pax_global_header00006660000000000000000000000064147425074520014524gustar00rootroot0000000000000052 comment=bc161da195810dbaa050ce03a8d8d1e3b7e8b0ae rioxarray-0.18.2/000077500000000000000000000000001474250745200136345ustar00rootroot00000000000000rioxarray-0.18.2/.all-contributorsrc000066400000000000000000000262421474250745200174730ustar00rootroot00000000000000{ "projectName": "rioxarray", "projectOwner": "corteva", "repoType": "github", "repoHost": "https://github.com", "files": [ "AUTHORS.rst", "README.rst" ], "imageSize": 100, "commit": true, "commitConvention": "none", "contributors": [ { "login": "snowman2", "name": "Alan D. Snow", "avatar_url": "https://avatars3.githubusercontent.com/u/8699967?v=4", "profile": "https://www.linkedin.com/in/alan-snow-55bb8726/", "contributions": [ "code", "ideas", "question", "bug", "doc", "example", "maintenance", "review", "test" ] }, { "login": "alfredoahds", "name": "Alfredo Delos Santos", "avatar_url": "https://avatars2.githubusercontent.com/u/16520854?v=4", "profile": "https://github.com/alfredoahds", "contributions": [ "code", "ideas", "review" ] }, { "login": "djhoese", "name": "David Hoese", "avatar_url": "https://avatars3.githubusercontent.com/u/1828519?v=4", "profile": "https://github.com/djhoese", "contributions": [ "ideas", "review", "code", "test" ] }, { "login": "justingruca", "name": "Justin Gruca", "avatar_url": "https://avatars2.githubusercontent.com/u/32334907?v=4", "profile": "https://github.com/justingruca", "contributions": [ "review" ] }, { "login": "vincentsarago", "name": "Vincent Sarago", "avatar_url": "https://avatars2.githubusercontent.com/u/10407788?v=4", "profile": "https://remotepixel.ca", "contributions": [ "doc", "test" ] }, { "login": "rsignell-usgs", "name": "Rich Signell", "avatar_url": "https://avatars1.githubusercontent.com/u/1872600?v=4", "profile": "http://about.me/rich.signell", "contributions": [ "ideas" ] }, { "login": "pmallas", "name": "pmallas", "avatar_url": "https://avatars0.githubusercontent.com/u/6051395?v=4", "profile": "https://github.com/pmallas", "contributions": [ "code", "ideas" ] }, { "login": "davidbrochart", "name": "David Brochart", "avatar_url": "https://avatars2.githubusercontent.com/u/4711805?v=4", "profile": "https://github.com/davidbrochart", "contributions": [ "code", "test", "ideas", "doc" ] }, { "login": "cheginit", "name": "Taher Chegini", "avatar_url": "https://avatars2.githubusercontent.com/u/13016644?v=4", "profile": "https://github.com/cheginit", "contributions": [ "code", "bug" ] }, { "login": "jhamman", "name": "Joe Hamman", "avatar_url": "https://avatars3.githubusercontent.com/u/2443309?v=4", "profile": "http://joehamman.com", "contributions": [ "code", "bug" ] }, { "login": "TomAugspurger", "name": "Tom Augspurger", "avatar_url": "https://avatars.githubusercontent.com/u/1312546?v=4", "profile": "https://tomaugspurger.github.io/", "contributions": [ "code", "bug", "ideas", "doc" ] }, { "login": "RichardScottOZ", "name": "RichardScottOZ", "avatar_url": "https://avatars.githubusercontent.com/u/72196131?v=4", "profile": "https://github.com/RichardScottOZ", "contributions": [ "doc" ] }, { "login": "raybellwaves", "name": "Ray Bell", "avatar_url": "https://avatars.githubusercontent.com/u/17162724?v=4", "profile": "https://sites.google.com/view/raybellwaves/home", "contributions": [ "doc" ] }, { "login": "alexamici", "name": "Alessandro Amici", "avatar_url": "https://avatars.githubusercontent.com/u/226037?v=4", "profile": "https://bopen.eu/", "contributions": [ "code", "doc", "test" ] }, { "login": "remi-braun", "name": "remi-braun", "avatar_url": "https://avatars.githubusercontent.com/u/67311115?v=4", "profile": "https://github.com/remi-braun", "contributions": [ "doc" ] }, { "login": "scottyhq", "name": "Scott Henderson", "avatar_url": "https://avatars.githubusercontent.com/u/3924836?v=4", "profile": "http://scottyhq.github.io/", "contributions": [ "bug", "code", "test" ] }, { "login": "AndrewAnnex", "name": "Andrew Annex", "avatar_url": "https://avatars.githubusercontent.com/u/2126916?v=4", "profile": "http://andrewannex.com/", "contributions": [ "code", "doc", "test" ] }, { "login": "fbunt", "name": "Fred Bunt", "avatar_url": "https://avatars.githubusercontent.com/u/7178572?v=4", "profile": "https://github.com/fbunt", "contributions": [ "bug", "test", "code" ] }, { "login": "MarkusZehner", "name": "Markus Zehner", "avatar_url": "https://avatars.githubusercontent.com/u/56972144?v=4", "profile": "https://github.com/MarkusZehner", "contributions": [ "bug", "code", "test", "ideas" ] }, { "login": "four43", "name": "Seth Miller", "avatar_url": "https://avatars.githubusercontent.com/u/517006?v=4", "profile": "http://www.four43.com/", "contributions": [ "code", "doc", "test" ] }, { "login": "mraspaud", "name": "Martin Raspaud", "avatar_url": "https://avatars.githubusercontent.com/u/167802?v=4", "profile": "https://github.com/mraspaud", "contributions": [ "code", "test", "doc", "ideas", "bug" ] }, { "login": "cordmaur", "name": "Mauricio Cordeiro", "avatar_url": "https://avatars.githubusercontent.com/u/19617404?v=4", "profile": "https://cordmaur.medium.com/", "contributions": [ "bug", "code" ] }, { "login": "GCBallesteros", "name": "GBallesteros", "avatar_url": "https://avatars.githubusercontent.com/u/6859287?v=4", "profile": "https://github.com/GCBallesteros", "contributions": [ "bug", "code", "test" ] }, { "login": "apiwat-chantawibul", "name": "apiwat-chantawibul", "avatar_url": "https://avatars.githubusercontent.com/u/8740786?v=4", "profile": "https://github.com/apiwat-chantawibul", "contributions": [ "doc" ] }, { "login": "mwtoews", "name": "Mike Taves", "avatar_url": "https://avatars.githubusercontent.com/u/895458?v=4", "profile": "https://mwtoews.github.io/", "contributions": [ "maintenance" ] }, { "login": "Zionett", "name": "Sangzi Liang", "avatar_url": "https://avatars.githubusercontent.com/u/9539198?v=4", "profile": "https://github.com/Zionett", "contributions": [ "doc" ] }, { "login": "jonasViehweger", "name": "jonasViehweger", "avatar_url": "https://avatars.githubusercontent.com/u/53001455?v=4", "profile": "https://github.com/jonasViehweger", "contributions": [ "code", "bug" ] }, { "login": "chbrandt", "name": "Carlos H Brandt", "avatar_url": "https://avatars.githubusercontent.com/u/482051?v=4", "profile": "https://github.com/chbrandt", "contributions": [ "doc" ] }, { "login": "JessicaS11", "name": "Jessica Scheick", "avatar_url": "https://avatars.githubusercontent.com/u/11756442?v=4", "profile": "https://github.com/JessicaS11", "contributions": [ "doc" ] }, { "login": "clausmichele", "name": "clausmichele", "avatar_url": "https://avatars.githubusercontent.com/u/31700619?v=4", "profile": "https://www.linkedin.com/in/micheleclaus/", "contributions": [ "review", "doc" ] }, { "login": "caldwellst", "name": "Seth Caldwell", "avatar_url": "https://avatars.githubusercontent.com/u/8086547?v=4", "profile": "https://github.com/caldwellst", "contributions": [ "bug", "code" ] }, { "login": "stefank0", "name": "stefank0", "avatar_url": "https://avatars.githubusercontent.com/u/32932217?v=4", "profile": "https://github.com/stefank0", "contributions": [ "doc" ] }, { "login": "itcarroll", "name": "Ian Carroll", "avatar_url": "https://avatars.githubusercontent.com/u/3383837?v=4", "profile": "https://itcarroll.github.io/", "contributions": [ "maintenance" ] }, { "login": "yvonnefroehlich", "name": "Yvonne Fröhlich", "avatar_url": "https://avatars.githubusercontent.com/u/94163266?v=4", "profile": "https://github.com/yvonnefroehlich", "contributions": [ "doc" ] }, { "login": "Kirill888", "name": "Kirill Kouzoubov", "avatar_url": "https://avatars.githubusercontent.com/u/1428024?v=4", "profile": "https://github.com/Kirill888", "contributions": [ "code" ] }, { "login": "xaviernogueira", "name": "Xavier Nogueira", "avatar_url": "https://avatars.githubusercontent.com/u/58796351?v=4", "profile": "https://github.com/xaviernogueira", "contributions": [ "bug" ] }, { "login": "valanm22", "name": "Valan Baptist Mathuranayagam", "avatar_url": "https://avatars.githubusercontent.com/u/84893551?v=4", "profile": "https://github.com/valanm22", "contributions": [ "doc" ] }, { "login": "peterm790", "name": "Peter Marsh", "avatar_url": "https://avatars.githubusercontent.com/u/52179978?v=4", "profile": "https://github.com/peterm790", "contributions": [ "code", "test" ] }, { "login": "dluks", "name": "Daniel Lusk", "avatar_url": "https://avatars.githubusercontent.com/u/4911680?v=4", "profile": "https://github.com/dluks", "contributions": [ "code", "doc" ] }, { "login": "DahnJ", "name": "Daniel Jahn (dahn)", "avatar_url": "https://avatars.githubusercontent.com/u/18722560?v=4", "profile": "https://github.com/DahnJ", "contributions": [ "doc" ] }, { "login": "phofl", "name": "Patrick Hoefler", "avatar_url": "https://avatars.githubusercontent.com/u/61934744?v=4", "profile": "https://phofl.github.io/", "contributions": [ "bug" ] }, { "login": "dzanaga", "name": "Daniele Zanaga", "avatar_url": "https://avatars.githubusercontent.com/u/8113766?v=4", "profile": "https://github.com/dzanaga", "contributions": [ "doc" ] } ], "contributorsPerLine": 7 } rioxarray-0.18.2/.editorconfig000066400000000000000000000004441474250745200163130ustar00rootroot00000000000000# http://editorconfig.org root = true [*] indent_style = space indent_size = 4 trim_trailing_whitespace = true insert_final_newline = true charset = utf-8 end_of_line = lf [*.bat] indent_style = tab end_of_line = crlf [LICENSE] insert_final_newline = false [Makefile] indent_style = tab rioxarray-0.18.2/.flake8000066400000000000000000000007471474250745200150170ustar00rootroot00000000000000[flake8] max_line_length = 88 ignore = # line too long - let black handle that E501 # Unnecessary dict/list/tuple call - rewrite as a literal C408 # whitespace before ':' - doesn't work well with black E203 # missing whitespace around operator - let black worry about that E225 # line break occurred before a binary operator - let black worry about that W503 # line break occurred adter a binary operator - let black worry about that W504 rioxarray-0.18.2/.github/000077500000000000000000000000001474250745200151745ustar00rootroot00000000000000rioxarray-0.18.2/.github/ISSUE_TEMPLATE/000077500000000000000000000000001474250745200173575ustar00rootroot00000000000000rioxarray-0.18.2/.github/ISSUE_TEMPLATE/bug_report.md000066400000000000000000000026551474250745200220610ustar00rootroot00000000000000--- name: Bug report about: Create a report to help us improve labels: bug --- #### Code Sample, a copy-pastable example if possible A "Minimal, Complete and Verifiable Example" will make it much easier for maintainers to help you: http://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports ```python # Your code here ``` #### Problem description [this should explain **why** the current behavior is a problem and why the expected output is a better solution.] #### Expected Output #### Environment Information - `python -c "import rioxarray; rioxarray.show_versions()"` - rioxarray version (`python -c "import rioxarray; print(rioxarray.__version__)"`) - rasterio version (`rio --version`) - GDAL version (`rio --gdal-version`) - Python version (`python -c "import sys; print(sys.version.replace('\n', ' '))"`) - Operation System Information (`python -c "import platform; print(platform.platform())"`) #### Installation method - conda, pypi, from source, etc... #### Conda environment information (if you installed with conda):
Environment (conda list):
``` $ conda list | grep -E "rasterio|xarray|gdal" ```

Details about conda and system ( conda info ):
``` $ conda info ```
rioxarray-0.18.2/.github/ISSUE_TEMPLATE/config.yml000066400000000000000000000006001474250745200213430ustar00rootroot00000000000000contact_links: - name: Ask questions url: https://github.com/corteva/rioxarray/discussions about: Please ask and answer questions here. - name: Ask questions from the GIS community url: https://gis.stackexchange.com/questions/tagged/rioxarray about: To get answers from questions in the GIS commminuty, please ask and answer questions here with the rioxarray tag. rioxarray-0.18.2/.github/ISSUE_TEMPLATE/feature_request.md000066400000000000000000000003101474250745200230760ustar00rootroot00000000000000--- name: Feature request about: Suggest an idea for this project labels: proposal --- rioxarray-0.18.2/.github/ISSUE_TEMPLATE/installation_issues.md000066400000000000000000000013431474250745200237760ustar00rootroot00000000000000--- name: Installation issues about: Issues installing rioxarray (https://corteva.github.io/rioxarray/stable/installation.html) labels: installation-issues --- #### Installation method/steps - Installation method (conda, pip, from source, etc...) - Please provide all commands/steps you used to install rioxarray and GDAL/rasterio. #### Environment Information - rioxarray version you are attempting to install - rasterio version (`rio --version`) - GDAL version (`rio --gdal-version`) - Python version (`python -c "import sys; print(sys.version.replace('\n', ' '))"`) - Operation System Information (`python -c "import platform; print(platform.platform())"`) rioxarray-0.18.2/.github/PULL_REQUEST_TEMPLATE.md000066400000000000000000000003401474250745200207720ustar00rootroot00000000000000 - [ ] Closes #xxxx - [ ] Tests added - [ ] Fully documented, including `docs/history.rst` for all changes and `docs/rioxarray.rst` for new API rioxarray-0.18.2/.github/dependabot.yml000066400000000000000000000003321474250745200200220ustar00rootroot00000000000000version: 2 updates: # Maintain dependencies for GitHub Actions - package-ecosystem: "github-actions" directory: "/" schedule: # Check for updates to GitHub Actions every week interval: "weekly" rioxarray-0.18.2/.github/workflows/000077500000000000000000000000001474250745200172315ustar00rootroot00000000000000rioxarray-0.18.2/.github/workflows/build_docs.yaml000066400000000000000000000032021474250745200222210ustar00rootroot00000000000000name: Publish Docs on: push: branches: [ master ] release: types: [ created ] concurrency: group: ${{ github.workflow }}-${{ github.head_ref || github.ref }} cancel-in-progress: true jobs: docs: name: Publish Docs runs-on: ubuntu-latest steps: - uses: actions/checkout@v4 with: persist-credentials: false - name: Setup Conda uses: mamba-org/setup-micromamba@v2 with: # https://github.com/mamba-org/setup-micromamba/issues/225 micromamba-version: 1.5.10-0 init-shell: bash environment-name: docs create-args: >- python=3.10 rasterio xarray scipy pyproj pandoc - name: Install and Build shell: bash run: | micromamba run -n docs python -m pip install -e .[all] micromamba run -n docs python -m pip install -r requirements/doc.txt micromamba run -n docs sphinx-build -b html docs/ docs/_build/ - name: Deploy 🚀 uses: JamesIves/github-pages-deploy-action@v4 if: ${{ github.event_name == 'release' }} with: token: ${{ secrets.GITHUB_TOKEN }} branch: gh-pages folder: docs/_build/ clean: false target-folder: ${{ github.ref_name }} - name: Deploy 🚀 uses: JamesIves/github-pages-deploy-action@v4 if: ${{ github.event_name == 'push' }} with: token: ${{ secrets.GITHUB_TOKEN }} branch: gh-pages folder: docs/_build/ clean: false target-folder: latest rioxarray-0.18.2/.github/workflows/release.yaml000066400000000000000000000026121474250745200215360ustar00rootroot00000000000000name: Release on: push: branches: [ master ] pull_request: branches: [ master ] release: types: [ created ] concurrency: group: ${{ github.workflow }}-${{ github.head_ref || github.ref }} cancel-in-progress: true jobs: build: name: Build runs-on: ubuntu-latest steps: - uses: actions/checkout@v4 - uses: actions/setup-python@v5 with: python-version: '3.10' - name: Install dependencies run: | python -m pip install --upgrade pip python -m pip install build twine - name: Build package shell: bash run: | python -m build twine check --strict dist/* - name: Upload artifacts uses: actions/upload-artifact@v4 with: path: ./dist/* retention-days: 5 publish: name: Publish on PyPI needs: [build] runs-on: ubuntu-latest # release on every tag if: github.event_name == 'release' && startsWith(github.ref, 'refs/tags/') steps: - uses: actions/download-artifact@v4 with: name: artifact path: dist - name: Upload Wheels to PyPI uses: pypa/gh-action-pypi-publish@release/v1 with: user: __token__ password: ${{ secrets.PYPI_API_TOKEN }} skip_existing: true # repository_url: https://test.pypi.org/legacy/ # To test rioxarray-0.18.2/.github/workflows/tests.yaml000066400000000000000000000156431474250745200212700ustar00rootroot00000000000000name: Tests on: push: branches: [ master ] pull_request: branches: [ master ] schedule: - cron: '0 0 * * 0' concurrency: group: ${{ github.workflow }}-${{ github.head_ref || github.ref }} cancel-in-progress: true env: PIP_NO_BINARY: rasterio DEBIAN_FRONTEND: noninteractive jobs: linting: runs-on: ubuntu-latest steps: - uses: actions/checkout@v4 - uses: actions/setup-python@v5 with: python-version: '3.10' - uses: pre-commit/action@v3.0.1 docker_tests: needs: linting runs-on: ubuntu-latest name: Docker | GDAL=${{ matrix.gdal-version }} | python=${{ matrix.python-version }} | rasterio${{ matrix.rasterio-version }} | scipy ${{ matrix.run-with-scipy }} container: ghcr.io/osgeo/gdal:ubuntu-full-${{ matrix.gdal-version }} strategy: fail-fast: false matrix: python-version: ['3.10', '3.11', '3.12', '3.13'] rasterio-version: [''] xarray-version: [''] numpy-version: [''] run-with-scipy: ['YES'] gdal-version: ['3.10.0'] include: - python-version: '3.10' rasterio-version: '==1.3.7' xarray-version: '==2024.7.0' numpy-version: '<2' run-with-scipy: 'YES' gdal-version: '3.8.2' - python-version: '3.10' rasterio-version: '' xarray-version: '' numpy-version: '' run-with-scipy: 'NO' gdal-version: '3.9.3' steps: - uses: actions/checkout@v4 - name: Update run: | rm /etc/apt/sources.list.d/apache-arrow.sources apt-get update apt-get -y install software-properties-common add-apt-repository -y ppa:deadsnakes/ppa apt-get update - name: Set up Python ${{ matrix.python-version }} run: | apt-get install -y --no-install-recommends \ python${{ matrix.python-version }} \ python${{ matrix.python-version }}-dev \ python${{ matrix.python-version }}-venv \ python3-pip \ g++ \ git chown -R $(whoami) /github/home/ - name: Install dependencies run: | python${{ matrix.python-version }} -m venv testenv . testenv/bin/activate python -m pip install --upgrade pip export INSTALL_DEPS='rasterio${{ matrix.rasterio-version }} xarray${{ matrix.xarray-version }} numpy${{ matrix.numpy-version }}' [ "${{ matrix.run-with-scipy }}" = "YES" ] && export INSTALL_DEPS="${INSTALL_DEPS} scipy" python -m pip install $INSTALL_DEPS python -m pip install -e .[all] python -m pip install -r requirements/test.txt - name: run tests run: | . testenv/bin/activate python -m pytest --cov-report term-missing --cov=rioxarray --cov-report xml - uses: codecov/codecov-action@v5 conda_test: needs: linting name: ${{ matrix.os }} | ${{ matrix.python-version }} | rasterio-${{ matrix.rasterio-version }} | scipy ${{ matrix.run-with-scipy }} runs-on: ${{ matrix.os }} strategy: fail-fast: true matrix: os: [ubuntu-latest, macos-13, windows-latest] python-version: ['3.10', '3.11', '3.12', '3.13'] rasterio-version: ['*'] xarray-version: ['*'] run-with-scipy: ['YES'] steps: - uses: actions/checkout@v4 - name: Setup Conda uses: mamba-org/setup-micromamba@v2 with: # https://github.com/mamba-org/setup-micromamba/issues/225 micromamba-version: 1.5.10-0 init-shell: bash environment-name: test create-args: >- python=${{ matrix.python-version }} rasterio=${{ matrix.rasterio-version }} xarray=${{ matrix.xarray-version }} libgdal-netcdf libgdal-hdf4 libgdal-hdf5 pyproj netcdf4 dask pandoc - name: Install Env shell: bash run: | [ "${{ matrix.run-with-scipy }}" = "YES" ] && micromamba install -n test scipy micromamba run -n test python -m pip install -e .[all] micromamba run -n test python -m pip install -r requirements/dev.txt - name: Check and Log Environment shell: bash run: | micromamba run -n test python -V micromamba run -n test python -c "import rioxarray; rioxarray.show_versions();" micromamba info - name: pylint if: matrix.python-version == '3.10' shell: bash run: | micromamba run -n test pylint rioxarray/ - name: mypy shell: bash if: matrix.python-version == '3.10' run: | micromamba run -n test mypy rioxarray/ - name: Test shell: bash run: | micromamba run -n test pytest --cov-report term-missing --cov=rioxarray --cov-report xml - name: Test Build docs shell: bash if: contains(matrix.os, 'ubuntu') run: | micromamba run -n test sphinx-build -b html docs/ docs/_build/ - uses: codecov/codecov-action@v5 test_latest: needs: linting name: Test latest dependencies runs-on: ubuntu-latest steps: - uses: actions/checkout@v4 - name: Setup Conda uses: mamba-org/setup-micromamba@v2 with: # https://github.com/mamba-org/setup-micromamba/issues/225 micromamba-version: 1.5.10-0 init-shell: bash environment-name: test create-args: >- python=3.10 proj libgdal-core libgdal-netcdf libgdal-hdf4 libgdal-hdf5 cython netcdf4 - name: Install Env shell: bash run: | micromamba run -n test python -m pip install \ --index-url https://pypi.anaconda.org/scientific-python-nightly-wheels/simple \ --no-deps --pre --upgrade \ numpy \ pandas \ scipy; micromamba run -n test python -m pip install --upgrade \ git+https://github.com/dask/dask.git@main \ git+https://github.com/dask/distributed.git@main \ git+https://github.com/mapbox/rasterio.git@main \ git+https://github.com/pyproj4/pyproj.git@main \ git+https://github.com/pydata/xarray.git@main; micromamba run -n test python -m pip install -e .[all] micromamba run -n test python -m pip install -r requirements/test.txt - name: Check and Log Environment shell: bash run: | micromamba run -n test python -V micromamba run -n test python -c "import rioxarray; rioxarray.show_versions();" micromamba info - name: Test shell: bash run: | micromamba run -n test pytest --cov-report term-missing --cov=rioxarray --cov-report xml rioxarray-0.18.2/.gitignore000066400000000000000000000024201474250745200156220ustar00rootroot00000000000000# Byte-compiled / optimized / DLL files __pycache__/ *.py[cod] *$py.class # C extensions *.so # Distribution / packaging .Python env/ build/ develop-eggs/ dist/ downloads/ eggs/ .eggs/ lib/ lib64/ parts/ sdist/ var/ wheels/ *.egg-info/ .installed.cfg *.egg # PyInstaller # Usually these files are written by a python script from a template # before PyInstaller builds the exe, so as to inject date/other infos into it. *.manifest *.spec # Installer logs pip-log.txt pip-delete-this-directory.txt # Unit test / coverage reports htmlcov/ .tox/ .coverage .coverage.* .cache nosetests.xml coverage.xml *.cover .hypothesis/ .pytest_cache/ # Translations *.mo *.pot # Django stuff: *.log local_settings.py # Flask stuff: instance/ .webassets-cache # Scrapy stuff: .scrapy # Sphinx documentation docs/_build/ # PyBuilder target/ # Jupyter Notebook .ipynb_checkpoints # pyenv .python-version # celery beat schedule file celerybeat-schedule # SageMath parsed files *.sage.py # dotenv .env # virtualenv .venv venv/ ENV/ # Spyder project settings .spyderproject .spyproject # Rope project settings .ropeproject # mkdocs documentation /site # mypy .mypy_cache/ # pycharm .idea/ # pytest .pytest_cache/ # coverage coverage.xml test-reports/ # vscode .vscode/ # docs docs/doctrees/ rioxarray-0.18.2/.isort.cfg000066400000000000000000000000721474250745200155320ustar00rootroot00000000000000[settings] known_first_party=rioxarray,test profile=black rioxarray-0.18.2/.pre-commit-config.yaml000066400000000000000000000013661474250745200201230ustar00rootroot00000000000000default_language_version: python: python3.10 repos: - repo: https://github.com/pre-commit/pre-commit-hooks rev: v4.5.0 hooks: - id: check-yaml - id: end-of-file-fixer - id: trailing-whitespace - repo: https://github.com/psf/black-pre-commit-mirror rev: 23.12.1 hooks: - id: black - repo: https://github.com/pycqa/isort rev: 5.13.2 hooks: - id: isort args: [rioxarray/, test/, docs/] - repo: https://github.com/asottile/blacken-docs rev: 1.16.0 hooks: - id: blacken-docs args: [--skip-errors] - repo: https://github.com/pycqa/flake8 rev: 6.1.0 hooks: - id: flake8 rioxarray-0.18.2/.pylintrc000066400000000000000000000006041474250745200155010ustar00rootroot00000000000000[MASTER] extension-pkg-whitelist=rasterio.crs,pyproj.database [MESSAGES CONTROL] disable=logging-fstring-interpolation, too-few-public-methods, too-many-arguments, line-too-long, protected-access, fixme, too-many-public-methods, duplicate-code enable=c-extension-no-member [FORMAT] max-module-lines=1250 [DESIGN] max-locals=20 rioxarray-0.18.2/AUTHORS.rst000066400000000000000000000436231474250745200155230ustar00rootroot00000000000000=============== Contributors ✨ =============== Thanks goes to these wonderful people (`emoji key `_): .. raw:: html

Alan D. Snow

💻 🤔 💬 🐛 📖 💡 🚧 👀 ⚠️

Alfredo Delos Santos

💻 🤔 👀

David Hoese

🤔 👀 💻 ⚠️

Justin Gruca

👀

Vincent Sarago

📖 ⚠️

Rich Signell

🤔

pmallas

💻 🤔

David Brochart

💻 ⚠️ 🤔 📖

Taher Chegini

💻 🐛

Joe Hamman

💻 🐛

Tom Augspurger

💻 🐛 🤔 📖

RichardScottOZ

📖

Ray Bell

📖

Alessandro Amici

💻 📖 ⚠️

remi-braun

📖

Scott Henderson

🐛 💻 ⚠️

Andrew Annex

💻 📖 ⚠️

Fred Bunt

🐛 ⚠️ 💻

Markus Zehner

🐛 💻 ⚠️ 🤔

Seth Miller

💻 📖 ⚠️

Martin Raspaud

💻 ⚠️ 📖 🤔 🐛

Mauricio Cordeiro

🐛 💻

GBallesteros

🐛 💻 ⚠️

apiwat-chantawibul

📖

Mike Taves

🚧

Sangzi Liang

📖

jonasViehweger

💻 🐛

Carlos H Brandt

📖

Jessica Scheick

📖

clausmichele

👀 📖

Seth Caldwell

🐛 💻

stefank0

📖

Ian Carroll

🚧

Yvonne Fröhlich

📖

Kirill Kouzoubov

💻

Xavier Nogueira

🐛

Valan Baptist Mathuranayagam

📖

Peter Marsh

💻 ⚠️

Daniel Lusk

💻 📖

Daniel Jahn (dahn)

