MIDIUtil-0.87/0000755000175000001440000000000011272620715011704 5ustar markusersMIDIUtil-0.87/documentation/0000755000175000001440000000000011272620715014555 5ustar markusersMIDIUtil-0.87/documentation/Extending.txt0000644000175000001440000001502311272620240017235 0ustar markusers===================== Extending the Library ===================== The choice of MIDI event types included in the library is somewhat idiosyncratic; I included the events I needed for another software project I was wrote. You may find that you need additional events in your work. For this reason I am including some instructions on extending the library. The process isn't too hard (provided you have a working knowledge of Python and the MIDI standard), so the task shouldn't present a competent coder too much difficulty. Alternately (if, for example, you *don't* have a working knowledge of MIDI and don't desire to gain it), you can submit new feature requests to me, and I will include them into the development branch of the code, subject to the constraints of time. To illustrate the process I show below how the MIDI tempo event is incorporated into the code. This is a relatively simple event, so while it may not illustrate some of the subtleties of MIDI programing, it provides a good, illustrative case. ----------------------- Create a New Event Type ----------------------- The first order of business is to create a new subclass of the GnericEvent object of the MIDIFile module. This subclass initializes any specific instance data that is needed for the MIDI event to be written. In the case of the tempo event, it is the actual tempo (which is defined in the MIDI standard to be 60000000 divided by the tempo in beats per minute). This class should also call the superclass' initializer with the event time and set the event type (a unique string used internally by the software) in the __init__() function. In the case of the tempo event: class tempo(GenericEvent): def __init__(self,time,tempo): GenericEvent.__init__(self,time) self.type = 'tempo' self.tempo = int(60000000 / tempo) Next (and this is an embarrassing break of OO programming) the __eq__() function of the GenericEvent class should be modified so that equality of these types of events can be calculated. In calculating equivalence time is always checked, so two tempo events are considered the same if the have the same tempo value. Thus the following snippet of code from GenericEvent's _eq__() function accomplishes this goal: if self.type == 'tempo': if self.tempo != other.tempo: return False If events are equivalent, the code should return False. If they are not equivalent no return should be called. --------------------------- Create an Accessor Function --------------------------- Next, an accessor function should be added to MIDITrack to create an event of this type. Continuing the example of the tempo event: def addTempo(self,time,tempo): self.eventList.append(MIDITrack.tempo(time,tempo)) The public accessor function is via the MIDIFile object, and must include the track number to which the event is written: def addTempo(self,track,time,tempo): self.tracks[track].addTempo(time,tempo) This is the function you will use in your code to create an event of the desired type. ----------------------- Modify processEventList ----------------------- Next, the logic pertaining to the new event type should be added to processEventList function of the MIDITrack class. In general this code will create a MIDIEvent object and set its type, time, ordinality, and any specific information that is needed for the event type. This object is then added to the MIDIEventList. The ordinality (self.ord) is a number that tells the software how to sequence MIDI events that occur at the same time. The higher the number, the later in the sequence the event will be written in comparison to other, simultaneous events. The relevant section for the tempo event is: elif thing.type == 'tempo': event = MIDIEvent() event.type = "Tempo" event.time = thing.time * TICKSPERBEAT event.tempo = thing.tempo event.ord = 3 self.MIDIEventList.append(event) Thus if other events occur at the same time, type which have an ordinality of 1 or 2 will be written to the stream first. Time needs to be converted from beats (which the accessor function uses) and MIDI time by multiplying by the constant TICKSPERBEAT. The value of thing.type is the unique string you defined above, and event.type is another unique things (they can--and probably should--be the same, although the coding here is a little sloppy and changes case of the string). ---------------------------------------- Write the Event Data to the MIDI Stream ---------------------------------------- The last step is to modify the MIDIFile writeEventsToStream function; here is where some understanding of the MIDI standard is necessary. The following code shows the creation of a MIDI tempo event: elif event.type == "Tempo": code = 0xFF subcode = 0x51 fourbite = struct.pack('>L', event.tempo) threebite = fourbite[1:4] # Just discard the MSB varTime = writeVarLength(event.time) for timeByte in varTime: self.MIDIdata = self.MIDIdata + struct.pack('>B',timeByte) self.MIDIdata = self.MIDIdata + struct.pack('>B',code) self.MIDIdata = self.MIDIdata + struct.pack('>B',subcode) self.MIDIdata = self.MIDIdata + struct.pack('>B', 0x03) self.MIDIdata = self.MIDIdata + threebite The event.type string ("Tempo") was the one chosen in the processEventList logic. The code and subcode are binary values that come from the MIDI specification. Next the data is packed into a three byte structure (or a four byte structure, discarding the most significant byte). Again, the MIDI specification determines the number of bytes used in the data payload. The event time should be converted to MIDI variable-length data with the writeVarLength() function before writing to the stream (as shown above). The MIDI standard utilizes a slightly bizarre variable length data record. In it, only seven bits of a word are used to store data; the eighth bit signifies if more bytes encoding the value follow. The total length may be 1 to 3 bytes, depending upon the size of the value encoded. The writeVarLength() function takes care of this conversion for you. Now the data is written to the binary object self.MIDIdata, which is the actual MIDI-encoded data stream. As per the MIDI standard, first we write our variable-length time value. Next we add the event type code and subcode. Then we write the length of the data payload, which in the case of the tempo event is three bytes. Lastly, we write the actual payload, which has been packed into the variable threebite. Clear as mud! MIDIUtil-0.87/documentation/ClassReference.txt0000644000175000001440000001604311272620240020177 0ustar markusers======================== MIDIUtil Class Reference ======================== -------------- class MIDIFile -------------- A class that represents a full, well-formed MIDI pattern. This is a container object that contains a header, one or more tracks, and the data associated with a proper and well-formed MIDI pattern. Calling MyMIDI = MidiFile(tracks, removeDuplicates=True,  deinterleave=True) normally MyMIDI = MidiFile(tracks) Arguments o tracks: The number of tracks this object contains o removeDuplicates: If true (the default), the software will remove duplicate events which have been added. For example, two notes at the same channel, time, pitch, and duration would be considered duplicate. o deinterleave: If True (the default), overlapping notes (same