pax_global_header00006660000000000000000000000064125424161340014514gustar00rootroot0000000000000052 comment=7028496a84492011e1f647fb6390b9eaeea6acef ConsensusCore-7028496a84492011e1f647fb6390b9eaeea6acef/000077500000000000000000000000001254241613400213205ustar00rootroot00000000000000ConsensusCore-7028496a84492011e1f647fb6390b9eaeea6acef/.gitignore000066400000000000000000000001401254241613400233030ustar00rootroot00000000000000make/Config.mk *.o *.d build/ .project .cproject .settings ConsensusCore.xcodeproj *~ bin/ obj/ ConsensusCore-7028496a84492011e1f647fb6390b9eaeea6acef/CHANGELOG.md000066400000000000000000000007461254241613400231400ustar00rootroot00000000000000* Version 1.0.1 - Fix for a serious memory leak occurring on alpha/beta mating failures. Thanks Nigel! - Fix for nondeterministic POA consensus * Version 1.0.0 - Minor build/deploy system tweaks. No API changes. * Version 0.9.1 - Overhaul of directory structure to be a better-behaved C++ library (separate API headers out) - Changes to POA APIs to support "sparse" POA support in laamm * Version 0.9.0 - API change to QuiverConfigTable, adding "InsertDefault" methods ConsensusCore-7028496a84492011e1f647fb6390b9eaeea6acef/ConsensusCore.csproj000066400000000000000000000036701254241613400253410ustar00rootroot00000000000000 Debug AnyCPU {C308A414-9D37-4293-A20A-978B62A8C532} Library ConsensusCore ConsensusCore v4.5 true full false bin\Debug DEBUG; prompt 4 false full true bin\Release prompt 4 false ConsensusCore-7028496a84492011e1f647fb6390b9eaeea6acef/ConsensusCoreCpp.vcxproj000066400000000000000000000236761254241613400262070ustar00rootroot00000000000000 Debug Win32 Release Win32 {8281431D-465F-41CC-95D3-0253690B8098} ConsensusCoreCpp DynamicLibrary true v120 MultiByte DynamicLibrary false v120 true MultiByte $(ProjectDir)build\CSharp libConsensusCore $(ProjectDir)build\CSharp libConsensusCore Level3 Full true $(ProjectDir)../../../../prebuilt.out/boost/boost_1_55_0;src/C++;%(AdditionalIncludeDirectories) _SCL_SECURE_NO_WARNINGS;NDEBUG;%(PreprocessorDefinitions) AnySuitable true ProgramDatabase Default Fast false false true true true Level3 MaxSpeed true true true true true true ConsensusCore-7028496a84492011e1f647fb6390b9eaeea6acef/ConsensusCoreCpp.vcxproj.filters000066400000000000000000000252611254241613400276460ustar00rootroot00000000000000 {4FC737F1-C7A5-4376-A066-2A32D752A2FF} cpp;c;cc;cxx;def;odl;idl;hpj;bat;asm;asmx {93995380-89BD-4b04-88EB-625FBE52EBFB} h;hpp;hxx;hm;inl;inc;xsd {67DA6AB6-F800-4c08-8B7A-83BB121AAD01} rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx;tiff;tif;png;wav;mfcribbon-ms {9a115ee9-32bc-4ccd-b1fe-8e552252eb4d} False false Source Files Source Files Source Files Source Files Source Files Source Files Source Files Source Files Source Files Source Files Source Files Source Files Source Files Source Files Source Files Source Files Source Files Source Files Source Files Source Files Source Files Source Files Source Files Source Files Source Files Generated Files Source Files Source Files Source Files Source Files Source Files Source Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Header Files Resource Files Resource Files Resource Files Resource Files Resource Files Resource Files Resource Files Resource Files Resource Files Resource Files Resource Files Resource Files Resource Files Resource Files Resource Files ConsensusCore-7028496a84492011e1f647fb6390b9eaeea6acef/LICENSES000066400000000000000000000032201254241613400224450ustar00rootroot00000000000000Copyright (c) 2011-2013, Pacific Biosciences of California, Inc. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted (subject to the limitations in the disclaimer below) provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Pacific Biosciences nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY PACIFIC BIOSCIENCES AND ITS CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL PACIFIC BIOSCIENCES OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ConsensusCore-7028496a84492011e1f647fb6390b9eaeea6acef/Makefile000066400000000000000000000037011254241613400227610ustar00rootroot00000000000000# # Basic makefile. Use this for building the C++ library and the SWIG # bindings. # # Notes: # - can compile with clang++ using: # % make GXX=clang++ # - 32-bit build: # % make MACHINE=-m32 # - debug build: # % make DEBUG=1 # include make/Defs.mk all: lib lib: ${MAKE} -f make/Cpp.mk # # SWIG targets # python: lib $(MAKE) -f make/Python.mk echo-python-build-directory: @echo $(PYTHON_BUILD_DIR) csharp: lib $(MAKE) -f make/CSharp.mk before-xbuild: csharp -mkdir -p bin/Debug -mkdir -p bin/Release -cp $(BUILD_ROOT)/CSharp/libConsensusCore.so bin/Debug/ -cp $(BUILD_ROOT)/CSharp/libConsensusCore.so bin/Release/ # # Clean targets # clean-python: -rm -rf $(PYTHON_BUILD_DIR) -rm -rf ConsensusCore.egg-info -rm -rf dist clean-csharp: -rm -rf $(CSHARP_BUILD_DIR) -rm -rf bin obj clean-cxx: -rm -rf $(BUILD_ROOT)/C++ clean: clean-cxx clean-python clean-csharp -rm -rf $(BUILD_ROOT) # # Test targets # test-python: @make -f make/Python.mk test-python test-csharp: @make -f make/CSharp.mk test-csharp test: lib @make -f make/Tests.mk check: test tests: test # # Lint targets # lint: -find src -name "*.[ch]pp" | xargs ./tools/cpplint.py --verbose=0 --counting=toplevel pre-commit-hook: # for speed, apply cpplint only to changed files. git diff --cached --name-only --diff-filter=ACM | \ grep -e '.*.[ch]pp$$' | xargs tools/cpplint.py --verbose=3 # # Targets used by PBI internal build # pip-uninstall: $(shell which pip > /dev/null) @pip freeze|grep 'ConsensusCore=='>/dev/null \ && pip uninstall -y ConsensusCore \ || true pip-install: $(shell which pip > /dev/null) @pip install --no-index \ --install-option="--swig=$(SWIG)" \ --install-option="--boost=$(BOOST)" \ ./ .PHONY: all lib clean-cxx clean test tests check python clean-python \ csharp clean-csharp echo-python-build-directory \ test-python test-csharp pip-uninstall pip-install \ lint pre-commit-hook ConsensusCore-7028496a84492011e1f647fb6390b9eaeea6acef/README.md000066400000000000000000000016751254241613400226100ustar00rootroot00000000000000# ConsensusCore ConsensusCore is a library of C++ algorithms for PacBio multiple sequence consensus that powers Quiver (Python) and ConsensusTools (.NET). To install Quiver, you will need to install ConsensusCore and [GenomicConsensus](https://github.com/PacificBiosciences/GenomicConsensus). # Building/installing For Python: ```sh % python setup.py install [configure flags, see ./configure --help] ``` For .NET (command line): ```sh ./configure [see ./configure --help for details] make csharp ``` For .NET (MonoDevelop): run ``./configure`` as above, but then open the ConsensusCore.csproj in MonoDevelop and build. # Notes .NET doesn't handle native libraries very gracefully. In order for client tools to use the ``libConsensusCore.so``, the library needs to be copied to the bin/{Debug,Release} directory for every assembly that transitively depends on ConsensusCore and creates an executable. You can do this using a pre-build rule. ConsensusCore-7028496a84492011e1f647fb6390b9eaeea6acef/configure000077500000000000000000000064201254241613400232310ustar00rootroot00000000000000#!/usr/bin/env bash BOOST= SWIG= SWIG_LIB= PYTHON_INCLUDE= NUMPY_INCLUDE= DEBUG= CPP_ABI=c++98 usage () { echo "" echo "Usage : " echo " configure [--boost=BOOST] # root of boost install" echo " [--swig=SWIG] # location of swig executable" echo " [--swig-lib=SWIG_LIB] # location of swig library" echo " [--debug] # build debug library (1)" echo " [--c++11] # build using C++11 ABI" echo echo " (Python only:)" echo " [--python-include=PYTHON_INCLUDE] # location of Python.h" echo " [--numpy-include=NUMPY_INCLUDE] # location of numpy/core/include" echo "" echo echo " configure --pbi # use PacBio perforce locations" echo "" echo echo " configure --clear # delete configuration" echo "" } configure_pbi () { echo "Configuring based on PacBio P4 depot paths." SOFTWARE=$(readlink -f ../../../../..) # Path to //depot/software BOOST=$SOFTWARE/smrtanalysis/prebuilt.out/boost/boost_1_47_0/ SWIG=$SOFTWARE/smrtanalysis/prebuilt.out/swig/swig-2.0.10/ubuntu-1004/bin/swig SWIG_LIB=$SOFTWARE/smrtanalysis/prebuilt.out/swig/swig-2.0.10/common/share/swig/2.0.10 PYTHON_INCLUDE= NUMPY_INCLUDE= DEBUG= } while test x$1 != x; do case $1 in --pbi) configure_pbi ;; --boost=*) BOOST=`echo $1 | sed 's/--boost=//'` ;; --swig=*) SWIG=`echo $1 | sed 's/--swig=//'` ;; --swig-lib=*) SWIG_LIB=`echo $1 | sed 's/--swig-lib=//'` ;; --debug) DEBUG=1 ;; --c++11) CPP_ABI=c++11 ;; --python-include=*) PYTHON_INCLUDE=`echo $1 | sed 's/--python-include=//'` ;; --numpy-include=*) NUMPY_INCLUDE=`echo $1 | sed 's/--numpy-include=//'` ;; --help) usage exit ;; --clear) rm -f make/Config.mk exit ;; *) echo Warning: unknown argument $1 >&2 usage ;; esac shift done # Find/validate boost and swig #set -e BOOST=`tools/find_boost $BOOST` || exit SWIG=`tools/find_swig $SWIG` || exit if [ -z $SWIG_LIB ]; then SWIG_LIB=`swig -swiglib` fi echo echo ConsensusCore configuration summary echo ----------------------------------- echo " BOOST = $BOOST" echo " SWIG = $SWIG" echo " SWIG_LIB = $SWIG_LIB" echo " PYTHON_INCLUDE = $PYTHON_INCLUDE" echo " NUMPY_INCLUDE = $NUMPY_INCLUDE" echo " DEBUG = $DEBUG" echo " CPP_ABI = $CPP_ABI" echo echo > make/Config.mk echo "BOOST:=$BOOST" >> make/Config.mk echo "SWIG:=$SWIG" >> make/Config.mk echo "SWIG_LIB:=$SWIG_LIB" >> make/Config.mk echo "PYTHON_INCLUDE:=$PYTHON_INCLUDE" >> make/Config.mk echo "NUMPY_INCLUDE:=$NUMPY_INCLUDE" >> make/Config.mk echo "DEBUG?=$DEBUG" >> make/Config.mk echo "CPP_ABI:=$CPP_ABI" >> make/Config.mk ConsensusCore-7028496a84492011e1f647fb6390b9eaeea6acef/external/000077500000000000000000000000001254241613400231425ustar00rootroot00000000000000ConsensusCore-7028496a84492011e1f647fb6390b9eaeea6acef/external/cpplog/000077500000000000000000000000001254241613400244265ustar00rootroot00000000000000ConsensusCore-7028496a84492011e1f647fb6390b9eaeea6acef/external/cpplog/.gitignore000066400000000000000000000000271254241613400264150ustar00rootroot00000000000000*.o *.log *.exe *_test ConsensusCore-7028496a84492011e1f647fb6390b9eaeea6acef/external/cpplog/LICENSE.txt000066400000000000000000000020371254241613400262530ustar00rootroot00000000000000Copyright (C) 2011 by Andrew D Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ConsensusCore-7028496a84492011e1f647fb6390b9eaeea6acef/external/cpplog/Makefile000066400000000000000000000007701254241613400260720ustar00rootroot00000000000000SOURCES=main.cpp DEPS=cpplog.hpp EXECUTABLE=cpplog_test INCLUDES=-I/usr/local/include LIBS=-L/usr/local/lib -lboost_thread-mt -lboost_system-mt CC=g++ CFLAGS=-c -Wall -Wextra -pedantic OBJECTS=$(SOURCES:.cpp=.o) DEFINES=-DCPPLOG_THREADING -DCPPLOG_SYSTEM_IDS all: $(SOURCES) $(EXECUTABLE) $(EXECUTABLE): $(OBJECTS) $(CC) $(LDFLAGS) $(LIBS) $(OBJECTS) -o $@ .cpp.o: $(CC) $(CFLAGS) $(INCLUDES) $(DEFINES) $< -o $@ test: $(EXECUTABLE) ./$(EXECUTABLE) clean: rm -f $(OBJECTS) $(EXECUTABLE) *.log ConsensusCore-7028496a84492011e1f647fb6390b9eaeea6acef/external/cpplog/README.txt000066400000000000000000000017231254241613400261270ustar00rootroot00000000000000A simple, header-only, MIT-licensed C++ logging library. Basic usage example: StdErrLogger log; LOG_WARN(log) << "Log message here" << std::endl; CHECK_EQUAL(log, 1 == 2) << "Some other message" << std::endl; CHECK_STREQ(log, "a", "a") << "Strings should be equal" << std::endl; The layout of this library is based on Google's logging library (http://code.google.com/p/google-glog/), but does not use any code copied from that project. Thanks to GitHub's fakechris, there is experimental support for logging to a Scribe node (see: https://github.com/facebook/scribe for more information). It requires Apache Thrift (http://thrift.apache.org/). To use it, #define CPPLOG_WITH_SCRIBE_LOGGER NOTE: Tests are relatively complete, but not exhaustive. Please use at your own risk, and feel free to submit bug reports. Thanks to (in alphabetical order): - fakechris [GitHub] - Kranar [Reddit] - olajep [GitHub] - vvavrychuk [GitHub] - z00m1n [GitHub] ConsensusCore-7028496a84492011e1f647fb6390b9eaeea6acef/external/cpplog/concurrent_queue.hpp000066400000000000000000000022321254241613400305240ustar00rootroot00000000000000#pragma once #ifndef _CONCURRENT_QUEUE_H #define _CONCURRENT_QUEUE_H #include #include template class concurrent_queue { private: std::queue the_queue; mutable boost::mutex the_mutex; boost::condition_variable the_condition_variable; public: void push(Data const& data) { boost::lock_guard lock(the_mutex); the_queue.push(data); the_condition_variable.notify_one(); } bool empty() const { boost::lock_guard lock(the_mutex); return the_queue.empty(); } bool try_pop(Data& popped_value) { boost::unique_lock lock(the_mutex); if( the_queue.empty() ) { return false; } popped_value = the_queue.front(); the_queue.pop(); return true; } void wait_and_pop(Data& popped_value) { boost::unique_lock lock(the_mutex); while( the_queue.empty() ) { the_condition_variable.wait(lock); } popped_value = the_queue.front(); the_queue.pop(); } }; #endif ConsensusCore-7028496a84492011e1f647fb6390b9eaeea6acef/external/cpplog/cpplog.hpp000066400000000000000000001200001254241613400264140ustar00rootroot00000000000000#pragma once #ifndef _CPPLOG_H #define _CPPLOG_H #include #include #include #include #include #include #include #include #include #include #include // The following #define's will change the behaviour of this library. // #define CPPLOG_FILTER_LEVEL // Prevents all log messages with level less than from being emitted. // // #define CPPLOG_SYSTEM_IDS // Enables capturing of the Process and Thread ID. // // #define CPPLOG_USE_SYSCALL_FOR_THREAD_ID // Tries to use syscall(SYS_gettid) to get the current Thread ID. This is // especially useful on systems where boost's get_current_thread_id() // will return a structure (usually pthread_t), which isn't incredibly // useful. // NOTE: Only useful if you also #define CPPLOG_SYSTEM_IDS // // #define CPPLOG_THREADING // Enables threading (BackgroundLogger). Note that defining this or // CPPLOG_SYSTEM_IDS introduces a dependency on Boost; // this means that the library is no longer truly header-only. // // #define CPPLOG_HELPER_MACROS // Enables inclusion of the CHECK_* macros. // // #define CPPLOG_FATAL_EXIT // Causes a fatal error to exit() the process. // // #define CPPLOG_FATAL_EXIT_DEBUG // Causes a fatal error to exit() the process if in debug mode. // // # define CPPLOG_USE_OLD_BOOST // Use the old Boost namespace for interprocess::ipcdetail. Define // this if you're using version 1.47 of Boost or earlier. // ------------------------------- DEFINITIONS ------------------------------- // Severity levels: // Note: Giving a value for CPPLOG_FILTER_LEVEL will log all messages at // or above that level. // 0 - Trace // 1 - Debug // 2 - Info // 3 - Warning // 4 - Error // 5 - Fatal (always logged) #define LL_TRACE 0 #define LL_DEBUG 1 #define LL_INFO 2 #define LL_WARN 3 #define LL_ERROR 4 #define LL_FATAL 5 // ------------------------------ CONFIGURATION ------------------------------ //#define CPPLOG_FILTER_LEVEL LL_WARN //#define CPPLOG_SYSTEM_IDS //#define CPPLOG_USE_SYSCALL_FOR_THREAD_ID //#define CPPLOG_THREADING #define CPPLOG_HELPER_MACROS #define CPPLOG_FATAL_EXIT //#define CPPLOG_FATAL_EXIT_DEBUG //#define CPPLOG_USE_OLD_BOOST // ---------------------------------- CODE ----------------------------------- #ifdef CPPLOG_SYSTEM_IDS #include #ifdef CPPLOG_USE_SYSCALL_FOR_THREAD_ID #include #include #endif #endif #ifdef CPPLOG_THREADING #include #include "concurrent_queue.hpp" #endif #ifdef _WIN32 #include "outputdebugstream.hpp" #endif #ifdef CPPLOG_WITH_SCRIBE_LOGGER #include "scribestream.hpp" #endif // If we don't have a level defined, set it to CPPLOG_LEVEL_DEBUG (log all except trace statements) #ifndef CPPLOG_FILTER_LEVEL #define CPPLOG_FILTER_LEVEL LL_DEBUG #endif // The general concept for how logging works: // - Every call to LOG(LEVEL, logger) works as follows: // - Instantiates an object of type LogMessage. // - LogMessage's constructor captures __FILE__, __LINE__, severity and our output logger. // - LogMessage exposes a function getStream(), which is an ostringstream-style stream that // client code can write debug information into. // - When the sendToLogger() method of a LogMessage is called, all the buffered data in the // messages' stream is sent to the specified logger. // - When a LogMessage's destructor is called, it calls sendToLogger() to send all // remaining data. namespace cpplog { // Our log level type. // NOTE: When C++11 becomes widely supported, convert this to "enum class LogLevel". typedef unsigned int loglevel_t; // Helper functions. Stuck these in their own namespace for simplicity. namespace helpers { // Gets the filename from a path. inline static const char* fileNameFromPath(const char* filePath) { const char* fileName = strrchr(filePath, '/'); #if defined(_WIN32) if( !fileName ) fileName = strrchr(filePath, '\\'); #endif return fileName ? fileName + 1 : filePath; } // Thread-safe version of localtime() inline bool slocaltime(::tm* const out, const ::time_t* const in) { #if defined(_WIN32) && defined(_MSC_VER) return ::localtime_s(out, in) == 0; #elif defined(__MINGW32__) // Warning - not entirely thread safe on MinGW ::tm * localOut = ::localtime(in); if( localOut ) { ::memcpy(out, localOut, sizeof(::tm)); } return localOut != NULL; #else // Default to SUSv2 (libc >= 5.2.5) function. return ::localtime_r(in, out) != NULL; #endif } // Thread-safe version of gmtime() inline bool sgmtime(::tm* const out, const ::time_t* const in) { #if defined(_WIN32) && defined(_MSC_VER) return ::gmtime_s(out, in) == 0; #elif defined(__MINGW32__) // Warning - not entirely thread safe on MinGW ::tm * localOut = ::gmtime(in); if( localOut ) { ::memcpy(out, localOut, sizeof(::tm)); } return localOut != NULL; #else // Default to SUSv2 (libc >= 5.2.5) function. return ::gmtime_r(in, out) != NULL; #endif } // Below we have a bunch of macros, typedefs and such that make getting our // current process/thread ID simpler. #ifdef CPPLOG_SYSTEM_IDS #ifdef CPPLOG_USE_OLD_BOOST typedef boost::interprocess::detail::OS_process_id_t process_id_t; inline process_id_t get_process_id() { return boost::interprocess::detail::get_current_process_id(); } #else typedef boost::interprocess::ipcdetail::OS_process_id_t process_id_t; inline process_id_t get_process_id() { return boost::interprocess::ipcdetail::get_current_process_id(); } #endif #ifdef CPPLOG_USE_SYSCALL_FOR_THREAD_ID typedef unsigned long thread_id_t; inline thread_id_t get_thread_id() { return static_cast(syscall(SYS_gettid)); } inline void print_thread_id(std::ostream& stream, thread_id_t thread_id) { stream << std::setfill('0') << std::setw(8) << std::hex << thread_id; } #else // CPPLOG_USE_SYSCALL_FOR_THREAD_ID #ifdef CPPLOG_USE_OLD_BOOST typedef boost::interprocess::detail::OS_thread_id_t thread_id_t; inline thread_id_t get_thread_id() { return boost::interprocess::detail::get_current_thread_id(); } #else typedef boost::interprocess::ipcdetail::OS_thread_id_t thread_id_t; inline thread_id_t get_thread_id() { return boost::interprocess::ipcdetail::get_current_thread_id(); } #endif // CPPLOG_USE_OLD_BOOST // This function lets us print a thread ID in all cases, including on // platforms where it's actually a structure (pthread_t, I'm looking // at you...). Note that this kinda-sorta assumes a little-endian // architecture, if we want meaningful results. Not super important, // though, since the address of a structure isn't actually that useful. // TODO: I might rewrite this using templates to print properly if it's // an unsigned long, and fall back to this implementation otherwise. inline void print_thread_id(std::ostream& stream, thread_id_t thread_id) { unsigned char* sptr = static_cast( static_cast(&thread_id) ); for( size_t i = sizeof(thread_id_t); i != 0; i-- ) { stream << std::setfill('0') << std::setw(2) << std::hex << static_cast(sptr[i - 1]); } } #endif // CPPLOG_USE_SYSCALL_FOR_THREAD_ID #endif // CPPLOG_SYSTEM_IDS // Simple class that allows us to evaluate a stream to void - prevents compiler errors. class VoidStreamClass { public: VoidStreamClass() { } void operator&(std::ostream&) { } }; // fixed_streambuf is a minimal implementation around std::basic_streambuf // with a fixed size backing buffer. It implements additional functionality // needed by cpplog and exposes the backing buffer in a safe way via c_str(). // This makes it possible to avoid extra copying. class fixed_streambuf : public std::basic_streambuf > { private: // Constant. static const size_t k_logBufferCapacity = 20000; // Leave room for terminating null character in case buffer fills up. char m_buffer[k_logBufferCapacity+1]; public: fixed_streambuf() { // Use allocated buffer as backing store. setp(m_buffer, m_buffer + k_logBufferCapacity); // Insert terminator at buffer end. m_buffer[k_logBufferCapacity] = '\0'; } std::streamsize length() const { return pptr() - pbase(); } std::streamsize capacity() const { return k_logBufferCapacity; } bool empty() const { return length() == 0; } bool full() const { return length() == capacity(); } // Unput one character. int_type sunputc() { if( (!pptr()) || (pptr() == pbase()) ) return pbackfail(); pbump(-1); // This is safe because *epptr() always is '\0' and inside // the backing buffer. return traits_type::to_int_type(*(pptr()+1)); } // Peek at last inserted character. int peek() const { if( (!pptr()) || (pptr() == pbase()) ) return std::char_traits::eof(); return static_cast(*(pptr()-1)); } const char* c_str() const { // Add terminating null character. // This is safe even if the buffer is full to its capacity since // epptr() is inside the backing buffer. *pptr() = '\0'; return pbase(); } }; } // Logger data. This is sent to a logger when a LogMessage is Flush()'ed, or // when the destructor is called. struct LogData { // Our streambuf & stream to log data to. helpers::fixed_streambuf streamBuffer; std::ostream stream; // Captured data. unsigned int level; unsigned long line; const char* fullPath; const char* fileName; time_t messageTime; ::tm utcTime; #ifdef CPPLOG_SYSTEM_IDS // Process/thread ID. helpers::process_id_t processId; helpers::thread_id_t threadId; #endif // Constructor that initializes our stream. LogData(loglevel_t logLevel) : streamBuffer(), stream(&streamBuffer), level(logLevel) #ifdef CPPLOG_SYSTEM_IDS , processId(0), threadId(0) #endif { } virtual ~LogData() { } }; // Base interface for a logger. class BaseLogger { public: // All loggers must provide an interface to log a message to. // The return value of this function indicates whether to delete // the log message. virtual bool sendLogMessage(LogData* logData) = 0; virtual ~BaseLogger() { } }; // Log message - this is instantiated upon every call to LOG(logger) class LogMessage { private: BaseLogger* m_logger; bool m_flushed; bool m_deleteMessage; protected: LogData* m_logData; private: // Flag for if a fatal message has been logged already. // This prevents us from calling exit(), which calls something, // which then logs a fatal message, which cause an infinite loop. // TODO: this should probably be thread-safe... static bool getSetFatal(bool get, bool val) { static bool m_fatalFlag = false; if( !get ) m_fatalFlag = val; return m_fatalFlag; } public: LogMessage(const char* file, unsigned int line, loglevel_t logLevel, BaseLogger* outputLogger, bool useDefaultLogFormat=true) : m_logger(outputLogger) { Init(file, line, logLevel, useDefaultLogFormat); } LogMessage(const char* file, unsigned int line, loglevel_t logLevel, BaseLogger& outputLogger, bool useDefaultLogFormat=true) : m_logger(&outputLogger) { Init(file, line, logLevel, useDefaultLogFormat); } virtual ~LogMessage() { Flush(); if( m_deleteMessage ) { delete m_logData; } } inline std::ostream& getStream() { return m_logData->stream; } protected: virtual void InitLogMessage() { // Log process ID and thread ID. #ifdef CPPLOG_SYSTEM_IDS m_logData->stream << "[" << std::right << std::setfill('0') << std::setw(8) << std::hex << m_logData->processId << "."; helpers::print_thread_id(m_logData->stream, m_logData->threadId); m_logData->stream << "] "; #endif m_logData->stream << std::setfill(' ') << std::setw(5) << std::left << std::dec << LogMessage::getLevelName(m_logData->level) << " - " << m_logData->fileName << "(" << m_logData->line << "): "; } private: void Init(const char* file, unsigned int line, loglevel_t logLevel, bool useDefaultLogFormat=true) { m_logData = new LogData(logLevel); m_flushed = false; m_deleteMessage = false; // Capture data. m_logData->fullPath = file; m_logData->fileName = cpplog::helpers::fileNameFromPath(file); m_logData->line = line; m_logData->messageTime = ::time(NULL); // Get current time. ::tm gmt; cpplog::helpers::sgmtime(&gmt, &m_logData->messageTime); memcpy(&m_logData->utcTime, &gmt, sizeof(tm)); #ifdef CPPLOG_SYSTEM_IDS // Get process/thread ID. m_logData->processId = helpers::get_process_id(); m_logData->threadId = helpers::get_thread_id(); #endif // CPPLOG_SYSTEM_IDS if( useDefaultLogFormat ) { InitLogMessage(); } } void Flush() { if( !m_flushed ) { // Insert newline, if needed. helpers::fixed_streambuf* const sb = &m_logData->streamBuffer; if( sb->peek() != '\n' ) { // If buffer is full, remove last char to leave room for newline. if( sb->full() ) sb->sunputc(); // Insert newline sb->sputc('\n'); } // Save the log level. loglevel_t savedLogLevel = m_logData->level; // Send the message, set flushed=true. m_deleteMessage = m_logger->sendLogMessage(m_logData); m_flushed = true; // Note: We cannot touch m_logData after the above call. By the // time it returns, we have to assume it has already been freed. // If this is a fatal message... if( savedLogLevel == LL_FATAL && !getSetFatal(true, true) ) { // Set our fatal flag. getSetFatal(false, true); #ifdef _DEBUG // Only exit in debug mode if CPPLOG_FATAL_EXIT_DEBUG is set. #if defined(CPPLOG_FATAL_EXIT_DEBUG) || defined(CPPLOG_FATAL_EXIT) std::exit(1); #endif #else //!_DEBUG #ifdef CPPLOG_FATAL_EXIT_DEBUG std::exit(1) #endif #endif } } } public: static const char* getLevelName(loglevel_t level) { switch( level ) { case LL_TRACE: return "TRACE"; case LL_DEBUG: return "DEBUG"; case LL_INFO: return "INFO"; case LL_WARN: return "WARN"; case LL_ERROR: return "ERROR"; case LL_FATAL: return "FATAL"; default: return "OTHER"; }; }; }; // Generic class - logs to a given std::ostream. class OstreamLogger : public BaseLogger { protected: std::ostream& m_logStream; public: OstreamLogger(std::ostream& outStream) : m_logStream(outStream) { } virtual bool sendLogMessage(LogData* logData) { helpers::fixed_streambuf* const sb = &logData->streamBuffer; m_logStream.write(sb->c_str(), sb->length()); m_logStream << std::flush; return true; } virtual ~OstreamLogger() { } }; // Simple implementation - logs to stderr. class StdErrLogger : public OstreamLogger { public: StdErrLogger() : OstreamLogger(std::cerr) { } }; // Simple implementation - logs to a string, provides the ability to get that string. class StringLogger : public OstreamLogger { private: std::ostringstream m_stream; public: StringLogger() : OstreamLogger(m_stream) { } std::string getString() { return m_stream.str(); } void clear() { m_stream.str(""); m_stream.clear(); } }; #ifdef _WIN32 class OutputDebugStringLogger : public OstreamLogger { private: dbgwin_stream m_stream; public: OutputDebugStringLogger() : OstreamLogger(m_stream) { } }; #endif // Log to file. class FileLogger : public OstreamLogger { private: std::string m_path; std::ofstream m_outStream; public: FileLogger(std::string logFilePath) : OstreamLogger(m_outStream), m_path(logFilePath), m_outStream(logFilePath.c_str(), std::ios_base::out) { } FileLogger(std::string logFilePath, bool append) : OstreamLogger(m_outStream), m_path(logFilePath), m_outStream(logFilePath.c_str(), append ? std::ios_base::app : std::ios_base::out) { } }; // Log to file, rotate when the log reaches a given size. class SizeRotateFileLogger : public OstreamLogger { public: typedef void (*pfBuildFileName)(unsigned long logNumber, std::string& newFileName, void* context); private: std::streamoff m_maxSize; unsigned long m_logNumber; SizeRotateFileLogger::pfBuildFileName m_buildFunc; void* m_context; std::ofstream m_outStream; public: SizeRotateFileLogger(pfBuildFileName nameFunc, std::streamoff maxSize) : OstreamLogger(m_outStream), m_maxSize(maxSize), m_logNumber(0), m_buildFunc(nameFunc), m_context(NULL), m_outStream() { // "Rotate" to open our initial log. RotateLog(); } SizeRotateFileLogger(pfBuildFileName nameFunc, void* context, std::streamoff maxSize) : OstreamLogger(m_outStream), m_maxSize(maxSize), m_logNumber(0), m_buildFunc(nameFunc), m_context(context), m_outStream() { // "Rotate" to open our initial log. RotateLog(); } virtual ~SizeRotateFileLogger() { } virtual bool sendLogMessage(LogData* logData) { // Call the actual logger. bool deleteMessage = OstreamLogger::sendLogMessage(logData); // Check if we're over our limit. if( m_outStream.tellp() > m_maxSize ) { // Yep, increment our log number and rotate. m_logNumber++; m_outStream << std::flush; RotateLog(); } return deleteMessage; } private: void RotateLog() { // Build the file name. std::string newFileName; m_buildFunc(m_logNumber, newFileName, m_context); // Close old file, open new file. m_outStream.close(); m_outStream.open(newFileName.c_str(), std::ios_base::out); } }; // Log to file, rotate every "x" seconds. class TimeRotateFileLogger : public OstreamLogger { public: typedef void (*pfBuildFileName)(::tm* time, unsigned long logNumber, std::string& newFileName, void* context); private: unsigned long m_rotateInterval; ::time_t m_lastRotateTime; unsigned long m_logNumber; cpplog::TimeRotateFileLogger::pfBuildFileName m_buildFunc; void* m_context; std::ofstream m_outStream; public: TimeRotateFileLogger(pfBuildFileName nameFunc, unsigned long intervalSeconds) : OstreamLogger(m_outStream), m_rotateInterval(intervalSeconds), m_logNumber(0), m_buildFunc(nameFunc), m_context(NULL) { // "Rotate" to open our initial log. RotateLog(::time(NULL)); } TimeRotateFileLogger(pfBuildFileName nameFunc, void* context, unsigned long intervalSeconds) : OstreamLogger(m_outStream), m_rotateInterval(intervalSeconds), m_logNumber(0), m_buildFunc(nameFunc), m_context(context) { // "Rotate" to open our initial log. RotateLog(::time(NULL)); } virtual ~TimeRotateFileLogger() { } virtual bool sendLogMessage(LogData* logData) { // Get the current time. ::time_t currTime; ::time(&currTime); unsigned long timeDiff = static_cast( difftime(currTime, m_lastRotateTime) ); // Is the difference greater than our number of seconds? if( timeDiff > m_rotateInterval ) { // Yep, increment our log number and rotate. m_logNumber++; m_outStream << std::flush; RotateLog(currTime); } // Call the actual logger. return OstreamLogger::sendLogMessage(logData); } private: void RotateLog(time_t currTime) { // Get the current time. ::tm timeInfo; cpplog::helpers::slocaltime(&timeInfo, &currTime); // Build a new file name. std::string newFileName; m_buildFunc(&timeInfo, m_logNumber, newFileName, m_context); // Close old file, open new file. m_outStream.close(); m_outStream.open(newFileName.c_str(), std::ios_base::out); // Reset the rotate time. ::time(&m_lastRotateTime); } }; #ifdef CPPLOG_WITH_SCRIBE_LOGGER // Given a Scribe node, will send log messages there with the given category. class ScribeLogger : public OstreamLogger { private: scribe_stream m_outStream; public: ScribeLogger(std::string host, unsigned short port, std::string category, int timeout) : OstreamLogger(m_outStream) { m_outStream.open(host, port, category, timeout); } }; #endif // Tee logger - given two loggers, will forward a message to both. class TeeLogger : public BaseLogger { private: BaseLogger* m_logger1; BaseLogger* m_logger2; bool m_logger1Owned; bool m_logger2Owned; public: TeeLogger(BaseLogger* one, BaseLogger* two) : m_logger1(one), m_logger2(two), m_logger1Owned(false), m_logger2Owned(false) { } TeeLogger(BaseLogger* one, bool ownOne, BaseLogger* two, bool ownTwo) : m_logger1(one), m_logger2(two), m_logger1Owned(ownOne), m_logger2Owned(ownTwo) { } TeeLogger(BaseLogger& one, BaseLogger& two) : m_logger1(&one), m_logger2(&two), m_logger1Owned(false), m_logger2Owned(false) { } TeeLogger(BaseLogger& one, bool ownOne, BaseLogger& two, bool ownTwo) : m_logger1(&one), m_logger2(&two), m_logger1Owned(ownOne), m_logger2Owned(ownTwo) { } ~TeeLogger() { if( m_logger1Owned ) delete m_logger1; if( m_logger2Owned ) delete m_logger2; } virtual bool sendLogMessage(LogData* logData) { bool deleteMessage = true; deleteMessage = deleteMessage && m_logger1->sendLogMessage(logData); deleteMessage = deleteMessage && m_logger2->sendLogMessage(logData); return deleteMessage; } }; // Multiplex logger - will forward a log message to all loggers. class MultiplexLogger : public BaseLogger { struct LoggerInfo { BaseLogger* logger; bool owned; LoggerInfo(BaseLogger* l, bool o) : logger(l), owned(o) { } }; std::vector m_loggers; public: MultiplexLogger() { } MultiplexLogger(BaseLogger* one) { m_loggers.push_back(LoggerInfo(one, false)); } MultiplexLogger(BaseLogger& one) { m_loggers.push_back(LoggerInfo(&one, false)); } MultiplexLogger(BaseLogger* one, bool owned) { m_loggers.push_back(LoggerInfo(one, owned)); } MultiplexLogger(BaseLogger& one, bool owned) { m_loggers.push_back(LoggerInfo(&one, owned)); } MultiplexLogger(BaseLogger* one, BaseLogger* two) { m_loggers.push_back(LoggerInfo(one, false)); m_loggers.push_back(LoggerInfo(two, false)); } MultiplexLogger(BaseLogger* one, bool ownOne, BaseLogger* two, bool ownTwo) { m_loggers.push_back(LoggerInfo(one, ownOne)); m_loggers.push_back(LoggerInfo(two, ownTwo)); } MultiplexLogger(BaseLogger& one, bool ownOne, BaseLogger& two, bool ownTwo) { m_loggers.push_back(LoggerInfo(&one, ownOne)); m_loggers.push_back(LoggerInfo(&two, ownTwo)); } ~MultiplexLogger() { for( std::vector::iterator It = m_loggers.begin(); It != m_loggers.end(); It++ ) { if( (*It).owned ) delete (*It).logger; } } void addLogger(BaseLogger* logger) { m_loggers.push_back(LoggerInfo(logger, false)); } void addLogger(BaseLogger& logger) { m_loggers.push_back(LoggerInfo(&logger, false)); } void addLogger(BaseLogger* logger, bool owned) { m_loggers.push_back(LoggerInfo(logger, owned)); } void addLogger(BaseLogger& logger, bool owned) { m_loggers.push_back(LoggerInfo(&logger, owned)); } virtual bool sendLogMessage(LogData* logData) { bool deleteMessage = true; for( std::vector::iterator It = m_loggers.begin(); It != m_loggers.end(); It++ ) { deleteMessage = deleteMessage && (*It).logger->sendLogMessage(logData); } return deleteMessage; } }; // Filtering logger. Will not forward all messages less than a given level. class FilteringLogger : public BaseLogger { private: loglevel_t m_lowestLevelAllowed; BaseLogger* m_forwardTo; bool m_owned; public: FilteringLogger(loglevel_t level, BaseLogger* forwardTo) : m_lowestLevelAllowed(level), m_forwardTo(forwardTo), m_owned(false) { } FilteringLogger(loglevel_t level, BaseLogger& forwardTo) : m_lowestLevelAllowed(level), m_forwardTo(&forwardTo), m_owned(false) { } FilteringLogger(loglevel_t level, BaseLogger* forwardTo, bool owned) : m_lowestLevelAllowed(level), m_forwardTo(forwardTo), m_owned(owned) { } FilteringLogger(loglevel_t level, BaseLogger& forwardTo, bool owned) : m_lowestLevelAllowed(level), m_forwardTo(&forwardTo), m_owned(owned) { } ~FilteringLogger() { if( m_owned ) delete m_forwardTo; } void SetLevel(loglevel_t allowed) { m_lowestLevelAllowed = allowed; } virtual bool sendLogMessage(LogData* logData) { if( logData->level >= m_lowestLevelAllowed ) return m_forwardTo->sendLogMessage(logData); else return true; } }; // Logger that moves all processing of log messages to a background thread. // Only include if we have support for threading. #ifdef CPPLOG_THREADING class BackgroundLogger : public BaseLogger { private: BaseLogger* m_forwardTo; concurrent_queue m_queue; boost::thread m_backgroundThread; LogData* m_dummyItem; void backgroundFunction() { LogData* nextLogEntry; bool deleteMessage = true; do { m_queue.wait_and_pop(nextLogEntry); if( nextLogEntry != m_dummyItem ) deleteMessage = m_forwardTo->sendLogMessage(nextLogEntry); if( deleteMessage ) delete nextLogEntry; } while( nextLogEntry != m_dummyItem ); } void Init() { // Create dummy item. m_dummyItem = new LogData(LL_TRACE); // And create background thread. m_backgroundThread = boost::thread(&BackgroundLogger::backgroundFunction, this); } public: BackgroundLogger(BaseLogger* forwardTo) : m_forwardTo(forwardTo) { Init(); } BackgroundLogger(BaseLogger& forwardTo) : m_forwardTo(&forwardTo) { Init(); } void Stop() { // Push our "dummy" item on the queue ... m_queue.push(m_dummyItem); // ... and wait for thread to terminate. m_backgroundThread.join(); // NOTE: The loop will free the dummy item for us, we can ignore it. } ~BackgroundLogger() { Stop(); } virtual bool sendLogMessage(LogData* logData) { m_queue.push(logData); // Don't delete - the background thread should handle this. return false; } }; #endif // Seperate namespace for loggers that use templates. namespace templated { // Filtering logger that accepts the level as a template parameter. // This will be slightly faster at runtime, as the if statement will // be performed on a constant value, as opposed to needing a memory // lookup (as with FilteringLogger) template class TFilteringLogger : public BaseLogger { BaseLogger* m_forwardTo; public: TFilteringLogger(BaseLogger* forwardTo) : m_forwardTo(forwardTo) { } virtual bool sendLogMessage(LogData* logData) { if( logData->level >= lowestLevel ) return m_forwardTo->sendLogMessage(logData); else return true; } }; // TODO: Implement others? } } // Our logging macros. // Default macros - log, and don't log something. // Allow custom log message formatting #ifndef LOG_LEVEL #define LOG_LEVEL(level, logger) cpplog::LogMessage(__FILE__, __LINE__, (level), logger).getStream() #endif #define LOG_NOTHING(level, logger) true ? (void)0 : cpplog::helpers::VoidStreamClass() & LOG_LEVEL(level, logger) // Series of debug macros, depending on what we log. #if CPPLOG_FILTER_LEVEL <= LL_TRACE #define LOG_TRACE(logger) LOG_LEVEL(LL_TRACE, logger) #else #define LOG_TRACE(logger) LOG_NOTHING(LL_TRACE, logger) #endif #if CPPLOG_FILTER_LEVEL <= LL_DEBUG #define LOG_DEBUG(logger) LOG_LEVEL(LL_DEBUG, logger) #else #define LOG_DEBUG(logger) LOG_NOTHING(LL_DEBUG, logger) #endif #if CPPLOG_FILTER_LEVEL <= LL_INFO #define LOG_INFO(logger) LOG_LEVEL(LL_INFO, logger) #else #define LOG_INFO(logger) LOG_NOTHING(LL_INFO, logger) #endif #if CPPLOG_FILTER_LEVEL <= LL_WARN #define LOG_WARN(logger) LOG_LEVEL(LL_WARN, logger) #else #define LOG_WARN(logger) LOG_NOTHING(LL_WARN, logger) #endif #if CPPLOG_FILTER_LEVEL <= LL_ERROR #define LOG_ERROR(logger) LOG_LEVEL(LL_ERROR, logger) #else #define LOG_ERROR(logger) LOG_NOTHING(LL_ERROR, logger) #endif // Note: Always logged. #define LOG_FATAL(logger) LOG_LEVEL(LL_FATAL, logger) // Debug macros - only logged in debug mode. #ifdef _DEBUG #define DLOG_TRACE(logger) LOG_TRACE(logger) #define DLOG_DEBUG(logger) LOG_DEBUG(logger) #define DLOG_INFO(logger) LOG_INFO(logger) #define DLOG_WARN(logger) LOG_WARN(logger) #define DLOG_ERROR(logger) LOG_ERROR(logger) #else #define DLOG_TRACE(logger) LOG_NOTHING(LL_TRACE, logger) #define DLOG_DEBUG(logger) LOG_NOTHING(LL_DEBUG, logger) #define DLOG_INFO(logger) LOG_NOTHING(LL_INFO, logger) #define DLOG_WARN(logger) LOG_NOTHING(LL_WARN, logger) #define DLOG_ERROR(logger) LOG_NOTHING(LL_ERROR, logger) #endif // Note: Always logged. #define DLOG_FATAL(logger) LOG_FATAL(logger) // Aliases - so we can do: // LOG(LL_FATAL, logger) #define LOG_LL_TRACE(logger) LOG_TRACE(logger) #define LOG_LL_DEBUG(logger) LOG_DEBUG(logger) #define LOG_LL_INFO(logger) LOG_INFO(logger) #define LOG_LL_WARN(logger) LOG_WARN(logger) #define LOG_LL_ERROR(logger) LOG_ERROR(logger) #define LOG_LL_FATAL(logger) LOG_FATAL(logger) #define DLOG_LL_TRACE(logger) DLOG_TRACE(logger) #define DLOG_LL_DEBUG(logger) DLOG_DEBUG(logger) #define DLOG_LL_INFO(logger) DLOG_INFO(logger) #define DLOG_LL_WARN(logger) DLOG_WARN(logger) #define DLOG_LL_ERROR(logger) DLOG_ERROR(logger) #define DLOG_LL_FATAL(logger) DLOG_FATAL(logger) // Helper - if you want to do: // LOG(LL_FATAL, logger) #define LOG(level, logger) LOG_##level(logger) #define DLOG(level, logger) DLOG_##level(logger) // Log conditions. #define LOG_IF(level, logger, condition) !(condition) ? (void)0 : cpplog::helpers::VoidStreamClass() & LOG_##level(logger) #define LOG_IF_NOT(level, logger, condition) !!(condition) ? (void)0 : cpplog::helpers::VoidStreamClass() & LOG_##level(logger) // Debug conditions. #ifdef _DEBUG #define DLOG_IF(level, logger, condition) !(condition) ? (void)0 : cpplog::helpers::VoidStreamClass() & LOG_##level(logger) #define DLOG_IF_NOT(level, logger, condition) !!(condition) ? (void)0 : cpplog::helpers::VoidStreamClass() & LOG_##level(logger) #else #define DLOG_IF(level, logger, condition) (true || !(condition)) ? (void)0 : \ cpplog::helpers::VoidStreamClass() & LOG_##level(logger) #define DLOG_IF_NOT(level, logger, condition) (true || !!(condition)) ? (void)0 : \ cpplog::helpers::VoidStreamClass() & LOG_##level(logger) #endif // Assertion helpers. #define LOG_ASSERT(logger, condition) LOG_IF_NOT(LL_FATAL, logger, (condition)) << "Assertion failed: " #condition #define DLOG_ASSERT(logger, condition) DLOG_IF_NOT(LL_FATAL, logger, (condition)) << "Assertion failed: " #condition // Only include further helper macros if we are supposed to. #ifdef CPPLOG_HELPER_MACROS // The following CHECK_* functions act similar to a LOG_ASSERT, but with a bit more // readability. #define __CHECK(logger, condition, print) LOG_IF(LL_FATAL, logger, !(condition)) << "Check failed: " print ": " #define CHECK(logger, condition) __CHECK(logger, condition, #condition) #define CHECK_EQUAL(logger, ex1, ex2) __CHECK(logger, (ex1) == (ex2), #ex1 " == " #ex2) #define CHECK_LT(logger, ex1, ex2) __CHECK(logger, (ex1) < (ex2), #ex1 " < " #ex2) #define CHECK_GT(logger, ex1, ex2) __CHECK(logger, (ex1) > (ex2), #ex1 " > " #ex2) #define CHECK_LE(logger, ex1, ex2) __CHECK(logger, (ex1) <= (ex2), #ex1 " <= " #ex2) #define CHECK_GE(logger, ex1, ex2) __CHECK(logger, (ex1) >= (ex2), #ex1 " >= " #ex2) #define CHECK_NE(logger, ex1, ex2) __CHECK(logger, (ex1) != (ex2), #ex1 " != " #ex2) #define CHECK_NOT_EQUAL(logger, ex1, ex2) __CHECK(logger, (ex1) != (ex2), #ex1 " != " #ex2) // String helpers. #define CHECK_STREQ(logger, s1, s2) __CHECK(logger, strcmp((s1), (s2)) == 0, "") << s1 << " == " << s2 #define CHECK_STRNE(logger, s1, s2) __CHECK(logger, strcmp((s1), (s2)) != 0, "") << s1 << " != " << s2 // NULL helpers. #define CHECK_NULL(logger, exp) __CHECK(logger, (exp) == NULL, #exp " == NULL") #define CHECK_NOT_NULL(logger, exp) __CHECK(logger, (exp) != NULL, #exp " != NULL") // Debug versions of above. #ifdef _DEBUG #define DCHECK(logger, condition) CHECK(logger, condition) #define DCHECK_EQUAL(logger, ex1, ex2) CHECK_EQUAL(logger, ex1, ex2) #define DCHECK_LT(logger, ex1, ex2) CHECK_LT(logger, ex1, ex2) #define DCHECK_GT(logger, ex1, ex2) CHECK_GT(logger, ex1, ex2) #define DCHECK_LE(logger, ex1, ex2) CHECK_LE(logger, ex1, ex2) #define DCHECK_GE(logger, ex1, ex2) CHECK_GE(logger, ex1, ex2) #define DCHECK_NE(logger, ex1, ex2) CHECK_NE(logger, ex1, ex2) #define DCHECK_NOT_EQUAL(logger, ex1, ex2) CHECK_NOT_EQUAL(logger, ex1, ex2) #define DCHECK_STREQ(logger, s1, s2) CHECK_STREQ(logger, s1, s2) #define DCHECK_STRNE(logger, s1, s2) CHECK_STRNE(logger, s1, s2) #define DCHECK_NULL(logger, exp) CHECK_NULL(logger, exp) #define DCHECK_NOT_NULL(logger, exp) CHECK_NOT_NULL(logger, exp) #else #define DCHECK(logger, condition) while(false) CHECK(logger, condition) #define DCHECK_EQUAL(logger, ex1, ex2) while(false) CHECK_EQUAL(logger, ex1, ex2) #define DCHECK_LT(logger, ex1, ex2) while(false) CHECK_LT(logger, ex1, ex2) #define DCHECK_GT(logger, ex1, ex2) while(false) CHECK_GT(logger, ex1, ex2) #define DCHECK_LE(logger, ex1, ex2) while(false) CHECK_LE(logger, ex1, ex2) #define DCHECK_GE(logger, ex1, ex2) while(false) CHECK_GE(logger, ex1, ex2) #define DCHECK_NE(logger, ex1, ex2) while(false) CHECK_NE(logger, ex1, ex2) #define DCHECK_NOT_EQUAL(logger, ex1, ex2) while(false) CHECK_NOT_EQUAL(logger, ex1, ex2) #define DCHECK_STREQ(logger, s1, s2) while(false) CHECK_STREQ(logger, s1, s2) #define DCHECK_STRNE(logger, s1, s2) while(false) CHECK_STRNE(logger, s1, s2) #define DCHECK_NULL(logger, exp) while(false) CHECK_NULL(logger, exp) #define DCHECK_NOT_NULL(logger, exp) while(false) CHECK_NOT_NULL(logger, exp) #endif #endif #endif //_CPPLOG_H ConsensusCore-7028496a84492011e1f647fb6390b9eaeea6acef/external/cpplog/outputdebugstream.hpp000066400000000000000000000021161254241613400307220ustar00rootroot00000000000000#pragma once #ifndef _OUTPUT_DEBUG_STREAM_H #define _OUTPUT_DEBUG_STREAM_H #define NOMINMAX #include #undef DELETE template class outputdebug_buf: public std::basic_stringbuf<_Elem> { private: inline void output_debug_string(const _Elem* e); public: virtual int sync ( ) { //outputdebug_buf<_Elem>::output_debug_string(std::basic_stringbuf<_Elem>::str().c_str()); this->output_debug_string(std::basic_stringbuf<_Elem>::str().c_str()); return 0; } }; template<> inline void outputdebug_buf::output_debug_string(const char* e) { ::OutputDebugStringA(e); } template<> inline void outputdebug_buf::output_debug_string(const wchar_t* e) { ::OutputDebugStringW(e); } template class outputdebug_stream: public std::basic_ostream<_Elem> { public: outputdebug_stream() : std::basic_ostream<_Elem>(new outputdebug_buf<_Elem>()) {} ~outputdebug_stream(){ delete this->rdbuf(); } }; typedef outputdebug_stream dbgwin_stream; typedef outputdebug_stream wdbgwin_stream; #endif ConsensusCore-7028496a84492011e1f647fb6390b9eaeea6acef/external/cpplog/scribestream.hpp000066400000000000000000000061441254241613400276270ustar00rootroot00000000000000#pragma once #ifndef _SCRIBE_STREAM_H #define _SCRIBE_STREAM_H #include #include #include #include "gen-cpp/scribe.h" class scribe_buf : public std::basic_stringbuf { private: scribe::thrift::scribeClient* m_client; boost::shared_ptr m_transport; std::string m_host; unsigned short m_port; std::string m_category; public: scribe_buf() : m_client(NULL) {} virtual ~scribe_buf() { close(); } bool open(std::string& host, unsigned short port, std::string& category, int timeout) { m_host = host; m_port = port; m_category = category; try { boost::shared_ptr socket(new apache::thrift::transport::TSocket(m_host, m_port)); socket->setConnTimeout(timeout); socket->setRecvTimeout(timeout); socket->setSendTimeout(timeout); boost::shared_ptr transport(new apache::thrift::transport::TFramedTransport(socket)); m_transport = transport; boost::shared_ptr proto(new apache::thrift::protocol::TBinaryProtocol(transport)); m_client = new scribe::thrift::scribeClient(proto); transport->open(); } catch (apache::thrift::TException& tx) { std::cerr << "Open scribe transport failed " << tx.what() << std::endl; return false; } return true; } virtual int sync() { if (m_client != NULL && m_transport && m_transport->isOpen()) { scribe::thrift::LogEntry entry; entry.category = m_category.c_str(); entry.message = str().c_str(); std::vector messages; messages.push_back(entry); try { int result = m_client->Log(messages); if (result != scribe::thrift::OK) { std::cerr << "Log to scribe failed: " << result << " " << str().c_str() << std::endl; } } catch (apache::thrift::TException& e) { std::cerr << "Log to scribe exception: " << e.what() << " " << str().c_str() << std::endl; } } return 0; } private: void close() { if (m_client != NULL) { try { m_transport->close(); } catch (apache::thrift::TException& e) {} delete m_client; m_client = NULL; } } }; class scribe_stream : public std::basic_ostream { public: scribe_stream() : std::basic_ostream(new scribe_buf()) { } ~scribe_stream() { delete rdbuf(); } void open(std::string host, unsigned short port, std::string category, int timeout) { scribe_buf * buf = (scribe_buf*)rdbuf(); buf->open(host, port, category, timeout); } }; #endif ConsensusCore-7028496a84492011e1f647fb6390b9eaeea6acef/external/gmock-1.7.0/000077500000000000000000000000001254241613400247035ustar00rootroot00000000000000ConsensusCore-7028496a84492011e1f647fb6390b9eaeea6acef/external/gmock-1.7.0/gmock-gtest-all.cc000066400000000000000000014732171254241613400302230ustar00rootroot00000000000000// Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: mheule@google.com (Markus Heule) // // Google C++ Testing Framework (Google Test) // // Sometimes it's desirable to build Google Test by compiling a single file. // This file serves this purpose. // This line ensures that gtest.h can be compiled on its own, even // when it's fused. #include "gtest/gtest.h" // The following lines pull in the real gtest *.cc files. // Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // // The Google C++ Testing Framework (Google Test) // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // // Utilities for testing Google Test itself and code that uses Google Test // (e.g. frameworks built on top of Google Test). #ifndef GTEST_INCLUDE_GTEST_GTEST_SPI_H_ #define GTEST_INCLUDE_GTEST_GTEST_SPI_H_ namespace testing { // This helper class can be used to mock out Google Test failure reporting // so that we can test Google Test or code that builds on Google Test. // // An object of this class appends a TestPartResult object to the // TestPartResultArray object given in the constructor whenever a Google Test // failure is reported. It can either intercept only failures that are // generated in the same thread that created this object or it can intercept // all generated failures. The scope of this mock object can be controlled with // the second argument to the two arguments constructor. class GTEST_API_ ScopedFakeTestPartResultReporter : public TestPartResultReporterInterface { public: // The two possible mocking modes of this object. enum InterceptMode { INTERCEPT_ONLY_CURRENT_THREAD, // Intercepts only thread local failures. INTERCEPT_ALL_THREADS // Intercepts all failures. }; // The c'tor sets this object as the test part result reporter used // by Google Test. The 'result' parameter specifies where to report the // results. This reporter will only catch failures generated in the current // thread. DEPRECATED explicit ScopedFakeTestPartResultReporter(TestPartResultArray* result); // Same as above, but you can choose the interception scope of this object. ScopedFakeTestPartResultReporter(InterceptMode intercept_mode, TestPartResultArray* result); // The d'tor restores the previous test part result reporter. virtual ~ScopedFakeTestPartResultReporter(); // Appends the TestPartResult object to the TestPartResultArray // received in the constructor. // // This method is from the TestPartResultReporterInterface // interface. virtual void ReportTestPartResult(const TestPartResult& result); private: void Init(); const InterceptMode intercept_mode_; TestPartResultReporterInterface* old_reporter_; TestPartResultArray* const result_; GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedFakeTestPartResultReporter); }; namespace internal { // A helper class for implementing EXPECT_FATAL_FAILURE() and // EXPECT_NONFATAL_FAILURE(). Its destructor verifies that the given // TestPartResultArray contains exactly one failure that has the given // type and contains the given substring. If that's not the case, a // non-fatal failure will be generated. class GTEST_API_ SingleFailureChecker { public: // The constructor remembers the arguments. SingleFailureChecker(const TestPartResultArray* results, TestPartResult::Type type, const string& substr); ~SingleFailureChecker(); private: const TestPartResultArray* const results_; const TestPartResult::Type type_; const string substr_; GTEST_DISALLOW_COPY_AND_ASSIGN_(SingleFailureChecker); }; } // namespace internal } // namespace testing // A set of macros for testing Google Test assertions or code that's expected // to generate Google Test fatal failures. It verifies that the given // statement will cause exactly one fatal Google Test failure with 'substr' // being part of the failure message. // // There are two different versions of this macro. EXPECT_FATAL_FAILURE only // affects and considers failures generated in the current thread and // EXPECT_FATAL_FAILURE_ON_ALL_THREADS does the same but for all threads. // // The verification of the assertion is done correctly even when the statement // throws an exception or aborts the current function. // // Known restrictions: // - 'statement' cannot reference local non-static variables or // non-static members of the current object. // - 'statement' cannot return a value. // - You cannot stream a failure message to this macro. // // Note that even though the implementations of the following two // macros are much alike, we cannot refactor them to use a common // helper macro, due to some peculiarity in how the preprocessor // works. The AcceptsMacroThatExpandsToUnprotectedComma test in // gtest_unittest.cc will fail to compile if we do that. #define EXPECT_FATAL_FAILURE(statement, substr) \ do { \ class GTestExpectFatalFailureHelper {\ public:\ static void Execute() { statement; }\ };\ ::testing::TestPartResultArray gtest_failures;\ ::testing::internal::SingleFailureChecker gtest_checker(\ >est_failures, ::testing::TestPartResult::kFatalFailure, (substr));\ {\ ::testing::ScopedFakeTestPartResultReporter gtest_reporter(\ ::testing::ScopedFakeTestPartResultReporter:: \ INTERCEPT_ONLY_CURRENT_THREAD, >est_failures);\ GTestExpectFatalFailureHelper::Execute();\ }\ } while (::testing::internal::AlwaysFalse()) #define EXPECT_FATAL_FAILURE_ON_ALL_THREADS(statement, substr) \ do { \ class GTestExpectFatalFailureHelper {\ public:\ static void Execute() { statement; }\ };\ ::testing::TestPartResultArray gtest_failures;\ ::testing::internal::SingleFailureChecker gtest_checker(\ >est_failures, ::testing::TestPartResult::kFatalFailure, (substr));\ {\ ::testing::ScopedFakeTestPartResultReporter gtest_reporter(\ ::testing::ScopedFakeTestPartResultReporter:: \ INTERCEPT_ALL_THREADS, >est_failures);\ GTestExpectFatalFailureHelper::Execute();\ }\ } while (::testing::internal::AlwaysFalse()) // A macro for testing Google Test assertions or code that's expected to // generate Google Test non-fatal failures. It asserts that the given // statement will cause exactly one non-fatal Google Test failure with 'substr' // being part of the failure message. // // There are two different versions of this macro. EXPECT_NONFATAL_FAILURE only // affects and considers failures generated in the current thread and // EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS does the same but for all threads. // // 'statement' is allowed to reference local variables and members of // the current object. // // The verification of the assertion is done correctly even when the statement // throws an exception or aborts the current function. // // Known restrictions: // - You cannot stream a failure message to this macro. // // Note that even though the implementations of the following two // macros are much alike, we cannot refactor them to use a common // helper macro, due to some peculiarity in how the preprocessor // works. If we do that, the code won't compile when the user gives // EXPECT_NONFATAL_FAILURE() a statement that contains a macro that // expands to code containing an unprotected comma. The // AcceptsMacroThatExpandsToUnprotectedComma test in gtest_unittest.cc // catches that. // // For the same reason, we have to write // if (::testing::internal::AlwaysTrue()) { statement; } // instead of // GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) // to avoid an MSVC warning on unreachable code. #define EXPECT_NONFATAL_FAILURE(statement, substr) \ do {\ ::testing::TestPartResultArray gtest_failures;\ ::testing::internal::SingleFailureChecker gtest_checker(\ >est_failures, ::testing::TestPartResult::kNonFatalFailure, \ (substr));\ {\ ::testing::ScopedFakeTestPartResultReporter gtest_reporter(\ ::testing::ScopedFakeTestPartResultReporter:: \ INTERCEPT_ONLY_CURRENT_THREAD, >est_failures);\ if (::testing::internal::AlwaysTrue()) { statement; }\ }\ } while (::testing::internal::AlwaysFalse()) #define EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(statement, substr) \ do {\ ::testing::TestPartResultArray gtest_failures;\ ::testing::internal::SingleFailureChecker gtest_checker(\ >est_failures, ::testing::TestPartResult::kNonFatalFailure, \ (substr));\ {\ ::testing::ScopedFakeTestPartResultReporter gtest_reporter(\ ::testing::ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, \ >est_failures);\ if (::testing::internal::AlwaysTrue()) { statement; }\ }\ } while (::testing::internal::AlwaysFalse()) #endif // GTEST_INCLUDE_GTEST_GTEST_SPI_H_ #include #include #include #include #include #include #include #include #include #include #include #include // NOLINT #include #include #if GTEST_OS_LINUX // TODO(kenton@google.com): Use autoconf to detect availability of // gettimeofday(). # define GTEST_HAS_GETTIMEOFDAY_ 1 # include // NOLINT # include // NOLINT # include // NOLINT // Declares vsnprintf(). This header is not available on Windows. # include // NOLINT # include // NOLINT # include // NOLINT # include // NOLINT # include #elif GTEST_OS_SYMBIAN # define GTEST_HAS_GETTIMEOFDAY_ 1 # include // NOLINT #elif GTEST_OS_ZOS # define GTEST_HAS_GETTIMEOFDAY_ 1 # include // NOLINT // On z/OS we additionally need strings.h for strcasecmp. # include // NOLINT #elif GTEST_OS_WINDOWS_MOBILE // We are on Windows CE. # include // NOLINT #elif GTEST_OS_WINDOWS // We are on Windows proper. # include // NOLINT # include // NOLINT # include // NOLINT # include // NOLINT # if GTEST_OS_WINDOWS_MINGW // MinGW has gettimeofday() but not _ftime64(). // TODO(kenton@google.com): Use autoconf to detect availability of // gettimeofday(). // TODO(kenton@google.com): There are other ways to get the time on // Windows, like GetTickCount() or GetSystemTimeAsFileTime(). MinGW // supports these. consider using them instead. # define GTEST_HAS_GETTIMEOFDAY_ 1 # include // NOLINT # endif // GTEST_OS_WINDOWS_MINGW // cpplint thinks that the header is already included, so we want to // silence it. # include // NOLINT #else // Assume other platforms have gettimeofday(). // TODO(kenton@google.com): Use autoconf to detect availability of // gettimeofday(). # define GTEST_HAS_GETTIMEOFDAY_ 1 // cpplint thinks that the header is already included, so we want to // silence it. # include // NOLINT # include // NOLINT #endif // GTEST_OS_LINUX #if GTEST_HAS_EXCEPTIONS # include #endif #if GTEST_CAN_STREAM_RESULTS_ # include // NOLINT # include // NOLINT #endif // Indicates that this translation unit is part of Google Test's // implementation. It must come before gtest-internal-inl.h is // included, or there will be a compiler error. This trick is to // prevent a user from accidentally including gtest-internal-inl.h in // his code. #define GTEST_IMPLEMENTATION_ 1 // Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Utility functions and classes used by the Google C++ testing framework. // // Author: wan@google.com (Zhanyong Wan) // // This file contains purely Google Test's internal implementation. Please // DO NOT #INCLUDE IT IN A USER PROGRAM. #ifndef GTEST_SRC_GTEST_INTERNAL_INL_H_ #define GTEST_SRC_GTEST_INTERNAL_INL_H_ // GTEST_IMPLEMENTATION_ is defined to 1 iff the current translation unit is // part of Google Test's implementation; otherwise it's undefined. #if !GTEST_IMPLEMENTATION_ // A user is trying to include this from his code - just say no. # error "gtest-internal-inl.h is part of Google Test's internal implementation." # error "It must not be included except by Google Test itself." #endif // GTEST_IMPLEMENTATION_ #ifndef _WIN32_WCE # include #endif // !_WIN32_WCE #include #include // For strtoll/_strtoul64/malloc/free. #include // For memmove. #include #include #include #if GTEST_CAN_STREAM_RESULTS_ # include // NOLINT # include // NOLINT #endif #if GTEST_OS_WINDOWS # include // NOLINT #endif // GTEST_OS_WINDOWS namespace testing { // Declares the flags. // // We don't want the users to modify this flag in the code, but want // Google Test's own unit tests to be able to access it. Therefore we // declare it here as opposed to in gtest.h. GTEST_DECLARE_bool_(death_test_use_fork); namespace internal { // The value of GetTestTypeId() as seen from within the Google Test // library. This is solely for testing GetTestTypeId(). GTEST_API_ extern const TypeId kTestTypeIdInGoogleTest; // Names of the flags (needed for parsing Google Test flags). const char kAlsoRunDisabledTestsFlag[] = "also_run_disabled_tests"; const char kBreakOnFailureFlag[] = "break_on_failure"; const char kCatchExceptionsFlag[] = "catch_exceptions"; const char kColorFlag[] = "color"; const char kFilterFlag[] = "filter"; const char kListTestsFlag[] = "list_tests"; const char kOutputFlag[] = "output"; const char kPrintTimeFlag[] = "print_time"; const char kRandomSeedFlag[] = "random_seed"; const char kRepeatFlag[] = "repeat"; const char kShuffleFlag[] = "shuffle"; const char kStackTraceDepthFlag[] = "stack_trace_depth"; const char kStreamResultToFlag[] = "stream_result_to"; const char kThrowOnFailureFlag[] = "throw_on_failure"; // A valid random seed must be in [1, kMaxRandomSeed]. const int kMaxRandomSeed = 99999; // g_help_flag is true iff the --help flag or an equivalent form is // specified on the command line. GTEST_API_ extern bool g_help_flag; // Returns the current time in milliseconds. GTEST_API_ TimeInMillis GetTimeInMillis(); // Returns true iff Google Test should use colors in the output. GTEST_API_ bool ShouldUseColor(bool stdout_is_tty); // Formats the given time in milliseconds as seconds. GTEST_API_ std::string FormatTimeInMillisAsSeconds(TimeInMillis ms); // Converts the given time in milliseconds to a date string in the ISO 8601 // format, without the timezone information. N.B.: due to the use the // non-reentrant localtime() function, this function is not thread safe. Do // not use it in any code that can be called from multiple threads. GTEST_API_ std::string FormatEpochTimeInMillisAsIso8601(TimeInMillis ms); // Parses a string for an Int32 flag, in the form of "--flag=value". // // On success, stores the value of the flag in *value, and returns // true. On failure, returns false without changing *value. GTEST_API_ bool ParseInt32Flag( const char* str, const char* flag, Int32* value); // Returns a random seed in range [1, kMaxRandomSeed] based on the // given --gtest_random_seed flag value. inline int GetRandomSeedFromFlag(Int32 random_seed_flag) { const unsigned int raw_seed = (random_seed_flag == 0) ? static_cast(GetTimeInMillis()) : static_cast(random_seed_flag); // Normalizes the actual seed to range [1, kMaxRandomSeed] such that // it's easy to type. const int normalized_seed = static_cast((raw_seed - 1U) % static_cast(kMaxRandomSeed)) + 1; return normalized_seed; } // Returns the first valid random seed after 'seed'. The behavior is // undefined if 'seed' is invalid. The seed after kMaxRandomSeed is // considered to be 1. inline int GetNextRandomSeed(int seed) { GTEST_CHECK_(1 <= seed && seed <= kMaxRandomSeed) << "Invalid random seed " << seed << " - must be in [1, " << kMaxRandomSeed << "]."; const int next_seed = seed + 1; return (next_seed > kMaxRandomSeed) ? 