📖

Patrick Hoefler

🐛

Daniele Zanaga

📖
This project follows the `all-contributors `_ specification. Contributions of any kind welcome! rioxarray-0.18.2/CODE_OF_CONDUCT.rst000066400000000000000000000063171474250745200166520ustar00rootroot00000000000000Contributor Covenant Code of Conduct ==================================== Our Pledge ---------- In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race, religion, or sexual identity and orientation. Our Standards ------------- Examples of behavior that contributes to creating a positive environment include: * Using welcoming and inclusive language * Being respectful of differing viewpoints and experiences * Gracefully accepting constructive criticism * Focusing on what is best for the community * Showing empathy towards other community members Examples of unacceptable behavior by participants include: * The use of sexualized language or imagery and unwelcome sexual attention or advances * Trolling, insulting/derogatory comments, and personal or political attacks * Public or private harassment * Publishing others' private information, such as a physical or electronic address, without explicit permission * Other conduct which could reasonably be considered inappropriate in a professional setting Our Responsibilities -------------------- Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior. Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful. Scope ----- This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers. Enforcement ----------- Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at https://github.com/corteva/. The project team will review and investigate all complaints, and will respond in a way that it deems appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately. Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project's leadership. Attribution ----------- This Code of Conduct is adapted from the Contributor Covenant_, version 1.4, available at version_. .. _Contributor Covenant: http://contributor-covenant.org .. _version: http://contributor-covenant.org/version/1/4/ rioxarray-0.18.2/CONTRIBUTING.rst000066400000000000000000000066721474250745200163100ustar00rootroot00000000000000.. highlight:: shell ============ Contributing ============ Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given. You can contribute in many ways: Types of Contributions ---------------------- Report Bugs ~~~~~~~~~~~ Report bugs at https://github.com/corteva/rioxarray/issues. If you are reporting a bug, please include: * Your operating system name and version. * Any details about your local setup that might be helpful in troubleshooting. * Detailed steps to reproduce the bug. Fix Bugs ~~~~~~~~ Look through the GitHub issues for bugs. Anything tagged with "bug" and "help wanted" is open to whoever wants to implement it. Implement Features ~~~~~~~~~~~~~~~~~~ Look through the GitHub issues for features. Anything tagged with "enhancement" and "help wanted" is open to whoever wants to implement it. Write Documentation ~~~~~~~~~~~~~~~~~~~ rioxarray could always use more documentation, whether as part of the official rioxarray docs, in docstrings, or even on the web in blog posts, articles, and such. Submit Feedback ~~~~~~~~~~~~~~~ The best way to send feedback is to file an issue at https://github.com/corteva/rioxarray/issues. If you are proposing a feature: * Explain in detail how it would work. * Keep the scope as narrow as possible, to make it easier to implement. * Remember that this is a volunteer-driven project, and that contributions are welcome :) Get Started! ------------ Ready to contribute? Here's how to set up `rioxarray` for local development. 1. Fork the `rioxarray` repo on GitHub. 2. Clone your fork locally:: $ git clone git@github.com:your_name_here/rioxarray.git 3. Create a python virtual environment Using conda:: $ cd rioxarray/ $ conda env create $ conda activate rioxarray Using python:: $ cd rioxarray/ $ python -m venv venv $ . venv/bin/activate 4. Install your local copy into a virtualenv:: $ python -m pip install -e ".[all]" $ python -m pip install -r requirements/dev.txt 5. Setup pre-commit hooks:: $ pre-commit install 6. Create a branch for local development:: $ git checkout -b name-of-your-bugfix-or-feature Now you can make your changes locally. 7. When you're done making changes, check that the tests pass:: $ pytest 8. Commit your changes and push your branch to GitHub (this should trigger pre-commit checks):: $ git add . $ git commit -m "Your detailed description of your changes." $ git push origin name-of-your-bugfix-or-feature 9. Submit a pull request through the GitHub website. Running tests with docker ------------------------- This assumes you have cloned the rioxarray repository and are in the base folder. 1. Build the docker image .. code-block:: bash docker build -t rioxarray . 2. Run the tests .. code-block:: bash docker run --rm \ -v $PWD/test/:/app/test \ -t rioxarray \ 'source /venv/bin/activate && python -m pytest' Pull Request Guidelines ----------------------- Before you submit a pull request, check that it meets these guidelines: 1. The pull request should include tests. 2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function with a docstring, and add the feature to the list in README.rst. 3. The pull request should work for Python 3.10-3.12. Tips ---- To run a subset of tests:: $ pytest test/unit/test_show_versions.py::test_get_main_info rioxarray-0.18.2/Dockerfile000066400000000000000000000013701474250745200156270ustar00rootroot00000000000000ARG GDAL=ubuntu-full-3.8.2 FROM ghcr.io/osgeo/gdal:${GDAL} ARG PYTHON_VERSION="3.12" ENV LANG="C.UTF-8" ENV LC_ALL="C.UTF-8" ENV PIP_NO_BINARY="rasterio" RUN apt-get update && apt-get install -y software-properties-common RUN add-apt-repository -y ppa:deadsnakes/ppa RUN apt-get update && \ DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \ g++ \ gdb \ make \ python3-pip \ python${PYTHON_VERSION} \ python${PYTHON_VERSION}-dev \ python${PYTHON_VERSION}-venv \ && rm -rf /var/lib/apt/lists/* WORKDIR /app ADD . /app RUN python${PYTHON_VERSION} -m venv /venv && \ /venv/bin/python -m pip install -U pip && \ /venv/bin/python -m pip install -e .[dev,doc,test] ENTRYPOINT ["/bin/bash", "-c"] rioxarray-0.18.2/LICENSE000066400000000000000000000250621474250745200146460ustar00rootroot00000000000000 Copyright (c) 2019-2023, Corteva Agriscience™ All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS rioxarray-0.18.2/LICENSE_datacube000066400000000000000000000012161474250745200164710ustar00rootroot00000000000000# copy of datacube license # https://github.com/opendatacube/datacube-core/blob/1d345f08a10a13c316f81100936b0ad8b1a374eb/LICENSE Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. rioxarray-0.18.2/LICENSE_xarray000066400000000000000000000240411474250745200162300ustar00rootroot00000000000000Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: You must give any other recipients of the Work or Derivative Works a copy of this License; and You must cause any modified files to carry prominent notices stating that You changed the files; and You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright [yyyy] [name of copyright owner] Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. rioxarray-0.18.2/MANIFEST.in000066400000000000000000000003211474250745200153660ustar00rootroot00000000000000include AUTHORS.rst include CONTRIBUTING.rst include LICENSE include LICENSE_datacube include LICENSE_xarray recursive-exclude test * recursive-exclude * __pycache__ recursive-exclude * *.py[co] prune docs/ rioxarray-0.18.2/Makefile000066400000000000000000000050511474250745200152750ustar00rootroot00000000000000.PHONY: clean clean-test clean-pyc clean-build docs help test .DEFAULT_GOAL := help define BROWSER_PYSCRIPT import os, webbrowser, sys try: from urllib import pathname2url except: from urllib.request import pathname2url webbrowser.open("file://" + pathname2url(os.path.abspath(sys.argv[1]))) endef export BROWSER_PYSCRIPT define PRINT_HELP_PYSCRIPT import re, sys for line in sys.stdin: match = re.match(r'^([a-zA-Z_-]+):.*?## (.*)$$', line) if match: target, help = match.groups() print("%-20s %s" % (target, help)) endef export PRINT_HELP_PYSCRIPT BROWSER := python3 -c "$$BROWSER_PYSCRIPT" help: @python -c "$$PRINT_HELP_PYSCRIPT" < $(MAKEFILE_LIST) clean: clean-build clean-pyc clean-test clean-docs ## remove all build, test, coverage and Python artifacts clean-build: ## remove build artifacts rm -fr build/ rm -fr dist/ rm -fr .eggs/ find . -name '*.egg-info' -exec rm -fr {} + find . -name '*.egg' -exec rm -f {} + clean-pyc: ## remove Python file artifacts find . -name '*.pyc' -exec rm -f {} + find . -name '*.pyo' -exec rm -f {} + find . -name '*~' -exec rm -f {} + find . -name '__pycache__' -exec rm -fr {} + clean-test: ## remove test and coverage artifacts rm -f .coverage rm -fr htmlcov/ rm -fr .pytest_cache clean-docs: ## remove builds rm -fr docs/_build/ rm -fr docs/examples/.ipynb_checkpoints/ rm -fr docs/getting_started/.ipynb_checkpoints/ lint: ## check style with flake8 flake8 rioxarray/ test/ black --check . check: lint pylint: ###### PYLINT ###### pylint --rcfile .pylintrc rioxarray # Run our custom linter on test code. pylint --load-plugins tests.linter --disable=I,E,W,R,C,F --enable C9999,C9998 tests/ test: ## run tests quickly with the default Python pytest docs: ## generate Sphinx HTML documentation, including API docs # rm -f docs/rioxarray*.rst # rm -f docs/modules.rst # sphinx-apidoc -o docs/ rioxarray $(MAKE) -C docs clean $(MAKE) -C docs html docs-browser: docs ## generate Sphinx HTML documentation, including API docs $(BROWSER) docs/_build/html/index.html release: dist ## package and upload a release twine check --strict dist/* twine upload dist/* dist: clean ## builds source and wheel package python -m build report: install-dev coverage ## clean, install development version, run all tests, produce coverage report install: clean ## install the package to the active Python's site-packages python -m pip install .[all] install-dev: clean ## install development version to active Python's site-packages python -m pip install -e .[all] python -m pip install -r requirements/dev.txt rioxarray-0.18.2/README.rst000066400000000000000000000074111474250745200153260ustar00rootroot00000000000000================ rioxarray README ================ rasterio xarray extension. .. image:: https://badges.gitter.im/rioxarray/community.svg :alt: Join the chat at https://gitter.im/rioxarray/community :target: https://gitter.im/rioxarray/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge .. image:: https://img.shields.io/badge/all_contributors-42-orange.svg?style=flat-square :alt: All Contributors :target: https://github.com/corteva/rioxarray/blob/master/AUTHORS.rst .. image:: https://img.shields.io/badge/License-Apache%202.0-blue.svg :target: https://github.com/corteva/rioxarray/blob/master/LICENSE .. image:: https://img.shields.io/pypi/v/rioxarray.svg :target: https://pypi.python.org/pypi/rioxarray .. image:: https://pepy.tech/badge/rioxarray :target: https://pepy.tech/project/rioxarray .. image:: https://img.shields.io/conda/vn/conda-forge/rioxarray.svg :target: https://anaconda.org/conda-forge/rioxarray .. image:: https://github.com/corteva/rioxarray/workflows/Tests/badge.svg :target: https://github.com/corteva/rioxarray/actions?query=workflow%3ATests .. image:: https://ci.appveyor.com/api/projects/status/e6sr22mkpen261c1/branch/master?svg=true :target: https://ci.appveyor.com/project/snowman2/rioxarray .. image:: https://codecov.io/gh/corteva/rioxarray/branch/master/graph/badge.svg :target: https://codecov.io/gh/corteva/rioxarray .. image:: https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white :target: https://github.com/pre-commit/pre-commit .. image:: https://img.shields.io/badge/code%20style-black-000000.svg :target: https://github.com/python/black .. image:: https://zenodo.org/badge/181693881.svg :target: https://zenodo.org/badge/latestdoi/181693881 Documentation ------------- - Stable: https://corteva.github.io/rioxarray/stable/ - Latest: https://corteva.github.io/rioxarray/latest/ Bugs/Questions -------------- - Report bugs/feature requests: https://github.com/corteva/rioxarray/issues - Ask questions: https://github.com/corteva/rioxarray/discussions - Ask developer questions: https://gitter.im/rioxarray/community - Ask questions from the GIS community: https://gis.stackexchange.com/questions/tagged/rioxarray Credits ------- The *reproject* functionality was adopted from https://github.com/opendatacube/datacube-core - Source file: `geo_xarray.py `_ - `datacube is licensed `_ under the Apache License, Version 2.0. The datacube license is included as `LICENSE_datacube `_. Adoptions from https://github.com/pydata/xarray: - *open_rasterio*: `rasterio_.py `_ - *set_options*: `options.py `_ - `xarray is licensed `_ under the Apache License, Version 2.0. The xarray license is included as `LICENSE_xarray `_. RasterioWriter dask write functionality was adopted from https://github.com/dymaxionlabs/dask-rasterio - Source file: `write.py `_ This package was originally templated with with Cookiecutter_. .. _Cookiecutter: https://github.com/audreyr/cookiecutter rioxarray-0.18.2/appveyor.yml000066400000000000000000000021601474250745200162230ustar00rootroot00000000000000#------------------------------------------------------------------------------- #System specifications for Appveyor #------------------------------------------------------------------------------- environment: matrix: - PYTHON_VERSION: "3.10" MINICONDA: "C:\\Miniconda3-x64" install: - 'SET PATH=%MINICONDA%;%MINICONDA%\\Scripts;%PATH%' - conda config --set always_yes yes - conda config --prepend channels conda-forge - conda config --set channel_priority strict #----------------------------------------------------------------------------- # Create conda environment #----------------------------------------------------------------------------- - conda create -n test python=%PYTHON_VERSION% rasterio scipy xarray netcdf4 dask - activate test #------------------------------------------------------------------------------- # Install rioxarray #------------------------------------------------------------------------------- - python -m pip install -e .[all] - python -m pip install -r requirements/test.txt build: false test_script: - python -m pytest --cov-report term-missing --cov=rioxarray rioxarray-0.18.2/codecov.yml000066400000000000000000000002431474250745200160000ustar00rootroot00000000000000coverage: status: project: default: target: 90% # the required coverage value threshold: 0.2% # the leniency in hitting the target rioxarray-0.18.2/docs/000077500000000000000000000000001474250745200145645ustar00rootroot00000000000000rioxarray-0.18.2/docs/Makefile000066400000000000000000000011421474250745200162220ustar00rootroot00000000000000# Minimal makefile for Sphinx documentation # # You can set these variables from the command line. SPHINXOPTS = SPHINXBUILD = python -msphinx SPHINXPROJ = rioxarray SOURCEDIR = . BUILDDIR = _build # Put it first so that "make" without argument is like "make help". help: @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) .PHONY: help Makefile # Catch-all target: route all unknown targets to Sphinx using the new # "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS). %: Makefile @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) rioxarray-0.18.2/docs/authors.rst000066400000000000000000000000341474250745200170000ustar00rootroot00000000000000.. include:: ../AUTHORS.rst rioxarray-0.18.2/docs/conf.py000066400000000000000000000122221474250745200160620ustar00rootroot00000000000000#!/usr/bin/env python # # rioxarray documentation build configuration file, created by # sphinx-quickstart on Fri Jun 9 13:47:02 2017. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # # If extensions (or modules to document with autodoc) are in another # directory, add these directories to sys.path here. If the directory is # relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. # import importlib.metadata import os import sys sys.path.insert(0, os.path.abspath("..")) # -- General configuration --------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ "sphinx.ext.autodoc", "sphinx.ext.intersphinx", "sphinx.ext.viewcode", "sphinx.ext.napoleon", "sphinx_click.ext", "nbsphinx", ] intersphinx_mapping = { "pyproj": ("https://pyproj4.github.io/pyproj/stable/", None), "rasterio": ("https://rasterio.readthedocs.io/en/stable/", None), "xarray": ("http://xarray.pydata.org/en/stable/", None), } # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = ".rst" # The master toctree document. master_doc = "index" # General information about the project. project = "rioxarray" copyright = "2019-2023, Corteva Agriscience™" author = "rioxarray Contributors" # The version info for the project you're documenting, acts as replacement # for |version| and |release|, also used in various other places throughout # the built documents. # # The short X.Y version. version = release = importlib.metadata.version("rioxarray") # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ["_build", "Thumbs.db", ".DS_Store", "examples/.ipynb_checkpoints"] # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "sphinx_rtd_theme" # Theme options are theme-specific and customize the look and feel of a # theme further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". # html_static_path = ["_static"] # -- Options for HTMLHelp output --------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = "rioxarraydoc" # -- Options for LaTeX output ------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto, manual, or own class]). latex_documents = [ ( master_doc, "rioxarray.tex", "rioxarray Documentation", "rioxarray Contributors", "manual", ) ] # -- Options for manual page output ------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [(master_doc, "rioxarray", "rioxarray Documentation", [author], 1)] # -- Options for Texinfo output ---------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ( master_doc, "rioxarray", "rioxarray Documentation", author, "rioxarray", "One line description of project.", "Miscellaneous", ) ] # --- nbsphinx --- nbsphinx_execute = "never" rioxarray-0.18.2/docs/contributing.rst000066400000000000000000000000411474250745200200200ustar00rootroot00000000000000.. include:: ../CONTRIBUTING.rst rioxarray-0.18.2/docs/examples/000077500000000000000000000000001474250745200164025ustar00rootroot00000000000000rioxarray-0.18.2/docs/examples/COG.ipynb000066400000000000000000006532321474250745200200700ustar00rootroot00000000000000{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Example - Cloud Optimized GeoTiff (COG)\n", "\n", "See docs for [rioxarray.open_rasterio](../rioxarray.rst#rioxarray-open-rasterio)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import rioxarray\n", "\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# from https://openaerialmap.org/\n", "cog_url = (\n", " \"https://oin-hotosm.s3.amazonaws.com/\"\n", " \"5d7dad0becaf880008a9bc88/0/5d7dad0becaf880008a9bc89.tif\"\n", ")" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "rds = rioxarray.open_rasterio(cog_url, masked=True, overview_level=4)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "\n", "[643968 values with dtype=float64]\n", "Coordinates:\n", " * band (band) int64 1 2 3\n", " * y (y) float64 4.34e+06 4.34e+06 4.34e+06 ... 4.339e+06 4.339e+06\n", " * x (x) float64 -1.333e+07 -1.333e+07 ... -1.333e+07 -1.333e+07\n", " spatial_ref int64 0\n", "Attributes:\n", " transform: (1.194328566955879, 0.0, -13334019.180693429, 0.0, -1.1943...\n", " scales: (1.0, 1.0, 1.0)\n", " offsets: (0.0, 0.0, 0.0)\n", " grid_mapping: spatial_ref" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rds" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9ebQk2V2Y+d3YI/flZb69Xu1VXb2qN6m7JbQgoVZLICFkhOXBFow5xufMzAHbDLbBRtjG4GEwHg9nAONB5giwBMgSZyTLaF96V7W6qqu6q7qqXtVb6u0v94x9ufNHZD2V5RZWi2q11crvnDiZeSPixr2Rkfd3f9tNIaVkzJgxY8aMuREoL3cDxowZM2bMK4exUBkzZsyYMTeMsVAZM2bMmDE3jLFQGTNmzJgxN4yxUBkzZsyYMTeMsVAZM2bMmDE3jLFQGTPmGxBC/I4Q4p98i8d+UQjxt1+CNjwghLgohBgKId51o+sfM+alYixUxnxPI4R4vxDi4evLpJQ/LaX85y9Xm0b8M+C3pJQFKeXHb1SlQoj9QogvCCFcIcR5IcSbb1TdY8bAWKiMGfMdRwihfQuHLQDPvgSX/4/A00Ad+AXgz4QQjZfgOmO+RxkLlTHfNQghfl4IsSaEGAghnhdCfP+o/ANCiD8TQnxktO9rQojbrzvvHwohFkf7nhNC/PCo/Cbgd4D7Rmam7qj8Pwgh/sXofVUI8QkhxI4QojN6P/ci2/1+IcQjQojfFEK0gQ+Myn9SCHFuVO9fCCEWRuWLwEHg/xu1y/yr3rtRvUeBO4FfklJ6UsqPAmeAH7kR9Y8ZA2OhMua7BCHEMeB/Ae6RUhaBtwJL1x3yTuBPgRrwx8DHhRD6aN8i8DqgDPwy8IdCiGkp5Tngp4HHRmamygtcWgE+SKY57AM84Le+jS68GrgMNIFfGflJ/jHwbqABfIVMi0BKeQhYAX5w1K7gBe7HJ4QQ3W+yfeKbtOFm4LKUcnBd2elR+ZgxN4TvCaEihPgHQggphJh4gX2WEOJJIcRpIcSzQohfvm7fPxdCPCOEOCWE+LQQYmZUbgghPiiEODM67w3fQhuEEOJXhBAXRrPT/+2GdvKVTwKYwAkhhC6lXJJSLl63/ykp5Z9JKSPgXwMW8BoAKeWfSinXpZSplPIjwEXg3m/lolLKlpTyo1JKdzQY/wrw+m+j/etSyv9bShlLKT3g7wC/KqU8J6WMgX8J3HFNW/kW2vUOKWXlm2zv+CanFYDeN5T1gOK30Z8xY16QV4xQEUK8QQjxH16gfB54C9nM74UIgDdJKW8H7gAeFEK8ZrTv16WUt0kp7wA+AfzTUflPAUgpbx3V/RtCiP/evXw/MA8cl1LeBHz4W+3bGJBSXgJ+hsx0tC2E+PA1IT9i9bpjU+AqcG0S8DdHE4PuyMR1C/DfTDBeCCFETgjxu0KIZSFEH/gyUBFCqC+yC6vf8HkB+L+ua1MbEMDsi6z3xTAESt9QVgIGL3DsmDHfFq8YofKX8JvA/w684HLMMmM4+qiPNjna17/u0Px1dZwAPjc6ZhvoAncDCCF+QAjx2Miu/6dCiMLonL8L/LPRgHftvDEvAinlH0spX0s2IEvgX123e/7am5GAnwPWRzP/3yMzndVHJq6zZAM4fJPn4jr+PnAMeLWUsgR837XLvNjmf8PnVeDvfIOGYUspH/1WKhNCfGrkb3mh7VPf5LRngYNCiOs1k9t5aQICxnyP8ooWKkKIHwLWpJSn/zvHqUKIU8A28Bkp5RPX7fsVIcQq8Df4uqZyGninEEITQhwA7gLmR+a1XwTeLKW8EzgJ/L3ROYeA9wohTo4GhCM3sKuveIQQx4QQbxo5rX0y30Zy3SF3CSHeLbLIqp8h00Af5+uTgZ1RPT9BpqlcYwuYE0IY3+TSxdG1ukKIGvBLN6hLvwP8IyHEzaN2lYUQf+1bPVlK+baRv+WFtrd9k3MuAKeAXxqZfX8YuA346A3oz5gxwCtAqAghnhgJhH8P/NDIzHFKCPFOspDJf/qX1wBSymRk4poD7hVC3HLdvl+QUs4Df0Q22wX4fTLzykng3wCPAjGZDf8E8MioTX+LbFYNmT/Al1LeTTZz/v2/Yte/1zCBXwN2gU0yh/c/vm7/nwPvBTrAjwPvllJGUsrngN8AHiMTILcCj1x33ufJZuqbQojdF7juvwHs0XUfB/7LjeiMlPJjZJrWh0dmtbPACwqDG8yPkWnVHbL7+R4p5c534LpjvkcQr5Q/6Ro5y98vpXz/6POtZCYqd3TIHLAO3Cul3PxL6vklwJFS/p/fUL4AfFJKecsLnPMo8LfJtJH3SSn/+gsccx54UEq5JIQQQFdKWX7RHR3z3yCE+ABwWEr5P73cbRkz5nud73pN5ZshpTwjpWxKKfdLKfeTaRZ3fqNAEUI0hBCV0XsbeDNwfvT5ehPVD11XnhNC5Efv3wLEoxnx48ADQojD1x13dHT+x4E3jd6/Hrhwo/s8ZsyYMS8330pm7yuOUdTQv5dSPgRMA38wiuZRgD+RUl6L8/81keVHpMAyWU4DZKaXvxBCpMAambkFKeWOEOL9wH8UX09Y+0UyAfJrwB8JIX6WLArnhq8XNeblQwjxO8ALaUp/KKX86RcoHzPmFckrxvw1ZsyYMWNefl6x5q8xY8aMGfOd57va/CWEGKtZY8aMGfPi2ZVSviQLiY41lTFjxoz53mP5pap4LFTGjBkzZswN47va/PU/IjMzM+zbt49WfwdVsZidnSeKh1RreTqdHs+fW2fQi/i7P/1+njn9HE88fpJCoYTr+hw8uJ+zz56mXC5TraVomkkulyOKIq5cuUx9oky326JZKHPfffeR0y2CIEBRNBIBimFy6tkzLC9vYZo6tVqBuZkm9XKRNE6YmZmj3+1Rn57h9Nee5lWvehXu0CGOY2SSAqNZhpI9FmmaksiUOE2QUpKmKZFQuRbcIYQgl8tlxyWjY4SGruvEcYipG2iqACRCymy/kr1mmyCOExRFQaCSpe+wV7cQAkVRUFUVTdNQFAXbzo/2SwxdJ/I9/MBDU1SsQsTipQtMT0/Sam8hUsnA9ahW6uzudrFKBZIkye4ZgpUrS5TLZYqFApZlkdcq6KZBt9ulVK0wMTHBkWNH+dSnPoWVy+HEPl4ScOzEYZr5EkGrz92330V7OOTUuXPcdtM+4jAijmP8MKDT67G5vYVdyDO3f46TJ09Sq5WxLItut8vy8gpveuODpAk0zGls2yYMQ6SUJEmCZVlIKfE8D0iz72l07+M4plarMRgMCMPsXnueRz6fR6gKO61dkiTh8uXL1JsNbE2j1WpxYP9+dF2n1+5w6NAhdrd3mNm/j1arhWma7O7uomkatVqNIAhI0xQUQZIkaJqGkBBFEYoQNBoNGD0319qVpim2baOq2feZpimGkOh6tmB0kiSkaYppmiRJguM4XGxdQVUsllc2efjhR3H9IYuXV/jZv/cTLD6/yVefeAKn2+ff/ut/S61SIZES3TSw8zkMU7K+vo4QgkqlhucFTDan+MQnPsHGxgbH7jzE5aVFDh8+zKMPP4IAZhqT3HvnPQSeT2tthyPHb+P8hSt87vNf5MD+OR64/w50bYiZO4Bl5ykUq3zojz7MFx9+DCkMhG4Rp5I42kERGpEfkaYpV1eXOXxkknf80Btp7Vzl3rsOIoTKna96Ne1Wn63NNqaZo1KeQNMMAg/+y8c+wQMPvBZHgt2c4itPPMWg7bJy8QqLl8/iOB5RFJOzCxRLOR547atZW1umXKzxG7/xG5w6dYof/dEffWkHtRfJWKjcYEzTZDAYYJomqmIShj5xGtDt+Vy5sszWZodScYq1tTVKpRKzczMMBx75vI3nD6nXq6RpTKGYY2e7w8LCAq3WLmHoUyhM47hdquUSxBGJUJFpgqbpKKogkjFpGqPqGvmCPRqQFYSQ6IYgjjx0QzDdnMQ5eAgFQc42CQJQJEiZkqYpqpopsGkKcaqgptngkKKQpsregC+lJAiCPSGhKAqarqBpCgo6uqHuqcJCJkgJQlH2BJSUAlVlJDzEnmBJ03Rvu164aJqG7/sIkZ0fKFAplgijgCRJ0A2VfN5GFRJVSnL5HIqStcDzHKxykSAIcBwHUkkub2HoKroisA2dJAywcwb5nImpK1iGiu8NmWzWs8F96GLbBnEc0Ou3qJg2G+urVJqTHFzYx7DfI01TOp0e7Xab3qCPYVmoik6tUuXg/gUSmRDFAZevXMK2Cux2dqnVJjBNHU1T8P2YNE6y+5vEAFiaSiwlSMG1YE1DN9FUQZpEpEmEVAQyifDdIUJTKeRs2u129t0rgpnZSeLIZ//+ebY2NigWbALfQSgp/V4bmUakiUBVJLal43tDhBA4wwH5fBHfcTBNE0VRMBSVfD4PSUIcx9i6BiL7Ht0gQBgaipDZJCFNkQqkafa8xHE8+h5dFEXhypVFdt0N7rrzPgq5IpP1Oiurl5FRn8DtszA7y2d22+hC8KXPf4Yffte7UQFNFShIPK9Hp7NFzi4gSwWKBYso9CiXihi6hus7HDhwgHKpQK/bplauYBkGhUKBp586xezkHFeWr/L4k09z4eIS260tbnvVYWaaKsV8nuHQwVU09h/YR+5rp0ExUQybRMJw2CONJWbOJg790e9fxXf7NCYqmKYgTRIG/Rau4+N7DuVilc9++jNMTc0g0ChXslWEPM/n+TNneebssxCpJLFECJU0lchUoGkacRyzsLDA1tYa73nPe6jVavzMz/zMd3B0+9YYm79uMMVikSiK0HWdcrlMFAc4Tg8/cHE9h3KlRKVaYnNzDd0QLCzM43oDgnDIxsYqhqng+UOkTKhUSriuQ7FYJJe3qNdrlEoF5qYmMTQV29Ap5XMgZDYopwm2qaMgGQ6HpGlMkkSUKwVKpSJxHHJo/wJCQqVSYdDvEscxSRgSxxFJHBJHAXHkE0chYRgQh342cKUpaZwQhiFxHBPH8d6sGtjTJuI4zupJQpIowvd9Qt/F931838UPXDzfwfd9PM8jSeKvCxGZvb9Wt+/7hGFIFEUkowEsTbOBdk+L0RRc1yVJIjY3trGsHOeePU8SJfiuj0wgDkOiKCEIYjzXJwpj0lRSKddQFI00TSmXSoS+S6VcZKJexbYMBv0uayvLTDcbpFFIuVykUMizvbPJ0OmjaQq6KlhfW8EyVcI4odGYpFGfQFcNfCciiiRraxtsbW2RyxWwTJMoTPC9kNl98wRBxHDgjgRlTBh4+IGLbeqkcUjouxRyNjKOSaOIJAxJo4jI9+l3OoSeh6XrWIaJbVooioIiwR5pQ0KCZZgsXVnklltPcOb00yhICoUcUeCRswwCz0FXBaqQWIaG5wywTZ3Wzha2qWNoCgophqZgmzpb2xuoCghSTEMDmYBMEKTEUYAgRREyEyykxCImURIiIkIZ4sUefuKj53Q6ww61cgldEUzVarzxtffxwD33cNdtN/Pc106RtzRuu/koP/G3fpydzQ1MXcPQVDShkCYJve4unjNEEQme66CKrF0333Sc1s4uvh9iGAZpmnLzzTdTq9RBKgwHHk88fpIvPPIYH/vkp3jsq6eY2neQ7VafZ559lqHvsbO9TiFvEYUu3/fAA3iegx+4hGH2XLquS384IAg8PM/hvT/2LgxT48yZUzQn66ytrTIzO42maRiGQS6XY9++fZw/f4GlpRVOP/M1Go06tm1j5/OcOfMspXIVRajs7LYBUBQF0zTZ2dlGCIULFy7geQEPPvggP/mTP8n6+vrLNtZ9M9QPfOADL3cbvm1++Zd/+QMvdxu+EdM0GQ6H7JufY3trizQJqdVtGhNF7rnrLuqVSXrtIX7YZW5uGts2md83jSSm1V4nThxuu/04njvk5hO3EscJ9XqVK0uXOXLkMM3mBPsmJ4EUVVEQCqhCwbQMIplSb0xgahbdTpvJRpUo8rAtkySOqVYrTE3P0G475PM5BoM+aRSjaSqGrqIokKYJSRITxyEpEoEARUFVBEkqiVH2BvTrNZZr2odQJKqq4DnZD9A2DCAlDFxkmqDoOqqq4vveSJhks1chMg1GGa0obxgGmqbtmU0sy6Lf72OamUkwlTEyTYnCEEUBmUos22bl8goLc/tpb7WpliaQicLK6ia5XJWd9gBF1ZGJQtEuUsgXKecK2IbF3OQsx44cw3VdDF1H0zSSOEFVVdI0JQxDdNtAMRRauztM1ydYaE6hSChWaywuLdEfOpQLFYqFMrVSA4RBpd5kY6uNbVpsru9QKJRYWV5jYeEQg0HAYOhz2213E7seURSiGzqaqqIpCpqqkoQhnuug6SpRGGCZBsiUfD6XaZZJTBj4oyWQJYaZrYup6RqddpswDqnXaxw5fJCTTzxJtVqlWCjiOQ6apo20h4ThYIhMJXEUUa1UGfT7ICWFfB6SEE0RpHGEM+ixtb1JsZSnUi3hjQRSEPqEoU8qE0zLIJUJkpTBoMem0+HcpecJSVjZuIqetxCmxmNPPYlmGxybm6Nkl6iXavR2OuybmebYwYMszE5Tqzd5/Wtfy8H5ee658y7+5CMf4erqGrffcQcDZ0hr9ypf+fKXKBVKVMpVSCWBF1Apl7Atg1bfp1KssLOxg9N3mJ/ej8Dka089x6lT59lyfFY2OnipSoSgM+wQxT5BPGAiV8O2TJyhg25o/PA738Xy6ipLly9jaCrdQQuBJE0lYeDzrne9Hc/rUavnuOvuW9jd2aYxMY3jRBSLdZAWZ89eYmO9RbXaZOhto6IyO7fAvoPHePjk07S7Dr4X4vSGROGAJIYoStA0g/3792HoOoePHOQXf+EXefzxx/8qQ9XGBz7wgX/3V6ngmzHWVF4CisUird1d8jmLarnExtpVDF2lUi5xYP8CvW4bw9TxfR9ESqlc4C0/8EYajTqQkiQju7zvY9s23W6ffD5Pt9tF13VSkS27K1QVVVVJyOzugecThxGzk5OcOHoEZ9CnYOdwHAfN0Fm9usbilcsjExMUC2XsQj6zgevanrnJsg1M08QwNEzTzAaeRO5pKEmS7G3XI4RA1/Xs1chMWZ7n4HvOnnnMcQbEcUgQXPszw8wmbxg6mqbuCaprgkvXdfSRIIJMI1I1MTKfZea3nZ0d/MDl8uIyMlVIwgQSQej4KKh4boSUkCQSVdGRUpCmEkVoGLrFxEQTKSWu6+I4DkmSYNs2hmGgqiqe5438TpJep4+qqoRhSBjExHGKoijs7u6SpBIpQNMMOu0eYRChGTbd3oCpiRnarS6tnQ6+H2JbeTwvxDTz+GGmARqWiWEYWJa1dy8ty8I0s8UZ4jjONJGRn+laO6MoAikQKGQr8mebRJAmkiROMQyD7dYupVIp0yoNY09gX/NXTU1NoevZc7m7u7vXT0aCPwxDHMdBVVV6/T5xkqDpOlESEkQ+QgXTNugPe/QGXTq9NgOnT2fQJ0wTusMBO502MTKbAE02MfM5FGFweXGZr33tFIqiYVt5ppvTkEg21tbptlpomsb6+jo/93M/h2ma/PZv/zZpmrKw7xAHDxwFsmdFURQsy8LzPEqlEocOHCEOUmIv4vLFRa5cWWZjfZsvfflxolRD0fMI3WDoOpy45SZO3HqC1bWrdLpD+t0OcRSiKaArCqsrl/mht7+VnKmys3UVa2QObNTr5HIWzzzzDBsbG2zv7iIUDdMsIhQTz4+RaCSpwsVLV2hMTnH++QscO36cQqlIFCU0J6fo9wfk83kGvT5JFCMle79JVVV58MEHMQyDixcXuXz58ks9jH3bjDWVG8w15+pEpUwaxaSJx7333oZtgkwkGiYPf+kJ1ja2uOmmm3nyiadIYuj3B+xbmGdnd4dLly5RKVXpdvsMBkPOnz/P/Nwc/X6XqakZNjbWSQErn0NVdVRNIwoTytUaYRhSMEwsXUVRFFZWl6hP1OkNHBw/YaI5TbXcRNMNNjY3AHA9Fz/wkDJFNww83yOVEMYpbhigaSaJhDgGxch+uHuO+yjae/AVRSFNI7a2NvH9TEuxbANdU7EMHUVA33VGA3eMYRgMhw5RFKJpOkEQoKrZQHdNE0qS5OsOX8MAkWkNnueiKgqKkCwuXqRcKjExMcHWxjozjQY53YAkYTh0KFaq+FFIrlLCdQdM1GvkbZOJWpFqpUg5ZxEFDhcuXcEwDBpTk6ysrOD6HrV6nZXVVQzDoFSsIDSVc88+x5233kG1VMM0bIRu0/dC/LiPpmtMVGt4vodqGPTcIa954+u58MwzgEQ3dZI0oVav89nPf4G7730Nv/O7/47E95lfWMC0LJZXltF1PdPE4gjLMBGqwLIsoija80t0u13y+TzlcpkwliSpxA8jgjhGUVQmmk3sXA7TskllyObW1l5gQjzy1/hBQL/fp1AoEMcxrutiWRblcplcLsdgMKCQs1m7ehVFVRGayvbODrligU6vm5XpClJVQFPZ2N7i6uYGA9fB8T2COAJV4AyHaKrK/oUF1tfWMHQdZzjEtiw0o0Dfi+n0QyamZiiWamx3Wnz5kcd4+EtfZn5ujpnpGaampllaWmVu3z7e+tDbOX9hkT/+wz/i6afP8J4feS9RlO4FASiKwvnz5xFo7GxscPTwQU4cP87xYydY325zfnGFRNGyoANSDh+dp9u+SqmoctOR/VRyOW49epxet8dEYwKZxtSqVQJ3yLt/8G3cdOQgX/rKw9TKZVzXJU0kGxtroMS8450Pce7ieSabkyRS8PkvPgxCw86XOH3mWSaaUzzwutextH6JQq7EQw+9i1/9P34TN0lp73bpbO+gypQkDYmiGBCoqs6lSxcZOkNOPvnECw8+L46XTFMZO+pvMNVqlXa7Tc62UQsF8gWNSqnI0A3RNQVv6FEuFWg7LsNBgO8lXLm8imUZlCsFhgOPwE/o9/s0GlP0e0OmpqZYXV2j0azS6XTY2NpEm58nlQKhquiKTmqRzZwQ6CioEmammjhuj3yuSDR0qJQrPHvuAvEBnfl9s/QHDqahMTFRQSCJ4xDXG6KZBqqqo0mBJQVJKkCRSKEiRrPbaxFf12a76khr0nRJFAU4/QGFYg7SzBymALqucuDAgWxmDaiqjjP0UBSFfL5IkiSEQSZEDGNkxhmZaK7Vj/h6MIFl6iRhxMTEBIqiUCjaTE81sG2T0OkBEikTCoUcXXeI7w8xTQ1JhGXnUVWYnm7gDwekiWBycppKrYamGuzstpmamsI0bSYmmtSbDdZW1qjPNrGMHKaZw3U8IkUnbxfRdIMoCAlijzjxWVpexCqWMSyDi4vPMzc3w+WlRUAyMVFjdmGWW249gaYrTM80MSybVqdLo9HENCxUTUdVNZIoIQwjNMvANDQkCqaVI0kSDNNGUXXsXI7eMCCRci9ST4osIssLA8Ikpj9wydkFTCuHF0T4fphplapGIsHOZ5FxmmFi5fIMBgMsTcfOF+h0OvhhQNWogarQaDRwXZcwjpACymmBQqHAwBmy225lWpZpZNqf79EsT9Le2iFvWPRbHcq5AnnDQhRKRFGEm8KH/vSjkGp85YmT3H/fPbzq9hMcu+0OcqbJ8ePHKZVKtFt9Tj71FD/w1ofoDRzuvec1mLrGv/zVf8HR4zeztnaVfr9LGGf+uXqzgecl3P+aV4MMuHTpAgPHZWqqyU5nl3yhiogTcjmVyO9w5NA+Pv/ZT/Pzf/9/pb+1m2nXKqgC+r0u/ZVVDh05ytKVK8xPNmjUa2xtblNrNEmTBNs2qdYLfPZzn+dtP/hmFFVSqlZwfR8vCIjSCKEJLi9fpjHVoNVpM1ObZ+g4qIaOkOD5DjJJcB0P1WJkXlZI05T5+XmeOfP0yzCqvTjGmsoN5uabbyZNU3QpiaOQiYkyxaKG63Tpdwc8/KUn6bQcVKNMkigEQYqmWbTbHVqtNqqqkyQgZcTSlTV83+POV91FpVJmMOwxPz/P8tUVZubmsCyLOEzoDwYIBIOhi6brqFGMZZmoiqA+UWcYhsRSYWp6ntn5BTRhMFGrs9PaoVot8+hjj7G5uc5Eo85kcwrT0vHDkCROUTUjmwGioCgqiUz3zFLGyIQihCCO49EsOqBer3N1dZlms0kSxwRBQGt3G13XubK6gmmahGFIvz8gSWKQAt/3cF2POEr2wpOTJGE4HNLtdrFtm16vRxxHpGkW3hr4HlEYks/nKOTzbO1cJfQcZBjQb++QxCGlSpmhN8SLAlRbRVNhdnaSA/vnuOeu27j0/FmkDLF0wW43pN1uo5sGiqJw6MhhVtfXULTM9JYEkhQo16qIRFIvVTHMPM9fXsTM5VnZeI5KKY+MYxQBsUjBUOh7fVpXV2lM1NneXkczFVzfxbJtrq6t8erX3MvCzD7OnT/PE088wdzsLJqaRVjpuo7juCRpQqfTQVXVPRNVuVxGCEGr1SJOQIrM7KUZBkIoJBJWV6+yub3N1GSd3dYulXIZy7YZDIaZ+WrkMzJNk3K5zPnz5/F9f8/M6bouOdsmTSWJhHKpgpGz6fR6HDx0mFa7Q76cZ2Nrk/MXnqdcraJoKq7vkwKFUomNlavUazXiKKJUKNKoT2CZJnEUoasav/a7v0/fCdnYaRPEkotXLvMXn/sMZy88x/F98/zWb/0WDz74dizT4tZbb6dUrbK10yKWKb4X8La3vQNdN0iTlMFwgGWZhGH2HE5OTLC2eplud5cD++epNydxoogH3/5O/vNnPo0aeszN1LnllgMsXX4G4iHTtQpGqvDrv/7bHDo0T61eRUEAKUJKdE2AjDn13EXe97738fz5C7z+DW9g8fIiYeTxwOsfoNvv8uzZp/n857/AfQ/cT75Q4NFHH+f06Wd4zf2vJgwDchWbucl5Zpr7QLU5c/55Nja28Hp9bF1HCoGUgiRJRyHdChvrSzdqqBr7VL5bmJwyOHigQCcc0HYGrG1s0+86xFFEpVoklEPsikSkkq2NTTTDoDscYBfyaDqINGT/viZp6JG3BIEfEIQuS8sXOXHLcT77+U8zO1sn8AfEkYeiQKlSJkwlupVH6DYyZ9ByhwizSJzY5JQyqp/SyNlM5kxmJksMuhvMNCtUSnk0zWCnH3FuqcPaUKUTFEjUKqXqDEkiUHUdVVcwcjaWWcCycmiakWkWYYimqQyHA1zXoRK9w1gAACAASURBVLXj4wxSZueOIpQcqpmnUKlQbjb5ypOPU8rlCRwHf+igIVESCXGChsDSVFQNND3TjOI0i6KrVaskQYiWQl4kWGmE9AbkDJVSOcdur8Xazgabuy3qk1M4vkdzYpJ6pY5IBbZpoys6sxUD6bSZruSp5W2UUHJo/hhHFm4liQo0ynm8oM+5xWcJ9IhePCC1wccnVEIO3XWc5auLFHWFgqFg2jpO2GN+bpqdtWWa0wfpbAzpbzsEUtBNY9Z6bYIkplSustPapTlZZd/sBHktxW+3KCsWncu7rC9f5E2vezVvev39bG+ucuXyRbr9Np1+l1y5gBAC0zTJ5/O4rsv+/fuRUtLtdimXy3h+ZqaKw4CcYWFpBoQpSgxlo4it29RKFU6f+hq6ptBsTuF7CX4gUBKFznaHlStXOXjgMIVSCTcMaA+7OJFHZ7hGrqQy9Lr4SYRuWMztn2d1a5m+30bVFXpun4mZJqGS0E88VrtbLHU2CW2F+mQdzdBpNKcp5KtomIROQDB0cXpdBtsJmqxSqxyiWN6HZjRI0xKRa/PJzz6CZpXp9Xo8c+Zr6JrguXMXefzU8zx/1WW1t01lrslQBjjeEMvQKBgKZVPBSFy6g5DJ6cPsX7iVKLBobXaYKteYr+c50MgRRC0mpys4/SFCyVOoznB5e5dnd1fYCi1OXWnz9IWLeLKPXU4Z+n2sQpNATvLed3w/TRt+9n/+UeYLIHvrHN0/g6npBLHK7XfcwR1330OgmJCrst4bkpuoc+iWIzhJn7AdUS9ViKIer3/1CeitYyUehq0RmiqKcFCRaKjIOMB3/seL9HohxkLlBqNpGs1mE0VRSJIEz/NwXDeLCKrVOHToUObkDQMMw8D3fUxTJ4iymVW9MUGv16NYLOL6ksOH93Px4kUuL25QrdZIkoS1tY0sOilJCOOINJEUi2VSAQhBFEU0JiaJoghN1UfhuCmFQgHf9zEMg36/j+M4DIdDTNtmbW2Nz33uc/ze7/0ey8vLeJ7HbrtFLpfDtm0sy8KyLDRd2XMWXwuVVBSFUrlAqVygXC5imubI0a9j2zZxHJPP55mdncWyrL06BZlJS0pJFEVEUfRf5aRomoaSKQlZ4mM+t9fnaz6dOI6pVCp7A26n08E0TfwwwLIsVENne2eHWGb+n3w+z0Stnv3wg4ByuUy/36darpDP5ymVSpimied5tFotOp0OrutmeRmK4Mixo2yNfBNSpJRKJXRdRQK+75MiqdVqe2GsQZB9z3GcMDc3l+WZSAVV0SkWixSLxVG+xhUef/xxisUi999/P0ePZn/D02q19oIIPM/D930qlQq9Xo/19XUKo8TNUqmUaRW5HFtbWyjKtVDrhAMH99NqtXBdd0/L3NraIF+wcV2XQqGA43l7yZdxHGOaJrZtkysWKJfLxHGMZVmkacpwOKS9u4szGDLo9bl06RJbW1vINKW9mznVNUWlXCwik4RSoUi5XMYyTDRN2zN/AnvJqIVSEdM28AJ/1E+XoevQ6fXZ7XTYbXWQqWCi2WBx6Qof+tCH+Pif/yc++ME/4Etf+gpIjbl9C1TKNaIoRQidNFGAzN8XhiGDwYA4Sul0OijAT/3UT/GWN7+JQa+f9WknC2SoVussLa2wb36aM2dO4zgOiqIwHLroevZMO06fT37yk/i+z+FDh7jttts4fPgwmlA4+eRTDHp9dEVHFyqNygStnTY7WzscO3qUfrvHVHOacqHI7OwsxWJ2f0qlEpIEyzYJAo8oTrPcUqFiWjlU0/rODmbfJmPz1w1mdq5OPpfjuQsrpEmmLqu6pFIpIFSNfL7KleUNwlAlTGMKpTxhHOGHHjs7mwgRMzc3S7lSRtM1XDeg1Wlz8MgBvMBje3eH17z6Hnw/opArYdtFpBRsbLfw/IjF5VWuLF5ke6fN4098lanpWXr9IXY+R22ixtnnnmV3dwfTMvE8hy984Yuousmly0vsO3iEj3zkT7j5lhP8yLvfhSpgaekKuq6TpNkDriiZGQAkmi4wDA1VBU1T0TSVXC5HHIdImaBqgsXF51m8fIlOp8XMzBS2XUY3TCSCKEmJYkkUJ5l/SFFJ5dejXTLHf+asTtOEJE1QVAijmEzaCFBUhKJQqdZYW11GATrb29RKJbZ2tvGiCFfG6IUCFVtndmYW33GRCUxUJ/Bdj52tHbrtFt3BgNWNdQ4dPUIYRbi+h+s4AFkQwM4OtXqF2ekpNENld3eHgeMSJBFDz0WYgleduIVivsggCPFJiJIEXdUoGmWWVlbQTZOtnS2K5QqOFxKnAs0wqZTyWFaOUqlEvzvAtixyuQLFQoG1tXW2NjaypE2ysPVOp0OlUiGKIgaDAamUSFIM3UTXNYIgxDQtVldX8TyPL3zx08zOTZOkIZcWL5Kmknq9gRAKnu9SKBYpVst0+j0kklKlyKkzzyClpNfbRTUMKtV6FpGEpNftUC1X0DWNA4cPgwTLsKiUyuTtPIaqs39uASWBiXwRXdUJvQBFCvK5PIVCjnw+h6arPH5mkcHQQTdMdF3n8JEDDAZdkjTG1HU0VafXH/Ca++/jSw8/zEc++nFylQpXrq4xMz3Lo489xaMPP8mf/smf87rXvYEgTMnnCrS6A2IhsS2TdGSGzRcKTE5Osrm9RS6X4/577+GuO+9kcfEyQRhx+x138OUvP4LnR0R+j1o1x83HD6OiUqs0sMwinhcxPT3FH37o99i/sI+bjh+nWCiwvLzMj77nvZx55iyNepO6VcDtRtSKTZ569KtMlusoQUw89JitN7n1pluZbE6iaRpXlpd44uRJMAz6vgOaIBEakTRw3QTFMrn97ldx5eIN+2+/sfnruwXDMBgMBui6gaLqeEHE5sYWQRQRxjFhnGLnCqBITEsnSmOkkqCqgmK5QBAECCFYWl6l2+2iGTpmLluaxLQtDh46TLFYxg8ihp6PH0T0hy6XFi9z8tRp1je22G332NzZIUoEzzz7HGeeO0e712PgeCwcPMS5C88ThP5euLCmaYRhlqj4hS98geXlZYSq0BrN+ve0BkUhTZMsSVHGSJlky6UYGooCuqGQJDFB4JOkEXEcIoSgXq8SBB7D4XCUF5ESxymqoo98M9lgomnGSAO5fimXLBRZqApREhPFKULREEIFVcP1AgzTxnV9jhw5AknmH3A8j0KpxNBzMXI2TuAzGGSz0ShKqNVqDPsDatUq6nXLw1wLSXUchyiKyOVyFAoFojDk0pVL9Pt9+sNelp9hGoRJSBhFxGlmCnS8IOuLoRNFmV8iCgLSVBBH4HsRllkgny9SKJRI0xTf9wBlL3Q5l8vtaSdRFFEul6lUKntCdnNzMwtMKGTPy7XjFEVhMBjgui7D4RDXHVIoFFBVFTtnkiQRpVKmrRYKOaIoQJLQnJ5C0VUczyWXsxg4QzZ3tnFdl1KpQJwmKKrK9m72V/ZxGBEFIWmSQCpxHIduu0NzopFpIwgKlo2JgiVUTFVDSTOTr6qqe894qVLmiSefJJUxpqlnCaAipdPrkkiJ47oMnIChH7K8tsbFK1c4d/Eiq5tX8SOfVESsrK7zuu97E7lSFaEa/MVnvsTk1Cx9N8ANYoQCKSmqqlIoFPZWZcjn85lvzw8o5vK8/8f/JoVcnvW1bVw3JGeXqNdtbCsLeDCNPAITKRUGwz6KGvOWt7yZUrnItaXSjxw6zHPPPsvrH3g9r737Pt7x/e/kDfe9kde95vswFYtGqc7yxStYqMxOTDI/M0/o+agITp58kqE7wAsdZuamidKARAjQdDBNyrU6dq74HR7Nvj1eUqEihFgSQpwRQpwSQpwcldWEEJ8RQlwcvVavO/4fCSEuCSGeF0K89aVs20tFrzfgmWeewfNDwjilWC5ls2lVJYxTahMN+v0hXuQyOz9JvqQjlJggdsiXbCZnJskVclg5m+mZOdY2tkgTuLi4yFe+8gilaoVOz6FQKPPcuQt8+eHHeeKpp1HNHKmi03d9jHyJrhOCbtHqu7SHQx5+4kn+/FOf4pEnv8rBgweo1+usrl2l3pigPxyQLxRZ2Lef+x54HQuHD+L4Hrqu0+52SNPMOR/HMakMUZQUw8iWY0Ek+IFDKiM0TcEwFSxbwzQz/4iqQaFQYN++fUxNN0lSBUm2pYCiGhimjabbpFKgavrIHBYSBQGmaSBUwdWtq0RKTLFao1SrMwgCdjtdnj79DI899gSaYdGo1QnDkImJCQzLRNU1BoGHEwWY5QJ5K89g4FCvTmAbNqVSCd/xqVWqWIYJUnL8yFHWV69SKBTotNtZoqbnEQQBfuDR7rZIiFnb3mR5fQU/9uk6fVRLw7Ry7LZbbO22KJUr7LbbJFFK6EfsdoYcPHoCxchj5qt87fQ5Wr0+QRpj5E2mp6dHIdSSZrPJcOgiU1CULFdE13UajQaTk5NMTk4yGAzY2dnBtu2RwBGZECgXyOVyFIt5CoUC+byN4wz4gbd+P91eiySJmJioEEYBxVIew9DZ6ewy9F2kSHnu/Dl0KzPNNRp1BoMBrXaX/tDBMAwSmZBGIdViCVvo1PMVAs/n+JGjtLd3mGtOUTZsFiammCiUmSxWSMIIISFv57AMg9nZ2b1VFB566CHcYYvNrVUkMaal8/zz55ECao0JjHwZ1SrScQI++Mcf5j996j9z9JbjxErIwSMzFKsVLl25hKoZxFLhTz7+Mf7Vb/4mp547i13JE6UBYejjRyFIQRRERH6Apqj0u236rQ69dgclVSjlK2yubfEDb3k758+tsLLUJk0zwVwqTWHnGrS6HrWJKl955DPUGhPUJxoMnCHtTo8jR45x7OBxWmu7HJraT7k4jzfU+Pl/8E8QscLlS0v8tXe9hztvvYNbj91CvVRjotbA8T3OXbxAqkqMvIGXOBw+tp9KtUgqQ3QVThw/xnDQfbmHt2+J74Sm8kYp5R1SyrtHn/8h8Dkp5RHgc6PPCCFOAD8G3Aw8CPw/o7/4/a7h7rtuY2ZmhiTJFtC7lr9xLSO73W7vJWapqiCKA6ammkSxh6Km6EaW0Hb69GlUJZtR1evZD1tGEsuysqTDOM1yPeKsrFKp0esN8DwPRdfodIfZQG0Y9IcDhKKRIlF1jd12iyAIMHPZ4oFpmgKZj2Si2SCKsnDmKI7pDwfU6/WvL4mCQFEyv5Gmq6iaQqlUGEUkqWiagqpmJjFNz766fD5Pu72L7/toqjG6HgihEAYxnucRRcl/td5XHMfZbDiKEEIShj7rmxsM3AEr62v0nCFBFIGioJsm8ej+BkHA7bffvucD8QJ/ZI7LcjKSOEt+XF1d5dKlS5w8eTKbZXe7uK5LsVjEMAyWl5fJmVbm70lTut0ugZf5MiBbULHRaKAoCl4YsNPazaLlkixCq9aYICFb+6pYLGZh3rrO7k6bcqnC+tomQiikaeZLsm0bXTc5cuQYaZoyGDh7izJGUYRt5ffuZeaPC6lWq1QqFXZ2dlhaWkLXdYLAp9/vIxSJbdvs7u7S7/ep1+tsbm7uLfaYXS9LNA0CD2AvgTNKk5GZLeXIkSNMTU1x/2u/LzOBJgm2ZSFGa64Vi0Ua9QZJmFCr1LEMm8ANiIIYGUuUVJBEKYPBYC+izPM8er0enU4HTdM4e/YstWoR09BIkohOp42Ukk6nk0W5BRG6aeFHMdVGk+m5WW665WYOHNpHc7qBbsDFy8/T6u5QKOcoV8ucfu4UzdkG2611fN8lSsK9ZN1isZhF1A36BJ6PZRgoqPQ7fd733vfRqDe5urLGQw+9jTe+aT+z0zP4fkiKytCL+X8/+CE++rGPMXB7LC+vgKoghcpEs0G5XCVnF6hVqmiKxtZuh1Onz7K1vcvTZ87QaDa5+957mJ3fRy6fZ2d7G3c45NKlS3ieh+t7oAgKhQJu4GOqkDd15mYmufP2EzQr+e/sgPZt8nLkqbwTeMPo/R8AXwR+flT+YSllAFwRQlwC7gUeexna+KKYnZ1naqrJcNghSSRzc3OcW9xidmqWSjnH/vkFDDPGMCTPnT2DlNkaXVdXFxF6zE0nDrJ+dY211SVMxcDQdGSa4DgucZwi45iZfVMkhNnCj1GMpuggs9V/t7a2KJRqNPJFdrptVN0gjBPSFFTdRNUF1UIdP/JHC1xGnD17lonJCa6ubtCcmufS0ga12gSb2zuYOYlq6HiBj1QEqZRwnUkqyxnJEiB930dVxV72rwQQWTlAp9NjOHQpl6u0Wh0MozKKZDIQQqCpxigzP8sS9+IshFVXVbrtXc4/f5We5xARcnF5kbyWh6uwsLDA/gPzLC5dolgpkIoE08yxvb6758Q3dSMLwx2ZFdtDl0qlQr5Q4atPPc1Us0l79zGaEzXsvMXm9i6zBxa447bbubB0mSOHDvPpz36Gv/HX30c+n0fZWCNv22ysLqEpKpVyjZOnT3PHXfdyZXmFkllCprDVanH28kW6/QGTk7OkTsgdt97O1bUV1tZWkVJg6DmEUJiZaeAMXS6sbxGGIYrQMDWTNMqCAMIgM6GZppkl2Y3Cfy0rW6G6VqsxNTXF+tb6nnmn3W5TrVbR/n/23jxIkvQ87/vlnVlZ99V3T3dPT889uzvYE4tjiZMLQAsaAG1KvCCKoIMSKcuiLcoMiWGHKNJhhsNSSOZNhUWJEM0DICgSAHEucS0W2MXu7O7cZ99H3ZVZeR/+I6tqQYmmRJlLygFlxERPVHT1VGfVfN/3vu/z/B5ZpF6vYhgG5+9/nHb7iE6nNXbjZ2bKfL6IrMuMRiMuXbrO7GyTfE4np2pcvXqFSqWCIlZxbJd6NYfrjjg42EOXdN795Hu4c+cOpzdO4jsuhqxidfsYus7+3h76sRXyORMtr3J02GZuaYZup8/u7i7LxxZoH7VYmJ/nrU88zkc/9mlC3yaKMhhlqVql0+kwszRLv9ul59i4myN+8EMf5CvPfpl6s4ZttZhfKlCtG+zvtIgjjdUTCwR+n4/8/odZXprBHXpcvP8hcqKJqedJElBVmXq1SqlcYHjUm7aAZU3jv37/B/jox/4toigzP3eC4cDn9t09/tn/+eOkiYwgRnz9pa9z8YF13vPO9/Ojf/cf0myW2dvrc+L4PBvH13nTG9/Ib/zmb3Dp9iFXb1wFKUKUElbPbrB5tM+xuTncOEZVdCRF5ROf+jRbe/skkoTn+XiWhyQpCL7DxdOn+Ikf/0kevHien/np/4F/8tM/wd/5iZ/+y1zu/oPXa12ppMCnBEF4XhCEHxo/NpOm6T7A+Gtz/PgCsP1Nz90ZP/bHLkEQfkgQhOcm7bT/HK5KuUYURVMl0ezMPLqq0G4dkjdyKJLI4vwsjVqN+86fxczpFAs5osDFc4ZUKwXyOZVi3iSfMxBSiEKfmUaDKPSRZFBlkZyuYVtD0jjB0FQqxUxRU8iZCGSU4cmAWxTlKZdLENJxBaGiqjJ+4DK0B8zNzdFsNimVSkiSxLHV46yurtKYnclmAmOI4+TnAP+eUivzqCRTTPoEKjkZtheLRZIENM0gihJ6gy5+mKmkUiAhJkpioiQEMUUU5ex3IKMT1Go1RBFy+Rz5Yh5RFbEdC8cbsbO3TavbIkoj9vZ2aLVauK6LqqoYWqaIkkQRUzdIwgjPD8ibBXb29xAkmXw+T5wm2cYpwGg0otfrMT8/T3nsAZmg3lVVxRrYmHqONAZdNQjDmHKpioSENRzh+z65Qp7BYIAoZ+SBY4tLmEaO2zevUiuXKJgGx1dWGQ0t7L6NZ3ts39tkf3+fMMhw94Ef4vs+lpW1nPL54hQZ/+r7K05f16Qivn79KtGY8SZJEqqqEgQBSZLQaXfp94eIoowoytmGNa56+v0+uq5z5swpdnd2yOkG7sihkM/juS4vPP8inpPh913bQlNlDg72sUY2UZyiCDKyKKNpOqaZJ2eY1Kp1QGA0crA9FxQJ1/PQcwZmIVOsTdRmCzN1RCKGvS5R4KPKCrPNGUzdwHUdXN+h2azTnGvS6XdwvRG9fgdDl8nlNBr1MmHkcXR0gCTD7Fwdy+5w0Nrh2NoxdF3NvDOON1VlTj7DiZCZcIMgA0+aRo7/5v3v46l3PcnszDEWFo7T6gxJJRXNzOMEIZqus3NwhD3yOH3mJO1+H1mHv/L+9/HZL32Bf/4LP88f/OEnafXb48+3T2OmhiBlLDTDzBEmMfligRu3btId9JEUFdt26HUHWH2bfmfAoNen0+lw/4Vz7Gzf5eHX3U8Y2H95C91/5PVabyqPp2l6EXgS+FuCILzpT/le4U947N+LC07T9JfSNH3wm9ppf2nXgw89xomNM2MicIKuGwyHQxRF4cK5s1TLZfq9Dq5jkzcNhDSmVCygKRKkMbVqGdPQiQIfgZSl+QWWl5YoFQoUcgZJFFAqFNBUhbxp0KzXkAXwXYdapcLy0gL1ep1CoZBJEIMAWZRQZRlVFpGF7I8mKxAnlPImpUIe23HGiBSbYrFIq9WatoH29w6mTCl4lT2Uxsn4RKcShiGu441nLVmxm2WjRIRBROCHiIKEJMo0GzPMzy1QLlXIGSaWNcg4Zb6LIEKcRGSyz3R6YsyAk5m01LZtbNsmShLcyCNMQiQ9Q5ofHO4hqxK6rqLoCsORPQV6uq6LNRiiSwq6omKqOrm8iWYaeH6AljNQNI1iuYQgitijjAZ9eHiI67rk83kURWF5eZkgCOi1OwixQORFlAtlVElFlTWWFzLScLlYwbZtZFlhc2uLKI6JEtje3ubFF19kOOhy88ZVPMfBHTkUCwVKxWKmLktTVleOE0URo9Foeu9t2562PCctSABFUQjDcCp8cByHWq1Gs9mc5piYpkmtXkEURfr9PidOnGR3Z49Wq0WSgKHnCIOYKIoRUrCGfaqVCkkUsry4xMgaErk+R7u7HO0fUClWiIMQZzRicXGRUrVCEEXkS0XCICDyA4QkzQ4oioyqayRpiihJHHZaSKrCtds3yRWy+ZppmpiGQblQpFopct+5szSrFXRVplIqIAkCqqKgaiJGTsELXE6dOc3QHrK0tECzXmNutsH83AxJEqPJCsVikcuXL5MIyVhmroCQ8ekmgpMJlTqKIpIwQFF1xDFXjjjBGvY5vrbC4lyT+dl1Tp66yMtXbiMrOm4QUqk3OHvf/RhmiX/5ax9GkDIUfn1+lq2DPfLlInboIGoSg0GPcrVEY7bB8rH5MbA1wjSN6Wv6yle/Sq8/xB6NsB2X0cjHc0IcyydJRXwv4svPPItt2/iBx/LyPF//3O/wtz/0wb+4he7PeL2m7a80TffGX48EQfgoWTvrUBCEuTRN9wVBmAOOxt++Ayx909MXgb8Ut8+P/cgPcm+/R7VanXoWrl+/zsrKCkmS4LouqydO8eu/9q9oNmeQhCw8yrIsJDnCMAyq1QbDThsxiSjnDb7+zJeZnV/g2S9/gR/6gQ9y/eY9PvO5T2GoApqUUDJ1vv97f4DEgy8+/UXubV1HVTRmmnXubUIa+giJjCCmFHMGRd2gbOTRlg3ube4yGo1wwhBJSEnSjNorkEAaUS6VCEJQZIFCoYjr2LTbR5imycuXr+AHAopuoOs5vMBHMaoIksjAGlLM54n9YNr2StKYfL4MZNVJGEQgiKhqhl2PwlerjayPnXL8eDYrUBQDxdCm9zmJQ9JUoFDM2hKu6yKrOQRBwPM8rMEQ0RA5vrHOizcvU5+t49oZddmLPZbnl0iI6PbbHFtZZGNphS9//vOUTJM4DKkUihw/tsJzr7zMysnTiGaerb19BFkhTSIOu10KOYP2Xhtd11mbXeFEtYybRtRqNXb39njooYfQFRXDMEi8mO5hj7Onz+B6I1pHfTQzz1GnjyKqWMGQW3du06w0MJt1jgYDcrk873rnu9jbuU2/32dxcSnjtBUXuXPnDvl8nqWFRTbvZLyv1dW1MU0gZW5uDt/PPB0Tf0cYhlMiwYRiAOC4NtVqlbt3b7Oyskan00aSZBQ1WzA/8ju/i6br1GoVzFweQy8QBDGBH1EsZyDLX/+1f8W7nnwnv/RzP8fG8XX6vQ6rx1Z44NwDyIpEQohMymDQ4/TZM+zuH1CtN0k9j2K+gGVZWFZm5B1ZLlaazan2B12GQcDS4jGCOMq4ZuPKV1NUfHvAd3/n+/mnP/d/gZhDElU8a0RBNynOqbztba/nj77wBV548WuMRhbf971/lXt3bqLKJe5cv40zCgm8CN9Lue/8GUpmjYP9uxSKTRRNRlal7P+DIBAHIbIiEhOhGQaDJMKLIoy8SRgGLM/PMmjt0z5q8aN/56coliq4kUwsS8SKQMsektyN0bSUgR1y7xsvgQQ9x+Xuv/kIc8cqPPTAI4Sex1LjOLNzTX7xV/8Zb3/z65irl1mZX0L0I0QkvnDpy2zv7zJ0XNwoJo4kxFRCTBVEQWGEyzuf+i7++S/9awLviA98x6NUKyZH/S5veOwC73jHr3DU6vEDf/N//AtdH/9D12tWqQiCYAqCUJj8HXgH8Arwe8D3j7/t+4GPjf/+e8B3CYKgCYKwCpwAvvZavb7J9df/2nfwIx/6bn7yx3+Un/zxH+Xv/XcfyjwW4zbDBFUxIcdm8tuAWq3G2toaQRBMUSITY2Gapmxvb3Hv9i2KeZMg8HjdAxc5f/YMsiTQOjpgdXmJD7zv/ayvHcd3PSzLYmF2jrPnTvPggw/y4MUHqFarnD9zmscefRhrMESVZRzLolapEkUBsiQiixLHV9dYXFwkTsLxfOLVAm8CZaxUS9ij4biPnrGaqtUqCwsLREmM53kUi0Xq9eZ0CD05IcOreSnAeGbBq8j7eBK6lU5bM9lzMrFCEkMUZl8VXSUmIU5TbNchJiZKE/zIxw3caXaKaZrUajUKhULG+0ojvDAgJUZURcLIH88nYlRNJkkiOp0Ouq5PSb9Wf0AcRqiSzMqxY4RxtjFOhsSqphEmGWkXMgpwu90mCAIajQau6xIEAUdHR1SrVVqHbQqFIoIgoakG9WqNeq05paer2gAAIABJREFUvm/1bKahqpSqFQzDxHVdDg8PaR0e0W0fUDANuq0WnVYL33Hpd/pEfgQxNBoNFEWZBrxlnztviqxxnCyTZiIAmbDQJsIP27aZm5vj5MmTBGPRgCAIjEYjFhbnGI3csYRbI02FcdhZpjYTRZFuq43j2BnpN4WF+flp68+2LNyRg6aoU/OkLMuIctZClEQR0hTTNKe5N4ViET8KuX7rJq1+l86wj+O6bO/tgphVtfJY2TbXbHB8bYX3fcd7KeYLY5hmNktaW1shTWMc1yaOY37gb3yQbq9Dq32YiTmCBElSMrBnLLK9tU+5XEGWdAzdJAx9bDsTL+i6PhVtTE2ehj4lYQtiSrd9hK4qzM02OLa0geOmyGpW3bqeR4pIsVJle2cfxw/I54voZh4kqCyWUXQN23M56nUYDfrkDJWNtVWi0CcJfExNRRYEDEXl+vXrmeRdVccVVIqUSsRhgpBAkCo8+42XaHUHvPjyVT79R1+k1R2SKxZx3BF3790iX/jPzxD5WlYqM8BHx4uSDHw4TdNPCoLwdeA3BUH4G8AW8J0AaZpeFgThN4ErQAT8rTRN4z/5R/+nXw9dOMUDF85ytL9PqaJjaOC4I/x9n0ajQRpFVPI5trZuMIyGLC6fY7O/h+t7CHLMaOiiySZS6HLxvnN85vNPY5aLSFLKXLNJZLW5d/0q1bkGD77hYa7dvEF+8TRHI59yRaGY5Hhg7iSW4NMwTdYaMyi6xsh1sA6P2L19h1pFp5w7w7mNDba3d1m/cAHJD7lz5w5vffit6LKcgSTVTPkkKrC6tIAgpNzd2sZOBJIoQFIEUjGlXDGZnalh2X2SKOXE/DKGmWe2OU9eLXLn5iZFLUXwW2xe+SrrM29ClCVmCpnaKVc06HQ65HI6sWchpKAqCkkUT0/QsiTjug6ioCEkKdnbHqPJEpIQo+dUHMdB8GVCK8mQ7iTkpBxCkJJ4EVIkoAsZBj8QIww9R7/XpmmanCs3cQcOthKTjEYIikKUxAxGDqETMnIjGgUZ3SgQWBaVWpmd7oBSvUK9UaPXa3Hh7DmiMOTFgUUShhiKnKFeGlXs4QAiHwEBpxVw69ptNs6c56VbN7CTlOH1O8wulBj2W6iLx2h3XCrFRWJFZhS16Pf7rG+cIhVELl+9Qevla7zuwkWEOCBIYnY6Do3FDWxrRHNmhpHjk19Y5bk7d9HzeX743U9y5fq1TJmlazRm6lidLhWzQGDbFMQUNWcwsC08XyBfLKAUVGy7QxQ79I/2eXZ3i8ceexyDhHt3d8hXG8znK3TubPPo6x/JvDcjFzOnI/kReUNFGg35vc99hKeeeor3vOMtXH35BR5//cO8cOm57NCgCni6hBsHpI5CzqjQa3cozBlIhoySBoj5MnutfdScglzNsd3eY3Zxlm63h76kcz/rFPNFiBMKRoHD7W2KZpFapU61tIikKoR2yOtOrfP6+8+hmxkd+fDwkPrcMX7nI/8GxbVYqiuk3h5yOuSJN7+ene1D3nTxQT75ic9SSAUKlSKqKeIHQ971/ndw+doLpE6MUsyqFUkSabe7zNdmEWQZrWCiBiIYWcTB9uYhCzOzOLaHGMb8yN//m/yjf/QziIqG1+vQqNWJQ4/O7gFKKuALDoZRZHlhnisv36CkaHznd3wHP/u//QKCBI/90Jt4+svP0Jw9waAP+dwMjeY8aRrRG+3zyq2bbB/uo5k5pCTrcKAZdA5sDNPk8be8lX5nh83udch7fO3Ss5y7b53DwV7WQXECFNHgvW9/Gx/79Gf+vJfK/+TrNdtU0jS9A9z3JzzeAd76//Kcfwz849fqNY3/DXq9HnESIoo5NE3j0isvcfbMuVdbPGPZaz6fB7KB8Z3NDsdW5snn8wy6LpZlcerUKa5cv8HW7h4gMho5qAIZcTdKCOKIYrHMoG8R1Aq4rku5UsXzfRI1+SZDYZK1Cfb3kVWVbrdLo1LGdd3pqXR1dTXDlhcK6LIMooggSfhhRCxkMsTFxUU8z2OnZeH7EIcJOS2X/d6CSBDG1OvFqVT16tWr+EHMzMwMa+snWFlZoVKpZbiINEVVs9zzb8bQZ1kkACKaZkxbMdk8JEs0nJyiJ7/bJFtd0zSiJESW5env9c2KMk3TxhksbjbUtIeEYTjO8Mg2LyWnkUoyMUxx+O7QnaIuduN75HM59o8Op0DKiQNdEg3MvJFVm344FSAsrxzjyuVXSEUBQRA5PDjA8X1eeukl7CRibm2VOIoplUsMj4Zs7eyxvLCCH8cMRkNmmw369gDVUAnChOWVJXTDYPdgF1NTGfY71BoNZFWh1WmTINEf2giqzvET64iqxs2799ANg3y5RHc4QBUlJF0lSGP0goltD4mCkOHIoVqvs7m7R71ex3JGHBwc0Ou0KBdLdIdDVEmlUq+BKLG1v0O93mBhYYHPf/7zLM3NZ4KSXp80zaTv58/dR+uog2WNWFtbp9/vc/bseUqlEl4QMAwC4jBiFINoZJVNu9MhXyxQrlbo9Hqoqoowfr9nZ2fZ3d5BVVUGvT5yrkxqplQrdTRJIxIzbM8U9aNpjLzsPdR0nSDOhB7dbpfa7DJPPfUUip6wc3AnQ7XUm3Q7A5ozC6iqQaFQoLxYQ5ZU2sMjBoMB2/c8quUaNaPGcDhkdWWDdquPLMu4rsv2ziYXLpynbw8I44hKpUJ/0GVhppkZW6MU06yi6yr9wRBZlLAsizj0EFMP349QDIl+Z8j9D1xAuShQLJkcHh4yv2Dy8MMP0ajV+IXP/Ave/MZHqJZXyBcLmYBFlHjhhRdwHGeaWTMhc/e7DoWiiSzIhL6L67q8973vRUotbrzyFarVKvV6nUQMGFhZZVko5F/LJfPPfH3Loe/n5uZot1s061UURcFxnCk7qtvtktM0KqUCo9GISiVrHxWLRdbW1uj3+8RBiqGWqNcqbN69TeD7jEZZuA6CxFF7iKToqEJMmCZ4bkguZyIpKrl8nlQ8IhImUtzMXZwIMHIdFhcXuX7zJnNzc1lveszcStNMptxoNAj8EJI4M8VF4yjescQhZ+isr69z0H6eiBjDNEiFhHyhTJiIBInIxtn7GO7eJY1B1Q1W1xZZWD7G0vIad2/d5lp0jauXX8LzPBzHwTCyrPtJEqMgGuPNBXQ9GzgKgshoZGdwSUUiikLCKHN6T0jGaZCOce3FaYrjxEMyyWWZzFI0Q0VCxDRNZAlC16FUKhGHEX0CREEgimNiZGRZwTRNdnb2UBG5efcO51ZX8ByHcqFIIgosL9bZPjqidXhIFFQIvBDdUPGjGNMskitWUHJ5REUDRCrNGkVBorGwgJskjJKI+uwcRuzz7P4zIAoctg9JBJF8vQSRy8rSLF/62ld54HUPgqaw323zlifexNadWyzWVum3O9iBx9vf8+389m99lGOrx+kMLEq1BiPfYxj7mYdm8zbz8/Pcun6NhZlZSkaO0WBIvTZHu90mV2py+d4OlXoNR9SJNYm2s0uoanTimD/48pdYnF/i0Yce5vbt29zpHCDXiiiKwtraGoogUqpWsC2LazdvsDg3zx98+mOsra1Rbza4ceMGqQDH8qvcuHWLubk5SASK+RKXX3yJhZlZFhcX2dze4ZHHX88LL7+CWSgxM99kf3+XfDHPtcvXkCQBs2iy1FwkGQUoiUJBNTNRQ6mKoRrEUaYAtF0bVVU5bB1knzFJ4ujoiJFrM1erIKlVHrz/ImejkySigKLm2D3s8KWvfJ1j9Xn+4f/yPzOyh/S7Ldq9I9q9AwQVEBJyRoE4zDhuSSJg20PSNKbf79Pv93n2+a9NvSurx1YYWn3qlRJWq0tOSjjaukO+MgtJmLG4Qg/ECDWn8cB9p7h1+wYkAdevXueJJx5HTOF7/ur38PM//4vUyxXWTzSJk4BKucCxY8dwPJ849Hj6S8/Q7vdAVnA8F0nWKJUL7O/eJacqLC7VObawQDEHg3aXhbkC87OLgMhXv/IsD525gKzK/OGnP8HpC2fgI7/7l7Og/gnXtxSmZaZZpVotI4qMvRXZ4t5sNqd94knK3gT2OAE3xnFMLpejXC5PDVwLCwssLS1MQX9+GJNKKs35JdIUXCfE90MEITuRD20bL/DJjU9pkxlNLpebBl8B9Hq9KQQvDMNp6uEE6ifLylgenCU0KoqCkcuCicx8jmq5hEg6nYMMRw5xmhKECXfvbROGIcvLy5w8eXKqrup0WkRxiCyIU/XUxPA2UWJJkoSARBylWeSp7eJ7IYEfEQYxSZyZ6IIgAJg68V+VNgvTqmUyO5lIjydwyiyOOFtUfN8fgykzT0s+n6dg5jH0HIqsoY0ls6qkMjczSxBnCryR41EolwmTeHo/R7ZNp90ll8uxsLCQGRc9H9XIcWdrm7vbO6g5kyCKqDcbU7S/73qEjsfR3i6O72HkC8wvLlAoZfC/waBH6/AAXZHI5Q06vR6u79Dptblx+waqoeN4o2zeceYkly9f5syZUwyHQwqFPJ6XnUwLlTJ6PoekG7hxiJdE9BybUEhx4hBBM/AFkViSiQQJzcjjhDFGocTy+glalk2sqMiGiZQzGPgeoq4yDFwOB132Dw/GBkkfz/M4arWwnREHrSPuv/g6SpUqsqzS7Q1YP77B0VGbRmOGIIqJgpDOUQshTbMo5yTBLBQoVsqY5SJzC/N0ewNGjsfR0RH1aoM0BlPLYQ9spEREkzWEVMQ0Mpx/FEWkQkaR++ZK1jDNLKsnHZsmHRtJEDl/9gLrayc5ffIclXKTWze3efnSDV56+TI/9TM/jW0PWTk2x8JcHSFNkFOJ+eYSkiBDmmJoOiIChqbjew79bo/tzW1UXccPQ/RcbhzHkFXHw+EQq9emUS2R02SIQgxVQZBlSASCMOTU6ROYZo6FhXk0TWRhYSF7nmUxNzfD0tIcb3v7t3Hn1g12dnaAhFSAm3fu4vkhsUiGwJElUgG8wMfIaUDCsWOLWP0OznDAzr1NiBOOjo6whyMq5RqCBJY9YH5xjpQ/9ynB/6frW2pTmXCdsgX81cyOCTtp0rLp9/vZgBimLZpMvaRMN4DRaESSRCwvLzLbaE7dzikS+UIZ1wlptdqAyNFhm15vwM2bN/GDkCCO/pjvYEL17Xa7rK2tZawmw5hG7k6yLSYbXwYulZAUGXmcAZ9RhFUkAWqVEpKQ4jo27sjh8PCQrc09UkEhERUGfYtWp53Jbi0rQ5J0uhkzamQRx2H2syQBz3MyzIXnjB3zGaNLFGXiOFMpZZG6mVzT87zppjKpsib/jiiKyMqrfyRZwPOdrBUpgaxk70+chHQ6HTqdztT/4nvh+P0zUGUZARAFGZKMdNvvD3Fdl1zeZOQ6KLpGqVyhVK1CKmKoOYr5AkmYIAgSw4FNqVxlOBpx6+49tFwBQZVJZZkoSQnjiIPdPcIgoNtp4wwsDg5b+EHI/tEhiJlL/vbN6+xsbXLj2hUGgwGyIk7TMG9dv8Hh/i5bW1s0Gg2s/oDQD1haXOT2zeuosshoMEARBCRFZmjb9IcDjlottJyJNbIZ+T6arnN3axvdMPHjhCiFrb19rly9zouvXGZrZw9JMTGLFQRFZzBy2Gsd4sQRs0sLJJJAEEQUCiWCKOGrz34dNwiRZJVef0gUxoRBxK3bdzh16jTFSgVRlJAVleHAol6pE/oRc7ML1GoNhtYIVTdwXJ96Y4Ywhd2D/fHmLxJ6IdVxNXJidZ355hyztRl0RaOQK6BKKmkqkAoiiCLFYhE/DDJytSBgWdaUobeztY09GCIJImIioWsFnvnKN/jyF5+DVKPT7bG9s8PN29c5ONzENGVqpSIz1Sbt/Q627bAwv4RpFqaHpMPDQ5aWjnF4eIiiKai6iue7xHGEaeaAlGLeRJMFLpw9xcHuJrIERi474IiaBFGCPepz+swJkjRgMMhiwW3bzuIDzCKilLB8bB5Jgps3r495bUVu3b6DE4SZYCFJQMiW4QldQTdk4iSk1zog9j1ObqyjKyrL88usHlul0Zhha/semqHS7rXRDPUvfC39065vKUqxbTucP7MGaUCzUSdNU4IwIpcvUi5X8H2fwPcRBbAdC1FUUbUigiQzGPYw8waSKBOFKefOb2DkMhRGpVKm1TrAGlqkgsjAGkEc4fsRlXKNfF6nYKrk9RxpLFCpNBBFpiqfcKyWCcOQZ776Vba3t4mCgEKhgCRllUwYRlSrVdLxgqfpGQwyIUFRNVxnhCCkxFHI6soyS4tzqEpWWhfLNRrNWdZOnERRNGYrJs3mDK1OlzhN8DyfaqWGpqpZRK8kMRwOGQwGUyf3wcEBYfgqcn4ye/J9f+rT8X2fwbCLIAj0+70s8leSEATGJrwYP8gqnwmwceJNmVRpgpBi2TYra8cwDJ3trR2SKCYOo8xUKcukSEiSRq1WJ4lT3FHAsfklmnPzFMwCztCi1+mSxAlxkhIlICkZG2poDTm2sorlOjSas1gjl5nFRZpzC+wdHXDqzBmODltcOHcfqqZSqzcoF0sc7h3ghRHlSg3SLP3ws5/9LMVSnsZMnW6nRaFQYNge0G91GbZ71ApFiloOQxA52jrglecvce7EKRIvJLBdeq02880ZlmdmIUiolCrIYtZzT8MIAYFaoUghl6dSq/P8N55DkSVaRwfUaxWq5RLEEa5toReKCIlIu9XG0HPkCyYvPv88w6HFffffhxjE7GxvY9lZONf68eNsnDpJEIWcOnmK9ZOnOL6+gaLqGGYe1TDJmQUEUSZwA1aXV6hWa8zPzrN87BhqPsvJuXL9OlevXeP48XVGI5f14+skccLywhJls4wqqoiRmKnmkDMkfZIiSDKO4yCrGp7vjDlzfXzfR5SlrIJ2Rjxy4SKu41AsVjDzJX7u5/8Fly7doNWyKZh1gmiALEOznmfj+BxJELK0sExOKRGOEi48cAFVNbJ5294OOzvb6LrO3NwckiRjVorc3byHbdlEYcjR3gGR53NsfhF71OOdb38HO7t77O7vYY+yA1a+ZJJKCb32Nu9+95PEUUgYDNE1lc17m3zqU3/Ie979HkoViZdfepmZ2gx//fs/SKVSx3Ic/uW//jC9kY2TJCSAH8XIigYxNKtVnnrXkwz7XfqdHl/63B9y8vgK+ztbvOXb3oQspFRKJVxnyM7ODvdfvIhl23zqU1/8U9e+X/nVX+Chhx7i859/evLQf4kT/vO6FEXBDzxcd5TRfoNwOiQzTRPHsqaO8IlD3O0Pp1XMZCGM0xRBktjYOMHt25+kUa3Q62QLasE0kWMJWdIYjobMNGYyF7xhYHcH9LoDRk6fXq+XEWlFAbOQn1ZAkLm7fd+fmgp9P2RnZwdDz9HqtLPXJ7yKRplUB34YYA8t4jimWa9iOyPaAwtVVrh75xZpIiAsFLAdB9/Pyn3X9TnaPyCXywi2hUqRTqeDNE4ftO1sINjptKYmPMuypi0L13WnVd/k/gRBMM2h6Pf703jghFcHk0EQTNtbk3ueVWIxrc4RpVKRw8NDDEUmCULiMAJTQ5QkZhYXuXrlCsVClYO9fcKTZ+h3e+iyhOt7BLZNEoXMajpXr92gNjPDQbtHs9mk2x9SrtRotbvcvnebXL5Ar29xb3uTWnWGVJRwPD/zzgwzYq8qK1Tn5nBHmaw0jFPOnj/H/NIsN25f4/zZc3gC+EGEbuSRIpFauUTkObzu/AOMLIc3PvgogecjpvC2Nz3B5StXqNWa9A5bLM8tYY1siloehxFeKmJqOVRRplYqY7kOs40yzVoRiRDHzmTRhqoys7bEja02pqmjSTILzVkOdw5YnltiMOzR3j1AKlVozDT5xnPPZypHUaDV7XDUak2r4JxpIogyei5PMQHHc1k9vk5guTQaDQa9HlGS4Fk2TuDRuXGTG7duo6oqL730MmsrK2xubpPXdQI3IkwDisUiel4nicWM5By6aIZBHCV0en1uP/c85XKB5dUVZFnFGtnUapnIIN9qT2nMruMQIiKkAt12DyFJSeKYNE2o1sqMnKy6yWsm7daAYn6GxfklrL6DH7h0Wm0O9w9oH7XY2NjAc1zsocXhXpYzIyQpO/c2manUKOfy7B0csLO/yfETJzl9Yp1PfO5LpJKCbuhEvscjDz5Ir32TKAr4+Mc/zpNPPsm9u5tsbKxz9eomipJtjKVSgW9/6j2c2jhHFKd8/KO/i2oaEHiQJFgjCxDRVBNNV5ElgR/+b3+IT/7+H/D3/v5P8roHznPtyku84fWPEAchXctClkSe//o3WFs/TqfTQfyP6Dftbt7l4Kjz2iyq/871LbWpzMwUMAwFWc5Iup7nZQyl8UJoGAaGqmb00uGQen2RNE2nHhVBEBhrZQmiKJthGBpve9PrEQSB4dDm0suXcT2f1aUFji2vc3h4yOHRFm9/8+OkUYx2ukSaqCTRaNrOkjWVVMjaXE+++91cvXoVVRTGfhF5PHPI/C9hEHFKytRTCJOZBd8UXBWhIONHEZZtc99953GCGNtxCcKYRqOB72bhW8V8IRuMywqeF1DMFzAMg94o25SyYCI7G56OVVlpKkw9LJPNY35+fppZH8XutGU42YCi8b3KMtCN6axl8nVihsuUOSOCKCCIMpXYfecvYCgqiiCiSDKhnLHILNflxMhDECTe/9T7Cf2IUqlAEgQsN5qc3VjHGgwJ44gLDz1MKkpsnL2P27dvs7i4yI0b17MZDxIPPvQ4siyz1j5Js1rj+PIKuqYRBzGpIGB545P0oEuaSpi5PI7tcvrMeYLQ5f7XPUyv10ETBfwwJl+ocH7lDIokUS2ZGLKMNfJI44SCmSeNMhzLmeOnUHWNwchGEzWGtkUiQZQkdHttmrU6SeATeD6NZpWzJ45nLb5cDneUVYETr8djr29kHowkJkkiCmYeQUxJwkmrNUPqv+HxN04DvGRZZnl1lWa5mh0GxOxw5XqZP8YPMyVfEmRCinmzQC6Xy9p8gcdcMc+xlbWMTaaqjIYWlVKRNEkypLsgUqvO0hsM8ZIU3w/H7U2RIAzQtRxzswtoOY3trT1m5+fImyVGjo9tuYiyxt7BAYIk4foB9eYsH/zu70VA4QtffIYk8fjQD34PX3vmSywvLvHCsy+zvrqO58a4w0N63SH3DraZnZ1BlBJUVcYwNJaWlrhx4wYH+0f0nAG2kx3gmvUG9eYcl165gjW/xKC/x8d/72OYhkZBl5ANA9nQmF9sUilqbN4acLh/wFueeDO//Iu/w4/92PexubnJ2mqd1tE+axvzlPLQrM9m9IIYXrlyla41wh17yTKlaIqYpNQrFc4e38AfdimbCn/3h78PXdf5v3/rN9m6dY1mLcfpM+uYeY2HH3yMzc1Nzp6+wNVrN/iZn/ox/qd/8L//iever/zc/8rWvU0efeh+nn56navXbr2m6+y31KYiiuKYiSRzcLBHo75EmqbMzMxOh/HymCw7qVKAVzeUb7okWQZRgDTGNHRaR4cUcjnuP3caRIlaRUeRc5TMHCfXFzA1lVhOySl5RnaEOp43xHGMPxqNsyxy3Lx5E0VRMHVtPFPJHNNZBkmEKEikioKmqEiyMHZUp+N8+EzaKyTjxyUJU9dQVYF8LhuAmqZJYIjohopIJhMmZZqv0e22GY2d2xOBwET2O1GsTTYIyAQNYZjNfiRJIooToiie4l2CIJgO64MgQPSj6fdOBveTTShTlyXTqiUMQyRBJBYlNFUec7ByjHwfZBXDLPKlr3wVIRJ459vezsiyWVqcZ/P2TSx7hKprlMwKoQCGWeLS5VcyOa1lEUZZG87zfObnlqjVauQPSkSeT7c7xB1liy5ilvkuqzGSICNKMv3+EMMwGdojJFXiqN3D83xCEvwwJU6GaKqBZ1vYqUCgCKSSioCI6wWErken00PWVKI4JU0FFElGlRUSSSDyHIrF4niTyGTTURrRG1hIgkCn0yOfM7GHNoVCgW63T2r7088qSUoaJ7ijTEEoIhAlIUEQ4DgOlpWpFUVFxgsD+kN7eohIzIzlphkGsmFg2zZxGqMZOkSZKbhUKlFWaqSSgB9lG0UpX8g+z2GEkEI8zp9XFIVEVpmZmcF3vWl1m4TRVNRhOSMcx2F+cQHbGU0VYIIgUM3pBEHEcDjELJSQZJX//m//KE+9+13sHhziiy1EEhrVBo898CCFXJ4kFpFllaE94mHxMRzHJiWiUimwt7eHZY04vnKc0xuniUTYPzqc3m9T1Tmxsk5gO2hqhKQYVGeXyekaldkmzbkmzzz7FR599H56nVVs28GyBpw6VaPf73P9xlUkOSWMXCI/oVSsUSiU0GSd23du4voBQRwRRBnKSJUU4lRASAWkFH7gg9+Hock8/ZlPoakyTzzxBN/2xsep1GvY7oB+r4MklxFiEVM32d7cwnVsCoUyf+27nuTDv/GJ6Rr14d/4JV557mvMNWtU8zlOnD6X+bFe40uY9LL//3gJgvBnevEXL26wsTrP/GyF0HeQxQKXXn4F243YOHGStbU1fMch9F0OOvvk83XqzXUO2l3avQOqtQJxkGL1fR77toepFvPoUkLq2rjDfnaSjlI0PYcTdsjrFUI/wfWGFIoaZq6AoTXwXRE/7hIEQRYI5bkZml6S0HM5ut0u1WJhvAFmLmBZzhRQURjDuF2U+TsEwsDPEPGhl0Xm6iaDwQBVVXHsESBO5yCCIOBrmWos8gNkSUARJUQExPHGOfAdgDGWPpy2AiGDVk6qDMgidHO5HLIsMxgM8H13Wpl8M/xw4g9IeNWZryjKtFKZbCSilIKQiRAAVFlBRkRKyBapnI5ZKvPiy6+wd3DExqlTnDlxlq9+5RluXbnGxYv3c3x1GXvURzd12v0e5VqdheVj7Lczn8I//T/+CRfOXqBZb/BdH/hOHNvFcRxSUSCnqfiuS6WUpSpuH+xQrlQQZYnItZAUnSSV2No7pN3p8vKVy2xsnODcuXMcbd/C80OOnzjNL//yr/LoQw9y8sQqSeBiiZgiAAAgAElEQVQT6waKJCOlIKUJkiCiGTpazsB2bUQvqxT0vEm73xnTCSAOQiLfY7/TI/QzvP/Z02ewBgMkQST0MoWcnViZ7wkRRZII/IiCWRx7fCRmGjWGI3t6v+3x45IkoaUykiKPK8lsmO2MKdOKpmb+nShBFSVCx0NVFARRRJAlFE0dH2giJEEce5yEbBMwTXRFxVclkjCCNEWVZPK5HIHvY+oZPNX2PBQtA2MqmoofhShKBnkU4kwlKIvZDG80sqhVSniey2DYI1RtKsUa/daIyIKZRpMwDogISYWEJNKIEx9JTohjnzAKkCUFkCEVEUUJNwwQJBGzWMDqD3BHDiXDhFELUTVAMbD8mOde/Ab7R3t0ewcsLDY56g75xje+gaLInDt3Bk1XuHz5Eo+/4fV0Oh0unHuEWrnK6x94A9VKnZ/52Z/luSuX6HhDlHwOOU4RURCQMRSV9cVlfvon/wGb16+wu7PF5z73+7z7Xe/FyBU47LaJkggtp5AvGWxfbXP8+CpB4jG0+1y7eQOzWMIaOvhhihWMOHtyHTVNKBsap0+eYeTHPP7t3zVZDp9/rfiJ31KVyiRVzzRN7DhARETTNLb3WmxtbbG8vDxV7kxMfZOB9KRSmXwNwjBbaMIAXRZJFBkRSCWBOPDRVAlrOEBMZUqFPJ43xB15VCs5HDsF2Z+ynNzAp1guYdv2FH3hed54djGiOB7iJ0lCGETYg8EUhZIkEb7nomkKURwQBz7eyCMKslO+oiiEnk/o+4iqCoKAlDMYjUYZcFLKsDOGpuP7mTfFTeNpBeE4zhRgmBGIwz92TzKMfQZxnLzGb8a1pGk6VbHFcRav+82pjpPqadJOk1IQ5ZQ0yipL3w8QZAVJkKbS5H6/z+nTp9k4dYZnnn2Wslnh1KlTvOWxNzAz00CSYXPrNgedQ8I4YuS57B8c8fHPfZ5HHnyE+cUlHn/TG1ldXEFRNDY3r7F9bxM3jnnwgYvkNJXBwEKQ4Otfe569owNSQeB73v8Uuzv3CBKJ67fu8tyLl2i3u9gjF3vk8fyzT9PrD7nv4ut45dpVjtqHXNg8zVufeDNeFBPECVICLzz/dW5cu06jUePkuTMkacoDJ8/QG/bo7mxx5fpV5hbmObayxJ0bN8mbBv/2E09jDYYEnsfgrQ4zjSaO47CyvMzIDxh4feI4ZqYxy9beLqvH1vCikC9++SsEQcA73vJmtJyR8cKizL1tWRYzMzOMuiOSdDwPQ8w+e4qMYeYySXnkY+o6QpygGjpikpKkKZKYYYJkTSIUwzGkNKuyFEUhDCLKpQqW79BudyiXChQKBUYjhzDwIU4gSUlkZYyLkUgTAVKROErp94YUTB1BkAijBNKYarlIEPgU8jpxrBIqGiQxhmpQWZol8EIURSBNEhAhQSH0XIjH6CVJQ0AkjgU0Tcce2ui57GAXxzGypjJbKuHaI5aXl7m9uUOjNoOawlNPPcXd7VuocsrB4RZzg4Czp85y9+5tZmbrQESn1UQWRN72bU+gqk0kJERBJkmyA1gQZ1TsKImRE4kgClDlrLX7gfe9D02V+fCv/zpnT65z9vQG7miQzdqKFW5v3SbuhyxIc2ysb4CYIEQpczOz5Ao5hvaIpSWdOBJwYp9GtYTX6zI3UyfwXXJagQsnlnnp5tZrus5+S20qWcSqw3Aok0QRSeQxNzdHjILvZehrZyJ9lWVcN5q2gP7da3IaD8MQQxm3atIEkPF9F9fukzMqxGGINfAoFDXu3NvBG8kcHlpcuHgc0zRJ05S8AJ1el16vx+b2Ng899BAB6TgzI2QwGBCGWXuikM/UaDlDJwxDdncPUBUZWQExhUQQpkqpTqdD6PkU8jkEkuzkG4bcvn2bl156ibVjK5w9cwpZyBaSNInHUboWtm3TbDanbakJd8r3J8qv8eYaBIShn2HHx6j7KMqggZMW1uReCYKAoshTXPvEfDrxqmSVF4iSRJJmm4oiKUiCSBJlQVySCJKmc3h4iKrniIKQS5cu8Vfe/RRXLr2MJJ5F0SQkVWFhYYHj+Q06A5swhfe97wNEUcQPfuhDECd8/OMf5/zpMzz9uT/iYHePvmMjJCmyIHLj+lVUTWPvcI92v0ucpjz3tVm+cekVnCClbzl0Bja5vMlLL73CtWs3WJovsbW7w8iPEGWZnb0DAs+lmDf53PPPMdtosnF8nd//vd9HJOHutsFe+4it3R0urZ+kP+xhuQ53N+9Ra9a5ePF+nv7MZzl76jSd/oAkjBi5Hq9cu87NW3e4fesW7/+v3setW7e4fPcZXNflgfMP8MLzl7j//oucO3Oey1evYts2OVXizPlzyLJMpVplOBzy27/925w4dZLH7nsEyDZ9WZbxo5A/+uxn6A8HvOUtb6FUK3Nzd5fji8tICNPDVuj5mZ9JlHADH13X+cIXvsTCwgJnTp/NopeHQ7RGlU/84SfRZIWTx9d47OFHkOWsNZbGCblSNTu8qOpYNKDheR6DgcVHf+c3efTRRzl5YoM0hX6/T97UGfTa5HIajhgQuAGFQh13mOWQqKoOaYIghqAYFEsGQTgijn0QUnwvQFE0wiDCMExUw0BR9QzRDwyHNgXDZGt3i6WlJTrDEXqpjO+7LMzOEYQWMzPn6Nspu7u7VKtlNrfu8JGP/BYzs3VWVpZpd46o18qcWF1HURT+6I++iCxlHQItjrA8F10xxwy07P/U6dOnURSFvb0dFmcb1BsaSRqRN4t0u1n1mqRJxoFLPQqFPKmmYVkWvV6HYqWKZbtsnDzLjc3bWJbFfLNGqVggGs+zLOu/tL/+1OvP2v46/f+Q96ZBkqTnfd8v78yqrPvo6runu2d6ZnZ2ZzF7gFiQwGJhgCQAkQRBQDzAMBkhkWHL4SPCZpgMS3KEI+QIf7EsO2iTtilRpkCQIHEsrgUoAliA2MUe2J3dmdnpmZ6+u6u6u+4rq/L2h6zKnYWkCIXkkT8gIyq2t7umqzor832f5//8jwvLvO89T2B1GyQNFVfUSSR1bHuELIkUc/kI90eg2mogiAnyxVV6wxG1syNSaR1N1um1xzz+5GVmMkn8Xg9NTfDi9VscN9u85z0PcX5ljqODIwRRp1ptcXBUp9Xrc2vzNo7vEIY+jz3+CPv7BxMbkyjxsNPu4XkeFy5cYGEuzfPfeZG11Qs0m+2ISSUFPPPMB7h55wZCIJDJ5PDsgFazSaVU5LFr7+LWjdcZOQILCwtsbm5iWRZPP/00lmXx0ksvce7cObYPdoCIOba+vo5pmrFp4vHxMa4tRQaUgwEbG+c5PNwnxCeVMmm1e8iyzMLCAru7u7GVTa1Wi86dJrKwsECr0cT3AzJmipPqKQCmmebRd13i299+nly2iCyrNBoNZFlEVgRWVpbodvuk02ny+Synp6d4vsPTT7+PmZkZGo0GxYn7gSzLEwFhKmaPDQc9dC2BZhg4doAoa7hOSNLM8s/+2R/T6UcRurlCGk2XufHWDayRTS5XIJ8vcHx2zKVL51FlkWr1mLPTU9ZW1xkNHY6Pa5gzJuvr6+zt7dHv9EibGQ4PD3HHLhcuXCBZVnEth93tAx579Bpf/+ZzzMwWWd1YIy2nee65b/DRj/4tJFHj+9//PrOzM6ycWyCdTvGVr/0VmUyGlZUVvvvd73L58mWKxSKyLHPr1i3y2TRnZ2ekUilWVlaQJInbt29zdHTEhQsXcH2fbrdLuVxmeXmZF198kWw2y8zMDLdu3SKVTlIslNE0jePjGk888W6Ojo44PT1luWLykz/5Pr7w+S+TSReZm4sclB3HYWVliaX5Ii+//CqyavAT736K73z3eQRZ4APPvI/r11/jzo1TnvnwFd66tc14YJJMiSyvJbCGPke7Nrk5jWQiy/7uAXMLBR66vMZoMOJrX/kOH/+FX6bV2KLVavHxj3+C0cjms5/5M371Vz6Nbdv887/8U/q9Dj/9oQ/wCx/7CGIYYHWH5MwshmZghRZh4CGFIaHroMgaoqzxwouvkM3n2Vidx3FcWs0e2UKeZrvF5uZb5PJpzm+s8/v/659Qmknzq7/2cUKcidFkyKjvY2pKPPeZaq7uZzmqkhxvxI7vsbe3R6PV5MKFC5RmZshlK6i6hueP+G9+97+lOxxhjX08FPxQxNVsQi/k8vpF3n3tGv/5f/LbfPxjH+bShRXe+5M/gd/3WFhY4Pr165hmgp2dbR5//HEUVUIIlMgfbtyn1YvMQL1xwOL8CplEBsvuxImjup5g7AWkczM89lNxSvsDg79+rMSPU0hL03XCQEBSVGRJRZIUdM2I4Bs/RJxcLPd7U02P6deuP7FICUNs12F374CdvX12d/dwPJfR2COZMDmsVrl1+yZb9+5hmgnC0EdWJQ4PDwnDAF3XGA77KIpCZbaMrEQX8VH1GD2h0Rt0KZTyOJ5NCOzu77G6usph9TjObpFlGS8M6A26BAI02i3avW7E5jF0NrfuclSrMnYdNrfuIkoSumEgiCJ7+/u02m1cz2NndxfX81A0mVa7je2O2d3fIRQCRuMxnV43ZoRNh71HR0c0m02SEyW0rIjRPEfXODo64qhWRZQluv0e9Xqdnb1dEmaS2mmVTq+LpMjY7pixY9Nst6g3G2zevcOdrbvs7u9xeHTEmzdvUG820Ayd8dgmCEIsa0ShUERR1Ag2CUHTkyCKjCwbUVbp9LosrSwzsPq0u21c36E/7LG7u8Nh9ZBCqYgkC3R6bc6tnYsJB57nYqYSkSbBNJFlEVF8G/o0zYj+PVMpRfkhssDi4mKcdjlNY5ybm4uz5UuVEpIaiVUVXcHHx7ItkERyxRy2PWJpaYGNjfMYhoZtj8hm08iyCASYZoJ02sR1bcLQJ5HQcV2b2dkZ8vksuXyGbC6NKIEogaJKiBIUijly+Qy2bVMs5Xn44Yep1095662b5HJREFk6k6LX66BqMpY1wHWjOU0Y+ghCSKvbIZPL0em0qJ7UMAyDodXn4OiQ4ciiUilTrR1z8eJFAHK5DK5rc+HCBUJ8+oMuq6urBKFHsZhnb3+Hi5cuEAQ+x8dHzC3Os7+/z9nZGSsrS8iyyLNfjmxHTk6iDrjT6XDv3r1oo6yU6A+6qJoS5+/Ytk0ymUSaaKyqJzWuX7/O2dkZoiITigK372yytbVF7fSE3f09ZFnmrNng9p073Hjrdgzdhn4QO0lMWY33Rw1MXQls236HK8SlS5d47LHHqFQq8dzRtcccHR7TaDSwLAtRkd92mRg7CK6PPbD4uZ/5CDge+XSGy+c3SGsJLMvCcZw4f2ZhYSHy/tP1SP5gWZhmlGoqinJMxBgMBgyHQ8a2RafbotttY1lDut0H36XAj9mmcnhco9vrUzurk8pmsccO9UabMJAQBR1FNfH9EEGQ3mH7fn9++nQO4AQBaiKJZiawHJuhM8b2PV5+7Yd881t/jRtK3Lx7jzffugWyhOOPuPTIRc5fPIduaiiqwENXNlhemafdaSBJcPXqFYLAxXaGzK/MgxIy8kfMLs2SyqdYXFtENiI7kHNrKyBLyIaCnkwgayrVs1PylTLFmTKH1WNm5mbxwgAvDNASBtlCHi1hoCYNzFwGO/DQU0lCWWT90gZ24JHMpinPz6CZOpKmsnhuBTVpMPIcAlGg3W5jmpFyOJ/Px5kzyWQSwzBww4BACklm0ygJDTOXIT9TQFBk1KSGJ4Toqej3ledmMbMpxr5LIIWU52cpzVYif6eEziOPvYtEJsXIdbi9dZeR62AkM3iBiDX2aHUGhILC2AlQdZPhOOTOvUOOz1pUT+t852++z3/5O/81X/nGV1GTCj2rQ6vfwsjozC1VKM3k8EWXynyZo9NDxvaAVruO641YXp5HlAIkGUQpxPPHjG2LpBkVH6IkxLnuiUSCau2IRx99lH6/z2g0otGox3Y+qVQK27OYX6zQ6bdw/THDUY9UNonjjWl2zugPOpNZ0A6ebxPiEeLRH3TIZE0UVSSdSRKELt1eCwQfUQoJ8VBUkSBwaTROyWZT9PsdPM+m3+/QbjdwnBGGoeL7DqPxAEUVmZ0rMb8wQ6fTYGD3OT47pjxfotas4YQ22VKGkWchaAL94YBEJkmr38X2bCRdpThTJmEaXLx8iVb7DNseYiRUBNFn694mpXKeXq+F59mk00nanQaqKnFcPWBlZZFW6wzdkGk0TzhrniKqAn2rRyKpYSRVRDFA1eAf/P3f5en3PQWhB6HLd7/z1/z+//a/EIYug0GHX//1X+cP/uAPGAwGOJ7HYfWYerPBYfUYJ/DxJPjMn32W/+fP/pTdwwN+eOMN7mzf46Td5PNf/TKSodEdjXjtzRscVU8Zjx0IBGZLZQQhut6nG8z0s50acUaWSXIcP3B2dhazJMNJ5yQCh8dHVObmUHQDJ/QjYoAiYgQiK6VZcppOJZvlf/wH/5ClUoXHH75K+7TJwsICnU4HgNPTU65evYrv+xNtWQTVvfzyywwHI2Yr82QyOWZnZ6lWq/T6LXq9Dp7n0Ot3KBRy+IH9H2Sd/bHaVFqtPmPXw3MDZCXKlgARUVBwXI8gIKL3CW/TZu+P0b3/IcgSduDheAGKriFrKgEhASG25yFrSe7e28HxXHqDLlpCA8FH0RVcL6pCEwkdSRJQFIlSuYDr2fiBSypl0um0ECWBfD6LqkW2DY4zxjA0kukUjXYL1dBJpkyMdALLHiEbGoIEw/EI1dCRNRWfKG/eCwOG4xF9a8hwbBGKMHLGeKGPIIs4votPQCgyec4QUREZjke4gY9PiGEm46F6VMmGsY5laiUzch1kVUFSRMx0CteLBuWO7+H5PoEQMLJtkETcIGI8DccjMrkcvWEvsrAhJJlK0Wy38QnjSvONmzdod3qc1Zu8fv1N3njzJsfVE8a2y9FxjZu37vCVr/8Vn/3zz/O9F39AvdHCDVwOjg/oDLuYaRMIoohXz0XWZAqlPOfWl1FVEcexSWcSSJKApqsUiwVSqSS+7zIcRgLQdDodb6ie5yGI4USkGmKNhpimyfnzaywvL+P7LslkEjOVJJFKUp4t4wY2tueQTJuM3TGXH76MmUnxyJXLeM6YlaUFkoZGJpVElUVymRRJQ8M0EwSBh6rKhKEfW+ksLS0wHPYRxJBUOsnC4hzdXptiKU8iqaPpCotL86yuLKFIAtm0SSppUMhm8WybVNJAlAVsd8z6hXWWVhYplAqIskAohOgJjeXVZWzbZnllBUVTkVWJ2tkpzXY7OoeF/OS6TWLbYzY2znN2dkIiaVCZLZNKJxFFGAx71GrHtDtN5uZnuXbtUS5cWKdSKdNsN+j1O1jWgKuPPoLtWJycHrNxfg1VlsmlUwgClEoFPM+h1W4S4k+U8W+TOIIgAFGgUChEHnKNBleuPoI1HjGwhhhmMrLjARJmkrmlRcqVGRRVpdluEQRhXEDGHmUT4sl0vjrtCHw/nLAypXiWI4kKoiCjKBq6EtH2wzBkOLLxCXE9D0kRkTUZx7ZRFYW/9bGPIAL1xilh4OE4DoooUa1Wo8wXTePKlSuxSHU0GpFMJic5MBqGkUSWVbLZLCcnJ7RajThKOkJc3k4NXZ7PPvB19sdqUwkBa2TjhiHffeEluoM+kqLheuA6AqdnTVw3iCCKCeMJiFlM9z9sxyFEJJQERmMH2/GwHBczmyMIQz73+S8yDkJ8AfSUji+6nDSqjN0hiCF3t24ztHp4vosgBoShi6JI5PNZNF0ikTbIl/IYpoGW0NCTKoouY/vjSRiVSrfbZuSMsT2XoTPm6PSYgWvT6jRBDCNPIDGcwEsj1i+sYbtjKnOzKJpKaaZMvlggYSbxwwAznaLd7RDgRk7BikjttIrn+5HoUxAZjof4+NieTd/q4wYuZsakb/XRkzrD0QA39JBVlaFt4Yc+qWyG0kwRI51gbNtsXLrI7PwsfhigJwwqcxH2LIgiesKIcOhJhjeCwNixJzn2Ps9+7Tle+uHrHJ/WuX7zLb7/0iv88898ls994Us8/+IrOIGI5fhYjksym+bc+TWa3SYL5xZ412OPUJkvYXtjkAMkFUbjPn/9nb+iM2hj21EO+8LiLM8++3lGoyHH1QMODvfIZFIoikStVqM8U+Tu3bscHR3iOE4MS/X7fVLpJJ//i7/gtddew3Vdur02+/v77O5tsbO7he+7lMo5kqZBoZDjrF7j+9//Hru72wyHfWq1Y0QR5uYqtFoNfN9FjCyyuHfvLpIkkMtlkGWRlZUljo8PWViY4/btW2Szae7du8vy8iK6ruL7LrOzM9y7d5ezeo1cPs3p6TFB4GGNenS6LUI8AsEHCWpnNaqnR/j4tHst0rk03UGXsW1zcHRINp8FUWD/8JCEmcBIJuj1+6QzJgsL83R7LdKZBPX6KYVijjCMuifHGXN0vEcyaXDu3DIbG+cJAo/vfu/byLLEs1//MusbF3B9h0AISKcT/Kd/77d471NP0jipcuONH2LoCo9efYj5hRl++7f/LvPzs7i+y9zsLEvzC5TL5WiuNrLQEgal2QqyoTG7tMCXvvoVHn38MS4+cgVJVQglkUAS0JIJto926Qz6WI7DcOQSIBIiMuhH803P8+h2uziOExu8TovNXi8KvRsMBiSTSTKZDJqmkUgkouTTwKVYLvDFr3yVWrNJ37aRFBUtYeA4YyoLi/j4/MIv/SKpgsnQGfLU0+/ja//ym9Q6TVzXpVQqxf6AUxGyoijcvbtJr9djbXUd3w9xXZ9yaZZCIYoXH49HiKKAqkYmovXGKbZt/xuJR/9fHj9WmwrAUa3K6vp5BtaIl19+GcdxSCZNrPE4zq8eDoex/mIqigRiKm0YhoTC23TZUCBmR3W7XY5rJzTb3SjDQ4na42arjmkmJup4ieXl5XdkjdTrdWx7RKfTwXVdstksyWQSTVOZmSlRqVRIp9Ok02lUVaFWq8WYrqRIFMslSuUyASG5XC62rrcsi3DiLttqtdB1HcSQAB9rPKTb74AYsr17j9P6CXpCQ9EUvMBDUiRSmXSkVRAiCxhVVRkOh2iaFl+ge3t7zMzMMBgMqFQq5PN5BlY/wro9F1EUcCbag1AIQIz8vURZwnbH6IZBgE8ylUCSZca2jet7eIFPKEAimYySBB0Hx3UJgVK5TAi02m0eunKFTrdLqVRiY2MDaxzl0Jyc1VhYXkBL6Jye1qg3Tjk9rQFBpO9xHfb39zh37hyiKLK2fi5KMpQkEokEjjuedCE+ogSJRALLiuZJvV6HQqGA73uYpkkulyOZNHj++ec5f/E8mh5RvLPZLLquTn6e5I033qDX6xEEXrwRPfnux3GdMctLC5yd1lBkEcceoSqR6PP1116l3jhD1SKLIce1qTfO+OFrr9JsNegPeqytrWJZQ7LZDI5js7OzjSgKHB0dsrS0CEGIazuUikWG/QGB51Mpz5BJpaMFS5Fia6Dt7W0KhQKZbIput0smm2I0GnL9+nXu3t2czJlkOp0WmWyKO3dus7u7y8HBAZ7nUSoXcJwxmqbhui77+/tx5+C6Lo3GGeNx5AjwrW99i8rMHJquk82m6fe73N68xQ9/+ApB4FEulnjvU0/RbDQIfR8Rgee+8TVkRcQ0E3zkIx9hdnYWwzD4+jeeoz8c4LgumVyWXD6P5/skUyZ/9df/kjfeeINMPsf6+jrnNy4wHFl4nhd1Xc021shG1xPouo47iWRQVfUdFPopq1GWI++ynZ0dEolE7Ow9pc8nk0lkOZrvNNotglDA9XxUXWc0GtLttvGDgPc/8wFq9Rqf+8JfcPWJx9jcuUuqkENNJJidnaXVasVdRrfbjdM+s9lsFCWhqpRLM2TS2Um2SopyuYxppvA8H103oqTXZJogiKyiHvTxY7eptJodZmZmCfwQXVe5fv06e4cHsb26NRohK29rLO6fp9z/iDQUNmEA9XozvvgkKbo5QwG6vR6qqqDpCqVSAUEQSBoJmvUm/X6fIAhIJBLkcjmWl5dpt9vouk673Y6dkw3DYHd3l5s3b8YBY4IgUCwWWVyaj1vzbrdNr9cDQmx7TDabQZJEwjCg3W5hWUNEUSAMA3q9HuPxmEajwXA4pN1u4zgOy8vLQJSHPh1G+r5HZ2L053keY2eMH/r0h33GzhhFUya5LSFjZ4zneRwfH8fV1cJCNKxmQoWEiBYqy5FlRmRv04ut9gUhYq5NI4GDIKISTyNzJVVB0TVCMfI+S+ey+ISMXYeZmRkCIjsOSRG5cOECo5GFbY8w0ykKhQK6rmMNBnieRzabxTRNLGvA8vJiZH8ywcYdx+Ghyw+zsLAQD+Zd1yWXy+H7LisrK/FC2Ww2aTQaHB4e8slPRrTl6UZjGBHuPlMsMTdT4dLGBjPFEqPBkGI+jyYr7G9Hi66qqqyurjIcDjk+Pgag0Wjw8MMPk8/nuXz5MsvLy4RhGMcXr62txTHKlUqFVqtFp9N5R9VcqVSQJIlUKkWz2WRmZiaOJe71euiKSiqRRJVkCtkc87OzFPN5rP4AQ40iFWZnZ1EmGqpcJkXg+ZimGbtce57H8vJyXBRNXYanOUBT2LRcLlMsFrl3L7IKSaVSnFtbpdVq4YXEg+dXX32V27dvs729zQfe/zTvec97gKh4293dpd1uI4oiKysrnDt3jpOTE7a2tqhWq1y/fp2bN2+yvnEBTYve//HxMScnJ1iWRavTBmBtbQ3fjxbeke1wdlYnCAUczwfpbcHwFPqawpzTYlAQRIIgpNPpEgZgJlMIgoiqaoiihBcG3Np8i1CUCAQiGNrzIvuebBbV0Pn5X/pFRo7Nv/izz2BmTJq9DmY2Q6ZUIAgi9/FpCF4+n2cwGGAYBsVSYVJkZikWy5HrcxjpxgzDoFQqUS6XGQ6HsYBaQMJ1H7xN/o/dpjKwLHYPj3jiPU9RmavQaNX5wQ9+wNe/9g3u3tuiVC5iu+M4OGraDUyphFPL+sCLbN+z6QyGFllJEIAkyJFNtyiSSOqUZ4qoqki72aB91qNADW8AACAASURBVAA3pJQtousJgiCyhycUsKyIYy+KIufPbzAaWNRPTnn1pVdwRg6arNHv9MimsrTrZ1y+cGGyMGUZ9gcIYWQdP51vTDeLacczTdrzPI+EbuDaDtl0BlWOdCDLi0vcub1JqVBk0G+jaxKqIk1wXxlNUWNTzOk8YboJWJYVDxQ1XaEyU0JTVQxNYWxZNOqnER9fEjm3soLvOZhJg7E1QiBEFEIShsbIshCA4WCAazv0Ot3I8sPz8FwX3/NADBHlyHZEViWs8ZDhaICiybQ7Z2gqZLJJTk+OaDROMQwNVZPRNYV7m3c5qdYo5PKkkyZWr4+h6VSKJZyRw/a9XU5OTvD9EIiMMHd396jXm4SBEHUsIhPvrAH1+unEHSCkWCyQSCQ4OzubBJpFQ/wpS8fqDqkdVtFEmcZJHVVUuHvrDqIPjz/6LlrNDvbYZX/vkPHIwfdCHNtDUw0c22NkjXnj+pucnpxhDUd4rk9lZhZJlLl08TJHR8cMhxayrJDL5clksti2g6pq7O7uUSqVabc7FPIl1tfX0TQDwzCQJIW9nX363T6FXJ7zaxciQaOo0GlFVv2DdpeUmWBhbpaF2VlkUSJtJui3W0gByLLKE088gef6pFNZOu0erVYHSVJoNltcvnwZ140YVHfv3uX1199AUTTW18/z5JNPUp5bpFie4cUfvMz+4RGf+MQn+Nuf/BRLS0uEbsA/+h/+Ed1Wh6RhEoYCf/fv/DZGwsTzAv7hf/f3+eIXv4goivze7/0eK6urbG7d5cbtt/i//+kfYVkWTz31FL/xG7/BlStXJumKbV599VXeeustHGdMoVBgfm6Rufllfuf3fo8vfPlZPCmI4aKppmbasUxnLVMG2OnpaexfN+0khsMhmXKGz335i7gihIpMNleg3+2iiAIZw+D86nlCz2N5eZ53v/sJ6s0T5hbnkBSZMBRiQ1fTNGOywLSTjhCLiRErCqqSYOqckc6kaLf6tJo9HDsgZeYIQ5FEwsR1HryE5MduU3HsgHarixuE5HIZFpfmmZkpk5xEgXa7bRRFjhMJgVgdPmWDiaKIiIAqK9i2G0MLYhgN8RJ6kvFoiCQIBJ6LrqmRcjgISGg6xsRUMRIcRr5ekiQxHjuYZpp+v8/87By6arC0sEzSMJkplZFFifXVNULPx7ZGkZeSH+CMLXRDje1UNEVl2B/E79F3PXzXwxoM8RyXkTVAlgQEArKZFJIIiiziew6aKuM6TqRIDsIo8EiUIpNA+232SMyCm1AtpzdeIZePBol6RN/2nKjbMhPRzeE5DgQhnuMyHPTRFBVD06OsEy96n61Gk06rje96pEwTQ9Pjh+3aOJ6DpEiYaRPN0PBDH0ESCHFRVBHHtpidq6DpCoYWbXybm5vkcjlmyuXofHjR+Wic1qkeVhn0+uTzRTwvIGEkSSZTHBwcRW4DepJMJhe550K8iUYkhci1IErIZMIIiq6VZHICPZgJivkS21vb9Dp99nZ28RwfAgFd0xj0howtm6ODY+xRdP3MlCok9CTFfIlBb0itdophJBkOR0iSgmmmEQSJ0chmMLDIZvOcnTVIJlN4XkCr1WE8dvC8gEwmRyppkjQit9/Nt+6wt7NPpxVt2pWZGRRJxXN8Nt+6gzN2Odw/YGlhGTORQjc08APazSaDwYB2q4nnuIRBgJlKcnpSp9FoUq1W8X2fVCqDmUwzMzOD43jcvXuPRiPKFioWy6RSGQwjSb835OjomJPaKce1U5555hkGA4s337jJCy+8QCaV4tKlS5xfW2fYj2BH00jQanUoFssIosRHP/rRKHUVqNfreJOQNcMwWDq3wtnpKa+99hrVo2NUVaVxekYmk6GQy2NoOgnDoH5yyr1797h99w5+AG/cusV4YtA6ZYFOySlTF+6poHfaxUwjsqcdbTKZ5KzV5Kx5xtiJnAra7YiSn9B0fNvm7/zGbzI/U+ErX/wSp9Vj8HxyZppSLk8hm4vRkkQiigTPZDIkEom4M4zQEWVCVIiIRSMrEqROyQPhpGBVZA1JkpGkB693/7HbVAB6gwG97gDdVHn00at86Kc/PLGsKHFaP4mG6RAvlPdvKlPnXXccuccaikrgBhOmh0TgBuAHk1yQLrIYIgtwfnWNfDqHNbCpnzYZWWM0NYHjeCiKRr8/ZHFhmfHIQVV0/LFHSk9ycW2DlG4y7tv4tsfe1g6lfIHD/QMurq/hjm0USQY/YNgfYFmDyGCvkKNUyNHrtFBlEU2RKBfzzJQKFHN5dEWl1+5g9QeYRoLTao0La+scHxyiKzLueIQzthABCYGkbpAyUgxGA86aZ4RiyHA8xAs9SpUSyXQSWZM5Oa6iyQr9Xg9D08nnMmTTGWQRrP4A17ZRRImkYTA3UyGh6ZFX1WiMrqrkM1nWz61SKZdZXlxEESPfKM92cMc2mXwGJBi7Y07qJ/SGPTr9Dpl8hoQu4DkDEBxq1T0ShsLezi4ZM8Vjj76LjdUL1KtnWH0Lb+QiizLzswucW15lfWWNN197ncuXrhARiCRSqTQXzl8km80DAkdHRxP7HHjiiSdYX1+nUCgwGg8ZjUak02m63TaZTAZgAo3VCYKA3bvbvOfxn+DC6nkee+Qx5FBEFRT6rR73bt9lZWWVVqvD5ctXsKwxruvj+yH9/pB8PhIkTjc9RdFot7ucntZJJEyazTYjyybwQUBCVXQEJBKGSRgImMk0+/uHFPIljo9qzM7Os7FxEdNMYRgJ0okMqqSiiDJrK2t0Wx3WVlY52N1nNBgR2C4yAksLi5RzBVYWl3DGNmYiSa/VQdcNxiOHhx56mCCARqOFKMocH9dQZI12q8vDV64S+BFUrKkGCSOJaabR9QTHJ6eMLIfrr99gbnaBTCbH7dt3uHnzJi/8zQuk01nW1s5jqAaaZvDcc9/k+KhKs9nm6tWrPPXUU2iaxp985l/w1uZtms0mCTNJoVCgXC5z9eFH6HY6vPLSy7iuS/3kNNZaSQHMz85RKpQ4t7JG3xoh6xq7B/vouh7PSkejUSx6HAwiA05DTyIKMpKoUC5XSCZTqKqO74ckEyn+8e//Exq9Dk7g4/iRkaoqK9gDi8cevkpG1jnbPuCV57/H+594kve+6zH0AJzekN5JHdeNVPDb29tomsbOzk7cDbVaDcIwjNIxJ84GnhsVqoPBANcJ0NQEYSDiuSGOE9Bu9dG1B59n/8A3FUEQJEEQXhcE4SuT///vBUE4FgTh+uTxkfue+7uCINwTBOGOIAg//W/+rf9+x9HREefWVjk5OYmHrx/5yEc4OTmhPFOMxUz3+1fBO2nF04AtURRpNpuxtkVVI4v6TCaNYWikUqnIT8saANFQ29ASpNNpMplMPLuwLItarTZ5PyMsa0wmk2F3d5d+v89wOGQ4GNFud+l2u7Rbka3LtEuIYokNBKIEuWlVNa2sxhM7836/DxBj61OseNpel8sRPz+RSMTRylOrlsjgUo0s/5PJmJEyvekURUEQoX52FsEEE+NIf2JKqUhynKsShhG2G3mKiYxGozgTZjqTmEYYT+cryWSSXq8XQ2/TCOLp5zElC8hClMGRSqWYqZSQJIFyucwbb7zB/Px8DA+m02lGlhXPbtRJVG69XmdmZoZsNgtEYs9ptLQgCGSz2QkDcBQLzabndmVlha2trYlyPRKoTgkMsiyTyWTiRMvBYICmRQmf+Xye8+fPx5XvNG5BnViXdDodTk9PMU0znlukUil6vR4rKytUq9WYiSSKIqoakQPW19cZjUZkM3l83yedzsazrcj1WkYUBIQQhv0BaTPFww9dQRLkuLO1LIvxeMz51XMTm6MevmvHMz/P8yKoKhTwPD+u7qfX5sWLF+n3h/Gi7Lou9Xqdo6MjVldXWV46RyiAqmvs7+9z9epVPvShD5FJ5+i0e7z88su8deMm9qTz+sQnPsF4PEZVVV544QWq1SqtVotPfepTzM3NUZmdpdvtsru3x1nthOXlZT70oQ9x5coVCEKq1SrDXj9Ogsxms3E3cr+Y+P7uYzpHmcaLT/87ZYhlMpl4BiPLMq1Wi/39/SiWWtcIJrNPy7KQJYlnnnmG2fIMmqqiiTKqKEEQsjA7h2uNcW0nnk1NBaDz8/NxoN0UKZjGgYdBtGZFNGMlTq4tFovA2zToH3VbfxDHf4hO5b8Abv/I9/7nMAwfnTy+BiAIwmXgl4GHgJ8Bfl8QhAfCf7PHPq++8gaCB4YiMlNIsFAw+PBP/QQ5MYEylOj3moS+gyKFeJ6N50dOpoIsRdklVp9hv03HH1EfD3GCAMEDWRZxBA/b6eN5DsPRGFHWOKm38IWA+ZUKoeqgGxrtToN+v4vrjshkUszOlUgkdVRNwhMi8eRZp4svicwuL2JkkyyuLTM7P0ehWKTbizaq6AIPyZhpDNUASaQ76GN7LoVyiWQ6RTKdwgsDbM+lenwGoQyhTD5XxnVCctkSoqBGmGuo4nsSAgqBz2TTsEDw8X2QJIUg9PADmyC06Q/ak5hlmUImz+L8ArqqRV5me4fki0UG1phkNo2oKiSzaXq9AfZghDO28f0QJRGJLcPAI/BdOp0WZ2cnuIGLF/qMPBtPCBj3BtjDaFFU9YiBdv7cKmdHVQ5O90kXi3iCwcLSBmf1Op1eg8FgwMsvvU6YDDGKScxSlszMDKl8iZ3dfX7w6is4gctjjz3G/v4+nX6HheVFtvf32Dvex8xnUZIGa8srCI6H3x+zd2cLqz3Atz3KlTmGzhh34GJ1Lbyhx+bNTRZKCxQzRTQ0REVic2uTV197jYPjQ1LZDJeuPERxpoieTPDWm29wdlJlZFtcevgSoSIgaRL37t3lYGcb01DImDoJTWZupkg2ZXJaPaZ5WqdeO2VjcQV/5JEzS1g9F0M16bd7vP7i9zHw6VttkDxOzw6RxYAbb7yK1esghg6KnqLbG1Ipl3n91R9gKBJvXn+FTCYduUKnstiuz7NfeY7+cMi9nX30RBpZ0Vg5t06xnOQ733qVne09yrMK84t5RNIsLqxw4/bz3Hr9DU6qu0iqz9hzcTyJZKaI5494/fXvsnPnNS5fWOTi2iIzxTRf+Pyf8/zz3yabS1OcL/BLv/IJREOhM+5xe2uTf/rHf4yZSTOyXR7/qafA0HEklc89+xxICZ55+sNcXD3PSnkWH5evfvlZ/vJzf4qhyAz6XR5/4horF9ewcRmPR7x28yWSBYVvfu+vGIciB9UGfmgRIkazmwmdfezY2O4YWZUolguMA4v2oM3K2irdbh8jYaKZGgsX5/ijv/xDup5Ma+jguw5y6GN1mxRSJoVCgff91Pup1Y949tnPYyYNkqqOO3ZwApGxqHD7oEq328L3HZ5++qcwDD3OsvG9kMF4xMs/fAlNFWic7mMNzrDHUQflBgJd20XP5lFNEyOTAVnCzKbpjwcPYkl9x/FANxVBEBaAjwL/17/F038e+GwYhnYYhrvAPeDJB/G+XNelWq0yMzMTM49G9jiKuR1ZsT3D2yyPf3V3n3Yy04phKr6a5rX86POmFf2UkjtVWhtGNDCdWkE0Go1YkStJEnNzc3HVfL89RCqTxjAMtITxjlhfx4lov1Psdfr3CoIQV7FTNo5t21iWxXA4pN+PPLc0TYsH8I7jxDb1065gCv8BGIaBqqqoamSUJwgCrVaL8XgcuxdPSQ6iKMZq5DAMo0RAXY+Hn9OKb1r9GoZBOp2O0yGnNE7TNN9hVjl1250aWU7nHoPBYDLXSHJwcIAkSRSLxbj7sm2bWq0GEzdkQRDiynJubo4bN27E8Mm003Ndl4ODg5gFtLCwwPz8PMlkMqZ4BkHAtWvXKJVKOI5DpVKJu5zD/RPm5uZYWlqK7OUti6OjI6rVKqqq0uv1ME2Tzc3NGGKRJImZmRkEQWB+fj5Wdq+ursasrEKhMDmfGpIksLy8zJtvvokghJw7d25i+2LHVe6UQXTx4sWJpmHM6uoq9WaT4XDIzs4OS0tL2LbNwsJC3BVNu9SHH344hoUPDg6oVqtcvHiRSqVCvV6P6MiZTNzxplIplpaWyGQyzM7OUqlU4g4nnU5z+fJl9vf3WVpaQtV1MpkM4/GYs7Mzrl+/TqvTjmIpbJtWq0Wj1aRaPaFarbK5uUk+n6fZbPLiiy8iiiKvv/46Dz30EKVSiWw2i6Qq1Ot1+v0+uVyO4XBI4HpUyjO0Wi3CCcLwzDPPoKtaLOydwk9hGKLep12bsjDDQEBVNXK5XEw/Dgip15vUajWGw2GUiQPIk5lHLpfj5z72MRzXpnZyTLV2FA/iT09PabUalEolKpXIp23asU7vOdd1SafT5HJvz/hKpVLMzpRlOU5TNU0zZoNNTVynv+dBHg/6Ff4x8DtA8CPf/88EQXhTEIQ/EgQhN/nePHB433OOJt97xyEIwm8JgvCqIAiv/ru+qWazSbPZpFAss7WzS39gEQoSimZgpjLkCsV4kbo/rOr+Q5blSOl9vzeYGKnjdV1/BxQ2hTGmrXUEcVkxzVOSJEzTnLCG5Jh+GdFC1SiHZMJGc12Xs3qdhYWFGJ6bXryRZkaIN0TbtgmCgH6/H29IU9gNuE9xK8XirqkDrW3bERUY4teewn33z5mmN+D0909hsulmu7y8jOd55PN5BEGg2YwiTROJRAw7TRXR06+nBInpTTCF5mRZJp1Ok0xGeTHT1wqCIF6oplBhpAUJYjgvn89j2zY3b95E1/WJY2uflYtrMWwWBAGdTidKw9Q0CoUCjuPQarWwJjCZKIqsrq5SqVQYjUb0ej22t7djWGz6+U01BlPcWxRFcgWTubk5RFGk1Wqxu7sbw1amaVIsFuNNORpsv72ZFwoFms0mQRCQy+ViKGO6MXd6UbywZqiIUuS/NTdXoTIbLZwREWTMpUuXaLfblEqleJP0PI9yuYwkSVy+fBnLsshkMrQ67XhRUxSFy5cvx39jt9slk4kMNaeFSiKRwHEczs7OGI1GbG9vMzs7G+k+XJdms0mr1QIi25G5uTlyuRyaqrKzs8Pdu3cxTZMPfvCD/NZv/Rb9YeRQ8JnPfIba6QmSpHDl6iN84AMfIAgCGo0G3/ve99jc3KRSqfDpT386jq/++te/zsHBAaEA733ve3n/+98f34cRXB3R8pcWFpifnUOc0P0Dz6eUL+A7kfB56sUnSdKE/RkSBJGTseu6FIvFmJ4diiGqovG1556LRNYTh+7pdZ1NZ+i223zqU58i9AO2t+7iODbnz69hJA1se0yr1SCfz3JudYlSqRQVvJPH9HMZDockk0kqlUrEMstk4oJ1uoZECZvupAh9G1rWFfXfddn8tz4e2KYiCMLHgLMwDH/4Iz/634E14FGgBkwzMP91YN+/wn8Lw/APwzB8/N/XYXM0GrGxcQlJVnnz5lv8zQsvsnNwyMj1CGUlxvini+aPHtbYnkTrRrkTgiRGQVm+h2WPyGazVCqVGF/udrvcuXOHdrvNxsYGCTPJcGSBGHkrOZ5LfzhgYA3p9Lrohkar1eL27dvUalXaneYkWdHFNE3u3LnDW3c2I0sHLepMpjYqiUSCMAxpNBp0Oh0EIbKtCIKA4+Njjo4PkGQBTVeQlcgYMWka3N3apNtr47hj0hkzst1OJRDEkBAf17OxbTtezFzXpdfrxZ3OdAGcCiNt26ZarcZ6mKOjo1gceXh4GGPT0xtC0zTS6fRECGpHep/78GPP8yI9w8S6otvtxot/o9GgWq2iKMpEH7PA+fPnOTg4QNM0arUapUJE6VRlmcbZGQQB3Xab0XDI4USgVygU4pnUrVu34tfI5/PUajWuXbvGyckJ169fp9frsbOzw+LiItvb2xweHtJsNnnppZeoVquYpkmtViOXy3F0FFWk3/3udzk8PGR+fp50Os3q6iobGxv0+33K5TJf+tKXoq7m8JB8Pj9hUEXpmTs7O6RSKUqlErdu3Yqr6U6nE2lrXAtZEXj9zVdpnZxRrR2xe7CLKAtkMpl45uP7PoVCga2tLXRdJ53NsLWzzYULF8gXCiwsLXLjxg2WlpbY2dnB96MY6pOTE3Rd5wc/+AGmaeI4DteuXQPg7OwsdqAwjGhOtLKyEhsi1uuRF1qhUKBarQKQy+W4ceMG3/jGNwj9gFqtxsnJCf/HH/4BR9VjXN/DD+GZD34IL/Bpdzo8//z3WFldY3FpibmFxVj4uLW1xRe+8AXa7TaNRoP19fVI07K/x507d2g2m2xsbDA7O8v87BzVo2Pcsc2l8xtcPH8BUzM42NnFHdv0Wx2K2TyKKsXFmm3bDAcjkokUiqxh6Ekcx+Hy5ctRaqtp4Poekqrw4suvcHdnD1lSsccu+BEtXhElPv2rv4Jvj8Fzuf7GKywuzWI7FkggKiKFYpZer8HNG6/R7jS5cfMNtne2+PZ3/pqz+gmj8RBrNIg792w2S7vdjs+9bUdD+/FoiDu24+hpXZVJ6Brt9oPPqX+Qncp7gZ8TBGEP+CzwjCAIfxKG4WkYhn4YhgHwf/I2xHUELN737xeA6oN6c1OV/GAw4MaNG1jjEYIkoicTaAkj7jSmVf+PHpIkTWy236YTRh+0GFfeUxhNVVWKxSLlcpm5uTkg+vCz2Ww8WNN1nVwuN6GgmmSzWZrNiElUKpUm9EEh7kCqpydkMpm43e0PI8ba/UP1RCIRwzaKomCaJkEQkM/nyeVysahqCokMh8O44px2JlPIQ9f1eCA/XXSTyWQkSLxvgD/9W6ZusaVSiVKpFENY6XQE24VhSCqVmgSRRZ3U1K8IoFAosLS0FLfrU+hGFN8ewk+7lX6/z+npKYZhxOek0+kwMzNDIpGgcdSOF+alpSUODg7i8x7ZrKS5ePEip6eRRX8ymYz//mKxGA9YU6lUPNxVVZVMJsOFCxfIZrPk8/m4cxMEgUqlQhAEMQw2fb9zc3M8/vjj+H4kHkwkEhwdHcXkg8cff5xyuUw6nSaVSjEajWL47urVqzH0Ypomx8fHZLNZOp3OxGMsNfEtU9ByKtl8NoaegiAglUpxfHwcn/vZ2dk4wyOXy7G9vc29e/c4Pj5mcWU56s4SBqIosre3F4tzP/rRj5LJZDBNM2bENRqNSJRXLL4jhnoq5E2n0++g37quy+bmJrIsc+3aNZaXl8kW8rQ6bcx0mue+GenGtra3cXyPmfIsASGv/vCHPP/887x1Z5Obb72FkYhcGLL5HI1Wk9t3Njmr17m9uUk6k4ngZsvi9u3bnJyckNQN3vWud/HEE08wHo85OTnhua99nUQiwfe//31SE7rutMufDst9L4yJGq7r4jguhUIx7uQg6r5ffOkHdPoDBpPo5Ckk5XkeyYTOJ3/pl/Ach+2te8yUi2iyRPUk2kzNVIJk0sCyBgS+GxNwICqCO51OPLSfXs9T+DLyIvNjs8vp9TvoRzTmSBgNtXrrgayn9x8PbFMJw/B3wzBcCMNwhWgA/60wDD8tCMLsfU/7OHBz8vWzwC8LgqAJgnAOOA+8/KDe33SBzGWyfPCDH2R5eZl6s8G9nW3ubN2NVdTTXPbpojldUBRVjyoTUUGehAqFYkgqm2JhaZ5erxelOo6ieN3Dw+N4YX7ttdcY2Tau70cJe2YSJJHjkxpeEFA9OaHf7zI7WyKVTjIY9mINxHDYR08mePe7381DD1/B8Vxefe11DMPg/MYF6s1GnNII0G63Y3w7m81SLpcnViNdZmZKtFqN2DTx3LlldF2l3+9yclLF8xyMiZmh77tIkkCtVovtXpaXl5mZmZnw4qOZTSKR4PT0lEqlwtWrV+n3+2SzWe7cucPi4iKWZREEQQz13Lx5M15QDcOIf6ZpGnfu3EHX9ZgN9thjj5HJZNB1nZ2dHUzTZHd3l3Q6zZNPPsm1a9diqOD27dsx1PYTTz/B3Nwcztim02rz0KXLzFVmyaYzXLywga5q9DpdFEVhdXUV3/e5dOkS6XQaSZLi1zg7OwOI/+7hcIjrutRqtZid1u/3I6sYy2I0GtFut8nn88iyzCOPPEKxWOSVV17h9PQ0ymfv9ykWi1y7do3xOGL8nZycxHDdxsYGTzzxBNlslhde+AGu6zI7O0upVOLRRx9laWmJhYUFTht1hsMhelLnoYcv8cm//Ul6vQ6j8Rg3eJt51Gq1SKfT8Sztq1/9Kr1+H1lVQBT42M//HPl8nna7Tavbif2nHMdhfX2dRqOB4zjxdSCKIsViMbah2dvbY2tri1KpxP7+PpcvX6bdbsdzlqnav1Ao8OSTT/L000/H91mxWGQ0GrG6vsbPfOyjLCwtsbC0xOadLb7+zW/QaLX51U9/motXLiPJKne27rKzs8NgMGBra4uf/dmf5erVqwwGA7a3t9nc3KQ76PPhn/lp/uPf/E0ymQzf/va3ee5rX+fG9TdQZJlf/7Vf4xd/8RexrRGL8wtxAZbLZBiNRnERE93HPq7rYRgmyWSKfLEMgKrKtHttmr0Wf/75v2TvqEooqPiujzN2EIDVlXP89H/0IVKGjqnrfP7P/4z52TLzC3OsrKyQyKRIZtJUq1U0RWDt3CKdTot02qRUKrC+vspoNKTZrON5zoRKHEUtVCoVFhcX40LS8zwUMSpwow52jO861GrHXFpfeVBLanz8/6FT+Z8EQbghCMKbwAeA/wogDMNbwJ8DbwHPAX8vnPJOH8BRLBYh9NENlVIhx8bGeebnZ1E0mbOzE8bjceyj868b1EcOpQpe4EdV9mSOYlmREDGii2rMzs5OrBLkeMBrGAbz8/N0Oh2CIOBw7yRKaZzMTKb+Y5lMiq2tLXK5HGdnZ8zNz8YQVqvV4s6dO8iyzNWrj5DKpGk0GszNzWHbNnfv3mVubg7fDyYbSVTJTCueTCaD53nMzc3FFNV6vY4oirTbET4/7TBUVaXValGv12Ms9/8l781+bDvPM7/fWmvP8zzVPM+Hp3hGHnEUJdGWRdmttGF1GzLURmC4fRPkpv+CJA3EQYIgCQLFcTwEkjuxZdBunhQexQAAIABJREFUM2zKJCXy8PDMQ9WpU3Vqnvc8z/PKxdrrE9nILYU0vYACCVSRVXvvtb7ve9/3eX6PjtNYe7D1BRS4jhrZ2tri4EALA9N5SPpGrUuFFUVhamoKq9UqsjByuZyW6jgQG+g5GfqJPJ/PC2GDvgiXSiU+/fRT/vIv/5JCoaC9V7GYkIlaLBbW19epVquiWkulUqRSKY6Pj0USZrFYZHt7m3A4zPvvv0+lUhEIFD3TQ5ZlTk9PyWQyhEIhjo+PhWzTbrdri3E+Ty6XE+FnU1NTlEolnj17RiaTEQPY8/NzXC4Xfr+fYrEopLGSJPHNb36Tw8NDcrkc6XSa58+fI8uIikhVVZEc2mg06HVVLr64yscffyzaXKPjk3Q6PW5/dheXy0U+nxe/2+FwYDabmZmZ0STqhQKnp6ecn58TikZY33jKxMQE1cF86o033hAzlc3NTdH2dLlcNJtNIpEIH330ETabDZPJRKFQYHR0lGazyejoKEdHR6iqSjKZ/ML72mg0yOfzDA8Pc3p6SnRYk80+fPiQRqvJyfkZw8PD+IMh6s0GiVQKm9WBy+OmUq1hslrIFvI0O23uPXxAs92m2qgzOjFOtpBHkmWSyaSoSnXhjASYDUb+8cMP6fV6TExPkc3naLfb2gGpXkeSVMEr0z//Z8+2KJc0CW80GqVYroIi4/Z4ePDgAZlsXsxoDQYTZrOVYqFEOpHk9Vdfo1GtsbmxQS6TotNqasSFVpN6vYmqSuK+HY5Fxaahy/Xn5+fJ5XI8fvxYUMH11pzup9HnovprtJnNGGUNmWQZVNFf9vUr2VRUVf2FqqrfGfz7D1RVXVFV9YKqqt9VVTXxuZ/7r1VVnVJVdU5V1fe+rL/H5XIhSRKZxBlSr41EF6fDwshwhIsvLDE9M87k5KSYS3wegS8yVlQJSTYgSQr1lvbhm60W7C47rW6LQqHG8+fPxVBbb31p/f08iURCizLu9ZiYHmZ+fp6lpSXRG3U6nezsHHDhwjLdbpvJyUnu3r3LyMgIC0uLHJ+eEA6HGZuYYGPzGU+fPqXT7WKymInH44yOjjIxMYHFYhYgOrfbTSwWE27+g4MD0Vbyer3ie6urqxpxdyAiOD4+JpfL8corr4hFLJPRTsY2t4Hx8XEikQiFQoGtrS1xWtdVZhMTE6iqFr3abmuQxUf31r6gmrLb7eRyOY6OjsRAdXFxUbR2vF4vN2/e1BIwZZlr164xNaUh5kdHR6lUKrz00kssLi4Si8UolUpkMhlcLhfHx8e88cYb4uckSWJ6epput0u5XGZ4eJhXXnlFDKzL5bJgS7lcLi5evMjp6Smrq6vcv3+fQCDA+Pi4+J37+/vYbDb8fj/dbpd0Os3IyIhoe21tbWE0GnG73djtdlZWVigUCszOzmI0Gtnd3SWTyTA+Ps7Fixdxu91sbm4yPj5OJpPB4XCwvLzM1NQU5XKZ09NTXC4Xz5494+OPPyYWi9Fodvj4F7e4eu0lDGYTP/nJT0il0gwPjSHJmuJNv6fzA48TaHSAWCyGzW7nweNH/Lv/+/9ClmV+8zd/k/NEnNnZWVqtFuvr6/zoRz8SisChoSGWlpZQVZVSqUS32+Wll14iEokwNTUlVGMnJydsbm4yMTFBNptlcnKSdDqNxWLh5s2b3L59G7vVhs/nIxaL4XQ6+du/e4dHa08wWM0EQxHK9TpDIyPERkbZ2dvlx//ur8jkCjzf3RGVl871evToEd/+9rdptVpMTU0Ri8U4S8T5b/+7P2Zvb48bN27gcbn47d/+bRw2O0+fbfDXP/0bPvjoQ+YWF1DMJjx+H7JBF9x0yOfzlMtlksk0//7v32VkZIxAIDQwqGoHSckgcfPWp1QbdWTFSE8yUqs1cLk8TE5MsLy4xNzsLJ1Giz//3/+EV27cYGhoiL29Peq1Bn1VJpHMcPvefexWG++9+65QnTWbTVKpFIlEgosXLzIyMiI8YvohVK9EdayLxWwml8sO/r7aoG3dpln/T1xS/P/HS4fI9ft9FFXFaFCQUOn3uphNRkxGA6h9Tk5OqNfrA/yGLFRcn5cO6/3Wz39fP33ZbAYx1NYWd82YpklQDRjNJoF5VyU0T0WpRCFdpFqv0WzWmZ4ex2g0DgxO5cE8xIMsywwNDWGxa7p1/W+sVqs4nU6q1Soej4eTkxNq5ZaoQFRV5eDggGg0TDqdpFHpEo+fIUkqNpsFVe3Rbjc5Pj5EVXtMTIyRy2VYWJhjZWWJ09NjDTJotQqYoCRJxONxMUzXjYiVSkUkAdYGKh6XyyWgjZevr2KxWDg8PBQzhXA4zBtvvEEkEqHdbnN0dARolU65XGZycpL5+XlMJpOQiOrzE4vFQiwWEwqparXKyMiIEANYrVZkJBw2O8l4gp3n24yNjHL18hU8LjeNWp3x8XHq9Toej0cMxGVZFrOp/f19Lly4QDgcplgsYjKZ2N7epl6vc3x8TK/XY25ujqGhIYFJPz4+Fuo4Xeaqy4V1YQHA8vIy2WwWSdKc+6qqUqvVtFO634/VaiUej4tqDbSDRywWw+Fw4Hb7CYXC7Ozs0Gl3Wb18SVMZNltIkiKqxaGhIZFMqCuhkpk0ZrOZq1evsrystVQ146cmYS0UNB/S1atX6Xa7LC1p+fM6GFSTLVvF/KRSqdDpdH5ZMY2Oiuo0k8ng9XqJx+OEQiFmZmaIRCLcvn2bg4MDSpUykiKztLIMaKf0vb09KjVNnddotPi1b/+G2LCNRiP7+/u88sorRKNRRkZGRBUYj8fZ3ttlcXGRt99+W8j5s9ks9+7cZWNjg0AoyPDYKCarhVa7rSFQ+j1sDo2Vp8/4AG7fvk08neP4+JjXXtMiunVxycbGBsVKiXqzgSrLtNpdIcvvdrt873vfo1Is0e408Xu92C1W+t0uDrsTq92B2WLD5fJgHLTSNUOmSqGQG6CAFEqlAkNDUUKhgGjF6wfebrf7BeilyWQUyZGtZhNFUlGQODjPfOlr7D+pTWVyclJjOQ102+FgALnXI+L3k4qfo3Y71Mol2u2mgC/qA/3/uFKRZQMg02eAbjEodLsdEolzms06tVpX+FAURWFzQ2sFPXr0CEnSHN5HR0fa4rl9pkXwmky4gi6hmqk3auRyOcbGxjg4OGBpaUGkzz1+tEU6nSaTybCyssLC0uIAISJz48YNfvbeRxSLRV77+tdEyf/o0SMMBgNer5dQKER4yMP8/DwOh2bIOjg4JBwO43Q6WVxc5Pnz50xMTPD06VPufbZGrVbjxSua6E4/sTYaHfx+P3a7XfhCdAns0dER5+fnHB4eCk+J7vlIpVKiDbeysqINFQf+ibW1NU5OTqhWq8zNzQGIB+jBgwfs7u5qw+SREQ21MXiYPvzwQwG2vH79Ok+fPsXj8bC7e8Dp6Snr6+ucnZ0Ri8WIRqPicHB8fMzGxgYmk4nR0VGSyaRQpZVKJcrlMkNDQxiNmt9BPx1ns1m8Xi8ul0uotO7cuUOj0eD+/fuYzWYCgQDT09P4fD5u377NxsYG5+fnYsja7/dZWVnh4OCA4eFhkknNAV6v14WP6vz8nDt37tDr9RgbG2N5eZl6vc7RjqY2q1QqZM8SFMtVotGBl6VcZf3pFmaTDZfTSzarYT3Ozs5EK9RqtfLiiy+K+2N4eJh6vc7JyQk/+pM/4dq1a2xsbRIMBikWi5RKJfL5vHhtemtyZ2eHbDbL/v6+yB55+vSpFjtcqwkXvizLeL1eqtUqMzMzhEIhCoUCjUYDg8HA5PQUqqry7W9/G4PRSK1eJ5PL4g8GkCSFbC7HwfERt27dYu3pOuVKDYfLidfvI5lOCUXlBx99yOT0FKGIdi//4z/+I1tbW/h8Pp5tbGAwGDg7O8NkMLJ3cEClUadQLFIoFUlkUiQzaUxWi5iJaj4dF3/4h3/IH//b/4arV69x+7O7WtJpp0O70+Fv/uZvODw60kLm+uDyeOl2tDa2hMIrX/saPq+b//G//x+olMscHx5QrdRJJFI829jm6OiEfKGEQTFSqdQI+IIiRtjlcnH58mUMBgO5XE7MdfXnXU+g1A9btVpNq+hV8Ho0r5fu7VqaHv3S19l/MpvKhQsXBEnUaDRq3gH6VEoFOt0WzUYNWdYc8R6nQzNIDZRb/1+GIV1lpS92+getD2/VLsJ7kc/nsdqlQQVjo93WKhz9xGuwIwbQkiRRq9UIh8Maw2iQg+Lz+Ugmk3g8WqUyPafdHH004FwymRRGq+3tbVYvr4jFXh+8hsNhWq0WVquVsbExLBYLfr9fnJZVFZGprjnkZZ4/f47L5QIFUVlkMhlhqlIUmJ2dFQNCs9ksPDcPHjzAZDIxPz9Pt9slHo8L7Ey322VxcZHLly9jsVjIZDJi6K2fvq5cuTJIssvjdru5desW09PTWK1W/H4/rVZLVGpms2ZCGxkZwWq1Ui6XCYfDWCwWzGYD5XKZaDTKxMSEaDHqg36TycTCwgI+n4/79+8Ti8XEg+nz+QAwmzWJt9+vRRjs7+8LGbB+ou31egLZ8uqrr1JMl5iZmaFYLGI0GjXUycyMBrYMh8UsJp/X2qHZbJZAICAMhH6/n83NTUA7EF28eFFsahMTEzh8ViFGmLtwceCvseJyeTg9PWVmZgaTycTq6qpQqwWDQXHC1v0n+um+WC6Jk7yeqDg5OYnP56PdbhOPx1EUBa/XK95DfcP94IMPePPNN3E4HPh8PoLBIMPDw5RKJTE/CYfDqKrK9PQ07XabZDJJv9/H7/dz48aNQYRDibPzc27fvk21WiUajYoDi6IoFAoFHq+tYTSaRHswEAhgMBj49NNPKZVKeDwe8dm4XC4Uo0HIwHX00eTkpHZfy9IgeyfFtWvXBOal+jk5u27a1dVY5+fnuN1u8ZkfHR3RaGhZNGazWcxldC/Mq197mWazKf5Wr9fLysqKwPFMTEzQaXcBzYSbTWmCEJ0Irm/MOrU4GAwK0Y/FYhHxGfV6XZiedaOzbYAe0v8f+iH5y7z+SWwqX/vaCxTLOWqtJi1ZotLrU+2r5GpNenY7ctjHXimL4nLQanSxq2ZUi0KpXcPssYNFoSf3kY0ykqKFIKpSHUVRkXpGFNmKIktUa3kcdg9qz4LBbANZQjJ2CMeCSIqJQHCIWqNOqwvJ4wSpkzhqq43basOqKJQyOUrpEsnjFJ5QgIsvvkgqlUBS+3h9HhrdJrJVYWpqhsnxcWKRIP1ek739LRLxY5wubTMMB4I8efIUg0mhp6jEc3F8QRejY1HCQQ9Or4NUpoDB6Objm7exuy18fOsj5hYXGB6dYf35DpVWB4vLgzccJjY+ij/mITwao1gt0O63CUVDVGoVJqfGMJtNtBo1ep0Wz/a3OU3FMVlMuN1O/AEvW8+fYbAYaPbbjE6NEBuOMD03iWKGSr3IZ3c/ZXZ+mpHJYUqtMrMX5rB5HBhsJk7Oz0BRqDeaXL12HVk24PP5sNqMHJ/sEQh6BlJiL5HwBO12F6fLwv7Bc9xuP9lMDbPZTrfXIjQ8Qk8xsHdyQqFSotGqs3r5Al6fg26vwc33PxQPrN7iU1UVi8VCq9XC5nJiMJsYHhvF6/OxtLJMvlAgmU6hGI1UWw2WV19AMRtJZzPMvDDL2uYGuXKRbt+IbLBx7+EjbC4bZ8ljjFYFs83MWSLO8PQEE3Mzg0jbPttbW/R6PcanJ+mbFBxuP/FUDslgpqvKNDtdvIEgk7PTGCwmEoUTzDYjnU4LBQW/x08kGsBol3i8dY9UuoDD6aHb1wCgpWqFUrnK5uYemfM4XpebTDJPo9VjZm6R73//X/LJxx+SOjuk3qricNlx+zTX/qsv3yCVOMcogYImjZ6cnaErQ7FVp6H2qLdbHJ9pXpvYSIzp6Ulq5RJGVcVi1DwTnX6HxReWGIpE2d/ZJRNPMjE8SiGVIeoP4nO4aNSqnJ4cE4sGsVpMvLCySNDvJhoJYjYpdOjSoYuiqKwuL7O0OI/b7SKeSbK2+RSz1YIiG7A5A3gCYwSHpugZrHzy4D6lfgO7202nDWF3gKjLxmuX5pmLerC3zCgmJ0aLF7szjNsXxeUNIplk8pU0qqmOiTJet5HH6485yRSp9oxU2zIdFSolLfzOabfxR//qh9STKfafrDEaDeN22zE7TZRadWLREJZeg7BZwtmtszIxhsmo0Ox2KBbLgjJsMJgwGEyUy1UajRZ02rhsdjrNFs1Wl2arg91hBbVFt1mi0+hjNWuHDpfLhir38Yf8PD88/9LX26/spvKtX7vBf/77v8E//89eI5fLibAe/VLVHuVymXa7zdbWFu1ui8OTQ8wOC9V2k0qhiMfhxICEQZUwSDKSqqL2+qDIwsltNpuFD0CSJNFn7g6UG3obTVVV9vb22NnZ4Qc/+GeMjY2JNkyn06LVbnJ8fIyiSMzMTAkqarfbpdFosL29zcrKCslkioODAzY3Nwc/r1Cv1wkGgywuLnLz5k0uXLiA2oN2r8vu7i4ulwtVklhbW6Pf77O1tSUc5JFIhGq1ym/91m+x8WiLP/uzPxN+i1wuw9jYGB9++KGY0SiKwtzcnPA2hEIhbt68STweR5IkXn75ZYaHhykUCkSjUTKZDEajEZ/Px/j4+Be8F9vb25ycnPDiiy/i9/uFIbJQKBAIBLh9+zaTk5MsLy+jqiovvviicMrfvXsXWZaFckpvtWinxoaQ4VarVUwmE3a7nb29PWq1mhBPqKrKJ598Akjs7OywdGWVUqnE1tYWExMTrK+vYzQaWVtbI51Os7i4SDwe58c//jF7OweitXf16lV6vR4XL15kd3uHTCbDzs4O6XSa2ekZAoEAqVSKTqfD9PQ0d+7cYXx8nGw2y87ODgsLCyKfAzSFl8vlIpVKiRZYIqHpWfT2x9raGl//+tdxOp0kk0kxy6rVaiiKQqlUol6vC3zHa6+9Rj6vbVi6YGB7e1vMDHTH+/LyMsVikVu3bhEIBLBaraRSKWw2m6iSPvroIxYWFigN0jYLhQI3XnqJzc1N4YdxOBwix6fVavG3f/u3IgdEF3O0221OTk744z/+Y6anp3G5XBweHtIezDb0WaDRaGR7e5tMJkOhUNAMhzUtiXJsbExIz/X76vj4mHa7TbPZZGdnB6vDqbWKsyl++tOfMjE9TjAYJJPJYRwglXTv1fXr1/nhD3+IzxcQc6hKpSIUc7rgptVqIZvM5EpFHjx6RKOt/Wyv08UkK5gVA+1Wg+R5nE6nQywW4+///u/JZ3OMT4zS6XQYGRlhd3cXq91GOBohNjyE0WImGArhdDoFQHVkZIQnT55Qr9dFO1btS3S7fWRZiz/IZvOUihWajTb1WlMQPPSZjm5tmJ34vBXwy7m+kpvKH/zr7+NwWqg16lSrdfGm9vt9jLKCxWzEZrPxzjvvDDT4GsogV8pRbVYx2s3YjGZK2TydVhvzoB+pX3ppq5seS6WSkNPqN4M36Mfn8w2MhWUalTY2m42LFy9q0MJBj1oPdSqVSqyuroqNptvtcnh4KIZ2s7OzgnFls9nERqmzlGw2G4VCgcuXL2tzDcsvTZh6pLButjSZTIyMjIj3ROcbKVZYWloCYG9vj0KhQDwe10rrRg2r1cqFCxcol8tUKhUx9/D5fCJpUP+dxWJRuMl1mbHOL8vn81QqFaLRKCaTiWg0Sr1eF6IEna80NTUFwPHxMVarlePjYxqNBg8fPmRpaUmQf/WUwaGhIS5cuCAEAvl8fpDU2BML3eiolvCot+86bU2WefnyZeEBkWUtYCsSieD1eoW0emdnB6fTyfDwMHMLM/j9fuFBcbvdQtXU7XaZn58XG5c+dG81Gtjtdi5evKhVPoO2hd1uF7gTPR1R3xBLpRLNZpORkREhcY9EIsLI+PHHHxOPxwe8qAiLi4sCD6SnZeo993hcW+CePHlCr9djeHhYLOb64F4XCehYGn34XalURJt3eHgYq9UqTLLZbJbnz58LoYrHpWUCpRNJjo+PyefzeDweAoEAPp+Per2O1+sVPh79/jUajYTDYcLhMNvb2+J3Go1Gce82m03W19dpNptMTEzgdrvxeDyYzWaOjo5Ip9PMzc0xMTHBwsKCoPcWCgXW1tZ481tv0mw2yeVyBINBUqkUfbUr/E39fp+NjQ1hos1kMuJ5rNVqGrnCaqXdbmNx2nm8ts7e0RGFfElbG/oqiiRjkBUioTBTk5PQV9nd3mZ8fJxmU5sv6fOPQqkoDhM61+/8/FyQIXSRi8FgIJ1OC1Nmq9UZpMNqoiNZMlCvN6nV6siyQbS5dBuBbpD8ykiKf1XX9//lb/Jf/dt/g8HYY2l5mlAwwul5gj7SoLeIUCihqkxOzWhcp0qVYCRAX1ZZ29sk065hQmYkNoRNMSL1VOSeiqT+Ej6oS3ElScLhcAiIoiRJ7O7uUsjnB6cfE7FYjFfeuE61VsbpclAs5bFYTCCp+P1eZmdnGR8fJ5/PU6vVODk54fTsmJnZKWZmZoRrvFSs8PDBY3Z3d3nzzTdxuVyCK9RsNsUieho/58o1TalzFj/HMwDeRWJRbE4t5lZX6ujRwf1+n4sXLwpOl6r28Pl8WCwmrl+/jsViEXG0q6urHBwcMD09TblcFn1bj0drRek4E6/XKzaOzc1NMpmMeJ/efPNN9DjYjcHwNBwO853vfEfMTfb29rDb7YLzFIvFCAQCvPzyy9y/f59qtYrb7UZRFK5cuUKv1yOZTLK+vi6UYfl8ntnZ2YFJT6uG+v2uWByuXLlCKBTB4/GKjPaJiQn6/T4XLlxgY2NDsNheeOEFsQF5PB76/T6xWIx8Ps/z58/ptrRT4cLcPLVKlZWlZWq1Go2qthi9sLqK2+0WCPiHDx/i9Xo5OTnh4sWLpNNagJTuXtd9FbOzs5hMJk5PT8WczuVysbOzw/e+9z0uXrxIrVLl+PCIw/0Dep0uC/PzjI2M4nG5Cfj8NJtNcQC5fv26YHllMhnhAbp06ZI43AwPD3NycgIgDj7Xrl1jZmaGmZkZOp0OoVCIZrPJW9/8FsPDw4wMD9Nptrh58ybj4+OagKLRZHp6mpdeeonDw0N2dnaYm5sT9+rS0hJjY2O899573L17l8PDQywWC0tLS7z22mtiIK3lHYX53ve+xxtvvEEgEKBarXLz5k38fj/Hx8d4vdqzNDIyQi6X07xmA0OhPxjg7d96m/fff5+1tTVMFjMHh8dcvvwiPp+P6elpDg4OkGUZny/A//w//S/s7+8Lo6gOWjUajZTLZU0CX63ws08+wWJ3ICmyRts2GDD0waLKWI0m/uD3/xUBj5v/8y/+HEmF+cUFHE4nyXSS0qAKURWZZreDwWLm7Pyc8fFxdnZ2tMNoo8bu7jYjI0O88MIKbrcT6GO12jAoZjptlX5Pot3uIMsG7DY3BoNRrEVms6Ym0+dS+gb2ZV5fqU1lZGSIRkMzDZotCrsHBxQKJa0krDfFqVFWteApSVLIZnMEQ37tVNeoUWrWSRfzv/yZwUaibyCyLGvfGyhmNJljQ5wmXC4XS0tLSLJMoag5jq1Wq+A2abyoIwGb83q97Ow+5+Bgj0Ihh9fnJhaL4nQ66Xa7JJNJarUaibiW/TI0NITH4xFhPHt7WqqezsAqlUocHR1x6+M75HI5otEoHo8Hl8vF0NAQnU6Hs7Mz4Q3R/QTJZJK1tTWSySTNZn1ADdYGkbIiDeCJRZxOJzdv3sTn89FsNjk/PxctjkqlQr/fp9frkclkRLtEx6OUy2U8Hg8ej0fLRrdYePLkCfPz83i9Xra3t9na2mJvb494PM7p6Smjo6PidSmKwunpKfl8HrvdLgykuqlON4/qxr5yuYzT6RQEaC3VUyEUCgmZ8NHREfV6nXQ6K1pLtVqNra0ttre3kSSJR48ekUgkhMN6e3ubWq3G3t4eqVQKj8fDSy+9JPA4BwcHHB0diehZ/aQuSZLIrul2uywsLAhDpQ4XPTs7Y3l5WciGda+U7hzXh9nFYlHIfnU1mk5w9vv9mM1alo/BYGB/f59Go8HR0REul0sQi3VIZyKREOgXm83G4eGhkADrIhEdvWK324Wp9fMbg9+jGXStVisjIyNahW82i9N2PB4XaYX6+9hutzUD7doaq6urRKNRwuGwMMKWSiVOT0+pVqucnJywtbXFxsaGwPvow++9vT3xHrpcLlHt5fN5qtX6oNpr8PHHP6fTaRGJxUil0lr7y2gklUrQ73eZm5sT/o9qtcrjx485OzsTeBY9C0jf2B88WSNXLNFot5CNRuirGBUDck9FUftYjAZGhjRTp9FoBFkzPiNLPBsYSFVZwmq3YXHYUYwGzFYtGGxxcZFatYrL6eTw4IB2q4XX40GRZcwm0yCSQm/pD74GGfWossAJqZ+LQdczbr7s6yuzqczNT4ooV5tdK/c3nm1TrdXJ5PJks1rLhb6K2WjCZjGTL9UZHhoncZakXi4Jo1S6WhGbQa1WQ0ajXcoqmBSDFoc70IXr+G4deKirhtReZ0DUtbK5tUGhkGN2dpqRkSFqNXB7XMzOTmOxmoTiyufzkUqlBuqbCMVinl5fm8dEo1ERxRoIBIjH41y5ckUgWRwOh1CAdPs9fv3tb+Ea0IgjkQilSpn19XW2d49ZWVkhGAyiqiq/+MUvhELMYrEwPz9POBzGajWzuLiI2WIaDPscQpmku7JtNg0XU6lUWFxcFCoz3SdiNpt59dVXCQaDbG1tiYdSURSy2SyZTEYYC3d2drh06RKPHj1CVVVWV1f5oz/6I+FhsdvtfPLJJ4JVdenSJWE0BNja2mJ6elq0xD6/6OZyOa36osf0zCSdbgun046qSrRaHVxODwZFk0HrcwTdzb+yssKNGzcEJdjj8dBoNIRT3ul0cnp6qimjJBmL0cSrL7/Cr7/1FqlEkkgwRCwSpVwus7OjzVt0b4mqqkJFtLu7yyeffMLly5dZX19nYWGB8fFxvF6vOHGOj4+zv7+Poij4/Vr1obe+dKWQrlL66KO6UCFFAAAgAElEQVSPWFtb4+joSJhPI5EIlUqFs7MzarUa+XxetGstFouQeesE6fHxcRYXF8Vp/dNPPxUm1qGhIcbHxymXy/z5n/4fvPfee9itNirlMqlEkmq1SiaVJuT/JW3AbDYzMjJCoVDg5OSEcrnMw4cPcblczM3NiXtYU/rdptVqce3aNd566y1GRkYYHR2l2+3yp3/6pxwdHXH58mXC4TCXLl0iFouJFpcsy+zu7jI8PEy30+PJ2pq20URCfONb39BIAG43l69ew2hUAO15/uCDD8jni/R78N3v/haFQoG//uu/5h/+4R+EERYQrdD/8MHPSWQyFCpVanUN5yT3VIySjKEPv/HtbxP0+/iHf/h7li+sYLSYqXeb1HotZlbmOT09xWQ2U2s26Mmwc7BPs9vBbLNyeHhIoZDDZDLg83lwOGwoioSq9qjVKlSr1QHjS0Mc6RDZdrsrQK+6Z8hoNJJOp0mlUpyn/xNmf/2qr+3nBwOHdJWd7T0ePXpEOBQFScFs0uR3vUGKnT68TKRyxFNpvG4f9LSMa7fXTw/oSioGswmXx41sMMCgnASEvFGXJ3u9XprNpkDet9tt7E4nmYw2nLXZbFy6dEm4b8Nhq0gT1JPnHE4bBqNCt9smnUmiKBKzs7NcuHBBSHZPT88olzWAo9Wq3XhDQ0NIkkQymSSZTGK1WvF4PJyen2uzFFnizn0tRtVoNrO6uiik1e12G5/PJ04ybrebbDZLtVpmdnaWnZ0dVFUlEPAN2lgGUueadDkYDApInc79MhgMbG5uauiJep1Lly5x79498fOXLl0SfCLdZKgD9/Rsl6WlJQIBDdSnD7t1zLrD4RAZMzpivlKpfAHuqP9/NjY26HQ6oheve1L003en0xHtEp32qy+m1WpVVEI2m41EIoHJZCIUCtFqtZienhZiBZ1bplOAdSiojofR77ULFy4wMzPD0NAQ+Xye8/NzsbGYzWZWV1d5/fXXhdGwWCwKwvTMzIygJ+tSXx3LobeuyoUisXCEerVKpVRiJDbE7NQ0ywuLpOIJMcA/OzsTWSnlcpl4PE4ymUSStGp0fn4eSZIIh8NsbW3RaDREj//NN9+k0Wjw9ttvs76+LlorQ0NDrL5wUbDbZFnGMvAq6R4i3fFdKpW+0EL++te/zltvvcU777zD6ekpa2trTExM8MMf/p4gI7/77rta1tGgOpyZ0cQP6+vr1Go1MpkM1WqV73//+2KI7nK5ePLkCafxBHNzc7S6LW3uaTaQLxY4P0+wvb2NP6D5jPR2np5qajSaef311/nBD37Ao0ePaDabQtRgtVo5PT0lm8vTaGi0cq2LYcBgMAkrwq+/9WuiItw73McT9NLstAlFI5RrVZaXl7XKVe3TU/u0e1pn4u7du9pBwmhC7fUJ+PxUyxVkJLrtDrVK9XN5L1rCq26BMJu1eI1oNCpa/a1WS8RM/Cqur8ymAnB0dDKYm4DaVzQzVK0tSkBVVek0W7QaNTqtFtVaE4Nixma2MTM5RbfZxmF1UKs1KNdrVBt1Gp02tUZdPAjy4Ovz7np9wKf7VoxGDSmvn3qDwYAYSj58+FA48fWsk2q1/AVljh5OVa/XBfivWCyLsCaPx0M+nxcnzkwmw+TkJPv7+3Q6HXw+nzaAt1kplTTvgcliFp6Lvb09McCdmZkRJONAIIDH4yGRSGj0XrdTsLpOTrQh6PzygvB66DgUHdMRCASIxWLCACnLssCV6BtyOp3m7OwMi8VCuVzm7OxMtM+y2SxLS0tMTExwfn5OtVqlWCyK/rzX6xVAQx0PoqoqxWJRhFsZDAZOTk4IBoO4BgNjHUtjt1txuRziAdOrLqvVitGo+TbK5TKtVktsDLVaTQR+fT5CNpfLUSgURPuq1dLyM1rNJrdu3eL+/fs0m02KhQJnZ2ccHh4SDAZJp9Ocn58zOTkpCLN6FrquFLx69aqYr9lsGsJEx+jr5t1GoyGG8r1ej2hU47TqXgqDwUA2mxVRwPpgXK949AyOmZkZUqmUaI24XC7Oz8/JZDLCcd9sNkVlMTQ0xM9+9jNCoZBQ4JVKmh9HR+yYjSbS6TSyigAf6i2veDyOLMuCWmC1Wrl58yYA165dE/gZ/aBzcnJC4uhciDiuXbvG8PCwEGB4vV4hhDg4OBB/f6PRGDx7QZxurcJYWl4gGo0yOjpKu92m0WiJLBR/QAu90syZNREu5na7+d3f/V0xB+t2u9Tr9YFPqUar06PfV5EkRXQu9IC5SCxCrdEgm8/RaGnzHaPVRLqQIZFNI8synV4XFTg7P8dks1CuaQcaXeSie7/02aLeYpVklVqtMrhHK/T7Xbo9TeCiGCSxkevrlu6u/1VcX6lN5a9+/A5/9ZO/4cnjLeZmL+APRghFwvj9QYwGMwaDSXzwtVqNTt9IJl3EqJgJuQL4HV6qxRoum4eeSUFxWOkYJCSzEcmgqZroazOZRqMBgMlkol6v43A4hLlI/+BnZ2c5j5+SSCR4cPcpxWKeq1cvD0rUFslUHIfDht1uF6dz3Wlts1vY2XnOw4cPUVVJm8eUqthtDvHw6CmFV65codVqoSgKw8PDJFIpCqUiZ2dnBAIB5ubmNOxIOMTO3p74m/W2i54cp0usR0dHSSTjg2qsJyS7sVhMBGHpuSY6Rl7vkevvg9fr5fDwkMPDQ4FmuX//PtPT07z22mtam67b5cUXXySXy4nTeD6f586dOxwcHDA5OQlANpsVps9isUihUCAWi7Gzs4PX6xV5JdVqVeBcLl++LMCYuvlOkhi8Xr8Ytm5sbPD8+Q6VSlVQdPXEzJOTExqNBhcvXhS534qi8MEHH4j5hc43c7lc9DodIpEIs9PTvPXNb2EeDHZXlpZEzoo+FNZ6+ZpUt1arafELg+z4O3fuEAqFhNHynXfe4f79+1y5coXl5WWR6nd0dMTt27dJJpPs7+/zd3/3d0KqvLm5ycGBVr0PDw9jMBgYGxuj0+lw8+ZNMQ9TFIXf+Z3fETODp0+fEovFePLkCVNTU2LTW1hYYGtrSwRvhcNhFhcXOTo6olQs8s477+C02em02oRCIbxeryYwKZcxGAwigEuPftD5cX/xF3/BwcEBV69eFUZbRVH48MMPhaz+v/g3/6U4oBSLRR4/fkwymQQQByKHw8H9+/dZW1sDEMo9s8lKsVim1Wmyub1JIp3A5/OAbCA2NEKxqOUHra+vi6pRlmVKxYogmS8vLwvQo8Vi4ec//7mWs2O0YDPb6HVVcbDQ0Ewqf/Cv/4BKrYpilHH53bxw+SLHiXPKnSb/4eOPGJodx+fzkc1m+ez+Xf6ff3yferPJtZeuoxg1NWG1ViEUDmK1WVDpU61VtPlms06tVqVWL1Ou5EmmzjGZjFSrZYqlLPV6TbRqFUURghbdsPplX1+pTQUgnayws33KL37+qeg/q7LWk9bLPxkJGRVJNhFPZDjYPUKRZKYnplFQqFfrZEoF6p0WskGh3euiSgi+FX1V9DD1ykTHuOgtLpPJxPr6EzFgXrygLZAavNEpNjePx8PMzAxOp5NWq4GiSMJpu7CwwJUrV8jlcgK/oKuRvF6vaK8YDAaeP38uXPi6f2N6eppiqURP7Q+w+TUuXLiA3W4nlUqJNkq73RY9dI/HQzgS4uTkBI/HM6hgNId0X+1SKBSEJFKfxehwRV0toygK4+PjSJKE1+tFlmXcbjehUIh2uy1yQEZHRykWi2Lxymaz5PN5gsEgIyMjZDIZer0ez549o1KpiPfcbrcLmaRW6WmcL52efHh4yMnJiRiUj46ODuZEVvL5nFCsaSRhl/CF6ABKfWg+NDQkclB06XixWOTNN98UbmmDwUChUBDSYJ1H1Wq1vkBbDgQCXL9+XVQeyWSSVqtFoVAQijudcKCrvgwGA+22tkhPTU1RKBREBojH4xHt19HRURr1OlaLBYOs4Ha6sJotjI+Nkc1kGBu0u/TIaR3Roi/SR0dHgheno/cvXLggvBRer1fQh/VsFN03o5MLut0uo6OjOBwORkZGcDm0983v92vQ1IkJkfMBiCTQaDQq7lldlehyuZienqZSqYgWai6XI5vNcufOHSYnJ3E4HBSLRVFF6sq9UCgkKpFOp0Oz3cLpdAqhisvlEsN3vSq12WxfeH26dy2dTpNIJISoQ29p6u3TZrNJv6tJeg2yNhh3edx0el2uX7+OLMs8fPiQYDhMIpmk0W7wbHMTo8lEH3jy5An+kCYF9/r9VOs1Wh2tEh0eHibg9dHvdDFIMqV8gU6zhUGSsZrMNBq1QVyEtgmWK0W63TaKItNuN0U7VqcmACJN9Mu+vnKbCkCnBQ8ePKFebzI2Nkavq4r2ifI5M2K7q+JwuHhwd53kaQKDqtBqtClkS9Q7LfZOjqi3W5gsZvqSJkemp33pXgpAIBT0ls/MzIxQdgEiprZYLJLJZERrxu128/DhQ27d+pRcLsPGxgYOh4NOp0WpVODmzc84ODhgf39/MCx3YTZr/CybzcbW1hbhcJijoyNWV1dFpdTtdmkPEOB+v5+xsTGa7TaBQIDd3V2Ojo44ODhgYmKC0dFR6vU6iUSCO3fukE6n2djY4Fvf+haFQk60tXReUrfbFcyrtbU1XC4Xm5ubyLJMOBwWuRlPnz4Vg+xUKoXT6cRisVCv13n69Cn9fp8nT54IhlixWGR6eppOp8PCwgLvvvsuiUSCmZkZrly5QiqVIhAIiOhkVVUZGxvD4XAIQOK7777L3t4eU1NTrKys4HK5BBtre3ubo6MjxsbGKBQKAkh5enpKIqEhPPS2JCCGn/v7+zx48EDIMe12O7u7uwM1mZbmqfHFdrFarSzMzWO32/nJT37C7OwstUqVzc1NotEoa2tr3L59m5/+9KeMj48LhU673RYL5L1794jFYqTTafr9Ps+ePRMb3ecPAOfn5zx9+lTwyVwul0jUbDQavPDCC0Lps7u7K+ZjNpuNqakp2u02Z2dnJJNJDg8P8fl8fPrpp4KJtru7KyICstmsQLyMjIxwenoq1IeLi4sAXLt8hQ8++IBqtcr777/Ps2fPBJVgbGxM8NT0rJ1ms4nD4eCb3/wmgUBAtHkNBgOPHz/GZDIRiUS4d+8eu7u7mudEVZmdnWVtbY1ut8vk5CRXr14VoozFxUWiUU0U4Xa7hXAhGA4zNjYG9EkmkzRaTXw+H2azlV5P2ziHh4dF+zeTyTE5OcW9e/f47ne/K9RojUaDeDzO3t4eT548oZQv0etp3jedqefz+fjud79LpVYlV8zxoz/533B7PSSyaYqVMl1JpUOXfFmLOjg4OCCdzTI9O8Px2SnvvfeeSDjd3Nyk1+uJ16dj7c1mMxarlnvU7/eIREIoikS706TVbtDrazBPq9UqOIe1Wo2FhYVfyfr7ldxUAJp1sCoKkZAPm0OiI1foSDWsThtmkwNZtRFwyeTzWQxuNz+7v8VH99fZ3Dym2UjjMFvxOVz4rA4cigmrpLW0OgaJmkEVCYyywuCk1UeS+5gtEpVqEQw9bFY3/a4Rl8NJ/DzPwuwoYb8Pk2RiYmoSh93F1MgsVtlBrwa/8WvfodXqYLKYsdpChCNRGo0asZEQVqcJp8vC7OIUfSROzhKEY2Ocx3PU630Oj045PT/HF/TxbO0Ro0MhzIqKz22hUSnRbbbp1Hv0mzLDo1NceHGZidkYLr8do8XO6MQkwagPydRiYWEOVe3x9OlTcrkcRqOZW7duYzbZmZmYYjQ2TL/TxWq2iBwOs81KT1WJnxxSLRaYGB8lk0hwvHeAz+1DURX2tvcwG7RciEQ6hd3voW+QqdRrOJ1OauUK3WqDu5/dJRSKoZgdBKPD+IIBcvk0Ho+NQDhKsVQhl84h98ButVAsF6g0KixfuIDVbsc0yJ+3mMx0Wm2qxTJ0+ziMbtqVHtMjs1gMNibHp6CvMjs7QywWRepL1Mo1gr4g5UKF06NTfG4fZoMJh9WBSpfT81MsViPFUp5sLokn4GJhYYZOt4HRbOHk9Jx//+57GE1Wun0IhiJIioFGrkg5ncNiNPHSSy8JB7bNasVhtWE1mpkenyQSCNGo1LCZLHSbbeanZ6kWy6Tip/TaDXrtFrFwiFgoggEDNpONXquHyW5k5dIKJ5k4isPIR3c+plApASpOh5XLqxfIxM+IBgPsbG6y//w5ZsXA9//5b2O3WkknE7zx+g3Wn9xD7TVZnJ/G7/ETDkTxOd20anUOtncp5gvQVxkeHqbV7eB0uznKnLF5tE1oKEyn1yY6FGNibgbJZmV9b5ft7V1cLg/NZpuRkTGazTblcpVqtc7R0Qkmi4NAKIY/GEUxWilVGnz0i0+5ffchZquNkdExGu0OfVXi2dYOjXaHeqNFo9XCZvMSj+dweEM83HrOnceP2dzbIZvLkUgmiUb87G4/Y2P9GYl4hnarSygQxGSWUAxtumYj9U6X27cfks2UkLoKfo8Xl9fBd37z96k3DfRRyRfPiI46eLBxi3ynRlGRkTpBTJI20+nLJSRTnnxpj3/xL/4ZBlXh8NlTIn4nbbVNW+lTbDVJZbJYFBupkxQ4TZhcVhKpJI8fP9a6KopMtl7jNJfF5XBRzBfFWpPMJDVUk1mhXC7iclo5Pd5H6tToVCs0y1UsBis2i5eO2qRULVAop1HlDrlimka7/itZe7+ymwrA+vqeQIlr+PiqMCRqLmKDIOfabBZCQR8vvbxE0Ocl6PezMDsnKpL/+Ovzsaj6oFpXUBUKBSRJYuPZU+EWv3x5GoPBMFA+Nblz5w4mkzbQXFlZEdG8+km8OtCov/3224yOjhKJRDg+PhaYkfPzc8xmMxMTE3S7Xaamprh+/TqVSokbN24wOjqKz+djf3+fQqFAIpEgHA4Lb0e73ebmzZsiKKrdbjM+Pi6c1zs7O4RCIWZnZzk5OcFkMjE2Nsbe3p44NUejUVwuF6+88grtdptsNite48nJCaOjo7z66qva7OXslImJCYGAGR8fZ25ujmKxKCoAvYqbnp7m5ZdfFm7tRCLBwsICOzs7rK6u0uloKr5AIMDx8TGSJPHKK68IDPnz588pFoscHBwQiURYXV0V72GhUCCVSmmZExYLr7/+ukj3BE3ZowskdNOh3k/P54s0anUBWXQ6NEXao0ePCIW0aimRSBCJRMjlcuzs7BCPx7Hb7aKC1Y2Yn69inU4nfr9fZKcYDAbhaD86OiISiTA8PMz4+LigFuhCC6PRqJk1e1AsFpmb0+7Z5YUlvG43sUiU/Z19Ebfc7/dZXFxkeXmZaDTKj370v5JKpVBVVRABIpEIvV6PjY0NdnZ2kCSJ+/fv853vfAezWRN83Lp1C5/Px+HhIYFAAFVVuXz5sqAbVCoVarUa169fZ3Z2FkA41FOplGiJ6i2ve/fucXBwgMViIRQKEQgEmJ+f5xvf+AbDw8Ps7e2J9vO1a9e4evUqrVaL/f19lpeXyeVyDA8Pc+nSJV5++WUkSWJsbIxGoyGSJg0GAzMzMxweHop5ZMDp4eTgkK+9dAObRbMQ6G3bVruG2aJQb2iJppVKlUePnpDJ5VFkM32pTbvXxmix0usaCAfHuX7tNaKxUcw2K3/6l3/OxOw0t+/eodluUalWsTnshCIRzs7OyOfzPHv2jH6/j81ipdcetAY9XkGg0EUOmmlRFi1Qo9mEyWKm2+vRaLY1zqAsc3B4SCqTHqg4qzTqLQqFIsFgkMPDw1/JuvuV3lRAi9Odm5sTaYGtVktwgRTZSLujSXoNMqj0sJrNBPxeIRvuDnrAeqtL/6feG9YVFrqMMJ/PC+6R/hBr7ljNwHVyciJ6/7UBCVXn+ZTLZTEMbNUbnJ2dsbu7y+PHj+l3tDZUyB8QWSa6JLRaK4syWZIkSqWS5sAfqKP0IX4ymeT8/FwM2CORiMB76716Pb9ifHycQCAgzIYmk0nIQ51Op8Dcn52dcXZ2RjabFbOITk/Lkqg16ty5c0dknOg8qmQyKRbjYrEo0jGLxaKYRehcqM8vQrIsc/fuXUwmk8hwcTgc5HI5qtWqcJy73W6q1SoTExMig6Rer7OzsyOy341GI2dnZzx79kzDyA9MkG63m1Qqhc/n0/I4BkZHfTbkcDjodfsieTKdSGIwaF6jfqfL/fv3OdjVWnBBnx9ZltnaeCbQNToFOBwOE4/HhST69PRUKNV0iXQ2myUUConZULWqSUkLhYJQZeniBO2/1QbXesa63+8X39ez1XUqsEbPzrK6quXauFwuPB4Pk5OT4t4PBoNiRriyssL29rY4UFmtVrGxWSwWRkdHefr0KcFgUAzP9bbm7u6uIBzrhPDPc8ocDscgo+Q1zGYzoVBIzOz0A1AulxPkhxdffJHnz58zOjpKrVZjZ2dH4H9sNhu7u7tiDqJjgKLRqDA26vPMXC7H5OgYv/aNb2JWDCiShNrtaRWDJGEyKVSrZRRFoqf2SaazZPNFOp0eimJAMUn01C7dnkSnI1EqNrl0+WVy2eJAhWWgWquRKxZoDFJKbQ478WQCm9NBKBITKs5gMEilUsFu1dA3RkURfjBVVVFMRs3Ua7JiMdvotHuo/V8qUPUYZH3NazQaQnVps2liAl2A8mVfX/lN5cOf3WJyclL0yru99sB53aJarw1O4CPYbFaKuSz9bhOZPiaDkW67IxziAD1UgXiRZVlIN3XWkh7+pcMY9aQ+t9vN2Vly0K/Whop2u51ms0k4HCadTgs+ldfrFSfuWCym9ePDEaanp4XjuVwuc/Xq5UHPW0PFp9NpGo0GXq9XSE/1GFJdt67PXMbGxpibmxPohlQqxeTkJCcnJ8L9rrOydOVIu93WOEn9PkdHRwJfr6cn6oSBWrMhRATJZJKtbY0JpdME9J7w7u4usiyzsrIiFla73S7mGLrqSJciWywWHj9+zOnpqcjsSKfTwjGvS2J1r4W+iTocDuLxOE+ePMFqtYrhd7vdplwuk0qlaLVajI2NaQNui4V6tYbZaOLs5BS/14fL4aRartBra3ntiXiceDyO1WolEtEyxuv1OplMhqGhIe007/EyNTXF1NQUZrNZhEbpirJ4PC7UOZWKZrY9Pz8Xi7/BYBBMq0Qiwfr6OqFQCJ/PJ9R3uv/AZDJhs1jwebyDiIGkhus5PRUJkkajFtrUaDRYX38iBt/BYFDEB5TLZfHZyrIsVFV2u11sEDs7O9RqNZGJ7nA4OD0+4e7tO9QqVRRJxu/1EfD5qZTKJOMJjo+PtfCrbpehoSEx38zlcuzv75PJZHj55ZeFJF7H/5RKJdbX10VuS6/X4/d+7/f45JNPBDz08+ITvTrVOxK64e/g4IDnz58Lv8mlS5dEVIPb7uCV6zcYGRom6A8I6Xij1UQxqNp60e8M7stDatUmva6E2leQDD3avQ61Wp1Ws0+53Oblr32dnqrw2e27nCfipLIZDEYjqizR7LTpo5EInAPeWq+risNns9lkcnISmT7ZbFpTHLqdgGYY7g7WFx0S2el0aLe7wi+mG7b1Z0GfwRkUE+12F78v+CtZc7/ymwpo1cXrr7+OyWTSTmEGCUkGRTHQbNXJ5lLEon6cdhMWo4zNoOC1O1E7XWQ0U1hX7Qszke6eb7fbVKtVIQXVh4/6BzoyMoSsgMfjYX5+mlBIy9DY3zvkyZMnBAIBDg8PGRsb05IcLRay2azIoJb6KuOjY8J5fef2bXZ2duh2tZbb+PgoQ0NDmEwmEolzJibHaLe1G1PHs+jGPP1BGx4eplgsMjs7SzKZJBKJiKjXhYUF0ZbIZrNfiMC1Wq3CS+HzaWbIUqnExMSEiPXVlXBHR0cgSZyfn/P6668TicWo1mo43C6BlX/jjTcIhUKsr6+TTCbZ3t4mGAwSi8VYXFxkfHxcawvYbFSrVQEKvHTpkhjCzs3NCW9Pr9djf3+f2dlZPvvsMzE0dTqdTExMMD8/z9zcnMiBNxqNBAIBvvGNbzA3N8f8/Dy9Xo+9vT0hKvD7/bhcLsGSMhpNTE1N02g0GBsZZ3zs/yXvTWMlS+/zvt85te971a2quy99e73T09MzwxlyuEqkIlGiKS+QEicyAjgfbMBBEiOI8yFAABuI8ilAgAQwFECyklhxElvRYi3UiENSw2HPTPf0dPftu3TfvW7t+37qbPlw6n3ZQ9ixAJEMQBYw6GVu366uOnXe//I8v2cFt9vNydExlVKFbDYLts0rr7zCSy+9xIMHD8C2KRaLFAoFSSsQzK1KpSLJDMlkklu3bkn/Tj6f5/Lyko2NDRYWFtjZ2SEQCLC3tydVZjdv3uTOnTt0u130mcl7771Hr90jEgxxeVGm1WgRCARZXV6h0WgRizrjlKtXr87z6Tc4fHaAqqrU63WpwjJNUx70onC4f/8+d+7cYWtri2QySavVkl1LNptle3ubQqFApVKRsnKByxECDlVVefz4Mem0k1woxqG//Mu/TGxOf7Asiw8++ICbN2+ysrLCgwcPODw8lApLwzB49OgRqVSKYrFINpvl5OQE0zTJ5XK89957XLlyhU6nQ7FY/MTrWygUJG27Xq8TDAbJRhPE/SHu3LhF0OPDpajgUqm3msRjQSbTPoaho3p9vP3Od+gNJ5gmaCMdQ53iDbgwNB2vO0HYv8Bv/NP/nfOLKn/wx3/EF37uy9x+7S62x8VoNkXHYjgeMRgNGU3GRCJRvvrVr/K1r32dUCjEjWvX0SYjhv0BPreLp/tPHVm1DfrMYDyeMJ7M6PVHDIZTxhOdQDCM6vJg2TYWNm6vh0DITyaTmh+cFuOxMzr7cd3ufyoOlclE4+DgALfbwVwLI9PM1HG5FPb3njMeDckkE8zGY6LhCOgmlmHKHQogZcWC/SX+E12QI1l1RkX6CGlMzGQyvPnmm7hcLtKpLOl0VoZg6brO6ekpLpdLql8WFhbwebwkEgmHpDvVONw/4Pr162RSaWl+Ex3EbDaVre/FxYWMFO73+1IqKkZbpmlKg1k4HKbT6TAYDFhfX6fdbmOaJn16g4AAACAASURBVN/4xjfY2NggmUxK/8rdu07io9iziLx5QSEeDAbOjbJWJZ1zct5Vt1smWgroZqlUktnc/X5fomWEG17slRqNBpeXl9I3Im5ShmFIDHm5XKZSqUju2ObmJicnJ5I2cHR0xP7+vuykhN9F0JJf9L0IWa2okEVcbb1el3sMj8eDNp7gcfu4evUqrWaH6XiCzxdwzGmmycXFBVg2tmFy9cq2c/1YlqychdlO7D9EhILYdQmC8vn5OZFIhLOzM1KpFKVSSUImm80mhmFwdnYmR0kAkYhzY3a73bzxxhsUCgWioTDlywrYKpqmM506Hd7a+urcBY48KAThOhwOS6nvaDTi4OBAmg19Ph+7u7sSrigQPWIUKUZXYnyZz+fZ2dmRiY/iawTdWnRRomv66KOP0DRNUrmXl5dZWVkhn88zHA6pVCp8/vOfl8FZs9mMq1evfr9jCwadqAfb5v79+5JYIbq+yWTCxfNL6RNqVeu4FAWv29mxiM+7YZrE4iGazTr+YIB6q8lwPMGyQFXcKIoKqo0/6MPtDxL0h4jHE5yfl/jt3/5t2t0OhcUiRyfHlGtVmHPf+v0+nXln6PDM9h0w53jMwsICHpebSDiI1+WWQWqmadLpdQFVFrbikLUsm+FwxHSqScqHMJoKRpmm6dgWzLSfEJ+KoiguRVE+UhTlD+a/TiqK8g1FUZ7Nf0y88LX/SFGU54qiHCiK8pUf1nP4k99/G8uCfCFHPp8jGHQYYarb5lOffp23Pvsy5ycHxMIBXrt9h4jHR8Djxae4mAxHjqtcm8qxidinvJicN5vNUFWVQqHgxMgWw/T7XQoFp2N4+PAh3/zmt/jWt76Dy+Xm1q1bMqXu4qIhl6SRiNPuttttYpEo7YZzI/T7/SSiMY6PjwlHgni9Hqq1MoXCAp/73Od45e4dNG3C2voqlUqFBw8ekMlk+MpXvkIsFmNlZYWjoyMpLhBVvDBF3b9/XwIrv/a1r7G/v8/u7q680d67dw9N0ySYUKRWVioVTk9Ppa/m+nUHA1Ot14jFYpRrVZ7u71FYWiRfLLC+vs7l5SXVapVMJoPH45F7g0QiwfHxscR0r66uYpomGxsbhEIhyXYS45DhcCi9PiLLQxwW6XSafD7P3bt35Tiw1+sxmUxYXFyUXoWPP/6YWq3mLKizOZLxBLdu3sS2LEbDIblMlqPnz0nGE2DZ1GoNShcX/P7v/j4qUK3WWVlc4vbObQcLE4nS7XZpNpsOOueyTKfTkYdTv9+n0WiwuLjIcDik0+lwfHwsfRH7+/tEIhHy+bwchX300UcSUbK+vi7FDtlslm9/+9tOJrnHw2wyJRFLYsxM4pE4Pm+AR4+e0G236XadAiMYDEpp80yfkstl5H7m6dOnUqQhEjij0SgvvfQShUKBb33rWxwcHBAOh+n1ety/fx9N0yidn3Owt0en1cIyDMbDIb1Oh9fu3qVyecnDhw/Z29uTZGHh8zg5OeEP//APefTokTRD7uzscPv2bX7zN3+To6OjufTXIQSHQiFmsxl/8Lt/xIcffkir1ZLxEePxWO7nTk9Pyefz0hirqiqPPn6MYRhcXFyQX3WglSKVU2S2tFotbAWmmkZhsUijViWTSZPO5vid/+P/4rJWZzjWMG2k+TXg87O1vkIxl8ZjW9Quz/mzP/tTLi8veH56wmW1Qrvdpt/v02q1qNfrrK+ucnZyCoqL47Nz3nnnHdLpNLo2wed1MxuPuTg/I53LMpyM8fp9qKqbeCJFJlfEwk04HOP8/JLxeEowGJbvYaVScTw1lpOP0+32mWkmg8GEbrf/w7ql/n8+fhydyn8K7L3w6/8KeNu27S3g7fmvURTlOvArwA3g54D/SVEU1w/rSYg23qlygwQCPlAMvD7VSWLzudG1KZZhEA1FCbi9KJaNgjPWelH5pbzQqaiqyuHhoTROCXqqZVkUF/P4/f65IigvxzflclkuYdvtNm++eUdGhdZqNUajEX6fTyI2PB4P0VCYZ8+eUSwUZOiVcFwfHDhEXZFJIkZDwigoArnG47E02QlHtXDeejzOIrDZbMoIZJEhn8vlWFxclKogEZYkkBVvvPEG6XRazrgvSiWHJOt2SbSMwLNMp1Pq9brMICkWi1xeXmLbtvSNCFy+z+ejVCpxfn4uF8Zra2vkcjmZvxEIBOh2u3KEmEqlAKSJbTabUSgUJJPLsiz6/b5cTMdiMVlZn52dyYAtMRoU5NtSqUQ8nqRZb7C0uMKXvvQlbEuZwyIHHB8fo00crP/66qpTWc/NdYmYA7YUYoNCoSApwOFwmFwuB0ChUJCQRiG48Pl8MqdHVLdut5tCoSDNlZqm0e30ZGcqFvIKEPQHGPRH85AmS2aaFItFGRIVDoelAjAajcooYIHs8Xg8c6Bpmmw2Szab5aWXXpKvdyQSIRKJSLVSKBSSdAIRsSuc9IDMAfJ4PLz66qvs7OzIQkCw6ERFLsylYmSZSCS4vrPNF77wBdbX18nlnBx6Eb0gOGBi/OX3+wHIFxZkvLDoRBuNBoFQEMOyGE8nspM3TVPmAlmWTaPRoN5oYZg26rxjdbtdeD2OcjTk9/Pyyzf467/882xvreL1qCQTCXq9HoW5gVaE+ImsFUPX8fudrrTb6XFyckK72cKc6U53FQljWY7PSNd1NE2TndlkojGaaAzHU8bTKdPZjJlpgEtF9biZ6tp83zKbe/Q8YKs/GYeKoiiLwC8Av/HCb38N+K35z38L+Gsv/P7v2Lat2bZ9AjwHXvthPI+X7t6i3++TTqfxeh0ul9ujYqCRXYgRjfu4ef0K6XiCiD+EXwk6MZ3jCbOJUzXPTAN9frGLpZoI1fm5n/s5aeKr1Wr4fD7i8Sjn5+c0m01KpRJvv/0252clvvnNd0jEUzSbTTn+iUQi2LbNvXv3WF5elqFQJycn5BcWsC1LzrsNw+Dy8pJavcLz58949vxg7uCekEo5+HgxLul2u3zzm990ki1nM9mtCI5Tp9Ph2rVrsguo1+sUi0UePXokb/rb29vEYjGePn0qx07xeJyVlRWazSaRSIT79+/zne98xyHRBp0PmpBL9wcD8sWCsyeYz7iFQu7jjz/m3XffZWNjgw8++EBWf2Lpvbe3x6c//WnW1tYAB70hyNGPHj2i1Wo5ZOlSiXq9Tr1ed6TY0SgbGxsoisLZ2Zk0jwoUfqVSkVnt4kDqdrssFxfZ3twik0zx6U+9wag/oN91QI2vvXKXoM8BhoaDQXYfPZ3LyZ1l/3TkmPdyuRyVSoW9eeek6zqKohCNRiVtWTC5otGoDF0T6p9+vy/zQYTKTsA7BXG20+lIie329jYvv/wyM01jsbBIJpkiEonxzjvv8N13v+ccaokEs5nO8vIyjUbDQfZkUjx9usvq2jKmaVIul2Xe/fLysry2r1y5wvvvvy/VfU5MQF2+h48fP6ZarrBUXATLBsum2+7QbXeoliusraySzWalGrFQKMjDzz0fj96/f18KFXZ3d3ny5AnZbFa+JpFIhE6nI+m7QhK+t7cnVXy9Xo9EIiGxRWKcbJpOwms4HGYymVCr1cjn81IdZboUVL+XwXSM6vMwmk6wFIeq7PcFiERi/Mb/8lvUGi3c3gCBcAS/34vHDfoU3LaHybDN3/hrX+TlnSVUu8uv/M2vsrG2TCgQwBKZ8HPuoMflQrVsFnN5yuUqCzkHfVRYyFOpVIjHogQ8bmLRsAOZnMc5eLxeuv0hmqYzmWp0u32SyTSj0QTTtEnEU/MIhAiz2YxOp4Npmo7xcThhMplyflb6YdxO/52PH3Wn8j8A/yXwIh4zZ9t2BWD+Y3b++0Xg4oWvK81/76/8EB2KAKsJ2WUiEcXv9xCNhllbXSWVSOJ1+5iOpnhdbvxzWJ9Yzr+4XxELTaFSEpVILBabwwU1CoUCwWBQcqv6/T43btxA13V2dnbk93z8+LHcfYTDYe7evSuRMiL9TlVVXrq1QyQSwet1O+2yrsvxld/vZzabkcvlqFarzGYzLi4upBtXYOkF+DCfz0u8u3gel5cVediI7iQQCHB4eMhs5nRsIkelWq3y8z//81LeLG6Q4mbj8npk9S8qz1rNGYmpqipx7QsLC/IGK6TPIuFRdEblcpl+34FufvzxxwyHQxYWnMpTYHCazaYcAYjq1DAM+b6IvBDhxxFpmMlkkt3dXZrNJqPRSMII7927R61Wkx6KRqOBYRjk805nBaBrTh7IQjYnESAel5sHDx4wm82IxWJEQt8XbrhcLglrFHC/TqcjhQijkdNRaJr2iYq9XC4zm83kISUUhwJpfnl5KYUJmjaj02xxenpKNpvl9u07cvc1GWsS6lipVOT+TUBK/X4/vV6Phw8f8uDBAxYWFvB6vWxsbMiD5OnTp9y7d0+q6IbDIdWqk/DYarWYTCaS7uz1enn+/LkcBwo2nVAkhkIh9vf357knQ5kFI1RnohgSCavT6ZT333+feDwuYZNCLCCwO6FQiN3dXYlm8Xg8bGxscCmo3bbNdC7vNU2TzrDPYDTE6/ej6TNmui7zk3TNkImKbq8XVAVUWxaWfq+zF41GQkQjXjwek16vBrbO8fHzeQZR34nLMC0iobDjRzFNVBu5QxW0anVOigYIBYISWqu41DmAFjxeH4ZhMdMcMrHPF5Ag1Gg0SrPZdCjR/rna1TDnOT46w+Hwh3E7/Xc+fmSHiqIoXwXqtm3f/8v+kX/D79n/hu/7nyiK8qGiKB/+ZZ9LKBSSuvRWqzWP4dQJhvwoqo2iQi7n5IsMekNGI0fN5XU7aHNxkb14sAjzoxh/ieW5YANpmsbx8ZHM+8jlcqyvr+NSPbjdXrlYrFQqJJNJ4vE42WyW4+Njdnd3AYiGwpIDJfTmIrFQJE5aliWxL5PJBEWxabfbBAIBUqkU165dk8/T5/NJFIWA5V1cXNDpdFhfX2dtbYVoNPqJDI1nz56RSqW4e3eHdrstd0q7u7vYti2f//r6ukx9FFh7YdqzLAvFpUrulMilSKfTrK6ucnZ2JtVk8XhckmTv3Lkj9ysC5ZGd53cHAgF8Pp+sxuLxOEtLS/K9Fq+7WIKLvHSxbBYHYzKZxDAMbt68KZlrpmnS6/XI5XIyw8Pxyjg30tPTU5lIKMZ7loUMoBLdpt/vlzP9XC4nTYIC3R+Px2m1Wpyfn0uPTCAQcKSusZispsXCulgsYlkWKysrpFIpSSi+f/8+oWBEqgfH4zGT/pjN9XWHXRUIYJkOIFO8nqJzFUq/SqUilXnpdFrG9IrrQxxMmUyGL3/5y/J5FYtFhsMxkUhEKveEMCIejxMMBuXrKj5Hwj8hPDmvvvqqNPkJXH6xWHRyT+bXitvtlvszj8dDuVxme3ub4XAod33lclmGk2UyGSnCGA6HzGYz2Ukmk0lCoZDTRbpc8ymEgTn/jItdlm0rnJycoOs6LvX7aYpgobogFIzhcXm5deMG+mzE7uMH5DIJUok40/FE7vfEiDXkDxAKBHEpqqRNi6hnIed34KfO6FfXdYnxEUWFzJzXphimhT8QYGY4jLPJdMp0pqGbhhQlAaiqW8rtfxyPH2Wn8mnglxRFOQV+B/iioij/K1BTFCUPMP+xPv/6ErD0wp9fBMo/+E1t2/6ntm3ftW377l/mSWSLOcbjCZOhRqfZpdPp4vK7CKdCHB2VePpwnyf39ph1bNz4GGtjlBBYkSD18RBLdaHPTFyWCiaAigUYuiNvVD1QrVZxuWJEQnnHRV+M4rEDZBKLBDxxOq0JtUqXaDxFPBVnOOlzenCMYkAwHCKUiGF6FQwXmG6LRrfBsNXC5VbIZLOgKFQqNQ73Dnn2+IBxX+f5szNmU8fz0WzUGQxGFBeWODsq0xn2OTo55eqV65w8O+fxR0+oV2voloauTFlYyrJ78IRoIkY2kyPgD6ONbUZ9k1q5x/riKo3LGs+fHmKMZ6SjSS5PLgi4fIynE5ZWlllZ3aR0WSebXSaZWsAwbc5LFywlitzcvE670qLT6jGb6gw6PVqXVV67+RL1Zg/VHeDJ00NmhsKDh7tMNJPx1KRUbtAe9VnfXKNauUC1NFaWC2xvb+P1hwjGUhjahPFgyHe//V367SFrS+uE/D5sQ5Ncr1arxcXFBYZhUCgUpLrsvHRBJpelVqvhdrsJeH3UyhWub22z/3iXQNBHOp2h35uwWFzDMl3oM4u1tTXcHtWR6bY6fOazn+fG7R3iyQTdRpNsPIHW66ENTM5Oy9iKSrPbYTzVKF82UHQPE8uk3mkTjcZ4vv+cfqNLv91nfXWDfL7I+vo6wWCQVColc2ZE/EEwGMTjDbN/cILbE6DTHqDaKm+89jo+1c3W6jout4JLVQl4vdy6foONzXVcHg8rm6s8vzwnk4oTDPmJReOkMlkME/rjGX/69ndIx2IspDLcvLbDUnGV2cyg2+1zVjqh029iuWwW15bBo7B1dZNWt4HLpdBpNUnGo3zmjU/x6p1X2N99SqV0yfnJKYXcAtFQGNtwDv3V1VVOT085OjqSHh3TNHn11VdlrHW9Xmdvb4/Ly0tHuTY3qop8lHyxQCQewxcMoNkmtsdFt9ckHPEzGg945c5tAl4f7WqD8ukFs+GEqC8GlsLWtS0WV/JgT/h7v/Yf8h/8zFf4pTtvsJ5dJ+gKMZuaWBYYtoWi2LgwyW0s8c33/oLhaIo9g6g7invmxqsE8LkC6JMqbmXM3/m1X2E01Pi//+W/xhuIo5sQCkW4VVxC7QwI6RYpdwCf4nJ8JdMpgVSKtUQcvdUi4Qtgak4ujTcYxHB72T+/oNnqMppM8Hoc7JBtagy6LfTpANtlEIr5UTw2Lq+L0XQCLje+QBjdhN7QpNkfMrNMBtM+Js5B9ON4/MgOFdu2/5Ft24u2ba/iLOD/3Lbtvw38HvBr8y/7NeD/mf/894BfURTFpyjKGrAFvP9XfR6iind2Bg1isahsza9d3aRUviSZzhBLpBgOx9iqCxSXnF93u10pGf6Bf5+svEQXY5qm9AL0+30uLy9lhyCiTzudznznEpek11arJW8i+XxeghJ1XZe4cScS1WnbRaxxv99nNtUkRbZUKkkDpGmakviazWZZXFyUy91KpYI990+I8UIi4cTB1ipVYrGYHB0Jg2cwGGR3d1fuYUSM8tHREc+fP+f09FTSAcrlsoQlCkKA8EIAMrhoPB7T7/dZXFyUXhcxvmg2m45v5OCQe/fucXx8TKPRwLZtWq2W4wkBNE0jk8nINEFNczIycrmcHAkK17XIThFAQ9Gtffjhh3KMKEYE2WxWCh+Ew1y8tqqq8vDhQ2k6E4j/UChEPB6nXq8TCoVYXl6Wr32l4gRlid3O0tKSNOAJVZLL5eL09FQqhcS4VlVVTk9P5QjzxWyPBw8eyq7yu9/9LisrKzx58oTxeMz5+TmdTod4PC4pBPfv35eKpxfjlsWOTxghRZ6NGEuWy2VpAj45OZFBZufn5zIOwePxSPl1t9vl4cOH3L17l83NTer1OuFwmHa7zdbWluyazs/PZS69gI8GAgGazSaapsndTjwe5+joyAnAm4ezib2MEDYIarXA4j979gxN0+ZAxQHW3O/lnrvTxXspRsIvRhKPx2MpmhEjcDGeFQrKfG6BjY0Net2Bs0/0eAjMZcDxeNSJFw9HSMScIDVwRrKT6dRRwJkG8WRiPjbUCM3HYC/KpcV0RBisXyR4iGvAtm1yuZzc8wpPmQiRE16dH9fj/w+fyn8H/KyiKM+An53/Gtu2d4F/ATwF/hj4+7Ztm3/Vv2w8GNLvdPG63AR8XnKZDCF/gKtbV7BtCIRi/Nnb71Kq1jEVN5bqQvWIeaRBKpWSOJUf/M/j8WAbJopi454j62OxGBcXlwy6ukTAC2Kxz+cjGAySSCScECS/Ty5xRSs87A8w5goQl8sl1TGRSMRRGM1VILl0htXVVSKRiDP2suHy8lLi5be2trAsi+3tbfr9Pvv7+wyHQwqFAtPJhK/+wi/x7nf+gsvLS+5/8CFPnz7lyz/zJa5c2ZQE3xcd7QLnHwqF+OCDD7h27ZoMddrY2PhEypyIvy0UCly7dk26pIvFIp1Oh5WVJXmQXb9+Db/fzwcf3HP2DJbNdDxhZWWFeDwuWWiFQoGVpWXeeust8vk8N27ckDe7VqtFKpViMBhIP4KQ7yYSiflob03yxWazGcFgUGasv/LKK5IwMJ1OZVX9YqLj5eUli4uL2LbNo0ePpPJsdXUVr9fL66+/LlV/X/nKV0ilUjx9+lQedF6XG4/qIhIMcfvWDqauo9g2fo+XoM+Px+WiWi6zsrTEQjaLCvg8Hq5sbhKc33Bt2+ba9lXpjD85OuZLX/qCMzoajrh1/QaV0iVXNjaplqssLy4SDgTJZ3O0my0SsTg3rjleJ7/Xx7Xtq6ytrDKbzZxD56JELpfDrTq4naWlJXK5HJZhUrksU6tU8Xm8vPXpz6BNpuQyWfK5Bd5++5sy1rjb7bK8vIxlWezs7HD//n3e+4t3SURjpOIJrmxsUq9UCfkDTIYjwoEgt27dkuOtnZ0dieoRknPxHgQCAVRVlRLw7e1trly5Iseax8fHXFxc8Morr1Cv1/nyl79MvV3nvHSBPxSk2Wpwel5iMp2iWya6NXeoa8b8NdXkfsPlcvHnf/4O1WrdWejP95pO8agTCgdoN7v83b/zd/G6ffxvv/XPWCoWqJZL+FwKqWQUtwWmNmMpX+D2zkso83uKaZqUa1VKzSbBRAy8bhZXV9B1k0ajxWyiMej15IhwMBjIXZBILI0EQ1i6wWwypd/p4kJBsWz5+71eR76mjvLPAOUnKPnRtu13bNv+6vznLdu2v2Tb9tb8x/YLX/dPbNvesG1727btP/ph/N0+n09W7IGAY1IDZ/7daLbxef3YKnz8ZJdyvc5MN5kZuqxGRJXywnP8xI+K6iztR6PRvNIdo011FDcEg0Hq9TrHx8d4vV6ncok6FUwgFPwEk8nn86HMZbXf+973ZE6EZVlcXFygqqpcnIvq2+v6fsUv2D9iCS/cxyK+VewyXC4XtqXw/vvvc/3adbrd7ty4p0sF2LNnz6TxURws6XTa+buGI4r5Ak+f7DLo9YlHY5i6QTKeIBGLy0PvRc7TZDKRmeh+v092AJOJw9z6PtrG8eRcu3aNVCpFr9t15NTzhSsgJav9fp/pdEqn0yEUCrE6T4e05ymAgt8lEvSEXHQwGMjZu+CZiYyXWq0mv2ZnZ4fFxUX8fr+Up/Z6PTweD3fv3qVQKBCJROR1InxKmUxGcszEISP+XD6fJ5VKyY5AiEZeXJSLbk8UGQK9UavVGPYHznvicVJDBcpHVKVHR0cy2jqbTUvP09OnTyW37b333pOcrG63y+XlJe12W+40hFrN4/FwdnwiR3A3btyQXVitVpMJjoZhsLq6/InsnE6nI+MgJpMJ8XhcpqMKFE2tVmNxcfETPhPBvxP0g0AgwNrKKo1andlUo9Voynhd27IYD520RxERnslkuHXrliyKut0uY22K4nbJ91t8nme6CS63jDsQXEAHetmSBYjoBF58iL2L1+UlGU+h2DaPP36MZZhMxkM63RbRcICQP0AqGsc2TPxenyR6yHiFoJ92r4sn6MflcVNvNpxRXziCR/VIcofo1kajkfRbiQNOfLZFJ+LsVZ1CULyX4Bxm4uc/6sdPvKN+/+kBwUCAxWKRm9dv4PN4GfYH3Hvve+TzeXQTXP4Q737wkLe//R5PD58z0mYy6ErctD7hrLdtJy9ad5bofq/qtNeGScAbYDG/xOpqXqpmXn/9dXq9Hu12m0qlQqXiqKxsVaE/GjpqnMsyuq6zsrTE7Xm11ul0eO+99ygWi2xvb7O2tuYk0+FEtg4GAyzdcKScOJ6EaDjCw4cPZVRuqVRiaWmJlZUV0uk0BwfPsHSTq1vbjEYjYnNJ69WrV9nb3yXo90pOlwh2qlQqMgHP5XLx8OFDySkrl8uS47SwsEAymSQWi2HbNqenp5LAKwKCgn4/7UaT0aDHo48eYmgzquUSG6tr5DIZKqVLKpUKvY6TPeP3+VAsm37HSbIUHRcgK9lqtSqprwIimMvlZELm8+fPefr0qVziChDji8FnPp+PRCLB4uIik8mE999/n8PDQ771rW9JX4nb7ZYOfvE9j44cMcbFxQVer5f9/X3p4l9fX2dxcZHZbCahos1mE9u2nTC0ebiVz+eTVIXz83MJ1AyFQrz99tscHh6yurzi+ItGTkbOdOyIQr7zrW8xnVOVi8Wi9Fl4PB6Oj48ZDAYsLi5KZ/lbb73FYDAgmUzSbrdJp9OEQyH8Xp/TEXSdeOidmw45ezT/WkAKJoSyTBDAxeEuTKYi++Ptt99mZ2eH2WxGMukEvd24cQNAMuQqlQpHR0cUi0Xi8TiBQIDvfve77O/vc3JywrvvvothGJRKJYLBoCQ/CJComBiIAuHo6EiSjmu1GtPZhHxxgX6/j8/nc1IwfX5we9BtC02b4fF4mE5mcyyNM8Y+OTmjUqlh6CazmYFtK/LGrLrA43Hxt3/112jVW/yr//Nfce3KNqauEfB5qVycomCgT6YUFvIE/H60yQSP6pLjuGAwSCSd5KRaodpscnFZwefzsVxcxDIMwv6APOxEESnI1Y74oM9sNsXn82BZBvV6Fa/XTSwWYTod43KrGKaOZZv4fB6SSUfI8uN4/MQfKgC9Xm8+dlmR80dnnLLK090DopE4Mx1QXbQ6bVxuZzYsjGlilvyDD8uyUHHmnJYhnPYqloW8GE5PT5lMJoTDYVKplGxjLQUJ5rNt24mqVVSePHoqEQwCQTEajaREUlSUQgUjwoyS8YQ0UMZiMZaXl6WCyTRNqTLKZFJyZj2Yz9T12dTBoQScZMWXX36ZarXK0tKS3M1ks1lCoZDMBxcdgaIoVCoVYrEYsVhM7gL6/T4ej0fuHhYWFuZdjMna+qqcad9+eccZsdgmfr/XmR0bpjTTiT1IOBxGSp3O0wAAIABJREFUsRwznLjBC2x8oVBAn0f5irRKYZYTlVwoFJLVnkDKCIWRw2lbknPv8XhMoeC4/69evSrn0olEgnQ6zb1796R5UeyMcrmcNJ6KG3i5XKbRaNDr9bi2fRWXojIaDNm5eYtuuzNPIFUwdYNcJstkNGaxUMTr9uBSVKLhCMV8gfVVx6eTy+WkTyQSidBtt1ldXUVVVa5sbmHMdPxeH27Vhakbjpx5pnPrxk0SsRhuRaXbbuNWVKLhMAuZLOurq3JmP5gXEi4UGTg3Go2IhSNMR2NcOBTfeCRKMhZnOhqzubYuvTYvYloANjY2nF2MbmDMdFKJJCdHx7gU1ZHW6gbddkfi+tvtNrVajcFgIJE6qZRzvQqcj0AJzWYzFhcXJVMMoFwuk8/n6XQ63+f0AcPhAMsy6bY7TOYJkQ42pzn/HDswWJ83IEe6lUqFmaZjmrYMO3O73ZimPu8SHel/JBJhb2+P0WiIMdPRtSkrK8sU8wtEIpFPjJ+EikvsWYdTDcu20U0Dj89LKpkhFk3QbLTRJg5HUHQ3wm8jrn0FRy6rKopjpPT5mIzHjIZD1Dm5WPw5EfX9SWfHj+7xU3Go1GttWq2WdIGXSiXG4zHvfvc7hCMBWp02125cZTrTKCwuUipdyGXfcDj8BJFY4LOxbTmuGI0GcjlmaAaD/oRAIECj0aBQKEj9v9vtlrLS0/Mzbt26JaWxYk6czaaYTTX5ARXf17Ztnjx5Qr/fl1TTZDzhoEHmcuJatSpZUD6fbz5u8ssLWqTjBQIhqlUHC2ObFkdHR4QD/nkMaUSOikTSYiaT4fz83PFZXFwQCgQ4OznhyuYmiViMaDiM1+1m9/Fj3G63pM3eunVLRsyKKnbYH6DYEAmFmU5GPH2ySygQZDwcYRkm29vb5HI5Li4uGA+dMdZs3i2JyGNR+efzeWq1Go1Gg83NTdLptOw+xMy93W7z6quvsr6+TjqdxjAMyVcTqI61tTXq9brsFGzblth84bsQBALR1a2vr3Pz5k3pPxkMBnQ6HRkbLDJZqtUqt2/fxrIsmZUyGo0ARzWo647fQMTrihgCMS5Kp9NSlj0eDB0TYacrx4uTieMEDwaDNJtNzs/PURSFV199VY5LxbgEnC5beJyCwSAPHz50Xvv53yUW16Zpok2meFxuWq0WgUCAzc1Ner3eJ1JGE4kE2WxWSpMFL0yw3obDoVwiP378WO5v0uk0fr9f7kQeP35MIpHA4/HwxhtvSN+Prs2YaRoqCulUCrfLxcb6uuMRmk4lZVoYdwXuCBwJdXHRwcsvZLP4vY5gxuf2OJMCFJmcqaouiZAfDEbs7u4yGjmvi6q4pavdMAwCAR+9Xg9ASuzdbje9fkeKRgKBAN2558vr80lxhCggbduWQgMhEx6Px4zn04NEIvUJkVAymWRhYcHpUn/gmhP0ckHNEFgbMZ6c6U53FAgEfiz325+KQwWg3erz+7/3x3z4wcf4vF4UYCmbdW5o/Qlef5B8wZnxolj84i/+IuVyWbbVQnUhHoZhoGszQkE/o+EARQG3CqrqxZhZknEUCoWk6arZbHJ2dsbi4iJXr16l2W5Rrdck12jY6+NWVFQbIpGIRE6Mx2OOj4+5efMmpmniVlQ+fvCRkzUx1RzUxjz7fDzPqKhWHRVXuVyWipDhcMi9e/d4+mQPv9dHMp6i1eqQzzofelUBbTqhUqlQLBY5ODiQgUti6ZdOp2X2da1Wk/NekWkh3NhCoSb8QblcjlwuN2/jh9TqFaLRKOFwkMl0xBtvvO5U9R3HW2DOHBJzOOjk0a+vrRGfxxQvLy+jqirVapXNzU1WVlZ4551v89FHH0mKsmEY8jXY39+nVCrx4MEDRqMRm5ub8qbf7XblQZhOp8nlchKjLqCWjx49kjcqMaufTCby9Tk/P5dZKMvLy9y/f5/T01N2dnbY2tpyroVGE7/Hi9/j5d3vfIeQP4DPPQdUqi4uTs/od7qoNmxvbrG+ssrR4TPikSgffXifZq3umE/jTpdomyb1ao1GrU46meL5wSFel5t+t0un1WLUH/DhvffRxhMO9/ZpN1t43R4UG8qlS9rNFmcnpwT9TlETjUSoV2vUKg6e5uMHH0lPh9/nIxGL02w0mE01zk5OyS8sMB6OODw4oFarya755s2bsjIPBAJomsbDBw+YjEa0m03yuRzaZMKTR4/we71Ew2F2d3e5c+eOlIEL9eKLIWcej4dGoyGhpIJHF4vFZG5QrVbDMAxOTk6kh6jTaZHLpvnCW58jEgiykMjgxoXP40PFxXQ6Yzx2VJU+nx/LdKji7XZ3Pgr7vtnR4/HIQvK/+If/OaNpn9/9g39JKOJnMB6wuLTE0uoKqUyacq3Kb/z2b3JWK/PkYA9vMMBw4uyZ2vP3ZzbV8bp9aJMZKiq26UQ8eN0+ZpOp3Nk1m01qtZo8NC3LwtJ1VNvGo6pMRyOql5cMul3ajQbaeIxhzLAsg0gk5BhKDQ2v1/1vuTv+cB8/NYfKi4+Tkwq7u0fomoZqW2QXnKrJMGegWLhVJ4BKGOHELPX75ifAVudtsYWua2Cb8uAxdEeKK+a9gKyIBKpjPJ3imy9jG42GNOkJNIplWRIqGAgE5FJTEH9dLhfJeJxIJMLm5qY0cwk1mKqqcoShaZo01Y3HMxYWFlhZWcO2bYeM6vHg8zpcpVgs9omuLB6PEwo5F+bl5SWRUJhivkA0HEGbTGnWGwz7AzbXN1hdXpEVkWmaHBwcyJwX27bZ3d3F5/dIaWa322Z9fZ1MJsPh4SGm5VR8xswRHYiQq0gkQne+tBddg5gP7+/vz0cWYRkRsLq6KncrghslXNovii/EaGw0GlEsFqWcV+DUheosGo1iWU5HJ/JswuEwhUKBmzdv8vrrr0uz6ePHj7Esi62trU8o/dxut5ThptNpinMmVCaTcZz3kcgngqmEZLvZbEow4vrqGqPRiNQc7WMYBslkUnYPiqKQzWbJ5/NUq9VPgDmDwaBkwQkhh6hmI5GIrHqbzQG2aREKheh1OvR6PSnhHc1HR8I4KrqecrnM/v6+NGuKG73b7ZaUA7fbzdraGp1OB0Ci/SORCMvLyzx79ky+bwCVSgWXy8Wt6zfQpxqNWo1oKIxbUSmdnWPOdFaXluVhtrq6SrfblblEwnCpTx3l3dbGGp978zMsLy6haxrT6Ux2DmJEJOgS08lsTrIQhmdFdgHabILLpcyJBgoffvgBvoCXVCpFOpfl8NkzUF3MdIP1q1fojgY0Om0uK2UG85A127axTBOfy43P68Wjugh4fdiWxWwym6vNbPkZFqN40U2LQlVcI2KsK8ykYjQuxrNCKv+DgoMf1eOn8lARj0m/gzYeEZo7wQ/3nxPweknEQvICFVkiolsRB4vf68U13x3ksmkMY4aKgt/jx9AcKbKo6v1+Py+//DKxWIxoNEq5XObisiR3HsVikUAgwJMnTzB1g5OjY05OTqjOx1nC+yGwIZVymc985jNMJhO63S4ff/SQ/f19NtfWaTccUKVvDqQUHhhwup90Os7y8iqdVptqpY7f43wgqtUqq6vL7O4+lgFYghzs9/sZj8ecnJygaU6MgJhzLy4uMhqNZNrkwcGBxMYAvPnmm9i2A+VbWFggl8nSajYp5vOsLC/z+NEjnh0cMBmPWSouyn2SrjnLyUAgQL/bw+fx0u/3nfySkxOpqnIk3Bd88YtflMvjRqMhDzZd13nttdckgFOgaURkwerqqjykl5eX5ShC7HyE6GBjY4PNzU0GgwEvvfSS3LOdnZ3JEZZI0xQFwN7ennyO169fl8qfTCbD3t6evJELOoKI3Z1MJuzt7bG6ukogECAYDBIKBCWRwDRNJqM5cmQ8IRqOUCqVJMVXYGTy+TyFQkHKmsU+KZ/PO9dtLuco3mY6J8+PeOONN/jC599wKAoJJ/lSsWy5IwsEAjKETERCC/f79va29F7t7e2xtLQkl/O/+qu/6uzudEdmn8/nZQ6OrutcXFxIiXcqleLRo0e8/PLL8poVhAEhExdy+Ww2y+npqVSQbW1tsbLiFDbNatPxFcWj+D1utMGIRCiCX3HhU724UbANm0F/NCdUuOZ7CJV3332X4WDseLUkusuWhcPXv/51ptMxRxfPwGNiqSaFlQXOyyWW19c5OTvn8d4h9WGPxqjPcDbFdKuEohFWV1cZ9Ppsrm+gGhZMTdLxNLFQmFg4wng8lpSA8jwMLpvNMplMZBJkIBBgIZ8lt5DB5VbweF1ksimisTDRWBiXW5nvyZwd0GQymi/rkz+W++pP3aHyN77+VfnzV199lWg4hGUZcx28B0W1cXu+v4AVJkDgE52KMEppmsbCwoL8GpfqxraRmISFhQV6vR6np6dSnjgej7lz587clDWi3e2gjSeSoBsKhfD5fFJ/H487lFsxqvH7/TTmmPTRPIFRwBjFfF1wvprNJt1uF7/fL6XJZyenMjlOdEni4Bj1BzIwKZPJUCqVKJfLxGIxNjY25PcTh6zgn41GI0lDFtVYt9vl3r17zuvicskq1efzYVnfHxG63W5KpZKTwXF6Kl9n0zRZWXRMgpeXl+i6ztHRkbw5Cqm42F0IRIwAEDoMJL+M8RVKJYEgF2mWmqZxdnYm/QgCByPYVsJ0JwQXAq0hqnGxzxB7ina7LaWggiR9cXFBqVTi8PBQihnEASHSLOv1Orquyy759PSUdrvN0tISnU6HbrfL+tz3JHYpwsA4GAzkTkIkWYrAL7HkFQemMNcKvw44I5/hcMj7778vo45FdytSIcHZMYosH4GEEeZQRVGkMk/sjtxuN8fHx5TLZUnrFdBQsasUMlnLsuSIq9PpyNhnVVWl3Pnw8FCG4olkT0A+T9u2qdfreIOOAtDSDcyZjktRsQyD6XiCx+XGNmzGw5F8z8Q16nK5ZCy1iOt1Hopklolwsfv3PyAUCeFyuxnM/62Xl5dMNJ1atcHMNknmMkyMmYxFnk6nEi+UTiTxuNzEwhFUXFIa7Ha7sRRkgSXwSEKcIjoOsfQHZE6Pw/nSmExGckdkGIY0pv44Hj81h8p//4//Ab/+3/49Pn13mX/yX/9H/Pp/8x/z5p2X8Vgzbl9ZYq0YZ+fWNWxXkM7YTSS7TaKwxsgY4/E6wVxu240LF7oxRqeHboyYjgy8Hmf2abpndJmgpOPous3paYlu1/GiRGMRAkEvvoBKIhXmyf2PSUUThANhlovL+IMhMrkFxrMZj/f2UD0K05lBMpOl1enj9vpweT34gl5CER+aPiKWjJJZSLN5ZQPT1Nk7PODazRt89P4DFnNFlhYKWJrNSrHIwe5jfvYLn8OrQi4RYH0xizHuY0zHdJstPKqbJw/3CIcSqNj0ux06rSY+jxssk9GgT6/TZjicEU2m2Ds6oK/30d0a+eUFIrEovVafRrPLtes7dJo9jInOenGJG9tX0XWNq9e3wbRIxuK06k0S0QRvvvYZFMtNIpJGn1jEMgVUb4hmd8Dy6iYX5Qrn5+csLS1ROr+QXKrxeEo2u8DJ8QWxaIaL8xqfef01In4flydnhHwBVFz4PH52d/fx+0OSfCuSFYfDobwZJpNJTN1i0BtysHfI2ck5yXgKvzfA5voWR8+OyUUTjBpdBo0Op/vHJMIJCrkldh/tc+PqDrdv3aZ0VqJ0VmJzbRNLt3j00SMqpQraZIZiq2xtXGHn5g7xaJJ+d0A8mkLFxXikkUxkqNdaWKaCzxukkF8iEo7TanaZDkcEPF6MmU7QH5CL9es3b1Br1Lnz8g6PPn6AMdPwez0kYnGOnj3H4/Ki4sLr9ZFO50inFvjn//xfMBgMmOkjSpdHVBpNOoM+voCHzSsOksbGJByIEfI7ir58Pg8gDaWPHj0iEAg4qZ3Hzyk3aniCfgzFJpFNYyg2vnCQ7mjA++9/j3w+RyDgw7ZNnjx5RC6XodNpcX5+yo0bN+bAREt2Ps+fP5cue5fLJZWT2awTcCfGvd1Wm2wqTTwcZffxE548eUJxeYmV9TUmMw2vP0K93sbt9hLw+YmEokzGOqblZjSyGWszR4obdmHqXS7ODzm7uMD0xEH1YRiO4lBVLEJBL7l0imQsTvW8zL133yUdj+Hze2j1O5huBVfAx0Qb4wv4iahemMyIRaLEU0nG2pSJ5hwqtmGiqCY+N4R9XiL+IPpYJxSM4w8miCbzRH1RVF3Fr3pxWyrMDFTDwGWaWCaMhhMs0wkNq1UbDAdjLBNMwybhz+DR3YS9QbxAu15Fn45/LPfan4hDZWtri/X19X/r///1f/yfoSru+chCdSIccbqNpaUl1tfX5x6GGEtLS6TTaYn5fjFCWChuRFrfi6BGe5794Pf7MWbOOETsFzwejwTrqarKYDCQEluBjBELwGg0ymAwkIa6VCpFMpmUiYhCdSK4SEKKqXrctNttfD4fb731FoqizGWXCxKgJ5AoAsvh8/m4fv26TDn0ep20ybOzM6LRqITaiQjidDot/6z4sK+vr6PrOum0Y7ZbXV3l+PhYdj/pdJp+vz8H9NkyNzuZTKKqqsR8CONbIuFIo0X3J0YfIk5YgA7FGFH4TVZXVyUK5MVqWXQfovsT6iNxmPh8PomlEdG4iURCRgmL1yA6zxQXGfG3bt1iYWFBQhBHo5HE0GxsbMjFf6VSYWlpCVVVuXbtGtM5okMYVbPZLJqm8dJLL9FoNObxDF7ZYQgo4vr6Oi6Xi16vJwUFInXTsixGo5EkYq+trTEYDCTIcDqdUigUZKcqrkfLsqSPJpfLoaoqW1tbNBoNvvSlLzEYDOR+Sfzb0+k0Dx48YGVlhV6vR7FY5MaNG9y8eZNGoyGvc1GZX79+nUKhQDablfgeB8XvSIJFtkun05EUY0GCmM1mUnElOh+B2AkGg1IkIpD2zq5whWAwSLlclkmifr9fSsdfRJYIRaRlWUw0h8AtfEQC5ApIWnSr1eLu3bvYts1HH33Exto62DbBYJDZZCrHnqPRCL/Xx9ramrzWqtXqC4588xMdfafTkVHdLpdLKkKFGlCE0b3YjbjdbiKRiEyQFWNqQHY7Iqte7N7ENOVH/fiJOFScvcGMjY01Xrn7Em999g1uv3wTgJ/5wh3qNSdv/fDwufOhzGbw+vzUmy18Ph8XpbKshIbDMZ///BcdZMpwiIIqDw+xtJfUYr7P4IE5at1wvsZZjvvkBSKqYuFNEaqos7Mzzs/POTs7k6MvEdqUyWR4+vSpHK3k83kZidrudZ0UwVaT09NLqefv9nq0ux2q9RqaPqPbd/69gVCQ89IFF5cl+qMhpxfnuH1eTGw8Ph+XlQqWAjPTkOM20zTlvkUEMClYeFSncnRoBT0uLy/p9XrSjS5Ius1mm2fPntHv91lZWZFtvDhcBPtJ3CQymYxcKgaDQbn4FbJqv98B62UyGTl3Fo5oy7KoVCpSsZdKpeQcWrj8a7Wa/HpxoxK7BsHUEmIAQTQQuBDh5RA3ek3TpHxZEIMnk4nMTRGHp4hCCAQClMtlTk5OqNfrcgwiogkETbdardJoNOToQyjoRJ6IOIjL5TKDwQBAYt+Xl5flaK/ZbMrRjXD9W5Ypu7S1tTVG873M8vIyfr9fErLj8Tgff/wxt2/f5vz8XO7oxBhR3KDEGPKzn/3sJ7wYfr9fypIFll58fTQaRVEUeZ3oui7d9+L/hUIhSUFotVpEIhEpYRZ7SRHRkM1m0XWdyWTC0tKSTNgUezOx3H4xgEvQJizLIpGMYVmOmz4aiXN5eekUM+YM23bYdULUEIlE2N7eptlsykPQMYg6sRV+j5d2q4ViIyONfzAyQ4ydxfMQh4LL5ZKjKvF3CqmyiAkA5NcI0jM4lAkhV3/xewgFpqB5iLiFH/XjJ+JQUVXQDQ3dGBONBUDRQNH49Os3ebq7z+7+AX/6jT/n2fNj/sf/+bf513/8Z1xWGuzu7fOpNz/NF77wJcKhOMFgmF/4936BWMwB8NWqdYLBIOl0dv6GOTdNfWZi2c5NN5vNgmngUsFlW5jalMVMDp/Pg8ulYBgzItGwTDeMhJ1xwmQ6RnUplC4vMEydrSubZLJpypVLPF43t2/flvuUtbU1rl69ij3HpifSKYlYT6fTvPopJzMjt7DAbDbj5PyMsTbFsC3iqST3PviAVDbDQrGAPxRE13WuX78uKzyXyyUrODFvF/PlTCYjK33Lsui1O4QCQQJ+P7FIjGa9IVMUg6EA+XyeWCzG7u4uhYLjBclkMiwtLUlcC0Cz2SSXy/H5z3+efr8vQ7Y+/PBDMpkMhmHInZPI9YhEIqiqyr1790in09y8eZNMJsO1a9fY39+XVb6odiuVilxWi79P5LgI0YW4CW9tbbG1tSXx/cFgkIuLC1qt1ieSCrvdLpFIhKOjIyl/Fbk1Lx5wwhNz9epVut0uJycn8vuIrjQQCMhlealUkij6ra0tZrOZk8Ux7zRSqRThcFh2Az6fj6dP96UXRLDKhsOh3H3puhMp6+xUejIQrl6vc3DwbO4FicmdlsvlotVqoWkat2/fZm9vj1u3bjEajSQW5/z8nNXVVZkAmU6n+Ytvf4eHDz7CpaiEAkFUFMLBEMZM53D/gEwmI82MwsOysLAgCQitRgO/18tsOqV0fk6/2+Ubf/InLMzHleJQSqfTvPvuu5ydnWEYBi+99JI0oRaLRd771vdk8ef1eqnVaoRCITkxeFFsI0QfLsUpGiPhGI93n3B2cclU0wh4neJNgFEDgQA7OzsYxox43CkUYqEw9sygmFsgEghSuyxTyOTIpdLYuiH3lZPJhIDfjzkvZNyKKrFKYlf0/Plz2ZUMBgNarRaD0YRQJMZgNKE3GKGbNuFoHAun0BDFjehoXsS6CD6cqqoyhE/son7k9+Mfy9/yI37ouk4qlSQaC2NZOm6PwlQTVZGKgguXy0MsnmIhl2T36SFPdg/IZfMMRxPCUSfXIpddcDLAFTfNRkuOsMSNQujUncWhxng8legPsFAV8LjdYJvYtlMVTTXnjQ2Hw2QyGQBaTScESyiONjc35dJajK3K5TLFYpHbt2/LAKfBYICqqjKYKhKJSKbWw4cPpV9CKHREfPCLXUQ8HqdSqzLRpgRCQVqdNv5ggGA4xNb2FdpdZyFcLjdlZXnlyhXHH+N2k0on6fbatOoNGo0Gpmlx+/Yd5wY2l6AqikKxWJSjLFVVpTEvHA7LUK5er0elUqHT6dDv96X6STDKTNOkWCxycnIiK79EIoFlWdJgFovFmE6nLCwsyFGVcIKLUVg2m5XVXqlUkoYxoewTsmmB0hFS6kQiIXNh9vf3pe/F7XYOfWFaFSIFcS0sLi6iaRqAvHktLS1JqoKqqrJDqVarcjzk9/vRdZ1KxUF2iH+TWEALeS5ALBbjzp3bdDodOeoQknPxPEUAlzAl+v1OsNebb76JpmmEQo4bvFaryfGn6KwFJqbb7fLs2TMajYY8DMT15YREOWMawerqdDqfGMO89dZbkhw9mUykp0RU12LMrCiKJDQIGKXIl3n27BnBYJBut+ugTJaXASRmRij6ckvOQScEANVqVUqgxefYNE1pFXDG2Ias5g8Pn8n3TVWVeYdhSVHFpz71GrruMPKSySQhrx+fx8tsqqFNHC5eOBicw2v9DqNsvkMU16XH5ZZjNTFCjsViksQgxCEi80aIX8Tr92KaqBjDiyJFJLMGAgGi0Sh+v18eiuFw+BM+ux/l4yfiUHnzzTcpFBZwu1VMS0fXJ3z9l7/KG29+lr/5t36FYChKtz9i+9ot/v4/+If88t/690lmCyyvb7K6vsXh8+dsX7vJL33tr9PrjggHnUrb2RVk5zPoMDPNYDpxRhq5hUV8/iDj8ZhQ0MfnPv0GIZ8bHzBsdQn6fSRiYSx9xmwyxq1Ao1pDn2qkE0mSsSjZVJKL0xNKZ6dEggEwDTyqQsjvIx6JEg2F+bM/+VNK5+d0223ikShHh8/IptKEA0E+/PBDapUqF6dn3HnpNpFwGGxbqolUVeXo6IhMJsNkMiESifDs2f/L3ZvGWHaed36/s9193+vWvnX1RrLZ3VxMbZQsy9ZAhpBMAHsCOMsEGWAQZ4AgSJAEyUT+MAEyGHs+GINJbA88lmdsy/JY1kbbEiXSEiluvbD37lq69qp7q+6+n3PPkg/nvi/JxGPTzlAGfACC3dV1l7p17/u+z/P8/7//BqvLKxTzBd+5H4nSabWxRiY3rl3n5vUbnBxXmJnKkYjGeOO113GsMQe7e+C4GKpCIZ2l1WhSyBXxXIWvfOUr3L59m2DIkPMlz/O48+4D9vf3uX37NsfHxzz11FMSeCgC0+7fv8/ly5dZXV3l1q1bnD17lu9952Wq1aqkzs7MzPiD5Umu+MrKCsFgkEKhwMnJCdvb20QiEW7fvk0kEvEJ0BM/jwB6ithagaMXmJnd3V0ZZSvmIiJoTUQEfP3rX5dZLWLBeu2116Qa7MyZMxLVUqvV2NraotPp8PzzzxMMBpmdnWVvb492u83m5ub/Z9EDJKpeOLTL5bIMlxIcLyHpFW1UQYeo1WoyKC0Wi7G/v8/58+clrHNqaopnnrmCZVkcHBzw2muvycPJ/PyiTBwVMb+u6/qy2l6PjY0NPve5z/Hkk08yOzuLYRjs7e0ByA0ik0xhDoYc7u2zvLCIrqjs7+zS73TptX1Cdr1eJ5lMyraeCEsLBALcuvku0XCElaVlhv0BqUSSsWlxWj3ha1/7GuVyWaZKPvXUU3IGJgL3bt26JeeBQoovvCcimEpUyeK1G41GrK6uouArLqu1Otdv3abV7qJpGqNhH0X1W0v5fJZoNMzy8jLpdJrf/M3f5OjogHwuR7/dwRqOGA9HPjrF8UgmEqRicbmYj8djYpHoB1qGo6FvMhaeE5F8KeYmmqbheNDtD0imM/QGQ3qDIbVGk25/IGMJxIYsZrsCmitmgCKwTsAnfxzX34pN5ed+7uc4d+4cU1NTxGIxVlZWuHDhAmvS+gpxAAAgAElEQVRrazzxxFM8//wLPH35Kpeevkq+WOTylWf5zE9+jjNn1yhPz/L8cy/w2c9+Dk0zMIwgb775JuOxQzAYngz5hvIX7n+YXVli67p/yllenOdnv/B3SMeTZJMpkokYClCemiIYCFCtVOh1u4SCQUbDITvb2xweHLAwP49j2wQMg+FggOe6jC0Lezzmwf371E9rPHHhIoamc1o9oVQsoqkqpycnRENhVpeWiYTCKB7UT05JJ5KEjAC6ohIOBMmm0uSzWYa9Po41ptM0iUajvgs/FpOna4GjSSaTrCwv49g2qWQSczTCHI0YTUp4HJvFhTnmpufotXvUTxvMzsxz/vxZWq0G7XZbluRTM3m52Il+uDhZ9no98vk8zzzzjDRpPvXUU9Trdc5dPO/n3Zw7JxeQaDRKv9+XbThxshbzG1HtiPsXc7BkMkmr1eKZZ56R2e8i2lg44IX6S6iNxGInJL6f/vSniUajrKysyGGsyIRZW1sjEAjIob4QQDz33HO8/fbbBIM+0kNUICJyOZ1Of8DQeXx8zGg0Ym5ujkgkIhcMgf3wPI+FiZxYtBBFRZNOp5menqZer5PL5ZidneX69evE43Epje722gRDBrF4BMu0iYRjNOotEvHUBxBC6XQaRVFYXFyUpAdR+W1sbHB4eCirBzELOD4+5vbt2/L1FBXEuXPnuHbND2gV8weBfk+lUnJu8PGPf1wOyX1l30BGSs/Pz8uFMx730y3v3LkjPTDvT44UBArx/hPtXEGAELPQer1OJBKRsb4iebHfGxKaLP4BTZe4k3a7zZNPPkm9cYrj2DjumGzWx6ik02lCAd+3Y6h+G1nxfC5gctKuFWtFQPep3Yauy5wngVsRXjVRQQl2l5AIi+pPyMCFmVZQ2MXhRGSoCEq2qDg1TfuxSYq1L33pSz+WB/oorl/6pV/6EsDVq1cIBAxS6SQzMzMkkkkc26NyUKfd6oCqEQxFaLQ7VE8b1BptWt0+tVqdWq1FpXpKtz9gY2OTjfUtup0e2uRDFo36bu71R5sTZo//i86X8kQjEaLRMNGgjufaTBWLrCwtUS5NcXZtiVQiTiqRIJ1M0Gl2SERjTBXLjEcWhXyGcqnEubUzxKMRVODCuXMEDZ1QIEBQ1xmPbM6eWUNXNUqFIrZlsba6im1apBJJDFUjFo6QSaexx2PikSiZZIr9nQNmy9PEImFSicQkhS+KrqhkUjEUz+PypUsUsnlwXGxrTDqZQlc1fuK551Acm8rhEbFwhLWVVcqlKVQPPMdldnqG46MKuhGgXm/hAHNzs6RTSTY3HjG0xn7ErgfhUAhNVYnF4zxcf8Tm1iZ4FtFojLnZeTKZHPfu3Wdvb5dCIU84HOLa9XdJpVKcPbtGt9tlc3ODSMQ3AFqWxebmNqurq8RiMV5++WXK5bIcyF56+kkAbly/yczMDIWCTwGOx/24gbHtK+q6E9e8MxmaTpen8TyP73znZRYmGTUibld4fnZ2drDMIblcnqOjIz75yU+hKAo7O7vs7OxMIohbMp9dtBuF/+fM6hnq9TrPPvssruuws7NDOByaoG+yDEcmCwsLmKbJ/fv3abVaFAqF97J4AgEZunXp0iUZQDY3N0epVOLVV1/h9PSU2dlZebJ/v8s/ENQIhfwZTq/XJ5VKkcvlePvta4RC/iKXy+UAGI1MZmZmuH37DqVSiV6/xelJjW63zzPP+C0gx7UpFPJksml6nSFja8zHP/Yx/uzVP0PXNM6fO4emqhzs7zM9M02pVOKtt96SiqjBYDDB5i/Q7XQ4OjwkEg4zPzfH9tZjCvk8Z1ZXGdsex8dHzM3N0G63ZNvQj/dVuXv/ts9Wc7yJ0m6OpaUlHj165LeoEmGm8nlWFhZxzTG25eA4HvFkCt0IYhh+rPXv/f5XOapUUDQdXAVcD1XXsS2LSDTE3/8v/3NC4SD//Fd+hVQqiTO2SEYipNMpuv0uqqZgOTa9Xh9PUQgEQozdsT9nC4eITGJ/cVx0TQPHxTRNBt0eISOAikJ40r71PA9FVdE1DXfyZ1XVCAZDDIejye+xIOd4Imo8EPDJ5bZt02p2UBWPUCiAqioEQiE0I8Q7794Xy+fxl770pV/7KNblHw8M5iO+Go0GHg72JAdF8aBea5EMZ6Xhy570JW3HAUVDUxQ0VaQ3wknVH2yOxw6e50tNVdU/jU6Vpslk9vw3yriJpunoWgBN8/uV6Cq4DoNeF09RMRSVgBFgYWbW7596Kp998dMTNUeA565cZTTqkUqkCCgaX/jpz3N4eEgymUR9wj+99fptPv2JT3J66s96isUiqViMUqngn4JicY6Pj1lcWebho0fcvHmTsxfOc2ZllU98/DPcuHGDXq9DMV+g1+syGJtcvXqVtTNn2F7fJB6K8JlPfoqHDx/iOC5LS0scH1XZ2tpidWmWT77wMf8k6sG51TM4pi/vXF5e5cGjdTpDi93DI2q1up9HnohRKBUxwjHfpJlKs76+TjwSJRT1fQXpbIZEIkE6neZ7L7/K3JyfghiJRKR8Wyh4Hj16JDMyxKnz4ODAd5MPh5LUKySYIhtEpGCKfBJhenQcB83wpZa4vurGs/2518bGBqurq5w5c0Zmgoj0zn6/T6VSYW5ujqChSuXY22+/TSwW4+DggGQySSQSodvtSoqwOBnHYjGJeel2u3LYLYyt6XSaarUqSQCif57L5aTkdX19nbUzq2xtbXHmzBmZdyL4YwLlITJ32u021WpVCh3eG1B7Ukk2PT3NtWs3AKS0Wpx2BaeuWvWpwZcun6NYCHH//iMajQa7u7uEwoFJ+qJfMSaTSdk6y2azEnkiVHJra2uyz9/r9SRUUZg4hVy51fJVjSILp1qtSvNnNBqWKspwOMzNmzdZWVvxKd6xpAz0EnBGYQYVyj6F9wyOQnVl2yMcx/HhjoGgVGwpHlKJls1mpZjFtIYMBlDM+VWSovktJjVgoCs6nuIbRFNpH94YiUSo99p4wHjkV1CGqkklmj12CCRScpYqqhpV1wnoqoTghkIhmZsTCATk70q8x8X3iZmbj4x6z2BrDYfYnkMqGqTVNz/S9fhvxaYSCARwPRvwUJXARHVl0+sNQFNRPRXH8fyNxwWYsJ/wHe4KMB77GdUAiqJh2y6hkCGVFaKE9F3xoE6Cf4LBAK43BsXFsca4qAQCITzXIxwK4boergtXL1+ZbBz+TKHXb9Hr9YhFo+B5rE4gh0sTt+5w2COVzHN6WicUDJPJZBgO+iSTcbrtDlPFEnMzs0SjUc6dWWNhft4fKJoWESPIuZUz9PodUqkUe3u7tFoNgqqOEQyzOMGlm8MRyXgCx3Hpd3tMlUpoqsri7BTFfEEiYjqtNqvLK1QqFcLBEOfPn+fh5jav/PB1xiNT+mqCoQCRmK90m5+ekYNEkZyZSr0X4tVut/2FJl7l5rvXWVpakMIIf7juK7k8nA+cbMVi0Gq1yGazckgpxAGiNy18Ka1Wi1qt5hOOlxb8gSm+FNPzPN/pHY1J1ZhwLQ+HQx4/fszs7CwzMzMkk0k0xZV+oX5/SLFYlCRpPzfG30jfH5Qkhv6u7Tv119fXWVicmyBofB/P9vYWx8fHEnMivAXJZFLmaLTbbbLZrMT8C+AlwOPHj1ldXZVzJyF5Fc7tubk5olG/5dhu+xLwaDRKLJZAVX1GViaT4d133+Xu3bucOXOW4XDIzExReiH2dv2o6oODAxnCJqSxBwcHklDg326GTqcjq6nspFoTYoJ4PE4mk+Gll16Svz/hCwJ/Qdze3mZhguVPpVL0+m2ZfmpZFvFYWqZvdrtdMukczWaT3d1dRiOTcd9/X8bjcdpVnz+njMYYalBaAFzXBdfm4GCPseMP7G3HQ8HDwGdmJdLvxUh42KyurrK7u+1TpSeHDzTf+9ObeIVsx9/IDXSi0SDV+inOZE4SCgbRFVX62jx8FZiqqB8IBFMU5QPkChEgJtYhEXMs4q4F9FXgg1RVx3UdxiPLV8d6DqOxIzejj/L6WzFTGY8dzJGDqhh0OwO6nRGWOTHamTadbp9Or0+3b9LrDej2B3S6Q1qtDvV6k063z2AwmlQoYTKprDTkDQfmpLXhZ2KHwxFCoRCVygl7hwcy6rPbauPYFo5poaEQCRhoHkSDQbKJBMNuh8XZOVxzTDGT44mz53n+yjNMF0qkonECikZIM8jEk2QTKX9R9iAdS1DM5lAcl7mpaUq5PAszs6SjcWanymSTKcZDk2efukxYD3B6VOFbf/R1/vVv/Cve+dGbJCMxSrk8P/HMswQ1nYCqMZUrEDGC2COTsyurlPNFUtE4qWicTDyJPTIJ6QbTxRJXnro0eYwRc+VpGrVT2o0mf/ytb2OoGmfXzvPUU08RSyaoVCpUKhVefPFFtre36XQ6ZLNZpqenMQyDw8ND8vm8TBIU6qyFhQUph3Rdl+XlZVZXVymXy+zs7Mg42Wg0yuLiIr1ej3Q6Tblclma7mZkZAKkue+edd+TwvVwus7a2RigU4vbt23KuIk68Fy9exLZtbt26Ra1Wk5vC008/zfPPPy83GMuyZPRBIpFgamoKy7Ikv0tIoQUKReDeRRSASKgUoWK6rkv+WKFQkKonMWQWSiOxia6srLC1tUWlUpGqnueee46LFy/KGdL9+/eZmpoiEAhIebcwOAaDvn/n7NmzrKycwTACMvv83r17LC4uUi6X5exmcXFR/l6EFHp1dZWrV6+iqqq/gNq29Ko899xzMrYgkUhQKBTk/8HHqmxubkp/0draGnNzc0xPT3P//n1ZVYnndOHCBbLZLA8fPiQWi0klVyaTIRAI8LM/+7MSibO/v08mk6FcLjM3N0cy71eslUrFJ/9O1F/igCPUjNFomFdeeYVup4ftvAdcFFWdZVm88MLzBEMG6+vr7O/vMz8/z97+Ds1Om06vRyQWBUXhtF5jZJkEI2FGEwTQ48ePpc9FJIEOBgOskSmVh+/3poiDmGmaEqUjWHpi0+h0OjQaDYlhEsmpYpMRakChpBPvWc/zGNof/Xr8t2JTASZSXx3/R1IxjKCExAEYenBSVmroWgAjFMRT/dOkphkyyVA4dUXbTAxkxckM/JJ2fn4ePJVGo8Fg0CMe93lNmqaRTCQI6AYBXUPxwByNyGdzDHp9ioUCAcNARUFXNSKhMAHd/7uh+a0ZTVEZ9Pp4jkt5agpcj6ARIBaNMpowwhTFT3/0PA9n7GPiW40mX/3qV3njjTdoNBrcu3ePa9eu+Slzk59PuP6FNPP73/8+X/7yl/nDP/xDvva1r/mU12iMdDLF2LRo1htUjys4Y5vT6olsMYgBeL/flzTdTqf7Aae6bftgTaHaWlxclBp6cWo9Ojri+PhYmuHE86zVavLDJoxnlUqFWq0mEylrtRq1mm9srVarsvIQhAJhgBNGQUGwFfLeg4MDaagUmTXpdJpYLOZXJhMO1Pr6usw+EdwrYdTb3NyUyhqRzKeqqpSFmqYp5aILCwuSJJBOpz/QIhKD6EgkIk/ggpiQTqdlvks8Huepp56Sz3V5eVlKqoXcWXhTisUiuq5zcnIiJdiVSkXCHMWgeTAYUCwWZUXebrd5+PAhe3t7BINBSRqYmZmh0fDTv8VCJxZCVVU5OTmhUqlwcnLC3t4etm1z4cIF8vm8Pz8YDFheXqZYLEpZcSQSkdk29XqdVsuv4BcXF6lUKlJAIqTq4vVIJpO8/vrr8n0D77WrxH0LR7m43fvd6WKxdhxHBoOJz/d7VaYh6daJRIJ79+5JYcLc3NykpeqbE0eW6QMyJ255VP+QITZlQXgWbnpRbbiuK02JAvwqBBDC8KtpmmwtCkNwv9+XDn0hVxbzGGHqFUQCETf+47r+VrS/vvrVf0cgEODFFz/pt4mGfUzTIxzWUFUIouN5DrpuEjY8HGeMpqtEE3lGo5GMzx12fDlpOKAwJoRjj+gOTYamTXtoYmgKug6O3Wc06BOPhgkFDfRwhqN6j1azjmOZ7B4fy4XVL201NraPJm01/40TSaQZDHzXtoZGvz8ATyUSivqboTEGXNxHj3Hcsez1Oo6D7k5OIzp0hz36I5NMvsB+x4LEND0t60uZ+32++sdv0P/dr/HFL/w0vW6TfrdDKpZEDycxolm+//pDtvdPWFxeIOuqPPjmDwirFsf7O8wUs/z9X/h79AZ+GyGWiNPp+MFfKytnuLuxi93sky+pJDNpNFTiQYP2aZWFuWnu3bnN1o4/WI+HYpweVOn2FS6cf4JGs067VmNleZ5mp05hOkemlGL7/hHXrl1jZrZMOBwmE0/SqfvhR+V8kcOjOtPT05jOkFavhW1aZKtZPNvlYL/Cxz72Me7fWycY9OMC/HjZID/84Q/4wuf/DtFACEPVaNbqLC4ucv36dd8zZOgSV9/r9djd3aVarfKxj32Mn/qpn+Lg4IBcoUA4FuWoWmE8dihNlzl/8SKmaZIrFNh4vEWn38O0x9ieS6ff49y5c0TiMcxhj/2jXabnpjDHJpFYhLmFeU5qp7LyTaezJJNpwuEoiUSK0cgiFkuwvb1NOTdCcxUU2+PhnfssLCxg9Uf88Te+zRe/+EV++ytfoVAoMD09RSyewvFgZ2+ffLFALBEnnkzR7gwJR3RUw6U7aHD2/Bksy2Yw6KDpvsfk5s1HXLkSY3FxjXqjRjafwfU8tnd3eLyzBYrGYDQkFAmiBwxQFDwc1jce8qlPfYpiKU+hkOOZZ69QqVT4/isvs3J2jbW1NVbWVnAVl0Q64Xs98hle+tOXOLt2kUQqQzKdZXp2lu+/+gOa7S5PRmK0Ow0UBZKJNNFIDDyd3Z1D0qk82WyGjJEnlsgQiUTY3t0jGAwzW57GHY+Zm54mEFL9eOOxjWmPcXSFTD5BLB7C9oYcN1ocHB8RDcewHQXF00FVMVWXYijCs88+SwCV137wQwa9PtFYBNsdU2s1cXGxzRFqUMMaWVjDEUE0HNPFGZsoMZVUNkUxl2f94SMWZ+dxbQc37GJoOkFNwXE8kukUg4FPJBhPnPaKoqDpkEgkGY0tovEklmUTDsdxHI9EQpmAZH3agK5rKLrCcNzHGTl0WjXC4SiqFqQ3dEkkM+wdHfxY1uO/FZuKqqo0m3Xa7Tb5vI8PCYYMDMWbyFWR6AXbcVDxCGg+tkDouQ3DkMNdz/M4POnIU4YwHTEZ8vkZKg7RUJSd3V1SyQzJRIZIKIozHuKMbdTge3kGnueBp0rzpG3bBENRYmYCVfMrFMdxUdAI6v6w0HSG0nQF3gd6rd540g/WIat4uKrK0HI5cybN3ft7HBw1J/1ZhdHQwkNncfkM+aw/EOzUasQzJTb3T0lnMxxUTvnsZz/LxQvniIQMZqaLDFpNGtUDioU0kXB0Qhluk0ikGJpj5ufnCRoGa2fPMhh0GI4ChMI+R0ucvER6pWiTHB0d8blnPuUjydNpGo0GK2tnqJweSenlYDAgFotJ1tWDB/c4PT31FWWTgX06naY79Km2gqOl6zoLCwsyOtowDJ566inZ3hKJiEdHRxKDI3JWQqEQ5XKZe3ceSP6YMFvquk4qlWJnZ4dWq0WxWAKQxF0RXSsIzIqikMvl5IFCSGhHoxGpVIpOp8OFCxf43ve+J3HykUhEOqzFMFvkwRuG4aNtVIVgJEyr2+HyM1c5qlYIRSNks1mqtVMptfY8j06ng6qqMlrZP8l6RKNxFMWRA+zp8izf+Ma3mJsrc3h4iON4hMPBybBYp9Px1VbpzCTWFp/JViqVOJosUAKj42NgXOmHEn3+VCol24Wrq6uMx2NpRmy1fLXc6uoq3//+95mfn8dxHJmCOTc3R73ZkATjYDBIIpGg1+vRarVIJBJsH+5LL4iQzZ47d47vvPRd6vU6hXBGhnwNJu2hUCjkVyOe35KzTBvdCOFYNqrhL4ka/uft7Fl/vvTaa69RKOTxGONNHPnBYAATD8fxTYaGqhGPJegPx9iuv/YcHR4SDYWlcXRvx6cBhOMh8JwP0Cw8z0PX/BaXXy25cgYpKhH/c+JhTaoemLS1LJOwFvZVcWhMzyxgWTb9wRBPUTHtMVvbj38s6/FHtqkoihICfgAEJ4/zB57n/e+KonwJ+K+B08m3/i+e5700uc3/DPxXgAP8I8/z/vTDPFYmkyAeD3P33rt0unXK5bIfVKMwWVwdf0OxbQaDvnTVplMlbrx7i3Q6Tbvd5urVq6D6w7Rw2GRkBml0eozH/vDLV9kEMPsdkokcnW4X19G49s5tdE3B0BTUSVVhqj5w0jACUnEC/ofQdV1i0cxEHRTBsjp4rj158/iwONUzZE9UvJnE39utPqPxiJFlYgRCjB2IJzJYY414rIw9PppAEGOoigt6jH/2q/+SeNwPaPqJZ5+G1oiv/tFL/A//0//Gb//2vyWXyXJyfEyxlKVS72B4cPHp5znY2cJWwhjBKOl8Gm3cQBmMiPb95Mv7t2+xsDTrO5N1hdFoRKFQkFj6ZrMp+8aJRALDMOgMeljmmKXlJTY2NggGfDw9iisXYNM0uX79OoriEY9HZTZ5u92Wba/uoM+TTz4pse3Xr1/n0qVLRCIRZmdn5X3dunWLXC5Ho9FgZmaGUCjkK+1UlYWFBelTEINiXdepVquALzf98pe/zBe/+EUikSA7OzuTDUeRaZoi+0PMiIQSbWpqSqZEdjs9AkYQz4U7t++iKhp4CgEjyEn1VA6qRXrh5uYm5XJZemXezzATjLP5+Xk2NzdZXPQz7G3b5vz58zQaDb9CmgRzic9AOFzAdkZUqyfYtsPhQdVv4yomuXyKne0DkqkEpak8p6dVpqaKjMz+B5DsvoHyiNFogOP4TnDPVVg9c4Zed4CuBZifW2T78S7T5Vne1W9TKpUBlf39Q2ZnZxkMRhO8fwRF8YfdPivOhzlOT09zdHQkh9EiGlv4mfzY7QIPHjzAsizJCROg0VdffZVkNiFnN6enpzx9/km2NzaZn12Qn8VgMMiNGzfQAwbmyMR1/QOg6rlouoZl2yQzyQneJoYR0DCMAJY1oj/ooQC6oqIpHuXpMjePj4nHEuiGSlAPceeev7Y0anUKhYKESoqNVrXHKIo2aX/6OfJqUJdtd2PC8rIsi6bVJBgMT9rNJirWZDakM3adyaHZf70sx0Z1A9i2QzgW5bhywo9uvvbXXcr/ytdHWamYwGc8z+spimIArymK8seTf/vnnuf9s/d/s6Io54GfBy4AZeBlRVHOeJ7n/GUPlEjGODo6wnWdCWrCR2zjqThjG9ezcRyb+CRLXfzSBBZF9MSF1FKQbEVvdjCyJhvLJP9B0WT632n1mHw2S7vlL3qDvk/ItTRPVkBi+ChOJaqqUqmeTja3AIrqAS6K6uK6NpqmYLgh6UyXaXGuzxvTgiEfNYFHKBoB06bbH2EEoiwsrDC2G7z11lsoqoVuqOi6xpXnnuW0VmVueZHOYMDYtfnCz36Rr33t63KmMTOdB9dD8fxMbOFa7wWCKGhYlo059IjHk2y98Y7/Oukamq5I7tVoNJKyyHq9TizmL9RC5ptKZqgcn0zYXL4BURjsDD0ozWCtVoupqSlqtRNpFNvY2CCdTgP4Ms+AIYe3wjgmUCBCYivYSqZp0mw2JStKsJFarRZbW1ucO3cOz/OIxWKyz53L5aQibX19nYsXz0m5bSjkQxyFoW84HDIzW+b4+JhisSiRIBcuXGA0GnH27FkpJY5Go7LCMgyDer0uNyMx/xKD+HK5zHe/+110xXfdi5yUYrHI5uYm3W6XQCAgZdmDwYBGo8FwOGR3d5fLly/5IomDCrOz02QyGV8iPbtAOBxlbLnoARXD0BkMenQ6LYJBg06nxXDU5+LFC6RSGbrd3uT1NQmH1UkF5rK9vYvjOLJSE3JiQCqz+sMBvUGfnb1dlldXsOwxYTyOq/6cqlCcwlOg2WqRzecIhkP0Bn0Ojg4ZjUZyFhcIBMhkMjx69IidnR0/3XLsq6L29/fpdDrs7Oxw8dx5Dg8P5ZxKnPwFedjfqMJohkGr7aOPHM9FVQ3UyaxeVTxyeT/UqtttyzhtEcmr6zpB3ZBeJ0FXGAz7DMcO8YThmzN1nzIRDgZp1GrEIlGJpMnEotL35jjv0dBF1eehApOBu+NHGot5quf6WBY0lX67TTqTo9PvgaYQDASwRhrNRoNKvcON+4/+Gsv3X//6yDYVz+/X9CZ/NSb//UV5ll8Efs/zPBPYVhRlE3gWeOMveywfylehVCoyPz8rg5FSkZhfRiruZONgsrv7C3tqrLK2tsZwOPxAeI7vUejJ9sj7B2iqouE6MBj1yeezqIZGMhVnbA3QFAe8kO/S1VxZeWiah655BAIq8VgM17VRFP/UVW81AJdMNkEkajB2RrieQz6Wxx67cmhn2/7eGgwGMSf+iqPKCdF4hEAE9vdPSQVjxBMJnr5yHscbsLu3R7fXpjg1T76cYzDu0xp0WFh6gmqlyWhssbm56d+vYeA5frvPGg3odjxKqTje2CZoBKifnDI0HRKRMGPbpTnJPDeHfbyJQ3owGDCOjWXbTrQUxYdBkIfHYx/QVygUqNZOqddPSGtZeSpNJBKSk9bvdyWLStd1cvEUjuP4YVjtlhx2J5NJVs+e8UF/k5Cxo6MjaQxLp9Mszs1TrVYlNLFcLpPL5aQYQIROua7rgzsnrndBIJieLpHL5SetJqTgwfM82e4SvDPhxxAtUJE1Hg6Hee6552R6plAliQ1QEIEty5JsLM/ziCcThCJhFE2l1Wn7p92AweWrV+j2e3IAbJom2WyW05oP6BRhcYVCgVgsQb1+KmWnyWSaV1/5M37yp37Cx3vEwtK1nslkePDwiIWFOYZDU76OyWSSlZUV7t+/PQknO6U4VcJxXeLJBEYwwP7hAfl8nv5wQDgakXywXC4nzXpCaCGSKYVKTzjvBXVX5NWL2InhcEg+n2dxcZHNzU0JikwkEpIIIEQa09PTUhUnOgRCggvIQa81O3UAACAASURBVLbjeiiKhqq8p1tSFIVz58+jahqHh364m+vpKIqDCoQDQXRdpdfto6Ti9NodgkGD4dAE/Pd/qegnNuK4KArMzs5gaPpEMDCetLSVyWHMlEFa4nnajikPvArvYewdx0GbdGFcBzxUHDxcT0HTdJrtDg/u7nLUbPxlS+dHcn2kMxVFUTTgOrAC/AvP895SFOXzwC8qivKfAdeA/97zvCYwDbz5vpsfTL72/77PfwD8g/d/LZfL8cILLxAM+lyhWt0/CVctlXgiNlHm9CbAPlMScD0lgH1ckbkl7W6Pre2dCQjSodcfYoSjRKNxut0hqhLAcRTGY5dwRKXWPOLc+UVwHeaWCjRqp/T7JoqukY9G0A11wjpyiETC/gczGuL+/fu8/PoOqqqys7eLbijEkhH+01/4TxhafRzHotn1n6dj+200TTPo932O0dLaObrdASZtNnaqvPvufWqnPUqlBXLZKV58cY5k5gqZ7M+gGTr/12/8Otfv/ojVtTPY9pj2qAu6gq6qxCIhRkOL0aDPOBFGN0AdD4ioIZxhh3GvCY6L5gxJhYOMLJPB0ORnfuZneLSxRaVeBdfFc1zC0YT/OrbbMgLVcRyJqhetCF3XOT6u0q71aLQbhCJB8uWiBGAKZP36+jr5fJ4bN27wxBNPkEql6PbGZDIZ3r7xJg4ehWyOarUq0SEiOlhQiROJBLOzs6ytrdFp+rp/MZ8RIMKLFy9K78zt27f5/Oc/Lzef559/Htu2KRaLEnDoq7RizM3N8e7N2wByvtNoNDg5OeHixYsUi0W2traYm5vj+LjKwsLSRDywjWXZdLt9DCNIIpGaEIMTUpK7tLQk/SnCJ3NycsLU1BSlUgmRsiiieXVdJxwOy8zyixcv0uv1yOVy7O/vk0r6v4OF+SWuXnmWZNIP2nIcj4PDPcn/OndujYODPfL5PEfHftb83t4hoVCIRCLlZ/t0+xwcHJFMxSkWSzx88JgrV65gGAavvPLKxLsT5fDwGFCZW1hif3+f3mBEvelnsOwdHGEEw5y/+KRkts0vLdLv96UL/eyF89y9dZv19XUuX77MwcEBh4eHrK6uvtciCoWk9yUSiVAoFGR1Ypom+VAaZXLKF1JbIdu9fvMG5thG5MG7jj+3scYDWo0uT1+5jO2Oefva2wxHfRLJPMl4jEQsRq1+QkDVyKWSjC1TLvjBYBAN/zAUcX0yRq1RIxqOMDJNLMPf5MJRv9LV9cCEwuzJA4rABdUbJ3ierxQbjEbEYonJ3MrExcK0LVBUgpEIvb6Jpgd5985dNneq/4FX8r/a9ZFKij3PczzPuwTMAM8qinIR+JfAMnAJOAZ+efLtyp93F3/Off6a53lXPc+7+r6vTXrHrmyjOLaHEQrT7Y9otNok0znqzTajsY0WCDIwLSmzE1kYgGw7ZLM+A0m4aUXcqziVOopNaSpPJpuk221yfHzI4dEBoahBJBogEtDQXBez3yUVi6DjENAcFMdiYaZILp+melIhnU6hBwO4ONy7f4f+sAeqh8MAVxliOl08dczj3XW6/Salco6N7YdoQegPWgSDOts76zjukIcPb3H37jW++a0/pN6ocFo7ZG9/E2vc4/yFFXZ21ylP5wiFdVzPYmT2GAx69LptEomEDHNKRGN0GnW8sYnnmNhmj1BAJWyo2K6Dh4Ouqly+9CTzM7OkEkkcx2MwGEn3rwD4lUoldnZ2JH5eUTRWV89Ik2Kp6M+/LGs8MWz5H2yR9/7+k7zj+HgTEVQmtPfT09NyEH94eCj77EJFU6/X2d/fl7M0sbBUq1U6nY6MJVhZWZGboQg1M01TbkK1Wo1sNuu3dCZO+263K/0uYlAsgtPEe0t4LDY2NlhfX5dO+0wm47dRJvymTqdDq9XCtm2Jrgf/RCok2eIU3m77v7N3331XthzD4fBkjmewubkp/y8Mpf3egGazKXEviUkoXSFfol5vTmY6p0xNTVOr1WRKZqVSIRyKcnR0xEn1lAcPHlAsFolG/MRTT1G49+AB1dNTAqEQeiCAEQySzec5qlR46aWXpB+p2+3KSAJN07h3794H5oZCst1qteRrVS6XZVVYKpU4OTmZuPl7TE9PS+mwaIlVq1VSqZSU9IpMEhFNLAQY3W4XxwPnfUIY0/Jlx9NTJQIBX37fbreJT+aBAvJpmia5bNpvF7s+nFTVYDw2JTBU1xTssUkun/Hvt9+h3+8Sj0fRdVXKsR3H+YDkGeDk5OQDDDMR7SxuYwQ06b9R0AgEQwxM6298Q4EPsakoivKLiqKk//88iOd5LeBV4Gc8z6tONhsX+HX8Fhf4lcns+242Axx9mPuPRuLEYyl03fCVEZZNKpUhmsoTSeYwIkmaPZNoKkcwlkIJRMiWZshk82SyefKFEqFwFN0IEgpHKZbKxONxzqytoCgKW1tbaKrOw4eP+O53vs/mxg7/+jd/m3/7u7/PV37/3xGJpQiFo3R7fbqdIae1FnvHx+weHVGt13m4tcHO4T57R4c82HzI7tEBL37iWZxxH3PUo5DNsLS8yMHRHuFwgIHVIRBR0EMKA7PLwOpRni1huSPuPLhDPp/l9u13sW0L1xsxNZVF123CYY9w2GNrZxuAO7dv8cr3vsfVK5cIGxqffOF5qof7mIM6c9MZXLPLqNvEGvSwxz54bmd3H3MM2WKZsadQb7ZxVYWxa6EEPVzXIhoNMhx0uPz0k3zyhRdQUakc1zG0mJwH6LouI2hTqZTEloiKIpFI+bTnYpFarSEVMCK6tlgscubMmclcJiZbk4lEgoWFhQ8YDUVypaD49vt96RoXxjNVVYnH45imyb179yTnKhQKyXZDr9eToWTBYJArV67I4buY/Qgzm6IocnYyHA7Z2fErz3w+TzqdZmpqSmaQ+EgWD00zWFhYYnZ2nlgswebmYxRFo9vtS4PheDxmd3eXZrMpN4NIJILjusTicbZ3dmi2WgRDIUzLYnpmBiMQQFEUSqUSnU6HxcVFLMtidnZWGgAFXLPd7qLrAcAPgUulUlSrp6RSadot3wR8cHBEuTzDvbsPMYwgn/nMZxgMBiwsLFEsFrl06TLDoUmn05lstnXq9QaRSJSTEz8Ood3uUK2eMD+/wJkza1y+fAXLGqPrBqlUeiJg0Xn22ef4xCc+geu6bGxssLa2JofxInagVqvJPHoBTxyNRly9elX6kxKJhAR+Cse+gIYKpZ6YcYpwrI2NDayxg+cqjB3vPeWc4vHM1cuEohFsz6Hd7YDi0mo1sEYjep0W6UScw/0D+p02yXiMfDZNLByZ4Ov9bkU0FMY2LQK6IXOHLMvi8WNfhSWEIQISKeaO4vATCoU+oKwTlGFFUbBdV4YAOp7LwLR46Ts//Ost0P+Brw9TqZSAdxRF+X1FUX5GEQ3Jv+RSFCWvKEpq8ucw8FngoaIoU+/7tv8IuDv58zeAn1cUJagoyiKwCrz94R7LV3MIyFwqlabd7tBqd+h0e1hjl2AogmYECIXjxBMpur2BZDsNh0NZ7QhWzmg04u7du+zs7HBwcMDBwQHxWBLXdf1FJxCn2eyytbnPyy+/wr276zQbfR49fMxrP3yD45MmlqPw9o1b7OxXGFgOihHCUwMk0nlsZ8Df+/m/S6mQY39/F8VzKRaLNFs+CNCy7IkMOUgoGEHTDC5efJL5uUUePNhgY2Ob9QfrDLoDzMGQgKYz7PUZ9QfMzS6z/mibeq1Fq9Ulm8qRjCXBVUgnU/S6deq1Ktl0AlyHbrtDIpFg7NjEkgk8PcTu0QmWpxKIJbh55w6/9bu/y/U7d6hUj1E135tgWyZTU1M0m0329w4Zj32lkZhFnZ6ecnR0JLEivurFeC9TJZ7k9PSUTqczWQCjHB4eykHv5uamNL11u125SLTbbTncBuTps1Qqsb+/L3M+BoOBHKx7nsfu7i66rkuHN/gb3tLSknzeYvYjKMH7+/tEo1HJZRqPx0QikQmYsSfNeqJKEMPg/f19UqmUTK0Mh33UjpAzAxI7EwwGWVpaolwuT1qd/lxBVHPi9qenp4xGo8nm0MayLKmUE2FhIiFRoGp0XZ84s22JYs9kMqTT2UkLbcBoZILnk4hdx2NmelbOvRzHpdPuUSiUJONLAC/T6SyRsC83LhaLRKNRhsMhuq7TbDZJJpO+UqtYxLQsjisVXM/juFJhMBxSmppCUVWa7RZjx0bRVIbmiHQ2w+LyEo7nyrmUqNAsy6JU8ll4wgQrskey2SyAZIoJgYY4MIiDiZixCHe9pyArFUD+PIPRgIODA/J5/36FebbZbDIcDHDHNol4HGNijPbVav4MNhwOkk6myGWytOoNKffudruk02k5G3m/lF6sReLn9PldqnyPi4OZYRgEQ4act/X7fd588/2Tg7/Z6y/dVDzP+1/xF/h/BfwXwIaiKP+HoijLf8lNp4BXFEW5DbwDfNfzvG8B/1RRlDuTr38a+O8mj3MP+H3gPvAnwH/zYZRf4DviVTVAIpEiFk2Bp/J4a4dXX3uLSCLN/PIZvvUn3+Fr3/hjfv03f4vX3ryGHopJFcbh4aF0XAsUQizm//vNmzcnrKf+5I2hEIvFGY8D2GaI8TjI3naTjUcVrr/zgPWNYzQlxfX1PV6//Yi95oBvvvomv/PN73Bn54iGrfDVP/0+v/Pbv8Hm5n1e/NQL/Le/+A99MYEzJpVK0Om2aTR6tDtDYvEMg6HD3t4JP/jB21SqLRam11CcAJoaIaBFuHjuEsOeRSGdJxNP8/EXPofnhHl4f5/T4y67m0ckIzliRpz2SQ/FGzHonDKVS6J6FpGQzsbDR9y/f59vfuPb/Nq/+Tr/+P/8VX7vGy9ze3Ofu3uHFJdW+IM/+RMePLqL7YyIxyNEQgHisQjHB8eYpkM2XZInLjFkFr4CcapvtVqcVGuyLRWJRMnlcrRbXfb29qTySmSueJ5HoVCQbcler0e9Xsd1XfL5PKVSCcdxqFQqbGxsyITE5eVl2Xo6Pj6WvXjxQRVu8oODA9rtNqFQiOXlZSmMELG/Ijo3m82ytLREMBikWCzyox/9iG63K8PWRKrejRs3aLfbUqYuWjGhUIharcbm5ib7+/sSdy6YZfPzvohgZ2eHpaUlWWGJSshybDxVQQsY9EdDVEMnEA5x6+4d6i2f85XJZFhZWaHdbvP6669Tq9WYm5tjOByyvb3N8vIq1WqVu3fvMhwOOT6ucu/ePWam5+h2+1imQ6Vywvr6JpY5JhpNsrnxWLaWrl27hqJobG5u8uSTT0om2+OdbU5qp4wdm2Q6xcgyQVVYXF7i+s0bvPLKK7z55puyDRgIBCiVSty7d08e2AR2R0QE/OAHP6Db7cqMejFv8zxPBtIdHBz4bK92m0gkwv379zFNU24aAu+jaZokGwjszfb2ti/D9ZiQOHzYZCgQJBIKc/nyZTKZDNdv3vApw5EIiufR7jTl96ZTCUnf0FVNVg4ilO5wfxcjoJFKJZiaKhIOB8lkU9Qbpxghf9MXCZrgHzJEDIGowAUg8v0qVfH5Go/H9EdDDo8rnDSGH2ap/LFcH2pQ73mepyhKBagANpAG/kBRlO96nvc//ntucxt4+s/5+i/8BY/zT4B/8mGe0/sv/ySvyZOEZVl86lOfYrvSpd3uMj8/z8HBEYlEjFAwwoMHD5iamuLZi2dlPzcSidDv9zk9PZUnoOPj40nbIE7ttCn7/d1ul8L8MvbY9E9ywwG64mKZLgFdo15vYEcNTMvGGntEojH6A5PvfPf7/ORnP836xmOK4QBvvPE6u7vHZIslzj+xhsVgMoco0DvpYlk2sWgAyxrwzjvXGQxGKNxmfu4MU6VpRsM+5fIM2WyRQXfE5obf9vqzV1/3lVfJLKY1YG/vwJ9flIqoio6u2KysLGMN/Q+DOeoSiUR460fv0Op1cfUy8Xiat2/cJGzYHOxsouku7V6bZy+s+CdyxpPBpG/GcvHoD0ccHx8DyBJeGB0FoyiWi8iTeCAQIJ5K0h20/dZTLk0z2JbYkFAoxKNHD/Am0bvJZJLBsCnbYf3BgFarRUj3T6nLy/45R8wYjo+PJz93iampKWzblgTcQCDA6emp9M+IDA+xKYq5jfC0HB8fs7u7y/z8Ardu3WJ+fp5isSjjfUWrScARV1dXefvttyW+XgxfE4mEzAwXUtdIJMLDh/epVquyouv3+zzxxBNsbW35vqdJNQLI2OS3336bxcVFxuMxmXSG09NTtre3OX/+PObIkfcjZhXDoQ/BFANtx2aCA7GYm1vgzu37kwonzvz8Io/WH5KYpKImk0nyucLEAFpkOBjRUBqcPXtG0iMCgQDNZpNyuUy5XKbRaEzmZX57Jxz246ZFeFwmk2FtbY3jio/q2d/f5+rVq+zv76Mofppkv9WhVquRy+VkmJXgk5mmyeODPWZnZ5me9jU9wowpskPECV+EX5kjS1YMoukiOFlifuG/B0K0hkMqlQrRSIjF2RlioSDNxqnv/5q0E09OqlhWHE1V6Q36WLZDKBJnPPEH4fgImWq1SiaXle8FP1U1J7PmRRvW0mxJpx6ZfWzbmQh2TGKxhOykOJ7FYDBk7Hg/VgTLh7k+zEzlHymKch34p8DrwBOe5/1D4Arwdz/i5/ehroWFIoViHCM65tHeTTaOb3Ey2OOPvvFVXvqTb/Mrv/yrhIMpeh2HbmdEo97hpW//Cb/yy/+C7e1tfuu3f41e/5gL5+a5+vSTXH3yMv2RRyicJpbIMTJdNN0P6wrq/ryg1+lOZJw2iuoytHvEMiGSuQDZ6ThBVScZjRHSFVZXFkmnkySTaV5//RqXLj2P6YRIJpc5qY7ZeLDHxv117M6IYmSWl/7ND3j1uw9wxiFOT2v+ycv0CKgFVHeKnYd1brz9gAcb65z2j+gqFWYvZHjhc5cIpj2WFzOEA2Oef+YStUqdjXtHfPsbr/F7v/MS3/7mD/nK//0yj27tcnx0ytWPXSUzl2G/vsfHP/0xPv+Fz/PE+TVCwSD2WMEcGZQKyyRDJQLjKO++s8X25inBQAo9EOP4uI5je0RDUQKKga14ZIp59IBBcaoko1sLuRyL8/MolkIAnfnZOUKxILV61Wef2WB2TKanikTDQZnrnisUGZo23aHF2FPJZNIMe32CBEnoMTB9eWcmk6Zda/Lw3gNKU2U2Hj8mO1WiMDVFNBrjaP+QRqNBNpuVJ0NBoN7a2vJlryGVrtUhEFM5c3GBT7z4HNFoiIODAww9iK25vP726zz99CX2d3bxXAVzbFNeWCJXnqFer0vviaD0LiwscHBwQGGqwOzCLLVmjWgiSn/U56R+QjASZHtvmx++8SMebW0STcTZ2tn2B7PWmOeffY6AbvDExRXu3LqBY4258+49jg+q5DN5dh9vc/7sGq1Wi2q1ytraGnt7e7z46Y/zzjvv0G63WV9f54nLF6m3asTCAaYKWUbDLnuHu8wsThONhkkkYiwtz/ITn3iW5bU5rt++TjAaIZrJEgzECIdiTE9PE4tF2Nl5zO3bt4nHUrz91k0++5MvUp4qMBr2KBVzhEMGhwe7tFt1ggGNcytLrM4vcPB4m4PHOwzbXcq5EqoNg1aPdDzG7tYmmudy6/o15qfLfOaTn2D9/j3qrSbXbt6g0W7hqQpPXX6acCxKs9OmWjvl7PlF4skAe/ublMsFwuEgp406/dGIdrtDJBSm3WwwHHXIZOPk8kkU1eP4pMpoaKG4HmNzhKqC45qMnRG9QZ9We0hc0fD6A/q1Ov1em/F4xPzsFKlEFM2xOK5V0QyV/qiPOyGfh8NhLNNEUxS6wxF6KEwkEmO6NE08FCOsBvFGDrloim53gDW2qdUbdIcDbDwc3f+vbfUY2w6u5zvzQ+EAyXiYWMggm4yQiKQpFmaYnl7lwdbf/HD+/deHmankgP/Y87yf9jzvq57njQEmg/YvfKTP7kNeN27c4Nt//BJvvvkmDx8+5OHDh7zxxhuMRh2ajSrN1gntbo1+v0m/18YcdOj1Guzu7fCtb32Lfr/PtWvXGI2GhEIBZmbKnFlZ5oknLqDhEQj4fW6h+hD9UDEotm0bFUWal2zbZmyNUBSPVCqJaQ2JRcNcvHiedqtBOBxC0z1Gpg+izGbTpFI+Lub0tEaj0cL1bGzbIhaLTsByAfqDrvTYCHf57u6uxIEUCgXm5mYZj2z6/SGxaAIVXzmiKyrxSJRiLoszhof3HxGdBPt87CdeoNdpUakcs7HxiPrJMbXKMY+3NqlWjmg2m9LHo2oG29vbaLpBvlDk8PCQwWCApivEYhE53xgM/JmVUOmIOZUwsQklnWEY0jgp+s4im9swDOlXEC5o4bEQmn7xeKPRSCYpCqNpPp+XogHRY3+/bySRSEz4ST4NtlAoyFOxaGFsbvrhbKLKME2TarUqExnNwYCZmRlGoxG6rrO5uSnzOzqdDvv7++i6zltvvcXOzg7Ly8vs7+9PwsP8AbKPSPFbr1euXCGRSEiDpKZp7O3t8fjxY1KplJQ/D4dDmQjpui7b29t+eJWm+abc01PS6TS7u7vSt+OTAw7Y3NyUGRyiYjs6OqJcLvPWW2/xzjvvTN7fzgd6+ZZlUa/XSaVSBINBCTcsFosS2ikSOgU5uNFo8PDhQ4bDIYlEgng8zvT0NOPxmMNJ62s4HHK8f8LZs2cJBoOcnJxw7949stksnU6HpaUl6TcZjUb0+30ajQa1Wk3O7wRIU4gqEtGYDK4Ss1JVVVEndIvhcIjjuXINEVWLoAELckE66bcu6/W671wHGs0m4WjEr250TdIGBExW+K0ymYyMpRZoevArTdu2GU+Mk8Ig7XjvkboFdNWyLKwJ2mZ/f5/Tek3CVv3n/RdZ//5mrg8zU/nHnuft/nv+7cF/+Kf0V7+qpydy0JVKpaSCojydR1HHjMdd/h/23ixIsvM803vOnufkvlZWVmUtvVdv6A0rQUKgCJGUQiPdOMI3UngmfOewr+076ta+cXgZRzhkR1gzlLVRI41EkRJFBgYkATQAEV3ovbv2vSor9/Xsvjh5fgDSODwjj0YMxJyIDkRVo7pyOfn///d97/u8YTBBkVyk0EFRAqTApVDIEYQexWKedrvJ3t5ehMce9TESCkghiiqhayph4KAoEj4RiyteAPEjFzwwNTXGpXRI4NvkC1kaR4csLS0wW5shk0mRtBLMzlZZXl6kUMyyf7BLs9UQeJBkMoltTxiNBui6imHoXLt+FUUJsZI6fuCJoenJSYPRaCRaHIVCgc2NbY4PGqw/20BBoVgooKkqMiG/8s1f5tWXXiCTztHvDRn2+lTLJZJJE0KXvZ1Njg+2cewRrj2k3+3Q63VEhK1tu+zuHQgn+oWL5yiVCwyHA1rtU/FYYrqzpmki9jWuDOLyPy7745+J5ybx0DuOWwU+154AxAc5ZiLFQ8tyuSxyRmLz39HREeVymUolyoiJF/VUKoVpmpimKYyLcSzv1tZWFP2qadTrdWZmZjg5OeG1115jd3dXUBKSmQwnJycMBgOSySSAaDXFM4SYXLyzs8Pu7i7FYlHknHyWJhtnoMcLYfR6R6KFzc1Nbt68ieM4rKysMDcXyX7juNylpSWq1Sqbm1HWx87OjpgvLS0tiRlPsVikXq+LdmKn06FWq01bmSZ7e0ecHEfS6SAIyGQygpwcHw7m5+dZXFwkCAIKhQIP7j/iYP8IVdEj1lwgUSpWSCUzBD6ipRgLHg4ODqhWqxDAcDiMlF6laONeWlriyZMnPH36DNM0uXT+AssLi6StJIHrcXJ4hBSEaLKCHEaHDE3VSaejhNZ4HprJRPyxVCpFLpcTmSTxvRMLGuINM/4TxxEAdNttNF3BSiaELHlsTxjYY3QrSTBVkcUZP7H5dDDoCYFBPBeKJcPx5zamJI9GI3w+pW8kEgmUKX9MSxhiUB/GFUsigWbotFpNQYT4ebu+EOj7Bw8eiJNudxB5CFRdQ9dCqtUc6aSKZ3eRJBs5HJNQJSTPQZYDtrb2MAydfD7Pn/7pv2JvfwtNk0mZGr7T462vvcGrr91GkgOSKR3T0pFkH5kAKQgJQo/A9wlCH4KAXDZDMV/gpRdfoD5XYaaSR5FDUpYGocfNG9d5+OAe1dkCZ88tYFoKt+9c591332NndwPD0KdATIUQDyOhMZ70qddnee31F+kPTkmlLLq9jsCSd9q96cklejx3br6GgsGTR8+ZnZnD0hLcufEC9nDAL7z+JWozC2StDL/01V/k+ZMnqAo4kz6DXpPxsEEwbqIFAwppg2RCQiJKvHM8l8PjJnMLy7hewJlzZ2k0GkiSj27I5AspsdCbpinAiiKjW9dZXl4W2evxIhznb8dVX4yFj+Wj8dAyHqLH7mhA/D7DMFheXhb+kOPjYwzDoNlsipnK3t6e6MXHm9D8/Lz4sP/lX/6lwI2fPXuWM2fOMDc3x/e//306nQ6XL1/m3r17XL16lUqlIuCjd+/eFT6VX/7lX+bixYtCUhwvOPl8ngsXLnDx4kWhHNvY2MB1XS5fvsyrr77KG2+8wenpKZPJRHgs0uk0N27c4Etf+hKj0Uig9j3P46tf/Sq2bYsNYnV1VbyWd+7cwfd9vvSlL2HbNj/9yXucP3+eXC7HwsIS6VSWb3zjG3huQC6Xo9vts7q6yuWVS/z6r/86YQjdbpe93YPPIXLm5+cpFAo8e/YMTdO4evUqW1tbvPXWWxQKBVF1LS0tceHCBV5++WXu3LkjDnwHBwdcvHiRP/iDP+DcxSgW+sGDB9y4cUNs5svLy7z++pfEghoLCxzHEYia+fl5SqUSmXQ2qkJtj/r8PLVaDdOI0Dej0RBVlkloOr1ONCPTNA1JUegPBiCiLxSB7w/DUEQGbG9ucLC7hyzLzNfrJDNpDptNfFlmp3GEpCgEoYTn+xhWRMVOJk3mZ2uY04C4GFaqaZpQ+nU6HaEmHIxH0bDfc6MsH3siKq/BYEAoR4cp07IwU0lRhceH5g22SwAAIABJREFUq/8YoVv/vtcXYlOJ6a6nrUgVZLuOOAnjR3RiVVVQJZBRUGUNKZSYm59leblGKpViPB7TbDX45JNVxpMhuiFTr88zGHYIPY9MJgVSgK6rSEpsuPRF+0GTozc5+tojkVBJmBp721vk8ikcd8Ko38PQ1KhdpMh0u2329nZYXq5TrmSFX+LSpcu8cOPqtGyPFGGptMXKynne+IUvoaoysvzpaT2OUI0WYId33vkJkqTge5HuPmUlmZ2pMlOp4DoT7PGYUqGEPRqjaRqN40MUySeTNjFNg4Qho6khEj6yIqHKEjEpWVIUPvnkE373d3+P73znO7iBNx2KBgz7PTFwjNsUcRrhZ8t5z/PodDoiC0OdgvPiDSNuL8bCiNhpHP98fKqLFTHxCRGiU3Gs749zXOJI4c9uTvl8XjzOuOpcnKZnyrLM06dPWV9fp91uC+zPaDTiwoULol0UB3otLCxgGIYwxu3v74vFP2ZhZbNZgSf5+OOPRfRrzPqS5UjSG1dBcTUXz0qCIGBnZ0dk2USU3MgkmkgkWF1dxTAMDg8Pxeteq9Wi5M5ej5WVFXZ399C0aKONXkuXer3O1tYOjUZEOn78+AmNRgPDMOh2onjkXLFAp99ja3eH/mjIJw8fUJqpUKyUeb6xztLSEuvr6/R6PdLptCApOI4jzIij0UgEbN27d49z584JooFt22KTTqfTlMtlTk9PSaVSbG9vC1VY3CYaj8fs7u5GKZcnTQgk8dqOpyrNwHfJZlKCtRe/73HWSEwej9/7+HMce6E0TWM8GpCyTDKZjPAcAegJg9F4Mq1SkmhadLhrd5rT+zTE9zxR3fX7fXHoiOXenudhWBG9OK7ifd8X2T7DKToqJhDHkvdWtyPev/6gi5HQ/5FW3f/36wuxqbieR284IJVKAdOQG1VFkhNMnIDxyIkWWRc0xWLS91BJsr29QToT7f7lcplrV1/gxz/+Md/+9u/g22NK+SSGIjEe9bh04SyqKhME0c0CAbIkEXgeCiG2PSaha0hSSNKySCd1fvqTtxmPeqQtC0vTaTWbVEpFDEVhd3ePpeUF0hkLz7e5c+cmu3tbZLNpVlc/5vz5s1y4cE6cQm17BJLP8pkaB4e76LqKbqhUylURM+p6Nq43IZVJM56a7gzDoNNqYhoa9dkqvm3zG7/xG7zxxhsAqDI0W8dYSQPXG7G8NEc2o+J7A2RpDMEIPxgiKx4Te4CkKTxZe06jc8rB8SHHx4dIMmQzKSQ5FI7wg4MDsdnFjvjPzkZi4m4ul+Pk5ES0HOJefSaTEYFWcdvr9PRUhGfFm1fcWoglyrIsUyqVqFYjkUAqlRJthXK5zM7ODgDPnj0Tcta43dTtdkWm+cWLFwWW/rXXXsPzPDY2NpidneXw8JAzZ87Q7/d57bXXGA6HTCYTYbw8ODigVCpRLBbZ3NykXq/jui69Xo/RaMTrr7+OrutcvHhRBFidnp7S6XS4fv26cHHHKrbRaMTm5iavvvoqqqry8OFDbt26xTvvvMOlS5eYnZ0V7ZFisUg2m+Xp06ckEglRnUmSIjLtt7Z26HR6Uw9RBK28cuUa6+ub6LpGMpki8BF+n+PjY+H3iCur2B9TLpfZ2NgUpsbZ2RrV6iy9Xh9ZVjg4OBTJgwsLC+i6zrlzUTT14eEhpVKJV155hcPDQwaDAZPJhFarRa/XY3V1lbnZGuViCRmJYr6A73ocHx6RNC1euHadfL5ILlfAmbg4Y4dms4EqR/O9XC5Dr9OlOjMjAtOCIODeJ6vYrkMAQk0Vby6FQkH4lo7297GSJgQBo+kGnzAsVFXHMExCScNKJVGNCKT68OHDSESi60yGUTs0NmLGr108L4zjAbrdLo7nMhgNsVJJkuk07nTj0RMGhpmIgKuaSm7Klcvkc5iWIULGft6uL8SmErtOQ1liPJkwnmrHfS9AUaOy07WdiPLrBciSjmVGWROFQoHhcISiaAJAeHh4yOnJEacnJ0jTTJbRaCSiSlOpFIQRWRgQ6BbbtnEdh3Q6GbVLVi6Sz2V58c6taGMYjVlbW5v2/mdIp6JF9+7du6x+8jG/9mu/Kk5g+/u7wmzn+/502BoQhD6GoXGwt0u73abVajEYjKYnsmhwt7C8gJHQCKUARZE5OD4SGRrPnz+PXpvAI5ky6fQ7U5Obi6rJOJ6NlU5gWBqGpTHxxqiaQrGUo1IpYJgJSpVyJO8djSI0ybQqiIfV/hQwmU6nxYI9GAyET8U0TYrFoqAap1IpwXKKN4J4zhGfMmNibyxdHY/Hou0VIzxiWXg8Xzo8PKRQKFAul4XvKBY5QERiPn/+PIqiUK/XRVyxrutiiD8YDDg4OGBvb49UKsXOzg5LS0uigjk6OhKJj8PhkGw2Qp/ELLBKpYKqqsJQmUwmabfbqKrK1taWwAMFQSD8UDEePZOJWGovvfQS+XyenZ0dkYrYaDSo1+vk83kODg4iM+lUrjwajbh27RrNZpOzZ8+ys7PDo0ePMM0kV65cEcDOnZ09Dg4OWF29T7vdplqtcu3adTqdDtlslsXFRbLZPAEhleoMv/DVN1F1jcXlJfwwYGxPCCVYXFwUs6G4EogTPmM45dWrV/nxj39MvV7n4OCACxcucP36dfGY4znXrVu3SKfT1Go15ubmME1zSoVOiKrjhRdeIJVK0e/3aTdb2OMomXVubg5DiygEYRjSPGngO1FbSZ0eTiA60LiBj+O5f4cEvrW1xezsrIgTV2Vl2m6SUGQZ3/MgiFJbNV3Hdn08LyCZTLOyskKn20KSPu1ipFIpTk5ORIs1rraHw2EkjTej5xVXYnHF4ngR6idG+sSHrrhtGxk+7f/U/vqHuiqzVbr93uegbpZlYeXTzC/Pc/HqReYWaygJmYAAFJl2p0McYvXg/hMcO2RtbZPDwyNef/3LBL5L4/gYFYnQ9xkMhvh+yMnJKc12V7RjZAL8wEWWJHRNod1u02w2OT054ub1F8hnspiGhZWwePONX8Cf+Ny8dou7733C//Df/0+cHDdRFIUvf/lL3H+wSmWmhKYp3L37YWS0TOawJxEcDylAknz+6//mv+KXf/WbLC0tiTlDzARSFIlcJUWgewycLqEacOelm+wd7jGeTLh16xY/fv/HfO8H38WXAl57/VVy5QKNdotev4+ia+SrBc5dOcvZlWUuX7tAIqXQ6R7zws1LHDZ20Qxo9pqousKTZ0+j9lQgkcuWxGIcq4riD2sciZpOp4VaK4IV7nwustn3fU5PT2k0GqJ1Fm8SsiwL42PsR4hPmrZts7+/L1ppc3NzLC0t8eDBA1ZXV8lmsyIe98qVK1SrVbFpGIbB2tqaWKzG4zH3799nbW2NVColoJjD4ZBSqcT+/j6bm5uCIXXt2jVGoxH9fp9Go8Hh4SG9Xk/MVrrdLp7nsb+/z+PHjzk4OBDBUbECq9mMSAq7u7vouo5t2ywsLPDee+/x9OlTgbTf3d0V/+bq6iqSFGXYxMqozyoUx+MxzWaTfD7PxYsrpFIp1tc2cZ1I2RVly1icOXOGxcVFKuUZNjc3qVSqfOc736FUqgje1MWLF/mjP/ojfN/nj//4j0kkEmxtbTGZTKab0xHtdpeNjS0URSNKOQ2Yn1/gwYMHPHv2jGQyyepqlDFy5swZ7t69yw9+8AP+l//xf2NpaYnDw0Nc12UwGHB6esru7i6B56EpCt12G89xqFYqPHn0iH63y+H+PsVimUwmhztxhTLtzNICuiqTL2Qp5PIcHRyKRVlLGPQGfZAl3ODT9nX8p1arAdGsbmKPyOUyOJMRg24PSzMoZnLkDAsjUFjb3OLo6IRev0+v1xOVbMpKcOXyJUFVjoQ3tnDLx4eniROJOEIpcvF3pzEBkhIZHEMpIm33h4No0/Y9VE1jPJlgmsaU5B0wV/3/RdH6D359ITaVeDGKCZ+6riNrKl44QdZCZC2gOJMllTLxAxtVBVVXplLMbUBmbW2D6kyN2uw8nU6H0WDIaDAUQ2d7POFg/4ijo5OI40QEkgNQJJnt7c1ppkRAyrQYDYYM+wMymQzdbpfa7CzD4ZhXXnmF3Z0dNNViMo4UN57nIStwenqKLMPrX36Nr3zlK3z88T1OT1tkMpkomGd6arftMV/72i9y+/ZtLl++TCaTm1YEPkHoYbtj5hdnKZTzTNyI+loul9ne3kZPGNj2kHK1jJkySaYjCaikyExcD01PEKoysqFN8xmgVMmTTBnksha9ThfdNNA0hVQqTizU8f0Qe2QLTEk4TauL21TJZFIMwR3HEXLiVCr1ObVYPKSMVTWSJAnVy2cjCGL/SwyIjE1lcVZ6v9/n9PSUc+fOiYH9ysqKqFjin93b26NSqQg6cPyBj82G8VwkkUhQLBYZjUZi+B5DHdfX14Whs9/vU61GZIGoCh4KZVE4NcQtLCyI+Vkss44fTxyuFQdPnTlzhqWlJSzLolar0ev1hFO8VCqJ1yyVSgnCQJyjPhwOMU2TmZkZFhYW6Pf7YuYUb2Zx5omuRQex5kmL4+NjZmfnhBQ7No5Wq1UymQxvvfUWly5dolqtYtu22IhnZ2dF3kvcknv8+HGU1TM/Lxz+MS0hNh7feukFFhYWAMQwe3t7W2z8R0dHIqV1PB6L+UStVmMysT8FbzquUGH9yq/8CsViQSjXPouVjyvfz6JZ4iv+nizLeMGnnYhcNku5VCKhavRaPZQgWjoVVUWSZKQp983Q9Egir0SDdm86W4kNmfG98NnER0mSCECk0MZtMsMwMJMRT2x9c0M8T9d16ff7AFOVZOofZF39+15fiE1FJCMqMoaZEB/eQHLwpQk+NrliiqVzNbSEhONPkOUA3w/wPB/fD1AVnaOjE6rVKmEoCVR7GEahVel0OgpYstLo2jSOdKoRVxSFSqUStWWmG1FcQi8uLjIZjtjc2MY0LObm6mxv7WKZGcrlGRqNCKAYtbjSomSenZ2duv+f4DieaLFFC1qkzPne977L1taWoOnGN6ikBJw5t8TSmUVSqST5Yo7NrS2OTxtIyFy5foXZ2Sqj8ZDTdov+dPFRNY1Qlpj4Nq7v4IUeZjJBNpdmbm6WMPRRzQjfn8mmcAP/M4tltECcnp6KVkiU7hdtBrE3JBZQfNb3EW8IsUw3hlLGfxfPTBRFETOVeKgfy5HjllocvhVLNoMgEMozVVVpNBqcnJxgGMYUXXJWINFjiWa322V2dpZKpUKjEUm2j46ORGvHMAwxaI7JspEzfSIUUfFw17ZtLMtibW1NnNA/K4GOFU5RqykrpK/Pnz8nkUiwuLhIq9WiXq/T7/fF8NowDO7cuSOyZFqtFvv7+wyHQxzH4ezZs8zNzYk25d27dwl8hKte0zQ67V60eOmRYiyRSDC/WBd4nWhOk6DRanLUOCFfKnLSPGVrd4f7jx5iey67B/vCq6LruvAmxYyy+fl5rl27RjabjdI6pzLteGj/9a9/nUuXLrG2tibwOOl0WuSiHB8fI0nSNMk0EymhTJN6vU6j0YgW4LEt7p1Yln7jxgtcPH+BpcVFgfn5VMziic82fN5RH1e5ruuSyaZQtahtlkmmcCc2pmaSSpi44wlJKyXed8MwmJubYzAYCKl2p9MRLd+47Rrfq/FzG03G4j6IK+7489Lr9UTkdKFQEBvhp7kqrjiE/TxdX4hNpdvtok8rlGQySTAtJ0PZxg2GoE6QNYds0eLsxQVCJoSyzVe+8hWKhTIXL6zQaLSYTBzu33/I6uoqR/sR2VVTdDwv4PHjp4zHNqqqAZJYTAUFF0mUtkvLCxSyOTY2Njg+PCaVSlMqFFhaWiLwQr761a/huRJztSVkSefw8IhSqcT9+/dZWKgDIb3egKtXr3PjhVscHByyuvoJnU6H58+f89u//dv8xV/8xVRZ0xBJlY7jcPfue3zvh9/lX3/3T9ja3eDajWscHEezosuXL/M///P/lcF4wO//4e/xo7d/SDqbYma2wth20RImrh+gWgn64xGZXBpJgWwhRzpj4bhjfvOf/ianrWOa7VOCwGN5eVn0ghVZF5yr2Aewvb0tWhqmaYo+e5w7Ei+UsfLGtm3x/RitYVkWgFgMms1mJBuf4szjdlq8kcRel3hAL8sya2trPHr0SAz5Y3/GeIriiPH37XZbSIV3dnZYXFwUOSYxpHF9fZ3Dw0PR74/DpzY2Nrhz5w6PHkXIlXa7Lci66XSaSqWCZVk8e/aMyWTCtWvXRHvPtm1WV1fpdrtsbW0JxP57770nZkVxhIAkSSwtLQkhQ4w1iasdRVG4dOkSW1tbOI7D8fHxtKLN8O677/H48WNx4m82m2J4nEwmqdfr6LrO6uoqppmcVi2z1Ot1Njc3sSxLqJnS6bSQcVerVZ4/f8729jaDwSCaR0wzXp4+fcrz588pFAqi/RnPPVqtFu+88w6np6fU63XS6TSTyYTZ2VmhYotna5/15QjpdaEoMDHZbJZRP9rgT46OqVarVCoVsqm0mMPFbDDX99EM/XMeFVmWKRQKHB4eCiPt2J6gyFEVkU6m8GyHfCpDKZOLYiBCif5wIGIystkMjx8+oj+IeGRxJRof/iBCyZycnBBKiOiDIAjo9qNDSC6XY+lsJBZot9vYriPmgIH0qWfF930kOfwcpPTn4fpCbCqTYIRiKbi6xEjymeAzDj0Mr4DsF3HCAhMtS9vxKM+XmatnyGd8+o0tFmpF9vf2WNveYxiE9Pwx7bBHe3TK7uEBVrpAMpUlX7Cwkg5B0EHyXXxJxUdBUjQmnk8gqaiagZXJ0xvaHBx3UNUMm1uHrD3f4eqV64wGHdIpuHypxmTSQZL7XLmyiOs6JFMVQslgEowZeg102SOdDPHdLgtzJW5cucrHd+/xs/c/wcbik0c7OE6KXltFdSt4gywf/nidQSNBQb1G0C/TPPLojyYYeZmx3iBZc7HNA97d+BkXXrnKXmMX3x7CZITqjgmHPXTPxet1MKWAdELH1FUk3yNlJfFdj0H/iAtn56nk0+gEvHTjOsV0EnfSJZ2RyBoZjFAnl8zjDG3mZ2ukTIsg8Eink8gJFdXUsAOHREKnNlNh3O9hKgpaGGKoGlbCJGVawt3cm849NEPHDXzS+SQJU0ZSHCaTDuN+B11WSCcrFPNzJBIWiYSBogaEOEI5d2XlMpPRGM9x8VybuVqF46M9hoMWM5Ucge1RLZXJppIMel1UVWbiDrl+4ypHjX0KZoqUEfXHj5rHzM5XWD63SMKQmKuVyOZybG1vc3R8jB8EzNZq5PJ5HNdlfX2dp0+fMh6PuXnzphBhxC2Q4/0DLp07TyaZwtQjb082n6O+uMDJaYN2q0+/P+TcuQtRW8Q0+dnPPuLDjz5gaWmBXLFAda7K8WkDWVNQdZ0r168wcR0CCTrdExQdWqM+vqagWgmKlRxLyzUs08SYznG2N9bRNIXqbAkkh1s3LiM5LsHIpnvcIRiGXDt3HcWVUb0QA4mUYfLs2TNcz+MrX32TbLFAMpXCMhLsrG8yW1/goHGMnjTZPtjl+dY6tcUa+3t7ZIoZMrkCV6/fIGFYdDt9nj9Z48HqI7JWBlnXKc5UKFYLDOwuI6/HafeYkTtmMBkz6A2xx1GOT2/QZTDs0u+0yCUTJEKXWVJkQoNKtoRmmFjpDLKkojgh6tiHIJqZ+q6NHAYEto0a+DAZYaSyJFJpNENFUVzK5STjSQNJdXGkCUnPhmEXPfSwJyNOWx2a3T61+lky2SqNyQg1k0ZPpVg6dx7PC/DdgMD2kT2YyecYtjtoIZgoKBOPWrZMSjLo7Bxj5jJcunqFg6MjHM9FM3T29vYiq4FmYIeQLxRIp6x/7CX4c5fyrW996x/7Mfy9r9/6rd/6FkB9aR7Xi06pYRCgyBK6ppEyTDRdwfFs7MkI/IBMwmSuMsvi/Dy6pvM3P7tHt9vDNJOUSlkIHGozZSxNp1CYoT/w+NGP3qE/7JFIGBiqCYFCIKlIEoSBDwS4jo2myZw2G7iuw8LiAq7v4XouB0eHtDotWu0WxycN/o//83dwbAnP9XjzzV9gMOyRTJsgBczWKszP13Btl6SVJJEw8X3IZopMJh77eyc0T/sUSwVUWeFgb5v9wz00VaHb7zIcDLh6/Rb5YpZm64jtnQ1MS8VMGOiGjqJoOB4Mej18x6Vanony0hMGtuNgJAw0Q0PXNBKGQRgEDPsD/OnAVjctxpMJlmEhBTA7U8NMJDCtFL1uF1WVkAiZqZSplEqEgU8uk6HbaZPNpHE8m8Dz0BUFTZHRVGWaHOlRLhUxtAQhkLQsrITJaDAkO1VNpZNJDEVHkSTSqRTDwQBCKJQqhEiMRx5GwmBzZx1ZkSjPlAiDgF6nx5XLl1HlSHFVKBQ4e/YMvh+1Q+7cuR2psbb3qM3NkkpZtNstrl+7jiTJ7O0eUKvNsbG5ThjC5cuX6Q8G3H7pRd5//26UeZJKcm75jMCF3Lp1i3fffZdOp8PVq1cpFAqUSiWSySSFQoHJZML29rZIMTyZcrtigcP58+fJZrPk83mGwyHnz5/hww8/QlU0BoMhi4uLjEYDrl+/hu97lCuRjPfll1/BNBPTCIAR1eosjcYJg8GIlZUVfN8XSrdUKhXN8UJIZzLs7+8TSFHOSkiEgsnlcri2zfHxCTdu3EJTdZ49e4aR0KlWK1iWyaOHj7nz0ovcvnOHf/m73+b27dsoksyDT+5z9cpVTtoNbt26xccff8zMzAw3b96cJj0uilP85uYmL738Mp7rMh6NOXNmGWOKzf/ggw+4ceM6tj3BSBi4jsv58xc5OjxGIprDlCtl9vd3uXrtCslEgmw6jWHoOAOX0WSEi4+VTaMoKutrGzROmgR+gBdE96skychS1Jp66+vfwA9CHj++TzaXIZNOEoY+k/EYXTMwTQvP9Uhnoxbh+fNnse1oTtTtdiPFXBBy1GxEApVeHzORwHddPNcjoUfeK0VX8f1gKkSJ5o3WNMO+2WzihlFl3u/1IoO172OZJoHvo+pTBuFwBJLCk2db/77L5+G3vvWt//0/6II8vb4QlYosy3hegOe4BI6LqerkEklUBSR8pMAn9D2sRDREC/0Ax/EwLIOrV69w6dIFVCWk124RuC74Hq1Wm263z5Mnz6Yacx974uJOJYR/+4od3nHQ1OPHjzlz5oxoB6TTWT766Gf80i/9EqVSHstK0Wy2+bM/+zPq9TqO4wjkebcbqcuik2xA4EsMBzbvvfsh7VYPK2HgTmx8x0FRVWQkHj9+HC0AgUexlGF5eYHheCCUV5KiRJJqPxT9Y2QFFBlF14QJMfr/tSjIKZQJApBQ8NwA3w/FrGMwGIgFaDgccuHcGRbrCxiaQjppUikVOLO0wOxMmVIhR7VSQldlAs+nUiiycvEiUgi16izztSgULaEbLMzXObu0TKFQIJNOkzQtpCDEVHUW5usszNXJZ/IUc3kKuRymmWSuVqdSmRGzkWQyGeXDTGc8sdx3a2vrc73zeN5xfHwsWFgxRub8+fMi7fHk5ERIpj3Po9lukUwmOTw8jOi4siQk5U+ePAEQ4VGFQkH4I05OTgBYX18Xr6OiKOzv71OtVoWCLPY0xAytOEUzNsPFsyhN02i1WtRqNR49fEK5NMPTp085OTml3W5jmpGQonHSBKDVarG3t4eiKCL22fd99qeZN/1+X8ykNjc3I87ZaURhXlpa4t69n7G+vj6V/zpA5POIUzLjNtxwOOT09FTMGGq1GhsbGwyHQyE33t7e5sMPP+TZs2coWoRGOT4+jrhlzVMx4H/y5AmqGhmGXdcVbvq4Xer7PrKqCDFHzJaLkhf1aPYwnZ3oiipa1rG8XJ2ugJGM10c3LdKZHLYXfo7oEN0zvmiNyrKMrusi7C1W4ZVKJTF3i9EuMXssFq0EQcBo2oqL25W+74uZaDzv8TyPyWgsSNexUk03E0KgMRqNBJH55+X6QmwqSdNCV1Rm8iUKZoa0nCCnJcmmNHCHhPYQHdABOQhRJAlDNQhViWQmwcqlc3z1tZep5XOcqVVhbLNQX4paDr0B7XYfM5HCtn0G/TGe+3dVI3F//8UXX2Rubo56vS4+YI4dtTn+2T/7L/nJT97lwoVLzNXqOI7HcDji3Z++L4B8QRAwHE0BjGMPWdJIGBmePN7k+LCHLJnYwyGy57M0VyOlaQSOTad9Sn/Y52vf+Bojp8XXf+UNPH9IKmmQ0E1UxcL3NcBCChUMIxIbDMcj0tmMkPsqkowUhMhIuI5D4HqR+WpqKLWnN7zrR4vdYNgnm0nhjEZcOX+el27d4NrKRSxdjQykuQy5lMXLt29y+cI5bl+5zGyxQCmT5s3XX2NhrsrFs8u8cGWFSimPKsvUKjPUK1WqxTKv3XmJF1auMFssY0kq1VyZueIMs8UZrl6+xs3rN5FVlW4vkqE+f/5cOO7jAefW1hbJZJKr168hqwrP19cwkxYBIT+79zHtbodcIc+VK1colUo0Gg12dnb43ve+R6FQ4M033+TZs2e89NJLOJ7Le++9hxtEAEhVj9hgsXvaNE2SySSWZXHjxg3y+Tz7+/tiJjE/P0+lUuHhw4dC/JFKpfj444/J5/Ok02kxg7pw4QL3798XXpalpSUhcIjjrUejEY1Gg3a7G0UCp3MkrTSDwYiDgyOGwxGXL19hZWWFWq3GW2+9JeTQ5XIZwzCoVCpIkkSuGA2Dx/YkeuylIktLS3Q6LfzAY25ujnQmyfXr16OTtirj+y4HBwcsLy+ztrYmNpCVlRVyuRwPHz5kbW2Nq1evMjs7S6FQENy12HMzOztDMm2xubnO5s4mtjMmW8hQLOVZWVnhypUrYm6yvr7ORx99RKlUQlEUZmZnmJmp4OPT7LQ5PjoBSUFWNCYTh4nrRCwtWZqalhED74BwSqeYBmVNHMYO/Ml3/wo1lWds26iagRdAOpMTHDRFUUjnIhFCbHYFmJubo9VqMT8/z2g0Ip/LRRXKdMZnWCaKpiKpCuHy7pW2AAAgAElEQVQUERMLG2Ljdpwdk8lkqBSKqLLMaDAgl8miaRqlUklsUo7jCALFz9P1hdhUNNXAUDU0WUENJfyxTeB6EPqoMhi6StIw0BQVXVFxHR838Bnbo0iOF/ikUxaXzp1jaW6Ocj5HEMDu7m4U4BNGN8BnTVJ/+4pVPHGQzoNHDxlNxpy7cJ6z589hWkl29/bQ9ATvvneXnZ1dUqmUOFk5jiMChBKGiaJE1OMwUJiMXQ4PIinzaOigyDKGrpLQDXKZLMVcFlywUiaO59FoHXFv9UOKhRzVmTKaokEAvgd+GKlZfC8kQELRDDG8lIkc7VII0vT5SpIkxAiaqmJ+Jj0vCENUPRrSqzL4ro1EgGOPkQhQZHCdCa4zIfBdCH0K+TxKCIHj4jsuzniCPZ4Q+gFSCDISvuvhOS6ubTMaDHDHE3zbYdgfEDgu+AFSKCMThSpJIUKKGZ8qHccRmRmxdDke4sdmyzAMqdfrItArHsBrmiYMeMVikZ2dHYbDIYNRZG4slUrMzc0Jb4xt24ztyOz37NkzLl26JNAw8RD15OSIen0OCGi3m1QqJSwrgW2PkWW4du2aQKfHgV9xsNSNGzeoztV4/PRpxIJSFLwgYOzYVGs1zl28gG3bU49Pa/peRWqkubk6h4eHOI4jhB7Xr1+fpnBGsM1er0dltkoqlRKu98pslY2NDZrNJulclnQ2SyJp0e33UY1oYRxNJoSyxGxtBtsek0pbtNqnaLrC+sZzFEVCVuD111//XGXluq5Qu/m+T7FYFEP52dlZMczv9ns0Gg329vbEfRj7jOKB9uHhIf1BV0i/i+WSqAYUXWPiu1E1HpOEP2OCBMS9IykKiqZiex4HjRN+7/f/UDymWASCLOH4AUgyqqILE2Oc4xRvDFtbW0IEoSAhhdHm4ThRdRcbIeN7EBAbHiDUXKPRiFwmi6FNjY+SLBSKcWcklr//PF1fiE0lkphquLYTLUi2R+h6eM4EmRDT0Eklk6hTB3asCkpYJl4Y0O93ccdjZiolSsUi5WJJKHa63e7UABeKNzL4u92v6fcD2u02g8GA4+NDHjz4RPTPI8aRw87OLqNRQBBEeOxkMkmz2WRp8Qy5bIFEwkKSlKkzPcDzAhqNNqqqk07lGAyGGKqCZzsMeh3SKQtd01AMOWrreTayEvD++z9heanOtSuXSVtJTMNCVRMosoEuaQReVI2YpikiYEM/wNR0lFBCDiVkHxRJIfQCVFlFkVVc2yFlpqjVapFrudlAn/Z3FQkIfJzJGCkMUCRIJy1SlokigUyIOx4hEZDPZXCdCYauoqgSqiZjJRNi8VAUBUPTyaYzaIqKoekkjQQJ3URXNXRFRQ4jOXkymSSXKwj1X4yFiREvlUrlc8bAOGZX0zTm5uZEeynODM/lcoLq2263ef78OS+//DKHh4dkMhkMK5KE7h8cRIuloVOr1chkMtRqNfb39xmPx6KddPbsWY6PjymVSrRaLUajkch0iV3oly5dEotqjEJ59913yefzhGHIX//1X5PP58XmGCdOZjIZ1tbWSCYjym+Me/+sdys2TGazWV599dXPtWFSqUgavrm5yczMDLX5OcHaWlhYICQiDwB0Oi0uXLhAs9nE910R1xzDDweDAaVSiaWlJQCOjo5Ip9Ocnp6yubkZLZK5nPgZXddZWFig1YkOU7NzNRYXF7l0+fJ07hXRAFqtFoZhCAJGDCg9PDzEdsa4/qfu+JjQkEplosOj7yPJn24qn0X5M91cIp+ULjaKzY1tVu8/QFKihT4iWVsosvY5isPBwQHFYpFyucx4PKbRaLCwsMDBwUHETmu1p3MSS0jpdV3H9T0M89NWXWzMjNeJmK4wGkTxwtlsllwuJ1psiURCeFYMw/hPlco/xHV6esr5s+fwHZ+UlcLQdFQpqkgSCYuMlcafOCT0KUqFgN5oCHK0sGTSSZKmRug6DHt9bDvK95ifnxc3cIxdiE4bnwfRxaDC2IR3/vx5lpaWaDQayLLM5ctXURSN3d19Njd2+af/xW+ytDxPOm2Sz+dRVZU//dM/IwxlarOLlIo1JElhMBjxL//F/83vfvv3eXD/yRT7UcbxHUbjAdl0iplcjrmZGfJpCzOhks2kOLM0x2K9ihJ6uMM+jf1DPnz3A5RQoX3aQQ81yvkSmWQOUzfptLrIfki/3aZ1dEw4cfEGY/yxjewFyGHUNgwcF9mFVMLCNCL/SqvbodNr43oTxpMBg24kABj1B/Q7XUb96Hue7RB6PuPeCG/s0mt2GQ8mTIY2oQej4YTJODJOapqGoenoqsZ7P32Xh/c+odNo0jw6wRkNwfOYDAfYwwGjXpejvT3s6QIe58oMBoPIdzE/z/b2dsQNK+TJ5HNMXIeZ2VkOjo9456c/YWd/D1mL+GnJZJKNjQ3u3r1LqRQl88WVh6qqhHI0v7KSUQzyxIlO4L2pr2lhYYGHDx9Sr9cpFovcv38f27Y5c2aZ58+fMR6PgJBWq0mtNsvh4QHXr1/j7bff5uTkhM3NTebm5uj3+5w/f57NzU0ePHjAuQvnefHll2i2WiTTKRzP5enzZ9x/+CA6QTtR5k4mk0JWYGt7g0bjmGazwRtvfIVnz57hOA7vv/8+3/3ud9ne3sb3farVqnCRd/s9vv/977P64D6j8RhjunAOxwN6wy7rmxv84Id/RTJtUanOUKwUUHWFpaVFut0OFy9ewPNcNE1F1zUWlxbo9bocHBxQLpeF18g0TTF/ev/993n+/CnLZ5col4t0+x0kOeTe/Xt88MH7VKtVSqUSBwcHaJrGyckJq6urgg+XyWcIQg9dV9k72KU3HHB4fIztesiygmIZ+DLoZoIwCBj1I+m0rCoMpx6R6CDjT/1Yc8zNz5I0I9n7ceOUnd19+sMhtutAKBHKCp1eX7Ds4g26UChgGAZnzpyh0+mQSaVpHEfxC+E0IyWQwLBMnm+sAwifSYw8AsR8ZaZQwpBVRoOhCAX0Ah89Ean/4krn543/9fPlmvl7XmEISAq6mcD1PRRNJSDKng5DaTpk/nSQPh6PMXQTx3HB8almS/gjG88PmLgOkizj+w6l0gyFwgDHjwZzITKB9Klh7bNXKpViOGiRzlgsLy/jhTabm5skzCTZaaTq7t4BvV4P1/cYDHrkC1lWVi5hmDo/ff/HJK0sH314j0bjmBeuXiSbyVMqVeh2JjRP22SzORIJHdsOyOay5AtZ3MmEiT3i+pWrfPLsIYtnl1h7/pQLZ85y89o1nj18xjff+iUCSePlL38Fj5B/8/0/ww8DOv0uzsQml86QS6dIaBqWaU7nR7agBMceCICEphNIYLsOpmHg2jaOF5JQdTzXESFi8dA8zqyIy/zYAQ+gTPvCyBKqokZigWnbLyAUVGBVkiMT6WSC74YgByi6gus7JCyT42aHTCrD5s4xnV6H09NTBqMepZMCCpJYgOJFaXl5mUePHmFZlmBcxTOR2dlZtrbWePHFF2m3IjhmLpdjZ2eX6twMpVIJzYjYYMjRzKw/HIoWYa1WI5vNoqoqu7u7gl8VHYyjx/Liiy/yne98h2azSblcxnXdKTY9ST6fF9G6L7/8Mu12+3PZ5KNhO6Lznp4yMzNDEARUq1UKhRyt9im5fIbJZMSLL95mY2OdanWGzc2NKIdD0ygWi8zMzAhXd9zuS2XSSMMhZipSp1mWxfvvv8/y2TMkEgmePVujVptlob5Mr9dDkqDT6TA7O8Pc3Bw/vfs+L73yMgsLC8KnFDvZY9pA7Ly3LEv4YwqFAgN3EDHhVlYiMYTvUyqVKFdn0KTImBkP3+PnK0lSZGJNaqSnFWY+nxe+qSAIGAwGMDURlsp5YQwtFYpi7oYkIYUSmqKgygq5dJqbN29SzBd490db7O7ucvvmdZrNJrqqokgyhVzkjUlnMgyHA1RNxzA0QUYYDCKWoGEYwgRbKpVE2wsQ1VIcyhX7laK09qnwZ1qx26PRFBtjIymfb7MD/9b16B/z+kJsKulshodPHqNIUZZ3LpWk1euRyJox8xHDUHBdn0ACJ/BJmhqybHK0tY3uy1iSynA8RrMStIdDUpZOvpDm1379n/D2Oz+l2T2KlGRygCT/3f5Xv98nGbdF9veFGcp1Xb797W9TLJbpdCI0/IP7j3nr619hbW2NS5cuUK3NUq7O8Od//uf0Bn3S6TRba88YDjyGA4/x2EFVZUIcls/W2D1wObu4xNHRIWcW6hSkFK7s85/92q+jJnWuX67TabSR7IDX77zIZDjBkzw++dnPKM7MUC/Ncdpp0p40cUcO2WQaDQnVD7EkFdUL0dVodiL54AYemixHyqSEhZm06PWHWEmLvu/TG3Sx5SG6rFLIFQSqJcJ8qxiG+Sn625EIphh9RQMrmRHqHS8MUJUE0nSB9jwvIrzKytRcKSMboKgy/dEATVNIWwkGPQXPCwWUT01IlGeKXLx4kScPH3HmzBk2Nzc5Om2SsExKlTKtTpt6fQ5FVbn/8AErKysUi0Xu3bvHSy/d4nf+xf8FocSbb/4i/+qP/4zz5y/gui5PnjzhlVde4W8+/lnUSpq66k9PTymYkcPadV2Oj4+ZmZkRSq1nW+uCiPDBBx+wvb1NvV4nl8uJTS8e2N+4cYOFhQWePn0q5kPdbpfd3V00NVKyXbp0SXDums0mvX6LN7/6OqPRiEIxy1/+1SPm52usrT/htHlEfeHslOtVEUqkOATtypUrEYjSnkRBXEHAO++8w4svv0Sj0cBxJpw/f5btrV3yhSw//OEP+dLrr3D7zgv4vstPfvIT8uWSMDlms1mWFxZpt9uUy2UuX76M67ria9M0Abh9+/bU1HiCVC7Tap3S7bY5bTTI5TJ0Oi10OcnJyQmKGnLt2hXOnj3Lg/sPhfPeyhnMVMtICgRhyO7uPvlUhrfffodL5y8w8V2G/R5Ly3WkIMRLBNy+fZuna5tMHBd75AocvaZIXL64zO3rK7x44wr3P/o3FEt5fCT0hIkuSxRyeQIvZDgeUypmmUzGOM6YMPRptVpks1ksy2J9fZNLly+xvb1NMhnJhDVdZzKlTfhBlGNj2xGSJaYzxIIERVGwhwMMy4RpGJg78JEUWaSEep4ftcfylf+Yy+3/5/UPtsVJkpSQJOkDSZJWJUl6KEnSb02/X5Ak6QeSJD2f/jf/mZ/57yRJWpMk6akkSV//d/1dYRhOKwAfRVPxCGm0m/QHY5BUJEkh8CFExvE9AgkG9pB2u8vy8lk8L1I4IUt4IWh6gvE4gskdHx+KjIQI6PgpnfhvPV9c1yWbzU7lpRHC+/79+wwGI371V38VwzAoFcscHx9z//4qCwvzPHr8gI8//pjxeIymRhkWhwcn7O3t8+KLLwkXeSpt4XkO+XyaUqWMPEWW6KqGpiiYmsbW5jonR8f0uz3s8YRW4xR7NOb0+JiErvLgk/t4TjTwTqgG/W6X5aUlTMNAm6q+vMkYPB9NklEkGRkJyQumEmaX0A3wbYdgekNPJhP0hIaeSGCYCSRFI5QU/FDCC8D1Q7wAAmQCZPSEIfrIumFEG4ws4ROK9zKcIl2SySSKoojWk+O6qIaKltAj9ljaIqGrFDIZ1Gl6XkwxtiyLMAzFHGM8HgtXuaqqrKysiB53DKeMoZbtdpt6vY7v+1QqFeE0Hw6HzMxW2dra4uTkhFarJfhgMassjgmOYZWLi4u4rkttrsr6xnNa7VNmqmWyuTQLi/NIcoiqydy7d0+AJ6PT7kCQBp4/f06n18P2XLSEQbFSZmRPOGme4oUBjWaTQiGPaRk0Ww1arVMsK8F4PASCqSjAEu3ZdrtNo9EQDv348VqWxWg0YmNjg4WlRQaDQSRI8Fy6gz4nzVMG4xGz9VkSSQsvDJBUBVWVaXeapNIWi4t1hsM+sgK6rrKxscbu7i5HR0eCtu37PicnJ3zyySe0WhHbrlqtEgSBwL1sbm+JOOKYa2YYBnt7e2xsbAv5bTab/dyMKI5Tvv/wAT/60Y/45P59ms3mlOY9ACIZ/MWLF3F9D2T10xaY75EyE8hSyLD36Twk5sVNpoN2e+ICsqjm41lNXEnFVVUsEInlxXGmUBx5LaolPqUPx/9OKhUdUPCD6QbyKfcuVpXGvyOer/y8XP+QdZMNfDUMwxeAG8A3JEl6BfhvgR+GYXge+OH0ayRJugz858AV4BvAP5ckSfl3+UX7e4ck0ykCQja2t3i29pzt/T3ufvgxb7/9E+6tPqDRbNGf0kQ1U2M0iYxMo9GE8+cuMpo4WKlMNGcxTWq1KrY9wXVt9g92UVUZVZWjofK/hbUjbgLgo48+oj8a0up06A76zM7PkbBSjCY284sLFMoV6gs10ukUjcYx3/ve9/ijP/xj2u0OSSuDhCZaGzMzM9OWRZml5ToHh7s8fv6Mx8+e0Giecu/ePdbXn3N/9ROODw75mw8+5N0fv0uv1WbUHzDq9UmoGqHrU5+t0m23OT1sMBmNGQ3GaLJC6AdYCZOknsBzXHzbZdgfMBkM8SaRAitpJEgaCXRJwR27KEicHp+gmzqqodMb9FF1Fd8Pp34Wg0TCIgwlggAcx2M0muA4Ho7jMbZdHMfD98OIFm27ICmougayxHha6nuBT7aQF4wrL3BxnAnFUp56bRZNU5iplEgaukDp93o99vb2RE5GnECZz+dptVpCMtxoNNB1nZmZGXFvLC0tCU/KhQsX6Ha7vPHGG3z44Yf0hwPa7TaGYfDlL38ZfWoyTCaTNJpR1svc3BzJZFJ4C7a2tsSic/v2bSqVCul0GpgmK04f540bN6hUKnzzm98UuJNisYhhGCwsLHD+/Hn29vYYDAZ89NFHaJomBAWvvvoqpXKBf/2v/wRZBte1uXz5EjduvoDtTDg+OeL09JRarUaz2eTll18mmUzy2muv4TgOb7/9NrPzc+zt7bGwuMiNGzdYXFzk8PCQ/f19ksmkmBUm/x/u3rNJsuy88/tdm3nT+8zyvtpWz/SYRg8wcCToFiRALsjFrkTthqQImZA2QqEX+gCKUIS+wXIV1CqoIAUtuEsDDgAuAM5wwOHMdE9Pm2nfXVVdNstkpfc3r9GLm+d0NbRSYFcCdwI3oqKqsrIqszLvPed5nr+LRpmdneXw8FDGKI9GIxmFfOvWLQaDAel0WpIo5ufnWVpaIpVK8ejRIx4+fCipzCLZst/vM/JcGeY1Pz/PZ964yvz8vOyoBMPrK1/5srSrGQ4HNJtBwuJLL73E7NwcrVYrCDhrdzg6qTAxFRAPxLnRaDR4OO4CxWjW9128cVcz6nfR/GARn5qakgVDp9Nhv3zISa0auAqPad2AjFpuNpsMh8PASNSH7hh7EWw1CJheE1OTcjQs8BHLsmSR4/s+hqYHRprRmDyXhZWRwF0cx5H2L5+W42e2qfjB0Rl/a4w/fODrwB+Mb/8D4DfHX38d+D993x/6vv8MWAeu/DSPlU+moePQPWqj9jXqBx1UO0TYT6C7EdqNIfVqD9cBTTPot/u4wxGu3cW0TBKTE9R8n44KhLXAgDJZDBxdIwovXz6HYYTAD6MqJp4/JKy5GDgYqoeu+tijHo7isn9cZug5HB8MsEI5TDWK03fQPJdzi9NUdtZJGC6Hu88ob+0wbHQZdau0m0eE401K8xH8cJ/BsEp/uM9nv7BKONbl4ivzXH3zVXTLIGVlcByfmdUZ1LzKgXPC5IUljpo9er0wvqYTyWawshkGms/Qs6mdHFE/LHPw5BGRRJxWs0NINaHv4XUcTC0Mepje0KPrOgx9n4Hn4agqimHioBCKxqi5LVpeB4cRqWSMfCKJ7nok4jFs12Ew6KFpCsNhH8exsawQjmPjuiMUxafjD3FCCq4JI8XHVVT6AwfXVWg2u3Q7A5yRj+ereIqOq+q0hjZDTaPrBxuW3R+hONBtdjg5rNDtDbFVlXg6A5qKr3i0ejU8bHzVQ9Egnkxz/8FDNF1ndn6KeMLipHKIPexTSBepH7XA0qg2G7iugqFaPHq0jhWN89cf/Jj8bIlIzGJiqkAynWC/vEO70cAdDdEUn1Iui24oOO4QVfO5dfsGYcugWMrRH3RIWHG8kcfT9U32jo+ZXFhACYWIpzO02l3sYY+RM+Ct7/8FakQnlkvQGXaIRENkM0lwRizMTBMNmeTTKSoHewzaHTKJKL1Wk5NqnYXFVeYXVrAiKXZ2j7h79yml0jy6HkO1NDA1Erk0HXsAps72wQF/c+0a02cWOW5Uefz0MYaukc2kefroEb7vkc5lqFSqzM3N4bpusLi2e0xPT6MoCp1Oj0SxyKONbYauTrY0y9kLL3F8UgMN0rmgM3R9j6N6lUgmydTCHIqusba2RiwW487H99H8EIOuTa83IBpL4Pk+qqbRsPsctxsokRBeSGNj9xm279C1O0RTEYxwHE0P4Y0cPvird3A6HYbDEUYkQX0wwk+aVO0WkUwcXw/0vorvcri3i6EoOCMN3wuwV1VXQVfIlgr0Rw5500Drdrh89hzxaIxsvoCiK2gm9O0mqXiCRCJJyIzhejp9RyE7OU1j1Cc7W2DncAM94uMqQ1qDFpVWlaHq44YMRppKy3fpKz6doYsejjPoexiajqGAO+hhxiIYVpiePQy6ak0naobRPPCGDrWTOpoaptP/dAH1P1OER1EUTVGU28Ax8EPf968BRd/3DwDGn8VAcArYPfXre+PbfvJv/heKotxQFOWGuE1kSTSbTbnLi1ZUWGH3ej06nR6DftDCel7AA79//yG3b9/GNM1xbK0iI06Pjo6wLIupqSlpaieCdkB9Qa8StLM6notMI7Rte2zcF+bRo0d89atfJRwOs7CwwOXLlwmHLVRVZXl5ld/4jS+TSeckD//yy68wOTHFYDDg6tWrPHr0SMbqBjx1B01XSSYTRGMW8UR0LLyalCMcgetMT08zMzPD8vIyU1NTEhgU1Z9mGrKtFpTr0xbdIqpVjBeEy66u69LMUtjyj9+jFyi94m+c1vIIxpzQloj2/nS+hVBM/6QuSDgeC7WyiATudDrS4jyZTMpx1vHxMdvb2wFbaOy+m06nKRYDi5rr169L514xkhA067t370ptyrlz5zg4OKDX63H9+nXa7bZkmgmK8LNnz7h9+zaO4wSAbzaLpmnUajUODw9l9okwOBTxtbdv3+bWrVsSOA+FQjKt8Pr162zv7pDN58jksszNz2NFIwxHNptbzziqHNNsNsnlcrJyPj4+Dqw+RqMAk9A06dB848YNTk5OqNVq0hpevJftdpt2uy1fI2ET32q1ePz4MR988AH5fF5a+4dCoYAhNk5GdByH9fV1INBbbG9v8/Dhw4A2Pz8vdUKNRoPd3V15Xr366qvSGXpvb4+trS1pGpnJpCiVShiaRrFY5N69e1SrVer1utzshO3/zZs36Xa70uE5l8tJp2yBVTQaDXnunz5fNU2jXC4HZo9jbZqIpD59iNgC23WCmGhVxcWXf9PUdIrFosSPBJYklPJC26J4vjzHAaIxa3yN+NKBWDggi98VzzmZTD4PKqvX/5+W4P8gx890U/F93/V9/2VgGriiKMrF/5e7K/+W2/5vKkPf9/8X3/df833/NXGbyIQQyXBizqiqWjB+caFRa9BstlE8GNk+g4E9jkzt8eN33+Ott77HtQ8/olarU6s25GIp3FSnp6dlrkYmk8FHwVdUPF8BFPq9Ic7QAYLHG44CGwXN1Igl4lz/6CPeefddFlaXcRSfg8MK09OzTEzN8Tu//U0unF/jpZcuEzIs8BVcR2N76whNsfjRD9+helIPInD3t4nGdC5cXGVre52wZfK5z73BtWvvs7I6j+v3yGazQSZMr4dpmiSTSanF2NraotPrEo4E+hQxYhHajXDEkjNg4Z4LSJ2H5/rYwxGqEqjybTt4nQ3dZGS/uFGIuF/XdSU2JGw6xAYlNgfxPor7Ck2JKBLG733AgooHIjNN04I883pNCsIMw5Asn8FgQD6f55d/+ZeZm5vj3LlzAFJQB/CLv/iLnD9/XlrSp1IpaZ9+9uxZ1tbWxrk7z3jnnXfI5/PE43Gy2SylUolUKsXR0ZEM5opEIqytrfHaa6/JxEjP88jn81y+fFmOM+/evcvDhw+ZnJyk0WiwvLzM5cuX+ZVf+1W2tra4e/cux8fHrG9u8tWvfpV0Lsu1jz7CCIdodtr4qsLqubMY4RDdQZ/JyUnee+89UqlUgN2NN0HP8wiHw2xvb+OPAV+xKTSbTSzLYmNjQxYvly5dol6v88UvfpFqNbB3Ec7Rw+GQXC5HOp3m6dOn48XXJ5tKs3bhImfPnpVFSavTJhqPsbi8LPNvhNL+4OBAFhrC4VgknlarVTKZDFeuXAnwCNNgfn6enZ0tHCdYxAuFAqVCkbmZeX7wgx+QywW6MjEmnJmZkfEHiudjhQJNSLfdke+lpmn0h0OCOifASVVVJZvNUigUqNfrRGMxVF2n1ggwqKWlpaDYGTmUikVGvke1GYy4+/0+4VCIQb9Pu9Vi88lTTD1E1IpRyBXZ3d7GCoXJJJLoQEjTcb0h/V6XwbCD59v0+1083yGRjGFFw8GofsxKFKOufr8vdVye57G+vs76xs5PuSL/3Rx/J1w03/cbwF8TYCVHiqJMAIw/H4/vtgfMnPq1aaD80/x9UWWIWFkxw5SVuKKgKBrDwQjTDGMYZpCLYgYW6O12l9HIo1KpjkVKmox9zWQysroVi4hQbSuoKIoGvko4HIjOeu0O3VYwZ262GwGrJ5Fg7aVLtLsdtrZ3qNXrtLtdRo7HysoqA9smFkugaQaaZrCx8Qx76DI1OcuTJxsoGJRKJSwrWPzTmSiNZoVMJkk8HqXZrBNPREln4hwc7Mo8CsGgUhRFVv7itRLRv6jBzwLaqypPWEEFFZkkgs0lXHXFQi9ea9GR/OQhKitRZQlPs9NdiHDsFdXYT34ICrKYIwvbGIDu2Kvr9GYg8lqSySTHx8c8evQIRVHY3NyU/7vm76sAACAASURBVIN4XUTQ1u3bt4lEItIQstVqsb+/T71ep91uEwqFpN28aZoUCgUJ4KbTaVmJ1ut10uk0pmny8OFD6vWAAiwSLjOZTGBAGYlw8eJFidEI0Wy7HbD/crkchYmSnKHv7u2RzeewRyN8BWr1OvVmg+2dHXyQoHChUJCiPBEa1mw2Ze6LyLgRotfTgVqxWEziASKiOJVKSfHd0tISKysr8neEKjwej1MqlQKyiWGwvr4uu1vTDPz2IpGIPMfEuVgqlZiamsJ1XbnJi4lBNpvFMIIo8IcPH0rGU71aG79Ppoye3t3dpd1uMzs7S6FQkF0yjAWFg8Cx4XRhY9s2nudJTEU8J0HYEOJM0UWIc1Y4AwwGAxwv0I00Wk0U8Xi9PlYoTNgMYY/dkz3HxRiLdZ2hja5pDPq9cWfM+FoLtEa+7wEerjsiFArJfJZ2u42maRLIF8/5sD5kopT9aZbJv7PjZ8n+yiuKkhp/bQFfAR4B3wH+yfhu/wT48/HX3wH+oaIoIUVRFoAV4PpP81jioi8UCtKHKZfLBT5WPoRMK6Cl+gpHRxUqhxX2d8pYVoRoJE44HCEaiTIaueztljk6CsYlmqZJGwsIwLjDw8OA+qcbwcdYzT8c2qiKjj0YkYglicZCpDNJpmenWVyax1d9QtEI9XaLar3OX739Pj/8q3f4F//bH7C3W+at736Po8MK+Cr1aoPbtx7yJ//6u+xsHXF83GFxcZnZ2VkODnZZ33zGyuo8uXyK4bBPv99neXme5ZU5vvE7X5UMmHQ6TSgUolKpSH1IoVDAtAI/okwuG5glOiNClgXji1E3TVzfR9V1VF3HV4JkOtcPAHhdN7GsKIqiETItFAKzSlXV8RVwfQ9nnAHueAENElXBV3hB9zIYDADkguH7vhwdik5HfAwGg0ChPggYZ9F4jMG4m8nn8zLsSDD5hPI7HA7z4MEDNjc3pVGnCEoqFArcuHGDZrMpcy9OTk7IZDIsLi4G1W23yy//8i+jqipnzpzho48+4unTp9TrQecYiURIpVI8e/aMRqNBtVplfX2dzc1N0um0pM/mcjkePHjAxsYGw+FQgrJifJFMp9h49oxarca5C+eZnp2Rm+X7H35AOGIRiUUDFwjPpTQ5QaPZlAQVx/dQDZ1rNz4iHI1w/eMb3PrkDqGIha8qpFIpJicnpRGm0Iusrq5SKBRkgNbDhw/RNI2trS3m5uZkp+s4Ds+ePePHP/4xECyEpVIp0ONs71A9rrC5EdCmi8Uik5OTtHtdHj5+RCwWY2dnh4mJCfb29piZmWF+fl7aoAjbFmHHEolEeOedd6hWq0QiYaYmihRyWXqdNul0muPDYNz34O4DucFNTk5y/fp1njx5QqVSkTY76XgC33HpdYKRmEhkbHXa4xwTB993ZcjX5OQkngu1ap1as4GiBdYomUyGzc1NYpEIUxOTNGt1XAXM8fshNupWvUEhnWUiX8BzQfVUyrt7LC+uMDs1TTxiMV0okIhYRCyDkKGRTsVRFEjl0uimQt/u46tBV5nNZjk8PGRqauoFVpmmaZLwcXBY/f+yVP//fvwsO5UJ4B1FUT4BPiLAVN4C/mfglxRFeQr80vh7fN+/D3wbeAD8JfDf+L7/UyFQYnESVXGr1RpXwUElounPq5HRwCEWSxCPx2WErXCATaVSZLNZGXErIjtFdVUsFllbW6NYLL6QFueriqywRLXtug6ZVArHHkmsZ35+nomJCY4qFSamCmztbOP4Ht3BkJ2dHelQa5phFEVDU4PORVPh1s3bHFcO8XEZjWDk9KXdjBhpNBo1NN2XiYiiGxA0R7FYj0YjMvnAXfUn1biqoUvnAFHNC8M9QcEVIUGisxG3ne4CROdxmrUiOiUxogyFQi9YU5y+/+lORWAwo9GIfr9Ps9WSlbDjOAH/f4xVCIFhq9Wi0+nQ7/eJxWKkUilef/11ut0gXvng4EDiJQJ3CoVC2LZNOp0mlUrheR6NRkNiCg8fPpS2KaVSidXVVXZ2dqQli9i4Lctienoa27bZ29uT55OI252dnX1hURABXuFwmOUzqzx58kSez5qh8+qrrxJPJXmyvs53vvsWjufh4mPForx+9TOc1GvSHdcwDCm+FHYigj11OtFSZKfbti1FkbOzs2SzWarVKjMzMwwGgW5FWLo7jsPSUkDBFzT4TCbDhbPniEajlEol2o0m3X4fffw8zl28gGEYLC4uSpdigXdtbm4CSI2O7/tEo1HK5TKLi4vBaNbQODk5lr5oAi+ZnpiWDLCTkxO5SebzeempV61W8V0PUw/G4d7Ikewq0fX6eLLLFrhoYH+TotMLrHs008AImfQ6XYlHOnaQbyJGiMJaRTDedEWV05JkMs3xwSHeyJHFy2jsMOG6zyOChbmlZqjEkwlqtZp0X+73+5JuLsZgnufxtV/5/L/ruvwzP36W7K9PfN+/7Pv+Jd/3L/q+/z+Ob6/6vv+Lvu+vjD/XTv3O/+T7/pLv+2d83//+T/tYp00ExZuqKAr4I8IhDTyXWCxCqZBneWURXdVIxlMMBn3OXzhLoZBD01VMU0fVIB6PycVudXWVcrksxz+i5Y7ELIyQjus7KIqP44zw3BHTUxNMlApMFQtoik86GWU06FMqlVDVYBNbWloimcvQbPXo9fvcu/cJmqZx//59kvE4czPTWJbFF7/4ZXa2DslkchLQPX/+DL/2914lFDIAFU218D2DQd8bj1GqEghutVo0m00Mw5CkA+FDpKoqtUaDcMRCNw0cz8WKBgpzVAUjZOL6HqgKihac5CErLEcZYnwgEgSFNsTDx1fAw5eUYF8hMJ7UVOkXJTYaQCZHAlKJL4B7gbfouk4ymcSKRQN1/ViJb0UDbUW+VJREhomJCR4/fiw1QyLa+NatW1K1nkwmuXTpEnNzc5Lm6jiOxKK63a4cs4n4XqGlWF5eptfrSWdhwzD4/Oc/L32ndF3nL/7iLzhz5gyFQoFGo8FwOKRarbK/v8+DBw/IZDK8/fbb4/yNJMcnJ6AqPH78GB+4fecO9WYQR2tFo+TSGYr5PItz89iDAbgBILy/s8vs1DQ3b98iV8iTLxYY2EN00yCbzzE5PcXAHlIul3FdlwcPHgCwtLTEj370Iz766CM2NjaIRqP0egGr69KlS2xsbEgyR7/fZ2pqisuXL5PL5ej1eiwvLwNBQddsNNgYj7xE4XLv3j0GwyHReEyO2iBYPNfX12XBMDMzw+bmJtevX2dycpJ8Pk8mk6HZbAKQzaZpt5p4zgjPdem0upTyBWrVBsOhLaMmarUa9Xqd6elpNE1jaWkpOKc8H1PTcWybeCxGMpmUGIXtjDAMDU1XcBxbim113eDmzdsUSkVQFWlAKsZmvXaHaNhi0OtL/NayLI6OjuRozAiH8DSNkecTiceIxGPUW3UUzyUaDuHaQzzXJR4NIhrwA2r9yHMZjBx29vfkc7UsS+pbADmmFWPnT9vx6dL3/3sePykiEiZrZkjHHg1od5rYwyCLAtdjMOhhGBqj0ZBMJs3MzBThsInj2ChKINoSPHTghRm+53lEo1E+94U3SaST4zlsCE1TCIdNIhGLRCyKZRroCgz6fTRVJWyYmFqwQPb7ffb3dwlHTYajAa++/hq/8Ru/wZkzZ4hEwuPY2mC2Wyhmx7YTcPPmTV5++eVxtG0I31PQ9RCeq+E4LuLtFIu2wJnELF9oAFRdk/9LJBJ5EStRnndmoksRY6lutwu+iu8pDAcj+r0hoDIauRIPEt2i+D14kQ0mvhfVobiPsPI+3fEIjEbMkYUIbOQ68n8xTZPhyJbiMmGVEYvFpEGk6EoFpiAcelutFo7jsLOzw/T0NIlEgoWFBUn86Pf7El8SynjR9T169IhkMkk0GsUwDKrVKoqisL6+jud5fOlLX6JWq8kuBBiPc54bPorNLRKJSKPJ3qBPKBTiypUrwYboOvzlX/4le3t7dLtdaTiZTCZpNpvcv39fEjIEa1GM3UQ2fTqdplAoyPemXq/T6/UolUokk0mWlpbkOf7JJ59QqVRoNBqy2xHY08bGBoeHh7I7tW1bjldVVWVvZ1duLIqukUglyefz3Lp1S+IDIn8FAg3It771LQD5ulQqFarVamC10+kwGj+GwHfC4TBbWzvcvHmTk+Mq6XSawWAgcUNRMInip9NqkUwkMHVDnkui4hdFzeluWIxhV1ZWgsLSGUkVvG3b+O7z3CEViITDEsuNx+PkigVanTau51EsTdLtDVC0gKgAAZusP+ji46IqARkGX0XXjHFh/LzTF5OI0NgZ/DSTUlGUFyyPPk3Hz9WmIlpYAVC7ro3njbBCIRYX50km4xSLQSWUSqXQdAVF8QmFDaamJjBDOoriY4Z0KpXKC7NL8UZCUFmvrV1geXkxULq7I6xICFWDqBXMaRXfpZjPoimQiEXB9wmZJjErRsyKYYQNVEMZA4M91jeeYkVCxGIxwpZJoZhlfz9gWAsWlfANOjg4IBZL4Dg+/a6DoYcJmVFCpoXnIbsAkakuFlzRNkciEQZ2wMIS+ErAlnu+EYhNQFxwwgJcLNrwfLMQgLsA+U9TgE+PseB5JyJ+9tz52Ts1OnQlHfz0fSHoSgWd1Pd9Rp4rVffD4ZBEIsFgMAgcdn1fVsjpdJpSqSRvE0WIOF+mp6c5OjqSivJKpcLq6irFYtAB9ft9ickIJ+To2FRSBDclk0kWFhYkAyudTrO4uCiFbYuLi6TTaVw3cAUWnZTYLBKJYCyrqiqPHz+m1W4zPT0dZGi4HhfPXyARi3Ph3HlOjivksllymcBVO5/PEw6HJWYigHrBWlpbW8OyLEajkQyzOnPmDBMTE5LubNs2u7u7HB8fMzk5Kd/vqakpOW5Mp9PSWbvdbpPL5Wi1Wrz88suSHZXJZCQ92z4VhnZycsLFixcZDAZYlsX6+jpTU1MsLi5SLBapVCpBqFilIrEozwvOtUwmQ7FY5MG9eywvL7N24SL5fJ7NzU0SiQRTU1NUKhWePn3KysoK29vbge9aKBwEqY0PMXEQ10jQWdny68CvLMTiwjKdcWCZGMsK4k8oFArWHC1w9g6bgf1OLpcjlUoFuS4nFU7qNY5qJzRbLdrdDuGIhYvP0AneAxUNxVdR/PF15HiBxkYPEU+kJHVeXPfCX05siqev10/T8XOzqYgdXATpZLNZXr50noW5KQrFFNlckpnpEtVahdGwR6NWIZ1O4Pk2vV6b6ZkJVleXKJay+L7DhQsXAqO8v/1b4vG4nPMHlvQux9UDRt4ANB/b7rG4OMvK8gLnL6zy8ksX+KUvfolEJELMCHFcPuDm9WtsPF0nZJpEIxGufvYzxFNRJmZK1JtVFpZmmZwsEAprzMxM8ve++kv8p//Zf4Kmq3Q6Hd58882xp9AGxeIUn9y5z71PHnPn9iPu3H7C7vYJrWYfXQvLCua0b9Tbb78d2LaPqz4AKxpkWxtGMJrSzQDnEOC6qmsMR7Ycp+imIat7sZGIpECxCaiGztAZ0beH9O0hiq7h+B5DZxR4e43HWYKFIzYvsYGIi1t0KadHZaPRCG1cJfoKeEpA0kgkEhhmYPLY7/elzkGEZYnOS7gVC3wpnU5TqVS4cuUKt2/fJp/PywyWUCgkYw+ePXsWgLxjbcmDBw8CdtYYBxGMLcdxqFQqKIrCxMQEz549o1qtSlpooxGMswS+ILqDvb09mu0WsWQQvuXiY1ph5ufnyefzXFi7yNq589z66AZ3b93m37z1Pexen89f/SzpeIJRf0C1VmNyaor9cplYPE40FiOXz/P6lSv86Z/9Ge+99x7VapXZ2VkmJibI5XK89dZb3L17F13XmZubQ9d1SSve2Nggk8nIzX5tbe2FrktVVYrFIrZt85Vf+EUioYAy3O/3OTo6Ip/Pc/fBfR48eMD8/DyapjExMcH7779PJpPh8PCQYrHIl7/8ZUmmEBjPr//6r3PlyhWy2SyWFcJ1bKKRML1eYPiZjCdIpdLc/eQ+w+GQhYUF2u023/zmN/nMZz7D9vY2BwcHPHjwgLnpGTqtNolojH63h0rQ0fiqgqcE7gOe56FqwbknulNBJKmcnMgOOxwOBxiUrpNKJill8/i2Q0jVURWFVDrN337wPqGIRX80pNXrMTU3RygaIxQNCrl8MYeqK3T6HRRFwx66+L6CPfQYOWCGwvjoDAbOC9iiKNYEG1JcP6Jo+jQdPxebilh4TosTY7EYViTEyuoSX/7yl7l44TyRiEW3G3gqmaaJPQoqMcPU8H0XMzSO09UVOp2OpI6KKl60oKqqjoV0cYZ2n0w2hecHYUOH5QN83yNqRcik0pxUjskkU+zv7tFptuh3e1SOjhkOB5w7d45YLNA1iLwF3w+M5q5d+1sqlWMsK7DrX19fJx6Pc+vWrXE1q7O/f4TnquztHvLs2RZPn25ImwjxnMXJKPUDrRZWNEooFJK6EG/8Gor/D56n4wGSVhzkbyTQdZPRyJUWK4JWja+Os200KT4VeInoSMTY4XR385Mjs9PiVXFhne6KBN4iyACiohYjFDH6chyHw8NDOp3AXmV/f1+KxoIxSuAv9eTJE+7fvy9HHPF4nOFwyOHhIblcjtnZWVmwxONx6vU6jUaDWq3G5uam1MaMRiMSiQS7u7tyFCMs5vv9vtSy7OzscHJywsHBgRRq3r9/n0ajIUd9k5OT2LYtkw7v3LlDNBpla2srCO0qlXj8+DG2bROLxahWqxQKBXq9HkdHR2iaxnvvvcedO3fI5XKcOXNGZn5sbW1JunQ+n5dhV5VKhfv377/g6izYWHfv3iWRCMBjcV7E43FqtRrlcpn19XXeffddFhYWgs3f0Ol2u0TiMSk+dByHtbU12UVbloXv+9y8eZNOp8NwOKTRaACws7PDs2fP2NjYkHY57UZTsuju3btHLpOhNhZImqbJD37wAz755BPu378v6b/lchnXHsmRuDiXRBEarB/uC4JcVVXpdHqEIwEAb1phOVYXhQUEwjpz3JGJ83lo26RSKaLxOK12m063G2jdlLFL9TjMDVVBV8YCbUWXEeWBzZH7AhFGXMunR8jhcPiF7z9Nx6fvGf17HMVUBL9bIx5yGQ7rqHEFqxijRwcv4rF5vMWtp/fZPNhjenaOeDRJMpoC3aTV6+NrKroVYuSD7SkoehzLUhj2+0yX5giHYqDYhKIjPK2Larh0uy3e/Nwb/M5v/n3qxzUG7RG+H+KjO0/53tvX+Bff+h7PDqusXbnM8qUZfvXrn2f1XInHj26SSUUpxC1eubDM2vkVfu+f/a8Y+iSNE4M/+eO/4v/43/8V73xwk7tPPsYwhuiaTy5dwPVUJqYnaLb3+PwXLzO/WMQeBRnV/Z5Lv+tzWO6wtbULvka90eT45ATLCpGOWej2gJWJIpZh4jkuOkoAOobCaL6CM7AZDW001yekaGA7GL5CLpEiG08S0U1MUycQioHvOmi+jz8aoToOo26XsKkQNlXi0RCmpjIa9HGGNqamo3gK/aGLrxhohoVhWITMCGEzjKEZWGaUkWNjRcKg+Hi+i+s5OO4IRQXPd18A8fv9vpyfO45Dp11BUUekkylODhs0K30q+y0S4QLn5i/xT//L/4puvcndG3eplE9whi6peIpXXrnEb//O1zjY36fd7VBtNui7I5ZXVzk+PGRpZo7jnT0a7RYjz8V2bUxLB93h7MUl0vkoJ40y/WGDsKXi+Q66odLttVlcmubpxj1sZ0gqm2Jipsjq6iLT03lQbLKZCJGISs8dUJouMTs/w2F5j944GqHVa7FztMfLr32GeDrD4soS3WGHfr/H1uYzqscN2o0eZxfO8LfvvMvVV19mfqrAjQ/fZbqY4fzKIr/yC1+mehJgJDvbGxi6j2N3eePKayzPzvKsvM5x85BUPs6rr7/M0O7y5pufJWaFWZydw0dna3uXJ+sPyeQSTMyksZ0+6UyOaCzFTmUHTx3xn/+T32VvY4OvvPkmJ3sHfOaV1+g0O/z4w/eIJKIcH5YZdNqonsvIHnD3409IJuPMTy9wee1NNN3m7Lki3Wafhx8/481XLrIytYzdGpCJpJkuTnH/9m0MTeHzn7tKsZjl/NoZGo0ahWyOWrWNQoiLay9TqZ4w8BxC6RBDb8DItrH0ML7tg68y8j2UkIbjuYxchcHQZ+T4oKiMXBslNCITiXJubpGMrnOmNEnaCIxbN/f28GJxqq0qiqmgGKDrKutPH3Nu9QzxSJSIHqYUj5MyDHr1Km63RyGbYdDtkE1nSMYT1Ds1DBMUbYAV9rBMhYiuYfgKpm8wcNv0Rk2Gbg8zYtAd9HF88BUDzx8yGHaJxsL/YRfff8vxc7GpiNwCz/Po9nvSvqDT61GpVqnWa1SrVWl+NxgMpI2K5zvjeXFftvrDYZC2JthNR0dHP/GIqnSSXViY45vf/KYM2xKgdrNV59mzZxwc7LO1tUWhUOD8+fO89tqrPNsKAnoSiYQUzfV6PXZ2dmg0GhKEEyl3qqqyuLjI5OQkX/jCF1heXsYwjLFlS51msykByFYrWDxOTk4CumUt4LDHEnH53EzTlJVZPB5/QcV+OkVOVEKnmVrACzYq4jjtoiosW8RcXfw8aOMV+TqrqhpsGmNNCiAryNPYinB1Fd3WacscMQYQHRIgK1CBK2SzWVRVkboS0zQljVikNQqg++TkhNXVVc6dO0e/3yeXy7G7u8vc3Bz7O7tEwxaFbI7ZqWlMTeeofECjViMz1oGUSiVeeukl+XpCgOc8z1VROTo6YmJiAk3T2NvbIxqN8sorr0g8pbyzT6fTkUmTq6ur4+o56LJt25YGjRcuXCCRSEihZbfblTn2otPe29vj6OiIlZUVcrkcn/3sZ6Vj8Pb2NslkiunpaTzPo1KpUCwWpZCzXq+j66ocafm+Tywa+HkdHBwQDpvSkWBycpJarUaz2aRYLI7zViZ4/fXXOTo6kt2V0AJ99ktvyDFjs9lkZmaGXq9HuVzma1/7mqSdX79+HcuyaDQanDt3jvn5eWn53+l0AveEkc0//sf/mEwmQ71eJxKLUTs5kY4QwSRDf4GWK85Zcb4IHZdlWezs7AR4ZEgPWH8KhCyLg4MD2aGJjkt08oJZeXx8LPU3ottot9sSj+mN81EEtvX82rNleqfofBQ0eQ1K4ooWrHlC6P1pO34uNhUrFiWbyxFLJGTlGo1GaXeH1BsdXA9CVphYIko4GsaIGCiaL4VwqgauN8JxByiKz2g0lL5Mh4eHMntatM5iRDYcBvqE733vLXZ2t3jvb94ln0+jGxAyTJzRkLt37+J5Dp4/ony0x5mzS/z273ydbDYQHv7hH/4h0Wic999/n93dfTTVIBqJc/78WebmZvjil76Aonj86Z/+a7a2Nun1OygOdOotzq+sYJkqiaiBa3cY9bvMT09RmpzkpFal79gYIYsRHktnzmK7HkfVAJS1LEtiL4JZdZrocDp6VSzwQrEuAHXxMzFaUNWAMixGa4K5kslkAj2JYRDSDTR8FM+XG4g73lB04zk77HSbL/QmmqahjN8HYb0vx2iex8hVaLX72I7La5+5gu06uP6IR08f8K/+/I8pl8uk02lWVlZkDvrjx0/5/d//fcrlMgsLC9KRWMQCl8tldnZ2AtuTM2dZmJtn+9kWiXgcXdPodjoUcgXKe2VisZgcz2xvb7OysiJdhjudDh9/fEcuSouLixJc//DDD7lz5w7Xrl1jOBxSnCphGAbtdjsoUJpNnj59CiBf+83NTVqtFn/8x3/MrVu3yGQy8nWr1+vs7e3x7rvvUi6XuXnzJp/73Ocol8tUq1W++9ZbwRjUDLG0tMTD+w948ugxCwsLaJrGUfmIH//4x3Q6PUloODkJXJj39vZ4//332d/fZ3d3l9u3b5NOpnj//ffZ29vjP/7d3yWRTtHpdFAUhR9894fs7u5KMsXi4mIQIVyrsbW1xR/90R/RaDSk84GIJBaU5nK5zFe+8hWq1SrVapXd3V0++OADPv74Y2ZmAoGowML++T//ZzQaNSpHRyTiMaYmShiaTu2kTiadk5ifKEDE+S0+C8v5fr8fRBhHLcxwiJ3yPqlMkmg8xvLZM3iqT6fblZvEYDCQo0zbtlldXZWvm2AUxuNx6SeXSqVotVqY4yjtTCZDOp1G0zSpL1NVJYj+NsPouoltO5ghA3vUx/Vsef2JYuzTdPxcbCqqqjL2f5NVfyCKC+MrKt1Bn3avi+O5tHttwAtaXIVx9KkpK33dUFFUn263TavVkBYmkmXhq1K5nUgkWFwKwFTPCxx6Z2ansQd9Op2WFN7VarXASyxkUG9VOa4eYhph6vU6sWggTBN5F8KHq9Npsbu7jeuOxoryHouL8xwc7ON5QeWfzWV46aU1dF3BNDXanSaapnJSq9IZL+5GyKQ/sInEYsQzKVK5vKRhApKDf9qwTrDe4EWDx9OguegURJ6EuL+uasFoTdXQNQ3PdQmbIfB8VJ5rUQwjwLHE6+qNsRRxMZ7uhgStVyjvxWPjBr5WgpHkeT6qqmMPHWr1BgdHZfr2kEg8jBZSuHTpEs1mk2q1ymAwoN/vk0olJEZhWRZPnz7l3Llz7O/vy4REsVBf+/BDatUKIzsQr0WtCBfOnUdXNRbnF2g0Gty8eZNerzfGy2KUy2UajQaTk5O89NIFBoMBc3NziOwX4XZw7sxZZqdnyKTSNGp10skU3XYHUzeIhC0S44Jpe3ubCxcukEwmpaBW4Igiyz0QYwZ+YJFIRALlAMVikXQ6zdmzZymVSoRCIc6srDJRLHLj2g329/Yol8tcunQJzdCJJxI06lXm52bodfoMekOy6RyvvPwqmgqJeJT9/f2gM9ZUPvzwQ9kB7u3tkS9lWV5eJpfLMTk5KTuA2dlZXNdldnaWtbU1lpaWpMZEmGECbGxs4Ps+2WyWdDotdWLhcJhkMsnTp+tSsxGJRAKHhUIWQ9XotFsYmsbq6uoL6+EiGwAAIABJREFUBBPRpXij54aSYh2xbZtwOGCMDYdDNF0nFo/SGw7wlICOXame0LeHPH36lMFgIIPJms0m8/PzdDodut2uvD6EdkmwVAWlXHQswWMjDT0FrqPrJoqioShjo0ozYKeKOPOfnBZ8Wo6fi01F03U000AzdEZuYNMRVLEeqm7g+Qo+0B30abYbjFybkf88YMeywgSmcsGHpqkcHh6iaRpzc3PyBIfxCeirhM0QiWiEWuUEdZw4adtDksk4vV6HRDJGLpchGrMolUoMh8FGg+ITCgWA+ZUrV4KLV9N47bXXZPU0Go24f/++XJA0XSESDUudRrfdA08hFony+Tff4NzZZbqdFqlEnFazztOnT7h4aQ3N0DFCJg4+rg/u+HVIJBKEwwGVWDjSitcCno+wRAX3kyewqJLE/U/7c4m/K5hdkt8/3ogVQNc0DD2gY/quF2AnrstwPDKD55sKIP/v3d3dF/zBFEUhGYtLJ4RUMsNgMKRSq1Iul3F8b5ynnmdyelKC77u7u1ID8Cu/8iusrq7Sbre5c+eOBOQFo+s0ffbShfMMe30W5+Y53C8TNkws0+LenXvErJj0nVpeXpZGk2LhcRyHhYUFmQa6t7eHqqpMTU0xMzNDdEyecF1X0pA1TWN+fn5Mgdaw7QHRqEW1WuGkeszyyiJhy6TRrDEcDvnKV74iwfyrV1+T+R2iW5mcmGBxcZEzZ85gjrM6bt26haIolEolSfXVdZ3cuLJfX1/Hsiy+8Y1vSNfdiYkJKpUK0WiUixcvcnxwyNraGlNTU+zs7wVdkGUx6PdZXFig3+9TLpfRdZ1EIiHpy67rcunSJSqVCnfv3qVcLjMcDrl69Sqzs7N0u10uXbrEnTt35KYYj8c5f/48U1NTwchscmqcTmmTyeeYnCyRS2c4KO+RTsbRfS1Y5Dwfx3VR0PBVDe3UyOv0ptLpBKaTvV6PwkQpUPBbFsPhkFgiyl458NZTtGCsWa/XSaVS0jVBFCuJRIJoNCpBd/H/AtIoUhBaRLcdYITIIkFTdZyRi+sEo+og3E7HNPUXCrlP2/FzsanEkgmmZqYJRyOYY7Gfoem4HkSjcVA1fFVhOBowsPtUmye0u2103cAwTImFZDIpVBUiUZNSqcD8/Cz9fpdiKT9eyAJHYt9XsKzQWLDW4R/9o3/IKy+vYYU0Ou0as3MTZNMxImET1YeJiQmq1cDfyfFGeEqAZezu7BGJRAmFLD755B6V4yqrq2fp9YJq9tJLF8nns/zar/0amqZx7foHJBJxvv8XPyCTzJFOJHHsHi9dOksqGULxHW5cu8ny6grxeIx7Dx4Qilh4ikpr0Me0osQyWamx0HVdWnb0ej25oQnho1h4hVWE2PR+kuoo3AcAaZYo/Lp83+f4+FgyzQxA8Vx8J7jANC3YnBQVnLHdd2BZoUvRoud5ctY87PXRVQ13NAo0Gvk8nVYbywzxuaufI5NKk01l2dvbIxw2ufLGa2xsbXDuwirf/va3mZ2dBZBOud/61h9z/fp1bt26RT6fR1VVfvjDH5JKpXj77beBwKU3Go2yvLRIv9fld77x2/zm177OyXGV7731XWan57j+4Uc0m00WFhYYDod897vfZX5+nqmpKebm5qTOw/M8tra2JF4krOq3t7dJpVJ8//vfl9jCzMwM3//+98emp20ODw+ZmZmRlfDdu3fxfX8coxBmZ2eHW7duMT09LeNpm80mqVSKSDjAJJ48fsz9T+5SqVR456/eptNq4488akdVcD1S8RRWONiYVEVjd3ePRqPGycnx2Ba/y49+9PYYr7JoNGqETJNbt27x3gfvkyvkuf7RR4QjFhcvXuThvfsysOvGjRvMzs5Ky5F+v8+7775Ls9kMnIdLJS5evMi3v/1tbty4QTqd5t1332VycpLNzU0ODw8lbXl7e5tbt24FwtTxuSE2p5Cp8/e/9hsc7uzg2UHuSDyeJB5P4Cvj7tsFTolzIdhUZmZmZGz0wO5Tb9U5OCrT6jS5/ckdFleWmZmf5ahyzNLS0jhAr8jR0RGNRoNWq8XMzAy5XE6OxbrdLjs7O3JMLPDXSDRMq9Wg1W6MVfmhcfBaklDIQMGg1wvYYoGDRSDotiKB0DIUCv3dLbL/DsfPxaZSqZ6gaBon4/wIMUaKRCJSvOj7gUGbiB71fZ9edzD2jApmrAJcjsfjqBo0Gg1isZj0EhOAmud59AddYlGLbCaNPRrw+c9/jqtvvE6n2+LqZ15ncWGOUqFAIpHAsqIszC/S6w0IhSN4vkKz2eb27dvcvHlTZlAkk0keP37M3Di9zvcUHMfj8ePHLC4u0u8NyWZzNOpdvvPnb/Enf/In4xGexu/+7n8EisfkZECBbrfbLCwsBJbnBBWer44jfkcj6VwrMBGhSRBZ8mJTEWMaYYUj7i9IDCLvQcyTdU2j02oTtSLSd8kdOYFdhh6A7PZgyLDfw3dH40pOl52PUGsriiLzUIR7rgC7T4u/7MFzrcvK6hIAuVyG0kQxsLlotbCsECcnJ3zxi1+UViQLCwtjv6rAAmd5eZliscj09DRra2tUq1U5ljzYO6ZUChyDM5kMBwcH/Mt/+S8pl8tkMsH8f3FxkXg8zu3bt6nValy+fJnRaCS7F4CPP/6Y4XAofckA5ufnA4C33cEeDDl35ixhM0Q8GiMejbE4v0DYDOG6I65evUKxlCeeiBIOmxQKOQxDAwJfupWVFRYWFoCAknt4eEgmk6FQKFAoFNDV4LU83As8sZaWlrh69SrO0MYKhcllCxwfH1PMFxgOA6ry+fPn8V2H/Z1dnj5+zGuXX2V1aQVD0+i1OxRyWRYWFqR1z8HRIVs72wEhQgve10ajIW2CNjY26PWCeIZuJxj/TExMSN8ykU0Tj8epVqu8/PLLLC8vY451SKFQiB//+ENM02RhYYFetys3UMcb0R90KRbz/P3f/DqThTyZVApDDSIShsNhgI/6QWFkGiHZqYiCqlwuE4lEJHlDAOyKoowJH0GnEYtF2N/fl2matm0zMzMjz2Hf92XXfv/+fS5evCgJO8IBW3i/ua6LPRrnpjhDWXC0222Oj4/lFEEUbmIdEgXfp+34udhUHNfl0foTwvEo3jir3NQNrLAZJBDaQ8KGieKrmHqIYrZE1Iqi62FcR6PXtXEcl2g02P0VNHq9Ls1WncrJ8QvmkaCiKCqjwZBQKLB2ce0h/V6bqckCy0uz+NjMTOW48plXmJmZZn/vgFZ7SL3epdMe4iuBZfjx8UngN1VvYoWjRKNxRiOXnZ09EokUT59u8K1vvcXmxjaDvsPq6ll2d/cJhTMcVzo0Wl1u3LqJaRm88+O/ZvXsWf7r//afMj1RYmZ6mqWFBQw9hKpqoJqgBHYvwnRRXACWZUlwHpBApvgQ4D0gnVIFe0V0IMJsUsyOe72ebPGFAtm2bZzBABwHfdy6a7oy3rBt9JAug5SEG8BpjcrBwQEhwyRkmhhjt9lms4k9HNKo1YmHTJLhEM1aldnJCUb9AdvPtohEYlhWYA3S7/flYpHJZJifn6dYLEqha7VaJZlMYhgGv/Vbv8XBwQGvX30lqKyHPbr9DiNvxNzCPPligZAVZmJyml4/cCh49dVXicfjbG9vs7+/z8bGhtQ8CfX9zMwMvu+zs7PD0dERjuNw5coVms0mV69e5Uc/+hHXrl3j0aNHhMNhLl++TD6fZ2tri729ParVKq7r8rWvfY1f/dVfxbZtnjx5wo0bN+j3+5ycnLC2tsba2hqpVCp4HuvrVKtVLDNEPBngdufOnGHjyVM+fP8a/e6Aq1eu8PnPfoFIJMqVK1e4d+8BT9Y3WViYY35hji984Qs8fbKBaQShc7NzMziOzdTEJJ+7+ga9fp98sYiia3zwwQeBD1uuwMHBAXNzc1JVPz09Ta/XY3Jqgm984xtAsLDu7u5KJ4tIJEK1WmVhYYHvfOc7LC0tSWLJG2+8yurqKtFolMnSFEeHFQqlIhcuXODChfPkshkiIZ3/4b//7/jCZ97EH/l4I5dILIEZtsaeYOCMs93FOSbOYeHl5bsOpq4Ri0ZptxpUjg7JZ7NUK0fMz86RzWbxPE9mLYkcHwg2dYGTTk9PI4LEGo0GzWaT6elpBuMcHN8PsMKRExQcJ9Vj9su7KKpLNGpJC/5ut8/IdqkcV+WIud/vc+bM6cSQ//DHz8em4jgMbBtFU4nFYnJ8omkqsYiFoatBq+t6GJqJO/LY2dzj6PCEke3Q7w/xPYXRyEFVdUkDjMUCRbao0vHH7CQ04LngUjeC7HrbDjLtVXx8XNrNOpFwhJOTGoeHx/R7I1qdAfbQQ9OM8ezckwZxQgAJYA89nj7dYNAHXTcxjBCxWILFhWXqjS6KatLu9tja2eb+wwcMRza37tzmBz/8IWeWV7DMEIoPxweH6KqB77hjINyUbbOwgAdeqNjEmEt8LSo1QI68hN2KEH5BoMz3Rg6+4+KNHOl3pqsqiu+jKyq+xEk0dPU5LuMpz80jBX4jNCmn7WlEal44HCY0plULllStWmFudppm9YRkPEE2lQRUVB92trbZ29sLzpVBMFLY3Q1scCYmJnj48CGe55FOp6U79fr6Ot1ulydPnrCzswMaHJ1UUHWd7b1d4qkk9x48IJPPUZqaksmTAhObH+erC0t94R68ubkp5+2CnNBtt2nW69y4fp1Br8/B/j5LCwtk02kO9velJ1a322V2dlZayty4cUNmstRqNXnu1+t1Hjx4wPHxscwqgQDzOnfunDR5bDabLM4vEItEcIYuF8+fJx6P83u/93tMTEygqir9Xodq5YSwGeLM6iof/O2HaIrK7vYO3U6L2alpDg4O2Nrakg4DqVSKVqNJrVbj/PnzbG5uMjExwdra2hgbCEawh4eH3Lp1i+XlZaanp9F1XaZlJhIJ/uZv/oZcLifdooWX3f3799nY2GA0GrG4sMDGxgZ3H9xH0TXCYZOQbuCPXEZDm0G394IQGILCSdderPIFAUSQdmonJ+RyOUqFPABWOIyKQq/XY+vZMw4PDzk4OKDdbktgXtCEpaktQcJsrVYLUiIVRU4FxBoVZM2EZJpmOBwYt4atEIap43rOKf+5EfF4Uk4JXDeIeP40HT8Xm8qf/eu/ZGAP6Q0GzC8t4vs+rUYDQ3UYdFv4I5tUPIGhmfTaPdqNDkcHFR49XKfVHPDg/mNcV6HZ6DIYDKnVmoTD5rhK12WlDeB748UXhW67ieeO0BQFDR/d0NBVj3anzsju4nkBPpBL53FsjfJ+lWZ9iGEkWF5eJpvNE41Gx/breclF13Wdft/mS1/8Rd588xIXzr9Eo97m5sd3uHbtY9544xfwfJ1INLAn2d7dIpvLkS+UODiscOujGzy5/5Bmrc7y0hKJaIxeb0C/28f3ghFWLpcjkUhICqOkV5/aTE4TB04f4mdC6yI+iw1H4C4iSVGMxjzPQ0PB9zx0JXgMU9PxPAddfzHOGIKLXIwrhV4jkUgQNsznIKXnETYCILSQivKPfvs3WTt3hkf37jLs9XH6Q2onTV5au8yFCxcIh8Ps7+8zMTFBLBZjfX2dvb09FhYWiMVibG1tSRXz0dER3W6Xy5cvc3R0xCf377F6bpUHTx5QnJwgWygyu7DI+9eu4RJsDhsbG+RyOb7+9a9TqVQ4c+aMVNo/fPiQo6MjXnvtNfb29mS8cblc5uOPP2Z6eppXXnmFy5df5h/8g3/A8fExuq7z+PFjUukEL728xi/8wpew7QErK0s8efKIJ08eMTMTMJXOnTtHo9EgHo9z8+ZNYrEYhmFw5coVkrE4ywuLPH38hHK5/H+x9+YxkuTnmd4Td953VtZd1XX3fU13z8UZzpCjGc7wpkSJFom1V5C8shaSbMMwJNgAacOCrV1bqwVsA2tYopaSlyKXMilKXIomZ4aae/qsvru6qrruM+8zMk7/ERnRNVxBELWiRBMOINGNrCOrKiPi9/u+732fl9s3bpLNZrlw/jwnjh1jdGgMyzD4b37z8+TSGRzbq0rn5o4EUumXX36Z7a1dPvGJT2BZVpBiefv2bSYmJpiamsIV4Bd/6ZfY2NigUCgQjUR45513eOqpp4I5ip/8ube3x1tvvcXY2BgLCwvcvHmT/v5+Tpw4Qbfb5ciRIzz22GMUCoUA5Lq/v49t2/T19fHiiy8GQppC3wCxmNcWvHPrBhIult7B0k2K+/sPg+cUDVcQkCQFwXnIzfJd9r6jf3Nzk2g4TCwcYXdrG0ybeChEpVykul8iEY2ytrYW5Ln4FGuAjY2NQPTQ398fxALIssze3h7JZJJKpeItXOUy0ehDlFCzWadaLaMoCpubq4iigyB4lVSnbRAOxVCVh3aAgxEKPy7HT8SiAgQzAD+v2X+THMczOCmSjOCC6IookkpIDRMOR1hbW6fZbFPc9/qilukEbCzT7L6nNH54iEFYjq9QCkc0dL3d63WqGIYe4Egi4Rh9fQVCkTgjY+Pkcn1kMpkg+a6/v5+5ublAJhqNRjl8+DCSpBAJx1hcXGJ3d5/r83doNduYNmjhOIgyrigSTyVBEtnc2abZ8XbhgwMDOJZNLpP1BsSWjSQqwW7KVzkd1OvDQ3DjweOgsdCvGg5WL37UabfbfQ+Q8uAMyn+PVFVGET31l/f3ezgf8ZlfB6GT/qzLcZyAUnuwOvIXYkVRaNbrGHqbj37kJZ568gn6+/t5/1PP8Oj5C7iOh94ZGBgIfv9oNMrRo0fJ5x8u7n4Ub6fTYW5ujqGhoUCJJkqepHRwcJBCoQAQpCtWq/Xgd0in05TLZRqNBisrKwwMDAQtqRMnTnDr1i2KxWJQJVarVZ588kni8Tg3b94M5iE+Sn90dJRGoxHkp6+srFAul72bdk/tlcvlWF5eDiIIxsfHSaVSqKrK7u5u4FF59NFHGRgYIJ/PI0kSn/zkJzk8cwRN01hbW+PYsTlqtRpTU1PBz7Gxscb8/Dz/yX/8C6iqyt5ekVQy0/t7KXz2s59FlmWGRz0RwY0bNxgdHeXevXvBrMrPefEpy7Lsqc8effRRHty7jyiKHD58mJs3b3Lt2jUSCY+DJghCkOlSLBaZm5vj7NmzKIrC6uoqr3//L4P5aa1WI51OB+dbIhkLKl5FUbBd3nN+BhvFAwN7X8JerVbJpNO0Wg3arRai6KnoJAQ0VSXZM1v78RL+LNdvK5fL5SCnyW8he9kqyWAu2Wo13mOYDoe1wNuVzWYJR7ReNwTAO8+7XZNOx5sj+lHdP25zlZ+IReUTn/kwkqoEbRPfMOfaNmFNQ5WVQDb7np2w4A2/wqEoxWIR2+75MKz3UnX9IB3/8HuvQetI9MyBovuQX+UPskOhEIqikc/nSSbTZDI5DMOi2WwyNDTE4OAgU1MzvZtdBElUGBsbI53KBkM6v/02MTkWvL4fFDY7O4umeTuiJ598krGxMWqVKplMKrgR+1GuqqoiIfXQ+5u02+3Aje7fxP8qM5W/8MBDuaO/EPgtML8yOUh0BQKKwUHU/cHwsINSZS96QAgEAb5nxmdQ+YuJ//l+u8xvkbWaTURRJJ/P85GXXmJ4YJDJyUl+9Vd/jbHhEQYHB/HjiP3q51Of+hRHjhyhUCjw3HPPkc1mA35WtVoNuFeapiGrKv1Dg7x7+RJdy2R7d5fl1RXiqSQOBINT//d68OBBAPXc3d2lUCgEN+rBwcEgTMoPCnNdl1u3bjEzM0MoFArc8DMzM16k8AMvWKxc9ggRPjE5Fot5nK1eD99H0j/55JNUKhV2d3eJRCKBCOLChQsMDQ0xMzPD+Pg4g4ODLC4u8gd/8AfkcrmgDevf1JeWljh16hTf+973ME2TK1euBCKQ27dvs7mxgSRJfOtb3woCy3wzpuM4zM7OMj8/j2EYVCoVQqEQDx48CGKTL7zvCaamplhcXOwJWx7m/qyvrwcLkX+u7O7uBjLzRx99nIWFBYrFIvG4Jy/3Ata8Crovm0PvdAPkvl+V+xuRg5tFf/FRVZV2u021WsXUu8TjcfR2G01RqFarTExMoCjKe4Qu/ns8MjJCt9sN6M+JRIL+fk+a7DgOuVwu2Aj53hr/HPYXW+9wvJhnHvIGfTd+JBwL/HjGARn+j8vxE7GodNsWRkcnpMqeq7w/T386gWlJiEKIkBQmJMr0JZOEFJFYXOGpZx4logiorkNKVdBsF6PeQBFEUsk4QtuiVW+BKmO6Do6hE7INZLrYUhdZieDYXpRwOBTF7BqkkxlCUowQMWxVwdVEDNfAETu4bpuRgTiCWSUVcalUKjxYWSAcAZcykrTPc88d5kMvHKFameeb3/43DA6McvPOMm3TgoSMkZAQh3LsxbYIz6gIGYFKs0YymuLe9QWKmyVEEx57/GlEIcxwYQy7ZWJ3TMr7RW7dvsHFa5doWh2ShQxNs4MWjSDJCg4CISVEWIkGJi1/IA8EF48syIiuiOAISEiE1TCO6aDJ3sfMroiAhm1JiIKKbQkeaqIHz+vaDko4hCN6O9BWo43ouEgWhAQF07bRDQO5l3/ebDaRRYmL77zr+VqwcCTQHQdDlBEjMdqmjqwI2JpMOJnCNFzKu3Vy0TwxUUHU2zx5/gTnj53kN37tv+AXPvNZHj95jrHcMCklzuzwDDND03z4yQ/zkadfxGx2MTtt6o0y1WaNTF8eUdUo5IZolJs8euIcu8tr2K0W40P9HDsyi6oJ3F28j6Qq3Ji/joJIJpUmV+hDt0y0dJhX33qVrqkzMjqEoigenbjVom94iJf/4nvcun6bM4+cZ79S5e7iEk29S1c3qZdqdIpVzp08zujgBKMj08hqjLt3F9na2EBvNtmv7HP27FkKhQLlYoX5Kzf40u/9IYIpcXT6OG5IJBzXKO3u8Odf+xq769v86Vf/b/67//YL/MWf/QXtagu92WVna5cHSyt8+tOfJl/oI9eX5dyFD/An3/g2xVqVcqPCT3/mU7gyhGIxTp19jH/y67/Jwv1NTs6dJCFpFJI52s02w4em+d7rb3Hv1l0mRse4fWueUnEbw2x7fptKlb/4zvdod6u0u1vMTh4jGR1FEmzmb73F/aUd5uYmmL92mZGhEURBo9no8upfvkmpWkKJSnSNJkcPzyC6Fp1Wi6vvXkFwZBQ1hmVJbO7XcFzvOnUdg7Am4fY2RJblIEpxFDFESFQRDZuRvn66rRYDQ4Ns1stMHTmCazhgymjhOE1Dp1Evoxk673//s/T3D2IYFuFwlGazTTyepFKpEY8nAx/V7toGbruLZNg0imUqxRK5XI5Cqh+n6xDTYiRiSUQeovUlScJoW8QTGZqGgSVJNPU2iWgER+/QMV0y2RyyLBIL/f+Vyt/5Ua1WA5MdEOyIBRccy0YQXGzDxLYsRNHj5siixODgILlchnQmSbgX0gUOqqoEO2Twh9jvNRr5LSF/mOy3bFzX6T16JbXo4xQsJElAFL3de6PRCLwYyWQyGG6OjY+QSiUYGx3g29/+FvlsFkHskXslFdcRcEwX0RVRVY1Ws02xWObKlWvMz9/g5u1buI5EuVSl2fTIuTs7O7TbbUzTpNmss7+7x/2790jG4nR6/hRFUTy+US+UCd6bd+LPWXxekv+7+20wf+fnV1UH8fgHH347wv9a3xjptyOCyGEekpI1TWN8fDxQk/nP+z1peBikJggi4XAE1yXw37TbbRqNBqVSiXq9HiBDfIWa38Lwpb7JeJx2u8373vc0N2/exjJdZMlL9PPdzvV6nXa77fHVikXa7XZguj127FiQm+IzorrdblCd+CmBtVotUIr5VGJVValUKmQymaBdommaZ5BMxLl8+TLhcDjA7p8/fx7H8cgC5XKZ733ve4yNjXHu3DlGR0eJRqPcunWLu7fuYnQtTyZ8+Bhzc3OUy2XuLiySzWZ55Nw5XnrpJQ4dOhREbO/t7NJsNllZXualFz5Es1ZnYmycbrvD/NWrjA4Ns7m+zuOPP06zWQ+uAX/epus60Z6B1K8g/Ordb0EeP36ckydPUiwWA7NmvV7n5PETTE9PezHDvdal34oeGxujryfXLxaLlEqlQGKcSqXeQ9v2k0n9it//Gf3zDBz82twnMnuVmsvw8HBw7vuPgYEhRFEklfJQNGtra8Fw378+fLGGb6T0h+x+S9j/uXwfmM+E8zsCfrieJIgehcJ20Ht/NyQRo7fZ8q0BPh3jx+X48aOR/S2ON7//NuefOolpmqiyEpy4yE7wHK6N4EqEQ2FvsOsaDA71USikcU0DWbJQNAVFhP6+DGq1QUqMIssqkmT23nAZ2xEfcq9EAXAQRBdZlno3fxtH8LwD3kMAwXPpI1i4OBimjuOI2LbAG69/H9M0efr9T7Ff3Mayu5x95BQd00avwe//3leJp1KkEylsQSEaSZFSNURDoC81gK13QFQ5evwU3/jmtykVa7iCTlhWuXbpMpZhsr+77fWUBc9NH1ZCPZaUQ0hSqJTK9Ofzwewi1PONHAQ/Qi+1rtMJ2lN+SwIIBvbhnvvYL+f9tstB3PjBlp4kSSjSQ8VdqHdB+kN7gHK1Ql9fH6+88goXzp3GRSLWi3yWHIF2x0BWdBxdJhxqE41FsG2XUEilVquCIAISivIQUnkw4tb3E6QzcUxbQ4tM899//reYv3GDof5D3Lm1RrspcOSEl9/iRzRHIhHW1taYOXyEYrHIyKDnOH/11VfJpTNks9lg8RkaGOTtN9+i02pz/94Cfbk8lVIZEYFIKMzOzg6yqvLGG2/QbrfZ29vzNkmmzcrKCtlcnFu3bnFoeq4nrrCIxmO88cZr/NQHP8jAwACtVovnn3+e27dvs7Ozw8zkTBAj3D84QKEwwPraJvM3b1GqNCkVaxQGBtnd36PT1QmFw3z9G9/gP/3lf8LNmzcZHh7mW3/25/zXv/orrK9t8tST72NwYADDMJgYP8T3X3mV8UNjXLz4jjf3adU9U15IoVwuc3RoAASXgUI///Jf/C59uTzHjx0YP98FAAAgAElEQVRjZ2ubyclpnnz8Cf7dt76FIJs4ls3Cwl1Gh4Y5e/Y03/zG1zl9+iSbqw84c+YMW1ubHD56lGQqzqWrV3j88cf5/vdf49z5U2iaN4s4ceIERrMTxFX4svdcLhfMZvoGBh8GcqkhRGwcwcsPEiSRRrOJrKq0mnViCS8uOZ9IgePSKno+l+j4JPv7+zSaOtPT01y6dIkTJ06Qy+VYWVkhnU5jGEYwF/KvAcMwUDSNTlfHch1s3eiZNncRBC+wr17v9sgJUVRRwFUVIEqj3cK2LTqGTiwSJSOlcRy3lx8V/Xu+4/71x09EpQJeHKlvygN62QcyqiwhiqDIPSR5b+glyyIuFrZtIggufbksffks6WSckKYEedTezEH594bZQd+/l9rm4HoqDdFj8zz8XLsnFvBEA3415P+ce3t7bG9vB9noiuL9vIOFAm+9+TpH5iYwu15cakjRiITimB0TyZWpliq4jkg2V8BBplyp0ekaGF2bVrtLKBIjFvMe8VSScETDci1EB0YHh5mbmqFZb6D0hqaCJKJoD0vpg/TW9woV3pthczDTIaA/H1hs/KrFcRz87xLIscUeY8zuufRtC7OrY3Z1HMuk22mTSiWwLIPzj57DNG0EQfJaF6KMIEik01my2Tyq6s2vNDVMPB5HkiRSqTSaFkJVtWBYnMlkiEaj9PX1kcvlAlOsD8WURZlMMs1zz77AG6+/QzrVR6F/mL6+vuAcW1hYIB6PB4uGpmkMDQ0Fct7x8fGgd+57Y/zhu6J459f09DSRSCSAGCYSCc6ePUurN5M42IL0Ux3r9TrpTIZYLMalS5eoVjsYlkm1WuXkyZNsbm6SyWS4f/8Bq6urtNvtXiUo02g0yeTy1KoNul2TcDTG3n6JaqNOLpej0WiQTqfpdruBOfPRRx+lWiozNDDAX77yKs1anX/9+19EESXe98QTvPPmWxiGEby+n56YzXpBXP5MZmBgILixG4aBaZq8+vIryLLM0MAgAPlMllOnTvHm628QiUTY3d4OZid9fX3k8zlKpVJwbfrvcSwWC8yS9Xo9qFxarRbFYpF0Oh3Qm/1z1K+cEQ5cq6JAvdUM5h2a5lURhmEE5kc/F940TTY3N3nw4AGu61KrefJpPzY4Go0SioSpNuoPRSf+DNB1iMSiwfcSRTGotH2TtSAI2JaFhEA8EiUWjQbXUr3p8cG8KtgNYs9/XI4f2aIiCMKIIAivCIJwRxCEW4Ig/Frv+c8LgrApCMK13uPFA1/zG4IgLAqCcE8QhOd/mNfzlS6VSiVokTi2l8XR0T3ApG14yond7T2q5Rqua4NjEFIlRMFFk6CQTSGYJqoaots1KZcqQVtFFGTA86vIagSE3uv0WjGuAEjgCk5vV/4QwGiYXWzHoqM3sR2DdreBFlZJpjNooRh37y2ghSJ0ujoONjvb23z2M5/hwy+8wJe++Pu06g2GCkN0m12ykTT9mX4Ozx4jmymwuLxGtdnGFRVENYTrKIRCMXTdpNv1Sv5GowbY7O5t0arViWohDF0n3MNn+wPKarUaqFb8h5/X7kcG+KarTqdDvV6n1WrRarWCdpN/UfrVin8x+DMSx7ZxHQe95ansLMMb7gsuCK6L4Lq4vZaRH4XsK2v86undd99leXmZ1dVVlpaWePnll/mXv/u/8tu//c/5whe+wG/91m/x9ttv9xYBUBVPtukTf19++WXefPNNvvjFL3LlyhW2tra4On8FHBdD75JJZvjyH32FqJZga3OfSDjtzXd6N3gf6phKpVhZWWFnZ4elpSUajQaDg4Ps7OzQ6XTIZDLk83k0TePMmTMoisLjjz/O6uoq4XCYe/fuoes6k5OTgXJpcnqazc1NIpEI9Xqdc+fO9cyXes80u8fq+hpjhw7xn/3TX+T48eMA/M4/+xcB2v+FFz7Ixz72sUCgUS5VWV5aoVQsMzE1xfMvvED/wABaOML1m/NsF3eYPTbHJz71cSYmxll+sMjW1gYL9+9iGSY7W9tcOH8es2sQUjWuXbnK2soqH//ox/jMf/SznL/wCKdPn2ZldZnLly/hui5vvvkmzz33AQRB4LnnnqPdbnP79u1AxPL4k09w6tQpCoU+mvUa7U6LB8tLfPC5D5DLpCkU+hgdPcTrr7+BLMuUSvu8+upfcu7cWZrNJr/wj3+Rq1evkkqlWFpaCmIEDiY45vP5ABZaq9Xew6Xz2qgm4OCIEq6gkM3140AQGJZKpTENC9v2iByS6IFNJyenef7558nlcgF80ufohcNhNE0LfD6GbaGGPCqFFvZ8NrVaDS2kEgprZLJpEsk4CC6243UzwpEQkiQgCSJhRUYTZXRdJ5PPYuEgiDaOY3siAt0gm4z9ndy3/y6OH2WlYgH/peu6h4FHgV8RBOFI72O/47ruqd7jWwC9j/0ccBR4AfjfhB8cZPw1h0/9jEajRKNeOWjaXr9elmVPmWS7FItFuoaF3jXfswN3bYtMOg2uSzIWD54fGBjwkC7tNuFwOFDX3Llzl1arQzSeYGtrB0QJAe/xMFP64czB25E8rHIURaJSqXDy5EkGB4fJZfspFsvEoklsW/DIu5EIuXyG0t4+h6dmaFXr5JJpKqUK16/Nc/zoCR6srlCqlBkYGkTvmoiuhKKGaOsGWiiC7TiUqhW0cIhqo45udIPskFarhSh6hlHPsdsKZkXvgUD2etD+rtn3G/hKJ78yOZgU6X+eX6X4mHr/huKj9P2/jWV4yrFWo45jmRiGjmMZWLbRyxD3ssQlRUGQJOrNJhNTUxw+epRDk5Ocf/RRfvmXf4VMOsvp06f5+Z//DJOTEwFmvq+vL2h7JRIJzp07FxgBBwcHyefzgToM20EWZF760IvUag00NcyNW7e5f/8+pmly/fr1QN1mmianTp3i5MmTrK6uBr3ytbU1stksuq6zt7dHp9ni0OgYVtfgysVLjI+Mkoon0FttQoonShgbG+P1119naeF+QNxVe4KFtq6zu1lmfXMDwzKDzPu7d++ytbXF8uIiR04cDhDslUqFlZUVCoUCOzu7RHsKQD9N8vLVK7x7+RKxRJzpuVmUkNdC2t/3stX9BXRychJRFBkfH+ett95if3+fjY0NZFmmWq2yvr7OnTt3KJfLfOkP/yAgCLdaLQYGCrz22mskY3E219cp7u4xMzWF3mpjdQ0yyRSFXJ4HS0s9BIo322tUa0xMTCDLMouLixw+fBjwWo/JZCRYPL70pT8M3PmxWCxgo/m5NIZhsLGxQTabDVSh/mzRl6/7Ci7TNHEEEUlWkSUVy/TOldXV1QBXZFlOz9+UCJSZ/kzEu7nrwUagXq9TrVZJpJIkEgnPl+J6xGJFUxkaGmJoyINh+mTiUCgUeJfa7TaJRAJZ8qo7RRaRevNYSZLo7+8nk8l4VbIaJh5P/q1v1H/Xx49sUXFdd9t13Su9/zeAO8DQX/MlHwO+7Lpu13XdB8AicP5v+nq7u7tBG6bT6fTaOQqOKGCYFjYChulioyDKGohasAN2ezeRkcEhEuEoquTtjh0bWq0OnU4X23LRdQNNC6PrXb76b/+U//F/+h3++T/7Xd65eA1VjYAke6j9jonesTzlk6Agyw9lpt7NyMEVHbSIxtrGFpVam2g8h2EqWLZKMtWPICp0dJ2QohLVZP6rX/t14orC9bcvcvfWbR48WOHf/PGXkWSVTDbntYJckHptOUGQesNzjXyu0HN7a4iCTKPTRlBkQpEIrR7cz28p+C5dn6zr+0K63S7tdjuQm4qiGFQvPlDS/xq/OvGlv81mM1hYfLe91TXQ2x2MAxWR3u7Q6TGwXNvxz6OHFY7w8KLyWxKJRILFxcUAB7OxuY4oQatdZ+H+bba211lbWwmy6X1dv4/ROHHiROCA39nd5f79BeKxGPVSCSzbmzf193P02JFgON5qtahUKszPzwezmXfffZezZ88iyzLRaDRouVQqlcB/dPHiRS5evEg6ncZ1Xba2tpidnWVjY4Nischrr73G9PQ0kqowPDyMZXmD9a9+9aueAODsYaanp+nv7yedyXDn3l129naxcYnG40EbSFVV5ufn+cpXvsL6+joTE4eIRsP0FXIoqowaUskV+vjZz/wcjXaTvdI+tmvzyuvf58+//S3u31/gp3/6UxT6+zhz8iT1ZoNao06r1aXebPDpn/tZBoYGUTQV07ZYW1tjZWWZp556imazwZkzZ2g264yPjyNJAvl8nna7HVSyAwMDNBoNXnnlFRYXF+l0Opw+fZp6tcbo0DCmaXLn1m2q5QrZTJ5qte61UwUHSRZY31jDcRw+8uGP0dfnYWD8CO0bN24EkE6/qj0oGikWi4GoxHEccF3qzRattkmjbfLHX/sG0ViGqYkZHjxYpd3SabU66LpXNdfrzd7GSwkCyTY2PDKzj2uJxWIekqZUIhQKUW80EBXZW3Ba3vA+34t+LhQKPduBEnhafGK14RgYlkk0EiIWjpBLpnGMLqahs76+iiR7cQfNZptqtf5D3qF/dMffy0xFEIRx4DTwTu+pfyoIwnVBEH5PEIR077khYP3Al23wVyxCgiD8kiAIlwRBuHTw+de/e/E9uJNWq+WFFIgiVg/7bto2lu3iImPZ/vBYwXFccFxcGwzdxOxJOf1dbaVSYWtri1AoFKhJkokMoqgioNBstGk22limjdG1gu/rugKm4ZXbkijj/7kNw6LeqPZOdIH9vRJXLs/z1puXeOvNS3R1h1KlgWn2MrMRCMkSVruD1NtxOU4vx1qCcDjk/aouCC7YeIIB8PrE4WjEy4FBIJlMgSyihDXC8SjJdAqhtxgLrjfbOKjQOui7sSwrwLP7Hhd/EfEfB/NXgGBhOZhN71csgRHt4PvrgmNZGHoXvd0JeswdwyP8emYgF9u1kBSRTrdNtV7BsLqUy+VehelQKOSp1SrcuXOLaDQa7PyBYI7hc54UReHQoUPMzc0xNjxKrVwhHA7TaNRIxCI8WFmiWNxjdXU1UGadPHmSQsGDVr799tvBgrO8vMzQ0FBgzvN38Zqicvb0GU6fPMWZU6fZWFtnfXUNs2ugygqpVIrR0VEikUiw62318s1jsRim7Z0Ltd4OeH9/v1cNeB6OUChEt9tld3eXcrnMmTNnuHDhArlcjo2NDVRVZnNzg7W1FaLRMOl0klqzRr1ZY3BkmGvz8xw5coRoPMb4+Dhra2vcvnGTS5cuoYQ0uqYJAvQN9JPty3N/eYnd/X100+jRvUU6Ha+av3v3NtlslkgkxJkzZ6iWK/T3FdDbLulkCr3dIRlPMDYyyqPnL/D00+8jGY8BDktL96lUSmghhcmpQwiCxObmZg9qajAyMhRQjxOJRIDZHxwcZHx8nHg8TjweD86/dDodqLNEUQwwP8BD1aEg4woStgWXL81Ta7SJRuMBxuihB8vqVfgP27D+5sa7rg3C4XBAoIjH40E17qv+fMWnl8cUIxoN0+m08Oe8tm328PcyriAQinjy4lazDq6XTRSPREkkY2QyGXI5L6Kg2mz8De7Efz/Hj3xREQQhBnwN+HXXdevA/w5MAqeAbeB/9j/1r/jyf8/e7bruv3Jd9xHXdR/5wY/5cjxfLqgbBp2uiW7ZdLoGDv4CA5bjosoaqqx5zvVIDNEV0bQwqUQ6CN0pl8uIghwkNW5tbXH37l0UWUPvdFG0EJFIlDfeeot6vQkImKaN64LjuNi2i2U5uK6A64AoyoFL1nXtnis6QavZxTQc1la3+bNvfoer129Ra7Q8g1skjOjYTI0fIhtP0mi3ECQRBxvDskASg0VAElwc18LBxcGX8gpE4gmazTYrq+s4okDb6FJt1On0RAC2+zCEy3fG+xWMj2DxVTN+NeMrww4+fvDwZZz+QuNY9ntkyK7dW4Bs3wjptblMq4tpdpFwESUQBC+KGMFTzxmmjuNatDtNCv15EBza7SahkEo+n8N1bZKpBG+88Rq63gluvD4yPJlMMjIyEmAuJElieXmZS5cu0Wo1qVXLRCMhBof6sOwuhuXtVDOZzHuUbz7T6tChQ4Fh7t69e6iqSrxXPUxPT7O6uhqgTS5dusTMzEwgk9V1nZ2dHZLJJAsLCz3znkOz2aTdbgd5HZmMpyhzRYGRkZGgDZUv9AVScNM03+PetiwrCMTCdtgr7ZHJpMj15YhGw2RyWa5cucKxY8c8FVhvVvbaa6+BA3fv3mV3f4+dvV2UiILtOFy5ehVBEtkvFUmkkoRCIc6dO8e9e/eC93yxB7C8du0afX19AHz84y+wuLgYqPt8bpsiySwsLFArV4jFYty8cYOBgQGi0SiXL19GEhUE0aXZbDI7O+sRoy2XW7fueF6fHnH7mWeeCQLBbNt+T8y4f2/wFxV/U6MqITQtBIgYlk3XdPjiF/81i/dXEHhIkvArG79q96vkaDRKoVAIoKv+ImPbNqbjZQT5UmOfTVhvNDBsT1qcy+UCQ7Gf3+MH0gmSiBu05z3EUTqRJJNO92ZCZm/z0/wb34//Po4f6aIiCIKCt6D8keu6fwLguu6u67q267oO8H/wsMW1ARzEbQ4DWz/M6/nD4kql4rVTTIuOYSKIMu2uxV65xuraJosP1ri3uIphWIS0CIdGJ1BEmXazg4REKp4KBrL+v75b18Nzt9nZLRMJp9A7DnfuLlMu1dnc2qNr2ihyiHbLwDRcBEFElkIYhoVlOWhqCElSsF2TSq3K9s4uWiiGosaxbRXDEHn66ed5/a2rrG1sevOGrsHe1iaf+dQn+Pxv/gaf+0ef48wjp1HDKsOjQ1SrZcBBEUB06PlhPGYQQKvZRpE17t1dYmhojO/+5atcnL+K4diIquKdvK6L6BLknBz0q/jtLdM02d7eDkiyvkzy4MNfbHyJcYA4ER/m3eO4wUV9UBBgdHRajYaHs3e9OVm9Xg/yN7zMFwFwiUYjOI5Ns9lgaGiQt99+i4WFBXZ3t5memcSyu5w5c4IXX3qend0tZEUMKpZIJMLo6CjxeJyBgYGgMpianSMcDhPWQvTlc8xOTVKpFEkkIpy/cJrZ2VkajQZTU1O89tprQZZJoVDg8uXLLC8vYxgG+/v7XgJhPs9nP/tZisUio6OjfP3r3wwyULa3t5mamqJcLgeqs3fffZfR0dGgourv70cUxQBhv7y8TKVSwTAM7i8vMTY2xsUrl3nrrbdIpVLk83ni8TjFYpGtrS3u3LnD+vo6qqqSTMXI5pLMzk4zP3+P/+e7f0Gz3cCwdZ56//uot+pcv36NUFhlYekeTzz5GJFkhJHRIdLZLEsrD4gm4txbvM/U7AzpbJaZw3NU63Xm5+e5fPmSl+A4deg9MQT1ej0QVWxvbzM8PEwoFCISibC+vs6Xv/zlgFjQ399PsVj0ZjWrayzcvUc6neGll16iWCwyOztLJpPm2rUb7OzscP/+/SCgrVKp8J3vfIfXX389wM77vLBSqYSiKMRiMXZ3d4Pz0TMaholG46hahFxukFbbZHlpnaHB0R5u3qtGMulcT9XmMfMi4VhA1kin00FF2Wg0glCuWCzmZfQoMju7uzQaDfb39+nv9+Ki9/f3WV9fJ5lMBlRmL6jLw0CZOOiGt6FJJpNe0qks4RoWquopCIvFItdu3f2h780/yuNHqf4SgP8TuOO67v9y4PmBA5/2CeBm7/9/CvycIAiaIAiHgGng3R/mNf03JBqN9uR/nlLJtOyAk9PWDTqdboAIr9e9XqS/S9B6aigfgQHeheHTi32CqD/896WGxWKRZrMZtMjAu1H7AMeDu3gfYxKLxSiVSgHUUdNCJJNplpcf0N+f58GDB548UpNRVYVYJEo8GuXs2bN89KMf9WTGvbZH72+LiN/1e1i9+EPxY8eOsbu7y/aeZ2qLxB7+vj5zy6/0DiJX/FLfcZxgyO9XMz8IoTy4kPiiBL+iOSiM8NtpwEN5J7znX/9xEPHS7XZ62ByHbrdDo1Gj02nR7XbQQmqQt5LP56lUS8zNzfH22296eItIJGjn+W07f0biexv8nbqfSVMoFOgaHXZ3PQpvp9NhY2ODoaEhOp0OkUiEy5cv4yPQjx8/HrQ6Fu4s893vfpdwOMzi4iJHjswGrLf93UZQhayurtLtdkmn0wEEsl6vByIR37MjiCLlcpnbt2+TTqcD9Mv4+DjJZJIHDx7gOA7T09NMTExQqVSIRCIsLy8HmfGVaplUNsSpUyeYnPJwI4uLi8HGIV8oeK1joNvxFnuf5jw3NxdkE925cydIbhwYGEDXdUIhz/+UzWZJJpOIosjw8DAjIx4iZ6MXVby0tMTVq1dp1ttMT09z4sQJ8vk8165dI5PJcOLECdLpdJDtfv369d7C61UH+XyKJ554Ilg8d3Z2AvRKX19fICTxW9U+CdqfWxwkFvtzzmgkTqEwwIc+9CEee+yxgD92sMr2lY6+0svP2/Fl+z4t2gdm+hW+pmlBjLPrumxubgbIHL9dt7OzQyQSCcy6oijiuC6ypgaVsR8rcfD62dra+WFukX8vx4+yUnkC+Bzw7A/Ih39bEIQbgiBcB54B/nMA13VvAV8BbgPfBn7F9QcDf9PDCoGrsV2sEklnwLVxHQtT15ElrzWUSyVIJaMU+nJsbdaYv3WPutEhPZDGsOvkkhqaYGI7CpIgEJYd0mkNLRVlr9UhFo8zkNJIhbukUrBRXsFNqbTCKlXLwdZd8rEsrqzTtls4GtSNDgYOnW4bERusDmE1Q6Oq86lPfBLTaOI4TQyjSjQqIMsmP/XUHEeODtF2mqyVNnn35hWu3LrG5WsXGYpGODoygVMxWL21yoef/QgRKUIkrKCoFqplo7oujmnQbNYRZInt7R1ymRy1UpVsNMSpwzOYrSau5Umdo9EoriwiyBKmqyOqLpbdoVYvIgoWsuRgmW1c2yWfzaMpGrZp02q0UGWVWCSGLMqIigKSSDiiYTtdJNFBk2ScroOCBpKNpILjWHT0NoLk+XskTaDVbWCJEqYLumHR7RiE5BDZSAqxY1PfLhFRIigoHBqepFZsMFwYR7LDHJ48iRLVuHf/LqWtLZxai4wYQbNEmrU2liBTqjZAUtEicSQ1TCyZodkxyPYNYCPRsA1eu3yJZH8/jZaOGg7xgQ8+TbdVptXaJxKOksnmqHVaqIk4BnDp6jWeffZZYuEYe/tFsn15skM51kqbEIFas8Gdu/cYmZylrhvsVetcnL9BPB+lbRtUO036x4Y58sgsMycmKdd2WN9YIRSS2d7epNpq0D8+xl61zO76PjOz44wO5zG7DUbGBtnc2UYOh0knIyRTHlxya2eb2cNzfPJnP0XfcA5UC1u3uHP7PrncMO9/5nlEQeXBwiJup83k2DixSITHn3yCjtll9vhRtop7TM5Oe/6YgQizp6YZmRylrz+PIAicO/8Yd5dWWN3e4cUXX+SZZ59DlsIkYnmikRRvvvEu7VaDe3fvUxgtoMVCOA5MTsxw8uRpYukkZ953mtRwhvura7xz+QqH5uZYWlthdGqCwUPDvDt/ia3dB8SSIWRFYX19i0q5yc988tO9aznO+dOPkI4lCathEtEE0WiMoZERXARcUcTsWNQabWxkbFGj3NRpdwwsE0RXRRMEBKNFPuHwgSemePGDx/jsZ18gOxBl9shh5HiElmjScXRyiTi11XWm+wcppLO0izWctkFcCTM1NsGZE6fptHX6BwbpGxggrMjs7+1g2hbFWoVyvcH4oWkeu/AkUTVGLp2h2+5iGw5ba7vUSm36c2NEtQxhOYPWDRERo0QjcUIxDQuP6RaSNIq1JF/75kUWVop/h7fsv5vjR6n+et11XcF13RMH5cOu637Odd3jvec/6rru9oGv+R9c1510XXfWdd1/98O+5huvvhWgWoK8dUEOQHHhsMbQ8ACqqlAo5JmemmCgr0Bxf59UKoVumOimJzf2SaX+ztG2bbLZbG/Ho1GrVdna3CQejbG7vYMiS5iWF9ylSDIxNURU0ZAsCMthREtGFcKU9msYHQfZFRgfHmFuaponLlygkM1gtJsUsmn0Zo1SqUQumyeT9Qa4f/L1r/HHX/m/uDZ/2dOrZ1KkMykMw+Cpp57imWeeCfAvrVYrcLOnUimi0Si5XM5DnV+4wNzcHANDnnxW7xnRRLmXNSEKGLpAp+UgyTESyQLtLuimiG6KaOEQpu3NbERZQpBEmu0WtUYdRAFJVBBFCdv1qouuaYAEuqkjCF67y7AcLNdB1TRPVdbzX7iOEFQ0siwHiZN+nK5v5Ot0OhQKhaCX7aPFl5aWgupS13Vs12F7Z7fnbK++p/KRZTmQfvvGWb3d5uMf+xiNRoOhUS9WdnZ6hkQ6zejwMKlkEse22dvd5daNm4RUDceyCWsRTMMgEY+ztrrKzUt3sC2LeDxMKpkkEY8jIrC+usGdW7cREZB6xk9NUUnE4ly5dIM3XnudVqNFNp3GMmxqlTqjwyPcvDzPzvY2CCCJIoosI4kieqeDZZronQ6pVIrh4WFmZmZIpVK8/fbbvPHGGziOw5EjRwIi9SOPPBJUn6VSif7+ftZX10jGEzRqdWKRKGsrq6yvrhFSNSYPTaA3G+idBm+/8X3WVpeZv3oJFwtVhp2dTVxEbty4xTe/+ef09w9S3i/SarV68l6N+wsL7G1u41o248MjqJKM6ML25hbtRpOb128QjcaQRZGQGsa1Hd59621q5QqGbpCIxcnncowMjRKNRHjley+zvbmF6zhkUt7QXnBddre3uX37NmbXCGZ1fmXi41J+kJptWVYwN/GrMNd1icfjdDqdnuBHxjAtsrkCc0eOEYmnQJYJhTVSqSTF4j7pdIq19VUi0TCG0QXHIax5+SvxaAxVVuh2dPZ2dinu7ROLRBFUmbnjRzFdh0why8TsJKIq4YgC1VaNWDyKJICsiLTbHdLZAtu7JRxR9vJ9fkwP6fOf//w/9M/wtz6+8IUvfP4Hn5uYHvcMRZkMlVqlV7rayJJMPp+lq3fQQvT30MwAACAASURBVDLhsEJYkEmn4yRjYfROg2qlRqXWoNkxMUwTUVVQIxH+7de+zrVr19ne3qEv38fk+DhPPvUUe7u7bO1tcHhuhrOnT1Ld32Mgk6YvkyEZipCL51hf3WZ/p0yrbhBSYpw+fo656ZNcu3wVW3fZWt3m/U88zYWzp3n2qSfY3XqAY3R57OknSSXzSFKYTCbP4v37PPdTH6DeqHLq1CO0Ozqf+czPk8330WnrTIyP0+000TttStUqXcPwpA+CgKwoRKIRukaXdCZNYaAAiMSTKRzbZWl5BUlW2N0vUms0EewoghTm2s17XLx8g7WtfZbWtlne2EHTFLqWjStK2HgCAFkLYbmgmxYICuFoBAeHcDRCrVljc3sTRVORZImV9TWM3hAymkxg2g6SIiMpKqLsoXAkWUFWFBRVxbIdkqk0gijR7nSIpxN0ujpXrl5jv1jk4sXLbG3vYNk295ZWsAydn3rug6yvrtDRDbRImMfe9wzFYplcNhugX/wbib+IdTodwvEYwwODdJotT0nXIwxUqlX2S0VGBvoY6h/A1E2i4TDHjx7j2OHjPFha5uSx46QScUp7RYZHBjgyd4Tx0XGioQgDhQGmJ2fY2drmmfc/Qy6bYeHuXQb6B5gYH0eWJNr1JmdPnePY4WPEQnEOz8yRiCWwuiZj44fo68/hCjaO7YIr4Doux44ep9Pu0F/o5/yp83TbXaYnpolH4kxPzrC6vMrUxDQ/88mfwbEsxkZGmTx0iFajgaaoHD96lCuXLnHu/COMDo9w9PBh4tEYsihx4dx51ldXUSSJsaE8F06fZXVhiYmRUcJhBcu1SGaSpDJJLr1zH92wcV2R5QcP0FSN6YlxxgYH2Vxb5eTRU5w8cpzqfpnRwRGa1TpTE1NceecShWyeWDTGztYWmUSK2ckphgeHebC4xAef/SAfe/Hj4DoILgz197N4b5FWo4ksyJw+cZpup43RNSkU+pmdmUVvtMmlMuSSGbBdmk2ddCaNIIukMxn+9M/+jL1iEQQJQZIRcZB6G6rPfe6zJJMJSsUi5VKJWExDVRR2t3fpLwz3FhMNVI1qs8PJo3OBIGBrYxO1p4wUXFA1Fawu8WgUHJuxkREK+RwT4+O0GnVc28KSodlp44oizU6bYqWCI7hEk3GQBUSz44lxTJNILEW5pvPupRt8541rFIv/wRXK9uc///l/9R/6Tf6q4yeC/XXwcBwHVdZ6cwYR1xU8Qq7rIVkc15OQVmsl0lIcHAHbMqhUuoRCISqNNk3dJBWNUygUAsBcLBaj1Why+/ZtHjvnSTUPTYyRKaSpNitsrq6QiERp1hvsOA4RWSWRySOisLNdAkFic2OPWq3L1OQh1jeKNOrriKJCu+MyNX2IUFhk7sgxDLODKGik0n3oLZtqtcnxk2cJh6M899xzCIJAJptlcXGRY4eP4LoCht4hlUpSLZcIR8PBfMQVHvZjbddGlEWaxTbpdJqO3kVUVHK5PgRRxEXENGxE0aXVbdFo6owcmuLkqVPUOx6AkW6N73znO0GWvS/P9If0ji1gmTq5fArBNQiHNRr1KmrIw6SUKhVEVSEUibK7v4fe6aJFophmBcu2SYbjwdzDB+z5Ma2dTodqNc7S0hKxWIxnnnkGRda4cuUaR44codp10Ke8jHbDtNgvrWPYLiOTh8nn80FP2pdM+7MtXy1o6xaKFgkiAyzHZnVzg3PnznmJj3aTqBrhMz/9aRqNFru7uxyZmaVaLKGKEmODwwx+7BNeAqKiMXL4KPfu3SOmhVEkmScee9xDx6QTPPP0s7iuV+X09xV45slnEUWRdCzFB55+P8vLD4ioGrMTMxS3XyEaCiML3kwvGYuTiMV57PwFjI5OX18fE+MTCK43vxocHCQajdKsN+nv78fsmgz2e+5uyzA5/8i5IInywy++RFtvoSAykOtj9sUp3n77bS8M7f0KpVKJbCxGNpbm0x//JKVSlXgyjX3/NjYulumwvV8mGUsgKQqRcAK93WXhzl3OnDxCPBrzordlhY9/+CNIgujRqat1aqUy586c5Z1L75BNZclnc0RCEQp9fTz/weeJR6IIroiIhCIpZNM54tEYiVicxx99DElSuX7jMo888giTE5PMzMwwmOtjpH8Q0zTRZAUbD4vj9KrwVsejOAiCgNM7x/xzLRqNBrOharWKK3hS5FKpwnZin2Qq6xkwM2kMoNGoIasSkhJicuoQm9vbxKMRBEnskTa87KJ6vU4yFvfir8sVwqo3xwzFI57DXzJIpVIkk14OjyR56ZD7pRL0vpdh2ty6e597a/v/QHfWv/nxE7eo+DcKv8x1HAdF8haVTqcDgkPX6GDZJlpEQVNkWo0mmWwSF5FipUI0EieihXA7HfKqxvTkFJfnbyAgsbuz3xv6mxw9fIRDMxN86Y/+gFajSSyk0j/QB6ZNWAnjItBotlFCMRQ1Qr3Z5Pa9FQxbZmrqBAsLi9RrTeav3+b9zz5Dq11lcvoQsgJLW5scnj3DxsYOiwv3+dhHfxrTapNKxdjfKdFoNMjlMhiGDQhBMFCj0UCNeJGmnnrFMy36+fG6riMpsidJdhxkVaXWbJCMxRkfH0cURdp1uH//PtFEnFg8zpkL56i1muhGF9lscv32LZLJJNvb21RKdc+8FQ4RkiQkR0EQbPoKWXLZBMXSDoX+vPe6qsjk9BSuK9Bst1heWeXQoUM0mk10XScej9M1jUC+adqeKqpT8gaffmJePB7Htj2J6aHxArGYp8Q5MjdDNp2i06wRjnrD8lgiFbipD4oFDrLM/KyKQjzEzvom4bBGqbyPFgohyQIz05OMHxqluL1OqscOi0d1wlqE8dExNEVjf3+faqXC0aNHsXoZ55FIhNbQkJeD0WhxZPYwe/u7zEzNoEqy5xkJhYmGopx/5DwPHjwgEooQCUWYm5llf79EJp1manISOSpw7MhRZFkOwspc2+HCOS/bvt1skc/m2NzcxOwalDs6uUyWWCRKu9kiGU941IRG05NVKypm1+Dc2UcolvfZ2tpCcGFzfYNELI4iyRw7cpT9/X0iqotgiUyNTSEJ66QzOSqtFht7O9TKdcqlGpl0nuLOLrVag0wiimFYTE5O8smPfxKjY9GXy5NNptjf3SOdTDF/4zpHZ+dIRmIMD44weWiKRNyjYQgOTE1MeoKLbJbDM4cpl/ewDIMnHnuM+SvXcG2bvr4c3V57y9S7tBtNJiYmiEgq9XIFR+oZgSURt5evouuehB5JxDW9hcaP5HUcB0EUkEUJvd1hZ+8BfbkCDgIbm7tcm79DNB4nX8gxMjJCOBohGo1y586dQKyQy+UCqXQ07KFTkvEUITWMLnYZGRkJ8nAEyXPoX79+nUzSo1JbXYOQohILh5CHC5TKdURZwxAU3r22+A90V/3hDsFX2/x/8RB8zeyB46VPPE8s4SHIH2yseLLUapVoNIrkufsC1Y/QsEjEwyTCYU6fOcXS6iqWILNbLDHWl8QwHU4/8jjFapOLl6+zcG8Z27Yp9PWhqiq/8Iv/GMPQESWXq1fe5fDsDPl4jEhYQ5Q0XnvzIq9fvIagxkHSaOsGruudxILhobVr9Qrdbouu0aSt1zh1+giyLJBJFOg0bfb3KmxvbvKLv/SPGBrMIko2oZCIpoZwHJFkNMXeXhFHcEgk4kRjYdpdPUigk2WZnZ2dAK/t37B9DIskiDg9RLsqeYtOs96m2WrR7HYoViuceeQs5XoNWVVwGp5ku1qt0ul0uHXrForiOcBFUSQkRzh+4igL928x2J8llY6hKd73VWUZSQyj6zqdrkGpUmZvt4ioeCqYZrNJOpYKwH+GYbyHodXf348WEVlYWGB8bKKnekrTbnvKpTcvXqW4t4uqSEiC19P++P/L3psGS3be532/9+y9d9917tx7Z8HMAAMQEIiFBAiQEilIpCRLkWhRi7MoLiVMWU45dlVKcVQV+UOqUkk5Llf5Q1IVSZFDW4wkx6IoSjYpyyYlESQMEDsGmBlg9u1uvXef/bznzYf3nHN7IFVKlghKovJWdd17+3afPlv/1+f/PH/9R6k1mrj1BjLNKsqNMpNbJBdMVMrOzVt4jkunqQkKh5Mx9VaTMIkx86SYOVLITBUowUNyTU+zlerIsphXcByN3gmlRg9pRuQM3/dx3UJawVDk0aF0cun0ym30eh1SQ0OqS9qcsk8gCrp2O3cqzrUy8gaqYzTMQwXTRVE2pRSubVVEmCWMvqQNybKMxM+ouV6F6Gu0O1zZucNvfOG3kSj6E2g1G0xHY0wkR9e7PPrwWTodl/X1VRpei821I2RxQrNWJ0tSxtMJzU6b6zdusHpsk/39fSajgR4Arbl0u11UlqIyG1CkWYhShxlmp7PMdDLHaWhmjN39PQ3pHY1Z6S6RBCGOMBkGMZvbRzE9zdL9P/yDf8Buf4DCwrBcTJWSxjHLy8t85p/+Mr2uptP/h//L/0xuxJiWzXQSEEYpd/b0pP76xirCUHzo3uM89thjepatoDuajieVREMwn7K8vEy73a7o8Et7OxqNkGlSzRBNp1OuXbtWXXPbtml3XW7d3qXd2+B//J/+MaPwm2o+X/rjZv2+GevbLlMp16KWhxCaB8hzHAxMZJYQBjEN06Fea2IUyo16BiVE5orxdMTqygbT2Zjd3T6tRpPHH3+cNJXF5PQlfuX//jU+9NQHuH3jOkkc4HkeveUlRoMhURZgN2oESYpVUq5b2nju7x2w1OrRH2lW2JNrp7j49jlSlbKzN2A6G7La9UkChcotWu0VfvNz/4r7H7iHH/hr300UjXBsF9sw8YM5Ks/o9Xq4dY/BoI9hmiRRjHDBn81xbQcDTUeTCwmGvmkNtIGJwpB2EdlrOK6GUU/8OfWmhzByDJGzt3+HZa+N7Vi0Oy1qdY8Pf+Tpit671WohMgvH0VQlpbEdDof4sxkqF5imbr5jmKSJ1LK2BYNws9nEMZ0K5twAllaWK1ndTqeDzEMeffRR2q1u1XCt1WrUajWeeupJsiSl027iORpcsbG5hR8GmMLALLK10rCW90hpoGuOQ6vVxECQK4ntOTihTRJHCBS2YWNaeVEyEbDA7QYGaeJX8M/yHoxjzQQQZ3qAjVzh2i5u16lU/bIsw6zZd8koyzwFpR2DAC3f4Gml0RLyDhzOC/kJpinwPKeCsZYytpriRFWlyhJSWw4gaiZv4y4utkXobdtbwTYPTUUYR6yvbGBgEUcJnYKvKpzOmU4m3Ex8Wg0H3x/wgcffz+5Onx/5wR9ipdMjjmIatTptFMI0OXXqFOM4pNVqsdTt4jgWS70lgnBOzXE5GE2YzSe8/5GHmM1GFSz4wtsXCfyIlfUVjm5tooQ+387qKtPBCMcwiXOJ7TpVOWriz5EFhDgtgjtDKMzCCeR5zqVLl1jqaIaAVrvLzA/wwwg/yDAtR5M8miaNpksYJ4wmU0xbM1A3Gy2WV1YrfXrPq5ErhWG5ZLkiywXT6YzRaMTKygo1u8ZkpNVKa26dVqONqquK7si0XBqtHpeuXP9mO5T3dH3bOZUoilBCI1vKOQjXremykOli2zW8gt49TRJyw8RrePgzn5WVFSLZR/g+Skh29u6wffIMa8sr7O2+jWkamLbF7/7evwXb5KGHHuLX/8XncG2LmmPw9a99jb/7d36GRqNBRs7R49usbhxhbzgniGPSDMaTiS6PWHWSNOLg6h7feO2Ao5urGK6FVXM5dfQsl8+/w3SYQe6SZxmomNfefJEv/+GXaNRyPvTEU9x78l7yBHZ399g+cZyvPfdVBtMh3UaHJ554gl/4hV/gh3/4h3n66adRaSmuZRFEgXYySiHyUgBMkCZRMQ+gsGxFq+Vi213G/T1sy6Rbc8j8AFspHNclLeZT6kXU7zoOocq4ffMappAkccjbF25Rd72C9sLEdTyoaaeGaeE6NQzLREqF7brEcVI5+LJkVTIoSylpFaSI9XqzIFvMsS3tlBrtXjWdXBrWJJU0G+1qUHNxleSZpba8iaYRKXnMer0ejYaWms7zHIXEAGzLLYhKbbIsr6hk6vVmIeJlVaVHfQ/meKbAdOqkUYrhKJQqqP9tA9OwMB2t6WI72mGoTGIb2tD54QRCq5ptME2j4rMSkgK9Z5HItBKCSnN9vcvMVBR6HXmeIwu5Ydu2oYj8Swqecp/Lvpb+aRDECbYFKK1TI5Sg7rjUnBr7U5/9OxPCYIZtm/QHB1y8lHNsa40gzjhybJvnX3mZeOaz1lvW/ZAicNjvH/CZX/91Tpw4wSPv/w4Oruzy2c9+lm67xac//Wn++T/9NZSSfPazOf/lp/8mf/tv/y1WV9c5e/YB3jx3nis37/A3f/o/w7Qtnn32WX7iRz/FPdvHUVKBgE6nowMnmfDqq6/qc2YY5GlOrgD0ca+sraGU0tT/YYQ/m+PULLIUvHoLaWbsj0bc/8ApOi2HPA3oz0IuXL5BrVZje3OLIAMrz+ktrZNnEhyF7/sM/bgq2y4f2WKW5Az9GDNIi5KbnptqtRqMx0MsyyGLM7745a+zfmSL/+2Xf+NbYzy/Sevbyql87OPfVdGMlMOOJXmcadhEYUY4n5LnujxQ92yUEAR+hLVhkSUpiBzL1D2KOIqL8oGeSDctzZArhMCrN3nzrQu06x7CMbl9Z4dG3eXLv/+HfOITn2A4OuDF195kMBxhmXVUnnHvqXs5deoUv/e7v0sYTLEdA9eFe+7ZwnYgilKyNERmHoiYXGTMplN67R79wZCNjQ7rR1bIYs3/lKYp80nAsD/Ati329/d5+PH388Qjj/GFL3yBmufwud/4f/jgBx4DisFCJUlSXVcWSnOeGYaBoagGHAdjzVI783WvIwxDgjhCKcVqd7WC5ZZwTNu2UXlG4CfYjocyBZZpYzsmR1bXqNebKAmGMBdKLwaiYJIlMbRjCQJkUU5KkqQitASq6NkPIt1ELyhkXLd2aAQlVRayyOtVwpCjKKooTCpCwWLbcRyTpxGqGDQsp6LLAbXQ90lkTpbmyCxCypxm07xLSTBNk4p6pdRMqZQzc5M8zYj8gCRCD8zVtD65aQlyYZFlhRNQEoQJFAZf5qSRNvx5JpFpVm3XFAbddgc/CbBtpzreMkss/7Ytt3IuJeNBJZqm8kMIfjFcV2ZDcRxj1U1UnGJZhpYGSHyanWW+//u+l1defY2h79NqdMizlP7+Pqurqwgjx23UGY4nTOOIdq3B7//+V1jtLbF9/BhnzpwBIIgjzl+8oAcw44D7ztzLAw88wFtvvcXbl95hMJ5w7NgWMo+ZzgPceo3rt3b4kR/969zZ3eW4ZXB75w7HThxHqpxLV66wsX6EpuMV32d9n9qOTX84qOiGpMwxLYs0kxDH1ZR7veYyV7Cxto50BCLMEIZFveaxvLLC+voadTcnmCXcurbPyto6o9mM9VzTqJiWjeN6TIIxwrOZhSEqCFgpKPiXl5dxGw1u3rxJIn3mkxHtdptW28V2TJQ/QzgO434ficNoEnxLbOc3c31bOZU8z3FciyDy75KcNUwbw7CYjOdMRlOSJAMMFBE3Wx4/+D3PaK6l2Yw0jjAM2D3YZ3vrOPW6RxoPiIKAlfUew+mUWqPOcBZw4tgWt25c5+zZs5oKwqlx7vzbfOPlVzi63MWPJYbVYDjZIcfh9b0Bb73wPDLNcGoGiaGQeUgyNzh1+jiuUEThmPOvXuQ7PvA+vv6Hb1Br1bm9f4VOy2Ma7LM/SKiZNleuXOHYxhYrnVXqNY8bN27w0Y9+lPZyhy/85uf55Cc/yY/+yCe5efMmF986f9dke5zHlTOxiuZ1EsUcHBxoQsqit5JGuj4/Ho6Yz+fM53OOHduqFBMdx6kyg5I9OBOKZrOBa5u0Wg0MIUANkInCcTyEITENbdDdWp04TcjSHMvVTiC3zGqbeZ7TbussoyTqc+ycyWSCaWrBreFwjGnYhYhVk4nUjVnbdqvtWIbmDJPZ4QR1GXAs8kK16i2tHbNw/0gpybMM2zbJDRdFWrHbhlECJAhhojCqHkppoMv+TZ7n2MolTVN63W7RL4lwbc1OkMU5om7j1NxDkk2hjbvhCMwcWvVmxeBQzvBMp9NKIMtpOcz8KTdv3iQMw0rOoJzFyaXuI7Xb7aovU+romAX6rd1uV9exPCej0QjcPYTKUVmMJXQ5bk3EnNhe4d9/fYAtcmaTId12i16nTZiEBOGU0dTH9lx6vRZXb9+k3m0jbItL165y7sJ5rl69ytPf+RF6y6vUXBeZgxJw+fp17jl9GqkEK6vrXLp8lUcefR/Lqyv84i/9Mr/6q7/K9rFjHN3a5OrOHY6fPEEYxyghNMrQdWi22/jTGVJKZkHCRm+D27dvkxTgj1xJKHpfmYKPfexjRQ8p1Rl3GHJwMCFJczJMVo4skciQOJxhqxxDxaxtHePF189xYvsYuwcjXMfBRPDm+Xe4fPkyeDrD/v7v/34+8tGP8tprr7F/6Spf/KIewYvmeq6t0awxHPZJ0xjX04iz27dv0m4f4V/+6ue/lSb0m7K+rZyKlgg1K3oRIbSjkcgqO7FtF7CQWU5uGKRZzgsvvMAz3/khHakYdcZBQLNZrxTqyrJJGIZ0Oh1WVtYww5jRZFYwoJqV5rZW8OuSRBHd9jJBnOPaDgibKIjJckizBM91mU1HrB9ZotNpYAsdXTY9m7lt0e3VGY37NGrLbBxdI8siNo6s4IcDeo0W7WaT27dvI6Oc8XjMJz7xCeZpQGely1K3x83rN2g2mxzs7VeRuShYjF1HN2LJM3IM4lDXzxs1rQ0RSrANk3muUDLnxo0bNGp1GrU6hkCLn2UZAkUSR4V4kcCxLTqdNnXPJQx9/EKTw7XqeF6dOEix7JzcKNiLDZ255AaIXBVDk9qoLpalQEfQjuNgiKQqe+lMwiOX+jr7vk+uBG6tjmFI5kGAZRjUPVerfppOFYmXvY+y1GaaJqEfFP2eQ4bmOI5J45i6VyNDLgxP5tRrzWIgs3htoqlgFplqSwizkWk4cyF0SaNRw7LMCnUUoh1AJjWYwzRtfbEKFdHcN3QkXGRhUkpcy8aznUpNssxA0jStYNhlGavXXaXRaDAaje4qbbmuS68QtnJdt3IqoPnfGo0Gc+ljWpDJDGEYtBpNTAtm/oSnP/wUt37zd/FcGyEU87lPq9siCKe6t5dJzp07x9lTZxjv92m0mtV39c0L59kf9Ol2tUzA6uoqUajBGVtHj/Lss89ysDPlgQfOsrGxwWAw4F//699hd3eXRx99lMcee4z98ZjBYKArDkHAZDal2dTXRS6oj5YghkP5ibQKHEDT8xuGQb3WZDIYFrxgHs1uHZkblCqlnuPS67iE85TXXrrI93zP9xAHWr48TRJG4wnLy8usr6+zeeY0a2trnLjnNHd29zn7wIMYhsFzz39DA4isiZbfsGxa3R5CKGSe4vtzas0WURS/90bzPVjfNnLCAI7wCMYJRDZO3kDIHNc0kVmA5+YYdoRVCzG9ORlzGoVmx83BgFmQYZseSAiziI7lYcYG0UyQSYuUBMOJSOIJnVqN8XSC5zk0WzUy6bO5tcL65gpuu0l3fZUoz1laW+XeBx8kNwWZEFieh3AswjhmnJpY9TUse5U0rnHz+oidvTFYLtM4Zrjb5957ThL7Mz76kQ8XMwpNHLtF4NsMhpLhzODFt67irRxlZzYlIWd3/w7KluDk9Kf71DouXtsBJychQtkSoTxqdhuUC9LBMhsYyqN/MCOcZcggxjVtaq4uPWEIBvMJ/dkYJVM9MFZIkjW8OmmUYRsOjumSJbp+DAam5aGwSPKMIPXBk2BqWWdhKEwjJ5cxtimxTUndVjTcFFuEkM5xRIohY1wBJCle0atQSuE5FpYBRp7i2QpbJaz06ix3HGpmjK18aiKkbiWYKsBSMWE0J0lDZJ6QZhFJGjIa98lVSpxoh6KkZjswpCILY1zDotNqa8RgnuJkKbZMEXGEyCJsQ4GMkHFAliUkSUSWJeR5Rr+/r2ej8ozUmJEaM/x0Qi4iMhnjBzMCf4Y/n+MkMdl4hJjPMfyQdDihIQ2cWBIdjHAd8ByFY0mC6R5CzjGyKfFsD8+ISMZDjCjgxNoKLVPQtgxWGzVqSiJCn422h50HOGZCFo8xVYCjQuxkDvkc107JsynNOsThAKF80nhEFPRhNMecxzipIJwFhGHE4GBIw6uxvXGEjz/9GKfWG2x34eSaiZ32Weu4kMWaFaC7zs3zt4mnJptHj9NcbnDh5lvYbRdvaZkoHLG+1mQ82UPYMcqI+cqz/4bOSp3aRoOvvv51EksiTcHzr7zC7cGI518/T2B4hEKxcuQItjD1HEji87vPfpneageVhLQtl47XwhIOUZiidf8MHEMgZEwWJ9S9Gs16HQOTNJLkCXzH+x7FMh1WOj02V5ex04jlegMZCqZjC2Ecp9OoE81nhMEcfz5lNBoRxzG3b++wsrLG1voam2ur3L52lXOvvIw/HjEfDVnptFntdlhbXibPYkQuEbnERDAdjlFpThrFWLW/OGqO/yHr2ypTmc1mVQMzyzJSkeE6Hs2GLmvUaw3OnL6X6VTfAPcdPcUomLDf30PKlNlsgp9ottHIn9DuLCEsk0arhWlZSBRJlrJ1bJv7PvABPvcv/wX3nTmBZQqOHlkjzzN8f8Zyr8PZrQ8w8WM+9KEn+PznvoDdWMI0naq8BFTlBZOUJ558GGFnvHXxdZ555rsYj/b4iR//Sf7PX/oVPvrRj3Lu3DmuXL5GrhI2lmuYpk2WJTz00EO89torfPFLv8WTH3oMRMp6t1uR0pVKd6WCoKafzzBLxcWCbFMo9OyDIYiCgjU4Oyy3NBybWq1GlGQoYWI6BsowkErgeB5CmPhhzP6dHdYKAaKyN1GVYPKcJD3U5S4zhTIrAUhFXqCQDBxHYttuVbZKkohMaDg4JXW5pbMMz3a4s7dLHMd0u91KC6Mku3Rd+xee7AAAIABJREFUF+E0qv4J6GzF932Wl5c11LdQpCwj2JJYsnwtWUyaavRcHKcEUYQwrQrllSX62MqyVMkwnOc5Mj8k1QyEgUx1QGMZuq8RzGVR3ipR8rqfUb7v2rVrbG9tVudqOp2SxlElt2wssPIeP3682ueS1NDzPGaDPq22ZttuNhqYOcg0w7BFxQKd5zn1er26NrVaDWEZOK6FEIqu1UWqHJmV18zg9KmT3HvqBF5NE3q++sY5futLX6LeqLO0vM59J0/yO+/8HlkKL7zwAtsn/hrLy8tk0qDuejz20FN8/vOfo9PpYFkWH/vYx7hx4zoPP/wwk+dfrUg3T504yT/7vz7DZ/75r3D2fd/B//qP/wmdZc13dnRlje3tbaSUbG5ucvv2bdaXljBNgVBw48aNwwHdnOoeLEuWm5ubZGlGXgAWptMpjUaDpaUlXnvttaqUaZraecVxzJH1o4yGEzzPo98fsnl0m8lopEXd7n+A3uoKX/nKV9gv+kzn37rI0tIS73/4UdrtdiWFXa/XOXnyJOPxsAAYpQgMotD/FlnOb+76tnIqL7300h957viZDU1Zb2rDZgqLRq1Jr7NEu9Zk6I8r6vWl9iqBihFScjAcYHu9QjNekcgMqXIMQzeMP/rYI5w/9yoP3HsPaTTj5rXLnD59D5evvMPrL73E3/rp/5R/85Wv8sorr/D3/v7f56tfexHXa3Lt6g26nQ7z+RRTZUxH+7TrDnESMTjYJZMJ09mIpe4yjzz8fhq1z/OL/8cvkSWSNE4RhmI6nXNwMGA6mbO+vsH169fJ85zz58/TaLo8cOoUvu/fNfBYNuHLlQOebZMCIhFQoKUMw0Ah9UNpXZhGowZmMUehAGGAEKRZjiLFFgaGkVd9hbJ5vSj0VfYvgMrQlw328stdliIM47CmL4TAtPTDMNGklYsaLmgkmeu6WK5T0aqXzMolLYtSCrc4H2UjW+ueD+6ibCnLJOUsU8n7BpCGGlGFoXsyXr1OKg+b3+V8TWmQS4eqlC5rlD0aE4Fl6BmV0qmQZ8X5UsWcyeGgphaeG1YOopRFtk2jKq9JYZDKhCxJkWlGrVYr7vdDBoFWq0WGqmZ08kw7TMeysYpSpJSa0oj8cK4lB4QAKbU2jnaiWaFNoiDLaLQbiDxHCLjvzGmML8Lm+jpeU0s3v/7aRe7c3md1o1XN0uzt7dE+tcru7i5HjhxhNpsxmUyYzWZMp1Pa7Tb3nz3L8tISrmXQ6/X4xV/8RfYO+gRxxvLyMjsHN3nq8Q8yHA65du0amakle0GXq+tOC8OA/mD/rnusvC89x63ukSzLyBKduUgpaTQaTCYTTpw4geM4utxcDNJKKVlZWapmeoxCDurY9nHuu+8+BHBwcMBjjz3G7q5mEi5F1PI85xvf+AZXrlxlY+MolumwtrZWicxFUUKaSqSR/umN4Z/j+rZyKn/cuv7ODtfZYfueTdbW1giDFCnzClZ85r7TCFPhNVyWVnrcurTLYDokTVJyw8Sp13GkwGs1SLIMQ5mYlsF0MuTv/MynifwxF8+9gopXeOfN1+h4Lh/6gY+zdXSV4WCfZm+d7TMPUO90mUxDHvnQh9nf7zOf+TiOxfJyD0MFvP3OGxzZWub+B07TH9zh639wDUN1efKJp/D9GEOYhehTnetXriMzHUk/99zXWF1b5tKlC6wfWWLjyCZf+8Ov8thjj9EfjWm324hcEQdhYUwsVFFTT7IMoxi0yrKsamyXEgDzQp9meXm5oosYj6cVGaMwTYRlIYWBHxaqil6NLDk05p7jYplW8aXTJcDSiJcxuVk0tqWUqNzAEA6GAUKY5HmGYZhYlsA0BbHUzqJW1Psto5zlEHjFc0A177G0tFRlQVERpZb9BNs2mc0mKCWRUiGKiL7sS5SNbI0yc1FOsd8CwtDDtF3COMK2NfX5fDzQTtmA7c2NSrN8NpuRSqMQajJp1uuQ64yIXBUIr+JvigHDhm6oyzyttOrDMNSGv5AlyDNN1W/bNk69cReibTKZVEN3SuljMwwDmSXI7FDOue4U16m4LmmaEgRBNTire0qy6AXlWK6lafTRwIM4TnFFjpAOSRSQxD4YJv/Nz3yat69ex3RcXn3lFS5cuIBpedRDi/FsymQygVyxt7PL+kNndOR/5AhbW1u8/PLLBEHA/v4+t2/f5vmvP8ff+LEfrSheXnrpJf7Gf/JTXL9+HcuD8XjMsSNH6XQ6dLtdXnrpJT7+1Ic1qWgrw665XL58WQcmhgEF2WmJjjt5/DhprFUbx2HIZDLhB/+jH2IUzRgMBkgpeeONN3jooYd45ZVX6Pf7eJ5HFKYcObLMrdEtet0urlvHcTxmM584jGj2Oly5cp2lpSVc16Xf73P//Q9y48ZtTp48zdH1TS5fvkyWJVy+eAXHdAhmAc987Bleeukl7uz/xWMg/pOsb3unUq6bV26zvn6ULNP67XGcMQp9RKTV/Gq1GoPBQOtbe4W8aI6GvWYaJeLVTJIwxq03adQdZrMJZp7S63RwjC3eev0VTp2+l9Vel9l0TKtRY3PzKHGcEiUpwvbYH05QpsXGxgbDgzu0mk1MYdDu9MhESBjqBmur1SGKIsg1geDcn1OvtRDCqGYOQM/lvPzy25w8ebySPg6n06p5u1juKaNMwxaootFtmyaGZWIBUuimtczUXVopGoqsSyllGUBQsBoX2Uml81Cc7/K5Uuzr3VoqZcQNh9opmi/JKspPBkJkGsaKHgbU2dPdehJB5ON5nma+LZgCSo6vEhJb7g+Wi4Bqot6xbeq1GirPkXlOEmgDXVKhzOfzqpTaaDQIo1R7FEOXi1RB8WEYaUULVGYWJUVQqdGSysNzmqYpMtWvL+Wba1VGJSvGg5JNOIoikiSpss8s0ddWLSDYZrNZxWFWntcS7ZdlGaGUhHFMpLKqhGab756nOdR1L1eSJJo9QBi6N1QAV0zD1OwL8wCvWwdyHEdnqJbjIYVFOJuzfXKNK9duHzr2KEKYBt1ul1s39wAIgoB+v6/Rh+J+2u02S0tLhUbMs0ynU4Ig4M6dO3z6059ma+sYCIHKJK6rYdm+71cDm6Vcr0MRlGAzmYyrzBhV3o8mjq01WEoOMNu28aOY3soyB9dGFQXQ/fffD8B9991XlZY7Ha0Q22y2adTqLC13dRZqWXTbHayaVhhttVrs7Ozw4IMPEgRBpUZpNQzOnj1LHOtG/9vvXOT7vu8H6HRafOpTn+Ll19/gK1/+6jfF/n0r118ZpwLw4nPfwPF0NOt5HlvrPezM5bEPPsa1c+fotpp4bo1RGuI1WwjHIs1VFQE6To008knTmCgKaHbbqAR6nRZHVlr82Cc/yRe+8AXIU9odj8cffYznXnqZT/3UB/kvPv1hXnzlLV597S32Dvp0VMLx48d58fmv8L3PPMGb51/kwfffx/mLb3H6vtPcufQGIlf81uc/T81rcWz7JKPRhP39feoNuyjzeMRJyObmBrZjMZvN2NraYnjzOvPpTCsaBiE116ua0IYlKnRQGIY4lk2jVtOlAZkXRi9BygzDFBimoNlqECUJUSTxitdqB6XI84J7zNblHEPaOJZN3asVZR1FrgrEjVKkSpdQgjCoMoEsLzTDBeQyZ9FRJUmMaYFhulrRUhiVUSznWKSU+FFMy7Z0CaNwAkBlMJvNJmHoL5S0FNNpzPr6KmHoa52KQoCtNM4lom88HutSTcPB9Ryk0nrilm0znWltcCklWRJjFMisWaynqqPAx3Ns8kRVCLV6kQ3pJTEtsSB6RtEX1CUsUbA9tFotrUC4tMRkFBcyvBoR5/s+ShgVGWLZE0oK2WfHcUgzXc6JJiPCuY/INCoxz2Q1fwJgCQPDsjENU5fRHJd5HBXCYT6GraHHApc001Dvfn+fbqdBEumMyjLg5Zdf4tSJ49iuQ6veIM8kys7x6jXOnX+LDz3xOM999QWOrhzj5s2blQTwyy+/zMmTJzEMfU6efvJD3HfPaX1+05T/7md/ltF4ysbRbWQcs7V1b9WzG4/H7O7ucu89p7TTjSW1uk2YJQyHfYTQ51ZhYFkOeZ6wsbrKvafPkGeSOJOV3EKUaJ6u2WzG/v4+S0tLlShZJbinHBDFEKuhBfMcy0AIhee6WF6tQp5tbW3p70cR0OR5jmc7Rd9LIxrvf+AsUqaV2GC32+YPnv4gf/i1/yCtwj/39W2F/vqTrCSKK5LFmzdvs3vQZzSaYFkOYRATJSmplFrhLUorOVvbtrGEgSkMxMJwmWkKsizRVCL1GqvLKzimRbPRriglJuMxs/GEra1jVSR569YtfF8buf39XVZWVrAsh6NHt6op7UcffZRHH30/KysrDAYDRqMR3e4SSaINXxiGuK5d6Vp3Oj3m84Bms1kZqbJ3UCrfmaZJmMQVTFopRY6+2f0w0HMjRUN/UTmy+pucXKbILMMQSlO9CDANAYXO/eLwXfl7+Vnlz5LfCLgrk9FZBlXmYhgmhrAKI2xU2y33qXx/xWVWOJzFzGixlyFyzSJgKA2bLh+GOqTBL1f5OZZlFUY9qjIf13WRMi2GLfWjzHLKVWYY2lmYCGFU29TnQBWfd/c5Wvy9PO+L4IISjJIkCXEcV9nZIs3LuxU4pZQoKWk2mxW/l8EhtHpR5bMEK5TvLSlfFg1i2e8q7zPQWT1oR+5YuhcVhxG7d3aqeaBaU2v7HBwcVMdRTvf3ej263W6lOT+dTtna2qLX69FptavMe+voJk899RS95RVWV1dxHKeS/O50OpXyYhmUZDIhk0nhDA7PSXkd11ZWK2AHRV+tPM56XZNGlsdafjfKEq7g8LwoJKYpiuOxyPMM0xRoWLiqaHRMU2BZBrlMUXlGlqbILCWNI/JM4tgmKs+wLYPTp+/5M9u8b/X6K+dUALIkJYlixtMZ/YMhF9+5hMxyTUwYpeS5Hp5zXZc81XVX2zBRqjBMSt+YUuWIgjKj0WhUIkhHj2xw+uQ97O7ukmUS29KUFL12h4O9fb7joYd48MEH2dnZqVBCpmkynwVYpsO1q7c4cfw4uUx54P77uH7tCmEQIBQkUYJtuRiGyWQy0UYh03rYZfbRaGhCzcXyElCxDaRpSpylBTX+oSEr0U6Lry/LTGX0bhgCpXLyPEMIhWUbhTE1ij6IOOyZLDiYdxvK8pjLdehYigaxcdgoNgyDXAJF6avseZTbWjTkiwOHi2SpZbP9cDbhMGosSx+LTmjx2IHDhrvUpSHTOsymygZw+Xe53bKEteg0S6dQGiel8rtKT4ulwfI4gYp1unzv4j7qprskz2R1b5c8Y+XDdfVEvcFhz6x0DJZh6lKYYd71sE0Lx7IrZ1+yFIgF1gHNJq3IiuMsj31lZaUyzisrK9U9NJ5OsB2Her3OvafP0OvoMmMQBMxmM9bW1tjf3+fmzZsIIejvH3Dp0iXm8znLy8v8xKd+jEajgeM4bGxscOfOHabTadE4X6nEyCoizzCsztm7r69h6CCxdGrltTNtG6OQC4dDwb92u11lguV5MMxDFoIkSXQZVMkiAIlQKidJYqTMmE4nRFHIcDhgMOgzm00JwwDfnxNFATJPmfu63zSdjrl8+TKtZv1Pbef+vNZfSadSsfVKgyjOefnFN3j19QsMhjOSTJBJSKMYf+bjz+aQK/1FQ4DMsJUgTGMM2yZJJbZXYz7z8bw6x48f5/HHP8Bk4vPBx57Ugk6uR6/d4fb1a/zAM88gIp0plXQyN2/eBmVw+dIN3nn7Fu3mOq1Wg9XVJQaDfX7u536WMNRfKo3k0nX+TCasr6+yubnB9etXOXbsGKZh4TkujmWTZ5LQD0jjRENHEeTZoZEzbKtotsbMCs0YrZOio6vyYRiaSVcYCs8WtOoOnUYNzzKo2SaupbBFji1yPU9jO1X0j8xB5lV2kOYSZejPnsxnSBS5gFyAMgRJGpDJCM1Iq/tfUkKns1T0WQrCRXnIWAt383gppanHo6L8UyHMDI3CKo+lfCikjmYLI172DUrnk6Yp8/m8QnPleaap/E0TwzxkJU6TGEOgySctE0OAbZnEUUgYxCRxRp4rVC7uhr6nceVEyoHb8vdFvrJWq8Xe3l61n7qnMa/eA1TGstxeNQw5nVVEhfPpjNlEG69gNq9eV/ZtfN+vtNLDMKz2wzB0iS0IAg1pLvtFSjGdR0RZjhSCJMtpNNvs7R5g2y4njx2n1WrR7fUwi6yvlE5IoojZbFYh5958801OnTqF53k0m03q9ToHu3vs7+1x5Z1L/M7v/I7OZkbjKihpNps0Gg329/cJw5DV1VXa7TaO43DQ38EsQAZJ0Ysqe26uUyMOQ0SRzYcFpPzdSpCe56GU4urVq1XvbDabkWZxlXFmMsK2DaLYJ5P6Hk6zEJnHJGmAzGNyleDVLOoNh063QZqFpFlIkgakWcho1AckB/07ICSTwQHtxv/vVP5SLN3Qg1qtgWU5gMF0OiMMYqRUBZuuLg+0220sYRD5moTREgbkGSjNXSWlxLQsPM/j9s4dpMz5+te/jmXaXHrnMlkiefvtS5gIdm/f4RsvPM+L33ienZ2d6svsui6zmc/q6joygzSBTqeF69mkWcw7ly7y1FNPaWlTDiOnZrOJaRkMh0NAR2AbGxsV9r40LFEU3cVDlRZRculQkkwbMbfol5Tlj7KvUH4J0zTFMjTtiWmAIEfJDJlmZGlSTdr/cSWU8rFYYioj7sVMxjB0OaiMBg3DIEtzLbQmD5FbcAgGKOdESj6yxRJZ+TrNdaaH1C3DxED/rWReRfXl/i5mC2W0bRgGaRZX2wQNsdUMwIflIP28rJxeyWOWpvKuLOkwSzvMJhdLVuU+l86yzKbK0o5mcjCq8+T7vha/KhrW5fGXTrIsgQVBUPGqLWZEi06u/Fk6JNM0K4fUarXuEmcry6eqYK9IE42wA4Fh2XhunT/8gz/QVPBBQKPR4OjWJi+++GIlhlVeu3a7zdraGlEUcfny5ao0t7GxwYkTJyok24ULF3jnnXe4dvkKQggmk0lV4hVCVAFFo9G4C6hR3k/ltSp/39zcRBVluPLaqKIKWn6PxuOxnikr2Cmm02nxedqpeJ6HZet+imWZOI6N69oYBti2iW2bdLvtomfiMx4P6TQbeLaFa5lYhtAADFMQByH7O3fodrscWVv/sxu8b/H6K9WoX1zr6+vUaz2u79zCrdfYbnfIohCrVsNpNGhKXcvvtLr8++e/wbNf/Sof+fAHqDs1RA6mY5PlCsN2SKMAt17HNCxeeOEFXnrxFT7x/d/H6dP3cvTcFX7/y1/hh37ox/jYd34Ez/a4ff0GsoiOAJaXVxFGynTiM+hPqDd73Lx1g1u3bvDWW+fYPHqSyTgCCuinLZAy5sjGWmG0Io4ePcr58+exLY+enVXa7SWkdjabEYahzo6EXRng0oCUzfz5fI5natSUKOYgHMchKsgSN3ptbWBiHcnXag3d1CfHsk2ChXJPhRzjsI/ieV4V7dVqtbsyDaUUihRheJiGhW3rzCAMYmYzH8MwydHHpjh0MK1Wi2A2J89zgiCgVqsd8n4VcymlkS+Pp3SaizXyXB7O0ZimeVfmYpomToGeE6YumWSFQVZKkcm0QhctqgmW5bk8KehWFoy4IiPPNKrNtJ3CoRwivlzX1ZxlhbObTCaA7lks9jj0cVnV8GLJDbaYyRmGQZqkSEOXaRzLxhYGkZAYRQmzZIMum8vlzyhOMC1R9JF0w1/gIgxNDWPXLRqtNjKOmc59ptMpGHp2aObPq+DFarSYTqc8//zzVcawsrRMf7bHbDbj6tWrfNfxj7C7u8uDD2pKE9/3GY1GvP3222we2eAT3/tx3jx/gUa7x7k3L+qh0PUNrly5wurqKseOHdMIyDCk3XRJkqhwiAUM27AwTQcps+rclOcrKtibTdsiy8s5LcW1a9fI85zjx49jGAZXrlyh3+/TbnfZ399l7k9Z7vXwahbBfEqzWWM6mdBZXqnKliVcezAYVOi+9e5SpZ/iujZKSfb395n7U2azGcudZQaD2bfMJn6z1nuWqQghtoUQXxFCnBdCvCmE+LvF80tCiN8TQrxT/OwtvOfnhBCXhBAXhRCfeK/2DaDVbuA1Z2xteKy2HII8ZkKC03LI0zmtlsCxYpABk+EuJ4+fIFcmbqvHLLew8hyzaJZjGmQIsG0eeN/DnD59FkSK5VqEMmU8m5LIhNnoDv/xjzzDT//4x7HcjNF0j3bH4+BgB8exubVzDasO2AmxqDMYhPTa66x01pBphrByZsmU0axPlIZM/TFLq12kyKi1LEw3p7PiEiQRpmsTpjEZmmtrGsyZRwG5UTSg85xMKvw4Qdgu0rQIZU5u2YSpi+n1sNw2SQ5+mOA6TZr1ZcLYwrS7SGpEqUUiLeLMxHQaxJlAOYLchiDWtCdJHCOEgTJNolxh5QpbCBxhgoQ8zTENlzRRJKnCtbtkiYnMDAQa3qwjS4VhKFRuIzMTmQkENkqJqvwTz+aYMkfFCa5hgYS6WyeJc9JEoTKFYzr48xjL9EhSQZoZRKkBZh3DMvHqNZI0QqYxRp5iqZSayDHTCCu3sZSJkAbRPMQzPVpOA9fwEJnBLIiYhyGmZVcOizzDFAqLOabysYkxiMllgpK5psuPc0yVgkoQFqSkSCMnkYk27mGMymI8x6LuOZXDUMJACYMcwTyYIFVCo+WhRMZ0PkKqhCjxidMA5RqEWYQwFJZjkpGx74+YGylhlhBmCXGeVX3CMutK4xgpfSxTM1yrJMcTDkaWQRwggxkqjjCikIYpyEXGa9cuElg58yRgeanL5sltojjEdSxcYRLPfO679yzCsBmHIUmuy2e1Zov+wZCb12+RxinLvWX27+xw5/Zttre3uX79OufeepNbuzuk5Nh1jyONJaKZz8rqKrdu3CAZ+Zxc2aBu14gySbPe4uBgSJgIogwyaZLGGVYOLjmY0Oq2cGoOjmtppuCiSb6yvIzKc45v30MSSaIwZDTaQxhzouQWF298DWUf0F3KyOUBo92riGhK0u/TQeBlAW0jQ/gj3NSnJVKcZM6p9R5rdYtmw8I0fbz6jDi9SZLtYFoBg/4eNdfjen+IT/7/acf+Iq73svyVAf+tUup+4EngvxZCPAD898C/U0qdAf5d8TfF/34SeB/wfcD/LjRRz3uyyvKBUkqXLywDRI7nOVphL5V49Qaz2YyjR7eYTqccO3asSrVLHRKj6AXPZrMqgvzIRz5CGmfEQch4OML1bIbDPtvHj/Hq66/yse95hn/0j/4hP//zP08cp5w5cx/1ep37zpwljfVUdDDrc+RIlwfuP8nTTz3GM9/9FPefPYnr6KbryZMnuXblOs8//zz+PKBeb2rOLSXIcohTCYZFnEqCKKHZ7iJMm1Tq7CJNJfO5lpYtSyclVYfIFUhJ6M/IklhDV02DdrNeDAqmlL0WKVNqNZc8z4rnjMOZlQWU0F0lsUxWtf9FhJNlmFWvqYzySyaAMsIvt19Ge2Wpx/M8Op1ORZVffl4cxxXqbbGZvtjkLiGpUmpa+cUy1WLZpCwnARU7cFniKsuEd82mLAxQwt0lrrI/U1Lll9nIYmYEukRYZrRlGav8zHIo0vd9bNul1eoQBBF5Dq1WB98PaTRamKbNfD6vekVlT6Aceo2SuNp+iYwsUWW+71cOsiyhltG1UqpgjD4cmiwF23Z2dlhaWmIwGPD000+zvb0NaH2TRx55hAsXLhBFEaPRiKWlpQph1+v1GAwGvP3225w7d46dnR0efvhhLMtieXmZPM958803q5KU7Vp0l5dIpB4svXXnJuPphNs7dzAswWAw0DTzRU9IcliGtSyLY8eOkSRJ1dAvr31JhVOvabbn06fvYWVlicuX38Ew9HEkfsiwP2Lnzh79/pAslxiWjVOvYTguw+mMWRjhxwnTIGQ4nTGcztg56LM/HPHGuYu8/sZFnn32BS5cvMJBf0wYSTaObjOdhdi2WzGC/2Va75lTUUrtKKVeLn6fAeeBTeCHgc8UL/sM8CPF7z8M/JpSKlZKXQUuAR98r/avRNwcGg9dGzUtA6UkmdLyr3GqJ23LBmU5AKiUrsmXSzPoWkwncw4ODrCEZnP90BNPEAUha2tr+L5PZ6nH3PfptFu8+cY56vU6zWaTkwVaTAhBs94gTX1kFnL50nlMK+f++8/wiU98jP/8p34S0zRJkoRaQ0/vWpaecjaESRQleLUmtXoLy/Zw3DperUkUZ4RRShRn76r5Hxrgcslc68qU8q1KSbLCkQBVb2ZxOLKMbBchuYt/L6LCQDO9mMVLFYclmkWRrdJ4LVK5lNtafCxey8W+QK1Wq1BLi/u5iNaq4LYLZboyUCh7PWl+2B8pnUJZPitnmBafL2HIpXN9d++o/Myyt/Huz1/sCS1yj5WvK3srJbpMn1ejeghhkiQZnldHCJMs02XB0rGW56J00r7vIws4+DwMKrh6FEU4hbMEKse3eN1Lo1c6JO3g7GrQVkotVX3lyhXG4zH1umb/fvLJJ7n/fj3oWB7LYDCg3+9z6tQptre3cV2Xer3O22+/jV8ASR5++GHOnj2rYcadDp2lHmEYMp5O2Ng8SmepR73VxHR0UBJEIf1+/64GvEZT6PuqLA8vfgfKQKPZaBMEAY7jMBwOuXHjBu12E5mnHPT3GA8npHGCZ3sFVLsGhiCIEybBHD8MiZKEOE0J45hUSlqdDlIpxtMpu/sDdvcHvHP5OgeDMfv9CQeDCecvXibJFMOhltv+y7a+JY16IcQJ4BHgeWBdKbUD2vEAa8XLNoGbC2+7VTz37m39V0KIF4UQL/5Z9qlC+CArDHk5vW2agiCItAJbqqfM6/U6o9EIAah3zWOUsrLtdpvd3V16S0s0my0Mw+B99z9As14jVxnDoab+9hp1xoMh33jxebIs4/Llyzz33HM6WioMxfpyFyVTZJ6gZIzrmETRnJMntpBS0u/3ef/7H2VjY4P5GObPAAAgAElEQVS9vT0O9vvcc89pXNclTFImc5+rN27yzpWr2F4NTAth2aS5YjQak6YZjuNWX/zFR5YkVUPbNjXlt5K5bmwbCokEE4QlMB2TNE8RlkAZ6o+c58Xm9WLzN0vSwwFAeZjiL2Y2i/rxiw6hmogvYKOlQS77I+XnVrME4m5d9nKVEXg1Da8O97k0muUjU4cQ5bKRX+5nafDLbS5ma+WxL25rcdq+hLIuOubyPaVTuWvWRB3OHpX9olqtBsogTaSm9xcWaSJxnRpZmhcQdN0HKkXXyuyp3O8yaKoiepVXEXx57crMrkTGeZ53l/ZNub9KKer1OpPJBCE0+8Px48erpnqSJDz33HPM53POnDlTZSv9fh8hBMvLyxWCa3t7W0+5+z6z2YxXX32VtbU19vb2dFbUbJAXbHWZ0tnLdD5BAVESVxmNUgpzYY4HQJgGnU6navADd2W1s5nPZDJDypSbt64zHA4YjYdcuvQOQRBgGzae7RWCfglJljGbB/RHQ/qjMUGUESU5caqIkpwkA9ttoISNMF2GoxmTaUCt3iFJBUEgmUx9arUOs3mEZTr0+3/5nMp73qgXQjSB3wD+nlJq+u4v9uJL/5jn/oiVUkr9AvALxbb/qBX7E656vY5bc6l5LR2NeC5uauEHOn13LMWly1c5feoxdvdvcerUGVzHIYllNQcgcoFQBgiJY3scBHvYnsvO/j55MCPNbaaRYnNjnX/2y7/Ej/34T5LKBMOxGB7scmzjKNP+HtPpnCia0260ePjBh+h2u5zc7HFkeZUnHv8gv/3b/4r1jS0eefRxXn35NZ544gmee+5r3Lx5E9e1+M7v/G7NwhrnpGnGzM+YX71TlTEGo6CCRQ4GAzY3jlCv15FZzmw+qb5UJZbfzAWOLXAdmzTLcGyTKEuwLRMpZGVcTNMqyl6locwqAwiHw4R5nmuN7kziNT3IM6TS0aJlgMz1cJgwIC9mUUqDWxq0kjQyKmDYeZboUteCsS+zL9u2sWybMNT0F1l+yG1Vvu5d91SRoSjyhaFKTRujjU+SpTQcXVpbLM/5vo9bq1elLtd1UTInl9pZuXahjKmCaptSygruXJbKPCE07UvBLqCRdiYyyzCNu+drSsOdZZrUUWdkdjU7ocuJBr4fVOex0+lUzrOM+svm9VK7w3g81t8Lr4YfhdRdD7Ohp+qn8xlmITvgCHTfKckwLLPiLMuyDGuhnJmmKfPpjM3VjWrgMk37lcMYDA545/JVcmlVTvL+e++j2Wxy4fx5rl27wr333qvF6I4dY2lpidlMc3G99fY7fPij343ruuwP+mwf32ZpZYnJS2Pa7Sa1ep12r8uNnZtsbGzwwmtvVghHy3KQySENzebmpmYuEIf0OnEcazLKWptGo8Yrr77Fzs4tprM+UTyj1fZoNut03B4qV4yHU+2UhIkyzMqBqSQnJUPKHNfVekZZpBGEq0eP4dY3OOjvsLbe486dW+Q53H/vWT73G7/Fk08+xRe/9AUG/emf1sT9ua33NFMRQthoh/JZpdTniqf3hBAbxf83gP3i+VvA9sLbt4A779W+1et1bEtDCMMwxHGsiqLBMAxmfojXaBKnkjCMDyduAduyMNQhsgmMSgBsNve55557mExmtFod6nUPlWsqjPFkiOM42LbJyePbfPCDH8S2NfTYtl16nS53bt1GyZzto8eJQslwMGdpZZ2vPfs8F85f5t9+6StcvHiRRqNRRfqmadLtLNHpdFlZWWc8nTMYTcCwEKbN7Z099vtD+sMxQZRwcDAgCHTJwbG9KkrTxvQwmobD6H8Rnlv+LNFFZanj3RP0cGjAy2yv3FaWJciCWr8kUSxftyhtW2YYZbbhFtrm74ba/hEW5gIFVbH4LkB87yp1LaC13j2FvtjvWYT5liWgEuL67mHPEjW1+Fz5e/mzckDFPrwbzrx4jhdXeQyLsgGLSo2LU/FlkDAcDqv+U7vdrrixkgLtlGYZFMi8LJeV4FcQBKSFUmJ5LcvZqtKJ1mq1CihRfnbJjF2e/wsXLhTfMYeLFy9y/fp1PM/j7Nmz+L5f8axVE/NbW5XQ1T333MP58+fZ29vj2LFjbG5u3kWps7y8hOM4TKZTchS1ustwMiaKAnq9HrWCrifPcxKpj1MZgrw4rSUVT3kdHEcDIVqt/7e9Nw+y5LrOO38nt7fWXtXdVdU70ACJhTRBkJBEW7YpQQ47RqY4I3ooyloiPBMj07I0tmU7GLIsO2x6bMWELTvkRbIsL2NrIcWYoYakSIqgoSFBQBQaSwPdjW50A9VL7cvbl1zv/HHz5ssqNsAF1UCBzC/iRb26L/PlyeXdc8/2Hc1u3Ghu02hsU654xElErV7JaH4sceh1B2xsbNFsdegNfYIwIgZipYgQQgURQiwWynZQtsMwigkSpdsU1ybwfcX0zDyzc/N89Y+f4sqVl/jyY4+/KRUK3N7sLwH+A3BRKfXPcx/9HvAT6fufAD6ZG/+giJRE5BRwBrhtpDfb29tsbbZQysKybHq9Hq12Iw1ODnC9ClPTc/h+SK1az36Unu1gqYR+r4eFjYWl88q3tljf3OT0nXfQbHW44+63gGXR2Nnh5tJVEn9AxbOZGKvT63Rpbm1w6fzzbKytceedd1Fyy4iyqLglttc3kLBGrXKYTkcxPXWSYyfu48uPPcv4xCKtZhvfD+l2+ohYeG6Fhx/+AU6euJNyqU4cWSSxjT9MEDyS2Kbb8el1A1AuO9ttbt5cYX19E98Paey06PV6hKEucgujiE6vT6PZ0i1e0XxQCmHgh2A5YDm6i2WsGAYR/WGAH+oVeHr/M4vG+KxNzxHbFkophQ1Kc1C5toXnaNeKbdtZ4Du/Os8rrjyVvvHrx3Gc7WeKE80KPx9AN4HlvOWSJInu/R7FiAIL0WmlArbr4Hhu9uyY4L1h8221WrsYAizLyhIETJzBBLjN/uY7TGwlzwRgYiVGdhO811TzMZ1OZ1c30l5Pp/G2Wq3sXMz1UUoxPT2dyRaGIc1mM2stbHrO1Ot1xLJ0F0/XwS2XEEcr2+pYnc2dbcSxCZOYF168TLffZxgEBLGuXZmfn8fzvCwVeXp6mvX1dcbGxrj77rszK2p+fp6NjQ2UUnz1q1/VNEatFvV6nZdeeokwDDlx4gQzMzNcvXqVdrvNAw88wPHjxzX/WuoSW11dJQx0l8hy2WM46OE56TnHITMzM7RazTQF3yGIwmwxYhaOhgfQjBl3n7kmrfYW58+fo93ZptdvUqm46XW3SGKLra0mzXYfxCFWFuVKnTiBfhAzCBPCSOEHMWK5WLaHwiaMFF6pSrc3JIoSPLeM61Z46eoNfu3f/gaPfvEPAVh6+ertmvpuO26npfIe4MeA94rIM+nrLwD/FHhYRF4EHk7/Ryl1HvgYcAH4LPDXlFLxrb/6teOps+fY2NjGH+qHfTAYkMQQhSO+p+eff55Y6fx023Iz379ZPQZDP4ul6EZYJeJYcf3mDcanpxkGPt1uh1Mnj1NybOqVKm5K3re6cpPLL76Abdu0Wh2q1RqVSo2yV6JWqRIGCYGf0GwNWN/cYX1jh5XVLeJotHrXLi1hdXWVw4fnOXr0OOPjk1+z8gZ2UYOICJ12j62tHdbX1zMWWOOOCaIIP4jww4gwTlBi6ci6Zae8Y9rNNhz6JIkijhPiOCFJdgfs8+6vfBDUsWwsCxxrtJI3k2A+EJynQNkbJDfnlP/MuC+Mz98UfuZrU/LxgXyMIo5jXQTJiHbDvE/QK89bFXOa45jMqMyVlhaL5l1z+SSCfJwoff6z62bOxVyXfFJCnBbp7Y1lGCoQyxLiOEIEkiTGsiQtxCtlAWhjccdxzPb2Ns1Om0a7pelBOp0sG86yLM1yEARMTExoPrxUWUZRpBNZ0sLFvffG9/2M+bvf7zM2NpYp0tnZ2WzxMDExwcLCQsprN4nneVnQPgxDLl26lG3XbrdZXl7mmWfOs7KyguO6jNerlL1Sdt9tFN1ul2G/x7A/IEhdfGYRoURzlCWYttDOrsWFibGEYUir3WB9Y5kgHFCpuJTKbpqgYdNsdOj2B1hZbEvY3mkyDCMq5Rq16hj1el1bgumCoNfrIWlhMoDnaUvvqbPP8IXP/8G+zm9vJG5bTEUp9WVuHScB+L5X2OejwEdvl0x7sb3Zo9e9xuLRQ4Sxjzi2Lg3GYnVti25vwMc/9glOHj+N48ZMT83T6Xap18p02z3iQ4phv8/TZ59n6He5vnSNZrON65T40lceY2N9i6mZWf6Xv/K/snjsFDNzM/QbLWq1Gg+87V5+07EZ9PvMz89TKdc4feIUQb/F2uoKYRgjjsvU3CxXlq4TJIq/9KEf5bOf/gxA1iVQT6zC8s1VTp06w4Xzn6bklJDUvrfF1rUgto2KFEN/iGUSE2w3Xfm2GPp9+v0ec3Mz9BOd8aWIcHxDYqjZg23bptMdZhO6cXEMh2kxpOemkzujymuxwEp91irEEgfX0q6sROkeKokooiBGbG9XIDi/8s67g8wErov/FFGc7Frl12o1bNejXq/T6Q3o9/ugRpX6SZLgoCdD0kZWVcelO+hnCtiyLJ294/tYjk1gkgdS11e7oycJYzXodNpy1rDJ932skvs1iiVvfRj3lf7eUUKBSW+2PI/Q9/EDP1N2RkHkFVm5oosnS2UXPxgwGEap1WbT7bV1IkWqfKvVqp5QSx7tdjuLtyVJQq1c0UpWaeU+GAwolZ1c4zLJrCvjkjTK27ZtZmZm8FSsa7pKJYIg4Mknn+TSpUt4tbG0ANfjwQffycZN3emwF7ZwbUfHOUslvvylL5EkCfPz88DzfPazn6Xfa/P2++5ndnaWu+46xbu++z381m//LtubW1x/6WUmpsZ54G33Mzk+gQoCWo0mXuqBiJRxB4bYjBSIWypRqVQy5W5ZFhcuXGBsbIzZ2Vm++sdfAvGxnZhms4HjaBlXV7YJfCG0Q6pOiVjZiGVRq42RIPh+gJUuwPJkrtk1TlnSn3r8ST7zmc++TrPd64fvSJoWA8uyGQ4jlpdXgVH1cZJApVKhXh/n8OEjNNutLAsjq7Qe+sRBSKlUYXZ2lmtLN7Kc/tnZWeySx8TUJEePLuAHQzzHYmtjk8j3NS19vc773vc+3vHAA7iOXs1Uq1XG62OQKHZ2tmh1mrQ6TTq9NtWJGgO/h+3ZGS+SUppSZvnmKufOPc/mxhYLCwsIiVYchkoliRCS7H1+hRyGI5dRxjuVQIJFrCAyrwSiRBEEEUEQEUUJIjZKCdoYsrBtd1eNillx52MblhqlEAMkqd/fQnA9Z5cFkLe0jGsIyCZdc5y9mVFmgjBpv5BOImlmT3bsPTGMLJaUqF0kj2Ec7YqdGMW0N+Cf5x7ba0UZmGPtpXXJZ5IZpQMjCzPr1piMOMLMqrdUKlGplCiVXGxb0vigpgmBhMFg5H4z18XI4nlepjCMchia/iqWrqLvDwbYroMSqNZrOiXXEpSQXRuj6IJAMy9UKpr2vVwuc++993L8+HGq1WrWiveRRx6h0+lw+vTp7N6Y6zE5OcnExAQiwsLCAsePH8/iVBcuXMg48GzbxhGLXq+DY9m88x0PUK9WqXglJsfHdylx0kw/87/JSjNWG+h43hNPPMH4+Dgvv/wyO40N+oOOzgYddDM2iHaro9O1LV15H6sEJTaNVlszWVTqWNhUqxVqtSrVaiV7TUyMU6tVuXz50relQoHvYJoWgG6vgedWGTBqZuQ4NipJ6PQHvOUtb2H5RoPl5WXmZseyjJ2Ka2V8SOMTVc6cOcPW1ga2IySRwrZcpvpzBL5Pr93h0qVL+P2Qam2CRrtDFMYsHBnjrrvu4syZM7x0dYleb5BlLtUrVUplj3Pnn6HT7+BHAWrQ4ytf+TLD4QDXsxir10kS3SckjmPW1tZ49NFHUWoUR8i7cczElqf1juOAOAmpVk0dR0oP4lZxPZ2dpRAUCiUJgo0/GI4m8GSUQpvEKk23HtVYKKVb+IoIlmh253zBY36lrpTCtR0GQbgrnmIUBJBaD6PAfN41ZrY1WWxBEKSrRj9TSPmAOIAS042R9H76OGIRpq4rsb82RThP35KvodlV55MLkgNfoyT3ygxpA7UoJE5GtCzGrZMkCXaqEM3+URSlSR8msUEXn0ZRkPJNOdraVLqbpElyMC5FkRGVe15hWek1CVMF5NoO3f6QiYlJ2u12pjiN3IYTLD9hd7tdqjX9PPf7fe696y2cOHGCyy9fo1JxOHToEO12k/Ub2zz22GO4NWH62DRRFHH9+nWq1SpPP302cx2dPHmS2ZnJrL3vyzduMoxS9nDboVoqUy6XWVxcJOgPiEplbLEgGZGOWpYFardSr9VqWRMucw+UUtRqNS5fvozvDxFRNJrbTE1N6HqwTp9yuYolDtgJkTKLK8XExAS27fLiiy+ysrKCV9Zxq/l5nQE3OztLv9/n8uXLfOz/+vhtmdMOAr6jlQpAEPapumUsVSIc9BmfqTEY9HESi2TQ5o6TE7zj/j/LjZVVhlHCxtYO4+MRi5XjOJMu3WhI3FUcO/0W2s2O7haYgO3VuHThHI2dNhev9giCZ/gffvAv8IlPfIyP/pN/xNFjc0xPTfD5z32K7/vT38s9Z95KvVyjs9NlbuI4s9PjnL9wge1rS1gxxHZAIjYkMTaQBAMcFKW0/mRzdYXla0sEQcBU7TCJZWE5NmEcESYhCu3yIknoh9q1E0cJ5XKFZquNImZmapJWs0+9rJiamkIpgRgssSCEKPaJEPxITx7RULO0miDz9to6b7njNJ1WhO1YODbEtiKJfMCm5JQIJSFRCXGkEKcEjotyyoBFPwhwSx5KwA8DTJ94EckI/oJwmKUaJ1FMGCd4jkvZqSJWOukiDIdDpqamEJWgwiEoRb/Zpz4xzrDXxnY8SpUqSRRp09RzEdfDHw4Ry0sVZYJr24gfYotHP+xi2w4qFETZOApiP8AjxvKgL4pOs5n55EWE/jBIJ1v9cl2bfr+brc7jOMTzHEIS/FC7/Uq2Jig1hXeRKJLhcJfiNEWXxsrxPBffD1EqIY4Vrmth2076voQjFuK69Ls9bFfzhJXLZbq9PsQJ07MzJHHCIAmz7KqS5dDeaVBxPRJfp1QP2l3iYUB1UmdOjpWrhJFiaNkMSPCqZRZlhsbGJpaKsF24fv0KzzzzJF6ljlAjigJeunJVuykrde657zRnz55F1FuxDh/GsiwWFk9RrU2xtPQi3W6b03f8AFvtNvc98ADPnbvA8YWTXHzuClTrVMbr9Dpr1FXI6ZkFgkFMZ6sJUcilK9foDkOiGLBdcFwcy6I6Vmd+cQGvbCGSYCvBTRJ+8M//OdrNdVY2XmRj7SZzRw7T7cbYdoXVtQbK8hifqtP3A6pWJXUFhoRBxJXrqzz22ONv0Ex2cPAdr1Rg1AfB9CRRKqFm/M5O+gMs6WY9Y2N+Sn63xOLiUVRMRupXq9Xodrtsbq7z8o2ttPjLwvcHDAYDLl68yH333cfJkye5+64TiIr5yZ/8SebnZlm/ucZEbZwwjihVamxubjI5Na6ZVts9Wq0W5VqdKI4ZDpPU5VHJ0kRt22Z2dpZut0sSJsSYwLMpAkywrFE6rOd5iOeg28B6xIl25xgyxjwpYb5vez/QNB5mxWdIBo3P2ExyImA5OgtKB+a1BVEqG+LElNDPslNXU2rxqFERYbZ6zrm+sEbpn0opwmhE6T+qn7GzmEW+GtxJV617iyG1+23kanoll9Vel5wZU0pljdOUUlnjqnyacL63CozaIZsVfjUX1zDPZP7Yewsy81aarnuJsmZd+Yw34/LqdDqQcnqVKmXi9Dj1eh2/P9CMDLZN3x9SrVYJg4BACWLbhCqksaOJEHtDn+npaYJU7ka7xcKeQL1JJ56enqVWqzE+McGxY8dYWd9Ku2h6LC4ucun8Sxw6tEij0cgSAarVKo8//jiHDx/OXGmHDx/W7ZKTSla3srCwQLVaRSlNFTN7Yi67TiYpw1g6+SQR2WOtOI6HiIVre7rqPYw0karothB2Soxp4nDG9RlFEVZq7XmeTnMvFIpGoVSAKNI/iOEgxrJ17rpj2VQqVWrVMZIEdprrWGmP8KNHjzPoKX7ntz7Jxvoq73nPe7j/nnuJIv2De+qpp2i3+mksw9F1LdUqly5epFIt8Zd++AP82Ic+QL1e5swdZwiGAyampxhGAX4csXjyOEnSZnJykrkjh1jfvsD4eJ3xqWm2txsksc/GxgZRFNHpdJienmZ+fp4TJ07QaDTYXtvBD2MsQRfFRQoRCxUrXWFdKeMPh5TLHq5t0w9DhoMecRhk2TcmZmN+uCY20up1gVGVunGlwYhp2PZcbImxbYs4DLA8D8/xCIM4K0Arlx1UGukxlofjOATRyCWUD85nE7IAMZRKLomKQKUcZJJohuXUdZYPJpsJ1na9tFtmKW2xqyd1ooQ+4MSjYLo5x3y2mP4bagLIjFVZK+t8NboJ8puEgyRJsr7meVeZcdOZMaNIbNvOeoyYWI5xMxk5Ru2HrVSZjuhn8tT0xs1j3GZWml47PTVFonTfmVK1QqfT0YsMSxj4Q6rlCnGcYCO6eK9SplarsbKyptsp2xa1aoW5w4col8u7Ylue59HvdTOFXiqVuO+ee9jceZy33Hsnx0/M0e/3eeG5K6ysrFCfdKjVahw9ejSz0L74yP/Hn/re7+bkyeNZ7Mek/F64cAHHLlOp6BjHHXe8FVd0qni7vcPh2QUSNWR27hgvLt3MYoWOWwKl3bTECdOTU9q6VbqOpDcY0my1mHDGubF8k2q1OnIRumVsO0rvb6J74qhRsW+7/easKbkd+I4O1OehFFmmhuN4KEWWrz41NZWt4A1R4MbGNr1eH0tcHnvscS5evEitpgko2+1mtsLWk0HAcNhPM4WGzM3N8PhjX8G2LNoN3U9i4egiXrnK2PQkiS1gKY6dOMpDD72LiYkJOt0WtgVh6GdEfJ20P/rOzg6NRoNKpZIWh7mUPRvHtXFscLLJWXNEmboIk15sCgoty2LQ11XYpntkvjOlsQDyNRnGGjCFeOZ7lDWqU8km9ZSjyqy6jdKwHcmsEmP15VONzZiIYIsmAHVs0yUy5WyzddZeGMaEYYxSmg5et2ZW2Larm4HtKdA0LXVVjirGHD8fkDdWRd66MJZI3oow/vu9xYx5Ikyzf/6z/PYwahWw9wVkdSWVSoVqtUq5XM4yjIyyNy5J0yMk/92Gh2KQKsK+P0RZOt3Xdl36KZWL7/uEScww8LNaD9txGPo+SqDT6+KHAUmkWSaiMCQOI1qNJvOHj0Ci2FhbZzAYsLy8TDD0WVtbIwgC5mZmKJVK1NNMKNO2++bNm7z3ve9lfmEu67R448YNlq69TKPRSNsztOkPdO+Y7e1tVlZWsmw4E8A3MaS9xaRKKd1XR4SJsTES0TVYUaRJSQ/NL+B6ZQ4vzFMqVXZdT5XsjpGZgug4jrl+/frtmpredCgslRQvXb3O9IzOpZ+ZmWJhblpPrnU9qfV6fRy3jOuWaLVazEwv6D7z3ZD6WJkXX7xKs9HgXe96B5OTk1xf3gIsHFcIfJ977nkrQTjk6tVLtDs+Sa/L5soG9sIc9bEaK2vr/OI/+MdMTc3wtvv/BN/7XW/l3/z7f8/coSP8yF/+EC9cvkzgR1y+colBb/g18q+srPCxj32MX/iFX2BnY1Wb6GHIcBDgI/SHIbGysMQFSzE3N8eVSy8wOzdNpVymWvLoDzRTcaPRyIrQpqamaDQaWVGjcZ3tTukd1VaIZeGHAbWqB+ggMUCiFLZt4aVFhJkbzrEzGpYgCHDsUZW5cT+aFa9xUznp5Ow4uu4gkQTbs3GdERtwvvDRyGgUX5LohATPK0OisBKIVagtp2R3+2Tj9uv1ekR+H8fR1dRmokpUhO+P6n+AzJLIB+vNORuKF2OZmeMN0+B7vkrf7G8yn8y4Icg0sRVtFQ0zxZbvVZ91sEzSa5oo6vU6SaL7s0xNTdEe6nTyBEVAgms7bLeaVL0S0+MTuOUSYRyThCFuuUQQRwxSZmMrl9lnqHRMyqyIzfjYBJ7tcOedd3L56jXajSbXrl1jNeVuc60a7d4mk5OTNJtN5ufnef7557OK+V53SLWq3a+zs9M0GtucPn2axcVFLpy/zMTcBKdOnWLY26RSqeD7PqVSie2dHRZKc3T7vT0ZhArbsijbLvOHjyCWhxIXpSLq45N0e00Qxeb2ls5gS9CuzWRAu90mCDRXoB/GGSXL2Ng455+/tH+T0ZschaWSw852J21upckge70Btu2m6bOjeoQ4Vjzz9LkskDocBuzsNNja2uIzn/kM0zOTTI6PEQz7JGFE6Ps6pXh9jWA4pN1o0tpu8fuf+jSN7SZJrBibGMfxbMIoYnVrg5ev32ByaorV1VWazSYPPfRuFo/Oc2hu5lXPYTgcUqtXqdV1KmOl5JLEPmHo6w6NUcTOzg6Dru4ieeLYcSzLYnx8nHq9ztTUFGNjY5k1Y4rd9HnHWdU0kJE6mgk17+M3K2vLsnSFtjvqMZKnbvE8Z5dFsjeGYGDGkSRrASyWQhzRhZTO7pTjfFqvsRDysZgk2mN9pASXeSskUxw5RZMfM9fEcGqZYxvrJm995OlTzPkaS+1WMRyjBM1nRrmZMeMOy9PFGOvPTXnPjKWVp7dJkiRlT9Cswt1ul8nJySwWkSSa2dekVHc6HRKl61YqtaquTPdc+oMBfhDQG/R1GvJwmMWxjDuz1+uxtLREr9fj7fe/DddxePDBBxGlmByfYH11LSOKFBHa7XamRJvNJpubm+zsbJEkCQsLRzLL7Nr1JZaWlojjkJ2dHS5fvpwp3qxbaBRlMUFzn0JfE6Xa6GfTZNfl42j6e3T3SOOZ0E2/fOKs+NkGJFtsmGLGAhqFUtmD1ZUtHMdlZ6eZTRCe52XZPJ1OZ5dZPar3CFleXuby5cs8/vjjBMEw7aIX4ErG33gAABZhSURBVDgWzz77LBuba4RhgG0L1WqVnUaTK1eugK0D2rXaGPWJcT784Q8ThDHNZpvTd97F2bNn+fVf/w/8q3/5b7i2tPyq8l+8eJFqtcrJ4yc4deIY42NVhr0uoT+kVqvQ6/VwxGJ5eZmxsTHW1tYg0RPl4dk5Fg4fYXJyctfkbyZB4yozWVn51TKQTXy1Wg1JYwqJpO4CSQkmsbEtF8f2sonUcSzC0Mfwg5rrmi8ENMzEjlhYiqyqWynd4z5SSebuMnUz5u+ormZU3wLoxmdKuwftdLWdVyxm4o1j3YZ398Jit8IwMuZpasz2wzRzK29xmJRqkx6tE0RUNinmtzEWlrkuxt1orKF8y2BzzYwCMe4vEckU0aCrjzU3MwuQKUXTDwV0IafJ7DMKqtPpUC6XM1kNojDUqeZhRMn1SKKYrY1NapUq01NTxGHE0tJSNunfdddduK7L1NQUZVenRff7fWZnZzPlNzExweLiIocOHcJKeyQ0mztZ+rPjaIbh+fl5LMui0dDFiY1GI6tBMYuSfGp6xlMWRbi27u6qIq0ATdZbu6mLWD23zNbW1q7WCaYpnFkEmZqZAiMU7q9b4I+/+jTf9eC91GvjJElCp90ljhVJAhMTU7RbXRxXsCyFZUMSxPR6OjAfRRG2srl54xpKCYKDnVau+8EomLcy0JbC5x99lM8/+mg23mo0+d9/+q9m/1+7uflNyf6pT32KD/7w+1laWuKeu+7grtMnODQ7x9lzF5g/fpT1zQ2q1Rq1SpVyxcOxBLFsji4sMDU1wc7ODg888EDWg9usxEyRWGeg+3IMBoNs0jGurHq9TslziJIEFcTYbkqBkbYlFsvCTVsZiyg8uwyW/qGS0mZ4TnnXqt8oE9CTX82zEdE95m30e7G0200YUcMAuyY+gDB1JymlsARcSyBOUEkMiULJblLJfDaYmfCTRO9rrDFFmnVmjYoX88pgZKHs9u3nYc7X7GPiL3kuMeNeNKtvc21MHMFMmEbJ5V2KtVoNiRM8x0HEYnJyMpvgq+UKL730MqVKmZ2tberjY3TbHUQp4iBEeSX84ZDJiSntjlMwMTaOiOHZ0sp6bGyMVnsbEd0H58jho9y4cYNDhw5z6NAhfvmXf43mwOf8cz7b2xOMjY1x56nTtJo+m52VLGtsbW2NjY0NKpUKrVYrW8y98MILHDu2yB13nOL69RXe/va388ILl6moGu12m8Uzi1y/fj27L/V6Hc/zaLRbmTUXxzGidNfRmlem7JXwLMGxLZ5/4SKOiqiNl6hWXFwxvHJDatVxet20iVdioRLNEDGiq3nztfy9nSgslVfAE0+ep91uUypVGB8fzygawjDU9Q9WzNDv0um06PY6NJs7NBqa/bfT6aWd84b4QZf+oLFLodxuPPvsczz11FMEQx9UwpFD05y54xSWJJQro+6EprdGv9/n2rVrbG9vM1arZxXRm5ubuwoH824v41IxGUkmfTVLv7VGE9/eid5sPwpA72Y/Nsin8oLOZEIJlrLQNfgWIIikf7GzF8oCZaESGb1y37crPTjZzeW112WVd+vlrRkYucaMpbDXernVK58pZb7bpHHv5TszMptMNuO+AnalGBtZzP95mUx1Pmj3aHOnod2a1oiUk0RxbHGR2ekZVJwwVqtT8rTVUXY9RClsESI/wLVs4iAkCSMswLMdiBPCoU8wGDJWrdFuNnEtG0tBv9/ne77newiHPidPniRJEtZWVjl37hy9TjdbkERRxOTkZPZ8RlGUEYBWq7rAcWZmhk6nxdLSS3TabZIkyZgSjHs2r3DziwKVS6oQEc3ukGjrqttpsXT1Co4lXLl8EccG3w92tTkwjBHmPhiLttvt7ufP902PwlJ5FfzhV56Er7ymXmBvCC6+eIW/+zM/i2eFDNo7jFVK3HnHca4urzE5VcPvpb1TggRxbcZqFRYXF3RF+2BAuVqh2WzS6XTY3NzMUnCNe8dkhZm6FpM1VyqV6A361GpVvJIDSQip4kh0gT62ZTKUBLEhVhFObsWfJ/gz7kfjgiyVStiR0tYJgmW5JApiZWNJrpaF3Y2xDLJqcsvSBZ1KZyiLUqCULsrMpRAb5QCpNaE0aSZqtI3C0H5YxPEoq2tvbCbZQ49jCCdNo7H8ZLe3Hsa4pqanp/F9n1arld0PE5sJghEljXF9DYdDKpWK5veyNNNyHIaIbWcuLNu2OTI7x/TMDK1uh+XVFU4fP4Fr2TS2thkrV6nWy/j9oa5PcSIqXolhV9eijFVqugtp+hxsbW0wGAyYm5tnOAi0VSQWjzzyCBMTEzQbDe68+zj+YEg4gCTUMpvsxeXlZR566CHOnj3LxMQEnuexublOrVbSz4jSiicIAuYXFhARjh8/jm0nHDt2jJdeuJkpKVNb4gcBSWKhbBs3dXU6tu4V46AIB13uuesMj3zhc9x//x2cP/cUkgwpV2aZnJwErCyxAhEiFRPFCaQLpiKdeDcKS+XbFIcPHyaKIur1KlEcUKmUiKIQpeIswG4matd1WV9dw/d9xsfHs54ZlUolq0Hodru02+3MwjE8Uevr69y8eZObN2+ysbGhJ+UkndCt3SmY+VTMPO2JyfDK83LlrZx8hpn5bC8Fyt5XXsGY7fLv97rGTFFcfv+9x9jrttr7HbeS41bHzI+bc8lnKOXH864uk+xg2G8NRUtewZj98y19DVx7ZAmJIlNItUoVfzhkc22dTkvfY5Uk9NodGo3GrqQEIJuszTNgLCLLsjh06NCuNGmlVNZiOIoiNjY2aDQau1LgkyTJYnQLCwtcv36dmZkZHMeh2WxmsR6dsaeVcLlczopyjbVi+MfylDTGHZZP+rAsC892cGybfrdHvVLl0S8+gm0LcRTSbbezDqyeW86IO82xzP0x18RYjgU0Ckvl2xTXVlaIYxtVn0gz2mp0W88xWR2n7/g4jptNQjvNBp7nUfV9vMGAsWqZmenJLBvLrHoHgwHNnm6zrJVOLVuZg57IrHJClIREysMRj94wwXMtHAeIQxLHxlEJLilnVQJiOFiShCj0d52HlVoVmgxTMbS1BeQ4Dq5o68IzK/tYT25xNOptH/gpv5hVIgqdbDyxhNjS3QyS9PuSICGJ0lcaK1CxyiaTUMwEHYINcRylvUmFMFDEiRAnQhgmBKG2apLEKKmU2DIBUFhWAjgMfd2l0bId7cDzSvR9H6XAio27pkSMy1ajm7oiHWwrrfHxPBzPQ1kjQsdWV1sopbLmtfIqVhoDc4jsSjb5mkyrYRwTDAISKeO6Y6ys7HDkyBHGDi1qtoYE/KRPpxOnyssljISjRxd5eWmZUm2crWaXSn2OKIqojVfY2O4SRrq3iFIuf/3v/C0+/vGP6wzDiUMsd5e5snQVy1pmrDbFwuGjrK+vs3jkBMNexHPPPUdrp0e5IjiWzcnjp5gcn+SJJ55gbWWVO06dZmvzJm//7ndiuQ6rmz1agVA9PENPhgS+jQRCkFSIQptymlxD5FMqjdGNh1Av0x5EjMUJU8cWuXDxWTYHHXaGffxQSHoJjeYgc38FwSBztTmSMBzoos2vlzzznYZCqXyb4l/+61/hp3/qrzI1NaU746W9wavVKsq2dq28pqamKJVKTE5OMjY2xkS1lK30gF3ZLiF2ZuUopbJVXFZTUrGolsuUyxVs0avnkqu3t0Wwxd5VnPc1gXUJd51H5v82vuy0NiBv3RhLphzbu6yhLCifrvKdNMid/yyf4hv7YebLN379XenAlrtLtrwVYK5TFEU4kUvCyIV1K8soX3tjMugy68yxd1kolpW2Mx6rA2STHJCRStbHJwAdM3FLZSqVyq4CV7dUzuIOxvoz8bKaZfq0VBgfH9BqtSiVKmmQ3MbxLJzIzfYJY81gHEQhbskDsen2BrqTYbWGZbt46f6VqraqvvjFL7K8vMyRI0c4cuQI9Xo9axRmWVbaNkCzGBsK/XK5jO0k+H5IrzegWq1z5szdaZKAZth+6eoSYRAzOT5OuVTF88ocObyAKN0626RKm/iTSTo5fPgwY2NjTE3OZewRDz/8MCdPnuLMmbu5fuNliMuM1Sey5wRlZc+cUgrHcr/mvhYolMq3Nf7wS19idnYWz/PY3t7m2rVr2sWUNl4y3EqHDh3CdV3W1tZ0T4vcJGeCvibW0M/VdsAotdakACd2RDmd6Ezltue4mVKJg901GnlXVpIkWPbX9mXLuy8Sa8QHls+OAijnWjzvzQDThZnuLqVi3E5ZLcsrBNKzrC4Jdsm1d0LZmzm2t0L+Vudl5Myfi0krNv+LCL1ej1qtNlKAucLOPF2OuTdmRb23743ZxihlpRQqrRUaDAZpxXo3c4O6rksJK+PzyqfQj4+Ps7q6ytLLNxkMBik33liWQh0EgXZj1Sd47LHHtBXVatHtdlFKZYwQ5m8c66Zhhn7IcRyqNZednR263S4bGxtZCnGr1cK2bVaWdB1XtVymLA7bW1ssL11H0u9fXl7OYh7mPnc6HW7evMmv/uqvYokHkvDCC89z4uRRfv+zn+bpp5+k021Q9qbY2NjI7r9JCc8UlDv2yj++72DIm1nTiilsKFCgQIEC3wzOKqUevB1fXATqCxQoUKDAvqFQKgUKFChQYN/wZo+pbAHXXuXz2XSbg4xCxteOgy4fFDLuFw66jAddPtAynrhdX/6mjql8PYjIk7fLb7hfKGR87Tjo8kEh437hoMt40OWD2y9j4f4qUKBAgQL7hkKpFChQoECBfcO3u1L5tTdagG8AhYyvHQddPihk3C8cdBkPunxwm2X8to6pFChQoECB1xff7pZKgQIFChR4HVEolQIFChQosG940ysVEfk5EVEiMpsb+4iIXBGRSyLy53Lj7xSR59LP/pWkREYiUhKR30nH/0hETu6TbP9IRM6JyDMi8nkRWUjHPRH5j6ksz4rInzmAMroi8p9TWS6KyEcOoIw/mo6ZVyIif+L1lvGV5Es/e5uIPC4i51N5yq+3fK8mo4icFJFB7hr+u9w+B0LG3OfHRaQrIj930GQUkXfnruGzIvL+N0LGV5HvYRE5m8pxVkTee9vke6V+FG+GF3AM+By6AHI2HbsHeBYoAaeAq4CdfvZV4LvRvZl+H/jz6fiHgX+Xvv8g8Dv7JN947v3P5I7x14D/mL4/BJwFrAMm44eA307fV4El4ORBknHPNvcDL+X+f91kfJVr6ADngLen/88cwGfxJPD8K+xzIGTMjX0C+DjwcwdNxvQ34qTv54GN3P8H4Vl8B7CQvr8PWL5d1/DNbqn8C+DvkHa1SPE+9GToK6VeBq4A7xaRefQFf1zpq/RfgB/K7fOf0/e/C3yf0davBUqpfEu4Wk7Oe4BH0m02gCbw4AGTUQE1EXGAChAA7QMmYx4/AvwWwOst46vI9wPAOaXUs+l220qp+ABfwwwHTUYR+SHgJeD8QZRRKdVXSkXpeNmMH5RnUSn1tFJqJR0/D5RTS2Tf5XvT0rSIyF9Ea9tn95znIvBE7v+b6ViYvt87bva5AaCUikSkhV5Vvma6BRH5KPDjQAv4s+nws8D7ROS30dbWO9O/yQGS8XfRD9UqehX2N5RSOyLy4AGSMY//OZXXyPG6yvgK8t0FKBH5HDCHXuz80hsh36vICHBKRJ4G2sDfU0p96SDJKCI14O8CDwM/l9v8wMiYjj8E/AaaAuXH0uMelGcxj/8JeFop5d8O+Q60pSIiXxCR52/xeh/w88Dfv9VutxhTrzL+avu8VhlRSv28UuoY8N+An053+w30zXsS+GXgK0B0wGR8NxADC2g34t8SkdMHTEaz70NAXyn1/Dcgx7ck47conwP8SeBH07/vF5Hvux3yvQYZV4HjSql3AH8T+E0RGT9gMv5D4F8opbp7v+4AyYhS6o+UUvcC7wI+Ijp+dlCeRbPvvcA/A/63b0CGb0m+A22pKKW+/1bjInI/eqIzVspR4CkReTd6sj6W2/wosJKOH73FOLl9bqbunglg57XIeAv8JvBp4BdTM/lv5M7nK8CLQOOgyIiOqXxWKRUCGyLyGPAg8KUDJKPBB0ldXzk59lXGb1G+m8AfKqW2AETkM8ADwH/db/m+VRmVUj7gp/ufFZGraAvrwPxegIeAHxaRXwImgUREhugYy0GRMb//RRHpoWMXB+VZRESOAv838ONKqas5GfZVvgNtqbwSlFLPKaUOKaVOKqVOok/+AaXUGvB7wAdTf+Ep4AzwVaXUKtARke9K/YI/Dnwy/crfA34iff/DwBdT/+Jrgoicyf37F4EX0vFqatIjIg8DkVLqwkGSEbgOvFc0asB3AS8cMBkREQv4APDbZuz1lvFV5Psc8Lb0fjvAnwYO1H0WkTkRsdP3p9G/l5cOkoxKqT+V+63/MvBPlFK/cpBkFJFT6T1GRE4AdwNLB+VZFJFJtIL5iFLqMbPBbZFP7UNGxBv9Qmcmzeb+/3l01tcl0kyGdPxB4Pn0s19hxChQRmeVXEFnQpzeJ7k+kR7vHPD/Aovp+MlUtovAF4ATB1DGenq888AF4G8fNBnTz/4M8MQt9nndZPw68v3l9Bo+D/zSQbuGaP/6eXSc7yngBw+ajHu2+Qfszv46EDICP5Zex2fS6/hDB+lZBP4e0EvlM69Dt0O+gqalQIECBQrsG96U7q8CBQoUKHAwUSiVAgUKFCiwbyiUSoECBQoU2DcUSqVAgQIFCuwbCqVSoECBAvsIEfmAaALRRDQDxa22KYvIV0WTT54XkX+Y++ybJq18FVm+lNtnRUT+n/0701c4ZpH9VaBAgQL7BxF5K5py6VfR6c9P3mIbAWpKqa6IuMCXgZ9VSj0hIuMq5fASkZ8B7lFK/ZSIVIFAacqUeXQa+IIacY59Pbk+AXxSKfVf9uVEXwGFpVKgQIEC+wil1EWl1KWvs41SI9oZN30Z8sdvirQSQER+QHSLhadE5OMiUs8fT0TGgPcCt91SKZRKgQL7CBF5V+q6KItILXVt3PdGy1Xg4EFEbBF5Bk2T/wdKqT/KffZREbmB5o37+7nxh0TkPPAc8FOp1TKLLm78fqXUA2hOwb+553DvBx7Zo7BuCwr3V4EC+wwR+cfolWQFuKmU+j/eYJEK7DNE5AvAkVt89PNKqU+m2zzKK7i/9nzXJJqT66+rESmq+ewjQFkp9Yt7xt+KpqX/XuD7gf/EiG3YAx5XSv2V3Pa/D/y6UuoT3+g5fqsolEqBAvsMEfGAPwaGwPcopeI3WKQCbwC+UaWSbvuLQE8p9X/uGT8BfFop9TXWroj8d+Bvo5uCfUgp9SOv8N0zwGU0Zcvwmz6RbxKF+6tAgf3HNJo7bQxtsRQosAspkedk+r6CtjYM+eM3RVqJ7h/1HhG5M/2sKiJ35b7jA8CnXg+FAoVSKVDgduDXgF9A97P4Z2+wLAVeZ4jI+0XkJrpF76dFN2lDRBZEtz8AbV38dxE5h7Zq/0Ap9an0s38quj/KOXT30J9Nx/8kut3HM2h32YeVUltKqU3gJ4HfSvd5AnhLTqS9rSFuKwr3V4EC+wgR+XE0Q+3/mFLKfwVNN/7FN1i0AgVeFxRKpUCBAgUK7BsK91eBAgUKFNg3FEqlQIECBQrsGwqlUqBAgQIF9g2FUilQoECBAvuGQqkUKFCgQIF9Q6FUChQoUKDAvqFQKgUKFChQYN/w/wM9J5JIEkfUCgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "rds.astype(\"int\").plot.imshow(rgb=\"band\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.7" } }, "nbformat": 4, "nbformat_minor": 4 } rioxarray-0.18.2/docs/examples/clip_box.ipynb000066400000000000000000005544261474250745200212640ustar00rootroot00000000000000{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Example - Clip Box" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import rioxarray # for the extension to load\n", "import xarray\n", "\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load in xarray dataset" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "xds = xarray.open_dataarray(\"../../test/test_data/input/MODIS_ARRAY.nc\")" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray (y: 200, x: 200)>\n",
       "array([[ nan,  nan,  nan, ..., 656., 656., 554.],\n",
       "       [ nan,  nan,  nan, ..., 694., 694., 642.],\n",
       "       [ nan,  nan,  nan, ..., 456., 575., 642.],\n",
       "       ...,\n",
       "       [993., 817., 817., ..., 471., 479., 498.],\n",
       "       [893., 893., 816., ..., 479., 479., 469.],\n",
       "       [816., 816., 832., ..., 515., 469., 485.]], dtype=float32)\n",
       "Coordinates:\n",
       "  * y        (y) float64 5.05e+06 5.05e+06 5.05e+06 ... 5.004e+06 5.004e+06\n",
       "  * x        (x) float64 -7.274e+06 -7.274e+06 ... -7.228e+06 -7.228e+06\n",
       "Attributes:\n",
       "    crs:        +a=6371007.181 +b=6371007.181 +lon_0=0 +no_defs +proj=sinu +u...\n",
       "    res:        [231.65635826 231.65635826]\n",
       "    is_tiled:   0\n",
       "    nodata:     -28672.0\n",
       "    transform:  [ 2.31656358e+02  0.00000000e+00 -7.27400965e+06  0.00000000e...
" ], "text/plain": [ "\n", "array([[ nan, nan, nan, ..., 656., 656., 554.],\n", " [ nan, nan, nan, ..., 694., 694., 642.],\n", " [ nan, nan, nan, ..., 456., 575., 642.],\n", " ...,\n", " [993., 817., 817., ..., 471., 479., 498.],\n", " [893., 893., 816., ..., 479., 479., 469.],\n", " [816., 816., 832., ..., 515., 469., 485.]], dtype=float32)\n", "Coordinates:\n", " * y (y) float64 5.05e+06 5.05e+06 5.05e+06 ... 5.004e+06 5.004e+06\n", " * x (x) float64 -7.274e+06 -7.274e+06 ... -7.228e+06 -7.228e+06\n", "Attributes:\n", " crs: +a=6371007.181 +b=6371007.181 +lon_0=0 +no_defs +proj=sinu +u...\n", " res: [231.65635826 231.65635826]\n", " is_tiled: 0\n", " nodata: -28672.0\n", " transform: [ 2.31656358e+02 0.00000000e+00 -7.27400965e+06 0.00000000e..." ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xds" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEdCAYAAADwwTuSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9edSm2VUfhv72eYb3eedvrLmq59aIBEgIAcYGjJmuDdzrOIFlx0O4Ifji2LlevnFY+YN1fS9r2c6KHcd2glkJJooDBBLjcB0zGmNhQAhJqIW6W61udVd3zV994zs/0zn3j332Gb6uri6pq6Vu9XfWqvre4Xmf8Zw9/vZvkzEGJ+NknIyTcTJOxr0M9aU+gZNxMk7GyTgZb55xojROxsk4GSfjZNzzOFEaJ+NknIyTcTLueZwojZNxMk7GyTgZ9zxOlMbJOBkn42ScjHseJ0rjZJyMk3EyTsY9j7e00iCinySiHSL69D1u/+8T0VNE9CQR/fTrfX4n42ScjJPxRhv0Vq7TIKI/CmAG4EPGmHe/yraPAfg5AN9ijDkgolPGmJ0vxnmejJNxMk7GG2W8pT0NY8yHAeyHnxHRI0T0y0T0cSL6LSJ6u/3qPwbwj40xB/a3JwrjZJyMk/GWG29ppfEK4ycA/KfGmPcB+BsA/jv7+eMAHiei3yaijxDRd3zJzvBknIyTcTK+RCP9Up/AG2kQ0QDA1wP4eSKSjzv2bwrgMQDfBOACgN8ioncbYw6/yKd5Mk7GyTgZX7JxojTioQAcGmO+8g7fXQXwEWNMDeAFInoGrER+/4t4fifjZJyMk/ElHSfhqWAYYyZghfBnAIB4vNd+/S8AfLP9fAscrnr+S3GeJ+NknIyT8aUab2mlQUQ/A+B3AbyNiK4S0Q8A+LMAfoCIngDwJIDvsZv/CoA9InoKwL8B8P8yxux9Kc77ZJyMk3EyvlTjDQW5JaLLAKYAWgCNMeb9x74nAP8AwHcBWAD4i8aYT9zLb0/GyTgZJ+NkvPbxRsxpfLMxZvcVvvtOcB7hMQBfC+C/t3/v5bcn42ScjJNxMl7jeLOFp74HXIhnjDEfAbBGRGe/1Cd1Mk7GyTgZb5XxRvM0DIBfJSID4J8YY37i2PfnAVwJ3l+1n924h9+CiH4QwA8CQL/ff9/b3/7245vgyau3eNvWfqB4zyZQr6T5nztpCl4ngGr9ZyTRP/tXZ7yN21cLqMZ/L/slzR+0OSFZGZgkOEjwEgagIMRoFPFn2n/WdshfD+Jzl/3J9cl3qrYvNGBSf0CdkzvX49dOGoDy+5B9yjaqxct/S/4eaXtf5P6o2u4rjKCS384NeTaG93X8+uT4x5/J8W2N4kOROfaZXCO9/HzSZYN6wMtINUBb2E3t/abm5dfE3xsQAKr9g6lHfjm63x9/VsFIVi10pux+W3u+/L4eKJ6nwbmqykBnZM+Vv9D22eoM0RyR65Gh7anJ/tx6CM8vnJfHhtv+FbZxz1q2CZ/5sTnuPraweJnrZK/JZASTEKj1v9FpuEjtMeV7w+smXJfH1+hi7+quMWb7la/w1ce3f3Pf7O23r74hgI9/qvwVY8wbshbsjaY0vsEYc52ITgH4NSL6jK3alnGnKWfu8bewiuQnAOD973+/+djHPvaynb3/B/4edEpoO/6zpg+3OPJpvLjKDaAeAB2pKxfBZLfJZkBSGaw2/KmnS2C1wa97O3z6xQEfQCeEtNRuAQBA3U/cBNcJIanjxZBUGm3Oq1IEXNPlF02PkM399vmEBY0sqNW6cvsBgOJQo3djhdW2vwHlWLljq2AhkrbXeUwoNz1+0eZAUnnBCbCwUq2ce3yudZ8Xa++mP0Zvt3VKQmcKbe73tdqwAjPYf+dQI1vwvawGCtXAa3vSfPykRjSqIR8/nxroFO5+GQU0BaHN/bMzigUsAHT3NPbf6fdvCEhKfp3N+TmrOni+BuhdX/jzKVu0Q74g3UlQBUpD7nm64t8npWHlb6919MwhcOWmv4gHTqMdFLj5dX330fKMwYZlVevtNEhKP3HL9QzlSGFx2l8btUB317jjioIB/HUsTvvr1YH0SBeI1oxTLjI3En/f+AP+07fPOqn8M1c1/y6ca7IuZJ+iLAFguaGw9QdTrM50gxMApuf5BLOFQVP4a+nf4vugKq/xTEJoO36fkwf866QEnvhHf/1FvMaxu9/gd375/D1tW5x7Yeu1Hu/1Gm8opWGMuW7/7hDRLwD4AIBQ8F8FcDF4fwHA9Xv87T0NZ5HYOdN0EVlT5bqd1FaQ1QP7d2h/VvMCGlzzPxKhCLAgyWcG+cweLwHymYYOPImmowBrscLwsVr7vapNZDXVPULdS5yVlpQGTZeQT/mDfAp0DmpUY37UsthqK0ybHkFVfoFWQ8JqvecWdVKbQOkYqMagGvJvRTGKFVkNCKpFJNhhgLQUhYfob90nf4/t6N0yyGciuHTkVVBrkC6B2fnY1Sj2/L0WwQIA6dIgXbbufO9kciSlQdee33JTodjXgZdGyBbGKQ0yJnqWtz5AbLFbyTgMxIpO+T4U+96i7+5UUEuvsXQ3g6r4Ji5P8wOfn/H3VqfeM9E9QrlG6BxahZanMI9ehFpVAICjd63ba+btpw95hQEAOiPoLHWKQIyF/o3QS/XbTy7Z87C3s2szhb1b/v7KPuR6ndcMQOd8W8TzkmsKjwHw/AVYaci1pnPrNdl53hQqeq5kgKTSmJ3x4mvvvUPkszufW1IaJKVxCljmVLXhfy/f8fYa65/VWG7xhjJPX+swAHTkQr05xxtGaRBRH4Ayxkzt628D8LeObfaLAP4KEf0sOAF+ZIy5cY+/jcZTV27hPX/976PY44e4/tQUALAN4OY3jJyFlKyA4sA/6MUp/mJ5mj/r7BOM8osb4IVr7J1tM0I1IreY2gKoW3KWlc54gieVHM9Ewo14pnlXW1xy+z5bsDUsQt+kQHe/RWuFQ+egxnLbS/HFKYXOxKAcB0qqDxh70GyBKDSgE8Jim78b3GiRrDS6K233xRcZLiqj4ARb02WhK6MexItPBEgouMLFaxSQzQPr2Cq+8F6LcgRiyxSAUxbVKLCYG/YoABZq5Yic59GZaJgUqK3FqVqDfKqRz/0+Jw/7fWUz651ZgSreIgDn4WRTf/7ptAQa6wWdG2J+xj8X8XbEWm+6bOHK5wDQv+n3P7/UR+/KAsuLI74PkxaTB7wpv/UEkM399otTLABDi1vug3y+CLKDqb1m8QrLdfZy5PmUY4Vq7Lfv7LNxI/M6qdjCF4udWvY45eidCSvj4TXvJkZh3sAwSkuN1XqC4oBPJl3Yv6U3HpLSX0s5VugGhoSsFWUVjwJQrfnf1gM6FpJUqPuE298YuLD3aegonvfmHG8YpQHgNIBfsPQdKYCfNsb8MhH9EAAYY34cwL8Cw22fA0Nu/9Ldfnu3gxn7b7lJ2H6ihDryYYPTv+Mn7OE7B1E4SoR7Z99vM3wpFsKdiZ8Y9YBzAKJEZDGGizdbGhdjNmm8eJyy6dgQivVKwhyHSYDUCk/VAr3PHbjvVhfH6Bw1OHgsd/tfbRCyWbDIgjBE0+VjJis5LoLvFJquQmtlk4Shuvv+ettgX73bLRbbfnGOXuKLUYHV2PQT1D0b/sqAbNffbGUFbGu9o3ShUY2TSFGYhNCKB6MJ+bTFaj2JzqW3w9uvNjhpUYnyMhyukveZnQLh/p2XAqAcKnR3gGSJaDjFaIByTbn71t01KHZ4p2pRodnoAwXfvHKcumcOAOWatbhteCsp2euSeaVTtv7Fwx1e0Vhc6GG5mdh7ZSIrXhTG5KK//+p4OD2YZ9rqLwk5VWNWzvnUbmrn4WJbRdu7sKz7zIc5YYDRZT6PpDI4eiBBZ+KvuXOko7ne2HmAXpyDcPk2GyJrMwUycXhMQpWA9/IlTMk/MpGiCMOWshZUEPZtM8L6x/hZze8tovSqw8CgfQOVOHyh4w2jNIwxzwN47x0+//HgtQHww/f627uNbGmw/QSv0M6zQWw4UZg/4OPCYjkt7aQUoR8KjlBhJKVNRsu52ZepFUgSzsqDxWPIC7gw/APALezB9cAiSygKAXUOY2mweGTdxWsnD/CGLvlbx1bZap2gA8WQH/HfMGTUObKeQ+GvUa5hcLXE4qw/GVFuALDo8iLdemLmPktuTzB972n/vjJIbIhG8jgSe2/s70VB1n0VeTX9Gw1Wm2mQvDdoCr+NqmIF3t3VaApyIZHVJgCQU5DZgvcRJffDW0usTEVwZwve1nsyhMF1ey3aoLNXuZ+aLEFysECzxXOr2Kux2swwP5PYe2nDenZXvR3OrzivSAHzc4TR5UDoEHuVADA9n6A4NEgXomjtPQjOP7wuUXTiySxP2Xt6nf8ut9l4kHnQ3eHXoixUzf9cWLbh+y2jHCukC+NCRm1OGNzQTul093TkCbW5coqptQZVYr2abMnbhd5ANUzcGpJQlLyXEKJO+fPOQYty3SsM+T5dWmXRxvdCJ+SMPADoX8N9GyfhqTfxoFWNzmdv8JvUT6jJ+84BxmBqLTQXU87932oE9G74fWVeJrr4PaxFURzyWwnxABznjsIwQYheJ3HiWqyscuQ3CpFR3d0G5Zp/jEs78edn/We9W36BAPFrVQOzi4RErOzJyyd16BUlNSsKGbe/ygetqzEvMLHU1z5u2eNXomUyHH7NGbd9PmkBRU5ZSBhBlAXACmO14d9397RTiE0vQbo0TgmoGlhuqej6dOq9Q7kOMQSyBUEroLWCcXae4VyiRPq3DJpAoQ5uNGzt2tsxO5ehu98iLa0XeEx5V6MMok6TRqM+PYgQP4tTSRDG5HkhQl6uQa4NANaf0d47IWCxlThQRLri6yNtQ2sV519C46IeAINrXgmFSX2A57Tcm8E1nosuV1bHAIJyTNFv6wEbUuKtpVYpSX4inQMHj/uTMYoiZFgbhc34i7pvJ7810CRktdzg5y7Kou1y7kW8te6ugaoNlpv8/XJToe34MDMrTOOMp7ZD0X2uB6zEZc3X3oZ8TcMAaE+UxpfBIMLinV6QTS4l7PraBaEzRsLIqEbskkvYpjhgZEZaxoJerHGdceJN4vzAMaRIY4AQ2tg7BiN08FVy+w7zBPMzGdKVD7FI0rZ3y+8zDIMIQki2MwroX/PJ7qZLSJcGy60gLGORXv3rBqSB6QN88YIIk9j2+jN8sr0bXqlgVWL2vgvRtSc2J8LhAIO2sMn5tQT5pEU98EqiHCknGDtH/LtynadtOeYwm1j61YjfO8/DXrcITjIsnKvAM5w/qNG74kMuojAAYHKJt9t60j+gfOIl5/qsAbUG1TofoC0U8iMbgrMQWLJelMkSpAcrrM6xBDp6KIQSAZuf4d9JqI6fs8Zyyy9Rs/RzpRwpTh7b95OH+NzrhShQipLQ5Tp/v1r3obim6xP1xX6soASYIUptNSAUBwazc8E2wSWI4SRJ5qZHGL1Q4ejhQGsFnk7niO9LaBCE66LuKxR7/r43XeU88OUWK/dwXeoUyGworekQEAAWZK3Ktdc9wvBa60Jg1DJ8t+L0EPIJ/z0eJXitwwCozUlO4807EgWzNsDO129heLXG/tt4BZD9TxZT24nht70b7M662HNleLLb+d4WZJEadnKsWBCIlZuuTITyYPggoRx5Id30PMyzt6MBopdBGMOYbFNQFAMOkSgAhzCaQsJrPnwCAPOzGbK5cd5OUhlMLyikVniWGz5EszhNyKYvt8AkETw/o7D9iaXbd31mhMWZwgl98ZoclFMRDAUWJdh6D+HFg5tecNQ9xfcqTOL3yFnl1MZ1DS4MIddilcvskhdOojAAYPSiIJ3sB3azbgCT1Z1AiNtagMaG5HrXVzA2/5IsG6DRqLd8nK/pJVjZuHrnKAY86JSQrHQkuGfnUvcckwqYnlfOExGPsLbzqn+Nn53LgWQMupCQkQj1MO9R7Ps8SGPnbTSUD0kCbCTIvayGXrgCPvcWhsOml3L3eT7VWJxS6N22QADrOYtHYlJESqKzV6Lp85psuspBkAFgcF2jHCuHssOMvdaZeNcKOHok8DY7Bv2XlFuzAKJcG88bg85hfPkhUu5+jTe/ynjzVYSfjJNxMk7Gm3IYGLT3+O/VBhH9JBHtENGnj33+nxLRM0T0JBH93eDzHyGi5+x33x58/j4i+kP73X9LQSOhVxpvWU+jHqTY+fot6Bw4ejjD0CIuZucV8olx1mu6NFhuK5f4Fis4XXq0Upv5grukZutNEpE6Y7itWEUStxePYXqBH4EkIru34zqHNmdIqFi/89OE+Wlfl9Hb4fCYDn6jE3JIkO5+G3kxq/UMw5cqNH1r8U40u/59STZzcjNMcMrIpmzJSwhHwnBhmOLgHV1noRf7OsLLpyuDzlEbWaPlOHHWbpvHxYOjF9lMlnDU4lRcOwDEiBeTAKMXSxw9zK6hWOMSYikODXbeH6DcdimK0x/3MACgf8NvYIgwu+RN73RpUA0U+jd9Bji77RNciwfXXBw+nbeo+z7U1uZkiyN97qIpkghim1T+WuXcZN5IkWeYqFcN0LttIbEjQtP3v1M1z1UJ4bQdTvxKWNKFJ4vQ/YlhuWUAXZbcSGiNJ6sY9hzmlpLSYHildXDZ1VYGFYSjBi+tQK0tcM0Uml7q8oJuzQV5wP7NJmJboNZgeJWflUkJg+vAlW8NCjtbn9Oo+4Ry7C9z8RU8oTf/jQ8phMW4UvD4mocB2vu0KwA/BeAfAfiQfEBE3wymWnqPMaa0hc4goncC+D4A7wJwDsCvE9HjxpgWzN/3gwA+AkanfgeAX7rbgd+ySkO1DBVNKo2mUMhmPJnXn2lRjRMXHirXKIpp5hMD0iYSfMVejcbG4XVKEUoFsKEgCS8lhCaJk4jLU4hQMd3bxiGARKg5oZFYKKSVTU2PIb3i5uuUMHrJC7qma/MFQQioXE99FbcipzAA3q9qPcqrfz2IM9u8SdPz524SoH/D5hrWVCRwJw9y/UnnwId9lpsJskCYhOGS7l7LdRkSdTgv4Qkfew5DOvnURMV/oxc5/rD+tH9gh2/rRfDi7Y+HcXNC0/Mxa1GQIsiLvQadHR84nz3KQW8nDI1BHtRhJIsAPgQgXfnvVhsZqoHyISDDOZdQSLc5OSHdFoQ2oJxRrQ2ZBkojXRpH95JUXPcwP2sBHBVX1jtmgCLO12RznmOu2p04eR4mfUN4bLYwXFndkTnAfwUtBnAoV67HKL6/RQDHThctiuustYrrAFqDdp0nkygMgKvjdVCd3XQUsrnxTAjGxHUVCaHpKhcSlqK/9Sfj65VBGigOgOm38yIa/DZPdjHcAGD0onbX+jKo8hc4DO5feMoY82EievDYx38ZwN82xpR2G4tEwfcA+Fn7+QtE9ByAD1hm8JEx5ncBgIg+BOB7caI07jxIGySVx3OLcNV5TBvRva2RlCaG0SrC0saOR5crpzAAXvgh740r4pOkmyTZxRo/0CgOvPBUdYw5bwu2pqWoEGDrXixsnVJkbZMBVpupg16KshB4I2lEgrd3o0I2TFyhnkAsxbM6+M4FBr/FkkSs2jCpHy7G4dUGndtLXP+jQ3vt/Pn8jD/g6Ip+GcpIhliUkhjv7nGdRyggurcD4ZKy8BRvIFmy1D94h5d8zAdlrf0FX7zcE1Ub5Eex4gr5ikxCuPat6xhdtrQTDdfT+HtqouLDtpdj9ZAttjuqI1qQyQPsHYoFy7kG7+mIRyHCOCkNqPF8SFxN7T1KaiwCKhHjRiFd6MgzWG2Qy0mkS96ntnO76rKnE1rvs3OEwnaIyecMWAjnbzlWUaGk1L8AL0cg9W630Akhn3pXNT0KlKqsjylrsmqr71kYenzRUoMCCA2LP1fJ0YVDjLX+rQbzM7FoC713URYbA2stfPsCBx895YyH0Ys+igCwd39/BqG9G0HXax+PA/hGIvoxACsAf8MY8/tgfr6PBNsJZ19tXx///K7jras0WiCb8IRebXqzP1kxFM/BM0txjYPq2iCJNnkwj+CCUtMghUWGLAY9EHzqWEgkJkM06O62WNpj6IQFoyzmthOjp0wCNCk5AS3fSbI5qSzef3ZnG6ceJtF1AoRqACw/6C1srmfgMbhqMP6czyjml2+71+3pNQDAhkUCHT3M06sICsDCZGeybFAPMrRWYYv4Xa0FfE7K8y11Jjoq6Bq8yJpNVbyByRIsznXRC5LnIO9tCWghtO6N8gK7zQDdUxhe4Qe09y6eF3vv5nuUTYD+Le2Sslx5rNC/wuexOu1DV0cPd9Dd0zh8mH9brck181/VsCUv4ajubY22IIf4qvoKTR/IjzyKLjRm8pmGTskR+VVDQpsp5w2SRsSFRYYNIlH8hfW+ltt+++LAI85EYYiC5Op846qym67C7Fz4nDj807vtlejguUO0I7ZCqGpBbQuT2dqbwlaoD700X27z/TZkASjB9YaeshhJIVRdzsmfkH+ZrngNiNfV+zcDDll+J2uJg4+ewsZT8frQGd1HZeFPqT4ehnjlsUVEITneT9yJhPXYSAGsA/gggK8B8HNE9DBembPvlT5/1YO8pUe1lr2MABDwIQix5EJBEyF0jhECCnIonBtpGVe+hmRrquHfeCZVi/kPitKqgYoWo8SFAeDwUQv3lDoSqYIOOIKyykN2Scdek4R3wqK8cgNIPuOtdSn4AuLQT/rSbSBN0J5Z5310eTqJsgDiYrj1z65ATVgtz0Ii9IYWW4nLp8j5jW1V8fB5thDpBa62ah+/BFU1WFzw5xp6CrIkRBCu1hPoNK5gzw9rTB7kWLbO2LKfPMjnVewZTB8gZAFKKFsYjJ86BABMHx+hc9CgsdfRuxpgQMHnNLhuj3WdPciQvBHGW+vlWCEtjcs/Ucu1De65EJMxiuXfWAUjXFVJyduKQVIP4vyTKI+IcNIAw5d4LiW1QTVMnEAmw/9yC40t15NISM/OKtRDX+w6vMrX0b3GH1DVOIXBByCYJHUexuICh6Wiyu9gjXT3AvqYURKFAQU5GFN/BHNa2BdW/lqSoBARsB7rh5gTcKtsI3JGwCISA9j9/RgG+Hw8jd0voJHcVQD/3BZBf5SINIAtvDJn31X7+vjndx1vWaWhM8JyO4fOOEkd4uMBH1rhD71bz9/FsV7AL26x2I9TbrvXCUUCOkyo2y1A2qAc+xWqM2B2jt+vPccnttrKon2HcddsZqJzjGjVwYpDCup0l72g0BORAjHAJuZtfnBwvWVFYYfUXwh8cnC1RLmWRYnD3o3KWcOiMKSugWqD1VbqFHJTJMcS+r5+AQDqUQf5E8+DyMKHn72K+dc/El2b3E+APZlyI4/u5fj5EumM72EzyJEsa6w/bROollb88G0+aZMfebhqb7dF7/LU7+v32LPX22vus7bHz0Ws5CjU2AFg72V311juK6swlwbpUqOWwkbi7UUJdHdtuLEX8GkZDw3nC/DzjjTzm7mwV8FhzHAuqtpT7jcJIV1oD3dO2dKXotJ0ZTA7q1yuoem9PLm8+UmvXVfnR9GaEa9e6N9Va5iY046kNtB5kHcLilmzuaXOCc59do49MRkbT2kX2oPh8xUvqrfDLNNZELpLKrhwF2let9NLAR9VkLfL/CN/zUPfu6fxhYx/AeBbAPwmET0OIAewC+bs+2ki+nvgRPhjAD5qjGmJaEpEHwTwewD+PIB/+GoHecsqDecCd4BqmLoJKQVkoXVRjhNv+RNFqA8JTYnFXo4UioM2snjDCmeHZrH7CAvv3PYd5ZA/1ZCicJa48JH1QzFZXhYoAI+H19HxBNWT1MbRqvN1EAZBx5J8rp0i7F+eQp9aw/57GHpSHLSoRok7XrmWRZZj74ZHaQFs6ReHnhtKRtfyTc3OJ4Dx1nFureN05jUibW/i8KvYQszmGje/xk/hs7/XoB4kKG7zD48eYUu3d4sFVrpsncIAgOxgCRiDts+SfH6x667L3Y/U77+4tYI6CNyOnDWcuunjb6qwWuHMaUweUFHyOSkDNJK15KUAL1tyhbcMo/CyyvZ0qbGydN/JigWdeAZJxcWO4lE4YsGRT+ZS6b0+zq35ubxaVygOtTNo0qXmwjt7CtOL7CUJi+72J2tMLmUulJfOG1Qb3rMQhSEoQrPGEzYuNA095swpoKaI57OszTDHUY98jk1CS93b/JyrUYLZeYWSHWCU64TR8/64kuAXT2W1wWG9ha/xdbVHANAMcF/G5+lp3HUQ0c8A+CZwGOsqgB8F8JMAftLCcCsAf8F6HU8S0c8BeApcHvrDFjkFcPL8pwB0wQnwuybBgbew0iDNQiefAdMLictF6IxpxSVu3XbIFr/5ZKpRFFmQ6dKgZwWfTuAqngGf1BNlwR6MicnqxkmURCwOtCfVgyRg/bnrzHtC3X2GsUq1bDbTcR+EytgeFl5ZlKMEnQmfb5urCObJVdasLICYvO/g3WNm9LXTrRolrj8HwIo4XWlOwQHOchQlkS7ZupTFvdxOozDc2nMsiMJGVIutBIVVRMOn9pzCAICr35Jg8wkfRxfrfv+d3kwcBkiybH8RNT2S+Hrbl9xLjXLNa+N0qbHxpA85pddtYqkXhF0WAQlZ0cHyEU4A5UcN+jcyV4Us92xqq8ypYaYBMTyXGzzPXJMkS1ciXljb4US0FNRRy0JPwjLLTQ5XiVeoGkbUHaciFwNE1Xws6Y+hKj7nbMbPZvc9PTQFoOyzGFzTmJ9VGD3vJ+L6sysHPlhtF6DGILFoLrKgAaPCzkYB2o0ISWNw+Kj3mJebgsjS9p6E9DH+uc0vAGd+1z/X3h9ew+I9552BBLB36O+ViQACbYdYKQZw8OV2APQ4sKdrn81xgsovdBgQ2vtUGmeM+f5X+OrPvcL2Pwbgx+7w+ccAvPvzOfZbVmkAFn1ChP6N1odwDMeXXSVuqbmWwVpg0ofCoU6MJ40DeDFW4zRI1sUoFaN4cYcTNqrSPWBrL6wfMBRTZOvMx6hHVxqgNR6RRAAycjQQ5Vo8SVPLqOvCHEOF2UXPVtq1VPFhfw9ZvMVhG31H2kT5GZMA5VrilIJJuZI9VJAh2ohaBhUIRHhyyQoQgReD0NvxdSblB7cjCpDNJ4z9XRrtc/2z3rwP6yZcjYxVFtPH13B8DJ73noS6vovmobNeWXTZLdAdazUfTNCe3XDbt0XAAbadufAIwJGQaow4pwGvTJKVcZxIgG/CVAdWbjaDy9O0RczXVA8AaHJ1GumSw5xiDC22EgYC1H7/1Bpn3YdWPwCMXqztdfhrOvUJf1+TWY1yq/BcWvY5t4VAfq33aZ+datmYkuudnU0AJFEeQ5TF4SN2jdn02fAqr0/JRQ2v8k56f2iZBKsKvY+9gPJbH+W3QxXX8jScBA9DuEIUyfcCaPpB6GrFJyU0JXfrnvj5DE6Ev/nrqd/SSoM0YJQByMdLqWWrJmwNapTPWejUFlHd8qtfNb5znvAmCc1zUvLiDa3nsCDKKClCs655N+b2l7agUpexWqeX0SHolDC4xou8tuEgsSAdI+0sdvcl+Tyz6TFXH2C9GOEGMuQL3NquipSJa9NqZ5FYyWLxSbLWeUkELE77KSehC8fDRPxMwvDf/jti61HOCfCeRRjGGV32N6caZ8huA7C5itVZlsDzc3y8bB4/Cwmzqes2NqEU0hdvAbn3PnQR9CZ551mstlIMrpR2v2H3KbsLq/z7NzX6N31YcbmpXgaoaHpBKNKe1vCqv7bFKXLQFo7DeyRRPWCFIfdEpwy3lWNkC65tcEi0Qx1du04J2US7jo2sVID+dT4hoalPZvy+3CqQ1NqFH9uckEI5KGzWMKeYCGplkViuCLYyjgPK3YNACYa1UW3BtU/C5ty9apMM4vH1ujh4v+/EevhH2TXY+hVW8jJP6+B6w+K+esSKorBVDU0/5psLSStf2yC0J0rjTTzICjnDXcAk3GPIw2QBtvDDimzSwOBahWRpQyLdBNA+JNUW3HMi5PEh7anVs2UM+UxKjqmK4JNknhRF6RRRuElnXEshbTIlhzC96GPGTTdWLKGl7yqK7fWMnzNR3Qifky+eUqWOCARD5FY9lJvij0PtMaSZ8XH0pohBAH4j/5IXsyDI4oI06eOx+VTtrnn8QhVBLauxF/CGgNlj685qH1yrMT+XOcHKdN2NU179l2aMXlPBws4z52HwzSGsTnH4a2XJBA/ebr/XHhiRVAaDayZKzNeD2CsLC+lEIYZU7iEiqO5RxKYsKD15/p392Dtsenw+RVBTo2pmNwC88pC50d2xUFr77PKpRrFbuXNIVg3KrcJ5ltVagmxGLs+QVNyOtrBed1so6MQDE5jZwHjkkzYoDuO1IPO8f5PnkTrGniDPefrYGKM/3MWV7/EU++kf83ml4a+w9ycEhAAw/lztikXHl0uMLwO5Ldz83PdvOIUBMCKsXAfSmdw33JdhAOgvA+amt67SOBkn42ScjC/yeJ2L+74o462rNIyv8AXgIKgmV2hzirDe6dInktNZi2QVV7lWGx3npqsmppYwipyXAXDhWudIOwtO6EIkZ5EuuUd2GDpYBjw4rrPaIEDFtLE3URwYZ5WDgL2vsC8A9B85AgB0/3fvn+vEF5XlU+Oa3gAAGeOqenVCUZVz62gW/LGXmyoqwEsqCrb35wSwlxU2ewJi5lShZB9/js9nekFh86nahSe6V4HFA96c3HsXH7h3019L3SfXZ6FcY9ZV8cIGNxoU17357lBQI59IaDb6UAtJcBHK7Z7zwhyFfBBmCqHO6VJHBWqhNyeV2p0j/1n3dosq4AkL4/1CE+LoaIi4JWwADSdtHAutWMdCj0Oa57hQt08eyLk/SCPhrQRkEvRu8Q6pNaBaI7E9zZuxpcPf5Hu8Wleo+oy4Ang+kvE5kDbj7n3iSVRDFSXqO0d8DPHIjfJs0q6HzTGoeAjH/sxf2Ybc+PHDhwCA2afthDkPtH2N8TN8L8efq9H7/efR+337Y0UwZ7awOseFG+f/bY3VZoq5ZV2oLOpqtc3ntv1J3JdhzEl46k09yBhQ64vqjKBWKg1Aufi2ztnNbq2QbzYzDC77ldr2MySl5jBVMEIYa4jc0CuPawc4TGEojstL8xiAhUu4WCREESb1dIpIwrSZ39f0IiE/BLL3HQIAuv98bPcbo7NkJJUG1QH6K7guCQ/Ib0mzIlgGnQZDAj2BZzrFIIcMKrDbjhfinYMYJXbq944weXyEtSc4Eb32BIDpHGaDFcXigVHUjyGbA9k0Rsp0Jhodq4hm5xKc+bAPY9CtPejz2xFktnnoDA4f4xNe++zCKwzAhaVCGLFAtGWElC6q0o6a3CSEKkucMdC1Cevw9yH9d9MjpAvPcSbzJeTa0pnPkaiawzsUUG2sP71w0GpqDVanChdWHV6poVqD7IBv/uJCD72Xpl4BJoS2n6PNWJJXaxkns4Owa9hDpnPEAA65vqSy7YGtcpSwqadq54p21xlzS7l7sdxIXoYYDA2Tw0cV/sgHPLHUv3uWa3XMmlWQNeHcvwXkYroffQ4gBQThvsN3r+HGH+ftz/5Gyugze6/Li3ySZ379PlX1BUOfeBpv3tFmhPmZ1NUIiOWvWh0L0ZWGDigMyAAm98ys2uU++G8+1bywg8VrgpyEKISoDafyXcf4IP5lUnI1a5iYPz7CmGtbxMy0gkQa/jOxyGPkFhlmDHXvW295yhBl4QofA8FYJ3F1e9jyk1vXUoQA6t/0DaOaPtOSyFh7eoLDd4yw9pQ3v9d+4zlAOhUWHegzHq0k90Lu3cCiasTTC68BALY/PodRCuqGLVDsFlD7U0y+7gG3Tdhq9/BtPQsEsPj/tXh/x0c5VoB14FRt0A96oRc7S46ba/5s7yvHSGoPmNAJLOWJnYcN1zokAdliqDBMYueQA1jw35BCxaSeA63a6CBdtM56zw8ruw0fv39ljmqzh9QmuskYqGWDes1ngauhB0J0b2suyBNGgYKs927PNeVzdGyxBugcIioeTIP7091tPSdYGysMgBWFjPwD+/jU7bOYvLDGH6xXMHMv4HvXFJKyQe93nuVrWeftbnz7WQCMUBSFAQC3v5pPsN3ga+9cye0xcV+HAaEyb36R++a/gtc4Fqd51kvFrao0OtcnoKWl5X5oE6SVF5ilxmord4lvkxCmFzwVyWpdoXOoneCv+yqquUhqtryrIAkaC9oY4necEhuwISlX6eurcgHuyNbmHuK7/hmGcs5PBUogZDK1iVIhCZTEplxv2KDp+CiHCibxnkLdB/LKh2jSFbe1zSwNyHIrQXe3RdeCk/qf2cX+157G2tPWFWgN1j59BHU9yErqWEvWax0H62w6hGymHUy46VAUGkznLQ4fy7H9cU54Khtquf0nvTToHAaW/lpcsyIFlpJABdiilnWflCZKwjOxpb0229O99ylbNX52E9AaU8uUm8/4vgqU27HZWmG52gSGL/pEerpkw2Z2PqbQGNzw55/O26iz4OKsT+CrWkN3FYodfljUaG4YZfezPNtDstKoNllJqErbkJGvG2Fv2At9CTkB/jrc8VpgvhUUGy5YGUhdTtNjBmRB2oUwdFUDMMaBClbrKipm7fz8Om6/30DV9pg7Ha6O3+X3m7bT4vyPPAaA66CqIWH6IO9v+iDh0Ydu4vIfhAwaQPHCnbsMRn3ZX8M4SYS/yQeBJ2qdE7p7GsPnfDC9OuNJapbbGaq+cgSEbaHQ2W8wPxvQeCi4xZeuTFxc1xhki1joh1XeOqC/BthwTKq4cpeaeBsYb3VmxxAeqjVQQTFSujSAMehbiHA1TND0ySmLuk84ejjD0Qc5GL7xb5OodzRTwxu7b75eCU9lC4M2D5hbW1ZIYY2JsOsCwNbv3gZ2D4B1NsdNJ8X6J/ewvMjvixtzqOs7MHXg+eQZkPHJlG9nS7HuegROWhpXE5BXwOK0ly7Sxe6l72QteeoTrFDSAJEVenyiMCTE5vp1BwWO/ev+x9MHOYwlvF9hfiFdNMifu+mQWOrWAeZf5QlETRJ3X5yfBXo7MTmkzoAqk6JNbmsroTcRqJKjANizWtqKdBHmnUP/MNJZ7fjBYBJUY8+GXI4TdIipXdw5qgDS208YEh2EibK5dnUYSQ2XEwC4KDBdeiWYLZk1V5RQPmnRdpQzMEj7OZzPNaq+cvd1cZq/G9rOiqoxWH9SOfTZ4pzB4KUATmvbBof0MXUfKG7zNme+gykPsgd9Pqt5bohQnkuBH5/rfSrUANC+vjQiX5Tx1lUamgVqccAWVbVp49U9FRWLzR40GFwGsqVNXPcIVT9z9A9JxUJGoI9G2UUQCKOk8lDDuh/DSKXuI5xLIY1zUiKCz3aONKqRL94T4SHssRJCCdlkDXn6kTb3zKkAcPiuFjSsUTzDF7Q4w1w7stjDuLrcN7k2OU/BtA9utFitq6iGpbg+h1pZabprV2LN0mH2FdtIlhq9y4fBDTGgxC52CX0N+/ZeeWUho+4poOer91dBmE+IJE99wi96VWl0rJJZnE5RDV/ugRWeXiuiZMltFb0oCzmP1nIoJZVB/6p/uGZzjN2v4axq73ZMn9J0mXF2ftYfa3bB8xz1dowLnQJskaer+Np1Slic4eeaLjQLXqssitt8HlJwmKwarzAALM7m0Am5EF665ByDnb5oU6b4F4VsEjsnbDGfhFnLNbmvbIiJB5xPTFTv03TIwXLlntV9rwTrHkXM0OnK9yMv9th4cmCRFa8jyZmd+jh7QCGFTdPzNSGTiwrb33bNfVe2tg3AcwGDofHgBJnPQuZ4v8b9rAj/Uo63rtJoDVNtSw2BTW4uN9gVnj3IE3hwWXEiOiA3gyI3YTtHOiJ+g+GqWyFjS0qDahhbVEb5zmGCnpGCNk4mxoqCjPFcVCNJNIrFqZEstQtXdA7amCCRYutbvIXbH/DCcPCJAuMXeIFMHvCUKnyfgOO5O7HgV1tAd4eVhYzxc0snqPLbC58/AIAtFqDTd3pzulpLkJ7mxZt/+kUgjWknAGD5wJr7qOnGNPNZYGnrXKFz6AsX6x5hcL1BNvEuQD3KMbe9pKllpRjWjhS3PRtqPeRueuPn+fdtodAWufOe+N4mruah7hL23s0K5cxv7TuFAQC770oBBUdxv7S1aKFCTgJivGpAqAap+949k/Da5549WcJy+R5PTJMlaIvU5eqaXoblqcw9S5+bqN19DQcZYDVSUI1HPwmJIsDer6p9aDVdWU/B7r9zyDkPKfZLKo26r5wx0nTZ8Cltqo1RbRKOSpCWxoUd207cv1ynhO6ucSFYFyILwB0hqGD+jgrzK9sQjXjh3D5uPHEGSGxNTUnQiVcWgtYTpRN6hK916BP01Jt4GHDnsF6C3fco9G7yx5OHDYpdoHtTSsSZd0dGUgFt7q1A147Tfr/cTNDdbwNaZU4QynuhinCd92wC0edMjEt+A3DhHwkBOdRNWASWEVohIFxp11wKAFbbvtpaRjYz2PgDFs71AE5hAMDopZaJHG2IjXwY24UyJg96wV6Ngan1DLaeWERUGmr3kENLA88FpQdFlGwevhhox7GV1jO7em1RXSj0m56P0w//gB+asYSDR+/mJLko1KQyrpIZYIUBeMTS/EwCVfuqeADY/+oWw2dt/4wZsPasP796wEWYoVdY7GtML/jqeyG9e/7PbETFeGJgOsu8jkOO+VHMrCrKIux8R63/jVxjsW8JAw9WQEKg0iayyxo66znup+Up65FYlF5nb4W2m0bKYhkQJqqahfHtr/YhO1UBvVv++6Qyro1xNtdYnEodUm56McHgWuu9sVxZSh3jzkMngdIkn0/jvinkKEqyuYlyJvL8QsDKcjNxynxxSmH6cOAhXs1RXSqR3uLnf/PWGSQluWdCLZC0MUlhuL5CNONrGRqE6pUShG+i8ZZVGkyNnuLgHRJW4s+3njgeHjIR1l5e++Y0L+eSYmoPfi0hElkAcpyw33IIt3XHsbK+6RJ6t+I4c1L5BGw+bSO3fH6WqcZdzwjD24fnFy7A3o5BNVKOmNAlPkMEmbXyHHV0aO0GglH6Y/R+/3nerLLCXpQAgIPveaffb+XblUbbCbNsHUNoys0O+s8H5vhiAbO9junbN+w5s0Ur9yOfNA4NBHikUsg7tFoHmp4VbAON07/tE1QihJaBpwZj0LvJoZ/ZpZ5TGIDtQ2IvWR37K1cZooI6t8MwG59zWLdB2qOG1p+JjYFit4LOFSsLO3QnBVleLZ0pzM8X0b4AoLPnlaDk5QBguUXIg2PPzgMAuX4ZRgHd3QDFp/n5yT2an0ltTZM9v8M2WjfpSsOQcuipcqS4x0Xv5coAkLCt8a9bX4PiuhUGa2j6ACBaQNVAOve9S9Il0O74Ra1Kcbfsue7xcyoCUMT0XOoMvWqM+zZOEuFv4iE9jNefjl1cgOG40sdaLCNJ0kloJHRZ6wFFgjQ0JpKKIoZOgF3nfBYrilbJeZFjmOXjxwSFRgklgz12T0WMu541VUX7CNt6xv09+K+49v0bFopJfkFK3Lx3S0fQx85B3PLzZcoCiKDH9XsfjorfOvuWsvwF6+YlCddgCAne/gTtxW33DIod26nPhrzMGc94C7DCaMNmOvbUFufY/D14TJA69usEWJ3y5zN4LrGoHf7h7FwCnEsiyPD53/SkSG1O6O0YJ1zqMjQu7DHC/iBhXYWEtHqh8eCNjKZLWHiWDJRjhbXnKqdk02sc5zIDm4wfdaN8R9PP0DlsI+bX7u0qUiTLrQDVVzJce3bJJtgPCMt3rZA/7/mb8olxYa3eLnsREn5KVyZqRlaOOBQlHS9rG1b0NCI850SZJVUMIImg5WL/hGCSQGG4PKEotJbXq9CIOOqzJoAzp3AoPoDvu6wZWesrO72Ow3+/0GEMTor73szDKIa+ZnO2KKMisaCdKtke0yH0dbVJEWa+2Dco1/2EDKmU05WJwj3ZgovPxKIvx0yJLW5690aNapy4Yi63H+HwKRSyWesSmGJ1SULRx4UDKGggqMPmM4Bnwd142lug6cS/vv2+cXQ/hi/515OHCf1bwPj3b/C5WGVhWhu6Uwrm8Qfc9vMLBTOvWmXRffGQv7Dbm+11pzAAoHnwNOphhtxa08lNTqTriyxNqW4xfcybgdWQKealHS3nIDqWUZW9otbLTCQV0Lvm+3ALn5f0tVCVr0oHOHwxvxCE2qwCCBP/Al0+eiBBPvXhKMDawfbyshkrhq5torTcIBQHAReTYcHatejjtefEzLZK5dwGkknM2d127lCIGTALLE4HZIunlfMKAF4Ps0sGzchCYkdAcsvXaIxe4OMOr/Az1pY5wfXfkNyQiY0sF9osNaph4oQ9tcfnZWjUEIcBlVwXN4gKmyQ1XQ8oyeYc3jt8hxgXhHoYQ9ezmfeaXO/6C+E6D+7TOcTXcN8GnRT3vZmHtLNcbRLK9cSxaprkGA15Qiz4cz/Zw5BMsd+iHCt0bK2EzgggRKgQwNN0tB1C0/GWlBAkSgy1HibHEEqEzlQH1BUaTVc5q0tZeuuQ3E41ca/miNCvz+eztFZssccWZEj0d/BYIFnhrWHxviYP8/uNpzUL3Km/IaIwAAAXz2H+wMD36LYKLZsGq/HgCBiyKU+rGtXFdYfYqYd8TqtTbE1Xjw4wfmaKm1/nqUN0CvR3wnsN7L5Hqpg5sR1WiKtDf2iBiErYY2HfhzQo4bMWb03CRN09OEsbYIUxt3U/6SpulCWKSUKNjHTydDBJxZa/HG95iv+K17k4m7ue6DKqUx79Q63UPwhaSmN5yl/IaoMiU51i55d7hN8mzOytTeYKm58CROp3bzegNu6uB6IglGvnyExyFuIeBIohVxhesWiqHiud0DuR+5WUBjDGtyeQuh97+XXXGmb2VA7e20AtE5gtNhbKMwbqha5b0zq363rNn7rOQ69M4+ArDTq3bFfBhgkgxy/cJxfDDk6jnngaJ+NknIyTcTLucZxAbt/kQ+CkRvlmN23OVp+DElrr2jWpb30vAIARJyFPjiSUfaWsglEUVR7nU+OQIkJdLU2RhH5BrN+kZrTOai2mH4mS5wZobdREp4TOUezac09wu22fvQwJNwBxr435qSTKyajacwwtbFOhrU9ZXq4MWPu1Z2FKH85S62swlvBv9nYLObXWZjZrkU0qpJ+96k+9aUDWYK4u8vY3vq5n7xMwuN5EcfmbXx94GQl3LnT9PITMcc2fv87ZmwQ46S9wYcCHKVofhWHUkLVw0xV/J4WQ/ev8g3yX4xyTt/OBJFQY8k4BHIrMFnIsE8XwAfb6JO6uas4riLU9slX0w+eDxg5B6K4a51C1ceGw/MB2Q3wwaAQVEF22BVvqoYehE38PqhEwv6RBtsp6cJkAGNdQC4pgFPl6pITieyleZNBki7cV4EjCOSfrqWRzjWzuiUKbXuLOzRCQBEZ+umix2khdF8b9d2SgFphdsmttpZCc87km9TQX3KxO2e9P2ZqVlb83SRGQjr7YQ1IC/ev8nlpg/LnSwfDD0PVrGQaE+gQ99eYfmWVCbazQlUUkieqmw30ApG0nwInvULA0BWH9WZ6g1BqUY+XCRdWYMLimo/4UAFz4qBwpVEPl3HTVAGoVFCoR/5dauZzNtWtuJINDXj6EFCbpk8oAxicOVWtw5iM1skPe4fJ8zyHBAMtdVcfxXBEOZ397ivnFPkYffs59Fya9aTzC4it81XPb4eY5RdDZML22B2OEsVADF884DMFyi2MdeQCQml5MXZV0iO7he2hx9EE4sRr5PghAHNeen47DT9mclULUHW/umXYF/hyCCPLduWvmlB81qEapZ0o2vmalHCk0BYcWAWCxHfN3pYsYlTN6Ke5nAQCjZ+dQS6+QV+cDhZlz/VBU0DbIXNOkcj3F6CWNg8dZSPlrstseY8gt9g36N8jN89EV3xfDjUAnNgVFfbyFVidkQYYxTtGpll8L3xTVBknAPcX1S/ZnCSFZafe+GqXIJy0OH5OeMVw5371h0XDvKNH/iOfGaS3sV5QFAGRZiyzja6rKFLpWSK/6MGyx59Fb/Wsl5uc66FhFnJT3xzswuH91GkT0kwD+JIAdY8y7j333NwD8VwC2jTG79rMfAfADAFoAf9UY8yv28/fB9wj/VwD+mu0r/orjLas0ODdhXMJZ4qXJii3rEJY6P+c7+xmKK7rzI4PubUSx3aZLLuHatd3UBEWSrlo03STiguruti5u23aUjef62HC5lnglNGB6BYkZ65SRW5ITaQpiz8A+dqF5EG+hd9MrDLmedKkxvSC8JWydu/qTDDj1+16KD3/9aWhb0U1JAmRB3Pwd5xh+vBXUajRAsrKFZy/swATw2+Y9DwMAFqfZ1JcGQSFdehPULohidYl5UcS1f1a9HeN6TQsnlxPECSsMsf5Btrp4IPu3H1tYaFJzXL2z7zXo9LGxoxsXASmopemF1OVP5JiC8Scd50rqITC8GtTTWODC6AUvyZPZygEdRGGstlhw5hOGWrsCtM0OoI3zeuQaRi/yMfbfoTB8Mb63OvMeqyiT/k07rxKpwg6g5AFNyNrn+B6IwjQpRczOMALuCJLN2jiakqTUTCMikGtjnKfR9BIsNxM3Z+dnFNpcRYaMAAQAYO33ef5094QSReHomxagl/hi1cNzrHa7QJcPkF3j7aU2i9oYBSgFmulK8lN3laGfx6D72U/jpwD8IwAfio5AdBHAnwDwUvDZOwF8H4B3ATgH4NeJ6HFjTAvgvwfwgwA+AlYa3wHgl+524Les0jCKWUTFowihmtWQIiswNA66tsBZ3PGeLfKT8FK5xgVgooTSFYeXZP/tRobldoJiLywY9JMyXWnMTyVOaIulJ2ELQ1z4JyEbWfSy4JKa0SdyziJ0Qwjj8ryXxGR4n1J9m09bzM6m2P645+KiFywFQ6th6hhSQp0OVu9i4rfaUnKEfbC7t70Q1OsjzL865F+yilCq3EsTsf02Pd+7HPDKogo8o6YPh4phUIBGwSArpIsWB4/lMRlgsGaFSmZ4xX/fZj7hD9jKZVunoSqD1UbiwhW92y1gDKYXAnqOQLC6Kmk7ereCgsxU7g9v0AWivhydGxOUgWex2kwBItd6tNlOoroCaIPpJZ95P3rUYPsTBvvv8Pdq6oFsrkjPcVlZRRiCJgx5GhVGSTHEGPCFnn6eJdE6SUrvZYRD5oj0j69zG9prgzWS85pYnPIKN3x26TKupZLiWwEopAuN0T9NcfVbrJfzqQEKwNGokAa6t/zvi32N1ZonX5S1XY7uj1cg4356GsaYDxPRg3f46u8D+M8B/B/BZ98D4GeNMSWAF4joOQAfIKLLAEbGmN8FACL6EIDvxYnSuPPgHssmrny2I1IYFIc7hCRNrNv5qdQpDgDo7bSA8VBW8WRaIZ5bMuRWS3/rhXZxXQCYPuD7VwOe70j4jY4Pt2i7Eju2gtjmCUzGtAi55QDSKSFZtoHATtx5yNj+vUN/n67c8Mc6rjAGfDPSee3+zs93I7hwOfYhgO4eX5sU2QFsfYbbhzDQ4Usai1MKfStsBWkkln09JEbI2J+LAJSWtJNLOZLS36N6iKhQkjTDRCUf1QaKGWCldrzqGAD6O22wD0SKKGS+NgnQSh1MFyj24RpcSc8S4dNSlUZ25F3Y1YUxyBgsTnlFUA3IeZRJaVxICIBTGEeP+vPd/78uUO3z/c930oitVWhJwva9Jo1zLiFcN6mA8Qtx24BQ/uWTBsmyQbnB0lzOzRk/XRUhzUzC/c5dv3fl273K3Aw9M8krARweNsp7kuWawvozfuKoqkU1znHhN9hgaXoJDh5PXvZsZOiUEZJRbYi587avdXwensYWEX0seP8TxpifuNsPiOi7AVwzxjxBscI+D/YkZFy1n9X29fHP7zreskpDp3FxU+eQ/1aDmKo8m3Nj+XDCkUakKKRKG2B3XSfkmDHFKpWJVw0I/VsxfXfbVc5tF4p2ifeqSltoYyDsjA9/SP5CKm0lh2HEYtesSFRjE++7fHHVWua2T1YanX0fsqLL11zfB9whvEnSQ9smvEMK7giubIVQz1GuCIbfuHuSLrQLoehMYXFKoXtbalIInYlxIZ6QehzgMGGbwykVsTQPH8ntcY55ibsMYJDEPysFryyAOBTROeIeD6UN0SSO8dXvNMx1hcZGsnp5mG3vKxTGn7NJ+Zs6ssTTeYV6vXBFlfNzVsGK4DYxtUW60Dh6OHNC+fBt9ryDOL4oDADYfJI3lMJFH34MkuW5ipRCuvSCVKesQCUnZwjIDyo0FhadLFnzyvzia/aLJlROQMAPFigm8SRVbbA47XmqVMXXLyAQof0Qj2D4YgWdKkcZc/h4H+NnFyi3LeNvy56/GCSuq6F4rkMBSvj7u9wKDJv7xFtoDH0+nsauMeb997oxEfUA/JcAvu1OX9/pdO7y+V3HW1ZphIMVCL8u9jmZKvFtQ5bJNkggbjwTxF+0FdJ28c1P8y0V9tL+jbg7He+DkATCKVn6pJ9qWIirgDLi8LHcoWyy+THklLIWdiDc05WBsiXmhuLis8mDHSQ1MLjCwqUepOg96b0JaAMMB9B7HBeiNIVp+PfCPisFezQvcfDVviq77quoaleE7JXv5mu59C8ITaEiMrnlhvckSBv0b7bBPgh1jyJvqun52gmxRCcP8AadQ0Kbk0fhKA7rhaAGICiInLRYbiYRlXs4RLA5AZtwDU6oZKI+DwdeUSQr/idCt+kB488Z9G76g2XTGtTYsNCQFZ1TFh0CFKI6hvywdfs7epi3mzwsghbQ573C2FyfQf/mtj/Wwrfs5RPk++Pqh3IFk8JxmAlKMARVGEVOoUsTJ+EFM4rYuAkKDB2JJ3wnS8nNCWV/bTtD5jMTgQCivOFMwpLkvssCzxgADh/vOE9TtcD0oa4T/J0jg2Lf30eZN1J7lVS2CNcev+kQKxT7k6R+VTl6T8MAryd66hEADwEQL+MCgE8Q0QfAHkTAsIYLAK7bzy/c4fO7jres0iDDcdJyneObYtUU+xrFvqUGAReMkQGGV7zgbQrlLSc7n1IbE1YbCaaXCMMPenbXxe9uu6Tb8EqNepC4BTU/lwUNbnjMzqUBg6cNNdmv+zc4AardhGf+H0l8UmOwOO0fa90nzM+lPuFZGXR3G6RPXub3qxLYWHfbt2c2kMxWUEFHPppx5rh96BxIa8wvCdxogKYgH04QbsTAMrv9jQ1My9+/+KeA4obCwOYQJC4ti3twvUGb+RBJNtNISnKehuRnRDCLcg9DFzqFm9WyH0fVIWGsiT/BqPDPtiSV5K+z7MPwU2AoOsSdNQhUxT09AAvLHvhr6V+Pc1fZjOdT2+ObNjvPN+NOxHwAKwwAOLAIIqlUb7a9EgrqO9H8y20owFHYOKhssE3bCZss2UsNnl1T+OI91QDDKyH1sr0fIQx43ScaXO/xY4o3pDppc+XufxsoDAYoxGCUuudDhaS52FAoVQ4fK0Bt7LWYxDeAUg1HC+QeFAcadZ8ipoPVuqdpZwh2TNV+f8br1yPcGPOHAE65I3G+4v3GmF0i+kUAP01Efw+cCH8MwEeNMS0RTYnogwB+D8CfB/APX+1Yb1mloVOvMABvvYuykImSLuOe021HgVrjcgzpooWqDaaX/IIZfvA2Dj+5bX8PbH0qbsGZrrSL71LL1pdTUl3bdyD3ScHhNR31dWi65DyLdGUi178aJkhXBvOzfnKmh8DoeRb8JlFIn7vmSQELoHrktOsFzh5TF8UN9uWTgxmOvvkxt6+k0s5TYOoJ8vTcRyzEJ48EwvFWhuFlfj0/z9uI15SUvKAH12MajrAr4mpNBagaRM+G74UXBukitvwluR/mTPo3W3QOgr7fm/65CYIp6oWyMuiu/AcHb0ucMPLKTax1ihRDUhrHUtsWFPXakOc3veSLRAQSDACjKzqiAxdDIKQ16RwCnU9a5t5Dg91vbzH+d6xRJWchlr0I6+Ptgl3zrsYATeAZFRTxYiWVweJ0jsFLPnfQDLIo5xKerwtFNvF5yN/FaQaDiLIIE9vZwnBIUCC3Q0Jvp3WJ6f6NGkYBh49y+K3txM+su6ejZ86Eh35urDa4E6fLjfXZO5VQY3FgkJS+9ipsPPVaBifC748GIqKfAfBN4NzHVQA/aoz5H+94XGOeJKKfA/AUmIrrhy1yCgD+Mjzk9pfwKklw4A2mNKx2nIKxxM3xmB6x3/UPAHwXgAWAv2iM+UTwfQLgY+Bk0J+867FabniTrszLaKrbnHxR39JwwlQS15Lgq0UYKLQFMP8eRhv1O5VTGACw/cmGW2faRLjEhEm4qOYmtrJAWJymKCHcDajLObbsv0uWGtUodQtgds7zLAFsrY5/+8XwJsJsr4Mqa4Gu95Asa5QbvKLqHse160c4yT29MHTMq6QNqmHq8P1JaZAdBedi+yn0r1nBcAZOYQBA/yrnhnytgqBULOrKIEruth0mjpw8+HLBIiOk+Uhq/idCXMId0osEQBSxpUaje2uF5Rkf+zcqtjCbrp8LB2+zxV7fwAdtX+xj8wkfG+eQhk/OhrTmo2d4fujCC9m9d/cjbirJqwHwyCHpfDfnpH3mQW2oe8DgOh9Pp8DGvy7i8GAZswi3HRUJ8aTykODeTvsyhZKujG+qZIEUq1NB/ioIXanWwKTeI2rsPArRWHXPe8jU8j2KvK+Q800DHVsHolqDZVBgt/cunggSclKzmFSw7pGtsfH7a7pxvqZcIzQ97yHnR97r1CmHrBytyX3sxXS/KsKNMd//Kt8/eOz9jwH4sTts9zEA7z7++d3GG0pp2PHNUpByh/GdYNfqMQBfC8YYf23w/V8D8DSA0ct/Gg/V+kmn0wDl0aE4Z0Ac05TvXSczCQ2vNHZ+yEv4o0UXW3/oF6psnwTeQLmRRYVNSeDJZHMNUIrhFWsCmpiBVyWEOkmckth9r01ECnnbLA6DjH//BszCn59+2yW0nQT5LVt7QYRqrePCCKoxmJ/xE7t32yefjfKV6nzfCNkSrqGULDIRfutPG4CCXIIU1QUMv+FiNxQnUvffaTvkCcV1E9dtFPtxF0JRZnJvRAiJdZvNmTZd6kJMYsNIfUl0x+ETIE6I1kMAb5uhfdEXkpVjXxk9uO6fcf9Gg+J6UJOyzsL28BEvdEOFEeXJAAfjFU8gpBkHPPGi78NiC+4CGG5S+lyZeMYup0Fx7+3Z+SRSrjLnBLTQ9BRzokliPEHUj90oLsjrXvdavO3lmD3Az1C8loUNoGw+xd6A730SnBvi0Fw1UC7cJ6N322D8rL+/0weDiUEcMhX4djb3hoeMfBrA1EtEfG9hnRMQ16q8lmFA983T+FKONxsRyvcA+JDh8REAa0R0FgCI6AKA/wuA/+FLeYIn42ScjJNxp2EMJ8Lv5d8bebyqp0FE/zcAfwecZCH7zxhjXtWa/wKGAfCrRGQA/JM74JLPA7gSvBdc8Q0A/w24qGWIVxhE9IPg6kfkvXVniYYJt8H1JqJmECirhKMMcWvYowf8gy0C3ovOP+PD965z4DuxqJX5A946pdbThKRLDZN6hBA1BsMrNXpPc8lre2oEnSdo+pbx1brpi1MeymsI6AnufmUw/vQBcJWTNQaAqSooW1ORHC2RADC5LXRaNVhu971FmhMG17XzrKqgV0jdo4i9tZJ8uP2eNMNaxSo2CX/W+EtH58BgcN3nFMImSdqG8FaWTqS3w/Uk8/PetgmL/Rx0MvAMqfHegvcaJdTI9NzhmgwbZhWHwmMlVjEnU4URGAD0832kKxv7vu25w/javLeQ7bN3V217C7gO+pEXB60rQgTYkk8X2t2D/i0uOHN5U7vyMus0ZnNfse6OP9G+Q+RMR7U9AgUPk/rCkwYEiXIhBnBem98+9I4hNRVB9r1zUKLt+Rji/ELXWe/1kFscbz7l99E5jHNx/lyAVdAtT65x/bM+Ed95+jraixwGbnoZujs1Vpu2O2GtUQ88ZHe5pRg6b72zseX1Cr034XyLrklo3pvY+3wt48vB07iX8NTfBfCnjDFPv94nA+AbjDHXiegUgF8jos8YYz4cfH9HXDERCQfLx4nom15p51YJ/QQADMcXjMRfk6DoSBaPSxwKoVrfT+rlZuLatU4eAjIA0yeYIEnZLnDLUxwCGVxuWGGEFNG1cfuVxSKx3s5BwwrDcjolV3ehHz7tKsOPJ2uzKbvf0ucAAHS/g2STEVFmZxdqHOj3xRJHH7gQwV7T0lM4gOLGQFJIBdgENvkQUbqEo4SXbZueR9xMv34BeraPtc/yNsVBi+51Tyyns4SRMrahUPnYaXtPbCHkwqAaEEbP2zBiRtxwx16qSVgYeVSUicJLZPh8pXBR58x9tNi29zylqICsGnLPaheCsU2TOkGwtArqMrKFQZvbgk47VM2vb39wDUD8nU59cd7kUoLRS6177iLApXi07qkoFAeyKK1AbqsmyA+tTKQM52f4wsIGYKoxUWGl0K0AHpE2vBKEVhsPmzUkhIo2v2QVUv8qazHSJkJSlVsdpCuNo4f9DR5cjfmmQuMsnHMu/uGgzr4WB2CFgWEfySHPpaY3xmoz8zkZIpfXALzxIjD6xbZC/4ZG6tBYcQMoCcnV97E3OCDhqTdbcOfl416Uxq0vksKAMea6/btDRL8A4AMAQqXxSnjjfw/AdxPRdwEoAIyI6J8ZY/7c3Y6nWt+HQhZH1H7UjqaXREVrACsLgAXn8iOb6AdWYz4xTpDNHuojm7UuISh8OlKJnc1alOsp+tcCOGMw6odPo+lnLkGcLRSqAUW1Bd09jaZn93dUI3nB113QxhpQdHD0Hq6nUI3B9IJyv1cNYCp4dUy8wMLOaCEiqRp52o5sZrDaIBxvVjP5Spbq3U/1UewD65/22dtm2IEqbdOljHm2dr+ZH+nwaoXphRyVzRFUYwI1Qae91COuAK62zmYmIs5TTZCjOHavdUZoCkTsrG2XyeoAoDzmO6saESVKugKGnw4K7Gx1t294pHD0IBsLnQnH5X2TIo3rf6rF8FOsUat1YHc9QW7nzcZUR7QVpA2S0nOY6dTm3oKkbJhfUrWBab0n2re1OSrIb602Ayh2l1y/CT53VhhhcWPbIXf9DM9NnXAvDrVTGLyBQRkACuQZ9K8H9ysAOQh66eBxPqf8CAh7dqcLzz7c29EYvORP9vCPPoC1P9hFeW7sPgtb4c7OWaSZfc7ZkmtrOlH+K1jnRFCtrxPRGedEJN9yP52D+8g99SUb96I0PkZE/yuAfwHASTZjzD+/nydCRH0Ayhgzta+/DcDfOrbZLwL4K0T0s+AE+JEx5gaAH7H/YD2Nv/FqCgNgN1QW2XHBJ5ZU22FcfzXkWyXWkdCDj56b4dYHR44sDeCEr/MEbP1G2HlPp+Q+B4Bir0Ez4P33nrwF0+8AfV4xEpaan7XHTxhZJconn+oIcZSULczmOpotNlmF1kFQMjoFQH4hNIWlUQiQK/WQHA0JtYAOqMOTQNDojBx9uNxDQ0Dvs9bVoDik0Ax5w4N3BNxXGlicFhhmB03fC3ERWNL2tHPAXobjkqrj8Mhx7iC+XoqsSK6Ol+vkv3Ktwo4aIpS6QVFY7xbTtA9e9AnYetxxSuPoQYW154N5QF44XfleO1++kwt2Dn/jDFTpBdn8FHNJCQW+nHMT3vsqBg50d4PaIXsOYV1G2yF0LEpuuZ1G6LO2YPCENHnK5y+v4eB7I543h3M2nwwoyCs/h5dn+ZlKyEfVjPaSdaAaE4XLVmsK5XpQRJv68FE+jenqVxsKkwcGjuBxsaWw+BOnooLZPCyCtEALCR2WY4XebqiwCDpTTkmIh+Kg3oosZY1XkPdj3E/I7Zdy3IvSGIHhrWF5ugFwX5UGgNMAfsFWM6YAftoY88tE9EMAYIz5cTAL43cBeM6e01/6go9GHK7oTDTqrvJ48SKJeJjySYvJA97UzuYGqjEYPedRIpufXrk4vM5iBWRSAjW+74EonYXtqta/2cAEbjqaBjQHlm9jmIng88Nq2bC/uE4JdWBBUmuAYe6YZqkFYDw9yXJLoTgwblEmJcNKQ8+izT2VSrUeKEArTEW46g5fq9vXkrvoSeguXRi0mUJzjhXYcpNJ7Za2L4dqOPTgkEAJ83xJK93iyGB6idAJvLjeTuvyTPPTKUzi8zuCygqrhXUKFxpcbqmIBl3a8oryAGwOxm7Tv8a/k4r6zu4SnV1g+jBv0DlsMD/r54ZAkwEWwIxC4+c++hQw/M6bOPyNM/5ado+h5uCfrRAfNsH5YuZhx1uf5kkmc0eEfAibNYqcd3Gcowxgdl9jKWHyGdeFiEyjlvNZYU5j7bnSVXxntiWwkABKSCdEGjVdskyMQFIyv5MoRYAZiaX+aPJAgn7AC5ZPjeNvE6Uulf9AnNtKag4TunoZ2zpA0FjZjF/LvWkzJkccXKvtfUiiPiDTCxmMijnG7s94i4SnjDFfuGD+PIYx5nkA773D5z8evDYAfvhV9vObAH7zXo7pmtrXxhHJNR1xS3mGrTYSrH9midlFlmwbH2FLsT63xsdT5BQGwJ5AU3iLTzilVPBXiO8AYLmVYnA1MJlSadfJvx++2KIZpCjX/KM6fMwv/PVnZD/82dHDfC7j5wVuakkRbaxfWEqT0gubVVAwllQsRKsNG0LKjWvMk00SLM8Z6JT3MXxBWZoSScJzyCEshpxdyHxzpCEA5T2FNrVehVVGTTeuqUhLg43P+Di4UeQUBuBhmWFCs+4TVOvfh0JMlGG4bifvqrF11kv79Kc3nWAWEryQDkMUBgDMzmVYbZCzlpPKOMvcgQGCFTb9V2dQiEItPf094Oei1GcAbHmLok5qYO1Zb404IyQ4tzrIV4A45yL3fn7W5yYADquG4SkQoe5TFJ6qRoTxZS84s6B3PNncjel7pdn0lPu9nIsvhGTBngesuWHBaqgwpJhOzpX7qSOCwYa4z6YgdHd14IEa5BNu3BQOMQYHexXaTuJC0Z0DjaOHOy5XlpYASoPlxn3OaRigfisoDQtl/YcAvgH82P4duFHH1bv+8A0+qDVIpzWq9TxCR3QOGtTDxMdkba5h7WlbnDXuoe3njvAPiFElktgOFUN3t43ehwnLwWVrsQmOfp2tcglXAcBiK3H1CJOHJO7K3938BpvrOBSqdKDYBUrrOUi8X1A5ZLmyXOW7FeKumNAw5cXoBVu30YYd6TT6t8jVLmQWNCYJUNI6ChmVI64Wlypm8UikQxoMF6gpqZHJOA4t/S7KMUWJ5ON4eUejHjhqIelcOVSA8Z6RXO/igt/m9LlDtFY6pT/NYIbNT7ISKU/1kS4aHLnaCi6eEwG/sp3xpE4lqYKiTGJBH5Z9hHxKhlix5Mcq/cO5Eeatejsa1TiJwj068UpUtRyalHCrJNanD0n9TRx+MlaphHUXQOzRhgqjs1+h7WVoC96wc2uOeq2IqUN0TKCpFj7EqLMYiZXNNEziQ4dh7kXuQUj42A28sqRiLyRiBuj5EGs2bwFFKCzQpRxz9KDYC8gU+wkAu1atcgjDd6T9+e5/Be7beEt4GgD+KYCfBvBn7Ps/Zz/7E6/XSX1RBhFMppDNGkdbDnhYpFvMREinZcC3xDFWGSLUBK0iwnz8vF/xTU851MxyI4mK72YXWZKGfEjNsIM6qKQVRQFwgyTAC6B6zApj9EJ8eSI0dMYLU4RCW3C/DxG4dR8oNwykE+b6p7k9bBFU485tKM3lLuza0xnHjR2luKIoFj0/Z5FB1lru7COiEhcrWIQuAOS7HkFkCGg7vk9DfmSivgqdI4PlBjml0zk0Ua+NycOWMDJI5Ifhm+3H9qD+501ntI6fOgIUKwsZt7+qi6O38bPZ+phyaCeA4/HlOO6AF4IGomFiD8dZ3MH+QkTbajNQrogT4ACHJfNJ69BQjsrFPve9dynuOhjkqsOwqaumdh5wrDCMQmRpp4skOs7qTN+xHISjM/Eedj1IYtr70jjlIN6b44vqxgq0d6tyPT+afhqtG5OQbZlsEYdHJs7JDTzwQUY1UijXfKI+HI49V4yBNYpg1v37ZB5/uRT33YvS2DbG/NPg/U8R0X/2Op3PF23ohFCO0yh/AXgrOQ/4ier1AvmUTabJA3mEpDIkuQM7aTO2eMK+1iEqpumxVSRue7ZgV9o1fjnVj4RL0yOMn/fkbflM4/Ax5RZU71byMnSHEO8BtmdIThFVSd33ie5qzaCz77/rHGmY1OcJAC+IsiVFAhiwFmJQp2GUF8zj5w2q4NpVbREqgdKoh8GibeIEaFLb5KjdvhrHMXatgMEN7b43is/v6FH7fWEwfQhYe0rQWHxMaRM6+vk+ZheB8VM+812e6jvQQTUipzAA5tkCgF5AClwcxFXkkq8B4orv3i0WzFIbVPcUqhE5qpFyTfm6F3iFEVKRmMQrltHlGoePBL02RtzvYu9dsSAXaz2fHMu1BXU5xz8DbF6gMujftOy4KcGk5KnRMxV5ftQAaaldOJaP2TiDobShItfHxXq6IYNsG3XL7KAj1CXrCTcLC0JxIVz48HFCuiCsPesNJSA2FiLSyWC+AECiTewFLQzMnp9rURjvNQ79FkFP7RLRnwPwM/b99wPYe/1O6Ys3yISd8TzqQzUGizPeV42aClkLPbTgQqGRrEzEoSMKQ5K9oixCtFUY2zYq5ggq9jVmZ9PIClt/xkM5uT+EifbVdAkxeRwcFXvTi3MY2YRrFTae9vtfbHl6id6OiRZzUnl0kidys6GuJF74TUFRWKIcM5omDrt4z0JbXirxioxiCzu0BIt944SJUcQsu3bx776HoAuNr/vazwAAfvcj73AKAwA2P12je22KxjaGaosU3dsNrn/zmtsmLNabXTJIlgrZ1AoX+8znQZua4Yt++6YgF7KT5LoodwmvSOil7jNUWQSv8xRszmN0mW9S5TrdxZ7I7ldk7p7JOHpI+V70VawkBAAwuBrMlSAsKwANMS76N23zr0K5bdtcOYrzpsvJ5hCSTI1xiXlV6QjZ5qhkwrSL9tfNNSH+NbWelj0puY5i8kAA1ij89iLUQ+MsvDbSMbUO0+0TDr7Cz/nRs8rRBwkoREt9UghGeA3jrYSe+o/AvWj/Pvi6f8d+9qYeBD9pdUZRXiKyuDoUKQ3AFrUFmG9qjcOv5zMTWW+dCXefCxdwNvfJXWoNdzETQSn1InbSZ7MG6882WFlCQZ1RJJg7Rzoq8jKKF1mMogmuWwP96/5LgRP2LwdV7Uc9zGxfh6Q0LvzSu8kar1zP/LkaRhHJOHibb68qlraE0vo3WCGLAiQN7L8tdYJP1azIO/ZUkoqvo28ryE1C3LNDamsIAPm8zrd+zacBAL/1S4yn6C6AzScXqEZ8vt1rvOOwadT0fGyZhxYs2WdWrdu5sQ5QRUiXNl+0FzedWp7yoTiTMHQ0NC7C55DN2Xt0oIAOC8uwf0ZYJT25pDC/1GJwWSYK/6mD2pLjnkTbAZqBhWYfEro7cRX44nTiwjrimYqyOH6+1cDed4km3eZnHiL/Qk9AO+Wigu/jvjJhn5kwl1OOCMVBbP0bBQyv8LkKEEQQVK4bY7BMQ2ZaWR8hwaJ4owArDMAXGGYzVhThGr9f4y2R0zDGvATgu78I5/LFHcYAhoXS8RqNci1IWttnHMaqqQGm53mCjV7SULUJ2mdqtJups2wW2zYZa+VUsectZd4vYbmZoCthCHtOqYUAGiKU6/4xGcXU0EsLqXX0zdr/Pd7KMqJFsefVmQi6ipAfeaFfbfVQjlMnvHq3Sg/DrDXabhokLe25ChWIIhT7qVucZgOWrVTOhZXqTPI/uRWyJr7Xktw1CZBNDNpA8JAJKC8UcOtryUFqf/2j78ap31MY2x0OXyqh5hU6ttHR4Veso82B3a+KPTMZ3RuxcSDnvQqEoap9FXm5xkVpy1P+N2J5F3sCMPAoNlWboP7Cei8BYV9SeWG32kiimPz8kg3VbAbHCmRafhAjtao1QbgF5x5Y34vTPElKW+E+uNpCtXGHvbbjQ1CiqPvXfAKn7fmJxn1QTPRbILb+48JB/iv3kowX2p0JG1LOi6I41LT2rEyYY/fCvj98hLD2nKc2Fw9NEI03P5Bg42kD5yErZh4IiyWLgOkgbGL2WoYxhObLWWkQ0X9ujPm7RPQPEYPdAADGmL/6up7ZyTgZJ+NkfJmNL/fwlFCHfOwu27xph0kITU8hWcV8OLXlmAqLoVTjwwyG4gQn997QzvpuuwrZQjsLLV0xpfPwpRj+IvsXKO78jIX/bQNnf7uMceiBpd3bYau+2LeoLZu0jay4wEIVD2n7o+zLayGUsxZtvdZBOquhOxIjt8neWxw3yK4duH0t3nEK6bzB/JyfNukKDsHTFISDtytnYuQTvl/iRZFmmKgjijTkitoAOBil5DzyqUFSaXc9ktsI192Z3zHo29a1++/qY/3JI+d5QAOmSDGxvUHanDsJdtcsmWCVovhESPDEQ0ImTY9zAYklKKw2WqijJAqplBvA9ieFT0pFBX7cwEu7ewN4z6Y31Y5HTIahINxj/xw9YsOeFlLddoJE80HoRXDdy2or+P4wQC4tmSRT5ttyi8Nng6thHUZQYd6X4wkCTsKp/nl1g5Cm7nawPNcNoN1xiChdxe1cTcp5trDv+fAl7/LPzntERLIyHOK0P287DOWePBIg2SY+b1NtGOx8gLD1B+7riIPrkZ8/wvN/euw9FnDyO0TBhfOyLe6Pd/Bln9Mwxvz/7MuFMebnw++I6M/c4SdvytF2iInz7PyZn7OT3s6xNufFFXqVW5/24SEJNS23+X1x2GK1nkQJyrXPBZ37HHKIXwg/Tlj5u/M+v2C6t02kEOT3oiwADq9JkVc1JGRz43tbHLHfvniQg9/FzsopDADo3Jph733rzgWXgigpWMyusbKQsf/2ImKXrYaE1boIGF68EjYxxDUSh48qdy3h4N4hFMf6AxCBUba1bkCTokqDXPJBxkAFXfVO/fZtmCxxVc7Tx0doO4QjC1luu0B3bYmq4mvMnuqxcg5i50npwzxJBaweXaLd53vxtncx9vIzz3ImvLiRYjPgourd9iERncb5g/AZyhheqSMfPqwul1BNGGpM50A658+7tzksJsl5CX/2r1qAxICvY2F71VNL6F/jxlgysqlxdDaqNlht+eM7mHMg1Lu3vVTNbhzBdFLoLs/V2YOsmOXZU8vkkT2b++C6J4pCaCbxBlH/eonpRT/vo/tl53zY2yQsIJUCyM0n+VpufKNihWE3SUqDYrdCMufzf/5PM8Z7ESDdBjfCcBRPcAm7Lk/fGar7hYwva6URjB8B8PP38Nmba9gYqOQCZEK2GVvPYaFPiFySDmbdfck58OdFQPMsXgBgEVqB5S8LYHIpoILOGRElI2qzWbNX1LUehlFA200idFQ19BTaScUKI1xUSeX5qepRjqar0H+BV9re+9YBANNLLDCyOfcclxj25KvOREI9zP+s1gnJCmgt+kkqoyUfohpmz5VkcVLanIS9dO5C6GPLqrI5kEOPjjIJeU4gYuFG1pPIbs9gOhl0h6dxvdWHzhJMHrKkgENC9Y1TtJ9lKFN9rkTyyREKK/tUFaOP2oLPT+bE/AMskR98G7MAPPvERbQ9jc2P+R8tN5VTdCEvlKoN0nnrLHbJUUXd8YLX04vW0wtAFPnUYPiRgN9p0+c5dMY5lzpwlMLiwe5tnisr5qlENuGKfHlGAByNBgDMz9m2sXZ+132FzmGL4qp3naiMY/tUNqjP+Ux8eG2kDeanPeqvPlZPAsSEi/NzHedJijcWJsKPHlSu6DOfGlBrHHtyPtXO4weAi7+qozzgwHqi1/8YK4til1s9y9h4pnGoMIDzMZ29Egdvf7kX+lrGl32dBhF9J5jn6TwR/bfBVyNwn9k39aDWID9qHbeTwD4BVhzbn+IYxHI7c4oCYDQTAFTjwCpLKEogRl2/bL2G0CyL9XnqD/yKWW1mDnlCrbFhGeN+392poZqg6nzkH5uEwQR2axSHIsKkZ35QOY6gpqtQjRJU712310qAilE7IY1K3VORYI3hxV4ZAMLzhJfRYwg1SLbUWG4kXsjWOhIMaqDQ5hT8nq+jc4PDICZLQHWLdsCWnyiM1XbHHp/DL/t/hE+o6FfQTw9d8d/4Y0yIKBBNo5gvSu7d/IxnlQUAdbmL819zDS89edZ9NvysBzk0BUX90PMjLxBOf5QFcvdWQNjYDwENFIUdRVmEFfD5pHG92yWsdPAuK1BbTtyL5S41Mo4A0O66CGjddWgIHRkcPuo/GL3E81qUWzpvkR35OUq7h/yiY3+T51g9tBFRdSQr40KDc7uubn2dOzrWngoADS1Q9cnxO9V95aHWlmFAvI2jB7k3hhhy5ZhQ7JvIk+vdLF11ejlOIkPn5tdysUrl9VtUOFkPEqjKRB5tuem9nnCOvqZhcN8S4UT0kwCkJcS77Wf/FYA/BaAC8DkAf8kYc2i/+xEAPwBupf1XjTG/Yj9/H3yP8H8FZvu4K2zsbp7GdXA+47sBfDz4fArg//l5XeEbcOiMnMKoxuTw8QATs7nXH36RXzQ2fPPeBwB46mfZV4Q6CWKgoixCBEY2qaBz2296M3PhHYA9GBUVSLXQGaEUugYTI7m6e5rpJ4K52L1dIf8sV6DVD5/G0aOej0HCYWHB0vozKyRBM6Tpo16DJqUPuQjZ3GrTW7uApbV25++L7ZKSqeeF1wsARi94DGpbpGj6ic+jXC9hEoX8tn0YSoFmSxgrqNq1HLqTQKcSN88Y4SOKuUvY//oKZE3e9hlWGMVtu7uGz1UQTW2Ha1xEWEEzzLayVmg2AXb+9Xms2aqkahzTWZQbQOcgvvcSIhFBEyqKcF7MT6Xo7vm+3P2bLfKj2sGZ8wkzFUjflcPHCW3PRJXh1dhXo0uY6vAbWNCbho+19eHAuCmDugkLsR3csKy4GSEJnlN2tILa94tCn9mCOpigPeuLfMLrcZxTrhobOHq7RnZ055CSeCAhgaHkT7J5HJLNJxxalGvPJ5yfkXuTT+qYzqTl+zS9GCspQcONXtJYbCuHIJT8RRhW1Sk5VoTjLYC/0HGfcxo/BS6F+FDw2a8B+BFjTENEfwccEfqbRPROAN8H4F0AzgH4dSJ63BjTgltm/yCAj4CVxncA+KW7HfhuOY0nADxh+1rM7QFARAmAziv97s0yjIJrLF/sG1eLsfmpOdLng5JfUbo9dlWLZ29j9l4fGOYaD+MIBZPKRJ358olG99bKWS6dvRK645WEeAQS7lKNATdCsh7EpHULkY/HC14gvqIExNofXCudwgCAepxjteYZPjMrB8IezKHCmD3YBzU+rh/OcQkfSA/w5TYA4y04R9xX+vAU4435fbpoUK3lTuE2BcOB155liZftzQGlYDIreIoMKlVoe1KjkliqEuuVacJiO+FGTOBirOEf5g6Wmh+xsAjDJunSe3Gq5RCbg38mfN1dW5BnFN8vgQBvPt2iHCcufLg6xffw7G/5/WdB3+wQ6jw/l6J3u3WULE0PmPYSdPd43/3rJbJbM2T22KtLHEq5/o1e6KezoMNjG9OXzB+wIbzGC8rRJ3P3bDpHBgYBpf5cnokP/S1PBQCHzQzj/Rn02BsQ1YPbgPUC6lGKNvNeoYQQp+f9XN36BEE81nyi0XRVFMYNO2a2HYr6opQjDxUX7rDltvwlnPmIn7PS8ExYcSUc3D+Wp6jGNpc1azGetR5On6vIMwfZXjuvQyTpfikNY8yHiejBY5/9avD2I+A+QwC3yf5ZY0wJ4AUieg7AB4joMoCRMeZ3AYCIPgTge/GFKo1g/CqAbwUgZkfXfvb19/DbN/zIpwZrAY2EumHNSqssjO2AN3k3W1hJFaNA0oWOGrbAGC6ws4sp3y8jV3d5uuCmTMJISoTebhvQM1DEVqpzBWp9VbZYiEy7zaMTVDHn146gz3hrcP8xfsSDoBlORIOSAJPHvGBYrSt097XPq/Ri/Hqb+4pyauPitd7tmE/JKEI6bzF5SARfxkR5VmCtPbsEjEFyaNlk8xSmSF0+pVrL0XZ8vChdciX8IuDCUpWv3BURNbBcQTphhdG/4a3/7k7pED5772YCQkHdqJrzAqJYJcchz1sUxsy2AevsKowu+1BeUuqopqTNyAkygFvLSmJ48kDqFAbAHkn96JpD4e2/ne/Z6Hl/fycPI9jeoOkDJrPzdMRClFQAcgiK06TtbVj70TnwAnxxJsXeexiNBgDjP9wFOhnaEc9dLqQMcm0rjWTl6zcALkaMjxkjkMgAc1sf0jnUUYV7d7d9OcVIJbkNvufFvr/+0PqXe+y8rspEeUFJbIf1SDojV4DIH/hqdn2swPZ+jc8zp7FFRCFy9Sfu0P76buM/AvC/2tfnwUpExlX7WW1fH//8ruNelEZhjHF+qjFmRkT3N0P0JRiq4R4T40/ehh4WXlkAgFLAyMOZRGHISJfaWUGqMUBjgvdswYq1szxdMG+OnSuCVunesmGERKEaZejse8mcjLySkdCLFMx1phrLTRUVO/VvBq1ehyxkl7aHhTSuCftlqMZ7WemSlZzAP6sRk7sJdDQUAmFcmX8LDAPIJsAKI0wIN/3EMc/OT/Mxxs/ztSYHNkZmPQtTpNCZcvmXepBwQtmG/kxCqAeJg0+WY2UpIng3+cxgccrHxnVuabWtEh49v8Tue3uOj6kaA03XoGOhqzoFUuP7N0gzILkHnaMW2Qzo7gpCSSGftD6JGsgDef6icJuCBaPkMXo7XBQqlr9Yvbfe7x9s72aM2hte9q9nF3n/HQe77aAeAOVjfMDxRwrUvbACmxWGVHIDtrB0i2/W3nvsXmx1/+riGpIyDLkmEUGheAnTANBRDT0lv4Qmw8R+E+SLZucS9G96yn7VwnmkuUXyhkrlzO95z6LYWaLcLJwHnk80ir0acwvTrXvkQpAAw+DD0Bsg1DrWULOHcUWsmmnrRYllk2PVv69hmHtXGrvGmPd/Iccgov8SnHf+X+SjO53KXT6/67gXpTEnoq82xnzCntD7ACxf5Tdv+JEsGow/eRtYLKEWxy5nNMDiYQ+vSFcBj47x8fBofwG3jU4pRskAAbRRI1k1MEkQb9UG1VrHvkbUO0P20wmSfpK0BCzK5cUD9375CMdmyjEvqKRkL+U4XYMsKmHsVYHsD2sN6q73otoOo516O/E+wiEd2/ieAMVtnx8avMDSnZbHFqH0ZujlaLupq5VJl9o2bbLIroXmcIq99YNrNdqO8rTyKXuOEjIxCYdzVpYvbOf7CpisRWeH9990DdJl0OSJLDrMXtbgZhMl5rWFiIae5nLTJ/YX24lvGZozb1csKFMnoPo3WyS1ce/Fu7wTqWA4pPo8KWO0VD3g59b5WOG+D/dRjhR6uzETAcC5EgB48P8sYYjQ2fHwKp0HiXtLxaJsJ8K8ArKjEtNLrGGrIbD2XEDFk8ZeCMBGh1D292/GQlwn8fZkgPFlP3eyQ//aJIT8sPTMu4lCPUqR29Bga42QTsAc3XY9/Uyy0lHIVzyb3o5fV8Utn/SbPB506XqN4/UmLCSivwBOkP/xIKF9FXduk33Vvj7++V3HvSiN/wzAzxOR7OwsgP/gHn73xh5aA8uVf534SbS6tOZem5TQBG0q24LDRSHkNS09C61qjxHBucYwQbx2oxMhMpKg1qAap0gq78mACEmloxBRyC7av7pCfWaE7IaX9Mut1Pck6HHrSkEISQ8IEW6dQ6Hm4O3FylOBqy8jm3MPadfSs7Gw2GAdhEn6dNGi6acOcQYA1GhQ6T0j0+s4NFTbT0E65s2qhl4Qc89scuGGtlDQiY/zNwU3ERILsRxzvkKEa/emYgJEabYzI3R3TUTSR9pTadQDzqGIxVv3CNUouEe1QdMjFzJsi+B5t8D0AjkFlx/FSkDoUEKesrZD6N+0Xs1hG3FPSZOtUFFU4+D1VovOUeL6twNcRyMeaWei0QmYm6shu4wX/7UXxsWVQ/e62eiDao16nY0ZCZ+GjZiq9QIbT/M+y3VmWz7OeSZrQa5zcF3YJ8ndB7d9MI/CczVEqNYLVyyYzj2QBGC4cDVUbk0Kn9pxpSXDdcMUJuiVsf3cbT3RDl+jKIswN/VahjFAq+9gCdynQUTfAeBvAvhjxpiQm/cXAfw0Ef09cCL8MQAfNca0RDQlog8C+D0Afx7cO+mu4164p36fiN4O4G3gJfAZY8z989e+lEMUsVJoLjKgvRlkEaS1vQM7p1ExYibs40yarUfH3inwzG4SbBP8tqvQdJVz02WChm79ai3FwFJUi8IQ1lqjCPm1Q5SXNuzxNIfD7G+rAaEewiWLjQKYZDA4hyKAoaaIehOkS18oKIiWEIIcWmyrdYXe7ZfDk6WXtMkSUBUUOvb4xiVT9vTKrTWYhDA7F9yrBs5Crvts5S9OZ/4eEALyR+KalYAEMFkBG59hSdvmCtNLOVbWiezuGfR32oBVV4S/KAmFckzO+l+e4nCXMAJ0DonDdeSP59iMV4gc/XoADK75By8CMExmp8dCKPm0jZB1IfQ5n/Jvj97B92b42QRa+Z7fQhMvo+0QFmfyiJU2W2p0LvtEQXPKY1IlDycKOJ1z4lg8YqPYmy6D8yODVzSe3JwK8iJp0GKVtHGJ6nSpox436aqFIUI69TdL1RqThzlKLmsi8qRCIkVCRKYoyiL0lE1C6N3gebI40wHQcb1Z0sBAfG3j/tVpENHPAPgmcO7jKoAfBaOlOgB+zbbN/ogx5oeMMU8S0c8BeAoctvphATYB+MvwkNtfwqskwYF769zXA/DXATxgjPmPiegxInqbMeZffn6XeTJOxsk4GW/t8XnkNF5lP+b77/Dx/3iX7X8MwI/d4fOPAXj353Pse+3c93EAUqZzFVwN/mWjNJpL2+717Ly1Yq1R455xYGyEoalsqUFB6KkNPAoA0GJ5OeoLuJacgEXsVNpZYKoFYIzzNKq+gs6BySV+VP2bLXsK+97qWrx927n/TVe5UAbAmPZ6GHtGqvFJSTJxzYZg6ZMAJy8V2q6qPAibhCHatedLVMM0aquZzEoYGxtX8xK63wH6Nn/TaNCqwuKhNbf9ak258JGc88Ima7nC3Lhz48p37eLzwvAr8fz1ZxvUXYV6yMefn05RHGgXXkoqrtGQ5zG7QCg3fQ/0/ksE3fHnkc4tYst6HnWf4aAyR+pBQI2uYm+uu2vDO3OffNWZ9zC5sx8565zBCQkWpwPLfOXDU6517gu+LmJ0JeQSN1BNEPqy8yMLaoB6n7ntv18fgGqN+aWeuzcmCP3VwwRNV6Gz7ynRDRABQkIIrfT/Di3+ekARqmntuYDrqpe43FE9UMgPW6RB2DZZNtAWICGea/8GT5TBVYN6lMXhv4AqR9uwk2cmONZ0yaL59r6Cr73NGOQhgAnxTF7ruM91Gl+ycS9K4xFjzH9ARN8PAMaYJRG9+a/cDr21hmYQYOGtQIoSkuTDVKrxfD0AkC5btB3lJiZpW3h0rBeAQDE9cZ0cjzfcfxsv/vVnG6jWV44vNxkh5Jri2PMoNzkmnVRx/45qQFZgSa0EMLhmIphtGE4DuGZA4J+iEMNrDAkd245yITcJTRX7FtJ4c4r8JpwCNFkCWjWglRUOAjKy1e3Lcz0APUeVnlQmEjKSYBbEVkgfz9tbuvE0VpISTqu7Cmnp80ODqzVm5zMXblhsK5TrvialHlmFYWGr9Yifk0ODEQvrKEFtfFy+u+NDj0nJCkyQV2GFP8BCLQxH6ZScoHb3Oo8VBuBzRt09g+l5nwMBEHWhdM2bQu6qIBzTu7504UEATDaYUkBTwhQuco6C+qps24A2I0uRA/c+LMgTA0MH4ct06aGwqgUmD+VO4fZvti63lM01Q89Ty++2W0bILUHXRYSIU79gdZ6gLZQ7ZwnrdW34arWRRAW0bYdQDellnf7knod5vdc0jI+Iv5nHvSiNioi6sLY2ET0CoLz7T94kgwhqVQHooXiWra7i03xpR9/woNssLTVSe8XFjSXKrQLp0sbZbf5DPImwwhnwlBqiLESouITxihsRybj6rQrdG8pZrL1bIij9aYeeTt1VqAc+odr05Lh++xBu27/ZRgpBPKuQkkEHgsakhLLnz0/n5OLiAs/Mb3q20zBmDSKG07a26tgmvBfnPWJb6CYAFpLdoL2pS9bbQkSpu5DKYDIxAzALPW/Nt7lCNm3QFIm7VpMCBw+KxQmmULH3Ol0QyqAQUjwXY0+pHvJn2sraZPXKrUBXW+x5iLIeXmXlLwq7ODSo+8pXjheEpkfo3bIEmJsJdyq0SHB3DwJFMgiaaQlySIT1+DrniWYP+RqcUFBW4xzdWYn5Qz6P0RbeINA5cX2QeCi2tijkUTPkFap4SK7avlAo1xQyobdJuFth6rxEBlBI8WE1Spx3v/Y5Hc330tLEZFPvmSTLxhkfACflw+sAGG0HMHIsnN+DKxUWZ7JorqragNpQSQeedpDDe63jrdLu9UcB/DKAi0T0vwD4BgB/8fU8qS/KSBTQ70JfuY78ynW0FUvZZHsTZnOM0WcYh0kHU5jZHPqxS/z9dInedIn6lIfhqVIHFdctJ/VsSOQ48oK9EOPqIlbrCrPHGlBlkRu2f7W4zG2H6cOboOBvse1fixXkKT2sRRt4FoNrwWKzCkdgrMMXeaVGjZ4SciGoCAlmBYgULuqU0L1yFC0+XeQgbUNxdlEbazHSqsHigYELtQFxcaBDvdjdyWINC9JC65IaAyRx//P5GYXhFX6dzVqmHBEE01xj/x3K1y4YFvzCySSNi5KFJH/lc3+O6TzwNDR7QSI4mx6weidfkLraRbEbtHklIJ+1IO09zqZLUU/xted8mLIz1VEDI4C92Cwgzwxh0t3Lh3Yj6ykUOZAQBi+xVivXO2gL5WsTUsLigZGv8O6roLlWQA0emMbpQjuBQQaOxgPwglrCbasNNp6kPbLMo/BZNl1fsFcPgOEVr+zzgKZdINhCH8MXnLrEeKgw3L0ybFABbEAttxI31ycP8gNfnPXn0t3xv00q45qdhdf2WocBva7oqS/WuBf01K8R0ScAfBC8/P6aMWb3VX72xh9lBX35KpAomKqGKiwqZDoDFkvQgC00M2PJoZ65zL87dxr1qSHqgRWEx6pGZdEIbG9xpsP8/8cx69YT2H9fg/FTASPn1RbVKG4PG0Jsmy5FPaqzCe+32DfRNjJceMQqi84uC7XiKUZQl4+fRVsoF4bQGaFNfGw9VBpcV0DOqwKA8twInVt8jwTXL9TkSKyCuhAUSgYKo+kDoysBrYQ975BfKRQyOiEkra/D0DlXGU8sx5Bq2HtYnLIKOGWkl3hTADD+nMFq3Xtlqg4guEvuYS4V4joDsinQv8bvqbGd8+wpibJZXLC1CxfmyD7tjYnhFe0s9XTJPbZDjzNUGN3bJoJlz2zPEsmFkIEV8Nait1Z0SGQJItSb3rOoh6mbn6o1UHNPSRMWrwHsoeTTFo3txiew4zaAmx83kk3A/wTECn1wrQY1BtMHLG+YhHetYirXyOWWAGD8vFcSbi4mAonVjspFrlmn6uXKwp5fEoQkAc6lAF5ZALHCyKaswEJGg/6NOvJi79f4sg5PEdHbjTGfIaKvth8JodElIroIYN8Y8+Lrfoav1yACZVbwv/1h4LKVDEkCU1UwNtFMScLbnjvtfprtTAGwcGi6CSey7dCpQrpoLGzPHspwHwiABVHYqzi/nWK5DWz/QQA/bGOahJBWZLnNQk54niSUtDgTCNfUV+aqxtgEpgf4q5v7WL7rnL8XxnsRpGGbSvlwmyiOxlpclVWYvZ3aKQwASPZZCuixDz+tzvRx+EgIYfaHLfa4IE5CGsoSzYWxfkMhFJbQFokL6WRzjf3HEy/EM2BxzuDUx3l/Rw8qRN2swIrBtd7dZcEvinW1zrmokD5c7o+MfOIV/uIsHzOd8jHK6310pR/6TUu6Z8+tGlFUvQ4A238QQEhbg6ab4OhhG8eXnJQ9FmmDbNq63FhbKGQzT+ndnh+h7SbID/kHkvyHsCfXGtUojSqjQ6Uh4S2X1A+ee7itq3QvNagxyGwuIZsC9TBzvxFl0g1gsIttH/fsHBlkC+OVXxA6i9gW5LOw/3gan5vcDwkZt7niFswSPp0SZufSiG9tGBgrK9sbJ4KS95P7RlQYjvuFnvpSjrt5Gn8dzH74X7/C95tE9IQx5j+8/6f1+g/dL1B+8O3o3JxyGOUC01/