pitch, same channel) will be modified so that they do not overlap. Otherwise the sequencing software will need to figure out how to interpret NoteOff events upon playback. ================ Public Functions ================ --------------------------------------------------- addNote(track, channel, pitch,time,duration,volume) --------------------------------------------------- Add notes to the MIDIFile object Use MyMIDI.addNotes(track,channel,pitch,time, duration, volume) Arguments o track: The track to which the note is added. o channel: the MIDI channel to assign to the note. [Integer, 0-15] o pitch: the MIDI pitch number [Integer, 0-127]. o time: the time (in beats) at which the note sounds [Float]. o duration: the duration of the note (in beats) [Float]. o lume: the volume (velocity) of the note. [Integer, 0-127]. ---------------------------------- addTrackName(track, time,trackName) ---------------------------------- Add a track name to a MIDI track. Use MyMIDI.addTrackName(track,time,trackName) Arguments o track: The track to which the name is added. [Integer, 0-127]. o time: The time at which the track name is added, in beats [Float]. o trackName: The track name. [String]. --------------------------- addTempo(track, time,tempo) --------------------------- Add a tempo event. Use MyMIDI.addTempo(track, time, tempo) Arguments o track: The track to which the event is added. [Integer, 0-127] o time: The time at which the event is added, in beats. [Float] o tempo: The tempo, in Beats per Minute. [Integer] ----------------------------------------------- addProgramChange(track, channel, time, program) ----------------------------------------------- Add a MIDI program change event. Use MyMIDI.addProgramChange(track,channel, time, program) Arguments o track: The track to which the event is added. [Integer, 0-127] o channel: The channel the event is assigned to. [Integer, 0-15] o time: The time at which the event is added, in beats. [Float] o program: the program number. [Integer, 0-127] -------------------------------------------------------------- addControllerEvent(track, channel,time,eventType, paramerter1) -------------------------------------------------------------- Add a MIDI controller event. Use MyMIDI.addControllerEvent(track, channel, time, eventType, \ parameter1) Arguments o track: The track to which the event is added. [Integer, 0-127] o channel: The channel the event is assigned to. [Integer, 0-15] o time: The time at which the event is added, in beats. [Float] o eventType: the controller event type. o parameter1: The event's parameter. The meaning of which varies by event type. --------------------------------------------------------------------- changeNoteTuning(track, tunings, sysExChannel=0x7F, realTime=False, \ tuningProgam=0) --------------------------------------------------------------------- Change a note's tuning using sysEx change tuning program. Use MyMIDI.changeNoteTuning(track,[tunings],realTime=False, \ tuningProgram=0) Arguments o track: The track to which the event is added. [Integer, 0-127]. o tunings: A list of tuples in the form (pitchNumber, frequency).  [[(Integer,Float]] o realTime: Boolean which sets the real-time flag. Defaults to false. o sysExChannel: do note use (see below). o tuningProgram: Tuning program to assign. Defaults to zero. [Integer, 0-127] In general the sysExChannel should not be changed (parameter will be depreciated). Also note that many software packages and hardware packages do not implement this standard! --------------------- writeFile(fileHandle) --------------------- Write the MIDI File. Use MyMIDI.writeFile(filehandle) Arguments o filehandle: a file handle that has been opened for binary writing. ------------------------------------- addSysEx(track, time, manID, payload) ------------------------------------- Add a SysEx event Use MyMIDI.addSysEx(track,time,ID,payload) Arguments o track: The track to which the event is added. [Integer, 0-127]. o time: The time at which the event is added, in beats. [Float]. o ID: The SysEx ID number o payload: the event payload. Note: This is a low-level MIDI function, so care must be used in constructing the payload. It is recommended that higher-level helper functions be written to wrap this function and construct the payload if a developer finds him or herself using the function heavily. --------------------------------------------------------- addUniversalSysEx(track,  time,code, subcode, payload, \ sysExChannel=0x7F,  realTime=False)}f --------------------------------------------------------- Add a Universal SysEx event. Use MyMIDI.addUniversalSysEx(track, time, code, subcode, payload, \ sysExChannel=0x7f, realTime=False) Arguments o track: The track to which the event is added. [Integer, 0-127]. o time: The time at which the event is added, in beats. [Float]. o code: The event code. [Integer] o subcode The event sub-code [Integer] o payload: The event payload. [Binary string] o sysExChannel: The SysEx channel. o realTime: Sets the real-time flag. Defaults to zero. Note: This is a low-level MIDI function, so care must be used in constructing the payload. It is recommended that higher-level helper functions be written to wrap this function and construct the payload if a developer finds him or herself using the function heavily. As an example of such a helper function, see the changeNoteTuning function, both here and in MIDITrack. MIDIUtil-0.87/examples/0000755000175000001440000000000011272620715013522 5ustar markusersMIDIUtil-0.87/examples/single-note-example.py0000644000175000001440000000152311272620240017743 0ustar markusers############################################################################ # A sample program to create a single-track MIDI file, add a note, # and write to disk. ############################################################################ #Import the library from midiutil.MidiFile import MIDIFile # Create the MIDIFile Object MyMIDI = MIDIFile(1) # Add track name and tempo. The first argument to addTrackName and # addTempo is the time to write the event. track = 0 time = 0 MyMIDI.addTrackName(track,time,"Sample Track") MyMIDI.addTempo(track,time, 120) # Add a note. addNote expects the following information: channel = 0 pitch = 60 duration = 1 volume = 100 # Now add the note. MyMIDI.addNote(track,channel,pitch,time,duration,volume) # And write it to disk. binfile = open("output.mid", 'wb') MyMIDI.writeFile(binfile) binfile.close() MIDIUtil-0.87/src/0000755000175000001440000000000011272620715012473 5ustar markusersMIDIUtil-0.87/src/midiutil/0000755000175000001440000000000011272620715014313 5ustar markusersMIDIUtil-0.87/src/midiutil/MidiFile.py0000644000175000001440000011322211272620240016341 0ustar markusers#----------------------------------------------------------------------------- # Name: MidiFile.py # Purpose: MIDI file manipulation utilities # # Author: Mark Conway Wirt # # Created: 2008/04/17 # Copyright: (c) 2009 Mark Conway Wirt # License: Please see License.txt for the terms under which this # software is distributed. #----------------------------------------------------------------------------- import struct, sys, math # TICKSPERBEAT is the number of "ticks" (time measurement in the MIDI file) that # corresponds to one beat. This number is somewhat arbitrary, but should be chosen # to provide adequate temporal resolution. TICKSPERBEAT = 128 controllerEventTypes = { 'pan' : 0x0a } class MIDIEvent: ''' The class to contain the MIDI Event (placed on MIDIEventList. ''' def __init__(self): self.type='unknown' self.time=0 self.ord = 0 def __cmp__(self, other): ''' Sorting function for events.''' if self.time < other.time: return -1 elif self.time > other.time: return 1 else: if self.ord < other.ord: return -1 elif self.ord > other.ord: return 1 else: return 0 class GenericEvent(): '''The event class from which specific events are derived ''' def __init__(self,time): self.time = time self.type = 'Unknown' def __eq__(self, other): ''' Equality operator for Generic Events and derived classes. In the processing of the event list, we have need to remove duplicates. To do this we rely on the fact that the classes are hashable, and must therefore have an equality operator (__hash__() and __eq__() must both be defined). This is the most embarrassing portion of the code, and anyone who knows about OO programming would find this almost unbelievable. Here we have a base class that knows specifics about derived classes, thus breaking the very spirit of OO programming. I suppose I should go back and restructure the code, perhaps removing the derived classes altogether. At some point perhaps I will. ''' if self.time != other.time or self.type != other.type: return False # What follows is code that encodes the concept of equality for each derived # class. Believe it f you dare. if self.type == 'note': if self.pitch != other.pitch or self.channel != other.channel: return False if self.type == 'tempo': if self.tempo != other.tempo: return False if self.type == 'programChange': if self.programNumber != other.programNumber or self.channel != other.channel: return False if self.type == 'trackName': if self.trackName != other.trackName: return False if self.type == 'controllerEvent': if self.parameter1 != other.parameter1 or \ self.parameter2 != other.parameter2 or \ self.channel != other.channel or \ self.eventType != other.eventType: return False if self.type == 'SysEx': if self.manID != other.manID: return False if self.type == 'UniversalSysEx': if self.code != other.code or\ self.subcode != other.subcode or \ self.sysExChannel != other.sysExChannel: return False return True def __hash__(self): ''' Return a hash code for the object. This is needed for the removal of duplicate objects from the event list. The only real requirement for the algorithm is that the hash of equal objects must be equal. There is probably great opportunity for improvements in the hashing function. ''' # Robert Jenkin's 32 bit hash. a = int(self.time) a = (a+0x7ed55d16) + (a<<12) a = (a^0xc761c23c) ^ (a>>19) a = (a+0x165667b1) + (a<<5) a = (a+0xd3a2646c) ^ (a<<9) a = (a+0xfd7046c5) + (a<<3) a = (a^0xb55a4f09) ^ (a>>16) return a class MIDITrack: '''A class that encapsulates a MIDI track ''' # Nested class definitions. class note(GenericEvent): '''A class that encapsulates a note ''' def __init__(self,channel, pitch,time,duration,volume): GenericEvent.__init__(self,time) self.pitch = pitch self.duration = duration self.volume = volume self.type = 'note' self.channel = channel def compare(self, other): '''Compare two notes for equality. ''' if self.pitch == other.pitch and \ self.time == other.time and \ self.duration == other.duration and \ self.volume == other.volume and \ self.type == other.type and \ self.channel == other.channel: return True else: return False class tempo(GenericEvent): '''A class that encapsulates a tempo meta-event ''' def __init__(self,time,tempo): GenericEvent.__init__(self,time) self.type = 'tempo' self.tempo = int(60000000 / tempo) class programChange(GenericEvent): '''A class that encapsulates a program change event. ''' def __init__(self, channel, time, programNumber): GenericEvent.__init__(self, time,) self.type = 'programChange' self.programNumber = programNumber self.channel = channel class SysExEvent(GenericEvent): '''A class that encapsulates a System Exclusive event. ''' def __init__(self, time, manID, payload): GenericEvent.__init__(self, time,) self.type = 'SysEx' self.manID = manID self.payload = payload class UniversalSysExEvent(GenericEvent): '''A class that encapsulates a Universal System Exclusive event. ''' def __init__(self, time, realTime, sysExChannel, code, subcode, payload): GenericEvent.__init__(self, time,) self.type = 'UniversalSysEx' self.realTime = realTime self.sysExChannel = sysExChannel self.code = code self.subcode = subcode self.payload = payload class ControllerEvent(GenericEvent): '''A class that encapsulates a program change event. ''' def __init__(self, channel, time, eventType, parameter1,): GenericEvent.__init__(self, time,) self.type = 'controllerEvent' self.parameter1 = parameter1 self.channel = channel self.eventType = eventType class trackName(GenericEvent): '''A class that encapsulates a program change event. ''' def __init__(self, time, trackName): GenericEvent.__init__(self, time,) self.type = 'trackName' self.trackName = trackName def __init__(self, removeDuplicates, deinterleave): '''Initialize the MIDITrack object. ''' self.headerString = struct.pack('cccc','M','T','r','k') self.dataLength = 0 # Is calculated after the data is in place self.MIDIdata = "" self.closed = False self.eventList = [] self.MIDIEventList = [] self.remdep = removeDuplicates self.deinterleave = deinterleave def addNoteByNumber(self,channel, pitch,time,duration,volume): '''Add a note by chromatic MIDI number ''' self.eventList.append(MIDITrack.note(channel, pitch,time,duration,volume)) def addControllerEvent(self,channel,time,eventType, paramerter1): ''' Add a controller event. ''' self.eventList.append(MIDITrack.ControllerEvent(channel,time,eventType, \ paramerter1)) def addTempo(self,time,tempo): ''' Add a tempo change (or set) event. ''' self.eventList.append(MIDITrack.tempo(time,tempo)) def addSysEx(self,time,manID, payload): ''' Add a SysEx event. ''' self.eventList.append(MIDITrack.SysExEvent(time, manID, payload)) def addUniversalSysEx(self,time,code, subcode, payload, sysExChannel=0x7F, \ realTime=False): ''' Add a Universal SysEx event. ''' self.eventList.append(MIDITrack.UniversalSysExEvent(time, realTime, \ sysExChannel, code, subcode, payload)) def addProgramChange(self,channel, time, program): ''' Add a program change event. ''' self.eventList.append(MIDITrack.programChange(channel, time, program)) def addTrackName(self,time,trackName): ''' Add a track name event. ''' self.eventList.append(MIDITrack.trackName(time,trackName)) def changeNoteTuning(self, tunings, sysExChannel=0x7F, realTime=False, \ tuningProgam=0): '''Change the tuning of MIDI notes ''' payload = struct.pack('>B', tuningProgam) payload = payload + struct.pack('>B', len(tunings)) for (noteNumber, frequency) in tunings: payload = payload + struct.pack('>B', noteNumber) MIDIFreqency = frequencyTransform(frequency) for byte in MIDIFreqency: payload = payload + struct.pack('>B', byte) self.eventList.append(MIDITrack.UniversalSysExEvent(0, realTime, sysExChannel,\ 8, 2, payload)) def processEventList(self): ''' Process the event list, creating a MIDIEventList For each item in the event list, one or more events in the MIDIEvent list are created. ''' # Loop over all items in the eventList for thing in self.eventList: if thing.type == 'note': event = MIDIEvent() event.type = "NoteOn" event.time = thing.time * TICKSPERBEAT event.pitch = thing.pitch event.volume = thing.volume event.channel = thing.channel event.ord = 3 self.MIDIEventList.append(event) event = MIDIEvent() event.type = "NoteOff" event.time = (thing.time + thing.duration) * TICKSPERBEAT event.pitch = thing.pitch event.volume = thing.volume event.channel = thing.channel