epub latex latexpdf text man changes linkcheck doctest gettext help: @echo "Please use \`make ' where is one of" @echo " html to make standalone HTML files" @echo " dirhtml to make HTML files named index.html in directories" @echo " singlehtml to make a single large HTML file" @echo " pickle to make pickle files" @echo " json to make JSON files" @echo " htmlhelp to make HTML files and a HTML help project" @echo " qthelp to make HTML files and a qthelp project" @echo " devhelp to make HTML files and a Devhelp project" @echo " epub to make an epub" @echo " latex to make LaTeX files, you can set PAPER=a4 or PAPER=letter" @echo " latexpdf to make LaTeX files and run them through pdflatex" @echo " latexpdfja to make LaTeX files and run them through platex/dvipdfmx" @echo " text to make text files" @echo " man to make manual pages" @echo " texinfo to make Texinfo files" @echo " info to make Texinfo files and run them through makeinfo" @echo " gettext to make PO message catalogs" @echo " changes to make an overview of all changed/added/deprecated items" @echo " xml to make Docutils-native XML files" @echo " pseudoxml to make pseudoxml-XML files for display purposes" @echo " linkcheck to check all external links for integrity" @echo " doctest to run all doctests embedded in the documentation (if enabled)" clean: rm -rf $(BUILDDIR)/* html: $(SPHINXBUILD) -b html $(ALLSPHINXOPTS) $(BUILDDIR)/html @echo @echo "Build finished. The HTML pages are in $(BUILDDIR)/html." dirhtml: $(SPHINXBUILD) -b dirhtml $(ALLSPHINXOPTS) $(BUILDDIR)/dirhtml @echo @echo "Build finished. The HTML pages are in $(BUILDDIR)/dirhtml." singlehtml: $(SPHINXBUILD) -b singlehtml $(ALLSPHINXOPTS) $(BUILDDIR)/singlehtml @echo @echo "Build finished. The HTML page is in $(BUILDDIR)/singlehtml." pickle: $(SPHINXBUILD) -b pickle $(ALLSPHINXOPTS) $(BUILDDIR)/pickle @echo @echo "Build finished; now you can process the pickle files." json: $(SPHINXBUILD) -b json $(ALLSPHINXOPTS) $(BUILDDIR)/json @echo @echo "Build finished; now you can process the JSON files." htmlhelp: $(SPHINXBUILD) -b htmlhelp $(ALLSPHINXOPTS) $(BUILDDIR)/htmlhelp @echo @echo "Build finished; now you can run HTML Help Workshop with the" \ ".hhp project file in $(BUILDDIR)/htmlhelp." qthelp: $(SPHINXBUILD) -b qthelp $(ALLSPHINXOPTS) $(BUILDDIR)/qthelp @echo @echo "Build finished; now you can run "qcollectiongenerator" with the" \ ".qhcp project file in $(BUILDDIR)/qthelp, like this:" @echo "# qcollectiongenerator $(BUILDDIR)/qthelp/Flask-Ratelimit.qhcp" @echo "To view the help file:" @echo "# assistant -collectionFile $(BUILDDIR)/qthelp/Flask-Ratelimit.qhc" devhelp: $(SPHINXBUILD) -b devhelp $(ALLSPHINXOPTS) $(BUILDDIR)/devhelp @echo @echo "Build finished." @echo "To view the help file:" @echo "# mkdir -p $$HOME/.local/share/devhelp/Flask-Ratelimit" @echo "# ln -s $(BUILDDIR)/devhelp $$HOME/.local/share/devhelp/Flask-Ratelimit" @echo "# devhelp" epub: $(SPHINXBUILD) -b epub $(ALLSPHINXOPTS) $(BUILDDIR)/epub @echo @echo "Build finished. The epub file is in $(BUILDDIR)/epub." latex: $(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex @echo @echo "Build finished; the LaTeX files are in $(BUILDDIR)/latex." @echo "Run \`make' in that directory to run these through (pdf)latex" \ "(use \`make latexpdf' here to do that automatically)." latexpdf: $(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex @echo "Running LaTeX files through pdflatex..." $(MAKE) -C $(BUILDDIR)/latex all-pdf @echo "pdflatex finished; the PDF files are in $(BUILDDIR)/latex." latexpdfja: $(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex @echo "Running LaTeX files through platex and dvipdfmx..." $(MAKE) -C $(BUILDDIR)/latex all-pdf-ja @echo "pdflatex finished; the PDF files are in $(BUILDDIR)/latex." text: $(SPHINXBUILD) -b text $(ALLSPHINXOPTS) $(BUILDDIR)/text @echo @echo "Build finished. The text files are in $(BUILDDIR)/text." man: $(SPHINXBUILD) -b man $(ALLSPHINXOPTS) $(BUILDDIR)/man @echo @echo "Build finished. The manual pages are in $(BUILDDIR)/man." texinfo: $(SPHINXBUILD) -b texinfo $(ALLSPHINXOPTS) $(BUILDDIR)/texinfo @echo @echo "Build finished. The Texinfo files are in $(BUILDDIR)/texinfo." @echo "Run \`make' in that directory to run these through makeinfo" \ "(use \`make info' here to do that automatically)." info: $(SPHINXBUILD) -b texinfo $(ALLSPHINXOPTS) $(BUILDDIR)/texinfo @echo "Running Texinfo files through makeinfo..." make -C $(BUILDDIR)/texinfo info @echo "makeinfo finished; the Info files are in $(BUILDDIR)/texinfo." gettext: $(SPHINXBUILD) -b gettext $(I18NSPHINXOPTS) $(BUILDDIR)/locale @echo @echo "Build finished. The message catalogs are in $(BUILDDIR)/locale." changes: $(SPHINXBUILD) -b changes $(ALLSPHINXOPTS) $(BUILDDIR)/changes @echo @echo "The overview file is in $(BUILDDIR)/changes." linkcheck: $(SPHINXBUILD) -b linkcheck $(ALLSPHINXOPTS) $(BUILDDIR)/linkcheck @echo @echo "Link check complete; look for any errors in the above output " \ "or in $(BUILDDIR)/linkcheck/output.txt." doctest: $(SPHINXBUILD) -b doctest $(ALLSPHINXOPTS) $(BUILDDIR)/doctest @echo "Testing of doctests in the sources finished, look at the " \ "results in $(BUILDDIR)/doctest/output.txt." xml: $(SPHINXBUILD) -b xml $(ALLSPHINXOPTS) $(BUILDDIR)/xml @echo @echo "Build finished. The XML files are in $(BUILDDIR)/xml." pseudoxml: $(SPHINXBUILD) -b pseudoxml $(ALLSPHINXOPTS) $(BUILDDIR)/pseudoxml @echo @echo "Build finished. The pseudo-XML files are in $(BUILDDIR)/pseudoxml." limits-1.5.1/doc/source/000077500000000000000000000000001362535055200150725ustar00rootroot00000000000000limits-1.5.1/doc/source/api.rst000066400000000000000000000026261362535055200164030ustar00rootroot00000000000000.. currentmodule:: limits API ---- Storage ======= ====================== Abstract storage class ====================== .. autoclass:: limits.storage.Storage .. _backend-implementation: ======================= Backend Implementations ======================= .. autoclass:: limits.storage.MemoryStorage .. autoclass:: limits.storage.RedisStorage .. autoclass:: limits.storage.RedisClusterStorage .. autoclass:: limits.storage.RedisSentinelStorage .. autoclass:: limits.storage.MemcachedStorage .. autoclass:: limits.storage.GAEMemcachedStorage =============== Utility Methods =============== .. autofunction:: limits.storage.storage_from_string Strategies ========== .. autoclass:: limits.strategies.RateLimiter .. autoclass:: limits.strategies.FixedWindowRateLimiter .. autoclass:: limits.strategies.FixedWindowElasticExpiryRateLimiter .. autoclass:: limits.strategies.MovingWindowRateLimiter Rate Limits =========== ======================== Rate limit granularities ======================== .. autoclass:: RateLimitItem .. autoclass:: RateLimitItemPerYear .. autoclass:: RateLimitItemPerMonth .. autoclass:: RateLimitItemPerDay .. autoclass:: RateLimitItemPerHour .. autoclass:: RateLimitItemPerMinute .. autoclass:: RateLimitItemPerSecond =============== Utility Methods =============== .. autofunction:: parse .. autofunction:: parse_many Exceptions ========== .. autoexception:: limits.errors.ConfigurationError limits-1.5.1/doc/source/changelog.rst000066400000000000000000000000371362535055200175530ustar00rootroot00000000000000.. include:: ../../HISTORY.rst limits-1.5.1/doc/source/conf.py000066400000000000000000000027661362535055200164040ustar00rootroot00000000000000# -*- coding: utf-8 -*- # import sys import os sys.path.insert(0, os.path.abspath('../../')) import limits on_rtd = os.environ.get('READTHEDOCS', None) == 'True' if not on_rtd: # only import and set the theme if we're building docs locally import sphinx_rtd_theme html_theme = 'sphinx_rtd_theme' html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] autodoc_default_flags = [ "members" , "show-inheritance" , "inherited-members" ] autoclass_content = 'both' extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.viewcode', ] source_suffix = '.rst' master_doc = 'index' project = u'limits' copyright = u'2015, Ali-Akber Saifee' version = release = limits.__version__ exclude_patterns = [] pygments_style = 'sphinx' htmlhelp_basename = 'limitsdoc' latex_documents = [ ('index', 'limits.tex', u'limits Documentation', u'Ali-Akber Saifee', 'manual'), ] man_pages = [ ('index', 'flask-limiter', u'limits Documentation', [u'Ali-Akber Saifee'], 1) ] texinfo_documents = [ ('index', 'limits', u'limits Documentation', u'Ali-Akber Saifee', 'limits', 'One line description of project.', 'Miscellaneous'), ] intersphinx_mapping = { 'python': ('http://docs.python.org/', None), 'rediscluster': ('https://redis-py-cluster.readthedocs.io/en/latest/', None), 'redis': ('https://redis-py.readthedocs.io/en/latest/', None), 'pymemcache': ('https://pymemcache.readthedocs.io/en/latest/', None) } limits-1.5.1/doc/source/custom-storage.rst000066400000000000000000000055401362535055200206040ustar00rootroot00000000000000.. currentmodule:: limits Custom storage backends ----------------------- The **limits** package ships with a few storage implementations which allow you to get started with some common data stores (redis & memcached) used for rate limiting. To accommodate customizations to either the default storage backends or different storage backends altogether, **limits** uses a registry pattern that makes it painless to add your own custom storage (without having to submit patches to the package itself). Creating a custom backend requires: #. Subclassing :class:`limits.storage.Storage` #. Providing implementations for the abstractmethods of :class:`limits.storage.Storage` #. If the storage can support the :ref:`moving-window` strategy - additionally implementing the `acquire_entry` instance method. #. Providing naming *schemes* that can be used to lookup the custom storage in the storage registry. (Refer to :ref:`storage-scheme` for more details) Example ======= The following example shows two backend stores: one which doesn't implement the :ref:`moving-window` strategy and one that does. Do note the :code:`STORAGE_SCHEME` class variables which result in the classes getting registered with the **limits** storage registry:: import urlparse from limits.storage import Storage import time class AwesomeStorage(Storage): STORAGE_SCHEME = ["awesomedb"] def __init__(self, uri, **options): self.awesomesness = options.get("awesomeness", None) self.host = urlparse.urlparse(uri).netloc self.port = urlparse.urlparse(uri).port def check(self): return True def get_expiry(self, key): return int(time.time()) def incr(self, key, expiry, elastic_expiry=False): return def get(self, key): return 0 class AwesomerStorage(Storage): STORAGE_SCHEME = ["awesomerdb"] def __init__(self, uri, **options): self.awesomesness = options.get("awesomeness", None) self.host = urlparse.urlparse(uri).netloc self.port = urlparse.urlparse(uri).port def check(self): return True def get_expiry(self, key): return int(time.time()) def incr(self, key, expiry, elastic_expiry=False): return def get(self, key): return 0 def acquire_entry( self, key, limit, expiry, no_add=False ): return True Once the above implementations are declared you can look them up using the factory method described in :ref:`storage-scheme` in the following manner:: from limits.storage import storage_from_string awesome = storage_from_string("awesomedb://localhoax:42", awesomeness=0) awesomer = storage_from_string("awesomerdb://localhoax:42", awesomeness=1) limits-1.5.1/doc/source/index.rst000066400000000000000000000062021362535055200167330ustar00rootroot00000000000000limits Documentation -------------------- **limits** provides utilities to implement rate limiting using various strategies and storage backends such as redis & memcached. .. toctree:: :hidden: string-notation custom-storage storage strategies api changelog .. currentmodule:: limits Quickstart ---------- Initialize the storage backend:: from limits import storage memory_storage = storage.MemoryStorage() Initialize a rate limiter with the :ref:`moving-window` strategy:: from limits import strategies moving_window = strategies.MovingWindowRateLimiter(memory_storage) Initialize a rate limit using the :ref:`ratelimit-string`:: from limits import parse one_per_minute = parse("1/minute") Initialize a rate limit explicitly using a subclass of :class:`RateLimitItem`:: from limits import RateLimitItemPerSecond one_per_second = RateLimitItemPerSecond(1, 1) Test the limits:: assert True == moving_window.hit(one_per_minute, "test_namespace", "foo") assert False == moving_window.hit(one_per_minute, "test_namespace", "foo") assert True == moving_window.hit(one_per_minute, "test_namespace", "bar") assert True == moving_window.hit(one_per_second, "test_namespace", "foo") assert False == moving_window.hit(one_per_second, "test_namespace", "foo") time.sleep(1) assert True == moving_window.hit(one_per_second, "test_namespace", "foo") Check specific limits without hitting them:: assert True == moving_window.hit(one_per_second, "test_namespace", "foo") while not moving_window.test(one_per_second, "test_namespace", "foo"): time.sleep(0.01) assert True == moving_window.hit(one_per_second, "test_namespace", "foo") Clear a limit:: assert True == moving_window.hit(one_per_minute, "test_namespace", "foo") assert False == moving_window.hit(one_per_minute, "test_namespace", "foo") moving_window.clear(one_per_minute", "test_namespace", "foo") assert True == moving_window.hit(one_per_minute, "test_namespace", "foo") Development ----------- Since `limits` integrates with various backend storages, local development and running tests can require some setup. Basic `redis` & `memcached` installations are expected to be available in your environment. If you are working with :ref:`redis-cluster`, :ref:`redis-sentinel` or :ref:`gae-memcached` you can use the makefile ``Makefile.tests`` to help with setting up development dependencies:: make -f Makefile.tests redis-start memcached-gae-install # hack hack hack # run tests make -f Makefile.tests redis-stop Projects using *limits* ------------------------- * `Flask-Limiter `_ : Rate limiting extension for Flask applications. * `djlimiter `_: Rate limiting middleware for Django applications. * `sanic-limiter `_: Rate limiting middleware for Sanic applications. References ---------- * `Redis rate limiting pattern #2 `_ * `DomainTools redis rate limiter `_ .. include:: ../../CONTRIBUTIONS.rst limits-1.5.1/doc/source/storage.rst000066400000000000000000000074431362535055200173000ustar00rootroot00000000000000.. currentmodule:: limits Storage Backends ---------------- .. _storage-scheme: Storage scheme ============== **limits** uses a url style storage scheme notation (similar to the JDBC driver connection string notation) for configuring and initializing storage backends. This notation additionally provides a simple mechanism to both identify and configure the backend implementation based on a single string argument. The storage scheme follows the format :code:`{scheme}://{parameters}` :func:`limits.storage.storage_from_string` is provided to lookup and construct an instance of a storage based on the storage scheme. For example:: import limits.storage uri = "redis://localhost:9999" options = {} redis_storage = limits.storage.storage_from_string(uri, **options) The additional `options` key-word arguments are passed as is to the constructor of the storage and handled differently by each implementation. Please refer to the class documentation of :ref:`backend-implementation` for details. Examples ======== ========= In-Memory ========= The in-memory storage (:class:`limits.storage.MemoryStorage`) takes no parameters so the only relevant value is :code:`memory://` .. _memcached: ========= Memcached ========= Requires the location of the memcached server(s). As such the parameters is a comma separated list of :code:`{host}:{port}` locations such as :code:`memcached://localhost:11211` or :code:`memcached://localhost:11211,localhost:11212,192.168.1.1:11211` etc... or a path to a unix domain socket such as :code:`memcached:///var/tmp/path/to/sock` Depends on: `pymemcache `__ .. _gae-memcached: ============================== Memcached on Google App Engine ============================== Requires that you are working in the GAE SDK and have those API libraries available. :code: `gaememcached://` .. _redis: ===== Redis ===== Requires the location of the redis server and optionally the database number. :code:`redis://localhost:6379` or :code:`redis://localhost:6379/n` (for database `n`). If the redis server is listening over a unix domain socket you can use :code:`redis+unix:///path/to/sock` or :code:`redis+unix:///path/to/socket?db=n` (for database `n`). If the database is password protected the password can be provided in the url, for example :code:`redis://:foobared@localhost:6379` or :code:`redis+unix//:foobered/path/to/socket` if using a UDS.. Depends on: `redis-py `_ .. _redis-ssl: ============== Redis over SSL ============== Redis does not support SSL natively, but it is recommended to use stunnel to provide SSL suport. The official Redis client :code:`redis-py` supports redis connections over SSL with the scheme :code:`rediss`. :code:`rediss://localhost:6379/0` just like the normal redis connection, just with the new scheme. Depends on: `redis-py `_ .. _redis-sentinel: =================== Redis with Sentinel =================== Requires the location(s) of the redis sentinal instances and the `service-name` that is monitored by the sentinels. :code:`redis+sentinel://localhost:26379/my-redis-service` or :code:`redis+sentinel://localhost:26379,localhost:26380/my-redis-service`. If the database is password protected the password can be provided in the url, for example :code:`redis+sentinel://:sekret@localhost:26379/my-redis-service` Depends on: `redis-py `_ .. _redis-cluster: ============= Redis Cluster ============= Requires the location(s) of the redis cluster startup nodes (One is enough). :code:`redis+cluster://localhost:7000` or :code:`redis+cluster://localhost:7000,localhost:70001` Depends on: `redis-py-cluster `_ limits-1.5.1/doc/source/strategies.rst000066400000000000000000000040141362535055200177750ustar00rootroot00000000000000.. _ratelimit-strategy: Rate limiting strategies ------------------------ .. _fixed-window: Fixed Window ============ This is the most memory efficient strategy to use as it maintains one counter per resource and rate limit. It does however have its drawbacks as it allows bursts within each window - thus allowing an 'attacker' to by-pass the limits. The effects of these bursts can be partially circumvented by enforcing multiple granularities of windows per resource. For example, if you specify a ``100/minute`` rate limit on a route, this strategy will allow 100 hits in the last second of one window and a 100 more in the first second of the next window. To ensure that such bursts are managed, you could add a second rate limit of ``2/second`` on the same route. .. _fixed-window-elastic: Fixed Window with Elastic Expiry ================================ This strategy works almost identically to the Fixed Window strategy with the exception that each hit results in the extension of the window. This strategy works well for creating large penalties for breaching a rate limit. For example, if you specify a ``100/minute`` rate limit on a route and it is being attacked at the rate of 5 hits per second for 2 minutes - the attacker will be locked out of the resource for an extra 60 seconds after the last hit. This strategy helps circumvent bursts. .. _moving-window: Moving Window ============= .. warning:: The moving window strategy is only implemented for the ``redis`` and ``in-memory`` storage backends. The strategy requires using a list with fast random access which is not very convenient to implement with a memcached storage. This strategy is the most effective for preventing bursts from by-passing the rate limit as the window for each limit is not fixed at the start and end of each time unit (i.e. N/second for a moving window means N in the last 1000 milliseconds). There is however a higher memory cost associated with this strategy as it requires ``N`` items to be maintained in memory per resource and rate limit. limits-1.5.1/doc/source/string-notation.rst000066400000000000000000000006141362535055200207640ustar00rootroot00000000000000.. _ratelimit-string: Rate limit string notation -------------------------- Rate limits are specified as strings following the format: [count] [per|/] [n (optional)] [second|minute|hour|day|month|year] You can combine multiple rate limits by separating them with a delimiter of your choice. Examples ======== * 10 per hour * 10/hour * 10/hour;100/day;2000 per year * 100/day, 500/7days limits-1.5.1/limits/000077500000000000000000000000001362535055200143265ustar00rootroot00000000000000limits-1.5.1/limits/__init__.py000066400000000000000000000005331362535055200164400ustar00rootroot00000000000000""" Rate limiting utilities """ from ._version import get_versions __version__ = get_versions()['version'] del get_versions from .limits import ( RateLimitItem, RateLimitItemPerYear, RateLimitItemPerMonth, RateLimitItemPerDay, RateLimitItemPerHour, RateLimitItemPerMinute, RateLimitItemPerSecond ) from .util import parse, parse_many limits-1.5.1/limits/_version.py000066400000000000000000000440761362535055200165370ustar00rootroot00000000000000 # This file helps to compute a version number in source trees obtained from # git-archive tarball (such as those provided by githubs download-from-tag # feature). Distribution tarballs (built by setup.py sdist) and build # directories (produced by setup.py build) will contain a much shorter file # that just contains the computed version number. # This file is released into the public domain. Generated by # versioneer-0.18 (https://github.com/warner/python-versioneer) """Git implementation of _version.py.""" import errno import os import re import subprocess import sys def get_keywords(): """Get the keywords needed to look up the version information.""" # these strings will be replaced by git during git-archive. # setup.py/versioneer.py will grep for the variable names, so they must # each be defined on a line of their own. _version.py will just call # get_keywords(). git_refnames = " (tag: 1.5.1)" git_full = "c91133dce1cfbc3757b939e1cc6cdefd5cf78bcb" git_date = "2020-02-25 18:01:14 -0800" keywords = {"refnames": git_refnames, "full": git_full, "date": git_date} return keywords class VersioneerConfig: """Container for Versioneer configuration parameters.""" def get_config(): """Create, populate and return the VersioneerConfig() object.""" # these strings are filled in when 'setup.py versioneer' creates # _version.py cfg = VersioneerConfig() cfg.VCS = "git" cfg.style = "pep440" cfg.tag_prefix = "" cfg.parentdir_prefix = "limits-" cfg.versionfile_source = "limits/_version.py" cfg.verbose = False return cfg class NotThisMethod(Exception): """Exception raised if a method is not valid for the current scenario.""" LONG_VERSION_PY = {} HANDLERS = {} def register_vcs_handler(vcs, method): # decorator """Decorator to mark a method as the handler for a particular VCS.""" def decorate(f): """Store f in HANDLERS[vcs][method].""" if vcs not in HANDLERS: HANDLERS[vcs] = {} HANDLERS[vcs][method] = f return f return decorate def run_command(commands, args, cwd=None, verbose=False, hide_stderr=False, env=None): """Call the given command(s).""" assert isinstance(commands, list) p = None for c in commands: try: dispcmd = str([c] + args) # remember shell=False, so use git.cmd on windows, not just git p = subprocess.Popen([c] + args, cwd=cwd, env=env, stdout=subprocess.PIPE, stderr=(subprocess.PIPE if hide_stderr else None)) break except EnvironmentError: e = sys.exc_info()[1] if e.errno == errno.ENOENT: continue if verbose: print("unable to run %s" % dispcmd) print(e) return None, None else: if verbose: print("unable to find command, tried %s" % (commands,)) return None, None stdout = p.communicate()[0].strip() if sys.version_info[0] >= 3: stdout = stdout.decode() if p.returncode != 0: if verbose: print("unable to run %s (error)" % dispcmd) print("stdout was %s" % stdout) return None, p.returncode return stdout, p.returncode def versions_from_parentdir(parentdir_prefix, root, verbose): """Try to determine the version from the parent directory name. Source tarballs conventionally unpack into a directory that includes both the project name and a version string. We will also support searching up two directory levels for an appropriately named parent directory """ rootdirs = [] for i in range(3): dirname = os.path.basename(root) if dirname.startswith(parentdir_prefix): return {"version": dirname[len(parentdir_prefix):], "full-revisionid": None, "dirty": False, "error": None, "date": None} else: rootdirs.append(root) root = os.path.dirname(root) # up a level if verbose: print("Tried directories %s but none started with prefix %s" % (str(rootdirs), parentdir_prefix)) raise NotThisMethod("rootdir doesn't start with parentdir_prefix") @register_vcs_handler("git", "get_keywords") def git_get_keywords(versionfile_abs): """Extract version information from the given file.""" # the code embedded in _version.py can just fetch the value of these # keywords. When used from setup.py, we don't want to import _version.py, # so we do it with a regexp instead. This function is not used from # _version.py. keywords = {} try: f = open(versionfile_abs, "r") for line in f.readlines(): if line.strip().startswith("git_refnames ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["refnames"] = mo.group(1) if line.strip().startswith("git_full ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["full"] = mo.group(1) if line.strip().startswith("git_date ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["date"] = mo.group(1) f.close() except EnvironmentError: pass return keywords @register_vcs_handler("git", "keywords") def git_versions_from_keywords(keywords, tag_prefix, verbose): """Get version information from git keywords.""" if not keywords: raise NotThisMethod("no keywords at all, weird") date = keywords.get("date") if date is not None: # git-2.2.0 added "%cI", which expands to an ISO-8601 -compliant # datestamp. However we prefer "%ci" (which expands to an "ISO-8601 # -like" string, which we must then edit to make compliant), because # it's been around since git-1.5.3, and it's too difficult to # discover which version we're using, or to work around using an # older one. date = date.strip().replace(" ", "T", 1).replace(" ", "", 1) refnames = keywords["refnames"].strip() if refnames.startswith("$Format"): if verbose: print("keywords are unexpanded, not using") raise NotThisMethod("unexpanded keywords, not a git-archive tarball") refs = set([r.strip() for r in refnames.strip("()").split(",")]) # starting in git-1.8.3, tags are listed as "tag: foo-1.0" instead of # just "foo-1.0". If we see a "tag: " prefix, prefer those. TAG = "tag: " tags = set([r[len(TAG):] for r in refs if r.startswith(TAG)]) if not tags: # Either we're using git < 1.8.3, or there really are no tags. We use # a heuristic: assume all version tags have a digit. The old git %d # expansion behaves like git log --decorate=short and strips out the # refs/heads/ and refs/tags/ prefixes that would let us distinguish # between branches and tags. By ignoring refnames without digits, we # filter out many common branch names like "release" and # "stabilization", as well as "HEAD" and "master". tags = set([r for r in refs if re.search(r'\d', r)]) if verbose: print("discarding '%s', no digits" % ",".join(refs - tags)) if verbose: print("likely tags: %s" % ",".join(sorted(tags))) for ref in sorted(tags): # sorting will prefer e.g. "2.0" over "2.0rc1" if ref.startswith(tag_prefix): r = ref[len(tag_prefix):] if verbose: print("picking %s" % r) return {"version": r, "full-revisionid": keywords["full"].strip(), "dirty": False, "error": None, "date": date} # no suitable tags, so version is "0+unknown", but full hex is still there if verbose: print("no suitable tags, using unknown + full revision id") return {"version": "0+unknown", "full-revisionid": keywords["full"].strip(), "dirty": False, "error": "no suitable tags", "date": None} @register_vcs_handler("git", "pieces_from_vcs") def git_pieces_from_vcs(tag_prefix, root, verbose, run_command=run_command): """Get version from 'git describe' in the root of the source tree. This only gets called if the git-archive 'subst' keywords were *not* expanded, and _version.py hasn't already been rewritten with a short version string, meaning we're inside a checked out source tree. """ GITS = ["git"] if sys.platform == "win32": GITS = ["git.cmd", "git.exe"] out, rc = run_command(GITS, ["rev-parse", "--git-dir"], cwd=root, hide_stderr=True) if rc != 0: if verbose: print("Directory %s not under git control" % root) raise NotThisMethod("'git rev-parse --git-dir' returned error") # if there is a tag matching tag_prefix, this yields TAG-NUM-gHEX[-dirty] # if there isn't one, this yields HEX[-dirty] (no NUM) describe_out, rc = run_command(GITS, ["describe", "--tags", "--dirty", "--always", "--long", "--match", "%s*" % tag_prefix], cwd=root) # --long was added in git-1.5.5 if describe_out is None: raise NotThisMethod("'git describe' failed") describe_out = describe_out.strip() full_out, rc = run_command(GITS, ["rev-parse", "HEAD"], cwd=root) if full_out is None: raise NotThisMethod("'git rev-parse' failed") full_out = full_out.strip() pieces = {} pieces["long"] = full_out pieces["short"] = full_out[:7] # maybe improved later pieces["error"] = None # parse describe_out. It will be like TAG-NUM-gHEX[-dirty] or HEX[-dirty] # TAG might have hyphens. git_describe = describe_out # look for -dirty suffix dirty = git_describe.endswith("-dirty") pieces["dirty"] = dirty if dirty: git_describe = git_describe[:git_describe.rindex("-dirty")] # now we have TAG-NUM-gHEX or HEX if "-" in git_describe: # TAG-NUM-gHEX mo = re.search(r'^(.+)-(\d+)-g([0-9a-f]+)$', git_describe) if not mo: # unparseable. Maybe git-describe is misbehaving? pieces["error"] = ("unable to parse git-describe output: '%s'" % describe_out) return pieces # tag full_tag = mo.group(1) if not full_tag.startswith(tag_prefix): if verbose: fmt = "tag '%s' doesn't start with prefix '%s'" print(fmt % (full_tag, tag_prefix)) pieces["error"] = ("tag '%s' doesn't start with prefix '%s'" % (full_tag, tag_prefix)) return pieces pieces["closest-tag"] = full_tag[len(tag_prefix):] # distance: number of commits since tag pieces["distance"] = int(mo.group(2)) # commit: short hex revision ID pieces["short"] = mo.group(3) else: # HEX: no tags pieces["closest-tag"] = None count_out, rc = run_command(GITS, ["rev-list", "HEAD", "--count"], cwd=root) pieces["distance"] = int(count_out) # total number of commits # commit date: see ISO-8601 comment in git_versions_from_keywords() date = run_command(GITS, ["show", "-s", "--format=%ci", "HEAD"], cwd=root)[0].strip() pieces["date"] = date.strip().replace(" ", "T", 1).replace(" ", "", 1) return pieces def plus_or_dot(pieces): """Return a + if we don't already have one, else return a .""" if "+" in pieces.get("closest-tag", ""): return "." return "+" def render_pep440(pieces): """Build up version string, with post-release "local version identifier". Our goal: TAG[+DISTANCE.gHEX[.dirty]] . Note that if you get a tagged build and then dirty it, you'll get TAG+0.gHEX.dirty Exceptions: 1: no tags. git_describe was just HEX. 0+untagged.DISTANCE.gHEX[.dirty] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += plus_or_dot(pieces) rendered += "%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" else: # exception #1 rendered = "0+untagged.%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" return rendered def render_pep440_pre(pieces): """TAG[.post.devDISTANCE] -- No -dirty. Exceptions: 1: no tags. 0.post.devDISTANCE """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += ".post.dev%d" % pieces["distance"] else: # exception #1 rendered = "0.post.dev%d" % pieces["distance"] return rendered def render_pep440_post(pieces): """TAG[.postDISTANCE[.dev0]+gHEX] . The ".dev0" means dirty. Note that .dev0 sorts backwards (a dirty tree will appear "older" than the corresponding clean one), but you shouldn't be releasing software with -dirty anyways. Exceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += plus_or_dot(pieces) rendered += "g%s" % pieces["short"] else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += "+g%s" % pieces["short"] return rendered def render_pep440_old(pieces): """TAG[.postDISTANCE[.dev0]] . The ".dev0" means dirty. Eexceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" return rendered def render_git_describe(pieces): """TAG[-DISTANCE-gHEX][-dirty]. Like 'git describe --tags --dirty --always'. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render_git_describe_long(pieces): """TAG-DISTANCE-gHEX[-dirty]. Like 'git describe --tags --dirty --always -long'. The distance/hash is unconditional. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render(pieces, style): """Render the given version pieces into the requested style.""" if pieces["error"]: return {"version": "unknown", "full-revisionid": pieces.get("long"), "dirty": None, "error": pieces["error"], "date": None} if not style or style == "default": style = "pep440" # the default if style == "pep440": rendered = render_pep440(pieces) elif style == "pep440-pre": rendered = render_pep440_pre(pieces) elif style == "pep440-post": rendered = render_pep440_post(pieces) elif style == "pep440-old": rendered = render_pep440_old(pieces) elif style == "git-describe": rendered = render_git_describe(pieces) elif style == "git-describe-long": rendered = render_git_describe_long(pieces) else: raise ValueError("unknown style '%s'" % style) return {"version": rendered, "full-revisionid": pieces["long"], "dirty": pieces["dirty"], "error": None, "date": pieces.get("date")} def get_versions(): """Get version information or return default if unable to do so.""" # I am in _version.py, which lives at ROOT/VERSIONFILE_SOURCE. If we have # __file__, we can work backwards from there to the root. Some # py2exe/bbfreeze/non-CPython implementations don't do __file__, in which # case we can only use expanded keywords. cfg = get_config() verbose = cfg.verbose try: return git_versions_from_keywords(get_keywords(), cfg.tag_prefix, verbose) except NotThisMethod: pass try: root = os.path.realpath(__file__) # versionfile_source is the relative path from the top of the source # tree (where the .git directory might live) to this file. Invert # this to find the root from __file__. for i in cfg.versionfile_source.split('/'): root = os.path.dirname(root) except NameError: return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to find root of source tree", "date": None} try: pieces = git_pieces_from_vcs(cfg.tag_prefix, root, verbose) return render(pieces, cfg.style) except NotThisMethod: pass try: if cfg.parentdir_prefix: return versions_from_parentdir(cfg.parentdir_prefix, root, verbose) except NotThisMethod: pass return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to compute version", "date": None} limits-1.5.1/limits/backports/000077500000000000000000000000001362535055200163165ustar00rootroot00000000000000limits-1.5.1/limits/backports/__init__.py000066400000000000000000000000111362535055200204170ustar00rootroot00000000000000""" """ limits-1.5.1/limits/backports/counter.py000066400000000000000000000143351362535055200203550ustar00rootroot00000000000000""" counter backport from http://code.activestate.com/recipes/576611-counter-class/ """ from operator import itemgetter from heapq import nlargest from itertools import repeat, ifilter class Counter(dict): '''Dict subclass for counting hashable objects. Sometimes called a bag or multiset. Elements are stored as dictionary keys and their counts are stored as dictionary values. >>> Counter('zyzygy') Counter({'y': 3, 'z': 2, 'g': 1}) ''' def __init__(self, iterable=None, **kwds): '''Create a new, empty Counter object. And if given, count elements from an input iterable. Or, initialize the count from another mapping of elements to their counts. >>> c = Counter() # a new, empty counter >>> c = Counter('gallahad') # a new counter from an iterable >>> c = Counter({'a': 4, 'b': 2}) # a new counter from a mapping >>> c = Counter(a=4, b=2) # a new counter from keyword args ''' self.update(iterable, **kwds) def __missing__(self, key): return 0 def most_common(self, n=None): '''List the n most common elements and their counts from the most common to the least. If n is None, then list all element counts. >>> Counter('abracadabra').most_common(3) [('a', 5), ('r', 2), ('b', 2)] ''' if n is None: return sorted(self.iteritems(), key=itemgetter(1), reverse=True) return nlargest(n, self.iteritems(), key=itemgetter(1)) def elements(self): '''Iterator over elements repeating each as many times as its count. >>> c = Counter('ABCABC') >>> sorted(c.elements()) ['A', 'A', 'B', 'B', 'C', 'C'] If an element's count has been set to zero or is a negative number, elements() will ignore it. ''' for elem, count in self.iteritems(): for _ in repeat(None, count): yield elem # Override dict methods where the meaning changes for Counter objects. @classmethod def fromkeys(cls, iterable, v=None): raise NotImplementedError( 'Counter.fromkeys() is undefined. Use Counter(iterable) instead.') def update(self, iterable=None, **kwds): '''Like dict.update() but add counts instead of replacing them. Source can be an iterable, a dictionary, or another Counter instance. >>> c = Counter('which') >>> c.update('witch') # add elements from another iterable >>> d = Counter('watch') >>> c.update(d) # add elements from another counter >>> c['h'] # four 'h' in which, witch, and watch 4 ''' if iterable is not None: if hasattr(iterable, 'iteritems'): if self: self_get = self.get for elem, count in iterable.iteritems(): self[elem] = self_get(elem, 0) + count else: dict.update(self, iterable) # fast path when counter is empty else: self_get = self.get for elem in iterable: self[elem] = self_get(elem, 0) + 1 if kwds: self.update(kwds) def copy(self): 'Like dict.copy() but returns a Counter instance instead of a dict.' return Counter(self) def __delitem__(self, elem): 'Like dict.__delitem__() but does not raise KeyError for missing values.' if elem in self: dict.__delitem__(self, elem) def __repr__(self): if not self: return '%s()' % self.__class__.__name__ items = ', '.join(map('%r: %r'.__mod__, self.most_common())) return '%s({%s})' % (self.__class__.__name__, items) # Multiset-style mathematical operations discussed in: # Knuth TAOCP Volume II section 4.6.3 exercise 19 # and at http://en.wikipedia.org/wiki/Multiset # # Outputs guaranteed to only include positive counts. # # To strip negative and zero counts, add-in an empty counter: # c += Counter() def __add__(self, other): '''Add counts from two counters. >>> Counter('abbb') + Counter('bcc') Counter({'b': 4, 'c': 2, 'a': 1}) ''' if not isinstance(other, Counter): return NotImplemented result = Counter() for elem in set(self) | set(other): newcount = self[elem] + other[elem] if newcount > 0: result[elem] = newcount return result def __sub__(self, other): ''' Subtract count, but keep only results with positive counts. >>> Counter('abbbc') - Counter('bccd') Counter({'b': 2, 'a': 1}) ''' if not isinstance(other, Counter): return NotImplemented result = Counter() for elem in set(self) | set(other): newcount = self[elem] - other[elem] if newcount > 0: result[elem] = newcount return result def __or__(self, other): '''Union is the maximum of value in either of the input counters. >>> Counter('abbb') | Counter('bcc') Counter({'b': 3, 'c': 2, 'a': 1}) ''' if not isinstance(other, Counter): return NotImplemented _max = max result = Counter() for elem in set(self) | set(other): newcount = _max(self[elem], other[elem]) if newcount > 0: result[elem] = newcount return result def __and__(self, other): ''' Intersection is the minimum of corresponding counts. >>> Counter('abbb') & Counter('bcc') Counter({'b': 1}) ''' if not isinstance(other, Counter): return NotImplemented _min = min result = Counter() if len(self) < len(other): self, other = other, self for elem in ifilter(self.__contains__, other): newcount = _min(self[elem], other[elem]) if newcount > 0: result[elem] = newcount return result if __name__ == '__main__': import doctest print(doctest.testmod())limits-1.5.1/limits/backports/total_ordering.py000066400000000000000000000030301362535055200217000ustar00rootroot00000000000000""" total_ordering backport from http://code.activestate.com/recipes/576685/ """ def total_ordering(cls): 'Class decorator that fills-in missing ordering methods' convert = { '__lt__': [('__gt__', lambda self, other: other < self), ('__le__', lambda self, other: not other < self), ('__ge__', lambda self, other: not self < other)], '__le__': [('__ge__', lambda self, other: other <= self), ('__lt__', lambda self, other: not other <= self), ('__gt__', lambda self, other: not self <= other)], '__gt__': [('__lt__', lambda self, other: other > self), ('__ge__', lambda self, other: not other > self), ('__le__', lambda self, other: not self > other)], '__ge__': [('__le__', lambda self, other: other >= self), ('__gt__', lambda self, other: not other >= self), ('__lt__', lambda self, other: not self >= other)] } if hasattr(object, '__lt__'): roots = [op for op in convert if getattr(cls, op) is not getattr(object, op)] else: roots = set(dir(cls)) & set(convert) assert roots, 'must define at least one ordering operation: < > <= >=' root = max(roots) # prefer __lt __ to __le__ to __gt__ to __ge__ for opname, opfunc in convert[root]: if opname not in roots: opfunc.__name__ = opname opfunc.__doc__ = getattr(int, opname).__doc__ setattr(cls, opname, opfunc) return cls limits-1.5.1/limits/errors.py000066400000000000000000000002431362535055200162130ustar00rootroot00000000000000""" errors and exceptions """ class ConfigurationError(Exception): """ exception raised when a configuration problem is encountered """ pass limits-1.5.1/limits/limits.py000066400000000000000000000073621362535055200162110ustar00rootroot00000000000000""" """ from six import add_metaclass try: from functools import total_ordering except ImportError: # pragma: no cover from .backports.total_ordering import total_ordering # pragma: no cover def safe_string(value): """ consistently converts a value to a string :param value: :return: str """ if isinstance(value, bytes): return value.decode() return str(value) TIME_TYPES = dict( day=(60 * 60 * 24, "day"), month=(60 * 60 * 24 * 30, "month"), year=(60 * 60 * 24 * 30 * 12, "year"), hour=(60 * 60, "hour"), minute=(60, "minute"), second=(1, "second") ) GRANULARITIES = {} class RateLimitItemMeta(type): def __new__(cls, name, parents, dct): granularity = super(RateLimitItemMeta, cls).__new__(cls, name, parents, dct) if 'granularity' in dct: GRANULARITIES[dct['granularity'][1]] = granularity return granularity #pylint: disable=no-member @add_metaclass(RateLimitItemMeta) @total_ordering class RateLimitItem(object): """ defines a Rate limited resource which contains the characteristic namespace, amount and granularity multiples of the rate limiting window. :param int amount: the rate limit amount :param int multiples: multiple of the 'per' granularity (e.g. 'n' per 'm' seconds) :param string namespace: category for the specific rate limit """ __metaclass__ = RateLimitItemMeta __slots__ = ["namespace", "amount", "multiples", "granularity"] def __init__(self, amount, multiples=1, namespace='LIMITER'): self.namespace = namespace self.amount = int(amount) self.multiples = int(multiples or 1) @classmethod def check_granularity_string(cls, granularity_string): """ checks if this instance matches a granularity string of type 'n per hour' etc. :return: True/False """ return granularity_string.lower() in cls.granularity[1:] def get_expiry(self): """ :return: the size of the window in seconds. """ return self.granularity[0] * self.multiples def key_for(self, *identifiers): """ :param identifiers: a list of strings to append to the key :return: a string key identifying this resource with each identifier appended with a '/' delimiter. """ remainder = "/".join([safe_string(k) for k in identifiers] + [ safe_string(self.amount), safe_string(self.multiples), self.granularity[1] ]) return "%s/%s" % (self.namespace, remainder) def __eq__(self, other): return ( self.amount == other.amount and self.granularity == other.granularity ) def __repr__(self): return "%d per %d %s" % ( self.amount, self.multiples, self.granularity[1] ) def __lt__(self, other): return self.granularity[0] < other.granularity[0] class RateLimitItemPerYear(RateLimitItem): """ per year rate limited resource. """ granularity = TIME_TYPES["year"] class RateLimitItemPerMonth(RateLimitItem): """ per month rate limited resource. """ granularity = TIME_TYPES["month"] class RateLimitItemPerDay(RateLimitItem): """ per day rate limited resource. """ granularity = TIME_TYPES["day"] class RateLimitItemPerHour(RateLimitItem): """ per hour rate limited resource. """ granularity = TIME_TYPES["hour"] class RateLimitItemPerMinute(RateLimitItem): """ per minute rate limited resource. """ granularity = TIME_TYPES["minute"] class RateLimitItemPerSecond(RateLimitItem): """ per second rate limited resource. """ granularity = TIME_TYPES["second"] limits-1.5.1/limits/storage.py000066400000000000000000000645741362535055200163640ustar00rootroot00000000000000""" """ from abc import abstractmethod, ABCMeta import inspect from six.moves import urllib try: from collections import Counter except ImportError: # pragma: no cover from .backports.counter import Counter # pragma: no cover import threading import time import six from .errors import ConfigurationError from .util import get_dependency SCHEMES = {} def storage_from_string(storage_string, **options): """ factory function to get an instance of the storage class based on the uri of the storage :param storage_string: a string of the form method://host:port :return: an instance of :class:`flask_limiter.storage.Storage` """ scheme = urllib.parse.urlparse(storage_string).scheme if not scheme in SCHEMES: raise ConfigurationError( "unknown storage scheme : %s" % storage_string ) return SCHEMES[scheme](storage_string, **options) class StorageRegistry(type): def __new__(mcs, name, bases, dct): storage_scheme = dct.get('STORAGE_SCHEME', None) if not bases == (object,) and not storage_scheme: raise ConfigurationError( "%s is not configured correctly, it must specify a STORAGE_SCHEME class attribute" % name ) cls = super(StorageRegistry, mcs).