rF5mKhYJiPyo6MLfYuaLTW3FoqjYwRG5RqarlpGawCEIvI1sYZAvPNQVl0VphYi607itOAAsFhwi0sIjLpEBpjShJ+i1O8TE3PtsiO6qQHvo40Ox9FwIKBW/NAYw0UaV2fSAAREI/bKSUTSrobobkkEMgemhx81teaRw9HLCsAlAlMH7Rx+3TZcxomq60E1xipa82LV5+YaBaYH5K7meCtucZXlfbvJ/d93hFkU0Q0Z1nc5+HIGPzGvbwnSOD5Rb5upS5rVuxiLK0NFhueHK73g32+qp162nsK3esNiPMTyVRsaNRwNYfeuUd1u5MBLUnldzEIUoh0mx6CsPGk+gxJ1bilAhpNiBWm4L+4yLJsHA0rIsQlJ94Pkv7u/4Nb/GHXobOCDCIGItDQV8PLamkXQfNKEUShG0BYHjVu8+rzVj06Mx740mpUY39vTEU82QhIfY6rTfU9BOnMAAE9CL+s1BhzC4k2HjKExZ29hsszmSOi4oNFb827hc1ujFf5krDGPOD9u83v9I2RPSrr/Tdm2WUZ4YoXjyAvsrhGqcsgji9qQO+nkGBJkgMuyI+idnmSURal00apIGrLEVLgkha+2zJ5Gl2gSZLjbBn0/x0Cp3FvRCKPU+aaFKGfobhrGQFbHw2qMJuDY7etQ6Arfi6rxzTbFIyGkwHAmK1mTolRcE1AnFSUJSFsNJS26Idegl98HiO4sBLjWKvQdNTzrocLjRgjLOK0xXDl+Vw9SBFOVZRsaFOPdqp6fPibmxEpnddkGX+fLnCm18PrxosNz2MVOi5RTnNzzA5oyjmYk+jHpBDW+mU0LutMXnA83QBQO+q8EkZFwqRAsBQaG4/UXmvqaMsbUmghJcGzl4gpvaW597dMUx4aPtPUGMixc7kjSZC+tAxSz18xjJEKQFMsx8KTiAOD+aTxqGYVKm5GM8W5LU5C/bwnJJVGDqzf6z1LvchNKgkPNkcg62nKxPRgKQr7RSGHMcQRXm56UUF1bz8evmgwP47cgdfTksTKRWTEGDMfVMW4XhLQG6JKANXDf5R+9FvAvgnxpjaGPNtr+O5va7DpIRyLcX4CUZNURrfCtP6Sak21tzr1VY32o47vRnX7hVA1Pc4v3wb5aOnnLIQC0uESbHL0l4FLUwBjyoSWmhJcKvG1iJYYVP2BSLJ2wkdtOwvndeYXfLnvNhObdLRNtspDQuCQLiJwgBidJBcV+/yEd+jLAGVDYz0F8+TqNuZCPtizyowYyJrV+6DJD11Qlhtpu7ezCyTr4REOhPjPCgA6FhkUWjNkwbSoDfK8GpwYcZwYvoYYlwE7cYzGvMzvitiPWCLVmpaDFl2YXl2DtkkcCufj+nuGaQrYGZj5+vPNlFCNZsy+kfgo2vPrbDayr2l3uWYvyi2fKqjNr1NT0U1Dx3XwztA/ezMUW903X1JAqJN02HlGdKRNwW5a5ft5N4kyzaCvc4uiGcUeBuDJPKYwyEQYMdoULOikfBaUuFlAX+ZB4vtBN09HSXHQzJFaU08O+/Pr9g3DjXoW9fa59rnjpP9oMdNPfDPXVBaEQvufRpavwWUBrhJRwbgv7Pv/0P72f/99TqpL8YgzZ26Vg+yBd7ZCXL7bQuyyVzqcBB+9TjnNCShF8bd676Py7uGQp+2TZAubkKVLVbrXrJFbTEFhSLEctZyEyGw6CpkQfOa3k6D5XbqCvhUzf8GnwvoO4KeDvUwQ7oyrkBOkrwhNcJx42f9ucZZ38utxJ3L4CU2zWgp/VIV9Cho8LTZweB645K4pBnHL/kSdYyOwSSEqp84CLBQUkjOJ5/FzKhCrtd2ZHFLSNBvEyZXqQWm5z3rbv8mKwyPx2cIqITHVuvMXyTCOCnZwxPfJykNBte0Q74BrDBieo8gYVsZdK1iEc9OFGibK2Sr1oWA6kGCNvdCO5+xFxbWXsSeBYMVZHtnwVul073O7lK2bylatntsqQe038mqdZQ58rwFiUbNsZBpN8Fi2+cShGk4NDbCHAlTzieORbfYb1ENY+hr58g4Yk2uxfF5k+PosTZnTjUAGL4Y0n3wCCnoO4cmeq4A84Z5tuL4mTkqHGPc+9Bju0/N9mBAX97hqWB8jTHmvcH73yCiJ16vE/qiDeNDRJ3rE+CCTXRfY+ydKIv2kXMv+6lq45hsm5OzqiWhOP1q/l1xu8TiTIH5udDKNC6+KyEEWbxNl2PmMuFHL7ZIlq2zjsWjGb3oe0QYhSjBGYbHxKUXzHq2iHuY8wX5l22h7IK3eYSVQS+gXk9vHUWJ7nrUccJMQi2jlyyIoOXQEwnrrOIQiSTZBUp5+GhYXBn3ZF8EfUNEWXg6cKAaG+QVv8+nHKpzifIFC5v+LfEEGL7crvlrC4f0Mxcoq0njeHZSWY6inSCu3xgnGJsiIH6csQckCiuf6gh9lKxaV38AsJdFLSeY3fk05lghoXGJ7vzA7sda3PUwR1K2PrxkW+M2g9wdrx5nbr4llY441vKZZqEehB9Dr2V6SXqI+0rvMLQ2P5NGhYR0bIqtNhJ0Dv21idHiObgIVRAqqwbKezmlcdXfgC9sDRWFUeT6oLySXGZgBLcLIO1zNskduKVCBXg/x5cBeOqelEZLRI8YYz4HAET0MLjP7Jt7kC8MU9sDZJ98nj/OMyDPUL2TmYSTRY163HETjDTTOxxn75SmSLMLCqMXWxdmWJwpooKszNF0WKRHkaAeJBFCioJ+HPmkiRa34PSPs4NKHUdSG1dhDXCcHMDL+ii4YxkA2rjQyfQir/y+bdrU3a2QXz1027frA1eHUY8tDbfErokt3lDYAIDJfPyaPR7rUYzlnvhtw3CJ1KMI4mrwooVOPqbtcQmj52PUGBCjn0YveoWrbN8TYfwVyzK0aHV2jKl35SlVhGK9sAI7XWpML3hJmU99MVznSMMkQZU2WSUg4adhhmoQQ6vzSRNV3+uQtG/RIJsB6VXrEXc60INA6aQdmCRFugioOQa56xJ5HCotnm+Y2E4X2jW46t+oo3DU0BoCh4/55Nrk0SAfcwT0b8BJRU4ke6XZOYxhs+U4AbXHYL+vENpKVwblehYhplZribt32YJh1DLv2g53dxRGAZ3CwayBgFJlcex4wTx5XcaXeyI8GH8DwL8houfBttIDAP7S63pWJ+NknIyT8eU4vgxcjbsqDdsP/L1g/vWQGv3Lg0YEFhFChOqrHnGfkTForYXWdhKk8xptR1ziGCOeVAaLLeUQPQBw9ECCzMJA86mBqgz61yWRba2hIkaIuA5mQmBohyBCQhdaNQb5UR1s403japhw/2dpV5sQOoeta2XJx/CtLQ0BSMjF3AHvZQBAfmPiugGaJEHbu8OUCYynNleAQ8b42g55n890lLBUjU/2u/oH62FIw6G28JAi8TIAYPASt54VypU2531I3mbtWe9lAJ74sAjgm22h8ErMDi4MFeyjMzEuDLNaT0Am7m5Y2OSqavl6JbxFjYlDmsIhtRt0pPvsLRgLWwYRmrFP6BgFZLemaE+t++u52PMNssSbtSeXELeQDYdQjwNBCCeoyNcRv5PdTwBlVa3Bxmd46S+3M0weJWRHvKOBrcKXedx2CDr13h+NCMWBiQrmmKbfby+j7sXcbZ0jS1YZfNa7VTvUXVJq9G9qN4dDLwNgUEG68olwqXaPcosh0CsgkeTf37+E+Je9p2GbdHy3MebvA/jUF+mcvihDWl2q2sTQQAAwQPESI4SazR6afubjt4bDRyI4FluWFsKu9WQBpzCAIGFu4vchBj7sBNf0CE0vcTkSiQ2nAcQwnOA6VcimLZqAGA4mbBLFIRMXQz5WfGUyQrmWuLBXNgMGnztyfS90z4cjTM4KUxSqxM/DRRUlTzMOGbjF7HiMglNVcELb1SUE66oeGrSnODRydApQu7kLSQnkVZQL3yf/Wvib3LHsbI96K3Q8HUdTENJlXIAIItSu/wIjwqQpE1dZ+/CVCsItbfLy7o6kPUNvz/arloru7MXb0Ftjf+7n+kiXLVQptQgZaHsIann7w7cxzljCmP2dBtT4MGNbqOja25ygKhMxLOczX7EudDXdfblZLFTLjYB3LPVMAeVYYe0z8b2KiuEI6O77zoU6IyxOJa7CHYjhvuEa4OZewPh5n8eoh6kj9xRW6agNcF8FAAYTJdwFepuHAJGez5kIsMGQv5cR19t9Iiw0eOugp36HiP4RuEm5ixZL+9c361CVQf9G4yeeK+QxyHa8VMt251ie2nCC0bGVSoOWJbD0xeKoR8DgRrAwJFdh50o9UI5qnM9DR3hy36rU7zO2gnhf4qnolGBScsIjWWkktYmI5aIKa0v9EOY1ujuBtXvDXrurTfFKQ+pT4oY2geWYEKanA1ZTq/jmZ+KFIu1kXZLXrsn5GYaZzgPsgc4DD2uXz2XyiBXSJSGpfHEfYL0LO6SBUREkYIViBGBG4JDKg1pOdgvvV9O1BWdGzpv30w/agjYdFSWvDx7zS6rYCzxSe4u7O4z80SkhnVXQBbscy3ecRVK2WFr4qOTc8iMRhC1WW7kzNkTI9m/5+atajcTG9bWtA/GJb96t5CbaboI2I5d7y+YaOqFI0R1vYRwet80AqEBJE6PkXMGc9b6ieRYoDOFGE1isqkIAQwwOISPep62Hua2RLtpoHlLrkWuSOxEFl09b7iJpKVLqHitUuabOocZq3fee1wkxFYk1iu5bjsPglbP0b6JxL0rj6+3fvxV8ZgB8y/0/nS/eIMO05iC2MPI9b6KG7UgnX8kaQayius8ol9CiLm6/HC8/eMlLssXZIipiCpOdgiAKlUSx27hCLLGIJFzA1mrMrUONgQqUHmmPTunsrlBudFzICGBoqxM612vk+z7a6DyMACHVjNhcVLWGzlREnhhaiIJGEuuz7RCarn+fLIFmwP8AboGaLrzHAAAH720wPMOKa/biCNk5/1zUpGOP6bdf+6x/DpXrTmhhz0HyHwBm51NUAw/pFerrEOlD2n9e9yiiExflEHl9wTxYBIy9xb6xwAB+bwhY+8zUtSlVtcHqlL/H1VoCapKAzsUgP2zdtSy3coC43wjvkJXhnag+AF+n42jqU0SJ8OJ2iWqUOc9EFEbngO9ZPUzZC/EOK5/nIHjegVcn81eu1xFmvkKBnCiLJAh0y9rRKUX9XNqcFU4YTpK2y/y9OtZm1nqGASgggrzLrQlrWia+L4tAwFX1Cif/GsaXNfeUjLtVhL+Zh6E4hlueZne/+ByjU1aPbEXbh8IjqhS1a2P9syxp0kP+O3vEU42wxca/L3aWqMcdpyzCXALAsdqwcjcpNdrcW7OpndCF5ZJanepGRUjVQKHtENafZqewWrP9yNuwiMtrqGxSw6QK6aGXALrI0fa9hxHFugvlvCFHxmcX+OSSpSB/yCKvbqgofFFuskUpzYnSJd+/5WlrlfZbpzAAwIwaVLMcxWV/LvkhsHn15QgrgEOEkwcT9G7F1rWM4kCDGk/1IQR1pS040zmiCnYYVoqhZ6FK7axzuQ+iLMh4Vtt0adB0CeNnA6W3NwUNOYGzeIA1peR8qGELOTvyIRiTkPMsRJlkwTxMSu24x8gABHKoPKMIqvLWcrIyyA5Kl5OaXeKbIEoonxkML3tDR7UG04t53Jq4QxErcRhGXG3w3+GVQIkPSIByLrcxO+eVXpy30E55Jy1ToEgflZB/yx06EPjZ3IepAA79kjYexl7Ylr32fMWDEoVb9xTyo8DAsIr29SAs/LJPhAMAEW2C6dH/CPiS/x2Av2WM2Xudz+11H7L4TUqun3V1gRONVdCdziQU0WdIIx2AhTwA5Nc55qJ7HZgijXpWFFcm0ENrJfdzUOPzKKI0RPBWY6YNEaimVMx64WJQ7CxRbVjrvzGgtnVJVgkvTB7xbKdFkGzVucLGpybuvVqwZNUdb4npQGHU49xRTMtw/cwzTlguN/39mD2kHa0GwJZkaXO36pgQb7rA/HwQfhrWmF71ynb90zFYAEBUlLXcUFxbYT0VMkDvlomeVd33iW5RDoMg0b/ciJPy86BT3viyWJyBgJo1LqcjiWWxUJPKRMbF+h8eQR14/O/qUd8h0hkLgeBN5v68xLOUehmJ18v1qzoOf8HYXtoiOAuFup+4Loo6V2jGORan+dnqBCjHcfJ5FdSNzE9L3soforvrua/aDh9zuRl7HvK+LdiTlPPVKbMR1zZtU+z6LoRy/jKcJyBpxDQGglBropygQMDLgK+qXFMobG8WnUmflRhMIiObtq7nubsfgTEXQuZf27h/xX1E9JMA/iSAHWPMu+1nG+A0woMALgP4940xB/a7HwHwA+Byib9qjPkV+/n74HuE/yswi/ldVdu9hKd+FsCHAfxp+/7P2hP71nu9wHsdRHQZwBR8YY0x5v3HvicA/wDAdwFYAPiLxphPEFFhz7EDvqb/zRjzo3c9lubwlM4U0BiHNKm7CkkdIzV4O4m9GhS7jausBYDi8gGMjU2T1miKIExxhQW0axijmH9KCuLSlYniyFIjIItitaZQHOpICXHHO7s78UAkNBQ0zZExP+cVwsAWFaqpX7Em94tN93NUY79903n5JJdcwXIb6O768JNqgLWnFSor9yVkEYYg8qOYQDBZBYLrgCVU9yb/cLXF24ulqVNOWkteQqdsjSZBrUMWCN7jXtzopRr1IIloUsJzq2zYbLUtfxN09oGtP7TJ6mntCsv43DVmF7KIt0hI8jo780hhzN57BoAP58lfiaM7YIINOwrdRtgXJQzjdW8bVKPEdxUEC7fpRZ57quY5UdnQ4nKDkM+8x3ycV0lnwOxc4pomSR5IlGrHIo9EsKqGzy0PQA3VAK5QdHnaYHnaU/fnh3AKA+A5kwSFnFHjMvEAAor/5WZIEaJdshzg57zaUA4dJT08ZM12dxomNQzCipHFb9dyHa1DD8g4Xqj4BQ8DmPuXCP8pAP8IwIeCz/4LAP/aGPO3iei/sO//JhG9E8D3AXgXgHMAfp2IHjfGtGB2jx8E8BGw0vgOAL90twPfi9LYMMb8f4L3/18i+t57uaovcHzzXfp1fCcY/vsYgK8FX/DXgjsJfosxZma5sv4dEf2SMeYjr3QQoziZvDiVIp/qWHBrj6hRlea+1K5yVaPpp+h98qrbvnngFBIrhOuNHkABbFYBppOhPtZZTFxvEEUCvmOrtQ8f9VbfYlsBNgwzutLEhYBFbIkCTDVyfIiy6Fyb+IsEYIqM+3bLtUvC03oXkeAlRusst4OPWuOK6bioyoeFpMOfOgbQTmzERogFRYD1rrOyCIv9QuuwKbhaO/Q2Nj/TOOGhE2YbbkUI9Bl6GTKkVgNy+5RrFYiuKLnOvtsco8vaeZ1778qw/mwT5TGo9cWM2Vy7OHo76GD6iJfyTU9yFfaetIgAEeK91dbDSJcGyy3lLOz5OfbqRpfF/OZqcYcospBeCa8tThFWm75KWrUsjEWgyrnIsxJlO3yB40+6SFCuZxjcsIzEFnUV97Xwila1rLwlTNXZl7yCbAz0bnLFPsDGABDP2xAmG/aQkfsrnoNRxOuHZFuCqrwiHr3UcGI7WAeGfP5Q1lvYg7ztJEAnVjbhfbpv437l1I35MBE9eOzj7wHwTfb1/wTmCfyb9vOftaUSLxDRcwA+YI30kTHmdwGAiD4E4HtxH5TGvyGi7wPwc/b9vwfg/3yljYnoF+9hn/vGmL94D9sdH98D4EPWffoIEa0R0VljzA0AYvNk9t9dHw9bZWxRL3oxFDDinbGCKITl9v7ginvdPHia3Xrr2uuUlUBx9chtU210HRFhNUzjRvWGIam9m95cbgZJRKURxZUtlFIWSLoygLmzopDf9m80UFUgoKogXNXtoA08o6aXskUUNo0KT1f5sELnyMTJyRwOkixDQlMAsDqtkR3F1dcAUJ3i80lfyDAIYuLFQYvFqQSlEM8lQN0DRi8JJYqOaDY8Tt9/phOKEtTCXwX4yvHhi1Ywn6Xo3AUFN71kUTs7zJUk1fXHezSw0szsvfA1AwDfE64XsACFw/ZlvdebrormRt3zymb8vLFMshaokFEUspGaB+fB3I5BCbw/n9iW8xBjoulxKEuqwHWmUI6VO39JTItibTvkFAbgDQGn1BA3A5OcghhLy2243BPAykugzLx9oJwsMkoADNnCRHOybxVbqNCGl70nvTzVcezDQMxPxteSoFwLoMiTFtU4iar179+4Z09ji4g+Frz/CWPMT7zKb05bWQhjzA0iEjD6ebAnIeOq/ay2r49/ftdxL0rjPwH31vif7fsEwJyI/jqfmxkd2/4duDuZIQH4x6/wnQHwq0RkwEy6x2/SeQBXgvdykTdsIeLHATwK4B8bY37vZQcm+kGwK4ZsuO5QOEnt0VG9W00Uw+QksnEWOi1LoOgAKzafq1EG0sYJCbFiVhe8Lx52V/Md2HiMnmNdR3XQrOaMv6WqjmktJPwUFqjlh5XrZ+B/aAWtMUgXDfIbPo9h+oXrsieJUYHwmozQdFREytf4aFiEGFyeOoaAsWt2dilAvmzXoIkNmVSEtmvQdm1IbZqg3qxRXBNByxavKO2jh2zOwAo+arzCACyVhKUGAYCVxNcDRRbGrqcXCenCK4umxwpDhO/oMitBud+SAxnZ3EbTUxEdi/CHiVcmRI2AzwWECCNH8heMKDbfGqesV+tMsNfxtgfyiXYerGoorptYZ3Zgx5uVsLcinkQ5Vujf9Mc3ijD83MRBfrNpjWqj45h0p5ekdzy/b4q47qQpgF7QW0WnrBBDRaYTcoJcp4S65wsxTXKMYTfwnmGsF2g/UkuDpuOvtc15HQmXlTPogpCxMN/yvRSobkinHtwLO3/C/hthW92wj/1rHvfuaeweD8+/hnEnTWXu8vldx72gp4avts2x8V8aY/7t3TYgov/3K3z1DcaY61ZD/hoRfcYY8+Hwp3c6RXueLYCvJKI1AL9ARO82xnw62pCV0E8AQPfsRSPCcPSMnyxNVyGbe6ijkT7YMqc7GRaPbrjtdcITuLjtYzBtN40qsNvUWzFiDYtyWZ7pIj9qkFqlYfLUU4mDLUCdxfj53u3WCe/8sEK15hdIuZawQgnRJXtzn7ew/ULkvav3CIRXW5BD6Sw3KeqRvbzoza/xp61gmfhjzc4H171dI7vuzy2bAosLLZINvldmA6A9bwpvfcoqXJszUQ3H8YsgWEnHwiOAD61kcwAExweVT01MH37ICkF6UQPMGSYWr3hNElbr32q4h8YNb7VS0JK12ujYfXhWX9+KlqIWvMVBG9XHtDmhzROfK6sNqoADa3jVJ3HdsTVc7/l82jAU2z4/yT0Uh/6YqyDJ37/RQGfK0X4DAK0aJNagqbb6SBYtDt7O15RPDHcTDDwlCpzZ3o4oE6+ojfLeRd0nUBN4nakn2QSA3s0S1Xruktc69d6P3IsQuh3mnhx1/jlZVwnGL8aedlqayMDp3W5R7PqdqFWL8jQj2bJJbZt1CQtEnAsLDbTXPF5f9NQtibwQ0VkA0vn8KoCLwXYXAFy3n1+4w+d3HfcdU2aM+bnwPRH1X22b4PPr9u8OgF8A8IFjm7zSxYf7OATH8r7j8zvzk3EyTsbJeB2HAbvq9/LvCxu/COAv2Nd/AcD/EXz+fUTUIaKHwDnhj9pQ1pSIPmhBRn8++M0rjvvod8WDiL4ewP8AYADuK/5eAP+JMeb/8Qrb9wEoY8zUvv42xAWFAF/8XyGinwUnwI+sVt0GUBtjDomoC0Z2/Z1XO0eTAr2bTAshSbPu1QlW54bofuam3zDPnWU+e9sGJ2Nd0rSCSRSqdbaoVakjL0Msf+k0VkiFbuAeU6tdXUSy5POQ6lUQW2AumZsQ0pm3qsoNxtKHMdmmUM46To4WHrkFoLVJ73pwrOlUME9DyOreVwTQ44srYJFi+LS09vQ1FwB7GZ0joGOrmM21HMtTx1hsbyUoG+GyMtj6hIKYX+KFhfHn7o43zSR/IIWVS9tzWrrZyXUMrll6+ksJklVcOKlTYP8dFhF0wLH1pQUZDK7wMULur97N0oUTyeaFmqF91rXB7KL3pFRtkFpjNi2Zc0xYZAUdFXoO4WvVCqJPwjn28yC/FqJ/Vhv8DKYBj1e28MV3TZc9sfHz7BkaW+Us0HJqNZAqd23L0xmWG8qhpLhlo7f+m27cwljOL3G0935NAEDvVot6oNz1ZAuD0ZN7QGN7pzy4gWTVIpGcCXydhU45/CUsyL1b8f1yfFZBri+EfadLwywI9vYObjbR/Fay9lqZd2mUD3Hz0IasQ0r31zrMfdoVEf0MOOm9RURXwWURfxvAzxHRDwB4CcCfAQBjzJNE9HMAngLQAPhhG5kBuMHeT4Eht7+EV0mCA3dRGkT0kDHmhS/wmgDg7wP4drCghzHmCSL6o3fZ/jQ4rCTn9dPGmF8moh+yv/9xMCTsuwA8B4bc/iX727MA/ieb11AAfs4Y8y/vdnLJClj/TIvOUYM2V+g9yzEQ081R/O4z3ou8cBazt637HtopE7F1gmKgZpD62HlCWGwnDgYqoSapOF+dHdiEpy26KjWSFSGbsLRZbVuX2RYs1YMk6pVBjUE9St0iWNj+Gt2gR0b3VlDh3RqAKKrDMGkSJbDDIiYRUp0D2UeflQWAwUcss6AkUxfAahOQ1Sm5AodmShmJJO/bAig3/bWwwkCUcFxtUFSU1wlCX1LlPrnkw0HlmleY9RDY/kSL6aWAen3s60NUHcN9VxscPukHvions331/eD3gi8taWUzZpaA2fk8okjpHBFgz1HuY4h0U42J27sG8GBJ1odKAORDaeVYoRznvo2s5lxSNwiBtRk5wMXG03xTJeyoE0Jnv3L5H1IKCsDqDAcCOvsNdJJFIJAwr+Xmt/2jc84xaKm+XnKr2SxoGhVChHs3S9Snhg7OLXPO8T4lMSqu3PChrdpOu3BehHNGnmlYI1MPlLu/hrjuSQAf1BpU4xyLoIXA8YZNALD7jcFB/nfcn3Gf6jSMMd//Cl/98VfY/scA/NgdPv8YgHd/Pse+m6fxvwF4HxH9a2PMHU/k1YYx5grFrTVfMThojHkezKh7/PMfD14bAD98h20+BeCrPp9zo9Ygn7ToPLcDGAO9yzhLyjLQeOTq/RcPjJGstEvUCffT4pQI4QzFXuM8h6aXon+zccV2xc4SVLeYWfhlsuJKX7EaRRkdvp1TR9mCazJkbqXzlhstiRWWx5DYfKajhd69uUIy8WW7oizakc8dhAy7TVfF5Ik9YPjCAqttXonnfqsFiPdx9BAAE9KE8P0Qi0/izuHij9BNA4OtT5CnnLCzISwyCwVDz/IqhcnsyaU0EkadA2B2SS4WuP2VCbRt1pQuKCooVLXUF/D7/g37N0CeCUIHANb/7YucAxJamQ5QPuaJxo4e5msZWPxJujDO2lZ3kA1scMRJ17132OcjoAxJn5DlNbOEmElle0YElurwaoPudX7We+/lixLSPYZ1+2vp3Vzh6JGuywOxYOyhux8yBZDLUQgYQBLhOosFdVIxUsvBjRca6bx1BY91nyK4dC11UAGE+3hiXeZFbZ+PzCcy/C987sWev2dtDiy2Cb3b/tx0SlFXwOFLGuncX0A+qZFP+L1Ux0sSPymNK27kE8B9G6Gx9mYdd1Maioh+FMDjFikVDWPM33uVfV+xISpDRDmAvwrg6S/8VO/vUKsaxVPXAABmEfJDa6AbUFKnXCnaf8nDYKaP9t3Dz2aaOazsEOtFFufswUHMNTVIUPc4CQoA89MZerdjCy0U4qJUxJoWQRsiPdJ5QHNhQyhUNu5vyCPVFknkWZRr3Ko2DOHsvG+Atc9ZSzUnlzzd+lSDpptg713HkFrCNzTihS7nSG0cQth4kv+GVOJhoV02N+jfDK6lNmh6KkIlZTPf+7lzwJ8NL/Pf3Q80yA4Sh1yqcuOKywA4CgxRFgD4eHYTVWoUpUb3ycC7KCuYM5vu7eHDHcwtKNHdM3uNxzsBJpWJ+IvC5yq1HysLiswmHlkEBKzJgUGgGuD0R9mdW213nMIAvKcplvtyK0F3t0XnwArGiwWSymB+NoS1+uLBpqDIq+t/rkTTT12DqqTk8JDMa9IG+TxGS7XduE1qRM0BYLUVz5vZeXJkk9VaPFeYUJBf64H9zshxgPkFoG+VdZvHSC6ADRHxPNKlwXI7RXMxKHK9HvQbt89NvPvDR3LMzwH5FZ5I688YvIj7MIy/hjfzuJvS+D5woUcK4PNFUAHAD4Grt8+DE9i/ijt4CV+yoTXMagXYmgXXE3x9DJQlzJhB6MXtFdpuinrdW+rD5+YwqV1MsxXqrb7raZHNDcqRivICqtJuAgtx2vSCD82Q9vj6fBrXHizO8PYhgZtqPQV2cbuEUeSsKHXEys10ecKbPEXb84slWTZourlTQqt1Ata99Z+s4BQGAPReOIIubC+R7QKTBzLfVjNhtlPphwEgqlCWBSLeg3z3ShXZkrMIQzhGEYbX+IertQS9nQY9iwlZbqdoCsLuB4JQ4TgolLxlkUaHsi/+GyqmEE2UX77NMfcmuIjc37udr2c+snrM59e9QegcxCy6EborUBicr9CuiK8cp7j91Qr1ug1DrgOjD5PrNSLIK/Ec6oFXGAAweIY94+k7vUKbn4lpV5Zbvkf34WMWpRVcWrHnq6dHl7lupNjxioga7VyOapQgKU3Qia9G00siNuUyCGclFeflwlxBU3jI+MFXNehdTp1XEQ5pYZxZO80ksUKVtVTY4ki9a70r67lI9bjU95QjigyV7r5260eGKAwA6O5pbD2xxOThHu7veE1J7jfMeEWlYYx5BsDfIaJPGWNeNTkSDptb+G+MMX/2tZ7g6zaMYfrvOHwGs38I07YwZz2sNn/muoOqtjd3kDzoAVzN/5+9P4+2NLvuAsHfOd9w5/vGeC/mMedMZaZm2zKybDB4WpYBW+DCNIMLmtUGQ1V1lW3obqqg3MtNUa420I0RGGNXWdjGZZVNIzwJS8KalYOU8xAZc8Sbhzvfbzr9xz77nH1eREqhiCcppYiz1lv3vnu/+43n7PG3f3upC51VjvjNaIV0UAmOHoV46MNZkzkqzpt7hXMW4eR1EEQrq6RlJ4eE+KrKQA/9/6wwAIL/Fo3IVSpncyn1SRCVwSYC5l8SwnNzAj2xnEV1SY0eobleuda2AHkNmVgIlYTbWxkmSe7KWphcBTykkWPQHAokum+ZCC+pqExwf228o4BKROL6ZXG+jNsTj7h9tXL3nPthp+fXEQybu0BeoDzum3WkQ68seMhagyj34SmjVQCIyGsatd0C5/4s36AKp+65inOvHAIAHPwYbTt71nsMRgmyxDVg+0EvxOafpeM2L3kPuLYZY+th0uBG2XCTrLGJDUq74tuXFKoIaK3Y/Vy1Obcl+n26nRG4g1MZEYWiGCRQNCMY5UOHWSdCFamgKLWsKVQlXVfWVdh4q6xSVZgsV+i+bIsg6x7GO15QAXEkTy9mwTXKUrkzI7DtYyKpRoqGhwgn45DokYdk/TXKc4m1LtOEld7/vo1vcE+DxyeUUj8LgJPYHwURFu6+3g9s86YDSqnUGJO93nZf06EUoDlDW0I17WKzoSr19MsAgCrLUGoFFbE0qFC8+hqiR+53u9p8U9MlPpNRRZ6GbQKTNzXKNAk4hFxHOJBnIbujDY4kFPqyk0sXxhErAl6wchiqSiMkG0NnkSKJMTzVRW2Lbjv3wJgueE+pd8ILXWWAzvnS4fE5DDc8PeO2YZZbvgYZq5b5CF7crOjKiHpnSHqIZGhcnN41mhILSca5VUWxabbeudivf0ZY8EJhpJdSFA0gO0bXnl5JMV3O0X3NT/No6skinVWtmMQoByIRQrqXBPrwKIUrh0tcu+PPVyKKdOEtcUO0syhESGr3ZAoCrwCn7lnB5r8/Cg7TRxl5ITL5XCVA/4jtTseJdYuOWv2mDtpXKrQukPdRNmOMDtU8SV+sMDyknCBurlFx4c4Z2xNFkUXvuJ9qMXZP+7BslVqmWKbzMAaNjVzk8sjidx0nSwpXuUS7CdFUZarQvBQFIH+Zb2qs+7qKeOS9BIAYeOOJQdoTtCBaOVLP3okURZ2KB/nYRgHGnqqy6L3alqhRqTyNDF9DW4SgR4e9+ywr1W97fAX00Fd73IzS+NcAngXwPvv/XwTwiwD+zJf43XkAH7e0IrJ505fKhXx1hjGkLGZJOJoOmaWq2YSaTlGuE4mvTlOYIkeV0QyPz5yCadaw+dY52r60CTQrO6azGqrw4ScAUJVyyCJVhO1cWYAxfUNrrUQVKyc8irpC+3LuBGe6MUTVSBw7rR5RCGN8gq6jShUu/1ABXp1qLcGRj4UztX05xCPIPgwXv5viBRJRNBEs8VUCtC9bYV95xBSdK722VsPiOQ4z8DVwqEDnhLhhdJhRxDjKI5ul6Tk8RK/xBNh+WCiJbQ295j2L8Rl7TxILSjg5xuJHGuCHw14Bh7/07igMRymF8tC8Q0+tva1ht6evdYkgnBKNgJ1TEeZeDTmOAGC0JMJ/oPDKdB5onaNr2X3yKGJQKMTd21i5xLPPNdhrs82iuOJ77iVKPE8XaQPHPCy8m9lXS5Qi7Hn1XX65513LvzS2nx2KUetVzvhx3QmFUuwfS50Bs7e63Si6f46ZViEwftK+QdZRPk/BFDLs1Amjqr5JhsfokP3tgNBPXHDLlOdMix9lBoMTAmU3UGis++fGXQ35d7WdAr0TwhuvA0ufG2BwzLtlMlyVH7qebfmWhsE3dnhKjDPGmD8r/v8flFJP38Tvrto/DZ8TeeM4Z2kCnDgMlAbZwQ6SVUHX2Wwgmp8FAFS7ZKbEZ065r7cen3PJXubg0XbtGw2gJnD2BVlOPFfaHG7gxWVDMFMRpso6vmdFc8OGbnZ9VXK01oPp2gmel05hAMCl79TATgqdidBISwdWFgRNCieZJQlhlHlF4RY/aKFLbiHOEcimSPEYLnlaNOk6x/PWi1kxKOsqEETTGQ1YAdW5YLvK2Xhz/wgt1kLkTJqX/H0yEVn943u8yWpyRcxjAOY+0giEWzSpoHOD+vktv8Pc52/Ko3TRZ/8CW9MFom6G9ifsvTbhtda2CMEkgQUcptSlcQqD70Xa8yABzqtI4SQFmaQc56GFnN45rbH4TOmURTSt0FzJMDpo632mxikMANg9GaN1Bdh50O9k/pnIhe5YWU1FmBXw3kLeoTArDxMR3XgVeRTfZE75Cnz7wkqRaEC8F+pg2A1/f+ZetJDqE/Tjpi2VKhNq58rzcOe0homA0UmRzB5Ebp/NVdq/5AUbL8YuF7JzbxqcAwBsP+BrkHunFA5+usTYwtnTwf6JrW909BSPsVLqW40xfwQASql3IWhH/7rjeWPMv5MfKKV+6BbO8SsyTBwhX6Rkt4kU8mV6XyUUMKh9dtttG50+if4jJFAmsxp529cSNDYq1LepVwDgw+cNESZv7SETVIWnXmf2TQ4TTGciogmxE7p+eQBVllBjpiONUS10HFfV+MQMdu5JsHu/3WGbjjX3cS+AalteMJqYYJucO5n61I3fRsir4Wl/7t0XbGjDnhvnRViQ1jfD/bCA3BuOYzhjlIVtaXun6Jwl9UeVQCRfDcaLPmmfzdEK7HzBtoF9MMfSH8Xgac2hPEk2WX9NcJI4KC23kSXBEXX99O5+1FufzIYrvbC1t8ao2euOpr4gDVB7IKr02rBGQBWroNZntJwinhA/Fm1AL8MTAlAxm6HxeZKy9S0KZTJqqmhFLskMwNWqlFb/xRMKB535DUGM2TJuHkxmFQBPGdNYY0Zam3faMtRG+HV6SwytZ8XAhsR6Bi60quj58eidUoAKOy+yUO9eCCnhOa+1fY9HJg6PCG+9R3VHc8/T/9wffPt+W6OSatQ3RPfNpjc4eMi2v2XD4Mp7YuQLVrFv7EEL3s64Q5TG3wDwy0opXg7b8KXqX2z8FIB/dxOffU0Gd+6LJgUpEMvpA0NWW/6o9ywmi6mzEIoGKQyOx5c1BRjjQzJKIWt7wda+WhCRnA1JuUVk60DiSQVEylW08n7bL3qlhUi55lA6rwIytp17YugMOPxR+l+XEaZd7dz/2k7lLCbAwxo5GT33ErGn7tzj0VzcjhUA2mdjF3tOhiTQmd5al6HlPVkk65uPzbmMRBQncowe8IvYIXpKCsdJ6GU0DXtANNcMMptHyeaAxqpf7Ic/HEHnPjZet3DT2iurfoe5UOCcBxJgiLXvmQA2eRufIwHNymLmXGXvHb2uvs0rDICsZlYOfA7SGxseM0h73rwdHvR5pvp2hf5xHbDsSqWjZ2141ArlvfU5AAI4bXUDEML8i2MXiuT+MdJACDjGbCU/C3qu4WABPpkjb5hzUK0V4ukKGhaJ04snlJuTNTzdc8bNFVX6anajSWE5T6CtoEuF0UEbgqsb6KmCLukiGcrNFeNZG8EcYmOGPVZV0bPibZh5V957VhgAUCy/MdOyX6txM4SFnwfwmFKqa//vfbHtlVLfDaraPqKU+ifiqy44C/gGGMoYRJMC+Qy7qha2lxANuuvlXFAxHs9/dlXZmlHGUocIizntiZBOBERjj6ZShvbJyiObTaALg+Yq3Zr6lR5MGrseF3qaI1/w1u7oUB06r1xIZOlJCltt3+cLlLKut3J7J4mQTy6iwVEFPbWLfbXCcFk7qo94QkpDUn9wC1NdGAwP6kCYSRZXtjLnXxDkjU0fDx4tRi5ZCRCqBRChihqhfeQ+AWBgrW+dEQyTGwXNvkTn5Np3uip8f4K1s0JhsGdhe4kgSYBGHbtvWba/N2g803BKIh6TJ5aIyGUsvJbaJilOFnwyfMPCdfNRcSHaYP3t9hxXNNJeiL468pEB+qfoBg2XKQTTeY2r3RuobQNNkS+SAp89C5l8luGsxWfGGAkllTcpXCRDaHJ/DHEtXc9yWzQnDIJSNCAYLseo9avAcyzqytXMNNeoJw0r1fkXqSCP59bgsHLny0V8ri9LbivE7bHigUaVGMy+zFBbOg8Gn9B9UOhc9IZdUQdyWRS6KYpQLbLYIRYzhe5zCfqPekDFfg21f02YvmbjprmnvpSyEOMqgM8B+H4QVTmPPoD/6uZP7e64O+6Ou+MbaNwBxX23NKxn8nml1Afs/o/bmo831DCRQjaXYjIXobYbWkjDQz6G6Tr42eRtY62ALk2AUqlS5VAn2vYvlhafZK5nBBFXiTP9SNz31nmVxtBTspbzhSbKVPuw0qgk61o24FEKs6/Q79cfq6Gs+5BP51KFaGocfQN5Gf7U+kc1JetFGKN12VMqUPLSH2vpCb/hxqPMk0Xfz5wlr6eq+YufCrpvTsxyiMVo8h4MI2havsoboOR8lYbQzFQUaTkqc/uMGmu043hLmPwTcbFRREipmuiK+IBHAOyetgg2m7OIpgZ5W2HmNZFwFaSB2hY9SAp0HlVM1u7cc3yywPYjBvUVCzee0LUxbcniF7yXAVivKfetZwFAfeeWSybuXOli5nm/fDl3wWi2KvX8UwAwWbg+XyS9DM7F8P3nZyo9VKMFH1RTESRaGOFVrHwvkq5CMvbh1smsdnUWAJDZ0CQXHQL+eUb23jikVR2AgQN3tC9y3Qgflzwfbg/L9T+yoC+eAGrdX0cVA92LNh/U0Mg6KmhY1Vqt0Llsc2OjAq9gn8ZdpfFFx3cB+McAUgCnlFKPg+o7vv8reMybHgRrZVikdm54PPYuOOBj/xIKCnhBqvMKertE0eZmNhlipVA2bAMh0WuYfhfCX+NBBlVUqBr0e5PGKFsxKu78llLsmGPRUVYFPR10YbD5pibGi/w/hXDmXiRJO52LMVqK3Pm2LxvkLYXpjN8eQHCOsvp8OquCuEV90ysELsBqXxL9JoxXhKNlWoXcJyKaGGKdZei/Vo6ADyCsfhWH7WSTgY+rq3IPVYc9reaKVwzJNVE+ZFgKCabe5QVMDxKYr6pprD0uloCi+LdUyO0rlaP/YEABkwK2baW6LDaUCVyjfIilSoCZl7QleKQhw1nTuRp07qvlOUS28C2ebfnKOY99Pvq7CkDpwpy7p3QAf557MSfEkZ0qDAEuhZCfinNpWkXJpJBG+fcAgQrG81HAzFvUPb+ULsKanc6VCmWqHDOC0VS0yY2tqpR+s/AcA0C0C/lOZ7SD2wLUh76Kw5CpzD/EE2p9y/mUWi8khowndN0cgk4HNM8m3MK2oOZbHF7lCn+m6pFFmrc77gj0lFKqCeC/AXkMf00pdS+A+78UiyyA/x7UD+MjAGCMefoGPW2/ZsNEvoBIkuSxlSIL0vKmQjwRngV8zFpPbVXxthechSAHdJPXLm4mkautUuBelSXKboOoqgHkXVrV2TxDJyuYitAxgEUCxdpRqG++iaxTCTs9+lsRRsuWfiQzqG9XTpiNlqlvdH3b3wdq4eqvtxDWqLSMOpdLFM3INfeJpnQfuPgNCPdlYgQd1oq6CmCO0zmgvimQZBEJ5GTojy8LCfmZSJ4snVM7T97//LVdpyxMqw606sgO0D1KVwdOYQDAzukYaU8inmh/3Qv+XirhZfGzniyJ3EA78ucvq+EVxdrZep0coFwNe01lGgo+fr6c46hvAzv3+h2u99pIFyaY/yBDQykvxiCDxecrqMKDALiqnhtSXTcUgRY4P1TFCvF0jwcbKaTWWGKgBhsnaS9cIwBZ9vL39R1PvOmoy8U9kvmZeOLbuaoSmH25coYc31dmjmYYuAcZKBQNiQRU6Jz325cJeePcqGm8QJQonMQvUwUYDw82sWXFrYVrdl/GnaA0QIV8TwD4Zvv/ZRAC6kspjcIYs7uH5fYNN+JxaFHx4DBSFQOta7mjmFa5CcI14+U6mpdHGB0hwaRM6NLrjBaz64xXGdTWJ6ha3H+jILpou8u8ExF6q821Dhr9YwrzL1qoZqKw9UCMKLNd8/7UOtbXZ4Cp3X9a4dq3aBz5mO1bMEt0D667niFLjDmOoikJNrOHlpWRJjIJLDvBAVYoGhWEmwBvbccTUggyRDWd9dZWfdNbqXRQokbnEWWh0mBlMVoMaUw8y67B7uNLqO3QDmtrQ6cwAGB6qIO8FaF/zJJFHrUJ9Rf9NXUveoXBPUdiW0vBSkMWQ6rSd+NTpXFeEVNayPCS0Z6ZlcNAfO2MHOqfEFDTx3exPaQH0f79NtKBQWPNh5zGS4kDv7NyY2NGGapzkcWIMvTHwt3XINC8doKagRqWWHG8oAIPnBLj/n8Ojynhiay/KUb7Ku0/65LB4LomKgTe7fCgR80VTWDmrK+CrxJFaEdGhE3onstQ23Q+DGOWNe9NH3hGhCgB1BUpDl7H9W0KT7vq/tyzINC9wP6NO0RpnDHG/Dml1A8DgDFmrG5OEzyrlPovAETWO/lxAJ+4jXPd10EEcjbcoYDajmiKVBhMbeiK+2EwT02UVahijbztZ1L/npazrlVpEPdzV3RlIqJjiDckaF9BD2mG54skFJhKHQoo08gJ3ukc0Lno6Rx4oi/9wEUAQKpLVFDYXCVoSHo5xdIT/lr4/Lklaa1nEI9KR/oXjyoMDsfO6i2aNv4rrGCOW1cpLXypgLKuAq/VKiFFIENIkhaDKcmZE8jRvEteOLGo2EOJBWRXNpuq7ZqA6yjdKQKBPl1qQRnfdzu31rwrAruqgla1td0K0xm/JDg8wZxE2UyM4UGN9lX6nAUsC8yqpd17hq+y0q1iYOFZwUxsKTBGov/0dE451NLg7WPUAdR/x7tBab9E7yQ9jGRkMDikMDjEBWj2mkRDKsm/1Ni0CsHenrKuHOUIQPNKNjJKhhWgFAaHZGjSvXU8XPxsOCfGqL7ecfrd1sP0+eLTVdg3ZU4DChgeth+I566LsA9JPDHUE4rrc9o+xAUARY1YgmU9T9FQDgY/WkqQ9j0btW8xa73vA1HQP9w1YbJRhxv1dr+VQQblG9uIvplxM0ojs93wDAAopc4AmH7xnwAA/haAv2e3/bcAfhfAP7zF89z/UdFkZAHnchqjKlAiVU1D5QYx98to+DwIQERoMrRTRQrT+dRRUgNA1BO3K9YYnGyjtkPfDw+mUJURSkZhMufhh7OvEOstu8qTWY3GusHOL3vSxM33eBNr4VnrVtu5GWcV4lGBdukt0fGBxAmtMtVobHjhMdG2N7P9fRXD1WXEY+8dAD6GLS3Q6ZxCOeYiBa8oAKC0yqEmmiLq3Dhh0lwrsXsydtXJbGlyqKVMKYbO3kc8LFE2NNIdn6iOhznK5o27EjIfV7Ppw2nNa/7exf0Mw+NNp6CzjgUJ2Oc7PKhhtA/56IJCcbI2gT00PfXcRwAwc9agaOig/7suPVcVQMpn/DhJ38bTDQCNgNF1KBTM6jcRFGfuOS9co4lxXt14kQUe/Z4VMDPhulCM/floKYIqw8ZQWw/562pfoFcm/qOK6zIAhAQcTQrIZg0Wn/bzRVaoM+MAV30XDWDuFRs+mo8QT33hpwv7CcUS5QawYcyi5mHhANPb+PBTc73E4GAME4XFqfxcjSbFwdEFNjKYsFD2br/tcYd4Gv89gN8BcEwp9SsA3gXfMe91hzFmBFIaf+92TvArNWhiUQ2GS5gCZOnXtHfzcw5TeS6evuDlL+oqUBpcfSzRUNlS0+UgxssksNii1YUJrON4bNAZVm4xVjGdK1v+9R1i1O2dsYJ1rHD0t2IfEjMVtQ61Hkk8KjBeqrnq46wbU6UuL3YFwHjuos6FHMNDsSu8qxLfGKi5ZpC1lUumsocgE7AyNJeMDJKRrf61o3vOBB3WpBdhIoXupTJAskkCQ8DWSZRs5ZaIx6UjbwQQKAxOEsvWujqr0HmN8klVLSLiuz4pjsFJ0o5TiypqrBubl7D/b1QYLelQ0IvzyzoIQi7NFRHft8qCPVggDAkODtP7+nOkdVqrJhAwg4Mxdh72tPkqt1byQXFvBmIe2WfWusrtg3VAnT6Zs4WELEDtM5EFgtLb7FzO7XaWnbnj5y/gPYOh8Ezmn0VAYAh4672+TgqIPer553NnHDjkln2Uab9CFcHRvBsdtgQ2MdA/rlC37DBpz9jGZfS/7PTIQ7IRFE2aw3IdljU446G5sX+S/o5IhBtjfk8p9QSAbwItib9tjNn4Ej+DUuptAP4ugJPyOMaYR1/vN1/NoQzRIiA3JITYbbe5B14EtZ0SqjTIOzcObLIFx4vHxArpjrdes4UGtu9LQSAyYO6lDNO5OEAkta56BcN9OTyx2x5rC0Rqd+gTgum1AuprJCXGy3VUCsgZsdTS6B+LMLLUHbWdCtHE50y4ARPndfJOhOmsciSDuvAtV6uYrDNWKHv7HDQ2K4eAAYD+UbqI+ef8Z60rYwyPNtw9qxLl+JoaWxRbHoucxc6DFQ48EYYJ6uuiM2Hqn0tZj6lQixOXxiCbiTERnE6ttRKp9fKu/jFS4I9+93kAwOB/uRcDQTS5e0ahfdl7NpN5UhjseQFhXF8qz9ZKiemsdontsqEDq9xohe0HZG6E9sVkkHQ/vNS+9J2cUxMggb5/vxf9lHUUZs7mjuwRoGfNSo4VAuc2jA7zSXmH5tXyp60bqLzCAGj6Gq3c/pguf+F5ER4TnkXpkE2WGSFRqG8UqFtJMlqO3dxhj4SZl/NGhMkBuG3HSzQvXZfEAk5h8LVI71yVNFfZoy5TUprsIVcJodV4f+kgLHSciDYCtz32SWkopf4rAP+l3eMzIEO+CeDXQDL3PID3GWO27fY/BeBHQd1Tf9wY87u3euybQU9xu9f/cIPPvtj4FQD/LeiCqi+x7Vd9mEgh62ikO6VPUsMLZ5njADzkluPb7Su26RF7JPxaVORV2LTP7imvLHjEk8q1ezVaYbKQut9vPBoBlRceugQ6F71SiQY5ipnU0ZJc+6YGogwYz5PZ39jyvT0AWjhR5pVb1taIah5lA0NuONeZFHMKjU3fFEoZTxXCyoKFYzIMY+jRtAK0R0i1rxYkWKzia10ZY7xcd4iy4UFCsXAytkxVIGh2HmRYEr2kW1PorMR0wYeXxoKqu7FOVvXeBjs8WvZcr30z/X58pMQ7H30Vn3niXtrg3UA09PF5fgaMqIvHxoV9AFuLEQOta8bdn9aKVWwbGeobQLJF2rf34FxwbYQ8UoE137zm+3HwuW48wnQfFgYqFEW663+btykUJS393dNJ4NUBwtpWYVfAKAOaq8Izet6CCTY8KrBsJW7+s5fk8kNrVYCmalyh657atsHjxTg83sRg597E5ZSKpkLR9J5ENAlRbUUTGPiILHQuWuMihBKjRTQ+fC+rBJh9rXLbGK2QjAxGy0KpSOSbpnXnKtRFiPW2htkfT0MpdQSUI37I5ph/HdQ07yEAHzbG/IxS6icB/CSAn1BKPWS/fxjAYQB/oJS6zxhzS8ma11UaSqk6SHMtKqXm4B3vrj3wlxrrxpjfvpWT+mqO4WGmSxaFR10dNEeSCB4Yg9quCCmVJujWFvUzFLN1bN9fD37reowbOIUBwNKBF1j5ZguxHQHQoVLS09LVZoyPNKFKg94DHvaZ9oyDF05mqeaEkSBpr0Jt1+P0mWaER2ulwPBQ7M6TFUMm+KdikaPgpj0AKSQ6PwuptYlmVgomUqhteoU3PlgHTNhhTpc+Fh5NCS/PSuTEf7CEcX2fH6qSCAn3dj7ZsOdnz70dQYsaljIlRA73wd6+J0KVACNBAvj0H9yP1G1Pr7UdelUlKFl78MaWJisL2Qmwfpkkeb7QcgoDAOobOUaHUmfZVwnVKEhkmUy4jm0NweQxq8HWa0h3tFuFyQ34GcaLyplnyXBPgyi2WUyY/HbfTw3Gi7GDCA8PxygaCktWaZQtUs51W0Cpqgq9My2nqAFfvwJ4ZTGds2GsMqzr4DAYe9I6R1Bcp0vjvIeioTCFT3RXcdjxkb2OVNRxxGMPkigTZfttWEPuPoPmNc/aa2IqGvU08mRUcegsvcG9vuWxf+GpGEBDKZWD5PRVELffe+z3vwQqd/gJAO8F8KvGmCmAc0qpV0HlEJ+81QO/3vg/A/g7IAXxBLzS6AH4/9zEvv++UupfAfgwROLcGPObt3Ki+z0qDUw72rnz197tBUM0VJh7ieF4NoZrERU6ozi8E4xKIcpKh4YqZmmxyDCNTC5G4wqlgPNxT/H2JT+bWleLwIOpahG230Qxka13TTH7mRp23krHU0mFR8+cw6v/4gG6LrsIGX+fdSl23T9B+1aFQmPN34fpXIx4sgdOa7xFqioEcfq8pXxb1tI2iEq5eK8KFGiVagyO1T3YwIYLWCkYjYA11WhaU61rAkQwKR380UQa42XvWagCiArjcfxTX4jnzh3A7kn/WdoD0mctjHQptFBZOMiq8/5xcfGKEtwNGyapEoW5l8au0VX98i7UhM49vbKD0QMHXAX56JBtmSsK4AJWgQToH4sxI1rtbn73BNqSJvIVsLLg5krOWq5C3qnBcWBwXGP5s6GS54c5nVFoXymcEts5kwT3zEQkmDcfJzO7bkNlrcv+/DoXvKk/XUgRj0rnLQBAITw+RpWxYK5vEcKpfc0rHYmYkiFKVdhEvL1dRdPmm+yz4/nFr3lTo9YrXQOsyYJGMjDonfb3RxaVzr9oUNR8qK5MAcniIKveb3fIvMqXGItKqc+J/99vjHk/ABhjriil/jGAiyDQ9e/ZNMKyMeaa3eaaUorbTh4B8Cmxr8v2s1sar6s0jDE/B+DnlFJ/yxjzT29h338FwAOg7gYuTQvgDaE07o674+64O97AY8MY87YbfWEjP+8FcArADoB/p5T6kS+yrxu5yrfs89xMIvyfKqUeAcXL6uLzX/4SP33MGPOmWz2xr/RQhmB7RsOGaywaaahx8NMi3LA6Rv90K2hiVKWaEuiA672tCq7nKNE/1Qgs6JpwbwPUEoDmKtUWyMpjkygUCVlso8UIRVOh9y0MhNfI/8Qu0mcp4Hvmj53HFz74IEBErehcIjw8o0uSgUH/mHZ9C8YLxLHDPcFHBywlu4h9lzXl3X/twwLMI8SokmREPaMZm88MsBxOGnXrRLUumhTJ2HGZhlTZTMuRbvnYQ9HxZl48ytE5l2M6T3GMvBUFy6FoatS2S1dDwzmEhefpfHZPJSGlS05/Mq8gE9FsxbuGQuyh2U3mXh4jGuWIRrT/yZEuGmepmIE5rbYepHONMkKocfgP8I2PAKBzka69d9J7UvWnGy6u71ro2hVY1q6nYJH75ti5DNdN5mKX/K1vVxZRdb1nBvj5IMO29a0cZZOBGhrxqMDUclpVkULWiV3Iq2gQSy+j8pKh9TKEqHo9L4Mo8D1SbDKrg+dW2zaIx5WreahvFkFeUhlgIup5th6pAG0A3n5Do3lNQnkNlPHM0GVC5+q9I+zf2J/w1J8AcM4Ysw4ASqnfBPAtAFaVUoesl3EIAM/YywBERghHQeGsWxo3kwj/+6A42UMAPgTguwH8EYAvpTQ+pZR6yBjz/K2e3FdyEGc/JcySgcH8F2hCtS9nKOsajRWP0Gms5q71qM5NUAXsaL07vr0cCSNGU9FnnJNw7TC5M1pie2DzorCfjyy8kBsdGTvhjxzcxtWXlrg5HTb/9Qm04Ll2VEULtXPJ8iSVBrrwgmjmbBYcv5YqjA8IgsFZiuk7oSOIDGu9Cllboy5AAkYrl+BM+gzvtLxbqSI4s4h169yHpFhh8O+Hh+KQwqOqkOxOHC0LK4vBEX89WRdoX6V7W7OhxOmenA2PvSCBbMaet4CqOkUBirGrEpg5R9tNZ1RQdbz+eANV0sDCs/Th9v0ptu8/FFybjLNLmKhL4ho+boz1b88x9yl/XbUdn19J+xV2T2s0BdO7pJBnhTE86j+TDY5GS8yF5r+fdn2HSJ3TXHMkf/ZF1qAw7BygfFXeSRAPPEBE5kiSAYd1/dzi2iB3TmLeSWGadagwzwEQpgaqlPc0fN5Gq4DqY9qlde3bFBvoiUaV8jwFpjNA57LNedQUsq5oRRuHvUzkM7ytsU+JcFBY6pssxdMYwB8HMYsPQb2Ofsa+/pbd/rcBfEAp9bOgdMO9AD5zqwe/mTqNHwTwGICnjDF/RSm1DOBf3cTvvhXAX1JKnQPlNBQA80aB3PKIpkDnUi6a2heIR8LCrXyvah4mCmG18fYIJvXbmFgokMygqCkoCw1NBiXVSYhaBF0YBxPlBChTc0wBDN7iY8fZB5Zx8kqO3dM2cZ6FfD/JoAysSz0t0VgtMTxiY+PjAiaN0DvpzafRMhCNeXsLrbWWpi7CtpnN1RylLXBUpUEyuL5FClv61JfEd2+jBeMJIfkY3EskyitEwwLGCqeikUIZ4woqAaB3IvHUG137ob388WKMMg25s8aL1zd92n5MVP+3c+BVuhfxMIxfN1eoloDRY9HUYLTk+73zdTCIAQgT1EbDUVkwUIGVharI69x8sz2XVom4nqP/Hrvh+RZqO2FurLHujRQWcEwTsrf19OzLNO8KWxA4WbTWvj3V/lEqEuXBcFsJkpCFnLSP2An+aGqgs8oBQpJBSf1pOnRTGMEWCeJAmXNhstDU5vuKmgq79RU+qeBqlLZDY4XH8FAcoNoaGwbDw8rlCZvXSDk6j1cBKgH6x/z/PO/5/7wLxIJCZ9/GPigNY8ynlVK/AeBJUI+ipwC8H0AbwK8rpX4UpFh+yG7/nEVYPW+3/7FbRU4BN6c0xsaYSilV2EZMawBOf6kfgVhu39BDF8DMa7Yj2kiEnwS1d96NA8ZMx/EjCsZMLArK6gnaF8aYLpJVXCbKIqa4AlcFC5wp0hmTzjA/B2VcN+h+0JuHqUUOsScBAOlu7jqxxf0c0wM1B6EdHKHz4CK60bEmoVhsqGnrQR2EJboXS0ApF2qKJj65qackJBjuC61Q1iMku16BjpdqAfIs7VWIwPBhg6Km0bbJ1Ol8jMaqSHrbAkhmCAaAoh4hcy1Jw8K67nlPbc0jF4KHFSErCxY+ivunz2doP+GVZ9oHxstAQ1jz4wUV1GUAvp86W/qRsPhjCQOt+ZAPb+s61VXwCgPA0cOb2Bo0kb1MWqZ1xaKJhJUrGXKdl8aRPGULVq3SGi4r1HaktQ1M5okxQN4TTkxzXU4sYbOiTiQalcSLJppQyWK4aEIPhms54nFJnGpi6DJEbKXDCgNRTMjFogvPk2HFSKvBYS7688fL2x7hyHNCVoXPv1C6fuekMDy3VZWEAI+0ZwkkBQgg2fXFgck+9QhX+LIS4V90GGP+PoC/v+fjKcjruNH2Pw3gp/fj2DejND6nlJoF8C9BKKoBvohro5R60hjzFmPMhS+1zZd7svs5osygc7kADE14Kagq4epKNBBwffGeykuoqnKp/qg3xuj0rENbAUAi+JGMChVUsjNB/55uUFsg3XhWHozAYghj64pg1W0J/iKrMGRsPBkY33uiImQK05qnOySA5l8RVBx9f31lPXKQ2rIRCg1XSX3MC96soz2aZUQU1FHmf5MMS5fz4Fc9tcrCxssnC/7cZR9npr6Qz0SZkI48EuE0KIJrMpQzHgHbj/hzmf9IHVnHhx+YjntocSW17T2FfEIh3Oiz4XGD9BUrjO0x2UAYHAWaq0DvlBDKB4dY6JDbsjUgicmtRXeXgYO/5y9+Mq+dcAOAqm1ZhkW4rGLUDyx/UzuEsbLCADy8dyDa78r8RXM1Q9GKg/4haa9w976sRU5RAASFpldhEYmwZNEk6nPe38xrpYVoW69S8I8xBFs+12RgHHVP0VCo9SSjr0Kt5w2G9uUSRUM7hapLg2Tsfw8VQnZZufM8qGI63t5q9n0Z+7mvr9G4mUT4/8W+/Xml1O8A6BpjvvBFfvKgUuqLfa8AzHwZ5/iVGZUnIaxqkUvYcSiFXWl2ozk2Hg9zxLuif8Q4g2mkvoUogNr6FMmurSzvJkEIh38rBd/gaITeGf/7e37Nz2hWGtyWFggVxni5hmRQOqVT1DRQA+qbvlI9Hleuj8fwYIr6tnGeTTy2br+9/nQ3Ryk8rULEpNMeXQezvw4PNlDFylX5TrsaZd1br7XdCqoyAfRS58aFn/geZPMUOqtiFRBBZl0VeBYuYS34MjORJ+Aw0vgQ7bd7liizHb4/JQEw9wwdf+ObSWndc4oIkEZ/eCxI1HMSWoYpZi6UQZHe2tv9+ze97TXA4l2e+8QZNK8R4SSP3Xd5jVZr0LFPdagY4drmDMpJjM4z/jnvCn+ePZVEvJY1go7ztQEiUQ4E7KwHnrY5BmYCmBCJpfQs6luFC22aSBH9CsvZPfVI8YDOPzC2hMIwCSsDf0MnsxG4gF9VRD7ZtCEyphcBwip7HkXTJ9E7l+mB7txjmyQNQ+Xo+LUEIWPeVC6MWzRUoHDLOnFfMW9Yc4UUhgca3LhO58se+5fT+JqOm2rCZCsQT/D2Sql3G2M+9jqbP3ATu9wf2sjbGCZWrrqVE7gAfLy+EnUTIpmqJyVQVVBTDqxnUFnmusEVC+3AU0l3MlS1CMkWCQxjLbL+GW/CSoWx+KTCzr0Nl0eob0yRz6SIreKJB4AqK4wO0wzPW5r+mNNnO/R/s45G/2jkqEBYSMiiLDlGB2soawpbf4akU+d3a24xsTLhWHiZKujCOMGddUhQdS/4oirZwCaaEsMu5yim85Y9VoSzpKCrbxGChtFaPBzRnJLU3iToBscN0l065mSRYtWsNHr30nkt/gg5wfWshnqc47VnrWtxoELjmj8WexGz52Qs3Z/H6jcBgAkEwXOfOEP7XieLNTtjjQRloFa8R5Zb6f6J7JT77MBHfNNtjtHLqm8pGPk9K4toSjke2agoEV4XKwvmuBocjjF7tnIFb60VUgIy5CSHskaHRPlVqQ7mOoxxyoKfGc/LKIPrzQGQgkmGlQN80Pn6+p36donxQsgZJRF+rDBoZ+RhcuiPUWmSw4wBJYC/p4OT9FrfBDqXfDX+dI741UaH2W3bR0l/JygNpdT/C8CfAyVR+KkbADdUGl8sLPVGHDqvUNa1Q19EOTHOMlFhc7VAbX0Eo218dGy9APYs4jjoDFel2iGgAM/LX8wI6otFb02uv0Vj9gV/PtzpzNE2H6yjrCu0rdLgkIC0+vKGcg1opvM6IG1xlNXWsyhqCotf8KZz3k2RdQV76g/RD/Idi1h6Z45jH6JrGB2IAjrtKCO6ERY08cSjt+gkVWAeROMKRitROW67JloBqAtvRQKeaI4VnS5IMHA83yhKMMuCuUMfL7H2VmsM9ID2n/CVjLqMcKA1wCDz0vfyHx1zFeEc2groNIQSNpqqynnEA6BsVWidp/vz2vkz6FhFk7eA4ePeI6yGCdApEe8IIdlTwLMUlyG2V0FTYkMoI8u9UNskhcqJ9doOId1kmIWLDgEvaCfz/KoCOPHs2QrxsHRV0UVDIxmWYdMpAahgT7QUoVCZjCZlqpxxk3XSwHtYe6cBoHHkD0XIqqHDRk528/o2sedyO1ajEaDexgtRoBzDc6D50FqtnEeYdRSiiedQK2oK/ZP+d+MDhKDjEFmZAkXLc3vVtvfJ0wDuDKUB4AdAnfpuhg7962ao0iDtFagiComwtVjFCsmgcvHS+prvsAdYiysvgt7TZr7rd8ycPNJiq0Ih37rqhUn3pQlW3zWP1ipnacmC57huMjIYLyiMLd9S77EMx/4PHbQYDfpI27wyKwu2smXfCfZS+D5EWeUEwKF/W0eZKFz5k7T9sQ8pR3vSHZaYzseuRwPBbYEq8UJdClmdlagS5YAETC/veoeAQlgMwd1+UGEyH2N8iPYx+wJxFLkQXVshb/g2s5NFRu7462eFAQDv/uEnAACfWjnpPrv44RP+2NtAQyxitlB9i1JPyAf4KmXulQEAjas6SH7zMBpQ6145NdbCmg+AvALfh4K+ZOVf25ad6Oh3s2cr19wJoMSvVBoSRccIssImvGdfMkiGFWZftbu7AaR2tOyNmc55OjHuKEn7FLkmrQKloQtCU2WztE08NkH9y+wLHJIU+bxh5bxMee6DgzGaG2Xg1clQ03CJkVf0G86zyTUnGzQVTaC1YkLur4FH33XP2XvC9UgFfc+hPtlz5XbHnRKeeg1U1f0NpTQAn7/QpXEWQDyukG6KnEVmLftcrICxkBItMk/KLglix8kv4u6MCgJs/qQ0iPq0j+lyG7OvZq72IJ6YoC8Bh356j/lAb/+oL9IqWoB5q8d5DjfpfOaf9I9W9stIxiSk+Ty5xwTnCeKtIfKFFu7713YhJtop0GwuRTz2DaEKyz0lE6g6C8NjXNfC9yTvRKhx72W736vfZhVtapDXC7SfotVa1Ok3MiyRjIGd+4Swyn0/7erBIf7qw77P1y8+b5tNvuyJtJrb/txcXw6mOUl8T2vACyFWFt0foHqoK09Txry+rgJeoua6v/Zde45l1zbB6gL1y4kT8mwpFzZKufjeS7j4qWN427d7t/NTn70frUt07JlztG8GA9D9ETDTdbIWmLIcCO/T1iPAgad8XJ9yS8qx4KZ9ExSwMvKJkWm17YI8SHv4fDYm2hgRxs1mYpf8ZjoXRku1VkoMDonYo6I5yPd764HYdRY0mhTDzHlLzdOMgmtt23CxDD/1Tsp6EEsuecB/P5kLlQhA7W4B8t504WszXCdIu8y56PS2h8EbkLr1yx83ozRGAJ5WSu3lkPrxr9hZfZWGqgyFSoT2j8YFymYckM2hNMBQBIhbHuoxuodwkEyd3lyZQhUVlLB6inbiE4xaoaxFyLoEsNeFCYrVprMa9c3KCSpV0iJY/rDfhvs0A8B03gDnOtDH/PmmG/F17KbcSzoeFoiHCOGQQsGNj89AF8aFwfJm6gQDW7mVhFqOfVigtm0Xs6jOzWYiNFe8wtOZccnuzUc0TAyYVFTgv1R3i9oVstnDce+IsiUSnDMi31Ro/MvPfytqz5MCzw6XSLcFOWJGsFXJvRVPjEOmJSCBwYl7hqVyNX5vbQ7qagjRhaLqZR4MIa2adF71yxLF5o/LCebF915yH/0PP/Sr7v3f+4/vs9dE//ePaTQ2fC+S6YxC56KHKxtNCmPrAX/v2QMEgANP7QV6KEyE11LbLamjpFX6VawCKPN4OUHzWuY8iWlXA13tGJizmTjo/Fe3hoRUFLqEU1J5k5oubT3gRVDnkkAlSg9wN6c8hJ2H+UwCVRjEViFd/K4I7QseLKAqKtirb9ntbREvD0agpcL2C4v5qM/HzDnx4T6NO8XT+G379w05kkGJeOgFT9SzbvlETJj+AEjs4q+lgDEYPkQxIZVTrw22pscHUqS90qGVuIqWF1syKFAm2nfqs0k/XkyMepKxXunm68I4WgwAGH+LTWCeJ0mbAGh7OeSsaWZTzZsposyI7nSNAOLLycrhMZ+olzkDSVXRXKsCCvnhYVqN7cskSKZzCWZe8JncfI6E+WiJjt1YI4Ec2wRxNFaOORYAdu61SdSpOH7HuJ4SxUwJVSm0XvaCOR76cF1tPUI8hOugF41sHQVDNRt70Fn2NnBIarygMHzbGPE5H86bfUkgiKwiDu6PiFRGvQhF0z7niOLmEhnUu6fC7mXilPt/fvMH8VMf+UH3XfeCvUei9kBCt7W9BxK+TZ4Ro/bod0ufDaWUbL/bEC1OWVnI0OFwWbuWqUYrDI/UgiK6xc8Lj7yiDnmMFJzOJShT5Tyj/jGNtE/KgsfaW2LMnGVgRo7aujd8sgWxoV0rzDSgcoPRcoyNt9h72y3QfxPQfInmX30rrAdRJf3JOpdo6sEEaZ+83pogquxcKdA/atfseB8l/Z2gNIwxv/TVOJG74+64O+6Ob/TxDe1pKKV+3RjzPqXUM7iBfnyj0YF8uWMvBQZ7GAA8nBYgL6PmE4Sj+xZhYoXte/2t0xnQvkpWW9qjTn+c04imJabzaXCs2rboMWHbv86+Sp/x76aiLqMSRldZt20t7RM5+i8TTGdjrL2d/u+cJ+I1xsxnXYrvSou6vj5Ffd1ez0FL/tfmwilGSomkoehI17kkKDgq6gTH4SZdmKALYfu1HirbTQ/wXQmZHymfK1E76634zgW6qN5pzjUBp951AS++6tu3qImPM7TOxYDx/EwAoYUkVQd0GI7afHOJ2edtF8NdE1BTTLsaUApDwT81/wd18M3me+iSzE2qFq/t0PejgwqTBbvtMELZrqDHdD/TXULnMO1HNlfBzHiP8R/+8p9HEyGfVLrrUW/tlQJlopyHmPYr5O3IU7bYmqOlJ8PCycFxf3/LxPN8RXsiL1knCpLiw2U7DzhMakI4dOdSiem89/Bq27TDom7PZ1xh57QniGRKFc5bjA7BeRkAQd1Hx+nmxEOPmgKowHTz4RTzL1giTEuNMm/rbWq7MXbOaCeQp3Mhz1fzGp9jeM3MvuBycnbtpf0SwyW/voMGT7c7vpGVBoC/bV+/76txIl+TYQyigW0qs2MDzo06TE2WIc9D7Q4weviQ+2jr/tjHS5sKs69eH/vk8BQApDu5W2DNq2MMj3otcKPEeU+0J+WFykiO2bMFyrp2hYlZN0bWVZh9yR6rX2E6o8MEZVujZfmd6htZUKnLQqQQIbDprHJCpbFZYWoFVWu1cAuNrl1TF0IbpinqlK+pXfPZYT0sMT1MMZtkWOLaN6dOqHefiLB7xu9vcMwmj894yXn+YyegFuigtY0I04UK9XUfYpFtPosGKQhOjHOuYeXb/LNovxK7IsDGJoXpBgf5+ips36+CqnIZJtw9RdtxlXo8Imit7KfOo2rYxPWaf66y6jkeaGBQg4msEN+DdgOA5rq/30zux8nfvSR6PI9kuKp3SqDk7GU4DqypAZTC9r020X6+CpLN3BteWsbty9eXV1UOLJBivKjRPU8H2HyYbgYjzZrXwur1xS+E+woKB+01MIPu9j0xdAns3JfYc6dwk+REk4AEruxnY8FE1DyMFaE/Jr1mHR3U+wytUuL9y5DsbQ2Db2ylIZp5fF3VXdz0UPCVydtiBVZVkBjOF5rAQtMld3fuiZzCAIDFZyaYLCRIe946oloEL0FkpWzPFvU5epCBQfPyCCOhSKLcwwNZWbQvi3j21L+fzGnUepWLx6e7BdLdEEMvLcjxUs39DqA4dFHXQeHY3EsZJpbor31xAsYeZTMJoFVAY71zOnbCubZTorY6gKlZ0rpmgrg3DRrzyFqB3mlFHd1s3D+r2eRtj4RF42KMdBeorzNFBYLudXx/WBhFGRW7MYw162jsPFRBTyysc6TRECR8nLQeW1r5yQGNqmYQ2U6F9U3yPjgBr/OQ1kS2EwWAbEl4k6sx4lFonUsyw8kSnUe6YxVOSvUhbCF3z1vU1TIXm4ZoIRMRPQvPBfY4pMEhY/G+yM7PHVYYALD2Nvq+sSIQWQKpJecTAAwOW+CHzXmMFzWKOrD1gM0DjIiOha18wPcvl4PXRpUoJ1Br8AoDABaey7D9QBrAi+OJ73fOrMascA88xRQpzOZQUWJ8x9dpmCjsyJkJxcBJfGbqDQAMtzEUvvHDU318Eb1ojOm+3ne3OpRS50EUbSWAYm8TEqWUAvBzAL4HhOr6y8aYJ5VSx0BU7QdBwZD32yZSr3+srEByYd1/YENQpmmJBtv2NdUompGrVVj8AiX7uGiPeZK2HvSTfOacQPRklaPdAATSSEA78zkvsTObsF58mhRZtDvG7psW0VzxScf+yYYTAkzhwUoLKiRErFLl6D8AYPcUHYvhpMODMVqrBTLQAmNETvcVWikqLzE+QmqDqUp6JyycMidr21V0K4Xp3BzqG97zWn9LE4mtf5jMq8BTyQ6TtI8aFnU1jaB3EqRXPD1EPPH0Drqw98/Boz1cFvDwZCMsfnkv8tkyYMyFAspv3QUsSWDnMeqFsfsiFUhMDhqkmxKNRCENroVJBwAGglxyNcZ4CX5UPrletKk6vbTXkvQVmiue/LC5atDYrNCgU0BZ08g6Cv0TAmoqAA5O+FsDJxlWyDqC8mXoPWH32aByIASArPP+aYZeX1/zIhVFmfJakLUZcAgsLvSMhWDvivATP3e22vNWBJ0Lb0GEvwbH6oCCgwDvnklJYYtnKeljWBlISnwAaF+xhbJWMRWi5kZ6KbLlLkCFhPHUuHsh0YC3O76hlYYxpgMASql/AGAFwP8KUpZ/AcB+tVq/0fh2Y8zG63z33SAu+HsBvBPAP7evBYD/xiqQDoAnlFK/f1O9PBjFVLfNZWoJTKIdxTNAVB48WAjs3EMuwNCG26V7LIuSahtjTOc7qG+I/MmkQDZnqc0nVYBY6Z6bQE8LRLs+RtK+5MM1u/e2gvPg0JB0742Y5PWNDFWqMbXorfp2hWRQoneSjt9aLdA8t4smFzjlJap2PaxL0WylGmw+KNA17xyj/UkfAjH2NIeH/L0rE6C0tNvNNYMyVcjs7EmupcgXCpQZnYseR4AyziJPBqQwZEyZ25wCnjacLc7G1CBra0fHPTqgkPQ0lt5J5u72hw8h6wLVO+gAtbTAfXOb+PYHiNzgw5sP4oXVZarUprsRUKWzB8Ovad9gOqOcUgOAznl/fv2TQujWgPIAcOApG1bsUJMiDq9xAZls3jVa8qEyrvZurnHdkPXOhKIomspZ81mbWF25IhwAhke0i+szxLR1ScCnhcAnLiblcjDtSyZUGBnNnbGlAclbZBBIFlfpYbueKwOu46D6G3e9yvegYU9y515/8yWC0BWQunyJChRG73iE9krlTV5lOdiEwOZ1AyCoHAeoclwXnhx0L+38bY1vZKUhxp8yxrxT/P/PlVKfBvCPvkLn9MXGewH8sjHGgJo8zXKnKgAcTusrpV4A9cB9faVhDFV225qLquGtfT0tUBPMq5NF/x1j0Yc+Nxsk2GbPFagioHnZZo+VQveVgQtXUW1I4qjL+8cSJCOD1hW/YqPexNM2zLcwWbq+dVhTckcpT82hSuJCSrfJiteTHHriqdyLdgJdVJh91Xou9jhSSejeGKMzVtpECn3BhDp63CuzjlUYDCPN2wrNtdJZbkWDek+4nuBePtBxcqD7YuyIAesb9O1eNlnef2uFFnr3eZK0pk5CZf0t3unlbowAMF0A1D0DrH6WgtxRHSgfGgKFpVofpnhyu4njTdrfydYmXnzqnhsqCnn+DKut71gqE3u+MtxRNKkXu4R5ssIAaB7EE6p4B3woZHSA5sl4EaiLeeWK8jJ/jPraCHUbt++fJuku8xL17coVirLwn7F08hxaGy2LNgCC0besw3beo/+HRxTKuu3VDbgcGed8klFYlGoUABXeE2lMxWN6Tmx5c60MQIbOxqONoHZCQnV5AkmaknhsXAFf284TqcCkMtalQdHUQb2RZNTtH1eYec3sr7LgcYcojVIp9RcA/Crokn8YXznCQQPg95RSBsC/4EbqYhwBIJx01yDdRU6VUicBvBnAp/fuXCn11wH8dQCox12nMPJDM46QDQCMmN2cA5BsnQDQFIgcyZeUbpLw10N6rdr1IL8RjYmGvX+MPmts2EUsid8EdYMqKjSujjBdYMURQRcG6Y7oQzEpMFkiAc607aNDtH37XI5KNIii2HfkKsGjSYGqmUJN/SOdHPLSQyoMl2B+yprWnFy1gq/Wq6BKj0ga1mIkIxMgsWQCNxkQjxQnLKOpITSUoG2IV/y9YF6j/v1zdB7XJhgeaTjLM28p4imaFzmplSbMQVstPdGILjVRHrBaqEfP4P/4z29329cib9WqioSrDKlFE6CyNsTgkLVMbSnKVFQdR1NSGIwI4/Nz39tTGBzl566D0FDHNhCSyfXdMwpR7oW8Mk3naWy+yeaoiLAXzbUKuyf9nJp7mYv7/P7KmnLIIabyl61NA6FrP+f6h6wTQZehoggUBBsIwtqv75SYWvqbvc2kpjMaM2e9tcChJQDoH6PftMVckAKdz5MZc4sa9YuR+SRJo1M0qDHY4IjfyXTBOK6p2Vd9jm5fh/kGD0+J8V+A8gg/BxITH7effSXGu4wxV5VSSwB+Xyn14h423RvpfvcYlFJtAP87gL9jjOldtyEpofcDwEzzkOGQlFQYnKuYzpO5ycqidUX0mKhp9E/Qb1lhsGVvEo1kre8IDtUoQxRrd4xsnlZf95yAkkgLbDdD1fSeDSsL2YNCT3IUHdt72lZus7LIZlOUNe3CVcPjbVSxCoqd6Lpi91q/5jG1gzMd7J4WgkkIjmwGSM42XFw+moZ9ruMhUbQPDwoCxG+pMP+U9YIMkHlGDyQD2r9ErqjSOEGic6JwZ6rrdBBhOqOcQNm5rxkmxROFdGiCxkOnH77i3l/7fWqTXIxF1l8MVYYIH9icOyfvq5i2cW1IuTrbMqiqcg/6SSSBpQADgK0HFRrrYUhIdunjY2w+7u9N66KIyVvF3FjnE647hQEAgyMaUR4WB6a9MqjyBryyyLp7BJoKq6Q5TCaLE6cd7eDUnHRvrEljpsTgOM1fzuExqq+sUfisf1x4ALnXWFLxRxMggictrO2GSKj2tQpVHPabl6Gx2naBKtUOSKAKIJsLFQYAzL4i0Fgi5zg+cFNk4Dc19qsJ09dyfNG7oZSKQK0B3/vVOBljzFX7uqaU+iCAdyBk072M12mQrpRKQArjV4wxv3mzx8wXW+id9ELEKHLrWVmoCmheCxWGqowT+qoiiKAkS2P0EABUDXq//XDH7R8A5p4biG38Y+AwUb5o27OKmg+Awk1VLXEVvJuPdjD34gjZrIz/+tXPbLkcVuN8wsLzopL7tE9RscKQaCoObURTEiRsiecdYO69V4H/ibK53PZULl5WGDzSgY9Jjw5Q10CZrJXXKq1sgJRC61rlBF3aJ4ZiWaW8fi/AdsT3fMcT+I+/77EU7MzJ+HjwnjmHrCAvmiFzrHYJcJHgzQ3KUZi7cOefeuQao4zW3yxCOAAKu/3SUxOMDqaBN7Lxlgq6oP9bF8O6ifaFMao0wurbrFHRg+j/AEe+d+09Iuw40Tj0n/21Rplnss26OsjNGE3XEnt7ArqE53MyBILYWy3N+bnWlSl0YdB9jbTNeLmGoq6cMgRIMbB3JZmFWWHIZyOV7uCwRn3LhKwJlXEKrWgoIPe0NtBkNLHC6h+l+h7OQ86eJUOlLri3JGR9X8c3uqdhjCmVUm/9apyIUqoFQNucRAvAnwTwD/Zs9tsA/qZS6ldBCfBdY8w1i6r6BQAvGGN+9iYPCJNEjuaDhfn4gML4QOToLNqXM9cLAwBSYzA52NpjgSdId0miRIMpFbTZsXNfK9g/QP05MutBRFMqBoy3aHUW8zY0xKCSSCGaeKVUtlKowmDrER9C2nq46SghVOURWIAnapPHjydwPcZ1Tm09uTc5K4jiPsvue6HpagmKJlDfUC60sPQdZMVHP0EkUUcAXPqE1+mnfnMH2aIPRjMF+8aj4vwO51j8NGkHDn/xuUoSOYAgm6NljbmXSTpc+bYUyS4hkwCyhv/0d/qo5Ac//E4gMaivCqHe8LBZo4BIIJziMX3GOY3aDjCZA2L2LGyiX4ZwJAw2GXpPo7leYTyvA9ZfZYClJy1EdUEjb5KyAIDt+2ingxP2Xs2WaJ/3knL2bInesQhLT3gpvnNP3RU2MmpLCU9HUpow7JiVklE2kW+td+4KyNfO1yGLAOUcKmu2CVTKIbqwSdPosPWEBcx2KujNmdadPSFJxVJa2LRUCpO2n3cMea/iGytrDvlyLxdVhfkUJvCUazgZVQ4dqAqDKDNONjD4YD/GfoWnbDfVfwXgEZAq+qsAXgLwawBOAjgP4H3GmG27/U8B+FFQauHHjTG/e6vHvhm/6yml1G8D+HcA3Iz9cqz5mxzLAD5I8h8xgA8YY35HKfU37PF+HsCHQHDbV0GQ279if/suAH8RwDNKqaftZ3/XGPOh1ztYFWlkC01k3Qhpr8L2fR4PL/mPAACRcuGlyUES1uMlbwYzjTRAlrKalth+dMZ9Np1RAa9NJPIHqCjhlh8gyUfhGQGL3ByhqidOaXBrVbeAdcghZCLqrdw/6vehc1+xDiAgliuaQL8ZBTTcrDAAIJ8v0D4ru7P57bb+AzUvknHyxQt+Jb72g7M4+pEM536Qz6VCvBO5xPHkcI761QQDq2e6r5kgLFHFFDZhwbj1EH1X/z76YB7Ayqq/z3/60adRGoWnNqnkvLZh4Z0C6xc93MPUMgGrtEK1kSDZlQHyMKdR2xXCRVH+RvbllkpD0ndPuwrNjdKFVHSBwMrmaz7312xo5KNeYQBA59UIjS0TQENbKxU2Hqf5p7MQjMFhOskeAFC9CEAeQ2slTO7KOcKKUHoW0tJP7fyVeZtkiKC/CuCFIsNbZRhJFjeylT9esMi8KQJPRxJusuHDiizrqiDsFk1Dinh5HgB1DMw6Kqg7GS/owCBprVWulwg3l+LnJZP0tzUM9tPT+DkAv2OM+UGlVAqgCeDvAviwMeZnlFI/CeAnAfyEUuohAH8ewMMADgP4A6XUfcaYW0ra3IzSmAewCeA7xGcGwL4qDWPMawAeu8HnPy/eGwA/doNt/gg3znfcHXfH3XF3vHHGPigNpVQXwLsB/GUAMMZkADKl1HsBvMdu9ksAPgLgJ0Co01+1PZHOKaVeBYX+P3krx78ZwsK/8qW2+bocyrus2/dFWHjBK9328xuYHp0FACS2pzcX+yWDAv2T3iRKeyUmB7xvzCUSMqnZPx45hE08Nhgvpkgsv048LACtXOdAwCaHN8nar2yyvn/CH1PmAKQlCvhKb9kYSHoiDLFkq06V1Ownf0CQHhmFYkDHlV4G9x8ofGQMo0MCHTRfoHshcnH7bCnHa+9TaL9K+5jOG8RnfC5HDSgW0n1NWI0y0TpLrzsP2yZQR3r49qOv4OW+r6B79KGr7v1rA8qAr37Etm+1HhDHzevftoHRJEXUJBOzKiI0rwjPJgUWntvLGhvCNWVTpp17VJB8Luoq8MRGS4Iny4Y4rvwx4bUdHaPVJhM5/94pss0WOs9YVJ0Nweye8vuQ1vR4yVre7GHExADMIz3dR/l8N/AchoeUqwvJG7Y40Y667ZLXO+6PN3NBzJuliGpmRBgoGVwvAWXrXgnhrWLyjqQHIOtvJgtAyz5KVZkgkc1zWVLQy3BTWaM+IZGr81CAMQ6pxXBa2cBKehm6NBgvRCJnVQVeobym2xkKX1Z4alEp9Tnx//sFmvQ0gHUAv6iUegzAEyDap2XB5HHNAooAihx/SuyLUae3NG6m3etRAP8UFAIyAP4IwN82xly+1YO+kUYyKHH8Qx5opcYktZIdm8A70kZtK3PEfgAC7iaXALefTedT+sxusvlwhLLuG+KkOwoLz+eukKlKI+yeTtE97xPrfFwAmMxHUCW55DwkYolx+xwvVpUJ8OeN9RAxE48pBCRDBdP5ygO4bPyiuWCV1gLQ+B0KjrNADKqs50XyMKlw9fsqtJ6je5UtAe1XBandhkL9lQ42v5Wk3+xnaLuhgD6OzvjV/M4HXgMAfO6T97nPfuvzj7v3Bw/tYHvcxNrzlIiPjo6gX2gRPzyI8G/0jhFmu3Qto0mKyiikL5PGrG+GSfvZV0qUadhHYv27J6g/R9sn37yF6RPzTsGaqw3sdoDmNRs7N8qFa6oYqGQU0srimVf8ZztxHfo+mmc7qx0oDZT2uQyaKiAvZIXBIal4BECJ0KAB6vf0UFV0LtnZDlAzjkJd5yFPF8OaZQOtsq7RssWTDC6Qis9oYOashzfr0s9/NmRknmBvCKl/XAeKr75t0Ld8Yy2v++35GpSy8ZJohFQ0CEAhlblMXPN7FtC1nkEmempwkt9BqctQiQwORbbwcv+hTl9Ggn1jLyOGGDGAtwD4W8aYTyulfg4Uinrdw97gs1v2eW4mPPWLAD4A4Ifs/z9iP/vOWz3oG2GoyiAel4h3JwFip/+oFUCC32n3jGAKrSkkw8otltEBJrujSV3FKlhozVWgfwJId/yxB4cTj3vPqb5hOs/9sOm401nRdzzxMd5kSJw7LCwYJ8+TvqgrNIVnke4WKBppgD5pbBgHwV35ZmD2RQ28SNKKaS3yls/2Gs/ViPYlz/kTT4D5JxP0T9pE+XKG1nM1l4OofSZBe6XApm20w8Vqix9lE9NgdEigaQ4Y6F4Mo/18/twn73O5iWJjDvUakN9Pgnb1ZfIsEssVhZdbSAStx/idQ8AoDAXEtnq5A9T9fQWAhsX3sxDZfNRf78PHrjm83tnNBbz7e5/G77/0AJ39YobuU6Klq+iQOJn3uQwAKBox8qZP4g6PKCS7CtPPUjJpfoOqt7UVqiYOFVrRJO8w3fWfqQqorDUfvYW+GF+jD5JcBQK6rJPC4XnYsTDi2q4XxsNGismCWAvHItRsa93xAYXORQFJ7TPnlGiyJGDdaZ+qvWUifP6FHLunLTeVreloWCafKvFJc6Yvaa6GIXdW5uwFcMK7TJWrOAcEjFgg0aSRlAzo/jr4d5sq39lr5LUivY19GfuX07gM4LIxhlEfvwFSGqtc7KyUOgRgTWx/Q9TprYybURoHjDG/KP7/N0qpv3OrB3yjjewAzSam2QAIDx5lNw5JMAcPo1Xal73CAGjCFnVPJz44RoublURzJUTfMLpGKqmsGwUWm0wKumIq9sSrkPY8yg3ytnZ1JWUzQn3HN5oaHK0Fi3v5UwBQYUeQ19W2gdo2XfP8ixmuWSht+xJbpx5r3z9lHMMuXkox94KPh0xtJf2Rj/qKvtGRpksOZzMKkbCmVQ5UNYP6Gn3/hQ/dj5qkpbDyuRK9t5O+P+9oAvTvz6Es2qtTzzEc1lC9SJnwKgqr99kSllDLKlGOWqPWM3h5chrti3Z7AH945nG3aBY/X6F1dYzRMp2P5HXi0IwJPBnPCNy5XGL3VM0pOBOF8N7pLH0WFKjtURj9U/7m6Ne6qGoVkl3/g+w+D9BoPUGGD1eEA3A06wAwPEjPmL2bogmnMABg/iW6R0XQMz0KwkSA94KjjBBI7IHrnDo2coiJlaocQahVwsxL+l8m5llhAOQhlfXroeaMvqKQmgqJB433ipiRwF2LCT0PiYC73bEf6CljzIpS6pJS6n5jzEsA/jiI/eJ5AH8JwM/Y19+yP/ltAB9QSv0sKBF+L4DP3Orxb0ZpbCilfgTAv7X//zAoMf51PYxWKOuRg9nFEz8xarveymBCQKZnGC+QwmjZwi0TAbunPFU6o0Emc/R9PEBAS1Gl4YTkiZp1hWcRewuVFQbHY1UFmtRigWRd5Sw3/t3wiD8od9Lj/claAF6IRz4murCVBqXti7D69tTtc/Nxg4WnVaBEW1cUUnuPWlfGUKKaPenTD0dHvJm3IwoHq5RgsqPDItwnCIJUFUJIqwTIOxXSbYEu2/Hf9x6mG9uaI2FZGYXkFZF/GsDSZLNFCzQ2S+QtEYKJga7tGRJNKqQ9z2VVpgpdEec3GigakVMM9e3KtVtVBpgsl4hGFrZpcydsBY8ORKhv+7a+VUTwXw5bMoEgw5CBsDKd55AWxk3rkr+O8ZvoHsTn6fqnC0BT2JZZR6OoKeyctqzHC6S0uHI6HQCdc4Lz7B7SgjKfJgeRSfpeJN1LZRDGrRKFaFq5DpVAGBpLhpXgoQpfB4c1GuuVm/O1XfJieO3yOcl8mPTS0r6xPGEWXq/DfAv3aw+KGXN/7pKa5bbH/qGn/haAX7HIqddASFIN4NeVUj8K4CJsdMgY85xS6tdBSqUA1d7dcrn7zSiNvwrgnwH4X+z/H7effV0PZWyIalQiGpeOQDBvaKLp6DN+XCOaGpdgVhXFwnlwYpBd6+Y60D+iXO3Adcctw9+NlnTA1kowUz9J8yYlL6XwoF4C9nurAJgSIe8aLDwTJhnX3uxdG6YGr2+Joi+xQFxfBuuZLH8WOP99NE0Wn6Jj9C00tHUNaF0VMEbbUKomKE7yTuw8m5ENZbhaAEs1Xl+38MyTJZqXveBjq5fbtwI2lGZHFZOw5TyAsl/pj5HpWDSBpnhWjj7eKjldUtWyh1oq5LGvpq8ShVSEb6ooQtHUbj/8u/XHQy+NR+Nq5GnTZ4CdhnZw49p2CIv2jKr+2RsNUbBGpTt87LwJtM/rEFoqeK7Ys+AkslF0vS50akMl8jdF0zMgLH+aToh5z2q9EmWqvdJQ2FOBTc+CE/h5S9v15e81EOYm5JBMskbR+pSe2/CwqAC3fT1Ke291Tj29+V5x4SJXoRd1HfJiaaoDkYpDUubXt0pM5qMgtLZfY7/qNIwxTwO4Uc7jj7/O9j8N4Kf349g3g566COD79+Ngb7hRUc1E2YgQTdi6LJF14qBALm8qEZtGQNPMC0eiPaTCKGuUxFz8Ai2e+rrlprICZ+uhZkDvzZ6HJGgzEdC5RL8fHNaoYu/RsNU8OO6333rQn0vdhjxcncieSatzA134HA0qyncULT81Fp72BWGc0AcIDSNDXVz/IRdoc7Vw1mUyMpackSTZyjc1g6R651VfKyNfWwJyIdFJqgSiEi55OzoDdJ71G8y/WGF0QAf3V4IIGitjlI0YRceDCNLd0lGy5J0Eu6cFbb0NY8y+SpPBpAobj8a+5mC5gtnluLvt7yFWWJR5T7Csq1DgW+qTvcV5/H80AbQRvUK64b1IhpQ/4+3LWoigiycGOvce9NReSyLCg7Nn/cFHh0npSHr0rKNCBuFhKATrO54skucFK4MSdC84FzKdsQaEvT/pIKwhUaXx/e0tTQsjwdhbk+dVJX5NNNcNarslesf9zc9EoSPfI4keq+1ULkkdTSq0rlauGFX2o7mtIUJiX8/jjkdPZTMJdG6grCuddeiWcGItb6iAIkQuWh4z58og7CJhicd/13YGFK66FLTMNsvCib0M9mZMHCZY2SKVgrC5lqN4RbSkPeiPz4uS0TCtawbxxLikok4M0l4FlftjDI/UXSw9byjsPOD3JxsJtVYs2aKtvK3tVgFbaNPmetpX6VVnFXReOl6vuZcL7JyOX7fCxugQZkpxcmlt+8Y6AHDstzV0UaCwYYsqppCRpMFmpQ0A2WwN0bR0vVIAIB6XrjlX2YjQ3Cix+aClVqnT+UirWFXA8JTtQfJ84pRyMgQGx40LH6mKeavstVmjQFZtx0NAuSSstZiF4I8m3itMewpQXvjvHdGUlArDYjn04jziNcop8ehcIuRY5O6VClB4PCT5pInhclLxxPieLoDr4TI85Odl0VCun4nO6fk6Y6zuk9k6N4HRVt/04UQesgh0vETGERMWAkw5Q+ezfT83jBLhski5sCJvxySeRTN2CgMgJbJvY/+dl6/6uGPRU0ZRAo0XYTSmiTM9loYCeaMM6Aq47aZEklB/ZPq8tkN/3Ys+wKpMSLFQNqLgf8ATGG48Vguw9TDUG4EtPlY+ycgfX3ZrGy3Tb1hx6SmIfM6eznhBoXPZuPjw6EBE1yROpyZqTKpUofuavY6S9t+1zK15WyMR7KFZRwX3rrLoGS26xanKtpwFsPKOpvvMfV/65K8yIQEgxcWNS0zWt0kRMUOwt25F1fLAC7JoapB3U+cV6pyq72sbPmG89aiX4luP8DkJT2VHudg7VyrPPyFYjAWKp3lVhBnbIZdTYQ9TE+Ez6RnMnK3QO64dEo1CLjJHAILZChitpECpYrp/LPiTUYXCkgTyaF/x/7CymM6FZJUcTu0f87kaus6wn/l4UWG8GOPA0/4iylSjvmlRhalG0YiCvIFkxQ27MZIC4ZBw2iPeKNfQivOLouFV2vfw47RfBUqnucKoEXtvIhWw3hoNNNamyGcEf5s8tX0S9F9mncYbdty56ClDQmM6G6N1dYKd+3zCVFIfdC9aAWljvckwTCQ3NjLoaYlDnyBpUDZjGK1cvBsA9NRbryzg2HupYg2dVdi5l6R8PAoRN452XCBLZDOc8XyE4Z4ynSryhXgAIWZ2T1plZ9vG8oLURVjXYWJg/TF//TNnxblMDToXfWgu7VdBWC4ZUXhC0i5Ek9JdczwssPGYj7txeKAQaDJpeRdNoHM+RBDpQrS7VXwPaP+DozY8IWjry1T82FDi2wmPVLkufACw/XAXqgQ232Q3V0BVr6AsaWDzKjHHcrik1jOA9uyq8QTYvUcoigWv8Vqv0UbMEFzWKOzGnlQyolavLEirRAUNp4wOARL++vz7Ws8AVv8lwwqjxSggFJQ8UuxxcPOiaTcOFL4T0E2+pwZDAY82inICUgi2VqqgSBXw871MiYbd1zWFYZ+aQLD1TpESTgVFvs59kV7eIiQVswjHwgMD4FiRPQGlCZRlaq9T5iyGR/0kZMUmPdB9G+brX2vcueipWGE6S5e/9lYvyPYuTO6FHCArMt/LOe1p6GmJsilQIatDlC2/modHvUKadjVmzk8Dfqm8E6G1YiGxtn8FT2jH5SMUhXTzJdU4j9lXPWeRUdSlbOEFqywWYhT10BqXcXcuHqtSOvD2g0DngkWn7OH3ydsaVeRDZWyBh8WE/r1TGGLdUJ6D3vcsTTZj6mdesQrThufytg46IO7cS8JFhmiU8bUmrh+5ON7Omdh5YYtfyDE4mmBwlHaQtQnJpSofUmpdjpygp2v0kOMqgmtlCwBbor6jbJHA4Yp6ExGkmBVuPLToMcFjVdupgufCygnw8ODREntJtvUsG9EFPUdpvQdcWDNeWNO52zCo9dqKhgrmeFkngkAJc5VhV046M3sv3Rtx7rbrHX8ma5sAP58bggyQr2XmtRyT+ch517wWchH6hFACFI5VDkmnqtB7ZQ9VKs2i7r139ro512FUiJ7az3GneBoSPWUAfALfAOipsgZXmxDEjQUtNkA5jKIOVxAWTyg5OPOa7YyXG5T12IVg4t1JoDB276EdBQtqJg5CDZJAcPde+7ktcFt4WgXhsaxDyUtWFlVKoaf5F0v7vQ68kpRhr8vC9a48lFdVJFA4Xsw5k3mrZAZHo6Cyt0y9UuVwQCXYRGW+RpVA77gwhe1XzXV/fqMD2tGFsHDmuggg9LC4V8P2A36fk/kQatm6Gsa1AU9HEmWh4Ft/MymdyEenMPuSv9fpoMJAoHaiCQEKgri+cGTkfhpXaWlJA6RswPVO4SI+F1JLwjnCSV1WqEVdYXAcmJ70mju9UHO5ryQjRcCeQzw1GC2poO4C8Dm5Ej6Wz/tP91RhqwrOK+udYOFvr1uHhhSfO8NgTUQFqBxKKupRcK9aXLgnFInKuGAwDtB907kIoyXtaOTp+vx7VhYMlQaI7mfnDP2Ai12lMSPnDNOEsNfWucLdJ/lasD/DIta+3sedjZ66O+6Ou+Pu+CoO9RWIeH21x82gp34JhJbasf/PAfifjTFf994GAEznSPW3L0rX2ZPyFS2gsSqSs/zQXcUqQVZ55LN1lI0YoyUL12MeJBnnF17GZD6i5jbzfn/QBu3zZOVMZ8miZ3dbF2HfA8B7GQAsHFeje4FMqcmcDeGI2g/Zp4DrOyaLNhS0pTAvyBtnX84dxUmZAuvv9ubl3GdTpD3fm5mOLyx1LgRX/tyl1cYULFwJnYwMsrYKKuBlEWPfei0yji9zQOkOIaqyWfq/vh42JkqGtD3DW9nD1DLeLRKk195jAJSIbZV1PAw7zSUDBLxFZcPXaURTarDE3lM2a1ylOd0bSwcTe88ga/vvOZTiKC1adL5J3cJ9X6MJyvNrOue9AACY1qjXOod2shnKvTB6Kx7bAr8mo+rYJfLWuAyVdWxujyGzgyMRjPLPMBkaKpRsS9r9MAcCAM210v3fvDpBtkDegARLcEGtTMpHE/+8mFFBVqzLwsfEtgWee9mHEIaHvZvCvcUlolHOqZ1TERqbZv88DDHulPDUo6wwAMAYs62UevNX7pS+OkNn1If5yEfHWHtLMwgjBKRr1F8IHVtQZLTlhzI+YTmd8zOOk8ASZTKd8ZQGeVNhuCzgfFMKf3ECON1RqG8oj4KxE5fDKnnX1kcI93rzIT+721eM/Uww7wpYKiXNFfIunWdjRWGyaLD0Od6G6B84kV80tYMcTmYjzH4uDSZ+3vQcRw6xZe8fL27Xn8LQe07Cc0tRqcQkbxaHbpitNB4bDI56OgmjgeFxv716+wDmsz7BMTlgu8vZkBsLLhlGkgojGlPOyStkrzAAqtNQlQjL2NPmIrFo7OPieQsYnC6BpoUdP1NDWSOSPoCUAQtHHlWqgloFwCsdndPxkqfoYNxYSEKwZbU2PyPuf8EQV1fbYQjxNPdqSIHDg5WBbHwkmZthAKgwh1Km2hFoTgSjLHA9FUfz6oS6TVqjYHwgccV4E6ssJKBiOud/y4gyVxCbKKjKeK4oEyHtFS7vB4gufgAK2yQtAIBEEn1F4bZ0v/pouIPgjkmEa6XUnOgANX+Tv3tDj2hauVaUnculI17LukBXNBJKewWKZsixIyk/ZPUwQPFYIOxEpkrf39gfX7zPgMSSpbn+2KwUElsNLOK5Ooez3p2gtoJstKRcsRlACmP7AX8uc29ex/orCx55dKhCNNRgCciCobK1CLoE+kfE4ts1gfXP7UflufO9UmXojlcRFePJorTaThXsL4zr03Fl1XIsBD7Xo7SO+CqtyYLfV5stexagxA3o7m3RDlFmZYPOlwkYo4FGuuvPl40JI+69LORsXvPfqRLovBKhSugaTETCKDBOxPuiqVDfEgilyqLL7PXqgu6DFvOmLixtVwAnYLBQXnFXCV23y4EMDGq9CrGAJA8O+2Utc1cA1UWMF6Ng3hKnmpjnIv/EDLGS9E/WcfRPN1HbKpwXC3jGACBUqFWkMHO2cmirrKMCBtpoQt/FAoYu60PGixqzr+auvqa+jz60XgAAWoRJREFUVQXcV5ILjvYPtFeEwuqEa/d2xp3iafzPAD6hlPoN0PJ7H/apHP1rOapUY3i4Dl2YgKlz/vkc8aRElYS0BnutErefmJOtHlM+WhbhmkiEaeAL3ZjFNmurYHFy+EB+pnNh3SoEyTQO7QStOMUiWPuOHMnVFHNvXnef1Y4MkZ+3nQJzheYqMFpmHh8LDhDokZqAPqb90lFNTOY09B4loLCHWyvC9UJbCB6uaAeA4bIXsAAp1gCLv0OhKFYWxbEJFIDxOeumGc/ZBPhwhlQ6XVFfY7TCZFYFEOcTf+4svvD0KQBA45oVMlbQ8rORXFlzz+8Ja1olbmKrFMSziqbGKVYOH3IxqVEKg2MewcTWNHs9ZUTFaVIJD44oH2Kzn8ccjmpTxTmHy4aHqSZEVqSXU4XxMj283ZO2kl1Qa6jqesScNJ5kNXl9K4RfqypUGCZSyLqRgJoD4yV/443Cnp7f4qAReWEyxFrFPvTG87F/TOxPnGfRBDYeTZxCTYaGYPH2cJMFmltynUoKk1LM79sed4LSMMb8sm0G8h0gmfBnjDHPf8XP7Ks4ZA/geMKxD/+9jNPXN2lVx0Na9L0zLUxntXOfp3MKk6UKjStWiQwAqBBzLmnPTQQMl32l9dQKuLLmt595xR+fXXJZEZuJdqZ5mwRO7zE6v2978GXgQSCzvvdTV486hQGQZZp1wn4GMucSTzwVetorMTrgp8x0luLojuqCv9gTYmGB1lgHpqIOo6pRv5Fsho7XPUv3Q+YhposG3VcYykufFS1RLCgYb1UJZDMG8UjUSrS8t8OCmKGWWz9ASYBfeccvAAD+x4vf5xQGAIzuswi557zVOjjjpfb8k3TFknZ7smy9lIkK0VTrCNqNsiU8FAZG0veeVNGy+RphoJSJcr1CpnMkWF0orQjDkK2VEjv3RC6/o8o9QrkkxlquOboRV1oQxsspNMpKai+ZJA+5VqKpcUqCPXLJGCBzV/HU5xDiUQUoFRAFSli4Q9TZvGI8Nhge9EKeFSPXbhR7epNwGI9zW8D18y7K91lZ4M4q7oNVEt9QisJomsC1XbI6WLDJOCiPxoZPIEQjUho79/tVJif0ZIkmdGaVSDKkkA7XdeTtmCajXQ88ccfLopBL0mHvKIwPUP7FHWM+FIppHxjanhf5bIV8Fjh+1PNsZ6KJ92SQYu6swtgelyuKW2sy5iuI9EaVsyg51iyt/7yJIBwmoYzMYto/LmLlR0Xob0ejaPrr6p0xqK8JaLJNzg+p5TfKhoHRBsZSn2M3CRKgrCy46jrrEESaBcbmm2njv/ZtfwgA+KUX3ukUBgA8d/UgoqUxirGXFveeWMHKnNB01zpOWaQ2ns8hpXzGIJoIoSgEVdqvkDeVC4vEIwNdhr25jQgnqSrkH2O6FLbe90Kk6RhewQ8PUbdI6ckVDeVyDhwGZK9tb31SlRiY2FeQV7aa3RUyjulcOYGcdTUV3HFvEpuPYg94OheSK067BM7gHitRZoLwkuw7X9ZUoGwI2h3Cu2W9yGSBmB64Tw7zrzkKF6YPueKPIWmBihZRwU5Ok5tVuyBiw7czjPlymjC9YcfXfW7ilocii5NdakZc8GBrtEqViysDQNlMsHuq5mLIuiB3l5Er9Q2N/smQZE+y1vJicIveClxpobUu+N/Wtw3KFNdZXbzA+bhNm7BX1zTaP3gV//DMb7nt/9HF73Lv5z5NC+DA5wU5nQgTJL0CSQ9ucufdxCmL/lGfVOXzkAqjteoLCnko43NEgyPW+9oR3E2l8tTUGVxyHADiIdWPlA2hUOsilt2zCdOBENQDf2+ZlmPrMfrNd73z8zhW38aPzX0eAPBj3/J5/MALf879NrftZ7kfBwC8cnEZnVmaAOoPZ9GFV2LpS8DOmRAhVNhzbV0O6ywkrQVA4ZpJ1wt9DgtJdpmZc/5adQ4MDmlnbCRD2Fgg/c/8TCxIG5sG065280aV5Bmw4M7b3qsFKAxlNFDW7flfCRXweImsb342rEy4JcBoWaHe96zLVUwGmRT2uSiSZGXBHkjeUIimyt1HGerKmwR+kMl0qTB6JyK0rlZB8l02VuMhPT3ZwlVV5IXynB+0lFMYQIisuu3x9a8z7lyloUqCV6oKSPrEdMvDKD+B4nGFohG5BHcVh5W6rRUi6ZNCf/Zl4xLhURZa5q4PgogVGyF8a9uUI5BJzqyjMDxqIbGbyuUGAKC3kGP+ySSIAV84fwD/p/P/JQDgkXtJe730KRt2OUHn0LZW1mgpRjqoHHImmmhEkxKbD4sqdkaumNAaZZoLx6ALXvB+m/EBkSjXQPucdspl4zHtFAZgBZqBC6kAQNmUpb0K8Y6AYdqOfRxGUeWe3iUxMDhV4U9989P+nHWGX9x9EADwW1ephHvjd4iHpQNSNDtvY45tg9nP1gDY/vBDg94phbl3WJ6SdwDZS4tAacN3u34OsAfkkF6MzjH+fyCkvJc8UvVt6i+h91Qmu+JEE7K05m0FDMNYvhSsLMwljFZngqvKPjMJPZfhL2eU2HUxnVWobRuXnJ57hQohQ8CI8BpnKLTFRXlVQt6WQ2eJ3hqcH5SgiFrPh7qSQQkohd4JPxfW3qpdiJU9PM7v7OV5qxKFeGpceGza1YEHEI+oFfHgGPZ93BHhKaXU3wTwK4ye+kYZqjJIRhV5GzXtJmg0rYIHOz6Q2KYt1mKrgNaq8YvZUL5i801igotk7HTOwyVpB9wzwx+DOuXRe3ahhwe9Vc8KAwAmb6YVUQy8ZC4aeyi4m16yv/iZkwC8R1Kl1AFu+z5m8yXhw8RyADA8UnNCLeuG8N6lJ722GxwliTKW8Erl+1Vwcl2uk5YIIxz+eIGt+zzLbc65GfmDSoZ71HXfyxBQ0aL7JSv8Wxc0nr6XXIM/d/wJ/JMnvt3/9jLFglpi++3HCiCn8z51ahU7nz0SwEqjMdD7KFkBk4N0LfVNkfOyeIOyEZ5bmRAEmAVbNDGIJl7xZh0dHCfdIW0ztIim4bIK6EzSXVu/I++V8Uqqislb5jxGPDEYL6gATQUQtxdA+Y7xog9HxWPjmJHl4GuqbRPNfemo2BUamybgEeud9LkEnVuYsTUwyiSk+8g62s1h1wBN5Ggk8STnMthY6J0Oc3IMfJAhXUnXn/YtrNwqk/p2idFy5KDTfM7czgAABAXbrQ8D4A4JTx0E8Fml1JMA/jWA3zXm6x9sXCVUL5H2K0SZx3hXsUYyrBzfP23rk8OyHwMAXPtj9MpUBknPC34A17ujhiY7J0950Q5syKO+GeY0pnPAW7/1ZXzuIpk99x0iK/elJ0748xNPUedA63MN17ioig2Svl/8zRW6BvaW6ptEWDg4TFIknppACciCsYVnSGFEY5IUM68U6J9qwEl9RRYlL1BOlkqvaTKv0b1Iv9+yisspC+yxlDMgzXzNCiPHAmoOCZdUpBSlsFB/waPG/smH/5Q9/1DIc/hhdIh+d+rUqvt+58ESS5+xhIiHQxLBZHg9DY30ArOunxf8PDhPkTcVWisy/GRs0SaHtTQGhyIHfDAR3Q/Xb6VlGw0JwZqL4kBGbnHRaFkjhRJb7yTt0z45lJi1VADW4KLP61l07fm5TpE3Fsw6BzoXPHBjcFihc8UEsGyjw6I8DilFk3AepANKjLM3rwuD4ZJfJPMv2NzSQeFF5XDJ8cRdc5g3ZAguh9BkO93O5TwArOzb+LqXnDeHnvq/KaX+7wD+JKil4D+zrQN/wRizLwr4azGqmHiLBsc0Zs76J1klCqMDsYOcckiBYacu7nmIJ1QFzGVQRyjuNNhooHk+xsx5LxCKunLJUlUA3UsVcIm+653QyFtANucT6NJ6fMdbXwEA/NkHnnaf/cZ/+mb3vratAiUzmaXX7mM+Eb777IILO/DCqeyiHB1QgVAfHNZBeOngp71EjPvkcgyPt9x1jQQjcGHrHGSorGwCu9wcx9airL7NVpjb+LmeSsSN/y33lHALzVxvWdN+/Efzz+8BDPzHJUysII8aHtnEI28DeYc+X3iE7llvSjvcOj/rFAbgk8pcAa+L0JvYfsSgsWKND3sPR5YAsr4GQAFt0elQhl9YGDOCZzoboUzhyBMnyxX0REHn/jedCz7cxIrPcUyNBOwXnkeK0VlVEho32QzQuqZc75YDX7BcZm1WmDqoFapiRUVwIvcgOcWGB8lz4hqc7iUCnDjYrL2tMuEtk/oyXDVcitDYqgLW2VrfU9TzOciOmlLpsEfDhmE6qIJwMgM2ajt+/3krpHHfr7GfiXClVATgcwCuGGO+z9bQ/RqAkwDOA3ifqK/7KQA/CqId+3FjzO/e6nFvqmrFehYr9q8AMAfgN5RS/+hWD3x33B13x91xpw1lbu7vJsffBvCC+P8nAXzYGHMvgA/b/6GUegjAnwfwMIDvAvD/tQrnlsbN5DR+HMBfArAB4F8B+G+NMblSSgN4BcB/d6sH/1oOE1Ho58hHc+jCJ9kAoH80cdYLh6WY+qKxQcVtHIaor2vEF+oYnCRTb/FphaJBGHgAVJVbU87N33q8RPeSQu+EKB5qeKhmZeszvvXtNBdWxhS7+fTLb3PbdwWHEcdhh6e9WfT9b/48PrF6EgB5GYAP6YyWFFQR9laQsWuGI7LVtnNPHe3Ltjal770M2pctCGMoY2QTvtbKjqahNct9P4xAJ0mrn9FT8jdK0H+z9ShfTeQ9GMCzwwI+gV+0/PFq28olkx0Vtj3frWcW0X3Yx2NmXoqCc+HQkrRAxwd8bUbVKDG0eINoEEFnijwMO7iXCeDRcHwt0YTi7D4JLO4JgOYljemigYkt+GBLYTrn0U1VSl4TAypMTJY708bXdq6n+x6J/hi1bXvfbeS5qFOOgT2N5ppB/4QKQjgUXuLtFcqaQtona725SmEkBzGeEEIqrFXxa2D21cKFi5JRhbypAxYFmmu22NKiqCQyqxC8X+x5BoWJIj3D/XKaayE6LW+RHP1K0aLvJ8ut7aj6vaBC6//afvxeAO+x738JwEcA/IT9/FeNMVMA55RSrwJ4B4BP3sqxbyansQgq6LsgPzTGVEqp77uVg74RRtI3OPoRKwxHPkiezaWuFzQA6FyhqPt+BpM5jeZ6iZnXaIJxARBXkBcNbrXJiXWDnQcrpwyS7Qgbj/oGMoPjYW1CrUfvVx7xgf7VfgfdeZIOg9dmAXhlMbmfwkePnqBM4MnWFv7DSw/765wotK6GBYBlk3xUwKO4OIHqmiBZpdG+nGOyQNNkstBB1lVOoDHyR4aHZGhqdA9JvGQlxCxyC1T/P71yaMXlLF4nHBXUsWz7KmxG5vRPi6rv2KB5RfBHCQBCOVtBVSpI9Be/73Gosf3cCfCCwkcsnBzyiWvNMh1cW7rj0UftKzfmhvIoK8olua6NDtLqz23mnL8ZHO5silbARglYs0WlSUocx/kF6s7IuQAAGBzU6FzxPS+qRGE873nFirpC56IJwkkSBi77t9AFUTiIEUrR1CBvREGjp4Vn/Y0v69p1oxwuRchmlFtzWSfk5Jp2Q2MFoDkh+6zXdsNcn6TE5xCtpBJhbjkeUW4cQ4E859sZCghIEm9z/L9BBrtY2Vg2xlwDAGPMNaUU4zaPAPiU2O6y/eyWxs3kNP4fX+S7F17vuzf6UJVBNC5QtGL0T3ip1z+uqchKEMUlA9FlrCKkB1tkJlKYzqpgccpGQVe+LUXcV8iS6yvNASDpEypGCq6tb8ow2ppz/0/Wm9ATmuCdcz7GzeOREx468p8u3Yv4tUYovJdC4SuP5Tq0CfqIfKbCtlWc05nExfIZQsnb5l3qgZ0d8Tv8qW/+kHv//1sjSGt12q/4F546iXjgkWEAMD1AJxENdZDk5j7XzrOws1UKLtlXYfd+5tKwF1uoQGGMjtD33IkPACJRPZ48uAtcnXFGQzZDwoY9meksnQMntSdHckS7MUwibq54y+SRPHThLfMyVXueUehhAMDsa6ImJatQ1LS7B831CtHEuORzlBlEU4OZ1+w12kMzLQxwfXW5Mr4zZOdyZZt72TyBXRKSF0zSglDuw7g8w/hAjNpO6Tr36cJAF76HRVmnFqsepUj7HR0kq0sqhmRo0Ngw7v/uxQJlojASye/6duVqPSaz5PnLCnV5Hx3TtEiET+aVy+/EY1LY/H2UeYUhz3Vfxs1zIC5aJg4e7zfGvB8ArLG+Zox5Qin1npvY1/UwuNvwee7YOg1C4RgUDSqAGh72kFrAQyd1YVlomeJ6Dii2taNlViUw/0KO2hZJL/Y4xktk2mQLtKj0DAnWHCmaVyKHGEp3yWLiEMdkGUivpMADtL/JOpnfsy/S+WUdYHi8woF7fNbv/PY8KrvC8mdJ4sn6B+kJuOY/gsuqaMJReQDU4rT9iofkcgX6+ACFGeS2RdtA79Kq/Inv+i0AwGpO5/D2uQv4pefeiQcOERrphadOIumFCJfJMhMmXj9kQh7wxWlSaQwPIRTasXhfKeQtIJ+lZ3DoDCW61571hTPJgz7eMuo1gDdnqJ+1FOx1Ot542R8fIGXBw8TGLT/pZXTPKluRbty16tK31lUlgRBYuHMhYkc0EpJhkqEtwGxueGrx2nbuvB4TK0zmfb2OUYDOKxcums5GqJIQbRWPPWqQQz2VwHdEGQLEEuDh1HlLBay3nYtTlLXIGRYlqDBTeiPpAK7qu0oUipYnAjUKmLngpb5R4tjTCmXivRRHAyLCV7UtoLVKv+8fjYO5w8eQTAoEo6f39W1Cr0lYry48BFoqy9sdX4ansWGMedvrfPcuAN+vlPoeUHu4rlLqfwOwqpQ6ZL2MQwA4OHoZgKw6OQrgKm5xqG8A9OwtjfbCMfPId/0dbDyqUbYqxH2aWbXtsMqZJj6FdHi0rpiAryrgqbKWVO8kLfLBUQNzZAJ1jST37IsKWRdorIcwQY6rF83QrU53KUSxl1/Kff/4DgBg+sys+yzpeUtTFcBEFBc2r9L+5aIaHSNkDgCUXWuptvz1Jee81kkGCMJ3crAl6/pL3DNC9Iq/ce1LVE0tIaoSMePCC8Iak/BkZYDpggjHtEpE2zFKwUWlOxmqbVuM17PPVIR4xocE7NIKEy7Km5zyCgOgEM/ghEFiv5f3lAdTnQBw95C3nX3ZBLUXqjTO8ubuf1IcdS6KbnXWg5BdEVlhAEC6k6OsR0EvF6MUBkf8g5WeBfexiIf0OjiaBnBZVyEt9Hdz1R+vrBNaSSqKrK1R36ZtnAchFN3gUOzOwfU+55zZdoXpjHY9ROo7Xvmm/RJV7BVqFSnkbe+Z5U3KS0kqFVYYAJB16KDcGhfYW/RIHmTnsj9Xpv8HfHGhrCp/8l/91098ESF+U6PbOWLe/tYfu6lt/9NH/95NHc96Gv9Xi576nwBsGmN+Rin1kwDmjTH/nVLqYQAfAOUxDoOS5PcaY26pJdQd62mUKdA/RgqjsaJdgs9o2+SIKcor+quLUEOtV7m2lvWNDBuP+uCq0RYTb+dgc0UhfanhYtvsVsuKcakEiL8nJMFThceQD48A02Pe0i1eIQleF4oO8LHlwaMZkpUUTWFXlA0v+EbHKpjEoLTWuokNdC2cSzNv9bUOO08f8J+/yu48/b/5prDPNCuMtoUX13cq1He85TadCYnkHBmerOOqvGJhpWJaQpg1Khe6wwG7g4RuvrZFepJOXXo6SQ/IZ3zPlMZqStBMe+8HJ2xYbk6EHte89OEQ4dxpMvd7zyyEvUZaCvNfoAczONkO2o0uP0En1T/uFbKs1k77BpM5HZAMTuY0uufIVSzrlixRMBnItsGsbBz5pAJggIKTvfbzkajYlzUT7aslytTDuYs6kRvGtsaFi11lmwCq47CJ+u0SzfUStW2aELunSZE7zqsDEYqmzxUSrN22ZbVhOA4LUTW9QuUaSBFwhUNQ8cRgMh/5xLjh++mvR+ciV6ZozrLCamyUmMyL67C3hOehhP/e7vgKV4T/DIBfV0r9KICLAH4IAIwxz9kyiedB6Ncfu1WFAdzBSkMVhCipb2qMl/1Ecf0p7ATjMBRbUFTJ6yfR4GjN9ToAAFgeG5nMBeAK2kYHogAjroswx8DEdQ2BupHmaLoDpDsJRkekBascj1C6Q5N9+CDtNL1i2VSP2fDCjsL4oLBO0wowCibxnyktkpWz3hU4ObON5/peaQC0+DgEMfMKCdwxb8Jr2K7H8UIoBKMpfSeT0zACUTQNE5zFjPWCBpZCPTbQmRd6jS+QVJEKNx6KJkn2PidCwXYuGM/PxNXJ1pOKB9SsKun7Y8hCRFYWW5ftD+YKzD/l6WaWP+lDX+1zFC8s26KDXDdB3dYGTGwhmVS60uNiz3DzEa9kuiKck7d0kLDN2ooUg30Gk7kIVSQUgw3PpgP/m0S8z2wPCUbWcRMnRv3xucn+8Z0LPsFUNCLUtnNUsc3FXcxR1rXr2VHWaA1yTkWXxvG9RbmBCXJbBmiHdDWNzQKFRVtxUaP0nssa3NpjY4RzFlk3NFaUARqbJUYHwoJeZhSWivW2xz5HdowxHwGhpGCM2QTwx19nu5/GPrW0uGOVRpUCg2PeCmV+KO5ot/QZiWgS3eFy4tuRJH95Ay7BlQwQLMTREqFANh/020t+pNqWRbrYw7F1xYpFej0AMHzbGFU/he54TZPUC+jPkTSbPkoXFF31woWtP4CguSrTgIC9tg4OMJn4FTff9WXgG1teSm49t4gaqK+Du/amDxuwsGbETTSl+yEVRchNxB/Si844js7nTa/sCfRnACXyBpwLqW8I72EgOvVFFFpkZRFP6M8RGo4NJoJHjBPcUljXtoQlnpFCYcE+eGqBckenScKxwgCEwhBCQhUV4h16PuOjdF+dsmDoKieiU0WFh84apu9lIabsAwMT0tjvhY1yriIR7Wzl73VhkHWVg7OOOxpZx987l3uI/Gtt2xsMtV2i5GHYLBSwc6buitma6yWyjnZro5yGsG/Zaa+saajSuPBZFSu0VguHSOTP4ynnR3SADOP5VCX+VYISyhr9zb0sPNaaco2f+kc14nHo8e7LMOHc+nodd6zSAEDuuhV0TJ9cpQpzzyOw7vOW9lbQJIQWZt1QCUBRws3DPi32XuyvbBi0L9AHrRWLPrGhhSqhOgqesLogaorOOylEVAeweHSIFy4QF3q9Rav61HedAwC88PQJqEIhHvoDlnWDqmmtdGuZLx3fdt9v7nroVLVex8Z63Sd1l6fQ17x1rAuPoopHYWitSrk5jrh3NxB8LBiTIQliroJmAcXMqSaiEBbf39b5KPBK2IKUVCf8O8BXKLOQHy+GhHoMfsgFcozpLQBS5tzxDqDEeDQFslnab/OKRnPNoLlGB2xdzVDbsFaIVQKm5gVz0a2jaNp4+zI3X6Lv9Disrm5slWhshegnabxQDkKF+bREOaODw0A8jxoWEusS3UoFqKDGVolpN8LgsD/f2q7vf2I4NLSn8RLf68ERjcGRmhOKSZ/2yUosb2tUiXJKK5oA9a3cAUeqSLk+4bJfOP0PGK0QlewtZyibMQZHuGe8QjwxDkwwXlABA3OVAINjyhl2HAXYeDT0LJjyZfxWushyRFpn6aP7KCa/AXLId67SUCTkVEkK48CTPvA9OFYPCsiKuvYNXWo6aOVatMhqcYVFNbsgVvxil1h7sn6Uc7WLhgq4nmq7Bp0LE0wXvCbafgz4zuULdG5lij986iH33WRIWu/s50/RBwtVwDU1nbeLdCA8nTnRH0RXKPr+WFFJNNQMRY1EEjzt7Slss95ZAJMVSW7XUvagjZ9bSo35Z61AVaQQmD48Hnll4faXeWUytL+Xie10IDwxDt9bQTle0GitVI66QluOMWbR5VDkXqXDw2jYxk72XITCAEioljWF7jl/PydLPjaWzUbovEY7LxsWWmpzAEbT+bICLRoK6cD34WYyvRsmq/neTI1PFschIy731w64nbSoD8krABEaWyK5Pqgccy6HaiTst6wpDGx9SPcCKQzZsEta0XMvj1E0Y5RCacYjA0c2mLHysHmMRuSYpo0C6puZ8zxMpGAiFeQDZC6nisMwKUDrjEPGfA+YqZfIHD01PHskvL0630Sx9BXgEAH2rbjvaznuWKVhNEFLAaD7hEGVsgWYuO8BWhRZV2F8gl1jINn19N3MWxQJ/qTGZoUo4yKrkDV3OqNJeLkJTu1eeZtkWGGymDoLbetBjYcfPIfXBjSjnzt/GMv/2S+Y6axCmXh0V31NY/LQGJVlwdVj68EIRWGyCKuX5wAA8W4EzJSIhn6fqaialiPvALXHt5F/hn7LHsB03l9g85oI93BntCNWIV9rYP5Zvz9dGlRQTlkAnicIII+Gq8gBr7AkJTiM/zxvWS9HeHVFXTmlw8qeLUqAFJSEPwPAziMkZRpXIuRtoLCIsgJA82Lk6gMYkcT91OkcxPumwtYj5IpFU1IAnEAGrPXMobw89BAAReEcq0T4c85bVHGYVFUVCVeZb5OJ99GSwsz5MmxctFY45cQCW/IzqdILVKZpb1/1OQiU/hitFWowxN5S3k3seYpwYmEceqtoapTzibtftV4VEB4anbpCw9pOARTGeWnj5XrA4MCKi42NqgZkS96SmXkupp4Z1tsqawpFTQXw86wTGkStlyXee/8kvaq+/uNTd6zSSHcNjv/HEnlLIxmUHr43rDBeiIhZk7ftGUwtxpsFC9NspDsWrmkFZPsixfATW/RkNC0sF/LoEUWCnIc690JjeCgK2mDqAlj95ZPu/3teHmM6X7rFVt8y6B/VLuww965VzAC4NvSVzZ1zCjhHWqC5VuHqd1SkLECFbslm7IQXU1j7XtL+POsPk7R89Htecp+9sLGE/NVZ2rZboN8F5g7aIpHn5mFOjJA+663v3ik4gkhqXhUuyKloVrTzVpL29S6dnHmug8aqD7FwolyGlyYHvMKffdkEvU8cbbjE8Ec+5DI6CGSLpQMFjE5W0EKZNi/SewlFHRyO0L1k+74LJFHeVNClCUJ18biC0TZ529RBwr60xISRIDEsa8DYKiSd+x4bbgjyO66K7x8RRWmCFbd9rUJZU05om0iFfSZs2ESVYv/Go+ySrLIdLj3aKR6Vbn/T+Rhlonw74tkIectTs1cxUHYV8haJnLRPPcVZ4Oct7UJ1rCi5QjxvRy4EBZCyNADq1kvKOhrjRe08wto2EA9il//JugREcaE+m/+R5I+xgKHzPHEIwwP7VKdh8OUU971hxz7CAm5/KKXOK6WeUUo9vacakr9XSql/opR6VSn1BaXUW8R3/1optaaUenbv7+6Ou+PuuDu+1kPBQJmb+3sjjzeip/HtxpiN1/nuuwHca//eCeCf21cA+DcA/hmAX/5yDlbbLpB3IpfohqIEXjQmk2CyGGMyrxxM0yODfE4imniun3RAbrZEPDXXSw81TBSiHJ6um5N3S9LdFhbQiMIY7PkMjpHpz27/4JhC413+dhWlxs6gifplfwKSmG3rAY36VR1QcgTEbiBLS9KKZDa+u9ygk31hw1cL9i/MALbGI+rH6N67jZ1N++ODU8x9tOlixey1MKngeEGhe1GGUxSi3AQVuPXuFOVLNn4UUx6F6z44Ce9gsCpEZxV1ejbSs6hieLRWAZSRgEsDUK0cjZfoRLnfe/2a9crsqcpkcTT11dqqMu65VClQQTn0UH2rDEJXylCLYHmte58DEIZM5LZ7O/rFglIE8Hkg2f+jtuVDNpWl++Dud93zRXB+FDoLe1onY+/pxCPqnicT+rXdyiGcigah6lyleUzUIxIWPF7wAJHuxcK3WI4VYIyD/erMIB77eVLFCtE07HkTj/y9iicGCXzYqrlmMJ73FeUMI+Y1wPBcBjyYyAIibPhVkjTe9niDK4SbGW9EpfHFxnsB/LKlav+UUmqWy+aNMR9TSp282R1VicLwYOwqWuWkrF/tY3yEJFHWUUEykdpU+grXZGjQWMuR2yrUwRErQOz6jCcGu6cEPLcN5KIWoWiG2H+A8iTMz9S0vE8ctqlsxzMmaxsdKxEXERZaPpu7+8QBtyB0Duzco53ALi38lrvNcaI3SGDD97oAgGPHvVJa2fLwpWKrTiRsgstp9PQ8Zi0Zo6pEXsOee32d6lh4jBeFIGXiP3u/Fz6Ron88BfZUmgfV8QJNxWGr2Vd8fiDKTIDvV8bj7qOpsUy8Vok9OEH9JVEHcdYS44kQXTwW6Ky1Clk7bBXK9722YwJlxVXKMqdQpioIzwU9HpgAMPLbNtav7+suFYlEEMUToixpCB606Xwsfu9DNQDQOxGjrAGtaz5nYWJgYs+7c7UIQmPb95FEnTkv9i+EeNYOecF0QSEoRr9VEQDlmYg3mzFq1jBrbFTeiAPlP9Je6ZLourT3imtQZolHinveZG2icOH8C88nB0eehi2FdU7r0AEsFCX6ma5kXwvy7iqNfR8GwO8ppQyAf8EEXWIcgWtfBMCzNV77cg+kKlpY7DHUr3qypo23zbn32+/IMPNUGsYiDVwiTucGk8XELb6iFlrprWukZHixcA2BFNLR1P+mSgBdKDSsnJ7OqTANp4Gl772Esy8ddufSTHOce4kguHE/kiUYTrlwPQoL+Km/ROgcGAtq9UNHtrD6PHkT3/vuJ9znrw4WqaHKFknRxPbrZgu5ij17L0CQ1+Y6sPp2rxiY/BAgS3C8qF3jH8AW+1mUUP94SOmSDOn+SkoXqYAcH5jdXTwJBfdeinUAGIlub7VX6zCRL6ysUk+HLvfLnpsuqFqYk9v5nu53zfW9EFnPmwRDdSIs+Dj3wsZGbTdEkdW3S5hYBRDcwEuxVrW05IcHFYaWELBzxdZfWKSeKkmhs6D0SDL/LGSx2+CQNYZKeX2+t/xkTgcdIQHKEfG97hD4z3ngZYqgfa1EsHHNBV+Tqqg4kZ8fKfuQNVjWpXCluOxPLzm3dBGCIbIZqgVyfdKvVKhiuLqNfRsmvH9fr+ONpjTeZYy5ail9f18p9aIx5mPi+xtlpG76KSil/jqAvw4ASXsO065GbadE49krbput95wAAGy8m4RoZ26E6jtGGJ6lLNvc80TElllB0blUoKpprL1ZhCwmHkbKFhMLNBYwnATtn6oCS33mFerH4TquATjyvnPu+1+554MAgN8/TkL9ieEpfHbzOM48QDwhVz5yLBA2qqQeHcyjo0ognzFum7n7NtEf1XFqbgcAMCkS/JMHfhV4gL7/7PgU/v0qsdW+9BTdm/h1Ou3VNmnBdi/ZmgA7u2ZfDhWFO7eKBLAsHBsLuurWVfLMpECJp96C5UXeuhoqHRcist+z8NB5yH5aNFR4/hYVtbf2hBU8Q6d7J2l/s69WIRpKeYQWk+/FQ34l9gB57YCveYkmYRFnUVcBGAOg5Plez8wZPVuV3Z/gtpK1QWm4dCaLQPuifxYz50tUkQoUhTQsmCuNlVI8Mdh8WLve3FyPE1T3i0NO5un+O0oX5ckz3baiSLTSgBGhvtmXw3sxnfHec9oj1Bb3DmFgBIM5TETta3me6YxCVq5eaGANALtGU1sP49rBCnDGbY+7nsb+DmPMVfu6ppT6IIhgSyqN22JrtJ7L+wFgpnHILH+MTMrJg4cd1Hb1O7kSzC8eVhiADz90LnjLvHc8cjHkKiHIH6zSmNiF17BoqygDBsf9OVXNEjAKc0/b2LAmRFRmhc9973sZAPBrpz8MAPj53XvweP0CjsQk4f7Nzrtw6eP+lsQFCAopLGQY5f5nVtbWKR+o/aF7n3Lvv3/mKawUXVzKKdD/j5/4TlQZ3YtkTAsv9CaEZbtM57xzxi+yKvEhD1WR0pR0FdLqLxPl6NABH26RzXakJc/IHLZMa73Kkc0BFDrMOiEflqwpcTmRln+tUh/D5nvG4UOCtfpixNW36aA2ofuaf19YbrKhZTumPNb1No+kkJGhKlYYzIpbRcrlC/hcgNCbmcz5OdvYNMH1Gk0Kmz+PbR2OJEGczmpnsTPZHyvSKlZorpdO0G49aHMi9wiDQNDM83EDcsphSBFT1D18uoqBxKIG42lINqhyKh50rXJNyNMlqU4AG0LUvnAymtj6KaukjAImolkXPwMOUZd1TQalDRFK7+n2hrmrNPZzKKVaALQxpm/f/0kA/2DPZr8N4G8qpX4VlADf5aYjtzomx2YBADv32QTfaoKi6+m6R6/OoHXZT5r2FVoN3JgICAVfZJWFEwY1WsC8+GFoEo8P+Qrt+acjt3iztsbO/f5497VXcV9jBfd+5C+7zw4ueIG//tmDAakfhxmKpp2cKjwfkxhUMwUOdn3c5+Prp/G2RYr6/c3nfxj3za/jk2dPue+Zv4qpI9jC61wKBYwyJMwkfUM08T21oynQWqmCuH4Vi17P9pXvZ94M+59HE9pGhg0kPfbwoEb7SoVSFHklgzBkEjRhstfh6MRtMZ/zNGxiXSZCdQ40LH8jJ9A5xDOdDWk+XD9sUNJ/b2zcKP+8WBly/izrUEGpYwy219RcpZNtXaUCUD319yIZyOuk3iSlCM8Nj2lXlc/XvPHIjeltmODSP+sSw0P+Ycy+YrD5GFBfFeE9EUocLSMAiAC26tpe59jSwo8O0nd66kONqiSqGlZQqgTSoa/jMIqeIysmVYZcU1UShkGJc0q75xqP9hSkchW9UERFU2F0MHLb78swuKs09nksA/igojBKDOADxpjfUUr9DQAwxvw8gA8B+B4Ar4Js+b/CP1ZK/VtQq8NFpdRlAH/fGPMLr3cwfaJE8xd28dJnDlAjJJH4nXkurDYFPBqldzymAr+hR2Lo3MdIi6ZtsznvjzWZVy7Esv0Yzdb6FdpxbYfI0pxVlBkAynFgfeBj7wootwFg86WGO6+9yqJKwyQ2u/zcVjWaKOSL3rp85SKt2nMXKNwV9WN8EovOajSxCejLUfkFV+wRugBbtPS+tksJURkCqlLl6OM5vut6SuxZvFkXrpCOR61XBZxAxHBK27dt3F6ej7QoTUTWLguBwbFw22Rgc0DidjtuMFzPlcWhGb4P9W3P/TRaUqgin5fgeyKLJhvCS3MJb+tNJKPKeTZ8TTozaF31pnvS85JvskDaQSKoippHb7E1vv2guLZtcaGGBLf0ymSNzs4ZW6Mi0FiH/sjfPAoXKUcKmPaB7fuUu3dsCEiDKCBnNMBo2YcVW1dNYFzsng45wOwpu+0DduWMDBWZx5DGB3uoHDo2EXFusZIaLVFinXvSyN/e9vgGqNN4wygNY8xrAB67wec/L94bADckpDfG/PCXc7zRsIanPnMPgLCHdPOyciEoQOYm6FVV9J5DJizAZDhodMjvs7GiMDgtCA+bBfRaDbltZLT4bOWqbQFy+1UBJLt+kaS7YXId8IK7SvaEomAVhJicsehJUdUMqu0aXunbUmvLaBtZ5lhlAC1yFjpTzkJjCzsa870xZPnbxVnFlkF07O9ZIqCQyShsF2qYgE4ogazjLfL6JgAddlyrbRfIuiFyiI83mdcBWWRpLVtOdkdTUhgcdqjtAvWtAmtv8SZ2PN4jzLW8F/TqiBmzEB02Ud444OvkHEqZhgR9rRWm0bCIn64OuKdcAyJxb+qbuaPlGC8laK5kyGboXujCOB4ned6MKGqul7jybn/zk4EiT5CfVWSLTK2CZ+XG51+z3lYQKuyHfT9UQYoNADYf0cg7BruMlrZcaHw8IMxVyXauxEysHEBi95QOu03aSvXIrgFd0Nzic4umFjbe5PwhwX/5uUqUGmAND+Gx6gLBPJWQ9dsdb/QajJsZbxil8dUeM50RvuvdTwIA/vP/9lb3OYdWIjFJA+x/w4ddAG+N8WuVhEpo+vYhEgC5RRyZYYJDf+R7MW8+RLNTJl8BoGzaMMQljWgqEEpWSfB5Gk0EiDy4XwRXrFeJtZQULxiGedmFkxokm3GwKBtrXmjUtz31RWOjApR35wGKtfO2qiJSQicoa2E+IbdCXlqQEu3DMXsJVwb88ZJ+gbwTO6XClcNRfmPrtX+MHlz3vOCL2i4wnaNpX7d1C82VG1ukjHbJWVBWdO+HD3nXqX6u5vp6B0ivqcF4QQXKPvbNFp2ykJ6BLsx1LKjyXo+XfKwpygym84kL6ekiDIeZyNLZiPDV/HN+v5tvrtC44uskiGZDwIvt54y6AkKQwnQOmApEU2PVK2PeX7qrrmsoxqO5Th6iBHzI8Fj7WumU6MILVEMyOOyPP/Na5T3WipBUbLwUDeUYiwFaq9HUh/jKlLxKXtfTGUVklCL/Mns2B6zirV97HXKyL3cYAOXXv6txxyoNHv/p/H3At/Yx2aXV0noxQZSFljwg6LqT8HVvIZwqSXDz9gZAPolRX/HS6Nq3GjRWaELmXZrotS3vmlM4yMIObXFagEqBD0EZDduXwCuLoiHCGqVlZ7Xf1zapJ7mHomq0rngaioZlmIVwzbnOoUoU0l7pLNqyRl6BK8pKPO00n7uEcDrabxE73noEWPw8vecQSizizZJWvXeCpEoAZe14QcJKZuceIYhzr4waazmKZuQE8eCw5ecSx4Ow7DnsJetC5LZ1S83C9QBAWNNhIi+I2Dthq7WsKQwP6iCEQsfy96a1KgS2gMoClkFWIKLyprI9udWe39jc3EHqHbL5ZgE9Lf28ZmSYe/5AUH8ymaWkv1QCAYFgC+id0YHgzeb9+c++oJG1Q+BEa6Vy9SLVHknUOxb5GhBF4brmGnsSnMznxDWHmWjzshZCass6FQ9KhTw46LsK6gJINr1x1FyrHHUJANRvK2sqx91E+Nf12B028aFPPQ40aCY1XrMEaylgkuurQJ0gnLJ177+TLjfz37i8woUmtLjLTHA4XrJhg6sKVS08njI+LFAlVAXteJMsukcqmaIpED+NMHGXd+i3jlsqs1TTdsEweqVz2aJ1UuqIxha7qkTho1IwWnlaeEt5zrUMugrRQBwq6h/1Qlwy/u7ea0NyD7FQh7PaAcLeG+2T3Ywo6h/3Crh1zUsCXuTc72Myr4IY/O5puqmS24uT9AD12kgHJuAaksKMFcbix1L7vyGySSFcgzoKETbUOSXKJxYyW9uiecSKKe1bC1ggqHZP+n011ygUyHmfvKWD58T089LTYlZgAJgslZgsAfNf8J5tR1TjS2XFY3BQXEubBDErlcYW1SgND3mlBITV97Mv+N+3r9LNY1SZiUSBITwdPuBDVbwtQPOSuahGi+Th8LOJx9dzmBml0L3oJ2NtZYDKMg0PjrdQ3y6dMVHFBLioCWSeifw9vfLtM8AT2J9xV2ncHXfH3XF33B03Pe4qja/joYzzMurnE2cBT+eoHShbOzdqLCQtSJfbsJ5HlAHZrHGJaBNTaMi1kZ0qVIlB86pIKPbgobFcJrJsj58QGycn55sre8JPFZ2bjKeXdZEjsdY/W99lqhCPPTV790IGk2jPmDoEJoJuQpceEQSlAhc/HhvXyAgAoj7QWi099NEmHDnhGU0JJMD3trapkHd9Zz6AkGQ8HDV23x80F+GX6QzlBNqXbe4jCy3d1orBcNkn5vmeyuS2rDkp6rYXtg1HRWOysN3+rhoqShMhKvK2fKzcnWfXdglUfEwEAAsOU0m+J5nEZxSd9JTiiXHzhI/F1jAQehk791tkmmCtZS8DoGLTvd5FlShk9v7lLQAmvP60bxyEl8OG7GUmPdugy3raSZ+ez8IL/mZJz0GV5CXK4kj3naE8AwMgOHcxnpcoCnFeA5rPEpkWTz3MnfM6ZdNPDhkiVZUJCiWrRGF4SLt5kwjP/baGQcBMfKtDKXUMxLF3ECRp3m+M+Tml1DyAXwNwEsB5AO8zxmzb3/wUgB8FBWB/3Bjzu7d6/DtWaahcoXY5gSrgKDsAX8xUiPBTPAqFkYzbsrJwtQVdE1R4RyO4hjs8kqFCbhdXYy0MgUjyPABE3yxc8fEiULQN0l0x6Uv/u6xLoQ8XMjMktDmpWN8iaCEL4ul8jObVKUaHa/Y6bOUs7770setpRwFGOcHgrotz6n2DrK2DOoqsq5yQzWboXKWY6J7175kHjMMGTL0hwz+ZSPbOnjUoamFYoazgOIq42HAgykGlwFcF9TN3kGITclmVdWrQJYsRG5v+2vpHI0IcWcSQhPcCpDCaKxC/9cVxLHRrO17SZ4K7SZVA96KvacmbGv0TIpRmFbGEQ48O+ff1DYXpHNByZAeR5aOy/9nDSpAHFy0Cfl47xNwkFHY79zKZoP+sc7mi8ltYJFZWBY2jpMHhcoaiL0Z9x4Yfj2qCrXNdhraFoSK3JOtPUtt0jIEAVUKADJ632UyMyaK/OKOB2rYwTmIqnJQIKllEeiMiyVsbBjD7kggvAPw3xpgnlVIdAE8opX4fwF8G8GFjzM8opX4SwE8C+Aml1EMA/jyAhwEcBvAHSqn7jDG31ND2jlUaPMYnckyWIsw9z9QQtApkA5udM+FtUhUCJSAX3uyLygp2+p+FvcxZyJyDUZY0cNZ/JguV4jEpMGlFcjKbzjNczI0Vis+WVjjUN0mosWfCePfuRY9Mmi6kbv+jJVuxzSCrmgqSqxLlxefQuWDj3BtFwK2jM+I+YlSMUXQdXE9BBWgmiNMDIeWFMt66TnvUEEsmU6McogjMCu9ZD70MUDRTOLZigIRQMriepmRsYbRcbCYhmv2jXrDzPeudsseb7OEdu+zfswfFifusA3Qu+YeatyKoIkRvBUWQtnZBdo2UiXLyHEO0muxwyGAGVyGuwkR21qZqfPl8GYEH+Hss649U4ec+e7Ly+IODft2wIVHfFEy7iQKsoGaFAQBLT4ywfX8zWFf9k+Jc50q0LkSYOed/MxB5s9YqKcfxovCYBTIt3S0dRQmP4cHIeW9GkSHiumvWw21veewTesoWNF+z7/tKqRdAHHzvBdWqAcAvAfgIgJ+wn/+qMWYK4JxS6lUQ28Ynb+X4d6zSUAWQbgNT6/KyxdQ7nmL7O8Y48ms0CXdPx+g/IOMRGp2z2i2+dIdgqY4p1QqcvOMnR2MldMvLmkhE75LCkAuktuUFsipskZFY4OylAEC1mAEGaL5sPYXEejd2/3kbyOGtfbZMGT5Z367CRWFDA44cbhIWeUlrjxPsac/TL8TD0oWVpnMxaj3jlMB0xlOKAB6iOe14gjplPJ2EzimEwlZffTNHfRMYHrarW4UJXBaolQhTSMHZXK8wOKidZ1Lr0flziITvGdckQIUgBydQ7SXoHEFnQVVQEy7AP89YUOjLoUqgd9Kby/HIEG2KYFsua9qdGwMhZMU54AXa+jvod3pMB26skmHB84hhwx3BNzUWnlFtx2C0rJynDVAY1tVt2DnAZI4APT8mDdxL6WJUiHxrrlhjrCm8qQroXM799gN63zvdIIp8EULK5rxRfPDjCkDl6jAm8yrwuJorOUykHHeU0SGKj8NdsW2UNjicIh4bB+xoXyOjybXire2T0gD2Padhmb3fDODTAJaZIcMYc81y+AGkUD4lfsZEr7c07lilkYwNDnx+Cm0lzPZ3eOlQf6aBTduG21UfZ0Kqi7e8iFlZjI5QJW9t028kY63O1WUE0iwVErmqaGv1Kmux6SIMX5X1sOK7fpZ2zlYhu+0lQ4RjiqVbqqoAQkvfKxK+gjgvyv0xg5CFFRwyPLf0ZBYotOlcHJyvUd5irm9TCMchqCobwhH8R0XD92PXuUFzvXK04oBQGKD7Fo8MhofEotbe2m2uEIyyue4FRmu1chanz7kYe63XCwd5/SYmJaIrfz9aV4GpDWk5ZQO4wjQZ1gR8bcn4gCYCPyFYdQEHZ2alUxc9vI1WjjyvaJAHOBUGBCsMwFv+wyPCa8vhenzzM5CQ37LmUVCcI5Mkf8nI9wthhc/XYyIV1JyoihTa7KtisiggHtt2r3V6prKoj3vF6NwEYa10UOHgx5XIQ5iAh4uRV80V7+aUMn9iiF7dUe9XBnlTO6XR2CoxOhA5zzJvqCC3Vt+8fe/AjZtXGot7GtG9fy/rt1KqDeB/B/B3jDE9y6Zxo3GjL25Ze92xSqNoKGy+iQTuPe97xX3+7B/cC8Ari5Pfew4AMCpo9W986CjlO6wFNzxqrZGWn1jNK7J2gBg+naCytQxB5bDyi6esk8UqY++S02d32QrgdT8PFp4rfB8PQ+EsFvAmokSzpB+H8nkDjsOzsjIRxfD582Toi66SESmT2VdpcerCQMn+ENwrW0xeZeCmJ3swnMxWFXEKcShQVRRW4ES156Si3/dPpEHVNN9TGRKRljgVRZrAq5Jxdc5FSOinISMWAOU3VB4msKH992wAyHCZzH+oyogKa+uJCrruaCpCbzbpy/kbvnZHsqcViqb3cJurJbbvixyXVGODvuN51LDKpqz7k592vbJQxhDFh92+f0wFxgCHUCXleJQJlmJjhW+Qs/DbtmxL3Lzjj1/WtGsPy33V2VMyOpzz7IEAwHQ2ChLXZU2hqPtWsqzAmHQUIEUzXiDFxIpNJt2nMwomoolVpjSXpGdEoA+fGN+fYb4cpbFhjHnb632plEpACuNXjDG/aT9e5f5CSqlDANgvvC2i173jjlUaVbvC6F0kKT/3wknUr9CE49zD6T9NGdqi0k5hAMDo0PWolLJZob4h3A/ANcPJm2Gs22i2fPhE7PYiDBKQqTF7rjW22xc5zFDabQ0mc5GzWIcHqe5DxqMlpUKUEQmerPzN2z7s1LYkhByuU8YLZc6/9I/S/UjGJmgMlLcjS/rnQzJl4kNdac9QF0IRKihTXwg5XtBorRhn3VYRFaAxlUZRJ1AAh4n2emGsMLzADXMAeYtyKOxZcPhB0pRMu8olw50QZfmlQ4CE5oJIAaQIUTn+c1aEXFeSdUIkGp+nnAfkTUTu98nIuII2AEFMvxCKGPA9ul3eoqIcjRPsKjw/mbDnIRUGzwG9h9qeQ5MTq5i58HIv+IMNiulcGJ7iIXMd7CXwPANsk6Q9OQY5bwImgOMKQBSE0gaH/PrMZmmdcz1ObTdEkrWu0TVEE+9F7cswAKrb91oUuRS/AOAFY8zPiq9+G8BfAvAz9vW3xOcfUEr9LCgRfi+Az9zq8e9YpcEj65G1we64/vYtnJz1gd1YVzj3ooel1CyRH1dyA0A0FrFha8kFfRtEcpSZP7ndqwsDSDZXgUgBrq+WZYUB+MU4FM2E0l1BtDgB0j2FT1xdDBDaKul7zypvK+RN/7+ufIjCKDp3Djfp3ATJRr5uXmQmIq+JBZXRCsnYOAFKv5dhBhJ+XHwX5QirkI3dpwnvCyuV6QzBazkkNJkPWXLZkpyK/ggm8pXkdH2GYtoAeid0wOFV2zaobSM459qOCHONpEANFZguwl4iRil7Lf4zDjkBlj+pMgE82GivHNiwkP01arseHcVWNc9DVdlQmJB/siDOWKNBCl/mo6LzCT0hVYWJdFmlTz8OLfQqsfdX9Ajh8BBg6WjqPo/I+5BDCvaiLtoNWG8s7dP++ogDhQEFtFcqbD0gvDyxxqazIbQ5b2kyhthruyIZO29z7IPSAPAuAH8RwDNKqaftZ38XpCx+XSn1owAuAvghADDGPKeU+nUAz4OQVz92q8gp4A5WGkoZJEkBrLdQ3wD0e3zGtB55q+fTTxGpYW3DSx9HOw7BxW/nVdEIK7CjKVn9LlZs6TmkdSqt19FhGwtv0TOdeyoMireuVRTOssKEq4aD+gmBzooyEiT1HdrftBthcDRMxANe8OZNBPTmpgprQAAvSGTLTXe8HDBWqRDFSEj+FrjnBuhc8n2l84ZCOvCCbzJHpHqSbbRo+HBZmdL9dCAC43tjyGtifiNGCDkq9MhStNjj13YoGc3Cqb5FiBs+H/6dZN6V1eXSUDCavBqpKGQYrHBAB38DZy6UPqRihWu666n4JTKN3wetbCuDyJ7j9jGF5ko4L/ge0f7pjWtpWlLSnsN/heswaBX4NAw/ce2DRCFJlBnnpaTnlQwrFz5LbJhqMufn90QYM1JhuKp3SddjfDX97NkSqvQggoOfyYJz4XNcetLfjGhSYXyAjs1GQzIQxKKVcQ20evd3gSexD8PsS52GMeaPcOM8BQD88df5zU8D+OnbPjjuYKVhJhHyFymL2H90CmzRjHznvefx2c/e67brXGSaBCEc2n7yde/ZRfGR+bA1p6BE4Mkrw0UyOdr+3hW848AF9/+/f/kR5IMUC5/2G3Uu+R7kbOUzeVuUhcLKNdkZe0u3vlOif8Q/6tlXjfNMZs9S3cZIWM8yJNS6VrkFrCpKQLK1azSF4QJPyPhFWKYqQIUVTRvXZkFbJ+ElaeGryCekOc7NOYWyRvvwSWIEzXaq1CoIlncg4SJx9ib28mi8SPuQyWBVeaglw2Ol5xT0+K6RUOzaLn2jA1HgGUjPgxWGrMOJJn7lz1ygG95aoX2pIvQKajsi7AOmvvDsyHx+G2/yN/xP/7WP4N988lsBAIufovnD9RllzYYFGYDhPAk+t1C46dIg6QvPIPHoJD4vCmVKD7yCqthNtYJ5KHnD/MSRCqOxYVDFCNu5TsPnOJ0jZcEjb2kH2eZ7VaVhyNgpQBt2CrtIGhRNj/wCgNHSHhTD7Q4DmP2p0/iajjtXacQG2QFaQT/yuA/v/buX34z48AiNj1HgnPpTALUdtsCopHL2mIfK6Hdvo/z4HACiX5au+u5J25FPKJX83d50/57Dz2Ejb+Pfv/yI++zQf4qR9oTwAFDfoHMd2Z7PMoywtxNeMjQuxkzn7B8zC7KDn/LB87W3eFcn7ZHQb676AxQtj3SpYg/fVRUCnqb6NtWDyDqLMlEObZYMqe0shzXKVGF4yHNZ1bcpn8FC22ib9HQ1KbAIHH/texVWVYNrhKUMKTWJXtOlR7oBFI5iL6xMVaAUGIIphb/OvWCMplSQyMolnhiHQqtvVUHoiKG5kkhP5iSiCTEfS2CBhKfqnHMh/jMp9JjRl4v5fuBveIUBAK01ukbZzlV6SeMFTeEtyUorKvFZYTAVO0DGD+c42MiQz16LXAArU/YsdGECGHL7aoGpLW50ZJ/y2QqFoQuDxrqH98rroHOMrvs8KBC11xCGff25MFiBowP7OvbB0/hajztWadwdd8fdcXd81cdd7qmv/9GcH+M3zz6G8nkLmbl/gMbH2gG1OKqwwjvuRRg8T55F84Ed52UAVNlaJQqDw7K01ycNx0tABOBH7vssAOADrxKqrvNRCo/Vdo1rbA8Aw0P0iGTfCV14OoutBzXalxCEMgrRQS1vqSCnoEqgfWmCy9/hvYvpcZ8VPP2/0u+2HqrZ3wOzr7K7r8i6tacymadeH9KLMsqHFfKW7ZRnLb4q9mEQgJLw1K/Z7m9BIZsvsfCU9WxiqpzmHEY0AWB89XzWJW+HLdJ0m64vEZ5IJOL0VQqU2ueTkqEJ8Pgcttg95cMSMmeQ9ktknSgIucm+3IUIp3CuSYIg6uv+fecS5aZkHJ2u2SawayGFiokUsravNWAvwzEIV2Fy93d/+t04BJnTqKDyCi3bZzvvUD2NBEVwZTsAzD9P58XPq6ppQORUXM6LCznbColIcjvkFb/EKsgzlHWFeBJ256tviGrxVLlmWwwrZq8mb4UAB4Z4S29CFvOpwsDEKuC+ijLj7hfPV86/pD2DtG8wsiy/cy/uk6A3Zr8S4V/TcccqjWisMPtMgryZoGh5jh2stzFZvJ6DysXN61XQ2W7y+TloUTEdKAuQsqiUp7MwCihe7OLX/rPNV33bLtLfm3Hb68ygqOsAKWIiFfRpSAcGWw/6IrD+CYW5l2xVdqqCbm9ceCZ7Pqy/ueGur3cP/e74B62QawODQzL/UboKWoLqKoce4kVX3/LQRKV9FXKt9/9v78yDLKvqO/75vqX37lmcBSYMDouggIiRSbDARNBQJpXCSplI1FIxmqqkokIsTDQkBCUmLlGTaJSijCEhwRBMXEJFXBBJXMGFHRxggAAzOMNMT9PLdPdbfvnjnHPvuU3P9Jt+3dOve86n6tW7767n3Pvu+Z1zfpsLGhcsb0wqBJabWu2mjqbX+6m4adG1t8zYseFe+LnsyH+gOp4r5sc2O4ERQoM0u11jFsK9h0YmmD/blNt/1fbgZ9KkMuIDNgLTq7sYPbaaT7X4hjFY5Uys9yl6vZlpvUcFQRGC90EuLGIjgr7dVtQVWB4csnukQWm62NC5Bfe1f12l0MCObi65Bjk6XRxWJAi2oLBulqE+WMmmNcd9gxibdw89GukjgoNlOL7i/Baqo+6A2kDZ/S+jKab4fxfKFes9pgeVefvn/4nokK7idFawErSS+z0VxYbq2dvIrK3C84mn9qZWlzPdRqlmUDPGN7p7HaaPQ2ciy8Me8rX7Dtem/43mgBcIa8zbaKljOGKFhpXylzyOCzW5FmqrLAvV0ehv0LW7QiNy3ot9NMJLF0xtTS7r18jxPj9H1AsGrziu5hZOla+sKgTBC/O0ceKfyiSU/X/t6bP8izDgJnmrD/ZmAiOURwaj3hM49NJix6YgKFy5S7C3i90vcr97dxWD8jWryhqAZzaXiol3eorKydCrjXUs3c/kYUqmVrtcHUGoNLqh9pw8OU7fjnKhEQxWT0FohNzsoZfbv9OdLySosooT9uHlr+z3yvigGC+7ZDxB4dn3+CRWLTG91o+qekvOsdHn2BjwPhVTq6PosFEwxp59DdgHwyfmr1EQFqV6nhAL8tzaExsjE9lIAR+c3spTXncwVC2MHnv3NpgaKmX5K/Kb5L6GfG6MOHtfeTp/PqHOQc9SSDxFnu8iphyHNOl1jnm1gfxeNKtReBrfs8/udUU0evJYWKFcISRHvVtZgEpXj8gKq0yWVjm7fnduih2spIIFWa2v5EaYdW8h6J/X5HO8kHiqxjNbcmuR4RPd9nDPwn8u/G8n15QYeLL2rPhU7WNpemo50+xtMnnafvru6GX82Ejhd/QEFWBqOO/a1yNrqTDKCDGJYqUsOIExsbGS2cBPrHdOXJWotxxbV2UhLIaC6aMVeq+VSWcpEloHTZbQuil678inl2r9uUVSll/bCykrFy2Yhs+ZdGcazl+iWKk++GTdTTFFIbuDIAuNfcESrEJB6V4ds6whaXSJiQ35yMJKzqggbHe+CxVKvmFTw/thhHe5AtWRaP+aS+sZtjd82PrsGfj1cc7yrrFm1qPMst35ezTy/AF2n2kc9W1/vh7Rva9B15ifXutTwdegMmkFi7DKpFMshymsuMHu2QO9UfgS5CyoYkHRv6PokFOeajC1Nn8uI8dXWP2wq/ze53nlbZRtLvZED17v4d5UJl248Lr3CK/3OsupOOzI4BPPbsDi3vr0UJ7OtdZXotZXyowGACoTxekkV7B8qqfhE3qBGx3X+pR5qgPPmi7KTJsNUD7amRoqF6aegllyEODBeTUYfNT6VAgzP350lfJUPhU2taqUCwxy36B4JBMLx9hqrC2MpAhfCYydOk3Xk11wspvTmPa5vPsez2/NdOTIF8J3hBj79d7c9wJg94uq9D9VzP5WnciH46V60Sol9DDHj8obizjkR+iZ7t8YHbO9N/NaHnwsHJO/wJWJOsMnuxa+Ot5k9Niod/tgD1Prmpl/QG3A6N4rNtzhjg89xfE4a1s07aJGHo+pOu6dxmInsXI+7G90uV5/lt+87I4JodWzwH9xJ7eZh1gxuWNDb70yGRzc/PbgdRzO0/BmusG6aRqm+0vZ/Pf+tU4fMezjijW7jcGHSowd4353jRhWVu67YL5n7O9J1tP1U0yh0QvCwuVOcfsOPFmn0VUqjBaCaS7kz717Rz7MbazKOwLBwe3p06JXNPYgXwtTa5UJ8Mp40Sej3uuEY+wDtO8F+Q4bbnMFCx7mzbKoTOTBJkNol9gRMo4RVvaOedOrffiahs3qOR1bMHWNmbsn5KOIMAKu9YvuEOlWRdPmkh9RTEWpfZtd+ajJxUuzgoluPLLOAmp25aPvyTWR6bec0OmOIu3GuqZgPbggJJPbZYyJZq3sBAag+5ymu5tiz7s05QRF5tBWLSZl6R52jWDoUdX7YeQEFUJwlyPlr5quFx8rDa0kVj3sLhDCLARhUfexqPp2uN+1gWLioBBeO+71Ta+qZvb+o8e4Rxz7cqz/Uf5CjW52yzvPioTk+jpD95NdL9CzB/p2NRg/On+JrBR5PTfcixvnXo79SCr7ndI7bO/d5UYeuVLVjeDCtKHzEI88vodUULxn/h1Rboi+Xc2s8WpU3LqgNA6+BIOPhLlsl3Apj+TqBEbQ1WRKYn+dep+yOEeQeyiH8vXtbBai1Faj5dD4xqEpqqP5SKOxqpddW/M5yYKZcTjHhrwh69pTpmdPfm8bXSFMSH4vIE88BTC0LW90g0l3rEeJ/RrUdD3y2Gs8jvtVxgmMOL2tmnkOi2CaHHQg4JTvWXQB/wzDlFCpblkwxuwakUlxs5zHmsq85uNYiM3IYdELjKDTqvc4wR+iHASFd6yPCXo5cAKo2V0q6FsWAgMsjTSWMQ1RGqlQH2hSGSsV59LjqVZzjXaIbFqacr3noAcJveY4w1k10pH07HUK4LjnVB1rZr2nZneJek8p030Ep70Q3jt2VoNcYIS8H0h0P5UnhNjxitWs2VbPhIUaTt8S8iD077SCEFv9kFveeW7+0gw+UMlemKFHcw/pvl1FBzM1i0l4QkC7LP7RmqLl1r5fcDuvvi0Pbd7/VJ4NbnKtczgLI416rwtnPuHt5stTuCi2IYTGBid4Qha8ZgXGN5Yyv5AQ5yko7hs9LrZWuNeNbi9IQpj7sSbl6cipTGHkkm835f8Fk6j35dcHCr3tqai3279zurC9MlaDhtEYdFJh9DinDImFdHkybxifOdnrPMb8VGG3FUKChwitcZiP2Bqq2wuYnmh6LBYY00MVKpPNgoVTLCADWaDLdVXnYR/+hlGoGFe+3LfI1avs5vOjlljRCDOe4gxxuMqRwUnXaJ5B0uT+d1k4m0ZxlBXKnWV5lN8ejRgLCvy686+JRxqxwAg+Mm1jlkYayxk1cMICP08cMpr5lyAebQRTzXj7fh+pvjbo4/DEUyxRh6kUhdQAP73SV8osPsIUR+ixlWvFhsNKMPRYpHz1gd16duRzYvU1ffxsq2t8Gj3w9OmVLPRGuVFMnFPrc73pnuHiFNgqn4SqZ48xsb44Xx72nR5yVl1Zb7E0M4yFvzeRd3m9H/Zv8lMxj3WhZn6+ZkWMHpOPTLqHAcH6213hR0/od+bFXgdU73a9/XDvG12uUQ06l1ofUMqNDGr9JdSwLOLvwOPOeXBgR4gvokwXAG4qrxH1tjPv62CBa+75xE57LnSJCvcJcm/y2dLXAtQHqkxs7CqEBmlUyfQ7Pft8sMUgvLe5mzS+yU+9TXrhsz8vY5zG19WPAj37cvPjsaMryMgaSjWt6JhXL8a9AjcSCx2q4PhYispf8IYfaxTCk8/cHqzIYmERDBCg2HEL1kxx3Ko4x0UcXwtClAJlI9BSzQmJ4jmjkcU0YHl9GyU3EgqjxgULWMjKsJ6SrQBt/nyQtBt4bJFOvw54es69lj+pniuLVM8D81wzWz/3bgdG0k3+2q3wtJm9qp3rLRZHrNBYTCT98GCx8FcKqZ4ri1TPRCuU5t4lkUgkEglHEhqJRCKRaJkkNBaHq+feZUWQ6rmySPVMzEnSaSQSiUSiZdJII5FIJBItk4RGIpFIJFomCY15Iul6SXf4z6NRgvd4n82SbpF0v6R7JV18KMd3Au3W029/h6Sf+m0fPmyFPwQW4HleIenJ6By/dlgr0CIL8Tz9PpdKMkmt+h0cNhbgWV4p6S5//NckbTqsFeh0zCx92vwAHwUun2X90cDP++VBYBtwSqvHd9pnPvUEzgW+AXT73xuWuh6LVM8rgEuXuuyLXU+/bjPwVZxz7LqlrsciPMuhaL93AlctdT066ZNGGm0iScBrgc/N3GZmO83sx355FLgf+LlWj+8k2qjn7wMfNLMpv33X4Snx/Gj3eS4X2qznx4E/ohCxrfOYbx3NLAo3Sj8dXs/DTRIa7fMy4Gdm9uDBdpK0BXgx8IP5HN8BzLeeJwEvk/QDSbdK2rq4xWybdp7n2/20xmclrVnEMi4E86qnpAuAJ83szkUvYfvM+1lK+oCkx4E3AJcvZiGXG0dswMJWkPQN4KhZNl1mZl/yy69jjlGCpAHgP4BLZvRiWjp+sVnkelaANcBZwFbg3yUdb37sfzhZ5Hp+GrgS1yu9Ejct8jsLUe5DZbHqKakPuAw4fyHLOx8W+900s8uAyyS9F3g78OcLUvCVwFLPjy3nD65B/BlwzEH2qeLmf981n+M74dNOPYGbgJdHvx8G1i91nRbjeUb7bAHuWer6LHQ9gRcCu4BH/acO/B9w1FLXaRGf5XM7+VkuxSdNT7XHK4EHzOyJ2Tb6OdV/AO43s48d6vEdRDv1/CJwnt/vJKCLzo2kOu96Sjo6+vkbwD2LVsr2mVc9zexuM9tgZlvMbAvwBE6Z/NThKPQh0s6zfF708wLggUUr5TIkCY32+G1mDH8lbZL03/7n2cAbgfMOYIr5rOM7lHbq+VngeEn3AP8GvNl8F64DaaeeH5Z0t6S7cBZjf3jYSn3otPu/XQ60U8cPSrrHP8vzgWeZHB/JpDAiiUQikWiZNNJIJBKJRMskoZFIJBKJlklCI5FIJBItk4RGIpFIJFomCY1EIrFi8d75u7z1Xiv7v1bSfT6I4XWLXb7lSBIaiY5F0pj/3iTp822c5xLvzbwQZXq+N8/8iaQTFuKc0bk/I+mUeRx3RmwSK+kCSe9ZyLItY64BXtXKjt4/473A2WZ2KnDJ4hVr+ZJMbhMdgaSKmdVnrBszs4EFOPejwJlm1rZToW+Me81sXmElZqvnApTpIlz93r6Q510p+NhSN5rZaf73CcDfA+uBCeB3zewBubD928zsM0tW2GVAGmkkCkja6oPu9Ujq98P002bZ701+vzslXevXPVfSzX79zZKOnWP9NZI+JukW4EOSjpP0PUm3S7oyutaWML0g6SJJ/ynpJkkPKsrPIenTkn7oy/w+v+6dwCbgFn8dJJ3vr/NjSTf4+EMz63eGpO/7Mn9B0hrfm78EeFs414xjxiR91J/3Zknr/fpvSfpLSbcCF0t6hR+p3O2nT7qj/c48WBn98/muv++3SVoFvB+40I+ALvT36JMt3Pu/8+faLuk3D+Fvsty5GniHmb0EuBT4lF9/EnCSpO/4Z9/SCOWIY6njmKRP532AvwD+Gtcbe+8s208FforPpQCs9d//hfP4Bhes74tzrL8GuBEo+99fBt7kl/8AGPPLW/Dxf4CLgO3AKqAHl9Nh84xylIFvAaf7349GZV0H/A/Q73//MbPnW7gL+GW//H7gb/zyFRwgbwYuWOEb/PLlwCf98reAT/nlHuBx4CT/+59xwfLCfmceqIy4ECzbga1+/RAuxtJF4VrRPQrXPti9vwHXcTwFeGip/3eL+H+O/z8DwH7gjuhzv992I/AFXEyq43BhUlYvdfk77ZNGGonZeD/wK7gGbLZMe+cBnzc/3WNme/36lwJBeXgtcM4c6wFuMLOGXz6bPPTDtQcp381mNmJmk8B9uKByAK+V9GPgJzjBNpt+4Cy//jtyGd3eHB0PgO+9rzazW/2qfwJ+6SDlCTSB6/3yv1CsZ1h/MvCImW07yLkPVMaTgZ1mdju4vA8291TXwe79F82saWb3ARvnrt6KoATsM7Mzos8L/LYngC+ZWc3MHsF1jJ53wDMdoaTQ6InZWIvrkVVxPePxGdtFa4lpDrRPvH7muVs571S03AAqko7DTTVsNbNhSdfgyj4TAV83s9e1cJ12ma2eauG4Wcso6XTaTwgUHx/fx1bKtewxF+L9EUm/ZWY3SBJuRHonLrjm64Br5NLYnoQb2SUi0kgjMRtXA38G/CvwoVm234zr1T8HQNJav/67uEBx4JLXfHuO9TP5zoz9DoUhXMM8Imkj8KvRtlFcSk+A7wNnSzrRl71PLvpuhpmNAMOSXuZXvRG4lbkpAUE38Hpmr+cDwJZw/QOc+0BlfADYJJ/IStKgpMqM+s2k1Xu/IpH0OeB7wMmSnpD0Vtx9eKukO4F7gVf73b8K7JF0H3AL8G4z27MU5e5k0kgjUUDSm4C6mV0nqQx8V9J5ZvbNsI+Z3SvpA8Ctkhq46aCLcPmUPyvp3cBu4C3+kAOtn8nFwHWSLsYlxmkZM7tT0k9wjcB2nAAKXA18RdJOMztXztroc0EBDfwpLkd0zJuBq+RMdbcfpMwx48Cpkn4EjAAXzlLOSUlvAW7wDf7twFXFXWz3bGU0s22SLgQ+IakXNzf/SlwD9x4/lfVXMy7Z6r1fkRxkRPksJbc5xca7/CdxAJLJbSKxQKhNE2FJdwMX+Pn0RKIjSdNTiUQHIOnrwN1JYCQ6nTTSSCQSiUTLpJFGIpFIJFomCY3EikDOa3y/Vwa3e65CLKdDOO5CSQ9JurHdMiQSnUoSGomVxMNmdsYCnOcMYFah4S2eZsXMrgfetgDXTyQ6lmRym1hxyAWouwnnk3AWcCfwj8D7gA24UB+3SeoHPgG8EPcuXAF8BecR3yvpHJwJ6wtw8au2AE97k+CrgGP9JS8xs9jEN5FYsaSRRmKlciLwt8DpwPNxznbn4LzG/8TvcxnwTTPbCpwLfATnBX85cL0PMRHCf7wEeLWZvd6f9+P+uNcAKSpq4oghjTQSK5VHzOxuAEn34uJVmfeF2OL3OR+4QNKl/ncP+ehhJl82s/1++ZXAKS4CBQBDkgbNbHShK5FIdBpJaCRWKnFcpWb0u0n+vxfwGjP7aXygpF+c5XxxjKwS8NJIiCQSRwxpeipxJPNV4B0+aB2SXuzXHyyWE8DXgCzhkaQzFquAiUSnkYRG4kjmSpwO4y65JE8h8dMtuOmnO3ysp5m8EzjTJza6D/i9w1PcRGLpSR7hiRWBZqT0XMJyvByXpOnXl7IcicRikUYaiZVCA1i1EM5988WPSj4FDC9VGRKJxSaNNBKJRCLRMmmkkUgkEomWSUIjkUgkEi2ThEYikUgkWiYJjUQikUi0TBIaiUQikWiZ/we5ybK//6OGUQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "xds.plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Clip using a bounding box\n", "\n", "See docs for `rio.clip_box`:\n", "\n", " - [DataArray.clip_box](../rioxarray.rst#rioxarray.raster_array.RasterArray.clip_box)\n", " - [Dataset.clip_box](../rioxarray.rst#rioxarray.raster_dataset.RasterDataset.clip_box)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "xdsc = xds.rio.clip_box(\n", " minx=-7272967.1958741,\n", " miny=5048602.84382404,\n", " maxx=-7272503.88315758,\n", " maxy=5049066.15654056,\n", ")" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAEiCAYAAAA8ij+xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAA2x0lEQVR4nO3de7hVZb33//cHNFEU0Tz8VCzMUNNKUlPLtqmVqfVIZZmVltaObFNqZ9m7g2b2lFtLOyiRearMU1Fk5iHUeszIxAAFNQ0pCZIwz5oK6/P7475nDKbzMBZzTtZYi+/rusa1xvEe91zi+s77LNuEEEIInRg20BkIIYQw+EUwCSGE0LEIJiGEEDoWwSSEEELHIpiEEELoWASTEEIIHYtgEtZqkqZI+lzJe2+U9J89yMOHJT0g6XFJz+92+iGsCRFMwlpD0tGSbiqes32s7VMGME/rAl8DDrS9oe0Hu5j26yTdJelJSTdIemG30g6hXgSTEHpI0jptbtkSGAHM6/J7NwN+AnwO2BS4Fbi0m+8IoSiCSagkSZ+R9DdJj0m6W9Lr8vmTJF0h6dJ87TZJuxaeO1HSn/O1+ZLems+/BJgCvCpXJz2cz18g6Ut5fxNJV0r6h6SH8v6Yfub7aEm/lfR1Sf8ETpK0nqTTJf01V2dNkbS+pB2Au/OjD0u6vtPfW8HbgHm2L7f9L+AkYFdJO3XxHSH8WwSTUDmSdgQ+ArzS9kbAG4GFhVsmAJeTvnFfDPw0VxcB/Bn4D2Bj4GTgB5K2sn0ncCzwu1ydNLrBq4cB5wMvBF4APAV8azU+wl7AAmAL4FTgq8AOwHjgxcA2wOdt/wnYJT8z2vYBjRKT9HCL7cQmedgFmFM7sP0E6XezS5P7Q+hIBJN+knSepKWS7ih5/+H5G/I8SRf3On9DxApgPWBnSevaXmj7z4Xrs2xfYftZUnvDCGBvgPxNfLHtPtuXAvcAe5Z5qe0Hbf/Y9pO2HyMFgteuRv4X2/6m7eXAv4APAh+z/c+c7peBI8omZnt0i+0rTR7bEHik7twjwEar8XlCaCuCSf9dABxU5kZJ44DJwD62dwFO6F22hg7b95J+VycBSyVdImnrwi33F+7tAxYBWwNIeq+k2bVv7sBLgc3KvFfSBpK+I+kvkh4FfgOMljS8nx/h/sL+5sAGwKxCnq7O53vpcWBU3blRwGM9fm9YS0Uw6SfbvwH+WTwnaXtJV0uaJen/FeqlPwh82/ZD+dmlazi7g5bti22/hlTlZFJVUc22tR1Jw4AxwOLcW+m7pCqy5+eqrDsA1ZJt89pPADsCe9keBexbe01/s1/YX0aqLtulUJrY2PaGZRPLbTzNtv9u8tg8oNiWNBLYni439IdQE8GkO6YCH7W9O/BJ4Ox8fgdgh9wgO1NSqRLN2k7SjpIOkLQeqZroKVLVV83ukt6We0qdADwNzARGkv6Q/yOncwypZFLzADBG0vOavHqj/K6HJW0KfKHTz5JLTt8Fvi5pi5yvbSS9sR9pbNhi+3KTx6YBL5V0mKQRwOeBubbv6vQzhdBIBJMOSdoQeDVwuaTZwHeArfLldYBxwH7Au4BzJY1e87kcdNYDvkL6Vv93UkN28Rv4z4B3Ag8BRwFvs/2s7fnAGcDvSIHjZcBvC89dT/pm/ndJyxq890xg/fzemaTqqG74DHAvMDNXn/2KVALqGdv/AA4jtfs8ROoUULqdJoT+UiyO1X+SxgJX2n6ppFHA3ba3anDfFGCm7Qvy8QzgRNt/WJP5HUoknQS82PaRA52XEMJKUTLpkO1HgfskvQNASa2u+qfA/vn8ZqRqrwUDkc8QQuilCCb9JOlHpGqUHSUtkvQB4D3AByTNIVWjTMi3XwM8KGk+cAPwqW5OlxEGRh502KgxfMpA5y2EgRLVXCGEEDoWJZMQQggdi2ASQgihY+1mNA0Fzxs2wusPj9koeqlvwxEDnYUQuuLxhxcts93RTAdv3H+kH/znirb3zZr79DW2B3QcWwSTflh/+Ea8evRhA52NIe3x17x4oLMQQlfc9NNP/aXTNJb9czk3X71N2/tGbH1fqSmDeimCSQghVJSBvrazAFVDBJMQQqiwPvoGOgulRDAJIYSKMmbFIBm+EcEkhBAqbLBUc0XX4BBCqCgDK3DbrQxJo5WWvL5L0p2SXqW0DPbf8hpAsyUdUrh/sqR7lZbNbjvLdZRMQgihogw86661mZwFXG377XkZhg1IS2J/3fbpxRsl7UyaZXoX0sJzv5K0g+2m/ZSjZBJCCBXWV2JrJ89uvi/wPQDbz9h+uMUjE4BLbD9t+z7SEgotl7+OYBJCCBXlElVcuZprM0m3FraJdUm9iLRo3PmS/ijp3Lz6JsBHJM2VdJ6kTfK5bVh1+elF+VxTEUxCCKGqDCtKbMAy23sUtql1Ka0D7AacY/sVwBPAicA5pOWcxwNLSIvLQeOlqls2zkQwCSGEikqDFjuv5iKVLBbZ/n0+vgLYzfYDtlcUlpfes3D/toXnxwCLW70ggkkIIVSWWFFia8f234H7JdWWi34dMF9ScYXYtwJ35P3pwBGS1pO0HWn58VtavSN6c4UQQkWl3lztg0VJHwV+mHtyLQCOAb4haXx+1ULgQwC250m6DJgPLAcmterJBRFMQgihstI4k+4EE9uzgT3qTh/V4v5TgVPLph/BJIQQKqyveyWTnopgEkIIFdXNkkmvRTAJIYSKMmLFIOknFcEkhBAqKjXARzAJIYTQEbEigkkIIYROpEGLEUxCCCF0aLA0wFcq5ElaKOn2PK/+rQ2uS9I38hz7cyXtVnd9eJ7E7MrCuV0l/S6n+/M8eyaSni/pBkmPS/pW7z9dCCH0j52qudptVVCNXKxqf9vjbdcPrgE4mDSsfxwwkTRJWdHxwJ11584FTrT9MmAa8Kl8/l/A54BPdivjIYTQbX2o7VYFVQwmrUwALnIyExhdm1tG0hjgTaTgUbQj8Ju8fx1wGIDtJ2zfRAoqIYRQOUY843XablVQtWBi4FpJsxrMxw+t59g/E/g0z51E8w7g0Lz/DladCbMtSRNrawQ80xdxJ4Sw5tQa4NttVVCNXKy0j+3dSNVZkyTtW3e94Rz7kt4MLLU9q8H19+e0ZgEbAc/0J0O2p9bWCHjesBH9eTSEEDq2wmq7VUE1ykeZ7cX551JJ00hz6/+mcEuzOfbfDhwq6RBgBDBK0g9sH2n7LuBAAEk7kKrCQgih8gbTCPjK5FLSSEkb1fZJAeCOutumA+/Nvbr2Bh6xvcT2ZNtjbI8FjgCut31kTmuL/HMY8Flgypr5RCGE0Lk+D2u7VUGVSiZbAtMkQcrXxbavlnQsgO0pwFXAIaTF7Z8kzcffzrskTcr7PwHOr12QtBAYBTxP0luAA23P78qnCSGEDvUhnvHwgc5GKZUJJrYXALs2OD+lsG9gUv09dfffCNxYOD4LOKvJvWNXK7MhhLCGdKuBXdJoUm/Xl5La9t8P3A1cCowlLY51uO2H8v2TgQ8AK4DjbF/TKv1qlI9CCCE8h003By2eBVxteyfSF/c7gROBGbbHATPyMZJ2JjUZ7AIcBJwtqWURKYJJCCFUVvsBi2UGLeaZP/YFvgdg+xnbD5PG7l2Yb7sQeEvenwBcYvtp2/eRmhb2bPWOCCYhhFBRpmslkxcB/wDOz1NOnZs7Om1pewlA/rlFvr/VmL6GIpiEEEKFrWBY2w3YrDa4Om/1g77XAXYDzrH9CuAJcpVWEw3H9LXKZ2Ua4EMIIazKiGfL9eZa1mQ+w5pFwCLbv8/HV5CCyQOStrK9JE9NtbRwf6MxfU1FySSEECrKdGecie2/A/dL2jGfeh0wnzR273353PuAn+X96cARktaTtB1pct1bWr0jSiYhhFBZ6uZ6Jh8FfijpecAC0ji9YcBlkj4A/JU0fyG250m6jBRwlgOTbK9olXgEkxBCqKhayaQradmzgUZVYa9rcv+pwKll049gEkIIFTZYVlqMYBJCCBVlqzJzb7UTwSSEECrKULY314CLYBJCCJWlyqzx3k4EkxBCqKjUAB9tJiGEEDo0WBbHimASQggVZRQlkxBCCJ2xB08DfNvyk6S3SbpH0iOSHpX0mKRH10TmQghhbddntd2qoEzJ5DTg/9i+s9eZCSGEsFKq5ho6bSYPRCAJIYSBMZRGwN8q6VLgp8DTtZO2f9KrTIUQQhh6XYNHAU8CBxbOGYhgEkIIPTWEqrlsH7MmMhJCCGFVqTfX4AgmZXpzjZE0TdJSSQ9I+rGkMb3IjKSFkm6XNFvSrQ2uS9I3JN0raa6k3equD8/rG19ZOLerpN/ldH8uaVTh2uSc1t2S3tiLzxRCCJ3oxuJYa0KZXJxPWnVra9KC8j/P53plf9vjmyxBeTBpxa9xwETgnLrrxwP1nQXOBU60/TJgGvApAEk7A0cAuwAHAWdLGhwdukMIa4XaoMVudA1u9GVd0kmS/pbPzZZ0SOH+fn3ZLhNMNrd9vu3lebsA2LxU7rtvAnCRk5nA6LxuMbm09CZS8CjaEfhN3r8OOKyQ1iW2n7Z9H3AvsGevP0AIIfRHH2q79UOjL+tfz+fG274KVu/LdplgskzSkbkKabikI4EH+5P7fjBwraRZkiY2uL4NcH/heFE+B3Am8Gmgr+6ZO4BD8/47gG1LpBVCCAOu1ptrAAYt9vvLdplg8n7gcODvwBLg7flcL+xjezdSddYkSfvWXW/0W7OkNwNLbc9qcP39Oa1ZwEbAM63Sqj8haaKkWyXd+kzfv0p/kBBC6IYutpk0+7L+kdwGfZ6kTfK5fn/ZLtOb66+s/GbfU7YX559LJU0jRcLfFG5ZxMqSBcAYYDEpwB2a6/tGAKMk/cD2kbbvIndrlrQDqSqsVVr1eZoKTAXYeN3NnxNsQgihV2yxvFyw2Kyu09LU/LeraB/biyVtAVwn6S5Su/MppEBzCnAG6Qt4qS/bRU2DiaRP2z5N0jcbJWL7uFYJ95ekkcAw24/l/QOBL9bdNp0URS8B9gIesb0EmJw3JO0HfNL2kfl4ixychgGfBaYU0rpY0tdInQvGAbd08zOFEEKnSlZjLWvSaenfGn1Zt/3vL+uSvgvUesKW+rJd1KpkUusV9Zwuuj2yJTBNEqR8XWz7aknHAtieAlwFHEKqv3sSKDMG5l2SJuX9n5B7otmeJ+kyYD6wHJhke0UXP08IIXSkWyPgm31Zl7RV/kIO8FZSGzOsxpftpsHE9s/z7pO2L6/L2Dv6/WnasL0A2LXB+SmFfQOT6u+pu/9G4MbC8VnAWU3uPRU4dbUyHEIIa0CXGtibfVn/vqTxpLi1EPgQrN6X7TLTqUwGLi9xLoQQQhd1a3GsFl/Wj2rxTL++bLdqMzmYVKW0jaRvFC6NIkWqEEIIvWTKNsAPuFYlk8Wk9pJDgWKX28eAj/UyUyGEEIbIrMG25wBzcqv/E7X6sjwKcr01lL8QQlirDZZgUqb8dC2wfuF4feBXvclOCCGEmm7OzdVrZRrgR9h+vHZg+3FJG/QwTyGEEDJXJFi0U6Zk8kRxqndJuwNP9S5LIYQQaro80WPPlCmZnABcLqk2+nEr4J09y1EIIQQgLY61om/w9+YCwPYfJO1EmspdwF22n+15zkIIYa1XnTaRdtoGk9w+8nHghbY/KGmcpB1tX9nu2RBCCJ0ZLG0mZaq5zieNM3lVPl5EGv2+1gUTL1/B8gd7tZRLAPjHUVsPdBZC6I6fdp7EYBpnUqYybnvbpwHPAth+isbTE4cQQugmp3aTdlsVlCmZPCNpffI09JK2B57uaa5CCCEAVKa3VjtlgskXgKuBbSX9ENgHOLqXmQohhJAGLQ6l3lzXSboN2JtUvXW87WU9z1kIIYTKVGO102rW4J1s31UYsFhbQOUFkrYF/mn7Lz3PYQghrMWGQm+ujwMTSWsCN/J8SXNazYcfQghh9aUG9kEeTGxPzD/3b3aPpGt7kakQQghJt7oGS1pIWkJkBbDc9h6SNgUuBcaSVlo83PZD+f7JwAfy/cfZvqZV+m1bdiStK+k4SVfk7SOS1gWwfeBqf7IQQght9fWp7dYP+9seb3uPfHwiMMP2OGBGPkbSzsARwC7AQcDZefmRpsp0EzgH2B04O2+753MhhBB6yAi7/daBCcCFef9C4C2F85fYftr2fcC9wJ6tEirTNfiVtotrB18vaU7/8htCCGF1lOzMtZmkWwvHU21PbZDUtZIMfCdf39L2EgDbSyRtke/dBphZeHZRPtdUmWCyQtL2tv8MIOlFpDq0EEIIvVS+AX5ZoeqqmX1sL84B4zpJd7W4t9FLW8a1MtVcnwRukHSjpF8D1wOfKPFcv0laKOl2SbPromztuiR9Q9K9kuYW11nJ14dL+qOkKwvnxkuaWUtT0p75/PMknZ/fN0fSfr34TCGE0BGX2MokYy/OP5cC00jVVg9I2gog/1yab18EbFt4fAywmBZalkxyg8uuwDhWnYK+l9Op7N9iUOTBOS/jgL1IbTd7Fa4fD9wJjCqcOw042fYvJR2Sj/cDPghg+2U5Uv9S0itt93Xzw4QQQie60TVY0khgmO3H8v6BwBeB6cD7gK/knz/Lj0wHLpb0NWBr0t/cW1q9o2XJxPYK4NDcCDPX9pweB5J2JgAXOZkJjC5E1THAm4Bz654xK4PLxqyMrjuTei/UIvXDQLtiYgghrDGma725tgRuyu3dtwC/sH01KYi8QdI9wBvyMbbnAZcB80nTaU3K8aCpMm0mN0v6Fqkv8hP//pD2bWU+QT81aiAq2ga4v3BcaxRaApwJfBrYqO6ZE4BrJJ1OCp6vzufnABMkXUIqzu2ef7aMviGEsMYY6ELJxPYCUi1T/fkHgdc1eeZU4NSy7ygTTGp/fL9YfA9wQNmX9MNzGohs/6ZwvWGjkKQ3A0ttz2rQ9vFh4GO2fyzpcOB7wOuB84CXALcCfwFuBpbXJy5pImkmAEawQUcfLoQQ+mvQz81V02oEfLcVG4gk1RqIisGkWaPQ24FDc5vICGCUpB/YPpJUD3h8vv9ycjWY7eXAx2oJSboZuKdBnqYCUwFGadNB8p81hDBkDJK/OmVGwD8/96C6TdIsSWdJen63MyJppKSNavukBqI76m6bDrw39+raG3jE9hLbk22PsT2WNGrz+hxIIAWb1+b9A8gBQ9IG+T1IegNpeoH53f5cIYSw+no+aLFrylRzXUIqHRyWj99Daj95fZfzsiUwTVItXxfbvlrSsQC2pwBXAYeQRmM+CRxTIt0PAmdJWgf4F7nKCtiC1JbSB/wNiAkrQwjVYnD/pksZMGWCyaa2Tykcf0nSW7qdkRYNRFMK+wYmtUnnRuDGwvFNpMb1+vsWkro7hxBCdQ2Saq4yweQGSUeQuolBap/4RbObJU0vkeY/bR9d4r4QQljLDZ2SyYdIa5t8Px8PB56Q9HFSYWFU3f0vAf6zRXoCvt3fjIYQwlppqJRMbNeP22jnf2z/utUNkk7uZ5ohhLB2GirBpL9sX1Y8ljTS9hOt7gkhhNBAlwYtrgllJnpcLZJeLWk+aa4sJO0q6exevS+EEIYi97XfqqBpMJG0XYdpfx14I/AggO05wL4dphlCCGsXq/1WAa1KJlcASJqxuonbvr/uVKyDEkII/SC336qgVZvJMElfAHbIPbdWYftrbdK+X9KrSXNnPQ84jlzlFUIIoYR+rFcy0FqVTI4gjRhfhzQTb/3WzrGkAYbbkObUGk+bAYchhBCKSlRxVaSaq2nJxPbdwFclzbX9y/4kmhfVOtP2ezrNYAghrNWGQMmk5mZJX8tL3t4q6QxJG7d6IC+isnmu3gohhLC6+kpsJdUvbS7pJEl/y8uaz84zr9funZyXSL9b0hvbpV1mnMl5pNl7D8/HRwHnA29r89xC4Ld5epXiolrt2lpCCCFAL8aZNFra/Ou2Ty/eJGlnUlPHLqRle38laYdWqy2WKZlsb/sLthfk7WTgRSWeWwxcmd9Ra2fZsMRzIYQQsm715mqxtHkjE4BL8pLt95Fmat+z1QNlSiZPSXpNnn0XSfsAT5V4br7ty4snJL2jxHMhhBBqygWLzSTdWjie2mDZ8zNpvLT5RyS9l7Tq7CdsP0TqODWzcE9tifSmypRMjgW+LWmhpIXAt0iTP7YzueS5EEIInVlme4/CtkogKS5tXvfcOcD2pN62S4Azao80eEfLsFZmosc5wK6SRuXjR1vdL+lg0gJW20j6RuHSKBqssR5CCKE5dWdxrH1ovrR5eo/0XVLTBDRfIr2p0nNz2X60XSDJFpOKS/8CZhW26aTpVUIIIZThklu7ZJosbS5pq8Jtb2XlUunTgSMkrZen1hoH3NLqHb2YNXgOMEfSxTn9F+QxKyGEEPqrt+NMTpM0Pr9lIbkJw/Y8SZcB80k1SpNa9eSCHgSTgoOA04HnAdvlDH/R9qE9fGcIIQwp3Z57q7i0ue2jWtx3KnBq2XTbVnNJ2kDS53J9GpLG5cacdk4idSV7OGdsNjC2bMZCCCHQlWquNaFMm8n5wNPAq/LxIuBLJZ5bbvuR1c1YCCEEhlQw2d72acCzALafotwK93dIejcwPJdmvgncvPpZDSGEtYucenO126qgTDB5RtL65PgnaXtSSaWdj5KG4j8N/Ah4FDhh9bIZQghrqUFSMinTAH8ScDWwraQfkvorH9PuIdtPAv+Tt1LyoMjHSItoLbe9R911AWeRxrE8CRxt+7bC9eGkbsl/s/3mfG48MIXUt3o58F+2b5G0Lmlagd1Iv4eLbP/fsnkNIYQ1oSqLX7VTZtDitZJmAXuTqreOt72s3XOS9gD+m9To/u/32H55m0f3b5H+waT+zuOAvUijN/cqXG80idlpwMm2f5kH7JwG7Ae8A1jP9sskbQDMl/Qj2wvbfbYQQlhjhkowkTTD9uuAXzQ418oPgU8Bt9OvSZJbmkAqQRiYKWm0pK1sLylMYnYqUFwZ0qwMLhuzchSngZGS1gHWB54hVcWFEEI1VGhZ3naaBhNJI4ANSBOIbcLKRvdRpCmJ2/mH7en9zI+BayUZ+E6Dicq2AYrrytcmH1tC80nMTgCukXQ6qY3o1fn8FaTgtIT0OT9m+5/1GZI0EZgIMIIN+vlxQgihQ4M9mJBGQp5AChyzWBlMHgW+XSLtL0g6F5hBocHe9k9aPLOP7cWStgCuk3SX7d8UrjecfKw4iZmk/equf5gUKH4s6XDge8DrSWNgVuTPtwnw/yT9yvaCVRJPAW0qwChtOkj+s4YQhgp1q16nx1ot23sWcJakj9r+5mqkfQywE7AuK6u5DDQNJrYX559LJU0j/cEvBpNmk4+9neaTmL2P1JYCcDkr5/J/N3C17WeBpZJ+C+wBrBJMQgghtFemAf6bkl4K7Ez6Q107f1GbR3e1/bKyGZE0Ehhm+7G8fyDwxbrbppPm3r+E1PD+iO0lpKntJ+d09gM+WZgNczHwWtL0AQcA9+TzfwUOkPQDUjXX3qSqshBCqI5BUh9SpgH+C6TeTzsDV5F6VN0EtAsmMyXtbHt+ybxsCUxLvX9ZB7jY9tWSjgWwPSW//xDSql9PUqKLMvBBUglrHdJMxhPz+W+TRvffQao+O9/23JJ5DSGE3hsKDfAFbwd2Bf5o+xhJW1Ju2cfXAO+TdB+pzUSAm3UNzm0VuzY4P6Wwb2BSq5cWJzHLxzcBuze473FS9+AQQqiuIRRMnrLdJ2l5XiBrKeXWgD+os6yFEMLaTQyBBviCWyWNBr5L6tX1OC0WSZF0m+3dbP+l3T39zWwIIax1hkrJxPZ/5d0pkq4GRrVpW3iJpFbXRRo8GEIIoZUut5nUTzklaVPgUtJMJQuBw20/lO+dDHyANITiONvXtEq71OJYkrYBXli7X9K+deM/inYqkWTLFbtCCCFk3S2Z1E85dSIww/ZXJJ2Yjz8jaWfS8r67kMbi/UrSDq1WWyzTm+urwDtJyzfWEjKrjv/4t1bVWyGEEPqpS8GkyZRTE0i9dQEuJHVe+kw+f4ntp4H7JN1LGvf3u2bplymZvAXYMScaQghhDepiNdeZPHfKqS3zWD3yHIdb5PPbADML99WmrmqqzHomC0ij2EMIIaxJJs0f0m5LcyjeWtgmFpMpTjlV8s0Np65q9UCZksmTwGxJ9XNsHVcyUyGEEFZTyZLJsvr1n+rsQ4Mpp4AHCjOvb0Ua+gHNp65qqkzJZDpwCmnJ3VmFLYQQQq91YaVF25Ntj7E9ltSwfn2ecmo6af5C8s+f5f3pwBGS1pO0HWkNqaZDQqBc1+AL22c1hBBCL/R4OpWvAJdJ+gBpvsJ3ANieJ+kyUser5cCkVj25oPV6JpfZPlzS7TSIfSVWTAwhhNCpLgeT4pRTth8EGi50aPtUUs+vUlqVTGrTtr+5bGIhhBC6qGQ1VhW0Ws+k1l0sxo2EEMIAEENg1mBJj9EiJtoe1exaCCGE7hj0wcT2RgCSvgj8Hfg+KVC+h+eusx5CCKEXBnswKXij7b0Kx+dI+j1wWo/yFEIIoWaQBJMy40xWSHqPpOGShkl6DzFRYwgh9F6eNbjdVgVlgsm7gcOBB/L2jnwuhBBCj6mv/VYFLau58tz3k2xPWEP5CSGEUFSRkkc7LYOJ7RWSnrN+egghhDWjKtVY7ZRpgP+jpOnA5cATtZO2f9KzXFXU0y9anwVfHj/Q2Rjanh3oDAx997w2ZkhaE4Z3I5GhMGixYFPgQeCAwjkDa10wCSGENW6oBBPbx6yJjABIWgg8Ruottrx+SmVJAs4CDiFNjX+07dsK11dZ3zifGw9MIU27vBz4L9u35F5pnyok/3JgN9uze/LhQgihnwbTCPi2vbkkjZE0TdJSSQ9I+nFe/rFX9rc9vsnc/AeTpkIeB0wEzqm7XlvfuOg04GTb44HP52Ns/zC/ZzxwFLAwAkkIoWrU57ZbFZTpGnw+aW77rUnLNv48nxsIE4CLnMwERucFXYrrG59b94yB2tQvG9N4gZd3AT/qTZZDCGE1lVnLpBqxpFQw2dz2+baX5+0CYPMe5cfAtZJm1S87mW0D3F84Lq5LfCZpfeP6XtcnAP8r6X7gdGByg3TfSQSTEEIFDaVBi8skHZlHwA+XdCSpQb4X9rG9G6k6a5KkfeuuN1yXuM36xh8GPmZ7W+BjwPdWSVDaC3jS9h2NMiRpYm1d5b5Hn2h0Swgh9E4XSiaSRki6RdIcSfMknZzPnyTpb5Jm5+2QwjOTJd0r6W5Jb2z3jjLB5P2kEfB/z9vb87mus704/1wKTAP2rLul2brEtfWNFwKXAAfk9Y0hLUVZ63l2eYM0j6BFqcT2VNt72N5j2KiR/f5MIYTQiS6VTJ4GDrC9KzAeOEjS3vna12vtx7avApC0M+lv4y7AQcDZuYNTU22Die2/2j7U9uZ5e0sv1jiRNFJSbabikcCBQH1pYTrwXiV7A4/YXtJifWNIwea1ef8A4J7CO4eRpoe5pNufJ4QQOubuTKeS25kfz4fr5q1VGJoAXGL7adv3Affy3C/iq6hSb64tgZskzSEtXP8L21dLOlbSsfmeq4AFpA/2XeC/SqT7QeCMnO6XSb3AavYFFtle0K0PEUIIXdWlBvjcTDEbWApcZ/v3+dJHJM2VdJ6kTfK5Vu3TDZUZtHg+cDF5oXngyHzuDeU+Qjn5D/quDc5PKewbmNQmnRvJ6xvn45uAhlPC5Hv3bnQthBAGWj/GmWwm6dbC8VTbU4s32F4BjJc0Gpgm6aWk4RWnkELSKcAZpGaMhu3TrTJQJphsbrvYFfgCSSeUeC6EEEKnXCqaLGsyNq9Bcn5Y0o3AQbZPr52X9F3gynzYrH26qar15gohhFDQjQZ4SZvnEgmS1gdeD9xVG6eXvZWV7dTTgSMkrSdpO9JA8VtavaNMyeT9wLeAr5OKOTfTo95cIYQQCro3KHEr4MLcI2sYcJntKyV9P085ZWAh8CEA2/MkXQbMJ01DNSlXkzVVZm6uvwKHdvIpQgghrB51YV1b23OBVzQ4f1SLZ04FTi37jjK9uS6sFY/y8SaSziv7ghBCCKtvsIyAL1PN9XLbD9cObD8k6TkRLoQQQpeZsg3wA65MA/ywQt9jJG1KuSAUQgihQ0OpZHIGcLOkK0hx8nD6UY8WQgihAxUJFu2UaYC/KA+GOYA0kOVttuf3PGchhLCWG0yLY5WqrsrBIwJICCGsSa7O4lftRNtHCCFU2eCIJRFMQgihygZLNVeZcSYfKfbmCiGEsIYY6HP7rQLKdA3+/4A/SLpM0kGSGs0mGUIIoReGyhrwtj9LmuTre8DRwD2Svixp+x7nLYQQ1nrqc9utCsqUTGrriNSW7V0ObAJcIem0HuYthBDWekNm0KKk40jrqC8DzgU+ZfvZvOTtPcCne5vFEEJYS1WoGqudMr25NiMNVFxl3XfbfZLe3JtshRBCSIMWB0c0KTMC/vMtrt3Z3eyEEEJYRd9AZ6CcUm0mIYQQBobstlvbNKQRkm6RNEfSPEkn5/ObSrpO0j35Z3FS38mS7pV0t6Q3tntHBJMQQqgqlxhjUq4319PAAbZ3BcYDB0naGzgRmGF7HDAjHyNpZ+AIYBfgIODsvEpjUxFMQgihwrrRm8vJ4/lw3bwZmABcmM9fCLwl708ALrH9tO37gHuBPVu9o1LBRNJCSbdLmp1nKq6/LknfyEWvuZJ2q7s+XNIfJV1ZODde0sxampL2LFx7uaTf5WLf7ZJG9PYThhBCP9nttxLy38fZwFLgOtu/B7a0vSS9xkuALfLt2wD3Fx5flM81VcW5ufa3vazJtYNJAyjHAXsB5+SfNccDdwKjCudOA062/UtJh+Tj/SStA/wAOMr2HEnPB57t7kcJIYQOGFSuAX6zui/gU21PXSUpewUwPi/DPk3SS1uk12imk5ZRq4rBpJUJwEV5EOVMSaMlbWV7iaQxwJtIC3d9vPCMWRlcNgYW5/0Dgbm25wDYfnCNfIIQQuiPciWPZbb3KJecH5Z0I6kt5IHC39CtSKUWSCWRbQuPjWHl386GKlXNRfrDf62kWZImNrjequh1JmkAZX0cPwH4X0n3A6cDk/P5HQBLukbSbZJi8GUIoXq6MDeXpM1ziQRJ6wOvB+4CppMGpZN//izvTweOkLSepO1ItUG3tHpH1Uom+9heLGkL4DpJd9n+TeF6w6JXHjy51PYsSfvVXf8w8DHbP5Z0OGmOsdeTPvtrgFcCTwIzJM2yPaP4cA5qEwHW2Wzjzj9hCCH0g/q6MtBkK+DC3CNrGHCZ7Ssl/Q64TNIHgL8C7wCwPU/SZaRFEZcDk3I1WVOVCia2F+efSyVNI/UeKAaTZkWvtwOH5jaREcAoST+wfSQp2h6f77+cNCVMLa1f19pnJF0F7EbqHlfM01RgKsB6228zOIaihhCGBtOVQYu25wKvaHD+QeB1TZ45ldRsUEplqrkkjZS0UW2f1KZxR91t04H35l5dewOP2F5ie7LtMbbHkvpGX58DCaRg89q8fwBpPjGAa4CXS9ogN8a/lliaOIRQIaL9gMWqTLdSpZLJlqQeBpDydbHtqyUdC2B7CnAVcAipz/OTwDEl0v0gcFYOGP8iV1nZfkjS14A/kOL/VbZ/0d2PFEIIHapIsGinMsHE9gJg1wbnpxT2DUxqk86NwI2F45uA3Zvc+wNS9+AQQqimCCYhhBA6YtCKCCYhhBA6FSWTEEIInSk/XcpAi2ASQghVZSKYhBBC6IJBsjhWBJMQQqiwqowjaSeCSQghVJWBFYOjaBLBJIQQKisa4EMIIXRDBJMQQggdi2ASQgihIwb6IpiEEELoiMHRAB9CCKETg6g3V2XWMwkhhNCA3X5rQ9K2km6QdKekeZKOz+dPkvQ3SbPzdkjhmcmS7pV0t6Q3tntHlExCCKHKutMAvxz4hO3b8iKEsyRdl6993fbpxZsl7UxaaHAXYGvgV5J2aLV0b5RMQgihskqUSkoEm7wi7W15/zHgTmCbFo9MAC6x/bTt+0gLEu7Z6h0RTEIIoaoM9PW132AzSbcWtonNkpQ0lrQe/O/zqY9ImivpPEmb5HPbAPcXHltE6+AT1VwhhFBpfaUa4JfZ3qPdTZI2BH4MnGD7UUnnAKeQwtYpwBnA+wE1eLxlESiCSQghVJa7Ns5E0rqkQPJD2z8BsP1A4fp3gSvz4SJg28LjY4DFrdKPaq4QQqgqg93XdmtHkoDvAXfa/lrh/FaF294K3JH3pwNHSFpP0nbAOOCWVu+IkkkIIVRZd0om+wBHAbdLmp3P/TfwLknjSVVYC4EPAdieJ+kyYD6pJ9ikVj25IIJJCCFUWxe6Btu+icbtIFe1eOZU4NSy74hgEkIIVWWXbYAfcJVqM5G0UNLteSTmrQ2uS9I38qjMuZJ2q7s+XNIfJV1ZODde0sxampL2zOfHSnqqMPJzSu8/YQgh9I9XrGi7VUEVSyb7217W5NrBpIagccBewDn5Z83xpME4owrnTgNOtv3LPFXAacB++dqfbY/vXtZDCKGbBs/iWJUqmZQwAbjIyUxgdK03gqQxwJuAc+ueMSuDy8a06d4WQgiVUZuCvt1WAVULJgaulTSryQjOVqMyzwQ+DdRXMJ4A/K+k+4HTgcmFa9vlarFfS/qPRhmSNLE2qrTv0Sf6/YFCCKEj7mu/VUDVgsk+tncjVWdNkrRv3fWGozIlvRlYantWg+sfBj5me1vgY6S+1gBLgBfYfgXwceBiSaPqH7Y91fYetvcYNmrkan6sEELoPwPuc9utCioVTGwvzj+XAtN47sRizUZl7gMcKmkhcAlwgKQf5HveB/wk719eSzNPYPZg3p8F/BnYocsfKYQQVp8dJZP+kjQyT42MpJHAgawcjVkzHXhv7tW1N/BIng1zsu0xtseSpk2+3vaR+ZnFwGvz/gHAPfkdm0sanvdfRGrUX9C7TxhCCP0Xvbn6b0tgWhr1zzrAxbavlnQsgO0ppAE2h5CmQ34SOKZEuh8EzpK0DvAvoNYWsy/wRUnLgRXAsbb/2SqhZxYsXrbgiM/+pd+frHs2A5r1dBtIVc0XRN6eY3j7W+J31n+N8vXCThN9jIeu+ZWv2KzErQP+O5EHSbezAJJuLTMz6JpW1XxB5G11VDVfUN28VTVfa1JlqrlCCCEMXhFMQgghdCyCyeAydaAz0ERV8wWRt9VR1XxBdfNW1XytMdFmEkIIoWNRMgkhhNCxCCYhhBA6FsFkAEi6tDD1/cLCymfFe7aVdIOkOyXNk3R8u+cl7Vk4P0fSWwvP7J6n9783T+PfaGqaXubtDXnOtdvzzwMKz7wzLykwT9JpFcrXu/L5uZKultSwv/+azpukjQr3z5a0TNKZA52vfO15kqZK+pOkuyQdVoXfWb52o6S7C89tUZW8FZ6dLql+sPbgYDu2AdyAM4DPNzi/FbBb3t8I+BOwc6vngQ2AdQrPLy0c3wK8ijS/2S+Bg9dw3l4BbJ33Xwr8Le8/H/grsHk+vhB4XQXytU7+/W2Wj08DTqrC76zBM7OAfauQL+Bk4Et5f1jt91eRvN0I7FHm/8uB+O8JvA24GLijP3msyjbgGVibN9If9vuBcSXu/RnwhrLPA9sBD+Q/ilsBdxWuvQv4zgDmTcCDwHrAK4FfFa4dBZxdgXytC/yDNIpZwBRgYhV+Z3Xnx+VnVIV85ftGVuT/gfq83Ug/gskaztuGwE3AzgzSYBLVXAPrP4AHbN/T6iZJY0nfan7f7nlJe0maB9xOmiJmOWma/kWF54pT96+xvBUcBvzR9tOkqXF2Ulr5ch3gLaw6meeA5Mv2s6QZp28nze+2MytnnB7QvNWdfxdwqfNfpIHMl6TR+dwpkm6TdLmkLVu9c03lrXDu/Fz99DmpcVXvAOXtFFIp5sk2eaqugY5mQ3UDfkWaqLJ+m1C45xzgE23S2ZBUjfG2BteaPg+8hFS1NYLnfvu/FXh0IPIG7EKaoXn7wrn/Q/of8WHSHEP1eVvj+SKVTGYA27PyG+YDVfmdFa49TgrIA54v0vxUBg7Lx3/K/00HPG/53Db550akUsGiKuQNGA/8PO+PZZCWTAY8A2vrRqp+egAY0+KedYFrgI+v5vM3AHvQz2quXuWNtGTAn0jr1jRLdyJw2kDnixSAZxSO9wWuqtLvDNgV+NNA/Dtr8jsT8AQwLB9vC8yrQt4aPHs08K0q5I1UAl4MLCQFuGeAG1v9d63iNuAZWFs34CDg1y2uC7gIOLPs86R2klqD+wvzP9BaA/IfgL1Z2QB/yBrO22hgDvlba921LfLPTYDZwA4DnS9ga9ICarWOAacAZ1Tld5avfwU4eQD+nbX6b3kJcEDePxq4vAp5I/1xr/2/sC5wBakaeMDzVnfPWKJkElu/fvFwQf0/5vwH7Kq8/xpSlcHc/Ad2NoUA0OT5o4B5+d7bgLcUru1BKsb/GfgWrRtse5G3z5K+tc4ubLUg8iNgft6OqFC+jgXuzOn9HHh+VfKWry8AdhqAf2etfmcvBH6T05tBWs10wPMGjCRVR80l/T9yFjC8Cnmru2csgzSYxHQqIYQQOha9uUIIIXQsgkkIIYSORTAJIYTQsQgmIYQQOhbBJIQQCiSdJ2lp2QkXJR0uaX6e8PHiXuevqiKYhCFF0uP559aSruggnRMkbdClPO2Up/D4o6Ttu5FmIe1zJe28Gs+Nl3RI4fhQSSd2M2+D2AWkcSJtSRoHTCYNQtwFOKF32aq26BocBi1J6zjNPVY897jtDbuQ9kLSpIDLupDWicD6tr+wms8/53N2IU9Hkz7fR7qZ7lCR59u60vZL8/H2wLeBzUnzZ33Q9l1KSyb8yfa5A5bZioiSSeiYpFcqrfkxQtLIXNx/aYP73pvvmyPp+/ncCyXNyOdnSHpBm/MXSPqapBuAr0raTtLvJP1B0imFd42tVVNIOlrST5TWJLlHhTVTJJ0j6dac55PzueNIA9RuyO9B0oH5PbUJDJ8TsPK3/Zk5z9MkbZK//Z8A/GctrbpnHpd0Rk53hqTN8/kbJX1Z0q+B4yW9Lpdsbs/VMOsV7tujVR7zf5+b8+/9FkkbA18E3plLTO/Mv6NvlfjdfyOntUDS2/vxz2Swmwp81PbuwCeBs/P5HYAdJP02/7cvVaIZkgZ61GRsQ2MDvgScTvr2NrnB9V2Au1k5pcWm+efPgffl/fcDP21z/gLgSvLoZWA68N68Pwl4PO+PJY8kJk3rsQDYmDTx5V+AbevyMZw0RfnL8/HCQl43I43qHpmPP0PjNS7mAq/N+18kT7UBnAR8ssnvzcB78v7nyfNF5bycnfdHkCaa3CEfXwScULhvj2Z5BJ6XP/sr8/lRpKlFjqYwN1XxuM3v/nLSl9CdgXsH+t9dD/89F//9bAg8xaoj1+/M164EppGmaNmONLfW6IHO/0BsUTIJ3fJF4A2kP2yNVks8ALjCudrI9j/z+VeRFgQC+D5pmopW5yHN97Qi7+9Dmo6ldl8zM2w/YvtfpGlbXpjPHy7pNuCPpIDXqP1h73z+t0qr5r2v8DwA+dv+aNu/zqcuJE0O2U4fcGne/wGrfs7a+R2B+2z/qUXazfK4I7DE9h8AbD/q9lVmrX73P7XdZ3s+0G56+aFiGPCw7fGF7SX52iLgZ7aftX0f6QvTuAHL6QBaZ6AzEIaMTUnf4NYlfZN+ou66SN/C22l2T/F8fdpl0i2uabECWEfSdqQqi1fafkjSBaS81xNwne13lXhPpxp9znbrbtTueU4eJb2ccr+fsnkq/h7L5GvQs/2opPskvcP25ZJEKsHOAX5KmoX7AqVlnXcglQTXOlEyCd0yFfgc8EPgqw2uzyCVAp4PIGnTfP5m4Ii8/x7SanOtztf7bd19/TGK9Af7EaVFnA4uXHuMtO4FwExgH0kvznnfQNIOxYRsPwI8JOk/8qmjgF/T3jCg1vbwbhp/zruAsbX3N0m7WR7vAraW9Mp8fiOlRciKn69e2d/9kCTpR8DvgB0lLZL0AdLv4QOS5pAmipyQb78GeFDSfNKSD5+y/eBA5HugRckkdEzSe4Hlti+WNBy4WdIBtq+v3WN7nqRTgV9LWkGqVjoaOA44T9KnSMvkHpMfaXa+3vHAxZKOB37cn3zbniPpj6Q/DgtIgalmKvBLSUts76/U++lHtYZv0gywf2JV7wOmKHUpXtAiz0VPALtImgU8AryzQT7/JekY4PIcCP5AWka4cIv/0SiPtv8k6Z3ANyWtT6r7fz3pD9+JuUrs/9a9suzvfkhqUQJ9TuO6U8PJx/O2VouuwSEMIHXYlVnS7cChub4+hAET1VwhDFKSrgNuj0ASqiBKJiGEEDoWJZMQQggdi2AS1lpKo+Sfyo3Qnaa1ylxX/XjunZLulXRlp3kIYSBFMAlruz/bHt+FdMYDDYNJ7oHVkO1Lgf/swvtDGFDRNTgE/j2x39WkMRV7A3OA84GTgS1IU57cImkk8E3gZaT/f04CfkmaAWB9Sa8hdbV9CWl+r7HAstx1eQrwgvzKE2wXuyKHMKhFySSElV4MnAW8HNiJNIjwNaRR8v+d7/kf4HrbrwT2B/6XNOr/88CleaqN2jQouwMTbL87p/v1/NxhwFo/y2wYWqJkEsJK99m+HUDSPNJ8Xs5jOcbmew4EDpX0yXw8gpWljXrTbT+V918P7Jxm4gBglKSNbD/W7Q8RwkCIYBLCSsV5p/oKx32s/H9FwGG27y4+KGmvBukV5xAbBryqEFxCGFKimiuE/rkG+Gie7A9Jr8jnW811BXAt8O+FqCSN71UGQxgIEUxC6J9TSG0kc5UW36otyHUDqRprdp4Lq95xwB55wan5wLFrJrshrBkxAj6stVS3NOsA5mM/0uJZbx7IfITQiSiZhLXZCmDjbgxaXF25FHM28NBA5SGEboiSSQghhI5FySSEEELHIpiEEELoWASTEEIIHYtgEkIIoWMRTEIIIXTs/weqqzH20XOlBwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "xdsc.plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can also clip using bounds in a CRS different from the dataset if you pass in the `crs` kwarg (requires rioxarray 0.12+):" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "xdscn = xds.rio.clip_box(\n", " minx=-93.1558,\n", " miny=45.403,\n", " maxx=-93.1557,\n", " maxy=45.4065,\n", " crs=\"EPSG:4326\",\n", ")" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAEiCAYAAAA8ij+xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAA1EklEQVR4nO3daZhdVZn28f+dBBOIhEGGFwgKYkBBJGIEFEWmZpImKggos7YROijg1KTtVtCmWxEVnEgjAiIiAoJGFGSMNGDEBJIwyxQhJBKCgIyBJM/7Ya1j7RzOsCvnVNWu5P5d175q77WndQ6hnlqzIgIzM7NODBnoDJiZ2eDnYGJmZh1zMDEzs445mJiZWcccTMzMrGMOJmZm1jEHE1upSZos6T9LXjtV0r/0QR6OkfS4pOckva7bzzfrDw4mttKQdKSkm4ppEXF0RHx1APO0CvAtYI+IeG1EPNnFZ+8m6V5JL0i6QdIbuvVss3oOJmZ9SNKwNpesD4wA7urye9cBLgP+E1gbmA78vJvvMCtyMLFKkvRvkh6T9Kyk+yTtltNPknSppJ/nc7dJ2qZw34mSHszn7pb0wZz+FmAy8K5cnfR0Tj9P0n/l/bUkXSHpCUlP5f3Rvcz3kZJulvRtSX8DTpI0XNJpkh7J1VmTJa0qaXPgvnzr05Ku7/R7K/gQcFdEXBIRLwEnAdtIenMX32H2Dw4mVjmStgCOBd4ZEasDewJzCpeMBy4h/cV9IfDLXF0E8CDwXmAN4GTgAkkbRMQ9wNHAH3J10poNXj0EOBd4A/B64EXge8vxEbYHHgLWA04Bvg5sDowF3gRsBHwpIv4MbJXvWTMidm30MElPt9hObJKHrYBZtYOIeJ703WzV5HqzjjiY9JKkcyQtkHRnyesPzH8h3yXpwr7O3wpiCTAc2FLSKhExJyIeLJyfERGXRsQrpPaGEcAOAPkv8XkRsTQifg7cD2xX5qUR8WRE/CIiXoiIZ0mB4H3Lkf95EfHdiFgMvAR8AjghIv6Wn/vfwMFlHxYRa7bYvtbkttcCz9SlPQOsvhyfx6wtB5PeOw/Yq8yFksYAk4AdI2Ir4Pi+y9aKIyIeIH1XJwELJF0kacPCJY8Wrl0KzAU2BJB0uKSZtb/cgbcC65R5r6TVJP2vpL9I+jtwI7CmpKG9/AiPFvbXBVYDZhTydFVO70vPAaPq0kYBz/bxe20l5WDSSxFxI/C3YpqkzSRdJWmGpP8r1Et/Avh+RDyV713Qz9kdtCLiwoh4D6nKKUhVRTUb13YkDQFGA/Nyb6UfkqrIXpersu4EVHtsm9d+FtgC2D4iRgE71V7T2+wX9heSqsu2KpQm1oiI15Z9WG7jabb9e5Pb7gKKbUkjgc3ockO/WY2DSXecBXwqIt4BfA74QU7fHNg8N8hOk1SqRLOyk7SFpF0lDSdVE71IqvqqeYekD+WeUscDi4BpwEjSL/In8nOOIpVMah4HRkt6TZNXr57f9bSktYEvd/pZcsnph8C3Ja2X87WRpD178YzXttj+u8ltlwNvlbS/pBHAl4DZEXFvp5/JrBEHkw5Jei3wbuASSTOB/wU2yKeHAWOAnYGPAGdLWrP/cznoDAe+Rvqr/q+khuziX+C/Ag4CngIOAz4UEa9ExN3AN4E/kALH1sDNhfuuJ/1l/ldJCxu893Rg1fzeaaTqqG74N+ABYFquPruWVALqMxHxBLA/qd3nKVKngNLtNGa9JS+O1XuSNgGuiIi3ShoF3BcRGzS4bjIwLSLOy8fXASdGxJ/6M78rEkknAW+KiEMHOi9m1sMlkw5FxN+BhyV9GEBJra76l8AuOX0dUrXXQwORTzOzvuRg0kuSfkaqRtlC0lxJHwcOAT4uaRapGmV8vvx3wJOS7gZuAD7fzekybGDkQYeNGsMnD3TezAaKq7nMzKxjLpmYmVnHHEzMzKxj7WY0tYLXaHiMYORAZ8OsI7F5s2E21k3P/fnxhRHR0UwHe+4yMp7825K2182Yveh3ETGg49gcTHphBCPZPk1eazZoLfrBJgOdhZXC/+1+2l86fcbCvy3mlqs2anvdiA0fLjVlUF9yMDEzq6gAlradBagaHEzMzCpsKUsHOgulOJiYmVVUECwZJMM3HEzMzCrM1VxmZtaRAJY4mJiZWScCeCXcZmJmZh0aHKHEI+DNzCorCJaU2MqQtKakSyXdK+keSe+SdJKkx/JS1zMl7VO4fpKkByTdV2YxN5dMzMyqKmBJ95pMzgCuiogD8mqjqwF7At+OiNOKF0rakrSY2lbAhsC1kjaPiKbD8V0yMTOrqDRosf3WTl7EbyfgRwAR8XJEPN3ilvHARRGxKCIeJq0Uul2rdziYmJlVllhSYivhjcATwLmSbpd0tqTaRIPHSpot6RxJa+W0jYBHC/fPzWlNOZiYmVVU6s2lthuwjqTphW1C3aOGAdsCZ0bE24HngROBM4HNgLHAfOCb+fpGEaplhZvbTMzMKiqNMylV8lgYEeNanJ8LzI2IP+bjS4ETI+Lx2gWSfghcUbh+48L9o4F5rTLgkomZWYUtDbXd2omIvwKPStoiJ+0G3C1pg8JlHwTuzPtTgIMlDZe0KTAGuLXVO1wyMTOrqF6UTMr4FPDT3JPrIeAo4DuSxuZXzQE+CRARd0m6GLgbWAxMbNWTCxxMzMwqKxBLulSBFBEzgfqqsMNaXH8KcErZ5zuYmJlVVGqAHxytEQ4mZmaVJZY4mJiZWSfSoEUHEzMz61AXG+D7VKVCnqQ5ku7IE45Nb3Bekr6TJx+bLWnbuvND8+jOKwpp20j6Q37ur/O0Akh6naQbJD0n6Xt9/+nMzHonIlVztduqoBq5WNYuETG2yQCcvUn9nccAE0ijN4uOA+6pSzubNDhna+By4PM5/SXgP4HPdSvjZmbdthS13aqgisGklfHA+ZFMA9asDbqRNBp4Pyl4FG0B3Jj3rwH2B4iI5yPiJlJQMTOrnEC8HMPablVQtWASwNWSZjSYWwZaTz52OvAFXj2J5p3Afnn/wyw7RUBbkibU5rt5hUW9udXMrCO1Bvh2WxVUIxc9doyIbUnVWRMl7VR3vuHkY5L2BRZExIwG5z+WnzUDWB14uTcZioizImJcRIxbheG9udXMrGNLQm23KqhG+SiLiHn55wJJl5Pmz7+xcEmzyccOAPbLq4SNAEZJuiAiDo2Ie4E9ACRtTqoKMzOrvG6OgO9rlcmlpJGSVq/tkwLAnXWXTQEOz726dgCeiYj5ETEpIkZHxCak1cGuj4hD87PWyz+HAP8BTO6fT2Rm1rmlMaTtVgVVKpmsD1wuCVK+LoyIqyQdDRARk4HfAvuQVv16gTRRWTsfkTQx718GnFs7IWkOMAp4jaQPAHtExN1d+TRmZh1aing5hg50NkqpTDCJiIeAbRqkTy7sBzCx/pq666cCUwvHZ5DWPm507SbLlVkzs35SlQb2dioTTMzMbFkRVGZQYjsOJmZmlVWdQYntOJiYmVVU4JKJmZl1wWDpGuxgYmZWUYF4xb25zMysEwGVGUfSjoOJmVlladCsZ+JgYmZWUS6ZmJlZV7hkYmZmHYnQoCmZDI5cmpmthAJ4JYa23cqQtKakSyXdK+keSe+StLakayTdn3+uVbh+Ul4i/T5Je7Z7voOJmVlldXUN+DOAqyLizaR5EO8BTgSui4gxwHX5GElbkmZg3wrYC/iBpJZRy8HEzKyiUgO82m7tSBoF7AT8CCAiXo6Ip0lLof84X/Zj4AN5fzxwUUQsioiHSTO1b9fqHQ4mZmYVtoQhbbcS3gg8AZwr6XZJZ+d1o9aPiPkA+ed6+fpWS6Q35GBiZlZRQftSSS6ZrCNpemGbUPeoYcC2wJkR8XbgeXKVVhMNl0hvlVf35jIzq6gIyjawL4yIcS3OzwXmRsQf8/GlpGDyuKQNImK+pA2ABYXrGy2R3lTbkomkD+WW/mck/V3Ss5L+3u4+MzPrXDfaTCLir8CjkrbISbsBd5OWQj8ipx0B/CrvTwEOljRc0qbAGODWVu8oUzI5FfjniLinxLVmZtYlqZqra60RnwJ+Kuk1wEOkZc+HABdL+jjwCPBhgIi4S9LFpICzGJgYEUtaPbxMMHncgcTMbGB0awR8RMwEGlWF7dbk+lOAU8o+v0wwmS7p58AvgUWFF11W9iVmZtZ7ta7Bg0GZYDIKeAHYo5AWgIOJmVmfGjzTqbQNJhFxVH9kxMzMlpV6cw2OYFKmN9doSZdLWiDpcUm/kDS6LzIjaY6kOyTNlDS9wXlJ+k6eL2a2pG3rzg/NA3KuKKRtI+kP+bm/ziNBa+d6NfeMmVl/WxpD2m5VUCYX55K6iW1IGgH565zWV3aJiLFN+kzvTeqiNgaYAJxZd/440nwzRWcDJ0bE1sDlwOdh+eaeMTPrT70YtDjgygSTdSPi3IhYnLfzgHX7OF/NjAfOj2QasGYeaEMuLb2fFDyKtgBuzPvXAPsXntWruWfMzPrbUtR2q4IywWShpENzFdJQSYcCT/ZRfgK4WtKMBtMBQOv5Yk4HvgAsrbvnTmC/vP9hekZ19nruGTOz/tStiR77Q5lg8jHgQOCvwHzggJzWF3aMiG1J1VkTJe1Ud77hfDGS9gUWRMSMBuc/lp81A1gdeLnVs+oTJE2ozXfzSk/PaDOzfjFY2kzK9OZ6hJ6/7PtURMzLPxdIupxU7XRj4ZJm88UcAOwnaR9gBDBK0gURcWhE3Evu1ixpc1JVWKtn1efpLOAsgFFau+VEZ2Zm3RQhFlckWLTTNJeSvpB/fjf3oFpm63ZGJI2UtHptnxQA7qy7bApweO7VtQPwTETMj4hJETE6IjYhNapfHxGH5metl38OAf4DmFx4Vq/mnjEz62+DpZqrVcmk1ivqVV10+8j6wOWSIOXrwoi4StLRABExGfgtsA+psfwF0twy7XxE0sS8fxm5J9ryzD1jZtafVogR8BHx67z7QkRcUjwn6cPdzkhEPERaSrI+fXJhP4CJ9dfUXT8VmFo4PoO0XGWja3s194yZWX8bLMGkTGXcpJJpZmbWRYNpnEnTkomkvUlVShvVtZGMIlULmZlZXwoGTQN8qzaTeaT2kv2AYpfbZ4ET+jJTZma24rSZzAJm5S66z9cap/OUI8P7KX9mZiu1wRJMypSfrgZWLRyvClzbN9kxM7OaFaLNpGBERDxXO4iI5ySt1od5MjOzLCoSLNopUzJ5vjjVu6R3AC/2XZbMzKxmsEz0WKZkcjxwiaTaVCMbAAf1WY7MzAxIi2MtWTr4e3MBEBF/kvRm0lTuAu6NiFf6PGdmZiu96rSJtNM2mOT2kc8Ab4iIT0gaI2mLiLii3b1mZtaZwdJmUqaa61zSOJN35eO5wCXAShdMFm08kgc/+672F5pV2NJ5L7e/yCphMI0zKVMZt1lEnAq8AhARL9J4LRAzM+umSO0m7bYyJM2RdIekmZKm57STJD2W02bmZTxq10+S9ICk+yTt2e75ZUomL0talbxwlKTNwKtEmZn1hy731tolIhbWpX07Ik4rJkjakrScx1bAhsC1kjZvNbN6mWDyZeAqYGNJPwV2BI7sRebNzGw5BBqo3lzjgYsiYhHwsKQHSIsV/qHZDW1zGRHXAB8iBZCfAePyNO9mZtbHulXNRapdulrSDEkTCunHSpot6RxJa+W0jYBHC9fMzWlNtVpp8c3557bAG0jrv88DXi/p7ZLeUPojmJnZcolQ2w1YR9L0wjahwaN2jIhtgb2BiZJ2As4ENgPGkn7HfzNf26hurWXYalXN9RlgQuHh9V4naVZEHNbqBWZmtnxSyaNUm8nCiBjX+lkxL/9ckCfw3S4ibqydl/RDenrpzgU2Ltw+mlSYaKrVrMET8s9dml0j6epWDzczs850o2uwpJHAkIh4Nu/vAXxF0gYRMT9f9kHgzrw/BbhQ0rdIDfBjgFtbvaPMoMVVgGOAnXLSVOB/I+KViNijl5/JzMx6YenSrvTmWh+4XBKk3/sXRsRVkn4iaSypCmsO8EmAiLhL0sXA3aTFECe26slVe2g7ZwKrAD/Ix4fltH/p7acxM7PyApWt5mr9nIiHgG0apDdtpoiIU4BTyr6jTDB5Z0QUM3G9pFllX2BmZsuvfGetgVWmA/OSPFARAElvBFoWd8zMrAuidG+uAVcmmHwOuEHSVEm/B64HPtsXmWk03L/uvCR9Jw/xn11cZyWfHyrpdklXFNLGSppWe6ak7XL6aySdm983S9LOffGZzMw6EiW2CmhZzZXXe9+G1JJfnIK+L6dTaTTcv2bvnJcxwPaktpvtC+ePA+4BRhXSTgVOjogr87wzpwI7A58AiIitJa0HXCnpnRGxtJsfxsysE1UpebTTsmSSW+/3i4hFETE7Imb1cSBpZzxwfiTTgDUlbQAgaTTwfuDsunuCnuCyBj19pbcEroPU7xp4GmjZT9vMrD8FqTdXu60KyjTA3yLpe8DPgedriRFxWx/kpzbcP0jdj8+qO99siP984HTgC8DqdfccD/xO0mmk4PnunD4LGC/pItLgnHfkny37UpuZ9ZsABknJpEwwqf3y/UohLYBdu58ddoyIebna6RpJ9xZHaNJkiL+kfYEFETGjQdvHMcAJEfELSQcCPwJ2B84B3gJMB/4C3ELqT72MPC3BBICha61Vf9rMrE/1Yu6tAVVm2d6mI+C7rdFwf6AYTJoN8T8A2C+3iYwARkm6ICIOBY4gtaVAWtTr7PyOxcAJtQdJugW4v0GezgLOAhj++o0HyX9WM1thDJLfOm17c0l6Xe5BdVuebfIMSa/rdkYkjZS0em2fNNz/zrrLpgCH515dOwDPRMT8iJgUEaMjYhPSHPzX50ACKdi8L+/vSg4YklbL70HSPwGLI+Lubn8uM7Pl175bcFUa6MtUc11EKh3sn48PIbWf7N7lvDQb7n80QERMBn4L7AM8ALwAHFXiuZ8AzpA0DHiJXGUFrEdqS1kKPEYa2W9mVh0BUZEG9nbKBJO1I+KrheP/kvSBbmekxXD/yYX9ACa2ec5U0vxhteObSI3r9dfNIXV3NjOrrkFSzVUmmNwg6WDg4nx8APCbZhdLmlLimX+LiCNLXGdmtpJbcUomnyStbfKTfDwUeF7SZ0iFhVF117+F1pNACvh+bzNqZrZSWlFKJhFRP26jnS9GxO9bXSDp5F4+08xs5bSiBJPeioiLi8eSRkbE862uMTOzBgbRoMUyEz0uF0nvlnQ3aa4sJG0j6QdtbjMzs4JY2n6rgqbBRNKmHT7728CewJMAETGLntUazcysjFD7rQJalUwuBZB03fI+PCIerUvyOihmZr2gaL9VQas2kyGSvgxsnntuLSMivtXm2Y9Kejdp7qzXAJ8mV3mZmVkJFVqvpJ1WJZODSSPGh5Fm4q3f2jmaNMBwI9KcWmNpM+DQzMyKSlRxVaSaq2nJJCLuA74uaXZEXNmbh+ZFtU6PiEM6zaCZ2UptBSiZ1Nwi6Vt5ydvpkr4paY1WN+RFtdbN1VtmZra8lpbYKqDMOJNzSLP3HpiPDwPOBT7U5r45wM15epXiolrt2lrMzAwG1TiTMsFks4jYv3B8sqSZJe6bl7ch9LSxDJICm5lZNXSrt5akOcCzpF61iyNinKS1SbPAb0IqABwYEU/l6ycBH8/Xfzoiftfq+WWCyYuS3pNn30XSjsCLJe67OyIuqfswHy5xn5mZ1XT3T/BdImJh4fhE4LqI+JqkE/Pxv0naktQJaytgQ+BaSZvnJoyGyrSZHA18X9KcHNm+R5r8sZ1JJdPMzGxgjAd+nPd/DHygkH5RRCyKiIdJa0ht1+pBZSZ6nAVsI2lUPv57q+sl7U1awGojSd8pnBpFgzXWzcysOXVvcawArpYUwP/mJcnXj4j5ABExX9J6+dqNgGmFe+fmtKZKT/TYLogUzAOmA/sBMwrpz1JYc93MzNooP2hxHUnTC8dn5WBRtGNEzMsB4xpJ97Z4XqMI1jInfTFr8CxglqQL8/Nfn8esmJlZb5ULJgsjYlzLx0TMyz8XSLqcVG31uKQNcqlkA2BBvnwusHHh9tGkgkJTfTZrMLAXMBO4CkDS2JKrMJqZWdaNubkkjZS0em0f2IM05GMKcES+7AjgV3l/CnCwpOF50t8xwK2t3tG2ZCJpNeCzpBLGJySNAbaIiCva3HoSKfJNBYiImZI2afc+MzMr6E5vrvWByyVB+r1/YURcJelPwMWSPg48AnwYICLuknQxcDeprXtiq55ctYe2cy6p7eNd+XgucAnQLpgsjohncubNzGx5dCGYRMRDwDYN0p8EdmtyzynAKWXfUaaaa7OIOBV4Jb/gRcqtcH+npI8CQyWNkfRd4JayGTMzW9kpUm+udlsVlAkmL0talRwfJW0GLCpx36dIA14WAT8D/g4cv3zZNDNbSUWJrQLKVHOdRGpE31jST4EdgaPa3RQRLwBfzFspjYb7150XcAZpHMsLwJERcVvh/FBSt+THImLfnDYWmAyMINX9/WtE3CppFeBsYFvS93B+RPxP2byamfWHqix+1U6ZQYtXS5oB7ECq3jqubjh+Q5LGAf9OmvPlH++JiLe1ubV+uH/R3qReBWOA7YEz88+a40gLcI0qpJ0KnBwRV0raJx/vTGpoGh4RW+dOBndL+llEzGn32czM+s2KEkwkXRcRuwG/aZDWyk+BzwN30L1JkseTShABTJO0ZqGP9Gjg/aQGo+LKkEFPcFmDnr7SAYyUNAxYFXiZVBVnZlYNFVqWt52mwUTSCGA10sjKtehpdB9FmvirnSciorfjShoN9y/aCCiuK18b4j8fOB34Aq9eBfJ44HeSTiO1Eb07p19KCk7zSZ/zhIj4W32GJE0AJgAMXWutXn4cM7MODfZgQprM8XhS4JhBTzD5O/D9Es/+sqSzgesoNNhHxGUt7nnVcP+IuLFwvuEQf0n7AgsiYoaknevOH0MKFL+QdCDwI2B30hiYJfnzrQX8n6Rrcxe6noengHYWwPDXbzxI/rOa2YpCFVn8qp1Wy/aeAZwh6VMR8d3lePZRwJuBVeip5gqgaTBpMty/GEyaDfE/ANgvt4mMAEZJuiAiDiWN6jwuX38JqdEd4KPAVRHxCrBA0s3AOGCZYGJmZu2VaYD/rqS3AluSflHX0s9vc+s2EbF12YzkIf5DIuLZwnD/r9RdNgU4VtJFpIb3Z/KMl5PyRi6ZfC4HEkjB5n2kkfi7Avfn9EeAXSVdQKrm2oFUVWZmVh2DpD6kTAP8l0m9n7YEfkvqUXUT0C6YTJO0ZUTcXTIvzYb7Hw0QEZPz+/chza3/AiW6KAOfIJWwhgEvkds/SFV155LmpxFwbkTMLplXM7O+tyI0wBccQBqGf3tEHCVpfXqqilp5D3CEpIdJbSYColnX4BbD/ScX9gOY2OqlETGVPB9YPr4JeEeD654jz0NjZlZZK1AweTEilkpanBfIWgC8scR9e3WWNTOzlZtYARrgC6ZLWhP4IalX13O0mIpY0m0RsW1E/KXdNb3NrJnZSmdFKZlExL/m3cmSrgJGtWlbeIukVudFGjxoZmatrGBtJkjaCHhD7XpJO9WN/yh6c4lHtpwX38zMshUlmEj6OnAQaZGUWhAIlh3/8Q+tqrfMzKyXVpRgAnyAtLJimWnnzcysi1akaq6HSKPYHUzMzPpT0L1pcvtYmWDyAjBTUv0cW5/us1yZmRmwYpVMpuTNzMz624oSTCLix/2RETMze7VBXzKRdHFEHCjpDhrExhIrJpqZWacGezChZ9r2ffsjI2ZmVicYNMFkSLMTeWp3IuIvjbb+y6KZ2cpJpGqudlvp50lDJd0u6Yp8fJKkxyTNzNs+hWsnSXpA0n2S9mz37FbVXM/SIiZGxKhm58zMrDu63GZyHHAPafn1mm9HxGnLvFPaEjgY2Iq0Gu21kjaPiKazl7RaaXH1/NCvAH8FfkIKlIfw6nXWzcysL3QpmEgaDbwfOAX4TJvLxwMX5cHqD0t6gLTy7R+a3dC0mqtgz4j4QUQ8GxF/j4gzgf3LZd/MzDoSJbZyTge+wKuHQR4rabakcyStldM2Ah4tXDM3pzVVJpgskXRIrmsbIukQPFGjmVnfK9FekqvB1pE0vbBNKD5G0r7AgoiYUfeGM4HNgLHAfOCbtVsa56a5MoMWPwqckbcAbs5pZmbWx0oujrUwIsa1OL8jsF9uYB8BjJJ0QUQc+o/3SD8ErsiHc4GNC/ePBua1ykDLkomkocDEiBgfEetExLoR8YGImNPqPjMz65IuVHNFxKSIGB0Rm5Aa1q+PiEMlbVC47IPAnXl/CnCwpOGSNgXG0GJRRGhTMomIJZJetX66mZn1jz4eAX+qpLGkkDQH+CRARNwl6WLS0iOLSYWKls0bZaq5bpc0BbgEeL6WGBGXLVfWBzEthSGLGlUlWrf8+fAzBzoLK7ybXxok09AOcjt14yF9MGgxIqYCU/P+YS2uO4XU86uUMsFkbeBJYNfie4CVLpiYmfW7QTICvsxEj0f1R0YAJM0BniX1Fltc36AkSaSOAPuQpsY/MiJuK5wfCkwHHouIfXPaWGAyqdFpMfCvEXFr7pX2+cLj3wZsGxEz++TDmZn1Um0E/GDQtmuwpNGSLpe0QNLjkn6RB7/0lV0iYmyTngl7kxqCxgATSN3aimqjO4tOBU6OiLHAl/IxEfHT/J6xwGHAHAcSM6saLY22WxWUGWdyLqllf0PSoJVf57SBMB44P5JpwJq13giF0Z1n190T9EwdsAaNu7d9BPhZ32TZzGw5lenJVY1YUiqYrBsR50bE4rydB6zbR/kJ4GpJM+oH3WStRmWeTuPRnccD35D0KHAaMKnBcw/CwcTMKqibEz32pTLBZKGkQ/MI+KGSDiU1yPeFHSNiW1J11kRJ9R0iGo7KbDG6E+AY4ISI2Bg4AfjRMg+UtgdeiIg7G9yLpAm1UaVLnn++0SVmZn1nBSqZfAw4kDTZ41+BA3Ja10XEvPxzAXA5aWKxomajMmujO+cAFwG7SrogX3MEPT3PLmnwzINpUSqJiLMiYlxEjBs6cmSvP5OZWSdWmJJJRDwSEfvl0e+1EfBdX89E0khJtZmKRwJ70DMas2YKcLiSHYBnImJ+s9Gd+Z55wPvy/q7A/YV3DgE+TApAZmbVEml8W7utCtp2Dc4N298l/fUfwE3AcRExt8t5WR+4PPX+ZRhwYURcJelogIiYDPyW1C34AVLX4DLdlj8BnCFpGPASqRdYzU7A3Ih4qGufwsysmypS8minzKDFc4ELSX/BAxya0/6pmxnJv9C3aZA+ubAfwMQ2z5lKHt2Zj28CGk4Jk6/dYXnya2bW11aocSb0b28uMzMrimi/VUDVenOZmVnBCtMAz7K9uebTh725zMysYBANWiwzN9cjwH79kBczM6ujQbKubZm5uX4sac3C8VqSzunTXJmZGTB4qrnK9OZ6W0Q8XTuIiKckvb3vsmRmZkCuxqpItGijTJvJEElr1Q4krU25IGRmZh1akUom3wRukXQpKU4eSC9W3zIzsw5UJFi0U6YB/nxJ00lTkQj4UETc3ec5MzNbyQ2mQYulqqty8HAAMTPrT1Gdxa/acduHmVmVDY5Y4mBiZlZlg6Waq8w4k2OLvbnMzKyfBLA02m8VUKZr8P8D/iTpYkl7Kc8Rb2Zm/aCL06nk+RVvl3RFPl5b0jWS7s8/i8NAJkl6QNJ9kvZs9+wyi2P9BzCGtNztkcD9kv5b0mblP4KZmS0PLY22Wy8cB9xTOD4RuC4ixgDX5WMkbUlaaHArYC/gB5KGtnpwmZJJbR2R2rK9i4G1gEslndqbT2FmZr3TrUGLeaHD9wNnF5LHAz/O+z8GPlBIvygiFkXEw6QFCeuXPF9GmTaTT0uaAZwK3AxsHRHHkBac2r/cxzAzs17r7qzBpwNfAIoL/a4fEfMB8s/1cvpGwKOF6+bmtKbK9OZahzRQcZl13yNiqaR9S9xvZmbLIQ1aLBUt1smDy2vOioiz/vGc9Lt6QUTMkLRzyVfXa5mRMiPgv9Ti3D3NzpmZWRcsbX8JsDAixrU4vyOwn6R9gBHAKEkXAI9L2iAi5kvaAFiQr58LbFy4fzQwr1UGSrWZmJnZwFBE262diJgUEaMjYhNSw/r1EXEoMAU4Il92BPCrvD8FOFjScEmbkjph3drqHR60aGZWVdHn40i+Blws6ePAI8CH02vjLkkXk6bRWgxMjIiWy3Q5mJiZVVi3R8BHxFRgat5/EtityXWn0IsZ4itVzSVpjqQ7JM2sa0yqnZek7+SBNLMlbVt3fpkBOTltrKRptWdK2q5w7m2S/iDprvzeEX37Cc3Meimi/VYBVSyZ7BIRC5uc25tUdzcG2B44M/+sqQ3IGVVIOxU4OSKuzI1PpwI7SxoGXAAcFhGzJL0OeKW7H8XMrAMBKtcAP+AqVTIpYTxwfiTTgDVzD4RmA3IgdWerBZc16OmRsAcwOyJmQSrutasTNDPrd4OkZFK1YBLA1ZJmSJrQ4HyrgTSn8+oBOQDHA9+Q9ChwGjApp28OhKTfSbpN0he68xHMzLqoi3Nz9aWqBZMdI2JbUnXWREk71Z1vOJCmOCCnwfljgBMiYmPgBNIcY5Cq+N4DHJJ/flDSqxqiJE3IbS3Tlzz//PJ9KjOz5aSlS9tuVVCpYBIR8/LPBcDlvHoumGYDaWoDcuYAFwG75gE5kPpOX5b3Lyk8cy7w+4hYGBEvAL8FlmnQz3k5KyLGRcS4oSNHdvgJzcx6IUh1Le22CqhMMJE0UtLqtX1Sm8addZdNAQ7Pvbp2AJ6JiPktBuRACjbvy/u7Avfn/d8Bb5O0Wm6Mfx9emtjMKkS0H7BYcrqVPlel3lzrA5fn5VKGARdGxFWSjgaIiMmk0sM+pBksXwCOKvHcTwBn5IDxEjAhP+8pSd8C/kSK/7+NiN909yOZmXWoIsGincoEk4h4CNimQfrkwn4AE9s8Zyp5QE4+vok0w3Gjay8gdQ82M6smBxMzM+tIgJY4mJiZWadcMjEzs85UZ1BiOw4mZmZVFTiYmJlZF1RkHEk7DiZmZhVWlXEk7TiYmJlVVQBLBkfRxMHEzKyy3ABvZmbd4GBiZmYdczAxM7OOBLDUwcTMzDoSEG6ANzOzTrg3l5mZdcUgaTOpzOJYZmbWQET7rQ1JIyTdKmmWpLsknZzTT5L0mKSZeduncM8kSQ9Iuk/Snu3e4ZKJmVlldW2cySJg14h4TtIqwE2Srsznvh0RpxUvlrQladXarYANgWslbR4RS5q9wCUTM7OqCmDp0vZbu8ckz+XDVfLWKkqNBy6KiEUR8TBpddvtWr3DwcTMrMq6EEwAJA2VNBNYAFwTEX/Mp46VNFvSOZLWymkbAY8Wbp+b05pyMDEzq6xI40zabbCOpOmFbcKrnhSxJCLGAqOB7SS9FTgT2AwYC8wHvpkvV+PMNOc2EzOzqgqIcuNMFkbEuFKPjHha0lRgr2JbiaQfAlfkw7nAxoXbRgPzWj3XJRMzsyorVzJpSdK6ktbM+6sCuwP3StqgcNkHgTvz/hTgYEnDJW0KjAFubfUOl0zMzKqsO725NgB+LGkoqRBxcURcIeknksaSqrDmAJ9Mr4y7JF0M3A0sBia26skFDiZmZtUVUbqBvfVjYjbw9gbph7W45xTglLLvqFQ1l6Q5ku7Ig2emNzgvSd/JA2lmS9q27vxQSbdLuqKQNlbStNozJW2X0zeR9GJhsM7kvv+EZma9E0uWtN2qoIolk10iYmGTc3uT6u7GANuTeiJsXzh/HHAPMKqQdipwckRcmUd3ngrsnM89mHs3mJlV0OBZHKtSJZMSxgPn5wE404A1aw1IkkYD7wfOrrsn6Akua9CmR4KZWWXUpqDvsAG+P1QtmARwtaQZjfpJ03ogzenAF4D6CsbjgW9IehQ4DZhUOLdprhb7vaT3NsqQpAm1vttLnn++1x/IzKwjsbT9VgFVCyY7RsS2pOqsiZJ2qjvfcCCNpH2BBRExo8H5Y4ATImJj4ATgRzl9PvD6iHg78BngQkmj6m+OiLMiYlxEjBs6cuRyfiwzs94LIJZG260KKhVMImJe/rkAuJxXzwXTbCDNjsB+kuYAFwG7SrogX3MEcFnev6T2zDznzJN5fwbwILB5lz+Smdnyi3DJpLckjZS0em0f2IOeATQ1U4DDc6+uHYBnImJ+REyKiNERsQlppsvrI+LQfM884H15f1fg/vyOdXOfayS9kdSo/1DffUIzs94bLL25FBXpKZB/oV+eD4cBF0bEKZKOBoiIyZIEfA/YC3gBOCoiptc9Z2fgcxGxbz5+D3BGfuZLwL9GxAxJ+wNfIQ3IWQJ8OSJ+3SaPTwB/6cLHrVkHaNZzbSBVNV9Q3bxVNV9Q3bxVNV/Qnby9ISLW7eQBkq7KeWlnYUTs1cm7OlWZYLIykjS97Hw6/amq+YLq5q2q+YLq5q2q+YJq562qKlPNZWZmg5eDiZmZdczBZGCdNdAZaKKq+YLq5q2q+YLq5q2q+YJq562S3GZiZmYdc8nEzMw65mBiZmYdczDpB82mwc/nJuUp9e+TtGch/R15Ov4H8rT7jaaS6Ubefl6Yhn+OpJkVytun8rvvknRqhfJ1kqTHCt/bPlXJW37X5ySFpHUKaQP9nX1VadmImZKulrRhFfIm6RuS7s15u1x5NcKBztegFBHe+ngDrgb2zvv7AFPz/pbALGA4sClpSpeh+dytwLtI85FdWbu/j/P5TeBLVcgbsAtwLTA8H69XhXzl95xEGhhbn16FvG0M/I40uHadCuVrVGH/08DkKuSNNNPGsLz/deDrVcjXYNxcMukfzabBHw9cFGmesIeBB4DtlKbVHxURf4j0r/d84AN9mcH819WBwM8qkrdjgK9FxCL4x3xtVchXK1XI27dJs2cXe9YMeL4i4u+Fw5GF/A1o3iLi6ohYnA+nkeb7G/B8DUYOJv3jeBpPg99sSv2N8n59el96L/B4RNxfkbxtDrxX0h+Vlgh4Z0XyVXNsrho5R9JaVcibpP2AxyJiVt2pSnxnkk7J/w8cAnypSnnLPkYqaVQtX4NCFVdaHJQkXQv8vwanvgjsRpoG/xeSDiRNg787TabUb5He9bxFxK/y/kfoKZXQH3lr850NA9YCdgDeCVysNH/bgH9npBU+v5qf/1VS9eDH+iNvbfL176Rqm1fd1tf5ape3iPhVRHwR+KKkScCxwJf7I29l/v1L+iJpnr6f1m7r63ytaBxMuiQidm92TtL5pCWFIU2DX1sNstmU+nPpKW4X07uet5y/YcCHgHcUkvs8b22+s2OAy3JVwq2SlpImvKvEd1bI5w+BK/LhgH1nkrYm1e3Pyu3Bo4HblDp7VOo7Ay4EfkMKJgP67wxA0hHAvsBu+d8b/ZGvFc5AN9qsDBtpXfqd8/5uwIy8vxXLNvI9RE8j359If5XXGvn26cP87QX8vi5tQPMGHA18Je9vTqpy0EDnK79ng8L+CaS69QH/zuryOIeeBvgBzxcwprD/KeDSKuQt/9u/G1i3Sv/+B+M24BlYGTbgPcCM/I/zj8A7Cue+SOopch+FXiHAONJ6Lg+Spt1XH+bvPODoBukDljfgNcAF+T23AbtWIV/5PT8B7gBmk9bY2aAqeSu87x/BpAr5An6R3zMb+DWwURXyRmpYfxSYmbfJVcjXYNw8nYqZmXXMvbnMzKxjDiZmZtYxBxMzM+uYg4mZmXXMwcTMBpVWk5MWrtlY0g2S7skThR7X7n5J/yRpRp7EcYakXUvkRXlk/5/zuz7dzc86mDiY2ApF0nP554aSLu3gOcdLWq1LeXpz/sV1u6TNuvHMwrPPlrTlctw3VsvOdryfpBO7mbe+EhEHRcTYiBhL6nJ8WYPLFgOfjYi3kMaETKx9Ty3uXwj8c0RsDRxB6gLezpGkwY1vzu+6aLk/2CDnrsE2aEkaFj2T9NXSnouI13bh2XOAcRGxsAvPOhFYNSK+vJz3v+pzdiFPR5I+37HdfG5/ypOTPkIag3R/m2t/BXwvIq4pc38+txDYMCIWSdoDOJk0iPFB4KiIeE7SrcBHI+KBbn62wcglE+uYpHfmSQ9HSBqZqxXe2uC6w/N1syT9JKe9QdJ1Of06Sa9vk36epG9JugH4uqRNJf1B0p8kfbXwrk0k3Zn3j5R0maSrJN2vZddGOVNpjZm7JJ2c0z4NbAjckN+DpD3ye26TdImkVwUs9axbU1sbY6381//xwL/UnlV3z3OSvpmfe52kdXP6VEn/Len3wHGSdsslmzuUJpccXrhuXKs85v8+t+Tv/VZJawBfAQ7KJaaD8nf0vRLf/Xfysx6SdEAv/pn0hfrJSRuStAnwdtKA4bL37w/cngPJOsB/ALtHxLbAdOAz+brNSN/jdElXShqz/B9nkBvoUZPeVowN+C/SjMjfByY1OL8VaSRxbYqPtfPPXwNH5P2PAb9sk34eaS6s2tQWU4DD8/5E4Lm8vwlwZ94/kjQdxhrACNJaHxvX5WMoMBV4Wz6eU8jrOsCNwMh8/G/kdV/qPuNs4H15/yvA6Xn/JBqsf5LPBXBI3v8S6a9ncl5+kPdHkEZpb56PzweOL1w3rlkeSTMJPAS8M6ePIs3Jd2TtXYXvqPbuVt/9JaQ/QrcEHujDf0/XkkaZ12/jC9ecSarKavWc15Jmn/hQg3MN7yf9W30Q2Cwf70sqpczM293Aj/K552rPIM1v938D/f/iQG0DngFvK8aWf2nVposZ2uD8p4BTGqQvBFbJ+6sAC9ukn1f7RZePnyxcN4rmweSHhXuuBN6T948mTdcyG3gCODinz6EnmDT9ZVJ45hrAI4XjzYDb8v5JNA8mS+hZnOmNwMy8P5WewLQNcGPhnt1Ik2DWrhvXLI/A1sDNDd57JM2DSavv/pDCPc8O4L+3YcDjwOgW16xCWijsM2XvJ03c+Gdgx0LaPwM/a/KOe4FN8r6AZwbqOxnozbMGW7esTforcBXSX9LP150X5abqbnZNMb3+2WWeu6iwvwQYJmlT4HOkv9qfknQeKe/1BFwTER8p8Z5ONfqcZZaFbZhHSW+j8ynSi/cXv8eBXK52d+DeiJjb6GRu8/gRcE9EfKvM/UpL9v6GVLK+uXDtNOD7kt4UEQ8odcwYHRF/Bn4J7AqcA7yPFIhWSm4zsW45C/hP0noQX29w/jrgQEmvA5C0dk6/BTg47x8C3NQmvd7Nddf1xijSL+xnJK0P7F049yywet6fBuwo6U0576tJ2rz4oIh4BnhK0ntz0mHA70vkYQhQa3v4KI0/573AJrX3N3l2szzeC2yovLiYpNWVlhwofr56Zb/7gXQwy66/U+vB99t8uCPpe9pVPd2A92l1P2mNlTcB/1m4Z72IeIJUcvuZpNmk7/rN+Z6vAftLugP4H+BfuvcRBxeXTKxjkg4HFkfEhZKGArdI2jUirq9dExF3SToF+L2kJcDtpP9BPw2cI+nzpGqmo/ItzdLrHQdcqDSO4Be9yXdEzJJ0O3AXqV2h+NfoWcCVkuZHxC5KvZ9+Vmv4JjXI1v8VegQwOf/l+lCLPBc9D2wlaQbwDHBQg3y+JOko4JIcCP4ETF72kniiUR4j4s+SDgK+K2lV4EXSX+U3ACcqjbH4n7pXlv3uB0xEHNkgbR6wT96/iRYlpyb3/xep7a/R9deTFmmrT38aeH+5XK/Y3DXYbACpw67M+S/i/SKtU242YFzNZTZISboGuMOBxKrAJRMzM+uYSyZmZtYxBxNbaSmNkn9RDSYKXI5nLTPXVS/uO0jSA5Ku6DQPZgPJwcRWdg9GmvCvU2PJPYnq5R5YDUXEz1mJu5PaisNdg834x/xNV5HGVOxAGs1/Lmlyv/VII79vlTQS+C5pZPkw0uj2K0nTp6wq6T2krrZvIc3vtQmwMHddngy8Pr/y+LqBcWaDmksmZj3eBJwBvI00KO2jwHtIo+T/PV/zReD6iHgnsAvwDdKo/y8BP480tfnP87XvIM0l9dH83G/n+/YHzu6fj2TWP1wyMevxcETcASDpLuC6iIg8lmOTfM0ewH6SPpePR9BT2qg3JSJezPu7A1umWT4AGCVp9Yh4ttsfwmwgOJiY9SjOO7W0cLyUnv9XBOwfEfcVb5S0fYPnFecQGwK8qxBczFYoruYy653fAZ/KEwki6e05vdVcVwBXk+Z+It83tq8yaDYQHEzMeuerpDaS2UqLb9UW5LqBVI01M8+FVe/TwLi84NTdpKnvzVYYHgFvK63cg+uKiHjVqpD9nI+dSeud7DuQ+TDrhEsmtjJbAqzRjUGLyyuXYn4APDVQeTDrBpdMzMysYy6ZmJlZxxxMzMysYw4mZmbWMQcTMzPrmIOJmZl17P8DdBfCn7Mfkc8AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "xdscn.plot()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.5" } }, "nbformat": 4, "nbformat_minor": 4 } rioxarray-0.18.2/docs/examples/clip_geom.ipynb000066400000000000000000005210621474250745200214110ustar00rootroot00000000000000{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Example - Clip\n", "\n", "API Reference for `rio.clip`:\n", "\n", " - [DataArray.clip](../rioxarray.rst#rioxarray.raster_array.RasterArray.clip)\n", " - [Dataset.clip](../rioxarray.rst#rioxarray.raster_dataset.RasterDataset.clip)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import rioxarray\n", "\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load in xarray dataset\n", "\n", "See docs for [rioxarray.open_rasterio](../rioxarray.rst#rioxarray-open-rasterio)\n", " \n", "Notes:\n", "\n", " - `masked=True` will convert from integer to `float64` and fill with `NaN`. If this behavior is not desired, you can skip this." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "xds = rioxarray.open_rasterio(\n", " \"../../test/test_data/compare/small_dem_3m_merged.tif\",\n", " masked=True,\n", ")" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEWCAYAAABmE+CbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACuR0lEQVR4nOz9ebxt21nXCX+fMdfa59yb5Ca5afCSgEHTWHQJJMZYiiKhIFVQBIugUQuCpt4UGEuqlJKgouBrNPhW0aTQYAqEAAJJRfOKSMAQDJ1pTDANaTChkVwJhPT35t5z9lpzPPXHGM8YzxhzrrXXOXefZu/M3/2su9aazZhjzr3O8xtPL6rKggULFixYEG70BBYsWLBgwc2BhRAWLFiwYAGwEMKCBQsWLMhYCGHBggULFgALISxYsGDBgoyFEBYsWLBgAbAQwpmBiPymiHzhebvWzQQR+TwR+dUDj/0aEfnFazCHx4nIfxSRu0Tkr572+AsW7MNCCAuuC0Tkz4jIvxeRe0TkNTd6PgAioiLyaPuuqr+gqo+7kXMC/gbwGlV9gKq+8LQGFZHbReQVIvJxEfnPIvLnT2vsBecHCyEsuF74EPCdwAtu8DxuGERkdcBhvx94+zW4/D8GjoFPAv4C8CIR+YxrcJ0FZxgLIZwt/GEReYeIfFhEvl9ELgKIyINF5CdE5Pfyvp8QkUfaSSLyGhH5/4rIL2VTxL8VkYe6/V+VV40fFJG/dS0mrqo/o6ovA377Ss8VkSeLyBtF5GMi8rsi8u15+6PyKv85IvLbIvI+Efnr3XmvFZGP5H3fLSJHed/P58PeIiJ3i8ifFZHPF5E73fnPE5Ffy8/sHSLyp69i7ioizxWRdwPvztu+VETenOf170Xks/P2nwX+FPDdeU6PvdLr7ZjD/YCvAL5ZVe9W1V8Efhz4qtMYf8H5wUIIZwt/Afhi4A8CjwX+dt4egO8nrS4/FbgX+O7u3D8P/EXg4cAR8A0AIvLpwItIwuGTgYcAj2QHspD8yK7XqdzlFN8FfJeq3ka695d1+/8U8Bjgi4DnOf/HCPxvwEOBPwo8FfjLAKr6J/Ixj1fV+6vqS2eu+2vA5wEPBL4V+GERueMq5v/lwB8BPl1EPhf4Z8D/THrW/xT4cRG5oKpfAPwC8FfynP5TP5CI/JM9z/+tO67/WGDsxnsLsGgICxp8QhCCiHxDXqk9dMf+B4nIy0XkXSLyThH5o3n7V4rI20UkisiT3PGPEpF78yrvzSLyPQfMQUTk+SLyn/I1rsZh+N2q+l5V/RDwfODPAajqB1X1X6jqPap6V973J7tzv19V/5Oq3ksSqE/I258B/ISq/ryqXga+GYi7JqCqL1DVB+16XcU9HYIN8GgReWhe4b6u2/+tqvpxVX0biRjtubxJVV+nqltV/U2S8O2fy06o6v+jqr+tqjETxruBJ1/F/P+hqn4oP/v/D/BPVfX1qjqq6kuAy8BTDpzTX97z/D97x2n3Bz7abfso8ICruJcF5xjnhhCyuv8DM9s/BfhvgN/ac/p3AT+lqn8IeDzwzrz9V4D/Afj5mXN+TVWfkF9fe8AUvwb4FOAPqep/BfzYAef0eK/7/J9JK3pE5FYR+afZ7POxPN8Hicjgjv8d9/kekpAgj1HGVdWPAx+8irldSzybtMp9l4j8BxH50m7/rufy2Gw++538XP4BSVs4CCLy1c608xHgM6/k/B3z+/3AX++0qk+xOV8j3A3c1m27DbjrGl5zwRnEuSGEPfgOUuTGbFlXEbkN+BPA9wGo6rGqfiR/fqeqHhSG6Mb7omy3/mUR+X9ExATv1wF/T1VjHvv9V3Evn+I+fyrVHv/XgccBfySbVcwcIgeM+T4/rojcSjJlzEJE/ma2b8++ruRmDoWqvltV/xzJ3PVtwMuzXdyw67m8CHgX8Jj8XP4mhz0TROT3A/838FeAh2Tt51cOPb+/Bff5vcDzu5X9rar6owfO63v2PP9dzuj/BKxE5DFu2+O5Ns7rBWcY55oQROTLgP+iqm/Zc9gfAH4P+H5J8d/f2wmbXfi0fPzPicjn5es9lGTX/0JV/VzgjcBfy8f/QeDPSnKOvrL7x3konisijxSR20nCzezeDyD5DT6S9/3dKxjz5cCXisgfl+Rw/Xvs+V2o6j/I9u3Z167zRGSQ5ARfAUFELorI2u3/TRH5mh3n/o8i8rBMph/Jm0d3yDdnLekzSH4S/1w+BtwtIn+IRMoev0v6+8/hfiRB/nt5Dn+RpCHcV/zfwNeKyB/JZsT7iciXiMhB5htV/do9z3/WJ5C1vn8J/L18vT8GPB34oVO4nwXnCGeeEETk9SLyZuB7gS9zdv2nA38L+DsnDLECPhd4kap+DvBx4HknnPM+4FPz8X8N+JGsaTwF+HTgl/KcnkUyEQBcAC6p6pNIQuGfXdmdAvAjwL8Ffj2//n7e/p3ALcAHgNcBP3XogKr6duC5eez3AR8G7tx70tXhq0ik9SKSo/Ze0nMgE9FDSHOfw9OAt2cN5LuAZ6rqJbf/54D3AK8G/g9V/bd5+zeQnOl35Wv1juNvAV6STTd/xu9Q1XcA/yfwWhJxfBbwS1d2y1Oo6htJfoTvJj3r95DMidcaf5n0G3k/8KPA1+W//YIFBXJeGuSIyOcDX6OqX5O/fxZJQNyTD3kkyZTwZFX9HXfe7wNep6qPyt8/D3ieqn6JO+Y1wDfkf8xz134NSfjcAfz5bN7oj3kX8DRV/U0REeAjqvrAq7/j8wMR+ePAc+ee2wnnPQr4DWCtqttrMbcFCz6RcOY1hF1Q1bep6sNV9VFZ2N8JfK4ng3zc7wDvFRHLUH0q8I59Y4vIw8xhKyJ/gBTy+OukFe4fk5z9ms0YFkv+/we+IH/+kyS77gJAVX/xSslgwYIFp49zSwj7ICKfLCI/6Tb9L8A/lxTH/QRSNAoi8qclJSr9UeDfiMhP5+P/BPBWEXkLyQb/tTms8PdI6v+P5rFeB/yhfM4LgK8QkbcB/xD4n67lPS64PpBU/+i6OdgXnB9kP9obROQtksLbvzVvnw13z/u+SUTeIyK/KiJf7LY/UUTelve9MFshEJELIvLSvP31WavePafzYjJasGDBgrOELLTvp6p35wCLXwS+npQjEkl5M8VULSmJ9EdJuTCfDPwM8FhVHUXkDfnc1wE/CbxQVV8pIn8Z+GxV/VoReSbwp1X1z+6a0yekhrBgwYIFNxqaYJrkOr90T7j704EfU9XLqvobpICEJ0vKnr9NVV+raYX/g6TseDvnJfnzy4GnmvYwh0OKbd20GB5wP13d/mAmoeG90nOIEmRDzBwrftvMZ3+qzB13tRA3jLTvn/n7PukULrBgwScO3vSmN31AVR92X8b44j91P/3gh8aTDwTe9NbLbwd8NNyLVfXF/pjsi3wT8GjgH6vq6/cM+QjaSLw787YNbWSgbbdz3gugqlsR+Sgpou8Dcxc404SwesiDueNvfT1ESVHpgSRBFVBBcgEGUWCUVrBnqICu5qX35LwIEtO4EvP3fD17T4Om/RMi0XabSpqzZiFv80XyvALoULfFFcR1GuCN3/DXWLBgweEQkf98X8f44IdG3vDTn3rQscMd77Yw851Q1RF4gog8CHiFiHymqv7KjsPnVva6Z/u+c2ZxpgmhIORnYtJWBVRRARklvWch2zw+JZGIgAZtH52CqhDQ+vSiQFTUEQP2coQgmj96gnCXLLA5dat/IwObmz9+MfItWHDjoEDcXerr6sdV/UgOX38aKSN+DnfSZuVbKP2dtAUpbbs/505J5dcfSCpFP4uzTwhHMRMCrX0lgkaBTSg5raJ1NV6+h6Qh6ErrOIYoxNGkNBC1EIFmEpAxjSNj1Ug0ggTQrClUrcVpEk4L8EQgMWkFtl09WeT5Lliw4MZAUTZ6mMnoJIjIw4BNJoNbgC8klWbZhR8nJcF+O8mp/BjgDdmpfJeIPAV4PfDVwP/lznkWKcHyGcDP6p5IorNNCAJhPSblwAl6jWl1zyhZ9oZEEPmcchxZMwiKrGK7+jahbZdSQCTrC0kbkZjGTwsGRSWbl4RsXkoCXLSSg+0umoHXEMgE5ckgtPuuqpLOggULTg2nqCHcQcqUH0j/0l+mqj8hqe/G/wU8jBTu/mZV/WJVfbuIvIyUJ7UlJXMaO30d8AOkbPRX5hekGm0/JCLvIWkGz9w3obNNCEEZ1umPI251r1GIUdAgRBPqYyjmo8a0FEAHRYIiQzsGkuWvaP0uoCPJfIQiiDPWaSKizlRUVv7ex0ElheJDsP/NmJDY4+tYsGDB9YGijKcUqq+qbwU+Z2b7K4BX7Djn+aTy9v32NzJTayuXePnKQ+d0pglBBMKQCCFIFsYAgyIhCeYxKKMCIaBKMgsVg76mY9eRsIrIoEgeR6Ogo6D5YAlk/4EkbWQEVNDgSEEoZiWz96stJjIZiLbbvA+h8UF7LcH7GuY84wsWLLhuiKcSQnhz4mwTAkrIAnI1RLZjsq+IKKKCqiBhREQZP7aujmOvTQzKsIoM60gYYpbpiRBGQtYKMtkEIIZq9snO5UIKphE4z7WZkDQ6bcGu3ZmLCjEUR3d7nHqfwoIFC647FBgXQri5IaKFDFQlCfRsuhmGiA7KNmgS6EHRIXuXJZmJwioyDOkVRBmjMEoaL0ZBMumoCjoqkYASsg9BKynkyCQJLSmQP6mZi8x01An44vQWiEOaa7UndVFQCxYsuCFYNISbGOJMKDqzfBZJZiDTDHTIvgIlCdmQNIT1aiyEEKIgY/LaiEjyL5ADjULIQUyCxqyJUB3Mks1EYqGs5pnuTEaNY5l8mCeJoOgAMmYymnFAL1iw4PpCgc05LvdzDgghC9KM4uAVRRFiDEmG5ugdGSy8NB0ZVpHVEDlab1mHmMxLMZSopSjCaoiFeLYhIDKwVVJIanYeGCkkkqmOZa855CDmNGebk9cQcKGo+WYajhNdTEYLFtxAKLqYjG52JOHtzDoqybcgSgiRGAOao5EIyUQkARBlvR65eLThtguXuLhKJfW3MXB5XHG8XTFG4Wg1MoR0/mYcuHez5lJYpxSHywO6CSU3QX24ac5hUAXRpJWo5SKY49nD8hhctJNpBerDlRYsWHBjoDCeXz44+4QQRIl52SyiaKyB+83i2plkJKToJBFlvRo5GkZuXW04GlJI7zb7DwJKRFiHkVUmhEEiqsI4BmIUxk1ABi3Z0IigojUsVUnRSC4xTc1cNUGesc89sFyERTtYsOCGIyv55xZnnhB6lIggzH9gO5L9RbLmICFFKA1D5MKw5eJqy1HIGkLqfVMimC4O20IIl2TFqIHjcWA7BsIqEjWHogaSX2GUYv/RfO05YoDi285fkt+gEfzBfBEsPoQFC244hPEc/yM8V4QgkvMRqM7mGF3imAXsZEdzCJGjYeQBR5c5CluOQtIQSihrSE7mlURWoaarH8eB42HFvawJQ0z5CmIaQa6dtEmRR0W6K6AdMUB1JudjeuexWlQU9fgFCxbcGCSn8vn9R3guCCFIMu3EmPwHCkUQRxXGzYCOgqxq6GYQZTVE1kMyGR2FkQtZQ1iTitptNRQyWEsk5pOPh4HLqy1H623xWdhSX0dJYalKKpmh5tsg65udFxyvLUgNR805Ezqk5DnsnpbEtAULbhhSHsJCCDctokpy+HasbX4FjTlhbJ1NRdmMlDQETf4BidlPMDKgjJkQNhpYS+RC2BKcM/d4WHFp2HI0jOhampiDJizVBL+Zq6wong2lUiuj2nH2JrlUxeA0hMhCCAsW3GDERUO4uTHGmqEM1NW61qQyCbE4lI0UhhAZQtIAAspaxqQ5AGsZuaCBVdYcBiIjgaiBy8OKi8OKC+tt0RoM2xCQkMNSI9X8k8teWNG7UqLbe6gcQVjRPR00aTakMc7x4mTBgpsei4Zwk6PPESkEQEkRYLUe2cRVIoIQkaCJDESTnwBNpCCVFAxrGdMrbIkaiCpcjisuDWsuDFvGGFCV4nTeDoHLG9NMXJZzlGwuSjWSUMtbqDkLiKJbqXkTq0QGMljI7LV6igsWLDgESi5pc05x5gnBoCqMMbBejTnSqJJDyLWBtsc1ekgkkcIq+waGrCFcCNtCAHXbhoHIRofGdLQKIx8ZbuHjmyNuWW0IohyPA/esjrh3tebSsCZkoogxlBpJcQzEMRPDGAqppUilXFhvHUvRvTBEQvEjXK8numDBgjksJqMzAtlhXzefgX3270E0VSaSFFE0SEyvTAZr2XJRNmmbRi7puhDH5bDi1tUGSKGpkHIXxhjSaxWa+kjbcUi5CyFVY40SiLgWndnfLJDKZeRXyCGyIcTZ8hwLFiy4PlCE49LX9vzhmuk+IvI4EXmze31MRP5XEbldRF4lIu/O7w9253yTiLxHRH5VRL74iq95FfMMolzIwrxui4UMbg3HXAybajrKZHBh2LIOIxeHDfdfHXNx2KTXasuF1bbkONj3C6uUEX203rIaRoaVldzOHd9CMmdBTUYzx7eENNZ6NbIaUqmNBQsWXH+kxLRw0Oss4pppCKr6q8ATAHJHoP9CavrwPODVqvoCEXle/v6NIvLppG4+n0FqD/czIvJY1xHoRIhok7nc7KNqBQbzFQRnhwkoQ9YYjBTWUgnDzEmrOHIUtoy57/LK5TAcjwOrYeRIhaPVNmU8D8mktZEBERhHZZPHjKPVuU61lrR8oSbQhUQEJUltwYIFNwTn2al8vWjsqcCvqep/Bp4OvCRvfwnw5fnz04EfU9XLqvobwHuAJ1/JRXaZjCAlqF0JBpLp6EhGBvx78jFcDBsuhC23DBtuGdLnCyFlO18ckgZxtErvt6w33LLacHG14eI6lchYr9JrtYpJWxhqfSUZWjIIIedMhMgqvxYsWHD9oSqMGg56nQQRuSgibxCRt4jI20XkW/P2WSuKiKxF5CUi8jYReaeIfJMb64l5+3tE5IUiafkrIhdE5KV5++tF5FH75nS9COGZwI/mz5+kqu8DyO8Pz9sfAbzXnXNn3tZARJ4jIm8UkTduP3aP237CylnIoah+LKcZNJ9zF7asKQyiSQksWkNyNBsJ9K+Lw4ZbVxsecHSZW1eb5mVEYaRQ+jAMmkmhltawbOoUERVLmOywEMKCBTcMETnodQAuA1+gqo8nWVOeJiJPoVpRHgO8On+H1Arzgqp+FvBE4H92Av5FwHOAx+TX0/L2ZwMfVtVHA98BfNu+CV1zp7KIHAFfBnzTSYfObJtIeVV9MfBigFse/ck6ZBNKzBVO58xFFnHU1DZyMKE/uLJVxcGcLYLmVA5UUrgYktHHCMMQh8B2HdjGgVVOfIsIx+OqzNET0EaG0pRHcmJbGLL/QNq8CVmcygsW3DAkp/LpiE1Nmat356/r/FKSteTz8/aXAK8BvjHvu5+IrIBbgGPgYyJyB3Cbqr4WQER+kGR5eWUe61vyWC8HvltERHW+qcP1iDL6b4FfVtXfzd9/V0TuUNX35Rt5f95+J/Ap7rxHAr+9b+Cj1cjDH3BX6ZC21VDCT8cobOLAOKbPQaxTWk1kG3Mo6L3jURLQAwT3nEYNbHRVyGItI0cyclE2Rbe6EDZsYnqMkU7Qa8hhrLl09ipw73jEratjjuOKS9sVH98ccWlYs4mBS8dr4jrWLm1SS2yYlnBhcSgvWHDDYE7lA/FQEXmj+/7ivKAtyP7VNwGPBv6xqr5eRBorioiYFeXlJAH/PuBW4H9T1Q+JyJNI8tPgrSvF8qKqWxH5KPAQ4ANzE74ehPDnqOYigB8HngW8IL//K7f9R0Tk20lO5ccAb9g38FEY+dT7f5htHDiOK6IKl8YVl8YV927XyDZRKATGWCuhhs68FDXlIdgq3xLQoqQklEBk1Bo5YNrCWkaiBshJa2hIxBEiGx1ZUfMaAFY6JJ/AuCZqKM7io9UWtis2uUFPCMl/sBrGZDLKxwXRydwXLFhwfTEerqV/QFWftO+AHDTzBBF5EPAKEfnMPYc/GRhJ8vHBwC+IyM+w37pykOXFcE0JQURuBf4b4H92m18AvExEng38Fskuhqq+XUReBryD1L3yuSdFGB3Jlkde/AiX44qNDmzjwMe2F7lnewRQBOgmhNRzeQsjofEdRE32vpFUlC5q+rwvG9FMSGtGogQCUvqsrsOYEuRyTwUjhEEimzgwWBVWIx37ca3geBySD0GzySpU7WAlCyEsWHCjca0ylVX1IyLyGpLtf5cV5c8DP6WqG+D9IvJLwJOAXyBZVAzeumKWlzuzqemBwId2zeOaOpVV9R5VfYiqftRt+6CqPlVVH5PfP+T2PV9V/6CqPk5VX3nodXohGUS5mPMEVsOYV9hJuFqWsheuK0k9DUaVUq/I4ENO09hpxW6r/nWOOupfUMkgRSRtuHU45pZwXHIZLG+hzDUkV5QloXntYAiRo+yPWC1d0xYsuGFIi7mTXydBRB6WNQNE5BbgC4F3Ua0o0FpRfgv4Akm4H/AU4F3ZvHSXiDwlRxd9Na3lxcZ6BvCzu/wHcMYzlSU7fm2VHXLV0kvjGkj9DMYYs9moOpbts8HOt/dxzx90IBKJjAhHsuWYVe6bCQEhIMnWbxFHLqltzB7tzZAyHSPJ7xGH9D5kElCVQmDrYSxkYf0ZFixYcGOQitud2jr6DuAl2Y8QgJep6k+IyGuZsaIA/xj4fuBXSKag71fVt+Z9Xwf8AMnZ/Mr8Avg+4IdE5D0kzeCZ+yZ0tgmB5NRN4aHKvfGIW3TDuJJijtlmG71uVhACMWjqdJZNPCVMrDB7NbmdFEuckthiKqGqMccjpVIYph00CW7pJDY6EFXY6MAmDEQNbENgPYwMQYu/w7SDVdYOFpPRggU3Fkr6d3sqYyVh/jkz2z9Iyt3qt99NJYd+3xuBif9BVS/tOmcOZ5wQlIuyZcOKW4fL6Q81wOUc9bMKkZVmLUHS8aUcRA7nLNqB9yNkP8zgTDODxBShRCpwNxCyriAMRI5Z5YR1YR22EGFthfIkl7LITutNGHIE08A2DGw1cDSE5KweIhAIpSJrNhWFxVS0YMGNhurJC8WzjDNPCGvZcutwGYCLYcMmRlYhmYyOwsg2BrbZ1DKqpEJx4eBqGBMMooxK7o8grCWt+IdMDqYlEKpvIYhy5HwRF2XLRlbFl7BRy1lIvoIYxfVqiIUMVvdh3gsWLDgNHJx0diZxpgkhiHJrOGatIyOBAeUuLnLb6hLbo4G7thdYhYEQlaPVFhkHRqtf5Mwvx+OKo1zuuhnffbdSFse64khSOOsRMPbniBI05rBSy11I9YyG/H2QlPVsBLLRwDYM3LrasDm6zOUh/VkuDMnhfOvqmKMwloioBQsW3Bgoi4ZwZmAlJ1ImcA3TDJ4EhrE6oZ0wv2XYpHNSR+QcTZQyla389aihmI4GBCT9OFL2ch5Ik/mpEf6ZDCzPIeRIpoCVxEhzXIXkRN7EofZyEOXisGEtkY2GEra6YMGCG4OlQc5NCu1WzPcLl7knHLGOK9ZZEFv8/iCxBNla+Yehi9oxwWzC3MpUWH8ELKKpEf7VqbzuFu89GZQchFwXqZCG9WNAS49oI6ttDNwybBhQHra6l8u6vjYPc8GCBSdCEZYGOTcpRJRRQxaqafVtNnvTEIBcnjqWshRW6sKa2lwcNs0f2TSNQTRpByWLOWQTUSyrhJA1Bk8KJsy9VuBX9qZyVi0mF9CzF8p6SPex1cCtw4ZACmUNu0OIFyxYcI2hwOaUahndjDjTd6aaTDMRSXH+Grg1HHO3XARozEarEJt8g77AnGEgaQPpPTZCHch5D/NhZ4Ooy0mI7fY9mHRty47k2y/cw4cu3wrArcNxudcFCxbcKMi57odwpgnBhOOY7fEWAgqUxDJb7R/lCJ2Yi+B5jWBOyJrj1z4DJey0h2kJIyEXwptGAw1Oq/DXG4p2kMhgJakU9lEYeeD6Xi6Nay6PKx6+Pk4/xHPcvm/BgpsdCgdlIZ9VnGlCkJkaTSZ0PYsHUe6/vszxuGKrgRWRbQxln4eZcAxD7qDWrwrSaj0wutO90PeltJv5mf8iayLNdVGOhkQmRyH5Fh524S5uW93LhbDhclz8Bwta/LePy6XyVSnNPuw92vfut+jNjlF375v77puSB8kNywMMAUJI26LW+Yy2mHJzyHW+uOcedLtNx4xjPixO5+/O15ltPQ455r5g0RBuUkjOCvbr8Y0O3DMesY2p2J1VFYXkK7CqqH2gQMiZwR7WCyF9rtfx1/QkYN/TeO0PcdeqwiKNSr5C1mQuDqmZzkOGSzxwuLecf55D3hacEkSmgnwXTIDPnWvvvomIfTYyGIZEBKlhByrp35YYGdh46q4TKqmIJN3+tKA9wZ0yVGXREG5e1IziiHAprrknHnHveMRGU8bxKowpbDML2luGDZczKWw1cBxXHI8rjocVtw6bJjsZ4FKO6um3Q/YTSNISegKYaAhCcT6vGRklOcM3MqQy2iFwy3CcqqWqcNvqErcN95akO1uVrGU8tdT5BecE+7SDuWM9mtX0zDk9GZgwD0PVCoaADgIhoCGkxdaoECOMisSYrjPQkswqiR/7p2FaQjOvboUvQarQz4Ec6TBFQrdyvwbaQXIqn99/f2eaEOyPM5LKQGx04O7txZwQFonZD3AhWOmIXN00jGzjkIkhpNIRYTsZf3RlLGC+McZcbfRd5qJ+7JDnZ8ls6/x5LSO3DBt3bFqVjKdYR2XBgoPJoNcKvInIk8F6SIQAIJGUnJ+qe4lk0rJ/GiFpFMQApm8319MrFujXWjtIkHOtpZ9pQoBKCJfjeqdtb6sD9wuXWedexCsZU72jba5wamakGYw5Vc3M/aNWkoiE6ijunNhgZS7aktq7mmusZSTmMNgLkjSatSOpIJFRh1lNZcEnMIJUIXsl2kF/jNcEelORM/HsJIMQ0FWohGBzGgVhRMeszw+dxuF9EYCEkPwIQfC24FlhP+dX6PadNpJTefEh3LS4J14A0ip6E61ncSilsC0nwPwIF2TDhbBNtYcGYTPD9lFDKYFtNYtGhmZlMGoowt3bFKOmnsgDcSL8jTz8Kn/IiWtk0rH5rXMpDUtaixrY0GZXL1gwC+8XuBrB6MlhFxkEqWSwStt0yJ8BxizgiShDIoWUwpPHBZFQ/Q9BQENrNmJG2Hf3c9L+a4ElU/kmhtnUL8oWAsQoXBi2hBggpiY1dtxaRm4djrkQkq/gsq6zaWm6eh/z6t8aaltYq+0z7SCZcqZOZTsOKMeMKo3ZqWgVKEFG7iV1XLMeCpAb8hCdoXXBAofsxG2slLscyt5h7O3tcyvsngig1QykJYO4HojrRAqQWsDaL12ISdh7RsjjEJNjWsaIinY+i4CEuNMUdLCJyOZ/Cv9+lkzlmxipu1jEgjGt2f1KUqc08x2sZeSBq3uAtCK/EDZEDem4MDZaQqsFiDML1Wii5pj7sFpI+QtDyXm4EDfcGjJhlWilutIbUOJiMlrgoCJ5mdJJO9MSnOMVqALXk0bvjPXHSnC+AxdJZOahTAa6EnSdmj0BSEzkE+zfiioykohAs+APITmnZUzkoIk4RDWZjdApKbj76Z3Iavd7jTHnSzwvONuEIMr9wuWyir8nHoEGLobkkDXzivUlGHIhuYuy4bKsi9ZwL+vZsFOPOTKA/bkH5buLMEo/5lou2wgtSOSBOd/Al+KAFOF0zCrXOzq/q5MFV4EAGiUJx0O0BMO+0NTi3J0hAx9NtMp+g5WgQyDaZwHZKqKhuiNGTeGlUZLAHwQxp3IeXyQULUFCQFULqUlw/oIdQt+O2YlTWEupwiaeX0I403eW+iGMpdfAWsYi/FMP48vcOlxmLWNyKudjvWN2HVJ0j9UrstX64IrRefRO3XKsyz+wc+38gTomUAveZe0l5OtfCBsuyoYjSa03bw2XuZg7wtWSGjVaasGCYjLyIaF03yVMX3bM7Cu0ZGBmoqwRNGQwpFdcB+JaiKvkW9CVEAf7XE1LBKq5aahEU0xIQapfob8nklZgmoH/vPM+/f2eArTprnifeypfFJE3iMhbROTtIvKtefvtIvIqEXl3fn+wO+ezReS1+fi3iaQ6PSLyxPz9PSLywtxbGRG5ICIvzdtfLyKP2jena6oh5AbS30tq7abAXwJ+FXgp8CjgN4E/o6ofzsd/E/BsUnzBX1XVn943fiCt9i/Kho+Mt3JruNys1q0xTa04mhrqDKJc0hRZtJKR+60ul9pGF1wP5LnwUa8h9ElpngxKLSMJjW8ikcSWja4aIrN5Qqra+qDh4wB8LN6SimnF1C70FHN4FpwHZMFZVt9QM4WhLvn6pDCGqe+g8Rt0JqKhCnFdD8WBHI+SZhDXQlwL45EgEcKWLIyFsI2oQBBBoiRtYRVSHkIEceGmSYpFdMwxg6qoxJTY5u5DXPS1zEViT5zLA0wjy68Kp5ipfBn4AlW9W0TWwC+KyCuB/wF4taq+QESeBzwP+EYRWQE/DHyVqr5FRB4CWHz6i4DnAK8DfhJ4Gqmv8rOBD6vqo0XkmcC3AX9214Sutcnou4CfUtVniMgRcCvwN5m/2U8nNYD+DOCTgZ8Rkceq6s42YZr/MEFiMhNls2PaVruUlQJ1koQtJCFcnb7tH3h32Yl8fHYQ+3DSOeyzNaa+CoEj2ZaKralAn6SWmyibYlrKvRk0aRobHXj+2780FfMbLpfSGveMF4g5Ttr6NkcCmxh25i9MmgJJ9V30GpIR2zYOjAjHcZX8LDmXo4yBsgojgygrGXN+RWQdYpOV7cuDb3Ro5t3PN2rNxQCK073uT42GLscVl8Y1d28ucBwHjseBS9s1YwwcjwPjGHK125R1qu5vL+5+VYVxDIzbQNwEdBuQTUCOBdkKw2UhbEC2EMb8vgWJ6bNEkJygSw6gqYO7fRaKH9L2sIXhMqwuKcOxMlxWhkuRsNVkhhnTZ6Ii24isAjKaTT4Pak5ms9WrzvsJ5rZ5MghSMo/nyECHpAWYZjAeZY0gz0Mi6Cr97YatRRIJOoAOARky0WzJvoSYMp9xMRTjiORQVo2xhq2eZBLrzTqnFH10mmGnqqrA3fnrOr8UeDrw+Xn7S4DXAN8IfBHwVlV9Sz7/gwAicgdwm6q+Nn//QeDLSYTwdOBb8lgvB75bRCRfe4JrZjISkduAPwF8X578sap+JE/wJfmwl+SJk7f/mKpeVtXfAN4DPPmk65gAW0uNzrkYNmXFHYopSIvQteN7odLDIoNGC0O16CJHBr1TuY8msmN3zj+bvQKRi3LMg4Z7Uk5CycK2XglTUxUkgb527Tm9BhOcprLL3DTm6o37Vj3pGViIbfvu78Ne1uozRU+1Yb9N/wnXRW7ub9FfY8xVbYdu3Athy4Vhy1pqcl/I/bI1a36hEfZTMjjp2gVShbkJe9uu7rN910AWgBBXEIcsJFd5WyYDDRTi0JCPC9ns4swvNdwzC1PJQjuvstWbWvrEsnIPu0xFHRlY1nFwUUVGDEGSz2CdicFMRSHNW4d6Lxokb8vvZQxnKrJXCLkchkzMRzIMSAiJIKS7v/5VzE/2LE5L1J2eyShNXQYReTPwfuBVqvp64JNU9X0A+f3h+fDHAioiPy0ivywifyNvfwRwpxv2zrzN9r03j7UFPgo8ZNd8rqWG8AeA3wO+X0QeD7wJ+Hq6mxURu9lHkNQdg7+pWQi1cf1RXvlfknXJXIYqIAcia9mW7dFtjxrSinZGMxhEJ8K9JJnZdezfW1fCwpPBrtDTdI1EWBtdcb/O7DUSU3c2O05TUT3TEzc6JDMXyX8SYyKw6tC2Wk5tFdhy7a5wn+VwzAnEQ1ZGJniNyNI28510kVN5n5HBJdrifX4su/ZGh9y0KG2zvtRRhTGkvBIjorny5v092BFFlosWolC3UwQQRSU7Td3K34hBJMcOZDKQdNNF6Mes9Jj2AO78/B6iEYgQV4pEiFthiMmhqkO+iNUHCiGHdWbhSUxOZpgSwS705SlcTaLGZ1AIKfsMVkIcSO/rTHKS7q8SQTLp6ErQmEgs7U+fdRVS8tqYTUhss0YTkKipuK93gEeLMMoJbG7upklA0iZkGHK0Eqe69L2CEvQPFZE3uu8vVtUX+wOyBeQJ2bz+ChH5zD3jrYA/Dvxh4B7g1SLyJuBjM8f2P+25fbMXuFZYAZ8L/C+q+noR+S6SeWgXDpq4iDyHZCvjYZ+85mIO0bwoWx4QLvHB8X58JN7KRTnmrngL0AonXw3VTBO+ef1kBa0yyTgeHUH0K3cP648wpyEUorJuapmw1jISVEvLzmr2UoJmIadpnpt8HyYk1zKyYQUSGcSS52o/BmstSja92L3uclLPk0Jo3g2TqrHd2N7Bbvddz63ht8nMNZRnnp6V5CRBu49ASHaGlMQnYzKv7YkS8/di2oHmz7LnvHSQ+y5KURNEijaAIwEjDNMQjAysr4pqEpppvGpOEjIZxCRcJYJEIQwQoxJiMnUl81ISrPZZB6lhnUYKfeTRHPokNNM4TPtwZJAiiSRHFQm6Tu+JDBI52L/iRAbaagmr5ENQI4isAcgwwJD9HmHIpi+FIYWqaohp4Kj5/oAYKynQkoH/Pkcc9wUpyujg8jEfUNUnHTaufkREXkOy/f+uiNyRF8x3kLQHSIvkn1PVDwCIyE+SZOwPA490wz0S+G13zqcAd2YfxAOBD+2ax7WMMroTuDOrQJDsV59Lvlkoti9/s5/izvc3VaCqL1bVJ6nqkx54+8CakYuy5aJsuJ9suV+4zFFngrAoIBPoUVubuq0458waAD4j2ZOBCaC5chTHMzb7ktfQr9IzYdmcTViaOeVItqVZj0UsGaKmsh33xKNyT2aGKqG25uh297UvUmlO3fVq8ElOtaF7jk1P60lFWW3G3LWyT/tieW10YB3SM7kY2qKEkdoASfIriM5Udk6rbU8OxZTUmJWkPbe7/d5U5I9TpmYjXUFct6ajKjiTRhFXWciWY+ZNR2Z+aaJ2zNTjTSfexALt92JWcWRgSWer0FxHh9CYsWKZU5qvaQXlnoPbJuK+Z+3ARSLNmo6GRBhiUU9DqPeYw1MLGewwfzXH3EdYYtohr5MgIg/LmgEicgvwhcC7gB8HnpUPexbwr/LnnwY+W0RuzcL9TwLvyBaXu0TkKTm66KvdOX6sZwA/u8t/ANdQQ1DV3xGR94rI41T1V4GnAu/Ir2cBL6C92R8HfkREvp3kVH4M8IZ91xDgKNvfAS5lgbh2jtqLsikCNGrgWIdisrHVtn33TXF6WOYyVMG+z1F11NnED01gGzU47WBkREp01EhgI0NxLttxACGX7rDucXY/6zAyxrAjGXVqRrIyGVcCOyf0q37/3uVVmP8AaIiMoiVUu+9omk3GhbAlErJHp/aj3gUzAZnlwQjAhL6gKUAhOweUlPGu+VW0BHMc7PNndhqDmYKst5GdbrXevLnRPKka076kJSRSkDFrDENrOpKQisATIyJJMMuYblYHsCT3Gm3U/OGwB1NMRD4k1Nn6LdfAtINYzFqZ6IZ0vtpzEm21hEHQUdFVXlwNQsjmJwkBgqJBkaCJCLzMGkcIIBYZNYDav73obsgTgzcx7cu5uAqcYtfCO4CXiMhAevovU9WfEJHXAi8TkWcDvwV8JYCqfjjLx/9A+sX8pKr+mzzW1wE/ANxCcia/Mm//PuCHROQ9JM3gmfsmdK2jjP4X4J/nCKNfB/4i+cZnbvbtIvIyEmFsgefuizCCZO+9KJumJLRpC3fpLcken4VBstGnfqj3xKNmnDHbooNzus4VkRuIZeUfiEUo1RXxrrBT8wfsVjUnSW3OaUz2MQw6L/iq01vK/iKks5/FC1iIB5OA3+7NTD0aMpgxF6Vqs3FiKvLXtsgraxZE9pfU471DuvbMtkq3o07bos45jk0biLEu7Y0UClHEUMkgSs68zZYiE3oeM1qDelKwl5lUujmVaQ9GWvk1ZiJZ5c+BtKrOpiMdUqIXQyIGiSnEU0IiCYJWn0J6cO6ikufqyEBkQga4Vb1pB5UMjBzy3LI5rNx/NhcVgjDfiZmeYr5eecZ+gi5O1BrnDEm4SwzVv5D+0K3GYz8zI5e4e/F2JVBONcrorcDnzGz/IGkBPXfOD5NMRP32N5LC+/vtl8gy9hBcU0JQ1TcDcza0XTf7fOD5V3KNtIIO3Bo2XJTIJQ08IFxmTbIrQ62Ieok1EeGSrovZKBJKBJJPSgNKzkIglhXcQM0rMDIwM45pKxbhFKlO5WPSueTVvScTuw7k1UfWEuwaI0MO19wyyLpoNgYLNR26VTkkIXshbBljuraRktcOehOUf28dzjJZHXlbv31P49e2oHPO5CEn48WsyYVcBi1IhJj2b+LAmMRcqTdl4+wKAJhsC5GPHx+xGmI2IeUdJpg0awE+Csm0g21AR0FGgW16lzETw0hafZuD2MbzGkJoX5AFeyA7qN1lo6Tw1XFKHsX2RBKuISg6KDKkFXc4FmSMaXUdpdrgc8w/QSlWglyCWlSnWoF3JJekMxP+2X+wFsajwHjknclVU5Ast03LUU1/V1QY0m1CyKGqm0Dyh68YSnRTTKGm22wW2o4Qx5pbYYJ9TP/yS0c2jyCUtVfUpE0Mp2cdXxrk3OSI2Zs3oFyUSNSRjYTyj2jTrcytguhA5LKuSlx8u8rNTmj1K+t8vhOCfRbyvvLUqUhd2OmM3uhQnMhgIaEn5w9Us5EWQQvwwNXHi29hiCsQ75g1m31LIrs1BU8M0+ex8547Z3LN0na+AHL57yz8CfkaAYKmfIxEpMq2z0/IprJdGGNgNWTHY9ZUhLx6zctY1aQjgAkzQceQpJd7Scymm604TcG9DJ0foTpa83UHLSYlMx8haQERlKolDEkWDuTP0UwfUhb6Gs0Mk5zJdklVEDWzUdYijBQGYKuZFEJrMiplrH0IqRTNZFxXzaD4CDoNIT1WQSWZi+yfhAYpEseczBrN0RyKWiQa8nmazVoDMKbbs1pIw5BMSXaeR+MoJ2kTp5WHoNLk3Jw3nGlC8P/ujBSAFI/uBO5FtlzSVSP8BlXWYeRWjstx1cGZrNMbXYFssUghE4QbZzYa80rfvnv07T17P8LQrXTN9m9aQg+7li+TYclcfRx/kMg98ahEIwUxE0wiGYvT7+FNOHPO48bUZOTijitJaTOmpUF8aRAt93wh154yvWnISXn1mpLJLDZ/9CCayLALk+3NakOIKR+B6mTu70yzUC8aQ0yrXInkFTVFgkukvJuG4MNIC0F4X4K9ghZ/gvdZJPdBG/JaHNEDyKqSgQ0uAjK6yCNCGnPUHJGTNAHMoe6IQQdBtmbWdGQw1LyGxgHcEUTMfoNCBOX+Os1Iqefm+atkR7mNZ7kVMSDZ5yCD1gGINKRgD8h8A/siiPK9ySnWH1qqnd6kGFX4SLw12/ZTDP86i+BN7l/QdDzTGuFza85buIfkT7gU12Wl/9HxFu4eLwKWwLadNVMMEgmqjCLZRzF1SjdF6jKBmIYxN95xLmkx57iaFs9L1U+tmJ/BBK7P6rXQTHT/ij4/qfSm4cSIImgFsCddy0y2yCFzAJuGZiRmWtFIaEx97gKEvAoMjCWCyJBMS64/hZuzdOa1HqYRWP5B8hvklesoqa6/dyynx4JoFtSSScHeYyWXwuueGLDVdB4s2PzSgiaiqZSDQo4gJq6NO8xJm97DRhDNZsh04zBScgHIzuZCBJ4YsLk5AvBJaU0kk4twsuQ6R1YWGWWEYK/kM9BMaOnv4kN84yCJAAZJDXSE7BNJzzyF0kolLM3vJTM7VBPSXP9n227nnwJO04dwM+JME4KS+ihDThIbBza6aqKBAC7monF3xYtJ6ORidyZU1jLywOHeUnb6omwbQXhJ16Dz5hQ7zoScfQbc9zhLKBuvEeR5XJQN7x0fksw87jzLwr4nXuCSrrNfZP6HGTUwZEf7Js9nHbZsxsFpCmGWGMwx2+cs7NMo6mczD2npTmcF/CyD3IjA7s3ue6MDF8Om+EJCtnWPSCqh3Pg52s5xMZe7mD4HYRMHtuPAJgbGGNhsh5LBDNSEM7PfePOPCbgsVHQwKa9EkaI9qJLq6WTfgmidrncuF25y4xftAc2JbbUaqJnMwwDjUQ6i8WGd5peQgI6KbJQQUomLpLJE2IZsTXLEkDikRuUEkvN4qKv18grknAFKqQr12sFA41QOY7KwRpdOQNYSsOeXiTKuhDAKbLWSkKZ2mxpCnqtjUslmscYkFGok0XXCQgg3KQaJ/L7VR8uq32sFfdOakcDtw93N9rWMPCDc20ay0K64LZqozx3YFXrmG+l4+HDSZH6SJqM6akhaS6BEQZUVvUmQAHfFi6ldqN1nEwWUzFlhiFyQyD3bC6U2UJpzaPIn0rx2/7hPcp5NtSEtZTAujytWYWTlhjd/wQZIroKxbLdntNGBS7rmclxzKa6b+Tf5DN6Hkp/jNg4lWuzSuOLydpVDbnP0VYhcOErZ3KrCNoTk9HR5ByXcdLR8hGQ+is6PQEyaQxH8+ZjkY5BqSjIrnll6ImlVP5rpxRFy8UlICTG18+KqeghUslldEsNIJJt38vYxrbolKmGTTVPZLi9jdS4nB3n6bPkLngziKjTZxn2IacmpsIBJMxdp0haCJdgNQlDN5JXmnKKP0udxLcgmRxhFSRXiTUuwhUATPRQS0zThszt+p9eAKJYGOTcxUnx+tUeX5DPTELJgTkIzlhVoyTvINulDcgT6nsl9dM6ubf35aV5Vg5lLbnvY6i5XSE+KIxbg9uHjbMIwacfpxzcT10PXd2WBWk0/lqtQ5tITnZuHEVeaR3ucr23kS0z0hLPNAv1y/qlFQi54N5bGRXaNu+JF7t5eLGGklklu1/B+iYcc3U1A+Z3j27h3TFFjt60uEUS5Zdhw//UxF4ctl8baL9sShlJ7VGHMWkNSRtL3GOu7kYVGafISdKxmpWgmGE8UkSzgKkkUgU816SSh7DSK2H3OpBC2lPMtUVqHdD+yqitzDUKMiqyFMCrxKMComWgyEZjbQLUQgjepNRpCFs46UwRPTBuKTstx4zT/DMx0lr+k+0/qkisSkJWaNC/ZRtiMKcpo0swnhzP5CCPvS/DHn2L+geEU8xBuOpxpQpAcY9+0yMt+gCTocokGicnMYE5JW3BLElAD496VMkyjh6z+UDuhPWkTed+oUiv2ODJa58sn4a3Fvt6ThiWkpe+hjUqaRP9UO70JxTGvpuYcx8lMVX0P3udixOTf++tawpnt86v4ueirIJHLcd30hLh1qE5+7wMqQpxQtACA21aXmjapALetL7EKI9s4cDlHIG3z+dHeEbYxsI2hfDaS2GooZDFm89J2DIUoWpIIKcTSktjy9oYkiuYgRehb+QoNLnopqwEqZsqyY5zgLWYiymo6ObgTCYhdV5PQFUcsRgwWHSUuW7FETEkd34jAfA2pmqsSNtmkJfV4O6eMhV3DyEMzgWj5HjZK2Crh8kjYxBQ6u02vFHpqhBBpfARzQt77E4CSt3DKhKAK23PcIOdME4LSlkkuq+BcNGbMJhUTKtZZbddqdw4jYWL79+ed7KCtZidgohHM9VQwOWoOaIOtwG28FGLqiGBOOyn2apMktkS0uVVyGLLvpC7mxoPLVXjsKql9UlLbhbDhApudpqq5v/UDJPKAoTU7RRVWqxEr/w21y5VpHNucyLaNA1bqwsp4R81koaGQhoUbjvnzJr+PUYgxlHcF4hhajSLXIFI17cI0iEQQybZPIZAmssmHu3bag7kJShazT57L3z0hVFIgRxulZ5mDnSqE7GBOXyf/PDoi8MdUsmmvIyrtHI2sRgjjkMp7bzSTWi31LaMim4jEmLQdJ+hl1KpBjLH+tiHbrrSajU7RdLSYjG5SjBr4WEzRQL3fwPcuSN8rWfi8gTGHl/aC2cM8CrMNc7ooIhvTb7Ncgn78XvC18z/5R+c1gn1moLkS3f76+5zTu/bvM4/tymie2z43xlyiXHJs786o7rWWojl22c7++H3Ocu+3CEbEoqjobAvFJHOU6PaZw5rsLCZbNbKrIEXcZF8AKrUoXsiKrDeB5/OwfVD9q4EaqGRy0U2xmKjcgllVChH4NU2z6hdHBsJejaA4zY1kimlKZgkimGltADZZU1ppkt9jNhuNgbBR5EiziSmTgILEmD/nV7Sxyw222sH8T/WKsfgQbmJEUthp+a5tvaF0TKAPPwV4QLjEWrZcimvuirdwJFuOdVXs1zbenOPUCKUtFpdXwRZ2uSfW0dcg8vfSY84UM7p7POmHafNLtvhVEah9uWtvIkrnTX0j3ik+N78e0Y/j77XTFvw1dwn7VJk2NN/9uf2zTMfUBYEvTljnt5sE0nymRLHveU9zo2pOwRVhslynrsj3KaMH7C8WIefL8O+T4x0B7DzWkYazOJXQXNumYlPMUVTO/BVX2U9iN2HspslXUu4vO9BltIQ6J/Qju30Hp242WgjhpsQgkYcMd7NmbOzq/vOGJOA/Hi+w0VUpbhekOqDvHi/WZLMuhn90Zoq2zEIo/7BSKYp8/EQLqCtNSMTRdwMz520KmZ3/sV2UDSOBj25v3dn9zD8XmI94sudjyWB3by8Ws1hvHuvrAm2aZ1GdyZscBupJI9UlGtIcfGiqCXOXk5DGC0Xwe03Cspl9NrK/p74UsT1LIwLfaa34EEgNf47jqvErVD+DFHOR+RUizsmczT8WvmrvJXQVkm9BnfAwG33+7BPdyn7abd4W7809s1Daa8zsP8C6OX+q0xIKDpCJRgKVFdy5HYF1kcXtdQIphC77DzQkU5NKzi8vobRpUtI7mE850mhxKt/EMDIYzBErKVM5qnCcK4NCykVY68hah0ZopxyEe7gnXmhMSd4PUVC6ddWy1NbtzKPYrfO1TECXRjA5d6IITyKRIfVDyGME0RIhVMhLA+uwZc22cfima2bi6U0yjhTMvr7RdTluJLDVgW02a102P0sW+NvY1j5qxhadjSyagyWoWXRRlJju1ZGCCf5UjmLg1uGYCxK5e3uRj21vmS2vMZL8ABud71JlDmQv+IHGV1D315c9KxP45mD2EUjjbCRSdjKrJblRhLxmx7LZ0S2OtLWtk30E9XvxAeD8Bj4iyfwGRhw48tCOWGCeHLLQ9otfv8J3h9ShTtBKGgLzx3Xb6n3o3vH6SKn5a05UtVPVEJJrYiGEmxK7/iybbFbZaPIPzJkUoAoWq6fvcwT2mTD8Kno0g28Hf83j7KOo8xtq2QVcBJALh40qk1INkGv+zCyn/Dp5X+irmc98DsNKqgN2cDbyEqGTHa9QCae2Lm2zsz0x2Dh9L+Qgyq3hmPuvLhVqHkk1iawMxwNX9xbifeDqXu6/ulTG8k7qEeHDm/tx73jEx7YXuTSuOY7DZKVvjmGgEIA5iBMBVOEOtGGnXiMwwe8EfhydEd+sZDORRmGUVvADukomonApFbebOn+ZOpG9sPf7/Pd9zmTYKXgl/684lZ12UPcdsOjuNBof2VSc3p7QypxrFFJyPDu/gVJ9A5r8CEANn22uf7pmoor0uzmvONOEALVq5q6mKkARfpFpD+RDsM+BOgefNFZNGENDOrUkduvgBSYk4B2rvQ/Arge7SnbrrBlqdKvlk0ws/eo7aVIp/HQUJUCpCnshbLuMZNNE0lh3jRf52PYid48XUrezYSz7bh0uc/vw8dIFD1JuwsNWd7n7qRrfmM1svxOOuScecb/trXxkcwt3bS9yz/aI4zhwabtKpS1cGKnPN0jZwPlZOBOPRQmVbeU9Cfc5gQ95ZY8JO5nkInihT4DtLenY4TiZQXDCsnzetmSwkxC8UO2IwuYEVGGZ24Gmebt/P7kwXf3O1LmcP8MOk9LMfZQ5aJpfjhYueQlhVMKxIwIXaVTIbNTqPM5EIL0D2dc5yvdzulrCoiHcpNj/R55E2+z5Q/aF6Ay+HPTOqJo5p6Yjg1ICO5tjLN4f2RHJM+No7YX6nEPVbPd+rpPznGZwqL3dx+4Hk2RZe6nnKz5/yUx41q/CBPjtqzUfGu7Pr9/7UC7HVSGPEeFxF363mN/M3HZBkq9jba1EM4lelGOOWZW8hHRM6q+8HTYp9DSbDlVTnZ6tpuqn4xhKXoGt+FEhjukGTNibuUfNtKPUvAKl5BaUUti2n5kVvYM5VM3xClTnqdllskAvztdsCsKX3W5CTrOQdd9RSrhqyT/I10jbahiTNj8/nagAs0K/OYDSIrSJKnIaQdrn8iByw5zxKGlYslGGSyPheGxzEizktBf6VhLbE0JUiGOdv4VbzyTXXQ2UxWR000KgaAd9SGg1w0z/eLUBPY1hNObIhugMMObUtNr9g3Ujc9ebc9xaOQXvJLXwVTP5jC6ayddEqvaEVjPYhbmopUNgoZmx/Fua1wzM3g4UEggqEFL91VGUoLVnwaiBW8NxU8Mo9YuGQZVbjz7Eh7b34+7xQjEbRQ385vFDedTRB8rKf8S6xoXc7CgRnu0bJDJo5EHDPbUYYYiEUTnKKbD3X6dEt2JW2Nq9psJrY17yWnJZsflb/+KcI5BOkvp7USMFe7mSE1B8AQXZ/GK9lXXQpmT09hYtBAImsKUwhgaquaYxHaXrhq0g27Tqli1NDkIhDieok7aSxxargtrN18tfn6RGJjCh1lSyufVEZclond9DRk1zzaYhIBXQO0omWBkDMkQ4grBJuQZawk6NRevnmnWtKWzJk8QYU6ns00CnjJw3nGlCAGbJoM9H8OUsYhYqqfT0yJhijnLCV5jVEvrYeavKOQevGRiMAEzwjfYvqYznBL5EKI7kjmi6cEt/zR6HhHOm42TybpqB317HrOG2UQMxh2fmuyOqsB5q9rT1ge7zPC6GDR/bXmzu4Q8cvb+Y9ax66SC5UZE7P9ASYF/oz2tyfVZpLYvjNMJcD2JXqKgJurohbdQs5KU/Z0Zg5KCrdKkRisT1GkFPQEox6wi5HlDIZFJ+QlnYboXhsqAbCJskiEtJrjxPKzRngjnaqtk0m2Ja6m5A0rZUf4iGCKwtqN8uSsovKAQg1RxWyCjNb3WJpDXk68RBUAnpvG1AxphLCuT+DZ3JyOaqZRGlNSfBsMraxCnhtKKMROQi8PPABZIsfrmq/l0RuR14KfAo4DeBP6OqH3bnfSqps+S3qOr/kbc9kdpC8yeBr1dVFZELwA8CTwQ+CPxZVf3NXXM6896ROTJIZpqapeqFxzpHBqX3bY4WGhNBiNXr3//j8c1e/Ptc4Tor9uab1Kd5SrOvtMF04Zd997L+8yFawSENb04610hi7tx9ZrgU4Bsbc4+d46OhPAE154tOzG1zSXcpUquOZ82OVuJKb4uWBjlDiIQQGYZIGGLqjxBIReFCllr5swzpcxLGml/UbYOiK50kbXn04aP1lYWwRRW5jOVmNe2Ptc953ElSmXs/cS79nKBqClrHb8w/WfMJI6XDWzVT1Rf9926uceg0DqE2zVkH4pC6qll11+LoDtQy3bl3Qy3bHcAdo8VsJKdoMqo1sE56HYDLwBeo6uOBJwBPE5GnAM8DXq2qjwFenb97fAe1Z7LhRcBzSL3oHwM8LW9/NvBhVX10Pu/b9k3ozBOCrSbtc1ThWIcS019DLudNR0eyxfcmqP2Ap70NmnO7fW3V0WouKiUVOgLwwn4+sarVBrwWMe4455B9aUwzp1XNqbkm4hL75v8hnbRKsppLQw5NXRvpkjKH12HbEUtb+dVgf5ei4Xltr7zXcValdpNpSNaHQVlJEv6D1FaaAgQjAbfSndxecEJfMimIW6lbM3l/bj+GF7JOOE7CM810NKdp7Fqr+JV7NkXZ3AqH2FyFdq79/TpisZe/B//ehL16J3JHJpPz7WuAxo9hc1u5xjkm8KUe6zWEog1YWYtidtPWdHRK8MPue508jqqq3p2/rvNLgacDL8nbXwJ8uZ0jIl9O6k//drftDuA2VX2tpnK2P+jO8WO9HHiqyO4YsTNPCIZeMzi2xuszt9iXMhjyitIcmn0Wsm/6EpwGYRpFPweYrurnCKAPAy3RUI4E7FWucaCvwIjBv/z5u8pkzMfyn6wpePjVumkJg3u+/TGQ/SAuq7i//qjS/N02uRZRS5iSw3VTNzyD1xCGEIuWMISYy0eQO6nZu0k7wJGHEUAhhc5Usk9LyKdXgVhWzzOagQ/J9GGZnTCePKqe1ALtHE2Whm5b877nBooW0X4vn/sXM8cxNUmpE/Tq5lI0gCDEVSKFpg/0HkzMXqdoMrIkxJNeh0BEBhF5M/B+4FWq+nrgk1T1fela+j7g4fnY+wHfCHxrN8wjgDvd9zvzNtv33jzWFvgo8JBd8znzPgRoHcijmVyQppidZeHOJVCltpQpuSoSm0icckynEewrTdGXg/DRP74k977+y7NjmmCmrTzqtx2CWZLUliBKZNF9iKgoHdIkJp+LG8p8G+ao3zf3S7rORf/q389qUBnWMrIOI2MMmdyrOc+bjVYSk4BRYQzKakjtNQkQiaiGKvDLhBUhrVBVc9exHHWkWnsS4KJznD+4hQn6QPIlzKy0y6OwMWIW4ipJsEkmEqaCVfNC2n82/0Gpk6SU6CWJmKsivU+Ed72X9K7pacT8eEybkfaefWis/26COmUTU4nJ5hBqjSXLSi7bhnw/mvoxSA4EmAj/4LZL/RueBprs85PxUBF5o/v+YlV9cTuejsATRORBwCtE5DP3jPetwHeo6t3dIn9uQnrAvgmuKSGIyG8Cd5F++ltVfdI+h4mIfBPJ5jUCf1VVf/qka/RkYLWLmr4Inc07ZdeGUiNokFw9VJMjN/gEMboIIOaL3JXxmZKB9Uj2PZMD2uQr1IeWYpx2hbn2ppqrJQX/7Px3CzOdu1aPk3wtHkMOAfXVXK0ndBLmqa5U3w60zi0J6oEa5bXB1ZDKYa4bhuJD8ESQej2b+clIOUUShSAoAdHUXAbA/L0AJY5dQZC8PZuNVIqzFwsTdYJ4YmKBFMYqTBzV3txSTpG67SDLh7h3oYSzZvlavvjvOY6hvKcWm+l+9/olbL75o+y4j4bk/OmZAGwiqoJEbYlJJDf5cWNktkt/q5iEfzOwTktZnJIPAa4o7PQDqvqkQw5U1Y+IyGtItv/fFZE7VPV92Rz0/nzYHwGeISL/CHgQEEXkEvAvgEe64R4J/Hb+fCfwKcCdIrICHgh8aNc8rofJ6E+p6hPcg5l1mIjIpwPPBD6D9FD+iYjsL9qTUW3fVTsYs5lhzA5eX/iuh29abyvQfUL/ajF2wraaiNqVuDcp2fukP/QJwnoOlqGbxqxC0UxtzbFaw0/98T3seVWz2vRffu+fSdsqiRk+Ot5aS4bMPA+//ZIe5UZArTlvHcZsAlS8iW8VkpN5FbJvI8TiS6jmaS2mIzMjVSlHcSYnxzMpXj9oeW9MNEzNMdhQpiXQmogaDaHXFtihcfjtYkK2e7nex4QdxwS3P6/KfVRRNTFJY35q5nSli3A33/LZPyvxzzD7FITsV8jv1vpzkNQG1BzLro9ycTqfEk7LhyAiD8uaASJyC/CFwLuAHweelQ97FvCv0nX181T1Uar6KOA7gX+gqt+dzUp3ichTsn/gq+2cbqxnAD+runt2N8Jk9HTg8/PnlwCvIdnFng78mKpeBn5DRN4DPBl47b7BTDOwzxsdXNVSq0dkvwzKEs0vGFLntW22U6eoGCunHYq+bhm6eUXaO5VnQk29BhBKw5up07fOL9kS7NjZ+83n9tffpRnMVlYtDuMp8WziwHZCSJLv36280WKaKa0tXVLZBdqVfqo5pVyUDZdYs5Yt21z8rjyvbNY7Ln+7LUjgAcO9dT4Cl+Iq/Y3y/C7Ihrv0lva+Sc7jo5BLfYQ8/5jmezwOsM7/eMuyI2ThkxK2zOyQMpTzu63YnUYg+RklMx6E47wyNbMKNKYTtX24/ekPUknATDDiTpdsKsq+jGrLl3YFbUJ0RS4KRyE0jVXbsMQ3cdqBxHpvRJJ5aMcKv0Db25jsNo1JKTkPatnQ2R+QFvUKo2TzliIipnjlXIV8E8VjLWjIPRIiiMQkiGWoDuV8s6Yt3Fco0pQ4v4+4A3hJXvgG4GWq+hMi8lrgZSLybOC3gK88YKyvo4advpIahfR9wA9lefoh0qJ7J641ISjwbyV56f5ptp81DhMReXg+9hHA69y53jFSICLPIYVX8UmPcNU3XXiiL1HhHZWD+03YMT7zIIU5poBxH23U2r61dSS7lbtpInMoGb9M7fK+cqjHviinQ3wQtn++3HYr7M1c5Ofkt0+K5uVoHatY6uefSlZk84y7bqBWep2rpPrJ6w+X40vEkQtbrfWT6vcUybUqyX92HSMrM1MlegmJFFRLeeuymBQlSo2HB6l2dbLdPEtzNaO82bYDSNBMIFWQF/ORbZshBf9T8FqCmU3s8dk+yyWooUP1HA/vS8DmA9Yiwt2nXdy923xD/twdutN81G/fQSKN49qIz57FQOk5XXwDg+TnoSVru/hAFIr/xiZmfwt/0bBjMleB0xpJVd8KfM7M9g8CTz3h3G/pvr8RmPgfVPUShxEKcO0J4Y+p6m9nof8qEXnXnmN3/czaDYlUXgzwhz77gtYaRd6HIMyZiMqKfwYp8SkCQyrwpuZDGGZLQ+9Drx308GM10T7sSo3L+w+MMPJEcVJiWrqu5UL4ip+hIQkjhV47qNfUCVn2JcF9GKpv/Wn3Zn8zI+uLspn8vbxvpXcqb6hOZLt3my9EQibeuVcUJQRFx2SWCCE3a8k+A08GRhB4x2g2rxRyyE7nsr8zrdimckxnIjJhXoigP8abJbyJaRf8HMRpHORxegKx+blL7Bzazc9vOxHiTjGnuaarGSkkZ7oWh7O/nUaTwmkikAjASmafJpRzXcvomvoQVPW38/v7gVeQTEC/mx0ldA4Tc34YvGNkB7qVNtVnYJqBhSt680htolNDPg2WVTvpobyDDLwfAGqo6Nxq266ZjvOF7/rVu63Od2gbxf6/3/l7UkE+H7bpr+3J4JAmPJMIrB3XHdBGwPchpsc6lNLgRz5p0J/TmbnWsi29o6fJafMJat7RLJnEQmiT1yQTBJIT1MpKW5v3+qohqb0tXP1xhmyyMX9Cidd3L9HptqIZKNPIJJWTSaF7n8zN3UNzXv8zOEQm7jvGXdtCdqsvQ0oGdPWDSOPb0JzBnfweNRy1+Ask+xXc91PDzr9L9zqDuGaEICL3E5EH2Gfgi4BfYYfDJG9/pohcEJFPI2XbveGk63jtoISZurj1ufaJsDvDtu1hXAUJTM0cU+F+2OP0dff9tvljd9j/O1LoETotYdc8ymd210uam9vQEUEgHqRBWSmLYpLr5lZ8Lmb+yfuPZsxQRt6BGsFUSmVYcIBUbaYhB7zwpyEBL/Tr9zlnc4eOJBpi8N+hCnRHBIUgZkhBtN1Xs4dpfQ/7sGd/sUB1RFDmK91r7tb9HJudM2P48b3gL589KYgT/FTHspGDOaWdg9k7lk/fqXx6eQg3G66lyeiTSHG1dp0fUdWfEpH/wIzDRFXfLiIvI9Xo2ALPzTG6O2G/u7rSr3VwLPy0tfdL40fw2BeBNGbbs3039CahuRIVPeY0gtPEIF1/Atry1/XZVI3G+gE0TWKYIa28rfQYJuRIH7cyn5E6o4Zc+G7cSxopoXBVNLRRhbXkv43GJkjAnM9BIvfkbnh9pFTSSJKQjpkE+vwkrxHYZ80EEavBCMjhkMjuCJJeCJjwM5u8E36ltg/UH7K2pxazTmceEjNblJj+6bVPNNlIZ7Iq9+BMMG4e3rR1NWic4DZdyeY3C/Oywd29JjORIpodyNSwXxWpz3QgVU9FZs1Hp+dUJlXHPae4ZoSgqr8OPH5m+06Hiao+H3j+lVynzeKttvC6bT4qJwkVnfUNBIkEjcWi7/fvii460U6fV71X048BZuzxZVWcG+10Nv10TKvtxB2tN5tQWOf4nji/nT9hDnOO8ercn4a2To7VXL4iC54oofgMfIkSKysSdV1MTCmnYX+UctU6WtORFI2BEt0C6bM2hu4ZeDOOQagSVFrhVASjkYVL8LLHZ0MJVCdyc632+GJC2meu0B2fHTEUApoR/M28bYxD5KIbqyeFdG2pyXIhH2D/xFTQoZKBDSZ50v7PXSO6Min0juXTcirPkO95wvnIVEac4Gn9A72QTKvN1oxiBdJ6pIS1qWnGF7Pz17RM5H31hNJ53Ur2hOXcPsf0rgilSYXWGdOT+Qps7nPox485hLaU8EZO/BH5ZEGYyfqWmjDWd6MbJXAchzLOugvJtVLYbeHA6b2ETIihZF9NYVoB0FQ+na2C2ghqaQX0LswI2sbUo91h0u7rfQoaZUImB2PX8fk2ey2haA7aHtcMaUQ2N3ZHDIWIIJl1GmKtmkLJj+h1loB7SO19pdzHkP5u4+xU7xOW8tc3MWoHsupITlblupq1rOA5W3p1zBqRpPMGUchaAoAFjnsyGCSyibXnQd+3wLSJmJvQA2x1mLXJB2kTuBrC2uFHKM0/NAm7dRjxpbPnSMHMQ8149qx6s1Hnr7Bjt3FIcf0aCJpIKa3mkxSxfAF7nqMKUSRlEXe+A3+f/+ne38cfvPj+UhxwowP3xKNCSCUySdpieACXXDXUbQltjazCyDamqrMlY1kiMQgXh1Rgb5SQk9Nas9G+laBmqaaxc+S6ZbQJvn0CSYUmMc3uz8s/yavhRhDpjFl8RpPwDuvGCe2O7wW45SM0JiN3itdk/Lk7SaknA3ePmonGSoOn/Ijc4wElZnVFIqnnRNbgSt6Z17RGN6kARGdvm2uzebVYCOHmRRX8boWoVUs4pF7QXIkLQzl/x6pytgWm369hdgW/rwPb3BziDJEUk1HWFka3et83dtsZrYabQpvNPHueBbTne6g+k3kntvfroLt9NQCPuPBhV6SwmotSIqEWs1votIjLcd2F+kqjdQWJrCGFpWbn80qE41zmYgi5s9oYitkIs0XPzLNoC7NmlUoGk6foBXCvKcR2U7cerkLelb3YxVfFuTuTAd28d/Py5/v3k447GO6mPDGUngqdtqRKCT+1HWICv5S00EwKknMYUt+GpAhqNoW5kiT3GWfXYXwIzjwhGPbV5Y/IxNRQ93U+B2d+GKQ6IftkNKg1+uewq4vZ6IRxKMfWSKZUJrrzUzjT1ElJbcns0t2jm4cnzj7P4CRnuCVz2fuhungpzCetttNfL3Wmi/MmII0lIMDuYS0jx9mZnIhhVRPmiAQR1qT6RpBIAeOuAKswsNKYC+LVaCNzAItotuNn5yU5vyBHE6k4W7UAfrutXGEi3YuD2cmosvKWqgmUQ4wEHCk4JWyKzrS0kwz2ycjeVHWl2GVakul2+1ObtlR8CtF8B5UIvPlIIiVpjeR0qqQgmdLN3nXaYafnFOeCEPraP7tg9fh39kaesz3TrnbTODkDWCMb2m5d7fViMz9LzLKUrCvREjxsHs1KOQtNqCGbNCv1fSv/K3N011yFXBk2r8pHaYW4Fa4rc9aWkHpsdGCdNZzyTJ1TGbWwVbgU1zxguFRMS+ZHWrtkNtMS1qS+eKM5LDMprEJkFSPbEMvzUQVCIEatK/6QzyOXWyjFj/LnoMX+rULJ8MUdeyJ/OpuMdKRQSMA2mPnHC1X3eZ8WMCGD0xZuJ2gVzS4jTenmb9pPcPvtmZZnWzWHpuCgkQKgUWFI5qdTW9RnojqvOBeEcBJ6MwPMd1qb2z/mzOUUZmnOz/5YPSACv0Vv34daFsPKQcz1QWhW+AQXg5/Gq2adSja7GvD0EVm+ZtFBHdVow1Vt2/Ra+Trisshn5mTmpzZM1qRBdipr6tN8a7hcyGATV8V3cM8ohViAkhk9quY+0BA0PZdVTMXuVuYHCckcEKMSQmWOGEMW6EoI+TlZBFJe7ZdVfyaKEkqZBdjkmH3oSKFZ6XsLprff+3F7IpgjgRlBLTv2TaKDZuZ7kLbYm4zyuwY3hBP+KfLIjW8EEEkmI9FCGJLNRhoyKdjfJTug5aAJHoqFEG5a7Cv3bOWtm+OvcEVuWgVu9Yv6OP94UF5BdUbXH5NvtjN77Y4U5lCurWmOTZ6EN7t0ppo509Nkzo5k/HF91FF9TUt1mJZgGkzNE5m/L++YbyPBuo5xzvG8yf4Vq5WU+lp0WlT++5kJqSSszYSgDqKMZjISqaYjpBPCXfSRI4KJycjePTHsgIWAGinYit/3RC7jmYClfp4zD+36mV2RaPMmL+227zh2st89C08KkO/PHNpZ4VWpJjrzFWjWyIwEkhNZUm8K3OSMYQrTnRIWk9HNDetnsNnxhyomHtr3g8aeO0eqCWjTxb6XEMpcIC8iTUTNWka2Eyv/YfAlq9P10w332o/lJZCd6j6HodEIzH9wSvq0Lw8SUUYJqTGOzYtUiK62ykyRUKYt7TIXGUwrMG3OtAMbz8igdyobSvay1raa1jRnK6FsU2kT1Mx0VEZ0kUTlexE+bp/TFq7IhK1O1hspuD+x/Xkb34QJV5veLnOR1vH7a5ZjPLxgPwRzwr+/lCeDbBYq/gMjBXdfZY1RNIX8NdLce4l3EFIlyxFSZdV6zqlgIYSbE+nvHnNUSqqKmYTFtslUDkz7HJjjcW5132sRk8S17PS8IJvqpAQsUyYZG7TYu20eVhV0Fcay0rZ5HEJSwTm5oyOFXkswX0LteOLuRZTL+OiiUMb2pqJdZiOvNVj4KXHFKozFfLTJ8f7mJF7rlsFFclmexu1HH2/Gfu+l2/nkix9mE1epPlFulmMEcU+8wFpGLsX0s33/8W2JRBzRbWLWVgoJt+QwiEIYGRFu6Up0+wztlTMZQcirT5yJyK88PTnklxW4y5uLvdwcplL4Yn71HquWIXa+/XlDZxMvc3KK7KFCqyeLvO0kx7Nd/0oczuUZQMo9CM5klN9FSeGjeX9cgYwpdFwFwhaMpeI6+QcstDYYqTgiSSGsux7yVUDpHv75wpkmhEPgV8++Ac4h8OTRINcPHgiMrja6VRb1TVuikVLxDXR1dmZW9/vLXsvEbLMPfY7BZqaW+y6H80m+BF8jyMY3Z7J1MCuOddMeCFzSNRsd+MDx/XnEhY80Y26ysJ97BkYyMecgrGUs5iKg1dYKEc7/DUtZCztKa56CaQl+3wRFgMpUQCjQ5Sc0AtZW/DO2fm/qacxARgyxKiN18EoGZdUM0zpHvXagzGoTPRlMzENXIVs9GZiGUB6f9xM4M5MKhEhr9nKmo34ipgkIAqfYQ3lyL4uGcPMi2dlrG8wUiaLuX071A9TEr5NX437FPjk+/8vbMDUblUzYrBEgbfnpIMoqF8RIoZHX/9e1W/hnX4ecbEbyRf96rMN2dvuowqW4LnkQdaz0fB9ydHdJJEzJbTlCaSY81UpWWNJZP2Y0/8DO+43lWtZes5TsQBhjqE1aOrOR+Q0a/4F93hOBMvu4vLm7217CUHEmIulIweRiqArinBN5cu2eDHrhP0cGV/lTnTwm6d7tXkxzmiGG4ivwJiI7r+yTIq0bP0fngL/PWKKMblbM2IlzHDtQTEUWajq3Ig9Exh02/bqS7whByaRAWVH6zmreVGOkYLZyIxBPBlFT0b0207e9ZlQpGbhzmPYNqIX8+h7T0EYDma8jCebQ5hpwsqYw7CGHdK1QeiGbH8GE+GxGtsz3lR4RNnHFpbjm3nHNLcOGjTm06RLScrJcvWfT2uo87W+3CiNbDe5vWZ3LKrlxTnFu1ucwcSofaEqYE85zn4tzmUY+tqfmA4ww1B/Ur/ZNO5ghg71E0M/xCuAFfnEeexLoFvoTjYXu2O7VaBeeLBxRaGGP08ENWMNdN5ymq+W6I2mIteSxdcoys0yJEIKyH9pOYoamgF2nHQz9a8bH0Oc31H6+sf2OEVT7q/LRN9YsBq48R8DGgtqus2/tWeZtTmnxTtYambWv9He9T20+7/KFWEmR5BQ2P8Ph/7IsyqhEFDmSquGvtQfGJoehbrKT2kxNPkS26bksOQQ15H7LIZaoI+uVAJSqqPdFwFyJCdqbkJIpijYDGRpzU1Oqwp9r14YT534tyKAOXl/qSML7Urw5rTU1ufLXQtfzWcq7BlLUkdNETk3S6RW8ToCIXBSRN4jIW0Tk7SLyrXn77SLyKhF5d35/cN7+34jIm0Tkbfn9C9xYT8zb3yMiL8y9lcntBF6at79eRB61b05nmhDmMDhSgPqPvl/tn9x+sj3eTAtFoDtysL4J9draRM/0VUdtnh6+v8GEFJDJcV7IH2IC69H3G2j2Sb3XOVKYhPIeKDHsniw66KTQ15Ir0ZGBHXv3eCEJ/Tiwzb2gj+OKrdWXylrVNu/flDF2lyj392xVUH157GuGObNOhhfs3h/gBX9PHJOxvGClFbTA1Kwzd27/glZAd6+J4O9MRLLjnub+NBOtoiGG9jOZOBisX4I03dbuG/bc8OQBnIjLwBeo6uOBJwBPE5GnAM8DXq2qjwFenb8DfAD471X1s0i9ZH7IjfUiUmvhx+TX0/L2ZwMfVtVHA98BfNu+CZ0bQqhF03RCCkWAy3S132POd2ARQ0fZSWrfp1U767WrE1kdSdQV6RyKY9aRQl9R9bTRxOOzWyOYkIJzKENtam+fJ/dm2k82+yQT1fQadv+1pWZNZLOCdpfjinvHI47jKpGBhvTKgv84rsr3TSGCUMjBvvek4O+xEsH0mWn2iNZ329GudHeaX/ZhxsxTxug0AROgE6dx/9mjN+F0xNAL+r3YRRQzRLDzenmeYezug91zb8etWoJ2WoH28zgtnJKGoAl356/r/FLg6cBL8vaXAF+ej/+P1oUSeDtwMWsAdwC3qeprVVWBH7RzurFeDjzVtIc5nHEfQotBcn6/6yTeRPUQi73cn9PnEjRjFiIx/0PbIyFZ5kPbSEedHyMveXYRQd8wZySdX8JG8cX69v+q55r4HIL0fPI11UdL6cQ8M39dbxrb/S/BBLpvO2o5CzDv/I2OCJpENNos6W0cilM4iEKspEX2D2wxM1gs+QpJm5hqXQejW617u3x6b8fcKaB3wPwIzaFKLYVhn51ZRJVTbyXs4W+pv5/mdqXb1msJ/vyOwJooLKnHqAhiBe1s7HzvUnooa30+QVKl09N8IFeukO+EiAzAm4BHA/9YVV8vIp+kqu8DUNX35Z70Pb4C+I+qellEHkFqQWy4E3hE/vwI4L15rK2IfBR4CEnbmODME8JgUTyFDEzwhyLEfdtGnxuQUIXDxHcgM98VBhGiDhzJmMo+59VvLXdR6wn5InBJK9GmWY2PoU+lmJNjdMXYCOPeDzCnndg1ymeZFtjzBOUTvwIhR+Xb3PN2lWY177WIdA3fo9juXwjUMFQj4UuaIoNGDdwbjyYr9N+693buuPjRVHtITP+vYbFe+I8qxTyUtIHqHwiiKdHMm7ucX6Q8h/wstxo4HttxgGIiSjWO8ismiaYqEHP565g+l+gTlfk+yRlznFls6UIrCJUaX+AFaXeOSjW39LKvrJT9tv5afscB89z1fWKGchqBn4dKpxG478UX0k+4n0sfe2H3k7UFYiIOkdnTrw42+cPwUBF5o/v+YlV9cTNc6gr5BBF5EKnD5GeeNKiIfAbJ9PNFtmnHTE/aN8GZJ4Re4E2jjCoZHIlFutTs4Zgjfnyk0VzM+j6YllCQicObeeZqJ832G1DJVValaDo+Qqh1NlftJ+q0oqs9m1Q62s23rPyj+141hZBJbNeKuThiw5h9KlXYzvlmvE9kE1fcG4+aktu+PEcql60EVYL9vQoxtM72uf4N0Um+klsgTivUrCXka2/zOJ4MxphIYoyhmIMaUlAyMTA11aSJFsHR2Mhxx89gp3K173gpMjC9RyardFFqddQ54ThjWjrYzDXzE5nY+23bDtFUtILJ82OSryE+CcA/y46Igv8ZmpZwSrgCE+AHVPVJhxyoqh8RkdeQbP+/KyJ3ZO3gDuD95doijwReAXy1qv5a3nwn8Eg33COB33b7PgW4U0RWwAOBD+2ax7nxIXh4Z29NLstRSHmVbvC+B/++c+wdzuhyPRelM2e6mQi/QgpV2JUmPyoNcVjM/Vx9o97G7+fZaxh2XOswjpNV9JzjdbriniZ+2fO1yClv8rknk8EcHnrh7klvBnMkbzRpBSO+33Mogtz8CD7buGoUoXkdjwPHMb22MZT3bQwdGaSxVJMZpsj0QgbOQG0CbJSpD8CteicmJUhCe/aJOC2gI585n4FpJf2r9zUU2bznp67Svvefbd67ztupGew4r9xfnmfji/H7T8DcvE8de/4WV+JDEJGHZc0AEbkF+ELgXcCPk5zG5Pd/lY95EPBvgG9S1V8q00nmpbtE5CnZP/DVdk431jOAn81+hlmcqCGIyF8B/rmqfvjkW7z+KCaj8jmt9L0wXstYI37MtGShmc1YJuwqmaxl3BnF42sK9YmRvbnGm5E2nd26r99TjJQl9XQ3rIpoYL7fgyHMzBGc9pM17Ll7KWM4wrCyG+l7r/3UXg9JQA+lGF0x+cxIhW1MJS+i1G5ohRSpGoF3JHvBb8fb/QBVW+iv51b+Rhrm1zBNwH8GinbQXoDpP37thNoVrr6LOcVfKo/l96kz+fjbbe7UNkjVErQ/Yc88/HtzoT3Hz5mN5h7bdICO+Pw2d8xJ824wZxa7eXAH8JLsRwjAy1T1J0TktcDLROTZwG8BX5mP/yskX8M3i8g3521fpKrvB74O+AHgFuCV+QXwfcAPich7SJrBM/dN6BCT0e8D/oOI/DLwz4Cf3scw1xM2ierslYnTuAgxYjEZ+fZUQzYw7qpr1GNXr2R/ft/QflffAyOU+XLPsalT1K+q7bhQsnkrMfjQ2n29nXtTWHDzriUp5h3uNcqo+g/MNGf3HG05CnmFH7JJqDUXWTZx6qswJIdwiLmxTd6nfS5BJQMjhvIcqOaiPmR3zgw2xhwBFSsh2DWjI4PyngWWemFVpKe95pbP+8lgQgQzmKya8+UaO3wnkHtzUs6pnL+Wn3a//6TVd0ccDRnsIBWBCWnOzmvf/pyh7JLbm+2njSuKGtsDVX0r8Dkz2z8IPHVm+98H/v6Osd4ITPwPqnqJSign4kQJqKp/mxTX+n3A1wDvFpF/ICJ/8JALiMggIv9RRH4if59Nusj7viknUPyqiHzxIeM3q3CzmeNyBiSydkIyhYa2tu7eeXzQdQnMhYJOahNdgVWut6mfFFVkgnWup8EcLDva50hMj9FZ8ir7u+S7XeOYaauPDtpEJ9C75aJF/Picg20+z/Zt8nne9j/rS9B5s9HYvUzb2IyD256eafEXeGGP+27beo3AbZ+sencIk8nmXqExqT5nMupDTzsb/CRZrXN47xRw0r1sHjvm6M+ZJYPejzCnOXXagN8mhwh3gRKKmue7039xNVBqAMFJrzOIg6RV1gh+J7+2wIOBl4vIPzrg9K8H3um+zyZdiMink9SZzyA5Vv5JVqVOxK6V/eAEVim25oWi9P6E/UlrZYV7YPbwHBlEbYmkt9PXFW6YCPs5lJXyVbqDdgn/SYmHRhvQ1mfQ+SPauVVncrX7D5NjAO4d12y11iYyv4FpDz7JzIR8L/hV60p/bp+RycZyFGaIYE5bqKTQaQIzmDNxnBQxU092h3XCOI2jzefyvSOlPsLJb5Nuu0fjFpl59QQx+b7nvsoYzQWZfZZTJ7eebN7qSEA9OZxaYhrtnPe9ziBOlCIi8ldF5E3APwJ+CfgsVf064ImkWNh95z4S+BLge93mpzOTdJG3/5iqXlbV3wDeAzz5hNmdNP3iD/ArY08KPuMY2kziQzJwrcdAiQKiJlHVY9rmLnZcH1208xonkEI/hr+23bvHXFmNOfRZyj4qyZe6mM6jJpWVshH53dptbtzzSMfVekQpecxnGA8lyawmodV3cwBbQl9yBE/JwJzFJuzt83a0khd1vyrE6LQEqD4EbyZyJqTymalT1LbNfa4b6/tkVeu+S+yJIH2XqI1A6jWHEs4Z5+c3udYhr5n5T7SDOSI4BIcI1V6Tsp++a106S0T3AQ3x7nmdRRziQ3go8D+o6n/2G1U1isiXnnDudwJ/A3iA27Yr6eIRwOvccT65okBEnkNK0eaTPnlVbNIGM0NYOOQgkbVEjhhZZ43gmMCgypgDtiNbjnXoTEfzIZQW5ZJKPEciu4vjAcXuTU6A29UprMxfQ3LqhhHzJTSx8yVz2ZmXNLCJEPL9XJBabbT0cyaSOqrNJ5kN2d7vHcupCuiY+h6QiGDVZWivQ2QlY1Pq2q5rjmGfYWxj2Xu9Z+Ge7RGsUqXSjYZcjFBLVrGVprAoISODufLdVsm0zMcRgSqFNNK+9O6dyel73aZREkE4U0AVtq1JqYk6mlsxXsFq0oSr2OcgiRD8T9MTTTeYCiUvQUXSElBo+gb465wowG27tl/7+c6Sgbjzdmgtk2gsWu1gztme/CRCLmOX2pLEfIBV/zvNJfsZFfaH4ERCUNW/s2ffO3fty2TxflV9k4h8/gFzmfsJTh59Tux4McDjPvuintRiEmqy1jprBWjkOHvWRtHcY7cV6o25aY9z1pt/6upfSlRNOiYJ7egFVOcvgN2F7Er27Q7MOpgJJ9Zr8tVW67bkSLbKp9vok9dqlm+QyIWwLRpWMx/19ZjSszBfQCQllJV7Q1JlUxdFtCXkH2Ys2lVU4XhclWNs3mbemX1u3TM0E5wX+tGRgZGFfffbCxlkSacWXjq3IvREQLfdJVz584SZ4/dAxV1zRhOxP6mNm4SmYv2GZyOO3NiHmID66+5dhe/6133AarpkJ7P/vvtrFaIIysk3dAX4RCaE+4A/BnyZiPx3wEXgNhH5YXYnXVgChcEnV+zELkFdTT9a3pOJKJkTjzIpDOryFebi7p1YKRE/naXtEL+CZe9OE+lq32QrGQEuw7mLUOqPmdjtLbGL8WBfR8iextFFGNXy1NNff0CTtuV8Bz35eDJIoaLp/fJYfQn+WICjMGIJd5UUqM5javLZRCPovtu850JGTfDv0wigmonQdpzktO3MRfmESYYtu8mBEwRbEX4mfMuKuArIdiXt5pGPt01lCFU0SI048uRwgMzcJ1o9EZ04Tik1weT+G6FfBp8eZ/dXH0/WEpSSxWzbT8uGc5bNQYfgmiWmqeo3qeojVfVRJGfxz6rq/8iOpIu8/Zm5WNOnkSKb3rD/GlJsxvYyNHb0TAZrSa1W1yhB6vZyjPiENl/2ogo8P+5GWz61OZSaPc6p6mFO1Sb/4CrRr5jn/A1zJqKawNYWpfPbm6qned9aYspQljjRDkrIKbVsRdEM7Fkgk+cBloxXE85K9rDWwnW9I9n7CebueeJcztqECX5zJJu/IJpJiZqZ7MmgMQn1ULk6QdELcYOZW1wlz53nsmPV7Aiq8R1kX4PXcBo4nutfe29l/rHM2JV2fO7mcKVI15Jqthrya58J7GpwjqOMbkTpihcwk3Shqm8XkZcB7yBFMj031/k4ESPhxIJuiQBywpQoMRfIGtHkT8i5DOX4A8NPd82nfq4/DF++eQ5Nxy9LUMtaAifMZ5oMttvMNLvqd1qCNxuVvASxqqixIQ7TDnoHvGkGPkrIZxDbPMe8lCvbJWs+TjuJKjWb2DmSzQ+g3TOd02zq6r+SQeMjYEbw02oWB2HP33fi4PXmonL+js/NOLtUCnedmWG8ooG6xjG7pL50A7ivO++yWtVmD7K5nWj6mdvW+Ax2HGOn+/GFUyx/fb41hOtCCKr6GuA1+fNs0kXe93zg+Vcy9tiZcXpiMMGwRglISURLeqVyROSS5MYu3R+6D0v1iCRTzi6zjF/9H2q6qWPLRMAedJ7zI6TvTmOaUQabDnKSBPiAluuPHan4zmj+84QMukiqqLUUdZ9/ENW6xfXNa5JW0uQRqCtiN0MuTdOcniRow1JnycCRxgTdeCcKBZ0SQL/NjpvdfgK8H2LX9ZtjO/MKmn0K+f799YsftgzQjdeNvwv7VuUnPr85E9EBx5vfAKA4mfuEtfuKhRBuTiguisZMOjPaQhtTb6vQpB0EgUFTP12cgB/cSnjfqj6NWQvq9R3K2nnU404aMx3Tagnef9AeQ5exfJjWlM6zVXjVEgICRAYEK2PR1jpqGwTB1PFetYNQksm8+QZgG9vQ0zm/QDlWp6ai3gcQO2FuiapVk2i1hDmzUMzVTE+SWGWVepUoBFEGZOcKn/6YPcQhO8bxZCCAucwk/eGbcNpCIB0xNHPtrmVmenUHTnwKe7Sfk/wPfdlrrykUQvOkoCTzUSaFU/Mp64k/jTONM00IhkgoP7DeuWmrSf+DCHkFfCRC1GQXH22MzhltmJSRpo1M6stV+NwDO39fBvDOe2uih9qQ0/4+kWT0SrVXx6nze8+/uJDDUgGG/A8vVRytxeu8uahNUmtJwRLliqlIQ/URdIJ/zHPtfQG7/AJQQ4u9M7g5zpz0qk1OQk8kvVZQy1sDIldfQr9fnevMNur2WVv+XrtMN053zXrdujE5XHuzUdUWyvUttqJRJ6bXmTjK3XxnF/f9Bkca+7Qdbx7aGW3kv3dWP3M0n6q3dCGEmxOKUCqGSkgrdZ0Pt9wgXCT5EYBkIkGLwSkdEwhX8MsptZFYYXH7vWba+wW8ScT+9c0KeGc2it1ytK6Id891m8t6z4WWQjUXWUhuCpVNZjVC6oNA57qwktfmhF7LyDpsXXVTycSnjDEloh3HVUk2s9yDfi7mdP745ogLq+2sD+BE7cA9oHJM1u4swWzMjmOlCn/TCGyFXEgBkJDmYH0Rio8hKIw7pLWXSnPwJSPYIVj9Zyc4/SXm7O9zArUeZxeU1r6fCkmRDUhppW/RP+IFazemvWZutVxyj9mpHLjvPvw5RdC7CCtnBms0A3duMSGd4rL+KtZ1ZwZnmhCgzeKNBNYuKWsfBiSRg0TWKEdmNupj6nc4iJsqqzlefsyx//s6sO2CEUTU2lCm1vBvJfM+Ikir8Ro5dIhpasg5B6nLXKiRV6pEX/PJTEYTk9ycKcsXiJuajDxRGSHtOsbfx5x24JPMmmPdyn+0rGOq0E8kMEMG+bIaBZFidLgyOEFnAnyfIOkFPlDqF7X7/LJ4z3VntqXhlEb16YR6Md0YaTlSaHwdc5fxRNO/z82pe0a79tuftvpCsr6zS6PoWUw53Sijc4xrFnZ6vTEXbmkr5EnpBqS81gTWCEFgnbOaT4Jvn1n7LXQF82Z+rfv6KZ+EPoS1D7OdPWc2X6ItiOf7J5Se0D6U1EUTeVhmcm2OU81GfcitD/s0v0EV8DUaaR3GhhD6l88FsJBS+16fU+1fYKGkhQwaMxGoNcDJZFCFUF0el+0e+/6EVxNu2AvG3oSyx6Ri2+cIZRfmxk3lL/Ic+uzhHXNt3psLtF9nhXFHQu0J8/PeK9Q9xx1y/fsCPfB1BnHmNQSYd6CelKU7lHz+9LZGieRuas4Ecgh8tJHF61szF9gfNWTlKPZdy85v8yxyZ7WZsU1Q+vLZe+efx276SUjSDlIY6u5ft/kVfESVDzO1+ftkuvk5p1BSEa0OXre/bMvv62FkMw6zGkNLHJ15yTQBI45YfwdqS1y7cP6NOINK/scuOz47bWCHkJjdR93XC9qJWWmfoDlJCHltIH8ujuCZeZqVqSy4Z1b0RZvYIfRnhfEe0jvpXrxPYR8areI0MafNnCOcGw0B9ucOrNFKAhkrBtYysJbAIDmD2dnd+1W+/95oBmaL33H9OTLwYZvNsa5MBFTNJxaBW1f3/b4ehxbF89frNaqT2odC3wVOmlW/TyrzphzvXPak5ZMNm1V9HjuIMoTY2PXnMo0nDmQ3vpmKvGnIeiWbkG9bZJqJKRGG74OwU/izgxxm0P8M/Hl91dI04ZlBJgJ2/mLe2dxrI6Yl2HW9puDvYfJ5bjr7TEXuHif3M/P85seX+QY+h87jvmAH2Z8HDeFcEYKhtsWMrrF9f0xgkJByExDWTjOA+eQtG9OuYW05SwSOzBfE2ztXaauITq+nhQSKPX4m+xlaf4F97kmhOYbd5qd95OortbY9jnO7zNiai8o1VCYr+tpCtCtP4YihnZeWv29jTtdWi/D+gyQDnanI73P1iXqhqyXr1PbL/D96lXnhP9dzwL4zYx6aOa4cH51Zh+l5DbzA34GdpqkTBNxknleBnSaoHUSw91qy4/O1xDkmhHNhMvLmorJyb1bz6bP5DbymMEgoDdetzlHKXN7962p6JmeVeUCIpC5fJ2ZNk7qrmbC3OZ5kotrnTDbUQnexOGbNvDQ2Qjx3ZFOZkGWZp6Sqp7vmZqG0VgPJMrHNibztfQjuVRzJnZbjfQXlKXaXnito19QaglkyKOWsozitIF+g/EPOGkBMRdGUHKXi+4rqDDlEEnloK9Cmq3BOFhizAlgn5OKFs8oOIeq3We4BYM5lbzKS/OBUpZmn+jHdPXhr0cEr8Z7o5ojJz/t6CfkDIXCuo4zOpYbgC9vt7gwmOcjUEtGu7Jdn5Rp8clYa9+RrN8ddxVLrkMih/lhPBj43IPVzmCbV7fI9mCnI+hf4BjhWw2lESt9orxX04/QajTf1NMRQCFubY23cIaRn6SuWzucazAjyGTIogj1rCOqK2Wl0VU7z56a/QLeqn1sBF5zwp68mG51dlfufwezPqCODyfgzxMPcfewgoWb+3fXn5iPaakYTAuvIco4Ed2HXP4nG9HYacM/jpNdJEJGLIvIGEXmLiLxdRL41b7/irpIi8kQReVve90KRJNBybbiX5u2vF5FH7ZvTuSGE0vAdK2S3LfbwVPZaag5Ch3XXmG2fMPed1lKvhdSFbS1jYzbqk9DKOeVYZSVJrK5DWyNoXwLbHBmkEg9teKyP9PE2/NJ2k5wbkFf1JsCtIN2c/2F0q/jLccWluOae8Si94hF3jxe4dzzK4+brUttX9u0ugbYRjuteVovPhSLoJWsV23EoPQxElFvWmzLHviTFibBVsAn+IvAFRkFGSdrCmF5GFsUcVL5LETqeJIq5J9brFaFIK6x22ub9qnxmRV3+VBZe5eB9AZ6kzJcg3TZRkFGbeftXGWOuaN5YrzO5j3473TFqJjHN/R5sDupeHUn6+5whJInpXsImvU4NPXntep2My8AXqOrjgScATxORp3B1XSVfROoT85j8elre/mzgw6r6aOA7gG/bN6EzTQh9fHhvvzf/QXvMzGqVyHhABbPQmaOqKcq+T01XkzGkHmtJYe32Oo/qC9HZMfwxRiJtFrC0Dt++tAR1tW8vH5JajtmxwrdKphsdSnvLTS5V4cmgn9dsFjL1uqrziWj9uW1p6/mqpz3aP/MOr6T9g3ZC31cNZRTmoosmWgGdAO/2TVbws0Jfm++z42q9sRNXp7tIoRNkfejpLq1nzqdhT9OT2ITQJp91IkilG78Qxgn/VuvfQlsyOy2cEiFowt356zq/lCvsKpnbCNymqq/N7Y5/sDvHxno58FTTHuZwpgnBw/dDDuZIxvVA6I6PKDH/12OXELTr+Jcvmz051mkKPk7fR/JYdJI5pv25ZT5OYPnuaYP73Nxbtwr3ZTSKjd+Rw1a9ecev4ucc1/Xc1Aozk0IMpbPZcVw1c/BRRXNCe8zEYcXsoC52jQwsHHVO8F/aVlfYRDuY+YfZVEhtVrDSCjgV5xg27aD1E8wK4DmhsEtA+OMmQl93kkuz7SR44vDXcaRAdy+FiLwGsCvqaIfJbCL0YeY68/d5kj+kfw79z6pqO4kYwnjIgzoMV2AyeqiIvNG9njMZS2QQkTeT+sK8SlVfT9dVEvBdJd/rTreuko/In/vtzTmqugU+Cjxk172deaeyz0FoavMXYUlxmoZZx2jkkqbi171Inyu4dhKsF7PPcB4cKVh5C8sOLg5W93s9qaDeLuKYQ3Esn2THl9A5naf332YOp1aflqW80WpqmoSVuvdq/5/6EYCSeVyu6QuazT0LtPg++oXjpDnOjmeqvaDxx6n0asX0OOeX6G3ts0Tgjp1bYfsV8xwJ7L+Bdrweomm65mD2glrze79P3XiNZuIuM/kZBrfP3fNJq+neVGYD2LzniECYbke1kIGMevoawmH4gKo+ae9QqcT/E0TkQcArROQz9xw+9wPWPdv3nTOLM08IHr6PspljzASzFlvVpnyEZCaSrClMn09veulhhdxSpdMhO5cVM1UOOZIo5n9hTTOeTAxBRjYMkMtmpJ7INWqnXksnNn3rNzyH6cq+LXvhS2JYxJEPIx0bYR7acaQ+nxTBNBTzkdUsmkQW7SBW00IsIsrm1fQ3cORo44TuecRG8O/xHUgqemB2jb6PQvEdKM6XAOrOSRdqzUV2bmMW6ce9j7iaMbwQrMRTCj80gt+2N0I65u5qflAjK9JzaWR0rxkYl+ZH16yenelpVsPqv0s97sQ1ml3H+z+2p6Qh6Cmbn2xY1Y+IyGtItv8r7Sp5Z/7cb/fn3CkiK+CBwId2zePcmIw8eht/70w2f4GZjSCVwoYUXegJoK9f5DuqNWNiZaijMwu1K/myz5mZzMGcGs3M/2hPSjDzJqi+tIWPBDIyKDkN1GqkJY8AL9Tb3gVp/GpOMmewJwPrcDZJRGu0g2lTm23n3/Ak4Ftf9hCxcNJ2ux9fRFNNtyKR2Kt19Cvzhih2rfj77zPEsAu7iOTE65QBZnwgs+dreW98HmUOOhHqMtmmk88Tp7RzPtujNkf01DRkc2LyfCcaVDOvHY/C9jtTkWyTlnBqmNNw5l4nQEQeljUDROQW4AuBd3GFXSWzWekuEXlK9g98dXeOjfUMUufKTwwNAaaOX49GE8hLpFG1EESvCcw1lfHoewBM9hNLaYoyv86nkOYlk4J4vRlpDn1tJE8G5R6yTu0zn21VbkKcUHsp9CRgJTgG0eY+fOa0b3nZN7rpE9E8rOsZVu4ihplOZ3Vp2Ap5EBIR+hBTtePyqrIebxs0n6yoP8jO6SBahzJN4TRW/M09ipuqE4ATR6yb0xz2zStdQ5Cokx4F5Scq7lpaTUXS/bspK3XcPrX8DUqVXLW+xlLPm/MzNGPK9D4mmkH3t/VzK9pOEx11uoRwin//O4CX5EihALxMVX9CRF7LlXeV/DrgB4BbgFfmF8D3AT8kIu8haQbP3Dehc0cI0EbslLaS6E5NIX3O7yboDsiIGTW5lud6JSST0ZCIKWsUaxlZy8gGR1gSCRry8QKEkgjmW1iaoD2pOJ4X1HWeMvkHZKSQPktDJr0vwcjDiMWOsf1VI+hCSztHcmM+EkpyWR+NVDQCagJbH21U7u0KiskZKajskigcRgpXgrk/1wkayq7IIptLs/2k6Lid95NNRzLdXhzndr5WYexX7LPmIv9Z3Tm98Nd6n7MO5H7uB5qMqpaSQ1dHLaRwajiloVT1rcDnzGy/4q6SqvpGYOJ/UNVLZEI5BOeKEBpn5C7zi62UM0EUUxE1GbV3hvrELciagSOOJCBDI4TXrmdfyI7vi7JhI0PON0jCeKMDhDz3vLq6HFdp1UxtZVnuUVNl1n3wwrqeV8+vDWSEKG3jnr7cBAC5JPeW+lzNxFNyHLJQNwKYMxuNThNQUY6GLZs4FE1nHAMhxCbbmJCWTsfbAZF0fTHzWs5vMDTagW2YgYimZitBa+8DBe8/qINKUSq8H6F3BtfBd1xT3W4nZMXvs9j7XkBqJ4jLZ22OKefE7tjuuMKHxXzmNKpgE5Qq8afriXrv5XlosjgFKddI391cXG7GxLRykpD19+cu7YnK7tUq4Ms2mYzCNiLjKRn+dxD1ecG5IoR9GHVaTM6TQd1msfctCbRj1SY8c/tTldGYbfSpz4A1o1/L2Ia6Sl6t57mYP8BaWkbN413lj3CfVhHNiUhdnZft7rvNEwDFrfyn/Y13aQZ9sTkJ8/9AfWRQCjXNzwgpHdDM1zLmY3rNofcf7IKvdDq/gqUTALn/ljdd0H12wnhi7ulWzJOEMTfW1IeRP8cq3It5Zeb8ep46wqmHNFqPpHE15OQ6oXUo6+5VefMo8soc15LTTEYyc0/9tsnYO7Y3857524lC2GrdHk8vysgT+HnENXMqn2Za9j5YdA/MVxWdg/clzEUYzZ+TzEMGMxdFhGNdMVfqwQv5km+Qo5/MmWx+BnNElzINna+hX8X79/R5aiqac+rO9TYuK3r6/fM9DXoysEzkuYgi70i27yItOSfzlTIM6R77ukQTjaV7vtVXOu8H2AsV2qihusK17d5Rat+9hNxl826v4961E4jumF7zmIy1I6fIr8T788rtBTdtb5ZSxeoaNfOLOjtfaZ5Du38vsfbPgjrO7PPwx8+MO5lb1JwtrYWcZLR8itOT4v18d73OIq5llNFppmXPwju79lUZHWekhIWbjqoc52J2860sWyLwaWnHOjhNItf36TSGWia7lrWw+kdHubyGmZBKk5r8a+ozoZt76oR9mltr+5/ey3R/X1G0JYJKDm04aZhWJnVk4E1H6rb3Bensev69JwFfmTR9T+cl01H6PAmy0XpcQTlWpxthfgk8J8hmktOay1yJIPCCrZurBvfK37FLB0mmGSsBLfWc8tkdi6Tj1e1DkoPZm1rK5T352TFOm/HE1RBY2aYTMphoW7vunSm5NAJ/sq2bU94mzneQPp9irKge+DqDuGaEcFpp2VdyzTlSiGXfbsO7P2tX/kE1JdWX+Q42mRh8Bq/Np+RE5F+IOZatjHPREPx3pp3VdvVPqPOetrBM9yaN0Pf5BfuFvjTnTjQD7YT/LjMRrTPY+hkElN5BPJn7jKbh4Z/HQf/+/On5BN/boFmh0x170qqvEwJ7j525bckJeHMEUFw5/WdmPoeWGCbT7Aij8Vt04ajV5q9l34QAuueyc/8hf6AZgVrH00oKVpJiTHMMIym8NL+nz0YEmkxGN2HY6c2Ia5qHcEpp2f2Yz7FU8I9+KHmP2laWh68ERtVCBj7/wGr6zJ/ji8jlKCMshj/MhqrWnINtLlORPjeE0c3bSllYPkOg/Q5my58S0ZVgzixkY6f97bZZTaDXFDoy8DBzkV+p2zmNgC8Cu3Y3s2vZcSKaicVO8sfP+D+oY9rxdWP3YLzpyPbPvmbMVDu0BtmxP13OVvHSznfuT7rrz3ylf36pJrGdAkxboVyOnxvOP6tDLj+jXczv14m/pS16l7OSi1bAVDs4oFbZQfDayQmvs4hrSgiqOqrqE0iZc0++yrTsfswXq+qTVPVJD7x9dUXlo33Yac090Ikm4FE0Am3LRNeXVDJQS/iydppxYu5JGcax2d/3NQ75GJ9pbZjULaIX4NNcgbS9rvDtezNOp1G058xnHe8jAz+mOoEfpM2wniuN7f/teke0Nx0ZRJgSwMw4dVtaGjc9lIvg8f4Df5K7ngmkbgV8ojD0q26/+rbdTjNIZp668veawTXBPmHZX3cPKZQ/wQmE5p/vyeTinOJj1QqKdrAF2SYyCJkUmNMOFg3hIFyXKKP7mJZ9MA5p9zgH0w52hZs2x3oh66qEeiLw+9v5RaxQsxFZLXVR/QgpTj/lI0SJuQZTTGGyWpvd+L7K7f3slx6zJpmZMXqTza73WTJgSga2ojftoCczjzRO8hNElZpPojS9l01zqNoB+Owm1VyoIQ1X/Qtldd/6BOoEpoKr+XUpiCtvYcd4mOAnQsjvE7LphahdR3JE08y4uzSQMo84f9wcZn8qvclqH+bMWnm7P1+6+fTPYd5U15mw5u7TlfCWqCXUtNEOYjxVH8K1KF1xs+CaEYKIPAzYZDKwtOxvo6ZSv4BpWvaPiMi3A59MTsveew0oJhi/6pwrPW1hp6mzWRbG1NpDm1y2wRq8QBXoo5V86JLQUrXPVTpnZmVuSVz7MEhk0GQyWjMWnS0U72n6vI2p2f02DvXm6aOKpnM4iRz8sXWcKTnW6CedaAbb3LPAxvJhppAa2FjYrY2R5t6Ovx3T/P2KPwXAaA4xFVSVYxlY5bDVTUx6nyWolfOikJyu1fls3dLiNmCNb2QUGJNwNyFfyMDKOliugklrlbY8gxP8kFavYVu/A8QAkjN4yeeWOkIZxUmaLjbRUloHrVup7yGCicN4RvCWUFMFRcv9asjH9yY3lF3RTpDMX+0FKMRW5usIsJ+jv6/6nDtHNVT/h3cgbxUZI2GryPGIjCOyjbA9RUI4o6v/Q3AtNYTTTMveCR+1A62WMCKsG6KY/oh9dNFc7sEcGUR8tzEpx/hzAEJOThtznoHXJAbqrRkpbHJmc8j/EkzwIoGY6wtESdVFPdkc0lrz0OPmCKTXFOZCV9NzmRJJrdM07f3Qz6nJJYAkeEUbciAk4T8UId9FKBUtoY5hwkuV1ORGBWJqfuP9AE0kzNyq3x0n/YpfnQljzCtjFyNnBJOVv6ql2Ao61ktckcCZIQNRN84cGfTakBsr8UIaQEaqtuBgx5QieTYNuxfVCSnMEtG++/Rk0M/bSlOURj71+4QMRk0awin6EM6qOegQXDNCOM207NPAIFLKXwdqhjJUUogqe/0JUMkAskMWKxg3b16qJCLl+DkEUYbs5B6y8C/2do2sA2wixXwUC8nMmHXm5n1CKKo/33+fG/MkB7IPLzUzUfEf7JEC69XI5U36SZYaRv2cImwZygI1xkAcXXtMKOYjsnbRO6jNdCS9qSif367E65iTVas3Z9gr87wvTSWxFZgmQRuziVtFG1RkryDbJ1AnWkQZdMcY2gp4YtICFAoxQNVq5kjBhKVK/TwxtZ2Ag3wKfVip+Qmi8xvEmLWx/H5ahAALIdy8aP8ygVYtPMSnEHUqCKGai2ptoNBoBgCXdD0hgibKSOv3gTgbgZRGDbm15jbVMOoEupXIDiIMpT9AIoUhLz2LKam5t/2r/UO2pytN/Qn7HMiWZWwE4D/Xqqzt9byJqUlM6ySEqkCEzTab0MbQagbu/KQlOK3Dcghyr+TZ1d5Jq9ZOc/BEUMhgxSRRzK/kcx5YK0g95ARNYZdwO2kV3ms9nfbgOTgJcitw7XgrTklhttrq3M/JP+9mXrqXtPwc95FB2DoyUPee1Mj5Qa8QwmIyuqlhMf5zwt9MRkMWspaLYH4DX9AuOYelCP60P7/7DOUu+azUMfLJa2pNaWr4qjcvDblYnI+QSvWRQhb4Y/FzeMdrpJqOKikMzVzmktgONSkdgt5M5OfYdzOb0w5Cf1/eTLTnH5o3J0WS6cda+HoysNtvylLg9plANuG016HcaQd+HPfuNQQdqLkA1BVysdM7U5cnhUIAve+gQ0NI7vpTYus2nDBmWtW7SdEK/HqMI4X+/KvALiJotTDF+xEaf0FU0JYMLAcBtQij5Fg+LZxqobybDGeaEPrfoM9BiL3A3eHc9Y3jixbQmI1Cox302+1znOyrWoGVZjDzEtoWlDMTkWkJgcCGlMkHyTm9YSBkLQFqEx1vNtrlxLauZunz/m5sPXa1vvSmIqhk4BPQVhIRUVbZqWzkMBflNIQ49VP6Fb46zQEpkUo1soj6fY4Msk1GO+1glgj8WZ15yPsQSlN5s/8P+eUFPySfgX2x1XWvKdg5J2goPfqIFz//PiqnHUvn95npyIQ/mRSAvjrqFaGZV+tj2OUYL/4C//wtgigmf4Eo1Vy0zb6CbSYATwaLD+EgnGlC2Ic5W3XqbzYTgVTMQzPOZJf01SSgac1Ujs6M1I+70eQoNsIZNYDE4lhOfQYiiLPT55WiJwWgVEoFiunIFiv7BH3tStaHxe7+1z03Xp+F7Lf3moEJ7OJIpjUZ9ZrMqit2553JHr1ZqPoE3LNTaCRyfjcySA5hKdpB2u/mn/c3UT8u7NEcyipZYA4U+3+pFyT1usQq8IsSEFpSKCGa+SXuc50Y88LIaw17MCE7r5Gon3JrKjINpvEzOEV18meam3t3/TnfyKRelL8/l6mMUvIMimN5m0NLLdT0tBPSdtzHecOZJwTrPna16J3JI1MHcUMUTlPoTUXl+IlfQTIZWfXTVMLCzEZGCmv/D2iGFGpJ7YEoSUtIZS/kPplID4osmvWztFqB1w7mfAdtdFE1hXkEUTSXwNbAfDXTaOGp1Os2ROEEve+m1pBBZ36BSiaeXAwmzM08MvTnpFcpG4Hbb1MyEsAJY7uPXSTQYa9v4Wqwa6zCVFRN4QTtwPv1PRoNwAvoLOhNY5rzcZh2IJEk5E0jcOdI7MjAvts/ilP0IZR5n1OceUIw9A7l3mQ0X+CuCqZRvQ8hbbMqpqYdWM6BHW/X6f0KRi5JM7AexSE1x9EhhZdmArDw00GUgbEcs9YxaxeRUQJBY5l08lFUB3NQK2eRyGauZMRJfoQ+z6Df3tr62xpF/j2ZflrfwUpiMRsBTQ8DjyFENtvqE1EgZqdxzCv6ElI6IQGqZhCh8StYApmZivL+nRDNK3Ypph5vMirXUifcmZETms1F+U9ThH0mAN01biaHxG0CYXfDnFnkG5/1S+zINPbRQI2moGkOdZiqJdg1+jHUF93zD8buwbbb/bnJ+Ogofz+mHXhzEVEJmzERQPYZlM9RYRxhu01mo1PEedYQrmnpipsBh96gdT4rOQe0pqKNropTeKNDc5wJ/b5iapvjkJLeSu9iV/oCchlvrBBe7be8ljFvrzWMLoTt6T2gfc/kqg3GVzemJaadKvb9473af9hXed5eQbJHZu09b2ZVfcXoV89ZcPcr9Vkfhl/wN4J+etxBuQAzzvBE5nm7ZSdHqkkounMtxDTGRAhjttcNp/jb0gNfJ0BEPkVE/p2IvDO3CPj6vP3xIvJaEXmbiPxrEbktb1+LyEvy9neKyDe5sZ6Yt79HRF6YeyuT+y+/NG9/vYg8at+czryGcKi5aJdTeQ5NAppb/U98DFqFvWFuJe5t+D4JLrXNzEtICa5An+L9CmM2OKH1fr/jCT928P0sOL/4r//M/3nyinVGGzgI3lSU/QdJK0rmJIuqulqYFjFxQczNzxFU0SKMHKweiX2G8p0hQBg4sc3gwZNm4si/D9gCf11Vf1lEHgC8SUReBXwv8A2q+nMi8peA/x34ZlIS7wVV/SwRuRV4h4j8qKr+JvAi4DnA64CfJJUJeiXwbODDqvpoEXkmqVrEn901oXOrIfjCcHM36f+mx9a3mHnnMLj+Ay7MtCELDTvJYNTQmI7S9upknktWu5KifQsWAJPV9STiqI/394jaCFwf2dNoH90+7weYnxOHr5h70xLdHNScyjYPnWpW5i8Ys79ttYLVAOF0RJ3QPp99r5Ogqu9T1V/On+8C3kmq8Pw44OfzYa8CvsJOAe4nIivgFuAY+FiuCXebqr5WVRX4Qdq2Ai/Jn18OPNW0hzmcW0Lo0Sd7GbxJ57TQ9E3oo5Vw1VFdlvNGh6bhjoevzWR9FBYs2IdJyOmBpqTZSKQ5QXeQ+WfPLivzPWtaqo7kWqSuzS0ozmOnHTTkMMZEBsOQtIRTNRnpYS94qJXqz6/n7Boym3I+B3g98CvAl+VdX0kt+vly4OPA+0hlf/4PVf0QiUTudMP51gGlrYCqboGPAg/ZNY8zbTLa1y/3EOwjAZ93sEtrOAnRk4EL+zR/gqEIfCF7IPt5fsLw9oKrQHUey25B3e/rD9vzT6k4nL2TOH/uk9ROxMw/Oe3NRj6DOjpisNIUCqVI4BzMVDRkU9GeQnxXgysQOx9Q1SedOJ7I/YF/AfyvqvqxbCZ6oYj8HVLRz+N86JOBkVT888HAL4jIzzAfl2az3LdvgjNNCIYSm8+0Vs4g025pu/oo+yS0cmxT0C40oaa9GSiN0X33PRQQNnHFOjuFE2FEauYSzZ/P92Cocz99R++CMwwfQXQA+rDV5p9L1Gprrwkuuy+tzOcgHDi3WR+CmYpM2Je+Bl5bOKFY3XaE9bpoBZPqq/cFB5q/DoWIrElk8M9V9V8CqOq7gC/K+x8LfEk+/M8DP6WqG+D9IvJLwJOAXyC1CzD41gHWVuDObGp6IPChXfM510tP/1v2pLDLfORRqpl2FU0rGcxHFM2RQZlD/iVF9ZFJNbHNymhX30Ldf5rlJxZ8AqER0O3v/qoU7LmEsm5TE3Lq3k0wFwFd9smkFIYopTRF1QycdtA5k8v3MUIcYQgp/HWQJOVO8Z/PpNHRjteJ4yRb/vcB71TVb3fbH57fA/C3ge/Ju34L+AJJuB/wFOBdufPkXSLylDzmV9O2FXhW/vwM4Gezn2EW50JDMKQEsORMrlpDW+V07u80SORSTOlfPu+gjy7qcw8GtDH9NHPR2oQekpN7o0N5jRJYh22JQBpUc3G7Gm1kJNFEJy3EsGAXvNN4TgvonMqTJDel1RKo381sJHac5mgjn+HtTEuFFJRS7jsl5WVScPkZtq+B9UZ2PQ4SQdQkNLsnRkW2Ixwfp4vdchFd34fwpxNwilFGfwz4KuBtudUwwN8EHiMiz83f/yXw/fnzP86ff4X0dL8/V5UG+DrgB0jO5lfmFyTC+SEReQ9JM3jmvgmdeUIogl/ipMDd0GTBnIx9wvbERjfofp+EzmRAl9TV9B5cCKqd481Si5awYIK5tZ6P0Cnbpv6D2eQ0wWX45h35uwQpIaiN4V8dGWj3fW6e0r3scjPmo6oluKiiLrQ0aQZj8hmsV+jKKgteA/Oqwk4/zZUOpfqL7BZQ3zVz/N3k/jEz+94ITFoUq+qlXefM4cwTQo/UsL7+wQKmJcxF76TjTFAPua7A6Dqb7GtcPyKTGkFWzXQXrBKqFbkDMhkYQVAcy70zedEOFsxhLru3jwbqNQfphH3B3BrKHStkE0y0A/O7pE5rYmscL9x7MsjvalnKWaMopTuaa9fy1j7PoJiLIJuJFC6sExkERwh2zCmSw3mOCD8XhNCXrYC2F4KZjAYJRFW8qPUaRm/+Gdnd0OZqYESRymq0+2LREvpy29KYjBYs2IWJoJohg51E4MZQt2qfbJsjBSG1Ic1kIKITvwBUE5V6ArDtImjQdl//k59ZZ6Xy1mNLBs5XcU3+1SyEcPNjLsIoUJ3JaxmyljAyIKXZ/SG4Fivz0ZuLoHyOrkTFlVQnXbBgDnM+hQZ7TE7+fHEd1BpSyCShItm0I1mYJ7LYqWB3gn9iLirHJaKoZbGd2cheIoUMNITGgawp3f/UUG7tnOLcEILBHMpBUsipb4wDbYRRoC2T3Xc1S993Zy/vwpUSyNj1R4jd9wULrglmyUCn5hVnsy+F7TJBiCMDVckaAq1juYfblgrhqav0mpkhgO6QvCXkNALbET1aVzIw1buoHwrhFCW46rlukHOujNLDVS4Fept/qjwad+6v10s/jF547zq+78DmK6se4jC2Ut/3pdz3gvOPg1ewO1bvTc2gHq7Q3SSLOXb7izPYne7MRDsV3lx+Ytf1yzxjTCaiQSoZSPqciCZvd2akU4Ee+DqDODcawr7m7QBjLhY3SGBNYES5pKneyVoio47lB3qsK5DASGQgpMg7lBFyQbpUljr51EJxLqO5xSW1C1pfTtrnMQTRrB2MfqqFYEL2KWxI1yFs2cTVYjpa0CCZW4RSrvoQBMmrfFoTUSSZaPoIJEumd+3pdBQ0pDLjcUgLcRlBB5AVaBDiSnNfC2oegq191K32m4uZ+Wlmn5mLtsmRrEe5TlGg0RBUpIytSip9fko4zyaja6Yh7CnteruIvEpE3p3fH+zO+aZcpvVXReSLr+a6QZS1WC6Cxe4rEWXUyEZHNhrZ5Ege73zeZ+opfRAIpc5/imhqw10b0483T8l8I5/BCf9mu9dQnF8Bpt3GFnwCw3IJ9hWum1vxX4HZY25c63nQ+AiyySc1CWqdyk3tok47KHWLRmrNItvns5P7DOUhMY2KFFKoY7rjTlOhzj6Tg15nENdSQ9hV2vVrgFer6gtE5HnA84BvFJFPJyVNfAapVsfPiMhjVXXcMf4s+gqnkUQGGx1ZS1rfW7OcIa+Oatnp2rQ+kDuREVNDGxPIWlf5aYVP0Q58TgFA0MDIjnaejiA8KSSCyaGzGjMBVYdzXMxFCxz+/Uv/+o2ewpmByN89nYHOpqw/CNdMQ9hT2vXp1HKsL6Et0/pjqnpZVX8DeA+pmNNe7ArHjKQuaaMqYyaFSNIM0ueU7JgSykJJbOtbcpZeBA7WyMY+A0VT6DUGDxP2ffXSNI69R6d9aDO+vS8O5wULbhxOq/z1zYjr4kPoSrt+Uq69gaq+z+p2kMjide40X8LVj/UcUiMIHv7J+6c/atICNhqJInl1r2wySZyEQZRBIyMDAW1MQJbEZj0S/Uqe3O94kLjT3j9ILGRgAt5CZ4fcMc3GD4zZ55DGXbBgwY3DeY4yuuaEMFPadeehM9smT15VXwy8GOBxn32x7I8qHEkqHzGU0DkT/CljMdUTillzMC1CsqNYkhNZcv0hmY/8KeYd52SujXMpjuaYwiwI3RhmPiqawYy5qJCFkQKABIbsC1mwYMENwhmOIDoE15QQ5kq7Ar8rIndk7eAO4P15u5VpNfgSrnth+b1W3A4siTIRwYhyJJLNRRQyuK8YJKZSFUYKgLW+XJNzHkIlloHWb+A1g/SqZJBMWBTNZCBrOQsWLLhhSIlp55cRrmWUkTBT2pW2HOuzaMu0PjM3hf404DHAGw69nvkSrCx1KvmQSz8Ax6psUI5Vi2YwzkQBFT9CbnbvUUw8bolgeQHmG1jLyFrG4kswv0J55fFbM5HtT/vWsi3j2OeQzUmLD2HBghuMeODrDOJaagi7Sru+AHiZiDybVN/7KwFU9e0i8jLgHaQIpedeaYTRJV1lJ/GYSlNDUw7b2G+TY+XMkbvO5ae92chi5pJgD2y6RYGt4MdyXJ2qkcMoIcdND/k6Yyl5bdc34ljLyJFsWcuWQZSLkpokjZJ7J0hg0JhbbZ6b9JEFC84czrOGcM0kywmlXZ+645znA8+/0muNCMFVGU2NbbJ9P7sQRoQjjRPNoBljUrN3ij4HYDa3wI5TSy4zAsoRSC4iCVwEEcogWkgBKCYosrYz6vqqM7IXLFhwH7H4EM4OasG49D0ygIyMKklzEDMlWb2Teu5gTuJcznpsxpXiL9gHMzHFHMYakbSqp40M6hPN2n2xNVeZw1og6vrQR7FgwYJrgvNdy+jcEEIpU63UPHtwfRBqZdEUWVT/qHFnScbkEB5ET0w8NAE+5ISy1O4mh5GqhZfqpH/CggULzhjOscno3Eim4lSm9iQe1foRS2pbiTmcQ9EUPBkUk85V4KS+Cb0TeX6MGVNW187T+jwvWLDgBsDKbBzwOgl7yvs8XkReKyJvE5F/LSK3uXM+O+97e95/MW9/Yv7+HhF5YQ7qIQfpvDRvf33OCduJcyVZTOBvGNhkw4v3GZgwtZ7Iu/wJu9CXmpidgyeYUoaizWru0XRcsznml5HBmIluwYIFNxi+F8O+18mw8j7/FfAU4Lm5hM/3As9T1c8CXgH87wAisgJ+GPhaVf0M4POhtHZ5ESlh9zH59bS8/dnAh1X10cB3AN+2b0LnSsKYVlC+I1Vb6DQCe/fEYJ+v9JqGXkvw+0qOwS7toOu5PKowlp7KIX2e0WoWLFhwnaEHvk4aZnd5n8cBP58PexXwFfnzFwFvVdW35HM+qKpjzue6TVVfq6oK/CBtSSArFfRy4KmmPczhTBPCrrvyxFBW2s5/4DUG0xZ6HFJiuow5cz0PrxlMuqBNeiQ4EsCTgRHbYjJasOBGolRePeEFPFRE3uhez9k5Zlve51eAL8u7vpKasPtYQEXkp0Xkl0Xkb+TtjyAl9hp82Z9HAO8FUNUt8FHgIbvmccadypqjg6rw9oI8aooygtQ4M2otVFfCUqGsvotG0SSsxRLyCbSRSV3k0UaHJiw1um5rcxVPjQw2OrAGNgxc1jUbXbGWbd6X+h8YGfjzFixYcJ2hXEnS2QdU9UknHTRT3ucvAS8Ukb9DStg9zoeugD8O/GHgHuDVIvIm4GM7ZgoHlgQynHFCSNE9I9OCbyOppIQJ7FQSIrard/9Y9oSBnuQwho6IdmgXjXlpR8STNcwxjcCTgTnHFyxYcGMg6Kkmps2V91HVd5HMQ4jIY4EvyYffCfycqn4g7/tJ4HNJfoVHumF92R8rCXRn9kE8EPjQrvmc6aWmid0+MqiYX/A2+WrK8RFJ3qTkj+kxSEoaC+6sOXgy6J3Ae53RTpswEogIx7pyZLAialg0hAULbiROyam8q7yPVYAWkQD8beB78q6fBj5bRG7Nwv1PAu/I1aPvEpGn5DG/mrYkkJUKegbws9nPMIszryEMJ8T1R1fwzpuCbGVet7Xk4RF2JKXti/rx+7y5yEpY+3yEVJTP5hVKLoWFzdr2K3V4L1iw4Brg9DSEXeV9HiMiz83f/yXw/emy+mER+XbgP5CkxE+q6r/Jx30d8APALcAr8wsS4fyQiLyHpBk8c9+EzjwhGCzT2DC6UhaeFPw+8xnY5/3ju8zhjFh8EGHSL2Hn+WWu02OjJqNWyk5ucw5MM1hIYcGCG4gr8yHsH2p/eZ/v2nHOD5NMRP32NwKfObP9Erle3CE4F4Qw8Q1keFKY27fvOCtBHQkl8xiSYC+O4j3+hblSF1ZFde6clBE9Zg0hprIbtL6GBQsW3HjkCKJziTNPCL1m0KP6EWrpCg/THvaRB9RM42j9D6A4s/fVOfL9modS4rrrrOZMWoHO91HKelsuxeI/WLDgxuHgpLMziTNNCOLMQMnJe1gETm/a8aTgkbSBmY5oZX/VHpIvo221uYsoUkMdGjIoc9HQkI9/X7BgwQ2GshDCzQ4TvEcycqwDOLPOIUjH1hLUNiamNVjvZGDo9JGBkFtyCmsjCy/AXQe0i7JhlJCqn+ay3Bv60hVS+iZ7n0ExHS3ksGDBjcX5tRidbUIQqD0MrqKK6CGkYav5uVSOI8kZI5kwrCJqY3rKpBJyTSMri50ykJPJa+73tZDBggU3J5YGOZ8AsES2ORRS8N+BY10xINn8U7Ogo3M6p7bKkSMZOZKRS7kwto3jHcy9pjBHBIeU1FiwYME1xEIINy9Kg3ultL+MLpv3JGfxFV0nw5uVLAoJ2VIep7a9EYbcB8E6oV1WyWSQ5tnnJMC8VrCQwYIFNxiqMJ5fm9GZJwSPPpwzrcWv/o/XO4rNFwDZ1KMCsk0rfq15CdXfkMjKuqANJFJYSyKCMc/PJ6p5p/IcGSxmowULbjAWDeHmRC1dUbUEj1GFILu1BJ9TsMtcZNqAkcGAFpJZy0hQTe0tCSkiCco8gtQSF6lX8ljaY4ZsoopI6dtg58SujPdCBgsW3EQ4x4RwzSSMiPwzEXm/iPyK23a7iLxKRN6d3x/s9n1T7urzqyLyxYdeJ+UhuBIPrgy1f09NZ1wVUzP75JX73mtkZ7CRwSDJJ7BmZJDImpG1bDkyge/6HvgeyWtGLoZNOs7nJdjY+RxzPi9YsOAmgwJRD3udQVzLJecPULv2GJ4HvFpVHwO8On8ndwl6JvAZ+Zx/IiIHl/XsBXofPdSbkowM1rIvpS2P3QnmQgyihRSO3Mp/EG1MREUzcCTiNQebv5GC5SV4UmhCYRcsWHADkfyCB73OIK6ZyUhVf36mf+fTSW3fIHXxeQ3wjXn7j6nqZeA3ciGmJwOvvZJr7ktO82ajxvSzw0/r6w15zWAtkSPGFO4qsNaxlKQ2X8Mxq9nyFB/Xo5SDQO39HF3P5CYr2ZW+3pS8BDmoFPeCBQuuEZRz7VS+3tLlk3KpVvL7w/P20tUnw3f8ORGjMw+V/gHFhCSl49gchmI6mqp4ZbVufoBciyiIltX82pWjGFwSmofv2HYppgY4vT/Awkyt4F4pge1afsbcPW1cWmguWHDjcHo9lW863CxO5YO7+uQ2dM8BuOMRg2uHWfsiW3N6cI5jjYySM5JzHSEvkqflsMnn685opcH7IbIzeNMTUplHam7j+yMbLMTUSmNbdJOHkcGCBQtuMM6osD8E11tD+N3cEJr8/v683br6GHzHnwaq+mJVfZKqPunBt1utHxPCoRHG1psYTs5KntMQelxJxVErXV3LVgcu6VFuiRmaY/Zd3zvMIWsKCzEsWHCDcKB2cEZJ43oTgu/e8yzarj7PFJELIvJpwGOAN1zp4HOrbvvcO569OcgL4znB7E1Gc2icwb6nciYCI4ZjHRhzG8y2gU7bK8GPYyaq+5JPsWDBglOCAjEe9jqDuGYmIxH5UZID+aEicifwd4EXAC8TkWcDv0Vu3KCqbxeRlwHvALbAc1X15BAgaicxbybyMGIYXNcy71wGGuNUJBQnsjcVXWmETyGDYjoaOKL6E/qVP9S6Rrs6tC1YsOAmwBld/R+CayZ1VPXPqeodqrpW1Ueq6vep6gdV9amq+pj8/iF3/PNV9Q+q6uNU9ZX7xr4SjIRmBW7oNQO/vTqIu6gk50xOY1syme5dxVsq2rEOxY8wue5c4tzcvPO1FixYcCOQS1cc8joBIvIpIvLvROSdIvJ2Efn6vP3xIvJaEXmbiPxrEbmtO+9TReRuEfkGt+2J+fj3iMgLc29lstXlpXn762ciPxuc+2WomYpCSRDLQl1ctJAlnvlX3p5yDIwMTv4j14Sz6bE+2sjCTXuEXntpxl6IYMGCGwoF1XjQ6wBsgb+uqv8V8BTguTkn63uB56nqZwGvAP737rzvoPZMNryIFGzzmPyyHLBnAx9W1Ufn875t34TOFSGsc68CKyZXCsr5JLC88vchpD2MACyk1EpOeM1gRNiULmbpNTS+gFr51HIJ7NWTgTme53AoES1YsOA64ZQylVX1far6y/nzXcA7SeH2jwN+Ph/2KuAr7BwR+XLg14G3u213ALep6mtVVYEfBL487346KecL4OXAU017mMO5IoRdsJV1OCCSqJzjs42dmciQhLqUd9hda6ivUtprBm2pi+m10jGLY3nBgpsCh0cZPVRE3uhez9k1ZDblfA7weuBXgC/Lu76SHIEpIvcjJfJ+a3f6I0iRmgafx1VyvFR1C3wUeMiuedwseQhXhVRWRFz9omzTJ6Y+BVQy8FVKDebY9YJ8mIv4cVqEaQOW8zCWsarQH51D2cYu73s42JfBTvcx7Re9mI0WLLiBUL2SCKIPqOqTTjpIRO4P/Avgf1XVj4nIXwJeKCJ/hxSBeZwP/VbgO1T17m6Rvy+P6+AcLzjjhDCHvo9x6MxF/t0wl3hmZiP7PJeD4KOEUnax9xGEZl9vIvLo/Q2p1pG4chvWu/ng8k4LFiy4VjjFKCMRWZPI4J+r6r9Mw+u7gC/K+x8LfEk+/I8AzxCRfwQ8CIgicimf/0g3rM/jshyvO0VkBTwQ+BA7cKYJQXHmmj7DuFtJ77LDl/pBe7KR+6iiqh24vIfue93ebvM1i2x83wNhH0JuuLNgwYIbBUXHgyLiT0S25X8f8E5V/Xa3/eGq+n4RCcDfBr4HQFU/zx3zLcDdqvrd+ftdIvIUksnpq4H/Kx9quV+vBZ4B/Gz2M8ziTBOCocn83eWc7eoSgctwLgI69VQYchVUI4MglFVB7ExD5XMhlikpmGlqzoFtJTNOQhBlVJaQ0wULbiSs/PXp4I8BXwW8TUTenLf9TeAxIvLc/P1fAt9/wFhfR6owfQspAsmikL4P+KFcMPRDpKrSO3GmCUFhYqPvMecTGHMtI6hRQINERmRi4Q+SzxMpAnnMfoRKRK0fwpLkTqMyqfcj+IY+CxYsuEE4JS1dVX+RnfWW+a4Tzv2W7vsbgc+cOe4SOQH4EJxpQqDrNtbj0KiciMBMV7WiIQAj874EX500fb/6InRDLsc96pBMSdkf4v0iSwjqggU3DgroGW1+cwjONCEocKzDbIvJWn9o3pFco36cqUcDyFToDtlktBEp/vmaizA0pqpdJTSAJkS1jI11TKvzjVg1VuvHkE1eMm+SWrBgwXWCnm8/3pkmhNPCyLT4nWGfgWZfvaF9WsKuqCWbyy4sZLBgwY3HaTmVb0bIHofzTQ8R+T3gP9/AKTwU+MANvP4+LHO7ctys84JlblcLP7ffr6oPuy+DichP5TEPwQdUtW8jfFPjTBPCjYaIvPGQxJMbgWVuV46bdV6wzO1qcTPP7WbEErKyYMGCBQuAhRAWLFiwYEHGQgj3DS++0RPYg2VuV46bdV6wzO1qcTPP7abD4kNYsGDBggXAoiEsWLBgwYKMhRAWLFiwYAHwCUwIIjKIyH8UkZ/I3/9/IvIuEXmriLxCRB6Utz9KRO4VkTfn1/fk7beKyL/J57xdRF7gxv4aEfk9d87/5PY9S0TenV/PuhZzy/teIyK/6vY9PG/f2WP1esxNRB7gtr1ZRD4gIt95PZ9b3vfZkvrWvl1SL9qLefsV96a9HnO7GX5vJzy3U/+9ncIzu2a/tXMLVf2EfAF/DfgR4Cfy9y8CVvnztwHflj8/CviVmfNvBf5U/nwE/ALw3+bvXwN898w5t5Pa390OPDh/fvBpzy3vew3wpJntfxn4nvz5mcBLr/fcuvHeBPyJ6/zcVsBbgcfn7w8Bhvz5DcAfJRUde6X7m16v5zY7N26O39u+5/YaTvn3dhrzula/tfP6+oTUEETkkaSmE99r21T132pqMQfwOtqGExOo6j2q+u/y52Pgl086B/hi4FWq+iFV/TCpX2qTyXgaczsBu3qsXve5ichjgIeThNs+nPbcvgh4q6q+JR/3QVUd5ep6016Xud0kv7fZuZ0wh6t6bqc9r9P8rZ1nfEISAvCdwN+AnaVD/xK1njjAp2XV9edE5PP6g7Pq+t8Dr3abvyKrti8XkU/J20p/0wzf+/RazO37szr8zWb6YHeP1es9N4A/R1ox+lC36/HcHguoiPy0iPyyiPwNd50r7U17veZWcAN/byfN7TR/b6c5Lzjd39q5xSccIYjIlwLvV9U37dj/t4At8M/zpvcBn6qqn0NWYUXkNnf8CvhR4IWq+ut5878GHqWqnw38DHWFtLe/6SnP7S+o6mcBn5dfX3XCHK7n3AzPJD07w/V6bivgjwN/Ib//aRF56gnXuV7Pbdfc7Pgb+XvbN7dT+72d9jPLOJXf2nnHJxwhkLoUfZmI/CbwY8AXiMgPQ3ImAV9K+nErgKpeVtUP5s9vAn6NtCIxvBh4t6p+p23IKuvl/PX/Bp6YP1t/U4PvfXqqc1PV/5Lf7yLZYZ/cz0HaHqvXbW75nMeT7MHlH/31em55vJ9T1Q+o6j3ATwKfm7ef1Jv2mj63PXMz3LDf2765nfLv7VSf2Sn/1s439jkYzvsL+Hyqw+ppwDuAh3XHPIzqOPsDwH8Bbs/f/z6pwXXozrnDff7TwOvy59uB3yA5qx6cP99+2nMjrZgemrevSbbbr83fn0vr5HvZ9Zyb2/8C4Ftv0HN7MMkGf2t+Vj8DfEne9x+Ap1Cdyv/ddX5u++Z2o39vs3PjGv7e7uszu5a/tfP4uuETuKE33/7Y3kOyHb45v+xH/BXA24G35B/df5+3P5KkSr7TnfM/5X3/0J3z74A/5K75l/K13gP8xWs0t/uRIiremvd/F1U4XwT+nzzmG4A/cD3n5sb4df9crudzy/v+x3ytXwH+kdv+pLzt14DvpmbzX5fntmtu3AS/tz1zu2a/t/v697yWv7Xz+FpKVyxYsGDBAuAT04ewYMGCBQtmsBDCggULFiwAFkJYsGDBggUZCyEsWLBgwQJgIYQFCxYsWJCxEMKCBQsWLAAWQliwYMGCBRkLISw4NxCRP5yLlV0UkftJqo3/mTd6XgsWnBUsiWkLzhVE5O+TsmNvAe5U1X94g6e0YMGZwUIIC84VROSIVI/oEvBf68n1+hcsWJCxmIwWnDfcDtwfeABJU1iwYMGBWDSEBecKIvLjpJLJn0aqaPlXbvCUFiw4M1jd6AksWHBaEJGvBraq+iMiMgD/XkS+QFV/9kbPbcGCs4BFQ1iwYMGCBcDiQ1iwYMGCBf9ve3VMAAAAgDBo/VP7GANKcEIAoBICACcEACohAHBCAKASAgA3E7HLE0/yKg0AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "xds.plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Clip using a geometry\n", "\n", "By default, it assumes that the CRS of the geometry is the same as the CRS\n", "of the dataset. If it is different, make sure to pass in the CRS of the geometry." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "geometries = [\n", " {\n", " 'type': 'Polygon',\n", " 'coordinates': [[\n", " [425499.18381405267, 4615331.540546387],\n", " [425499.18381405267, 4615478.540546387],\n", " [425526.18381405267, 4615478.540546387],\n", " [425526.18381405267, 4615331.540546387],\n", " [425499.18381405267, 4615331.540546387]\n", " ]]\n", " }\n", "]\n", "clipped = xds.rio.clip(geometries)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEiCAYAAADXvYSyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA50klEQVR4nO3deZhcVZ3/8fenlyRsCVvAQKJBISI4EBEYHFAREFEZcAUUHEDnx+Cgog6DoOOCmhlg3FAURRGiqBAZUQZBRDAwKIsBSViVCCiRCIQ9hHTS3Z/fH/dUUjS13O5U1e2q+r6e5z5dderec86tSurU2WWbEEIIYbR6is5ACCGE9hQFSAghhDGJAiSEEMKYRAESQghhTKIACSGEMCZRgIQQQhiTKEA6lKT7Je3XaWmNJ5JeLekPOc89StJ1TcjDSyX9XtLTkj7U6PhDqCUKkDAuSTpE0m8lrZA0v+j8AEiypG1Lz23/n+2XFpkn4ERgvu2NbH+1UZFK2lTSxZKekfRnSe9uVNyhc0QBEsarx4CvAKcWnI/CSOrLcdqLgDuakPzXgVXAlsDhwFmSdmxCOqGNRQHS2XaTdKekxyWdK2kSgKRNJF0q6ZH02qWSppcukjRf0uck/SY1jfxS0uZlr78n/Sp9VNInmpFx27+yPQ94cLTXStpd0gJJT0l6SNKXUvjMVIs4RtKDkpZK+rcR110v6Yn02pmSJqTXrk2nLZS0XNKhkvaWtKTs+pMk/Sm9Z3dKeusY8m5Jx0m6B7gnhR0o6daUr99K2imFXw28Djgz5WnWaNOrkocNgLcDn7S93PZ1wCXAexoRf+gcUYB0tsOBNwAvAWYB/5HCe4BzyX69vhB4FjhzxLXvBo4GtgAmACcASNoBOIvsy2QrYDNgOlWkL9Unqh0NucvnOwM4w/ZksnufN+L11wHbAfsDJ5X13wwBHwE2B14F7Av8K4Dt16Rzdra9oe0LK6T7J+DVwBTgFOB8SdPGkP+3AH8P7CBpF+C7wL+QvdffAi6RNNH2PsD/AR9IefrjyIgkfaPG+7+oSvqzgKER8S0EogYSniMKkAoknZB+CW5e5fWNJV0k6W5Jd0l6VQp/p6Q7JA1L2rXs/JmSnk2/Im+V9M0ceZCkOZL+mNIYSwfpmbYfsP0YMAd4F4DtR23/j+0Vtp9Or712xLXn2v6j7WfJvoBnp/B3AJfavtb2APBJYLhaBmyfanvjascY7imP1cC2kjZPv6BvGPH6KbafsX0bWUFael9utn2D7UHb95N9WY98X6qy/WPbD9oeTgXMPcDuY8j/f9l+LL33/w/4lu0bbQ/ZngsMAHvkzNO/1nj/d6py2YbAkyPCngQ2GsO9hA7WtQVIan44r0L4DOD1wF9qXH4G8Avb2wM7A3el8NuBtwHXVrjmT7Znp+PYHFk8CpgBbG/7ZcAFOa4Z6YGyx38mqzEgaX1J30rNUE+l/G4sqbfs/L+VPV5B9qVCimNNvLafAR4dQ96a6X1kv6LvlvQ7SQeOeL3a+zIrNef9Lb0v/0lWG8lF0j+VNTU9Abx8NNdXyd+LgH8bUWubUcpzkywHJo8Imww83cQ0Qxvq2gKkhi+TjWypuEyxpMnAa4BzAGyvsv1EenyX7VzDOsvi2z+1u98i6ceSSl/U7wc+a3s4xf3wGO5lRtnjF7K2P+HfgJcCf5+aeUrNM8oR59LyeCWtT9a0UpGkj6f2+YrHaG4mL9v32H4XWfPbacBFqV2/pNr7chZwN7Bdel8+Tr73BEkvAr4NfADYLNWubs97/chbKHv8ADBnRM1hfds/ypmvb9Z4/6t1vv8R6JO0XVnYzjSnsz60sShAykg6CPir7YU1Tnsx8AhwrrLx998Z8eVUzTbp/GskvTqltzlZv8R+tncBFgAfTee/BDhUWWfw5SP+M+d1nKTpkjYl+zIstdtvRNbv8UR67dOjiPMi4EBJeynrYP4sNf4d2f7P1D5f8ah2naReZZ3+fUCPpEmS+stev1/SUVWuPULS1FT4PpGCh8pO+WSqhe1I1s9T/r48BSyXtD1ZIV7uIbLPv5INyL74H0l5OJqsBrKuvg0cK+nvU7PmBpLeLClXc5LtY2u8/xX7NFKt8ifAZ1N6ewIHA99vwP2EDtJ1BYikGyXdCnwHOKisX+Jg4BPAp+pE0QfsApxl+xXAM8BJda5ZCrwwnf9R4IepJrMHsAPwm5SnI8maLAAmAitt70r2JfLd0d0pAD8Efgncm47Pp/CvAOsBy4AbgF/kjdD2HcBxKe6lwOPAkpoXjc17yAq5s8g6pp8lex9IBddmZHmv5ADgjlTDOQM4zPbKstevARYDVwFfsP3LFH4C2eCBp1NaIzvKPwPMTU1Jh5S/YPtO4IvA9WQFzd8BvxndLT+f7QVk/SBnkr3Xi8maN5vtX8n+jTwM/Ah4f/rsQ1hD3bqhlKS9gaNsH5We/x3ZF8qKdMp0sqaN3W3/rey6FwA32J6Znr8aOMn2m8vOmQ+ckP7zV0p7PtmX1TTg3am5ZeQ5dwMH2L5fkoAnbE8Z+x13Dkl7AcdVet/qXDcTuA/otz3YjLyF0E26rgZSje3bbG9he2YqHJYAu5QXHum8vwEPSCrNQN4XuLNW3JKmljqoJb2YbAjpvWS/oPdUmt2cmlVKY/l/CuyTHr+WrF06ALavG23hEUJovChAcpC0laTLyoI+CPxA2Tj62WSjdZD0VmUTy14F/FzSFen81wCLJC0k60M4Ng3TfISsOeJHKa4bgO3TNacCb5d0G/BfwD838x5DayhbP6tlAwpCaKaubcIKIYSwbqIGEkIIYUyiAAkhhDAmeVb77BhTNu31C6b31z+xgfqrr/LRVH1jmb7WAL1jmje3blRAmkVy5TmuTTdcWLrFWLRo9TLbU9cljje8bgM/+thQ3fNuXjRwhe0D1iWtInRVAfKC6f2cfckLW5rm1N5nWpre2nQLSZbJmtjyNPtzrXreOVYXNAJ5oKB0lxeU7tbTl/55XeNY9tgQN15Rda3RNfqn/WksS94Urrv+54UQQkuZIRdVh2q+KEBCCKFJTHFNf63QVQXIsHt4anhSS9OcpNUtTW9tuivrn9QEE3ta39xQVBNWUU1J3WZlm081GC6sF6f5uqoACSGEVjJmdTRhhRBCGC0DQ9GEFUIIYSyiD6RDDNLDE0PrtzTNovpANupZVUi6Rei2Ya0D1J9X0AyrC+qLeHq4fb+mDAw14H1Le+NcS7bNQx9wke1Pp/18LgRmAvcDh9h+XNLhwL+XRbET2eKwt0p6JXAe2XL9lwHH27akicD3gFeS7TJ6aNrauaqYiR5CCE00nOPIYQDYx/bOZAu4HiBpD7K9iK6yvR3ZdhQnAdj+QWkLbbK9de63fWuK6yzgGLJVwbcj2z8Hsq2gH7e9LdnOrKfVy1QUICGE0CS2WZXjyBGPbZdWbO5Ph8l2ipybwucCb6lw+bvINgVD0jRgsu3rna2k+72ya8rjugjYN+1FVFUUICGE0CTZPJBcNZDN0/bVpeOYkXGlbZ5vJdsl8krbNwJb2l4KkP5uUSEbh5IKEGBrnruD6JIUVnrtgRTXIPAk2c6fVbVv42IIIYx7YijfWm3L0vbVVdkeAmZL2hi4WNLL66Yu/T2wwvbtazJUIeocr1XUVQXIaveydPUmRWejJSaomI7WbIv41praW9S9FqOozuyiJvStdPt+TRkYbvDbZvuJtC32AcBDkqbZXpqapx4ecfphrK19QFbjKF+cq7R1d+m1GcASSX3AFOCxWnmJJqwQQmiioVQLqXXUk7bF3jg9Xg/YD7gbuAQ4Mp12JPCzsmt6gHcCF5TCUjPX05L2SP0b/1R2TXlc7wCudp0dB9u3aA8hhHEum0jYkO0GpgFzJfWS/fCfZ/tSSdcD8yS9D/gLWYFR8hpgie17R8T1ftYO4708HQDnAN+XtJis5nFYvUxFARJCCE1iYLXXvaHH9iLgFRXCHwX2rXLNfGCPCuELgOf1n9heyXMLoLq6qgBZPdzLXwc2bmma/QX1RawuqN14Vf+jLU9z9ZrRjaETPTy0UdFZGDMjhjq4p6CrCpAQQmi1YXfujplRgIQQQpM0sA9kXIoCJIQQmkYMNaAPZLwaVwVIGmGwAPir7QNT2AeBDwCDwM9tn5jCTyZbu2UI+JDtK+rFv9q9/G3llGZlv6KBghaC26y/mL3Yi/DA6s2Y2vdUy9MtaqHMoub4rHJvIek+Mji5kHQbwcBqinnfWmFcFSDA8cBdwGQASa8jW59lJ9sDkrZI4TuQDTHbEdgK+JWkWWmmZugyRRQeIeRhd3YNZNzcmaTpwJuB75QFvx841fYAgO3SLMuDgQtsD9i+D1gM7N7K/IYQQh7DqO7RrsZNAQJ8BTiR565uPAt4taQbJV0jabcUvmbRr6R8QbAQQhgXsk70nrpHuxoXTViSDgQetn2zpL3LXuoDNiGbDLMb2YzLFzOKRb/SqpbHAKy/5YYNzHUIIdTT2U1Y46IAAfYEDpL0JmASMFnS+WQ1i5+k9VhukjQMbM7aRb9KyhcEew7bZwNnA2z00hd46YrWTkpaMdjf0vTWaO3Gi2tM7Nm05WmudDHvcWG7TfY+W0i6K4eLeZ+fbPEuoo2ULefeuQXIuLgz2yfbnm57Jlnn+NW2jwB+CuwDIGkWMAFYRrbo12GSJkrahmxXrZuKyHsIIVRjxCr31j3a1XipgVTzXeC7km4HVgFHptrIHZLmAXeSDe89LkZghRDGo+FowmqdtADY/PR4FXBElfPmAHNalrEQQhilUid6pxp3BUgzDQ338MSK9YrORkv09bTv5KvRKmqy5pS+Yvoilg227+KCY/HkYPv+nzViKNbCCiGEMBad3IkeBUgIITSJTQzjDSGEMHpGrG7jUVb1RAESQghNFJ3oHWJ4WKwcaO1kqOW9w/VPCutkYs9gIel28i/LSoraXXP50MRC0m0Eo9hQKoQQwthEDSSEEMKomZhIGEIIYQyiE72D2DC4qrUf5nLat/12LHrV+j6fCT2t3WVybbrF9L1M7C0m3b6C+kAeX7VBIek2SuyJHkIIYdRsRRNWCCGEsYmJhCGEEEYt2w8kmrBCCCGMWuxI2DmGxfBAa2+5mO5OWNlXzEc7sa/1u9Y9/Gwxnawb9q8qJN31+4rZCbEoRX2+jWA6e8JpdxUgIYTQQjETPYQQwph18nLude9M0tsk3SPpSUlPSXpa0lOtyFwIIbSzbDl31T3aVZ4ayOnAP9q+q9mZ6UQebt9/HO2iqE7KVcPFtG33DRezQOfgcDHvc7t3Qnd7E9ZDUXiEEMLoZX0g7V0A1pKnAFkg6ULgp8BAKdD2T5qVqRBC6ATZKKzOLUDy3NlkYAWwP/CP6TiwGZmR1Cvp95IuHRF+giRL2rws7GRJiyX9QdIbmpGfEEJYN1kNpN7RrurWQGwf3YqMJMcDd5EVWgBImgG8HvhLWdgOwGHAjsBWwK8kzbJdzGpvIYRQRVfPRJc0HfgasCdZjew64HjbSxqZkZTOm4E5wEfLXvoycCLws7Kwg4ELbA8A90laDOwOXF8vHbe6/7GgjseBFu+8uCbdCa2fOtnfW8zvhlVDnTtBrJKi7nd1G7/PpVFY60rSJOBaYCLZ9/ZFtj8taVPgQmAmcD9wiO3H0zU7Ad8i+0E+DOxme6WkdwEfJ/s+fxA4wvYySROB7wGvBB4FDrV9f6185fl2Oxe4hOyX/tbA/6awRvsKWUGx5ite0kHAX20vHHHu1sADZc+XpLAQQhhXGtSENQDsY3tnYDZwgKQ9gJOAq2xvB1yVniOpDzgfONb2jsDewOoUfgbwOts7AYuAD6Q03gc8bntbsh/up9XLVJ6cT7V9ru3BdJwHTM1zx3lJOhB42PbNZWHrA58APlXpkgphrhL3MZIWSFow9PQzDclvCCHkYcSge+oedePJLE9P+9NhstaYuSl8LvCW9Hh/YFHpx7ftR1MTv9KxgSSR1U4eTNeUx3URsG86p6o8BcgySUekDu5eSUeQVW8aaU/gIEn3AxcA+wDfB7YBFqbw6cAtkl5AVuOYUXb9dNa+Cc9h+2zbu9retXej9l1TJ4TQfrItbVX3yCN9/94KPAxcaftGYEvbSwHS3y3S6bMAS7pC0i2STkznrAbeD9xG9p25A3BOumZNy47tQeBJYLNaecozjPe9wJlkVRoDv01hDWP7ZOBkAEl7AyfYfnv5OakQ2TW11V0C/FDSl8ia1rYDbqqfkNCqFvdJ9BQz6Wt4dTF9L8tXtH4HxsGhYu51Yl9BOwP2FjSRsKD3eWCwvVdcytlEtbmkBWXPz7Z9dvkJqQYxW9LGwMWSXl4jvj5gL2A3slG0V0m6mawf5f3AK4B7yfq3TwY+zyhadsoTqcn2X4CD6p3XSrbvkDQPuJNswdvjYgRWCGHcyV/DWGZ711xR2k9Img8cADwkaZrtpZKmkdVOIGulucb2MgBJlwG7AE+lOP6UwueR+k1Y27KzJPWVTAEeq5WXqkVjqcoj6WuSvjryyHOjY2F7vu3nzTOxPbP0ZqTnc2y/xPZLbV/erPyEEMJYlTaUqnfUI2lqqnkgaT1gP+BusgFOR6bTjmTtaNUrgJ0krZ8Kg9eS/eD+K7CDpFI/9uvJpk4wIq53AFfbHnMNpBTpghrnhBBCqKFBa2FNA+ZK6iX74T/P9qWSrgfmSXof2Vy5dwLYfjw18f+OrBy7zPbPASSdAlwraTXwZ+ColMY5wPfTtIjHyOba1VS1ALH9v+nhCts/Ln9N0jvz3fN4Y+itWaCGdTS4qvVj9gd6ivlMi+qLoKDG2qIWNRxY3b59IKYxi1DaXkTWbzEy/FFg3yrXnE82lHdk+DeBb1YIX0kqgPLKc2cn5wwLIYRQprShVCNGYY1HVYt2SW8E3gRsPaLPYzLF7dQaQghtpVuXMnmQrP/jIODmsvCngY80M1MhhNAR3KX7gaQZjAslXQw8UxommzpxWj/YP4QQ2kxpImGnytM79UuyIWOlafTrpbB/aFamOkqXddqry+43NF9vQZNxG6XbC5BJZWuwYHt5WqcqhBBCDUYMFbQidyvkubNnJO1SeiLplcCzzctSCCF0jkZMJByv8tRAPgz8WFJpscJpwKFNy1EIIXQId2sneont30naHngp2WJbd6cVHduPgP7WttGroPZbFTS5rreAyXVFtZEXtbjgYK6Gg8YrauJkuzcBuZsLkNTf8VHgRbb/n6TtJL3U9qX1rg0hhO7W3hMF68m7I+Eq4FXp+RKypX9DCCHUYLIaVL2jXeXJ+Utsnw6sBrD9LJXXjQ8hhFDOWT9IvaNd5elEX5WWDzaApJeQ7c8bQgihjnYeZVVPngLk08AvgBmSfkC2/exRzcxU0/SYnomtXcarqIl1ff3FLNk6sb/1y6QVtTNgUavTFqWoQQMebt8vYNPlnei2r5R0C7AHWdPV8eUbO4UQQqimszvRa63Gu73tu8smES5Nf18oaQbwmO0/Nz2HIYTQxtq5j6OeWjWQjwLHAF+s8vpmkhbafk/jsxVCCO3PhuE2HmVVT63VeI9Jf19X7RxJv2xGpppFgr4Jre0bKGpCXxF9EVBMf8R6E4qZ17p6qPW7L0L3TWAcKuh+G6Urm7BKJPUD7wdek4LmA9+yvdr2/k3MWwghtL1ObsLKU7SfBbwS+EY6XpnCGk5Sr6TfS7o0Pf9vSXdLWiTpYkkbl517sqTFkv4g6Q3NyE8IIawrW3WPdpVnGO9utncue361pIVNys/xwF1k2+YCXAmcbHtQ0mlke7F/TNIOwGHAjsBWwK8kzSptehVCCOOBae8Cop48NZChNHkQAEkvBhr+RS1pOvBm4DulMNu/tF1qVL8BmJ4eHwxcYHvA9n3AYmD3RucphBDWSVqNt97RrvLUQE4Afi3pXrJ5IC8Cjm5CXr4CnAhsVOX19wIXpsdbkxUoJUtS2PNIOoZsNBn9U6cwaWJrO1yLWsG0V+29i9todFtndlETGAv7t1xQug3TwX0gNQuQtP/5zsB2PHc594YuZSLpQOBh2zdL2rvC658ABoEflIIqRFPxY7J9NnA2wPrbbdXBH2UIYTzq2ias1KdwUGoqWmR7YaMLj2RP4CBJ9wMXAPtIOh9A0pHAgcDh9prxDEuAGWXXTwceJIQQxplOXkwxT134t5LOlPRqSbuUjkZmwvbJtqfbnknWOX617SMkHQB8jKwQW1F2ySXAYZImStqGrIZ0UyPzFEII66q0FlY3j8L6h/T3s2VhBvZpfHae50xgInClJIAbbB9r+w5J84A7yZq2jsszAku45RPdiprk1k2eXdVfSLrdtphiGAMDbVxA1JNnMcWqM9GbwfZ8ssmK2N62xnlzgDmtyVUIIYyN23wMQC11f0JJ2kzSVyXdIulmSWdI2qwVmQshhPZWv/mqnZuw8tTBLwAeAd4OvCM9vrDmFSGEEDLOcbSpPH0gm9r+XNnzz0t6S5Py01RS68eyFzUfY0Jv90zKX69vNU8NTGp9wgW9xUX1vRQ176WtubOH8eYpQH4t6TBgXnr+DuDn1U6WdEmOOB+zfVSO80Koq5DCI4S82riGUU+eAuRfyPYG+X563gs8I+mjgG1PHnH+y4B/rhGfgK+PNqMhhNCeurgGYrva0iLVfML2NbVOkHTKKOMMIYT21MGjsPLUQEbF9rzy55I2sP1MrXNCCKEjdfs8kLGS9A9kK+tuSLaP+s7Av9j+12alWT9Ppr/Fncvd1JldlFZ/piXd1qncbffbKO28VEk9Vf9FpCVC1sWXgTcAjwLYXsjaXQ1DCKE7dPAw3lo/KS4CkHTVWCO3/cCIoPg5HkLoLlb9ow5JkyTdJGmhpDtK/ciSNpV0paR70t9Nyq7ZSdL16fzbJE1K4RMknS3pj2nH17en8ImSLkw7vd4oaWa9fNVqwuqR9GlgVhpx9dz3xP5SnbgfSM1YljQB+BDZboMhhNAdDA2aCjYA7GN7uaR+4DpJlwNvA66yfaqkk4CTyHZt7QPOB95je2FaPaS0MN8nyLbPmCWpB9g0hb8PeNz2tmnqxmnAobUyVasAOQx4SzpntCOxAI4FziDb6GkJ8EvguDHE09ZWFbTZUWi+ojZYKqoeP2lCaxciLXlmuJ37XvLVMOpJW1ksT0/702Gy3Vn3TuFzydYR/BiwP7AodR1g+9Gy6N4LbJ/Ch4FlKfxg4DPp8UXAmZJUto3G81QtQGz/AThN0iLbl+e5yZK0EdVXbB8+mutCCKHjNKiPI32v3gxsC3zd9o2StrS9FMD2UklbpNNnkbX+XAFMJdsC/HRJG6fXP5c27/sT8AHbD5H92H8gxTUo6UlgM9YWMM+Tdz+QL0lakI4vSppS64K0tPrU1HQVQgjdK18n+uZl37EL0lbcz43GHrI9m2wDvd0lvbxGqn3AXsDh6e9bJe2bwqcDv7G9C3A98IV0Te6dXssTqee7wO3AIen5e4Bzydrearkf+E1a2mTNPJAcfSchhNA58tVAltneNVd09hOS5gMHAA9JmpZqH9OAh9NpS4BrbC8DkHQZsAtwNbACuDid92Oyvo/SNTOAJakPZQrwWK285KmBvMT2p23fm45TgBfnuO5B4NKUxkbp2DDHdSGE0BlKEwnXfRTW1FLzk6T1gP2Au8l2Zz0ynXYk8LP0+ApgJ0nrp8LgtcCdqT/jf1nbb7Iv2cZ8jIjrHWQ7w65zDeRZSXvZvi5lfk/g2RzX3Wn7x+UBkt6Z47oQRqWoFY/ptvERBXXe9/a091ogDfrnOQ2Ym/pBeoB5ti+VdD0wT9L7gL8A7wSw/bikLwG/IyvGLrNdWgT3Y8D3JX2FbHuOo1P4OSl8MVnN47B6mcpTgBwLfK+s3+Nx1pZStZxMVj2qFxZCCKEG24uAV1QIf5SsFlHpmvPJhvKODP8zFSZ1215JKoDyyrOY4kJgZ0mT0/Onap0v6Y3Am4CtJX217KXJZPuXhxBC11AbzzSvJ/daWPUKjjIPAguAg8iGnJU8DXwkf9ZCCKEDxGKK+aUay0JJP0zxvzDNKakrte8tAP5q+0BJm5JtnzuTbFTXIbYfT+eeTDZ6YAj4kO0r6sU/NCyWD0wc/U2tgw0nDrQ0vZLC+gUKUNSClauKWpinoL6XohZTLGzCZiO0+VpX9TTzX8QBwK3ALwAkzc6xW+HxPHe5k5PIpulvB1yVniNpB7IOnh1TOt9IhU8IIYwvXbqYIgBpGNgnJX07Pd9O0oE54v4MsDvwBIDtW8lqEtXSmQ68mWwJ+JKDyabnk/6+pSz8AtsDtu8DFqe0QghhXNFw/aNd5amBnEu2kNer0vMlwOdzXDdo+8lR5OUrwIk8d/+u50zTB0rT9NdMuS/L09ajSCuEEFqjm2sgZBMJTyet5Gj7WfJt8nu7pHcDvanW8jXgt5VOTDWah23fXOn1SpdUCKv4MUg6prQ8wOCTK3JGH0II607Od7SrPJ3oq9LMRwNIeglZjaSeD5ItGzwA/IhsZuTnqpy7J3CQpDcBk4DJks6n9jT9GWXXTycb/fU8ts8GzgZYb9utvHJV0zZhrGhiX0EjlwvqEVqvb3X9k8I6WR0rPLeXDh6FlacG8hmyjvAZkn5A1pn9sXoX2V5h+xO2d7O9a3q8ssq5J9uebnsmWef41baPoPo0/UuAw9IGKNsA2wE35biXEEJorQ5uwsozkfCXkm4G9iBrOjq+tEBXLZJ2BT5O1nG+Jh3bO40if6dSeZr+HZLmka3hMggcl1YADiGEcaWdO8nrqVuASLrK9r7AzyuE1fID4N+B23hux3hNtueTbYpSb5r+HGBO3nhDCKHl2ryPo56qBUjaP3d9snXqN2Ftx/VkYKsccT9iu968j5ayxeBga9uPBwZb2+dS0l/Y5Lponw/hObqxAAH+BfgwWWFxM2sLkKeAr+eI+9OSvkPWZ7Km0932T8aU0xBCaEfdWIDYPgM4Q9IHbX9tDHEfTbbvbj9rm7AMRAESQugaXdmEVWL7a2nrxB3IhtiWwr9X59Kdbf/dOuYvhBDCOJWnE/3TZLtX7QBcBrwRuA6oV4DcIGkH23fWOS+EEDqTu3wUFtnWhjsDv7d9tKQtee56VdXsBRwp6T6yPhABHuUw3oayxeqVre3UfqanmPprUavxFrFyalEDBrrNkItZjbftdXMTFvCs7WFJg2lTqYfJtyf6AeuWtRBC6ABdXoAsSJu5f5tsNNZyasz6lnSL7V3Stok1zxltZkMIoZ2I6ET/1/Twm5J+AUxO+/NW8zJJtV4XMKXG6yGE0Dm6uQABkLQ18KLS+ZJeY/vaKqdvnyPKYhqth8ArWtsHsrqgPpCB/mImMA659X0g3bZTXlH3G8agW2eil0g6DTiUbN2p0he/gYoFSK2mqxBC6DpdPgrrLcBLbRezuXcIIbSxrq6BAPeSzSaPAiSEEEarywuQFcCtkkauafWhpuWqWYZFz4rWLvY31FvMv56VE/oLSXfSxAI2lCpo/cahwWL6IorqAykq3aHhNu7zafP9PurJU4Bcko4QQgij1NVNWLbntiIjIYTQibpyKRNJ82wfIuk2KlTCilySJIQQ2kaX1kCOT38PbEVGQgih43RrH4jtpelvx8zrkKF3peqf2EDD/cX08K6eWMxEwm6igiaJFsXDrf2/UzLUxhMnxdqd+DpRrSasp6lRdtqe3JQchRBCJ+ng3xm1aiAbAUj6LPA34PtkhenhwEYtyV0IIbS5Th6Fladu+Abb37D9tO2nbJ8FvL3RGZE0SdJNkhZKukPSKSl8tqQbJN0qaYGk3cuuOVnSYkl/kPSGRucphBDW2XCOo03laSgfknQ4cAFZZexdNGcxxAFgH9vLJfUD10m6HPgscIrtyyW9CTgd2FvSDsBhwI7AVsCvJM2yXT1vw9Db4vn0w/3FtIAOTiqo76WANIvqi1BBk0S7jYfauBehwxdTzFMDeTdwCPBQOt6ZwhrKmeXpaX86SmMYSv0tU4AH0+ODgQtsD9i+D1gM7E4IIYwnznG0qZo1EEm9wHG2D25FZlJ6NwPbAl+3faOkDwNXSPoCWYH3D+n0rYEbyi5fksJGxnkMcAxA35RNmpf5EEKooGtrIKk56JUtygu2h2zPBqYDu0t6OfB+4CO2ZwAfAc5Jp1eq11aa8Hi27V1t79q7/gZNynkIIVTRwTWQPE1Yv5d0iaT3SHpb6Whmpmw/Acwn21f9SOAn6aUfs7aZagkwo+yy6axt3gohhHFBrn/UjaP6IKNNJV0p6Z70d5Oya3aSdH06/zZJk0bEeYmk28ueT5R0YRqYdKOkmfXylacTfVPgUWCfsjCz9ku9ISRNBVbbfkLSesB+wGlkhcJryQqUfYB70iWXAD+U9CWyTvTtqLFXO2QfVE+Le3l7VhfTAaiVxXSiFzGgREXNMyuoE72nr5gNPYuaSOjVBS233AimUf8pqg0yehtwle1TJZ0EnAR8TFIfcD7wHtsLJW1G2RiXVAlYPiKN9wGP295W0mFk37+H1spUnsUUj85/j+tkGjA39YP0APNsXyrpCeCM9IasJPVn2L5D0jyynRIHyfpqivmfFUIIFYjG9IHYNmu/8MsHGR0M7J3C55L90P4YsD+wyPbCdP2ja/IkbQh8lOy7dF5ZMgcDn0mPLwLOlKSUdkV5trSdDnwN2DNl+DrgeNtL6l07GrYXAa+oEH4dVfphbM8B5jQyHyGE0FANqqhWGWS0ZdmyU0slbZFOnwVY0hXAVLIRq6en1z4HfJFsr6dyWwMPpLgGJT0JbAYsq5anPJX/c8mai7ZKCfxvCgshhFCH7LoHsHmaKF06jhkZT5VBRtX0AXuRrRyyF/BWSftKmg1sa/viSlmtEFaz+MvTBzLVdnmBcV4aWtt+DL0rW5vkcDEbA+LegiYwFrE9YH9BU3kL6t8azvW7r/FcUJ+P2nwiYc4ayDLbu+aKMusnnk82yOghSdNS7WMa8HA6bQlwje1lAJIuA3YhawZ7paT7yb7/t5A03/berB2YtCR1GUwBHquVlzz/EpdJOkJSbzqOIOtUDyGEUIeG6x9145CmSto4PS4NMrqbrHXoyHTakcDP0uMrgJ0krZ8Kg9cCd9o+y/ZWtmeS1Uz+mAoPRsT1DuDqWv0fkK8G8l7gTODL6flvUlgIIYQ6GjSRsNogo+uBeZLeB/yFbKUQbD+eRqj+jqwOdJntn9dJ4xzg+5IWk9U8DquXqTyjsP4CHFTvvBBCCBU0ZhRWtUFGjwL7VrnmfLKhvNXivB94ednzlaQCKK+6TViSpku6WNLDkh6S9D9pZFYIIYRackwibOelTvI0YZ0L/JC1JdMRKez1zcpUsxQxkbDVnfYl7mnjjsdRGppUUKdy+26UNyYqYqnlTtDGBUQ9ef4LTLV9ru3BdJxHNq44hBBCDaWJhJ1aA4lRWCGE0EQadt2jXeUpQN5Lth/I34ClZMO7YhRWCCHUk2cl3vYtP7psFFYRfSAt3gGxaCpgwb2iJpoVNbGuqMmpRVGbr3CXZ55Hu8ozCmtuaQJLer6JpO82NVchhNApurkGAuyU9ucA1kxQed545BBCCM/Xzp3k9eQpQHokbWL7ccg2MMl5XQghdDfT1p3k9eQpCL4I/FbSRWSVrUNo0yXUZehd1eoPs6D2+YLmKLiAtRR7Vhdzv8P9BW0W1uZ9AqPV9vfbueVHrk7070laQLYboIC32b6z6TkLIadum9AX2kejNpQar3I1RaUCIwqNEEIYDTs7OlT0ZYQQQhN1fQ0khBDCGHVzASLpA8APSqOw2loBEwmL+tfTTYspdt3Eug6emNZxDBrq3BIkT/fjC4DfSZon6QBJTflmkjRJ0k2SFkq6Q9IpZa99UNIfUvjpZeEnS1qcXntDM/IVQgjrpJsnEtr+D0mfBPYHjgbOlDQPOMf2nxqYlwFgH9vLJfUD10m6HFgPOJhsQuOApC0AJO1AtmPWjsBWwK8kzbLd7oP+QggdpJP7QHINgEz74v4tHYPAJsBF5bWBdeXM8vS0Px0G3g+cansgnVfaNP5g4ALbA7bvAxYDuzcqPyGE0BClkVi1jjaVpw/kQ2QbrS8DvgP8u+3VknqAe4ATG5WZtN/vzcC2wNdt3yhpFvBqSXOAlcAJtn8HbA3cUHb5khRWPf5h6Hu2tR/WcEEL/RVXLy5gMcWC+gTafoLbKBUxSbQTdHINJM8orM3JJg/+uTzQ9rCkAxuZmdT8NDst3nixpJenPG4C7AHsRraB/Iup/E31vI9K0jHAMQAT1t+kkdkNIYTa2ryPo548fSCfqvHaXY3Nzpp4n5A0HziArGbxk9SMdpOkYbJCbQkwo+yy6cCDFeI6GzgbYMNNZ3TwRxlCGG9EjMJqCUlTS8vGS1oP2A+4G/gp2TIqpOasCWTNaZcAh0maKGkbYDvgptbnPIQQqpNd92hX42ki4TRgbuoH6QHm2b5U0gTgu5JuB1YBR6bayB1pNNidZB37x8UIrBDCuNLtTVitYnsR8Lx9RmyvAo6ocs0cRrEysIZN38rW9rgOFlTJ6y+qY7mAdIdWFzNQoagJjEV1Zkcn+li09yiresZNARJCCJ2o20dhhRBCGIsOX8okCpAQQmimaMLqEIbegdY20he2M2BBExg12Po0eye0Pk2AoaLSLWgnxOgDGaPOLT+6rAAJIYQWa+dhuvVEARJCCM0UBUgIIYRRM9DB+7dEARJCCE0ijIY7twTpqgJEw9CzqrUfZle9wcDQxNaPGihqxWMNF5RuQestRCf6GEUTVgghhFGLJqwQQghjFaOwQgghjE0UIB3CpvfZ1S1NUkPFNBwPTywm3b5nW99APzRYzGxNFdT30ttb0OKRBaXrtv6W6uzFFMfNfiAhhNBxDAy5/lGHpEmSbpK0UNIdkk5J4ZtKulLSPenvJmXX7CTp+nT+bSmO9SX9XNLdKfzUsvMnSrpQ0mJJN0qaWS9fUYCEEEITNWhDqQFgH9s7A7OBAyTtAZwEXGV7O+Cq9BxJfcD5wLG2dwT2BkrNL1+wvT3Z9hl7SnpjCn8f8LjtbYEvA6fVy1QUICGE0Ex2/aNuFLbt5elpfzoMHAzMTeFzgbekx/sDi2wvTNc/anvI9grbv05hq4BbyLYDZ0RcFwH7SqrZbhkFSAghNIuBYdc/YHNJC8qOY0ZGJalX0q3Aw8CVtm8EtrS9FCD93SKdPguwpCsk3SLpxArxbQz8I1nNBWBr4IEU1yDwJLBZrdtr6+6p0dKw0UBrO3l7B4sZBN6zqnt29+2Z0F0DFdzTbZ3oxaTbGLk70ZfZ3rVmTNmW3bPTF//Fkl5e4/Q+YC9gN2AFcJWkm21fBWuauH4EfNX2vemaSm90zcxHDSSEEJppeLj+MQq2nwDmAwcAD0maBpD+PpxOWwJcY3uZ7RXAZcAuZdGcDdxj+ytlYUuAGSmuPmAK8FitvEQBEkIIzZK/CasmSVNTzQNJ6wH7AXcDlwBHptOOBH6WHl8B7JRGXfUBrwXuTNd/nqxw+PCIZMrjegdwtV27+tRVTVghhNBaBjekGXsaMFdSL9kP/3m2L5V0PTBP0vuAvwDvBLD9uKQvAb/LMsFltn8uaTrwCbLC55bUR36m7e8A5wDfl7SYrOZxWL1MjZsCRNIk4FpgIlm+LrL96bLXTwD+G5hqe1kKO5ls6NkQ8CHbV9RMxKZnoLUTCbuN+1pfqdVAMX0RPasK6gPpLabhwEX1gRR0vw3TgImEtheRDbsdGf4osG+Va84nG8pbHraEyn0d2F5JKoDyGjcFCGvHOS+X1A9cJ+ly2zdImgG8nqyEBUDSDmQl5I7AVsCvJM1KHU0hhFC8UhNWhxo3RXuNcc6QTWo5keeOCDgYuMD2gO37gMXA7q3Kbwgh5NKAeSDj1bgpQKDyOGdJBwF/LU2IKbNmzHKyJIWNjPOY0tjqVYMrmpX1EEKowA0fhTWejKcmrErjnHci6/DZv8LpucYs2z6bbMgaUyZsaZ5a/ryLmmqooBa13mLa54toJVdfQTsd9RX032dCfyHJDk8sJl0XNN+mIUxbFxD1jKsCpMT2E5LmkzVTbQMsTKMFppONHNidsjHLyXTgwRZnNYQQamvjJqp6xk0TVpVxzr+3vYXtmbZnkhUau9j+G9mY5cPSCpLbANsBNxWT+xBCqKKD+0DGUw2k4jjnaifbvkPSPLLJMYPAcTECK4QwvuSbKNiuxk0BUm2c84hzZo54PgeY08RshRDC2BncmImE49K4KUBaYngYPxMjsUJjqKhO9IkTCkm2Z9LEQtJloJjO+4YZigIkhBDCaNkxCiuEEMIYtXEneT1RgIQQQhM5aiCdwUNDDC9v7URCFzWRMDSdipqs2VdMn4AK6gMpKt3GaO9huvV0VQESQggtZYpbjaIFogAJIYQmMeCYBxJCCGHU3LANpcalKEBCCKGJOrkGojpb3nYUSY8Afy46HzltDiwrOhPrqBPuAeI+xpNW3sOLbE9dlwgk/YIsz/Uss33AuqRVhK4qQNqJpAW2dy06H+uiE+4B4j7Gk064h04yblbjDSGE0F6iAAkhhDAmUYCMX2cXnYEG6IR7gLiP8aQT7qFjRB9ICCGEMYkaSAghhDGJAiSEEMKYRAEyzki6X9Jtkm6VtKDo/OQl6buSHpZ0e1nYppKulHRP+rtJkXnMo8p9fEbSX9NncqukNxWZx3okzZD0a0l3SbpD0vEpvK0+jxr30VafRyeLPpBxRtL9wK6222rCl6TXAMuB79l+eQo7HXjM9qmSTgI2sf2xIvNZT5X7+Ayw3PYXisxbXpKmAdNs3yJpI+Bm4C3AUbTR51HjPg6hjT6PThY1kNAQtq8FHhsRfDAwNz2eS/aff1yrch9txfZS27ekx08DdwFb02afR437CONEFCDjj4FfSrpZ0jFFZ2YdbWl7KWRfBsAWBednXXxA0qLUxDWum37KSZoJvAK4kTb+PEbcB7Tp59FpogAZf/a0vQvwRuC41KQSinUW8BJgNrAU+GKhuclJ0obA/wAftv1U0fkZqwr30ZafRyeKAmScsf1g+vswcDGwe7E5WicPpXbsUnv2wwXnZ0xsP2R7yPYw8G3a4DOR1E/2pfsD2z9JwW33eVS6j3b8PDpVFCDjiKQNUmchkjYA9gdur33VuHYJcGR6fCTwswLzMmalL93krYzzz0SSgHOAu2x/qeyltvo8qt1Hu30enSxGYY0jkl5MVuuAbK+WH9qeU2CWcpP0I2BvsqWrHwI+DfwUmAe8EPgL8E7b47qDusp97E3WXGLgfuBfSn0J45GkvYD/A24DSrsZfZys/6BtPo8a9/Eu2ujz6GRRgIQQQhiTaMIKIYQwJlGAhBBCGJMoQEIIIYxJFCAhhBDGJAqQEEIhJJ0gyZI2r/BaxYUU02sVF1OUNFPSs2Xh38yRh/Mk3Vd2zeyG3mSHiwIkjCuSlqe/W0m6aB3i+bCk9RuUp+3Tl8vvJb2kEXGWxf0dSTuM4brZ5avQSjooLZA4rkjaW9J5FcJnAK8nG05cySDwb7ZfBuxBtipD+fv0Zduz03FZWfifysKPzZnNfy+75tac1wSiAAkFktRX7TXbD9p+xzpE/2GgIQUI2aKDP7P9Ctt/Gu3Fde7zn23fOYY8zQbWFCC2L7F96hjiKcqXgRPJ5nI8T6MXUpS0v6TrJd0i6cdpeZSwjqIACUjaLS1MNynNhr9D0ssrnPdP6byFkr6fwl4k6aoUfpWkF9YJP0/SlyT9GjhN0jbpP/bvJH2uLK2ZSntySDpK0k8k/ULZXhanl513lqQFKc+npLAPAVsBv07p5PoCSb/qb0h5vljSJulX/oeBfy7FNeKa5ZK+mOK9StLUFD5f0n9KugY4XtK+qQZzm7IFACeWnbdrrTymz+e36X2/SdIU4LPAoalmdGh6j87M8d5/NcV1r6R1KaDHTNJBwF9tL8x5/kyeu5AiVF9McZv0Pl8j6dXp+s2B/wD2S+vMLQA+WnbNnBTXl0ufS8jJdhxxAHwe+ALwdeDkCq/vCPwB2Dw93zT9/V/gyPT4vcBP64SfB1wK9KbnlwD/lB4fR7bPA8BM4Pb0+CjgXmAKMAn4MzBjRD56gfnATun5/WV53Ry4FtggPf8Y8KkK97gIeG16/FngK+nxZ4ATqrxvBg5Pjz8FnJkezwe+kR5PAh4AZqXn3yNbGLB03q7V8ghMSPe+WwqfTLZKwVGltMreo1Latd77H5P9cNwBWNzEf083ArcCi8mWx781HQen16aM/JyqxLMh2T4gbysL2zJ93j3AHOC7KXwisFl6/Mr0nk8GDgSWleXhTuCcdN40QOnauZX+XcRR43MuOgNxjI8jfVEtTP+5eyu8/kFgToXwZUB/etwPLKsTfl7pyy09f7TsvMlUL0C+XXbN5cBe6fGxwC1kX/6PAIel8DVfTLW+QMrinAL8pez5S4Bb0uPPUL0AGQL60uMXA7emx/NZWxjtDFxbds2+wE/Kztu1Wh6BvwN+UyHdo6hegNR67w8vu+bpFvy72hs4r+z535Et4nh/OgbJ+kFeUOHafuAK4KM14l/z76TCa6X39h+BH+XM66Wt/H/X7kfVttnQdTYl+7XXT/aL+ZkRr4sq7dUjVDunPHxk3HniHSh7PAT0SdoGOIHs1/njqbN2UoVrBVxp+1050llXle5TOa6rmEdJO5Hv/cmbp/L3MU++Gsr2bZTtQ6IqO3BKVReERNI0r137as1iiqn58DHbQ8rWlduOrPb2Z+Drkra1vVjZ4Irptv9Yiiul9xZiYcZRiT6QUHI28EngB8BpFV6/CjhE0maQ7a+dwn8LHJYeHw5cVyd8pN+MOG80JpN9ST8paUuyPVRKngY2So9vAPaUtG3K+/qSZpVHZPtJ4PFSuznwHuCaHHnoAUp9Ce+m8n3eDcwspV8l7mp5vBvYStJuKXwjZZ3y5fc3Ut73flxRNvKuNKJqT7L3aR89f+/z01Nf0iLgdcBHUvhrgEWSFgIXAcfafsz2I2Q1tB+la24Atk/X/EDSbWQLNm5O1pQbcooaSEDSPwGDtn8oqRf4raR9bF9dOsf2HZLmANdIGgJ+T/af8kPAdyX9O1kT0tHpkmrhIx0P/FDZOP//GU2+bS+U9HvgDrJfmr8pe/ls4HJJS22/TtJRZF8gpU7S/wD+OCLKI4Fvpl+o99bIc7lngB0l3Qw8CRxaIZ8rJR0N/Dh9+f8O+OZzT/EjlfKYfiUfCnxN0nrAs8B+wK+BkyTdCvzXiCTzvvdNZ3s+WVNStddnlj1+kDSyzPZ1VKkh2X5PlfD/ocq/ofRvebcK4ftUy1uoL1bjDWEdSFpue8xDQtOv34Ns39fAbIXQEtGEFUJBJF0J3BaFR2hXUQMJIYQwJlEDCSGEMCZRgIS2pbLF8xoQ13PWlhrFdYdKWizp0nXNQwjtJgqQ0O7+ZHt2A+KZTdnaUuVUey2rC4F/bkD6IbSdGMYbOkJaL+kXZHMe9iCbVX8ucArZxLXDbd8kaQPga2QzovvIZplfTrZ0yXqS9iIbFvsysvW0ZgLL0jDjbwIvTEl+2Hb5sOEQuk7UQEIn2RY4A9iJbKLYu4G9yGarfzyd8wngatu7kU1C+2+y2fefAi50tqT3hencVwIH2353ivfL6bq3A99pzS2FMH5FDSR0kvvSUhlIugO4yrbTXIuZ6Zz9gYMknZCeT2JtrWKkS2w/mx7vB+yQrXgBwGRJGzlbajyErhQFSOgk5es8DZc9H2btv3UBb7f9h/ILJf19hfjK1+zqAV5VVqCE0PWiCSt0myuAD6bF85D0ihRea20pgF8CHyg9UWx9GkIUIKHrfI6sz2ORsg2rSptY/ZqsierWtPbUSB8Cdk0bD91Jtox8CF0tZqKHtpVGXl1q+3m7J7Y4H3uT7RdyYJH5CKHVogYS2tkQMKUREwnHKtVWvgE8XlQeQihK1EBCCCGMSdRAQgghjEkUICGEEMYkCpAQQghjEgVICCGEMYkCJIQQwpj8f2Pb50wjDOZJAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "clipped.plot()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "clipped.rio.to_raster(\"clipped.tif\", compress='LZMA', tiled=True, dtype=\"int32\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Clip using a GeoDataFrame" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "import geopandas\n", "from shapely.geometry import box" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "geodf = geopandas.GeoDataFrame(\n", " geometry=[\n", " box(425499.18381405267, 4615331.540546387, 425526.18381405267, 4615478.540546387)\n", " ],\n", " crs=\"EPSG:26915\"\n", ")" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "clipped = xds.rio.clip(geodf.geometry.values, geodf.crs, drop=False, invert=True)\n", "# Note: If you have rasterio < 1.2 you will need convert the geometries to dict-like objects if the projection\n", "# of the geometries differ from the raster. For example:\n", "#\n", "# from shapely.geometry import mapping\n", "# geometries = geodf.geometry.apply(mapping)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEiCAYAAADXvYSyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAC7tklEQVR4nOz9e7hsWVkeir/vmFVr7d4NzR1OCyiJtBhvoBBCokmMGCWXn3i8oomi4RyiIdEccxGSGDUJ52CeRKOiJESDoPGCJPxijKgEQ4wKaGNA5WJERekDgty72b33qprjO3983zfGN0bNWVV799q9b/U+z1xVNeeYY445q9Z4x3eniOCAAw444IADLhbpSg/ggAMOOOCAaxMHAjnggAMOOOCScCCQAw444IADLgkHAjnggAMOOOCScCCQAw444IADLgkHAjnggAMOOOCScCCQ6xQk307ys6+3a11NIPmnSf7mnm2/iuQvXIYxPIbk/yR5J8mvO+3+DzhgGw4EcsBVCZJfQvKXSJ4j+eorPR4AICkkH+2fReR/iMhjruSYAPx9AK8WkfuKyHedVqckH0jy5SQ/QvL3SH75afV9wPWDA4EccLXi/QD+FYDnXeFxXDGQXOzR7GMAvOkyXP57AJwAeBiAvwLgBSQ/8TJc54BrGAcCub7xx0m+meQHSL6I5BkAIPkAkj9J8g/t2E+SfISfRPLVJP8pyV801cjPknxwOP4Vtip9H8l/eDkGLiL/VUReCuCdF3suySeSvJ3kh0m+m+S32/5HmRTxTJLvJPkukn+nO+81JD9ox55P8siO/bw1eyPJu0h+KcnPJHlHOP/ZJH/bntmbSf7vlzB2Ifkskr8F4Lds318m+QYb1y+R/BTb/3MA/hyA59uYPu5irzczhpsBfCGAbxKRu0TkFwD8BICvOI3+D7h+cCCQ6xt/BcDnAvhYAB8H4B/Z/gTgRdDV60cDuBvA87tzvxzAVwN4KIAjAH8XAEh+AoAXQCeTjwLwIACPwAxsUv3g3HYqd7mJ7wTwnSJyC/TeX9od/3MAbgPwOQCeHew3I4D/C8CDAfxJAE8G8DcAQET+jLV5rIjcR0R+bOK6vw3gTwO4H4BvBfBDJG+9hPF/PoA/AeATSH4agH8H4K9Dn/W/AfATJI9F5LMA/A8Af9PG9L/6jkh+75bn/2sz1/84AGPX3xsBHCSQAxocCGQCJP+urQQfPHP8/iRfRvKtJN9C8k/a/i8m+SaSmeQTQvtHkbzbVpFvIPmv9xgDST6X5P+ya1yKgfT5IvIOEXk/gOcC+DIAEJH3ich/EJFzInKnHfuz3bkvEpH/JSJ3Qyfgx9n+LwLwkyLy8yJyAcA3AchzAxCR54nI/ee2S7infbAC8GiSD7YV9Gu7498qIh8RkV+HEqk/l9eLyGtFZC0ib4dO1v1zmYWI/LiIvFNEshHMbwF44iWM//8Rkffbs/8/AfwbEXmdiIwi8mIAFwA8ac8x/Y0tz/9TZk67D4APdfs+BOC+l3AvB1zHuGEJxNQPPzCx/5EA/jyA399y+ncC+GkR+XgAjwXwFtv/GwC+AMDPT5zz2yLyONu+Zo8hfhWARwL4eBH5YwB+dI9zerwjvP89qMQAkmdJ/htTQ33Yxnt/kkNo/wfh/TnopALro/QrIh8B8L5LGNvlxDOgq+i3kvwVkn+5Oz73XD7O1Hl/YM/l/4ZKI3uB5FcGVdMHAXzSxZw/M76PAfB3OqntkT7my4S7ANzS7bsFwJ2X8ZoHXIO4YQlkC74D6tkymaaY5C0A/gyA7wcAETkRkQ/a+7eIyF5unaG/zzG9+6+S/HGSPlF/LYB/IiLZ+n7PJdzLI8P7j0a1J/wdAI8B8CdMzePqGe7R57tivyTPQlUrkyD5D0w/P7ldzM3sCxH5LRH5Mqj67dsAvMz0+o655/ICAG8FcJs9l3+A/Z4JSH4MgH8L4G8CeJBJV7+x7/n9LYT37wDw3E5yOCsiP7LnuP71luc/Z3z/XwAWJG8L+x6Ly2OsP+AaxoFAAkh+HoD/V0TeuKXZHwXwhwBeRPW//75ucprDH7H2/53kn7brPRhql/hsEfk0ALcD+AZr/7EAvpRqDH5F98+8L55F8hEkHwidDF1vf1+o3eODduybL6LPlwH4yyQ/g2pg/ifY8jsSkf/b9POT29x5JAeq0X8BIJE8Q3IZjr+d5FfNnPtXST7EyPeDtnsMTb7JpLBPhNp54nP5MIC7SH48lMQj3g39/qdwM3Ti/0Mbw1dDJZB7in8L4GtI/glTa95M8i+R3EudJCJfs+X5T9o0TKr8jwD+iV3v0wE8FcAPnsL9HHAd4YYjEJKvI/kGAN8H4POCXeKpAP4hgH+8o4sFgE8D8AIR+VQAHwHw7B3nvAvAR1v7bwDwwybJPAnAJwD4RRvT06EqCwA4BnBeRJ4AnUT+3cXdKQDghwH8LIDfse2f2f5/BeAmAO8F8FoAP71vhyLyJgDPsr7fBeADAO7YetKl4SugJPcCqGH6buhzgBHXg6Bjn8JTALzJJJzvBPA0ETkfjv93AG8D8CoA/0JEftb2/12o88Cddq3eUP4tAF5sqqQviQdE5M0A/iWA10CJ5pMB/OLF3fImROR2qB3k+dBn/TaoevNy429AfyPvAfAjAL7WvvsDDijgjVpQiuRnAvgqEfkq+/zJ0AnlnDV5BFS18UQR+YNw3v8G4LUi8ij7/KcBPFtE/lJo82oAf9f++aeu/WroZHUrgC83dUvf5q0AniIibydJAB8Ukftd+h1fPyD5GQCeNfXcdpz3KAC/C2ApIuvLMbYDDriRcMNJIHMQkV8XkYeKyKOMHO4A8GmRPKzdHwB4B0mPQH4ygDdv65vkQ9xATfKPQl1Ifwe6gv50WnSzqVXcl///D+Cz7P2fheqlDwAgIr9wseRxwAEHnD4OBLIHSH4UyZ8Ku/4WgH9P9aN/HNRbByT/d2pg2Z8E8F9I/oy1/zMAfo3kG6E2hK8xN80/hKojfsT6ei2Aj7dzngfgC0n+OoD/B8D/cTnv8YB7B9T8WfeaQ8EB1wfMBvjLJN9IDRX4Vts/GTpgx55D8m0kf5Pk54b9jyf563bsu0zDAZLHJH/M9r/OJPbt47pRVVgHHHDAAdcKbJK/WUTuMmeSXwDw9dD4nAyNWSpqc2rA749A45A+CsB/BfBxIjKS/GU797UAfgrAd4nIK0j+DQCfIiJfQ/JpAP53EfnSbeM6SCAHHHDAAVc5ROFS6tI22RI68FQAPyoiF0Tkd6HOF0+kZka4RUReIyo9vASa+cDPebG9fxmAJ7t0MocDgRxwwAEHXAMw1/Y3QD3jXikir9vS/OFoA1LvsH0PR+s16fubc8zJ5EPYEuMFqEvqDYPhvjfL4oEPwGRsV6/Jm9Ps7QoLC+dRpvf3fXNm/yzYtWU4ne1+IfDJD3vYnh0fcMABjte//vXvFZGH3JM+PvfP3Szve/+4s93rf+3CmwBEV/MXisgLYxsRGQE8juT9Abyc5CeJyG/MdDk1U8mW/dvOmcUNRSCLBz0At/7Drwcy29k9ExCAo72K7QPaRy6ALEQn5iTt4xaAmaBnhRICGaBtyAQF4Ih6jfBa3pe+6nvAxmCE4NflGkACJOl+GeoxISALIB8Jbv8Gj0084IAD9gXJ37unfbz3/SNe9zOzuUYLlrf+tsd87YSIfNBCAZ4CzXYwhTvQZlzwsIQ70CY/9f3xnDuopQTuBy2rMIsbToUlg0AWGbIQ3QZ9xaDvm0ma0CfkZJF0nwwCLDY3WQjyAOQBpV8ZdGL3a+WFffa+jADgJMC6HwjjQDjm7fycFMbGep7EzwcccMAVgGCUvHPbBQsFuL+9vwnAZ0PT7szhJwA8zTyr/gg0dOCXReRdAO4k+SSzb3wlgP8Uznm6vf8iAD8nO7ysbigJBAS4CEt91/mImFRiAsdYJZQ6Idvn1JJNgQDR3CRFirEDLskwNHRVlEsg1o83lVQlEYkE0RFKTxYNAR4I5IADrhgEQN5bN70Vt0KzIAzQ5eJLReQnqTVnvhvAQ6ChA28Qkc8VkTeRfCk0Rm0NDbx1XdrXAvgBaKaBV9gGaH6/HyT5Nqjk8bRdg7rhCCQtx42JXkyFJSlBaEt/CZN8RFLpgotAIEYAjXopwwhJWYKi7/WTUoQYlzEDkrXvQhjeVSdRNBJJkGLKWBsSkQOBHHDAFUaer3awN0Tk1wB86sT+lwN4+cw5z4WWauj3346JPG2W7ueLL2ZcNxSBMAmWx2udZymQoN/JQkgmxlXCeH4BrgdTDUmVFBIgywwuMtIig4NoPzlBMpDHFExOBEZCRn81ojBbCUbx5Qkkme0k68RfbCHZyME/p46kEKSOVAmlfB7QWfIPOOCAexMCwWoPFdW1ihuLQCBI1Em/RwKAQcAkyOsEcNDJd3B1F1XyGARpkTEsM4ZBhVPJgnFMSMgQYSEnIcFECBIIQiBKHhRIYiEGZvsMIwVXaxl5FI1bZ7GK9hLZsIHIwQZywAFXGAJgPB0V1lWJG4pAABTycOlDhEX6WCxGlU6SqK2jTMwmLSQBkhHIkLFcjMhCZNOJjUggKkFJTshrU48FEoEQTMHukmCsUT2/KKrWKlJG5bF6L6hG9Lw0ckJodyCPAw644jglG8hViRuKQCTMqKQg59R+FmJIOXhgqcRRCMSlj0XG8dEKQ9Jzco46JSAl/cFkEYAJ1SM3mQRiNo4kahfxBlEyyQBTlUbcqN7eDyrJJRWXi3B1MKIfcMAVhwAYr+N0UTcUgah0YJOyIZosAHWQIqWohThIacWk5LEYMo4XI4akKquVE5ElCF8u1NlBhFhxwArAKARF1B4iZnHPLYm44ZuZ1fbhRvbgbVWGHA33bnwPRndXYx1wwAFXDtevBeQGI5Ae/bqg2B8AnchN+mDSmZxJMAwZx8s1jhZrLNMIEWLIA1JQXR0N6uk1uj0E6umV3Y4iBLK68zaSSBmXeW1JcP+118bILkHFFm+iuanrd/VzwAFXO0QEJwcJ5PpE9MLyyZ/dCp4UJDOkpyHjaLnG8WKNm5cnSKb24iihH+BosS7HEgRjTsiLDMlUFdUAI49NScQvraqrQCRx3L2rsEsrUUo5GNAPOOCKw7TR1y1uSALp1VikFNde3YH6SlVdkUogy8WI42GNM8Mai5SxzgmJ1btrwYxjI5C1qbZGSchZbSWyTsVeTlM9CaGpTkwmEjOSKHmgHWxAHtimVHEy8RiQAw444AqDGK9jQ+QNRyAuGQDAYlAVlLveAigGcaHFa5hRfDDp4+ajE9z36ALOLk5wlNTWcZIHnOQF1jlhkTIWzFikEes84NywxoJ1DbKiYDwZ9BqZQLZYkXWCjKgeWh6RLjaYng/MK6yJRjcykRQa33DJag444OqBQLXV1ytuOAKJcPIQQOM8oMGA4qlMiheWkshiyFimEUfDiKM04jjVstqJgpxYyGPJjAtcIAtxfljgaBgxLvV6eZ3AQVSlNRJggiCDFvhR4kCMwKIEEgWLaCORZOlVPHiw6Lmu41/vAQdcAzhIINc5KolUCYRLM6CbV1aiYKDgaBixoBLJcVpjBJGYsRaVKhIEx2mNZESShTgzLHBhscaYCVmqKiuZC/C4Tpoyi0m9s2zyp0epZ4SAQzYxIZEcnDxk4cEj0lncDzjggHsbGkh4IJDrBnnKcA5bzRtZuN2j2D8ApJSxNPJYpBFHThKmEltauoKFEcuAjAuyxDoPOD8scbJYIQuxygOOj9ZIKSPnhBUHrCnIFOSRGvluyR0lG5lkqITk8SgOJxqLWvdIeSQjDwn2kQMOOOBehwBY9QFc1xFuOALp7dGkqJnA0o9woVLH+mTQY0mQzIjukkiCYIBgmTIWbIvFLDniTFohMSONgtWQcPewxEkesM4JJ8MCkkYMSTBmWt8LrAlIHqtqK7O4+6qtxIzujWuvmAoMmoZlkTXYcchVvXXAAQdcMQiI8To2RN5wBOJYj0oQi6HqiFwiSRSM66QTtnlLJfOwco+rRRqx4IglRwxmJE8QLNMaZ9NJuc6FvMBNw6oY2S8s1G6yYMZaUnEbFiHkSG0tIlRbTK6Gdggh6+Cd5dopJ5OFpVkZLMnjVO6TAw444F5Hvo7/B29YAnHX3dlj4aC76BYJxAhjQMbAjCVHJHtdcsQZrgAAmQnHaY3jtMZRWuPMIuH8qARyNKh9JFGN5nmhq5RhyOryO2jcyDimamwXzfYrIc0JM1VlZeorDuox1qSaP+CAA64IrncbyFUjW5F8DMk3hO3DJP82yQeSfCXJ37LXB4RznkPybSR/k+Tnnu6AQg4sqHThUshgBvW6vyWPM2lln9c4k1Y4Hta4aVjhzLDC2UXdzgxrHA9rHC1GLBejBiku1zg+0tfFYsRyOWKxHJGsaqIThb/KYIkfLWI+JYuYTxmLYVQyOeCAA64QiFHSzu1axVUjgYjIbwJ4HABY1a3/F1oo5dkAXiUizyP5bPv8jSQ/AVox6xMBfBSA/0ry40LVra3wwMFEdaBtAwtVlZTHtGGETsxIEKxywk0LwcCMM1xXsjACyfajWMkCq0E9tNz4niUhMSNLwlEai4Rzsl7g7FLVX2tJWI8DVjlhzAnjmHDhZKESidk9ZLSYlZEWMa9Zgj1TsOfqOuCAA64MBMAKw5UexmXD1Up9Twbw2yLyewCeCuDFtv/FAD7f3j8VwI+KyAUR+V0AbwPwxH0v4Cqpbcf3gauzEgVLjjjiiAEZSyOVJdc4NmI5TiqJuFrrOK1xZFHtKolompSblivctFjhzGKFM4s1jgaVUIZBkzmmRUZyNZXl7HLpI6WMIamb8TJlLNJBAjnggCsFkdORQEieIfnLJN9I8k0kv9X2T2poSC5Jvpjkr5N8C8nnhL4eb/vfRvK7rDY6rH76j9n+15F81K5xXa0E8jQAP2LvH2aF4GGvD7X9DwfwjnDOHbavAclnkryd5O3rD5/beeE+F1bcn8Ln9n3GgFzfm4prMFJZcmxI46bhJLxf4eziBGcXK4twV9XW2cUKNy1XODJicRJZDKOSiJEGrUYJLYXJYEQymBprOBDIAQdcUWRw57YHLgD4LBF5LFRT8xSST0LV0NwG4FX2GdDStMci8skAHg/grwdCeAGAZwK4zban2P5nAPiAiDwawHcA+LZdg7rqCITkEYDPA/Dju5pO7NsQG0TkhSLyBBF5wuKWs+aOizLJuodE9YYy4/SEhOJt3eYRMTAjIRfpo75XAlmmdbGNFDIZzLg+rHCf5QXcsrxgZHJSSOXsQm0oi2HE8WJtJKLEkIaskseQwZSLKmxIubweCOSAA64c1Iiedm47+1HcZR+XtgnmNTQC4GaSCwA3ATgB8GGStwK4RUReIyIC4CVotTre18sAPNmlkzlcNTaQgL8A4FdF5N32+d0kbxWRd9nNv8f23wHgkeG8RwB457aOSc1/FR+JV/ETsdVAqOoX20UbSZ4ROd2wPiBjRDJppJKIe2U5VjLgOBHrPCCnEcCIZRrVxiKpSDn+KoHsxlFtI15u2eNUgGrw99cDDjjgSoGnZiQ32/DrATwawPeIyOtINhoakq6heRmUEN4F4CyA/0tE3k/yCdC50xE1N0WrIyJrkh8C8CAA750b09VIIF+Gqr4CgJ8A8HQAz7PX/xT2/zDJb4ca0W8D8MvbOl6kEQ88q2qsUcw4nRPGrF/yetTSfjmzzc5ryMJCHrlbNaguU43bcUWRkHHENVYckJkw0s9XMlhz0JQnoMWVZI1wlwGDkwCWmvYkJ/3G1lVK8pTzTNXVmESRPg4EcsABVw6akWgvAnkwydvD5xeKyAubvtRB6HEk7w/g5SQ/aUt/TwQwQufGBwD4HyT/K7ZrbvbS6kRcVQRC8iyAPw/gr4fdzwPwUpLPAPD7UN0eRORNJF8K4M3QWoDP2uWBdTyM+Oj7fNCiwgdkEOfXC5xbL3F+vQQ5WFXBhJxhed83+1kZWWhqkgUy1wD1hzInjro6a0xKQu6XoaSRkEksmXE8qPpriYwBSiCAEs5ako5voZ81xUqNTxmC7SNBDgb0Aw64whAQJ7KXF9Z7ReQJe/Up8kGSr4baLuY0NF8O4KdFZAXgPSR/EcATAPwPqLbGETU3rtW5w1Rf9wPw/m1juaoIRETOQUWmuO99UK+sqfbPBfDcfftfco1bz3wIa1H32At5gQ+lm8pxV/us8qCqrDV01R/gUkgWqgoKmlAxEkcUWQcKlhiL5DGCyBBNwihJiSVlrERwPKxxzBWWacQoCQuOSKOSQAZLfRGstRbI+SFrQSuq91Uyryu3gRykjwMOuPKYU3lfDEg+BMDKyOMmAJ8NNXLPaWh+H8BnkfwhqArrSQD+lRHNnWaAfx2ArwTw3XaO9/UaAF8E4OfMTjKLq4pALjdcPkvISLbiv3lxgvPjUve7CmgNrJk0NmO1KLmwxCLHsxAX8gKJgpUMhVB6DMgA135RDJKRRIx8Fhi8bkfWYlXHaY2zwwVNjwLt+3xa4tywwk3jCRIER2mJ82kEV4KTo8GM/tRCV4sRZ5ZmdE+5xJgccMABVwZuRD8F3ArgxWYHSQBeKiI/SfI1mNDQAPgeAC8C8BvQqe9FIvJrduxrAfwA1Lj+CtsA4PsB/CDJt0Elj6ftGtQNRSCJgjNJ04ycz8ti9D67OEGWYywkY8wZa2qAIJKSSM4Jg523loQFgi1E9q84pkkYNQ9JQkYCsUxrrQQi1eV3abEkHmOSoeqym4ZVcfs7yqO6CifBmFHddplLUat0kEIOOOCKQkC1jd7TfnTy/9SJ/ZMaGvPY+uJ+vx27HcCG/UREzs+dM4cbikAIKe63y2HEneMZYADSSu0Fi5yxthQgWRYgpEgJPhG7pOGT+jYMFIziXlk0O4naVZQIErKNyRMxNgQCAZKqvUZJGskua6zzgKOkkebDkEFSvb2GsZE8YiXEAw444MpgTyP6NYkbkkCWHDFCbRirnMtkezSMWEsqUsgoxDDkzoXXYkHMuD0lnnp2XggwGHEMSIBkJCSA5uZrUkiyolRnqHVEPEmjByee4RrncIzjpOSxSCMSF8XTKudBJRCXPooEciCQAw64khDBNZ3rahduOAI5my4gUXAhL3GcVrhrPIPjtEYW83ICShDeKqfZQLy5ydkn/fK5kUIGDMzIMmBAVmmkyfqbrfJhLgTlLsAeT7JIIxZZSWKZRqzTACxQXHaPSrGrg+rqgAOuNMQWqtcrbiwCIXAmrXAiCw3yE8HCJuWU9VHEiXeZ8kYFwxqN3k7Q6sFlaUycRKz8bJRCspj0YlIIJCNb0GFUXVUpJnW2ESkJHY+GEausaeGHVKWPo6Rquix7p0k44IADLhMOBaWuE7gqylf/MQ27T8puNygpQQKBRNIYLMp7sHiNARlHHDWGg6OJrbnEhyhRVFsIzIUXTFhiXfryAlUpkNAguUgnizRiyF7QSlVVYwoSi6VJWUnCMh2kkAMOuJKQPWyl1zJuKAJxDLb6P4MVzlGz1g6lWJQa1EWITBYCSeG41wDxc8qkT406H0zCgJHIaEQxIuMIwIhIRDoWV1uVnFpOVuL2ED020KQm1piPQcwWIsRRGnHz4gKyEPcZLuCCLO/9B3zAAQcUHCSQ6wRegzBBcIYrZBIPXt6Ju8Zji9wekfJQVEG+cljnhEXKODNU28KFvMAynTTVCI9cmnG/C5c0mBtVlpehdSkjm1svUPNpRSQIjtMK5/NSgwsD0Wm0+RoPPnMOHzw5gyzEAxbnrK+M5X7lUQ444IDLAMHpBBJerbihCASo3lOOaPQusRMhDcg6J6Shc+UtRFTPTciBBDJGSRgg2DZ91+SL2yd5v57bRaIdZEFN7X5mWOHBZ2o/Z9JK1WXXsQHvgAOudhyM6NchMti44a5E82LdNJzgrvUxjoYRZxcnOBk12txTiGThZH6pSEJqD1EVlq88qppKPbLivv78iCDLlDYeYLg0sjsalDSO0xr3H7SaoaeNP5DHAT3+wmOeXY2B8TWHhZWE32Prw9521me56D83aa8JJAJpsNdU92WroZCzve/+H5iAkxPgwglkHM03doRkdzSZHr/M3VOHfdtdKq7nmug3FIEQqG609roSTaw4CnH3eAZAlTTODCucH5dIg2wYwo7NVbZIBZTW+G3w60R4OdtIHNEtOIq82t+AlXmOVVtMxsK8rfz9fYYLVmtkVVY917MP+gGXAdsmUJ/sHZrfp23Tl49wkiCVCAYjDnsVEhoala1NBvx/za/lhJOox8ZNNW97TXVaYWJLDpO3e3kdTSRk8L4ecUMRiCNBysT6npNbsJKELAnrbLXLbTI/HtaWxHAAiBIn0qvB9sEQSKNJ984qWQAodURaEpHidqx9SQl+TEltN2eHFe63uBvHlnIlS7quVz4H3ENsz5E3jW0SyFR/TiZOHk4kQ4KkBAwsJCRItXyCV3Ubwu93SJpaKAuEM9eVXMhjcyyb+zfI4zJIH8D1vYi74QhklIQM4kQWuJCXOJePyrFFGrGABuIBmmr9pgFYMSt5ZOAkb1cLqcppt+E6ShytCqwWo2qy+gb7irsKa9ZezZG1oMd+XL8/1gMuAzYkiJkJeBd6acTJIwXySKklj5QgA9XbnRmSVblcVFJNf8mkEJNQSDAlVWP1JDI7Rr03yQKme2dxpfVArt+F3A1FIALgvCxLNtzzsqiuuGkEMrBMI24yA/SSI5aSseCItQy4GyqFxB+EE8Eomq9qJEvuKt3fvcLtKWlrqpEpInDDuY4340g0gv7ssCo5vqLUcSCTA7bCJ9597B9z50ZEiQOoEscceSz0M5Oo8LAGBBnIWqKgsW2YBAIS5P46gH3UWJcXp1eR8GrEDUYgGtRzXpaWB2vz9kehTdQaib7gCmsZcGFclCJSjgGtqikjKYmY8btXIW3LyjlY7q194IGQZwdVV91k7sT1uCADpaTuAQcUpGBDmLJhzKGfhLfZP1KvujJ7R08eRiBqFLdyzaPaQWS0LD8pXIsEhkHfp6RG9wm4hLFNRXVvqa8EOHhhXU84HwLrBmbcZzhfJm6P4l5SDdIX8gIPWH4EWRLuTGfKeVm0GNVNNoGrJ9cCJzJo+Vnz8spWaErVZkYsEqoWxkKSkhvpRM9TSUmj5kVjSah1Q8asaVHuM5zH2RCPEtVhoywuyV5zwHUMN2CPQfXTG8dj29jGkQMBOTZIw6UPkzwWqSWOISEv9ZUi4CjgKoHrDI6jSiXumQWAGIDFQsezWKgtZL0GRcwbqx2/THhz7UUarsJj2lHMdT8cItGvMyw5qtTAEedMAjmbTsqxJUecHU5wnFY4O1zAfdN5nJelBvGlEcucsbK+srTiaZakdc/hEei1frqTVFO5EGnWhXcKJf6DGWdAjDLibNKxej/uQZagRvd8kEAOCBAS9NV82bllpvR2sc2U/aCor4K9ww3mvdTh5LFMyAuVQNJKkESA8v8xgqP1S+pybEhATnUsDLYQET1m55axBJKIdg/Joscn7/l0VU43dDp3kl8ALZ34UOhamQBERG65zGM7dSRknOEKKwxI8AjxhGUacb90d5EazqaTsprX1O+pZMNNdo67086piJwoev1nH/8RpYbeQwsIbsfe1v55nPSO0wpnuGraj5L0Hqnp4g84oCDB3GQ70nApZNaLaUbdFYnD++nJYxggg6qwZAgkskjIS00XJJIhWRdeFAKiBnIm79eN6IO6+g42TjFVlrkDozOQS56evDlgt9rqFNZems79+v0f3Ica/zmAzxOR+4nILSJy32uRPAD9jS05thKHxU24xHGcVlhyjZvThZLjKq7ulxbEd5zWzcSvx2dSv/exIVbzo/HEopRMvk4qg2X4dTWUE9qSI47TCvcZzuMMV3ZPF3AmrUo+rZrk8aDCOiCgxF6wrOA3bRdpc7NzNzZvn9gYuhvJYyBkGIoE4sSRl0ReEHkA8sCi0nKSwUA7NxrjawwJh6GqyRzu9eW3m1gIZcPzauo+T1n6ACwr9o5tF0ieIfnLJN9I8k0kv9X2P5DkK0n+lr0+IJzzKSRfY+1/neQZ2/94+/w2kt9F6hdJ8pjkj9n+15F81K5x7fO03i0ib9mj3T0GyfuTfBnJt5J8C8k/ueMBPcdu9jdJfu7O/iFYco2l1SlfcsQZrnGG62JHuG863yRI9NfzWW0nWswpJl/MjSTSk0UPJ40Y/+FEAWCSRAYzhvv1fPxOHjenC7j/cA5n0wW7vzGM7aDCOiDAV+pzJDJ73sxkG+0dbl+J5JFSJY+lkcmC9b1vC0ISIMk+JzO6M5DQIkghRh5OIvS2/XjLx0oiU9vkvZ4CxMpf79r2wAUAnyUijwXwOABPIfkkAM8G8CoRuQ3Aq+wzSC4A/BCArxGRTwTwmUDRvr8AwDMB3GbbU2z/MwB8QEQeDeA7oJqnrdhn5LcbK30ZyS/wbY/zLgXfCeCnReTjATwWwFsw/4A+AVr0/ROhD+B7reD8LAjgiFpLXFfy6zLJKpmscCatcHO6AKDWMI/1OY5DsSYnGG27OVG7+uqe6kBdCokSiI8RgEofVFWWp5Q/KtUNDxLIARU+KQs5TSK+ynf0n/v9PXmQDXlg4QZ03Z+XKUgdQF6o9NEQiZOFq72oEkwkqI3xDkMlkSGFsW0hvrDtJJVLfd4AVpJ2bjv7UdxlH5e2CYCnAnix7X8xgM+3958D4NdE5I12/vtEZCR5K4BbROQ1IiIAXhLOiX29DMCTXTqZwz5G9FsAnLMBlfsB8B/3OHdvkLwFwJ8B8FUAICInAE5IPhXKnoDe3KsBfCP0Zn9URC4A+F2SbwPwRACv2XadGKDndTucPGKOrFrEaY0zQUReT7jkTRnCe/KIHla7MIZzov60ZPVlxrHZPTISjriuCR6Z1cIjKiGNQvzzN/+FIkHddzgPADhvgZSjJHUGQLL4GEvt0sST0OqVtGRUpSmZzCLsbs8rGZCFuJAXtuKqha48rsXzey3SWCQof1WJTEn8bDrB+ayebqNoHrO1DOVasXZ9tn/O5YQk5vd597jEufEI59YaH/SR1RHW44AxExfWC4w5WWC0jlfC9+GR0yKEAFivBuR1gqwTZJXAEyKtCa6I4TzBEUgr6OtaX5ntfa0fpiYKv4wAJUA71Q00U8AFYLgg9XUlSCcZw0kG1wJmUc8me1U7AYEkkEy7zER6kn4C3Wo478gjuOwqmZiqapFMVWWfl3YcAhkBWVAdvCQhSYakzuCfEiQJmMRsIPq/SJhRfBhAj2x3F99hxnbTo7eVnJpb7+mlMrEF8usBPBrA94jI60g+TETeBQAi8i6SD7XmHwdASP4MgIdA58p/DuDhAO4I3d5h+2Cv77C+1iQ/BOBBAN47N6adBCIiX30R93hP8EcB/CGAF5F8LPRBfT2AuQf0cACvDefHB7EVA3JZwQ/hhxIJRT+vVYUkGcdphVES1jYZ1r7aH6cWjwrEYZMzUN1zPX6kyX/VkUUfX+IGfxS1muDmdAHJEzUGe8wKSjKD5BIT4hLUkmuMSFhixAW0tUKcJHKpZaKBiT4pR1IZIOUe/Hk4ifh97NLtRvIY7HWyXSjzO4JYpjVWedHE+09dy8feE11CNo8fYCEJyeIi1jlpgS7aDN1hijymjtVGJWi6up9wc7/E/akjkUAg3tYJBFlX8RyINAhkQJ2IR6Lk/RyoHDFYfZuyehd1WEqsBuNdua2mjrmnVLFVBOkhqcQhptaSjjwk6T2qygrgoGTgqizdaUNbJM2ZJabGCgXTOAyaaNHiQ+jxIkAlE7+/qXvqiWbG+H4p2DMS/cEkbw+fXygiL4wNRGQE8DiS9wfwcpKftKW/BYDPAPDHoQLAq0i+HsCHJ9rGgIK5Y7MX2QqSjwDw3QA+3Tr7BQBfLyJ3bD3x4rEA8GkA/pYx63fC1FVzQ5vYt3GzJJ8J1ffhIR+1xM1B3XOGa7xvvBkfzGeRJeEj+djUUmpjGJBxIgNOZMCFvCwBQTcNKw04dON2mPhGUbF5LKv6FDyy/B9OP7vaaxQWI/poK2eXPioRJTOOo0pGPAnVD2EqrDVW46JE0h+nFcZMQAaMknBelsXeAwB3jWc0tkvqyn2ZgFEsgWTIqTWlDoskMjWJOxFm0WzEWXQi7+NTnExKpUf3cotpXoLKEAnIWa+5xlBILl7X3Z4BveZxWhdHA5dAYl6xNZPNp+qNJ8IifbiUIeJR0twgEVqsjn6oE5UQyEtBynXCbJydXKhNSgjim9uuPcwhkg10svVLrcFCLsMJrZ3GVySWRj5QYK2re6HGg3AMkd/7uPWGuA8hm9QkMgwmfRh5LBPGo4R8lDAuiXxEjMtKhGllkobdGJl0vAlIGCFDsufgMSk2JZ8QWK/LmGjxLSK5xqqIoGhhgmTCNE0QjeRyCrgIL6z3isgT9utTPkjy1VDV/btJ3mqL61sBvMea3QHgv4vIewGA5E9B59cfAvCI0N0jALwznPNIAHeYDeV+AN6/bSz70OyLAPwEgI+CrvD/s+07bdwB4A4ReZ19fhn0ht9tDwYTD+iR4fz4IApE5IUi8gQRecL9Hzio4RlqPL/ZvK2iR1QKK3kngN6G4RLAMKEaAbBBHprmhJNqHkBX7idbolWjK7BPoP3EWgztEJxJq2p8NzuIj3MlA+4az+BcPsJKBp240ToNeEXEYuvZ4c01JaJPGQc9yj8iSh/NhI8oNXgKl2rT6TMWx2db69Z3Xm5mQzqTVqVNn10g1r13RPJAUGeV4/Ynj6m0QWxDqNrI38f9NAkjSBZFCnEbwQKQ8BrJpZDNAqYmIvICOrG7YdqN0sGmgCHYQRrpIUgofTr2LkWJeC4r97KaIo8hYVwmlYoGIC/tPgYdrzAYz4OKzop5quSS/F7qNcUlnTSYXaTaSMikEkhJ3jjUNCgpVVvJxObH5wjmUnAaRnSSDzHJAyRvAvDZAN4KnZufbs2eDuA/2fufAfApJM8aGfxZAG82bc6dJJ9k9o2vDOfEvr4IwM+ZnWQW+9hAHiIikTB+gOTf3uO8i4KI/AHJd5B8jIj8JoAnA3izbU8H8Dy0D+gnAPwwyW+HktttAH552zVIwRI+AQvO26Ttq/gzFpDnk3OWhBMZcD4vmxWzE0o/GWaTEvx9tGF4XXQAk2RyxN0JGB1DmDDHcE2vQ7LEGktbnn4Ex825q7xAtviQc+MxzqQaQ1LiWyAhk3aXGTh87o/F5+Bo1F5dupb4/EoA5Iz00dyDfW9FBWbjjf1vs89MkX5PGv59T5EHIRZKwdImZ0JyJQ8KqjQS1VC+y8nD1VkIvOMkMtjnNCFau6AgFqytX72GRGQiD6KSS6JpbUwiSqixIMmy4NqqWwa1y5T1Uu7UPT4hAyUNe6+yQiSrQYlDFq3ayt12y33F+83UjO4DzD7iBAikRbJnKSohuJppjarOCjVOmBMwwCQSYCP9SfTcKnnBuuSM9xAClize9xC3Anix2UESgJeKyE+SfA2Al5J8BoDfB/DFACAiH7C58Vegj/mnROS/WF9fC+AHANwE4BW2AcD3A/hBsye/H+qktBX7EMh7Sf5VAD9in78MwPv2OO9S8LcA/HuSRwB+B8BXwx7WxAN6E8mXQglmDeBZpiPcin6iPsO1qn1kwJl0N87lY4xIOOKIlQDn8jHOZZ2EB2SsoQZbjyWZq+nRIyEjI21IENGFFwBGCwCcS8A2CrE05faIhBQI0V+dBHMgw7aP1BBPa4upaqFm/Hu6Azt5jOCs1NJLBj5Zb5M+hiChZJs4BmasLMhS0+0PhSyK4T88XyeplQw1mHMPW4aTR3YpAkYmfjwTkpMRCDUTRiCQGcGzvUYkjrhxkzy8vyw6b7rGhguAIyGDtDYFAfJCDdN6oi7vaRkTehJBZp2kXa3lUocTB1DIo0gvTh6LVEikeFjZePKg0gbs/ijhPn1TU59JZHYu9Txav3SDun5BQSQLRGAPiiMgKaMwdoSr4vwnuSXH1qVAsNsWuFc/Ir8G4FMn9r8PutieOueHoCqrfv/tADbsJyJyHja/7ot9COSvAXg+1C9YAPyS7Tt1iMgbAEzpAece0HMBPHff/v1rVBtCtqy5xBmu6z9FmLdPbKI5l49KXisAYYVc/7WnVrk9CUT1mMd5qPolV5UZEkZxFdqg57Ce79eZcht2kvLxjPD4kTrp7jLolckcGWCyiTgQzAyxTe136eNi/oFqmd/pf+Io/Wj7DJh0l0FzOJCmr94+4mOakoAAkzKoq/be+0o8ijvXe1LpAzr7ZYK5vrJIJS2pNPAmbhz3DTahd49PTNqAk0MkkoVNmIsqmSQoEciCwBo6CWOCRDz3lHlowS/tc3OUOqLqy9VKMYajuONG1RWLpJHtvpitX5OQZBALMNd+4NyQav8QvR4lQdYwryxb8IwZTWBhzqrWEgJZjEhQSJFMEFGje5FUggH+NHA9Z8Xexwvr9wF83r0wlnsVrtfPoHkmmerD9p2IPpoy0QTvq7qizeUc7TOqlioJtNedCBIs0eYZIzKOCJyXtKHyKdcworiYPFo9obm3WS9ZlIBFVIO33/d+LshhYt1xXiTdSMYxzqaXTs7Loow7+z1AsMKAJVRqdBIpzgkTKWKmSGUKbjAHXBJxlZY1MIkjj0l19qMTCGz5qZNkecxGJPHyAtjEjMZQXjyuTD0jdBKqOi8Z7DUDeTSJw9RERfqAGvCNavU3vUZLIhQlJiRjKNWRCZwM8zR50O0YqaqtkkkeTiIuiRR7TCVLMS1S2SdGHiYBSTbig52bq80FGeAgEAz6q6MxUjYtQ5+1N0HVWvqD8x+C7vNXV3mdVgqgPSPNr1XMEgjJvy8i/5zkd2NKBSvydZd1ZJcR52WB+6Y1BghOIFgiA1iVVOwOX80v2bq8eoxCD3WnHbvYjUoCzYQZVSvd4+1JI0ap98jlv3CTrMq1zJDu1o7N/Fza7/0WH8GHxpuw5GgG9rbPXWqsKfLYGEsvqXWeUvVa8VkFwpaE47Qye1Mt6YuMQiIjpKizotTnKq80abep4yV1ak1JQOomcUIphAKbvI1YRtXfw+wQLJ9ZSKSXQsxpr1HhlEsQKg0MYZ+xlyQgmZcYBiWQ4sZrhvW80JOSjxW2wB6p9g5UEnGSKHYQfRA2CVcSLeThryVFu3+OBm+Y9MHGs0xMix9VVlV1FaUQVMmDQBpoEmCCLES9yAAQo3ViqrbiI+0/ppZEGrgHWTjGnIxE7jl0DXEDEgg0ChwAbt/S5pqDurdmrGx1eoRs635dvZzBCudliVjffIBHro9IXNe4B/cIMlXYgISxkwqiKy4kN96BMc/WvujtBO213P6QNkjIr5dNkmona13NX8hLJcYEDHkBMDWSwRQpTBnSY7u+NG9TjKtIF5veV37cVXBLjhggOGM5ylZGbMlIwefBlc+mM/+zoyvYJxAN+d6CttinuUo1mg0jDzGJw1VXCGorN27rw6j7tHMUb6M+TqSPC9HPUuwxbmh2qcIJxCUPJw9tzHIvCWYPQdZ5NgMYk5FkKiRS7CAk4Pv8tn3StQ6FVXWltg09nm1fiTofWEnE/yWKJKJSR5RC8qCE60VAlZAsvsVtIcY8QlE3XkDVUwNUnVW+3D1sG8XLLEgqp4AbUgIRkf9sb8+JyI/HYyQvytBytWAtCX+wvl+TDXdlqqoYq/GgxV0YJeGC1Q554OIu3E8SPpTOYiVDkT7OpgsYkfDB8Wy5xgAJuv+0YUz2Y30BKADVLjLjgbTkiPNWbwQA7jecQ5aE9433acZ1ZLm99H60VklU0S1Tvbau5NfIUMnMVXv3WZzHXeszquBgVQtFVI+nUUnJ+vPJe+ofZxHuO7oJL1NbqrcStpOHPpcjrguxuPfcSgYtEsaxRtfbIFZ5aIzxK2EhUX8e9Vmox8yYE07GAeOYMI5qB3IbCAnk0XTzvoTOqFHdAhS/3EEllwzRyW5hh6Jay1Va9nXHyRUwolhKCCDMgJhEsxBwFYzMReWlq/7hghrV01qQ1va6AtJaMKwSuMpIo8WAZI9aN1uIBjCUXyhyrmwVDOclQNDTlLjdwwIGxyMljXzE6pIcnATcXKGcpYRHY22XhuxfFGNOGFYCEQvEjR5Xktp1g9uoYmyLS1TbiMTbnRJ/CDRA9XrFPkb05wD48T32XfVYMOMhw51FIvDSs76arcF6+kt84HAXVmmBJddYyaIEGBY3XrNFeDr1eLxXE61kaAIO59Cv0kuFQ2HxHvJV/TFXyGbkL9eA4AKWhUzuzGdwbjy2cbX1S0bb5zaeD62VCIvtwiSZPsJ8Dk30/Iy04jYVd0IYoSWAVzlhmXxUPj6dETNqLjKXIBKkBEZeyMsmNYt7ZjlBLTmWZ7pMI87nJS5YLZjEjJM84Py4wCoPGHPCaCVVl4sRKakDQjZXXScTyRZkmBPyqG67kgkcqQSSRSdv1WEQXLOQhau0qqqrJZT6EAGuqQGIg1T3W8CkEO0zjZWzkHSSTqKGa41ZZTFSAwIKLWAyQdYCmstvWmf1bBKAo+g1w7V4YVTbQ4Kqroq7rmXSTW6fMMnD4j3GI5a8V0VlZUQHU7mZ7V4lDEhVD5pEQ/F2ahtJK2i+LFPhFV8TX+TQdIPIRTqtP8SZCd3Tws9Fq18CbtiCUiT/AoC/CODhJL8rHLoFNab1mgIhOJNUBTWCWEIljyOMOlkx2gcyzqQVljLa6nuFpeht9wZZAE1qkrgKj/su1hU2XmtqIh901sJDFndOenxlJNx/OIf7pvNWNbHqIWoEuRqih5SRlnWsIzyXVGtXGbeQhBNdH3gZU5u0tg1BHxOzEp3Ez4mSYkbCMVdYJo2qv286X8Z0Zz6DD63PIubZ8gh8bzNAcDyscctwN+4aj/HB1dmSvO7+y7uxZMbZxQkSBSfjgPUilbFmoVZ+RH0/ZiVVEWLM3CSX7DEhuiJ2FZfbSXJ2YlHJBZlIIzZJJfxUKABXrBKL21KCJFPOFRRCcqiqyyZGM8BzhEpFS7HzRT31RjE7jTT2GoqAZ7LZGHxgVX2VPaAwVY6rA9BxpbUdG+v+eI+luUtSwsoHFilf2hnJMVsFw/Va26zHavBJBLL/L44tiTTjq5LMaRFHxI1qA3kn1P7xedC8VI47Afxfl3NQlwsMOvf6T5B1FQeTLIK3kksita3vHzdW41G6mJI0BuYNFdD8QMMqvBgvK5ksox0FCSM2jfqaaiVjyRooecR11yZhZDIDM0rxLKCSQ5R4+hrvPblkSUV91EtS8ZpA9bCason48QiPQj8vy1JVcoCU5JCx75hocUAuKrvjtMb9l+fKuJccMQyChx7fibtHddVe5QGe7NETMq4lFUI5seNrI47RVF5ZiPWY7LMTTCrEksdUgg0joSAD41hdfzFWycK9uQpxmKSjKjP7OY5o7SZBLeb2BECP5USVSjKC1MOqQhNBWtfz+wk7jVJt6Z2jkqvR3J4BoKjLOAY7TkDpK5JC1uvAiDCNRnCjVS1cZ1W9nWSk1Qh4Cdx1VvIYgxfWNvRuuh5AeIruu35PN6QEYmmA30jy5QA+4kF6Fgl5PHfe9YQN188QZ7EPdhHGrtohAAppAUDMEOpjS0aA/f5ybT+H1XOxSBGdEX+U4BpMl3yC91UjGXGDtHLwqAJaKcexbGwg0/cfbUJzx/z48WRUeZWg+usPQy4ZiPU+BIthxHFaIyNhlVM4v2b09SzCJ3lRCMZJxAnmZBwgwY4ioqo5cXIJhCJGMjlTM/iGKHaxuJJqlIdJKNKowGiSi0owKBKDTrxoycdJwqWU6BlW9us1qpQT1G6iUkpR8fQgq+QR50up5BGPN0QE1GtaCoT43p2qJKkDQMltlQguMrA2Y8pyqEQionmy3AYCVPuH20D8Pjx/FqB5uKzv04DgBiWQgJ+F5l3xXPQ32b4/dbkGdbnQ6yPdBpJREwb66nQMdoxIGtvsAH2N86hq6lVQA+WiyGhsxj193tz+tp/5Nl4Ot9kXYiiiOs4n8l4qiU4EffGsyWt2LsxNlPqm93gxqq9Q7ZwbcSbMWFpsiH+ufZqdiWYPKgSr7z2RZDJV3EgxL9fqjq3kMSAlwdqMuWuLIVhnNUInCsas3k3rMYELQcqCnE0yoRIIk9pbGpUXCQ4EskBM3cUshVjKZOttOgmFGZCxtquTcyt9bBBLkEgaQioqngmGMDVWfT/xJbMeC2E1VfLI9SuKr1E6YpYqNY3mBLBWBwCOJpmYM0BajUD2zyZZZGgsi5NLlvrdizlpR6+tU1Rl3egEciYUMoGI3EXy7LYTrlaMkvDhrJ5FY0MK9f3K4gdiQsRYt1w9muYn4ZBZqpzjrr1jnA89LxY2J+yp/dOR3tU+sg0xo69+bo30c/32P/w5VdauY358MvGktY9JEnfZinrVGdC6E0cSm0KpM88MIDX32ce+1P3TfcZAy+gGPApKPAmjGtSOC9GmTXEjNwEmIwX3IUY9VlSqtHOSKmb1ViyC3IzpFjZT1U3FtmDXNKKAmQnKcMQ+O28gSCIdXG2l99AIqe0xzBCIoNi6m2sV4pNKJoN+TmvPjcVyPK+TeZEJ8lEq+5E1XkRtO1LVVBn1M9Cqr/YzVe4FgS4YrlfsQyAfIflpIvKrAEDy8QDuvrzDujyguXOewdh49Qypvj8vS5yXJU6whCdTzLLEWcva+87VA7CSoSb0M938SobJ5IrujhoRCWkzDXmdjOZiRNwgPjWROs6mE6zMs2pbO2DaZlOuZZ5px2mFVV7gQl4USStKXHOR3W443zSgt9JOLQks5VjMdlwy9XZqtOIqHdQqK0tdX8Zgs1gh0E6ai0Wv9Pi0CqvaQlrV1doM7e6uOYbXviCVX9+TNDo3eOoQwNuyHmsWHvXVJ2QAG/aFBnastGd3btdW7NW5q1x6Trrw89i169RWfR/OgxLa0c2OhQBtoIV0iLwQrRjIKpHovzB1RkvqDCCudhtFyVVa0hAnkYjTtoHgxjWiO/42gB8n6anSbwXwpZdtRJcZS3ja8uquq4GF1Z03g2USS1Ij0EckPHBxF87nJc7l4+K2OyJhKePmCtXII8YweLr0CJcQ3E03pmU/l48aw3M08PcTf5SYfKJbpjUGyY1x2+8RQPO5P7ayCK5sad99fGsZSrLFC03KF8E6V2Lt0XtgbUOyZ1YIOK0bmWyETvpOaomC+y00Lua9q/uoiombQY6jqZ/6MqI5kEs0oLefW7IodpTOU6t4aKEa0t0OItJ6a3kqlGJYh9k8pNpBijuw2S6a16KOar20SnuXMoIaq3/fb8XLK5DV3NflZBN3FGmme1/Qz6eyeb06fmnHBARPM2n21y/Tzw9SRblWK2UIuUkipwjVlt3ABCIiv0Ly4wE8BvrVv1VEVjtOuypBePR3+4NZmcfOiQxVbz4BlyiQtJ8TWWz9cVRjcJUmxuDiG9FGkevKfinr4k2kapE6yUUVV58RONYwcXuBtotjq+37Mfd5wWJgHqDBgOvGJdhX6trmJNeflfexCGVqm+sFu9BU7qzEjOO0xn0ADElnEq+GuLLrnB1OKtFwxEOPPlz6iRKMxpssijvvR8YjnIyL4lnlZHEyDkVKcGIAWonCC05pOxSvKwCFMKqxHGrjEEBG1gBEAB6EWL2uWN17Mwp5eBwEKMBIpBPNZwVUu8GUzaMhEfiKHTUfV66Ts9tCYp/V/mHXCGRQBEKzg3hq+iK9RKmj+803EpC074ttJpBHJRXfV92PowHeN/cgc+8ybZOr6qrHZXTlnaxWeZ1gn4qEZwF8A4CPEZH/k+RtVrPjJy//8E4b+680xjAJl32nEJ46pS7yCbohJGoEeUk9Lm1CwGZlHX6ffS2OSdtJkGg2js2I29Fzyclj5RNmUPmsZQiSSywpO2ABjalZJC3ItbBJ/0xaNVHn3t9KBpwbj/G+1c1KPiaFePDh2eECHrb4EI7s3DvHmzBQ42KAmrgS0DT+Xtvl/eN9cHY4wV3jGfzhhfsgjUucWy9xkgesc8LJuCgBhe6WOxVMCCOOUrUw1ARpCksZcRSCKFIBy0Q+FWCorrMok3o+FuSFBh4OJwDXYeKP0oMbm6ekkUAuddLtyCb8m5QqgADc0yq6+Co5EFLEA33ZqcbqpZaJMfr16z1JdREegXSSLRZEgyDhBDJWEmlsHdEOEhGj1O0+T0+VdYMGEga8CBoH8ift8x3QKPRrkEBclz5vX4jYZZzWrLibsRAF3PSzmjJaxwjxahjXlCQlAJBbDNWThvDNsU9eew+jtbZjsRdoX0RvK/D93j4XhbpH2ahXUwoeaTFR4hmucCatcMxVcWS4sNCo8bvHJe4Xfq2rvMAnnH1nyRJwIkNTHGvJdZMd+SwvADjGiouSwXdBdd91JEqJSAfse8nE2tKaaDxHCBIUNu63EDSfaZKESxfMANcsYT5FDRUnzU5dVMwhqZuU/WeXUXJaFYnAz3dJIxAGcoytCCRiY9A4EJmRDjIad10fS4lyb7HxcwtSTIwLqc+jXrtIDojSkWA8oxHvzILhJCNdGMF153k1jvparmvjG3NVa0VPrCh1XAY33hvdiP6xIvKlJL8MAETkbvIyhGveC5gb9GhuvDEFSe5URHH1n3wyRPW4uRj0RrWYriTWu1CJpK7ydaytmmebZ5NP8HNwQ/XFRMmXe5gg14waeBf3OYlkM6bnjdwSMAnES+sawTPhLE9w69GH8Ft3P1Tv2WYbzf2l5OFk5t/TkuumcFhCxspqqzixOBZpxEpUKjoytdOJBR5mIUafV6L7EKKEAQCBPNwNNpBKXfW7W6qlL/EUJL0Kx7tMsBK20iYgHID1WSmEEGM6vI+ygh+NFAJhpJFlPxs1mQYSahZh2ZBYfGxalwNVuugkE3tg/qDK+2Jk95+H20kGCx6E3otA1DMsPJ/af72GxElepJKHSSMbaqkp4vB2UeI4zeltQuC5nrAPgZxYDV79VyE/FsCFyzqqy4h9pI8pVZVX+ANg6qXpuAk9f7MaXyl1u4U8ivThswfHqoby83spJBxrM+dO3MPMePfBFFFG6cMzEucggfh50UBf75tYdP+npUqjq55Ev4vjtDLD94ClVALxfupzUxI54ogzPDHpbfMnPpXI0sc6tQ0pI5tU4iqroqYCgbHu20CnqomR4htNR7Sre5u8S8Gl2E80TLNWIIS5CPtP2KWTaHhXkvBI8Uos1e7SSUdFHSbV6ByIrr1vwm0izatn4Q0SVbTBpJFBOmJDWuq6q1Ht5REQyAPB4wEcxNKWeGoTnbW5dkt5RxLRDhKlEm8bY0ROAafhhUXyDICfhwZxLwC8TES+meQDAfwYgEcBeDuALxGRD4TzPhpatfVbRORf2L7Ho5a0/SkAXy8iQvIYwEsAPB5adfZLReTt28a1D4F8M4CfBvBIkv8ewKcD+Kp9bvpaQZN+PKiTVrJQl9vyz2vqDlmUWAKHFmwaNlxNI+bSe1T1UJokjEIoaKWLxFyOlfeYl1Zc4piygWzk8jJMur5uUe1FD6Y2Kp2WXkXVWPGHVwts5abIlRfB8mSVfR6uOjZ1twaAZcqqzqK2jx5v2Z5xb/uJZXX1uvW91wNJSSAiyLTaIN0ETnD7SnPCkFwOdeRDm58pRWukf9ydtUgGrQrMBmwCkVjmXCAvpKqaAKQ1wRUwXKBW9FtXIsnreqkofQjq9UQYJCfpngUqwdlnl54KiUDHJfqlFAcBmkPBhk0nq81jOAHSSZBwBvutDlp0SgMHE9JKB8xFrqqsaEC377L0g0AoQCWRU4AKTKci0VwA8FkWh7cE8AskXwHgCwC8SkSeR/LZAJ4N4BvDed+BWvPc8QIAzwTwWiiBPMXaPAPAB0Tk0SSfBuDbsMPjdh8vrFeS/FUAT4L+LL5eRN6783avcsRguRPRmoBewtaz0LqbblF70M7rFidOALsC2IDqNlsz67KkW48EsgQ0uyx8ha8T6ip4OJW65kZefXR4JI54Tv9+mCCO/v7Ke2ha9+gxVaWPKdfYXKSQLAkrAAuM6FHzfK1xxrIMay0VJZY/cvYPS7bgEZo80YM+VRpUydKJ67wcldQzCUpELq2szF6ykgGLNCLZM12kEQtJOAoqrMnnkQTjeoBQSuQ4XFPji9momhKfRAWJBFZAplUFzKhBf+FyTh4JNp/5GiIQB+AqKD/JtgTAVUE07Y0dp+g4sFDy8OuLaxUHwL+eorVzu4rx5jZfFL8PTXsCuBpPyaGSSfM/JGgM/0XQd6EgEVh7SnslrzyoNKSJdc3lea0R6SLQbMKmKuUYvhwAjZHcxlIlK99/Wmqs0zGiizKeB3QvbRMATwXwmbb/xQBeDSMQkp8P4HcAfKSMhrwVwC0i8hr7/BIAnw8lkKcC+BZr+jIAzydJkfml0aw+w1x3QfLTAHwMgHdBEyx+NMlPJfkxe9z3VYlIHiOIFeZdeAdzn401RAa2OZ96tZimLc9WW6OWrNWEinlTjRW8paL04NcoEpFNdFr7m+VYPGcbecw+D0mTW4ltQFup0cnCDeU9ecwVmMrBeB7/qZz4jrkKksi6iRV5x/kHNuckCrxw1pTKMRbyyr4oiPcQ/rFjmnnvu6ScT1Z6OOl7NsEIaKWKiffF48jOEycCymSCwaipipJFsaEEqWPDJTcSVzNBs5BH6dsm+jo+6GzQ30PfBmEfUNOYhEtNolfl+eYGfgnHQjuKVCmnu7YTXNmSjkcIq1cyPcZWXeV9BfIATk0C8cvs2vYByYHkGwC8B8ArReR1AB4mIu/S68i7ADzU2t4MJZJv7bp5ONQRynGH7fNj77C+1gA+BOBB28a0TQL5BqiY8y9njj+I5BtF5Cu2XeBqw1QuLK8JUjyhikQxrQdNyBjAYkyf8saKmIv03rB7oE74XmmvJ4JIPm5bmDOAx/gNV59NBQ7ui0gE0+lM2tWWTsL1+LY65G6XGAIZu0/VakK6cu+pnjxOZMCApHoZ0cnf1Vvncw0KVUlFbDEgRiJJn5MQi2TBmCSGpKvabHmrmARJjHCMSHR0BJIbn6krfZvkOLKsduOkvNNeGybakg4dVbVT2qCVDmQI0o+gkXCar6EjCZqkETVSpVtv4zui6srb+/XtGCEmDdm5LvHE9tKeO/UzKcb6ZM4D5jpMtDclCSW9i7OKlvRKoIwqXTXlbqVKIOVip0seeT8vrAeTjNVfXygiL2z7khHA40jeH8DLSX7Slv6+FcB3mMor7p/6xfVf99SxSWzLxvtMe/1zc21I/uy2zi8WJN8OTRc/AliLyBO2GYlIPgeqtxsBfJ2I/My+14qJFHN4P7eijRiYreytmGldz0lQGX1qcp2KGgdMBdRJH+W9pWGPk/2GRDHhReVp1SPuqSFv0uvK1EJtxHbqVvKpsWnsg1Lq1ozpoyQcD20q+vstzuF8Xjauu6Op11yVBWrq/ZJ2hTUh4pIjVhxsMSBF2kkUJY+sJCKiE7+4Oi0lremRBHT9D2wSEoTJSUxrYnEiSSdTSVBPUS3z6MJBzTiLdlItk7qptNjM6K2kUSb5sprn9skwkoer0exn4yo078/tMgBgDnKlAqBZgApZTl4HoY8gUDQ2nLgBrV2C4Rm5Si2owojwTAd9RaLOcOtkXnS6jDJtdEWy64yBSE7R83ZPFdZ7ReQJ+zQUkQ+SfDXUdvFukreKyLtMPfUea/YnAHwRyX8O4P4AMsnzAP4DgEeE7h4B1SwBKo08EsAdJBcA7gfg/dvGsvMxkVyS/DqSL7Ptb5oRByLyOfvc8EXiz4nI48LDfDbUSHQbgFfZZ5D8BABPA/CJ0Af5vZZqfieKmsfcd10vHhMoZlNb9QbjFNRS27y5pjLJ7hyXq42mVvdhf7/Sj2qs/pxtuFhSKXaJQBJlPHvqemMd9Dm4qs9JVw3/baGqAYIPjWc34k/i9xW/H68oWYkim/TmZCVFmksULJixSBlDylgwF1WWGtSzGdfRqrLKZ6nqIJNYkKRU4StG5STTKqKA6KlU1FbhfaO26tQ/sxCv3SHNtYuhe0Ada1APtWPvPtNqojfPolMfRQkjjrkf+8ZwnYEQvM1gEgnKM6xjNWkvGeMktVPJQM2TZeNFt8kQxnqKrrynocIi+RCTPGBesZ8N4K0AfgLA063Z0wH8J72m/GkReZSIPArAvwLwf4vI803NdSfJJ1k4xlf6OV1fXwTg57bZP4D9vLBeADXYfK99/grb93/sce5p4KmYNhI9FcCPisgFAL9L8m0AngjgNft0OkqNdo5BfE4cAIoHTzaZuy0aJRpXLVGN5cvJqoZKnYfPHCYJQKp0VA3d8z/sOaP5lAptbkzRS6uJT5lYaxSJYwsRTT2DxnV2bhxo7UrRfuJw6cNJYyVD8dgCPC0MNsjer7np9SWFVBJVTbVI1f16zAnJVCiESyGwScp1N7oiL7EHvoIn1AvKJlyXQiShGt97KcT6I1AN842EEd6jbd8b83s0XsEmgRTbCctPuEoftuJ3aak8ziCd0O+9H9IWgtTBdGMsz6PNU1X7qepBlX28jrpoVcQcnn2KXSYgZzAlJU+Bxe2EWdwzGp8iTskL61YAL7ZFcgLwUhH5SZKvAfBSks8A8PsAvniPvr4W1Y33FaheWt8P4AdtLn0/dIG+FfsQyB8XkceGzz9H8o17nHcpEAA/S7VU/hvTATZGIpIPtbYPh7qhOaIxaBZRdaWfq4F1zgvJ0bh6msuKewFttGU/aWV4oOJG1PnEf9bYqaXaWuZGWEJoJdGqIirqMLAhgn3qsUdMVxN0ozqD+ipKRWmD4GKK8+h8sFcyRSORKCk47hzP4GOO3lu+v/aa9Tmcy8c4my7YGKcN/dUGojqchEocyOYxBTWiu2Hd81ulBGRkaOlUdfGlzajNpJ9sshNT//jklgRNIB7DOVF1FCZ32OdG/ROIpzEy+6uYmsnPdfQSg0+4rs6KJDSi9Rjz9wjE5/1ulYDmuQSxn47kGEiofH2jPdfkD0GAZKRg4y9jFSjBjOH6Rhh6PamLgVMKAxHwVAhERH4NwKdO7H8fgCfvOPdbus+3A9iwn4jIeexHQAX7EMhI8mNF5LcBgOQfRXH0O3V8uoi800jilSTfuqXt1Ley8bMl+UyoMwAe9vCh2jpQDeg1LUerDll2VyhGa1/BImMFFM8qz1m1j2aon2hdfVWN6GPdLzUleh80N9qEd7EE0eNSz49xH/4ZQGPcrzaNarAGWhVTrw4cAgFPje3D6zPFPlLK17pEgZoDyyWSPjOvkkVN4V4IDoJFGi2bbxtMuJZU4kKKcOFSA3Xy8Una7QISZ/yguxef5EwNM0UeDldjlQnd9wfvpXKaT/ZGNpGA6uzrW/dDbVRPLVcRNm7v19+nltgkdNUyCqo0xe7YFrKJKrAoyTDrzclg92r9MYy/1FfxfYONIZIGUEmkd+89DcjeNpBrEvsQyN8F8N9I/g706/sYAF99OQYjIu+01/dYKd0nYt5I5AYfRzQGxT5fCOCFAPDxn3JGInmsMJR4jGjv8NiBlSx0dYk1YmnZDJb64iPWdl41v8QaGf6+upTSzmsDB6cDDGuEusdDrWWApzqP49lm/MlluQugm9QBNHU36oPTmWFlMTLeT7+Kn0p73ksLkTTK53AP7nF2QZYY5YI9Q8ESY8my+4ln/1+86VwVMFeWGHFlQZ1OHh6zE4nWv8sB6h684oCz6URrrGetsb7GUMgjiUk846KZSMaccTRoHi1fVTKrpxbNBuAp2mseJwmJF7W9qrBMVTIAWVQFE7Prlgk8SBobEkh4javzBiH+ofHCmlFvRe+wjTnebQ8eJxJIRBgIzVf9PTFEyWjq+Bw6CUnK9VjtQepzUsaeEiGj6P5MS7YInfFGXQg0KiwKJKUSxX6qOOXuriZs5VnTtz0WwG0Avs62x4jIfzvtgZC8meR9/T2AzwHwG5gxEtn+p5E8JvlHbIy/vO/1+ohzN9LG2IEeI9qJ3tv4ytXrfswZiOv1hoY8tsVq1BxZmy6ye93njnaT9pEu/kTft/2sgrpqs3Lh5jVdfeUeT/6M4vWPQ8R5qVRoksj/uvt/m1R7xe8xSjFHVodFx5MKeQCmThQ2hbZK7E4guyiBAFADOs0dOul70mQMokgncAmFdX+VLnzGR32N6ivUSTw+xsZgbu/L5BmJoCcFlzSi4d1iSqawQ7NYxxnHj/q+sXewa9v17WOfvWbo2+M7+ms7mURjejSul8j8gdWoTlYjejSoI7w/VSM6d27XKrZKICIykvw8EfkOAL92mcfyMKhvs4/rh0Xkp0n+CiaMRCLyJpIvheZ5WQN4lvlJz0LVuKzG4SB5uH0iVsMbzcbgqqmo0vKV7QDWehumEB6RJnNu5XDtXcj23zFlwC7R1Uh2B/ofOFf21u0lXlOkJ42+Dnm0yfQk4QWZXGqK0pOTXIw8r6o44ijNx6xMke7AjEE0NUmiYJVZxjdAyncGbkbhjEKcl6ONPs/l4yK5+DWinSaJ9l88soKKy+8xQSDUtCak2jySHaOJDao2ijPgxE2HibVx5w3Him0EnQTS92kE5VJL4SqXfAS1/HuUaiakkMkJnWGcrhbz99x+zsb9zl0j3lpHqkUCgU3yZkQvEpgQMuhgxHN1DYW1qzhljgwEq7bZVVgpAciXwYh+qt1dVdhHhfVLJJ8PjcUoIfFe4va0ICK/A5V2+v2zRiIReS6A517stWoUt0+AwbC9w5A+h5gbq9Htz8R/NKlLynjSpAqoOX/CG+li4ZPunGfU1DWBSlBT7sT9+0bFJrRcd2wmkbZkba7ODOAk0TVjCmTsdiDvO9qyXKLIknBnvqk5fxumvOdcGnGtkEskqrHSe2MwYmyQiC2R3aYxpT5qPLLCat9VRLVxUAXFSb0/5u8bI/o9nCDDvNxIA+EQEMYfiWDffsOzKcN1aSL5BetNizPaYPXkU9eZHad0VioLSqQRh5PIaUGAa1rC2IV9CORP2es/CfsEwGed/nAuP3qiKAF99gvf5nIbqwlOFZxKrlfApudTSQ/S2RH6cfW2DY+9mMK2OJQ5r61t5DSFDelH2qy7vm9KjVViQzgtHTXjRTted50Gpj22VAKp1/V0NLD8WP7M4jNye0f0uIuFsqZQ1Fho1Vg06cPRp3vv4ZOISwMbmDp1Yl+xjwQponhOIQxB2k29qliOTUkeG9fqVWNT9xWlj0AiGyQ4cV65xuTFW41fQ1bJb8sSL0LqKl/8Pit5UDzRpUAGBn6ySHYx+0ckkdMSGyTc7HWIfZIp/rl7YyD3Jnr11ZzUobEebUbXqbZqtPWJ0qSQHV5NTebdHehzQMVXNyDHTLpRQoj3DACQXFRZrl7SDLWt9i9OzlF91d9Db/yPJNWrsWrU/fSz8YDIURJGEtFEF4tDxbH4tUYknMvHRY0IwMhCmsWCE+mSEzXs4e7XREyF1D/zCCcSMYmkWW32E8euOWnXPOMSRVRFWb9lnrVjxbPLpB1JmJRgNmwncevH3amjSooql5B6dVWn3irqr233OSt91PdCAEOUuliy6zKbKiuSRyqx8tWLzCUZwpJRCtyFt/HQOgWcYmb4qw77lLR9EDSl+2dAv69fAPBPTLV0zaHYIYL66tL6mU57EnNNTX324lVT6Ot1+DgvFgnS+FlPq5Sk8d76+59QMz7/P2/+ixt99ulWGmeCjmj6pISlOiFc9bRZC6THGGa8DRdfCNZ5wInZMcp1MTTfR4IWqIrP0NVe57s6IYmCQWq6fbd/eGzIwtx4XfoodpA9ppqm+FS/It2yAi+33bXppYfJ4D+P1QgSyMZQgxQTJZqGXOYkpotE4xCwD5H2ZOXqvf4+fZg21vKzIVACDp1M3BXaHoTahURtJYUkqzrrdHBtG8l3YZ/Z80cB/CGAL4SGt/8h1B5yzWHui7yUlB49hl4iwKYOvc8G22O65CzDyr3FPuqo3kbhLsu1NO0OL7AgfcQU7n3/26/dpmgpY5kx+nt+suhi3d+rH4/35ClpKqGwuCFnpFIiOEvCXeszuJCXjZtyjJqvSRY1rUl5RbCDoFVp6Y7Zx1ER7yWqZuL5U6TRf+4m+d44Hr203Puq2TopZINE8ub7fVRfc7d8j4jIyYPhvbn0uidV9chiU8CqbAPhHloymCdWcu8uFhuLe2edGqakuzlp7xrDPjaQB4rIPw2f/5nlmb8mEdVXgEc8p+rSuWFcDuk0gnHW+4poVrsbq71kgYfTERuu8pqbzNUzCGXMJdZkm80muCSXtCzujYUEZGCZNh3Xanr4TuqY8LiaQ5nELaBgnQdcMFIdkoR26sC/kkEneNH6LAmeuj5Z6VrNVeYG8VUecC4f4Ww6Kd+d1rvPJW4mi7rbeozISvSclQxYprHUPk/IADXZYhIpbRccsZYBK1MROol9ZFW9u0gve6uquZwTcgKQCSQXAxQClrQgHADx724RdPaCJjjPV969KsgN59GITDu3TEqhbjpS+5NsbBBRSgGaiW2DMDrum8W+k+K2dp36qpTRHVp1WJnvR1rRL2hZXgoSWAgH1K+F6/oZZkSHSOuocFpSg8wvXK8H7EMg/82qU73UPn8RgP8y15jkT+zR5/tF5Kv2aHevIIM1HYj9on3C7d1O58gjBq8NwWfyUlRkLsHEqX3KSyraP6L7bWO/6OJaPAai2A62GPR7zyo9timFbMOGTQSWCgXbjdeRrKelr7whmcXqjFU9eQJAv58T0SJUq7zAKAkXZNnYtyKRIBvx+tiFyKwJFsszzglCgSSdpUUsLsRJxHXrFHiBp7r55FbblH3ApmtvD6l2AA+irmoaVFJIaPXwTj5s+wFQy8j25LFtop861quh7gGK1IEgdSDct98fZ1RYfq/+HJPZTKjvCY9Er+1O1whyin1dZdiHQP46tDbID9rnAcBHSH4DABGRW7r2fwzbEy0SwPdc7EBPA6SU9CMXg1011Ju2dg2PXB9gUgm9rsW8FKLnX7zF7VIy/6p3lMaRTGHsJuYofaw7O0gswDSZ9h01BUyTNZf1OjFiXx0MTCJDwnlZdo4ENS1JHwyo96Z2Jq1sqLPKR+RYVVZWydDP2/Sky4U4EkcgqyQyJmJtHlulVkhS/Xb0yCKluIpGo3pZhXaTlK6krU13jN4+vmJandWQiHSvOfTrgs6GhIxZSaOouLpTTm1ijGQzNXGzPhtXSzkvO2GUV6sTUu7XPdRMZCnSmxOMdVSce+2ce5gZaOIGr0/s44V134vs8x+KyH/f1oDkt15kn6cKDwCctmXEoLr9f0UpeP/Ec70OhRY30joierxKDLHYU2+P0Ul5UxLaB+5yq/flUkDrVTZ5Hrarp8rYbEV9sbl+qldXUJF1XfgxzRIwLYFET6pYcMrfLznifF4WKeK8VPK4kBetuy+lPBuXRFxllsDGJhK3xqDOGlhIRNKIy/0ONtmVOhSRMMLKeSu8XXgtSQ6BjVxb5XG7CmiOOOIw++uF4cfXjZOmrrHzAi0au0d87332JFJIA1X6K8RhgzEphCaOyeCZf2lEdYpiw43shXWxEJGXxs8kbxaRj2xrcyWhk0ZbrQ+IqTdy+eyYiySfnOTFz6lBhlEC8YSAMeGgXq9eN4fUGpcaRDg1UQLzk38xZktq1FfbVFdzgYS9J1rTNuwbJZXKhNrGswQo2at0V4nXJaMNNaPtV7JYlO/g3HhcjOxZaAkTY9Bn+2yKY4RIkaCalO/BoM6ZmTfm54soXkWTJ6FRL00aWjvV0sbPQqDuu6jk0Uzk3ecNY3q8dn9NdOd0Y5kijFkS2UUc/t5/dkF6chLcsBXFdr4NulOcJGCuvaOSCbORyCgaR3Ja/CHdjVxnOE1fgwYk/xTJNwN4i31+LMnv3XHaZUetTW6pKlC9pvR4rhNIN5H0+0uf3QQWC041OZacHFDzQpVzmDfUVwPrWCJ5xPxM+0gmp5ENdB9PtW3xEnUsKWyVCDYCCSWkm5GEVVcWdKCUmJE5UlvJAudte//6Ztw1HqtRXDzTbkh/H6S1qfTwxUMrPHsAxQsrQdogQ+D0NRfbyKT3qgq5r0r+q9Fec32ds3X0jmIRu7yx5r7+i/4ZRgKwzx67UWwhPtf30kmjDmSzP24YGD57jixsYfeLx2nVRL8aMUsglqDwnuA7AHwugPcBgIi8EcCfuYd9Xja0FfBkUvLYen4gjcEm+6YfJyrGZH2eXDB8Dobx0eIOlskJKG9IDnHyjIRUJYj5f4ToAhsx5wk2Ve/DcbER7gAKOUzBgzxd5bQten8OLqms8gJekGo0yWOdPRMzS/+RRHr491Zces2YXqPSbZ66mOdwSqvTZkKXSgyFJOIW9jeEJGglj6mxopM64nlzt32Jt9dIHz7BW3/FiN6RS23P9jzfEgKZsCMa2385ltQTz2xju0ax7XG9DABIvupSOxeRd3S7Llcdkb2gCw6TDMJkX1b5yGGVnxvJo1drzCFO9N7fkVW9i+63PtnX1W0ukkmUTobQl7Zvrz8bRT/R/mLVXxooWdVWbUr2vDGWbZmILwWlABemgy+LV5e0x3uycRJy8hhBXMiLQiSxSJaTyDhBJkVqnVBjtVl7txDJnMpppp1jw3De75shkVkimSKWnkQkqImATfLoxkDZHNPFTo5FMojve0kkPATp9/ftI0GEPuN1fH99z81r3RNsMNmUKHRtYpsNJJH8ZgAfZx5XDUTk23f0/Q6SfwqAkDyCpoJ/y6UP9TTgOnSxIlAJS6wBLDAYt7naqZBMFx3uaNx20ZKN1wpxnMgCgxliPRfTCubpKQkZIUttmKzPJPMiytHgvBnHcT4vsUz1mvtm/J3DztxQEKwt7mGBqt6acgDYJJmadsWfL1AN6WoP0n0rGXBeNNjvJC9wn+GCSWZDk4ImcXNdMoJY5SXOjUe4IEssOOLCqKShpKOEofEg+m+wDKqqSPCAEv6CI84Mq0lpaJMwUo1JIGr9j4lHO+mm65NoMtUTNlVHkzaMuCK3z4xz1MTxxtbfkwDaY1N2kkn7y0Wi+cnFydzUVFH9FMnS1XTNvZRo834g9sDW8eHYS64hIZw69VLh47uHIHkGwM8DOIbO2y8TkW8m+UBoYPejALwdwJeIyAdI/nkAzwNwBPVl/3si8nPW1+NRS9r+FICvFxEheQzgJQAeD9UcfamIvH3buLbNMk8DcN4Ge9+JbRe+BsCzoGVm7wDwOPt8VaCRQoKayckjrtZdrTTlYtuXrY3xJFodr9pchnC8SghV4uglkBRsM319cMDVPCGt+kRU+RQZ7PLCmkNTKwMT5IBNG8EcdtluXPpwY/iUamkzgWNbpMsj2RMy7h6XprbSIMR1HrAO77V9wlqG2i7Ya+I1enuIq7IA1Jog9r4QwZbUGBu1OSYm6o2F6pTqyCfUXrXUSxneto/5mEBRG81JAZhYQE9JAKHt7AK8I4pi4+junWKkKuG8qbGTW67DjUj1Zn+a6fSisYf0sZ8EcgHAZ1l58ccBeArJJwF4NoBXichtAF5lnwHgvQD+fyLyydA6Sj8Y+noBtErrbbY9xfY/A8AHROTRUBPEt+0a1KwEIiK/CeDbSP6aiLxirt0UrBDVvxKRv3Ix510JaMLETcO5k0GcuLet6tuANCMN+y9VFYnX3EaNEwnBhrWI01DIo0ojbXxFRjzXapbsGdjXjHOrsXv6Rz24TgQJECeCtHFO44UV7AexmFRJCBklMENUXa2ySw7tZN4nbfSlnhPp+bwsqqq7Ro0edwnEVVdrVqJOQmTWZ++G+hhfsvE8i+RZXxv7q6C6807ovneu3rdx8dQxX1iLvfWVuR0rwXIJm4GH6MZjK3HB7lV5I8VMYY85cps6ihIkrvjsoqdZ11fZF/opEooA7sKLCdde2frgLxKn0JWo+9hd9nFpmwB4KoDPtP0vBvBqAN8oIv8znP4mAGdMwngggFtE5DUAQPIlAD4fwCusr2+xc14G4PkkKTJv5t9n1vklkt9O8nbb/iXJ++242RHAQ0x1ddXAf5vVWL4phej+zVW/f44TcG9od8LRanjRttI+/2KHKavY2GdtO633r5HlNaNwzTVVa5TPG4T7e9on3mUuZUrrFNCrqyZqahTV0BbyQs2FVYzoU89CarzKGKSFanjX46suFUsWDQosW5BI4ueVSSJrGcx7K1kw4bQzQa/GajPzApurUTST4SWbj4K00k+wReoIXlnlM8L73rBebipcpleDdZiaxP11bqE9J21ImPALD4T78Psu3NCPO4y/lT6q2mpjDJFkTtEL67SM6CQHkm+AlvV+pYi8DsDDRORdAGCvD5049QsB/E8RuYCqEXLcYftgr++wvtYAPgTgQdvGtE8cyL+Dlpb9Evv8FQBeBOALdpz3dgC/aKlNYiGqXbaTywqt5Kf1r11z7t450aju+ZNKWo/wi4sBaNuuA3jAYLvf479r9HWUz+vbJUcMzEUV06cTGShYy2ZUe5SUfAXtXkhlHJcwW8XJf+V3Y2OJLrGT5wai8bK2sc8yXmiG4EgIc3m3Sj4zEdTKhyENC1oVlJNDLBHsNiWXQKJ7dIIAFqMTMwuvw5imxhXXa2IzU1MXvUwcnWSCjgQCtn5dLikwEEPowqWQ2KZJ+RHH3vcb9nOy0R7ji/33j6snqEBSvZG7IUegZOD1MW2QcCc19bYmvx6jiJUIjKcofQCTz2sCDyZ5e/j8QhF5YdONLswfR/L+0Oqtn7SrU5KfCFVFfY7v2jLCbccmsQ+BfKyIfGH4/K3GgrvwTtsSqs3klL+ZewZVJcH+O2quqKi6ciP6tqSFESlIHkOYVL08a7l2kDqaGAipY5tSmdVcVJVEPF16VHVFF96pYDu/xr72iuiJlU29A2jK8ynjeXw/Z+/oJR+v1xHVV6OkSTdev++p8ddKhZ53iw1xKJFsVn+MwaSxlK2TiQcf6mtqiQRKEv4svFhe8fOf2CgdYYQZc0NV06Of+KPKRiaaSJ1ABaiFqebURsCpxCfsp97fQh5xfyAPxObBvuOYlUi2IRDOvuPeie573YL3isgT9upS5IMkXw21Xbyb5K0i8i6St0KlEwAAyUcAeDmArxSR37bddwB4ROjuEdB52o89EsAdJBcA7gfg/dvGsg+B3E3yM0TkF2xQnw7g7j3Oe7OI/HjcQfKL9zjvssF/T9U2EYo/+cRt5LE0NRSAolv3KoNN7EWnvqr7ZyZNCjJaxXNMe7INRX3VkQiYMEIAyY2k0kNTc2y9xCxaNZUvYaE2A0znwIqkW1Ok5+LS3NybuRt5HRBVPQ2NOgoIpYBNwoBYYkNLjNRHu5cKiu5oEFR82YwDRQoJpNTUc5GarWCdUyEPJ6ExEIlMbNvVV3qdxstpy8RXJv1tk+PMMVdZ9Qbu+NUx7CMvfg4uY5w7cYL4mv0defTdlHtAq56rHWKvQUfvtg2HrV3P9yJxSl5YDwGwMvK4CcBnQyWLn4AayZ9nr//J2t8fmvT2OSLyi96PEc2dZoB/HYCvBPDddtj7eg00ae7PbbN/APsRyNcAeEmwe3zALrILzwHw43vsu2LQCS5bvqrgieWr0DLJ6WrY1UkxV1LbbuoaGTWvdsXQkdJsQJ1skka7Gnc7C4sUpefVmut63FvvzoXVjNMmzl6qACoB15xY031EQ3MbRd+pr8TuQTSKPEtb36PHaO1HaBp22HNsswhXNVic9GO5XQANkfTXi+OM5DHmSkhjiJRvjOb+eZf6Srihvroku0ic/LYQicTXbvK0tQGKZmcPlLXM3Ap+Wz+7yGPi3A3CnXtWE/sbgoup3P3YlqFeQdwK4MXmoJQAvFREfpLkawC8lOQzAPw+AF+k/00AjwbwTSS/yfZ9joi8B8DXorrxvsI2APh+AD9I8m1QyeNpuwa1TzLFNwJ4LMlb7POHt7Un+RcA/EUADyf5XeHQLQDW02ddOTiJ+Hv3nkpmDAegHlSi1gtXLTmJ9Ogljz4thpe/9f1DVEgLSp6sWLfbJ7RVTg0pAOa1JQIklHFPRaB7KVnP9wTR8c9l4/VYiHV4396XZdgNkpxX8YtZel39s0geZ1OLNfn9axr2Wpvjgiw1BUleltQja6mE7fd/weI3zho/F8M5YhS7TvgnedFID5FkGtdj8efVSXkBK1NjSSCOEoCYO0kkh5nQ33dutZMTYVxJzxBBsWOUyRCFGSZXvWFyrwWxuias6i10MRicmqjj+TIhUWCLBqcnjinS6PqPz2fDDbk/HhbPkdjYPS/fJ0lzYZ22HeSSnSMCROTXAHzqxP73AXjyxP5/BuCfzfR1O4AN+4mInEcloL2wd7SZiHx4F3kY3gngdmgMyevD9hPQ1CazMC+D/0nyJ+3zA0m+kuRv2esDQtvnkHwbyd8kubXffdCTxxBUNp5uJJl0Ekki2kyiyiZW+qvR0hNuoBOqnH3rpLdqHZvwMF0GN6p+LgZ9zq4eJUtt12bK2yoGEZZx2b1qPiyvQsiadj23ZBiLW7k9YpWrp5Tff7VVDPN2i7AVyaTbN2aNFRnt/YVxUd6PrsLKTh7JiAPF/gGYBOKxHtLOrNEO0ksf29QxG5JD7bJtNENQhXjy5rGNNv5+l+AaVWM2lklbBjBNEH27bT/VOekqkscEATfkgWkV2s5rXywa1eXMdo3icmTjfSOAN5L8Yev/oy2mZB98PTRa/Rb77EEyzyP5bPv8jSQ/ASpefSKAjwLwX0l+nHkpbMH0F9Xq6nMhEs8MmzEUbypXY3nbXZirfz7ddpM4tADTPKFkIZZFHdZ6Wk2NxY3D26SPOcR4iF6N1bQr5BFImFLGWdPItMGZOZBJdcNVcohk6bh7XOImiwxf5Rov41LahbxQu4WrrtAShKuapr7FqJ4CWlWilPNRjedOHNH2AQQ11oz6ChOfw/ttq9eycna1S5gc/RhFIGSzGhfoCb3RXWxFblpE7TO3/U2NYSv2UGXNSR9RLcb4PPpxbJHUtqmvqiea1wVB2XhagYRbFgHXAy5H6jDHUwC8AcBPAwDJx22rVmgeA38JwPeF3U+FBsfAXj8/7P9REbkgIr8L4G0AnrjPoLZVCHRJYzBdfY0Ot8/BThJjSS4GPRl4zIPr7n0l3quqSoW+if/AmK9ql4SxLSGio9osYtDhHrEiG95XUtRcUSLZtH1U1ZxXDHQjunpitS6zxTUZtHgRtZU0EeUe2xG9r3K1XcTYmVFSIQG3Z0TbxubmubKqFOLkEYmpNaKjlQCmpANMSCHA3hOQT8QRqirzGdOvL2DWrZE+XK0W4kI21FZhLBvSRb+liX3N4OYJaGp/I8BsGRd3uY9ZhHpzrakki6eFGUmw/+6vRewkEJJnSX4TyX9rn28j+Zf36PtboJP6BwFARN4Azdcyh38F4O+jXRDOBcmUgBdDDIbpx/9MD4L84PvcphEnZn3fqKUoOMJouZEkZNo1QrFvvDe8D1vUPZG45khsg1yCGizW4ogTadu+/dXvTBfSTcxT2OaGG68TDeObBvfaLqakj9CU7YsysbsE4qQQzyk5sCCaiqRLPxKD/lz6WAfinCqY5ZKEu+I6eUghEW4Qx5iJXLZk7a3DKGlMuRMhtMMMcYTjG7YHx8TE3Fw2YXOSakijkomrfXrVVRNkiK6vOfKY09JMkYk/nnDeBrZMuHPPayf8+cTT/fqnSCDxGc5t1yr2kUBeBM3D8ift8x2YMc50WIvIh/YZhBHSe0Tk9fu0x/TXO/mTEZEXisgTROQJ93vQsFWllApJ5EYCWQapJNo8mjxaMZrcVT1Is7aPHrE6n6/GS43zLRN8ySDbtY1pQqbOKW6wl4AmK+/Mf2pJD8JQe8WfX3BacFtRlSY0AjwjlQj0dUec5b5tol9ZehJXd42BeHq7hkiUZDpbCKbIo7oBbxJHJZii0nJbSmYX6OYzKQq5NGqZHtukEgn/AFH9FFHUQCzn7dwyCpGUia2f7GYm5lm1/qVOxv050j4Hv6edBLvntRri6CSUe4zrWALZN5DwS0l+GQCIyN3kXs59v0HyywEMJG+DZuP9pZm2nw7g80j+RQBnANxC8ocwHyTjAS+OGAxzj9ASh+gUKwAIDFaWVif4LlYA1QtqHzQ1x4NhGDBbBfZTN0XMBwy2VfwGqK1A84DtTyIl95RY2Vi2rrtOGN62d9/tva8ixnCv0Xjeq688c27ZZ3p7Dxr05zBl+xDRfTLxTBnuzSWRMYcAwc7GUdvq+cX2AR1Pdd1llakbqcSuu2sCnJIc4rkM+9gen7NbTK3gi73BDlOkTqapO+ZdRFvFHj/TfjxTP+2tP/cJQt3oHxPH6PcU3kPtHgRCKVz7QaddA9kfnPterxPsM3ucWOCK/mbIj4VKJLvwt6BG7gsAfgTAhwH87amGIvIcEXmEiDwKahz/ORH5q6iBLUAIkrH9TyN5bIWvbgPwy3uMqax4fdU7BSeRBBQyiZtLIV7mdE515VHQjikvKDeS90biXeqpfREJZTIYb4cKq/YzL2k0WXo7ryxPkV6eG6aj31WKcqmjpiApkgTaWJSYs6pGmts5G7Egm/fXq++i/SJKJOVzDiouJxfb55KIIBCMtPaPjVueUrv4+37Skf0nosnJ3D93kky0xTTvG9uHNCqsjcl7x09n25DjhD7X1+w996qumXHsauPPSzwXV+Kpq7BudC+sb4Eawh9J8t9DpYWv3nWSiJwD8A9tu1Q8DxNBMiLyJpIvBfBmaGzJs3Z7YOk/9wrDbPLAqppS6eOIVcJYAaVmiHbWFmiKrr99/qsxEIem4ND9rfG8lUI8KM4rC6Zw3kZ2XovxKMupLVJQOY+w7LMTnl+iecEyPL7DpYb6usp2LcKC+ACkEetcz1mmEYukEf0eB7JM44bay0k0qp8u5IVm0u3VUPbMTszQniBYjwmL4iHmqUtU+jjJA9Y2wa8lFdVUvFex+yKlHHO33EISnQTiZNHPkLKhvjIy4eakXSSSmfmjMRCHrVllB+mjSAUZQIy0npuEJ1b0RFTl+CblgCRo+JOdI6LXihLJxjPB9C32k/vGxN1JVP1Y59oIVb7YJqXYalilL3+oQbQ6VaHhOpZA9gkk/FmSrwfwJOgj/noRee+u80g+AcA/gBrOy3VE5FN2XO/V0JTEs0Eyduy5AJ67axxTiGqbOTJJqOLZQAAiWJFV6oAG/nlkdySPOXiZ2ilEr6upBI467umZJpclVCWR/Wqlz5PNnGqrZBimzlSjDPD05yM2kxGW+u8T3lflWsFRwCsGVpfb1p22jr1Nhri28cZ4DiefKdVVnnifgI4osEEexcsqtNkHW7+OTjJoyKKzOzh5NO3idXZIPL3X0pQ6qBCU/awodYVOJ4143hxDxP6mxhQbTDLMfJ97wQhhUpXXqP5MCkWoZX+Kk/61bCTfhZ0EQvJVIvJkaF6Vft82/HsAfw/Ar2N3CNK9AkGdrEoqEViE9sw5gycEsv+clZGHrprbuBFgUzqo/chkcGtfk7y3jWxTwzjiit5tG/XzpufWPuQyNX6g3l+RRlz6QMYAqgp5Sq2F3BTYKvdnM4fHeoymjqr5q2KQXyrPZB1ShziJxGfVpy3x/dGIDqAhAFVZVS+tJt4jp0bqiASzPfnTDMLXufNUQesZ1U3gc+fTVVAz7RpiCu+DUFPiQPQ/WNROEMbg8S1TP8+yS7BBXIWMfLLeocXZ0MrteGYl9iX0X/6Nw9dVBHIBSjyIx4ecBuTifxrXEmYJxEoonoWmGX4A6nd4CzR4bxf+UERm4z6uDFgkhp5I5qA5psxYTMEg6pU1IuEI40UFCm6Dx0CUz3tEozs8rYiTw1gkkto30EZxe1qT6aj1aeN9lT4Engol06UQsbTq1cPKXYBd+pir6liN5TFPVTv5x/vwc/o+4vNwRKkhEsJU2yTqGOHuuJEknDwkt8RRVuPkZt6ouJQP2KK12pxweunD9/WT8mn8DO3BEL4ib+Zfu6409+0SCevpG2PdII9tY54htXh87vkAPTm0AZRlYA1Dokgpuks7uIh/v924EQkEwF+HGr0/CpqKxB/3hwF8zx59fzPJ74OWWSxGdxH5j5c00lOAf4/uvhpdSgGbtMOPellSvHuab2JJwSgSqgpq26ieibmupqA1SeIKerrtqovyjt5UbX+bv9DTIrbmOpT6vKyiYiIxiJj6SqWQON7ouhu9tBweye7Shxv3vXCTH6vtg71oTqUX1FtxX9OmIxlSQixIdcdtCGiCPEqpWl/ezj12b7ZNWOknz17NNLWanSORbpLd55p1n1/YpA1vJu3WqLN29b3vJNqrj+L9XUwfO67ZfA/dNbcS/KXgRiQQEflOAN9J8m+JyHfPtduCrwbw8dDSi9GR8YoRCLA93UeTVsP3gRghWDIhQzDathLRVhNG6Dmo6ksLWg2cTgNyKYjuxC5dRJdbfT2dJVVNOqj3PkCQS0JIM6ijen/1teWBTSL0xJEeDBiJo5/4XTpyQ3lMwR4RgwbjPldROYpKK6jBpjyvXF1TyCO36izSNOiCjcqE1d/W1Uqbz3WbGmoD0hLMVkwQyRZt6Mbqvm/LKIWgjkOk8M1E+zCW0F/pe0py2/U89pyU3aDeSFGTHaPc72mrnG5IFZZDRL7bKl99AjRGw/e/ZMepj7WC7lcdehLZVSwqrqqXIFawvE4TRugp47PXGxkx2Co9mbu5By2qGuieIhZE2vTS2kSTGyv2UybfLVKU2XQS8qZBHW0EeyzdG+u998qsRnUVbCBz9p9dLsgbKUUmjsfzx1wz7Ebvq2rzCJKH788EzHbCpM9eirgxO7T549ukjYlzGl2+tPum+t9GHs01TCdl/kxl8i3nR2kEwbawrc9m4LNDLMcLQfmucF/bJuWqjpq5QCCLpt/wDPd6TgfsZUT/ZgCfCSWQnwLwFwD8AoBdBPJakp8gIm++p4O80khlhU9kCpYmgYzqA7i3uiga0ns11hSWHHFB2q8ort6nyshWj6xuX7mX/ZZDW3OGmTeZq/HcgWAQmVUrlevP2JyanFcdkQBd1Dh2Oxf05wEo0kckkyZjLpwosBEUqKqaTclDDWQAkh4DJyQQ62fyczcJXyo2iGRLX5OeWPvC+7br0ATxkjIlEMyklBTO3ZBGODGp92OeGu+2+6USuttCpiSMjX1WI+RUIKdokL8KsU8cyBcBeCy0KPtXk3wY2oSHc/gMAE8n+btQG4iuaXa48V5u1LKpWp1Pa3uME8GCQIZgiYSBREJSIhFzYU0jkDNGUolFaiT0AK8ZXuuNDMw4kQWOyj/NwhRaE3K/IU6Oy5Q19gIo6iJV3fhqPkgcUT0U+hhMz7+LRJq8XXb+hsRGDTZwKcQN6ktscTeWGJxQgzrXIfOuBwXG+A93wdXjNQCy1OIAMVU4zZ/DchixGs0K0xFKNK4D2JA8ihorB0mk1Pgw8hBC1qbN9LmnTOTavlQRtH0anMc6udhE3ORHCseK6mvu1RBX3e6BNTuRI5JJP6uaVJGCFGLxJe6RhSCdpDWQvdRRvEa8fiCIOF7fN7kWkO59fy8TJBj7i9JFI9FM2D1896nbLE67v6sIe5W0FZFMcm1Fpd4D4I/ucd5T7tnQriyG7secQAxMWGJAFsESbOrOpBmPprZPVWUNoNlCiKlqhaVth95FeMpleCPSvZFGciARlNX8HDb7os2ZgZRCwOEcXKqI6eA91sPTlnjQYMye23thNf1JzZGldxZiUMJ/7MKy9jb3gE3y6IMEe7VVSx70i6LxxCrL/7i0tm3sz0MlhlwJYsNFt0tiOEcizfXieVMr9zjp9kWXJlb+at1hc3uNLST0J91Y4jgjr+6j5evtMY39aII4pnApNo1Tt4Pc4ARyu9XX/bdQb6y7sCVtCMlfFZFPE5Hf29XmYgd7GqjJD6V8LsWiiq5e21bVVSqvugaukkbG9Io7mbFc3/svKNsEnDBCbSHJPLpWWyZhrzJYPk/YTLxmd8Sc7WOq2FNEtBHVNPH6XDQGZGacrNHysS9dmo8mQUjwtqrxHTHvV1+3I+53UospSMr9+pvy/Ulp69JKNJT7sakI8ym1VZE8AmEUd9bsNSVM2khSScUIiNZukizC5l9LmXynH/fkBFvfy/QkKNOT44bKyNVS5TyBGzmKIX5m/E2fM9fbC/He5+61Px7Hh7qvlzaKX8Mez+KegKfc39WGfYzof8Pe/muSPw3gFiuvOIc/RnLbcQK430WM8V7HVDT5wFRfpTWdb3oVMez386vRfURGL3lEtVdElDLqpM5Zl94+tmPKQ2kfjGHi9n6y1R9fhkQt+yZjHBFT04eU7VBpZB1IZMqu0ZJHQq96Aqz8ROeV1cd1kJrUMedh1rBe3HXDeXVy9Pdh5Z3rPoipfcy9V/IcUdQ+Z1VME5Px5oA3+2iq8V0MovSCSiJRzeSSRJncnVgmCCRKWMY9VQqZYMVJD7Guvylpq55vnnDbFQHboSuI07VbnAKBWFzezwM4hs7bLxORbyb5QAA/Bs348XYAXyIiH7BzngPgGQBGAF8nIj9j+x+PWhP9p6DZRYTkMdS2/XgA7wPwpSLy9m3j2qsiIcmHA/gYb0/yz4jIz880//g9ury4UniXCZ4QsRaSqhHlA1jsH9uwq3zyXKCiSh3bAxmLpxNFZyIA7jbc5sXaOsQyofbuy66SmmrvKCQlCaMIFmyr8wHVZrIZ3Fe91FIhjJr/a23qq0ZtBW68j/2VeBGwkUIKcQCNETtKG0Al4ZMJVdbkY7SdfYXBeoFKHsxSbCA+yUJobcL5YdLnxPuNzx1myQSVPGbbFMlhuoNtE2chD7ZEElVsk6QnE+QhnSQzRRyB0DY8sCJZInwuCreurx1ovoe8/TlcFASnJYFcAPBZInIXySWAXyD5CgBfgIuv2voCAM8E8FoogTwFwCugZPMBEXk0yacB+DYAX7ptUPt4YXknb0ad+AXKhhvYprq6GuBGdHcidfVVb0CfW1eP0v6ydk3eLilo+nNd0nlZXFddpfLfiDImf/XAuU37R8w/temNNYd9vbD03ioxDJRmYq9t9P3OSogevyFDieVYZc2+67EfkRR6D6x2XFUl5VJIKtepdt5EqTEdxXOtTXlSvK+mBk3BRnBDlD4m9sOkj7hij4Swob4q52Jjcmz7Du+n9nfDbt5LOwFva9/0jU4KgT6PSCQFHhI1IYFE9VLZD9QIdmySkzffII7yPlyovyZKVqvtKCRUX5kFHPX11HAKZCTqJXKXfVzaJtDqrJ9p+18MzSP4jQhVWwH8Lsm3AXgiybdDtUivAQCSL4FWen2FnfMt1tfLADyfJGXKQ8WwjwTy+QAeYwO5piGg2Tz0ecQo9Gj/mNPx74NWpaK2iyrVKIn4hLwKX0syA3v7ediUPjyFyI4JO95X6W/ve9j0wvL0KKpyqgONXlF9Gd6+D7fzZKRCHnOFn2L+qrmYljFvjjMBzYw49Zx69dyUKmsaoZ0RRm+H8CV1o7uXeAzzKh+EzxPHJidTRJKQ5vw5A/tGf/2xOULhxEQv0FUUN0m1J8nGkB5tKOWEjvAmiHVuzHG/XqO7iUhiU++dPNZAGmX6GVwi9pRAHkzy9vD5hSLywqYfcoDaoR8N4HtE5HUkm6qtJGPV1teG071q68re9/v9nHdYX2uSHwLwIACzyXP3IZDfgbLdNU8gETEquqkm6JN9p7oaJSNZNLpHpO+DGC7XGMItgDBJe+3cV/srvpMI5OHE0LrwThnSgUoe1XgexjQ1waLaWOqEHXNnDYUcI3nMwVVZhUCEhTy89GxvOJ8aW1FfiUsf7XVIbUOXmCaeRVRvbXiu+sRednBzkuvPk9Au24yU2ExMc5JGs/IN7Rpy6Mc/s8LfZveY63sSXTtBkEIEVUHUx374ODz5Yrjf0lfI/lN+1na+IBBMTzzRo2ziXjccAOLhfdYG8Tlmr39yigyyX1fvFZEnbO1G1U+PM6eml1uA9xym7ly27N92ziz2IZBzAN5Ass9p9XV7nHtVI1YSPMKII5vil2DxtBqlTuIrWWMlI1bQnE/nrZ8RHgcyPYkWghL9n/F2Lg15dt8lx8YAX1OEqK0mkyVVSDXCu1fYdjVWzaabOzWOnvPM259ejgNBAiiSwOCXM5LT81Yhl1XsL1E9zkaL8dAU81LIJoNWz7zaQNYhriOmZd8oQ2uGcR+bSxCEptrfJlEkSqP+mrV9OIh2peoQi+HIlTwoAEaLSWHbVl+DPt8n6i7WY2PShTp0RSLaXNlLO3l3hFRupZwzvTqP53s79VZinXqSdUR9OBSYHUnMnh7samW8/qbrx8fo8SPhmbn6qhj0C+lOGLgnvkDOHGqM+dF9OgvSSpDW+nqaNpDTlGYAQEQ+SPLVUNvFxVZtvcPe9/vjOXeQXECdnd6/bSz7KM5/AsA/hZajfX3YrklMTfKx/OrkOSIW9FfbuAQSS8XGYEIAs9lnewx0F+IqFSVq+vNi6A+v0YazLzyRYVVptfdb64GnZhul9X5yCUBtFz7x12qAlXCiWqqtLriS1JCHp14v4wiSiBhh+Kt+H1oREEAXGNga16OKC1DpgxSrZ77pttusagkwZX218/QinJiVepXLpooqShw9mliP/pi/BsJortk33jJZ9bw6ybPbpJhurOzusZEOInl0kkOvjipGa2mJg2MnnXXXmnq+7I5ve+61ndo9km0cBdzmGXORmLJ/bdjDdvVBPsQkD1iF2M8G8FZcZNVWU3fdSfJJVpr8K7tzvK8vglaG3Tq6fdx4X7z79q5dxIy8vf3DCcOlESeRUdR+USoL7tChF7dgZqxkMala0X5SLcBkS8oSi1KkmFSM7m7YnuurOa855okD26y2oy/P0KrDYsXDdR6ANDYSx0bke1n+tYF+ftzLzk4FDc658fq4t9lA5hIq9vfTpjKZVnOpZxe0WmFRZ/ryeTv063GDQbWTxEczOVHvmPz31KVv9dLaaLdHGzeex9uP+10KKSt7v3iY3IvnFWrSSQA13kTQqMoagihSlUzbQmbuK3p4lTGENlX6QFVbjabCOk0COR1p5lYALzY7SALwUhH5SZKvwcVXbf1aVDfeV9gGAN8P4AfN4P5+qBfXVmyrB/JSEfkSkr+OiZ/jlU5JctroYz8ypCRRzPAJmxu2j4tJmz5X4yMmVWwIwwLvEAgFULXR/u674ToT0keMr9Ax+gxRJ3vtq2b59bK1/fnRXuJ9xD5jjY9CHmjJI45dJkjFpaT4LD0TrDsn6L5KFjFLwHqcCNiceI6VRLTznmfokka/z7pz1c/WtcUec5QAOgG6Kq1RMW2u6qfG00oMMnlsG6LtQxAmejtfSpuwLxCNSxZ+OUKAzA2y8L7rvXXvt5FH3BdJLpDIRluXPow8yusoV8IGsr0Ljb371In9F121VURuB7BhPxGR8zAC2hfbJJCvt9e/fDEdXms44vaQlNGIxElEjejb0RPFVJCho0bGZwxSI84HW/FrLRJFAkrsSE0PwlIVcOo3nyVhmabvcS5yXSPd28ncR6DXrxdaRTIJ7fwK3q8fiwGDnu8q2jtiP04eJedV91zVnuFEYYtk0TVuH//huajuXi3KsYv+v+7JoExq4YBY+vCy4g6nX6TUsXM4kTzmriGb+6fII66Se0O97oROth2J+D73n5apPuI4EEhEYiT/xPkyPdaNcfWI94WWzKYXArZlzx0mhWjvMSaI/XrCtnog7hr2e/fecK4s5uqZNyRin0ewsX+MFlHdl6QFqhHdyWG0hCjlutTaIF58CTC7jIXdeKVBTwWy5IiRqQRB1qqA+9cYmQ76q+/L9Zyo4BHemxKF3ltLOOqgUONImhrngTzm4kqke3WpaeyIplVBqZqKVNLxcxbDiPU41KhyNKfMQu0ehFBMg2PnRjtIv/o3QmGqJFLO2eeavRSBbhKNE2s30TfG+Y0JWJq2pf/c7puSUryvZiL2c6nSSUzXsk0o98N6fm1c1Fj9/cRnMSV97JqcJQhtbJ9lfEZVlSVKJKckgbjQeL1imwrrTmz5ekTkltMcyGmG6m9DjP2Irry7UIzm3cpk33iMmMZjSpXlaiyfTH2cGao495xdI6qH2L4YpRZL6u0ErZoqpAAJ5FHGgc0YkRiv0SBMnpE8miy7ORBMRwy96sojzbehFHYSlojXPphQj9f28dWvM9c34sK0GMojmYT3OZBI09HEPcxM/g1hBI8hTLSdWrFHMij35+dFMbojms2xWGqWZGQRXdx90heoFBIewQbcFoHw8+jG30ggfhxV2roY8gWmH3d7X66+0i+XozTeX6eCG1QCuS8AkPwnAP4AwA9Cv/e/AuC+l2EspxmqP4motPAJ+qSs/AUrWzkvXXdv7aP3VUabuqTPwjuV3dYn3RMZSizEKK3bb/TWGqHR6mfTCc7lI6294bEcIriQl8AAnBuPbRA6sFqqN+FCk25EVU/LcgfzaOwQRg7rXAtFrbv7i4btfoJ3zzInDm9TVFao7/1YtHtEI3mi4L3nz+LMsGpIMCZFTBRkU4Wou7SrtojlMALjAEmCdS+E+CTV6JugE5tJH75zquoeME0AIqwFK+PMaK6uhRCoE52r2WYN5j1JhLH6Crt8vT5DOwHbhOmGfBlQVUfxnuINlklbDeVpLZBESDLWiIZ1kaK5pD0wmXie5X1ZmosZ4U2C6W0VvghZEIP9480a0OPzt/HT7VDuJjwlgYwCrqV6go0Crk8v29K+zg/XIvZx4/1cEfleEblTRD4sIi8A8IWnPRBRzIXqv9j2vxgaGQ+EUH0R+V0AbwPwxF3XGYKayHFk9UDc4ByP5m66GFFtICOIlaSSmqNRX5mKq3HzNRXXeVmWMq5TJHLEtaqpCqGNTQqSGEwXXXqjfaV12c3YzIO1SQT1ntmQh7fvI8Y3osjB5tw5qWNdvLBaaWaKPBIFQ8o4WS/w4DPn1Ii/ZeyAzmXeHwkMKdvn0Mb+7IpC1+SKncHeXVljPQ9DLyE0P59cz9k4LwTLTalpNuJHzO4lCaUYE2CqoH7ihrfZnNjLo5zRtXjfYlv7ECekFdQ2jcppSsLahq7NcCLT/XXPu0oWUt/78xv1Na093gMYVlJcd9MqI60yuB5P1QtLv/cd2zWKfQhkJPlXSA4kE8m/gsuUDNGu8QZoMMwrReR1AJpQfQAxVP8d4fQYkr8VTeQ584ZhOyIGFEb1VZb91FejVNuI2z5KjMXE4/d4j+RBhhZLsuS6qLmKq2+MWqc0qriBbdxHHXetOe7qq8ZoPWGPmDp/ijjiOTWuhA15NG67YYvkEe0eZI3R6dVaNTV7HW+Tir2Dx3REW8ikXWTqa/VJKrN+9ua+0p+czFBX+pggB72xyWuxbx/nblKlAZNmZIIAdv48tx3vvbX8FF+lb9lfVGczfZRzLnaOniLlif765+4qKmZBKm66QXU1Smv/GOvY7zHCM9m2XavYh0C+HMCXAHi3bV9s+04dIjKKyOOg0ZFPvMRQ/bYR+UySt5O8/cPvX5f9c0kFYxzIMHGJUdBJFm1eqiJ5yGb68lESTiyZ4Ig2SG9zHCY9mIQRySSmJvHJNRJGaojFpBPpyCFIMVPoXWo3je6tbSS2i0SxllZFtUE0E+Th6ignj32CMadIJAYb6rOQ+nkP6cP7bVK6A2gMxqXhxGTvE1o/6U6syv0xlknQz+skjyINBMmjJ5Gp24pj2xjHxaBTr/m1ouRTrj9TGnbbODcut+dYG+knShy2pXXdlyzfFQNxsHzO2sdpSiBT0tKE9HQtYmsgoQWtPEtEnnovjQcA7mmoft/XCwG8EAAe/clnJaqv9jGeRxSJsyMRwFVUE/aPSDSutiqTbyWYqUlyQC1KBXheraFIIZkZpRKf5MalN9nrRlXBmWXnrlrmwLR9JO7PYfLvCcjP6Y3lMvG+3K/ZpmI/sV56JASXLDwexL+JUYghEnxuCd8rDlpPgBna/VhbSIphdbtJKN4FpU6OjZfTRkGq+HC7VXwgj9KH6/Cjyir77lr327GpCosz/8T44jlx8p/7N3GDRVSJNTaMPf6/jAB7UmF33U2jOlpbUVSbzRC27q+kkUaAa5dKgvThRHJKuJYljF3YKoGYQfrx98ZATitUf59ruUeTvm9VP77wiOoqTWVSjepAO2n2KjCXODIYpI1UDOc5uPFG6aR1Ad4+oSd64KEHIUqRQlzFpalP6hYlnr6y3xwm1VgTZDMlsczt21BboUoeTgxD0vFHFdY2RJWUX0+6LUtIYdKrueI+QSgqVclDnARynRQa76d+wgtbqUQYvam8rUdCj/V9IQq0K3ZJYdtnJd89usZmcU/nyM4GshM90XBz/5wtBuieOdCQB6V95o0txLdRLF2J5btaB8ljzEoaOVcp5LRwo0oghv9J8icA/DiAj/hOEfmPpzyW0wzVnwSxvYATUFVYc4WkevVV2S8TcSCopJAbtdU+msN5JAoG0azA2e0c4tIIAWQsoUGHMVtvHev8jNNO+rvHOW0n2VR3zeW4KseDmokmeTh5NJHzHTFN2jDsP1KTLhIjiSGphDJmjVaraqlQWdD89HzxKTkpkWQacVQyKZOU77PLFnsIpb5HIInOWN7s967ZrcBnJpp9V7bRmFz2dZJH80An+m/VcxIGGffP6ZVrAGJU1e2jwop9z40zHq/OBp07bvw8OqkAaZ3BdVYyWWeVQHI+VcP29SyB7EMgD4SWN/yssE8AnCqBnGao/i6UtOa2cvfYimX3K01oU5eM0qqvXProCaFIHhIlDVoerKkJPZVfur/v625sjJ0ZsODBwcJ4PbDQR+FZeourDdu4jzhe4OLJo0ejnkINPtxFHn0cxoK5IY9eJRav5xBAVUyM2XgFOSeMSScFlXSqaqqB1D6Kt1J2CUTrojc2CW8bVr6RMHo7CUfUSa4jDoavyI+X3FKpfm7UTD4Ghvc9wkq8fVAtpia4WduDk4RLanBiqoSy8dOhjqEnkYYYG9XXzP3MoDzjQs6BLGL+rGjziHaPUckDgTx6deAlQ3BNe1ntwj7JFL/63hjIvQOpqUN8lSpsDOejAEtW76slEjIFuaix2hVwSxKVHHx/UVuJZrB1sjmRhdk4gh3EP0slCrePDBitxkXGEdbIQhynlaZTTzrhD5KxyhkjE9YyIInmrRrpadSn0o7sh0IIk2SzaWfpDeZz3lbV3VaJYsGMIWUskjkK2OzwgJvOwd2CnQhY53olBHap3IUYMzBmlUCyEOtxQHZS8Ekw2jCiQDFau5EaSJdr380k3ksHG6RSV8I0Y25ao5BRXqJGYqswWUkkVzIpx32/57h0tY+NneFeJkmnH6c+wNouHN/Y5316cKFdl6MUV2FmTHuFpZD2hKgp3WcKUpUxeF+ddNHcR5yk3X4jqrJCCQ6cII5RJZCoulJV1ukQCHF9SyA7l5kkH0Hy5STfQ/LdJP8DyUfsOu9qhP+evYyto3V/RXhf05c4anyHelTF/b3BPJKHE0UGcSKL0g6oE/AII5lJKaXaL9z7yo3pS47F5uH7FxyLTcThNhHHlPutvp+OlJ8ztG/LgjvnwTXlATWk3Ng83IieIPjA3Webths2XicCVAmjemMlrNYDxjEVFVRPHtFgXtRW6FVXKJJFG6AXpI9AKlNG3GggBwAZUGwaiK+BFCKpOeb4f4oANtrk+WO7zm2JcsIGEoloihD67iaIZtLWMUUsEyReiaJTV3mw4CoXiYNjlTpcdaWSSK56zNOA7LFdo9hHhfUiAD+MmqXxr9q+P3+5BnU5Eb16ttlD3IU3pg2JxvKqqmnLuG4YzGXT9tFPqHpcjftZLGEhcp20LTfVUJanwBHW1QYjC9WReEQ6dZXXJ1sEPOfW9pxZu2qsb5Neptx0/TWqruI+AMVoHtVW/nnqeon6bHJuj0VpopBUmIBzniaPzX9ifYaSW3LoU4C0F9+UPMqktrZXM5QXknDSsEsUsoFeO2iGyiX3kR17yaLsnyKPfTL09jYU8fGGBIvldJUovI1LS5R6bCfKsxN1U54Yx3QQp1QJKZJJMZQHycPiPTbI4zSTKeIU1WFXIfYhkIeIyIvC5x8g+bcv03iuKiQkjF3MZJYqfUTyGCVt2D2AIGWYVNFLH9qnEsRKFmaPQVFlAdj8T0Esd2sIJJJFc3mMOTXJFpvzZyZmH8+lYs4DK5JHVF0BKFJHVGP5GOekm6NhxPl1+Pna5MskQRJBuZ5DihG9jqUo5uOlsts9XApBK3WUDlGM6U20eE8mfnqqkykQpA/vy4fi6jlXS9n9NGU5ooRi6qNivA+Y85TaplrZdcw0hjbs1r4RiWIfY3l0490Xk+7HvSuvq66K0dxTlgSJw+0ebuA8bVzjEsYu7EMg7yX5VwH8iH3+MqhR/YbCCNlYVUfy2GzfxnzEdn0E+mhShvbtddczBgYisW6iFDKU8xOWWAOygNcPSZKw5Ki2ELrXltoxLqaGiWNbnMhWiWRCfQVUEumljZJBN81Lh1mIxTAC6wVSEl2lhv7GkM+p97SalDyK4RuI6i126qtJ4gjnT9oK/PBgE2vyMYR2cYFt+0i0GWrtN9DMRYFA+m+gTPAsJZxOZSJrpJRGNAokAr/9ynjm89GMbyuxbCO8MClP2nCCW6+mNJGg1pomj+K6q656ez+PfXCP3aWvYuxDIH8NwPMBfId9/kXbd11gKsZgzoUXqKSxy3CubYMLb6e+iinT+75VCknFiwnUfgeThgqJACXx4wkWSiIwtVtSdc2CI0aTerwI1WCv2+wa2xBdbqf2b7rabhrOHV4utve6iv1PkVBs5/muxkzkIGE05BGkjlZtNUEeXt+81DsHNgIHffzhETTriCI2oJBNOa2XSlx6iud522RfderOQ5VQgO6c+Bon3YC9Dbvb1C821nhvc+9nEUiwH9cu1c+cpKXfnQcH6nuISRjmmVVeRQmmtBkzkMdTJZEb2oguIr8vIp8nIg+x7fOv9Roh+0Sgb0uZPjaE0ZKFv3fpIxcSqUGFbZW/rk94pHUq6rIsLHYVHX8uwYFLjlhyxBHXJY2JB0e6vSca0zde91yWTrXbluLEMWUs76WP/jo9kTTXCzaW0ewZORPrMWE9qqG81Dw3NVQxiou979VWveQR1Q7dSndqMpAkQJIa3OdddyomCfuK6mqivXTvo1G9UXmhnjv5vm+2xf4BbJ/sZyfB+Fx6A3rX/xw2rhulPdnSzvufigkp32VIpugeVqORRkckGDOwXp+6BBLHM7vtAMlHkvxvJN9C8k0kv972P5bka0j+Osn/TPIW278k+WLb/xYrfeF9Pd72v43kd1ltdFhQ9o/Z/teRfNSucd1QXljA7kDCXShut9iMNHfpww3nLnm4+25UffXZeoFKKNHTq/bFxrNLPbByycbrJFI8skoSxvnYyn0ivC/2vEvtc1teqm19brPHbrXVXrzgdeNhLhli7uwsEyQSsc04XwzkjTqsb9R3ODviedSkZpU8euljvdbXIel2GjAy3LXtgTWAvyMifwzAkwA8y0pafB+AZ4vIJwN4OYC/Z+2/GMCx7X88gL8eCOEFAJ4Jzd5xGzRlFKC1lT4gIo+Gapy+bdegbigvrKliQVk0Unk+uWJVXUTJY4Bghdb+EWt8uNdVSVOyRfpox2NkxFQM4gnE+bzEyGSEsAaYQjlcwYCxxJI42TiJ/IvH/tilPK4DrkP8qS/5l/MeWhP/Av0+mbC3NBIHbQcBr3tixph6XELzGAMyp3IL0heFqFGW4drxM2qyROTqsqufUcnDs+46eSQCy6MdK49LwCmosCwTuWclv5PkW6DZxx8DLcQHAK8E8DMAvsmuejPJBYCbAJwA+LDlE7xFRF4DACRfAi2R8QpoiYxvsb5eBuD5JCkyL0buQ7MPEZEXicjath8A8JB9b/xaQMyH1WfgXUnu0rhXKSKiT6QYbSS7EKWRlQxBTZOKSivGkURJJBLWELyXHPuqqA64wTBHHmVSnhIXwoSdZevqORqzZ48DlpK+9r9LfdW2lbrCLzE2mucK9l4rDcJsIbnaVZrofFNfHR0BKZ2qBFL4dLcE8mDPGm7bM2f7VEniUwG8DsBvAPg8O/TFqAlmXwZNPfUuaAqofyEi74eSzh2hu1gGo5TIEJE1gA8BeNC2+7thvbDaCoC0an2KKfvHVHbnTW+qaS8rYN5TqVdheeT5GI3szFjJ0JTjTUgA1m1fM3EmBxywgZlU67PY1TQLkMxtF9gwru/Vx75DCVLQlPtuifUor0YcGZv3nI08nDROW/qASVm78V4RecLOvsj7APgPAP62iHyY5F8D8F0k/zE0weyJNX0itG7TRwF4AID/QfK/YloBGOXHuWOT2Idm/xq0HsgfQNnsi3CdeGEN8MhtKZ+3IU72q5gWJHheufG8qK+ClBAlinJuKNDU1w+J+/T6wZ5ikki7cYO8LsXL6oDrGPv+HLYal/Y4f8OOIdP7t/U552XWNyvEgZAoUYqEMkkccVx5BJZLVaWF7VQge257wEp9/wcA/96T2YrIW0Xkc0Tk8dBF/m9b8y8H8NMishKR90C9Z58AlTiiDTuWwSglMkz1dT8A7982pov1wnro9eCFtQ3+QLa58jp6t91oPI/IRd3EQiK9AR2oOaTa/tnYTZyQTmRRyCRuAMq1DjjgUjAnwE4ZzhtMrbT3kXI6kuiDCnsPNie3Ru1W6niopLEhfbjB3MfkpLIegTQAQ1LSsFQyey2t90SfOHNq29mHekp9P4C3iMi3h/0PtdcE4B8B+Nd26PcBfBYVN0MN7281W8qdJJ9kfX4l2hIZT7f3XwTg57bZP4D9vLBe7HU67PMDSP67XeddzWjzYNXkioU8LmLy7WM+HG483x5k10odU1l9/ViUXlYyFNdez2dVcmgJG6nmgAN69D/Ji3ac8/YzqpmL6m/CddnH2EgCkVxQ2/j1apZdTEsfJXLdyCRnJY88AssFJKnTSpOh87RwOhLIpwP4CigpvMG2vwjgy0j+L2jtpHdCHZwA4HsA3AdqI/kVAC+yjOcA8LVQ7623QSWWV9j+7wfwIJJvA/ANAJ69a1D72EA+RUQ+6B9E5AMkP3WP865KTKmpNmMRaDaG3edGbKv3cTGTeTbnf7eFuA1kCaAmFlIDeczi65JOM6YDiRzQYSNmA2gmsa0EkOt5k83MFtJA0KqfpN/RD7AdT9+0kVCCVFFyXjmRRJfdcG2OJnms18DREWQxtFlUgVMlkdMIJBSRX8D8Q/vOifZ3oXrO9sduB7BRLlxEzs+dM4d9CCSRfICIfAAASD5wz/OuOQxsVVfbggnrOdJk5Y2IRvUU8lEN2C+dSJRONMDOyUNfPekiGIMOg4rsQB4H9JgiCuk+A60HVT8Bxgk+SiFhH1NIsOirbHPZhXvixhX4nA3E+cHzfLmEkoA+xMnJo0SdB+JoAgfHDKxWSh7LRSWPy2BAd2+w6xX7EMG/BPBLJF8G/Tq/BJdQxOlqgxvQHb5oSiAG0l4TkujnwZzXky29lhxLYkSgShjZJIdVXpbJXd3Rk11nPtPtMJElt6QHIbHKC61ACE0zrxJJ9RCLaq6D+uqAvSCRSIJU0pPKBFFEj6s2mBAQsfxbBGjR85IIEU3Pk8STXtpiKpJIIQ2UPvTnrOdDABkIGe0YBSSB5HYQWE0PtPaOEjiYITefVeJI9f9EuFlX/lRw/fLHXgWlXkLydmhFQgL4AhF582Uf2WVEH43ucSADiMHUVwPThhqrV2ENM2RwOVb+6tY7Fvder6Loqd6bth5HcjCkHzCFLZNkm4uqP2+inxBoO9VPOeRqM2EJHnQ/X12hczNFi5/q2YvNBkLWe9gIbCTheeImjecnK+BoWcijGM79Wvl0/2c8DuR6xV6qKCOMa5o0erj0EYMIpzCQSDviKjT62ySMWGUQ243o2+C5opp98DKxm6Qx5SJ8wAGT2BUD0h/aooLpkyfq+UF1BEJGAQe2RuNQI4S5dtT/u0z9+4h7YpWI92p0J5ycTCyKxvMMJY1F0tchGMwZbuI0pZBTri1yteG6tGVsw5QHVj223e6RCAyi6UHO52V3LO+UPKLtY4B0V28lFyePsRDTfE4rv360j2gCV//vPOCAi0BvxN4GS+O+67hkb2cFokRL4jIjZBVWA/wUiRTzxNSlTA3XSBp93iuoWkuWC4BU8nAJpLv108b1LIHc8MvVJTMSdz+I3rVX65TX0rie2HD63LwhMeyDjcqFIfvvLlzK9Q64gdF4Ks202eentxEVjuIhBUsrEkvONuVn47Fom2k8uMJ1pPu8cR/h/SgWcU5z2e3iPgZa1mOeviuv7LFdo9gnDuRvknzA5R7IlnTFDyT5SpK/Za8PCOc8x1IP/ybJz93nOq5q6if73otvlIw8Swi9LWT6F6DEEQ31mynVt2UHnspCuy23lady9/7vaebhA65DXMq82LvlolNbhRV/3VfdaFN0rfUqgU4WY31NVu6XG+SAZpKdzScVK0JmtMbz9QgsBjWaO1FY3Ie4IZ2VRE4zEp2j7NyuVewjgfxvAH6F5EtJPsVzx18GzKUrfjaAV4nIbQBeZZ9hx54G4BOh6Yi/l+R8oe8JVON5/QK9GmCGYLREijkcj22nJvMpMtF0KTVgUfe1ZLLPZD/VJjFPSj/lOtfy8uaAA64HXMcSyD5eWP+I5DcB+BwAXw1N8ftSAN8vIr+9/ez9sSVd8VMBfKY1ezGAVwP4Rtv/oyJyAcDvWvTkEwG85p6MY4QgidsO0ix5qD3DJnWBuuui2kFKECBqrIaXooUZvN0m4q69A7303G5E4iuSSugf5u57wAERv/Rjf+dKD+GaAfnNp9PPNUwQu7CvF5aQ/ANoQsU1NLvjy0i+UkT+/mkPqktX/DAjF4jIuzz3C5RcXhtOi2mJY1/PhBZPwUM/avN21R0WRhoCSEamaPwHMs7LiAzgRHyy10p/S6zN64nB6KgZc5dc44IsC7m4vWSElanVah3IEI3psAm/zQgsTQbegRkJoq9hW3K0CoWb/QPA6lK/hAMOOOB0cCN7YZH8OmiCrfdC86f8PRFZWfKu3wJwqgQyka54tunEvo1vSkReCOCFAPCYTzmzcVxTuZtHlABgrReutchVKonwok0qQUjxj4ruvHPQNkYMQVooUkOQYFYy1PrggTyq6i0X8igeV2L2HIGZ+K/fH+8BB1wLuNElkAdDgwd/L+4UkUzyL5/mYKbSFQN4N8lbTfq4FcB7bH9JPWyIaYlnMYJIkjAyQadYJYziN24kAlCLSUGw2vEDcDJYTaQ0KZM7AJQ6H04K46Y0whqxvuRYvK6cPPyYbtKWrXUyOuCAA64OXOM2jl3YJ537P55L3y4ibzmtgcylK0abYvjpaFMPP80Kwf8RaG3fX973eiVFiHglQNtArERVVisjD88t1cdTJUx7UWVTJU3B1VmlnrkZ2Hty8LYJUvNgAY30ccS1qtM42rYu7wcjmIM77wEHXDkQ17cX1tUUSOjpin+d5Bts3z8A8DwALyX5DGiO+y8GABF5kxnz3wy1yzxLRLZH23UYkbSWeFN8QABS1VJm9+iJw+uhFzVTUGNFqD2ilpotuRrCpN7YRkQlETewu8QymNoKaKUPJY91IaABSVVqQiztlg7VCQ844MrisuTXukpw1RDIjnTFT54557m4xMSOnsBtJLWeOCQkc9MvfEUljxg97kiUct6IzbiSbdiQTsx2seTaxlUFw6i6KvuCYX0wKaPaQhIGJJyIlr2diiU54IAD7iVc5yqsq4ZA7k1keA2NWPcjYxTNcjt6mVuTQKLLbUSURPosulOYjfUw28WIZNkccrPfkYIkUuNKnDxaV94BSc31clBhHXDAlUMNsLwecUMSCIAQo6FfboZ7PGXzYKJN6tVVt40DUW8qTZ44Tx5ztpCYk8u9sZQMWhWWSyNTtoySRoVS3vtYBmSstozrgAMOuHdwPSsBbshcWCOIFQasMOC8LHEiA05kwMrKxZ6XBU4w4Hx4r8dqdt2+nkjEsq90swU++bs3VUxH4q9zhnB3GS412cPXGTMCH3DAAVcIp5TKZEuqp8eSfA3JXyf5n0neEs75FDv2Jjt+xvY/3j6/jeR3eXYRc0j6Mdv/OovH24obfnZxMsnQmuTV48or/HGj/XQ/Xe2QHd5P/eTv51SDeG5UVv31I0GMSDb+UJVwprTuAQcccC8j5gqb23ZjLtXT9wF4toh8MoCXA/h7AEByAeCHAHyNiHwiNJuHxxW/ABpcfZttT7H9zwDwARF5NIDvAPBtuwZ1Q88wo6RaNhasJFJqa0RXXyeXSjK7MEUi8ZqOSiabX8eU9DF27Qez39SStsmCCHnwwjrggCuNU8iFJSLvEpFftfd3AvBUT48B8PPW7JUAvtDefw6AXxORN9o57xOR0WLpbhGR14iIAHgJgM+3c54KTRcFAC8D8ORduQ9vaAJxNKTRTc5TEklZ9c9MzuPs/tS8zzbRO7KlSolZfGOBqPY9kaEeZCtZFPJQVdwQ7unwFR9wwJWEZyXetgF4MMnbw/bM2f7aVE+/AeDz7NAXowZXfxwAIfkzJH+VpGcMeTg0CNsRU0A9HMA7AEBE1gA+BOBB2+7thjKiT03rHuntxm6VLJw8ahxGcfu112j/uFRV0aWc57EiLt3kEvuRzIsslbohB/I44ICrAPupqN4rIk/Y1Wgi1dNfA/BdJP8xNLj6xJouAHwGgD8O4ByAV5F8PYAPT43Qu99ybBI3FIEAmHTHBYxIAlkMNikDYaL3DLsWtxElFocH9EE0Scm+NTlUmtivBK67H4+SLFK9komnUzmRhUopBzvIAQdcOZhj52lgKtWTiLwVqq4CyY8D8Jes+R0A/ruIvNeO/RSAT4PaRR4Ruo0poDw91B1mQ7kfgPdvG9NhdkE1RAOt6gpAo2aKhDJi00jd1wJJW345GWy2XcjduHzc2Uissd9Iauw2BxxwwJUBIWDOO7ed/cykevLs5Jbc9h8B+Nd26GcAfArJs0YGfxbAmy2z+Z0kn2R9fiXa9FCeNuqLAPyc2UlmcYNJINtFyQxqWhKTRHIzAScLzUtNV/tM0M15wCxhlPrnZgfZFsehqqzcqKmizcNtIgcJ5IADrjBOJ5BwLtXTbSSfZZ//I4AX6SXlAyS/HcCvQGernxKR/2LtvhbADwC4CcArbAOUoH7Qaiu9H1qwbytuKAJR64YWbRq7lb+qpoAib4YocFdbjRiCTWTYCCxcwTPzrlEerViUuBd7sr43rl3OTU2fGjWvQYVOBl4/JFnkupOGSx3eZiXDQQI54IAriVNSYe1I9fSdM+f8EFRl1e+/HcAnTew/D8s1uC9uKALp4ckOt2HDDmLvi2G96a9WHiz11On1PaTYRXoMkaiArkBU3ipFjGZv8fdTqq4DDjjgyuGQTPE6wlAM4NPqodHyZLlRHaiqrfi+kMjM5F7zWdV+m+M7yCtZynZNqQKTWircGysxN1JHsd2UWJaDCuuAA64oDgRy/cGz6ALb3Wl9ko+TfSQUh1cMdHIq2XmL2gpNXfSpazYlcJmrK65JLinkxgLcpTiVmuqRMA4SyAEHXA04JFM8IGBKQuklkcFSvQNoiaQjkSjh1HO9iFSG11jXRI8Z40TGXyeRKfI4SB8HHHCFIQCu4YJRu3DDEUjNcgsMJLIMhQBcLbULTiKbfeeWKCK2SB5RmvECVAMFS5ORRiSMomOfGl3r2tuSxyEf1gEHXFkcbCDXCXgPKrvsiuqONUFcFRWRjFhyMLRPx32G/FYWMBhtIWnCrhEljwNxHHDAVYYDgVw/SBSTEObL0c5JGPvAS9RGScb3aVxJblVZqMkUk0kwNa27xnpksESYR8yprCJ57BOkeMABB1wmCLBRE/s6wg1FIESNtahlbJVIsrnM9mqsUte8D9rTZCJN/952ibEY2r2e+Wh9LJmwkgVOZLAa5lqXHXCi0TrnZ7jCEUd8JB975zifl0o2ndE8MWOV26/SieMgiRxwwJXEwYh+XcLL0UY4icyfU0nE1UpT3lhALSo1mEE8AaqCEjHScJVUjfNI1KQkHgeihDNgFFVlJSs+NcpQPbK4GSdyII8DDriKsEeqkmsVV80MQ/LfkXwPyd8I+x5I8pUkf8teHxCOPccqZ/0myc+92OuNYZL1TLYAak4ptNHiTgxegzzuc7jkUl6NPI444ogjlhgxMOOIayw5lr5i1UGvbz4gFynkiGMhFCUVJae5SoUHHHDAVQJXYe3arlFcNQQCzc3ylG7fswG8SkRuA/Aq+wyrxPU0AJ9o53wvyctWANxVUXP1zSOmyCNRy986iSyNEPRVCjE4eSQjiSVGnOFJQxSeJ0sJSGr5207tFsdywAEHXClYGqNd2zWKq4ZAROTnsZk6OFbIejHaylk/KiIXROR3AbwNwBMv5bq7osGBVrLQGA2ZJJOaiqSelyg4wogjjIVEBkiRRpKRhrZvr6cqtUoYLrUkin1e4zityrFlWuNMWmGZVMIpwY0HHHDAlcPplLS9KnG120AeZumHISLv8tTF0MpZrw3tYlWty4KSOHFmQi7xJahp3Ae01QWPZMQJByyxLoWp5uJGRklYgTgvR7rlJc7LErlUIGQxpK/yAn09Effamsq9dcABB9xLOHhhXZXYu3KWlYZ8JgDc+vCq5So1PZp6H9YtU0kp4pKGk0LMoVW9q6TZB1TpI+4fzIU4e8EqtIb5OLaBGSfmrTVKzRw8F48Sa4Bk4eY9HXDAAVcG17CEsQtX+/L03VYEHvb6HtvvlbMcsapWAxF5oYg8QUSe8IAHpmaCjQZ0LyqlUd+blQa3reTdID90HBarC/bHUsi4m+2aJzKUmuYnssBKBqxkUcZ6sTiQxwEHXGmIemHt2q5RXO0EEitkPR1t5aynkTwm+UcA3Abgl/ftVCWPdlXvrrCqHqqk4vAJ3w3XRdII73uowbttu+wkEwDlWlrDY2FqqyXOy5GRiKmjOkJKPp7OiB6xT4ncAw444DJBcF0TyFWjwiL5IwA+E8CDSd4B4JsBPA/AS0k+A8Dvw4qdiMibSL4UwJsBrAE8S0T6gPINqDqyLQkbEeMp+vK0jj5OJMaObIsjiaouj/NYldQnglWu0o9CJZAiJUUy62I/NCZkQKJgFCWu61jtesAB1xYOKqzLDxH5MhG5VUSWIvIIEfl+EXmfiDxZRG6z1/eH9s8VkY8VkceIyCu29d1jmzpoOklijSjvV/rFYG4eVf6+N6AD0ynW4/VcdeYqrdEqF7rabQ4N8XXj76WdAw444F7GKXhhkXwkyf9G8i0k30Ty623/Y0m+huSvk/zPJG/pzvtokneR/Lth3+Ot/dtIfpfVRodpdH7M9r+O5KN2jeuqIZCrCQPaiHB9L1UlZSqjZrP97qa7a+LuVV+JuZF6sgUyNpUQJ76uVDy/pmwsB/I44IAriz2CCPdTF6wB/B0R+WMAngTgWRYP930Ani0inwzg5QD+Xnfed6DWPHe8AOpYdJttHn/3DAAfEJFH23nftmtQNzSBbK7Wcxu0Fyb5bYQQycXbTkkybnup/U8HJ1bjfjX6R/I41Pk44IBrBAKI5J3b/9feuQfbVdV3/PO9N7EhgUDCwxERgg+gqDHUUGEAK2BTH5jWCW1QCwkM07GlhUyHKvVBCbZV0Cqv2gxFoeKjNJQ6mhYUQ4hVpDxCHoSXIeC0DjMSZTBRnvf++sf67XPWOfe87rn73nPvub/PzJ6z9tprrf3b6667f3u9fr+2xZg9ZWabPLwbeJi0deFI4Pue7HZgWZFH0h8AO4HtWdyrgLlm9iMzM+Ar1O6vK/bd3QycWvROmhFvIqiYEynC9V/ug9m1kXmr8xrFjvMiXXGtMmlvqgxFNRrOKoatKudthq6qCmvqTsIFQd8zNNz+SHO/92XHnzQrzoeWjgH+B3gQWOqX/hBfnSppDvBRYHVd9leTVrEW5HvoXg38L4CZvQw8C+zf6tEmzST6ZKBq42q45cqmERZ7ZTX5G/VaUi+idi9HMUxVT8WNbl3Po3o/n7Sv64kkmQb62QFaEEwtzDpdZbXLzBa3SyRpb+DfgVVm9ktJ5wBXSbqYtDr1RU+6GviCme2p60S02kPX8f66gmmvQCqKwKupakW3brWVCTTAi276vVrlyb/HK2SZIrHMR0f6fZHB2hVghQVekvvbXBkUQ1cDvjqrnsq8R8Ui7xAMkEy6+7WXGHSnVdHJDIKeUtIqLEkzScrja2Z2SyraHgGW+PUjgPd68rcBp0u6HNgPGJb0vOc/JCs230NX7K/7P0kzgH0ZaV6qhmmlQAxVFED9SqzCiGEK5/Mg1XCuAPIluzPdYCJUJ8fr3czW9ECscC6l9KLPeMkGK72OYplvXtYgVvEBklPvTKrwezKVDbUFQT9gJezz8LmILwEPm9nns/iDzOxnkgaATwBrAMzspCzNJcAeM7vGz3dLOo40BHYWcLUnLfbd/Qg4HbjD50maMs0USC1DLXZ4N5zcRpUXf0pTLWcm1U2GA4JBsxHzHMW9ijI62V3eaK6kFYV/98pzxEqsIOghpRlLPAE4E9gmabPHfQx4g6Tz/PwW4PoOyvpTkvXzvUgrtIpVWl8CbpS0g9TzOKNdQdNKgZApgGZWeAu/GzDS/AhQefEPaphhBmr8gxTKI89b7OMolE9eRrFMtzCh8pLVeRXscLVVo3TJde9IO1tBEEwgBgy13ePcvhizH9B4jgLgyjZ5L6k7vw94U4N0z+ObtTtlmimQ1l/0rSbNyb7skzHEVNZMUg9kFlUPhEWaEWVQqzy6pdY/yDADiAEvd8CtAtcMZQVB0BMMsD42CzGtFEjxZxyqmy/IGfS9GfnO8iJtPndS9EKGbICZNXMm/ivAat3m1vQ88pVYXezrKBRD3sMo5CmUSKzSDoIeY9bX85DTSoEAI17gBY1sWDWzbZXyDtPMBeKgYNisZjluoXwqQ1oVRaSa34blMXI+pVGaYgVWrRIJgqCX9HMPRG0m2fsKSU8DP+nR7Q8AdvXo3u0I2bojZOuOqSLbYWZ24FgKk3Sbl9mOXWZW79J70jOtFEgvkXRfJxuFekHI1h0hW3eEbP1DDJIHQRAEXREKJAiCIOiKUCATx7W9FqAFIVt3hGzdEbL1CTEHEgRBEHRF9ECCIAiCrggFEgRBEHRFKJAOkTQo6QFJ6/z8s5IekbRV0n9I2s/jF0h6TtJmP9Z4/GxJ/+l5tkv6TFb2SklPZ3nOza6tkPRjP1aMh2x+7U5Jj2bXDvL4pn6S28lWQp3tk8VtlrRL0hUTWWd+baGS3+ntSr6kZ3n8qH1LT4Rsk6Gttam30ttaSfU2bu2tbzGzODo4gL8Evg6s8/MlwAwPXwZc5uEFwIMN8s8GTvbwK4D/Bt7t5yuBaxrkmU9ySTkfmOfheWXL5tfuBBY3iP8zYI2HzwBu6lS2MuSqK+9+4O0TXGczgK3AW/x8f2DQw/cAx5OM3N2a/T27rrMyZGNytLVW9XYnJbe1smQbr/bWr0f0QDpA0iEkRy3XFXFm9l1Lbh8B7qbWScsIzOzXZrbBwy8Cm9rlAX4PuN3MfmFmz5B8HtfsVi1DtjY085PcUray5ZL0BuAg0suwFWXX2RJgq5lt8XQ/N7MhdedbekJkmyRtraFsbWToab3VlVdae+tnQoF0xhXAR6CpadtzqNrUBzjcu9IbJZ1Un9i70u8D1mfRy7yrfbOk13hcxUexk/svHg/Zrvfu+SeL4Ria+0luJ1uZcgF8gPRFmi8bnIg6OwIwSd+RtEnSR7L7jNa39ETJVqGHba2dbGW2tbJlg3LbW98SCqQNkk4DfmZm9ze5/nHgZeBrHvUUcKiZHYN3qSXNzdLPAL4BXGVmOz3628ACM1sIfI/qV1hLH8Uly/YhM3szcJIfZ7aRoalsZdeZcwap3gomqs5mACcCH/Lf90s6tc19Rl1nJctWpO9lW2slW2ltbRxkKyilvfU7oUDacwKwVNKTwL8Cp0j6KqTJM+A00j+EAZjZC2b2cw/fDzxO+uIpuBb4sZldUUR4F/oFP/1n4K0eLnwUF+T+i0uVzcx+6r+7SePIv10vg2r9JLeSrdQ6k/QW0lh25QUxUXXm5W00s11m9mvgv4Df8vh2vqVHU2dlylbQs7bWSraS21rp9VZye+tvWk2QxFF7AO+gOkH3LuAh4MC6NAdSnSx8LfBTYL6f/y3Jqf1AXZ5XZeH3A3d7eD7wBGlybp6H55ctG+mL7ACPn0kaf/6wn59H7cTmv41GtrHWmcd9BljdozqbR5pDmO319D3gvX7tXuA4qpPo7ymjzkqSrddtraFsjGNbK6PexrO99ePRcwGm0lHXOHeQxj43+1E0/GXAdmCLN9L3efwhpK7tw1mec/3ap7M8G4Cjsnue4/faAZw9TrLNIa042erXr6T6Qp8FrPUy7wFeOxrZxiJXVsbOvE4mss782h/7vR4ELs/iF3vc48A1VC07jKnOxiobk6CttZBt3NpaGX/T8Wxv/XiEKZMgCIKgK2IOJAiCIOiKUCBBEARBV4QCCYIgCLoiFEgQBEHQFaFAgiAIgq4IBRJMKiTt8d+DJd08hnJWSZpdkkxHudmNByS9rowys7Kvk3R0F/kWSXpPdr5U0kVlyhYE7YhlvEHPkDTDqsbuirg9ZrZ3CWU/SbL4uquEsi4C9jKzv+ky/4jnLEGmlaTn+/Myyw2C0RA9kABJx7qRuFmS5ij5SHhTg3Rnebotkm70uMMkrff49ZIObRN/g6TPS9oAXCbpcCW/DPdK+lR2rwWSHvTwSkm3SLpNyefC5Vm6f5J0n8u82uPOBw4GNvh9kLTE77NJ0lpJI5SUf9Xfrar/iHn+lb8KOLcoqy7PHkn/4OWul3Sgx98p6e8lbQQukHSq92C2SfqypN/I0i1uJaP/fe7yer9H0r7ApcBy7xkt9zq6poO6v8rL2inp9FE0kyAYSa93MsYxOQ6S6YvPAf8I/HWD628EHqVqhqIwz/JtYIWHzwG+2Sb+BmAd1d3H3wLO8vB5wB4PL8B9hJB8Mewk2UaaBfwEeE2dHIMkPxML/fzJTNYDgO8Dc/z8o8DFDZ5xK/A7Hr4UuMLDlwAXNqk3I9lZArgY9xnhsnzRw7NIO6KP8POvAKuydIubyUjy57ETONbj55LMb6wk80+Rn7ep+7WkD8ejgR29bndxTO0jeiBBwaXA75JeZpc3uH4KcLP5kJCZ/cLjjycZxAO4kWTdtFU8wFqr+l84garV0xtbyLfezJ41s+dJ9o0O8/g/krQJeICk5BrNJxzn8T+UtBlYkeUHwL/q9zOzjR71L8DbW8hTMAzc5OGvUvucRfyRwBNm9liLspvJeCTwlJndC2Bmv7T2w2Gt6v6bZjZsZg8Br2z/eEHQnBm9FiCYNMwH9iYZuJsF/KruuujMTHWzNHl8fdmdlPtCFh4CZkg6HLiQ9HX+jKQbSLLXI5LTnw90cJ+x0ug5G5n8rqehjJIWMnbz4Hn+vB47kSsImhI9kKDgWuCTJJ8JlzW4vp70tb8/gKT5Hn8XyXIqJP8KP2gTX88P69KNhrmkl/Szkl4JvDu7thvYx8N3AydIer3LPltSbmIfM3sWeEZVZ1ZnAhtpzwBQzCV8kMbP+QiwoLh/k7KbyfgIcLCkYz1+HyVT5/nz1dNp3QfBmIgeSICks4CXzezrkgaBuySdYmZ3FGnMbLukvwM2ShoiDRmtBM4Hvizpr4CngbM9S7P4ei4gOZC6gGR+vGPMbIukB0hWUneSlFHBtcCtkp4ys5OVVi19o5i8Bj4BPEYtK4A1Sst/d7aQOedXwBsl3U/yoLe8gZzPSzobWOsv/3uBNbVJ7OlGMprZY5KWA1dL2gt4DngnySLsRT7c9em6W3Za90EwJmIZbxCMAY1x2bGkbcBSM3uiRLGCYEKIIawg6BGSbge2hfIIpirRAwmCIAi6InogQRAEQVeEAgmmLL5b/TmfSB5rWTW2pUaRb7mkHZLWjVWGIJhqhAIJpjqPm9miEspZBDRUIL5yqiFmdhNwbgn3D4IpRyzjDfoCSQuA20h7Ho4DtgDXA6uBg0jmRu6RNAe4Gngzqf1fAtxK2om/l6QTSctif5NkT2sBsMuXGa8BDvVbrjKzfNlwEEw7ogcS9BOvB64EFgJHkTb2nUjarf4xT/Nx4A4zOxY4Gfgsaff9xcBNZrbIexUAbwV+38w+6OV+wfMtA66bmEcKgslL9ECCfuIJM9sGIGk7yX6W+V6LBZ5mCbBU0oV+Potqr6Keb5nZcx5+J3C0VLH+MVfSPma2u+yHCIKpQiiQoJ/I7TwNZ+fDVNu6gGVm9mieUdLbGpSX2+waAI7PFEoQTHtiCCuYbnwH+At5V0LSMR7fyrYUwHeBivMmSYvGS8AgmCqEAgmmG58izXlsVXJYVTix2kAaotrstqfqOR9Y7E6aHgI+PDHiBsHkJXaiB1MWX3m1zsxGeE+cYDneQXI4dVov5QiCiSZ6IMFUZgjYt4yNhN3ivZUvAs/0SoYg6BXRAwmCIAi6InogQRAEQVeEAgmCIAi6IhRIEARB0BWhQIIgCIKuCAUSBEEQdMX/A2qvQ00oLdyeAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "clipped.plot()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "clipped.rio.to_raster(\"clipped_invert.tif\", compress='LZMA', tiled=True, dtype=\"int32\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Clipping larger rasters\n", "\n", "Note: Loading from disk will likely only work directly after opening a raster with [rioxarray.open_rasterio](../rioxarray.rst#rioxarray-open-rasterio)\n", "\n", "The clip operation needs the full raster loaded with the default method.\n", "This can be an issue if you don't have enough memory (RAM) on you machine.\n", "If this is something you have run into, it is recommended to use the\n", "`from_disk=True` option. This option uses [rasterio.mask.mask](https://rasterio.readthedocs.io/en/latest/topics/masking-by-shapefile.html) when loading the data if possible.\n", "\n", "But be careful, these two methods, as they use different core functions, can have **different outputs**: small discrepencies may appear on the borders (1 pixel added or removed on some borders, see issue [#310](https://github.com/corteva/rioxarray/issues/310))\n", "\n", "Alternatively, you can also use `rio.clip_box` followed by `rio.clip` for a more\n", "consistent memory efficient clip operation." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "geometries = [\n", " {\n", " 'type': 'Polygon',\n", " 'coordinates': [[\n", " [425499.18381405267, 4615331.540546387],\n", " [425499.18381405267, 4615478.540546387],\n", " [425526.18381405267, 4615478.540546387],\n", " [425526.18381405267, 4615331.540546387],\n", " [425499.18381405267, 4615331.540546387]\n", " ]]\n", " }\n", "]\n", "\n", "clipped = rioxarray.open_rasterio(\n", " \"../../test/test_data/compare/small_dem_3m_merged.tif\",\n", " masked=True,\n", ").rio.clip(geometries, from_disk=True)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEiCAYAAADXvYSyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA7JklEQVR4nO3deZhcVZ3/8fcnnSYBJKzBCYQYZJEBhAgBcUBFQGQUwXEBFBxQZhgYVFwYhHFmXDOjjgqMKMqogKJgQBkRQUQw8EPZApKwiBIFIYJAwiIBsnV/fn+cU0mlqeV2p+p2VfX39Tz36apTdzl1u7tOne17ZJsQQghhuMaNdgZCCCF0pyhAQgghjEgUICGEEEYkCpAQQggjEgVICCGEEYkCJIQQwohEAdKjJD0g6YBeu1YnkfRqSb8tuO8xkm5oQx5eJunXkp6R9IFWnz+ERqIACR1J0mGSfiXpOUlzRjs/AJIsadvKc9v/z/bLRjNPwCnAHNsb2P6fVp1U0iaSLpX0rKQ/SnpXq84dekcUIKFTPQGcAXx2lPMxaiSNL7DbS4C723D5rwDLgRcDRwJnS9qpDdcJXSwKkN62h6R7JD0p6VxJEwEkbSzpckmP59culzS1cpCkOZI+LemXuWnkZ5I2q3r93flb6WJJH2tHxm3/3PZs4OHhHitpT0lzJf1F0qOSvpTTp+daxHGSHpb0iKSPDDnuRklP5dfOkrROfu36vNs8SUskHS5pX0kLq44/VdLv8z27R9LfjSDvlnSipPuA+3LawZLuyPn6laRdcvq1wOuAs3Keth/u9erkYX3gbcC/215i+wbgMuDdrTh/6B1RgPS2I4E3ANsA2wP/ltPHAeeSvr1OA54Hzhpy7LuA9wCbA+sAJwNI2hE4m/RhsgWwKTCVOvKH6lP1tpa8yxc6EzjT9iTSe5895PXXAdsBBwKnVvXfDAAfAjYDXgXsD/wzgO3X5H12tf0i29+vcd3fA68GNgQ+CVwgacoI8v8W4JXAjpJ2A74F/BPpXn8duEzSBNv7Af8PeF/O0++GnkjSVxvc//l1rr89MDDkfPOAqIGENUQBUoOkk/M3wc3qvL6RpEsk3SvpN5JeldPfIeluSYOSZlbtP13S8/lb5B2SvlYgD5I0S9Lv8jVG0kF6lu2HbD8BzALeCWB7se0f2H7O9jP5tdcOOfZc27+z/TzpA3hGTn87cLnt620vA/4dGKyXAduftb1RvW0E76mIFcC2kjbL36BvGvL6J20/a/tOUkFauS+32b7J9krbD5A+rIfel7psX2z7YduDuYC5D9hzBPn/L9tP5Hv/j8DXbd9se8D2+cAyYK+CefrnBvd/lzqHvQh4ekja08AGI3gvoYeN2QIkNz+cVyN9K+D1wIMNDj8T+KntHYBdgd/k9LuAtwLX1zjm97Zn5O34Alk8BtgK2MH2XwMXFThmqIeqHv+RVGNA0nqSvp6bof6S87uRpL6q/f9c9fg50ocK+Ryrzmv7WWDxCPLWTseSvkXfK+lWSQcPeb3efdk+N+f9Od+X/yTVRgqR9PdVTU1PATsP5/g6+XsJ8JEhtbatKnlukyXApCFpk4Bn2njN0IXGbAHSwOmkkS01wxRLmgS8BvgmgO3ltp/Kj39ju9CwzqrzHZjb3W+XdLGkygf1CcCnbA/mcz82gveyVdXjaazuT/gI8DLglbmZp9I8owLnfKT6vJLWIzWt1CTpX3P7fM1tOG+mKNv32X4nqfntc8AluV2/ot59ORu4F9gu35d/pdg9QdJLgP8F3gdsmmtXdxU9fuhbqHr8EDBrSM1hPdsXFszX1xrc/3qd778DxkvariptV9rTWR+6WBQgVSQdAvzJ9rwGu70UeBw4V2n8/TeGfDjVs3Xe/zpJr87X24zUL3GA7d2AucCH8/7bAIcrdQZfOeSfuagTJU2VtAnpw7DSbr8Bqd/jqfzax4dxzkuAgyXto9TB/Cka/B3Z/s/cPl9zq3ecpD6lTv/xwDhJEyX1V73+gKRj6hx7lKTJufB9KicPVO3y77kWthOpn6f6vvwFWCJpB1IhXu1R0u+/lvVJH/yP5zy8h1QDWVv/Cxwv6ZW5WXN9SW+SVKg5yfbxDe5/zT6NXKv8IfCpfL29gUOB77Tg/YQeMuYKEEk3S7oD+AZwSFW/xKHAx4D/aHKK8cBuwNm2XwE8C5za5JhHgGl5/w8D38s1mb2AHYFf5jwdTWqyAJgALLU9k/Qh8q3hvVMAvgf8DPhD3j6T088A1gUWATcBPy16Qtt3Ayfmcz8CPAksbHjQyLybVMidTeqYfp50H8gF16akvNdyEHB3ruGcCRxhe2nV69cBC4BrgC/Y/llOP5k0eOCZfK2hHeWfAM7PTUmHVb9g+x7gi8CNpILm5cAvh/eWX8j2XFI/yFmke72A1LzZbv9M+ht5DLgQOCH/7kNYRWN1QSlJ+wLH2D4mP3856QPlubzLVFLTxp62/1x13F8BN9menp+/GjjV9puq9pkDnJz/+Wtdew7pw2oK8K7c3DJ0n3uBg2w/IEnAU7Y3HPk77h2S9gFOrHXfmhw3Hbgf6Le9sh15C2EsGXM1kHps32l7c9vTc+GwENituvDI+/0ZeEhSZQby/sA9jc4taXKlg1rSS0lDSP9A+ga9t/Ls5tysUhnL/3/Afvnxa0nt0gGwfcNwC48QQut1VAGS271/Leny/HyGpJtyE9NcSXtW7XuapAWSfivpDW3O1xaSrqhKej/wXaVx9DNIo3WQ9HdKE8teBfxE0lV5/9cA8yXNI/UhHJ+HaT5Oao64MJ/rJmCHfMxngbdJuhP4L+Af2vkeQzmU4meVNqAghHbqqCYsSR8GZgKTbB8s6WfA6bavlPRG4BTb+ypNZruQNMZ+C+DnwPa2B+qePIQQQkt1TA1EKZTGm0id2xVm9Xj0DVk93PJQ4CLby2zfT+pYHMmErRBCCCNUJFhbWc4gzb+oHp74QeAqSV8gFXZ/k9O3ZM0ROAtzWgghhJJ0RAGiNFP4Mdu35dFRFScAH7L9gzxs8pvAAdSenFVv4t9xwHEA66+//u477LBDrd1CCGENt9122yLbk9fmHG943fpe/ETzlvXb5i+7yvZBa3Ot0dARBQiwN2lOxhuBicAkSRcAbwZOyvtczOrmrYWsOZu4MuT2BWyfA5wDMHPmTM+dW3NkbQghrEHSH9f2HIueGODmq+rGGl2lf8rvRxLyZtR1RB+I7dNsT83DZ48ArrV9FKlQqASz248c3poUWvoISRMkbU0aFntLydkOIYQmzIAHm27dqlNqIPX8I3Cm0sI6S8lNUbbvljSbNP9iJWlSWYzACiF0FAODtVvXe0LHFSC25wBz8uMbgN3r7DeLFIa841z3QEvW9Slkct+zJV6rtEsxSRNKuU5/oUX/us+KEifaLyvpWku6NHjAYP3VDrpeb/73hBBCBzBmRRc3UTUTBUgIIbSJgYFowgohhDAS0QcShuUvgxNLu9ZErSjxWkub79QiE8aV095dZh9Imf0SvWhpB4VdKsrAQAvyndfGuZ60zMN44BLbH8/r+XwfmA48ABxm+0lJRwL/UnWKXUjBYe+QtDtwHilc/xXASbYtaQLwbVK/82Lg8Ly0c10dMYw3hBB61WCBrYBlwH62dyUFcD1I0l6ktYiusb0daTmKUwFsf7eyhDZpbZ0HbN+Rz3U2aUTrdnmrTGA8FnjS9raklVk/1yxTUYCEEEKb2GZ5ga3AeWy7ErG5P28mxQU8P6efD7ylxuHvJAWfRdIUUrDaG50i6X676pjqc10C7J/XIqorCpAQQmiTNA+kUA1ks7xkRWU7bui58nIXd5BWibza9s3Ai20/ApB/bl4jG4eTCxBSzMDqFUSr4whuCTyUz7USeJq08mdd0QfSBk8NrFfatcrsA9lg3PLSrlWWXpwvAbCM8ubVriipb2KixOMDJU5GagkxUDN03wssystX15UnS8+QtBFwqaSdm15deiXwnO27VmWoxqkLvFZT1EBCCF2h+wqPXANx821Y57SfIk22Pgh4NDdLVZqnHhuy+xGsrn1AqnFUB+eqjiO4KsZgjv6xIfBEo7xEARJCCG00kGshjbZm8rLYG+XH65Kikt9Ligt4dN7taOBHVceMA94BXFRJy81cz0jaK/dv/H3VMdXnejspJmHD4i2asEIIoU3SRMJCTVjNTAHOl9RH+uI/2/blkm4EZks6FniQVGBUvAZYaPsPQ851AquH8V6ZN0jLZXxH0gJSzeOIZpmKAiSEENrEwAqvfUOP7fnAK2qkLwb2r3PMHGCvGulzgRf0n9heypoFUFNRgLTBIys2Hu0stMU6KjPgcTlBIif39WYQ57I6tqG8CX5L3X0fV0YM9HBPQff9RkIIoYsMuiVNWB0pCpAQQmiTFvaBdKQoQEIIoW3EQAv6QDpVFCBt8KdlG5V2rf4S+yVWlNgGvbx/cSnXWbEqOkTodI8NbDDaWRg2AyvovvkrRUUBEkIIbWJHDSSEEMIIDUYfSAghhOFKnehRAylFnmU5F/iT7YNz2vuB9wErgZ/YPiWnn0aKXz8AfMD2VaOT6xf689INS7vWssHyfoWb9pczN6NMS91f2rXKDHxZ5pyd5S6njX+iVvDQiobBYTtQNGGV6STgN8AkAEmvI8Wo38X2Mkmb5/QdSdPsdwK2AH4uafscrTKE0IO6r/CohHPv3QKkY96ZpKnAm4BvVCWfAHzW9jIA25VIk4cCF9leZvt+YAGwZ5n5DSGEZoxY7r6mW7fqmAIEOAM4hTVXeNweeLWkmyVdJ2mPnL5q4ZOselGUEELoGIMe13TrVh2Rc0kHA4/Zvm3IS+OBjUkBwf6FFHVSDGPhE0nHVVb5evzxx1uZ7RBCaKjSid5s61ad0geyN3CIpDcCE4FJki4g1Sx+mGPS3yJpENiMqoVPsupFUdZg+xzgHICZM2eWEvXtkefKm/D03MryOoEpb6FFJozbpJTr9Gon+gZ9z5d2raWD5dzDp0tc6bNVjBjo4VhYHVH02T7N9lTb00md49faPgr4P2A/AEnbA+sAi0gLnxwhaYKkrYHtgFtGI+8hhNDIIOOabt2qU2og9XwL+Jaku4DlwNG5NnK3pNnAPaThvSfGCKwQQqexiWG8ZcqLoMzJj5cDR9XZbxYwq7SMhRDCMBmxootHWTXTcQVIL3jquXVHOwttMX7cpNHOQsuVORFzw/Hl9UssWtl9gQebeXpld/5fdXMneTNRgIQQQpsYxYJSIYQQRiZqICGEEIbN0NUTBZuJAqQNli4rb27Bkr7B5juFuiaMW1natXq1M7XMRc2WDEwo7VqtEJ3oIYTQAbqt8KiINdFDCCEMm61owgohhDAyMZEwhBDCsKX1QKIJKwzDyuXldZotoTvbhZvpUzmDA9YZV97qkeuU2GE/oa+8a40vqRP9yeXrl3Kd1ooVCUMIIYyA6d3RdxAFSAghtE3MRA8hhDBi3RyuvZmmBYiktwKfAzYnrQQowLZ7L7JeiwwuK69cLq+lG5aOL+99TRhfzmTMx54vr139Rf3LS7vWeuPLW7yqLGX+rlolhXMf2zWQzwNvtv2bdmcmhBB6zVhvwno0Co8QQhi+1AcyhpuwgLmSvk9aXnZZJdH2D9uVqRBC6AVpFNbYLkAmAc8BB1alGYgCpAN4sHerx2Uoc4z+8sHyhnOOHywvyObKwXLu4Yv6l/P08omlXKt1xngNxPZ7yshICCE00n2FR9LLM9GbFo2Spkq6VNJjkh6V9ANJU8vIXAghdLPKKKxmWzOSJkq6RdI8SXdL+mRO30TS1ZLuyz83rjpmF0k35v3vlDQxp78zP58v6aeSNsvpEyR9X9ICSTdLmt4sX0XqVucClwFbAFsCP85pLSepT9KvJV0+JP1kSa680Zx2Wn6jv5X0hnbkJ4QQ1tagxzXdClgG7Gd7V2AGcJCkvYBTgWtsbwdck58jaTxwAXC87Z2AfYEVOf1M4HW2dwHmA+/L1zgWeNL2tsDppOkbDRXJ+WTb59pembfzgMlF3vEInASsMeJL0lbA64EHq9J2BI4AdgIOAr4qqXfjBYQQupIRKz2u6db0PMmS/LQ/bwYOBc7P6ecDb8mPDwTm256Xj19se4DVc/nWlyRSH/fD+Zjqc10C7J/3qatIJ/oiSUcBF+bn7wQWFzhuWHKz2JuAWcCHq146HTgF+FFV2qHARbaXAfdLWgDsCdzY6nyNhMtcJLCkDkyAZSWutLhsnXKmSPb3lbea3vKB3vyOU9b7WtGF9y8taduaPpD8Jfk2YFvgK7ZvlvRi248A2H5E0uZ59+0BS7qK9IX/Ituft71C0gnAncCzwH3AifmYLYGH8rlWSnoa2BRYVC9PRT593gscBvwZeAR4e05rtTNIBcWqj19JhwB/qpSiVVa90WxhTgshhI5SsAlrM0lzq7bjhp7H9oDtGcBUYE9JOze47HhgH+DI/PPvJO0vqR84AXgFqVtiPnBaPqZWSedG763IKKwHgUOa7bc2JB0MPGb7Nkn75rT1gI+x5vDhVYfUSKv5RvMv4jiAadOmtSK7IYRQjAsHU1xke2ahU9pPSZpDar5/VNKUXPuYAjyWd1sIXGd7EYCkK4DdgL/kc/w+p88m95vkY7YCFua+kg2BJxrlpW4NRNIp+eeXJf3P0K3IGx2GvYFDJD0AXATsB3wH2BqYl9OnArdL+itWv9GKqaxux1uD7XNsz7Q9c/LkdnXdhBDCC1UWlGq2NSNpsqSN8uN1gQOAe0kDnI7Oux3N6qb+q4BdJK2XC4PXAvcAfwJ2lFT5MHw9q/udq8/1duBa2yOugVROOrfpu1tLtk8jV6NyDeRk22+r3icXIjNtL5J0GfA9SV8iVcO2A25pdz6L0vISJw6NK6/DZXBFee9ryXPlLJS1cqC89zRhfImLPPWVOJGwpHu4bGV3Bg9vUR/IFOD83A8yDpht+3JJNwKzJR1LGmj0DgDbT+bPx1tJ5dgVtn8CkIcAXy9pBfBH4Jh8jW8C38l9yk+QBio1VPc3YvvH+eFzti+ufk3SO4q95/awfXeuet1DCkh7Yh5hEEIIHcO0Zqa+7fmkfouh6YuB/esccwFpKO/Q9K8BX6uRvpRcABVV5J2dVjCtJWzPsX1wjfTplfa8/HyW7W1sv8z2le3KTwghjFRlQalmW7eqWwOR9LfAG4Eth/R5TKLcZShCCKFr9XIok0aNig+T+j8OIY09rngG+FA7M9UT+hr2PYUmVi4vZ8z/kuV99E8s5/vQshXjWX9iSYtKldigW1ZAyvF9gzy7dJ1SrtUyHqPrgeS5F/MkXQo8W+ljyJ045fRwdqsoPLpGWYUHUF7h0aO6rvCgtRMJO1GRrw4/A9ater4u8PP2ZCeEEHrLmOwDqTKxKgYLtpfkSX4hhBAaMGKgxHBDZSvyzp6VtFvliaTdgefbl6UQQugdrZhI2KmK1EA+CFwsqTLTewpweNtyFIanR/tb1KPvK4xcX4mTZlvFY7UTvcL2rZJ2AF5GikF1r+0Vbc9ZCCH0AI/lAiT3d3wYeIntf5S0naSX2b682bEhhDC2dXcneTNFVyRcDrwqP18IfKZtOQohhB5hYGBwXNOtWxXpA9nG9uGS3glg+/lmq1SNef3ltd+rxHZhjSvvffWVFAywzHb1MgM3riz03bA1ygrc2JUftE79IL2qSAGyPIcPNoCkbUjr84YQQmiim0dZNVOkAPk48FNgK0nfJa3dcUw7MxVCCL3AjPFOdNtXS7od2Is0Cuuk6qi4IYQQ6untTvRG0Xh3sH1v1STCR/LPaZK2Ap6w/ce25zCEELrYWO0D+TBpLfEv1nl9U0nzbL+79dnqbuMmlBegr8wJd+P7ywvxOqG/nHtY5iqBZUWtLVtZgwM82H3f5G0Y7MbO/4IaReM9Lv98Xb19JP2sHZkKIYReMSabsCok9QMnAK/JSXOAr9teYfvANuYthBC63lhtwqo4G+gHvpqfvzun/UO7MhVCCL1iTI/CAvawvWvV82slzWtXhnrB+HXK6ysoc3JfWf0SUF7fxLrrlBfWbcVAOassQm9OWhwo8T21ilFPFyBFfiMDefIgAJJeSpsWzJTUJ+nXki7Pz/9b0r2S5ku6VNJGVfueJmmBpN9KekM78hNCCGvFvb2gVJEC5GTgF5LmSLoOuBb4SJvycxLwm6rnVwM7294F+B1wGoCkHYEjgJ2Ag4Cv5qV2Qwihs7jA1qUaNmHlD+Vdge1YM5x7y0OZSJoKvAmYRRpCjO3qUV43AW/Pjw8FLsr5uF/SAmBP4MZW5yuEENZGLzdhNSxAbA9IOsT26cD8NuflDOAUYIM6r78X+H5+vCWpQKlYmNM6wsQJ5bWrlxXIDqBP3begTzO92i9R5pyTsv4Gywqw2WpjfRTWrySdRfrwfraSaPv2VmVC0sHAY7Zvk7Rvjdc/BqwEvltJqnGamr8mSceRJkQybdq0VmQ3hBAKGfOxsIC/yT8/VZVmYL8W5mNv4BBJbwQmApMkXWD7KElHAwcD+9uryvKFwFZVx08FHqYG2+cA5wDMnDmzh78LhBA6joGxXIA0moneKrZPY3UH+b7AybnwOAj4KPBa289VHXIZ8D1JXwK2IPXR3NLufIYQwnC5O1veCikyE31TUkj3fUjl6Q3Ap2wvbnPeAM4CJgBX5zWsbrJ9vO27Jc0G7iE1bZ1ou7zJFyGEUEhvzwMp0oR1EXA98Lb8/EhSf8gB7ciQ7TmkcCnY3rbBfrNII7Y6TpkB+sqcCNeLnl/eX9q1ejWYYmiihxvOixQgm9j+dNXzz0h6S5vyE0IIvcPRif4LSUcAs/PztwM/qbezpMsKnPMJ28cU2C+EELrbGK+B/BNpYt938vM+4FlJHwZse9KQ/f+axoEWBXxluBkNIYTuNIZrILbrTeyr52O2r2u0g6RPDvOcXaVXJ/et09d74xTKnEjYnghydS5VYn9LmRMku9JYHoU1XLZnVz+XtL7tZxvtE0IIPanH54G07auDpL+RdA85OKKkXSV9tclhIYTQU+zmW7eqW4BI2notz3068AZgMYDteaxe1TCEEMaGMRqN9xJgd0nX2N5/JCe3/VCeAFjRe43oNfSX2FfQi/0SZSrzd9WrfQW9+r5apgVNWJImkubjTSB9bl9i++OSNiHNy5sOPAAcZvvJfMwuwNeBSaSemD1sL5W0DmmS9r45/WO2fyBpAvBtYHfSF//DbT/QKF+NCpBxkj4ObJ9HXK3B9peavOeHJP0N4JzhD7DmWh8hhNDbDC0a57IM2M/2Ekn9wA2SrgTeClxj+7OSTgVOBT4qaTxwAfBu2/NyRJHKrOOPkYLXbi9pHLBJTj8WeNL2tnnqxueAwxtlqtFXhyOApaRCZoMaWzPHAyeSwqwvBGbk5yGEMEYo1UCabU04WZKf9ufNpLWRzs/p5wNvyY8PBObnrgNsL64K9/Re4L9y+qDtRTm9+lyXAPtrSBPSUHVrILZ/C3xO0nzbVzZ9h1XyQlRn2D5yOMeFEELPaVEfR/5cvQ3YFviK7Zslvdj2IwC2H5G0ed59e1Lrz1XAZNICfJ+vWhb80zlw7e+B99l+lPRl/6F8rpWSngY2BSoFzAsUabz8laQvSZqbty9K2rDRAbmkm5ybrkIIYewq1om+WdVn7Ny8jtGap7EHbM8gLV+xp6SdG1x1PCkA7pH5599J2j+nTwV+aXs30iquX8jHFF5nqfoizXwLuAs4LD9/N3Auqe2tkQeAX+bQJtULUTXrOwnDsLzMiXBhrZQ5wbTM4SoT1ykneOizg13aWV+sBrLI9sxCp7OfkjQHOAh4VNKUXPuYAjyWd1sIXFdpnpJ0BbAbcC3wHHBp3u9iUt9H5ZitgIW5D2VD4IlGeSnyG9nG9sdt/yFvnwReWuC4h4HL8zUq/SYvKnBcCCH0hspEwrXsA5E0udL8JGldUjT0e0lrIx2ddzsa+FF+fBWwi6T1cmHwWuCevCjfj0kjsAD2Jy2LwZBzvR24tmoRv5qK1ECel7SP7Rty5vcGni9w3D22L65OkPSOAseFEELPaNEorCnA+bkfZBww2/blkm4EZks6FngQeAeA7Sfzgnu3koqxK2xXguB+FPiOpDOAx4H35PRv5vQFpJrHEc0yVaQAOR74dlW/x5OsLqUaOY1UPWqWFkIIoQHb84FX1EhfTKpF1DrmAtJQ3qHpf6TGpG7bS8kFUFFFginOA3aVNCk//0uj/SX9LfBGYEtJ/1P10iTS6oEhdIwyg1HSq91VJfW39I3rzqiE6uKZ5s0UDqbYrOCo8jAwFziENOSs4hngQ8WzFkIIPaCHgym2IxrvPGCepO/l80/Lc0pCCGFs6fJYV820c1zcQcAdwE8BJM0ouFphCCH0jjEaTBEASesBHyHVJP5R0nbAy2xf3uTQTwB7AnMAbN8haXqTa/WRmr/+ZPvgJoHCTiONXx4APmD7qmbvpSxLlk0o7VovmrCstGuV2l9QkjKDUS4vM+5lif0tZQVTXH/CcpatbHmjSdv14L/NKkV+8+eSAnm9Kj9fCHymwHErbT89zPycxJoBF08lBQrbDrgmP0fSjqQhZjuRajpfzYVPCKFHdWPhAfR0DaToRMLPkyM52n6eYov83iXpXUCfpO0kfRn4Vb2dJU0F3gR8oyq5XqCwQ0mxXZbZvh9YQKrthBBCx5CLbd2qSAGyPM98NICkbUg1kmbeT6ohLAMuBP4CfLDB/mcAp7DmCsJrBAoDKoHCVgX9yhbmtBBC6CwtmIneqYrUCT9B6gjfStJ3gb1ZPXOxLtvPkeLOf6zZvpIOJsWnvy1HiGx6SK1L1jn3ccBxANOmTStw6hBCaKEurmE0U2Qi4c8k3QbsRfrgPqkqfnxdkmYC/0rqAF91Hdu71Nh9b+AQSW8EJgKTJF1A40BhW1UdP5U0/6RW/s8BzgGYOXNmKb/KpcvLa6udML7EuZkl9jKtO35F851CXSsiyGbHGNOd6HlJ28W2f2L7ctuLJF1T4NzfBc4D3ga8uWp7Adun2Z5qezqpc/xa20dRP1DYZcARkibktdu3A24pkKcQQihPj/eB1P2qnNfgXY8Up35jVjcbTQK2KHDux22v7byPz1I7UNjdkmaTokiuBE6sWm0rhBA6RxcXEM00amv5J1Kn9xakkCSVAuQvwFcKnPvjkr5BGn67qtPd9g8bHWR7DqvnjjQKFDYLmFUgHyGEMHrGYgFi+0zgTEnvt/3lEZz7PcAOpLV7K62ABhoWIL1g5cry2p/LHBvfX+qku2jDD72hm5uominSif7lvHTijqQO7kr6t5scuqvtl69l/kIIIXSoIqFMPk5avWpH4Argb4EbgGYFyE2SdrR9T5P9QgihN3mMj8IiLW24P/Bn2+8BdgWKBHvaB7hD0m8lzZd0p6T5a5HXEELoPj0cyqTQkra2ByWtzItKPUaxNdEPWrusda8VS8vrl3h2XHl/fWUGUxzfV861yuzX6VUDLieY4vi+wdICN7ZUFxcQzRT5pJubF3P/X9JorCU0mHMh6Xbbu+VlExvuM9zMhhDGrm4sPER0ov9zfvg1ST8FJuX1eev56yZNVQI2bPB6CCH0jrFcgABI2hJ4SWV/Sa+xfX2d3XcocMpoNwgh9L4un2neTJFRWJ8DDifN+q588BuoWYA0aroKIYQxp4dHYRWpgbyFtAJheUvfdTk/V14n+ooSO9GX9Zf3vgZczn9dme3qZQ0MgO7sL+hVY7oGAvyBNJs8CpAQQhiuMV6APEeazzE0ptUH2parEELoBV0+z6OZIgXIZXkLIYQwTGO6Ccv2+c32CWsa91x5gQAH+sr761y6Tn9p15o4oaQFpUqM2Tiwsrx+iTL7QMq61sBgd/br9HIok0brgcy2fZikO6lRCauzsmAIIYRqY7QGclL+eXAZGQkhhJ4zVvtAbD+Sf8a8jhBCGAGxeiW+XtSoCesZGpSdtie1JUc9oG9peX8yg/3lNeKvmFDePJBepBLn7JTJg+X9vQ904/yW3vy1A41rIBsASPoU8GfgO6TC9Ehgg1JyF0IIWVcWHozxUVjAG2y/sur52ZJuBj7fpjyFEELv6OFRWEWK9AFJR0rqkzRO0pG0IRiipImSbpE0T9Ldkj6Z02dIuknSHZLmStqz6pjTJC3Ii1a9odV5CiGEtZKDKTbbulWRGsi7gDPzZuCXOa3VlgH72V4iqR+4QdKVwKeAT9q+UtIbSTWffSXtCBwB7ARsAfxc0va2I9JvCKFzdHEB0UzDAkRSH3Ci7UPbnRHbJi1WBSn2Vj+rB8FVOuw3BB7Ojw8FLspBHu+XtADYE7ix3Xltpq/EqGGD/eV1YK6cWGKHfUnXKbNjWyVO+uxFHujO8UzdXMNopmEBYntA0u5lZSYXWLcB2wJfsX2zpA8CV0n6AqnJ7W/y7lsCN1UdvjCnhRBC5+jhAqRIH8ivJV0m6d2S3lrZ2pEZ2wO2ZwBTgT0l7QycAHzI9lbAh4Bv5t1rfR15wa9K0nG572Tu448/3o5shxBCXa3oA2nQR7yJpKsl3Zd/blx1zC6Sbsz73ylp4pBzXibprqrnEyR9P/cr3yxperN8FSlANgEWA/sBb85bW2en234KmAMcBBwN/DC/dDGpmQpSjWOrqsOmsrp5q/pc59ieaXvm5MmT25XlEEJ4IZNGYTXbmqv0Ee8KzAAOkrQXcCpwje3tgGvycySNBy4Ajre9E7AvVS3DuRKwhDUdCzxpe1vgdOBzzTJVJJjie5rt0wqSJgMrbD8laV3gANIbeBh4LalA2Q+4Lx9yGfA9SV8idaJvB9xSRl6bGVdWAz4wbkV57cJaWl4fSFkjH1Xm1IIS+0DGjS9vLElZEwm9osTIly0iWtMH0qCP+FBS4QBwPulz8qPAgcB82/Py8YtX5Ul6EfBh4DhgdtVlDgU+kR9fApwlSfnaNRVZ0nYq8GVg75zhG4CTbC9sduwwTQHOz/0g44DZti+X9BRwZi5Rl5LeNLbvljSbtNTuSlJnf4zACiF0lhZ9b6jTR/ziqrBTj0jaPO++PWBJVwGTSQOOKnP3Pg18kbTWU7UtgYfyuVZKehrYFFhUL09FhvGeC3wPeEd+flROe32BYwuzPR94RY30G4CaHfm2ZwGzWpmPEEJoJdX/Al9tM0lzq56fY/uc6h3yF+QZkjYCLs19xPWMB/YB9iAVFNdIuo3UHbGt7Q/V6OMo1K889CLNTLZ9btXz8/LIqBBCCI0Uj8a7yPbMQqdMzfxzSH3Ej0qakmsfU4DH8m4LgetsLwKQdAWwG6kZbHdJD5A+/zeXNMf2vqzuV16YW3w2BJ5olJciBcgiSUcBF+bn7ySVYqGOvqXlXWuwvDWecF+Jc07KWumpv8Q4EyX2Vw0WGh/TGi6xb0ddOBekFQtKNegjvow00Oiz+eeP8iFXAadIWg9YTupHPt32T4Cz8zmnA5fnwoOqc90IvB24tlH/BxQrQN4LnEXqlYc0E/29BY4LIYSW6cbCA1o2kbBeH/GNwGxJxwIPkrsabD+ZBxjdSqoDXZELj0a+CXwnT8p+ghTpo6Eio7AeBA5ptl8IIYQaWjMKq14f8WJg/zrHXEAaylvvnA8AO1c9X8rqvu5CmtZzJU2VdKmkxyQ9KukHeWRWCCGERno8mGKRhtJzSW1jW5CGef04p4UQQmjGBbYuFaOw2qDMiYRldth7XHe2QTcyMLHEzubuXA+pKZX4995tWjWRsFMV+ZNeJOmovB5IXx6RFaOwQgihAA266datihQg7wUOIy1r+whpeFeMwgohhGaKNF91b/kRo7BCCKGdWjEPpFMViYV1Pin21VP5+cbAF21HLaSOUvtASly8qkwqKUBfmXMLypxwV+YE07KoWyPddXENo5kinei7VAoPWDVB5QXjkUMIIbxQL3eiFylAxkna2PaTkBYwKXhcCCGMbaarO8mbKVIQfBH4laRLSJWxw4gIuCGEUEzvlh+FOtG/ncMM70ca1vxW2/e0PWchhNDlen0eSKGmqFxgRKFRUN/yMv9iSuwELnEinEsKxltmx+xgf4mrR3Zrh3MDXfme7LT1qOjLCCGENhrzNZAQQggj1MMFSJFovO/Lcz9CCCEMh0EDbrp1qyI1kL8CbpV0O/At4Kpmq1SNdWVOJCzz600vBlPsxQl30Nuzn7tOD39aNq2B2P43YDvSalXHAPdJ+k9J27QyI5ImSrpF0jxJd0v6ZNVr75f025z++ar00yQtyK+9oZX5CSGEVujl9UCKjsKypD+TAiquBDYGLpF0te1TWpSXZcB+tpdI6gdukHQlsC5wKGlG/DJJmwNI2pG05OJOpLVKfi5pe9vdOFYjhNCrerjBpkgfyAck3QZ8nrQe+sttnwDsDrytVRlxsiQ/7c+bgROAz9pelvd7LO9zKHCR7WW27wcWAHu2Kj8hhNAKY70Gshlp8uAfqxNtD0o6uJWZyQvG3wZsC3zF9s2StgdeLWkWsBQ42fatpNURb6o6fGFOG3Xjny8xaF6JwQDLbcwtKZhiiX0FXTmPoYCy5ux0pS4P195MkZno/9Hgtd+0MjO5+WmGpI2ASyXtTMrjxsBewB7AbEkvpfYnzAt+VZKOA44DmDZtWiuzG0IIDQm6epRVMx25yGaO/jsHOIhUs/hhbuK6BRgk1YoWAltVHTYVeLjGuc6xPdP2zMmTJ7c76yGEsAbZTbdu1TEFiKTJueaBpHWBA4B7gf8jxeEiN2etAywCLgOOkDRB0takkWK3lJ/zEEKoY6yvSFiiKcD5uR9kHDDb9uWS1gG+JekuYDlwdJ6Hcrek2aQYXSuBE2MEVgihs0QsrFLYng+8YKEq28uBo+ocM4sODC0/fml5PbMrS6xE9pfZ4VzStQZWlDcIocxJi2V2bEcnemPdPMqqmY4pQEIIoee4tzvRowAJIYR2iiasEEIII9K75UcUIO3Qt6y8zoJSF3kqcdKiVpZznb51yrkOwECZ1ypx8aroA2msm4fpNhMFSAghtFMUICGEEIbNpKnPPSoKkBBCaBNhNNi7JUgUIG0wbnl5fzC9+gscmFBO506ZwSg1WOK1SpxSG30gTUQTVgghhGGLJqwQQggjFaOwQgghjEwUICGEEIYvgimGYep7fkVp19JAeT2YgxPKu9b458vpBR5YWd5MTJXYYd/XV2KQyJKu5W78tDLQglhYkiYC1wMTSJ/bl9j+uKRNgO8D04EHgMNsP5mP2QX4OjCJ1BOzBynS+cXANsAA8GPbp+b9JwDfJi1Xvhg43PYDjfLVMeuBhBBCL2rRglLLgP1s7wrMAA6StBdwKnCN7e2Aa/JzJI0HLgCOt70TsC9Q+Wb7Bds7kKKf7y3pb3P6scCTtrcFTgc+1yxTUYCEEEI72c23pqewbS/JT/vzZuBQ4Pycfj7wlvz4QGC+7Xn5+MW2B2w/Z/sXOW05cDtpNVeGnOsSYH9JDauXUYCEEEK7GBh08w02kzS3ajtu6Kkk9Um6A3gMuNr2zcCLbT8CkH9unnffHrCkqyTdLumUGufbCHgzqeYCsCXwUD7XSuBpYNNGb68bWxU7npaVN4urb2V5g8zHLe+9BR/HrdObfUge14t9IOW9p9Yp3Im+yPbMhmdKK67OyB/8l0raucHu44F9SP0ezwHXSLrN9jWwqonrQuB/bP8hH1PrBjfMfNRAQgihnQYHm2/DYPspYA5wEPCopCkA+edjebeFwHW2F9l+DrgC2K3qNOcA99k+oyptIbBVPtd4YEPgiUZ5iQIkhBDapXgTVkOSJueaB5LWBQ4A7gUuA47Oux0N/Cg/vgrYRdJ6uTB4LXBPPv4zpMLhg0MuU32utwPX2o2rT9GEFUIIbWNwS5qZpwDnS+ojffGfbftySTcCsyUdCzwIvAPA9pOSvgTcmjLBFbZ/Imkq8DFS4XN77iM/y/Y3gG8C35G0gFTzOKJZpjqmAKk3zrnq9ZOB/wYm216U004jDT0bAD5g+6rSM17DuGXlzQPpVR5fTuVYy8rrlxi3vMQ+kL7yGhdc4pyTMt9Xy7RgIqHt+aRht0PTFwP71znmAtJQ3uq0hdTu68D2UnIBVFTHFCCsHue8RFI/cIOkK23fJGkr4PWkEhYASTuSSsidgC2An0vaPnc0hRB6THcWHhRqoupWHfMbaTDOGdKkllNYc0TAocBFtpfZvh9YAOxZVn5DCKGQFswD6VQdU4BA7XHOkg4B/lSZEFNl1ZjlbGFOCyGEDuGWj8LqJJ3UhFVrnPMupA6fA2vsXmjMcp6QcxzAtGnTWpfZEEJoxnR1AdFMRxUgFbafkjSH1Ey1NTAvjxaYSho5sCdVY5azqcDDNc51DmnMMzNnziynrviXJc33aZWBErt8+srrBC6rW1bjS1xOb3yJ/27r9Jd2qcEJ5VzLJU7EbKkubqJqpmOasOqMc/617c1tT7c9nVRo7Gb7z6Qxy0dImiBpa2A74JbRyX0IIdTRw30gnVQDqTnOud7Otu+WNJs0OWYlcGKMwAohdJZiEwW7VccUIPXGOQ/ZZ/qQ57OAWW3MVgghjJzBrZlI2JE6pgDpJX72udHOQuhAKrMPZMI6pV1q3MQJ5VxoWXn9Oi01EAVICCGE4bJjFFYIIYQR6uJO8maiAAkhhDZy1EDCcAwuKW8eiMucBxLWisqcRzO+vP4CldUHUvK1WqO7h+k2EwVICKErdF/hQZqJ3sNf8qIACSGENjHgmAcSQghh2NyyBaU6UhQgIYTQRr1cA1GTJW97iqTHgT+2+LSbAYtafM526rb8QuS5DN2WX2h/nl9ie/LanEDST0n5bGaR7YPW5lqjYUwVIO0gaa7tmaOdj6K6Lb8QeS5Dt+UXujPPvaZjovGGEELoLlGAhBBCGJEoQNbeOaOdgWHqtvxC5LkM3ZZf6M4895ToAwkhhDAiUQMJIYQwIlGAhBBCGJEoQEZI0kGSfitpgaRTRzs/RUh6QNKdku6QNHe081OLpG9JekzSXVVpm0i6WtJ9+efGo5nHanXy+wlJf8r3+Q5JbxzNPA4laStJv5D0G0l3Szopp3fkfW6Q346+z2NB9IGMQF63/XfA64GFwK3AO23fM6oZa0LSA8BM2x07YUzSa4AlwLdt75zTPg88YfuzubDe2PZHRzOfFXXy+wlgie0vjGbe6pE0BZhi+3ZJGwC3AW8BjqED73OD/B5GB9/nsSBqICOzJ7DA9h9sLwcuAg4d5Tz1BNvXA08MST4UOD8/Pp/04dER6uS3o9l+xPbt+fEzwG+ALenQ+9wgv2GURQEyMlsCD1U9X0h3/EEb+Jmk2yQdN9qZGYYX234E0ocJsPko56eI90man5u4OqIpqBZJ04FXADfTBfd5SH6hS+5zr4oCZGRUI60b2gL3tr0b8LfAibn5JbTe2cA2wAzgEeCLo5qbOiS9CPgB8EHbfxnt/DRTI79dcZ97WRQgI7MQ2Krq+VTg4VHKS2G2H84/HwMuJTXFdYNHczt4pT38sVHOT0O2H7U9YHsQ+F868D5L6id9GH/X9g9zcsfe51r57Yb73OuiABmZW4HtJG0taR3gCOCyUc5TQ5LWzx2QSFofOBC4q/FRHeMy4Oj8+GjgR6OYl6YqH8LZ39Fh91mSgG8Cv7H9paqXOvI+18tvp9/nsSBGYY1QHjJ4BtAHfMv2rNHNUWOSXkqqdUBaB+Z7nZhnSRcC+5JCYD8KfBz4P2A2MA14EHiH7Y7ouK6T331JzSoGHgD+qdK30Akk7QP8P+BOoLLa0b+S+hU67j43yO876eD7PBZEARJCCGFEogkrhBDCiEQBEkIIYUSiAAkhhDAiUYCEEEIYkShAQgijQtLJkixpsxqv1QygmF+rGURR0nRJz1elf61AHs6TdH/VMTNa+iZ7XBQgoaNIWpJ/biHpkrU4zwclrdeiPO2QP1x+LWmbVpyz6tzfkLTjCI6bUR19VtIhnRgVWtK+ks6rkb4VKRjpg3UOXQl8xPZfA3uRIidU36fTbc/I2xVV6b+vSj++YDb/peqYOwoeE4gCJIwiSePrvWb7YdtvX4vTfxBoSQFCCir4I9uvsP374R7c5H3+wwijOM8AVhUgti+z/dkRnGe0nA6cQp0QQK0OoCjpQEk3Srpd0sU5LEpYS1GABCTtkQPSTcwz1u+WtHON/f4+7zdP0ndy2kskXZPTr5E0rUn6eZK+JOkXwOfybP4bJd0q6dNV15quvMaGpGMk/VDST5XWqvh81X5nS5qb8/zJnPYBYAvgF/k6hT5A8rf6m3KeL5W0cf6W/0HgHyrnGnLMEklfzOe9RtLknD5H0n9Kug44SdL+uQZzp1LgvwlV+81slMf8+/lVvu+3SNoQ+BRweK4ZHZ7v0VkF7v3/5HP9QdLaFNAjJukQ4E+25xXcfzprBlCE+kEUt873+TpJr87Hbwb8G3BAjgU3F/hw1TGz8rlOr/xeQkG2Y4sN4DPAF4CvAKfVeH0n4LfAZvn5Jvnnj4Gj8+P3Av/XJP084HKgLz+/DPj7/PhE0voOANOBu/LjY4A/ABsCE4E/AlsNyUcfMAfYJT9/oCqvmwHXA+vn5x8F/qPGe5wPvDY//hRwRn78CeDkOvfNwJH58X8AZ+XHc4Cv5scTSdGbt8/Pv00KCFjZb2a9PALr5Pe+R06fRIokcEzlWlX3qHLtRvf+YtIXxx1JSxK06+/pZuAOYAEp3P0deTs0v7bh0N9TnfO8iLT+x1ur0l6cf9/jgFmkSBAAE4BN8+Pd8z2fBBwMLKrKwz3AN/N+U0jBUSeQQti/4O8itga/59HOQGydseUPqnn5n7uvxuvvB2bVSF8E9OfH/cCiJunnVT7c8vPFVftNon4B8r9Vx1wJ7JMfHw/cTvrwfxw4Iqev+mBq9AFSdc4NgQernm8D3J4ff4L6BcgAMD4/filwR348h9WF0a7A9VXH7A/8sGq/mfXyCLwc+GWN6x5D/QKk0b0/suqYZ0r4u9oXOK/q+ctJQRofyNtKUj/IX9U4th+4Cvhwg/Ov+jup8Vrl3r4ZuLBgXi8v8/+u27e6bbNhzNmE9G2vn/SN+dkhr4tiIevr7VOdPvTcRc67rOrxADBe0tbAyaRv50/mztqJNY4VcLXtdxa4ztqq9T5rhf8fqmYeJe3C2i8VUH189X0skq+Wsn0nVeuMqM4qmVLdgI9ImuLVMa9WBVHMzYdP2B5Qiv22Han29kfgK5K2tb1AaXDFVNu/q5wrX+8tREDGYYk+kFBxDvDvwHeBz9V4/RrgMEmbQlo/O6f/ihSNGOBI4IYm6UP9csh+wzGJ9CH9tKQXk9Y5qXgG2CA/vgnYW9K2Oe/rSdq++kS2nwaerLSbA+8GriuQh3FApS/hXdR+n/cC0yvXr3Puenm8F9hC0h45fQOlTvnq9zdU0XvfUZRG3lVGVO1Nuk/76YVrnn8+9yXNB14HfCinvwaYL2kecAlwvO0nbD9OqqFdmI+5CdghH/NdSXeSAjVuRmrKDQVFDSQg6e+Blba/p7Te+68k7Wf72so+tu+WNAu4TtIA8GvSP+UHgG9J+hdSE9J78iH10oc6Cfie0jj/Hwwn37bnSfo1cDfpm+Yvq14+B7hS0iO2XyfpGNIHSKWT9N9I69pXOxr4Wv6G+ocGea72LLCTpNuAp4HDa+RzqaT3ABfnD/9bga+tuYsfr5XH/C35cODLktYFngcOAH4BnCrpDuC/hlyy6L1vO9tzSE1J9V6fXvX4YfLIMts3UKeGZPvdddJ/QJ2/ofy3vEeN9P3q5S00F9F4Q1gLkpbYHvGQ0Pzt9xDb97cwWyGUIpqwQhglkq4G7ozCI3SrqIGEEEIYkaiBhBBCGJEoQELXUlXwvBaca43YUsM47nBJCyRdvrZ5CKHbRAESut3vbc9owXlmUBVbqpoax7L6PvAPLbh+CF0nhvGGnpDjJf2UNOdhL9Ks+nOBT5Imrh1p+xZJ6wNfJs2IHk+aZX4lKXTJupL2IQ2L/WtSPK3pwKI8zPhrwLR8yQ/arh42HMKYEzWQ0Eu2Bc4EdiFNFHsXsA9ptvq/5n0+Blxrew/SJLT/Js2+/w/g+04hvb+f990dONT2u/J5T8/HvQ34RjlvKYTOFTWQ0Evuz6EykHQ3cI1t57kW0/M+BwKHSDo5P5/I6lrFUJfZfj4/PgDYMUW8AGCSpA2cQo2HMCZFARJ6SXWcp8Gq54Os/lsX8Dbbv60+UNIra5yvOmbXOOBVVQVKCGNeNGGFseYq4P05eB6SXpHTG8WWAvgZ8L7KE8XSpyFEARLGnE+T+jzmKy1YVVnE6hekJqo7cuypoT4AzMwLD91DCiMfwpgWM9FD18ojry63/YLVE0vOx76k9UIOHs18hFC2qIGEbjYAbNiKiYQjlWsrXwWeHK08hDBaogYSQghhRKIGEkIIYUSiAAkhhDAiUYCEEEIYkShAQgghjEgUICGEEEbk/wPB4BJVfu90AAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "clipped.plot()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.5" } }, "nbformat": 4, "nbformat_minor": 4 } rioxarray-0.18.2/docs/examples/convert_to_raster.ipynb000066400000000000000000001057531474250745200232220ustar00rootroot00000000000000{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Example - Convert dataset to raster (GeoTiff)\n", "\n", "Often, it is desirable to take a variable (band) out of your dataset and export it to a raster.\n", "This is possible with the `rio.to_raster()`method. It does most of the work for you so you don't\n", "have to.\n", "\n", "Note: The `rio.to_raster()` method only works on a 2-dimensional or 3-dimensional `xarray.DataArray` or a 2-dimensional `xarray.Dataset`.\n", "\n", "API Reference:\n", "\n", "- DataArray: [rio.to_raster()](../rioxarray.rst#rioxarray.raster_array.RasterArray.to_raster)\n", "- Dataset: [rio.to_raster()](../rioxarray.rst#rioxarray.raster_dataset.RasterDataset.to_raster)\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import rioxarray" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "See docs for [rioxarray.open_rasterio](../rioxarray.rst#rioxarray-open-rasterio)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset>\n",