1 : next_seed; } // This class saves the values of all Google Test flags in its c'tor, and // restores them in its d'tor. class GTestFlagSaver { public: // The c'tor. GTestFlagSaver() { also_run_disabled_tests_ = GTEST_FLAG(also_run_disabled_tests); break_on_failure_ = GTEST_FLAG(break_on_failure); catch_exceptions_ = GTEST_FLAG(catch_exceptions); color_ = GTEST_FLAG(color); death_test_style_ = GTEST_FLAG(death_test_style); death_test_use_fork_ = GTEST_FLAG(death_test_use_fork); filter_ = GTEST_FLAG(filter); internal_run_death_test_ = GTEST_FLAG(internal_run_death_test); list_tests_ = GTEST_FLAG(list_tests); output_ = GTEST_FLAG(output); print_time_ = GTEST_FLAG(print_time); random_seed_ = GTEST_FLAG(random_seed); repeat_ = GTEST_FLAG(repeat); shuffle_ = GTEST_FLAG(shuffle); stack_trace_depth_ = GTEST_FLAG(stack_trace_depth); stream_result_to_ = GTEST_FLAG(stream_result_to); throw_on_failure_ = GTEST_FLAG(throw_on_failure); } // The d'tor is not virtual. DO NOT INHERIT FROM THIS CLASS. ~GTestFlagSaver() { GTEST_FLAG(also_run_disabled_tests) = also_run_disabled_tests_; GTEST_FLAG(break_on_failure) = break_on_failure_; GTEST_FLAG(catch_exceptions) = catch_exceptions_; GTEST_FLAG(color) = color_; GTEST_FLAG(death_test_style) = death_test_style_; GTEST_FLAG(death_test_use_fork) = death_test_use_fork_; GTEST_FLAG(filter) = filter_; GTEST_FLAG(internal_run_death_test) = internal_run_death_test_; GTEST_FLAG(list_tests) = list_tests_; GTEST_FLAG(output) = output_; GTEST_FLAG(print_time) = print_time_; GTEST_FLAG(random_seed) = random_seed_; GTEST_FLAG(repeat) = repeat_; GTEST_FLAG(shuffle) = shuffle_; GTEST_FLAG(stack_trace_depth) = stack_trace_depth_; GTEST_FLAG(stream_result_to) = stream_result_to_; GTEST_FLAG(throw_on_failure) = throw_on_failure_; } private: // Fields for saving the original values of flags. bool also_run_disabled_tests_; bool break_on_failure_; bool catch_exceptions_; std::string color_; std::string death_test_style_; bool death_test_use_fork_; std::string filter_; std::string internal_run_death_test_; bool list_tests_; std::string output_; bool print_time_; internal::Int32 random_seed_; internal::Int32 repeat_; bool shuffle_; internal::Int32 stack_trace_depth_; std::string stream_result_to_; bool throw_on_failure_; } GTEST_ATTRIBUTE_UNUSED_; // Converts a Unicode code point to a narrow string in UTF-8 encoding. // code_point parameter is of type UInt32 because wchar_t may not be // wide enough to contain a code point. // If the code_point is not a valid Unicode code point // (i.e. outside of Unicode range U+0 to U+10FFFF) it will be converted // to "(Invalid Unicode 0xXXXXXXXX)". GTEST_API_ std::string CodePointToUtf8(UInt32 code_point); // Converts a wide string to a narrow string in UTF-8 encoding. // The wide string is assumed to have the following encoding: // UTF-16 if sizeof(wchar_t) == 2 (on Windows, Cygwin, Symbian OS) // UTF-32 if sizeof(wchar_t) == 4 (on Linux) // Parameter str points to a null-terminated wide string. // Parameter num_chars may additionally limit the number // of wchar_t characters processed. -1 is used when the entire string // should be processed. // If the string contains code points that are not valid Unicode code points // (i.e. outside of Unicode range U+0 to U+10FFFF) they will be output // as '(Invalid Unicode 0xXXXXXXXX)'. If the string is in UTF16 encoding // and contains invalid UTF-16 surrogate pairs, values in those pairs // will be encoded as individual Unicode characters from Basic Normal Plane. GTEST_API_ std::string WideStringToUtf8(const wchar_t* str, int num_chars); // Reads the GTEST_SHARD_STATUS_FILE environment variable, and creates the file // if the variable is present. If a file already exists at this location, this // function will write over it. If the variable is present, but the file cannot // be created, prints an error and exits. void WriteToShardStatusFileIfNeeded(); // Checks whether sharding is enabled by examining the relevant // environment variable values. If the variables are present, // but inconsistent (e.g., shard_index >= total_shards), prints // an error and exits. If in_subprocess_for_death_test, sharding is // disabled because it must only be applied to the original test // process. Otherwise, we could filter out death tests we intended to execute. GTEST_API_ bool ShouldShard(const char* total_shards_str, const char* shard_index_str, bool in_subprocess_for_death_test); // Parses the environment variable var as an Int32. If it is unset, // returns default_val. If it is not an Int32, prints an error and // and aborts. GTEST_API_ Int32 Int32FromEnvOrDie(const char* env_var, Int32 default_val); // Given the total number of shards, the shard index, and the test id, // returns true iff the test should be run on this shard. The test id is // some arbitrary but unique non-negative integer assigned to each test // method. Assumes that 0 <= shard_index < total_shards. GTEST_API_ bool ShouldRunTestOnShard( int total_shards, int shard_index, int test_id); // STL container utilities. // Returns the number of elements in the given container that satisfy // the given predicate. template inline int CountIf(const Container& c, Predicate predicate) { // Implemented as an explicit loop since std::count_if() in libCstd on // Solaris has a non-standard signature. int count = 0; for (typename Container::const_iterator it = c.begin(); it != c.end(); ++it) { if (predicate(*it)) ++count; } return count; } // Applies a function/functor to each element in the container. template void ForEach(const Container& c, Functor functor) { std::for_each(c.begin(), c.end(), functor); } // Returns the i-th element of the vector, or default_value if i is not // in range [0, v.size()). template inline E GetElementOr(const std::vector& v, int i, E default_value) { return (i < 0 || i >= static_cast(v.size())) ? default_value : v[i]; } // Performs an in-place shuffle of a range of the vector's elements. // 'begin' and 'end' are element indices as an STL-style range; // i.e. [begin, end) are shuffled, where 'end' == size() means to // shuffle to the end of the vector. template void ShuffleRange(internal::Random* random, int begin, int end, std::vector* v) { const int size = static_cast(v->size()); GTEST_CHECK_(0 <= begin && begin <= size) << "Invalid shuffle range start " << begin << ": must be in range [0, " << size << "]."; GTEST_CHECK_(begin <= end && end <= size) << "Invalid shuffle range finish " << end << ": must be in range [" << begin << ", " << size << "]."; // Fisher-Yates shuffle, from // http://en.wikipedia.org/wiki/Fisher-Yates_shuffle for (int range_width = end - begin; range_width >= 2; range_width--) { const int last_in_range = begin + range_width - 1; const int selected = begin + random->Generate(range_width); std::swap((*v)[selected], (*v)[last_in_range]); } } // Performs an in-place shuffle of the vector's elements. template inline void Shuffle(internal::Random* random, std::vector* v) { ShuffleRange(random, 0, static_cast(v->size()), v); } // A function for deleting an object. Handy for being used as a // functor. template static void Delete(T* x) { delete x; } // A predicate that checks the key of a TestProperty against a known key. // // TestPropertyKeyIs is copyable. class TestPropertyKeyIs { public: // Constructor. // // TestPropertyKeyIs has NO default constructor. explicit TestPropertyKeyIs(const std::string& key) : key_(key) {} // Returns true iff the test name of test property matches on key_. bool operator()(const TestProperty& test_property) const { return test_property.key() == key_; } private: std::string key_; }; // Class UnitTestOptions. // // This class contains functions for processing options the user // specifies when running the tests. It has only static members. // // In most cases, the user can specify an option using either an // environment variable or a command line flag. E.g. you can set the // test filter using either GTEST_FILTER or --gtest_filter. If both // the variable and the flag are present, the latter overrides the // former. class GTEST_API_ UnitTestOptions { public: // Functions for processing the gtest_output flag. // Returns the output format, or "" for normal printed output. static std::string GetOutputFormat(); // Returns the absolute path of the requested output file, or the // default (test_detail.xml in the original working directory) if // none was explicitly specified. static std::string GetAbsolutePathToOutputFile(); // Functions for processing the gtest_filter flag. // Returns true iff the wildcard pattern matches the string. The // first ':' or '\0' character in pattern marks the end of it. // // This recursive algorithm isn't very efficient, but is clear and // works well enough for matching test names, which are short. static bool PatternMatchesString(const char *pattern, const char *str); // Returns true iff the user-specified filter matches the test case // name and the test name. static bool FilterMatchesTest(const std::string &test_case_name, const std::string &test_name); #if GTEST_OS_WINDOWS // Function for supporting the gtest_catch_exception flag. // Returns EXCEPTION_EXECUTE_HANDLER if Google Test should handle the // given SEH exception, or EXCEPTION_CONTINUE_SEARCH otherwise. // This function is useful as an __except condition. static int GTestShouldProcessSEH(DWORD exception_code); #endif // GTEST_OS_WINDOWS // Returns true if "name" matches the ':' separated list of glob-style // filters in "filter". static bool MatchesFilter(const std::string& name, const char* filter); }; // Returns the current application's name, removing directory path if that // is present. Used by UnitTestOptions::GetOutputFile. GTEST_API_ FilePath GetCurrentExecutableName(); // The role interface for getting the OS stack trace as a string. class OsStackTraceGetterInterface { public: OsStackTraceGetterInterface() {} virtual ~OsStackTraceGetterInterface() {} // Returns the current OS stack trace as an std::string. Parameters: // // max_depth - the maximum number of stack frames to be included // in the trace. // skip_count - the number of top frames to be skipped; doesn't count // against max_depth. virtual string CurrentStackTrace(int max_depth, int skip_count) = 0; // UponLeavingGTest() should be called immediately before Google Test calls // user code. It saves some information about the current stack that // CurrentStackTrace() will use to find and hide Google Test stack frames. virtual void UponLeavingGTest() = 0; private: GTEST_DISALLOW_COPY_AND_ASSIGN_(OsStackTraceGetterInterface); }; // A working implementation of the OsStackTraceGetterInterface interface. class OsStackTraceGetter : public OsStackTraceGetterInterface { public: OsStackTraceGetter() : caller_frame_(NULL) {} virtual string CurrentStackTrace(int max_depth, int skip_count) GTEST_LOCK_EXCLUDED_(mutex_); virtual void UponLeavingGTest() GTEST_LOCK_EXCLUDED_(mutex_); // This string is inserted in place of stack frames that are part of // Google Test's implementation. static const char* const kElidedFramesMarker; private: Mutex mutex_; // protects all internal state // We save the stack frame below the frame that calls user code. // We do this because the address of the frame immediately below // the user code changes between the call to UponLeavingGTest() // and any calls to CurrentStackTrace() from within the user code. void* caller_frame_; GTEST_DISALLOW_COPY_AND_ASSIGN_(OsStackTraceGetter); }; // Information about a Google Test trace point. struct TraceInfo { const char* file; int line; std::string message; }; // This is the default global test part result reporter used in UnitTestImpl. // This class should only be used by UnitTestImpl. class DefaultGlobalTestPartResultReporter : public TestPartResultReporterInterface { public: explicit DefaultGlobalTestPartResultReporter(UnitTestImpl* unit_test); // Implements the TestPartResultReporterInterface. Reports the test part // result in the current test. virtual void ReportTestPartResult(const TestPartResult& result); private: UnitTestImpl* const unit_test_; GTEST_DISALLOW_COPY_AND_ASSIGN_(DefaultGlobalTestPartResultReporter); }; // This is the default per thread test part result reporter used in // UnitTestImpl. This class should only be used by UnitTestImpl. class DefaultPerThreadTestPartResultReporter : public TestPartResultReporterInterface { public: explicit DefaultPerThreadTestPartResultReporter(UnitTestImpl* unit_test); // Implements the TestPartResultReporterInterface. The implementation just // delegates to the current global test part result reporter of *unit_test_. virtual void ReportTestPartResult(const TestPartResult& result); private: UnitTestImpl* const unit_test_; GTEST_DISALLOW_COPY_AND_ASSIGN_(DefaultPerThreadTestPartResultReporter); }; // The private implementation of the UnitTest class. We don't protect // the methods under a mutex, as this class is not accessible by a // user and the UnitTest class that delegates work to this class does // proper locking. class GTEST_API_ UnitTestImpl { public: explicit UnitTestImpl(UnitTest* parent); virtual ~UnitTestImpl(); // There are two different ways to register your own TestPartResultReporter. // You can register your own repoter to listen either only for test results // from the current thread or for results from all threads. // By default, each per-thread test result repoter just passes a new // TestPartResult to the global test result reporter, which registers the // test part result for the currently running test. // Returns the global test part result reporter. TestPartResultReporterInterface* GetGlobalTestPartResultReporter(); // Sets the global test part result reporter. void SetGlobalTestPartResultReporter( TestPartResultReporterInterface* reporter); // Returns the test part result reporter for the current thread. TestPartResultReporterInterface* GetTestPartResultReporterForCurrentThread(); // Sets the test part result reporter for the current thread. void SetTestPartResultReporterForCurrentThread( TestPartResultReporterInterface* reporter); // Gets the number of successful test cases. int successful_test_case_count() const; // Gets the number of failed test cases. int failed_test_case_count() const; // Gets the number of all test cases. int total_test_case_count() const; // Gets the number of all test cases that contain at least one test // that should run. int test_case_to_run_count() const; // Gets the number of successful tests. int successful_test_count() const; // Gets the number of failed tests. int failed_test_count() const; // Gets the number of disabled tests that will be reported in the XML report. int reportable_disabled_test_count() const; // Gets the number of disabled tests. int disabled_test_count() const; // Gets the number of tests to be printed in the XML report. int reportable_test_count() const; // Gets the number of all tests. int total_test_count() const; // Gets the number of tests that should run. int test_to_run_count() const; // Gets the time of the test program start, in ms from the start of the // UNIX epoch. TimeInMillis start_timestamp() const { return start_timestamp_; } // Gets the elapsed time, in milliseconds. TimeInMillis elapsed_time() const { return elapsed_time_; } // Returns true iff the unit test passed (i.e. all test cases passed). bool Passed() const { return !Failed(); } // Returns true iff the unit test failed (i.e. some test case failed // or something outside of all tests failed). bool Failed() const { return failed_test_case_count() > 0 || ad_hoc_test_result()->Failed(); } // Gets the i-th test case among all the test cases. i can range from 0 to // total_test_case_count() - 1. If i is not in that range, returns NULL. const TestCase* GetTestCase(int i) const { const int index = GetElementOr(test_case_indices_, i, -1); return index < 0 ? NULL : test_cases_[i]; } // Gets the i-th test case among all the test cases. i can range from 0 to // total_test_case_count() - 1. If i is not in that range, returns NULL. TestCase* GetMutableTestCase(int i) { const int index = GetElementOr(test_case_indices_, i, -1); return index < 0 ? NULL : test_cases_[index]; } // Provides access to the event listener list. TestEventListeners* listeners() { return &listeners_; } // Returns the TestResult for the test that's currently running, or // the TestResult for the ad hoc test if no test is running. TestResult* current_test_result(); // Returns the TestResult for the ad hoc test. const TestResult* ad_hoc_test_result() const { return &ad_hoc_test_result_; } // Sets the OS stack trace getter. // // Does nothing if the input and the current OS stack trace getter // are the same; otherwise, deletes the old getter and makes the // input the current getter. void set_os_stack_trace_getter(OsStackTraceGetterInterface* getter); // Returns the current OS stack trace getter if it is not NULL; // otherwise, creates an OsStackTraceGetter, makes it the current // getter, and returns it. OsStackTraceGetterInterface* os_stack_trace_getter(); // Returns the current OS stack trace as an std::string. // // The maximum number of stack frames to be included is specified by // the gtest_stack_trace_depth flag. The skip_count parameter // specifies the number of top frames to be skipped, which doesn't // count against the number of frames to be included. // // For example, if Foo() calls Bar(), which in turn calls // CurrentOsStackTraceExceptTop(1), Foo() will be included in the // trace but Bar() and CurrentOsStackTraceExceptTop() won't. std::string CurrentOsStackTraceExceptTop(int skip_count) GTEST_NO_INLINE_; // Finds and returns a TestCase with the given name. If one doesn't // exist, creates one and returns it. // // Arguments: // // test_case_name: name of the test case // type_param: the name of the test's type parameter, or NULL if // this is not a typed or a type-parameterized test. // set_up_tc: pointer to the function that sets up the test case // tear_down_tc: pointer to the function that tears down the test case TestCase* GetTestCase(const char* test_case_name, const char* type_param, Test::SetUpTestCaseFunc set_up_tc, Test::TearDownTestCaseFunc tear_down_tc); // Adds a TestInfo to the unit test. // // Arguments: // // set_up_tc: pointer to the function that sets up the test case // tear_down_tc: pointer to the function that tears down the test case // test_info: the TestInfo object void AddTestInfo(Test::SetUpTestCaseFunc set_up_tc, Test::TearDownTestCaseFunc tear_down_tc, TestInfo* test_info) { // In order to support thread-safe death tests, we need to // remember the original working directory when the test program // was first invoked. We cannot do this in RUN_ALL_TESTS(), as // the user may have changed the current directory before calling // RUN_ALL_TESTS(). Therefore we capture the current directory in // AddTestInfo(), which is called to register a TEST or TEST_F // before main() is reached. if (original_working_dir_.IsEmpty()) { original_working_dir_.Set(FilePath::GetCurrentDir()); GTEST_CHECK_(!original_working_dir_.IsEmpty()) << "Failed to get the current working directory."; } GetTestCase(test_info->test_case_name(), test_info->type_param(), set_up_tc, tear_down_tc)->AddTestInfo(test_info); } #if GTEST_HAS_PARAM_TEST // Returns ParameterizedTestCaseRegistry object used to keep track of // value-parameterized tests and instantiate and register them. internal::ParameterizedTestCaseRegistry& parameterized_test_registry() { return parameterized_test_registry_; } #endif // GTEST_HAS_PARAM_TEST // Sets the TestCase object for the test that's currently running. void set_current_test_case(TestCase* a_current_test_case) { current_test_case_ = a_current_test_case; } // Sets the TestInfo object for the test that's currently running. If // current_test_info is NULL, the assertion results will be stored in // ad_hoc_test_result_. void set_current_test_info(TestInfo* a_current_test_info) { current_test_info_ = a_current_test_info; } // Registers all parameterized tests defined using TEST_P and // INSTANTIATE_TEST_CASE_P, creating regular tests for each test/parameter // combination. This method can be called more then once; it has guards // protecting from registering the tests more then once. If // value-parameterized tests are disabled, RegisterParameterizedTests is // present but does nothing. void RegisterParameterizedTests(); // Runs all tests in this UnitTest object, prints the result, and // returns true if all tests are successful. If any exception is // thrown during a test, this test is considered to be failed, but // the rest of the tests will still be run. bool RunAllTests(); // Clears the results of all tests, except the ad hoc tests. void ClearNonAdHocTestResult() { ForEach(test_cases_, TestCase::ClearTestCaseResult); } // Clears the results of ad-hoc test assertions. void ClearAdHocTestResult() { ad_hoc_test_result_.Clear(); } // Adds a TestProperty to the current TestResult object when invoked in a // context of a test or a test case, or to the global property set. If the // result already contains a property with the same key, the value will be // updated. void RecordProperty(const TestProperty& test_property); enum ReactionToSharding { HONOR_SHARDING_PROTOCOL, IGNORE_SHARDING_PROTOCOL }; // Matches the full name of each test against the user-specified // filter to decide whether the test should run, then records the // result in each TestCase and TestInfo object. // If shard_tests == HONOR_SHARDING_PROTOCOL, further filters tests // based on sharding variables in the environment. // Returns the number of tests that should run. int FilterTests(ReactionToSharding shard_tests); // Prints the names of the tests matching the user-specified filter flag. void ListTestsMatchingFilter(); const TestCase* current_test_case() const { return current_test_case_; } TestInfo* current_test_info() { return current_test_info_; } const TestInfo* current_test_info() const { return current_test_info_; } // Returns the vector of environments that need to be set-up/torn-down // before/after the tests are run. std::vector& environments() { return environments_; } // Getters for the per-thread Google Test trace stack. std::vector& gtest_trace_stack() { return *(gtest_trace_stack_.pointer()); } const std::vector& gtest_trace_stack() const { return gtest_trace_stack_.get(); } #if GTEST_HAS_DEATH_TEST void InitDeathTestSubprocessControlInfo() { internal_run_death_test_flag_.reset(ParseInternalRunDeathTestFlag()); } // Returns a pointer to the parsed --gtest_internal_run_death_test // flag, or NULL if that flag was not specified. // This information is useful only in a death test child process. // Must not be called before a call to InitGoogleTest. const InternalRunDeathTestFlag* internal_run_death_test_flag() const { return internal_run_death_test_flag_.get(); } // Returns a pointer to the current death test factory. internal::DeathTestFactory* death_test_factory() { return death_test_factory_.get(); } void SuppressTestEventsIfInSubprocess(); friend class ReplaceDeathTestFactory; #endif // GTEST_HAS_DEATH_TEST // Initializes the event listener performing XML output as specified by // UnitTestOptions. Must not be called before InitGoogleTest. void ConfigureXmlOutput(); #if GTEST_CAN_STREAM_RESULTS_ // Initializes the event listener for streaming test results to a socket. // Must not be called before InitGoogleTest. void ConfigureStreamingOutput(); #endif // Performs initialization dependent upon flag values obtained in // ParseGoogleTestFlagsOnly. Is called from InitGoogleTest after the call to // ParseGoogleTestFlagsOnly. In case a user neglects to call InitGoogleTest // this function is also called from RunAllTests. Since this function can be // called more than once, it has to be idempotent. void PostFlagParsingInit(); // Gets the random seed used at the start of the current test iteration. int random_seed() const { return random_seed_; } // Gets the random number generator. internal::Random* random() { return &random_; } // Shuffles all test cases, and the tests within each test case, // making sure that death tests are still run first. void ShuffleTests(); // Restores the test cases and tests to their order before the first shuffle. void UnshuffleTests(); // Returns the value of GTEST_FLAG(catch_exceptions) at the moment // UnitTest::Run() starts. bool catch_exceptions() const { return catch_exceptions_; } private: friend class ::testing::UnitTest; // Used by UnitTest::Run() to capture the state of // GTEST_FLAG(catch_exceptions) at the moment it starts. void set_catch_exceptions(bool value) { catch_exceptions_ = value; } // The UnitTest object that owns this implementation object. UnitTest* const parent_; // The working directory when the first TEST() or TEST_F() was // executed. internal::FilePath original_working_dir_; // The default test part result reporters. DefaultGlobalTestPartResultReporter default_global_test_part_result_reporter_; DefaultPerThreadTestPartResultReporter default_per_thread_test_part_result_reporter_; // Points to (but doesn't own) the global test part result reporter. TestPartResultReporterInterface* global_test_part_result_repoter_; // Protects read and write access to global_test_part_result_reporter_. internal::Mutex global_test_part_result_reporter_mutex_; // Points to (but doesn't own) the per-thread test part result reporter. internal::ThreadLocal per_thread_test_part_result_reporter_; // The vector of environments that need to be set-up/torn-down // before/after the tests are run. std::vector environments_; // The vector of TestCases in their original order. It owns the // elements in the vector. std::vector test_cases_; // Provides a level of indirection for the test case list to allow // easy shuffling and restoring the test case order. The i-th // element of this vector is the index of the i-th test case in the // shuffled order. std::vector test_case_indices_; #if GTEST_HAS_PARAM_TEST // ParameterizedTestRegistry object used to register value-parameterized // tests. internal::ParameterizedTestCaseRegistry parameterized_test_registry_; // Indicates whether RegisterParameterizedTests() has been called already. bool parameterized_tests_registered_; #endif // GTEST_HAS_PARAM_TEST // Index of the last death test case registered. Initially -1. int last_death_test_case_; // This points to the TestCase for the currently running test. It // changes as Google Test goes through one test case after another. // When no test is running, this is set to NULL and Google Test // stores assertion results in ad_hoc_test_result_. Initially NULL. TestCase* current_test_case_; // This points to the TestInfo for the currently running test. It // changes as Google Test goes through one test after another. When // no test is running, this is set to NULL and Google Test stores // assertion results in ad_hoc_test_result_. Initially NULL. TestInfo* current_test_info_; // Normally, a user only writes assertions inside a TEST or TEST_F, // or inside a function called by a TEST or TEST_F. Since Google // Test keeps track of which test is current running, it can // associate such an assertion with the test it belongs to. // // If an assertion is encountered when no TEST or TEST_F is running, // Google Test attributes the assertion result to an imaginary "ad hoc" // test, and records the result in ad_hoc_test_result_. TestResult ad_hoc_test_result_; // The list of event listeners that can be used to track events inside // Google Test. TestEventListeners listeners_; // The OS stack trace getter. Will be deleted when the UnitTest // object is destructed. By default, an OsStackTraceGetter is used, // but the user can set this field to use a custom getter if that is // desired. OsStackTraceGetterInterface* os_stack_trace_getter_; // True iff PostFlagParsingInit() has been called. bool post_flag_parse_init_performed_; // The random number seed used at the beginning of the test run. int random_seed_; // Our random number generator. internal::Random random_; // The time of the test program start, in ms from the start of the // UNIX epoch. TimeInMillis start_timestamp_; // How long the test took to run, in milliseconds. TimeInMillis elapsed_time_; #if GTEST_HAS_DEATH_TEST // The decomposed components of the gtest_internal_run_death_test flag, // parsed when RUN_ALL_TESTS is called. internal::scoped_ptr internal_run_death_test_flag_; internal::scoped_ptr death_test_factory_; #endif // GTEST_HAS_DEATH_TEST // A per-thread stack of traces created by the SCOPED_TRACE() macro. internal::ThreadLocal > gtest_trace_stack_; // The value of GTEST_FLAG(catch_exceptions) at the moment RunAllTests() // starts. bool catch_exceptions_; GTEST_DISALLOW_COPY_AND_ASSIGN_(UnitTestImpl); }; // class UnitTestImpl // Convenience function for accessing the global UnitTest // implementation object. inline UnitTestImpl* GetUnitTestImpl() { return UnitTest::GetInstance()->impl(); } #if GTEST_USES_SIMPLE_RE // Internal helper functions for implementing the simple regular // expression matcher. GTEST_API_ bool IsInSet(char ch, const char* str); GTEST_API_ bool IsAsciiDigit(char ch); GTEST_API_ bool IsAsciiPunct(char ch); GTEST_API_ bool IsRepeat(char ch); GTEST_API_ bool IsAsciiWhiteSpace(char ch); GTEST_API_ bool IsAsciiWordChar(char ch); GTEST_API_ bool IsValidEscape(char ch); GTEST_API_ bool AtomMatchesChar(bool escaped, char pattern, char ch); GTEST_API_ bool ValidateRegex(const char* regex); GTEST_API_ bool MatchRegexAtHead(const char* regex, const char* str); GTEST_API_ bool MatchRepetitionAndRegexAtHead( bool escaped, char ch, char repeat, const char* regex, const char* str); GTEST_API_ bool MatchRegexAnywhere(const char* regex, const char* str); #endif // GTEST_USES_SIMPLE_RE // Parses the command line for Google Test flags, without initializing // other parts of Google Test. GTEST_API_ void ParseGoogleTestFlagsOnly(int* argc, char** argv); GTEST_API_ void ParseGoogleTestFlagsOnly(int* argc, wchar_t** argv); #if GTEST_HAS_DEATH_TEST // Returns the message describing the last system error, regardless of the // platform. GTEST_API_ std::string GetLastErrnoDescription(); # if GTEST_OS_WINDOWS // Provides leak-safe Windows kernel handle ownership. class AutoHandle { public: AutoHandle() : handle_(INVALID_HANDLE_VALUE) {} explicit AutoHandle(HANDLE handle) : handle_(handle) {} ~AutoHandle() { Reset(); } HANDLE Get() const { return handle_; } void Reset() { Reset(INVALID_HANDLE_VALUE); } void Reset(HANDLE handle) { if (handle != handle_) { if (handle_ != INVALID_HANDLE_VALUE) ::CloseHandle(handle_); handle_ = handle; } } private: HANDLE handle_; GTEST_DISALLOW_COPY_AND_ASSIGN_(AutoHandle); }; # endif // GTEST_OS_WINDOWS // Attempts to parse a string into a positive integer pointed to by the // number parameter. Returns true if that is possible. // GTEST_HAS_DEATH_TEST implies that we have ::std::string, so we can use // it here. template bool ParseNaturalNumber(const ::std::string& str, Integer* number) { // Fail fast if the given string does not begin with a digit; // this bypasses strtoXXX's "optional leading whitespace and plus // or minus sign" semantics, which are undesirable here. if (str.empty() || !IsDigit(str[0])) { return false; } errno = 0; char* end; // BiggestConvertible is the largest integer type that system-provided // string-to-number conversion routines can return. # if GTEST_OS_WINDOWS && !defined(__GNUC__) // MSVC and C++ Builder define __int64 instead of the standard long long. typedef unsigned __int64 BiggestConvertible; const BiggestConvertible parsed = _strtoui64(str.c_str(), &end, 10); # else typedef unsigned long long BiggestConvertible; // NOLINT const BiggestConvertible parsed = strtoull(str.c_str(), &end, 10); # endif // GTEST_OS_WINDOWS && !defined(__GNUC__) const bool parse_success = *end == '\0' && errno == 0; // TODO(vladl@google.com): Convert this to compile time assertion when it is // available. GTEST_CHECK_(sizeof(Integer) <= sizeof(parsed)); const Integer result = static_cast(parsed); if (parse_success && static_cast(result) == parsed) { *number = result; return true; } return false; } #endif // GTEST_HAS_DEATH_TEST // TestResult contains some private methods that should be hidden from // Google Test user but are required for testing. This class allow our tests // to access them. // // This class is supplied only for the purpose of testing Google Test's own // constructs. Do not use it in user tests, either directly or indirectly. class TestResultAccessor { public: static void RecordProperty(TestResult* test_result, const std::string& xml_element, const TestProperty& property) { test_result->RecordProperty(xml_element, property); } static void ClearTestPartResults(TestResult* test_result) { test_result->ClearTestPartResults(); } static const std::vector& test_part_results( const TestResult& test_result) { return test_result.test_part_results(); } }; #if GTEST_CAN_STREAM_RESULTS_ // Streams test results to the given port on the given host machine. class StreamingListener : public EmptyTestEventListener { public: // Abstract base class for writing strings to a socket. class AbstractSocketWriter { public: virtual ~AbstractSocketWriter() {} // Sends a string to the socket. virtual void Send(const string& message) = 0; // Closes the socket. virtual void CloseConnection() {} // Sends a string and a newline to the socket. void SendLn(const string& message) { Send(message + "\n"); } }; // Concrete class for actually writing strings to a socket. class SocketWriter : public AbstractSocketWriter { public: SocketWriter(const string& host, const string& port) : sockfd_(-1), host_name_(host), port_num_(port) { MakeConnection(); } virtual ~SocketWriter() { if (sockfd_ != -1) CloseConnection(); } // Sends a string to the socket. virtual void Send(const string& message) { GTEST_CHECK_(sockfd_ != -1) << "Send() can be called only when there is a connection."; const int len = static_cast(message.length()); if (write(sockfd_, message.c_str(), len) != len) { GTEST_LOG_(WARNING) << "stream_result_to: failed to stream to " << host_name_ << ":" << port_num_; } } private: // Creates a client socket and connects to the server. void MakeConnection(); // Closes the socket. void CloseConnection() { GTEST_CHECK_(sockfd_ != -1) << "CloseConnection() can be called only when there is a connection."; close(sockfd_); sockfd_ = -1; } int sockfd_; // socket file descriptor const string host_name_; const string port_num_; GTEST_DISALLOW_COPY_AND_ASSIGN_(SocketWriter); }; // class SocketWriter // Escapes '=', '&', '%', and '\n' characters in str as "%xx". static string UrlEncode(const char* str); StreamingListener(const string& host, const string& port) : socket_writer_(new SocketWriter(host, port)) { Start(); } explicit StreamingListener(AbstractSocketWriter* socket_writer) : socket_writer_(socket_writer) { Start(); } void OnTestProgramStart(const UnitTest& /* unit_test */) { SendLn("event=TestProgramStart"); } void OnTestProgramEnd(const UnitTest& unit_test) { // Note that Google Test current only report elapsed time for each // test iteration, not for the entire test program. SendLn("event=TestProgramEnd&passed=" + FormatBool(unit_test.Passed())); // Notify the streaming server to stop. socket_writer_->CloseConnection(); } void OnTestIterationStart(const UnitTest& /* unit_test */, int iteration) { SendLn("event=TestIterationStart&iteration=" + StreamableToString(iteration)); } void OnTestIterationEnd(const UnitTest& unit_test, int /* iteration */) { SendLn("event=TestIterationEnd&passed=" + FormatBool(unit_test.Passed()) + "&elapsed_time=" + StreamableToString(unit_test.elapsed_time()) + "ms"); } void OnTestCaseStart(const TestCase& test_case) { SendLn(std::string("event=TestCaseStart&name=") + test_case.name()); } void OnTestCaseEnd(const TestCase& test_case) { SendLn("event=TestCaseEnd&passed=" + FormatBool(test_case.Passed()) + "&elapsed_time=" + StreamableToString(test_case.elapsed_time()) + "ms"); } void OnTestStart(const TestInfo& test_info) { SendLn(std::string("event=TestStart&name=") + test_info.name()); } void OnTestEnd(const TestInfo& test_info) { SendLn("event=TestEnd&passed=" + FormatBool((test_info.result())->Passed()) + "&elapsed_time=" + StreamableToString((test_info.result())->elapsed_time()) + "ms"); } void OnTestPartResult(const TestPartResult& test_part_result) { const char* file_name = test_part_result.file_name(); if (file_name == NULL) file_name = ""; SendLn("event=TestPartResult&file=" + UrlEncode(file_name) + "&line=" + StreamableToString(test_part_result.line_number()) + "&message=" + UrlEncode(test_part_result.message())); } private: // Sends the given message and a newline to the socket. void SendLn(const string& message) { socket_writer_->SendLn(message); } // Called at the start of streaming to notify the receiver what // protocol we are using. void Start() { SendLn("gtest_streaming_protocol_version=1.0"); } string FormatBool(bool value) { return value ? "1" : "0"; } const scoped_ptr socket_writer_; GTEST_DISALLOW_COPY_AND_ASSIGN_(StreamingListener); }; // class StreamingListener #endif // GTEST_CAN_STREAM_RESULTS_ } // namespace internal } // namespace testing #endif // GTEST_SRC_GTEST_INTERNAL_INL_H_ #undef GTEST_IMPLEMENTATION_ #if GTEST_OS_WINDOWS # define vsnprintf _vsnprintf #endif // GTEST_OS_WINDOWS namespace testing { using internal::CountIf; using internal::ForEach; using internal::GetElementOr; using internal::Shuffle; // Constants. // A test whose test case name or test name matches this filter is // disabled and not run. static const char kDisableTestFilter[] = "DISABLED_*:*/DISABLED_*"; // A test case whose name matches this filter is considered a death // test case and will be run before test cases whose name doesn't // match this filter. static const char kDeathTestCaseFilter[] = "*DeathTest:*DeathTest/*"; // A test filter that matches everything. static const char kUniversalFilter[] = "*"; // The default output file for XML output. static const char kDefaultOutputFile[] = "test_detail.xml"; // The environment variable name for the test shard index. static const char kTestShardIndex[] = "GTEST_SHARD_INDEX"; // The environment variable name for the total number of test shards. static const char kTestTotalShards[] = "GTEST_TOTAL_SHARDS"; // The environment variable name for the test shard status file. static const char kTestShardStatusFile[] = "GTEST_SHARD_STATUS_FILE"; namespace internal { // The text used in failure messages to indicate the start of the // stack trace. const char kStackTraceMarker[] = "\nStack trace:\n"; // g_help_flag is true iff the --help flag or an equivalent form is // specified on the command line. bool g_help_flag = false; } // namespace internal static const char* GetDefaultFilter() { return kUniversalFilter; } GTEST_DEFINE_bool_( also_run_disabled_tests, internal::BoolFromGTestEnv("also_run_disabled_tests", false), "Run disabled tests too, in addition to the tests normally being run."); GTEST_DEFINE_bool_( break_on_failure, internal::BoolFromGTestEnv("break_on_failure", false), "True iff a failed assertion should be a debugger break-point."); GTEST_DEFINE_bool_( catch_exceptions, internal::BoolFromGTestEnv("catch_exceptions", true), "True iff " GTEST_NAME_ " should catch exceptions and treat them as test failures."); GTEST_DEFINE_string_( color, internal::StringFromGTestEnv("color", "auto"), "Whether to use colors in the output. Valid values: yes, no, " "and auto. 'auto' means to use colors if the output is " "being sent to a terminal and the TERM environment variable " "is set to a terminal type that supports colors."); GTEST_DEFINE_string_( filter, internal::StringFromGTestEnv("filter", GetDefaultFilter()), "A colon-separated list of glob (not regex) patterns " "for filtering the tests to run, optionally followed by a " "'-' and a : separated list of negative patterns (tests to " "exclude). A test is run if it matches one of the positive " "patterns and does not match any of the negative patterns."); GTEST_DEFINE_bool_(list_tests, false, "List all tests without running them."); GTEST_DEFINE_string_( output, internal::StringFromGTestEnv("output", ""), "A format (currently must be \"xml\"), optionally followed " "by a colon and an output file name or directory. A directory " "is indicated by a trailing pathname separator. " "Examples: \"xml:filename.xml\", \"xml::directoryname/\". " "If a directory is specified, output files will be created " "within that directory, with file-names based on the test " "executable's name and, if necessary, made unique by adding " "digits."); GTEST_DEFINE_bool_( print_time, internal::BoolFromGTestEnv("print_time", true), "True iff " GTEST_NAME_ " should display elapsed time in text output."); GTEST_DEFINE_int32_( random_seed, internal::Int32FromGTestEnv("random_seed", 0), "Random number seed to use when shuffling test orders. Must be in range " "[1, 99999], or 0 to use a seed based on the current time."); GTEST_DEFINE_int32_( repeat, internal::Int32FromGTestEnv("repeat", 1), "How many times to repeat each test. Specify a negative number " "for repeating forever. Useful for shaking out flaky tests."); GTEST_DEFINE_bool_( show_internal_stack_frames, false, "True iff " GTEST_NAME_ " should include internal stack frames when " "printing test failure stack traces."); GTEST_DEFINE_bool_( shuffle, internal::BoolFromGTestEnv("shuffle", false), "True iff " GTEST_NAME_ " should randomize tests' order on every run."); GTEST_DEFINE_int32_( stack_trace_depth, internal::Int32FromGTestEnv("stack_trace_depth", kMaxStackTraceDepth), "The maximum number of stack frames to print when an " "assertion fails. The valid range is 0 through 100, inclusive."); GTEST_DEFINE_string_( stream_result_to, internal::StringFromGTestEnv("stream_result_to", ""), "This flag specifies the host name and the port number on which to stream " "test results. Example: \"localhost:555\". The flag is effective only on " "Linux."); GTEST_DEFINE_bool_( throw_on_failure, internal::BoolFromGTestEnv("throw_on_failure", false), "When this flag is specified, a failed assertion will throw an exception " "if exceptions are enabled or exit the program with a non-zero code " "otherwise."); namespace internal { // Generates a random number from [0, range), using a Linear // Congruential Generator (LCG). Crashes if 'range' is 0 or greater // than kMaxRange. UInt32 Random::Generate(UInt32 range) { // These constants are the same as are used in glibc's rand(3). state_ = (1103515245U*state_ + 12345U) % kMaxRange; GTEST_CHECK_(range > 0) << "Cannot generate a number in the range [0, 0)."; GTEST_CHECK_(range <= kMaxRange) << "Generation of a number in [0, " << range << ") was requested, " << "but this can only generate numbers in [0, " << kMaxRange << ")."; // Converting via modulus introduces a bit of downward bias, but // it's simple, and a linear congruential generator isn't too good // to begin with. return state_ % range; } // GTestIsInitialized() returns true iff the user has initialized // Google Test. Useful for catching the user mistake of not initializing // Google Test before calling RUN_ALL_TESTS(). // // A user must call testing::InitGoogleTest() to initialize Google // Test. g_init_gtest_count is set to the number of times // InitGoogleTest() has been called. We don't protect this variable // under a mutex as it is only accessed in the main thread. GTEST_API_ int g_init_gtest_count = 0; static bool GTestIsInitialized() { return g_init_gtest_count != 0; } // Iterates over a vector of TestCases, keeping a running sum of the // results of calling a given int-returning method on each. // Returns the sum. static int SumOverTestCaseList(const std::vector& case_list, int (TestCase::*method)() const) { int sum = 0; for (size_t i = 0; i < case_list.size(); i++) { sum += (case_list[i]->*method)(); } return sum; } // Returns true iff the test case passed. static bool TestCasePassed(const TestCase* test_case) { return test_case->should_run() && test_case->Passed(); } // Returns true iff the test case failed. static bool TestCaseFailed(const TestCase* test_case) { return test_case->should_run() && test_case->Failed(); } // Returns true iff test_case contains at least one test that should // run. static bool ShouldRunTestCase(const TestCase* test_case) { return test_case->should_run(); } // AssertHelper constructor. AssertHelper::AssertHelper(TestPartResult::Type type, const char* file, int line, const char* message) : data_(new AssertHelperData(type, file, line, message)) { } AssertHelper::~AssertHelper() { delete data_; } // Message assignment, for assertion streaming support. void AssertHelper::operator=(const Message& message) const { UnitTest::GetInstance()-> AddTestPartResult(data_->type, data_->file, data_->line, AppendUserMessage(data_->message, message), UnitTest::GetInstance()->impl() ->CurrentOsStackTraceExceptTop(1) // Skips the stack frame for this function itself. ); // NOLINT } // Mutex for linked pointers. GTEST_API_ GTEST_DEFINE_STATIC_MUTEX_(g_linked_ptr_mutex); // Application pathname gotten in InitGoogleTest. std::string g_executable_path; // Returns the current application's name, removing directory path if that // is present. FilePath GetCurrentExecutableName() { FilePath result; #if GTEST_OS_WINDOWS result.Set(FilePath(g_executable_path).RemoveExtension("exe")); #else result.Set(FilePath(g_executable_path)); #endif // GTEST_OS_WINDOWS return result.RemoveDirectoryName(); } // Functions for processing the gtest_output flag. // Returns the output format, or "" for normal printed output. std::string UnitTestOptions::GetOutputFormat() { const char* const gtest_output_flag = GTEST_FLAG(output).c_str(); if (gtest_output_flag == NULL) return std::string(""); const char* const colon = strchr(gtest_output_flag, ':'); return (colon == NULL) ? std::string(gtest_output_flag) : std::string(gtest_output_flag, colon - gtest_output_flag); } // Returns the name of the requested output file, or the default if none // was explicitly specified. std::string UnitTestOptions::GetAbsolutePathToOutputFile() { const char* const gtest_output_flag = GTEST_FLAG(output).c_str(); if (gtest_output_flag == NULL) return ""; const char* const colon = strchr(gtest_output_flag, ':'); if (colon == NULL) return internal::FilePath::ConcatPaths( internal::FilePath( UnitTest::GetInstance()->original_working_dir()), internal::FilePath(kDefaultOutputFile)).string(); internal::FilePath output_name(colon + 1); if (!output_name.IsAbsolutePath()) // TODO(wan@google.com): on Windows \some\path is not an absolute // path (as its meaning depends on the current drive), yet the // following logic for turning it into an absolute path is wrong. // Fix it. output_name = internal::FilePath::ConcatPaths( internal::FilePath(UnitTest::GetInstance()->original_working_dir()), internal::FilePath(colon + 1)); if (!output_name.IsDirectory()) return output_name.string(); internal::FilePath result(internal::FilePath::GenerateUniqueFileName( output_name, internal::GetCurrentExecutableName(), GetOutputFormat().c_str())); return result.string(); } // Returns true iff the wildcard pattern matches the string. The // first ':' or '\0' character in pattern marks the end of it. // // This recursive algorithm isn't very efficient, but is clear and // works well enough for matching test names, which are short. bool UnitTestOptions::PatternMatchesString(const char *pattern, const char *str) { switch (*pattern) { case '\0': case ':': // Either ':' or '\0' marks the end of the pattern. return *str == '\0'; case '?': // Matches any single character. return *str != '\0' && PatternMatchesString(pattern + 1, str + 1); case '*': // Matches any string (possibly empty) of characters. return (*str != '\0' && PatternMatchesString(pattern, str + 1)) || PatternMatchesString(pattern + 1, str); default: // Non-special character. Matches itself. return *pattern == *str && PatternMatchesString(pattern + 1, str + 1); } } bool UnitTestOptions::MatchesFilter( const std::string& name, const char* filter) { const char *cur_pattern = filter; for (;;) { if (PatternMatchesString(cur_pattern, name.c_str())) { return true; } // Finds the next pattern in the filter. cur_pattern = strchr(cur_pattern, ':'); // Returns if no more pattern can be found. if (cur_pattern == NULL) { return false; } // Skips the pattern separater (the ':' character). cur_pattern++; } } // Returns true iff the user-specified filter matches the test case // name and the test name. bool UnitTestOptions::FilterMatchesTest(const std::string &test_case_name, const std::string &test_name) { const std::string& full_name = test_case_name + "." + test_name.c_str(); // Split --gtest_filter at '-', if there is one, to separate into // positive filter and negative filter portions const char* const p = GTEST_FLAG(filter).c_str(); const char* const dash = strchr(p, '-'); std::string positive; std::string negative; if (dash == NULL) { positive = GTEST_FLAG(filter).c_str(); // Whole string is a positive filter negative = ""; } else { positive = std::string(p, dash); // Everything up to the dash negative = std::string(dash + 1); // Everything after the dash if (positive.empty()) { // Treat '-test1' as the same as '*-test1' positive = kUniversalFilter; } } // A filter is a colon-separated list of patterns. It matches a // test if any pattern in it matches the test. return (MatchesFilter(full_name, positive.c_str()) && !MatchesFilter(full_name, negative.c_str())); } #if GTEST_HAS_SEH // Returns EXCEPTION_EXECUTE_HANDLER if Google Test should handle the // given SEH exception, or EXCEPTION_CONTINUE_SEARCH otherwise. // This function is useful as an __except condition. int UnitTestOptions::GTestShouldProcessSEH(DWORD exception_code) { // Google Test should handle a SEH exception if: // 1. the user wants it to, AND // 2. this is not a breakpoint exception, AND // 3. this is not a C++ exception (VC++ implements them via SEH, // apparently). // // SEH exception code for C++ exceptions. // (see http://support.microsoft.com/kb/185294 for more information). const DWORD kCxxExceptionCode = 0xe06d7363; bool should_handle = true; if (!GTEST_FLAG(catch_exceptions)) should_handle = false; else if (exception_code == EXCEPTION_BREAKPOINT) should_handle = false; else if (exception_code == kCxxExceptionCode) should_handle = false; return should_handle ? EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH; } #endif // GTEST_HAS_SEH } // namespace internal // The c'tor sets this object as the test part result reporter used by // Google Test. The 'result' parameter specifies where to report the // results. Intercepts only failures from the current thread. ScopedFakeTestPartResultReporter::ScopedFakeTestPartResultReporter( TestPartResultArray* result) : intercept_mode_(INTERCEPT_ONLY_CURRENT_THREAD), result_(result) { Init(); } // The c'tor sets this object as the test part result reporter used by // Google Test. The 'result' parameter specifies where to report the // results. ScopedFakeTestPartResultReporter::ScopedFakeTestPartResultReporter( InterceptMode intercept_mode, TestPartResultArray* result) : intercept_mode_(intercept_mode), result_(result) { Init(); } void ScopedFakeTestPartResultReporter::Init() { internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); if (intercept_mode_ == INTERCEPT_ALL_THREADS) { old_reporter_ = impl->GetGlobalTestPartResultReporter(); impl->SetGlobalTestPartResultReporter(this); } else { old_reporter_ = impl->GetTestPartResultReporterForCurrentThread(); impl->SetTestPartResultReporterForCurrentThread(this); } } // The d'tor restores the test part result reporter used by Google Test // before. ScopedFakeTestPartResultReporter::~ScopedFakeTestPartResultReporter() { internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); if (intercept_mode_ == INTERCEPT_ALL_THREADS) { impl->SetGlobalTestPartResultReporter(old_reporter_); } else { impl->SetTestPartResultReporterForCurrentThread(old_reporter_); } } // Increments the test part result count and remembers the result. // This method is from the TestPartResultReporterInterface interface. void ScopedFakeTestPartResultReporter::ReportTestPartResult( const TestPartResult& result) { result_->Append(result); } namespace internal { // Returns the type ID of ::testing::Test. We should always call this // instead of GetTypeId< ::testing::Test>() to get the type ID of // testing::Test. This is to work around a suspected linker bug when // using Google Test as a framework on Mac OS X. The bug causes // GetTypeId< ::testing::Test>() to return different values depending // on whether the call is from the Google Test framework itself or // from user test code. GetTestTypeId() is guaranteed to always // return the same value, as it always calls GetTypeId<>() from the // gtest.cc, which is within the Google Test framework. TypeId GetTestTypeId() { return GetTypeId(); } // The value of GetTestTypeId() as seen from within the Google Test // library. This is solely for testing GetTestTypeId(). extern const TypeId kTestTypeIdInGoogleTest = GetTestTypeId(); // This predicate-formatter checks that 'results' contains a test part // failure of the given type and that the failure message contains the // given substring. AssertionResult HasOneFailure(const char* /* results_expr */, const char* /* type_expr */, const char* /* substr_expr */, const TestPartResultArray& results, TestPartResult::Type type, const string& substr) { const std::string expected(type == TestPartResult::kFatalFailure ? "1 fatal failure" : "1 non-fatal failure"); Message msg; if (results.size() != 1) { msg << "Expected: " << expected << "\n" << " Actual: " << results.size() << " failures"; for (int i = 0; i < results.size(); i++) { msg << "\n" << results.GetTestPartResult(i); } return AssertionFailure() << msg; } const TestPartResult& r = results.GetTestPartResult(0); if (r.type() != type) { return AssertionFailure() << "Expected: " << expected << "\n" << " Actual:\n" << r; } if (strstr(r.message(), substr.c_str()) == NULL) { return AssertionFailure() << "Expected: " << expected << " containing \"" << substr << "\"\n" << " Actual:\n" << r; } return AssertionSuccess(); } // The constructor of SingleFailureChecker remembers where to look up // test part results, what type of failure we expect, and what // substring the failure message should contain. SingleFailureChecker:: SingleFailureChecker( const TestPartResultArray* results, TestPartResult::Type type, const string& substr) : results_(results), type_(type), substr_(substr) {} // The destructor of SingleFailureChecker verifies that the given // TestPartResultArray contains exactly one failure that has the given // type and contains the given substring. If that's not the case, a // non-fatal failure will be generated. SingleFailureChecker::~SingleFailureChecker() { EXPECT_PRED_FORMAT3(HasOneFailure, *results_, type_, substr_); } DefaultGlobalTestPartResultReporter::DefaultGlobalTestPartResultReporter( UnitTestImpl* unit_test) : unit_test_(unit_test) {} void DefaultGlobalTestPartResultReporter::ReportTestPartResult( const TestPartResult& result) { unit_test_->current_test_result()->AddTestPartResult(result); unit_test_->listeners()->repeater()->OnTestPartResult(result); } DefaultPerThreadTestPartResultReporter::DefaultPerThreadTestPartResultReporter( UnitTestImpl* unit_test) : unit_test_(unit_test) {} void DefaultPerThreadTestPartResultReporter::ReportTestPartResult( const TestPartResult& result) { unit_test_->GetGlobalTestPartResultReporter()->ReportTestPartResult(result); } // Returns the global test part result reporter. TestPartResultReporterInterface* UnitTestImpl::GetGlobalTestPartResultReporter() { internal::MutexLock lock(&global_test_part_result_reporter_mutex_); return global_test_part_result_repoter_; } // Sets the global test part result reporter. void UnitTestImpl::SetGlobalTestPartResultReporter( TestPartResultReporterInterface* reporter) { internal::MutexLock lock(&global_test_part_result_reporter_mutex_); global_test_part_result_repoter_ = reporter; } // Returns the test part result reporter for the current thread. TestPartResultReporterInterface* UnitTestImpl::GetTestPartResultReporterForCurrentThread() { return per_thread_test_part_result_reporter_.get(); } // Sets the test part result reporter for the current thread. void UnitTestImpl::SetTestPartResultReporterForCurrentThread( TestPartResultReporterInterface* reporter) { per_thread_test_part_result_reporter_.set(reporter); } // Gets the number of successful test cases. int UnitTestImpl::successful_test_case_count() const { return CountIf(test_cases_, TestCasePassed); } // Gets the number of failed test cases. int UnitTestImpl::failed_test_case_count() const { return CountIf(test_cases_, TestCaseFailed); } // Gets the number of all test cases. int UnitTestImpl::total_test_case_count() const { return static_cast(test_cases_.size()); } // Gets the number of all test cases that contain at least one test // that should run. int UnitTestImpl::test_case_to_run_count() const { return CountIf(test_cases_, ShouldRunTestCase); } // Gets the number of successful tests. int UnitTestImpl::successful_test_count() const { return SumOverTestCaseList(test_cases_, &TestCase::successful_test_count); } // Gets the number of failed tests. int UnitTestImpl::failed_test_count() const { return SumOverTestCaseList(test_cases_, &TestCase::failed_test_count); } // Gets the number of disabled tests that will be reported in the XML report. int UnitTestImpl::reportable_disabled_test_count() const { return SumOverTestCaseList(test_cases_, &TestCase::reportable_disabled_test_count); } // Gets the number of disabled tests. int UnitTestImpl::disabled_test_count() const { return SumOverTestCaseList(test_cases_, &TestCase::disabled_test_count); } // Gets the number of tests to be printed in the XML report. int UnitTestImpl::reportable_test_count() const { return SumOverTestCaseList(test_cases_, &TestCase::reportable_test_count); } // Gets the number of all tests. int UnitTestImpl::total_test_count() const { return SumOverTestCaseList(test_cases_, &TestCase::total_test_count); } // Gets the number of tests that should run. int UnitTestImpl::test_to_run_count() const { return SumOverTestCaseList(test_cases_, &TestCase::test_to_run_count); } // Returns the current OS stack trace as an std::string. // // The maximum number of stack frames to be included is specified by // the gtest_stack_trace_depth flag. The skip_count parameter // specifies the number of top frames to be skipped, which doesn't // count against the number of frames to be included. // // For example, if Foo() calls Bar(), which in turn calls // CurrentOsStackTraceExceptTop(1), Foo() will be included in the // trace but Bar() and CurrentOsStackTraceExceptTop() won't. std::string UnitTestImpl::CurrentOsStackTraceExceptTop(int skip_count) { (void)skip_count; return ""; } // Returns the current time in milliseconds. TimeInMillis GetTimeInMillis() { #if GTEST_OS_WINDOWS_MOBILE || defined(__BORLANDC__) // Difference between 1970-01-01 and 1601-01-01 in milliseconds. // http://analogous.blogspot.com/2005/04/epoch.html const TimeInMillis kJavaEpochToWinFileTimeDelta = static_cast(116444736UL) * 100000UL; const DWORD kTenthMicrosInMilliSecond = 10000; SYSTEMTIME now_systime; FILETIME now_filetime; ULARGE_INTEGER now_int64; // TODO(kenton@google.com): Shouldn't this just use // GetSystemTimeAsFileTime()? GetSystemTime(&now_systime); if (SystemTimeToFileTime(&now_systime, &now_filetime)) { now_int64.LowPart = now_filetime.dwLowDateTime; now_int64.HighPart = now_filetime.dwHighDateTime; now_int64.QuadPart = (now_int64.QuadPart / kTenthMicrosInMilliSecond) - kJavaEpochToWinFileTimeDelta; return now_int64.QuadPart; } return 0; #elif GTEST_OS_WINDOWS && !GTEST_HAS_GETTIMEOFDAY_ __timeb64 now; # ifdef _MSC_VER // MSVC 8 deprecates _ftime64(), so we want to suppress warning 4996 // (deprecated function) there. // TODO(kenton@google.com): Use GetTickCount()? Or use // SystemTimeToFileTime() # pragma warning(push) // Saves the current warning state. # pragma warning(disable:4996) // Temporarily disables warning 4996. _ftime64(&now); # pragma warning(pop) // Restores the warning state. # else _ftime64(&now); # endif // _MSC_VER return static_cast(now.time) * 1000 + now.millitm; #elif GTEST_HAS_GETTIMEOFDAY_ struct timeval now; gettimeofday(&now, NULL); return static_cast(now.tv_sec) * 1000 + now.tv_usec / 1000; #else # error "Don't know how to get the current time on your system." #endif } // Utilities // class String. #if GTEST_OS_WINDOWS_MOBILE // Creates a UTF-16 wide string from the given ANSI string, allocating // memory using new. The caller is responsible for deleting the return // value using delete[]. Returns the wide string, or NULL if the // input is NULL. LPCWSTR String::AnsiToUtf16(const char* ansi) { if (!ansi) return NULL; const int length = strlen(ansi); const int unicode_length = MultiByteToWideChar(CP_ACP, 0, ansi, length, NULL, 0); WCHAR* unicode = new WCHAR[unicode_length + 1]; MultiByteToWideChar(CP_ACP, 0, ansi, length, unicode, unicode_length); unicode[unicode_length] = 0; return unicode; } // Creates an ANSI string from the given wide string, allocating // memory using new. The caller is responsible for deleting the return // value using delete[]. Returns the ANSI string, or NULL if the // input is NULL. const char* String::Utf16ToAnsi(LPCWSTR utf16_str) { if (!utf16_str) return NULL; const int ansi_length = WideCharToMultiByte(CP_ACP, 0, utf16_str, -1, NULL, 0, NULL, NULL); char* ansi = new char[ansi_length + 1]; WideCharToMultiByte(CP_ACP, 0, utf16_str, -1, ansi, ansi_length, NULL, NULL); ansi[ansi_length] = 0; return ansi; } #endif // GTEST_OS_WINDOWS_MOBILE // Compares two C strings. Returns true iff they have the same content. // // Unlike strcmp(), this function can handle NULL argument(s). A NULL // C string is considered different to any non-NULL C string, // including the empty string. bool String::CStringEquals(const char * lhs, const char * rhs) { if ( lhs == NULL ) return rhs == NULL; if ( rhs == NULL ) return false; return strcmp(lhs, rhs) == 0; } #if GTEST_HAS_STD_WSTRING || GTEST_HAS_GLOBAL_WSTRING // Converts an array of wide chars to a narrow string using the UTF-8 // encoding, and streams the result to the given Message object. static void StreamWideCharsToMessage(const wchar_t* wstr, size_t length, Message* msg) { for (size_t i = 0; i != length; ) { // NOLINT if (wstr[i] != L'\0') { *msg << WideStringToUtf8(wstr + i, static_cast(length - i)); while (i != length && wstr[i] != L'\0') i++; } else { *msg << '\0'; i++; } } } #endif // GTEST_HAS_STD_WSTRING || GTEST_HAS_GLOBAL_WSTRING } // namespace internal // Constructs an empty Message. // We allocate the stringstream separately because otherwise each use of // ASSERT/EXPECT in a procedure adds over 200 bytes to the procedure's // stack frame leading to huge stack frames in some cases; gcc does not reuse // the stack space. Message::Message() : ss_(new ::std::stringstream) { // By default, we want there to be enough precision when printing // a double to a Message. *ss_ << std::setprecision(std::numeric_limits::digits10 + 2); } // These two overloads allow streaming a wide C string to a Message // using the UTF-8 encoding. Message& Message::operator <<(const wchar_t* wide_c_str) { return *this << internal::String::ShowWideCString(wide_c_str); } Message& Message::operator <<(wchar_t* wide_c_str) { return *this << internal::String::ShowWideCString(wide_c_str); } #if GTEST_HAS_STD_WSTRING // Converts the given wide string to a narrow string using the UTF-8 // encoding, and streams the result to this Message object. Message& Message::operator <<(const ::std::wstring& wstr) { internal::StreamWideCharsToMessage(wstr.c_str(), wstr.length(), this); return *this; } #endif // GTEST_HAS_STD_WSTRING #if GTEST_HAS_GLOBAL_WSTRING // Converts the given wide string to a narrow string using the UTF-8 // encoding, and streams the result to this Message object. Message& Message::operator <<(const ::wstring& wstr) { internal::StreamWideCharsToMessage(wstr.c_str(), wstr.length(), this); return *this; } #endif // GTEST_HAS_GLOBAL_WSTRING // Gets the text streamed to this object so far as an std::string. // Each '\0' character in the buffer is replaced with "\\0". std::string Message::GetString() const { return internal::StringStreamToString(ss_.get()); } // AssertionResult constructors. // Used in EXPECT_TRUE/FALSE(assertion_result). AssertionResult::AssertionResult(const AssertionResult& other) : success_(other.success_), message_(other.message_.get() != NULL ? new ::std::string(*other.message_) : static_cast< ::std::string*>(NULL)) { } // Returns the assertion's negation. Used with EXPECT/ASSERT_FALSE. AssertionResult AssertionResult::operator!() const { AssertionResult negation(!success_); if (message_.get() != NULL) negation << *message_; return negation; } // Makes a successful assertion result. AssertionResult AssertionSuccess() { return AssertionResult(true); } // Makes a failed assertion result. AssertionResult AssertionFailure() { return AssertionResult(false); } // Makes a failed assertion result with the given failure message. // Deprecated; use AssertionFailure() << message. AssertionResult AssertionFailure(const Message& message) { return AssertionFailure() << message; } namespace internal { // Constructs and returns the message for an equality assertion // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure. // // The first four parameters are the expressions used in the assertion // and their values, as strings. For example, for ASSERT_EQ(foo, bar) // where foo is 5 and bar is 6, we have: // // expected_expression: "foo" // actual_expression: "bar" // expected_value: "5" // actual_value: "6" // // The ignoring_case parameter is true iff the assertion is a // *_STRCASEEQ*. When it's true, the string " (ignoring case)" will // be inserted into the message. AssertionResult EqFailure(const char* expected_expression, const char* actual_expression, const std::string& expected_value, const std::string& actual_value, bool ignoring_case) { Message msg; msg << "Value of: " << actual_expression; if (actual_value != actual_expression) { msg << "\n Actual: " << actual_value; } msg << "\nExpected: " << expected_expression; if (ignoring_case) { msg << " (ignoring case)"; } if (expected_value != expected_expression) { msg << "\nWhich is: " << expected_value; } return AssertionFailure() << msg; } // Constructs a failure message for Boolean assertions such as EXPECT_TRUE. std::string GetBoolAssertionFailureMessage( const AssertionResult& assertion_result, const char* expression_text, const char* actual_predicate_value, const char* expected_predicate_value) { const char* actual_message = assertion_result.message(); Message msg; msg << "Value of: " << expression_text << "\n Actual: " << actual_predicate_value; if (actual_message[0] != '\0') msg << " (" << actual_message << ")"; msg << "\nExpected: " << expected_predicate_value; return msg.GetString(); } // Helper function for implementing ASSERT_NEAR. AssertionResult DoubleNearPredFormat(const char* expr1, const char* expr2, const char* abs_error_expr, double val1, double val2, double abs_error) { const double diff = fabs(val1 - val2); if (diff <= abs_error) return AssertionSuccess(); // TODO(wan): do not print the value of an expression if it's // already a literal. return AssertionFailure() << "The difference between " << expr1 << " and " << expr2 << " is " << diff << ", which exceeds " << abs_error_expr << ", where\n" << expr1 << " evaluates to " << val1 << ",\n" << expr2 << " evaluates to " << val2 << ", and\n" << abs_error_expr << " evaluates to " << abs_error << "."; } // Helper template for implementing FloatLE() and DoubleLE(). template AssertionResult FloatingPointLE(const char* expr1, const char* expr2, RawType val1, RawType val2) { // Returns success if val1 is less than val2, if (val1 < val2) { return AssertionSuccess(); } // or if val1 is almost equal to val2. const FloatingPoint lhs(val1), rhs(val2); if (lhs.AlmostEquals(rhs)) { return AssertionSuccess(); } // Note that the above two checks will both fail if either val1 or // val2 is NaN, as the IEEE floating-point standard requires that // any predicate involving a NaN must return false. ::std::stringstream val1_ss; val1_ss << std::setprecision(std::numeric_limits::digits10 + 2) << val1; ::std::stringstream val2_ss; val2_ss << std::setprecision(std::numeric_limits::digits10 + 2) << val2; return AssertionFailure() << "Expected: (" << expr1 << ") <= (" << expr2 << ")\n" << " Actual: " << StringStreamToString(&val1_ss) << " vs " << StringStreamToString(&val2_ss); } } // namespace internal // Asserts that val1 is less than, or almost equal to, val2. Fails // otherwise. In particular, it fails if either val1 or val2 is NaN. AssertionResult FloatLE(const char* expr1, const char* expr2, float val1, float val2) { return internal::FloatingPointLE(expr1, expr2, val1, val2); } // Asserts that val1 is less than, or almost equal to, val2. Fails // otherwise. In particular, it fails if either val1 or val2 is NaN. AssertionResult DoubleLE(const char* expr1, const char* expr2, double val1, double val2) { return internal::FloatingPointLE(expr1, expr2, val1, val2); } namespace internal { // The helper function for {ASSERT|EXPECT}_EQ with int or enum // arguments. AssertionResult CmpHelperEQ(const char* expected_expression, const char* actual_expression, BiggestInt expected, BiggestInt actual) { if (expected == actual) { return AssertionSuccess(); } return EqFailure(expected_expression, actual_expression, FormatForComparisonFailureMessage(expected, actual), FormatForComparisonFailureMessage(actual, expected), false); } // A macro for implementing the helper functions needed to implement // ASSERT_?? and EXPECT_?? with integer or enum arguments. It is here // just to avoid copy-and-paste of similar code. #define GTEST_IMPL_CMP_HELPER_(op_name, op)\ AssertionResult CmpHelper##op_name(const char* expr1, const char* expr2, \ BiggestInt val1, BiggestInt val2) {\ if (val1 op val2) {\ return AssertionSuccess();\ } else {\ return AssertionFailure() \ << "Expected: (" << expr1 << ") " #op " (" << expr2\ << "), actual: " << FormatForComparisonFailureMessage(val1, val2)\ << " vs " << FormatForComparisonFailureMessage(val2, val1);\ }\ } // Implements the helper function for {ASSERT|EXPECT}_NE with int or // enum arguments. GTEST_IMPL_CMP_HELPER_(NE, !=) // Implements the helper function for {ASSERT|EXPECT}_LE with int or // enum arguments. GTEST_IMPL_CMP_HELPER_(LE, <=) // Implements the helper function for {ASSERT|EXPECT}_LT with int or // enum arguments. GTEST_IMPL_CMP_HELPER_(LT, < ) // Implements the helper function for {ASSERT|EXPECT}_GE with int or // enum arguments. GTEST_IMPL_CMP_HELPER_(GE, >=) // Implements the helper function for {ASSERT|EXPECT}_GT with int or // enum arguments. GTEST_IMPL_CMP_HELPER_(GT, > ) #undef GTEST_IMPL_CMP_HELPER_ // The helper function for {ASSERT|EXPECT}_STREQ. AssertionResult CmpHelperSTREQ(const char* expected_expression, const char* actual_expression, const char* expected, const char* actual) { if (String::CStringEquals(expected, actual)) { return AssertionSuccess(); } return EqFailure(expected_expression, actual_expression, PrintToString(expected), PrintToString(actual), false); } // The helper function for {ASSERT|EXPECT}_STRCASEEQ. AssertionResult CmpHelperSTRCASEEQ(const char* expected_expression, const char* actual_expression, const char* expected, const char* actual) { if (String::CaseInsensitiveCStringEquals(expected, actual)) { return AssertionSuccess(); } return EqFailure(expected_expression, actual_expression, PrintToString(expected), PrintToString(actual), true); } // The helper function for {ASSERT|EXPECT}_STRNE. AssertionResult CmpHelperSTRNE(const char* s1_expression, const char* s2_expression, const char* s1, const char* s2) { if (!String::CStringEquals(s1, s2)) { return AssertionSuccess(); } else { return AssertionFailure() << "Expected: (" << s1_expression << ") != (" << s2_expression << "), actual: \"" << s1 << "\" vs \"" << s2 << "\""; } } // The helper function for {ASSERT|EXPECT}_STRCASENE. AssertionResult CmpHelperSTRCASENE(const char* s1_expression, const char* s2_expression, const char* s1, const char* s2) { if (!String::CaseInsensitiveCStringEquals(s1, s2)) { return AssertionSuccess(); } else { return AssertionFailure() << "Expected: (" << s1_expression << ") != (" << s2_expression << ") (ignoring case), actual: \"" << s1 << "\" vs \"" << s2 << "\""; } } } // namespace internal namespace { // Helper functions for implementing IsSubString() and IsNotSubstring(). // This group of overloaded functions return true iff needle is a // substring of haystack. NULL is considered a substring of itself // only. bool IsSubstringPred(const char* needle, const char* haystack) { if (needle == NULL || haystack == NULL) return needle == haystack; return strstr(haystack, needle) != NULL; } bool IsSubstringPred(const wchar_t* needle, const wchar_t* haystack) { if (needle == NULL || haystack == NULL) return needle == haystack; return wcsstr(haystack, needle) != NULL; } // StringType here can be either ::std::string or ::std::wstring. template bool IsSubstringPred(const StringType& needle, const StringType& haystack) { return haystack.find(needle) != StringType::npos; } // This function implements either IsSubstring() or IsNotSubstring(), // depending on the value of the expected_to_be_substring parameter. // StringType here can be const char*, const wchar_t*, ::std::string, // or ::std::wstring. template AssertionResult IsSubstringImpl( bool expected_to_be_substring, const char* needle_expr, const char* haystack_expr, const StringType& needle, const StringType& haystack) { if (IsSubstringPred(needle, haystack) == expected_to_be_substring) return AssertionSuccess(); const bool is_wide_string = sizeof(needle[0]) > 1; const char* const begin_string_quote = is_wide_string ? "L\"" : "\""; return AssertionFailure() << "Value of: " << needle_expr << "\n" << " Actual: " << begin_string_quote << needle << "\"\n" << "Expected: " << (expected_to_be_substring ? "" : "not ") << "a substring of " << haystack_expr << "\n" << "Which is: " << begin_string_quote << haystack << "\""; } } // namespace // IsSubstring() and IsNotSubstring() check whether needle is a // substring of haystack (NULL is considered a substring of itself // only), and return an appropriate error message when they fail. AssertionResult IsSubstring( const char* needle_expr, const char* haystack_expr, const char* needle, const char* haystack) { return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack); } AssertionResult IsSubstring( const char* needle_expr, const char* haystack_expr, const wchar_t* needle, const wchar_t* haystack) { return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack); } AssertionResult IsNotSubstring( const char* needle_expr, const char* haystack_expr, const char* needle, const char* haystack) { return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack); } AssertionResult IsNotSubstring( const char* needle_expr, const char* haystack_expr, const wchar_t* needle, const wchar_t* haystack) { return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack); } AssertionResult IsSubstring( const char* needle_expr, const char* haystack_expr, const ::std::string& needle, const ::std::string& haystack) { return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack); } AssertionResult IsNotSubstring( const char* needle_expr, const char* haystack_expr, const ::std::string& needle, const ::std::string& haystack) { return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack); } #if GTEST_HAS_STD_WSTRING AssertionResult IsSubstring( const char* needle_expr, const char* haystack_expr, const ::std::wstring& needle, const ::std::wstring& haystack) { return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack); } AssertionResult IsNotSubstring( const char* needle_expr, const char* haystack_expr, const ::std::wstring& needle, const ::std::wstring& haystack) { return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack); } #endif // GTEST_HAS_STD_WSTRING namespace internal { #if GTEST_OS_WINDOWS namespace { // Helper function for IsHRESULT{SuccessFailure} predicates AssertionResult HRESULTFailureHelper(const char* expr, const char* expected, long hr) { // NOLINT # if GTEST_OS_WINDOWS_MOBILE // Windows CE doesn't support FormatMessage. const char error_text[] = ""; # else // Looks up the human-readable system message for the HRESULT code // and since we're not passing any params to FormatMessage, we don't // want inserts expanded. const DWORD kFlags = FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS; const DWORD kBufSize = 4096; // Gets the system's human readable message string for this HRESULT. char error_text[kBufSize] = { '\0' }; DWORD message_length = ::FormatMessageA(kFlags, 0, // no source, we're asking system hr, // the error 0, // no line width restrictions error_text, // output buffer kBufSize, // buf size NULL); // no arguments for inserts // Trims tailing white space (FormatMessage leaves a trailing CR-LF) for (; message_length && IsSpace(error_text[message_length - 1]); --message_length) { error_text[message_length - 1] = '\0'; } # endif // GTEST_OS_WINDOWS_MOBILE const std::string error_hex("0x" + String::FormatHexInt(hr)); return ::testing::AssertionFailure() << "Expected: " << expr << " " << expected << ".