__new__(mcs, name, bases, dct) if storage_scheme: schemes = [storage_scheme] if isinstance(storage_scheme, six.string_types) else storage_scheme for scheme in schemes: SCHEMES[scheme] = cls return cls @six.add_metaclass(StorageRegistry) @six.add_metaclass(ABCMeta) class Storage(object): """ Base class to extend when implementing a storage backend. """ def __init__(self, uri=None, **options): self.lock = threading.RLock() @abstractmethod def incr(self, key, expiry, elastic_expiry=False): """ increments the counter for a given rate limit key :param str key: the key to increment :param int expiry: amount in seconds for the key to expire in :param bool elastic_expiry: whether to keep extending the rate limit window every hit. """ raise NotImplementedError @abstractmethod def get(self, key): """ :param str key: the key to get the counter value for """ raise NotImplementedError @abstractmethod def get_expiry(self, key): """ :param str key: the key to get the expiry for """ raise NotImplementedError @abstractmethod def check(self): """ check if storage is healthy """ raise NotImplementedError @abstractmethod def reset(self): """ reset storage to clear limits """ raise NotImplementedError @abstractmethod def clear(self, key): """ resets the rate limit key :param str key: the key to clear rate limits for """ raise NotImplementedError class LockableEntry(threading._RLock): __slots__ = ["atime", "expiry"] def __init__(self, expiry): self.atime = time.time() self.expiry = self.atime + expiry super(LockableEntry, self).__init__() class MemoryStorage(Storage): """ rate limit storage using :class:`collections.Counter` as an in memory storage for fixed and elastic window strategies, and a simple list to implement moving window strategy. """ STORAGE_SCHEME = ["memory"] def __init__(self, uri=None, **_): self.storage = Counter() self.expirations = {} self.events = {} self.timer = threading.Timer(0.01, self.__expire_events) self.timer.start() super(MemoryStorage, self).__init__(uri) def __expire_events(self): for key in self.events.keys(): for event in list(self.events[key]): with event: if ( event.expiry <= time.time() and event in self.events[key] ): self.events[key].remove(event) for key in list(self.expirations.keys()): if self.expirations[key] <= time.time(): self.storage.pop(key, None) self.expirations.pop(key, None) def __schedule_expiry(self): if not self.timer.is_alive(): self.timer = threading.Timer(0.01, self.__expire_events) self.timer.start() def incr(self, key, expiry, elastic_expiry=False): """ increments the counter for a given rate limit key :param str key: the key to increment :param int expiry: amount in seconds for the key to expire in :param bool elastic_expiry: whether to keep extending the rate limit window every hit. """ self.get(key) self.__schedule_expiry() self.storage[key] += 1 if elastic_expiry or self.storage[key] == 1: self.expirations[key] = time.time() + expiry return self.storage.get(key, 0) def get(self, key): """ :param str key: the key to get the counter value for """ if self.expirations.get(key, 0) <= time.time(): self.storage.pop(key, None) self.expirations.pop(key, None) return self.storage.get(key, 0) def clear(self, key): """ :param str key: the key to clear rate limits for """ self.storage.pop(key, None) self.expirations.pop(key, None) self.events.pop(key, None) def acquire_entry(self, key, limit, expiry, no_add=False): """ :param str key: rate limit key to acquire an entry in :param int limit: amount of entries allowed :param int expiry: expiry of the entry :param bool no_add: if False an entry is not actually acquired but instead serves as a 'check' :rtype: bool """ self.events.setdefault(key, []) self.__schedule_expiry() timestamp = time.time() try: entry = self.events[key][limit - 1] except IndexError: entry = None if entry and entry.atime >= timestamp - expiry: return False else: if not no_add: self.events[key].insert(0, LockableEntry(expiry)) return True def get_expiry(self, key): """ :param str key: the key to get the expiry for """ return int(self.expirations.get(key, -1)) def get_num_acquired(self, key, expiry): """ returns the number of entries already acquired :param str key: rate limit key to acquire an entry in :param int expiry: expiry of the entry """ timestamp = time.time() return len([ k for k in self.events[key] if k.atime >= timestamp - expiry ]) if self.events.get(key) else 0 def get_moving_window(self, key, limit, expiry): """ returns the starting point and the number of entries in the moving window :param str key: rate limit key :param int expiry: expiry of entry :return: (start of window, number of acquired entries) """ timestamp = time.time() acquired = self.get_num_acquired(key, expiry) for item in self.events.get(key, []): if item.atime >= timestamp - expiry: return int(item.atime), acquired return int(timestamp), acquired def check(self): """ check if storage is healthy """ return True def reset(self): self.storage.clear() self.expirations.clear() self.events.clear() class RedisInteractor(object): SCRIPT_MOVING_WINDOW = """ local items = redis.call('lrange', KEYS[1], 0, tonumber(ARGV[2])) local expiry = tonumber(ARGV[1]) local a = 0 local oldest = nil for idx=1,#items do if tonumber(items[idx]) >= expiry then a = a + 1 if oldest == nil then oldest = tonumber(items[idx]) end else break end end return {oldest, a} """ SCRIPT_ACQUIRE_MOVING_WINDOW = """ local entry = redis.call('lindex', KEYS[1], tonumber(ARGV[2]) - 1) local timestamp = tonumber(ARGV[1]) local expiry = tonumber(ARGV[3]) if entry and tonumber(entry) >= timestamp - expiry then return false end local limit = tonumber(ARGV[2]) local no_add = tonumber(ARGV[4]) if 0 == no_add then redis.call('lpush', KEYS[1], timestamp) redis.call('ltrim', KEYS[1], 0, limit - 1) redis.call('expire', KEYS[1], expiry) end return true """ SCRIPT_CLEAR_KEYS = """ local keys = redis.call('keys', KEYS[1]) local res = 0 for i=1,#keys,5000 do res = res + redis.call('del', unpack(keys, i, math.min(i+4999, #keys))) end return res """ SCRIPT_INCR_EXPIRE = """ local current current = redis.call("incr",KEYS[1]) if tonumber(current) == 1 then redis.call("expire",KEYS[1],ARGV[1]) end return current """ def incr(self, key, expiry, connection, elastic_expiry=False): """ increments the counter for a given rate limit key :param connection: Redis connection :param str key: the key to increment :param int expiry: amount in seconds for the key to expire in """ value = connection.incr(key) if elastic_expiry or value == 1: connection.expire(key, expiry) return value def get(self, key, connection): """ :param connection: Redis connection :param str key: the key to get the counter value for """ return int(connection.get(key) or 0) def clear(self, key, connection): """ :param str key: the key to clear rate limits for :param connection: Redis connection """ connection.delete(key) def get_moving_window(self, key, limit, expiry): """ returns the starting point and the number of entries in the moving window :param str key: rate limit key :param int expiry: expiry of entry :return: (start of window, number of acquired entries) """ timestamp = time.time() window = self.lua_moving_window([key], [int(timestamp - expiry), limit]) return window or (timestamp, 0) def acquire_entry(self, key, limit, expiry, connection, no_add=False): """ :param str key: rate limit key to acquire an entry in :param int limit: amount of entries allowed :param int expiry: expiry of the entry :param bool no_add: if False an entry is not actually acquired but instead serves as a 'check' :param connection: Redis connection :return: True/False """ timestamp = time.time() acquired = self.lua_acquire_window( [key], [timestamp, limit, expiry, int(no_add)] ) return bool(acquired) def get_expiry(self, key, connection=None): """ :param str key: the key to get the expiry for :param connection: Redis connection """ return int(max(connection.ttl(key), 0) + time.time()) def check(self, connection): """ :param connection: Redis connection check if storage is healthy """ try: return connection.ping() except: # noqa return False class RedisStorage(RedisInteractor, Storage): """ Rate limit storage with redis as backend. Depends on the `redis-py` library. """ STORAGE_SCHEME = ["redis", "rediss", "redis+unix"] def __init__(self, uri, **options): """ :param str uri: uri of the form `redis://[:password]@host:port`, `redis://[:password]@host:port/db`, `rediss://[:password]@host:port`, `redis+unix:///path/to/sock` etc. This uri is passed directly to :func:`redis.from_url` except for the case of `redis+unix` where it is replaced with `unix`. :param \*\*options: all remaining keyword arguments are passed directly to the constructor of :class:`redis.Redis` :raise ConfigurationError: when the redis library is not available """ if not get_dependency("redis"): raise ConfigurationError( "redis prerequisite not available" ) # pragma: no cover uri = uri.replace('redis+unix', 'unix') self.storage = get_dependency("redis").from_url(uri, **options) self.initialize_storage(uri) super(RedisStorage, self).__init__() def initialize_storage(self, _uri): self.lua_moving_window = self.storage.register_script( self.SCRIPT_MOVING_WINDOW ) self.lua_acquire_window = self.storage.register_script( self.SCRIPT_ACQUIRE_MOVING_WINDOW ) self.lua_clear_keys = self.storage.register_script( self.SCRIPT_CLEAR_KEYS ) self.lua_incr_expire = self.storage.register_script( RedisStorage.SCRIPT_INCR_EXPIRE ) def incr(self, key, expiry, elastic_expiry=False): """ increments the counter for a given rate limit key :param str key: the key to increment :param int expiry: amount in seconds for the key to expire in """ if elastic_expiry: return super(RedisStorage, self).incr(key, expiry, self.storage, elastic_expiry) else: return self.lua_incr_expire([key], [expiry]) def get(self, key): """ :param str key: the key to get the counter value for """ return super(RedisStorage, self).get(key, self.storage) def clear(self, key): """ :param str key: the key to clear rate limits for """ return super(RedisStorage, self).clear(key, self.storage) def acquire_entry(self, key, limit, expiry, no_add=False): """ :param str key: rate limit key to acquire an entry in :param int limit: amount of entries allowed :param int expiry: expiry of the entry :param bool no_add: if False an entry is not actually acquired but instead serves as a 'check' :return: True/False """ return super(RedisStorage, self).acquire_entry( key, limit, expiry, self.storage, no_add=no_add ) def get_expiry(self, key): """ :param str key: the key to get the expiry for """ return super(RedisStorage, self).get_expiry(key, self.storage) def check(self): """ check if storage is healthy """ return super(RedisStorage, self).check(self.storage) def reset(self): """ This function calls a Lua Script to delete keys prefixed with 'LIMITER' in block of 5000. .. warning:: This operation was designed to be fast, but was not tested on a large production based system. Be careful with its usage as it could be slow on very large data sets. """ cleared = self.lua_clear_keys(['LIMITER*']) return cleared class RedisSentinelStorage(RedisStorage): """ Rate limit storage with redis sentinel as backend Depends on `redis-py` library """ STORAGE_SCHEME = ["redis+sentinel"] def __init__(self, uri, service_name=None, **options): """ :param str uri: url of the form `redis+sentinel://host:port,host:port/service_name` :param str service_name, optional: sentinel service name (if not provided in `uri`) :param \*\*options: all remaining keyword arguments are passed directly to the constructor of :class:`redis.sentinel.Sentinel` :raise ConfigurationError: when the redis library is not available or if the redis master host cannot be pinged. """ if not get_dependency("redis"): raise ConfigurationError( "redis prerequisite not available" ) # pragma: no cover parsed = urllib.parse.urlparse(uri) sentinel_configuration = [] password = None if parsed.password: password = parsed.password for loc in parsed.netloc[parsed.netloc.find("@") + 1:].split(","): host, port = loc.split(":") sentinel_configuration.append((host, int(port))) self.service_name = ( parsed.path.replace("/", "") if parsed.path else service_name ) if self.service_name is None: raise ConfigurationError("'service_name' not provided") options.setdefault('socket_timeout', 0.2) self.sentinel = get_dependency("redis.sentinel").Sentinel( sentinel_configuration, password=password, **options ) self.storage = self.sentinel.master_for(self.service_name) self.storage_slave = self.sentinel.slave_for(self.service_name) self.initialize_storage(uri) super(RedisStorage, self).__init__() def get(self, key): """ :param str key: the key to get the counter value for """ return super(RedisStorage, self).get(key, self.storage_slave) def get_expiry(self, key): """ :param str key: the key to get the expiry for """ return super(RedisStorage, self).get_expiry(key, self.storage_slave) def check(self): """ check if storage is healthy """ return super(RedisStorage, self).check(self.storage_slave) class RedisClusterStorage(RedisStorage): """ Rate limit storage with redis cluster as backend Depends on `redis-py-cluster` library """ STORAGE_SCHEME = ["redis+cluster"] def __init__(self, uri, **options): """ :param str uri: url of the form `redis+cluster://[:password]@host:port,host:port` :param \*\*options: all remaining keyword arguments are passed directly to the constructor of :class:`rediscluster.RedisCluster` :raise ConfigurationError: when the rediscluster library is not available or if the redis host cannot be pinged. """ if not get_dependency("rediscluster"): raise ConfigurationError( "redis-py-cluster prerequisite not available" ) # pragma: no cover parsed = urllib.parse.urlparse(uri) cluster_hosts = [] for loc in parsed.netloc.split(","): host, port = loc.split(":") cluster_hosts.append({"host": host, "port": int(port)}) options.setdefault('max_connections', 1000) self.storage = get_dependency("rediscluster").RedisCluster( startup_nodes=cluster_hosts, **options ) self.initialize_storage(uri) super(RedisStorage, self).__init__() def reset(self): """ Redis Clusters are sharded and deleting across shards can't be done atomically. Because of this, this reset loops over all keys that are prefixed with 'LIMITER' and calls delete on them, one at a time. .. warning:: This operation was not tested with extremely large data sets. On a large production based system, care should be taken with its usage as it could be slow on very large data sets""" keys = self.storage.keys('LIMITER*') return sum([self.storage.delete(k.decode('utf-8')) for k in keys]) class MemcachedStorage(Storage): """ Rate limit storage with memcached as backend. Depends on the `pymemcache` library. """ MAX_CAS_RETRIES = 10 STORAGE_SCHEME = ["memcached"] def __init__(self, uri, **options): """ :param str uri: memcached location of the form `memcached://host:port,host:port`, `memcached:///var/tmp/path/to/sock` :param \*\*options: all remaining keyword arguments are passed directly to the constructor of :class:`pymemcache.client.base.Client` :raise ConfigurationError: when `pymemcache` is not available or memcached location cannot be parsed. """ parsed = urllib.parse.urlparse(uri) self.hosts = [] for loc in parsed.netloc.strip().split(","): if not loc: continue host, port = loc.split(":") self.hosts.append((host, int(port))) else: # filesystem path to UDS if parsed.path and not parsed.netloc and not parsed.port: self.hosts = [parsed.path] self.library = options.pop('library', 'pymemcache.client') self.cluster_library = options.pop('library', 'pymemcache.client.hash') self.client_getter = options.pop('client_getter', self.get_client) self.options = options if not get_dependency(self.library): raise ConfigurationError( "memcached prerequisite not available." " please install %s" % self.library ) # pragma: no cover self.local_storage = threading.local() self.local_storage.storage = None def get_client(self, module, hosts, **kwargs): """ returns a memcached client. :param module: the memcached module :param hosts: list of memcached hosts :return: """ return ( module.HashClient(hosts, **kwargs) if len(hosts) > 1 else module.Client(*hosts, **kwargs) ) def call_memcached_func(self, func, *args, **kwargs): if 'noreply' in kwargs: argspec = inspect.getargspec(func) if not ('noreply' in argspec.args or argspec.keywords): kwargs.pop('noreply') # noqa return func(*args, **kwargs) @property def storage(self): """ lazily creates a memcached client instance using a thread local """ if not ( hasattr(self.local_storage, "storage") and self.local_storage.storage ): self.local_storage.storage = self.client_getter( get_dependency(self.cluster_library if len(self.hosts) > 1 else self.library), self.hosts, **self.options ) return self.local_storage.storage def get(self, key): """ :param str key: the key to get the counter value for """ return int(self.storage.get(key) or 0) def clear(self, key): """ :param str key: the key to clear rate limits for """ self.storage.delete(key) def incr(self, key, expiry, elastic_expiry=False): """ increments the counter for a given rate limit key :param str key: the key to increment :param int expiry: amount in seconds for the key to expire in :param bool elastic_expiry: whether to keep extending the rate limit window every hit. """ if not self.call_memcached_func( self.storage.add, key, 1, expiry, noreply=False ): if elastic_expiry: value, cas = self.storage.gets(key) retry = 0 while ( not self.call_memcached_func( self.storage.cas, key, int(value or 0) + 1, cas, expiry ) and retry < self.MAX_CAS_RETRIES ): value, cas = self.storage.gets(key) retry += 1 self.call_memcached_func( self.storage.set, key + "/expires", expiry + time.time(), expire=expiry, noreply=False ) return int(value or 0) + 1 else: return self.storage.incr(key, 1) self.call_memcached_func( self.storage.set, key + "/expires", expiry + time.time(), expire=expiry, noreply=False ) return 1 def get_expiry(self, key): """ :param str key: the key to get the expiry for """ return int(float(self.storage.get(key + "/expires") or time.time())) def check(self): """ check if storage is healthy """ try: self.call_memcached_func(self.storage.get, 'limiter-check') return True except: # noqa return False class GAEMemcachedStorage(MemcachedStorage): """ rate limit storage with GAE memcache as backend """ MAX_CAS_RETRIES = 10 STORAGE_SCHEME = ["gaememcached"] def __init__(self, uri, **options): options["library"] = "google.appengine.api.memcache" super(GAEMemcachedStorage, self).__init__(uri, **options) def incr(self, key, expiry, elastic_expiry=False): """ increments the counter for a given rate limit key :param str key: the key to increment :param int expiry: amount in seconds for the key to expire in :param bool elastic_expiry: whether to keep extending the rate limit window every hit. """ if not self.call_memcached_func(self.storage.add, key, 1, expiry): if elastic_expiry: # CAS id is set as state on the client object in GAE memcache value = self.storage.gets(key) retry = 0 while ( not self.call_memcached_func( self.storage.cas, key, int(value or 0) + 1, expiry ) and retry < self.MAX_CAS_RETRIES ): value = self.storage.gets(key) retry += 1 self.call_memcached_func( self.storage.set, key + "/expires", expiry + time.time(), expiry ) return int(value or 0) + 1 else: return self.storage.incr(key, 1) self.call_memcached_func( self.storage.set, key + "/expires", expiry + time.time(), expiry ) return 1 def check(self): """ check if storage is healthy """ try: self.call_memcached_func(self.storage.get_stats) return True except: # noqa return False limits-1.5.1/limits/strategies.py000066400000000000000000000133441362535055200170570ustar00rootroot00000000000000""" rate limiting strategies """ from abc import ABCMeta, abstractmethod import weakref import six import time @six.add_metaclass(ABCMeta) class RateLimiter(object): def __init__(self, storage): self.storage = weakref.ref(storage) @abstractmethod def hit(self, item, *identifiers): """ creates a hit on the rate limit and returns True if successful. :param item: a :class:`RateLimitItem` instance :param identifiers: variable list of strings to uniquely identify the limit :return: True/False """ raise NotImplementedError @abstractmethod def test(self, item, *identifiers): """ checks the rate limit and returns True if it is not currently exceeded. :param item: a :class:`RateLimitItem` instance :param identifiers: variable list of strings to uniquely identify the limit :return: True/False """ raise NotImplementedError @abstractmethod def get_window_stats(self, item, *identifiers): """ returns the number of requests remaining and reset of this limit. :param item: a :class:`RateLimitItem` instance :param identifiers: variable list of strings to uniquely identify the limit :return: tuple (reset time (int), remaining (int)) """ raise NotImplementedError def clear(self, item, *identifiers): return self.storage().clear(item.key_for(*identifiers)) class MovingWindowRateLimiter(RateLimiter): """ Reference: :ref:`moving-window` """ def __init__(self, storage): if not ( hasattr(storage, "acquire_entry") or hasattr(storage, "get_moving_window") ): raise NotImplementedError( "MovingWindowRateLimiting is not implemented for storage of type %s" % storage.__class__ ) super(MovingWindowRateLimiter, self).__init__(storage) def hit(self, item, *identifiers): """ creates a hit on the rate limit and returns True if successful. :param item: a :class:`RateLimitItem` instance :param identifiers: variable list of strings to uniquely identify the limit :return: True/False """ return self.storage().acquire_entry( item.key_for(*identifiers), item.amount, item.get_expiry() ) def test(self, item, *identifiers): """ checks the rate limit and returns True if it is not currently exceeded. :param item: a :class:`RateLimitItem` instance :param identifiers: variable list of strings to uniquely identify the limit :return: True/False """ return self.storage().get_moving_window( item.key_for(*identifiers), item.amount, item.get_expiry(), )[1] < item.amount def get_window_stats(self, item, *identifiers): """ returns the number of requests remaining within this limit. :param item: a :class:`RateLimitItem` instance :param identifiers: variable list of strings to uniquely identify the limit :return: tuple (reset time (int), remaining (int)) """ window_start, window_items = self.storage().get_moving_window( item.key_for(*identifiers), item.amount, item.get_expiry() ) reset = window_start + item.get_expiry() return (reset, item.amount - window_items) class FixedWindowRateLimiter(RateLimiter): """ Reference: :ref:`fixed-window` """ def hit(self, item, *identifiers): """ creates a hit on the rate limit and returns True if successful. :param item: a :class:`RateLimitItem` instance :param identifiers: variable list of strings to uniquely identify the limit :return: True/False """ return ( self.storage().incr(item.key_for(*identifiers), item.get_expiry()) <= item.amount ) def test(self, item, *identifiers): """ checks the rate limit and returns True if it is not currently exceeded. :param item: a :class:`RateLimitItem` instance :param identifiers: variable list of strings to uniquely identify the limit :return: True/False """ return self.storage().get(item.key_for(*identifiers)) < item.amount def get_window_stats(self, item, *identifiers): """ returns the number of requests remaining and reset of this limit. :param item: a :class:`RateLimitItem` instance :param identifiers: variable list of strings to uniquely identify the limit :return: tuple (reset time (int), remaining (int)) """ remaining = max( 0, item.amount - self.storage().get(item.key_for(*identifiers)) ) reset = self.storage().get_expiry(item.key_for(*identifiers)) return (reset, remaining) class FixedWindowElasticExpiryRateLimiter(FixedWindowRateLimiter): """ Reference: :ref:`fixed-window-elastic` """ def hit(self, item, *identifiers): """ creates a hit on the rate limit and returns True if successful. :param item: a :class:`RateLimitItem` instance :param identifiers: variable list of strings to uniquely identify the limit :return: True/False """ return ( self.storage().incr( item.key_for(*identifiers), item.get_expiry(), True ) <= item.amount ) STRATEGIES = { "fixed-window": FixedWindowRateLimiter, "fixed-window-elastic-expiry": FixedWindowElasticExpiryRateLimiter, "moving-window": MovingWindowRateLimiter } limits-1.5.1/limits/util.py000066400000000000000000000044731362535055200156650ustar00rootroot00000000000000""" """ import re import sys import six from .limits import GRANULARITIES SEPARATORS = re.compile(r"[,;|]{1}") SINGLE_EXPR = re.compile( r"\s*([0-9]+)\s*(/|\s*per\s*)\s*([0-9]+)*\s*(hour|minute|second|day|month|year)s?\s*", re.IGNORECASE ) EXPR = re.compile( r"^{SINGLE}(:?{SEPARATORS}{SINGLE})*$".format( SINGLE=SINGLE_EXPR.pattern, SEPARATORS=SEPARATORS.pattern ), re.IGNORECASE ) def get_dependency(dep): """ safe function to import a module programmatically :return: module or None (if not importable) """ try: __import__(dep) return sys.modules[dep] except ImportError: # pragma: no cover return None def parse_many(limit_string): """ parses rate limits in string notation containing multiple rate limits (e.g. '1/second; 5/minute') :param string limit_string: rate limit string using :ref:`ratelimit-string` :raise ValueError: if the string notation is invalid. :return: a list of :class:`RateLimitItem` instances. """ if not ( isinstance(limit_string, six.string_types) and EXPR.match(limit_string) ): raise ValueError( "couldn't parse rate limit string '%s'" % limit_string ) limits = [] for limit in SEPARATORS.split(limit_string): amount, _, multiples, granularity_string = SINGLE_EXPR.match(limit ).groups() granularity = granularity_from_string(granularity_string) limits.append(granularity(amount, multiples)) return limits def parse(limit_string): """ parses a single rate limit in string notation (e.g. '1/second' or '1 per second' :param string limit_string: rate limit string using :ref:`ratelimit-string` :raise ValueError: if the string notation is invalid. :return: an instance of :class:`RateLimitItem` """ return list(parse_many(limit_string))[0] def granularity_from_string(granularity_string): """ :param granularity_string: :return: a subclass of :class:`RateLimitItem` :raise ValueError: """ for granularity in GRANULARITIES.values(): if granularity.check_granularity_string(granularity_string): return granularity raise ValueError("no granularity matched for %s" % granularity_string) limits-1.5.1/limits/version.py000066400000000000000000000000561362535055200163660ustar00rootroot00000000000000""" empty file to be updated by versioneer """limits-1.5.1/push-release.sh000077500000000000000000000002661362535055200157650ustar00rootroot00000000000000#!/bin/bash cur=$(git rev-parse --abbrev-ref HEAD) git checkout master git push origin master --tags git checkout stable git merge master git push origin stable git checkout $cur limits-1.5.1/requirements/000077500000000000000000000000001362535055200155505ustar00rootroot00000000000000limits-1.5.1/requirements/ci.txt000066400000000000000000000000251362535055200167010ustar00rootroot00000000000000-r test.txt coverallslimits-1.5.1/requirements/dev.txt000066400000000000000000000000361362535055200170660ustar00rootroot00000000000000-r ci.txt keyring twine wheel limits-1.5.1/requirements/docs.txt000066400000000000000000000000451362535055200172400ustar00rootroot00000000000000-r main.txt sphinx sphinx_rtd_theme limits-1.5.1/requirements/main.txt000066400000000000000000000000131362535055200172270ustar00rootroot00000000000000six>=1.4.1 limits-1.5.1/requirements/test.txt000066400000000000000000000001641362535055200172710ustar00rootroot00000000000000-r main.txt nose mock coverage nose-cov pymemcache redis<3.1.0 redis-py-cluster>=1.1.0 PyYAML hiro>0.1.6 nose-timer limits-1.5.1/setup.cfg000066400000000000000000000002361362535055200146470ustar00rootroot00000000000000[versioneer] VCS = git style = pep440 versionfile_source = limits/_version.py versionfile_build = limits/_version.py tag_prefix = parentdir_prefix = limits- limits-1.5.1/setup.py000077500000000000000000000016261362535055200145470ustar00rootroot00000000000000""" setup.py for limits """ __author__ = "Ali-Akber Saifee" __email__ = "ali@indydevs.org" __copyright__ = "Copyright 2015, Ali-Akber Saifee" import os from setuptools import setup, find_packages import versioneer THIS_DIR = os.path.abspath(os.path.dirname(__file__)) REQUIREMENTS = [ k for k in open( os.path.join(THIS_DIR, 'requirements', 'main.txt') ).read().splitlines() if k.strip() ] setup( name='limits', author=__author__, author_email=__email__, license="MIT", url="https://limits.readthedocs.org", zip_safe=False, version=versioneer.get_version(), cmdclass=versioneer.get_cmdclass(), install_requires=REQUIREMENTS, classifiers=[k for k in open('CLASSIFIERS').read().split('\n') if k], description='Rate limiting utilities', long_description=open('README.rst').read(), packages=find_packages(exclude=['google.*','google', 'tests*']), ) limits-1.5.1/tag.sh000077500000000000000000000017701362535055200141440ustar00rootroot00000000000000#!/bin/bash rm -rf build dist echo current version:$(python setup.py --version) read -p "new version:" new_version last_portion=$(grep -P "^Changelog$" HISTORY.rst -5 | grep -P "^\d+.\d+.\d+") changelog_file=/var/tmp/limits.newchangelog new_changelog_heading="${new_version} `date +"%Y-%m-%d"`" new_changelog_heading_sep=$(python -c "print('='*len('$new_changelog_heading'))") echo $new_changelog_heading > $changelog_file echo $new_changelog_heading_sep >> $changelog_file python -c "print(open('HISTORY.rst').read().replace('$last_portion', open('$changelog_file').read() +'\n' + '$last_portion'))" > HISTORY.rst.new cp HISTORY.rst.new HISTORY.rst vim HISTORY.rst if rst2html.py HISTORY.rst > /dev/null then echo "tagging $new_version" git add HISTORY.rst git commit -m "updating changelog for ${new_version}" git tag -s ${new_version} -m "tagging version ${new_version}" python setup.py build sdist bdist_wheel twine upload dist/* else echo changelog has errors. skipping tag. fi; limits-1.5.1/tests/000077500000000000000000000000001362535055200141675ustar00rootroot00000000000000limits-1.5.1/tests/__init__.py000066400000000000000000000012401362535055200162750ustar00rootroot00000000000000import platform import sys from functools import wraps from nose.plugins.skip import SkipTest RUN_GAE = ( sys.version_info[:2] == (2, 7) and platform.python_implementation() == 'CPython' ) def test_import(): import limits def test_module_version(): import limits assert limits.__version__ is not None def skip_if(cond): def _inner(fn): @wraps(fn) def __inner(*a, **k): if cond() if callable(cond) else cond: raise SkipTest return fn(*a, **k) return __inner return _inner def skip_if_pypy(fn): return skip_if(platform.python_implementation().lower() == 'pypy')(fn) limits-1.5.1/tests/redis-configurations/000077500000000000000000000000001362535055200203255ustar00rootroot00000000000000limits-1.5.1/tests/redis-configurations/basic.conf000066400000000000000000001206621362535055200222640ustar00rootroot00000000000000# Redis configuration file example # Note on units: when memory size is needed, it is possible to specify # it in the usual form of 1k 5GB 4M and so forth: # # 1k => 1000 bytes # 1kb => 1024 bytes # 1m => 1000000 bytes # 1mb => 1024*1024 bytes # 1g => 1000000000 bytes # 1gb => 1024*1024*1024 bytes # # units are case insensitive so 1GB 1Gb 1gB are all the same. ################################## INCLUDES ################################### # Include one or more other config files here. This is useful if you # have a standard template that goes to all Redis servers but also need # to customize a few per-server settings. Include files can include # other files, so use this wisely. # # Notice option "include" won't be rewritten by command "CONFIG REWRITE" # from admin or Redis Sentinel. Since Redis always uses the last processed # line as value of a configuration directive, you'd better put includes # at the beginning of this file to avoid overwriting config change at runtime. # # If instead you are interested in using includes to override configuration # options, it is better to use include as the last line. # # include /path/to/local.conf # include /path/to/other.conf ################################ GENERAL ##################################### # By default Redis does not run as a daemon. Use 'yes' if you need it. # Note that Redis will write a pid file in /var/run/redis.pid when daemonized. daemonize yes # When running daemonized, Redis writes a pid file in /var/run/redis.pid by # default. You can specify a custom pid file location here. pidfile "/tmp/redis_basic.pid" # Accept connections on the specified port, default is 6379. # If port 0 is specified Redis will not listen on a TCP socket. port 7379 # TCP listen() backlog. # # In high requests-per-second environments you need an high backlog in order # to avoid slow clients connections issues. Note that the Linux kernel # will silently truncate it to the value of /proc/sys/net/core/somaxconn so # make sure to raise both the value of somaxconn and tcp_max_syn_backlog # in order to get the desired effect. tcp-backlog 511 # By default Redis listens for connections from all the network interfaces # available on the server. It is possible to listen to just one or multiple # interfaces using the "bind" configuration directive, followed by one or # more IP addresses. # # Examples: # # bind 192.168.1.100 10.0.0.1 # bind 127.0.0.1 # Specify the path for the Unix socket that will be used to listen for # incoming connections. There is no default, so Redis will not listen # on a unix socket when not specified. # # unixsocketperm 700 # Close the connection after a client is idle for N seconds (0 to disable) timeout 0 # TCP keepalive. # # If non-zero, use SO_KEEPALIVE to send TCP ACKs to clients in absence # of communication. This is useful for two reasons: # # 1) Detect dead peers. # 2) Take the connection alive from the point of view of network # equipment in the middle. # # On Linux, the specified value (in seconds) is the period used to send ACKs. # Note that to close the connection the double of the time is needed. # On other kernels the period depends on the kernel configuration. # # A reasonable value for this option is 60 seconds. tcp-keepalive 0 # Specify the server verbosity level. # This can be one of: # debug (a lot of information, useful for development/testing) # verbose (many rarely useful info, but not a mess like the debug level) # notice (moderately verbose, what you want in production probably) # warning (only very important / critical messages are logged) loglevel notice # Specify the log file name. Also the empty string can be used to force # Redis to log on the standard output. Note that if you use standard # output for logging but daemonize, logs will be sent to /dev/null logfile "" # To enable logging to the system logger, just set 'syslog-enabled' to yes, # and optionally update the other syslog parameters to suit your needs. # syslog-enabled no # Specify the syslog identity. # syslog-ident redis # Specify the syslog facility. Must be USER or between LOCAL0-LOCAL7. # syslog-facility local0 # Set the number of databases. The default database is DB 0, you can select # a different one on a per-connection basis using SELECT where # dbid is a number between 0 and 'databases'-1 databases 16 ################################ SNAPSHOTTING ################################ # # Save the DB on disk: # # save # # Will save the DB if both the given number of seconds and the given # number of write operations against the DB occurred. # # In the example below the behaviour will be to save: # after 900 sec (15 min) if at least 1 key changed # after 300 sec (5 min) if at least 10 keys changed # after 60 sec if at least 10000 keys changed # # Note: you can disable saving completely by commenting out all "save" lines. # # It is also possible to remove all the previously configured save # points by adding a save directive with a single empty string argument # like in the following example: # # save "" save 900 1 save 300 10 save 60 10000 # By default Redis will stop accepting writes if RDB snapshots are enabled # (at least one save point) and the latest background save failed. # This will make the user aware (in a hard way) that data is not persisting # on disk properly, otherwise chances are that no one will notice and some # disaster will happen. # # If the background saving process will start working again Redis will # automatically allow writes again. # # However if you have setup your proper monitoring of the Redis server # and persistence, you may want to disable this feature so that Redis will # continue to work as usual even if there are problems with disk, # permissions, and so forth. stop-writes-on-bgsave-error yes # Compress string objects using LZF when dump .rdb databases? # For default that's set to 'yes' as it's almost always a win. # If you want to save some CPU in the saving child set it to 'no' but # the dataset will likely be bigger if you have compressible values or keys. rdbcompression yes # Since version 5 of RDB a CRC64 checksum is placed at the end of the file. # This makes the format more resistant to corruption but there is a performance # hit to pay (around 10%) when saving and loading RDB files, so you can disable it # for maximum performances. # # RDB files created with checksum disabled have a checksum of zero that will # tell the loading code to skip the check. rdbchecksum yes # The filename where to dump the DB dbfilename "redis-master.rdb" # The working directory. # # The DB will be written inside this directory, with the filename specified # above using the 'dbfilename' configuration directive. # # The Append Only File will also be created inside this directory. # # Note that you must specify a directory here, not a file name. dir "/tmp/" ################################# REPLICATION ################################# # Master-Slave replication. Use slaveof to make a Redis instance a copy of # another Redis server. A few things to understand ASAP about Redis replication. # # 1) Redis replication is asynchronous, but you can configure a master to # stop accepting writes if it appears to be not connected with at least # a given number of slaves. # 2) Redis slaves are able to perform a partial resynchronization with the # master if the replication link is lost for a relatively small amount of # time. You may want to configure the replication backlog size (see the next # sections of this file) with a sensible value depending on your needs. # 3) Replication is automatic and does not need user intervention. After a # network partition slaves automatically try to reconnect to masters # and resynchronize with them. # # slaveof # If the master is password protected (using the "requirepass" configuration # directive below) it is possible to tell the slave to authenticate before # starting the replication synchronization process, otherwise the master will # refuse the slave request. # # masterauth # When a slave loses its connection with the master, or when the replication # is still in progress, the slave can act in two different ways: # # 1) if slave-serve-stale-data is set to 'yes' (the default) the slave will # still reply to client requests, possibly with out of date data, or the # data set may just be empty if this is the first synchronization. # # 2) if slave-serve-stale-data is set to 'no' the slave will reply with # an error "SYNC with master in progress" to all the kind of commands # but to INFO and SLAVEOF. # slave-serve-stale-data yes # You can configure a slave instance to accept writes or not. Writing against # a slave instance may be useful to store some ephemeral data (because data # written on a slave will be easily deleted after resync with the master) but # may also cause problems if clients are writing to it because of a # misconfiguration. # # Since Redis 2.6 by default slaves are read-only. # # Note: read only slaves are not designed to be exposed to untrusted clients # on the internet. It's just a protection layer against misuse of the instance. # Still a read only slave exports by default all the administrative commands # such as CONFIG, DEBUG, and so forth. To a limited extent you can improve # security of read only slaves using 'rename-command' to shadow all the # administrative / dangerous commands. slave-read-only yes # Replication SYNC strategy: disk or socket. # # ------------------------------------------------------- # WARNING: DISKLESS REPLICATION IS EXPERIMENTAL CURRENTLY # ------------------------------------------------------- # # New slaves and reconnecting slaves that are not able to continue the replication # process just receiving differences, need to do what is called a "full # synchronization". An RDB file is transmitted from the master to the slaves. # The transmission can happen in two different ways: # # 1) Disk-backed: The Redis master creates a new process that writes the RDB # file on disk. Later the file is transferred by the parent # process to the slaves incrementally. # 2) Diskless: The Redis master creates a new process that directly writes the # RDB file to slave sockets, without touching the disk at all. # # With disk-backed replication, while the RDB file is generated, more slaves # can be queued and served with the RDB file as soon as the current child producing # the RDB file finishes its work. With diskless replication instead once # the transfer starts, new slaves arriving will be queued and a new transfer # will start when the current one terminates. # # When diskless replication is used, the master waits a configurable amount of # time (in seconds) before starting the transfer in the hope that multiple slaves # will arrive and the transfer can be parallelized. # # With slow disks and fast (large bandwidth) networks, diskless replication # works better. repl-diskless-sync no # When diskless replication is enabled, it is possible to configure the delay # the server waits in order to spawn the child that transfers the RDB via socket # to the slaves. # # This is important since once the transfer starts, it is not possible to serve # new slaves arriving, that will be queued for the next RDB transfer, so the server # waits a delay in order to let more slaves arrive. # # The delay is specified in seconds, and by default is 5 seconds. To disable # it entirely just set it to 0 seconds and the transfer will start ASAP. repl-diskless-sync-delay 5 # Slaves send PINGs to server in a predefined interval. It's possible to change # this interval with the repl_ping_slave_period option. The default value is 10 # seconds. # # repl-ping-slave-period 10 # The following option sets the replication timeout for: # # 1) Bulk transfer I/O during SYNC, from the point of view of slave. # 2) Master timeout from the point of view of slaves (data, pings). # 3) Slave timeout from the point of view of masters (REPLCONF ACK pings). # # It is important to make sure that this value is greater than the value # specified for repl-ping-slave-period otherwise a timeout will be detected # every time there is low traffic between the master and the slave. # # repl-timeout 60 # Disable TCP_NODELAY on the slave socket after SYNC? # # If you select "yes" Redis will use a smaller number of TCP packets and # less bandwidth to send data to slaves. But this can add a delay for # the data to appear on the slave side, up to 40 milliseconds with # Linux kernels using a default configuration. # # If you select "no" the delay for data to appear on the slave side will # be reduced but more bandwidth will be used for replication. # # By default we optimize for low latency, but in very high traffic conditions # or when the master and slaves are many hops away, turning this to "yes" may # be a good idea. repl-disable-tcp-nodelay no # Set the replication backlog size. The backlog is a buffer that accumulates # slave data when slaves are disconnected for some time, so that when a slave # wants to reconnect again, often a full resync is not needed, but a partial # resync is enough, just passing the portion of data the slave missed while # disconnected. # # The bigger the replication backlog, the longer the time the slave can be # disconnected and later be able to perform a partial resynchronization. # # The backlog is only allocated once there is at least a slave connected. # # repl-backlog-size 1mb # After a master has no longer connected slaves for some time, the backlog # will be freed. The following option configures the amount of seconds that # need to elapse, starting from the time the last slave disconnected, for # the backlog buffer to be freed. # # A value of 0 means to never release the backlog. # # repl-backlog-ttl 3600 # The slave priority is an integer number published by Redis in the INFO output. # It is used by Redis Sentinel in order to select a slave to promote into a # master if the master is no longer working correctly. # # A slave with a low priority number is considered better for promotion, so # for instance if there are three slaves with priority 10, 100, 25 Sentinel will # pick the one with priority 10, that is the lowest. # # However a special priority of 0 marks the slave as not able to perform the # role of master, so a slave with priority of 0 will never be selected by # Redis Sentinel for promotion. # # By default the priority is 100. slave-priority 100 # It is possible for a master to stop accepting writes if there are less than # N slaves connected, having a lag less or equal than M seconds. # # The N slaves need to be in "online" state. # # The lag in seconds, that must be <= the specified value, is calculated from # the last ping received from the slave, that is usually sent every second. # # This option does not GUARANTEE that N replicas will accept the write, but # will limit the window of exposure for lost writes in case not enough slaves # are available, to the specified number of seconds. # # For example to require at least 3 slaves with a lag <= 10 seconds use: # # min-slaves-to-write 3 # min-slaves-max-lag 10 # # Setting one or the other to 0 disables the feature. # # By default min-slaves-to-write is set to 0 (feature disabled) and # min-slaves-max-lag is set to 10. ################################## SECURITY ################################### # Require clients to issue AUTH before processing any other # commands. This might be useful in environments in which you do not trust # others with access to the host running redis-server. # # This should stay commented out for backward compatibility and because most # people do not need auth (e.g. they run their own servers). # # Warning: since Redis is pretty fast an outside user can try up to # 150k passwords per second against a good box. This means that you should # use a very strong password otherwise it will be very easy to break. # # requirepass foobared # Command renaming. # # It is possible to change the name of dangerous commands in a shared # environment. For instance the CONFIG command may be renamed into something # hard to guess so that it will still be available for internal-use tools # but not available for general clients. # # Example: # # rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52 # # It is also possible to completely kill a command by renaming it into # an empty string: # # rename-command CONFIG "" # # Please note that changing the name of commands that are logged into the # AOF file or transmitted to slaves may cause problems. ################################### LIMITS #################################### # Set the max number of connected clients at the same time. By default # this limit is set to 10000 clients, however if the Redis server is not # able to configure the process file limit to allow for the specified limit # the max number of allowed clients is set to the current file limit # minus 32 (as Redis reserves a few file descriptors for internal uses). # # Once the limit is reached Redis will close all the new connections sending # an error 'max number of clients reached'. # # maxclients 10000 # Don't use more memory than the specified amount of bytes. # When the memory limit is reached Redis will try to remove keys # according to the eviction policy selected (see maxmemory-policy). # # If Redis can't remove keys according to the policy, or if the policy is # set to 'noeviction', Redis will start to reply with errors to commands # that would use more memory, like SET, LPUSH, and so on, and will continue # to reply to read-only commands like GET. # # This option is usually useful when using Redis as an LRU cache, or to set # a hard memory limit for an instance (using the 'noeviction' policy). # # WARNING: If you have slaves attached to an instance with maxmemory on, # the size of the output buffers needed to feed the slaves are subtracted # from the used memory count, so that network problems / resyncs will # not trigger a loop where keys are evicted, and in turn the output # buffer of slaves is full with DELs of keys evicted triggering the deletion # of more keys, and so forth until the database is completely emptied. # # In short... if you have slaves attached it is suggested that you set a lower # limit for maxmemory so that there is some free RAM on the system for slave # output buffers (but this is not needed if the policy is 'noeviction'). # # maxmemory # MAXMEMORY POLICY: how Redis will select what to remove when maxmemory # is reached. You can select among five behaviors: # # volatile-lru -> remove the key with an expire set using an LRU algorithm # allkeys-lru -> remove any key according to the LRU algorithm # volatile-random -> remove a random key with an expire set # allkeys-random -> remove a random key, any key # volatile-ttl -> remove the key with the nearest expire time (minor TTL) # noeviction -> don't expire at all, just return an error on write operations # # Note: with any of the above policies, Redis will return an error on write # operations, when there are no suitable keys for eviction. # # At the date of writing these commands are: set setnx setex append # incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd # sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby # zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby # getset mset msetnx exec sort # # The default is: # # maxmemory-policy noeviction # LRU and minimal TTL algorithms are not precise algorithms but approximated # algorithms (in order to save memory), so you can tune it for speed or # accuracy. For default Redis will check five keys and pick the one that was # used less recently, you can change the sample size using the following # configuration directive. # # The default of 5 produces good enough results. 