event.ord = 2 self.MIDIEventList.append(event) elif thing.type == 'tempo': event = MIDIEvent() event.type = "Tempo" event.time = thing.time * TICKSPERBEAT event.tempo = thing.tempo event.ord = 3 self.MIDIEventList.append(event) elif thing.type == 'programChange': event = MIDIEvent() event.type = "ProgramChange" event.time = thing.time * TICKSPERBEAT event.programNumber = thing.programNumber event.channel = thing.channel event.ord = 1 self.MIDIEventList.append(event) elif thing.type == 'trackName': event = MIDIEvent() event.type = "TrackName" event.time = thing.time * TICKSPERBEAT event.trackName = thing.trackName event.ord = 0 self.MIDIEventList.append(event) elif thing.type == 'controllerEvent': event = MIDIEvent() event.type = "ControllerEvent" event.time = thing.time * TICKSPERBEAT event.eventType = thing.eventType event.channel = thing.channel event.paramerter1 = thing.parameter1 event.ord = 1 self.MIDIEventList.append(event) elif thing.type == 'SysEx': event = MIDIEvent() event.type = "SysEx" event.time = thing.time * TICKSPERBEAT event.manID = thing.manID event.payload = thing.payload event.ord = 1 self.MIDIEventList.append(event) elif thing.type == 'UniversalSysEx': event = MIDIEvent() event.type = "UniversalSysEx" event.realTime = thing.realTime event.sysExChannel = thing.sysExChannel event.time = thing.time * TICKSPERBEAT event.code = thing.code event.subcode = thing.subcode event.payload = thing.payload event.ord = 1 self.MIDIEventList.append(event) else: print "Error in MIDITrack: Unknown event type" sys.exit(2) # Assumptions in the code expect the list to be time-sorted. # self.MIDIEventList.sort(lambda x, y: x.time - y.time) self.MIDIEventList.sort(lambda x, y: int( 1000 * (x.time - y.time))) if self.deinterleave: self.deInterleaveNotes() def removeDuplicates(self): ''' Remove duplicates from the eventList. This function will remove duplicates from the eventList. This is necessary because we the MIDI event stream can become confused otherwise. ''' # For this algorithm to work, the events in the eventList must be hashable # (that is, they must have a __hash__() and __eq__() function defined). tempDict = {} for item in self.eventList: tempDict[item] = 1 self.eventList = tempDict.keys() # Sort on type, them on time. Necessary because keys() has no requirement to return # things in any order. self.eventList.sort(lambda x, y: cmp(x.type , y.type)) self.eventList.sort(lambda x, y: int( 1000 * (x.time - y.time))) #A bit of a hack. def closeTrack(self): '''Called to close a track before writing This function should be called to "close a track," that is to prepare the actual data stream for writing. Duplicate events are removed from the eventList, and the MIDIEventList is created. Called by the parent MIDIFile object. ''' if self.closed == True: return self.closed = True if self.remdep: self.removeDuplicates() self.processEventList() def writeMIDIStream(self): ''' Write the meta data and note data to the packed MIDI stream. ''' #Process the events in the eventList self.writeEventsToStream() # Write MIDI close event. self.MIDIdata = self.MIDIdata + struct.pack('BBBB',0x00,0xFF, \ 0x2F,0x00) # Calculate the entire length of the data and write to the header self.dataLength = struct.pack('>L',len(self.MIDIdata)) def writeEventsToStream(self): ''' Write the events in MIDIEvents to the MIDI stream. ''' for event in self.MIDIEventList: if event.type == "NoteOn": code = 0x9 << 4 | event.channel varTime = writeVarLength(event.time) for timeByte in varTime: self.MIDIdata = self.MIDIdata + struct.pack('>B',timeByte) self.MIDIdata = self.MIDIdata + struct.pack('>B',code) self.MIDIdata = self.MIDIdata + struct.pack('>B',event.pitch) self.MIDIdata = self.MIDIdata + struct.pack('>B',event.volume) elif event.type == "NoteOff": code = 0x8 << 4 | event.channel varTime = writeVarLength(event.time) for timeByte in varTime: self.MIDIdata = self.MIDIdata + struct.pack('>B',timeByte) self.MIDIdata = self.MIDIdata + struct.pack('>B',code) self.MIDIdata = self.MIDIdata + struct.pack('>B',event.pitch) self.MIDIdata = self.MIDIdata + struct.pack('>B',event.volume) elif event.type == "Tempo": code = 0xFF subcode = 0x51 fourbite = struct.pack('>L', event.tempo) threebite = fourbite[1:4] # Just discard the MSB varTime = writeVarLength(event.time) for timeByte in varTime: self.MIDIdata = self.MIDIdata + struct.pack('>B',timeByte) self.MIDIdata = self.MIDIdata + struct.pack('>B',code) self.MIDIdata = self.MIDIdata + struct.pack('>B',subcode) self.MIDIdata = self.MIDIdata + struct.pack('>B', 0x03) # Data length: 3 self.MIDIdata = self.MIDIdata + threebite elif event.type == 'ProgramChange': code = 0xC << 4 | event.channel varTime = writeVarLength(event.time) for timeByte in varTime: self.MIDIdata = self.MIDIdata + struct.pack('>B',timeByte) self.MIDIdata = self.MIDIdata + struct.pack('>B',code) self.MIDIdata = self.MIDIdata + struct.pack('>B',event.programNumber) elif event.type == 'TrackName': varTime = writeVarLength(event.time) for timeByte in varTime: self.MIDIdata = self.MIDIdata + struct.pack('>B',timeByte) self.MIDIdata = self.MIDIdata + struct.pack('B',0xFF) # Meta-event self.MIDIdata = self.MIDIdata + struct.pack('B',0X03) # Event Type dataLength = len(event.trackName) dataLenghtVar = writeVarLength(dataLength) for i in range(0,len(dataLenghtVar)): self.MIDIdata = self.MIDIdata + struct.pack("b",dataLenghtVar[i]) self.MIDIdata = self.MIDIdata + event.trackName elif event.type == "ControllerEvent": code = 0xB << 4 | event.channel varTime = writeVarLength(event.time) for timeByte in varTime: self.MIDIdata = self.MIDIdata + struct.pack('>B',timeByte) self.MIDIdata = self.MIDIdata + struct.pack('>B',code) self.MIDIdata = self.MIDIdata + struct.pack('>B',event.eventType) self.MIDIdata = self.MIDIdata + struct.pack('>B',event.paramerter1) elif event.type == "SysEx": code = 0xF0 varTime = writeVarLength(event.time) for timeByte in varTime: self.MIDIdata = self.MIDIdata + struct.pack('>B',timeByte) self.MIDIdata = self.MIDIdata + struct.pack('>B', code) payloadLength = writeVarLength(len(event.payload)+2) for lenByte in payloadLength: self.MIDIdata = self.MIDIdata + struct.pack('>B',lenByte) self.MIDIdata = self.MIDIdata + struct.pack('>B', event.manID) self.MIDIdata = self.MIDIdata + event.payload self.MIDIdata = self.MIDIdata + struct.pack('>B',0xF7) elif event.type == "UniversalSysEx": code = 0xF0 varTime = writeVarLength(event.time) for timeByte in varTime: self.MIDIdata = self.MIDIdata + struct.pack('>B',timeByte) self.MIDIdata = self.MIDIdata + struct.pack('>B', code) # Do we need to add a length? payloadLength = writeVarLength(len(event.payload)+5) for lenByte in payloadLength: self.MIDIdata = self.MIDIdata + struct.pack('>B',lenByte) if event.realTime : self.MIDIdata = self.MIDIdata + struct.pack('>B', 0x7F) else: self.MIDIdata = self.MIDIdata + struct.pack('>B', 0x7E) self.MIDIdata = self.MIDIdata + struct.pack('>B', event.sysExChannel) self.MIDIdata = self.MIDIdata + struct.pack('>B', event.code) self.MIDIdata = self.MIDIdata + struct.pack('>B', event.subcode) self.MIDIdata = self.MIDIdata + event.payload self.MIDIdata = self.MIDIdata + struct.pack('>B',0xF7) def deInterleaveNotes(self): '''Correct Interleaved notes. Because we are writing multiple notes in no particular order, we can have notes which are interleaved with respect to their start and stop times. This method will correct that. It expects that the MIDIEventList has been time-ordered. ''' tempEventList = [] stack = {} for event in self.MIDIEventList: if event.type == 