\n" << " Actual: " << error_hex << " " << error_text << "\n"; } } // namespace AssertionResult IsHRESULTSuccess(const char* expr, long hr) { // NOLINT if (SUCCEEDED(hr)) { return AssertionSuccess(); } return HRESULTFailureHelper(expr, "succeeds", hr); } AssertionResult IsHRESULTFailure(const char* expr, long hr) { // NOLINT if (FAILED(hr)) { return AssertionSuccess(); } return HRESULTFailureHelper(expr, "fails", hr); } #endif // GTEST_OS_WINDOWS // Utility functions for encoding Unicode text (wide strings) in // UTF-8. // A Unicode code-point can have upto 21 bits, and is encoded in UTF-8 // like this: // // Code-point length Encoding // 0 - 7 bits 0xxxxxxx // 8 - 11 bits 110xxxxx 10xxxxxx // 12 - 16 bits 1110xxxx 10xxxxxx 10xxxxxx // 17 - 21 bits 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx // The maximum code-point a one-byte UTF-8 sequence can represent. const UInt32 kMaxCodePoint1 = (static_cast(1) << 7) - 1; // The maximum code-point a two-byte UTF-8 sequence can represent. const UInt32 kMaxCodePoint2 = (static_cast(1) << (5 + 6)) - 1; // The maximum code-point a three-byte UTF-8 sequence can represent. const UInt32 kMaxCodePoint3 = (static_cast(1) << (4 + 2*6)) - 1; // The maximum code-point a four-byte UTF-8 sequence can represent. const UInt32 kMaxCodePoint4 = (static_cast(1) << (3 + 3*6)) - 1; // Chops off the n lowest bits from a bit pattern. Returns the n // lowest bits. As a side effect, the original bit pattern will be // shifted to the right by n bits. inline UInt32 ChopLowBits(UInt32* bits, int n) { const UInt32 low_bits = *bits & ((static_cast(1) << n) - 1); *bits >>= n; return low_bits; } // Converts a Unicode code point to a narrow string in UTF-8 encoding. // code_point parameter is of type UInt32 because wchar_t may not be // wide enough to contain a code point. // If the code_point is not a valid Unicode code point // (i.e. outside of Unicode range U+0 to U+10FFFF) it will be converted // to "(Invalid Unicode 0xXXXXXXXX)". std::string CodePointToUtf8(UInt32 code_point) { if (code_point > kMaxCodePoint4) { return "(Invalid Unicode 0x" + String::FormatHexInt(code_point) + ")"; } char str[5]; // Big enough for the largest valid code point. if (code_point <= kMaxCodePoint1) { str[1] = '\0'; str[0] = static_cast(code_point); // 0xxxxxxx } else if (code_point <= kMaxCodePoint2) { str[2] = '\0'; str[1] = static_cast(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx str[0] = static_cast(0xC0 | code_point); // 110xxxxx } else if (code_point <= kMaxCodePoint3) { str[3] = '\0'; str[2] = static_cast(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx str[1] = static_cast(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx str[0] = static_cast(0xE0 | code_point); // 1110xxxx } else { // code_point <= kMaxCodePoint4 str[4] = '\0'; str[3] = static_cast(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx str[2] = static_cast(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx str[1] = static_cast(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx str[0] = static_cast(0xF0 | code_point); // 11110xxx } return str; } // The following two functions only make sense if the the system // uses UTF-16 for wide string encoding. All supported systems // with 16 bit wchar_t (Windows, Cygwin, Symbian OS) do use UTF-16. // Determines if the arguments constitute UTF-16 surrogate pair // and thus should be combined into a single Unicode code point // using CreateCodePointFromUtf16SurrogatePair. inline bool IsUtf16SurrogatePair(wchar_t first, wchar_t second) { return sizeof(wchar_t) == 2 && (first & 0xFC00) == 0xD800 && (second & 0xFC00) == 0xDC00; } // Creates a Unicode code point from UTF16 surrogate pair. inline UInt32 CreateCodePointFromUtf16SurrogatePair(wchar_t first, wchar_t second) { const UInt32 mask = (1 << 10) - 1; return (sizeof(wchar_t) == 2) ? (((first & mask) << 10) | (second & mask)) + 0x10000 : // This function should not be called when the condition is // false, but we provide a sensible default in case it is. static_cast(first); } // Converts a wide string to a narrow string in UTF-8 encoding. // The wide string is assumed to have the following encoding: // UTF-16 if sizeof(wchar_t) == 2 (on Windows, Cygwin, Symbian OS) // UTF-32 if sizeof(wchar_t) == 4 (on Linux) // Parameter str points to a null-terminated wide string. // Parameter num_chars may additionally limit the number // of wchar_t characters processed. -1 is used when the entire string // should be processed. // If the string contains code points that are not valid Unicode code points // (i.e. outside of Unicode range U+0 to U+10FFFF) they will be output // as '(Invalid Unicode 0xXXXXXXXX)'. If the string is in UTF16 encoding // and contains invalid UTF-16 surrogate pairs, values in those pairs // will be encoded as individual Unicode characters from Basic Normal Plane. std::string WideStringToUtf8(const wchar_t* str, int num_chars) { if (num_chars == -1) num_chars = static_cast(wcslen(str)); ::std::stringstream stream; for (int i = 0; i < num_chars; ++i) { UInt32 unicode_code_point; if (str[i] == L'\0') { break; } else if (i + 1 < num_chars && IsUtf16SurrogatePair(str[i], str[i + 1])) { unicode_code_point = CreateCodePointFromUtf16SurrogatePair(str[i], str[i + 1]); i++; } else { unicode_code_point = static_cast(str[i]); } stream << CodePointToUtf8(unicode_code_point); } return StringStreamToString(&stream); } // Converts a wide C string to an std::string using the UTF-8 encoding. // NULL will be converted to "(null)". std::string String::ShowWideCString(const wchar_t * wide_c_str) { if (wide_c_str == NULL) return "(null)"; return internal::WideStringToUtf8(wide_c_str, -1); } // Compares two wide C strings. Returns true iff they have the same // content. // // Unlike wcscmp(), this function can handle NULL argument(s). A NULL // C string is considered different to any non-NULL C string, // including the empty string. bool String::WideCStringEquals(const wchar_t * lhs, const wchar_t * rhs) { if (lhs == NULL) return rhs == NULL; if (rhs == NULL) return false; return wcscmp(lhs, rhs) == 0; } // Helper function for *_STREQ on wide strings. AssertionResult CmpHelperSTREQ(const char* expected_expression, const char* actual_expression, const wchar_t* expected, const wchar_t* actual) { if (String::WideCStringEquals(expected, actual)) { return AssertionSuccess(); } return EqFailure(expected_expression, actual_expression, PrintToString(expected), PrintToString(actual), false); } // Helper function for *_STRNE on wide strings. AssertionResult CmpHelperSTRNE(const char* s1_expression, const char* s2_expression, const wchar_t* s1, const wchar_t* s2) { if (!String::WideCStringEquals(s1, s2)) { return AssertionSuccess(); } return AssertionFailure() << "Expected: (" << s1_expression << ") != (" << s2_expression << "), actual: " << PrintToString(s1) << " vs " << PrintToString(s2); } // Compares two C strings, ignoring case. Returns true iff they have // the same content. // // Unlike strcasecmp(), this function can handle NULL argument(s). A // NULL C string is considered different to any non-NULL C string, // including the empty string. bool String::CaseInsensitiveCStringEquals(const char * lhs, const char * rhs) { if (lhs == NULL) return rhs == NULL; if (rhs == NULL) return false; return posix::StrCaseCmp(lhs, rhs) == 0; } // Compares two wide C strings, ignoring case. Returns true iff they // have the same content. // // Unlike wcscasecmp(), this function can handle NULL argument(s). // A NULL C string is considered different to any non-NULL wide C string, // including the empty string. // NB: The implementations on different platforms slightly differ. // On windows, this method uses _wcsicmp which compares according to LC_CTYPE // environment variable. On GNU platform this method uses wcscasecmp // which compares according to LC_CTYPE category of the current locale. // On MacOS X, it uses towlower, which also uses LC_CTYPE category of the // current locale. bool String::CaseInsensitiveWideCStringEquals(const wchar_t* lhs, const wchar_t* rhs) { if (lhs == NULL) return rhs == NULL; if (rhs == NULL) return false; #if GTEST_OS_WINDOWS return _wcsicmp(lhs, rhs) == 0; #elif GTEST_OS_LINUX && !GTEST_OS_LINUX_ANDROID return wcscasecmp(lhs, rhs) == 0; #else // Android, Mac OS X and Cygwin don't define wcscasecmp. // Other unknown OSes may not define it either. wint_t left, right; do { left = towlower(*lhs++); right = towlower(*rhs++); } while (left && left == right); return left == right; #endif // OS selector } // Returns true iff str ends with the given suffix, ignoring case. // Any string is considered to end with an empty suffix. bool String::EndsWithCaseInsensitive( const std::string& str, const std::string& suffix) { const size_t str_len = str.length(); const size_t suffix_len = suffix.length(); return (str_len >= suffix_len) && CaseInsensitiveCStringEquals(str.c_str() + str_len - suffix_len, suffix.c_str()); } // Formats an int value as "%02d". std::string String::FormatIntWidth2(int value) { std::stringstream ss; ss << std::setfill('0') << std::setw(2) << value; return ss.str(); } // Formats an int value as "%X". std::string String::FormatHexInt(int value) { std::stringstream ss; ss << std::hex << std::uppercase << value; return ss.str(); } // Formats a byte as "%02X". std::string String::FormatByte(unsigned char value) { std::stringstream ss; ss << std::setfill('0') << std::setw(2) << std::hex << std::uppercase << static_cast(value); return ss.str(); } // Converts the buffer in a stringstream to an std::string, converting NUL // bytes to "\\0" along the way. std::string StringStreamToString(::std::stringstream* ss) { const ::std::string& str = ss->str(); const char* const start = str.c_str(); const char* const end = start + str.length(); std::string result; result.reserve(2 * (end - start)); for (const char* ch = start; ch != end; ++ch) { if (*ch == '\0') { result += "\\0"; // Replaces NUL with "\\0"; } else { result += *ch; } } return result; } // Appends the user-supplied message to the Google-Test-generated message. std::string AppendUserMessage(const std::string& gtest_msg, const Message& user_msg) { // Appends the user message if it's non-empty. const std::string user_msg_string = user_msg.GetString(); if (user_msg_string.empty()) { return gtest_msg; } return gtest_msg + "\n" + user_msg_string; } } // namespace internal // class TestResult // Creates an empty TestResult. TestResult::TestResult() : death_test_count_(0), elapsed_time_(0) { } // D'tor. TestResult::~TestResult() { } // Returns the i-th test part result among all the results. i can // range from 0 to total_part_count() - 1. If i is not in that range, // aborts the program. const TestPartResult& TestResult::GetTestPartResult(int i) const { if (i < 0 || i >= total_part_count()) internal::posix::Abort(); return test_part_results_.at(i); } // Returns the i-th test property. i can range from 0 to // test_property_count() - 1. If i is not in that range, aborts the // program. const TestProperty& TestResult::GetTestProperty(int i) const { if (i < 0 || i >= test_property_count()) internal::posix::Abort(); return test_properties_.at(i); } // Clears the test part results. void TestResult::ClearTestPartResults() { test_part_results_.clear(); } // Adds a test part result to the list. void TestResult::AddTestPartResult(const TestPartResult& test_part_result) { test_part_results_.push_back(test_part_result); } // Adds a test property to the list. If a property with the same key as the // supplied property is already represented, the value of this test_property // replaces the old value for that key. void TestResult::RecordProperty(const std::string& xml_element, const TestProperty& test_property) { if (!ValidateTestProperty(xml_element, test_property)) { return; } internal::MutexLock lock(&test_properites_mutex_); const std::vector::iterator property_with_matching_key = std::find_if(test_properties_.begin(), test_properties_.end(), internal::TestPropertyKeyIs(test_property.key())); if (property_with_matching_key == test_properties_.end()) { test_properties_.push_back(test_property); return; } property_with_matching_key->SetValue(test_property.value()); } // The list of reserved attributes used in the element of XML // output. static const char* const kReservedTestSuitesAttributes[] = { "disabled", "errors", "failures", "name", "random_seed", "tests", "time", "timestamp" }; // The list of reserved attributes used in the element of XML // output. static const char* const kReservedTestSuiteAttributes[] = { "disabled", "errors", "failures", "name", "tests", "time" }; // The list of reserved attributes used in the element of XML output. static const char* const kReservedTestCaseAttributes[] = { "classname", "name", "status", "time", "type_param", "value_param" }; template std::vector ArrayAsVector(const char* const (&array)[kSize]) { return std::vector(array, array + kSize); } static std::vector GetReservedAttributesForElement( const std::string& xml_element) { if (xml_element == "testsuites") { return ArrayAsVector(kReservedTestSuitesAttributes); } else if (xml_element == "testsuite") { return ArrayAsVector(kReservedTestSuiteAttributes); } else if (xml_element == "testcase") { return ArrayAsVector(kReservedTestCaseAttributes); } else { GTEST_CHECK_(false) << "Unrecognized xml_element provided: " << xml_element; } // This code is unreachable but some compilers may not realizes that. return std::vector(); } static std::string FormatWordList(const std::vector& words) { Message word_list; for (size_t i = 0; i < words.size(); ++i) { if (i > 0 && words.size() > 2) { word_list << ", "; } if (i == words.size() - 1) { word_list << "and "; } word_list << "'" << words[i] << "'"; } return word_list.GetString(); } bool ValidateTestPropertyName(const std::string& property_name, const std::vector& reserved_names) { if (std::find(reserved_names.begin(), reserved_names.end(), property_name) != reserved_names.end()) { ADD_FAILURE() << "Reserved key used in RecordProperty(): " << property_name << " (" << FormatWordList(reserved_names) << " are reserved by " << GTEST_NAME_ << ")"; return false; } return true; } // Adds a failure if the key is a reserved attribute of the element named // xml_element. Returns true if the property is valid. bool TestResult::ValidateTestProperty(const std::string& xml_element, const TestProperty& test_property) { return ValidateTestPropertyName(test_property.key(), GetReservedAttributesForElement(xml_element)); } // Clears the object. void TestResult::Clear() { test_part_results_.clear(); test_properties_.clear(); death_test_count_ = 0; elapsed_time_ = 0; } // Returns true iff the test failed. bool TestResult::Failed() const { for (int i = 0; i < total_part_count(); ++i) { if (GetTestPartResult(i).failed()) return true; } return false; } // Returns true iff the test part fatally failed. static bool TestPartFatallyFailed(const TestPartResult& result) { return result.fatally_failed(); } // Returns true iff the test fatally failed. bool TestResult::HasFatalFailure() const { return CountIf(test_part_results_, TestPartFatallyFailed) > 0; } // Returns true iff the test part non-fatally failed. static bool TestPartNonfatallyFailed(const TestPartResult& result) { return result.nonfatally_failed(); } // Returns true iff the test has a non-fatal failure. bool TestResult::HasNonfatalFailure() const { return CountIf(test_part_results_, TestPartNonfatallyFailed) > 0; } // Gets the number of all test parts. This is the sum of the number // of successful test parts and the number of failed test parts. int TestResult::total_part_count() const { return static_cast(test_part_results_.size()); } // Returns the number of the test properties. int TestResult::test_property_count() const { return static_cast(test_properties_.size()); } // class Test // Creates a Test object. // The c'tor saves the values of all Google Test flags. Test::Test() : gtest_flag_saver_(new internal::GTestFlagSaver) { } // The d'tor restores the values of all Google Test flags. Test::~Test() { delete gtest_flag_saver_; } // Sets up the test fixture. // // A sub-class may override this. void Test::SetUp() { } // Tears down the test fixture. // // A sub-class may override this. void Test::TearDown() { } // Allows user supplied key value pairs to be recorded for later output. void Test::RecordProperty(const std::string& key, const std::string& value) { UnitTest::GetInstance()->RecordProperty(key, value); } // Allows user supplied key value pairs to be recorded for later output. void Test::RecordProperty(const std::string& key, int value) { Message value_message; value_message << value; RecordProperty(key, value_message.GetString().c_str()); } namespace internal { void ReportFailureInUnknownLocation(TestPartResult::Type result_type, const std::string& message) { // This function is a friend of UnitTest and as such has access to // AddTestPartResult. UnitTest::GetInstance()->AddTestPartResult( result_type, NULL, // No info about the source file where the exception occurred. -1, // We have no info on which line caused the exception. message, ""); // No stack trace, either. } } // namespace internal // Google Test requires all tests in the same test case to use the same test // fixture class. This function checks if the current test has the // same fixture class as the first test in the current test case. If // yes, it returns true; otherwise it generates a Google Test failure and // returns false. bool Test::HasSameFixtureClass() { internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); const TestCase* const test_case = impl->current_test_case(); // Info about the first test in the current test case. const TestInfo* const first_test_info = test_case->test_info_list()[0]; const internal::TypeId first_fixture_id = first_test_info->fixture_class_id_; const char* const first_test_name = first_test_info->name(); // Info about the current test. const TestInfo* const this_test_info = impl->current_test_info(); const internal::TypeId this_fixture_id = this_test_info->fixture_class_id_; const char* const this_test_name = this_test_info->name(); if (this_fixture_id != first_fixture_id) { // Is the first test defined using TEST? const bool first_is_TEST = first_fixture_id == internal::GetTestTypeId(); // Is this test defined using TEST? const bool this_is_TEST = this_fixture_id == internal::GetTestTypeId(); if (first_is_TEST || this_is_TEST) { // The user mixed TEST and TEST_F in this test case - we'll tell // him/her how to fix it. // Gets the name of the TEST and the name of the TEST_F. Note // that first_is_TEST and this_is_TEST cannot both be true, as // the fixture IDs are different for the two tests. const char* const TEST_name = first_is_TEST ? first_test_name : this_test_name; const char* const TEST_F_name = first_is_TEST ? this_test_name : first_test_name; ADD_FAILURE() << "All tests in the same test case must use the same test fixture\n" << "class, so mixing TEST_F and TEST in the same test case is\n" << "illegal. In test case " << this_test_info->test_case_name() << ",\n" << "test " << TEST_F_name << " is defined using TEST_F but\n" << "test " << TEST_name << " is defined using TEST. You probably\n" << "want to change the TEST to TEST_F or move it to another test\n" << "case."; } else { // The user defined two fixture classes with the same name in // two namespaces - we'll tell him/her how to fix it. ADD_FAILURE() << "All tests in the same test case must use the same test fixture\n" << "class. However, in test case " << this_test_info->test_case_name() << ",\n" << "you defined test " << first_test_name << " and test " << this_test_name << "\n" << "using two different test fixture classes. This can happen if\n" << "the two classes are from different namespaces or translation\n" << "units and have the same name. You should probably rename one\n" << "of the classes to put the tests into different test cases."; } return false; } return true; } #if GTEST_HAS_SEH // Adds an "exception thrown" fatal failure to the current test. This // function returns its result via an output parameter pointer because VC++ // prohibits creation of objects with destructors on stack in functions // using __try (see error C2712). static std::string* FormatSehExceptionMessage(DWORD exception_code, const char* location) { Message message; message << "SEH exception with code 0x" << std::setbase(16) << exception_code << std::setbase(10) << " thrown in " << location << "."; return new std::string(message.GetString()); } #endif // GTEST_HAS_SEH namespace internal { #if GTEST_HAS_EXCEPTIONS // Adds an "exception thrown" fatal failure to the current test. static std::string FormatCxxExceptionMessage(const char* description, const char* location) { Message message; if (description != NULL) { message << "C++ exception with description \"" << description << "\""; } else { message << "Unknown C++ exception"; } message << " thrown in " << location << "."; return message.GetString(); } static std::string PrintTestPartResultToString( const TestPartResult& test_part_result); GoogleTestFailureException::GoogleTestFailureException( const TestPartResult& failure) : ::std::runtime_error(PrintTestPartResultToString(failure).c_str()) {} #endif // GTEST_HAS_EXCEPTIONS // We put these helper functions in the internal namespace as IBM's xlC // compiler rejects the code if they were declared static. // Runs the given method and handles SEH exceptions it throws, when // SEH is supported; returns the 0-value for type Result in case of an // SEH exception. (Microsoft compilers cannot handle SEH and C++ // exceptions in the same function. Therefore, we provide a separate // wrapper function for handling SEH exceptions.) template Result HandleSehExceptionsInMethodIfSupported( T* object, Result (T::*method)(), const char* location) { #if GTEST_HAS_SEH __try { return (object->*method)(); } __except (internal::UnitTestOptions::GTestShouldProcessSEH( // NOLINT GetExceptionCode())) { // We create the exception message on the heap because VC++ prohibits // creation of objects with destructors on stack in functions using __try // (see error C2712). std::string* exception_message = FormatSehExceptionMessage( GetExceptionCode(), location); internal::ReportFailureInUnknownLocation(TestPartResult::kFatalFailure, *exception_message); delete exception_message; return static_cast(0); } #else (void)location; return (object->*method)(); #endif // GTEST_HAS_SEH } // Runs the given method and catches and reports C++ and/or SEH-style // exceptions, if they are supported; returns the 0-value for type // Result in case of an SEH exception. template Result HandleExceptionsInMethodIfSupported( T* object, Result (T::*method)(), const char* location) { // NOTE: The user code can affect the way in which Google Test handles // exceptions by setting GTEST_FLAG(catch_exceptions), but only before // RUN_ALL_TESTS() starts. It is technically possible to check the flag // after the exception is caught and either report or re-throw the // exception based on the flag's value: // // try { // // Perform the test method. // } catch (...) { // if (GTEST_FLAG(catch_exceptions)) // // Report the exception as failure. // else // throw; // Re-throws the original exception. // } // // However, the purpose of this flag is to allow the program to drop into // the debugger when the exception is thrown. On most platforms, once the // control enters the catch block, the exception origin information is // lost and the debugger will stop the program at the point of the // re-throw in this function -- instead of at the point of the original // throw statement in the code under test. For this reason, we perform // the check early, sacrificing the ability to affect Google Test's // exception handling in the method where the exception is thrown. if (internal::GetUnitTestImpl()->catch_exceptions()) { #if GTEST_HAS_EXCEPTIONS try { return HandleSehExceptionsInMethodIfSupported(object, method, location); } catch (const internal::GoogleTestFailureException&) { // NOLINT // This exception type can only be thrown by a failed Google // Test assertion with the intention of letting another testing // framework catch it. Therefore we just re-throw it. throw; } catch (const std::exception& e) { // NOLINT internal::ReportFailureInUnknownLocation( TestPartResult::kFatalFailure, FormatCxxExceptionMessage(e.what(), location)); } catch (...) { // NOLINT internal::ReportFailureInUnknownLocation( TestPartResult::kFatalFailure, FormatCxxExceptionMessage(NULL, location)); } return static_cast(0); #else return HandleSehExceptionsInMethodIfSupported(object, method, location); #endif // GTEST_HAS_EXCEPTIONS } else { return (object->*method)(); } } } // namespace internal // Runs the test and updates the test result. void Test::Run() { if (!HasSameFixtureClass()) return; internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); impl->os_stack_trace_getter()->UponLeavingGTest(); internal::HandleExceptionsInMethodIfSupported(this, &Test::SetUp, "SetUp()"); // We will run the test only if SetUp() was successful. if (!HasFatalFailure()) { impl->os_stack_trace_getter()->UponLeavingGTest(); internal::HandleExceptionsInMethodIfSupported( this, &Test::TestBody, "the test body"); } // However, we want to clean up as much as possible. Hence we will // always call TearDown(), even if SetUp() or the test body has // failed. impl->os_stack_trace_getter()->UponLeavingGTest(); internal::HandleExceptionsInMethodIfSupported( this, &Test::TearDown, "TearDown()"); } // Returns true iff the current test has a fatal failure. bool Test::HasFatalFailure() { return internal::GetUnitTestImpl()->current_test_result()->HasFatalFailure(); } // Returns true iff the current test has a non-fatal failure. bool Test::HasNonfatalFailure() { return internal::GetUnitTestImpl()->current_test_result()-> HasNonfatalFailure(); } // class TestInfo // Constructs a TestInfo object. It assumes ownership of the test factory // object. TestInfo::TestInfo(const std::string& a_test_case_name, const std::string& a_name, const char* a_type_param, const char* a_value_param, internal::TypeId fixture_class_id, internal::TestFactoryBase* factory) : test_case_name_(a_test_case_name), name_(a_name), type_param_(a_type_param ? new std::string(a_type_param) : NULL), value_param_(a_value_param ? new std::string(a_value_param) : NULL), fixture_class_id_(fixture_class_id), should_run_(false), is_disabled_(false), matches_filter_(false), factory_(factory), result_() {} // Destructs a TestInfo object. TestInfo::~TestInfo() { delete factory_; } namespace internal { // Creates a new TestInfo object and registers it with Google Test; // returns the created object. // // Arguments: // // test_case_name: name of the test case // name: name of the test // type_param: the name of the test's type parameter, or NULL if // this is not a typed or a type-parameterized test. // value_param: text representation of the test's value parameter, // or NULL if this is not a value-parameterized test. // fixture_class_id: ID of the test fixture class // set_up_tc: pointer to the function that sets up the test case // tear_down_tc: pointer to the function that tears down the test case // factory: pointer to the factory that creates a test object. // The newly created TestInfo instance will assume // ownership of the factory object. TestInfo* MakeAndRegisterTestInfo( const char* test_case_name, const char* name, const char* type_param, const char* value_param, TypeId fixture_class_id, SetUpTestCaseFunc set_up_tc, TearDownTestCaseFunc tear_down_tc, TestFactoryBase* factory) { TestInfo* const test_info = new TestInfo(test_case_name, name, type_param, value_param, fixture_class_id, factory); GetUnitTestImpl()->AddTestInfo(set_up_tc, tear_down_tc, test_info); return test_info; } #if GTEST_HAS_PARAM_TEST void ReportInvalidTestCaseType(const char* test_case_name, const char* file, int line) { Message errors; errors << "Attempted redefinition of test case " << test_case_name << ".\n" << "All tests in the same test case must use the same test fixture\n" << "class. However, in test case " << test_case_name << ", you tried\n" << "to define a test using a fixture class different from the one\n" << "used earlier. This can happen if the two fixture classes are\n" << "from different namespaces and have the same name. You should\n" << "probably rename one of the classes to put the tests into different\n" << "test cases."; fprintf(stderr, "%s %s", FormatFileLocation(file, line).c_str(), errors.GetString().c_str()); } #endif // GTEST_HAS_PARAM_TEST } // namespace internal namespace { // A predicate that checks the test name of a TestInfo against a known // value. // // This is used for implementation of the TestCase class only. We put // it in the anonymous namespace to prevent polluting the outer // namespace. // // TestNameIs is copyable. class TestNameIs { public: // Constructor. // // TestNameIs has NO default constructor. explicit TestNameIs(const char* name) : name_(name) {} // Returns true iff the test name of test_info matches name_. bool operator()(const TestInfo * test_info) const { return test_info && test_info->name() == name_; } private: std::string name_; }; } // namespace namespace internal { // This method expands all parameterized tests registered with macros TEST_P // and INSTANTIATE_TEST_CASE_P into regular tests and registers those. // This will be done just once during the program runtime. void UnitTestImpl::RegisterParameterizedTests() { #if GTEST_HAS_PARAM_TEST if (!parameterized_tests_registered_) { parameterized_test_registry_.RegisterTests(); parameterized_tests_registered_ = true; } #endif } } // namespace internal // Creates the test object, runs it, records its result, and then // deletes it. void TestInfo::Run() { if (!should_run_) return; // Tells UnitTest where to store test result. internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); impl->set_current_test_info(this); TestEventListener* repeater = UnitTest::GetInstance()->listeners().repeater(); // Notifies the unit test event listeners that a test is about to start. repeater->OnTestStart(*this); const TimeInMillis start = internal::GetTimeInMillis(); impl->os_stack_trace_getter()->UponLeavingGTest(); // Creates the test object. Test* const test = internal::HandleExceptionsInMethodIfSupported( factory_, &internal::TestFactoryBase::CreateTest, "the test fixture's constructor"); // Runs the test only if the test object was created and its // constructor didn't generate a fatal failure. if ((test != NULL) && !Test::HasFatalFailure()) { // This doesn't throw as all user code that can throw are wrapped into // exception handling code. test->Run(); } // Deletes the test object. impl->os_stack_trace_getter()->UponLeavingGTest(); internal::HandleExceptionsInMethodIfSupported( test, &Test::DeleteSelf_, "the test fixture's destructor"); result_.set_elapsed_time(internal::GetTimeInMillis() - start); // Notifies the unit test event listener that a test has just finished. repeater->OnTestEnd(*this); // Tells UnitTest to stop associating assertion results to this // test. impl->set_current_test_info(NULL); } // class TestCase // Gets the number of successful tests in this test case. int TestCase::successful_test_count() const { return CountIf(test_info_list_, TestPassed); } // Gets the number of failed tests in this test case. int TestCase::failed_test_count() const { return CountIf(test_info_list_, TestFailed); } // Gets the number of disabled tests that will be reported in the XML report. int TestCase::reportable_disabled_test_count() const { return CountIf(test_info_list_, TestReportableDisabled); } // Gets the number of disabled tests in this test case. int TestCase::disabled_test_count() const { return CountIf(test_info_list_, TestDisabled); } // Gets the number of tests to be printed in the XML report. int TestCase::reportable_test_count() const { return CountIf(test_info_list_, TestReportable); } // Get the number of tests in this test case that should run. int TestCase::test_to_run_count() const { return CountIf(test_info_list_, ShouldRunTest); } // Gets the number of all tests. int TestCase::total_test_count() const { return static_cast(test_info_list_.size()); } // Creates a TestCase with the given name. // // Arguments: // // name: name of the test case // a_type_param: the name of the test case's type parameter, or NULL if // this is not a typed or a type-parameterized test case. // set_up_tc: pointer to the function that sets up the test case // tear_down_tc: pointer to the function that tears down the test case TestCase::TestCase(const char* a_name, const char* a_type_param, Test::SetUpTestCaseFunc set_up_tc, Test::TearDownTestCaseFunc tear_down_tc) : name_(a_name), type_param_(a_type_param ? new std::string(a_type_param) : NULL), set_up_tc_(set_up_tc), tear_down_tc_(tear_down_tc), should_run_(false), elapsed_time_(0) { } // Destructor of TestCase. TestCase::~TestCase() { // Deletes every Test in the collection. ForEach(test_info_list_, internal::Delete); } // Returns the i-th test among all the tests. i can range from 0 to // total_test_count() - 1. If i is not in that range, returns NULL. const TestInfo* TestCase::GetTestInfo(int i) const { const int index = GetElementOr(test_indices_, i, -1); return index < 0 ? NULL : test_info_list_[index]; } // Returns the i-th test among all the tests. i can range from 0 to // total_test_count() - 1. If i is not in that range, returns NULL. TestInfo* TestCase::GetMutableTestInfo(int i) { const int index = GetElementOr(test_indices_, i, -1); return index < 0 ? NULL : test_info_list_[index]; } // Adds a test to this test case. Will delete the test upon // destruction of the TestCase object. void TestCase::AddTestInfo(TestInfo * test_info) { test_info_list_.push_back(test_info); test_indices_.push_back(static_cast(test_indices_.size())); } // Runs every test in this TestCase. void TestCase::Run() { if (!should_run_) return; internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); impl->set_current_test_case(this); TestEventListener* repeater = UnitTest::GetInstance()->listeners().repeater(); repeater->OnTestCaseStart(*this); impl->os_stack_trace_getter()->UponLeavingGTest(); internal::HandleExceptionsInMethodIfSupported( this, &TestCase::RunSetUpTestCase, "SetUpTestCase()"); const internal::TimeInMillis start = internal::GetTimeInMillis(); for (int i = 0; i < total_test_count(); i++) { GetMutableTestInfo(i)->Run(); } elapsed_time_ = internal::GetTimeInMillis() - start; impl->os_stack_trace_getter()->UponLeavingGTest(); internal::HandleExceptionsInMethodIfSupported( this, &TestCase::RunTearDownTestCase, "TearDownTestCase()"); repeater->OnTestCaseEnd(*this); impl->set_current_test_case(NULL); } // Clears the results of all tests in this test case. void TestCase::ClearResult() { ad_hoc_test_result_.Clear(); ForEach(test_info_list_, TestInfo::ClearTestResult); } // Shuffles the tests in this test case. void TestCase::ShuffleTests(internal::Random* random) { Shuffle(random, &test_indices_); } // Restores the test order to before the first shuffle. void TestCase::UnshuffleTests() { for (size_t i = 0; i < test_indices_.size(); i++) { test_indices_[i] = static_cast(i); } } // Formats a countable noun. Depending on its quantity, either the // singular form or the plural form is used. e.g. // // FormatCountableNoun(1, "formula", "formuli") returns "1 formula". // FormatCountableNoun(5, "book", "books") returns "5 books". static std::string FormatCountableNoun(int count, const char * singular_form, const char * plural_form) { return internal::StreamableToString(count) + " " + (count == 1 ? singular_form : plural_form); } // Formats the count of tests. static std::string FormatTestCount(int test_count) { return FormatCountableNoun(test_count, "test", "tests"); } // Formats the count of test cases. static std::string FormatTestCaseCount(int test_case_count) { return FormatCountableNoun(test_case_count, "test case", "test cases"); } // Converts a TestPartResult::Type enum to human-friendly string // representation. Both kNonFatalFailure and kFatalFailure are translated // to "Failure", as the user usually doesn't care about the difference // between the two when viewing the test result. static const char * TestPartResultTypeToString(TestPartResult::Type type) { switch (type) { case TestPartResult::kSuccess: return "Success"; case TestPartResult::kNonFatalFailure: case TestPartResult::kFatalFailure: #ifdef _MSC_VER return "error: "; #else return "Failure\n"; #endif default: return "Unknown result type"; } } namespace internal { // Prints a TestPartResult to an std::string. static std::string PrintTestPartResultToString( const TestPartResult& test_part_result) { return (Message() << internal::FormatFileLocation(test_part_result.file_name(), test_part_result.line_number()) << " " << TestPartResultTypeToString(test_part_result.type()) << test_part_result.message()).GetString(); } // Prints a TestPartResult. static void PrintTestPartResult(const TestPartResult& test_part_result) { const std::string& result = PrintTestPartResultToString(test_part_result); printf("%s\n", result.c_str()); fflush(stdout); // If the test program runs in Visual Studio or a debugger, the // following statements add the test part result message to the Output // window such that the user can double-click on it to jump to the // corresponding source code location; otherwise they do nothing. #if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE // We don't call OutputDebugString*() on Windows Mobile, as printing // to stdout is done by OutputDebugString() there already - we don't // want the same message printed twice. ::OutputDebugStringA(result.c_str()); ::OutputDebugStringA("\n"); #endif } // class PrettyUnitTestResultPrinter enum GTestColor { COLOR_DEFAULT, COLOR_RED, COLOR_GREEN, COLOR_YELLOW }; #if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE // Returns the character attribute for the given color. WORD GetColorAttribute(GTestColor color) { switch (color) { case COLOR_RED: return FOREGROUND_RED; case COLOR_GREEN: return FOREGROUND_GREEN; case COLOR_YELLOW: return FOREGROUND_RED | FOREGROUND_GREEN; default: return 0; } } #else // Returns the ANSI color code for the given color. COLOR_DEFAULT is // an invalid input. const char* GetAnsiColorCode(GTestColor color) { switch (color) { case COLOR_RED: return "1"; case COLOR_GREEN: return "2"; case COLOR_YELLOW: return "3"; default: return NULL; }; } #endif // GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE // Returns true iff Google Test should use colors in the output. bool ShouldUseColor(bool stdout_is_tty) { const char* const gtest_color = GTEST_FLAG(color).c_str(); if (String::CaseInsensitiveCStringEquals(gtest_color, "auto")) { #if GTEST_OS_WINDOWS // On Windows the TERM variable is usually not set, but the // console there does support colors. return stdout_is_tty; #else // On non-Windows platforms, we rely on the TERM variable. const char* const term = posix::GetEnv("TERM"); const bool term_supports_color = String::CStringEquals(term, "xterm") || String::CStringEquals(term, "xterm-color") || String::CStringEquals(term, "xterm-256color") || String::CStringEquals(term, "screen") || String::CStringEquals(term, "screen-256color") || String::CStringEquals(term, "linux") || String::CStringEquals(term, "cygwin"); return stdout_is_tty && term_supports_color; #endif // GTEST_OS_WINDOWS } return String::CaseInsensitiveCStringEquals(gtest_color, "yes") || String::CaseInsensitiveCStringEquals(gtest_color, "true") || String::CaseInsensitiveCStringEquals(gtest_color, "t") || String::CStringEquals(gtest_color, "1"); // We take "yes", "true", "t", and "1" as meaning "yes". If the // value is neither one of these nor "auto", we treat it as "no" to // be conservative. } // Helpers for printing colored strings to stdout. Note that on Windows, we // cannot simply emit special characters and have the terminal change colors. // This routine must actually emit the characters rather than return a string // that would be colored when printed, as can be done on Linux. void ColoredPrintf(GTestColor color, const char* fmt, ...) { va_list args; va_start(args, fmt); #if GTEST_OS_WINDOWS_MOBILE || GTEST_OS_SYMBIAN || GTEST_OS_ZOS || GTEST_OS_IOS const bool use_color = false; #else static const bool in_color_mode = ShouldUseColor(posix::IsATTY(posix::FileNo(stdout)) != 0); const bool use_color = in_color_mode && (color != COLOR_DEFAULT); #endif // GTEST_OS_WINDOWS_MOBILE || GTEST_OS_SYMBIAN || GTEST_OS_ZOS // The '!= 0' comparison is necessary to satisfy MSVC 7.1. if (!use_color) { vprintf(fmt, args); va_end(args); return; } #if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE const HANDLE stdout_handle = GetStdHandle(STD_OUTPUT_HANDLE); // Gets the current text color. CONSOLE_SCREEN_BUFFER_INFO buffer_info; GetConsoleScreenBufferInfo(stdout_handle, &buffer_info); const WORD old_color_attrs = buffer_info.wAttributes; // We need to flush the stream buffers into the console before each // SetConsoleTextAttribute call lest it affect the text that is already // printed but has not yet reached the console. fflush(stdout); SetConsoleTextAttribute(stdout_handle, GetColorAttribute(color) | FOREGROUND_INTENSITY); vprintf(fmt, args); fflush(stdout); // Restores the text color. SetConsoleTextAttribute(stdout_handle, old_color_attrs); #else printf("\033[0;3%sm", GetAnsiColorCode(color)); vprintf(fmt, args); printf("\033[m"); // Resets the terminal to default. #endif // GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE va_end(args); } // Text printed in Google Test's text output and --gunit_list_tests // output to label the type parameter and value parameter for a test. static const char kTypeParamLabel[] = "TypeParam"; static const char kValueParamLabel[] = "GetParam()"; void PrintFullTestCommentIfPresent(const TestInfo& test_info) { const char* const type_param = test_info.type_param(); const char* const value_param = test_info.value_param(); if (type_param != NULL || value_param != NULL) { printf(", where "); if (type_param != NULL) { printf("%s = %s", kTypeParamLabel, type_param); if (value_param != NULL) printf(" and "); } if (value_param != NULL) { printf("%s = %s", kValueParamLabel, value_param); } } } // This class implements the TestEventListener interface. // // Class PrettyUnitTestResultPrinter is copyable. class PrettyUnitTestResultPrinter : public TestEventListener { public: PrettyUnitTestResultPrinter() {} static void PrintTestName(const char * test_case, const char * test) { printf("%s.%s", test_case, test); } // The following methods override what's in the TestEventListener class. virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {} virtual void OnTestIterationStart(const UnitTest& unit_test, int iteration); virtual void OnEnvironmentsSetUpStart(const UnitTest& unit_test); virtual void OnEnvironmentsSetUpEnd(const UnitTest& /*unit_test*/) {} virtual void OnTestCaseStart(const TestCase& test_case); virtual void OnTestStart(const TestInfo& test_info); virtual void OnTestPartResult(const TestPartResult& result); virtual void OnTestEnd(const TestInfo& test_info); virtual void OnTestCaseEnd(const TestCase& test_case); virtual void OnEnvironmentsTearDownStart(const UnitTest& unit_test); virtual void OnEnvironmentsTearDownEnd(const UnitTest& /*unit_test*/) {} virtual void OnTestIterationEnd(const UnitTest& unit_test, int iteration); virtual void OnTestProgramEnd(const UnitTest& /*unit_test*/) {} private: static void PrintFailedTests(const UnitTest& unit_test); }; // Fired before each iteration of tests starts. void PrettyUnitTestResultPrinter::OnTestIterationStart( const UnitTest& unit_test, int iteration) { if (GTEST_FLAG(repeat) != 1) printf("\nRepeating all tests (iteration %d) . . .\n\n", iteration + 1); const char* const filter = GTEST_FLAG(filter).c_str(); // Prints the filter if it's not *. This reminds the user that some // tests may be skipped. if (!String::CStringEquals(filter, kUniversalFilter)) { ColoredPrintf(COLOR_YELLOW, "Note: %s filter = %s\n", GTEST_NAME_, filter); } if (internal::ShouldShard(kTestTotalShards, kTestShardIndex, false)) { const Int32 shard_index = Int32FromEnvOrDie(kTestShardIndex, -1); ColoredPrintf(COLOR_YELLOW, "Note: This is test shard %d of %s.\n", static_cast(shard_index) + 1, internal::posix::GetEnv(kTestTotalShards)); } if (GTEST_FLAG(shuffle)) { ColoredPrintf(COLOR_YELLOW, "Note: Randomizing tests' orders with a seed of %d .\n", unit_test.random_seed()); } ColoredPrintf(COLOR_GREEN, "[==========] "); printf("Running %s from %s.\n", FormatTestCount(unit_test.test_to_run_count()).c_str(), FormatTestCaseCount(unit_test.test_case_to_run_count()).c_str()); fflush(stdout); } void PrettyUnitTestResultPrinter::OnEnvironmentsSetUpStart( const UnitTest& /*unit_test*/) { ColoredPrintf(COLOR_GREEN, "[----------] "); printf("Global test environment set-up.\n"); fflush(stdout); } void PrettyUnitTestResultPrinter::OnTestCaseStart(const TestCase& test_case) { const std::string counts = FormatCountableNoun(test_case.test_to_run_count(), "test", "tests"); ColoredPrintf(COLOR_GREEN, "[----------] "); printf("%s from %s", counts.c_str(), test_case.name()); if (test_case.type_param() == NULL) { printf("\n"); } else { printf(", where %s = %s\n", kTypeParamLabel, test_case.type_param()); } fflush(stdout); } void PrettyUnitTestResultPrinter::OnTestStart(const TestInfo& test_info) { ColoredPrintf(COLOR_GREEN, "[ RUN ] "); PrintTestName(test_info.test_case_name(), test_info.name()); printf("\n"); fflush(stdout); } // Called after an assertion failure. void PrettyUnitTestResultPrinter::OnTestPartResult( const TestPartResult& result) { // If the test part succeeded, we don't need to do anything. if (result.type() == TestPartResult::kSuccess) return; // Print failure message from the assertion (e.g. expected this and got that). PrintTestPartResult(result); fflush(stdout); } void PrettyUnitTestResultPrinter::OnTestEnd(const TestInfo& test_info) { if (test_info.result()->Passed()) { ColoredPrintf(COLOR_GREEN, "[ OK ] "); } else { ColoredPrintf(COLOR_RED, "[ FAILED ] "); } PrintTestName(test_info.test_case_name(), test_info.name()); if (test_info.result()->Failed()) PrintFullTestCommentIfPresent(test_info); if (GTEST_FLAG(print_time)) { printf(" (%s ms)\n", internal::StreamableToString( test_info.result()->elapsed_time()).c_str()); } else { printf("\n"); } fflush(stdout); } void PrettyUnitTestResultPrinter::OnTestCaseEnd(const TestCase& test_case) { if (!GTEST_FLAG(print_time)) return; const std::string counts = FormatCountableNoun(test_case.test_to_run_count(), "test", "tests"); ColoredPrintf(COLOR_GREEN, "[----------] "); printf("%s from %s (%s ms total)\n\n", counts.c_str(), test_case.name(), internal::StreamableToString(test_case.elapsed_time()).c_str()); fflush(stdout); } void PrettyUnitTestResultPrinter::OnEnvironmentsTearDownStart( const UnitTest& /*unit_test*/) { ColoredPrintf(COLOR_GREEN, "[----------] "); printf("Global test environment tear-down\n"); fflush(stdout); } // Internal helper for printing the list of failed tests. void PrettyUnitTestResultPrinter::PrintFailedTests(const UnitTest& unit_test) { const int failed_test_count = unit_test.failed_test_count(); if (failed_test_count == 0) { return; } for (int i = 0; i < unit_test.total_test_case_count(); ++i) { const TestCase& test_case = *unit_test.GetTestCase(i); if (!test_case.should_run() || (test_case.failed_test_count() == 0)) { continue; } for (int j = 0; j < test_case.total_test_count(); ++j) { const TestInfo& test_info = *test_case.GetTestInfo(j); if (!test_info.should_run() || test_info.result()->Passed()) { continue; } ColoredPrintf(COLOR_RED, "[ FAILED ] "); printf("%s.%s", test_case.name(), test_info.name()); PrintFullTestCommentIfPresent(test_info); printf("\n"); } } } void PrettyUnitTestResultPrinter::OnTestIterationEnd(const UnitTest& unit_test, int /*iteration*/) { ColoredPrintf(COLOR_GREEN, "[==========] "); printf("%s from %s ran.", FormatTestCount(unit_test.test_to_run_count()).c_str(), FormatTestCaseCount(unit_test.test_case_to_run_count()).c_str()); if (GTEST_FLAG(print_time)) { printf(" (%s ms total)", internal::StreamableToString(unit_test.elapsed_time()).c_str()); } printf("\n"); ColoredPrintf(COLOR_GREEN, "[ PASSED ] "); printf("%s.\n", FormatTestCount(unit_test.successful_test_count()).c_str()); int num_failures = unit_test.failed_test_count(); if (!unit_test.Passed()) { const int failed_test_count = unit_test.failed_test_count(); ColoredPrintf(COLOR_RED, "[ FAILED ] "); printf("%s, listed below:\n", FormatTestCount(failed_test_count).c_str()); PrintFailedTests(unit_test); printf("\n%2d FAILED %s\n", num_failures, num_failures == 1 ? "TEST" : "TESTS"); } int num_disabled = unit_test.reportable_disabled_test_count(); if (num_disabled && !GTEST_FLAG(also_run_disabled_tests)) { if (!num_failures) { printf("\n"); // Add a spacer if no FAILURE banner is displayed. } ColoredPrintf(COLOR_YELLOW, " YOU HAVE %d DISABLED %s\n\n", num_disabled, num_disabled == 1 ? "TEST" : "TESTS"); } // Ensure that Google Test output is printed before, e.g., heapchecker output. fflush(stdout); } // End PrettyUnitTestResultPrinter // class TestEventRepeater // // This class forwards events to other event listeners. class TestEventRepeater : public TestEventListener { public: TestEventRepeater() : forwarding_enabled_(true) {} virtual ~TestEventRepeater(); void Append(TestEventListener *listener); TestEventListener* Release(TestEventListener* listener); // Controls whether events will be forwarded to listeners_. Set to false // in death test child processes. bool forwarding_enabled() const { return forwarding_enabled_; } void set_forwarding_enabled(bool enable) { forwarding_enabled_ = enable; } virtual void OnTestProgramStart(const UnitTest& unit_test); virtual void OnTestIterationStart(const UnitTest& unit_test, int iteration); virtual void OnEnvironmentsSetUpStart(const UnitTest& unit_test); virtual void OnEnvironmentsSetUpEnd(const UnitTest& unit_test); virtual void OnTestCaseStart(const TestCase& test_case); virtual void OnTestStart(const TestInfo& test_info); virtual void OnTestPartResult(const TestPartResult& result); virtual void OnTestEnd(const TestInfo& test_info); virtual void OnTestCaseEnd(const TestCase& test_case); virtual void OnEnvironmentsTearDownStart(const UnitTest& unit_test); virtual void OnEnvironmentsTearDownEnd(const UnitTest& unit_test); virtual void OnTestIterationEnd(const UnitTest& unit_test, int iteration); virtual void OnTestProgramEnd(const UnitTest& unit_test); private: // Controls whether events will be forwarded to listeners_. Set to false // in death test child processes. bool forwarding_enabled_; // The list of listeners that receive events. std::vector listeners_; GTEST_DISALLOW_COPY_AND_ASSIGN_(TestEventRepeater); }; TestEventRepeater::~TestEventRepeater() { ForEach(listeners_, Delete); } void TestEventRepeater::Append(TestEventListener *listener) { listeners_.push_back(listener); } // TODO(vladl@google.com): Factor the search functionality into Vector::Find. TestEventListener* TestEventRepeater::Release(TestEventListener *listener) { for (size_t i = 0; i < listeners_.size(); ++i) { if (listeners_[i] == listener) { listeners_.erase(listeners_.begin() + i); return listener; } } return NULL; } // Since most methods are very similar, use macros to reduce boilerplate. // This defines a member that forwards the call to all listeners. #define GTEST_REPEATER_METHOD_(Name, Type) \ void TestEventRepeater::Name(const Type& parameter) { \ if (forwarding_enabled_) { \ for (size_t i = 0; i < listeners_.size(); i++) { \ listeners_[i]->Name(parameter); \ } \ } \ } // This defines a member that forwards the call to all listeners in reverse // order. #define GTEST_REVERSE_REPEATER_METHOD_(Name, Type) \ void TestEventRepeater::Name(const Type& parameter) { \ if (forwarding_enabled_) { \ for (int i = static_cast(listeners_.size()) - 1; i >= 0; i--) { \ listeners_[i]->Name(parameter); \ } \ } \ } GTEST_REPEATER_METHOD_(OnTestProgramStart, UnitTest) GTEST_REPEATER_METHOD_(OnEnvironmentsSetUpStart, UnitTest) GTEST_REPEATER_METHOD_(OnTestCaseStart, TestCase) GTEST_REPEATER_METHOD_(OnTestStart, TestInfo) GTEST_REPEATER_METHOD_(OnTestPartResult, TestPartResult) GTEST_REPEATER_METHOD_(OnEnvironmentsTearDownStart, UnitTest) GTEST_REVERSE_REPEATER_METHOD_(OnEnvironmentsSetUpEnd, UnitTest) GTEST_REVERSE_REPEATER_METHOD_(OnEnvironmentsTearDownEnd, UnitTest) GTEST_REVERSE_REPEATER_METHOD_(OnTestEnd, TestInfo) GTEST_REVERSE_REPEATER_METHOD_(OnTestCaseEnd, TestCase) GTEST_REVERSE_REPEATER_METHOD_(OnTestProgramEnd, UnitTest) #undef GTEST_REPEATER_METHOD_ #undef GTEST_REVERSE_REPEATER_METHOD_ void TestEventRepeater::OnTestIterationStart(const UnitTest& unit_test, int iteration) { if (forwarding_enabled_) { for (size_t i = 0; i < listeners_.size(); i++) { listeners_[i]->OnTestIterationStart(unit_test, iteration); } } } void TestEventRepeater::OnTestIterationEnd(const UnitTest& unit_test, int iteration) { if (forwarding_enabled_) { for (int i = static_cast(listeners_.size()) - 1; i >= 0; i--) { listeners_[i]->OnTestIterationEnd(unit_test, iteration); } } } // End TestEventRepeater // This class generates an XML output file. class XmlUnitTestResultPrinter : public EmptyTestEventListener { public: explicit XmlUnitTestResultPrinter(const char* output_file); virtual void OnTestIterationEnd(const UnitTest& unit_test, int iteration); private: // Is c a whitespace character that is normalized to a space character // when it appears in an XML attribute value? static bool IsNormalizableWhitespace(char c) { return c == 0x9 || c == 0xA || c == 0xD; } // May c appear in a well-formed XML document? static bool IsValidXmlCharacter(char c) { return IsNormalizableWhitespace(c) || c >= 0x20; } // Returns an XML-escaped copy of the input string str. If // is_attribute is true, the text is meant to appear as an attribute // value, and normalizable whitespace is preserved by replacing it // with character references. static std::string EscapeXml(const std::string& str, bool is_attribute); // Returns the given string with all characters invalid in XML removed. static std::string RemoveInvalidXmlCharacters(const std::string& str); // Convenience wrapper around EscapeXml when str is an attribute value. static std::string EscapeXmlAttribute(const std::string& str) { return EscapeXml(str, true); } // Convenience wrapper around EscapeXml when str is not an attribute value. static std::string EscapeXmlText(const char* str) { return EscapeXml(str, false); } // Verifies that the given attribute belongs to the given element and // streams the attribute as XML. static void OutputXmlAttribute(std::ostream* stream, const std::string& element_name, const std::string& name, const std::string& value); // Streams an XML CDATA section, escaping invalid CDATA sequences as needed. static void OutputXmlCDataSection(::std::ostream* stream, const char* data); // Streams an XML representation of a TestInfo object. static void OutputXmlTestInfo(::std::ostream* stream, const char* test_case_name, const TestInfo& test_info); // Prints an XML representation of a TestCase object static void PrintXmlTestCase(::std::ostream* stream, const TestCase& test_case); // Prints an XML summary of unit_test to output stream out. static void PrintXmlUnitTest(::std::ostream* stream, const UnitTest& unit_test); // Produces a string representing the test properties in a result as space // delimited XML attributes based on the property key="value" pairs. // When the std::string is not empty, it includes a space at the beginning, // to delimit this attribute from prior attributes. static std::string TestPropertiesAsXmlAttributes(const TestResult& result); // The output file. const std::string output_file_; GTEST_DISALLOW_COPY_AND_ASSIGN_(XmlUnitTestResultPrinter); }; // Creates a new XmlUnitTestResultPrinter. XmlUnitTestResultPrinter::XmlUnitTestResultPrinter(const char* output_file) : output_file_(output_file) { if (output_file_.c_str() == NULL || output_file_.empty()) { fprintf(stderr, "XML output file may not be null\n"); fflush(stderr); exit(EXIT_FAILURE); } } // Called after the unit test ends. void XmlUnitTestResultPrinter::OnTestIterationEnd(const UnitTest& unit_test, int /*iteration*/) { FILE* xmlout = NULL; FilePath output_file(output_file_); FilePath output_dir(output_file.RemoveFileName()); if (output_dir.CreateDirectoriesRecursively()) { xmlout = posix::FOpen(output_file_.c_str(), "w"); } if (xmlout == NULL) { // TODO(wan): report the reason of the failure. // // We don't do it for now as: // // 1. There is no urgent need for it. // 2. It's a bit involved to make the errno variable thread-safe on // all three operating systems (Linux, Windows, and Mac OS). // 3. To interpret the meaning of errno in a thread-safe way, // we need the strerror_r() function, which is not available on // Windows. fprintf(stderr, "Unable to open file \"%s\"\n", output_file_.c_str()); fflush(stderr); exit(EXIT_FAILURE); } std::stringstream stream; PrintXmlUnitTest(&stream, unit_test); fprintf(xmlout, "%s", StringStreamToString(&stream).c_str()); fclose(xmlout); } // Returns an XML-escaped copy of the input string str. If is_attribute // is true, the text is meant to appear as an attribute value, and // normalizable whitespace is preserved by replacing it with character // references. // // Invalid XML characters in str, if any, are stripped from the output. // It is expected that most, if not all, of the text processed by this // module will consist of ordinary English text. // If this module is ever modified to produce version 1.1 XML output, // most invalid characters can be retained using character references. // TODO(wan): It might be nice to have a minimally invasive, human-readable // escaping scheme for invalid characters, rather than dropping them. std::string XmlUnitTestResultPrinter::EscapeXml( const std::string& str, bool is_attribute) { Message m; for (size_t i = 0; i < str.size(); ++i) { const char ch = str[i]; switch (ch) { case '<': m << "<"; break; case '>': m << ">"; break; case '&': m << "&"; break; case '\'': if (is_attribute) m << "'"; else m << '\''; break; case '"': if (is_attribute) m << """; else m << '"'; break; default: if (IsValidXmlCharacter(ch)) { if (is_attribute && IsNormalizableWhitespace(ch)) m << "&#x" << String::FormatByte(static_cast(ch)) << ";"; else m << ch; } break; } } return m.GetString(); } // Returns the given string with all characters invalid in XML removed. // Currently invalid characters are dropped from the string. An // alternative is to replace them with certain characters such as . or ?. std::string XmlUnitTestResultPrinter::RemoveInvalidXmlCharacters( const std::string& str) { std::string output; output.reserve(str.size()); for (std::string::const_iterator it = str.begin(); it != str.end(); ++it) if (IsValidXmlCharacter(*it)) output.push_back(*it); return output; } // The following routines generate an XML representation of a UnitTest // object. // // This is how Google Test concepts map to the DTD: // // <-- corresponds to a UnitTest object // <-- corresponds to a TestCase object // <-- corresponds to a TestInfo object // ... // ... // ... // <-- individual assertion failures // // // // Formats the given time in milliseconds as seconds. std::string FormatTimeInMillisAsSeconds(TimeInMillis ms) { ::std::stringstream ss; ss << ms/1000.0; return ss.str(); } // Converts the given epoch time in milliseconds to a date string in the ISO // 8601 format, without the timezone information. std::string FormatEpochTimeInMillisAsIso8601(TimeInMillis ms) { // Using non-reentrant version as localtime_r is not portable. time_t seconds = static_cast(ms / 1000); #ifdef _MSC_VER # pragma warning(push) // Saves the current warning state. # pragma warning(disable:4996) // Temporarily disables warning 4996 // (function or variable may be unsafe). const struct tm* const time_struct = localtime(&seconds); // NOLINT # pragma warning(pop) // Restores the warning state again. #else const struct tm* const time_struct = localtime(&seconds); // NOLINT #endif if (time_struct == NULL) return ""; // Invalid ms value // YYYY-MM-DDThh:mm:ss return StreamableToString(time_struct->tm_year + 1900) + "-" + String::FormatIntWidth2(time_struct->tm_mon + 1) + "-" + String::FormatIntWidth2(time_struct->tm_mday) + "T" + String::FormatIntWidth2(time_struct->tm_hour) + ":" + String::FormatIntWidth2(time_struct->tm_min) + ":" + String::FormatIntWidth2(time_struct->tm_sec); } // Streams an XML CDATA section, escaping invalid CDATA sequences as needed. void XmlUnitTestResultPrinter::OutputXmlCDataSection(::std::ostream* stream, const char* data) { const char* segment = data; *stream << ""); if (next_segment != NULL) { stream->write( segment, static_cast(next_segment - segment)); *stream << "]]>]]>"); } else { *stream << segment; break; } } *stream << "]]>"; } void XmlUnitTestResultPrinter::OutputXmlAttribute( std::ostream* stream, const std::string& element_name, const std::string& name, const std::string& value) { const std::vector& allowed_names = GetReservedAttributesForElement(element_name); GTEST_CHECK_(std::find(allowed_names.begin(), allowed_names.end(), name) != allowed_names.end()) << "Attribute " << name << " is not allowed for element <" << element_name << ">."; *stream << " " << name << "=\"" << EscapeXmlAttribute(value) << "\""; } // Prints an XML representation of a TestInfo object. // TODO(wan): There is also value in printing properties with the plain printer. void XmlUnitTestResultPrinter::OutputXmlTestInfo(::std::ostream* stream, const char* test_case_name, const TestInfo& test_info) { const TestResult& result = *test_info.result(); const std::string kTestcase = "testcase"; *stream << " \n"; } const string location = internal::FormatCompilerIndependentFileLocation( part.file_name(), part.line_number()); const string summary = location + "\n" + part.summary(); *stream << " "; const string detail = location + "\n" + part.message(); OutputXmlCDataSection(stream, RemoveInvalidXmlCharacters(detail).c_str()); *stream << "\n"; } } if (failures == 0) *stream << " />\n"; else *stream << " \n"; } // Prints an XML representation of a TestCase object void XmlUnitTestResultPrinter::PrintXmlTestCase(std::ostream* stream, const TestCase& test_case) { const std::string kTestsuite = "testsuite"; *stream << " <" << kTestsuite; OutputXmlAttribute(stream, kTestsuite, "name", test_case.name()); OutputXmlAttribute(stream, kTestsuite, "tests", StreamableToString(test_case.reportable_test_count())); OutputXmlAttribute(stream, kTestsuite, "failures", StreamableToString(test_case.failed_test_count())); OutputXmlAttribute( stream, kTestsuite, "disabled", StreamableToString(test_case.reportable_disabled_test_count())); OutputXmlAttribute(stream, kTestsuite, "errors", "0"); OutputXmlAttribute(stream, kTestsuite, "time", FormatTimeInMillisAsSeconds(test_case.elapsed_time())); *stream << TestPropertiesAsXmlAttributes(test_case.ad_hoc_test_result()) << ">\n"; for (int i = 0; i < test_case.total_test_count(); ++i) { if (test_case.GetTestInfo(i)->is_reportable()) OutputXmlTestInfo(stream, test_case.name(), *test_case.GetTestInfo(i)); } *stream << " \n"; } // Prints an XML summary of unit_test to output stream out. void XmlUnitTestResultPrinter::PrintXmlUnitTest(std::ostream* stream, const UnitTest& unit_test) { const std::string kTestsuites = "testsuites"; *stream << "\n"; *stream << "<" << kTestsuites; OutputXmlAttribute(stream, kTestsuites, "tests", StreamableToString(unit_test.reportable_test_count())); OutputXmlAttribute(stream, kTestsuites, "failures", StreamableToString(unit_test.failed_test_count())); OutputXmlAttribute( stream, kTestsuites, "disabled", StreamableToString(unit_test.reportable_disabled_test_count())); OutputXmlAttribute(stream, kTestsuites, "errors", "0"); OutputXmlAttribute( stream, kTestsuites, "timestamp", FormatEpochTimeInMillisAsIso8601(unit_test.start_timestamp())); OutputXmlAttribute(stream, kTestsuites, "time", FormatTimeInMillisAsSeconds(unit_test.elapsed_time())); if (GTEST_FLAG(shuffle)) { OutputXmlAttribute(stream, kTestsuites, "random_seed", StreamableToString(unit_test.random_seed())); } *stream << TestPropertiesAsXmlAttributes(unit_test.ad_hoc_test_result()); OutputXmlAttribute(stream, kTestsuites, "name", "AllTests"); *stream << ">\n"; for (int i = 0; i < unit_test.total_test_case_count(); ++i) { if (unit_test.GetTestCase(i)->reportable_test_count() > 0) PrintXmlTestCase(stream, *unit_test.GetTestCase(i)); } *stream << "\n"; } // Produces a string representing the test properties in a result as space // delimited XML attributes based on the property key="value" pairs. std::string XmlUnitTestResultPrinter::TestPropertiesAsXmlAttributes( const TestResult& result) { Message attributes; for (int i = 0; i < result.test_property_count(); ++i) { const TestProperty& property = result.GetTestProperty(i); attributes << " " << property.key() << "=" << "\"" << EscapeXmlAttribute(property.value()) << "\""; } return attributes.GetString(); } // End XmlUnitTestResultPrinter #if GTEST_CAN_STREAM_RESULTS_ // Checks if str contains '=', '&', '%' or '\n' characters. If yes, // replaces them by "%xx" where xx is their hexadecimal value. For // example, replaces "=" with "%3D". This algorithm is O(strlen(str)) // in both time and space -- important as the input str may contain an // arbitrarily long test failure message and stack trace. string StreamingListener::UrlEncode(const char* str) { string result; result.reserve(strlen(str) + 1); for (char ch = *str; ch != '\0'; ch = *++str) { switch (ch) { case '%': case '=': case '&': case '\n': result.append("%" + String::FormatByte(static_cast(ch))); break; default: result.push_back(ch); break; } } return result; } void StreamingListener::SocketWriter::MakeConnection() { GTEST_CHECK_(sockfd_ == -1) << "MakeConnection() can't be called when there is already a connection."; addrinfo hints; memset(&hints, 0, sizeof(hints)); hints.ai_family = AF_UNSPEC; // To allow both IPv4 and IPv6 addresses. hints.ai_socktype = SOCK_STREAM; addrinfo* servinfo = NULL; // Use the getaddrinfo() to get a linked list of IP addresses for // the given host name. const int error_num = getaddrinfo( host_name_.c_str(), port_num_.c_str(), &hints, &servinfo); if (error_num != 0) { GTEST_LOG_(WARNING) << "stream_result_to: getaddrinfo() failed: " << gai_strerror(error_num); } // Loop through all the results and connect to the first we can. for (addrinfo* cur_addr = servinfo; sockfd_ == -1 && cur_addr != NULL; cur_addr = cur_addr->ai_next) { sockfd_ = socket( cur_addr->ai_family, cur_addr->ai_socktype, cur_addr->ai_protocol); if (sockfd_ != -1) { // Connect the client socket to the server socket. if (connect(sockfd_, cur_addr->ai_addr, cur_addr->ai_addrlen) == -1) { close(sockfd_); sockfd_ = -1; } } } freeaddrinfo(servinfo); // all done with this structure if (sockfd_ == -1) { GTEST_LOG_(WARNING) << "stream_result_to: failed to connect to " << host_name_ << ":" << port_num_; } } // End of class Streaming Listener #endif // GTEST_CAN_STREAM_RESULTS__ // Class ScopedTrace // Pushes the given source file location and message onto a per-thread // trace stack maintained by Google Test. ScopedTrace::ScopedTrace(const char* file, int line, const Message& message) GTEST_LOCK_EXCLUDED_(&UnitTest::mutex_) { TraceInfo trace; trace.file = file; trace.line = line; trace.message = message.GetString(); UnitTest::GetInstance()->PushGTestTrace(trace); } // Pops the info pushed by the c'tor. ScopedTrace::~ScopedTrace() GTEST_LOCK_EXCLUDED_(&UnitTest::mutex_) { UnitTest::GetInstance()->PopGTestTrace(); } // class OsStackTraceGetter // Returns the current OS stack trace as an std::string. Parameters: // // max_depth - the maximum number of stack frames to be included // in the trace. // skip_count - the number of top frames to be skipped; doesn't count // against max_depth. // string OsStackTraceGetter::CurrentStackTrace(int /* max_depth */, int /* skip_count */) GTEST_LOCK_EXCLUDED_(mutex_) { return ""; } void OsStackTraceGetter::UponLeavingGTest() GTEST_LOCK_EXCLUDED_(mutex_) { } const char* const OsStackTraceGetter::kElidedFramesMarker = "... " GTEST_NAME_ " internal frames ..."; // A helper class that creates the premature-exit file in its // constructor and deletes the file in its destructor. class ScopedPrematureExitFile { public: explicit ScopedPrematureExitFile(const char* premature_exit_filepath) : premature_exit_filepath_(premature_exit_filepath) { // If a path to the premature-exit file is specified... if (premature_exit_filepath != NULL && *premature_exit_filepath != '\0') { // create the file with a single "0" character in it. I/O // errors are ignored as there's nothing better we can do and we // don't want to fail the test because of this. FILE* pfile = posix::FOpen(premature_exit_filepath, "w"); fwrite("0", 1, 1, pfile); fclose(pfile); } } ~ScopedPrematureExitFile() { if (premature_exit_filepath_ != NULL && *premature_exit_filepath_ != '\0') { remove(premature_exit_filepath_); } } private: const char* const premature_exit_filepath_; GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedPrematureExitFile); }; } // namespace internal // class TestEventListeners TestEventListeners::TestEventListeners() : repeater_(new internal::TestEventRepeater()), default_result_printer_(NULL), default_xml_generator_(NULL) { } TestEventListeners::~TestEventListeners() { delete repeater_; } // Returns the standard listener responsible for the default console // output. Can be removed from the listeners list to shut down default // console output. Note that removing this object from the listener list // with Release transfers its ownership to the user. void TestEventListeners::Append(TestEventListener* listener) { repeater_->Append(listener); } // Removes the given event listener from the list and returns it. It then // becomes the caller's responsibility to delete the listener. Returns // NULL if the listener is not found in the list. TestEventListener* TestEventListeners::Release(TestEventListener* listener) { if (listener == default_result_printer_) default_result_printer_ = NULL; else if (listener == default_xml_generator_) default_xml_generator_ = NULL; return repeater_->Release(listener); } // Returns repeater that broadcasts the TestEventListener events to all // subscribers. TestEventListener* TestEventListeners::repeater() { return repeater_; } // Sets the default_result_printer attribute to the provided listener. // The listener is also added to the listener list and previous // default_result_printer is removed from it and deleted. The listener can // also be NULL in which case it will not be added to the list. Does // nothing if the previous and the current listener objects are the same. void TestEventListeners::SetDefaultResultPrinter(TestEventListener* listener) { if (default_result_printer_ != listener) { // It is an error to pass this method a listener that is already in the // list. delete Release(default_result_printer_); default_result_printer_ = listener; if (listener != NULL) Append(listener); } } // Sets the default_xml_generator attribute to the provided listener. The // listener is also added to the listener list and previous // default_xml_generator is removed from it and deleted. The listener can // also be NULL in which case it will not be added to the list. Does // nothing if the previous and the current listener objects are the same. void TestEventListeners::SetDefaultXmlGenerator(TestEventListener* listener) { if (default_xml_generator_ != listener) { // It is an error to pass this method a listener that is already in the // list. delete Release(default_xml_generator_); default_xml_generator_ = listener; if (listener != NULL) Append(listener); } } // Controls whether events will be forwarded by the repeater to the // listeners in the list. bool TestEventListeners::EventForwardingEnabled() const { return repeater_->forwarding_enabled(); } void TestEventListeners::SuppressEventForwarding() { repeater_->set_forwarding_enabled(false); } // class UnitTest // Gets the singleton UnitTest object. The first time this method is // called, a UnitTest object is constructed and returned. Consecutive // calls will return the same object. // // We don't protect this under mutex_ as a user is not supposed to // call this before main() starts, from which point on the return // value will never change. UnitTest* UnitTest::GetInstance() { // When compiled with MSVC 7.1 in optimized mode, destroying the // UnitTest object upon exiting the program messes up the exit code, // causing successful tests to appear failed. We have to use a // different implementation in this case to bypass the compiler bug. // This implementation makes the compiler happy, at the cost of // leaking the UnitTest object. // CodeGear C++Builder insists on a public destructor for the // default implementation. Use this implementation to keep good OO // design with private destructor. #if (_MSC_VER == 1310 && !defined(_DEBUG)) || defined(__BORLANDC__) static UnitTest* const instance = new UnitTest; return instance; #else static UnitTest instance; return &instance; #endif // (_MSC_VER == 1310 && !defined(_DEBUG)) || defined(__BORLANDC__) } // Gets the number of successful test cases. int UnitTest::successful_test_case_count() const { return impl()->successful_test_case_count(); } // Gets the number of failed test cases. int UnitTest::failed_test_case_count() const { return impl()->failed_test_case_count(); } // Gets the number of all test cases. int UnitTest::total_test_case_count() const { return impl()->total_test_case_count(); } // Gets the number of all test cases that contain at least one test // that should run. int UnitTest::test_case_to_run_count() const { return impl()->test_case_to_run_count(); } // Gets the number of successful tests. int UnitTest::successful_test_count() const { return impl()->successful_test_count(); } // Gets the number of failed tests. int UnitTest::failed_test_count() const { return impl()->failed_test_count(); } // Gets the number of disabled tests that will be reported in the XML report. int UnitTest::reportable_disabled_test_count() const { return impl()->reportable_disabled_test_count(); } // Gets the number of disabled tests. int UnitTest::disabled_test_count() const { return impl()->disabled_test_count(); } // Gets the number of tests to be printed in the XML report. int UnitTest::reportable_test_count() const { return impl()->reportable_test_count(); } // Gets the number of all tests. int UnitTest::total_test_count() const { return impl()->total_test_count(); } // Gets the number of tests that should run. int UnitTest::test_to_run_count() const { return impl()->test_to_run_count(); } // Gets the time of the test program start, in ms from the start of the // UNIX epoch. internal::TimeInMillis UnitTest::start_timestamp() const { return impl()->start_timestamp(); } // Gets the elapsed time, in milliseconds. internal::TimeInMillis UnitTest::elapsed_time() const { return impl()->elapsed_time(); } // Returns true iff the unit test passed (i.e. all test cases passed). bool UnitTest::Passed() const { return impl()->Passed(); } // Returns true iff the unit test failed (i.e. some test case failed // or something outside of all tests failed). bool UnitTest::Failed() const { return impl()->Failed(); } // Gets the i-th test case among all the test cases. i can range from 0 to // total_test_case_count() - 1. If i is not in that range, returns NULL. const TestCase* UnitTest::GetTestCase(int i) const { return impl()->GetTestCase(i); } // Returns the TestResult containing information on test failures and // properties logged outside of individual test cases. const TestResult& UnitTest::ad_hoc_test_result() const { return *impl()->ad_hoc_test_result(); } // Gets the i-th test case among all the test cases. i can range from 0 to // total_test_case_count() - 1. If i is not in that range, returns NULL. TestCase* UnitTest::GetMutableTestCase(int i) { return impl()->GetMutableTestCase(i); } // Returns the list of event listeners that can be used to track events // inside Google Test. TestEventListeners& UnitTest::listeners() { return *impl()->listeners(); } // Registers and returns a global test environment. When a test // program is run, all global test environments will be set-up in the // order they were registered. After all tests in the program have // finished, all global test environments will be torn-down in the // *reverse* order they were registered. // // The UnitTest object takes ownership of the given environment. // // We don't protect this under mutex_, as we only support calling it // from the main thread. Environment* UnitTest::AddEnvironment(Environment* env) { if (env == NULL) { return NULL; } impl_->environments().push_back(env); return env; } // Adds a TestPartResult to the current TestResult object. All Google Test // assertion macros (e.g. ASSERT_TRUE, EXPECT_EQ, etc) eventually call // this to report their results. The user code should use the // assertion macros instead of calling this directly. void UnitTest::AddTestPartResult( TestPartResult::Type result_type, const char* file_name, int line_number, const std::string& message, const std::string& os_stack_trace) GTEST_LOCK_EXCLUDED_(mutex_) { Message msg; msg << message; internal::MutexLock lock(&mutex_); if (impl_->gtest_trace_stack().size() > 0) { msg << "\n" << GTEST_NAME_ << " trace:"; for (int i = static_cast(impl_->gtest_trace_stack().size()); i > 0; --i) { const internal::TraceInfo& trace = impl_->gtest_trace_stack()[i - 1]; msg << "\n" << internal::FormatFileLocation(trace.file, trace.line) << " " << trace.message; } } if (os_stack_trace.c_str() != NULL && !os_stack_trace.empty()) { msg << internal::kStackTraceMarker << os_stack_trace; } const TestPartResult result = TestPartResult(result_type, file_name, line_number, msg.GetString().c_str()); impl_->GetTestPartResultReporterForCurrentThread()-> ReportTestPartResult(result); if (result_type != TestPartResult::kSuccess) { // gtest_break_on_failure takes precedence over // gtest_throw_on_failure. This allows a user to set the latter // in the code (perhaps in order to use Google Test assertions // with another testing framework) and specify the former on the // command line for debugging. if (GTEST_FLAG(break_on_failure)) { #if GTEST_OS_WINDOWS // Using DebugBreak on Windows allows gtest to still break into a debugger // when a failure happens and both the --gtest_break_on_failure and // the --gtest_catch_exceptions flags are specified. DebugBreak(); #else // Dereference NULL through a volatile pointer to prevent the compiler // from removing. We use this rather than abort() or __builtin_trap() for // portability: Symbian doesn't implement abort() well, and some debuggers // don't correctly trap abort(). *static_cast(NULL) = 1; #endif // GTEST_OS_WINDOWS } else if (GTEST_FLAG(throw_on_failure)) { #if GTEST_HAS_EXCEPTIONS throw internal::GoogleTestFailureException(result); #else // We cannot call abort() as it generates a pop-up in debug mode // that cannot be suppressed in VC 7.1 or below. exit(1); #endif } } } // Adds a TestProperty to the current TestResult object when invoked from // inside a test, to current TestCase's ad_hoc_test_result_ when invoked // from SetUpTestCase or TearDownTestCase, or to the global property set // when invoked elsewhere. If the result already contains a property with // the same key, the value will be updated. void UnitTest::RecordProperty(const std::string& key, const std::string& value) { impl_->RecordProperty(TestProperty(key, value)); } // Runs all tests in this UnitTest object and prints the result. // Returns 0 if successful, or 1 otherwise. // // We don't protect this under mutex_, as we only support calling it // from the main thread. int UnitTest::Run() { const bool in_death_test_child_process = internal::GTEST_FLAG(internal_run_death_test).length() > 0; // Google Test implements this protocol for catching that a test // program exits before returning control to Google Test: // // 1. Upon start, Google Test creates a file whose absolute path // is specified by the environment variable // TEST_PREMATURE_EXIT_FILE. // 2. When Google Test has finished its work, it deletes the file. // // This allows a test runner to set TEST_PREMATURE_EXIT_FILE before // running a Google-Test-based test program and check the existence // of the file at the end of the test execution to see if it has // exited prematurely. // If we are in the child process of a death test, don't // create/delete the premature exit file, as doing so is unnecessary // and will confuse the parent process. Otherwise, create/delete // the file upon entering/leaving this function. If the program // somehow exits before this function has a chance to return, the // premature-exit file will be left undeleted, causing a test runner // that understands the premature-exit-file protocol to report the // test as having failed. const internal::ScopedPrematureExitFile premature_exit_file( in_death_test_child_process ? NULL : internal::posix::GetEnv("TEST_PREMATURE_EXIT_FILE")); // Captures the value of GTEST_FLAG(catch_exceptions). This value will be // used for the duration of the program. impl()->set_catch_exceptions(GTEST_FLAG(catch_exceptions)); #if GTEST_HAS_SEH // Either the user wants Google Test to catch exceptions thrown by the // tests or this is executing in the context of death test child // process. In either case the user does not want to see pop-up dialogs // about crashes - they are expected. if (impl()->catch_exceptions() || in_death_test_child_process) { # if !GTEST_OS_WINDOWS_MOBILE // SetErrorMode doesn't exist on CE. SetErrorMode(SEM_FAILCRITICALERRORS | SEM_NOALIGNMENTFAULTEXCEPT | SEM_NOGPFAULTERRORBOX | SEM_NOOPENFILEERRORBOX); # endif // !GTEST_OS_WINDOWS_MOBILE # if (defined(_MSC_VER) || GTEST_OS_WINDOWS_MINGW) && !GTEST_OS_WINDOWS_MOBILE // Death test children can be terminated with _abort(). On Windows, // _abort() can show a dialog with a warning message. This forces the // abort message to go to stderr instead. _set_error_mode(_OUT_TO_STDERR); # endif # if _MSC_VER >= 1400 && !GTEST_OS_WINDOWS_MOBILE // In the debug version, Visual Studio pops up a separate dialog // offering a choice to debug the aborted program. We need to suppress // this dialog or it will pop up for every EXPECT/ASSERT_DEATH statement // executed. Google Test will notify the user of any unexpected // failure via stderr. // // VC++ doesn't define _set_abort_behavior() prior to the version 8.0. // Users of prior VC versions shall suffer the agony and pain of // clicking through the countless debug dialogs. // TODO(vladl@google.com): find a way to suppress the abort dialog() in the // debug mode when compiled with VC 7.1 or lower. if (!GTEST_FLAG(break_on_failure)) _set_abort_behavior( 0x0, // Clear the following flags: _WRITE_ABORT_MSG | _CALL_REPORTFAULT); // pop-up window, core dump. # endif } #endif // GTEST_HAS_SEH return internal::HandleExceptionsInMethodIfSupported( impl(), &internal::UnitTestImpl::RunAllTests, "auxiliary test code (environments or event listeners)") ? 