10 Approximates very closely # true LRU but costs a bit more CPU. 3 is very fast but not very accurate. # # maxmemory-samples 5 ############################## APPEND ONLY MODE ############################### # By default Redis asynchronously dumps the dataset on disk. This mode is # good enough in many applications, but an issue with the Redis process or # a power outage may result into a few minutes of writes lost (depending on # the configured save points). # # The Append Only File is an alternative persistence mode that provides # much better durability. For instance using the default data fsync policy # (see later in the config file) Redis can lose just one second of writes in a # dramatic event like a server power outage, or a single write if something # wrong with the Redis process itself happens, but the operating system is # still running correctly. # # AOF and RDB persistence can be enabled at the same time without problems. # If the AOF is enabled on startup Redis will load the AOF, that is the file # with the better durability guarantees. # # Please check http://redis.io/topics/persistence for more information. appendonly no # The name of the append only file (default: "appendonly.aof") appendfilename "appendonly.aof" # The fsync() call tells the Operating System to actually write data on disk # instead of waiting for more data in the output buffer. Some OS will really flush # data on disk, some other OS will just try to do it ASAP. # # Redis supports three different modes: # # no: don't fsync, just let the OS flush the data when it wants. Faster. # always: fsync after every write to the append only log. Slow, Safest. # everysec: fsync only one time every second. Compromise. # # The default is "everysec", as that's usually the right compromise between # speed and data safety. It's up to you to understand if you can relax this to # "no" that will let the operating system flush the output buffer when # it wants, for better performances (but if you can live with the idea of # some data loss consider the default persistence mode that's snapshotting), # or on the contrary, use "always" that's very slow but a bit safer than # everysec. # # More details please check the following article: # http://antirez.com/post/redis-persistence-demystified.html # # If unsure, use "everysec". # appendfsync always appendfsync everysec # appendfsync no # When the AOF fsync policy is set to always or everysec, and a background # saving process (a background save or AOF log background rewriting) is # performing a lot of I/O against the disk, in some Linux configurations # Redis may block too long on the fsync() call. Note that there is no fix for # this currently, as even performing fsync in a different thread will block # our synchronous write(2) call. # # In order to mitigate this problem it's possible to use the following option # that will prevent fsync() from being called in the main process while a # BGSAVE or BGREWRITEAOF is in progress. # # This means that while another child is saving, the durability of Redis is # the same as "appendfsync none". In practical terms, this means that it is # possible to lose up to 30 seconds of log in the worst scenario (with the # default Linux settings). # # If you have latency problems turn this to "yes". Otherwise leave it as # "no" that is the safest pick from the point of view of durability. no-appendfsync-on-rewrite no # Automatic rewrite of the append only file. # Redis is able to automatically rewrite the log file implicitly calling # BGREWRITEAOF when the AOF log size grows by the specified percentage. # # This is how it works: Redis remembers the size of the AOF file after the # latest rewrite (if no rewrite has happened since the restart, the size of # the AOF at startup is used). # # This base size is compared to the current size. If the current size is # bigger than the specified percentage, the rewrite is triggered. Also # you need to specify a minimal size for the AOF file to be rewritten, this # is useful to avoid rewriting the AOF file even if the percentage increase # is reached but it is still pretty small. # # Specify a percentage of zero in order to disable the automatic AOF # rewrite feature. auto-aof-rewrite-percentage 100 auto-aof-rewrite-min-size 64mb # An AOF file may be found to be truncated at the end during the Redis # startup process, when the AOF data gets loaded back into memory. # This may happen when the system where Redis is running # crashes, especially when an ext4 filesystem is mounted without the # data=ordered option (however this can't happen when Redis itself # crashes or aborts but the operating system still works correctly). # # Redis can either exit with an error when this happens, or load as much # data as possible (the default now) and start if the AOF file is found # to be truncated at the end. The following option controls this behavior. # # If aof-load-truncated is set to yes, a truncated AOF file is loaded and # the Redis server starts emitting a log to inform the user of the event. # Otherwise if the option is set to no, the server aborts with an error # and refuses to start. When the option is set to no, the user requires # to fix the AOF file using the "redis-check-aof" utility before to restart # the server. # # Note that if the AOF file will be found to be corrupted in the middle # the server will still exit with an error. This option only applies when # Redis will try to read more data from the AOF file but not enough bytes # will be found. aof-load-truncated yes ################################ LUA SCRIPTING ############################### # Max execution time of a Lua script in milliseconds. # # If the maximum execution time is reached Redis will log that a script is # still in execution after the maximum allowed time and will start to # reply to queries with an error. # # When a long running script exceeds the maximum execution time only the # SCRIPT KILL and SHUTDOWN NOSAVE commands are available. The first can be # used to stop a script that did not yet called write commands. The second # is the only way to shut down the server in the case a write command was # already issued by the script but the user doesn't want to wait for the natural # termination of the script. # # Set it to 0 or a negative value for unlimited execution without warnings. lua-time-limit 5000 ################################ REDIS CLUSTER ############################### # # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # WARNING EXPERIMENTAL: Redis Cluster is considered to be stable code, however # in order to mark it as "mature" we need to wait for a non trivial percentage # of users to deploy it in production. # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # # Normal Redis instances can't be part of a Redis Cluster; only nodes that are # started as cluster nodes can. In order to start a Redis instance as a # cluster node enable the cluster support uncommenting the following: # # cluster-enabled yes # Every cluster node has a cluster configuration file. This file is not # intended to be edited by hand. It is created and updated by Redis nodes. # Every Redis Cluster node requires a different cluster configuration file. # Make sure that instances running in the same system do not have # overlapping cluster configuration file names. # # cluster-config-file nodes-6379.conf # Cluster node timeout is the amount of milliseconds a node must be unreachable # for it to be considered in failure state. # Most other internal time limits are multiple of the node timeout. # # cluster-node-timeout 15000 # A slave of a failing master will avoid to start a failover if its data # looks too old. # # There is no simple way for a slave to actually have a exact measure of # its "data age", so the following two checks are performed: # # 1) If there are multiple slaves able to failover, they exchange messages # in order to try to give an advantage to the slave with the best # replication offset (more data from the master processed). # Slaves will try to get their rank by offset, and apply to the start # of the failover a delay proportional to their rank. # # 2) Every single slave computes the time of the last interaction with # its master. This can be the last ping or command received (if the master # is still in the "connected" state), or the time that elapsed since the # disconnection with the master (if the replication link is currently down). # If the last interaction is too old, the slave will not try to failover # at all. # # The point "2" can be tuned by user. Specifically a slave will not perform # the failover if, since the last interaction with the master, the time # elapsed is greater than: # # (node-timeout * slave-validity-factor) + repl-ping-slave-period # # So for example if node-timeout is 30 seconds, and the slave-validity-factor # is 10, and assuming a default repl-ping-slave-period of 10 seconds, the # slave will not try to failover if it was not able to talk with the master # for longer than 310 seconds. # # A large slave-validity-factor may allow slaves with too old data to failover # a master, while a too small value may prevent the cluster from being able to # elect a slave at all. # # For maximum availability, it is possible to set the slave-validity-factor # to a value of 0, which means, that slaves will always try to failover the # master regardless of the last time they interacted with the master. # (However they'll always try to apply a delay proportional to their # offset rank). # # Zero is the only value able to guarantee that when all the partitions heal # the cluster will always be able to continue. # # cluster-slave-validity-factor 10 # Cluster slaves are able to migrate to orphaned masters, that are masters # that are left without working slaves. This improves the cluster ability # to resist to failures as otherwise an orphaned master can't be failed over # in case of failure if it has no working slaves. # # Slaves migrate to orphaned masters only if there are still at least a # given number of other working slaves for their old master. This number # is the "migration barrier". A migration barrier of 1 means that a slave # will migrate only if there is at least 1 other working slave for its master # and so forth. It usually reflects the number of slaves you want for every # master in your cluster. # # Default is 1 (slaves migrate only if their masters remain with at least # one slave). To disable migration just set it to a very large value. # A value of 0 can be set but is useful only for debugging and dangerous # in production. # # cluster-migration-barrier 1 # By default Redis Cluster nodes stop accepting queries if they detect there # is at least an hash slot uncovered (no available node is serving it). # This way if the cluster is partially down (for example a range of hash slots # are no longer covered) all the cluster becomes, eventually, unavailable. # It automatically returns available as soon as all the slots are covered again. # # However sometimes you want the subset of the cluster which is working, # to continue to accept queries for the part of the key space that is still # covered. In order to do so, just set the cluster-require-full-coverage # option to no. # # cluster-require-full-coverage yes # In order to setup your cluster make sure to read the documentation # available at http://redis.io web site. ################################## SLOW LOG ################################### # The Redis Slow Log is a system to log queries that exceeded a specified # execution time. The execution time does not include the I/O operations # like talking with the client, sending the reply and so forth, # but just the time needed to actually execute the command (this is the only # stage of command execution where the thread is blocked and can not serve # other requests in the meantime). # # You can configure the slow log with two parameters: one tells Redis # what is the execution time, in microseconds, to exceed in order for the # command to get logged, and the other parameter is the length of the # slow log. When a new command is logged the oldest one is removed from the # queue of logged commands. # The following time is expressed in microseconds, so 1000000 is equivalent # to one second. Note that a negative number disables the slow log, while # a value of zero forces the logging of every command. slowlog-log-slower-than 10000 # There is no limit to this length. Just be aware that it will consume memory. # You can reclaim memory used by the slow log with SLOWLOG RESET. slowlog-max-len 128 ################################ LATENCY MONITOR ############################## # The Redis latency monitoring subsystem samples different operations # at runtime in order to collect data related to possible sources of # latency of a Redis instance. # # Via the LATENCY command this information is available to the user that can # print graphs and obtain reports. # # The system only logs operations that were performed in a time equal or # greater than the amount of milliseconds specified via the # latency-monitor-threshold configuration directive. When its value is set # to zero, the latency monitor is turned off. # # By default latency monitoring is disabled since it is mostly not needed # if you don't have latency issues, and collecting data has a performance # impact, that while very small, can be measured under big load. Latency # monitoring can easily be enabled at runtime using the command # "CONFIG SET latency-monitor-threshold " if needed. latency-monitor-threshold 0 ############################# EVENT NOTIFICATION ############################## # Redis can notify Pub/Sub clients about events happening in the key space. # This feature is documented at http://redis.io/topics/notifications # # For instance if keyspace events notification is enabled, and a client # performs a DEL operation on key "foo" stored in the Database 0, two # messages will be published via Pub/Sub: # # PUBLISH __keyspace@0__:foo del # PUBLISH __keyevent@0__:del foo # # It is possible to select the events that Redis will notify among a set # of classes. Every class is identified by a single character: # # K Keyspace events, published with __keyspace@__ prefix. # E Keyevent events, published with __keyevent@__ prefix. # g Generic commands (non-type specific) like DEL, EXPIRE, RENAME, ... # $ String commands # l List commands # s Set commands # h Hash commands # z Sorted set commands # x Expired events (events generated every time a key expires) # e Evicted events (events generated when a key is evicted for maxmemory) # A Alias for g$lshzxe, so that the "AKE" string means all the events. # # The "notify-keyspace-events" takes as argument a string that is composed # of zero or multiple characters. The empty string means that notifications # are disabled. # # Example: to enable list and generic events, from the point of view of the # event name, use: # # notify-keyspace-events Elg # # Example 2: to get the stream of the expired keys subscribing to channel # name __keyevent@0__:expired use: # # notify-keyspace-events Ex # # By default all notifications are disabled because most users don't need # this feature and the feature has some overhead. Note that if you don't # specify at least one of K or E, no events will be delivered. notify-keyspace-events "" ############################### ADVANCED CONFIG ############################### # Hashes are encoded using a memory efficient data structure when they have a # small number of entries, and the biggest entry does not exceed a given # threshold. These thresholds can be configured using the following directives. hash-max-ziplist-entries 512 hash-max-ziplist-value 64 # Similarly to hashes, small lists are also encoded in a special way in order # to save a lot of space. The special representation is only used when # you are under the following limits: list-max-ziplist-entries 512 list-max-ziplist-value 64 # Sets have a special encoding in just one case: when a set is composed # of just strings that happen to be integers in radix 10 in the range # of 64 bit signed integers. # The following configuration setting sets the limit in the size of the # set in order to use this special memory saving encoding. set-max-intset-entries 512 # Similarly to hashes and lists, sorted sets are also specially encoded in # order to save a lot of space. This encoding is only used when the length and # elements of a sorted set are below the following limits: zset-max-ziplist-entries 128 zset-max-ziplist-value 64 # HyperLogLog sparse representation bytes limit. The limit includes the # 16 bytes header. When an HyperLogLog using the sparse representation crosses # this limit, it is converted into the dense representation. # # A value greater than 16000 is totally useless, since at that point the # dense representation is more memory efficient. # # The suggested value is ~ 3000 in order to have the benefits of # the space efficient encoding without slowing down too much PFADD, # which is O(N) with the sparse encoding. The value can be raised to # ~ 10000 when CPU is not a concern, but space is, and the data set is # composed of many HyperLogLogs with cardinality in the 0 - 15000 range. hll-sparse-max-bytes 3000 # Active rehashing uses 1 millisecond every 100 milliseconds of CPU time in # order to help rehashing the main Redis hash table (the one mapping top-level # keys to values). The hash table implementation Redis uses (see dict.c) # performs a lazy rehashing: the more operation you run into a hash table # that is rehashing, the more rehashing "steps" are performed, so if the # server is idle the rehashing is never complete and some more memory is used # by the hash table. # # The default is to use this millisecond 10 times every second in order to # actively rehash the main dictionaries, freeing memory when possible. # # If unsure: # use "activerehashing no" if you have hard latency requirements and it is # not a good thing in your environment that Redis can reply from time to time # to queries with 2 milliseconds delay. # # use "activerehashing yes" if you don't have such hard requirements but # want to free memory asap when possible. activerehashing yes # The client output buffer limits can be used to force disconnection of clients # that are not reading data from the server fast enough for some reason (a # common reason is that a Pub/Sub client can't consume messages as fast as the # publisher can produce them). # # The limit can be set differently for the three different classes of clients: # # normal -> normal clients including MONITOR clients # slave -> slave clients # pubsub -> clients subscribed to at least one pubsub channel or pattern # # The syntax of every client-output-buffer-limit directive is the following: # # client-output-buffer-limit # # A client is immediately disconnected once the hard limit is reached, or if # the soft limit is reached and remains reached for the specified number of # seconds (continuously). # So for instance if the hard limit is 32 megabytes and the soft limit is # 16 megabytes / 10 seconds, the client will get disconnected immediately # if the size of the output buffers reach 32 megabytes, but will also get # disconnected if the client reaches 16 megabytes and continuously overcomes # the limit for 10 seconds. # # By default normal clients are not limited because they don't receive data # without asking (in a push way), but just after a request, so only # asynchronous clients may create a scenario where data is requested faster # than it can read. # # Instead there is a default limit for pubsub and slave clients, since # subscribers and slaves receive data in a push fashion. # # Both the hard or the soft limit can be disabled by setting them to zero. client-output-buffer-limit normal 0 0 0 client-output-buffer-limit slave 256mb 64mb 60 client-output-buffer-limit pubsub 32mb 8mb 60 # Redis calls an internal function to perform many background tasks, like # closing connections of clients in timeout, purging expired keys that are # never requested, and so forth. # # Not all tasks are performed with the same frequency, but Redis checks for # tasks to perform according to the specified "hz" value. # # By default "hz" is set to 10. Raising the value will use more CPU when # Redis is idle, but at the same time will make Redis more responsive when # there are many keys expiring at the same time, and timeouts may be # handled with more precision. # # The range is between 1 and 500, however a value over 100 is usually not # a good idea. Most users should use the default of 10 and raise this up to # 100 only in environments where very low latency is required. hz 10 # When a child rewrites the AOF file, if the following option is enabled # the file will be fsync-ed every 32 MB of data generated. This is useful # in order to commit the file to the disk more incrementally and avoid # big latency spikes. aof-rewrite-incremental-fsync yes limits-1.5.1/tests/redis-configurations/cluster/000077500000000000000000000000001362535055200220065ustar00rootroot00000000000000limits-1.5.1/tests/redis-configurations/cluster/redis-0.conf000066400000000000000000000003261362535055200241210ustar00rootroot00000000000000daemonize yes port 7000 cluster-node-timeout 5000 pidfile /tmp/redis_cluster_node0.pid logfile /tmp/redis_cluster_node0.log save appendonly no cluster-enabled yes cluster-config-file /tmp/redis_cluster_node0.conf limits-1.5.1/tests/redis-configurations/cluster/redis-1.conf000066400000000000000000000003261362535055200241220ustar00rootroot00000000000000daemonize yes port 7001 cluster-node-timeout 5000 pidfile /tmp/redis_cluster_node1.pid logfile /tmp/redis_cluster_node1.log save appendonly no cluster-enabled yes cluster-config-file /tmp/redis_cluster_node1.conf limits-1.5.1/tests/redis-configurations/cluster/redis-2.conf000066400000000000000000000003261362535055200241230ustar00rootroot00000000000000daemonize yes port 7002 cluster-node-timeout 5000 pidfile /tmp/redis_cluster_node2.pid logfile /tmp/redis_cluster_node2.log save appendonly no cluster-enabled yes cluster-config-file /tmp/redis_cluster_node2.conf limits-1.5.1/tests/redis-configurations/cluster/redis-3.conf000066400000000000000000000003261362535055200241240ustar00rootroot00000000000000daemonize yes port 7003 cluster-node-timeout 5000 pidfile /tmp/redis_cluster_node3.pid logfile /tmp/redis_cluster_node3.log save appendonly no cluster-enabled yes cluster-config-file /tmp/redis_cluster_node3.conf limits-1.5.1/tests/redis-configurations/cluster/redis-4.conf000066400000000000000000000003261362535055200241250ustar00rootroot00000000000000daemonize yes port 7004 cluster-node-timeout 5000 pidfile /tmp/redis_cluster_node4.pid logfile /tmp/redis_cluster_node4.log save appendonly no cluster-enabled yes cluster-config-file /tmp/redis_cluster_node4.conf limits-1.5.1/tests/redis-configurations/cluster/redis-5.conf000066400000000000000000000003261362535055200241260ustar00rootroot00000000000000daemonize yes port 7005 cluster-node-timeout 5000 pidfile /tmp/redis_cluster_node5.pid logfile /tmp/redis_cluster_node5.log save appendonly no cluster-enabled yes cluster-config-file /tmp/redis_cluster_node5.conf limits-1.5.1/tests/redis-configurations/passwd.conf000066400000000000000000001206651362535055200225070ustar00rootroot00000000000000# Redis configuration file example # Note on units: when memory size is needed, it is possible to specify # it in the usual form of 1k 5GB 4M and so forth: # # 1k => 1000 bytes # 1kb => 1024 bytes # 1m => 1000000 bytes # 1mb => 1024*1024 bytes # 1g => 1000000000 bytes # 1gb => 1024*1024*1024 bytes # # units are case insensitive so 1GB 1Gb 1gB are all the same. ################################## INCLUDES ################################### # Include one or more other config files here. This is useful if you # have a standard template that goes to all Redis servers but also need # to customize a few per-server settings. Include files can include # other files, so use this wisely. # # Notice option "include" won't be rewritten by command "CONFIG REWRITE" # from admin or Redis Sentinel. Since Redis always uses the last processed # line as value of a configuration directive, you'd better put includes # at the beginning of this file to avoid overwriting config change at runtime. # # If instead you are interested in using includes to override configuration # options, it is better to use include as the last line. # # include /path/to/local.conf # include /path/to/other.conf ################################ GENERAL ##################################### # By default Redis does not run as a daemon. Use 'yes' if you need it. # Note that Redis will write a pid file in /var/run/redis.pid when daemonized. daemonize yes # When running daemonized, Redis writes a pid file in /var/run/redis.pid by # default. You can specify a custom pid file location here. pidfile "/tmp/redis_basic_passwd.pid" # Accept connections on the specified port, default is 6379. # If port 0 is specified Redis will not listen on a TCP socket. port 7389 # TCP listen() backlog. # # In high requests-per-second environments you need an high backlog in order # to avoid slow clients connections issues. Note that the Linux kernel # will silently truncate it to the value of /proc/sys/net/core/somaxconn so # make sure to raise both the value of somaxconn and tcp_max_syn_backlog # in order to get the desired effect. tcp-backlog 511 # By default Redis listens for connections from all the network interfaces # available on the server. It is possible to listen to just one or multiple # interfaces using the "bind" configuration directive, followed by one or # more IP addresses. # # Examples: # # bind 192.168.1.100 10.0.0.1 # bind 127.0.0.1 # Specify the path for the Unix socket that will be used to listen for # incoming connections. There is no default, so Redis will not listen # on a unix socket when not specified. # # unixsocketperm 700 # Close the connection after a client is idle for N seconds (0 to disable) timeout 0 # TCP keepalive. # # If non-zero, use SO_KEEPALIVE to send TCP ACKs to clients in absence # of communication. This is useful for two reasons: # # 1) Detect dead peers. # 2) Take the connection alive from the point of view of network # equipment in the middle. # # On Linux, the specified value (in seconds) is the period used to send ACKs. # Note that to close the connection the double of the time is needed. # On other kernels the period depends on the kernel configuration. # # A reasonable value for this option is 60 seconds. tcp-keepalive 0 # Specify the server verbosity level. # This can be one of: # debug (a lot of information, useful for development/testing) # verbose (many rarely useful info, but not a mess like the debug level) # notice (moderately verbose, what you want in production probably) # warning (only very important / critical messages are logged) loglevel notice # Specify the log file name. Also the empty string can be used to force # Redis to log on the standard output. Note that if you use standard # output for logging but daemonize, logs will be sent to /dev/null logfile "" # To enable logging to the system logger, just set 'syslog-enabled' to yes, # and optionally update the other syslog parameters to suit your needs. # syslog-enabled no # Specify the syslog identity. # syslog-ident redis # Specify the syslog facility. Must be USER or between LOCAL0-LOCAL7. # syslog-facility local0 # Set the number of databases. The default database is DB 0, you can select # a different one on a per-connection basis using SELECT where # dbid is a number between 0 and 'databases'-1 databases 16 ################################ SNAPSHOTTING ################################ # # Save the DB on disk: # # save # # Will save the DB if both the given number of seconds and the given # number of write operations against the DB occurred. # # In the example below the behaviour will be to save: # after 900 sec (15 min) if at least 1 key changed # after 300 sec (5 min) if at least 10 keys changed # after 60 sec if at least 10000 keys changed # # Note: you can disable saving completely by commenting out all "save" lines. # # It is also possible to remove all the previously configured save # points by adding a save directive with a single empty string argument # like in the following example: # # save "" save 900 1 save 300 10 save 60 10000 # By default Redis will stop accepting writes if RDB snapshots are enabled # (at least one save point) and the latest background save failed. # This will make the user aware (in a hard way) that data is not persisting # on disk properly, otherwise chances are that no one will notice and some # disaster will happen. # # If the background saving process will start working again Redis will # automatically allow writes again. # # However if you have setup your proper monitoring of the Redis server # and persistence, you may want to disable this feature so that Redis will # continue to work as usual even if there are problems with disk, # permissions, and so forth. stop-writes-on-bgsave-error yes # Compress string objects using LZF when dump .rdb databases? # For default that's set to 'yes' as it's almost always a win. # If you want to save some CPU in the saving child set it to 'no' but # the dataset will likely be bigger if you have compressible values or keys. rdbcompression yes # Since version 5 of RDB a CRC64 checksum is placed at the end of the file. # This makes the format more resistant to corruption but there is a performance # hit to pay (around 10%) when saving and loading RDB files, so you can disable it # for maximum performances. # # RDB files created with checksum disabled have a checksum of zero that will # tell the loading code to skip the check. rdbchecksum yes # The filename where to dump the DB dbfilename "redis-master.rdb" # The working directory. # # The DB will be written inside this directory, with the filename specified # above using the 'dbfilename' configuration directive. # # The Append Only File will also be created inside this directory. # # Note that you must specify a directory here, not a file name. dir "/tmp/" ################################# REPLICATION ################################# # Master-Slave replication. Use slaveof to make a Redis instance a copy of # another Redis server. A few things to understand ASAP about Redis replication. # # 1) Redis replication is asynchronous, but you can configure a master to # stop accepting writes if it appears to be not connected with at least # a given number of slaves. # 2) Redis slaves are able to perform a partial resynchronization with the # master if the replication link is lost for a relatively small amount of # time. You may want to configure the replication backlog size (see the next # sections of this file) with a sensible value depending on your needs. # 3) Replication is automatic and does not need user intervention. After a # network partition slaves automatically try to reconnect to masters # and resynchronize with them. # # slaveof # If the master is password protected (using the "requirepass" configuration # directive below) it is possible to tell the slave to authenticate before # starting the replication synchronization process, otherwise the master will # refuse the slave request. # # masterauth # When a slave loses its connection with the master, or when the replication # is still in progress, the slave can act in two different ways: # # 1) if slave-serve-stale-data is set to 'yes' (the default) the slave will # still reply to client requests, possibly with out of date data, or the # data set may just be empty if this is the first synchronization. # # 2) if slave-serve-stale-data is set to 'no' the slave will reply with # an error "SYNC with master in progress" to all the kind of commands # but to INFO and SLAVEOF. # slave-serve-stale-data yes # You can configure a slave instance to accept writes or not. Writing against # a slave instance may be useful to store some ephemeral data (because data # written on a slave will be easily deleted after resync with the master) but # may also cause problems if clients are writing to it because of a # misconfiguration. # # Since Redis 2.6 by default slaves are read-only. # # Note: read only slaves are not designed to be exposed to untrusted clients # on the internet. It's just a protection layer against misuse of the instance. # Still a read only slave exports by default all the administrative commands # such as CONFIG, DEBUG, and so forth. To a limited extent you can improve # security of read only slaves using 'rename-command' to shadow all the # administrative / dangerous commands. slave-read-only yes # Replication SYNC strategy: disk or socket. # # ------------------------------------------------------- # WARNING: DISKLESS REPLICATION IS EXPERIMENTAL CURRENTLY # ------------------------------------------------------- # # New slaves and reconnecting slaves that are not able to continue the replication # process just receiving differences, need to do what is called a "full # synchronization". An RDB file is transmitted from the master to the slaves. # The transmission can happen in two different ways: # # 1) Disk-backed: The Redis master creates a new process that writes the RDB # file on disk. Later the file is transferred by the parent # process to the slaves incrementally. # 2) Diskless: The Redis master creates a new process that directly writes the # RDB file to slave sockets, without touching the disk at all. # # With disk-backed replication, while the RDB file is generated, more slaves # can be queued and served with the RDB file as soon as the current child producing # the RDB file finishes its work. With diskless replication instead once # the transfer starts, new slaves arriving will be queued and a new transfer # will start when the current one terminates. # # When diskless replication is used, the master waits a configurable amount of # time (in seconds) before starting the transfer in the hope that multiple slaves # will arrive and the transfer can be parallelized. # # With slow disks and fast (large bandwidth) networks, diskless replication # works better. repl-diskless-sync no # When diskless replication is enabled, it is possible to configure the delay # the server waits in order to spawn the child that transfers the RDB via socket # to the slaves. # # This is important since once the transfer starts, it is not possible to serve # new slaves arriving, that will be queued for the next RDB transfer, so the server # waits a delay in order to let more slaves arrive. # # The delay is specified in seconds, and by default is 5 seconds. To disable # it entirely just set it to 0 seconds and the transfer will start ASAP. repl-diskless-sync-delay 5 # Slaves send PINGs to server in a predefined interval. It's possible to change # this interval with the repl_ping_slave_period option. The default value is 10 # seconds. # # repl-ping-slave-period 10 # The following option sets the replication timeout for: # # 1) Bulk transfer I/O during SYNC, from the point of view of slave. # 2) Master timeout from the point of view of slaves (data, pings). # 3) Slave timeout from the point of view of masters (REPLCONF ACK pings). # # It is important to make sure that this value is greater than the value # specified for repl-ping-slave-period otherwise a timeout will be detected # every time there is low traffic between the master and the slave. # # repl-timeout 60 # Disable TCP_NODELAY on the slave socket after SYNC? # # If you select "yes" Redis will use a smaller number of TCP packets and # less bandwidth to send data to slaves. But this can add a delay for # the data to appear on the slave side, up to 40 milliseconds with # Linux kernels using a default configuration. # # If you select "no" the delay for data to appear on the slave side will # be reduced but more bandwidth will be used for replication. # # By default we optimize for low latency, but in very high traffic conditions # or when the master and slaves are many hops away, turning this to "yes" may # be a good idea. repl-disable-tcp-nodelay no # Set the replication backlog size. The backlog is a buffer that accumulates # slave data when slaves are disconnected for some time, so that when a slave # wants to reconnect again, often a full resync is not needed, but a partial # resync is enough, just passing the portion of data the slave missed while # disconnected. # # The bigger the replication backlog, the longer the time the slave can be # disconnected and later be able to perform a partial resynchronization. # # The backlog is only allocated once there is at least a slave connected. # # repl-backlog-size 1mb # After a master has no longer connected slaves for some time, the backlog # will be freed. The following option configures the amount of seconds that # need to elapse, starting from the time the last slave disconnected, for # the backlog buffer to be freed. # # A value of 0 means to never release the backlog. # # repl-backlog-ttl 3600 # The slave priority is an integer number published by Redis in the INFO output. # It is used by Redis Sentinel in order to select a slave to promote into a # master if the master is no longer working correctly. # # A slave with a low priority number is considered better for promotion, so # for instance if there are three slaves with priority 10, 100, 25 Sentinel will # pick the one with priority 10, that is the lowest. # # However a special priority of 0 marks the slave as not able to perform the # role of master, so a slave with priority of 0 will never be selected by # Redis Sentinel for promotion. # # By default the priority is 100. slave-priority 100 # It is possible for a master to stop accepting writes if there are less than # N slaves connected, having a lag less or equal than M seconds. # # The N slaves need to be in "online" state. # # The lag in seconds, that must be <= the specified value, is calculated from # the last ping received from the slave, that is usually sent every second. # # This option does not GUARANTEE that N replicas will accept the write, but # will limit the window of exposure for lost writes in case not enough slaves # are available, to the specified number of seconds. # # For example to require at least 3 slaves with a lag <= 10 seconds use: # # min-slaves-to-write 3 # min-slaves-max-lag 10 # # Setting one or the other to 0 disables the feature. # # By default min-slaves-to-write is set to 0 (feature disabled) and # min-slaves-max-lag is set to 10. ################################## SECURITY ################################### # Require clients to issue AUTH before processing any other # commands. This might be useful in environments in which you do not trust # others with access to the host running redis-server. # # This should stay commented out for backward compatibility and because most # people do not need auth (e.g. they run their own servers). # # Warning: since Redis is pretty fast an outside user can try up to # 150k passwords per second against a good box. This means that you should # use a very strong password otherwise it will be very easy to break. # requirepass sekret # Command renaming. # # It is possible to change the name of dangerous commands in a shared # environment. For instance the CONFIG command may be renamed into something # hard to guess so that it will still be available for internal-use tools # but not available for general clients. # # Example: # # rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52 # # It is also possible to completely kill a command by renaming it into # an empty string: # # rename-command CONFIG "" # # Please note that changing the name of commands that are logged into the # AOF file or transmitted to slaves may cause problems. ################################### LIMITS #################################### # Set the max number of connected clients at the same time. By default # this limit is set to 10000 clients, however if the Redis server is not # able to configure the process file limit to allow for the specified limit # the max number of allowed clients is set to the current file limit # minus 32 (as Redis reserves a few file descriptors for internal uses). # # Once the limit is reached Redis will close all the new connections sending # an error 'max number of clients reached'. # # maxclients 10000 # Don't use more memory than the specified amount of bytes. # When the memory limit is reached Redis will try to remove keys # according to the eviction policy selected (see maxmemory-policy). # # If Redis can't remove keys according to the policy, or if the policy is # set to 'noeviction', Redis will start to reply with errors to commands # that would use more memory, like SET, LPUSH, and so on, and will continue # to reply to read-only commands like GET. # # This option is usually useful when using Redis as an LRU cache, or to set # a hard memory limit for an instance (using the 'noeviction' policy). # # WARNING: If you have slaves attached to an instance with maxmemory on, # the size of the output buffers needed to feed the slaves are subtracted # from the used memory count, so that network problems / resyncs will # not trigger a loop where keys are evicted, and in turn the output # buffer of slaves is full with DELs of keys evicted triggering the deletion # of more keys, and so forth until the database is completely emptied. # # In short... if you have slaves attached it is suggested that you set a lower # limit for maxmemory so that there is some free RAM on the system for slave # output buffers (but this is not needed if the policy is 'noeviction'). # # maxmemory # MAXMEMORY POLICY: how Redis will select what to remove when maxmemory # is reached. You can select among five behaviors: # # volatile-lru -> remove the key with an expire set using an LRU algorithm # allkeys-lru -> remove any key according to the LRU algorithm # volatile-random -> remove a random key with an expire set # allkeys-random -> remove a random key, any key # volatile-ttl -> remove the key with the nearest expire time (minor TTL) # noeviction -> don't expire at all, just return an error on write operations # # Note: with any of the above policies, Redis will return an error on write # operations, when there are no suitable keys for eviction. # # At the date of writing these commands are: set setnx setex append # incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd # sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby # zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby # getset mset msetnx exec sort # # The default is: # # maxmemory-policy noeviction # LRU and minimal TTL algorithms are not precise algorithms but approximated # algorithms (in order to save memory), so you can tune it for speed or # accuracy. For default Redis will check five keys and pick the one that was # used less recently, you can change the sample size using the following # configuration directive. # # The default of 5 produces good enough results. 