'NoteOn': if stack.has_key(str(event.pitch)+str(event.channel)): stack[str(event.pitch)+str(event.channel)].append(event.time) else: stack[str(event.pitch)+str(event.channel)] = [event.time] tempEventList.append(event) elif event.type == 'NoteOff': if len(stack[str(event.pitch)+str(event.channel)]) > 1: event.time = stack[str(event.pitch)+str(event.channel)].pop() tempEventList.append(event) else: stack[str(event.pitch)+str(event.channel)].pop() tempEventList.append(event) else: tempEventList.append(event) self.MIDIEventList = tempEventList # A little trickery here. We want to make sure that NoteOff events appear # before NoteOn events, so we'll do two sorts -- on on type, one on time. # This may have to be revisited, as it makes assumptions about how # the internal sort works, and is in essence creating a sort on a primary # and secondary key. self.MIDIEventList.sort(lambda x, y: cmp(x.type , y.type)) self.MIDIEventList.sort(lambda x, y: int( 1000 * (x.time - y.time))) def adjustTime(self,origin): ''' Adjust Times to be relative, and zero-origined ''' if len(self.MIDIEventList) == 0: return tempEventList = [] runningTime = 0 for event in self.MIDIEventList: adjustedTime = event.time - origin event.time = adjustedTime - runningTime runningTime = adjustedTime tempEventList.append(event) self.MIDIEventList = tempEventList def writeTrack(self,fileHandle): ''' Write track to disk. ''' if not self.closed: self.closeTrack() fileHandle.write(self.headerString) fileHandle.write(self.dataLength) fileHandle.write(self.MIDIdata) class MIDIHeader: ''' Class to encapsulate the MIDI header structure. This class encapsulates a MIDI header structure. It isn't used for much, but it will create the appropriately packed identifier string that all MIDI files should contain. It is used by the MIDIFile class to create a complete and well formed MIDI pattern. ''' def __init__(self,numTracks): ''' Initialize the data structures ''' self.headerString = struct.pack('cccc','M','T','h','d') self.headerSize = struct.pack('>L',6) # Format 1 = multi-track file self.format = struct.pack('>H',1) self.numTracks = struct.pack('>H',numTracks) self.ticksPerBeat = struct.pack('>H',TICKSPERBEAT) def writeFile(self,fileHandle): fileHandle.write(self.headerString) fileHandle.write(self.headerSize) fileHandle.write(self.format) fileHandle.write(self.numTracks) fileHandle.write(self.ticksPerBeat) class MIDIFile: '''Class that represents a full, well-formed MIDI pattern. This is a container object that contains a header, one or more tracks, and the data associated with a proper and well-formed MIDI pattern. Calling: MyMIDI = MidiFile(tracks, removeDuplicates=True, deinterleave=True) normally MyMIDI = MidiFile(tracks) Arguments: tracks: The number of tracks this object contains removeDuplicates: If true (the default), the software will remove duplicate events which have been added. For example, two notes at the same channel, time, pitch, and duration would be considered duplicate. deinterleave: If True (the default), overlapping notes (same pitch, same channel) will be modified so that they do not overlap. Otherwise the sequencing software will need to figure out how to interpret NoteOff events upon playback. ''' def __init__(self, numTracks, removeDuplicates=True, deinterleave=True): ''' Initialize the class ''' self.header = MIDIHeader(numTracks) self.tracks = list() self.numTracks = numTracks self.closed = False for i in range(0,numTracks): self.tracks.append(MIDITrack(removeDuplicates, deinterleave)) # Public Functions. These (for the most part) wrap the MIDITrack functions, where most # Processing takes place. def addNote(self,track, channel, pitch,time,duration,volume): """ Add notes to the MIDIFile object Use: MyMIDI.addNotes(track,channel,pitch,time, duration, volume) Arguments: track: The track to which the note is added. channel: the MIDI channel to assign to the note. [Integer, 0-15] pitch: the MIDI pitch number [Integer, 0-127]. time: the time (in beats) at which the note sounds [Float]. duration: the duration of the note (in beats) [Float]. volume: the volume (velocity) of the note. [Integer, 0-127]. """ self.tracks[track].addNoteByNumber(channel, pitch, time, duration, volume) def addTrackName(self,track, time,trackName): """ Add a track name to a MIDI track. Use: MyMIDI.addTrackName(track,time,trackName) Argument: track: The track to which the name is added. [Integer, 0-127]. time: The time at which the track name is added, in beats [Float]. trackName: The track name. [String]. """ self.tracks[track].addTrackName(time,trackName) def addTempo(self,track, time,tempo): """ Add a tempo event. Use: MyMIDI.addTempo(track, time, tempo) Arguments: track: The track to which the event is added. [Integer, 0-127]. time: The time at which the event is added, in beats. [Float]. tempo: The tempo, in Beats per Minute. [Integer] """ self.tracks[track].addTempo(time,tempo) def addProgramChange(self,track, channel, time, program): """ Add a MIDI program change event. Use: MyMIDI.addProgramChange(track,channel, time, program) Arguments: track: The track to which the event is added. [Integer, 0-127]. channel: The channel the event is assigned to. [Integer, 0-15]. time: The time at which the event is added, in beats. [Float]. program: the program number. [Integer, 0-127]. """ self.tracks[track].addProgramChange(channel, time, program) def addControllerEvent(self,track, channel,time,eventType, paramerter1): """ Add a MIDI controller event. Use: MyMIDI.addControllerEvent(track, channel, time, eventType, parameter1) Arguments: track: The track to which the event is added. [Integer, 0-127]. channel: The channel the event is assigned to. [Integer, 0-15]. time: The time at which the event is added, in beats. [Float]. eventType: the controller event type. parameter1: The event's parameter. The meaning of which varies by event type. """ self.tracks[track].addControllerEvent(channel,time,eventType, paramerter1) def changeNoteTuning(self, track, tunings, sysExChannel=0x7F, \ realTime=False, tuningProgam=0): """ Change a note's tuning using SysEx change tuning program. Use: MyMIDI.changeNoteTuning(track,[tunings],realTime=False, tuningProgram=0) Arguments: track: The track to which the event is added. [Integer, 0-127]. tunings: A list of tuples in the form (pitchNumber, frequency). [[(Integer,Float]] realTime: Boolean which sets the real-time flag. Defaults to false. sysExChannel: do note use (see below). tuningProgram: Tuning program to assign. Defaults to zero. [Integer, 0-127] In general the sysExChannel should not be changed (parameter will be depreciated). Also note that many software packages and hardware packages do not implement this standard! """ self.tracks[track].changeNoteTuning(tunings, sysExChannel, realTime,\ tuningProgam) def writeFile(self,fileHandle): ''' Write the MIDI File. Use: MyMIDI.writeFile(filehandle) Arguments: filehandle: a file handle that has been opened for binary writing. ''' self.header.writeFile(fileHandle) #Close the tracks and have them create the MIDI event data structures. self.close() #Write the MIDI Events to file. for i in range(0,self.numTracks): self.tracks[i].writeTrack(fileHandle) def addSysEx(self,track, time, manID, payload): """ Add a SysEx event Use: MyMIDI.addSysEx(track,time,ID,payload) Arguments: track: The track to which the event is added. [Integer, 0-127]. time: The time at which the event is added, in beats. [Float]. ID: The SysEx ID number payload: the event payload. Note: This is a low-level MIDI function, so care