0 : 1; } // Returns the working directory when the first TEST() or TEST_F() was // executed. const char* UnitTest::original_working_dir() const { return impl_->original_working_dir_.c_str(); } // Returns the TestCase object for the test that's currently running, // or NULL if no test is running. const TestCase* UnitTest::current_test_case() const GTEST_LOCK_EXCLUDED_(mutex_) { internal::MutexLock lock(&mutex_); return impl_->current_test_case(); } // Returns the TestInfo object for the test that's currently running, // or NULL if no test is running. const TestInfo* UnitTest::current_test_info() const GTEST_LOCK_EXCLUDED_(mutex_) { internal::MutexLock lock(&mutex_); return impl_->current_test_info(); } // Returns the random seed used at the start of the current test run. int UnitTest::random_seed() const { return impl_->random_seed(); } #if GTEST_HAS_PARAM_TEST // Returns ParameterizedTestCaseRegistry object used to keep track of // value-parameterized tests and instantiate and register them. internal::ParameterizedTestCaseRegistry& UnitTest::parameterized_test_registry() GTEST_LOCK_EXCLUDED_(mutex_) { return impl_->parameterized_test_registry(); } #endif // GTEST_HAS_PARAM_TEST // Creates an empty UnitTest. UnitTest::UnitTest() { impl_ = new internal::UnitTestImpl(this); } // Destructor of UnitTest. UnitTest::~UnitTest() { delete impl_; } // Pushes a trace defined by SCOPED_TRACE() on to the per-thread // Google Test trace stack. void UnitTest::PushGTestTrace(const internal::TraceInfo& trace) GTEST_LOCK_EXCLUDED_(mutex_) { internal::MutexLock lock(&mutex_); impl_->gtest_trace_stack().push_back(trace); } // Pops a trace from the per-thread Google Test trace stack. void UnitTest::PopGTestTrace() GTEST_LOCK_EXCLUDED_(mutex_) { internal::MutexLock lock(&mutex_); impl_->gtest_trace_stack().pop_back(); } namespace internal { UnitTestImpl::UnitTestImpl(UnitTest* parent) : parent_(parent), #ifdef _MSC_VER # pragma warning(push) // Saves the current warning state. # pragma warning(disable:4355) // Temporarily disables warning 4355 // (using this in initializer). default_global_test_part_result_reporter_(this), default_per_thread_test_part_result_reporter_(this), # pragma warning(pop) // Restores the warning state again. #else default_global_test_part_result_reporter_(this), default_per_thread_test_part_result_reporter_(this), #endif // _MSC_VER global_test_part_result_repoter_( &default_global_test_part_result_reporter_), per_thread_test_part_result_reporter_( &default_per_thread_test_part_result_reporter_), #if GTEST_HAS_PARAM_TEST parameterized_test_registry_(), parameterized_tests_registered_(false), #endif // GTEST_HAS_PARAM_TEST last_death_test_case_(-1), current_test_case_(NULL), current_test_info_(NULL), ad_hoc_test_result_(), os_stack_trace_getter_(NULL), post_flag_parse_init_performed_(false), random_seed_(0), // Will be overridden by the flag before first use. random_(0), // Will be reseeded before first use. start_timestamp_(0), elapsed_time_(0), #if GTEST_HAS_DEATH_TEST death_test_factory_(new DefaultDeathTestFactory), #endif // Will be overridden by the flag before first use. catch_exceptions_(false) { listeners()->SetDefaultResultPrinter(new PrettyUnitTestResultPrinter); } UnitTestImpl::~UnitTestImpl() { // Deletes every TestCase. ForEach(test_cases_, internal::Delete); // Deletes every Environment. ForEach(environments_, internal::Delete); delete os_stack_trace_getter_; } // Adds a TestProperty to the current TestResult object when invoked in a // context of a test, to current test case's ad_hoc_test_result when invoke // from SetUpTestCase/TearDownTestCase, or to the global property set // otherwise. If the result already contains a property with the same key, // the value will be updated. void UnitTestImpl::RecordProperty(const TestProperty& test_property) { std::string xml_element; TestResult* test_result; // TestResult appropriate for property recording. if (current_test_info_ != NULL) { xml_element = "testcase"; test_result = &(current_test_info_->result_); } else if (current_test_case_ != NULL) { xml_element = "testsuite"; test_result = &(current_test_case_->ad_hoc_test_result_); } else { xml_element = "testsuites"; test_result = &ad_hoc_test_result_; } test_result->RecordProperty(xml_element, test_property); } #if GTEST_HAS_DEATH_TEST // Disables event forwarding if the control is currently in a death test // subprocess. Must not be called before InitGoogleTest. void UnitTestImpl::SuppressTestEventsIfInSubprocess() { if (internal_run_death_test_flag_.get() != NULL) listeners()->SuppressEventForwarding(); } #endif // GTEST_HAS_DEATH_TEST // Initializes event listeners performing XML output as specified by // UnitTestOptions. Must not be called before InitGoogleTest. void UnitTestImpl::ConfigureXmlOutput() { const std::string& output_format = UnitTestOptions::GetOutputFormat(); if (output_format == "xml") { listeners()->SetDefaultXmlGenerator(new XmlUnitTestResultPrinter( UnitTestOptions::GetAbsolutePathToOutputFile().c_str())); } else if (output_format != "") { printf("WARNING: unrecognized output format \"%s\" ignored.\n", output_format.c_str()); fflush(stdout); } } #if GTEST_CAN_STREAM_RESULTS_ // Initializes event listeners for streaming test results in string form. // Must not be called before InitGoogleTest. void UnitTestImpl::ConfigureStreamingOutput() { const std::string& target = GTEST_FLAG(stream_result_to); if (!target.empty()) { const size_t pos = target.find(':'); if (pos != std::string::npos) { listeners()->Append(new StreamingListener(target.substr(0, pos), target.substr(pos+1))); } else { printf("WARNING: unrecognized streaming target \"%s\" ignored.\n", target.c_str()); fflush(stdout); } } } #endif // GTEST_CAN_STREAM_RESULTS_ // Performs initialization dependent upon flag values obtained in // ParseGoogleTestFlagsOnly. Is called from InitGoogleTest after the call to // ParseGoogleTestFlagsOnly. In case a user neglects to call InitGoogleTest // this function is also called from RunAllTests. Since this function can be // called more than once, it has to be idempotent. void UnitTestImpl::PostFlagParsingInit() { // Ensures that this function does not execute more than once. if (!post_flag_parse_init_performed_) { post_flag_parse_init_performed_ = true; #if GTEST_HAS_DEATH_TEST InitDeathTestSubprocessControlInfo(); SuppressTestEventsIfInSubprocess(); #endif // GTEST_HAS_DEATH_TEST // Registers parameterized tests. This makes parameterized tests // available to the UnitTest reflection API without running // RUN_ALL_TESTS. RegisterParameterizedTests(); // Configures listeners for XML output. This makes it possible for users // to shut down the default XML output before invoking RUN_ALL_TESTS. ConfigureXmlOutput(); #if GTEST_CAN_STREAM_RESULTS_ // Configures listeners for streaming test results to the specified server. ConfigureStreamingOutput(); #endif // GTEST_CAN_STREAM_RESULTS_ } } // A predicate that checks the name of a TestCase against a known // value. // // This is used for implementation of the UnitTest class only. We put // it in the anonymous namespace to prevent polluting the outer // namespace. // // TestCaseNameIs is copyable. class TestCaseNameIs { public: // Constructor. explicit TestCaseNameIs(const std::string& name) : name_(name) {} // Returns true iff the name of test_case matches name_. bool operator()(const TestCase* test_case) const { return test_case != NULL && strcmp(test_case->name(), name_.c_str()) == 0; } private: std::string name_; }; // Finds and returns a TestCase with the given name. If one doesn't // exist, creates one and returns it. It's the CALLER'S // RESPONSIBILITY to ensure that this function is only called WHEN THE // TESTS ARE NOT SHUFFLED. // // Arguments: // // test_case_name: name of the test case // type_param: the name of the test case's type parameter, or NULL if // this is not a typed or a type-parameterized test case. // set_up_tc: pointer to the function that sets up the test case // tear_down_tc: pointer to the function that tears down the test case TestCase* UnitTestImpl::GetTestCase(const char* test_case_name, const char* type_param, Test::SetUpTestCaseFunc set_up_tc, Test::TearDownTestCaseFunc tear_down_tc) { // Can we find a TestCase with the given name? const std::vector::const_iterator test_case = std::find_if(test_cases_.begin(), test_cases_.end(), TestCaseNameIs(test_case_name)); if (test_case != test_cases_.end()) return *test_case; // No. Let's create one. TestCase* const new_test_case = new TestCase(test_case_name, type_param, set_up_tc, tear_down_tc); // Is this a death test case? if (internal::UnitTestOptions::MatchesFilter(test_case_name, kDeathTestCaseFilter)) { // Yes. Inserts the test case after the last death test case // defined so far. This only works when the test cases haven't // been shuffled. Otherwise we may end up running a death test // after a non-death test. ++last_death_test_case_; test_cases_.insert(test_cases_.begin() + last_death_test_case_, new_test_case); } else { // No. Appends to the end of the list. test_cases_.push_back(new_test_case); } test_case_indices_.push_back(static_cast(test_case_indices_.size())); return new_test_case; } // Helpers for setting up / tearing down the given environment. They // are for use in the ForEach() function. static void SetUpEnvironment(Environment* env) { env->SetUp(); } static void TearDownEnvironment(Environment* env) { env->TearDown(); } // Runs all tests in this UnitTest object, prints the result, and // returns true if all tests are successful. If any exception is // thrown during a test, the test is considered to be failed, but the // rest of the tests will still be run. // // When parameterized tests are enabled, it expands and registers // parameterized tests first in RegisterParameterizedTests(). // All other functions called from RunAllTests() may safely assume that // parameterized tests are ready to be counted and run. bool UnitTestImpl::RunAllTests() { // Makes sure InitGoogleTest() was called. if (!GTestIsInitialized()) { printf("%s", "\nThis test program did NOT call ::testing::InitGoogleTest " "before calling RUN_ALL_TESTS(). Please fix it.\n"); return false; } // Do not run any test if the --help flag was specified. if (g_help_flag) return true; // Repeats the call to the post-flag parsing initialization in case the // user didn't call InitGoogleTest. PostFlagParsingInit(); // Even if sharding is not on, test runners may want to use the // GTEST_SHARD_STATUS_FILE to query whether the test supports the sharding // protocol. internal::WriteToShardStatusFileIfNeeded(); // True iff we are in a subprocess for running a thread-safe-style // death test. bool in_subprocess_for_death_test = false; #if GTEST_HAS_DEATH_TEST in_subprocess_for_death_test = (internal_run_death_test_flag_.get() != NULL); #endif // GTEST_HAS_DEATH_TEST const bool should_shard = ShouldShard(kTestTotalShards, kTestShardIndex, in_subprocess_for_death_test); // Compares the full test names with the filter to decide which // tests to run. const bool has_tests_to_run = FilterTests(should_shard ? HONOR_SHARDING_PROTOCOL : IGNORE_SHARDING_PROTOCOL) > 0; // Lists the tests and exits if the --gtest_list_tests flag was specified. if (GTEST_FLAG(list_tests)) { // This must be called *after* FilterTests() has been called. ListTestsMatchingFilter(); return true; } random_seed_ = GTEST_FLAG(shuffle) ? GetRandomSeedFromFlag(GTEST_FLAG(random_seed)) : 0; // True iff at least one test has failed. bool failed = false; TestEventListener* repeater = listeners()->repeater(); start_timestamp_ = GetTimeInMillis(); repeater->OnTestProgramStart(*parent_); // How many times to repeat the tests? We don't want to repeat them // when we are inside the subprocess of a death test. const int repeat = in_subprocess_for_death_test ? 1 : GTEST_FLAG(repeat); // Repeats forever if the repeat count is negative. const bool forever = repeat < 0; for (int i = 0; forever || i != repeat; i++) { // We want to preserve failures generated by ad-hoc test // assertions executed before RUN_ALL_TESTS(). ClearNonAdHocTestResult(); const TimeInMillis start = GetTimeInMillis(); // Shuffles test cases and tests if requested. if (has_tests_to_run && GTEST_FLAG(shuffle)) { random()->Reseed(random_seed_); // This should be done before calling OnTestIterationStart(), // such that a test event listener can see the actual test order // in the event. ShuffleTests(); } // Tells the unit test event listeners that the tests are about to start. repeater->OnTestIterationStart(*parent_, i); // Runs each test case if there is at least one test to run. if (has_tests_to_run) { // Sets up all environments beforehand. repeater->OnEnvironmentsSetUpStart(*parent_); ForEach(environments_, SetUpEnvironment); repeater->OnEnvironmentsSetUpEnd(*parent_); // Runs the tests only if there was no fatal failure during global // set-up. if (!Test::HasFatalFailure()) { for (int test_index = 0; test_index < total_test_case_count(); test_index++) { GetMutableTestCase(test_index)->Run(); } } // Tears down all environments in reverse order afterwards. repeater->OnEnvironmentsTearDownStart(*parent_); std::for_each(environments_.rbegin(), environments_.rend(), TearDownEnvironment); repeater->OnEnvironmentsTearDownEnd(*parent_); } elapsed_time_ = GetTimeInMillis() - start; // Tells the unit test event listener that the tests have just finished. repeater->OnTestIterationEnd(*parent_, i); // Gets the result and clears it. if (!Passed()) { failed = true; } // Restores the original test order after the iteration. This // allows the user to quickly repro a failure that happens in the // N-th iteration without repeating the first (N - 1) iterations. // This is not enclosed in "if (GTEST_FLAG(shuffle)) { ... }", in // case the user somehow changes the value of the flag somewhere // (it's always safe to unshuffle the tests). UnshuffleTests(); if (GTEST_FLAG(shuffle)) { // Picks a new random seed for each iteration. random_seed_ = GetNextRandomSeed(random_seed_); } } repeater->OnTestProgramEnd(*parent_); return !failed; } // Reads the GTEST_SHARD_STATUS_FILE environment variable, and creates the file // if the variable is present. If a file already exists at this location, this // function will write over it. If the variable is present, but the file cannot // be created, prints an error and exits. void WriteToShardStatusFileIfNeeded() { const char* const test_shard_file = posix::GetEnv(kTestShardStatusFile); if (test_shard_file != NULL) { FILE* const file = posix::FOpen(test_shard_file, "w"); if (file == NULL) { ColoredPrintf(COLOR_RED, "Could not write to the test shard status file \"%s\" " "specified by the %s environment variable.\n", test_shard_file, kTestShardStatusFile); fflush(stdout); exit(EXIT_FAILURE); } fclose(file); } } // Checks whether sharding is enabled by examining the relevant // environment variable values. If the variables are present, // but inconsistent (i.e., shard_index >= total_shards), prints // an error and exits. If in_subprocess_for_death_test, sharding is // disabled because it must only be applied to the original test // process. Otherwise, we could filter out death tests we intended to execute. bool ShouldShard(const char* total_shards_env, const char* shard_index_env, bool in_subprocess_for_death_test) { if (in_subprocess_for_death_test) { return false; } const Int32 total_shards = Int32FromEnvOrDie(total_shards_env, -1); const Int32 shard_index = Int32FromEnvOrDie(shard_index_env, -1); if (total_shards == -1 && shard_index == -1) { return false; } else if (total_shards == -1 && shard_index != -1) { const Message msg = Message() << "Invalid environment variables: you have " << kTestShardIndex << " = " << shard_index << ", but have left " << kTestTotalShards << " unset.\n"; ColoredPrintf(COLOR_RED, msg.GetString().c_str()); fflush(stdout); exit(EXIT_FAILURE); } else if (total_shards != -1 && shard_index == -1) { const Message msg = Message() << "Invalid environment variables: you have " << kTestTotalShards << " = " << total_shards << ", but have left " << kTestShardIndex << " unset.\n"; ColoredPrintf(COLOR_RED, msg.GetString().c_str()); fflush(stdout); exit(EXIT_FAILURE); } else if (shard_index < 0 || shard_index >= total_shards) { const Message msg = Message() << "Invalid environment variables: we require 0 <= " << kTestShardIndex << " < " << kTestTotalShards << ", but you have " << kTestShardIndex << "=" << shard_index << ", " << kTestTotalShards << "=" << total_shards << ".\n"; ColoredPrintf(COLOR_RED, msg.GetString().c_str()); fflush(stdout); exit(EXIT_FAILURE); } return total_shards > 1; } // Parses the environment variable var as an Int32. If it is unset, // returns default_val. If it is not an Int32, prints an error // and aborts. Int32 Int32FromEnvOrDie(const char* var, Int32 default_val) { const char* str_val = posix::GetEnv(var); if (str_val == NULL) { return default_val; } Int32 result; if (!ParseInt32(Message() << "The value of environment variable " << var, str_val, &result)) { exit(EXIT_FAILURE); } return result; } // Given the total number of shards, the shard index, and the test id, // returns true iff the test should be run on this shard. The test id is // some arbitrary but unique non-negative integer assigned to each test // method. Assumes that 0 <= shard_index < total_shards. bool ShouldRunTestOnShard(int total_shards, int shard_index, int test_id) { return (test_id % total_shards) == shard_index; } // Compares the name of each test with the user-specified filter to // decide whether the test should be run, then records the result in // each TestCase and TestInfo object. // If shard_tests == true, further filters tests based on sharding // variables in the environment - see // http://code.google.com/p/googletest/wiki/GoogleTestAdvancedGuide. // Returns the number of tests that should run. int UnitTestImpl::FilterTests(ReactionToSharding shard_tests) { const Int32 total_shards = shard_tests == HONOR_SHARDING_PROTOCOL ? Int32FromEnvOrDie(kTestTotalShards, -1) : -1; const Int32 shard_index = shard_tests == HONOR_SHARDING_PROTOCOL ? Int32FromEnvOrDie(kTestShardIndex, -1) : -1; // num_runnable_tests are the number of tests that will // run across all shards (i.e., match filter and are not disabled). // num_selected_tests are the number of tests to be run on // this shard. int num_runnable_tests = 0; int num_selected_tests = 0; for (size_t i = 0; i < test_cases_.size(); i++) { TestCase* const test_case = test_cases_[i]; const std::string &test_case_name = test_case->name(); test_case->set_should_run(false); for (size_t j = 0; j < test_case->test_info_list().size(); j++) { TestInfo* const test_info = test_case->test_info_list()[j]; const std::string test_name(test_info->name()); // A test is disabled if test case name or test name matches // kDisableTestFilter. const bool is_disabled = internal::UnitTestOptions::MatchesFilter(test_case_name, kDisableTestFilter) || internal::UnitTestOptions::MatchesFilter(test_name, kDisableTestFilter); test_info->is_disabled_ = is_disabled; const bool matches_filter = internal::UnitTestOptions::FilterMatchesTest(test_case_name, test_name); test_info->matches_filter_ = matches_filter; const bool is_runnable = (GTEST_FLAG(also_run_disabled_tests) || !is_disabled) && matches_filter; const bool is_selected = is_runnable && (shard_tests == IGNORE_SHARDING_PROTOCOL || ShouldRunTestOnShard(total_shards, shard_index, num_runnable_tests)); num_runnable_tests += is_runnable; num_selected_tests += is_selected; test_info->should_run_ = is_selected; test_case->set_should_run(test_case->should_run() || is_selected); } } return num_selected_tests; } // Prints the given C-string on a single line by replacing all '\n' // characters with string "\\n". If the output takes more than // max_length characters, only prints the first max_length characters // and "...". static void PrintOnOneLine(const char* str, int max_length) { if (str != NULL) { for (int i = 0; *str != '\0'; ++str) { if (i >= max_length) { printf("..."); break; } if (*str == '\n') { printf("\\n"); i += 2; } else { printf("%c", *str); ++i; } } } } // Prints the names of the tests matching the user-specified filter flag. void UnitTestImpl::ListTestsMatchingFilter() { // Print at most this many characters for each type/value parameter. const int kMaxParamLength = 250; for (size_t i = 0; i < test_cases_.size(); i++) { const TestCase* const test_case = test_cases_[i]; bool printed_test_case_name = false; for (size_t j = 0; j < test_case->test_info_list().size(); j++) { const TestInfo* const test_info = test_case->test_info_list()[j]; if (test_info->matches_filter_) { if (!printed_test_case_name) { printed_test_case_name = true; printf("%s.", test_case->name()); if (test_case->type_param() != NULL) { printf(" # %s = ", kTypeParamLabel); // We print the type parameter on a single line to make // the output easy to parse by a program. PrintOnOneLine(test_case->type_param(), kMaxParamLength); } printf("\n"); } printf(" %s", test_info->name()); if (test_info->value_param() != NULL) { printf(" # %s = ", kValueParamLabel); // We print the value parameter on a single line to make the // output easy to parse by a program. PrintOnOneLine(test_info->value_param(), kMaxParamLength); } printf("\n"); } } } fflush(stdout); } // Sets the OS stack trace getter. // // Does nothing if the input and the current OS stack trace getter are // the same; otherwise, deletes the old getter and makes the input the // current getter. void UnitTestImpl::set_os_stack_trace_getter( OsStackTraceGetterInterface* getter) { if (os_stack_trace_getter_ != getter) { delete os_stack_trace_getter_; os_stack_trace_getter_ = getter; } } // Returns the current OS stack trace getter if it is not NULL; // otherwise, creates an OsStackTraceGetter, makes it the current // getter, and returns it. OsStackTraceGetterInterface* UnitTestImpl::os_stack_trace_getter() { if (os_stack_trace_getter_ == NULL) { os_stack_trace_getter_ = new OsStackTraceGetter; } return os_stack_trace_getter_; } // Returns the TestResult for the test that's currently running, or // the TestResult for the ad hoc test if no test is running. TestResult* UnitTestImpl::current_test_result() { return current_test_info_ ? &(current_test_info_->result_) : &ad_hoc_test_result_; } // Shuffles all test cases, and the tests within each test case, // making sure that death tests are still run first. void UnitTestImpl::ShuffleTests() { // Shuffles the death test cases. ShuffleRange(random(), 0, last_death_test_case_ + 1, &test_case_indices_); // Shuffles the non-death test cases. ShuffleRange(random(), last_death_test_case_ + 1, static_cast(test_cases_.size()), &test_case_indices_); // Shuffles the tests inside each test case. for (size_t i = 0; i < test_cases_.size(); i++) { test_cases_[i]->ShuffleTests(random()); } } // Restores the test cases and tests to their order before the first shuffle. void UnitTestImpl::UnshuffleTests() { for (size_t i = 0; i < test_cases_.size(); i++) { // Unshuffles the tests in each test case. test_cases_[i]->UnshuffleTests(); // Resets the index of each test case. test_case_indices_[i] = static_cast(i); } } // Returns the current OS stack trace as an std::string. // // The maximum number of stack frames to be included is specified by // the gtest_stack_trace_depth flag. The skip_count parameter // specifies the number of top frames to be skipped, which doesn't // count against the number of frames to be included. // // For example, if Foo() calls Bar(), which in turn calls // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't. std::string GetCurrentOsStackTraceExceptTop(UnitTest* /*unit_test*/, int skip_count) { // We pass skip_count + 1 to skip this wrapper function in addition // to what the user really wants to skip. return GetUnitTestImpl()->CurrentOsStackTraceExceptTop(skip_count + 1); } // Used by the GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_ macro to // suppress unreachable code warnings. namespace { class ClassUniqueToAlwaysTrue {}; } bool IsTrue(bool condition) { return condition; } bool AlwaysTrue() { #if GTEST_HAS_EXCEPTIONS // This condition is always false so AlwaysTrue() never actually throws, // but it makes the compiler think that it may throw. if (IsTrue(false)) throw ClassUniqueToAlwaysTrue(); #endif // GTEST_HAS_EXCEPTIONS return true; } // If *pstr starts with the given prefix, modifies *pstr to be right // past the prefix and returns true; otherwise leaves *pstr unchanged // and returns false. None of pstr, *pstr, and prefix can be NULL. bool SkipPrefix(const char* prefix, const char** pstr) { const size_t prefix_len = strlen(prefix); if (strncmp(*pstr, prefix, prefix_len) == 0) { *pstr += prefix_len; return true; } return false; } // Parses a string as a command line flag. The string should have // the format "--flag=value". When def_optional is true, the "=value" // part can be omitted. // // Returns the value of the flag, or NULL if the parsing failed. const char* ParseFlagValue(const char* str, const char* flag, bool def_optional) { // str and flag must not be NULL. if (str == NULL || flag == NULL) return NULL; // The flag must start with "--" followed by GTEST_FLAG_PREFIX_. const std::string flag_str = std::string("--") + GTEST_FLAG_PREFIX_ + flag; const size_t flag_len = flag_str.length(); if (strncmp(str, flag_str.c_str(), flag_len) != 0) return NULL; // Skips the flag name. const char* flag_end = str + flag_len; // When def_optional is true, it's OK to not have a "=value" part. if (def_optional && (flag_end[0] == '\0')) { return flag_end; } // If def_optional is true and there are more characters after the // flag name, or if def_optional is false, there must be a '=' after // the flag name. if (flag_end[0] != '=') return NULL; // Returns the string after "=". return flag_end + 1; } // Parses a string for a bool flag, in the form of either // "--flag=value" or "--flag". // // In the former case, the value is taken as true as long as it does // not start with '0', 'f', or 'F'. // // In the latter case, the value is taken as true. // // On success, stores the value of the flag in *value, and returns // true. On failure, returns false without changing *value. bool ParseBoolFlag(const char* str, const char* flag, bool* value) { // Gets the value of the flag as a string. const char* const value_str = ParseFlagValue(str, flag, true); // Aborts if the parsing failed. if (value_str == NULL) return false; // Converts the string value to a bool. *value = !(*value_str == '0' || *value_str == 'f' || *value_str == 'F'); return true; } // Parses a string for an Int32 flag, in the form of // "--flag=value". // // On success, stores the value of the flag in *value, and returns // true. On failure, returns false without changing *value. bool ParseInt32Flag(const char* str, const char* flag, Int32* value) { // Gets the value of the flag as a string. const char* const value_str = ParseFlagValue(str, flag, false); // Aborts if the parsing failed. if (value_str == NULL) return false; // Sets *value to the value of the flag. return ParseInt32(Message() << "The value of flag --" << flag, value_str, value); } // Parses a string for a string flag, in the form of // "--flag=value". // // On success, stores the value of the flag in *value, and returns // true. On failure, returns false without changing *value. bool ParseStringFlag(const char* str, const char* flag, std::string* value) { // Gets the value of the flag as a string. const char* const value_str = ParseFlagValue(str, flag, false); // Aborts if the parsing failed. if (value_str == NULL) return false; // Sets *value to the value of the flag. *value = value_str; return true; } // Determines whether a string has a prefix that Google Test uses for its // flags, i.e., starts with GTEST_FLAG_PREFIX_ or GTEST_FLAG_PREFIX_DASH_. // If Google Test detects that a command line flag has its prefix but is not // recognized, it will print its help message. Flags starting with // GTEST_INTERNAL_PREFIX_ followed by "internal_" are considered Google Test // internal flags and do not trigger the help message. static bool HasGoogleTestFlagPrefix(const char* str) { return (SkipPrefix("--", &str) || SkipPrefix("-", &str) || SkipPrefix("/", &str)) && !SkipPrefix(GTEST_FLAG_PREFIX_ "internal_", &str) && (SkipPrefix(GTEST_FLAG_PREFIX_, &str) || SkipPrefix(GTEST_FLAG_PREFIX_DASH_, &str)); } // Prints a string containing code-encoded text. The following escape // sequences can be used in the string to control the text color: // // @@ prints a single '@' character. // @R changes the color to red. // @G changes the color to green. // @Y changes the color to yellow. // @D changes to the default terminal text color. // // TODO(wan@google.com): Write tests for this once we add stdout // capturing to Google Test. static void PrintColorEncoded(const char* str) { GTestColor color = COLOR_DEFAULT; // The current color. // Conceptually, we split the string into segments divided by escape // sequences. Then we print one segment at a time. At the end of // each iteration, the str pointer advances to the beginning of the // next segment. for (;;) { const char* p = strchr(str, '@'); if (p == NULL) { ColoredPrintf(color, "%s", str); return; } ColoredPrintf(color, "%s", std::string(str, p).c_str()); const char ch = p[1]; str = p + 2; if (ch == '@') { ColoredPrintf(color, "@"); } else if (ch == 'D') { color = COLOR_DEFAULT; } else if (ch == 'R') { color = COLOR_RED; } else if (ch == 'G') { color = COLOR_GREEN; } else if (ch == 'Y') { color = COLOR_YELLOW; } else { --str; } } } static const char kColorEncodedHelpMessage[] = "This program contains tests written using " GTEST_NAME_ ". You can use the\n" "following command line flags to control its behavior:\n" "\n" "Test Selection:\n" " @G--" GTEST_FLAG_PREFIX_ "list_tests@D\n" " List the names of all tests instead of running them. The name of\n" " TEST(Foo, Bar) is \"Foo.Bar\".\n" " @G--" GTEST_FLAG_PREFIX_ "filter=@YPOSTIVE_PATTERNS" "[@G-@YNEGATIVE_PATTERNS]@D\n" " Run only the tests whose name matches one of the positive patterns but\n" " none of the negative patterns. '?' matches any single character; '*'\n" " matches any substring; ':' separates two patterns.\n" " @G--" GTEST_FLAG_PREFIX_ "also_run_disabled_tests@D\n" " Run all disabled tests too.\n" "\n" "Test Execution:\n" " @G--" GTEST_FLAG_PREFIX_ "repeat=@Y[COUNT]@D\n" " Run the tests repeatedly; use a negative count to repeat forever.\n" " @G--" GTEST_FLAG_PREFIX_ "shuffle@D\n" " Randomize tests' orders on every iteration.\n" " @G--" GTEST_FLAG_PREFIX_ "random_seed=@Y[NUMBER]@D\n" " Random number seed to use for shuffling test orders (between 1 and\n" " 99999, or 0 to use a seed based on the current time).\n" "\n" "Test Output:\n" " @G--" GTEST_FLAG_PREFIX_ "color=@Y(@Gyes@Y|@Gno@Y|@Gauto@Y)@D\n" " Enable/disable colored output. The default is @Gauto@D.\n" " -@G-" GTEST_FLAG_PREFIX_ "print_time=0@D\n" " Don't print the elapsed time of each test.\n" " @G--" GTEST_FLAG_PREFIX_ "output=xml@Y[@G:@YDIRECTORY_PATH@G" GTEST_PATH_SEP_ "@Y|@G:@YFILE_PATH]@D\n" " Generate an XML report in the given directory or with the given file\n" " name. @YFILE_PATH@D defaults to @Gtest_details.xml@D.\n" #if GTEST_CAN_STREAM_RESULTS_ " @G--" GTEST_FLAG_PREFIX_ "stream_result_to=@YHOST@G:@YPORT@D\n" " Stream test results to the given server.\n" #endif // GTEST_CAN_STREAM_RESULTS_ "\n" "Assertion Behavior:\n" #if GTEST_HAS_DEATH_TEST && !GTEST_OS_WINDOWS " @G--" GTEST_FLAG_PREFIX_ "death_test_style=@Y(@Gfast@Y|@Gthreadsafe@Y)@D\n" " Set the default death test style.\n" #endif // GTEST_HAS_DEATH_TEST && !GTEST_OS_WINDOWS " @G--" GTEST_FLAG_PREFIX_ "break_on_failure@D\n" " Turn assertion failures into debugger break-points.\n" " @G--" GTEST_FLAG_PREFIX_ "throw_on_failure@D\n" " Turn assertion failures into C++ exceptions.\n" " @G--" GTEST_FLAG_PREFIX_ "catch_exceptions=0@D\n" " Do not report exceptions as test failures. Instead, allow them\n" " to crash the program or throw a pop-up (on Windows).\n" "\n" "Except for @G--" GTEST_FLAG_PREFIX_ "list_tests@D, you can alternatively set " "the corresponding\n" "environment variable of a flag (all letters in upper-case). For example, to\n" "disable colored text output, you can either specify @G--" GTEST_FLAG_PREFIX_ "color=no@D or set\n" "the @G" GTEST_FLAG_PREFIX_UPPER_ "COLOR@D environment variable to @Gno@D.\n" "\n" "For more information, please read the " GTEST_NAME_ " documentation at\n" "@G" GTEST_PROJECT_URL_ "@D. If you find a bug in " GTEST_NAME_ "\n" "(not one in your own code or tests), please report it to\n" "@G<" GTEST_DEV_EMAIL_ ">@D.\n"; // Parses the command line for Google Test flags, without initializing // other parts of Google Test. The type parameter CharType can be // instantiated to either char or wchar_t. template void ParseGoogleTestFlagsOnlyImpl(int* argc, CharType** argv) { for (int i = 1; i < *argc; i++) { const std::string arg_string = StreamableToString(argv[i]); const char* const arg = arg_string.c_str(); using internal::ParseBoolFlag; using internal::ParseInt32Flag; using internal::ParseStringFlag; // Do we see a Google Test flag? if (ParseBoolFlag(arg, kAlsoRunDisabledTestsFlag, >EST_FLAG(also_run_disabled_tests)) || ParseBoolFlag(arg, kBreakOnFailureFlag, >EST_FLAG(break_on_failure)) || ParseBoolFlag(arg, kCatchExceptionsFlag, >EST_FLAG(catch_exceptions)) || ParseStringFlag(arg, kColorFlag, >EST_FLAG(color)) || ParseStringFlag(arg, kDeathTestStyleFlag, >EST_FLAG(death_test_style)) || ParseBoolFlag(arg, kDeathTestUseFork, >EST_FLAG(death_test_use_fork)) || ParseStringFlag(arg, kFilterFlag, >EST_FLAG(filter)) || ParseStringFlag(arg, kInternalRunDeathTestFlag, >EST_FLAG(internal_run_death_test)) || ParseBoolFlag(arg, kListTestsFlag, >EST_FLAG(list_tests)) || ParseStringFlag(arg, kOutputFlag, >EST_FLAG(output)) || ParseBoolFlag(arg, kPrintTimeFlag, >EST_FLAG(print_time)) || ParseInt32Flag(arg, kRandomSeedFlag, >EST_FLAG(random_seed)) || ParseInt32Flag(arg, kRepeatFlag, >EST_FLAG(repeat)) || ParseBoolFlag(arg, kShuffleFlag, >EST_FLAG(shuffle)) || ParseInt32Flag(arg, kStackTraceDepthFlag, >EST_FLAG(stack_trace_depth)) || ParseStringFlag(arg, kStreamResultToFlag, >EST_FLAG(stream_result_to)) || ParseBoolFlag(arg, kThrowOnFailureFlag, >EST_FLAG(throw_on_failure)) ) { // Yes. Shift the remainder of the argv list left by one. Note // that argv has (*argc + 1) elements, the last one always being // NULL. The following loop moves the trailing NULL element as // well. for (int j = i; j != *argc; j++) { argv[j] = argv[j + 1]; } // Decrements the argument count. (*argc)--; // We also need to decrement the iterator as we just removed // an element. i--; } else if (arg_string == "--help" || arg_string == "-h" || arg_string == "-?" || arg_string == "/?" || HasGoogleTestFlagPrefix(arg)) { // Both help flag and unrecognized Google Test flags (excluding // internal ones) trigger help display. g_help_flag = true; } } if (g_help_flag) { // We print the help here instead of in RUN_ALL_TESTS(), as the // latter may not be called at all if the user is using Google // Test with another testing framework. PrintColorEncoded(kColorEncodedHelpMessage); } } // Parses the command line for Google Test flags, without initializing // other parts of Google Test. void ParseGoogleTestFlagsOnly(int* argc, char** argv) { ParseGoogleTestFlagsOnlyImpl(argc, argv); } void ParseGoogleTestFlagsOnly(int* argc, wchar_t** argv) { ParseGoogleTestFlagsOnlyImpl(argc, argv); } // The internal implementation of InitGoogleTest(). // // The type parameter CharType can be instantiated to either char or // wchar_t. template void InitGoogleTestImpl(int* argc, CharType** argv) { g_init_gtest_count++; // We don't want to run the initialization code twice. if (g_init_gtest_count != 1) return; if (*argc <= 0) return; internal::g_executable_path = internal::StreamableToString(argv[0]); #if GTEST_HAS_DEATH_TEST g_argvs.clear(); for (int i = 0; i != *argc; i++) { g_argvs.push_back(StreamableToString(argv[i])); } #endif // GTEST_HAS_DEATH_TEST ParseGoogleTestFlagsOnly(argc, argv); GetUnitTestImpl()->PostFlagParsingInit(); } } // namespace internal // Initializes Google Test. This must be called before calling // RUN_ALL_TESTS(). In particular, it parses a command line for the // flags that Google Test recognizes. Whenever a Google Test flag is // seen, it is removed from argv, and *argc is decremented. // // No value is returned. Instead, the Google Test flag variables are // updated. // // Calling the function for the second time has no user-visible effect. void InitGoogleTest(int* argc, char** argv) { internal::InitGoogleTestImpl(argc, argv); } // This overloaded version can be used in Windows programs compiled in // UNICODE mode. void InitGoogleTest(int* argc, wchar_t** argv) { internal::InitGoogleTestImpl(argc, argv); } } // namespace testing // Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan), vladl@google.com (Vlad Losev) // // This file implements death tests. #if GTEST_HAS_DEATH_TEST # if GTEST_OS_MAC # include # endif // GTEST_OS_MAC # include # include # include # if GTEST_OS_LINUX # include # endif // GTEST_OS_LINUX # include # if GTEST_OS_WINDOWS # include # else # include # include # endif // GTEST_OS_WINDOWS # if GTEST_OS_QNX # include # endif // GTEST_OS_QNX #endif // GTEST_HAS_DEATH_TEST // Indicates that this translation unit is part of Google Test's // implementation. It must come before gtest-internal-inl.h is // included, or there will be a compiler error. This trick is to // prevent a user from accidentally including gtest-internal-inl.h in // his code. #define GTEST_IMPLEMENTATION_ 1 #undef GTEST_IMPLEMENTATION_ namespace testing { // Constants. // The default death test style. static const char kDefaultDeathTestStyle[] = "fast"; GTEST_DEFINE_string_( death_test_style, internal::StringFromGTestEnv("death_test_style", kDefaultDeathTestStyle), "Indicates how to run a death test in a forked child process: " "\"threadsafe\" (child process re-executes the test binary " "from the beginning, running only the specific death test) or " "\"fast\" (child process runs the death test immediately " "after forking)."); GTEST_DEFINE_bool_( death_test_use_fork, internal::BoolFromGTestEnv("death_test_use_fork", false), "Instructs to use fork()/_exit() instead of clone() in death tests. " "Ignored and always uses fork() on POSIX systems where clone() is not " "implemented. Useful when running under valgrind or similar tools if " "those do not support clone(). Valgrind 3.3.1 will just fail if " "it sees an unsupported combination of clone() flags. " "It is not recommended to use this flag w/o valgrind though it will " "work in 99% of the cases. Once valgrind is fixed, this flag will " "most likely be removed."); namespace internal { GTEST_DEFINE_string_( internal_run_death_test, "", "Indicates the file, line number, temporal index of " "the single death test to run, and a file descriptor to " "which a success code may be sent, all separated by " "the '|' characters. This flag is specified if and only if the current " "process is a sub-process launched for running a thread-safe " "death test. FOR INTERNAL USE ONLY."); } // namespace internal #if GTEST_HAS_DEATH_TEST namespace internal { // Valid only for fast death tests. Indicates the code is running in the // child process of a fast style death test. static bool g_in_fast_death_test_child = false; // Returns a Boolean value indicating whether the caller is currently // executing in the context of the death test child process. Tools such as // Valgrind heap checkers may need this to modify their behavior in death // tests. IMPORTANT: This is an internal utility. Using it may break the // implementation of death tests. User code MUST NOT use it. bool InDeathTestChild() { # if GTEST_OS_WINDOWS // On Windows, death tests are thread-safe regardless of the value of the // death_test_style flag. return !GTEST_FLAG(internal_run_death_test).empty(); # else if (GTEST_FLAG(death_test_style) == "threadsafe") return !GTEST_FLAG(internal_run_death_test).empty(); else return g_in_fast_death_test_child; #endif } } // namespace internal // ExitedWithCode constructor. ExitedWithCode::ExitedWithCode(int exit_code) : exit_code_(exit_code) { } // ExitedWithCode function-call operator. bool ExitedWithCode::operator()(int exit_status) const { # if GTEST_OS_WINDOWS return exit_status == exit_code_; # else return WIFEXITED(exit_status) && WEXITSTATUS(exit_status) == exit_code_; # endif // GTEST_OS_WINDOWS } # if !GTEST_OS_WINDOWS // KilledBySignal constructor. KilledBySignal::KilledBySignal(int signum) : signum_(signum) { } // KilledBySignal function-call operator. bool KilledBySignal::operator()(int exit_status) const { return WIFSIGNALED(exit_status) && WTERMSIG(exit_status) == signum_; } # endif // !GTEST_OS_WINDOWS namespace internal { // Utilities needed for death tests. // Generates a textual description of a given exit code, in the format // specified by wait(2). static std::string ExitSummary(int exit_code) { Message m; # if GTEST_OS_WINDOWS m << "Exited with exit status " << exit_code; # else if (WIFEXITED(exit_code)) { m << "Exited with exit status " << WEXITSTATUS(exit_code); } else if (WIFSIGNALED(exit_code)) { m << "Terminated by signal " << WTERMSIG(exit_code); } # ifdef WCOREDUMP if (WCOREDUMP(exit_code)) { m << " (core dumped)"; } # endif # endif // GTEST_OS_WINDOWS return m.GetString(); } // Returns true if exit_status describes a process that was terminated // by a signal, or exited normally with a nonzero exit code. bool ExitedUnsuccessfully(int exit_status) { return !ExitedWithCode(0)(exit_status); } # if !GTEST_OS_WINDOWS // Generates a textual failure message when a death test finds more than // one thread running, or cannot determine the number of threads, prior // to executing the given statement. It is the responsibility of the // caller not to pass a thread_count of 1. static std::string DeathTestThreadWarning(size_t thread_count) { Message msg; msg << "Death tests use fork(), which is unsafe particularly" << " in a threaded context. For this test, " << GTEST_NAME_ << " "; if (thread_count == 0) msg << "couldn't detect the number of threads."; else msg << "detected " << thread_count << " threads."; return msg.GetString(); } # endif // !GTEST_OS_WINDOWS // Flag characters for reporting a death test that did not die. static const char kDeathTestLived = 'L'; static const char kDeathTestReturned = 'R'; static const char kDeathTestThrew = 'T'; static const char kDeathTestInternalError = 'I'; // An enumeration describing all of the possible ways that a death test can // conclude. DIED means that the process died while executing the test // code; LIVED means that process lived beyond the end of the test code; // RETURNED means that the test statement attempted to execute a return // statement, which is not allowed; THREW means that the test statement // returned control by throwing an exception. IN_PROGRESS means the test // has not yet concluded. // TODO(vladl@google.com): Unify names and possibly values for // AbortReason, DeathTestOutcome, and flag characters above. enum DeathTestOutcome { IN_PROGRESS, DIED, LIVED, RETURNED, THREW }; // Routine for aborting the program which is safe to call from an // exec-style death test child process, in which case the error // message is propagated back to the parent process. Otherwise, the // message is simply printed to stderr. In either case, the program // then exits with status 1. void DeathTestAbort(const std::string& message) { // On a POSIX system, this function may be called from a threadsafe-style // death test child process, which operates on a very small stack. Use // the heap for any additional non-minuscule memory requirements. const InternalRunDeathTestFlag* const flag = GetUnitTestImpl()->internal_run_death_test_flag(); if (flag != NULL) { FILE* parent = posix::FDOpen(flag->write_fd(), "w"); fputc(kDeathTestInternalError, parent); fprintf(parent, "%s", message.c_str()); fflush(parent); _exit(1); } else { fprintf(stderr, "%s", message.c_str()); fflush(stderr); posix::Abort(); } } // A replacement for CHECK that calls DeathTestAbort if the assertion // fails. # define GTEST_DEATH_TEST_CHECK_(expression) \ do { \ if (!::testing::internal::IsTrue(expression)) { \ DeathTestAbort( \ ::std::string("CHECK failed: File ") + __FILE__ + ", line " \ + ::testing::internal::StreamableToString(__LINE__) + ": " \ + #expression); \ } \ } while (::testing::internal::AlwaysFalse()) // This macro is similar to GTEST_DEATH_TEST_CHECK_, but it is meant for // evaluating any system call that fulfills two conditions: it must return // -1 on failure, and set errno to EINTR when it is interrupted and // should be tried again. The macro expands to a loop that repeatedly // evaluates the expression as long as it evaluates to -1 and sets // errno to EINTR. If the expression evaluates to -1 but errno is // something other than EINTR, DeathTestAbort is called. # define GTEST_DEATH_TEST_CHECK_SYSCALL_(expression) \ do { \ int gtest_retval; \ do { \ gtest_retval = (expression); \ } while (gtest_retval == -1 && errno == EINTR); \ if (gtest_retval == -1) { \ DeathTestAbort( \ ::std::string("CHECK failed: File ") + __FILE__ + ", line " \ + ::testing::internal::StreamableToString(__LINE__) + ": " \ + #expression + " != -1"); \ } \ } while (::testing::internal::AlwaysFalse()) // Returns the message describing the last system error in errno. std::string GetLastErrnoDescription() { return errno == 0 ? "" : posix::StrError(errno); } // This is called from a death test parent process to read a failure // message from the death test child process and log it with the FATAL // severity. On Windows, the message is read from a pipe handle. On other // platforms, it is read from a file descriptor. static void FailFromInternalError(int fd) { Message error; char buffer[256]; int num_read; do { while ((num_read = posix::Read(fd, buffer, 255)) > 0) { buffer[num_read] = '\0'; error << buffer; } } while (num_read == -1 && errno == EINTR); if (num_read == 0) { GTEST_LOG_(FATAL) << error.GetString(); } else { const int last_error = errno; GTEST_LOG_(FATAL) << "Error while reading death test internal: " << GetLastErrnoDescription() << " [" << last_error << "]"; } } // Death test constructor. Increments the running death test count // for the current test. DeathTest::DeathTest() { TestInfo* const info = GetUnitTestImpl()->current_test_info(); if (info == NULL) { DeathTestAbort("Cannot run a death test outside of a TEST or " "TEST_F construct"); } } // Creates and returns a death test by dispatching to the current // death test factory. bool DeathTest::Create(const char* statement, const RE* regex, const char* file, int line, DeathTest** test) { return GetUnitTestImpl()->death_test_factory()->Create( statement, regex, file, line, test); } const char* DeathTest::LastMessage() { return last_death_test_message_.c_str(); } void DeathTest::set_last_death_test_message(const std::string& message) { last_death_test_message_ = message; } std::string DeathTest::last_death_test_message_; // Provides cross platform implementation for some death functionality. class DeathTestImpl : public DeathTest { protected: DeathTestImpl(const char* a_statement, const RE* a_regex) : statement_(a_statement), regex_(a_regex), spawned_(false), status_(-1), outcome_(IN_PROGRESS), read_fd_(-1), write_fd_(-1) {} // read_fd_ is expected to be closed and cleared by a derived class. ~DeathTestImpl() { GTEST_DEATH_TEST_CHECK_(read_fd_ == -1); } void Abort(AbortReason reason); virtual bool Passed(bool status_ok); const char* statement() const { return statement_; } const RE* regex() const { return regex_; } bool spawned() const { return spawned_; } void set_spawned(bool is_spawned) { spawned_ = is_spawned; } int status() const { return status_; } void set_status(int a_status) { status_ = a_status; } DeathTestOutcome outcome() const { return outcome_; } void set_outcome(DeathTestOutcome an_outcome) { outcome_ = an_outcome; } int read_fd() const { return read_fd_; } void set_read_fd(int fd) { read_fd_ = fd; } int write_fd() const { return write_fd_; } void set_write_fd(int fd) { write_fd_ = fd; } // Called in the parent process only. Reads the result code of the death // test child process via a pipe, interprets it to set the outcome_ // member, and closes read_fd_. Outputs diagnostics and terminates in // case of unexpected codes. void ReadAndInterpretStatusByte(); private: // The textual content of the code this object is testing. This class // doesn't own this string and should not attempt to delete it. const char* const statement_; // The regular expression which test output must match. DeathTestImpl // doesn't own this object and should not attempt to delete it. const RE* const regex_; // True if the death test child process has been successfully spawned. bool spawned_; // The exit status of the child process. int status_; // How the death test concluded. DeathTestOutcome outcome_; // Descriptor to the read end of the pipe to the child process. It is // always -1 in the child process. The child keeps its write end of the // pipe in write_fd_. int read_fd_; // Descriptor to the child's write end of the pipe to the parent process. // It is always -1 in the parent process. The parent keeps its end of the // pipe in read_fd_. int write_fd_; }; // Called in the parent process only. Reads the result code of the death // test child process via a pipe, interprets it to set the outcome_ // member, and closes read_fd_. Outputs diagnostics and terminates in // case of unexpected codes. void DeathTestImpl::ReadAndInterpretStatusByte() { char flag; int bytes_read; // The read() here blocks until data is available (signifying the // failure of the death test) or until the pipe is closed (signifying // its success), so it's okay to call this in the parent before // the child process has exited. do { bytes_read = posix::Read(read_fd(), &flag, 1); } while (bytes_read == -1 && errno == EINTR); if (bytes_read == 0) { set_outcome(DIED); } else if (bytes_read == 1) { switch (flag) { case kDeathTestReturned: set_outcome(RETURNED); break; case kDeathTestThrew: set_outcome(THREW); break; case kDeathTestLived: set_outcome(LIVED); break; case kDeathTestInternalError: FailFromInternalError(read_fd()); // Does not return. break; default: GTEST_LOG_(FATAL) << "Death test child process reported " << "unexpected status byte (" << static_cast(flag) << ")"; } } else { GTEST_LOG_(FATAL) << "Read from death test child process failed: " << GetLastErrnoDescription(); } GTEST_DEATH_TEST_CHECK_SYSCALL_(posix::Close(read_fd())); set_read_fd(-1); } // Signals that the death test code which should have exited, didn't. // Should be called only in a death test child process. // Writes a status byte to the child's status file descriptor, then // calls _exit(1). void DeathTestImpl::Abort(AbortReason reason) { // The parent process considers the death test to be a failure if // it finds any data in our pipe. So, here we write a single flag byte // to the pipe, then exit. const char status_ch = reason == TEST_DID_NOT_DIE ? kDeathTestLived : reason == TEST_THREW_EXCEPTION ? kDeathTestThrew : kDeathTestReturned; GTEST_DEATH_TEST_CHECK_SYSCALL_(posix::Write(write_fd(), &status_ch, 1)); // We are leaking the descriptor here because on some platforms (i.e., // when built as Windows DLL), destructors of global objects will still // run after calling _exit(). On such systems, write_fd_ will be // indirectly closed from the destructor of UnitTestImpl, causing double // close if it is also closed here. On debug configurations, double close // may assert. As there are no in-process buffers to flush here, we are // relying on the OS to close the descriptor after the process terminates // when the destructors are not run. _exit(1); // Exits w/o any normal exit hooks (we were supposed to crash) } // Returns an indented copy of stderr output for a death test. // This makes distinguishing death test output lines from regular log lines // much easier. static ::std::string FormatDeathTestOutput(const ::std::string& output) { ::std::string ret; for (size_t at = 0; ; ) { const size_t line_end = output.find('\n', at); ret += "[ DEATH ] "; if (line_end == ::std::string::npos) { ret += output.substr(at); break; } ret += output.substr(at, line_end + 1 - at); at = line_end + 1; } return ret; } // Assesses the success or failure of a death test, using both private // members which have previously been set, and one argument: // // Private data members: // outcome: An enumeration describing how the death test // concluded: DIED, LIVED, THREW, or RETURNED. The death test // fails in the latter three cases. // status: The exit status of the child process. On *nix, it is in the // in the format specified by wait(2). On Windows, this is the // value supplied to the ExitProcess() API or a numeric code // of the exception that terminated the program. // regex: A regular expression object to be applied to // the test's captured standard error output; the death test // fails if it does not match. // // Argument: // status_ok: true if exit_status is acceptable in the context of // this particular death test, which fails if it is false // // Returns true iff all of the above conditions are met. Otherwise, the // first failing condition, in the order given above, is the one that is // reported. Also sets the last death test message string. bool DeathTestImpl::Passed(bool status_ok) { if (!spawned()) return false; const std::string error_message = GetCapturedStderr(); bool success = false; Message buffer; buffer << "Death test: " << statement() << "\n"; switch (outcome()) { case LIVED: buffer << " Result: failed to die.\n" << " Error msg:\n" << FormatDeathTestOutput(error_message); break; case THREW: buffer << " Result: threw an exception.\n" << " Error msg:\n" << FormatDeathTestOutput(error_message); break; case RETURNED: buffer << " Result: illegal return in test statement.\n" << " Error msg:\n" << FormatDeathTestOutput(error_message); break; case DIED: if (status_ok) { const bool matched = RE::PartialMatch(error_message.c_str(), *regex()); if (matched) { success = true; } else { buffer << " Result: died but not with expected error.\n" << " Expected: " << regex()->pattern() << "\n" << "Actual msg:\n" << FormatDeathTestOutput(error_message); } } else { buffer << " Result: died but not with expected exit code:\n" << " " << ExitSummary(status()) << "\n" << "Actual msg:\n" << FormatDeathTestOutput(error_message); } break; case IN_PROGRESS: default: GTEST_LOG_(FATAL) << "DeathTest::Passed somehow called before conclusion of test"; } DeathTest::set_last_death_test_message(buffer.GetString()); return success; } # if GTEST_OS_WINDOWS // WindowsDeathTest implements death tests on Windows. Due to the // specifics of starting new processes on Windows, death tests there are // always threadsafe, and Google Test considers the // --gtest_death_test_style=fast setting to be equivalent to // --gtest_death_test_style=threadsafe there. // // A few implementation notes: Like the Linux version, the Windows // implementation uses pipes for child-to-parent communication. But due to // the specifics of pipes on Windows, some extra steps are required: // // 1. The parent creates a communication pipe and stores handles to both // ends of it. // 2. The parent starts the child and provides it with the information // necessary to acquire the handle to the write end of the pipe. // 3. The child acquires the write end of the pipe and signals the parent // using a Windows event. // 4. Now the parent can release the write end of the pipe on its side. If // this is done before step 3, the object's reference count goes down to // 0 and it is destroyed, preventing the child from acquiring it. The // parent now has to release it, or read operations on the read end of // the pipe will not return when the child terminates. // 5. The parent reads child's output through the pipe (outcome code and // any possible error messages) from the pipe, and its stderr and then // determines whether to fail the test. // // Note: to distinguish Win32 API calls from the local method and function // calls, the former are explicitly resolved in the global namespace. // class WindowsDeathTest : public DeathTestImpl { public: WindowsDeathTest(const char* a_statement, const RE* a_regex, const char* file, int line) : DeathTestImpl(a_statement, a_regex), file_(file), line_(line) {} // All of these virtual functions are inherited from DeathTest. virtual int Wait(); virtual TestRole AssumeRole(); private: // The name of the file in which the death test is located. const char* const file_; // The line number on which the death test is located. const int line_; // Handle to the write end of the pipe to the child process. AutoHandle write_handle_; // Child process handle. AutoHandle child_handle_; // Event the child process uses to signal the parent that it has // acquired the handle to the write end of the pipe. After seeing this // event the parent can release its own handles to make sure its // ReadFile() calls return when the child terminates. AutoHandle event_handle_; }; // Waits for the child in a death test to exit, returning its exit // status, or 0 if no child process exists. As a side effect, sets the // outcome data member. int WindowsDeathTest::Wait() { if (!spawned()) return 0; // Wait until the child either signals that it has acquired the write end // of the pipe or it dies. const HANDLE wait_handles[2] = { child_handle_.Get(), event_handle_.Get() }; switch (::WaitForMultipleObjects(2, wait_handles, FALSE, // Waits for any of the handles. INFINITE)) { case WAIT_OBJECT_0: case WAIT_OBJECT_0 + 1: break; default: GTEST_DEATH_TEST_CHECK_(false); // Should not get here. } // The child has acquired the write end of the pipe or exited. // We release the handle on our side and continue. write_handle_.Reset(); event_handle_.Reset(); ReadAndInterpretStatusByte(); // Waits for the child process to exit if it haven't already. This // returns immediately if the child has already exited, regardless of // whether previous calls to WaitForMultipleObjects synchronized on this // handle or not. GTEST_DEATH_TEST_CHECK_( WAIT_OBJECT_0 == ::WaitForSingleObject(child_handle_.Get(), INFINITE)); DWORD status_code; GTEST_DEATH_TEST_CHECK_( ::GetExitCodeProcess(child_handle_.Get(), &status_code) != FALSE); child_handle_.Reset(); set_status(static_cast(status_code)); return status(); } // The AssumeRole process for a Windows death test. It creates a child // process with the same executable as the current process to run the // death test. The child process is given the --gtest_filter and // --gtest_internal_run_death_test flags such that it knows to run the // current death test only. DeathTest::TestRole WindowsDeathTest::AssumeRole() { const UnitTestImpl* const impl = GetUnitTestImpl(); const InternalRunDeathTestFlag* const flag = impl->internal_run_death_test_flag(); const TestInfo* const info = impl->current_test_info(); const int death_test_index = info->result()->death_test_count(); if (flag != NULL) { // ParseInternalRunDeathTestFlag() has performed all the necessary // processing. set_write_fd(flag->write_fd()); return EXECUTE_TEST; } // WindowsDeathTest uses an anonymous pipe to communicate results of // a death test. SECURITY_ATTRIBUTES handles_are_inheritable = { sizeof(SECURITY_ATTRIBUTES), NULL, TRUE }; HANDLE read_handle, write_handle; GTEST_DEATH_TEST_CHECK_( ::CreatePipe(&read_handle, &write_handle, &handles_are_inheritable, 0) // Default buffer size. != FALSE); set_read_fd(::_open_osfhandle(reinterpret_cast(read_handle), O_RDONLY)); write_handle_.Reset(write_handle); event_handle_.Reset(::CreateEvent( &handles_are_inheritable, TRUE, // The event will automatically reset to non-signaled state. FALSE, // The initial state is non-signalled. NULL)); // The even is unnamed. GTEST_DEATH_TEST_CHECK_(event_handle_.Get() != NULL); const std::string filter_flag = std::string("--") + GTEST_FLAG_PREFIX_ + kFilterFlag + "=" + info->test_case_name() + "." + info->name(); const std::string internal_flag = std::string("--") + GTEST_FLAG_PREFIX_ + kInternalRunDeathTestFlag + "=" + file_ + "|" + StreamableToString(line_) + "|" + StreamableToString(death_test_index) + "|" + StreamableToString(static_cast(::GetCurrentProcessId())) + // size_t has the same width as pointers on both 32-bit and 64-bit // Windows platforms. // See http://msdn.microsoft.com/en-us/library/tcxf1dw6.aspx. "|" + StreamableToString(reinterpret_cast(write_handle)) + "|" + StreamableToString(reinterpret_cast(event_handle_.Get())); char executable_path[_MAX_PATH + 1]; // NOLINT GTEST_DEATH_TEST_CHECK_( _MAX_PATH + 1 != ::GetModuleFileNameA(NULL, executable_path, _MAX_PATH)); std::string command_line = std::string(::GetCommandLineA()) + " " + filter_flag + " \"" + internal_flag + "\""; DeathTest::set_last_death_test_message(""); CaptureStderr(); // Flush the log buffers since the log streams are shared with the child. FlushInfoLog(); // The child process will share the standard handles with the parent. STARTUPINFOA startup_info; memset(&startup_info, 0, sizeof(STARTUPINFO)); startup_info.dwFlags = STARTF_USESTDHANDLES; startup_info.hStdInput = ::GetStdHandle(STD_INPUT_HANDLE); startup_info.hStdOutput = ::GetStdHandle(STD_OUTPUT_HANDLE); startup_info.hStdError = ::GetStdHandle(STD_ERROR_HANDLE); PROCESS_INFORMATION process_info; GTEST_DEATH_TEST_CHECK_(::CreateProcessA( executable_path, const_cast(command_line.c_str()), NULL, // Retuned process handle is not inheritable. NULL, // Retuned thread handle is not inheritable. TRUE, // Child inherits all inheritable handles (for write_handle_). 