10 Approximates very closely # true LRU but costs a bit more CPU. 3 is very fast but not very accurate. # # maxmemory-samples 5 ############################## APPEND ONLY MODE ############################### # By default Redis asynchronously dumps the dataset on disk. This mode is # good enough in many applications, but an issue with the Redis process or # a power outage may result into a few minutes of writes lost (depending on # the configured save points). # # The Append Only File is an alternative persistence mode that provides # much better durability. For instance using the default data fsync policy # (see later in the config file) Redis can lose just one second of writes in a # dramatic event like a server power outage, or a single write if something # wrong with the Redis process itself happens, but the operating system is # still running correctly. # # AOF and RDB persistence can be enabled at the same time without problems. # If the AOF is enabled on startup Redis will load the AOF, that is the file # with the better durability guarantees. # # Please check http://redis.io/topics/persistence for more information. appendonly no # The name of the append only file (default: "appendonly.aof") appendfilename "appendonly.aof" # The fsync() call tells the Operating System to actually write data on disk # instead of waiting for more data in the output buffer. Some OS will really flush # data on disk, some other OS will just try to do it ASAP. # # Redis supports three different modes: # # no: don't fsync, just let the OS flush the data when it wants. Faster. # always: fsync after every write to the append only log. Slow, Safest. # everysec: fsync only one time every second. Compromise. # # The default is "everysec", as that's usually the right compromise between # speed and data safety. It's up to you to understand if you can relax this to # "no" that will let the operating system flush the output buffer when # it wants, for better performances (but if you can live with the idea of # some data loss consider the default persistence mode that's snapshotting), # or on the contrary, use "always" that's very slow but a bit safer than # everysec. # # More details please check the following article: # http://antirez.com/post/redis-persistence-demystified.html # # If unsure, use "everysec". # appendfsync always appendfsync everysec # appendfsync no # When the AOF fsync policy is set to always or everysec, and a background # saving process (a background save or AOF log background rewriting) is # performing a lot of I/O against the disk, in some Linux configurations # Redis may block too long on the fsync() call. Note that there is no fix for # this currently, as even performing fsync in a different thread will block # our synchronous write(2) call. # # In order to mitigate this problem it's possible to use the following option # that will prevent fsync() from being called in the main process while a # BGSAVE or BGREWRITEAOF is in progress. # # This means that while another child is saving, the durability of Redis is # the same as "appendfsync none". In practical terms, this means that it is # possible to lose up to 30 seconds of log in the worst scenario (with the # default Linux settings). # # If you have latency problems turn this to "yes". Otherwise leave it as # "no" that is the safest pick from the point of view of durability. no-appendfsync-on-rewrite no # Automatic rewrite of the append only file. # Redis is able to automatically rewrite the log file implicitly calling # BGREWRITEAOF when the AOF log size grows by the specified percentage. # # This is how it works: Redis remembers the size of the AOF file after the # latest rewrite (if no rewrite has happened since the restart, the size of # the AOF at startup is used). # # This base size is compared to the current size. If the current size is # bigger than the specified percentage, the rewrite is triggered. Also # you need to specify a minimal size for the AOF file to be rewritten, this # is useful to avoid rewriting the AOF file even if the percentage increase # is reached but it is still pretty small. # # Specify a percentage of zero in order to disable the automatic AOF # rewrite feature. auto-aof-rewrite-percentage 100 auto-aof-rewrite-min-size 64mb # An AOF file may be found to be truncated at the end during the Redis # startup process, when the AOF data gets loaded back into memory. # This may happen when the system where Redis is running # crashes, especially when an ext4 filesystem is mounted without the # data=ordered option (however this can't happen when Redis itself # crashes or aborts but the operating system still works correctly). # # Redis can either exit with an error when this happens, or load as much # data as possible (the default now) and start if the AOF file is found # to be truncated at the end. The following option controls this behavior. # # If aof-load-truncated is set to yes, a truncated AOF file is loaded and # the Redis server starts emitting a log to inform the user of the event. # Otherwise if the option is set to no, the server aborts with an error # and refuses to start. When the option is set to no, the user requires # to fix the AOF file using the "redis-check-aof" utility before to restart # the server. # # Note that if the AOF file will be found to be corrupted in the middle # the server will still exit with an error. This option only applies when # Redis will try to read more data from the AOF file but not enough bytes # will be found. aof-load-truncated yes ################################ LUA SCRIPTING ############################### # Max execution time of a Lua script in milliseconds. # # If the maximum execution time is reached Redis will log that a script is # still in execution after the maximum allowed time and will start to # reply to queries with an error. # # When a long running script exceeds the maximum execution time only the # SCRIPT KILL and SHUTDOWN NOSAVE commands are available. The first can be # used to stop a script that did not yet called write commands. The second # is the only way to shut down the server in the case a write command was # already issued by the script but the user doesn't want to wait for the natural # termination of the script. # # Set it to 0 or a negative value for unlimited execution without warnings. lua-time-limit 5000 ################################ REDIS CLUSTER ############################### # # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # WARNING EXPERIMENTAL: Redis Cluster is considered to be stable code, however # in order to mark it as "mature" we need to wait for a non trivial percentage # of users to deploy it in production. # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # # Normal Redis instances can't be part of a Redis Cluster; only nodes that are # started as cluster nodes can. In order to start a Redis instance as a # cluster node enable the cluster support uncommenting the following: # # cluster-enabled yes # Every cluster node has a cluster configuration file. This file is not # intended to be edited by hand. It is created and updated by Redis nodes. # Every Redis Cluster node requires a different cluster configuration file. # Make sure that instances running in the same system do not have # overlapping cluster configuration file names. # # cluster-config-file nodes-6379.conf # Cluster node timeout is the amount of milliseconds a node must be unreachable # for it to be considered in failure state. # Most other internal time limits are multiple of the node timeout. # # cluster-node-timeout 15000 # A slave of a failing master will avoid to start a failover if its data # looks too old. # # There is no simple way for a slave to actually have a exact measure of # its "data age", so the following two checks are performed: # # 1) If there are multiple slaves able to failover, they exchange messages # in order to try to give an advantage to the slave with the best # replication offset (more data from the master processed). # Slaves will try to get their rank by offset, and apply to the start # of the failover a delay proportional to their rank. # # 2) Every single slave computes the time of the last interaction with # its master. This can be the last ping or command received (if the master # is still in the "connected" state), or the time that elapsed since the # disconnection with the master (if the replication link is currently down). # If the last interaction is too old, the slave will not try to failover # at all. # # The point "2" can be tuned by user. Specifically a slave will not perform # the failover if, since the last interaction with the master, the time # elapsed is greater than: # # (node-timeout * slave-validity-factor) + repl-ping-slave-period # # So for example if node-timeout is 30 seconds, and the slave-validity-factor # is 10, and assuming a default repl-ping-slave-period of 10 seconds, the # slave will not try to failover if it was not able to talk with the master # for longer than 310 seconds. # # A large slave-validity-factor may allow slaves with too old data to failover # a master, while a too small value may prevent the cluster from being able to # elect a slave at all. # # For maximum availability, it is possible to set the slave-validity-factor # to a value of 0, which means, that slaves will always try to failover the # master regardless of the last time they interacted with the master. # (However they'll always try to apply a delay proportional to their # offset rank). # # Zero is the only value able to guarantee that when all the partitions heal # the cluster will always be able to continue. # # cluster-slave-validity-factor 10 # Cluster slaves are able to migrate to orphaned masters, that are masters # that are left without working slaves. This improves the cluster ability # to resist to failures as otherwise an orphaned master can't be failed over # in case of failure if it has no working slaves. # # Slaves migrate to orphaned masters only if there are still at least a # given number of other working slaves for their old master. This number # is the "migration barrier". A migration barrier of 1 means that a slave # will migrate only if there is at least 1 other working slave for its master # and so forth. It usually reflects the number of slaves you want for every # master in your cluster. # # Default is 1 (slaves migrate only if their masters remain with at least # one slave). To disable migration just set it to a very large value. # A value of 0 can be set but is useful only for debugging and dangerous # in production. # # cluster-migration-barrier 1 # By default Redis Cluster nodes stop accepting queries if they detect there # is at least an hash slot uncovered (no available node is serving it). # This way if the cluster is partially down (for example a range of hash slots # are no longer covered) all the cluster becomes, eventually, unavailable. # It automatically returns available as soon as all the slots are covered again. # # However sometimes you want the subset of the cluster which is working, # to continue to accept queries for the part of the key space that is still # covered. In order to do so, just set the cluster-require-full-coverage # option to no. # # cluster-require-full-coverage yes # In order to setup your cluster make sure to read the documentation # available at http://redis.io web site. ################################## SLOW LOG ################################### # The Redis Slow Log is a system to log queries that exceeded a specified # execution time. The execution time does not include the I/O operations # like talking with the client, sending the reply and so forth, # but just the time needed to actually execute the command (this is the only # stage of command execution where the thread is blocked and can not serve # other requests in the meantime). # # You can configure the slow log with two parameters: one tells Redis # what is the execution time, in microseconds, to exceed in order for the # command to get logged, and the other parameter is the length of the # slow log. When a new command is logged the oldest one is removed from the # queue of logged commands. # The following time is expressed in microseconds, so 1000000 is equivalent # to one second. Note that a negative number disables the slow log, while # a value of zero forces the logging of every command. slowlog-log-slower-than 10000 # There is no limit to this length. Just be aware that it will consume memory. # You can reclaim memory used by the slow log with SLOWLOG RESET. slowlog-max-len 128 ################################ LATENCY MONITOR ############################## # The Redis latency monitoring subsystem samples different operations # at runtime in order to collect data related to possible sources of # latency of a Redis instance. # # Via the LATENCY command this information is available to the user that can # print graphs and obtain reports. # # The system only logs operations that were performed in a time equal or # greater than the amount of milliseconds specified via the # latency-monitor-threshold configuration directive. When its value is set # to zero, the latency monitor is turned off. # # By default latency monitoring is disabled since it is mostly not needed # if you don't have latency issues, and collecting data has a performance # impact, that while very small, can be measured under big load. Latency # monitoring can easily be enabled at runtime using the command # "CONFIG SET latency-monitor-threshold " if needed. latency-monitor-threshold 0 ############################# EVENT NOTIFICATION ############################## # Redis can notify Pub/Sub clients about events happening in the key space. # This feature is documented at http://redis.io/topics/notifications # # For instance if keyspace events notification is enabled, and a client # performs a DEL operation on key "foo" stored in the Database 0, two # messages will be published via Pub/Sub: # # PUBLISH __keyspace@0__:foo del # PUBLISH __keyevent@0__:del foo # # It is possible to select the events that Redis will notify among a set # of classes. Every class is identified by a single character: # # K Keyspace events, published with __keyspace@__ prefix. # E Keyevent events, published with __keyevent@__ prefix. # g Generic commands (non-type specific) like DEL, EXPIRE, RENAME, ... # $ String commands # l List commands # s Set commands # h Hash commands # z Sorted set commands # x Expired events (events generated every time a key expires) # e Evicted events (events generated when a key is evicted for maxmemory) # A Alias for g$lshzxe, so that the "AKE" string means all the events. # # The "notify-keyspace-events" takes as argument a string that is composed # of zero or multiple characters. The empty string means that notifications # are disabled. # # Example: to enable list and generic events, from the point of view of the # event name, use: # # notify-keyspace-events Elg # # Example 2: to get the stream of the expired keys subscribing to channel # name __keyevent@0__:expired use: # # notify-keyspace-events Ex # # By default all notifications are disabled because most users don't need # this feature and the feature has some overhead. Note that if you don't # specify at least one of K or E, no events will be delivered. notify-keyspace-events "" ############################### ADVANCED CONFIG ############################### # Hashes are encoded using a memory efficient data structure when they have a # small number of entries, and the biggest entry does not exceed a given # threshold. These thresholds can be configured using the following directives. hash-max-ziplist-entries 512 hash-max-ziplist-value 64 # Similarly to hashes, small lists are also encoded in a special way in order # to save a lot of space. The special representation is only used when # you are under the following limits: list-max-ziplist-entries 512 list-max-ziplist-value 64 # Sets have a special encoding in just one case: when a set is composed # of just strings that happen to be integers in radix 10 in the range # of 64 bit signed integers. # The following configuration setting sets the limit in the size of the # set in order to use this special memory saving encoding. set-max-intset-entries 512 # Similarly to hashes and lists, sorted sets are also specially encoded in # order to save a lot of space. This encoding is only used when the length and # elements of a sorted set are below the following limits: zset-max-ziplist-entries 128 zset-max-ziplist-value 64 # HyperLogLog sparse representation bytes limit. The limit includes the # 16 bytes header. When an HyperLogLog using the sparse representation crosses # this limit, it is converted into the dense representation. # # A value greater than 16000 is totally useless, since at that point the # dense representation is more memory efficient. # # The suggested value is ~ 3000 in order to have the benefits of # the space efficient encoding without slowing down too much PFADD, # which is O(N) with the sparse encoding. The value can be raised to # ~ 10000 when CPU is not a concern, but space is, and the data set is # composed of many HyperLogLogs with cardinality in the 0 - 15000 range. hll-sparse-max-bytes 3000 # Active rehashing uses 1 millisecond every 100 milliseconds of CPU time in # order to help rehashing the main Redis hash table (the one mapping top-level # keys to values). The hash table implementation Redis uses (see dict.c) # performs a lazy rehashing: the more operation you run into a hash table # that is rehashing, the more rehashing "steps" are performed, so if the # server is idle the rehashing is never complete and some more memory is used # by the hash table. # # The default is to use this millisecond 10 times every second in order to # actively rehash the main dictionaries, freeing memory when possible. # # If unsure: # use "activerehashing no" if you have hard latency requirements and it is # not a good thing in your environment that Redis can reply from time to time # to queries with 2 milliseconds delay. # # use "activerehashing yes" if you don't have such hard requirements but # want to free memory asap when possible. activerehashing yes # The client output buffer limits can be used to force disconnection of clients # that are not reading data from the server fast enough for some reason (a # common reason is that a Pub/Sub client can't consume messages as fast as the # publisher can produce them). # # The limit can be set differently for the three different classes of clients: # # normal -> normal clients including MONITOR clients # slave -> slave clients # pubsub -> clients subscribed to at least one pubsub channel or pattern # # The syntax of every client-output-buffer-limit directive is the following: # # client-output-buffer-limit # # A client is immediately disconnected once the hard limit is reached, or if # the soft limit is reached and remains reached for the specified number of # seconds (continuously). # So for instance if the hard limit is 32 megabytes and the soft limit is # 16 megabytes / 10 seconds, the client will get disconnected immediately # if the size of the output buffers reach 32 megabytes, but will also get # disconnected if the client reaches 16 megabytes and continuously overcomes # the limit for 10 seconds. # # By default normal clients are not limited because they don't receive data # without asking (in a push way), but just after a request, so only # asynchronous clients may create a scenario where data is requested faster # than it can read. # # Instead there is a default limit for pubsub and slave clients, since # subscribers and slaves receive data in a push fashion. # # Both the hard or the soft limit can be disabled by setting them to zero. client-output-buffer-limit normal 0 0 0 client-output-buffer-limit slave 256mb 64mb 60 client-output-buffer-limit pubsub 32mb 8mb 60 # Redis calls an internal function to perform many background tasks, like # closing connections of clients in timeout, purging expired keys that are # never requested, and so forth. # # Not all tasks are performed with the same frequency, but Redis checks for # tasks to perform according to the specified "hz" value. # # By default "hz" is set to 10. Raising the value will use more CPU when # Redis is idle, but at the same time will make Redis more responsive when # there are many keys expiring at the same time, and timeouts may be # handled with more precision. # # The range is between 1 and 500, however a value over 100 is usually not # a good idea. Most users should use the default of 10 and raise this up to # 100 only in environments where very low latency is required. hz 10 # When a child rewrites the AOF file, if the following option is enabled # the file will be fsync-ed every 32 MB of data generated. This is useful # in order to commit the file to the disk more incrementally and avoid # big latency spikes. aof-rewrite-incremental-fsync yes limits-1.5.1/tests/redis-configurations/sentinel/000077500000000000000000000000001362535055200221465ustar00rootroot00000000000000limits-1.5.1/tests/redis-configurations/sentinel/redis-master.conf000066400000000000000000001207201362535055200254160ustar00rootroot00000000000000# Redis configuration file example # Note on units: when memory size is needed, it is possible to specify # it in the usual form of 1k 5GB 4M and so forth: # # 1k => 1000 bytes # 1kb => 1024 bytes # 1m => 1000000 bytes # 1mb => 1024*1024 bytes # 1g => 1000000000 bytes # 1gb => 1024*1024*1024 bytes # # units are case insensitive so 1GB 1Gb 1gB are all the same. ################################## INCLUDES ################################### # Include one or more other config files here. This is useful if you # have a standard template that goes to all Redis servers but also need # to customize a few per-server settings. Include files can include # other files, so use this wisely. # # Notice option "include" won't be rewritten by command "CONFIG REWRITE" # from admin or Redis Sentinel. Since Redis always uses the last processed # line as value of a configuration directive, you'd better put includes # at the beginning of this file to avoid overwriting config change at runtime. # # If instead you are interested in using includes to override configuration # options, it is better to use include as the last line. # # include /path/to/local.conf # include /path/to/other.conf ################################ GENERAL ##################################### # By default Redis does not run as a daemon. Use 'yes' if you need it. # Note that Redis will write a pid file in /var/run/redis.pid when daemonized. daemonize yes # When running daemonized, Redis writes a pid file in /var/run/redis.pid by # default. You can specify a custom pid file location here. pidfile "/tmp/redis-master.pid" # Accept connections on the specified port, default is 6379. # If port 0 is specified Redis will not listen on a TCP socket. port 6380 # TCP listen() backlog. # # In high requests-per-second environments you need an high backlog in order # to avoid slow clients connections issues. Note that the Linux kernel # will silently truncate it to the value of /proc/sys/net/core/somaxconn so # make sure to raise both the value of somaxconn and tcp_max_syn_backlog # in order to get the desired effect. tcp-backlog 511 # By default Redis listens for connections from all the network interfaces # available on the server. It is possible to listen to just one or multiple # interfaces using the "bind" configuration directive, followed by one or # more IP addresses. # # Examples: # # bind 192.168.1.100 10.0.0.1 # bind 127.0.0.1 # Specify the path for the Unix socket that will be used to listen for # incoming connections. There is no default, so Redis will not listen # on a unix socket when not specified. # # unixsocket /tmp/redis.sock # unixsocketperm 700 # Close the connection after a client is idle for N seconds (0 to disable) timeout 0 # TCP keepalive. # # If non-zero, use SO_KEEPALIVE to send TCP ACKs to clients in absence # of communication. This is useful for two reasons: # # 1) Detect dead peers. # 2) Take the connection alive from the point of view of network # equipment in the middle. # # On Linux, the specified value (in seconds) is the period used to send ACKs. # Note that to close the connection the double of the time is needed. # On other kernels the period depends on the kernel configuration. # # A reasonable value for this option is 60 seconds. tcp-keepalive 0 # Specify the server verbosity level. # This can be one of: # debug (a lot of information, useful for development/testing) # verbose (many rarely useful info, but not a mess like the debug level) # notice (moderately verbose, what you want in production probably) # warning (only very important / critical messages are logged) loglevel notice # Specify the log file name. Also the empty string can be used to force # Redis to log on the standard output. Note that if you use standard # output for logging but daemonize, logs will be sent to /dev/null logfile "" # To enable logging to the system logger, just set 'syslog-enabled' to yes, # and optionally update the other syslog parameters to suit your needs. # syslog-enabled no # Specify the syslog identity. # syslog-ident redis # Specify the syslog facility. Must be USER or between LOCAL0-LOCAL7. # syslog-facility local0 # Set the number of databases. The default database is DB 0, you can select # a different one on a per-connection basis using SELECT where # dbid is a number between 0 and 'databases'-1 databases 16 ################################ SNAPSHOTTING ################################ # # Save the DB on disk: # # save # # Will save the DB if both the given number of seconds and the given # number of write operations against the DB occurred. # # In the example below the behaviour will be to save: # after 900 sec (15 min) if at least 1 key changed # after 300 sec (5 min) if at least 10 keys changed # after 60 sec if at least 10000 keys changed # # Note: you can disable saving completely by commenting out all "save" lines. # # It is also possible to remove all the previously configured save # points by adding a save directive with a single empty string argument # like in the following example: # # save "" save 900 1 save 300 10 save 60 10000 # By default Redis will stop accepting writes if RDB snapshots are enabled # (at least one save point) and the latest background save failed. # This will make the user aware (in a hard way) that data is not persisting # on disk properly, otherwise chances are that no one will notice and some # disaster will happen. # # If the background saving process will start working again Redis will # automatically allow writes again. # # However if you have setup your proper monitoring of the Redis server # and persistence, you may want to disable this feature so that Redis will # continue to work as usual even if there are problems with disk, # permissions, and so forth. stop-writes-on-bgsave-error yes # Compress string objects using LZF when dump .rdb databases? # For default that's set to 'yes' as it's almost always a win. # If you want to save some CPU in the saving child set it to 'no' but # the dataset will likely be bigger if you have compressible values or keys. rdbcompression yes # Since version 5 of RDB a CRC64 checksum is placed at the end of the file. # This makes the format more resistant to corruption but there is a performance # hit to pay (around 10%) when saving and loading RDB files, so you can disable it # for maximum performances. # # RDB files created with checksum disabled have a checksum of zero that will # tell the loading code to skip the check. rdbchecksum yes # The filename where to dump the DB dbfilename "redis-master.rdb" # The working directory. # # The DB will be written inside this directory, with the filename specified # above using the 'dbfilename' configuration directive. # # The Append Only File will also be created inside this directory. # # Note that you must specify a directory here, not a file name. dir "/tmp/" ################################# REPLICATION ################################# # Master-Slave replication. Use slaveof to make a Redis instance a copy of # another Redis server. A few things to understand ASAP about Redis replication. # # 1) Redis replication is asynchronous, but you can configure a master to # stop accepting writes if it appears to be not connected with at least # a given number of slaves. # 2) Redis slaves are able to perform a partial resynchronization with the # master if the replication link is lost for a relatively small amount of # time. You may want to configure the replication backlog size (see the next # sections of this file) with a sensible value depending on your needs. # 3) Replication is automatic and does not need user intervention. After a # network partition slaves automatically try to reconnect to masters # and resynchronize with them. # # slaveof # If the master is password protected (using the "requirepass" configuration # directive below) it is possible to tell the slave to authenticate before # starting the replication synchronization process, otherwise the master will # refuse the slave request. # # masterauth # When a slave loses its connection with the master, or when the replication # is still in progress, the slave can act in two different ways: # # 1) if slave-serve-stale-data is set to 'yes' (the default) the slave will # still reply to client requests, possibly with out of date data, or the # data set may just be empty if this is the first synchronization. # # 2) if slave-serve-stale-data is set to 'no' the slave will reply with # an error "SYNC with master in progress" to all the kind of commands # but to INFO and SLAVEOF. # slave-serve-stale-data yes # You can configure a slave instance to accept writes or not. Writing against # a slave instance may be useful to store some ephemeral data (because data # written on a slave will be easily deleted after resync with the master) but # may also cause problems if clients are writing to it because of a # misconfiguration. # # Since Redis 2.6 by default slaves are read-only. # # Note: read only slaves are not designed to be exposed to untrusted clients # on the internet. It's just a protection layer against misuse of the instance. # Still a read only slave exports by default all the administrative commands # such as CONFIG, DEBUG, and so forth. To a limited extent you can improve # security of read only slaves using 'rename-command' to shadow all the # administrative / dangerous commands. slave-read-only yes # Replication SYNC strategy: disk or socket. # # ------------------------------------------------------- # WARNING: DISKLESS REPLICATION IS EXPERIMENTAL CURRENTLY # ------------------------------------------------------- # # New slaves and reconnecting slaves that are not able to continue the replication # process just receiving differences, need to do what is called a "full # synchronization". An RDB file is transmitted from the master to the slaves. # The transmission can happen in two different ways: # # 1) Disk-backed: The Redis master creates a new process that writes the RDB # file on disk. Later the file is transferred by the parent # process to the slaves incrementally. # 2) Diskless: The Redis master creates a new process that directly writes the # RDB file to slave sockets, without touching the disk at all. # # With disk-backed replication, while the RDB file is generated, more slaves # can be queued and served with the RDB file as soon as the current child producing # the RDB file finishes its work. With diskless replication instead once # the transfer starts, new slaves arriving will be queued and a new transfer # will start when the current one terminates. # # When diskless replication is used, the master waits a configurable amount of # time (in seconds) before starting the transfer in the hope that multiple slaves # will arrive and the transfer can be parallelized. # # With slow disks and fast (large bandwidth) networks, diskless replication # works better. repl-diskless-sync no # When diskless replication is enabled, it is possible to configure the delay # the server waits in order to spawn the child that transfers the RDB via socket # to the slaves. # # This is important since once the transfer starts, it is not possible to serve # new slaves arriving, that will be queued for the next RDB transfer, so the server # waits a delay in order to let more slaves arrive. # # The delay is specified in seconds, and by default is 5 seconds. To disable # it entirely just set it to 0 seconds and the transfer will start ASAP. repl-diskless-sync-delay 5 # Slaves send PINGs to server in a predefined interval. It's possible to change # this interval with the repl_ping_slave_period option. The default value is 10 # seconds. # # repl-ping-slave-period 10 # The following option sets the replication timeout for: # # 1) Bulk transfer I/O during SYNC, from the point of view of slave. # 2) Master timeout from the point of view of slaves (data, pings). # 3) Slave timeout from the point of view of masters (REPLCONF ACK pings). # # It is important to make sure that this value is greater than the value # specified for repl-ping-slave-period otherwise a timeout will be detected # every time there is low traffic between the master and the slave. # # repl-timeout 60 # Disable TCP_NODELAY on the slave socket after SYNC? # # If you select "yes" Redis will use a smaller number of TCP packets and # less bandwidth to send data to slaves. But this can add a delay for # the data to appear on the slave side, up to 40 milliseconds with # Linux kernels using a default configuration. # # If you select "no" the delay for data to appear on the slave side will # be reduced but more bandwidth will be used for replication. # # By default we optimize for low latency, but in very high traffic conditions # or when the master and slaves are many hops away, turning this to "yes" may # be a good idea. repl-disable-tcp-nodelay no # Set the replication backlog size. The backlog is a buffer that accumulates # slave data when slaves are disconnected for some time, so that when a slave # wants to reconnect again, often a full resync is not needed, but a partial # resync is enough, just passing the portion of data the slave missed while # disconnected. # # The bigger the replication backlog, the longer the time the slave can be # disconnected and later be able to perform a partial resynchronization. # # The backlog is only allocated once there is at least a slave connected. # # repl-backlog-size 1mb # After a master has no longer connected slaves for some time, the backlog # will be freed. The following option configures the amount of seconds that # need to elapse, starting from the time the last slave disconnected, for # the backlog buffer to be freed. # # A value of 0 means to never release the backlog. # # repl-backlog-ttl 3600 # The slave priority is an integer number published by Redis in the INFO output. # It is used by Redis Sentinel in order to select a slave to promote into a # master if the master is no longer working correctly. # # A slave with a low priority number is considered better for promotion, so # for instance if there are three slaves with priority 10, 100, 25 Sentinel will # pick the one with priority 10, that is the lowest. # # However a special priority of 0 marks the slave as not able to perform the # role of master, so a slave with priority of 0 will never be selected by # Redis Sentinel for promotion. # # By default the priority is 100. slave-priority 100 # It is possible for a master to stop accepting writes if there are less than # N slaves connected, having a lag less or equal than M seconds. # # The N slaves need to be in "online" state. # # The lag in seconds, that must be <= the specified value, is calculated from # the last ping received from the slave, that is usually sent every second. # # This option does not GUARANTEE that N replicas will accept the write, but # will limit the window of exposure for lost writes in case not enough slaves # are available, to the specified number of seconds. # # For example to require at least 3 slaves with a lag <= 10 seconds use: # # min-slaves-to-write 3 # min-slaves-max-lag 10 # # Setting one or the other to 0 disables the feature. # # By default min-slaves-to-write is set to 0 (feature disabled) and # min-slaves-max-lag is set to 10. ################################## SECURITY ################################### # Require clients to issue AUTH before processing any other # commands. This might be useful in environments in which you do not trust # others with access to the host running redis-server. # # This should stay commented out for backward compatibility and because most # people do not need auth (e.g. they run their own servers). # # Warning: since Redis is pretty fast an outside user can try up to # 150k passwords per second against a good box. This means that you should # use a very strong password otherwise it will be very easy to break. # # requirepass foobared # Command renaming. # # It is possible to change the name of dangerous commands in a shared # environment. For instance the CONFIG command may be renamed into something # hard to guess so that it will still be available for internal-use tools # but not available for general clients. # # Example: # # rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52 # # It is also possible to completely kill a command by renaming it into # an empty string: # # rename-command CONFIG "" # # Please note that changing the name of commands that are logged into the # AOF file or transmitted to slaves may cause problems. ################################### LIMITS #################################### # Set the max number of connected clients at the same time. By default # this limit is set to 10000 clients, however if the Redis server is not # able to configure the process file limit to allow for the specified limit # the max number of allowed clients is set to the current file limit # minus 32 (as Redis reserves a few file descriptors for internal uses). # # Once the limit is reached Redis will close all the new connections sending # an error 'max number of clients reached'. # # maxclients 10000 # Don't use more memory than the specified amount of bytes. # When the memory limit is reached Redis will try to remove keys # according to the eviction policy selected (see maxmemory-policy). # # If Redis can't remove keys according to the policy, or if the policy is # set to 'noeviction', Redis will start to reply with errors to commands # that would use more memory, like SET, LPUSH, and so on, and will continue # to reply to read-only commands like GET. # # This option is usually useful when using Redis as an LRU cache, or to set # a hard memory limit for an instance (using the 'noeviction' policy). # # WARNING: If you have slaves attached to an instance with maxmemory on, # the size of the output buffers needed to feed the slaves are subtracted # from the used memory count, so that network problems / resyncs will # not trigger a loop where keys are evicted, and in turn the output # buffer of slaves is full with DELs of keys evicted triggering the deletion # of more keys, and so forth until the database is completely emptied. # # In short... if you have slaves attached it is suggested that you set a lower # limit for maxmemory so that there is some free RAM on the system for slave # output buffers (but this is not needed if the policy is 'noeviction'). # # maxmemory # MAXMEMORY POLICY: how Redis will select what to remove when maxmemory # is reached. You can select among five behaviors: # # volatile-lru -> remove the key with an expire set using an LRU algorithm # allkeys-lru -> remove any key according to the LRU algorithm # volatile-random -> remove a random key with an expire set # allkeys-random -> remove a random key, any key # volatile-ttl -> remove the key with the nearest expire time (minor TTL) # noeviction -> don't expire at all, just return an error on write operations # # Note: with any of the above policies, Redis will return an error on write # operations, when there are no suitable keys for eviction. # # At the date of writing these commands are: set setnx setex append # incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd # sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby # zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby # getset mset msetnx exec sort # # The default is: # # maxmemory-policy noeviction # LRU and minimal TTL algorithms are not precise algorithms but approximated # algorithms (in order to save memory), so you can tune it for speed or # accuracy. For default Redis will check five keys and pick the one that was # used less recently, you can change the sample size using the following # configuration directive. # # The default of 5 produces good enough results. 