       "Dimensions:      (time: 2, x: 10, y: 10)\n",
       "Coordinates:\n",
       "  * time         (time) object 2016-12-19 10:27:29.687763 2016-12-29 12:52:42...\n",
       "  * x            (x) float64 4.663e+05 4.663e+05 ... 4.663e+05 4.663e+05\n",
       "  * y            (y) float64 8.085e+06 8.085e+06 ... 8.085e+06 8.085e+06\n",
       "    spatial_ref  int32 0\n",
       "Data variables:\n",
       "    blue         (time, y, x) float64 ...\n",
       "    green        (time, y, x) float64 ...\n",
       "Attributes:\n",
       "    coordinates:  spatial_ref
" ], "text/plain": [ "\n", "Dimensions: (time: 2, x: 10, y: 10)\n", "Coordinates:\n", " * time (time) object 2016-12-19 10:27:29.687763 2016-12-29 12:52:42...\n", " * x (x) float64 4.663e+05 4.663e+05 ... 4.663e+05 4.663e+05\n", " * y (y) float64 8.085e+06 8.085e+06 ... 8.085e+06 8.085e+06\n", " spatial_ref int32 0\n", "Data variables:\n", " blue (time, y, x) float64 ...\n", " green (time, y, x) float64 ...\n", "Attributes:\n", " coordinates: spatial_ref" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rds = rioxarray.open_rasterio(\n", " \"../../test/test_data/input/PLANET_SCOPE_3D.nc\",\n", ")\n", "rds" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Converting Dataset to raster\n", "\n", "Dataset: [rio.to_raster()](../rioxarray.rst#rioxarray.raster_dataset.RasterDataset.to_raster)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# note how one time slice was selected on export to make the dataset 2D\n", "rds.isel(time=0).rio.to_raster(\"planet_scope.tif\")" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{\"bounds\": [466266.0, 8084670.0, 466296.0, 8084700.0], \"colorinterp\": [\"gray\", \"undefined\"], \"count\": 2, \"crs\": \"EPSG:32722\", \"descriptions\": [\"blue\", \"green\"], \"driver\": \"GTiff\", \"dtype\": \"float64\", \"height\": 10, \"indexes\": [1, 2], \"interleave\": \"pixel\", \"lnglat\": [-51.31732641226951, -17.322997474192466], \"mask_flags\": [[\"nodata\"], [\"nodata\"]], \"nodata\": NaN, \"res\": [3.0, 3.0], \"shape\": [10, 10], \"tiled\": false, \"transform\": [3.0, 0.0, 466266.0, 0.0, -3.0, 8084700.0, 0.0, 0.0, 1.0], \"units\": [null, null], \"width\": 10}\n" ] } ], "source": [ "!rio info planet_scope.tif" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Converting DataArray to raster\n", "\n", "DataArray: [rio.to_raster()](../rioxarray.rst#rioxarray.raster_array.RasterArray.to_raster)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# note how selecting one variable allowed for multiple time steps in a single raster\n", "rds.green.rio.to_raster(\"planet_scope_green.tif\")" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{\"bounds\": [466266.0, 8084670.0, 466296.0, 8084700.0], \"colorinterp\": [\"gray\", \"undefined\"], \"count\": 2, \"crs\": \"EPSG:32722\", \"descriptions\": [\"green\", \"green\"], \"driver\": \"GTiff\", \"dtype\": \"float64\", \"height\": 10, \"indexes\": [1, 2], \"interleave\": \"pixel\", \"lnglat\": [-51.31732641226951, -17.322997474192466], \"mask_flags\": [[\"nodata\"], [\"nodata\"]], \"nodata\": NaN, \"res\": [3.0, 3.0], \"shape\": [10, 10], \"tiled\": false, \"transform\": [3.0, 0.0, 466266.0, 0.0, -3.0, 8084700.0, 0.0, 0.0, 1.0], \"units\": [null, null], \"width\": 10}\n" ] } ], "source": [ "!rio info planet_scope_green.tif" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Converting DataArray to raster in a different format\n", "Example here, an ER Mapper grid.\n", "Look at gdal for possible formats that you can use to write to." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# you will get a two file raster: the .ers file with the metdata and the data with no extension\n", "rds.blue.rio.to_raster(\"planet_scope_green.ers\", driver=\"ERS\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Change the compression of the raster and explicitly make it a Geotiff" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "rds.blue.rio.to_raster(\"planet_scope_green_LZW_compression.tif\", driver=\"GTiff\", compress=\"LZW\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Change the basic datatype of the raster (in this example, also saving space going to 32 bit)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "dtype('float64')" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rds.blue.dtype" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "rds.blue.astype('float32').rio.to_raster(\"planet_scope_green_LZW_compression.tif\", driver=\"GTiff\", compress=\"LZW\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Memory efficient raster writing\n", "\n", "Useful for reading and writing larger rasters to disk.\n", "\n", "Note: This will increase the time it takes to generate the raster.\n", "\n", "Also see:\n", "\n", "- [Reading and Writing with Dask](dask_read_write.ipynb)\n", "- [Reading COGs in Parallel](read-locks.ipynb)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "rds = rioxarray.open_rasterio(\n", " \"../../test/test_data/input/PLANET_SCOPE_3D.nc\",\n", " lock=False, # disable internal caching\n", " cache=False, # don't keep data loaded in memory. pull from disk every time\n", ")\n", "\n", "rds.green.rio.to_raster(\n", " \"planet_scope_tiled.tif\",\n", " tiled=True, # GDAL: By default striped TIFF files are created. This option can be used to force creation of tiled TIFF files.\n", " windowed=True, # rioxarray: read & write one window at a time\n", ") " ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{\"blockxsize\": 256, \"blockysize\": 256, \"bounds\": [466266.0, 8084670.0, 466296.0, 8084700.0], \"colorinterp\": [\"gray\", \"undefined\"], \"count\": 2, \"crs\": \"EPSG:32722\", \"descriptions\": [\"green\", \"green\"], \"driver\": \"GTiff\", \"dtype\": \"float64\", \"height\": 10, \"indexes\": [1, 2], \"interleave\": \"pixel\", \"lnglat\": [-51.31732641226951, -17.322997474192466], \"mask_flags\": [[\"nodata\"], [\"nodata\"]], \"nodata\": NaN, \"res\": [3.0, 3.0], \"shape\": [10, 10], \"tiled\": true, \"transform\": [3.0, 0.0, 466266.0, 0.0, -3.0, 8084700.0, 0.0, 0.0, 1.0], \"units\": [null, null], \"width\": 10}\n" ] } ], "source": [ "!rio info planet_scope_tiled.tif" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.16" } }, "nbformat": 4, "nbformat_minor": 4 } rioxarray-0.18.2/docs/examples/dask_read_write.ipynb000066400000000000000000000070511474250745200225770ustar00rootroot00000000000000{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Example - Reading and Writing with Dask" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import multiprocessing\n", "# Linux/OSX:\n", "import multiprocessing.popen_spawn_posix\n", "# Windows:\n", "# import multiprocessing.popen_spawn_win32\n", "import threading\n", "\n", "from dask.distributed import Client, LocalCluster, Lock\n", "\n", "import rioxarray" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Tips for using dask locks:\n", "- Be careful about what lock you use for your process. It is required to have a lock for each worker, so the more fine-grained the better.\n", "- The reading and writing processes need the same type of lock. They don't have to share the same lock, but they do nead a lock of the same type.\n", "\n", "See docs for:\n", "\n", "- [Reading COGs in Parallel](read-locks.ipynb)\n", "- [rioxarray.open_rasterio](../rioxarray.rst#rioxarray-open-rasterio)\n", "- DataArray: [rio.to_raster()](../rioxarray.rst#rioxarray.raster_array.RasterArray.to_raster)\n", "- Dataset: [rio.to_raster()](../rioxarray.rst#rioxarray.raster_dataset.RasterDataset.to_raster)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### No distributed computing example\n", "Note: Without a lock provided, `to_raster` does not use dask to write to disk." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "xds = rioxarray.open_rasterio(\n", " \"../../test/test_data/compare/small_dem_3m_merged.tif\",\n", " chunks=True,\n", ")\n", "xds.rio.to_raster(\"simple_write.tif\", tiled=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Multithreaded example" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "xds = rioxarray.open_rasterio(\n", " \"../../test/test_data/compare/small_dem_3m_merged.tif\",\n", " chunks=True,\n", " lock=False,\n", " # lock=threading.Lock(), # when too many file handles open\n", "xds.rio.to_raster(\n", " \"dask_thread.tif\", tiled=True, lock=threading.Lock(),\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Multiple worker example" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "with LocalCluster() as cluster, Client(cluster) as client:\n", " xds = rioxarray.open_rasterio(\n", " \"../../test/test_data/compare/small_dem_3m_merged.tif\",\n", " chunks=True,\n", " lock=False,\n", " # lock=Lock(\"rio-read\", client=client), # when too many file handles open\n", " )\n", " xds.rio.to_raster(\n", " \"dask_multiworker.tif\",\n", " tiled=True,\n", " lock=Lock(\"rio\", client=client),\n", " )" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.1" } }, "nbformat": 4, "nbformat_minor": 4 } rioxarray-0.18.2/docs/examples/examples.rst000066400000000000000000000024731474250745200207600ustar00rootroot00000000000000.. _usage_examples: Usage Examples ============== This page contains links to a collection of examples of how to use rioxarray. .. toctree:: :maxdepth: 1 :caption: Notebooks: resampling.ipynb convert_to_raster.ipynb clip_geom.ipynb clip_box.ipynb pad_box.ipynb read-locks.ipynb reproject.ipynb reproject_match.ipynb merge.ipynb interpolate_na.ipynb transform_bounds.ipynb COG.ipynb dask_read_write.ipynb Example - Zonal Statistics .. toctree:: :maxdepth: 1 :caption: stackexchange: Extracting data within geometry (shape) Converting NetCDF dataset array to GeoTiff How do I add projection to this NetCDF file? (Satellite) Create a new raster TIFF file which is masked based on the GeoJSON file How to mask NetCDF time series data from a shapefile in Python? Extract data from raster at a point Convert raster to CSV with lat, lon, and value columns rioxarray-0.18.2/docs/examples/interpolate_na.ipynb000066400000000000000000001076411474250745200224620ustar00rootroot00000000000000{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Example - Interpolate Missing Data" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import rioxarray # for the extension to load\n", "import xarray\n", "\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load in xarray dataset" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "xds = xarray.open_dataarray(\"MODIS_ARRAY.nc\")" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "\n", "array([[ nan, nan, nan, ..., 656., 656., 554.],\n", " [ nan, nan, nan, ..., 694., 694., 642.],\n", " [ nan, nan, nan, ..., 456., 575., 642.],\n", " ...,\n", " [993., 817., 817., ..., 471., 479., 498.],\n", " [893., 893., 816., ..., 479., 479., 469.],\n", " [816., 816., 832., ..., 515., 469., 485.]], dtype=float32)\n", "Coordinates:\n", " * y (y) float64 5.05e+06 5.05e+06 5.05e+06 ... 5.004e+06 5.004e+06\n", " * x (x) float64 -7.274e+06 -7.274e+06 ... -7.228e+06 -7.228e+06\n", "Attributes:\n", " crs: +a=6371007.181 +b=6371007.181 +lon_0=0 +no_defs +proj=sinu +u...\n", " res: [231.65635826 231.65635826]\n", " is_tiled: 0\n", " nodata: -28672.0\n", " transform: [ 2.31656358e+02 0.00000000e+00 -7.27400965e+06 0.00000000e..." ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xds" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEKCAYAAADTgGjXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3X2QXNV55/HvbzRCbwj0ZoRAkBG2cAq8AWwF7LhsA7IFTrwWFeNEpJIoDlusHbze3ZQ3giS7gG0c8CYFTtlrR2WTEG+wkEm0kFQBFhiS2LEBYWRAGCwhBAjJCGkkXgR6mZln/7inQ2s03dP3aLrnjvT7ULe6+9zz3JeZEU+fe+45VxGBmZlZjq7RPgAzMxu7nETMzCybk4iZmWVzEjEzs2xOImZmls1JxMzMsjmJmJlZNicRMzPL5iRiZmbZukf7AMaCWbNmRU9Pz2gfxoja8NpzHdvXG/vHl47pHjdQOqZ/IO870eTx+7LicuT8LAb6Ovhdr6tzM1hMOmp/6Zg39h5VOkbj8s4pBpQVt++ZF7ZHxFuygoELzpsSO3r7W6r78KN7746IC3P3NRKcRFrQ09PDmjVrRvswRtTi73+6Y/t6/IU5pWNmHru7dMzLr08sHQPwzhM2Z8XlWLv1xNIxb+yaVDomdzaj7sl9eYEZTjtxa+mYxzaV//lNmJL3JWHf6+UTPsCm3/njZ7MCkx29/Tx498kt1R03Z/2sQ9nXSGjrVxxJmyQ9JmmtpDWpbIak1ZLWp9fpqbxH0hup7lpJX6/bzrvSdjZI+ktJSuUTJN2ayh+Q1FMXszTtY72kpXXl81Ld9Sm2/FcbM7M2CWCgxf+qoBPt5PMi4syIWJA+XwHcGxHzgXvT55qnU90zI+KTdeVfAy4D5qel1ny7FNgZEW8DbgCuhyJRAVcB5wBnA1fVklWqc0Pa/860DTOzSgiC/dHf0lIFo9Gxvhi4Ob2/GbioWWVJc4BjIuKHUUw5/Ld1MfXbug1YmFopFwCrI6I3InYCq4EL07rzU92W9m9m1mluibwpgO9KeljSZalsdkRsBUivx9XVnyfpEUn/LOl9qexEoP6i9eZUVlv3fNpWH/AyMLO+fFDMTGBXqjt4WweQdJmkNZLWvPTSS2XP28wsSxD0R2tLFbS7Y/29EbFF0nHAaklPNqm7FTg5InZIehfw/ySdDgx1i0Ttp9doXdnygwsjlgPLARYsWFCN35aZHREGhv7fUiW1tSUSEVvS6zZgFUX/xIvpElXtUtW2VGdvROxI7x8GngZOpWgtzK3b7FxgS3q/GTgpbasbOBborS8fFLMdmJbqDt6WmdmoC6CfaGmpgrYlEUlTJE2tvQcWAY8DdwC1u6WWArenOm+RNC69P4WiA31juuT1qqR3pz6N363FDNrWxcD3Ur/J3cAiSdNTh/oi4O607r5U94D9m5lVxQDR0lIF7bycNRtYle7G7QZuiYi7JD0ErJR0KfAc8PFU//3A5yT1Af3AJyOiN637FPA3wCTgzrQAfBP4lqQNFC2QJQAR0Svp88BDqd7n6ra1DFgh6QvAI2kbZmaVEMD+ivR3tKJtSSQiNgJnDFG+A1g4RPnfA3/fYFtrgHcMUb6HN5PQ4HU3ATc1OK6zhzl8M7NRERW6VNUKj1g/Qv1kw0nDVxpk3KS80cw5o89zXDjvp1lxr/SVH+n+o809Wfvav39c6ZjujBHXvzZ/XekYgI9MW1s65i83fzBrXxPHlf97+uW3lh8M3ru3/Ih/gI2vZ89ccmgC+sdODnESMTOrkmLE+tjhJGJmVimif8jRCNXkJGJmViFFx7qTiJmZZSjGiTiJmJlZpgG3RMzMLIdbImZmli0Q/WPoyeVOImZmFePLWWZmliUQ+6L8oNTRMnbaTGZmR4BisGFXS0srJP13SeskPS7p25ImNnpMeap/ZXrk+FOSLhhu+26JHKFypzDJcVR3+X29a+bzw1caJGf6klyL3/pYVtzWPceWjpk2/vXSMTnTl+T68HGPZ8U9t3dm6ZiHdpxcOub5H5Sf4gdgfFbUyBipjnVJJwKfAU6LiDckraSYqPY0iseUXyfpCorHlC+TdFpafzpwAnCPpFMjGj+L1y0RM7MKiRD90dXS0qJuYFJ6jtJkimcoNXpM+WJgRXq+0zPABoaZsNZJxMysYgZQS8twIuIF4M8pHruxFXg5Ir5L48eUN3q0eEO+nGVmViFFx3rL/2ueJWlN3efl6dHeAKS+jsXAPGAX8B1Jv91key0/QrzGScTMrEJqHest2h4RC5qs/yDwTES8BCDpH4BfIT2mPCK21j+mnMaPFm/Il7PMzCqmP9TS0oLngHdLmpweL74Q+CkNHlOeypdImiBpHsVjyh9stgO3RMzMKmQkR6xHxAOSbgN+DPRRPBJ8OXA0QzymPCLWpTu4nkj1L292ZxY4iZiZVc5A63deDSsirgKuGlS8lyEeU57qXwtc2+r2nUTMzCqkmIBx7PQ0OImYmVVIIPaPoWlPnERa8LNXn2fhfX9YKubpJ09o09EcbP7f7S0dc0rGft64+uWMKOhW+SdG/6S36a3pDW16enZWXFkfOPPJjuwH4IY5D2fFfXlnT+mYCV37S8fkjDzP9dz2GeWD3r6bgecmlw7rnzw6TzqPoMxAwlHnJGKHjU4lkLEgJ4EcrnISyOhqbSBhVTiJmJlVSOCWiJmZHQJ3rJuZWZZAfiiVmZnlCWB/63Nnjbqxc6RmZkcEjdjzRDrBScTMrEKCkR2x3m5OImZmFeOWiJmZZYmQWyJmZpan6Fj3tCeHFQkmjusrFXP66c+V3s+O5T2lYwC6N7yQFVfWhGtPGr7SCHn6kvJ/mtrbuW9vT7/Suak+Ojn6/Prvf7h0zLyebcNXGiGdHH0+5YTXOravA8mDDc3MLE/Rse4+ETMzy+QR62ZmlsUj1s3M7JAMuCViZmY5ImD/wNhJIm09UkmbJD0maa2kNalshqTVktan1+mDYk6W9Jqkz9aV/aakRyWtk/SluvIJkm6VtEHSA5J66tYtTftYL2lpXfm8VHd9ij2qnT8DM7MyistZXS0tVdCJozgvIs6MiAXp8xXAvRExH7g3fa53A3Bn7YOkmcD/BhZGxOnAbEm1B8xfCuyMiLeluOtTzAyKB9OfA5wNXFWXrK4Hbkj735m2YWZWGf1p/qzhlioYjVS2GLg5vb8ZuKi2QtJFwEZgXV39U4CfRcRL6fM9wMeG2NZtwEJJAi4AVkdEb0TsBFYDF6Z156e6B+3fzGy01W7xbWWpgnYnkQC+K+lhSZelstkRsRUgvR4HIGkKsAy4ZtA2NgC/KKlHUjfF//Rro95OBJ5P2+oDXgZm1pcnm1PZTGBXqltffhBJl0laI2nNvl1vZJ28mVl5vpxV770R8U7gw8Dlkt7fpO41FJeZDhgmmloSnwJuBf4V2ATUksBQqTgyyg8ujFgeEQsiYsFR0yY1OWwzs5E1kJ6zPtwyHElvT33SteUVSf+tWd+0pCtTP/NTki4Ybh9tvTsrIrak122SVlH0T7woaU5EbJU0B6jNmXAOcHHqOJ8GDEjaExFfiYh/BP4RihYC0J9iNlO0SjanVsqxQG8qP7fuUOYC9wPbgWmSulNrZC6wZbjz6H/pqOwpScqYessPs+LKTchS6JpUPjFuPn9ixp7yjHtlyNzeFkf/4s7SMS+8OH34SiPkK9vP7di+OjmFyYuvTC0d08kppbrH9Q9fqQ2Ku7NG5kQj4ingTABJ44AXgFW82Td9naQr0udlkk4DlgCnAycA90g6NSIa/jDa1hKRNEXS1Np7YBHwOHAHULtbailwO0BEvC8ieiKiB7gR+GJEfCXF1y55TQf+APhGiq/f1sXA9yIigLuBRZKmp5hFwN1p3X2p7gH7NzOrgtpgwzb0iSwEno6IZ2ncN70YWBEReyPiGYruhLObbbSdLZHZwKqiL5tu4JaIuEvSQ8BKSZcCzwEfb2FbX5Z0Rnr/uYj4WXr/TeBbkjZQtECWAEREr6TPAw/VxfSm98uAFZK+ADyStmFmVhmtXKrKsAT4dnp/QN907Ys6RR/xj+piGvYb17QtiUTERuCMIcp3UGTEZrFXD/p8SYN6e2iQhCLiJuCmBsfVNLOamY2WkhMwzqqNwUuWR8TywZXSeLiPAlcOs72W+41rPGLdzKxiStx5tb1uDF4zHwZ+HBEvps+N+qZr/cw1w/YbV+MeMTMzA4onG/ZFV0tLCZfw5qUsaNA3ncqXpNlA5gHzgQebbdgtETOzihnJgYSSJgMfAv5zXfF1DNE3HRHrJK0EnqC48fPyZndmgZOImVmljPRDqSLidYqB1vVlDfumI+Ja4NpWt+8kYmZWMVWZ0qQVTiJmZhXih1KZmdkhadM4kbZwEmlBV+/u7ClJSu0nYyqSXM9+9qzSMcqZXwWY84HNpWN6X5+ct7MMs6bs7kgMwMdOeKR0zF+s/WDWvnJs2jKrY/vilfGlQ3JuJ1Xm7CWvru/c1Db1IqBvDD2UyknEzKxifDnLzMyyuE/EzMwOSTiJmJlZLnesm5lZlgj3iZiZWTbR77uzzMwsl/tEzMwsy0jPndVuTiJmZlUSRb/IWOEkYmZWMb47y0DlO8Z+/p/KT0WSa97CTaVj9vTl/bmcfPSujsSs2XrS8JWG0N01UDpm8fE/ydrXX298T+mYGceUn2Jl+4aZw1cayrT95WMypi/JNTC+/Ff08XvyOqn7J4xOcyDcsW5mZofCl7PMzCyb784yM7MsEU4iZmZ2CHyLr5mZZXOfiJmZZQnEgO/OMjOzXGOoIeIkYmZWKe5YNzOzQzKGmiJj58KbmdkRIkItLa2QNE3SbZKelPRTSe+RNEPSaknr0+v0uvpXStog6SlJFwy3fbdEWqCJE+jueVupmJ9dfXTp/Rz9b6VDADjhY5tKx/RldNzlTA8C8M8/PbV0zJRpb5SOmTut/FQpuf7ikQ9lxfXvHVc6Rq+U/2favTvz++HuCaVDujJmSgHYO6P839P4V8uf18TtpUOS0bmkFMDAwIju+8vAXRFxsaSjgMnAHwP3RsR1kq4ArgCWSToNWAKcDpwA3CPp1Ijob7Rxt0TMzKokgFBryzAkHQO8H/gmQETsi4hdwGLg5lTtZuCi9H4xsCIi9kbEM8AG4Oxm+3ASMTOrmIjWlhacArwE/LWkRyR9Q9IUYHZEbC32FVuB41L9E4Hn6+I3p7KGnETMzKomWlxglqQ1dctlg7bUDbwT+FpEnAXsprh01chQzZum6cp9ImZmldJ6pzmwPSIWNFm/GdgcEQ+kz7dRJJEXJc2JiK2S5gDb6urXP1NhLrCl2QG4JWJmVjWtt0Sabybi58Dzkt6eihYCTwB3AEtT2VLg9vT+DmCJpAmS5gHzgQeb7cMtETOzKgmIkb07678Af5fuzNoIfIKiAbFS0qXAc8DHASJinaSVFImmD7i82Z1Z4CRiZlZBI5dEImItMNQlr4UN6l8LXNvq9p1EzMyqxiPWC5I2SXpM0lpJa1JZw5GSaf3Jkl6T9Nm6skvSdh6VdJekWal8gqRb0+jKByT11MUsTftYL2lpXfm8VHd9ij2qnT8DM7PSRqhPpBM60bF+XkScWXcHwRUUIyXnA/dy8O1mNwB31j5I6qYYcXleRPwS8Cjw6bT6UmBnRLwtxV2fYmYAVwHnUAyUuaouWV0P3JD2vzNtw8ysGkZwsGEnjMblrMXAuen9zcD9wDIASRdRdPzsrquvtEyRtAM4hmIUZW1bV6f3twFfkSTgAmB1RPSm7a4GLpS0Ajgf+K26/V8NfK3ZAe85oav0NCbHTi0/bQcXZMQAG37QUzqm5z3PlY5Z/+zxpWMAunrHl455IyNm9394vXQMwNbt00rH5ExfkmvC9vLf9cbty9tX3+TyMd15P3a6Xy9/XgMZ/8faP7V8DEDfxLy4kTCWHkrV7pZIAN+V9HDdIJghR0qmUZTLgGsO2EDEfuBTwGMU9yufRhrCT93oyojoA14GZtJ41OVMYFeqW19+EEmX1QbwDLyye6gqZmbtMaDWlgpodxJ5b0S8E/gwcLmk9zepew3FZabX6gsljadIImdRTAj2KHBlbfUQ24mM8oMLI5ZHxIKIWNB1zJQmh21mNrIUrS1V0NbLWRGxJb1uk7SKon+i0UjJc4CLJX0JmAYMSNoDPJC28TRAuoe51o9SG125OfWdHAv0pvJz6w5lLsVls+3ANEndqTUy7GhMM7OOqlCneSva1hKRNEXS1Np7YBHwOA1GSkbE+yKiJyJ6gBuBL0bEV4AXgNMkvSXFfAj4aXpfv62Lge9FRAB3A4skTU8d6ouAu9O6+1LdA/ZvZlYNLXaqHwEd67OBVUU/N93ALRFxl6SHGGKkZCMRsUXSNcC/SNoPPAv8Xlr9TeBbkjZQtECWpJheSZ8HHkr1PlfrZKfod1kh6QvAI7zZv2JmVg1jqCXStiQSERuBM4Yo30GDkZJ1da4e9PnrwNeHqLeHBkkoIm4CbmpwXE3nxzczG1V5z38bFR6xbmZWJbVxImOEk4iZWcVU5c6rVgzbsS7p04OnJjEzszY6zKY9OR54SNJKSRemEeFmZmbDX86KiD+V9D8pbpP9BMXUIiuBb9bGbhzutKeL7qfKzQex/5Xy80fsmVk6BIDJW8vHbPuHk0vHjDs576tP/9TyvYRz37pt+EqDbNlWfvqSXBOey5u3U33D1xksdwqTHNPWl/8d756d972yP2NakThCLsAfVpezANL4ip+npQ+YDtyWBgaamdlICcbUtCfD5nVJn6EYlLcd+AbwPyJiv6QuYD3wR+09RDOzI8wYaom00jicBfx6RDxbXxgRA5I+0p7DMjM7co2ly1mt9In8rybrftponZmZZTqckoiZmXWYk4iZmeWo0jTvrXASMTOrmorcedUKJxEzs4oZSy2Rdj/Z0MzMyhrBaU8kbZL0mKS1ktakshmSVktan16n19W/UtIGSU9JumC47bsl0gL1w1GvtH8/k1/Mi9ubMdJ9/5TyX3VyRp7n2vqT40vHCBj/SvnLADmjoCPz61dkDHTfc0rekPXZ944vHZM7+jzH/qPLxwxMKP9327U375zG784KO3Tt6RM5LyK2132+Arg3Iq6TdEX6vEzSaRTPZTqd4nHk90g6NSL6G23YLRE7bOQkkMNVTgKxCmn/BIyLgZvT+5uBi+rKV0TE3oh4BtjAMM9fchIxM6sYDbS2tCiA70p6WNJlqWx2RGwFSK/HpfITgefrYjensoZ8OcvMbOyaVevnSJZHxPJBdd6bHjN+HLBa0pNNtjdUc75pm8dJxMysalq/VLU9IhY03VTElvS6TdIqistTL0qaExFbJc0BatNmbwZOqgufC2xptn1fzjIzq5J4c8DhcMtwJE2RNLX2nuKRHo8Dd1BMrEt6vT29vwNYImmCpHnAfODBZvtwS8TMrGpG7u6s2cCq9CzBbuCWiLhL0kPASkmXAs8BHweIiHXpeVFPUDz24/Jmd2bVNmpmZlUyQkkkIjYCZwxRvgNY2CDmWuDaVvfhJGJmViGi1J1Xo85JxMysSjwBo5mZHRInkcPLuH0w9fn2ty97T+vczXITdmVMD/LyuKx97ZtW/l9EJ0efT9jZsV3xyhkZU5hkzOj64nl95fcDTJnxelZcjoFnjunIfia9lBc3MJr/d3QSMTOzXL6cZWZm+ZxEzMwsS/juLDMzOxRuiZiZWS73iZiZWT4nETMzy3LoD5zqKCcRM7MKEb6cZWZmh8BJxMzM8jmJ2K63lp/CZPyrbTiQBvomdW5fE3rLT9vRP7ENB9LAnhmd2xd7OzO1zZTZu7Pidv/86BE+ksa693VmaptRnb4kl5OImZllGWOz+Lb1a5GkTZIek7S29jB5STMkrZa0Pr1OHxRzsqTXJH02fZ6a4mvLdkk3pnUTJN0qaYOkByT11G1nadrHeklL68rnpbrrU+xR7fwZmJmVFi0uFdCJtvV5EXFm3cPkrwDujYj5wL3pc70bgDtrHyLi1RR/ZkScCTwL/ENafSmwMyLeluKuhyJRAVcB51A8lP6qumR1PXBD2v/OtA0zs8rQQGtLFXRu7vE3LQZuTu9vBi6qrZB0EbARWDdUoKT5wHHAvw6xrduAhSoeJnwBsDoieiNiJ7AauDCtOz/VPWj/ZmZVoGhtqYJ2J5EAvivpYUmXpbLZEbEVIL0eByBpCrAMuKbJ9i4Bbo2I2o/vROD5tK0+4GVgZn15sjmVzQR2pbr15QeRdJmkNZLW7N+b10lpZlZaq5eyKpJE2t2x/t6I2CLpOGC1pCeb1L2G4jLTa0WDYUhLgN+p+zxUxcgoP7gwYjmwHODoGSdV5NdlZkeEMfR/nLYmkYjYkl63SVpF0T/xoqQ5EbFV0hxgW6p+DnCxpC8B04ABSXsi4isAks4AuiPi4bpdbAZOAjZL6gaOBXpT+bl19eYC9wPbgWmSulNrZC6wpQ2nbmaWZayNWG/b5SxJUyRNrb0HFgGPA3cAtbullgK3A0TE+yKiJyJ6gBuBL9YSSHIJ8O1Bu6nf1sXA99KlrruBRZKmpw71RcDdad19qe4B+zczqwoNREtLFbSzJTIbWJUuTXUDt0TEXZIeAlZKuhR4Dvh4i9v7DeBXB5V9E/iWpA0ULZAlABHRK+nzwEOp3ucioje9XwaskPQF4JG0DTOzaqhQf0cr2pZEImIjcMYQ5TuAhcPEXj1E2SlDlO2hQRKKiJuAmxoc19nN9m9mNppG+nKWpHHAGuCFiPhIGgZxK9ADbAJ+I93JiqQrKYY+9AOfiYi7m23bI9Zb0DcJtv9SuSt//ZPK/xVM3pI3DcSeWeVjBo7q3Fed7t2dmd4i9775vqmd+1mMe3VcR/azb8exWXHjM2L6pub94Me/lhVWWte+zuxnRI38n+R/BX4KHJM+18brXSfpivR5maTTKK7onA6cANwj6dSI6G+04dEYJ2JmZk2M5DgRSXOBXwO+UVfcaLzeYmBFROyNiGeADQxz5cZJxMysakZ2nMiNwB8B9U3GIcfr0XiMXUNOImZmVRKlpj2ZVRsUnZbL6jcl6SPAtkFDI5ppeSxdjftEzMwqpOQ4ke118xIO5b3ARyX9KjAROEbS/6XxeL3a2LuaYcfSuSViZlY1Ea0tw24mroyIuWn83RKKsXS/TYPxeql8SZohfR4wH3iw2T7cEjEzq5gOjFi/jiHG60XEOkkrgSeAPuDyZndmgZOImVm1tGmwYUTcTzH9U9PxehFxLXBtq9t1EjEzq5iqPCukFU4iZmYV4yRiZmZ5gpY6zavCSaQFMa781A4D0/aX3s/ek8vHAIzrKv8HN7Dp6PI7yvy77p/YmX8Q496aOY9Gxs8iMmcv6X61M1PA7J/Wua+yAxPz9vX6yeXjjl5f/n9ZXU27hatpLE0F7yRiZlY1TiJmZpZjrD2UyknEzKxKojoPnGqFk4iZWdWMnRziJGJmVjW+nGVmZnkC8OUsMzPLNnZyiJOImVnV+HKWmZll891ZZmaWp02z+LaLk0gLuvbDxG0ln9/18wml9zPpfa+WjgHo3TCjdExMKT/lxMQteXN9vPEL5adzmThtT+mYvVunlI4BYEL5f7ETt+c9z20g40cYb99dOib3H/b+bZNKx0x7PG9vfeX/iTBxZ9ausrxx3PB12qEYbDh2soiTiJlZ1XgWXzMzy+WWiJmZ5XGfiJmZ5fPcWWZmdih8OcvMzLKEH49rZmaHwi0RMzPLNnZyCHkjpszMrG00MNDSMux2pImSHpT0E0nrJF2TymdIWi1pfXqdXhdzpaQNkp6SdMFw+3ASMTOrkqAYbNjKMry9wPkRcQZwJnChpHcDVwD3RsR84N70GUmnAUuA04ELgf8jqek8C76c1YIQDIwvGZORnnf/aFb5IGB8xvQROSNic6YvAejaXX6uj76dR5eOOWazSscA7JtWPmbP8f1Z+8qyM+MXvD/v++Gx6zv3vbK7/Mw2vDKvfMz48rPGANCf8+9qBIgYscGGERHAa+nj+LQEsBg4N5XfDNwPLEvlKyJiL/CMpA3A2cAPG+3DLREzs6qJaG1pgaRxktYC24DVEfEAMDsitha7iq1AbaawE4Hn68I3p7KG3BIxM6ua1lsisyStqfu8PCKWH7ip6AfOlDQNWCXpHU22N1RzvunBOImYmVVJrU+kNdsjYkFLm43YJel+ir6OFyXNiYitkuZQtFKgaHmcVBc2F9jSbLu+nGVmVjEjeHfWW1ILBEmTgA8CTwJ3AEtTtaXA7en9HcASSRMkzQPmAw8220dbk4ikTZIek7S21uRqdmtZWn+ypNckfbau7ChJyyX9TNKTkj6WyidIujXdjvaApJ66mKVpH+slLa0rn5fqrk+xR7XzZ2BmVk6L/SGtXfKaA9wn6VHgIYo+kX8CrgM+JGk98KH0mYhYB6wEngDuAi5Pl8Ma6sTlrPMiYnvd59qtZddJuiJ9Xla3/gbgzkHb+BNgW0ScKqkLqD2F6VJgZ0S8TdIS4HrgNyXNAK4CFlA0Dh+WdEdE7Ex1boiIFZK+nrbxtRE9YzOzXMGIjViPiEeBs4Yo3wEsbBBzLXBtq/sYjctZiyluKSO9XlRbIekiYCOwblDM7wN/BhARA3VJqX5btwELJQm4gCLj9qbEsZri/mgB56e6B+3fzKwSRm6cSNu1O4kE8F1JD0u6LJUNeWuZpCkULZJr6jdQu54HfF7SjyV9R9LsVPbvt6NFRB/wMjCTxrepzQR2pbr15QeRdJmkNZLW9L+eeaO5mVkGRbS0VEG7k8h7I+KdwIeByyW9v0ndayguM702qLyb4g6BH6Rt/RD487Su0e1oZcsPLoxYHhELImLBuMmZz+42M8sxguNE2q2tfSIRsSW9bpO0imLkY6Nby84BLpb0JWAaMCBpD/BV4HVgVar3HYp+DHjzdrTNkrqBY4HeVH5u3aHMpRiRuR2YJqk7tUaGvX3NzKyjIqC/IteqWtC2JJIuT3VFxKvp/SLgc7x5a9l11N1aFhHvq4u9GngtIr6SPv8jRVL4HkVn0BOpam1bPwQuBr4XESHpbuCLdXd+LQKuTOvuS3VXcOCtbY3PJaBrX7nzH8j4yUbmbyNnipWujFk7jllXcu6XpOyUMQBdfcMfkpUjAAAGnUlEQVTXGSzKz64CwP6jM77RTcqc9mRP+V/W9LWdG841/vXyP4u9x+ZNN/P68Vlhpe15S9439vGv5J3XiKhIK6MV7fzrnE0xOrK2n1si4i5JDwErJV0KPAd8vIVtLQO+JelG4CXgE6n8m6l8A0ULZAlARPRK+jzFLW0An4uI3rptrZD0BeCRtA0zs+pwEoGI2AicMUR5w1vL6upcPejzs8BB/SkRsYcGSSgibgJuanBcZzfbv5nZqAnAz1g3M7M8AeE+ETMzyxG4Y93MzA6B+0TMzCybk4iZmeWpzkDCVjiJmJlVSQAtTPNeFU4iZmZV45bI4SW6oK/s9FkZXyTGv1o+BkA5X1oyBuPmjggv/bMD9p5ccoqAmtfK/0nHxIzR5/vzRjMf//3yP8QJu8oP398zI++XlfO3NHFn3v/w9h1T/me4d1b5fY3qyPMsnvbEbHRkJBCzygkIjxMxM7NsHrFuZmbZ3CdiZmZZInx3lpmZHQK3RMzMLE8Q/ZnPqxkFTiJmZlXiqeDNzOyQ+BZfMzPLEUC4JWJmZlnCD6UyM7NDMJY61hVj6Fay0SLpVeCp0T6ODpgFbB/tg+gAn+fhpWrn+QsR8ZbcYEl3UZxTK7ZHxIW5+xoJTiItkLQmIhaM9nG0m8/z8OLztE7oGu0DMDOzsctJxMzMsjmJtGb5aB9Ah/g8Dy8+T2s794mYmVk2t0TMzCzbYZ1EJN0qaW1aNklam8o/JOlhSY+l1/NT+dS6+mslbZd046BtXiwpJC2oK1sqaX1altaVz5P0QCq/VdJRqVyS/lLSBkmPSnpnVc5T0idT/bWSvi/ptMP0PP9Q0hPpuO6V9AtVOM8RPsf3S/qxpD5JFw/az+H0u5yQtrchHXtPVc7ziBARR8QC/AXwv9L7s4AT0vt3AC80iHkYeH/d56nAvwA/AhakshnAxvQ6Pb2fntatBJak918HPpXe/ypwJ8WTzt8NPFCV8wSOqSv/KHDXYXqe5wGT0/tPAbdW7TxH4Bx7gF8C/ha4uK5OZc5xhM7zD4Cvp/dLqvi7PJyXUT+Ajpxk8QfxPDC/wbodwIRB5fNTjOrKbgQ+AtzPm0nkEuCv6ur8VSoTxQCo7lT+HuDu+jp1MU8Bc6pynnXrLgHuPALO8yzgB1U6z5E8R+BvODCJVOIcR+o8gbuB96T33ekcVKXzPJyXw/pyVp33AS9GxPoh1n0MeCQi9g4qv4TiG03x1yydBZwUEf80qN6JFH/QNZtT2UxgV0T0DSpvFnOoDvk8ASRdLulp4EvAZ4Y55jF7nnUupfj2CdU5z5E+x3pVOUcYmfP892NLx/4yxblU6TwPW2N+7ixJ9wDHD7HqTyLi9vT+EuDbQ8SeDlwPLBoifgnwO6leF3AD8HtDHcIQZdGkvFlMQ504z38/kIivAl+V9FvAnwJLmxzzmD3PFPPbwALgA8Mc84idZ6fPcahDGKJsLP8uy57PiJ7nkW7MJ5GI+GCz9ZK6gV8H3jWofC6wCvjdiHh60LozKJq6D6eiqRTXZ++XBMU/jDskfZTim8q5deFzKS53bQemSepO33jmAltSnc3ASYNittBEh85zsBXA1+qO+dxBx3w/Y/g8JX0Q+BPgA3Xfdtt+nqP0u6x3uP0ua8e2OW3zWKC3U+d5xBvt62ntXoALgX8eVDYN+AnwsQYx1wHXNNnm/RzYsf4MRcfd9PR+Rlr3HQ7svPuD9P7XOLDz7sGqnCd116aB/wisOUzP8yzgaQZdi6/CeY703ywH94mM+jmO8O/ycg7sWF9ZpfM83JdRP4C2n2DxD+iTg8r+FNgNrK1bjqtbvxH4xSbbvJ+URNLn3wc2pOUTdeWnAA+m8u+QOgjTH+hX0//EHqvf1mifJ/BlYF2qex9w+mF6nvcAL9bVv6Mq5zmC5/jLFN+sd1N0UK+ryjmO8HlOTMe6IR37KVU6z8N98Yh1MzPLdqTcnWVmZm3gJGJmZtmcRMzMLJuTiJmZZXMSMTOzbE4iZmaWzUnEzMyyOYmYlSDpl9NzJiZKmiJpnaR3jPZxmY0WDzY0K0nSFyhGSU8CNkfEn43yIZmNGicRs5LSU/AeAvYAvxIR/aN8SGajxpezzMqbARxNMbvzxFE+FrNR5ZaIWUmS7qCYJn8exVPvPj3Kh2Q2asb880TMOknS7wJ9EXGLpHHAv0k6PyK+N9rHZjYa3BIxM7Ns7hMxM7NsTiJmZpbNScTMzLI5iZiZWTYnETMzy+YkYmZm2ZxEzMwsm5OImZll+/9fQ9JjLzUyQAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "xds.isel(x=slice(0, 20), y=slice(0, 20)).plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Fill missing with interpolate_na\n", "\n", "API Reference:\n", "\n", "- DataArray: [rio.interpolate_na()](../rioxarray.rst#rioxarray.raster_array.RasterArray.interpolate_na)\n", "- Dataset: [rio.interpolate_na()](../rioxarray.rst#rioxarray.raster_dataset.RasterDataset.interpolate_na)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "filled = xds.rio.interpolate_na()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "\n", "array([[673., 558., 687., ..., 656., 656., 554.],\n", " [673., 558., 558., ..., 694., 694., 642.],\n", " [673., 558., 558., ..., 456., 575., 642.],\n", " ...,\n", " [993., 817., 817., ..., 471., 479., 498.],\n", " [893., 893., 816., ..., 479., 479., 469.],\n", " [816., 816., 832., ..., 515., 469., 485.]], dtype=float32)\n", "Coordinates:\n", " * y (y) float64 5.05e+06 5.05e+06 5.05e+06 ... 5.004e+06 5.004e+06\n", " * x (x) float64 -7.274e+06 -7.274e+06 ... -7.228e+06 -7.228e+06\n", " spatial_ref int64 0\n", "Attributes:\n", " transform: (231.6563582639561, 0.0, -7274009.649486291, 0.0, -231.656...\n", " _FillValue: -28672.0\n", " grid_mapping: spatial_ref" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "filled" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmcXFWd///XO+mQhBDIBiEQMAERf+AISBQVFxYFHB3xJwhhBo3CPBgcRvQ7X2cAZ2FRHHBGQcUZzCiLKLIaRb8/CBHB+apsQcISQBMgQkwkhCSQAAnp9Of3xz1FLp2u6ntvqrqru9/PPO6jqk6dc8851Z0+de/ZFBGYmZlVMay/C2BmZgOXGxEzM6vMjYiZmVXmRsTMzCpzI2JmZpW5ETEzs8rciNiQI+lSSf9SMO4dkv66BWU4WNIiSeskfaTZ5zfrK25EbFCT9ElJv8qHRcSpEfHF/ipTch5wSURsFxE/btZJJU2TdLuklyQ9Jul9zTq3WU/ciJg1maSOAtFeByxsQfY/BO4HJgL/BNwgaccW5GMGuBGxNiLpDEl/lLRW0u8kHZ7Cz5F0g6Rr03u/lbRfLt2Zkh5P7z0i6f9N4f8PcCnwjnTbaE0Kv0LSl9Lz8ZJ+JulZSavT86kly/1JSb+WdJGkVcA5KfwkSY+m886V9LoU/jiwB/DTVK6RW/vZpfO+AXgLcHZEvBwRNwIPAcc04/xmPXEjYm1B0t7A3wFvjYixwJHAklyUo4HrgQnA1cCPJY1I7z0OvBvYATgX+L6kKRHxKHAqcGe6bTSuh6yHAZeTXRnsDrwMXFKhCgcBTwA7Aeenfo4vAB8FdgT+L9lVAhGxJ/AU8BepXBt6+Dx+JmlNneNndcqwL/BERKzNhT2Qws1awo2ItYtNwEhgH0kjImJJRDyee/++iLghIjYCXwNGAW8HiIjrI2JZRHRFxLXAIuBtRTKNiOci4saIeCn98T0feG+F8i+LiG9GRGdEvAz8DfBvEfFoRHQCXwb2r12NFCjXhyJiXJ3jQ3WSbQc83y3seWBshfqYFeJGxNpCRCwGPkd2K2iFpGsk7ZKL8nQubhewFNgFQNInJC2ofVMH3gRMKpKvpG0lfVvSHyS9APwPME7S8JJVeLrb69cBX8+VaRUgYNeS5y1jHbB9t7DtgbU9xDVrCjci1jYi4uqIeBfZH+AALsy9vVvtiaRhwFRgWfpm/99kt8ImpltWD5P9wSadp5H/DewNHBQR2wPvqWVTtvjdXj8N/E23K4jREfGbIieTdHPqL+npuLlOsoXAHpLyVx770ZoOfDPAjYi1CUl7SzosdTKvJ+ub2JSLcqCkj6aRT58DNgB3AWPI/oA/m87zKbIrkZpngKmStqmT9diU1xpJE4Czm1SlS4GzJO2byrWDpI8VTRwRH0j9JT0dH6iT5vfAAuBsSaPSAIM3Azc2oT5mPXIjYu1iJHABsBL4E1kH9Rdy7/8EOB5YDXwc+GhEbIyIR4CvAneSNRh/Bvw6l+4XZN/E/yRpZQ/5XgyMTvneBdzSjMpExByyK6lr0m2yh4Ee//g32UxgBtnndAFwbEQ82wf52hAlb0pl7U7SOcDrI+LE/i6Lmb2Wr0TMzKwyNyJmBaT1tnrq5L60v8tm1p98O8vMzCrzlYiZmVVWZKG4IW+bHUbHqJ27z+FqbMP6eiNK6xs9eovVLwaFlzeO6D1SNx3Du0qn2dRV7TvRtiNeqZSuiiqfRVdnH37XG9Z3dyZGb7OxdJqXN5T/f6Xh1eoUXWWnCmVeefKPKyOi8qKXRx46Jp5btan3iMB9D26YGxFHVc2rGdyIFDBq5+1566V/VSrN44/t0nukbvb7syWl0wwED/9xSuk0E3d4sXSa518aVToNwFt2WVopXRULlpefsP7ymtGl01S9S92xbWe1hBXss+vy0mkeWlL+8xs5ptqXhFdeKt/gAyz5+Bf+UClh8tyqTdwzd/dCcYdPWVRoZYZWaulXHElLJD2UlqSYn8ImSJqXNuSZJ2l8Cp8m6eUUd0G+w1LSgek8iyV9Q5JS+Mi0sutiSXdLmpZLMyvlsUjSrFz49BR3UUpb/quNmVmLBNBV8F876Ivr5EMjYv+ImJFenwncFhF7Abel1zWPp7j7R8SpufD/Ak4B9kpH7fLtZGB1RLweuIi0TEZu5vFBZAvxnV1rrFKci1L+q9M5zMzaQhBsjE2FjnbQHx3rRwNXpudXAg23BpU0Bdg+Iu6MbCjZ93Jp8ue6ATg8XaUcCcyLiFURsRqYBxyV3jssxS2Uv5lZX/OVyGYB3CrpPkmnpLDJEbEcID3ulIs/XdL9kn4p6d0pbFeyFVtrlrJ5JdRdSaunpuW2nyfb0e3V8G5pJgJrUtzu53oNSadImi9p/ivPv1y23mZmlQTBpih2tINWd6wfHBHLJO0EzJP0WIO4y4HdI+I5SQeSbTq0Lz2vplr79Oq9VzZ8y8CI2cBsgO33ntwePy0zGxK6el18un209EokIpalxxXAHLL+iWfSLararaoVKc6GiHguPb+PbLe6N5BdLeS3K50KLEvPl5KWCE+ru+5Atm/Dq+Hd0qwk2yuio4dzmZn1uwA2EYWOdtCyRkTSmNq+BpLGAEeQrWR6E1AbLTWLbHVWJO1Y2whI0h5kHehPpFteayW9PfVpfKKWptu5jgV+kfpN5gJHKNs/e3zKe2567/YU9zX5m5m1iy6i0NEOWnk7azIwJ43G7QCujohbJN0LXCfpZLJ9pmt7LLwHOE9SJ9k+EqdGxKr03qeBK8iW7L45HQDfBa6StJjsCmQmQESskvRF4N4U77zcuc4gW577S8D96RxmZm0hgI1t0t9RRMsakYh4gmxXte7hzwGH9xB+I3U2z4mI+bx2o6Fa+Ho2N0Ld37sMuKxOuQrtv21m1teijW5VFeEZ623kgYemVUs4um/Giw8fXW02c5XZ51UcNf3RSule6Cw/0/2updMq5bVxY9mt26GjwozrD+5VbUfcD41bUDrNN5a+r1Jeo4aX/316657lJ4Ov2lB+xj/AEy9VXrlk6wRsGjhtiBsRM7N2ks1YHzjciJiZtRWxqcfZCO3JjYiZWRvJOtbdiJiZWQXZPBE3ImZmVlGXr0TMzKwKX4mYmVllgdg0gHYudyNiZtZmfDvLzMwqCcQrUX5San9xI2Jm1kayyYa+nWV9aK/vlF8+4onPtKAgdWzTUb58B058uvdI3VRZvqSqo/d8qFK65et3KJ1m3IiXSqepsnxJVR/Y6eFK6Z7aMLF0mnuf2710mqd/vVvvkXowolKq5mhmx7qk/wX8NVn79BDwKWBb4FpgGrAEOC7tAouks8i2Dd8EnB4Rcxudf+A0d2ZmQ0CE2BTDCh29kbQrcDowIyLeBAwnW+38TOC2iNgLuC29RtI+6f19gaOA/6xt0VGPGxEzszbThQodBXUAo9NmfNuSbcR3NHBlev9K4CPp+dHANWmTwCeBxfSy6rlvZ5mZtZGsY73wn+ZJkubnXs9OW3tn54r4o6T/INu76WXg1oi4VdLktOEfEbE8bWEOsCtwV+58S1NYXW5EzMzaSMmO9ZURMaPem2ln16OB6cAa4HpJJzY4X0+XNw0XpncjYmbWZjY1b57I+4AnI+JZAEk/At4JPCNpSroKmQKsSPGXAvmRCFPJbn/V5T4RM7M2UpuxXuQo4Cng7ZK2VbZX+eHAo8BNwKwUZxbwk/T8JmCmpJGSpgN7Afc0ysBXImZmbaarwMirIiLibkk3AL8FOoH7gdnAdsB1kk4ma2g+luIvlHQd8EiKf1pENNw61Y2ImVkbyRZgbN5Noog4Gzi7W/AGsquSnuKfD5xf9PxuRMzM2kggNnrZE2t3e3yzfJqXz3m+Ul4dKr9j9AOrGo4qrGvJ45MrpSvrvfs/1if5AFw05b5K6b6+elrpNCOHbSydpsrM86qeWjmhfKK9X6TrqW1LJ9u0bf/sdB5BoYmE7cKNiA0afdWADARVGpDBqkoD0r9KTSTsd25EzMzaSOArETMz2wrelMrMzCoJ5E2pzMysmgA2Fl87q98NnJKamQ0Jaup+Iq3mRsTMrI0EzZux3hfciJiZtRlfiZiZWSUR8pWImZlVk3Wse9mTQUWCUcM7S6XZd9+nSufz3OxppdMAdCz+Y6V0ZY08f7feIzXJ4yeU/9XUhr779vb4C3231Edfzj6/8FcfKJ1m+rQVvUdqkr6cfT5ml3V9ltdryZMNzcysmqxj3X0iZmZWkWesm5lZJYNyxrqkdwLT8vEj4nstKpOZ2ZDWNZiuRCRdBewJLABq2yQG4EbEzKzJImBj18BpRIqUdAZwcET8bUR8Jh2nFzm5pCWSHpK0QNL8FDZB0jxJi9Lj+G5pdpe0TtLnc2HHS3pQ0kJJX8mFj5R0raTFku6WNC333qyUxyJJs3Lh01PcRSntNkXqYmbWF7LbWcMKHe2gSCkeBnbeijwOjYj9I2JGen0mcFtE7AXcll7nXQTcXHshaSLw78DhEbEvMFlSbW/gk4HVEfH6lO7ClGYC2Z7CBwFvA87ONVYXAhel/Fenc5iZtY1Naf2s3o52UKQRmQQ8ImmupJtqx1bkeTRwZXp+JfCR2huSPgI8ASzMxd8D+H1EPJte/xw4podz3QAcLknAkcC8iFgVEauBecBR6b3DUtwt8jcz62+1Ib5FjnZQpGP9nK04fwC3Sgrg2xExG5gcEcsBImK5pJ0AJI0BzgDeD3w+d47FwBvTraqlZH/0a7egdgWeTufqlPQ8MDEfnixNYROBNRHR2S18C5JOAU4BGDV5bMXqm5mVNciWPYmIX0qaDLw1Bd0TEUWnqB4cEctSQzFP0mMN4p5LdptpXXbB8Gr+qyV9GrgW6AJ+Q3Z1AvR4PRcVwrcMzBq82QA7vHFyj3HMzFphUO2xLuk4sj6JO8j+CH9T0j9ExA0NEwIRsSw9rpA0h6x/4hlJU9JVyBSg1iAdBBybOs7HAV2S1kfEJRHxU+CnqTynsHmU2FJgN2CppA5gB2BVCj8kV5SpqfwrgXGSOtLVyFRgWW/12PTsNpWXJClj7NV3VkpXbkGWzLDRo0unWXrYqAo5VTP8hb5rt7d74+rSaf74zPjeIzXJJSsP6bO8+nIJk2deKH+F35dLSnUM39R7pBbIRmc1p6KS9ib7Al6zB/CvZKNrryWburEEOC7d+kfSWWR9xZuA0yNibqM8ilwz/RPw1oiYFRGfIGsI/qVA4cdIGlt7DhxB1kl/E1AbLTUL+AlARLw7IqZFxDTgYuDLEXFJSl+75TUe+FvgOyl9/lzHAr+IiADmAkdIGp/SHAHMTe/dnuK+Jn8zs3ZQm2zYjD6RiPhdGti0P3Ag8BIwhzoDnCTtA8wE9gWOAv5TUsMWrUifyLBut6+eo1jjMxmYk25NdQBXR8Qtku4FrpN0MvAU8LEC5/q6pP3S8/Mi4vfp+XeBqyQtJrsCmQkQEaskfRG4N5dmVXp+BnCNpC8B96dzmJm1jRbdzjoceDwi/iDpaDbfrbmS7E7NGWSDla6JiA3Ak+lv69uAurdJijQit0iaC/wwvT4e+P96SxQRTwD79RD+XKpMo7TndHt9Qp1466nTCEXEZcBldcr1tkb5m5n1l5ILME6qzcFLZqf+3J7MZPPf8R4HOJENNLorl6bu4KOaIh3r/yDpGOBgsj6R2RExp7d0ZmZWTYnRWStzc/DqSpOqPwyc1VvUHsIadlAWWjsrIm4EbiwS18zMqosQnc0f4vsB4LcR8Ux6XW+AU22wUk2vg4/qllTSr9LjWkkv5I61kl6oXBUzM2uoBZMNT2DzrSyoM8Aphc9MS0pNB/YC7ml04rpXIhHxrvTomXZmZn2k2ZtSSdqWbBL33+SCL6CHAU4RsVDSdcAjZLMHTouIhmOdC63iGxEf7y3MzMyao5mNSES8RLZaRz6s7gCniDgfOL/o+Yv0ieybf5Em9R1YNAMzMytuoG1K1ahP5CxJa4E35/tDgGfwBD0zs5bpQoWOdtCoT+TfgH+T9G8R0duwsEFt2KoXKy9JUiqfCkuRVPWHzx9QOo2qrK8CTHnv0tJpVr20bbXMKpg05sU+SQNwzC73l07z1QXvq5RXFUuWTeqzvHhhROkkVcYsqeLqJWsX9d3SNnkR0DnINqW6R9IOtReSxqUl283MrAUG0lLwRRqRsyPi+dqLiFhDtuGTmZk1WTPXzuoLhdbOqpjOzMwqiDZpIIoo0hjMl/Q14FtkQ5g/A9zX0lKZmQ1h7dJpXkSR21mfAV4hW3v+OuBl4LRWFsrMbKiKGFh9IkUWYHwROFPSdhGxrg/KZGY2hIlNg2l0lqR3SnqEbBo8kvaT9J8tL5mZ2RAVoUJHOyjS3F0EHEm2GRUR8QDwnlYWysxsqKqtnTVobmcBRMTTaYfCmv7ZfNjMbLCLrF9koCjSiDwt6Z1ApI1NTgcebW2xzMyGroE0OqtII3Iq8HWyLRKXArfi0Vm9U/mOsT/9dfmlSKqafviS0mnWd1abHrT7dmv6JM385bv1HqkHHcO6Sqc5eucHKuV1+RPvKJ1mwvbll1hZuXhi75F6Mm5j+TQVli+pqmtE+a/oI9ZX66TeNLJ/LgdigHWsFxmdtRL4qz4oi5mZMUhuZ0n6x4j4iqRvsuUeuwGsAr4fEY+3soBmZkNNu4y8KqLRlUit32N+nfcnAj8C9mtqiczMhrCIQdKIRMRP0+OVAJLGZi83TziUVG09bDMzq6tdhu8WUWSy4Zsk3Q88DDwi6T5J+wJExLdbXUAzs6EmotjRDooMt5kN/H1E3A4g6RDgv4F3trBcZmZDUiC6BtPoLGBMrQEBiIg7JI1pYZnMzIa0NrnIKKRII/KEpH8BrkqvTwSebF2RzMyGsAHWsV7kmukkYEeykVg/AiYBn2ploczMhrQoeLSBhlcikoYDX4iI0/uoPGZmQ14zr0QkjQO+A7yJrOk5Cfgd2R5R04AlwHERsTrFPws4mWyNxNMjYm6j8zdsRCJik6QDt64KA59GjaRj2utLpfn9OduVzme735ROAsAuxywpnaazQsddleVBAH756BtKpxkz7uXSaaaOK79USlVfvf/9ldJt2jC8dBq9UH65mY4XK3bMvjiydJJhFVZKAdgwofzv04i15es1amXpJEn/3FIKoKurqXl/HbglIo5N6x9uC3wBuC0iLpB0JnAmcIakfYCZwL7ALsDPJb0hIuouulvkt/N+STcB1wOvzguJiB9VrpKZmfUsgCZdiUjanmzrjk8CRMQrwCuSjgYOSdGuBO4AzgCOBq6JiA3Ak5IWA28D7qyXR5FGZALZXiKH5cKCrH/EzMyarIlzQPYAngUul7QfcB/wWWByRCzP8orlknZK8XcF7sqlX5rC6iqyAKM70c3M+lLxRmSSpPzSVLMjYnbudQfwFuAzEXG3pK+T3bqqp6dLoIal6bURkbQH2T21t6eT3Ql8LiI8zNfMrOlKbX27MiJmNHh/KbA0Iu5Or28ga0SekTQlXYVMAVbk4uf3VJgKLGtUgCK9VFcD1wFTyDpargeuKZDOzMyqaNIQ34j4E9nGgnunoMOBR4CbgFkpbBbwk/T8JmCmpJGSpgN7Afc0yqNIn4gi4qrc6+9L+rsC6czMrKyAaO7orM8AP0gjs54gm+c3DLhO0snAU8DHACJioaTryBqaTuC0RiOzoFgjcnsaAnYNWdt3PPB/JE1Ima6qVC0zM6ujeY1IRCwAerrldXid+OcD5xc9f5FG5Pj0+Dfdwk8ia1T2KJqZmZkV0Caz0YvotU8kIqY3OBo2IJKWSHpI0oLaCAJJEyTNk7QoPY7vlmZ3SeskfT4XdkI6z4OSbpE0KYWPlHStpMWS7pY0LZdmVspjkaRZufDpKe6ilHaboh+WmVmfGEDLnvTFesOHRsT+uREEZ5LNlNwLuI0th5tdBNxceyGpg2x02KER8WbgQaDWJ3MysDoiXp/SXZjSTADOBg4imyhzdq6xuhC4KOW/Op3DzKw91CYbFjnaQPn1FLZevZmSSPoIWcdPfsdEpWOMpOeA7YHFuXOdk57fAFwiScCRwLxaf42kecBRkq4hmzT5l7n8zwH+q1GB1+8yrPQyJjuMLb9sB0dWSAMs/vW00mmmveOp0mkW/WHn0mkAhq0aUTrNyxXSvPhnL5VOA7B85bjSaaosX1LVyJXlv+sNf6VaXp3blk/TUe1jp+Ol8vXqqvAXa+PY8mkAOkdVS9cM7bLhVBF1f4qSDk6P5RfT2SyAW9NuiKeksNfMlAR2SvmMIWtMzn3NCSI2Ap8GHiIbr7wP8N309q7A0yleJ/A82d7vr4YntVmXE4E1KW4+fAuSTpE0X9L8rhe8C7CZ9aEuFTvaQKOvAt9Ij3XXTCng4Ih4C/AB4DRJ72kQ91yy20zr8oGSRpA1IgeQzVN5EDir9nYP54kK4VsGRsyOiBkRMWPY9t6Dy8z6jqLY0Q4aXRxulHQ5sKukb3R/s8jy8BGxLD2ukDSHrH+i3kzJg4BjJX0FGAd0SVoP3J3O8ThAGsNc60epza5cmvpOdgBWpfBDckWZSnbbbCUwTlJHuhrpdTammVmfaqNO8yIaXYl8CJgLrCdbtKv70ZCkMZLG1p4DRwAPU2emZES8OyKmRcQ04GLgyxFxCfBHYB9JO6Y07wceTc/z5zoW+EVERCr3EZLGpw71I4C56b3bU9zX5G9m1h4Kdqq3e8d6RKwErpH0aEQ8UOHck4E5WT83HcDVEXGLpHvpYaZkg3Isk3Qu8D+SNgJ/IC1rTNY3clVarngV2Tr4RMQqSV8E7k3xzstNijwj1etLwP1s7l8xM2sPA+hKpMhYh+fSraiDyar2K+CzEbG0UaKIeALYr4fw56gzUzIX55xury8FLu0h3nrqNEIRcRlwWZ1yva1R/mZm/ara/m/9osgYu8vJbhvtQjaS6acpzMzMmm2AzRMp0ojsFBGXR0RnOq4AduwtkZmZVTOQRmcVaUSelXSipOHpOJFsp0MzM2uFQbbsyUnAccCfgOVkI5tOamWhzMxsYCiyPe5TwIf7oCxtS+uH0fG7cutBbHyh/PoR6yeWTgLAtsvLp1nxo91Lpxm+e7WvPpvGlu8lnLrnit4jdbNsRfnlS6oa+VS1dTvV2Xuc7qouYVLFuEXlf8YvTq52b35ThWVFoj8WauoH7XKrqogh8iMxMxsggrZZ0qQINyJmZu3GVyJmZlbVQLqd1WvHuqTJkr4r6eb0ep8029zMzFphkI3OuoJsLapd0uvfA59rVYHMzIa8QdaITIqI60gT8dPqt5taWiozsyGq6ETDdrnlVaRP5EVJE0ntnqS3k23+ZGZmrTDIRmf9PdnaWXtK+jXZkicNV941M7Pq2uUqo4gijchC4L3A3mQ7A/6OYrfBzMysikHWiNyZtrhdWAuQ9FvgLS0rVZvRJtjmhdbns+0z1dJtqDDTfeOY8r+lVWaeV7X8gZ1LpxEw4oXytwGqzIKOil+josJE9/V7VJuyPvm2EaXTVJ19XsXG7cqn6RpZ/vd22IZqdRrxYqVkW6/J/R2SlgBryfqyOyNihqQJwLXANGAJcFxErE7xzwJOTvFPj4i5jc5f97+PpJ3Jln4fLekANu9Pvj1Qfk0Psxar0oAMVlUaEGsjzb8SOTRtNFhzJnBbRFwg6cz0+gxJ+5Bt7rcv2Yjcn0t6Q0TUHUzV6DvYkWQ7CE4FvpYLXwt8oVI1zMysV2r9Rf/RwCHp+ZXAHWS7vh4NXBMRG4An066xbwPurHeiRtvjXglcKemYiLixOeU2M7MmmiRpfu717IiY3S1OALdKCuDb6f3JEbEcICKWS9opxd0VuCuXdmkKq6vIKr43Svog2eXNqFz4eb2lNTOzCorfzloZETN6iXNwRCxLDcU8SY81iNvTPeGGpSmy7MmlwPHAZ1IGHwNe11s6MzOroMmTDSNiWXpcAcwhuz31jKQpAOmxtvfCUmC3XPKpwLJG5y8yxuSdEfEJYHVEnAu8o1smZmbWTE1a9kTSGElja8+BI4CHyeb+zUrRZgE/Sc9vAmZKGilpOrAXcE+jPIoMbnw5Pb4kaReyrXGnF0hnZmZVNG901mRgjiTI/t5fHRG3SLoXuC4tpvsUaQJ5RCyUdB3wCNAJnNZoZFbtpL35maRxwL8DvyWr3ncqVsjMzBoQzRudFRFPAPv1EP4ccHidNOcD5xfNo0jH+hfT0xsl/QwYFRFeO8vMrBXaaHHFIgrN1ZX0TrKZjR3pNRHxvRaWy8xs6BpMjYikq4A9gQVsXgI+gCHTiAx/BcY+3frZP6v26bslyUauqbA8yPPDK+X1yrjy/yP6cvb5yNV9lhUv7FdhCZMKK7o+c2hn+XyAMRNeqpSuiq4nt++TfEY/Wy1dV3/u+zqYGhFgBrBPRAygapmZDVwD6XZWka++DwPlV8MzM7NqBtDOhkWuRCYBj0i6B9hQC4yID7esVGZmQ1X0ydpZTVOkETmn1YUwM7OcNrnKKKLIEN9f9kVBzMwsM5D6RBrtJ/KriHiXpLW8tl0UEBHRN0MrzMyGmsHQiETEu9Lj2L4rjpnZENdGneZFNLoSmdAoYUSsan5xzMyGNjFIbmcB95G1hwJ2B1an5+PIFuzyIoxmZi0wkBqRuvNEImJ6ROwBzAX+IiImRcRE4EPAj/qqgGZmQ84gmyfy1og4tfYiIm6W9MVGCQzW7Fl+CZMRa1tQkDo6R/ddXiNXlV+2Y9Oo3uM0y/qGN26bbEPfLG0zZvKLldK9+KftmlyS+jpe6Zulbfp1+ZKq2qSBKKLIx7tS0j8D3yer2olke4qYmVmzDbBVfIt8LToB2JFsW8U56fkJRU4uaYmkhyQtqG0mL2mCpHmSFqXH8d3S7C5pnaTPp9djU/rasVLSxem9kZKulbRY0t2SpuXOMyvlsUjSrFz49BR3UUq7TZG6mJn1mQF0O6thIyJpOHBWRHw2Ig6IiLdExOdKjsw6NCL2z20mfyZwW0TsBdyWXuddBNxcexERa1P6/SNif+APbO6TOZls297Xp3QXpnJPAM4GDiLbT/jsXGN1IXBRyn91OoeZWdtQV7GjHTRsRNK2iAc2Oc+jgSvT8yuBj9TekPQR4AlgYU8JJe0F7AT83x7OdQNwuLJ9II9yXZJzAAAUO0lEQVQE5kXEqohYDcwDjkrvHZbibpG/mVk7UBQ72kGRPpH7Jd0EXA+82lsXEUVGaAVwq6QAvh0Rs4HJEbE8nWO5pJ3g1U3kzwDeD3y+zvlOAK7NLUu/K/B0OlenpOeBifnwZGkKmwisiYjObuFbkHQKcArANtuO7ymKmVnztdGtqiKKNCITyDrSD8uFBcWG+R4cEctSQzFP0mMN4p5LdptpXdpUviczgY/nXvcUMSqEbxmYNXizAbabsNsA+pGa2YA3gP7iFFmA8VNVTx4Ry9LjCklzyPonnpE0JV2FTAFWpOgHAcdK+grZhMYuSesj4hIASfsBHRFxXy6LpcBuwFJJHcAOwKoUfkgu3lTgDmAlME5SR7oamQosq1o/M7NmG2gz1nsdnSVpqqQ5klZIekbSjZKmFkg3RtLY2nPgCLINrm4CaqOlZgE/AYiId0fEtIiYBlwMfLnWgCQnAD/slk3+XMcCv0i3uuYCR0ganzrUjwDmpvduT3Ffk7+ZWbtQVxQ62kGR21mXA1cDH0uvT0xh7+8l3WRgTro11QFcHRG3SLoXuE7SyWTLp3yswTnyjgP+vFvYd4GrJC0muwKZCdm6XmlC5L0p3nm5EWVnANdI+hJwfzqHmVl7GIR9IjtGxOW511dI+lxviSLiCWC/HsKfAw7vJe05PYTt0UPYeuo0QhFxGXBZnXK9rVH+Zmb9qdm3s9J0jfnAHyPiQ2kaxLXANGAJcFwayYqks8imPmwCTo+IuY3OXXTG+olsvpV0AkNsxnrnaFj55nLLVWwaXf63YNtl1ZaBWD+pfJqubfruq07Hi32zvEXVcfOdY/vusxi+dnif5PPKcztUSjeiQprOsdU++BHrKiUrbdgrfZNPUzX/V/KzwKNAbR+o2ny9CySdmV6fIWkfsjs6+wK7AD+X9IY03aNHRf4ynkR2K+lP6Tg2hZmZWQs0c55I6sP+IPCdXHC9+XpHA9dExIaIeBJYTC93boqMznoK+HCx4pqZ2VZr7pXIxcA/AvkNBnucr0c2b+6uXLy6c+lqWjY6y8zMKohSy55MkjQ/d5ySP5WkDwEruk2NaKTwXLqaVo7OMjOzkkrOE1mZW5ewJwcDH5b058AoYHtJ36f+fL3a3LuaXufSFekT2TEiLo+IznRcQbaSr5mZtUJEsaPX08RZETE1zb+bSTaX7kTqzNdL4TPTCunTgb2Aexrl4dFZZmZtpg9mrF9AD/P1ImKhpOuAR4BO4LRGI7OgWCNyEnAJ2VLrAfwGj84yM2uNFk02jIg7yJZ/ajhfLyLOB84vel6PzjIzazPtsldIEUVGZ10paVzu9XhJW8wENzOz5hhIm1IVuZ315ohYU3sREaslHdDCMpmZDV1BoU7zdlGkERkmaXxuXZUJBdMNGjG8/NIOXeM2ls5nw+7l0wAMH1b+F65ryXblM6r4e71pVN/8hxi+Z8V1NCp8FlFx9ZKOtX2zBMzGcX33NbVrVLW8Xtq9fLrtFpX/0zOsYbdwexpIS8EX+Yl8FfiNpBvI/owcR4lOFzMzK2kwNSIR8T1J88l2NhTw0Yh4pOUlMzMbggbaplSFrg1To+GGw8ys1aJ9NpwqYkj1bZiZDQgDpw1xI2Jm1m4G0u2sIvNE/i7tU25mZq0WQFcUO9pAkQUYdwbulXSdpKOUNk03M7MWiYJHG+i1EYmIfyZbyfG7wCeBRZK+LGnPFpfNzGxIaubOhq1WaOPwiAg2b4/bCYwHbpD0lRaWzcxsSFJXFDraQa8d65JOJ1tvfiXZHr3/EBEbJQ0DFpFtu2hmZs3QRreqiigyOmsS2QTDP+QDI6Irbb046A3bCKNWFLpo2+xPI0vnM/rda0unAVi1eELpNDGm/JITo5ZVW+vj5deVX85l1Lj1pdNsWD6mdBoARpb/HztqZcnfh6SrwkcYe79YOk3VYZcbV4wunWbcw9Vy6yz/X4RRqytlVcnLO/UepxWyyYYDpxUpMmP9Xxu892hzi2NmZrTJCr1FeJ6ImVmbGVRXImZm1ocGYZ+ImZn1mfYZeVWEGxEzs3bj21lmZlZJtM/Wt0W4ETEzaze+EjEzs8oGThviRsTMrN2oa+Dcz6o27dbMzFojyCYbFjl6IWmUpHskPSBpoaRzU/gESfMkLUqP43NpzpK0WNLvJB3ZWx6+EikgBF0jSqap0Dy/eNek8omAERWWj6gyI7bK8iUAw14sv9ZH5+rtSqfZfmm1XQpeGVc+zfqdN1XKq5LVFX7AG6t9P9xhUd99r+wov7INL0wvn2ZE+VVjANhU5f9VE4ho5mTDDcBhEbFO0gjgV5JuBj4K3BYRF0g6EzgTOEPSPsBMYF9gF+Dnkt4QEXV/4X0lYmbWbiKKHb2eJiIi1qWXI9IRwNHAlSn8SuAj6fnRwDURsSEingQWA29rlIcbETOzdlO8EZkkaX7uOKX7qSQNl7QAWAHMi4i7gckRsTzLKpYDteUmdwWeziVfmsLq8u0sM7N2UusTKWZlRMxoeLrsVtT+ksYBcyS9qUH0nu4JN7zkcSNiZtZmWjE6KyLWSLoDOAp4RtKUiFguaQrZVQpkVx675ZJNBZY1Om9Lb2dJWiLpIUkLJM1PYXVHBaT3d5e0TtLnc2HbSJot6feSHpN0TAofKenaNJLgbknTcmlmpTwWSZqVC5+e4i5Kabdp5WdgZlZOwVtZBfpEJO2YrkCQNBp4H/AYcBPZZoOkx5+k5zcBM9Pf1ulkW6Pf0yiPvugTOTQi9s9dcp1JNipgL+C29DrvIuDmbmH/BKyIiDcA+wC/TOEnA6sj4vUp3YWQNVTA2cBBZJ1CZ+caqwuBi1L+q9M5zMzaQ9C0RgSYAtwu6UHgXrI+kZ8BFwDvl7QIeH96TUQsBK4DHgFuAU5rNDIL+ud21tHAIen5lcAdwBkAkj4CPAF0H5R3EvBGyHZUJNuqt3auc9LzG4BLJAk4kuzDWpXOOw84StI1wGHAX+byPwf4rybVzcxs6zXpblZEPAgc0EP4c8DhddKcD5xfNI9WX4kEcKuk+3KjBnocFSBpDFljcm7+BLVLMeCLkn4r6XpJk1PYqyMJIqITeB6YSP0RBhOBNSluPnwLkk6pjXjY9FLFgeZmZhUootDRDlrdiBwcEW8BPgCcJuk9DeKeS3abaV238A6yzp1fp3PdCfxHeq/eSIKy4VsGRsyOiBkRMWP4thX37jYzq6J5t7NarqW3syJiWXpcIWkOWf9EvVEBBwHHSvoKMA7okrQe+BbwEjAnxbuezf0YtZEESyV1ADsAq1L4IbmiTCW7bbYSGCepI12N9DrywMysT0XApoGzdlbLGpF0e2pYRKxNz48AzmPzqIALyI0KiIh359KeA6yLiEvS65+SNQq/ILuP90iKWjvXncCxwC8iIiTNBb6c60w/AjgrvXd7insNrx2VUL8uAcNeKVf/rgqfbFT8aVRZYmVYhVU7tl9Ycu2XpOySMQDDOnuP012UX10FgI3bVfhGN7risifry/+wxi/ou67LES+V/yw27FBtuZmXdq6UrLT1O1b7xj7ihWr1aoo2ucooopW/nZPJJrbU8rk6Im6RdC9wnaSTgaeAjxU41xnAVZIuBp4FPpXCv5vCF5NdgcwEiIhVkr5INhoB4LxaJ3s61zWSvgTcn85hZtY+3IhARDwB7NdDeN1RAbk453R7/Qdgi/6UiFhPnUYoIi4DLqtTroZrwZiZ9ZsAvMe6mZlVExDuEzEzsyoCd6ybmdlWcJ+ImZlV5kbEzMyqaZ+JhEW4ETEzaycBtGAp+FZxI2Jm1m58JTK4xDDoLLt8VoUvEiPWlk8DoCpfWipMxq06I7z0Zwds2L3kEgE168r/SseoCrPPN1abzbzzr8p/iCPXlJ++v35CtR9Wld+lUaur/cF7Zfvyn+GGSeXz6teZ55V42ROz/lGhATFrOwHheSJmZlaZZ6ybmVll7hMxM7NKIjw6y8zMtoKvRMzMrJogNlXcr6YfuBExM2snXgrezMy2iof4mplZFQGEr0TMzKyS8KZUZma2FQZSx7piAA0l6y+S1gK/6+9y9IFJwMr+LkQfcD0Hl3ar5+siYseqiSXdQlanIlZGxFFV82oGNyIFSJofETP6uxyt5noOLq6n9YVh/V0AMzMbuNyImJlZZW5Eipnd3wXoI67n4OJ6Wsu5T8TMzCrzlYiZmVXmRsTMzCob1I2IpGslLUjHEkkLUvj7Jd0n6aH0eFgKH5uLv0DSSkkXdzvnsZJC0oxc2CxJi9IxKxc+XdLdKfxaSdukcEn6hqTFkh6U9JZ2qaekU1P8BZJ+JWmfQVrPv5f0SCrXbZJe1w71bHId3yPpt5I6JR3bLZ/B9LMcmc63OJV9WrvUc0iIiCFxAF8F/jU9PwDYJT1/E/DHOmnuA96Tez0W+B/gLmBGCpsAPJEex6fn49N71wEz0/NLgU+n538O3AwIeDtwd7vUE9g+F/5h4JZBWs9DgW3T808D17ZbPZtQx2nAm4HvAcfm4rRNHZtUz78FLk3PZ7bjz3IwH/1egD6pZPYL8TSwV533ngNGdgvfK6VRLuxi4EPAHWxuRE4Avp2L8+0UJrJZtB0p/B3A3HycXJrfAVPapZ65904Abh4C9TwA+HU71bOZdQSu4LWNSFvUsVn1BOYC70jPO1Id1E71HMzHoL6dlfNu4JmIWNTDe8cA90fEhm7hJ5B9o8l+m6UDgN0i4mfd4u1K9gtdszSFTQTWRERnt/BGabbWVtcTQNJpkh4HvgKc3kuZB2w9c04m+/YJ7VPPZtcxr13qCM2p56tlS2V/nqwu7VTPQWvAL8Ao6efAzj289U8R8ZP0/ATghz2k3Re4EDiih/QzgY+neMOAi4BP9lSEHsKiQXijNHX1RT1fLUjEt4BvSfpL4J+BWQ3KPGDrmdKcCMwA3ttLmZtWz76uY09F6CFsIP8sy9anqfUc6gZ8IxIR72v0vqQO4KPAgd3CpwJzgE9ExOPd3tuP7FL3vhQ0luz+7B2SIPuPcZOkD5N9Uzkkl3wq2e2ulcA4SR3pG89UYFmKsxTYrVuaZTTQR/Xs7hrgv3JlPqRbme9gANdT0vuAfwLem/u22/J69tPPMm+w/SxrZVuazrkDsKqv6jnk9ff9tFYfwFHAL7uFjQMeAI6pk+YC4NwG57yD13asP0nWcTc+PZ+Q3rue13be/W16/kFe23l3T7vUk9y9aeAvgPmDtJ4HAI/T7V58O9Sz2b+zbNkn0u91bPLP8jRe27F+XTvVc7Af/V6Allcw+w90arewfwZeBBbkjp1y7z8BvLHBOe8gNSLp9UnA4nR8Khe+B3BPCr+e1EGYfkG/lf6IPZQ/V3/XE/g6sDDFvR3Yd5DW8+fAM7n4N7VLPZtYx7eSfbN+kayDemG71LHJ9RyVyro4lX2PdqrnYD+87ImZmVU2VEZnmZlZC7gRMTOzytyImJlZZW5EzMysMjciZmZWmRsRGxTSSrCT0vPfbMV5PilplyaVace0Uuz9kt7djHPmzv1hSWdWTPuFbq8rf15mHuJrA05upnE+bAnZmP6VW3nuO4DPR8T8rTlPOtdM4AMRMati+i3q2QyS1kXEds0+rw1NvhKxyiS9Ne25MErSGEkLJb2ph3ifSPEekHRVCnudsn08avt57N5L+BWSvibpduBCSRMl3Zq+5X+b3JpHktalx0Mk3SHpBkmPSfqB0ro1kv5V0r2SHpY0O+0jcSzZOlo/ULZnxWhJB0r6pbK9LeZKmtJD/bYos6T9yRaw/PPaubqlWSLpQkn3pOP1deo5QdKP07nvkvTmFO+Tki5Jz3eUdGOqz72SDk7h20m6XNneHA9KOkbSBcDoVKYfdPu8JOnf02fykKTje/sczfp9tqOPgX0AXwL+g2yW71k9vL8v2XLak9Lr2rITPwVmpecnAT/uJfwK4GfA8PT6G2zeg+KDZIvk1fJYlx4PIVvRdSrZF6Y7gXfly5GeXwX8RXp+B5uXtBkB/AbYMb0+HrishzrWK/MngUvqfG5LyBYiBPgE8LM69fwmcHZ6fhiwoPu5gatz9dodeDQ9vxC4OJfn+PznkwuvfV7HAPOA4cBk4ClgSqPP0YePAb8Ao/W784B7gfVsXjY+7zDghki3mSJiVQp/B9nie5D9Ef9KL+EA10fEpvT8PbV4EfF/JK2uU757ImIpgLLd86YBvwIOlfSPwLZkaywtJGsM8vYmW3hzXvriPRxY3kMejcrcyA9zjxflwvP1fBfZH3ci4hfpCmyHbud5H7BP7uJge0ljU/jMWmBE1PuMat4F/DDl/YykX5ItnfIC9T9HG+LciNjWmgBsR/atfRTZukd5othS2vXi5MO7n7vIefN7UWwCOiSNAv6T7IrjaUnnkJW9O5GtN/WOAvmULVf3ePXqWWRp8mFkmzK9nA9Mt5zKdHo2ukW1xedY4rw2iLlPxLbWbOBfgB+Q3T7p7jbgOEkTASRNSOG/YfO35L9i87faeuHd/U96H0kfIFultahag7FS0nZAfv/xtWRL/0N2G25HSe9I+YxQts9Fd0XL3N3xucc768TJ1/MQYGVEvNAtzq3A39VepP6YnsJrn9FGSSPq5HW8pOGSdiS72runYF1siHIjYpVJ+gTQGRFXky3R/VZJh+XjRMRC4Hzgl5IeAL6W3jod+JSkB8k2GPpsL+HdnQu8R9JvyTYueqpouSNiDfDfZKu0/pjsdlzNFcCl6ZbNcLIG5sJU9gXAO3s4ZdEydzdS0t0p/v+qE+ccYEY69wVkG4S9WpVc/jNS5/kjwKkp/EvA+NRR/gDZvvKQNfwP1jrWc+YAD5Itxf4L4B8j4k8F62JDlIf4mvUDbeWQZEn/G9g+Is5uasHMSvJ9TbMBRtKpZKOzPtpLVLOW85WImZlV5j4RMzOrzI2ImZlV5kbEzMwqcyNiZmaVuRExM7PK/n/CpPlvwVV8sQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "filled.isel(x=slice(0, 20), y=slice(0, 20)).plot()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.7" } }, "nbformat": 4, "nbformat_minor": 4 } rioxarray-0.18.2/docs/examples/merge.ipynb000066400000000000000000007341211474250745200205540ustar00rootroot00000000000000{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Example - Merge" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import rioxarray # for the extension to load\n", "import xarray\n", "from rioxarray.merge import merge_arrays\n", "# Note: You can merge datasets with the merge_datasets method\n", "\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load in xarray dataset\n", "\n", "API reference:\n", "\n", "- [rioxarray.open_rasterio](../rioxarray.rst#rioxarray-open-rasterio)\n", "- [rioxarray.merge.merge_arrays](../rioxarray.rst#rioxarray.merge.merge_arrays)\n", "- [rioxarray.merge.merge_datasets](../rioxarray.rst#rioxarray.merge.merge_datasets)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "dem_test = \"../../test/test_data/input/MODIS_ARRAY.nc\"\n", "rds = rioxarray.open_rasterio(dem_test)\n", "arrays = [\n", " rds.isel(x=slice(100), y=slice(100)),\n", " rds.isel(x=slice(100, 200), y=slice(100, 200)),\n", " rds.isel(x=slice(100), y=slice(100, 200)),\n", " rds.isel(x=slice(100, 200), y=slice(100)),\n", "]\n", "merged = merge_arrays(arrays)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEiCAYAAAAvXX9FAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d7xl2VUein5jpZ33yadyVedWQgIkJAHCRjYm+GHL1xFsY+D6GWPA4TqCw49nbPyw3722uRYG5GsRbAMGX8PlYS4gokgCxZY6qlvdVV351Ik775XG/WPMMcOp0Ke7qqVu1Rm/X9XZYe215pprrTnSN75BzIxDOZRDOZRDOZSXU6LP9AAO5VAO5VAO5bNfDpXNoRzKoRzKobzscqhsDuVQDuVQDuVll0NlcyiHciiHcigvuxwqm0M5lEM5lEN52eVQ2RzKoRzKoRzKyy6HyuYuECI6S0Rf9tl2rFeSENGXENFTB9z2G4jot16GMTxMRB8joiER/Y07vf9DOZTbkUNlcyiveCGiP0tEv0NEEyL69c/0eACAiJiIHtD3zPybzPzwZ3JMAP4+gF9j5h4z/+93aqdEtExEP01EYyI6R0R//k7t+1DuHjlUNofyapBtAP8WwPd8hsfxGRMiSg6w2RkAj70Mh/8+ADmAIwD+AoDvJ6LXvwzHOZTPYjlUNnePfAERPU5EO0T0Q0TUBAAiWiKinyOia+a7nyOik/ojIvp1IvpnRPTbJjzzS0S06n3/dcba3SKif/RyDJyZf5mZfxLApRf7WyJ6KxF9iIgGRHSViP61+fwe4518ExFdIqLLRPR39/3ud4lo13z3biLKzHfvN5s9QkQjIvpzRPSlRHTB+/23E9GnzJw9TkT/00sYOxPRtxLR0wCeNp99tQmV7Rpv743m818F8E4A7zZjeujFHu8mY+gA+FMA/gkzj5j5twD8LICvuxP7P5S7Rw6Vzd0jfwHAVwC4H8BDAP6x+TwC8EMQq/g0gCmAd+/77Z8H8I0A1gFkAP4uABDR6wB8P2ThOQ5gBcBJ3ETMArx7s3935Cyvl+8F8L3M3Iec+0/u+/6dAB4E8OUA/oGXb6oA/C8AVgF8IYA/DOBbAICZ/4DZ5k3M3GXm/3qD434KwJcAWADwTwH8ZyI69hLG/ycAvA3A64jo8wC8F8Bfhcz1DwL4WSJqMPMfAvCbAL7NjOmT+3dERP/+FvP/8Zsc/yEA5b79PQLg0LM5lBcld7WyIaL3EtEGET16wO3/rLFSHyOiH3u5x3eH5d3MfJ6ZtwF8N4CvBQBm3mLm/5OZJ8w8NN/9wX2//SFm/iQzTyGL9eeaz/80gJ9j5vcz8xzAPwFQ32wAzPw9zLx4s3939GydFAAeIKJVY5l/YN/3/5SZx8z8CYjS1Xn5MDN/gJlLZj4LWdj3z8tNhZl/ipkvMXNtlNHTAN76Esb//2XmbTP33wTgB5n595i5YuYfATAH8PYDjulbbjH/b7zJz7oABvs+2wPQewnncih3sdzVygbADwP4yoNsSEQPAvgOAF/MzK8H8LdevmG9LHLee30O4omAiNpE9IMmFDYA8H4Ai0QUe9tf8V5PIAsQzD7sfpl5DGDr5Rj8bchfhljnTxLRB4noq/d9f7N5eciEFK+YefkXEC/nQEJEf8kLd+0CeMOL+f1NxncGwN/Z5w2e0jG/TDIC0N/3WR/A8GU85qF8FspdrWyY+f2Q5LMVIrqfiH6BiD5MRL9JRK8xX/0VAN/HzDvmtxuf5uHerpzyXp+Gy3/8HQAPA3ibCTVpiIgOsM/L/n6JqA0J79xQiOgfmnzCDf+9mJM5qDDz08z8tZAQ4L8E8N9MHkLlZvPy/QCeBPCgmZd/iIPNCYjoDID/AODbAKwYr+3Rg/5+/yl4r88D+O59HkmbmX/8gOP6gVvM/82ABZ8EkBhjS+VNeHmACIfyWSx3tbK5ibwHwF9n5jdDchP/3nz+EICHTKL8A0R0II/oFSTfSkQniWgZwD8CoHmGHiRPs2u++84Xsc//BuCriegdJnn+XbjFPcXM/8LkE27472a/I6KYBNCQAIiIqElEqff9WSL6hpv89i8S0Roz1wB2zcd+qO+fGO/u9ZC8lD8vAwAjY3D8tX27vgrgvpsMuQNREtfMGL4R4tncrvwHAN9MRG8jkQ4R/b+I6EAhLWb+5lvM/w1zMMZb/e8Avssc74sBvAvAf7oD53Mod5EcKhtPiKgL4IsA/BQRfQwSp9ekbgJJJH8pJK7/H4ho8dM/ypcsPwbglwA8C0le/3Pz+b8F0AKwCeADAH7hoDtk5scAfKvZ92UAOwAu3PJHL02+DqIQvx+SdJ9CFl4YJbcCGfuN5CsBPGY8p+8F8DUm/6HyGwCeAfArAP5XZv4l8/nfhQAjhuZY+0EA/x8AP2LCWX/W/4KZHwfwvwH4XYhS+hwAv/3iTvl6YeYPQTzsd0Pm+hkA33C7+z2AfAvkHtkA8OMA/pq59odyKAcWutubpxHRPZAk9xuIqA/gKWa+DjVERD8A4PeY+YfM+18B8O3M/MFP64APJRAiegeAbzWhshfzu3sAPAcgZeby5RjboRzKoTg59Gw8YeYBgOeI6M8AgAlVvMl8/TMQrwYkdSYPQbyEQ/kMCjP/1otVNIdyKIfy6Ze7WtkQ0Y9DQh0PE9EFIvrLkHqUv0xEj0CSoO8ym/8igC0iehzArwH4e8z8SkNeHcqrSEj41D5tYIlDOZTPpLyiwmhEdBYSI68ghWRv2fc9QeLufxQCwf0GZv6I+a4C8Amz6fPM/Mc/XeM+lEM5lEM5lFvLQfiWPt3yTmbevMl3XwVJ0j8Iqar+fvMXAKbM/Lkv//AO5VAO5VAO5cXKqy2M9i4AP8oiH4AUH74UCpBDOZRDOZRD+TTKK82zYQC/REQMoeV4z77vTyCsqL5gPrsMoElEHwJQAvgeZv6Z/Tsnom+CUH6g0+m8+TWveU3w/WMXrrptKzhVzAB7aplq+WcHbUr12NTcR5V8Rn6E0ryuU7edHicq3fe6X6rlgyojxDMGx149oF8ayAB5oVCOSD6r3WdVg+R8vPEHQu789LuoMC9qgBN3wDqjoMxQz93uM5LX/nwxyZz486C/g5mn2psTO4+F2a8/jxRuq8fUfRNff372+uhY2f0NrmMkh/KvG0f7xrpvPMm0RNGVxygqgaqJcK7L8HpHBUAV6+5Ahdu46Mt+bnmtPIlnFeo0MvutzHjlfdGN5D71xhrljDolM1b5ojbXtk7D4+r5qNRmpdD92evrj+8WJat2+5tsY6+1fs/hX7pBuJ+JgvucSgab8+OY7DzL+PUm8I6p37M8N3yDexCQeZlsXdhk5rWbn+ELy1e8s8Nb29ULbwjgwx+f/yIzv9pq+W4przRl8w5mvkhE6wDeR0RPmir/g8gZ89v7APwqEX2CmT/lb2CU13sA4C1veQt/6EMfCnbwlr/8rwHIjVk13OdlB0ANZIagQx/K+bL8LbpAYxvBg0QVkJo0b5wzZsvuy2QKzMxv2xtywzd35KmtY0Iyr0GleyqKTmwfjDomxEX4EMV5jSqTp1kXxrIlL8o2IR277bOBLFD6IM6WIrsfAGju1mhfnmG25iZgvhChNspOx2GVYiXnzd65l21Clem5y4KrEpWMqHKLl461MDX9HAPtK2687c3KKpc6jex+AWC2bBZab/+N3RrpRAaXdyPkXaf1qJbjxwUCyXsy+GzIqBPY+eIIKJuEKnMnx5EszADQ2qqx/Tq3fyYgngPpWN4nUyAq2F5bMNC+NHHjmVeoehnqhpxgbpTNfMHtM5kx4rkxPBoEKoH+U7vy5XmPRejMEVTdJq58oSNHmB5lLBvWv/ZGiXjuFrr5Uop5P8LkiDs3qoDWJtvjqmIC5DwAYHLEjc2/hskEwTNjlZJniNWp+14X/Y651nHO5jjud5GvLMxzoftTJTs198DqR4eYHW15AwCGJxKkE9lH2ZQfdq66OYhypyk5JlQNd26DM+51PAceefffPofblM3tEr/zCycOtG3z+HMvhdroFS2vKGXDzBfN3w0i+mkIcaGvbC4ipBc5aT7zf/ssSYOtz4MULx5Yas+CRwSUeu+ae3K+ZL4q5OEpvJr3oucelGQCdC+6G1kXfkAWoGzEyIwiqmMgG9V2MQeAshEBTfOG5ViVLvYFB+Ms2oSiHdvFP54zyhYhG8oH2RBo7BTIF+RS60NamEW4bBOi3D3YeY8wW2rbxSAu2Cy+ZjEoGXkvCqxgjoC8q8oIgUIAA8mcA2+kjoGi452vt0a0rzKykS54dfA7qhjJFBidCF2b5pab62TuvZ4ykmmFvKduG66TeM5omcV8uhKhuV171jIhnbBVNsQcXMurbyXxEMwK2DPLkS7CVQY0t931am3kiKZO09WtFFFeYXqkaT8bH3VzWydyT9Vt+f18kdDYZXAmB+AHTiGa5QCAvdcvmXOW3w7vdYoGAOqUUKeJVSBqZHQu+16x235wWt7ofdUyWdT2VTe/ug8dq/XSAdSZTEvlTg1UhccA5P4FRNlEBZCM3Y3FCaFsyg/0uqoSi/Mao6Nu+dp6Uw/Z6PqxqaKO5ywK1Lt18mX3+2Tm5iGe11j6ZI3pqmzs36u3IwygDtz0u0teMcrG8FVFzDw0r78cQn/iy88C+DYi+gkIMGCPmS8T0RKACTPPTQ3MFwP4V7c63uPnr+KtX/+v7fulx4dQH/nKF/fFSp3J++aOserW3U03PcJobBuXPXKKBpAHnhOgMg923if7EFZNoKjIWnJ1Kg9GLGsG4hmHHpLcoS4kQGbhM+/TiVhtqiw4AVrblT12Y6fAdM2t/pP1CI0BY77gLfYdgM1B0wmCUEMdEyZrhO7lyoyvRmtWY7Lubh3/YeQIaOy6RVkty6IbPrD+ouMveP5DzxGQeovP3ChMf65VqQKhJQzAKpm871nopXgwgCyG8z5ZT6cxqMEJUBgLN6oY2bBGNnb7HNzn9pWOjDdoFmL1YHxvKh268SfDOVDWyI8Lu8z4aGbG6fZZNZzyjefhd50rsv/xafFe2ucnmJ4SjsxsUGFwxrkOq48A6djNzWRdFk618AE3D/r5xMt+JuacNfw5XxKvSq/PfCFCvuC2b2yLUaT3dZzLtVcPgSrxcPXojYEo8d5F55b63rGGblXJzJZiNHcqJBNvPudOc6hSUa+wZQwQP5QWzWsbcc0X3W+LLu0LnUYoOoRrX3Lna33rm5Oif9bLK0bZQLoA/rSgm5EA+DFm/gUi+mYAYOYfAPDzENjzMxDo8zea374WwA8SUQ2J4H+PoQy5qTCA6Yrc0GuPzBHtufDGkd+Rz3dfJ66LWpqqEABYRQMAvefDxbsxkBvKLrAsSgBwD7H/0KdTtjF0TsKHziqphgn1GC/Iz+FwDCRm0Y0qoP2pHfvd7NQCGnsldh7M7P5ny4R05J6uuRcuKVtyTFW0GhopW5H9W6XiEam0tt0DpEqufU0mbbImD3X/effgRp73UXZiFO3IhljSTS/MUdZmn8a6ndTIF+JAwXBMqDTMVhOyYYXZUhyOZcMsWMuSlMm96xKVbN+n5hbw92+9IgDzXoTWBhD7ZDdwChUMzBcjO2etTUZzY4JoIjdOudwBmqlTmuaazxfdXMZz+QeIlzdfIOspDU5H4BjonZfxTU62MV2J7b58Ba6KZnDKLarR/nSBd5/Vxh7RY+ULotRt6NhcvslaFGzf2N6/DxeOBQP9szKOOGfsnYnRGLj7rrFX7wu/RkBbx+EMOTvcgu29QByG8TSk6kcUNJwKAKg4UDCBQTDSEJ6X50wJSx+Sm3J8sMjXCwqDUb2CSk0+3fKKUTbM/CyETXb/5z/gvWYIF9f+bX4Hwj91YEmnjLVH5KluPG1i37HcgOMzYjmqlQZIbDjxLFx/wVFFo4sER+ZB8R6kxCxkGnrLvIeOyS2MGqayYvbRveRZgDEFoarGbriKTO5fsvHowRnZ0CbFC2cFAsBsiVB7sfZsT/76oa3GHqP0wiHx3I2/e2GOyTE3GFWKk5Z7sFcfcTWK8bUBhm864t7njDivghyV5hZKsw9VrEUnCryozuUSs5XEAzUwyqbbJsqd4geA1maNskk2dDNbAQCyijWdyD786xYkzY23q8njdCLbOs+J0L1U2TBcY0uUDKfyg3hngnK1g+ZWYY6fYnw0Rma6xVSZHEPzeHUi3ocuuOPjhP5Zb7Ei8WIBYHgiRnOXkUxUQbuwpop/Xqog1XOarps5NZzX0zUxOvQ+aG3Ia1UyUSH/CkMBGpUy3yrzhQjJhG1oq8oI3cu1VVatrTrwvKosApVA5Rlh8YyRTt02vveR92JkAw5CedkgDHPWSYTGjkzA3BggYUjbKJkqnIs6JmscAkDnIu6YHIbR7kKhWYHGJy/Lm0RuxMGbTVsQZgxPxUG4ps7cg5b3gfZl950CARJvEQczmrvu7WTN3eTNbQ7DRUE+I0zo60Iz77uNfAROa7PEfNFdxql5YMbH3Gftq+7BAsLXUQGMThFiteoH1z8MvhcWF4zuhbl9f+3zRAtpSKVzUTyDxQ97HRhmcyATK3H3C46a45hVMCJQyUG4o/QUFceE2bJ739qqrSIt2zGSKVvlERXAdDUKzq9OnEeq56FGRDoh1BFQmQV1dILgK5/OVUbpKeLu5RJUuDDn6HiK1naFZG68zn1KP++nyADExkMrjnQDBNVkPTbhVtm+uS3gCX/8hedBLj1VizdkPpqsxhYskszk/Kg2IcBcFl7fKCm6QPeiAz/4YAdA7mmdm+5FuRdtLrAIgRXzBQp+W3TFAFPvMDHKTHMwyRjYecgNhiMKkHaqZHyvsuhEQrmqv0kIU3MvJFNRNHrtqBYPUQEOUcGYrkSYrsh8VA0Jh1svFCHwwp/nogtkA/e8Fw5zcVvCAKpDZXOXisl/TF4nC+DgtNzIxPIQ2tCO8Why00Kqse1uXkAecl/RcCTWv/6+jiWPoeJ7TFHJAtY2oslgXZD0gbTeUuSFbQCMj6ZIZi4UpMnstkNx23AN4BBXuh1HQOciWwVXtgjJlDFd9cJHy0DnkhvP8EwjQNflC7IQqrQvO2WE2RyjN7tO0XHOiGe1F7JgVM0IhQlxZIMKRdcpl3k/sgtqY0+OMV9S1JaEA9WzyPvy3no65rx1wSWWhT33Qp7je2q0z7vQkCoaABiclu1WH3MXKBu4FXdpVIIqRr4kB6iaEbK90sKQAYDyyno2yc4Ms+Md7N3rw7KAlSfd/ot2ZA2MdFJjuuoeUZ7KvTLvR3YuNcw6uFfGXkxU8VKQnJ8vyfezJRcyLFui4ACguR0qNgWsqIU/6xKaO4zRcW8b7zTU4NIEfNkm9J/LsXefp+08z6qxJ3PkGxL+c1F0IjS33LyUrQh5L8J01XmRqRdpqBMgHQKl8axhPBgfITdbckqld7GyoTqqBEatz7d6muoJJi7CflvCAAo+zNncfRJHuPpVZwAAvQsFth9O3bNA8hBqSEhvWPVmoooltm6ToQyws84E+VIDZuEq2pG1qpMZB6gZJkEK6QICKHTYyzcQXQcl9WPOZZMChJoie1Ra25VD9RhLU5XZ+FiKdMzWu4pzxvBkhMSMfb5s6gwMRDYdyqLsW3vNTUFRAcDaR6agmlEclSd3crSJuAjzCXVKgBdqLDruy9HxNIB5d6+EC3GdUghuaJP1BKgK61I0ZGLPxSil0Wm3qKmiAYD+ORe+ksGZ+fPgynXDW/xNLYcucO1LM3AaIZ6aMZc1ilUXjyzbMWaLMRp7GtM0+zTXLp7VwYI/Op4gKpxnNjwRIapC77NQSO9FuXY6N3UqYBQNbaky8K9Dc9tdl7JJQXgVgCAyPYU1WyY7l3nPLcqAyy36Ybvh6cx+ng1rTNYjtK8ZEIXx1NUD4gSBcmlszVF2Upsr1MR/91Jt32cjlj6iECNldCyxNVd795tr2ZC/necjG+YGXC4R0PuG0dgNT98Pud0puXtVzauPQeBQDuVQDuVVKQxGdcB/LyRE9F4i2iCiR/d9/teJ6EkieoyI/pX3+XcQ0TNE9BQRfYX3+Veaz54hom+/oye8T+5az6boJjYmu3dfit7FGqMTonuzAZsaDVN/sRYhnobQ2mRaWyuuSsnEtF08vErJq9aGrR3R3IR6KMOTcgk0Qdu6FtapVJlAc9XaHh8hjI+4upr2Botn4/2mjsmGqVrbVeA1zZZS9J7PUXbEsmsMaglRdDQJL0lfP/ELiEcDiOcQz5yF7IcLAWDntS2Agea2QlaNRzXTUFgVWL/zhVjmK9OEtpvj/jkxyzVsNlkPaz+AEEHEMdA/N8fefeKKqgegoaDmLmPjLR5qcJOCPMR+jwYAOpfdBkyE0Wln6idTRt6N0LniMuPpNQeGmNyzCE7IepNFR0KCtm7HQNrVmymbcQB1jnPZxkddMbkQV1xwAGCISqB9zSDc+oSy434bFeJ16HWsGpIQ1/CpDaN6+TkpZPZQix6EXHM/vvUfz/Y/Iz7og9E776DLs9UUkRc26z4/A1W1rQMr2wnAHO7Py3N2rpTi7auTWDF6FwoLme5eAs5/mVfQW0nYW8Ejcw+2PfkccddWfs3F3PwwseaBblsYqO7QrgD8MKSJ3o/qB0T0Tgil15tMGci6+fx1AL4GwOsBHAfwy0T0kPnZ9wH4IxA2lg8S0c++EJL3pcpdq2yiysFxy2aEdFRh6Sl5EPKFGFVGFpKa7EueU83BgtncKlB2YwfX3Od9U832oeCYUMZhcnW6jgBl1LrmHgpdDHXR4NhAUs2aVrZJCicnGgIi9J93C6SGIfxQ1XwpsSEcjsgqGkD2G1UONae5Gr9Opmy7sXMMdC7XmC+a/ZvTGNyjeQWgscN2/NOVGKm3CKnSam3JhKbjyu5jdCI15+Bi637cPxuGRXr9cxInWXrChb12H24HMO+1D/t5AULZdtdXFasaBM2tEo0NlxgYPSChQbuIMiPz6mjiiQfHApDMNC8h55F3IwlVsR6Pg8W9ygjZkG04tjLURnqvNbfZ0PWQHYfSCsW5KLHxMQOFzoWJwTJJNMN8VDqWe8yyI5CACvzwqA9TTieSXNeQoULfu5fc+VcNsufDkcxv04PFJ5MKzUui7ZqXAFSMaqlt5twwaBg2hdrUOpXmbzo2xpyBDpP3PAFynyezsNBzyeslqspUDZXmDjD8CnmIur8tN7safADQP1fbc70OMv4ShXHnwmjM/H7TANCXvwYp+5ibbRSl8y4AP2E+f46InoEUzAPAMwYJDFO/+C4Ah8rmToqP6EonYt3XWZhkb5n4cjxnm6AHZIGeLhD6Z039hElo26S7ieX7CU+bjDTgA11wmjs1mjtu0Y0KVzMAmLh7wUFBaTx3Fn2dUGDdEwOzlcRCYFXJKMw04J8C0L6cI+3FtkjTFhQaFNDOV03Q/c1OYEH7YAd9iHsXZKVuXJvi0h/oBTVJ46PugP3z9XWoLSC0iKumwmMrTNbiAPKq10TOXRZe9T40V7LzWrdiRh6cVuaE7JxEBSPb21fL4Y2DY8LFL1tC/2xl9iX1UG5OOSg6rdoZZvf2ke3JeJR+ZnDGAE9qsZgdRFg8qyDP1Ha5EyqFr0vnniPxYLXmhSO32M4XIySTOvBEZstkcy7JVO5jvcfzlqDBfG9hdJzQNB2asrEAOWzxcUJSyOl5N1q/BFyP6Gpfq1DHhGzo8jDJnndTmHmOh6IB89WO5IjaznrQGiLAFMx6NSqag/SFCehcleONj4ZLm0YLVMEAwHLXWBlfMcHO769bo6N/ztWsARJNuDNCqG5FIHf78hCALyGi74ZkjP+u6SR8AmHbdOWUBK7nmnwbXia5e5VNBaQDuTFnK2J5xubBi+d8XcI0mXnV2Ca5OLhHUUhyA9nEL0SBqYdTZVFIiLgvdBOSfDJamxWm5hh1LAuqLgJVI0SjcQyUCdnFXb/TEF6ci1fhgxJ8KXqxPWczAuRdYPp2Z9FLPYpI9wJj4VMu05qdvSbjOrJoP1t+ssTefe7WanqFf5oEVsVQdFNUrQi++pktugnhiOzi2hjUQUipe040YpTLBpzGmBxvoe2BCkDOu5OantCb4Mgt9lUK1O0IvfNygbZeL/fF1htkjtIB0Lla22T1fCFCaytC57yMY2ZoZzSM19qqsXtfjNxNjYRj7fkw8h5ZBVo1hf4mN8qs7ADZnkPXqTGj17JOyBJU5j1ClUbWA6UalqsNMEZO5ghZmyMNEbvtmzsOwaeKRhWrsDkwmjtaAxVhdNy/ThKm0mJeAOg+s4uqL9YL5RWocsg8bpq6l56L/07XUvfMNEJOOt9AsMfcR8iq11m+lD+qTOtEPOT2r4kXwwmArxLtsvP761h+PHw+6pTuoJJxQyr2hz1uLquGWFjlPTcgJt4vCYBlAG8H8AUAftJwRb4i5K5VNgCQLxol43kJKsk0ZFr2Fyh9+DWU4Fx070Hw7imfQBBw/GSALDxUe4WEBo6decWIeTcKHmKfsmP3AaPwtAJcq+Y9Dqs0d9BpqkMvTcNQirwDBIEWP+m8Ay30A1yIKnn+mhlMjOroEqqWu5V8RaNFkEufFAuWtOak6+KIRSeyntdkNbb5Ih3fgqlC7z0rVik9J1V21UOnEeUlJifdWH3PRI1IXUBnSzHqJGQ8yHYLDO4R5VCn4kkM7pGxNbcYwzOE1ENdpRPGwuO7AIDhQ300dkqU5lzaF1RBu/F0L9WAmb/ZchSQkoLFO1DllcwZ877jRkvG5rqY82js1oGyjEq2KMB4LtuqIVN0XX5NvwdCD5IY6D1vaIgKRt6L7WJOLP+yPVcU6S/uo2MRip5jxOhdkDltXZQPKC+topEDEDhOrEczOSnhM/+Z858RDatqfZmGKwNiVe9S6z0dkIPO2HGpeQWogPGQf1S4LlfnVUA6ChiEp5YuhEj1lywMvBjPZnN/88gDyAUA/90Uv/++YVRZxS04JW/x+R2Xu1bZ1Klz+7MRB/UNQEhNA3bhB/nOJFU9D6NqhJ7Qfup6+zqmYGFPpqHLDjCoZswX3JNdp8DouLxffEYGNltNg337ceV0FIbwgvYEEIWjFft1S7wu3/PRwkDAABYaLjavSsavncn7sS30nC+mQUK1fTkHMVslAwD5UibFkQBmqwnKJqE0lm4IdNhXg9JvIHvkWRCZxfnpCxh/0f3BuSVexXk8LTFfzoK5XHh2jmSk4c8M8bTA0hOyQis9/+7DLimV7TnYcHuzQvvs0O3r9y7IONcW7WdVOw0s8iAk2gDQcAln4WaLbA4rmdYoWrFVLlVDvODWplfo2PZCWezqZPS9a1Eh/HvWMGpKuNW/F6PCGVRlTEgmtYOdJ+JZ6GKfzBijY5HLpbRd0h2Q/MzKx5xWnp3oB8+MRhG0jUJUsc3HAKLs6szLK5rjqhFSxxSMfXQ8EjZ2I8uP1zZ/qeOdrpFlY5gtE1IvxBjncPmfWjz74WmPL83LS6bukt+21Af3bF6K/AyAdwL4NQMAyABsQjglf4yI/jUEIPAggN+H3GkPEtG9ECXzNQD+/Ms1uLtW2TC5xHPeS4RAcs/LB3jWzHwhFk/DeB2KovGpNerYFds1d6qbVsRbdJBSqnsFl3b7RmTBCHmPgrDbdC29bnwgRwIJAKmnOFw9Qx0cT1E7go5yT3EdE7peFDcb14jnjI5ZZOv1RWy/ccGGU/J+jHRUY268RLVU25fNgm5Qb8pX1tx13GUqrc3KMTmzs8YzY40nI69Icm0Fu58nFmk6rnHlC9wtfOz3ShTdGM1r8sO9+8Wybps4fjKtrKIBgHRnCjCj6ohnMz4l2+u5yfl44cCrM0Q7npuTiWaMrrg4YdRsAEeFjmdwJgqS8vHcoLsUQcWSk0tNfmxiWIZ1UVUggt4zybTG7ETieStsPZE4lyJX9WAsYWbfJblp7kJPkjskex/OliI0d2trCCXTWgouzViHp8QrU1bptY8VGJxObcgxGZfIl50nY/Of2l/G3B9hgbHvoado7jhaJL2ffQXj53CKvig7P/zVulba+310IsJ8SQhEAaD/rBzXBz2o1zNblvDj5Kg7lpKrAkDpsbvfjrxIz+aWQkQ/DuBLIeG2CwC+E8B7AbzXwKFzAF9vvJzHiOgnIYn/EsC3MnNl9vNtAH4RQAzgvcz82HUHu0Ny1yobqh0z7PCkFNqpK50NJbShD54UPZJdsDmiwGJNphz0XYlnjk5FRRcM8Zg4eOjmC3GQXG3u1I4sEpqYdmOvU+d5tbYZjT1Ho5+O6rAPSc6mh4xTMvN+jIahi6myKIDbSlW+KBmdCwDYecOCOXdZuPSh1v44ttraFLP6VupsKbYLZ9mI0LpWYrqWmN/L/hefkUVrcDoNGshNVmM0jQLrPb5lFQ0AXPhDMVYecXkC9Si2X+fM0p6HzEu3J0GzMs0fVB0ZS3O7sEoTkAV3+TGXu0oumcRZ2wsPTTw+lWYD0/tXkO3JxepcTjFbon2Fji4HlY7F6Jkuu/usTj3AB5l+Og2F60bIBg4wQOzCR9MVyfdoAXJUCkJxP6W/Gi5RIcfS/jRRDmR7JdKRDG7zjW2UTSAy16J7scb4WIT+s+5GXHp6ZnNvs7UmqGTEBh1HBkzBkd+RzEMPEiEuGbsPOA99ukK2aBOApaYBXFhtbBzqo78rJ9L+hER9Jm88Ye9JQLxRmSuZSwVOBMrU41Wbrrl5beyY4Zp7ej/x6ksVBqG6Q6WNzPy1N/nqL95k++8G8N03+PznIQTHL7vctcoGcFZ453Il4QTzjM8XIqncNuzEjYHAIAsvXpzMnIWqZIi6SOQLSRCi8FE/HMmi4N/oQVX3jliXfv0HU0g1X6cuBt8/XwIVO4QXAUjJwmPni+HNnRiG6aItn+e9CKNTjr23tWWsaS/0Nl2O0fQQZMKZpUAEk0A2z/l8MUbrWmk9J+LQmlX0lj7Yk7UY/efFSrbnqzBvENobrk5o/va1gGpm5RHZ7+C0u42pcvkhIKx7sTVORskMH1rEfuk+6zyX6NImynuPOSXTErO7bhgrfWeA6tiy3b5qmpop431q8l1BVPkCwpwNRHErMEXCshw0T/N7JqUjAOR6xPieddEFUJOts0mmEo5V0MpkNRaAhLlH5wvSQE/DYL6XAQD9c4U5Bze36x9x8xqPCsxXm2AKr3PVVOi1qfQ3107O09WmjY7FAOIgT9O9VGP3fu8ZmwC9C/IDjgmt7dq+B4yiycXqan/oOcy/7AFrdDnKIvlbtkKlPz7qUSItAGXHC7HNVPkj2NftigAE7t46+rta2dhVgCQerAtga6sK2jpzJBaRDYGVLjQj76VTps/pVbYjB2GtObDW/UI4jrR+x1j+rbC3BlXSaUbramZLdB3tRp0QuhdlcShM2EotVt02oMiJHLpnZNKD1vIzXpNyVzFJYWNlkD6qhPwx1gkCbyrvx0ESOyph8xCTI4k5jtt+797Ufk81gmK/7deG1qqOCXCejF882D/rJidfSJFeA2ByMbNjsnKPj4sySMfhtdDwY3TJxFCiCMm5q5ZEFADqptcb6HXHMFtN0D0/N/v1u8aZXRSuD03nihgKSg65H2hStk3I1FuAexfcuU3WSdpWKzmmB4EvuqJodE7qRGDPum06kWS5Rfbt1vsYkgnpoLYdWkUZAZ1Lcl9pu4d4JO/nq03ERW3DpFVGSBBZSHJaCuedLvCRQbbFNuwnxay9i04D+CAchSGrQmUSdvPWBS+B0m5ZL3PnLdKNavcPODdk9RebwX1aeOfrF3UWfVEwTVOVUnYQ8K75ZKy3J4TqUNnchUIuBBHnNeLcLWJMYXhJK/jJhhRyxNMKleZiarHatD6kbEXXgQW0fW06DaG38VxixjbMZBYeLYbbv5DXqdTCaDtd9c6Gp1xMvGyFCsn3LGxbXXPlF57hoO5HxuRQPNG8DpSoIuGKnnfrkDsGVfuQe2zg2Vqo6IEj/N+ryCKgiLywEFHZkVceL+w5LzyXB5DXfMHzkAgYPbjkeLUuFhgfdwl8ob0vreLrPD+SvFzkLQhZaj0amRzCbF3CdDNDkrnzGvN9LYu6Y07mALCgnrF6gVpAmTrnK2iJoPenhlh1Ox/1qNe/sR16o2VbxtP0aqKigjE1FP+qdPS6tTYMpNljX25u5u4ZmZWYrzatJ5svxkhHZPMocS5cgk3j5VfNCHXsABvChMEWTUY1o7kbPgt1Sva+pkpABEG/m1aE4YOiJfqf2MT5d7lWFckfFNe894vO01RiTQBY+FSB0YkUC8YYWTgLZKZg91Nfu2wVDSAIu/kSkIx03nBHhAHUdzFD2N2rbA7lUA7lUD7N8jIXdb6i5e5VNhz2q6eSwSapXWUSMtM8SzKVBLuiouKZQTeZiuh8uYGyE1srUePfNnnrgQlmi5F0KFSrtaOIOBcSykZheGfq8TTZTopdD2VUhd5Lc4etFwACtj7HvADQuX8PAND6P10coY7JG/v+hlWMbFhaq1mr4n0Pxa/dmK5EQa1DnKtH4z4DufCe36QNCJmE58ZIXfiUAjkirDxe2FBK6wIwOePM163Xy4HbV9y5FB1HOzRfFBZiPXb3conmJedWWFRZ3yVKyuUOookxbWPCfK1tvT7bisGL6fuQ82RaBzBo9R59JuXGnnvdulYh93jsbIJa0Y+Z5BU1T1K2Qog+1WxZmdUaT0fK8i33uIIXBmcy6c9TahguBnGM9lXZIVUMKmrEU9lRuSAXcLYiczxbipB3BMEGyP1I7HI8VSrdOtVzyXtRAGBo7MkxNALAEVmot0q9D7Lvw+Kf/LY1ADUW7tu1n40eXbZ18VWnxsJTERY+ZYAEH3wW7Q/CsY0fXcXMtOc+8RsFZisJxoalI1+SfczWZGxrH8MdEebDMNpdKcShi84p2aQmEAmqK9M8BVBFhNIwDXQNTU3VMUWh89qF1Iz4cGKfQqSeuboEQEIqTGHeQWP6gCxM/kOmoRQ/2VknCCriqtTta3iKkO0C6Zt3AQCt/75g9hui3VTivAYVbvVU2LYfqpImXeZYDWDqdRa1BYkegqdsIQiVoXYhsaohi39jR6HgbrP139vD4KE+Fh+RBP3iIwCGY/CyaV9wph/0Q0nHQDrkYL4bgxoNo8BGx2Mcfb+DKdPVLdQn1gLocnnvUew+KBpw8ZMTp2gAGz7TPAUQwuWBsMI9ymtEuatzytMYZYvQusY3/L2G+zSUmkyEg8/vTupzwfk9l6JCwlDkUbosPTFxQI2KMVtvIp7KBeqdLxBVjHRHNO/kZBvt54dOccaEqpOhSkU75IupJPl9Vo15eB5Vg6yRFOdyz6hi1fCua3lQo07IKtLpqhhhikDbj8BUg2b3AZmjd7xVELq/9bSrs+LFClTI8Y//BgDUaP3+M/IlRVbRAMDuGxZx+Q/LXBz71UTQfObenZ+SQR795TtUzelJfejZ3H1SpWEPGI4IURXWoiiEuTbJdAsYyISp2If35r3IwoTrGAGPE3s5F1UkQbveKOxD79+P8VxyRqpL/ISnim8NVs1wwVZkV+8/qwcQIuGIhUHXvq+cpatStvYVvHoLamFaadt+JmYx0TnMexQgqjpXpNGbFuR1TQJ88QnRCLuv7WPxcWfuL/7qM4DmKJoN1EddTF7nQueua5BK6ln65wAAax8eg6MI0WXDftBqItoeYvCFZ+w2fkvu3YfbBiAhJ+f3sL+RzBciYMEpnI7xnJsbU/MXQF1j63NF4ceFAEkcHNigpsxc1hkh9khEdTvN+UQVrHKwLODeteSE7PXMlxtIJpX1FrJd07I6kfPtnB8jX2kjMQAAYkY0LVEsOpc070X2961rtRRiKgNFU7wuO/ZExmnZkxlo7CIoGvUjC63NCkUnst9H+1B7qmSyt4ph8PFrxzB4bhFYMucxNiwOFxUYU6L9O0+DlhbtPi5/xTFbv6OKBgCufb4MsFqWc2+cz8wxcUeFQcj5rl1y715lAwCTIx6Of9O1G25cGoCmOeb3CikY1ZHpvinfz1YzxLPaWqzDkyniwi3ijd0aIIf48mtm4kIs/dyrfvZ7twt9jXtv2Z49BRR5TcLKpqviBqQDY5W5EODSk8LWO173lIfP7GsSyApu0ISv7RbpNVbzZd5zye547pLdWS5hHxuCnDHSszWmpmCxtVmhtQl0nhTE1/bbjoiiMYvM4qN7iC552do61K7FYsPCa8sGIR3VFq5dNiiA8CbjCrsPZlj7sCSCIxMSuvbVbhVp7HqexWJYc6SFtco+DYgFr+tFPOfA4xPCVqBzya2U7Y9fQH3MkMvVNYYP9G27CY5lzP78RqXjouudE4CBeokcEUYnQp697mU3/mRcBZ1EJ8dcvC4qatStCM0N8WSorMFpZEN702NtxLMa+YoolyivTWjLhGsLbbnhlIWGxgCvQ6YerwLGq16R6UQUjdZVle0Ice7qtbQcwBpOLPetPlPqwTV+SmJc197CiAoCNowyZKC5SVjxuqqO3/GgZY/Ie4ThPYzhPTLOB+69grMfdSwYANB87sZdRX1G9tuRQ4DAXSoEZym2tmr0nnHJgvyoxHK1XiLvREgnDm3W2C4xPpY6az+C5ICU9M/2sdH6iVBZ+KwAdRoSCtaQEIRf6U3lPtJBdmNP9yFmoooReSGsZMoAs2XDzXsxyg5ZJVN0CHv3pdh7uwT7l38jDnrTzxfJhnMAUUJlkyxVT5UZJmPzfdlBUCOkdCOrv2u8ic0dYGkBbDpeLn1sC9NTC2heNgrh0ga48DytLAVSGcz8NcdkzC2HaErmbI2ELAcmR5xi0K6Vz3+VaML1jxjKHQ/h5nuYqmg0FKjfJUO3oHcuuR8P72nZOQBc/iSZyPizZ64AUYTo6g4AYPx5klDQa6nIrLGcFtobIelpnQJ5GtkWCXlfWhD4NEmagwHEk5s2jbIw915j112MZFQ4DjuOkS84dvD5QowGwdIIAaaAV6HVHaHR8Zkx0nHtWlQXsDkPQIpBE490NJ0Ki7Qqr2xQoWpENoxGtdzDWkycdyJUGTAxgLOoEOWr57X0WISiA0yOG+Tf85qXc8XGPk1R0QGa1whHv9LRY6T3uHxd+UwPvh7Qwk7Z1x0qtAFQvbx0Na9ouXuVTQ2L8eeIkK+0UZpCRy0SHN1jbuSzQDp1XGp5J0XVdIsLVWLpceTBnb1FLM4d5LPohHDeOpEH0r8H/eZp8RwBjLmxVyPvu6JNXXiUTVlDPX6LXSanOKtMmIRVdl9fgXoFmk+JFTw5KlxQukj4ikbnjapwjOkY6F42vVuWoqAGqXlpjGiWi5JRKQqMPkfqIuJpjfbZXW9CGBQrFYN5+nsdM1dOydhdtSPAXLeqQZh54UglSF3/iFssorxGwyinyZEEee96j695zTs3rz4pM6wLqmR0HJXh+IpzRueCu7i8soDNL1iyDAdK0+P351FFAwCjkzL3yufV2nSUQIAoyf2w58lRua7JpJYF2yzGzWsyDi00jWdlQJY6OZahjsmGGpOp5FD0Fq4SAscuj8mxuScMOEHDwfNFnVcx4NTjzgYc1GuVDbLwaJ2zokM2v1a0KWBKT2YctDwgFmNADYWiI8ps3fYn4iAsXralpmdwSsa59uXCNDCv3ByUz3jMnOyAG1pjoySld0ruJIPAq1HuXmVTcchf1oktaqxOgdE9NbpnzfsMALvCTESEZOqSu5YtwORp4kJIBjWZmvdCC44jskVlikayfGsNEpSRp2CI2XGl9TUBq15TjXha29BKY6cKiT8ptPajSizWa291i2j3I00sPCcP1uBMHLRK2N+wDBCPYWZYY1obTtEAwMIzU1TNBNk1qcqz+ZHVJbvN8HXOfM8XYyRHesgePScfJCG9CQBMzyzaj8pWGEZKPcu+ziI0dl34smgTupdKpAMXpyz6GcbHEntuyYQDZF3zmmMHLnpCELrwrAGENCNUzcx6azK3sa1ZKVqErTe0cPQ3Ja+w+QVyzpuv12pgoLkl1CgqviKPTb2ihl3zboKoCltX+PVQ6dgtzho+zLbEreU0RtVMLOqxbKeYrrviWZd7Key8+kIMzPoRotKhyUAOVUileBsaAk5mCApSG7uS09EizzivJSfjVfTXMWFuUomCEmSrkJM5o7Xlro0+S6pQWpsSqvXBLT7oRcEW49fKAMfn14CIcfK4XJvLjxwFYvO8zgl17JSMoh81N+kzTd+u1IdotLtQ2Fmkm2+M0L4CDO4zVuEm0LoS2Qene9HcfObBqjLpORPkVuDyHa3tyiCFXHJUw1JKSWI7bZrEqmuzzBYUIMeSMJUmWhXJFBT/pYRKiTVnNeLcfTczHo2vMNIRY/mjMtaiC6toAKD/fCW9RMzYtfWuhlsAYHCPUwj5AjCMY6w+IspFLeloc9ccLAW6jqus7jaDJHzPdNfEgmdljsxTb4opfWVRtl0eovfRK3L+hkhz7w0CHlBFHOdsK98BUTSAMxLGR2NEhWNRAIDtz6/Qe9owDo+Axaed1i+6Unzre6HN7RrDk46tYXIUePbPLNvfy2S47eeLLuSp4bTMGBzKNBx0gfXaIVBlcmQevLq5bYgwd2ZATKC5SfDPC9Rp23KTTdeNB2RQj42tGapWEigZzasBRpGUjGuf77ywKAfaV933cc42/5SOa0zWEwtlH56K0b1YOe8vi6SpoHmfTAVcYM+V5PnR+7pOCEyubbXmhHz0nq9opiuxGYOcz/A+E1q9INc8Pz1HcjXDlavCthnPyV4XqoC4Csk3/efLR4fejtQg5DdKgN4lctcqmzolXPu8kJ9s9RF5bWPwc31QKPgLiPWsVuN+rjOhkHFhHMDVRqhS8fu5+7BnFYUGly1C+2oYR49zl5jOhlUQPhgfE8p+27OFZXt/fH4yt73ByPsOSWcTwj4ceh/9emBdmwXV70/T/uCz4NxDPajyALDzrtfJPpX1WmHW3jZQpuUihCTNVxroPOvRlUwm4LUlDF+zbMYsFrTORzYoLboKgA2T+rxYsyWgbJvr3K1x5Lcje4LqwUw9zxDMaF+RWM7odNsqGsD0Acr3AT7yoAwnQFk1rrkQkv3Mq7uhWlBYS0+psWPQbZtygDqLRMkYqRsJyPC+1WmE8YlmsC8AaGw55Tk+5s5rukpW6QHA6AQAkO1XwxHQ2vRQkbVcQ52j8dEEyYwtmKG5WwXPSzKrweTQZvN+JD1mgnN3MyXhZddOPKqkhshvl+E/Q8MzAOAABsk4ZKmuNgxD99yzFMzhmltynZoeWGR4PLEGYr6AOyaHAIG7UDgClp5wq6a/uFYpITVEhvb7IoQd+6510aVgAVbjRQsalbFWZb4QWYvQHjPScZFNkgLyUPvEmxwp9Yc5djsKGKh1MfALSfe3/w3768hfDUF0TGsAVY4AMDma2mZsCkHVBKq2Bm5/8Fm3T1/RmFBY8ab7zJwYy3rbaxf83BXA5Gl4uW/zArQ9QHVqzV4HhRBraI6POgZo2XcdcK7pYjI5bvizHlTkk/k6Bmbrbl66z8QGBSU/HB2PgeNxAN0+8esT+7rKpF+KLkrFXI0Sbwj+a1MX4yscf7FNpiFfmybHNSS0+EyOqKiRXNyyv+GuASn0W8H9WnZSNHargAm5dS0PFNB01UNJzgU2Pzot+8h2CNPXz5A9K9sTSx5Gw2/tTfFaNEyWzDgwruZ9CZlph9vChD8dXU1YrxXnHNAy2WfN09QByMYoGkVBxjMYAIO8jwqhq/HNFSopgGa3PE8mHbN9ZlRhaah4Pwz7pQozDos670bxr3k6rsPiQJN011h81RRGAb3ZZysUFNc1txnzJXcjKyW5LvB+WCqdSNGho42XUIGGE1qXC+QLcVDIB3gcU80I6aiyiV219DTRqt6Y78n4YRe/aRTgWKGXn3AWbzJwr6+9eSFAP/Wel9eD+4xyugosfPByoGC4qkCGX4wfOgMAGJ80i1bNaGyXaJ3bdSdXVeA1k9PxlFx5zxEUvRSZsd7jK6Lh6lOyClNRWa4sQJB2RZts22rJsTQMw7B4YZVbaxHnQPuigx4rL5f2lYlyx2IASJhlfNILCRol4wMiqmaEvTMGETV0CXTARG3IeYNli9DaZssQIf1cnOFCteTEFp/xECXMKI+bcOEg5L6vGmFtlB5DZXLEIxE9EgWFtxyJoin7BprcB+Krrsam/5wMqnfeeVVV5qDRNvfF6rHqjuVPMq+R92KrJKjaf1+yGYfZ35QtAa7svw6867IlCkbzLNkesPtaRnPDKKFeWEKQjsRL8xkXxie93GTpzdNxhOdwx4QOizrvRiEWpQFIy9tk4kFSDQRWrbhkJmy6ajXpYqGkg/OFCI0dzzIjQ5VirVZHB1M1CGXDKxAl+acx4qIXW8QXINZzY1h7FCm1FFmaXUeGJt5v9RyVYS/4gKiyQwAIU2M1N7fEYvUJLHce9FZkGKSQF+ob3EdYfsKhlDB0EFKuzHFPyRM7PtO9jpg0HXpP8c4e0OuCZvJZfmrJIqCKnoxpti7We/5AFwtPDXHlCx1FTZ0AnY0wHLX5Rq16l4S/zygQ7bpDK1RXEU4T896n2/FJMtV40HBWawvWsgdE0YyPxHZ/qoz8MH37qgOaRKWAAXQBnK5KL6Hputs+G9eYHBMl0T0XKpd83eW5qNL6FUWf1ZiuuxOZLVPgGlDobINqgQaPzNTG4wgrHwdUW7SulaAq7KYJIs+LM8bUSHMyGsb1FEoWoXfeoNPaoqx8b0g8eLa/07yQSjIFCpMTiqcAImDnTaLoo2kMXp1jftQou+daSCbOs+RY7gd7rMz3AmvsfC6jcdXkG0shNl147g65NEYYd7dnc/ee+aEcyqEcyqdZKkQH+vdqFSL6Izf77q71bADnZnMkqCy/OC/Kw8R9MmNrDWovDkXvKI9T5hX/RaXrsc4RBZXq2ZAtck0p4LWZmdJ8qHUcF4J+mi2GNDcBqICBykR36oTQ2HMdGquGIIBs066OeDUaFgHCXjfj9TisaC8EhjpZc1bx6sdra7Uvvu9p8NyF3aKlRXC/i9FrHNQZzJYQMh3kSD55wX1VlqCeeDQql7+wbeYJ6F4qg7zDlS/yvJpYOpWqJ2JJShfdoevMebDtDbaFnoCHLvRIQqPChU+SmXynBbCdS/KDbFNiN4PXyIE0pOnzogESMk0nzjr3cxSAeJl53x0vnot13z/rNuo96wEnTIgxX8js8bTQONuRCzy9xz3SPoFr1RTPwPdo6tjNQd4Hxqdryy3WPUsAGK1rykNE4MhRPHFM4VzOFVTht9QWLxqQotA4ry1nYDqukY5hiUDLdixoO7PL2NZ5mRql5QS95wtsv1ZuPKqA0eka0cwgAY8bqP0Tjh5jtl4jWnchyGrm5iZuejnDc23Ec6BzCXbfC5+au5bmXoj9doRBKD770Wj/EsD7bvTFXa1sUi0o6xDKdhjPzUZsUVtCReMh0brCAKAKoWwSlp6ubd3OfEGQatpVsnuxDvrDALBhrnk/Qt6LbDghKoFo5hWokfyXmPU8HQuTbgBoaJAdazrlALwQ5wywS6hGFePoBwqku7LD6Ym2rUsBDLdaEcar5wuEY78tKLDxqQ7673/Gfqe5Glow5Jifc8KOCZDFQ8ONAJBc3AJzDZiwD04dBQOYrrp8QuYBzoanEltV76OlZA61jsldm7zv+pAAYdx+fCQMk6VjUSZBN8yxY55WGLoPrsg2x7YJW7ZXIu8nrpcPS82RVtWXTQmBTtZC1KM2BlOUU98rHvRrRfpPjxFNnSKfnZA5tgSxGcJCxm5qm53NlxL0n6+x85BW1Os5mW33MUY3txmdy2Tv8/5515fGDd69LJtkecYAxyOorOCyPVsFGVXyWvnQqGBL/wRo/ZnLQcazGhy5/WWDCrsPpjYvOlsBWpcjjF8rJ9T5gCiZymMR9xVNmlZI0wr5XPZXFxGSCy5c3NxyaLjOxTnGxxtoGAUez++Mp8G4c3U2RPReAF8NYIOZ37Dvu78D4H8FsMbMm0REAL4XwB8FMAHwDcz8EbPt1wP4x+an/5yZf+R2h3azL+5aZUP72HSTqavsT+YcwIPHx6WTp7W6zHZaid+6pl6RbFC2CFXT1cRUGVlUTjKrULbigKustVk5GvlGZOLVLvY9X4xtTibvCo2HxsTrRBLKmvMpmyRsvGZh0IVPGXrbV5yiAWAYp2sMTyo/jixiukjXKbD+Qbf69375CdRF4ar8U0M5/1rJ0UQl26Zi8h6IZxWy54TvjA3EuXzjfXabyZGGbeol8wf32uXjrUK2gAVV4EUI5Z6uuIS7zgkAIBZFkyqgjMRgUGVj2wAboyEuJG/Q2Haad/jggvXSdCFUFNjwZIJsGDYEm65Ebi4V0W1SLb0LhmvPA3P0n3MaIB7NwDFZJQMAs9XUMhnUCbnCw5UGULP1svQc+ufkGNuvjdA7F85tnToPWZWQdhWtY63a9yD9Hh3N4qdMK3SjaDmhgOkcrKAXLwlfs6XDiee10NUo9J0lclC2TV3QSoxkzhgfNewQWRQYQC1Dn7f4QeeWtrZqi9zb+9IJ6PkWovvkos42W0CrQnrRbd++YsZVOVQlAGy9QSYpmSlzw/WlCS9N6E72s/lhAO8G8KPBEYhOAfhyAM97H38VgAfNv7cB+H4AbyOiZQDfCeAtkAv1YSL6WWbeuY1x3XSy7lplwxEC+LEPmc17FGDr1RhpeTQm8ZzR3nQWadGOLLIrmUq9gd6kTG7/1XKK6VqM5pZnFfpJ0FmN8XrsKPybjtVA9xUXHoWJWSxsiK+QsJ2OWRdrH7Y9PeFWcGLZp5JZZsMKo2MJ1j48cNs8d9F6IlyEEB1qNDB7/UkUHu0LeXnV1jWDXlqSBXP8+coP5nsjZMMwPvt12ZZErYoqmdzzxMoObC2IgCVqNM2jkkwq7DyYOZZkrz01YCDhU0bvvPu+ShGAIcoWoTZ1NlHOmC3HNqzSvlYBzBie9GhgvAXZVtUbUfi4T/zbulbArv9aC3NZ5n5ulIz2kAEJuKRc0xCsX1XMGJ52II+9BxhrH2Fsv9bNldSi6Fjkr4InVIH6YBImR9cjnipZKh0t8nX3WRwyg8+dV+OL3iecSP+bIjMhyEqeERfKZkzWowBMAfLqZsx2WnAtv6ntuPo/lODCHyJEHxdLogmgaiV2f62rbkzN7RqzRUcqau/F/p3xQlTupGfDzO8nontu8NW/AfD3Afxf3mfvAvCjzMwAPkBEi0R0DMCXAngfM28DABG9D8BXAvjxOzLIfXLXKhuqQwUT1NAYRWN5mrRw0WdqLghjg/ZRpdPeULZKgRT7nlNl2ummU4E+15mDdJIXEhuekQVDrXi1YpXtYL/Yh72lsXHjARnrmVOh38j2PGt4WrkeK6q0PIaAtd/bdfNy/rLsZ7+S6brJSMYFkrF8Pz7RCs57viChitaWWwi1uBIQa3e/h6nSe14qwjtmkVYaF/Ukih5JSMr8XBdOjfMPTmeI526Oih6CAlmqBa6roZnKU+iAKMT9VeoA0NmovH0gUGC+IuEYqGLnTTS3gXQa9guqk8ii79I9cZlnJ+UGJGZM1t285V1CY1DbxVBDVwCsotl7wI13+3+aIN+W+c82koC9WClwdK5k7GFOyYdNxzmw8Fwdthj3bslsUCKelpgvZ8HYrNHUigLkHscEhpvrKpJCa98I8VGBljjW3AMcieeqBt7SU6YGKzde50KGk7+aW09p56H4umvjjkOSk/Vtcr7xtrcrL8KzWSWiD3nv38PM77nVD4joXQAuMvMjFCr6EwDOe+8vmM9u9vntyJmbfXHXKps6CSuDG7tAbsIptsGTsZjLRriIUI3Aq9Gqfn0Q65iQDcLaHcf0S+hcDWnwq1ZkwwutTVMtbuLZUV4biKm3SLILDWl+RiuzNUfD6iHUooCi0ljDpvo8X0zt9vGsRmPbhdbo7EWgvh66ar+PoqCbpU9lb2Hj2rSrdgWAKsIlZ85/UqN/rra97SfrEVrXtKaI0BiwpQtRCn+VeCYWriojhSTv3q8J9HBBbG0KsEMBEaJMnJIBwpBJY096rGg7hdgyILud+rk8vZ80zKpKRr3Lrc+JsPApQtuEqtTyT8ZyTYqlJpgI4+OeYm65uhsNlaphsHdfahfz3YfNRl6eQhUNAKw8ZhTaJFQCfiFllUWBMkmmbgGuE1G8mnNkArKdHKWBp8dT0dh6f8l5u4fGV2qAx1/nKbR04sLHkyNSFGrZGBi2Ky0g9DLxnNE7ZzznJEJU1th9SIyghacnmK817HORTA0Ltc9Irp5yTwEkHkXNqmcQ3SE+TmZ6MZ7NJjO/5aAbE1EbwD+EhNA+k/L8zb64a5WNL3UCTFfF8gQkyZyOvRxNDtDcLR7LT2kZsssdcEoYH3HTOT4GdMQpsN0oVcoWIfYWtXha20UxKmXxjzx+s90HM+QmbJ+O9yHRImPRe0ohmTEiQ0nAFBYdDu5pIC6A7nlZlIpugvZjl73JYKDXRb0lk0FJIoix2FOcD50BjeWEdj5fyqx18bBz5iGzzv/xGqd/xuSzmpGNqwPCdNC5Wltl1LlSeeUgwrTte29l29W+qOU7OGNYDXYpqIfSVgkaLtU8nC2EHVSYrsRBSwRf9JzswhyTkFF6yqn2Xjd2XLEhIH+JnbJZ+BSjfcUdLB0WoLJC2XPgiPHx1OULo5DyKNutQCxKRkX5/KICqE84RbOyNEL9647xMzVtD2yr5Vjmx9Z/ZRE4geXY06JLH2zCEVlDQJuvKW8dRyRGUcM3sEJFZreDa31RmE6w2SjMddm8qBfqzjtkP089TxwAdh9qIBu64ujhvS3T/VN+39w2hqC34imdTpybWjpz/LJhWmiYQ8f7UIYvVRh4OdFo9wO4F4B6NScBfISI3grgIgCPARAnzWcXIaE0//Nfv81xHOZs9guxS9S2rkpMWEkPm9virmuRIDHQO+8W7LIZiaXmTWsyqhAZT2Z4mtB7u0vwTH53zSYje+cLFN3YPojj46nXmEpkdDyxFnZUmpCY+bpzWbjQavugCD+VJoSpZEw8pVd0COPjiUsE54zWZonksbPyfjYHlh3suDq6jHg0QxR7lt1ogupeAQBQXWN8uguga+ZCQh/+outbgte+pARXhHN/TN43L0fong8pXaarEbqm4ViVulBOOqoRz8l6Nrpoq9JXo0BDLIBZTDTFYfZji2s13DZwAwwKPk3rYk2KWzJGP0zmGaY6HjUkotw1jwPkHqLaQWotU/fIYxxopxidcJPhA1MUHZXtuvHuPJgGrAblmlNeXl0vyp9bQwRHlWQhy942VcNvjmZO1bt2ZdPlUKIS6J33qcjNfHjhmnzJnYeGhvcrbN/DrbLIzr8u9LrfZBaCdIq2eFY253KtRFTU2DUFyFSFXhLH0rjNskw3ZA4UQVd0KGDGmC25dgcChSer0O5cCxp62Yo6mfkTAGw5MBGdBfAWg0b7WQDfRkQ/AQEI7DHzZSL6RQD/goh0AfhyAN/xsgwQd7GyqZMwSZhM2caDAUVpadJcb0Lz4FSMqhHZ0EBUMIan3YPWe/s17H5szeYfVj8etupNZrWNX1Ml1p4eu2iZvh+W/BPoXayDvioSWjHhgRkHIYq8FyOZMcbH3E2d7AL9ZwWCxXGE5JmLjuyyCeT3H0FpLExpYd1C87IMPt4ZYe+dD9p9xXltoN3yfnSaJKRiYMnpGBjc7x7i9GqK3llgbCLB2Z4oCbtAl7CKBhBAhMb7OSbMFiO7AOri7j/8ZcstpMkk9DQU9ODnhDpXKjR23AI9W3HXTVFhQS+iGaM18xb7h2M7dqcU1TugkIJlzmhu13Yhtb1uPC90eNqhoxSa3T9f298DCIwHX9E0doHGxwyT9S5j8ysqLPyWaGK16NWT0EV+f1tx23SvZKB035dNCnjb4pwxOZKh+7xLqpXdNMgp+SwRejyLVoso+Ds5IiAZnRtVaqoA5r0IiPwQl0DKO5cLsx9g94Gma3mgdE9bTpkAzpOJKrk3lEeQIy/31xFvWEOizR1GPGerqPxWJLcjAhC4M5qLiH4c4pWsEtEFAN/JzP/xJpv/PAT2/AwE+vyNAMDM20T0zwB80Gz3XQoWeDnkFaVsjDYeAqgAlPtjlrfCi5vv+wAeB/AzzPxttzxW5eLzUREmAauMDKLMPKA1B/BlAKDCde6smsD4XQN0GhJS2P2YhC/WPmaoNHLTgheuzoaUK23s3HezZ0yOUJAob3ktACR27r6LpzXyfmIfnNFxxwMGiHW88NvnvN0TeG0JZBKp9VIb8bTAfFkWjaItcfvifol9D0/20NhzD2beSxDnXhGfUTI2FEVA5yJhIkzu6J2Vvx1Tx8mJ1pq4B3jej+0i5ye9q4bQ5AzuCRckX3w6mbiQf7r4a1hGewHJALypKGu0rs4wPepyGxyFFm3ZInsf7Dxsivy+WA5anetg5RG3QEroxSWt1VPuP+WQfXXTLc5bb+gE3GmNXfmrNPkyRhdKqxqE1O0KRRvoXnLhoeVfaQaKOJ6zY9WGGEv+4h/njj6/vVFdp4iSmfMkFGAyW/fyc16ILaoYnDgvrDT3kY9uK9rOI6dKQDS+cvY9DaqBxk5tcy5TEzXYer27CZrbjEg71WpPIaMgpUbK7a9shfmo+SKhNNvWqRhBalTWiYTW1HCJ72APtTvFDsDMX/sC39/jvWYA33qT7d4L4L13ZFAiZ2/2xStK2Rh5JzNv3uS7G+LFve//GYD3H+Qgfs+QOjHoNCX905CWl3+gGkEehcktjBvfLJphbyJW5eonvOS+kdjzPubLaVDQFnuhnHRcA5Sgd16bnoSM1FFMKOLYLv6bbzIJWo1lj0Io9cIHL4MnTnPVD59G1YiRXTW1M0TIFxs23BGVrrYBkMJJjlz4yPJ+GW8inQLzhX25i12PUZskNOQDLFIvDq+LhC6SfoJ5+3WmI6ZWk5dh3U1zO+w6ajun1t7iD2dNp2NpPzA5Iuaw9obRc4+LMMwDhIniogfg4RGqcw6JN19wlfTdS3KNO5dNsvySqSlacgv07v3utSoamwM04kOpoyJsbQGEZKKuD5IptPTg0PHc5QLVK7c5GxJPTq/b6EQcKGW95zRhX7YFhmwBA7Fr2CbjIMSzGq1LTvtX7QyjM3INVQlMTKBn5fEaRcd5gnHujQ0uhKgKLc7DyEP7GmPhaceuMLxHMf4uLzdfdNxrarCoZEMPbDBHwEfo16kBYa3R7QiD7phn85kSA0T4OwBOM/NfIaIHATzMzD8HAMz8J2/225cngPjyybtg8OLM/AEAihcHEb0ZwBEAv/SZHOChHMqhHMqNhFkAAgf59wqWHwIwB/CF5v1FAP/8ID98Qc+GiP4khO9mHWLrE8Qz69/yhy9NGMAvERED+MEb4MpviAsnoqsA/jcAfxHAl91s50T0TQC+CQCy9pK1fDURqbkDtdojL1ZLhWvBW3ZiSyMPAE3Dr9L4z46Ft31pjnjiLNbxGWcNU+XoaJJpDU4c4opKRu98gfYTUiJdrfdRZzHKjmFANuGEybq2GDCIM62bmDEWHt0BLkhCigFwniMydTHx3hQxAM5M9fusxHSt4yzgjNC9VNvwSW569ahlmszEi1GYuB7EJm43JeSozwvVUnip0thhdC+5nIk2N1PoMwDMDHVNe0PqgcYn3Hd+kafmG/wiTCqdd1I1NASm8FehufefZW10BwhPnbxWK1ySzMqQDQD1sx0kMxPbv+a47eTc5Hqn286TzNecK6YFjc2dyvyVz7XuKJkIBFyh3LNFkxtTY5jEk1RIvjIc2OMPHGddOqqD2qyoZIumU/G5/BznmTmU9RLd9r43jjTMwcj5z1G1PWTdyZb1FoqetEJfedzto7Eb5hplHPJ+ZsJ7/vktfdIBFBpPXEJ1ag1lW064tVFgtpIiMWHDoivQafVM0zFQNoEFj3fO9xiVkzA4J22XUIbe7u3Iq92zAXA/M/85IvpaAGDmCdENqndvIAcJo/0rAH+MmZ+4nREeUN7BzBeJaB3A+4joSWY+SFjsWwD8PDNfuNV5G+X1HgDoLZxkjS/HWqXv8UwJeaUX8+24FWq6EiMbAYN75X0KYPjICqK223663kD3rCw+4zOdICkcF27f9iEzN35jpxRFYzjH4gubqO87YvND+5PY6VBi+tpnBADqTgPxigBMeGMT0YJnF0ym2HvryQB+nMwdySgobOhVdMlwVLnvy7YrvmzsOOQVAJRtQTANv0gACfR0B4ufZLvAti7J53Xq6HGSi1uYP+hWdA1bpBNG3iX0nzWx9JRQdFy4jGNZxBzKLGx4R2z2b3IwdSbcXJM1XdgogMLmPcK874WKTLOzhhfUzb26mnTCqDKvmBdAVFS49vZF+97/rk6kKHNg+rL0n69QZxQs+kXHkbLakKGGc+cImolFpR/e5ECJjo/KifmN+6KSg4JapfUBHMKvd772tnfwZSYlCjX5M6PIOhfkRqCaA2TafLWBZFZj7z43wd0LIR+a/7zZe86PtdSwfaNUATeeMNC+Xgfx7gRlewEAMFtJzfUmu794zoHRk45heeo6l2skymlXh43bNHRYdO9s4EfCaK+2YNJ1khNRC8aCI6L7IZ7OC8pBlM3VT5OiATNfNH83iOinAbwVYQ7mZnjxLwTwJUT0LRBMbkZEI2b+9lsdz0+IckxBMtWXsh0HZI+AKBpdcKcfWEFnx32XDRggYHSvmPTpqLKJUuUo08r9dFRhvpSgc/HG16u47wjKTmrzQ+kkkh4oPk/UVm0rpdO9AvFzrm6GlheBZgN7b5R6mKhkDE9G9vdRCXCOwHqm2hF3AmE+Ju8LPYzmXWbLdF2TqcHn5mh9XM69uQ0sPeqy2mWvgWheWcAEmLH5zlPoXRANMjyZWQLTfIFApddZM0EAZ61iGYdPCBmVXg5m31zXKaFsImArrlpCwggA832+elQgoN5JZkDvUXcs5adzjcoi7N3TQMOcbmOvFu/KKLtLf6xC7+MZcgM03VyKke0Ay0bZKD2KKsx4Lhx7Pqu1j5RLXFmNFMpWzvPtXFVwigfvXXGPe9EiSwgqYxdF4xe1Vg1yDQQbhKqRWKXQ3K2topENGHMPaKHXoHPJmy8P/KFosJ2HDNHmHoDIy5tMBIKshZbd52Wwu3/gDABg8aObmB9fsPvTgt7RcQ+5t0BIld4mdQg9f3sAABGiytX5KJOBbeh2B52RO8iN9pmS7wTwCwBOEdF/AfDFAL7hID88iLL5EBH9VwA/A0+DMfN/f9HDvIUQUQdAxMxD8/rLAXzXvs1uiBcH8Be8/XwDBF9+S0UDhNTh+xfMqhFZWGU2qJD3ksASW/14jf4zkgy9+va+hVwCgriiyvFNAWGnzTqh4LvmVomya6hvHrsK7jSAjhxcw2fjY4atNhakmiqtbFgHCK54XoFXllCuymKv9CGKOqoTAOQeoLJp6Do8JFDRI0t3QxVQexT8sVmg1BJUGn6dPyag/cnMKi8NfZQ9t5Od13rcbDUwOeKS9mXHLf660Gl75MaOeDWW66wIwzj7ua3kfCmwWoVNQc9T/uq5KmOwj/hqbbt9ta9Ku4PuOZeYLhYaVtns3RNh8dl9IJK8xvk/4T7rf9UV7P6qQPWiuSyASsra3BWOLn+8pT/3ediiuLXp1X6ZMfh1NVWD0DCow+laEqD5qqaASrQFeTbGdTU4MjcKnZaw08pjTkMpNQwATI/JNdXQVFQIFZBt01xyENabLUaYL7mQICdyLyrjtz57ClUenOmid6HGxITFJn9kPSiUzpTeyQOfNHfZevBtw8yh90udRla57EdCckSGGskp1jshdxL6/JkSZn4fEX0EwNshE/Q3bwHoCuQgyqYPgRn7NAgM4I4qG0hy/6dNGCwB8GPM/AtE9M0AwMw/gJvgxV+SkNcdsxWhahKqZsgTpsV/g318ZVHJVtEAwMqjM8xWM+sB2IVXq7FL13dEFdbE8Kp1rpR2OwBAWYLGwPRhge1ojYVfXe0/UHVCKDyLlSoGepllXqYKADsanOlqhOYO24c5ngu81/dkqszRhORLRnF6C3DVcgooKgxDgrEgOxuMbOSgzVUaoTzesbxiHAHTNa8XfCwLn6WvGbnQSXOPMTxNaHheY3ujsrm08ZEEHLv8lXpbfnV5ncCGMKerUdBOQMdcuFSb5JjMNp2L8jtlYGhsTtHYBIb3yQaN3RLjY87taxgYuK4nguqL0P+4vO95igYA2ptmvGM33mzEAZln6efGRnJtVh91lpHeO6ocAm89IuvN7OfQA4Ttmk377mwknGs6dqokX+fnbBafmVuGgNS0Dq9aprulsk97yK2yRVCW0Xgu/GPalwkQhm6tHxucidHxeOuyoUDIc+/aKFME4HJ3Wt1fZXL9tYxAc1R6T9SxEH8q+0OVEroXCzMPcdCHZ3gyBUchB96dkVdvGI2IPn/fRxo+OU1Ep/0SlJvJCyobZn7pC/qLEGZ+FsCbbvD5D3ivb4oX97b5YQj99oElLhjptHb9a3JJKqvns/TkFKNTTSx/4Ir9TXF80VpJmtBW6GbZFAuTPJoLfRijwjVOA4DpaoLuBc9ES7Str9zovXMVym6C+aK7VLsPugVj6Sndj3y2d5+MZeFZhf0ask8TmlHW3njuFqmZVygY57L45styfM4YVBDSgaF+P86oE0bvOZ8Oh21Ih2oOqvJHJ1PhodNFIxLFUmlSfgvAwOUMfPhtMmcsP+ni/BxRANpQeKyf6C06hKhy7/3FT5Wo/7wPXl9g9dieO+aPrVgPQMkdfdoVVTQAMDqeYrZMLmGfM/IeBePxId/Dnz+K5sh5pXpP+Au6X2NTNkXJa8hz8Wl54feY8eHChZePAUlOSUNw42Mu9wIYrjAvjAYiFB0Kwmh5n7Bw1i24qmAAgApzf3RCglX9vY7FFcBKfivzWKT9QmVVNH4BpbBOm33bLIERVZ5GubQ2a3Ds5jQbVJgth8tbMqnR3crN8WMbNm/s1Ni7r2FzgckcwJwxXb7DORsGilepsoEAsG4mDOAPvdAODoJGOwng30FicwDwmxDX6cLNf/XKFx8RpuEXRRMVvRhFJwryKItPDFAvmFBBJ7NEloBD6eQezb6vUFqbVfDeT+R2zxoLUesgliT8pWE1AJisxraeZHCvhgHkuytfbHI5u9pyAGhuAnPjqWg+Q9FeVEsNgc+ey7HHtsxCr9I3yiSq9AGW/XSuEqarEVKvwRkTgQxxp4a29PhMUvXud8PsXIJdOIo2ENXO4pwvkO03M1+gIMG+v97BtiPwHEOfTHHeiwAOG2pxBExOum2OHN9FZVbg5MekS9vKx0T5zNc7SCYl9mxtjBRNqnKYmU6Yc5M6iHNTjKsJ/cLR5wGuFsoyHWcUdEktWxTcG6pk9JzyBelm6RO+qvKNKgmhqoGkoIPhvVo/FYbJ2Cgjv24GCD1oX9E0tnNU7dR6/42rYxSLzZCipg6JYaOJC4XWaahU01FtaI7MM6j5Ee/8/d47rU2tx5G/88UoZJJoSyjYeigRoblbYb7gohXNLY8ktBMDMAaUUSp+mJFqN97tz8Edk1erZ8PM77zdfRwkjPZDAH4MwJ8x7/+i+eymvaZfFUJkOaqU/t/vyZKNaotsSYZzwwcmonFkfyEcH02CRPrCsy7UUbYjG7KbLsdB0eXolKzCPl9X2Wug8CqvVcEA0tgMcAtXsSCKpv9ceHq62NSpPNC6mFTNCMmU7UJddID5MkM75i49Km2kVUlFFWO8noStk73q6uYuo0pdLFy3Gx/3wn4DF/ZQSn4fBaaLNQBkm66VA5NYoPp8Znsc9KRp7DGmy4TILAqNXQ563QzuEzJUnzjTDzOtPbiF6D+tWADUwuN7QCRKRuXa57Ww97Bcm9UPRRY1CEi+Yb4Qdrz07wEr5pj2PDwF43tBml/QzqR+m2Jf1EjKBpVFl+nCq9d96/WRdBn1cvh+XlKJKZ3HHSoajhBY9skkDo4zO9pxIA9PGuY+pkIauQXtI+bsKRVz/2lYrxUq3vbVHO2rQNmRG0WfG0uiOpQmea5VgiLI3DPs577yfoT5olcN64kWeFsjYpECuHvnDpnVnyVFnU0I+vcdkDv7NwH8ADPPbvlDHEzZrDHzD3nvf5iI/tZLGegrSeqYrJJR8ZPNmcefVSw1kQ1LDM7ISq9JU6Z9uRJNmk/YIqCAsAlT2RYrTMML6YSRDSrXsGm9E4R5yjZh4VlHSpiNauw+GNnmV+2r8XVoGSWUBCRZXmUUUOIUHQcAyBcZjW33XWOvBicuDwLIApZOjTLZt5hGpqWBPqgcyYKuYby8r/US8r5sUqBsip6hjreoJ7fvuJBQkiqXfCHMIdQR0L1c2+85IlQpsPeA+b7JGN4LLD6u6DbDiXdZxtT/qQ5Gp4CFx11Car7esWCMvE9W0QDCAwcAbY8ku7kTsg5M1zzlsSh/9VpFhVxvDTHlfUJzu7b0Nlq7pEoGcJQ3gFj984UI/bNyb+7e7/W66Uu/ma3Xh/e0C0+Gysavq9r/GSDEmFHO6FxxtWeckGsxkEaBp0klkMzrIHScDUrbjnpuQlq2j5LxrH1G5SrojttAY6/CbMl0HuUwnKmw7d2H9JkjLD5dhy0T/HtV7xHfuzPPe1xz6HVNGLzl7rUg3HibUr/60Wg/CqEU+3fm/Z8H8J/gnJGbykGUzRYR/UW47m1fC2DrJQzyFSdB7DslZ+WVjMlR51OrdeZ3kfQtRgtVnWmC2igOT8koxYgqGR+9FnkPHEchh1Vzu8boWBJYfUtP1fbBlP4sYW6obBFCUkQ3trId5mjSgdSaLD/h9j9ZdTQm7Q0OFgHlRQvJCV34R7d1MFI5vsKNqUIA225viCejyocjF9JhA4X1Lc/mNqNheLo4ImGdNovG5hsJdbPGF77tSQDA737gtVbRAMDKowVaF4coTUO3qpmgda3EpXcu2m38Is3RaUY8jZAOzaJkrrmSigJA75zbvmwS0mEIOGhfdSEgwNQGdRSxJaFBfwHMRrDKBJDQrOZ91PPZ/By3ivoe4t69kfXcojxULgqM6F7w7hWvjky9JUsaesU07WtGdtsqi2yrgLJlWJg9dByVbAELUV4Hxptt7+CnlWq3+EtNj0PbUSXtDfQ+rlPC4IynSAyoxFcE/vMW2RoaeW+ZuNs6DsLO53gowacjS1OlYJna7C4oYL4N+WxAowF4AzO/znv/a0T0+EF+eBBl8z9DtNi/gczX7+B2UGCvEPEveZ1SUGzm+KQ01BTeIMk0xOxTxcGir9aihs4m62H/9HTskt5USWjAVi/HYR4pHZVYerrEzBBl1ikFi39jrw6K+zgyyiBAJXnnXQOdSz481ORizrokTGOvjZFp4BXPGXEOtK+4/NV8KXVWJgsqS2XnYWnD7BNMxjOgc9kp8mzkGAq2H05QJx7FPQMNM5Q4l/PoGMYBjglFJ3IMwgSAXN7qy77gUQDAb/7fgjNpTYCVxybI+6bK/KLs2G/2NjwRegJ+oSOZMeVLZrBLAOWExHh5zS0E9VfTdfEg9Fpmw9Ao0eugqMayIdddvbnII90EXA5wcFp+OD5doXs2DhLlhVcbtN9zqRpA2TUJ811CayNkDZgciW34ST1hVTL+eAHJxUjPGnnfuibX3EdSBl02rVKKvO/Dvk5+nyedM5drDL0NjoDeeQ7AMY3tsPNq0PJbc1ml+71PHKreLyCKBnCKKB2JgvGf8Tslr9acjScfIaK3G7owENHbAHzoBX4D4GBotHMA/vjtje8VKOyqzffX2MwXHUxXJejXUgLDE4T+85oUZzT22EKmq5VEKNnXVAM4z6a55Sxz2S9huhKjpeESlgU2MYlOJsJ8yV0mjoDO5QJTA222lmDt/u5veevXB2nMvDFQtBoh23PKIl9tY76Q2EWvfXUuSXGD3KlaidmHsRzZUM4YBdDcTmRhWnbjaew4CzwbMUZHE5t7ygayK3+uNenNMZAOGJW3YBF71CoRcPVtZKHNv/z7b8D670VYMGPrPT9HNM7RKGUudz9nCVUGbH7e9ShBAGhdDo0KhVzPvEU0KhzrwHxRihGn6+43VLo6IQFeuO6iUSGV6mXgKbLN+cS5LJKa5NeQ0Pi0u180n6NzoZLthMi3fNHMwXPe2D1PZnJEjjE3jAjdCxWiKuyoWTVcqEwVfOeiS1BVbXejSR8iDn4LhN5GWDAqf3UuiWWxt/dlTLYmTPYvfxef9q2ofXPBwO798oPFZyS/5zNltLYqXHmrjHn5CbY750iYKvwi2eaO27nffPB2hJlQvkqVDRF9AjLjKYDfIaLnzfszAJ48yD5uqmyI6O8z878ion+HEHQIAGDmv/GSRn0oh3Ioh3KXyqs4jPbVt7uDW3k2SlFzIBfp1SYcu1i/hrQKj/+MIxdaiEoJh+h9oiEiDZcl0xpR7izwdFIj73k1B11C7/kQUqQGjkKix0cNDHMNOPbb84Ajyg9FtDfEDWtuy/40mR1YjV6SVD2ytd8XOFitRInGeygWG0hGBeqGCdMZr6F9VeIb6UUx7yevFfM9GZcYe5QgyUzQdpqj2XmNwI01McwEtLZdnU8dS4fE0kymFjRqkpzJ5XSyISPOa3s+mrvxn9ejv8PomBbX26/vYOmxPevpoAa4mWBgevNUmXQObS1KbCvPEzQ/4vUsMKKhnbItuY7YEG/myxWivTgI/cyXgbWPmcLE05Et7ATEq8mGdYDyigpG24SylOdOhcmEpbzz27ufkO16HkTDS8Dv+F6L1C7NVr3vd/0co0D99X6brkqYr3vBr6PxGAnMs6Ah22ygYV8X22p5ode61cD0eMuD2Ic1M8ksbPvMieQRbTdUAL3nXYhhdEJcH801xjMA5MbDBAzud/tLB3Kt8mXZfuOthNWP2q8ts8L9PyUX6Nk/tRB4SemEA1ShX2jr53ZvR17NORsT4bJi+CtvDO+7idxU2TDz/9+8nDDzT+070AsiD14NojdunUocfHzcC9dUDnefDcMwz+qjEsbyw2HTtQRNQ+w5W4qDxO3ip7xOneZe00VdE+d+pfjGmx0kq3WNA0Viq9OPhT1PtLgv70kPD1UyEndmTO6R4H5zY2YVDQA0ro6w9eYlGyrQQjgtVE0vOkUDANuvaQqqSpOpPcJsKbZhkXRgkEMa/mgBuw9EaF0LnWP7MBMFc+s30OLItOD26HiiOSPTfBczIq+L5vpvXwOnsa2KHz7UR9Ug7BnoeNUCWotT5LmcY/p4W5S6lxuI5y4cFefA7IEpqm2Zi4dfLxjYJ58WhEDzcoIVjyutfU1CNzZkaJSKf/186Z0vgpiBshH4RKh+SDQZA8mY0DIdx6frDrSgYdrOBZNn7Mp5TI7J51QROhdhm9oBQDpkS5sUFYzZqosVW5i2pwxa19xqnF7eAzcS1C258KN7RKFraI8qCVO3TW5HuNLCvkYcO0Oqc2mO4Sl339s589Zmv7eQFg77zBYrj1W4/CWyzepHAbCjLmpu5ojHOZ79Uwt2+4mHHOxe9sNmovSUkXx65EWtqbeUV6uyUSGiPw4p8DwOYAMSRnsCwOtf6LcHAQh8B4CfOsBnry7x4LqA3MgaF05mYYGXIsEyT7m0tqvAwm56dOnqdeiD53sa+vAo8y8gtTNLT7nBBO14C/HCWhuuHW7VigO0Wd5zbZrjXBSNX8Uf544/rehnKFsROs/JU7r15iUAwPC0o+RJxw5JNPi8o2E+xRif2kI3ngFVx3Fc6T4sGqgShWQryVnQZmFBLVl6HKod9TxHhhBROatIFkUynkt6bQRupKgbchsXqx3UaYzBvQ6inn/JENUnBR5WHJ8j/lgfTXOsKA/RXFVTxqf3xfitspLf87AwRzz9yClU7RorH3I/mq5EVkFq/kzzQMm4QtmJbf5Nz9+KeT085aHLPChyNmT0PuAZNCuxqZuS940dKYpVib2cQ+ua3Csz4V9FOhAWB/86KV0LAIyPm/bS5h4vOhEauxWaF5yrRvMwd0HzEsVxh1Dwz41qxviIQ1EW++qBgJBIdHy84RUQ6z7c93v3REgn7r6mirH4SbYKXbrr1jj1S8ZTNnnO7nl3kEt/cAFNw+I1X3L7Xn6qtCg7QPJNja05dl5zvdd7O/LZUGcDaVD5dgC/zMyfR0TvhNRevqDcKmfzVRAeshNE9L97X/UB3JmM2WdQFEGmooWEgCQj1z4+x3RNnmpVMloECgD5gmcFxhQkVnUR8WttlK5cH471j7qHYLbi0F1UsQkfsd1Ha6NAVLonL++7y6YJXEXCcSQhEz8ZnO3klsOqbEXI+zHyNy2ZcyUgClFQsQcAKNpRsCA7mLenEOfeos3XLxjZQOiAACnOSyeuXbEuKFFXq7jJ+72cR+OyhGs4jUFFhaorlqYqmtmaWMQaJtp+h2i2ZidH/UTPFn0ufKiBsuPgshwJn5nO3fgoBV0wo7MtnPiCi3j+sWP2s94nE3ttyiZhcL83z3syJ0d+3y3irasOfqUFiqrI1ar3FYxfKJwNSpStOGCf2Hm9awfRuuw8BarlfCyxpVk7dXGV47jX2R5j9wH3Qf95ubdVMSbjCumeu0dpc1deNNTdzzC7dzmghIlnbEOYY8Ppd1VbbKHG4uNh5CDvkOUfKzoR6hhBm4Jkxti7xzEgVJmLBDS3OUDWta/MkS9lljFAz//K2xwNQe70YlDLVHRjRDkHHvR8xXlZvtK7LWHcMYAAEb0XkkfZYOY3mM/+fwD+GIAcwKcAfCMz75rvvgPAXwZQAfgbzPyL5vOvBPC9EDqF/4OZv+cFDl0w8xYRRUQUMfOvEdG/PciYb+XZXILka/44gA97nw8B/C8H2fkrWYLq4gVC5ng1sfiMLBCL7/fClGWJ2ZvO2LeFV6lep6Gy0Riv3w/DR7Skgxx1Jg/FbCW1hWuAeExRUBhXoU4Jc6UF4RAZ19qqhebEu4db13Jkn5TKw+K+I9h7wD1w+rD69QlLT80Qj9wCOXzAad54LqEhn0BxtkLBGDIvT9HaliJL9bw4IqtoAKD/3NTMkVF+nRh1QmhfkjnnOEJ2zVyMKAKNpmCzwFWLGepGjDrRvEAqiCmj1IsWYfuLcpAxsaunRNE0TdgpKmWsWk9RNQSurnU9qAXurC0A0gGw8SsnsGjQZflCWDMzXwYaO+HcrzxWBYuTKhg5ZwNhXne9Zogd3DjbKzBfSpENHLMFlWwLF6s2B2wC+YJjL9Bw2u4Xi4Lg0oST3u8ZRXOv7sXkI7uXDUt0Soi965TuzRBtu4eiPrqKaGeA6pgr0vJzGS4/qUg6YO81NdK960NfgIsW+PdV1XBtnHV/mvurWqKglDuvTghUMrKB3LdKm6N5IqqA4alQuTV2YBGkk7XIIt80pKueGZPsX1k09rcKf6lyh3M2Pwzg3ZAiS5X3AfgOZi6J6F9CIlD/gIheB+BrIKGu4wB+mYgeMr/5PggbzAUAHySin2XmW9XN7BJRF9L65b8Q0QaA8S22t3KrnM0jAB4xfWXGzFwBABHFABo3+92rRTiSAkdArKSiQ1j5uMxZ8qwpEfcanqHdRvNpWbVGb5LAtyqseM6YLzqLV3nXNN7dujqzllJja4664bU2MB5Iy4TeopIhDcyMxzKo9lFwyEKhNQCqPDRM1b04t4oGAIqFDLNFsg+SEhsqiSWAQNGM7umASpe3sEV33iLX2BUgg2wgFqMfnhEF5bwTVIzEdC3NFzMUHQcoqBPC4tNTpFtmB1EENo3V6maKKIlQtbXGKBaWAGU4rgmTtVgaqEGK8HqfyCw8ONuTRcYP7yRT5zVGlYQDLQw3lvNumYp/jmS+FIq98oRwbalHPFuXOTz2m27/6TBslgbAAira1yqM1xPbFG3YjtHaYnSMok2vjpBeBWanXV7h0pc4ZZGMyBa6AiFNzviMCTWWboHtfyyz1nxjj8HwWlPooj5xIcrpugf8WEmxsD1CveAMj/yeNUvhVPQTVF4htIY6hyfcvbr6EYJ6yNmgRtmKgnCzDwGvGhT0JZr3BbLv89pN1xxDw9EPmHzKuluK5otRELLu7MvD5AuJzVEtjCprJNRZFEQCQHLNX46I151SNsz8fiK6Z99nv+S9/QCAP21evwvATzDzHMBzRPQMpFcYADxjSJBhWre8C8CtlM27AMwgDsdfALCA61vB3FAOkrP5JUirZTVzWuazLzrIAV7JopbWoqEriS57xAjM4BUX2B28YTkInwDeg6qNltiFsuKCkW3LIuK75NMjTWmmpgy9RGhvVh4NCAXsvXUWgSpXxa8WqdDXizS8qvfs4h7qo8763H7QxK69JlZ+ISLHwOBBt6DMliK0tmsXYmyH9QdVJgwEtsmVsajb10K+Lw0VJeMKg3tTCDxfFrV0zFh82vyQGfHu1Lap5mZif5svZqgaLq6VTIU5QdszVA2Td9GphCxtXcNlVceiaDrGeqcaaG3MLWJq6w1CrKnV9VEheQ9VyJrD0eutimZk2vc1NiP0z7qQYzyvg5qgKiWLsgOkBXX7WonBGfVszP1kvJ/igUVEOWP7NU7B9J91cz+4D2Z7/R3Aqbnn+rL4UuSBP7yiRG2P7Xv0jR238E+OJth6o6D7AGDhE5tAI0XVl3tXCmi90OmsRjxzIUFAilDDY4aILmJgbOp7Grt1WAOzKS3AlcYGMEW9tbwfnZJGfCrqbfjzG+fXMwVosh9AUE9Wp2QLT+UDx35Q7yusvlPyInM2q0TkI4HfYzoNH1T+ZwD/1bw+AVE+KhfMZwBwft/nb7vVTpnZ92J+5EWM50DKpsnM1p9m5hER3dnM2WdAohJY/r0NAEDda4aKJoqAvoOHDd6wHPw2mdaoE3I3Y8nmvfl5JQuNolh8dJZaVq2rJtwRR8j7KRrbbkWP+045aYhIq58bwxrTlSjgfepc8VpC9+SY0+OiQHoXarOfECarXp0WHSoMN+8Ln5lCeHXxsN0xM50DmP2HkO4qc/MASJisvVFjfMQ92AvPzhDveHG8NAabsFqdRja/VHRjRAXbECXHhKIbWxjrfCESKh5z+tILJrJhsToTxaGKvf/sFJtvalu+sHwBKFuMxo56WUDCrh1CNhSFpnPQ2KuQjoDWpiK+ImSDyiWXFYHnLejJzPC7QRbUshVZFueoYCRzDsJwV9/iLmz7SoiC7J2Vv6NTvsLQ1w0UXWD+oNxHCx9oomj7FfuiaLTyX+aaMF2Vydp6o9mLYYOYnVpEPPdDw3FAvKleydADuuQ9x4kXzxkcUZCPKr182Oh4jM4VB4mPKgAV2+ZpQFiQefT3DOR/Q268+UoTRTe20YPmVoHxiYZVMjZUapS/HyIElMLJGHhae036HUvnU6N00sG+qu/bED64stlk5re8lGMQ0T+C5NX/y0v5/U32+VvM/A4iGiKsuyQAzMz9m/zUykGUzZiIPl+b4xDRmwFMX+A3r3iJJyUwkdOIJvtOp9/F5D7n1SQzg87ywmo+ZQyAgMm5TihEHQEexLRGPCvBsRdPrhn5YsO8RtC7RvfT8JKhmswFDGro3I59P71fYkiaKI3n4hXtpwXRh1EZrIMwmZeDKVriten5RiWjveF+v1+0Q6MqgOY1OXD3OacQabrv4S0qsKn/qVqJrXdKprVptmaQcpNavEkz9d2LhemoahLtiXirGtqRWiph8QWAja9pgtMKjQ3Zf9liJFOvORsZtJ05te6VMgAs1Aaq69eLTFdii0abrMUom2QT8e0N3rfAJsIAYXI0cSGKxvdkb0SW6ct03SkQH31WdOW6NT4kB7TX2+xj3o/Q3gyZKwBHZHnP/5iDidDYcIZrnXnMFYbyJzLtlLMcSPfmGJ4WzZz3gMVnPMqnJPR6ADFYlI6mcyVc/Os43J4YWDjrwBXprub0ZJtsd45kEtvnqOgnyIYVqtQpv4bHpF61hG7HojK90LR6U+0N91w1rzpjaPCQR3Z3m/JyE3GaTsVfDeAPm/5fAHARwClvs5PmM9zi80CY+R3m70uejIMom78F4KeI6BLkMT8K4M+91AO+YqSuw9exu/lmpxcBwLrVpVnMNCFKFQfQ42QurMy6YLt+I+4Qir4CgPlyI0gix16tSL6QIM5rRzFDhDivg1CWz7bbuTBDcbSP9LLTENPVxCqVsi2hCUVcaQ8WXTAbu0oBI9urZalQZFWimkRNZhx4LxxRENtW4IB6I2UnCVB8VNaguVM83G6g6jZRmVAS1SGvW96L7VjjubBXa2ikakaoY5egL5vS/EsXpPmC5GN0UW5diYTYU5tkjQitTQ7IJ6l2Yy+6kiNSC7toE/K+N0cFo2yTDW1WTbnmeh8MTxJADkCh47Q9ZJKw0VrVIHSusIV+KzeaNsYDQgWTL3ivVys09mIkPgR9ytYDbgxqNDwm87wnGvHUr7gFvXl+174ulzugokaxJEaQhnn9Bmr5UhPLT8g+50vCPr6fk0+fBT3P7iVlVaVgLoAQFq1jVXRavtQEVYxkLBdPATYK2c57Qtrpt3Der+wA1/kWcCHpeMZo7NXWaGltyDmqkvHpnm5HmIGqvoEFcYfEIMv+PoA/yMw+V/XPAvgxIvrXEIDAgwB+H7KeP0hE90KUzNdAWJxvtv8YwGPM/JqXMr6DcKN9kIheA+Bh89FTzHzn/MpXgkQRylOrKLvyZCq02PdefCuToxCBpH3iNSTAkakJ8bydsuU0T4BWakUoW5GrsNe4sbcIzRYTdA3VuyoarazmiJBd3MX8tIT6oryWsJ35bd4lFD3YJDpHgJBnemNoenDgxPUGAUzleRoWJvr1Rmohahiufe16mHiUVzbpT7khcGy7UGE8nGK+uiifx4TRcW+uSliLXIEFkyOpmwOCR2pKUnNkGahlcV5+UlboKoswPJ1hZpzW1hajs1F5LNOqNFS5RJgvkPU2pusSllMGicYuSViR3PGqpqcQWOdI/nYvOvJVe+5ekj/ZF+rJhlWAVNxvEMQ5sPdamZveJ2PUEZCNNTREQai1ahAmR7OApTmd1micdYmQct1FQjTPqIo7GUtCXT1wjsR7n3vjI3bhtagKcx72nvKhzX79Uc3IFxI7B9r+I5k5jsBk6CYrKmoM7msHhlfguSl/njmcnoffFtv3zjkmtC/LhZscbQBo2N5IiWdY3p7cuTobIvpxAF8Kye1cAPCdEPRZA8D7SOb5A8z8zcz8GBH9JCTxXwL4Vg/w9W0AfhECfX4vMz92s2Myc0VET5k20M+/2DEfpFNnG8DfBnCGmf8KET1IRA8z88+92IMdyqEcyqHczfIicjYvsB/+2ht8/B9vsf13A/juG3z+8wB+/kUcegnAY0T0+/Agz8z8gmTNB+3U+WEAWp51EcIe8FmjbMrTguMdnfBaPeehW++nxDSEpvUjjhHZi5sBqD3PKLIUK7CsvoBBQOW1tfiiCgCz9WzyToQ6Awan5VJ1rlTimWw7K2/ymjUbpihbURB2yQaMohd6YlHpkrXEYc2NIvRiz5Np7FY21g2EHU3Vql98VkIPeS8J2u/Gozk4SxCN5fu60wA6DZApUqVZjsm9i3b72WJkw1w65olJYkel9NHRsQlTgmuYpYzXmq9YerpE0YpQ9GTuxkcSNHdqzzOQGhu9HqOThPkKo05k/53nCXXDjSMZGwSc8XSKjtR/6H1SdE2LgUjnTf62Nr36lXHtILdpZNt0y/kK6ES/ny3FmBwJwQbxbF+L7edcXUv/vOcZMSMqvRCduT9Sr4ar/eQ19/1SF1TUGJ9u27lhL0RZ9GKUrQiNbddagBEyQfhQ5tTU0fghqKJLQSH14jMeF1tbwCC2+Hm3sl4NAMTTEnUrQZS7zzqXc9ufp+inYSsN4z3WDfehMFmY8gRvqrS2Z+tzTNv3VAAwCiTxvaHbkTtcZ/OZkn/yUn94EGVzPzP/OSL6WgBg5gkRvepnDABqE7rR8JkfKgoStSRhCNdjxlRZT02DqUaEuhGGwvb34lBUjOYfdP9atbz9sCwaS0+XiCrHNDBdEcSVbWZlHuj5isSq45yDuH/elQVC4dBRCXQvcgB3Lr3FChDCSYXhWkU68h50r9dP1YgQ5RwkWJvbBbIrsoJnVyB8Zxo2m5WgWRkQi1JZY3pcAY1tjI66GiV/cdLEuyLg/DYMcu6Gtj8JlavmjYpWhGTu8l/dCwVGJ1IbFpmsRZgvuZqiom8UTaQLmFwni64jWeiDxD27vENrw6CcPDBGY48D8Ejej+1CqCEjHZ/f9ljO24SwvDxNnbprNTwhOR4VheIDLt8TcKt5YaP2pWkQypweb0k7CqO461SognSMynaQm/YbVSphNA3VVSkFz48aJ7V3nyRTx9oRVcDg3swq6s6VClWTbG6QU0KRJGhsGmCACaspUhEIw5HJUB4ozeVUTQlP++wXrc3KGhZ+4XTVIOQ9uq6zp867f/1uS1x1xKtWmPk3XupvD6JsciJqwdhfRHQ/gPmtf/LqkGimFrgUbDYfdae198X32NfJvEYyB5qXDexytYlkWqHwaGOieW2Zcq21593QqmRUCdkK/Jk0EFO58GURWpcjWzndvqoLrBu3D04oWhGKrks0a8Ggryx92HPnShUoEvXmfOoPH9jACWHeduOrMwKVYcM0VTRyghT+TWOgqlB3HSxrcsIh55XWRMff8togWxCDKUDVuhmt8SEOGbFlsXRghiqLkA5LlM3YnisnwM49CjiAUPWYuU4mhLlXAKueEpshFT35rDZrdDy7cctg5SMrumJN9y5Edn9lw3UDLTpiSOh5lm1C+2pl6Wmolt44fgGun8vrek3wMlNMqov8wiW5V0f3uhoq/37MFzK0RnOM73V5mqoZ2TxjnZHUd6lHZGrDfFg3k8cHV6oCZbuv+WKEVGmUYmlCmFivVIAlWnSa92PEObD4qfB+n685hZgO3T0XT0vrHQMCINDj2u0nte2no/d397w885OjaZA/igoGVb4X6dcrhfD+25FXe1toIno7pJnmawFkkFzP+E5Bn78TwC8AOEVE/wXAFwP4hpc82leKxBHq80KQlJ2/hCovEK8JbJhXFtB/cge0Yzi5RmPUD55GPJQHuD2colh3CMBoLkl5XcSpZuS95IYoFvF62CbUZ0sRRg+WoNwgYS7LX3XthcKjdkWggGvKBmd1qfLKTE2I78l0L3oPqVFUCifunZOHL2jQFpMNlVlknbfIxZ430Tq/Fzy0dTMD1XWwEHCSiHcDYHKma0OCgKvXCVBEZnf6kPuFiL41SyUDMVk0GSDFrj1TppaOKqG2MV9n4xrbr41c7QmLwlCosjYciyeaFNfP7e6RjD3PphavSxfcsg3MXjdFdEHiL81NobfR88lGFah20OmyRbYiHjDQYSILc/cbjwFyX6Vee3Afrt46u2s2Mp5JMwNiQvd50YbzpQaqZuRqSxLC5EzfMQJ0ogDQYlm5PVM8mdR2wSA282/EIjVrRT0KDZG2Urf3kXcty5Yr1Cy6QO98bWuWlLLHb/uhNEVywgmSYW6VzH4hFkPMgjtWY/TO5Rjc4/jgJsfcWFob7rdxzrZJoX9utysMelnRaJ8meTcEtfZTAN4C4C8BeOiWvzByEDTa+4joIxCmTwLwN5l58wV+9sqXeQ4YA5vzAlGzAR6a2tXJFNTtgEcORxo9dRY4fgQAUKz3UHST4GEDQg6l1sbcoFpEYVxXc2Aegu03l1h43F2G7oUKeT9sI+0jbsoWYXzCfZcOZL/NbQ62UdGCRFUyjU1Z3ZuPi6KdP3QMVTNyIZ2UUMUuZKh/Y61dicjmnwBgfryPxtVxWJMRRUDsxjM96RXInlZONHnfP19dN2af/8tfnOqYEFeujqbOpCp9YDiwolK8lcm6UdyJIOf8XNzCp9gyVpdtEyZTKPSUQJVDj9UpkA6Bjqk8oNJ0yjRDUiU1OWlqT06OkT7qjBBZPMlZ+5koGvVuVdFo+wWFx4+8fkGtzdrBg4kAcBAu8wlaQYRixXkyRc/do1HFiMaO+sgvWgTEI8qGFUrTfVPh31XDj38iEDb8ZPZrzxDoXixAJWN4xtRPKUrNKLT5IgUFnAvPGiJQD5FXe4zfShmk51sn0fWKxkMmqjFUeIwEN1M06VAUn7JgVBmhc7kIvOY7Ja/2MBoAMPMzRBQbRNsPEdFHIUi4W8qtWJ9fw8xPEtHnm4+UcOs0EZ0CsL2/oc6rSohApu8JveY+4OxFW2vDeQ7ezkFae0MEMooGANKNIYCehTPHuXsAACCZlFbRAGJlRXPngfi90LNrCaZrwNpHPRhoFSouv+hvuiaLo3KRachrctRblBNXyR2VbBK7LvAfXdnG9PXH3Vyw81yo1mZwJlbfiWUfnnWXdxPbxK1xVQYSb3uNtBZcmGx2tIPd+z0ySjMt2jp5shYLS7VHoOgvOEw+JJlQNWO7WKfjGtsPxW7xT4HJccb6h2VfwhgcLhjJ1DE7NzdFYahCni2JIvB53nR+VLKBMxQmx+SYyVCOMb/UQWsGm0dJDDRbw5g+2wEArH1U3ui5l60Ye/clAf1QVLh7IR1WqFqRtbTTkaPGr070UbViZLsyOAVFQNnEixp5Pwkq6X1lo2E4C3Yw133/thpGS+Y1qGSkJleSDoGil7rWEsr558GRJ2teweUeI504xWkNCL+FuXd8pZCpk/i67wAYg8mxOUQFo7FbIhvK70bHkyAc2TvvxjUzLdYDSH8nvmMEnL7cKTTaZ1AmRJQB+BgR/SuIXjiQVr6VZ/O3AXwTpFHOjWSFiB5h5q97UUN9hUjdaQL3iItAZQ2cPIb63AX7PXlFntRsgK9ugo5IMF5DaLZSnSSZqkiZOiHrCQBhcVk6YaQTx4WGyNSM+AlL70GKc8ljKN2LLoR+8R4nwNwYbZoQnazLMZc/WSHdy5HsOpaE0ZtPelQdJn+hCd1GFOSfAATKQq3wdGCK61op4t0J6p5TMPmqe713n+FEM++jObBwzuUlkmnYHC6Z1a7xmlGAsxVV4oyoAsbrOp8xqrZjPJ6tyX423+jF7QcI2gakY5dnITZ5G3P4xh5juuoYrZOxqTsyCL1kzpguO9LG9mXxMvMl49lsR6iabkEer8cBOzZHwOonnNJXY2XgoyDnbsFPx0IQqyHUXslB4WTZjC3whGoxPGYr5n7KpTjWLxj261oUOakhvan5XeeyC7n6Xk2dEsAIGLz9HFDRM2SpWs/STxDP66Bos3fBueuzlXDpqVPx/tUzybVVgIZUlcdNlU5MiCeVvU8VrOMDVzKPQUAVzeikfL/8uCPibGyXmBxNLVeaGDju2bhTLQaYPyuUzddBlMu3Qcg4TwH4Uwf54a1Yn7/J/H3nzbYhol+62XevBpkfFaXRPLeD+sKlQMH4eQgu5AHUJHdpEub+fROV7JAw2h7axJ0Tz1rTYjV9qBY/ORdSwIbjcPJ7rY2PJKjTsBdJc8u12OVEILh+2C2eAcuf9Kr2K8be65dkLNMaRSeyLRLiuXRr9CGis5XEKjfad56aR4l3XWac0xhUmbCL4WbbeUgG3NxhM+bSzF2EZFKjp6EgZhS9xKLyqHAp1KKbYL4QBUWmdeLQY2VHFgUNybUvKVLPjVcYAeR17wJjuuLgvEpzr0ptfFRIR1WhN7dqFF2y6LU6IbSv1RiccTxyANA2AID2BqPoki36BMIK+bVHcsNa7bjU/AU7nTJMLzkAQpFfZ0BrQ9FzMdoblfUafINASElD5Bvt8wz8a6xSdLy8xVYdLLhAGMbMBqVFhUXzGvlCAiwowEMUgj8mHy6v5+QKnyn4C0gotdxXPqCGiNLN6H0ST0JABBMFecfhqQhReQOD20zJ9mszW3ybzDnwejgmgPnO9bHx5LMA+vxmAP+DmQcA/umL+eFBijpTAH8NwB8wH/06gB9k5oKZv/xFDvQVI5wQmh6nGCXhVHDlrKJoeREAMFttBds41BJjuuZ+r33Vs7NSxzB/YN0qGbXo9LfNTdESkdfqGPBQWuaQmviPSlNLYhapeUehqrKd0qrr/pJxgdFpN+7JWmKSsQa+PWdZQLxF0SfN1IXa7xXfPrvnoM3zUpqYGUWr3Q19BdHcKm2w2reudR6yQWkt4tlKYudmZJit1VNoDNh6bADQMKE433ugGki83kS9C96JMUs/mn3IfV2gl5+qMT7quqAWXUIdk61JYjJs23rtzPEt0zFJGFChyckMGB0jLD1t+tNo+MugqqisUbUSLD4jq95sNZPjmfxVNhSFaJGCGm5rO/ocOxeD69kJGhtjFMstOy/x1MHAuSFK16f1L5uuDsWHYwNAPK0CIs7RSeNB+cjIbhx46L4oFNsyYBSioDTsFee4LqFB7EJvra3aggbkuJWdMzumE258zW1G3g/ry7IBW+Uaz4CO12Oq6LrrrtcnYIW+Q1LXr3pl88cA/Bsiej+EVfoXmPlAzTQPgkb7fgg//L8377/OfPb/fgkDfcUI1YzZPUv2fWPDwzxUFSiKQA2Xd5k9dCSgr/HzCkVH8g5+vLn96GUUp8TEjuYVZktuRQza5yqqx9zXc2Mp6uIxaUVIvaZT7Y0S07XEFm5Ghfzrfsot4n5PlaKXIpmxLYzU5LdPwbHf2Fp6prTW/nQ1RmNQo/u817VxmgszNoC6L4uZ0pt0L5UYHU+sVVilkg+K9lF+aA4g78RIR1VAe6I5rWwUMgXbJmINXRQ06ey28ZPOVEktiqLFOldE0bh6CoHiqvU8WxJ+LV3E47l4lOprxXNG92JtkYSAKBq/lsNvEBbljNZW2GivueXyLOmsQtWIbOinymSxV48LHIIB1GvwSVFdkSIH89q6JO5Zum3g+mtt8SI8+vx4VjlqpszlxQABQwSh3VaMyZrL4yjztm+k+Dkgad0QW1bp5naFvBcFEPvGHlvCWKmlImdYDOsAjVdlwvnXO+fuQz8vqq0GNN/lX1dAFHNjj61h4F8zG3pjtu99D/EONdcEg171YTRm/kbjgHwVgK8F8H1E9D5mfkF9cBBl8wXM/Cbv/a8S0SMvcayvHPEeksalAXDyCHDR4R+p0UB1//Eb/NA03fJizlVGSCZsk6wAMPz845bxeHK0ifFxL48wZBu/1lCHPvRlS3IC+qD0z1WIp5W1xtWD6p9zPVo4CinU/Z4qGqZIzaKVTuTBD0/IvayakVkolJuK0fZaGCRX9wIAQNFvCIjAW5j6z+fWwi56CahgO466ESHK6wDSuvuA1yBs5sJbMnfegmOUjKPVB/IFRpY7T6DouBh7OpFFqnNVPQ+BkVeL7tx8oUog4wop5iSM18e54dDa8NFgbBfUsmmYp41nVaemO6gusGbYmkfRGhL16qiSxLsdT8n7CkgZ2W6BzDnk1sIvehnieeXCYKaFdtnN7DGLhdTeb3FeB+3Fs1EtysBLkvte0vC07MfWPCUUXPPx0SQoIKV9t9hsOUbDg7ersaPHiHNC7oX08m6EOHfKtHPZQPRXnCfj97LhiJCOrjecfNm7J7ItN6h2Oan4BtxnvuK8k/JZAEYDMxdE9H9DTqcF4E/gAM7HQZRNRUT3M/OnAICI7oP0sX51C7mCwGiti/Rjz4IyLVZJkb/uFOKJQfYsNFA1IrvwzJbEwvMr98dHI4xOyv765yrUMWFyVMxyv0YltXQwJsfRjFF04wBxRpULHWWDMlgUtM5iP1uuhlbigjE66m1vYLf7+5jYYzGAmm2IZ3hKVoyOabbW2syRXdi121dLXVBdo1hwLkc8q4OYvL9IAVINrspGPKw4YCxOPW/ED+toPZEi2LrnZB+DB03cfkboPxui8IAQTdY/5xR1ZPoOKQO2WrK+BV2nYVhOKGKM52NqRppmsU+mNYYnvYT0UO4JXZA5RtASgUqBG5cmmZ53Q4h7NigDtgZt8qZdTtMRkFzYBIzHXXedZV8nDXCc2G0BoOxmtivsfsi6etp+wj+Z1LYxXedyEYTNes/LYr/7oFvsBw94+aY9oHMZHvUODOuzvG/s1hZ1B0gLDKr2wa9vEIJTg2C+lAYItNlijKhwLBOzJQqaDFYNQjpxXqfC3f1nNp3sO553n7ws8lkAECCir4Kw/n8pJKXyfwD4swf57UGUzd8F8GtE9CzksTkD4BtfykAP5VAO5VDuann1uzZ/CZKr+aumzfSB5ZbKxvQveBOk/4HfYuCzgq5GE45MhPzz7refEzOqRozKWIXJuEDVyDBfDDH+GtedrEYWIQUAe2dipFMXv49yRucSB7+tmiHqxnYsVGJOI4qw8V39qGRke4W3jTPF814s/eW1RXVMaOxWtjePHMO1wGUCEFOQV+h4LaSzywPUvSbYIPWq9g1uGc9Yq7IIiPweMyas4yHA/ERuVAoIwrfw1aOZrpt9NvXcyXo1ANB9XlpUK7VPlcl+NC+1+LTzagBH6Nn02iFXzQg3YxCx4TJvH40B23DRbCkGcdh+uXm1dGG4SMI1GrrS0KvPwdXadCfe/ORVcK9tj1ca71HnLr06RLXu8oyTU217D1qL3QwuJtduWiVf8Apv9ZS8voG158koNDqeekCZirH8pDz607UUgwcI6Z7sqGtYG/Q+rhqEOnHeJvUJzR0OCiWl3YXbHnCgB40iaCO/qAzRYe2rBYpeYj3BzhVBWep+1GtRsEUyE4CAZUbAvtypD5zT+hqFmN/B4s5Xu2dzE7ZpK0T0u8z8hTf67pbKxvQv+Fpm/jcAPn4bY3zFSZ06mGUA0QQABprP76FckdxE2UklPq2h/0qe6cmqV9nfBmKD3ErNAxz0J+HwM7+Gwe/8WLYJZTu2aC6NfWtFNxA+GHUSIR1WKL36ArDf3E1COzZGvq/ojlPCfDG24bl0BHQ/tWf7ztSmgyZnTtFWjThA6vgPo4ZCNAxIFcsi4IcvPLQYRwDI0fMUHQoW/6LHqNYlhLO3DkSbmQ2dKfRYlZLMk3s9XYmDuVKDwA/dlA1H+1I2Cck0ZFUGEQpdsKaCstNmalKV78JskQkLVbafTriwUC2M1e09r9dPWSM9J6jFelVii9rSO5lWiOYVyo5oJ1rrgaoauw87lgCd585GCSpdOLRqRsG5VxkhyjlgHM9GtQMGGFqk1rZOlizG82WPF89rhT5fiLD4ZDhXQREkAa1t16m0TgmT9ThgwPZh15ag1jblAxaedblChcdT4Yf9Knsti06Eou3QdJon8+HPfk61aEdWUSvgQxu1dTbKwAO5U0ScjM8KNNoLyY35g3CwMNpvE9G7Ia6T37/gI3dgYJ8xiXIOFnCOyFVqb8hqmG7K6U7Xl1G2opC9txNZXq+pIRcozOLXvSw3up+H0QW06Ea2E6OMow4eCNfS2Ptpve81Oc+oTgicOBRPPKsRFxwQJgYV+YZixM/btDY86/qy0QSFLoiibErPowkWa6No9LPhEaU78ZPH4QPW2NuH8GG3TTYExh4uo848j25TxjK43yzuc2k/HXvW+eLTXmW4Qbj5vGtKZQMIQ7bPTUaVgABU8ZUtk2tiHbexor32wWUjCpL6Ow+6eWoqk7bntbU2Zha1mIxy1M0U09cek+3mFaarmb1XylaEbI8CmG/VCNtSd66ayv+IEFU1Yp9an+ABAmR7zb1UrRhVShackI5r1DEFCnJ/q3PAKYUqBRB5yp0kN2kLJRX15d9nnqJR7j5lV4hyubf9PEredzB48XYjSynjKxpArl025CAvFJUOtJNMhIpHn0mq3Tk1dmvMlmKLsKtjKS5Vg+qO5XAYt0YwfHbITSfrIMrmc83f79q3wz90GwP6jAsx7EPNRMi2nEmsbYsHn+soaooOWUuMqjCZ2bxmblqvFqX7vFsBJ8eaQfGanwRWVJavXJqbpS3AUwtMwxpiHdcBzJpKRmSrnSXckFgutBnmyw3AO/58ybVa7lwqkG27qKj1aDzEWdlvWt6uOo0CUlDdj4/sqhrOqi9bpmOmmY6yK/+0VXIycR4KAOy8qUTvqCi80bk+0uPuukSDhjmm237xk97iZLuRyt/2tRD+PzqRIO86aLVSyPvIKard50WbAlp+VSqBl+ndB9py2PLUkUELmqlffHKIOnPIvdm6zLHS9lMZC9uyMXqy3QockSggs7/Zolfns1vfkFIGcHVWGpLjBAFAoHltjryfWk9IFU1jxxBg9hLxepyDLGP1uMZ8L1LvXzWMLBHsTQojVcnEXkC+MXD3tXqLtr3EZshGUDUjw0ptlIcFJvjjc9dfARGB4ebXJA1cXyQl1I3ymwz+NuSzgRvtpcpBiDjf+ekYyKdbmMIY9fxIB81PuVqb2f2rwfb+omNvWM9IWfrkDMmuqwEY3e8IGcVClN83N6YoFhpWyfi5EkBi0X6ldzwXJly70JkHoWm4zmbrrSCklXclbr30hHhl+WJDxlv5xXtOs6WDApxESDxGgLqZoeo41FEQy29GiIoQiZfMGIPTbp+je2vLXq1hFq3qj3JpKqZeIQiYHmHUHdPe+KiLsXG/RD7K0DzrxpLtAisXrkesARLKHNwTo301tOZVmjs1qIwsfY1ayXNTaFhnjvFABiDK1PdkonltvQFVGqpkiIXlWe+VskVYeNpTlltDUK8lbMs65mZkWzVHFSPdc6EijoVtIEAzevdhPK8tNx4xQCCLcuSIEOXOOo9njHRnbnNuo9MyCbNFrWli9M46AymqGMNTWdjCvEHuugHB/T9blr+9857y75IQ0MPlbkZaAsDhwt/Yq8WIU448djk4ezgvTKeKIvWKhHW+dNu8n4T9oyj01lRRF+0ImRfatDmzl4GI87MAIPBCclPX7SAMAiuQNgPvgEzVbwH4LmbeumPD+wyJLhqcENJRifykS77mXjdKjinoaZH35bv2VfckZJf2UJtmVNxMgp4xzfMD1D1jlXcyUMk2T6TKRj2DfEHoabSYTy03TbRTyWhuTJEvy2Ih3Ssrl3w2HsXgfhfXb3pJ6DqLsPzxgX0fTQzHWcNlrWtP0RQLGYp9Dx3VLgxHNSzPGSCKRulbALFc50th4SXguiCOT5iQWE/GOLzglPTSoyGIAgiL8abLkdTGmLWbGGhf5eBaFR0HAFCl0vUAENPlEKww9jpjLpxVC9eD+I5KCxzRhLvORZxzYJQsfWIP0Y7DYc8eWHNjUvEezVj78HiULUU3CpgC6sQtwBqmAwAwkMxcaKlqRig6se2aWmcRyoUMkyNybesYmC+4/RZtwszrHTM24VCfJslvl1A15JjTldDT0fdVU7xXvV51IuzcxYIZ+yYsXYyOH9jnebDLs8X76nKcUvHANAtu3uaLEZrbzluRPkfXKxpAiqA5osBz8q+Rr+xvT+5cUScRvRfAVwPYYOY3mM+WIemOewCcBfBnmXnHNLv8XgB/FMAEwDdoGoSIvh7APza7/efM/CMvcNy/DuA/M/POTTa5KVfmQcJoPwHg/XBka3/BnNCXHeC3L0qI6CyAIaSOp2Tmt+z7/oaTRkRnAPw0pDwxBfDvmPkHbnms2rvhSkbZSeyiGhch8iWZVqhTsotOc7O0ldgA0Dy7A26m9sYvmyacct4t6ra/SyT8aJZAcMZBnFxrPPRhmi1GaO7WgfJyXS49WhobdghDAQAwPu4USdcUk0ZD96Rr8h8QRZMvuO3LxvUPx2wpxlTWTbQ2DS+XMQwXn4iQ98KwoB8qyfZCYsx4ZhK8O25Va12RH89WZXtdXOtEkvmad6kTsX79nIiPNtrvNfafL1B044COxx9bblBsszX9G6OxDax+woAnhkVQVBjPaoxOpgGvVjao0NgQBaOKZvSmo/b7sklBzqW1VQUcZpxQ0FLC70ukSlXJUPN+7LqIQhbF4Sm596JC7om8L5M9XSZkI+eh7+f9qlNgdDy2zc40z6XKuDFwHgcg1zvvkS1gtfNnhj49wpgecS0wsl1YRQOY0KpXwOu3l1YpvLYTU0PG2tzWxL/k/fQaz5YjZAO2/XPknAgt45WWnTgIfwYehoIMGuFvbX3UnaoqZIDvHEDghyG9ZX7U++zbAfwKM38PEX27ef8PINX+D5p/b4MwwLzNKKfvhPSlYQAfJqKfvYUiAYAjAD5o2s68F8AvMrvgIDM/erMfHkTZHGPmf+a9/+dE9OcO8LuXKu+8Rb+cG04ahOb6C5l5TkRdAI+aSbt0s4NwBIyPuS6VwYJfy6KmMVuqGHHFFpJcdhK0P+YYossz64iHMxTLRgmQgS9rxKCRovB6b1TNyMaiQRQohoap7t99wFmZk7UIMOGi/vkyLABtam7Hjb+9EeYqAKdkGhcH7iQBcDNF3fGLA8MQgl2w1aJNySoanZt07DyqqiHhK/KGEO0DyseT68ky25e80J5X5Olbo2VTqvt972blydImpeuYDBpMEUpS2NfwoM55l+w+Xc8T+U4VZGPbbo7+2dp6uVuvT7H0dBnkaahiL6RTI5mUqEyx5fB+0Q6ld22odug3BYoE7SRasVUI01Whzxkfd15k/yw7WHvk2opTyZitJDYMOFknzFbIIv+iShZyfzH2Wx6oku49J3GyuhljvpSie1nGONV2ykEC3inoqBKlr+G0xrbJ5WkUMQLaV4ThAXA5O/++DcABRuH6eZXmdu3aTWQAyCnjKJf7o/+83HizpdgqGsDQ5xhqJJXEY8SuGjHQUC8oVAh3lJDzTmENmN9PRPfs+/hdkGJLAPgRSNHlPzCf/6hRCh8gokUiOma2fR8zbwMAEb0PwFcC+PFbHPcfE9E/AfDlkHrLdxPRTwL4j1r4fzM5iLL5JSL6GgA/ad7/aQC/eLONiehnD7DPbWb+hgNst19uOGnMfNnbpoED9FeoM4e8mbRDSKbGdTUkwV4TJwBof1SKCsp7BEAwW2sAaw27eKWjCs0Le3b7fLllCTbzXhI0CgMLNLh9xZnnZTcOKFuCuHkzbCWczBjgGysY/W3ncmnbHwAA5V5YrdVA1XS3QdlOxALzm735w43EIlW0kVq6VnlyaAnOTWRydsR4B3vGK/FqTfL1Aslz8kHXi/k3dypM1mPM+3odgKIN9J83+5rUAapNFaMPx61jsjkVwPGrAY5poHdOjjk+RsHYFVU4PC37bW8Il5eyMezvkVI1CFUjtaFP/Uz3WbaEi02VjAJF1IstW1FwbxRtUVTam0iYlUsXtvP57UzNit4X6v34c1G0XcJfPWE1Qsq2hNyUNaBOI8wXXN2KJuxVIVcNsooGcLD//lnPOPDORXMmep9M12Bza4AoPYWUy/YmvGrmLhsy8m7kFJLZdedyWAek0jsrnvt0XSZAm6j53HkqVSO2NXSAeKf5Qhzki+6cHNizWSWiD3nv38PM73mB3xzx1sIrEC8EAE4AOO9td8F8drPPbynMzER0xRyjBLAE4L8ZjrS/f7PfHUTZ/BUAfwvAfzLvYwBjIvqr5rj9fdu/FrfmySEA33eT7xii3BjCLL1/cm82OZdNQ7f/AeABAH/vRl4NEX0TpEcP0t6SRTXFhVjB7avK9uosSQBAxWhcHICmxkRvNoCZoHlkO0HF+FbT7KSLGfjdFAUF5264/jNielLhNZk66qY0KsKFWcNkfmFitpvbfiLuh2aBZkYyKZFddiE97jRtZ01NGCuUmlNC2YgCssnSRe1szH7qsS/7PWEAYHTaQ6atFaBBgsjwl1UtRtWqkQwNQGKlQPNiahehdFxbZb93r8mJmAWTSqdoAENZUjoC1JnmD7yx+GGZ4SlCMnFKpmyLotFFu39WesDofGuOp29yN2U7Cmh/lN9OvUDtsOnnOXzEliWv9MSvt6JKOOSUWkWII9222aBGnNeISmOB+3UvSwITtgWlsYTM1HOZL0ToXAmh/r1PDVA3DW3NsEC+3LDM0sPT6vUbsEMzrBsqm0D7mpvbOhFF6ivAOiarAOqEULRdAS7H+xin1Vtntz9EQKRgiwYZiigzVyyQ5aBGzgttKxu0fx+3r7nz9/v8aIGz3//Gb789PnKQZfKAcnDPZnN/GuFFHUYUwh2HIxDR34SwCGxCqGr+nuFKiwA8DeClKxtm7r3QNvvkHzHzb9xqAyL6pzf56h3MfJGI1gG8j4ieZOb3H+SgzHwewBuJ6DiAnyGi/8bMV/dt8x4A7wGA1rFTrIto/ymzmGgfmrEkDPUmbJ3fE1/JJNEnD0iswEcCKekmAFStJKjYrxIv4Wusb1VM06MtZHslEqNsOEts7xdALM46Desf2tcq19d+N0e+6JMTxqKIPCsv3Rq7vIx2I9XeO1qv4y16VZMs6mm6QsgX3RxOT8kCu/CoU27ZwB1rdMIolTXTwfGSjE1DY5OTFeLlOdiEW2hLNMnqx6+vj4lKyVM0vaAq7QvjAC4ElI4BECxfWTbkkIZ/VxRJ77y3kByNrIVtW0YoS/TVUnrYXPYYr72iwny5YfZh0Gi1WORqrCgEWg0DrW+yhZSZXFu14nPD0dbz0HYBj10tnnFmKPDjnO3109xK0+vyOfPAD53LJeo0svT5AECzErExhPLVDuJJhZ3XyDllA6lZ0ZwdVWFotL2hSsgpeI6cN1N0CFR6Xm7iyGMBoH1ljnwps0n9OhFvy58LH0KvuTV/+RwdF549AFg4F3r2yZyDkpb2tQrNTfeMRrMK8yOCUkkHhWmyp6zaYWDEN+xuW15eNNpVjfSYMJkyC1+ENDlTOWk+uwgXdtPPf/0FjrEM4E/u79LMzDURffWtfnjHsX3M/JP+eyJqv9A23ucXzd8NSML/rfs2udmk+fu4BOBRAF/yYsd+KIdyKIfysglDQgMH+ffS5GcBfL15/fUA/i/v879EIm8HsGfCbb8I4MuJaImIliB5mJumSACAmb+Tmc8R0ToRndZ/5rsnbvXbO+gfhkJEXwRxs7oAThPRmyDkbd9yk+07ACJmHprXX46wkBSQSfs2IvoJCDBgz2jxkwC2mHn6/7D333G2ZVl5IPit466/YV8879NWZmWWN1RRGAkJ1xQtYYSQAdFSa0YGmelBZqahhXoktQwCaUYICSEQIECMSkVLUJgSVQVUUSYrs0z6fN7GCx/X32N2/7H22nvteCYj33uVZFbm/v3iFxH33nPOPufuvey3vmUf2nsB/MiLzbGxakMQMxEa1wo0LrKPPz7QQeOZq/6DWQaTxejfz+Z4VLJXU1vnGIWJI0znMocME69G4sD1jdJ1FqxLRbdy46msXF1LPJKOluI2scWn2+ImfW/FTea5FkLHnIt65KzxeGvokXAAypbEsHc0i1PrW0OH195oPaHD1rofJug8nTqvrrbJv8WjqW0BtS2CucT3M1raweq8HGNS1GFifg6Ln40AmAA5lqvCQelSyefm+5CC2pFtrNW8pkIiBLQv8f+9IzHicYiMqxJg/UGLsNrg3MHIgi/aF/gampuueXXiwp5k815Fh+8tyg36h71XGeUGycQX1EZTg3RUhR0zlacif0voiyrYvkh+vhp2LWiq8bz3KnuKZy4d+qLLosGe38xp9jCNrYpP7dqhsgKSyN3baG+K0XzkUGfcotXndopG2Opc5iivmch7+gDQXC6RtyMHdkiHBt0n14DCtlc4No94XCIWz8XOUc5b1IHpDNBUsYkqpeDZ6FymbjPOvyuAgPZV4T+0z1PtO/H+81YS5HtkLUoRt26NcKfD3KVTEdF/BHsli0R0EYwq+4cAfomIvg/AOXg25l8FI3hfAKN4vxcAjDHrRPTDAD5tP/f3BCxwi+v+DwD+GYADYM/pKICnATz0YnO+qbIhouPGmDMvdoJbjB8B8EfBCgLGmM8R0ftu8fm9AD7A6GYkAH7eGPMhIvqL9vgfx00eGjhP9E9tjJIA/BNjzBduNbl4DHTPWeqOLELz+VWYhm1l/Iln2ds9xDQi/fvngqr9KgFqqgisaCccO7cx4+GeGHGOIBwmDAXj/W2bCLYw60mFeExIt9nFH++xrr0tVsvbcdCrhgqDvJu4zTO0/W0aqkdNY1kxApQGIArqaEwSB+EIXbwmwq22IedowRweo/37qkup8bmI8QIAUEDrbyIvjGrr/L/AnScLfC+sZOw1VSJ2PE9BMWZNhehEiG8f8WGryaxXtHkH2PPZEr0jUgcDYMbX+ER5CLsez3OYp6Wye5zk92wN7U+qN2uWumeG8679g1lAxVPbImBiAgWhkYNRYYIeMBL+0wAGrTxAHPKTxPlkJsNk1gvZeML8Y27uKTkgyvzT/FAlPFrFhNr61K1hiiJEAMb7GB5WWy9QxWlQ9KjzHS73JTmVjHMolc0Ncn7IuL5JQMgM0bw6Qb7UcbB6WXOOlywOUYYT+93katnpdSFrRn+fusYpb0dIB5XbJ8mwQllPXBh2OpNhqFpx7Gy0BgCrX6kW5v8fd2fcpTqbWxBi/qEbfNYA+Es3Oc+/A0OYdzv+PoB3AfgtY8ybiehrAPyp3Rx4K8/mlwG8lYg+bIy57gZ2M4wxFyhswXvT4Kcx5jSYYXrn6z+u/r7hQzPG/CaAR17K3Kg0qL1wTU6AanUdlNqE/0wXMAbDo5zkj8cViqYiNiRguJSCS3pYqcTj0vGHta4WDEO9xjBSykv0LQw2HlcwMTkrVRKcmw9waiwdck2N2ySDkilPrCKTfIBs1qxfBQKicXWMeNuXeYuSKbselqQZp4tGFJKCNoHOmSHGe3gXH/idEqAUW8ftB4zQ0dhHUVkIrYI3a6EhaLG8LZ4MwcQ7EGuquFALlKbl/dJJ/u0jSSDEahtA/4hcGFh5U4zKNllLhhQUk0a51Ifw/y2L29EMAUJlAwBzHz3HOS5LX4QaMLnXUxhtneB7aVsUfDI0qOKAGSgYVULcT0clotceTHfUHcEBlpKRhT87wkgKrPnOxQKNy/xdrz3KNyVkkgyvV8nxq2NsnWy4PBcL1CYa65pZwtcACUhCAAJVGhoF8ZSRbw72PayQDEpX6Jq3KICt5y15PUTq+WtbtKHKEMcTlUczofKqr7GiEcDAcA+hueKRpFVCmMzE7v3O+QrJQBVhb+fItvl/YVMQcEM8Ma6olS+Ouzbufsr+ZR+5MWaNiCIiiowxv01E/3w3B95K2URE9HcA3EdEf2Pnm8aYf/Yi575gQ2nGthH9frC79YoY0Th3ZJNmaIWzVCM3LLW7WIEGaJ33sKLePS2Q8YiVxNKwa0spKoD+McaGBlxo7Rh5k1DaBP1gb4rmSmgRauEvykisdxHSWmAlA0WnYkM9NCncb81zVtbjwJOZzHJdhw41XXtrG7OnrGWcEdJegcXP2/BeI8baQzuQb5UXBPHEJpNVaAgA5p/0H9eU/FJgKYKpdVXdS25QNCOH8gKAtG8cr1Ztg1/rnOXfq+8okG7EDg02zYwrKgQ8RY4oGXc9CbFMKtQnFRpPKm9mMoXZ54uCNk/UMLDgUPfM7D3u7PwZT03AryXfq2anGC8BqUVoCVJLo/9CehVg76cGrtJfFA3gPVvxFEaLMRqrJWobVqAeriOeGgz2hx6l1KkUdQq8yNapCYpW4hrLxRMOY4myosogG4Tos7IRtlMOKGAAjBfDddM/SI4zbzq7gz2gYqOlavv/YbgdBQAMDgGti17ZaGQcwAZMMvKMDqM9CYrDqrj5sp+bwLolmrB5MsPgAJBd4JPPPWsQZMNvdxh8qQECL8fYtLWMHwPwc0R0DYqg+VbjVsrmT4DbfSYAXioiDQD+Irja/yA4if8buIkr9wcyqgpm2ycTKIpAcxauPJnAzLRRX+E8RdlIkM95z6DzwgAmiRD3+f18sYXJXOoE5qQbBXmPaFq5RS+EgD3b1TPKeeOKRZn1wtqR4T7+fKwEWVR6Kvn6ygQmIme1RVusFCUkaLIEZdNvsnhUoGj43jzjOQLmyAnOeAynaACgeWYLVT3DxHo620dTbr8r9RapFwCAR4iFFO0IKt1vVMGv61V0qMlEhM4lW6g3G6N5rUDTOqSjPcx9tfoOFdKcUQWyy7y8s005F//WCk2js7KzK5xTKNRkM//srn0F8+XlMzy/xhVCbSNklQ7QclIULMpoVIEqg4m1/lfeEiGfK5HbWqTuxwj9g5En8gR7KlJ0uvdTvKfbz/qweu8NXhEO9oX0PqPF2LWs3rzX5ofUrdXX4Io8u2dLxJPKeeOAZb2wLs60GyOeGNV5M0fRjAN28YkKu8VTzjvqXEhR99D9jTcXaJ5NAk9GPysTcQ5K1pkoYh0qq2+WqFYV6rNGjmkAACZdcjVaYuCIJyf7R4bmWGusVVj83AjbJ67DNt3huKPk/ytlvB/cBemvg9lkZnB9bv2G46bKxhjzLIB/RESfN8b82kuZjW269qPGmO9+Kce9rMOYoN4FAMz6Jv8uS5j98+717NnLQByjvMpSLj7GgLhiic35aFphPBu5Qsisz7FiCRMkAwm7seVJFTD3vORkwkXvoKBWxmlLUg8NtabKIBr4/0XRAKwoi0bsGHCncxn3KVGV5CYG5p/V+aUxorHl1KpLiwGbjF+pMNjn51zbMpiqDVRJuYSSe5q8sayxB6AL/uobZUAzIzUXTJuvAQIlFxN2/clX31GAUpXQf87feyH0cOprbl+u3DPPrEGQnV1BMGxuBnmB8ohvlpMNvJLxc1fFwDmH0WQdiGecW4+mtlXgzB+PIK7Q8Xsu48zz+7HvY/58s6fKoL9K61rhAKwbD7Lwm/+iut8L3uOurSVYf6hhj7VhMV0jlRiUdse3LxCqmJuOAUDzss0pLvHx2cYU07nMGQ0m5pCZY9FoxjDkQ5zTTowqpqAYuawRqpLvbdolrL5VVycTxnsrdJ+zhbh1hlMLt5owIQTAlW2fg0kHFTNk2/Vh4lDRFA2GaktvKU1gKkOzYBvyXHeti3yQjjbctfEq9mysXP+vlpy5ArMU7HrsBo32cSL6ZwAkuf9RMGph62YH2KZrR4koM8ZMb/a5P9BBBER2cZYlqNnw4TQA9MRzqKYWQBARKI4dlKR44TTih+93n117Y5ORR3ZxTroRar3KJYfLLA04rlwHSLAno7sh9g+mHNe1izIqjCMMBXxSWcJlVRYjXR24WD3SBIPjXYeUkzzSZMF7ZttHvbAmA3TOlq6eQsKFgxMz7jNVGgXz17F4ybdooRAVcA3EalshDUk6MBgtRkG/m4A6XsXxqeKCTREoUuTZO6k8CaVosgsZigYwPcz3nl3KMNmbo3vaL/N44klQnRVPkljKgdgLrOm9DBAZHGKvbrAkSsTPVyO0ooItf+MSDdzvRsbWsQxAgeP3MNJx7f88hC58Z1aqTJCUr1KgdzAJQlN5m7D8LnYH2pcqtM6xt1M2Ewz31xx3WJUQBvvJ1cM0r3FR6eZJnrwh9iIcN1ktwdYJnzyqsoiZk4WnzRg0VnNnNAHsZbgOsyWH1SoVetbotDIjNC/EQbGFzqc1VrguRoAn4pFklqstGRvXWRdghZ4MK2wftcZQnYtGXasBAkwKkEJC1tZVjVHl6YrkHtoqVD484N11zWxwx+NLoL9ermHlekVEM7eS/zcbu1E2/w5ctyIwuj8N4KcA/LEXOe40uPHaryBsuvZiuZ6XZxgD6ni+DdNpgZpsBtJkgnJlDVFmQ1FFjmo6RXKSs+SmWcPaW+dcXiKeGMAw0yzAFpWEyQCAKo/WoiJs+yyCT2hCWtdKVAk5oVPUCe2LuRO42eoAVSN1bM3RkC3gkQUzVBnh4rcXkF1N11Ic/Fi4wtsXQ5yG7oNy/htYkGmE1lh1W6hSoH3RE5W6anyV5G4th0WT6TAML9W2PCornhrEI2Wxqm6K01lenoP9/DsZAxsPKeWyESG65j2Z0Un7TFILUT42wuJHGhDNLV6Io0LZGoZhMyKU++cdGu3a2xr28/x2VO5IYA+BzeMx5l4IObiGSyonM0cuBDSZB1pnEmx99hDfDzhkI6NKiGlZlGIv6ggavEUlMPeszRUOSkwW+cGLwNR9jmZfKFGq8Ozl9/jtnnf5GSUj+9r+BLXtyiHpXDdSpUx7hzNn+OxkQzDEz08Le200yX05Fmirs6biRNp7rlsu+agAhvvhiD6TIfOiTbv+HoZ7PHiif9Qqpb6d3wp/bwL+oIJbDtQ2+X9RUgB7VUuf6aN/2LuBOqyW77+effy2hsGXQxitD+ALlkdNy/W/+mIH7kbZnDTG/HH1//9GRE/s4rhT9ieCz/m8cpzILAXatnnVvg7SZUVf22wgnp9FteXNIlE0ALD+JlY0YoVP20BU+ZwAapah2MqgZOjXWFuQT7IpbahoosJp007kNnlzlRd9uuWr2ONr2zBduzHy0ikaALjwdRGwmTl6GIARQNqqg6JMl+S7JteMp17BiNAQ4SDcVzqvVATwU/bsXPjGMONw6yofV9YpEGCTmQiYidA5581ciaf3DvImL1ROqHnBX9jE7GWM7vHHmpwEJIi5jzQCoRiPK0S5Qf2sKiXIfX6qPMQ3feq7xXovEHenaH+86e5F32ttnRFhGnAxno1c6E9oZ+RZZNsWaq1zRkqoiQDUtP16SD3O5gm+3uIXSqdk4kmF5tUphvtsvdbEOEUDAFvHErQuAZsP+uvNfyF2IUZBnYnBJKFA8U7yDiHR8PaYUKVAFXtU5HiOPGOD/SXKlOlm/J6Q9SP5vqIJzD1jsH1URQCu+rbXeSsCGX/vJgaGx1SSvx/DRL4ux0RhHnC0mCAZGWze65WMXsMbD/iWHNvHCfs+WWJkywrEu7ob48sAjfaf7c9LHrtRNiMieq8x5ncBgIjeA04Qvdh4yhjzn/QLRPTttzHHL8kwSYzpXgsXjQn53jaq1GMra5/ecH/HJ46h9/CiazSVt7kWRMg76xvcq0OLiIZKA7R2kGRS4T0DYaOVcMZkJmY6GrsR6hf7oLIEjYSeN0G10HFcaqOjM9i8J8XW/faEbb7W3O/5TVVb9wLVJAyfldzQxKem/GfUjQxO8Pm6T6u20FGY8ynq3iJ196gM351hw8Fej1oSYbJ9XPXQ0f1bUqiktMFo0YMZpnN8js7nbbvoB3Ms/W4CWdYSctT8WfXTivvGQZql3TQLnLjrl3f3o97alUS99vquvTVBzd57PLG1PXYliEek4dyN1dK3I7ZoLekxk4yZv02HWgZHFdBkdorG5xqoW13ZP5g6FFrRioOGdlJrVFq9mYw5bHXylxXha8u4dTCeJQCemqhxTRiarcexbrjd+E16uwysNyeAj9R6Ii4ETPz9ydg+TgCFnVaTkUHXwr4cm7PyiDfuSdxaGBy03+22RWkaYO4pXl/u8/dHrnlcfdV22xW7IQ7Dodp7LBsGl746Qb7AF0tXd6Av72S8ipWNzdl8z+021NyNsvmLAH6GiMR83oCnRLjV+NsA/tMuXvsDGYZsFTVY8eSdxC2EeFIhf8R7MuNFTqpLUjueck2Fyy8Yw6EjEk/H1l9YeCUZj0xym89ILLoCYvIV0DaX0X7GKzvE5Bq7RXnlSAYBYPOeBNEUOPBR/j8qY0y6kfNEapuVs9AAhYyy6La5Z5nccPMej44rFJtv+xSfX8JleZOQt7yVLZa+eEK1dduoSudpVFFq76Cvw5ARFXAVWEU9rCWJJ2EPluY1g6nNE03ngMayP8+BD3PLZVGWdQv7rT2vytBzpfglz6WAIte+cQzYpHZyhs1uUTIzZ2z4yiqv5bd5RQOwlR5PQ2VtIv+MBocNsm1vTg/21ew8+Xy9I1GgpF34btZrq2Ti8yw6lwMggDWLR6LBGfPPjFzItGj53I2MgAPPMj+IgpAaHO+12Y6tkuu7yjxyQaMxNb1kzLlHXYPVPWPcOqXS7htJn7Ws59EWpUMY7jOo6jYEOiFEZRxA6qvUM1HLGtJGUNHwr5f6byH3VM9eFA0AFHtfmWnnl3t8yXM2xpjPAXiUiLr2/+1bfZ6IvgFc5X+QiH5MvdUF01G/IgYZg3xGu9TkrOx4XHGveEvzYmKCQehOZz3fEz2aVDAKAppthwlSnZMgwyzQonSmsymiwjjG6fqlbZgscT1mokmOfMFb18P9dUR55UI3S5/l8NrGfb4wbdolJ6i2jzHRpBbg/UOEaGKFxHKFwd7IUcokY1Y2mmKmsWoc6miwLwqK+yShq4s6559WpKQWxTa0EFyxLFMlBE3kQ5JFM2RKBoD+YStwpgyHlQZfs89yUl6Eru9g6SdYO6UUjXgyUk+VpkCjjq237LXHGzS+0HDKJRmx55eqCGuivKTamqUuEu/BKmRtja/pUuPIYOXtQP2qDT1th2i2gx/po3e86aDhJgY6p2PkHVZ6tQ2gqfJhWlGIJ6OT8pESnotfGGG4z4NE8iaHtSTUt/N8kmcqFQN6PPXKIR0a9prsrQ72Jqj1qgAKXdTJ1Tw1r0lPKP5//hkuxBTKqP4B7lWkCzfjKUD2q5zM895J+pYRITWYfY58CwUD1JRXU8WEznmvDIs6kOti4DVVfGwR3g4BOiV0n0zRe8QDTe7WoLvXPO0PanxJczZyslsqGTUuA/gMgG8B8Jh6vQfGZr8+Xh+vj9fHa298eRR1fklzNi9pWE/oc0T08/b8R2zNzitqGBW6qm2FFpl08IyCkIZxnf+i0gSonyrjltFi0Za1KLAwYeASpoLKElYBIeRMet4bqLIE0YRNunyhiTLzVDnJsGRrXjfOIsLs83z8yqM1lHWf5+hcqBBPPNElezV+ar1DEaIiDLe0LnrqDk7q+mstPcYfXH3EZ+3TgcHMKQ9gqGr+5qUCXSerk4lPzkZTwGS+g2NNRQ9He7g3jIbIZop9wCGM7ffUuMY3lqyrTPZY3WwcM/KsprqgPuCREVs2+Sw5mXhikLcJM6dVIlq1Fo5s0YouwgS8xVzFhLkn4b77jYcN6lcjJPZRVRnT4yx+nl2n3nF2+5znmPsW1QBAX7eOEYDNS2yizzzlt6/kZiTcWWWeHw0Axradtc6Haa9maoPk8vwF3q49YhP5Z503iaHpyuivEvK9gLqEdOTDwuPZCLVtf7KpDaNKsSnA32esnk2VAJUAMgx7HO3z9t+Ym9LJs06HBnmDgvotzVSRjAFa8euuSoDued9aZNqhoNFca7lC56LN/Q0LPI+7NF7lysYY85Jqa/T4krE+g9uL/hMAGYDjRPQmcH3Ot3wJr7nroZXFeC5CmZHLDbiwiKra15BcQEgVLZR2o0TRTpH2WComRCgbiWf4DWpQQhhy0p+CigpVgy9qsgRlK3GJzTLj2LjE2uNpFfRUiQqDtTc2MVqU/znUNPcMz2Uyl2C4FDuF0b5okLcIkxn/+Z1z1GwFk1kK4iv1NWGy9p9pX1D9Xgwr0OFev3On3cidMx7zhhe002SWPyOdJaskbDud9n3egModlDB2Ws2rXqGkV1QoWVqjx175mb0LmOxjYEhVi3DtTZpGmGP8WpG3L1WOZkaAFkJ22bbMBrrIVMOWDXEoSNbTzLORJS7lIWG3iWWniHJmV8hVzmzhKzz7+KUz/CUf+nW5RunCsVvHo4AMde6ZnBFcdqkIHLtUykG35m5aBStkp4b83wCDLUbzccBaXdQ9/1lUhBx3nUsVyowck4aJuFhXGtJVGR+z8KQAYyJkPU86OuQSJzQsnqNKwtCuKD1ZDyZio08odwTxKIq9zHjNSSi8SghjaXVdcNM8CQULI4RQQuneVHc6Xu1oNCK6F8A/APAGAA6baYw58WLHvqiysf1o/ibYQ/nz9mL3G2P+64sc+kPgfjQfsZN5goiO3+qAl3OY2BeOSRxZW0U6wZ03CclYeTJg7yaaeAWUbXiBW3RFeKiVZYWCkCPWljkxQWWJsttwYIW8y9JgOi8Q1gqmYrQRYJFVSeRaEay9ka1hDf899MEYw72W5mZqUN+onBAc7uW+9PUN/xy41bOfa6GsX7HEOrY2p2jGGM9HbmNGpXFFj4A/lyB9pKOi0PGIZSntoutrxhKNyucN0oH6HlQBqXwnmp0gyn3r36JOmL+y5ZSMadWBVh3TPfyMsuW+UzQAsHkiQbbtrXo5X1fBsHV7APm+x0sq99GOA4oVwOtmISwV7yQZspe2MyEt3y3AORz5bjbv5ROubLP2yRbGmP9ACwJXq2Jy4IvFp7iVgVxbWBikkdx1gxjMkSrhm0x2eMwxIbNGlkQBxKjJtsM9ArAnoY+vb3pCWTleF3Xq/FMy5rbP8kxmn2NlpeHJcY4g98ngC5uTaQiykv/vnOXPi8dniDBzrnDziCc+n1NmBBgP0zaJZYmuhXv2roxXubIB11j+IJjV/2vAzPu7ekC78Wx+Cpx7ebf9/xIYUfZiyiY3xmztYH1+RT1qCR1pC04Glb6vSOtKjqoWgaQY0Aqg0V4Wss2LQwwPNn1Yx+4hx41VGN8JszKorYxR2f410aRg2nV7bN6JGQ1n626KZoTeYcL8M5YxICWsP5Agntq2vX90BSsrM8DEnj+rcOUrIhz8mO0bMsu0Iq6bpmHa/v5BT7BY1rynIUNqWyQ5rrs+Ap71uTQUhMUAtu7F4qTKh9J4Piwo6mtKiBdw0JHxvJ9HPA2VjSiZ4WJIl+Mp9w223rTkCvdq1wZO0QDAZH8HeStG77AlQT1kgQbP+Ll3z3tFIz1/ElsLI8pGF8FSaZy1T6VheLaiTdFhMGm1oEOFUeF70ABAT9WZRG/awsaggfZvWmXTN2hc86Gx0VLqihBEKUoolwzXKekiVH1dUQoe9GJs22UK7lFIQ0cLPkQGCGDA/y9CnZTns/LGBO3LfP5plxWH65JKCLzpwT5GIUpN0swpASTY+RCDH2RdVSkFIcHJfBhuLWvsve/5ggqjAqgr5Sf7uL7BYXTHBpEza4YMcxN9fVvjFSUBb2s0jDEfJiKy3Tp/iIgeA/C/vtiBuy3q/E4i+i4AMMYMaYcGucl4koj+JIDYekN/FcDHd3HcyzKoUiEZAmqbqplZYTCZi4N+NNHEN9Wqkgh526/A3j0txGPj8jFJLwdVBsYWvFFlkKxqfnZCNOCdkS+yVB8viCvA7YLFE5nMAZ3znjZENsjSt3LwOotKVCCsLXMcP7uYYekxfy9yD9K6uLZtkAxLR2aZDCv0DyTeym7a+LaKGlaZb21gIqu47KObdglT+FBRfc0EoS5hQpgqoUcFAois5u/Sm1GaViUKOq2bxNW2TMDFlW0WgSKYLLVAxjhFmlsPQhRj8zIFLa1rW5UjyQR8GEU4s6YzCQb7IrQv8+uuvbO996oVoUxDCHHa93mFhS/a/Jzi3NK9bCaWbaD/dtYgdQD1D3m3K+uV2D6WOY+iv5/Q3y+Fh/aeVCM54QcDgMaaVSTiddXJUdsAvK6c9wFbo0SE/n4dQvX3JTxx8t2I4SYoye0jfNy6bam1+EQV9i2aiwACBgfsC4LsdC0Q+DzOaAELfd0CosqAwho96TYf66DaDUJruXL0OlmvQjIqXV0R4EPpwz1c2ybDNU+zkY6dbAm3O8h8WaDRJkQUAXieiP4y2Plov8gxAHanbKZE5Dg/iOgkgMmtDwEA/BUAf9d+9j+C243+8G4m9bKMKoz/lxl5IWCVj3gjlBsk4xJFQ9OQRI7cT0JQEj+fzGeO2h0A4m31uJII/WNt1Db5/cG+DFR5jikTE8Zz5MAJs89XATR4PBuhsWKw+TOH3SnXvtqbdAtftO6/XdPJtEIyLNAuveU72pO6ey2zyBWnAsA44t7vcnyVcPJehIl4JDo+ry3eyRyhHJFXRlbJlEqh1FQT1Cg3iHIvJLeOJa6aXSDNheOY4xyBeDvJoETZiJBteqMgGeQomzfuQip8cc2mD/s1r6galt4UgyNNp9inHQueGHvYt4l8aCoq+LsPFGcDDoBhJFdzSgRgFBowpWdRBlhpjd40QuMJAV80kIwM6tYQGljFtPwu743MPemFbzw2zoscLYqg5M+K4hZmaBcysocPl2JQiYAQdf0N/r7a5/i3rHmu0C+D3GfAIUbAdNZg8Qm1xxRIROqymnYtFA1g7vkCI5tHSSYGZRqG0QIm8dwAA3LKRiDUnkaJw2SiRPr7Epg4Cc6n8z3DPbEn9bTGiXAdTrt6Enc4Xv2ezfcDaIKdhx8G8LXYXd3lrpTNDwH4EIDDRPRzAN4D3yHzpsMYMwQrm7+7m4m83EOjbFwi2cXamXKEgja4nkKmZ/tiSLzYJ79VDFqhy6ZLTZdjkdCbWNBRYQJrPBkZdAZhV1CqvKdR32SG6e2T9pojwqEPJv5+TIWo9GGVZFhgtFRz1erTbsKV3SIkCIDx3FqdczkG+xNXdFmlnNQXQsdpm1BmoTeiE9Nus1vrOx3aanE7umdMQBMvlrE8g+6FMkAGamJOwNa5iAc5KpGMSkdKCiBQNKL8dQvuaFqhc5rzZVUtZkJHC+zoH2NI3MSitBorxuZd7P+rFYZLUagg1PymHQShoaal6NEKZjKnwApWqPUPKO/hyQZayz7kCbCgBIDNh9jwoNx/frhPPZu+Wkc2hdi6LG3Go6AFwXjO5kesHJXvRBeGau+2czG3n7Ns5R2/fgHviQyUJzT/RQTEnID3FuorrLjEg59/KkfRjIKwKSWeEaCKuWWCb8ZnPW37dfeOEOrrPlwseUDp6iqvyYinxq2zoslrWO/DsgZndDRX756GeLUDBIwx0kK6j13oAT12U9T5GzYm9y7wVvp+Y8zqixwGInobgL8D4Ji+jjHmkZsd83IOMsYX6JWGw1eKoTdvRi60RqVB3rk+cKt7k0eFcaiVbJOF13SBLdSN+zIwKA+Ye3aKyVwSILxal71imth+N56wMEysA0zWuP/j/tpUAfVrLF1Ge+uoCMil6VUrQu9wjKHtPFjbrBCPfU5IGqdJ3irvxJjMEtKh3BeH3mQ+yZjRbDv7jIilLMKhd8gvrfkn/Vxbl0YYHGo4IVWlxN6a9BlJCSOVk9l8sMKex8JwRn1FdSLN/PdS1hMu0JOErjGYziQYK9LF1rUSmfUqL38lK/5HvuEsAKD/I/eirwhUt04S2he9JzWeZ0UjMG0gzFuI0m1dlXxZxPkAG1oSwStKZuMByfX4c7UvemkkVDQXvk4pAKVo0p7/eyeabNohzJzKHYkpwN+1KMeARBa8vnS+LO/wutr7Seuhk1c0AC9fE5E7n7SdWHhKhfGUJyMhR4E/VymhvlqgbiXJcG+CrFcF3k9RI+Q2mjDew5QzI9vxISpYAYniFwofB9Kw0QC5TxOzsSDgjPGcZ9moUmaJkHKFrB8WuI4VNdMdj7ukbIjorwP4n+wZvwAW/PsB/AKABXCe/U8bY6ZEVAPwMwDeCmANwHcaY87e5nX3APgBXI9G+9oXO3Y3aDRpC/3fbvDarcbPAfhfwA+iepHPvuzDxOQsZAmXaRdb53AAhj5PVTy/fSkPKsWpNNxsCtygDETYUnxfc8+qcM24cm2hTUQYL2TOhV99JAYqL3SiEuic98oo7ucoZjIHPrjyrgbiKTCaZ1ejsV45DjeAN1w89Ypx2o4Q1zxqCYbDBcL2W8wRGmu+mRsZW32t6GXSgResEv5y3UgjDn0IVY8wM7QusYIY7a0jyo2zsuOJQdb3iWktoDYfFJgX/8rWJ4imJSYLPgw2UpT3jRW+5s7GWDJadq5X3s3Hjw6WeOcjL+BTj93LH3gfEA98yFC+A0EpJiPjwlOArQNJgNYVq6hbhNbVEvVV/q7rq0C6PsT2g3PBvXkUF4Uccle4H05L5V1WH05glEmeKQWTbflj8zaHzLRnsXUiDbxIQFn3FNLdxFOguez/rz9lQRarHmVZtlK3B1zPHsl/XasCdFrjElsr0nRvtBi2SojHBpv3ps4TKZrEPXIieT9ECRZNoO8jx4hyX5MDKEh3SwAOrDxEocyerhz8GeDvYLjXK169903E+05C2TrfeEfD3B3PhogOgsNYbzDGjIjol8DNLr8RwI8YY36BiH4cwPcB+Ff294Yx5h4i+hMA/hGA77zNy/8cgF8E8E1gKrM/C2DllkfYcVNlQ0R1cGxukYjm4AMEXXD3zRcbK8aYX9nNJP6gxkC1G9ZeyrQbBU3NnGtvw221LRMoK1eoacMxxWwdG/fXg5CA5B3IwCkagC2otFfg6rst1HkIIGJlBniItdTWjA42QaXB9gMefpttG8TWAB3Pcs2QIGuy7Qq1LV9nIXQ2MlpXCwz2J26uolSmKuWXqByMNNsSi5bnVwXwXV0XVFtjRTnaZxWECTtKRiXH+sXCJuMRUkf/myVC7Pn8V5XGSKV3/LGGnZ+dezt2tU8AW9NU+e6MG/fEqFJgqMgtn/it+5G5z/Pv2ib/phKcxN53Y8tWlIxmca5f3EK+wK5Pus4Ct27BIcP9GeKJp3xZeLIKkHriuUneAgDGj46AFf6us01Oqksb6Z1jtEjOrEsHOxq7ia1jQm/cvT8xGC0mDmU4OJCgaBCWrLIpWzzpui2cparC9smWU/CArz8CvJKZzNlwWxnW5Ui4Tjz3KEdQVBmVBvV1r+gnsN5MIvOVe+DfVQxkqg4nGTF4xIXK6oxe27qPr9+84lmsTcLFwr4dAxtjEuLLbvK8b2vcvTBaAqBBRDlYTl8B50/+pH3/p8EpkH8F7q75Q/b1XwbwLy2a7HZms2CM+Uki+n5jzEcBfJSIPv2iR+HWns3/DOCvATgAdslkx20D+Je7OPcPEtG/BfBhKECBMea2qA7u9qgiBLH3K+/zAiUeEOaeNahvhAgVgVYmo8oSPtqcwLRENJiimPUWt2af1UnXeFShVLDKoY3Hty/47711ufAQ1tKgqsXYeCMLsPX3TDD7qRo238qTobTCIyfP4IV//QDfl91cUj8x7XJsvneUz00FoXHN3/dkLkEy3gFtNt4CpgpBHiJvEWpblZtfFROQRS5fJYpXQln9w3UkYxPkNrK+8RTzCuVmL43WFQWuGJcOhmriCKO93pOhAogLf654UgWhULmHrWP+tWwbyL5o4bxLYZGjCBXNUtA7om6eOPnvCg1TwtyzI9egrn5xCzTOkV3aBMDsBPGwxHC/v0gArJC8nL2l3uEEM6ol99o3jBGdaQRFDOm2z58B8NZ5FfKi9Y8A/SMR9n5aKd8aQb7MyQyhfalwSn7zZBo8MxOzQF97E5v1dRvSa1308+uc867FZCFDMixdR1cAKJSHKYg9Eej1de7W2r7iN6HkfQC4UKqg6drneOqSK2ysMIGsBvkkY+POUdsuUdQijC0MPe0bbKuyQykmBoD5ZwyKmg8plhkC1g/NknCnI8gV33osEtFn1P8/YYz5CQAwxlwion8C4DwY/P4bYBm9aYyRB3oR3ik4COCCPbYgoi1wqO1F0yE3GLIArhDRN4HpyeZ3c+Ct2kL/KIAfJaK/Yoz5F7cxqe8F8AC4u4hLX+M2eXVeH6+P18fr4zU0Vo0xb7vRGzbS9H4AxwFsgusev/5lmtfftx0A/iaAfwGOdP213Ry4G4DAvyCih3F9QuhnXuTQtxtj7n+Rz/yBDalABmDDSgbxgF/Y90nLwLzMwfveiVbQfKzKIiA3SIYqhFAUruivd7wR9P2oKTc8QIEBaC5zbYiuVDcpoUg9W3LRJGx/hRQyRMj/8BayL3JA++RXnsXnP/AgwMTF6FzgegZB66R9g97hyPUNGS0wB9T8s7aXyh4LNVWx/bJGnsXZeoC6jfO0E7n4fDxlBmrNhpz2cgy7vFSiHEFzsZ0ejYRFhPoF4NyMjKLjzcpkmKNzJsdknuMteSsOvK6iGaG2UboaKMmRLDzFxtjW8TSkDsr5R+dNdIJevAbXCEw8QvuRuedGiIc54iGff3ywi8aptYBvbf3BmgthUWWC3JdAvDvn/b1vH/OeW/2JBqYzoQde1n0IU1vnjZXw3I6RXIUVx3OJr4faqCxC7XpPEPDrQYeX6+s5yqYAWCIkwwITy7lWxYRpJ3GhuaIRwcQe5ZgOrFejAjc38mpkDs1rjLxz+Ud7a7UNQSJWoIoc0s+VKdjzj2091vrDkks0QEWor1qE2RWVpzEGZDxTepnyXL03hrs37k4Y7Q8DOGOMWQEAIvrPYJTwLBEl1rs5BK6Bgf19GMBFIkoAzICBArczNmx7gS0wg4D0OHvRsRuAwA8C+GqwsvlVAN8A4HfB6IZbjY8T0RuMMU/tZiIv9zARXO4i7RvMf57QvshSoaxHaFz1iKfGco7pbOKgz1I1rpOKZccTU7IQM0FzJsm5uLa50gkxJQ49iZywrwslvzQpM7YY7OC+DVx+dkmaUWLt3x1FC77NMlW8wTsXcjfXqPACbObUNLh+LSOM9ijizFnOWThhZR+DoIim7cjVfch54qlB2lP9P5qJrz0xxkPL7bMps7CvSTw1DjUVUMVUFdKtsaP/ESXTP+jvZ9oF2pd5bjUb9pzsyEnJ2AmemM5YQaggw07BgHMIVAIzZ/hzkxkKqtRX3tRAlTaw8EV+ceP+DBv37w/uTecRxADQiW0YX9i58jU55n7f0+zXNvlHQrJbJyLXiRIIWzGIohkc8q/pxmTDJb5GUBPV9XD+KOe15sgr7S9dQ1QluqqekHdSJH1f+KpzQKl9PVe5PF3MCnhDR19P8iSt5QpFgxy6Tkg3dXi6tlG6dSyUMvLdm1hqeez9jSNUmXH8apMZoHPR5x+nXdWyOkFQgKq/wzsadwkgAA6fvctSiY0A/CEw0/5vA/g2MCLtzwL4oP38r9j/P2Hf/++3ma8B2Jt5yy5eu27sps7m2wA8CuBxY8z3EtFeAD+7i+PeBeAJIjoDztkQAPNKgT4DPsnYuZAz8aD1VJKhtajtup7O7igSjMnBmwEg2RjCZKqTZWJ71wvCq0YgC9FN+7xBNKFhVBiX4/BFbfzeBED/LV46TX9+L45dyrF1wgIKpiEfVdovA2s2mpRoLJcYHLRzGhUwWYztY95cG+4F4pF8njebWLZREbbXbS7nKBu+AC7tX9+iKG/HLodTZdyt0W8yTpBrT6q5XCC2c44HBYwVakUjAxkTFNNuH02dpe96n9hTjRYTWwPkn+1o0X8vIpA3HlVsEe0ceIGfRTII4/PNq1wLIs3P4onBcIk8s7IV3ALuAMLkvYlYqMVKcMVjb71XCWHtzSXQsswC9Ry9r86Bs5yf04oG4O6vJkKgzISOZmdr+9nnDIoaobCKbLxovQs71d6hyJGfAh72rMEjmlKIz5E4hRFPDKJp5YAgab9EPC6Qd/ihCCIw1rVqSreMbb1RZvOZRY0CElNWXCFaT+dQRcmIkeKKWG1NzOAAoX3BoHnFMm/khj1scVZToHfYe02y7uX/vAskqo/RXRt3QdkYYz5JRL8M4LNgoqfHAfwEGDH8C0T09+1rP2kP+UkA/4GIXgCwDkauvaRBRO8G8BUA9hDR31BvdQHsitBnN8pmZIypiKiwDdSugV2yFxsvVwzxtsfMaaUwVEhMKPLzrkXSiNegSRlVoaBJrNVY543WPjfCZLHmkDCMQJOKbQoEg0CGC4fusucUSOmKQfcD3hzNLBJLPBcAyLZy13kx6eWY7Kk5Rdc/yN6AFE8ODzcZFWTDYOsPRkH4pHu+BIhcWCwec9I3mvjiy2haOQ+srMdIt/xzHC3VAiRftl0hhm+/UNQitC/mmMzzfBvLfB9S9AoAZcMvy6IeY+paF4cFld2zniJeRq4ElihQUTIiuGhqPzM/RfsxDeoARnuBhvIeRgsU1NUAcKzUrnGc8jASDcetsWLRHkiVemWz9mae0KEDHNFY7zcxfW4GrUv+eCirWhijA69QIo7E5xVlN9hLqG36Sn0AGM8zw4R+JqWDY8s9Kfjyul/j8bBk3j4VLtVFkPHYGmq2FicZlcz5p0ZUhgi4bFChr4pIi6av0zERI9f6BzQq1F8vbzNiVK+Hhiq+nH+6xGTWe25Fg5GJrjOoAr5k26yENTgi3fKcaGn/LmgIe7mXABC45TDG/CCYEFOP02Dy452fHQP49ju8ZAampUkAaDD4NtghedGxG2XzGSKaBfBvwIiHPtgdu+Egos8aY95iSdpu+ZndTPBLNeKpcVZGPC4CASdeBpXhIttZtEm5LfqsKqAC4m2WbsMTs45fCQBSxd+lPSgASDfH6N3TDWpDdLhBlI4g2gRK2rqkWKZbil/LKhod+0/7JiAJHS1GrkVAtsnCa/55RfnS88qjrLOiKRuKdXrHZ/qHvcCediIkY+OEVpWQ45Tj+yiR9vIAzhxNCpcLAIDxgv9bhyKlcFR/L2RCWv/YRz8ZvdTwfUqSIbDxsJ/L/EfqmHZ8mERo7QcWw1Pb2FHAqcNfN3htcMQgez7si2II6NvQVnMZ2D6uhPm+ARY6A6z3PR1DsXeKLZt/2/cb1iuxSEERipWFpceTkHyyEhQV2CPN2yGcWBQN4GHW/YM3hv83l6coWknQvyfbLtyzL2uxUzAAQ9L5t7KkVKSmaHILATnfzOnSwuWtF2sfgaa80d9r2jcYz0UOCl3bZniyeLG1bTY02he9ARJPPDFpOjKOj02enQwxCmQdVAlfbyf7wV0Zd/NcL+NQMOd/fyvZfquxG4DA/93++eNE9CEAXWPM529xyINEdKv3CZyg+oMdysKoajE3glKWWhV7Vx/g2H8ysJQdWyxhaGTzH40MrtUwgNrKBOlWhLzLQlOHmtyxSmD2D8XYPumPv+cX/U5w9ByqhbVWNKO9NaT90imrohYBNaBuBXNUGIZq24LTwb4M9Q3jPKlkZMMTNpGbbeUoVfMzqZ/JtlUyt51gsI/DclVCqG1XqkkaW8sSeqPKBBBYzmVFwf1P5xtuY2uC02mXAsvVhVQUD6xmTJZw12g/n7t7ipirTGoxMhYcc1/g+ay+m7/Pe44zQdfwtw+H7NV2lepwysy5Mig8vfZ2//cb33YaeBvw5MdPAuAktLRSAICt97AmrDW8oj3eWceVNb5QOU7Q+YL/nrcsVFd7RunQeyFljSH8cm+AT2aXQMBWvOcJm0MR5ogxk7NqT6a+XrgQrImJaX4k0lSa4DtL+nwPgZGmFI1JRYn4BzqejSGED1QxqWrThvKExkYzMuhRNBlc0LnoF8TmPYkLabr6IFXD1VBEo3mTEE+MU1ZaUZd15mYTpvPmVVY0HoCxI0Z5u+Pu5Wz+IMeQiP4xgIdwtxkEAFexelQ+T0TvM8Z87CYff2AXp7w7NKp3MExCrhpaktulyg0IigbwSWYXOqsq0KQAptbDmU6BWg3FApuc4hmJB1TVYqTrLGiMtQB7J73JrBXN4mcJm/c2nLCur06Qz2RIrMJK+gCVFYYHeGfkrYh/hHNqI/TTp50IvUOxayolwkUX4+kx3FdDWSOs/zGWaJ1fr6FoIFBAXONgw36FwbRNrsraxED3nC+mE29Q8krJkAlNJYwGhEy+WkDW1xmRJBxVMhyBImmKfBaQ/SMG2RZfc7zIsXhRNtv38rNZ/FNsmNWnNdSTHKe/aF2ZPRUaV/y1xGuZPaNzBX4ey+8CABMIkCc/fhJ1W09dJcD05BhkP0BXeW/mCt708elx9/eej6QAQpYCzRLg2joob0WUTDzhHJZuMJYqL0+UjPCw9Q8kmD1VOZr+1lVWHjo0poewY+hQcpVFnhoIAIxxSka+M61EMtWAsEoJ6aByQBier6+Zqm+UGC0kN0TIAaxo+ET2/kccIhOEH4CAY0+ANvp59o/Za60BnQvG5ZQmc8z/NzwgbuJd1BCvfmUjDALfjLvFICCDiITa4Cl4JWEA3FDZ3K6L9QcxxIor6xHKLHLJTKqYhLO5bCk7VoYwUYRopHzvqgISKWe2IQTZeA5ppuLRM4piZdFbrytviTD7tD+tdDZ09Of76ijrhLZVNhK60FZm3iDbOAqYzEeB1+ao360nU9TItSEGuFnbtOuXwfK38wH5pkWAvTPH4V+NHHJIaOkdI3OdYGJyuQpBwznvQzi4hHAzIhSt2KF9xnPMMu3aWCvLVUgURUFGBQsUyVkY4uS7LpTc/3slrr3VGhHbQPsP+wrWqIyxp9VHf+ql9cXfPewYBCQEF9C2KOVtImYhkJH0gbJVoXWWv+fTZ0+iM/aht8Gb+KFUAxsW7JRINpVw3Sbgi03HfOwUjQr1DA8ANQtSNTEDDoThYDIbhoOk2BTwuYHxvPymANY9e6pCMihdFX3RiJAOyjAvmWv334bPVMhW90BiJUHOKJp2MqdoAODaOw2ACAd/W4XWGlHYgI08CKBKCN3zpVM+giKUNghaqeo5yFpoLXPDPgnFxWMOvck+6B3zx432MCJRQnllBhQtzz1X27hLng3w5aBsviQMAjK+FdyZczdtBV41g0rjkuh5OwYZL+DTfgVDQP3aUH2+dNYd8iLobW/mLSxKbz5tIVahcmhd9mGw7rNjLL9nHq1lyV4zNFhi1+nQYLRAGFk+sO1Hpzj8X6KgFXHQp94KcVEyIsR13xfxiuQ5xNPKCY79/7GOMiVc+iP8+cO/SkiGJbq2gdhkPgEVXtBw22NPlS/CWZiYq5QQ2RYNbr4LKk+wxR0ZNx603sh8gtF+Psfs07brp4QS24S84VtSjxfl+/L3L4oGAN73XY8BAH7/6jH32vkPH/XX3gAaavOLVexbGVPAfCBV7bpfTeNyFIAC+Dj+TZZmpnFNrQX1Z9rj76lo+Dcn877JmRgQcszsqSpozNZYNYGy0ahEyWUUFggw+6xBOqgw+4I95Q2gzcO93gjqnOUFJB1k+ZwqlxZRoGyigtFp01n+TDIyAZJs9mnJg6p85aByXq3MXRium6tl4EVKSGyw5Nd9NjA3BSyIxyYKpHXVBOHPtO/RjN0z9pnYqSUFvy8OqO55dKfjyyCMdvcZBNQ4DWYB+LJSNnpEJYMFBLGVrdm8ylQVbeZq54yEv90ndrm1swrpqLyCRlpVNYYNxz0+x2RvG7MvTF3tSDI2YZLU5iS2H/XB7N4hX5xXtADzVo+3HazxnOY/679a3a8mHbFwl7lKjxfxRJL1AfKFFu77d9YTSSPmiZpjQZSMuJFbobjRAvbraRjGi3KO9cvzyDsxattlgMi7/FUEk1nFXy/Qfpx3eVHn56jDJ+kI2LxPCbmcE+EAUD04wJ97yPfn+6mnbHPZ5zzRW3PDX9f1xbFhuTIlp2gAL7xEyXS/lamVLz3BSIL6CgW8Wc0VWw+j5ld2CwysUKtfTBFPQqu8aAGL778AADj/+4fxtq/xbu7vf/p+tC5EmDmjE/tK+Cvh2VhhGSDU/0D4nNYfBvY8Tk6oc+6MHHQ465mgcFmQZIL0q20U7LGKvTWbIB5XQbh5OpM4UIDQBgn6rHW1RH+/ipESr0F53usPJKhteEU9WIoxc3bq6G/kXtuqbkqHybaP2ZIBQdWNDEZ7/PvjuVD5ANwWG2BvMSp8bY3r/Gq3uS44vqNh8AqkJH7J40YMAn99NwfuRtkMwfUyOznO/uptTPQVNYT63aHSrFIom4kjUeQXDDBQAXCrZIb3LLiX8k6M5lVLUlhUIGVlFe3UJ14jQlmLMe1ykiMqTFCkOJmNUF+rPDdUyRto74f9Z6QPPABM5g1wpoPosJ9vtppcx/YrveqTQYFkgBCWqhTj6MgMosK4cF3e5OZu2qLWQIp4xAKitqGEgOInm87EaF71ijKaGuTtGGsP82dMAphMEVk+W3cCwRUw2stJ75aypRK/M6oZWRHh33zuvag9xa7C9ECJbEORfk4ZPqy54ZKxcUi/FCxoBNAg8GBhb9i+Nge6HEKlQVztLqO/P0LV1MScGhUoE/HXF0UDAP/bt/8CAODv/tp3qHvy9SCNVe4FJKGiznkPNDARK5r1B9T3lPo1sOdxiw60310Vk+MNA6w3J7B2sJevIeWjvSmaV6bOc5l0I6AbOUby6UwSdPqsWwNEK5io9HUxeZObpa0/4EVQ54Iq6LVTz7Zy+xtAZZDbdUuFQVIYnP96Pn/7HO8TURRljVBf96wKkgsMuPCURxoWcXKfnZkz6sW7NF7tno0x5r/aP7dgGQR2O3ajbH7F/nzZDalyTgY2H7LtFQqN1ULr9YE0BWp2pRqDwRv2uOZqeYe9ldEefj/bLhEVVVBxLZs07Rco08h35ow4Ti2bUFBkOpatwxFRYRz9CgCMvsImds+yhE4BtL38cta7oMXyZoZ4alQ3ykYAtZYk7uCwBzDonIhsXhGw0ophcMDv4vbFievLM/M0Z2TzOR+6Gy5FTuBvf8UIydU64pGNtV9RSeB7BVygrt8xrqdLMVOCKkLrOS/Qk4EPK9ZWYiQDuI6Z8dDWwdjTFY0daDclqACusRm8bYTkjJ/77LMKkWUVePB8uu5PxNsxiqZR9RoUoK2276mwdXEJ/593fwAA8Lc/wuUK3XNhqEyGQOgj1dNGw+jZE7Pfc5ePW/p0KN2kTTcANFQrZFEyOsQ52BuhteyNpMHBWgBeWPycl9ZUAc2V0iEvJ3MpyoycJ9Y7HCHrsZKRce0tieti2ljJUVvxBtN0wX5QeU5FM3F7brg3wepbDEyXr9d7I9B8NnN9bcSjcrVVpa9TAjjXJUCLrMf5v5oiYO1cKtA7ZPfs6C5qiFepsiGif4FbzH43zsduoM8//RLn9fp4fbw+Xh+vjxuMV7FnIwzU7wFTl/2i/f/bweCxFx236mfzS8aY7yCiL+AGGu2VRDtzO4NK4zwaYIdXM7Gv92zcw3o0w/s4fmUSwsa9/tFFU6B9uUS27Tt7GiLEE0mqZ0GtTW3Dp7+kTfTsC/ya5DYmqq6mUtZgWef2t/KNHPo3KSazCa69nf/vnGVCQal5mHY5fq0t+PrKxMFzh/ssqWVbKGL491DFu3Xb584FKWSV2DxxHxmJzduuo+3TnMyobPdM8XQA5u/K5/g8tVPsNXTO+SW2fULyQcDx95zDMy8ccO/RWNU+nUkA49FZAKOvYoWMQxSGzdbeXGL2Kdu1dCtsIzHpRgARBoofbf636nD8WvYZuuR7k9kFapvW2t5HGC8YRAM+f9muEI0iB8UumkwvM52z3sIMe6U//DPMHtJEWFOTbTF6UPIUZUqYdiJHYZO3Y1eXJEwUS5/lc0rRbP+I98rK1KMI4x0RomknDsACg712HUg414Sw9M6FEpN5/53WNviERd3OZ1Rh84QnPhXqHgE/DPfDeTUAlx0Mj3SQDEKYeWnPt/ZQhvmnc8cjBwDzX4hQ2+L/N09GIOPrmoSHrnnFz1muLUPYOlzO0e69rFdisOSvo0NvdzxepcpGnA4i+r8BeK+0MrBN2n5nN+e4lWfz/fb3N9/JJF/JQ5L0AECbfaDBgt/U7GNpMMiCtvoYPrTffXb9/oTjwVbozL5wfWxXiigBINvM3cZsXh5hcMhrD0nUa0DBtmpj7GLNNlUwe6pAWY8cfcy0m2DaJcw+a6/VqzCZicLEbTtCy8K466vToLLbQZhVqG4yS04YNdYqTDr+eNmgwtKbjCsko8olcMtajNoVnzWPBiUmB7pIB9IlM0M8BrqP8Y1tcf0j+odVUv2kl7hnP3YUtGAV02qMyUKF+ooPBUnYBGBUV+OaBwxIqO/qV/nvov184oo/G2scTuxb5uPWcoWN+ylgIdDhzK3jPs8EsGLIWz606NoMN1RCXyHRJBeV9O38+zWY2ATX00ZBc6VAVIaElWVKNySGlHWkw2rbxxXqUPKS9nuNJwxP37iX5zJztgoAB1VqedyUcJTqfD0qB6LIMFqM0D3LF1h7iB+GIPeaV0K2g8XPh+e60fwnCxk27vHN1zbvSx36jsqQs0+AGkO/TdG45vdP62rlFKi/Jv+edqKgXmtgFZqcX7Np39EweNUqGzXmwKAA2Xlt+9qLjlv1s7lif79q6mZe0tBo1A3hqQgtnFzixgtNlLUIm/dIrQmvmMUvsLIaL6TItj1Uk2tJvNWnK6u3bTGno6HpGzQvDjFUCijOPUxTlEz7okJ8Tfzf47kIte3K5RuyrQLZVlgDoS3W0VLNHQdwnL2oR0Gh4NyzU4wtgWX7/BhtKEBBREGTq80TCZrXKpe7qS33YWqpo59JtidBQy2p9dDeS9E0kNKXKjXANivbxvkE2RZQXxEqFN+tUkZZ90IsnnKRo8C+p50Im2+oEI0tvHYYoaHIJYWXa2TpYcZ7IlQ14/JH9TX2dgSYEOUhfY4UAYqSmS7ZuqxlqQ8KvQHhLRsv+Tlkm+QKM5vLBnmb0D3rBe5gb+xzSVIoGwvsvHJrQTwcbajoXIMvrvRrRxQNAFx7G7/fuKoQbgr5ptcTAPQPxHbO/JnRYoSiDqw/YPMcQ6b90Z5FMrle0sreqFJiL9W+Lq0LFp60jNoPZAHMWxryaYbvqAD2PO6VWP9gHHSWrW/6OhsTI+ikO1UKRcANktPV0Po7GYRXdRhNxj8E8DgR/Tb4lt4H3wX0luNWYbQebp0Q6t7svdsdRHQWTD1YAih2Ng8iIgLwo+Be20MA32OM+SwRvQnc/rRrj/3fjTG/iFsMmhagLbWKahlM00vcsl1ztOVFM0YyLJ01lvYLVGkUcHitP+g3+cwZ6wVMRRDoQjh7OQWxzef8dac2kb/4BCvAeGuErTcuonnVe2G9Yw0nPIT6X0J4oJDos8oooJrZOs7XEoE12JegtVxgaolbBeHUfZ6fDeUlRgfbAXfb9tHIoXeSoWUAkPDf3JxrgwwAK29pIu0Zxyrs+rof8GZu3ChQTvj60WaK7JItyhxwQl/qUKLCPj+7KpNR2KlRYOLGfy3Bs8hny4BBGgSU790Cnpvhe3+Uqye3nmGPdrzPIFvT6C6ev9QyZX0AfUWaupxgtORPj8qi26ynFU2AsuGLBZtXuaBQikgbaxUaax7NN+0Qekf9DQjwQysMee7poMK0E9agAL7ehOdbYbjk7yfbBnonBAJ/fc2SVjBlxjT+mlE7KuAQbfGUDaREKYSuCpM5j9gK9dwW9jrvxIbpHM8eAbX1AlsneV9Fefhdyndd3/TX0IoHANqXysDQK1TNlPaKdGtugAtIk4lxz0KjK+90vNqVjTHmp4jo1wC80770A8YYV5ZMRA8ZY5680bG38mw69uAfBve3/g9gTfbdAPbf7Li7ML7GGHOzdqXfAOBe+/NOsIJ5J1jx/BljzPNEdADAY0T068aYzVteSYWaTD1FVWMpZdLIUaUDTBkDhIytm/fUMfCphKDewimUVTaxJ/Md1FdVfmhcuLqVeFwFCKDumTGiSYF4y8dW2hd8WGnr3lYwF0FEBTU+anPUV6eosggTi4arb1RI+yW2j/H1W8sFmme20JTCtrxE1a6HdUW2Zw0ArD3Icx28k+fX/gRrAqNyDYP9/tmVKVDOk2tlXGZMbZNe4evnCwXKaYZoJKRZxnkAaZ8VjY6Z65bIkrsQ9FhjYjBteyaI4R5Cuh1h6Z1sXm98eD+mXaB6B1+glhW4b24NX/MAk2F8eO1BPL28lyv7eTJBywHxmOR31mMYsi/KBDpn/fx6xyS0aJ/FHmDP45VDApqYw4C6aFA33RsucUhPMwM0rxUOkQUgUDBF0/d/mbaZ5VgYBABgcDByeQsxFloXFIxdKQrmCiPXwqB9wYSKZsprZ2TpZvIWsSLWpANK0Mv6EQblssb1U+5+ybKrK32xea9/+BLyCuiYyCtEUTTbRywU+moF3do5KgwSJehl3wC+hkfYBmrbnOMU0tud7RvuaLzKlQ0AWOXywZu8/R9wk942u4E+f4sx5lH1/78ios8B+F9f2hTvyng/gJ+xjX9+n4hmiWi/MeY5+YAx5jIRXQOwB9wy9cbDGKDuPYqq4f+OJgVqiol4vMjv6ToCrWhkA89aj6aKgebFgbM6u8/3XViNKoOilTr2gt7hFOnQoHXJ7/R4e+zpQeZbGC9d3yqwqbnNiBxhJpXM1ZVtsOcQjXNEY8/rVrRTREWF2Resp2Svo5VLtD3C8KSVUjGhp5iBh29iSdv5hJew8VQlZK+VmHQ9O286YP4yvWEJXth1n0kwnQHqq/7dnezKAheWkEj3KQ4XmzoLo5W3eCc7zj3jwGQBoHv6WP4020ZxHSjfMAAK27JgkOGzG00cafL5jrXW8Mzj99xQwQBe6Ai8ub5pKXPsfCUsI0K5cS2E2+553JOTAuy1xWPjwjUAMNyTujqqul1XmhlA1g3ADBd1C37onWCtoPMu9Y3KFQiL0pixbRkkBDjc69e0Zrgu67CdNvn/wUFCWed6FgAuhyc5rXQYFiMbAkBhqEozAiSWB00sfal1qq/yl736SCOofXGQae2pKjqcZGQwniNWMvJRpZccl5+0umhGQb2YZpjuHSHMnDZ3V8nI+DJQNi8ybvrUdqNsBkT03eDubwbAdwEY3PqQ2x4GwG8QMxf+a2PMT+x4/yAAVUWCi/Y1FxkmoneAey+c2nlyIvoLAP4CANQTL6Dy/TOeigaAsbtC8htAyF4LAE2FcBI+r2zNK4xoMEHVtpXwKn8Tj7idQe8wv9ZYtZtfExoqihAqKjQuDzFZEIXDyK9s0+/EeFxgvMTCX8g/h/v58+0zOSrV2I1j+7FjDojHBapmBpooOpn9XuqIopGkOwA0H28EmyYeGxfOo5IRXgMLskiHJkC2SXJbQhRVwkLZCVQDRxoKAIkSHsK71buf85HNK2MMDjactZu3uHuqhOwAIL/ahNlnq+vHEeILTZR7rPba5u/gv/zO293na7GqzahYKEfKyYvHQGWXRX+/tYS3+P+JrVIXD2G8EKLsJISka236hyJIbYw8k84Ff4zurLl1khDniizWNJ1ns/ZGm4OzAY3mtQpbx/yamntOijr9+coaOSSWtMTQLZADYW1fF9ThtBMjKkMFEygWcVjkJQLqmyUmlmZJFI/w3E1mIsyc8lZG+5JtsX5Y5fvUWnDnV3NsrvicTDo0Qb5M6JrECKpiQv+gXyeTBePCm7MvhDVkd22YV38YbRfjpne4G2XzJ8F5kh+1J/o9+9qXYrzXGHOJiJYA/CYRPXMLdunrBhHtB7txf9YYcx0xhFVePwEAM839xtSlGtlWTSvizMl8FiiY1iXV46UWoXc0DUgjs42pY7xNr/Vgogg0tAI9idw1pvO8a7tnlMTRFt/WFJXKHYmSEShr2ssRjXMUHf6MVPqLkpnOZihrnsJ/cKSNKqGgaRXABXLyu37F2w79kx1sndDs1/xb6PbTUw2UDS9QhU9MIKtlPcJgnyL2/IoK84/HbpNNrdISwUpVyNxMpXECKMpZeAhtfNaPMZkhJ4g272uGYIGUkA1M0DDsxEOX3N9XfpN7/hUjhYZQg8oQMQWLRRBQQ5XwZ0RgCUuDMApTuQNNZk0gLfQAYN3ywDVWwtCVhAULZbGvvck/m9Z5q9wUXLuxIhOuK0JPoH8wQpyHRaHZdhmwAgBeyUy7OwQhhVX1gpjTinLSiRz9ioARGte0EVSif4TXr+QoNWSeKvYiZES513RiMIjXGINzKZJrEWRZ+4pnPNBN5SSEJ8wWVRahTMnxn03nQkUDALPPK3SbyqmO9uyKHH9X4241T3s1jls+RSKKAfxlY8z7X47JGGMu2d/XiOgD4K5zWtlcQtgl9JB9DbaL6H8D8HeNMb+/m+vli2zBbx+zSXO7/uobFYqm72DZvMI7TBKFVBl0z0x93mRYBCSAxuZ+qoY3Szce6gTXmHvSZ2Ir1RNEwln5om3jrHjFAA6LVbXUgQ/WHulg7pkhprM6vq0sY0suKiFAaQUgHREBYHDCN94TRaPRaXnHC8UoZ6EqYZm5918G/vGeoDWy3vTzj4eSNuvz8x3ukWcZJrH1vWqrHmBl0rpSOQGZ9SqU9Sioal+5FxDj6hu/9jH82m96jIk4j5qRIfhbOLHsvRbNMF8SOWCACmvlBuVQJdJ30P9XGTnEFgCsvFmFmgAUNWDpcZaow31ZALNdfUuFqCC0zvtjhosR2udG9vwxlt9mjZFtqP4rcEL1yler8Og4wv7f8fcaTz2z87QbBbknE/G9JCqGEZXwfGOGwSE7q+sl/9i6NEFUGHRP81xHe2so6hQo0vE8OaNDQBLaK9XfjShs6dxZXzchy0ZlEE+Vos6torE5nagwoMqgd0gow32edfYUGzh1xQ2nSwfu6vjy92xu0pHoRZSNMaYkovfe/flcP4ioBSAyxvTs338EwN/b8bFfAfCXiegXwMCALWPMFSLKAHwAnM/55V1eMKCTMeQ30mhPjNYVg/ZFfm7Siyaz9Snjfa3AQpnOpMi2csR9llJV3Raa3efDUTr+27paYGo9lnhScoHpOu/qYt4eIyCdmBCPvTIrWxmoMFh/2J97/aGmox6hyiPaAE9AqK+fjIGtEx7l01gvMZq3iV6rRIr7OONP55owsXE1IvVVDlUtfa33GOIfWIbtCIMLH2db4Ph/3uRns8gH6jYGq4+o+R3IsfjJNAjTyVw1OSLA0Nnh3ghzz/H3cumrMqRbHu0Vj4D/8es+6T7/gQ+/E0gN6stKGTQ8fNkQEFcabMGvSc6mtgmM54BEPBlpWqZCTZoMMh3wnIWQczQfBQltMsDSZz1zc95kRbNxnz9h/ygwneXvsn2Wv5PZU/z/9uEYS4956b95T90VtAoKjpRnpalzBP7tuMLIAhwsdb/rAmrvXTw0Xfyp11BZs83bMgklhs3Vhges563yTXIt/puVunheQvkjYJBkFNY4jdu87qTsAPCGlMwH8GFpgIuvXavnSN6/cU4nHVYOcUmFQTw1Tj40r90lIk7cvTCa7Z78bwE8DFZhfw7As+DK/mMAzgL4DmPMxs1QvLd53f8M4CcB/NpNokfvutmxu/EPHyeiXwHwn6ByNcaY/3wbc73V2AvgA/xckAD4eWPMh4joL9rr/TiAXwU/sBfAD+177bHfAcZ7LxDR99jXvscY88TNLlbFnqY/266wcZ+vZ9D8XACAmEBFhfE+L+BHS97sFjp2scppUmLjkRn3/mSGAt6lWOVHUHEiMt/DEpPDSAqeujZEVU+dshFoqNv4UchxZWLu3d475M8R5cxw4OaugA5FE+g1Y09nD69oACCfL9A+pbsx8u/1/3bQv6acl8Vz/BBPf9ssAODQR6Y4820RRHsmmzHiMSsZAKhfTtE/DHRPX2/ZVgmHd0Sgrr/Bwl2/mV+YB3B12T/n//GRJ1AawuNr3Ie5tmphtt5xQ/zQNiaWGZuyCtVqinQrRC/onE1tSwkl4vyUC31RqGyEBl+QUc3VEuPZyDMPNOQ79Jc78+cNZj/Kf/eP8u/OC7E9nwkguq2rFVbf1HKhPg1SkXCiZpsAVM3PgGn2tcLQa0QUqPZktGeR2fU7mQuVa309lDciTCV3ogspNeOyeBWjBZ/n0p6VhCjH6npRwd1bAa+kRJnpcKSex3hWPHoK6oZGC1FgyLSuVa6XjzSF8yCXuxT7Mribns2PAviQMebbrLHdBPB3AHzYGPMPiehvAfhbAH4AN0fx3s74/4Hl7o8R0X8C8FPGmGd3c+BulE0dwBqAr1WvGQB3VdkYY04DePQGr/+4+tsA+Es3+MzPAvjZuzmf18fr4/Xx+rjr4y4oG0vx/z4A3wMAxpgpgCkRvR/AV9uP/TSAj4CVzc1QvFfwEocx5rcA/Jadw3fZvy8A+DcAftYYc1Oq7N0QcX7vi33mVTmUhbdxX4yFp70Z135qFZNDs0i3PDqmbNccv1nvmEV+2ULK8R724XXtlyR7AaB3JHaIpWRkMFrMHH1LMuC4cqnQaFSxRwMAlQUx9I56s0/nOLTlC3hmAN3QS3s+AnUVK5JKbtKVP6AKZQyh6PN1xauR3h8A92Bx59tviwfn+dl0z8VYeXOE6RKvudPfQWi/kHArBADJSVss2vc5HvFqgB0J6Fn+vfkQz797cBtfc+h5PNfzlZOPvOGy+/t0n5EByx+xXpdjW+bf9a9axXCcIW7y3KoiRvOS8qQyYOHJnSzKYe2Lbqa2eQ8FSfmiTkGeaWgbfbVUGObSVyov8dAIrfYE+TdZmv61FjpfSNFQoaKt495tFOtdQmZRAe/RJMyILSM70UP5VDfwVAb7ydH75A1blGpH/bwN1R3x15s5p9bNUmzbg/tj0v71klO3+NZQ6iph8IUOI+n6qfEC0LrscyWS4NfrWLdykLCYfB/xxHB9leT8jMGkGweQZt0mQ3s1UWkwWohVTq4Kckv6nu5kEF5SGG2RiD6j/v8Jhc49Dm7F/FNE9CiAx8D0YnuVArkKjhYBu0DxvpRBRAsA/hSAPw3gcXCr6PeCW0R/9c2O201b6EPgJjnvsS/9DoDvN8ZcvJ2JvpKG1Dcc+VX26WnkJV26OcLoIIe2autTR1gJwHGLBd04jcFkPvOvG2DtIZtsr/tGVtkmYeGpnAvYwEnerRMZumf52hKykWuP52NQ6cMHQNhnXeouJB5OlQnqBxorIQIpGXE1vw5pTOYrD4izcZbmglV2C0DjQ91AiAZV+VbJUMoTv/zNFVpP1jC1ArH9Ah8oIa368x2svXeC2U/55zlQENThSS8F3vnAaQDAZz5xn3vtg597k/t73/5NbIyauPYU9xSIDw0RPd3iPgtgIsvhO4aY7fK9DMcZKkPInmNNW18LwQyzz5cos7CPy8o3jFF/kj+fvnsdk8fmnWI2lxvY6gDNKzZ8agj19cqds7KyWocZZ573f28mdUT3jbC5zHE+ioCyCfSbYY5Ih4gGBxRZJ6lzG6B+zzaqio+dnuoANePaEUR5yCMn8HLd+K6sR2jZolkBXQxVZ0wTATOnPMw8Kv0eEANI50E0Ei6eGPSORMG91DcMepYTr+VtBjtfg1LVDEkDM/luqAqNAFFSOrFPCkY/bRFMrJWUgrSXofLp749twe3dh469BODB6k4GFTUScOHkXzHGfJKIfhQcMnPDGGNsCcldHRa4dT8Y9fs/KOX2izuU4w0n/WLjpwD8PJhKGmCN9lMAvu72pvvKGFQZ1K+y2Se5lt4jvr9yrPjHtk6ysBErKh1UMDE5RBXARW6SsJQNKs2/ekeBbNNfu38g9XULOVPOTOaFT8vG/Wf9Jq9SH8NOB8wJJUJG6hxksxR1QlN5MtlWgaKRBfDbxqpxUOir7wZmn4mAZ1j7jOwjyFs+aW0UX0T7Al9fLM75z6boHTMo9rKybD1ZQ20TqH3KekZXC6w9kLgCRQBY/GgGiScMba3KeA//H20nMJHfI5/5xH1OURWrc6jXgPx+zpEtP8eeTGq5zPBcC6mijxm9cwAYwkBBnavnOhwYhs8/NVbste1jW3vEz/Whw1cc/vHU2gLe901P4DeffYCfy+IU3cf9uSX5PJ5XFnQBFA3fMKy+bpxyTbcIk0/PY94i3sbzTGkjAAZRWmIYFA3bRMwOqoDKeg/xW/iN0RV+Ic0pEOxlnRWVrMOOhXPXthQPWyPDeMEL8N7hGDXbgnu0h9A5r6DBPeFEU83RFLw+6zE7gAYIzD+dY+uE5U6zNTkNyz5epayQNEVOc1kljcCKRnscjdXSKRxhKBCkIhDynckzFC/XJB6GjzYzJYiXKntFX+uujLuXs7kI4KIxRtAwvwxWNssSHrNlIFINeFMU722MHzPG/PaN3riFcgSwO2WzxxjzU+r/f09Ef+0lTO4VO6Z7vHkvdC4A4/nj6fWhE3H7yyzCaAloW99OqqlloRd1Tp5KIpgqn4BtXg3RTIJW0spt2o0DC1F33XRFdEbOHbYPiHODvB25uqCyGaO+Wbp2Cv1DtUAo7P19AKiwqUgZaxtAbYPvef6ZKa68O0NbFRrWNo17Jr3jhhmnn+WHM/c0K/DJohfCBz/qaYqHB5sYz0aYWvRRbK104Ruragb1azyXz//q/ahp+hMh61zx5057ft7xGOjdn4NinmunnmMwqKF6hj2HKg5p5sXy1pDXKiVH4VLbNnhufALt8/bzAH775Jvcpln8XIXW5RGGe3k+wjumw0cm8JyYIbtj2ZO3jtdgIi/cBGYt4UMThzU6omhkbfSO+4cTne6iqlVIt/wB0/s8/UHrMTaYhEEAgKPNAYDBPtv2234fRRNO0QDA/LPWs1BhxNFiHLACAN7rjqeM6JIoQJRzh1YJhWmFLCMICVsD0HkfRAFgQVBngiAr69dD/tOhUWE/Cgk1zfU1ZO5eTOjpBBQ5dzjuhq9hjLlKRBeI6H6bnP9D4J4yT4FDWf/Q/v6gPeSGKN7bvPZvE9HD4J42dfX6z7zYsbtRNmtE9KcA/Ef7/3eBAQOv6mEiCtiIk7FfULUttmqkKh5gj0FivqMloHXFC4Kt49xyYKSswvEckEiVvIpNV1m4kGWBCzIOsPFtK/9E0ci1qQJvBrWxpl1ylqIcNzgYds509zkyQS2HbOCDH1PtFkrj+ogsvz1DVPjiwoUnKMhbtC4Rsu0KrUsjeyw/s7TnBfjwoFfqm7aOR55JPAKGB/y9GEVgRVUI5a1SIO9UyDYUWm/Tv7/9ED/Y1pytQzGE9Hmf68r6/J21rtowaAQ01krkLRUqSoCu7dkTjytk255rrcwIXZXHMBFQNGKnUOobFdYfiDwSam+JeBgFeaG8FbmWAfUNbv8tXmpcsVAWUkwgZG4QwRvkG5RR1Lrg72P0Rn4GyVm+/8kC0FShqmknQlEjbJ6wLOALrOyk0j7rA50zipPvHtagOl+oB5Ok+l5A3QulUzQAK/F4UrmOtEAYwksHFXspqs4KRK6uprFSISqNQ3WWGaGsR8F8dL5PvEJRfsxjF7n9pg2C1NpCQRGr4p/TFEB3PO5eYOuvAPg5i0Q7DUaIRQB+iYi+D8A5MEoXuDmK9yUPIvpBcF7mDfa83wDgdwHcFWXz58A5mx+x//8e7mCyr5RBBkiGVqiMSkznMuQ2HhwVxi1OgN378Zwv8qxbVauTpfHEoGlDAr2D5Go/rrtuGR47XIoC9mKG+yph0+SkrhY63MvDvm8Vh1Bv5F2DhS+Eyddrb/aulFDs19dVsZ/aWK6viPWE9n4aOPvNCRYfV+GVo6xsAaB12YZT9vpr1BSVTt5JEBUGQxVu0QrXJEB9hTA4xvNpXlQGgJV1Yx/d5JCfnCdhb6W0uozsW9HH2FQtmkBTmUWuDYM1IqKSq9w95JWQJ559oUoJmQozVXEcFPvKcStvCr1CGY3LMarUW86bjQjx2HsMAj3WFrdW5CaCLVS014cUwfL/7bNRYClrHjbxZCTcaYjv1+VgbEhHH1M0PS3T3k/ypISXr7ZdosyUcCfsqNjn70LADXmLeypJWFgUpeRedg4pmNY0N5qhemCVju6pU6Z+7U473HLbFeZOmbWgsJ6P7GVRNskoVDi69UR9vcR4Pg5CgHdr3K0sii3ruFHY6g/d4LM3RPHe5vg2MGr4cWPM9xLRXuwSCbwbNNo5AN9yZ/N7ZY54ZF3xRox4XCK2ZJXTThIURuZNsrF3/l/ozm9EjwH4IkNRKPEEWPy8JRpcYS9DQlnrb2gGNPnO8lIJfBMDnQt8fP9AhCrx9QlipfeP+M8LHQrgCS5dnc+OxR7lBlFRebBDxfmcouVvbuEJ37ZAgA5S6yH3oWt3NF9Wc7nAYH8SEDa2Lo1x9V18g3JeqS0BvMBwdU8KiqKBClQCcQmX1B6eBDpf9B+Yf4aZCvTz1eCKxtURykaCouPBFdlW6ah/8k6KrROq/YNVGrMvsMA0GWH1kcTXjOytYLZ8JX48DddIPGUPQBLfzgNS9Do7izKp8JQtkWEhOe1e/yzSAecI5fiyFiK5krFBlPs8xMTeS6pAiLOnlDd6wLJ5qxzKtEMho/YgFJ71TU+CKutClEgJfhaS65nMWA9XPJCdZK2lQTowjgoI4BognZOROcmzGC0QmiuSiyqxfcQ/fHlm+vlqNF5ts3LJ+3hcoXW5coXIuh/UHQ0VunsVj5ExpiKiwrK2XEOYD7rpeE2j0aQhWJQbkDGYdvzjiKfGscqKINYMwLJ4AWDmTOnCQ4BXMkd+3YevSIUUdM5E2JdFqIlXI96TScKqZ7GCtQBtXstRPO9dGWn2BfjNLOii1hWDZGwcqidKDbLtCpT7awwO1l2IMG8QNh/w5xP6/9ZVb2FWCbl4u2z+5rLf1e3LhaPXifISk/kMc8/x+5snEtyMJ9ZEIRKL8wB+w+ZNCvqZHP6VCFFROGu2SjhUpenkRdkDwHS2hnhSOg8XAJJRCWOLastGjOZqibUHPaownoT9TagCBsdtD6CnUsD4Ntr9IwbR1FexM68aYJQhoav84IERTgAAZudJREFUkwFAsYKlVwgYsOMxr9Vs23sXojR2jnjCAljgyeJJirXevAaXNwO4zXOZEWL3rChANcrQpKom8Tm3ZGx8TyXA9VAa7PfrsmiQ6ycU5fz9uoLXOrexcJ6KNfbqa9cbYoAv/hUYeH0VTtEAQm1UYuN+vy+FEgdgIk4Jf7au8LyFnLZoJgHjRTy+ixri7jtLL/f4jGUv+DdgyHUfwCd2c+BrFo1mKAwfxaMSk8M2SWoFeVMYmQVlptrzamQO91+PXaV7bRPonvcBZDIhlUfZiIP/AU/MufpoLaiNgOHeJGJhitJKh/76ujvjcC8fIwovmoBJFe10RguEzkXjcj7DPTHfl5pOTdUIVRmhe9qH/4Z7ge45BiEAQNoPlYwLBwpKaGKcogFYgNZXp7j6jmbwmvu79LkwMiGxJcf9jUvY1je4QZ0wZntr2gtETd8fTwzybua80ChntgbpOwQA64946b/+sMxJeUab5BBQUt0+/5hi9VYtAJqXbWhTebrJACiUgqmpMJ94IgIv3j4SobapQ0MS3rMHmBDOrKl2qoSfnyiMdFihqFHwrNuX/D+iZCZzoYcp33vvsPX+jMxFQbDBxsxoMcGeJ1RtWhahvuaJMItGHORFNEu0GBzi9cVTDl1Lrx+qDDeiU/kT3agu63EYTzwnUVbNq+E15HlIbgqwubtrE+Qzil9QH3aXFMRLrLN5xQ1Le/MPbJ+wHyeiDwHoGmM+v5vjX7toNANMZi1p4OUxNu/ziWSh2Oie9ysjb0Zuc0iepGF7b0STEvs/PkBpmZRNRC6eL++LtSyCUbylKokQTSts3svaIRmGCKZ4LGEBBVZQSdHRfIyBZ47hc8ZhEebM2RJbx1iIdGx7aSn+jIqwLsckwMqj3oScsY0axCLunBdeLT6PCG4Jk5kopPeIxyWqLHI5oNVHWcnoEEah0Hna0i+aQOdsiMiKCtUWm+QZ8Hz7h6xXpdo/lJk62DAgwBVCZuRQcACw8VAXVAJrb7QfJ6CqV6DCnvcyMylLaKe2bYDIsw0nY2DrHpVvW+B7bp32X2ipCiNbF9kDkWeXtxnoIc9UGsVpOv5oR8pD5+Zq2wawejMdVBguxgFRpuY5k+9TqHUm3STwlkUpyVprXjMY7FfrhDjnoYVn62oVFCcDfr2XGbczcOFaE4anahYRuH3cK27dVC7K2aCRvUcls2qLghbDURjC5R7kPl2+Tt2jzskMDvlF6LvQ3uUWA0AAmni1DVu786sA3mj/P/tSjn/totEUid+1t7IAdNT2dkNLn3VgB1Jlyr3is20rsCelUzQAUFseoGx5KTA45BXZpBth5uwk4D/LOzFaVy002faPcZvErk2tYHQ4wtUKqDH7gufUMsRdCReetkpmIUFRD61/nVcQvq0q4wtvPAh0ztF13FPi2VSx7Qef6fnpIlL+W5QMT8r/mQ4N0iGwrajmpSZi5nmraG0YMW9HQcfTzXtZMOlQEhlfKyStAfT1Nk8mTtgvfj5H/1CK/iE+wbTNyDiyhZFUAa2LMUrF2VVmDP2We09VDmjd1ueULcVGcSrxnprN9YnnWmU2TGhvvbZZBd+LKDVdHDlcIrcWo9KvDyr4e9TeQkMVJQrRpTwLMTDESywaFKzxss7ElxpuHABirKesGa31GpAul/Ka1KbJ8A3mFNOyAWZO8yTG8zFMFNbp5IoNQIhqfciYkG1en+8Txc0MA/7wou6jBeLlSz7HUIhGu5vj1ezZ2PFZInq7MebTL/XAl4pGMwA+ji8DNFpZg6stcT0zdFvcps/RFHUAdYXsiQgzp6fOmirrCaJphcTS24ii2brHC9hgI84kQbhFJ9e37rWv28LGhScoYLeddjipK0qmyjhENv+MgBuiwAvKLAR5uFeFCCoPqaaKBZFYz5ITmrfKqX8oDoRdmbEy1lXxlWLXlVCWCKntI/a6apMJKzIADPdEmMwiEOhS1wKEHp30Stl4wN/LeD6EvLYuh3F7wNetxNNQYK68mZVVrHJxs8/6Z531Kwe9BXid1LbCZnDa65LzNC77baU9kbIBILKhTfe+QWmNeVkjGkKfDn3oqH8EmBzzB2fnai63l05ZgYinkkwMhksU1M0Afk2X8LkKgK+R7ajapwpOEW4fFaVh7zsKDTCZu9S9mJgLj2XuRT0OnlVLCjaVAqJphdEiPztBS0pYb7gUoVDfXSL9lDb9awJZB4C0X2DzZC0ocNZGkF4zQkcjXmLnEneblUZTO/sR3fawCMBX+XgngO8monNgYmYCOz2P3Pqw1zga7fXx+nh9vD5ezkFfgsjcyzVszuYvgGt4XvLYDRrtp8Hos037/xyAf2qM+XO3c8FX0pjMeTOjfT4M4xQtTzjZWGbrJlgoRBAzJbJdOPNZjvuWjQTDpSSApmY6j6G8mvF8zE2pHLW+ASKD9llbHzDLXoT3HMK+I4D3agBYWHSE7jk23cZzNtTU1dayv77U54wXbchqnTCvSElnn8sxmU+c1bfyPjZn5z7NL2TbJqCBFy9M2j/zs/IWvliJmuqnsernNG1TwJigi1d71kvSeQqd48o2GaE2neX/6ythQ7F0wJ8XqLGDFKukuU4cX/lqA6BEYqvyk0HYWTLtI+DVKhtcZ+Oar9X4teks34MwEwj8uqyx15pM/L0DO3rIxH4dxmMgrRcwp32BiKyxyZz3OgBgUiPEYx+Onc5wbkmQbsnIFnY2BaUoLphqO6BCeh2bv5RcXf9gDEP+e0wHhgtk27p9RZjjAYDmtdL937w8xnSB3RUBkehCag1WiMf8o9k3NMOB1PEIWS4AzD3nwQoD218nVxQ0GiGq19Tm8RiNNXP3PBo1Xs1hNJuz+f8aY954O8fvJoz2iCgae8ENInrz7VzslTSiKXDiv3BM4dpbmkG4QwR7Y9m/1rlY+oKwYQUYn8idzPFK1YlxMt5Vn8yQTwI3CYO9ClY54TCdJMazTUJ9lTyqyC54Cf/kXZ67bl+89gbVp/2Ssa/5mENNwYMZTEDIuzzXxlXCeNFg6TPyGaYZEYBD0YwQjyvXF2T2M1mwYfImWTiwfy2qQqFAOrdQWnCC3fNRHio/HfaQkJz0rU9GBv1DnrbERMDgiP88vb0P82mfwBnvsd0khQ/LXlOHzbSiiUecU/OK3CsagOtsqFLhIzttKQ6MRxz3l//7J0qgWaD9BX44ZY3JJ0WIacEKcMJc15oArKz09dLHfeM+E4VQeF1NL89b+s8I1Fgj2UaLhLkX/MLXNSyiRGTN19dNwGQOA4DCHFGZRY4YdqwYloHrKV+al8fcXdYaE6M9KWpbJcZKwej9NJnj34L4lHuWPUiV4RoiIz2qCpfXBHx76KKuWLc1MCb2ey3rcVgwu1t9bNxF8KoGCNjxJc3ZREQ0Z4zZAAAimt/lca/oobnIOhdLjBZjVzvTtQ3ApFagaIYcUEItE3AxpeTizYBKyMIK2Nlw84X1I0BqSQAdSEGUScrWaKWFeQ4PFa2p18AJZCkyBFjRbDzg5zL35hWsPL/gkVz7K8SDCCI5HcrM1pJEJdA7qDbtlgm8jeGir2mRoRPL8ttRspRhMWJtswrOp3NbksvSVe661kmSw62DHto2XlDe6oUwKS4N4uTZFu0QtVc2eL69Y3xA3I+Qbfn5OiGvnr1mimhe4ffknjvPx6hSn6vIemEORxLS4gHU1y3iS5BTfQAjf8x4Icz31JVlL2ACDUcGeaVfpXzfLsfTN6htV0gUNLx/QKHmsnCu43nCaDEO1i1z/ql1rvJrwpisySx1HU7vRBO19cIR0AIIWCZEEYtCmDlVocrIQezl/FIDU2Xk2AoAX98zsutz9oUcZS1yx2luNm0YAZwXbV9Viq4T7t07Ga9mz8aOL13OBsA/BfAJ25UN4Hqb//12Z/pKGVUWYbTEklqYa+efYomdjEtUqV9ghq63goCwLe1k1tcEDC0/lLaUZLQvF/bzgiajYFM7lgL1WpQr69ZH7wB48sagZa/aPNe+Nkd6OcPcm1fca7WDA+RnbWfQnNBcBoYW7p1buhKNxqkpCGrWK1E0Iw+d3qE8CDu432Ker+4EqgWmMCAM9sbhMWCFHNRSbHLITJRMcXgMAjA6Y60Eg4BXTMJkWll1VX2UiQjjWQqg5ke/8xQ+/8RxAEDjihQW2uvZ70Zzuc09tSP8WvNhPSoQfFfxhHvdS4gTYLYKYR3vH2ZEmLbeqwwo7fNoLpsglNs/SD4UaF/XITkynj5ncIBremRdlXVCOSGM9vKXt3XMksgqCheGDiMY2ujS7AP19Spg0aAqVDQmJky7sYL8A6Ml/+ANhR6uqweSvZZREAquEn6eQq8DAL3D6nz2ZQFGrD6Sspc7EDg5eQaHBV5bep9qqpxSre87Hq9+ZfNHb/fA3QAEfsb2Kfha+9IfM8Y8dbsXfCUO6TGejNVOVotClEp9zUvRZDDF9knemZPZCJM5H7IYL1VoXIp8LQmFNQO6fYCJgcFeX5k/sYKxrPnPzzzvN5nUQuj2ydOOn2veZmG1/SgLtK968DngQWBqNd/jlw85RQOwJTzthP1EdE4pGTPDs1ilwz2JvQd+Px1YShWosSMUFJWeSn4iVCvWI1t7KMZ0xqB7yj8PnWeZLBp07f2LsC9aKlypGKCpBKYzBslQ1bq0vKchQlwgr+vfykmOn3vHTwIA/v75b3aKBgCG99k6qid9QL9/0q+R+c/yXeveQOO9BvHY5l4EnWbvXdoS66p6Ia4EmBAyGXmBnwxDJFSZEpD6kBJVKndXhOHS1tUSm/fELn9F5Q5hXjKDs9St3IjLLwg35hzCFeW2kyRVhjbA4olxykWiALqZmc7NJRMOLzrvhCgo4BTPeScztJxjsE/qxvScjfMaxePToUZNE7Rz3cX5XVYyePUXdQIOMAYiWoJifd7N2FU4zCqXLysFYyJv/ZiIG0HpGK8eUrwZD72y2bzf707ZCOMlvxGmKmFb2+K6HADI2wkvYrvmZcGP9vpVGNDKbxJGe4COovjXiiZvsUU2sD1n8tkK+Sxw5NCqn4vCKY/7GeZOEUb2ulKBrrtJCt0LwJXn6RBBLF17G3kTQdhO8lSa0bd3ROUCDtkQ5aa1pJt8X9sn+Xf9mvIWLWhhcIj/LxsGJjIwtoUAtlJPQQ84JSN1LNMOw9VF0Ky9mT/857/qtwEAP/30O52iAYAnL+9DvDRCMfJS5t6jV3F1TlWaXuk4JZNZK1mKHfMZr2h4PvxbQpN5kzCej5BYoR+V7IXKfI0Ne3k6Hv6tKXmKBoXehSqOzXq+9cNgP3eHbV0Nj5WcioQrxUvcWTBapQZGQdory37gClhHPFdJrE+7ERdaSm8gm28Tj3syF5KGTroMWpE+R/HUBGEwn6vkE4iS0kAZTfsk9T6SK4pyA0PkuAH5/sOC6Zbq6KLpp4oWUAAYn2C3rnZOxbDvZBjzUpqnvSIHEX0LONp1AMyLdhTA0wAeerFjX/W5l9seFJJnahQLwArIVThLbULThhyO1zCZ9eGvdGCQDoD6Ki/03rGQPFKzOMsmcnUtVlBri7ClgIX1DYMyw3VWnr82/5ZGbXQlQvvbLuOHT37Qff7/OP/17u+5T/LG2fM5RbqowhnpdoF0G25T5N0U47kYvUP++lGuCBSFK00V9wWEioZzYP2Dui2A4hYrCWlP5ahIVXAPWLCWDaWI6wrVt80PM+0rAa+ap0ld1PqjfMzXv/NzOFzfwF+a+xwA4C99xefwrU9/pzs2t62qpR8OADx/fi86s7Z9wm/Poguv/LJngc2TIeKqaBi0LmrkHwJSV8CzR4y7rCx06EqzGM2c4XnL8+jvj2xS3j8rAY8Jh5gI4MaawaQbuXVDJXsiIvDztveiAQ6XmQgo6xY5dylU3KMltvZlLo4Bfd2Hjus9z67BfHkm8GRyVUslSkY8nrxBiCceICF703UALUOQgdzn9lFeA63LVQBKMLpVgR3iWQJhq2eqYGmB+Jz9FjlFA4RItTser25dAwA/DOBdAH7LGPNmIvoaMIXZi47XrLKh0m+YtFeiVF6NIV54QuBYNGKMFhMnYCUZ27rqecG0sph9zmAyQ87K156Aq/5WsXCTeKFd2+AciE7+TjuEwSELTV6jIP+xvZBj/rNpwHl17uwe/Jmz/xMA4OF7Wes9+/s2PHSU59C2Vt1wKUHWrxwSKR5HiMcl1h5SrAdzcJtElJxQqQCKUdo+O53DGVlUU2X3dvtMhNZyhVVLiSO9RJzVa+BCPwBQNtWNVYRkU8FhR2G4isodvYMSoH+8wh999xPutWY0xU9tPQgA+OBlzmmufoj5fjpgBbX5tqmb1OynawBYQacDg+3jhLl3WD6cdwDTZxeBkueRbVnkl/K2NNdbZfNX2nPVrSPEyxShWmYU8PcBFhBiX9KUP3mbgEGYU9GWvygBDWeOpopLzX5nugRAh+mcMWMF8mSWUNswziCbe54LYEMgjfJSZzgEJ8WYVQokQ88SXbee8EQBaTRYpLbNITnHdUfkFA0AXHtrhNblECCRTEJOQr4uufckBDfpRoHHkQyB2U/VXPPDuzle7WE0ALkxZo2IIiKKbDO1f76bA3dTZ/NXAPysoNG+XAZVxhMb1iLbwpYXvCyI0R7egSbizeoo75ctO61s+m2DtTeqjWGT1BJbj3J4i4akZ42fC3fG5L8lLzHYR+5YUTQAMH4z76ai7yV60dhBZd/0XssznzoGwFvDVcYdHzfus7Q4UxZaQpgIAIODNScQp90QZr30WZYW/UNeqo80zJW4X4wADoDQmBMP6MDv8fXW72PW51zlnYIDKh2Wouve18KlaPHz0kzJrXMRnriXXZHvPPIYfuyxr/HHXuSQc0t9fuPRAsh57sePL2Pz0wcDeG88ArY/ytbDeB/fS33Nz7G+4tkQZG4S+x/v4dyY8N3FY1ba0jFTrpNtem01OJC4vI6cVzp2VvEO4WUU+i9h71zyNMmYm/tpdBrA3HMA53NGi36NJyPjmML1kHuqbRjuhOlaGhAaaybguds+5hkMopyVrGt+ltq8j73etBPZOiC1j1T4UCsZGfEI2D7Bf0vOUYNBdOhZ2l7oTqKiiOobJYZ7YwdZlzlLWxAAOHXdk7iNYQC8ysNoADaJqA3gY+DmbdfAqLQXHbvxbPYC+DQRfRbAvwPw67YZz6t6VKlPQMZTxugLX1k6qFy/Df4sf0b3QgGAK1/p/842fUhMFMYNXWbDm0SSyrLZ+zY0U18LLd/JHPDW9z6Hz5xnM+u+/WxVP/vYUT8/9S1GOdD6TMM1HKsSg7TnN2jzqu1aOCugBybi7B9g6ZNMTKA8REktfMG7YvGowMzzLGV6xxsAyOWgJjO8sX2DsdBLG89H6J4vWMnYoRVNYJlPgWzqa44EiRdQwOgUJbEy1UKGvtuj8H7sw3/Uzn+HcrDnH+7n444f9wVWmw+WWPqUJfo8QIFHlw5CuiMgRN1Nu7wudPO3vOlDQ+IZO9qjjFFX6dBeb3+MZOzrcqKpGD78fzwNBbLkBQGPhJNi4bLGiki6x2Y9XmcStpq2KACxSLHv9azSZO89DNsBYR+jKAc65zygpX+A0Llk3FqVnKn2Ag15dJ2sA1dkSxw9kOsNbBO4+af99cVAk+sP9kXX5bTctWLfKkJCfaLEAaBzMQ+APHdtvOolJ94PYAzgrwP4bgAzAP7ebg7cDRrt/0VE/28AfwTMifYvieiXAPykMeauKPw/iFElwPobeLHNnLIejnWxh3sSxLnx/F+G3Xjtavf3x3AFEXNT0MEc/VXWMs2zCWbOequoqJNLIlMBdC9UwAV+b/tohLwFTOdsSG4utFbf8dbnAQB//IEn3Gu//N/f7f6ubVCgnMaz/Lv7qM+Mbn1xwYVHZMNJWGu4hwJl0D8QBWGwfZ/k3Z/0vHszONJyilo8GNeDRYUnAe6iubVAaF71ry2/LXG5AQCIJhrB5D9XNODaYAP8e6clD4QKZ/6pHUCKX1vC2CqAuCEehcojtIG8w68vPMzPbHvCJ1w/O+sUDeCT7cKYEBWhZ7XxsEHjKgXPb3gAqAsLNQHty9cTV2r248msRyuWGUAVYbzXKqUxIcr9ZzvnfFhMFKbjQLPMCoIYE54zqVOqUmUUgQtWW1fI9U7a83nLtdcWRRsFtV5VQlz8qPKemvNusI9Z0qWGqnvBwEQKvixM1mrtasUgYTVRKo31KmBhrvW41YO+vkDUAa+sNDFn0SCnvHTYW8AsNeVR5q2wHcLdGncTIEBEMYDPALhkjPlmIjoO4BcALIB7zfxpY8yUiGrgts1vBZMof+dLZWxW46hCI/+0ncdXA/jIix24q2ol68lctT8FgDkAv0xE/8dLn+vr4/Xx+nh9vDYHmd397HJ8PxgJJuMfAfgRY8w9ADYAfJ99/fsAbNjXf8R+7nbHLxHRDxCPBhH9CwD/YDcH7iZn8/0A/gyAVQD/FsD/YozJiSgC8DyA/+cdTPwPbJgY2PcJNl2iwtcDAEDvUIoypZDDbC5CwzZTK5oRJvNAfYV1dXKujv6xDItP8DmKBtcw+Cp/cuGI9TeV6F4gbB9VidCGh8xWtr7mvW/nNXR1xDGmTz73Nvf57gVlmduQyuCEN8O+5c2fw8eXjwFgr4bvkd8bLhHXxSirTcfmBRoqVuLmPXW0L+ZIbCJ/cKRlz+PnXzR86M/ENuw48e8BCHruGIX2kvvWaDRtcWuqGw9V979NjMBr0ozJkjMrWgrMsEGOdcFRyltPZP0Li+g+5ONGM8/GwVwEiqwt3tEerq0BgKpRYnAciPuxvSfyXg18LyGNLDSRyuFMDSazUYB+iqZA84LlyVs0MIkJcoK6XUHe9kATk7CnIO0XapvX0+YPVX+a2oZ97jZCXtQ5hyKeTfOaQe8oBaEmDoPJ54nrsXq8R5rLvK+kUj8ZM+JMI8IG+/0amn2hQFmLXFPAvBkFrBu83qIAkaaRboXlpdNeblCQaj86ULnE5jWFbsvZmwG+dO0F7ibrs+2g/E3gAvu/YUkyvxbAn7Qf+WkAPwTgX4FDXz9kX/9lcHSKbjMd8k6wsvo4GFPzc/BdnG85dpOzmQcXcp7TL9o+1N/8Eif6ihlpzzghlgxZ6kwtx5n0mpeQRVHnniJSNd9cKTFzOg6KvqpU9Z6f+K6SALD5YOWUSLoRY/URpjYBuHWwri2p2Za/Vx/2iYzlXgfdeZYq/dOzALySGd/PYa5HjnKG9FhrHf/tWQ95T8eE1uWw8LNsMsU84FFxklh2zcussmlfzDFeSDBe4BNMu4QyC1FUAQ+a3b/De3zYLb0aYkejKe34PyyMdDmZm4TNgjqkDTjqeUE69U4oGHZi0Lyk+M0UMKOcrUAVBQCI4jd9hjmxr4vwjwoOcwmYwz0DCdVMo+Desk1WAsJX52C86p6i0sN/RwsRKw8VhtQ5k5kzNl+hlERTtQw3BAcxl2p4oV4CfMM8gLux6nxHf1+EziXfc6ZKCaN538eoqBM6500Q9tJKU/dP4pvksJUgvuKJQd6IgwZtC1/0D76ss6KRsNl0htBY9dBpV6/TDY0cd+8x16yJAVHbCnOZYmDovI2mrOlcDOmY49w4Vgs95zsZBATkn3c4/jnY0JedvQBg0xgju+ciADHxDsIG7o0xBRFt2c+rKqRdjxxcDNIAF3WeMcbsikRuNzmbH7zFe0/f7L1X+qDKwy57R1laSvGhoZAAMe3buLpCzsB4b2gyS8GmlgZfl77KtpnuEaapsEeG80h7xNdSAm/9XVMM1+fc/+OVJqIxz61zhq8pcXwAePioL///7xfuRXK6EeRNhks7BJy6luvIqGo98pkKG1bhTmZStK6aAMZatIC8axPEU8L0oD/h3373rwIA/us1T5VUnfDHPv34MST9sFHXZI/ws4XJf1baypOxq1ULvERZr1v3C2eLvdmCAkUzPMjvS+dNAIgV20D64BZwecYZG9MZFlLiOU1meQ6S8B8fzBFvJTCperjqT1EyMqKCPQHJ1TjFrKlRlF6ePW35vywjclGLYBKfG4nHxiXl46lBPDGYOW3v0V46V3QuO9kIyHivqnOxsk35bA7IGhCat04jxTi3Y1weZbQnQW2zdJ06o8IgKnwPmbLO+RK5dzHEhvvYYpt2uMZGgAeNVQNDQPd84eY7XPI3UN+oUN/wnIOT+ZDRQJ5jwLweKBpy+atkxKAYjVTT9Em6gdsdj12JZQDAomVukfETxpifAABr5F8zxjxm8yUv5/g0gA8CeDuARXB76D9ujPn2FzvwNVtnA+M3QlEnDA6E/dnrK17wFXUuSJtKWGYjQm3D81TNP52jtj4J+NRGSzVMFxSD8QwL5BwZmpdih8DKtthCk1DMeC+QXcqAB1iKjlfY5J99hjfptAMMjlTYc4/Php7dmEdlTb/8iywppX4FCD0P8WQ011rRZJoXGVW9Qvt5D40ez5PrfpmMw88WbYNoK8UPfP0H3WvL+QzePseO8E8/+U48sH8ZTz9+jOe17SHdfL9e0ewcWlAAvihRK5vBfoTCPlF/V4S8BeSz/D3sP8mG3LUv+sKn9EEfFxpuN4A3T1E/ZVsZ1Pl6o73++gArGRkmMb4GyXo13VP+u0rGRnXWZOSfrJvhHhb4iUKzdVQDMAnnDFTRbXO1dFZ+bSN3XpZJCON5X29lCIjyyoW1JrMxqjREryUj4xSIeBDu2Vb83UsiXVBgmSXIzFsUsEB3zk9Q1mJnlJTgglzt/WR9T0dTpYSi5QluDQEz57y2MMTXlhbgZRpfx2ytw2y1daC1XKB3KLHnt+dRS0szb2hUX32DEYGpIiWNCt8GXivZOx0vwbNZNca87SbvvQfAtxDRN4K9iy6AHwUwS0SJ9W4OARCOhEsADgO4SEQJGEF2u92Wv88YI0rwCoD3E9Gfljc1afPO8ZpVNlUtwvLbLeqnVSHpkdu4Lu6tFmrZ9DHg2oZxfGr8QWAyVwtQRf1DMeI+LyxzcAy6whJ/4RnCtAs0LK3HYB8Ln/qKDdk12f2vXmBt1NziUIoOg2XrEbY+xdI/e9MmAK9kAA/BBlhA6hBVc9OeXwny8d4Kkc2dlF3ecIM3eQmYnvHaioodnoF9DP/4g9/qXotyoLyHYVrx8008//xxzFr03eBQCBXunOKHrHmqnNKnECZOBpgsqLBRq0S8kaBUXGlRK0e1YYswbdvu9mn+nnun92K0X8FfI2B8tuuKMXHcKxqAOc36Rw3SLRX+MkDzjH94QqnDz4Y/1z/C/88+Z4IaHSoNqgYFnT51jqpz3ioGBSHWXVCbNmdY22DtVdZj10uJXy/QP+jnZmKvlZvXStTXgWTA5+gfyhjt5loiW49DGVzSe4avxeFTF1IaG0zbEepWIY7n+bq1LcUivd+3xE4HDHuW0FV9o8JkJnI9fOqbBpNu7JRjlbAinsyyiMrboTEoBaSCYGstF/b6/nkPl0LlomHzZQ3oXAy/GzE+pbBUswzclWHMXamzMcb8bQB/G3BIsP+HMea7LVnyt4ERaX8W7IEAwK/Y/z9h3//vt1u+ohSNfu0/qH8/DOAtNzr2NatsygxOSDWuMpW8KJcys5QwwsNUAXUVEqltVyjrEeqWM231EZYW7vgaC8zmVQs3frbhakXE/ZcWBPE0zH8wv1SoIKjwNQCDg8DksLesi+dZydSVggF8jLv/yBTp1QxNRbRZNryVPjxcwaQGpfUOTGIQ1cL49cxbfa3K5hOs5GZeUEn+KVxRq1jx8fP+BtoXPJS1vsmWoty/QIe1AtLMxlR5gSIKybSUEGxULsSIPfYkqdSv2OS0IpQUz4r/BvIZ37eosZwxRNZOvX+U71Fg6QBQv+YFkIQy506wlbL9hYWw10+LMP/5bfSP8RcswmzvY35CvSNekQuMWcI547koIM8cz0XonpmgrHslovn8dHtx8UgcyIXA3rwkwe3ruomdrnlpXy5RZh5WX9SZtDOxNUrCSCDtNgCpw+Hz1jZKNFdKpxi3TtiePsLJtidG0YRvOW6A2naJwta+mESIPO39xISq4ck7TRwqv/F8zN6Zev5Bj6XcKhr79cdT36yusVpiPK/uQ2DT9nnUN3cf+3qx8SVmEPgBAL9ARH8fwOMAhPjvJwH8ByJ6AcA6gD/xJZzDTd3A16yyoQKY/xyvqtFeywulF2cRdgKMc6Mqv3nx9Q/V3GfHC3Dx2NqmXdhqYUnsebgnDjD+URHmUJIBb9qGQjHpry/bBLLNFMOD2iojx3OVbfImGTzIJ80usZYbHLZhkE3CaJ/yDrIKMAST+tcoUkncWZb0x2ZYoD7ZUxWK4E1b1AkzXA6EoskILT1nE3uWARGe4iWaOEzaw/jNHk984hcAihmbj7BoL5MYRFMvLBufb7g5yEgGYREkEHp+nXPG84dJTs46iUmfm8ylPX8NXYAqSmb9oj1grsD8457WaO8n2EJon/ExzbLtF1neTVHfLF1jOiBEujkSTOWFrj3slVNXhZ3yVhQksqdti6a038N4LkYVK4ViODSW9f0xqfpbWA0EqSjN1wRF6RoMrvpjOud8Aq1oxKht5K5QunM+R1mPXM+cssZ7UPZUVHIdjoQOJc3t8iXt0GtprBUoalFQyKqfk9D6aCMm6/nco66PIgM01koM94SF3LDn0wr5jsddroc3xnwEtsbFGHMawDtu8JkxuDXMyzFueoOvWWVTZT4WDzB/mXSvBIClT2mEmBVydiNUGQXklXkDgLLAZQOLG99YNVh7UHUIVEng2rpFDonFZTeXKCTxsmQM3jZC1csQdRTaq14g+gxLwckjbDXHl71QEmsTYIg0TSNAwY9b+/oYj/1One969onVdT7v+pMs8Wvgviru3psUeAN8D16ZpP2Q2l4UyU4FIwqX8wQyb/4tnkdvBiCF9pJcT31VeSt91Zkz5nybKJlkzD+OqHNkMJ5VOQCrR3W4prauLP8pKyJHjPn4AufGTrBknH+cJy5Khiehw2wVks0RRoe8xhrPxtcl4cX6z9scPtICXRfgjlSzMRjfDgK4Hr4ruZhUtb3Wx0cFC2KBFo86EaYd/+xcbkVB3GsbPidT26pgInJV+SBg82TdFTE2V0pMO5HbG+UkhN9LZ005nkqDqDBuH7SWC1QpBYwFyaRyeVKHtNMpu1RxvtnIhBiUZQ2Ye055yDVyDdt6hyIko9DDvivDhGvry3TclHbhNatsgFBA1ld9JffcUwgs87wVsdU1DmGmIjADOhVwIpLht7zAJ7NRcL6yYdA+ZzfRVYvmsSGQKuU6GFnoUcFIm847OZRVB7B4aICnz3FPgXqLpcHxrz8DAHj6iaOggpAM/AXLukHVtArTegJLR3wOb21L9bRfqWN1pe4hvHsniK54azwqGP7s+oO0w2fATa3Us7uBwCwa5GhwoimjvGLl3QmTsIk53Cjnbp2NAyUlVmvqdaM7DvCoLVEOo8WQKHJwQEJC6thIUaX04DpcAgwYiCfAdJbP27wUoXnNoHlNmIenqK2OAupmU1Mhr24dRTPGULUFNwREwipuq+Eb66X9HaLJxOjxuQTaIVw93N4h3uw6alhosgMAEAUoq8Z6iUk3Rv+An29ty/cfMjv43gBumCbPun8wQv9gTZHb8jlF+eXtCFVKTtnFY6C+njtlUcWEaFohmobSOHLKjhCXBtkmv1A2E/QPZu4+k7FBMvZ1VpUltxVl0z/MaFKNdlx9JPRksk3+e/RWvslyyAcvffQuislXP9PXi42bqujXrrIhn9eorwJ7Puvj6P3D9UDoFPWIGzFZq0vyDQIXLmu2oMzK5HgM1K96IaFrJXjxkwsJFA0KuMhqWwadc2NMFrz7s/Eo8HV7Gd3VLzP89uNvcO+NB6wxT33uOL+wUAVcaJN5u7n7yrOa85I9jioUPX+tuGTAgkCCYwsOENCEE9yayVrDlSVsoZTraJ/B8ID/f/6LxlHAVxnT8Cfa+1G2UTz1imhgz6FbOWd95flJesIu99FChNbVylGkRJYDT1il5fvaqazcPCLYhmx2LkrRACyMyxqhe8Y/z/GSt2CmszE6pwcoG95rnHZVi3GDAG6c9Q2yXhUwFWtLfmfCOp74WrEqCRmi04FVtJp7LPI5gyivAMROsfH1K8ckLSElgV8DfK99W+PTPceKRhc+a6t97rkRimaCUinbZGggRJoC545tw8KiEaNsxH5Prk1RNHxnTxNTkO+QXJV89xLOlVGlto22uv/mMgJuNgk9i0ISEk8620Sx9CXgqgHuWlHnK3i87tnsHCbyAIHuYwZVFmO4Nw3el4007RJGR1X/mi2mwRdOLQCIFb9XY61CPI0cNDRoGjUTsdBzG4PPK59JBxXGi5mzCNcfjPDQg2dwus874cmzB7D3d/z3OZkllCmj5QBOYI/fMEJlWaGjkd2USsGYaYzli4zjTrZiYKZEPPDnzFSVvQzJVdTetIH8U3NBKHAy72+weYXnrdFlODgCrrBpPP9FfklCRxUoUDQBE3CXAuYBUXSaWh/Gv563rFelFF1R960exEgQCxZgxaZh6ACw+bD1LC7FyNtAYRF6BYDm+dj1YhG0VlXzSkBaNQAcYlx/uO08vagwLrEOWGt9Eoa82FIXODKvIU21n4w9maVeV1SxQNbetwASAA7pzpwtw4Zj1wqn2KTFhld8FbdsSP28otygfdnnWFD6a7SuMnegeGd5lw8MOncWxqHhimaEcj51z6u2XQUoPBNlMDGhtin1BwZFM8ZoLxs/ooS0sjMxHH/bdImPm3kycc+ntlW5fVXUKCgDmHbCfFnrOY27v3sagqov+zja657NzpFtGez/GC+itF8yjNJag6OF2LPNglsITOZDqo76GifbZYwXgfZ5/jsdGqTD0ntGDR++ybYrDo2o9RvlqqZifxy0y40KYPlnjrn/73luhMl86TZpfd2gdyhy4ZG59yxjBsCVga+E75wh4Azvwua1Cpe/tmIlA4a8pmuJF4iWCt73qrf3+5APuz3yjc+6v59eXUL+wizKrmWB7gJz+3rAk/MAAHN0iOyL3trfPs7EpwIJ1tBgIKwQ33wra4l6lydnnuygsexDQQIg0GGw8R7vkc4+59mtAe/x6EQytyLmv4f7gOli6cASw2MVIqWEm+f57+aygvceiNG9UNi58/tSCxKVJggpJqMKJopcaEzCuKVqoxArxVLWgFEtckKwvhEqHg2jFRaF3kFVjDj1z6J9hQWtCHsTU9jrxYZ3qNTIDo9aTKeV7Wjr0WPJsHTnm8wnKFPy6LDZGHnLtzioEqDsEvIWi5ysV3HYzyqLvBXBEILanXRYIW8LKSmfm/zlUV8vFZAhwnTGszsk/QT1DePCrt3zRbDvuP5JKXFVDiDrxCE2NVT9TobBSynq/LIbdxlIfmeDiM4S0ReI6Ikd1bPyPhHRjxHRC0T0eSJ6i3rvQ0S0SUT/9eWd9evj9fH6eH28+CAYkNndz6t4vKqgz19jjLkZZ883ALjX/rwTTDL3TvvePwbQBPA/7/ZCtQ02XfJODBORe0yN9RLxqMJ4kR/PeJ6QboeJ73jiq6/jMSeTxRuazEQBgqy5UnrIZ0qIc3jae5vjGKkCtFghrpIhh1vk3P3D7GpIeKJ/mNB4j39cRRlhs99E/aKqOleEg+sPRKhfjgLql4CwEGzZafqa6VKOvQ2PIX161SdseudmgNQg7vEJu/duYHOtBezjk859tInxQshiMFogl8jtnrdULPIscxNUbNe7E5TP2jhXwrmiti0QFXCCgyNTWIhb1Lk/ivZkqgS+4r8AyjhsuEWtHI1nebLjJVsbdMV6gfYx6iR6PPEV/lQxesqBJUCgyqBu8yLijYowSQdhdfrO7wEIQzvy2Z3dOwG21HUYSkKHQUfVdZ9cqyytjHS77J4tghAgh/jCthrpyHtWybAEiBzYwRCHqaRNR9FglKJjJkiY4kbDs0cLHjjTPV9wK3YJuxluKhdZz0e65rr6oUnYcyoZ8rOS86fgEJvc/2ieGQhuRDorMGkHRogtUMR+jzqiccfj1a1IdjP+0M3eeCUqm1uN9wP4GVv9+vtENEtE+40xV4wxH34pPEFVSsg7arGOVOHe5R5GBztuo0Q7wi/JkMM/jsfpWo68E6N/0D9OKvzC3zquYNJtIFe1JEVzR5dKcC4o6fO1m7aHioSXKtvhUKrOh4dLJEWMhZbPcm89tsdtpCgHNu+JnLAvLQxauktKAlzXIwAI+s0cPuKV2dV1jksU63xCQsgoMHxiHrNXvGCW3I08u/oK1yHJGC2GdRsyJwBY+HiG3pHMpRxF8Go2BUccCh9em33eI7LiqQnqM8j4uol4wmEuEeKjB8eoP6vqWE4JnZG/RjJSaLdrFabtsKWwSTwljNzzVK0znTMpMwrCiCJIhdQS4GuJgG+s2FotBbvXykoQWfJ3FRMaq17BTOb9cY6PzV5++2iCsga0rqi6lwQY27l3LhdBCG/jPpbEM2fV+ZXwn7ZD3rqoYGXrEJwxAPLM3GvNBLVtuH46JrJKy4Ycs21Wbm4vJmwcCnQ9GXHPKSnUnHaA9mUTwJfLmicW1a3Ho5z3oQOeEAMgbkScesfjy1zZGGPWb/beK03ZGAC/QUQGwL8W4jk1HHupHcJseuWlXoiqkGCvftkX3q2+jXfAxjvY1Jl5PAtjrYZj3mJhjhdTRhbZuLl4BS07q2ToYdJSA6KFezzxx1QpEBWEhpXvkzkK05MRsPRNF3Dq2QNuLs0sx5lnGQqd9GJdQuOUklTRi2KQTQ7wZhupFgX7D65j+Sn2Xr7pfY8BAF7os9a4ClY06WZo3YsnJ2zWAjturgDLb/cWszQgk1j9aDFyAgawRZ4WddU74lFwgPUEah4MAYSKS4pwXWvjsQm8mp2tCgBgqLo71l6ow8S+oLbKfFsBfV7xFKOCq8sl6Z/v6HbZXNkJVbb5HMkbjAwLXJ1XKhjlJs8C4LbFAGASCqDQgVckHoDyHAb7CANLdNm5JPlIqWNhQ0AErEfm+e9CFzn291vvrdT3VzlvaDwXBR1gAc6BybPuMJjSrZMy822u+bpw59H35IyWuZiJQ+2ejSchT1qsup3KGKliTDEAJBepQSLTGa7l8jU5FaoEru7mrg0TPr/X2nilKZv3GmMuEdESgN8komeMMR+7Wycnor8A4C8AQNr20rbxRearW//qo+611ffl6Mxx5rj62iEGp2Yw95SFYUbcRrdjE8NVLcK1NyvhO2Y4r1hngBeEIpgkOdw7XgWewczzxB0qpcMigIPfcca9/3P3fAAA8JtHWBk8NjiOT68dwckHmI/m0kcOB9BhKrlHjkCNqQTyGU8DMnffGnrDOo7PbQIAxkWKH3vgF4AH+P1Pj47j/1x+BM8+7p9NcoPOmjVL61dm3IlUhxFnn1OovWmoEJrXKteXBgBGiva9dZk9QQ1NTibeYhbh0LocKivxEOR9ETpRHgqjokFB6Oq61gFghSOGgUDYt4/x+WZfqEJ0GTHiTRNKJoPC9ZwRxgntxU27vhWyPDNBKmqQCsA1N+IJynlE+NbXK3s+fn+4x4eFAYTAAgigxX8vM2dLVDEFCkYbJMLlJ8osGRusPRShZWmQpJ4qKNZVlxzP2zDXyL8XTXZ8VhUHVxErVwlJzj4XPovJDHvrotzLlDCZCcEiUQFVB8TEoJEKL4qyTvvWcLB7NLP1TK5ttAKt3PH4MvdsbjVeUcrGGHPJ/r5GRB8AUy9oZSPspTI0s+luzv8TAH4CAGYa+03jLEuX8YMHMNybYvnrdFcsv+kGp7jQwqin1TnnP7t9JObKdyvcqhqAITDWm9UK43jqiRoBcLGlIcw9YWPfESPMphame993PAcA+MUTHwYA/PjWPXhT/RwOJjz3f7/5Hlz4Pf9IkgIMSVUWOQy5/4WluHXcB6K//d7H3d/fMvM4rhZdXMg5kfFPHvs6VNMY6cgr2qbyI5tCKLrXS5bNk35zVimHZkTA5i0KaFEcn1wqsXgVrrRhId0kS3sOgnQSa7i2XTkSRYBDndNO2M5A1wS5nE/L/64yH6OXZyZhToYXcxEqACy/LQoUR/e0Pa7u5zBYqrlKec067OajilklpKaVTBUTKtVjRuYhQ7wnfg5+zTbWQkteoPzyemLrqITcE+DiY/EQhP1CFHCVEJorpRPQ6w/anM89ypBQ7RrkutqDTwchFVFR9zD2KgHSkXGGhFyfhK3hYMQtte3lBMKsczBamZmIlb9cv6xZ9KL9+Fg12ZPvQELpZT3CpBu5cKb21u5smNeVzSthEFELQGSM6dm//wiAv7fjY78C4C8T0S+AgQFbxpiXHEKTMT486/7evI+QLLOUK7pMez98gZVM6yIvtvYlL6nGC6oKXDaQqq6OpmBuF/DGF4EhfE2j/b6if/6J2G36aTvC5v1+cd/XXsZ9jau49yPf417bt+AVxcqn9wVklRIOKZp2UZOaDwCTGlQzBfZ1fXzq91ZO4G2LHJ38y099F+6bX8EnTh1372eXMmchSjfEzgW/aYZLvuCOqpAmJB4D4znvQbSuVkHeokpsL3llecvzzJsUFniO2ULX4Q1NMz/YF6F9qUKpivvSfhjaCZqn1f2c5bpUKs/GAg50gjjKmQ0a8MACCUVNZkM6GSkmFTDEzti/If6+tAKNSs9LFuXcnkDfT3O5QusyS9DJQuYo+Ple9X1GDIBQYcTB4cgxOcg9rz58YxolIW6VZ9S5UGKw338Zs88brD0K1JeV965CnsO9Hjjjzp/6ex3Z9grDffa+JxwSlRxLc5k9D/k/G3AdjiiLaZcVmrwvSX7n7dpwre9hEyFve5h72DfJekc1fy9FkzDcx/erWRPuaBi8rmxeIWMvgA9wd1MkAH7eGPMhIvqLAGCM+XEAvwrgGwG8AGAI4HvlYCL6HXDwp01EF8F9F379ZheLjpY49428MtMeBQnxmSfD6mSAPZLtI/xCVLAVqkkKs01vCad9ppiRMZ739Cwbj/Iqr1/ic9U2mQRQNhGHmcjxtP38x97j6P9lrD3bcHPbqWSqLEzuS65J2i/HY0K+6K3Z58/zbj9zjsNycS/BJ7DorFSTGHcNOV9UhElzbWmzBe3zDtN2iLKqMkKVhTUeZIBE5c9k00+7cAWUMmrbVZD0TcbGeQxtm5fQ89EWrInZuhbh0T8cfjbt2xyXetyOuw5KUdmpSghJnkV9g7nJxCqvYtgqe38+XSwroamdTc2kNbJ4UjLHaGqcogGAdFsbP7yWNSKtqJEDL8ha3XhQ3duGulHDAl97gRpBuHnS1hgpdNv+3/UPj8Na5IR71gM27iP37MSA0IZUQDpqgOFeUqFRExglWyesAlbP0sArF8c2bt8fz1HQu8e1Ogh4+uwaj5kTTry24RI3VpOeUPr7uePxGq6zecUoG8tY+ugNXv9x9bcB8JducvxXvpTrDQc1SJRLetQ3L4qA5ddTZdGYKLSApx0KhJ4OWw338zkbtsVA/4T/IDULRNdqyG0DssUvVq46G+DwBBVAuuWFRrYVQpEBb5lV6Y6QGaxiUYs6UT1hqppBtVHD8z1bmm8ZnmPLpEwGiFROJpoS8ra35gHuMSObtsx4U4vym3Z5o4pwSS0k1RX3CZFjqq6hnuO0472k+hqAKOywWNsoMO3yxUQ4SOhkPB8FLMaltaQFBBBPWNFIeKS2BdTXC1x7izfpk5FXAkCYdxNBJ88ynoZMCWNio0I3dysznyeScFrrqv9y4rFxOQEJJQas4OrZ1NdylLUYoyWWsM2rU0xnxAAyQfM+mXfNehLNlRKX3ucnlvZZsMcSdoptcbE1DBxhpZ27Mx50SLPnlVuVMKefQJXXHo6Qdwy2BLVuufrkekCYixNjS/JbeYvQWK2wdTxUMrowNy78PkiHHDKV+VPJ3kkhiLKKv1f9bGUkYxN4yFERfoe6dOBOx6u8huaOxitG2bzcY6YzxNe/77MAgN/52bcCCOsxtDXqmQDgPhePQ8uvrPvjRXlN3s47JwWQW6iwGaTY/7u+1/vaG2zVuUpKA0DZ5AXeuhAFLMqiXHQnwrKh8hi2X0t9zX/exHAxnEq1TAYAZAbpWhJYjI1rXtjUN4zb+AAAClF8VUyufw/ADNdl5r0TRyWjkFMBc69NOFdK+Qg4Qt6T66W9AnknccpIqs3j/MbWcu8wf3Hds4rPbKPAZI6Xfd3WnQi8HNhhxVr0UC4C1iawB2/wrlr9TM0JSEHOpXa+owUKjIRE8nYKMaY9kagwgael7x2AUzICspjMpy78GBU+bCf30VirEKsw2/yT/rxrb67QuOTrXJjORXms9nVBsQEheGMyB0wsQgxgNJeGbFMFZFsURAd0OLK5wh6pBsLoMF77SokyJSw8bWvhWhH6B/z1Z05X7CFbzy1vstEjBogweEvOJp74BnAAe7GyryczxCSrKr80eyoHrMKuX7kJed5LHQZA+dp1bV6zygYA/vvZ+/iP9/Yw3qqj9YxsZmvd7CgGDP5PvZUlAkX+T7d5k4mYyMcJ6le9FLvyXu/15F3+VG3dI6g4bGVrQWxRYoDygQ+VmQi2L4hXMkXDC00qLVuxfb+2Rigb+l4itC552HbDMi5DhRBqW8Ypg2y7RJVGTpmQYSvacWjVbDLWMTKHRZv8Gf/3+sPA4ufCRG+i4uk67LF9lCWFTopLfgPwymnzHiXAc6/IGtdyFM3YCfD+Acsfp66nmZ0kPKfrevRn65YCSPjCgDC8aGJ+DkGn1Guen2uwLwpCPXwt/xxayyFcGeDvU8gzdZ4rbzLHnn7OfJxFp+3j3j1rbw7zQ6IMBGnnvn8gqB8azzIYQiuPgBizBWyfjAKBPZ33gnX26QjTtgeUAOzhSb1PtUMSbR+OuYbH3k46rNC8FjJVJ8MwP2dibyQJtFkMwu75Iuz0uc93EY0KIF3zvHXNa0yTI8+3fttZ4Z3jdYDAa3JsDZpobnnJ0DidOsvKpNdXDQuaBRBvwr8noQFhBwasMjjHUiZST1nIO0dLNrxxmVDVwuuR8eGLKuWqeRc+sGgprZyKpkJQNcKEZt7hYx332ZR/ZKMJGqhz0VZoZ2z9iYdAlUXpkKDRiNsrtLWgg+9qOpXz+k3VO3Q9A/bWvf799TeQq21JlBEZ54ZbN9sQh6C0eke84m5d8RJEhIP02xnPU5Bj2DrBD1Vzz43nlJIb87w1F5YWgqJoFj+W2f8NJ6mVUA7qYKySkWc5mQXGi5EDFJiI5yh5jTILueK2LMRa7qHMCMnEuNoW/T1JEzHt2QlLNgCMl0qMl4D5z3tPunPePzut5GT096l7abMAF2XUWGcAw2C/V2ZAaJDNPu2Pb1/mhydIPROrwlKothJqGhrVV2Wcyxou+nBvlfjvcifHniFC97x312tX+6gaKfpH2DKsb5TOCKkSBqLUFFDDxP6ZXvqaGeCx6x7P7Y3Xlc3r4/Xx+nh9vD6+5ON1ZfMaHCoGUD+bor7ui9jSbdh+6vz/zoZgLkGsQgZlw+d5prMGqDzQIB57yv5oQqhSg+ZllWjdhocoS78Y20W0SpmdVs7VvLojTFbx3HSlfVlXOaCKvQ2x9suMkIx8i4PuuSlMGnkG4QEwVrQmUWm7P0pRqFTnW4tSGpDF1jpvLZcMQVWJ2HTgn99wv+XRWpMwou/ECTAyT4bktWqKCVjnfiYznPNoX7S5nWloWbeuGgz2kgMQyDPVSX9dM1TUuaBS6mriEVv07nyXDRcjqlAae3h8PvFGhUInGfO9ui6X8h2qhLPmIxNv0NPmh55ZMubr68JU3RZZezWb91uIs2JxFq8G4CLjnd5MlRKmqcwLzIqh7j/rGQellvCmMCyk27axnvXu0x5/P5JzAUJPhUr2SnVRLOC35WSGkW2VChWO5lVCTfJ29pkV9bAtRjLhcgOdsyqbfnHoUC5VJiiQrVLCYH/k1o0GCt3RMAiYum93ENFhAD8DRvAaAD9hjPlRIpoH8IsAjgE4C+A7jDEbxBDfHwUjeYcAvscY89k7nshLHK9ZZUM5oX6WF59Qw0gBG+DBAACHpQLwgBSKqc+YyOdfhBFA6m5MBGjOmXRAyO2mbFwLQzWaFBIA06Ab/5nRIlC0DbIttVlKf9y0y3Bdh/oxLOwF6VRfZ4inCPDJfILm5QmGB2p2rlxp7eC/JQuAiQgmQ5jOKMoXRmo7xNi0HQV1MNMuBUKIypAWtnuKfwslC+BzLELzosNUU5UEnz1lUNTC8EdZwSlGKTTtqzJgrSioAEZ7PHwcJuRaK+vcWE8XoTbW/L31DsWM4LLKQcOsAVY0zatQx3JRpM5D1Ta9hphabjEJmXbPc02ShOZ6Ry36ToUaNSx9uN//XV8lTOaAlit5ji1fmv3PXlZT90ixKuDXtqAQNagBADbvvR6K3LlYMYEULLJtWgVUPTpn4tCUsX9m9c3KhVzTPhsSMj+qQg5BUXqZbhTY9bnDxiq3IxC03nhxNrjfmlpvJiFUKQWINF37dCOC1NsbBjB3BSBQAPibxpjPElEHwGNE9JsAvgfAh40x/5CI/haAvwXgB3BrAuOXbbxmlQ0AjI7yjhsvxZh7KsLsC37n6MZTmyfDx0QVAuXh+qc8wwufFQJuisTRORVDlgxz1r8mBWqAhS03QqtVkvw8z1AINK5y/LkUXq01FobiCUm9Qve8R3pNFjJ3/uGSrfAX0FqNgqSzeExa0XbOGUf4KPUz0lZ6sI9zYRKLj3KuhxG4b1SYIA8BhIlvMsZpp2zbYNqlIMkc5z4pLtcWcsZ44lFJ8n+qPMC8w0JtJx3OyMKZhXdNe2m9Q4pU0z6z7eP2euMQot6ygld7a9NO5AAHnQt8grwlvYVCNJyg9nTtiTSAAzyAABCKm5AtQXc0FTJSxyhAYYJ/2mbYsEZFCqIR8M9Y149R4de+eM76+v19fgOIAVJfU8zTKQFWwNc3+f2lx3hzbNzfDBRh75id5xw/y9a5GDNn/P33rZJqLXuI/WhReegW6ZdteZ45PQb7YucxGmIDxnXTrYefve1xl9BotpD9iv27R0RPgzki3w/gq+3HfhrAR8DK5v24CYHxHU/mJYzXrLKhAiBFSRNNge0jvNo2vnaEg78YYesEP57eA3aDTHlBd05xdbYgXuobDLkUIQUAeccvqsbVMHxQ1lSCfosVjd5YtXUvzKmwxWVKMIhXBADV4hQwQPM565mk7FHJ+fM2kEN1GbWWsMBY6xtVuJkMhzBEEO2EeDvqFis/OYRXobQhkmRQwsTk4MW1bYMyY94qwLMKa5jspBN5zjTDtCUAJ6CnHU9uWV/LUV8DBgesVKAwsS2CuFLhFC1wmysV+vsi5wnVtnn+EspxLAliGFBYF+IEsX02UY6gkygV3EBPf5fJJGyZoJ/d9jHWItKpNBmbgH28rEXIW2E9l2YoALwg/L/a+/Igy87qvt+59239Xm+zL2iGkdCGECA5kqyUAFtCphw7BaYcS8E2IIe4yq6wKA6ODTiEICgTJzaO42BC2Y5sGYissFMOYNACCJBEtCBpJEYzWhjNoplR9/T06+633HtP/jjfud+5PT1bv/dmerq/X9Wr995dv+8u3/nO9jsHr3LkoHNy8qEXZEKiz5GGb48YPrQ5o4lVDzNmN1BRu6+bvBv3DGggByD3UMkw51MHMRUjCev7O+6Y/p2jDBh5vuu3b3Zx5DxpcNxlJMbUpUJm4726LENSpzxiUJ/r+n53vJiQVr1mpFGR1ixXmpVjNjdXUJrzjNHD+2SypffNtqNn9NlnQ0TbAFwO4D4AG4wA2Q8xswF9JDDuBStW2JTnGGNP+VFh8jo/qtQeHcKLl6DwkqugAZCXnLMv/txaYPYlPvO7+qKZqZvBL1fJ3fPbGZdZmA7uaiJRTqgoKWpIaa3IEFDbJQfXWaiaF1KtV1MSX4GjUstDmRVK1a7mqbgl2oKeU00rVuBYX9X6BzsFQdheVSq0l0lmlcoE0FpDEpGW+fWWnysZivIE16jLqB/MChT9uaCBXLfSLGNmkxkMIj+7ru+XcFZloAZEG1BzjmosGsm0EAeWNS1xSYSPRt6lNWERaDvTmwopy2Jtza+A5AZZYlBbElvC7aOCsNJaOICYODujkR8Eh7wQB7ygAbymMfMSoyV2geYmNae6NpvQ67Tqo8rUB6htiToiPOaXQdBcJ46pkDNEmQjC8Z3mYSGgNOfKQtfkntros+aWWn7v1fymEYgb7yXnZ/F+FemHFWherdLJj75XST1yJcfV1xTlwmZoIsXsujjXZLtDVNBGay/2xfQlOHlhs3ZeAclPzWfBJ6JhAJ8DcDMzH3HsK+40zI49f8lgxQobO9s8/4anAACPffOCfBmlwLZffCb/P5uUcegfznH7AhgCZs7xx0ga/oGs73GzfPeetVZ7e3VWlpdaTTda10NfurQmM2TrW7CcU1Mb3Cz/oD/3mseTvJYOsbRPhQPH4oC3AyDIv6zqZ1Ahx7H4KHR5eUYCJdRJmpWA8Z3d3MRD7lsZcmWhNYMh15b0f9cV1gKE8yoZ8jVhstg78NWcpuaN6ZdWct8TYGhcjOnGTgAkGZYLWpz1G6g2ZUNwmZALwu6oDNCWgBWRX68TB2vWs/4dyqRejnVGW9r7uM0Ff5fuY82Icdtfj6QuGrWWpZ68MM65zoYOyTp9jvJcnJpvfHvUCxlilpBrt/30FipMItTUG5tCbXHHBC+wtLVb8Mn4bRuujd0Rf/60GuVlpDP3vKhmxlHxmVeNpz3uykK7a6jfSU18X1ZDnt3gJXulmUl5dxtcYoIR2mMEjuXBSivyLFlNDOQTRm3CcW/gUxE2h5j5imOtJKIyRNB8mpk/7xa/oOYxItoEQPXQngiM+4UVK2yy4Qyz18gI+8MntqG2p1zwq5z35l1IMpdDkMhDPLvJDAomyietZ6gdMoMtRNB0TdSa2vI5cgJBE/3y6C6/b4Ek0LmR1LE7/BM1h6RuW0ZrVZzPkGc2St6OtbcrdYccT8gdbaZ4d9ibx4Z3q8/FrWYZzHUQoxSYPqecm7q0oJfWihcyS286SstiklNTGEeEiqmZklYkAVYTFxv7OZ9NZ7EkHiplS1KTYAk1Z83X+lTQ6GAdt4s+jm4jQpT4onfaRjvYt0cpDxLIB18VZlExcCTSRFhTV7YY5YS8z4rGviw3/el620b7HCRDhGQozvcvzzJKs/7aWZ9F7rdyi1rjsZjgtGuZI7pUgUBFh70NZFBYQaMCPepYwSgmVECoggCfcDs/KEYnI+1VRTOaQn05qYlYmz7HC4+kLhq5Nfna50bbN71V18cFk1/T5QOpb7QyhTyfqjpVjMxr7JM+xC2vtfUFDCDrXUty0WV/BeAJZv4Ts+rLAN4O4GPu+0tmed8IjBeLFStsAKBzxJtkKkeA6FqZ9m0bF5tPydlLnnlSwnyqhkJdI88AIHb0+9Y/UKibYpzGyoSrZaFzc4VlNzYRPsDR2dUqaAD/Es+YImCVKb9P3AIq8xLebEZ6Z1R8Qmoy7A4TunX/P8qQ07UD0vYo4dzcYZ2w2m+OPVszuaTHfMCck99+/6JZJxmiPKw67qKYtc5ynXQA1eUqjNpjEuaspqvW6iJrtM5c26Y+CceeeYCdljHs/EpHXhoVOOaqk4zqZJHtoHrYmOPc8e0MP614f5lqBVpbSPritxXhYvi9zHUD5D4kQ1SYjNj6NtUpH22ms3h9DilzJjszbtpESHaTDaslKl8a4MOCtW+UFQMMLKuD7FzUCLKyu76mfIKasQBHe1TzflI9hoUVCElNynbYSLHKdIppN6TlgsbtMrw/w8TFRqs071h7vBhi3m1EMolSLXGPZaLtEX0QNgCuAfBWAI8S0cNu2fshQubviegdAJ4DcINbd0wC49OJFStsiBiVgzIq1Q4B0c96SVGL5W2+76Hz82XVQ37UUvp+G/ZZavpZr2bs64tQe9HYwl0+ip0N29ny7GbnyGzIi7jqoaLRv7EvE7ObG4Q0y9zOEm20W9yRAah2WI7XHo3RPKcYoAD4AbtbR14mAJBITZvDAzgKGI3mmTfpi7sAJ1yoimlJDXMzgvsa2S116zV/ptL0A2ZrlYSyWvbdZMjnP6UVuZ42DLtQPMv1Sfm3NOIq1zhiRwXkBsXqYUap5We5tQmJYNL26H6WidqyEeTRTJGPtIuNJqDmOnu/C4XznkvF9GMG5MpUkpez0Gg7y5hdKHmdMWK36+QWQn1/8bnQawT4/JS89HEqwQxqplRNWO+XXDdronSzfhPVVSAQ1cqZRtMrz2T5pKXszGmtVf75bplJkA3CUNh7SyyTifFdrlRHKsEVG+/vFNpi27f+QX8x4laGuXUuQMNNNspNQ5ibMUoz8uAcuWgU6EtWCvclz4aZv4uj3rwcr19ge8YxCIxPJ1assOGWHwGnX9UGJhr46QueBQA88ID4bkZ+4h/+2Y1mUBmWh3b0fBmpk7tXF2bQ6rS0L581a1mn8fAv7sdV657L/39lx6XoNitYc5/faGR3F13nJFdfiZISxp2iFpUXx5rzJqXa4RTTL/G3enwn55rQ+C7Ju5m1RaiM6aqxL8vt89J2mX3rAF9qzdO8WF5eNWXlJKbObJhWI2mbM+NVmixFrjreZ6OOerXjq88krcpx9Ji1iaLWlVWcYNFxEnClhE3zDGfd3Fo5hnWSU+ZDXpV3Tc0oHBdJRIUHjjDqKnPOrosLmohqOtYnZPOo4pY0dew5P8g19ie5H0z7UT1sgwTMQGpKk2v7Dr3Sn+vNv3k3bv3+awAAa38gz4/m16RVR5KpgSm55qJtKw6KUcooTxdzoayfTs3Dtj3xXAbKNKPVDegzNgzcPzgqaNQHlZVQLPvcLt7H9irkggYQbaTbiArXKqsUTdtgzk1jAAoTAcoYSd1H0gHA7Pp50R29ggHuT57NWYmVK2xKjM46efN+/bL7AQB37LgcAFDaPIuhbw/7GXQNqB721S5TAONbvIMnet0k0ntX5dT0alKY2mYKrBlh1H2dVxV+YfPjONQdxld2XJov23RnCRVXq0QHntohaeusqylvZ3zzK1+WZzi3oQNAUvft0AFw4w+8c+DAT/mpduWICIv6C/4ESSP2A3qJHB+Y/Fe7t/pLOC7myaRlAiJvsmEix/0m28xsEq61fP/Iz9Y5kkFRNQGtNWP9GvMFXVb1ybTEIgxtNGCUohCiXpnmXOsTk5e/lhoKax3HUdcPqHFbklFVKJVakgekJZrVxGXDozVcHvA+F+sbIHN+DROOupbDzD9IdrBUhmtN4vyl3/KCBgAaB6SPtuyz1crm1kRihrO5Yca5roJGkyQBmTSpD0cnJ/beR8bXoUJYNZkoKYaED+9N0B6Li5GM9t4qt1+ivkIJs7Z9kPYt3D+dLBXaXxj9jg7iUGtEX9EHzeZsxYoVNgEBAQGnHYEbbWWivlqmyJ/f9Wqk20eBi8QROPTtYXHeqkaeFRkBSkdiNLevQv3iwwCA9N5VAHwWdFYmNDfbVHDvTJ1bD8QAfv3CBwAAn9kp0Y0j94hBujrFqBzxpoCZTXLSkjFrRImnTZl4eYTh3ShYcBNTMbHboILPhFJgeHcLz1/ntZn2Vu98Ou822W/ikqrbHxjfmebJcHGHAfbRR3G7qLUxiflD7evlGZlh5tfOmWu0ZAKTmJY01LqzOsWah1xkW0no/VXDjFsA2EcUdUZFw9IZcGVS+lc2mk9s/BBZBUgj7y8rz3Ahn0I1jKlzvfnE+kQq0yk6I3EhD6ZloqvUz6F+NKAYHFJz1C8ju53GQEU/gfS5aJ6ijHMzXmdYckUKGo0yamdFp/fXP/o6bIL12WSgbobGXlnQHSkVorkAz4QAAKu3S7v0fmXVCDC+otyn59rWHiaUja8pj2TTrxIVzMppjVBqFatx1g4ZdoEKoTNays1qgGhR8xNwC2H2RmvQJE7VFLlEBW62uMP59VJznfqXKkcYlWnGrGO9XvVknwQEc78CBM5KrFhhE88R6AEZ8ZKG44A6KDG1rbXCk2YduUxAVnNZ2q6SZesRETKR8z8UBAxM1BR52hQmIHlyFLd/x/nxfmYKlW+M5ftEHUZSiwqRNxxToU5KpcmYeLmzL0fCmbXqx9K2tEKF6o6acGhrrhy8fCjPFD9yvuy39QvOeT0MNDdZ/44IGjXbJTXC3FoqDGy1CV8MjiLJWtcsfSFD5DwCSwkT82TRKtBZl4AcvU1lIkZzq14LZ6s3+R/lGR+w0NwigkYpaLKqDIJaNkFNPJrvxG3Zfuxp6UyUZChNOSJSAJ3xCqa3lr1JKOffUhOUsiJkeV8S41fQUHcrYGxwRf0gF30hLKSnVUehEnWKA6T88RF/OjCryUxq2vtNLX2NCkR15GcxkIyU8vs4s1GDGPz+o88af4sm1ur+Jck7KU/7UHeOi1RG9rnTdlnB2RmhPGReo9tsUicbExxHhJGfpJ7ENCK0DXdZbSJFWovyewMUr1t7PEb1cOp9SF3GzIZSIWpOJyFR7seSb52obf6OsVX3CZymJ95omWLFChs7O9WILA1H7o4xumNA6iLCKgdLSE3SpubYFBIvJ/yLM76ri6nzykX7txvcS64YmkaMlf7vWIHcUek+bMGuUguI3TN66Go3MA2LEbv81FAuaLRNxMC0yxzXmaFNaFMBI+2OgIkKDr5a/g8dKJJNZmUCGDiyZV5GthN+PkzXt9f6kKpHhA5Hnf5pRYSRvtjdNVLUqr5X60X742gUmQqbKBFtJOcK2ye1d3ItqSSTBD12aU6Er94XjqWIljqC67tb4HKEzmqnxQ1FktDqatwMu1o5mlio/VHUDqfAYWDyfH+jk4Z/LrSQnQ2rnd1gQpVdYELJOM3jdorOqOught5OaCRhlNeP8RdJvkZdbRpbrTPu+PujfVY/UqFgHHy9GYvYUucMSUKm5lMB8mzkNEhOk8ivdYmQ1vwkRdul1C9JlQrkq6qh2Mg/+46mVQmJt3Q+lHqSUkqBcpIW7lVrTSlnFTiyzVFRne/X6zXTZ06f29aqCMN7ukfxp/UODma0lYhsKMtflJmt8tCVN4kEKAFoT3pVIhkuajSA0JZYRzXgSskCmN1QQnnGF+GizM+ugSLFRk6VMqohqFyYLZdaWvrArW9FoLVtDD3s1a5uwztKVRhoeC7HVHhpJ1/TkiNN+hA2G2wwsicRU5ghxmytigrEm4XIuhIKwQjlphQUU0fx7HrRZLQNaU0GOp97UkLU9iZLjk1ocgkoT/ltoy6jW/fsA2lFC2hpY+RLB/GsJHkdOoMdmkilXe4aTV08jINXMDZ+V9tGqB5OUWnK9t06FXJFNMrORuLNrotzU5veQ70+Q0qTk0c3FStzNvYWE6ridor2an9fps4rYXxXgokLjFM79tfDMhcoS0JeAqIlCZCJYxBIhiQSzdLbjDx/9MBntYPOqC/73K1H6NajPJgCAEqzRbMXAGgp5bRKSCu+DHOlKfduyNDvzDdrWdomkGhX7VFHUupMZHNrioI/r5ZbJyT1Um4S09DumU2u+m5bTHZKqTNqCsdpbpfVnKxQtVF4PYERAgRWKpqvkJe9sqcCXNREZ8ILmPpuf2k6LoHTUsSUZ72ZTXNnDr5aHuzG/mK1x/KsNxtESTHKR2e1Mxv9IGOpZXQmPLfB7PP0UJ7lPvKc7uNf/NJsgsmLpHHlmQzTW81s+qka2muzPL+jO8yoThDWPyz768x0xlZpNGWNKRUTmNLtUAaUbHJgLOYJHWS0wqnOWMszrtyAeecKs+zMH5tJ9tXrXGppYqNbr1nq7lhR6sKlNVqsA3QaUW7fn1st/pbJS9ypqoyRnRGawkKEypT4R/LcE3YzcXdNVKCr/0wHSxUyXBItbHiPy4avRAVfmoZIW02mutdHNaZj0jGb2HjoUvOKKuPAav2mXLCVZoraZTIkQtWagg+/3G+w/n5pmDISZDGhNJvm5lBlPbcJsJbDLnYJmZ1xnwO0UKa9jQirNFmuCfzkQzXuboNQPZzl10tNhpHxE7VNCfCsIlqaar2xm4go9LgVo4mmFco1/UIkG4mwqh420XfGl5Y0iubxnhBCn1cgmETIOND2YWiEbE7NoUmZB8nVspf/yhOmfo/OmMyy1VY/9TIqUNnbuumUidZgnakcEcacVqR0HipkEseVVt8r/7vDxYJfSlNvZ5mdsTIa++X/9Dlyi20uzrr/51/K6S3ye9/VRriuSzD6BPLzAX62Xj+QYmaTf/k4Uj+RM9fVyeWjuL67PCDVPlprRCBphndac9nlWmdlzvs+ahOuvIIyBIxSISBBBaOtzVI/4P1HaUmW5Zn7LlBj5Bm11UuhNM9sLIJG/VG589ydJ6lTgYtL/Wravvq+rGDmKc+pacvM4Fu+feVpOZEKmQNXiu3UCgj7u73emXVflAtQe9Hf17SidDT+WgC+YBwAjO7w7dDQevUTAcW8FMqknoxlGbC8dDFE0Ngy2JT5ZF4NEVcfDyBBCbkPRicfTZ2EcV52Ij+HCYTIYuFCsz4i68ujzGlPxlws/k/3n+AY1/16eywNVwdEcGXVqOBP6gcYAAfNZgUipdw8VmpGRV+BZp7rxCcR2hYVPmnVlQYwJglb0bDsJqtKwcJUzN8oN7N8cM6qEZJalPt3NFlTafJtkiLgBU1ee4cI1f2+IMve149j1Y4kFzKUij9JZ8ONfVwQfuM75fe+a/3LNvJkKX/RRp+VjPr6gWJiYU6C6ZoR59+Sda9+D9VoDl/lTUbj91fyPjX2S/VHpYrPSl6zSYakLMDsOh/5hsgLsrn1IrS08mVWAmY2RDkrd2Of5rs44VMT7je91mreU99QpZkh7phkQlJNya9n8qzPTJJ7ZStv2tl92w18jX2dwvpSUz3SjHRkCNPn+ogCW08mbsnnyEVGo2hGSKtudr6acmp9ZSy2dDI2uqzqBFPNmPGsoOmMllBqZYWIMStYFTmB69qyMDLoY5ipQFczms8Nk37F4q8wIzgZjVZNsZYnLjZm68q0VIzN6yJ1HG2SvqtqQjVt7g55rZQyuBwtp5XawIZE8qOsZmMFjc1z6gnMQbNZiaDUCRm4ATEuho5aP4aGzNr1c+tNbZes+OLoYGcFjKVvSeo+ikZNMTpDjLvFAYcjYPQ545R2hIW1vdP5smRVHS9cKVPgtAYcelUpp3iJ02LBq25dZu+1yaKpbmx75I7PmF1X9AfUJn2xs86I+CzyiodTfnDLr41hI0gawNzmFNXnKvl2tUk/qE2fI5pQXkeFgHUPSOOnX9aQMG/n40qqol3MrZdN04oMxhpU0a0DiHzwRbcRgVLOGbCHdwvJ5/BeHaEo93UAYnJMzew+JwTVSGiW+2P5yIQih/LrJNfIr1+ozHUy7IhdN1QK1DNpWSY0KhDaYzJYju6wJRYYccv4keZ8G225b72WFrXDPgy8uakEYuQD7Hy26Sgp8rIBovnpREwTXq2Zq8Ce0EwLpJrz12tUnvX36QQF8BM+S5JqaXw00MBq7NY3mpUIsUnATYaKdYGsKTvuAGDf3zQSzUu11L4RcWJlR6MRr9DoCCI6CCGrGwTWAjh0wq3OfoR+Li+shH4uto8vZeZ1J97s2CCir7nznwwOMfPP93K+pYYVK2wGCSL64fFqUSwXhH4uL6yEfq6EPi5VRCfeJCAgICAgoDcEYRMQEBAQMHAEYTMYfOrEmywLhH4uL6yEfq6EPi5JBJ9NQEBAQMDAETSbgICAgICBIwibgICAgICBIwibRYKIbieih93nWSJ6eIFtthDRXUS0nYgeJ6L3nMr+SwG99tOtfxcRPenW/dFpa/wpoA/380NEtMcc4xdOawdOAv24l26bf0dETEQnmzNyWtGHe3kLEf3I7f8NItp8WjuwXMHM4dPjB8AfA/jgAss3Afgp93sEwA4Al5zs/kvts5h+ArgWwDcBVN3/9We6HwPq54cAvPdMt32QfXTLtgD4OiQheu2Z7seA7uWo2e7dAD55pvuxHD5Bs+kRREQAbgDw2fnrmHkfMz/ofk8DeALAS052/6WEHvr52wA+xsxtt/7A6Wnx4tDr/Twb0GMfPw7g36PAJrg0sdh+MrOh0UUDZ0FfzwYEYdM7XgvgBWZ+6ngbEdE2AJcDuG8x+y8BLLafFwJ4LRHdR0T3ENGVg21mz+jlfr7TmV/+mohWDbCNvWJRfSSiNwHYw8yPDLyF/cGi7yURfZSIdgP4NQAfHGQjVwpWLBHnyYCIvglg4wKrPsDMX3K/34ITaCVENAzgcwBunjdrOqn9B40B97MEYDWAqwFcCeDvieg8djaK04kB9/MvANwCmQXfAjHf/Kt+tPtUMKg+ElEdwPsBvKGf7V0sBv1uMvMHAHyAiN4H4J0A/mNfGr6ScabteGfzBzKQvgDgnONsU4bYuH9nMfsvhU8v/QTwNQDXmv+7AKw7030axP0022wD8NiZ7k8/+wjglQAOAHjWfRIAPwGw8Uz3acD3cutSvZdn2yeY0XrD9QCeZObnF1rpbMZ/BeAJZv6TU91/CaGXfn4REiQAIroQQAVLl1l40f0kok3m75sBPDawVvaGRfWRmR9l5vXMvI2ZtwF4HuJg3386Gr0I9HIvLzB/3wTgyYG1cgUhCJve8C8xT00nos1E9A/u7zUA3grgumOExB61/xJFL/38awDnEdFjAP43gLezmzIuQfTSzz8iokeJ6EcQ4fpvT1urTw29PrNnC3rp58eI6DF3L98A4Kjw74BTR6CrCQgICAgYOIJmExAQEBAwcARhExAQEBAwcARhExAQEBAwcARhExAQEBAwcARhExAQsGzh2BwOuGjIk9n+BkPO+ZlBt28lIQibgCULImq6781E9H96OM7NLgO+H2262IXJPkREL+vHMc2x/5KILlnEfpfZ8GQieiMR/X4/23YW41YAP38yG7r8mvcBuIaZXwHg5sE1a+UhhD4HLAkQUYmZk3nLmsw83IdjPwvgCmbuOZnUDeIlZv7IIvc/qp99aNNNkP69s5/HXS5w3GdfZeZL3f+XAfgfANYBmAXwm8z8JEn5ix3M/JdnrLHLGEGzCSiAiK50ZJI1Imo4c8KlC2z3NrfdI0R0m1u2jYjudMu/RURbT7D8ViL6JBHdB0mKPJeIvu+SIz9izrVNzSBEdBMRfZ6IvkZET5Gpj0NEf0FEP3Rt/k9u2bsBbAZwFxHd5Za9wZ3nQSK6w/Fjze/fZUT0A9fmLxDRKqc93Azgt/VY8/ZpEtHH3fm/RUTr3PK7iehPieiHAN5DRK93mtGjzsxTNdtdcbw2uvvzPXfd7yeiMQAfBnCj07hudNfoz0/i2v+ZO9bTRPQvTuExOdvxKQDvYuZ/AuC9AD7hll8I4EIiutfd+5PSiAJOEmeaLyd8lt4HwEcA/FfI7O99C6x/BaT+x1r3f7X7/gqEIQAQEsovnmD5rQC+CiB2/78M4G3u978B0HS/t8HxUwG4CcDTAMYA1CB1VbbMa0cM4G4Ar3L/nzVtXQvg2wAa7v/vYeF6Jz8C8DPu94cB/Kn7/SEco24NhITz19zvDwL4c/f7bgCfcL9rAHYDuND9/1sICaRud8Wx2gih+nkawJVu+SiEA+wmPZe5Rnru4137OyATzksA7DzTz90An2f7/AwDmAPwsPk84dZ9FcAXIJxp57r7NH6m279cPkGzCVgIHwbwc5CBb6HKmtcBuIOdWYqZJ9zyfwpAnaq3AXjNCZbDHSd1v6+Bpxi57Tjt+xYzTzFzC8B2AC91y28gogcBPAQRiAv5P652y+8lqeD4drM/AMBpC+PMfI9b9DcAXnec9igyALe733+HYj91+UUAnmHmHcc59rHaeBGAfcz8ACB1V/jEJrnjXfsvMnPGzNsBbDhx95YFIgCHmfky83m5W/c8gC8zc5eZn4FMqC445pECTgmhxEDAQlgDmQGWITPxmQGea/6xT8aJ2Da/UwAlIjoXYhK5kpkniehWSNvngwD8IzO/ZTGNPUXYvpzKNVywjUT0yr60ysNeR+rzsZckWMolPENEv8LMdxARQTTgRyCksW8B8L9ISl5fCNEkA/qAoNkELIT/CeA/APg0gP+8wPo7AfwKEa0BACJa7ZZ/D0KACEjRqe+cYPl83Dtvu1PBKGRAnyKiDQD+mVk3DSn9CwA/AHANEZ3v2t4gYaPOwcxTACaJ6LVu0VsB3IMTIwKgvo9fBfDdBbb5MYBtev5jHPtYbfwxgE3kCtAR0QgRleb1bz5O9tovSxDRZwF8H8BFRPQ8Eb0Dch3eQUSPAHgcwuwMSLmBF4loO4C7APwuM794Jtq9HBE0m4ACiOhtALrM/BkiigF8j4iuY+Y7dRtmfpyIPgrgHiJKIWarmwC8CzIr/F0ABwH8htvlWMvn4z0APkNEvwfgS8fYZkEw8yNE9BCEDn43RHApPgXga0S0l5mvJYne+qw65gH8AcRkYvF2AJ8kCZl++jhttpgBcBUR/QGk9suNC7SzRUS/AeAOJygeAPDJ4iZ8cKE2MvMOIroRwH8noiGI7+F6yMD4+87k9ofzTnmy135Z4jga7FHOfxbHze+4T0CfEUKfAwL6BOoxVJuIHgXwRucvCAhYVghmtICAJQAi+kcAjwZBE7BcETSbgICAgICBI2g2AQEBAQEDRxA2AcsCLlN+zjnJez1WgWvsFPa7kYh2EtFXe21DQMByQxA2AcsJu5j5sj4c5zIACwobF0G2IJj5dgD/ug/nDwhYdgjCJmDZwWk5Tzr+rx1E9Gkiut5xXj1FRFe57RqOm+x+x1X2JiKq4GiusQ8R0W1EdC+A24hoHRF9jogecJ9rzmiHAwLOAgRhE7BccT6APwZwsfv8KoSq5b0A3u+2+QCAO5n5KgDXAvgvENaEDwK43VGZKM3MJQCud3kb/w3Ax5n5SgC/DCCwBAcEnAAhqTNgueIZZn4UAIjocQifGrtclm1umzcAeCMRvdf9rwHYeozjfZmZ59zv6wFcIkwnAIBRIhpm5ma/OxEQsFwQhE3AcoXl/crM/wz+uScAv8zMP7Y7EtFPL3A8y20WAbjaEYEGBAScBIIZLWAl4+sA3uXIGEFEl7vlx+MaA4BvQGhg4Pa7bFANDAhYLgjCJmAl4xaIj+ZHztR2i1t+F8RM9rDjIpuPdwO4whUk2w7gt05PcwMCzl4EBoGAZQGaV/r3DLbjZyHF1f75mWxHQMBSQ9BsApYLUgBj/UjqXCycFvQJAJNnqg0BAUsVQbMJCAgICBg4gmYTEBAQEDBwBGETEBAQEDBwBGETEBAQEDBwBGETEBAQEDBwBGETEBAQEDBw/H+rdy+yu1l+8gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "rds.where(rds!=rds.rio.nodata).plot();" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEWCAYAAABIVsEJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d9hm2VUfiP7WPuHNX/4qV3V1VkIiCEmAsJGNCb7Y8ozHNjiM4foOgw2euTOOeOyHccAXzx3b4zt4AHksgm2wwTYMD2YAkSySQAGFTlK3uqsrpy+9+T1p3T/WXjt8FVTdVSXRpW8/T3e933nPe84+++y9V/qt3yJmxkE7aAftoB20g/ZKm/lcd+CgHbSDdtAO2muzHQiQg3bQDtpBO2ivqh0IkIN20A7aQTtor6odCJCDdtAO2kE7aK+qHQiQg3bQDtpBO2ivqh0IkIN20A7aQTtor6odCJDXaCOiM0T01Q/avX4vNSL6SiL65B2e+81E9Ov3oQ9PEtFHiWhERP/dvb7+QTtod9MOBMhB+5w0IvqTRPSbRDQlol/9XPcHAIiIiegx/ZuZf42Zn/xc9gnAXwfwK8w8YOb/3726KBGtEdFPEtGEiF4moj99r6590D5/2oEAOWifq7YN4H8D8D2f4358zhoRpXdw2kMAnr4Pt//nAAoAhwH8GQDfR0RvvA/3OWgPcDsQIK/t9qVE9AwR7RDRDxJRGwCIaJWIfoaIrtnvfoaITuiPiOhXiejvE9FvWNfILxDRRvD9n7Na6RYR/U/3o+PM/IvM/OMALr7S3xLR24joQ0Q0JKIrRPRP7PHT1or4ViK6SESXiOiv7vvdbxHRrv3ue4kot9+93572MSIaE9GfIqKvIqLzwe//JhF92o7ZM0T0X7yKvjMRfTsRPQ/geXvsG6ybatdaZW+2x38ZwLsAfK/t0xOv9H636EMPwB8H8HeYeczMvw7gpwH8uXtx/YP2+dMOBMhru/0ZAF8L4FEATwD42/a4AfCDEO31FIAZgO/d99s/DeBbABwCkAP4qwBARG8A8H2QzeQYgHUAJ3CLZjfV3Vv9d0+e8sb2zwD8M2Zegjz7j+/7/l0AHgfwNQD+RhC/qQH8DwA2AHwZgD8I4C8BADP/PnvOW5i5z8z/7ib3/TSArwSwDODvAvjXRHT0VfT/jwF4O4A3ENEXAXgvgP8WMtY/AOCniajFzH8AwK8B+A7bp0/tvxAR/R+3Gf+P3+L+TwCo9l3vYwAOLJCD9oraAydAiOi9RHSViJ66w/P/pNUmnyaiH73f/bvH7XuZ+RwzbwP4bgDfBADMvMXM/4GZp8w8st/9/n2//UFm/hQzzyAb8Bfa4/8VgJ9h5vcz8wLA3wHQ3KoDzPw9zLxyq//u6dP6VgJ4jIg2rAb9gX3f/11mnjDzJyCCVMflw8z8AWaumPkMZLPePy63bMz8E8x8kZkbK2CeB/C2V9H//w8zb9ux/1YAP8DMv83MNTP/MIAFgHfcYZ/+0m3G/823+FkfwHDfsT0Ag1fxLAft87g9cAIEwA8B+Lo7OZGIHgfwnQC+gpnfCOD/ff+6dV/aueDzyxCLAUTUJaIfsG6oIYD3A1ghoiQ4/3LweQrZVGCv4a7LzBMAW/ej83fR/gJEi36OiD5IRN+w7/tbjcsT1p132Y7LP4RYI3fUiOi/DlxNuwDe9Ep+f4v+PQTgr+yz2k5qn+9TGwNY2ndsCcDoPt7zoD2A7YETIMz8fkiA1jUiepSIfo6IPkxEv0ZEr7Nf/TcA/jkz79jfXv0sd/du28ng8yn4eMJfAfAkgLdbN4+6Z+gOrnkpvC4RdSGulZs2Ivpb1j9/0/9eycPcaWPm55n5myDut38E4N9bv762W43L9wF4DsDjdlz+Fu5sTEBEDwH4FwC+A8C6ta6eutPf73+E4PM5AN+9z3LoMvOP3WG/vv8243+r4PunAKRWgdL2FtyfYP1Be4DbAydAbtHeA+AvM/OXQHz9/4c9/gSAJ2ww+QNEdEeWy++h9u1EdIKI1gD8TwDUbz+AxD127Xff9Qqu+e8BfAMRvdMGmP8ebjNPmPkfWv/8Tf+71e+IKCEJ+qcADBG1iSgLvj9DRN98i9/+WSLaZOYGwK49HLrZ/o61wt4IifOE4zIEMLZKxF/cd+krAB65RZd7kI3/mu3Dt0AskLtt/wLAtxHR20laj4j+H0R0R+4kZv6224z/TWMa1qr8jwD+nr3fVwB4N4B/dQ+e56B9HrUHXoAQUR/AlwP4CSL6KMTvrYHPFBJs/SqIn/xfENHKZ7+Xr7r9KIBfAPAiJMD7D+zx/w1AB8B1AB8A8HN3ekFmfhrAt9trXwKwA+D8bX/06tqfgwi574MEpmeQzRRWcK1D+n6z9nUAnrYWzj8D8I02nqDtPwN4AcAvAfhfmfkX7PG/CgEPjOy99gfK/2cAP2xdSX8y/IKZnwHwjwH8FkTQfAGA33hlj3xjY+YPQSzh74WM9QsAvvlur3sH7S9B5shVAD8G4C/ad3/QDtodN3oQC0oR0WlIIPhNRLQE4JPMfANahoi+H8BvM/MP2r9/CcDfZOYPflY7fNCiRkTvBPDt1k31Sn53GsBLADJmru5H3w7aQTtovj3wFggzDwG8RER/AgCsm+At9uufglgfIMmDeAKizR+0z2Fj5l9/pcLjoB20g/bZbw+cACGiH4O4GZ4kovNE9Bcg+RJ/gYg+BgkUvtue/vMAtojoGQC/AuCvMfPvNcTRQXsNNRL+rM8aoOCgHbTPZbuvLiwiOgPxN9eQxKW37vueID7sPwyBkn4zM3/EflcD+IQ99Swz/9H71tGDdtAO2kE7aK+43QkXz922dzHz9Vt89/WQIPbjkMzc77P/AsCMmb/w/nfvoB20g3bQDtqraZ8NAXK79m4AP8JiBn2AiFaI6CgzX3qlF9rY2ODTp0/fcPzp81cAAFTbAwYOhc/WgUdN/C8HyH5OAFP74xQabAw0mZyjjWrAVP57CsCl1DDqnJDM2V7b3ijMJGCAAquQDbn+UiMf6hZFz0T788TJP1/4nSkboAE49TdscoqyEsJnpwZAcA028Xmmxo2/1UdioAnGhRPAlEF/9Hf2/PBc6SzsWNz8GZn29dWeG57HJrjNvneufd3fn3QmL6/spzAVULft73WsK/88gDyTfM8gAFTqRAPKJb+8yB++8X3ZlszlpCYzMMF12BiUfePnqe2rKdieTzCVfxFNSmiy+J5AMC8BNMHKJ47frQNE3ybDJTr/JudF75oQZ77sm+PRdYncPAcAqhickVsrVNtnTsNFGty3ZoDtuoF/T/vX6HTr/HVm3rz1E37m9rXv6vHWdv2ZTwTw4Y8vfp6ZX2tpAp+x3W8BwgB+gYgYQtfwnn3fH0eclXveHrsEoE1EHwJQAfgeZv6p/Rcnom+FUEHg1KlT+NCHPnRDB976F/4JmpRQt/yxSlPOGiAfxQttsQaUNnuhtY1ocVANZGMgsQt3viZfphZAOl8Dulf9bG7vNGgSQrqQlUR2kZc9mc2mZjQJISnjxZ8Ucn6dm2iTrDqEqkvIJv78fFijyYztH2O+aqJrtXcbdC/NpX+bMgiLZTmnSUgWnD5fY8dCBZD9t+qS7Q+QFPZcuxnpxmXqeFOqOoSy5xdu97Kc171uN8lENso697+Zr/m+62bX2pWxyKYNir5B0ffnUOPvn5SIWjEg5CN2fcomDDZA1dZnsRuMvVyTAZ2tBttv8NdnApKF/l7es7Hvqr3TAAx0L059fxY16oE8UNNKUAQCRMccANI5I1mwVwQqYOmTu8C5gBzgocOo+yK9Ln+ZTNjZEbn32lNA92qFZOEn7mI1w2JJ7jE9HCsYneuMdM5oMj+ZTDDnpoftfAjeXzpFtGZCxYlJ3muTITjoP/Yus1sjci9VOIJ5HqwLJrg5DACzNYON35Wk+PmRju2A/DM6niKbsnuPANC74sfB2LWjAqduyXWHD/nrJwvgY9/7P76Mu2zXt2v89s/fkiYuatnRT78axoLf8+1+C5B3MvMFIjoE4H1E9JzNFL+T9pD97SMAfpmIPsHMnw5PsALpPQDw1re+9cHDIx+0g3bQfg83Rs23pIn7vGj3VYAw8wX771Ui+kkI8VwoQC4gpp04YY+Fv32RpODQF0GS5V5Rc6auVUCqDqKc5cWqd0Nw4q0PACgH8l1qlcz+hcZew2s/6QzIxyK78rFo1vlYzmusFlRZLQhtiHlttfI6IZiSI3O87BLKrpxADZAs2N0vHzXIR0BrRzpcLKeR5lb2DaouwVgrwdSMYkCYr3btAwJJyYEFwzAVoxioBWOP2ksWfYKpEVkJztWz4Mjt1CRA2fPPUVnFsXtFx4aRzpvoN1Szs97Gx2MfVnursffxLyudMdKZdLIYmJu6TpKF3K+zYMzWDdrb1vprGAAhm1o3YE4g5uhdXnlb4ApiwiDQUZtUxqG97V0onasFzMybPk0ngymkf7PDbXd8csSAAgvNlEDTJSxW5N6tXQbnKfgxWQpmXmDvjavBcwOjhxlrAT1okxGaLHWfQ8uzd8m6SAM30/BUbLl1gqhk94qMUWy9+vlgKqDJvUW6360XubMgczgp2K2rdCInquu0apvovRLDWd3jI/JMW2+RRHxdS2HfkgW795zO43lYrKXuuD+/weqn5DqzjSSap3fTGECDz2+99b4JEMtNZJh5ZD9/DYQWI2w/DeA7iOjfQoLne8x8iYhWAUyZeWHzM74CwP9yu/s9c+4K3vw//lO0t+SFrj4jJvAmgMtfseQmfzIH2juB+X7IT6bZYUZrm9yCcAvAbnKcAnVGKJbkN+ojL2v5OykYTeYne1JA4h37fPUqwKhmgPyXVDOyqXezmJrBKdCxftY6I7R2Ssw2/Y4+PWTQGsrzLJbtArUuOgYhmyJyLzQJYbop5/Uv1UjmDTrzxl5LpkO4wNjIBgeI4NQNGADKfrwQw41EN7FwIbMBskngdln200/HOh/5jSV0eQBwgg5A9A7kdwwmYGGPJyXQGjZge4uyZWBqdtfPJ3J8+Ih/hmzsP7evWzeV3s+6zrKR7386WgCVnFMcG2ByxL+XYuCvVbdEoKo7TL/rXfbXn5zqoXtONJXZySXkwxrDh7yPaONjQDbx508P+V1T50s+4ujYNEidTSf+s6mBxSo5N2Q6ZyyWDYplf05r2ys6ScFICrh3P3xIBKL+ngC0huzcgoML8kUUSwyUpHTRYL6aoL0jY5lOgzFdyE1VQADi/utsBQInmBdm0cAAKFb8eJR9il1uxrg5fe0r721+aXNrourPi3Y/LZDDAH5SkLpIAfwoM/8cEX0bADDz9wP4WQiE9wUIjPdb7G9fD+AHiDSMi++xVBK3bGz/m60TNj+2gNnzvunDv+kn7+4b+lHMQ336ANDatgvgbLwht4Z+kpR9H3TmNF6YupCzmY0LVCIAwoUUBjLrFiEfN85SYfevfJ+OGpga6H56x/1mfnIZrT25yM7jOTj1sZjMWkKLwNdddfw9k3ns1646BlXHoLb7lMY6Otv+eevgWt1rNaabfqEunfUPY6xGWdn4Ttk1aDIgux74p6vwugbptEGxLOfrxu581wnQNITcbtjz1STuy9VGYib2XRT2vagFUfSt8LRNrx8KocXAoGPpM5OQCAV2s2RgsSLn1y2JJbSvykXNtEC11gPaMniL5TQKZKt1AYjgSBbeGlssE5rUWwWcAINzDaYnxFKcrScydwKBHAqP4UmNocV9DhWVJrAamxQolkMh7Td/AJhumuj81vb+a0gsTcd66UyDpGDsPST9UAWmtedjGgBQde0DdOOgtwOv2DhMnRm34auVFsbD1PIHJBYmP7Lv2QqOMDam6wDwsR6dO6sfyjA5jnvSGIzywIV1fxozvwhh+Nx//PuDzwzhXdp/zm9CuIbuuGUzxubHRMVrPR8EIxODyUOeqDUM7s3WTCQAdBNRwQHIwldEBxALg3Qau7xyu5CcqW/RMeGmFS7y/kWrqemmaRdsazfeGaaPijvDFA2GD/mVTgxQGWtr81VCEwiJfM9/VrdSa89aFG3/jNr//vkFpkf9PTTQCwDTjhceGx+TvLjkmpSVGL3lsPxtxzcpagcakHvUqILfc0IoeyaydnqXKszXZUpSI4u/asvYlT1xzYXCvHO9cUK77BLm64AOcDIHsqnfQPSdRMgkkvOkPyI09DyxcAj9i7XtD6O15bUNzhIkO1NUGzK32lsl5usZJkesQBwGrj8ScIVujvlIhMPkmNxs6Qy78wCxOEfHE7St5ZdOm0h4hqhAbaFlWAwIs0P+u95FYLbpFYmqA3Su+vnQ5CJcVMCUAznXBMrVYtkgnao7skGdE/qXrOW6KRZCKOTq3DghVbf1ncjvs5l1KwZWQjHQcYuBIPkwdjM2qUFrp8ZiNbDAIpcyR5ZrMSA0CTlLFAB6F3BPGgOoD1xYD0ajeYnWpyz6N/WTa/glxwBmjFRrC9A6TS7/FbYyQtf+PAtyhtNgcwYz2rv+T3UFqV88dfDc4B5JjJoKtcrFksY6/Ped6xUWK/61zAJXyOSoHO9esX2zlo7+q883PmkX7NQLtbCFCJakFKGh7doXed99sSyLTbX3lQ8HbPfzBZBn2P3SI+5QPqwBo8gijlwNKjxUWM7X5G91TZiiQdVN3LOUXYIpgdmGiZ5RN+Gk2PccBSObEho7vnUHGB/3uOJkDvSuMKpAuPYvVU4LBgHjY5lzF6YLQr5PkBdLGVQmJFWD8nAfbF2Q1DCmhxK3UdWZnxemjt9RaS291U/aZ6/EzTndsO6bkpHO/fNRY2AKv5GqYFLlpX9BBFKIKAP8fE4KRv+Cj8lRI/cIkWuLZYpQVWXfK1TZFE54ABLTSCfAzhNe0WBDETy5Dt6Nzp+yZzvoXMJyzmzNv/f5qkHd8RDgxQqhc52dIjBbN5itG2dJt3fYCk+ruFh0m46xPktuy2c1OVCGxP932Q5iIA9aI8L0DX5TG55KJCfBLo4mE0imtmLJm+x1SyakLlwVHrowk4X8XoN2GhuIIIsVC/DYtiaYyNTwvjwFibeE2uPkSOYEUdEn51cGvOAIXSUhVLXO5Xq9C1bTm8imo4tTN+PFmpzfuyj9GT0kq1FdYeoL1w2ue8kLGMzl8/hLTkTPnswbu8ity6BtUK4kIlQAlH0ZNIWaJiU7lwcALFZTLJbJuR+KJYk16d8hZFeeVTRYdb8V1mqcnLZ9PiduGbUwAGB4yo/lxtPykvKh30VXx5UTesVqjrptkFt3oeZlkA2Sc5Yg3Zljfkx2o72HQ0wrsP6cnwRl19j3rIFceWGsQqWScdGxNBUwfNj3vZwSTEkueC3j5b+fr4q7Ti2K9jajvY1oE1XhAYjrdd4nFwscW0soFCChEtUk4t5ceklMkr1HrOAILKDWnhe2qhyE66LsGbS3/JhUHeMs89mGF/S6Nh38egRULQICKyN0w85XRVgMLlh4eEqgGk6wF0teeABitaWBa/NuGgOoH0Ay2lfSHhwBkhjwSh9Xv3wDg/Mltp+U1UD2f6oN1q04J6R7yQdrk4UGDDXIIZqUR3w0wFw2BEA0xHTODikCKKZdJq9ulj6PgtC92rjAOXHshlA/rgow9Ru7jcXudaolV23jEC6ACKjJ0cxZPJzIb0cnrBY/F+GhbpzpYUI28r5u1czaFqEzOWKw+ZGZs5DKI0uYHpFdLCljH32TEWDIPY9qm+Nj8h4056V/Od5Y3VgpAMCOVTpjCdQGAjdyVcx9wBwAxqekj91zvlNLL/vF3aSIwAQdm7/RtPwS4IScAKlahO7FOdii3JJZBVQNyo2O7083wdz64Ft7MViiSQmJBSfoRj4+JvcypVhQo+PGjk1sKZZtQu+Cf+9qHagAMUW8wet70Dmu+S6ha1N+aPttr+PymOZAMYg32jBWpy6z0ancfZePGkwPyQW71xoUS97sTqcS+wsFRmtrgaonc6HqmCgvpn+xcX/nYwbGcIrH+GgKGGDv0eBdthi9s/a9WN0mjM3JvLFxmd14CMI5dC/a53cE5AESIGU/xdUv30CTA3uPZBjYwNv4uEE+5MjdM9vUTSFG+qQzCVqrv1nMfL9R1hnZrF/5Ox/HbhomYHQicD8dAjrXYhhsnZNzHTQpMDlMmBz2sN3uVW8B6cau2qMpGZ3t2gkmAJivZhicFc2w6iVoDRtUHfm+6EkyX2lLE6lvW1s2su4MjQMYb2Vp23l9x2287e0m8k+nc3aap24yCxsUZyPPGo7v0sveqb5YTd0GpM+uz+jGMwGWXpYdYu+RVrTJcgq0dxlX3+o3hNZ1itwyYWKcPkPvkj+BiTA+5dX6dMZOiPcuS1+za36nnp5ecW6XdFKj7BmXBFrnZBMxvQuuatsA70AVAf+sYd+YECWUhvBZAOheYyyWyKHrmtTGLOx52Ui0cr1PNuHIbepcfXaMFa0VCuD+hdDd6N1+gF8joRsuWTAG5zyKar6Rucx4AOifnYNqC2fPDKpuCjDH1wsQej2rWJA1YnUcB+dLcEro25qS5746hpy3dxhlj7BY9uM5/QJvdq7/SmxdAwKGuBeNwfcsBkJE7wXwDQCuMvObguN/GRInrgH8J2b+6/b4d0JKO9cA/jtm/nl7/Osg/IIJgP+Tmb/nnnTwFu2BESCmFvRQUjSo2gbZWGbY6idrFMuJcwUtVigyYfMhO21FF2R7SzaZqp+gSSmyEoAgZsGitVZJ7ALQAKYGRzvX7KbSu3GDU4oPQPJIqq5HeaVTyRFZOut/pMJBrmddUqv2NZK4xYogMJ2P/XOVfXFbud/3Vev3feIE6Nng6GLFRFr78LRxm2BrR1xns3XZJBV5Flolna3aw3YZGB/3kqnqUJT1Dlh3XBA/UuEBAKvPykvbfVI6q66tzQ+HbhJyz5JOY2FJNaO9VaF11fsvx4/5suDpjAFmh/oCgGQaRJEBpPPQTZOh6Buv5bO42MK4jM65fMSo2+TcbUqPoxYDrADRDdqUgnLS30+OJjCFz+avOoSqHbvnsgk7QEKdE0Ce6kQty1YggLMpO9dp1SJn+QFwwAEFUFRtcY3q9TW3RuG37YsjtC/CIaPq1a4THoBk5TctPzGqlkE2Yc/AwBzDbhNy8zydNy43BABWn/bPq40aoL0jn0dfO0b/Nzyyxa3Flxv3rDeg115lYwbKeyM/AOCHIEXFfkQPENG7IHRPb7EpDYfs8TcA+EYAbwRwDMAvEtET9mf/HMAfgrB6fJCIfvozIVjvpj0wAoQadslI2dRr4U0exxE61xq36B1fjv13tkxYOlOg6vtdrM5jHp7Qr9ukFMVXwJI7oJOZjQiHEJJYt72WrTkoaoZrUmGohRPDIZPSaeMDkRBoJzWINuHupQKZRbRMD6XOLw6IxbXz9VP0f61nn0eOayxHruk/D85XaF2b4eLvExMmhDxPjlgE0TmbV7F746oMrY+6bdDZ8jBg3TA614KNJvXWVu9SKW4j23ZeL302AbInnfqHL3sGpmSHOnNQ0dBCTAgXvloQbUtnapiKXVyl7BmrufvnqLs55g+LkMn3yoiaZPhQAmq8ZiuIJa8gRK63rriTqLLzLZGx13nX5AKrdTxdCWGxYuzzeYtB71W1JTdJ53GTE4qOD2KrZq+xjfYWkE/YudSSQuaZuo00p6Z7NUBR7QtEd6/V7t3kI3kJ6V4wIYJxTkZzFBs97zKzibGqbABKBRNaSfuyEW1jAnpXKkyOxFtVaNWPvtZbiWv9KfC1U+z8jkiOdOqFByCCe3L4XrmxCPXtCMNeQWPm99uCaGH7i5AUhoU9R1Es7wbwb+3xl4joBUiSNgC8YBGwsPl17wZwIEA+U6MayIYysefrXtNNLO+QaoahXzjVBLrAfzo8nUcIEoW8AiKYmASiCASkdvutihC12zA6NhditpkIB1TiF3bdioPonACVi33E3zUZ2cUvf4exF23lwD+LPCuhsArZ7B0TOz7+/P55xvKnvaafn7nmPteHVwAAazYgvPeIny5tCzwI/dzJrELZl7GvOwahSJnbfAp2KC2B5IaunP7LPhnDFBU4SzA9JhKwq7ET+2qqjoniVfp+Q4LMOgMaG68anCux9UY/L7belCAbAj2bhb1YNjZhzbqwzs0wD7LJ9x5pobPVYPcR65Za0We2/a1Ew1c3Uuda4+aRqRhFzzgXVL4n4IVQscnHjYt5Ect1aht/KfsiHFwy7ELmXpOrYgO0g9yH2SZFWrmpRHgkhReWktQpf7d3alQdg/GxgAfM+ITb7jV5k/0XdgEA9VIHVNSg2gMKuB3Aai0f2GxTxpvJxh6D5w0Vof1uy7A5izvQ9NO5XwNVh9D9lb6H6X69CI+1Z+K1obG2eyc8bCb6nVsgG5bbT9t7bsINuL89AeAriei7AcwB/FVbLfU44nLPyiEI3Mgt+Hbcx/bACBBtxUp2Azkh4P23HKBRPEzS/34/WWEIsdUFHJLAATERnKn8b4TxNdgkbA6D+tl1YYaZuLuPBTkYOSICPKWcyKziJ9BJjvJUQheQuiAUdZU8JztY76I/R11DAJCevQakCeojoqXXHZkeoeAI8yZWPzUHBcmBKjwA1egbB03VOIz2b/lMg8GLXnOkly6gfuIUTCGCYnpCraRghQZr31SM+WriNhJNfsx3RZoPT7fQZOQ2pOHpDO0txughGyewAWMV0MvP7GL0xBJaO3L/qp+hez6A60H6079on/eiWJZhQh7Ya/GLZeNQfIslydzWnKO6JS4mJYpMClFw1BqaHDFIFv79mVLcjzpPk7m3WgFv6alCMzhbIynZ5VaYkh1bMQDke5JHEW7W46PGvaN0AgzOB/k2FyagokK9FJqzBE4U/scuCRLway50/Xa2AgaCpSRyFUYEmerVCud0SPI4l2dRS0/77CzZH9nAxqKO1g0QAFOyfSSQd9legQVyfX89pDtoKYA1AO8A8KUAftxyA/6eaQ+cADloB+2gHbTPRmO8IgHyatp5AP/RJlz/jmXm2MBtOARvc/y+tAdGgDQZYbaZo8kEHaVQW5fDEcZD2fuO5bs4uKitbsVQyJvWxUgoytZOZ7G/FfBBekUoqQY0PpZg5QXfsflGFl3boWyse0L7GVpR0i+rgVaMpuNpIdTFRY2/aOeax9H3L9ZiddimuR0KyeyfX2CxkkWole4l6S8xR9ZHsZqDSsbc5jhUbUEhRZQayb78iKUW8o+9KNcjg/T585h8+aPRs4XjmcwqLNbkgjqWyy+KKp6OC1T9HIklN1x9tgQb/9wafNcYSTYWavnumZE7Z/m3z/u+bq4AAOqudcnZuRLFs1oA7Fh2risXl+XMmrHre9lJAPLjbkrJonfj0DUSh3BoNx+YB2TeUUPu/VMj4+uy7B13m58fVUIuhmJqiXk4IMlSgnTOGB+1ccKWQdW9Edm0/lGP650fX3LrBfDuYkDqnpiaPWkoBMHY5AFtTADzzSZC3xPOdXWfqZtPXVAKKtG4zmyT0L3Knr5npGvDXojZkZACwOiUUuv4e2X+ld9VYwDlfibJe9t+CsC7APyKDZLnAK5DOAR/lIj+CSSI/jiA34HY6I8T0cMQwfGNAP70/ezgAyNAnJ+1BRSD1E1OTVYLzVbdfPKh5GSE8MMw/tEksiEo6ZvLEQgoOULz2hQcJbtp04WVWx95GDNRP3HUR9sFJfPLglhHjLdvovtxKlDQOli4TULoB17RfOJBBL0zIzSHVrD95mV7vxrFUuLut1jJIg6j7qXCcV0Bwk/V3vVcVWHrXK+FYdd2L5kDeeB2SS1KjjYlILP7RRvIJg0uf6kf0KO/XbkExPa1BfYe9S6U7pUK6axGOvYCONuZOeWg7rUwOenP13fYpEEc58ocZidIfsi9tDOXJchj2nbXP3IYw4dMhHxKFgGBoXURaa5GNvOZ5YBs8iEMtkm9cJwfT61bSlFYQl6ouTHJIoa8LpYESUR2PDmxMZFMA/pCB9K2LrK6RUhnjUvwAwOjk979ls6AzY+WGJ6SCTg4VyKdVCjW/PiFwqPOCLzi563OwdAttftY5mIoVTsmptS1GQbVSwuIoxpR/KJzrUKxlGB8XBGHQgS59KIfjxBdRixCXhGGU5tTrLlNAFAF9EN30xiEGvdGgBDRjwH4Kkis5DyA7wLwXgDvJaKnABQA/ry1Rp4moh+HBMcrAN/OzLW9zncA+HkIjPe9zPz0PengLdoDI0CoEc0mHwOjE4kLfjcZIR/5RKW6RUGinWhp6m9V7VIXevd6jSaBQ68AHlECyCYgmo9d+FVsaSiKRRdP0afoPEUUqeBICqCz7XMrioFBNm7iQkCBkBK2XnLaXWtYo85NxAQr2d3yOZ80EdvtzpuWBSlm132xlEQFqph88iSASKOcrwr9hArHzrUKs83UxXkAYOUFvymJFs1uU22nhMEzW9j9Il9n5/wfSLD+MR+4DYOu228QFXIQQJqz7WlUAZCzAD3XS9HeLrEINrp01mDtaR/XSC9uuc/o2s1yGrAqtluYPSoCLt+r0LuUYb5q36FLrvOggGzi/f6zNT/PmsxaCwoAaIvV6pLnhjb5LfD/z9Z9TKRuyVxROpH9Sq/wWPmCUdPDBqaAy6LPxhWuv7nrEghNIwSFE2uBLL0o560+Ly86mVWYb7Ydl1lSNqAAscZGBZF9vgQAERL7/e5jYknP1qU/Gjearfn3E8ZEJieAI7/l32v3ExcwfbPEhFVhcnN4KIpcyDysAhLwTNgzW2uQaqC148eK6UbizLtpzX6M/6tszPxNt/jqz97i/O8G8N03Of6zEJLaz0p7YAQIIAuLidC7VHs3D0tAU7X+ZNE4Qr6qRSiDAF46Z4B9pjcgC7NYTt1nTmK4JBu/0HXyhgu8vdM4F5cG/hxh3yDOH0kWwNK5ykEi891aNh27MTQW3hm2dBZAUbtCDzG2XtDWNtDZCrReOya6kNV68BxJHAECOAEWKwk61yzpY+ppsvWeIeyVao9oWzrrhYf8VjS27lU5f7FksHjHpqMgAeCEBwAMT6XumoAE7IE4sS+C6GYJRk+sYH/rv+gtDHPxOqqHheM8vbgFdDzKqmllMDtD1EfX3LG6HSSFbmaYbfq+MgvlSxREhxcsyZwDdyhHmdfKYeWyyUksl9D6LfsAGguvvSaJsC67ek8EsaORKeX6Oh7tnTifBQCWXvYb9GxTnuvQR7w5lYxLLDZkPJjkPTsB1k5cpT9A3p2pvWJlamB8NIEovX5+q+DYfdQqZhavMTgv61OBD4Pzvq/dT1wAigLdD70k9/rqx1AMTAR0MZVPdtTxVhJLAFgsA1UvgBXPA9fbJAbN3E37LMRAfs+3B0qAUAOwYYAoyAMQbcexsbLf4OuW0Gq7jN8rlvfI+vbr3DgXCiD01MnCL2TVqkN6BDYhLYV8FyZJae1sQJL85qsUIWqmm4lzG/UvlK78LSCaZXiuxjj0ecqeFx6ATWDLvH+4tSfjoNnYdcdEHEn7KbVVo1UtMEQKmQpCAHjYT6GQMXbv4QxhzXF1E26/PvCFh3QcFMNa1QpcOuMfuFjOkGnIxhjMj3pfxORY5ri//PWDeNTF64AxSF+2hGK5CLemHdRWecNRF8Ppn1tgciyspGWvY/fh3uUGvctB8ui6uQHNp8l5pkSEIBucl2fTPCCGZQQI8oHKPqFrE1DrnNCk5CwIaiRW5+rFV4LoillrCZlVlOabLStgbN8vlhG1vgqPpLSKVU8Sb1MotY5BVjHqtqdeMQU7KG5SCpxaLW7lpQqTKsPk3botybnKOt05HwQluh2g28HOW3258t3f502GjZ9vR+uptM8cZqKXS15otK9KXCXkvwsJNe+uEer7GwP5Pd8eHAFCdsNjqW6mmyYTotyNYhBTiVAD9C/IycmsRt1JHOVDMm9Qt43DoquPWjeK2ZpBNouzj5NF7AoLM3zb25L3ELqkmsyT4PUux9UJRyczyW5WagndYMK4R7AxNSmw/AJHiY1Rv1nqdoRCMYQQlwOf0a73oTreCJybJfGumJs2e9gvbEI+jLOn6yAutf5MidHJDMuWsM/RsSwHVgwB48dX7XUN+hdKTI75ILdQjFf22oTe2bGHUWtA3QoOZ30oO/ChrhMeALDzujbQeFCFMNpyFNQPrVdOYpbXUDiqxRtCU8suReeEcPEmJbS2YwLEqgs3L5Xm3THUbsZwYlMxOlf9e63a4sZtXy9cP5J55SyOJjMoVhJXUGu2LtaNvtv2do26bRwEO501lpJH7l/0Dahh1y8PmZV/e5dlHinc2NULse949Pgylj4hQYpz75ayAOnv33b9H/y8twqVOXv507KIx8czLJ9ZYPmMHM+vTvDpb1pDOyCOTicSOwGAdBznbd1NYwDNPYqBvFbbgyNArMmtm6v6bzk3VoOT09K558UyNSMd10jmfvWlewWKNVFRqp4U9gndAWwIswCJM18xvpCOoai+RTEQegoteauCYBbw8oRBeC0h67mQvEsCsBsuAVuuUgqh9+ie+33nP8hu7bizKvEVZ8GmR8wuk7hJKMqudnkHgWtotm6iPiZFEEwNNTkSARdmvgMxQd/C7wNY/nSD0QmD9WdkNXfOj9A5D0wf8vQiW2/0N+5elmfR8V2sEBYruS+WtRB69vZFvytrIBwAsCTWSrVmM9qnJZAQFptdOy6WJ80yFjslIgBY6MbpWqAJq3XQ8q8DHZvnUyz5mJK2kKoELG4jHTvPmSU3SOfxppeNa7F+NXi9V2H4UO6EJ1WMsp+AbKJH90ohlq+1MJJZiWrZv7z5eor5qkFhLYr2boMiqOo320yFnt4G5as2oRiYKEbT2vMuxWQhrt0QdQbEAhGIi1499x1qcTRYfmTXHR8/tQYcB+qe3Hv5kwbLny7R/aCg97ofhJB4HpFY2vzYAMf/c+nYGyaHCMWqv898k7H5UdyTxkwo9mc+fp61B0aAEAuxoS5SdoiUBoBx7owm95pUbQjVeob+GY/kqXsZEpsoWHfiyaFWTBjAawJ0TNmTxDWXcKg06usBD1A7XjihFqr+XLdh2wvVmb/H6CQh37W//ZJddP6jt92rIPNZW1I0buMAYgSZaoBhQmXdAmZBAaywAFMaBB+rDiK3DGzmt24ayUL4skI+qkO/vYfhEyIgVj62hZWPARiJb4HXljB9aMkjhSBuB4Vp6pirNt8aCgz6yPu9kKArW2iOy0akwqN6WGA4u493sPKpqQgO2+aHPLZT0WUhxTwQZ0mbonFFljghFFnilALlO4so6oO4R9UlFwQ3dVw2WOdjWHLAlF6DJxus1qRPToU1eH7IMiPPagzOlU7wZzsLTE900T1rXUMNgIRQ92Ti1VkLxUrm4zXKNh1A1lt7PnZXdUjqr7j5gsgyFnZgn0mfFCKIdSxma4lV7oJxDZSU3ccM3vk2Dxb69ec9lJtXalBJOPaf3Wih8zsvAKTYZbnn7ptWAACX/mCNo7+cugC+qYHFSb++j/ziPcwiBNAcxEAejFZnhMmR1NGGqLvA1DHUNZk3aAIaBWKAc88gGyKNioFBPmp8drddyBy4oELh4CrF2UOurGmoeS7iYHroz3XXCbTNuh2TAoaV1Qb/eglAXMGN2DObAnGgWV1XuhG4HJlgkyyTOKs+rEon1RXJXkuO9S6rG0PYYvvn/bVWnh1i9/VWYDwjqvnKL78gXzYMtFtojnizJByLxQqhHwRX81Edud4AYPPDE5frYS5dAzptmG3ZNIdf9pD0KxCGu092nXDvXaqiOto3a4tlA1j5bEpGb+GFQ/vqTNwkjRzb+sJlJKUv4yrIJDm36giDs8s7GgfoJduUYFG+iAO9SuOiTMBUM4q1lnM/Ngkh3w2qJaYGvXMTFOsiINNxCWKGsdxi5UorGpsmIeGIK32/6jY5C8tUnvgTsJxc7KnSNc8kDcanc712MRJTx8IDEKGhLX/bNj5+TcANw5dWgNUCPPEbffeCQbKQC3R/83nQ6or77tLXHkV7p8GlP+jnyrUvBrTz9VqJ1jmvse0+hnvWJIh+4MJ6oNrUUqNropYpGrQuDkEzWWCLh9ddYp3QlzeYb8gES+YNOCGMTsjkTUrZnJVyAiSBaoXjyjnebVNYH3i86cabwX4ab8BvHJIg5l1WgFSDU+K4dM5Yfc6jeyaHrEAIfO8hMWLdNhHWXvmPbmV1LwZGaojYWEvZA/LCu3HSObt8hOxMg9lG4gR25zrQe+46tt8uPuyVZ4dAzVh5SgSHuWid0vvIg3Qzq9sJqhY5S7GzxahaFLkP00mN3cdlMDY/PIGZeUl77Rses88fWAArMaQ5pINXZmDnfkxFEw/ZjsUVI597tvxw9+OSbNgcXQeaBiPL6JuPZVwrq7WHY2wq4R8b2Pok6axBOvNKzvi4iYSnlorVWi9a9Gp61KPGTNmgsX1tX12AqsbVLgEDs6Ndh5Iq1lswhYer1y2BFfu8FBEAKlBMxe453P1qYLLhY3Hp1FsR+bARgImd98VSYqlm7PVKAOzn7XzVRHlZrZ9YxbW3alyHgKstn1R5nbD+tJc+k3c+jsVy4t7r6DRjdJrw2MNSxvrM756I+t1+6cbiV66E8F23gyD6AyNACDLxy5zQ2WoweME734sjA/d5tpk5X282lSB5a1sm6OSozQTXOcGWuC3Mw6gYmUWU7Ifjitsh3jwaeJ+2JnxpwNOdp+inZJ9Lq7TaW+A6UtpxQFhKi0GCyrpDWrsSI9h7RFbn3jvmWPvPSVTqVOjsvStFiw/JeDDqPGCYrUU4hRT0Yd3rjd+6BlzfkT9Wl8GtFKsfldyK2clltC9NnODg0vrnNYidZVi87qi7VtmRQKy6UUzRIC+A6WG/04S16s9+fQ+HPhIIF1e7wvc1FB4SxA3G0ebD9C76qP7otA/g1HnMXpBOK+QvXHbBeHNlB5MvOu6+5yTmdJocBbpWZip5pW6aRWaQjdmx4OYjjhgQNH9DLa5ZuxVZ0S3L95WOFU0n5oHCzdNpg8VyApUBdJOM9bKXuE1VrVR9t4slg6SU+IE203gXpqkk014FVN0i5MMatc0JSgq2Ne3t80waFD3jFKHpYflOBaqpGKtPy2/LHjA9xuif9fdeBJUtXY6VFj+7RjjydT5TNjstC6h6wa55TSjecadEuUp30w6C6A+QADloB+2gHbTPdqvvUSLha7U9MAKEGtHO2ztiqqv/t+oal5QGAOPTjP4Z+ZzNpOZBYUtt1m3ROskFs0nySvQeGnQsPHyx7MXQ1DCvROdWWLsgWcRMqq29xmmiTUKRJtreiv30Sp3usp03M9S50INr231jDRqI6tf+ZBvTI577R7OZQ01cqujF/VTMfP9SjfmqcfkxANC+KF+aeeGtDwAoS4y/YBOJRXx1z+zaAbGouCQBgvgKBj00aRC70bK5NoaArkHdIsxX/AINWZIPfcS7KAGgVTSYHk4dAy0Qu/baNn8kzA1RrRYQ6yOE0tYtoYvvnfcvl9eXcf1LBdLTvVZH9C1aIGvijSqMrTclG0mlSXX3AeLmUatJ76tB6OmRDOm08Tk0FaN9zfejbqdI5pVjSwaA6dHcoZzKfoJ05oPahoE69XVtTNFIzEVfK1EUy1usiBtWR54acf+F+URVy3NzCYWQccCAfCQ5IVoDXhgNOKpPQuwtxHTuLYp0Bhz6MEPNcn0GjS0lJWN40mDzazxH4KL24+AsD/sqq3acAzI4e4+qSUESY0t+YLbQV9UemKenmqW+hF3TiqqZrYm/dXxaJnP/jPEoKEu8pkiOdCYbekhKB/aV06qWJBKqr1hNdfUtL5ZjGKexWHoHz7SCQ1E1+dC7MfR62bRxmzAx0NqpY/JGit066oYCgGtvs8/4EfGVL79UY/hQEtU02V8FUPptcyE2gM5VERzall+YuYzs/NpUgtXaNjw+cvQG8dOowEsPD5A/9TKQhpHiAB780AoAH9DXGEC254VVkxsXqC17BmWX0LexiGwou1m5JC9zcjQVyvSp39QALzjKAVAOfJnZ5RcL1G2D2iYSZpPGjq0teFVJktrWm+TlHfm1bSc8AOD6G6VWd9uyoSh1RiickyA/rugTin7qzgnfiW526kJiinml8q0ZOEvce2BDqLoZZofsPKAYItu5VkaxHB3f+ZLGOGy8QxWcljyvupxMsQ86TBJbcuugbZAUvriZZoZrHxZLckzRXfPVBOmCHSvCfpLSJiVH2JnOYz45da+GiLbJ6wtMzumAM04c28alj1nSq4SRLMjtA9lEIOPakpIjV+PdtIMg+gMkQORtMupugutvNuhKTA3DRxjt60DnsqamCw+QtqQA6lwmbOd6HQe8IUlVSm0itQQ8OqXJNNHMCoSxnfD2ewnSsxMcSYkoxjBfIwf/BIKEMxtzqVOyhYB8p+YB+aJuAMrWu/a7Ccq+CA5tS2drt5nWGbma0wAcW+vwtN/ki2VglMjfGx+bRnQe5voukNn798XCa/oirFSoDoIytFj2sSeMJxF1iAqAquuPDX73svvMvRb23uQRWlo8KsygVuEBiOCfHEncpqcZ+dtfLGMxeD5BNgZWnvf9K/vG14mxY6nlWkcnJOtfyfhe/BNrUXxK943Fiv2zjGNf+V7MABsKFr2HWn6cxPkm7e0S6c7cJTnSogQtSjSZXJBN4oUHxPJubc2dRaLCYxaQOZrSw7uvfbFYSwr26F6R77UP+ZillsshvR4wOpmgbzPMqRHCTg4ocNKZL0dsrJKiAA4pHEZgm9SZTeIgfQh91j66UsmTBtNDBqNHAsvxfI7ilGVhvpLj8pUjSBaKSJFxTZRZ2JIotoK4R2ht3U1j0IEL63PdgXvVhM49xc7rLQrGzpGNj+13IXGUDLa/StrNuK2U36lJYzcKU0xJvVhSS+bmKI86sxXUrgTXMH7hVh2DfFRH2eiTo6nTwjrbjc20j/sXLsbuVXaJa/moiTLF9bn2U12HCXHhJqkFojRpi4sgqjwWv8DOu9/gDiUFwwQ5J3qODEoKlDGWc7HeQu/FQE2fTsGbouWPXrcmWqwVnk1KyIeVCxwD3q0BeC6k+ap+x6j7DQ7/hkdEhACAmVpx1irqXp5jfKqL0YnAlbPmA+lm3796pRCe2gqUgbAcrFqlqpzsPmaw+slYMWhfLxyEPN0Rd1XTsnxgWYImM5gc98I2VHRaW7KZTo56oTLbIEddDwDj44BqHOlE5l3Hbq5Mlkql8MH0yZHUIe7SmfCmRVQz8wZMHqargffw2UPBIK5d9p9rdi68sDyBrqHRQ3pEeOzSibVUK+lPfTVgTl4Em3gjVqG+J01+HB2TsWwyUZLuVTsIoj8gjY0kZ60+65Ed2uqMkNlNPfRzmzLOPVDTVqmgnSURaJZJQRGTKODN63wcC47aiLshDzYuamLyRDZeiCWlxADCmhOhgqMZ8PtrX8f1Sfznqk3oXQryA8j72AGpcBji8Vs7cV3smwqOwA1VvuWRSHNWNBsApC9dBpIEvGYzy4lA20PUJzftMzDaV4MStpeuuWxibUnRRPxaCDbN6bEOdh4PNOxKUGzzQ74//RcS199s2mB8LAGOWRSPzWM5/quepKnOpdYEIO+oXISKhu1CWN8kqG6ngiQUHIpaUo6u6WH/28WycbVgTNkgveCZgbnfkbKxwVytepnjjlJuss41+b0KltlG4A5deGr58SlGvkOYvVF27PxF4ZNSWHOTELrXa3e/qm2QzjlSlhZLxj1jOm8ENWe/FiqTOCE1KWL0YpTvZN9jOLdDV24UVySLoCv1POEvd9etyOWpAF4oat9naybKq5pv4IaclFfbmHEA4/1cd+BeNTZiamcT0aCijOYgME2VZz1tUpnE83UNYss5WtBnsSqTM6R/TuccuYSyqaeWFopuT+NtaqBzqUThoIexuZvOBEac2doYZT+JtLF8xJGvWC2OcNNOCkSbesjWu/asNfOH3m1z7UuWo/EYnPWfh48QeleA5Q9ekjG1goNt7WsyBvyEUw0xOdH2DLHbFTov7/qHq2uxJoKSvtXpwygHsuPmO3Mkl30Qvjl5GFTWGD3u1cNikLgNefnTCxuzkLyR8VFxSdVeKUdSAN0LPg9DkxwBqc1hiphOpX0dmISlWAPvoAIHlEBw76EE+ci7rADrxXJuRLEuO9u6cVFQD0Pcmir4O1eBlRcC5AUzqmNrSIYxz3jdupE1QD5bReBwQAR52ERMAWxEcABAtdSgWgKSK56+ZOmlYA6cE+tHFZm6JVBvZ70yx/xRLGWdFbBQLIlLLJ6XoZUtlD4hiWk6bbwFDJ9LlcxlDav1tPt6RvsqudK1OobK25VOYrj15IRVFCs/76bH/Pf3igcL0CD6AZXJA9G05vN8nbBYTRz7JydxPkCTkNPc61wmfui2aW/XzqJo7Vgtyv5c0SV6wFQ2SN7yfVDyRkD8ruUgcZOearlna+SD5Oms8ZnhJKa9bjwum95aU1pDPdxMip7vz+ywmO+qWSoR4c7jwS4LryWrVTZ8RP5ee1bQORj5AVHhAQA4eQyTh/quD6Fwy0Z2Ze7YlT/og+YlipPiUzJF44QHAMwPdVA81sfyJ8WFdfnLxFJRTbJ3lSNt/vqbWyhWfFBchbbZ9d0L8xbSuWe7Da8bvuuwSFNSNOhsifatrW4bTGxQPZ3HAkb3DXVHUiOarSaZJoW3CLIxMDvkf5tPGkyP5ui/HAuM4pCPGVEd0M90UyTzBrNDfrlKNnig4e8DF1EjORIAMF4CkonB+sdd79G5Vrn8D8e+YIW9WFsB+m0ck0iqwpLY3w3O1ai6XgD5OihyerLgSAi5xFT7+GUnUNIMsPOWCmZm2SE2FlgcYZiXRMKkU7ECdfyLFdhnCK21BjtfaBWbKylMJaUNAGD5pXtkfth2EER/gJoijNh4F4UmhKlPNIxPpHOONKeyS5htJBFleViASTJ0jdvYNetZN7PZeuIYSeV6JqKASOeCAtF1P18xcXKb9s3+U3ctM+ued1XVLQpK2ALoEWbWNaJaZR5AVSeHkjgruvScR1Nb32Lj4zbOkAEr73sevPAWi1ldAVsiwvHrPAoJzMjGtQuGp5+SDG2ubMLgAE54AMClL+siH8GhqNQNc/nLPXlik8Bp8E26j2hyxZ5jle75uribwuTCUBPdT+RnShl/Pd7aZfQu+h/k1ycYvm7F/V32k4gHCxBLVpNIk0JYmMNYRNEjxxZrSo+6azJg6Yw/cfCijQ0F1lmxnLv71W2DfMdvdLPTMhAhCWfd9huwg50nfhyKJWByyioqJaF/hqATq3OtAgy5edxYiG80lqFyMKndefaOKHuJi+HUuUE2aRxclipG1U08SICAJNi302mN+VrqioNtvz5z545PNTBzg+SYdy2aZz0ee36ogTkUQJrnMjZJO3Cfvtx1Y9+7KOOz/Gk5UPWSyDtxN41B96yg1O/VRkR/iJnfd6vvHygBAgj5Xtkjob+G31QcI27L01BrdTmNeegmo77c1ecbUO2LAbEhFMvkUFxKj66te63GYsk4RFI2EQ4gM9dNUa0Za34vxN22nwTRkdi1JHYTwg6Tgp2AKZYIpmYc+YAsxGx3gdnxroNXApZLK9hEAQ/bPfobI0xO9rD0/hfc+WG8g5aXMP0Cn21dtyhAK8mKV989cwPUDXBSYEsMYLbhXSy5jZWPTsqUm68jCvLK+PlNS61G3ZBTazmEG/bkcGxhZBMvIFzRJrup5cMYEafWR35dTpgf7SPfqxw7samk3oZCmhdLBlXbW4/TzZhPLJ3GwdmlIN9A3+/S8zaHZiadmB8PhGfu4eUu98GCGHoXSyxWUyydlXvvPJFELMfKghwK0PY2o3fJov1WCUvnfH/ULRezCVNUdjaswukYm9VVSjLvVACmiwZUsiMhBWDh7fZniaAJ9e9iKUU+rLH7uDyfUr0AQOeSweT1C/Q+4IVGHTA8q/DIstr9WyxSNKUFIJwXa1vh1a29Br0LC0yOycRo7VRIFvfOavg8sED+EYAHX4CIK8rTfat2lsxF4w6RSpNjHqnFFCcC5nuMjnWTqCmvPue6Layraqqn8wbpvHYMt8pNpQljUlPBuIUn/EMNFitK3kgo+p7iwSV/2XXaGopwcSypLBuZtnTB6F4uke16i4HJ19oenRC6Ct2YNIB/6IMe+TT4xWfRlCJZKEmALHCTvP6YcBoFdTIcffq8Rv7SVXCAtKre/Ij7PD3cwmwz9NvbfwNoaxikzaYcbWimlDHWoPZsnSKOsKpNQBK4pqYAyFOalP04gYxqyedRIdralg8ac8nGdURtTw1jdCJ11qUKAYWAUhNbSOUAGJwP4NYBweWSrXGSjKVznFAkPOYbmZQSVjbbklGst1wSZtlPIlLMpZcbbL/eYPCyHQs7tuoySmccJav2Lkt+lAt6WwUndPGtfDqowllJqeQ6IBYFhwmoMSBFhYejMikbybGy51fdBLP1xM3jyRGDOo+D252gfsfKB32sprMl5aj3vkosEjrbgXlkgvl1+9CdGtkFf373suwFIRhEc3kAIJ0nkevybhoDaO5REJ2I3gvgGwBcZeY37fvurwD4XwFsMvN1IiIA/wzAHwYwBfDNzPwRe+6fB/C37U//ATP/8N127XZfPjACRJh0yVkaIXqnGFCkHYbvXIUFIBpqN8gWLrsGixWfK5DObBlbe+k6I9RrGWYW5tvekkkb1ZCYN06wUBNof7C8WeS5poqlJHKxUS3fqauBTbwBu3oNx7vRMe1fZ0tqmYyPymve/LCorfSSzeKtG3AZRxWp1cL8jZJCXQ58Up0fL6/mNqtLmHxxyAcVjPmSJIstgkzyqut90UAMblB+Ms0eTycaD5Ixbe+I62PHkim6TOpgeisbAQAMzsn3WrRK4z2qDDSHM5iCnTtjvpZIjMkK+9EJGbPpvrhKuOl1r/hNShOSO9dsfRMgQo21Lg2xCIXGeuo0+KoFVJuJg5xKBxmjoCTw3mOMzY9I37ZfL2Ploa6Sy6EtH7EDZsgz+xgbINn4YuV6Ia05QYDOsyRaJ8nCWxz7WzlIonLHZZ7A1H4NihuZMT3khW/47tJZDLWP87QapNMGSz8oA3z+DxDMx/vQqF7dSUEN0Amev73dYL7iiSFDd1yogN19o3tZ0vaHAHwvgB+J7kB0EsDXADgbHP56AI/b/94O4PsAvJ2I1gB8F4C3QuTbh4nop5l5B6++3VbaPjACREqCspu0ETw3FB7k3SFAXEXOlITJoTQSIt2rtRvCxYqJkFR1JhUJVUttckGXUAAhHj3kN4FswhF9hmpsYQsXbdXZX6AK4Mxn1uZ7orUmM0thn5CLLQA+UXDzt3fdMTp3yd9rv/Doy2Ckk9L9OzneifqwWPYB+c6WfzbNyXCUJPssQQAYnG3cJtK70kSsxtQwygH50qcU111JpzWGp3KnWbMRrT/MqaHGI4dC4QFYcENCEbw7ZCruXdUkOX9/ABF9PidArUwHHaC9DVesS2uuKD2LKRpke960nZ9YdgwEU5sEqM/fGjbiXgvcRvuFBwBs/xcyOMV2G/nVNGKVDTPblebd0b832uc4XrT8kqWD0eJrwdzLhxUSS/++WMujvlEj5ZBDwAEn5HYaJoGwK4xXFYvQYgtZo8u+z6dq7zAWKwarnwwg3kWNYlkkzIlfLlB1E+w8Ya149a6FBKapB8q4fSDYD+4VcIqBe4bCYub3E9Hpm3z1TwH8dQD/V3Ds3QB+hJkZwAeIaIWIjgL4KgDvY+ZtACCi9wH4OgA/dk86eZP2wAiQg3bQDtpB+2w2ZnolLqwNIvpQ8Pd7mPk9t/sBEb0bwAVm/hjF1t9xAOeCv8/bY7c6fjftodt9+cAIkCaNE6mUQ6nox/U5sgkc7Fa1F9XQuq4Ylfwt1BnsOH7yYZxfIhTehN6VuGZFrfxOJbu6JIDUHjFFE8AlYy2palMUMDc1R0FzXiGg8dq9qRJX5xoAipVMKD+sttjaFnWdzliXVdNEOSPaSOuFW7RVWHcigkCnFI1VnJQp9TDU6ll6uUGTGWdxdK41qNuE1lBjGiaqtwFILEpdGb0rcab27qO50IWE7sfrHuqbjxtrYch3an2E/u7Wni9ytBiYuJCWPa7ACiC2XJN5XK636gJbX2Cw/GnrBrrcRC6edFKgXJVxZCJXux2wlgDH9BrptHE0/NQAu08G78kGjott/17Wn/a/zQLiRcBr/hrDUAtD3XvE8i4d2nAhPGD5jqWXGWTO+gDg5ljV9duFWjnaQuBGaS0ddVGakjE97BMRTQGAPb1LSD2SLBiDlwtvyVUNdp/oYfl5sb4Wmy3JYrcGSjqL3YrZlKM5q7EQV6oYN0Ke76a9gkTC68z81js9mYi6AP4WxH31uWxnb/flAyNAwibCRD63twXJowFVpqDmtEWvrH0ycPI3wYadESaH/RBNjgK9S3HZVsC7BhK7WSkZIhvrg7UbujLHalEk7VdEfWIC143d7HUTNLUBEyJ23OHplouh9M/NUfZTdJ/2bio0DAxEMDRb26A09VBby3mlyYE0WWDni302eNkzcR3vYMM990cbnPopcm4MRapptnzvSgNqGL3LVihb9Jlu+JL46dFy2Th2cQwfMmjtkgMskCWN1EBxPo6BEZxITQp1SyWxd849jzZqLAGhi2fZ4QoLHe3ECW7JPBD2XWD50wJi0JaNSlBlc3UG3qk/OZZJX+3tFTyQ28xyYjjhAQh/mymB5rh3ga2vjtH86qb7O5sGpJOJAApcvY/KclXZ8azTONFPlRSNrXWuNVFFw2xYyHeq6NiExjDGFQbYNVFQ52vZSeT9tAOXWQhUsXHKokfuuyyIwQDA7hOyyPKRBO9HD8uLkFK57JJ9gXje1LmU33W5Xm0SNKPG2ziex3fTGPe1pO2jAB4GoNbHCQAfIaK3AbgA4GRw7gl77ALEjRUe/9W77MfnSQyExe+9WJWAmmo77e0G7W0P1S27Ptg3OCcn6SaYTutouNJxDbOWYHRKfjt4h0Tcp78lC7l7GRicK13hH05E01Q8vwqGseXhEaZRiWXID4DeJY++aXKhyFbOJqoZVDGmgRAre4SJXm8mFkrnujxH+vQZJPMFsObzL+ojaw79YyydOo1Fm6sfPgZqGkxOWcwr+qjanvZbN9NQY7v2lZZSvia8/EeA9iW5Zv9cHAidbRj0L1Y+JtVI8FZJ72brJgIEVJ1Y0KuP3G0OaQzhLbt+8wc8NXsYNwnrdhcDE2n8LsYRxpyC/iQL0ZRzu68mBaPsewusdzEGS2Rjm7nelUEbH/eDoYIu5IZS4QEAO49nUYZ8tSlCyQTPV/3MpgOMdrZivjQH6lCGhBZFWrlDQ7V9UNtUwOBcANUK7qWUN8Wqf4Ywrlf2TPQu1BJVoZKP2LE96LXTeSzwy663gKixuSkQWpfdx9uuz2rN6JxMFpb91ypxTSrwY7XKfdVD8n1p+QfMpg3uXerG/atIyMyfAODST4noDIC3WhTWTwP4DiL6t5Ag+h4zXyKinwfwD4lIN4CvAfCd96WDtj0wAqRJvfAA/OatgkMnTRoEvQEJZCtEsm4ZpNPaCYDRKVlAKjh2P7qJdAZsfNxrf5wSUmthVG1jNWVy9y47Qd2EnFDnwMCiTLQ2hQtuspSMDd0DxcDDDidHraDble+WXpyCE4P0BeuiSlOgDRSPHrbXTSyzr2hv7UszJDtj7L3rcXf9pGiCPBdgfMrneuR7sqEPHw02yiuyQQ7OAJPjPpejWPKLG/AJg4o603LBio6hOt6w9Z4OkppKQD20CJQOHPBuPLVwWjuyY87X/aYX1YpXF4kdy85cDuw8aS2WRSygsjFbbdbfM1mwY9Kt2xTVCnHorVMeUhrmqSydayI0UKgUqPBQt2vrozlau4zrXyt9XP71ThQkZ0OR+5D26YiOebfy31dtijL7k4IdFUr/rPiDNO9Eg/xhfyN3ZcVujmt/pocTh0Ks2xQpE9mUsRgYZ4EVA0L3au0QUb1LpRPku4+1hV4+UFo6W00E5BAyRvs5A+Zrxv2eGoHy6+/nqwL/1mcxFSJI9N00gfHeG2lERD8GsR42iOg8gO9i5n95i9N/FgLhfQEC4/0WAGDmbSL6+wA+aM/7expQv1/tvgoQKzVHAGoA1X4f4O3wzPb7JQDPAPgpZv6O296rlsI96ZxvoNaucwqguBxoTH7zBwRJI3xL8vfk3UP0WgV2P+pdB5sfrZwrijMTJRJSJjxYkfYFwvRwjEjqBHTr4ov2ZyezxuUjUMNCAGhbNhYtdvk3Xg4uT47BlooazWoXia0VvljLUHaN0/TKR3sYnRgE7LCMYpA6l16yYGR7QV9KAAT0LL/U9IgIDm298wEKxvhaHACwWEpAHCek1S1Pajk8HW8y4TOG91dXVLbPJeLqmwd7AVUNOldkU58dsfEHE2ueKqzTGTvhAQDzrxijfrmH9Y/Z+01tmVkrGBYrxgkPAFj6pECim7aXcFtv6kVcWSoQALhYkPRT3FhqMWQ2KVDp3/sXGU0KrP2SxlDseOgmaBFfiuLTDV3f42zdoHu1vkGwOGRSIwg+9+yHLCX/vvibvtt8V6hKdB4pLFgFUmMpgZSHzbH6hhx0DdCykGxTM2ZBLHHrjX4itLcZZhwTHpZdXz9E/9U+aJ8ULl51CU3mFZt8JGOpY9NkPt5yt+1ecmEx8zd9hu9PB58ZwLff4rz3AnjvPemUtDO3+/KzYYG8i5mv3+K7m+KZg+//PoD338lNTO1JEJvA3VG3KI4xkPeBUuPjEoAmFTa4+m0eQrg37WDjEwGdSXB+Yi2FxZpqbDYPJLBwskkDkAzz4FwpwcPAHWASQplongjj+lv8hpTMZUMNteDlD14CT33/midPOR91fmUEEKFYES247MminxzxG0P3mg9cs/GJdzJuhGwmhbEAr/3rRrj6LDtXR9WiCOKqNUnChc+EKMi//QYfhaYKSKvYCmlvx9UVw8xqauK64WwI2cRX3ZsebkV1Ncqe0IuHmjMQB1PLAYAnRWLVLwuEWbP0F8uE/kW/0/QuVa4aIwBUNkC++6gPbIfCI4qrweeVAGIhhNToQEwKKXVkvMtJ80N0fgmlTZBPZGM5anE1GTA+nnghi31zrmRUXe+GIhYalLCIFRtywr9z0Y5RVzb68UOdyJqZHgLWn/FWgtRuiYtche67om+cS1CbshAs22z90ekw4cm7VRcroqQNT8fjp0wHVMfWJNWWuieYBppIeS/aa53O3Qbr/wqAU8z83xDR4wCeZOafAQBm/i9v9/vPtQvrpnhm68/7EgCHAfwcJDHmto0ar/GEvtb+xSryF5vAfKXSaqW2euHeQzYhUGcjgNa/9gR33YsLJEHwcvKQbDqOlC4lpLPG4e/ZiO94cE7U6O6zV1EfWkKTy32qXhahuqaWt0o1zu6euLSWn9qRA+evgAFHN2L6PSR7M+gVOE9B8wqzzZ67f50T+hcbN0ZFn9xiKrsUkQQWGgphP6ad6z7znpMgp8Dmz7Rsdnj/os0dCep1NJlfXPONHN2rtdsIJsfluzCxMELTKGJI3TA2x8MrA5LVr4ywqgiGtVvauxwEWAnTQ+SAD8of1rxoc1/mhPY1RFxmrYCPKtsWoV1s+o2tDMrntndqtHd8/6uucYi0JjPoXfHJbWwggpj0WcVVqIqNy5Yf6u81+S+wEAJ0oCf79Jt0FCNJAIqEsfwbUo8gSLx1XG87MlgqOCYnRAGgWqo7qqKx/oxF/e3GrlffF2AeFHHS51v9lI/BtJ69KPc6uYmqm6FzVV2SGdKyQdlXi0OUAI2VVW1gOeAZ07mq750TRO42cFzx8G6a0LnftyD6Z6v9IIAPA/gy+/cFAD8B4Gfu5Mf3W4AwgF8gIgbwAzfBPd8Ut0xEVwD8YwB/FsBX3+riRPStAL4VAFrtFReYTMJsb5dMpRuSnzyu7K1F7uRjYPgwoDbA6GPrMF1//uxQC/0zlRMcjpW09NeOFk5OaO1U6D5reRqKAsn562gekd2rbpsb/PTZyKN0Budk1Tc9sSiS9VXw1eswyz6jGdMZ9t4mmeMay1DKCCWXDLXFMGmrWJLv1QpIZ14g6LlV17uaRl8+BT0vz77yKUZ7p0bnoie9a7LEZxdf2MLicV8AoxgYgVharXPpRWE61kTOpJDFXg78ppgP+UZfv15/2kji5kK5qRI0KcUEjAPCYsn/Nqzf0bI2cRHAdrMpu2ft2sRCU8q/196xEh0HLNGl3eSHpxIsna3R5Bq89Zta2RNWg9DaAnkUn2asq/UmliFHbtjJEf9gWo/GuZRsEuds3T9LCDkenNOEQXv9ROJcnuyRIuHUOz8DNeyC6QCw2Gg5d+/eI9KX/nl1K2kSZRwkd00vbZ+zSQSlp6317EVgIBMh2Z2i6i5jvm4hzQyAfPwmWXCkyGQT4SXrXZIDaSVzJqxFEpJilveonK22B4BM8VFm/lNE9E0AwMxToltQDtyk3W8B8k5mvkBEhwC8j4ieY+Y7cUn9JQA/y8znb/csViC9BwAGyyfY1D64p5puVCHPtqpr6xgM4msPH5ZNdPYBYXbrWY3SuQIIGD/cczQRVcd4nioIFUk2rrFYlWHtXQhQLraVjxxG1bMur3mDbGo8BbjVzDo2GFl1E2R7JZKXPCyX1lYAWxNj780bMBW7KnpJKZsEq7ZptVxdbFq0JwxMF0tCGwKIG2q+FiN4AGD4hXLBzsd7aFuLYfUpcdxXA+mLWdTgzPN+XX/XSQzOFxidsJDlZSGiVItCiwDpJmYqyfJWV5hSmLj4TS+mjy+WEjQZobKuH3U9KfFeewtOeGgzJSJalnQODJ4KcjECyvKqY1B1DPZOWxK+obhhNG6RThtc/CM1Bh+3z7cKXF9NkNs5szZqItoMatgh0Op2zDasAd/QnWhKBmsgeC1BL4BuG61IuR6g8zpBFj9EgKjgcJBW23eq5HNtKx6WXUJ7t0HvfEAbUDMWR7xfLYRA9y7qdWP6ExX2O0+kEoPQwHYtZJMKf+9ebdA/6zu7+/sewsrvikRfHBOzJswBUhQjIO85m3nYtYILwvMd2SPEDdhk3gWWFHzPUFjCxvvadmEBKIioA+t3IKJHAdy4cd2i3VcBwswX7L9XiegnAbwNcUzjVnjmLwPwlUT0lwD0AeRENGbmv3nb+xlyLqH9m6BqWHXLQz6LQRppTRsfb7D0whhX3iE7j27kHCz0kGNIC0LpNfS79paFB/dTdJ++ArYWBHotJzwAKVfbJOSTohaMfNREgedkUYPXJUhebfSwWPMBx9m60MU7SCqJSa/90aC2avXFQJ6h8UAhJMGm02QUUZ6bUq7Z/ZSyMcZuBxUeALDzelGvVVhNDxOmh1vO1dXeijfv6WHJs9A4Byf2foG7IXQ1qPBwkGerYfqkSriiQ/qsIYurBqo7Qf5A90rlqF/6L4sULZflmUR4GKy8uC9GZjeqc3/MJkx+vdRx3/3lIzALv6FNDnluq/mKiTRihaC6crl2XBSOrffXprBdFQCtosZsM41ACHXb51rkkwb5BNFGGZY2LgYCR1Z3z/rTMglM4ef27Kg3l+qcYEof9Kdaa+EELsoVg4VMU2QTWTMq3PORn1OAoKaGD/Ud+eR0w2D6hwSxqgpFHhBthpU+27vCjt29Hgovcu7Sqk0ReEBYgCmgzaGYc+wuGgMoX/sC5LsgYYKTRPRvAHwFgG++0x/fNwFCRD0AhplH9vPXAPh7+067KZ4ZwJ8JrvPNEPzzbYWHsM6KS6HsGIeEqttJRBSXD2sM9/FT6Ua19IIEC9efkpU438jRZLEw4pScGywUHgAwPZSid7lyMRAAQFWBrIY/e/JQBN/UIGm4QJqUUAaaJdUM2KS0+UYq2qo9vXO9wWzDOJbauqXU3lZgWItDNxpTiKasGq9uqrrRNi0b4NUNbiaFnXKLjEqnjFoX6rEeZuuecG+2Sa6srIyNCAXlHWsSoL3HLqemZTV15yqqGZPDqY9lHEqcNQL4RDPnomLGbMM42nbtr7b9FeyqPtC7EAuP1vWZc2WNHumjtVtFdcUVrQbIZixgBHngpY8Dg6+/jN1fPuKveX0feMK2fMwRKWOlfbZjU+fAxlN+knEgLAAP01XhOl9Pb+BMAzyFPRuDfOxhw0zyznUT1TFZecHGOFoJsqBqZd1JI7ePBp0d3LwDJAvPN6WxHWVOzsYNhg8l6AU8ZfmIHUpL86CGD/mHCGNhSeldidlYUI2unnpCyMY+/kMs1ojmG/UvSF6W1jABgNGJzI1XL3BB3n177VsgzPw+IvoIgHdAVNH//jagpxva/bRADgP4SeuCSgH8KDP/HBF9GwAw8/fjFnjmg3bQDtpBey20+5iJfl8bEX3xvkPqJz9FRKfCdIrbtfsmQJj5RQBvucnx7w8+3xLPHJzzQxCq48/YHLqkZMeSWrU0GcxqS2sJVp8TVXV8so21D1x2vy+PrYgbLCiE1CTez97ZqkGBZmZKhik5YnWdbaTonw9ciKkf4mReY/ByjaovxxYr8u/u434Srn7S/3S2Qdh7xPdl+UW2+RaKqmKn9QGiFdYtwjzIak4Kr40XazU4Z1Cp+QcJZscYTWqD9i8pVYrNmZnLPcLEy/EJ0dCb1GqSCglOgDr1hXwwFD98CCVNF4y153zglQ1FqLgQ6qnuFeeiqtUNZ4JzPM+ZKoLDN4omv3FUzIf0R9fduSHDq/rER494E2Z8LJNSsbCoqMLzKjkkWrBiRj97BG21zhYcae1hUqLmgOg8yoYSr1p53lsdEc2/7VvZDbRb8ijDJgUmRwPUFNlSA4E7EuSZnNVSUIt0+YwtxhRYHVQGEF7rZtXgfDrnqC8Ck/VWQm7p4bOgEmZofShK0dPJ2yB/CIYKLao2OQ45cW16Fuv5WrxlpdMG/a3CQdlN2aC102DvEQs8KaRwG6w1plQ796K9xlFY//g23zGAP3AnF/lcw3jvWaOakY5KFKt55Dtv7VQoB4kLAoaB7ZVnh2iWu6h7NhC6EudzADEcUQWFFozSv0O0TP9M4ApoGTSrni9eBcd0w6K+9hjDh/0EbDLg8lcEJHm7CdIZ0LYG5WIprhrXZEYClwrLtQgrV0J3BqFLEYQkll6SErp+o2vQu0IuNyKz6GVF31DTRHGJxZLPUl+sxX7t3kW5lybDmUZcCxrczqbyOUQx7cfjh7VDVLELCwMtBsY9q7rdVHBMT8h5h4/tyvdMTngAwPpH97A41ENqYdh7j7YBtN3zUAMnPADJhUkKH5+S/CFX4wlAzO/EJEImLCdcORoOe35YS+Rqg2LZ5v/UMSzX1ML/lCx000wiVNfoYSEmDPcuDgSM5nW4frRjwQEAre3C0a7U7QStKxOUKzah0FKYOPBF30ifrICiSuZqnLnfBBQ45AL94fOHyLBO4O5LCu/ecowEXR/Hyya143Vp79ZYLHu3dHvLEj329IGTSEiokHN5IQ2w/QW4Z+216sJi5nfdi+s8MAIERODMIBtXzk8PeKy+W9hESEeyySsH1DyYcOEGNzmSRoil5RdlB1DNrDVsMFtLokS/8Um/q6rWpMHm0gZGI6ERBEKTOVAui+AAgKWX4kfMRw2ajFxAtklEc9XciMWKwGIXa9baSoHVpzztRXunkVjDIXntLlgeZOm2d9khXNhQJCS0kqM8m/itw/oZIYRWcwRyK/zKnt1klZjPiAB1iYckAWit+20a4cMqAvTP8BEhswQ8CicMmG4+vgXzr0RoGADLz+w5zXZxSAT5tS+SXWzvyRobHzIOdguI1aH9DjOXb9oYURxC51eYIKiwakBKtqogB4D9jLBNSn6+dGMSy3zUYOuNxpfjtUItjM2F5ILGVl4MM/fZxNp3Og1YpQmYH+kJiu4mrTUUy1s535xlo5nxBUdEi2WHgE4sTLtXClf0quql0brhhJyVO1sntPY4YjXQ+wIePFFYhNtiJcjA1OcPxpYaYL5CLu8HEAaFe9EehJroRNSGoF7fCVHPfg3A9zPz/LY/tO2BESBNQlgsp1HAHPDac77jV5vSbOejCsOH8gjOy7QvgJ2Rm8yK2AnhmVXXa0vJQrRA3QiSBWNxqLePsI+w/KKFGLZkke0+boOQV4DuleQGmKGnkBBKB92kFCigC7oYAMUKo7XtL9Daa5zbZWorI6o2m80oKroEWIhokEjIxm/Syy+yW7iAzWjWTcoKEHWXmVrhov7aSendOCCB9kY05AboX2rc92x8//YeA5o2Y/Sw/L3yjFSZVKHVuWSw9BM9jC2mb/kZQQio4JgcTVEsEfae9LvL+JQfp64VTJoMqEJ3thkIhBXf1+4V2cBV6y+7BsUSObqTxYrxiZmIhYeeo5r5Ytlg6UyJ3Uf9yyiWfMGnrTfGG7u4BveBO4JTnLstPNb2VkHvsiTXKtjDLBpwZiKLkCq4HBt12+bDyv4LLAJXEicUFQfTvKg6KiPdQsvSp8xXheYmFDphDsvuE4R0Kn+vPN9ECDY3X/dZX34cCEnDsXU0ZfCWBxBErr67aAygeo1aIEH7EQjd1P9u//7TAP4VgD9xJz9+YAQIYBEZbaVzsIujFJTV9IhX9aMKe4HbRDW7MHktmccUGqHwqNtBMhg87Df0hYe0E6YSMj4tMasa2uonldtIEqZCVJYpPaOsompcrGfOqLpxzCMb+mS6tWc9TFLGRJAy4cJOiuC6Lh7hXS/huYKp1zESl5QjKbSbWdfmTJY92dx1fTWWblzPN7VcQzXn1l4NNuQEEhvC9TcTmrY8w5e9/Tn81gdej5VnfH/WnyrRuSB+t2q5jbqdOlbXi+9aARBnlo9PMZKZuusoQm1NbNmdwcv+/KpNzq2nglG1aHXBqBAoe5I/o5twZEGMgaUzfrcvBgk4jS2U61/ghYe+v72H5XtisRJDgRGizzShL3TdhujAuk2OdFL+No7yHRAW3aoTsONq9r9WKkwJpmgiiHVEpa/5HnZeMtl8JDs2SmCoXFvJQhL9hg+FfbS/TeINXtdb+GzUxPQ+ZZdc33a+wMKrn7fxmxm72A8gSkoo2O+2vVZdWEF7EzO/Ifj7V4jomTv98QMjQAhWYyYRHmEcI9LEWnGZWMALDsXw60aqm3nolmgNfVlWXdCaOZ4sGlDtzXlOYi3LVIxsXGH1eVmh87XMZgHHFkOYkSy8SN63vf95qAF6F0OcfBDIPDOy15TAxPhYJqVTrXume1mk32I1s/0lgIHWrs9H2Hky95ryir9vMgd6lzwEOh9LUaPtJ2VKNalN3LNda41k0evfvYslOCEXm2Jj4yt2KC5/RYOv/tKn3P1+7f9+CzpTn7NQLGVOeAC+CNboeLygQ82Wgg24WG2AVYAK646ZEdpbcXLp7JBo2zI2ks8QlugN30M2EbpyHau65fM7dH6E8bThKYPJKdnU+2eSKKBc2gTI/RaGWnNVn5HvEjpWWKtFOT0s10+nXukAPGNx2N+ib7xAIE+nDsBT8QRztwnqf7ga6xrbWfhn1r/DuKDE7mKrgA0wOCcPHYJIWttxmWKdDyGDrqn8s6hQ2nvM/0SFByBrOBt7oRGyGt9149e+CwtSY+QdzPwBACCitwP40Gf4jWsPjAABM8CyQe1PIlysBP7eYBE5bdqundFxwtLZxlkQ4ottUNu8jKRgTDeDQG4baG+xM83lmuSD7duN6xMg1QqZyGWqa396l6TDs400IiOkxgrFffWeI26vQBNrDSUTP9/zFyk2ulgsy/2yCaN7ZeEDx2UjmH93Demr47MyhPZ26gsQrXkts7UjQkKtpfGRFE3uN9z9MQJTCwVFZlFZrmoj++diA1x5u+0cM37xd96EQ78t5y2DMTi7gJmI9GtVNXa/YNUFSa9/kdXCA+uvcyle3Jp7AgBzx1Rg40mpCEhlcZ3ZSgw6N9pbVju28SY2ci+1dFUjV804KYLCZTVjvpZErhgVHoDER8KxAIB8J0Z8FSv+y8FLtu+BVq7CAwAWq4T++drFArQ8gFrCxcBE1kTvgnS07vpr1FlMGR8mDapVEFZ7DF2VTSrPovQjraEoVS5GRnG9+pXngwdX96mfkth9lLDyglpZseXW2apx+W0J1p711jMbT5mj2f3tgKInLMh2N43xmobxfgLyCBmA3ySis/bvhwA8d6fXeWAECCeEqmuQzDmyPsqeD9oCsKa6fE5nYrGEmrVQv1tXVMGoO8YlsRUDI5BGOzkHZ+NIKBtEkN7JkQSzTeDobyhfh/YhDNp7adferjE5GpQNVQqKYOMJg7qbv7ONphumIzPKlZYTAE0ri4RN98oC2QW/i05ffwjppHIFquSeHiRQtQk7r/MCMx9610xnWyoOKnIomzIqpiiBbrHig8FJKclkmsldZxQFO/W8I79p/fTn5th+Yw+rT9sdnRloAG5LX4eP9lDnvsBVZ2WGokjR/khIOOVbspB4lbp+kjmhWKth9nw9EE58bY7NjzYYnjJRMqHUkmnc2ABeYHVHTcRrFj4TpxT57PceJeS7wWbdslbcTmitCiwaAOYb9vvd0N3K7t3O1hPMNjwjbf+8wnSDzPZeeD9CHhTXolo+d854i67ptDA7JoADQfvFVkA6j+n1OfW1VpQfbHDWz+3xcS9hkjkLgo18f3Ssho/a+WQVkbIPFGuMq2+T4xu/K8eVDwwAHv2JPbz4xwX9oMJI3c4qxMN5GUKm77a9hi2Qb7gXF3lgBIi2ukVC6mfn+uSY1XTtfKtzv9BUqGgW8GwjjayJ2WaK9m6N+apneAWAlU8H5n4wf5qUHGwV8BnHV7/EL57ONY40t/D3KjzUgmoSQjEg5wJpMjXB5e/p6SW0r86BMJfiyhhbX7IKQDStEDc/38iRXRDBoW37dW3viptJ3oM+b92ShexcZ+Ths7uPGXSuxe4Aoa6PA7gxBXtQ/VHL/Fr3XL5oQMwwcz/+h37jGjhTBcBg9MSSc/ftPUyoOyI4AKAoUmTPdG8g7lP3CtuaEPPH5Px6O8eTb/RwnOeeP472pRTrATdW95pHiTVpTJAYvkNtStevLcxqD8kFHcx6ov8SOte81ZPMYnr33nlC2fcWyfQoQDWhZ+uITW0yfGaRTNlYiqLNN/z9I8SY3eA714Iytpf2wJYbq+m0MD7t4efEIjzUIuleq6zr0b7rgPkWEAWpd3GBUYBIjMbLDkVIrR/mGqnwAID1p2tc+krjBAfYFvayZQKSSeGEBwBMLeihfym0OLwgS8clZodvRG69msZ47QoQZn45/NvyFb7igXlwBIjdV9XFopOzzkSrDnmDQnhhWFins11HG3rbsvu2t/05Qp0QnBR8HJ6ygsbeS4PjUSW40vuWO1elElvdUS1YfeUaFxCXiKsDPlKtSq6bzBuUS7mzaHovDZ3wAIDRqQzZxJfIZUMYftGR2LUUuPvmq4RkDtR271DKbBVgpmIniIuBUKM7F1SixbG8K8EUgctrV4LkjtRuLlT6qsETM7JrY3DLJiq2UpQbPVEGAAwfFrRc8ZUi/etPDVAeWyD5qAQM2oUEmqP62G3fP2qAydt8AOP0k5fx/MdOou5KB9c/JD+cWdrxbMqRO9GUjHRSO00+nfh65q4Fn0cng6C4Y+iVEwYfiPOIBJrtXWyaSxPmmXSueSEw35BNVilB9D31L/iXOTnmJ3xrr0bZM45uvX1ezCpaxK4c/bs8tnTDs1EjVDOArJ8wsdBV+wz6OznWchame8dBDGTvtEFmg+X5iJ11s/IpsfI07pjOGpz8hSZy+/bP+Rtd/P3LaF+H4+ECpBZLWLO9bhm0tkST2HndzS3UV9MYhKp5bQfRieiPQpIKjwG4CnFhPQvgjXfy+wdGgFDNyPdqxzVVegUKdQZsflwm0Gwzi4SG1rIGgGI5CCbD+46jYjRL3hVQ9k2klR76Xcuhte6vQzUHGz+jWEpcrQNTWdfYkn8NIZQyH9vM81mMssl3rM+6k6LqGNen4i2rItxU+5/4++qDlF0TbbIx4kzRXvJ3k8qz3yzDOh9Ktr9WlsumDFM20SZh+sZtBHINH3RvXRqBs8RlQNf9NriVobFa8HyzhSb18aTtdy7Q7hVonpVd0zTA8oc8WWM6lQ1WXU75mDE5QpEmb850cPxLRW0/+/RRAMDgUz6+VbUpKt+b73nBf/h35J11rgRkkr0wlkWRazLML9HcIoXBVp0kcnXuvFEEs8ZsOPUQasCSEwb7lCaWhjlE+R5j9zF/YOmsn9fppEY6qZHt+Y2Xru/6H7dyIM8xf1j8d2q1qksK7IUHAFz5MgBosPJMAPutgULLDF8VgaXJjJqYqlbI3mlJhFSlbrFMDo2n60kBHsVqjsVyEj3/5bf7jMTCAg5CmHTZT1xcTy3dxbq3hsI5erfttRoDCdrfh/Bg/SIzfxERvQtSRuOO2mtbfB60g3bQDtrnqrG4sO7kv8/UiOi9RHSViJ4Kjv1/ieg5Ivo4Ef0kEa0E330nEb1ARJ8koq8Njn+dPfYCEd2egFZaycxbAAwRGWb+FdxBAT9tD4wF0mTkrI9imRyDLOBZRwFg5f2B66+qMH/LQ+5PhZQqWsahV4KgW1iQRtEc2dAWfsoTzNczF0MAxC0WavD5sHbXX6zmMgmDwHhnq/EUGPZW6qvOP3UJ5SOHsfeY18DCmIvi51c/KZpmYoPpo8e8OZYsvGtGWVTnFurqXGVB4Liz3Tg3XbLw9VaUa2zpJe8Wqtupc/E0KaF7cQFO5B75tTFgDGgs53MrR72So2np+QbUZB4ptJSg7BC2v1yenYhRf3IAY7XH9jUJNGtf05nktygqrEkANB66W6yK2+fqL0nCx8oWUCzHlBqLNaC1E4/9+tPWVaWsvoHVEc6LyaFUuNIUpny5Rr5na9OvZsiHniGBKsbuE4TaFitzbkHryk+KmFl49yvm4Mrfa+P91sJdBPG2ALbbvyRzLAnqm2R7c5htvyiaIxswOxJsqI+u3fA8Ycyi7CdoMmDvdTYBdc++0yBuEbqFdV65mu+TOO6XDyWWps+dDz0ggCpGPiwdnYqMj3edjk7GMc3WDrB0thF0JATxFQbMiS20316/vdPcUOb41bZ7HAP5IQDfC0ns0/Y+AN/JzBUR/SMA3wngbxDRGwB8I8TNdAzALxLRE/Y3/xzAH4IU5/sgEf00M98ur2OXiPqQMhv/hoiuApjc5vyoPTAChI3PCG9vs8v1WP/4BOmLl4ITg8nT7aL9/DWM3+IpuSWHRM5ZrKSSuxCUrM2HDTpXZINerLfQ2lq4TRCIoZWd7Vr+tnOs7Brkw3ofNYNf/K09jgRCsgD6FxbIP+X7Xy7nmNvkR2IhptOmZIRJUFZ2fLrnoKicxkF79VFrzfPZJgD2bgH1ret4yLPZ56sZ6bRCsSILvewZSTS0C3Xl+RmyrQlgbDwnS9C0M5jUbi7dDE2WOIFUtwjUkCtJWw4IjQEGn7BU9usiLHTjcNDomXfTmVriOHI9m7yomepXZI7oeJmasf6s8CoBEqeaH/Ibz9Ffs2MQ1AkPEW2TYym612pHC1N1gVE3QWfLosguLpBdkZtlV4D5KR/ovfiVIgDSsRdWVMc14CcPBXlMVngsfdRyti3JXNGZli44qp+RTiW+NDsUoOvWMyxbAdIsi0JRnN60g0kol1IX2zMlRzVpRsdljDY+os/PyIeNc9lprDBMLqxbMW/bYsnPDQVizDb1X8KRD/g5Ozvk3U2LFRPFHHs2OK6B8WI5RTausTz2uS5NbuKyteRLWd/rmPe9EiDM/H4iOr3v2C8Ef34AwH9lP78bwL9l5gWAl4joBUitJQB4wRLZwpbJeDeA2wmQdwOYA/gfIGU0lnFj2Y1btgdGgGjLR4yVZzyMw1yy9LBWcGhxJgAYvmnN+b61pVNPCpcUDDA7bTQpGfn2IvKnzg63fYXCrgGI0LVki0IRQVHAscmNE0h1iyLNUepNCAeUe54Le2iOrLm/tx8PgokXFV4cI3yGj3uLY75qxIqADebbOuja6txnslMdJ8p1r8X8TmzIBY+HD2cAMs+wOmGsPD9z45zszsB56mC3bAjFSo665YMS6cxX+JseSiX5TjmojMhdHYn+eREITsO/VEvN9qtiXTaZwdabPDli2ReAgAais3EcVK/ahMVy4gAO45NA67rB0hkfL0oWjctXAQQ8oaR/gJTR7doEvOFDqRMegFgq5WMrAAQOvv06b2YuvSj/Dh9BcD67eA5nDF7yGyoZGzcKkuBEcCo6zyogO17YTY+k2HqzfD7ym4zlT1wHLEChXmrZpM1AWZk3bqxUqGvio943rNhYt40by8nhBK3dJs7PuF67deQqbhYaTCeMT8JVt5RjgSUYjLHk03AERAlRVZrz5PjhNHhur8cp+drxiBW8u20MQn3nQfQNIgoT9N5zkxLft2v/TwD/zn4+DhEo2s7bY8CNJcLffruLMnNobfzwK+gPgAdIgJhKCiwtf/QamkHbCw5AtOAlz18wfNNa9FtdGA5FpMVrUskZUU29zgizw+0I1hpWKOxcmYMTg2JJFmpr27qSlrzACYPwRd+gNWoc8keTq3qXvSraDPyGOzvWc1Xc5Frknh0QCyydeYE3XzUoljzxXGsv3oTCQKaMAzA4H+e21DlFaCR1UXWvNpgc9otn+cU5kp2AgyJLwO3UVYqrO6kEN607L53KBqPWWGerxmLZeJqWQgsxWbdiIkFjtSCqrsHSizNcf4ugaqqOuICqjt1sdyRxzTLVoxjElfFae5IAqtfrXCcBRVgeszo3EcJOtWAVvlVbNknVwrtXJQFVCQbDoO+Vt8qL7drKAfrd4Iw/Z3zS30zcaC2Xs7J4fI7lD7Q9OmsBAD6JUbPI9e/ZRuKEByDMAvOTK47dFxAG3pA8MbQeRqe05LP8vfwiR+5LBQhUAUBhfCxB77LlzmrEGlR4ucLmQwFz5LeD/KerMyzW5WJlP0E+bNDeku8nx1so7bx2fe+YyD0n97RjM2+isWey/bHzjhNCNtyXaXwX7RUE0a8z8x3HFsJGRP8TgArAv3k1v7/FNX+dmd9JRCNEMCHR25h56U6u88AIkGRaYfmj14DpDGY6i79c6mP6iLc8FJnBhiKXVkgpAniNyfln9ykvgrdvkMxlAau/X7WpYqUlnFErAUFjcI2WRZyEiJmyZ9B6ecf9PXvUU5IvlhMhU9Ss532UEemMI2Zh56IKYhplh9xz1S0RmMpfFS5Sd42glGlSAO1rPp7Uf8kLOprtW5RlDe7mqDuKikuQzvzinm1myKaNJ78kgaH60sPG5l6w6wcn5IXjCuHqN7bBmTxk62qCqsNIZ6qNyzUdTJmB/uUqQoU1iU/qVCtU0VHZlDHdTNzxJhcesXjT9JUBe5drJKUX3qHVqX24FW3S7JC8yxC2W/b9e2t9qB1xrrGRbHC1dAFEWe67TxBO/6eFQz+1rk7sMwSosSVvEZmiQV4A2Z7cZHRqgGIArLwQuNFSb5m439lpu1giJzxcf5L4fGJgOSh1kO36z5wQcvt3Ok3AiUFpkYn5qEad+UneUgGvdCqGBM7eDxWzEAEnnWxf8crN8Img9vFdNOb7nwdiK7J+A4A/aOsnAbcuBY7bHI8aM7/T/ntXg/HACBA0DTCb+8+Jn1DzUyvuM6eEKqBlqNvepaS+ftUiq5ZkS0ckdcGGbUoLEVwTtdZrQUHNi+XU5W00KQFE7m/VZkPobu/8HOUREf7ZJdlBZhvWDZSIlaELJB9zVMOiahNauyE9iNf+AHEPhSR02aRBOvdcX8IxRHFyZBDgT6e1CyIr/JksFJkWIky4K2NR99uoe6kTpuQsgcT1NVmQYxTuXimlRLDyiBk5R4OvnEiSpuNbmgOdy8aTMxYSU9CguBII6jtJpxJ7crVNlg3KLrl4Tz6yxJXWVVJ1BAKs79vUwOgEOask34sFArG835A3TQVv7zKjtVvHtWU2QveRHRsfJkGxUaO1pzknciyzAr7OJNu7FTBMFwNvSp78JdmM2+d23bFqrQey87VcbcEEbA1aWKqwLNVrz5ZYrHpW6P0cbELEGATtL9aROyy00LWFfWUiFKttt+7SSYEmDxgcjuVuTSQLjvjd9gsxAHGZ6A4hmbOLB9Yt49ycgAiPMJZ1t43vowAhoq8D8NcB/H5mDjmEfxrAjxLRP4EE0R8H8DuQ2fk4ET0MERzfCGHXvdX1EwBPM/PrXm0fHxwBAnhrwhhUJzcAAFU/i/Is6puwiOqkdHQnAa8PNV6rZIq5pyqbABjiyquOcVotNRxNVjX959Yi6V+uIuGRzC2X1YVdAMDi1BpM0fgFCdGulBm2HFiN3H6vwXDVktOpaI5hbYV05hMTdXMO82JCTW6+atC9dvOcGVPUksdRBFn53YCuYjTDYmPF+cHHx+xY2dO712sXeAeA6eFM8g4c4qsB1eSTKhNb891utmvPzVHnBqNTNsi+CnS22NW83q8B122DsmscSMGUovmrC2uxArR2ybv0SO6neSTJ3I+zjBPQvxDSgWgw35+T7nOz5CNPZw7ESY/5yP927/U1Bp9KoO71fNJE1PaAzGNlmNYxVWRc64wEF6pD3gsRxu04kViWIyRcaYENuXm2sP1z8aKbKFLhnFLhkQZ1yKlhFJaDLZ01UY2edC6ccOnID5YqY8NHutGaUCsrXEdMiIgewzii4yqz33cvzTE90gIgz1/0jFMQ777dOzJFIvoxAF8FiZWcB/BdENRVC8D7bGnwDzDztzHz00T045DgeAXg25m5ttf5DgA/DyAB8F5mfvpW92Tm2kJ+TzHz2VfT7wdLgNhWndp0n8fHbZVBLX0avm87j5JgQmWzxmlqgM8S19YEAsgsZHOfrwUorNJnioMs35MVbE1OKHrGJYANT6XClKoCYFs6OX2d9L/OJTkt1FbzIaMcxALPxUBskDikww6hlo6ryKJmFGlTBppx6NJdeXGBYpC6qm8AkIxFm+M8hZks0PTsxtRrgaoGNLfP8PAKAA/pNEWssU83EpvZzq5vTeYTyZqMIiLJZAGsPl+5olzlIMXkcOqQPrll+1WLYb6WYHyCsFhXNySjd5bQ2O6yEc3eFdUqJfnUVTokERKOjdd4AQ3AlVz1Wf5BhUgAQiaplp0oISo4pofjeEoy31fd8SWBzS6dC+lrGaYKBGJYCEv5uJ675r9f7bt5PDnVRRIUfWIj71wVndZ2BU7JyUeNBYZxkbBcrW7mygmnAe6VFwLura6Pd5V9g3y3RhpY5smsQmPdm6bwx3uXCvTPM0rrYnNU8QFdTxN4EIQRYV/9jwCRtvUFXWGjsF7tqhMLnLtt98oCYeZvusnhf3mb878bwHff5PjPAvjZV3DrVQBPE9HvIIDvMvMfvZMfP3ACpNlYQdX3qppq2RE1tn3nGgMIA+HprHZ++KZlIivC1Tuw87fumAjBZUofXwGA7ScTrD5fuVhEbgPmep3e5TqyiBbrOZIidg8Ufe/3b+1KDkf/go2xWEESWkyAQEoB0cgj4TjWQleBgGwZZ1Wp9dHelsHKL4+QX4bnt8oSkI330LyK0lCpajA71gVgqeOPCAQ61BxDXqw6h0OHycWFZl43Hf2d1lRvMqnoqEWOmpTQP186BSFdCFOyUlpwCpRLvt47DKNc8vPAVHBWBhAIN3s6MdC5GrglbbxJQQjqClRQBNUcWRxN6mNNunGH7zVEwjWZvKvRce/yAhAVRwvdX75ksR/P7sVZZAHOjnXcGGoVS8ewMGuirPliJRH2XUVoZwIaCHM3QlhvY+eJ3r/siqI0fFg0IyY7t+3ayCYWjZjKdtO6vogC+Bon03EEgHTkF2yTJy5HperETAqd6zXma0mUa1W3yNey31eAKp3Hbty7acxA3dzfGMhnof2du/nxgyVAiGDmBQDJ7wCA9lOiMe99xWl3mm5C6QJoX5phsSF+inRWu+AdIBZG1Uti+vRgolbtfRX1MgBzXxMDAM5/tUHnkk28GgLdK+GmKf+Em3zZMU6zq3NywkDuLf+GBXJ6l+tIAOqGCgTafGBgcEpYdH3/mpycC0TrgOSXg8BJ4NsGEaABzbpG0/cR5elx6WhIeVHnFAmJUNi29poIlku1fI7oQFJfwCqbNKhzg2xk6UDaCcbHM5fnsXNauLkcjcsQSKfkCoYRI7JouJEiUfr+Guseu1W1uvmGZYa1G9PgvCgCKrzbu4yy55WDqk0untK9UmO2nrjv2ls+Zwfwrs1+UNclD/JPknmD5YseGDJ+WPC+4VwslnN0rHU4eVhcV7rpmoLlPSt8PCdk49qxLivCTBUrU+1zV80Ydds4eG02Fmp+V9p2Logw/b0g/xJn9a98uoncf4tNGTR9l4BYJICPqWk8JnwOAMimDRZLMYVQ/1yB6RGtzeBBEgBAte+jtpAw9W7ba53KhJn/8938/sERIIkBeh005y4iP3cRdSG7bbK5Dl5fxtJzgmyinRF4bFEpj59CMpqhO5LFWR6yPEtaypNFa3eoqkF6QwCuSX3dhPmqwXzVYPy4XQyFFx6AmNZ1y1Oe6wLWLFog1o6aTDiOtOnm1b8QLLxA+Mw2Mwxe9u4mJaBTzbMcJDEgwG5cSaD1d87tRUKjaeegxo5HFaJyUtC8wvQhwZoOT6m/249NFPwk3FA3BYhdE1QxoNq6FTaaGzM4J++iSdWnIbGB7ddrsBUA+xhJk8c1NJIpuWA0ABQr8q8eYwOg8bBmU4klN3+DPJA530H7elCJkIB8XIMaj+KqOhSVwHUoJiK0Rk1UzRLwaD11D4X09p0zu8GJhKadu7Hpn51isdpyG2syb8ApYfrQkju/7JkoXhdmZ6tLVS2cFFbABnMj3LSpsfVM7NxfrFA8j7QminX/tbdF2A7OaR6RcTxggC+x4N4lAFgrJB0VkfBwfbC3KztG4lcbco3BywWGpz2AYHpU+qLFtgBZUw4td6m8Z3TujPsbRP9sNCJ6B6Sc7esB5JDYyeTzDsaLRYHmzHkgMeCihGmLlsOjMTCdgfqitanwAADzyTPAscNOcJT9NFpEQJzg1Lm6wPRIy7mdboA1lsD2l1RYfiZI9jtfuzwMZ0EEQcKqQ66cKiAlabUpwVzosw3zOJIFo3Xd79jtZy5i8cRRt0DSmdSTrrV4UsXRwhfYKUWInMWxJbSuxLBPNppJGQirE7HgAICqByyd87tg2G9FS4Vw0yYhJLWH6Ta5T04bnhTCPYWvTg8ZdFIf8FdLa/nTKrzFWnMuqkKqDOp9y74IZC1R27sgwWct5gSKyQmnJxrkJybInvIox8G5kCVWSsKqVUVNXD+9c41dYBgQyK/77roFRjhBzZG7Skk29ftyXeZuOZBrUMUwNcPYoLXm14SB5WTeOCum6iaeGBRBcah9e59WItQ1EAr3/oXSHR89lEeuV1MwFisUIf6WXwzIHDXPKmBiNsG1TdU4YXKD8CBxuYaKWxnAdFV4qOAA5B2rMOtek3emRdtCC/fu2wNRkfB7IWitn4BwYP3XAJ647S+Cdi9H86AdtIN20D6vmi2E+hn/+73cmPkFAAkz18z8gwC+7k5/++BYIESgzGpor3sEOGPzZ5IEXBRgi3CiJHGaHR07DADIrqrqNEDVSTyKCmJmp1PRpgQO6M1psxDkUBEQLObXUsfxs/m7lohP+ZsaDTr682ebnr4jm8TxiukRGwS1b2n5RbEgPHpG/DXmssA2Z288Jifa/jW5xGh8hUWJ6agVosWdir7coHu1dNYHACTbMi7Nsg/EzI+INrz7qPwmRA+1t+C4rNKZaMn67NoHV6XPSA5I3fZQ6GzSYPsJOwAkFsP0mPT10IcZe6cN9us8mjhYt4XmXK2I1h5jvupjVNkEcbNjpCgrU0qhJgdxHhksLvbQsS6x3mVLCOj8/HLtELa7+bsBLLVmB/PeeySN6GlMKXNBebbqjkHdNg4mXecG9fElhwDMd0tnfQAAEgKVjYOna1Z2aIGEMRQmcRuF1md4bp0R0kXjLIxsVCIbAeVABsNUHFnmHQut1XcNyHgrSCKdNlF8Rq2HOJ8qsETTuG8AAiu6Rp0bX2Z6t0I+ImfRaSxpEFi+8w0/VmqxqtvsXhEpanutu7AATIkoB/BRIvpfAFzCKzAsHhgB0vTaWLzjdWhdHomv/oTUe2helqpzFCQWkrq3rlwHHd5wLizAZjwr6ighmKJ2C0BjBaHrKpsysqnnvoLxQWw9vw7dRoVHH00Om2hjc/54+1YWeZwrMD1EWPtUjWxPNqp0V9xX4y85IdeeN1HfknmDpmWci0ppSHTzBxBVFcyGBZpOhmRXIsnNQARHseEFyN4jQZU7AMa6mJZflkCxInM0aOmy/ilGIc3XDdIpO7//5BABSFArXccMmG/6vl1/sw3g2g1f8zN0/NKpCHaXsc2yqSkEuslkfHVs05HQjsxs5r6pGN1L3p1YrDbIt427T50RJoeSKLGSDbDxCQ+nqgLI9zAAMyQLeX6Fl5Y9Kb88qHw8hViAAYAIFGq8MjFfz4TUU0EXFg4b5l2EcPOqTZit+/v3LlnBFMBfm4ycENX8kXDTV+EByGZfLaUOvaf9GJz3SKn5eryVNBm5uZgsGhTLAYqMYt4uJJ6vKplK0a50dvPcJKWaCUEI4xMJ1p7xZIqt7coF1ZtcyiqHOV/3qh6IoLBe806cPwcRGN8BIVQ8CeCP3+mPHxgBom1xZID2yztozkuFGSc4gsAwl94/2/TbqAJUUsRWW7FACAO/aTaskKah9hYEwBcNVj618MRuLeHsCQsYTg6nbhNSbbm9pRYBCfzUkuqpP98lz33KBuet/3jvjatIZ42joS97BsnCw5IVL6+Le3LYCNFN0J8wsK2CQ8vIUl2jDri4dp7I0d7xm0x7q3JAgHTaYDBtnL1eDlKkc59TQ5AYk/IhaSKaCkhOJYbikjl7QPdiCHGWf31mOTA4z5it+9yGkFK8zgmTI544MpsA7a3G+c/ThUCMlTBy+JBxWekA0D1v0L3K7vzFir1/oMBufqwI2ISNpU4JBLIVphXLACgVeZMDnavsNPju1RpU8b665T5p1ZEQ7tPgw3yIsCk6qrNlYw+52ccuoBBpS8GTiZKhiX9YTlHnfpPXfoVQ3jB+Ism2wfoyGlTXf+NcqnTOqDvGnZfOGyRBjEaqVdpxt0AQHTtT3eSZGdh+fW5/K+82FDCckJuX97KYFPB73z11B+1LAPwnZh4C+Luv9McPjADhlLBYSbH8MYHvUho/Gtd+gpq1Ffd5vtGJzhO4p8yK2aY1k4d+1uVnrmHxmBSvrjMTaV7EQPu618qMrfOtbXI4dYlqgCCsTBUky5WMRS8w7TNPX63XSyclxqf8RaabqSPdG5yrkS7YY+xZ7xtkAQcwVX2u7pk9OT1LQIvKl5XNk6gEaJh93N6qAOZIC9YxAGRzahJy40MMjI8E2P+M0BoypocCgEDAf6lC1gkMmzE+OB+sWGZfzyOEG0M23bVPNpgc8eWCy77XdKu2CFJFeYHFBef6sifuKnXBdbYY6RwY22Dt6vNVDC8dVaCqcTkNKy/MMd+QTa1JBKGlQeZ83AgMNQgkV10TMc6Gc04VBuW0Ktc64j4LSEC55fOFNLlSA/zJIs7HSQpGMqujXIzxidBiskqA1fyT8sZdMsxLKQYGSekRbHVuxLW3b3fVuTHdTNDZaiJkVkj0qOMGAOPj0kcFlBRLFCWk5kMp3aBKVs/W6HF9X3AEF27ye2sxPAAurD8C4J8S0fshbL8/x8zVZ/iNaw+MAKGGkc4bzE+vAgBaV6/7L+saZJFE1PJO+/kThyM0ifrp1V+azuKF133qEsqT6zALpaSQRRfVjg7hkAZYLPshbg0bTDsGWZAd3r1aOUE12yCY0lse/U/LfcKaFOUgc+6h6UbihAfgObz2z+nVF9S3TphtJG5z6p+VVUcz67s3Bs1SUKxqvYX+xcr5m6nxiVlNTjD7KCE4IRR27LJx7SgxAIkT5eOYwXX3icCSazGyUYjskX9DZA/VcMl2prIJd1ZwSL8ocJ0x5qvGb4ZdyRNRq6+BZDArHcl81caV9mLLKMzkNwWjY4WMWn3tLR+3yOY+CbXsJ85llyxYrKN98NnY4vDQWMmsjuMVnYve15ltz7DY7HqtP5HfqmurWEpjTq625PqEgqDuJM4CMhWjsxUoAuzv6w6R35RnGwna27VDE2pOho7dYjmxwkTfzY0w5jr3HG+Dl70bUOOMIaV7a5ej9wr47HdhVebI1Ru6vMCMsp9E8PhbkVq+0sag17wAYeZvIaIMwNcD+CYA/5yI3sfM/687+f0DI0DAPsO6dXEInJAAOS4IIFwFR/3osRt+qn541ZYdVHPKUTBy9MXH0L62wPSI7IKTY9YvbzeZwfkycjMUS1KzXDeGdM5YerlGov5dIic8AGDp5Tqqha0aZuhCi+MvDbIp0N7elxgVLJC67d0XZd8gnTO6AV18emUvCpKXSy23sak7ZumsBSDU7KGkFgKsbhRTNE7wAsDuYzZD3O4N6l6ahlZIy4+VVgIsluVYXojGru48aoBs6rXc3hURHprfUK+YKFlM+utzZ0wNV2tcW1L4TbJ71cYB7LuabSSo2oEgGYtVpLQx+aiJ3DjJvHYJcoBYHQ5AoLEDjXm4rHf7rLsl8p3gWosa5SB3WnmTm6h+fNXPkcxrlMuZu25SNBHnWz5u/Aa/p2AOPz7KIQbYpM6UIvfb5EgaMT3Tvik2X5MaINpCfimqGUlBrkY6IAqEbuLJgtG7FOQrrfu+qOBwlS/HNypEYds7bTA437j3WrdMlBulLRSG97K99j1YADOXRPR/Qx6nA+CPAfg8EyDkMd5ms4/soy/K4TwD8gzFG4TlOJmWKJetMGlJsFI5ivazjE6OGIxPGCy9rAR9hOmRtkvAAxBZE8m8Rt1OnAakaCtdfHVGyIdVtNBDjqH9LKZV1yApGeMjwfkBfcX+OhDuGlZ7rdsGo5N+F+hdbNC5XiA/v+uO1at9lyhYLrftc2geglh24cajjW2QdLqh108iNlnNtwir0oUJk3UL6L8c4Pkfb5DMCUsvhuic4HpWAdd3ARKt21GejGO8pGq7Lt7kCCRtb+fsKjtKP8UCHZ0IArYjPx9aew04QUQ/T5XPvagGGYq+iShz1EWjik0TEgpOK0fkmJ6/DrRaaPqBAEpb4CR15wIiOACgaSU35O+oNQz4oLj2dXooRe9SGbmsBmf9Br77uFx3+FgQv9kDeloIk0Xohdxrrd04l2OxnLh54gqy3cT1BYgitVjNIuTVfEWVFgGmaGVJqiX51pXHnYq1od8D+3jBpvvuSXQDwuueNQb4NU5lQkRfD+BPQYgcfxXA/wngT97p7x8cAWJbPqyELvqLHnXHiBm1LTtbtxKkk9J+zrFYiSGEScGYblgtyI7O3kPWLTOTTUWDm72LcWKeQlLdfRuOyRXhg4KA9zXrNcIa2tqKQeLLlbJsWEqGqIlfrlhOaukkNPPcull6F4MYzqWhK1LFSYK6e5MpEKyJOjdAwFZctUNryFsW6qtWDb3uxPxj002D2aHgum2JLA8fDygpzvrqiPlQrA29RtkHVp6PacO98ALaNuDr4hI3WddqZcj3VjAMddMTRUKFuLpj2tanbmp5XtV0qeIo/qWuvU4QA2t/6opce9AFiFAte/8dGyC7IlK2PiRu1+lJsQT386GBEyQU12MH4IPe2Kel29zSJuKb8mOlFrAKgLXnFphtZhg+ZjfpPUI/qGtHjWziKtCbFKAlcoCKytXm0M5w5BouuzHyqbVnocHBMa0yWA4E7aX1RcqeEfaGQDBUHQ+OyG9SA136HPffD9S9TSZ8rbuwIImD/w7Af2tL5L6i9sAIkCYT//7+es4AJEB6VgLF1XoXVc/i20sG2FsInMAJD0CoLJKpCA5tEUU37yvz2fK0Fv4ahKprYypTjlwBmh0c8WmlxsU8KvXlapnYBQPwm0u6iPH5VDE4IyxWNA7RIBsD/U/Ls1NRoel6dwHnIjxVuGqAMVxgkd8883xKZc/Emp/Vpt0mYmGrighydeEH1jo6VGDvEGCuS3+WXqQIBaXCJgz6h3xSgBfwgNd6lZvK1LaeiH13Ll9Fs7s78p0CAxbLxmZ32+eeSx6LI0JMbiw4Rg07huOuLa2qWeTZy9fQbHiTbHas56CpZlGj6mWgTYGPU91g90lfhrjOCL2rlXu3dVvyRMJnr3NyioyyQaswr3OKKHM625B5bl/lYk0GLszPWCwbrDwXj1W08RLQUWaEtqy36SG5rzITl4HLKiIZrWReLL/orR5F6QGI2K9dpUpFFnYlVhVyX4VILHUxq7WfFOziWQDAJGMZ+pruFZki8NpHYd2CBdg1IvotZv6yW33/wAgQUzB6lyq3KasPlRpGdnXszsuuTzA7JGpu1THRZCp6BukMmB321y2XgP4lP3nDJECQxBXUIpB+NNEED/3K6lOOtSO4zbVuC9+QWhZ1JtXWXD6JllUNhBan5DYaV+L0aqAFX/LPjrKC0N1IU/hyXFshWHwJYXTYa64hCmtyJN5MW3v7gpMs52gQfGJDT00eBKWv+74MH2WYBbnEvMRu/CvPB+icICivPFta8hYQ5uKQToRqn+iXTRhVx+cmSJ6IH8eerVynxcY0brET1KBXuDUAJHaIO1dFFW5SQjou0LRFOZm9/qiLYcw28sjFmu8RkkXt0EZ1K2Z17l2pxUVVSx+SmiXWpLK44iiBcXC2QN1J3PxoEhEeijjzFSV9/0NwSNW2tUbsUKZTSCJn7i3PkELHzbPrfvw01gQIUsoUfp6r9aCuW2J1Z8oNu9cav24TdV3Jb/MR76M9kbiknl91E5RdL1yblNDabdxc6WzVQpmjbsTc3DOXFuOBsEA+U7uRmCxoD4wAIZasVZBoHfmWV121Wh4ADL/QS4eyRyh7PtipG3X72s3hlP2zsqtNj1oXUJAo5a95I+12+7qNVbSkqJErKdtJrBbr4ZiAD7YaI0SNDsq6YLSuz10FRHUtKdqpahN6F0vk294SDQs+abC8WpL+m7JBkxmXy6HX0KZBadVI6xY5jqG6JZt8ZVFgVV+q9KnFoNbEzlvk/oMjY4xfXkJ2zL8XM/Q+f0VnrXwqEOjBpsSG0L0WowvHx1MU9v5F30QU6T77X58FN9TWThex5gsIOEBbWOmuvc02JmT7Q8DKcyNXSc+UjPkhD0YoVhJQpZadvMd81ys3KlQAWzOFvVDUDS4U7GG8AyT5QuGx9rUFCltDQys7quBo7VQoBwEyixFp5FrhMrT2ogB6E78L3CSXImSI1mROXTtNSs5SAyyV//UmQi+q65Fq4RgLvwuBIxoPCmM+kUKmkGe9d0YRW7UpbtL5V9sYt4/wPxjtttL2gREgB+2gHbSD9tlur3UX1t22B0aAMMVBw8Vh8Sm3Py35IPNHN274jWqjUXZqoFCsfmqOdNerteNHxWftXQGM9tWZQ3WVvcT5brV1r5RRxnCykLoWgGjAaaAdtbfnmB/qRMlORd84TXL12QmKlZbvb60JY15dzIYl2DKbpkpJ0raukp5F8YTB1bbnGXKxFastDk/JdccPW1/6JRNxXy3Wfb5Ga9dSudvxmx1mNL0agyPehcZLFYqx9KF9Rv7Nd+W79fPWJRUgtaouMDxts7WvxG4bQBBeZN2FdRsuqxwAFgOp/BhmzoO9haUuK9XimySGsU4Pp1JUyiYqpjNxgS0/H1hQWyPQQEwypVJXkAFVPkid7UlGvountEyM5JtpjEv7YvOJ7GAmc+vSKrwbJpkzsh1R9etuivEp72mYrxjkY8bgjA/emZoxOmlL4Nph0oqDjoI/mPsKZgCAwTnrglIW3CRGyI2PiQUVB8obb9nXQsPiqPKt+y+MsYRIvyxITuWELFrSu8GqNnmABsWuOVMxyq5BvhdYqwHw4l6z8b7WUVh30G77gA+MAAE8QRun5IjpihOCcIkruik0UxOv/HeKBgGA/OIemm4L3JZhUlO4fU4ImZpBC1Uvdy6nZN5EAiSdS11oByGdeuEByGZDlQghACjW2rbMq01UXE+jwO3wUSsUA6RPkxusfXzo/jZTv8s2mlHe87GGcjl3ZWG16eLUMrKzdT8e44cbdM+HAlD+Xax64eGepwNMjgeLeVBidN7zjK0+FaPUgHgjmq0Zt+kUS7KJdq9Yl4QjxfMoq0VAi9+3SDPltgIkeDs57Mdv+UzoyrCbuxIYtpII1dRkUlEwdHmtfmIPZscn9M0f86WTw35pSwJ0UIiCKvtx1nmTyqYaxljAcCVgOSGp6W7do+2tAk1uUC1bKvPDOZoErt47IO66eZCXMgliWZpMGdY2qVtwzgqlh1GX1mydULfFRan9bVKh3AeAclmILJPAhRg6PhxyTcGEaVzHRqC6Jjg/UAQsh5bmh7S3G1thUb5XfrEwrpGNah8DtYfDdRkK77tu98gCIaL3AvgGAFeZ+U322BoEIXUawBkAf5KZd0gKpP8zAH8YwBTANzPzR+xv/jyAv20v+w+Y+Yc/w33/MoB/zcw7tzjlz93u9/dVgBDRGQAjADWAipnfuu/7mw4EET0E4CchUbYMwP/OzN9/23s1EgNpMgNU7CCPZUdyKULtSNEwTSZIFo1RKPy1fUbGktsZqGlQtQNf+Dm/WVPVAMbzYVW9RHh+gk0/JN+rWwbzFeN83SqQpBSstNCvnc55H9JJzp8c8xftB4R2ZiQrmPNgs+jlKJb9+VXrxsWjAcfZJtC5HtQJr4CVZw0KKwNCv7gKEt1UlHQwmQeb2I4XXJ3LCeYb/nxT2o3T7unTQ1KqVLVUDVKHEM391t3S2dLl3ChdSxIAETU+AgDzTWC+maC1LX9vfKJBNiqjJLZk3jhKDw2wO/K+q5NIeIzfcgSAt2j0X83oDtFxnFJUA0bjCSHqrHONnSKjUGjd6EYnU1suWbXwNmZrhFzzSGbx/AZk3o2PKRqPo+JeszXj4MuAbLKm8v3S67rxM2JRKrgkGxLyXREc2uqWFyD5OK7foZt7GdSHma378WhvN+6Z2ch7nltFIB+yqyopz0XoXK1csqurcxJu5EHsqLTz3eVK0Y1Jka+68T0Nov8QpDbHjwTH/iaAX2Lm7yGiv2n//huQrPHH7X9vB/B9AN5uBc53Qep6MIAPE9FP30Y4AMBhAB8koo8AeC+An2f2jjlmfup2nf5sWCDvYubrt/jupgMBoRT+MmZeEFEfwFN2IC7e6iZsBMU0PZQiHzXxJt74jcoUjTOXk1oyeFXYdD8qzL3VQ4IhTUZzlGtdp1UmhQgM5YoqbfEbDQDWOSQ7OnBLtYIs8d3HZGd2bppNg6VzVYTsoiDPQrXU7tWbU9P0z5doXfACDU0DbmdoemFCWmy+R5swCbJrthkcqtkl7UkCl0cyUdANsw8xnkw94SEgAr17MXCtWTSWaoyAbLr6XtQSWX/OEvwZsSg9jFYAD4roUaI/datkk5h2puzHAk8Fx9IZ2UiLQYKtN2ZYfd4SVLoSqP7fbNK4oG3db2H0qN/xtVytbtymRoTGC90zZUdYimcbKuQYk2M+N2LpDEuOj6Kg5k2UZ9LeEc6wubUMsrHcTzdmV7bXXi8pYsE7eGmGpp24/KL+pRqzNT846mrTTbzoy/VViM/XgNZ2GMgGYIDuZft8Pa8YAH7ehrkboQDVMW5bVmo25BQHkAgytW6rNmHpbOVRVXYtOHaFXhKtN7XaFJqOFkWJtuE43ZN2jywQZn4/EZ3ed/jdkAQ/APhhSKLf37DHf8Ru9B8gohUiOmrPfR8zbwMAEb0PUtvjx25z379NRH8HwNcA+BYA30tEPw7gXzLzpz9Tvz/XLqybDgQzXwrOaeEO+OmbnDA6KQtk2k0iiGHEgxNsSop+6v6uz5qqTh/2pv9mC03qBUL7vKySYk383sSMYpBGlffA7Dbp7mVbBa0f4/TDCVy14zra6ZzdpLyZ4KDG03Obwmq7ReDS6rRQBxZT1U09t5HxWpjrrvGaY2uPY2RMjihPBhDXlbb54QbZXuAaCKyt4lCJ9KUM/XP+gu2d2uUOLJZI6mpb42vpbINs2kRQ4FDYqVWkbkpFSIV8WiE1/uBlxuQoRX0P4dijU8K2qy6SzjXh/AqhvSJALbLJuh5VMaFaE9qsQNutIzRe3TLO367zQ5+16hKWX2S3abZ2KnGZBW4dNnAR2qpNEe2+joVzg3Fc87t/vkTVTdDekl2YM4MmM44JuW7FqCi2OS6hxZYEiKylMxw9B2DjGPbPOhfrVd2NgAgxvZ+cH7g2a4Hnah2dbMrRnOxdClyNVtgMznj/2OxQK6pKGPKlyfMlLhcKECtS6eTD5NZ70+7YAtkgog8Ff7+Hmd/zGX5zONgLL0OsBQA4DiBI9cR5e+xWx2/bmJmJ6LK9RwVgFcC/t5xYf/12v73fAoQB/AIRMYAfuMmA3eqBLxHRSQD/CcBjAP7azawPIvpWAN8KANlg1UFBk9InNXWvVJHPkxo4FtTWhSFotgBsfRDMBQqp2mOdm0i7mZ8Qm90EtcHj0qTA0gs+aKzcRdMjXnM15T63VtA3zabOd2XhhzUZ5McEZnZacX5JrA/uyYM3eRplltftBJyRy23QBKvKe8wiFOLskMKS9Uv5Z3wq2Lw2ZQXSMIUpCHVHIckN0lGCcl2+b1/IUOdeE04Kxt7DQYyhJRbN0tmAjiNgBWhSr3GHfQl93aOT5Pz02USea/CyBqQZS2e8QGyyOGaydKZG1TWODgaI61tUHROVodW4QQh1jQgIdXxaN2rabAjzVXK5FC2rredDHZsGpqI4sW819YXLatnkNR6jm3PvchBsNoTBp21srp0hG5UoFO5dM0an/FzKR4yqHSdGVm2gGwipJvXCUQWbCm9Ti7WnAjEfSv9C2poQGg62lrBSocwYVUAeWec+VtHabeJEYHvPkKE3TBTsXpMxUCJJwDM0SN8sIWlAGTQ5fA+3vTu3Zq7vd+G/kmY3+XuO+SKi/x6SjX4dQmPy1yw3lgHwPIDPqQB5JzNfIKJDAN5HRM8x8/vv5IfMfA7Am4noGICfIqJ/z8xX9p3zHgDvAYDO0ZOsG+PSJ/1kqjoG2cQH1TgldM6pIx5AK8P0MQ85UQQMINh6AI6i2yX4pUFANNCSs3GN2ZGOQ4CkZQ3OU8fYCkjik5rUuoB1ETCJ8ChWQnK5xAkWFXzZlqjanCdAUCiL8ySiU1H0V23989lM6mcUK34MZyf9prn8lGwyeeAfHx/3i7HeLJFd9H3LRsD0hF3AawvwGkBb3n228fE4CdBU3u/ftk5NipLEfL+ySSMWhb396ESCfMQx5fmuF8aDc7KSlZ69eyW2pqgSqm/dpLuXLBNxkAXtNlwImSA1XnNucnKU4oAIe6rYv8ucUOf+3ZqSUQTss4Pz/j56jlqexSBFPqp8flA7icAAbVvNcB4c612qHJpO6cppbrm3qgbFRs/V2Nh5XQv50CfkVS2xzEKXZPdq7FpU/itALI+yR+58qgGkAS8ZgO7lBYpVmRuL5QRN6q0iHYswnyiMVYXvSeI2CZZfjq3v/UzTumba1+VCxgqQxeEOsmEZFB5LIqEOeEXtrhsD9zkP5Ip6ZKyL6qo9fgFS+EnbCXvsArzLS4//6me4xxqA/5KZXw4PMnNDRN/wmTp4XwUIM1+w/14lop8E8DYAoQC51UCE17hIRE8B+EoA//6290uB7mWhZVBfaef8EPNjA3Seu+xPzGWic55g/OSa98MnQGu7ACcy4YrVHGbRRBpNuKEn0xrtkEdrrqynllKilyOZxcID5BdWa6cGEkI69ucs1nK3sagZrtDQ7qU5kr2pBO9tq4N4R9nfVwPFdjssGrX1BYHAOTkHpikGz2b++Xf978fHCa09oLVnhe+F3FGMOLLEK9YlVbXBCWPjI44QKRKu6nLoBBtV6C5KSsYsKJHaveqFKgD0L9QYnUqcu03jGxo72X69QWsHLp4z2zTon/P3UD6y7mW7cxGBikDRGOQwJWN80gtIUzJSe3q6EA40JSrcn/2//7OpgyTGWUw3rgiwNCiiNF/zFsLouLp25O+iLwmcKmCXXyzBQXZ1Nq5kzqWKBCPMDmdOCLWG1kVkhz6dCyQ5pKkJ+5eUbGNQ/lj3So3SupzSmZSvXXracttXNRan19z8T1qEBB7t2KRi4SjZZvdKPF7hvXXMQiRgOmPPvkBA/3IVF34LrA/UjLKXRtnr0TzsUcQifLftPueB/DSAPw/ge+y//1dw/DuI6N9CYsZ7Vsj8PIB/SETqaP4aAN95uxsw83cBgFXy28Hxs8z87Gfq4H0TIETUA2CYeWQ/fw2Av7fvtFsNxAkAW8w8s4PxTgD/9Hb3S+bA6nM1WnsV6tyg+7youNzJ0f6tT/pY14mjGD+5an8jaBGdwK09ZT2VA6ZiICFXNyEpEVkT+dYU86P9wNdtkCwah0TKhgvMN319jWxSS22CgIqEKkZpKR6YpECUto4NwHeuBJnlNTuXmcJ02VpEqsmFWHcTxH9aOwsAPREcAPofsH3TjWUKzNcBVfs1pqCaaJP6YLSAFoDFun8WLzy8r3m+Zt1imi8SWDchBfjwlGj8WvlvsZKgHACbH5ExGJ2ybL/L+lxyj9pNeQn2asyjZx2eauXVLcn67/924AltBbQuy4cxPp5HFC2tPQKU8NKOYwh4MBXHFQiDwHWYxa4CQa2pwbkGi2WDhYXhLlZk41StXDmnlJqEmLH2bBDnakmmeWtbBrVJCWSMCxTOj/TQ2q7QJDI/1LIJXT8RnQfb+i4qFI1k7OvvMsvqG1VsvLxwpaCL5Syac/NVA96XK7II3k1pp12Y1xPGJsJ3qm47FV7ZpAGTZxqu2ymoZhQKabbM1WFMKLRar3+lvdF/wL1p90iAENGPQayHDSI6D0FT/f/Z+/NoS7PrLhD8nfMN97vju2+IF/OYszKVmZotS8iSweAJBI0HKKAw5SqaXlBQVK3Vhqo/oIHucgFVYNNdZUQZlw2mbcptlVwgDLaswVi2hlSmpJwzI2Oe3njfu/M3nf5jn33OPi8iU5EZkbIyFGett957937zd84ef/u3fxLAv1ZK/TiAc/AsuZ8EIVdfBqFX/wIAGGO2lFJ/F8CX7HZ/hxPqr3HePwrgfwJwCOThHAfwHICHb+a630wPZD+AjxNSFzGAf2WM+XWl1F8CAAvLveGDAPAQgP/RxvwUgH9ojPn6a51MVQbpboXGy2uAMag36LmpJIFa6DlTYXJ8wcVYS+bQsfNrspoASJySiGYVylaM9lVLn7AcI1ubutzG6J4etd+0llY8qYL47eDBLvXsGHlrOh5Xng4jUkF+pmxqpKM6SPo3r84Q7fqCMFYaAFD1LC29CFuVTR247GUL6J4hU3a2L8Oh364ARcfYOQnASKoSEmQOzWMFmhQEQZK7Y7DyFeudRHuS7Quh4gDIiuXBwmr3GB2chVPDAg5HxwDUwPrjlg6kYRBPVFB7oguBHOoK+nH4QkFO1ALA4mfP+ZDfPAcawPw+T22zc0o5z6Zzkbi/2AoXbBpukPFhoa821r75ENOJ+O2iGcjztK9xuqIt6V8YyupetF7z5Sk2H/P1M0ZRHYisIWpdnWHnHpLEumQhSTHc5hYXmCr3W+bd0qGh3iZCaEe5cduryiCZ1K7bZL4QEwJOIOgKwQzMFv7enAo/y8LeCs8nZehHKiTuBllllBOZ7OPwLl0bP2duVtW1uTNm1k53/W9ZVBnNDaHeRB3Mzee9b2LcphDWa5Aa/sEbbGsA/OVXOc4/B8Fxb3b8PQDfAeA3jTHvUEp9BMCfvdmd3zQFYox5BcBjN/j8Z8TfN3wQxpjfAPDo6zmfnhXInqXol5kI+ty6BpqCRjtWzlJvnyfBOryXCvSUoWQb14kA3qIBaKGOTnRC7qtO5CycKo0w3p+4ZCRbblKgSwUz70eB0GUhFI+9l6NFmEXNS6h5GTSAqrIosP7m/chZbbyA195F8Jr+6QJ1qlzMfOVrJcomwVmDwbH5Hi16xyslwjIAsPSM/5sTxLJ9bjI2TvkCFBLi5ConqJORsedSTnkAQPcssPHeEsk280kBeWqQ7Ao4qXjNrDzc+RTV1GT2XTWfsZ6H5UUzBwhzPDhF2nN8OIT9osZ1Daqi3ARcSvK9cqHqjEN8u5Rc5iGBC2wgsPLb/8UxZvsaaF72N9QU8O/ZosZ0JUJzw9akbBcYHc3cccYH6TpYIeRdhTJTgbfXPj13cPV5T1N3Rs7XlAQ75rYBnDTn4kc+T1DdDWC2Es4bzpdFUyDvh3NF1d4QqTv2O3t5VRMYH7HXeZEUiEzoA94goXCWcY3YSou87FwW7XHFe0vGFQb3pI7MM72QYvEFgyDgfwvj9qe1v+mjMMZsKqW0UkobYz6tlPrHN7vz7zeM9/aNuoaZzQALaXUtbBcXgPkcZoGEaLY+c0nxYpGER/dlm5SONaLRDMUKKZT5YoJkbFxzIs4lsBCJpyYgdRseoYZCjOIqM4V0GEJTJwdE72lOMlacPNXI1ucu4R+PC+gdD/sxzRQmjVG1xDGmJcomh0IismoXvVcQzUhx8Gid2XHUJvN9GXaPJ56KPaK+FrJvu0xsh5TY4Xc3KuSTOQ7Xs8TeW/dSiVk/clDl1hr1oGcreOO9Npy4IGpqromOe4PQG2LFIftfp2fXgdLuX3IrQf/s1r7T09sUCwbNK16JceFdkOQXyoMKV2v3rucLMdbfqVEs2or5RaD3ObqX0WEdJOCNUig6pDh4dF7wkYbh20i5cT93HlPb/2S6EmFwn8i32FtjK37eV+id9bBiZjpwubM6Qd6LRD8aoDEoXNsBDp3NRcgryuG+d8l4a5dVqcL2O0q0ztp15Z0n96yM9jkdE4XKVVb7Z4MK9YYAbjRUUHQ47ynMeypgB25u1UF/eiCkQ2lu1lj5Kj2D3VMt3LZhFPDWpzIZ2Fq7zwH4RaXUGoDxN9jHjW9YX3F33B13x91xd7zKMDf58607PgpKH/x1AL8O4DSAP3qzO985Hogx1O9ChRaB2RrAVBXMQQ/VTV+w4YwoQnV1DdEJDwQrV3vO0pz1NYxWrgCQOIMUYqufJ6sJZou+EHDxJY9U4cGFakDYUxsIq5UBDxvmz/WY/jdNn+ytmjHKJtM4lMgXU98oqO89DwBYesHWi2xS0lzPcud9AGRRttZrB30FKBSVi7huLeH8wiDe26iJkT3uXrarIKlctrTtcSFRWJWLmzONB3seKrGoqRfF9fqeSy6OzRxYRUe73t+A9T7kaKRAUaI65tsipiKm37yi7HWHyDDOgRitAjRe0dBo7JQ48yf5AdU4ee9lnHnpIADgwOf8tv3TFSWW7dxsr5XAGrD9kLeGl572521dIFO9sUnLc+vhJowSOQ27m4mt5xoDnQvKXWv7ao3WZe+5zlabSLdzB7OFofybY2TIa5StyIXzdWmQdyNX9+EaVTEtSKWQ9xQ23iUrYhVm++n/3ouayC0t4m66rAJSS4cO3PXriudKndJ1cV6RvQ9uI6BKavAmWzvLwVRAfI58IUb7og8Nclj5to1vbeXwmkMpFQH4N8aYj4AC1z//eo9x5ygQpQAbtkJVQbVoxnE+RD31IgCgznNUTLQWRYCpUb78CgAgeuQBAMDm22mF6pySiS6ENaxRtDQqGwZh7iDZKjUd1q5lKACMDic+TmpocdaCq0cKWZ1XqNMIyYYNqSkFJDHGJynb2NjKXRMoAJgvk/TePe4luzJA15IGlg3l8jwAMD5FECauH+Drl8lRScjnBYp9rJEvgmOaCt53uqKDhlN8zzKxqmqfDFVVWFg4vMeGjBLxLC+kTnDkR3Okl1LM91M4rvcK7cthmGhWu1ANHUgDRQFEIk9x30H/LI5kGK+Ke7WXIqGtujSeo4nocV1RJgDsnEhBhbvAyXuvYvP/PALOC0e5D28x+okT2cPDcQCUKDoK176ji84luvf2uTGqVozJQXq/2RahBccHeb4ZtNZ8IePgnhhG+ZxDOqpRN2LsnPK5vzoVjLZdDRjj2u8SeESyU1PNCCvY2uYNJay3ShVaFxhhYH8JgENz3bj5E08o9MQjHRnEM+N6xgM+tBlPauweT52yLFo0l/hYJgGUqDxvbFmDg6NzsQoMs46d/5NDPi4rK+RvebyFFYgxplJK1UqpBWPMzhs5xp2jQIwhxdEnIWm6NjHeakHN56jWKUCs0xSmpIVT5znie07CtGihbr5rkbrYMbzUEAsoF1ANj9i8Su1hrqoMe57LJLlJNNprlROas0XqPMcEiKoySDfGqJu2xe4kh57AWarT4wuoU4WLP8wLTUOtJTj8udCK6lwMC6NkI6Lz3+cD0gxtnQlm+zoBOhdZcIR0IBzjbl8TVbwHfI2CCrwJgrSyYIymBLfk9rwAkPf9dBsfjBHPgO2HhcLY1tBr3uOY3uMlkk4qlCemWPkMCwITeAu6MJQvkjkPpVBZz7NqRFh7d1NsT7UaMl4fTYDBSRKKiy+HnEtMwcLIqXSXoKntM3RPO185ghgUb+fhEFpDEzRkKjMEnRN1BSy+4FFP85UsEIJ8nP7LlufJ5tYuf0AgoXqCD2oaAwdjZ+Hr3NyQVoTp3etIXVdVbxScN88CXBpC8p7qeA+NTQoU4n6zTTJCJlZ/pyNSFKw0uFMhQDxxUW4wOi7g3iOF5jpfO4J2v3kvRmNQYve48NIzYPXLlNgb2T7zMidSHLyeFfoNDYM3u5DwmzFGAL5uebPc6jfG/NWb2fnOUSBpAhw/BFQG+YEukmuilWuriWipDwCod7z5Et9zEgCw9TjVhagq5ATSNvkH5mGKaSEwnYVRQEfyVRkEYZp5hy19RskYtDb8RE52KLQUrVlKkl4LKCpMjy+4bS58jwYGtDh0bq0yC5tk6wsCCizpN7iojqG0s5VQENSJ5zkCROVxgMOH88DKFpzFNV1SaF81rsqdhZITVAsa3XNeAVSZxvCwhBvT79YFL9hM5D2B6b0WLVXYe0uAxc80A0EXzWp33uysTUIXHjBQHfGa8vSfSQCUiHp03M7nW6D+IP5eG1seSsvItpmlEdeVh93ys0h3Rd0JJ/GFoJJCbbp8vaDRQmYPTmmsfN0WotYG0bxG6ypd6+RAimjunzUA7JyI0bYlt4OHaL+lr3PPZBLwPOY2FMujjkjAx8JYMJGH+tYRwcn5fouWCqCvzc3aUpHY+yhDQEPVpOez+LyFah+3npOt5a0S6nnO83BwSrvw6OSEhdCP6AOjqfCQj8/AjOmKrfeYGgzu88+Zt9t+0Mc7d08qHPgCPaPpvhjp6Pa5DXcACutX7c8bGneMAjFxhGKFJL+JFIr99Hed2PDPlzxGNDp1AgAwfGQFs752VdJRTq02M7vp7lEdQMbZCmrvITlka0jVJKC5b0M6qjFfiDxViQayiyPX70NNcyCJUS+TGays8hjca+s0HqiBjj/X4u/QQmlseSFpYs/qOl+IMPepHr+NuInxKX+83nOxuy7A51BYqDKqx92nEHgctkuHlkJkf4QoNw7BAwC7J0UfEgt1ZiFFyB+D6YrP2+SLfjV2v5Zi96ECq/+Rp2gchPvY08teEUTPonUxGqnrnwIAUY/CW73P+rxDIcgD2Ttbexedr7FJiLLc6XK1p26CfjO0to6VK0QFqEcHt9gdHlUBZ9L4uEXz9ekgza82kW1RuBMgCG/ZjgKetOExr3yrhFr0csjonl+xpJ1tVuIRZn0Flvp5H2iuEWsu30u2ZVy4rrpBf4zxqj9fNIclurTvMCKF0hj497V70isZbkvMIbHeubAlLhtY2/dywS4wPize7W7kBPPis36OAcD2Axp1qh0VTtEmTi5WQM4AER5e1TS49GGLEFsukWzsga3fyngLKxCbA/kxmwN5Q+MbKpCbaDjyLTG4I2E0K0mZdO2tGer0Vjx60m3LxGzKEM8PC4N4Ynt52KLD9rUaUMpRhpuI8OaO5C6vg3wGjEE8qx0B3HQ5CvICneftI7Tf50cWoYs6IIob3Bs7wXDos4CuIucB1AmRzU1FtXrQ52RmsPiCZ3kd3Euw4lIIys5pf/xkTIKdBYuuQot8tkJWuWveI+6FKT2Gh2VB2R5oaeUTv3uLE7mHBSda8wWFfBFoXvPHOPSpyMN/FZBtewneeMnyYRQSlaCu+3vt+60UrxTiMz6EVXSAhTP+4cWzGtfeHaMhlGbV9IrCxeCFlzY+apDuetN7fMDTymTbNYbHbMjTKl6pgFh5AEA8x3UFpICv7wDC/AMDGJaepz9MpFyNh7zWgPNs1dPPNAZUNMjvhrwr0ZmyodC+6nnDatlLna9h5nN5XN/RO2NzJgnds1s3mpSX81I6CrpSmByw22cGes7XEgX1RXVCEQE5z6VhUzbpO4aeq9r3lAFE9fuyoBTav6cT2i2Mt7IH8s3Kgbxmw5FvlaGMQTQrUVhKA7aWqkQRZUnKzXp85bgBAnc2HdbUXIeRHImPd9M5aCEzFQmHg5idt44U8n7iqqxb10pkl3ZhUnrMdbsBPS9QLHsreHIwg7aEfmVTY/UrnrZ6+/4M0dwg73GYCNg9oR1tNi+q0RH7/Vyhfa12NRnJkCxVViAsQLgTnS4Nxgd0INgk2ywL+6XnfHFH1fKSbLISOUZWgNAxPIwmQcSIIXlcABgdpapyrg1IRgb9F3yFepSb4LqyTfqncVrwaUqPo66BJHFFozvv3A9dGDS/TpKl6Nhw3BKfz16XyFk1Nn1YqU4QhHjYat6U5a3aYP099vquaqS7IYrr8GfoJMOTLYz3+zBN95UIRbfpak5a10LkEBB6HK4aXniAK1+fYiIUVtHyISUOPcnjybqLKiWvlRVWnZBxULFhboixtmEtf/YqWeHUKSn+yKG4gKXnffV4c8NgdMj3euGKc9dXprDUJnbpxSONOqF/+i+qoDsiXwMrq+55MvLY0CmYwcAqlToGUHujp04o9Nt7hj4YPkpgjNs27uZAXnvcasORb9YwkUK+mGK2GKGxUwehlPFB77LKRagLg+Za6YTDXotL54RG4YpjZwWyzlFhIpl4sEQyczi3x7OuulUeTEmhaqI/cULTMY7apOlLc6w/1nC0GLokHiXermhrjI6ooLnT8Ih2goQt1fZFvj5CFUkepNUnvNTfeJSELSOrFk6TMqsbXpjNBcOsjMnHc1Ia7N2YlKxOWV0+3edp0Xm7VBSEBey5FdBc8zcWb9m5PRM3G0W+QLBhm3U96Ltj7ZwS7LWX6f45XLnwio21C0JDXYnOk1uhjVTHJMQW2TpWwPYjBtlVSzA4s9XyNu+18rURhidFp8kCAPOD2UtU30N5mymAwaUeFp4VVPwiypKM6diSD2u2fH14UOZofOiN3oFE2jkqHaboqugYrrVxyvfsw47znnIGQjwxmPW1S9IDQC68Ty5y5PcZ2WfjKtEzECLR5vQ65z3wQ1W0HXu7RVMF8HAuIOTwoFqn+3Be0PkKZVO7kBnDzBkI0r0YI5mUeAm3YRi8pUNYdrz5OZBbaTjyzRp1rFzXstmidnHdeGoChIikp5AIIYDJ8Wpoy7ZbdhIkwxyxFehVMyb6ByX3CRFR8Sh3Fb91M6HKcRteqFPiM3JhmUgR3FNQiuvSOBjxdIWUBlvpi8/nmC/GDhGkS4POReNCR/OFPZXj9joltcO8rwKrKdv0yoGx+p0L3gtSxrMMT/Z7izfvaUQz49lxNXl9TIYIEJSThRAn9NnybwwMVLWHLkQ8V2bNTa4Iz1o6vpbTyuynqu35gS7qhsba45La1Yc7WOkyVLZq6CCXpIxB55J/eFyXImP3Rnkruk6AhRe0JZ+kIT2W+WLDeVDj/TrItyx/J2WTL53xSf4j/16BOj+Toto5qQNE3OLzhQNPqNqjwgAfspEdIVuCMzKeE6RWklcm49p1Jaz3eBjJmAwNCenuXqrdmmrsVDDa9/yYdzXq1M+95WeILJJzF/MF7RBYALVNrmPvEQNhfi2e+e6MdUqULJK0Mp75e6Y6LT/PZkvUU8YprzmCdr7pbhXU89zyeIsrkG/UM/0bjZvJgfw13ELDkW/WMJHHmksCP7ZeZPyeLbbYsuby9NKVgZ6LYrRtko5lzwtOOZERqYDgrnFtAlVVqHq2Y2FVo+h5SzFfShHNaxh7wrIdUTLY0nBH09IpD8AjkY58ghb6ZH+CKPfw1byrMNmvnFDOti2SyV4SK45SsJHKCd+9WKFsRa7PRDSnZzA+IrjDtD+Oib1V2RjUKDMVoG/mi0C2KQAFEQlmAEjGXjjxkO+EwzssdKerDZSZwhIrEGOocZZtnpXvayG9NsL8gMfhDk7FLlTDFjgfr2cRYbJXuXzXs1V6x9xjnek33PUpsmbZop3to7Ace1JVGgpB7tkNUFgr2wYG9/kDru92kC7T/Fr6eBuAz6cl0xorz9buWo0KGzQNj9wAhqo8U3JiBSorDOfZcmHgsAro0qcrFOKS7wPw1j7vnw08Kajcn+tAWgLuHc98x0FVAf0XvQJy89O+G4kMNJoUGaP0KOSo0D3r96kS76UvnCsxXfa0LFVD0Xns8ZqbNUws2Hsb4Zq91XFb2+P+Pgyl1H0A/nsAb0NI537qZva/GQ9kCbfQcOSbPeJpaGnxUC5MBbSv2DqQhoYqTBDSme7P0Lpoi48Ot4g5VEwSnfuFXTc0UBs01m2op51Cz0vkC9blMUDRjRwnUdHRKFuaUDkAlp6vUCcKWw/aorg8QfpH1rG+bqXfXANpjSvfSRP+8OcqzPu+YjjdNYDxFOmjw0SSx0LO7KGQLZveAwDCBkWAFZBGuR4YvNDZCo9nxiO+bCiLPQ5lvPIArDVaejp3ur9QgcjK9skK8415BRTNDXYep8rxxqBEY22MfJ9XsPODXYd4Gx6NMD7ij91/nn73zntrQvZLicdVoEB8CIXzAlQRzUgjroie+QiZo7QHfKjO9xUXCCoLY9WPkzLcHjfR+Y2Oy78112g+Tm1BH6Z7FF1FFjXDoLl2RYYHZTtcOq6f11WqgtqgvBthuhwy9FJOxP8vQ2jKeijrb6fn17lMeTmeH90LNXmPYrqND3h0YNkCFk7LnIsi0It9//HMN+Zi445zVU5BN7yXve/rIowJIBMKTZdkYHEIOyoMUPjiWSCcd7c83uIeCICfA1HH/yMAHwGlKW5aw37DDY0xf2uv8hDffcOGI3fH3XF33B134mBa+pv5+RYeTWPMpwAoY8w5Y8zfBvADN7vzHVMHQuyoNqaugMZA0KCXBnObH5ENofS8RpTXqG0IicMXTO8ezQxUZRAPbeV4bWAiTwkRWyoIhuXqcY5ixUNFZ8sxoIjmHSBLfr5ISBL6X4cJ7T9+HqmuUFtTbvNaD+nFFKtP+HuR1z8+EKOxa1xnu9YauepcTKgqsv5cwpERRpwkTcmKdC1sDdGqsyFaJ+RVyDyFbEqUiypuVSLsbcKOglg8shMcd5jjrosAeR+p6F2dDsrAcp6vtl1IzGjlvA/6H2hdVkE73sZOjfmCYPDdFVXxCzHyhdhV1ncuV0E9RJUAdVs7S5whsezB1TGw/LQATNgQiWwkNRdV66P3TF18IPt18jBTm4PbPZEimRiMLFXJ6GCMVNbB2u6Mkg+quWn89SoCNGRbYS5NhpmSce2gzXweCYeVvGDxtA6o8sumxu4x/2y2HgZWnqoDlNxsUTsPZHwIwXunfiV+3sQzQw0S7eXJni11CpQNuJa0XC/Eoej2tRqT1cTlV+JpFfLNxdQAjmuvgD0dCZvXV93f0njro7DmnI5QSv0VUEfYzjfYx407RoFw/wYWdi6JPqkDhcJhKwCIZ5UjJgRoESRTEySd60hhvmQL+GwdQrQrXOhYY3SCnndjUGB8IHUKhhSOcugYXQH9lzy9e9VQmPU1mrb3weAXiNRx88M+lrD8dO35pBQQ5zXiCSmRTkUosem+xN1rlWo0N7wgmWnfixqKBB/XfcTTMOzESVMZ2pgvKlRTXwcglUYlILwNW2XMOSJdkODbOUFTLB2aoM6hbBHQgUNaydggHleobAV4OqB75IZBVSucqkbBdeQDgFaLxHPriqivGOYYH6OLzLvaKmz73YwgzPwuhkeoZzu/e1aGLLT1HDDiuSycNiibOjRIKhOAGFj5TB+fovlUEwAdLJ4aZIMKY6Fsrn2Hh/QsPmNzUvZa5j3tCi4BUh5SGY8PRAGFitGUZGeDgQswt97mj9ERMYVkSklrblfgmzeJAIUC8j5dz8pTdo0JFJ6kx2ldpee2+BI9jOlShHjui0xdbkmmEzm3OFYoGx5qDjDFjs9xtNYrjGyfHhPFQa6KE/DcRVRVJgjlJpM66FV/y+Nb27u4mfHXQJ3I/iqAvwvgu0Htc29q3DEKhCaZrfGQaB1FiBuG6qqgDzQhooZHvWQoMxUoEMltxbDcfJWEUjQtMd3vE87zhRi6NIHVHE8Nusw0atvncmxYVYQQYbqM3XsMoqnCkU/E7p5gagc9VqVBPCkxtQnfxk6JvBf7CuHYIsQMPxOD7rkC44O2CrdNcW9GTrXWDPKOcogW9hok+kfmf5KJcYiw3ZN0Ti4e46rjWLTrNZFC74Llb0oYVhlabK4OozKIp5Vr5sWNtKTikEWbjAxj5uTuKxPUjciT8g1zjE74SvT5okJz3YjuiwrNjRqTVUtVUvrPeeRd7EGG+XnBioM9WyDMOY0OCaTbM020r5lA2IwOxBhYHjCjAVX47ScH7LMZiXnkgXFoXy5RtnTQL2S2qH0SX4c9NrggUSb5uxe9+xBPK194C/JepMfAJI5LT9P/tWjKBpBVn617hty8q7D0bOES/yz8lT1FOqxRR76/idFw8GqAwBpD6/FkW+Qh+y6evoslIApUrXFSJVR75NoxRyGcN+9qtDZun9T/Fg9PfcNhjOH2tyP4jrA3Pe4cBWIsNUNhgMq4hc81HLwgGoPKJUqL7vXZNGnZ6dLAxArpwFu1+XIT2/czsirF4gsErQXg3Nn2Ze+hzEXDKSKdEwtFA4ByvEUHP28Zae0lZGszTPdnrmdN0dOI2hrDo4zKitAY1E7JFR2NeGpcaCCeGxTdyFGUJBMbEtj1gIJ45mHAexv9NDfrgEZieMRPl6VnLHPsJYp1jI80iWnY3t+sr6nRj/1/apPkg4dov31PhKGEbJ2OwwWfAPW7ZohcnWrAGOQ2JDWzPFNtG95JBwUu/wGvzB/9vrMY/aP7MDriBeHOPcoRRyZjg9mS90jYK5OJZKlI21crzPvaIeCqpnaWOkDKY/tB/7+q/LH4nLLL4IXv8dfFyiMZ+v33wnDzrsKCbQzGBgEriaqhAuUQzckKlwCGouvn1f4vFOTNCtZoo0TxbUMFFP/Lz9oQmvA4ZLivsVujThSyDXqY2QaF8njusKdSWuVcNCPM9sHRkUxXvQKvI/o72/L3QxBxBPfKc7y5UaNKQ8bjOvE0NXVE5I0y0jTr36aw0x6Aza0OpdRfB/Cf05HxdZBAPwjglwAsA3gCwJ8zxuRKqQaAXwDwLgCbAH7UGHP2DZxzH4CfwPUorO++mf3vGAViIoW8q5EOKkJH8edMwja4Pu6ZDCsnkACgc6kI+lWoykCVNaIpt0lV2BH8TosvkIRgKzqeVDBauSIvVRlsPBo5Idi5aKAroHveK5hoVKBcYLLEGle+o+kEz3SpheaW91AAWkD8fWNQI+9oRA0P94TxPQ90blAuKjRtmKrMyHJ0VbxthtbC/eZ4O0CFkdAebdO5XAYV/u1LU+eB6cJgfMDDKdMRxeil0GHlQRcLpFtz52nMl+k4DokEoLnu40F7O84BXnkAwJX3Z5gervC+R18GAHzxifuADwGRvbd46gU5QPDueGqC0FAd+4K09hVSrO2rdI5sI0e2ASRb5ILtPrQY3BtBYENB3rpiFXUUXuvGIzGMkDypVRzpjt+36MC9N/YAdk6FtOs8VA1AIQgRRjkcYwEAZM/6Z9nYIHematu2BAtx4D0ZTVxnEtbbvOSpBOb7MkxXQkr6aGYwuI+Ol+4alC3lOhgSFDwsbixbwMi34XH5FPaOJR0J2r5XfR2Rgui/UrvtjFbuWif7rYKREGztC4h1FYZhb3ncJg9EKXUYFEZ6mzFmaou1/xSA7wfwj4wxv6SU+hkAPw7gf7G/t40x9yql/hSA/wHAj76BU/8igF8GJc7/Eih8tf6ae4hxxygQHmObQJaeRN7TQaMnCSWFMQ46aiIFVCasLh/mKPsk3LYfyIJ9yxYxisaT0JLjtqpX358imsBh3VhBMXxUFTWmh1vufLsPkp/NieCoIEuerb2oMEh3a9eTY7IaBVQnALHCsoWajE3AT8Usw7HIabSv+udUNZS9PkutYpPUsvCxsemV3/RA5hYQh1N4oc4XNKK5L+hKRwbH/60XYokFJtQJ7ZfsFhid8ACEeGpQdCJH8wJ4Cg6A2phu3xu5fM3EEhQ+9ZvU0yVFKIQaAxvC4UTvgeut0PYV/26ZXTe7SA+7WG475QEA2UaBycHUKcw6sQV0Ir4uPSwu2gOA2WNTYL2BdMCl4D5pLIdTbjUp96DZlaRzsoVFEpARzY1jrK0atC44Eb26MXPKAwCytTlUXTvySVbcSoSC5/tEqHYxtrxpbICYkLcrIeLJypdPQVfGeRVlU2EO4XXEYStkXXqIb2qLDVlppiPyan2/EIWd+w1atiFYPKYQGDMcEPW9702Sd1XgZd/yuL0hrBhAUylVgPISV0A5if/Efv/zAP42SIF81P4NAL8CYghRb4BmatkY87NKqb9mjPksgM8qpb70DfcSF3xHjFpTRSzXgFz5kIiXjxUWX6DPs+0QnaFzH7fXhYFRCpG1ivXYKw/As4IGrLDTGpXAmE8OCI/mAp2zfZlWirbKialBtt/extYH5uh/kVba4F05VFLj0XvOAABe/qcPBiGvZGSQ93yse3gcUKVCc80/h/li7OLlrs7D5US8teqfgXIU2bqyBHkpJ3HrQJnWqcboKD2PeGaCfEE6orCJDG0Y7dcX195w7qJONEykMd3vBZkqgYiL5zR5QJXwJmW4YOeETbZbYZA+HWG6GioNKShYoAwFmggKjgamuUGCb/EFCqWVrRjZxR2oGV13emmAyYP7HPXJ5KDtKy+qtWVIq06A4VGaCxx62vw+2xnyTDPAzye7nlQSsFZ0HRIojo4BI0vOuP9LviiOb2S+oFwlfTQ3GNwjnqst6mQhvfl4F5kIp7VtPqR7zida5supM4zYkyiFFyjrRAgB5pFSnSt0HTKPwiFMgN5z5xzcPCxbcECSKg3ZCeIZ5WMaFkFXNjRmyxqJraHZteVukgFh6XmD0iqvaG7JRfmQyqMQb8d4HTmQFaXUl8X/HzPGfIz/McZcUkr9QwDnQew2/wEUshoYY9jyugjgsP37MIALdt9SKbUDCnMJeuqbGpwMu6KU+gEAl0G1fzc17hgFogxZ6EbDWuTWih9rHPiCt3yza1MMT5Glxf00aq5MLYxDOAGAKkvoeYXhSbKMHZWDEExSaEARgaIrSmNhyFQRSYTJSuQqw3e/cwqUGsUfIis3fXoB9/yBs/jaxx+i4+2nIi1274uOQjIyGB6l6+2/aDBdVs7SW3qhdOgTIIyRA1aAaG/5MVMw9ytJJobam1okFIfm2FuY9DJ3LbxN0AciVS4EBCCgBkm3SHqVXb9640mB7hk64HypQbBc8TjLlkbDKvyiEwUho+VnC+ycTEJamcKHQljJyrDVZH/4rqTihQEWX5wimlhFNykwO9xD8zRhXZlja+shethRTiAF6eHJHhzd8/7ed0+QtM2eonmUL4SUM1VG72gvDYw8thRU7JXNbO6tTsg74aQ15y8CpmYR9mLvPNtihFuCOtZu7s+XUyIG7TLdOiHOOIykaoNkLFBY9tCsOIBQeRDrskcfzvo6eG+NbeOMOFUrZJtlEIZWBpgJuPfWIzWg7UlrhWxDo3XFXooGYAyUdTm0rVzna6W/8fsxNowx7361L5VSiyCv4iSAAYD/HcD3fhOu6+8ppRYA/DcA/gmAHoD/6mZ3vmMUCFFGU6w0GRksfc1aQxdzVJlG86oHtjev0cLJ+zF0YYLq40AgdmnBs1DShXH9BgAKQcmFbbRyFcy0AQARW56s+IQ2AJha4fCBbVx+gaqtEwCb//w42mAorLFeA/3fvVBAVQa69ObfwmkfyzBaoZEqTIUSmfcpfAPQQtQC39/YpRxKJvJDRisX2+ZQHLfRrVOBcDMergtcrzyi3GB8MHYUIgCg6to10Sp7DcyXfIyDe2Ewc2vncu2UB+Bpaji0BOC6/FC+4F9GYhFMUmlUDa9YFs4YzBdU0IZ1/fEm6oTe+fLTObYfSLH9AJE48b1xSAUIkUMcu2dhOtkfY/0j9HAWf4/ui99DY0DeLJM9tizBsGQslspjfIR+c58NAJisCnSanQ4cPtMFMRnzXGvshAgwhihz/RNA4cmia3MsI8oNypBYMpKee2SvN8wgS+NFni/vEks0eyjx3DjSRCDs99HYpjyipBuZ93wOhODCBnpmk+apQTKkCnUA6F4k2DuHdTmvJWtW5Du85XH7Qlh/CMAZY8w6ACilfhXABwD0lVKx9UKOgOo0YH8fBXBRKRUDWAAl01/v2LZU7jugSnQopT5wszvfMQqERzQnQev7MZeIJ8LyrcPWqoDgCLJoq3ibVjLTsJtYtELNjUOTqDRCMqo8jNZ6Grzw6lQHse94DswBjN7pQwX5v9qPE5dodu+cShHlJqClSEZVkAfQ8wrNa7SYx4eb0NMSxiKXdk+QaTXZb5/FlEI0vFDjKdUpcMgKAFrXClRNj5lPRmGzLMAXWBItvr3XiKGcPgcgrdzWtRJRUSMa29awsUbZTF1cnetvdo/bdr6lVx6wh52uxAJizGiuG/cf2X7M5pU6VlK8nCEeh+GK1lUPNS0zCm9MVj2QQNa/XH0/7ShzE0Z7QcU8Tqw4VE3e6OY7rKBtV4gz2mj44QI423YKhAUmNyiTbLIAIab21qf1X/TzrtwfY7biwQ9VSizMHAYCQgQWC1NZ8wMAM+7qNyGGZ4ZEm0ghGVWIZjYU1U0CEAPXbMgQ20zAmdMxdSwMmkiVBDIAvBKX4WSZxB8fjMO6lw2DsYVFdy4YtK54QtKySd6M4n7zR3UQmqxjOi3TvseiQPOWx+1FYZ0H8B1KqRYohPUHAXwZwKcB/BAIifXnAXzCbv9r9v/ftd//1htss/FPALzzJj674bijFIgugYVXrBIQoShJR1704oAQMeAcsvF5EwvrLkvQOUdm+3ylgSrxGHju6ywXO/NeAQRblPTxRgOtdYPex72kSne9adS9YOPtO9xhLkY8LDDfR5a6zg1Gh73VHk9rTI62fDJzYrD1kA4mde985SqQ4xnRzXNMW8+pboYFB7RClUVIdrxZPl1tBACE1FJ4R6AixtKGGjoXC8yXYufdAfDoNRCTMQCUma3KX4gw6+sglNM76x8Wh8hkb+1IeE9FO0Q8qVwBSzk6T8icFTC1yrRprXxuLeu789nP9+3phWL/lvUXVcMLDN6WlY6q4ZUHgCOHNrE1skWMLy6gfUkkla0FLJl8A+9tDhKK9lzJLjDer5wC4qK9mY1ULz9dB8q0ypSr16FrvR5GHE0qB2NnGLgJ6mz8i+H6HMfxZodDNtk1lNrc4Mgm1LmuaPlZMrIYgDI6xPUhAmbc0e63nBNcULj0nEXr9Ul5sDejanoHbs4ryn2x4cH5n8QCTzhCcdvGbTqUMeYLSqlfAfAVEOP5kwA+BuDfAvglpdTfs5/9rN3lZwH8C6XUywC2QIitmx5KqfcD+E4A+5RS/7X4qgfgptnC7hgFEuWG+lkbmvwssACR4wCCpDCA6+o8VFFB1Vx8AES7U0xO9QF4SoRE0G0YFSqrZDDD8F4yd9hqk66+DJEl49rXkABoX7LhHdFdbr6vAW1DShxL5wXARI+coMy2DdKBF0ZLthI4Hsre5JFDWVXNaE+hJG3HiXKA8iOc1IwnnjY7yhlQQAs7GRYuVwIAel6ianmBM1umv2UIUFZP83th5czWq1QaUJ5duWqQEN9+xB9j6TOZg2imQwQU4uPDRD4oFUcklMONPhsfM0hf8ucDvGcwOkKhp92TAup6YIzlLrkFrDwA6oC3sx848B/8zc+WtEvyVylQd3ySm8Nqznsylg7Eouj4Wpaf9vcuEV+jw9cjEVvXcjevGAiQ7lq0VWVQNaJAaTA6jv7mXEeIQGRPKppUWHilEgzE2lPZwFe0S48kGRlXu1E2latNIuZh5fKMRVehc7FyBgUzRrMnyRQqEsUlFX06tNTxds3sLYK8laFwewsJjTF/C0RsKMcrAN57g21nAH74Fk6XgihLYgAS2LwL8mhuatwxCuTuuDvujrvjmz5uL4z3mzYEZPd/ezWy3JsZd44CqX0r2roR+e5q3LeZk3AiVtu+WiIeF4h3RAOlaQ7T5HwJHa+xbpsb7WgUvSTIEwT7Wit6ZPs17N5D+9/7y948kh4It99lzwMApvsbLmFZZZpCRNbizDZr6NIjVnRZY3wgdY2gyoYifiuOLdcG6U6BSoTwZJ8KtkCZ5nx8oIk6Vq7T3LynCSGUcTK2ds+VIZ2uRiTWgXeXL9GxOH8CUCxehidkCIrDbJIGXfZnnx406J32fSJ0SRY6W4CLX9fYeL/3gO49eRWTTx8NnrcsZONY+MK5sMp67T3+/G9/9yuAxc088/l70LpCPU947HzAu0eNJp37ZJeKHa5sLqCa0XPtfp3e884pcX4RYkom9MOeRa3D3E2VUaspSUO+7ymR1O5oxDMi16RjW8i6RRnqgkKVrlumtkWy4n3FI//s2HsPWBMEVJ3RXoyMSiOy+JkYs7VuUIgugkHNijuGcsK3e9FPisG9MSG8RA2JpGxpWsJIpn2P5hTOkt5blXkOs7JJFDSO36sPBBCwWxnmrU9lAmCilPoHAB7Gt3UleqxcVTmjhwD4BHF9fZEYYPMeVlGoeQnkOVTOpd4NlMudIASWDnKXU0m2pjDC1R/aQixWHACw8hWFwX00mxs7NbKNuVMc8ahEPAJURdtPDjVRtLULlRVNFRSPARRS4oZCxMQrQiiicpvH5EDDwXi3/i8TdP99wy0uViweg6+gS+OEeN4lodU7Z0NeiQq6uUVzzwRcNiPMl/x0YoZVKfSyLQ/lZOgwj3hGxV6yR72JFEbHbHx9R2G24pOjugR27xPP+c+eQ5Y3kMUkCF95+jCwr0bzikj+ivBU/4zNd4nLuPYdAEs1FgzPfP4euvZ1CoXk99BBlDJQV72GKyw29PP5SffZvs/4JuMyKcwV51JIyr/rlEIyDCrgzn2y57zMS40OKYwOxeif9sK1fdUrBJnb4KFEJ00lQB/yN4esTKKD91U0iQ0hFR0960S5+qiJ5bjiMJPRZNRMlwXHG0LQxeBeIYpqH7qskxAezdQ4Es0oK/hHJ4hluHvBJ/rni57vbXLIeAjw7Ri3kcrk92lwJfoP4m4lOllbVaYdDDAqDFRtHIli61qJxrpFWWkNPRXB07oG4ti1SwXsYhIIEdmYplyw9Bsr3lxcf6dGX3RJYYZTwFJNH8icRd8ZlUHc2XF0WettvgTMl3QwSQOa7YZC2VBY+ZqHlhS9FHlPsLz+sN+hGDQwf1+Bo5+ke5jsiwIK8Cg31GUw4qQ7AhgxlOKuq7T9tHbombIdQReek6hq2B7uwrqUJHjxhBBhnISuY4p/M7qJC/QO/g6dcO1dMZJdoPOHfPGGriLsa9O9j3KSwBf/I/FjpAjzJ0zrIRWy0cD2vQIlNwKqtuX4Oqvxytl70LVKp2gD48e9BqrHCdCtEA8EZfquAp6m4H/rKsDKaLqigjj95BDQ2PTKdb5A0F6uA+HtmqIkTAIjZkuEspI1Lv3TNWKbj4rHBELg/BQrCInmgzCouOXyXjoTttTjUYm8mwZexdr7DJhi4fCnBSIKorOh3TzbrlDHigAd9tgSfj1djoL2tnIQ8k25nuZlRuguNgYau4ROG57w+0z3eRh32aIcU2lzX8lQobF9mzwQ3BEeyN1KdICEb7pboo4obMIvto4VklHtkp/Z2kTsU5ElVlghN6OVa5YEnlQuKrbkan9OAGhf9oKl98IM1z5A8Jj2tQrUD8QqhAWNZGIcEmi6nGH3sRxH/w+bZLR9uGXXOyXw6/E0LEDj3hmTQx5mrCrjEtxGKxz8/2bOarv0h2sc/aRyXkNvXGG+FEPZY1INCFAnVuCUocDVeeWhyoVBPPPaZGatS4YIV6nC9kMKM+uVTA/W6D8n2uNqqqMo7KVn2wYzYaVz3421d/kp+qE//YT7+/eungAAnP/UcfdZYxtoigUtLVfq462C6nlZHc39PpqXuYgSwTAaUOveTWiu2eMIWZQMvYInL88bAo1t32WP92OPgbsdMuKIFYiEc8u2xGVbof+CcRZ//+VQkDHUerLfGzbds16bssdbCpCD0SpQILr0sN68nyCemiDk2H9OAlNoAvH15B0dXPvoQIzWRhV4e01huIxFf/d0bAJgB6+5Qt5/C2hf5VCqRSDa+ZL3gN4Zfx5VAnHpv68yBD1jbnm89RXI3Up0Hpzv0JUvnIqnNdJNkafIhcVf2BUxlVzZHj5S9ZpBnJj7MEt4at2I3DbRcIb5/g76L1s00+EE8cwEfRVkjH/3MdqOWW7rhCwl8y5ffDDe9Nez9BXaTvb7SKa+17SqTNAjA0oh3hqjWCbz6/5/XsMk2vMCLaaIp8aFJ0rLhRUwEuehj845D1UR7QtDQRu7VQBnvvxdCiY1KDLbu+TJDGXmnyGHLzgsM7ifFRP9X3SA+qEx/rOHP++O+XPPvt+f4EWCJLW2/UeSpyyeUf8J6QHKUM50RaP3xz3l7aWnDiJbD3mSWuv+3nfs9VU9up9xD8guJk7YswXNlu7KRy/g/O+RN/Tuj5BL+ntfIp6u9gWNhTMSQeWta/fZurccmGqdnxEAbD0C7HvS5wGoyJX+Hx+MkQ6NY1oAEEBwy6ZGY7v0nmUNFP3YCW7+3BGNGhNQyujSoH21wuigiE8qX0Db2Kmw9WDsWu4aTUpi4SzNzbIVsgp0REiZjZ3dE8IznPj5Mt1H33OPHTqev4zGFnl0bGjpIvTeolnIkHBLw+BOUCA3qkT/6ze78x2lQFRtKEksXmo0LVG14oAID6wUxlZ6CaUxudeD84tuhNbVuYsXKyuAyo4tfitqa9Xa2oZeF7o0rqoaINx6ZgXEdIV4rDiBuv9Tif3cX9p8yQBnCFWnj9KG6UZI380jmdaIxyViW1DmhIQSgvLYgsPpR7MSRcs3vGLLN+izMRUMxtu00KTwyG33t9ZVEgYMMS46ETYf0Q6ma1JLRvgChfnKlq+4pmv0fS8AHzoqFkR+qtT4Z1/9IF3Ls03khyqk216w6NzXUjAtCUOOk3GNBF54lJkOaiV2v3OK3bVFqMth3Qh7FK21sKahbjG5on+3sr88k1utfPSC++j/8cO/5P7+7/7dj4j7ooI39jjiKVXFd8+LvIX2imPrQXsNiX//+570f9eRQh0pzJb9e2rsVL5TZl6jjpULMQHAdH/imm/l/YSq2G0le/f8HPlCHHQ0zIRRwYqD60DGB2MULd9AautBCx64IODx0jPcKShvYedhsZC4MFtcGpz/3sg1vIon9A7Zc8y2jGOc4BHwn1lbMKw8Nw5CvHBGfHEbxls9hGWM+Tf2zx3YSvTXM+4oBQJQ5XY89kIo2iUlwaR4AIChXflJAjRSlywcv20fVGGcVa0qg+m+1LVC1WUd0D/kfUJkMZmiqo1LGAK0sDJR68CxYRkK0KXB8rP+2qbfKYTI2RYSAB0vkwIre97TKFqpox6hrnvNoO5EJjrHR8k8lgSAUqi21uqA9n58iFZm5yKZ2fPFBAvP+YxlsehDZ5NVjeaa5fcCEF/NEE1VwHA7uE8m4G1oomufSaFQLlRQtvlJ+0VLq2GV42wf0FiP3P8moWI/F2qyNSIByktYnlVDYbqsMH63vb4zdO39F4TXIpph8TPiCmYAiHYjlC0bgosozi4RRrv31ti5SLQ0/6/3fxx/8zMeTt875+cNKw5ZT6RFQymuK/Iek0bR89e5+qVQanHeqSnauErPkcOL4/20XfsaGT5jW5TKCf6VrwpPvYZrC5uMSswXE+fpNjdrDI9qRwlSWPtr7Z1MHmnQXC9crhEA8mXhJjCSz1LkqMK4VsAb7zQwvRLDt9OmrRdSZFsh07Cq/BpiA4I9wapBhgB7w8y03bVex/BI4pL7t2W8RRWIUuqf4DWu3hjzV2/mOHeMAtlLw8GKA7DoKh7DESkNOyb3rzjXf/s+Sx7HjYAuV0h3fQMqoxSieeVa3PL5GtuC4lx0KOy/PHchGwCYW/RVLdYSMZnafwxw5J8lmFuqlbX3AN2zyllTdaKQ97wnwsIyszDjbJ1QVzyKjg6szol1/2WjpO4FL3RUTQy7DL3VpQmaY3Ve2UWd2SlTh82yxkeAYrFC47RXKt1zfn7unqKq/JMfINPy+ZcP0TlnAlZ9JnZT2lVd22hsZBP6bOmzx8HV3/1nIzR2TECPMe9p542NLSfW0m/y+wnbz1L/CuUKDRsDg8kBhdmyfdbjCFWnhp7SBaQ71PmusCVY+WINs+CV/9/9hT8Ffs3scTJaqGwodK6WLlyTd6koj5970YkCRoPVr4RFmqNjltzTPv4oNw58wCPvRkGPelYeADBZoTYE0orvXqgwX/Lvk9s3A8QeEE1rDE6xhxvSujS2qWhz4bRIzDcjTI7Rw+HkvmsKlUXYfDjF0nOWpFO09l36ukZjJ8bgHmuUGYJOS94xJk7kc8uhq7CAEkohHVYYC+6woNfILY7b2VDqmzyYGfgDoGZSv2z//2EAz97sQe4YBQIAMAbRiASeGlgvo5nBNGT58xLUDn03eZhKlbceoO+zLYOipdB/+cZurrahrHTADLIJWpenGB/xGuFGOZPd437GBq53BvRPl65iXc9r5L3YcRf1XyDeJM6huNh0hy3JEtlGHlQIB33HuTeHhTxGBVmP867fX1KtFC2NeFY7S7zMKDzXuOITA9oKg/mhHpJxhSuWMyqaAb0nIuzc4483OuoXfXUPSdGzn6Okt1qu0NiIMF+mc2Xrtpp+y+9fNr2iKDo+rAQAV7+L/u68xBQp1ICJ8zmjAxrtazW2H+C8Fe0nmyTtnBRkgjEJelYg3P6XR920/FVr/p5k7D0eaWDUgIlMcD7AK/rWOtP6h8SDVaKuI/gLajSsR7J7UoAlZJi2sAl3xYaQxsLZOsgzyFbGvG/n4vVN1gAKiU1XUgcy6J0tsPmwfxh5n4S4JKJc+Vp4rBtd/9w2Wtu+l/qJDO6nY0Zz71EwCEPmoiSjQHON1hD3sZGKkc5rFbKAg8ve842dkPbllsZbOAdijPl5AFBK/d8AfJAp423Tqt++2ePcOQpEUTEbAKhtsRrrOsgJFMstwLrTVUNjcG+EbMvPgpWvzxztRrpb2XaaDFWlz2WBFTfhAcjCSkYGrYskLCdWsTD5XJmpgEq6c9EWBAprc7aoXSGfqoF0p3SWqyNtFJYl90fnfVvrlSvy49oC7pw4W4nROT+DZcSgnIlWAfX24FTsBHVjUKFxbQTToPuuWgniXUvLbvm0JJSUvQz63iBviLj9borm+djdS7ZOzaBkUyXAU23rnArQuKAunpJgGLzNPrOZRjTRrmsf4PMVAHFgzfZp1A0W6ArZpmesnRygOLmkVpHkgHUC5Kuii9+1GPEkNAAk0eJs1darDPgdeehw0VHonfXHGu+PKK4vC/Ui5dBzel4HBZhsgMjQS1ioR/tt3+fvf+3dIiF/1Yee3Pl0KERHh/z5WtdqTFe0K+TcejBBMiE6GMB7APH8xtKzToiV2nmT8MoDAJafybH9YBrQj3Duqmoox7wMkPLd96SkaYnQvlr7nMiAYLz8XjjEmwslIfM3yagKc1e3MBRuW0ni7+dYBCXO2XTr2M9uatwxCkTlJZJzov7FhqlMi6Ro1bG/U+2EXzypsPK1yoWi6kQ75QEAWw/RMRbOiMRuXrvKbSAsRGPET7HohXouOtStPDVEtDPFztspa966Sibh0HbiK5q+ChwgBQYVkjXWqXIV5ACwc9Kfy0QK4wMx2tfo+xxRkJjtvTSCKipMD5MKYc9n9zhXlZMVzh4OlMJ8cRHZhj/G+jtJKSZDg9lSSBaZH/ImadQsUc0j6IFVxpeowphzFmWThIN7foaUhGwmJBFrxr4W+SyKfuVYfel6geqDVkO9uIDuY57deuf5JcwOGKSb/n3UiU8Eq4J6Z8MKF6OB1rUY01V/eNQiKd+hosbKOgXJUKF1lWoQAFIeLLCbm2SscCJ3eJx+y9xWlIdhl2RcI++G8FZ33xbS6mDcqzasZhXa8JRBY+t6SLRUGlUKVyvFEGH2lGbL2tUEAcQiDQA9EaIKPNe2QmHrgADrRYgQ2ehoBijff2fnnpSUt3iX8l1nA5nnC0V051IVGHDMUCwZpmVXSIBqTljZJaMQFHLL4y3qgYjxkwCeVEp9GqQPPwTf6fAbjtv4JK8fSqmzSqmvK6We2tONi79XSqmfVkq9rJT6mlLqnfbzx5VSv6uUesZ+/kZ6/d4dd8fdcXe8qUOZm/v5Vh3GmJ8D8D4AHwfwqwDez+EtAFBKPfxa+38zPJCPGGNerc3i9wG4z/68D9Tr930AJgD+U2PMS0qpQwCeUEr9e2PM4BuezeYJTGbDTY0EJtGuWQ4AZBved5ZJsMG9GcaH/P9s0QVexsYU86WuPY5tIWqryfPFFNGsdqgXAOidmUHbJH60Q4HxzgWPTtm5z4fAVB0igVzyXlhM2UbuqCbm/QTZdu24s3ZPpGhfK9E6Q1Z46wzVutQdikW4uhdriUa5weZD/lrH75ui87s+zm7sZY4P+mfHidtqSaG1ZhwyJ+8CyZUUxbKF/uYp9DRyqyfZJevP0ajYiIZs5SobC1UNhebcOG8oKgwm+xSSXfp/9X1XsP2pg47uo37vLhppifsXyev4yIOfw6c2H8Jz1/bb81PAQXJMyar+eEpwT0Zf8XV2z/rrG54QFnwDqPYB+560xXNd6tjHORxZrMbPiHuPRNOwyry1VjqmBDqWbSHbYg+A6GV4rjKwYHyYnkVjO4Stti9wfYj/rGx6JuOiS301ZHGizuE81+lKhKLtvUs+r7T8Za4tGRH4wnXATBWgfM0Qx3kG9/mHL5GIAV2PIk9Jeh67xyJ0bM4DhrZhVFYs6r3cvYrcT94lpl/2ruaL8XW9Vm5pfAsrh5sdxpir8H1G9o5/gdfoDfL7HcL6KIBfsI1Qfk8p1VdKHTTGvMgbGGMuK6XWAOwDtXq88TCGKsptTUfd9KEdPS/RsEK8aiWYrfjvJNadlYdEdvTPlC423ro4BpRC7yWKCZTtxNae2LqQ3GB4NHGJ2vYlWsHRro3b1AbVUhuz1Rv31OQkK+dsyjYVKbIFk27n0LMCmrHuswplJ3HJ/f7Ls4CighWGtoi0yT1LQKQwPOxf++RxL0W7VnkwNLXoKLTWKhcSKJvKIbjSkQkWogIJsd7zdOx8Acg2+JvrqdOj3CdCAaD37BZMJilhSDNw/shoYL4MqHvp2V/70kFEGVC9zV5QGWE2TvGVbXr/x1pbONHexPNP3gsgzKXwCMJhPSAb+M+iWQiZLlvUe1728GDlARDAIZ75SnvZwW+yL8F0BcjEvJKV2lxLwywJ2RowPOUZtlkgsqCdL2iH/gKAhbNVkL+Z7LdoLkFdX2U+pKRqYHzY5+M657zyAAhokEzCAlgjAv78XKRhFU+N+18ZX5UOkNGz8WgzUHKFACDIRALndmJH16688oBXZpXIA+rKOIJHrmmS1PHDYwoLrzCSErdvmLc0Cutmx2s+sTdbgRgA/0EpZQD8U9lE3g7XGN6Oi/YzB9RTSr0XRG10eu/BlVJ/EcBfBIAs7jnlURxcCMjijJjpMulctsIIXssifiR/U7rpzTg9nqPuZE5hALZQ0bKXDo8maG4I7ismpaskcV2N5mUSFPPlDEDkG/JYdBd7NLPVZtCrZHIwQ+dMgToVXfk6Ebj/S2MrRzQrUbdIWqo5XcvsoJckUnlwf4nWk9bctjKNhWBjt4aqPDR23IidcmRIsEQPJSPfi6S5ZoUkJ1KtRR4LYRAL2PXwgUW0rswwPkzXkm0TWsb10bYd9oqr9I7NgQLFTCO6YAER+3Jg17+X/+O330PnZaFZ0WJnQcvWNSu2ugGMDvq10tghEj4e0ZyUh4QmSzQPK93REZ5TOkjWMrkf4Pm/du5hdJytOzK2AVU3wubb/dxsXSUE2s4J/9miaG/L98SJ5cagdoScgAcmBHUxwobRpUHejYjBAb5/h1SggbFgvQBuhTzvRYEyqWM6xsJpbzV0Lvl1MTxqARhiLgTHF9fZWqckOc87VoKpqKEpm8opjtFh+j238OtkqNB/2W8r65xuy7gDPJBvMF7zDt9sBfJBY8wlpdQqgN9QSj1vjPncze6slDoIcqH+vDHmOl1vFdLHAGChddBw2EoqDyY/5NoNqTTal2jVc1JteDwJlcd2DpNoJGskJY3WUJMcEaO9yhr5kl+JvTNWikjLbCdH3fJKi5QGDW7CpG2RY9ltBOSK6SBH3k/d9anKYHys46ipZXEV3VuMshUju+ILPUb3dLFzypuncnHmC0ByuukSwdE85I+KxxWqTDuacAC49p10gKUniW8s7/jjJSN/fIZRun7zMYU0OOk5PhAhHUUuZNS5VGFwfyuwd6pEueQxd+E79fAl9/2V3zjq730q6Gz5XqsQagrtD9+5aFDHPpRSNlVQ6T/vU8dDWSsi6w8kGgsAth5SaK6HYSMZkisFamrzceuhnhcKS9SvNNdzAJklZKQxOqxdrQcXInKBq6z1AajxWd7bE3tXYZhLwoxZ+TG8G3WI+GqusWFD5xsdywKKGK4f4nc/PGbnZ+HnumyxG83I5GFCxcZOHcBxO1dqN8fZIJHhs8Z26YyzKlFQJZALZc/KAwD6L1lYsLje6b7bJ/a+lfMb34zxpioQY8wl+3tNKfVxUGctqUC4MTwP1zReKdUDtXP874wxv3ez5yxW2tg9IZBJiqxZVhyqhqNwAEh5cH1F70xOeYg9lcAMYwWAuun/3n64G1hOi8+M7Db+sbq8A4BipQltOaR46FmBusEhsBqbj3ax+Dx5KHnfehICU18LOvXpcuQ68AHUOhQAxiL8IZUHw3o5/BHNLVdQ5T9f/Ohl4B8QlIj7gst2q0tPhpIztVZ2tl1jss+302WkkLxXWVcB0OJvX7EUJm0qpmNkGFdHr9/HWxt8/3c/gX/3G+/25xZyk+8haHMrOZDmVLchcw8B3YVVeBy3ryZ0/r006wyhbll22PV3iDAPgNJuv/rkDJMDqb032mfjnRamWyq0z4eFfZ1zU9S2t/21d2dIdj07LwBHeAkAVz5sQ5MzOsbB36Z7ZUWgixp5T7s8DkDhJr4XruZnL2y6jyC3XPC4t1J7thyjfWnuDJbeK1NM9zdcaI2VIyuJZOQhzPJz+W6kAh4d0g5K79ga7JqMcnt8Rnhtl4BW7lpUbYhLjsO8u0D/tHFzlnuiyHYOt3Xc+QrkBt1c/HjTFIhSqg1AG2OG9u8/DODv7Nns1wD8FaXUL4GS5zvGmCtKqRSECvgFY8yv3OQJYZLIUY2wYJ/uU5juixylRudijmTLm1+pMZgdoBAPCxzmlEp3CkSjua++BjC4X9R92HNwf5F8OUM095Xr8dYY5ZIIRNcW7z/zCqpqp44HaOsR2nbrYQplNNcrqDqEAksSOT4/Q2N3ThE8kntfT5eiIFZe3j+BOtdyxW5lC8g2fJho9bvJuo9+gkirDgO48Hmv30/+6gD5ig9eS9r4jUfpILNDtNJXvpC4EBlfqy5DoR3PDSbW8lx8Mcel70pd7+qyQ1byn/ieL7jtP/6p9wG2riS7ZgU8R9+YDt6+QwIk+GdUp1TdPrMI97ipgqZOHNKRtRnJWBYB1pgu6SDhqwyw+hXLc7asUbRIcQDA9v3e+h4dB/J+hc5ZLzX7pyvs2lDO6hMk0Qf30j6NAQL4MCsPSavCygMgBWWU9x7nfR30Ba/T0JNiT0YaP1VDNLRKFRo7YcOpySGvSTl/MxeU7PO+pKE3AV1OldK7kEWcs46fd7IOiw0kqbhlWNjE5OkEzL6CXNT1kbd0PlWmoUrjkv51rNFau01kiri9HohSqg/gfwXwCEg1/WcAXgBViZ8AcBbAjxhjtpVSCsBPAfh+EOjox4wxX3kD5/xVUH/1f/cqUZ7veK3930wPZD+Aj9N9Igbwr4wxv66U+kv2wn4GwCdBD+Bl0EP4C3bfHwHhkZeVUj9mP/sxY8xTr3ayOtLIl1vIexHS3Rrb93MjKQR8TAAcyZwqa6c8AGC6SopDUl8bpVwuYfvRBQCeJ4l5dqK5MK1qn1wu9nWgKhPwZ6WbE9Q21GYiFfQfNwqADjmNTKRcLHp4xNdrAES1AoRAgLIFDG2dC9OHl/d7SVksleic9q9degVb/5YqxWRCduWcn1Ov/FAfRz5DBsmZH9IAatcPI5qR8sgu0wFHR4HeKyYIXdSxb5LUGABbbxPY/x8cYAnA1WsL7rM/8ehTqOzDfHLzCBobfnvnRT1MULn5ZgsqrVFv2L7xO3Zb/mVzIA2roFRN33G+J5rT/1KBSMrxeU+htVG5sIsuw7DUyOrZM/8FHa//WVIcPLovR2haQck1Cwwi2Hi8DZ0jQADKUJ6kvgFsUePYU5rzfBse8fNM5jjY45AeQLojwnXWKGGAhOwRA5CQLAUNPoebZCW+rByfLlOHQOkByfAgG0Gs1PKecmE5gBSUDAXyNbj9+5FLknOtDROD8tpo22JYVRrUqXYhLwKC3KbMt8Htbij1UwB+3RjzQ9aIbgH4bwF8yhjzk0qpvwHgbwD4Cbw6gvX1jv8ZJHd/Win1vwP4OWPMCze785umQIwxrwB47Aaf/4z42wD4yzfY5l8C+Jev64TKWyXb90dYfs6vls6zG5gf6QMAEtGCtuo0kIxKV8gHUFx5ts+bP7LmiGPaw2M2ab1DC4MbSiVjS+RoYbJcqOXyAkJ5AMDwuC0gFHBKWRAFeKI8wHsaUsEw4gagBasqrziKB63isBKmHCWB8mhYyGkpnKTJQZEkXirROxe5ME2+WuCVH7E5i5djzJcM4nt8pliNPIqq94oPQfCQIZnBwxV6h3fxkSMvAQBeHJLJ/ejbPMX6KyNPU3ztM4cZKwCAwiTZd21gMrNUKq0CdRmhdUkorBRYfsZbm5LOnVE8sj/I4F4V5B3KLKQzmYi+FW1rxV76A0IZH5mi3SHJV/zAHPkmPdju1xOnPABg56RVukJITleFl6BI2TLRJACkp4aoniXtywphbJP+2RZQNH04EQCy836O7Nr5yu17+V58Z0r6nYxubE4zlFqiuurY55dYuEuOqdky0LavUtUmyGHwPJbUNNKjqBrKeTlRYQiVaOl65r0oQFjtVRwAobLYqNIFJdylss9FN8dbGQq3zwOxlOofAvBjAGCMyQHkSqmPAviw3eznAXwGpEBeDcF6Ba9jGGN+E8Bv2vP/afv3BQD/DMC/NMa8Jn3x7zeM97aPZFTh2Ce9OaSmNMuTAXkV08Md1zPDEQ8KLqmg/acxmC+l/jMDbD4cOetucL9COlCOTVcXBnUaYecUraTe2TyIw08PdzBbipwlyJxXMnGtBb5+3qf8jKRbb65XQdI0nnorny3C+ZKNtQNBnKK1PEG9DDR/nQQRC8cAzrok+qUkNS7/YI32M/Sc8lWg87Ig3NtQyF4iV2Dzg3P0v+gV79iiYSb3+Pn3vgdfcX9/+XfvBwB84quPu88OHBxge0o3sfbsPkRHJtDPcSs5IiOcvJeUYr83wWSWorYXn77YRLYZ5mv6L1VOUfAzW/8+kl7ZM00k79/C/AnStsWDE5jLTexYz6Z1RUEZ5azxOgZq6WhaXbLwkv9sEGfQ99M8G1zrQjEIrwWMWmHITCqP8SGbf+BwWwTAANm9NI/rWiE/3QUanKchgk3JG9YQdSdMJsj5pPZa2FKXFSEL7YXTdVD3YSIVGDU8h/d6CcNjOriXbNt6ykeVUx48dGFcJ04g7MlRNvV18FyZswj+NnSvTFViojC/oysAVahQRgcjl3PZ613d8rh5BbKyp5j6Y3tQqSdBrWR/Tin1GIAnAPw1APuFUrgKiuwAN4FgvdmhlFoG8GcB/DkAT4La3H4Q1N72w6+17x2jQFRtEE8rxDuzIHE7fJQSwpLddOce73FUDe/Smkhhsk+gtK6V1IZWWJ6ta8DQhibSAf0eHbJcURlNXKYjmS/FAbX6vE/HYcEdTw2SsXFWcB0hwN7rgqzglvA40p0SZdPStNjL4oWtS4Or7wf6z9tjPN9y1BoAULRJ8xlBTte54M8fz4ClryQYnrA5kv052s80HDNu44uJa/6z+WAc1DWsfDYFYDARUNjZPgO9y+1S6ZisOBobCuXGIjJO7D8wxbUXvceRTBXwYlvQcADT942dthtb1FX9opX4WRiOa66bgG5j81H6/fBRu76OAqc3l/GhH3gKAPAbLzwIs5Kj96ToOihi67MlH7oCgLJJPTA4fj8+rJDsKMy/RAppacMX/Ok55WikcitbPsTD/GCuYK8NRO/ccdtOr7SRFCpQOlXmQ17pAOgKTrLGjm16ZefJzHbAZPhsY9tguk+he17Q5gjE2HTFszH7733RKHsHzKa7cyoJIL/NdUveaLdjCpXWtRBCy0pdegfNDVL6slBRQpJZccjwWTLynGZ5B0BHuRBn62qYsJfnuh1DmZvWIBvGmHe/xvcxqGDvvzTGfEEp9VOgcJUbxhhjSyJu27DgpgdAaNc/KpTVL9+IPeRGF31HjXwfzax530uTWV8jykX4QoQtJCfQdBXoXAyLqoq2J5VLxhTrdtZSRhNUxptlkpWVFreq5f0CuKhQGFSYZPYkPA0KZt+9lKNqRQ5/H49LjI40goW+//cADswO7vOVyvRbYen53DHodmxtQsNyD1UNheFJgz5HQF9IsfichwTPRQHm4c8StHlymJ73rK+RLyhEwspWBRyZYbam8bVPPoCGMABriXCy7WKToX8e0QwYPkBCSkUG3azAeGwVx/Nd1FFY9CktZEbfcOikfYEqkl+cnaJ7Pw80AXz6nsfpWQJY+WqN9mVbdLm/4TimAB++MYGH45mLuxcr7JxsOKveRCHia973gszVMngdAVUDw5P+4ehXeqjtw0p2bMOy+31urv2EN4IWztJ8YCZiABgf8PGkeEICt7Htn8/SC8IDsOuBFYfZE+FJh5SEdkLdUAdEJnxsrdVOwcoRhGMl8rCi/2VORibKq0z72hUHA7d5momx3oZHfNE12e1rgqfzMJq+kx5JUPl+K8Pg9Xgg32hcBHDRGMOokV8BKZBrHJqyZQ22Wu3VEayvc/y0MebTN/riGyg8AHeQAjFaocoi57bHoq9yY8dbHpKssMwUpsvaIV7aV2hx75z09O7cvxwgBE88QkCHUafh5JSLjxUHW566DJXHdNm67vYjLuTi0FYyDpXJ+HDY4Amg48mCNrkoD39uZj+zCiKLcO09qTvm5uMGy0+FfcLblxRS+4zal6aufzYAJEN/Maw4BgImXKe+vmByyFqfsb9fVYdw1DoBiq7F6W/Tg2OvDgB2H/YPtr04RW0UkpdEvmrkhXH7KlVCNzctoWXbCkP77HsXKkSzGumup0apUoWeyAsYDUfOaGISNNwNUBlgtr9CNKH/OdfC1vFkX4Rsu3YU6HXkEWG6CMkNGZ0mPaQghp+z0vPPdvp2rzzis03Ml4GWCBPlXe0UweBUA7Nlr8DSUY10BHTPCAqde31CQ4ar3DWU3nMY71foXaiCUG+dKGcgjQ/SQ5Z9OJKxb7XslIf9PTqk0Vyv3Xxv7Hjvpsp0cD2cQ5PeWzo0HnG2oKl7o8jPcHthwD/XSFDFSKqTWx23yx8wxlxVSl1QSj1gk9h/ENSX41lQKOkn7e9P2F1uiGB9A+f9tFLqEVBPkEx8/gs3s/8do0Dujrvj7rg7vtnjNlOZ/JcAftEisF4BoaM0gH+tlPpxAOdACFXg1RGsr2sopf4WKM/xNnvM7wPwHwF8eykQZcM/8aRCNK2QL9oirqaGLkOLhWOzs0XyADLP+h3gz6O5QWsdGNqEcCnqGtx5hRVZNYham/mW4pmx0FVhfbZ8B0K2RH0znZAeY3RYoegZLH/dHt96Pmvv8DEz2Q8js/UfWlhbQWOfcYn9XwLO/iC99pUnbWzc5nTaV4D2ZREL3891Cd485j7dujSYrITeh+yvka0rjE9UaF3028gk8szmZly+BjZRzbQcLbgkNADozy1QX3XxruTiTXdr6MpXSxN8U6Fg1oCKkEDpjneB6igKCkyVCAWuPx6G/wCgeTlyeZZ8ARg0taNCaWybAEYraUzYw2PvlIrjPAJU1cQN1TnrvR0g5N2SIat4Zutq7LyZrEZBOIX34zxB2dLY/wV/QbPVDI3dyoVui5ZyyC/3bBL/LppbBkXbF9zGkzrwnmRC3N+zKLBUdE8yJDg+JCrPRWOrKqH5y0irKA+LJBs71O8m4OnSnuOMPZG962K2xMi325pCuK2FhLZM4UZhoz94g21viGB9A+OHQGjZJ40xf0EptR+vAwF7xygQAEBNNRlVM3KCJJpVyLtxUIxXiP4HZdO7uea6RXS94qgaHnWy8rXatZOl4xlsva0V9LSQIS0mkOOwS/dCjdEh7c45XVYO2w8Ao2P0e+shUS8h4uqNHXPdBNaFceSKJlJAbVyOpGzTiZafUu5+B/eL2HQeJk4ZCikXa8vmh8YHY0e6BwDtSzNc/Y5WgOjqvhxSqEiB375Iv2XiW1VAZGVJe81gcg/QfdpvsPR87UAO/Iwlgq15dep4ycouCTymsEgHOYpugp1ToleLiJX3Xy5hUoWNR2n/dBeY7q9hdjjRaxtcifkR5T6pXmUqrFXweIDrCgFVSfkdiyugZlm98FkkYwJs8PZVQ/R/t/fP87ZsKtdeFgASq6j7p0XI8ZBgWbahKSekmemY60XsdXFfDqPDeVE1NCr4Z0FdM4UxEd+AbLMyLtHOHTIZjiyT5Hxd/CymywqtdeOoU3aPWbJOUVQpw6IMZeZwmqoNolntDKO8FwcN2W5pmDuCymRqjKmVUqVl/1hDmFt5zXFnKRBQFbkujENH5NZi5gRg0VQBVFeys/KkXDhDk5Xj+9IrOfbvBRW88egnHv2X/SrfOdUIvI9skyx0ie6RlioLxZblHipfIpdjcsBvIwXYdEWhfcW4/cqmhk6My2GowsaoD1v0VUT3P3jQH0N21Wtfrew5bL5opw4w9y0BLuhcLqHzGtpStcyXUiy+WGJwyl7gDdao0SF8lRKzdvPaemeimdDRX9PQJZ2zzEjRcgKUk9dSgef9hivqjCf295R+m1ijakZo2WTt5kMEx+brcXxj9tWMTxboPZs4BZ2MgdEx4/ITqiaFx0gqy4MYVIu7Ar7I1ujYY7PXwr91YZDuKvfMpDJwz2ruFUwyMkHOJJobtNaAXFR/dy94CHM0papJCQeXg4kx2XuMJjQXmWsLQNDEbHzQ8so1GSJNzaTYWNIl5Rl4zenCBAZctukVEw9ZcDpd9YZSa93m7xgMcaXC9gMSFWmT7JG/h/YVf92NrRxlKw5YEyKRH73l8dZXIF+2FfD/DAQdHgH43Zvd+Y5RIEZRAo7DN5EVHPOjaeARtDaqgE9K9qZmWGNjm1dnhMYADsbaO0/SjhWHS07bxKsMFwHErbXxWMMJErpQ333NaBXAAJl+QfZQn+yHm6RVgyChLGh0ThYaQzh1ZTDZF/l7svs1BESzThV6thxDVXT8nmWYLToaiWA5zbsqeHZ16gu8dM4WHn2XbeS4+l7RG54pRVxtAVlrOkii++Nl2zWybX/cOtV7rF5G3XjhEM0Nil7qjqULX/Xf2CDLYOtRL9G3HvHn5nfFLWirVAU0MUtP2H7dAk7auhwmwquGVxIlV9iLEJv0GBZO19i1dRONAYdlZFIa7n1xiFPSsNSxt3brSCGZ1C5pzs+6c0kgAEV/jPliiAJUFTA86qW3MuRNyRDjdEVhukLiYd9TM/uMaJ9sk8gMGXDAykxCeQNSTKtMuCg23TVQtfHdHbNQeQCe5bmOyMORCqh1NTxPHamAnddooLlmCzoXUneP8n5vx7idhYS/H8PSofz3ts/Szyilfh1AzxjztZs9xh2jQAiqZzDvx2hfnmFwv3fZJdNn77zAl7c0knGIYmpu5NDWij34+TGqVuxcfo6R8/cm9hQJAIWM6lg7ITi4r0F9tGXYQwhkhjnKxj7Tpcj1nubBsWiuHGfY5s6JCN2LolZhkYSutDRNDKw/5q9xQZDiR3OD7nkvqNJhHVQMJxNCNknqBw4N1qlGPC6x8ZhXGrISmqHP0iIvW0D3rL0uplW3CkXP60DoTJc0RkeE92PBi1UqQP3Go66gSMEpYZlvP9xzCmzz7TZEmTHFhULrsme4nfcJ5sssAnVMCmDnXqE0lr32a79CL5W5uKoGheXYo0kmBkXHo+nqRAXNs4wO0XlycK7LFQdO6R1wzonJDqM9XgiPeU9h3osD5S/Dh2WLrmUsanaM8vkDFopMtVKlYYipTjWqVLkwkYkUYBCEhrh9LQDsnrTccqLYURc+hFa0PaS3dYWeu8zjjQ+EodBobsL8l7hPfg7jIz5PGPCvTW4vnfubRtL4TRi2ruSTAN5u/z/7eo9xxygQEyvM+3Q7a+/yQq2OwwU6OuQno4P4cXiro5DuaqcgqpaFJ14jM7Nq08oeH/HKad7TWDg7t+eySUnbUa59tcRI9N+I5iawWFhxyFBAfoNEff9lhjvWMMqHb5afo+6HLKxdQaJ4q5JfqU4Nth8Cuue4ICw8T9HRqCMfSttbxQ0A8dT/LZWHC/XYnEgyAXaPeYFStoCFl4Ty3KhRdLTr6ggAg/t8EoDDOPy8pvuIgn3v+Qb3WEHeAFa+VmB0xHJxHVlA3vFwYlUTCV/bJvWd4GdhPTCoI+r1zmPrUX+6qk1zgqlgTER1Lo7QcmxhzPxMlagIt++FY/9AWLMyWaXKctcB0FBcn98jW/YBN5cIV8EgMBqybaLukIKzyjx5IQvrADAiKGeYaVg2bZov+klVpVR8K0PB0ghqWpoXfncLrxSYLUXOEGMhX4jwqOSUopAtfZcOrs+fSc+VlSh7MUYrBw8G6DkaFcJ4b9sQwIW38PiKUuo9xpgvvZGd7xgFUjV84ZzsfscLmhEp8dRbx8gsosVO7IVXcku5YJFGeY14Z+YUBwDs3OuFJi+w+UKYZ5Hkhjv3iRmmqe5ChtDyrk965h2LZrKLeen5CnlXBwVZqazF2G/dc1GgqGovXIwOcyxLz9UYHYkC4VUJplb2dPj6VB3md1QF7B4TRTDi1lrrdBGc5J73vZAGqHAPCIvLuM8EAGw/aKumbfU2C7T2ZXGtwjua92kbKQTX3yEbfdHv/gt+n3REoAW3zcwTYro8gHBwZM+M5mVGn/nPqiZc7xdt5xk/ryoJBbCsJ0omJPAYJDE/QTun5+hmsk0gyb1SmPcUMRfblrhcGMgjngIVwth/mSmkTE2fhaEuKGD3uLiesU2US4Ujrr3KNHnXkT92mUXBs2rLKnMmK7We+HQldghBgEJqk1XtqO8BIJZ9VAb+794F2i+xzccG9zQCZgY2bqQClFxXVQp0L/mumoC+rpfLrYw7oCPh+wD8GaXUOQBjkOY2xphHX3s3GneMAuExX6RF0zkvrSNPGFi2gaZFt5gohOFSoZNHMQFA0c8csmeyGgdImdSGdmQse7YU+T4LS3Q8htt0zmrMfkoKKwAAWcNJREFU+15Qk4AOabcBUhw86tgTxvXO5ZgtCiudCw4FTTZ3ZAOA2QoVsC0JYsn+iwXmS9ZqT4H1D3mpsfilFOmuCXIBUtnJ7oPUlzoUuJIGprlB18X5Hi6glNbhUCgjfgYchzcxCRJGzOV9IFsPCRmTsd9+thIaDtq+Qhkbv/JhAxK1QLwTIR775keAVbb2UemCFATDeKM59fpgpZj3jes9Ts+GKGH4eXEfcx4y3GQimod8vUlWwrziK+HqBJgvenZcAJg3lE++zw3yBeU8lLJpkVxdZslVaF+RcTH6XBaMdkUoNx3WGB2OnDc12UehXVeUaSvOpZchEVattQpGAa3LdIH5csOFcQFB7bPoJ0s08/cvmRy4Wl7ChBPRuXLxRdppLOjlC0FPwjlFSew4OBk5WO/tVB50wNt8vG/isDmQvwiqL3lD445RIDqntqGHPzvF2jtbgaUorQRWHgDRTxgNz1dlKFY9X/SzT8b/OdnIFn4yMShaCuP9MkwVxv/TgUJmacjrNKRKrxq0DXsc/HvzbX6jziU/QzffRoumIZBKlC+xseRejeZVhdkKfb/6ZfKxWcGpknpHMwpl1o/Q/3IahNWKlhLIJHtdgrrFPYvKhlrsQp8tasiud6zUpLUovZl5L0I8NS7PoSqygsfH/PbqPSOYL3lI0myfaHo0CoUYewu6Dj9jy5OUc4V4xz/bfMHPDV0gEAZFm/Z3ENw2MDpVAS36oPP1BqqGJxA0UchyQOf0cGk5qmZ4vuTJdtDjIhlRGDEgNBTXNl9UAeqJE/BMmLj4cmmv2St0qdyNJpYFyX8FA5eD4pAZ5z50bjBbDvMge+lAWpdnrgEaKoPpvsRBb2dWcci1NF/0+zJIBbC1U4lyuYWyqQATORQYJ+4b24KKRfTrcWgs9qYjMnzYo0pvF5W7HW/lJLrNgfx/jDFvf6PHuGMUSDSv0XuFpEj3YuV4ffIe0BM9LdLdEmUr5PxhyhEgRFLViUeiAF5xOKHZDxcVC152p5OrYT5C5wASD/1kLigXOlBhSEYXFB+XvRYaA4PtB71gWXzHOtZfWnb7Tw/WiMZ8XaGQqBsaugKGh/39NnZM4BVMVsLCPgBB7Fx6bHXk6zbYM+O4Px8zDOP483Kxm4RRS7hy+/DIbuevrSMsfhhPWw/Qsy07HmgAkKDm6x2eMIhG2vFP1UloWBj77GXNT+uKF/6qArovRagTO3esYAoMFfF32VKeaPGgAmoBMpjSfvwMOPyVCa4qmS9x6Cj7UWWJI9ngyDYJ2ssKLLZItdEhmbcIr3W2pNwa4XnrOd7sPBfhRsliyzk7CfMdnmq5xDl7uLLQVCrXOlJYOF07BZt3VXD8aOa/Y+OOocMAMF3R6L9Mi6ZqaGRbIReXNHTo+GH/9Xk3XLdveBgE9C5v0XE3BwIQMmR8KIMujVsYALD0bIF4Vrne6ICAR+6xVoAwZEOd3Qwm+0VIJwpDOZ3Lpdg+Qt5RwUKVTXUc4qgQv22Ui4ck4DNCYPBY++4CyWVaTIvvWAcANA5TrKM424EqlCtAm+zXKEQPeE4kSurvdFi5auzZIimYoLhPXC8gntVeAW6FkCyEHIteJSYiQSU77aUDj1CbHADKozMHxJqe6QEGAYeUDFGx8O0JRlmjFWZW8PJxj/8owc6+9tRJNK/IWoTw3XCyffHZPaFPZvyPrYIQ7yqa+9apvXMkzbnuyCiF0VE6li5CK7tOgSryNQys5Dj8GM3CEA6Hw9jabWwTOIIhw7okoV/Naf/p/gQ7J/y9cvjW1aHsAU84z0fAeLOtEJGn6pDJ1kTKGV6EPgSmq16cGBWGVoNcQUTe2VzUSPFzjObGzUcAGB5lNme/e9kCNh6lSRpPyGNySElDc4PzKLxWZRV8tae18q2MuzmQu+PuuDvujrvjdQ+Ft3YIy44/cis735EKRPY8jmdcyea/l15GtunN63icY/eetuv1PF+kePNslcyM5iVNYQi7O+Pauc8HQJb22LZ8SXaBueAzqiy1+cJLIjwhMOxcjZt3/T5Fx1uvu4/l+K6HXgQeov/zOsKTl4+gOOvjLvHE789NfWSSP575/h/pboXJPhGi61PilkMx7q72xPABspCb68Bc1HnUDWq4BQD5gkHvtPdYOPk9t/mZ3ksq8ADKtq3PWPcxPFXRcei+uGbAfyeteqMVtv64zzr/4nt/Fn/v/A/ia0+ddJ9N7vdQHf0MeXGje7ypv/QV/x4Z5TTbb+GiMxWistZ9O1XAh1jGwltlVth4Sl6AAwgw3xdb+DZp7vqBpADKMNfVvlphcK99tn26/8DCrzwte9FWN+Rtk9evC1+jE81wHVOyHLxeXH+PSAWhXq7nkEzT8dy4+4wnNaBUUDAoQ7t7ad/jqcH4gPcYpEevC4NyT3MumStiCpm9845BDLfT+4Axb/kQljHmHAAopVYh2HhvdtwxCsRomsiNHWOx4PQ5J93kaG54QRJNvAIZPECrTk5uVh4AkFtkDEM/i45C0Yn9pFQhB9J0//XIj3SgXJOnru3HIWkcirZ3u8cHgaJfo+jT/8eOUHwrF5n42SjF4mkbulgJu9Rx29UyEyR/k9qFKji5KcNKRSvsby3hkZKum7vRTY6I/NJAo2z5BbV7j0G2JkKCKyK8dQSomsY1mjKRAXaSMHQzEYp2TIqRq7vjCbD5Dr/xf/Fdn8bPP/c+/OJ7f9Z99szlA4hWSWqWU3pJ9x2nnrVXF630vELadukrEVJRST0+qFAsGESzG+QiQMiloqVc7D2eUAMrDjfG4zAEyYSJPCRlS9lUQYiGodfM81U1FMYHI9fPncOEHFLSuQlyTZMD19c/1YmBEfDsWlTR17GFAnM9UQrkPe2L+9ZNAIAwCpgv6jCx3/OowGybjBbZTC0Ej6iAIofRiIAHWnAtCgDMlj3DhFEq4IMrm2Ghbtt2xJBcWWUb4EcxOzVH45xINN7ieKt7IEqpPwbgfwRwCMSDdRzAcwAevpn97xgFQj3RlYvbSugf4Gs96lQBwhKrWgl2TtKEmvcpf8EolGQMZBsawxO0LRMASn4ruTCMDrml2HJrC5Bctm0cxJAtMlmRLKGbrWuAuqLR+SFyJf7uPZ8AAPz989/rtln8gl8M+75K9zwRsehkt3TXpGqDopc4xTE84mP0fB1SebTtIg5I8eyC6Z2rMTrspV46YNZb+/yHNslr99UFEI+9oKyaViBkInm66x9mMrJWrRWmRofUIFuP1fje930VR21bxL+8+FX85e/8Kv74cz/qtilEj3YV0fleOk/uYbc/hfp0HyxnxkeA9AVgcE8IVS3tdbYvMvKOvpPUGgBZ5bOeF/6yzzwb6wtn/L3qAhgdZHSCfe98au35ogASqs1N4xBlZUaV2+wxKEOeqvR2o7nPG1SZQftSqIynq94q10UYy8+2KO+XWUOmaBM8mQ0nV0EuPEjZnVJVBkVTIZp7FJrMpxQtun6J5JIKavd45MgPGf0lu4zKwV6grP1QtfdOVW0waivMTvnEj4T43vJ4iysQAH8XwHcA+E1jzDuUUh8Btbe9qXHHKBBVEeZf1UAyrBw/FUAT2FFRT2vnlUxXYtRxiHhpX/UEgqwA+i/aUNWCQpSHFnvQCMjOUbaI0l1KeHJSmlE2fPzxEYPGpgqS0bvLBZa+Qjvwoj53llyW//Tsf45H7rvotn3h904Cx/01dC6R8uDah6KtEc20ox/ZfJhWvINQmtBKZaoNFhT87GRSfSrgoLUGOmfo//a1GhuP6aCZjxKVunmfflctWVKsEA9EbcBUJMyn9E6D5l0xMLJd+/7I+5+ia7ZQpJ/beQifuOzzfhu/fhhdeKUzeHcOKIP+l1jhNpCMDXZPWujre9eA9wL5C9aFrBTSHX89rkpccHtx73L+H/AU/UDoDWbbvsGS3lMVXTXoOJIKpugoSmnCKwIpZCX9DockGZVVp+E745ooGSJrCTi7qg1Rudj5WacKiy/5okuPVhTe5IIHNcSW6DG2ITWjgUx4qxwSll5SY9e4SvZkVIGbTe0epwe59i47ry6Hnl88N9dxztUJFVoCFEab9zz1PED7979I73100zyzNzfe6h4IgMIYs6mU0kopbRtM/eOb3fnOUSC1QTKpyQtpaNG/uQ5e8nRf4hZE0bb0FhYNowtDC9nmNjbfTseQSKD5olAaFjvPHgS7zb6FbIj0GR8g/P74iMh7vMOvjnJEq97BfBmZ0vJS/vkvnnB/J5Y+g6Gp2/fHiHIviLJNS71+mBaPiegatQhLrX7FW2ajIyStpxLzr+DYfSeCU4zvoC1CDYd+p8TW/Z6NtxC5HLdDLUNC6rrvpbAo24Juxgqr9jm6hqfuO4IfPfYEfvqJj/jjXfQh3LbdfvsxLuTQOHnyGgZfIqIx9jI5L7D72VXMDgjY6qYNxxDQDVUzvLYqoboUl2eaGUQzr4Tzrg7IBdOBD7eND8UY71dBpX66IwpMeTf7W1U0F9iLTibEwMzV7Qzr5dE9S9twXYiqSbDy/3tHPKECPs6pVCUpJS6+47qm3RPKba8LrzQbOwaVgEWrmu7fFzradSTCdpIUU7a7jabA7in/XIGwLwqHfWWLAW65S8/KINuuMLEIwKIdvreVr9FFCkq4Nz4MvHv51h0DpVQHwOdAzazW4EyXbzzuGAVSJ1TQlw5rRLlxk7aONZLxnn4FdrFFuQn6SQDAlT/g/04HFJKSSuA6l9V4ISTJAgFgdMRSuIsw13wReNcHXwQAfPn8Udx/cM1998ITx+01++11AbS/TBcw2wfUsUEy9AuuddXHyud9hWzTkymODiWI5yZQCDJEtvx1Uh7RlITswkslhiebcLEURZYmL1aZaGVvinMAvfNCecArDxnb1zmQ5hxKRABh9n01/PZEkEh/suBQf2bdff3Tn/IAEvZenMBPgclB/7JOniSTe/AQCa7VL2qMDoUEh8nYXywrLOkd5j0PD+WGWJzXKFrKkQ8CZIx4hgGFZKIxOkgTIZ5RgpkVObdkdU2TBj7H5h6FgBBPlxSqhveG4hHlzVzPdQXkbRWQF0qGguvZflWg7NjTkUJaF0DXhmLjmcHokELXFrmSchOeEntpysOS5TxIR5RUZw9flwbjVQG9f07kog6EYdbxAR3Q8/Dcd8CEhg7yK2xcdS/SASTg5XaMO8AD+SiAGYC/DuDPAFgA8Hduduc7R4HExKM0OqqxcNq/1TpRmOyLXQ2EDDs0LK00D1rgNbBoadsPFxhtNNE6S49p4SwJCM5djA8qqBLoXbCC4wKwe1w7pFC+WCNfDCfZe9/1kvv7Tz74FADgV37r/e6zxrYKFM6s7//uPUbZw52nySTrnFeBAqw1cTrJgrTRIR1Ypwe+4BMJ8ZDuc3ys7e5LehmlLcST8fHKCsydZYXWVf/5tXfHqDIhhObsAfptZE8MJqILFqD4mxXJ0rN7UGr/btX+DURN/x0nuzmEVHQNlh/x2dbdeYats32sftHfn6xZmS1S/ktaq9uPGDSvWoVnn+HEklNmawAU0BEdHGWIRjLTzvskuFihqFphtr+GnrFwpN8soKuGCuL0ZQsBq7Mq7XO0p4indH3S0MkXgPYV2qC5UWPf17zFn3c0zQuRS65j5cAbjA5jfjPACm6rZHRl0Lvgay/mPeU4wQDvSUlBL0Na49UIza06YMZtWKOoSlXAecbdQqUCkuSKZZOo3CWyUoI9GtbzK9oh9fxtG7cRhaWUigB8GcAlY8wPKqVOAvglAMugXh1/zhiTK6UaoJaz7wKwCeBH3wiTrh3HjTHP2r9/3l7HhwF85mZ2vmMUiInIuj/82QK69PFVABgeSdykDHirFjWaG76Qbr4EZOsa8TmSXqMTKVae8nDTsqFstbi1dreArccr9C5w/NbGepse+lk3/Pk++J7ncHXq4zpfePHdAOD2BzxMFQDGp2i2/7F3fBUA8PlrJ5zyAMhqn6wqD7u1i0OGKiRCJdsEBvdm6FhrLB565QH4YivXJCmysX722OZ7QnKCdt5E/p7d9YkkOu/HVrMyoVBgC5aVJysnSUIo6S/Kts3XbFvB0whhqCYBtr6+gt7DPhGx8EIUXL9ERbFgYYTcbL9B3awwPmnvfRRB54oUhx2SSt+zwdrtZz6sMu/rQCHoHGhd0A6VZmLiLOP7Y2ZfVobpLr1HFsjzBUoS72WYnQh69iB8aoxryAWQAmmtGQwtoSJb6d6DMCgz5eHewwqta94zmS1pxDPPQcWJ7PFB/0L7L5euSVcyqVG0dMDcQHON/pfJdPYe+Nob26FXKtmOech2Da01y4Rg32fRjt4cJl6+jNt76L8GQkAxtuN/APCPjDG/pJT6GQA/DuB/sb+3jTH3KqX+lN3uR290wJsY/1op9S8A/H0QjPfvg9rqvv8197LjjlEgydDgyGesYJx4SZIvpkHrUl0oF9NtblCTG+ZrWnglCnDidaKplemc/yca6cFDNEnrhkGyHWHD5m5bV6hrnYSuNnb931cfIeVxbUi/e0tjjF7pu++LNjB7wHsIjx6/jBPtLfzbFzyiLpkpFx/meg/2Cir4RD5Awlr248Am0LlYYLZMr3223EXe89YuC6yA80p4H5N7ffIkuRpCWbhTn/8/ZIzVNgTzah4HK47U5o/KRsjQOjxlEWGxhXle8lQ1PKp+DVWHCeXyN7zCjUXuh6k9uE6gsR0mwFEDKtfBfaUDH1LrXLoxV5VPtvvQYTxGQFfOIaSFMyJUI4R/ayNEv40O64D9gKl5uEETQE3DZOhndECjaxtMmYjQidMl7xWWmXKEipJl1x1P1GYYBUD5XEY8NdTMq+lDcgCw/LR/wFWmXYO08WqEfEE5Fui8qwJk37wXer10zfR7tkKGAUOYWQlKyh/phXNItSv6rANe2Y73R0Ht1S0NARK51aGUOgLgBwD8PwH815bo8LsB/Cd2k58H8LdBCuSj9m8A+BUA/2+llLJ90l/veB9IAX0eQBfALwL4wM3ufMcoEFUbRNMSZTvG8LiXgMNjmniO7MTUhbfk6lQBtWcxhSHPhVFZvFBlz4pL35Uitu52nlTXTaBk6JOjLMS2voP+mGyRiTlbJ8mqZxrdM34lzfbT+R457jOIv3XhPsSvNO090mcTiwJzQksIxqBxkHUuigX6cHsBmC8kLnTDqBq3XY9atuaH/QH/5vs/6f7+N2se5VSfon2fe/IEACAehf0n5vuIk0uivGRbVqND74iFmFQaOw/IohADlMopDgCYHBbEi6UVjiIxnzy0A1wm6yFfoB8WPK2rpDz4Gmb7gNnhAtGOpc5IGF7lL0ESWwKkgCTnV6BsJXWGVTr9VwRkOa9RWgvdxBQu4mZj8wVN7X4tsmjhlWoP4aXdT9ZWJJ7qJJoZdC/Wos+MCowCvmZJTUJtli2SaVJhui924Z/Kdofkd1k2NarMdwGsRKdKAJgcSAIlkYwNmhu+R3rvfIkqUZiIvAd7Idk2ccxx7om9SunBBYzYQ/aKWLlZwIBV3pxgl7Q68lpvZSjgOkTYLYx/DOD/DhLiAIWtBsYYXkEXAbDPfxjABQAwxpRKqR27vaiQuelRgAobmiAP5Iwx5qYJWu4YBUKQVIOyqVFmCuNDHoEC+OQq9Wumv4smFQeW2zTZGtsGqgKWniNJ2NiaBxxa09UG8mXBLruQo0DqhFrRpXAAW1Gz/Qaz/UB6yc7+B+dOeQBA/3mFvAuMj9FF7ruXAr5nt2n11EaheNq7TwyRDYSBELjMrcWWP1dxcxe+zkuE0uLFNt1HMFfeDgDKjoHeoRX6E9/7CQDAtYKu4T2L5/Dzz7yPbuXgNTz35AkkwsPShVeCkUhI85ALH7CxfHtqViDjg/TbCfBYLNBauRBf0a9w8B6/XtaeJq2aPLTjPpvsNoF3kDLMTqdU0MeJ6P1hyGt2mN45ezgwoVfVO61sIaNx96orD1hQFeWf+PiyZqVre1rIUMpY1Oq0NogOnVspN7YBEyvMljyc2yhA2x736bDCvB8JAksr+KdeMchEcm1Te5ykr2MVQILT3RpFWwXEm93zc1QN9vIUKvgaHvZUGO0XT4g3q2x7klKjgIVz/gEb5WHxel6jSrwnEFSS2zAXk2K2r5UYHgnbKNyol7pHVpISYqg0o710acNpYxMozlsd6uaN/hWl1JfF/x8zxnwMAJRSPwhgzRjzhM0/fDPHlwB8AsB7AKyAWtv+SWPMD9/MzneMAqkbGsPjGTYe1ajatfMSGtthcZycfFWLrGLGvzsKFDsn5ouNIBk6OhIhGhmYwyQd1JUMy88rF0ZprhuMD/j2nNm6Qtnybnf9chetHR/C4BBUukUXtfPFfUgfH7jzsfKQxYmqDENDrYE4vl1kLMT1TKHqCfjo43TdyRmvgVTprXcAiIRQ/Qef+ON0HKaBuHeC6CU6+UsvnUT/AhXgAR611D3tH7Csyuekr0SsKQPMl0WopF0h2ra9Siy1iW7TyevtBpJdf+zOKxGGr+zHVCCtjAZmZ+llpDsKOJkjO+1N1+Y6MDpuBcuOCupUWmfo4clqeflcRseoHkiilVRlUFthxA2pZM6ne140URKIpjomb6W1IZLI2wWqzCZ6bT8apiwfHaZrM5G3oltrlZtH8bjC6Ejqk/SVCd9p7ffhUWU+dBnPDDAzrhgvK4xTXgAcLfvooO/GmIw9keRsSSPbrt095h2FbGAwt2SL6bCie+Z11Y9RdEKPTdacJCNSHP78wrtZDRUG1zKxZ9m1XSuV87K0q0Oha7tNTLz23K8jhLVhjHn3q3z3AQB/TCn1/SAvoAfgpwD0lVKx9UKOALB19rgE4CiAi0qpGISc2nxD9wD8uDGGFdsVAB9VSv05/lIptWiM2X61nW/j07w77o674+74dhrG82F9o5/XOooxf9MYc8QYcwLAnwLwW8aYPwPg0wB+yG7250GeAgD8mv0f9vvfeoP5DwjlIT/7F+LfT73W/neMB1KlwPAoeR/NqzpAllSpoAupfdOhzMa0uVdBlWlkGzk2HvVQHaO9daNqoHVVIX2Bvq9Tit0yjQNXqstkrKqAlg2fsefAoZN0h5BM86M+eVC+5ENWmfA8AAoDjB7NXQK7ZVMlnHNRJTA5WrvwT5UYmNhAN8KE4sK7fC3F4Kl9/nPbe51DHZtvD/Ma7H0AQOcCQTOzgb3upsJ8ISS5k/TrDn1ln30yCj0UY3uOV032njSwTxwgqaELb+9wHxEZQkt2ARttQ/Ma0LyWerhny3sfAEGsASBbEx7Tfm8SL57axu7Xl8PcQ1th6Wv0UkYnOkGv+P1P0AUNj3nvTnYATIfGJb25YI//752ZO+8D8Pxtsn+KhKlGuQlqaMp2FKALuXmU5BXrXK4czNhEFIbiavZ4qoLKdkfTbj+qU4PGduXAJo3tAjunfBa7ShUm+yI3v5sbBjBAw/YLKRsaJpZkjNRKobbzNp561GSVkkc0W7Lhs64K4d17eujoEuTZ2jmbdxSaG5XbH9gDAa5CSPGtjje5DuQnAPySUurvAXgSABO9/SyAf6GUehnAFkjpvFnjNeN9d4wCUSVBG7NNjel+P2nchLNCuyFqJKLC2ApiP6FGRxpu29kyAMGrw0giHr3zJSb7omBx6zJMaktSvSZDQMUrSQdAOqBwweQwu98WX2/7GrDwHT+U+3wKgPFRQ+SMooLapLU7oUnoc6X9RS/3PTj/xMI2nhl6BQLQQuQY98JLJHgZ2iqv20RUsS4ZYaO5T+w6dBSnFHT4/WwFKBdEEnwUkbLL/Wpvfs0rctfT3hZCysI7wIf5uuds6CILQyT5AiX6ix59mAzpPLJafvGU99S3Li4AiyWWnqQlUsfA/t/1+ZXOGUpIVR3RWrWXILOJ55koWGNhJ69HxvQ3HyGl0xM5g6KtA7RQ3lFeSSgiwuS8ka7gcoAAkI44/i/2F02UpithR8Pd4zrs2mnRUt1zPsFWNiOXo6ljje75ApUl6RwdigMYdTSjJmVcJxIVBkaERqO5ATphaKppWRPKhg4KKPk5OdSVCQ2TdGiQ90LDRRm4dryTfVFwHCRhd8ZbHreZjdcY8xnYGgxjzCsA3nuDbWYAbipHcTsu6bW+vGMUSJ0Szw1bpsxXxQJj9YsSWisEV2FcnoNJCB1JXE2WcioW4mTVwxE3H4rdud2xt0TDKRUiPupYBd4QAIzfPUU9pAPoLknEJKPFpL/cxfxRz/wYXc7s+UQy9lQBxULX1mK0D9hufjNaNUs9X36+seUl5tYzK2jANzYCLNGdsNoB0Wlx7hFsieA94iEhtZSElonb8Dk1rwHDBUCJRLVMvHMbYHe+EVvOdtucEtWcrDaaLNmZ4DWbCd3I99TYEtXVORzEWxfA6Mllz+V1yisPQCgPITBUWSMe0PuZHqHnyopDdnksmwpVqnyRY8fPIcBX9ctGaDA+YV811HW1DJLEM7FoKLm/Lo1D2WXbNaZd7XJuUb6nBsfW+zAFT5kpNHZqpwCqhgYUMLiHHr6qDVrrlVNK6cigmod939Pd0nlSVUNDVZ7Rt44V2tdKR7AoE/rxvEad6ACiHLRiSOhHIuKqhlcwiy9W7pkBFF0YHtFOLqjQGb+1YW4rCutbdbxm6f4do0AAAMYLPaZ8rlOFxWcRWM/cK9poFXgfRpEQlIIOyiM9qBbB+KScPSYXDnbOKbSv+hk6XY6ovzOzpla29sBCFLvvW0cGYOUICfjnzh1E1vZm9cnvPYPnnjruEqLx2C5oW/FdtyqvPACsHiMJsLnjiwPr9Qwb67Twda6A/XPoK95q1qWH88aTMPxWW2Unq8lfTQiWTYVk7L2veT/0ELItou/gtsB1CrTPRoHSkZalpFwBSMDJymhdUGtTKQgZeQf4gkz+3mhS7GyJ6pzQbHxveb9G65J21CattQjtyzkaG1byWEFhGiLU1Mtce+TJfu5EaI8/RVBR3dyq0LRJb4bhSkOGkrt2e0amcfHrPKRrVxXQFHUadQRAhVDa5lblktijQ/SbaynmPcCIgkq23rmtrImo9mRkOdSIoJSOCZBwLjpaMF/XiGZAtmU9lESjjhR0bsOReRgy0rlde/aZpoMcVYue3+hwiipVTnnGMyomZaMr3aV3yN0eUYeEoBuPhh5HOgCm7/LuSTVJsPrZ2yj27nj9gddUuXeOAlEklFRFymPfV7zlPjqaBYKE+2PowqBsaCfUAKqJYGumsU1/s2DLrlqUii9uthPVWjs7BBGU3FONHYPuOTrAfJk00/Zj9N337D+HUZXi00++zW0/G/s8w+mvngSW64D7ar4kaglG1gNaFP1NdI1y6DVgVHlUWDRRiAQCK90NqR3YawtqN4RQl0p4esA4Wg8AWHrawCjllG8y8eysgA9dsVKJcmrLyoNhmwwNrWMEi1NVFDJjvql5T0ELzrO8HxaX7VVAAL17fhb5AimPvC9oL3a85do7Qxc6W/XvI+9H6L5CB66aJKFcvkDT9craC/Zc02EdWKpsce9FBLECUMZCbYXXkYyF8mSuKbZjDEN86VpY0HOdRjryoRzA16PwvY4OKvTO1eId2esQcn/xxSlKK+QZ3uver1KIhJKIZhXKZuQYsY0Css3ceSQmUtSUSrxf2benjv08cS0PGGG4HOZ2Wtc8FxdAYV8ZHpwtA+psC+Xq7eYwofE6YLxv1fHt4YEY7esdek8Y1Clbhon7HqDFwRb39Ljt/2Ets7xPHEo8uJ8BUzVEuSZhIObMfEFD5z7uDvie6MrQwp+tkFStGgpbD2k8/NAZAMAro2U8c/YQ9v+2f0fzvnLV8FWLkryzt5EyrEcJ9FQsNKs4TE6fXbu4iHgnAmxuIRpbGKWg+5Cj6AKNx7dRfJEKHFn4z5f8DbauiJCQSHrj8BS40sTS0/4jXRnUYG8mFEKqJk9H0p9I5eWozI3/rmhfT13BAiXKESh+Jjl0tOpdT9EBAINHKjQvRc6DKnsVSgCt87RDth3CXGtb5MfeKkDhva1H6ADRnBSBTD4brXy4Twh/8h6UD/kM68CjiGcEiZXzStVwiWX2kmXSfrKqsHCWaxzYa6KJpyoTtDNgvihWnnVC18QKqnOZchZsa5ZNjfZVzxNXJQpFz0tl16HQnjceEx1QZaG/RVujsVsH0GWjU3c/jUEJlMZ5b9P9WUA9JAEBJgLqBpCveqtm4ZnYhyR3alQN5box6jnNHQ7X8RxrvyiLkG6j0L/zFci3hweS7hgc+3cVirZGMqqcwkjGNabLkbPGANGKdkkFQibbpI6BPGYrQOe8j/cnEzouL2SjbRFWi90b+uUoyAuD8cEoaPWpS+DaL5xw/9/74hTzJSZ808i2DIZH6Hh1BCx+4BoYl3VlTLQcrnr9TAOttRqXv5vuLd6JoEqFZJNeazQPabd1GRYhZg9TyOvR73/BffbcxiqKl/sAgKpXYtgDFg/YxMAzSzDHKRyQPk2W+e5J+mrhNNVIyDoJIKSpGLzLe0pZbw7zTBdN25eijsIkO4egOI9hNNVhyN4tMp7tKty5on1CnfnyFdrIJDUmJ2rosailOC/+vmZrHWy4p3ehdCEggJSHrkwQzounNYy2iqalg/qcStDWR2mowKcNDV346munTASxZymU/fAwXQdb5UYDnSu18yDicXVdm9kgV1OFoTFVAknucxy6ItQUkxvG4wrzpdiF4OKZwawfOWWZTEjhVdYQK9rEgl0LvrmirV04jwsUmdqk6ERBmEoZL9KzLcqtTFdsTckCRQJi621n2wZ5jwAs/NxlvoiJKWNRGyXniSpFzc6tDoOAoubbcbypCkQpdRbAEKTFyr2FNJbv5acAfD+ACYAfM8Z8xX7366BOWf/RGPODN3vOxnaJohu5xQFFLn00tfxBK7HLaSS7YXw/mlNIhMM26ZDCAGxJcRyW4YyjQ7TIOHk4WwpDPtNVXlDC2pzAXVs6qjE66iV6HSuMjio0P+ArrMtKYzAiyZRdpAtgwjgA2HpQI7vsKTFYEMvBC4gpS3Lrzu9v0sU+t+E7ZA3PLQAWBhwNY/Tu28Zg0+54YI7Fz9K1zJZDZTRdVpguK/TOC4LBpk/+cmgn69HFVS90gdiHzToXwvxL0QWoy6T/rMz8u2GF4QAJxipIRnlZCixlCxGbL2RBe+LsSrSnkM0KafvsxqsxVG2ctV2nQA3lrPJsqwq8E2UMknFID7L3PfBgA0Nuu7fJVDwzgQUv80mu8deWt8rr1G+7ezxC72wZXB95R+wVWoNo6hVYPPFNnSb7Y6qMt3mWOlEomx5ckXcpJ9G0nF0svF3oVpGAd11AYwUY4zwwnRvEU5HDiRWiuQ1NLnB4zD+reGbA/kOUG7TWDKZLnodrL3koN+iic1mQANt4aeiZ3spQMN8OIazfdxjvR4wxr8bR8n0A7rM/7wMRhb3PfvcPALQA/F9v5iR1ojA+ECPbtlaUmKDZ5SGmh8mnzbsqiKFSJzX6my3o5hqt8KIbYXTYPyJV0oTdOSn6XnQAXvtGUxI/aKQEHxaLRwotQSE+7xHVuqemBiZHK8QlLY7lNsXbd54gM9zEtKAG99JqqDKgEoisbJPyHYwsCvIX8Mn3o8f867i65bPY5VZG/D6iinny1BL6V+z912EYq048RQxDndly5O3d3xWw/PkUw2M2ThaFISwOOUjyR4k06r9EiWQObzAElMM+k30a0dx7CGVTYfrQDNkLXsv1RJU8o7kYnWMiUsycl2Ahy1xZjYEJYut5l6vGw1CV9MACinFJThjRts11rwBkG2JHWigSyfHM06Y0LTfbfCkW+4eopd3jsfN42lcsrJYrx7sRupfLIIy2fb/Pmy2ctccXPXTyTshTpksf3st7nMin7+aLwGYrRsNCq5sb3tsBgLKlke56haUr8awUMOsr914auwZ5R7n50blsAo+iaiibyxLXVngwTWOLjsm8dkVL3d7ajfqOd0H+4Gt9+fsdwvoogF+wVZS/p5TqK6UOGmOuGGM+9Xp4YVRNi4ytrOyypy/dePei+3v7vTkWnuROP/ZDVgARxYVnK4n7vGyE/a3bV7zCyXthzwMW2E6ItUnI6pIXPjBfVGEEVgOrP3ABAHD6hUOAAVopSdYzLxxEPIwYnUvHlOiZaSjsmQ7cUZNbOviDhylDfe3ZVfzAh55w2788WsFVkOIAgGQQWuF1TAzDPFrrtSuKvPYeEh6yp0aUG6dA2Dp1dSEdjeGxkFYmGftQDTMKsyICwpodfr9SiEtBwBbm5IAQ2i9n7vzNNUuRLsJMUsG11mro0heZFW0qrpNNmdjz5PsBBI+TsVxULERlqM2yyUryw2y7grFCk0Oggfci8gCsSLi50vhA4ph2AbL8VeWVe2NrL6CAtpWJdKYlATwUlVFuRZtgtLJRGUAhQYCeNfcuAWieVCmCDosSxMCQXJmcny1Gnvxx7tctP88wh+SPxS2VZXdDXfocGEAGlAuNJkDnUu08VS4avi3j2yCEZYzZeq3v32wFYgD8B6WUAfBPmTxMDMcqaQczTl7B6xx1RBZ9Y1Ch+fQl9/nWh48DADY+RMK0uzhB/d2kAcanF7D4rCeJy9sK3QulS6CuvcMKVKsYEhF+AkjAySRq2QKGJ+tAqC+85PuJqJLky+EfOeO+/8V7P+7+/o1jq3hifBJf2jwGALjnwcu49JmjgeBRFVyPEaPI4ygsGaKJgMX7NzGckEI4uTjArEzw0w/+Eu38IPCl6Un8n9ceBQC88CQ9m3h+47BLY5MWLzfMkvUr3CdeCjpV+/Aa9/aYLnnLuH3Zh6lYwLBVy321/bahAqpjdV1vdl2EwqVsqvD6t/3ffF4GChDs1H+/e0Kj/3IdJsWVT9QzMWA85t9UdCrvHfCQ6GgWPq9SsNe6a7KKg5UuHyOaGweppWNqituLYIL0HgDO1/l3sXC2ch4LKw7ZT6W5HiqoeGaw+bA1Cux74oI+B7UWp5wteUMlntJ3ktgTCk64li2g1nAKs06B/ovhs+BwXZVRjpLzL/OFsEeOLhlmTN8bbfurrPlQaTLySMJs25C3w8+toZGLvNytjm+DENZrjjdbgXzQGHNJKbUK4DeUUs8bYz53uw6ulPqLAP4iACSdxW+w9d1xd9wdd8dtHncVyJs3jDGX7O81pdTHQWX5UoEwqyQPyTh5M8f/GICPAcBC86DZ/zniCpk9dMjBd699D8dzvBk/Pr3gjyGeQPccbbt7zKNe6gS+9ecEmEkrbpO2GR3zn9WtylWTLT4Vw2gqogOAfEHh/h950W37y6c+hZ/ZuRePZxQPOBxv438bfAAXfsc/kriEh1dy+MUev2yB6MftHG6fpOzgD9/3pNv/jy08iaslmZAXimX8wye+B7WF/SZT8r7CMJVfEOP9dJ7BPYJJ1noB7SsGqoZH5tiah4DtOPEeQZ2wpUv/M924DBFJWpTZooWCCibVZGzcfgEXkh1BEr5NP+xxpDshi3HRZags/T/vA9feHVJ69F7xf3Pt0HiVJkNU+AJTOSSNjcyHSO+jjhT9iELDIJxmQ2WzRT9nm5thyMZo7/01Nw1i0QeFWX752UWFcSy2AHlmdazcecomwct57N5rvUtxzBvVBrEXyTQ1nFdKR+R9JRZ9GM8RnF8VVKjo2gGbkDdMJsV1QR6OS4IrOj+H6KI5fTYTnSsDKqFpjSrTDg3Y2KmD8OKtDXNXgbxZB1ZKtQFoY8zQ/v2HcX2z9l8D8FeUUr8ESp7vGGNed/hKjtnRPgBgcL9NRF5LUPZqR5MxeXkB7Yt+AnUu+ZXBnfqkEIwEx47OATT8Yq4jFXDzTA9SZfjSU7TwWxsV8o7G4AF/vvs713B/k/q13veZHwMAHFj2sJD1Lx0ICAdlLLtsmSCMoHPAJAb1At3DgR4lGH5n/RQA4N0rF/BXnv3TuH+JEhe/e5owt8ynxfQVjKbqXqD74sWuDAk2h3hK/L3OFkk5cGGfpKkAbG9rEWYxmuLbMhwXzXwohmPTsu3p+IBGx8b6qyxUVCwEgo6EezopysLBooMA1cVIHFZEzXWP3AIojzDvI+gvP+8JIbd8fTLWKP++pGLUFXFRMdJKF/5+AKB1rUb78swVmmqLSEpGfpu855tzcZ3Q+Cjnm0yggDYeuZ5ih4k3AXpO3QsVxgdFceFLBpuP0d/ZNX4nfp/JfgToREBUe+8aTEUvlMkBCmdxPktVRJfDOR5VAenYoxuZAQIgRaWqkPuqTsJcG+VmbA6qQznJsHGZyJ802NjiPE4U8Gbd0jBwDAXfruPN9ED2A/g4IXURA/hXxphfV0r9JQAwxvwMgE+CILwvg2C8f4F3Vkr9NoAHAXSUUhdBvPX//tVOpo9XaP3sDl744j7qCpiJePAzYZUrjygHdo/FbvIlY+OI5gBKzJUt0YvaUpA4GPAY2H7Mz9zsUozGwBO5GcVWok2W9mr8q899AHoWWkCbzO4bh0n5qkFCQN6LTNpFM4VoplCs+BjvS+cPuL/PnFtFNIzxu6DsajRRMLEJziGpINiClMKILF36u7FDaBxAJNpT5X7LOgRlgHjPQs57cMzFPFhxsKDnhPFsSTnlIa9JWprUl8LuNyEuNHntyUiADuxuruJ9eD13V1sI2TIj5cECaLKqUEfXV9RLBS/zCnu7BSaT2l2bieg6uQC1fdn2admVxoxP+LCg5WI5VYfQ1e2H7L1ti3llfE7C9XMRCnZwj6iBsfmDg//RP7z5gnZKLh0apENg+37+PzSy2ECSqDplgIn1YOsEaF82AWJt51TISSYum4AnkgU6J4MF8Mlz+Xyl52o0VblzjU3ZVJiselRXMgz3vdVxNwfyJg3LJPnYDT7/GfG3AfCXX2X/P/B6zjcZN/DkF+8FAJRtgZy5qIIwVSKsD6O9pQpQWEVCBDnkMbFd8sq2QfOqwuiUIGNsldBrJEWKBYOVp32VsS4Mth7Sjgsr2bGVyDt8vPAedEmLR4ZaAFIUAJzy4MVQtiihXm/T+V8aHgYE8240IqSLFklynXtSv6ZFVHGTp2RCUFlepHVMSWEHddX++enCFpRJ/j8RkmGoNIeclKFCTe5AwwgfbpqU9+IAhRRPqVGRJLKsEm/ZTw6QB8TWZGOnRmMHyGxtxNo70+BZsXCXIAgpuMqWFVQCpjxTyikovk9O2ldpSB7Inhi3pc17OuDCChibueHYJh2gakSYriZoXaULyhdi6NIE3TAD8MYukRle+pB/+MnIgwyiKQlJV9A6DxVdlXpeLECEE61nMV/Q1ACq5OdksPmIdnD0na7nZePzASHySvY8j8cU6mRk3s5JHbZhrrw3E5W0Dlgp5F16z66WqaVQCsLP5roJni3AhY9CQZUhJFzWUd3yuKtA7oyx0J3gez/0FQDAb//Ld7nP3cSUVo4sTmuKbWahlVZlVqALhTR/z9gVNRVbGcw4cZabiRQ23yaql0VMHgCqVo32BR2w20qFUSd0bUzOCIT9LrJNuw2fQhnUsuVrqYDUuEp0XqRMI181yKrmvEVzo76eMThSQf+T5obxQrMR9gcpZCEc01oICvIgxl+G30Vzg2RYoujGfCtBS9WouN6qHR71L653lrZlBTRfjJ3yAODqbQJr03jIatFVQO2f/fht9FKyM3Tz8XgP5HhuMF1WgdKPRQ842c987zNRe+QVP+/pqvcyotxgbqlAqpTocGTIzESCUseGuJae8cfcfEeN5iVfyKdqryTKDEHokyHAEiE3XwTmNueiDMFgZe2Kqm2XR3gvXhbktdaN88wZbShDaJ0rlVOoy89RkSN3IQSABcvPVadUrMlw3saAQl+SWTmaeQ+YOyuyV200Ied4HXPYrX+ak2YK2ZUbEKW9kWEQsAd8O447RoHw+K2z9wMfHGK2QzOo/XyCKPdhGgkFreM9/1vaAykkVOWFeB3TnClmllbhKi24Kx+0ycyrCkXPT6jGFlmFPmSkCd5pzxmEUEChKqMh+iooZJs+DGMiGx/O/PeNTeXw93RcjbaFIZQNoLklJrh137kIr04U0t3KWbpVg+LYroI4Camyo1lI6ic9Bg71bD1C/698NUyGxuyFiXDD7nEvYTihK/tWSIXDxZOsUOpEoblWOD6laG4wOuRfpouJC49SJr0dV5KInbPyAKhgDfBhPYCeHQskVjxszVYNhfEBHdQn+HPRedvXwtoNHqoitgSZMypanlONn7PfR2NywPc+2XyHza0w11UcQpR5Digh7GZ9DxhghRCQG7aBXQue4HvOBZFn/zntwpkMvGAvbLKqg1AxAOwejVyBIhTRmrTWLORZGDDxpA7yQyai+SfrPKrMU5nwPYwO+Ha7ugQSm6cs2gqttRpFh+ZJlSpkt5RlleNuEv2OUSA74xY++XuPA7ajXfMVEiZ1CpjkxvQFVcOiOOy6ZEHMLjngq7oBm4s414IWT02SL05XDVqXlUNt8Tl5YVYpCWWm71AVXR9vxwqHhVO6Q8pDJv2Krnfnozl5GexpmEiQEgLoXqxRp773tS5sQR5X6StFMWO7XnOL++diO12HYR4ZTmK+Limodu7z32+9TaG55htAAYQG4mc96+sAmTS0yLf2Ff+ZFKita2ThcrweAHZOeQXEfGMcKweogpuvmfmPpGCTymPlcyl0aTwRphW2jucMYWhRF5Rkn9kajsYWzSNWUunQh7sYjbVzwh+rteYp2uM5cUfJ9ySbKrHSlOzFs9UKMzuPlr5GJJFdQSPDSkuO0QFxLx0vlJtbBs0tT6cyPqhd0SDgDZ7+c37/zmX/8MpMw0RhNXwmDBeeX4xkA8jTYG6syYovKqxjepd7OdWMrVrvnacJ2bhKE71uJhgdazsGijpRqGMP1mjshp5o0VG49JEF4AncnnFXgdwhQxmnPLKziRNs80XivPLtOb0QcRXjQjBI+o+qSaGvvM+zm2C/nJOoGpRfqC13VOsyQ1P5mvbQpe8H6sQ4wjcTA62rezyM2l8XH4c9jqJD18BCvXWNhBALzzJT6J3LYTh2XhtgDMwE5YWufGIYKuzaF09N0FMjGgLta5WDCctYczKm6+T8kFFAY1M5KhKuBGZAAd2fiOPbcJUMg80XfAioc9E4GDWP9lXjoMXxlJ6nO7b1miQkucw8e2/RJcOgFGHF9mWPamPFkTvBrYIixaJHConnkdEhBJw9Eck/JRWuBFOwEnQelgoLIll5yLkzeEAAFCw54tLXfHyusW2uUxocQswTW4xnD8HPgPNQVRJ6hkWL1ox7JguUfJ5bY2r5Ods9MAu9KFb+shgToKU5X1DufAy8mC7JBJr/Mx0Z997Y+2VARh153iwAqFo27CdgwKo2QVFmnSiMD9K1xtMwD3pLwwCo7vBS9G8w7hgFogqFxsUEqiTKEB6uy9oNGujI3AcPScdgNFD0TFBZHk1EDsVO+sQmFIsFS5khnqqEhgKWLVRYW9MVoOzQBxxjZg9jtkxhLkYORVM6Jycrq0Qh26pdiKMxrDFfitG6TBpocqhBHgZfrwJQeY9o3lWAUc7L4p4WLFTToUHe0QH9A1da65IEi+t1br/vnfb3ylYhQMJM9r9gCz8Xcf7+aeOoTdhydOtTKac8AEJc8XW4Y5a+/W4yonuR3FpV5huNMRyY8woAMDwS+cRzbgLEF0DKo3XV/9/crNyzZwHcGHipnwsuKVXBEU3q0qBoaQyPC29JeGoc8mTlDFCHRq4kpxBl5BRQHYUJfdcboy/uXczr5rrP2fAY3Hc9Kqp70T6bi6TMuOeH5wvz+8v3wBXwTAszPKKRjLxxwOAVyRlXCUMhlf1veuSVc/MyZQhkMFvxN2c00BBzzcS+xoaT6RJW/Wokl69/GMDcHgWilDoK4BdA6FUD4GPGmJ9SSi0B+GUAJwCcBfAjxpjt1yKi/WaOO0aB8JgeLzBbjbD4LE2c/su0GmQvhcE94W27hWDnmEyy959XmFpkTtkJlQOHnmSIySgvVJngTWLa46lXZiysGpvW2moCZTNc2M2r3h2vIkqkcwGZiUI4ZO88cQq5eoKC4KeuN7YhKKjMXchEPwsZjq03N8qwEVKuMD4gQoPCw+pcqm2tgrWubVjGHTtlNJa3utNd35uF4+gsCMtmCAue9QmNEyRT574XOkACybXA3UOVMl0JebbYmxoe8UJeWvy7J4n5N+BBu+j/Zs+KczZ5F+he8Aco2pHLZXk6fQkwsB4QPF2KzJFwbxl5XWxIAGE/cV3aeSemTt7xRZz8jjOR9JdzgOHp7np12OaYz895BiDklMpsP3MHmuhrpzwAYPWJCbYfaAXranhCXOtihfY5ekgLZ2i/0RFBgXPNo/2mKxYgIgAK6Y7nFeMxPsA5D+sdWwXS2PHezW0Zty+EVQL4b4wxX1FKdQE8oZT6DQA/BuBTxpifVEr9DQB/A8BP4LWJaL9p445RIKoE0m1gbt1itqJ2j6XY/u4pDv8yTcidUzGGDwpzKdfoWpZWJmXj4rGy6ZUHABRdm1+5GrrurCBMREqFFQcvGF74VZOu0/XdtnOvEHmWeiV3n7debMAkvpjRRJajiAVLGdaNTJc0su06XCDGCyhlrkeaSStQVSSU010u3tOu1wRASCfnGaQK8wWqSOchUTvzrkaUGyfUkqmBLkxQgZ5tFk6ojQ+lgApj97JhFOeVpBBtrdcurt/YNWjseuuyaIdFi40dEOJM5LcClJwhQSkbXqmS+sEA/l1yKEUKYH52uye8GR1PjGfTZdp016QqhIvLYkWAlMf6e/2z1FON5jUPlqiaFkVmR9dyYE2Fx9QYGFeH4bxw0eNezgFG6fH7K1rqOlYAo8IwF0OO6bgWvWUvuXuxoO1HltnhVBNRYVwdC0BKg8eB31FgjHrZUpgtqWBet64Wbg5WDWpjLMEctciVxZMKo0OpC+vmHYXOFePDd00VXMctjduIwrIF1Ffs30Ol1HMgXsCPAviw3eznAXwGpEA+ilchor0tF3ST445RIMnUYN9X59BW0mx/t5cU2deb2LRdY+XCBfcTF5aRXMzTFWBy2BeANTYZreS3D9xhRcqDrSVlwtCEKiwmXTz1KgsLBbPT/uDZZujaV7FFgtn94+0QVQVYy5qT4j2yotmqr+M9YY09UEcAWP2KV2AAKQ15va7nd2mQbfvCvmwLlCOy3zOdBnt+uiAFwoyvTIc+PuSD/3XkOxmOD/KJ7K+CoLkcX+fjsNWu6r05GnNDygp5/yb2CkXX9Dy4mHDeC2sluIZB5mQADz1mckfZxtcj/8Le7ZltOct5m7ynSbBZpcS5Bj0VSXfhEYwtkaBiz+CgCsAMjATjeTo5EEKSmYCQFUIdq0D5p8MaJlIBJFnVPp/Uf9lOGPt442mFMvPamucA97rRhQnCl+moxoHfUSJvYQLIt0zAt67aWhmZbzFECc/XRbBfm+OYVGhuVY5AsjGgPJvMxWUibHnL401IoiulTgB4B4AvANgvlMJVUIgLuI1EtLcy7hgFcnfcHXfH3fFNHzevQFaUUl8W/3/sBuzkUEp1APz/APxXxphdy+RhT2WMZTb/lhl3jAIpmwqbbyeT694fecl9/vRv3gfAex4nfuCM+25SJtj45BGfYG8C4yP+hZVtslRal7z1E8+IyhrwPFFs6SXjsLGOUWTVuope+1tyDO3sF97HOu24/AxtODock7XFoYvMFpQxwmmD4bj0q05UkPiNx5buw+ZAZstUWc0FXsmEvJL+y4W9PgMlGyQ1uDBNIFz4axsa4/8L27EuHTOFhKaOftYwNTrkxqpSYHg8Daq1g6Ssta6lRxjNRRGeDdfJfSS1PENKXUV0TQl1ttodgkr776U3yTmZRCCpVO0bVrH1zP0p6Po8qosRR7yfvHeCjitnReuSWupu308Pq7lh0Nzw3FdGUZ0Ijyqji59bgEC2RbklriSHAoZHVeBZyjwd99rg4toopxCPgy7vaaoFWDSeHVz8yfMjHleuBQJAnorRYWK9e9Hnh+b9KEBNVQ3lvJtkYgJviElRGfI9XY6CglP2SDncaaIUVernkgu72Tms6tDbuaVhDFC9ZstwOTb2dmTdO5RSCUh5/KIx5lftx9c4NKWUOgjABhxvjYj2do07RoHUnRqTD1C86MvPnUB2yU48G4Y49ScIHlTWGpPSxyEmB6+HR1YtCwfeEHEHkPIoWqKYrG0RJRxfbSHgqmIajYDoTdRV1BHQOS9j2RV0aRwLazwxGB/wdSWcL5C0DlFufItUW3HMsf2iC3QuyCQ4XStvzwn/4RF6HsnUBF3yik5kCQl93J8FvjKUx3Dtea3iYEFZx1T4xiR4RtP9crGbrmxIhBVQ5/rwnlQeVUotWWVepGj7pH0yNkFewjVD4r7dvT0dGgsAOkTnaclrZdFaITzUf8/3zdDVvBtCouV1OuoZe31lk1ous3CLbT0EJ5Dltnxe2ZNcGQC1ICusjas+5yHRYjxkkyYJGNCi0RNAObCZqFJvrVceoWdHJRSGq2AX5+fEOuDDTzzPAForHHqVOTueNwEDwTEFwCpXKz5HB/35875f55N9Co2dENLcvuKFfDSrAzj5LY/bFMKyqKqfBfCcMeZ/El/9GoA/D+An7e9PiM9vKxHtGxl3jALhke+Sec0xX/2RLZzob7vvY13jzPMeH9kQlNVcRR5NRTJSxJYZqy+ROdHMcwjNlvbEmvcQ7/HYW6XbPR82vOHBHeh4cdSxPd+eIitZ1Zz3fJJeVVRTwIWBqqJYv6TGToce0aIL41Au8p55wZnIe1OqJuXBlN1GK7u/jGWL9qxTg6jwQqaOQShIkS8KivwqEsIsfOuEivRejUSP6br5+3hm7P3RNp0rBrvHdaDgG9vGJZj5ulko13GYSGZr3PGclaHHYxRdmyTX8wrD8jnV/lnRb7+dNDK4wZRjDIjC2gq2sF2+xX4li++MAEc4gyHy/8vqb66bkMER2X2Rdg6paerEe3fsHcQTAduOlFMcO6didww5pJDniv/mZugJpsMKQ8ROcfD9dmzV+9aDtlperLF5Pyw4LdraG0YKaF6SbKK3OG5fDuQDAP4cgK8rpZ6yn/23IMXxr5VSPw7gHIAfsd+9KhHtN3PcMQpEKYMkKYH1NrINQH/YS/4s8qvzC0/e6/5ubNCKKluhlc4jtmyusvI7mntPYHLAKw/AW63Sqp0cEmiRdoXFJ8MsbPtK7UNeWgXVyixsg/BD7sNC2aDCvBdhdMTuH4UV97oij8kJ7YRg61LJAYIeRCTg3fkKwDBk0nih58jp5AIyQJe7FyYKRVO5Yro6oipxTkIzKyo/qzolwcjPky3eoBudkGmqDKGq3NvD0cQkRArJSKi8q5Bt+QKzOtpjMVtFwugdICzuM5q8nRuFyQB/H0E3ynN0wdPlKKi6T3dKzJbjkL1Y/O36vVuFE9XA9lHlvIq93FowYdFi0SKUFyPGqkQ5OnPa3gQKDUBQnOc6B0oCSNli1npljIQyCkjG/uXMFuklzIRhI5UHzzf5bll5zZYU+qcr9zziaY0DX8yDa5GQ3dWv0DVEMwYzJAEFTjKi6+J7jccldh/o4f/f3pXG2nVd5W+dc+d732T7ObZjG2ewM5A0TSElgjSQBFVV+REqRAWigERVCaSWsSCViFIRKpVKwC9GiapiaGmrlkIlSKuqTZOGDKaQNInjOnZGT/F7ftN9793pnLP4sfY6e+9nJ7bvm+/bn3R1hzPcvc8+Z6+9pm9hRTImeCWjsL6LC56+HPddZH/GmxDRriUGRoBwO0bvqISvNN/WAabk7vyxg6/g8OGD+X5Dr9mbenGXecAa9uEZvn4WycPi5NAVmxsV4t7IKkjcyJzGz5zFO8dfzb9/7dgt6M3LTLT9SdlR8wV6Q7GXGzC/J0Lc9Scut5BQoSW29MqMPBTNq2X4Ro+byKVdhNETNrFw0ayqXbNR/UyWP8xqD9b9ORIznachsc2YTkvkRRMlNccO3mKgYicypbJXQdMZ9e3iXBDfkYaWSuEtXzvKSlbjgbF22Tra9jymmWjtsNQqGomkE4eYNWzjOSbDm+ROjHZyHH41weJ47LHguhqJCg83UTRu2xlAhQcA1M8m4ltypofyjJP4FsHQb5jxMpO13n+Tt8p/ve9DDwMAPvv4XdjxhFXF4p60Ox839qn0KbswcTBKGcWmn+jpar+uaVbbE7c04i3yFg4qPLpD9sZxhUd1kpEVnPrxsIsxhSZJjp6Qc2kOUa8eedcqK/lmZTDnwgOwWqGOe1KLPGbgxZ1LwuiWAwZ4hRIJNysGR4AUGN1xmZg/8Pan8t+/dOx2FPYsovqIOAakvoZsK8+QTIJm39F9snyP7pblaPrYGKoT7KnzswfsJcv5de62S/r37nkek8YJ8bVjwiy4+1tyTGku8ZzUlckeFnc5BIBmZeY6biXm3TjBjV06qdk2uJParifE3nPuHVYFKs1ZAVB7Q/4gqUvDmWTisvxPljMKEB8Exz4nVe70Nu1SjiJi2U/Db5nM8ZoLMyuf8wI/VbNqz0NB5X2p8FL/T7xowqKNH0MDF1Q4ar6OmqwqM6lhtbXXp9u4UBjklQ17sirX7PnuUIRC2yY6Vqay3LQE2HwRl+TP9WG4tnYdc82XkP9zsvuHtAKmbavLPFw/Bfzsrz+Mzz5+l/3tnL0nNWTV1Z5a2yNrAlP2XMf57AqP7ogpQGVuxajLnraXm+0c34ErWNtjRUSJ74NqnE7QMZn4+v8u9Qsc4RElnJcWaI9FXj+kffa66TZXe9L2u//lSms30MHl+FoRBCqTwUJtWwtfOXEb0iMmROWGeVQfaVhbe4rcDq6Z5YU52Th/ZAy1G2eQPjaWn68yk+W23/k9akQ252IhRtTb+wOHDuNzx22gxdB36ijPMkpz9mlc2G0vuU7sOoFXz2eYuilCQ6O7zTOQOIV9enXyahtQCjRel1n15L0iODr7rR3u2n+yD9rUzWX06sDocUM8V6I8AgcQARV34PkZmOzKsVd3Mrxbsqp0V7rdYWsXb2+XqK/uNvmv7f8XgwuWBTcrGae2Obw7KsfnRZcKkhiq5sOiETCxY5bJSkBqxqI6KQLNjfd3V6az18js6ObMlJppPnnnJI9OGVnX7KOmRdf/VZmwn4deF1OkmkxccMFf3VPG4Jg8ShBPeOwVX41r1//6J+/G7vx4AMhARgjVT2foDdl8HfWJzV1j27/tiG1XocMSNeWYzVwtmmNCp0EoOmY31wEPlj652nhaIed+NkJ80pqOsxKhOywNVFoSdd4vTfr0ov6MoHATBynh3IylfFx6/eKur+mkZUJpjvOFxeKuCGNHV8hvwQxkQYAMBOIWYfTZInq1IpK6LZaEiQbaOy7OicUEZJXMK7jUfmYMkZOlmwsNA2Ig00lyXM6RHBVh9YVH7wN+chalb4zk+0ddzm9ydRrqytTWkJYbeuomSThTjqSxH0hxKnc1qKGbgKUcn7hdOlWeBuautzf0/n+LkDSAeUdojR5P88zdqCfCSR3IOmFVprK8nRRZipPyHOc8R3FHtA+X9K4zajWD7ngC6hJKU0Y47xf/Ul4LZUld7dKc8FvpKrU4J9pHXjZ13k44gCE27Nj9R17qIUoyFGalE1yM0B0toblfThClS/mWUiyO+9QcScX3FWjwAWAFh+s/qk2wbxpiS1xZnk0Rdf1Jz34RSg5XO2rui6yfwLy71CZemeVOhiwGEmMyinpS/lehC5LhVxwfhxuB1cmkYJROzs1EIu70vqz6pk+3TYA1W+r9XGyx55TPCSe9ksaUB4twJN/deveaXJlWIpQc7UivW2dUEwNTMakpc/BVBc9CkBb9mjVp2Q+p3vOos3ElENh4BwNSc1s+u47k9japFKh0IWk9RWnCxLGbPA8N3wX8kNvylDwMWoxm9tqiz4U1bXwGZmIqLAKF/xrxCPraY06ElFl9qxkmToHJO+3NHzU6KL5YxdgPHBqLxNqim1dTvnoDbGSOKzTKUxEwJU6Uidsk7NFtT1a0obNz+yK/BkTFt0vb2uyOg9fQnCQVQmfUMtamVXlYe9ttnYba6dibeMi5tnHbULEY81xWBOpn7Pm6wyIcVPCnZTFzqTmFSTQlrQuR1CLUXm/nTMTdbWX0qpHNgRkjNByq+HxCcjmdZlJgRj5PXy8DrYIjSuDVZtEon8Wr7Pi6tUAKjlM57qToDhc9H0h1Ks0jxxackFS5UJZ4EbChyHneRsdmYgMSteXet4BPt563o2XPmVajvI1aK0M1bRkXR3iR0aIqduHhFrtKykIP4pJnulqEBiy4QjAtWxbpgtMuSiWrPNc8kzQfKwBoby+gdraHuQPWUTh9vd0+/Frm3XPFeUZ7LELjlDzDSzmzlgsOGshgIKtmaN/SQu3pKhb2O7be3YsoAOhMW7UicZzmrvYRt6wtXjF6oofFq+QyFRcYi+M23l8Fgetkd0MpO8NCCOiuagtt6zAECNSOQDtk1q4+LbOTOhALLfYm+Mq0cf46D+L0XW07L01bEkXF0KkkXxHqeVWoqWbhkuxlBXg5AMV5WyMjLUl9aUAmdI6sPylKNLTVrIpNGdLcdJiJQCjOOvv3bOU5yky9FKVpacEPuZ0Rk5lGM6VF8oswMTB7YwMTPyoXbNd3xayiDtjSPKFXIy8UtdC2CX4aQJBTYMyyN0lWzgPVCadBJI50V2jUT/vx2nFH/ruzTcZFw1lHTySYOujY7U0RJE1eBPxqgZRJW1XbSyoFJFVLUaPUJ0MnL74a1lV8d9hWHOzVopz+Q4MyCou+ySlHJLQjeq3SkmjNOnaa5OjSu7sBFMRyvVQL6gzHng+jtd2hpZ/LpKibOXdSK6BXIy/KbGF3Mdd4ooTRGYk8gZtUrXBSLUeFJOD7f5YHDhrIejdgpTH/w12UTpWAGyTWuzslM1ztddvVrlM1ULO/AcnMTqp+aO7EbcU8GU4dzFpPIO7I5Oo6J92V58IumTjyjHH4K9bWVSZ+/iUjOIaBIRvAhaqxIeuDPX1DFcWFDM39zqr3xQo6O4wmlRB6DUZ5Stq58+nEi0BRM4db/4RSyw9VXDCTlZtPEFvHeVpyqhN2ZOJTE1R3BH6ops5FqsUsmMgsrcFSNWaoyH73ktVYTCi6PepJfZBu3eZ7tLbF+fbpm4GszBg6Lj/M7wVKs5ybZXo1yZrPifTIdzrLBO0kxw2Tqf0i3xunEqSlyNMihl+1E66Oe/m0VX/TEWsvzXMhAEzeUvCuDSCMuB1TjKpyXlgE3HDdpGo1R9WCZm6yO+x8yhGMixmymPK8DI7JY6NWzUf5ygAgdnI4uqMSYvxmCXd63XRST0s+11evTujVCWVl5CU/2i0yvpeOExWn7AitHZHhbzP+kdz/ZttScrTGtCRauS6KCi2Jdkvykriyr+ub0iCSZYOxYmG8mxUDJ0ACAgIC1gIMgC+fymQgMTgChAlZLxbtAwAdkVDaMpbQNnSs1hH1xPbuVigrT9sytmlJbOCz1xnNwzhQ4yUx9moa0qgVDXEcOdHLaR4A0T4ShxurdjpCr+FX0XNrSqjm0R0RJ0v9bILmXjtk6i8Y/55dnTX32c9n7pR9u+NynuEXfArzynmgdi7Fwm6HSTVywjZTMVPYehbWDp+WxMykeRAci79FTVpZUX5TttteTTPTzblSWeXn+RwxPG0p7klbtNIfx4S0YDWSuMtersLQy4SoRzk9vVCWU76Cjbt+xr6uUl3eJTczOkqB2pnMs88Xnc+6itdIL44JxaY1YaUjVZy7w6aDu8Eb+rmz004+pfNxbkpMTVKlpSrx/QdaiXH4mP2xNGe1IXXeuzkTlNmCTmpmdXnIYojmAdgyvmpmUvobzQcpNuW/lBOLIz9yT8yejO6w79txI82y2Gb6u+G/qvHltCrz7GkfEpRCuSYo5RQcf0zVhl3n5+xxztXFF1eq+gMzVqqg1GbF4AiQlBDNFpA0MhTmI8+c4lK4E9sJPMpEoKhZpjTr10DX0p9Fa5WQZDdSZ6N5oIzgiFK5UdUUkhUkOVCRlc1/OzexKzxGj3cBIpTPWg740/eNYuyYNLi5twBKLb1KZ5vU43AFmiYVAsCZe6RdQ0fNg04SmaMTZe2cjYoB5KF1M/Hjrjz0+jC3x/wQ4pl32p1Hn5J6HmruSw31iPo0igsycSoN++K4hAzndO2JhEQrZUXtXIasACyoyS/y66W3dhDSiuX6ygrWLwPIdS7NZ7nA69Vk0rEmMdme09NnMq5q3nMFl6LjTGT1M11ve2G+B6SMdEikQ/MaG++rQlsnx7gNzN3gmI/mI6RlzuupF+f94ldKNeKG5ZbP2wVEZUbDYh1hOFxAwQg3Dbd1haWLrEho7yjmeTJx18+z4IiQliVvyfYptvZ/cxHdIAnXj6a8YLHjbyw1bWllJnvfRYnkoLjmO7fdvSr5vF/GFOkKIRFevgnLFRxuDs5ywcGENRigFCI4YGg2lvBQuVqI2lvTyI+1b+0UAkK9OfMHwllIubZcpfbQiJhSM/Xs6L1ahLjnr/o5AoZfdSJ/HNK5ymlxviRjMou9cUcVaQWYfJtx4jclcksryMl/2FV2ZdpMzmbSHTkSoXKesWiq+KmTVvfrDkfoDlmnPEd+noReB5ffSqOSWntSlF8t5ftUpiU0tLlXQ5VNBJU5dPxwE83r6jbnZUrK16qturVTJkSdZNtjkUTVmbYVFkXTU4oLFR7a9sbpFCDynM/FhUz8Fs61V2RFAGwd0XmSoOl+r075dQJs5cE3q/GeNIpYvKrkUZJo2HDUkUk+J1gkYPiYlcQLexhx2/FhtKR9bq17Pc6FCo60SJjfXci1sfJMdgEDcJRY4su8fea8lPpJluqj8LLw51OvJsfS7W44swqP9pjd7i7iNKzWpXdxizy5TAwSQGCFYGw0IRUYel7XDxl3kQs3jgipoyEVWitNpri1NRDiAYkiIKIJCNnYamEHgMlL7rW5sRX6CIR+Dhr66ecPMfP4pXd7cxDRQ+a/LweTzPye5fzfRsTACJDVBhH9z6X4/Dc7tkIfgdDPQcNW6edGRHTpXQICAgICAi5EECABAQEBAX0hCJDLxwX1iwcQW6GPQOjnoGGr9HPDIfhAAgICAgL6QtBAAgICAgL6QhAgAQEBAQF9IQgQAyL6AhE9bV6vOIXt3X32EdG3iegIET1PRL91JcdvBCy3n2b7R4joqNn26TVr/BVgBcbzE0R0yjnHe9e0A5eJlRhPs8/vERET0eXmNawpVmA8HySi75vjv0FEe9a0A4MKZg6vJS8Afw7g4xf5fTeAd5jPQwCOAbj5co/faK9++gngHgDfBFA233eudz9WqZ+fAPDR9W77avfT/LYPwNchibg71rsfqzSew85+vwngb9e7H4PwChrIEhARAXg/gM8v3cbMZ5j5f83nJoAXAFx9ucdvJCyjn78B4FPM3DHbz61Ni/vDcsdzs2CZ/fxLAH8Aj0FuY6LffjKzU0sSdWyCvm4GBAFyId4F4A1mfvGtdiKiAwBuB/BkP8dvAPTbz0MA3kVETxLRd4jojtVt5rKxnPH8sDF7fIaIxi5+5IZBX/0kovsBnGLmZ1a9hSuDvseTiD5JRK8D+CUAH1/NRm4VDAyZ4uWAiL4JYNdFNj3AzP9uPv8iLqE9EFEDwJcB/PaSlc1lHb/aWOV+FgBsA3AngDsAfJGIrmVjG1hLrHI//wbAg5CV6oMQs8mvrUS7rxSr1U8iqgH4QwDvXsn29ovVfj6Z+QEADxDRxwB8GMAfr0jDtzLW24a2kV6QyfENAHvfYp8ixF78u/0cvxFey+kngIcA3ON8PwFgfL37tBrj6exzAMBz692fle4ngFsBnAPwinklAF4DsGu9+7TK47l/I4/nZnoFE5aPnwZwlJlPXmyjsb/+A4AXmPkvrvT4DYTl9POrEEc6iOgQgBI2LuNr3/0kot3O1/cBeG7VWrl89NVPZn6WmXcy8wFmPgDgJMQJfXYtGt0HljOeB52v9wM4umqt3EIIAsTHL2CJekxEe4joP83XnwDwywDufZPwzguO36BYTj8/A+BaInoOwL8C+FU2y7oNiOX089NE9CwRfR8iMH9nzVp95VjufbtZsJx+foqInjPj+W4AF4QyB1w5ApVJQEBAQEBfCBpIQEBAQEBfCAIkICAgIKAvBAESEBAQENAXggAJCAgICOgLQYAEBARsKhhmgHMmEvBy9n+/Q7D4udVu31ZCiMIKCAjYVCCiuwHMA/hHZr7lEvseBPBFAPcy8zQR7eQNzt+2mRA0kICAgE0FZn4EwJT7GxFdR0QPEdH3iOhRIrrRbPoQgL9i5mlzbBAeK4ggQAIGEkR0hyFCrBBR3Zgv3nK1GrCp8fcAPsLMPwLgowD+2vx+CMAhInqMiJ4govesWwsHEFuKTDFg64CZDxPRfwD4UwBVAP/MzBuZjiSgTxjyxB8H8CVhMwEAlM17AcBBAD8FYC+AR4joVmaeWeNmDiSCAAkYZPwJgMMA2pAiQgGDiQjADDO//SLbTgJ4kpl7AF4momMQgXJ4Dds3sAgmrIBBxnYADUh1uso6tyVglcBC2f4yEf08IKSKRHSb2fxViPYBknK9hwC8tA7NHEgEARIwyPg7AH8E4F8A/Nk6tyVghUBEnwfwOIAbiOgkEX0QUiTqg0T0DIDnIYy7gFC7nyeiIwC+DeD3mfn8erR7EBHCeAMGEkT0KwDuZ+afI6IYwH8D+Bgzf2udmxYQMDAIAiQgICAgoC8EE1ZAQEBAQF8IAiQgICAgoC8EARIQEBAQ0BeCAAkICAgI6AtBgAQEBAQE9IUgQAICAgIC+kIQIAEBAQEBfeH/AW3Bi95YSbYKAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "merged.where(merged!=merged.rio.nodata).plot()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 4 } rioxarray-0.18.2/docs/examples/pad_box.ipynb000066400000000000000000006337761474250745200211070ustar00rootroot00000000000000{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Example - Pad Box" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import rioxarray # for the extension to load\n", "import xarray\n", "\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load in xarray dataset" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "xds = xarray.open_dataarray(\"../../test/test_data/input/MODIS_ARRAY.nc\")" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "Show/Hide data repr\n", "\n", "\n", "\n", "\n", "\n", "Show/Hide attributes\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