0x0, // Default creation flags. NULL, // Inherit the parent's environment. UnitTest::GetInstance()->original_working_dir(), &startup_info, &process_info) != FALSE); child_handle_.Reset(process_info.hProcess); ::CloseHandle(process_info.hThread); set_spawned(true); return OVERSEE_TEST; } # else // We are not on Windows. // ForkingDeathTest provides implementations for most of the abstract // methods of the DeathTest interface. Only the AssumeRole method is // left undefined. class ForkingDeathTest : public DeathTestImpl { public: ForkingDeathTest(const char* statement, const RE* regex); // All of these virtual functions are inherited from DeathTest. virtual int Wait(); protected: void set_child_pid(pid_t child_pid) { child_pid_ = child_pid; } private: // PID of child process during death test; 0 in the child process itself. pid_t child_pid_; }; // Constructs a ForkingDeathTest. ForkingDeathTest::ForkingDeathTest(const char* a_statement, const RE* a_regex) : DeathTestImpl(a_statement, a_regex), child_pid_(-1) {} // Waits for the child in a death test to exit, returning its exit // status, or 0 if no child process exists. As a side effect, sets the // outcome data member. int ForkingDeathTest::Wait() { if (!spawned()) return 0; ReadAndInterpretStatusByte(); int status_value; GTEST_DEATH_TEST_CHECK_SYSCALL_(waitpid(child_pid_, &status_value, 0)); set_status(status_value); return status_value; } // A concrete death test class that forks, then immediately runs the test // in the child process. class NoExecDeathTest : public ForkingDeathTest { public: NoExecDeathTest(const char* a_statement, const RE* a_regex) : ForkingDeathTest(a_statement, a_regex) { } virtual TestRole AssumeRole(); }; // The AssumeRole process for a fork-and-run death test. It implements a // straightforward fork, with a simple pipe to transmit the status byte. DeathTest::TestRole NoExecDeathTest::AssumeRole() { const size_t thread_count = GetThreadCount(); if (thread_count != 1) { GTEST_LOG_(WARNING) << DeathTestThreadWarning(thread_count); } int pipe_fd[2]; GTEST_DEATH_TEST_CHECK_(pipe(pipe_fd) != -1); DeathTest::set_last_death_test_message(""); CaptureStderr(); // When we fork the process below, the log file buffers are copied, but the // file descriptors are shared. We flush all log files here so that closing // the file descriptors in the child process doesn't throw off the // synchronization between descriptors and buffers in the parent process. // This is as close to the fork as possible to avoid a race condition in case // there are multiple threads running before the death test, and another // thread writes to the log file. FlushInfoLog(); const pid_t child_pid = fork(); GTEST_DEATH_TEST_CHECK_(child_pid != -1); set_child_pid(child_pid); if (child_pid == 0) { GTEST_DEATH_TEST_CHECK_SYSCALL_(close(pipe_fd[0])); set_write_fd(pipe_fd[1]); // Redirects all logging to stderr in the child process to prevent // concurrent writes to the log files. We capture stderr in the parent // process and append the child process' output to a log. LogToStderr(); // Event forwarding to the listeners of event listener API mush be shut // down in death test subprocesses. GetUnitTestImpl()->listeners()->SuppressEventForwarding(); g_in_fast_death_test_child = true; return EXECUTE_TEST; } else { GTEST_DEATH_TEST_CHECK_SYSCALL_(close(pipe_fd[1])); set_read_fd(pipe_fd[0]); set_spawned(true); return OVERSEE_TEST; } } // A concrete death test class that forks and re-executes the main // program from the beginning, with command-line flags set that cause // only this specific death test to be run. class ExecDeathTest : public ForkingDeathTest { public: ExecDeathTest(const char* a_statement, const RE* a_regex, const char* file, int line) : ForkingDeathTest(a_statement, a_regex), file_(file), line_(line) { } virtual TestRole AssumeRole(); private: static ::std::vector GetArgvsForDeathTestChildProcess() { ::std::vector args = GetInjectableArgvs(); return args; } // The name of the file in which the death test is located. const char* const file_; // The line number on which the death test is located. const int line_; }; // Utility class for accumulating command-line arguments. class Arguments { public: Arguments() { args_.push_back(NULL); } ~Arguments() { for (std::vector::iterator i = args_.begin(); i != args_.end(); ++i) { free(*i); } } void AddArgument(const char* argument) { args_.insert(args_.end() - 1, posix::StrDup(argument)); } template void AddArguments(const ::std::vector& arguments) { for (typename ::std::vector::const_iterator i = arguments.begin(); i != arguments.end(); ++i) { args_.insert(args_.end() - 1, posix::StrDup(i->c_str())); } } char* const* Argv() { return &args_[0]; } private: std::vector args_; }; // A struct that encompasses the arguments to the child process of a // threadsafe-style death test process. struct ExecDeathTestArgs { char* const* argv; // Command-line arguments for the child's call to exec int close_fd; // File descriptor to close; the read end of a pipe }; # if GTEST_OS_MAC inline char** GetEnviron() { // When Google Test is built as a framework on MacOS X, the environ variable // is unavailable. Apple's documentation (man environ) recommends using // _NSGetEnviron() instead. return *_NSGetEnviron(); } # else // Some POSIX platforms expect you to declare environ. extern "C" makes // it reside in the global namespace. extern "C" char** environ; inline char** GetEnviron() { return environ; } # endif // GTEST_OS_MAC # if !GTEST_OS_QNX // The main function for a threadsafe-style death test child process. // This function is called in a clone()-ed process and thus must avoid // any potentially unsafe operations like malloc or libc functions. static int ExecDeathTestChildMain(void* child_arg) { ExecDeathTestArgs* const args = static_cast(child_arg); GTEST_DEATH_TEST_CHECK_SYSCALL_(close(args->close_fd)); // We need to execute the test program in the same environment where // it was originally invoked. Therefore we change to the original // working directory first. const char* const original_dir = UnitTest::GetInstance()->original_working_dir(); // We can safely call chdir() as it's a direct system call. if (chdir(original_dir) != 0) { DeathTestAbort(std::string("chdir(\"") + original_dir + "\") failed: " + GetLastErrnoDescription()); return EXIT_FAILURE; } // We can safely call execve() as it's a direct system call. We // cannot use execvp() as it's a libc function and thus potentially // unsafe. Since execve() doesn't search the PATH, the user must // invoke the test program via a valid path that contains at least // one path separator. execve(args->argv[0], args->argv, GetEnviron()); DeathTestAbort(std::string("execve(") + args->argv[0] + ", ...) in " + original_dir + " failed: " + GetLastErrnoDescription()); return EXIT_FAILURE; } # endif // !GTEST_OS_QNX // Two utility routines that together determine the direction the stack // grows. // This could be accomplished more elegantly by a single recursive // function, but we want to guard against the unlikely possibility of // a smart compiler optimizing the recursion away. // // GTEST_NO_INLINE_ is required to prevent GCC 4.6 from inlining // StackLowerThanAddress into StackGrowsDown, which then doesn't give // correct answer. void StackLowerThanAddress(const void* ptr, bool* result) GTEST_NO_INLINE_; void StackLowerThanAddress(const void* ptr, bool* result) { int dummy; *result = (&dummy < ptr); } bool StackGrowsDown() { int dummy; bool result; StackLowerThanAddress(&dummy, &result); return result; } // Spawns a child process with the same executable as the current process in // a thread-safe manner and instructs it to run the death test. The // implementation uses fork(2) + exec. On systems where clone(2) is // available, it is used instead, being slightly more thread-safe. On QNX, // fork supports only single-threaded environments, so this function uses // spawn(2) there instead. The function dies with an error message if // anything goes wrong. static pid_t ExecDeathTestSpawnChild(char* const* argv, int close_fd) { ExecDeathTestArgs args = { argv, close_fd }; pid_t child_pid = -1; # if GTEST_OS_QNX // Obtains the current directory and sets it to be closed in the child // process. const int cwd_fd = open(".", O_RDONLY); GTEST_DEATH_TEST_CHECK_(cwd_fd != -1); GTEST_DEATH_TEST_CHECK_SYSCALL_(fcntl(cwd_fd, F_SETFD, FD_CLOEXEC)); // We need to execute the test program in the same environment where // it was originally invoked. Therefore we change to the original // working directory first. const char* const original_dir = UnitTest::GetInstance()->original_working_dir(); // We can safely call chdir() as it's a direct system call. if (chdir(original_dir) != 0) { DeathTestAbort(std::string("chdir(\"") + original_dir + "\") failed: " + GetLastErrnoDescription()); return EXIT_FAILURE; } int fd_flags; // Set close_fd to be closed after spawn. GTEST_DEATH_TEST_CHECK_SYSCALL_(fd_flags = fcntl(close_fd, F_GETFD)); GTEST_DEATH_TEST_CHECK_SYSCALL_(fcntl(close_fd, F_SETFD, fd_flags | FD_CLOEXEC)); struct inheritance inherit = {0}; // spawn is a system call. child_pid = spawn(args.argv[0], 0, NULL, &inherit, args.argv, GetEnviron()); // Restores the current working directory. GTEST_DEATH_TEST_CHECK_(fchdir(cwd_fd) != -1); GTEST_DEATH_TEST_CHECK_SYSCALL_(close(cwd_fd)); # else // GTEST_OS_QNX # if GTEST_OS_LINUX // When a SIGPROF signal is received while fork() or clone() are executing, // the process may hang. To avoid this, we ignore SIGPROF here and re-enable // it after the call to fork()/clone() is complete. struct sigaction saved_sigprof_action; struct sigaction ignore_sigprof_action; memset(&ignore_sigprof_action, 0, sizeof(ignore_sigprof_action)); sigemptyset(&ignore_sigprof_action.sa_mask); ignore_sigprof_action.sa_handler = SIG_IGN; GTEST_DEATH_TEST_CHECK_SYSCALL_(sigaction( SIGPROF, &ignore_sigprof_action, &saved_sigprof_action)); # endif // GTEST_OS_LINUX # if GTEST_HAS_CLONE const bool use_fork = GTEST_FLAG(death_test_use_fork); if (!use_fork) { static const bool stack_grows_down = StackGrowsDown(); const size_t stack_size = getpagesize(); // MMAP_ANONYMOUS is not defined on Mac, so we use MAP_ANON instead. void* const stack = mmap(NULL, stack_size, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0); GTEST_DEATH_TEST_CHECK_(stack != MAP_FAILED); // Maximum stack alignment in bytes: For a downward-growing stack, this // amount is subtracted from size of the stack space to get an address // that is within the stack space and is aligned on all systems we care // about. As far as I know there is no ABI with stack alignment greater // than 64. We assume stack and stack_size already have alignment of // kMaxStackAlignment. const size_t kMaxStackAlignment = 64; void* const stack_top = static_cast(stack) + (stack_grows_down ? stack_size - kMaxStackAlignment : 0); GTEST_DEATH_TEST_CHECK_(stack_size > kMaxStackAlignment && reinterpret_cast(stack_top) % kMaxStackAlignment == 0); child_pid = clone(&ExecDeathTestChildMain, stack_top, SIGCHLD, &args); GTEST_DEATH_TEST_CHECK_(munmap(stack, stack_size) != -1); } # else const bool use_fork = true; # endif // GTEST_HAS_CLONE if (use_fork && (child_pid = fork()) == 0) { ExecDeathTestChildMain(&args); _exit(0); } # endif // GTEST_OS_QNX # if GTEST_OS_LINUX GTEST_DEATH_TEST_CHECK_SYSCALL_( sigaction(SIGPROF, &saved_sigprof_action, NULL)); # endif // GTEST_OS_LINUX GTEST_DEATH_TEST_CHECK_(child_pid != -1); return child_pid; } // The AssumeRole process for a fork-and-exec death test. It re-executes the // main program from the beginning, setting the --gtest_filter // and --gtest_internal_run_death_test flags to cause only the current // death test to be re-run. DeathTest::TestRole ExecDeathTest::AssumeRole() { const UnitTestImpl* const impl = GetUnitTestImpl(); const InternalRunDeathTestFlag* const flag = impl->internal_run_death_test_flag(); const TestInfo* const info = impl->current_test_info(); const int death_test_index = info->result()->death_test_count(); if (flag != NULL) { set_write_fd(flag->write_fd()); return EXECUTE_TEST; } int pipe_fd[2]; GTEST_DEATH_TEST_CHECK_(pipe(pipe_fd) != -1); // Clear the close-on-exec flag on the write end of the pipe, lest // it be closed when the child process does an exec: GTEST_DEATH_TEST_CHECK_(fcntl(pipe_fd[1], F_SETFD, 0) != -1); const std::string filter_flag = std::string("--") + GTEST_FLAG_PREFIX_ + kFilterFlag + "=" + info->test_case_name() + "." + info->name(); const std::string internal_flag = std::string("--") + GTEST_FLAG_PREFIX_ + kInternalRunDeathTestFlag + "=" + file_ + "|" + StreamableToString(line_) + "|" + StreamableToString(death_test_index) + "|" + StreamableToString(pipe_fd[1]); Arguments args; args.AddArguments(GetArgvsForDeathTestChildProcess()); args.AddArgument(filter_flag.c_str()); args.AddArgument(internal_flag.c_str()); DeathTest::set_last_death_test_message(""); CaptureStderr(); // See the comment in NoExecDeathTest::AssumeRole for why the next line // is necessary. FlushInfoLog(); const pid_t child_pid = ExecDeathTestSpawnChild(args.Argv(), pipe_fd[0]); GTEST_DEATH_TEST_CHECK_SYSCALL_(close(pipe_fd[1])); set_child_pid(child_pid); set_read_fd(pipe_fd[0]); set_spawned(true); return OVERSEE_TEST; } # endif // !GTEST_OS_WINDOWS // Creates a concrete DeathTest-derived class that depends on the // --gtest_death_test_style flag, and sets the pointer pointed to // by the "test" argument to its address. If the test should be // skipped, sets that pointer to NULL. Returns true, unless the // flag is set to an invalid value. bool DefaultDeathTestFactory::Create(const char* statement, const RE* regex, const char* file, int line, DeathTest** test) { UnitTestImpl* const impl = GetUnitTestImpl(); const InternalRunDeathTestFlag* const flag = impl->internal_run_death_test_flag(); const int death_test_index = impl->current_test_info() ->increment_death_test_count(); if (flag != NULL) { if (death_test_index > flag->index()) { DeathTest::set_last_death_test_message( "Death test count (" + StreamableToString(death_test_index) + ") somehow exceeded expected maximum (" + StreamableToString(flag->index()) + ")"); return false; } if (!(flag->file() == file && flag->line() == line && flag->index() == death_test_index)) { *test = NULL; return true; } } # if GTEST_OS_WINDOWS if (GTEST_FLAG(death_test_style) == "threadsafe" || GTEST_FLAG(death_test_style) == "fast") { *test = new WindowsDeathTest(statement, regex, file, line); } # else if (GTEST_FLAG(death_test_style) == "threadsafe") { *test = new ExecDeathTest(statement, regex, file, line); } else if (GTEST_FLAG(death_test_style) == "fast") { *test = new NoExecDeathTest(statement, regex); } # endif // GTEST_OS_WINDOWS else { // NOLINT - this is more readable than unbalanced brackets inside #if. DeathTest::set_last_death_test_message( "Unknown death test style \"" + GTEST_FLAG(death_test_style) + "\" encountered"); return false; } return true; } // Splits a given string on a given delimiter, populating a given // vector with the fields. GTEST_HAS_DEATH_TEST implies that we have // ::std::string, so we can use it here. static void SplitString(const ::std::string& str, char delimiter, ::std::vector< ::std::string>* dest) { ::std::vector< ::std::string> parsed; ::std::string::size_type pos = 0; while (::testing::internal::AlwaysTrue()) { const ::std::string::size_type colon = str.find(delimiter, pos); if (colon == ::std::string::npos) { parsed.push_back(str.substr(pos)); break; } else { parsed.push_back(str.substr(pos, colon - pos)); pos = colon + 1; } } dest->swap(parsed); } # if GTEST_OS_WINDOWS // Recreates the pipe and event handles from the provided parameters, // signals the event, and returns a file descriptor wrapped around the pipe // handle. This function is called in the child process only. int GetStatusFileDescriptor(unsigned int parent_process_id, size_t write_handle_as_size_t, size_t event_handle_as_size_t) { AutoHandle parent_process_handle(::OpenProcess(PROCESS_DUP_HANDLE, FALSE, // Non-inheritable. parent_process_id)); if (parent_process_handle.Get() == INVALID_HANDLE_VALUE) { DeathTestAbort("Unable to open parent process " + StreamableToString(parent_process_id)); } // TODO(vladl@google.com): Replace the following check with a // compile-time assertion when available. GTEST_CHECK_(sizeof(HANDLE) <= sizeof(size_t)); const HANDLE write_handle = reinterpret_cast(write_handle_as_size_t); HANDLE dup_write_handle; // The newly initialized handle is accessible only in in the parent // process. To obtain one accessible within the child, we need to use // DuplicateHandle. if (!::DuplicateHandle(parent_process_handle.Get(), write_handle, ::GetCurrentProcess(), &dup_write_handle, 0x0, // Requested privileges ignored since // DUPLICATE_SAME_ACCESS is used. FALSE, // Request non-inheritable handler. DUPLICATE_SAME_ACCESS)) { DeathTestAbort("Unable to duplicate the pipe handle " + StreamableToString(write_handle_as_size_t) + " from the parent process " + StreamableToString(parent_process_id)); } const HANDLE event_handle = reinterpret_cast(event_handle_as_size_t); HANDLE dup_event_handle; if (!::DuplicateHandle(parent_process_handle.Get(), event_handle, ::GetCurrentProcess(), &dup_event_handle, 0x0, FALSE, DUPLICATE_SAME_ACCESS)) { DeathTestAbort("Unable to duplicate the event handle " + StreamableToString(event_handle_as_size_t) + " from the parent process " + StreamableToString(parent_process_id)); } const int write_fd = ::_open_osfhandle(reinterpret_cast(dup_write_handle), O_APPEND); if (write_fd == -1) { DeathTestAbort("Unable to convert pipe handle " + StreamableToString(write_handle_as_size_t) + " to a file descriptor"); } // Signals the parent that the write end of the pipe has been acquired // so the parent can release its own write end. ::SetEvent(dup_event_handle); return write_fd; } # endif // GTEST_OS_WINDOWS // Returns a newly created InternalRunDeathTestFlag object with fields // initialized from the GTEST_FLAG(internal_run_death_test) flag if // the flag is specified; otherwise returns NULL. InternalRunDeathTestFlag* ParseInternalRunDeathTestFlag() { if (GTEST_FLAG(internal_run_death_test) == "") return NULL; // GTEST_HAS_DEATH_TEST implies that we have ::std::string, so we // can use it here. int line = -1; int index = -1; ::std::vector< ::std::string> fields; SplitString(GTEST_FLAG(internal_run_death_test).c_str(), '|', &fields); int write_fd = -1; # if GTEST_OS_WINDOWS unsigned int parent_process_id = 0; size_t write_handle_as_size_t = 0; size_t event_handle_as_size_t = 0; if (fields.size() != 6 || !ParseNaturalNumber(fields[1], &line) || !ParseNaturalNumber(fields[2], &index) || !ParseNaturalNumber(fields[3], &parent_process_id) || !ParseNaturalNumber(fields[4], &write_handle_as_size_t) || !ParseNaturalNumber(fields[5], &event_handle_as_size_t)) { DeathTestAbort("Bad --gtest_internal_run_death_test flag: " + GTEST_FLAG(internal_run_death_test)); } write_fd = GetStatusFileDescriptor(parent_process_id, write_handle_as_size_t, event_handle_as_size_t); # else if (fields.size() != 4 || !ParseNaturalNumber(fields[1], &line) || !ParseNaturalNumber(fields[2], &index) || !ParseNaturalNumber(fields[3], &write_fd)) { DeathTestAbort("Bad --gtest_internal_run_death_test flag: " + GTEST_FLAG(internal_run_death_test)); } # endif // GTEST_OS_WINDOWS return new InternalRunDeathTestFlag(fields[0], line, index, write_fd); } } // namespace internal #endif // GTEST_HAS_DEATH_TEST } // namespace testing // Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Authors: keith.ray@gmail.com (Keith Ray) #include #if GTEST_OS_WINDOWS_MOBILE # include #elif GTEST_OS_WINDOWS # include # include #elif GTEST_OS_SYMBIAN // Symbian OpenC has PATH_MAX in sys/syslimits.h # include #else # include # include // Some Linux distributions define PATH_MAX here. #endif // GTEST_OS_WINDOWS_MOBILE #if GTEST_OS_WINDOWS # define GTEST_PATH_MAX_ _MAX_PATH #elif defined(PATH_MAX) # define GTEST_PATH_MAX_ PATH_MAX #elif defined(_XOPEN_PATH_MAX) # define GTEST_PATH_MAX_ _XOPEN_PATH_MAX #else # define GTEST_PATH_MAX_ _POSIX_PATH_MAX #endif // GTEST_OS_WINDOWS namespace testing { namespace internal { #if GTEST_OS_WINDOWS // On Windows, '\\' is the standard path separator, but many tools and the // Windows API also accept '/' as an alternate path separator. Unless otherwise // noted, a file path can contain either kind of path separators, or a mixture // of them. const char kPathSeparator = '\\'; const char kAlternatePathSeparator = '/'; const char kPathSeparatorString[] = "\\"; const char kAlternatePathSeparatorString[] = "/"; # if GTEST_OS_WINDOWS_MOBILE // Windows CE doesn't have a current directory. You should not use // the current directory in tests on Windows CE, but this at least // provides a reasonable fallback. const char kCurrentDirectoryString[] = "\\"; // Windows CE doesn't define INVALID_FILE_ATTRIBUTES const DWORD kInvalidFileAttributes = 0xffffffff; # else const char kCurrentDirectoryString[] = ".\\"; # endif // GTEST_OS_WINDOWS_MOBILE #else const char kPathSeparator = '/'; const char kPathSeparatorString[] = "/"; const char kCurrentDirectoryString[] = "./"; #endif // GTEST_OS_WINDOWS // Returns whether the given character is a valid path separator. static bool IsPathSeparator(char c) { #if GTEST_HAS_ALT_PATH_SEP_ return (c == kPathSeparator) || (c == kAlternatePathSeparator); #else return c == kPathSeparator; #endif } // Returns the current working directory, or "" if unsuccessful. FilePath FilePath::GetCurrentDir() { #if GTEST_OS_WINDOWS_MOBILE // Windows CE doesn't have a current directory, so we just return // something reasonable. return FilePath(kCurrentDirectoryString); #elif GTEST_OS_WINDOWS char cwd[GTEST_PATH_MAX_ + 1] = { '\0' }; return FilePath(_getcwd(cwd, sizeof(cwd)) == NULL ? "" : cwd); #else char cwd[GTEST_PATH_MAX_ + 1] = { '\0' }; return FilePath(getcwd(cwd, sizeof(cwd)) == NULL ? "" : cwd); #endif // GTEST_OS_WINDOWS_MOBILE } // Returns a copy of the FilePath with the case-insensitive extension removed. // Example: FilePath("dir/file.exe").RemoveExtension("EXE") returns // FilePath("dir/file"). If a case-insensitive extension is not // found, returns a copy of the original FilePath. FilePath FilePath::RemoveExtension(const char* extension) const { const std::string dot_extension = std::string(".") + extension; if (String::EndsWithCaseInsensitive(pathname_, dot_extension)) { return FilePath(pathname_.substr( 0, pathname_.length() - dot_extension.length())); } return *this; } // Returns a pointer to the last occurence of a valid path separator in // the FilePath. On Windows, for example, both '/' and '\' are valid path // separators. Returns NULL if no path separator was found. const char* FilePath::FindLastPathSeparator() const { const char* const last_sep = strrchr(c_str(), kPathSeparator); #if GTEST_HAS_ALT_PATH_SEP_ const char* const last_alt_sep = strrchr(c_str(), kAlternatePathSeparator); // Comparing two pointers of which only one is NULL is undefined. if (last_alt_sep != NULL && (last_sep == NULL || last_alt_sep > last_sep)) { return last_alt_sep; } #endif return last_sep; } // Returns a copy of the FilePath with the directory part removed. // Example: FilePath("path/to/file").RemoveDirectoryName() returns // FilePath("file"). If there is no directory part ("just_a_file"), it returns // the FilePath unmodified. If there is no file part ("just_a_dir/") it // returns an empty FilePath (""). // On Windows platform, '\' is the path separator, otherwise it is '/'. FilePath FilePath::RemoveDirectoryName() const { const char* const last_sep = FindLastPathSeparator(); return last_sep ? FilePath(last_sep + 1) : *this; } // RemoveFileName returns the directory path with the filename removed. // Example: FilePath("path/to/file").RemoveFileName() returns "path/to/". // If the FilePath is "a_file" or "/a_file", RemoveFileName returns // FilePath("./") or, on Windows, FilePath(".\\"). If the filepath does // not have a file, like "just/a/dir/", it returns the FilePath unmodified. // On Windows platform, '\' is the path separator, otherwise it is '/'. FilePath FilePath::RemoveFileName() const { const char* const last_sep = FindLastPathSeparator(); std::string dir; if (last_sep) { dir = std::string(c_str(), last_sep + 1 - c_str()); } else { dir = kCurrentDirectoryString; } return FilePath(dir); } // Helper functions for naming files in a directory for xml output. // Given directory = "dir", base_name = "test", number = 0, // extension = "xml", returns "dir/test.xml". If number is greater // than zero (e.g., 12), returns "dir/test_12.xml". // On Windows platform, uses \ as the separator rather than /. FilePath FilePath::MakeFileName(const FilePath& directory, const FilePath& base_name, int number, const char* extension) { std::string file; if (number == 0) { file = base_name.string() + "." + extension; } else { file = base_name.string() + "_" + StreamableToString(number) + "." + extension; } return ConcatPaths(directory, FilePath(file)); } // Given directory = "dir", relative_path = "test.xml", returns "dir/test.xml". // On Windows, uses \ as the separator rather than /. FilePath FilePath::ConcatPaths(const FilePath& directory, const FilePath& relative_path) { if (directory.IsEmpty()) return relative_path; const FilePath dir(directory.RemoveTrailingPathSeparator()); return FilePath(dir.string() + kPathSeparator + relative_path.string()); } // Returns true if pathname describes something findable in the file-system, // either a file, directory, or whatever. bool FilePath::FileOrDirectoryExists() const { #if GTEST_OS_WINDOWS_MOBILE LPCWSTR unicode = String::AnsiToUtf16(pathname_.c_str()); const DWORD attributes = GetFileAttributes(unicode); delete [] unicode; return attributes != kInvalidFileAttributes; #else posix::StatStruct file_stat; return posix::Stat(pathname_.c_str(), &file_stat) == 0; #endif // GTEST_OS_WINDOWS_MOBILE } // Returns true if pathname describes a directory in the file-system // that exists. bool FilePath::DirectoryExists() const { bool result = false; #if GTEST_OS_WINDOWS // Don't strip off trailing separator if path is a root directory on // Windows (like "C:\\"). const FilePath& path(IsRootDirectory() ? *this : RemoveTrailingPathSeparator()); #else const FilePath& path(*this); #endif #if GTEST_OS_WINDOWS_MOBILE LPCWSTR unicode = String::AnsiToUtf16(path.c_str()); const DWORD attributes = GetFileAttributes(unicode); delete [] unicode; if ((attributes != kInvalidFileAttributes) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) { result = true; } #else posix::StatStruct file_stat; result = posix::Stat(path.c_str(), &file_stat) == 0 && posix::IsDir(file_stat); #endif // GTEST_OS_WINDOWS_MOBILE return result; } // Returns true if pathname describes a root directory. (Windows has one // root directory per disk drive.) bool FilePath::IsRootDirectory() const { #if GTEST_OS_WINDOWS // TODO(wan@google.com): on Windows a network share like // \\server\share can be a root directory, although it cannot be the // current directory. Handle this properly. return pathname_.length() == 3 && IsAbsolutePath(); #else return pathname_.length() == 1 && IsPathSeparator(pathname_.c_str()[0]); #endif } // Returns true if pathname describes an absolute path. bool FilePath::IsAbsolutePath() const { const char* const name = pathname_.c_str(); #if GTEST_OS_WINDOWS return pathname_.length() >= 3 && ((name[0] >= 'a' && name[0] <= 'z') || (name[0] >= 'A' && name[0] <= 'Z')) && name[1] == ':' && IsPathSeparator(name[2]); #else return IsPathSeparator(name[0]); #endif } // Returns a pathname for a file that does not currently exist. The pathname // will be directory/base_name.extension or // directory/base_name_.extension if directory/base_name.extension // already exists. The number will be incremented until a pathname is found // that does not already exist. // Examples: 'dir/foo_test.xml' or 'dir/foo_test_1.xml'. // There could be a race condition if two or more processes are calling this // function at the same time -- they could both pick the same filename. FilePath FilePath::GenerateUniqueFileName(const FilePath& directory, const FilePath& base_name, const char* extension) { FilePath full_pathname; int number = 0; do { full_pathname.Set(MakeFileName(directory, base_name, number++, extension)); } while (full_pathname.FileOrDirectoryExists()); return full_pathname; } // Returns true if FilePath ends with a path separator, which indicates that // it is intended to represent a directory. Returns false otherwise. // This does NOT check that a directory (or file) actually exists. bool FilePath::IsDirectory() const { return !pathname_.empty() && IsPathSeparator(pathname_.c_str()[pathname_.length() - 1]); } // Create directories so that path exists. Returns true if successful or if // the directories already exist; returns false if unable to create directories // for any reason. bool FilePath::CreateDirectoriesRecursively() const { if (!this->IsDirectory()) { return false; } if (pathname_.length() == 0 || this->DirectoryExists()) { return true; } const FilePath parent(this->RemoveTrailingPathSeparator().RemoveFileName()); return parent.CreateDirectoriesRecursively() && this->CreateFolder(); } // Create the directory so that path exists. Returns true if successful or // if the directory already exists; returns false if unable to create the // directory for any reason, including if the parent directory does not // exist. Not named "CreateDirectory" because that's a macro on Windows. bool FilePath::CreateFolder() const { #if GTEST_OS_WINDOWS_MOBILE FilePath removed_sep(this->RemoveTrailingPathSeparator()); LPCWSTR unicode = String::AnsiToUtf16(removed_sep.c_str()); int result = CreateDirectory(unicode, NULL) ? 0 : -1; delete [] unicode; #elif GTEST_OS_WINDOWS int result = _mkdir(pathname_.c_str()); #else int result = mkdir(pathname_.c_str(), 0777); #endif // GTEST_OS_WINDOWS_MOBILE if (result == -1) { return this->DirectoryExists(); // An error is OK if the directory exists. } return true; // No error. } // If input name has a trailing separator character, remove it and return the // name, otherwise return the name string unmodified. // On Windows platform, uses \ as the separator, other platforms use /. FilePath FilePath::RemoveTrailingPathSeparator() const { return IsDirectory() ? FilePath(pathname_.substr(0, pathname_.length() - 1)) : *this; } // Removes any redundant separators that might be in the pathname. // For example, "bar///foo" becomes "bar/foo". Does not eliminate other // redundancies that might be in a pathname involving "." or "..". // TODO(wan@google.com): handle Windows network shares (e.g. \\server\share). void FilePath::Normalize() { if (pathname_.c_str() == NULL) { pathname_ = ""; return; } const char* src = pathname_.c_str(); char* const dest = new char[pathname_.length() + 1]; char* dest_ptr = dest; memset(dest_ptr, 0, pathname_.length() + 1); while (*src != '\0') { *dest_ptr = *src; if (!IsPathSeparator(*src)) { src++; } else { #if GTEST_HAS_ALT_PATH_SEP_ if (*dest_ptr == kAlternatePathSeparator) { *dest_ptr = kPathSeparator; } #endif while (IsPathSeparator(*src)) src++; } dest_ptr++; } *dest_ptr = '\0'; pathname_ = dest; delete[] dest; } } // namespace internal } // namespace testing // Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) #include #include #include #include #if GTEST_OS_WINDOWS_MOBILE # include // For TerminateProcess() #elif GTEST_OS_WINDOWS # include # include #else # include #endif // GTEST_OS_WINDOWS_MOBILE #if GTEST_OS_MAC # include # include # include #endif // GTEST_OS_MAC #if GTEST_OS_QNX # include # include #endif // GTEST_OS_QNX // Indicates that this translation unit is part of Google Test's // implementation. It must come before gtest-internal-inl.h is // included, or there will be a compiler error. This trick is to // prevent a user from accidentally including gtest-internal-inl.h in // his code. #define GTEST_IMPLEMENTATION_ 1 #undef GTEST_IMPLEMENTATION_ namespace testing { namespace internal { #if defined(_MSC_VER) || defined(__BORLANDC__) // MSVC and C++Builder do not provide a definition of STDERR_FILENO. const int kStdOutFileno = 1; const int kStdErrFileno = 2; #else const int kStdOutFileno = STDOUT_FILENO; const int kStdErrFileno = STDERR_FILENO; #endif // _MSC_VER #if GTEST_OS_MAC // Returns the number of threads running in the process, or 0 to indicate that // we cannot detect it. size_t GetThreadCount() { const task_t task = mach_task_self(); mach_msg_type_number_t thread_count; thread_act_array_t thread_list; const kern_return_t status = task_threads(task, &thread_list, &thread_count); if (status == KERN_SUCCESS) { // task_threads allocates resources in thread_list and we need to free them // to avoid leaks. vm_deallocate(task, reinterpret_cast(thread_list), sizeof(thread_t) * thread_count); return static_cast(thread_count); } else { return 0; } } #elif GTEST_OS_QNX // Returns the number of threads running in the process, or 0 to indicate that // we cannot detect it. size_t GetThreadCount() { const int fd = open("/proc/self/as", O_RDONLY); if (fd < 0) { return 0; } procfs_info process_info; const int status = devctl(fd, DCMD_PROC_INFO, &process_info, sizeof(process_info), NULL); close(fd); if (status == EOK) { return static_cast(process_info.num_threads); } else { return 0; } } #else size_t GetThreadCount() { // There's no portable way to detect the number of threads, so we just // return 0 to indicate that we cannot detect it. return 0; } #endif // GTEST_OS_MAC #if GTEST_USES_POSIX_RE // Implements RE. Currently only needed for death tests. RE::~RE() { if (is_valid_) { // regfree'ing an invalid regex might crash because the content // of the regex is undefined. Since the regex's are essentially // the same, one cannot be valid (or invalid) without the other // being so too. regfree(&partial_regex_); regfree(&full_regex_); } free(const_cast(pattern_)); } // Returns true iff regular expression re matches the entire str. bool RE::FullMatch(const char* str, const RE& re) { if (!re.is_valid_) return false; regmatch_t match; return regexec(&re.full_regex_, str, 1, &match, 0) == 0; } // Returns true iff regular expression re matches a substring of str // (including str itself). bool RE::PartialMatch(const char* str, const RE& re) { if (!re.is_valid_) return false; regmatch_t match; return regexec(&re.partial_regex_, str, 1, &match, 0) == 0; } // Initializes an RE from its string representation. void RE::Init(const char* regex) { pattern_ = posix::StrDup(regex); // Reserves enough bytes to hold the regular expression used for a // full match. const size_t full_regex_len = strlen(regex) + 10; char* const full_pattern = new char[full_regex_len]; snprintf(full_pattern, full_regex_len, "^(%s)$", regex); is_valid_ = regcomp(&full_regex_, full_pattern, REG_EXTENDED) == 0; // We want to call regcomp(&partial_regex_, ...) even if the // previous expression returns false. Otherwise partial_regex_ may // not be properly initialized can may cause trouble when it's // freed. // // Some implementation of POSIX regex (e.g. on at least some // versions of Cygwin) doesn't accept the empty string as a valid // regex. We change it to an equivalent form "()" to be safe. if (is_valid_) { const char* const partial_regex = (*regex == '\0') ? "()" : regex; is_valid_ = regcomp(&partial_regex_, partial_regex, REG_EXTENDED) == 0; } EXPECT_TRUE(is_valid_) << "Regular expression \"" << regex << "\" is not a valid POSIX Extended regular expression."; delete[] full_pattern; } #elif GTEST_USES_SIMPLE_RE // Returns true iff ch appears anywhere in str (excluding the // terminating '\0' character). bool IsInSet(char ch, const char* str) { return ch != '\0' && strchr(str, ch) != NULL; } // Returns true iff ch belongs to the given classification. Unlike // similar functions in , these aren't affected by the // current locale. bool IsAsciiDigit(char ch) { return '0' <= ch && ch <= '9'; } bool IsAsciiPunct(char ch) { return IsInSet(ch, "^-!\"#$%&'()*+,./:;<=>?@[\\]_`{|}~"); } bool IsRepeat(char ch) { return IsInSet(ch, "?*+"); } bool IsAsciiWhiteSpace(char ch) { return IsInSet(ch, " \f\n\r\t\v"); } bool IsAsciiWordChar(char ch) { return ('a' <= ch && ch <= 'z') || ('A' <= ch && ch <= 'Z') || ('0' <= ch && ch <= '9') || ch == '_'; } // Returns true iff "\\c" is a supported escape sequence. bool IsValidEscape(char c) { return (IsAsciiPunct(c) || IsInSet(c, "dDfnrsStvwW")); } // Returns true iff the given atom (specified by escaped and pattern) // matches ch. The result is undefined if the atom is invalid. bool AtomMatchesChar(bool escaped, char pattern_char, char ch) { if (escaped) { // "\\p" where p is pattern_char. switch (pattern_char) { case 'd': return IsAsciiDigit(ch); case 'D': return !IsAsciiDigit(ch); case 'f': return ch == '\f'; case 'n': return ch == '\n'; case 'r': return ch == '\r'; case 's': return IsAsciiWhiteSpace(ch); case 'S': return !IsAsciiWhiteSpace(ch); case 't': return ch == '\t'; case 'v': return ch == '\v'; case 'w': return IsAsciiWordChar(ch); case 'W': return !IsAsciiWordChar(ch); } return IsAsciiPunct(pattern_char) && pattern_char == ch; } return (pattern_char == '.' && ch != '\n') || pattern_char == ch; } // Helper function used by ValidateRegex() to format error messages. std::string FormatRegexSyntaxError(const char* regex, int index) { return (Message() << "Syntax error at index " << index << " in simple regular expression \"" << regex << "\": ").GetString(); } // Generates non-fatal failures and returns false if regex is invalid; // otherwise returns true. bool ValidateRegex(const char* regex) { if (regex == NULL) { // TODO(wan@google.com): fix the source file location in the // assertion failures to match where the regex is used in user // code. ADD_FAILURE() << "NULL is not a valid simple regular expression."; return false; } bool is_valid = true; // True iff ?, *, or + can follow the previous atom. bool prev_repeatable = false; for (int i = 0; regex[i]; i++) { if (regex[i] == '\\') { // An escape sequence i++; if (regex[i] == '\0') { ADD_FAILURE() << FormatRegexSyntaxError(regex, i - 1) << "'\\' cannot appear at the end."; return false; } if (!IsValidEscape(regex[i])) { ADD_FAILURE() << FormatRegexSyntaxError(regex, i - 1) << "invalid escape sequence \"\\" << regex[i] << "\"."; is_valid = false; } prev_repeatable = true; } else { // Not an escape sequence. const char ch = regex[i]; if (ch == '^' && i > 0) { ADD_FAILURE() << FormatRegexSyntaxError(regex, i) << "'^' can only appear at the beginning."; is_valid = false; } else if (ch == '$' && regex[i + 1] != '\0') { ADD_FAILURE() << FormatRegexSyntaxError(regex, i) << "'$' can only appear at the end."; is_valid = false; } else if (IsInSet(ch, "()[]{}|")) { ADD_FAILURE() << FormatRegexSyntaxError(regex, i) << "'" << ch << "' is unsupported."; is_valid = false; } else if (IsRepeat(ch) && !prev_repeatable) { ADD_FAILURE() << FormatRegexSyntaxError(regex, i) << "'" << ch << "' can only follow a repeatable token."; is_valid = false; } prev_repeatable = !IsInSet(ch, "^$?*+"); } } return is_valid; } // Matches a repeated regex atom followed by a valid simple regular // expression. The regex atom is defined as c if escaped is false, // or \c otherwise. repeat is the repetition meta character (?, *, // or +). The behavior is undefined if str contains too many // characters to be indexable by size_t, in which case the test will // probably time out anyway. We are fine with this limitation as // std::string has it too. bool MatchRepetitionAndRegexAtHead( bool escaped, char c, char repeat, const char* regex, const char* str) { const size_t min_count = (repeat == '+') ? 1 : 0; const size_t max_count = (repeat == '?') ? 1 : static_cast(-1) - 1; // We cannot call numeric_limits::max() as it conflicts with the // max() macro on Windows. for (size_t i = 0; i <= max_count; ++i) { // We know that the atom matches each of the first i characters in str. if (i >= min_count && MatchRegexAtHead(regex, str + i)) { // We have enough matches at the head, and the tail matches too. // Since we only care about *whether* the pattern matches str // (as opposed to *how* it matches), there is no need to find a // greedy match. return true; } if (str[i] == '\0' || !AtomMatchesChar(escaped, c, str[i])) return false; } return false; } // Returns true iff regex matches a prefix of str. regex must be a // valid simple regular expression and not start with "^", or the // result is undefined. bool MatchRegexAtHead(const char* regex, const char* str) { if (*regex == '\0') // An empty regex matches a prefix of anything. return true; // "$" only matches the end of a string. Note that regex being // valid guarantees that there's nothing after "$" in it. if (*regex == '$') return *str == '\0'; // Is the first thing in regex an escape sequence? const bool escaped = *regex == '\\'; if (escaped) ++regex; if (IsRepeat(regex[1])) { // MatchRepetitionAndRegexAtHead() calls MatchRegexAtHead(), so // here's an indirect recursion. It terminates as the regex gets // shorter in each recursion. return MatchRepetitionAndRegexAtHead( escaped, regex[0], regex[1], regex + 2, str); } else { // regex isn't empty, isn't "$", and doesn't start with a // repetition. We match the first atom of regex with the first // character of str and recurse. return (*str != '\0') && AtomMatchesChar(escaped, *regex, *str) && MatchRegexAtHead(regex + 1, str + 1); } } // Returns true iff regex matches any substring of str. regex must be // a valid simple regular expression, or the result is undefined. // // The algorithm is recursive, but the recursion depth doesn't exceed // the regex length, so we won't need to worry about running out of // stack space normally. In rare cases the time complexity can be // exponential with respect to the regex length + the string length, // but usually it's must faster (often close to linear). bool MatchRegexAnywhere(const char* regex, const char* str) { if (regex == NULL || str == NULL) return false; if (*regex == '^') return MatchRegexAtHead(regex + 1, str); // A successful match can be anywhere in str. do { if (MatchRegexAtHead(regex, str)) return true; } while (*str++ != '\0'); return false; } // Implements the RE class. RE::~RE() { free(const_cast(pattern_)); free(const_cast(full_pattern_)); } // Returns true iff regular expression re matches the entire str. bool RE::FullMatch(const char* str, const RE& re) { return re.is_valid_ && MatchRegexAnywhere(re.full_pattern_, str); } // Returns true iff regular expression re matches a substring of str // (including str itself). bool RE::PartialMatch(const char* str, const RE& re) { return re.is_valid_ && MatchRegexAnywhere(re.pattern_, str); } // Initializes an RE from its string representation. void RE::Init(const char* regex) { pattern_ = full_pattern_ = NULL; if (regex != NULL) { pattern_ = posix::StrDup(regex); } is_valid_ = ValidateRegex(regex); if (!is_valid_) { // No need to calculate the full pattern when the regex is invalid. return; } const size_t len = strlen(regex); // Reserves enough bytes to hold the regular expression used for a // full match: we need space to prepend a '^', append a '$', and // terminate the string with '\0'. char* buffer = static_cast(malloc(len + 3)); full_pattern_ = buffer; if (*regex != '^') *buffer++ = '^'; // Makes sure full_pattern_ starts with '^'. // We don't use snprintf or strncpy, as they trigger a warning when // compiled with VC++ 8.0. memcpy(buffer, regex, len); buffer += len; if (len == 0 || regex[len - 1] != '$') *buffer++ = '$'; // Makes sure full_pattern_ ends with '$'. *buffer = '\0'; } #endif // GTEST_USES_POSIX_RE const char kUnknownFile[] = "unknown file"; // Formats a source file path and a line number as they would appear // in an error message from the compiler used to compile this code. GTEST_API_ ::std::string FormatFileLocation(const char* file, int line) { const std::string file_name(file == NULL ? kUnknownFile : file); if (line < 0) { return file_name + ":"; } #ifdef _MSC_VER return file_name + "(" + StreamableToString(line) + "):"; #else return file_name + ":" + StreamableToString(line) + ":"; #endif // _MSC_VER } // Formats a file location for compiler-independent XML output. // Although this function is not platform dependent, we put it next to // FormatFileLocation in order to contrast the two functions. // Note that FormatCompilerIndependentFileLocation() does NOT append colon // to the file location it produces, unlike FormatFileLocation(). GTEST_API_ ::std::string FormatCompilerIndependentFileLocation( const char* file, int line) { const std::string file_name(file == NULL ? kUnknownFile : file); if (line < 0) return file_name; else return file_name + ":" + StreamableToString(line); } GTestLog::GTestLog(GTestLogSeverity severity, const char* file, int line) : severity_(severity) { const char* const marker = severity == GTEST_INFO ? "[ INFO ]" : severity == GTEST_WARNING ? "[WARNING]" : severity == GTEST_ERROR ? "[ ERROR ]" : "[ FATAL ]"; GetStream() << ::std::endl << marker << " " << FormatFileLocation(file, line).c_str() << ": "; } // Flushes the buffers and, if severity is GTEST_FATAL, aborts the program. GTestLog::~GTestLog() { GetStream() << ::std::endl; if (severity_ == GTEST_FATAL) { fflush(stderr); posix::Abort(); } } // Disable Microsoft deprecation warnings for POSIX functions called from // this class (creat, dup, dup2, and close) #ifdef _MSC_VER # pragma warning(push) # pragma warning(disable: 4996) #endif // _MSC_VER #if GTEST_HAS_STREAM_REDIRECTION // Object that captures an output stream (stdout/stderr). class CapturedStream { public: // The ctor redirects the stream to a temporary file. explicit CapturedStream(int fd) : fd_(fd), uncaptured_fd_(dup(fd)) { # if GTEST_OS_WINDOWS char temp_dir_path[MAX_PATH + 1] = { '\0' }; // NOLINT char temp_file_path[MAX_PATH + 1] = { '\0' }; // NOLINT ::GetTempPathA(sizeof(temp_dir_path), temp_dir_path); const UINT success = ::GetTempFileNameA(temp_dir_path, "gtest_redir", 0, // Generate unique file name. temp_file_path); GTEST_CHECK_(success != 0) << "Unable to create a temporary file in " << temp_dir_path; const int captured_fd = creat(temp_file_path, _S_IREAD | _S_IWRITE); GTEST_CHECK_(captured_fd != -1) << "Unable to open temporary file " << temp_file_path; filename_ = temp_file_path; # else // There's no guarantee that a test has write access to the current // directory, so we create the temporary file in the /tmp directory // instead. We use /tmp on most systems, and /sdcard on Android. // That's because Android doesn't have /tmp. # if GTEST_OS_LINUX_ANDROID // Note: Android applications are expected to call the framework's // Context.getExternalStorageDirectory() method through JNI to get // the location of the world-writable SD Card directory. However, // this requires a Context handle, which cannot be retrieved // globally from native code. Doing so also precludes running the // code as part of a regular standalone executable, which doesn't // run in a Dalvik process (e.g. when running it through 'adb shell'). // // The location /sdcard is directly accessible from native code // and is the only location (unofficially) supported by the Android // team. It's generally a symlink to the real SD Card mount point // which can be /mnt/sdcard, /mnt/sdcard0, /system/media/sdcard, or // other OEM-customized locations. Never rely on these, and always // use /sdcard. char name_template[] = "/sdcard/gtest_captured_stream.XXXXXX"; # else char name_template[] = "/tmp/captured_stream.XXXXXX"; # endif // GTEST_OS_LINUX_ANDROID const int captured_fd = mkstemp(name_template); filename_ = name_template; # endif // GTEST_OS_WINDOWS fflush(NULL); dup2(captured_fd, fd_); close(captured_fd); } ~CapturedStream() { remove(filename_.c_str()); } std::string GetCapturedString() { if (uncaptured_fd_ != -1) { // Restores the original stream. fflush(NULL); dup2(uncaptured_fd_, fd_); close(uncaptured_fd_); uncaptured_fd_ = -1; } FILE* const file = posix::FOpen(filename_.c_str(), "r"); const std::string content = ReadEntireFile(file); posix::FClose(file); return content; } private: // Reads the entire content of a file as an std::string. static std::string ReadEntireFile(FILE* file); // Returns the size (in bytes) of a file. static size_t GetFileSize(FILE* file); const int fd_; // A stream to capture. int uncaptured_fd_; // Name of the temporary file holding the stderr output. ::std::string filename_; GTEST_DISALLOW_COPY_AND_ASSIGN_(CapturedStream); }; // Returns the size (in bytes) of a file. size_t CapturedStream::GetFileSize(FILE* file) { fseek(file, 0, SEEK_END); return static_cast(ftell(file)); } // Reads the entire content of a file as a string. std::string CapturedStream::ReadEntireFile(FILE* file) { const size_t file_size = GetFileSize(file); char* const buffer = new char[file_size]; size_t bytes_last_read = 0; // # of bytes read in the last fread() size_t bytes_read = 0; // # of bytes read so far fseek(file, 0, SEEK_SET); // Keeps reading the file until we cannot read further or the // pre-determined file size is reached. do { bytes_last_read = fread(buffer+bytes_read, 1, file_size-bytes_read, file); bytes_read += bytes_last_read; } while (bytes_last_read > 0 && bytes_read < file_size); const std::string content(buffer, bytes_read); delete[] buffer; return content; } # ifdef _MSC_VER # pragma warning(pop) # endif // _MSC_VER static CapturedStream* g_captured_stderr = NULL; static CapturedStream* g_captured_stdout = NULL; // Starts capturing an output stream (stdout/stderr). void CaptureStream(int fd, const char* stream_name, CapturedStream** stream) { if (*stream != NULL) { GTEST_LOG_(FATAL) << "Only one " << stream_name << " capturer can exist at a time."; } *stream = new CapturedStream(fd); } // Stops capturing the output stream and returns the captured string. std::string GetCapturedStream(CapturedStream** captured_stream) { const std::string content = (*captured_stream)->GetCapturedString(); delete *captured_stream; *captured_stream = NULL; return content; } // Starts capturing stdout. void CaptureStdout() { CaptureStream(kStdOutFileno, "stdout", &g_captured_stdout); } // Starts capturing stderr. void CaptureStderr() { CaptureStream(kStdErrFileno, "stderr", &g_captured_stderr); } // Stops capturing stdout and returns the captured string. std::string GetCapturedStdout() { return GetCapturedStream(&g_captured_stdout); } // Stops capturing stderr and returns the captured string. std::string GetCapturedStderr() { return GetCapturedStream(&g_captured_stderr); } #endif // GTEST_HAS_STREAM_REDIRECTION #if GTEST_HAS_DEATH_TEST // A copy of all command line arguments. Set by InitGoogleTest(). ::std::vector g_argvs; static const ::std::vector* g_injected_test_argvs = NULL; // Owned. void SetInjectableArgvs(const ::std::vector* argvs) { if (g_injected_test_argvs != argvs) delete g_injected_test_argvs; g_injected_test_argvs = argvs; } const ::std::vector& GetInjectableArgvs() { if (g_injected_test_argvs != NULL) { return *g_injected_test_argvs; } return g_argvs; } #endif // GTEST_HAS_DEATH_TEST #if GTEST_OS_WINDOWS_MOBILE namespace posix { void Abort() { DebugBreak(); TerminateProcess(GetCurrentProcess(), 1); } } // namespace posix #endif // GTEST_OS_WINDOWS_MOBILE // Returns the name of the environment variable corresponding to the // given flag. For example, FlagToEnvVar("foo") will return // "GTEST_FOO" in the open-source version. static std::string FlagToEnvVar(const char* flag) { const std::string full_flag = (Message() << GTEST_FLAG_PREFIX_ << flag).GetString(); Message env_var; for (size_t i = 0; i != full_flag.length(); i++) { env_var << ToUpper(full_flag.c_str()[i]); } return env_var.GetString(); } // Parses 'str' for a 32-bit signed integer. If successful, writes // the result to *value and returns true; otherwise leaves *value // unchanged and returns false. bool ParseInt32(const Message& src_text, const char* str, Int32* value) { // Parses the environment variable as a decimal integer. char* end = NULL; const long long_value = strtol(str, &end, 10); // NOLINT // Has strtol() consumed all characters in the string? if (*end != '\0') { // No - an invalid character was encountered. Message msg; msg << "WARNING: " << src_text << " is expected to be a 32-bit integer, but actually" << " has value \"" << str << "\".\n"; printf("%s", msg.GetString().c_str()); fflush(stdout); return false; } // Is the parsed value in the range of an Int32? const Int32 result = static_cast(long_value); if (long_value == LONG_MAX || long_value == LONG_MIN || // The parsed value overflows as a long. (strtol() returns // LONG_MAX or LONG_MIN when the input overflows.) result != long_value // The parsed value overflows as an Int32. ) { Message msg; msg << "WARNING: " << src_text << " is expected to be a 32-bit integer, but actually" << " has value " << str << ", which overflows.\n"; printf("%s", msg.GetString().c_str()); fflush(stdout); return false; } *value = result; return true; } // Reads and returns the Boolean environment variable corresponding to // the given flag; if it's not set, returns default_value. // // The value is considered true iff it's not "0". bool BoolFromGTestEnv(const char* flag, bool default_value) { const std::string env_var = FlagToEnvVar(flag); const char* const string_value = posix::GetEnv(env_var.c_str()); return string_value == NULL ? default_value : strcmp(string_value, "0") != 0; } // Reads and returns a 32-bit integer stored in the environment // variable corresponding to the given flag; if it isn't set or // doesn't represent a valid 32-bit integer, returns default_value. Int32 Int32FromGTestEnv(const char* flag, Int32 default_value) { const std::string env_var = FlagToEnvVar(flag); const char* const string_value = posix::GetEnv(env_var.c_str()); if (string_value == NULL) { // The environment variable is not set. return default_value; } Int32 result = default_value; if (!ParseInt32(Message() << "Environment variable " << env_var, string_value, &result)) { printf("The default value %s is used.\n", (Message() << default_value).GetString().c_str()); fflush(stdout); return default_value; } return result; } // Reads and returns the string environment variable corresponding to // the given flag; if it's not set, returns default_value. const char* StringFromGTestEnv(const char* flag, const char* default_value) { const std::string env_var = FlagToEnvVar(flag); const char* const value = posix::GetEnv(env_var.c_str()); return value == NULL ? default_value : value; } } // namespace internal } // namespace testing // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Test - The Google C++ Testing Framework // // This file implements a universal value printer that can print a // value of any type T: // // void ::testing::internal::UniversalPrinter::Print(value, ostream_ptr); // // It uses the << operator when possible, and prints the bytes in the // object otherwise. A user can override its behavior for a class // type Foo by defining either operator<<(::std::ostream&, const Foo&) // or void PrintTo(const Foo&, ::std::ostream*) in the namespace that // defines Foo. #include #include #include // NOLINT #include namespace testing { namespace { using ::std::ostream; // Prints a segment of bytes in the given object. void PrintByteSegmentInObjectTo(const unsigned char* obj_bytes, size_t start, size_t count, ostream* os) { char text[5] = ""; for (size_t i = 0; i != count; i++) { const size_t j = start + i; if (i != 0) { // Organizes the bytes into groups of 2 for easy parsing by // human. if ((j % 2) == 0) *os << ' '; else *os << '-'; } GTEST_SNPRINTF_(text, sizeof(text), "%02X", obj_bytes[j]); *os << text; } } // Prints the bytes in the given value to the given ostream. void PrintBytesInObjectToImpl(const unsigned char* obj_bytes, size_t count, ostream* os) { // Tells the user how big the object is. *os << count << "-byte object <"; const size_t kThreshold = 132; const size_t kChunkSize = 64; // If the object size is bigger than kThreshold, we'll have to omit // some details by printing only the first and the last kChunkSize // bytes. // TODO(wan): let the user control the threshold using a flag. if (count < kThreshold) { PrintByteSegmentInObjectTo(obj_bytes, 0, count, os); } else { PrintByteSegmentInObjectTo(obj_bytes, 0, kChunkSize, os); *os << " ... "; // Rounds up to 2-byte boundary. const size_t resume_pos = (count - kChunkSize + 1)/2*2; PrintByteSegmentInObjectTo(obj_bytes, resume_pos, count - resume_pos, os); } *os << ">"; } } // namespace namespace internal2 { // Delegates to PrintBytesInObjectToImpl() to print the bytes in the // given object. The delegation simplifies the implementation, which // uses the << operator and thus is easier done outside of the // ::testing::internal namespace, which contains a << operator that // sometimes conflicts with the one in STL. void PrintBytesInObjectTo(const unsigned char* obj_bytes, size_t count, ostream* os) { PrintBytesInObjectToImpl(obj_bytes, count, os); } } // namespace internal2 namespace internal { // Depending on the value of a char (or wchar_t), we print it in one // of three formats: // - as is if it's a printable ASCII (e.g. 'a', '2', ' '), // - as a hexidecimal escape sequence (e.g. '\x7F'), or // - as a special escape sequence (e.g. '\r', '\n'). enum CharFormat { kAsIs, kHexEscape, kSpecialEscape }; // Returns true if c is a printable ASCII character. We test the // value of c directly instead of calling isprint(), which is buggy on // Windows Mobile. inline bool IsPrintableAscii(wchar_t c) { return 0x20 <= c && c <= 0x7E; } // Prints a wide or narrow char c as a character literal without the // quotes, escaping it when necessary; returns how c was formatted. // The template argument UnsignedChar is the unsigned version of Char, // which is the type of c. template static CharFormat PrintAsCharLiteralTo(Char c, ostream* os) { switch (static_cast(c)) { case L'\0': *os << "\\0"; break; case L'\'': *os << "\\'"; break; case L'\\': *os << "\\\\"; break; case L'\a': *os << "\\a"; break; case L'\b': *os << "\\b"; break; case L'\f': *os << "\\f"; break; case L'\n': *os << "\\n"; break; case L'\r': *os << "\\r"; break; case L'\t': *os << "\\t"; break; case L'\v': *os << "\\v"; break; default: if (IsPrintableAscii(c)) { *os << static_cast(c); return kAsIs; } else { *os << "\\x" + String::FormatHexInt(static_cast(c)); return kHexEscape; } } return kSpecialEscape; } // Prints a wchar_t c as if it's part of a string literal, escaping it when // necessary; returns how c was formatted. static CharFormat PrintAsStringLiteralTo(wchar_t c, ostream* os) { switch (c) { case L'\'': *os << "'"; return kAsIs; case L'"': *os << "\\\""; return kSpecialEscape; default: return PrintAsCharLiteralTo(c, os); } } // Prints a char c as if it's part of a string literal, escaping it when // necessary; returns how c was formatted. static CharFormat PrintAsStringLiteralTo(char c, ostream* os) { return PrintAsStringLiteralTo( static_cast(static_cast(c)), os); } // Prints a wide or narrow character c and its code. '\0' is printed // as "'\\0'", other unprintable characters are also properly escaped // using the standard C++ escape sequence. The template argument // UnsignedChar is the unsigned version of Char, which is the type of c. template void PrintCharAndCodeTo(Char c, ostream* os) { // First, print c as a literal in the most readable form we can find. *os << ((sizeof(c) > 1) ? "L'" : "'"); const CharFormat format = PrintAsCharLiteralTo(c, os); *os << "'"; // To aid user debugging, we also print c's code in decimal, unless // it's 0 (in which case c was printed as '\\0', making the code // obvious). if (c == 0) return; *os << " (" << static_cast(c); // For more convenience, we print c's code again in hexidecimal, // unless c was already printed in the form '\x##' or the code is in // [1, 9]. if (format == kHexEscape || (1 <= c && c <= 9)) { // Do nothing. } else { *os << ", 0x" << String::FormatHexInt(static_cast(c)); } *os << ")"; } void PrintTo(unsigned char c, ::std::ostream* os) { PrintCharAndCodeTo(c, os); } void PrintTo(signed char c, ::std::ostream* os) { PrintCharAndCodeTo(c, os); } // Prints a wchar_t as a symbol if it is printable or as its internal // code otherwise and also as its code. L'\0' is printed as "L'\\0'". void PrintTo(wchar_t wc, ostream* os) { PrintCharAndCodeTo(wc, os); } // Prints the given array of characters to the ostream. CharType must be either // char or wchar_t. // The array starts at begin, the length is len, it may include '\0' characters // and may not be NUL-terminated. template static void PrintCharsAsStringTo( const CharType* begin, size_t len, ostream* os) { const char* const kQuoteBegin = sizeof(CharType) == 1 ? "\"" : "L\""; *os << kQuoteBegin; bool is_previous_hex = false; for (size_t index = 0; index < len; ++index) { const CharType cur = begin[index]; if (is_previous_hex && IsXDigit(cur)) { // Previous character is of '\x..' form and this character can be // interpreted as another hexadecimal digit in its number. Break string to // disambiguate. *os << "\" " << kQuoteBegin; } is_previous_hex = PrintAsStringLiteralTo(cur, os) == kHexEscape; } *os << "\""; } // Prints a (const) char/wchar_t array of 'len' elements, starting at address // 'begin'. CharType must be either char or wchar_t. template static void UniversalPrintCharArray( const CharType* begin, size_t len, ostream* os) { // The code // const char kFoo[] = "foo"; // generates an array of 4, not 3, elements, with the last one being '\0'. // // Therefore when printing a char array, we don't print the last element if // it's '\0', such that the output matches the string literal as it's // written in the source code. if (len > 0 && begin[len - 1] == '\0') { PrintCharsAsStringTo(begin, len - 1, os); return; } // If, however, the last element in the array is not '\0', e.g. // const char kFoo[] = { 'f', 'o', 'o' }; // we must print the entire array. We also print a message to indicate // that the array is not NUL-terminated. PrintCharsAsStringTo(begin, len, os); *os << " (no terminating NUL)"; } // Prints a (const) char array of 'len' elements, starting at address 'begin'. void UniversalPrintArray(const char* begin, size_t len, ostream* os) { UniversalPrintCharArray(begin, len, os); } // Prints a (const) wchar_t array of 'len' elements, starting at address // 'begin'. void UniversalPrintArray(const wchar_t* begin, size_t len, ostream* os) { UniversalPrintCharArray(begin, len, os); } // Prints the given C string to the ostream. void PrintTo(const char* s, ostream* os) { if (s == NULL) { *os << "NULL"; } else { *os << ImplicitCast_(s) << " pointing to "; PrintCharsAsStringTo(s, strlen(s), os); } } // MSVC compiler can be configured to define whar_t as a typedef // of unsigned short. Defining an overload for const wchar_t* in that case // would cause pointers to unsigned shorts be printed as wide strings, // possibly accessing more memory than intended and causing invalid // memory accesses. MSVC defines _NATIVE_WCHAR_T_DEFINED symbol when // wchar_t is implemented as a native type. #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED) // Prints the given wide C string to the ostream. void PrintTo(const wchar_t* s, ostream* os) { if (s == NULL) { *os << "NULL"; } else { *os << ImplicitCast_(s) << " pointing to "; PrintCharsAsStringTo(s, wcslen(s), os); } } #endif // wchar_t is native // Prints a ::string object. #if GTEST_HAS_GLOBAL_STRING void PrintStringTo(const ::string& s, ostream* os) { PrintCharsAsStringTo(s.data(), s.size(), os); } #endif // GTEST_HAS_GLOBAL_STRING void PrintStringTo(const ::std::string& s, ostream* os) { PrintCharsAsStringTo(s.data(), s.size(), os); } // Prints a ::wstring object. #if GTEST_HAS_GLOBAL_WSTRING void PrintWideStringTo(const ::wstring& s, ostream* os) { PrintCharsAsStringTo(s.data(), s.size(), os); } #endif // GTEST_HAS_GLOBAL_WSTRING #if GTEST_HAS_STD_WSTRING void PrintWideStringTo(const ::std::wstring& s, ostream* os) { PrintCharsAsStringTo(s.data(), s.size(), os); } #endif // GTEST_HAS_STD_WSTRING } // namespace internal } // namespace testing // Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: mheule@google.com (Markus Heule) // // The Google C++ Testing Framework (Google Test) // Indicates that this translation unit is part of Google Test's // implementation. It must come before gtest-internal-inl.h is // included, or there will be a compiler error. This trick is to // prevent a user from accidentally including gtest-internal-inl.h in // his code. #define GTEST_IMPLEMENTATION_ 1 #undef GTEST_IMPLEMENTATION_ namespace testing { using internal::GetUnitTestImpl; // Gets the summary of the failure message by omitting the stack trace // in it. std::string TestPartResult::ExtractSummary(const char* message) { const char* const stack_trace = strstr(message, internal::kStackTraceMarker); return stack_trace == NULL ? message : std::string(message, stack_trace); } // Prints a TestPartResult object. std::ostream& operator<<(std::ostream& os, const TestPartResult& result) { return os << result.file_name() << ":" << result.line_number() << ": " << (result.type() == TestPartResult::kSuccess ? "Success" : result.type() == TestPartResult::kFatalFailure ? "Fatal failure" : "Non-fatal failure") << ":\n" << result.message() << std::endl; } // Appends a TestPartResult to the array. void TestPartResultArray::Append(const TestPartResult& result) { array_.push_back(result); } // Returns the TestPartResult at the given index (0-based). const TestPartResult& TestPartResultArray::GetTestPartResult(int index) const { if (index < 0 || index >= size()) { printf("\nInvalid index (%d) into TestPartResultArray.\n", index); internal::posix::Abort(); } return array_[index]; } // Returns the number of TestPartResult objects in the array. int TestPartResultArray::size() const { return static_cast(array_.size()); } namespace internal { HasNewFatalFailureHelper::HasNewFatalFailureHelper() : has_new_fatal_failure_(false), original_reporter_(GetUnitTestImpl()-> GetTestPartResultReporterForCurrentThread()) { GetUnitTestImpl()->SetTestPartResultReporterForCurrentThread(this); } HasNewFatalFailureHelper::~HasNewFatalFailureHelper() { GetUnitTestImpl()->SetTestPartResultReporterForCurrentThread( original_reporter_); } void HasNewFatalFailureHelper::ReportTestPartResult( const TestPartResult& result) { if (result.fatally_failed()) has_new_fatal_failure_ = true; original_reporter_->ReportTestPartResult(result); } } // namespace internal } // namespace testing // Copyright 2008 Google Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) namespace testing { namespace internal { #if GTEST_HAS_TYPED_TEST_P // Skips to the first non-space char in str. Returns an empty string if str // contains only whitespace characters. static const char* SkipSpaces(const char* str) { while (IsSpace(*str)) str++; return str; } // Verifies that registered_tests match the test names in // defined_test_names_; returns registered_tests if successful, or // aborts the program otherwise. const char* TypedTestCasePState::VerifyRegisteredTestNames( const char* file, int line, const char* registered_tests) { typedef ::std::set::const_iterator DefinedTestIter; registered_ = true; // Skip initial whitespace in registered_tests since some // preprocessors prefix stringizied literals with whitespace. registered_tests = SkipSpaces(registered_tests); Message errors; ::std::set tests; for (const char* names = registered_tests; names != NULL; names = SkipComma(names)) { const std::string name = GetPrefixUntilComma(names); if (tests.count(name) != 0) { errors << "Test " << name << " is listed more than once.\n"; continue; } bool found = false; for (DefinedTestIter it = defined_test_names_.begin(); it != defined_test_names_.end(); ++it) { if (name == *it) { found = true; break; } } if (found) { tests.insert(name); } else { errors << "No test named " << name << " can be found in this test case.\n"; } } for (DefinedTestIter it = defined_test_names_.begin(); it != defined_test_names_.end(); ++it) { if (tests.count(*it) == 0) { errors << "You forgot to list test " << *it << ".\n"; } } const std::string& errors_str = errors.GetString(); if (errors_str != "") { fprintf(stderr, "%s %s", FormatFileLocation(file, line).c_str(), errors_str.c_str()); fflush(stderr); posix::Abort(); } return registered_tests; } #endif // GTEST_HAS_TYPED_TEST_P } // namespace internal } // namespace testing // Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // // Google C++ Mocking Framework (Google Mock) // // This file #includes all Google Mock implementation .cc files. The // purpose is to allow a user to build Google Mock by compiling this // file alone. // This line ensures that gmock.h can be compiled on its own, even // when it's fused. #include "gmock/gmock.h" // The following lines pull in the real gmock *.cc files. // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file implements cardinalities. #include #include // NOLINT #include #include namespace testing { namespace { // Implements the Between(m, n) cardinality. class BetweenCardinalityImpl : public CardinalityInterface { public: BetweenCardinalityImpl(int min, int max) : min_(min >= 0 ? min : 0), max_(max >= min_ ? max : min_) { std::stringstream ss; if (min < 0) { ss << "The invocation lower bound must be >= 0, " << "but is actually " << min << "."; internal::Expect(false, __FILE__, __LINE__, ss.str()); } else if (max < 0) { ss << "The invocation upper bound must be >= 0, " << "but is actually " << max << "."; internal::Expect(false, __FILE__, __LINE__, ss.str()); } else if (min > max) { ss << "The invocation upper bound (" << max << ") must be >= the invocation lower bound (" << min << ")."; internal::Expect(false, __FILE__, __LINE__, ss.str()); } } // Conservative estimate on the lower/upper bound of the number of // calls allowed. virtual int ConservativeLowerBound() const { return min_; } virtual int ConservativeUpperBound() const { return max_; } virtual bool IsSatisfiedByCallCount(int call_count) const { return min_ <= call_count && call_count <= max_; } virtual bool IsSaturatedByCallCount(int call_count) const { return call_count >= max_; } virtual void DescribeTo(::std::ostream* os) const; private: const int min_; const int max_; GTEST_DISALLOW_COPY_AND_ASSIGN_(BetweenCardinalityImpl); }; // Formats "n times" in a human-friendly way. inline internal::string FormatTimes(int n) { if (n == 1) { return "once"; } else if (n == 2) { return "twice"; } else { std::stringstream ss; ss << n << " times"; return ss.str(); } } // Describes the Between(m, n) cardinality in human-friendly text. void BetweenCardinalityImpl::DescribeTo(::std::ostream* os) const { if (min_ == 0) { if (max_ == 0) { *os << "never called"; } else if (max_ == INT_MAX) { *os << "called any number of times"; } else { *os << "called at most " << FormatTimes(max_); } } else if (min_ == max_) { *os << "called " << FormatTimes(min_); } else if (max_ == INT_MAX) { *os << "called at least " << FormatTimes(min_); } else { // 0 < min_ < max_ < INT_MAX *os << "called between " << min_ << " and " << max_ << " times"; } } } // Unnamed namespace // Describes the given call count to an ostream. void Cardinality::DescribeActualCallCountTo(int actual_call_count, ::std::ostream* os) { if (actual_call_count > 0) { *os << "called " << FormatTimes(actual_call_count); } else { *os << "never called"; } } // Creates a cardinality that allows at least n calls. GTEST_API_ Cardinality AtLeast(int n) { return Between(n, INT_MAX); } // Creates a cardinality that allows at most n calls. GTEST_API_ Cardinality AtMost(int n) { return Between(0, n); } // Creates a cardinality that allows any number of calls. GTEST_API_ Cardinality AnyNumber() { return AtLeast(0); } // Creates a cardinality that allows between min and max calls. GTEST_API_ Cardinality Between(int min, int max) { return Cardinality(new BetweenCardinalityImpl(min, max)); } // Creates a cardinality that allows exactly n calls. GTEST_API_ Cardinality Exactly(int n) { return Between(n, n); } } // namespace testing // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file defines some utilities useful for implementing Google // Mock. They are subject to change without notice, so please DO NOT // USE THEM IN USER CODE. #include #include // NOLINT #include namespace testing { namespace internal { // Converts an identifier name to a space-separated list of lower-case // words. Each maximum substring of the form [A-Za-z][a-z]*|\d+ is // treated as one word. For example, both "FooBar123" and // "foo_bar_123" are converted to "foo bar 123". GTEST_API_ string ConvertIdentifierNameToWords(const char* id_name) { string result; char prev_char = '\0'; for (const char* p = id_name; *p != '\0'; prev_char = *(p++)) { // We don't care about the current locale as the input is // guaranteed to be a valid C++ identifier name. const bool starts_new_word = IsUpper(*p) || (!IsAlpha(prev_char) && IsLower(*p)) || (!IsDigit(prev_char) && IsDigit(*p)); if (IsAlNum(*p)) { if (starts_new_word && result != "") result += ' '; result += ToLower(*p); } } return result; } // This class reports Google Mock failures as Google Test failures. A // user can define another class in a similar fashion if he intends to // use Google Mock with a testing framework other than Google Test. class GoogleTestFailureReporter : public FailureReporterInterface { public: virtual void ReportFailure(FailureType type, const char* file, int line, const string& message) { AssertHelper(type == kFatal ? TestPartResult::kFatalFailure : TestPartResult::kNonFatalFailure, file, line, message.c_str()) = Message(); if (type == kFatal) { posix::Abort(); } } }; // Returns the global failure reporter. Will create a // GoogleTestFailureReporter and return it the first time called. GTEST_API_ FailureReporterInterface* GetFailureReporter() { // Points to the global failure reporter used by Google Mock. gcc // guarantees that the following use of failure_reporter is // thread-safe. We may need to add additional synchronization to // protect failure_reporter if we port Google Mock to other // compilers. static FailureReporterInterface* const failure_reporter = new GoogleTestFailureReporter(); return failure_reporter; } // Protects global resources (stdout in particular) used by Log(). static GTEST_DEFINE_STATIC_MUTEX_(g_log_mutex); // Returns true iff a log with the given severity is visible according // to the --gmock_verbose flag. GTEST_API_ bool LogIsVisible(LogSeverity severity) { if (GMOCK_FLAG(verbose) == kInfoVerbosity) { // Always show the log if --gmock_verbose=info. return true; } else if (GMOCK_FLAG(verbose) == kErrorVerbosity) { // Always hide it if --gmock_verbose=error. return false; } else { // If --gmock_verbose is neither "info" nor "error", we treat it // as "warning" (its default value). return severity == kWarning; } } // Prints the given message to stdout iff 'severity' >= the level // specified by the --gmock_verbose flag. If stack_frames_to_skip >= // 0, also prints the stack trace excluding the top // stack_frames_to_skip frames. In opt mode, any positive // stack_frames_to_skip is treated as 0, since we don't know which // function calls will be inlined by the compiler and need to be // conservative. GTEST_API_ void Log(LogSeverity severity, const string& message, int stack_frames_to_skip) { if (!LogIsVisible(severity)) return; // Ensures that logs from different threads don't interleave. MutexLock l(&g_log_mutex); // "using ::std::cout;" doesn't work with Symbian's STLport, where cout is a // macro. if (severity == kWarning) { // Prints a GMOCK WARNING marker to make the warnings easily searchable. std::cout << "\nGMOCK WARNING:"; } // Pre-pends a new-line to message if it doesn't start with one. if (message.empty() || message[0] != '\n') { std::cout << "\n"; } std::cout << message; if (stack_frames_to_skip >= 0) { #ifdef NDEBUG // In opt mode, we have to be conservative and skip no stack frame. const int actual_to_skip = 0; #else // In dbg mode, we can do what the caller tell us to do (plus one // for skipping this function's stack frame). const int actual_to_skip = stack_frames_to_skip + 1; #endif // NDEBUG // Appends a new-line to message if it doesn't end with one. if (!message.empty() && *message.rbegin() != '\n') { std::cout << "\n"; } std::cout << "Stack trace:\n" << ::testing::internal::GetCurrentOsStackTraceExceptTop( ::testing::UnitTest::GetInstance(), actual_to_skip); } std::cout << ::std::flush; } } // namespace internal } // namespace testing // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file implements Matcher, Matcher, and // utilities for defining matchers. #include #include #include namespace testing { // Constructs a matcher that matches a const string& whose value is // equal to s. Matcher::Matcher(const internal::string& s) { *this = Eq(s); } // Constructs a matcher that matches a const string& whose value is // equal to s. Matcher::Matcher(const char* s) { *this = Eq(internal::string(s)); } // Constructs a matcher that matches a string whose value is equal to s. Matcher::Matcher(const internal::string& s) { *this = Eq(s); } // Constructs a matcher that matches a string whose value is equal to s. Matcher::Matcher(const char* s) { *this = Eq(internal::string(s)); } #if GTEST_HAS_STRING_PIECE_ // Constructs a matcher that matches a const StringPiece& whose value is // equal to s. Matcher::Matcher(const internal::string& s) { *this = Eq(s); } // Constructs a matcher that matches a const StringPiece& whose value is // equal to s. Matcher::Matcher(const char* s) { *this = Eq(internal::string(s)); } // Constructs a matcher that matches a const StringPiece& whose value is // equal to s. Matcher::Matcher(StringPiece s) { *this = Eq(s.ToString()); } // Constructs a matcher that matches a StringPiece whose value is equal to s. Matcher::Matcher(const internal::string& s) { *this = Eq(s); } // Constructs a matcher that matches a StringPiece whose value is equal to s. Matcher::Matcher(const char* s) { *this = Eq(internal::string(s)); } // Constructs a matcher that matches a StringPiece whose value is equal to s. Matcher::Matcher(StringPiece s) { *this = Eq(s.ToString()); } #endif // GTEST_HAS_STRING_PIECE_ namespace internal { // Joins a vector of strings as if they are fields of a tuple; returns // the joined string. GTEST_API_ string JoinAsTuple(const Strings& fields) { switch (fields.size()) { case 0: return ""; case 1: return fields[0]; default: string result = "(" + fields[0]; for (size_t i = 1; i < fields.size(); i++) { result += ", "; result += fields[i]; } result += ")"; return result; } } // Returns the description for a matcher defined using the MATCHER*() // macro where the user-supplied description string is "", if // 'negation' is false; otherwise returns the description of the // negation of the matcher. 