10 Approximates very closely # true LRU but costs a bit more CPU. 3 is very fast but not very accurate. # # maxmemory-samples 5 ############################## APPEND ONLY MODE ############################### # By default Redis asynchronously dumps the dataset on disk. This mode is # good enough in many applications, but an issue with the Redis process or # a power outage may result into a few minutes of writes lost (depending on # the configured save points). # # The Append Only File is an alternative persistence mode that provides # much better durability. For instance using the default data fsync policy # (see later in the config file) Redis can lose just one second of writes in a # dramatic event like a server power outage, or a single write if something # wrong with the Redis process itself happens, but the operating system is # still running correctly. # # AOF and RDB persistence can be enabled at the same time without problems. # If the AOF is enabled on startup Redis will load the AOF, that is the file # with the better durability guarantees. # # Please check http://redis.io/topics/persistence for more information. appendonly no # The name of the append only file (default: "appendonly.aof") appendfilename "appendonly.aof" # The fsync() call tells the Operating System to actually write data on disk # instead of waiting for more data in the output buffer. Some OS will really flush # data on disk, some other OS will just try to do it ASAP. # # Redis supports three different modes: # # no: don't fsync, just let the OS flush the data when it wants. Faster. # always: fsync after every write to the append only log. Slow, Safest. # everysec: fsync only one time every second. Compromise. # # The default is "everysec", as that's usually the right compromise between # speed and data safety. It's up to you to understand if you can relax this to # "no" that will let the operating system flush the output buffer when # it wants, for better performances (but if you can live with the idea of # some data loss consider the default persistence mode that's snapshotting), # or on the contrary, use "always" that's very slow but a bit safer than # everysec. # # More details please check the following article: # http://antirez.com/post/redis-persistence-demystified.html # # If unsure, use "everysec". # appendfsync always appendfsync everysec # appendfsync no # When the AOF fsync policy is set to always or everysec, and a background # saving process (a background save or AOF log background rewriting) is # performing a lot of I/O against the disk, in some Linux configurations # Redis may block too long on the fsync() call. Note that there is no fix for # this currently, as even performing fsync in a different thread will block # our synchronous write(2) call. # # In order to mitigate this problem it's possible to use the following option # that will prevent fsync() from being called in the main process while a # BGSAVE or BGREWRITEAOF is in progress. # # This means that while another child is saving, the durability of Redis is # the same as "appendfsync none". In practical terms, this means that it is # possible to lose up to 30 seconds of log in the worst scenario (with the # default Linux settings). # # If you have latency problems turn this to "yes". Otherwise leave it as # "no" that is the safest pick from the point of view of durability. no-appendfsync-on-rewrite no # Automatic rewrite of the append only file. # Redis is able to automatically rewrite the log file implicitly calling # BGREWRITEAOF when the AOF log size grows by the specified percentage. # # This is how it works: Redis remembers the size of the AOF file after the # latest rewrite (if no rewrite has happened since the restart, the size of # the AOF at startup is used). # # This base size is compared to the current size. If the current size is # bigger than the specified percentage, the rewrite is triggered. Also # you need to specify a minimal size for the AOF file to be rewritten, this # is useful to avoid rewriting the AOF file even if the percentage increase # is reached but it is still pretty small. # # Specify a percentage of zero in order to disable the automatic AOF # rewrite feature. auto-aof-rewrite-percentage 100 auto-aof-rewrite-min-size 64mb # An AOF file may be found to be truncated at the end during the Redis # startup process, when the AOF data gets loaded back into memory. # This may happen when the system where Redis is running # crashes, especially when an ext4 filesystem is mounted without the # data=ordered option (however this can't happen when Redis itself # crashes or aborts but the operating system still works correctly). # # Redis can either exit with an error when this happens, or load as much # data as possible (the default now) and start if the AOF file is found # to be truncated at the end. The following option controls this behavior. # # If aof-load-truncated is set to yes, a truncated AOF file is loaded and # the Redis server starts emitting a log to inform the user of the event. # Otherwise if the option is set to no, the server aborts with an error # and refuses to start. When the option is set to no, the user requires # to fix the AOF file using the "redis-check-aof" utility before to restart # the server. # # Note that if the AOF file will be found to be corrupted in the middle # the server will still exit with an error. This option only applies when # Redis will try to read more data from the AOF file but not enough bytes # will be found. aof-load-truncated yes ################################ LUA SCRIPTING ############################### # Max execution time of a Lua script in milliseconds. # # If the maximum execution time is reached Redis will log that a script is # still in execution after the maximum allowed time and will start to # reply to queries with an error. # # When a long running script exceeds the maximum execution time only the # SCRIPT KILL and SHUTDOWN NOSAVE commands are available. The first can be # used to stop a script that did not yet called write commands. The second # is the only way to shut down the server in the case a write command was # already issued by the script but the user doesn't want to wait for the natural # termination of the script. # # Set it to 0 or a negative value for unlimited execution without warnings. lua-time-limit 5000 ################################ REDIS CLUSTER ############################### # # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # WARNING EXPERIMENTAL: Redis Cluster is considered to be stable code, however # in order to mark it as "mature" we need to wait for a non trivial percentage # of users to deploy it in production. # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # # Normal Redis instances can't be part of a Redis Cluster; only nodes that are # started as cluster nodes can. In order to start a Redis instance as a # cluster node enable the cluster support uncommenting the following: # # cluster-enabled yes # Every cluster node has a cluster configuration file. This file is not # intended to be edited by hand. It is created and updated by Redis nodes. # Every Redis Cluster node requires a different cluster configuration file. # Make sure that instances running in the same system do not have # overlapping cluster configuration file names. # # cluster-config-file nodes-6379.conf # Cluster node timeout is the amount of milliseconds a node must be unreachable # for it to be considered in failure state. # Most other internal time limits are multiple of the node timeout. # # cluster-node-timeout 15000 # A slave of a failing master will avoid to start a failover if its data # looks too old. # # There is no simple way for a slave to actually have a exact measure of # its "data age", so the following two checks are performed: # # 1) If there are multiple slaves able to failover, they exchange messages # in order to try to give an advantage to the slave with the best # replication offset (more data from the master processed). # Slaves will try to get their rank by offset, and apply to the start # of the failover a delay proportional to their rank. # # 2) Every single slave computes the time of the last interaction with # its master. This can be the last ping or command received (if the master # is still in the "connected" state), or the time that elapsed since the # disconnection with the master (if the replication link is currently down). # If the last interaction is too old, the slave will not try to failover # at all. # # The point "2" can be tuned by user. Specifically a slave will not perform # the failover if, since the last interaction with the master, the time # elapsed is greater than: # # (node-timeout * slave-validity-factor) + repl-ping-slave-period # # So for example if node-timeout is 30 seconds, and the slave-validity-factor # is 10, and assuming a default repl-ping-slave-period of 10 seconds, the # slave will not try to failover if it was not able to talk with the master # for longer than 310 seconds. # # A large slave-validity-factor may allow slaves with too old data to failover # a master, while a too small value may prevent the cluster from being able to # elect a slave at all. # # For maximum availability, it is possible to set the slave-validity-factor # to a value of 0, which means, that slaves will always try to failover the # master regardless of the last time they interacted with the master. # (However they'll always try to apply a delay proportional to their # offset rank). # # Zero is the only value able to guarantee that when all the partitions heal # the cluster will always be able to continue. # # cluster-slave-validity-factor 10 # Cluster slaves are able to migrate to orphaned masters, that are masters # that are left without working slaves. This improves the cluster ability # to resist to failures as otherwise an orphaned master can't be failed over # in case of failure if it has no working slaves. # # Slaves migrate to orphaned masters only if there are still at least a # given number of other working slaves for their old master. This number # is the "migration barrier". A migration barrier of 1 means that a slave # will migrate only if there is at least 1 other working slave for its master # and so forth. It usually reflects the number of slaves you want for every # master in your cluster. # # Default is 1 (slaves migrate only if their masters remain with at least # one slave). To disable migration just set it to a very large value. # A value of 0 can be set but is useful only for debugging and dangerous # in production. # # cluster-migration-barrier 1 # By default Redis Cluster nodes stop accepting queries if they detect there # is at least an hash slot uncovered (no available node is serving it). # This way if the cluster is partially down (for example a range of hash slots # are no longer covered) all the cluster becomes, eventually, unavailable. # It automatically returns available as soon as all the slots are covered again. # # However sometimes you want the subset of the cluster which is working, # to continue to accept queries for the part of the key space that is still # covered. In order to do so, just set the cluster-require-full-coverage # option to no. # # cluster-require-full-coverage yes # In order to setup your cluster make sure to read the documentation # available at http://redis.io web site. ################################## SLOW LOG ################################### # The Redis Slow Log is a system to log queries that exceeded a specified # execution time. The execution time does not include the I/O operations # like talking with the client, sending the reply and so forth, # but just the time needed to actually execute the command (this is the only # stage of command execution where the thread is blocked and can not serve # other requests in the meantime). # # You can configure the slow log with two parameters: one tells Redis # what is the execution time, in microseconds, to exceed in order for the # command to get logged, and the other parameter is the length of the # slow log. When a new command is logged the oldest one is removed from the # queue of logged commands. # The following time is expressed in microseconds, so 1000000 is equivalent # to one second. Note that a negative number disables the slow log, while # a value of zero forces the logging of every command. slowlog-log-slower-than 10000 # There is no limit to this length. Just be aware that it will consume memory. # You can reclaim memory used by the slow log with SLOWLOG RESET. slowlog-max-len 128 ################################ LATENCY MONITOR ############################## # The Redis latency monitoring subsystem samples different operations # at runtime in order to collect data related to possible sources of # latency of a Redis instance. # # Via the LATENCY command this information is available to the user that can # print graphs and obtain reports. # # The system only logs operations that were performed in a time equal or # greater than the amount of milliseconds specified via the # latency-monitor-threshold configuration directive. When its value is set # to zero, the latency monitor is turned off. # # By default latency monitoring is disabled since it is mostly not needed # if you don't have latency issues, and collecting data has a performance # impact, that while very small, can be measured under big load. Latency # monitoring can easily be enabled at runtime using the command # "CONFIG SET latency-monitor-threshold " if needed. latency-monitor-threshold 0 ############################# EVENT NOTIFICATION ############################## # Redis can notify Pub/Sub clients about events happening in the key space. # This feature is documented at http://redis.io/topics/notifications # # For instance if keyspace events notification is enabled, and a client # performs a DEL operation on key "foo" stored in the Database 0, two # messages will be published via Pub/Sub: # # PUBLISH __keyspace@0__:foo del # PUBLISH __keyevent@0__:del foo # # It is possible to select the events that Redis will notify among a set # of classes. Every class is identified by a single character: # # K Keyspace events, published with __keyspace@__ prefix. # E Keyevent events, published with __keyevent@__ prefix. # g Generic commands (non-type specific) like DEL, EXPIRE, RENAME, ... # $ String commands # l List commands # s Set commands # h Hash commands # z Sorted set commands # x Expired events (events generated every time a key expires) # e Evicted events (events generated when a key is evicted for maxmemory) # A Alias for g$lshzxe, so that the "AKE" string means all the events. # # The "notify-keyspace-events" takes as argument a string that is composed # of zero or multiple characters. The empty string means that notifications # are disabled. # # Example: to enable list and generic events, from the point of view of the # event name, use: # # notify-keyspace-events Elg # # Example 2: to get the stream of the expired keys subscribing to channel # name __keyevent@0__:expired use: # # notify-keyspace-events Ex # # By default all notifications are disabled because most users don't need # this feature and the feature has some overhead. Note that if you don't # specify at least one of K or E, no events will be delivered. notify-keyspace-events "" ############################### ADVANCED CONFIG ############################### # Hashes are encoded using a memory efficient data structure when they have a # small number of entries, and the biggest entry does not exceed a given # threshold. These thresholds can be configured using the following directives. hash-max-ziplist-entries 512 hash-max-ziplist-value 64 # Similarly to hashes, small lists are also encoded in a special way in order # to save a lot of space. The special representation is only used when # you are under the following limits: list-max-ziplist-entries 512 list-max-ziplist-value 64 # Sets have a special encoding in just one case: when a set is composed # of just strings that happen to be integers in radix 10 in the range # of 64 bit signed integers. # The following configuration setting sets the limit in the size of the # set in order to use this special memory saving encoding. set-max-intset-entries 512 # Similarly to hashes and lists, sorted sets are also specially encoded in # order to save a lot of space. This encoding is only used when the length and # elements of a sorted set are below the following limits: zset-max-ziplist-entries 128 zset-max-ziplist-value 64 # HyperLogLog sparse representation bytes limit. The limit includes the # 16 bytes header. When an HyperLogLog using the sparse representation crosses # this limit, it is converted into the dense representation. # # A value greater than 16000 is totally useless, since at that point the # dense representation is more memory efficient. # # The suggested value is ~ 3000 in order to have the benefits of # the space efficient encoding without slowing down too much PFADD, # which is O(N) with the sparse encoding. The value can be raised to # ~ 10000 when CPU is not a concern, but space is, and the data set is # composed of many HyperLogLogs with cardinality in the 0 - 15000 range. hll-sparse-max-bytes 3000 # Active rehashing uses 1 millisecond every 100 milliseconds of CPU time in # order to help rehashing the main Redis hash table (the one mapping top-level # keys to values). The hash table implementation Redis uses (see dict.c) # performs a lazy rehashing: the more operation you run into a hash table # that is rehashing, the more rehashing "steps" are performed, so if the # server is idle the rehashing is never complete and some more memory is used # by the hash table. # # The default is to use this millisecond 10 times every second in order to # actively rehash the main dictionaries, freeing memory when possible. # # If unsure: # use "activerehashing no" if you have hard latency requirements and it is # not a good thing in your environment that Redis can reply from time to time # to queries with 2 milliseconds delay. # # use "activerehashing yes" if you don't have such hard requirements but # want to free memory asap when possible. activerehashing yes # The client output buffer limits can be used to force disconnection of clients # that are not reading data from the server fast enough for some reason (a # common reason is that a Pub/Sub client can't consume messages as fast as the # publisher can produce them). # # The limit can be set differently for the three different classes of clients: # # normal -> normal clients including MONITOR clients # slave -> slave clients # pubsub -> clients subscribed to at least one pubsub channel or pattern # # The syntax of every client-output-buffer-limit directive is the following: # # client-output-buffer-limit # # A client is immediately disconnected once the hard limit is reached, or if # the soft limit is reached and remains reached for the specified number of # seconds (continuously). # So for instance if the hard limit is 32 megabytes and the soft limit is # 16 megabytes / 10 seconds, the client will get disconnected immediately # if the size of the output buffers reach 32 megabytes, but will also get # disconnected if the client reaches 16 megabytes and continuously overcomes # the limit for 10 seconds. # # By default normal clients are not limited because they don't receive data # without asking (in a push way), but just after a request, so only # asynchronous clients may create a scenario where data is requested faster # than it can read. # # Instead there is a default limit for pubsub and slave clients, since # subscribers and slaves receive data in a push fashion. # # Both the hard or the soft limit can be disabled by setting them to zero. client-output-buffer-limit normal 0 0 0 client-output-buffer-limit slave 256mb 64mb 60 client-output-buffer-limit pubsub 32mb 8mb 60 # Redis calls an internal function to perform many background tasks, like # closing connections of clients in timeout, purging expired keys that are # never requested, and so forth. # # Not all tasks are performed with the same frequency, but Redis checks for # tasks to perform according to the specified "hz" value. # # By default "hz" is set to 10. Raising the value will use more CPU when # Redis is idle, but at the same time will make Redis more responsive when # there are many keys expiring at the same time, and timeouts may be # handled with more precision. # # The range is between 1 and 500, however a value over 100 is usually not # a good idea. Most users should use the default of 10 and raise this up to # 100 only in environments where very low latency is required. hz 10 # When a child rewrites the AOF file, if the following option is enabled # the file will be fsync-ed every 32 MB of data generated. This is useful # in order to commit the file to the disk more incrementally and avoid # big latency spikes. aof-rewrite-incremental-fsync yes limits-1.5.1/tests/redis-configurations/sentinel/redis-sentinel.conf000066400000000000000000000006321362535055200257430ustar00rootroot00000000000000pidfile "/tmp/redis-sentinel.pid" logfile "/tmp/redis-sentinel.log" dir "." daemonize yes port 26379 sentinel monitor localhost-redis-sentinel 127.0.0.1 6380 1 sentinel down-after-milliseconds localhost-redis-sentinel 3100 sentinel config-epoch localhost-redis-sentinel 0 sentinel leader-epoch localhost-redis-sentinel 0 sentinel known-slave localhost-redis-sentinel 127.0.0.1 6381 sentinel current-epoch 0 limits-1.5.1/tests/redis-configurations/sentinel/redis-slave.conf000066400000000000000000001207471362535055200252460ustar00rootroot00000000000000# Redis configuration file example # Note on units: when memory size is needed, it is possible to specify # it in the usual form of 1k 5GB 4M and so forth: # # 1k => 1000 bytes # 1kb => 1024 bytes # 1m => 1000000 bytes # 1mb => 1024*1024 bytes # 1g => 1000000000 bytes # 1gb => 1024*1024*1024 bytes # # units are case insensitive so 1GB 1Gb 1gB are all the same. ################################## INCLUDES ################################### # Include one or more other config files here. This is useful if you # have a standard template that goes to all Redis servers but also need # to customize a few per-server settings. Include files can include # other files, so use this wisely. # # Notice option "include" won't be rewritten by command "CONFIG REWRITE" # from admin or Redis Sentinel. Since Redis always uses the last processed # line as value of a configuration directive, you'd better put includes # at the beginning of this file to avoid overwriting config change at runtime. # # If instead you are interested in using includes to override configuration # options, it is better to use include as the last line. # # include /path/to/local.conf # include /path/to/other.conf ################################ GENERAL ##################################### # By default Redis does not run as a daemon. Use 'yes' if you need it. # Note that Redis will write a pid file in /var/run/redis.pid when daemonized. daemonize yes # When running daemonized, Redis writes a pid file in /var/run/redis.pid by # default. You can specify a custom pid file location here. pidfile "/tmp/redis-slave.pid" # Accept connections on the specified port, default is 6379. # If port 0 is specified Redis will not listen on a TCP socket. port 6381 # TCP listen() backlog. # # In high requests-per-second environments you need an high backlog in order # to avoid slow clients connections issues. Note that the Linux kernel # will silently truncate it to the value of /proc/sys/net/core/somaxconn so # make sure to raise both the value of somaxconn and tcp_max_syn_backlog # in order to get the desired effect. tcp-backlog 511 # By default Redis listens for connections from all the network interfaces # available on the server. It is possible to listen to just one or multiple # interfaces using the "bind" configuration directive, followed by one or # more IP addresses. # # Examples: # # bind 192.168.1.100 10.0.0.1 # bind 127.0.0.1 # Specify the path for the Unix socket that will be used to listen for # incoming connections. There is no default, so Redis will not listen # on a unix socket when not specified. # # unixsocket /tmp/redis.sock # unixsocketperm 700 # Close the connection after a client is idle for N seconds (0 to disable) timeout 0 # TCP keepalive. # # If non-zero, use SO_KEEPALIVE to send TCP ACKs to clients in absence # of communication. This is useful for two reasons: # # 1) Detect dead peers. # 2) Take the connection alive from the point of view of network # equipment in the middle. # # On Linux, the specified value (in seconds) is the period used to send ACKs. # Note that to close the connection the double of the time is needed. # On other kernels the period depends on the kernel configuration. # # A reasonable value for this option is 60 seconds. tcp-keepalive 0 # Specify the server verbosity level. # This can be one of: # debug (a lot of information, useful for development/testing) # verbose (many rarely useful info, but not a mess like the debug level) # notice (moderately verbose, what you want in production probably) # warning (only very important / critical messages are logged) loglevel notice # Specify the log file name. Also the empty string can be used to force # Redis to log on the standard output. Note that if you use standard # output for logging but daemonize, logs will be sent to /dev/null logfile "" # To enable logging to the system logger, just set 'syslog-enabled' to yes, # and optionally update the other syslog parameters to suit your needs. # syslog-enabled no # Specify the syslog identity. # syslog-ident redis # Specify the syslog facility. Must be USER or between LOCAL0-LOCAL7. # syslog-facility local0 # Set the number of databases. The default database is DB 0, you can select # a different one on a per-connection basis using SELECT where # dbid is a number between 0 and 'databases'-1 databases 16 ################################ SNAPSHOTTING ################################ # # Save the DB on disk: # # save # # Will save the DB if both the given number of seconds and the given # number of write operations against the DB occurred. # # In the example below the behaviour will be to save: # after 900 sec (15 min) if at least 1 key changed # after 300 sec (5 min) if at least 10 keys changed # after 60 sec if at least 10000 keys changed # # Note: you can disable saving completely by commenting out all "save" lines. # # It is also possible to remove all the previously configured save # points by adding a save directive with a single empty string argument # like in the following example: # # save "" save 900 1 save 300 10 save 60 10000 # By default Redis will stop accepting writes if RDB snapshots are enabled # (at least one save point) and the latest background save failed. # This will make the user aware (in a hard way) that data is not persisting # on disk properly, otherwise chances are that no one will notice and some # disaster will happen. # # If the background saving process will start working again Redis will # automatically allow writes again. # # However if you have setup your proper monitoring of the Redis server # and persistence, you may want to disable this feature so that Redis will # continue to work as usual even if there are problems with disk, # permissions, and so forth. stop-writes-on-bgsave-error yes # Compress string objects using LZF when dump .rdb databases? # For default that's set to 'yes' as it's almost always a win. # If you want to save some CPU in the saving child set it to 'no' but # the dataset will likely be bigger if you have compressible values or keys. rdbcompression yes # Since version 5 of RDB a CRC64 checksum is placed at the end of the file. # This makes the format more resistant to corruption but there is a performance # hit to pay (around 10%) when saving and loading RDB files, so you can disable it # for maximum performances. # # RDB files created with checksum disabled have a checksum of zero that will # tell the loading code to skip the check. rdbchecksum yes # The filename where to dump the DB dbfilename "redis-slave-1.rdb" # The working directory. # # The DB will be written inside this directory, with the filename specified # above using the 'dbfilename' configuration directive. # # The Append Only File will also be created inside this directory. # # Note that you must specify a directory here, not a file name. dir "/tmp/" ################################# REPLICATION ################################# # Master-Slave replication. Use slaveof to make a Redis instance a copy of # another Redis server. A few things to understand ASAP about Redis replication. # # 1) Redis replication is asynchronous, but you can configure a master to # stop accepting writes if it appears to be not connected with at least # a given number of slaves. # 2) Redis slaves are able to perform a partial resynchronization with the # master if the replication link is lost for a relatively small amount of # time. You may want to configure the replication backlog size (see the next # sections of this file) with a sensible value depending on your needs. # 3) Replication is automatic and does not need user intervention. After a # network partition slaves automatically try to reconnect to masters # and resynchronize with them. # # slaveof slaveof 127.0.0.1 6380 # If the master is password protected (using the "requirepass" configuration # directive below) it is possible to tell the slave to authenticate before # starting the replication synchronization process, otherwise the master will # refuse the slave request. # # masterauth # When a slave loses its connection with the master, or when the replication # is still in progress, the slave can act in two different ways: # # 1) if slave-serve-stale-data is set to 'yes' (the default) the slave will # still reply to client requests, possibly with out of date data, or the # data set may just be empty if this is the first synchronization. # # 2) if slave-serve-stale-data is set to 'no' the slave will reply with # an error "SYNC with master in progress" to all the kind of commands # but to INFO and SLAVEOF. # slave-serve-stale-data yes # You can configure a slave instance to accept writes or not. Writing against # a slave instance may be useful to store some ephemeral data (because data # written on a slave will be easily deleted after resync with the master) but # may also cause problems if clients are writing to it because of a # misconfiguration. # # Since Redis 2.6 by default slaves are read-only. # # Note: read only slaves are not designed to be exposed to untrusted clients # on the internet. It's just a protection layer against misuse of the instance. # Still a read only slave exports by default all the administrative commands # such as CONFIG, DEBUG, and so forth. To a limited extent you can improve # security of read only slaves using 'rename-command' to shadow all the # administrative / dangerous commands. slave-read-only yes # Replication SYNC strategy: disk or socket. # # ------------------------------------------------------- # WARNING: DISKLESS REPLICATION IS EXPERIMENTAL CURRENTLY # ------------------------------------------------------- # # New slaves and reconnecting slaves that are not able to continue the replication # process just receiving differences, need to do what is called a "full # synchronization". An RDB file is transmitted from the master to the slaves. # The transmission can happen in two different ways: # # 1) Disk-backed: The Redis master creates a new process that writes the RDB # file on disk. Later the file is transferred by the parent # process to the slaves incrementally. # 2) Diskless: The Redis master creates a new process that directly writes the # RDB file to slave sockets, without touching the disk at all. # # With disk-backed replication, while the RDB file is generated, more slaves # can be queued and served with the RDB file as soon as the current child producing # the RDB file finishes its work. With diskless replication instead once # the transfer starts, new slaves arriving will be queued and a new transfer # will start when the current one terminates. # # When diskless replication is used, the master waits a configurable amount of # time (in seconds) before starting the transfer in the hope that multiple slaves # will arrive and the transfer can be parallelized. # # With slow disks and fast (large bandwidth) networks, diskless replication # works better. repl-diskless-sync no # When diskless replication is enabled, it is possible to configure the delay # the server waits in order to spawn the child that transfers the RDB via socket # to the slaves. # # This is important since once the transfer starts, it is not possible to serve # new slaves arriving, that will be queued for the next RDB transfer, so the server # waits a delay in order to let more slaves arrive. # # The delay is specified in seconds, and by default is 5 seconds. To disable # it entirely just set it to 0 seconds and the transfer will start ASAP. repl-diskless-sync-delay 5 # Slaves send PINGs to server in a predefined interval. It's possible to change # this interval with the repl_ping_slave_period option. The default value is 10 # seconds. # # repl-ping-slave-period 10 # The following option sets the replication timeout for: # # 1) Bulk transfer I/O during SYNC, from the point of view of slave. # 2) Master timeout from the point of view of slaves (data, pings). # 3) Slave timeout from the point of view of masters (REPLCONF ACK pings). # # It is important to make sure that this value is greater than the value # specified for repl-ping-slave-period otherwise a timeout will be detected # every time there is low traffic between the master and the slave. # # repl-timeout 60 # Disable TCP_NODELAY on the slave socket after SYNC? # # If you select "yes" Redis will use a smaller number of TCP packets and # less bandwidth to send data to slaves. But this can add a delay for # the data to appear on the slave side, up to 40 milliseconds with # Linux kernels using a default configuration. # # If you select "no" the delay for data to appear on the slave side will # be reduced but more bandwidth will be used for replication. # # By default we optimize for low latency, but in very high traffic conditions # or when the master and slaves are many hops away, turning this to "yes" may # be a good idea. repl-disable-tcp-nodelay no # Set the replication backlog size. The backlog is a buffer that accumulates # slave data when slaves are disconnected for some time, so that when a slave # wants to reconnect again, often a full resync is not needed, but a partial # resync is enough, just passing the portion of data the slave missed while # disconnected. # # The bigger the replication backlog, the longer the time the slave can be # disconnected and later be able to perform a partial resynchronization. # # The backlog is only allocated once there is at least a slave connected. # # repl-backlog-size 1mb # After a master has no longer connected slaves for some time, the backlog # will be freed. The following option configures the amount of seconds that # need to elapse, starting from the time the last slave disconnected, for # the backlog buffer to be freed. # # A value of 0 means to never release the backlog. # # repl-backlog-ttl 3600 # The slave priority is an integer number published by Redis in the INFO output. # It is used by Redis Sentinel in order to select a slave to promote into a # master if the master is no longer working correctly. # # A slave with a low priority number is considered better for promotion, so # for instance if there are three slaves with priority 10, 100, 25 Sentinel will # pick the one with priority 10, that is the lowest. # # However a special priority of 0 marks the slave as not able to perform the # role of master, so a slave with priority of 0 will never be selected by # Redis Sentinel for promotion. # # By default the priority is 100. slave-priority 100 # It is possible for a master to stop accepting writes if there are less than # N slaves connected, having a lag less or equal than M seconds. # # The N slaves need to be in "online" state. # # The lag in seconds, that must be <= the specified value, is calculated from # the last ping received from the slave, that is usually sent every second. # # This option does not GUARANTEE that N replicas will accept the write, but # will limit the window of exposure for lost writes in case not enough slaves # are available, to the specified number of seconds. # # For example to require at least 3 slaves with a lag <= 10 seconds use: # # min-slaves-to-write 3 # min-slaves-max-lag 10 # # Setting one or the other to 0 disables the feature. # # By default min-slaves-to-write is set to 0 (feature disabled) and # min-slaves-max-lag is set to 10. ################################## SECURITY ################################### # Require clients to issue AUTH before processing any other # commands. This might be useful in environments in which you do not trust # others with access to the host running redis-server. # # This should stay commented out for backward compatibility and because most # people do not need auth (e.g. they run their own servers). # # Warning: since Redis is pretty fast an outside user can try up to # 150k passwords per second against a good box. This means that you should # use a very strong password otherwise it will be very easy to break. # # requirepass foobared # Command renaming. # # It is possible to change the name of dangerous commands in a shared # environment. For instance the CONFIG command may be renamed into something # hard to guess so that it will still be available for internal-use tools # but not available for general clients. # # Example: # # rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52 # # It is also possible to completely kill a command by renaming it into # an empty string: # # rename-command CONFIG "" # # Please note that changing the name of commands that are logged into the # AOF file or transmitted to slaves may cause problems. ################################### LIMITS #################################### # Set the max number of connected clients at the same time. By default # this limit is set to 10000 clients, however if the Redis server is not # able to configure the process file limit to allow for the specified limit # the max number of allowed clients is set to the current file limit # minus 32 (as Redis reserves a few file descriptors for internal uses). # # Once the limit is reached Redis will close all the new connections sending # an error 'max number of clients reached'. # # maxclients 10000 # Don't use more memory than the specified amount of bytes. # When the memory limit is reached Redis will try to remove keys # according to the eviction policy selected (see maxmemory-policy). # # If Redis can't remove keys according to the policy, or if the policy is # set to 'noeviction', Redis will start to reply with errors to commands # that would use more memory, like SET, LPUSH, and so on, and will continue # to reply to read-only commands like GET. # # This option is usually useful when using Redis as an LRU cache, or to set # a hard memory limit for an instance (using the 'noeviction' policy). # # WARNING: If you have slaves attached to an instance with maxmemory on, # the size of the output buffers needed to feed the slaves are subtracted # from the used memory count, so that network problems / resyncs will # not trigger a loop where keys are evicted, and in turn the output # buffer of slaves is full with DELs of keys evicted triggering the deletion # of more keys, and so forth until the database is completely emptied. # # In short... if you have slaves attached it is suggested that you set a lower # limit for maxmemory so that there is some free RAM on the system for slave # output buffers (but this is not needed if the policy is 'noeviction'). # # maxmemory # MAXMEMORY POLICY: how Redis will select what to remove when maxmemory # is reached. You can select among five behaviors: # # volatile-lru -> remove the key with an expire set using an LRU algorithm # allkeys-lru -> remove any key according to the LRU algorithm # volatile-random -> remove a random key with an expire set # allkeys-random -> remove a random key, any key # volatile-ttl -> remove the key with the nearest expire time (minor TTL) # noeviction -> don't expire at all, just return an error on write operations # # Note: with any of the above policies, Redis will return an error on write # operations, when there are no suitable keys for eviction. # # At the date of writing these commands are: set setnx setex append # incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd # sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby # zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby # getset mset msetnx exec sort # # The default is: # # maxmemory-policy noeviction # LRU and minimal TTL algorithms are not precise algorithms but approximated # algorithms (in order to save memory), so you can tune it for speed or # accuracy. For default Redis will check five keys and pick the one that was # used less recently, you can change the sample size using the following # configuration directive. # # The default of 5 produces good enough results. 