must be used in constructing the payload. It is recommended that higher-level helper functions be written to wrap this function and construct the payload if a developer finds him or herself using the function heavily. """ self.tracks[track].addSysEx(time,manID, payload) def addUniversalSysEx(self,track, time,code, subcode, payload, \ sysExChannel=0x7F, realTime=False): """ Add a Universal SysEx event. Use: MyMIDI.addUniversalSysEx(track, time, code, subcode, payload,\ sysExChannel=0x7f, realTime=False) Arguments: track: The track to which the event is added. [Integer, 0-127]. time: The time at which the event is added, in beats. [Float]. code: The even code. [Integer] subcode The event sub-code [Integer] payload: The event payload. [Binary string] sysExChannel: The SysEx channel. realTime: Sets the real-time flag. Defaults to zero. Note: This is a low-level MIDI function, so care must be used in constructing the payload. It is recommended that higher-level helper functions be written to wrap this function and construct the payload if a developer finds him or herself using the function heavily. As an example of such a helper function, see the changeNoteTuning function, both here and in MIDITrack. """ self.tracks[track].addUniversalSysEx(time,code, subcode, payload, sysExChannel,\ realTime) def shiftTracks(self, offset=0): """Shift tracks to be zero-origined, or origined at offset. Note that the shifting of the time in the tracks uses the MIDIEventList -- in other words it is assumed to be called in the stage where the MIDIEventList has been created. This function, however, it meant to operate on the eventList itself. """ origin = 1000000 # A little silly, but we'll assume big enough for track in self.tracks: if len(track.eventList) > 0: for event in track.eventList: if event.time < origin: origin = event.time for track in self.tracks: tempEventList = [] #runningTime = 0 for event in track.eventList: adjustedTime = event.time - origin #event.time = adjustedTime - runningTime + offset event.time = adjustedTime + offset #runningTime = adjustedTime tempEventList.append(event) track.eventList = tempEventList #End Public Functions ######################## def close(self): '''Close the MIDIFile for further writing. To close the File for events, we must close the tracks, adjust the time to be zero-origined, and have the tracks write to their MIDI Stream data structure. ''' if self.closed == True: return for i in range(0,self.numTracks): self.tracks[i].closeTrack() # We want things like program changes to come before notes when they are at the # same time, so we sort the MIDI events by their ordinality self.tracks[i].MIDIEventList.sort() origin = self.findOrigin() for i in range(0,self.numTracks): self.tracks[i].adjustTime(origin) self.tracks[i].writeMIDIStream() self.closed = True def findOrigin(self): '''Find the earliest time in the file's tracks.append. ''' origin = 1000000 # A little silly, but we'll assume big enough # Note: This code assumes that the MIDIEventList has been sorted, so this should be insured # before it is called. It is probably a poor design to do this. # TODO: -- Consider making this less efficient but more robust by not assuming the list to be sorted. for track in self.tracks: if len(track.MIDIEventList) > 0: if track.MIDIEventList[0].time < origin: origin = track.MIDIEventList[0].time return origin def writeVarLength(i): '''Accept an input, and write a MIDI-compatible variable length stream The MIDI format is a little strange, and makes use of so-called variable length quantities. These quantities are a stream of bytes. If the most significant bit is 1, then more bytes follow. If it is zero, then the byte in question is the last in the stream ''' input = int(i) output = [0,0,0,0] reversed = [0,0,0,0] count = 0 result = input & 0x7F output[count] = result count = count + 1 input = input >> 7 while input > 0: result = input & 0x7F result = result | 0x80 output[count] = result count = count + 1 input = input >> 7 reversed[0] = output[3] reversed[1] = output[2] reversed[2] = output[1] reversed[3] = output[0] return reversed[4-count:4] def frequencyTransform(freq): '''Returns a three-byte transform of a frequencyTransform ''' resolution = 16384 freq = float(freq) dollars = 69 + 12 * math.log(freq/(float(440)), 2) firstByte = int(dollars) lowerFreq = 440 * pow(2.0, ((float(firstByte) - 69.0)/12.0)) if freq != lowerFreq: centDif = 1200 * math.log( (freq/lowerFreq), 2) else: centDif = 0 cents = round(centDif/100 * resolution) # round? secondByte = min([int(cents)>>7, 0x7F]) thirdByte = cents - (secondByte << 7) thirdByte = min([thirdByte, 0x7f]) if thirdByte == 0x7f and secondByte == 0x7F and firstByte == 0x7F: thirdByte = 0x7e thirdByte = int(thirdByte) return [firstByte, secondByte, thirdByte] def returnFrequency(freqBytes): '''The reverse of frequencyTransform. Given a byte stream, return a frequency. ''' resolution = 16384.0 baseFrequency = 440 * pow(2.0, (float(freqBytes[0]-69.0)/12.0)) frac = (float((int(freqBytes[1]) << 7) + int(freqBytes[2])) * 100.0) / resolution frequency = baseFrequency * pow(2.0, frac/1200.0) return frequency MIDIUtil-0.87/src/midiutil/__init__.py0000644000175000001440000000000011272620240016403 0ustar markusersMIDIUtil-0.87/src/unittests/0000755000175000001440000000000011272620715014535 5ustar markusersMIDIUtil-0.87/src/unittests/miditest.py0000644000175000001440000002660211272620240016730 0ustar markusers#----------------------------------------------------------------------------- # Name: miditest.py # Purpose: Unit testing harness for midiutil # # Author: Mark Conway Wirt # # Created: 2008/04/17 # Copyright: (c) 2009, Mark Conway Wirt # License: Please see License.txt for the terms under which this # software is distributed. #----------------------------------------------------------------------------- # Next few lines are necessary owing to limitations of the IDE and the # directory structure of the project. import sys, struct sys.path.append('..') import unittest from midiutil.MidiFile import MIDIFile, MIDIHeader, MIDITrack, writeVarLength, \ frequencyTransform, returnFrequency import sys class TestMIDIUtils(unittest.TestCase): def testWriteVarLength(self): self.assertEquals(writeVarLength(0x70), [0x70]) self.assertEquals(writeVarLength(0x80), [0x81, 0x00]) self.assertEquals(writeVarLength(0x1FFFFF), [0xFF, 0xFF, 0x7F]) self.assertEquals(writeVarLength(0x08000000), [0xC0, 0x80, 0x80, 0x00]) def testAddNote(self): MyMIDI = MIDIFile(1) MyMIDI.addNote(0, 0, 100,0,1,100) self.assertEquals(MyMIDI.tracks[0].eventList[0].type, "note") self.assertEquals(MyMIDI.tracks[0].eventList[0].pitch, 100) self.assertEquals(MyMIDI.tracks[0].eventList[0].time, 0) self.assertEquals(MyMIDI.tracks[0].eventList[0].duration, 1) self.assertEquals(MyMIDI.tracks[0].eventList[0].volume, 100) def testDeinterleaveNotes(self): MyMIDI = MIDIFile(1) MyMIDI.addNote(0, 0, 100, 0, 2, 100) MyMIDI.addNote(0, 0, 100, 1, 2, 100) MyMIDI.close() self.assertEquals(MyMIDI.tracks[0].MIDIEventList[0].type, 'NoteOn') self.assertEquals(MyMIDI.tracks[0].MIDIEventList[0].time, 0) self.assertEquals(MyMIDI.tracks[0].MIDIEventList[1].type, 'NoteOff') self.assertEquals(MyMIDI.tracks[0].MIDIEventList[1].time, 128) self.assertEquals(MyMIDI.tracks[0].MIDIEventList[2].type, 'NoteOn') self.assertEquals(MyMIDI.tracks[0].MIDIEventList[2].time, 0) self.assertEquals(MyMIDI.tracks[0].MIDIEventList[3].type, 'NoteOff') self.assertEquals(MyMIDI.tracks[0].MIDIEventList[3].time, 256) def testTimeShift(self): # With one track MyMIDI = MIDIFile(1) MyMIDI.addNote(0, 0, 100, 5, 1, 100) MyMIDI.close() self.assertEquals(MyMIDI.tracks[0].MIDIEventList[0].type, 'NoteOn') self.assertEquals(MyMIDI.tracks[0].MIDIEventList[0].time, 0) self.assertEquals(MyMIDI.tracks[0].MIDIEventList[1].type, 'NoteOff') self.assertEquals(MyMIDI.tracks[0].MIDIEventList[1].time, 128) # With two tracks MyMIDI = MIDIFile(2) MyMIDI.addNote(0, 0, 100, 5, 1, 100) MyMIDI.addNote(1, 0, 100, 6, 1, 100) MyMIDI.close() self.assertEquals(MyMIDI.tracks[0].MIDIEventList[0].type, 'NoteOn') self.assertEquals(MyMIDI.tracks[0].MIDIEventList[0].time, 0) self.assertEquals(MyMIDI.tracks[0].MIDIEventList[1].type, 'NoteOff') self.assertEquals(MyMIDI.tracks[0].MIDIEventList[1].time, 128) self.assertEquals(MyMIDI.tracks[1].MIDIEventList[0].type, 'NoteOn') self.assertEquals(MyMIDI.tracks[1].MIDIEventList[0].time, 128) self.assertEquals(MyMIDI.tracks[1].MIDIEventList[1].type, 'NoteOff') self.assertEquals(MyMIDI.tracks[1].MIDIEventList[1].time, 128) # Negative Time MyMIDI = MIDIFile(1) MyMIDI.addNote(0, 0, 100, -5, 1, 100) MyMIDI.close() self.assertEquals(MyMIDI.tracks[0].MIDIEventList[0].type, 'NoteOn') self.assertEquals(MyMIDI.tracks[0].MIDIEventList[0].time, 0) self.assertEquals(MyMIDI.tracks[0].MIDIEventList[1].type, 'NoteOff') self.assertEquals(MyMIDI.tracks[0].MIDIEventList[1].time, 128) # Negative time, two tracks MyMIDI = MIDIFile(2) MyMIDI.addNote(0, 0, 100, -1, 1, 100) MyMIDI.addNote(1, 0, 100, 0, 1, 100) MyMIDI.close() self.assertEquals(MyMIDI.tracks[0].MIDIEventList[0].type, 'NoteOn') self.assertEquals(MyMIDI.tracks[0].MIDIEventList[0].time, 0) self.assertEquals(MyMIDI.tracks[0].MIDIEventList[1].type, 'NoteOff') self.assertEquals(MyMIDI.tracks[0].MIDIEventList[1].time, 128) self.assertEquals(MyMIDI.tracks[1].MIDIEventList[0].type, 'NoteOn') self.assertEquals(MyMIDI.tracks[1].MIDIEventList[0].time, 128) self.assertEquals(MyMIDI.tracks[1].MIDIEventList[1].type, 'NoteOff') self.assertEquals(MyMIDI.tracks[1].MIDIEventList[1].time, 128) def testFrequency(self): freq = frequencyTransform(8.1758) self.assertEquals(freq[0], 0x00) self.assertEquals(freq[1], 0x00) self.assertEquals(freq[2], 0x00) freq = frequencyTransform(8.66196) # 8.6620 in MIDI documentation self.assertEquals(freq[0], 0x01) self.assertEquals(freq[1], 0x00) self.assertEquals(freq[2], 0x00) freq = frequencyTransform(440.00) self.assertEquals(freq[0], 0x45) self.assertEquals(freq[1], 0x00) self.assertEquals(freq[2], 0x00) freq = frequencyTransform(440.0016) self.assertEquals(freq[0], 0x45) self.assertEquals(freq[1], 0x00) self.assertEquals(freq[2], 0x01) freq = frequencyTransform(439.9984) self.assertEquals(freq[0], 0x44) self.assertEquals(freq[1], 0x7f) self.assertEquals(freq[2], 0x7f) freq = frequencyTransform(8372.0190) self.assertEquals(freq[0], 0x78) self.assertEquals(freq[1], 0x00) self.assertEquals(freq[2], 0x00) freq = frequencyTransform(8372.062) #8372.0630 in MIDI documentation self.assertEquals(freq[0], 0x78) self.assertEquals(freq[1], 0x00) self.assertEquals(freq[2], 0x01) freq = frequencyTransform(13289.7300) self.assertEquals(freq[0], 0x7F) self.assertEquals(freq[1], 0x7F) self.assertEquals(freq[2], 0x7E) freq = frequencyTransform(12543.8760) self.assertEquals(freq[0], 0x7F) self.assertEquals(freq[1], 0x00) self.assertEquals(freq[2], 0x00) freq = frequencyTransform(8.2104) # Just plain wrong in documentation, as far as I can tell. #self.assertEquals(freq[0], 0x0) #self.assertEquals(freq[1], 0x0) #self.assertEquals(freq[2], 0x1) # Test the inverse testFreq = 15.0 accuracy = 0.00001 x = returnFrequency(frequencyTransform(testFreq)) delta = abs(testFreq - x) self.assertEquals(delta < (accuracy*testFreq), True) testFreq = 200.0 x = returnFrequency(frequencyTransform(testFreq)) delta = abs(testFreq - x) self.assertEquals(delta < (accuracy*testFreq), True) testFreq = 400.0 x = returnFrequency(frequencyTransform(testFreq)) delta = abs(testFreq - x) self.assertEquals(delta < (accuracy*testFreq), True) testFreq = 440.0 x = returnFrequency(frequencyTransform(testFreq)) delta = abs(testFreq - x) self.assertEquals(delta < (accuracy*testFreq), True) testFreq = 1200.0 x = returnFrequency(frequencyTransform(testFreq)) delta = abs(testFreq - x) self.assertEquals(delta < (accuracy*testFreq), True) testFreq = 5000.0 x = returnFrequency(frequencyTransform(testFreq)) delta = abs(testFreq - x) self.assertEquals(delta < (accuracy*testFreq), True) testFreq = 12000.0 x = returnFrequency(frequencyTransform(testFreq)) delta = abs(testFreq - x) self.assertEquals(delta < (accuracy*testFreq), True) def testSysEx(self): MyMIDI = MIDIFile(1) MyMIDI.addSysEx(0,0, 0, struct.pack('>B', 0x01)) MyMIDI.close() self.assertEquals(MyMIDI.tracks[0].MIDIEventList[0].type, 'SysEx') self.assertEquals(struct.unpack('>B', MyMIDI.tracks[0].MIDIdata[0])[0], 0x00) self.assertEquals(struct.unpack('>B', MyMIDI.tracks[0].MIDIdata[1])[0], 0xf0) self.assertEquals(struct.unpack('>B', MyMIDI.tracks[0].MIDIdata[2])[0], 3) self.assertEquals(struct.unpack('>B', MyMIDI.tracks[0].MIDIdata[3])[0], 0x00) self.assertEquals(struct.unpack('>B', MyMIDI.tracks[0].MIDIdata[4])[0], 0x01) self.assertEquals(struct.unpack('>B', MyMIDI.tracks[0].MIDIdata[5])[0], 0xf7) def testUniversalSysEx(self): MyMIDI = MIDIFile(1) MyMIDI.addUniversalSysEx(0,0, 1, 2, struct.pack('>B', 0x01)) MyMIDI.close() self.assertEquals(MyMIDI.tracks[0].MIDIEventList[0].type, 'UniversalSysEx') self.assertEquals(struct.unpack('>B', MyMIDI.tracks[0].MIDIdata[0])[0], 0x00) self.assertEquals(struct.unpack('>B', MyMIDI.tracks[0].MIDIdata[1])[0], 0xf0) self.assertEquals(struct.unpack('>B', MyMIDI.tracks[0].MIDIdata[2])[0], 6) self.assertEquals(struct.unpack('>B', MyMIDI.tracks[0].MIDIdata[3])[0], 0x7E) self.assertEquals(struct.unpack('>B', MyMIDI.tracks[0].MIDIdata[4])[0], 0x7F) self.assertEquals(struct.unpack('>B', MyMIDI.tracks[0].MIDIdata[5])[0], 0x01) self.assertEquals(struct.unpack('>B', MyMIDI.tracks[0].MIDIdata[6])[0], 0x02) self.assertEquals(struct.unpack('>B', MyMIDI.tracks[0].MIDIdata[7])[0], 0x01) self.assertEquals(struct.unpack('>B', MyMIDI.tracks[0].MIDIdata[8])[0], 0xf7) def testTuning(self): MyMIDI = MIDIFile(1) MyMIDI.changeNoteTuning(0, [(1, 440), (2, 880)]) MyMIDI.close() self.assertEquals(MyMIDI.tracks[0].MIDIEventList[0].type, 'UniversalSysEx') self.assertEquals(struct.unpack('>B', MyMIDI.tracks[0].MIDIdata[0])[0], 0x00) self.assertEquals(struct.unpack('>B', MyMIDI.tracks[0].MIDIdata[1])[0], 0xf0) self.assertEquals(struct.unpack('>B', MyMIDI.tracks[0].MIDIdata[2])[0], 15) self.assertEquals(struct.unpack('>B', MyMIDI.tracks[0].MIDIdata[3])[0], 0x7E) self.assertEquals(struct.unpack('>B', MyMIDI.tracks[0].MIDIdata[4])[0], 0x7F) self.assertEquals(struct.unpack('>B', MyMIDI.tracks[0].MIDIdata[5])[0], 0x08) self.assertEquals(struct.unpack('>B', MyMIDI.tracks[0].MIDIdata[6])[0], 0x02) self.assertEquals(struct.unpack('>B', MyMIDI.tracks[0].MIDIdata[7])[0], 0x00) self.assertEquals(struct.unpack('>B', MyMIDI.tracks[0].MIDIdata[8])[0], 0x2) self.assertEquals(struct.unpack('>B', MyMIDI.tracks[0].MIDIdata[9])[0], 0x1) self.assertEquals(struct.unpack('>B', MyMIDI.tracks[0].MIDIdata[10])[0], 69) self.assertEquals(struct.unpack('>B', MyMIDI.tracks[0].MIDIdata[11])[0], 0) self.assertEquals(struct.unpack('>B', MyMIDI.tracks[0].MIDIdata[12])[0], 0) self.assertEquals(struct.unpack('>B', MyMIDI.tracks[0].MIDIdata[13])[0], 0x2) self.assertEquals(struct.unpack('>B', MyMIDI.tracks[0].MIDIdata[14])[0], 81) self.assertEquals(struct.unpack('>B', MyMIDI.tracks[0].MIDIdata[15])[0], 0) self.assertEquals(struct.unpack('>B', MyMIDI.tracks[0].MIDIdata[16])[0], 