'param_values' contains a list of strings // that are the print-out of the matcher's parameters. GTEST_API_ string FormatMatcherDescription(bool negation, const char* matcher_name, const Strings& param_values) { string result = ConvertIdentifierNameToWords(matcher_name); if (param_values.size() >= 1) result += " " + JoinAsTuple(param_values); return negation ? "not (" + result + ")" : result; } // FindMaxBipartiteMatching and its helper class. // // Uses the well-known Ford-Fulkerson max flow method to find a maximum // bipartite matching. Flow is considered to be from left to right. // There is an implicit source node that is connected to all of the left // nodes, and an implicit sink node that is connected to all of the // right nodes. All edges have unit capacity. // // Neither the flow graph nor the residual flow graph are represented // explicitly. Instead, they are implied by the information in 'graph' and // a vector called 'left_' whose elements are initialized to the // value kUnused. This represents the initial state of the algorithm, // where the flow graph is empty, and the residual flow graph has the // following edges: // - An edge from source to each left_ node // - An edge from each right_ node to sink // - An edge from each left_ node to each right_ node, if the // corresponding edge exists in 'graph'. // // When the TryAugment() method adds a flow, it sets left_[l] = r for some // nodes l and r. This induces the following changes: // - The edges (source, l), (l, r), and (r, sink) are added to the // flow graph. // - The same three edges are removed from the residual flow graph. // - The reverse edges (l, source), (r, l), and (sink, r) are added // to the residual flow graph, which is a directional graph // representing unused flow capacity. // // When the method augments a flow (moving left_[l] from some r1 to some // other r2), this can be thought of as "undoing" the above steps with // respect to r1 and "redoing" them with respect to r2. // // It bears repeating that the flow graph and residual flow graph are // never represented explicitly, but can be derived by looking at the // information in 'graph' and in left_. // // As an optimization, there is a second vector called right_ which // does not provide any new information. Instead, it enables more // efficient queries about edges entering or leaving the right-side nodes // of the flow or residual flow graphs. The following invariants are // maintained: // // left[l] == kUnused or right[left[l]] == l // right[r] == kUnused or left[right[r]] == r // // . [ source ] . // . ||| . // . ||| . // . ||\--> left[0]=1 ---\ right[0]=-1 ----\ . // . || | | . // . |\---> left[1]=-1 \--> right[1]=0 ---\| . // . | || . // . \----> left[2]=2 ------> right[2]=2 --\|| . // . ||| . // . elements matchers vvv . // . [ sink ] . // // See Also: // [1] Cormen, et al (2001). "Section 26.2: The Ford–Fulkerson method". // "Introduction to Algorithms (Second ed.)", pp. 651–664. // [2] "Ford–Fulkerson algorithm", Wikipedia, // 'http://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm' class MaxBipartiteMatchState { public: explicit MaxBipartiteMatchState(const MatchMatrix& graph) : graph_(&graph), left_(graph_->LhsSize(), kUnused), right_(graph_->RhsSize(), kUnused) { } // Returns the edges of a maximal match, each in the form {left, right}. ElementMatcherPairs Compute() { // 'seen' is used for path finding { 0: unseen, 1: seen }. ::std::vector seen; // Searches the residual flow graph for a path from each left node to // the sink in the residual flow graph, and if one is found, add flow // to the graph. It's okay to search through the left nodes once. The // edge from the implicit source node to each previously-visited left // node will have flow if that left node has any path to the sink // whatsoever. Subsequent augmentations can only add flow to the // network, and cannot take away that previous flow unit from the source. // Since the source-to-left edge can only carry one flow unit (or, // each element can be matched to only one matcher), there is no need // to visit the left nodes more than once looking for augmented paths. // The flow is known to be possible or impossible by looking at the // node once. for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) { // Reset the path-marking vector and try to find a path from // source to sink starting at the left_[ilhs] node. GTEST_CHECK_(left_[ilhs] == kUnused) << "ilhs: " << ilhs << ", left_[ilhs]: " << left_[ilhs]; // 'seen' initialized to 'graph_->RhsSize()' copies of 0. seen.assign(graph_->RhsSize(), 0); TryAugment(ilhs, &seen); } ElementMatcherPairs result; for (size_t ilhs = 0; ilhs < left_.size(); ++ilhs) { size_t irhs = left_[ilhs]; if (irhs == kUnused) continue; result.push_back(ElementMatcherPair(ilhs, irhs)); } return result; } private: static const size_t kUnused = static_cast(-1); // Perform a depth-first search from left node ilhs to the sink. If a // path is found, flow is added to the network by linking the left and // right vector elements corresponding each segment of the path. // Returns true if a path to sink was found, which means that a unit of // flow was added to the network. The 'seen' vector elements correspond // to right nodes and are marked to eliminate cycles from the search. // // Left nodes will only be explored at most once because they // are accessible from at most one right node in the residual flow // graph. // // Note that left_[ilhs] is the only element of left_ that TryAugment will // potentially transition from kUnused to another value. Any other // left_ element holding kUnused before TryAugment will be holding it // when TryAugment returns. // bool TryAugment(size_t ilhs, ::std::vector* seen) { for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) { if ((*seen)[irhs]) continue; if (!graph_->HasEdge(ilhs, irhs)) continue; // There's an available edge from ilhs to irhs. (*seen)[irhs] = 1; // Next a search is performed to determine whether // this edge is a dead end or leads to the sink. // // right_[irhs] == kUnused means that there is residual flow from // right node irhs to the sink, so we can use that to finish this // flow path and return success. // // Otherwise there is residual flow to some ilhs. We push flow // along that path and call ourselves recursively to see if this // ultimately leads to sink. if (right_[irhs] == kUnused || TryAugment(right_[irhs], seen)) { // Add flow from left_[ilhs] to right_[irhs]. left_[ilhs] = irhs; right_[irhs] = ilhs; return true; } } return false; } const MatchMatrix* graph_; // not owned // Each element of the left_ vector represents a left hand side node // (i.e. an element) and each element of right_ is a right hand side // node (i.e. a matcher). The values in the left_ vector indicate // outflow from that node to a node on the the right_ side. The values // in the right_ indicate inflow, and specify which left_ node is // feeding that right_ node, if any. For example, left_[3] == 1 means // there's a flow from element #3 to matcher #1. Such a flow would also // be redundantly represented in the right_ vector as right_[1] == 3. // Elements of left_ and right_ are either kUnused or mutually // referent. Mutually referent means that left_[right_[i]] = i and // right_[left_[i]] = i. ::std::vector left_; ::std::vector right_; GTEST_DISALLOW_ASSIGN_(MaxBipartiteMatchState); }; const size_t MaxBipartiteMatchState::kUnused; GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g) { return MaxBipartiteMatchState(g).Compute(); } static void LogElementMatcherPairVec(const ElementMatcherPairs& pairs, ::std::ostream* stream) { typedef ElementMatcherPairs::const_iterator Iter; ::std::ostream& os = *stream; os << "{"; const char *sep = ""; for (Iter it = pairs.begin(); it != pairs.end(); ++it) { os << sep << "\n (" << "element #" << it->first << ", " << "matcher #" << it->second << ")"; sep = ","; } os << "\n}"; } // Tries to find a pairing, and explains the result. GTEST_API_ bool FindPairing(const MatchMatrix& matrix, MatchResultListener* listener) { ElementMatcherPairs matches = FindMaxBipartiteMatching(matrix); size_t max_flow = matches.size(); bool result = (max_flow == matrix.RhsSize()); if (!result) { if (listener->IsInterested()) { *listener << "where no permutation of the elements can " "satisfy all matchers, and the closest match is " << max_flow << " of " << matrix.RhsSize() << " matchers with the pairings:\n"; LogElementMatcherPairVec(matches, listener->stream()); } return false; } if (matches.size() > 1) { if (listener->IsInterested()) { const char *sep = "where:\n"; for (size_t mi = 0; mi < matches.size(); ++mi) { *listener << sep << " - element #" << matches[mi].first << " is matched by matcher #" << matches[mi].second; sep = ",\n"; } } } return true; } bool MatchMatrix::NextGraph() { for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) { for (size_t irhs = 0; irhs < RhsSize(); ++irhs) { char& b = matched_[SpaceIndex(ilhs, irhs)]; if (!b) { b = 1; return true; } b = 0; } } return false; } void MatchMatrix::Randomize() { for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) { for (size_t irhs = 0; irhs < RhsSize(); ++irhs) { char& b = matched_[SpaceIndex(ilhs, irhs)]; b = static_cast(rand() & 1); // NOLINT } } } string MatchMatrix::DebugString() const { ::std::stringstream ss; const char *sep = ""; for (size_t i = 0; i < LhsSize(); ++i) { ss << sep; for (size_t j = 0; j < RhsSize(); ++j) { ss << HasEdge(i, j); } sep = ";"; } return ss.str(); } void UnorderedElementsAreMatcherImplBase::DescribeToImpl( ::std::ostream* os) const { if (matcher_describers_.empty()) { *os << "is empty"; return; } if (matcher_describers_.size() == 1) { *os << "has " << Elements(1) << " and that element "; matcher_describers_[0]->DescribeTo(os); return; } *os << "has " << Elements(matcher_describers_.size()) << " and there exists some permutation of elements such that:\n"; const char* sep = ""; for (size_t i = 0; i != matcher_describers_.size(); ++i) { *os << sep << " - element #" << i << " "; matcher_describers_[i]->DescribeTo(os); sep = ", and\n"; } } void UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl( ::std::ostream* os) const { if (matcher_describers_.empty()) { *os << "isn't empty"; return; } if (matcher_describers_.size() == 1) { *os << "doesn't have " << Elements(1) << ", or has " << Elements(1) << " that "; matcher_describers_[0]->DescribeNegationTo(os); return; } *os << "doesn't have " << Elements(matcher_describers_.size()) << ", or there exists no permutation of elements such that:\n"; const char* sep = ""; for (size_t i = 0; i != matcher_describers_.size(); ++i) { *os << sep << " - element #" << i << " "; matcher_describers_[i]->DescribeTo(os); sep = ", and\n"; } } // Checks that all matchers match at least one element, and that all // elements match at least one matcher. This enables faster matching // and better error reporting. // Returns false, writing an explanation to 'listener', if and only // if the success criteria are not met. bool UnorderedElementsAreMatcherImplBase:: VerifyAllElementsAndMatchersAreMatched( const ::std::vector& element_printouts, const MatchMatrix& matrix, MatchResultListener* listener) const { bool result = true; ::std::vector element_matched(matrix.LhsSize(), 0); ::std::vector matcher_matched(matrix.RhsSize(), 0); for (size_t ilhs = 0; ilhs < matrix.LhsSize(); ilhs++) { for (size_t irhs = 0; irhs < matrix.RhsSize(); irhs++) { char matched = matrix.HasEdge(ilhs, irhs); element_matched[ilhs] |= matched; matcher_matched[irhs] |= matched; } } { const char* sep = "where the following matchers don't match any elements:\n"; for (size_t mi = 0; mi < matcher_matched.size(); ++mi) { if (matcher_matched[mi]) continue; result = false; if (listener->IsInterested()) { *listener << sep << "matcher #" << mi << ": "; matcher_describers_[mi]->DescribeTo(listener->stream()); sep = ",\n"; } } } { const char* sep = "where the following elements don't match any matchers:\n"; const char* outer_sep = ""; if (!result) { outer_sep = "\nand "; } for (size_t ei = 0; ei < element_matched.size(); ++ei) { if (element_matched[ei]) continue; result = false; if (listener->IsInterested()) { *listener << outer_sep << sep << "element #" << ei << ": " << element_printouts[ei]; sep = ",\n"; outer_sep = ""; } } } return result; } } // namespace internal } // namespace testing // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file implements the spec builder syntax (ON_CALL and // EXPECT_CALL). #include #include // NOLINT #include #include #include #if GTEST_OS_CYGWIN || GTEST_OS_LINUX || GTEST_OS_MAC # include // NOLINT #endif namespace testing { namespace internal { // Protects the mock object registry (in class Mock), all function // mockers, and all expectations. GTEST_API_ GTEST_DEFINE_STATIC_MUTEX_(g_gmock_mutex); // Logs a message including file and line number information. GTEST_API_ void LogWithLocation(testing::internal::LogSeverity severity, const char* file, int line, const string& message) { ::std::ostringstream s; s << file << ":" << line << ": " << message << ::std::endl; Log(severity, s.str(), 0); } // Constructs an ExpectationBase object. ExpectationBase::ExpectationBase(const char* a_file, int a_line, const string& a_source_text) : file_(a_file), line_(a_line), source_text_(a_source_text), cardinality_specified_(false), cardinality_(Exactly(1)), call_count_(0), retired_(false), extra_matcher_specified_(false), repeated_action_specified_(false), retires_on_saturation_(false), last_clause_(kNone), action_count_checked_(false) {} // Destructs an ExpectationBase object. ExpectationBase::~ExpectationBase() {} // Explicitly specifies the cardinality of this expectation. Used by // the subclasses to implement the .Times() clause. void ExpectationBase::SpecifyCardinality(const Cardinality& a_cardinality) { cardinality_specified_ = true; cardinality_ = a_cardinality; } // Retires all pre-requisites of this expectation. void ExpectationBase::RetireAllPreRequisites() GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { if (is_retired()) { // We can take this short-cut as we never retire an expectation // until we have retired all its pre-requisites. return; } for (ExpectationSet::const_iterator it = immediate_prerequisites_.begin(); it != immediate_prerequisites_.end(); ++it) { ExpectationBase* const prerequisite = it->expectation_base().get(); if (!prerequisite->is_retired()) { prerequisite->RetireAllPreRequisites(); prerequisite->Retire(); } } } // Returns true iff all pre-requisites of this expectation have been // satisfied. bool ExpectationBase::AllPrerequisitesAreSatisfied() const GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { g_gmock_mutex.AssertHeld(); for (ExpectationSet::const_iterator it = immediate_prerequisites_.begin(); it != immediate_prerequisites_.end(); ++it) { if (!(it->expectation_base()->IsSatisfied()) || !(it->expectation_base()->AllPrerequisitesAreSatisfied())) return false; } return true; } // Adds unsatisfied pre-requisites of this expectation to 'result'. void ExpectationBase::FindUnsatisfiedPrerequisites(ExpectationSet* result) const GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { g_gmock_mutex.AssertHeld(); for (ExpectationSet::const_iterator it = immediate_prerequisites_.begin(); it != immediate_prerequisites_.end(); ++it) { if (it->expectation_base()->IsSatisfied()) { // If *it is satisfied and has a call count of 0, some of its // pre-requisites may not be satisfied yet. if (it->expectation_base()->call_count_ == 0) { it->expectation_base()->FindUnsatisfiedPrerequisites(result); } } else { // Now that we know *it is unsatisfied, we are not so interested // in whether its pre-requisites are satisfied. Therefore we // don't recursively call FindUnsatisfiedPrerequisites() here. *result += *it; } } } // Describes how many times a function call matching this // expectation has occurred. void ExpectationBase::DescribeCallCountTo(::std::ostream* os) const GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { g_gmock_mutex.AssertHeld(); // Describes how many times the function is expected to be called. *os << " Expected: to be "; cardinality().DescribeTo(os); *os << "\n Actual: "; Cardinality::DescribeActualCallCountTo(call_count(), os); // Describes the state of the expectation (e.g. is it satisfied? // is it active?). *os << " - " << (IsOverSaturated() ? "over-saturated" : IsSaturated() ? "saturated" : IsSatisfied() ? "satisfied" : "unsatisfied") << " and " << (is_retired() ? "retired" : "active"); } // Checks the action count (i.e. the number of WillOnce() and // WillRepeatedly() clauses) against the cardinality if this hasn't // been done before. Prints a warning if there are too many or too // few actions. void ExpectationBase::CheckActionCountIfNotDone() const GTEST_LOCK_EXCLUDED_(mutex_) { bool should_check = false; { MutexLock l(&mutex_); if (!action_count_checked_) { action_count_checked_ = true; should_check = true; } } if (should_check) { if (!cardinality_specified_) { // The cardinality was inferred - no need to check the action // count against it. return; } // The cardinality was explicitly specified. const int action_count = static_cast(untyped_actions_.size()); const int upper_bound = cardinality().ConservativeUpperBound(); const int lower_bound = cardinality().ConservativeLowerBound(); bool too_many; // True if there are too many actions, or false // if there are too few. if (action_count > upper_bound || (action_count == upper_bound && repeated_action_specified_)) { too_many = true; } else if (0 < action_count && action_count < lower_bound && !repeated_action_specified_) { too_many = false; } else { return; } ::std::stringstream ss; DescribeLocationTo(&ss); ss << "Too " << (too_many ? "many" : "few") << " actions specified in " << source_text() << "...\n" << "Expected to be "; cardinality().DescribeTo(&ss); ss << ", but has " << (too_many ? "" : "only ") << action_count << " WillOnce()" << (action_count == 1 ? "" : "s"); if (repeated_action_specified_) { ss << " and a WillRepeatedly()"; } ss << "."; Log(kWarning, ss.str(), -1); // -1 means "don't print stack trace". } } // Implements the .Times() clause. void ExpectationBase::UntypedTimes(const Cardinality& a_cardinality) { if (last_clause_ == kTimes) { ExpectSpecProperty(false, ".Times() cannot appear " "more than once in an EXPECT_CALL()."); } else { ExpectSpecProperty(last_clause_ < kTimes, ".Times() cannot appear after " ".InSequence(), .WillOnce(), .WillRepeatedly(), " "or .RetiresOnSaturation()."); } last_clause_ = kTimes; SpecifyCardinality(a_cardinality); } // Points to the implicit sequence introduced by a living InSequence // object (if any) in the current thread or NULL. GTEST_API_ ThreadLocal g_gmock_implicit_sequence; // Reports an uninteresting call (whose description is in msg) in the // manner specified by 'reaction'. void ReportUninterestingCall(CallReaction reaction, const string& msg) { switch (reaction) { case kAllow: Log(kInfo, msg, 3); break; case kWarn: Log(kWarning, msg, 3); break; default: // FAIL Expect(false, NULL, -1, msg); } } UntypedFunctionMockerBase::UntypedFunctionMockerBase() : mock_obj_(NULL), name_("") {} UntypedFunctionMockerBase::~UntypedFunctionMockerBase() {} // Sets the mock object this mock method belongs to, and registers // this information in the global mock registry. Will be called // whenever an EXPECT_CALL() or ON_CALL() is executed on this mock // method. void UntypedFunctionMockerBase::RegisterOwner(const void* mock_obj) GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { { MutexLock l(&g_gmock_mutex); mock_obj_ = mock_obj; } Mock::Register(mock_obj, this); } // Sets the mock object this mock method belongs to, and sets the name // of the mock function. Will be called upon each invocation of this // mock function. void UntypedFunctionMockerBase::SetOwnerAndName(const void* mock_obj, const char* name) GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { // We protect name_ under g_gmock_mutex in case this mock function // is called from two threads concurrently. MutexLock l(&g_gmock_mutex); mock_obj_ = mock_obj; name_ = name; } // Returns the name of the function being mocked. Must be called // after RegisterOwner() or SetOwnerAndName() has been called. const void* UntypedFunctionMockerBase::MockObject() const GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { const void* mock_obj; { // We protect mock_obj_ under g_gmock_mutex in case this mock // function is called from two threads concurrently. MutexLock l(&g_gmock_mutex); Assert(mock_obj_ != NULL, __FILE__, __LINE__, "MockObject() must not be called before RegisterOwner() or " "SetOwnerAndName() has been called."); mock_obj = mock_obj_; } return mock_obj; } // Returns the name of this mock method. Must be called after // SetOwnerAndName() has been called. const char* UntypedFunctionMockerBase::Name() const GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { const char* name; { // We protect name_ under g_gmock_mutex in case this mock // function is called from two threads concurrently. MutexLock l(&g_gmock_mutex); Assert(name_ != NULL, __FILE__, __LINE__, "Name() must not be called before SetOwnerAndName() has " "been called."); name = name_; } return name; } // Calculates the result of invoking this mock function with the given // arguments, prints it, and returns it. The caller is responsible // for deleting the result. const UntypedActionResultHolderBase* UntypedFunctionMockerBase::UntypedInvokeWith(const void* const untyped_args) GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { if (untyped_expectations_.size() == 0) { // No expectation is set on this mock method - we have an // uninteresting call. // We must get Google Mock's reaction on uninteresting calls // made on this mock object BEFORE performing the action, // because the action may DELETE the mock object and make the // following expression meaningless. const CallReaction reaction = Mock::GetReactionOnUninterestingCalls(MockObject()); // True iff we need to print this call's arguments and return // value. This definition must be kept in sync with // the behavior of ReportUninterestingCall(). const bool need_to_report_uninteresting_call = // If the user allows this uninteresting call, we print it // only when he wants informational messages. reaction == kAllow ? LogIsVisible(kInfo) : // If the user wants this to be a warning, we print it only // when he wants to see warnings. reaction == kWarn ? LogIsVisible(kWarning) : // Otherwise, the user wants this to be an error, and we // should always print detailed information in the error. true; if (!need_to_report_uninteresting_call) { // Perform the action without printing the call information. return this->UntypedPerformDefaultAction(untyped_args, ""); } // Warns about the uninteresting call. ::std::stringstream ss; this->UntypedDescribeUninterestingCall(untyped_args, &ss); // Calculates the function result. const UntypedActionResultHolderBase* const result = this->UntypedPerformDefaultAction(untyped_args, ss.str()); // Prints the function result. if (result != NULL) result->PrintAsActionResult(&ss); ReportUninterestingCall(reaction, ss.str()); return result; } bool is_excessive = false; ::std::stringstream ss; ::std::stringstream why; ::std::stringstream loc; const void* untyped_action = NULL; // The UntypedFindMatchingExpectation() function acquires and // releases g_gmock_mutex. const ExpectationBase* const untyped_expectation = this->UntypedFindMatchingExpectation( untyped_args, &untyped_action, &is_excessive, &ss, &why); const bool found = untyped_expectation != NULL; // True iff we need to print the call's arguments and return value. // This definition must be kept in sync with the uses of Expect() // and Log() in this function. const bool need_to_report_call = !found || is_excessive || LogIsVisible(kInfo); if (!need_to_report_call) { // Perform the action without printing the call information. return untyped_action == NULL ? this->UntypedPerformDefaultAction(untyped_args, "") : this->UntypedPerformAction(untyped_action, untyped_args); } ss << " Function call: " << Name(); this->UntypedPrintArgs(untyped_args, &ss); // In case the action deletes a piece of the expectation, we // generate the message beforehand. if (found && !is_excessive) { untyped_expectation->DescribeLocationTo(&loc); } const UntypedActionResultHolderBase* const result = untyped_action == NULL ? this->UntypedPerformDefaultAction(untyped_args, ss.str()) : this->UntypedPerformAction(untyped_action, untyped_args); if (result != NULL) result->PrintAsActionResult(&ss); ss << "\n" << why.str(); if (!found) { // No expectation matches this call - reports a failure. Expect(false, NULL, -1, ss.str()); } else if (is_excessive) { // We had an upper-bound violation and the failure message is in ss. Expect(false, untyped_expectation->file(), untyped_expectation->line(), ss.str()); } else { // We had an expected call and the matching expectation is // described in ss. Log(kInfo, loc.str() + ss.str(), 2); } return result; } // Returns an Expectation object that references and co-owns exp, // which must be an expectation on this mock function. Expectation UntypedFunctionMockerBase::GetHandleOf(ExpectationBase* exp) { for (UntypedExpectations::const_iterator it = untyped_expectations_.begin(); it != untyped_expectations_.end(); ++it) { if (it->get() == exp) { return Expectation(*it); } } Assert(false, __FILE__, __LINE__, "Cannot find expectation."); return Expectation(); // The above statement is just to make the code compile, and will // never be executed. } // Verifies that all expectations on this mock function have been // satisfied. Reports one or more Google Test non-fatal failures // and returns false if not. bool UntypedFunctionMockerBase::VerifyAndClearExpectationsLocked() GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { g_gmock_mutex.AssertHeld(); bool expectations_met = true; for (UntypedExpectations::const_iterator it = untyped_expectations_.begin(); it != untyped_expectations_.end(); ++it) { ExpectationBase* const untyped_expectation = it->get(); if (untyped_expectation->IsOverSaturated()) { // There was an upper-bound violation. Since the error was // already reported when it occurred, there is no need to do // anything here. expectations_met = false; } else if (!untyped_expectation->IsSatisfied()) { expectations_met = false; ::std::stringstream ss; ss << "Actual function call count doesn't match " << untyped_expectation->source_text() << "...\n"; // No need to show the source file location of the expectation // in the description, as the Expect() call that follows already // takes care of it. untyped_expectation->MaybeDescribeExtraMatcherTo(&ss); untyped_expectation->DescribeCallCountTo(&ss); Expect(false, untyped_expectation->file(), untyped_expectation->line(), ss.str()); } } // Deleting our expectations may trigger other mock objects to be deleted, for // example if an action contains a reference counted smart pointer to that // mock object, and that is the last reference. So if we delete our // expectations within the context of the global mutex we may deadlock when // this method is called again. Instead, make a copy of the set of // expectations to delete, clear our set within the mutex, and then clear the // copied set outside of it. UntypedExpectations expectations_to_delete; untyped_expectations_.swap(expectations_to_delete); g_gmock_mutex.Unlock(); expectations_to_delete.clear(); g_gmock_mutex.Lock(); return expectations_met; } } // namespace internal // Class Mock. namespace { typedef std::set FunctionMockers; // The current state of a mock object. Such information is needed for // detecting leaked mock objects and explicitly verifying a mock's // expectations. struct MockObjectState { MockObjectState() : first_used_file(NULL), first_used_line(-1), leakable(false) {} // Where in the source file an ON_CALL or EXPECT_CALL is first // invoked on this mock object. const char* first_used_file; int first_used_line; ::std::string first_used_test_case; ::std::string first_used_test; bool leakable; // true iff it's OK to leak the object. FunctionMockers function_mockers; // All registered methods of the object. }; // A global registry holding the state of all mock objects that are // alive. A mock object is added to this registry the first time // Mock::AllowLeak(), ON_CALL(), or EXPECT_CALL() is called on it. It // is removed from the registry in the mock object's destructor. class MockObjectRegistry { public: // Maps a mock object (identified by its address) to its state. typedef std::map StateMap; // This destructor will be called when a program exits, after all // tests in it have been run. By then, there should be no mock // object alive. Therefore we report any living object as test // failure, unless the user explicitly asked us to ignore it. ~MockObjectRegistry() { // "using ::std::cout;" doesn't work with Symbian's STLport, where cout is // a macro. if (!GMOCK_FLAG(catch_leaked_mocks)) return; int leaked_count = 0; for (StateMap::const_iterator it = states_.begin(); it != states_.end(); ++it) { if (it->second.leakable) // The user said it's fine to leak this object. continue; // TODO(wan@google.com): Print the type of the leaked object. // This can help the user identify the leaked object. std::cout << "\n"; const MockObjectState& state = it->second; std::cout << internal::FormatFileLocation(state.first_used_file, state.first_used_line); std::cout << " ERROR: this mock object"; if (state.first_used_test != "") { std::cout << " (used in test " << state.first_used_test_case << "." << state.first_used_test << ")"; } std::cout << " should be deleted but never is. Its address is @" << it->first << "."; leaked_count++; } if (leaked_count > 0) { std::cout << "\nERROR: " << leaked_count << " leaked mock " << (leaked_count == 1 ? "object" : "objects") << " found at program exit.\n"; std::cout.flush(); ::std::cerr.flush(); // RUN_ALL_TESTS() has already returned when this destructor is // called. Therefore we cannot use the normal Google Test // failure reporting mechanism. _exit(1); // We cannot call exit() as it is not reentrant and // may already have been called. } } StateMap& states() { return states_; } private: StateMap states_; }; // Protected by g_gmock_mutex. MockObjectRegistry g_mock_object_registry; // Maps a mock object to the reaction Google Mock should have when an // uninteresting method is called. Protected by g_gmock_mutex. std::map g_uninteresting_call_reaction; // Sets the reaction Google Mock should have when an uninteresting // method of the given mock object is called. void SetReactionOnUninterestingCalls(const void* mock_obj, internal::CallReaction reaction) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) { internal::MutexLock l(&internal::g_gmock_mutex); g_uninteresting_call_reaction[mock_obj] = reaction; } } // namespace // Tells Google Mock to allow uninteresting calls on the given mock // object. void Mock::AllowUninterestingCalls(const void* mock_obj) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) { SetReactionOnUninterestingCalls(mock_obj, internal::kAllow); } // Tells Google Mock to warn the user about uninteresting calls on the // given mock object. void Mock::WarnUninterestingCalls(const void* mock_obj) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) { SetReactionOnUninterestingCalls(mock_obj, internal::kWarn); } // Tells Google Mock to fail uninteresting calls on the given mock // object. void Mock::FailUninterestingCalls(const void* mock_obj) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) { SetReactionOnUninterestingCalls(mock_obj, internal::kFail); } // Tells Google Mock the given mock object is being destroyed and its // entry in the call-reaction table should be removed. void Mock::UnregisterCallReaction(const void* mock_obj) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) { internal::MutexLock l(&internal::g_gmock_mutex); g_uninteresting_call_reaction.erase(mock_obj); } // Returns the reaction Google Mock will have on uninteresting calls // made on the given mock object. internal::CallReaction Mock::GetReactionOnUninterestingCalls( const void* mock_obj) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) { internal::MutexLock l(&internal::g_gmock_mutex); return (g_uninteresting_call_reaction.count(mock_obj) == 0) ? internal::kDefault : g_uninteresting_call_reaction[mock_obj]; } // Tells Google Mock to ignore mock_obj when checking for leaked mock // objects. void Mock::AllowLeak(const void* mock_obj) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) { internal::MutexLock l(&internal::g_gmock_mutex); g_mock_object_registry.states()[mock_obj].leakable = true; } // Verifies and clears all expectations on the given mock object. If // the expectations aren't satisfied, generates one or more Google // Test non-fatal failures and returns false. bool Mock::VerifyAndClearExpectations(void* mock_obj) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) { internal::MutexLock l(&internal::g_gmock_mutex); return VerifyAndClearExpectationsLocked(mock_obj); } // Verifies all expectations on the given mock object and clears its // default actions and expectations. Returns true iff the // verification was successful. bool Mock::VerifyAndClear(void* mock_obj) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) { internal::MutexLock l(&internal::g_gmock_mutex); ClearDefaultActionsLocked(mock_obj); return VerifyAndClearExpectationsLocked(mock_obj); } // Verifies and clears all expectations on the given mock object. If // the expectations aren't satisfied, generates one or more Google // Test non-fatal failures and returns false. bool Mock::VerifyAndClearExpectationsLocked(void* mock_obj) GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex) { internal::g_gmock_mutex.AssertHeld(); if (g_mock_object_registry.states().count(mock_obj) == 0) { // No EXPECT_CALL() was set on the given mock object. return true; } // Verifies and clears the expectations on each mock method in the // given mock object. bool expectations_met = true; FunctionMockers& mockers = g_mock_object_registry.states()[mock_obj].function_mockers; for (FunctionMockers::const_iterator it = mockers.begin(); it != mockers.end(); ++it) { if (!(*it)->VerifyAndClearExpectationsLocked()) { expectations_met = false; } } // We don't clear the content of mockers, as they may still be // needed by ClearDefaultActionsLocked(). return expectations_met; } // Registers a mock object and a mock method it owns. void Mock::Register(const void* mock_obj, internal::UntypedFunctionMockerBase* mocker) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) { internal::MutexLock l(&internal::g_gmock_mutex); g_mock_object_registry.states()[mock_obj].function_mockers.insert(mocker); } // Tells Google Mock where in the source code mock_obj is used in an // ON_CALL or EXPECT_CALL. In case mock_obj is leaked, this // information helps the user identify which object it is. void Mock::RegisterUseByOnCallOrExpectCall(const void* mock_obj, const char* file, int line) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) { internal::MutexLock l(&internal::g_gmock_mutex); MockObjectState& state = g_mock_object_registry.states()[mock_obj]; if (state.first_used_file == NULL) { state.first_used_file = file; state.first_used_line = line; const TestInfo* const test_info = UnitTest::GetInstance()->current_test_info(); if (test_info != NULL) { // TODO(wan@google.com): record the test case name when the // ON_CALL or EXPECT_CALL is invoked from SetUpTestCase() or // TearDownTestCase(). state.first_used_test_case = test_info->test_case_name(); state.first_used_test = test_info->name(); } } } // Unregisters a mock method; removes the owning mock object from the // registry when the last mock method associated with it has been // unregistered. This is called only in the destructor of // FunctionMockerBase. void Mock::UnregisterLocked(internal::UntypedFunctionMockerBase* mocker) GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex) { internal::g_gmock_mutex.AssertHeld(); for (MockObjectRegistry::StateMap::iterator it = g_mock_object_registry.states().begin(); it != g_mock_object_registry.states().end(); ++it) { FunctionMockers& mockers = it->second.function_mockers; if (mockers.erase(mocker) > 0) { // mocker was in mockers and has been just removed. if (mockers.empty()) { g_mock_object_registry.states().erase(it); } return; } } } // Clears all ON_CALL()s set on the given mock object. void Mock::ClearDefaultActionsLocked(void* mock_obj) GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex) { internal::g_gmock_mutex.AssertHeld(); if (g_mock_object_registry.states().count(mock_obj) == 0) { // No ON_CALL() was set on the given mock object. return; } // Clears the default actions for each mock method in the given mock // object. FunctionMockers& mockers = g_mock_object_registry.states()[mock_obj].function_mockers; for (FunctionMockers::const_iterator it = mockers.begin(); it != mockers.end(); ++it) { (*it)->ClearDefaultActionsLocked(); } // We don't clear the content of mockers, as they may still be // needed by VerifyAndClearExpectationsLocked(). } Expectation::Expectation() {} Expectation::Expectation( const internal::linked_ptr& an_expectation_base) : expectation_base_(an_expectation_base) {} Expectation::~Expectation() {} // Adds an expectation to a sequence. void Sequence::AddExpectation(const Expectation& expectation) const { if (*last_expectation_ != expectation) { if (last_expectation_->expectation_base() != NULL) { expectation.expectation_base()->immediate_prerequisites_ += *last_expectation_; } *last_expectation_ = expectation; } } // Creates the implicit sequence if there isn't one. InSequence::InSequence() { if (internal::g_gmock_implicit_sequence.get() == NULL) { internal::g_gmock_implicit_sequence.set(new Sequence); sequence_created_ = true; } else { sequence_created_ = false; } } // Deletes the implicit sequence if it was created by the constructor // of this object. InSequence::~InSequence() { if (sequence_created_) { delete internal::g_gmock_implicit_sequence.get(); internal::g_gmock_implicit_sequence.set(NULL); } } } // namespace testing // Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) namespace testing { // TODO(wan@google.com): support using environment variables to // control the flag values, like what Google Test does. GMOCK_DEFINE_bool_(catch_leaked_mocks, true, "true iff Google Mock should report leaked mock objects " "as failures."); GMOCK_DEFINE_string_(verbose, internal::kWarningVerbosity, "Controls how verbose Google Mock's output is." " Valid values:\n" " info - prints all messages.\n" " warning - prints warnings and errors.\n" " error - prints errors only."); namespace internal { // Parses a string as a command line flag. The string should have the // format "--gmock_flag=value". When def_optional is true, the // "=value" part can be omitted. // // Returns the value of the flag, or NULL if the parsing failed. static const char* ParseGoogleMockFlagValue(const char* str, const char* flag, bool def_optional) { // str and flag must not be NULL. if (str == NULL || flag == NULL) return NULL; // The flag must start with "--gmock_". const std::string flag_str = std::string("--gmock_") + flag; const size_t flag_len = flag_str.length(); if (strncmp(str, flag_str.c_str(), flag_len) != 0) return NULL; // Skips the flag name. const char* flag_end = str + flag_len; // When def_optional is true, it's OK to not have a "=value" part. if (def_optional && (flag_end[0] == '\0')) { return flag_end; } // If def_optional is true and there are more characters after the // flag name, or if def_optional is false, there must be a '=' after // the flag name. if (flag_end[0] != '=') return NULL; // Returns the string after "=". return flag_end + 1; } // Parses a string for a Google Mock bool flag, in the form of // "--gmock_flag=value". // // On success, stores the value of the flag in *value, and returns // true. On failure, returns false without changing *value. static bool ParseGoogleMockBoolFlag(const char* str, const char* flag, bool* value) { // Gets the value of the flag as a string. const char* const value_str = ParseGoogleMockFlagValue(str, flag, true); // Aborts if the parsing failed. if (value_str == NULL) return false; // Converts the string value to a bool. *value = !(*value_str == '0' || *value_str == 'f' || *value_str == 'F'); return true; } // Parses a string for a Google Mock string flag, in the form of // "--gmock_flag=value". // // On success, stores the value of the flag in *value, and returns // true. On failure, returns false without changing *value. static bool ParseGoogleMockStringFlag(const char* str, const char* flag, std::string* value) { // Gets the value of the flag as a string. const char* const value_str = ParseGoogleMockFlagValue(str, flag, false); // Aborts if the parsing failed. if (value_str == NULL) return false; // Sets *value to the value of the flag. *value = value_str; return true; } // The internal implementation of InitGoogleMock(). // // The type parameter CharType can be instantiated to either char or // wchar_t. template void InitGoogleMockImpl(int* argc, CharType** argv) { // Makes sure Google Test is initialized. InitGoogleTest() is // idempotent, so it's fine if the user has already called it. InitGoogleTest(argc, argv); if (*argc <= 0) return; for (int i = 1; i != *argc; i++) { const std::string arg_string = StreamableToString(argv[i]); const char* const arg = arg_string.c_str(); // Do we see a Google Mock flag? if (ParseGoogleMockBoolFlag(arg, "catch_leaked_mocks", &GMOCK_FLAG(catch_leaked_mocks)) || ParseGoogleMockStringFlag(arg, "verbose", &GMOCK_FLAG(verbose))) { // Yes. Shift the remainder of the argv list left by one. Note // that argv has (*argc + 1) elements, the last one always being // NULL. The following loop moves the trailing NULL element as // well. for (int j = i; j != *argc; j++) { argv[j] = argv[j + 1]; } // Decrements the argument count. (*argc)--; // We also need to decrement the iterator as we just removed // an element. i--; } } } } // namespace internal // Initializes Google Mock. This must be called before running the // tests. In particular, it parses a command line for the flags that // Google Mock recognizes. Whenever a Google Mock flag is seen, it is // removed from argv, and *argc is decremented. // // No value is returned. Instead, the Google Mock flag variables are // updated. // // Since Google Test is needed for Google Mock to work, this function // also initializes Google Test and parses its flags, if that hasn't // been done. GTEST_API_ void InitGoogleMock(int* argc, char** argv) { internal::InitGoogleMockImpl(argc, argv); } // This overloaded version can be used in Windows programs compiled in // UNICODE mode. GTEST_API_ void InitGoogleMock(int* argc, wchar_t** argv) { internal::InitGoogleMockImpl(argc, argv); } } // namespace testing ConsensusCore-7028496a84492011e1f647fb6390b9eaeea6acef/external/gmock-1.7.0/gmock/000077500000000000000000000000001254241613400260035ustar00rootroot00000000000000ConsensusCore-7028496a84492011e1f647fb6390b9eaeea6acef/external/gmock-1.7.0/gmock/gmock.h000066400000000000000000020722661254241613400272730ustar00rootroot00000000000000// Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This is the main header file a user should include. #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_H_ #define GMOCK_INCLUDE_GMOCK_GMOCK_H_ // This file implements the following syntax: // // ON_CALL(mock_object.Method(...)) // .With(...) ? // .WillByDefault(...); // // where With() is optional and WillByDefault() must appear exactly // once. // // EXPECT_CALL(mock_object.Method(...)) // .With(...) ? // .Times(...) ? // .InSequence(...) * // .WillOnce(...) * // .WillRepeatedly(...) ? // .RetiresOnSaturation() ? ; // // where all clauses are optional and WillOnce() can be repeated. // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file implements some commonly used actions. #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ #define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ #ifndef _WIN32_WCE # include #endif #include #include // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file defines some utilities useful for implementing Google // Mock. They are subject to change without notice, so please DO NOT // USE THEM IN USER CODE. #ifndef GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_ #define GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_ #include #include // NOLINT #include // This file was GENERATED by command: // pump.py gmock-generated-internal-utils.h.pump // DO NOT EDIT BY HAND!!! // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file contains template meta-programming utility classes needed // for implementing Google Mock. #ifndef GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_GENERATED_INTERNAL_UTILS_H_ #define GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_GENERATED_INTERNAL_UTILS_H_ // Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: vadimb@google.com (Vadim Berman) // // Low-level types and utilities for porting Google Mock to various // platforms. They are subject to change without notice. DO NOT USE // THEM IN USER CODE. #ifndef GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_ #define GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_ #include #include #include // Most of the types needed for porting Google Mock are also required // for Google Test and are defined in gtest-port.h. #include "gtest/gtest.h" // To avoid conditional compilation everywhere, we make it // gmock-port.h's responsibility to #include the header implementing // tr1/tuple. gmock-port.h does this via gtest-port.h, which is // guaranteed to pull in the tuple header. // For MS Visual C++, check the compiler version. At least VS 2003 is // required to compile Google Mock. #if defined(_MSC_VER) && _MSC_VER < 1310 # error "At least Visual C++ 2003 (7.1) is required to compile Google Mock." #endif // Macro for referencing flags. This is public as we want the user to // use this syntax to reference Google Mock flags. #define GMOCK_FLAG(name) FLAGS_gmock_##name // Macros for declaring flags. #define GMOCK_DECLARE_bool_(name) extern GTEST_API_ bool GMOCK_FLAG(name) #define GMOCK_DECLARE_int32_(name) \ extern GTEST_API_ ::testing::internal::Int32 GMOCK_FLAG(name) #define GMOCK_DECLARE_string_(name) \ extern GTEST_API_ ::std::string GMOCK_FLAG(name) // Macros for defining flags. #define GMOCK_DEFINE_bool_(name, default_val, doc) \ GTEST_API_ bool GMOCK_FLAG(name) = (default_val) #define GMOCK_DEFINE_int32_(name, default_val, doc) \ GTEST_API_ ::testing::internal::Int32 GMOCK_FLAG(name) = (default_val) #define GMOCK_DEFINE_string_(name, default_val, doc) \ GTEST_API_ ::std::string GMOCK_FLAG(name) = (default_val) #endif // GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_ namespace testing { template class Matcher; namespace internal { // An IgnoredValue object can be implicitly constructed from ANY value. // This is used in implementing the IgnoreResult(a) action. class IgnoredValue { public: // This constructor template allows any value to be implicitly // converted to IgnoredValue. The object has no data member and // doesn't try to remember anything about the argument. We // deliberately omit the 'explicit' keyword in order to allow the // conversion to be implicit. template IgnoredValue(const T& /* ignored */) {} // NOLINT(runtime/explicit) }; // MatcherTuple::type is a tuple type where each field is a Matcher // for the corresponding field in tuple type T. template struct MatcherTuple; template <> struct MatcherTuple< ::std::tr1::tuple<> > { typedef ::std::tr1::tuple< > type; }; template struct MatcherTuple< ::std::tr1::tuple > { typedef ::std::tr1::tuple > type; }; template struct MatcherTuple< ::std::tr1::tuple > { typedef ::std::tr1::tuple, Matcher > type; }; template struct MatcherTuple< ::std::tr1::tuple > { typedef ::std::tr1::tuple, Matcher, Matcher > type; }; template struct MatcherTuple< ::std::tr1::tuple > { typedef ::std::tr1::tuple, Matcher, Matcher, Matcher > type; }; template struct MatcherTuple< ::std::tr1::tuple > { typedef ::std::tr1::tuple, Matcher, Matcher, Matcher, Matcher > type; }; template struct MatcherTuple< ::std::tr1::tuple > { typedef ::std::tr1::tuple, Matcher, Matcher, Matcher, Matcher, Matcher > type; }; template struct MatcherTuple< ::std::tr1::tuple > { typedef ::std::tr1::tuple, Matcher, Matcher, Matcher, Matcher, Matcher, Matcher > type; }; template struct MatcherTuple< ::std::tr1::tuple > { typedef ::std::tr1::tuple, Matcher, Matcher, Matcher, Matcher, Matcher, Matcher, Matcher > type; }; template struct MatcherTuple< ::std::tr1::tuple > { typedef ::std::tr1::tuple, Matcher, Matcher, Matcher, Matcher, Matcher, Matcher, Matcher, Matcher > type; }; template struct MatcherTuple< ::std::tr1::tuple > { typedef ::std::tr1::tuple, Matcher, Matcher, Matcher, Matcher, Matcher, Matcher, Matcher, Matcher, Matcher > type; }; // Template struct Function, where F must be a function type, contains // the following typedefs: // // Result: the function's return type. // ArgumentN: the type of the N-th argument, where N starts with 1. // ArgumentTuple: the tuple type consisting of all parameters of F. // ArgumentMatcherTuple: the tuple type consisting of Matchers for all // parameters of F. // MakeResultVoid: the function type obtained by substituting void // for the return type of F. // MakeResultIgnoredValue: // the function type obtained by substituting Something // for the return type of F. template struct Function; template struct Function { typedef R Result; typedef ::std::tr1::tuple<> ArgumentTuple; typedef typename MatcherTuple::type ArgumentMatcherTuple; typedef void MakeResultVoid(); typedef IgnoredValue MakeResultIgnoredValue(); }; template struct Function : Function { typedef A1 Argument1; typedef ::std::tr1::tuple ArgumentTuple; typedef typename MatcherTuple::type ArgumentMatcherTuple; typedef void MakeResultVoid(A1); typedef IgnoredValue MakeResultIgnoredValue(A1); }; template struct Function : Function { typedef A2 Argument2; typedef ::std::tr1::tuple ArgumentTuple; typedef typename MatcherTuple::type ArgumentMatcherTuple; typedef void MakeResultVoid(A1, A2); typedef IgnoredValue MakeResultIgnoredValue(A1, A2); }; template struct Function : Function { typedef A3 Argument3; typedef ::std::tr1::tuple ArgumentTuple; typedef typename MatcherTuple::type ArgumentMatcherTuple; typedef void MakeResultVoid(A1, A2, A3); typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3); }; template struct Function : Function { typedef A4 Argument4; typedef ::std::tr1::tuple ArgumentTuple; typedef typename MatcherTuple::type ArgumentMatcherTuple; typedef void MakeResultVoid(A1, A2, A3, A4); typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3, A4); }; template struct Function : Function { typedef A5 Argument5; typedef ::std::tr1::tuple ArgumentTuple; typedef typename MatcherTuple::type ArgumentMatcherTuple; typedef void MakeResultVoid(A1, A2, A3, A4, A5); typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3, A4, A5); }; template struct Function : Function { typedef A6 Argument6; typedef ::std::tr1::tuple ArgumentTuple; typedef typename MatcherTuple::type ArgumentMatcherTuple; typedef void MakeResultVoid(A1, A2, A3, A4, A5, A6); typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3, A4, A5, A6); }; template struct Function : Function { typedef A7 Argument7; typedef ::std::tr1::tuple ArgumentTuple; typedef typename MatcherTuple::type ArgumentMatcherTuple; typedef void MakeResultVoid(A1, A2, A3, A4, A5, A6, A7); typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3, A4, A5, A6, A7); }; template struct Function : Function { typedef A8 Argument8; typedef ::std::tr1::tuple ArgumentTuple; typedef typename MatcherTuple::type ArgumentMatcherTuple; typedef void MakeResultVoid(A1, A2, A3, A4, A5, A6, A7, A8); typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3, A4, A5, A6, A7, A8); }; template struct Function : Function { typedef A9 Argument9; typedef ::std::tr1::tuple ArgumentTuple; typedef typename MatcherTuple::type ArgumentMatcherTuple; typedef void MakeResultVoid(A1, A2, A3, A4, A5, A6, A7, A8, A9); typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3, A4, A5, A6, A7, A8, A9); }; template struct Function : Function { typedef A10 Argument10; typedef ::std::tr1::tuple ArgumentTuple; typedef typename MatcherTuple::type ArgumentMatcherTuple; typedef void MakeResultVoid(A1, A2, A3, A4, A5, A6, A7, A8, A9, A10); typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3, A4, A5, A6, A7, A8, A9, A10); }; } // namespace internal } // namespace testing #endif // GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_GENERATED_INTERNAL_UTILS_H_ namespace testing { namespace internal { // Converts an identifier name to a space-separated list of lower-case // words. Each maximum substring of the form [A-Za-z][a-z]*|\d+ is // treated as one word. For example, both "FooBar123" and // "foo_bar_123" are converted to "foo bar 123". GTEST_API_ string ConvertIdentifierNameToWords(const char* id_name); // PointeeOf::type is the type of a value pointed to by a // Pointer, which can be either a smart pointer or a raw pointer. The // following default implementation is for the case where Pointer is a // smart pointer. template struct PointeeOf { // Smart pointer classes define type element_type as the type of // their pointees. typedef typename Pointer::element_type type; }; // This specialization is for the raw pointer case. template struct PointeeOf { typedef T type; }; // NOLINT // GetRawPointer(p) returns the raw pointer underlying p when p is a // smart pointer, or returns p itself when p is already a raw pointer. // The following default implementation is for the smart pointer case. template inline const typename Pointer::element_type* GetRawPointer(const Pointer& p) { return p.get(); } // This overloaded version is for the raw pointer case. template inline Element* GetRawPointer(Element* p) { return p; } // This comparator allows linked_ptr to be stored in sets. template struct LinkedPtrLessThan { bool operator()(const ::testing::internal::linked_ptr& lhs, const ::testing::internal::linked_ptr& rhs) const { return lhs.get() < rhs.get(); } }; // Symbian compilation can be done with wchar_t being either a native // type or a typedef. Using Google Mock with OpenC without wchar_t // should require the definition of _STLP_NO_WCHAR_T. // // MSVC treats wchar_t as a native type usually, but treats it as the // same as unsigned short when the compiler option /Zc:wchar_t- is // specified. It defines _NATIVE_WCHAR_T_DEFINED symbol when wchar_t // is a native type. #if (GTEST_OS_SYMBIAN && defined(_STLP_NO_WCHAR_T)) || \ (defined(_MSC_VER) && !defined(_NATIVE_WCHAR_T_DEFINED)) // wchar_t is a typedef. #else # define GMOCK_WCHAR_T_IS_NATIVE_ 1 #endif // signed wchar_t and unsigned wchar_t are NOT in the C++ standard. // Using them is a bad practice and not portable. So DON'T use them. // // Still, Google Mock is designed to work even if the user uses signed // wchar_t or unsigned wchar_t (obviously, assuming the compiler // supports them). // // To gcc, // wchar_t == signed wchar_t != unsigned wchar_t == unsigned int #ifdef __GNUC__ // signed/unsigned wchar_t are valid types. # define GMOCK_HAS_SIGNED_WCHAR_T_ 1 #endif // In what follows, we use the term "kind" to indicate whether a type // is bool, an integer type (excluding bool), a floating-point type, // or none of them. This categorization is useful for determining // when a matcher argument type can be safely converted to another // type in the implementation of SafeMatcherCast. enum TypeKind { kBool, kInteger, kFloatingPoint, kOther }; // KindOf::value is the kind of type T. template struct KindOf { enum { value = kOther }; // The default kind. }; // This macro declares that the kind of 'type' is 'kind'. #define GMOCK_DECLARE_KIND_(type, kind) \ template <> struct KindOf { enum { value = kind }; } GMOCK_DECLARE_KIND_(bool, kBool); // All standard integer types. GMOCK_DECLARE_KIND_(char, kInteger); GMOCK_DECLARE_KIND_(signed char, kInteger); GMOCK_DECLARE_KIND_(unsigned char, kInteger); GMOCK_DECLARE_KIND_(short, kInteger); // NOLINT GMOCK_DECLARE_KIND_(unsigned short, kInteger); // NOLINT GMOCK_DECLARE_KIND_(int, kInteger); GMOCK_DECLARE_KIND_(unsigned int, kInteger); GMOCK_DECLARE_KIND_(long, kInteger); // NOLINT GMOCK_DECLARE_KIND_(unsigned long, kInteger); // NOLINT #if GMOCK_WCHAR_T_IS_NATIVE_ GMOCK_DECLARE_KIND_(wchar_t, kInteger); #endif // Non-standard integer types. GMOCK_DECLARE_KIND_(Int64, kInteger); GMOCK_DECLARE_KIND_(UInt64, kInteger); // All standard floating-point types. GMOCK_DECLARE_KIND_(float, kFloatingPoint); GMOCK_DECLARE_KIND_(double, kFloatingPoint); GMOCK_DECLARE_KIND_(long double, kFloatingPoint); #undef GMOCK_DECLARE_KIND_ // Evaluates to the kind of 'type'. #define GMOCK_KIND_OF_(type) \ static_cast< ::testing::internal::TypeKind>( \ ::testing::internal::KindOf::value) // Evaluates to true iff integer type T is signed. #define GMOCK_IS_SIGNED_(T) (static_cast(-1) < 0) // LosslessArithmeticConvertibleImpl::value // is true iff arithmetic type From can be losslessly converted to // arithmetic type To. // // It's the user's responsibility to ensure that both From and To are // raw (i.e. has no CV modifier, is not a pointer, and is not a // reference) built-in arithmetic types, kFromKind is the kind of // From, and kToKind is the kind of To; the value is // implementation-defined when the above pre-condition is violated. template struct LosslessArithmeticConvertibleImpl : public false_type {}; // Converting bool to bool is lossless. template <> struct LosslessArithmeticConvertibleImpl : public true_type {}; // NOLINT // Converting bool to any integer type is lossless. template struct LosslessArithmeticConvertibleImpl : public true_type {}; // NOLINT // Converting bool to any floating-point type is lossless. template struct LosslessArithmeticConvertibleImpl : public true_type {}; // NOLINT // Converting an integer to bool is lossy. template struct LosslessArithmeticConvertibleImpl : public false_type {}; // NOLINT // Converting an integer to another non-bool integer is lossless iff // the target type's range encloses the source type's range. template struct LosslessArithmeticConvertibleImpl : public bool_constant< // When converting from a smaller size to a larger size, we are // fine as long as we are not converting from signed to unsigned. ((sizeof(From) < sizeof(To)) && (!GMOCK_IS_SIGNED_(From) || GMOCK_IS_SIGNED_(To))) || // When converting between the same size, the signedness must match. ((sizeof(From) == sizeof(To)) && (GMOCK_IS_SIGNED_(From) == GMOCK_IS_SIGNED_(To)))> {}; // NOLINT #undef GMOCK_IS_SIGNED_ // Converting an integer to a floating-point type may be lossy, since // the format of a floating-point number is implementation-defined. template struct LosslessArithmeticConvertibleImpl : public false_type {}; // NOLINT // Converting a floating-point to bool is lossy. template struct LosslessArithmeticConvertibleImpl : public false_type {}; // NOLINT // Converting a floating-point to an integer is lossy. template struct LosslessArithmeticConvertibleImpl : public false_type {}; // NOLINT // Converting a floating-point to another floating-point is lossless // iff the target type is at least as big as the source type. template struct LosslessArithmeticConvertibleImpl< kFloatingPoint, From, kFloatingPoint, To> : public bool_constant {}; // NOLINT // LosslessArithmeticConvertible::value is true iff arithmetic // type From can be losslessly converted to arithmetic type To. // // It's the user's responsibility to ensure that both From and To are // raw (i.e. has no CV modifier, is not a pointer, and is not a // reference) built-in arithmetic types; the value is // implementation-defined when the above pre-condition is violated. template struct LosslessArithmeticConvertible : public LosslessArithmeticConvertibleImpl< GMOCK_KIND_OF_(From), From, GMOCK_KIND_OF_(To), To> {}; // NOLINT // This interface knows how to report a Google Mock failure (either // non-fatal or fatal). class FailureReporterInterface { public: // The type of a failure (either non-fatal or fatal). enum FailureType { kNonfatal, kFatal }; virtual ~FailureReporterInterface() {} // Reports a failure that occurred at the given source file location. virtual void ReportFailure(FailureType type, const char* file, int line, const string& message) = 0; }; // Returns the failure reporter used by Google Mock. GTEST_API_ FailureReporterInterface* GetFailureReporter(); // Asserts that condition is true; aborts the process with the given // message if condition is false. We cannot use LOG(FATAL) or CHECK() // as Google Mock might be used to mock the log sink itself. We // inline this function to prevent it from showing up in the stack // trace. inline void Assert(bool condition, const char* file, int line, const string& msg) { if (!condition) { GetFailureReporter()->ReportFailure(FailureReporterInterface::kFatal, file, line, msg); } } inline void Assert(bool condition, const char* file, int line) { Assert(condition, file, line, "Assertion failed."); } // Verifies that condition is true; generates a non-fatal failure if // condition is false. inline void Expect(bool condition, const char* file, int line, const string& msg) { if (!condition) { GetFailureReporter()->ReportFailure(FailureReporterInterface::kNonfatal, file, line, msg); } } inline void Expect(bool condition, const char* file, int line) { Expect(condition, file, line, "Expectation failed."); } // Severity level of a log. enum LogSeverity { kInfo = 0, kWarning = 1 }; // Valid values for the --gmock_verbose flag. // All logs (informational and warnings) are printed. const char kInfoVerbosity[] = "info"; // Only warnings are printed. const char kWarningVerbosity[] = "warning"; // No logs are printed. const char kErrorVerbosity[] = "error"; // Returns true iff a log with the given severity is visible according // to the --gmock_verbose flag. GTEST_API_ bool LogIsVisible(LogSeverity severity); // Prints the given message to stdout iff 'severity' >= the level // specified by the --gmock_verbose flag. If stack_frames_to_skip >= // 0, also prints the stack trace excluding the top // stack_frames_to_skip frames. In opt mode, any positive // stack_frames_to_skip is treated as 0, since we don't know which // function calls will be inlined by the compiler and need to be // conservative. GTEST_API_ void Log(LogSeverity severity, const string& message, int stack_frames_to_skip); // TODO(wan@google.com): group all type utilities together. // Type traits. // is_reference::value is non-zero iff T is a reference type. template struct is_reference : public false_type {}; template struct is_reference : public true_type {}; // type_equals::value is non-zero iff T1 and T2 are the same type. template struct type_equals : public false_type {}; template struct type_equals : public true_type {}; // remove_reference::type removes the reference from type T, if any. template struct remove_reference { typedef T type; }; // NOLINT template struct remove_reference { typedef T type; }; // NOLINT // DecayArray::type turns an array type U[N] to const U* and preserves // other types. Useful for saving a copy of a function argument. template struct DecayArray { typedef T type; }; // NOLINT template struct DecayArray { typedef const T* type; }; // Sometimes people use arrays whose size is not available at the use site // (e.g. extern const char kNamePrefix[]). This specialization covers that // case. template struct DecayArray { typedef const T* type; }; // Invalid() returns an invalid value of type T. This is useful // when a value of type T is needed for compilation, but the statement // will not really be executed (or we don't care if the statement // crashes). template inline T Invalid() { return const_cast::type&>( *static_cast::type*>(NULL)); } template <> inline void Invalid() {} // Given a raw type (i.e. having no top-level reference or const // modifier) RawContainer that's either an STL-style container or a // native array, class StlContainerView has the // following members: // // - type is a type that provides an STL-style container view to // (i.e. implements the STL container concept for) RawContainer; // - const_reference is a type that provides a reference to a const // RawContainer; // - ConstReference(raw_container) returns a const reference to an STL-style // container view to raw_container, which is a RawContainer. // - Copy(raw_container) returns an STL-style container view of a // copy of raw_container, which is a RawContainer. // // This generic version is used when RawContainer itself is already an // STL-style container. template class StlContainerView { public: typedef RawContainer type; typedef const type& const_reference; static const_reference ConstReference(const RawContainer& container) { // Ensures that RawContainer is not a const type. testing::StaticAssertTypeEq(); return container; } static type Copy(const RawContainer& container) { return container; } }; // This specialization is used when RawContainer is a native array type. template class StlContainerView { public: typedef GTEST_REMOVE_CONST_(Element) RawElement; typedef internal::NativeArray type; // NativeArray can represent a native array either by value or by // reference (selected by a constructor argument), so 'const type' // can be used to reference a const native array. We cannot // 'typedef const type& const_reference' here, as that would mean // ConstReference() has to return a reference to a local variable. typedef const type const_reference; static const_reference ConstReference(const Element (&array)[N]) { // Ensures that Element is not a const type. testing::StaticAssertTypeEq(); #if GTEST_OS_SYMBIAN // The Nokia Symbian compiler confuses itself in template instantiation // for this call without the cast to Element*: // function call '[testing::internal::NativeArray].NativeArray( // {lval} const char *[4], long, testing::internal::RelationToSource)' // does not match // 'testing::internal::NativeArray::NativeArray( // char *const *, unsigned int, testing::internal::RelationToSource)' // (instantiating: 'testing::internal::ContainsMatcherImpl // ::Matches(const char * (&)[4]) const') // (instantiating: 'testing::internal::StlContainerView:: // ConstReference(const char * (&)[4])') // (and though the N parameter type is mismatched in the above explicit // conversion of it doesn't help - only the conversion of the array). return type(const_cast(&array[0]), N, kReference); #else return type(array, N, kReference); #endif // GTEST_OS_SYMBIAN } static type Copy(const Element (&array)[N]) { #if GTEST_OS_SYMBIAN return type(const_cast(&array[0]), N, kCopy); #else return type(array, N, kCopy); #endif // GTEST_OS_SYMBIAN } }; // This specialization is used when RawContainer is a native array // represented as a (pointer, size) tuple. template class StlContainerView< ::std::tr1::tuple > { public: typedef GTEST_REMOVE_CONST_( typename internal::PointeeOf::type) RawElement; typedef internal::NativeArray type; typedef const type const_reference; static const_reference ConstReference( const ::std::tr1::tuple& array) { using ::std::tr1::get; return type(get<0>(array), get<1>(array), kReference); } static type Copy(const ::std::tr1::tuple& array) { using ::std::tr1::get; return type(get<0>(array), get<1>(array), kCopy); } }; // The following specialization prevents the user from instantiating // StlContainer with a reference type. template class StlContainerView; // A type transform to remove constness from the first part of a pair. // Pairs like that are used as the value_type of associative containers, // and this transform produces a similar but assignable pair. template struct RemoveConstFromKey { typedef T type; }; // Partially specialized to remove constness from std::pair. template struct RemoveConstFromKey > { typedef std::pair type; }; // Mapping from booleans to types. Similar to boost::bool_ and // std::integral_constant. template struct BooleanConstant {}; } // namespace internal } // namespace testing #endif // GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_ namespace testing { // To implement an action Foo, define: // 1. a class FooAction that implements the ActionInterface interface, and // 2. a factory function that creates an Action object from a // const FooAction*. // // The two-level delegation design follows that of Matcher, providing // consistency for extension developers. It also eases ownership // management as Action objects can now be copied like plain values. namespace internal { template class ActionAdaptor; // BuiltInDefaultValue::Get() returns the "built-in" default // value for type T, which is NULL when T is a pointer type, 0 when T // is a numeric type, false when T is bool, or "" when T is string or // std::string. For any other type T, this value is undefined and the // function will abort the process. template class BuiltInDefaultValue { public: // This function returns true iff type T has