10 Approximates very closely # true LRU but costs a bit more CPU. 3 is very fast but not very accurate. # # maxmemory-samples 5 ############################## APPEND ONLY MODE ############################### # By default Redis asynchronously dumps the dataset on disk. This mode is # good enough in many applications, but an issue with the Redis process or # a power outage may result into a few minutes of writes lost (depending on # the configured save points). # # The Append Only File is an alternative persistence mode that provides # much better durability. For instance using the default data fsync policy # (see later in the config file) Redis can lose just one second of writes in a # dramatic event like a server power outage, or a single write if something # wrong with the Redis process itself happens, but the operating system is # still running correctly. # # AOF and RDB persistence can be enabled at the same time without problems. # If the AOF is enabled on startup Redis will load the AOF, that is the file # with the better durability guarantees. # # Please check http://redis.io/topics/persistence for more information. appendonly no # The name of the append only file (default: "appendonly.aof") appendfilename "appendonly.aof" # The fsync() call tells the Operating System to actually write data on disk # instead of waiting for more data in the output buffer. Some OS will really flush # data on disk, some other OS will just try to do it ASAP. # # Redis supports three different modes: # # no: don't fsync, just let the OS flush the data when it wants. Faster. # always: fsync after every write to the append only log. Slow, Safest. # everysec: fsync only one time every second. Compromise. # # The default is "everysec", as that's usually the right compromise between # speed and data safety. It's up to you to understand if you can relax this to # "no" that will let the operating system flush the output buffer when # it wants, for better performances (but if you can live with the idea of # some data loss consider the default persistence mode that's snapshotting), # or on the contrary, use "always" that's very slow but a bit safer than # everysec. # # More details please check the following article: # http://antirez.com/post/redis-persistence-demystified.html # # If unsure, use "everysec". # appendfsync always appendfsync everysec # appendfsync no # When the AOF fsync policy is set to always or everysec, and a background # saving process (a background save or AOF log background rewriting) is # performing a lot of I/O against the disk, in some Linux configurations # Redis may block too long on the fsync() call. Note that there is no fix for # this currently, as even performing fsync in a different thread will block # our synchronous write(2) call. # # In order to mitigate this problem it's possible to use the following option # that will prevent fsync() from being called in the main process while a # BGSAVE or BGREWRITEAOF is in progress. # # This means that while another child is saving, the durability of Redis is # the same as "appendfsync none". In practical terms, this means that it is # possible to lose up to 30 seconds of log in the worst scenario (with the # default Linux settings). # # If you have latency problems turn this to "yes". Otherwise leave it as # "no" that is the safest pick from the point of view of durability. no-appendfsync-on-rewrite no # Automatic rewrite of the append only file. # Redis is able to automatically rewrite the log file implicitly calling # BGREWRITEAOF when the AOF log size grows by the specified percentage. # # This is how it works: Redis remembers the size of the AOF file after the # latest rewrite (if no rewrite has happened since the restart, the size of # the AOF at startup is used). # # This base size is compared to the current size. If the current size is # bigger than the specified percentage, the rewrite is triggered. Also # you need to specify a minimal size for the AOF file to be rewritten, this # is useful to avoid rewriting the AOF file even if the percentage increase # is reached but it is still pretty small. # # Specify a percentage of zero in order to disable the automatic AOF # rewrite feature. auto-aof-rewrite-percentage 100 auto-aof-rewrite-min-size 64mb # An AOF file may be found to be truncated at the end during the Redis # startup process, when the AOF data gets loaded back into memory. # This may happen when the system where Redis is running # crashes, especially when an ext4 filesystem is mounted without the # data=ordered option (however this can't happen when Redis itself # crashes or aborts but the operating system still works correctly). # # Redis can either exit with an error when this happens, or load as much # data as possible (the default now) and start if the AOF file is found # to be truncated at the end. The following option controls this behavior. # # If aof-load-truncated is set to yes, a truncated AOF file is loaded and # the Redis server starts emitting a log to inform the user of the event. # Otherwise if the option is set to no, the server aborts with an error # and refuses to start. When the option is set to no, the user requires # to fix the AOF file using the "redis-check-aof" utility before to restart # the server. # # Note that if the AOF file will be found to be corrupted in the middle # the server will still exit with an error. This option only applies when # Redis will try to read more data from the AOF file but not enough bytes # will be found. aof-load-truncated yes ################################ LUA SCRIPTING ############################### # Max execution time of a Lua script in milliseconds. # # If the maximum execution time is reached Redis will log that a script is # still in execution after the maximum allowed time and will start to # reply to queries with an error. # # When a long running script exceeds the maximum execution time only the # SCRIPT KILL and SHUTDOWN NOSAVE commands are available. The first can be # used to stop a script that did not yet called write commands. The second # is the only way to shut down the server in the case a write command was # already issued by the script but the user doesn't want to wait for the natural # termination of the script. # # Set it to 0 or a negative value for unlimited execution without warnings. lua-time-limit 5000 ################################ REDIS CLUSTER ############################### # # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # WARNING EXPERIMENTAL: Redis Cluster is considered to be stable code, however # in order to mark it as "mature" we need to wait for a non trivial percentage # of users to deploy it in production. # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # # Normal Redis instances can't be part of a Redis Cluster; only nodes that are # started as cluster nodes can. In order to start a Redis instance as a # cluster node enable the cluster support uncommenting the following: # # cluster-enabled yes # Every cluster node has a cluster configuration file. This file is not # intended to be edited by hand. It is created and updated by Redis nodes. # Every Redis Cluster node requires a different cluster configuration file. # Make sure that instances running in the same system do not have # overlapping cluster configuration file names. # # cluster-config-file nodes-6379.conf # Cluster node timeout is the amount of milliseconds a node must be unreachable # for it to be considered in failure state. # Most other internal time limits are multiple of the node timeout. # # cluster-node-timeout 15000 # A slave of a failing master will avoid to start a failover if its data # looks too old. # # There is no simple way for a slave to actually have a exact measure of # its "data age", so the following two checks are performed: # # 1) If there are multiple slaves able to failover, they exchange messages # in order to try to give an advantage to the slave with the best # replication offset (more data from the master processed). # Slaves will try to get their rank by offset, and apply to the start # of the failover a delay proportional to their rank. # # 2) Every single slave computes the time of the last interaction with # its master. This can be the last ping or command received (if the master # is still in the "connected" state), or the time that elapsed since the # disconnection with the master (if the replication link is currently down). # If the last interaction is too old, the slave will not try to failover # at all. # # The point "2" can be tuned by user. Specifically a slave will not perform # the failover if, since the last interaction with the master, the time # elapsed is greater than: # # (node-timeout * slave-validity-factor) + repl-ping-slave-period # # So for example if node-timeout is 30 seconds, and the slave-validity-factor # is 10, and assuming a default repl-ping-slave-period of 10 seconds, the # slave will not try to failover if it was not able to talk with the master # for longer than 310 seconds. # # A large slave-validity-factor may allow slaves with too old data to failover # a master, while a too small value may prevent the cluster from being able to # elect a slave at all. # # For maximum availability, it is possible to set the slave-validity-factor # to a value of 0, which means, that slaves will always try to failover the # master regardless of the last time they interacted with the master. # (However they'll always try to apply a delay proportional to their # offset rank). # # Zero is the only value able to guarantee that when all the partitions heal # the cluster will always be able to continue. # # cluster-slave-validity-factor 10 # Cluster slaves are able to migrate to orphaned masters, that are masters # that are left without working slaves. This improves the cluster ability # to resist to failures as otherwise an orphaned master can't be failed over # in case of failure if it has no working slaves. # # Slaves migrate to orphaned masters only if there are still at least a # given number of other working slaves for their old master. This number # is the "migration barrier". A migration barrier of 1 means that a slave # will migrate only if there is at least 1 other working slave for its master # and so forth. It usually reflects the number of slaves you want for every # master in your cluster. # # Default is 1 (slaves migrate only if their masters remain with at least # one slave). To disable migration just set it to a very large value. # A value of 0 can be set but is useful only for debugging and dangerous # in production. # # cluster-migration-barrier 1 # By default Redis Cluster nodes stop accepting queries if they detect there # is at least an hash slot uncovered (no available node is serving it). # This way if the cluster is partially down (for example a range of hash slots # are no longer covered) all the cluster becomes, eventually, unavailable. # It automatically returns available as soon as all the slots are covered again. # # However sometimes you want the subset of the cluster which is working, # to continue to accept queries for the part of the key space that is still # covered. In order to do so, just set the cluster-require-full-coverage # option to no. # # cluster-require-full-coverage yes # In order to setup your cluster make sure to read the documentation # available at http://redis.io web site. ################################## SLOW LOG ################################### # The Redis Slow Log is a system to log queries that exceeded a specified # execution time. The execution time does not include the I/O operations # like talking with the client, sending the reply and so forth, # but just the time needed to actually execute the command (this is the only # stage of command execution where the thread is blocked and can not serve # other requests in the meantime). # # You can configure the slow log with two parameters: one tells Redis # what is the execution time, in microseconds, to exceed in order for the # command to get logged, and the other parameter is the length of the # slow log. When a new command is logged the oldest one is removed from the # queue of logged commands. # The following time is expressed in microseconds, so 1000000 is equivalent # to one second. Note that a negative number disables the slow log, while # a value of zero forces the logging of every command. slowlog-log-slower-than 10000 # There is no limit to this length. Just be aware that it will consume memory. # You can reclaim memory used by the slow log with SLOWLOG RESET. slowlog-max-len 128 ################################ LATENCY MONITOR ############################## # The Redis latency monitoring subsystem samples different operations # at runtime in order to collect data related to possible sources of # latency of a Redis instance. # # Via the LATENCY command this information is available to the user that can # print graphs and obtain reports. # # The system only logs operations that were performed in a time equal or # greater than the amount of milliseconds specified via the # latency-monitor-threshold configuration directive. When its value is set # to zero, the latency monitor is turned off. # # By default latency monitoring is disabled since it is mostly not needed # if you don't have latency issues, and collecting data has a performance # impact, that while very small, can be measured under big load. Latency # monitoring can easily be enabled at runtime using the command # "CONFIG SET latency-monitor-threshold " if needed. latency-monitor-threshold 0 ############################# EVENT NOTIFICATION ############################## # Redis can notify Pub/Sub clients about events happening in the key space. # This feature is documented at http://redis.io/topics/notifications # # For instance if keyspace events notification is enabled, and a client # performs a DEL operation on key "foo" stored in the Database 0, two # messages will be published via Pub/Sub: # # PUBLISH __keyspace@0__:foo del # PUBLISH __keyevent@0__:del foo # # It is possible to select the events that Redis will notify among a set # of classes. Every class is identified by a single character: # # K Keyspace events, published with __keyspace@__ prefix. # E Keyevent events, published with __keyevent@__ prefix. # g Generic commands (non-type specific) like DEL, EXPIRE, RENAME, ... # $ String commands # l List commands # s Set commands # h Hash commands # z Sorted set commands # x Expired events (events generated every time a key expires) # e Evicted events (events generated when a key is evicted for maxmemory) # A Alias for g$lshzxe, so that the "AKE" string means all the events. # # The "notify-keyspace-events" takes as argument a string that is composed # of zero or multiple characters. The empty string means that notifications # are disabled. # # Example: to enable list and generic events, from the point of view of the # event name, use: # # notify-keyspace-events Elg # # Example 2: to get the stream of the expired keys subscribing to channel # name __keyevent@0__:expired use: # # notify-keyspace-events Ex # # By default all notifications are disabled because most users don't need # this feature and the feature has some overhead. Note that if you don't # specify at least one of K or E, no events will be delivered. notify-keyspace-events "" ############################### ADVANCED CONFIG ############################### # Hashes are encoded using a memory efficient data structure when they have a # small number of entries, and the biggest entry does not exceed a given # threshold. These thresholds can be configured using the following directives. hash-max-ziplist-entries 512 hash-max-ziplist-value 64 # Similarly to hashes, small lists are also encoded in a special way in order # to save a lot of space. The special representation is only used when # you are under the following limits: list-max-ziplist-entries 512 list-max-ziplist-value 64 # Sets have a special encoding in just one case: when a set is composed # of just strings that happen to be integers in radix 10 in the range # of 64 bit signed integers. # The following configuration setting sets the limit in the size of the # set in order to use this special memory saving encoding. set-max-intset-entries 512 # Similarly to hashes and lists, sorted sets are also specially encoded in # order to save a lot of space. This encoding is only used when the length and # elements of a sorted set are below the following limits: zset-max-ziplist-entries 128 zset-max-ziplist-value 64 # HyperLogLog sparse representation bytes limit. The limit includes the # 16 bytes header. When an HyperLogLog using the sparse representation crosses # this limit, it is converted into the dense representation. # # A value greater than 16000 is totally useless, since at that point the # dense representation is more memory efficient. # # The suggested value is ~ 3000 in order to have the benefits of # the space efficient encoding without slowing down too much PFADD, # which is O(N) with the sparse encoding. The value can be raised to # ~ 10000 when CPU is not a concern, but space is, and the data set is # composed of many HyperLogLogs with cardinality in the 0 - 15000 range. hll-sparse-max-bytes 3000 # Active rehashing uses 1 millisecond every 100 milliseconds of CPU time in # order to help rehashing the main Redis hash table (the one mapping top-level # keys to values). The hash table implementation Redis uses (see dict.c) # performs a lazy rehashing: the more operation you run into a hash table # that is rehashing, the more rehashing "steps" are performed, so if the # server is idle the rehashing is never complete and some more memory is used # by the hash table. # # The default is to use this millisecond 10 times every second in order to # actively rehash the main dictionaries, freeing memory when possible. # # If unsure: # use "activerehashing no" if you have hard latency requirements and it is # not a good thing in your environment that Redis can reply from time to time # to queries with 2 milliseconds delay. # # use "activerehashing yes" if you don't have such hard requirements but # want to free memory asap when possible. activerehashing yes # The client output buffer limits can be used to force disconnection of clients # that are not reading data from the server fast enough for some reason (a # common reason is that a Pub/Sub client can't consume messages as fast as the # publisher can produce them). # # The limit can be set differently for the three different classes of clients: # # normal -> normal clients including MONITOR clients # slave -> slave clients # pubsub -> clients subscribed to at least one pubsub channel or pattern # # The syntax of every client-output-buffer-limit directive is the following: # # client-output-buffer-limit # # A client is immediately disconnected once the hard limit is reached, or if # the soft limit is reached and remains reached for the specified number of # seconds (continuously). # So for instance if the hard limit is 32 megabytes and the soft limit is # 16 megabytes / 10 seconds, the client will get disconnected immediately # if the size of the output buffers reach 32 megabytes, but will also get # disconnected if the client reaches 16 megabytes and continuously overcomes # the limit for 10 seconds. # # By default normal clients are not limited because they don't receive data # without asking (in a push way), but just after a request, so only # asynchronous clients may create a scenario where data is requested faster # than it can read. # # Instead there is a default limit for pubsub and slave clients, since # subscribers and slaves receive data in a push fashion. # # Both the hard or the soft limit can be disabled by setting them to zero. client-output-buffer-limit normal 0 0 0 client-output-buffer-limit slave 256mb 64mb 60 client-output-buffer-limit pubsub 32mb 8mb 60 # Redis calls an internal function to perform many background tasks, like # closing connections of clients in timeout, purging expired keys that are # never requested, and so forth. # # Not all tasks are performed with the same frequency, but Redis checks for # tasks to perform according to the specified "hz" value. # # By default "hz" is set to 10. Raising the value will use more CPU when # Redis is idle, but at the same time will make Redis more responsive when # there are many keys expiring at the same time, and timeouts may be # handled with more precision. # # The range is between 1 and 500, however a value over 100 is usually not # a good idea. Most users should use the default of 10 and raise this up to # 100 only in environments where very low latency is required. hz 10 # When a child rewrites the AOF file, if the following option is enabled # the file will be fsync-ed every 32 MB of data generated. This is useful # in order to commit the file to the disk more incrementally and avoid # big latency spikes. aof-rewrite-incremental-fsync yes limits-1.5.1/tests/redis-configurations/unixdomainsocket.conf000066400000000000000000001207421362535055200245660ustar00rootroot00000000000000# Redis configuration file example # Note on units: when memory size is needed, it is possible to specify # it in the usual form of 1k 5GB 4M and so forth: # # 1k => 1000 bytes # 1kb => 1024 bytes # 1m => 1000000 bytes # 1mb => 1024*1024 bytes # 1g => 1000000000 bytes # 1gb => 1024*1024*1024 bytes # # units are case insensitive so 1GB 1Gb 1gB are all the same. ################################## INCLUDES ################################### # Include one or more other config files here. This is useful if you # have a standard template that goes to all Redis servers but also need # to customize a few per-server settings. Include files can include # other files, so use this wisely. # # Notice option "include" won't be rewritten by command "CONFIG REWRITE" # from admin or Redis Sentinel. Since Redis always uses the last processed # line as value of a configuration directive, you'd better put includes # at the beginning of this file to avoid overwriting config change at runtime. # # If instead you are interested in using includes to override configuration # options, it is better to use include as the last line. # # include /path/to/local.conf # include /path/to/other.conf ################################ GENERAL ##################################### # By default Redis does not run as a daemon. Use 'yes' if you need it. # Note that Redis will write a pid file in /var/run/redis.pid when daemonized. daemonize yes # When running daemonized, Redis writes a pid file in /var/run/redis.pid by # default. You can specify a custom pid file location here. pidfile "/tmp/redis_unix-domain-socket.pid" # Accept connections on the specified port, default is 6379. # If port 0 is specified Redis will not listen on a TCP socket. port 0 # TCP listen() backlog. # # In high requests-per-second environments you need an high backlog in order # to avoid slow clients connections issues. Note that the Linux kernel # will silently truncate it to the value of /proc/sys/net/core/somaxconn so # make sure to raise both the value of somaxconn and tcp_max_syn_backlog # in order to get the desired effect. tcp-backlog 511 # By default Redis listens for connections from all the network interfaces # available on the server. It is possible to listen to just one or multiple # interfaces using the "bind" configuration directive, followed by one or # more IP addresses. # # Examples: # # bind 192.168.1.100 10.0.0.1 # bind 127.0.0.1 # Specify the path for the Unix socket that will be used to listen for # incoming connections. There is no default, so Redis will not listen # on a unix socket when not specified. # unixsocket /var/tmp/limits.redis.sock # unixsocketperm 700 # Close the connection after a client is idle for N seconds (0 to disable) timeout 0 # TCP keepalive. # # If non-zero, use SO_KEEPALIVE to send TCP ACKs to clients in absence # of communication. This is useful for two reasons: # # 1) Detect dead peers. # 2) Take the connection alive from the point of view of network # equipment in the middle. # # On Linux, the specified value (in seconds) is the period used to send ACKs. # Note that to close the connection the double of the time is needed. # On other kernels the period depends on the kernel configuration. # # A reasonable value for this option is 60 seconds. tcp-keepalive 0 # Specify the server verbosity level. # This can be one of: # debug (a lot of information, useful for development/testing) # verbose (many rarely useful info, but not a mess like the debug level) # notice (moderately verbose, what you want in production probably) # warning (only very important / critical messages are logged) loglevel notice # Specify the log file name. Also the empty string can be used to force # Redis to log on the standard output. Note that if you use standard # output for logging but daemonize, logs will be sent to /dev/null logfile "" # To enable logging to the system logger, just set 'syslog-enabled' to yes, # and optionally update the other syslog parameters to suit your needs. # syslog-enabled no # Specify the syslog identity. # syslog-ident redis # Specify the syslog facility. Must be USER or between LOCAL0-LOCAL7. # syslog-facility local0 # Set the number of databases. The default database is DB 0, you can select # a different one on a per-connection basis using SELECT where # dbid is a number between 0 and 'databases'-1 databases 16 ################################ SNAPSHOTTING ################################ # # Save the DB on disk: # # save # # Will save the DB if both the given number of seconds and the given # number of write operations against the DB occurred. # # In the example below the behaviour will be to save: # after 900 sec (15 min) if at least 1 key changed # after 300 sec (5 min) if at least 10 keys changed # after 60 sec if at least 10000 keys changed # # Note: you can disable saving completely by commenting out all "save" lines. # # It is also possible to remove all the previously configured save # points by adding a save directive with a single empty string argument # like in the following example: # # save "" save 900 1 save 300 10 save 60 10000 # By default Redis will stop accepting writes if RDB snapshots are enabled # (at least one save point) and the latest background save failed. # This will make the user aware (in a hard way) that data is not persisting # on disk properly, otherwise chances are that no one will notice and some # disaster will happen. # # If the background saving process will start working again Redis will # automatically allow writes again. # # However if you have setup your proper monitoring of the Redis server # and persistence, you may want to disable this feature so that Redis will # continue to work as usual even if there are problems with disk, # permissions, and so forth. stop-writes-on-bgsave-error yes # Compress string objects using LZF when dump .rdb databases? # For default that's set to 'yes' as it's almost always a win. # If you want to save some CPU in the saving child set it to 'no' but # the dataset will likely be bigger if you have compressible values or keys. rdbcompression yes # Since version 5 of RDB a CRC64 checksum is placed at the end of the file. # This makes the format more resistant to corruption but there is a performance # hit to pay (around 10%) when saving and loading RDB files, so you can disable it # for maximum performances. # # RDB files created with checksum disabled have a checksum of zero that will # tell the loading code to skip the check. rdbchecksum yes # The filename where to dump the DB dbfilename "redis-master.rdb" # The working directory. # # The DB will be written inside this directory, with the filename specified # above using the 'dbfilename' configuration directive. # # The Append Only File will also be created inside this directory. # # Note that you must specify a directory here, not a file name. dir "/tmp/" ################################# REPLICATION ################################# # Master-Slave replication. Use slaveof to make a Redis instance a copy of # another Redis server. A few things to understand ASAP about Redis replication. # # 1) Redis replication is asynchronous, but you can configure a master to # stop accepting writes if it appears to be not connected with at least # a given number of slaves. # 2) Redis slaves are able to perform a partial resynchronization with the # master if the replication link is lost for a relatively small amount of # time. You may want to configure the replication backlog size (see the next # sections of this file) with a sensible value depending on your needs. # 3) Replication is automatic and does not need user intervention. After a # network partition slaves automatically try to reconnect to masters # and resynchronize with them. # # slaveof # If the master is password protected (using the "requirepass" configuration # directive below) it is possible to tell the slave to authenticate before # starting the replication synchronization process, otherwise the master will # refuse the slave request. # # masterauth # When a slave loses its connection with the master, or when the replication # is still in progress, the slave can act in two different ways: # # 1) if slave-serve-stale-data is set to 'yes' (the default) the slave will # still reply to client requests, possibly with out of date data, or the # data set may just be empty if this is the first synchronization. # # 2) if slave-serve-stale-data is set to 'no' the slave will reply with # an error "SYNC with master in progress" to all the kind of commands # but to INFO and SLAVEOF. # slave-serve-stale-data yes # You can configure a slave instance to accept writes or not. Writing against # a slave instance may be useful to store some ephemeral data (because data # written on a slave will be easily deleted after resync with the master) but # may also cause problems if clients are writing to it because of a # misconfiguration. # # Since Redis 2.6 by default slaves are read-only. # # Note: read only slaves are not designed to be exposed to untrusted clients # on the internet. It's just a protection layer against misuse of the instance. # Still a read only slave exports by default all the administrative commands # such as CONFIG, DEBUG, and so forth. To a limited extent you can improve # security of read only slaves using 'rename-command' to shadow all the # administrative / dangerous commands. slave-read-only yes # Replication SYNC strategy: disk or socket. # # ------------------------------------------------------- # WARNING: DISKLESS REPLICATION IS EXPERIMENTAL CURRENTLY # ------------------------------------------------------- # # New slaves and reconnecting slaves that are not able to continue the replication # process just receiving differences, need to do what is called a "full # synchronization". An RDB file is transmitted from the master to the slaves. # The transmission can happen in two different ways: # # 1) Disk-backed: The Redis master creates a new process that writes the RDB # file on disk. Later the file is transferred by the parent # process to the slaves incrementally. # 2) Diskless: The Redis master creates a new process that directly writes the # RDB file to slave sockets, without touching the disk at all. # # With disk-backed replication, while the RDB file is generated, more slaves # can be queued and served with the RDB file as soon as the current child producing # the RDB file finishes its work. With diskless replication instead once # the transfer starts, new slaves arriving will be queued and a new transfer # will start when the current one terminates. # # When diskless replication is used, the master waits a configurable amount of # time (in seconds) before starting the transfer in the hope that multiple slaves # will arrive and the transfer can be parallelized. # # With slow disks and fast (large bandwidth) networks, diskless replication # works better. repl-diskless-sync no # When diskless replication is enabled, it is possible to configure the delay # the server waits in order to spawn the child that transfers the RDB via socket # to the slaves. # # This is important since once the transfer starts, it is not possible to serve # new slaves arriving, that will be queued for the next RDB transfer, so the server # waits a delay in order to let more slaves arrive. # # The delay is specified in seconds, and by default is 5 seconds. To disable # it entirely just set it to 0 seconds and the transfer will start ASAP. repl-diskless-sync-delay 5 # Slaves send PINGs to server in a predefined interval. It's possible to change # this interval with the repl_ping_slave_period option. The default value is 10 # seconds. # # repl-ping-slave-period 10 # The following option sets the replication timeout for: # # 1) Bulk transfer I/O during SYNC, from the point of view of slave. # 2) Master timeout from the point of view of slaves (data, pings). # 3) Slave timeout from the point of view of masters (REPLCONF ACK pings). # # It is important to make sure that this value is greater than the value # specified for repl-ping-slave-period otherwise a timeout will be detected # every time there is low traffic between the master and the slave. # # repl-timeout 60 # Disable TCP_NODELAY on the slave socket after SYNC? # # If you select "yes" Redis will use a smaller number of TCP packets and # less bandwidth to send data to slaves. But this can add a delay for # the data to appear on the slave side, up to 40 milliseconds with # Linux kernels using a default configuration. # # If you select "no" the delay for data to appear on the slave side will # be reduced but more bandwidth will be used for replication. # # By default we optimize for low latency, but in very high traffic conditions # or when the master and slaves are many hops away, turning this to "yes" may # be a good idea. repl-disable-tcp-nodelay no # Set the replication backlog size. The backlog is a buffer that accumulates # slave data when slaves are disconnected for some time, so that when a slave # wants to reconnect again, often a full resync is not needed, but a partial # resync is enough, just passing the portion of data the slave missed while # disconnected. # # The bigger the replication backlog, the longer the time the slave can be # disconnected and later be able to perform a partial resynchronization. # # The backlog is only allocated once there is at least a slave connected. # # repl-backlog-size 1mb # After a master has no longer connected slaves for some time, the backlog # will be freed. The following option configures the amount of seconds that # need to elapse, starting from the time the last slave disconnected, for # the backlog buffer to be freed. # # A value of 0 means to never release the backlog. # # repl-backlog-ttl 3600 # The slave priority is an integer number published by Redis in the INFO output. # It is used by Redis Sentinel in order to select a slave to promote into a # master if the master is no longer working correctly. # # A slave with a low priority number is considered better for promotion, so # for instance if there are three slaves with priority 10, 100, 25 Sentinel will # pick the one with priority 10, that is the lowest. # # However a special priority of 0 marks the slave as not able to perform the # role of master, so a slave with priority of 0 will never be selected by # Redis Sentinel for promotion. # # By default the priority is 100. slave-priority 100 # It is possible for a master to stop accepting writes if there are less than # N slaves connected, having a lag less or equal than M seconds. # # The N slaves need to be in "online" state. # # The lag in seconds, that must be <= the specified value, is calculated from # the last ping received from the slave, that is usually sent every second. # # This option does not GUARANTEE that N replicas will accept the write, but # will limit the window of exposure for lost writes in case not enough slaves # are available, to the specified number of seconds. # # For example to require at least 3 slaves with a lag <= 10 seconds use: # # min-slaves-to-write 3 # min-slaves-max-lag 10 # # Setting one or the other to 0 disables the feature. # # By default min-slaves-to-write is set to 0 (feature disabled) and # min-slaves-max-lag is set to 10. ################################## SECURITY ################################### # Require clients to issue AUTH before processing any other # commands. This might be useful in environments in which you do not trust # others with access to the host running redis-server. # # This should stay commented out for backward compatibility and because most # people do not need auth (e.g. they run their own servers). # # Warning: since Redis is pretty fast an outside user can try up to # 150k passwords per second against a good box. This means that you should # use a very strong password otherwise it will be very easy to break. # # requirepass foobared # Command renaming. # # It is possible to change the name of dangerous commands in a shared # environment. For instance the CONFIG command may be renamed into something # hard to guess so that it will still be available for internal-use tools # but not available for general clients. # # Example: # # rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52 # # It is also possible to completely kill a command by renaming it into # an empty string: # # rename-command CONFIG "" # # Please note that changing the name of commands that are logged into the # AOF file or transmitted to slaves may cause problems. ################################### LIMITS #################################### # Set the max number of connected clients at the same time. By default # this limit is set to 10000 clients, however if the Redis server is not # able to configure the process file limit to allow for the specified limit # the max number of allowed clients is set to the current file limit # minus 32 (as Redis reserves a few file descriptors for internal uses). # # Once the limit is reached Redis will close all the new connections sending # an error 'max number of clients reached'. # # maxclients 10000 # Don't use more memory than the specified amount of bytes. # When the memory limit is reached Redis will try to remove keys # according to the eviction policy selected (see maxmemory-policy). # # If Redis can't remove keys according to the policy, or if the policy is # set to 'noeviction', Redis will start to reply with errors to commands # that would use more memory, like SET, LPUSH, and so on, and will continue # to reply to read-only commands like GET. # # This option is usually useful when using Redis as an LRU cache, or to set # a hard memory limit for an instance (using the 'noeviction' policy). # # WARNING: If you have slaves attached to an instance with maxmemory on, # the size of the output buffers needed to feed the slaves are subtracted # from the used memory count, so that network problems / resyncs will # not trigger a loop where keys are evicted, and in turn the output # buffer of slaves is full with DELs of keys evicted triggering the deletion # of more keys, and so forth until the database is completely emptied. # # In short... if you have slaves attached it is suggested that you set a lower # limit for maxmemory so that there is some free RAM on the system for slave # output buffers (but this is not needed if the policy is 'noeviction'). # # maxmemory # MAXMEMORY POLICY: how Redis will select what to remove when maxmemory # is reached. You can select among five behaviors: # # volatile-lru -> remove the key with an expire set using an LRU algorithm # allkeys-lru -> remove any key according to the LRU algorithm # volatile-random -> remove a random key with an expire set # allkeys-random -> remove a random key, any key # volatile-ttl -> remove the key with the nearest expire time (minor TTL) # noeviction -> don't expire at all, just return an error on write operations # # Note: with any of the above policies, Redis will return an error on write # operations, when there are no suitable keys for eviction. # # At the date of writing these commands are: set setnx setex append # incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd # sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby # zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby # getset mset msetnx exec sort # # The default is: # # maxmemory-policy noeviction # LRU and minimal TTL algorithms are not precise algorithms but approximated # algorithms (in order to save memory), so you can tune it for speed or # accuracy. For default Redis will check five keys and pick the one that was # used less recently, you can change the sample size using the following # configuration directive. # # The default of 5 produces good enough results. 10 Approximates very closely # true LRU but costs a bit more CPU. 3 is very fast but not very accurate. # # maxmemory-samples 5 ############################## APPEND ONLY MODE ############################### # By default Redis asynchronously dumps the dataset on disk. This mode is # good enough in many applications, but an issue with the Redis process or # a power outage may result into a few minutes of writes lost (depending on # the configured save points). # # The Append Only File is an alternative persistence mode that provides # much better durability. For instance using the default data fsync policy # (see later in the config file) Redis can lose just one second of writes in a # dramatic event like a server power outage, or a single write if something # wrong with the Redis process itself happens, but the operating system is # still running correctly. # # AOF and RDB persistence can be enabled at the same time without problems. # If the AOF is enabled on startup Redis will load the AOF, that is the file # with the better durability guarantees. # # Please check http://redis.io/topics/persistence for more information. appendonly no # The name of the append only file (default: "appendonly.aof") appendfilename "appendonly.aof" # The fsync() call tells the Operating System to actually write data on disk # instead of waiting for more data in the output buffer. Some OS will really flush # data on disk, some other OS will just try to do it ASAP. # # Redis supports three different modes: # # no: don't fsync, just let the OS flush the data when it wants. Faster. # always: fsync after every write to the append only log. Slow, Safest. # everysec: fsync only one time every second. Compromise. # # The default is "everysec", as that's usually the right compromise between # speed and data safety. It's up to you to understand if you can relax this to # "no" that will let the operating system flush the output buffer when # it wants, for better performances (but if you can live with the idea of # some data loss consider the default persistence mode that's snapshotting), # or on the contrary, use "always" that's very slow but a bit safer than # everysec. # # More details please check the following article: # http://antirez.com/post/redis-persistence-demystified.html # # If unsure, use "everysec". # appendfsync always appendfsync everysec # appendfsync no # When the AOF fsync policy is set to always or everysec, and a background # saving process (a background save or AOF log background rewriting) is # performing a lot of I/O against the disk, in some Linux configurations # Redis may block too long on the fsync() call. Note that there is no fix for # this currently, as even performing fsync in a different thread will block # our synchronous write(2) call. # # In order to mitigate this problem it's possible to use the following option # that will prevent fsync() from being called in the main process while a # BGSAVE or BGREWRITEAOF is in progress. # # This means that while another child is saving, the durability of Redis is # the same as "appendfsync none". In practical terms, this means that it is # possible to lose up to 30 seconds of log in the worst scenario (with the # default Linux settings). # # If you have latency problems turn this to "yes". Otherwise leave it as # "no" that is the safest pick from the point of view of durability. no-appendfsync-on-rewrite no # Automatic rewrite of the append only file. # Redis is able to automatically rewrite the log file implicitly calling # BGREWRITEAOF when the AOF log size grows by the specified percentage. # # This is how it works: Redis remembers the size of the AOF file after the # latest rewrite (if no rewrite has happened since the restart, the size of # the AOF at startup is used). # # This base size is compared to the current size. If the current size is # bigger than the specified percentage, the rewrite is triggered. Also # you need to specify a minimal size for the AOF file to be rewritten, this # is useful to avoid rewriting the AOF file even if the percentage increase # is reached but it is still pretty small. # # Specify a percentage of zero in order to disable the automatic AOF # rewrite feature. auto-aof-rewrite-percentage 100 auto-aof-rewrite-min-size 64mb # An AOF file may be found to be truncated at the end during the Redis # startup process, when the AOF data gets loaded back into memory. # This may happen when the system where Redis is running # crashes, especially when an ext4 filesystem is mounted without the # data=ordered option (however this can't happen when Redis itself # crashes or aborts but the operating system still works correctly). # # Redis can either exit with an error when this happens, or load as much # data as possible (the default now) and start if the AOF file is found # to be truncated at the end. The following option controls this behavior. # # If aof-load-truncated is set to yes, a truncated AOF file is loaded and # the Redis server starts emitting a log to inform the user of the event. # Otherwise if the option is set to no, the server aborts with an error # and refuses to start. When the option is set to no, the user requires # to fix the AOF file using the "redis-check-aof" utility before to restart # the server. # # Note that if the AOF file will be found to be corrupted in the middle # the server will still exit with an error. This option only applies when # Redis will try to read more data from the AOF file but not enough bytes # will be found. aof-load-truncated yes ################################ LUA SCRIPTING ############################### # Max execution time of a Lua script in milliseconds. # # If the maximum execution time is reached Redis will log that a script is # still in execution after the maximum allowed time and will start to # reply to queries with an error. # # When a long running script exceeds the maximum execution time only the # SCRIPT KILL and SHUTDOWN NOSAVE commands are available. The first can be # used to stop a script that did not yet called write commands. The second # is the only way to shut down the server in the case a write command was # already issued by the script but the user doesn't want to wait for the natural # termination of the script. # # Set it to 0 or a negative value for unlimited execution without warnings. lua-time-limit 5000 ################################ REDIS CLUSTER ############################### # # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # WARNING EXPERIMENTAL: Redis Cluster is considered to be stable code, however # in order to mark it as "mature" we need to wait for a non trivial percentage # of users to deploy it in production. # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # # Normal Redis instances can't be part of a Redis Cluster; only nodes that are # started as cluster nodes can. In order to start a Redis instance as a # cluster node enable the cluster support uncommenting the following: # # cluster-enabled yes # Every cluster node has a cluster configuration file. This file is not # intended to be edited by hand. It is created and updated by Redis nodes. # Every Redis Cluster node requires a different cluster configuration file. # Make sure that instances running in the same system do not have # overlapping cluster configuration file names. # # cluster-config-file nodes-6379.conf # Cluster node timeout is the amount of milliseconds a node must be unreachable # for it to be considered in failure state. # Most other internal time limits are multiple of the node timeout. # # cluster-node-timeout 15000 # A slave of a failing master will avoid to start a failover if its data # looks too old. # # There is no simple way for a slave to actually have a exact measure of # its "data age", so the following two checks are performed: # # 1) If there are multiple slaves able to failover, they exchange messages # in order to try to give an advantage to the slave with the best # replication offset (more data from the master processed). # Slaves will try to get their rank by offset, and apply to the start # of the failover a delay proportional to their rank. # # 2) Every single slave computes the time of the last interaction with # its master. This can be the last ping or command received (if the master # is still in the "connected" state), or the time that elapsed since the # disconnection with the master (if the replication link is currently down). # If the last interaction is too old, the slave will not try to failover # at all. # # The point "2" can be tuned by user. Specifically a slave will not perform # the failover if, since the last interaction with the master, the time # elapsed is greater than: # # (node-timeout * slave-validity-factor) + repl-ping-slave-period # # So for example if node-timeout is 30 seconds, and the slave-validity-factor # is 10, and assuming a default repl-ping-slave-period of 10 seconds, the # slave will not try to failover if it was not able to talk with the master # for longer than 310 seconds. # # A large slave-validity-factor may allow slaves with too old data to failover # a master, while a too small value may prevent the cluster from being able to # elect a slave at all. # # For maximum availability, it is possible to set the slave-validity-factor # to a value of 0, which means, that slaves will always try to failover the # master regardless of the last time they interacted with the master. # (However they'll always try to apply a delay proportional to their # offset rank). # # Zero is the only value able to guarantee that when all the partitions heal # the cluster will always be able to continue. # # cluster-slave-validity-factor 10 # Cluster slaves are able to migrate to orphaned masters, that are masters # that are left without working slaves. This improves the cluster ability # to resist to failures as otherwise an orphaned master can't be failed over # in