0) self.assertEquals(struct.unpack('>B', MyMIDI.tracks[0].MIDIdata[17])[0], 0xf7) MIDISuite = unittest.TestLoader().loadTestsFromTestCase(TestMIDIUtils) if __name__ == '__main__': unittest.TextTestRunner(verbosity=1).run(MIDISuite) MIDIUtil-0.87/README.txt0000644000175000001440000001067311272620240013402 0ustar markusers======== MIDIUtil ======== ------------ Introduction ------------ MIDIUtil is a pure Python library that allows one to write muti-track Musical Instrument Digital Interface (MIDI) files from within Python programs. It is object-oriented and allows one to create and write these files with a minimum of fuss. MIDIUtil isn't a full implementation of the MIDI specification. The actual specification is a large, sprawling document which has organically grown over the course of decades. I have selectively implemented some of the more useful and common aspects of the specification. The choices have been somewhat idiosyncratic; I largely implemented what I needed. When I decided that it could be of use to other people I fleshed it out a bit, but there are still things missing. Regardless, the code is fairly easy to understand and well structured. Additions can be made to the library by anyone with a good working knowledge of the MIDI file format and a good, working knowledge of Python. Documentation for extending the library is provided. This software was originally developed with Python 2.5.2 and it makes use of some features that were introduced in 2.5. I have used it extensively in Python 2.6, so it should work in this or any later versions (but I have not tested it on Python 3). This software is distributed under an Open Source license and you are free to use it as you see fit, provided that attribution is maintained. See License.txt in the source distribution for details. ------------ Installation ------------ To use the library one can either install it on one's system or copy the midiutil directory of the source distribution to your project's directory (or to any directory pointed to  by the PYTHONPATH environment variable). For the Windows platforms an executable installer is provided. Alternately the source distribution can be downloaded, un-zipped (or un-tarred), and installed in the standard way: python setup.py install On non-Windows platforms (Linux, MacOS, etc.) the software should be installed in this way. MIDIUtil is pure Python and should work on any platform to which Python has been ported. If you do not wish to install in on your system, just copy the src/midiutil directory to your project's directory or elsewhere on your PYTHONPATH. If you're using this software in your own projects you may want to consider distributing the library bundled with yours; the library is small and self-contained, and such bundling makes things more convenient for your users. The best way of doing this is probably to copy the midiutil directory directly to your package directory and then refer to it with a fully qualified name. This will prevent it from conflicting with any version of the software that may be installed on the target system. ----------- Quick Start ----------- Using the software is easy: o The package must be imported into your namespace o A MIDIFile object is created o Events (notes, tempo-changes, etc.) are added to the object o The MIDI file is written to disk. Detailed documentation is provided; what follows is a simple example to get you going quickly. In this example we'll create a one track MIDI File, assign a name and tempo to the track, add a one beat middle-C to the track, and write it to disk. #Import the library from midiutil.MidiFile import MIDIFile # Create the MIDIFile Object with 1 track MyMIDI = MIDIFile(1) # Tracks are numbered from zero. Times are measured in beats. track = 0 time = 0 # Add track name and tempo. MyMIDI.addTrackName(track,time,"Sample Track") MyMIDI.addTempo(track,time,120) # Add a note. addNote expects the following information: track = 0 channel = 0 pitch = 60 time = 0 duration = 1 volume = 100 # Now add the note. MyMIDI.addNote(track,channel,pitch,time,duration,volume) # And write it to disk. binfile = open("output.mid", 'wb') MyMIDI.writeFile(binfile) binfile.close() There are several additional event types that can be added and there are various options available for creating the MIDIFile object, but the above is sufficient to begin using the library and creating note sequences. The above code is found in machine-readable form in the examples directory. A detailed class reference and documentation describing how to extend the library is provided in the documentation directory. Have fun! MIDIUtil-0.87/setup.py0000644000175000001440000000133111272620424013411 0ustar markusersfrom distutils.core import setup setup(name='MIDIUtil', version='0.87', description='MIDIUtil, a MIDI Interface for Python', author='Mark Conway Wirt', author_email='emergentmusics) at (gmail . com', license='Copyright (C) 2009, Mark Conway Wirt. See License.txt for details.', url='http://www.emergentmusics.org/midiutil/', packages=["midiutil"], package_dir = {'midiutil': 'src/midiutil'}, package_data={'midiutil' : ['../../documentation/*']}, scripts=['examples/single-note-example.py'], platforms='Platform Independent', long_description=''' This package provides a simple interface to allow Python programs to write multi-track MIDI files.''' ) MIDIUtil-0.87/License.txt0000644000175000001440000000253011272620240014020 0ustar markusers-------------------------------------------------------------------------- MIDUTIL, Copyright (c) 2009, Mark Conway Wirt This software is distributed under an Open Source license, the details of which follow. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. -------------------------------------------------------------------------- MIDIUtil-0.87/CHANGELOG0000644000175000001440000000143011272620240013105 0ustar markusersDate: 20 October 2009 Version: 0.87 First public release. * Tweaked email address in contact information. * Added/updated documentation. * Tweaked the setup.py file to produce better distributions. Date: 9 October 2009 Version: 0.86 * added addNote as main interface into package (not addNoteByNumber). It's been a while since I've cut a release, so there may be other things that have happened. * Created distutils package. * Minor code clean-up. * Added documentation in-line and in text (MIDIFile.txt). * All public functions should now be accessed thought MIDIFile directly, and not the component tracks. Date: 15 January 2009 Version: 0.85 * Split out from existing work as a separate project. MIDIUtil-0.87/VERSION0000644000175000001440000000002711272620254012751 0ustar markusersThis is version 0.87. MIDIUtil-0.87/MANIFEST0000644000175000001440000000034411272620240013027 0ustar markusersREADME.txt setup.py License.txt CHANGELOG VERSION MANIFEST src/midiutil/MidiFile.py src/midiutil/__init__.py examples/single-note-example.py documentation/Extending.txt documentation/ClassReference.txt src/unittests/miditest.py MIDIUtil-0.87/PKG-INFO0000644000175000001440000000071011272620715012777 0ustar markusersMetadata-Version: 1.0 Name: MIDIUtil Version: 0.87 Summary: MIDIUtil, a MIDI Interface for Python Home-page: http://www.emergentmusics.org/midiutil/ Author: Mark Conway Wirt Author-email: emergentmusics) at (gmail . com License: Copyright (C) 2009, Mark Conway Wirt. See License.txt for details. Description: This package provides a simple interface to allow Python programs to write multi-track MIDI files. Platform: Platform Independent