a built-in default value. static bool Exists() { return false; } static T Get() { Assert(false, __FILE__, __LINE__, "Default action undefined for the function return type."); return internal::Invalid(); // The above statement will never be reached, but is required in // order for this function to compile. } }; // This partial specialization says that we use the same built-in // default value for T and const T. template class BuiltInDefaultValue { public: static bool Exists() { return BuiltInDefaultValue::Exists(); } static T Get() { return BuiltInDefaultValue::Get(); } }; // This partial specialization defines the default values for pointer // types. template class BuiltInDefaultValue { public: static bool Exists() { return true; } static T* Get() { return NULL; } }; // The following specializations define the default values for // specific types we care about. #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \ template <> \ class BuiltInDefaultValue { \ public: \ static bool Exists() { return true; } \ static type Get() { return value; } \ } GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT #if GTEST_HAS_GLOBAL_STRING GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::string, ""); #endif // GTEST_HAS_GLOBAL_STRING GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, ""); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0'); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0'); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0'); // There's no need for a default action for signed wchar_t, as that // type is the same as wchar_t for gcc, and invalid for MSVC. // // There's also no need for a default action for unsigned wchar_t, as // that type is the same as unsigned int for gcc, and invalid for // MSVC. #if GMOCK_WCHAR_T_IS_NATIVE_ GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT #endif GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(UInt64, 0); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(Int64, 0); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0); #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_ } // namespace internal // When an unexpected function call is encountered, Google Mock will // let it return a default value if the user has specified one for its // return type, or if the return type has a built-in default value; // otherwise Google Mock won't know what value to return and will have // to abort the process. // // The DefaultValue class allows a user to specify the // default value for a type T that is both copyable and publicly // destructible (i.e. anything that can be used as a function return // type). The usage is: // // // Sets the default value for type T to be foo. // DefaultValue::Set(foo); template class DefaultValue { public: // Sets the default value for type T; requires T to be // copy-constructable and have a public destructor. static void Set(T x) { delete value_; value_ = new T(x); } // Unsets the default value for type T. static void Clear() { delete value_; value_ = NULL; } // Returns true iff the user has set the default value for type T. static bool IsSet() { return value_ != NULL; } // Returns true if T has a default return value set by the user or there // exists a built-in default value. static bool Exists() { return IsSet() || internal::BuiltInDefaultValue::Exists(); } // Returns the default value for type T if the user has set one; // otherwise returns the built-in default value if there is one; // otherwise aborts the process. static T Get() { return value_ == NULL ? internal::BuiltInDefaultValue::Get() : *value_; } private: static const T* value_; }; // This partial specialization allows a user to set default values for // reference types. template class DefaultValue { public: // Sets the default value for type T&. static void Set(T& x) { // NOLINT address_ = &x; } // Unsets the default value for type T&. static void Clear() { address_ = NULL; } // Returns true iff the user has set the default value for type T&. static bool IsSet() { return address_ != NULL; } // Returns true if T has a default return value set by the user or there // exists a built-in default value. static bool Exists() { return IsSet() || internal::BuiltInDefaultValue::Exists(); } // Returns the default value for type T& if the user has set one; // otherwise returns the built-in default value if there is one; // otherwise aborts the process. static T& Get() { return address_ == NULL ? internal::BuiltInDefaultValue::Get() : *address_; } private: static T* address_; }; // This specialization allows DefaultValue::Get() to // compile. template <> class DefaultValue { public: static bool Exists() { return true; } static void Get() {} }; // Points to the user-set default value for type T. template const T* DefaultValue::value_ = NULL; // Points to the user-set default value for type T&. template T* DefaultValue::address_ = NULL; // Implement this interface to define an action for function type F. template class ActionInterface { public: typedef typename internal::Function::Result Result; typedef typename internal::Function::ArgumentTuple ArgumentTuple; ActionInterface() {} virtual ~ActionInterface() {} // Performs the action. This method is not const, as in general an // action can have side effects and be stateful. For example, a // get-the-next-element-from-the-collection action will need to // remember the current element. virtual Result Perform(const ArgumentTuple& args) = 0; private: GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface); }; // An Action is a copyable and IMMUTABLE (except by assignment) // object that represents an action to be taken when a mock function // of type F is called. The implementation of Action is just a // linked_ptr to const ActionInterface, so copying is fairly cheap. // Don't inherit from Action! // // You can view an object implementing ActionInterface as a // concrete action (including its current state), and an Action // object as a handle to it. template class Action { public: typedef typename internal::Function::Result Result; typedef typename internal::Function::ArgumentTuple ArgumentTuple; // Constructs a null Action. Needed for storing Action objects in // STL containers. Action() : impl_(NULL) {} // Constructs an Action from its implementation. A NULL impl is // used to represent the "do-default" action. explicit Action(ActionInterface* impl) : impl_(impl) {} // Copy constructor. Action(const Action& action) : impl_(action.impl_) {} // This constructor allows us to turn an Action object into an // Action, as long as F's arguments can be implicitly converted // to Func's and Func's return type can be implicitly converted to // F's. template explicit Action(const Action& action); // Returns true iff this is the DoDefault() action. bool IsDoDefault() const { return impl_.get() == NULL; } // Performs the action. Note that this method is const even though // the corresponding method in ActionInterface is not. The reason // is that a const Action means that it cannot be re-bound to // another concrete action, not that the concrete action it binds to // cannot change state. (Think of the difference between a const // pointer and a pointer to const.) Result Perform(const ArgumentTuple& args) const { internal::Assert( !IsDoDefault(), __FILE__, __LINE__, "You are using DoDefault() inside a composite action like " "DoAll() or WithArgs(). This is not supported for technical " "reasons. Please instead spell out the default action, or " "assign the default action to an Action variable and use " "the variable in various places."); return impl_->Perform(args); } private: template friend class internal::ActionAdaptor; internal::linked_ptr > impl_; }; // The PolymorphicAction class template makes it easy to implement a // polymorphic action (i.e. an action that can be used in mock // functions of than one type, e.g. Return()). // // To define a polymorphic action, a user first provides a COPYABLE // implementation class that has a Perform() method template: // // class FooAction { // public: // template // Result Perform(const ArgumentTuple& args) const { // // Processes the arguments and returns a result, using // // tr1::get(args) to get the N-th (0-based) argument in the tuple. // } // ... // }; // // Then the user creates the polymorphic action using // MakePolymorphicAction(object) where object has type FooAction. See // the definition of Return(void) and SetArgumentPointee(value) for // complete examples. template class PolymorphicAction { public: explicit PolymorphicAction(const Impl& impl) : impl_(impl) {} template operator Action() const { return Action(new MonomorphicImpl(impl_)); } private: template class MonomorphicImpl : public ActionInterface { public: typedef typename internal::Function::Result Result; typedef typename internal::Function::ArgumentTuple ArgumentTuple; explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} virtual Result Perform(const ArgumentTuple& args) { return impl_.template Perform(args); } private: Impl impl_; GTEST_DISALLOW_ASSIGN_(MonomorphicImpl); }; Impl impl_; GTEST_DISALLOW_ASSIGN_(PolymorphicAction); }; // Creates an Action from its implementation and returns it. The // created Action object owns the implementation. template Action MakeAction(ActionInterface* impl) { return Action(impl); } // Creates a polymorphic action from its implementation. This is // easier to use than the PolymorphicAction constructor as it // doesn't require you to explicitly write the template argument, e.g. // // MakePolymorphicAction(foo); // vs // PolymorphicAction(foo); template inline PolymorphicAction MakePolymorphicAction(const Impl& impl) { return PolymorphicAction(impl); } namespace internal { // Allows an Action object to pose as an Action, as long as F2 // and F1 are compatible. template class ActionAdaptor : public ActionInterface { public: typedef typename internal::Function::Result Result; typedef typename internal::Function::ArgumentTuple ArgumentTuple; explicit ActionAdaptor(const Action& from) : impl_(from.impl_) {} virtual Result Perform(const ArgumentTuple& args) { return impl_->Perform(args); } private: const internal::linked_ptr > impl_; GTEST_DISALLOW_ASSIGN_(ActionAdaptor); }; // Implements the polymorphic Return(x) action, which can be used in // any function that returns the type of x, regardless of the argument // types. // // Note: The value passed into Return must be converted into // Function::Result when this action is cast to Action rather than // when that action is performed. This is important in scenarios like // // MOCK_METHOD1(Method, T(U)); // ... // { // Foo foo; // X x(&foo); // EXPECT_CALL(mock, Method(_)).WillOnce(Return(x)); // } // // In the example above the variable x holds reference to foo which leaves // scope and gets destroyed. If copying X just copies a reference to foo, // that copy will be left with a hanging reference. If conversion to T // makes a copy of foo, the above code is safe. To support that scenario, we // need to make sure that the type conversion happens inside the EXPECT_CALL // statement, and conversion of the result of Return to Action is a // good place for that. // template class ReturnAction { public: // Constructs a ReturnAction object from the value to be returned. // 'value' is passed by value instead of by const reference in order // to allow Return("string literal") to compile. explicit ReturnAction(R value) : value_(value) {} // This template type conversion operator allows Return(x) to be // used in ANY function that returns x's type. template operator Action() const { // Assert statement belongs here because this is the best place to verify // conditions on F. It produces the clearest error messages // in most compilers. // Impl really belongs in this scope as a local class but can't // because MSVC produces duplicate symbols in different translation units // in this case. Until MS fixes that bug we put Impl into the class scope // and put the typedef both here (for use in assert statement) and // in the Impl class. But both definitions must be the same. typedef typename Function::Result Result; GTEST_COMPILE_ASSERT_( !internal::is_reference::value, use_ReturnRef_instead_of_Return_to_return_a_reference); return Action(new Impl(value_)); } private: // Implements the Return(x) action for a particular function type F. template class Impl : public ActionInterface { public: typedef typename Function::Result Result; typedef typename Function::ArgumentTuple ArgumentTuple; // The implicit cast is necessary when Result has more than one // single-argument constructor (e.g. Result is std::vector) and R // has a type conversion operator template. In that case, value_(value) // won't compile as the compiler doesn't known which constructor of // Result to call. ImplicitCast_ forces the compiler to convert R to // Result without considering explicit constructors, thus resolving the // ambiguity. value_ is then initialized using its copy constructor. explicit Impl(R value) : value_(::testing::internal::ImplicitCast_(value)) {} virtual Result Perform(const ArgumentTuple&) { return value_; } private: GTEST_COMPILE_ASSERT_(!internal::is_reference::value, Result_cannot_be_a_reference_type); Result value_; GTEST_DISALLOW_ASSIGN_(Impl); }; R value_; GTEST_DISALLOW_ASSIGN_(ReturnAction); }; // Implements the ReturnNull() action. class ReturnNullAction { public: // Allows ReturnNull() to be used in any pointer-returning function. template static Result Perform(const ArgumentTuple&) { GTEST_COMPILE_ASSERT_(internal::is_pointer::value, ReturnNull_can_be_used_to_return_a_pointer_only); return NULL; } }; // Implements the Return() action. class ReturnVoidAction { public: // Allows Return() to be used in any void-returning function. template static void Perform(const ArgumentTuple&) { CompileAssertTypesEqual(); } }; // Implements the polymorphic ReturnRef(x) action, which can be used // in any function that returns a reference to the type of x, // regardless of the argument types. template class ReturnRefAction { public: // Constructs a ReturnRefAction object from the reference to be returned. explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT // This template type conversion operator allows ReturnRef(x) to be // used in ANY function that returns a reference to x's type. template operator Action() const { typedef typename Function::Result Result; // Asserts that the function return type is a reference. This // catches the user error of using ReturnRef(x) when Return(x) // should be used, and generates some helpful error message. GTEST_COMPILE_ASSERT_(internal::is_reference::value, use_Return_instead_of_ReturnRef_to_return_a_value); return Action(new Impl(ref_)); } private: // Implements the ReturnRef(x) action for a particular function type F. template class Impl : public ActionInterface { public: typedef typename Function::Result Result; typedef typename Function::ArgumentTuple ArgumentTuple; explicit Impl(T& ref) : ref_(ref) {} // NOLINT virtual Result Perform(const ArgumentTuple&) { return ref_; } private: T& ref_; GTEST_DISALLOW_ASSIGN_(Impl); }; T& ref_; GTEST_DISALLOW_ASSIGN_(ReturnRefAction); }; // Implements the polymorphic ReturnRefOfCopy(x) action, which can be // used in any function that returns a reference to the type of x, // regardless of the argument types. template class ReturnRefOfCopyAction { public: // Constructs a ReturnRefOfCopyAction object from the reference to // be returned. explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT // This template type conversion operator allows ReturnRefOfCopy(x) to be // used in ANY function that returns a reference to x's type. template operator Action() const { typedef typename Function::Result Result; // Asserts that the function return type is a reference. This // catches the user error of using ReturnRefOfCopy(x) when Return(x) // should be used, and generates some helpful error message. GTEST_COMPILE_ASSERT_( internal::is_reference::value, use_Return_instead_of_ReturnRefOfCopy_to_return_a_value); return Action(new Impl(value_)); } private: // Implements the ReturnRefOfCopy(x) action for a particular function type F. template class Impl : public ActionInterface { public: typedef typename Function::Result Result; typedef typename Function::ArgumentTuple ArgumentTuple; explicit Impl(const T& value) : value_(value) {} // NOLINT virtual Result Perform(const ArgumentTuple&) { return value_; } private: T value_; GTEST_DISALLOW_ASSIGN_(Impl); }; const T value_; GTEST_DISALLOW_ASSIGN_(ReturnRefOfCopyAction); }; // Implements the polymorphic DoDefault() action. class DoDefaultAction { public: // This template type conversion operator allows DoDefault() to be // used in any function. template operator Action() const { return Action(NULL); } }; // Implements the Assign action to set a given pointer referent to a // particular value. template class AssignAction { public: AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {} template void Perform(const ArgumentTuple& /* args */) const { *ptr_ = value_; } private: T1* const ptr_; const T2 value_; GTEST_DISALLOW_ASSIGN_(AssignAction); }; #if !GTEST_OS_WINDOWS_MOBILE // Implements the SetErrnoAndReturn action to simulate return from // various system calls and libc functions. template class SetErrnoAndReturnAction { public: SetErrnoAndReturnAction(int errno_value, T result) : errno_(errno_value), result_(result) {} template Result Perform(const ArgumentTuple& /* args */) const { errno = errno_; return result_; } private: const int errno_; const T result_; GTEST_DISALLOW_ASSIGN_(SetErrnoAndReturnAction); }; #endif // !GTEST_OS_WINDOWS_MOBILE // Implements the SetArgumentPointee(x) action for any function // whose N-th argument (0-based) is a pointer to x's type. The // template parameter kIsProto is true iff type A is ProtocolMessage, // proto2::Message, or a sub-class of those. template class SetArgumentPointeeAction { public: // Constructs an action that sets the variable pointed to by the // N-th function argument to 'value'. explicit SetArgumentPointeeAction(const A& value) : value_(value) {} template void Perform(const ArgumentTuple& args) const { CompileAssertTypesEqual(); *::std::tr1::get(args) = value_; } private: const A value_; GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction); }; template class SetArgumentPointeeAction { public: // Constructs an action that sets the variable pointed to by the // N-th function argument to 'proto'. Both ProtocolMessage and // proto2::Message have the CopyFrom() method, so the same // implementation works for both. explicit SetArgumentPointeeAction(const Proto& proto) : proto_(new Proto) { proto_->CopyFrom(proto); } template void Perform(const ArgumentTuple& args) const { CompileAssertTypesEqual(); ::std::tr1::get(args)->CopyFrom(*proto_); } private: const internal::linked_ptr proto_; GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction); }; // Implements the InvokeWithoutArgs(f) action. The template argument // FunctionImpl is the implementation type of f, which can be either a // function pointer or a functor. InvokeWithoutArgs(f) can be used as an // Action as long as f's type is compatible with F (i.e. f can be // assigned to a tr1::function). template class InvokeWithoutArgsAction { public: // The c'tor makes a copy of function_impl (either a function // pointer or a functor). explicit InvokeWithoutArgsAction(FunctionImpl function_impl) : function_impl_(function_impl) {} // Allows InvokeWithoutArgs(f) to be used as any action whose type is // compatible with f. template Result Perform(const ArgumentTuple&) { return function_impl_(); } private: FunctionImpl function_impl_; GTEST_DISALLOW_ASSIGN_(InvokeWithoutArgsAction); }; // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action. template class InvokeMethodWithoutArgsAction { public: InvokeMethodWithoutArgsAction(Class* obj_ptr, MethodPtr method_ptr) : obj_ptr_(obj_ptr), method_ptr_(method_ptr) {} template Result Perform(const ArgumentTuple&) const { return (obj_ptr_->*method_ptr_)(); } private: Class* const obj_ptr_; const MethodPtr method_ptr_; GTEST_DISALLOW_ASSIGN_(InvokeMethodWithoutArgsAction); }; // Implements the IgnoreResult(action) action. template class IgnoreResultAction { public: explicit IgnoreResultAction(const A& action) : action_(action) {} template operator Action() const { // Assert statement belongs here because this is the best place to verify // conditions on F. It produces the clearest error messages // in most compilers. // Impl really belongs in this scope as a local class but can't // because MSVC produces duplicate symbols in different translation units // in this case. Until MS fixes that bug we put Impl into the class scope // and put the typedef both here (for use in assert statement) and // in the Impl class. But both definitions must be the same. typedef typename internal::Function::Result Result; // Asserts at compile time that F returns void. CompileAssertTypesEqual(); return Action(new Impl(action_)); } private: template class Impl : public ActionInterface { public: typedef typename internal::Function::Result Result; typedef typename internal::Function::ArgumentTuple ArgumentTuple; explicit Impl(const A& action) : action_(action) {} virtual void Perform(const ArgumentTuple& args) { // Performs the action and ignores its result. action_.Perform(args); } private: // Type OriginalFunction is the same as F except that its return // type is IgnoredValue. typedef typename internal::Function::MakeResultIgnoredValue OriginalFunction; const Action action_; GTEST_DISALLOW_ASSIGN_(Impl); }; const A action_; GTEST_DISALLOW_ASSIGN_(IgnoreResultAction); }; // A ReferenceWrapper object represents a reference to type T, // which can be either const or not. It can be explicitly converted // from, and implicitly converted to, a T&. Unlike a reference, // ReferenceWrapper can be copied and can survive template type // inference. This is used to support by-reference arguments in the // InvokeArgument(...) action. The idea was from "reference // wrappers" in tr1, which we don't have in our source tree yet. template class ReferenceWrapper { public: // Constructs a ReferenceWrapper object from a T&. explicit ReferenceWrapper(T& l_value) : pointer_(&l_value) {} // NOLINT // Allows a ReferenceWrapper object to be implicitly converted to // a T&. operator T&() const { return *pointer_; } private: T* pointer_; }; // Allows the expression ByRef(x) to be printed as a reference to x. template void PrintTo(const ReferenceWrapper& ref, ::std::ostream* os) { T& value = ref; UniversalPrinter::Print(value, os); } // Does two actions sequentially. Used for implementing the DoAll(a1, // a2, ...) action. template class DoBothAction { public: DoBothAction(Action1 action1, Action2 action2) : action1_(action1), action2_(action2) {} // This template type conversion operator allows DoAll(a1, ..., a_n) // to be used in ANY function of compatible type. template operator Action() const { return Action(new Impl(action1_, action2_)); } private: // Implements the DoAll(...) action for a particular function type F. template class Impl : public ActionInterface { public: typedef typename Function::Result Result; typedef typename Function::ArgumentTuple ArgumentTuple; typedef typename Function::MakeResultVoid VoidResult; Impl(const Action& action1, const Action& action2) : action1_(action1), action2_(action2) {} virtual Result Perform(const ArgumentTuple& args) { action1_.Perform(args); return action2_.Perform(args); } private: const Action action1_; const Action action2_; GTEST_DISALLOW_ASSIGN_(Impl); }; Action1 action1_; Action2 action2_; GTEST_DISALLOW_ASSIGN_(DoBothAction); }; } // namespace internal // An Unused object can be implicitly constructed from ANY value. // This is handy when defining actions that ignore some or all of the // mock function arguments. For example, given // // MOCK_METHOD3(Foo, double(const string& label, double x, double y)); // MOCK_METHOD3(Bar, double(int index, double x, double y)); // // instead of // // double DistanceToOriginWithLabel(const string& label, double x, double y) { // return sqrt(x*x + y*y); // } // double DistanceToOriginWithIndex(int index, double x, double y) { // return sqrt(x*x + y*y); // } // ... // EXEPCT_CALL(mock, Foo("abc", _, _)) // .WillOnce(Invoke(DistanceToOriginWithLabel)); // EXEPCT_CALL(mock, Bar(5, _, _)) // .WillOnce(Invoke(DistanceToOriginWithIndex)); // // you could write // // // We can declare any uninteresting argument as Unused. // double DistanceToOrigin(Unused, double x, double y) { // return sqrt(x*x + y*y); // } // ... // EXEPCT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin)); // EXEPCT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin)); typedef internal::IgnoredValue Unused; // This constructor allows us to turn an Action object into an // Action, as long as To's arguments can be implicitly converted // to From's and From's return type cann be implicitly converted to // To's. template template Action::Action(const Action& from) : impl_(new internal::ActionAdaptor(from)) {} // Creates an action that returns 'value'. 'value' is passed by value // instead of const reference - otherwise Return("string literal") // will trigger a compiler error about using array as initializer. template internal::ReturnAction Return(R value) { return internal::ReturnAction(value); } // Creates an action that returns NULL. inline PolymorphicAction ReturnNull() { return MakePolymorphicAction(internal::ReturnNullAction()); } // Creates an action that returns from a void function. inline PolymorphicAction Return() { return MakePolymorphicAction(internal::ReturnVoidAction()); } // Creates an action that returns the reference to a variable. template inline internal::ReturnRefAction ReturnRef(R& x) { // NOLINT return internal::ReturnRefAction(x); } // Creates an action that returns the reference to a copy of the // argument. The copy is created when the action is constructed and // lives as long as the action. template inline internal::ReturnRefOfCopyAction ReturnRefOfCopy(const R& x) { return internal::ReturnRefOfCopyAction(x); } // Creates an action that does the default action for the give mock function. inline internal::DoDefaultAction DoDefault() { return internal::DoDefaultAction(); } // Creates an action that sets the variable pointed by the N-th // (0-based) function argument to 'value'. template PolymorphicAction< internal::SetArgumentPointeeAction< N, T, internal::IsAProtocolMessage::value> > SetArgPointee(const T& x) { return MakePolymorphicAction(internal::SetArgumentPointeeAction< N, T, internal::IsAProtocolMessage::value>(x)); } #if !((GTEST_GCC_VER_ && GTEST_GCC_VER_ < 40000) || GTEST_OS_SYMBIAN) // This overload allows SetArgPointee() to accept a string literal. // GCC prior to the version 4.0 and Symbian C++ compiler cannot distinguish // this overload from the templated version and emit a compile error. template PolymorphicAction< internal::SetArgumentPointeeAction > SetArgPointee(const char* p) { return MakePolymorphicAction(internal::SetArgumentPointeeAction< N, const char*, false>(p)); } template PolymorphicAction< internal::SetArgumentPointeeAction > SetArgPointee(const wchar_t* p) { return MakePolymorphicAction(internal::SetArgumentPointeeAction< N, const wchar_t*, false>(p)); } #endif // The following version is DEPRECATED. template PolymorphicAction< internal::SetArgumentPointeeAction< N, T, internal::IsAProtocolMessage::value> > SetArgumentPointee(const T& x) { return MakePolymorphicAction(internal::SetArgumentPointeeAction< N, T, internal::IsAProtocolMessage::value>(x)); } // Creates an action that sets a pointer referent to a given value. template PolymorphicAction > Assign(T1* ptr, T2 val) { return MakePolymorphicAction(internal::AssignAction(ptr, val)); } #if !GTEST_OS_WINDOWS_MOBILE // Creates an action that sets errno and returns the appropriate error. template PolymorphicAction > SetErrnoAndReturn(int errval, T result) { return MakePolymorphicAction( internal::SetErrnoAndReturnAction(errval, result)); } #endif // !GTEST_OS_WINDOWS_MOBILE // Various overloads for InvokeWithoutArgs(). // Creates an action that invokes 'function_impl' with no argument. template PolymorphicAction > InvokeWithoutArgs(FunctionImpl function_impl) { return MakePolymorphicAction( internal::InvokeWithoutArgsAction(function_impl)); } // Creates an action that invokes the given method on the given object // with no argument. template PolymorphicAction > InvokeWithoutArgs(Class* obj_ptr, MethodPtr method_ptr) { return MakePolymorphicAction( internal::InvokeMethodWithoutArgsAction( obj_ptr, method_ptr)); } // Creates an action that performs an_action and throws away its // result. In other words, it changes the return type of an_action to // void. an_action MUST NOT return void, or the code won't compile. template inline internal::IgnoreResultAction IgnoreResult(const A& an_action) { return internal::IgnoreResultAction(an_action); } // Creates a reference wrapper for the given L-value. If necessary, // you can explicitly specify the type of the reference. For example, // suppose 'derived' is an object of type Derived, ByRef(derived) // would wrap a Derived&. If you want to wrap a const Base& instead, // where Base is a base class of Derived, just write: // // ByRef(derived) template inline internal::ReferenceWrapper ByRef(T& l_value) { // NOLINT return internal::ReferenceWrapper(l_value); } } // namespace testing #endif // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file implements some commonly used cardinalities. More // cardinalities can be defined by the user implementing the // CardinalityInterface interface if necessary. #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_ #define GMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_ #include #include // NOLINT namespace testing { // To implement a cardinality Foo, define: // 1. a class FooCardinality that implements the // CardinalityInterface interface, and // 2. a factory function that creates a Cardinality object from a // const FooCardinality*. // // The two-level delegation design follows that of Matcher, providing // consistency for extension developers. It also eases ownership // management as Cardinality objects can now be copied like plain values. // The implementation of a cardinality. class CardinalityInterface { public: virtual ~CardinalityInterface() {} // Conservative estimate on the lower/upper bound of the number of // calls allowed. virtual int ConservativeLowerBound() const { return 0; } virtual int ConservativeUpperBound() const { return INT_MAX; } // Returns true iff call_count calls will satisfy this cardinality. virtual bool IsSatisfiedByCallCount(int call_count) const = 0; // Returns true iff call_count calls will saturate this cardinality. virtual bool IsSaturatedByCallCount(int call_count) const = 0; // Describes self to an ostream. virtual void DescribeTo(::std::ostream* os) const = 0; }; // A Cardinality is a copyable and IMMUTABLE (except by assignment) // object that specifies how many times a mock function is expected to // be called. The implementation of Cardinality is just a linked_ptr // to const CardinalityInterface, so copying is fairly cheap. // Don't inherit from Cardinality! class GTEST_API_ Cardinality { public: // Constructs a null cardinality. Needed for storing Cardinality // objects in STL containers. Cardinality() {} // Constructs a Cardinality from its implementation. explicit Cardinality(const CardinalityInterface* impl) : impl_(impl) {} // Conservative estimate on the lower/upper bound of the number of // calls allowed. int ConservativeLowerBound() const { return impl_->ConservativeLowerBound(); } int ConservativeUpperBound() const { return impl_->ConservativeUpperBound(); } // Returns true iff call_count calls will satisfy this cardinality. bool IsSatisfiedByCallCount(int call_count) const { return impl_->IsSatisfiedByCallCount(call_count); } // Returns true iff call_count calls will saturate this cardinality. bool IsSaturatedByCallCount(int call_count) const { return impl_->IsSaturatedByCallCount(call_count); } // Returns true iff call_count calls will over-saturate this // cardinality, i.e. exceed the maximum number of allowed calls. bool IsOverSaturatedByCallCount(int call_count) const { return impl_->IsSaturatedByCallCount(call_count) && !impl_->IsSatisfiedByCallCount(call_count); } // Describes self to an ostream void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); } // Describes the given actual call count to an ostream. static void DescribeActualCallCountTo(int actual_call_count, ::std::ostream* os); private: internal::linked_ptr impl_; }; // Creates a cardinality that allows at least n calls. GTEST_API_ Cardinality AtLeast(int n); // Creates a cardinality that allows at most n calls. GTEST_API_ Cardinality AtMost(int n); // Creates a cardinality that allows any number of calls. GTEST_API_ Cardinality AnyNumber(); // Creates a cardinality that allows between min and max calls. GTEST_API_ Cardinality Between(int min, int max); // Creates a cardinality that allows exactly n calls. GTEST_API_ Cardinality Exactly(int n); // Creates a cardinality from its implementation. inline Cardinality MakeCardinality(const CardinalityInterface* c) { return Cardinality(c); } } // namespace testing #endif // GMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_ // This file was GENERATED by a script. DO NOT EDIT BY HAND!!! // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file implements some commonly used variadic actions. #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_ #define GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_ namespace testing { namespace internal { // InvokeHelper knows how to unpack an N-tuple and invoke an N-ary // function or method with the unpacked values, where F is a function // type that takes N arguments. template class InvokeHelper; template class InvokeHelper > { public: template static R Invoke(Function function, const ::std::tr1::tuple<>&) { return function(); } template static R InvokeMethod(Class* obj_ptr, MethodPtr method_ptr, const ::std::tr1::tuple<>&) { return (obj_ptr->*method_ptr)(); } }; template class InvokeHelper > { public: template static R Invoke(Function function, const ::std::tr1::tuple& args) { using ::std::tr1::get; return function(get<0>(args)); } template static R InvokeMethod(Class* obj_ptr, MethodPtr method_ptr, const ::std::tr1::tuple& args) { using ::std::tr1::get; return (obj_ptr->*method_ptr)(get<0>(args)); } }; template class InvokeHelper > { public: template static R Invoke(Function function, const ::std::tr1::tuple& args) { using ::std::tr1::get; return function(get<0>(args), get<1>(args)); } template static R InvokeMethod(Class* obj_ptr, MethodPtr method_ptr, const ::std::tr1::tuple& args) { using ::std::tr1::get; return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args)); } }; template class InvokeHelper > { public: template static R Invoke(Function function, const ::std::tr1::tuple& args) { using ::std::tr1::get; return function(get<0>(args), get<1>(args), get<2>(args)); } template static R InvokeMethod(Class* obj_ptr, MethodPtr method_ptr, const ::std::tr1::tuple& args) { using ::std::tr1::get; return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args)); } }; template class InvokeHelper > { public: template static R Invoke(Function function, const ::std::tr1::tuple& args) { using ::std::tr1::get; return function(get<0>(args), get<1>(args), get<2>(args), get<3>(args)); } template static R InvokeMethod(Class* obj_ptr, MethodPtr method_ptr, const ::std::tr1::tuple& args) { using ::std::tr1::get; return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args), get<3>(args)); } }; template class InvokeHelper > { public: template static R Invoke(Function function, const ::std::tr1::tuple& args) { using ::std::tr1::get; return function(get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args)); } template static R InvokeMethod(Class* obj_ptr, MethodPtr method_ptr, const ::std::tr1::tuple& args) { using ::std::tr1::get; return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args)); } }; template class InvokeHelper > { public: template static R Invoke(Function function, const ::std::tr1::tuple& args) { using ::std::tr1::get; return function(get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args)); } template static R InvokeMethod(Class* obj_ptr, MethodPtr method_ptr, const ::std::tr1::tuple& args) { using ::std::tr1::get; return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args)); } }; template class InvokeHelper > { public: template static R Invoke(Function function, const ::std::tr1::tuple& args) { using ::std::tr1::get; return function(get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), get<6>(args)); } template static R InvokeMethod(Class* obj_ptr, MethodPtr method_ptr, const ::std::tr1::tuple& args) { using ::std::tr1::get; return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), get<6>(args)); } }; template class InvokeHelper > { public: template static R Invoke(Function function, const ::std::tr1::tuple& args) { using ::std::tr1::get; return function(get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), get<6>(args), get<7>(args)); } template static R InvokeMethod(Class* obj_ptr, MethodPtr method_ptr, const ::std::tr1::tuple& args) { using ::std::tr1::get; return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), get<6>(args), get<7>(args)); } }; template class InvokeHelper > { public: template static R Invoke(Function function, const ::std::tr1::tuple& args) { using ::std::tr1::get; return function(get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), get<6>(args), get<7>(args), get<8>(args)); } template static R InvokeMethod(Class* obj_ptr, MethodPtr method_ptr, const ::std::tr1::tuple& args) { using ::std::tr1::get; return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), get<6>(args), get<7>(args), get<8>(args)); } }; template class InvokeHelper > { public: template static R Invoke(Function function, const ::std::tr1::tuple& args) { using ::std::tr1::get; return function(get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), get<6>(args), get<7>(args), get<8>(args), get<9>(args)); } template static R InvokeMethod(Class* obj_ptr, MethodPtr method_ptr, const ::std::tr1::tuple& args) { using ::std::tr1::get; return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), get<6>(args), get<7>(args), get<8>(args), get<9>(args)); } }; // CallableHelper has static methods for invoking "callables", // i.e. function pointers and functors. It uses overloading to // provide a uniform interface for invoking different kinds of // callables. In particular, you can use: // // CallableHelper::Call(callable, a1, a2, ..., an) // // to invoke an n-ary callable, where R is its return type. If an // argument, say a2, needs to be passed by reference, you should write // ByRef(a2) instead of a2 in the above expression. template class CallableHelper { public: // Calls a nullary callable. template static R Call(Function function) { return function(); } // Calls a unary callable. // We deliberately pass a1 by value instead of const reference here // in case it is a C-string literal. If we had declared the // parameter as 'const A1& a1' and write Call(function, "Hi"), the // compiler would've thought A1 is 'char[3]', which causes trouble // when you need to copy a value of type A1. By declaring the // parameter as 'A1 a1', the compiler will correctly infer that A1 // is 'const char*' when it sees Call(function, "Hi"). // // Since this function is defined inline, the compiler can get rid // of the copying of the arguments. Therefore the performance won't // be hurt. template static R Call(Function function, A1 a1) { return function(a1); } // Calls a binary callable. template static R Call(Function function, A1 a1, A2 a2) { return function(a1, a2); } // Calls a ternary callable. template static R Call(Function function, A1 a1, A2 a2, A3 a3) { return function(a1, a2, a3); } // Calls a 4-ary callable. template static R Call(Function function, A1 a1, A2 a2, A3 a3, A4 a4) { return function(a1, a2, a3, a4); } // Calls a 5-ary callable. template static R Call(Function function, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5) { return function(a1, a2, a3, a4, a5); } // Calls a 6-ary callable. template static R Call(Function function, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6) { return function(a1, a2, a3, a4, a5, a6); } // Calls a 7-ary callable. template static R Call(Function function, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7) { return function(a1, a2, a3, a4, a5, a6, a7); } // Calls a 8-ary callable. template static R Call(Function function, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8) { return function(a1, a2, a3, a4, a5, a6, a7, a8); } // Calls a 9-ary callable. template static R Call(Function function, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8, A9 a9) { return function(a1, a2, a3, a4, a5, a6, a7, a8, a9); } // Calls a 10-ary callable. template static R Call(Function function, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8, A9 a9, A10 a10) { return function(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10); } }; // class CallableHelper // An INTERNAL macro for extracting the type of a tuple field. It's // subject to change without notice - DO NOT USE IN USER CODE! #define GMOCK_FIELD_(Tuple, N) \ typename ::std::tr1::tuple_element::type // SelectArgs::type is the // type of an n-ary function whose i-th (1-based) argument type is the // k{i}-th (0-based) field of ArgumentTuple, which must be a tuple // type, and whose return type is Result. For example, // SelectArgs, 0, 3>::type // is int(bool, long). // // SelectArgs::Select(args) // returns the selected fields (k1, k2, ..., k_n) of args as a tuple. // For example, // SelectArgs, 2, 0>::Select( // ::std::tr1::make_tuple(true, 'a', 2.5)) // returns ::std::tr1::tuple (2.5, true). // // The numbers in list k1, k2, ..., k_n must be >= 0, where n can be // in the range [0, 10]. Duplicates are allowed and they don't have // to be in an ascending or descending order. template class SelectArgs { public: typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1), GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3), GMOCK_FIELD_(ArgumentTuple, k4), GMOCK_FIELD_(ArgumentTuple, k5), GMOCK_FIELD_(ArgumentTuple, k6), GMOCK_FIELD_(ArgumentTuple, k7), GMOCK_FIELD_(ArgumentTuple, k8), GMOCK_FIELD_(ArgumentTuple, k9), GMOCK_FIELD_(ArgumentTuple, k10)); typedef typename Function::ArgumentTuple SelectedArgs; static SelectedArgs Select(const ArgumentTuple& args) { using ::std::tr1::get; return SelectedArgs(get(args), get(args), get(args), get(args), get(args), get(args), get(args), get(args), get(args), get(args)); } }; template class SelectArgs { public: typedef Result type(); typedef typename Function::ArgumentTuple SelectedArgs; static SelectedArgs Select(const ArgumentTuple& /* args */) { using ::std::tr1::get; return SelectedArgs(); } }; template class SelectArgs { public: typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1)); typedef typename Function::ArgumentTuple SelectedArgs; static SelectedArgs Select(const ArgumentTuple& args) { using ::std::tr1::get; return SelectedArgs(get(args)); } }; template class SelectArgs { public: typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1), GMOCK_FIELD_(ArgumentTuple, k2)); typedef typename Function::ArgumentTuple SelectedArgs; static SelectedArgs Select(const ArgumentTuple& args) { using ::std::tr1::get; return SelectedArgs(get(args), get(args)); } }; template class SelectArgs { public: typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1), GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3)); typedef typename Function::ArgumentTuple SelectedArgs; static SelectedArgs Select(const ArgumentTuple& args) { using ::std::tr1::get; return SelectedArgs(get(args), get(args), get(args)); } }; template class SelectArgs { public: typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1), GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3), GMOCK_FIELD_(ArgumentTuple, k4)); typedef typename Function::ArgumentTuple SelectedArgs; static SelectedArgs Select(const ArgumentTuple& args) { using ::std::tr1::get; return SelectedArgs(get(args), get(args), get(args), get(args)); } }; template class SelectArgs { public: typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1), GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3), GMOCK_FIELD_(ArgumentTuple, k4), GMOCK_FIELD_(ArgumentTuple, k5)); typedef typename Function::ArgumentTuple SelectedArgs; static SelectedArgs Select(const ArgumentTuple& args) { using ::std::tr1::get; return SelectedArgs(get(args), get(args), get(args), get(args), get(args)); } }; template class SelectArgs { public: typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1), GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3), GMOCK_FIELD_(ArgumentTuple, k4), GMOCK_FIELD_(ArgumentTuple, k5), GMOCK_FIELD_(ArgumentTuple, k6)); typedef typename Function::ArgumentTuple SelectedArgs; static SelectedArgs Select(const ArgumentTuple& args) { using ::std::tr1::get; return SelectedArgs(get(args), get(args), get(args), get(args), get(args), get(args)); } }; template class SelectArgs { public: typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1), GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3), GMOCK_FIELD_(ArgumentTuple, k4), GMOCK_FIELD_(ArgumentTuple, k5), GMOCK_FIELD_(ArgumentTuple, k6), GMOCK_FIELD_(ArgumentTuple, k7)); typedef typename Function::ArgumentTuple SelectedArgs; static SelectedArgs Select(const ArgumentTuple& args) { using ::std::tr1::get; return SelectedArgs(get(args), get(args), get(args), get(args), get(args), get(args), get(args)); } }; template class SelectArgs { public: typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1), GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3), GMOCK_FIELD_(ArgumentTuple, k4), GMOCK_FIELD_(ArgumentTuple, k5), GMOCK_FIELD_(ArgumentTuple, k6), GMOCK_FIELD_(ArgumentTuple, k7), GMOCK_FIELD_(ArgumentTuple, k8)); typedef typename Function::ArgumentTuple SelectedArgs; static SelectedArgs Select(const ArgumentTuple& args) { using ::std::tr1::get; return SelectedArgs(get(args), get(args), get(args), get(args), get(args), get(args), get(args), get(args)); } }; template class SelectArgs { public: typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1), GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3), GMOCK_FIELD_(ArgumentTuple, k4), GMOCK_FIELD_(ArgumentTuple, k5), GMOCK_FIELD_(ArgumentTuple, k6), GMOCK_FIELD_(ArgumentTuple, k7), GMOCK_FIELD_(ArgumentTuple, k8), GMOCK_FIELD_(ArgumentTuple, k9)); typedef typename Function::ArgumentTuple SelectedArgs; static SelectedArgs Select(const ArgumentTuple& args) { using ::std::tr1::get; return SelectedArgs(get(args), get(args), get(args), get(args), get(args), get(args), get(args), get(args), get(args)); } }; #undef GMOCK_FIELD_ // Implements the WithArgs action. template class WithArgsAction { public: explicit WithArgsAction(const InnerAction& action) : action_(action) {} template operator Action() const { return MakeAction(new Impl(action_)); } private: template class Impl : public ActionInterface { public: typedef typename Function::Result Result; typedef typename Function::ArgumentTuple ArgumentTuple; explicit Impl(const InnerAction& action) : action_(action) {} virtual Result Perform(const ArgumentTuple& args) { return action_.Perform(SelectArgs::Select(args)); } private: typedef typename SelectArgs::type InnerFunctionType; Action action_; }; const InnerAction action_; GTEST_DISALLOW_ASSIGN_(WithArgsAction); }; // A macro from the ACTION* family (defined later in this file) // defines an action that can be used in a mock function. Typically, // these actions only care about a subset of the arguments of the mock // function. For example, if such an action only uses the second // argument, it can be used in any mock function that takes >= 2 // arguments where the type of the second argument is compatible. // // Therefore, the action implementation must be prepared to take more // arguments than it needs. The ExcessiveArg type is used to // represent those excessive arguments. In order to keep the compiler // error messages tractable, we define it in the testing namespace // instead of testing::internal. However, this is an INTERNAL TYPE // and subject to change without notice, so a user MUST NOT USE THIS // TYPE DIRECTLY. struct ExcessiveArg {}; // A helper class needed for implementing the ACTION* macros. template class ActionHelper { public: static Result Perform(Impl* impl, const ::std::tr1::tuple<>& args) { using ::std::tr1::get; return impl->template gmock_PerformImpl<>(args, ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg()); } template static Result Perform(Impl* impl, const ::std::tr1::tuple& args) { using ::std::tr1::get; return impl->template gmock_PerformImpl(args, get<0>(args), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg()); } template static Result Perform(Impl* impl, const ::std::tr1::tuple& args) { using ::std::tr1::get; return impl->template gmock_PerformImpl(args, get<0>(args), get<1>(args), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg()); } template static Result Perform(Impl* impl, const ::std::tr1::tuple& args) { using ::std::tr1::get; return impl->template gmock_PerformImpl(args, get<0>(args), get<1>(args), get<2>(args), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg()); } template static Result Perform(Impl* impl, const ::std::tr1::tuple& args) { using ::std::tr1::get; return impl->template gmock_PerformImpl(args, get<0>(args), get<1>(args), get<2>(args), get<3>(args), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg()); } template static Result Perform(Impl* impl, const ::std::tr1::tuple& args) { using ::std::tr1::get; return impl->template gmock_PerformImpl(args, get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg()); } template static Result Perform(Impl* impl, const ::std::tr1::tuple& args) { using ::std::tr1::get; return impl->template gmock_PerformImpl(args, get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg()); } template static Result Perform(Impl* impl, const ::std::tr1::tuple& args) { using ::std::tr1::get; return impl->template gmock_PerformImpl(args, get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), get<6>(args), ExcessiveArg(), ExcessiveArg(), ExcessiveArg()); } template static Result Perform(Impl* impl, const ::std::tr1::tuple& args) { using ::std::tr1::get; return impl->template gmock_PerformImpl(args, get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), get<6>(args), get<7>(args), ExcessiveArg(), ExcessiveArg()); } template static Result Perform(Impl* impl, const ::std::tr1::tuple& args) { using ::std::tr1::get; return impl->template gmock_PerformImpl(args, get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), get<6>(args), get<7>(args), get<8>(args), ExcessiveArg()); } template static Result Perform(Impl* impl, const ::std::tr1::tuple& args) { using ::std::tr1::get; return impl->template gmock_PerformImpl(args, get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), get<6>(args), get<7>(args), get<8>(args), get<9>(args)); } }; } // namespace internal // Various overloads for Invoke(). // WithArgs(an_action) creates an action that passes // the selected arguments of the mock function to an_action and // performs it. It serves as an adaptor between actions with // different argument lists. C++ doesn't support default arguments for // function templates, so we have to overload it. template inline internal::WithArgsAction WithArgs(const InnerAction& action) { return internal::WithArgsAction(action); } template inline internal::WithArgsAction WithArgs(const InnerAction& action) { return internal::WithArgsAction(action); } template inline internal::WithArgsAction WithArgs(const InnerAction& action) { return internal::WithArgsAction(action); } template inline internal::WithArgsAction WithArgs(const InnerAction& action) { return internal::WithArgsAction(action); } template inline internal::WithArgsAction WithArgs(const InnerAction& action) { return internal::WithArgsAction(action); } template inline internal::WithArgsAction WithArgs(const InnerAction& action) { return internal::WithArgsAction(action); } template inline internal::WithArgsAction WithArgs(const InnerAction& action) { return internal::WithArgsAction(action); } template inline internal::WithArgsAction WithArgs(const InnerAction& action) { return internal::WithArgsAction(action); } template inline internal::WithArgsAction WithArgs(const InnerAction& action) { return internal::WithArgsAction(action); } template inline internal::WithArgsAction WithArgs(const InnerAction& action) { return internal::WithArgsAction(action); } // Creates an action that does actions a1, a2, ..., sequentially in // each invocation. template inline internal::DoBothAction DoAll(Action1 a1, Action2 a2) { return internal::DoBothAction(a1, a2); } template inline internal::DoBothAction > DoAll(Action1 a1, Action2 a2, Action3 a3) { return DoAll(a1, DoAll(a2, a3)); } template inline internal::DoBothAction > > DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4) { return DoAll(a1, DoAll(a2, a3, a4)); } template inline internal::DoBothAction > > > DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4, Action5 a5) { return DoAll(a1, DoAll(a2, a3, a4, a5)); } template inline internal::DoBothAction > > > > DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4, Action5 a5, Action6 a6) { return DoAll(a1, DoAll(a2, a3, a4, a5, a6)); } template inline internal::DoBothAction > > > > > DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4, Action5 a5, Action6 a6, Action7 a7) { return DoAll(a1, DoAll(a2, a3, a4, a5, a6, a7)); } template inline internal::DoBothAction > > > > > > DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4, Action5 a5, Action6 a6, Action7 a7, Action8 a8) { return DoAll(a1, DoAll(a2, a3, a4, a5, a6, a7, a8)); } template inline internal::DoBothAction > > > > > > > DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4, Action5 a5, Action6 a6, Action7 a7, Action8 a8, Action9 a9) { return DoAll(a1, DoAll(a2, a3, a4, a5, a6, a7, a8, a9)); } template inline internal::DoBothAction > > > > > > > > DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4, Action5 a5, Action6 a6, Action7 a7, Action8 a8, Action9 a9, Action10 a10) { return DoAll(a1, DoAll(a2, a3, a4, a5, a6, a7, a8, a9, a10)); } } // namespace testing // The ACTION* family of macros can be used in a namespace scope to // define custom actions easily. The syntax: // // ACTION(name) { statements; } // // will define an action with the given name that executes the // statements. The value returned by the statements will be used as // the return value of the action. Inside the statements, you can // refer to the K-th (0-based) argument of the mock function by // 'argK', and refer to its type by 'argK_type'. For example: // // ACTION(IncrementArg1) { // arg1_type temp = arg1; // return ++(*temp); // } // // allows you to write // // ...WillOnce(IncrementArg1()); // // You can also refer to the entire argument tuple and its type by // 'args' and 'args_type', and refer to the mock function type and its // return type by 'function_type' and 'return_type'. // // Note that you don't need to specify the types of the mock function // arguments. However rest assured that your code is still type-safe: // you'll get a compiler error if *arg1 doesn't support the ++ // operator, or if the type of ++(*arg1) isn't compatible with the // mock function's return type, for example. // // Sometimes you'll want to parameterize the action. For that you can use // another macro: // // ACTION_P(name, param_name) { statements; } // // For example: // // ACTION_P(Add, n) { return arg0 + n; } // // will allow you to write: // // ...WillOnce(Add(5)); // // Note that you don't need to provide the type of the parameter // either. If you need to reference the type of a parameter named // 'foo', you can write 'foo_type'. For example, in the body of // ACTION_P(Add, n) above, you can write 'n_type' to refer to the type // of 'n'. // // We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support // multi-parameter actions. // // For the purpose of typing, you can view // // ACTION_Pk(Foo, p1, ..., pk) { ... } // // as shorthand for // // template // FooActionPk Foo(p1_type p1, ..., pk_type pk) { ... } // // In particular, you can provide the template type arguments // explicitly when invoking Foo(), as in Foo(5, false); // although usually you can rely on the compiler to infer the types // for you automatically. You can assign the result of expression // Foo(p1, ..., pk) to a variable of type FooActionPk. This can be useful when composing actions. // // You can also overload actions with different numbers of parameters: // // ACTION_P(Plus, a) { ... } // ACTION_P2(Plus, a, b) { ... } // // While it's tempting to always use the ACTION* macros when defining // a new action, you should also consider implementing ActionInterface // or using MakePolymorphicAction() instead, especially if you need to // use the action a lot. While these approaches require more work, // they give you more control on the types of the mock function // arguments and the action parameters, which in general leads to // better compiler error messages that pay off in the long run. They // also allow overloading actions based on parameter types (as opposed // to just based on the number of parameters). // // CAVEAT: // // ACTION*() can only be used in a namespace scope. The reason is // that C++ doesn't yet allow function-local types to be used to // instantiate templates. The up-coming C++0x standard will fix this. // Once that's done, we'll consider supporting using ACTION*() inside // a function. // // MORE INFORMATION: // // To learn more about using these macros, please search for 'ACTION' // on http://code.google.com/p/googlemock/wiki/CookBook. // An internal macro needed for implementing ACTION*(). #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_\ const args_type& args GTEST_ATTRIBUTE_UNUSED_, \ arg0_type arg0 GTEST_ATTRIBUTE_UNUSED_, \ arg1_type arg1 GTEST_ATTRIBUTE_UNUSED_, \ arg2_type arg2 GTEST_ATTRIBUTE_UNUSED_, \ arg3_type arg3 GTEST_ATTRIBUTE_UNUSED_, \ arg4_type arg4 GTEST_ATTRIBUTE_UNUSED_, \ arg5_type arg5 GTEST_ATTRIBUTE_UNUSED_, \ arg6_type arg6 GTEST_ATTRIBUTE_UNUSED_, \ arg7_type arg7 GTEST_ATTRIBUTE_UNUSED_, \ arg8_type arg8 GTEST_ATTRIBUTE_UNUSED_, \ arg9_type arg9 GTEST_ATTRIBUTE_UNUSED_ // Sometimes you want to give an action explicit template parameters // that cannot be inferred from its value parameters. ACTION() and // ACTION_P*() don't support that. ACTION_TEMPLATE() remedies that // and can be viewed as an extension to ACTION() and ACTION_P*(). // // The syntax: // // ACTION_TEMPLATE(ActionName, // HAS_m_TEMPLATE_PARAMS(kind1, name1, ..., kind_m, name_m), // AND_n_VALUE_PARAMS(p1, ..., p_n)) { statements; } // // defines an action template that takes m explicit template // parameters and n value parameters. name_i is the name of the i-th // template parameter, and kind_i specifies whether it's a typename, // an integral constant, or a template. p_i is the name of the i-th // value parameter. // // Example: // // // DuplicateArg(output) converts the k-th argument of the mock // // function to type T and copies it to *output. // ACTION_TEMPLATE(DuplicateArg, // HAS_2_TEMPLATE_PARAMS(int, k, typename, T), // AND_1_VALUE_PARAMS(output)) { // *output = T(std::tr1::get(args)); // } // ... // int n; // EXPECT_CALL(mock, Foo(_, _)) // .WillOnce(DuplicateArg<1, unsigned char>(&n)); // // To create an instance of an action template, write: // // ActionName(v1, ..., v_n) // // where the ts are the template arguments and the vs are the value // arguments. The value argument types are inferred by the compiler. // If you want to explicitly specify the value argument types, you can // provide additional template arguments: // // ActionName(v1, ..., v_n) // // where u_i is the desired type of v_i. // // ACTION_TEMPLATE and ACTION/ACTION_P* can be overloaded on the // number of value parameters, but not on the number of template // parameters. Without the restriction, the meaning of the following // is unclear: // // OverloadedAction(x); // // Are we using a single-template-parameter action where 'bool' refers // to the type of x, or are we using a two-template-parameter action // where the compiler is asked to infer the type of x? // // Implementation notes: // // GMOCK_INTERNAL_*_HAS_m_TEMPLATE_PARAMS and // GMOCK_INTERNAL_*_AND_n_VALUE_PARAMS are internal macros for // implementing ACTION_TEMPLATE. The main trick we use is to create // new macro invocations when expanding a macro. For example, we have // // #define ACTION_TEMPLATE(name, template_params, value_params) // ... GMOCK_INTERNAL_DECL_##template_params ... // // which causes ACTION_TEMPLATE(..., HAS_1_TEMPLATE_PARAMS(typename, T), ...) // to expand to // // ... GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS(typename, T) ... // // Since GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS is a macro, the // preprocessor will continue to expand it to // // ... typename T ... // // This technique conforms to the C++ standard and is portable. It // allows us to implement action templates using O(N) code, where N is // the maximum number of template/value parameters supported. Without // using it, we'd have to devote O(N^2) amount of code to implement all // combinations of m and n. // Declares the template parameters. #define GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS(kind0, name0) kind0 name0 #define GMOCK_INTERNAL_DECL_HAS_2_TEMPLATE_PARAMS(kind0, name0, kind1, \ name1) kind0 name0, kind1 name1 #define GMOCK_INTERNAL_DECL_HAS_3_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2) kind0 name0, kind1 name1, kind2 name2 #define GMOCK_INTERNAL_DECL_HAS_4_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3) kind0 name0, kind1 name1, kind2 name2, \ kind3 name3 #define GMOCK_INTERNAL_DECL_HAS_5_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4) kind0 name0, kind1 name1, \ kind2 name2, kind3 name3, kind4 name4 #define GMOCK_INTERNAL_DECL_HAS_6_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4, kind5, name5) kind0 name0, \ kind1 name1, kind2 name2, kind3 name3, kind4 name4, kind5 name5 #define GMOCK_INTERNAL_DECL_HAS_7_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \ name6) kind0 name0, kind1 name1, kind2 name2, kind3 name3, kind4 name4, \ kind5 name5, kind6 name6 #define GMOCK_INTERNAL_DECL_HAS_8_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \ kind7, name7) kind0 name0, kind1 name1, kind2 name2, kind3 name3, \ kind4 name4, kind5 name5, kind6 name6, kind7 name7 #define GMOCK_INTERNAL_DECL_HAS_9_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \ kind7, name7, kind8, name8) kind0 name0, kind1 name1, kind2 name2, \ kind3 name3, kind4 name4, kind5 name5, kind6 name6, kind7 name7, \ kind8 name8 #define GMOCK_INTERNAL_DECL_HAS_10_TEMPLATE_PARAMS(kind0, name0, kind1, \ name1, kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \ name6, kind7, name7, kind8, name8, kind9, name9) kind0 name0, \ kind1 name1, kind2 name2, kind3 name3, kind4 name4, kind5 name5, \ kind6 name6, kind7 name7, kind8 name8, kind9 name9 // Lists the template parameters. #define GMOCK_INTERNAL_LIST_HAS_1_TEMPLATE_PARAMS(kind0, name0) name0 #define GMOCK_INTERNAL_LIST_HAS_2_TEMPLATE_PARAMS(kind0, name0, kind1, \ name1) name0, name1 #define GMOCK_INTERNAL_LIST_HAS_3_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2) name0, name1, name2 #define GMOCK_INTERNAL_LIST_HAS_4_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3) name0, name1, name2, name3 #define GMOCK_INTERNAL_LIST_HAS_5_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4) name0, name1, name2, name3, \ name4 #define GMOCK_INTERNAL_LIST_HAS_6_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4, kind5, name5) name0, name1, \ name2, name3, name4, name5 #define GMOCK_INTERNAL_LIST_HAS_7_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \ name6) name0, name1, name2, name3, name4, name5, name6 #define GMOCK_INTERNAL_LIST_HAS_8_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \ kind7, name7) name0, name1, name2, name3, name4, name5, name6, name7 #define GMOCK_INTERNAL_LIST_HAS_9_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \ kind7, name7, kind8, name8) name0, name1, name2, name3, name4, name5, \ name6, name7, name8 #define GMOCK_INTERNAL_LIST_HAS_10_TEMPLATE_PARAMS(kind0, name0, kind1, \ name1, kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \ name6, kind7, name7, kind8, name8, kind9, name9) name0, name1, name2, \ name3, name4, name5, name6, name7, name8, name9 // Declares the types of value parameters. #define GMOCK_INTERNAL_DECL_TYPE_AND_0_VALUE_PARAMS() #define GMOCK_INTERNAL_DECL_TYPE_AND_1_VALUE_PARAMS(p0) , typename p0##_type #define GMOCK_INTERNAL_DECL_TYPE_AND_2_VALUE_PARAMS(p0, p1) , \ typename p0##_type, typename p1##_type #define GMOCK_INTERNAL_DECL_TYPE_AND_3_VALUE_PARAMS(p0, p1, p2) , \ typename p0##_type, typename p1##_type, typename p2##_type #define GMOCK_INTERNAL_DECL_TYPE_AND_4_VALUE_PARAMS(p0, p1, p2, p3) , \ typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type #define GMOCK_INTERNAL_DECL_TYPE_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) , \ typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type #define GMOCK_INTERNAL_DECL_TYPE_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) , \ typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type #define GMOCK_INTERNAL_DECL_TYPE_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6) , typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type, \ typename p6##_type #define GMOCK_INTERNAL_DECL_TYPE_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6, p7) , typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type, \ typename p6##_type, typename p7##_type #define GMOCK_INTERNAL_DECL_TYPE_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6, p7, p8) , typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type, \ typename p6##_type, typename p7##_type, typename p8##_type #define GMOCK_INTERNAL_DECL_TYPE_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6, p7, p8, p9) , typename p0##_type, typename p1##_type, \ typename p2##_type, typename p3##_type, typename p4##_type, \ typename p5##_type, typename p6##_type, typename p7##_type, \ typename p8##_type, typename p9##_type // Initializes the value parameters. #define GMOCK_INTERNAL_INIT_AND_0_VALUE_PARAMS()\ () #define GMOCK_INTERNAL_INIT_AND_1_VALUE_PARAMS(p0)\ (p0##_type gmock_p0) : p0(gmock_p0) #define GMOCK_INTERNAL_INIT_AND_2_VALUE_PARAMS(p0, p1)\ (p0##_type gmock_p0, p1##_type gmock_p1) : p0(gmock_p0), p1(gmock_p1) #define GMOCK_INTERNAL_INIT_AND_3_VALUE_PARAMS(p0, p1, p2)\ (p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2) #define GMOCK_INTERNAL_INIT_AND_4_VALUE_PARAMS(p0, p1, p2, p3)\ (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3) #define GMOCK_INTERNAL_INIT_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4)\ (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4) : p0(gmock_p0), p1(gmock_p1), \ p2(gmock_p2), p3(gmock_p3), p4(gmock_p4) #define GMOCK_INTERNAL_INIT_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5)\ (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, \ p5##_type gmock_p5) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5) #define GMOCK_INTERNAL_INIT_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6)\ (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ p6##_type gmock_p6) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6) #define GMOCK_INTERNAL_INIT_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7)\ (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ p6##_type gmock_p6, p7##_type gmock_p7) : p0(gmock_p0), p1(gmock_p1), \ p2(gmock_p2), p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), \ p7(gmock_p7) #define GMOCK_INTERNAL_INIT_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8)\ (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ p6##_type gmock_p6, p7##_type gmock_p7, \ p8##_type gmock_p8) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), p7(gmock_p7), \ p8(gmock_p8) #define GMOCK_INTERNAL_INIT_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8, p9)\ (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ p6##_type gmock_p6, p7##_type gmock_p7, p8##_type gmock_p8, \ p9##_type gmock_p9) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), p7(gmock_p7), \ p8(gmock_p8), p9(gmock_p9) // Declares the fields for storing the value parameters. #define GMOCK_INTERNAL_DEFN_AND_0_VALUE_PARAMS() #define GMOCK_INTERNAL_DEFN_AND_1_VALUE_PARAMS(p0) p0##_type p0; #define GMOCK_INTERNAL_DEFN_AND_2_VALUE_PARAMS(p0, p1) p0##_type p0; \ p1##_type p1; #define GMOCK_INTERNAL_DEFN_AND_3_VALUE_PARAMS(p0, p1, p2) p0##_type p0; \ p1##_type p1; p2##_type p2; #define GMOCK_INTERNAL_DEFN_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0##_type p0; \ p1##_type p1; p2##_type p2; p3##_type p3; #define GMOCK_INTERNAL_DEFN_AND_5_VALUE_PARAMS(p0, p1, p2, p3, \ p4) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; #define GMOCK_INTERNAL_DEFN_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, \ p5) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \ p5##_type p5; #define GMOCK_INTERNAL_DEFN_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \ p5##_type p5; p6##_type p6; #define GMOCK_INTERNAL_DEFN_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \ p5##_type p5; p6##_type p6; p7##_type p7; #define GMOCK_INTERNAL_DEFN_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; \ p4##_type p4; p5##_type p5; p6##_type p6; p7##_type p7; p8##_type p8; #define GMOCK_INTERNAL_DEFN_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8, p9) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; \ p4##_type p4; p5##_type p5; p6##_type p6; p7##_type p7; p8##_type p8; \ p9##_type p9; // Lists the value parameters. #define GMOCK_INTERNAL_LIST_AND_0_VALUE_PARAMS() #define GMOCK_INTERNAL_LIST_AND_1_VALUE_PARAMS(p0) p0 #define GMOCK_INTERNAL_LIST_AND_2_VALUE_PARAMS(p0, p1) p0, p1 #define GMOCK_INTERNAL_LIST_AND_3_VALUE_PARAMS(p0, p1, p2) p0, p1, p2 #define GMOCK_INTERNAL_LIST_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0, p1, p2, p3 #define GMOCK_INTERNAL_LIST_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) p0, p1, \ p2, p3, p4 #define GMOCK_INTERNAL_LIST_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) p0, \ p1, p2, p3, p4, p5 #define GMOCK_INTERNAL_LIST_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6) p0, p1, p2, p3, p4, p5, p6 #define GMOCK_INTERNAL_LIST_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7) p0, p1, p2, p3, p4, p5, p6, p7 #define GMOCK_INTERNAL_LIST_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8) p0, p1, p2, p3, p4, p5, p6, p7, p8 #define GMOCK_INTERNAL_LIST_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8, p9) p0, p1, p2, p3, p4, p5, p6, p7, p8, p9 // Lists the value parameter types. #define GMOCK_INTERNAL_LIST_TYPE_AND_0_VALUE_PARAMS() #define GMOCK_INTERNAL_LIST_TYPE_AND_1_VALUE_PARAMS(p0) , p0##_type #define GMOCK_INTERNAL_LIST_TYPE_AND_2_VALUE_PARAMS(p0, p1) , p0##_type, \ p1##_type #define GMOCK_INTERNAL_LIST_TYPE_AND_3_VALUE_PARAMS(p0, p1, p2) , p0##_type, \ p1##_type, p2##_type #define GMOCK_INTERNAL_LIST_TYPE_AND_4_VALUE_PARAMS(p0, p1, p2, p3) , \ p0##_type, p1##_type, p2##_type, p3##_type #define GMOCK_INTERNAL_LIST_TYPE_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) , \ p0##_type, p1##_type, p2##_type, p3##_type, p4##_type #define GMOCK_INTERNAL_LIST_TYPE_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) , \ p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, p5##_type #define GMOCK_INTERNAL_LIST_TYPE_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, p5##_type, \ p6##_type #define GMOCK_INTERNAL_LIST_TYPE_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6, p7) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ p5##_type, p6##_type, p7##_type #define GMOCK_INTERNAL_LIST_TYPE_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6, p7, p8) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ p5##_type, p6##_type, p7##_type, p8##_type #define GMOCK_INTERNAL_LIST_TYPE_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6, p7, p8, p9) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ p5##_type, p6##_type, p7##_type, p8##_type, p9##_type // Declares the value parameters. #define GMOCK_INTERNAL_DECL_AND_0_VALUE_PARAMS() #define GMOCK_INTERNAL_DECL_AND_1_VALUE_PARAMS(p0) p0##_type p0 #define GMOCK_INTERNAL_DECL_AND_2_VALUE_PARAMS(p0, p1) p0##_type p0, \ p1##_type p1 #define GMOCK_INTERNAL_DECL_AND_3_VALUE_PARAMS(p0, p1, p2) p0##_type p0, \ p1##_type p1, p2##_type p2 #define GMOCK_INTERNAL_DECL_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0##_type p0, \ p1##_type p1, p2##_type p2, p3##_type p3 #define GMOCK_INTERNAL_DECL_AND_5_VALUE_PARAMS(p0, p1, p2, p3, \ p4) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4 #define GMOCK_INTERNAL_DECL_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, \ p5) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \ p5##_type p5 #define GMOCK_INTERNAL_DECL_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \ p5##_type p5, p6##_type p6 #define GMOCK_INTERNAL_DECL_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \ p5##_type p5, p6##_type p6, p7##_type p7 #define GMOCK_INTERNAL_DECL_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8 #define GMOCK_INTERNAL_DECL_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8, p9) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8, \ p9##_type p9 // The suffix of the class template implementing the action template. #define GMOCK_INTERNAL_COUNT_AND_0_VALUE_PARAMS() #define GMOCK_INTERNAL_COUNT_AND_1_VALUE_PARAMS(p0) P #define GMOCK_INTERNAL_COUNT_AND_2_VALUE_PARAMS(p0, p1) P2 #define GMOCK_INTERNAL_COUNT_AND_3_VALUE_PARAMS(p0, p1, p2) P3 #define GMOCK_INTERNAL_COUNT_AND_4_VALUE_PARAMS(p0, p1, p2, p3) P4 #define GMOCK_INTERNAL_COUNT_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) P5 #define GMOCK_INTERNAL_COUNT_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) P6 #define GMOCK_INTERNAL_COUNT_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6) P7 #define GMOCK_INTERNAL_COUNT_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7) P8 #define GMOCK_INTERNAL_COUNT_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8) P9 #define GMOCK_INTERNAL_COUNT_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8, p9) P10 // The name of the class template implementing the action template. #define GMOCK_ACTION_CLASS_(name, value_params)\ GTEST_CONCAT_TOKEN_(name##Action, GMOCK_INTERNAL_COUNT_##value_params) #define ACTION_TEMPLATE(name, template_params, value_params)\ template \ class GMOCK_ACTION_CLASS_(name, value_params) {\ public:\ GMOCK_ACTION_CLASS_(name, value_params)\ GMOCK_INTERNAL_INIT_##value_params {}\ template \ class gmock_Impl : public ::testing::ActionInterface {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function::Result return_type;\ typedef typename ::testing::internal::Function::ArgumentTuple\ args_type;\ explicit gmock_Impl GMOCK_INTERNAL_INIT_##value_params {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper::\ Perform(this, args);\ }\ template \ return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ arg9_type arg9) const;\ GMOCK_INTERNAL_DEFN_##value_params\ private:\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template operator ::testing::Action() const {\ return ::testing::Action(\ new gmock_Impl(GMOCK_INTERNAL_LIST_##value_params));\ }\ GMOCK_INTERNAL_DEFN_##value_params\ private:\ GTEST_DISALLOW_ASSIGN_(GMOCK_ACTION_CLASS_(name, value_params));\ };\ template \ inline GMOCK_ACTION_CLASS_(name, value_params)<\ GMOCK_INTERNAL_LIST_##template_params\ GMOCK_INTERNAL_LIST_TYPE_##value_params> name(\ GMOCK_INTERNAL_DECL_##value_params) {\ return GMOCK_ACTION_CLASS_(name, value_params)<\ GMOCK_INTERNAL_LIST_##template_params\ GMOCK_INTERNAL_LIST_TYPE_##value_params>(\ GMOCK_INTERNAL_LIST_##value_params);\ }\ template \ template \ template \ typename ::testing::internal::Function::Result\ GMOCK_ACTION_CLASS_(name, value_params)<\ GMOCK_INTERNAL_LIST_##template_params\ GMOCK_INTERNAL_LIST_TYPE_##value_params>::gmock_Impl::\ gmock_PerformImpl(\ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const #define ACTION(name)\ class name##Action {\ public:\ name##Action() {}\ template \ class gmock_Impl : public ::testing::ActionInterface {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function::Result return_type;\ typedef typename ::testing::internal::Function::ArgumentTuple\ args_type;\ gmock_Impl() {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper::\ Perform(this, args);\ }\ template \ return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ arg9_type arg9) const;\ private:\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template operator ::testing::Action() const {\ return ::testing::Action(new gmock_Impl());\ }\ private:\ GTEST_DISALLOW_ASSIGN_(name##Action);\ };\ inline name##Action name() {\ return name##Action();\ }\ template \ template \ typename ::testing::internal::Function::Result\ name##Action::gmock_Impl::gmock_PerformImpl(\ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const #define ACTION_P(name, p0)\ template \ class name##ActionP {\ public:\ name##ActionP(p0##_type gmock_p0) : p0(gmock_p0) {}\ template \ class gmock_Impl : public ::testing::ActionInterface {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function::Result return_type;\ typedef typename ::testing::internal::Function::ArgumentTuple\ args_type;\ explicit gmock_Impl(p0##_type gmock_p0) : p0(gmock_p0) {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper::\ Perform(this, args);\ }\ template \ return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ arg9_type arg9) const;\ p0##_type p0;\ private:\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template operator ::testing::Action() const {\ return ::testing::Action(new gmock_Impl(p0));\ }\ p0##_type p0;\ private:\ GTEST_DISALLOW_ASSIGN_(name##ActionP);\ };\ template \ inline name##ActionP name(p0##_type p0) {\ return name##ActionP(p0);\ }\ template \ template \ template \ typename ::testing::internal::Function::Result\ name##ActionP::gmock_Impl::gmock_PerformImpl(\ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const #define ACTION_P2(name, p0, p1)\ template \ class name##ActionP2 {\ public:\ name##ActionP2(p0##_type gmock_p0, p1##_type gmock_p1) : p0(gmock_p0), \ p1(gmock_p1) {}\ template \ class gmock_Impl : public ::testing::ActionInterface {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function::Result return_type;\ typedef typename ::testing::internal::Function::ArgumentTuple\ args_type;\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1) : p0(gmock_p0), \ p1(gmock_p1) {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper::\ Perform(this, args);\ }\ template \ return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ arg9_type arg9) const;\ p0##_type p0;\ p1##_type p1;\ private:\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template operator ::testing::Action() const {\ return ::testing::Action(new gmock_Impl(p0, p1));\ }\ p0##_type p0;\ p1##_type p1;\ private:\ GTEST_DISALLOW_ASSIGN_(name##ActionP2);\ };\ template \ inline name##ActionP2 name(p0##_type p0, \ p1##_type p1) {\ return name##ActionP2(p0, p1);\ }\ template \ template \ template \ typename ::testing::internal::Function::Result\ name##ActionP2::gmock_Impl::gmock_PerformImpl(\ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const #define ACTION_P3(name, p0, p1, p2)\ template \ class name##ActionP3 {\ public:\ name##ActionP3(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2) {}\ template \ class gmock_Impl : public ::testing::ActionInterface {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function::Result return_type;\ typedef typename ::testing::internal::Function::ArgumentTuple\ args_type;\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2) {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper::\ Perform(this, args);\ }\ template \ return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ arg9_type arg9) const;\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ private:\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template operator ::testing::Action() const {\ return ::testing::Action(new gmock_Impl(p0, p1, p2));\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ private:\ GTEST_DISALLOW_ASSIGN_(name##ActionP3);\ };\ template \ inline name##ActionP3 name(p0##_type p0, \ p1##_type p1, p2##_type p2) {\ return name##ActionP3(p0, p1, p2);\ }\ template \ template \ template \ typename ::testing::internal::Function::Result\ name##ActionP3::gmock_Impl::gmock_PerformImpl(\ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const #define ACTION_P4(name, p0, p1, p2, p3)\ template \ class name##ActionP4 {\ public:\ name##ActionP4(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2, p3##_type gmock_p3) : p0(gmock_p0), p1(gmock_p1), \ p2(gmock_p2), p3(gmock_p3) {}\ template \ class gmock_Impl : public ::testing::ActionInterface {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function::Result return_type;\ typedef typename ::testing::internal::Function::ArgumentTuple\ args_type;\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3) {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper::\ Perform(this, args);\ }\ template \ return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ arg9_type arg9) const;\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ private:\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template operator ::testing::Action() const {\ return ::testing::Action(new gmock_Impl(p0, p1, p2, p3));\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ private:\ GTEST_DISALLOW_ASSIGN_(name##ActionP4);\ };\ template \ inline name##ActionP4 name(p0##_type p0, p1##_type p1, p2##_type p2, \ p3##_type p3) {\ return name##ActionP4(p0, p1, \ p2, p3);\ }\ template \ template \ template \ typename ::testing::internal::Function::Result\ name##ActionP4::gmock_Impl::gmock_PerformImpl(\ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const #define ACTION_P5(name, p0, p1, p2, p3, p4)\ template \ class name##ActionP5 {\ public:\ name##ActionP5(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2, p3##_type gmock_p3, \ p4##_type gmock_p4) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4) {}\ template \ class gmock_Impl : public ::testing::ActionInterface {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function::Result return_type;\ typedef typename ::testing::internal::Function::ArgumentTuple\ args_type;\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4) : p0(gmock_p0), \ p1(gmock_p1), p2(gmock_p2), p3(gmock_p3), p4(gmock_p4) {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper::\ Perform(this, args);\ }\ template \ return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ arg9_type arg9) const;\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ private:\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template operator ::testing::Action() const {\ return ::testing::Action(new gmock_Impl(p0, p1, p2, p3, p4));\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ private:\ GTEST_DISALLOW_ASSIGN_(name##ActionP5);\ };\ template \ inline name##ActionP5 name(p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ p4##_type p4) {\ return name##ActionP5(p0, p1, p2, p3, p4);\ }\ template \ template \ template \ typename ::testing::internal::Function::Result\ name##ActionP5::gmock_Impl::gmock_PerformImpl(\ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const #define ACTION_P6(name, p0, p1, p2, p3, p4, p5)\ template \ class name##ActionP6 {\ public:\ name##ActionP6(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \ p5##_type gmock_p5) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5) {}\ template \ class gmock_Impl : public ::testing::ActionInterface {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function::Result return_type;\ typedef typename ::testing::internal::Function::ArgumentTuple\ args_type;\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, \ p5##_type gmock_p5) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5) {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper::\ Perform(this, args);\ }\ template \ return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ arg9_type arg9) const;\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ private:\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template operator ::testing::Action() const {\ return ::testing::Action(new gmock_Impl(p0, p1, p2, p3, p4, p5));\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ private:\ GTEST_DISALLOW_ASSIGN_(name##ActionP6);\ };\ template \ inline name##ActionP6 name(p0##_type p0, p1##_type p1, p2##_type p2, \ p3##_type p3, p4##_type p4, p5##_type p5) {\ return name##ActionP6(p0, p1, p2, p3, p4, p5);\ }\ template \ template \ template \ typename ::testing::internal::Function::Result\ name##ActionP6::gmock_Impl::gmock_PerformImpl(\ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const #define ACTION_P7(name, p0, p1, p2, p3, p4, p5, p6)\ template \ class name##ActionP7 {\ public:\ name##ActionP7(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \ p5##_type gmock_p5, p6##_type gmock_p6) : p0(gmock_p0), p1(gmock_p1), \ p2(gmock_p2), p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), \ p6(gmock_p6) {}\ template \ class gmock_Impl : public ::testing::ActionInterface {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function::Result return_type;\ typedef typename ::testing::internal::Function::ArgumentTuple\ args_type;\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ p6##_type gmock_p6) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6) {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper::\ Perform(this, args);\ }\ template \ return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ arg9_type arg9) const;\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ private:\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template operator ::testing::Action() const {\ return ::testing::Action(new gmock_Impl(p0, p1, p2, p3, p4, p5, \ p6));\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ private:\ GTEST_DISALLOW_ASSIGN_(name##ActionP7);\ };\ template \ inline name##ActionP7 name(p0##_type p0, p1##_type p1, \ p2##_type p2, p3##_type p3, p4##_type p4, p5##_type p5, \ p6##_type p6) {\ return name##ActionP7(p0, p1, p2, p3, p4, p5, p6);\ }\ template \ template \ template \ typename ::testing::internal::Function::Result\ name##ActionP7::gmock_Impl::gmock_PerformImpl(\ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const #define ACTION_P8(name, p0, p1, p2, p3, p4, p5, p6, p7)\ template \ class name##ActionP8 {\ public:\ name##ActionP8(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \ p5##_type gmock_p5, p6##_type gmock_p6, \ p7##_type gmock_p7) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), \ p7(gmock_p7) {}\ template \ class gmock_Impl : public ::testing::ActionInterface {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function::Result return_type;\ typedef typename ::testing::internal::Function::ArgumentTuple\ args_type;\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ p6##_type gmock_p6, p7##_type gmock_p7) : p0(gmock_p0), \ p1(gmock_p1), p2(gmock_p2), p3(gmock_p3), p4(gmock_p4), \ p5(gmock_p5), p6(gmock_p6), p7(gmock_p7) {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper::\ Perform(this, args);\ }\ template \ return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ arg9_type arg9) const;\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ p7##_type p7;\ private:\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template operator ::testing::Action() const {\ return ::testing::Action(new gmock_Impl(p0, p1, p2, p3, p4, p5, \ p6, p7));\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ p7##_type p7;\ private:\ GTEST_DISALLOW_ASSIGN_(name##ActionP8);\ };\ template \ inline name##ActionP8 name(p0##_type p0, \ p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, p5##_type p5, \ p6##_type p6, p7##_type p7) {\ return name##ActionP8(p0, p1, p2, p3, p4, p5, \ p6, p7);\ }\ template \ template \ template \ typename ::testing::internal::Function::Result\ name##ActionP8::gmock_Impl::gmock_PerformImpl(\ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const #define ACTION_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8)\ template \ class name##ActionP9 {\ public:\ name##ActionP9(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \ p5##_type gmock_p5, p6##_type gmock_p6, p7##_type gmock_p7, \ p8##_type gmock_p8) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), p7(gmock_p7), \ p8(gmock_p8) {}\ template \ class gmock_Impl : public ::testing::ActionInterface {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function::Result return_type;\ typedef typename ::testing::internal::Function::ArgumentTuple\ args_type;\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ p6##_type gmock_p6, p7##_type gmock_p7, \ p8##_type gmock_p8) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), \ p7(gmock_p7), p8(gmock_p8) {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper::\ Perform(this, args);\ }\ template \ return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ arg9_type arg9) const;\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ p7##_type p7;\ p8##_type p8;\ private:\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template operator ::testing::Action() const {\ return ::testing::Action(new gmock_Impl(p0, p1, p2, p3, p4, p5, \ p6, p7, p8));\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ p7##_type p7;\ p8##_type p8;\ private:\ GTEST_DISALLOW_ASSIGN_(name##ActionP9);\ };\ template \ inline name##ActionP9 name(p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, \ p8##_type p8) {\ return name##ActionP9(p0, p1, p2, \ p3, p4, p5, p6, p7, p8);\ }\ template \ template \ template \ typename ::testing::internal::Function::Result\ name##ActionP9::gmock_Impl::gmock_PerformImpl(\ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const #define ACTION_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9)\ template \ class name##ActionP10 {\ public:\ name##ActionP10(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \ p5##_type gmock_p5, p6##_type gmock_p6, p7##_type gmock_p7, \ p8##_type gmock_p8, p9##_type gmock_p9) : p0(gmock_p0), p1(gmock_p1), \ p2(gmock_p2), p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), \ p7(gmock_p7), p8(gmock_p8), p9(gmock_p9) {}\ template \ class gmock_Impl : public ::testing::ActionInterface {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function::Result return_type;\ typedef typename ::testing::internal::Function::ArgumentTuple\ args_type;\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ p6##_type gmock_p6, p7##_type gmock_p7, p8##_type gmock_p8, \ p9##_type gmock_p9) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), \ p7(gmock_p7), p8(gmock_p8), p9(gmock_p9) {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper::\ Perform(this, args);\ }\ template \ return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ arg9_type arg9) const;\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ p7##_type p7;\ p8##_type p8;\ p9##_type p9;\ private:\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template operator ::testing::Action() const {\ return ::testing::Action(new gmock_Impl(p0, p1, p2, p3, p4, p5, \ p6, p7, p8, p9));\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ p7##_type p7;\ p8##_type p8;\ p9##_type p9;\ private:\ GTEST_DISALLOW_ASSIGN_(name##ActionP10);\ };\ template \ inline name##ActionP10 name(p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8, \ p9##_type p9) {\ return name##ActionP10(p0, \ p1, p2, p3, p4, p5, p6, p7, p8, p9);\ }\ template \ template \ template \ typename ::testing::internal::Function::Result\ name##ActionP10::gmock_Impl::gmock_PerformImpl(\ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const namespace testing { // The ACTION*() macros trigger warning C4100 (unreferenced formal // parameter) in MSVC with -W4. Unfortunately they cannot be fixed in // the macro definition, as the warnings are generated when the macro // is expanded and macro expansion cannot contain #pragma. Therefore // we suppress them here. #ifdef _MSC_VER # pragma warning(push) # pragma warning(disable:4100) #endif // Various overloads for InvokeArgument(). // // The InvokeArgument(a1, a2, ..., a_k) action invokes the N-th // (0-based) argument, which must be a k-ary callable, of the mock // function, with arguments a1, a2, ..., a_k. // // Notes: // // 1. The arguments are passed by value by default. If you need to // pass an argument by reference, wrap it inside ByRef(). For // example, // // InvokeArgument<1>(5, string("Hello"), ByRef(foo)) // // passes 5 and string("Hello") by value, and passes foo by // reference. // // 2. If the callable takes an argument by reference but ByRef() is // not used, it will receive the reference to a copy of the value, // instead of the original value. For example, when the 0-th // argument of the mock function takes a const string&, the action // // InvokeArgument<0>(string("Hello")) // // makes a copy of the temporary string("Hello") object and passes a // reference of the copy, instead of the original temporary object, // to the callable. This makes it easy for a user to define an // InvokeArgument action from temporary values and have it performed // later. ACTION_TEMPLATE(InvokeArgument, HAS_1_TEMPLATE_PARAMS(int, k), AND_0_VALUE_PARAMS()) { return internal::CallableHelper::Call( ::std::tr1::get(args)); } ACTION_TEMPLATE(InvokeArgument, HAS_1_TEMPLATE_PARAMS(int, k), AND_1_VALUE_PARAMS(p0)) { return internal::CallableHelper::Call( ::std::tr1::get(args), p0); } ACTION_TEMPLATE(InvokeArgument, HAS_1_TEMPLATE_PARAMS(int, k), AND_2_VALUE_PARAMS(p0, p1)) { return internal::CallableHelper::Call( ::std::tr1::get(args), p0, p1); } ACTION_TEMPLATE(InvokeArgument, HAS_1_TEMPLATE_PARAMS(int, k), AND_3_VALUE_PARAMS(p0, p1, p2)) { return internal::CallableHelper::Call( ::std::tr1::get(args), p0, p1, p2); } ACTION_TEMPLATE(InvokeArgument, HAS_1_TEMPLATE_PARAMS(int, k), AND_4_VALUE_PARAMS(p0, p1, p2, p3)) { return internal::CallableHelper::Call( ::std::tr1::get(args), p0, p1, p2, p3); } ACTION_TEMPLATE(InvokeArgument, HAS_1_TEMPLATE_PARAMS(int, k), AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4)) { return internal::CallableHelper::Call( ::std::tr1::get(args), p0, p1, p2, p3, p4); } ACTION_TEMPLATE(InvokeArgument, HAS_1_TEMPLATE_PARAMS(int, k), AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5)) { return internal::CallableHelper::Call( ::std::tr1::get(args), p0, p1, p2, p3, p4, p5); } ACTION_TEMPLATE(InvokeArgument, HAS_1_TEMPLATE_PARAMS(int, k), AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6)) { return internal::CallableHelper::Call( ::std::tr1::get(args), p0, p1, p2, p3, p4, p5, p6); } ACTION_TEMPLATE(InvokeArgument, HAS_1_TEMPLATE_PARAMS(int, k), AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7)) { return internal::CallableHelper::Call( ::std::tr1::get(args), p0, p1, p2, p3, p4, p5, p6, p7); } ACTION_TEMPLATE(InvokeArgument, HAS_1_TEMPLATE_PARAMS(int, k), AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7, p8)) { return internal::CallableHelper::Call( ::std::tr1::get(args), p0, p1, p2, p3, p4, p5, p6, p7, p8); } ACTION_TEMPLATE(InvokeArgument, HAS_1_TEMPLATE_PARAMS(int, k), AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9)) { return internal::CallableHelper::Call( ::std::tr1::get(args), p0, p1, p2, p3, p4, p5, p6, p7, p8, p9); } // Various overloads for ReturnNew(). // // The ReturnNew(a1, a2, ..., a_k) action returns a pointer to a new // instance of type T, constructed on the heap with constructor arguments // a1, a2, ..., and a_k. The caller assumes ownership of the returned value. ACTION_TEMPLATE(ReturnNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_0_VALUE_PARAMS()) { return new T(); } ACTION_TEMPLATE(ReturnNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_1_VALUE_PARAMS(p0)) { return new T(p0); } ACTION_TEMPLATE(ReturnNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_2_VALUE_PARAMS(p0, p1)) { return new T(p0, p1); } ACTION_TEMPLATE(ReturnNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_3_VALUE_PARAMS(p0, p1, p2)) { return new T(p0, p1, p2); } ACTION_TEMPLATE(ReturnNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_4_VALUE_PARAMS(p0, p1, p2, p3)) { return new T(p0, p1, p2, p3); } ACTION_TEMPLATE(ReturnNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4)) { return new T(p0, p1, p2, p3, p4); } ACTION_TEMPLATE(ReturnNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5)) { return new T(p0, p1, p2, p3, p4, p5); } ACTION_TEMPLATE(ReturnNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6)) { return new T(p0, p1, p2, p3, p4, p5, p6); } ACTION_TEMPLATE(ReturnNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7)) { return new T(p0, p1, p2, p3, p4, p5, p6, p7); } ACTION_TEMPLATE(ReturnNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7, p8)) { return new T(p0, p1, p2, p3, p4, p5, p6, p7, p8); } ACTION_TEMPLATE(ReturnNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9)) { return new T(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9); } #ifdef _MSC_VER # pragma warning(pop) #endif } // namespace testing #endif // GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_ // This file was GENERATED by command: // pump.py gmock-generated-function-mockers.h.pump // DO NOT EDIT BY HAND!!! // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file implements function mockers of various arities. #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_FUNCTION_MOCKERS_H_ #define GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_FUNCTION_MOCKERS_H_ // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file implements the ON_CALL() and EXPECT_CALL() macros. // // A user can use the ON_CALL() macro to specify the default action of // a mock method. The syntax is: // // ON_CALL(mock_object, Method(argument-matchers)) // .With(multi-argument-matcher) // .WillByDefault(action); // // where the .With() clause is optional. // // A user can use the EXPECT_CALL() macro to specify an expectation on // a mock method. The syntax is: // // EXPECT_CALL(mock_object, Method(argument-matchers)) // .With(multi-argument-matchers) // .Times(cardinality) // .InSequence(sequences) // .After(expectations) // .WillOnce(action) // .WillRepeatedly(action) // .RetiresOnSaturation(); // // where all clauses are optional, and .InSequence()/.After()/ // .WillOnce() can appear any number of times. #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_ #define GMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_ #include #include #include #include #include #if GTEST_HAS_EXCEPTIONS # include // NOLINT #endif // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file implements some commonly used argument matchers. More // matchers can be defined by the user implementing the // MatcherInterface interface if necessary. #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ #define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ #include #include #include #include #include // NOLINT #include #include #include #include #if GTEST_LANG_CXX11 #include // NOLINT -- must be after gtest.h #endif namespace testing { // To implement a matcher Foo for type T, define: // 1. a class FooMatcherImpl that implements the // MatcherInterface interface, and // 2. a factory function that creates a Matcher object from a // FooMatcherImpl*. // // The two-level delegation design makes it possible to allow a user // to write "v" instead of "Eq(v)" where a Matcher is expected, which // is impossible if we pass matchers by pointers. It also eases // ownership management as Matcher objects can now be copied like // plain values. // MatchResultListener is an abstract class. Its << operator can be // used by a matcher to explain why a value matches or doesn't match. // // TODO(wan@google.com): add method // bool InterestedInWhy(bool result) const; // to indicate whether the listener is interested in why the match // result is 'result'. class MatchResultListener { public: // Creates a listener object with the given underlying ostream. The // listener does not own the ostream, and does not dereference it // in the constructor or destructor. explicit MatchResultListener(::std::ostream* os) : stream_(os) {} virtual ~MatchResultListener() = 0; // Makes this class abstract. // Streams x to the underlying ostream; does nothing if the ostream // is NULL. template MatchResultListener& operator<<(const T& x) { if (stream_ != NULL) *stream_ << x; return *this; } // Returns the underlying ostream. ::std::ostream* stream() { return stream_; } // Returns true iff the listener is interested in an explanation of // the match result. A matcher's MatchAndExplain() method can use // this information to avoid generating the explanation when no one // intends to hear it. bool IsInterested() const { return stream_ != NULL; } private: ::std::ostream* const stream_; GTEST_DISALLOW_COPY_AND_ASSIGN_(MatchResultListener); }; inline MatchResultListener::~MatchResultListener() { } // An instance of a subclass of this knows how to describe itself as a // matcher. class MatcherDescriberInterface { public: virtual ~MatcherDescriberInterface() {} // Describes this matcher to an ostream. The function should print // a verb phrase that describes the property a value matching this // matcher should have. The subject of the verb phrase is the value // being matched. For example, the DescribeTo() method of the Gt(7) // matcher prints "is greater than 7". virtual void DescribeTo(::std::ostream* os) const = 0; // Describes the negation of this matcher to an ostream. For // example, if the description of this matcher is "is greater than // 7", the negated description could be "is not greater than 7". // You are not required to override this when implementing // MatcherInterface, but it is highly advised so that your matcher // can produce good error messages. virtual void DescribeNegationTo(::std::ostream* os) const { *os << "not ("; DescribeTo(os); *os << ")"; } }; // The implementation of a matcher. template class MatcherInterface : public MatcherDescriberInterface { public: // Returns true iff the matcher matches x; also explains the match // result to 'listener' if necessary (see the next paragraph), in // the form of a non-restrictive relative clause ("which ...", // "whose ...", etc) that describes x. For example, the // MatchAndExplain() method of the Pointee(...) matcher should // generate an explanation like "which points to ...". // // Implementations of MatchAndExplain() should add an explanation of // the match result *if and only if* they can provide additional // information that's not already present (or not obvious) in the // print-out of x and the matcher's description. Whether the match // succeeds is not a factor in deciding whether an explanation is // needed, as sometimes the caller needs to print a failure message // when the match succeeds (e.g. when the matcher is used inside // Not()). // // For example, a "has at least 10 elements" matcher should explain // what the actual element count is, regardless of the match result, // as it is useful information to the reader; on the other hand, an // "is empty" matcher probably only needs to explain what the actual // size is when the match fails, as it's redundant to say that the // size is 0 when the value is already known to be empty. // // You should override this method when defining a new matcher. // // It's the responsibility of the caller (Google Mock) to guarantee // that 'listener' is not NULL. This helps to simplify a matcher's // implementation when it doesn't care about the performance, as it // can talk to 'listener' without checking its validity first. // However, in order to implement dummy listeners efficiently, // listener->stream() may be NULL. virtual bool MatchAndExplain(T x, MatchResultListener* listener) const = 0; // Inherits these methods from MatcherDescriberInterface: // virtual void DescribeTo(::std::ostream* os) const = 0; // virtual void DescribeNegationTo(::std::ostream* os) const; }; // A match result listener that stores the explanation in a string. class StringMatchResultListener : public MatchResultListener { public: StringMatchResultListener() : MatchResultListener(&ss_) {} // Returns the explanation accumulated so far. internal::string str() const { return ss_.str(); } // Clears the explanation accumulated so far. void Clear() { ss_.str(""); } private: ::std::stringstream ss_; GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener); }; namespace internal { // A match result listener that ignores the explanation. class DummyMatchResultListener : public MatchResultListener { public: DummyMatchResultListener() : MatchResultListener(NULL) {} private: GTEST_DISALLOW_COPY_AND_ASSIGN_(DummyMatchResultListener); }; // A match result listener that forwards the explanation to a given // ostream. The difference between this and MatchResultListener is // that the former is concrete. class StreamMatchResultListener : public MatchResultListener { public: explicit StreamMatchResultListener(::std::ostream* os) : MatchResultListener(os) {} private: GTEST_DISALLOW_COPY_AND_ASSIGN_(StreamMatchResultListener); }; // An internal class for implementing Matcher, which will derive // from it. We put functionalities common to all Matcher // specializations here to avoid code duplication. template class MatcherBase { public: // Returns true iff the matcher matches x; also explains the match // result to 'listener'. bool MatchAndExplain(T x, MatchResultListener* listener) const { return impl_->MatchAndExplain(x, listener); } // Returns true iff this matcher matches x. bool Matches(T x) const { DummyMatchResultListener dummy; return MatchAndExplain(x, &dummy); } // Describes this matcher to an ostream. void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); } // Describes the negation of this matcher to an ostream. void DescribeNegationTo(::std::ostream* os) const { impl_->DescribeNegationTo(os); } // Explains why x matches, or doesn't match, the matcher. void ExplainMatchResultTo(T x, ::std::ostream* os) const { StreamMatchResultListener listener(os); MatchAndExplain(x, &listener); } // Returns the describer for this matcher object; retains ownership // of the describer, which is only guaranteed to be alive when // this matcher object is alive. const MatcherDescriberInterface* GetDescriber() const { return impl_.get(); } protected: MatcherBase() {} // Constructs a matcher from its implementation. explicit MatcherBase(const MatcherInterface* impl) : impl_(impl) {} virtual ~MatcherBase() {} private: // shared_ptr (util/gtl/shared_ptr.h) and linked_ptr have similar // interfaces. The former dynamically allocates a chunk of memory // to hold the reference count, while the latter tracks all // references using a circular linked list without allocating // memory. It has been observed that linked_ptr performs better in // typical scenarios. However, shared_ptr can out-perform // linked_ptr when there are many more uses of the copy constructor // than the default constructor. // // If performance becomes a problem, we should see if using // shared_ptr helps. ::testing::internal::linked_ptr > impl_; }; } // namespace internal // A Matcher is a copyable and IMMUTABLE (except by assignment) // object that can check whether a value of type T matches. The // implementation of Matcher is just a linked_ptr to const // MatcherInterface, so copying is fairly cheap. Don't inherit // from Matcher! template class Matcher : public internal::MatcherBase { public: // Constructs a null matcher. Needed for storing Matcher objects in STL // containers. A default-constructed matcher is not yet initialized. You // cannot use it until a valid value has been assigned to it. Matcher() {} // Constructs a matcher from its implementation. explicit Matcher(const MatcherInterface* impl) : internal::MatcherBase(impl) {} // Implicit constructor here allows people to write // EXPECT_CALL(foo, Bar(5)) instead of EXPECT_CALL(foo, Bar(Eq(5))) sometimes Matcher(T value); // NOLINT }; // The following two specializations allow the user to write str // instead of Eq(str) and "foo" instead of Eq("foo") when a string // matcher is expected. template <> class GTEST_API_ Matcher : public internal::MatcherBase { public: Matcher() {} explicit Matcher(const MatcherInterface* impl) : internal::MatcherBase(impl) {} // Allows the user to write str instead of Eq(str) sometimes, where // str is a string object. Matcher(const internal::string& s); // NOLINT // Allows the user to write "foo" instead of Eq("foo") sometimes. Matcher(const char* s); // NOLINT }; template <> class GTEST_API_ Matcher : public internal::MatcherBase { public: Matcher() {} explicit Matcher(const MatcherInterface* impl) : internal::MatcherBase(impl) {} // Allows the user to write str instead of Eq(str) sometimes, where // str is a string object. Matcher(const internal::string& s); // NOLINT // Allows the user to write "foo" instead of Eq("foo") sometimes. Matcher(const char* s); // NOLINT }; #if GTEST_HAS_STRING_PIECE_ // The following two specializations allow the user to write str // instead of Eq(str) and "foo" instead of Eq("foo") when a StringPiece // matcher is expected. template <> class GTEST_API_ Matcher : public internal::MatcherBase { public: Matcher() {} explicit Matcher(const MatcherInterface* impl) : internal::MatcherBase(impl) {} // Allows the user to write str instead of Eq(str) sometimes, where // str is a string object. Matcher(const internal::string& s); // NOLINT // Allows the user to write "foo" instead of Eq("foo") sometimes. Matcher(const char* s); // NOLINT // Allows the user to pass StringPieces directly. Matcher(StringPiece s); // NOLINT }; template <> class GTEST_API_ Matcher : public internal::MatcherBase { public: Matcher() {} explicit Matcher(const MatcherInterface* impl) : internal::MatcherBase(impl) {} // Allows the user to write str instead of Eq(str) sometimes, where // str is a string object. Matcher(const internal::string& s); // NOLINT // Allows the user to write "foo" instead of Eq("foo") sometimes. Matcher(const char* s); // NOLINT // Allows the user to pass StringPieces directly. Matcher(StringPiece s); // NOLINT }; #endif // GTEST_HAS_STRING_PIECE_ // The PolymorphicMatcher class template makes it easy to implement a // polymorphic matcher (i.e. a matcher that can match values of more // than one type, e.g. Eq(n) and NotNull()). // // To define a polymorphic matcher, a user should provide an Impl // class that has a DescribeTo() method and a DescribeNegationTo() // method, and define a member function (or member function template) // // bool MatchAndExplain(const Value& value, // MatchResultListener* listener) const; // // See the definition of NotNull() for a complete example. template class PolymorphicMatcher { public: explicit PolymorphicMatcher(const Impl& an_impl) : impl_(an_impl) {} // Returns a mutable reference to the underlying matcher // implementation object. Impl& mutable_impl() { return impl_; } // Returns an immutable reference to the underlying matcher // implementation object. const Impl& impl() const { return impl_; } template operator Matcher() const { return Matcher(new MonomorphicImpl(impl_)); } private: template class MonomorphicImpl : public MatcherInterface { public: explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} virtual void DescribeTo(::std::ostream* os) const { impl_.DescribeTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { impl_.DescribeNegationTo(os); } virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { return impl_.MatchAndExplain(x, listener); } private: const Impl impl_; GTEST_DISALLOW_ASSIGN_(MonomorphicImpl); }; Impl impl_; GTEST_DISALLOW_ASSIGN_(PolymorphicMatcher); }; // Creates a matcher from its implementation. This is easier to use // than the Matcher constructor as it doesn't require you to // explicitly write the template argument, e.g. // // MakeMatcher(foo); // vs // Matcher(foo); template inline Matcher MakeMatcher(const MatcherInterface* impl) { return Matcher(impl); } // Creates a polymorphic matcher from its implementation. This is // easier to use than the PolymorphicMatcher constructor as it // doesn't require you to explicitly write the template argument, e.g. // // MakePolymorphicMatcher(foo); // vs // PolymorphicMatcher(foo); template inline PolymorphicMatcher MakePolymorphicMatcher(const Impl& impl) { return PolymorphicMatcher(impl); } // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION // and MUST NOT BE USED IN USER CODE!!! namespace internal { // The MatcherCastImpl class template is a helper for implementing // MatcherCast(). We need this helper in order to partially // specialize the implementation of MatcherCast() (C++ allows // class/struct templates to be partially specialized, but not // function templates.). // This general version is used when MatcherCast()'s argument is a // polymorphic matcher (i.e. something that can be converted to a // Matcher but is not one yet; for example, Eq(value)) or a value (for // example, "hello"). template class MatcherCastImpl { public: static Matcher Cast(M polymorphic_matcher_or_value) { // M can be a polymorhic matcher, in which case we want to use // its conversion operator to create Matcher. Or it can be a value // that should be passed to the Matcher's constructor. // // We can't call Matcher(polymorphic_matcher_or_value) when M is a // polymorphic matcher because it'll be ambiguous if T has an implicit // constructor from M (this usually happens when T has an implicit // constructor from any type). // // It won't work to unconditionally implict_cast // polymorphic_matcher_or_value to Matcher because it won't trigger // a user-defined conversion from M to T if one exists (assuming M is // a value). return CastImpl( polymorphic_matcher_or_value, BooleanConstant< internal::ImplicitlyConvertible >::value>()); } private: static Matcher CastImpl(M value, BooleanConstant) { // M can't be implicitly converted to Matcher, so M isn't a polymorphic // matcher. It must be a value then. Use direct initialization to create // a matcher. return Matcher(ImplicitCast_(value)); } static Matcher CastImpl(M polymorphic_matcher_or_value, BooleanConstant) { // M is implicitly convertible to Matcher, which means that either // M is a polymorhpic matcher or Matcher has an implicit constructor // from M. In both cases using the implicit conversion will produce a // matcher. // // Even if T has an implicit constructor from M, it won't be called because // creating Matcher would require a chain of two user-defined conversions // (first to create T from M and then to create Matcher from T). return polymorphic_matcher_or_value; } }; // This more specialized version is used when MatcherCast()'s argument // is already a Matcher. This only compiles when type T can be // statically converted to type U. template class MatcherCastImpl > { public: static Matcher Cast(const Matcher& source_matcher) { return Matcher(new Impl(source_matcher)); } private: class Impl : public MatcherInterface { public: explicit Impl(const Matcher& source_matcher) : source_matcher_(source_matcher) {} // We delegate the matching logic to the source matcher. virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { return source_matcher_.MatchAndExplain(static_cast(x), listener); } virtual void DescribeTo(::std::ostream* os) const { source_matcher_.DescribeTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { source_matcher_.DescribeNegationTo(os); } private: const Matcher source_matcher_; GTEST_DISALLOW_ASSIGN_(Impl); }; }; // This even more specialized version is used for efficiently casting // a matcher to its own type. template class MatcherCastImpl > { public: static Matcher Cast(const Matcher& matcher) { return matcher; } }; } // namespace internal // In order to be safe and clear, casting between different matcher // types is done explicitly via MatcherCast(m), which takes a // matcher m and returns a Matcher. It compiles only when T can be // statically converted to the argument type of m. template inline Matcher MatcherCast(M matcher) { return internal::MatcherCastImpl::Cast(matcher); } // Implements SafeMatcherCast(). // // We use an intermediate class to do the actual safe casting as Nokia's // Symbian compiler cannot decide between // template ... (M) and // template ... (const Matcher&) // for function templates but can for member function templates. template class SafeMatcherCastImpl { public: // This overload handles polymorphic matchers and values only since // monomorphic matchers are handled by the next one. template static inline Matcher Cast(M polymorphic_matcher_or_value) { return internal::MatcherCastImpl::Cast(polymorphic_matcher_or_value); } // This overload handles monomorphic matchers. // // In general, if type T can be implicitly converted to type U, we can // safely convert a Matcher to a Matcher (i.e. Matcher is // contravariant): just keep a copy of the original Matcher, convert the // argument from type T to U, and then pass it to the underlying Matcher. // The only exception is when U is a reference and T is not, as the // underlying Matcher may be interested in the argument's address, which // is not preserved in the conversion from T to U. template static inline Matcher Cast(const Matcher& matcher) { // Enforce that T can be implicitly converted to U. GTEST_COMPILE_ASSERT_((internal::ImplicitlyConvertible::value), T_must_be_implicitly_convertible_to_U); // Enforce that we are not converting a non-reference type T to a reference // type U. GTEST_COMPILE_ASSERT_( internal::is_reference::value || !internal::is_reference::value, cannot_convert_non_referentce_arg_to_reference); // In case both T and U are arithmetic types, enforce that the // conversion is not lossy. typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT; typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU; const bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther; const bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther; GTEST_COMPILE_ASSERT_( kTIsOther || kUIsOther || (internal::LosslessArithmeticConvertible::value), conversion_of_arithmetic_types_must_be_lossless); return MatcherCast(matcher); } }; template inline Matcher SafeMatcherCast(const M& polymorphic_matcher) { return SafeMatcherCastImpl::Cast(polymorphic_matcher); } // A() returns a matcher that matches any value of type T. template Matcher A(); // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION // and MUST NOT BE USED IN USER CODE!!! namespace internal { // If the explanation is not empty, prints it to the ostream. inline void PrintIfNotEmpty(const internal::string& explanation, ::std::ostream* os) { if (explanation != "" && os != NULL) { *os << ", " << explanation; } } // Returns true if the given type name is easy to read by a human. // This is used to decide whether printing the type of a value might // be helpful. inline bool IsReadableTypeName(const string& type_name) { // We consider a type name readable if it's short or doesn't contain // a template or function type. return (type_name.length() <= 20 || type_name.find_first_of("<(") == string::npos); } // Matches the value against the given matcher, prints the value and explains // the match result to the listener. Returns the match result. // 'listener' must not be NULL. // Value cannot be passed by const reference, because some matchers take a // non-const argument. template bool MatchPrintAndExplain(Value& value, const Matcher& matcher, MatchResultListener* listener) { if (!listener->IsInterested()) { // If the listener is not interested, we do not need to construct the // inner explanation. return matcher.Matches(value); } StringMatchResultListener inner_listener; const bool match = matcher.MatchAndExplain(value, &inner_listener); UniversalPrint(value, listener->stream()); #if GTEST_HAS_RTTI const string& type_name = GetTypeName(); if (IsReadableTypeName(type_name)) *listener->stream() << " (of type " << type_name << ")"; #endif PrintIfNotEmpty(inner_listener.str(), listener->stream()); return match; } // An internal helper class for doing compile-time loop on a tuple's // fields. template class TuplePrefix { public: // TuplePrefix::Matches(matcher_tuple, value_tuple) returns true // iff the first N fields of matcher_tuple matches the first N // fields of value_tuple, respectively. template static bool Matches(const MatcherTuple& matcher_tuple, const ValueTuple& value_tuple) { using ::std::tr1::get; return TuplePrefix::Matches(matcher_tuple, value_tuple) && get(matcher_tuple).Matches(get(value_tuple)); } // TuplePrefix::ExplainMatchFailuresTo(matchers, values, os) // describes failures in matching the first N fields of matchers // against the first N fields of values. If there is no failure, // nothing will be streamed to os. template static void ExplainMatchFailuresTo(const MatcherTuple& matchers, const ValueTuple& values, ::std::ostream* os) { using ::std::tr1::tuple_element; using ::std::tr1::get; // First, describes failures in the first N - 1 fields. TuplePrefix::ExplainMatchFailuresTo(matchers, values, os); // Then describes the failure (if any) in the (N - 1)-th (0-based) // field. typename tuple_element::type matcher = get(matchers); typedef typename tuple_element::type Value; Value value = get(values); StringMatchResultListener listener; if (!matcher.MatchAndExplain(value, &listener)) { // TODO(wan): include in the message the name of the parameter // as used in MOCK_METHOD*() when possible. *os << " Expected arg #" << N - 1 << ": "; get(matchers).DescribeTo(os); *os << "\n Actual: "; // We remove the reference in type Value to prevent the // universal printer from printing the address of value, which // isn't interesting to the user most of the time. The // matcher's MatchAndExplain() method handles the case when // the address is interesting. internal::UniversalPrint(value, os); PrintIfNotEmpty(listener.str(), os); *os << "\n"; } } }; // The base case. template <> class TuplePrefix<0> { public: template static bool Matches(const MatcherTuple& /* matcher_tuple */, const ValueTuple& /* value_tuple */) { return true; } template static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */, const ValueTuple& /* values */, ::std::ostream* /* os */) {} }; // TupleMatches(matcher_tuple, value_tuple) returns true iff all // matchers in matcher_tuple match the corresponding fields in // value_tuple. It is a compiler error if matcher_tuple and // value_tuple have different number of fields or incompatible field // types. template bool TupleMatches(const MatcherTuple& matcher_tuple, const ValueTuple& value_tuple) { using ::std::tr1::tuple_size; // Makes sure that matcher_tuple and value_tuple have the same // number of fields. GTEST_COMPILE_ASSERT_(tuple_size::value == tuple_size::value, matcher_and_value_have_different_numbers_of_fields); return TuplePrefix::value>:: Matches(matcher_tuple, value_tuple); } // Describes failures in matching matchers against values. If there // is no failure, nothing will be streamed to os. template void ExplainMatchFailureTupleTo(const MatcherTuple& matchers, const ValueTuple& values, ::std::ostream* os) { using ::std::tr1::tuple_size; TuplePrefix::value>::ExplainMatchFailuresTo( matchers, values, os); } // TransformTupleValues and its helper. // // TransformTupleValuesHelper hides the internal machinery that // TransformTupleValues uses to implement a tuple traversal. template class TransformTupleValuesHelper { private: typedef typename ::std::tr1::tuple_size TupleSize; public: // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'. // Returns the final value of 'out' in case the caller needs it. static OutIter Run(Func f, const Tuple& t, OutIter out) { return IterateOverTuple()(f, t, out); } private: template struct IterateOverTuple { OutIter operator() (Func f, const Tup& t, OutIter out) const { *out++ = f(::std::tr1::get(t)); return IterateOverTuple()(f, t, out); } }; template struct IterateOverTuple { OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const { return out; } }; }; // Successively invokes 'f(element)' on each element of the tuple 't', // appending each result to the 'out' iterator. Returns the final value // of 'out'. template OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) { return TransformTupleValuesHelper::Run(f, t, out); } // Implements A(). template class AnyMatcherImpl : public MatcherInterface { public: virtual bool MatchAndExplain( T /* x */, MatchResultListener* /* listener */) const { return true; } virtual void DescribeTo(::std::ostream* os) const { *os << "is anything"; } virtual void DescribeNegationTo(::std::ostream* os) const { // This is mostly for completeness' safe, as it's not very useful // to write Not(A()). However we cannot completely rule out // such a possibility, and it doesn't hurt to be prepared. *os << "never matches"; } }; // Implements _, a matcher that matches any value of any // type. This is a polymorphic matcher, so we need a template type // conversion operator to make it appearing as a Matcher for any // type T. class AnythingMatcher { public: template operator Matcher() const { return A(); } }; // Implements a matcher that compares a given value with a // pre-supplied value using one of the ==, <=, <, etc, operators. The // two values being compared don't have to have the same type. // // The matcher defined here is polymorphic (for example, Eq(5) can be // used to match an int, a short, a double, etc). Therefore we use // a template type conversion operator in the implementation. // // We define this as a macro in order to eliminate duplicated source // code. // // The following template definition assumes that the Rhs parameter is // a "bare" type (i.e. neither 'const T' nor 'T&'). #define GMOCK_IMPLEMENT_COMPARISON_MATCHER_( \ name, op, relation, negated_relation) \ template class name##Matcher { \ public: \ explicit name##Matcher(const Rhs& rhs) : rhs_(rhs) {} \ template \ operator Matcher() const { \ return MakeMatcher(new Impl(rhs_)); \ } \ private: \ template \ class Impl : public MatcherInterface { \ public: \ explicit Impl(const Rhs& rhs) : rhs_(rhs) {} \ virtual bool MatchAndExplain(\ Lhs lhs, MatchResultListener* /* listener */) const { \ return lhs op rhs_; \ } \ virtual void DescribeTo(::std::ostream* os) const { \ *os << relation " "; \ UniversalPrint(rhs_, os); \ } \ virtual void DescribeNegationTo(::std::ostream* os) const { \ *os << negated_relation " "; \ UniversalPrint(rhs_, os); \ } \ private: \ Rhs rhs_; \ GTEST_DISALLOW_ASSIGN_(Impl); \ }; \ Rhs rhs_; \ GTEST_DISALLOW_ASSIGN_(name##Matcher); \ } // Implements Eq(v), Ge(v), Gt(v), Le(v), Lt(v), and Ne(v) // respectively. GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Eq, ==, "is equal to", "isn't equal to"); GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Ge, >=, "is >=", "isn't >="); GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Gt, >, "is >", "isn't >"); GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Le, <=, "is <=", "isn't <="); GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Lt, <, "is <", "isn't <"); GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Ne, !=, "isn't equal to", "is equal to"); #undef GMOCK_IMPLEMENT_COMPARISON_MATCHER_ // Implements the polymorphic IsNull() matcher, which matches any raw or smart // pointer that is NULL. class IsNullMatcher { public: template bool MatchAndExplain(const Pointer& p, MatchResultListener* /* listener */) const { return GetRawPointer(p) == NULL; } void DescribeTo(::std::ostream* os) const { *os << "is NULL"; } void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NULL"; } }; // Implements the polymorphic NotNull() matcher, which matches any raw or smart // pointer that is not NULL. class NotNullMatcher { public: template bool MatchAndExplain(const Pointer& p, MatchResultListener* /* listener */) const { return GetRawPointer(p) != NULL; } void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; } void DescribeNegationTo(::std::ostream* os) const { *os << "is NULL"; } }; // Ref(variable) matches any argument that is a reference to // 'variable'. This matcher is polymorphic as it can match any // super type of the type of 'variable'. // // The RefMatcher template class implements Ref(variable). It can // only be instantiated with a reference type. This prevents a user // from mistakenly using Ref(x) to match a non-reference function // argument. For example, the following will righteously cause a // compiler error: // // int n; // Matcher m1 = Ref(n); // This won't compile. // Matcher m2 = Ref(n); // This will compile. template class RefMatcher; template class RefMatcher { // Google Mock is a generic framework and thus needs to support // mocking any function types, including those that take non-const // reference arguments. Therefore the template parameter T (and // Super below) can be instantiated to either a const type or a // non-const type. public: // RefMatcher() takes a T& instead of const T&, as we want the // compiler to catch using Ref(const_value) as a matcher for a // non-const reference. explicit RefMatcher(T& x) : object_(x) {} // NOLINT template operator Matcher() const { // By passing object_ (type T&) to Impl(), which expects a Super&, // we make sure that Super is a super type of T. In particular, // this catches using Ref(const_value) as a matcher for a // non-const reference, as you cannot implicitly convert a const // reference to a non-const reference. return MakeMatcher(new Impl(object_)); } private: template class Impl : public MatcherInterface { public: explicit Impl(Super& x) : object_(x) {} // NOLINT // MatchAndExplain() takes a Super& (as opposed to const Super&) // in order to match the interface MatcherInterface. virtual bool MatchAndExplain( Super& x, MatchResultListener* listener) const { *listener << "which is located @" << static_cast(&x); return &x == &object_; } virtual void DescribeTo(::std::ostream* os) const { *os << "references the variable "; UniversalPrinter::Print(object_, os); } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "does not reference the variable "; UniversalPrinter::Print(object_, os); } private: const Super& object_; GTEST_DISALLOW_ASSIGN_(Impl); }; T& object_; GTEST_DISALLOW_ASSIGN_(RefMatcher); }; // Polymorphic helper functions for narrow and wide string matchers. inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) { return String::CaseInsensitiveCStringEquals(lhs, rhs); } inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs, const wchar_t* rhs) { return String::CaseInsensitiveWideCStringEquals(lhs, rhs); } // String comparison for narrow or wide strings that can have embedded NUL // characters. template bool CaseInsensitiveStringEquals(const StringType& s1, const StringType& s2) { // Are the heads equal? if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) { return false; } // Skip the equal heads. const typename StringType::value_type nul = 0; const size_t i1 = s1.find(nul), i2 = s2.find(nul); // Are we at the end of either s1 or s2? if (i1 == StringType::npos || i2 == StringType::npos) { return i1 == i2; } // Are the tails equal? return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1)); } // String matchers. // Implements equality-based string matchers like StrEq, StrCaseNe, and etc. template class StrEqualityMatcher { public: StrEqualityMatcher(const StringType& str, bool expect_eq, bool case_sensitive) : string_(str), expect_eq_(expect_eq), case_sensitive_(case_sensitive) {} // Accepts pointer types, particularly: // const char* // char* // const wchar_t* // wchar_t* template bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { if (s == NULL) { return !expect_eq_; } return MatchAndExplain(StringType(s), listener); } // Matches anything that can convert to StringType. // // This is a template, not just a plain function with const StringType&, // because StringPiece has some interfering non-explicit constructors. template bool MatchAndExplain(const MatcheeStringType& s, MatchResultListener* /* listener */) const { const StringType& s2(s); const bool eq = case_sensitive_ ? s2 == string_ : CaseInsensitiveStringEquals(s2, string_); return expect_eq_ == eq; } void DescribeTo(::std::ostream* os) const { DescribeToHelper(expect_eq_, os); } void DescribeNegationTo(::std::ostream* os) const { DescribeToHelper(!expect_eq_, os); } private: void DescribeToHelper(bool expect_eq, ::std::ostream* os) const { *os << (expect_eq ? "is " : "isn't "); *os << "equal to "; if (!case_sensitive_) { *os << "(ignoring case) "; } UniversalPrint(string_, os); } const StringType string_; const bool expect_eq_; const bool case_sensitive_; GTEST_DISALLOW_ASSIGN_(StrEqualityMatcher); }; // Implements the polymorphic HasSubstr(substring) matcher, which // can be used as a Matcher as long as T can be converted to a // string. template class HasSubstrMatcher { public: explicit HasSubstrMatcher(const StringType& substring) : substring_(substring) {} // Accepts pointer types, particularly: // const char* // char* // const wchar_t* // wchar_t* template bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { return s != NULL && MatchAndExplain(StringType(s), listener); } // Matches anything that can convert to StringType. // // This is a template, not just a plain function with const StringType&, // because StringPiece has some interfering non-explicit constructors. template bool MatchAndExplain(const MatcheeStringType& s, MatchResultListener* /* listener */) const { const StringType& s2(s); return s2.find(substring_) != StringType::npos; } // Describes what this matcher matches. void DescribeTo(::std::ostream* os) const { *os << "has substring "; UniversalPrint(substring_, os); } void DescribeNegationTo(::std::ostream* os) const { *os << "has no substring "; UniversalPrint(substring_, os); } private: const StringType substring_; GTEST_DISALLOW_ASSIGN_(HasSubstrMatcher); }; // Implements the polymorphic StartsWith(substring) matcher, which // can be used as a Matcher as long as T can be converted to a // string. template class StartsWithMatcher { public: explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) { } // Accepts pointer types, particularly: // const char* // char* // const wchar_t* // wchar_t* template bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { return s != NULL && MatchAndExplain(StringType(s), listener); } // Matches anything that can convert to StringType. // // This is a template, not just a plain function with const StringType&, // because StringPiece has some interfering non-explicit constructors. template bool MatchAndExplain(const MatcheeStringType& s, MatchResultListener* /* listener */) const { const StringType& s2(s); return s2.length() >= prefix_.length() && s2.substr(0, prefix_.length()) == prefix_; } void DescribeTo(::std::ostream* os) const { *os << "starts with "; UniversalPrint(prefix_, os); } void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't start with "; UniversalPrint(prefix_, os); } private: const StringType prefix_; GTEST_DISALLOW_ASSIGN_(StartsWithMatcher); }; // Implements the polymorphic EndsWith(substring) matcher, which // can be used as a Matcher as long as T can be converted to a // string. template class EndsWithMatcher { public: explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {} // Accepts pointer types, particularly: // const char* // char* // const wchar_t* // wchar_t* template bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { return s != NULL && MatchAndExplain(StringType(s), listener); } // Matches anything that can convert to StringType. // // This is a template, not just a plain function with const StringType&, // because StringPiece has some interfering non-explicit constructors. template bool MatchAndExplain(const MatcheeStringType& s, MatchResultListener* /* listener */) const { const StringType& s2(s); return s2.length() >= suffix_.length() && s2.substr(s2.length() - suffix_.length()) == suffix_; } void DescribeTo(::std::ostream* os) const { *os << "ends with "; UniversalPrint(suffix_, os); } void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't end with "; UniversalPrint(suffix_, os); } private: const StringType suffix_; GTEST_DISALLOW_ASSIGN_(EndsWithMatcher); }; // Implements polymorphic matchers MatchesRegex(regex) and // ContainsRegex(regex), which can be used as a Matcher as long as // T can be converted to a string. class MatchesRegexMatcher { public: MatchesRegexMatcher(const RE* regex, bool full_match) : regex_(regex), full_match_(full_match) {} // Accepts pointer types, particularly: // const char* // char* // const wchar_t* // wchar_t* template bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { return s != NULL && MatchAndExplain(internal::string(s), listener); } // Matches anything that can convert to internal::string. // // This is a template, not just a plain function with const internal::string&, // because StringPiece has some interfering non-explicit constructors. template bool MatchAndExplain(const MatcheeStringType& s, MatchResultListener* /* listener */) const { const internal::string& s2(s); return full_match_ ? RE::FullMatch(s2, *regex_) : RE::PartialMatch(s2, *regex_); } void DescribeTo(::std::ostream* os) const { *os << (full_match_ ? "matches" : "contains") << " regular expression "; UniversalPrinter::Print(regex_->pattern(), os); } void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't " << (full_match_ ? "match" : "contain") << " regular expression "; UniversalPrinter::Print(regex_->pattern(), os); } private: const internal::linked_ptr regex_; const bool full_match_; GTEST_DISALLOW_ASSIGN_(MatchesRegexMatcher); }; // Implements a matcher that compares the two fields of a 2-tuple // using one of the ==, <=, <, etc, operators. The two fields being // compared don't have to have the same type. // // The matcher defined here is polymorphic (for example, Eq() can be // used to match a tuple, a tuple, // etc). Therefore we use a template type conversion operator in the // implementation. // // We define this as a macro in order to eliminate duplicated source // code. #define GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(name, op, relation) \ class name##2Matcher { \ public: \ template \ operator Matcher< ::std::tr1::tuple >() const { \ return MakeMatcher(new Impl< ::std::tr1::tuple >); \ } \ template \ operator Matcher&>() const { \ return MakeMatcher(new Impl&>); \ } \ private: \ template \ class Impl : public MatcherInterface { \ public: \ virtual bool MatchAndExplain( \ Tuple args, \ MatchResultListener* /* listener */) const { \ return ::std::tr1::get<0>(args) op ::std::tr1::get<1>(args); \ } \ virtual void DescribeTo(::std::ostream* os) const { \ *os << "are " relation; \ } \ virtual void DescribeNegationTo(::std::ostream* os) const { \ *os << "aren't " relation; \ } \ }; \ } // Implements Eq(), Ge(), Gt(), Le(), Lt(), and Ne() respectively. GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Eq, ==, "an equal pair"); GMOCK_IMPLEMENT_COMPARISON2_MATCHER_( Ge, >=, "a pair where the first >= the second"); GMOCK_IMPLEMENT_COMPARISON2_MATCHER_( Gt, >, "a pair where the first > the second"); GMOCK_IMPLEMENT_COMPARISON2_MATCHER_( Le, <=, "a pair where the first <= the second"); GMOCK_IMPLEMENT_COMPARISON2_MATCHER_( Lt, <, "a pair where the first < the second"); GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Ne, !=, "an unequal pair"); #undef GMOCK_IMPLEMENT_COMPARISON2_MATCHER_ // Implements the Not(...) matcher for a particular argument type T. // We do not nest it inside the NotMatcher class template, as that // will prevent different instantiations of NotMatcher from sharing // the same NotMatcherImpl class. template class NotMatcherImpl : public MatcherInterface { public: explicit NotMatcherImpl(const Matcher& matcher) : matcher_(matcher) {} virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { return !matcher_.MatchAndExplain(x, listener); } virtual void DescribeTo(::std::ostream* os) const { matcher_.DescribeNegationTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { matcher_.DescribeTo(os); } private: const Matcher matcher_; GTEST_DISALLOW_ASSIGN_(NotMatcherImpl); }; // Implements the Not(m) matcher, which matches a value that doesn't // match matcher m. template class NotMatcher { public: explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {} // This template type conversion operator allows Not(m) to be used // to match any type m can match. template operator Matcher() const { return Matcher(new NotMatcherImpl(SafeMatcherCast(matcher_))); } private: InnerMatcher matcher_; GTEST_DISALLOW_ASSIGN_(NotMatcher); }; // Implements the AllOf(m1, m2) matcher for a particular argument type // T. We do not nest it inside the BothOfMatcher class template, as // that will prevent different instantiations of BothOfMatcher from // sharing the same BothOfMatcherImpl class. template class BothOfMatcherImpl : public MatcherInterface { public: BothOfMatcherImpl(const Matcher& matcher1, const Matcher& matcher2) : matcher1_(matcher1), matcher2_(matcher2) {} virtual void DescribeTo(::std::ostream* os) const { *os << "("; matcher1_.DescribeTo(os); *os << ") and ("; matcher2_.DescribeTo(os); *os << ")"; } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "("; matcher1_.DescribeNegationTo(os); *os << ") or ("; matcher2_.DescribeNegationTo(os); *os << ")"; } virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { // If either matcher1_ or matcher2_ doesn't match x, we only need // to explain why one of them fails. StringMatchResultListener listener1; if (!matcher1_.MatchAndExplain(x, &listener1)) { *listener << listener1.str(); return false; } StringMatchResultListener listener2; if (!matcher2_.MatchAndExplain(x, &listener2)) { *listener << listener2.str(); return false; } // Otherwise we need to explain why *both* of them match. const internal::string s1 = listener1.str(); const internal::string s2 = listener2.str(); if (s1 == "") { *listener << s2; } else { *listener << s1; if (s2 != "") { *listener << ", and " << s2; } } return true; } private: const Matcher matcher1_; const Matcher matcher2_; GTEST_DISALLOW_ASSIGN_(BothOfMatcherImpl); }; #if GTEST_LANG_CXX11 // MatcherList provides mechanisms for storing a variable number of matchers in // a list structure (ListType) and creating a combining matcher from such a // list. // The template is defined recursively using the following template paramters: // * kSize is the length of the MatcherList. // * Head is the type of the first matcher of the list. // * Tail denotes the types of the remaining matchers of the list. template struct MatcherList { typedef MatcherList MatcherListTail; typedef ::std::pair ListType; // BuildList stores variadic type values in a nested pair structure. // Example: // MatcherList<3, int, string, float>::BuildList(5, "foo", 2.0) will return // the corresponding result of type pair>. static ListType BuildList(const Head& matcher, const Tail&... tail) { return ListType(matcher, MatcherListTail::BuildList(tail...)); } // CreateMatcher creates a Matcher from a given list of matchers (built // by BuildList()). CombiningMatcher is used to combine the matchers of the // list. CombiningMatcher must implement MatcherInterface and have a // constructor taking two Matchers as input. template class CombiningMatcher> static Matcher CreateMatcher(const ListType& matchers) { return Matcher(new CombiningMatcher( SafeMatcherCast(matchers.first), MatcherListTail::template CreateMatcher( matchers.second))); } }; // The following defines the base case for the recursive definition of // MatcherList. template struct MatcherList<2, Matcher1, Matcher2> { typedef ::std::pair ListType; static ListType BuildList(const Matcher1& matcher1, const Matcher2& matcher2) { return ::std::pair(matcher1, matcher2); } template class CombiningMatcher> static Matcher CreateMatcher(const ListType& matchers) { return Matcher(new CombiningMatcher( SafeMatcherCast(matchers.first), SafeMatcherCast(matchers.second))); } }; // VariadicMatcher is used for the variadic implementation of // AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...). // CombiningMatcher is used to recursively combine the provided matchers // (of type Args...). template