case of failure if it has no working slaves. # # Slaves migrate to orphaned masters only if there are still at least a # given number of other working slaves for their old master. This number # is the "migration barrier". A migration barrier of 1 means that a slave # will migrate only if there is at least 1 other working slave for its master # and so forth. It usually reflects the number of slaves you want for every # master in your cluster. # # Default is 1 (slaves migrate only if their masters remain with at least # one slave). To disable migration just set it to a very large value. # A value of 0 can be set but is useful only for debugging and dangerous # in production. # # cluster-migration-barrier 1 # By default Redis Cluster nodes stop accepting queries if they detect there # is at least an hash slot uncovered (no available node is serving it). # This way if the cluster is partially down (for example a range of hash slots # are no longer covered) all the cluster becomes, eventually, unavailable. # It automatically returns available as soon as all the slots are covered again. # # However sometimes you want the subset of the cluster which is working, # to continue to accept queries for the part of the key space that is still # covered. In order to do so, just set the cluster-require-full-coverage # option to no. # # cluster-require-full-coverage yes # In order to setup your cluster make sure to read the documentation # available at http://redis.io web site. ################################## SLOW LOG ################################### # The Redis Slow Log is a system to log queries that exceeded a specified # execution time. The execution time does not include the I/O operations # like talking with the client, sending the reply and so forth, # but just the time needed to actually execute the command (this is the only # stage of command execution where the thread is blocked and can not serve # other requests in the meantime). # # You can configure the slow log with two parameters: one tells Redis # what is the execution time, in microseconds, to exceed in order for the # command to get logged, and the other parameter is the length of the # slow log. When a new command is logged the oldest one is removed from the # queue of logged commands. # The following time is expressed in microseconds, so 1000000 is equivalent # to one second. Note that a negative number disables the slow log, while # a value of zero forces the logging of every command. slowlog-log-slower-than 10000 # There is no limit to this length. Just be aware that it will consume memory. # You can reclaim memory used by the slow log with SLOWLOG RESET. slowlog-max-len 128 ################################ LATENCY MONITOR ############################## # The Redis latency monitoring subsystem samples different operations # at runtime in order to collect data related to possible sources of # latency of a Redis instance. # # Via the LATENCY command this information is available to the user that can # print graphs and obtain reports. # # The system only logs operations that were performed in a time equal or # greater than the amount of milliseconds specified via the # latency-monitor-threshold configuration directive. When its value is set # to zero, the latency monitor is turned off. # # By default latency monitoring is disabled since it is mostly not needed # if you don't have latency issues, and collecting data has a performance # impact, that while very small, can be measured under big load. Latency # monitoring can easily be enabled at runtime using the command # "CONFIG SET latency-monitor-threshold " if needed. latency-monitor-threshold 0 ############################# EVENT NOTIFICATION ############################## # Redis can notify Pub/Sub clients about events happening in the key space. # This feature is documented at http://redis.io/topics/notifications # # For instance if keyspace events notification is enabled, and a client # performs a DEL operation on key "foo" stored in the Database 0, two # messages will be published via Pub/Sub: # # PUBLISH __keyspace@0__:foo del # PUBLISH __keyevent@0__:del foo # # It is possible to select the events that Redis will notify among a set # of classes. Every class is identified by a single character: # # K Keyspace events, published with __keyspace@__ prefix. # E Keyevent events, published with __keyevent@__ prefix. # g Generic commands (non-type specific) like DEL, EXPIRE, RENAME, ... # $ String commands # l List commands # s Set commands # h Hash commands # z Sorted set commands # x Expired events (events generated every time a key expires) # e Evicted events (events generated when a key is evicted for maxmemory) # A Alias for g$lshzxe, so that the "AKE" string means all the events. # # The "notify-keyspace-events" takes as argument a string that is composed # of zero or multiple characters. The empty string means that notifications # are disabled. # # Example: to enable list and generic events, from the point of view of the # event name, use: # # notify-keyspace-events Elg # # Example 2: to get the stream of the expired keys subscribing to channel # name __keyevent@0__:expired use: # # notify-keyspace-events Ex # # By default all notifications are disabled because most users don't need # this feature and the feature has some overhead. Note that if you don't # specify at least one of K or E, no events will be delivered. notify-keyspace-events "" ############################### ADVANCED CONFIG ############################### # Hashes are encoded using a memory efficient data structure when they have a # small number of entries, and the biggest entry does not exceed a given # threshold. These thresholds can be configured using the following directives. hash-max-ziplist-entries 512 hash-max-ziplist-value 64 # Similarly to hashes, small lists are also encoded in a special way in order # to save a lot of space. The special representation is only used when # you are under the following limits: list-max-ziplist-entries 512 list-max-ziplist-value 64 # Sets have a special encoding in just one case: when a set is composed # of just strings that happen to be integers in radix 10 in the range # of 64 bit signed integers. # The following configuration setting sets the limit in the size of the # set in order to use this special memory saving encoding. set-max-intset-entries 512 # Similarly to hashes and lists, sorted sets are also specially encoded in # order to save a lot of space. This encoding is only used when the length and # elements of a sorted set are below the following limits: zset-max-ziplist-entries 128 zset-max-ziplist-value 64 # HyperLogLog sparse representation bytes limit. The limit includes the # 16 bytes header. When an HyperLogLog using the sparse representation crosses # this limit, it is converted into the dense representation. # # A value greater than 16000 is totally useless, since at that point the # dense representation is more memory efficient. # # The suggested value is ~ 3000 in order to have the benefits of # the space efficient encoding without slowing down too much PFADD, # which is O(N) with the sparse encoding. The value can be raised to # ~ 10000 when CPU is not a concern, but space is, and the data set is # composed of many HyperLogLogs with cardinality in the 0 - 15000 range. hll-sparse-max-bytes 3000 # Active rehashing uses 1 millisecond every 100 milliseconds of CPU time in # order to help rehashing the main Redis hash table (the one mapping top-level # keys to values). The hash table implementation Redis uses (see dict.c) # performs a lazy rehashing: the more operation you run into a hash table # that is rehashing, the more rehashing "steps" are performed, so if the # server is idle the rehashing is never complete and some more memory is used # by the hash table. # # The default is to use this millisecond 10 times every second in order to # actively rehash the main dictionaries, freeing memory when possible. # # If unsure: # use "activerehashing no" if you have hard latency requirements and it is # not a good thing in your environment that Redis can reply from time to time # to queries with 2 milliseconds delay. # # use "activerehashing yes" if you don't have such hard requirements but # want to free memory asap when possible. activerehashing yes # The client output buffer limits can be used to force disconnection of clients # that are not reading data from the server fast enough for some reason (a # common reason is that a Pub/Sub client can't consume messages as fast as the # publisher can produce them). # # The limit can be set differently for the three different classes of clients: # # normal -> normal clients including MONITOR clients # slave -> slave clients # pubsub -> clients subscribed to at least one pubsub channel or pattern # # The syntax of every client-output-buffer-limit directive is the following: # # client-output-buffer-limit # # A client is immediately disconnected once the hard limit is reached, or if # the soft limit is reached and remains reached for the specified number of # seconds (continuously). # So for instance if the hard limit is 32 megabytes and the soft limit is # 16 megabytes / 10 seconds, the client will get disconnected immediately # if the size of the output buffers reach 32 megabytes, but will also get # disconnected if the client reaches 16 megabytes and continuously overcomes # the limit for 10 seconds. # # By default normal clients are not limited because they don't receive data # without asking (in a push way), but just after a request, so only # asynchronous clients may create a scenario where data is requested faster # than it can read. # # Instead there is a default limit for pubsub and slave clients, since # subscribers and slaves receive data in a push fashion. # # Both the hard or the soft limit can be disabled by setting them to zero. client-output-buffer-limit normal 0 0 0 client-output-buffer-limit slave 256mb 64mb 60 client-output-buffer-limit pubsub 32mb 8mb 60 # Redis calls an internal function to perform many background tasks, like # closing connections of clients in timeout, purging expired keys that are # never requested, and so forth. # # Not all tasks are performed with the same frequency, but Redis checks for # tasks to perform according to the specified "hz" value. # # By default "hz" is set to 10. Raising the value will use more CPU when # Redis is idle, but at the same time will make Redis more responsive when # there are many keys expiring at the same time, and timeouts may be # handled with more precision. # # The range is between 1 and 500, however a value over 100 is usually not # a good idea. Most users should use the default of 10 and raise this up to # 100 only in environments where very low latency is required. hz 10 # When a child rewrites the AOF file, if the following option is enabled # the file will be fsync-ed every 32 MB of data generated. This is useful # in order to commit the file to the disk more incrementally and avoid # big latency spikes. aof-rewrite-incremental-fsync yes limits-1.5.1/tests/test_limit_granularities.py000066400000000000000000000037251362535055200216560ustar00rootroot00000000000000import unittest from limits import limits class GranularityTests(unittest.TestCase): def test_seconds_value(self): self.assertEqual( limits.RateLimitItemPerSecond(1).get_expiry(), 1 ) self.assertEqual( limits.RateLimitItemPerMinute(1).get_expiry(), 60 ) self.assertEqual( limits.RateLimitItemPerHour(1).get_expiry(), 60 * 60 ) self.assertEqual( limits.RateLimitItemPerDay(1).get_expiry(), 60 * 60 * 24 ) self.assertEqual( limits.RateLimitItemPerMonth(1).get_expiry(), 60 * 60 * 24 * 30 ) self.assertEqual( limits.RateLimitItemPerYear(1).get_expiry(), 60 * 60 * 24 * 30 * 12 ) def test_representation(self): self.assertTrue( "1 per 1 second" in str(limits.RateLimitItemPerSecond(1)) ) self.assertTrue( "1 per 1 minute" in str(limits.RateLimitItemPerMinute(1)) ) self.assertTrue( "1 per 1 hour" in str(limits.RateLimitItemPerHour(1)) ) self.assertTrue( "1 per 1 day" in str(limits.RateLimitItemPerDay(1)) ) self.assertTrue( "1 per 1 month" in str(limits.RateLimitItemPerMonth(1)) ) self.assertTrue( "1 per 1 year" in str(limits.RateLimitItemPerYear(1)) ) def test_comparison(self): self.assertTrue( limits.RateLimitItemPerSecond(1) < limits.RateLimitItemPerMinute(1) ) self.assertTrue( limits.RateLimitItemPerMinute(1) < limits.RateLimitItemPerHour(1) ) self.assertTrue( limits.RateLimitItemPerHour(1) < limits.RateLimitItemPerDay(1) ) self.assertTrue( limits.RateLimitItemPerDay(1) < limits.RateLimitItemPerMonth(1) ) self.assertTrue( limits.RateLimitItemPerMonth(1) < limits.RateLimitItemPerYear(1) ) limits-1.5.1/tests/test_limits.py000066400000000000000000000015421362535055200171030ustar00rootroot00000000000000import unittest from limits import limits class LimitsTests(unittest.TestCase): class FakeLimit(limits.RateLimitItem): granularity = (1, "fake") def test_key_all_strings_default_namespace(self): item = self.FakeLimit(1, 1) self.assertEqual(item.key_for("a", "b", "c"), "LIMITER/a/b/c/1/1/fake") def test_key_with_none_default_namespace(self): item = self.FakeLimit(1, 1) self.assertEqual( item.key_for("a", None, None), "LIMITER/a/None/None/1/1/fake" ) def test_key_with_int_default_namespace(self): item = self.FakeLimit(1, 1) self.assertEqual(item.key_for("a", 1), "LIMITER/a/1/1/1/fake") def test_key_with_mixed_string_types_default_namespace(self): item = self.FakeLimit(1, 1) self.assertEqual(item.key_for(b"a", "b"), "LIMITER/a/b/1/1/fake") limits-1.5.1/tests/test_ratelimit_parser.py000066400000000000000000000041641362535055200211530ustar00rootroot00000000000000import unittest from limits.util import parse, parse_many, granularity_from_string from limits import limits class RatelimitParserTests(unittest.TestCase): def test_singles(self): for rl_string in ["1 per second", "1/SECOND", "1 / Second"]: self.assertEqual( parse(rl_string), limits.RateLimitItemPerSecond(1) ) for rl_string in ["1 per minute", "1/MINUTE", "1/Minute"]: self.assertEqual( parse(rl_string), limits.RateLimitItemPerMinute(1) ) for rl_string in ["1 per hour", "1/HOUR", "1/Hour"]: self.assertEqual(parse(rl_string), limits.RateLimitItemPerHour(1)) for rl_string in ["1 per day", "1/DAY", "1 / Day"]: self.assertEqual(parse(rl_string), limits.RateLimitItemPerDay(1)) for rl_string in ["1 per month", "1/MONTH", "1 / Month"]: self.assertEqual(parse(rl_string), limits.RateLimitItemPerMonth(1)) for rl_string in ["1 per year", "1/Year", "1 / year"]: self.assertEqual(parse(rl_string), limits.RateLimitItemPerYear(1)) def test_multiples(self): self.assertEqual(parse("1 per 3 hour").get_expiry(), 3 * 60 * 60) self.assertEqual(parse("1 per 2 hours").get_expiry(), 2 * 60 * 60) self.assertEqual(parse("1/2 day").get_expiry(), 2 * 24 * 60 * 60) def test_parse_many(self): parsed = parse_many("1 per 3 hour; 1 per second") self.assertEqual(len(parsed), 2) self.assertEqual(parsed[0].get_expiry(), 3 * 60 * 60) self.assertEqual(parsed[1].get_expiry(), 1) def test_parse_many_csv(self): parsed = parse_many("1 per 3 hour, 1 per second") self.assertEqual(len(parsed), 2) self.assertEqual(parsed[0].get_expiry(), 3 * 60 * 60) self.assertEqual(parsed[1].get_expiry(), 1) def test_invalid_string(self): self.assertRaises(ValueError, parse, None) self.assertRaises(ValueError, parse, "1 per millienium") self.assertRaises(ValueError, granularity_from_string, "millenium") self.assertRaises(ValueError, parse_many, "1 per year; 2 per decade") limits-1.5.1/tests/test_storage.py000066400000000000000000000422171362535055200172520ustar00rootroot00000000000000import threading import time import unittest from uuid import uuid4 import hiro import mock import pymemcache.client import redis import redis.sentinel import rediscluster from limits.errors import ConfigurationError from limits.limits import RateLimitItemPerMinute, RateLimitItemPerSecond from limits.storage import ( MemoryStorage, RedisStorage, MemcachedStorage, RedisSentinelStorage, RedisClusterStorage, Storage, GAEMemcachedStorage, storage_from_string ) from limits.strategies import ( FixedWindowRateLimiter, FixedWindowElasticExpiryRateLimiter, MovingWindowRateLimiter ) from tests import skip_if, RUN_GAE class BaseStorageTests(unittest.TestCase): def setUp(self): pymemcache.client.Client(('localhost', 22122)).flush_all() redis.from_url('unix:///var/tmp/limits.redis.sock').flushall() redis.from_url("redis://localhost:7379").flushall() redis.from_url("redis://:sekret@localhost:7389").flushall() redis.sentinel.Sentinel([ ("localhost", 26379) ]).master_for("localhost-redis-sentinel").flushall() rediscluster.RedisCluster("localhost", 7000).flushall() if RUN_GAE: from google.appengine.ext import testbed tb = testbed.Testbed() tb.activate() tb.init_memcache_stub() def test_storage_string(self): self.assertTrue( isinstance(storage_from_string("memory://"), MemoryStorage) ) self.assertTrue( isinstance( storage_from_string("redis://localhost:7379"), RedisStorage ) ) self.assertTrue( isinstance( storage_from_string("redis+unix:///var/tmp/limits.redis.sock"), RedisStorage ) ) self.assertTrue( isinstance( storage_from_string("redis+unix://:password/var/tmp/limits.redis.sock"), RedisStorage ) ) self.assertTrue( isinstance( storage_from_string("memcached://localhost:22122"), MemcachedStorage ) ) self.assertTrue( isinstance( storage_from_string("memcached://localhost:22122,localhost:22123"), MemcachedStorage ) ) self.assertTrue( isinstance( storage_from_string("memcached:///tmp/limits.memcached.sock"), MemcachedStorage ) ) self.assertTrue( isinstance( storage_from_string( "redis+sentinel://localhost:26379", service_name="localhost-redis-sentinel" ), RedisSentinelStorage ) ) self.assertTrue( isinstance( storage_from_string( "redis+sentinel://localhost:26379/localhost-redis-sentinel" ), RedisSentinelStorage ) ) self.assertTrue( isinstance( storage_from_string("redis+cluster://localhost:7000/"), RedisClusterStorage ) ) if RUN_GAE: self.assertTrue( isinstance( storage_from_string("gaememcached://"), GAEMemcachedStorage ) ) self.assertRaises(ConfigurationError, storage_from_string, "blah://") self.assertRaises( ConfigurationError, storage_from_string, "redis+sentinel://localhost:26379" ) with mock.patch("limits.storage.get_dependency") as get_dependency: self.assertTrue( isinstance( storage_from_string( "redis+sentinel://:foobared@localhost:26379/localhost-redis-sentinel" ), RedisSentinelStorage ) ) self.assertEqual( get_dependency().Sentinel.call_args[1]['password'], 'foobared' ) def test_storage_check(self): self.assertTrue(storage_from_string("memory://").check()) self.assertTrue(storage_from_string("redis://localhost:7379").check()) self.assertTrue(storage_from_string("redis://:sekret@localhost:7389").check()) self.assertTrue(storage_from_string("redis+unix:///var/tmp/limits.redis.sock").check()) self.assertTrue( storage_from_string("memcached://localhost:22122").check() ) self.assertTrue( storage_from_string("memcached://localhost:22122,localhost:22123").check() ) self.assertTrue( storage_from_string("memcached:///tmp/limits.memcached.sock").check() ) self.assertTrue( storage_from_string( "redis+sentinel://localhost:26379", service_name="localhost-redis-sentinel" ).check() ) self.assertTrue( storage_from_string("redis+cluster://localhost:7000").check() ) if RUN_GAE: self.assertTrue(storage_from_string("gaememcached://").check()) def test_pluggable_storage_invalid_construction(self): def cons(): class _(Storage): def incr(self, key, expiry, elastic_expiry=False): return def get(self, key): return 0 def get_expiry(self, key): return time.time() self.assertRaises(ConfigurationError, cons) def test_pluggable_storage_no_moving_window(self): class MyStorage(Storage): STORAGE_SCHEME = ["mystorage"] def incr(self, key, expiry, elastic_expiry=False): return def get(self, key): return 0 def get_expiry(self, key): return time.time() storage = storage_from_string("mystorage://") self.assertTrue(isinstance(storage, MyStorage)) self.assertRaises( NotImplementedError, MovingWindowRateLimiter, storage ) def test_pluggable_storage_moving_window(self): class MyStorage(Storage): STORAGE_SCHEME = ["mystorage"] def incr(self, key, expiry, elastic_expiry=False): return def get(self, key): return 0 def get_expiry(self, key): return time.time() def acquire_entry(self, *a, **k): return True def get_moving_window(self, *a, **k): return (time.time(), 1) storage = storage_from_string("mystorage://") self.assertTrue(isinstance(storage, MyStorage)) MovingWindowRateLimiter(storage) class MemoryStorageTests(unittest.TestCase): def setUp(self): self.storage = MemoryStorage() def test_in_memory(self): with hiro.Timeline().freeze() as timeline: limiter = FixedWindowRateLimiter(self.storage) per_min = RateLimitItemPerMinute(10) for i in range(0, 10): self.assertTrue(limiter.hit(per_min)) self.assertFalse(limiter.hit(per_min)) timeline.forward(61) self.assertTrue(limiter.hit(per_min)) def test_fixed_window_clear(self): limiter = FixedWindowRateLimiter(self.storage) per_min = RateLimitItemPerMinute(1) limiter.hit(per_min) self.assertFalse(limiter.hit(per_min)) limiter.clear(per_min) self.assertTrue(limiter.hit(per_min)) def test_moving_window_clear(self): limiter = MovingWindowRateLimiter(self.storage) per_min = RateLimitItemPerMinute(1) limiter.hit(per_min) self.assertFalse(limiter.hit(per_min)) limiter.clear(per_min) self.assertTrue(limiter.hit(per_min)) def test_reset(self): limiter = FixedWindowRateLimiter(self.storage) per_min = RateLimitItemPerMinute(10) for i in range(0, 10): self.assertTrue(limiter.hit(per_min)) self.assertFalse(limiter.hit(per_min)) self.storage.reset() for i in range(0, 10): self.assertTrue(limiter.hit(per_min)) self.assertFalse(limiter.hit(per_min)) def test_expiry(self): with hiro.Timeline().freeze() as timeline: limiter = FixedWindowRateLimiter(self.storage) per_min = RateLimitItemPerMinute(10) for i in range(0, 10): self.assertTrue(limiter.hit(per_min)) timeline.forward(60) # touch another key and yield limiter.hit(RateLimitItemPerSecond(1)) time.sleep(0.1) self.assertTrue(per_min.key_for() not in self.storage.storage) def test_expiry_moving_window(self): with hiro.Timeline().freeze() as timeline: limiter = MovingWindowRateLimiter(self.storage) per_min = RateLimitItemPerMinute(10) per_sec = RateLimitItemPerSecond(1) for _ in range(0, 2): for _ in range(0, 10): self.assertTrue(limiter.hit(per_min)) timeline.forward(60) self.assertTrue(limiter.hit(per_sec)) timeline.forward(1) time.sleep(0.1) self.assertEqual([], self.storage.events[per_min.key_for()]) class SharedRedisTests(object): def test_fixed_window(self): limiter = FixedWindowRateLimiter(self.storage) per_second = RateLimitItemPerSecond(10) start = time.time() count = 0 while time.time() - start < 0.5 and count < 10: self.assertTrue(limiter.hit(per_second)) count += 1 self.assertFalse(limiter.hit(per_second)) while time.time() - start <= 1: time.sleep(0.1) [self.assertTrue(limiter.hit(per_second)) for _ in range(10)] def test_reset(self): limiter = FixedWindowRateLimiter(self.storage) for i in range(0, 10): rate = RateLimitItemPerMinute(i) limiter.hit(rate) self.assertEqual(self.storage.reset(), 10) def test_fixed_window_clear(self): limiter = FixedWindowRateLimiter(self.storage) per_min = RateLimitItemPerMinute(1) limiter.hit(per_min) self.assertFalse(limiter.hit(per_min)) limiter.clear(per_min) self.assertTrue(limiter.hit(per_min)) def test_moving_window_clear(self): limiter = MovingWindowRateLimiter(self.storage) per_min = RateLimitItemPerMinute(1) limiter.hit(per_min) self.assertFalse(limiter.hit(per_min)) limiter.clear(per_min) self.assertTrue(limiter.hit(per_min)) def test_moving_window_expiry(self): limiter = MovingWindowRateLimiter(self.storage) limit = RateLimitItemPerSecond(2) self.assertTrue(limiter.hit(limit)) time.sleep(0.9) self.assertTrue(limiter.hit(limit)) self.assertFalse(limiter.hit(limit)) time.sleep(0.1) self.assertTrue(limiter.hit(limit)) last = time.time() while time.time() - last <= 1: time.sleep(0.05) self.assertTrue(self.storage.storage.keys("%s/*" % limit.namespace) == []) class RedisStorageTests(SharedRedisTests, unittest.TestCase): def setUp(self): self.storage_url = "redis://localhost:7379" self.storage = RedisStorage(self.storage_url) redis.from_url(self.storage_url).flushall() def test_init_options(self): with mock.patch("limits.storage.get_dependency") as get_dependency: storage_from_string(self.storage_url, connection_timeout=1) self.assertEqual( get_dependency().from_url.call_args[1]['connection_timeout'], 1 ) class RedisUnixSocketStorageTests(SharedRedisTests, unittest.TestCase): def setUp(self): self.storage_url = "redis+unix:///var/tmp/limits.redis.sock" self.storage = RedisStorage(self.storage_url) redis.from_url('unix:///var/tmp/limits.redis.sock').flushall() def test_init_options(self): with mock.patch("limits.storage.get_dependency") as get_dependency: storage_from_string(self.storage_url, connection_timeout=1) self.assertEqual( get_dependency().from_url.call_args[1]['connection_timeout'], 1 ) class RedisSentinelStorageTests(SharedRedisTests, unittest.TestCase): def setUp(self): self.storage_url = 'redis+sentinel://localhost:26379' self.service_name = 'localhost-redis-sentinel' self.storage = RedisSentinelStorage( self.storage_url, service_name=self.service_name ) redis.sentinel.Sentinel([ ("localhost", 26379) ]).master_for(self.service_name).flushall() def test_init_options(self): with mock.patch("limits.storage.get_dependency") as get_dependency: storage_from_string(self.storage_url + '/' + self.service_name, connection_timeout=1) self.assertEqual( get_dependency().Sentinel.call_args[1]['connection_timeout'], 1 ) class RedisClusterStorageTests(SharedRedisTests, unittest.TestCase): def setUp(self): rediscluster.RedisCluster("localhost", 7000).flushall() self.storage_url = "redis+cluster://localhost:7000" self.storage = RedisClusterStorage("redis+cluster://localhost:7000") def test_init_options(self): with mock.patch("limits.storage.get_dependency") as get_dependency: storage_from_string(self.storage_url, connection_timeout=1) self.assertEqual( get_dependency().RedisCluster.call_args[1]['connection_timeout'], 1 ) class MemcachedStorageTests(unittest.TestCase): def setUp(self): pymemcache.client.Client(('localhost', 22122)).flush_all() self.storage_url = 'memcached://localhost:22122' def test_options(self): with mock.patch("limits.storage.get_dependency") as get_dependency: storage_from_string(self.storage_url, connect_timeout=1).check() self.assertEqual( get_dependency().Client.call_args[1]['connect_timeout'], 1 ) def test_fixed_window(self): storage = MemcachedStorage("memcached://localhost:22122") limiter = FixedWindowRateLimiter(storage) per_min = RateLimitItemPerSecond(10) start = time.time() count = 0 while time.time() - start < 0.5 and count < 10: self.assertTrue(limiter.hit(per_min)) count += 1 self.assertFalse(limiter.hit(per_min)) while time.time() - start <= 1: time.sleep(0.1) self.assertTrue(limiter.hit(per_min)) def test_fixed_window_cluster(self): storage = MemcachedStorage("memcached://localhost:22122,localhost:22123") limiter = FixedWindowRateLimiter(storage) per_min = RateLimitItemPerSecond(10) start = time.time() count = 0 while time.time() - start < 0.5 and count < 10: self.assertTrue(limiter.hit(per_min)) count += 1 self.assertFalse(limiter.hit(per_min)) while time.time() - start <= 1: time.sleep(0.1) self.assertTrue(limiter.hit(per_min)) def test_fixed_window_with_elastic_expiry(self): storage = MemcachedStorage("memcached://localhost:22122") limiter = FixedWindowElasticExpiryRateLimiter(storage) per_sec = RateLimitItemPerSecond(2, 2) self.assertTrue(limiter.hit(per_sec)) self.assertTrue(limiter.hit(per_sec)) time.sleep(1) self.assertFalse(limiter.test(per_sec)) time.sleep(1) self.assertTrue(limiter.test(per_sec)) def test_fixed_window_with_elastic_expiry_cluster(self): storage = MemcachedStorage("memcached://localhost:22122,localhost:22123") limiter = FixedWindowElasticExpiryRateLimiter(storage) per_sec = RateLimitItemPerSecond(2, 2) self.assertTrue(limiter.hit(per_sec)) self.assertTrue(limiter.hit(per_sec)) time.sleep(1) self.assertFalse(limiter.test(per_sec)) time.sleep(1) self.assertTrue(limiter.test(per_sec)) def test_clear(self): storage = MemcachedStorage("memcached://localhost:22122") limiter = FixedWindowRateLimiter(storage) per_min = RateLimitItemPerMinute(1) limiter.hit(per_min) self.assertFalse(limiter.hit(per_min)) limiter.clear(per_min) self.assertTrue(limiter.hit(per_min)) class GAEMemcachedStorageTests(unittest.TestCase): def setUp(self): if RUN_GAE: from google.appengine.ext import testbed tb = testbed.Testbed() tb.activate() tb.init_memcache_stub() @skip_if(not RUN_GAE) def test_fixed_window(self): storage = GAEMemcachedStorage("gaememcached://") limiter = FixedWindowRateLimiter(storage) per_min = RateLimitItemPerSecond(10) start = time.time() count = 0 while time.time() - start < 0.5 and count < 10: self.assertTrue(limiter.hit(per_min)) count += 1 self.assertFalse(limiter.hit(per_min)) while time.time() - start <= 1: time.sleep(0.1) self.assertTrue(limiter.hit(per_min)) limits-1.5.1/tests/test_strategy.py000066400000000000000000000170441362535055200174500ustar00rootroot00000000000000import threading import time import unittest import pymemcache.client import redis import redis.sentinel import rediscluster import hiro from limits.limits import RateLimitItemPerSecond, RateLimitItemPerMinute from limits.storage import ( MemoryStorage, RedisStorage, MemcachedStorage, RedisSentinelStorage ) from limits.strategies import ( MovingWindowRateLimiter, FixedWindowElasticExpiryRateLimiter, FixedWindowRateLimiter ) from tests import skip_if_pypy class WindowTests(unittest.TestCase): def setUp(self): pymemcache.client.Client(('localhost', 22122)).flush_all() redis.from_url("redis://localhost:7379").flushall() redis.from_url("redis://:sekret@localhost:7389").flushall() redis.sentinel.Sentinel([ ("localhost", 26379) ]).master_for("localhost-redis-sentinel").flushall() rediscluster.RedisCluster("localhost", 7000).flushall() def test_fixed_window(self): storage = MemoryStorage() limiter = FixedWindowRateLimiter(storage) with hiro.Timeline().freeze() as timeline: start = int(time.time()) limit = RateLimitItemPerSecond(10, 2) self.assertTrue(all([limiter.hit(limit) for _ in range(0, 10)])) timeline.forward(1) self.assertFalse(limiter.hit(limit)) self.assertEqual(limiter.get_window_stats(limit)[1], 0) self.assertEqual(limiter.get_window_stats(limit)[0], start + 2) timeline.forward(1) self.assertEqual(limiter.get_window_stats(limit)[1], 10) self.assertTrue(limiter.hit(limit)) def test_fixed_window_with_elastic_expiry_in_memory(self): storage = MemoryStorage() limiter = FixedWindowElasticExpiryRateLimiter(storage) with hiro.Timeline().freeze() as timeline: start = int(time.time()) limit = RateLimitItemPerSecond(10, 2) self.assertTrue(all([limiter.hit(limit) for _ in range(0, 10)])) timeline.forward(1) self.assertFalse(limiter.hit(limit)) self.assertEqual(limiter.get_window_stats(limit)[1], 0) # three extensions to the expiry self.assertEqual(limiter.get_window_stats(limit)[0], start + 3) timeline.forward(1) self.assertFalse(limiter.hit(limit)) timeline.forward(3) start = int(time.time()) self.assertTrue(limiter.hit(limit)) self.assertEqual(limiter.get_window_stats(limit)[1], 9) self.assertEqual(limiter.get_window_stats(limit)[0], start + 2) def test_fixed_window_with_elastic_expiry_memcache(self): storage = MemcachedStorage('memcached://localhost:22122') limiter = FixedWindowElasticExpiryRateLimiter(storage) limit = RateLimitItemPerSecond(10, 2) self.assertTrue(all([limiter.hit(limit) for _ in range(0, 10)])) time.sleep(1) self.assertFalse(limiter.hit(limit)) time.sleep(1) self.assertFalse(limiter.hit(limit)) def test_fixed_window_with_elastic_expiry_memcache_concurrency(self): storage = MemcachedStorage('memcached://localhost:22122') limiter = FixedWindowElasticExpiryRateLimiter(storage) start = int(time.time()) limit = RateLimitItemPerSecond(10, 2) def _c(): for i in range(0, 5): limiter.hit(limit) t1, t2 = threading.Thread(target=_c), threading.Thread(target=_c) t1.start(), t2.start() t1.join(), t2.join() self.assertEqual(limiter.get_window_stats(limit)[1], 0) self.assertTrue( start + 2 <= limiter.get_window_stats(limit)[0] <= start + 3 ) self.assertEqual(storage.get(limit.key_for()), 10) def test_fixed_window_with_elastic_expiry_redis(self): storage = RedisStorage('redis://localhost:7379') limiter = FixedWindowElasticExpiryRateLimiter(storage) limit = RateLimitItemPerSecond(10, 2) self.assertTrue(all([limiter.hit(limit) for _ in range(0, 10)])) time.sleep(1) self.assertFalse(limiter.hit(limit)) time.sleep(1) self.assertFalse(limiter.hit(limit)) self.assertEqual(limiter.get_window_stats(limit)[1], 0) def test_fixed_window_with_elastic_expiry_redis_sentinel(self): storage = RedisSentinelStorage( "redis+sentinel://localhost:26379", service_name="localhost-redis-sentinel" ) limiter = FixedWindowElasticExpiryRateLimiter(storage) limit = RateLimitItemPerSecond(10, 2) self.assertTrue(all([limiter.hit(limit) for _ in range(0, 10)])) time.sleep(1) self.assertFalse(limiter.hit(limit)) time.sleep(1) self.assertFalse(limiter.hit(limit)) self.assertEqual(limiter.get_window_stats(limit)[1], 0) def test_moving_window_in_memory(self): storage = MemoryStorage() limiter = MovingWindowRateLimiter(storage) with hiro.Timeline().freeze() as timeline: limit = RateLimitItemPerMinute(10) for i in range(0, 5): self.assertTrue(limiter.hit(limit)) self.assertTrue(limiter.hit(limit)) self.assertEqual( limiter.get_window_stats(limit)[1], 10 - ((i + 1) * 2) ) timeline.forward(10) self.assertEqual(limiter.get_window_stats(limit)[1], 0) self.assertFalse(limiter.hit(limit)) timeline.forward(20) self.assertEqual(limiter.get_window_stats(limit)[1], 2) self.assertEqual( limiter.get_window_stats(limit)[0], int(time.time() + 30) ) timeline.forward(31) self.assertEqual(limiter.get_window_stats(limit)[1], 10) @skip_if_pypy def test_moving_window_redis(self): storage = RedisStorage("redis://localhost:7379") limiter = MovingWindowRateLimiter(storage) limit = RateLimitItemPerSecond(10, 2) for i in range(0, 10): self.assertTrue(limiter.hit(limit)) self.assertEqual(limiter.get_window_stats(limit)[1], 10 - (i + 1)) time.sleep(2 * 0.095) self.assertFalse(limiter.hit(limit)) time.sleep(0.4) self.assertTrue(limiter.hit(limit)) self.assertTrue(limiter.hit(limit)) self.assertEqual(limiter.get_window_stats(limit)[1], 0) def test_moving_window_memcached(self): storage = MemcachedStorage('memcached://localhost:22122') self.assertRaises( NotImplementedError, MovingWindowRateLimiter, storage ) def test_test_fixed_window(self): with hiro.Timeline().freeze() as timeline: store = MemoryStorage() limiter = FixedWindowRateLimiter(store) limit = RateLimitItemPerSecond(2, 1) self.assertTrue(limiter.hit(limit), store) self.assertTrue(limiter.test(limit), store) self.assertTrue(limiter.hit(limit), store) self.assertFalse(limiter.test(limit), store) self.assertFalse(limiter.hit(limit), store) def test_test_moving_window(self): with hiro.Timeline().freeze() as timeline: store = MemoryStorage() limit = RateLimitItemPerSecond(2, 1) limiter = MovingWindowRateLimiter(store) self.assertTrue(limiter.hit(limit), store) self.assertTrue(limiter.test(limit), store) self.assertTrue(limiter.hit(limit), store) self.assertFalse(limiter.test(limit), store) self.assertFalse(limiter.hit(limit), store) limits-1.5.1/versioneer.py000066400000000000000000002060031362535055200155610ustar00rootroot00000000000000 # Version: 0.18 """The Versioneer - like a rocketeer, but for versions. The Versioneer ============== * like a rocketeer, but for versions! * https://github.com/warner/python-versioneer * Brian Warner * License: Public Domain * Compatible With: python2.6, 2.7, 3.2, 3.3, 3.4, 3.5, 3.6, and pypy * [![Latest Version] (https://pypip.in/version/versioneer/badge.svg?style=flat) ](https://pypi.python.org/pypi/versioneer/) * [![Build Status] (https://travis-ci.org/warner/python-versioneer.png?branch=master) ](https://travis-ci.org/warner/python-versioneer) This is a tool for managing a recorded version number in distutils-based python projects. The goal is to remove the tedious and error-prone "update the embedded version string" step from your release process. Making a new release should be as easy as recording a new tag in your version-control system, and maybe making new tarballs. ## Quick Install * `pip install versioneer` to somewhere to your $PATH * add a `[versioneer]` section to your setup.cfg (see below) * run `versioneer install` in your source tree, commit the results ## Version Identifiers Source trees come from a variety of places: * a version-control system checkout (mostly used by developers) * a nightly tarball, produced by build automation * a snapshot tarball, produced by a web-based VCS browser, like github's "tarball from tag" feature * a release tarball, produced by "setup.py sdist", distributed through PyPI Within each source tree, the version identifier (either a string or a number, this tool is format-agnostic) can come from a variety of places: * ask the VCS tool itself, e.g. "git describe" (for checkouts), which knows about recent "tags" and an absolute revision-id * the name of the directory into which the tarball was unpacked * an expanded VCS keyword ($Id$, etc) * a `_version.py` created by some earlier build step For released software, the version identifier is closely related to a VCS tag. Some projects use tag names that include more than just the version string (e.g. "myproject-1.2" instead of just "1.2"), in which case the tool needs to strip the tag prefix to extract the version identifier. For unreleased software (between tags), the version identifier should provide enough information to help developers recreate the same tree, while also giving them an idea of roughly how old the tree is (after version 1.2, before version 1.3). Many VCS systems can report a description that captures this, for example `git describe --tags --dirty --always` reports things like "0.7-1-g574ab98-dirty" to indicate that the checkout is one revision past the 0.7 tag, has a unique revision id of "574ab98", and is "dirty" (it has uncommitted changes. The version identifier is used for multiple purposes: * to allow the module to self-identify its version: `myproject.__version__` * to choose a name and prefix for a 'setup.py sdist' tarball ## Theory of Operation Versioneer works by adding a special `_version.py` file into your source tree, where your `__init__.py` can import it. This `_version.py` knows how to dynamically ask the VCS tool for version information at import time. `_version.py` also contains `$Revision$` markers, and the installation process marks `_version.py` to have this marker rewritten with a tag name during the `git archive` command. As a result, generated tarballs will contain enough information to get the proper version. To allow `setup.py` to compute a version too, a `versioneer.py` is added to the top level of your source tree, next to `setup.py` and the `setup.cfg` that configures it. This overrides several distutils/setuptools commands to compute the version when invoked, and changes `setup.py build` and `setup.py sdist` to replace `_version.py` with a small static file that contains just the generated version data. ## Installation See [INSTALL.md](./INSTALL.md) for detailed installation instructions. ## Version-String Flavors Code which uses Versioneer can learn about its version string at runtime by importing `_version` from your main `__init__.py` file and running the `get_versions()` function. From the "outside" (e.g. in `setup.py`), you can import the top-level `versioneer.py` and run `get_versions()`. Both functions return a dictionary with different flavors of version information: * `['version']`: A condensed version string, rendered using the selected style. This is the most commonly used value for the project's version string. The default "pep440" style yields strings like `0.11`, `0.11+2.g1076c97`, or `0.11+2.g1076c97.dirty`. See the "Styles" section below for alternative styles. * `['full-revisionid']`: detailed revision identifier. For Git, this is the full SHA1 commit id, e.g. "1076c978a8d3cfc70f408fe5974aa6c092c949ac". * `['date']`: Date and time of the latest `HEAD` commit. For Git, it is the commit date in ISO 8601 format. This will be None if the date is not available. * `['dirty']`: a boolean, True if the tree has uncommitted changes. Note that this is only accurate if run in a VCS checkout, otherwise it is likely to be False or None * `['error']`: if the version string could not be computed, this will be set to a string describing the problem, otherwise it will be None. It may be useful to throw an exception in setup.py if this is set, to avoid e.g. creating tarballs with a version string of "unknown". Some variants are more useful than others. Including `full-revisionid` in a bug report should allow developers to reconstruct the exact code being tested (or indicate the presence of local changes that should be shared with the developers). `version` is suitable for display in an "about" box or a CLI `--version` output: it can be easily compared against release notes and lists of bugs fixed in various releases. The installer adds the following text to your `__init__.py` to place a basic version in `YOURPROJECT.__version__`: from ._version import get_versions __version__ = get_versions()['version'] del get_versions ## Styles The setup.cfg `style=` configuration controls how the VCS information is rendered into a version string. The default style, "pep440", produces a PEP440-compliant string, equal to the un-prefixed tag name for actual releases, and containing an additional "local version" section with more detail for in-between builds. For Git, this is TAG[+DISTANCE.gHEX[.dirty]] , using information from `git describe --tags --dirty --always`. For example "0.11+2.g1076c97.dirty" indicates that the tree is like the "1076c97" commit but has uncommitted changes (".dirty"), and that this commit is two revisions ("+2") beyond the "0.11" tag. For released software (exactly equal to a known tag), the identifier will only contain the stripped tag, e.g. "0.11". Other styles are available. See [details.md](details.md) in the Versioneer source tree for descriptions. ## Debugging Versioneer tries to avoid fatal errors: if something goes wrong, it will tend to return a version of "0+unknown". To investigate the problem, run `setup.py version`, which will run the version-lookup code in a verbose mode, and will display the full contents of `get_versions()` (including the `error` string, which may help identify what went wrong). ## Known Limitations Some situations are known to cause problems for Versioneer. This details the most significant ones. More can be found on Github [issues page](https://github.com/warner/python-versioneer/issues). ### Subprojects Versioneer has limited support for source trees in which `setup.py` is not in the root directory (e.g. `setup.py` and `.git/` are *not* siblings). The are two common reasons why `setup.py` might not be in the root: * Source trees which contain multiple subprojects, such as [Buildbot](https://github.com/buildbot/buildbot), which contains both "master" and "slave" subprojects, each with their own `setup.py`, `setup.cfg`, and `tox.ini`. Projects like these produce multiple PyPI distributions (and upload multiple independently-installable tarballs). * Source trees whose main purpose is to contain a C library, but which also provide bindings to Python (and perhaps other langauges) in subdirectories. Versioneer will look for `.git` in parent directories, and most operations should get the right version string. However `pip` and `setuptools` have bugs and implementation details which frequently cause `pip install .` from a subproject directory to fail to find a correct version string (so it usually defaults to `0+unknown`). `pip install --editable .` should work correctly. `setup.py install` might work too. Pip-8.1.1 is known to have this problem, but hopefully it will get fixed in some later version. [Bug #38](https://github.com/warner/python-versioneer/issues/38) is tracking this issue. The discussion in [PR #61](https://github.com/warner/python-versioneer/pull/61) describes the issue from the Versioneer side in more detail. [pip PR#3176](https://github.com/pypa/pip/pull/3176) and [pip PR#3615](https://github.com/pypa/pip/pull/3615) contain work to improve pip to let Versioneer work correctly. Versioneer-0.16 and earlier only looked for a `.git` directory next to the `setup.cfg`, so subprojects were completely unsupported with those releases. ### Editable installs with setuptools <= 18.5 `setup.py develop` and `pip install --editable .` allow you to install a project into a virtualenv once, then continue editing the source code (and test) without re-installing after every change. "Entry-point scripts" (`setup(entry_points={"console_scripts": ..})`) are a convenient way to specify executable scripts that should be installed along with the python package. These both work as expected when using modern setuptools. When using setuptools-18.5 or earlier, however, certain operations will cause `pkg_resources.DistributionNotFound` errors when running the entrypoint script, which must be resolved by re-installing the package. This happens when the install happens with one version, then the egg_info data is regenerated while a different version is checked out. Many setup.py commands cause egg_info to be rebuilt (including `sdist`, `wheel`, and installing into a different virtualenv), so this can be surprising. [Bug #83](https://github.com/warner/python-versioneer/issues/83) describes this one, but upgrading to a newer version of setuptools should probably resolve it. ### Unicode version strings While Versioneer works (and is continually tested) with both Python 2 and Python 3, it is not entirely consistent with bytes-vs-unicode distinctions. Newer releases probably generate unicode version strings on py2. It's not clear that this is wrong, but it may be surprising for applications when then write these strings to a network connection or include them in bytes-oriented APIs like cryptographic checksums. [Bug #71](https://github.com/warner/python-versioneer/issues/71) investigates this question. ## Updating Versioneer To upgrade your project to a new release of Versioneer, do the following: * install the new Versioneer (`pip install -U versioneer` or equivalent) * edit `setup.cfg`, if necessary, to include any new configuration settings indicated by the release notes. See [UPGRADING](./UPGRADING.md) for details. * re-run `versioneer install` in your source tree, to replace `SRC/_version.py` * commit any changed files ## Future Directions This tool is designed to make it easily extended to other version-control systems: all VCS-specific components are in separate directories like src/git/ . The top-level `versioneer.py` script is assembled from these components by running make-versioneer.py . In the future, make-versioneer.py will take a VCS name as an argument, and will construct a version of `versioneer.py` that is specific to the given VCS. It might also take the configuration arguments that are currently provided manually during installation by editing setup.py . Alternatively, it might go the other direction and include code from all supported VCS systems, reducing the number of intermediate scripts. ## License To make Versioneer easier to embed, all its code is dedicated to the public domain. The `_version.py` that it creates is also in the public domain. Specifically, both are released under the Creative Commons "Public Domain Dedication" license (CC0-1.0), as described in https://creativecommons.org/publicdomain/zero/1.0/ . """ from __future__ import print_function try: import configparser except ImportError: import ConfigParser as configparser import errno import json import os import re import subprocess import sys class VersioneerConfig: """Container for Versioneer configuration parameters.""" def get_root(): """Get the project root directory. We require that all commands are run from the project root, i.e. the directory that contains setup.py, setup.cfg, and versioneer.py . """ root = os.path.realpath(os.path.abspath(os.getcwd())) setup_py = os.path.join(root, "setup.py") versioneer_py = os.path.join(root, "versioneer.py") if not (os.path.exists(setup_py) or os.path.exists(versioneer_py)): # allow 'python path/to/setup.py COMMAND' root = os.path.dirname(os.path.realpath(os.path.abspath(sys.argv[0]))) setup_py = os.path.join(root, "setup.py") versioneer_py = os.path.join(root, "versioneer.py") if not (os.path.exists(setup_py) or os.path.exists(versioneer_py)): err = ("Versioneer was unable to run the project root directory. " "Versioneer requires setup.py to be executed from " "its immediate directory (like 'python setup.py COMMAND'), " "or in a way that lets it use sys.argv[0] to find the root " "(like 'python path/to/setup.py COMMAND').") raise VersioneerBadRootError(err) try: # Certain runtime workflows (setup.py install/develop in a setuptools # tree) execute all dependencies in a single python process, so # "versioneer" may be imported multiple times, and python's shared # module-import table will cache the first one. So we can't use # os.path.dirname(__file__), as that will find whichever # versioneer.py was first imported, even in later projects. me = os.path.realpath(os.path.abspath(__file__)) me_dir = os.path.normcase(os.path.splitext(me)[0]) vsr_dir = os.path.normcase(os.path.splitext(versioneer_py)[0]) if me_dir != vsr_dir: print("Warning: build in %s is using versioneer.py from %s" % (os.path.dirname(me), versioneer_py)) except NameError: pass return root def get_config_from_root(root): """Read the project setup.cfg file to determine Versioneer config.""" # This might raise EnvironmentError (if setup.cfg is missing), or # configparser.NoSectionError (if it lacks a [versioneer] section), or # configparser.NoOptionError (if it lacks "VCS="). See the docstring at # the top of versioneer.py for instructions on writing your setup.cfg . setup_cfg = os.path.join(root, "setup.cfg") parser = configparser.SafeConfigParser() with open(setup_cfg, "r") as f: parser.readfp(f) VCS = parser.get("versioneer", "VCS") # mandatory def get(parser, name): if parser.has_option("versioneer", name): return parser.get("versioneer", name) return None cfg = VersioneerConfig() cfg.VCS = VCS cfg.style = get(parser, "style") or "" cfg.versionfile_source = get(parser, "versionfile_source") cfg.versionfile_build = get(parser, "versionfile_build") cfg.tag_prefix = get(parser, "tag_prefix") if cfg.tag_prefix in ("''", '""'): cfg.tag_prefix = "" cfg.parentdir_prefix = get(parser, "parentdir_prefix") cfg.verbose = get(parser, "verbose") return cfg class NotThisMethod(Exception): """Exception raised if a method is not valid for the current scenario.""" # these dictionaries contain VCS-specific tools LONG_VERSION_PY = {} HANDLERS = {} def register_vcs_handler(vcs, method): # decorator """Decorator to mark a method as the handler for a particular VCS.""" def decorate(f): """Store f in HANDLERS[vcs][method].""" if vcs not in HANDLERS: HANDLERS[vcs] = {} HANDLERS[vcs][method] = f return f return decorate def run_command(commands, args, cwd=None, verbose=False, hide_stderr=False, env=None): """Call the given command(s).""" assert isinstance(commands, list) p = None for c in commands: try: dispcmd = str([c] + args) # remember shell=False, so use git.cmd on windows, not just git p = subprocess.Popen([c] + args, cwd=cwd, env=env, stdout=subprocess.PIPE, stderr=(subprocess.PIPE if hide_stderr else None)) break except EnvironmentError: e = sys.exc_info()[1] if e.errno == errno.ENOENT: continue if verbose: print("unable to run %s" % dispcmd) print(e) return None, None else: if verbose: print("unable to find command, tried %s" % (commands,)) return None, None stdout = p.communicate()[0].strip() if sys.version_info[0] >= 3: stdout = stdout.decode() if p.returncode != 0: if verbose: print("unable to run %s (error)" % dispcmd) print("stdout was %s" % stdout) return None, p.returncode return stdout, p.returncode LONG_VERSION_PY['git'] = ''' # This file helps to compute a version number in source trees obtained from # git-archive tarball (such as those provided by githubs download-from-tag # feature). Distribution tarballs (built by setup.py sdist) and build # directories (produced by setup.py build) will contain a much shorter file # that just contains the computed version number. # This file is released into the public domain. Generated by # versioneer-0.18 (https://github.com/warner/python-versioneer) """Git implementation of _version.py.""" import errno import os import re import subprocess import sys def get_keywords(): """Get the keywords needed to look up the version information.""" # these strings will be replaced by git during git-archive. # setup.py/versioneer.py will grep for the variable names, so they must # each be defined on a line of their own. _version.py will just call # get_keywords(). git_refnames = "%(DOLLAR)sFormat:%%d%(DOLLAR)s" git_full = "%(DOLLAR)sFormat:%%H%(DOLLAR)s" git_date = "%(DOLLAR)sFormat:%%ci%(DOLLAR)s" keywords = {"refnames": git_refnames, "full": git_full, "date": git_date} return keywords class VersioneerConfig: """Container for Versioneer configuration parameters.""" def get_config(): """Create, populate and return the VersioneerConfig() object.""" # these strings are filled in when 'setup.py versioneer' creates # _version.py cfg = VersioneerConfig() cfg.VCS = "git" cfg.style = "%(STYLE)s" cfg.tag_prefix = "%(TAG_PREFIX)s" cfg.parentdir_prefix = "%(PARENTDIR_PREFIX)s" cfg.versionfile_source = "%(VERSIONFILE_SOURCE)s" cfg.verbose = False return cfg class NotThisMethod(Exception): """Exception raised if a method is not valid for the current scenario.""" LONG_VERSION_PY = {} HANDLERS = {} def register_vcs_handler(vcs, method): # decorator """Decorator to mark a method as the handler for a particular VCS.""" def decorate(f): """Store f in HANDLERS[vcs][method].""" if vcs not in HANDLERS: HANDLERS[vcs] = {} HANDLERS[vcs][method] = f return f return decorate def run_command(commands, args, cwd=None, verbose=False, hide_stderr=False, env=None): """Call the given command(s).""" assert isinstance(commands, list) p = None for c in commands: try: dispcmd = str([c] + args) # remember shell=False, so use git.cmd on windows, not just git p = subprocess.Popen([c] + args, cwd=cwd, env=env, stdout=subprocess.PIPE, stderr=(subprocess.PIPE if hide_stderr else None)) break except EnvironmentError: e = sys.exc_info()[1] if e.errno == errno.ENOENT: continue if verbose: print("unable to run %%s" %% dispcmd) print(e) return None, None else: if verbose: print("unable to find command, tried %%s" %% (commands,)) return None, None stdout = p.communicate()[0].strip() if sys.version_info[0] >= 3: stdout = stdout.decode() if p.returncode != 0: if verbose: print("unable to run %%s (error)" %% dispcmd) print("stdout was %%s" %% stdout) return None, p.returncode return stdout, p.returncode def versions_from_parentdir(parentdir_prefix, root, verbose): """Try to determine the version from the parent directory name. Source tarballs conventionally unpack into a directory that includes both the project name and a version string. We will also support searching up two directory levels for an appropriately named parent directory """ rootdirs = [] for i in range(3): dirname = os.path.basename(root) if dirname.startswith(parentdir_prefix): return {"version": dirname[len(parentdir_prefix):], "full-revisionid": None, "dirty": False, "error": None, "date": None} else: rootdirs.append(root) root = os.path.dirname(root) # up a level if verbose: print("Tried directories %%s but none started with prefix %%s" %% (str(rootdirs), parentdir_prefix)) raise NotThisMethod("rootdir doesn't start with parentdir_prefix") @register_vcs_handler("git", "get_keywords") def git_get_keywords(versionfile_abs): """Extract version information from the given file.""" # the code embedded in _version.py can just fetch the value of these # keywords. When used from setup.py, we don't want to import _version.py, # so we do it with a regexp instead. This function is not used from # _version.py. keywords = {} try: f = open(versionfile_abs, "r") for line in f.readlines(): if line.strip().startswith("git_refnames ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["refnames"] = mo.group(1) if line.strip().startswith("git_full ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["full"] = mo.group(1) if line.strip().startswith("git_date ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["date"] = mo.group(1) f.close() except EnvironmentError: pass return keywords @register_vcs_handler("git", "keywords") def git_versions_from_keywords(keywords, tag_prefix, verbose): """Get version information from git keywords.""" if not keywords: raise NotThisMethod("no keywords at all, weird") date = keywords.get("date") if date is not None: # git-2.2.0 added "%%cI", which expands to an ISO-8601 -compliant # datestamp. However we prefer "%%ci" (which expands to an "ISO-8601 # -like" string, which we must then edit to make compliant), because # it's been around since git-1.5.3, and it's too difficult to # discover which version we're using, or to work around using an # older one. date = date.strip().replace(" ", "T", 1).replace(" ", "", 1) refnames = keywords["refnames"].strip() if refnames.startswith("$Format"): if verbose: print("keywords are unexpanded, not using") raise NotThisMethod("unexpanded keywords, not a git-archive tarball") refs = set([r.strip() for r in refnames.strip("()").split(",")]) # starting in git-1.8.3, tags are listed as "tag: foo-1.0" instead of # just "foo-1.0". If we see a "tag: " prefix, prefer those. TAG = "tag: " tags = set([r[len(TAG):] for r in refs if r.startswith(TAG)]) if not tags: # Either we're using git < 1.8.3, or there really are no tags. We use # a heuristic: assume all version tags have a digit. The old git %%d # expansion behaves like git log --decorate=short and strips out the # refs/heads/ and refs/tags/ prefixes that would let us distinguish # between branches and tags. By ignoring refnames without digits, we # filter out many common branch names like "release" and # "stabilization", as well as "HEAD" and "master". tags = set([r for r in refs if re.search(r'\d', r)]) if verbose: print("discarding '%%s', no digits" %% ",".join(refs - tags)) if verbose: print("likely tags: %%s" %% ",".join(sorted(tags))) for ref in sorted(tags): # sorting will prefer e.g. "2.0" over "2.0rc1" if ref.startswith(tag_prefix): r = ref[len(tag_prefix):] if verbose: print("picking %%s" %% r) return {"version": r, "full-revisionid": keywords["full"].strip(), "dirty": False, "error": None, "date": date} # no suitable tags, so version is "0+unknown", but full hex is still there if verbose: print("no suitable tags, using unknown + full revision id") return {"version": "0+unknown", "full-revisionid": keywords["full"].strip(), "dirty": False, "error": "no suitable tags", "date": None} @register_vcs_handler("git", "pieces_from_vcs") def git_pieces_from_vcs(tag_prefix, root, verbose, run_command=run_command): """Get version from 'git describe' in the root of the source tree. This only gets called if the git-archive 'subst' keywords were *not* expanded, and _version.py hasn't already been rewritten with a short version string, meaning we're inside a checked out source tree. """ GITS = ["git"] if sys.platform == "win32": GITS = ["git.cmd", "git.exe"] out, rc = run_command(GITS, ["rev-parse", "--git-dir"], cwd=root, hide_stderr=True) if rc != 0: if verbose: print("Directory %%s not under git control" %% root) raise NotThisMethod("'git rev-parse --git-dir' returned error") # if there is a tag matching tag_prefix, this yields TAG-NUM-gHEX[-dirty] # if there isn't one, this yields HEX[-dirty] (no NUM) describe_out, rc = run_command(GITS, ["describe", "--tags", "--dirty", "--always", "--long", "--match", "%%s*" %% tag_prefix], cwd=root) # --long was added in git-1.5.5 if describe_out is None: raise NotThisMethod("'git describe' failed") describe_out = describe_out.strip() full_out, rc = run_command(GITS, ["rev-parse", "HEAD"], cwd=root) if full_out is None: raise NotThisMethod("'git rev-parse' failed") full_out = full_out.strip() pieces = {} pieces["long"] = full_out pieces["short"] = full_out[:7] # maybe improved later pieces["error"] = None # parse describe_out. It will be like TAG-NUM-gHEX[-dirty] or HEX[-dirty] # TAG might have hyphens. git_describe = describe_out # look for -dirty suffix dirty = git_describe.endswith("-dirty") pieces["dirty"] = dirty if dirty: git_describe = git_describe[:git_describe.rindex("-dirty")] # now we have TAG-NUM-gHEX or HEX if "-" in git_describe: # TAG-NUM-gHEX mo = re.search(r'^(.+)-(\d+)-g([0-9a-f]+)$', git_describe) if not mo: # unparseable. Maybe git-describe is misbehaving? pieces["error"] = ("unable to parse git-describe output: '%%s'" %% describe_out) return pieces # tag full_tag = mo.group(1) if not full_tag.startswith(tag_prefix): if verbose: fmt = "tag '%%s' doesn't start with prefix '%%s'" print(fmt %% (full_tag, tag_prefix)) pieces["error"] = ("tag '%%s' doesn't start with prefix '%%s'" %% (full_tag, tag_prefix)) return pieces pieces["closest-tag"] = full_tag[len(tag_prefix):] # distance: number of commits since tag pieces["distance"] = int(mo.group(2)) # commit: short hex revision ID pieces["short"] = mo.group(3) else: # HEX: no tags pieces["closest-tag"] = None count_out, rc = run_command(GITS, ["rev-list", "HEAD", "--count"], cwd=root) pieces["distance"] = int(count_out) # total number of commits # commit date: see ISO-8601 comment in git_versions_from_keywords() date = run_command(GITS, ["show", "-s", "--format=%%ci", "HEAD"], cwd=root)[0].strip() pieces["date"] = date.strip().replace(" ", "T", 1).replace(" ", "", 1) return pieces def plus_or_dot(pieces): """Return a + if we don't already have one, else return a .""" if "+" in pieces.get("closest-tag", ""): return "." return "+" def render_pep440(pieces): """Build up version string, with post-release "local version identifier". Our goal: TAG[+DISTANCE.gHEX[.dirty]] . Note that if you get a tagged build and then dirty it, you'll get TAG+0.gHEX.dirty Exceptions: 1: no tags. git_describe was just HEX. 0+untagged.DISTANCE.gHEX[.dirty] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += plus_or_dot(pieces) rendered += "%%d.g%%s" %% (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" else: # exception #1 rendered = "0+untagged.%%d.g%%s" %% (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" return rendered def render_pep440_pre(pieces): """TAG[.post.devDISTANCE] -- No -dirty. Exceptions: 1: no tags. 0.post.devDISTANCE """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += ".post.dev%%d" %% pieces["distance"] else: # exception #1 rendered = "0.post.dev%%d" %% pieces["distance"] return rendered def render_pep440_post(pieces): """TAG[.postDISTANCE[.dev0]+gHEX] . The ".dev0" means dirty. Note that .dev0 sorts backwards (a dirty tree will appear "older" than the corresponding clean one), but you shouldn't be releasing software with -dirty anyways. Exceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%%d" %% pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += plus_or_dot(pieces) rendered += "g%%s" %% pieces["short"] else: # exception #1 rendered = "0.post%%d" %% pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += "+g%%s" %% pieces["short"] return rendered def render_pep440_old(pieces): """TAG[.postDISTANCE[.dev0]] . The ".dev0" means dirty. Eexceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%%d" %% pieces["distance"] if pieces["dirty"]: rendered += ".dev0" else: # exception #1 rendered = "0.post%%d" %% pieces["distance"] if pieces["dirty"]: rendered += ".dev0" return rendered def render_git_describe(pieces): """TAG[-DISTANCE-gHEX][-dirty]. Like 'git describe --tags --dirty --always'. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += "-%%d-g%%s" %% (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render_git_describe_long(pieces): """TAG-DISTANCE-gHEX[-dirty]. Like 'git describe --tags --dirty --always -long'. The distance/hash is unconditional. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] rendered += "-%%d-g%%s" %% (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render(pieces, style): """Render the given version pieces into the requested style.""" if pieces["error"]: return {"version": "unknown", "full-revisionid": pieces.get("long"), "dirty": None, "error": pieces["error"], "date": None} if not style or style == "default": style = "pep440" # the default if style == "pep440": rendered = render_pep440(pieces) elif style == "pep440-pre": rendered = render_pep440_pre(pieces) elif style == "pep440-post": rendered = render_pep440_post(pieces) elif style == "pep440-old": rendered = render_pep440_old(pieces) elif style == "git-describe": rendered = render_git_describe(pieces) elif style == "git-describe-long": rendered = render_git_describe_long(pieces) else: raise ValueError("unknown style '%%s'" %% style) return {"version": rendered, "full-revisionid": pieces["long"], "dirty": pieces["dirty"], "error": None, "date": pieces.get("date")} def get_versions(): """Get version information or return default if unable to do so.""" # I am in _version.py, which lives at ROOT/VERSIONFILE_SOURCE. If we have # __file__, we can work backwards from there to the root. Some # py2exe/bbfreeze/non-CPython implementations don't do __file__, in which # case we can only use expanded keywords. cfg = get_config() verbose = cfg.verbose try: return git_versions_from_keywords(get_keywords(), cfg.tag_prefix, verbose) except NotThisMethod: pass try: root = os.path.realpath(__file__) # versionfile_source is the relative path from the top of the source # tree (where the .git directory might live) to this file. Invert # this to find the root from __file__. for i in cfg.versionfile_source.split('/'): root = os.path.dirname(root) except NameError: return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to find root of source tree", "date": None} try: pieces = git_pieces_from_vcs(cfg.tag_prefix, root, verbose) return render(pieces, cfg.style) except NotThisMethod: pass try: if cfg.parentdir_prefix: return versions_from_parentdir(cfg.parentdir_prefix, root, verbose) except NotThisMethod: pass return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to compute version", "date": None} ''' @register_vcs_handler("git", "get_keywords") def git_get_keywords(versionfile_abs): """Extract version information from the given file.""" # the code embedded in _version.py can just fetch the value of these # keywords. When used from setup.py, we don't want to import _version.py, # so we do it with a regexp instead. This function is not used from # _version.py. keywords = {} try: f = open(versionfile_abs, "r") for line in f.readlines(): if line.strip().startswith("git_refnames ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["refnames"] = mo.group(1) if line.strip().startswith("git_full ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["full"] = mo.group(1) if line.strip().startswith("git_date ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["date"] = mo.group(1) f.close() except EnvironmentError: pass return keywords @register_vcs_handler("git", "keywords") def git_versions_from_keywords(keywords, tag_prefix, verbose): """Get version information from git keywords.""" if not keywords: raise NotThisMethod("no keywords at all, weird") date = keywords.get("date") if date is not None: # git-2.2.0 added "%cI", which expands to an ISO-8601 -compliant # datestamp. However we prefer "%ci" (which expands to an "ISO-8601 # -like" string, which we must then edit to make compliant), because # it's been around since git-1.5.3, and it's too difficult to # discover which version we're using, or to work around using an # older one. date = date.strip().replace(" ", "T", 1).replace(" ", "", 1) refnames = keywords["refnames"].strip() if refnames.startswith("$Format"): if verbose: print("keywords are unexpanded, not using") raise NotThisMethod("unexpanded keywords, not a git-archive tarball") refs = set([r.strip() for r in refnames.strip("()").split(",")]) # starting in git-1.8.3, tags are listed as "tag: foo-1.0" instead of # just "foo-1.0". If we see a "tag: " prefix, prefer those. TAG = "tag: " tags = set([r[len(TAG):] for r in refs if r.startswith(TAG)]) if not tags: # Either we're using git < 1.8.3, or there really are no tags. We use # a heuristic: assume all version tags have a digit. The old git %d # expansion behaves like git log --decorate=short and strips out the # refs/heads/ and refs/tags/ prefixes that would let us distinguish # between branches and tags. By ignoring refnames without digits, we # filter out many common branch names like "release" and # "stabilization", as well as "HEAD" and "master". tags = set([r for r in refs if re.search(r'\d', r)]) if verbose: print("discarding '%s', no digits" % ",".join(refs - tags)) if verbose: print("likely tags: %s" % ",".join(sorted(tags))) for ref in sorted(tags): # sorting will prefer e.g. "2.0" over "2.0rc1" if ref.startswith(tag_prefix): r = ref[len(tag_prefix):] if verbose: print("picking %s" % r) return {"version": r, "full-revisionid": keywords["full"].strip(), "dirty": False, "error": None, "date": date} # no suitable tags, so version is "0+unknown", but full hex is still there if verbose: print("no suitable tags, using unknown + full revision id") return {"version": "0+unknown", "full-revisionid": keywords["full"].strip(), "dirty": False, "error": "no suitable tags", "date": None} @register_vcs_handler("git", "pieces_from_vcs") def git_pieces_from_vcs(tag_prefix, root, verbose, run_command=run_command): """Get version from 'git describe' in the root of the source tree. This only gets called if the git-archive 'subst' keywords were *not* expanded, and _version.py hasn't already been rewritten with a short version string, meaning we're inside a checked out source tree. """ GITS = ["git"] if sys.platform == "win32": GITS = ["git.cmd", "git.exe"] out, rc = run_command(GITS, ["rev-parse", "--git-dir"], cwd=root, hide_stderr=True) if rc != 0: if verbose: print("Directory %s not under git control" % root) raise NotThisMethod("'git rev-parse --git-dir' returned error") # if there is a tag matching tag_prefix, this yields TAG-NUM-gHEX[-dirty] # if there isn't one, this yields HEX[-dirty] (no NUM) describe_out, rc = run_command(GITS, ["describe", "--tags", "--dirty", "--always", "--long", "--match", "%s*" % tag_prefix], cwd=root) # --long was added in git-1.5.5 if describe_out is None: raise NotThisMethod("'git describe' failed") describe_out = describe_out.strip() full_out, rc = run_command(GITS, ["rev-parse", "HEAD"], cwd=root) if full_out is None: raise NotThisMethod("'git rev-parse' failed") full_out = full_out.strip() pieces = {} pieces["long"] = full_out pieces["short"] = full_out[:7] # maybe improved later pieces["error"] = None # parse describe_out. It will be like TAG-NUM-gHEX[-dirty] or HEX[-dirty] # TAG might have hyphens. git_describe = describe_out # look for -dirty suffix dirty = git_describe.endswith("-dirty") pieces["dirty"] = dirty if dirty: git_describe = git_describe[:git_describe.rindex("-dirty")] # now we have TAG-NUM-gHEX or HEX if "-" in git_describe: # TAG-NUM-gHEX mo = re.search(r'^(.+)-(\d+)-g([0-9a-f]+)$', git_describe) if not mo: # unparseable. Maybe git-describe is misbehaving? pieces["error"] = ("unable to parse git-describe output: '%s'" % describe_out) return pieces # tag full_tag = mo.group(1) if not full_tag.startswith(tag_prefix): if verbose: fmt = "tag '%s' doesn't start with prefix '%s'" print(fmt % (full_tag, tag_prefix)) pieces["error"] = ("tag '%s' doesn't start with prefix '%s'" % (full_tag, tag_prefix)) return pieces pieces["closest-tag"] = full_tag[len(tag_prefix):] # distance: number of commits since tag pieces["distance"] = int(mo.group(2)) # commit: short hex revision ID pieces["short"] = mo.group(3) else: # HEX: no tags pieces["closest-tag"] = None count_out, rc = run_command(GITS, ["rev-list", "HEAD", "--count"], cwd=root) pieces["distance"] = int(count_out) # total number of commits # commit date: see ISO-8601 comment in git_versions_from_keywords() date = run_command(GITS, ["show", "-s", "--format=%ci", "HEAD"], cwd=root)[0].strip() pieces["date"] = date.strip().replace(" ", "T", 1).replace(" ", "", 1) return pieces def do_vcs_install(manifest_in, versionfile_source, ipy): """Git-specific installation logic for Versioneer. For Git, this means creating/changing .gitattributes to mark _version.py for export-subst keyword substitution. """ GITS = ["git"] if sys.platform == "win32": GITS = ["git.cmd", "git.exe"] files = [manifest_in, versionfile_source] if ipy: files.append(ipy) try: me = __file__ if me.endswith(".pyc") or me.endswith(".pyo"): me = os.path.splitext(me)[0] + ".py" versioneer_file = os.path.relpath(me) except NameError: versioneer_file = "versioneer.py" files.append(versioneer_file) present = False try: f = open(".gitattributes", "r") for line in f.readlines(): if line.strip().startswith(versionfile_source): if "export-subst" in line.strip().split()[1:]: present = True f.close() except EnvironmentError: pass if not present: f = open(".gitattributes", "a+") f.write("%s export-subst\n" % versionfile_source) f.close() files.append(".gitattributes") run_command(GITS, ["add", "--"] + files) def versions_from_parentdir(parentdir_prefix, root, verbose): """Try to determine the version from the parent directory name. Source tarballs conventionally unpack into a directory that includes both the project name and a version string. We will also support searching up two directory levels for an appropriately named parent directory """ rootdirs = [] for i in range(3): dirname = os.path.basename(root) if dirname.startswith(parentdir_prefix): return {"version": dirname[len(parentdir_prefix):], "full-revisionid": None, "dirty": False, "error": None, "date": None} else: rootdirs.append(root) root = os.path.dirname(root) # up a level if verbose: print("Tried directories %s but none started with prefix %s" % (str(rootdirs), parentdir_prefix)) raise NotThisMethod("rootdir doesn't start with parentdir_prefix") SHORT_VERSION_PY = """ # This file was generated by 'versioneer.py' (0.18) from # revision-control system data, or from the parent directory name of an # unpacked source archive. Distribution tarballs contain a pre-generated copy # of this file. import json version_json = ''' %s ''' # END VERSION_JSON def get_versions(): return json.loads(version_json) """ def versions_from_file(filename): """Try to determine the version from _version.py if present.""" try: with open(filename) as f: contents = f.read() except EnvironmentError: raise NotThisMethod("unable to read _version.py") mo = re.search(r"version_json = '''\n(.*)''' # END VERSION_JSON", contents, re.M | re.S) if not mo: mo = re.search(r"version_json = '''\r\n(.*)''' # END VERSION_JSON", contents, re.M | re.S) if not mo: raise NotThisMethod("no version_json in _version.py") return json.loads(mo.group(1)) def write_to_version_file(filename, versions): """Write the given version number to the given _version.py file.""" os.unlink(filename) contents = json.dumps(versions, sort_keys=True, indent=1, separators=(",", ": ")) with open(filename, "w") as f: f.write(SHORT_VERSION_PY % contents) print("set %s to '%s'" % (filename, versions["version"])) def plus_or_dot(pieces): """Return a + if we don't already have one, else return a .""" if "+" in pieces.get("closest-tag", ""): return "." return "+" def render_pep440(pieces): """Build up version string, with post-release "local version identifier". Our goal: TAG[+DISTANCE.gHEX[.dirty]] . Note that if you get a tagged build and then dirty it, you'll get TAG+0.gHEX.dirty Exceptions: 1: no tags. git_describe was just HEX. 0+untagged.DISTANCE.gHEX[.dirty] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += plus_or_dot(pieces) rendered += "%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" else: # exception #1 rendered = "0+untagged.%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" return rendered def render_pep440_pre(pieces): """TAG[.post.devDISTANCE] -- No -dirty. Exceptions: 1: no tags. 0.post.devDISTANCE """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += ".post.dev%d" % pieces["distance"] else: # exception #1 rendered = "0.post.dev%d" % pieces["distance"] return rendered def render_pep440_post(pieces): """TAG[.postDISTANCE[.dev0]+gHEX] . The ".dev0" means dirty. Note that .dev0 sorts backwards (a dirty tree will appear "older" than the corresponding clean one), but you shouldn't be releasing software with -dirty anyways. Exceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += plus_or_dot(pieces) rendered += "g%s" % pieces["short"] else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += "+g%s" % pieces["short"] return rendered def render_pep440_old(pieces): """TAG[.postDISTANCE[.dev0]] . The ".dev0" means dirty. Eexceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" return rendered def render_git_describe(pieces): """TAG[-DISTANCE-gHEX][-dirty]. Like 'git describe --tags --dirty --always'. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render_git_describe_long(pieces): """TAG-DISTANCE-gHEX[-dirty]. Like 'git describe --tags --dirty --always -long'. The distance/hash is unconditional. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render(pieces, style): """Render the given version pieces into the requested style.""" if pieces["error"]: return {"version": "unknown", "full-revisionid": pieces.get("long"), "dirty": None, "error": pieces["error"], "date": None} if not style or style == "default": style = "pep440" # the default if style == "pep440": rendered = render_pep440(pieces) elif style == "pep440-pre": rendered = render_pep440_pre(pieces) elif style == "pep440-post": rendered = render_pep440_post(pieces) elif style == "pep440-old": rendered = render_pep440_old(pieces) elif style == "git-describe": rendered = render_git_describe(pieces) elif style == "git-describe-long": rendered = render_git_describe_long(pieces) else: raise ValueError("unknown style '%s'" % style) return {"version": rendered, "full-revisionid": pieces["long"], "dirty": pieces["dirty"], "error": None, "date": pieces.get("date")} class VersioneerBadRootError(Exception): """The project root directory is unknown or missing key files.""" def get_versions(verbose=False): """Get the project version from whatever source is available. Returns dict with two keys: 'version' and 'full'. """ if "versioneer" in sys.modules: # see the discussion in cmdclass.py:get_cmdclass() del sys.modules["versioneer"] root = get_root() cfg = get_config_from_root(root) assert cfg.VCS is not None, "please set [versioneer]VCS= in setup.cfg" handlers = HANDLERS.get(cfg.VCS) assert handlers, "unrecognized VCS '%s'" % cfg.VCS verbose = verbose or cfg.verbose assert cfg.versionfile_source is not None, \ "please set versioneer.versionfile_source" assert cfg.tag_prefix is not None, "please set versioneer.tag_prefix" versionfile_abs = os.path.join(root, cfg.versionfile_source) # extract version from first of: _version.py, VCS command (e.g. 'git # describe'), parentdir. This is meant to work for developers using a # source checkout, for users of a tarball created by 'setup.py sdist', # and for users of a tarball/zipball created by 'git archive' or github's # download-from-tag feature or the equivalent in other VCSes. get_keywords_f = handlers.get("get_keywords") from_keywords_f = handlers.get("keywords") if get_keywords_f and from_keywords_f: try: keywords = get_keywords_f(versionfile_abs) ver = from_keywords_f(keywords, cfg.tag_prefix, verbose) if verbose: print("got version from expanded keyword %s" % ver) return ver except NotThisMethod: pass try: ver = versions_from_file(versionfile_abs) if verbose: print("got version from file %s %s" % (versionfile_abs, ver)) return ver except NotThisMethod: pass from_vcs_f = handlers.get("pieces_from_vcs") if from_vcs_f: try: pieces = from_vcs_f(cfg.tag_prefix, root, verbose) ver = render(pieces, cfg.style) if verbose: print("got version from VCS %s" % ver) return ver except NotThisMethod: pass try: if cfg.parentdir_prefix: ver = versions_from_parentdir(cfg.parentdir_prefix, root, verbose) if verbose: print("got version from parentdir %s" % ver) return ver except NotThisMethod: pass if verbose: print("unable to compute version") return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to compute version", "date": None} def get_version(): """Get the short version string for this project.""" return get_versions()["version"] def get_cmdclass(): """Get the custom setuptools/distutils subclasses used by Versioneer.""" if "versioneer" in sys.modules: del sys.modules["versioneer"] # this fixes the "python setup.py develop" case (also 'install' and # 'easy_install .'), in which subdependencies of the main project are # built (using setup.py bdist_egg) in the same python process. Assume # a main project A and a dependency B, which use different versions # of Versioneer. A's setup.py imports A's Versioneer, leaving it in # sys.modules by the time B's setup.py is executed, causing B to run # with the wrong versioneer. Setuptools wraps the sub-dep builds in a # sandbox that restores sys.modules to it's pre-build state, so the # parent is protected against the child's "import versioneer". By # removing ourselves from sys.modules here, before the child build # happens, we protect the child from the parent's versioneer too. # Also see https://github.com/warner/python-versioneer/issues/52 cmds = {} # we add "version" to both distutils and setuptools from distutils.core import Command class cmd_version(Command): description = "report generated version string" user_options = [] boolean_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): vers = get_versions(verbose=True) print("Version: %s" % vers["version"]) print(" full-revisionid: %s" % vers.get("full-revisionid")) print(" dirty: %s" % vers.get("dirty")) print(" date: %s" % vers.get("date")) if vers["error"]: print(" error: %s" % vers["error"]) cmds["version"] = cmd_version # we override "build_py" in both distutils and setuptools # # most invocation pathways end up running build_py: # distutils/build -> build_py # distutils/install -> distutils/build ->.. # setuptools/bdist_wheel -> distutils/install ->.. # setuptools/bdist_egg -> distutils/install_lib -> build_py # setuptools/install -> bdist_egg ->.. # setuptools/develop -> ? # pip install: # copies source tree to a tempdir before running egg_info/etc # if .git isn't copied too, 'git describe' will fail # then does setup.py bdist_wheel, or sometimes setup.py install # setup.py egg_info -> ? # we override different "build_py" commands for both environments if "setuptools" in sys.modules: from setuptools.command.build_py import build_py as _build_py else: from distutils.command.build_py import build_py as _build_py class cmd_build_py(_build_py): def run(self): root = get_root() cfg = get_config_from_root(root) versions = get_versions() _build_py.run(self) # now locate _version.py in the new build/ directory and replace # it with an updated value if cfg.versionfile_build: target_versionfile = os.path.join(self.build_lib, cfg.versionfile_build) print("UPDATING %s" % target_versionfile) write_to_version_file(target_versionfile, versions) cmds["build_py"] = cmd_build_py if "cx_Freeze" in sys.modules: # cx_freeze enabled? from cx_Freeze.dist import build_exe as _build_exe # nczeczulin reports that py2exe won't like the pep440-style string # as FILEVERSION, but it can be used for PRODUCTVERSION, e.g. # setup(console=[{ # "version": versioneer.get_version().split("+", 1)[0], # FILEVERSION # "product_version": versioneer.get_version(), # ... class cmd_build_exe(_build_exe): def run(self): root = get_root() cfg = get_config_from_root(root) versions = get_versions() target_versionfile = cfg.versionfile_source print("UPDATING %s" % target_versionfile) write_to_version_file(target_versionfile, versions) _build_exe.run(self) os.unlink(target_versionfile) with open(cfg.versionfile_source, "w") as f: LONG = LONG_VERSION_PY[cfg.VCS] f.write(LONG % {"DOLLAR": "$", "STYLE": cfg.style, "TAG_PREFIX": cfg.tag_prefix, "PARENTDIR_PREFIX": cfg.parentdir_prefix, "VERSIONFILE_SOURCE": cfg.versionfile_source, }) cmds["build_exe"] = cmd_build_exe del cmds["build_py"] if 'py2exe' in sys.modules: # py2exe enabled? try: from py2exe.distutils_buildexe import py2exe as _py2exe # py3 except ImportError: from py2exe.build_exe import py2exe as _py2exe # py2 class cmd_py2exe(_py2exe): def run(self): root = get_root() cfg = get_config_from_root(root) versions = get_versions() target_versionfile = cfg.versionfile_source print("UPDATING %s" % target_versionfile) write_to_version_file(target_versionfile, versions) _py2exe.run(self) os.unlink(target_versionfile) with open(cfg.versionfile_source, "w") as f: LONG = LONG_VERSION_PY[cfg.VCS] f.write(LONG % {"DOLLAR": "$", "STYLE": cfg.style, "TAG_PREFIX": cfg.tag_prefix, "PARENTDIR_PREFIX": cfg.parentdir_prefix, "VERSIONFILE_SOURCE": cfg.versionfile_source, }) cmds["py2exe"] = cmd_py2exe # we override different "sdist" commands for both environments if "setuptools" in sys.modules: from setuptools.command.sdist import sdist as _sdist else: from distutils.command.sdist import sdist as _sdist class cmd_sdist(_sdist): def run(self): versions = get_versions() self._versioneer_generated_versions = versions # unless we update this, the command will keep using the old # version self.distribution.metadata.version = versions["version"] return _sdist.run(self) def make_release_tree(self, base_dir, files): root = get_root() cfg = get_config_from_root(root) _sdist.make_release_tree(self, base_dir, files) # now locate _version.py in the new base_dir directory # (remembering that it may be a hardlink) and replace it with an # updated value target_versionfile = os.path.join(base_dir, cfg.versionfile_source) print("UPDATING %s" % target_versionfile) write_to_version_file(target_versionfile, self._versioneer_generated_versions) cmds["sdist"] = cmd_sdist return cmds CONFIG_ERROR = """ setup.cfg is missing the necessary Versioneer configuration. You need a section like: [versioneer] VCS = git style = pep440 versionfile_source = src/myproject/_version.py versionfile_build = myproject/_version.py tag_prefix = parentdir_prefix = myproject- You will also need to edit your setup.py to use the results: import versioneer setup(version=versioneer.get_version(), cmdclass=versioneer.get_cmdclass(), ...) Please read the docstring in ./versioneer.py for configuration instructions, edit setup.cfg, and re-run the installer or 'python versioneer.py setup'. """ SAMPLE_CONFIG = """ # See the docstring in versioneer.py for instructions. Note that you must # re-run 'versioneer.py setup' after changing this section, and commit the # resulting files. [versioneer] #VCS = git #style = pep440 #versionfile_source = #versionfile_build = #tag_prefix = #parentdir_prefix = """ INIT_PY_SNIPPET = """ from ._version import get_versions __version__ = get_versions()['version'] del get_versions """ def do_setup(): """Main VCS-independent setup function for installing Versioneer.""" root = get_root() try: cfg = get_config_from_root(root) except (EnvironmentError, configparser.NoSectionError, configparser.NoOptionError) as e: if isinstance(e, (EnvironmentError, configparser.NoSectionError)): print("Adding sample versioneer config to setup.cfg", file=sys.stderr) with open(os.path.join(root, "setup.cfg"), "a") as f: f.write(SAMPLE_CONFIG) print(CONFIG_ERROR, file=sys.stderr) return 1 print(" creating %s" % cfg.versionfile_source) with open(cfg.versionfile_source, "w") as f: LONG = LONG_VERSION_PY[cfg.VCS] f.write(LONG % {"DOLLAR": "$", "STYLE": cfg.style, "TAG_PREFIX": cfg.tag_prefix, "PARENTDIR_PREFIX": cfg.parentdir_prefix, "VERSIONFILE_SOURCE": cfg.versionfile_source, }) ipy = os.path.join(os.path.dirname(cfg.versionfile_source), "__init__.py") if os.path.exists(ipy): try: with open(ipy, "r") as f: old = f.read() except EnvironmentError: old = "" if INIT_PY_SNIPPET not in old: print(" appending to %s" % ipy) with open(ipy, "a") as f: f.write(INIT_PY_SNIPPET) else: print(" %s unmodified" % ipy) else: print(" %s doesn't exist, ok" % ipy) ipy = None # Make sure both the top-level "versioneer.py" and versionfile_source # (PKG/_version.py, used by runtime code) are in MANIFEST.in, so # they'll be copied into source distributions. Pip won't be able to # install the package without this. manifest_in = os.path.join(root, "MANIFEST.in") simple_includes = set() try: with open(manifest_in, "r") as f: for line in f: if line.startswith("include "): for include in line.split()[1:]: simple_includes.add(include) except EnvironmentError: pass # That doesn't cover everything MANIFEST.in can do # (http://docs.python.org/2/distutils/sourcedist.html#commands), so # it might give some false negatives. Appending redundant 'include' # lines is safe, though. if "versioneer.py" not in simple_includes: print(" appending 'versioneer.py' to MANIFEST.in") with open(manifest_in, "a") as f: f.write("include versioneer.py\n") else: print(" 'versioneer.py' already in MANIFEST.in") if cfg.versionfile_source not in simple_includes: print(" appending versionfile_source ('%s') to MANIFEST.in" % cfg.versionfile_source) with open(manifest_in, "a") as f: f.write("include %s\n" % cfg.versionfile_source) else: print(" versionfile_source already in MANIFEST.in") # Make VCS-specific changes. For git, this means creating/changing # .gitattributes to mark _version.py for export-subst keyword # substitution. do_vcs_install(manifest_in, cfg.versionfile_source, ipy) return 0 def scan_setup_py(): """Validate the contents of setup.py against Versioneer's expectations.""" found = set() setters = False errors = 0 with open("setup.py", "r") as f: for line in f.readlines(): if "import versioneer" in line: found.add("import") if "versioneer.get_cmdclass()" in line: found.add("cmdclass") if "versioneer.get_version()" in line: found.add("get_version") if "versioneer.VCS" in line: setters = True if "versioneer.versionfile_source" in line: setters = True if len(found) != 3: print("") print("Your setup.py appears to be missing some important items") print("(but I might be wrong). Please make sure it has something") print("roughly like the following:") print("") print(" import versioneer") print(" setup( version=versioneer.get_version(),") print(" cmdclass=versioneer.get_cmdclass(), ...)") print("") errors += 1 if setters: print("You should remove lines like 'versioneer.VCS = ' and") print("'versioneer.versionfile_source = ' . This configuration") print("now lives in setup.cfg, and should be removed from setup.py") print("") errors += 1 return errors if __name__ == "__main__": cmd = sys.argv[1] if cmd == "setup": errors = do_setup() errors += scan_setup_py() if errors: sys.exit(1)