xarray.DataArray
  • y: 200
  • x: 200
  • nan nan nan nan 687.0 687.0 ... 491.0 504.0 504.0 515.0 469.0 485.0
    array([[ nan,  nan,  nan, ..., 656., 656., 554.],\n",
           "       [ nan,  nan,  nan, ..., 694., 694., 642.],\n",
           "       [ nan,  nan,  nan, ..., 456., 575., 642.],\n",
           "       ...,\n",
           "       [993., 817., 817., ..., 471., 479., 498.],\n",
           "       [893., 893., 816., ..., 479., 479., 469.],\n",
           "       [816., 816., 832., ..., 515., 469., 485.]], dtype=float32)
    • y
      (y)
      float64
      5.05e+06 5.05e+06 ... 5.004e+06
      array([5049992.781974, 5049761.125615, 5049529.469257, 5049297.812899,\n",
             "       5049066.156541, 5048834.500182, 5048602.843824, 5048371.187466,\n",
             "       5048139.531108, 5047907.874749, 5047676.218391, 5047444.562033,\n",
             "       5047212.905674, 5046981.249316, 5046749.592958, 5046517.9366  ,\n",
             "       5046286.280241, 5046054.623883, 5045822.967525, 5045591.311167,\n",
             "       5045359.654808, 5045127.99845 , 5044896.342092, 5044664.685734,\n",
             "       5044433.029375, 5044201.373017, 5043969.716659, 5043738.0603  ,\n",
             "       5043506.403942, 5043274.747584, 5043043.091226, 5042811.434867,\n",
             "       5042579.778509, 5042348.122151, 5042116.465793, 5041884.809434,\n",
             "       5041653.153076, 5041421.496718, 5041189.84036 , 5040958.184001,\n",
             "       5040726.527643, 5040494.871285, 5040263.214927, 5040031.558568,\n",
             "       5039799.90221 , 5039568.245852, 5039336.589493, 5039104.933135,\n",
             "       5038873.276777, 5038641.620419, 5038409.96406 , 5038178.307702,\n",
             "       5037946.651344, 5037714.994986, 5037483.338627, 5037251.682269,\n",
             "       5037020.025911, 5036788.369553, 5036556.713194, 5036325.056836,\n",
             "       5036093.400478, 5035861.74412 , 5035630.087761, 5035398.431403,\n",
             "       5035166.775045, 5034935.118686, 5034703.462328, 5034471.80597 ,\n",
             "       5034240.149612, 5034008.493253, 5033776.836895, 5033545.180537,\n",
             "       5033313.524179, 5033081.86782 , 5032850.211462, 5032618.555104,\n",
             "       5032386.898746, 5032155.242387, 5031923.586029, 5031691.929671,\n",
             "       5031460.273313, 5031228.616954, 5030996.960596, 5030765.304238,\n",
             "       5030533.647879, 5030301.991521, 5030070.335163, 5029838.678805,\n",
             "       5029607.022446, 5029375.366088, 5029143.70973 , 5028912.053372,\n",
             "       5028680.397013, 5028448.740655, 5028217.084297, 5027985.427939,\n",
             "       5027753.77158 , 5027522.115222, 5027290.458864, 5027058.802506,\n",
             "       5026827.146147, 5026595.489789, 5026363.833431, 5026132.177072,\n",
             "       5025900.520714, 5025668.864356, 5025437.207998, 5025205.551639,\n",
             "       5024973.895281, 5024742.238923, 5024510.582565, 5024278.926206,\n",
             "       5024047.269848, 5023815.61349 , 5023583.957132, 5023352.300773,\n",
             "       5023120.644415, 5022888.988057, 5022657.331698, 5022425.67534 ,\n",
             "       5022194.018982, 5021962.362624, 5021730.706265, 5021499.049907,\n",
             "       5021267.393549, 5021035.737191, 5020804.080832, 5020572.424474,\n",
             "       5020340.768116, 5020109.111758, 5019877.455399, 5019645.799041,\n",
             "       5019414.142683, 5019182.486325, 5018950.829966, 5018719.173608,\n",
             "       5018487.51725 , 5018255.860891, 5018024.204533, 5017792.548175,\n",
             "       5017560.891817, 5017329.235458, 5017097.5791  , 5016865.922742,\n",
             "       5016634.266384, 5016402.610025, 5016170.953667, 5015939.297309,\n",
             "       5015707.640951, 5015475.984592, 5015244.328234, 5015012.671876,\n",
             "       5014781.015518, 5014549.359159, 5014317.702801, 5014086.046443,\n",
             "       5013854.390084, 5013622.733726, 5013391.077368, 5013159.42101 ,\n",
             "       5012927.764651, 5012696.108293, 5012464.451935, 5012232.795577,\n",
             "       5012001.139218, 5011769.48286 , 5011537.826502, 5011306.170144,\n",
             "       5011074.513785, 5010842.857427, 5010611.201069, 5010379.544711,\n",
             "       5010147.888352, 5009916.231994, 5009684.575636, 5009452.919277,\n",
             "       5009221.262919, 5008989.606561, 5008757.950203, 5008526.293844,\n",
             "       5008294.637486, 5008062.981128, 5007831.32477 , 5007599.668411,\n",
             "       5007368.012053, 5007136.355695, 5006904.699337, 5006673.042978,\n",
             "       5006441.38662 , 5006209.730262, 5005978.073904, 5005746.417545,\n",
             "       5005514.761187, 5005283.104829, 5005051.44847 , 5004819.792112,\n",
             "       5004588.135754, 5004356.479396, 5004124.823037, 5003893.166679])
    • x
      (x)
      float64
      -7.274e+06 ... -7.228e+06
      array([-7273893.821307, -7273662.164949, -7273430.508591, -7273198.852232,\n",
             "       -7272967.195874, -7272735.539516, -7272503.883158, -7272272.226799,\n",
             "       -7272040.570441, -7271808.914083, -7271577.257725, -7271345.601366,\n",
             "       -7271113.945008, -7270882.28865 , -7270650.632291, -7270418.975933,\n",
             "       -7270187.319575, -7269955.663217, -7269724.006858, -7269492.3505  ,\n",
             "       -7269260.694142, -7269029.037784, -7268797.381425, -7268565.725067,\n",
             "       -7268334.068709, -7268102.412351, -7267870.755992, -7267639.099634,\n",
             "       -7267407.443276, -7267175.786918, -7266944.130559, -7266712.474201,\n",
             "       -7266480.817843, -7266249.161484, -7266017.505126, -7265785.848768,\n",
             "       -7265554.19241 , -7265322.536051, -7265090.879693, -7264859.223335,\n",
             "       -7264627.566977, -7264395.910618, -7264164.25426 , -7263932.597902,\n",
             "       -7263700.941544, -7263469.285185, -7263237.628827, -7263005.972469,\n",
             "       -7262774.31611 , -7262542.659752, -7262311.003394, -7262079.347036,\n",
             "       -7261847.690677, -7261616.034319, -7261384.377961, -7261152.721603,\n",
             "       -7260921.065244, -7260689.408886, -7260457.752528, -7260226.09617 ,\n",
             "       -7259994.439811, -7259762.783453, -7259531.127095, -7259299.470737,\n",
             "       -7259067.814378, -7258836.15802 , -7258604.501662, -7258372.845303,\n",
             "       -7258141.188945, -7257909.532587, -7257677.876229, -7257446.21987 ,\n",
             "       -7257214.563512, -7256982.907154, -7256751.250796, -7256519.594437,\n",
             "       -7256287.938079, -7256056.281721, -7255824.625363, -7255592.969004,\n",
             "       -7255361.312646, -7255129.656288, -7254897.99993 , -7254666.343571,\n",
             "       -7254434.687213, -7254203.030855, -7253971.374496, -7253739.718138,\n",
             "       -7253508.06178 , -7253276.405422, -7253044.749063, -7252813.092705,\n",
             "       -7252581.436347, -7252349.779989, -7252118.12363 , -7251886.467272,\n",
             "       -7251654.810914, -7251423.154556, -7251191.498197, -7250959.841839,\n",
             "       -7250728.185481, -7250496.529122, -7250264.872764, -7250033.216406,\n",
             "       -7249801.560048, -7249569.903689, -7249338.247331, -7249106.590973,\n",
             "       -7248874.934615, -7248643.278256, -7248411.621898, -7248179.96554 ,\n",
             "       -7247948.309182, -7247716.652823, -7247484.996465, -7247253.340107,\n",
             "       -7247021.683749, -7246790.02739 , -7246558.371032, -7246326.714674,\n",
             "       -7246095.058315, -7245863.401957, -7245631.745599, -7245400.089241,\n",
             "       -7245168.432882, -7244936.776524, -7244705.120166, -7244473.463808,\n",
             "       -7244241.807449, -7244010.151091, -7243778.494733, -7243546.838375,\n",
             "       -7243315.182016, -7243083.525658, -7242851.8693  , -7242620.212942,\n",
             "       -7242388.556583, -7242156.900225, -7241925.243867, -7241693.587508,\n",
             "       -7241461.93115 , -7241230.274792, -7240998.618434, -7240766.962075,\n",
             "       -7240535.305717, -7240303.649359, -7240071.993001, -7239840.336642,\n",
             "       -7239608.680284, -7239377.023926, -7239145.367568, -7238913.711209,\n",
             "       -7238682.054851, -7238450.398493, -7238218.742135, -7237987.085776,\n",
             "       -7237755.429418, -7237523.77306 , -7237292.116701, -7237060.460343,\n",
             "       -7236828.803985, -7236597.147627, -7236365.491268, -7236133.83491 ,\n",
             "       -7235902.178552, -7235670.522194, -7235438.865835, -7235207.209477,\n",
             "       -7234975.553119, -7234743.896761, -7234512.240402, -7234280.584044,\n",
             "       -7234048.927686, -7233817.271327, -7233585.614969, -7233353.958611,\n",
             "       -7233122.302253, -7232890.645894, -7232658.989536, -7232427.333178,\n",
             "       -7232195.67682 , -7231964.020461, -7231732.364103, -7231500.707745,\n",
             "       -7231269.051387, -7231037.395028, -7230805.73867 , -7230574.082312,\n",
             "       -7230342.425954, -7230110.769595, -7229879.113237, -7229647.456879,\n",
             "       -7229415.80052 , -7229184.144162, -7228952.487804, -7228720.831446,\n",
             "       -7228489.175087, -7228257.518729, -7228025.862371, -7227794.206013])
  • crs :
    +a=6371007.181 +b=6371007.181 +lon_0=0 +no_defs +proj=sinu +units=m +x_0=0 +y_0=0
    res :
    [231.65635826 231.65635826]
    is_tiled :
    0
    nodata :
    -28672.0
    transform :
    [ 2.31656358e+02 0.00000000e+00 -7.27400965e+06 0.00000000e+00\n", " -2.31656358e+02 5.05010861e+06 0.00000000e+00 0.00000000e+00\n", " 1.00000000e+00]
" ], "text/plain": [ "\n", "array([[ nan, nan, nan, ..., 656., 656., 554.],\n", " [ nan, nan, nan, ..., 694., 694., 642.],\n", " [ nan, nan, nan, ..., 456., 575., 642.],\n", " ...,\n", " [993., 817., 817., ..., 471., 479., 498.],\n", " [893., 893., 816., ..., 479., 479., 469.],\n", " [816., 816., 832., ..., 515., 469., 485.]], dtype=float32)\n", "Coordinates:\n", " * y (y) float64 5.05e+06 5.05e+06 5.05e+06 ... 5.004e+06 5.004e+06\n", " * x (x) float64 -7.274e+06 -7.274e+06 ... -7.228e+06 -7.228e+06\n", "Attributes:\n", " crs: +a=6371007.181 +b=6371007.181 +lon_0=0 +no_defs +proj=sinu +u...\n", " res: [231.65635826 231.65635826]\n", " is_tiled: 0\n", " nodata: -28672.0\n", " transform: [ 2.31656358e+02 0.00000000e+00 -7.27400965e+06 0.00000000e..." ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xds" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAERCAYAAACdPxtnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOy9aaxl2XUe9q19hjvfN7+ah57ZZIuURKpFSbYiKookyrLoAHFgIYbtQIhgQ7IFGIoBIz8MBBAQIIASw0psE4giEIIsyIilGIllWooGyjJnik2xu9nsqcZXw5vfHc+0d36svfbwqrq6xa5mF4t3Ad317j3nnrPPPnuveX2LjDFY0IIWtKAFfXuSercHsKAFLWhBC3r3aCEEFrSgBS3o25gWQmBBC1rQgr6NaSEEFrSgBS3o25gWQmBBC1rQgr6NaSEEFrSgBS3o25geOiFARL9KRLeJ6Ktv8fz/moheIKLnieg33unxLWhBC1rQg0T0sNUJENEPAhgD+IQx5pk3OfcJAL8F4IeNMftEtGmMuf3NGOeCFrSgBT0I9NBZAsaYTwHYC78joseI6N8T0ReJ6E+I6D320H8H4H8zxuzb3y4EwIIWtKBvK3rohMAb0McB/H1jzAcB/CKA/91+/ySAJ4noT4noM0T04+/aCBe0oAUt6F2g9N0ewDtNRNQH8P0A/jURydct+28K4AkAPwTgLIA/IaJnjDEH3+xxLmhBC1rQu0EPvRAAWzsHxpjvvMuxawA+Y4ypALxORC+BhcLnv5kDXNCCFrSgd4seeneQMeYIzOD/OgAQ0wfs4d8B8BH7/TrYPfTauzLQBS1oQQt6F+ihEwJE9K8AfBrAU0R0jYh+BsB/A+BniOg5AM8D+Jg9/ZMAdonoBQB/COC/N8bsvhvjXtCCFrSgd4Pe0RRRIroEYASgAVAbYz507DgB+KcAfgLAFMDfMcZ86a38dkELWtCCFvT26ZsRE/iIMWbnDY59FOyDfwLA9wL45/bft/LbBS1oQQta0Nukdzsw/DFwUZcB8BkiWiaiU8aYG9/IxdbX183Fixfd5+ev3XJ/UwPv/DKACRxhpPk/IUPB3wmgGv8dieFk/9UZnxPeR9X+uFyXNH/R5IRkbmCS4CbBnzAABdaZUcTfaf9d0yJ+nmD8EZF/PjmmKvuHBkzqb6hzcmMNn91dU/Hf4XwZ4jkJ58H9lvwcaTsvMj+qstcNjU/y5zkK3hOZO59Pxnj8nRw/1yi+FZlj38nj053jSWc1qj5vC1UDTRvxXNfx+1YVQI2Ry4Eqf3I15Ovc810FlMwb6EzZ6zZ2vPy56itep8FYVWmgM7Jj5QPavludxfeV5xHSdufL9dz7DccXrstj5M5/g3Pcu5bjx/YN3cUDYYiidU61gbHPZxJy88zjDzepvaccN7xvwvd0fI9Od6/tGGM23vgJ35x+7CM9s7vXvPmJAL74leKTxpgHMgX9nRYCBsB/ICID4F8aYz5+7PgZAFeDz9fsdzfewm8BAET0swB+FgDOnz+PL3zhC+7Yh37mlwHwgmla/jd1D4AG8pG9hn2PxSr/W/WBlpSbUXxONgaS0mC+6hdhOgPm9rfd27wQ2/u8m3RCSAsNqv0CrnqJW7A6ISRVvLiTUqPJeZcJw6o7/EfdJWQTf35+xIxDNsh8RbnrAED7QKN7Y475hp+AYklBWyEk43DCquFnDgVh3SU0Of+dlMwIhVRtnEAQxiJjrXq8+bo3/Xi7O41j+jpT7roAMF+1DDC4futAI5vy4Mq+Qtn30og03z+pEFE54PvnIwOdws2XUUDdJjS5fzijmGECQGdXY++9/vqGgKQAsgl/TmeAqox7tzBAd2vqx1M0aAY5dIsfsLRCoFjy10znBklhFYIWubkcvnQAXL3pH+LCCTT9Nm5+X899NTtpsGrBULq3aySFZ0DFSoZiqDA94Z+NGqCzY9x9RWAA/BwAMD3hx6YDbpBOEe0ZJyxEACd+3mQuAKBn33VSGnsf/zsVMnG7L+R6Ivxmdg2s/9kI85OdYADA6AwPMJsa1G3/LL1bPA+q9BLMJISm5Z/t6IL/OymA537lH17G26TdvQaf++T5t3Rucurl9bd7v3eK3mkh8APGmC0i2gTwe0T0NVvRK3Q3PcK8xd/yySwcPg4AH/rQhyL1ItIWFFDLmrJrpVixhype1FXfn14N/LF0CvSv+wUmTA5gxpCPDfKxvXQC5GPtmCwA1C0FtP3TmQRohAlXJhpn1SVU3cQx5aQwqDuEfMRf5COgtV+hXOJXJ5unssyx7hJU6TdcOSDMV7puVpPKWKZoN2ltUA5UpDUaBZR9ERKIGDUMkBYm0t7l76pnBVWwd7u3DPKxMCId/Y4ag3QGjM/EpkB71891WgR/zwzSWYNyIGYO7qCkMOhYJjtbU2jv6UC7JGRT44QAGRO9y1vPEmvUljMNLJsQ5tjkQHvPv6/O7RJq5iWQ7mRQZYPZibb7bnLSz61OeT3pLv++WCa0DqyAylOYx89BzUsAwOH7Vuwz829Hj3gBAAA6I+gsdYxdhH/vRmhF+vOPzvMHWVcd62Tt3vLzK9eQsTqrFoDOeVoa/2igJr4HwOsXYCGgKiCd+IVlUkLd5h/IexXhkpQa45OeHe1+YIB8fPexJQUL0nQuihR/X67638sxPl9j5esas3U+Udbp2yUDQOMept23CL2jQsAYs2X/vU1Evw3gWQAhI78G4Fzw+SyArbf42zvoxUu38OzfZu1/5YURxNa7+QND1urm/Lm9b7WgTb8YZicMWnvW9FRegwF4IxphBBmhHJLbHE0bqBpymo/OeMEmvJeRzE3ErIhXjjdtbQGbfM6mrK0KEzcp0Nlr0NjN3tqvMNvwXHm6qdA6MiiWAqHTA4y9aTZF5O7QCWG6QejfaOz4NDpzjemmXwrhJjEKaB14ZplN+WJV/86NJAwhZEThZjQKyAKmUFhBFs61CDsg1hwBOOZfDgONtmaNH2AmVQzJWQatIw2TApXVCFVjkI808om/5tGj/lrZ2FpPlkGKxh9aH9nIjz8dFUCtUZ5mjWFyMrfj9NdsWl4oJkV8rHfTP+vkfA/dq1PMzg15Ho4aHF3wqvb6c0A28edPN5mhhRqxzIN8Pz3lnzO1zyxWW7HCVoi8n2JJoVzy57f2WFmRdZ2U/O5Fo6aGLUK5e+uIhevgujfjIreqFZzC/OcrCdr7DdJpMJ+FVwbEWhIrqhMoBrJXlL2WAlAu+99WfTrmAlSoeoTtvxyYmPeBDAwq89bcQQ8yvWNCgIh6AJQxZmT//lEA/+Ox0/4tgJ8not8EB4QPjTE33uJv7yCdALM1wsZzBdShN9NP/CdegAfvZVVfNDNh1ACcAACAwZWYqbaO/AKs+uxDF6EgmyvcjNnMOB+tSePN4IRHy7osrNUQxghMAqSWGaoG6L66747Nzy2hdVhj/4ncXX++SsjGftUXgdlfd/ieIgDFxK87yv3bZGxBCHX2/POK8Olu86RNN3izDa/4DaUCbb3uJai61iWVAdmO3ySq1vaaVhucapRLScT4TUJoxF2kCfmowXwlicdy2zKSVXb6i9UCYy2bfiAAEQsWZ0UAKAYKndtAMkNEIuhggGJZuTnr7Bi0b0+hprxw6tUe0M68MLPvvFj2c5kU/B/AVpGsK52ydi6+6sFVjenZLmZribtWqGWLADg655mdOs5/gnWmrZ4gVky5xMLWuUDt65tuqOj81t7xa3i3IgwwvMTjSEqDwwsJWkd+3bUO9TE3ogK6Mg6vYLnhVsatBTKxO0pcg4C3wsUtCABoTMT4I0E9FldUEEfLCCtfYKE6OYP7RgtL4N50AsBvW6iGFMBvGGP+PRH9XQAwxvwLAP8OnB76CjhF9L+912/f7IbZzGDjuQKtl61vNeGFMbnAflXRagD2PaaBRhgyglAAJIUNzlqSRZ5aBiMupDzYDIY8wxJ3iyP7+/5WoDElFLlcWgfx7p4+tuL8nUcX+EQXDK281gQA8xWCDny5+SH/G7poWocGdWDWJ4Uff/9agekpPxgRVtOO33Drz439b7ePMPrACf+5NEhKHr/EQcR3XdtriMCreiqyOno3aszX0iCYbVC3/TmqjAVyZ0ejbpNzQczXAICcwMumfI2QMUXBUmsdCiPOpnyutzQI/a3GuZNau8z8TcY/SPanqNd7aO9W9v4ZJicT5Ed27nK+h8SJdBpYLQqYnCYMLwUqK7HVBwCjMwnaBwbpVASnd88Jhc8lgkssjdmmndMt/ne2wcqArIPObf5bmL+q+D/nBq15voWKJYV0apyLpskJ/RvaCZHOro4slSZXoBpoAuUomRtks0CjDx69HCTIj0zk9pE1KVaoTvlYa79BseLXoxxPZ5b5N/Fc6ISc0gYAveu4L2Rg0DwEKMzvmBAwxrwG4AN3+f5fBH8bAD/3Vn/7ZkTzCq2v3wBSXiBHHzwtF8ToXBK5HXTuN0A5BLpBPlLmeRxSYbD2ZbctqtB0wy/u9p6J3R6RvzwO5IomVAz9SWFGRGenRrHsX8vMLuTJKf9d95Zf8ED8t6qA8TlCIlrw0Z2LNLRaksqgf61wn7e/i6WDuAZ611mTXv5iALA6t+fnGQ6+56T7Oj9qAEWO+YvZXgcCxCSE+ar/3NnVTsDV3QTpzDimripgtq6i59Opt+DkOUS4Z1OCVkBjGd34DKcriVDo3TKoAwHZv1GDKu+uG5/O0NlrkBbWSjsmjMthhhxAYi2a6kQ/ymiZbiYwKdBYL057zwfN5RmqwOJaeUk76wEETNcTlySQzvn5SFtXVskuuVBZqPpA/7oXKmGQG+A1LXPTv85r0cWaqjigXixR9Nuqz4qRWFOpFTLi408nwP6TfjBGUZT5JMw/tMKqngICZcukhJldC+nMC4Cmw7ELsag6OwaqMpit2eDxGltn4tZlARgH3MN5rvpAfuT3e+Vj7W+bNBZC4MEjIkzfy4wpnWnsPZWxqZn5DZIFFkA5ZBNYTP72PmcepEXMuMWk1xm7nSSgB8QWhqoNEKbi2cUojEI2ilgXRgXuBwCTkxnSuXdpSBCz67NdPeOAz4CR84wCeteNEzx1hxwDmq3zJpIsqN6WAWlgdIEfXjKeRACsvMSD7d4oUJ5eQr51CMwLjD94Nnr2ZG5dVxVvxsYG/6rlBPlRg6rvmX4xVI7RtQ75d8WKZNGwW0s08XLIn51lYJ9bGCEZZrhlYLlNLmp0r3oXhwgAADg6z+etP+9fUH7kOeHKuHaCq1zJ0bQV8sPaPpu1bsoGOk9BxiDdn2N+mjnK4SOegyYVsPwq/05cY/yeNWbrfsuZmV8rxVBxMNV+PnqEx15NRSBSFJQtVvj4fMW7vuoOCx4AaO/FAkcSFUQjnvcJ7X2D8engnEAIZEGiA8DuwuHrJQ4fDaRQYIm0Dr3AFCGfWMGVzgyqnkJ718973VHOQp6ts7AO96VOgcy6ruoWAUEAX/aqPHvVJQyuN87lRA2nm5YcXnGW2XEr/u2SAdAshMCDTXtPZfc8LotESDSLh5FEAAj1tuJnDVNeAS8AhPKtw3teP/S/fqtTuZJHn1UVWwTHc9xDAQB4ASB0PIPmYabQygNiK/VuxALAUyjovhVoYQk8YFQt5bj10QsYXKvYApADxBqS+LdFkxAXkGoMB/BcJoRxGTVNm2w6mmWKc9buxBWRzk2UymaI0/eKod/5nGcfBDWJ7si7DgNbdZuitFFJtxPq7DU+1c6a52JpTE5lyCbGuaSS0mB0ViG1GnGxaotlbD55NmKNOTSR2zuc2ggAG1+agbRBdZIl5vRkG0kVBy05XZFcUV3V8wfHp7OoJqJ/0zPIqqt4rsLMpq63XKiJi6uc71eexVoM4/N+I4oVAADDy94XD8C9006Q269bgWZuC5Jqu066W3OYTCGZ2THXGtW6D67U3QTz5QStQ+/S4ftZN9VcR9r4+HQKVXl31uiMcu4icdtVdl31rvO7c4HkjBmk+OlFUw/fQ3vPv5fartuIFKJY0HyV3FyWA68xAz6BIYxBjM7n7vt8pDHdVOhu2wwq694Ut5FJEWn+rd0CdS9zCQmS9dPf0u5zPjbcExDsWhyfSl3h4OFjgUuwZdC7opx1DviEBUDWjUHrGCB8mA58P8gAqBYxgQeMiBna4aMZBtc1xmd4BeVHxuaYW7fIhkIyi1MQ05l2C77JfAGXMDwJzOmM00Ml913cB8LMR2d5SiUw19mO8+ybnFMYhTFNThAmJ3xdQPc2u6N08BudkNO0O3tNJGDmKxkGV0rUPd4ErSPNpnZPgq8c7AsDfoA3tUnb4Ki9ZFLEboH9pzuAAdp7ktpnhc9cXDpNxCiKpcRdq8kpmuPhZeZg4v6Zbsa560BsUZgEGF4ucPgoS21hlOLSaB8Y3P5QkMW1Q5Gf+zjzB4DeDX+CIcL4vOeK6cyg7Cv0bvqIaLbtA0TTi8swKTnBW/XYteXqDmzqrzD+up1EKaFJyeeEWTCuWMoWDYaBa1UD3W2bcTQk1D3/W1Uxg5b32LQ4ECpuQOcODOI/XCAZZJEFqbYSWwgZZTI/vkcCF2hhMLjqUzzn6xlU4BbtX5mDGu3qWOpuChgTXy+Io/Vu1qwYiTxtDAbXKpda2t8Crv5IUCjYeMu96hGKIL11+h0s2db+0AeAQktXCujeLhmY++YOIqJfBfCTAG6HbXGJ6O8D+Hmw4/D/Ncb8I/v9PwbwM2BstX9gjPmk/f6DAH4NQAecePML5k0A4h4qIZCUBsMrNeq2QjZusPISL9ByKUGTkws0pceCpqRNxMjauxVq68fWKUVZGHK+vHuTEOokDqrNNhFlfXS2jctwESYlm9kkNnXP8pq6yymoolHplDC84hmXaFKhtl2spE4LNYqcAAD4uqrxWUziBgrz/OuuH7tJgN4NjWLZXt8+xtFF/pyUQGvfuPHP1hJkAXMINdPObsN1Afbw+Exmn8H7bkO/cj6Ki9CGl1nVW3nRa+4HT3WjdNiNL/q/qx6h7vr3KwJPBHV7t0brtnc8jx9n68YxN2OQB3UAyTRIjwGQzi3DW+XnKPuKtW0j94srWZuckI+MC5I2FmJE1lp7zweldcIWkMB7JCULl8kpmzJacuW1qxxvx/GObMJrzFVDEweTQwsvTOfMpoYrb63VIynC/S3//E2L3PMYxfPbDtKH02mD9hZLofYWgMagWeHFRI2tmLfV09rWatT232xiWNGy/ImC/QTwOk/ncQHZyvPx8wqRBtr7wOjHeBP1/5QXuyhiADC8rN2z3pFa+42SAZr7IwMAZty/AuAT8gURfQQMrfN+Y0xhC2dBRO8F8DcAvA/AaQC/T0RPGmMaMP7azwL4DFgI/DiA373XjR8qISCUTVkb1nkcXO1Y0zUpTJz2qQizJcLwks3/DgKZTU4RbokrCpMglA06CyNo72u09z0zVFWc89y0WdsNC9WSwmvAOqVIGyYDzNdSlyoozF/S8SJ8FgDdGyWyQeKKv1yhks3K2P/oFP0/6UUaZxjkls01uMYctLU9w9YPDqKaislJf8PhVX1HFo2QaH0SKO7sNphuJFFqoLwTfnZmhqKtixtm/2nPyVSQdshzQm5OVGWQHx7LRQ92qUkI139kBcNLFmag5noOP6cmKmZrujnmjwyRH/J4BAbi6AKvD9KsYfpUSrZEIhdW17tlqGY8G5l7o7zFR7XN8LFMsFhWSKc60tznq+TcOemM17Gs8bLD2Tmhdj0+TWhbYPR8wgH8cP0WSyoqvJP6C+DODJvudgOdEPKRd/Gkh8GikP0xYslUrvfY/dT1e0lqIABbiBcoqOLeDMkQ0LvF95ucjFlVaF0L81/tW+n/Y1Psf27TKQPDy77mBmDr+36QAe5blYAx5lNEdPHY138PwP9kjCnsOZKi9zEAv2m/f52IXgHwrEVeHhpjPg0ARPQJAH8N305CgBogO6oxX2NNLbEbIinMHT5S5+OH9yceXeSVFeY2i79XClUM2RzogJGpYy6IGJzOoLPTYGbvoRNmdLI5m1acHWQSoE7JMV05JvAASclaeBiHCKkaJO6Z7QhQ9oHZh70GzPn0TP1rBkuveudqfmmbx3Vi2X23+rUah4/6pdIOCopCv28yq1H1MzTWWhF2Ol/2E2KUx8tpHenINdK/zJJKlXyCyRJMT3fQDeIIIG8NcU1CrH0b5ZlwkwG6qzC4yi9o9328Lnaf4TnKjoDeLe3808WSQmdXoXeVxzG38A/ijursahw8mqD0U8NuRfc8BuWAnGBr2gxDUVohU/eA/NBnO4UYRvlYQ6fkgs7lgNBkyllspOGwjACrfOQeSLA9FlenP7+97zOqRACIwOPqbYP2vtRwKIxPh++J3S1SJAgA/VcO0AxZq6CyATWNq5kwbVvBPPDcebaROSu6acWYTaHgdvc8BiQo75kP+j/TOe8BsYq6f9hnF+FHmevvf24Tqy/E+0NndN+YvydCcy+UvZjWiegLweePvxEeWkBPAvjLRPRLAOYAftEY83kwvtpngvMEc62yfx///p70UAkBkxLK5cz588PgajqLkTtDxiGbUkzi2NSMff4AIuArwOP3AMwQSAcFShYWIg+KnMq+ijZXWDp/8LgVRFLxKVWyAcZLVvoUU9KxVSPuFAmCAxwMTr7mtWkpIAK8qyW9sm0Hk6A5uYKm45dGKACkuGrl66zxUR1WUzOTDa2V6Xri4hEyviVbdTp4jTU4ep2rd5onz0OVNaZn/VhDTV72mzC2+UoCncYVzvlBhaOLzLR1xpr30UUeV3vXYHSBkAUB0GxqsPQCRxBHTw7R2q9R2+foXhPB6cfT39IW2IQtvBBMD4a1aREqaWFQDD12UDqx78U+R+vAa+a1FRgSkE8KPlcUjKrv4zdyHIh99mSAwRULB1IZlIPEMVky/F9uUzmLlSRiuuNTCtXAV8APrvGcdq7zF1TWTgDwDQgmSZ0FMD3LbqBwz4V7pLNr72sDyOJ2iwABg1ctazoCtZv7Z0mCwjbAWpSfYIy29aKJwPIAm2xhXbb63kmDb5k4MPyWhcDON9ATJQWwAuDDAL4HwG8R0aN4Y8y1N/r+TW/y0JBRnDOcjw2qroo08tCdAePNaD4m2r6fL2GizpQ/BlHs/k4oYrjpLDY9AQPSBsWS33E6A8an+fPyKzyw+XoWXTv0W2ZjE9UiRDDUYEEgBVq6w1ZKaClIwRFgA9Ut7/sV5h/m/pfDxBWQFctZFEjr3ihBxkTMX1IqqTKYr6dOwNbt5FiAG1j7WpAdNGwhf+41EFmm+fI1TL7/sejZ0qDCNJnVKFbzaC6XXiuQjsWNlyOZVVh5kTmnwDAfPOWDHvmhz6zp7jToXhr5a32WlSi94VX9pptFGmzk2msBaPlAI2MXKRcjSWcaVSdxW7NpWavReCwcqSMoh2QD8CEn9OuONONTOYWlzW7DcC2qyis6dUJIp9pnZqWsiQsTTucG41PK++q7dwZb177speX8zDDaM9mRrYOwLjLVGOfvB1gI6TyIW9n7ihtTJxSNfXxaMbqvpdUXtIuPyXjFyuneZhTfLHCVJSV8fEHzvh2dD/CEgrhX5l/52yID/EUsgW+ErgH4Nzaw+zki0gDW8caYa9fs38e/vyc9dEKg7hDKQcrAZ4eBvzmQ/sVSwpq51dIlqyF0A4lGXQwV2vtNpJGGFbAuW0Ogc+s7BW/dUi4IXQ4och/NNrI7xgfy4GUAkAUM3afi6eh+kkXB2Sp+d+mE0A/AuvOJRlIY9Czz05vL2Hv/knMLlMME2VijWLbjstft3rCM1mYhCZ5P+8Bj+wh1LF7Q+EwCGK+95lZ7TcdewtHGGg6+izW4bKJx83v8kjz12RpVP0F7m394+Bhrol3rJ05njRMAAJDtzwBj0PTYEpic4/Pl2fh5ArfWrTnUfmAW5Cyx1E3v71LtFnCSYTGOLqgoGJsUNttGMloMx3wyG3+ZWtRKYXbHK5/TmcbcwiMnc2ZcorknJRfPicbvgN6GPrhJhXehcGyK3Dqcryi0D7RTUNKZ5hx+O4TRObZiBKV048sVjs5nznWWTmqUq17zd/E1wfe36yMuXAwt2swWXtq5tus5ZPxhjKAashAK3TidbX7P5TDB+IxyqL/FCmH4mr+vBLzFkpivshtt6ovZHSggANQBWvDbJf3WLYFvhH4HwA8D+CMiehJADmAHjLn2G0T0y+DA8BMAPmeMaYhoREQfBvBZAH8LwD97s5s8VEJA1axhjc5y7raYhPmITXTZEJxHT46RGkWRhpfODLqWkekEriIW8IEuYf5sYZhoMxRLSRRUa+9rD3IGCUj6cevMWyqdPYPWoYdLzsY6xoEvjcXw98y/GCZoHfF4m1xFaYlchcvMX+YCAPafWbLPzgxFhIv0J3DVlXMNzBFpdfOVxDG0uqXcZp1tpJHba/kVZixhY53peoK2FSyDF3adAACAaz+cYO0574cWDXzvvV6NGwSZUtneNGriIv7ppscvp71XOWEGMCNcfd7HRtItG5jpBm6OaYBr0G5h9tiaqxru3cgwX6FjufM+xpFN2BqYrfp1prMg0E/eDdm0ODArufnUMBMTN8hsjd1DUtOias4YO154JgqFqvhe0h9AlUB+WCMb8+B23t9F3QaUfRf96xqTUwrD1/xCXHl57oLx8402qDZIbLYS2SC6UWGnliCbiwhJbXDwuLdoZ2vk6gAAOIgIwLuHJlZvPflpfpDun7NrcPr+M25NAmy9+bkyUcC8aRELuQB3aLbhA/Ati78oa/o4YOA3SvfTErC90X8IHDu4BuCfAPhVAL9KRF8FUAL429YqeJ6IfgvAC+DU0Z+zmUEAB5N/DZwi+rt4k6Aw8JAJAUOsufZuNGwW23VSLCku0rFol60jTherAn+ky6owHsQL4M1VLqVuI5skzsIwijdruACjAp591sbC/HVDMaSwzryPd3i1BhrjM24IQEau7L9YjrlAahFLnVthoDA+59EgO7vWHRC4kGarCdpBRg9jykgA2gYOxRJaTtDZrp2lQYaFmM6YAYXZNNRwkF1SWo/OW4Yg6bAgdG/7OofiwxsR5MPac8b+Lo2uKfEHIM7bdzUalvmPngwitpb6r3lNX23toH7klGf+HVZTdctqtftHaE6tuvObtsdWNjQAACAASURBVK35sNaauCMkqaVcQhwTAAtUSUgQTBvAF0eFPSuyMbyrqB1bolUfgCZXJ5DO2K0oiQrT9YQD45W/PjXGuXNCrRwAhpcr+wx+bje/5Oc1GVco1tswFL/npi0pqraoy747fk5fWzM+lQBIojhAf0vj4LFgj02BwTXbMS0hdPa0+wxYAVCyNtT9wusofuRxALymo1qSmi3+UBhPTgbQJEtA3QtcRXMRyvz5Xt3d/iJkQGig3vzEt3ItY376DQ79zTc4/5cA/NJdvv8CgGfu/MUb00MlBGDAO5TY3yiaQGe3iVoRGiVBN867VrV3MQAMeSwuFcG9qbsSsOPNGGq3YYGNUVJ/YDXlToxtTg0j/UtdwHyF7qh81Cmhf503bWXdL6LhyblRlbLywdix9RSKptRYK0OwXQxxwZRk8IhwCMcoVo5YIKKRSfDSWTEETE/4JSSuAgejQLzhwiKivadj7U7GBHjNP3SbDC/5ySmXMmTbAKyvf36KOerkNN8vm8TvQtxoasv6ApRCevkWkHvrQLeD3gzvPYX5eor+1cJeN4aPAFjwSR+A3k0W4AJs5rJ+2rz+6m7g+rPDGlzzzzbdJBe1Yz+2z5ap+iwAZE50yumhco9sajjYK5lJBzp6dp0SsiPtOsqxkAB6WzwggfVOxvy5WG8jqbRz9zU5IYVyqZtZzZhQwniVzTRyRZWlcRg+QmHyhaRriqAz5NFyO9esk77bcVbZ/od858eDH2TVff2TLLRlrVbB84bFYtWQGX/bJlTWvRgvLAQRfLv0DruDvin0cAmBN6GQ0QH3v4z8YaK7ZVfci5psMZdCd2AFLabmDckJgDeg23+luOfxd5MMCOXxvNZvQXq4hACxeyYpNZLSa5iS2y8uGIFtIOcfLZHMGjQS8NU+DtC0FeqOimoMSPteqNkszlNPCg5MOZ+5jQ1IpaVOYwarMy7okt6sEogdnfOBt7oTWwth/MHBDtg3ufSKiYrXeEzGCUBV6AjVU9JTq0GwFMjfg5pj6bTG1jIEvu07KPiKNTRJk42rXAVyee2Fyj3z0utllB9eLnmt3RAwfmLF485crzA57bN3GOO+dgKpd2XMwX8VcOU8c24gnhzCfJNjDnOL8Ln/Hntcs8bt4ZhNlK0k7kThA1KdG0KRh/0PxN8v8aLwPOeOs++/tRe78Oouj6cdFPapymBm8fzFIpD31rlt8/8DSOf2TunGkMxrFOtt5/4rlxNkY3LB2qRkrK22dY02bQWd+Gwthj8xLsWTtEH7IN4LOiO3rqnhDKKo6UxHYfQEq/DDP9/B1Y/5vhTpf8b+zMEnvXsuBHxcerVyFehLlwosXQJyWw3+6k+vOisA4LTXYgVIxzJvuC9kAOj75A56N+mhEgKkje9dWhsY69JpcuJsjLn3r6rGuCyVZG6zTWwFZLnacmaxqmMoAaPICQCAC6Fah9pvcAvZIAInnXGP3dDqmAU4Jq7zU9DTl3u7+s3e3jeOYYKA3e+wfwDoPcbonp3/y9vDOiH3+3x0vJGHQT6qHYORKtiQmYe557M1FeVqJ6Uwf/+dMP2kiJvXADEomUBYL73K4xmdVVh7oXLaYOcaML3gd/ru+/jG0qg+HzE0gsB/FMsMaCYCsn+jRnvLc1aX5TP0jvh6tQc1tVwgIRQbXScg05lhtNXAZxym5qYzHaWLiqANQdlaAdhqZ7tBGeA8ucCkZKPlPm5liFB34lRm0sYBvAnjysYCGMhrXILWRxdy7o9QizspAZkE3Vt8QWoMqNJIbE/kesnCh6/xHM9XFMoeZxQBvB7J+BhCk3F3MWHy5UBFgevWId9DlCWjyKfEWtLHUpvD9OGv/fwGAI2lRz3q2/irq67UqelpLL3Ec7n0aoXu519D9/P2REUwJ9cxt20+z/xxhflaiomtyi9tVtF8g8e28WXcN3qHU0S/KfRQCQEg0P4zcsEsQHGWTS5+cKBRhNpWFvctXETTs5XGhfZWgaUw7TLMTNBzn1cNsFZoKPZri88YYIYRLn7RBsMgl06DBwHQZP5ao3OE/ADIPsibpfNvlux14+wjoaTUoCrIbrLPFWrb3LzE3qsFzIJOaK7QKcioqDuIXRxBhW7T8ky5tR9nQW1+9hBHTw6x/BwHZpefAzCawKxahNILwwiKOJsA2SjOBGkdabSsYBmfTnDyUz6dk27tQp/ZiFI860dO4uAJlkzLX596AQA4C0AEPhCnFQNxRasqNVTp6zTKLEHdIXS2zV1/LxaLWIPplDGqwm5qIVZS2PNCVaxJh7DVKy9OfYC+MZhvtpHM+AUNrlZQjUG2z5M/PdtF98rIC7SE0PRyNBlz7XI54+BuWEVfxM/RtMgpL0nJa0YEnlioHtWUK55FwM3WWTmSjKDjGXGiaBw8znP0l55lYKD/+LKvEzHLDaji+5/+Y0AepvO5VwBSQFAkefDMMm785zwXp/4g5ewq6ad8jgd58vfvU5WYjM8QmocAJ/yhEgKGPASzUQTVxLn04uLRNojqQKtyRr4M0yAlRTMfad6owWY0gTtHGHzU9k/FfWZDhpkU7I4KA9XHKdSemjaizSOZNoNfF405zkwiw4iM7nPjNUOhunOskC5gdJVtyemghO0mlzksBxRluPRu+gY4dY9hKISWXzzCwdNDLL/g1ePlP3gFkE5q7Rb0SW/uy1zI3PVt5ohYYuEzAMDGFycwSkHdsNXOnTbU3ghH33fBnRO29jx4qmsD4zb/fPne/txiSQFLXhD0rJXZvj2z/wLQGrvfyYI4qTiBwKdNwiUeAJxrnwTgd6EAcMByLuGA/w0hM0zqMazK1RbSaeO06/zAtr60LRh7Vyco17pIbeCXjIGa1aiWvQlXDpT7fWdbc4GXVJy32UpxY095jA6N0wCtA0TFaGnQa7qz06DqKXdcHcuiEuafP8sC+yvbp3D0+jKwYp9jYqu2r0tCRI3uf3qZn2WFs8Bu/NgpAJyBJwIAALa/mwfYrPKzt67m9p6476QXlsCDRToDpid4FXd2fNvC1tYRaFaieIRBc0gr2y3MwiOv50jm2ml4o7MeemK+otA60I6RVz0V5fwnFWvGZVDtGPZmZRiJYIySLhmsHRXg5tftuLlNNmUICXFlrXyN0R8nmwFTD5Eirc9YQNvExytMP+w1EFIx8P7tpPD+7bxk94Vzpc0Nsksas3WZ5wYdm3zT+9oO9r73BJZflCa7BstfPYTaChy0OpZ61XLLpSHWLUI21i6ttW5R5IpLJw0Onsix8UX2/Srr2tj+Sb+7WweBJr4c10xIwZ74kgHbHF1qPgoTWUgMNAj0gn7Q3a9cgz5lwZe0xujxoYMVNwmPOZxfVXuspsFljimIVWUUObhzEYD9GwFK56SJOp9NT3m/k6o0dEehfZs1f6o1TKace2l2qotkrlGuMdNXpbYuGut2rARa3TNxcfEAcIib7n4NMFkPitemLACkLqTuKiSlzySTtGmn0Bhet6KwiMXT+tfsq9n+kIGqCLhthZQB2juEtaAL3OQvPQGA63DKAWF0kcc6ukh4/JGbuPRnYbEs0H797l3Qor7Ob4M4MPytz0K/9Z8gJGLtqrOrMXjFO6PLk+wrlHzvsqeQTbVjlK29GpNTmdeOFaJy9ahYqzbIpjETD6uAdYaICWiwKR1WdlIdnwPjtcLsWPBKNQYqcMWkMwMY49AVy0GCukeO+Vc9wuGjGQ4/zM7k1T9Oot6zxTI5twRgq6zb5CAzmtwiY9rjdQ9RjYOU/a9/2mrfO/vAii08a6VY+fIuZuf4c/vGBGrrNkwVWCZ5BmQ8mOI9rMlVHR9cTAvjhHdeAtMTnmFLg5UrH2UJtfklC30RBJtDi0wEgLi0XL/foO9tb8v/eHSx4+YA8P75dMrjz1+5CSgFdYurjybfxQ5reZcSJJ3wY6F7Owbr0xlQZspBYZdDcq4umX/x8QNs+czalolb5tw68C8jHVce48kkKJc82myxlKBFDOUhZFSQgtpjOIuwEj6baFcHkFRwPnWAi8zSACwvmzEqqQiV/KhB01LOHUTaQqTb9VL2FJocmNrYr6pYKMpzrTyvUPWA6WkbhL8icR9fxBjChVQ9oL3N55z8cS6Jzy76eFD9ygBhzFYKxvha96dQYBEYfgBJlcDgesOY+mtdl9svxUdjqzn0LwHZzEPllr0MTdtvemoQuJV8doNQUvqsiKoXZ7zolDdKKCRC2NukQJTp0zrUKIe+GEyYgaBzissiROs05AVakzMypdDB+xrQoEL7JdYapycZK0U2bygAABtgbOIxZhOgf8Ni56+oqIaivTWBmpfM/IUqZkzj79hAMtPoXgpaOmkDSqTNmd0wg56dK8/83aW6CrDvrWkR5oFbTYD9Nr/kN7EqNVpWaExPpCgHd1pI7e3g2YL6itxWWQvzl3E0FgMnKQ161/zLNWtL2PmeFVfRLHAZYX8EEQAAMD7Lc9+9bTN2dvzEl8ME6Tx+dp0Spif5vaZTzYzUMsn2No9DCtiSeR2B/E1P5dAJOZdZOmMfvV2+aFKGRBcBaxK7JmxxmLg1i2WZV1aexULNj0xUb1K3yGUQyZxVPS/Uqi4hm+qg8txE0NZkWEiLAK96LGQ2XX8IE4HR1V1fk3B0TmHjR6+7Y0VjYdNfCRDljA/YS42AgOvdT2oWdQIPFpExTrOpe4nL4tEZML6o0b9kP+cAjC/4giKkMx/UC4G4YLgqU8CxksKgHMQaj1G+s5Fkhzg8opbN+ggYPxnjsYSGEngTjVAjmWnnHmjtNzFgHcXasWpYw9t+1jO3/pfaWHqdF/zRhaD9IXBHIxeANey5RW/o3PYCAACWXpmhaafIt7nax/nf11fcOaP3enW3XE6QnuDNmH/1MpDGMAMAMLvgK3vrTgzLnQWasM4VWge+EK7qEvpbNbIj72+rhjkmp1L3bOnURJlO7W2PNlkNCHU7wdJrNhGgrdC0c2fd8NwmLt2y6hB2n+ng5J+w33rne/iZd94ngFFAe5chCoRCAZvYFHhxH5b91B137yR89olnmuIGy3fZDDRZgqaduiy0upthtpm5d+l9+5Wb15DIAPOhgqp9dg/IZ3lRzdq5uDLTubVG7fVbBxwzkOKxpNTs85fOmx1WZAobquKsLeMEZVoYdHbNHcCMwug7O+xyDJMawmQHCbIDwOTpEpOrGxAJd/b0Hm48dxJIbOyvIOjEM3/JRhMhEiKXvh26nxXD7yY9VEKAfZ4KO+9X6N4Ejh61WtQO0Lmp3ILuX7eLwi74JmfM/8h3b/+drSXo7DUBDC0HzOSzQAO4zmA2oObbNRoXDOZ7sbtFAmySWRLlk2eEJuhTm5T+2HzDV+MKZWOD1T/jzVb14QQAAAyvNIzlbl1a0sJP3AYAcHTRM+pyCRglCdafY6Yvmqfasdp9lgF9j+Wj++0o+Dq4HEi7Jct9x3Y32vz8kInXXe/nHvzZTX5+CwB3+AwHjcPezyqErh6y+SLCe3Iygap81TQA7H13g8HLFsFyDCy/7MdX9bmeI1Tm2nsao7O+Ont6Enjtr6+63/Nk+POLZe+6E7dQbhUBQa6MutYFsNfU+N/IM7b3LIDb/hxICFTYwG5RQWddh90z27QWg81Ca+3O0XTSiPlL3AawDL422P5ub7WoEuje8seT0rj4RjbRmG6mLuV3dC5B/3rjraVcWQgVn3atg65pIN47sq65Q59vfykxhzCbKhQAs7XECefppsLo0cCCu5ajPF8gvcXv/+atk0gKcu+FGiBpYtC4cH+F2Xpvl/QiO+jBoroLbH+XDXAqYP05/t75eIsgPzv4F0DQbONOLCCGcuC/ZRELxoqsgbBfa5geKiR5/nWH0L0V+2mT0gck81ETmcGTUwzN7DDzDZ8fji8M4nVvG5RD5YDiXCAwTBs9BrMbaaOW0UlvAADofv41mDKIdo99Df7+x97rr1v69ojReYLcWcUpIsVaC73XgorR6RRmYwWj96zaMbPGKfORH9Uu2wXwUB4hbsx8Bai79j33NU78qQ/wCFOZBZYUjEH3Jvskxue7TgAAtg9DeSzQX8bdpMKsl9a2d4W474K6AdI+K2blpVi4t3dK6Fwx87ekWynI4iLpTGFyph1dC+AG7kKTU/65ZuvkhBEAjM8AALl+AUYBnZ0gS03z+5M5mpxMkc6NC2K3D5pov6RzDUM++6cYKsb4j549QPFNLeaUGFEN10CEsOjhHhpdAISrqwpIJ753QzoDmtvef6kKMYfsWHf5PbWDJIHR6dQpbmUAMfF2yAALS+BBo2QOrLwoKWmeszUZIbMAXEKqYi1e/LmhiVj1KWKMYRA3KckhIAoVS8ppUO6e9nJGkQuOAbzZQsA4o3zzeYB94iGiqWzSsEDteBvBuL8B/yumdM9CQIvQAoDpycw1qRGmJIEzaTHY/fxr/pqhAAhSZasPPBoVU7X2bNHd66zRI0m4BkBAyfaO0JzbcO9BUi3FxWROekRRgAVABEdhp3F62uLLPCGZKPZwAsw3/Xj6ryQ2K4V/OD6dAKeTKMX1zB/5/sVNTujeNo5ZVIUoC8EQwr9tXn8oCEImmM6Chu8dckFRgNfM8iulE5rpdXaWm74NTg870XqtexlaB02ErNnZLiPBMFsPstYKTi8en7cB533C7H1z5K95/J38yDg3UneHtXxx96RzEzVXKobs+pGOfJV14/mK4bjeJCnjhArn8gskaJRcMQwVMhtnEwHV8H6VimEHXVWLgsNCphNo/tnEuD0jlpq4PI+nq36jZECoFrARDxZ5bV3HRUc22GoU4603bYpSNedrFOVst/cMihW/wELo2XRuIvdKNuViJtG4iyU2ecUs7tyoUC4lUYEQEJTftxWyceMCeqIZSYBNrJdQ8w8Zb9hMAwhRRgmrL7JWmR55bXH7g0tR85zBFf/30aOE3i1g6fM3gEEfZpd94aaxVapKwTzpc/AnZ9uMbGmZf+eydRnZ883GihMAAFBfPIFqkCG32m5ykyWPPsfckarGwQgAnPlUdcm1v2QffssiVrLV0oQIECXQve5TNAWyoOoqVF0ubCp8WQLaO8DkbODaCgwECYZLBtnhhQT5yAdOAaun2sfLxszoO7YpzGyVLJ6+z6snzTEXAFh+xWr89t3Vp1eRHMUYx00rru3gfwNhfiIAvzuhooI+o1gA1EObwjkEklu+RmD4Ot93cJUFvM4VmtynkEaxFWMcI61b3AA+LTR3LmsYBJGa4+syVFKI3W5Knoth3ENrtO74BItswi61g6dFWSBUgzjVOht7q0bcupOzQeyrDubpNP97v+Ai3HMZLIrFHjR6MwkfolkCsSbysJEIgLdKR4/GkyECQIhUvNgP3zOMPjsB8ABSqJ2/FQqzoQAWAPeiEAMIiGFB7kZOAHwrkIn3TNibG2ABcM+fq/j4XbGmouvHn9u3H+RNSotisQeNTMJafbGSIJ0G+ds2X1xM33TOEL2S9imbWMCyiiWFli3Y0hkBhCj1DfDYPE2LULeC6mPi/yQQVQ0Sl4YJsMuhNdIBXo3mCl67lpTFhA83j6rjht8RwFqPxzOzrob2Lpv5IfDa/hOBumyfIZvFFsDqiz51ECPP1cQKwDlWpyYX+ncA6mWjCvVqD+neBNg/BAbsb6F5hfLciktLrAY8pvkmuzzKx/tYemmEm9/nBYpOgd7t2Le+836BOuBsnxBGQgWyR/LahZFM7ecQ+yhk2OJSE998ZxfOHQKwFTA5kbjriaUQegC6t3yWmao5E0g009k6N/SZbfrz84nG9BRr8P3LseZfbvoUR2qkCEtSQjVmm/5B5qsUaTF0LPuRNOfRj+3UJhOFta8A4ufsbNegJm4BCaLA9WUt3bEEfiUmFWj7ucLgqk0Z7bIlEbqQ2O1p3O8k+CyUzoDKBp6TGQAF7H+ABbCaJTDrBYqT1r37esfBUeuc30EZWGU6D11nGvvfadC6ZZMaagbkW3r9PvmBLBksLIEHkjhlk7NkwqIfVcYB23Ru3MYRLHTJpghxTiTA6ispFYyiqDI1HxlXmSsoj9LkRcrthZEkFWejzJdjuIkomGyAxnopdEpoHcamNPcUtuf2WACIeQ/EvQYmm3FDcVVxut50wzOQ9a9ox+CWf+9lmMK7j9TKMsywj/F7fEoojHFAZtlRifTr1/yhugZZXlae49/c+L6unSegv1VHfu2b3x8IgIQ7q7l+BgKuF212FvQAB8GLoCmNy/YKwO1U5d0A6ZyPSWFdb4t/kO+wX+HoPXwjcc2FuEEAu/6yqWdkoQ8cYIFcDv39koIZ4fCSP2nwWgBsH7jKyqUcqjLO/ZTv225tF/0WDS2Mps1MNGT+OvFzUA6ByXntsHf6lwiAcV3goAhGBTArCcVzWUgwPWzNyQoHwMVmSen7bmQTjWwCB2BXdxPOfrKXTFydiq2xWE0xuFJh72leeNQA4/Maam4zs07blOQXfTn8fNPuxU1bMzH3c5O0PYNPL3eRFEDPdtelBlh6tfCtUVfvnx9/ERh+wIgaBhyreoS6GyMy5mPjsmiSykRmbNXnil9h1HWbsPKyRSNtDIol5TTzconQv64jaGYATlMvhgrlQDmNSNWAmgeFL8T/Sy2fzSbaNWsRYuvCamIzEwWtk9IAxgfSVGNw8jMVsgO+4OxM12U6ARZ7qIr9ocUS4dSfclbO5FwPw0+94o5JEJiWLKjbd5xxYwJ4U7eDzmvp9V0YIwhyGjh30sXUZ+sshfMgAWh0LnVVtGH2Cs+hzeMOoB7KoYcABmK/8ORErOlnE2byUfeuiUcylXTdMKie70xcc5r8sEY5TD2MtuGaCamirdtsxU03gsC98g1TJOtkGBQlhbnuw5cnUDMvYOdnAgGYK+gccYFUP3NNYIqVFMMrGvtPSgWtPJM99xgCaXvPoHeD3DofXvWQ0H7w/s+6TVFfa8HZEpRZPt84waUa/tuh9lbGwbAAXhmTGFcy1zDKXy8/anDwROaUrfka0LmhMHmaH6j3GWb+TYBKK8wfALKsQZbZvthFCl0ppNe8xdve9dlJvesFJqdbaFnBmhT3r05g0VTmASOTeITGdOYDTWlhojTKyWnu/OS0FGmEfiimMiKzuO6QC0B2bLcn8Y2m8wZ1J4mwfDo7jYcLbilrCnuzulhOvFDpczm9mNs65cwkcSfVbWJ0R7thhSEJ4mP3phcAACyCKfdZtsOHzj3z1Bmw+XnPlQe//yJ0Vfmq3sxCCz/N7h9VG4ezz5+BZN4gf50jnCZIF63f/ygAYHqCVXHBug/hpWsfh3WC0gWqRbBWccrrzGr+gqnkGGvCAiCTBB9iQS5CwLUTtGmMScUuidael4ijJ5acVSMMSrJyRmdT5KMYI3+25lsdivCRYrTBNYtFFQTxh697zpyM5zAJRcx/vs6acH7EqcGuoGmtBWjjrBJ5huFlvsfe0wqDy/Hc6sxblCIcpAuaTqRKN0h9DmAhll/lORABaFKKkHNhJNkhCL5q42ApkkIzbETl3UbU+J7cs7UEaWEwOWmrwXMVKSYuYP55b8Z1drUrEjv8oSnoCj+senSC+U4H6Fhr9Dr/pmuT0qjxWW4AsPsM/y6d28K1QAl4O2QAVPcJO4iIfhXATwK4bYx55tixXwTwPwPYMMbs2O/+MYCfAdAA+AfGmE/a7z8I32P43wH4BduX+A3poRIC1MClaoapheWAotxgca10AjiBpPDN5QHvzimWuaBIMi/SObtz5PrNaobZRoL2bqBFhX7PucZkMwlaD8YAWoa4kExcJLKJnauq4uCajFmYaFhlOzvjOSsZvqaAsOWjBuNTKTa+6LGU6PXrrLUDMFWcMkGtFubvO4sqgF8I++h2tm02yQozssl3n3HHHMSyVEEXJkJTrbu+9zHgmX8ZWC51Dy7rg+MjGm2bvppOG+w/kTv3FsMeBGPXPH+Dq/54kyGKf9QdgrZ1Aqo0mK8mzj3Q3W4AYzA6G8AxBIzSVdFakjTbkA90tis4viy5/Dd47gvL/AXDH0Su1WG9kUR57dAGo/M+rnP4uMHGlwz2nvZzNfKJWq7oy2ERWcEWxo8MedgMtuzIQVpI8aBfZ0mMNFt4KyAkWScm5f4DVW5daQ3vEe+SNZhuqih+AvIQ5XKeFHLyb7Qb1/D/THHth60V8pU+2oCDzSANdG75MbX3NObLHgxPXFvF8H67buh+9hP4NQC/AuAT0R2IzgH4LwBcCb57L4C/AeB9AE4D+H0ietI2m//nAH4WwGfAQuDH8SbN5h8qIRAy55BJigBwOCZSEBUif1aEiQ28hcKge7sBjE+9FEujsR2ZshmniGrpjzvVzi8KAKMLvv8t4PFqBJ/mjmeQTdgR36tlrFbbNBmXwecWw0WnhGTWBAw4ceMQ2visj57S1Rt8nePMv+8nI51USCd8fHKmE6W3FktsEnV2PYOSoi2AtcPw/DBtcXBFY7qp0LPMU+AURPOuBsSuFftzYWjiRz46nyMp/BxVA0SFd6Q5rVFcDE0gaAEWUserUgGgd7sJroFIsIQM3iRAk3jtu70HZLO4X4NOlQuEZ4dsYs7P8gIkYzDd9PNW9slZfElhnAsGgBMAh4/78e79l1OUezz/+e00QsMUGAqZKx57HLMI00uTElh6Xcdd6oIlmR/VSGY1ilXmzjI2p8x0VBRENwn3S3b9ohUnVYTFYGGA3gEe2jVgFFt6ss9WXrI1JKW10pZynP0DVkDqboL9J5M73o2/D3HML9R/zd3PfTtkcP8qho0xnyKii3c59L8A+EcA/u/gu48B+E1jTAHgdSJ6BcCzRHQJwNAY82kAIKJPAPhr+LYSAoln+K0DoLRuAdf4wmqYdSve3KRjxi9VvICtckzIIQ+K1uiRIwm9WzHccdNRzkzu7Mgmt0GtUtssjIB5Ge/iEP+/VGJKDMCIRq1ZMKjaBqJ3bDe05cydn8w1WnveRUSXrgP6zuwOd1ypqPtWCFnsMqukmYn2hUVC6Nf0mwAAIABJREFU4uoyCQsfcVnoTGG6qdDZlpoIQuvIuLJ9gWoWSuasEYqQkKydg8dye5+YUXV2OKAvgXBm8p75A7Hp3zpkjHuBzU4coqa/aBgrkrUk7kJh/mKN7X6HwtKrhK51uYimnE74nVQrbRgiTE4HAlMYsYmhDNKpxuGjmWOyB0/ZcQd+cBEAALD2vBU005g5hwVaTa4iJp/OPGPUKQtEiWkZAvL9ErXN4EpmLEllffFz+00TChsgwHcKBE029W7Q6QkuNnPV1wauix7AMA9JYTC4bC3NVEHVGgdPsnKy9PIUxYZFVG3YMhcFw3VdE8tyIIkDAVTEeqCo3Eccub+AJbBORF8IPn/cGPPxe/2AiH4KwHVjzHMUW2FnwJq+0DX7XWX/Pv79PemhEgJCOgVm66ypARxczCZBDKAEKGiFuPqSlJx637Q0jpmc4CkSdMjejbh7FsAbOwmYTTLTjlmpmpmyCiACDp7IXfVjNjmWGaSsBhww63RuoGwJsqE4j/3oYgtJBfSvMrOo+im6z98IJsMAgz60zfunNOUMnsSrQ+bJC6AJP9D+d3NZpYPRkDkLMmWu/pTG+d/hA3VbReBes1Wv6ZM26N1sgkxGRm4NrZ2669M2RVM8umCrmA8oSuUVSGxx+UmcxxXYHTWYrSUR9HVI8kyOYSac/hsKjbBgrLUfFzElcyuwrRBYetWge9PfLBtVoLpBPfBFXJPTmY9HKUQplPlB45jy4aN8Y8G7UhWgz3gBsLYyhv4jj1SXWXhr17Ix4flxqcu5gknhMKikmCtMMjCKnICWpjSC62QUsbISFKyFWr3ECyS2JRDnle1cl4+P9d6WuFtQWV/2yBeIBZYrABw82UI+8kWXo0c6jpG3Dg3ae0Eqaipjsm7I0qaB2/vXLQuVbn+SVHcqQt8IGUN/EUtgxxjzobd6MhF1AfwPAH70bofvNpx7fH9PeqiEgEnYRdC5xT5HAetq77HZKXnnZIDBVc9I67bymo2dMuk/rFYTjM4TBh/2AYTppzdcEGpwtULVT9wGmZzOgoYdTOPTqdNIVW1dO/Zw7wYHBLVbwIzfIoFAqg2mJ/xrqnqEyenUBwBLg85OjfT5S/x5XgCrPp2zObmKZDyHSgJNaDxF8wgHfklrTM73AfTtXLAJHzLDUHPa/ss1TEO4/Ff5c/uGQt/64MWvK5u1v8VN34XpZmONpCBnCQgzFWEswrp1cGyDiwvdXscVf4nb6MgPMKohsC0QJRjqNO/Q3RPsYRmPCHhV+qY6AK8h0j710CG/jv1aaroZxme8EAgTEkIsnfyAx7z/hO2tYCuZ6w0vVMI6q/r/2YACHGSJS+0MzmlaYdMY+6jBu6vb3kevamBwNYS2tfMRpq2u+OdwvYuPCdLQImxy5eZfGLBcN53HyRlVly0RuU5nu4aqNA5sTQs1sVVhEt/QRtVszcsctPc1qh5FlfDzFQ9rzSnD5ATN/Uro4cDwOwYb8RiARwCIFXAWwJeI6Fmwhh/AJOIsgC37/dm7fH9PeqiEgKp8gCidGedvBCRrRoKlQeYOOPNC/k6nDVRlMDrvN8Dgw9s4+PKGvS6w/pW45V86184/Sg1rR3LvqmNx1x1oHTC4riNc+7pDTvNP5yYytctBgnRuMDnluVV6AAxf45QYkyikr1z3IG1toHzshOslzBZNB+0bbDsn+2McfuQJd62k1DYFlj+PzxO7Bmz6ZjYBjh7zmyu7lWFwif+enOHzxKpJCt6g/aATV9NWzp9sEsJ8WTnGJEw33JR1x2/udBpr5hLsDmMOvZsNWvtB3+A1/94kSyfqBTE36Mz9F/tPJY65eGEl2jRFQf6kMGjvacfgXK+BwGobnffZLZLCCgDDqzoqsBPBHsJYtA6A1pctMuqBwc6PNVj6jywhxecvmrcw3+PtSV0zotoAtT9etymqnE5Kg+mJHP0rPmhT97MoZhGOV+7nsocURf9OT3ByhMyNCBthzMVAASp01XDqbe9GZa8DHDze9tDWwTvr7Oq4L3PKriRZG/NVXr8uttRj61Fce+19g6TwtT9hI523R+9cj2FjzJ8DcGWG1t//IWPMDhH9WwC/QUS/DA4MPwHgc8aYhohGRPRhAJ8F8LcA/LM3u9dDJQTIWNdJFQd/mpycAEgtkFyTM+OVVEsJ7jE+DTD5GGd09FqlEwAAsPHlmlv12cCw+FRJsIQm3gy1o8L0BEUB0k4A9cy+WX8smWmUw9Qt6PFpj5MDsDa59KeXg8sTzMYKyAbQ9EoXyaxCsco7pOqyX7h6jH2ro7MDtA79hikHKZIyKA4KcvcTiyffu243+kk4AQAAvWscW5F9kMqGt8FpMoiCnU2LK5WPLsaMIqSwojep+D9hyuJekF4MACJjl2qNzq05Zie979yoWAOsO34t7D9li4d+gG/aXO5h7TnPuNiF4IOVYlkOX/KZVrrtmebuM70IW6gVVDNPN61Aks5cEw5iZ/5SqLpAf4vvrVNg9f9rRwIyKWKU1qalIqaclB4muXu7uUNApHOveUtiwXwziP8EriLVGJjUWyy1XUdhtlHV9RYsNZw8EQrNUDMnDbT2tYt1SQP60TnvGm3vGSjprHcMlI9rPMIsrzjeUSwTaivkdMbKiSh7OmUXkQiN5D7FBDgwfH/MCiL6VwB+CBw7uAbgnxhj/o+73teY54notwC8AMbT+zmbGQQAfw8+RfR38SZBYeAdFgJWeo3Auaz1cZ8YsZ3zTwH8BIApgL9jjPlScDwB8AVwcOQn3+54jkM8p0X8OSqk+Tan43716cljJxxnMNP7pV09fBQWPAFxXODbncrhvY/rB1xNvV8Vw8aYn36T4xePff4lAL90l/O+AOCZ49/fi74ZU/wRKXC4C30UbMo8AeB7wTmu3xsc/wUALwJ4k6USk05Z83CIiML8gyAnaUTBWkNea739d73afjjtYP3P/XnymyRw2RSrWVQtmQR+6WyiAUoxuCqdR2KYa5UQqiRxmvnOB2x2hgTMxnHdwdLnb8BM/fj0U+fRtBLkt2wBGBHK5Zbz3araF+gAXJVrVKC9Cy6OdcFkM6BYOhYgPfAQ3SDbTD3C4wn98P57Q3F2yd57bRtHgRCo4+Kx9l7cKtO1+9SBZg7vgsgm3GtAitNMYiFAepL9E/usgThLpBoAeGqM5rJPjy2WPHxCf4vfce+GzZTZ4vSyesVrzweP+b/FCnCJBpbCugNVxX0shKQY0TcjslW8Qe1AUviEA3FfusAwsftL3tv4TBJZTLLmJFun7nLOvssWSnw3Mx4HIZlrdLa8adZ0c4wv8DsU19LUOizWXmCXjW8AFIwNPh4i1kZSxu7a7rbB0su+8HB0UQpifPBfak6yibcmhfJRkGlUIMLrCostgbhg7u3QomL4/tDHAHzCVrR9hoiWieiUMeYGEZ0F8FfA0u4fvpWLkbY9AlqyiW0GhWVwKvAFUuVb+dW9JEKKbAc4B61f5wT97hY7jhOblTG54BkHNR4WIp1pmNRnwFBtMLhaofsil0Q2m0PoPEHds2Bq1iyebvrUU0NAV/K+5wZLX90HrnGwwwAwZQll8/qTwxkSACa3hTPzGrONnmcWOaG/pZ0boLS9EmQTp3PbAD2AWhDYY4DTMJvcwzOT9r17AaC1b9DfipufC2nrMptb+Ijuba5nmJzxmzAsHnOpfoHFRrVn5E1LXDni2mM449D1FzYAah8IDpEwLA4uCtgeAOjXekjn1ne87bGf+Nn4XWd7XuiWG15qSaFUe7+x//L3UjeRTjV05rOl5ss29iJ8g1joAhx7kYpmd/8jj+mUjXVUWyKpy2GQW3CugCBwLO/NCVR/fqi4IIt9/Pz8BZpukOl0tuMYazXglqprL/hrtA7iWBaPgz/PrZsqfL6Vr/vAdOvFLTTnNlB3+YE7tyvM1zKk1v1V9X0ry9m6QjbxPYSXLDZTKFwFsyt6JhPHNe4HLRrNvzkZAP+BiAyAf3mXvNgzAK4GnyWv9QaA/xVcJDHAPYiIfhZcIYdWexn5QYNEqnIDHBYGXQt8ij3POWZrCfIxcPQIf84AjJ5jgBtlu1TNNlnb7F+qWQCEaIqVv7Zb/HZBtvZrFgAWkye5tgP96AnnejoevMxGrOkIzjsA6F4LyRpn/JjbO1BLgWE0neHw2bNRmmZaeHA8UAylXPXJYrj443XX51wLeqpoaXWXM0pG38+BaHq5h+WvG8f4Olu+KYvOEq4CtQ1SiidO2DmxhXVTg7JPGL5mfbUZcQMR+6ic3eUZW34UNwIimwQnhXA6Z+ya6YYwHIrcB+WAe946bdc2gWkFdmkZ1AVkU4MmtwWCllTVYPvD3tEfHtMpF3sdWVz84ZUGOqeIGVc9X33urB6xSAtETVZUHVpoJhJuk5P8YGFDI1WbqFBP4DUAn3E1uBpYsbVP8zQkAHc2PmMFTO8aLwTSJsoUKtZbSOcah4/6Ce5fi/GCwv3m1lzIIzVc3w4RjK0XbfLKoIfkYIq6y8UZ87XMvm9y15OYgEmswmcNh+mGQu+GRiqYTzpuaCPWT3WfegsLGQNUeiEE3ox+wBizRUSbAH6PiL5mjPlUcPyuea1EJBgaXySiH7rXDaxg+TgADJbOGgfpnFDc6jCguptEIGUACwBhhLPPrKG374/lR8aNdPxID9m4cQEyiStIpW42blCspOhdD9LvAqoePYG6lznXUzZVDD8c4qjsaoe5kh1WSF73ef+0ugy0Wzh8P+fzq9pgdFa536saMCUibZN03LkpdPWUQ4ZpEJfOfJXuaL5x9J0lOl9h9b+9B6x81Ucz60ELqrBNZDLGSdr5CGevDa6VGJ3NUVr3SrlE3NBcyjJSn1EEcDVuNjYRkJmqA/fOsbnWGaFuI0K/bDoMHgbANT1316oQQWCkc2Dw1aBgy+I3+QYuCocXW2jZx20datcQBQC2/mqDwVdylDYjd2clQb4PrFohIDAFIsiSgjGoQpTUMAsmxNJXlYFpvKXYs7UhYU8MBz8BzkJLvTxG3WEBEBbLNS1yz8/ppKlj1u0D7QQAn2BQBAF2eQe9rWC+gqC/ZOfsP2kB4g4BqMAlM+VUTSng6l/hwR784AUAwPKf7aA47bFdpFBwfNo/o7znbMa1Ha3IdRjsdSKoxtcpSOWyuKruX4roX6hO4IGld1QIGGO27L+3iei3ATwLIBQCb5Tv+l8B+Cki+gkAbQBDIvp1Y8zfvOf9UnKb5jgja1rKpZ/lRw3KQRppLutf0Ri+wv7PWx8eohNgAZlgswomS9gZTKfkvgeA9m6Num8hKJ6/xY3TbfN0cQNNTvFxnXDmkAiTfKSjjJqkaPD/s/emsZZl13nYt/cZ7/jmmqt65qAmRTGUKdmKEDuWDVlIYgFCAvmPHUWAIUOG/SeALOSHAAMCbAQIEMSBFQExbAWRZdmBYCWWbA2BQsVRk6BJimqSPbG7umt+9cY7n2nv/Fh77b32repuNvu1WGrVBgr17n33nXvGNXzrW9+yO1tod8kIcxs/s0BMCkCFG7stXdu8KNQ2I+VlJ1QHGCG1nLBGexbgoa4I588qoP9K7p0Kp/DtKGzk+ONCu8gAi/NMGyzQDoJRZgPEYxaLY8oCvBZQE8MR69ovdLwqivKoe5qPk/7nY+WCrGTg9ESTUf8eyVoP3wxYdLNReCdw+qTG5utrdaPa4MaPhvfGf+UuTv5vqprrigwTiwmWJ6RhI/e3lee+jmsovQPRu+L2QfYFdIVC4Vhgy700Yld1JdWReJRpPscDPQR0bphiSvDJzteC52CJBgBYXqRryhCLbojNxM+Bbm0ET602NaqtEJ3blO5FRlb52ePRqZMnhhjdNFi4Gs3iL52LGjBzllkR9SaG6qoNjf6BdEAKJtPe6HMg6KnJWjmJkuDwzmqdoXbQd2x9YE5AKTUAoK21U/fzXwbw99c+9usA/rZS6ldABeFTa+0dAD/r/sFlAv/tuzkAgLD5YmLQ9DS6UqErYx0dbiqarOn56NZ6BwAAOy+uPI5tstih2FRBtUH3nR3JwukODe62sMK5oG2h5sDyo1RBY3647KaUN7pJFRoR4anOAqPcK3mqDoANchTLXY3y2PqHLKmIBikj/y4P7fr1Fm1DGsauFxyDblxHtAsKB/sW+Sywf7pMo7008Lo7VgNLN5tAt5Tu+yJnQjpNDAGUpxbTa8rPMwYIXuFazfx8CpuE+ghnJ7Kb1KTwUNxyV0ey0bzPjQAQlQFa95nBLfo77rguDpYoDoDp0/SB4qSNhrXzkHg2plRg1xh/lV6PhAMAgP6B218xUzqf2UiErpW1l1mgye6+6PjyKcMzsUEDyJhx9L+uMQWQeqp1E+DyGfUl+EHyHdWDZE1g87XKdwRnbgQpi7IxhCKLqG1PgdXxkor0eVab4ff9fev7XyZPJBgIXad8SlTbWlwb7gwHQm2Iu3m7nK4/0619DQT0vkmUPzddRpphw1uNOw9JNAdheiWD1bFG1Fmss6SIfifXB5kJnAfwa67bLQXwy9baf6uU+ikAsNb+Akjl7kcAvAaiiP7EWXxx0lhkSxPmB9RUTOQsYeulJWZXS2y/cNf/TXNp00eh7AAAitTbMkRkrAmkxf9sEAFguZtieFOENClPhqK/H73ZoR2mqDbDqT95LtxIWy/zdui906dpXzZeZ2aME6lzEAOrQCZVMB4r0YCU1GQU620H2eQWqlHIJk7i95KFSS1Gb0hZCuuhCWVs1IU7u5LBpCHahg6RfJe6qN85mLYXc/rTymL7pYAjW62iYj0zSGSBrxko6C68lkaJnZvMyCfPN9i9GJod0l/e8YaWRcmk/AE7AACYXcqw2lY+mk1qi3qkov2RrKjpb1xAOQtZHN8T0tByfwBAkTE736QBNl8N0YUPKsS+NQLvh6KaBUNJ84sB2wcIypRwEJRCM1ARHFSPFTauB0OYidnTqnH3xyAWBuS/530JjXVUP8mFKqlsgGQHIBuzSMXUbbuHmGbMTs0Z/d6BgU3COc0nHVbbsbni4G54WKMrEg//FscGp08XvtaUVgCqMHj+7NZjOOgdl7X2dQCfesj7vyB+tgB++l2283sAfu9b+lKlvDAWENgdzShBM9ARTr/5jQnMhkt5B7kXYANi1gQXeqWh7x100WtZwBtedxEVU/i2CMZheAgAFruJp0JOngoNLgBw9wdcreCEpaVpIHrlInvGy5l5owzR36Qao02EeqclmYPxGyxMxw8WbWdwTxHbQgx+sUpBOcE5hmj4+62iLlc5vYtlFIh1BGhWmswIx2W9/2pDRYXVdaqel50WwZUUAatGGrAx795qYHElfOb8pRN0zjKmv0zF/Z2vkFOozg2QLlqcelonNWOx0V65yV0VC8fVrsmPC7lNkJcCAo3XK2fmKprq1vZUdG/Iuk9/36DeSCJ4xSTBKeqOoEAOXLjYPH2Kqb8x3GOdk5CUTyDOOKUDKI5qdP3MZ8vFvTmazTKWijCxoKFeBEjPZLGzy2bGyY24yJ3xd3H8cvZB74CppA7i2dRx53ifIE0f0WuF8oTHvyZIFwbloRC3GyQA3LPqjL2Ey5QJ+3v0SZzZejxj+BFbqrPIZq2XeZaa+PnMeKZBOq2cXg4tximlgWI2BhvnjdfDE9z2tdehWW4nEY9/dpWso9SzaUcFGtFpyYYfoIEvQDAozQY5gPEb8bGxETAZPWj8kHclzTtgA9oMgGrbgifvbb1I4yjZeejOYn4ujUcwim7K8sSiywI2z5+bXxLw1SSk71J6maPUSsxuyA+CZLdVQFcEnfr81EYzAYpTi+W28k6kOLHRrIHJ007AT+oaCaO899wh9P+24wkpG18/BTQZf173P93D6Ufp2ux+UXsWF0B4drURT+iSRXS/mHzAxyEMv8wamLHFk9S8s0RcEAYIBswnnWf7sEHk6374vKapaKJ2K2FKFlQLGWrsAKxGFAmniyT6ntWFge+Cl6uYhAy4GSaxTHhlhbF39x/DU73YIfbv1ejfA9oB3ST83HjxvykNDwqS2C4DGSTh/pIzQsYa1WY8O9ufF3duvXPfVBEteHDzwb/5dhaxgz4w7aA/tvWhcgI0TyBWSeSVC32ZZqtEPm0xeYIsMBfL6lHq01WfxmYUkci5uHI4RdunqIXT5GxhkU+6MMji3ACxSJnCxuuhlyGfGZw8p/1QkP695AH2AguhAVQk7XIVSVM0g1D4rTctiqPwu+LUwKYBZwfIsGRLZ+TXjJx20tX8AFlNhpbhqFocu24cA0M4gWYkHsI2zhiSxnG73efrjRijNhoY3jH+91YrdBlw+qz7fWkxfQrY/Dqzjeg7e3don8b/coDZVWDj66HgUZ0b+CJ8PVbeAQCkkwQAfSG6Wh7HDWZLMYuZm8H4WumGrjdDJfVYoTwyXmaCey+k8WfpCYCiZHYU4+sNTp4RswbGpPd/+HxsmDmazidrtSrRF7L+HkCCbrq2GNwNvTM2VUFKOtNRZqZaIK2Mhz/pO1s/1rJy0IyfY+EyUanQ2UXT/AoUpx1WW0FSRMJyTG89+YgL1BYKm6+GwAdYu1fXsiA6XrcPxsZZysLCHoZ7LYLN3sd63Cz2CC6rlZjcpUJU1FosLoTcMBqS4iJoGWFJI5CsbKSBwg6Ai59s/CWbSA4otzrWeCmPDGYX0yhK2nrZ+AeG9PFttK22pxCLecFLV7f9uAaQTYgrv/2NsP3Fbugk7e/b6OFk3aBYVCvAGPzZQLcLDqLaILZIDHOEyN84XSEOlqyjDMpIrTyyKJyOjdWKVEzdw3zw3QqmNPiz3/cSAOAPXvi4dwAAsPNig96tKVo36KYrU/Tut7j9FwKvXzZ/za5ZJEuNbOqMhbvmc6G4PnpT9JKUCtk0LjT37wUoA0A00lQ3BHFJu5C7oGJ8nU5S7SdxIertOPhk5s8Zr9OndJhlXcdGnwviw5viXhF9MExY8GJ3d+MZw7q16HLtJaHbnlP1FGwl1VpfqNa1iYIqL+MtyxYmGGTqSQjsJ9WRjDXfxyZTmDwhyAtlgI7YSMtgSx6bMnEXPcmTKxx/UrC2XtVeKYBJEkzpjxoj3+d6DAc9Yosvh8lUhOtHEVGhIicAkAOQnGPVWc+fzmc2iq6KCU3Hkg9kNg/FTtVRiuu7FZPAbgBIdnjr1RYrJ/BmMhUZ5eLU+AeH5R34wfE9EGsP3uC2pNGJ4tz1qdsm1T5mlzIS4nJwR/8uebBqKwv7aoklw+v4o2GcI0fCDF0N7ljo1nqHpgxw9NHUGzLd0D4Xrt6Q1IRZ8/B0myg0Ax0UKRUAFeoiP/RnXgQA/P5vUmmptwB2vrZAPXZdpbdow+npCpOP0c5NL8eRs2ygUu6atSVgegbYAlTNQYBCeRgPuV+eCwPdbUJ0x3RJRj+bh4E4zDJrC+k8yQBKnaBawJOTaxrzax2G1/lGof8a0duwHul3BdAOXaH0RKG3H3cJL84nHkbhzJGNP2/D78swnHcoknL2n/PdxhK2lCwh7c8JEAIhyVDj35mUjHR5HEfnVgOjG7SvTIxgiNFPixOPqQxSuKlOCt5xtgiQAwBCw1o2I8Mvn/GzWI/ZQY/gerdLLI0t8DZ47yOy1kkH64qQ77bYAfCaXYoPlh2A/77knW9mqY4JkAOI9u/sqNfvebED+FaX6cU7my7f+djXJePfTQBOQmBAbGAB4PTpR4hRsnboEb35IUuqiALxcKWHvZbd6g9bkhkHxONC/ySsx+ygR2wpSzID641i1WbgtPOKhqa0wPSywvgtZsRYUaAy6HZSn34u9hxDxcFB5WGAM2i7CsudBD3Gfi1Fv6ljOVilUG2F0241MLjTYOn6AHz6bML/6/NTZZMbF+aKCVNIFfLTYHTq3T6qjdQbrv69ihgxLJ3dS902QraRzho/0aQ8Silq3A77UxwH2CKfWcy4iJ67yHktY2HGi02AbGLRCUOirNC50cC971O+D+B3vvAJnPu8xobb4OitCnpeo2jpXJ58cgtdDhx8OobPePXuxAaG+xNWwuHpJkhNVJvU6bo8F/5GtaHZjVhXIQPQDckTtBG8FjKtpKYIlhk+jG3Pr4X7hYvGfC545ccxHbXedOfgDbHvAiJZnKfvqJwMxvBmB93FYyC7IuD+nAUMboUqeNcPNxoNA7LR3wIxRBN3I9P/fC6VJQfg78tE+cZG2j79v/mqbIRYOxcWOHmG/mDztTAPgGE0pm3f/WyC7W9Yv3GrSZ5EdmCXx2HjcjLf+1nWKrSPncCjtawibJChmUboA1kdUmTdUlrPmRxHuQz7pEvjjWvX08gWxj886YrUD0dvxfQOvheYOjq/4Ohqe8DFf19FGioymurvk8cqj2h7XMSMHjDBimDntfcFyp0NC3w5Q9tsFkhnDUzBGLMrft6jEC27RZZw8XGydOm8xVy05qcrYj9xDeD4Y+T0PCyigN5R6FMwSZjo1FoVNUox7Y9rBvnUIqmNPx6uDciM+sL/ZzFwozKPnh9g62un3inAALZMMXGzEbqcJp31Ngncr+sU5ZeELKlbHJ22fcLSEycYV2930KdhqIxNiP669xXX8HRN+4YxgBxAPjUR60Y3Fn0HybAOFC+rXGQtju/0GYX8RBjbQhRej6WBp76L1a74/Ylg5ixJtJDvt+UuwVXDm7IPQHQgu2eBs2Gema26cL16Ins0vQLLSz1BRY4hmXQVj4+0KdWp5Nzk0VshGptdJi/BtaxkBUCF/bEKmDwjmFoTulb1Nn1+/7MKu1/2v440lJ75l6d4/cc2IoeSLWzE8pL35VlKxj+Ggx615W4qkyWABeaXRMTZBd5wPo2zgt0XKRKXEf1yj05NeUKMBlmw2/ymwE89M4Z+YH0T2Rm6/5mAD/Tu28jA+27Ui7HcMDcN1SPCn9n4U4ZisXiSwONyf+UdAAAU92Y4/MyWj3a4wYYb4LJbwQEAwNHHSmK5cBFtpLDaSnxkl00ck4MjuB5w8qxG7/6DaTvJZqvo3MoQlr+yAAAgAElEQVSiutVulKeQxdCVRc71FGuhxdSvc//+PmyW+C7Y6UfG6AqFU0ex7XpAb3OJuqZjzL7eJ2cbKWWGiDqpgdWzS3RHdC4++jxxBV96lSrD5Z0UO0JLqH+fok+f9ThjL6+fXKMbTRTNcvexhERkVpfOgXROv+vdpwyEi9WcaQ5uOsLAkI5j4WZdq05hcCue85BNrZcv0Y3Fajeku57OKox0736wktmdU9gihenRhZ89SY6WsxPVUZbdd9AWaQnFkuI2CQHO4HaF6dVw3/tzJmymlPXmhkTZyb7ztQ53fpA+s/tl+HObVBblQY1kTvv/+o8RJ3khmFzDOzLyJ2fECrfL8w+nlr7X9bgm8IguhlGWu9qnnOkqbhzhQmYujH7vqIsi0lLI4nKUDtBDISNzvqlZSRIgWGTrZaEkKcf6NZQa9/bDWL2ul0Tsn3oUxj0mNTkA2bWb1EFfqBnnaHsagzfo6Tn8DKmZTa8FaYxsHpgdk09fiIw0Q2c8ii9ZAd0gaMDwNhh6UB05Ct85agP7JzTqMaPEwUcngf1jExU0XRQZK+Ui/ez+DLbIYAq6LZvdAUyWYPJUoPLWPzhF9wrRdZpLFZKvjFE6W6brmF3TlbR/fE/MP0sW9smPUqf4q394FV3fYOeL4Y+WO9o7LoYfGGJK5x3aQeKhPT5+v9zP06vB+Mo+hHxqMXpBBBo7iYeITEZwVSMSmUTAGb37dK+sSDcQ2YS6tuV1YtkEAJhfcmMq3T3eDDSKkw7lzZDaqCqGRVTVorkUKtPy2JSxmJ8PrLZmrZ8BiAXw5pcK0ZjI2wi/P31SI1uE+1p1FpuvWO9oaRqgwdXfcmJ8AkIdukzx9n9Cxr88AKowVhvbL7ee9QQQlFUcVjj+2INZ4vtdj53AI7asDga3EZr3XQbsfbXCco8eTjb+ckB4vSGipkRFWGo0kML1C7AsLd+0574cnoDVTuYLraqzDgax/u97+w10K7qSx+EyMOzENFGrKfWX+G9+XHuNl7anUY8T1J/acseqAB0XLxOB+Td9HRlKr3C5Eo6qEsbUPvgg5xOS5QCo6ccbzcZED7oeanS5En9Px1HcIdjBZglU06EbUmTGDmC1RxEkwx1H/zF5nHJQw3xj5JvJNr5IAnVMKbSa9H743M0vKB9RA4C+3sPlP3MLb33ton9v9Eqo97SliuYp56d0Ts5/IRjX3r1Q+eTGJ3awHAVLwy8bEPNJi7aXRN3mx88H59q7EyJrZeh4vCCbs2mlkME2MrA5tTh5NrwxfovubXZY6bxDdhruUXXgZl8WnB7nWD21HUkzJCvrobi507y692f9t2Pz63GmXQ+U1+dpBhomQSRHna4sTp8MHc9dHjLn8shGTKf+3Qr1Vo5q48F63t3vo2YJOZVM9mI0wwS6tlHGWe2ErOSsSAyP+wQe4VVvKM/PBkgoCwA2P/dmeLNtsfrUE/5lIzpTTRY7AYkhsvGXxaVsUsPkbl7tTuYbYgDKMHTUcNPBZAoVt+fbuEjdOzQkNyBu+t79Gvkr1NHUPH0ep8+G/nt+iGQDzNbLKyRiuMv02eAReeC2FP5a7ahoH3KBg/eOqHnLa7lr5R0AAIzfCA0WXZmiHSShDnG7gk008vs8OFZDzZawzvB0mzlMkcCkjDtnVLxkR9tTOPpzNZQLSbuXyQGU993mWtpX5oN3BfVY+CZOQ7RQlnrOJsD+717Gpiv01hsx57/aBorj+NzvfK2LjAYbfjpe+uD8XND6VzbQMvPTBtVWhtxh812moVqL/r0Wt38wQ9e3UedwLbqVGRY6+QEy3LZ1sMjnRLBSCd6+q3cN7zjV0UwhEdcpO11BH4WHwlzYhT6eoLsYmkzkfe41g4Zc1AZOP2aQnT4I4QAhu5b3VVcoH4zw9ri21PXIcbC2lHHCjPnE9VO454PrEKoDpldjp8OF/vFbBos97YvQjP97SrWi7XPX/Pq0ufezzqpPQCn1TwCwhP4n3Hv/PYD/HEAN4JsAfsJae+J+97MAfhI0uvfvWGv/nXv/Mwgzhn8DwN918jxvuz5UTsBqap4qjyyagcLOVymMSl93LaHyXPT7KF8lazL7FAGrnJonlfUCb0lto8lh+YSGmXNkURxWMEUw+hyx9xyEpFsLGuziIvxJ5x8s+k56gJmNxEad4Zbhrco7AABoNnKsNoOCohxAz0s6gNmTA6g24OK+mUcYn+KECtj0AYqwJMxAjiNE8+gsUjdhrd7MvQNtS2Iubb5KFiw7nANaw2bOkJQZdKrR9blHIqEGP1bMNAqLvYQGy4Cae0Z/lHsGTX5KD7+EKdJlyLJ0R7CWZ6okdNw91+FrNZ0vZivtfKNDtZH47HF1js7hxd8P28/EyEW+B7iQ3r/fYX4u9cNipv0EvUOLgZtCl92bIbsHrK4FHY3bPxiMeDoTE+i6WK5i/oSDzNpg+MZfCUPZi1MLCyFBzsZ2EaC25TlR8N/JsHE0g9kIAUH95J6XUmnGKTrRYMmQ3fRyuFd3v6TAGWU+MWh7OoJNJUuqK1Q0F6Ia070hdZ+We6Ej+8ILDq8/FyL2alNH0OtgDeevN1wtaNZhY9b5c2nyeAg9FF3zsw7arQXasxsq808B/CMAvyTe+20AP2utbZVS/xCkrPwzSqnvAvDjAJ4HcAnA7yilPuKGzf9j0JCtF0BO4IfxLsPmP1ROQHUUnWw62QB95zD80lrYnQAcTj6xHcEAgHiAxAAKWKIEcjt8flRFqeXyfElDZljxUSn0DzrRjq8iNUiTa6gudO1yBCfnABeiyzW/dQpzIURrR8/RJRuK4R6ywckmwOS58KCvtjR6RybUJfoxda7LqePYD/9wEWj/fqyHw5BHOu8weSoDzV8jY8PR3uarS8BaJCdOrTNPYcvU/229maMrAj6TLqlTmmW4u8Lh+nwqQSZn6LReTEIOYOCiXWWA3n7lGSyHnyBBOO6m1Q3h6uwouUbA15sdwMxNtCgONMbXA3SWVCais3aZ8pIQAI2y7N9vMXmCMwF3P7lsoXl2E7q2OPpYMPzj18O5nzwdfm4HFu0AsJnLuMZkFJUWRX/R7MRjNqWeTnEcDPLiQorD7ya2FQBs/NEBUGToxm4es4J3AAAZ/WQVoC2Amtvi74wZNsoCc0dNLU5M1AHdO6BRorWYI5zUFsrQ69lVGlDEi6NzeX6TOnQGy7oaF3olFdpkKmpogwndzmatYfMs11nBQdbazymlnlx777fEyxdAc1YAGsv7K9baCsAbSqnXAHxWKXUdwNha+wcAoJT6JQA/ij9NTiCdt9j+/D7MqIwdgNbAONB1Jp/Yjv9uacIc4tYCrRWvKcLkiGR5vozYMszG6N1zaXuiUY8zFEfB0ibj4DQY6uBux2JqsNzRkS7K4K4YLTkio7m8RIZ9dNO47cR0wpZnBjseO9MV6zHp/TDVkR9qP80r53MAt/2Y+trlYWgLQFTD/r7B/Hx44DZep2NNjh0m5SJ/W6Ywmfb1i2aYQDfWQ202UWiGiaf7VRvaSQLQZkiLX4fCc04GnR3u+PUlDj7V93o69QbQ9iwKR7U0KZDaIHudT8nR8DkoTjtkM6B3wAwcjXzShaKi57RLXDvMtu0d0IQ5VjrVjUVa2QhOuve94cL278bY9uh6+Hl2lb6j8DTRAs0QqJ6jc7vxQommL5uxyAHIRjSTKSx36WQdfrfbiuv+Xl3dRFJJiDOJBOM4ip8KgkM9CppRSWVpeIuod7Si3jK7lGBwN1CHdQegsxDjuiMnceHzjhq9TzdetVOiGSaevVQeNpg7WmnTVx7yA4i2LaEugKVUXODlvsbPUjCWJrXxPILJWiPRt7neY01gVyn1RfH6Fx8ybved1n8D4F+4ny+DnAIvHsvbuJ/X33/H9aFyAjAGWCyhF8v4/fEQi6dDFpCuHFtGwEPr3cRSm8Sk6oGO3UDFM0hWLWwi8EpjUW8W7mdEswN4O4UognERD3AsjjfD1JXlM4SFcIEsqSiLkNx2IODirIgawT0C4296lOXw8erWor+P6CGTiydKsWEu77si7X0gndGbarn2ULE2fT9H10t9v0a6NG4IjWMuLQxlX+7UD281bgKcK7CmlNkxRGETgk9WTu9p/8dL2KxDsU/bb3sW6VIMrVGO/eQObXi3jQrVxlEaJd99uRMK3Yu9hCAu5yj7+3bN8KXU7OdqAEljHTlBaN48RORNLm5MS6qYDdQM6boVXyz97+U2qrFG/yBuUgSCANuT/6aCVQrFfsD1TC6aFJ30hnZjGfMayE4rTK+Rx6xHwOZrQnoljbMEgAIJlhgf3I2NsknizysLbFwPRfXshH72KqInFdJF4p+jZpwid1Bc54KKQijzdr0ge5GsTASxcvbR3w/PVXkvFM0mH3nHseXvadlv3QkcWGu/99v5DqXUfwegBfC/81sP25V3eP8d14fLCfAyBkjCTbG6FmQFbKrQ+rF4pMapOhtRNNMqqHzqbk2Yy49CFHjndhEVDxPBda83UiR1yDSgFJLaRJCMVG8c3FyhuTBGdidY7uVu6o1926cUOxczgYEAcRQn3IVLn+dITPsu1rh4lq5sFO1brSLslAvGXU5Uz3aQRqwq1RqoKmQutl94tk83SKGMjRxoPUr8vtLMXeXT+67UMEnAydtSuYHroQejK4Kx7N3VJEjHw0NmCr0DG4mmKRO6Zpsh1SA4Im36CvVYnKPGou0rD9F1JV1vdqjTKwpQoXDO+zm/kGB4pyPMW0TKXaEwuOuyjpMu0g7ioUHS8NdCgrve7VCcJkglVXdpfcZYTAwKoYxbj8hTXf3dYGjLGyf+53Z7ANUYNFsUnDBcKQfL1Fsltr9B26y2SM02nmwWngU+zuFtVgN0dR35eXEfyX21SqHeKn3RN50HYoXqDGZXS9SjIDbHeljrToiXn9bHSrsr6+ZBu87ifTpGNv7mXaQx3sv6oAXklFJ/A1Qw/ouiwPt2Y3lvup/X33/H9Se/5/k9rHVdFCnH/Hi98ypOYpiIG3Uer8DIebu1fu7YAfxpXJIyCpADkGt2NW7kOst5wGe9rKWawLfy79tZSqkfBvAzAP4La60UwP51AD+ulCqUUk8BeA7AF9xo3qlS6vsVjXT86wD+9bt9z4czE9Aa7dVdtEMKm5iHLyEfmZpbHdMC5TBwZSjF96waLib3EvEZ8bc9jbang6wCF6dEhLjaTDF0uu6cBXA7vdUK+a0TVNe23fcZqkG4v62HCs0InkFjNUDKn2IfSsGdTxENnU+X1Hwmu15l0xyn1VxT6N9/sKdC151n/KhadE/3nTTA1OG8u5uwicLskjhXLTyM0QwIilmcz8I5UBCKrIoa54QyZ7ICtl+i8LnLNabXcqwc0tc7tBjsd0K6miN6jvw1qg3lIZrlOaoxsGxIcaKoRqLC9/EAd9ognyP6f3grKMfykgyfdA23zqddRB+W/Rr5lP729ONuDOkrCYwOg+N5tgKvrlBYXMgj6edsaVBcD9XW9lwg0jOZgbOqdE5sGoYtrSbIsxL7pyzeNiP295TsA5BNdMai3kj9OeA5H+kqaGil03CydGMwebofZcUR3CUCOKsQCR5yBiAhTZso9O/QhVtcKAAUfkBRWr0rQvItLoXujNhBSql/DuDPg2oHNwH8HIgNVAD4bTem9wVr7U9Za7+mlPpVAF8HwUQ/7ZhBAPC3ECiiv4l3KQoDH1In0F4jvuPsshgZWcfpqUTKOO1k/rsSUE8njD0AGH4ovNQBvEAY4BgptfEPh+4AWOudQD3QMDkwucaD6Tsy4kfhgVh8bM+n221PR5FjPrFoRrHT0m0o0ikb9wwwlzsRRr846XwRDYgnsLEB3HydUuh6lEZj/JJZBZun0HP6vRkUwMDVP1oDtaqxeCrAb6tN7eEa3ueFK17qlui3vG/UGW08vs3ieYyHb73aoulpNCM6d/PzKcpj4+GcpKYeAb4esysK1Q7NUAaAwVsKpgj7kc4dI8k5hWZA/HW+T5oh8dr58+xoeweCfz83gZqYaT/uk46XOqj596utBIvzcZGZHQzTWgdvBF7++IbUXrbQrYCa3P2RiR6U/kv3w++3hlCNwfxa358bK6C2ZpSg7WkUR+RFbKpIBkEQJCTlk+cHS2PcDFXE2tl8TWgV9YkE4JsqTzrvAAAgWbYwvRS6Du8N7tR+PkIzzmLJdOFojYN5mBWXVGtDZBxb7fCTbnxsRsQHJhCw0ziL9R5qAu+yHfvXHvL2//oOn/95AD//kPe/COAT7+W7P1xOIE1gdjd9BiCj3ahApyiSChr/rqty6QpRhfY3mjLEFFrXQmfqIOPbvH3uUjz6qBtq/2oL3YXO4uUOMWD8kA/3oFU7hOkmdTy/oB7Sg8u0Ud0Cw1s2ooXKzAUgoTSmK3oHNxMPoJi10BUaurZRYa08apDfJcua3wXpAXHkv2qhVm0EJCrX/by81AfQ96qiSW0jo8EFV2YkSaVV+rxT5kxjp8d1iaankVahvjK82WB2OfOR3WJPo9oKPRHN2DkAzYaFrpNnOykyvlHB1gZcu7fvWCeiCF+c2og0UI+TgG0vY0MpxyfScbuIVdQB+Nh6hxbTy6GGAATKMiCG0UjtIRH59m8vfSYGgMTfUiVkKUiyg/eRu5trp7DbZcpJosC/ls8PBw1G3CfpMszd0B0weSr3DnRwt0NXBkFBmyk0aYriwBWEXWbAzDFgTaBuSg8U1wq6UoeObPcnPZcprLaTqCGzKxTqkXpgEhmfd3n93s+yeCwb8egta6FXNQBqBCtfDEWv0x940v+cVgZpBZR3GLYokS47NEK+gSN92QELBAkFNv7sHHzH7YoGq/C6+UMavTvad0r277HhC7sti9JNT6MZhgIjNyJJJybpoYO7XWTgOfuRLfhyDKpNFap+2D+TK6g2HiTDDoAOUMX/ZwnQdTDDgN0uLgdNFpYXAMjo9cQ4RV+8do1tzPvnHgVlY4VVMmKhiN3lGtm0ReuGo88uZ7ApcPwkR4QgyQx3rtOFQiUa6zizsG6XmhG9Z3gYyurhowdZr6cZUvQ5uqn99toiTC9rBuTg+TjbvkL/XudlIpQhWWrZ2CdhwqEYDsTMGDa+G7fpXp09FXpApOGrN3L0ZhXmTwUIqCu1hy9NTgQIn0G43hZJf7VK6CW17Nis31a1qZGxnImbqJb6LI4IBdzMVo8TJDWw+c34fq/2gqPKpuGeS5atDyYAKlLz9/rPO6dYjXV0fw9v1FhcyCJoSjcWqpNZl+y3eOcazre8bNx/+id1fbicQN3A3LiN/MZtdHWDZI/olXZnA+OXjqGOnWbNbA7z3DWPXfenSzTnAm1MV0Z05HaEbzoIYp1ZQFmC9Rj6aktj9lwLVTtmgpt/yykqtdKb0FwGN6PALY5S2KnkjtMuI//hLfHwOAfCtMvRm4S9RDMLEuUhH364pfFJRPTdu3EaPUymzKGMiR5Qm6aUDQBYPDH00BYQj+n0rA63OX74ZIOTjP5Ua4Eknp88v6AxukE/Z7OOJCbcr/O5wdHHdeDOWzLkTOlkDf5kwTg4vx/2MZ2LTMBQlsKGsO0Dq+9aQt8kHKE8IJkJPwR+1kGZQDFteyqaSbz5GsGCTAeWWvwAZZmZGDMqab296w57ctfClDmQKAzfIi9VbRXoSh248anC4olx6AAeBAcACCllYbXShfEGQFl3/t1i48u1rdU2BUM8jtXfR+Jatr3QANYMgdEN43suWDpDyruzXAgdcIp0Wnvjv76UpQAJoIBouZv4e33yJF3wxcWwL7398LdJbf3cDnlsZ7Eej5d8RJetG+iygJ26VtHFEmo4gJ0Fvp1++Tpw6TwAoDk3QjNMo4eAFz8ETDNbXCjQFeoBuhpH6kefabHxdaF4eLNDPY7HUcriV9tT0YzbbELbLY9s9Ble3OjExr84IKtbfp2YYNVHLqIrdYAmMoUuCdAX/88d0FaHYeMAUF0ao7g3jznlWgNJ2J/lFdF4JxxAOwDGN4SMgNtvqY8jjYZJFJIu9AGYnLpQJ1eDyFhSAYtzzqGmVMSWtZ6Nb1qvgNr2HdzDlNElzUDmQq7JgGwKDG7Ra9W6oS5ul9h5LK447vyVObIXQ3BARi00LnU5OQCvXOscAMtsM414JuY19A5CgEEG20XcLsqVwoJQCs1OiPybUbhHdWeh50GCRDZDAZRB5NMOrRsUwzTZrpA4HqJlnX6P/7Vw0MNbDVRrMX3C6T5xbcw5mmpTRY1hG687AbulzEiDgixLd/DxmlQ/6AAESWC9FgEE4w/EDiCbkkPirvcuVxjcaR6YivZ+lz3DwvB3cn3onIDSGupjTwPXb/leAVvXsEc1FPcOKAXlHAAAZPtTACPP+ElqceOmGumidQwD9+eWdPABMixy1ml+P8VyD9j7smBKdLFolWwmWu6R0WKtHoZuFheEsUxD56ZurSvoBWBZ3z3C8vlL4STYEOkrw0NyArylW4tWREP1MPXDbYp7tCPJkRgwshHgntWFAU6eEZCPqEeUh9RgxUZSdySQJg2BVZK1o9CViTei2dzg6CNJMMoZsLhkce4/0PZIgTJ+6NJlUAotD8iQs6NcbZGBljpIfH545ZPgwBcX6TvTKX1HdXuA3goep08de4nhONndDAB7X679cQPEIDt9Oo1kQHTjYJfOIpt2vrbUlRrZLEggd5fH6HoJ8hPaOS6Gg9VpG4N6nEads9IJMJzki9zuuq9/luGgtDJQrUXmsPhsCjSjLEiIsyaWYOws9kJUX5xaZAsbnBk7dgmlRv02LsNJkwd+x+cjXYbubd1YD1nmU4XZpTSC1UYi+Fi5KX0R622QnKlwHK/HcNCjtooMePIyQRdXLsK8GTqolWgeU2UBe+8A6jyBvQwF+c5UpcKA+JqagBKBv8osIFtYZIugFQTt6I6yUCVu8KSmgijLLrCBkk1BNgUqF+RwEWxxjr5z+5UO2WmN9CTgLrPPXBEt8w4f50JeoaEr4ydLAYiMOEet2YQMmOllSE4WMKNg+Ovd8PPp004zyL3WFbDxJj1syx1yABJ/TVcmDKRxjmm146h6CwvdAfNzfD4TdP2goLnao+0cfLfAhSeI5KGzecDxlXV1Aff1xanFcjcopKZzR5l1jKm0slhuB7Gx/h3KyuotlwkcaXRlMJTzc0mktmo1sPtHwRlzEDGRrLRKSIzMSdgQIOmLURugJdI0SrxTUIYCgtWOu59qarqTjYiSksksNoamlu7vBncCdCizAJMpwCJShJU1hmbkRP7cc9COUyQCJgWA0c2Q3q52YlNisnjKX82S0AwNss4RO4NEIVl0/j5lkoYkLOSiY1g6gNmVBNtfDwJyxVGLxYXMawlR4BGejbOch31W7KDv5PpQOQGTJqgujFC+eQxz83Zk+CXObRt6MLi42bpCqbyeATtPIhGxbNIiFdEN85/5Zt98pSIxK/fAJUsDOYNmfj6FyWIt+PIwjOqzKVEVJXyUrIDtV0SXbmdx+jyR49OlQTPQXskzqWi6lBEP/Gon9U5HrR0n4/TJSaiI2iyB6hx84LSLjj9CO8yzWsvD1p077aO/0cIA1vqoNV0ZqCagps0wRbWho74FkwY2Tzugh7V1CEj/NjOnwv5SBzD9PLppsdwJtEeWM2ZnM79AYnnsaMtDg2aoPJvIpAr9+waTJ4LOEgD0XeG3v0+jRCtRQ5BGcO8Pa6eCGrSGpCHNlhZixg6mV7W/7r19SwJ0Tn9ftTZy1CSmFzOR1FokLa8xL3YyAMmSS0MIxHBcPmk9S0dXhlQ5nTJnl5OhlvskacV8TBxds4GVAVLbU1E/DRAKtCz7wGy6ZBEXwtdncU+vauj2weOlDwNHH8893TatbOQkbKIAa8/U+AOUBTx2Ao/Y0nWH0unuqDQ+NNuFKEJv01O92u1FnwksEuvHSwKI5qbm1++jevacN/4cAfHflgdkvbUYmQgE1gxL6eZCyM0mIXOoBkzpo8+xfC5vL503mF0L+73YS10RztFcK0sPtjBWUuyNDag8pv7100ABrVoa7uKoeTyNSRpudgCwNopG+TxwEdAkCqud1J+bmVNK5ci6mFif4QBA4TT/ZLStDJCK2RCjm+LArKV5AGtdqGw4t182mF8IU9uaoYJJlO+psMqpt/K1c9/vlTMVQXlMt01XwOyiwtarbj6Ag9SY5aJag66XYvM1skar3Zy+z9VG8qmYajc10VjQtq8jzn3hZwALVsv+HM12z5+XRAgf2oKcoZRvbkvlj13SVgEgWXaRgNzsiss4JFNtmEQZrVxMWfXNjg05DoZvkhoPYCXKBgipd2j8fULf2/lz5vfpcti/8sh6GC6MymRWlkKyAgZixkczDNedr0+kMnpG6zFF9BFbpkiwepIi5GJfjGDqOqoVFAHAXn3kPJSxvlgkcetmEHBtPyDlRTfU5eoOdNVhtRUsVTSGj1kWLPTlIit+qBc9jUwM4+jvt1jupb4hTDf0b/hNMTBcaNo3owzpyvqGKy56yi7I9fty67XWR8fL3QTFxGD4lpgytaxJaRWAGZOR4Q7T4e0Ws0upj6K6LNQb9FrnpU0U6kHiKavcfco1k3wWK0+y2BkPW8+mDMGFz8hio+qA6eWgczS4Sw4g8MGJssjR5mqL9GfYuCYVZWCcmySVxfCWiQbEF6d2rZNX4Pm1Re8wHkBUHgYcP1t16ArtIYwuJyOcVJaMqbUR9z+O/Kl4z4bLR9gOLundpnQmO3K05r0+Rd1CJjlZdaE7Pg91F4CK4BFE2Uuw2At1Aj+4XfpYUWMgie7Eq5SWRx3qUUzVLE6tFzqkXhAVHP7UROyoLidNrNGb4T6UdTcpKV2c2Oi6AqT7FNRg42vmISRr/WuZUT1MyO/bXY9rAo/oKm5PgCuu8HuLuGLsALpnLj3wed3FmGaXKx/5coFt+bELaPsa5f0KiwtkyXiQPRv10c0mpOwGqDdTtL2AOacri/GbHZJlEN3ijKN3QLOAecGZv2wAACAASURBVKwgAF/0k3AUp9v9gw5NXyFbxDOQ6YDCj12pRQesRrqy6N+tafBGbZDeO40Kv8248MaJoY3xW04ttCOoRwlmkSm0Lzoz/a8ZJn4+AjfocAS8EHMT2PgDQUK53rDAAMiPiW3SDAKGmy1Co9ngHjmAbG6QgTqT2Uiw8BzPQwboGts0xoOTmgxdMQldy3ytlrsJ2lII8c0oQ6HMTZEekHC2yarzHHjqtiVxu1Qwr1Rr1xrT3D120iA/FtuqOjSj3EfHJtd+FCcAtMMcyapD40aiqtYiqU00pjSfmTCq1EF+MquYXqMTaVKF3iHVvSSUNb+QRo1pau0WW20nKE5IjVcZ64OQ4rRDPdRIaoVaQFP0nstCKovBndofG8OH0vBbrfwciLcLtqsNhdWWwugmPTcMy/lsRil/jqVDO6tloWAes4Me8XVrP3q57gDeC2VM8vqB4AB4ySIZQA5ALhnFAHgAwvA8brfW9dLXl4QOvpXVDOP91fU7b1+vwQDSgDx0+yKqlQNygOAA3m4FDX33+eN3PrbBvXhf5EhD4MFzrdcM2PpK1j7P0a7fn1n08kExvVX8un0IVv92i9k/fltVvK11CKMd5tHrh9Gao+2/S2OUzwC+zbXOuKmH73zsyVr26FlPb7f9d7jvmBr8tuuPIUz/ECQCHzInoMiw670hsq+8DpVzx1WG+ruuIlk4ut1Gga7QPipcbVFaLOUa2JDNrmiM3+w8S2JxoYwarTKvzeMKqWWCZphENFAlhtLkkzaK2LhZaF2Cl51O0lgvwwBQsRHAA8NE/HdZAMZ6vHp6lQzawE0i6x3UyG8GtbluawhlDJqNgNMkKxMV/tYfRJuFPgmCpRzss8HnJHxWYtTcFMe00uGbju/9nCsOrhTGr8fUWCCmeI7f7IIukxv+w7La/NBL2MFkcY2B9HocXOQan0oXhadLg+kVwUaZ0j3BRUabIJp/oFri5reOSVMP436QfNJGEh08AY1Hc2YzIL3pYMuigBkGOMSkBWyS+s8C5AB4lOl6fwfDk5Ltky6Mn9o2uNNENYCRy+5OngtOZfKsKGqfAoM7EDpIcFLSbndPjKfCAjTvQnVrvQoPqSewg662sogWutpMoJsgLbLaUtEEvq5Q/ncmjR2A74JePDzQ+iAmigFwHcOPawKP1FLGMR6UQv3pZ8L71qIrEnTuAUrnDboiR7UZc5Q5XV3sas9YAYDTJxJkjraYTy10bTG4HcMHXRlHj37CEgvKucWMBxkR6dYiP23EZ4LVqkcJzY8VaW1x0kWy2LoJo/SsApCoCLceiFGU+Z0JzKiEdcyprv+QW0Dc112uAS01/h3bRDByZAFPt6H47fn3zvjzAJWu5GNX3gEAwPAtGnXph5HntA2ue2y+2kUZFNdFSjFWsSs13q6JkyeAyW0UE+thj9VWAmXjMY7lvdZnElbTPcbRN0OIUqOmdxCuY/nKPdhR339f6xwtn7vs3hTduTDsaHG17+9BH5C4nUtUPOQegJ+xCwjIRHRsG2H0mULqoUhQr8L2S9QEudzLMHlWITulDQ1dlzbfx12hYNLgmNVYoTy2UTZNirbh80DIWDng4gFHuo3ZOv17DZpR6p3m4C6x3ng70sC3PWJ95W8zWF5+nzwGdmhn2jT2IUgFPlROwCriakdUNgCwQPnWKdodwr7bQUZwB0OHHT1ri13Ryetg8mQB7wAAUUC28WvJwZaTqtq+QttPfI3Bz/JdSNndsH2TamTTDq3gR8PKoTcUnTIGq9aaeWymUG0mPsPIZsDwm6de8tn0KfKzeXCAXZFEsIN8SDia40xGdZYeTpkNCbjEangj7Hnxwig3I4vuHEWhp+cAfZD76J8pmuws6DyFn5c7SXSu2FFHssJFgH/aUiFdxg1tUAqNlx4m1hMPmaEu3JApaBfZdl7KOvYuylAtoS9m3erWIHuT1DzNLqVGPBo0XXbQVYd24LD8vRFURwd08lH6DJ/nwX4L1YaMrit1dOxdrqBrGynY5jMTCsJOnqTHytKWjGS1LXSj0tBJXm1obL4Un6sI6lFA7yhMVjOZwuJcEimqSnqqF1b0w4qAjddDxb8ZpZ5CzCtddP5aNgNiS/F9LwvQTBXNJWGiH2oOXOjn2QWD/TYy1mclIAc8zgQeuSWnSHHBCgCyfbJS2QHhCstz22h7OlaDHGive7MMzcRoxsDwjrjR/UB593qoI4xY1ybiM4fRiPF+Rj+rkEmYVMGmgVWRrAySxsZzbmWXqGv1l5BQb19Eo3echW7YUJETaEUGEGuz6+i96XmWHZBFw/jGL9YmbfEDN79Axd25KMWYXGRAB7Qvk2ec0a1ojGUinO7mq6IT1LGN5KARlpQASHFVaveojoq/rNvU9hyMZXm/XdQpxhC2hY6KucfPhfNUsjKrgHx6+yvPIEtnNUyZYfnxi/S5qsNyN/f3StvTyE9VRIfk4IGN5uBeuH91Z5A4yMUUlOEon7XSNhnW6XoJukx52DKbG5hERY5rfWSq/N4uA6CF01XEAvMNWC47iu4z4QC4AM80Tl3TvS0j+Hoc6MKUHWov7SAdAEDXLp/aCHJih5VPO6SLIInR9MlB8jEVJwarrTC72iTUtMaBzlnBQxaAMY+dwKO1FP2zSiE/DCEkjz+cfE+w7s1A+chFdTF+Wd5/kK89fCtYpsXFMmqKkbgvF0il0S8PWt/YwxELp+cUTZqovV61Ftp3N1La7NkXBytU2wUgvr/aCiMbB7cb5EdBPdVnAIIB1I5Lr2tjMh0VvXk7srjaFSEKbntuuIs7He2Q/gE0djFdhIgeAI4/1WJ0gRzR7M0xskvhuuhJ4b4zfH7zFWE0/OAcx4gSdRAAmF1OUQ9DMZKZSJLJokx4f31gORv7KCsT9wGPLfQ6Toq2x8Hf5ktTmDzIGK/O0TlmeWbVJqTeaZgF1MFqRY7Bbc8XtS05t4dJOwChT4ShJZsiqgmU9yvU48xnDuwAimMn3DZKKUsICSXt61AEFyLr4vuXAxYvYPg2NX42/km49VBMwn3N2ZWXET+Iu4+7UjuVU9fU6GsRcv/C9Y8o2nxqZE/FJMyl8PPA34UM8Z6XxdtTl/4ErQ+VE7Aq4KDV+QHKb4ZegdUzu9FnpTHwkbm4nluvkOVIT+j/2TNBSIwiKvr7cn+JZqMI9MhBjDf27zVRZ2dSkbKiN0DuBi2dFtDqXC+CZuoh4aJb36Aspt5084w72RQUPE42aWBTjVR0AJsyRzcIBcAIKy41DZMX8E66sphcC9ucPWW8GirDBdzFq+swbCVdAlDA8ryLGgeddwAAYMct6lmO8nrYl/wE2Ln5YPEYIEhu8mSC/r04+uVVHhuoVnsZCY4qK0eNNHnocKYdICcnI39dGR89szFn468sUXf5Xml7ChuvCid2OIUa9Ui9k/e51H7al+4sstMAediEuot1a73jzcR9mFTGa0cpCygoTziwWkHXIZpNVhbZceVrOrNrdBLYqeQzi9H1ELjozmJ6NY+n4BUqUn2V9/+KBtthdEM45aFiDoCvDcwuBScmt12cGgqunGFWNtR4/NcJuIkNeCaaD/l88WeZUNGWbjqc21/OcNiBNn2NXEB0viZzxgJywOM+gUdymYTglGzWor4Sim5yyLdNVKQpXo/pdzzwHADy24RxmH4BW6aRZn95YwIzclHsICee9oq58hyV0t1Rb5BMBDcJcaTDBVbVWpT7S9Tb9BDTtK0uFB1dBD55JqhJlqL4aHKN7a9O/Gu9cPzrIkRKRjiAZiP3kry8lAlwkjLw+vcAOQCWUQAo0qu24oYuXm0PmF8W6fuowfRmcJ5bLyYP/I1s8lluE7eeMwllgf49G12rZhAKv2zsh6LwvdyOi9RzMclr4zpHhIIFM2s9YYALrXwuktpGwcLWH51CHweq0urZvbBPvIQhTXgOgpBOYKouF0z5+HUT4CYAgKVRjF7ordRoBomf8mZyjXYjx+K84/snxJv339NXWAnt/rmD9aRciZTF7gr6zuVOnBnw666kTI/316Sk9to4Rlh5EKak8f4Da9CnDXUc3xTXcSGZjb0gUWyE81ZtapRHnL3ynIkHoSKAmit5XKY/H+IaSXbf+16PncAjtqy7GVqLdpB6Y5c0MRMhXXYwmfLGoDxofeclAJTXj2FLV7wzBm0pcOEbZHC9vr4m/SAvfLWyEQ7L9ES+yVebGuWJiZwKTeRym+MMwafPcUoLAPNLwcAPXX+CnoYnkIu+ADmAeiN8vi0efABWWwmWZM/QO3C6NS6Q2vyGRj2K4S2Z8uensaBbshKG6JgsTu+um1u8S5/naNCkVMRlXN+kFC1KzF32T6xnWeO3GmpMOx87KV61g6lWe/x/guII2P0jVzSfNn6iG+27wexKFunO5JMOxT4ZfnYAs09d8L9vSxURAXqHXcTdt6mKpMPlXAgJm/XuW9TjJEw9Axmr6VW693RD90Q9ppO93FbIZyGjXdfFMRkwu5T4ITBcR2EnWUxChA7Q9a5HKuqJqIfwjYfL8xbL80HqPD+BdwAA/PznfG0MpTTOjZBEXzoRQTbsuqWaEl/j1bb27B+eYcDOubffoh0kEYwXGWMuLkfPYSAorDe+fftLnVlhWCn1TwD8ZwD2rbWfcO9tA/gXAJ4EcB3Af2WtPXa/+1kAPwmgA/B3rLX/zr3/GYQZw78B4O9a+875ygfqBJRS1wFM3Y621trvXfu9AvA/AvgRAAsA/7W19ktKqRLA50BDllMA/8pa+3Pv9n0mV5hfzJBPTWyIDRkbxgRVZ5F01lM320GK/leC4mj7xDkkzqg2231ACZqnBmyRoRHa512pPdYJpSKDXbhu3pNnQ1S22NOAgz3GN9q4p6CMI0WApCXWFxv/4tYkHCQAW2Y095ePnQuAziF6Q8oRYKa8A+Bzk81DBtIVBMPIgeZaGFqAGFRAgIjYIPVvk/GXfQMyemtLBd3F2cDOS22Y2Zsox85hxghxxQtBCa2Hym+Tj5Uppey4ijB7HePrxmeFh89n2Hq1jeoAqrMCmjBIFy06x9+fPkNWuxXXRpnARmKCQCQb3gsSJMtd7SPg+SWSuR5fZ/CbuolZUE21Fqud1MNZi3MKq53QRcuD39lA8r4wZMbOc/QG4T2mTFBtZRjecR3wjlUUF16D49QdOWOGhYojVytiNEwD/bvU0Q2Qcwfi+zYqCjtHKHH78sgEWfEcgBId3nWoT43faqnQK54Dq0L9zY+HFU17XZEARew85Hk6s3V2mcA/BfCPAPySeO/vAfhda+0/UEr9Pff6Z5RS3wXgxwE8D+ASgN9RSn3EDZv/xwD+JoAXQE7gh/Euw+b/ODKBv2CtPXib3/0VAM+5f98HOoDvA1AB+E+ttTOlVAbg/1VK/aa19oV3/CZFxmvRj6lrjBlyam3FcAsA6H/5hv+5ffI8pdEulTYpGfXy5qn/TL3d88Jw9SiNB1dbolD274Zwth0mUddshMuW8UjCdEXU1YcZfv7bwZ02GtCtagEP9Qp0InNp+yk1tcghOHJ3NUVwzP7gyNA7NRtHTlVA2LA6b5Cdxo1ZAFCfo/1J38gwFJhyedxhcS5BxUJgCdD0gfFbLjJfmEhWgR2WpC2aRHnMHgj6Q0BoKhu96QztRRXtO7O8ptdou/190rrhxrt1jfquUOiKzEN4/B5vk/jq1ht/Jgh4xk9PR/dG0w8OZON165Q6XeE+U1HvCHPu+b5gyW95Lpp+KPRy5sjBQdsn6IgbxEymUW0E3j0XatlRdoXyDgAIjt07KcTDjRiT5/tkuQdfuwHIGTH1lj7PtFt6nU8t6qEOjsJtenAn7mPgNboeMt3lucIPlqFtIVpdkfgeIICyuXojieoRZ7IsYM+IHWSt/ZxS6sm1t/8qgD/vfv5nAH4PwM+493/FWlsBeEMp9RqAz7qge2yt/QMAUEr9EoAfxSPgBN5p/VUAv+TSlReUUptKqYvW2jsAODHN3L939blWE9MkaQJnuX+vjTBAKqpaH0GrZQWUBbCi8LYeZ1AmsBQ4ylhdCbmvnP6kLKLmo/FrtNus8wIAiwsh79dN3MHKcI9seMpPaq/nHv7QGU5rkS5a5HdCHcAOSj8JjAuFTDm1mUJb6EgkrQ3ok8eEl0LNU45rBIDZNcEU2mugJg6iqBW6nkXXcxDWNEGz06C8lbljo4iUnfDpUw5zd4ZMtcEBAK5rtA2jLleMT4srL+GF6VWFdBGMf9snB8DGdHydNPj5fHMNYexqA21fR53XLP3BWRNPBJM4umTQeApiFnR3ZL+I6qx3vqstEjwrQiyBfGJ8hqlbFfP2t4hO6RvVEoJ+ONKvNjQGd0URVSuMvjmBcTBmNm1QbxdeqXR6jWdPuyJ3Gfc9tCXQvx9TSNOVjRyTSZQ3zCZVaPqhsc8mawqmnN3asD1oIhelS4vWCeaxE1GWqJ2AkKwWEK1UF+V7uX8/HL+U7uDGSTl/QI7xlHOw3//6lp3ArlLqi+L1L1prf/Fd/ua8s4Ww1t5RSnEHzWVQpM/rpnuvcT+vv/+O64N2AhbAbymlLID/5SEHfRnADfGad/qOUioB8B8APAvgf7bWfv5hX6CU+pug9AfZaCv6Xf9eHE2vp4FqGeMai+++8u5H9KdlvYvL1XV886fTB4u+f1rWus7S+lrXuElXb/PBPwVLFtofth5o9HzU17cOBx2sw+HvYz3M89h3eP8d1wftBH7AWnvbebDfVkq9ZK39nPj92+60w7e+Rym1CeDXlFKfsNa++MCHybH8IgD0Ll61bR8Yv+wiPRfRZXNiC3CE0LtxSgUvx6BZPEvAp6TnlfeDg+h6aSTT0KWC7TGIM4blhR7y0xapywRsngb9fVCabrK4iad/vwvDy09q1Jsh6qk2E8oSRGqcHc5D8ZdHaLrXvulMRKRdqTwVcbmjokHry6sU/W68GDIPLsgBwOyyw2z33NjB27RvjPMvrnRItitYhx2rw4BX7H7VZVFb3J1MxdBSgINqDZMGAp6dzQEoeD2ffGpjzf0TivJHN0SUd0F7WMLPh2Dp6XstDZK5I2S0RcdqvV24bTiKqCEDz5kk9wtw1sZNer5LN0+irKB2GkYjQYGNdJ4MwYl0bC31j7jrxwXcUoymXAnm0+BOC5Npr5UPAGrVInFZar07QLLocPwxOqZ8Qo1XTAxQXVzn6e9zhhCyL6sDBNQMFFQroMHU6Tjx39+tUG/lntFjUoKo5LmQ/SacbUoGz+xS0KHaeDMO4NLKRpT8/v0O5UF4RvWqQ3We9EqySeMm0LlnYk3QT2bd73t9sOyge4yMKKUuAmBFzJsArorPXQFw271/5SHvv+P6QJ2Atfa2+39fKfVrAD4LKvjyeruDkds4UUr9HqjA8YATkEu3RHurNjR6+y16NylXXV0aoffS3fDBPIfNE8w+SpZLd+QAiiPKtW2iUW+RsdOViRwAG2WehFRyB6dIR1VnPC8/WfIELvYw9HDI8XrpLNzw1TZxuSWm2ZbaG67kdBGYSQA6VwRuhmtDdMQDIymWh590TuOqM4SLFKNvZN4BMuefjX9xChSnCvYWHc/y3JpA3L0Elev2sonF7pc0+MlgBynx295+eGoYf+dGvaUbOMLTtvg4hrfo9fRagmQVM5VMChx93DFejgmbXrqi+/AGfYfUburfrTx8p1xdpR25a91YzK4GB6wbi7QKjXq6tsiWJp7wJYw6/8wQDs13jrXuJT1VsltW2+SEp0KHKVuEZq62R/f3xuvkjK3rgs3cvaM6A6TaH9vyfIbltvYsIBopF2oHbS8emcr7mHiZ8BAUAUD/XkdS5C6YyBYW468dAq2bHfHkNpJVh4SNvNtH3m5bksBg/17YpslUdG5kps40Zf6+dBmE+4Z323gKID97Hd93aVRP8Pehg4iLkzPKNiw+6GaxXwfwNwD8A/f/vxbv/7JS6n8AFYafA/AFa22nlJoqpb4fwOcB/HUA/9O7fckH5gSUUgMA2lo7dT//ZQB/f+1jvw7gbyulfgVUED51Xm8PQOMcQA/ADwH4h+/2nUllMX6zRpdr9F89gO25kYh/8DKZpSvUzj/76FbUpWtSoBDNJe0wDdhzorDYSzxtkaN67kheXRy6AqCjo1YGyUohm1CUstpz0YlrgmmGSSQTrVqLZpz6e2nB8wXEjIDePdEB3FlAqagPwKZJFFHJphg2OsUxb2MAe3WF4QtiqpoNWPdqBwBUpNxpdTASxRG9ZlpotROOhRxA3BC02lZRk1chsgw2rpNrIfKuNoMDbEbA3pc6TK8JldKN0KOgm5ieutqmSHUgwggq7obu7OHnxS8LJ6GxQZ3ks8t5JIlRnCqgspHhlkwu3doICuIMRhaupVGHoqyFC6bVRu5HVypD0XHvKGyvy5QnIGx/g04qZ3gmUSiOan8PK62hAawuEF2nOGphkiySipB1IX9/M2afE0ZvXA2D6g8WmRiCIymt/bsVmnMjTz/me87r9iQx66ty16YRt528L/iekddTQkfNUPvzaxX13TABQnUW9UaOhVDbXR9AAwAHPyhuzP8DZ7LOqllMKfXPQUXgXaXUTQA/BzL+v6qU+kkAbwH4L+k77deUUr8K4OsAWgA/7ZATAPhbCBTR38S7FIWBDzYTOA+Ccfh7ftla+2+VUj8FANbaXwBRmH4EwGsgiuhPuL+9COCfubqABvCr1tr/692+UFUNitf2AWthDo6gMsf13xgD1mLxBBV3k5VB2xeCXApYnOP6Mxl6juzbforB3dY3b5X7S6imw8zRBZOVgU2Uj+oY0zz5GDVJZQvqCWAjn847kh7gAdt5TOHMZyZ6cHt3V0gmoa2TjX83DrCLVDBtezoWs+sDozcWWO3R03Xp9ztAZTh9yn3AsiyEOxUmGCT/neIuYfZOM6R93P2SChID7jaUTUvyQe87XRxZ3J1cSyPjUhwDs2v8xcD970lg3PCZdKGiJjXdML+dXg/uuP8Fs0rq22/9P28SfOZkRFAA1XNBSuT0aTqWoSutpQsLk0QKHdEyKRVzZQHy8OPZWt8EfASbLh1N1AudqSj6Hd1s0btN1/rwU3RQLIJGNORwLP27K5w+0/MQGhm6PnpHspM89DBwcZwLwyaLnXVSExPJ02MXBum88w10zUBF9N5mwO/HzKnw3Y79FXoFkVQCorOxUykPyQFwoXixp9C/H5h9JlXR1LLRWwbpXDR3ThrkE3rN3dNc1E4q65vl6Mtxduvs2EF/7W1+9Rff5vM/D+DnH/L+FwF84r189wfmBKy1rwP41EPe/wXxswXw0w/5zFcBfPq9fymApoVdOKPJ3Yc9B1dw1GSBwVuB5jF9dgBlA4MgFXK7HF3wwzZ7chhrBQ0TNH2FzmHy8/MZ+vfjCEoaZXYSHO2y4ZSGJJ0LWQMHWaiq9f9LHaCuTKLIv9okXrqETPY/M8TmN10kmStk0xa7X3UwVS/B4fNrTCQTHtCkcvixgDgAYPtr4eNSelk2bmVzi8FdcSwNySUw6wYAslmYHVs4Xf/Rdfr/4LMtsuPEs3Pq3PpmJQBe8oCNPwD6PvcRXRmUlUHvayL6r2rYC2Fy/cnTBeaOP+HPmTvG9eE0SW0j/Rm+rrIbfXUOyBxjhpkzko0lHbxugfNfoJRrtVd4BwCETJAj6+Vugt5Bh+LYGbqrJZLaYn5R0jADz74tVZR1Db5ZoR2kftZCUjlWk7s8yljk85gN1PXisYyRFAOA1W5838wuK68pVW+udQsbCibMMLyGDbLj8yvA4GZwApKpBFBgEaAhmgHeXhVNk7fFvGJ33Tj7Pnkmx/wSkN+gjW+9bPEmzmapM8oEvpPrO00RPdvVdbATAqyV1lBbjtZZVbAbQ5T3CQfveimarRBJj16bw6Yaycw1iO0OvKZ/NreoxjrC1XVt/A3JQlbTKwEKUSbwu/NpzH1fXHADvYWB0V2QDC7vV7Ba+ShHn5KzYmjL5im6frj5k2WLthdmI6y2FLAVovNkBe8AAKD/xilMmaNymcHkiQzZTPDFs/BgAsH5xVK8iDpb365jlzF/CZlYrTC6RX+82kzQ32/Rd+Wu5V6KtlQ4+KyA5jZE4909V0Q94W3R/9LRyEJpfv0+Ydat2Nk8nLv9P0d6Us0G7V/vjkJxHKuURoVrbjZkJ7E0UMb6OdL3/yONZqtD40hq488pzC7rIEAHiuy5mY0dAAAMX6aOtul3BQc1vxAzrpa7YcbvyXOu/iAOrTwM3bXj6x2SyqDcD45FtcanBPWYBrGHITEN2n4SqdVWAj5KaqprSay9LQPF+fjTLfrX0yjyl+fKaqpx8H3GDlJCPuVJB3MgCBiF8p3FAHx/STVWUeDROzL++eElNYh6hwa7f7jE5Ok+znRZPJaNeCSX4OzbI7IWtutgL2779/OXbwNJgu4uWZ/kSapNt+co/NW18UJcVivkMyM0VhTSOcNHFKkpA2y9yph/fDN6toSzPTLykkuykZSx0PPwmh0AQA6s7SVeUbHeykknXnSO2gTYflkYw8MV9MppzpQsJe2KsPdNNA6yOLWoRbGLR6jKzEKKjnVFXGwEAvuCMVzmjJM8siwMd9SkNA4bP/hsC5WJQu4r4dhblk8SGfjwtvHnnEcp5tfvI1oO+0fTorsWhhXk82D8eUmue9IQHMRcf84kG5cBFKct3vgxDU4dnnr2Nt549SIufC5sb/ObXaRvP9hvPcfj+OPBKG2/SNvo3wgZanGY4uj5nvtbB+/IHo/UonNP8PCGgkloGAsA9G+7mtU5+vv8uCayA5cCEoJ+fNd8P4FVAaqrRwlMoqImx65QMB0dWz1WOPiM7HpUWJ03GL/iGvxKYhyx9hB3PkeEhUl4rrK5IcVVd3/YJHYAbS+wmbJlLLzHS6qqWhW0oAY36YaV2fnZLPVBF4b/WNaHywkoBWgNdB1UvxdgIQDqK6/A1E57XSuoJAGsewBeex3JJz7qP3v4yb4vBmYLQ5mAG2rRmQ5cWgAAIABJREFU9DW6PIs0YPzEKlDkL6c3zS5nlDK6e1a31qtWAsFQMuxj8gTZwdxjwchSzJ8ae+YSzwGodkImM3kiGFFlgdH1zlMBGfaaPx2a3Uymo/2XWC/j+RH7ooUfrFKcxnIA2dxi6Ybx+ME54vmUOLEy1AjGDzo3j02fEZG3cAD5jRxtD6iv0rHnt3JU5xuMXw+3bVIF8T4f9SouXDRAInR7niNiwPwKZUHzc2zcw/5KxoxuKVK2HsiO5wefPpkDaPHUs8Q8O/w/r2CMIDGijI2KsSYDppfdZDl3fzFz6t73jzC8ZTB4k7KDrp9icbEIommpwvyi8lTO/j41q508Q9uziqJur91TpDh9OhQnTK5JiZN1jKxF76DxwQxAUbmfiNcRPGQEhCrZQl2u0L+ReG0hIBYV7N23roBLrzmK51Gg6coinwgZCK2QLgwmT7ggpaRmNC8prQDrdlU5dlpxJOixJsiG8DEMBeS7uBTSW9nJ/L7X40zgEVtaQ40o17ajAVSfwiZVVejuH0LnDlJpG5i6RvoMVUf/f/beNNa25DoP+6r2cPYZ73zvm/tNPbHJ7iZFipNGS7IjWQBlQxIUxEnsKDECKFYSBIkkZzCCQIGABA4EBIhNxzIkwIqsKKIlwLQkihBFyxSnHsRmz/2GfvOd75nP2VPlx6pVteq+180eHq3m6y7g4t57hj3WXmvVWt/6PtNqYPe7llzeO5obd3Pni0QNzOkeAFC1R8+oMpSPZIPE7frtrQp1rJwxKDOFzrXCGcJ0Z4y6mTj2Tz2hiHFqi9h1qnDtp0rw06a2Ehz/YhjRdK6FuGfJQ3/lR2l9LhEzM8GqXSdA55on2HPdt6K42d4McfjJJEyT8NJcF4QoYfSTUcToyCNfpOk2Pkq/4xmw/4gw+vsaestH/tNz9poktkh/eorVLzTBN4ejdkdJ0J+E6R+lUB1dduigrQ837efpbV0dKlxOgIMzEZZeCTlqJusi57+kXCpjvgy0L8XoP0nQ7BiUeuBRx4roEYTD5evK4jcMJ116kQqx81X6ABsyqTOx+EqFSqQZb3zSP75Fz/LnTO1rR2M0BrULZpx6mnByw5OpC0gOC84bRddPGmEZzPB5OVZRpgzhRZc952yX/tclMDkKR1AXT4g3SOptT9Z80Xx0n0CRjRSa2/6+seoaf7dxUDrnAdAqZP3rI4xO+mWTTA8VR+9iY+N3WG/bnca95QQiDXRayI90kWwKOsRWE9HyIuq+B7izAwCAvce9A2AOFS1ymWgIyt+SohuOlDuMROGHxaY85iItlHe1e/haOzZV0vcNS9HWAKZnJ2xROQcAAFd/RAMHadChW7R1EAVB0GJw0VWSwkW5N/z8MPNDy9wwsm5RBjA9Em53aQhDDJaAQvtWjSpTgWGZL2jAGpzuq3blxaL3x+nhK0XNoXXV79hEFJVPz/uQ0hSKQVtY+kIzMFbRrIYuDLLLgiGu8PWP6gSd9IX/gKPdElEvR+dLLXcu8lwbe4TQkYX22aJ2KSzu/OVrkQ4sJFXWJISxYcMk6Znl0MLuHpzVWH2mcsY/mtdo3coxOWL7TebGOQAA6J+O0b4OHDzsN7L8TORSZYwCmou0JuCj+aJLaU0eJiJ65jryKLXZkvLNefYXOzmiffDpTZ4/XE8qW8DSCwaD+8SK+ZaXzyzaGsrQedP+gclpUdwdRW6brU3avuR1mq7Grp5wcH8aHAMA7D/kqdcHZxSOfKXC1MKveTXytse3v0/g38m4p5yAiSPkG12YSKHY6KBOPAat8bV993d09jSG7ycDMVvUKDoey97cqZHtE1c64NPPTZFmbh8id1NCNJvZDXlZPl+IqCPYTtDs2giqqqCmTPcYo17pOq6h6X0LODifoP+g3WCH9rX0b32k09jzhs7EBDPk2sPclz78Z8Q8HZ+l7fWeF/KSOqwplJmP4HjEEw8jPZz+YvhdlIcymIMzdMyyy7dOIIqRBtNVX8TOl+jh7H7Dyk4+XGD9z2LwNOXUmaQWyC6K9mMH/WTZSjIEUc+nBXt/6qNDLtDKVdLWd8Vo2HOP5rY3wc4CjkQl7LW5U3lZQ4ueYY7/eEb8RnTi9Gt8nwAYLOZo/gVZzWyPUoeMCirbUSD0w70SLGofzyj9cu53BFFh27h5MFskR83d4c0tZvy0EfqeIdnS1+DWH9vVDxf6Exu5u1SmovvHY3BGASpUhounBj0Lw3HsoGIFuX8+dnNhfFyspgfU97L0HP3P+sL7D9oeiVQj2/HNX0XLBxA8pMxo1TS4/gMxihXaWbJzCA33NsZ76KB32DCKOidNHBEFcaYBQ1HV/CPnoYW2K0A3sGx6BxBPrBaAMT4FohTyjjdUnRul52DPvSoV5WQNUQHb16YrQmC+BtovWUcUKZhmimKlDV3UATnWwfkYOgcWXtRo36qhq8jC+oiioHFQu4iGt8sjnhksvUj7q1Lg4Lx2hoslIDsXBDxzLMRNIopMOTKerYAedBtk14mvBRQd5ci7OMcNhELjugRQUfpLHiMbFco/e7qCfEEhXwKam34bxz7vpRuNArJ9b/AaL9vW00I4ZK6jzOYOFrz1YzPAFjPjS02MjwPt6+QAFi75A4tnNTY/HD4OVdMbfOlI+RqNTxr079dYe8L+f8TXabL92rGV8ipTF0Dv5QiD+yvoRdrw9LEpul9t3tYfAiCAf9Z3KMwvv0B/mEihtLj9Rr/CzCLFAnoQ0endODBBD4GuqHbhSfCUW93UsXK9LJIQj8EAtegKhlhhqsp3O5NOAL2edxVgAG3vyeSIQZ0Z0pcuKPqX8OM6oZW5qiltOTqhXIBSJ7RCV7VfgahaMOCKa88OAADKjTsoIr3VcQ84gW9ZIVFK/RdKqaVv9bl3wlCifa9sRcENYgfgPwuMRG4wnphgef6txmG90sNoH6nOBQgHYEex0sbrDUZ58DjMiX54BJrA1gHwKDvhZ3WOoCO4aOP2cxe7kw4ACNkb5Wfc9u/Mgu2P9RCyI194/XM7vOJ2DuC1RjN7zbfYAQTHI1YWjUMroMP7N4eeGHYAckiE0WEBE+kAAKD71SbezAjkIBHWfwA4B/BaQ0bvQBiZA2EhXzoAwKeU3PtRSPsgaaf9dw79LT7CDkC+v/INsf1EBbWn0YlD+z8Uwt5GEHkXKYLu5fFGVgJHAHxNKfUkgF8D8IffSqnmL2uYSKFY4PygcqmJaFaTILjl3DGRgkGYG0yHXvhaz2sYYXTTgV/21REQTT20TRmiluYVQb6YQJfGMZhm1wcwaeyEXvS8QLHiUxKToyT6znno9SepVrD/gO96zHvKRfSD00SQJif86ISCnls00GaN8YZ2UV88Iycg+X6aO8ZBAcdHdNA5ymgOifdffl6Q6Vlo6cTi1QsBWUysgXL54QZBGiX9MgCMbIpE54QdZ/WrxRcJkeM0Yx1Vh1gBXBAOgNM/3BSYJEAzQ/9DG/b7Bs1nms7ox1NKlyWiXHTYAejKOzTOmUtDufuoOBFtsP0RILtl8+iD0AEc/8IIwzMt10dhIqB7MULRJcPf2AdaougunQ2nf+QKQDrq1WemmIiVR9GiHL1kLJXb42I2p39IgMa4c00mhlJN9lTHGzEawzpI75WZco17rS0WZqL/l1+gLt/mji3sHiPBINkVHOWAsrdyvkzPTjyyKZ7EYPEl5fUSDBwij66DQveKX6mUGVDITvNd4RRsO4SDZecKvWcTDB/1KLO7Nd4V6SBjzP+glPofQdw/fwfA/2l5K/6pMebCt/sA38yoY4XpSoRGP5y846M0G+RDpAvjlIp0ZQIURp166UldGVQNHTyMkrSVIxXuIma6iXjoDWedxtBzmv3FSgtV6ikr4klFhk8KiiiFxZfp+9uPNVBlPrruXq0RzY1r1ycH4A9teEJT8VpEjO1rvoWeinl+X+tP0Ad3HvURaTI2WLjgC9d1Q2i99hgH7q9XbPdvNBl2wwiRtu8CBqhYXachlDAVTT8OiWnvU3OLNhzviWXLTJxsFBESqCFU2x7yFfG+LTpyzj+aGxQdhYWLogApSNy0Bd3L5i7AG5c6Ulh6Fu7e77/fILulHTV0nRJNxeo3yMsMz5CHdE628FKXAKB+ZA98mw6u97DwnH8cOffPK7Y69fxBADBbub3eIh1AbrEFfP0ZBiyDB6NFuqSlCMIr7GMdK6/F0FNIph4GPFvUaAwEr5BNBXITG0D3MxLXpo6Bmhdphoxz54r9NyKxHr7WycSgaKpAyEY2iMUzQG3786hjoHfFswfnXeFQQMFR95qtLU1KvIy7MAzuGm3EX+Z4QzUBY4xRSt0CcAtEWLQE4HeUUp8zxvx3384DfCtjtqRRpb7N3EV2ImUioYsAk4FZyOF+hbLD4hw5YqVQNYUIeYChD9eg8SiHKmvUTfq+SWNU7Ri15X2pUsq98jI+yuuAzliXBrsfaGG6yv9TtLz0AlnO+VKMyXrkDHnnmkHRVpgv+M8DCI5RdifPF8MGl2yXDDw38wBA56qgWjbk2CYb/onKe9ptM5r5yN9o5QjRAMKK13EoX5mMfEpCVYeoGexhtW55Q5/cFCosvACNvFMyGyuYHyGcZ93Q2Hpc0lJSgVs62M712tE9cIGd04gd28ksm9ckvNMoimZ5Pi28qC3hHg1eOcxtN7ouqJtapp9WPuHZbK9f8ljdE3+oAFRuRdk/o4OU3dILBSFq7FRh2KrMf8/FsbSs42OSPqP83wAV2afLUZBmLDPPD6TLkAOqe71GlSrXOW80NQGyUE+d0ndWnmVAhEY69GR5E2rRQNPW8es4XJ2yM+L5YDQFY0x9IRFo8YzOm9NT6Yjm2YwlM0sSE+LVLHeAMzWLZAV+2+PdsBJQSv08iMZ0B8D/DeC/NcYUSikN4GUA7xgnYCKKWHiJKqMImdMuWgqxEESvQRG/rBuk+94QloKszU1G+7AyqVdjk3IeqqpQ9ZpE7Qug6NFTmi8z1K+GqeGE6aMZUQAz5fTuByh6lDDJE78XYbJh6SZyg2y/dsZpskG6s9m+vwYkGSnrIzKpTb+615ggL8JsWbsHRlfGNVMBfluMvGAFKC4qypzvfAnIdgVSKiIDm4zFfRCNaXxPZDeyLkg+ECCjtHyz74y/aWdAO0O+Rtco3Rw5BwAAB2djpAMfBfP2eq/6aylpoB1QYF2kVTpRQHUAeJ/JRHsczccTWtU4dSyWnWz7E8r2a3dvDu6nDW4PyCukKzMsf4ZrQ5RSTGyPxepzRFnN++aua9ZWuG3YIj6n1upYIZ4fWmFGCqkNfrhmxcFGOgifEYAib/n97MATIbqal7j/MrUVz0g+kq/J4kvkROR8iQoEaVVSBrQw3CYj3ej/7mU4Jt8qodUyaw5MV4gCw+lip1R8ZjiriS3raCN8Zu/GeFekgwCsAvibxphX5YvGmFop9ePfnsN6a4P428OIx71XeV739s0CdUM7gXGOqqcbZPxa1yaYHLeNZiZcQuucHk4n2lIbNLZnqNusP1ASva49hKIbIZp7aoOypTE8qbD8gpcm3HsoRpRb+b+/to3t7QVgbref1rj5CY3jX7S87YvU3u+EXwzRM4+Oe2KwqnF7EY+x+ZwPlwIlgId/VkYhnofGPe8qF6Gp2qeE6Hj8g5Dt+iiSdkpU0jyiPHQCbPwnqyFtBV/vaG7Qf3wdjQPaYGNr7BwAAMyPdlG0IwxPWvK+E7a28II/9t4V7wBYcyG2WH52ArK4qirjomNVGYKxCvoCmc5hSm2Z8iKxdgHtFDh5/Xgf++MmOp+zTmBk0NzyKZ7pegLOD7Gz4nqEMtRnIZvb5H7ZWPs6l7HyjSo4Rya7m66ooJgvReoBn45SYqWw/YEYnRsWzdUjg+4EfRSC1ef4CKHCuKdi4QLXIDyaro4EyihRQWprvhymDauGX+2uPRMqAmaKHAE/x9k+pYNd93dBXfI8zOvXzt/ceDc4AWPM//Q67z1/dw/nbY7aTioFJ/4N0AM1X4oChS8992IjdaxRdPzMGJ5vu0haVQbxsHDoHxNR+328I3l4FfSYZmyxStaWqadJjDtykft8Cehe8e37PHHXf4KSo6muUENhd5OqXum1FOtP+HPhc2D1q8bAIJ5UjoQtntQYHYt9VNqy+VOR/apTT2FttHUodjLnPYUcPuWR7ZogZcOdz7kwRszp4mixJU+XeEhYzCMWegpSPKfRNwFXTXpQBgZ6vt6GMh6mWNiI2zUV3VCBKlqjXztyN8CnA5hTJl+IMT6i0blBrzuFMHvudVujSkKoZTLyeeuVb9r6j+CkkVoCc9tdPPoIWfYMQPYHfpmSDisMTlultonB6KjC6Cg3NNlzEgI7kj+nuWsNPK9SMuUoJgCaVxKhloxrQCmMjspUoD8v5lHie8M1JQYsDE7R9/YeoddXn65D3YglDShgfMy+wCALR3VtqUX4uQIZY0n1XadAaYORZEDf5dRh2VQOtj1ZT5AOa8f269XM7Op4LQoQbE5UxmYGDndHv63xbnAC30lDGT/JqlT5h9M6BY7eVWEQzyqUTUkHoB0plUyl1JHCfDl1FL4AEA1EJBJrjE530Dig98dHUqjaCKehMFtSrii9+DKxivLSdLao0dw2OPgNL7C2+wM+BFr5pl3G2mc3zmvEkxKdykeK07XEnWuVajR3vDGYaZL14+/XMRVs+SHn6F3mf2WEOF9SqKbKOwlr/Cth6BtCtE0XxhmH1laF/unYda8y6odTG1VKOWheHcTjClVTIz3wzjoeF6had1ZNYz6lVsunr1o3/bWLhznGp1rO4eZdWzSfeWSU0T7Foku69xIWWTbhCu/MXbNwgQ2TDgOLygTw2CoBpo9P0Xyai+5NV6fKDqpA8HzzYwaAwdKzgrlzZtyqa7rKBoy+zw6VmUZd6sN+fbIeQVW+wQ4A9t7nz6tj1/U856kjtwoAEgHHjgLyRYPVp/2zIcEB3JHesnOhbAJLL5eY2jx9PKdGwgBiKwxoVBhgrJwTYJSRpzPx6Z7WdoXRkRgmioNzlvWEyVrkyehs0MAEcnkvXAW/1aHMuycd9J03uIDocrnU+q8COT3fHDO0vOScj5ROgLtTJdonX2+5HD6nkDji1KUJotd4atAdhypmqvaReXZAjKWDc9ZQThVO/F7sU1Cmhq58eiCelJiuN1x3at6LqZOTH14FwPi+he6rBcZHY9fIVSdUzHVNWh2FKg2jd1mQdA+hzRcnE9sdakfvkglw/zLKN5FC72oVILUkDh2wEM2Ko9AK8bRyZHoAAgfARVMp5anzGt2LVI+pGxERkQ3JEYxOU759blEzzW0T6Nw2d2pM1nVouMXx5V0EKY7WLWvAheGfL4kitTU2o2Mi2n62ifamT93xGB2JcfCIpxlXhY1ij4hrMxLzyJao2jdYrlQHVNOzJZt/Z4No74lsOJOrwe61wn7Ost92/fwFfOQ+FiuH5W8KkjbOtDBz7DY5FF7xLj9XoGzpIP2nYt/9W0dEje1FiuzK1N7u4SmFzDYqpgNjhZjof6lEx0N2q5ctmsPyOawacMFAa+cuWu53CzroO2W4jt2KUkJSzKVoaZciUpVB0b09MUhdqRYhZB8GEyukBz66zFea2H8gBcACFTnmS3GAuGnf8A6DdQk80dbhgiqRjB39kmgwqoFsi5766UaGWgEFi4G0NYYnI0wsVUPjoEY08zUHFpThukjRjTBfVEgsVl+XlELi44lnhC46zPPOkSU/tMMTfqosP+uPtX19ivGJprtmdaIcDXdzj3KzU5HzP3i4xtoT4bI82xbKaam/L1UWE+abC3nGIF+IMRNkYe2tCqldhd34XnLIj/7oZQDA6P+4HyNB/Nc/p9C55lces2VyAIXo25N5cXaG7Vtcj9GUb7YpEjaIbPz3H+Jagt9W55o3OFIy9OqP8KpUFM2H/u/D6J68q7BwoXDkewDd66pxaJ9zHw3LekzRpXm18RW7TFOheJJRtrfGbo/pxVeeE+koEflz6oxhonWikO2UyCz6Z7IRIx3WwWqhbCgUdvU9WwOyHepkBmhe1pFPH2WCDspoBKtnVZFD4BVvlZIT5BVsnVBDIMO601HYMzFbvHuG+72VwDttGACVL9rKpaesEQAEEc1Fvrhz3Yq4cCGOf5c1Rf2KoXve+POIZ7WTlzRaYbaSuu/vPBoBtTcGugK6V7yTiEYFyoXUdSDf/FgTUQ5Mlyk0b+55bQOAHoQo9+mAvKMRNTyKBIaWvdznUC4pNHe9yI0yRHsgKR6SsTd4nIN26mmalvCs3CSb8NrXp5huZG5FNT5CKA0uTlapCgzHwcMMu6Ff6d4cOq8wX/HpnKmgNm5u0z4PC4bwaNtjvflx+v70eIWPPvoKvvrE/fSB7wOisU998T1g1Fg8NS7NAlgcewy0b1oH2lZo36qQ7dC9znaAZG+CwcPUQM/n5lE1Koi2WzeNM0R8rDvvZ+pndrJ+/6lAwxYdSv3ISLx/Nrmt21pKpEraiSgHWpv+/+w5W1zf8ai3qp24Z8BpJnB9ZasO0ELN6xRFsBjRdDUO9zczOLg/cTWZsqVIo0Dz+yFqq2wBI58BhS58TwEQQl9hgxS+lnUCLF6s3WeMVkgmBpMN4SQOdSrryvcJ5YeEb97WuItOQCn1XwP4T+1WnwH1ZbUA/AsApwFcBvDTxph9+/lfAvCzACoAP2+M+cO3st97ygnUqcL4GNPLikaWng7EXuQSFcag0RcpnMoErerRMEe5mGH/wSz4Lue1lYFzAAAsfXKJWx+3kNAJAB06GT2vXG/A9HgLqjIYPORhiunAODjcbJF6HhjpkA5qNPoeJ84dxTzat0qMj8buONnY5wKrHoscv6SnqBrKHp9lirSFV8ffEyk0dr0Dmx7JABMqYOnK55KjOeG12Snc968sgdfQ11fqJELC2rCnm/b47LF3Ite7AZBTUTWcju7++Qh1AkwEKdvTf/wgUvd5+t2wSmSqAhUvj9w5EmTjL1lBs2t9R/GR7JEh7D2/j3ytg8nR1EXedUIYeYmckgVIzo3PHrMeabuB9EC7dBNLUsoxXVWOeC4ZHxK84RjEhMVg9/7cYLoaO9TX+FiMsqmwbp1A1bZ62rYhT9U1BufazvECIQ0LG//5kk0bVWFfAaedeKWrCwTNWroyLrovmwpz+Ki/jsMOdV4VpKKPIJ560ECVKKs3YAOzBwxaNz0rqompCdHTblOQxKmq9A7X+i2Nu1gTUEodB/DzAN5njJnahtyfAfA+AJ83xvyKUuoXAfwigF9QSr3Pvv8IgGMA/lgp9YAQnH/D4+4BZr8TxyH2i+gQH9C7aRzO1UusO4DbOWrWGni3jnwtJB+ShfQ7DUavuM9vv3uvnezdAW7n//lWvFPvuGHe4M8bGzGAplIqBq0AbgD4FIBft+//OoCfsH9/CsBvGWPmxphLAF4B8N1v5RTuqZUAjJ9EN7/PT7ZorLD0onGyhwDBxhiHHE+Jl57VvKK8cpDPcpEioFTwmEjERTStUQkMMgvTd676O9++UQZpproRYf8DFF3ufXKOxa82cPBdtD+V1Hj03CW88o8fAuAjK24CyntUABzeR9tWpUJzy1+C+VKMeHaoD8D4tIGqERQ7i7ZCo1+746sjBaTaFcR5VcR5+dHJDPHMBE6DI32jEVATGyJxRfumQFbNKofZNpHGdMNbUFUCUWl8CmFeB3UdPof+af9aOgDSb1rs+3qYRuCIT1JTDE+Jk1eE/HFdrInC0otTp96WXetDzQqk12kpMXloDdGkwuSo30mAquLivz2l4ckYC0LfefdHZ9CXmkHkxSsALtS7lEYd8gaNTgGjUxobXwtXbnwz5wsKneulW5kcnEuCa2YiirZ3H6dcSGbrE+1r/vi6r/p8zHwlRTypnAwpAJQiLccwWo62sz2DsqnQuemtOBeXAbi6EENcO6/SoTMgobltUKVhB3k8M24bjUHlVN1mKxrJyGBw1l8f2am+/IJB2fD1kSoFJNWLpMZ4u+Mwad3rjFWl1NfF/582xnya/zHGXFdK/e8AroC6Rf7IGPNHSqkNY8xN+5mbSinWRz0O4Mtie9fsa2963FtOAGR4KD1iEI1p0hz5iiVz26Sl+PBsOxBlqVMNFMbp9gKAsupUel5heKYZGLeGWE4GqBwArU3CtsvOVJMolIknXitbCoNPMBBbo/jhPtJvUsL03Pdexjc+8zBAHGjoXiU8NqMnkpHB8KR2vO3TFeJIYU3hyZqF5InccdVQfrmtWRjHv593tcv/RjmR2UlitWRYYNIjZ6gLBKIrMvdapSGrJNMwpHt+rV92/RMYTwp0LxWYL1NkXLSjwEGVLY3GfuV6ODgHv/IcGa7+mSSk8CjoR+blZWGWDawTSGHnaT+y9NIU0aRANKHtz4730LywG/AR7T3ccKkYVZugtsJQ2O4VP48Gp72Ty55uIl8Io93KlkOqxu2UG3LbjtxQpMdmS7Hv59ivLWLodqcJ+Pkg06TZXoGqxcAFjXhSYm45iepIIe/GLsVUNjV1gFvUWTK2DkBEuXdyAHwMrS1CQrn6FsN89xkZVkPVyiGvHJzbbl+yo+69vwa0ccicbEejdVPMRWOgjCddrBI6Vu+48JcxdowxH36tNy1T86cAnAFwAOD/VUr9rdfZ3p1ymm8pOXVPOQETkQNIRgbL31DoXPPKVs1bHoHS3CyQL8Yu181dooFB63pCNTIujBai1zin7+T3WLmJ6W/5FtnXmXWTxVuMncDHj+zjxovrLJ6F3V+7D20Yf2w1PXjdq4U7Vl16w7JwIQ/230gVpmuC8G2RcuLOiNjLwKiOvKORiaK50QpRbpAMBf96K/bYeWOCNJoufPTPDoALhuOjcUjZUNdI+jNHw8HGf3Tcn0/eI/F4AGjYldv8UM2Dx+Gieb5gDZSAVjrDD8pRqwpYuESfmy+ooCt1+/Em6qSJlW/Si/sPpth/8Gjg2GSemh2zLGjC+Iax7R8ssPRlz6TiKCoUAAAgAElEQVTZOKAfXlX2z2q0BCmqZFtlBzA+4V+Tgi2Tdeay8u/Pex72rAuaa450zf6SPRB1LLtoFYpugnjkG+pkjSGxrxciTRgfEm6fiHnn+0osiGCzRtlUDu3EZHFyhd3Yr9w8ZmoHvvcmkrKoBnqmUaf2fg+B+QLQvWZrBg2FvCekL2MEjW3yHr7tcfcKwz8M4JIxZhsAlFK/C+ATADaVUkftKuAoAA5drgEQpXWcAKWP3vS4p5wACcgA3auFFbkmgxFPbARq5xtr3bqvRSEMNN6fwKRCeSsWDiE3KBsKykIZkxFNXEnEpUvj0ie+WYbemwMYfchbjfw3N3D6eoH+WVtIzkO+lmRUBdGfnldoblYYH7ewzGkJk0YYnPbhzWQDiKb8eXoIOBLUZSjT19osUDV9Y00yuj0pW3Qilx6qU1KX8gUxT0fM+2Aa7aioEY1LGGtsymYKZUzQpDe4L3GRsaMdttuersa2h8Ff2+nq7SI2+4+J7vBOAbxC1yIeh0v/1i3CsrMoTDQ3mKx7vWg+Dy7qA2HB1mgyNpEwKNHMR7t1rLD7wQpo207irMDwBwrgMqX+pAMASK2OAw82WEwLcVhDYfElmneldTCzVRuN20MdnqCmQx4MD5WgAW4MdJ9ZjZ0hj+YGOq9d7ScZVYhmJYouXRRGaEWy10bY/Jntl0htqrRsqIB8jxxKiJ6S6Vk2/gyBdc1xFtM/PqZcirV1k5ydW5EqQCXA8KT/n+c9/1/0gFhQiN+VcRcLw6A00MeUUi1QOuiHAHwdwBjE3fYr9vfv2c//PoDfVEr9Q1Bh+H4AX30rO76nnEA0N1i4SMZcpnaYCrmwwtQuypZkYqIBycSiQSlL0Hl1ivkqRa1VoiwiiDs0VfDAMrSytDlzhqU56N22Qe8zPnxLLTKGI30ASPuFU4qKhwXmaw0H+Rwdp+PgpqzJyRahNGw6Z+9hHaQBelcqQCmX3olmlOdlBJCJFMFTOQLLIiR97xCn640AWZUOakQwroZQNjQ6Nq88X47R3BT5f9tQxwysAFBmEXIngRg2avUueypgHoUwJOzY2PizQVGsv7yco/OEd4bpEJhuAE0RbU9XVNAXAHg9ZqelICLyWMIWG2TwZcReJ94J7H6QDujEMeJj2Bu1kL+0gPZ1/32IKFQykLpVFGfOFG2XndB4Q6FxIKNhYLZMHeXymlQOtsrnJGCeok8hmlTEayXSfrL4H81sADWt3O98IayA6ypEJKXjGiPRnFa2fJ+B0YQkGh2TKD3Rx9AhBJ+cD03R1LX8fOX0kskBeMU6dw/s5tIBOUdZD0n6vtksuVsaw8BdWwkYY76ilPodAE+CmJqfAvBpAB0Av62U+lmQo/gp+/lnLYLoOfv5n3sryCDgHnMCXImPZmVgeDgql9BPAI5SllcBrPOr6tqtGqLBFJOzi45/BAASwW8jVxwAkBzMMDzfC7DtctnMzoCLywy5a18XrKVtwT9jHYDMLScj47n3ayq6MRV0ekAGZfllQb0w9Ea9ysgBVE3BYnroM6OT3pDmXY14ZpwxqWMVoKiSceUgn/xbz63xt/nm2Yo/dqkDyw1p8r4oE9I3R1JJSxG6hKGH8QTYf78/luUvZMi7frnP9MVjWy5r7B9qDJNpnDu8Nj5lkL4c8tIbBYxsiqa1CQzOCCN7ZIyV7hh7I99+XW7k6Nv6zpE/slG8LdqzsQKAukMOQKanai5oglZwRSeEXbIDADwcdSTkPmX+v7WZo2zHgX5COijdta8akTP8AEF36beIcALlPqKK5u0tXKwsooyJEulzknpC3tdkRJKWjBZqDAjGyau+xoACgM41HxhIpttkahyPFVQIMWVnzfOgjml/h7ud78q4m/7EmH8A4B8cenkOWhXc6fO/DOCX3+5+7y0nYEfdiEggQ0Q2deSXrADlluOxbZ3v05PP4u+mmcKpVQFobM+R9C0JVS8JUibuu4EMXoTBOf/98//Cz1DXJr8gul6FA5huNJCMKudEyoYGGkC26zuZ42ntdAzGR1Jk+8atPOKpXWbbAl7aL1AJURiGfqYDUcTrxBgfofRSHSs0BrUQj6HoklNIqjYBSkQXxqV7+Brky35bkpgv76kg0nOpAeXvk2Tg5LTN9Chtt3dBEZePI6yjB3rpGdr/zsfpfp4/QwQ2kz85GbKh2mYlmRZYeLUKGtq2PuL//sCHLwIfBp790jkAQOsmEQDy6H+SPFSj6Vc/Z7p7uLlLO6pmMbrP+PvcF2gWXk0k4nfVAGpOD9mvucIxELBfrj1tc/TcKT4jUkEZ+Wd7pUslmkgR3QbbzUP9MPGIziEInoQDMAkbd39BZ4sRuMFb1UQG2LIpKaaTkB3YcpQtKip3r/kJcXA+dqk5198gelCagiCvaCmXNi2bKnCgVUbcRcyc27pFDsAX3u/cJ/Jmh8KbQge9Y8c95QRMrJAvxK6oWYncs9QA5uKiSwHVNdS8BHK7Ishzp1ZVrnQ8bQFo1VA3IiR7VuTbRkzDcz7ElA5g9UmFg/ubzohmO3MUCyli60jiEaCqGpNjNGOLtqYf5mTZD2dZ3tUYnoic2AY/9LLJR47JkQaqhsLe3yRr0/3DBsomAsdA8DybvioN8o5yXZUmAnqveqU2Xj3xAxhPPBHffNmyc4r0kTRc2R4hRJjDhYcj/lKh5KeJFEanDNI+7XO2SrledgKD++narP6tV2n7eQNZXODiN23ov1ajeVMSstHvxUsyF+2PY/NjAGCCSPHZL51DZhWs6hjIz82g7AfULbLQhYCbfCk/4/5e+wLpNcquZNkVLKN6/puNfzSnGokUXknEqoiNP/MUjY7FWLxQuwaq9i0y6of7O3goG0TIlGid6mCuwxhn/PmeSeOeCmGmOlFIxrUDQNDxerhvtl9huhLfEbEEkAOgDdnzn1KahxFXAAIOqvni7dd0dNruaxfoXvXd2vMl4seaHONl1d3K4bxHG/GOG6omdbAq06hS7YpYqibyOC5YNrYnMFpDT8Uasq4BrgUI5ao61S5fDnhe8nJBUB2s+mhv+0Mai4Jgm5WYHM3tkQxVptCxToCX4DIqK5rKCmoA82XtHgxAUPzayL9sKCdnCJCITd4T7JQ/RV8oDiwi56MFTn5WOyQH0w87hs9MwUTK5cIZneSideaomfqaiO8stqpu1qDpMoz0mPiLHZcu6UHnfLhRVHSV2Puj/7bC1ndZWcAB0Plh3xShqwhr7RFGubem1/7spOsY5lRSQJ+wH6bm9s8LtMsIqNo12pfpHl+8fA7dmU8hjR+ni1KPbXqrWyE+EEZvoIBvthyTpnMA9nSiOTCxVMuNXXKQzJHfOCAkl0xrcP8C4CPO2TL/VgH8dfFCjXhcua7ZsqmRjKuw7iUABrxSrETqUWpQkPFWLljJu6lzAACw9VEDQOP4n4gUUVOHwjTKF3/rWKF3pXJOgVFdTHed3AGxQ4V4gS6yK7a8qxDN4AKhsqEwPO2/N10jhBinpKoUKNuem6mxf3dWAnSQd29Tf1njnnICpFtqSB3KeMObjEgYPtvyFT1VVS4aQlEG2rVmWShYM6eKjKjq0Gi3b/h0Tu/FGTY/uYz2JlctCULJudFkYjBdUZhavpzBYzlO/ksdSBoGOrQ208DGn6NgybvPqwg6L4Mor90DffT/yVAlCtf/Kn3+5GcV4kmFnhVWmS/HUKU3ACSf6CmRHaFe7kVwdGECAjKnnQBCHvGqYv9hhdlyjOlR2sbi81alTDBHFk0vbTlb5fvlz58dAAB837//BADgy7dOu9eufP4+v+99oCkeSo4ivSSiCprcuIFJ6gU0b+igGEzfo9/Kdvo2t8RcEH8mQ7pPZdO/OV/24i/s2Pl7ixfqQLCmuWMCJyBRYpwrL20BePFFg2RcY/EVu7k7QEAnGz446V6mCcSKd7RNUavRKnACuiS0UL5In4mnJkD2LD7PKUBRDxvXbhXIxz6yzZOtnSpYdXFqZ7zu5306Nq9ZqJaCM2ULaN8yQRovGXl0We+SvSb20OKS3ucFm9SceNvjPSfwzhy6MoDxCJp01+btc9EMVogZPRVPfZvCh6pHT7LjJBd5a0a9ALb+UBlEQ9rGfKODxVdyh32PZyYsjtmc9+AxnywdnvBNP2UbMN/lcYnjXTqe5Sf9rZJ6AcmUjC4fJ3Psc+Qe741RrLTxwK/ZyD3RxKOyRAYinpLAjUczmaCgqA9RaejCBNek6EZosHarvUQ3vt86ztSgyEp0nqKnr8zoOzINkEyBgweE8SngNHnrh8f4Tx75knvvnz33cfrjJU/b0BLqWk6XgDUlEq+JC3ijwsa/9xMEq77+NFWQs20V8Mq0ti2eXxxf1SsxtsYmu5YgmodRbGlXDaufuoorXz6JD/+gXxZ++WsPon2V9r1wibbNxXG6Pn4/zW3y/kzxDITXae/9wNpTPi9OtRnlIJbp0AQNkYzsYeRVY7+kFR7HQYsxolkdpE3zhdgVg7lzm9FA7VsVRkdFrk/RHOTrvfdQjMa+d6Dj9QgLl3PXgczn2hF9HzLdMzgt+xEs2d+af3+2FDoFgOQ1AVpd6dL3BjilOvuYcxPj3RjvpYPutdFufevPvDcAhMLfwO249nfzWP3U1dd9nx3Ae+NbDwnHfUeO95zAO2sYrYjr3d4Yh1NvxY4Bkl4wwFhU2azxn5z3wG3WG2jdmkOVNZRYmpadxKMutELViJD3qJKqSxN0wM4XNbLd2nOnVDSxNz7vPzMV2O/5sgEudaFP+uNNd+LbKIRZkDwel4jHCDHcYtUyPbUAXRpXeyhapHwm0xASRRVNKXpr7IsITfD35AsRWrf8KobTb7vvt3xAMWBSwcL5YuYiNdcda3fHAipVW6A+FoRSV6nxT/7ie9B4jlZl+bEK6b5gLM0Jay+5k+KZcfDbBBQFMpqJsfRM2THYWoK6EfYVQBHFAY/RUY26JVlFJVSXD8TvXzqA//mnfgsA8N//658W5+Sbmpo7XpBnvqDQveJRRkbTKmDvIXGfEj8H1p6ykF177+pIYSbuaaNfkeypk1BVQf/FdCNB62bu0j3zngZ62tGc5wtxIE+Z2dWhjP515Zu7ihYpie095E1K96roFreHnvYL+xtAbVDYeatKg7g0uPLv0fY7r9JzwlF81VDI9izySOhfAB5mm4oFfdghTGI3C5fEi3djmPfQQe+4oWqDZFQhHtui68AbejUTE2A4ApIEaDAhucH4fWtOeazo+g7a6VqKdFA5SCa32vPDk4xKVIn2cpKaimH8cDC0UxbMZG5Vl8Zx4QDA9BMW1XGZLGcCoCMCS055MISzaKWIciMkFJtBXwIjOMYnPXpJFl7ZMLLhY92F8TGfT+5cmztxnIXnCYpRLPk6xGRdO0M8+MQUsUXNRFPl6JkB4OB+RhaJ/XeNE1YpFyqoWqH9kje08djXSBrbEeIxnMxjNLHNXHZzZfMQBFUYEIAaxcYfniK+5I998UUBk7SONbg+ojwUDSKULSOajlQAgRycr9G/to7/9eOfAQD80hd+EgDQezXM+/OQ/SbaXgPZc0LpK4Ym0/fWv3ao63dJbFvo6rLxl/Wa8YZ2Or1GK4yPNwLk0upfeCuqapJxZDj0fClBlSqXvhqe1EiHZPx5bH0odtKbze0CjW0fyOQr9oMi3VS2YvfMTTZi7HzIwPRof8MPAK0XU0c/LZvSVEU/stkumnuEVTqklWlDEAd2r5cYnrDP7PQuhu/vrQTeWUNV5s4OwDYvYWhDN2v8Jw9QCG5ihf37/aXQOZz4eDqooCrBMDqvMF9Og16Bxr7g2Ldyk4uv0Gv8vbnoC6jFg0MC4XCT6cQ/STBfjLH1Efq/e5mIsBiznfcoPyqNXbY9dzDGyRFLxtZhqgb6PRH5VCkf2b3KDXKc+yVsv8v9WpW0zkVKltdW7YudAuD5bYqlCo0L3sB2X6VtDM767ukzn3wVL7xyzH1GzUTvxqUYMJ7/HyA0TCSQStBh5L/7wQqLz1mVtX7IFDvvaUApjAV/0PIfZ+CLzdfQFV1b1E3M4uaTIwqzFQM9pu1XnRp6qh1ktWwRzUO+ZA3rAjnw/+U3fgYAcQHLdEbaJyQL58GrRDnnnQ5rFJ3I9VVw5/n6k2Ej3uiUv75V4lFd0aEgN+9GQZF4vGHnAa9ITQjf7V6tMF/295Q1tcvMHs+0xsFZT9jHFBpc9J4c9drLAMGzJ6e6iMchHLey29t9JMXy84XjWQKA5Wc0Gn36/+CchjK+L6MQ/SOtm3yM4Tlzd76radlnLx1WGK/7/VR3k0X0PSfwzhqq9gVadTACmmSQTcOeZpPgGao/wuSRo+57ew/GyPaMQyAsvnL7spFXAgCQHhTugWndmGJ8wlv1OxWSB0IOkR88RiosXihRZdrROOS9GHlPYfFFu69hjfmCDgt2HY22hbtmO3nQyemgnmK1MV9Uzkg0d2vMu/77/OAw62M8qxFPPRyvakRo3PTVUj2uMD/WQzJmVa/UGeneExH65/x+RyftNs55S3j5i/dBrdB3GzsR5is1sm0fzUpZwbJJBp8LxbxaufX9/l50Xo5dU1lzl1ZEI8uk2d6ssf+gCrqO5Yqsf8ansAAy2EUbgR4zANRN0ZkrkEGc5opH9vhHDZjIBPuTzrq1XUJXIdEaF0MPk5rxPJIrg8EZgQLjlKe9r9GcYLz799vC8+U6KDSztrQ0WtyNK0ftiucppqsavcu0g91H6GIwkqp1M+xuXv1GuK07Hf98JcX+eS9Kc/BA4tBQqgo5rbhAP/GPqXP+JiIxJHZsfp/0O+/qoN9kbB0Nb1+ys77t8Z4TeGcOtc/94mFEUPCSdKWFqqFxcJ6x8nQnV58hazZbSZAy4kUzFt5HSbKTcmCbxBwdxMigdW2CiXAMUeHhbGz8O9ckKZz/e7ak0RjULpWR9kuk/RDDLSO86XrDfQ+gJXyZ6aARaenFHDNLvNa5MkMHooagVcD7fnA2RmurdmmhxuYIppE4Coh4MA845iVWfXBWkeJUy3YON2wee0BOsHklRtoHsm2mJECgrsXXh41LlFPzFMNj867Gwftq6JmFIU40moIUjXlrppamYbamUTcMoqltvNul1QHXInQR0lhI+UIAyNdtX8km9zeE0TPz+szW/TGkB8o1fLU2DYqOQu+yN4TjjcinqWRHbkR0HDwXeEUgAwiZxvBNW37usAMAgK0P0/vNWwJxJJBIcj4BwOiYrYHZdNF0VaPMgL2HbAplQvQbHIUDXv9YDn426oQ6gnkaMkX1yrOWofWhNIDDskaFZIzVJbD2lHcuo+N0jO1bNdUIDnyfgIlCxcBcGHquZzATanK3iOQM3nMC77hRVVB9n/IxLW8Jq07D0dOWrQjxpHLRSzIqUSc64LjZe9g/fAuXRLEyr1F0ZION3Z2AIhZLfr+5zd2vPk2OKepP0f/AKlq3fP51eLrpHmqmeGYnBBUS1NWpCigf+mdoXwx/HB+J0d4skYMeGC429l6m66KKCtPjnYDbaHCfdoW0eGI7fjmNtbSEbMevjLY/1EIyNI6lUosAMD9GD3jUtOmOeQR9kCC9bpu9xpTDZxy9Lu31sw9SPA1FRRhOa0TNW16LYrEKGEmhgOp7+sBL1IHVfYyI3Pov0ApwdsQg3ZWFVjp+7sVIRwBGguxvM3ZC6PQFW2i2KxM9B6qmb0Jq3aJGJW5Oa+7WaO76wnreVRje509A1nqcMbfXPRnXyLshhh4I8fLpqMZkXZL7AcOzDBW+vedCGv4qJbpmydCqS7jicpRT4BILQ90T6R63grTGtmhH0IWI5m26yfFQKaCxV6J/jp4rXYT3ku81G3YgpBAHgM5136sC+IZJIFxFSIlPgBrT4rlx10ICHd7OUHgvHfQth1LqMog3sQJQHhZVUEopAL8K4McATAD8bWPMk0qpkwB+A8AREJL508aYX/2WOzRwhSeTJagbZD1Moh0lLkDUDUBY2T84n2HsU9UBXjwQrN+ZYr7cRbbjDXE0Kx3uPprVQTGud2kGPS8R9X2OoHPVp0f697eDY+HipGxGM2LSZjs56lRjbgvT2X6NZFRhcJr2394s0brUR4sbZooKdScL+yKsZgAA7D5Mxzr+KB1f58/JQhuRyx4f9deuSoBqWTklrCr1FBPJzRTFSokqtw/6NAKUcRFzMiIHIHOyvB3A0yxzIbc5N8g7vvN7sqaQDDTWP0rh6P7njyLvAfV30w4aaYkHlnbxgw99EQDw+d2H8fzmBnXy0tUIqKV5hcG/06HBfEGJZi+ge9kf3/A0p8jstVgD1p6qXV7fRJTOks1IUoxosu5TU9wN3NqyHeP2HKXhL1uefz/vEGvmTDScjY9rlxdnJ96+KpBewoATl45yVNWdqyZ0ADnNnamlfSjatKqTz4hcAfP8YUbOqkH9H+58FVxTIY+D+/3F59RNQIuivKNiBzA4ZdFCt2ofdSvLoSUMMD83AILOYoA6i3XpyRrvJpz5PSfwxsYPGmN2XuO9HwXxYN8P4KMA/i/7uwTw31iH0AXwhFLqc8aY5153T1oBGT2hddNH43peojEvPaulpYWWEDjpAGTBafFSiToCWtdsNVUp9F4eufSQqg3KduKonocnEyQTg/Z1/wRGg5lv019uY7Z+u7RRS3L/KE/FoCor1r5PUbaeFdAzz3tUdhLossbiK3ZlYfcjjb4eTDE5Z61HpDAUTJOTx8kqdf/cW74o94W41laFec+zPSZj4veRDxL/qQug90LsiNqyHXr3MFsnI2pY5L73HBUCTEZGYvtDHpITFb7DeL4CqPMjbH6NEsVRBlTvGwOlpaYep3hyv4VTLdre6fYuXnjq/B0NP+CNASOAsgNLXWGPl9MLbCybWyEiZe0pT6oH0ConmhmXdgCAyVriIMCZmFeuySv3ViTbmiCzee/hWbLWMq+f7deu8ZCN+YKl3+ZU1mTDz2nJmFplsMpg9P/4uEKVWZlHwNWIuGaSTMImR6MAqDDlIoOj2PIEsVFkmG62Qzd759FmANt0qCK5shO0FPHUYLakyPjzR4W/kM5VVwZlSwdQZ8lYOjylsHDRfHt6Wd5zAm97fArAbxhjDIAvK6UWWUUHAOtqDpVSz4P0M1/fCdhRHF3wlBAAjJ2tnD8HQjZEAGgJxInku0l3yZjrMf2uO1lQH4imRFs9PEmvNXfsQymJuESrviprNG9MMF9hR0BInPRA6vCWmK2TUWaa68lR+nznUoFaCN5Q7jhyncLRrETdSqHm3hDNjnprwA6gEFrpraeawWSOZsalpVRFiJuxLa4nExMgjWRBMxkRDxAX8KI5dW43RGQci4eaeWmGDxIEpHVzhvHxposOizapvXHqCQCKWy2YI7abdqYRXW2hWrNeZUD34F/+m4+4zzciH3Wybq9MYUUzoLbTYnTURo6WkGy+xIgwex1XPOKJjw8ImTJHJzQY1snph67Qm5ZKYP1zClEhSA5Ny60Edj9gazyWh6i1VQfayksvcZ+A317VUA4Zw9TnUkoxMKL2dUaB5d0IugoNf2DwOcAX0Xh2UGFu6U4Oi+PMFzQWLnjvz6mc4UlRTxJzwW1fHGNrm5iA65jmnazHSNqUsklCR6Pjfp7MV4xL0y2+EsKf7+p4zwl8y2EA/JEi2sV/LIWV7TgOQLZXsliyKz8ppU4D+CCAr9xpB0qpvwvg7wJAlvRgssQ5gFoIwM+X08Dwt68Ljv2GxvA+ejrZAXDkbRKNZGsIoy20bpIjirXbR75MT1PvkrAEMkLq56hFbYKNv+Tg17MCZZc+w01dbPzzxRRVQ7v00PhUB3WsAtw0ACeOXrZiZDc9BnR0rov+WcmmSr85Wk8uNFE1vaFjvh2G9lWZxviIIKT7RI3lpyJnDHLhTJIRbV8iM1RlnGHQBVFeMz1wOoqsQDrt6+CBVlgkThTSsQmEVM4+ct39ffNzpK5XTkUVXAxVhQgW2Bo0F7PrmD7DqxzXuGUZKlV1CN1jZ6U0RgCw97BdKWyHKRhOb5Uiwt193F+b9hWR07bQ1uY2H3AmiOiA0XGNqAj7DNJBFTSAAd74571DqQoVNlBxWko6sHnXkxVyEbq5JYOTCqNTNH+5BiahxaqmqJuHLrwHYkfOq6wIlKvnXD4jfTo3fXOblPWUqajGfok61a6wrkogXwodAAAsvizQRqJmN127S2bPvJcOeiPjk8aYG0qpdQCfU0q9YIz5onj/Tgs0d1mVUh0A/x+A/8oYM7jDZ2Edy6cBoNc7YYrVNganbbHUbp1FuJ3o9U2rPcxi1rVxRpyUo8qAvMo0BDKoSX/vP9IN9rH07Eh8xl9WTssUq1YOUvQcAJTeqRuJa+7ZfbSLpRcmyBdl/lREkpYUj1NZnI9nBScAGNtUAgDnACRaqOh6Y8XC7JxeWPrUDeB/WwskFuXDuPxU5M5bGSqmcuQ+WaNrLIuX8lxlFAyQkW/frJ3hSofEACsbmLbvB3hK/NhfeQL/+nO+rMSLLdl8F/zNnDH2XMtWyMypXUFYFDwLg2oiCqjiutUpFeYZQQMA2x8UKRMAZQNYf4os3eRIGsARdz5UQ5f0f/tKiNvvvDpFnUbY/LANEgYIhOeZDO3mD4g030zj6L/x5xrlnik07+mgtmE0nUssekR0Bc/HYwgUcLiRiutb7etz6NKgd5G8x3SjgTJTgYObLSu3+uHiuFzFyXvDjpSVxrI9EzZU1sY5qLKpgEJ0sWsKgtgBDU9QfwnX8RYvUOCRCe4kCbG+q+M9J/D6wxhzw/7eUkp9BsB3A5BO4DXFkpVSCcgB/HNjzO++kf2pqnYdvWycp2skvM6dq51rudMCSAAoYzA70g6WoflC4trbo9GcGqTsOHigHWwfIH2C3Eb40Zyay+I9etrKZZuKYdBEpBDNvJOp2ilUabD3fp+y2Xuk5bo/Ve0RRoAnzpL7j2dwGsW6IBlB1jZm414+QJVe9WoLJjIO457tKLeUX/8rFGVHv7AJyyOgYWkAACAASURBVMiPq1/yt+fM7x4gX/XQV6as3nlUHN+xAqtfIWvPKSc+VknqBRDEcLKhsfQSPe3Xvz9F0vfom2gK/I0f8QvAz3z+o0BikG0KI930ME+jgKiWRXZ6jWsCjQNgtgTEHPnb4rdMmUjYZjKmY2YiuemyDgqZygDrT9r3VjSKlncA+w/QRkf32Wu1WKFz2S8hFi9UGJyMsP6Et8oH5zPXKMeoJCVWIrJ7mWGy7GSMsoVtS9HMqmV87ryikU1lcg5VDStqk3JKLBSdmRyzK1UBC+V90d/kbHmlwl3XtNKieyGN/Kzj5x1DtDnA4ePhwSlW1rJQdViPYEJF+Qwnk9oh4FRpEOXG2QYuxt+NcS/QRtwdrNQdhlKqbYu6UEq1AfxVAN889LHfB/AfKRofA9A3xty0qKF/CuB5Y8w/fKP7rKPwdCTrIEAOIDhGcw+48bs02AG81jjzuwfB/1Kz4N0+JA8T4B0Aj3wxzEUvvfxtyE2/Q4dcjdxpsAN4rcEO4J06lHljP29oW1QT/R2l1AtKqeeVUh9XSi0rpT6nlHrZ/l4Sn/8lpdQrSqkXlVJ/7a2ew7fzSd4A8Bmy54gB/KYx5g+UUv85ABhj/hGAz4Lgoa+AIKJ/x373kwD+QwDPKKWetq/9fWPMZ19vhyZSyHsR0kGN/Qd8U47krwEARAqqrDE74qPv6brPVTD3OkDpDDWvsP/ognttvqACXpJIFGFREwqhWKNwlnLiAsu9O0GdJW4lwDhqF5XpkAPGRCTQPTzht6ELT2sBhCinsgUMW1HAXc+rAAAolkt0LkgJQfq996+O+9dEznv1VbqIF3+SchMnvpDj0k9q8NImPohcnnd2rEB2I8HILh56F02QDqhjylVztLv3PosN/3F6YRnArU1/nf/Go0+jMgpP7RIvRWPHYtJ9tgvRIwPMLd22SmvUOwmSfghdkoXhRl9Eb4qK4FLcXa4EmPOe4YqtnQqzRS+GzqmQkVjLXvrPDBb/lP7mVUD3lchuzwR49vatGjuP0xzUeYhQ40SppBgBROPamDj1ZTQv5wivbmT6R6ZjUjt/50vhyifbC0NbNmCMyZdduqU4Nk7FTFd8MV06AK63SApoXZLkKOBXELzSkLUVeRwAyVrmXRU0v01XdLDKbG/VTlCHFdM8wu0uhe93v1nsVwH8gTHmJ5VSKYh55O8D+Lwx5leUUr8I4BcB/IJS6n0AfgbAIwCOAfhjpdQDb0Vs/tvmBIwxFwE8dofX/5H42wD4uTt85s9w53rBGxr7D0RYed5fi85zO5ifWETS92iFqtNw/D/D0xaJYxu0Zmt+LcoQfS7yAcDwVOQQJPHUYLqaOhqFeFwCWrnGNMAWS3fJENcZWd3hff4JkTl0aSQA3wkshU6kk2BIID9wqiLxkuIhAfQ3CuWI9ssOoCHpGQSUcGL1fItluja9VyNsf1AjX6cn7OJPK3ReiYntFEB8ztdC1IhyD72LwkHKwqPNcR88QsffOz7AD554GS8NfUfWo++74f6+OKKK8OYXrINyxG30O/v+HUxmKaIWHVtdRmhdF04nBVaePUzIFsILpcjMwXkVFGPLTAV1jIkVQGmLdML17xUO9cQU7c4cxV+3TJy7bXSfSdAU0W7/jPew0tBN123Kho1/TOR6PNKzQ1TP9QKjPj6qHM1G0bTNbnZkV+gaM84eID1leS4kM+q/k4xut2hSKlRCTuuYHJc0zrL/Y7YCtG/4XDwXduU8lmytnN7h+xHNDfWHcE3JGIdEYvinXIFJB6Arg+lKJGo+dVC7kOf0tsddcgJKqR6A7wPwtwHAGJMDyJVSnwLwA/Zjvw7gCwB+AYSs/C1jzBzAJaXUK6B0+5+/2X3fU2t6ZhE99VkKS1g4HgCSgymmxyk6b+zljmgNgOPeCdTD7Gvz5ZRetzd795EIVeYFPtIDhZXnCsevX6cR+mdT9C77QjMAt+/ZcgRV+QgICHVUGTfO+VZVmwD/3NwOESHxlKJtGZXNl2uf57OhYmvFOqEVoPkHvcC4BV241virhA78xo/XaD/bQG7tdOcV+iJH5dnLXex+D1mzxa/SNR0LqN7knH86P/rQRQDA1//8Affa7/3F4+7vI0cPsD9tYes5og2NTkygn29T8QZEwDb57gkWe3Quk1mK2iikL5EHzHbDIvbiyxWqNKRQ3v7RGbJn6fPJx/cwf2LZOUxzo4l+F2jdtLlno5Dt1W6bNUtSi5XSwsv+74M4g35gioNNWqooDVQtYNQKaxDS+HP0H08AKLFtA2TnB6hr+m5+oQs0jGMb1UXIs8QwXCkIVGUabduMx8X2iVDyMhpYuODhuLryzwAHJjLnLZFJ0dxgeEoH55LtGwwtX1Tb+3J7vAaV6HlgYRe+N6oOnTM7D1nQZYfTGBjkgk6ai94O+luFTmF0NLKNfHc3ga+AN4MOWlVKfV38/+lDaMmzALYB/DOl1GMAngDwXwLYsJB52FQ5R0zHAXxZfJ+RlW963FNOQBc1sltjh0gZPup1GiPBz9M/R0aAo45kXMNECpM1ASG1zTN1rIIHp7UJDO8DUpEiHx1LPO66IOoHFl1nWuf5otAtTvzyOBkTZ4oTxbY4bZ7EZabQEpF/2i9RNtMAptjcMQ4yeuvjwOILGniBvMLUXoKi7fPURpByda7S/jlCW34ywfC0QblBTqz9bAONA6DxVbuSuFVi96E4aHxa/VMOAQ0mRwVaZM1AD2IYIez99T9/wDmQcmcJWQMoHqT02+ZLFPknlusHL7WRCBqH6UfHgFEYC0ho/VIXyPx1BYDmtm3Espdt91F/rI+cvOmgCBd2V/B9f/1pfO7Fh+joV3P0nvLb5oLjbFlEnCVQNj2HfrZnnNNL+grzry1j2SKQZstELcGFa3Ym7LDLZig8r2qgttF29CF6Y3qTXkgKFRjcKiMHwvOwa2Gvjb7gKWqmmK2IpqmTERpWynO6ptC9IinHmTNI6AUIGHI6pG5gWRhefr5A/6zlFrI9BU3LZlsn5CgkVUVrM8xUlE0dROjNnco5Au5IZuQYEPIByaAnGdE1dnDlDnVG86qOnxW5r7s13gTqaOcwY8KhEQP4EIC/Z4z5ilLqV0Gpn9fc9R1ee0vrknvKCZhYI1+j2cG0CgDhkaP89hQAL1+rVGO6DnSu0f/sAACahGXm6ZdHJ23UYg1P61aILmH0iHQ6eS8KIiopEOOac+xLqg5poqPCoOho19dQtSJkB14zYXSiETysG18GgBoHgkysse/FtZdfyHHz4yk6ooGpcWDcNRmeMcRg+iJdnKXn6cTnq944Hv9T3yE2Od5youH5gkIkslCqAOqGQbZF73/jsw+iIWkI7Cbrbb/tZOiPO5oBwwcLqIiOtZsVGI8bqF+gSLuOwu5ujlQlNLBOlKNSaAwMXpqdReeK/TyAPzn3uHsIVv+iRvvGFJMNOh7m5ZFpEBOsNIhxtWvZOPtnGkQ4GPHx0G9Og5ko7DE47ACGZwSp4MUe6kaNpO+/kD/ga1XtJyiQ4Y5hAI6+AgDGR6x8qL0fZQvOAQDA8os2Eg80l6MAdQP4VWqUE8KGV8i6IDEhTulIR8kjSG3awMxF60oFNQouADOip8puh0YzuohSWCokgjO398C4czHhyiCgqng74+7WBK4BuGaMYTjc74CcwCY30CqljgLYEp+/I7LyzY57ywloOIbLWAhWN/oUBXAXLEARNucUp+tA+6Z/QPtnYoda4ELXzNbk4xECGoI6DScYTzwpHF/HHqLHDoD3rWrQJBUTPu8pF1nx98bHQ5EXHvHUBFh0frCOf1EIhFTG8bhvfiSFLn3T0srTofh6+7pCOqjRvh4KkydDb1gnx30YdiAa0eqUYJ2TY6LTVBC8qDqEPNYJUHRrpPuicC5WWINH6MK2l+hYaqOQvOxrKekIllbYpvM00NytULRFyiMGelYzIZrVSAeei6hKFXoiT240UDYjZ+iz/Rp7D2m35J9tVIgmOqg7FG3tqKGzfVKQ41VdVJOxZDI3IOzUlp3LPIe0CFbaV/15TD9A1yC+TOc/XwFa4pFnneiDs5ZVdoWcEHfWpiOge0lwVp0nzybrUXIQuZ/XYuhdrSApy+tEIZrXTjwJCFNRyZi0r6XKHZRyfQHN7Zr0rPv+XlSZDo5H1pNkmi8dGsvzZOHgOnTUrPkcNMcJOVRJxfF2x91qFjPG3FJKXVVKPWiMeRHAD4EYEp4D8B8D+BX7+/fsV34fwG8qpf4hqDB8P4CvvpV931NOgBq9KkTTCvlSisLmG3UZTppobjBb8s1jGZFNBkUyXva2toHhceWw67ftswq/O1nXARsmIWKEEWhRMU8aA+JSt+9bg84t8EXPYOWZsOi29UG/9GAq5WxPNBGJCe943e3KYeNrwOUfj7H6lEgT3EdOEADaN2xaYMPvoyEoLYpuDF0aTFZD40/7JaObbVskyekKrWuhYDjglcIAm7ri7cQU3VfWxyj7lv4ihXZlC2jt+u86um3r3HVFXa0eFaJQxL7buk4UUpEuqaMoaCLk720/Hq6ieDRvRKgTH2keNDWimY+wGZ0jI1TpYI2GaIAifBXvu2gBncs6RMEIniKO/DltZxSdr0tV2qhUfqdseXqUja/QQTFvVWNQoUqF0VU41KFL96LpJB1J04LTm+zAXku0nRsxJd2EZDwdW2cgNQ2qxM/dvEuqba7hL/ddymWmQ14jTX0I0hFIivFsr8JsOQpSWXdt3N1N/j0A/9wigy6C0JIawG8rpX4WwBUAPwUAxphnlVK/DXISJYCfeyvIIOAecwKoDaJphaoZIZpViCzJWt6Ng4aroqVsbpf+Z1rb12pTlw6galBhb/UbliBr23ILWQOy975WQIfMKwMpw2cioHuVvj86plHHfsXBUe3olP880xIATMompPMOTUJdGOiy9kXumuoFZduf3MrTnp6aC9xMr8DnIWGn8oFrbZYYH40DorH2dbJMtz7WCorMDI10RpYhu9f8Z2SBWlVAVMEVMyfngO43/QeWX6gxWdPB9ZVF9eatKapmjLLri+ppv3IUHEU3Qf+soPm2xnzxFTJkJlXYeTT2cMeNGqbvO2+jPJwjUU4RMxc83YpB0Fwcbvbi/6MZoI3QSuiF1yIZU/2JP181QmRNPDPQhc9zz5kGRKTjFi+I1dsxyw4rcvR5V4UMreMwss0OPHkfzws27hXoWnAtYb5gNSLs9bmNZLAySMbGUXIABF+VOX8+JoCuxXRFobXNtY4Kg1P+4ueicY6vkURHNQ5ql6+PZjXaN2rX2yL1ON7uuJu0EcaYpwHcqW7wQ6/x+V8G8Mtvd7/3lBMwkUK+kEAXBsoY5F1/elFuHEshG0jJKCkn1cKlKkhzyBXCqT+0NNRiaSxz8szmycaGVwG82jCxLzgCPmqUhq21VaB82Yf+LIIC+IeM0R7tmwbxzDiUhU4M0kENVfh9jI9nLtVVNBUOHvLbY5rn9i0fRNSxcvlcfihbok7SuVE6mgtdkNwmACy9VOLgbPya4F6jQ2QM5ZllNKwCPvmTv6+hy9IJxdcxpVwkbTA7YQDIFxuI5hXiiT+XeFrB2D6NqhmhtVNh92FLpZGxNm0I5x2fsRoMzyWAEfWgUwY6V96p2W5YIxy87OqNx4CKBHy3RsCoGs185JsOFKC8MT88ojkZRoZxcqrDrVi3qCbDo3uViqyRu1YqQJnxkGSAJoar6cQz4zUtAKdhMT7q52XZVE7PQRd0f10PRUZ05S6yt0FYtnt7gAR4egnulM524BwAwBQjdDz7D7IAjkhPRcql8fhzTKpYtuKguTESqeK3Pb4Ni4t/1+OecgJUALLef1phftIWx6yBbTHDp20/lzJ/EilB+qpWt/aAfnpXfIJSmbClvmpGwf+AJ5TbeawRYLthiBueIzJ2JokQh5dqUpMN+g47Ij0HoHzkPl1R6F4zrqYwWYvovMThNESPQ50q9C76NNZkA+i9apwmMYufs/F3aS1GbcyNcwAAGTamC7713S33mnu/8rUWZUJCNsorG1eoy/ZJtIcZWH30KRqaBE1zNDcoeqlbtemCGvMaO9677z3qrfLe+/mYxEriQDlECjcyLT8hWGIF1XPrhk3R2ZUhc/GUwvA3RLqKI3eGYQ5OadcoR1w/MscOgoUK2KekvKhjun5syJNJjbKhgmvdue7/YeM/XwrJA/m+D0/a1ZLh8wz1kKerCtPVGGtPi96aVCPbtai5VKNsRkHeXbKOciDAq6QopxQsay2o2pBAj8jPSwGfdOjhsumwDlbyrVuMorDXJlIBq6jRQHNrjkLoesuI/a5F7yac69+p455yAiZWmC/GaN+Y4eABX0DkLsfeFX/3i5Z2k1YWVps7OfS8wtEvkeWuWjGMVi5fDAB67qNLNli8uqhjDZ3XOLifrHY8CREl0YyXt6JILYph0+UI40No3zoKm7sWLlfon7bKYVamkpvKdBn2FZgY2H7MP0ALF+xx2Aiye4V5Z5h5lY2ML7bKDstoVrlzjscldh7zYTAvx0uBlpKRcdkCupdDhIwuhbym4mtA2x+dsKsQQfNdpeLLhgrBzhikyqmEAcD+Iz2oCtj9gP24AuqshrIkbq0bxMzJKYrGwADas1fGM6B/XtRzVv5/9t401rIsKxP79pnuueMb472Yp5yzsrMqqQlc5QIK4caAgJYNdMvYjYW71RKttmVbBvzHkm0k5LaQG1kyXRI24AYDthsDNt00U1FQXUNWVmYNOcWQMb94L9787nTm7R9rr73XvhFJVWa8aqKC2FIo3rvv3jPdc9bwrW99iwxg9y0xtFw0XHVvukwnntBoyXis7TWVA3R04BMG3Pm5n1sHGjD+LB43mCyHnsCb1AHi75O7m/NB5GWXbKz4Xuvc0RgLOq9WhKlLA9ldb7ymR8Dd73VCstUWdtQ+zNIyDK2Dc86hymE7QekCjbJLTCFWaY1EhgTAqs46QUDtGd/EnKfE/Mcn3U3opuYdrgTFO+wTeGDXQ+UE7ne1t4qv/aZHC4ArNPOSEeFf9yWF0u61ZmmYf53X7NB3Wfe4198fuPUQ6I89lE7gzvspOrU69sZe8TBtYIY+VlDUlhyYaDqvUXcE9W1jjLrrQrTxSZdl5IMAc1dzTx+o7IforhsevxniwlGK1WIR0b/EVot7sJDmLznNGa1olN7S6yYDWIpQpT5kIouX3JHaJLTj3WeA/jV1lzYLw0FNaIZ+J/L4ZIcy/SwzAGgX1cYTbYuTB0Zbnht75i6aLMjURMpe4I3p3HuCokaJiyvtGt7sUHvx3O09FtlIfPnLJUYnY4xO0gaKHtFVVeO6X7s3Q9RC06ZOqE+Czz0WheYd02RWd4UEyeXIwVuGUMBwX5OYTMBcutZe430vnHHIztvJiusADmp3f6iKrqmEWNqi45VVOvlacPbH0FrVVt49Xqek2im5+R4bzsQ/UiZb3gM8mpFf4wZLXm76mpBv1sDcW3QQ2WIIHfjNZqWY/sUqu67+pZDs3U0qAByMKDOhKnUQK0OjXDDWyqeIHuZ6lAk8YKtuAXtPBG5whZyx2nGF4CoFkAq6XaAw91ZhU9A6jSzuHe1nngPYf5wsmveAzEUeviuZNftPmNdN1+zSK8qTzC36xOhg498khPcvvsHMpsCDjhLD15+sCryzcf0HqiEDwdEmF54XjdMYnQw9I1QnZLylFEITOayZcXk2HgenzX7Fzc9SywDNFODmKDa23JwF+DAYDyzZfdqdS7bo88O7a35xEHDNV2HhG7LNF8iJhKLgP/+mu9bJqLE8dYAKs619f1KahKrsPOA195hI+KZuAwhMncb+XaM2CAjfI1PRtRtPHA4+Og3kZ92Hk2stSyCICzLsDO9EucZkRXnNX4C7p2u4gihA+0hmpBpUA+ugDs6wMTfnHfiBER87N2/pkLra+dirNPSuVZe7gYVjUEWD6TJdO6Ywc41ishKgEt8dD7SXfSLc3wEA8ajC3mP0Ae6gl8GJvGdYG4ihtf6t2gyf53PB4SxDy/1mXw+VE2giIF+gb6V3XUYpJJLGQmntDboRZFRETS2GeSFGU5bzKep2hMmKoZexjo3EyYUDyBZDGtZh1TM1EGj0rtINmM+TwXVG1td9B5wD4HOaLgUYXKO7PFsw0fJAGha3f+4vyJZN1L2jsCjE9OYvlMgXI/uAbH6MnvyFF+mF5EB7So/ssOQYSRr0bc5OPFAsu8GdsvFEo+gpr0NaNsUNjUOROLisoSR7xBgqjNFPN/1BK/GY3s+UTHb+gcSLRcHw9ndoADUi04Ubjf1JWPEInu5M3aY+ATuUpkWvFfN0DtyJzDTVukUOXg6HB2Y0/EN3H4YZEKeGnvoWvcj3V77gDDQA5C2a1cyRdDFHtQtmHkVT0zDWYdYYeyuhLCqykr6pj3EtaHQihFbuO4zHmhrvev7ge3se5sfOndr+3lnLUCyRoeYgSjZoyiJ1mNE/2W0vO5q5D4FFHgFg4YLDisbHnQdh1p9k7Ml7au9ciPa2PjzjL9ajwvADtlq7Dc7/P1Pc+ZaOF7HxF9XecK/1b9Y2Wo4mDaBdAS9fcHcQF0UliyKfcy3sZUdhvCroZzllGlwQTfYU0i3lWB7mRuQIthxQ5C/HIG4/K+aw3tLmNaFsKmiUVERWKAd0nO11hWxZY+UL/B5q9+fCdtUJEGYNMqNlNP+FxEtpy44ytEn3WtD4D6uSsEXtitI8wlA6Jal7xFkFq0FGU43RSScfoANgfNq9X31wBP2iw4ayI2b6lclu2BDJyF86gHBKcJ1zsM4BANQnoBoRAZvD5qajcEqQAv8+Ol8DnQq9r9DFqVskmsbGRRo8gAqls8PN67a/v/hl2jgPSpGUYdk9y9ebpZ+Zkml7CzQxehYu+ZInvNi4y0EuUhkXGpgdJF8ngRU0zGZmJsxKL3TWMpqGZ5z89EiM1n6NTBh+STDITQd+S0T+UeaeQdVo6oEwFzc5qCxkCogpYwAqM/TJI0SEkl1EmU1yWBLSYj1yAg/o6t+sMV0OLfd/YDTxmetcdXyNFJZ48LRKzM3I6WwuONiqhtXL4eXz34HYiFfZugQb+dh0i0ojW8JR6lriNRBmnIjBmq09jd2n3bEsvLCJzYtLjllzrEE4DsAWzbJ+DBc+qIHhCfEw7WsvOudxh7KuILFk/t9KI9R+k1Nrr/G2J2EzhslkV6vs1WA8uHvCdf1kS25bvRs+Ds4zE/jaVj2fRVW36XiHZw17ZBQg2XfHyw+wFtdeNgZ2btPf+Jz7F0M0sYNBkqEPDzEGzRFzumMYONzZPAIwdZ/JlnwoKRWRMNcPJG0TyjnjJqbztvDRSKN10CASFNrRccFiSvxjzRYVpsuhd9+SJpa4zwV0xwqcUoRN9hEMz3fQ2qmscCIAr6ucHSQb6rnLDZpEWYYQb585/E2ibHcy4PcnTJcDzF8qbX9HutN42kUyYAEIcpVD7fO+/+y+66XxqDD8oK0mDjBdaVklxMXXyJJGWe0Nndfq7qgBgIfVuzF9GpNVAY+EPjTSW6vM+7mwq7yHzXYli9eCUkSDDoUC4KAUb/SfuKnvfLxEvJZg4YVN+1rrxBjlVTPEplTobAATQ4stjWyALIy1BFUvGdaoOoGjmM4YdYUZbaSQjlcOrZGGjDueAWBsZh3w9Q3zGS74HkE/bPyrUxkUgOkV4701PN0dO7xGOJGB6O/QgUI2rzxK7pkfvYwvv3IOANC+zQ1LZn/mu5FaRwuvzcCILQdPqQredxXmNMuWoTqAutNZxXZ0ioqzMtptEqA216OzoT1IcnRCOUjLvC6hJaWdjMX4OPUk8H1Vpwp1rjBdpS9v/yydq5wVoZq7h7XIYEh2G6c7jdc1rxrfAfAAJ0eNBqYr7sJrhZmZwXzR+DooD9JsIrqeLHMBAMNTYnviOKsOsPV8bB1kPCa1UtuxvUT3lnxOpWRFLe7v+12PCsMP6OIZolEmJ1u7H9nYp9vOukXjAgeP0ROTzwc2Xc0XFLKVBu1bximMACif8yxlonUIjFddJ25uDFbdcu+fu+hufuZyywlchZicVfbIiBy8lwzNtz9zAXgGKEwo/vLaSesAAIoci76v5y5rFlFGiqEcxU2OmEzHYO3xmIydB5/OQBpB7SSDc9EH0LRo3kIxR/sbXKbrIXH8fFljYM6fjXDVFc1nQlFU1UAxpxGJwe9l10XmbFyZFbLzQwSi/9qHfgkA8N9f/37rAABg8iRdw+BVF1WOHnP3yOIXzYAeQXzKVjXCzGD7XCg2586TrWSUOhYBQzykTIcNcTTxayh1rOyshHyBDKWFriof9uuu19h7PLT1EVXPGNmaFEGZUnkvrSsPNisJimSnMyvux0sGRmGurdHnrLkQDB9Z+4lygslsNK+U1xjGmeas0ihvY3yU+17kMTOkqbwMiWEzKdcxe9+F5eEaf7ejb8A2/w2vh84J6ICMQlDDwxDl4n6AcOKcwN5T7qmRUEi2YjpojVOIxwShlKboV/YiurnM/c034nRVNAZJ+eA9hekRoC+knKUDKLsUwYyN5n8536CcB06f3LLvKQSVJxslWLisMDX75Y5TOf2KZRcA6jSNJ/CwWhmdlx148BOzLqRC5PC0wJpPCubSXoCq487r4DGN9I7IrkyxekzTIlG3NXSgoY1UNPZjT1mTjT9TMIs+MbrYAGy/QG/+e9/+pwCAX3n9w9YBAMCra0cRrkxRTd3T/8SZdawvCM91u2+Nf2LwcG6iKuecA6DjMedpILayo5AtBoiMMQ5qytr4eLWBb6RIHC+Wx+DoepbNRftxEt/jYzTNTmZaVVtZzJ5hN86qZhvRmlhDC9ZXY7qdbWPclI6VC6rFIKAGLp7NYOo5nKHmC77YXT4gsgLPmQgL7cE5rhZGG2DnIQkSUn6FqapciwhKbTMs1s/iIMLKRYgx2VIGpuqSwlp2ntKg1jWBxd7HUniUCTx4S4mO15Ef1uhAuY5GdVuuNQAAIABJREFUptV1TOp8roV83sE48VhbZka6FWB41hc9k6qgfHPbh9gYUBlBda+5z6a7GnWCu6Iit2/6v2OK2Op2gN6/v4b/7rHfse//H65/j/154XN0Qx/5khALE2l5fFAhPoAV0yoHMbKFEMOTbv9BKYS/WEtI8MU9ITBNNZbRCSn/LLR3auWkfAvYYjEARGOirtZt4SBTwbI6oIsZj4ThFUNlmNK78176zPd8+Es4le7iJxe+BAD4yX/rS/ih13/UfrY04y55HgEAXLy+iv68kcn+03kM4JxS8iaw95jPgKnaGt2bPsVTShgArls8G5ARlxCMVBOZu+LONSiB0bHABg/xGAZ7o99ZY4cNY3tbIx8E9r5RNUXubITKnss6AYJ9dADUqWEy3fId6nSFomP+bqyirlENnawqpEPXrEV6UtqL/EvRb8HGnzOEsq0Q5q4wzs+lnVhW+8VlPs+DM2aE51rjFaO1lKQ2S84YliMjVUNZIt/zo66yDgDwmUP3tbR+J0NlHtj1cDkB0A0QD0lJlJdWdEOw8FjVDjFdjqzh4yJcE5EMQ9H3ufzzF7QtDIeFHzlbHXiBterIGdPWLmHssuhX9BXGJw2Fc1t5+PrBUonFL8Ye6+Da1SP4j67+JwCA554gb/TmZw3McYaOoWeioMlKhGTUWGZImAUIsxrb7xENbguwaSw7HylpYBVKzbWTNYKpYZk05pnrXQmsw9h6b2AdAGAMlIaFMACg7siuH4VoT9AGpz7souqZ2Q0RMDrX4G9+2yv2tU5Q4H/bfwYA8Dtr1N219S9Jd6MPchx7HyjsAc2/2AJAjjMeaxycU1j4kNGl+BBQvLkM1Ib6aQbWy+xEaiE1pj4iMz0pEc5ZGRu7OlGeHAIgWFjaV8EsewoY+1i4jJTZOEvaZ1AIrSHznUmqtISbbJBhjFg+r9Da1TZQWrhIPRU+gUJkdXMEJTG/v4mBaOJUR1OTOeaCQCFJAq0DgpasFpRS1gEAwJ33BxbS5AyM6yOzOl1NTLRchpLyQeAZ52hCo09Hp3D465vfBzxcTkBpSkObVmBG4fn0zukRejJoCIVLjbsbTu0QmvD+7b8hblhRnMwXjOHnL1/xzAB3HDTJi37mlHV81FH72AEAQPYC3eE8CJ4/40kWd1yU/8bnzwJwGUOT0ISq3SdNZ3JBxoSFvgBgfKJlDVUx8OmoK1+kp3h0UrAvJB1QkV4/F5oB/76XGcPxT1fYedKpiJb9e3ygkfCKuuvvEuutunS9pPJm91qAV56g0P1HT7+EX3jpO91nb1IFvSvev/veCijp2M+d28Deiyc8GmQ4BQ7+jLx6dtQI2W27Y0w3XdMbHxtjy9kRqr2wHlSYkTPlCV+8nyZU9vsYG8bOeFV5ncvJvukfkddKCzZWRNks1wGiTGO6pDy2EEDaTADVC6bL7h6Pptoqz8rF59Ta1YgnGrWVrlZob2tPB+rgrMPig5Kcnx0KE5u6gtlf0Q9MH4N4jkSNQxp/XuEUODhPP8uaFhMBJIQq5c2ToaFBG+eQ7taYrIaW2svHzPLvAHD5rivx7tYjOOgBW03kJGxZiiEoNeJxY/XOAXpguFgq9egB4Pa/Tf9z52J84Aw5gLs9v6abl4uJ/BCODMSQbvuRYr4AvP+jF/CF6xSWPHmMotA3XzrjnQevoAS6X2jbQSxNpBEP3YPTWadz4Gwm3SYBudFxsgpRrj2jLhuQlr5CDiCcVpi7SE//8Fwb1oorivj4gePiocxqssUAg+v02R3jiEpR2PYi2QJICtczwcworwtX0vsUOTn58Kv/wLGifuGP/6Y5/hmjbbY/OUafO3fONYjsPVNj5fNGoO648jKgeMzZkzsEmaUVA3df8PdRdhzE0TU0xGTYoEqVaQI08OQkwOhYaIkAOqTrYedNdM3gFGEoue4EOGYSNyHWLXIQkckekiFtk+GXoqs88gI3Ed6tUmqOz06yu7ehDUqgf80RGUbHFfq3tL1XqRZn3st9H8qxneR9kIwaQLlsO6g0xmY4zuAtF/Fz4MT752JxbM/Zr7sxZZQhKzm+s3+z9Agch7I0gEdw0IO1vA5g4K7Ue3bd5QA+ethH9OAudgBvu2aCxq/VFMMO4K/DkpPR7rVmxxdyV639/MLdEfnDsoL6L/+77OAGfKcDOAfwTbO+yQ73XuuhenKrNrDzbIC5yyYNN8WoyZEIYamdPo4mTFLihqNjIWxXz0IBdYLA/tFWG52rEeauCunnVFkGiaqAwY0GuEF/OzgToOwCxYJjFcmU8UPvvwgA+Peedrj2//Un32Z/bu0qL3PIDJ4+eK9jB+1/dclivezIGKOfHFFepD46HniY/tHPUWgWDR0mND7dtYaLYR87CKX2HUDdAfaXFDrr7rWNDxhxMVOEDHJJK3Tvq9qwM5UB+n8W/qDtuJcWX5thUf2LFWQmOg/bDMOIYmUPKPv0+tJzdM0OctrgztV5mwUAjmnDRjmofDhq9zmN9rryrt/kOJCytLUCemt3C65JSeV83lGI6wRQjUK2Sp8JMoWgdO/tX3MYP2czViPIyGkwjZN1gLjZron9jLWYA7q3lR1gdOTLRouqx1lQ4DUsNpGizlrRGyA1ocZHSXqdGwEHN4ibb7n+5rJKDSrJdOIaAUf87Z3Gk3ZuDWmug9x/KmYzyEyCYSeGmpJR49XwmMnW2nPbL7v+7IPDWocJBymlQgBfAHBLa/39SqlFAL8J4CyAqwB+RGu9a977MwB+AiQb9Y+01n/wbvf7UDmBeKRx9DMlgsrxmQFgeDJGHStf42chQNsMmak6AfJFIN00OvnXUozO0lO4/IpC1SYONgDq2mwpm1bvvK/G4IbCwRlRAGs7amFj+gM++sHXAQDrU8JKPnfBTZEb3BBGzOCY4/Pujv2BF76Ef71xFgA5AMBBKJMVRbx+cYNL7NcOTTcP1N7jKXo3S0SmgDs+3TXbccdftR2EpUMDn+XubwC8mQdasG+kQWZ2kDROUnKCH2z5vw7hORgpvsa9G1VXFLF3lS2uWtVIY7R3vrKMwXsc/jH3ZugdC1M2pXGYHqHeAABo2jXG54BwZKZnFco5ALhZDjLy14GoERQa+XzgsVGCAujcMDpSyxo6MgSBHYV8wVckLXuOYKAjMqqssNrau1sZcyLmA7R2zXU3Ha1VShg9O4HOHY3hGeVBJjpw2k5VqqifZEjPSGeDonbuzI0yYgBJhs74mLuH5i9VqFuBHZZUdgKvy57ut8BjCEnmUWV0m2RA4DW6iWSK54V07vjsq7JL39s3SkEUwGGzg/5TAK8D4ArjTwP4Y631zymlftr8/lNKqWcB/G0A7wENmf8jpdSTj2YMm6U0EE3IGhRGA4hnyXLUVaUk58tdsp3NGnNvhV4zCXcYV20e7WeYK7nG3jONNe7xboit591AjNFpnxvfOqCf159zQPnGsI/BIj3to7co1Gfjnz1FkfrzZ6gydra7g//vzffYz8aZQnfNbyirOxQOAI6lxNCYHepinEDvZolsKUK2RBsoBoRdS1aLpxPEEr+Pu8whXvc5dkGhZn6n/zmKtZj/20T+Xh/FLqy6JDNPhucFXTXS6NwS+j+iIF/PN1CN8grf1R863mRkXmejHFQUqXMR314D7m8qAu/ckj0yzqznZOmO4pyC2rFXpksBGXWRSUlMfu6K+yBnlh0xelQrWCoud7+yBAogNJtA0+MWXxcZ4NEA/VtO7rmJFaaLTkK8ShX617UXuUtnJqXL6SQp8mYGTphrlO3QG1yz9FV34euUHABH/sWcQnvLUUxtv8HADz7suYfUc8OOvbXv18qkthVnw1I6on/Tt4dhqW0Huzzm+1qG/XYYSyl1EsD3gWYG/+fm5R8E8B3m518B8EkAP2Ve/w2tdQ7gilLqEoAPAfjMu9n3Q+cEdAAMz5AV46YmrXzhrnhkUnbBZIB22UM+r7yHTWre3/r2BNFQoYi5+uXvPx4S60Maop1vLTDZWbC/Z5sdBBkdW/+K4Zivuv09d8ZRI/7kxhOI3mp7kMxkZcbwiH3ZCVKCq17ONdg1jjCfi9Fd1x7dr+oC5cBAOYVCccJt8Ge+7fcBAP/vnefta81599nXXz6LaOSYTwCQHzE6MOPAK/rynFwb+Zu7TxqiSER7+0+xdoI52Up5DmBygv7Ok8IAIBTdxfEz+8DanA0CijkyHpxp5PN0DIzxZydKhPsRdCwurviRjT+voKLImWEg6zClRIHwl/NvmetiFDarVmCvQWezQZhpW4wNC40w15h7y5wj9wMIWYXZ7mOlXRbSv9kYcoSBl4xjl7pOkrlDsJG2EM30SITWXm0niwWVRlA5+eY6pZGOtRg7CgCToxRJFX3qEeCCc3uLBs8ziaCOFSYr7gTS3QbprtPkyhf9DmZ5Ha2Sr6jpZYvKQmPRlMgQ/PewcA5AHuv9LgV4yqX3uf4nAP8ViNnMa1VrfRsAtNa3lVJMTj8B4LPifTfNa+9qPVROQAcKVZsaasbH/fmr6aaLSKuUGl24C7jaDdDadToui6+XaO2QNeKMYLpiBscv0ZuCOTKUJRJ0boWWEZPsU0TDkEK2CiS3EuBp2l62SeHx/Bv08BR9YHy6wZHHHQB6dXcRjQmVyq+SBZP8exmpc+QvtYiqDqx0A0AjFXsXHYU0W1R2UEuU+e+tehrBfoyf+h7XnLZRzuGDC9cAAL/y6ofx9LENvP7yWTquA5/Bka2ygN3dq5lp2+dmJ+kExsfgG+FI/NwolF2gnKfv4NhjhPnf+apr3IifcfjG5KANvFAgvWwkq1Pa33TV7R8g489LR9r1UJgsYHDZfVdRpl1vSE1MLDuv+QgZYjkdqy808RmWGItmPp57rRXNtuasREcK2aLrF9EKCMrGwjP5fIgm9tlE0VRbw84Rt722DX33kpEDEP0XIMq0VBXtX89Rt0IbLNSgRj+ZLSQjJwvRxApV1wkzagXMXXNWXCvaN48SrePwLqVUCRe1doDuRoXhSV/CHXBBhOy0J9o3/ZzuEilEzqMOKjdOVjq/+15fv4roslLqC+L3T2itPwEASqnvB3BHa/2SUuo7vo5t3esE3rU3eqicQNUFNj4You42iIbKPlAWVxW2qe44jLG1q63eEL0RyBfI6HORb3TS4IsjDX0ig7pNlnjpDYViALQ3Ha1N1UC6aaCnDqWxzSXyEp19ggQknJPsBNj/PFnl5H3EQWTjD7guZIAMl9S26eyZ7YuHJFttEBhsvh7QgzB+n7NM8RXnRVQ1E0mby/CPf+eH7GtBCdSPU8U0vNjBxYvnMG8K4eOTPqWyf9ldZJbQsM5Y+XRapYF8ScAf3RrhboRaaAkF3RLNrmnuMpPfem/RdzF8axXTY4ImGADZ1YFt8sI55wAA0vwZndGI9wWMo4HOFXfxWNqCro357k/T7/MXtNdjoGqNpq28oTSyBtK/bgy2oFrKgT3sAAByAHUaerMsWrsVRifcsenQecvOnRrpDhCNaRujkwkVnu1ULROhCyMlWUq1obBaaCTTKHoB0pKhFdpva1+okh5zU9XiMdFDGYJJdxvkc4GdoZDuaeSD0DqtJiIHmc8bGnHPD9K4MY2Lyd2NyuzfXW+ewgaYZ5mddUUZXv+m/91w1sINa7Kr+LDWO8gEtrTWH3ibv30EwA8opb4XQApgoJT6ZwA2lFLHTBZwDABXpG4CkK1vJwGs4V2uh8oJ6ACouw3a6yQZzEa/Tow0A+uUNEAqUvvWQYM6DZAaTaGt59v+NlvOkHXWFZI325brzmms7CiW+Drpr/iGW1WOwzw+AeSnXCRaXSTjnwrDDzgMdfR8gXg9QUd85XXbRbWTUw10rFGbaFpHGkHLx0fn3u+49nuvkPOZuySKuwVssxxHveFFdwK9G47tke65yCqf84W9rDiZ7Lht3IPOTkKL8Y11u7FQGY6YDcSGTWOavqT8tMxE4gOgnHNzI9obCbFIzKGPztA5MnMLANI7wmkZSG7hPEUPB19Z8mctdBUWv3yA0Vn6gtnIrL7kDmh42jlYZvpYzHoh8ETfsoUAgysUidSpEa8Tne5yQh1H8JbcYHosKi5+mtd5bgDg0zV7azXqxDHPqpTE5iLTY8EdyCyrDnAfgSlc79bobNZo7dINsX/ezFRgzaIjIaqOGJ2pgdZBjcpw93XEAnTmfEKFpu1E53ToO6VsMaRsRlz/ekZ+3UKNiu5ZdkDtrRrZojgPc0n4Pkz3vv7w/S9dh1QT0Fr/DICfAQCTCfyXWusfU0r9YwB/F8DPmf85Pf9dAL+ulPp5UGH4CQCff7f7f6icQDQFFr8UYLrqjDevoPInF4WlFp2edFOMTrbse61csdEhkcVNwGGbkyOhR08LKh+jj8b0MLUFq0Qmc8kekOzFmJyQUYyyOjDJHt2842doo8kt8j7jUyad31OYHhXRdNIAWkHHQpkzEMW7ebLAZ+fI0L069EnvYUEGYo6YrKg6ZsavOGYduq5iadTCnP4mi7XQ7iHkv7Pxr+YM3m3YNzrSCApnxNpfbttj4BWNxdAXc51lptS/pp2+Dtd8TFIVjWj4Tjx0+5CNbWz8d26aDyxUWHzZyYusfoY8d++Kw+bqnphwNYiR7tV2YA/gM4/8Obn0//ZzzmkMBHxSdgOvgFn0DLvNfA/ZQogmFIZeE8STjNxnYvEzdzEzc4yH0jCrzQ5eEqNH+9dcgaZqh2jtlnaWdv96iToN7MyCukWBCD9TQU0UUobAtDk1i8f3/Ci/vV2hagVeg5zMbusW7LPHwQU712LgBx9KA+3tGpMjfoMoK7ZKR3l/6xuuHfRzAH5LKfUTAK4D+GEA0Fq/qpT6LQCvgbTxfvLdMoOAh8wJNJHDe6crsNO2AGDl85KxY4yPuUGbRHmia2UbFuuLR/AerMkKsRy2n3Hvl/o2rR3D5DC745ueHQVnJbzGH5iiGSYI+oJ9k1YIvkDWKX+eosxwzRkLjs4AopKqIgAETbN7dIQsc0/Q4sC1CW/t0HZ3XiVL3ALp2ttz7ygveqZzcNBZPPINv68twy/Sf0HBODQfN/3PkfpwDlCCfcO1hHRLRPcjMUkspHoOG/8oo39WYG6qkc0LjNn4N2l8WzsiUi7IQbChHr28RLWX82SxFl+mA2fjTwch4aIG0d4U05POk2Tz4V3FV46Wy57rAmZjK3s6pmIIC7ST/Qbupjky1h+L5iv5+aCi4j9TMKf9AEXfXTuL3QsqcGvXYf6t/QY6ULYLFwrYeyy1Rq+zWaPoB/bZqHOfpsyTwPjzqtYIKm2fg+5GhSZWXrNYlDe2BieZT3w/sVNoYr9IX7fo38IFkVG2lB1kMzwZIJre3Ux6KOuQh8porT8JYgFBa70N4Lve5n0/C2IS3fd6qJyADpzxSrccnr/wGrxItuwGFKVkdytlFgPfqENRAcrRFIn7LbdXtzV618zNvW7YFSaVb2Li8fMNGFTEfOh/mCCZFMDyyTFev0ba0WmXntJz33MFAPD6K2egKoVo7HZYpxpNxzgyEzmvnN61f9/ed9SgZjPF1mbqqI6rOYLbLnoNKj+SKsXAe4CHfYhrdw9DxnBQPCbDKgfBA06ZUocEGfG2u1dDL2vgCE9KW/DnANe8xEZ7uuwLnI2PM7QhPivkDJKhm8gFUKE4zIFinrbbuRWgc0ejc4eVLAu0tqaeFKhuiZm7gxRVJ8REjBfVCghYpZZpxYVGMmrQ3vHZPS0xmYvwah/+aGJlgwjLQDIfaRsKpy38KuWxXto7NfJBiNFxOUXOzX/QM3pIAA2S4Ws9OhFgdKJlHWg8pG2yUyp7AZpYWScUZkC6U1oj3oQKQdHYWcO8AuuEFMJaI9mjF+pOhNGJxJ5nlGlbYJ8u0Txlru01MQ3s4UCNs/St5/3InyU+pu+nk6wn5EVW/uyQzJ7+2p303wzroXICUPQQplvAkS86nHZ0KvWMQZUGCEqNOiYjIkdHVl2KKrioXLfMDb7uHl7J9aboRNnUtmorT6unta/Rv5YhX3KeZfe9wHevEttmVCf405eftX/LxuTFLn/pHL2w1HhaQfmieehGIhNZcFlEGDSohm5fYU2FaqZOhqYozA+UNahSGVXSOkXR146wPGrw5+P0++JXjZFXZOB5QhXr7EsqY1g45zA2n5cjIZORyJQY/jaGb7oUoLve2C7VwGhEsUopw3+zToQXj8lkeEg6AICMZN1SGFxx1zNbcSlRMR+i/9YYddtlWcVAjCrV8GiZycjN8eWCrYx8ZwuVYa5tDaKJfMVRns8rcX4dOOpoUDYAQrR33BuSUWOVSRkaYZoqQOc6Mv0Jg2vkAGRDpTRwCxemqDoRauEEo4m2AnBMew3NIKeqHaJuhza4SrcLVG03iUyHVCguFltIdnJbCwkLYgwxLMmriR1Ey9eAlVBJXM9JaXPGwO9XVzuoVr4B7cLAoWcCfxXr4XIC73DpGWiwHNz7fY8W7iKlzV67e+m9P1q0ZqWPHy23kh1fw0pSRgE/q3sg10Pw1T5UToDZQYOXNJokxGQ19v7GUU4xUJieEUNk9knznjVnACAU+jft7QZhwZ2bjT9RaS6giNRGLbRdfk88bpAtJzaN3nkmwHueuYK3RhSmvHr1OFb/3EVX+bxCHROFFSD2SvbsFI2Rmg6mBmYS0b8uQmzcpKaHaD8E5mqEY7fNREgr8OKCaOt9uyg/v+BBYPmiO8HObdPMJkb34cQUuE14wuJXzVlrTXr1UDYDAJzOC0DXXcpNcBYidfSh3etl10BRwi6QSqw5TpPBcdoPUNYhezYAYO85Ch3bt0KUPaAytNkKQOd6aAeiMIWyaTkPx3MZADJQO8/1LDwWVNqyagADceQ+fk/wBnP3AyTDxtPV5+JvE/kNgKqhaFlClsxGAqg2NXe19qdx3amsw+F5GlJfR4n50TzboLfmCrmo3T6661T0ZEirHMTmOCWdWFuKatUJUC/G9nq1DhqPGquDBDpUaO1xs45G1QkxXaXMlDMEmYnoEFbfqFhx6encqxENjjGQWN1SqFrK65kp+n5RvntBNqkcnuVWzTc/HvRQOYF4CBz7FDWJ6MCl0NOl0FMvTA408kVfNyXdJqYNLzZ6vetUCI1NJ6UO6EGxOPNBQzivuK+CUjQGHQu92atBBWz86ln7++MXpsgXa/vwpDsaw5OBxXoXPrKBOQC3x07+oH9FAVfo6ejcabD28YaMP4gfHm9HzlAZ3Xc3kNyc73tcDeH5733T/vz61grKS/OoB0ZaegAsHB0Cr5Jqmz4zQfJVB5EcnIMV7KOJbP4DJmUB9t5P1jsd0MHpV/tobzhcm9lDMvrLjrisY/6Ck8wGHEzkNRKFDueeHAWK5doypSZnGwTCOXau08+dDcGFPx5icKMyx05/5+g0qLVXH4mmDXQQWJyf61G1mJkQCoNft4BpK7DGKd31HYKUJWbpjOEJ0ekqpKd7txvULWWNsA6Vn3EYmELVktblqMRx0ZgxrI7SGU1qu718MUIdK0fZnA9Rdt08gyYC6oFC2SUTkgxpMD0b8bIbQCt4DWjxpEHZYzE92rZyu0e6UwsWU4BizsGy0SiyRfRiQOw8W1/R3MQnnKvoneH7xNKojxxS1qrxTprFHtj1DXUCSqmrAIYgaZtqtllCKaUA/BMA3wtgAuDHtdZfNH/7XwFwJ91zX8/+glqjtVuh7Ic0fNx81+2dGuG0QbZMp5stKsQHfsEzzF23ZZg5rZZkRBGNZPR0NmtHjYsVwhJO2ZKLWaKxJRQMmGhCESM7pdEpssocYY1OKbQ/4hRDqzrA3qiD9KboMhVCWTtPB0jXAk+CIfQzbBpCLgxrsVJite3A/te3XEFgeG0OiDXCIW1w8MQu9ra7wFHa6MKfdZAt+V3LLPI2XVIYXJeRK1EEZYdmOshRv2lC9YhqET3TeMZFaUvbVD7sVKWkTy+NfhPBbxoKBb0XgOqWaL9JB8vzotPbxmGaQ5XF0zB3Hb2qITaLLZJDQTUaqcHd2XFzw1A89rtRZ78HwI9O5XtnZc8jISEBuDqKNwFux0XHjZF34Olcg6uVl8VQluJTGuOpc0LRpAaUskVurSjSZs2sqk2sMduJHJHUhKSxTpccYWJwvaKRrpw5aBq2wzORecqf7X/I/Zkf0YSuFW8/hssSOnc0potOt4hpr/wMMJ3UFqFDQxAw36MM/u5nKejDlI34K1v/JjKB79Rab73N3/5dUKPDEwA+DOB/Mf8DwC8D+J8B/OrXuyMdAGXfiERNRUPQ2hDTE317AwczEWQ08aPY9p3Sbmd0whgE87xFmcb+OUEn7QGl4MJXHZ97DhDMxPo6HSNfzBFyYyYycZfp5FSNqAqx1HXVzf2XjtgbPCiBvccDa4RrQxflaVhc+PQKunAyzwBw6rT7OtZ3qBBS7dAGFfwO4skri5i/7QwmZ0h87dJN6qPgNV12hoc/w5HY0r9OMDydAKE7F8DvnpZ1Gc4Q5i86hkxYaI9frrTjfYc5RepsXKfPZEjfFDx8080sp2VFU8E+utOg6PmjCXXkpBn4nIu+T8XkVSfKy4TYwDFsAdC+2PC2N++eCy0dg2TIRBlJVLSFjlW+GInPu6gYAA7ORKhbQPe24O1HQGaOvb9WeVnI7pNkIeeuiu0Lo1z0fF2noCInyOyuJgSgnNLrdidC6wBWyloHxpmY6D05IKdjn8WIgjam+EZTknvnBrCiDwtd8f1k6bO5P8I0KOk5tIQDRYXvewn+3fd65ATue/0ggF/VWmsAn1VKzXObtNb6U0qps+9oa9rx8tM119Cz9QG6M3c/RKHB3MuJn8ZpSqc5GsuWY/swVS0/iu7eJqfBNz9z2KXRDXP3mSYGgkqhbexuvqB8RDIAVr7vBi6/edweSycpceVNooxGw1C2AFhnwV2zbLBzp0+HoASmQor62IkdbLxG0f73fewlAMClEVnzdZADiPf8aJgzH1ZHZXpmZxPY+KAz9KzJD1CkNl1iNWq6AAAgAElEQVQO7IMPmOYxw4IZnnasJMBEzi1X/wB8h8LNfXZEYqa9LGBWkhoAJmIaVetSCh26Rr0mcfLRcrucWQUVdZMyzl/OTOfqbPqa/ICBisxboqkmQyghq4pYR3wtABp/CAA6Uh5l1MsiOGIWkfb4qMLYCLT1bzHUyTx8ctBs+BxTyn0XsnlqdMwEN7U8PzebOlsIvIl1AMFrfK37RG6z90mdwBuXyQwtyfcPC+2CiYWQBO/M8xrmvo4Qw6lSOG4qmrykZlJQ+XWhwnSN2znLtxo0EWzfwKGuR07gay4N4F8ppTSAf8qCSWKdgB3HAsCp4d2+n522v0pT13e+44x9betjJfoLBBY3H59gfHkOC6+ZNDKgcXx9gwU3rQB3XhBGMXO0R45o2ECxwWA8eHiu8SLpuYs0j8AOAwFw4keu2L//2uO/DQD4w9NkpF8an8OL26fx2NOkC3Hrk6c8iqWqaUYBs3FUDZRzrh1/4cltDCcpzi3QU5FVMX7h6d8Anqa/vzg9h9/beB5vvuyuTXSPITAto2dXJzQ0R8Jh8xd8w2+PrSGDKhuRpkLet7tGmZOkcEa5P6yc3uc7EY6o+e9sDILSNxJVW3kQzF0S0SBHwA6bqb4HZ2l785cav9CrqPgshdCicWU1/7nDXFIpi4EbqcjXjEkDs1O1yk5wV+Zkg5idxmyP/j454uBNwB/aDpAD6F1338Xc1RpNqDzDLwMF1rpiJxNlGtvvccPduR/E6/4Wu8wWDVwzdX8L8pn3iqbDJiCnx9Da/AX/WuRzlN2y061jhXzOrw9xXUuHNC7TjrMsCCKy/Soj49DNM5qYfgw7flLUqe5rPaoJfF3rI1rrNSOB+odKqTe01p8Sf79XheYduVal1N8H8PcBII0GaF/dRfbMcUxWY2x8t5wW4h6G8WUiimtx9v1r7r0Hp0OLwTaxYSgYJ5CZB6ltjGRYOIExANTEpRUWXjHYakDF3sIwWZ78kQsAgN88/8cAgF/cfxzvS6/hREQW65f3PoIbn3baUFEFYm2ICBZa2d9Z9bJ7zgGdP/zEy/bnH5h7GevVADdKAsr/x5e+G00RIp46B9gRLrfDQnir7qvZe0wIoMUEMbDhK7vKkyfwRPpiZeWjAQdvyOEhMtLmoiNHj62Dxop/AQTZFX3l4eqyp8HWFLru/yZxGDBfM4briIHjmts2PhB4Bn3wlvlc6o5hvNKynbFSxdIej5AMYWhIGv8mVGiExj8vm5VsuiJ1tuDu2fY29xnQ78x249cj0wciReny+cBG1Cy+xo6xiRQ6m7U1nDvPmJrC48LBC1lu3q/MeOOx+77DnGA2Zno1ERBPtXXwvH/F3dknAprKZnbH0I4ciCSdjA5cQ2eYmf4ds22tgEwMH+LvgCHhOg2QDwILy8ns5n7XI3bQ11ha6zXz/x2l1G+DBh9IJ3Dfangmu/gEAPQHJ3V2ip7ovScVog2yPtWA5I0nl8j4d2/STdC75SxItiS6PoUhC43xtw93ix5IfpCh6aacHnMdvIuvhPZhLHoB9p5yN92TvQ082V7HE5/8cfva0SVnwDdfPOqJrHFaX3XM06L849GxRjNX4ejA4Syf3jyPDyxTgvUPX/s7eHJxE5+5fM7+PbmV2MyBpzfJYe6TFWWhFtUYR2gMeZjROEZ+ALvrjYeLN5GTSeD/7TD1jj86M8zoPTJNl3LC46MBerca1KJpKB75EIU3VCZ1x8z7VbXIBEyhWRYGg5LURQFXUGZIJZ/3ZR24SY0L4bPYslb0fUnHFtROtyconQw1n1Nngw62u0YNhSy1TOcqz5NmM8jBR+NTge3a5nPeeu7eciYsOMjXqH+jxviY+zLmL2psvxdINwScJqC7yapPmABMV64516mR0Z4cNeedE7TH+H1ngyJ1/j0ZE+FCduoHorOei7s2OxSwI2kGBfZ7jSYzDY7cZd1y51J1FCZHQ/v+w1n6ERz0ly2lVBdAoLUemp//HQD/7czbfhfAP1RK/QaoILzPQxTezSrmFK59b0yDXUQhdO5Vw60XZxsWwMFpeiGoKGqT4lqMMVYdM9Zv0X02W1QW0th9L9196S3aVmuPxKts1FJoAMrqGP36pz5iZZ55bb/Ztsc2a/ybxC/qcvrJYxzDTKFcdtHfxev0FF65RvBSOIzwGSzbqE5H2pv9iobOXxZLZTRMEafDtYuez3ppEmXlOayMMWPkMw9jMYDl5PNqHTSepkuUaRth9wzuLY9HRnw6pGiUH+rRKf+98cjUUMTlttpOuFvriKEQvhbpLmn3cBTbhDBdtW57sv+CIZbZYS88YpEzD/45KDS6a0Li+0AGJWT9JEOoailbtOZ7dfcZcW67Ph00yH02kmR07T1m6LGCbXTsL9zFI3hGWZG2ZAjsPqnstWPHLgMcTyxPA5NVJSA+7QUL++eNYxTXUsMZfTuzoaRtZQvKqwPIa8wZJEO1OiTNJM5yJis0cIZncsjP3tfSeOQEvsZaBfDbxAJFBODXtdb/Uin1DwBAa/2LAH4fRA+9BAJc/mP+sFLq/wCNVltWSt0E8N9orX/p69kxz6Dt3PSpY7GIAHTgR4xFX3kFUQm/TI65bbbXFUbnndVSnQrBnRZKM5hl+auNbcQBKM1WFRDvu4c52feLzYCLZJp4BvqBMfjCuEVCk79paTS7LVwcmi4soxjKc3GVhjf4PSgUyp6LfgHS+OcHqU7oYePrUAzoAeKHPjbUPcsXl5pnsc++Aui6slNItwEE/kSo1m6FYuAzYxgCyBYDT7yvNpEnF3/DnBwAp/mtfSDdqXDnW1wIHE2dcQacoaBrQf/ztQwLvykuU+Ts5TnWiatDMCzUXXdfTphpizlzo5WnMiuuTbpdWhmG6UqMznqBYo4DE211eORxt0zk3dmscetj7sDiERnckOGT0PSrGIfNzoqP3Tp1Cc0NndNpItK8Ykrn9nMByr7GPrN7jZZVKGW9Ra2HgyCun5RdGnq/f843/rLXI6zccxBP3CjKMDc05w7X34iuyt+rvL6ACSRERhlU/ncoKdb3vb750aBvnBPQWr8F4L33eP0Xxc8awE++zef/zjvd51x/gu/52Bfx5//s/QB8PrmM3uRg87plbkATkFnqpfm/if3B5vkHx4gBlIZSqccxjv2Fm+W6/axpMBLFSACoOybtvxF4qpxs9PlYdUCCdLxYL58HxTexiWQUPwBMYzIPQqIRb0dehNW+44xAuqvtAwkAUELeF4RZy/kJ7S1Nhq/lsiTAZ8V4SpCCzcKYt6TXAm5/8bBC2Y+sk+DGorC8d3Q5PEVf3OCq0PvZrZAv0G2cGt58Z/3eESM0ZSslGz5TuBw/61Kb9ErLGi5mMsXmeKdLynPeEdeFxDnLyD2otJeZyHMHyPDb1wuNfDG2EFpQOfiJz6O93SAUcNHiq2672y80aN9yPH3qqBUZnnmdWUWAX7TPF4DcMHYAYtdIaqtqgGRfedm0hNU6m5TBSQKEhKN6t2vUscLS6/SGshtgdNztf+6txmWUDTGFOPKv2soqwgL0rIa5g9TqhLI+fq7zOUXigKJ+MX+5BIwjTW+/jbjUu1iP+gQewPUnV58EPjpEtk93f/eNGGFhooHZJiP48rTA3Y1VqiZDzO/XAMosQrrurMvtj2q01w2t0Mzqbe04RgvBL4bLbpqdihmdIoZ8dACjy+6Mf9UWMEJt1C/N31vbNNPYnVuA7i3Xcdo2Cp4YwVBhSdSODXRyUNuIs25R1K4DYl7o0Mn08rFLyqGdXyuw153ngOUv0c8MWUQCr5Uy1AdnyErIYijj54BzGnuPC8NaOufSvlOi6oTWsI6OG2kNsT+IyJthJtmXIN+bmi7squt6EyRMpkNnWDh76Nxp7PmPjwYeZEH7ctemuyEMsKB2AkahUzB+yo4yM33VzGcMW+gozU7YfsGvP/B9yswn+/0DXv9DNk9FcGnUZY2j6gIHjwWeIS0W3fHPvx6gMIEOkwk4I5qsuObKJqGo/+BU6HoQFHUPd+5wpM/FbS7kMqxDb69bPgW0TqkZzZtMdtRNPQsqIN52kh6dO9SpzNc3vS/u4cx65AQerHVQpBDQPbpvxG/7XsB3Cg/9+hr3qjTkwN246Wzz2aHOaX3AFjuAt1uzcN07XVJl9pt9dTb9a2Wb1sySGSmAu/iAs0PfJQkA8J3oA7e0BupvfjzooXICulI2A2i/Fdt0VMd3t4p7FLPAb3SROCfLDtvi7LUOAnHVWHRuumKw2jWFpuXvT2mHxTYxSSVYLNRQGGXmUHUErbHtsxnKPn3WagMV9I+NNlP0+jdNW35CY/sYVlGNoc4pZu4oaOVG8wHUUGVHcRa8XfewDk/eW1Z7/wlTB3mWI3WHCQPUAKQDxwBi6uTwtPM43dtC6jhhBo2hji4qr5C5f54uqtRmyhbceUQZHbfUipGRL2cBy59KzO+aGCoiYvaauYzx52uZzwPZcmDZRDqgY+TiaZ3A6yDeN/0IfA51omzxvOwG3vfEMxskHMbS2wCQrdTIVoDFLzv4sS8kO+5lPEdHxbn0KLrmTKG9Q+yl8TGXaQB+oDT/uvt8b40uHtNndeg7ADtDQhyGpNo2CRXMJ8uudtVE7ruc1aDSSmFw3XmU1voIjZH0Hp3uIt2tbYbYRMRCawmWlg7dNb31nXPAS3ddnne3HmUCD+ZKr8ZId1xzTHwAMy+Vfp8dlGILgyLaZacQFkAxr20BSEcExTBEEuQKTazRWZPcdzgqJ+v1m4lnTUxCV1ys7qzPwD0NHZvsrK1TUWNoTHPMhjAkU6diOrhWQMeBEyMbA5mQFwhqM62Km824G9c8fDyYJTSGrLtRE1VPFN/isbt+k2PuQW9tK5QDNzkMIKYUL66btISoWCkyinyOMPWeGRgeFr4R6q5rjFeVLRzzNZXFXtnzUKVmlq6Bf8IpGT+7vTVNTU4CEiJn6LBmwElZRBmdq60p8XcoCo1Sr4cdp2uo851YlGl7n9h9CWcsHcDeU4Z5JQTh2AEA1Lw4a/ibWKGI+bgAaP/8k6G2lFOG6bijOj4wA4dMEBQP6fthTB/wjbqqyYHLZjvAQUz5HDGNGgF5TRclq8Ac04hhOF/5NsodLZvrInXH3Rwyk1WN9hrvmlhhfCyw9018aBRRPHICD9pShUJ6NbYSDS1BR6xEpB9NZorGXBQW77Hc9oH2OoDDifmb+O7jsUJpHpb2HT/alGJmAEjpULv3TJeBqqeR7IubuHafKwZEa7TZiSYjzMyTdIeocGxY88UInbUck+Mtcx6ms5I3X9ODmbPB0ArFnOiNIEarm9/aCzwefzFQnnFQtZ/hDy67n1kegSM0lluQkXYhip/zlzWqlh/B1Q2sw+IGtpHoLJEGXFU0D9lSYLWvRVSnNHBINre1t925DU+GxKgxRlvSUQFyAJ11iM9Ss5Wsc7T2nOUujPYOZ32D69RTwdnF8IzIWkzGJOm7k2Pu53RLIV8Aurf4ldDoCZnfzG5lj0su9HT43mZWmCxmA8DeE3dTNvs3G+rkgWEaFY0nmSExectuC905pXuNzRrjETl4O/S98TW22BklcoDSwFFM21tOcbSYi5Atu5PTAdDaFcFGpNDEymMIyd6Newn7vaul4Sm/3s9SSp0C6aQdBYWcn9Ba/xOl1CKA3wRwFsBVAD+itd41n/kZAD8Bqnz9I631H7ybfT9UTkAnGtMzJbKVEAuvBZi/5O5oqcW+95h/2qqBZ9TlgzT/hjKGmn5n4y3hHgnXaGVE3OQDKIZkR1NySDLK4+IuHad/U7XXKbWtWXdmm4wUZw7Mtx5cd8ybfCmx25+smI5eJhG1lIfnc4YhHWD/mrZCZXYiVsHFT4LZOPoPSsfnp4Ym7UEcgC9xoLSLfpMDmoMrceWwdPUG3jeLioU5fJZI7g+ZL/tmJvGMLMXU0D5Zl0hmNcOTdw+FPzhn9pfN6EYZgyizm8LM7gWA/o3SnDfLevu1FWZRSe68nGonC8eU2fnd0XICG4vo2Q5i5Rd2ix5RniVLjRlmgLvGsv9FVe7e50xT7n901D03HBik20LJNFaAMbzpHv195SV6OHaf6njP1fCsOc4FupbdayHmrrjzHxnn0d1wVOTpsshoBfMq2a+hZ2ii46Ohza60osDCTv+bqTu8+6UBfWg1gQrAf6G1/qJSqg/gJaXUHwL4cQB/rLX+OaXUTwP4aQA/pZR6FsDfBvAeAMcB/JFS6sl3M3D+oXICaBSUkYcICuDgNN0Fux+f4sRvBtg/T6c7fNrcuGZQTP9y4IlQpbtOh4QNSNl3X3Z73U+D65bA5M2AGnnDt3ackVWVaVoRDyxnEQDQLBeABjoXTCQfm+zDbL/sASXEQBwTOTLdL91t/JtcUyrOBiLM/KYhK6Fgbh2CohrUJtWPxjV0qCwNs3WgUSek6wI4lUrAUQpzw/AJC4re4ikbFIIsOCpLt0uk28D4uHlalY9ls4FsBCwgDWFns8HoaGAzh5aRB2dIwnZFs8NWfr3HGkimupbwht6oiuZJyO8yyvVdRXG+dgdnybrzUJ0o056abd0KUHaV1xwnO5IBZ6A2P2RE7aa08/YGBQp8HzHNtS/0gqYic2ntaUxWlZ8Nd0TfgLkHWFwPoO+PRdxmJTy08pldnfXCbNN5OdUA/Zule/+oxMF5OuCw1KgEZMPG/+in+bUGVUdZBhff1511s73QDb2Xs0IAWIgpMjM/RscTRFOnQNq7TUEQf29V65CcgMahFYZNk+xt8/NQKfU6SEftB0H9UgDwK6Ah9D9lXv8NrXUO4IpS6hJIkeEz73TfD5UTCHNg7iLdKLsfd097+pU2tp+F9/CxAwDArDvvgWTjPznREOd6271fYpU2tTT3VTFPUYvtmjVRKWumBJUPF9Wp3xGcXqaNc9TGaXLNlLuIsGgjNWQpn7xYkpdhljCj6Jr3yRCBdASyFrLyxcJzUPlC5B2vVhSFcedvtqRccbgxkInQr6nagW2cC0qNzmbjSTFbBwC6btFEY3xMPKSBi0Y760T7Y0VTgKJnjgg5wuei4r00YiREoiNyClwEr1PqGuZh7Ow8pCrqLKMsGTaeoJ2cqka05MBzIqmYAawDZRvLeDZxLgICdgCAi8zHJ0RWVcLOCObvQFJU65Yr8HKNSYquxRN9l9w192roUHk9D6ohBzV/SdwsCoimZrJYSt+pLASPTqX2u2cYickARz+tDI7vcHs6D+loXBpSy/qDJklqK1XeEMTGTqC9U2NyJLSZX9lWXvaWbh9a9P4NqQkY9eQXAHwOwCqrKGitbxsdNoAcxGfFx1h88x2vh8oJ8Hr8Ry4CAL76R0/Y11QNnP2+K/b3SRVj6/dPAjD1gjYwPunu4KrrbpTOLcldJwVFa3hietgYgmBddX4Y6pQiSoldS02W/VUTFW+6fS+9Wrk5BpqOj422DqnwKg0TlHuIGMdm56NDwsD59XgMbxh8EwHzl0oLVSjzfy1GLELMD1YaNrvg37m4qxrShGHoTTWEWXPh1mkK0baGZxJb2+DPAz4EIR0zNdlpL+uRuDRj+ZKlohVsUb8ckOGUwoEI3N/ZoUt4StYPVEPzCmQRUsobh7n26in8GQmHOUaaQtUJ7H3R2aix+2RotYDaW/Q3vo94gHyduoPPB874K62JlWTePzylPOfOkKUcfRkWomitjTH1MH/33q6Zvlb23f7rVmAnkfFITs5kdODf85wh5PNmspi5hvx/lVJtRTaoyfGwyajBdIk+y45KFqHzOQUd0o1VJ3QvycwFykluSOG++15fvxNYVkp9Qfz+iXuoKkMp1QPwfwP4z7TWB+rtZ3ff6w/vyiM9VE6g6TWYfGSML7x+Fumt2MPtz/+ty6gaQ3+r6OaaHBMPq2Bd1J0G6ZbPd+bhHmXHx4p1wJEJH4R5v4AdPHErVic1wXDvOqf1tXmvRrYQ2ohyfJQopxLPlS30YUGiZLIztOw5mKd3gzF982dNRpaNi6qB4cnYQjY86ITHAJIIm4NA6pigJYZ0dKCQiNS8Tlxj3XQpQHdd2+izCamhiaUTqpSK5AzLzGZJ7ADYiIa5j6GXXapBcORv5+kKI5wPlC0OW6PITibwCQMBN9iJEUg+6wT2nHl1bzcWwuK/y2OU9wFF+6HdRjzRtkEKgIeJV21/mzze0eL+jRFoY0Ot/EKtLGDzkg7AavPMSIEnBuvPjKPlRr5ZMgQHCfmCDwfx4lqBjOCHJ51RrzqUwUrosolcD4XXKX5aAQg96Gp0zG23mCcYlqnArX2fKdW9TefA85p1eFhOQL8TJ7A1O1lxdimlYpAD+DWt9T83L2/wjBWl1DEAfBXuW3yT10PlBHStUBxQNJAcAMF3Uph0dp6wi8jk/VfeINpFS0jlcqcvAIRTga3ykA6pWy+KhaysyOMlbdot1TJnGmaamavODgBwD9dYDEdJ9t1nwgxIZjjUsvmoGFDNgaGvsqdQdtzvQQNPljcZGn68MRCy+MbnrUOn/qkMj54NYTx1Pwel9qSA0x0yZkw/DUv4XaqarhMbNn6dnUQ+R3RQhmCyRV+FlCM9OcdYh67TWJuovGfqFgdnAk/rpbWr0dr15YtbewJWMtuXEXGduHoMR9E824HOxb2XIR6O/uV1A2DmVZtrZ7Yp5wu09h37h6Nevg9VY6AnYc8kt16bIEAaU9YTAhx9ks9NNX5hWXZx04f9CLqJzfUVMtkMxwBGfiR1dTjehlzSUFcpybNL5k4ypO0NEXkOAArorTfYeVpkYeIZy+d9Km7ZDSi44azqllRQvI+lARySlLQZtftLAF7XWv+8+NPvAvi7AH7O/P874vVfV0r9PKgw/ASAz7+bfT9UTkBVCslmjHQLCL7DVRDTkJ6wz738uH2tteWsiZVphtAiN/dJ1fabs8KconKLtRo+vYweZXQ5OW6atrp0Qy+87IPK3dsNwUfGOHBDkYyqJPsoLMgwpHtmIPggxOikX5gGnCEtO7By0ACRGWQPAmCkGJhdMRMkhSWgKzEQPDA1DzZoMhLSQP+Gm0tbthWSkTNk2QJR/qSaY9V2/Rt1QtdT0lW9oSIzA8OZAWMj9NBIcpj9t/Y0osxFhekOMUr4ePhzUtlUNp5ZdklgotNKe0N0GHaS37c3UOha7SAMYyyTfTr4bCnypnrxz97ozEYjNMe4e0qhs+7fF3yNaPuGkcUjFGsqYjPcxpkjf1903STUZqJkwbLxhO940pfIjOJxY4OJ2MBC2YK7vzPZGS2K77zkd6s0Ofn5y7W9HlxUP/r5wjsWPsaVL0rhvgbTI6Ywz3OJR0LosdGIxnTtD54aAF/E4azDqwl8BMB/COArSqlXzGv/Ncj4/5ZS6icAXAfww7Rb/apS6rcAvAZiFv3ku2EGAQ+ZE+A1fD4Hdrr48BNXAQAvvki1gQBA9zp3RIqHvedupsHj+6g+uehFnLJYxTejhGdksbD3fev40JFr9vffu/AcylGCpc+5N/VvuBnGjMWzmFZY+FmHHRoyddBIuldjeMJ9dfOXtM0c5i9T38BEDucQEEz3dmPxXzp2ilbZ8EbZTKai3UNVJ8orclYdgwuz4UzJGEkZ7SZ0BVrGieVA8KrjjH6642cpTWIMPtsvwIwkFIcXuQBzukzbkMVR1ThqIOsSMRygQ1/8jnSSFAZmktjkSOhF7pwZyJqD7AMJM+dD564Z6uO6odpWftTe2hMwC7jL1anP8vFt/Q23r7/19z6JX/7MRwEAy5+l+4f7A+qWgeGYkGAjfT4231gFtUY8FJF7rLw6EMOc8njCaQPVcKecMbRjSZd1Nw47AK5xNBH88ZG5/z3mC7AOAKDonSnGfK2aZEZugx2agXn8KXfazjPm+2myMlPVv++lD5Md9Be4N84PAN/1Np/5WQA/e7/7fiidwNstdgBvt+ZP7f+lf//rvGbHGcrO1kfLX+wAeKnKN8CHh0k//IsdwAO5NKAPr0/gr2w9VE5ARxrFkRI/9j6Cxv7PCy8AAKLjE7Q/1XOwQwq09tyIxhq+Awg+tov606Q50d7UHj66f9aMjRSZQvkxh6987/FXsVX28HsXnrOvHfuTCMmBiAgBpFsUwk3M4HCZJs+Oa4zH2hbqAKDquK+No9Ojn3UVyDvf4vCJ5IAi+c6G20HVDV20HSmjl0O/c3GNi7I69B1AHSsgcPizVq5YWScK42PKbjvdpaIwR+Ik3a0sfMIDX2TxdDYLaVqw092UpkxFUnSD2tF5AaoBMFRG+L27lswbl6yRoHTRbphTlzNnDFFGzWw875fxetlLINUtubArC5DSATCnPiilxo+YZS0iWZbN5g7hH/oHLgsAgO4dOkc5Q1hCWdOlgGoKUvpZyHVwFsDzCwDKaLlQzJmj/O4D4bw4Q2L4J6j8/oneWoV8LvTpxfK7Ze2rigkJ1JMgz4GO797n53Wdm3Pwa213M7gYwj3UdUgdw3+V66FyAkHUoLM4xT+//F7Urw2ApwjYb3+qR0U7tuUNdQDzTRMdhBi9toDO0/REswMAqPOxiRVGx2XrpyuiTVeAEMCPPfkiAODXLxEBoP9nBHi29rUddA0A42O0U6m7H1ROvmDnmQC9G/ASw0pMeCq7yhuQoWqgdyPDzY87w5+fdlWy8/87fW7n2Zb5PDB/qbYNNmGhAe3YIGHuOzitKI1n/DYe08Nor51QgSwGMPNe6fdsSaFYrLH0smHERCTjzM44zABo111dDMgZsbFIdun8YuEkQoFzNwlQB64eE4+1xwdnY7x/zsEAEnNPhjWKfuhBXHKuL+PoXKcBfFJAaiQY+jeYsO7j0HTOPsyiGm0zgaLnuO7sAKw4X+MXO//gZz+GY5A1gQaqbNBdM3TJfuSxawDX+QwAi6/RcfH31bQCQNQkbM3IHFveU4hF0dcyi/i/SHk4fZ0qRJk/PSzdEt3EiUIxiCw8BJDDmW3s8+jIwsDK5jBVaehIedpFYaHt9WLYiesXyYFGMtSYGBzRSfoAAA+OSURBVAG9hTcO0XA/0g56wNY4hHpxgKprNFI2iXuYLZOOkCzgaQU0qenKNJO3si+R8Q9EI5Vn/EHGv1FOvkAroHpjgN/8cwPbffs+kn/lOn6CQqNKA48JoUPl6dQnI20HfeuANGUW3jQiWYnyplFxI1Nvzd18my+0bWfoweP0udO/bYqWPWB0TNYPyAFw5lGlCtNl5RmcdMcNyVEBdalyV24TKoS5towYKfSVz1OUXhwxWU+hkOyEGJ3ma2Gw4Jlh5VyoHp0iB8BSEI0Z+MPKqBylMl1X5/T+ubfoZIKqQbRvBPQAFPMJhqdjF9VafRqOorkLurHnUgncmsXUpOGXRfXOpvaxdk1ifa19Q/ctaLseHKQcA0sazOGpgAyseKuUkXAD3Q3RIASqfmS/x/FRLl67zw+uCjyfG/b48xHx5uOhowTr0JcUkfedGwgvmGh9ZanFzDaSzWI68TOH/vVaDHRSyIW2T7pTo04D+90A/nXL50MLDQWlBkqN8SpdR87UOTiwc5zNfckB1PE/F+n2YSytD40d9Fe5Hi4nYBYzZJi2Wc5plHNAbRg6yWaEWjSDcY+A19DF8sCKphLtnycL0ogoFTCF1NgxeKJ/MeeJknHbvRxkEmVAaO71rW81N3aP8uP4Yts6AD4mpYGh6RTlSEo2yrDhp+MOgJ0Em2amW/uOL5LWxMTNPzBwA2c07JQcndEdr4SnWgckS8HF3jpxUgZ1CyiX3LCPzlroGTVm9bAT4NnOVkvnNsle88AdHZHz5oc5mpriNBeKQxouwgXAzo0MOg5QLJqspx1Qo5yRl+4ZmWpuWOLz4ZXu1cAesPu4eyyqrrsveMCPpB9OVgWl0xSkI1EsDfMaxYAnFtF/3PiVDwIr3ewuEv03MLLQcrpYWLjvh8+ZISpvkA6c1LNcoZSwaFOjF/eDAHRvWDkSE3nbax0p1KkLHvi4WIKhaikrGEjnYbI1wcSSGVfdIuqwlNVQtRPXUzUQV7X3XWVLxuivlzg469gTu4/Te/ia8T3H9222EKB3q7xLX+hQ1qNM4AFbmh6G8Wm6GeJjZJkjAPmuC72rnp8BACQfILFpXvOXS0xWI4uBT47QfNNIRLOSPWQlCwZM1dNedBllLHFt/p4FUMs52q+4NKXsOmzUzue1MhE+Q2f3oxltadc9FLK+0L9VEaQjJI6zhcATjPOYThG8+kM8Io19xoYnKxT58zHUqTNAQQWERYSAHUltuPP8bEZAvC/eX9IYQf57nbCmPB8M/cfGtYmIaskRn53GZa7R/tM9bH5A4+hf8LEptPZqJCNDWe0oj+seZdpjPEUZYewMGfF3yNenzXIVlm3iTxLrrvkNIWFeI19038v++QjzlyvsPCFweDENS3Yqc1e0lfrOqLGqSnkeMzGDpMxE/+bdBklG08XAjY8sOwHKTmDrJwAQTXz4hg7MQSu1mU0BUPZadpR1aADugmekfAoUZSP5wIjrGaiHKbQAOWSGbKuOQtWJLLQj51mMj8UIcwc95XOBcwBwvSky05DOTrKi7m9p6PoBLlx/neuhcgJNW2P0ngLJrQR4aoRixxn+zg13qoVpDJNSDfHEwUXM/QeAzffG6K77g0niiUt/g8ovuHEUOD7qHn4p8cCR43RVfOattu1q7V/jz7gHMppU2H2KDi4eNxieFtHnxRT5cmP56WVPo7WjsPIKfZ4jubEcKCImY6maYByWvVANEMmmo5DSbH74eRgPG6947GSl3cxht300btta0Wf5OkcZN0yZv3NXKm+nNrRSLtwWQNENLH48XSQ8f/dZs6uWRv9SgBGpgSDZJ/zdcue1iVzNNWFHy/UZNmJs/Gl2BNC7Zbpfk8Cr1TCVVEb+rTVHMKjn6MRkw9TWc+KRE9lWvgjki8o6nGjsZ2NVm5ydhDT3nnFvWPk8HRh3IDehQjSpLazHUh6ysU5qPIWm0auYN3Iltb4ni0kWZ5ORpmsCFxRwhlp2FVp7jb1ebLADUYfIxSjRJqGshrPE0AQIvGTmy13NHJi0t7RfVFbkRFp7ohAuajVVd2Zs3rtdGo8Kww/aUoUiBwBAvdYDk0hsi7yJUNNNZWbV0u+so8O4ejHnuPpVF9h/THmSxXIknmooypZFNB0ozF02Wimm0MjGvzJaQp01+r3s+YNQWI5YRmXFXGz55sOT9JXJXoIjL7kHZHiKfr79rcLpHakweB12f4CLbjt3aoyPuYdCB1yHMLBTRxk+vTl308fA0Xq25Ip67TuUGbgiI2VYjK1TB7HoCB4orxBt+wuENn7njqtP1BG9Zjt1TYG+f4WxYBog45QyyQFwvcMWTc1+qo7ytGq4bsPH17ndeHBFPGWIRkS8mTu+eEg7YuN/54OEAUrDLX/OV5xhSrZDpNvue60TloVw1wJwg3QAYHDBHQezz7gOAfi8etVQxCy7iqVuUwhyAHKSmmpckyCzqLiGAFAx2mL8HBSMODjSVhzP7kOwn5qQZDNkDULWilRjsg1h/LkmVKXkyDlrsPpDYlvM6ALIoTStwKtXHNp6RBF9sJYOCeqJRoGPRXOnKQcKFcknsFOozTjIQqTWcgJTLNoH0h2iRcqiXjxqrNFsWgGq1A3a5iYwlkOWzU+AcwB29oFSaK07Qfy175rHwoXKGn9VU72CdeC7t7XnlOYv0c+3v9PdnP03IvsADK5SB23njlSzdMaGO6ZD+z912TKuzhnA3occ9DH/eScF3V1306qyRWpg4kygapP88+SIYyIhEJIJK+RIeFJXEwHj1cCqvPLoSZZ5qFPSRuJrzTAV1x6SUYOwEE1KijML93etnIqoVkQblpPCZDScG4PUvV14f49GXInUqPttDM+5SrLU8w8zZ+gOnjJ6NqPAHLtGtqishDIrYEpZB8n2aRmHkQo4SjqAYhAhyhqPwSMdHi8rPLgcUwc234YNO1qGgxytmc4rJDxcWFYlMkCGFKWOUijg12RIE+7sXIrCyJfws8pQoDhmO4VOmb+LjM4raFdE7ZWZgHQAkqJ7P0sD0I8ygQdrqRqIRgEZqtCn2EmcnKmF8u/TFaGt3/g3NERAY9U2mSoXUJGOWQ0MKXBEFZa+IdABMLgmipFGaCtdcxhUtdDBxgcpZKxTYOv5yEothLU/CKTsULSb7vqQ09xrgdm+xuSIjzenu42N0oo+YeIc0TEeLqEIqa1TdYHp8Rqta4l9H++7iRSGJ52+T2sXgAKOvEgHP3ysS3RYU0OpWhSNT404bp2QkeRietkBELiie9kNoGptFVV7N6gPobfGlkNZLB0g6KwW0bDtzmXGqKbvR+r1kFSFsteJrpH7+73GZVY9I0i4mnhSEHVMgQYb6nzOQVGDC3SRxscN1JUZOGfqjlGODaXzg7fSPUeXHR2LoPT/396dhchRRWEc/3/jqNGoEEmCKw5KRhHFjYAokRhExAc3MCiigsEHIXEjCmFwwSiooD65IOiDuEaE6INECYqKS4iKJmMSFY3LBE00JmAeolGPD3VHa5bM9HR3dVd3fT8o0t11a+Ye7qRP3dvVp/jvjW909dKev0bWLYJspjR8gjT8HYr8cs2Ib0vv+ntEMbjR+4evksp/npS/3/Pw78kX98vXHRr+gDk/w83+BrNLT//p1X8zxJ492Zt+vjR8fkl2nz+B+D/ev3uyE8ThWV3TvqwX4ZmAmVmReneX+0y7Gz4YVnTBJU7DJP0CfF/Qj58J/Dppq85XhTirECM4zokcExGzJm+2d5JWpd9di18j4oJGfl9RuioJFEnSx5PVA+8GVYizCjGC47TaTFxRzczMupqTgJlZhTkJ1G7M/UC7VBXirEKM4DitBv5MwMyswjwTMDOrMCcBM7MKcxJIJL0k6bO0fZe72XO+zdGS3pa0UdIXkm6ayvFl0Gicaf8SSV+mfQ+2rve1a8J43i1pS+5nXNjaCGrTjPFMbZZKCkm1XvfeUk0Yz+WS1qXj35R0RGsjKLGI8DZqAx4C7hzn9cOB09Pjg4GvgBNrPb5sWz1xAucCq4H90/PZ7Y6joDjvBpa2u+9Fx5leOxp4g+yLljPbHUdB43lIrt2NwBPtjqMsm2cCo0gSsBB4YfS+iPgpIj5Nj38HNgJH1np8mTQQ5w3A/RHxR9q/rTU9rk+j49kpGozzEeB2RpRdLKd644yIXB1gptMBsbaKk8BY84CtEfH1RI0k9QGnAWvqOb4E6o2zH5gnaY2kdyTNLbSXjWtkPBenJYSnJc0Y98DyqCtOSRcBWyLi86I72CR1j6ek+yT9CFwF3FlgHztKpQrISVoNHDbOroGIeDU9vpJJzuIlHQS8Atw86gyjpuOLVnCcvcAM4ExgLrBC0rGR5tmtVHCcjwPLyc4Yl5MtQVzXjH5PVVFxSjoQGADOb2Z/61X0/8+IGAAGJC0DFgN3NaXjna7d61Fl2sje4LYCR03QZl+y9dNb6zm+DFsjcQKrgPm5598As9odUxHjmWvTBwy2O55mxwmcDGwDvkvbX8APwGHtjqng8TymzOPZ6s3LQSOdB2yKiKHxdqb1yKeAjRHx8FSPL5FG4lwJLEjt+oH9KG+lyrrjlHR47umlwGBhvWxcXXFGxPqImB0RfRHRBwyRfbD6cys6XYdGxnNO7ulFwKbCetlhnARGuoJRU01JR0h6PT09G7gaWLCXSwfHHF9SjcT5NHCspEHgReDaSKdXJdRInA9KWi9pHdkVUbe0rNdT1+jfbadoJM77JQ2m8TwfGHOZbFW5bISZWYV5JmBmVmFOAmZmFeYkYGZWYU4CZmYV5iRgZh0lfYN7W7pCrZb2CyVtSEXlni+6f53GVweZWUeRdA6wC3gmIk6apO0cYAWwICJ2SJodJa931WqeCZhZR4mId4Hf8q9JOk7SKkmfSHpP0glp1/XAoxGxIx3rBDCKk4B1JUlzU/G3aZKmp6WACc8araM9CSyJiDOApcBj6fV+oF/S+5I+knRB23pYUpUqIGfVERFrJb0G3AscADwbEWUu/WB1SgXjzgJezipHALB/+rcXmAPMB44C3pN0UkTsbHU/y8pJwLrZPcBaYDfZjUSsO/UAOyPi1HH2DQEfRcQeYLOkL8mSwtpWdrDMvBxk3exQ4CCyu0xNa3NfrCCRlYveLOlyyArJSTol7V5JVvsJZbfO7Ae+bUtHS8pJwLrZk8AdwHPAA23uizWJpBeAD4HjJQ1JWkR2o5hFkj4HvgAuTs3fALZL2gC8DdwWEdvb0e+y8iWi1pUkXQNcEhGXSdoH+ABYFhFvtblrZqXiJGBmVmFeDjIzqzAnATOzCnMSMDOrMCcBM7MKcxIwM6swJwEzswpzEjAzq7B/AbQosGp8iZYeAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "xds.plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Pad using a bounding box\n", "\n", "See docs for `rio.pad_box`:\n", "\n", " - [DataArray.pad_box](../rioxarray.rst#rioxarray.raster_array.RasterArray.pad_box)\n", " - [Dataset.pad_box](../rioxarray.rst#rioxarray.raster_dataset.RasterDataset.pad_box)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "xdsc = xds.rio.pad_box(\n", " minx=-7.3e+06,\n", " miny=4.99e+06,\n", " maxx=-7.2e+06,\n", " maxy=5.06e+06,\n", ")" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "nan" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xdsc.values[0, 0]" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEWCAYAAACAOivfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOy9ebRl91Xf+dm/M935zfWqVINKsy3Jo4RsbCZDB7CbYJp0GryadiA0XmY5BDI04M5KoAdnEToNAdJgnMS4vcAMJhgcAsamGRyIZVsSlqx5rnl6453PuPuPfe59T+VS1ZNcVZKqzrfWXXXvmX6/c969v/377f3d3y2qSoUKFSpUuDrhXuoOVKhQoUKFlw6VEahQoUKFqxiVEahQoUKFqxiVEahQoUKFqxiVEahQoUKFqxiVEahQoUKFqxiVEajwsoWIfFBE/vkOj/0LEfmfL0EfflhETolIX0QWLvb1K1R4qVEZgQovC4jI94vIX23fpqrvVdX/4yXsUwD8HPCtqtpS1dWLeO1vEZFHRWQoIn8uItderGtXqPBCUBmBClctRMS/wCHLQA146CK3uwj8HvDPgXngHuC3L2YbFSrsFJURqPCCISI/ISLHRKQnIo+JyLeU239aRH5XRH673HefiLxu23k/KSJPlfseFpH/rtz+auCDwNeWbpeNcvtHROT/LN/PicgfisgZEVkv3+97gf3+fhH5axH5eRFZA35aRCIR+dcicrh0+3xQROoicjPwWHnqhoj82Vf94Lbw3cBDqvpxVR0DPw28TkRedRHbqFBhR6iMQIUXBBG5BfgHwNeoahv4NuDZbYe8E/g4NsP9GPD7pVsF4Cng64EZ4H8Dfl1E9qjqI8B7gc+VbpfZczTtgF8DrgUOACPg376IW3gT8DSwC/gA8K+Am4HXAzcCe4F/oaqPA7eV58yq6jef62IisnGe108+Tx9uA+6ffFDVAfZsbnue4ytUuGS44oyAiHxYRE6LyIM7PP5/KGelD4nIxy51/64A5EAE3Coigao+q6pPbdt/r6r+rqqmmD+9BrwZoJz5HlfVQlV/G3gCuGsnjarqqqr+R1UdqmoPG8C/8UX0/7iq/pKqZsAY+CHgH6nqWnndfwl8704vpqqz53n9zPOc1gI2z9q2CbRfxP1UqPBV4YozAsBHgG/fyYEichPwfuCtqnob8GOXsF9XBFT1Sew5/TRwWkR+S0Su2XbIkW3HFsBR4BoAEXm3iHxpMlMGbgcWd9KuiDRE5FdF5JCIdIHPArMi4r3AWziy7f0S0ADu3danT5XbLyX6QOesbR2gd4nbrVDhK3DFGQFV/Sywtn2biNwgIp8SkXtF5L9s873+EPD/qOp6ee7py9zdVyRU9WOq+nWYa0Yxl8oE+ydvRMQB+4DjJfvl32GupIXS5fMgIJPLXqDZfwLcArxJVTvAN0yaeaHd3/Z+BXMr3bZt9j6jqq2dXqyMYTzf6399ntMeArbHSprADVzkAHSFCjvBFWcEngcfAn5EVe8A/inwy+X2m4Gby2Dh3SKyoxXE1QwRuUVEvllEIsydMsJcRBPcISLfXTJvfgyIgbuBJjYAnymv8wPYSmCCU8A+EQmfp+l22daGiMwDP/XV3ku5Uvl3wM+LyK6yX3tF5NtewDVa53n9y+c57RPA7SLyd0SkBvwL4AFVffSrvacKFV4orngjICIt4C3Ax0XkS8CvAnvK3T5wE/BNwLuAfy8i5wpKVthCBPwMNos+iQVYt894/wD4HmAd+J+A71bVVFUfBv5v4HPYgP8a4K+3nfdn2Ez4pIisnKPdfwPUy3bvxtw2FwM/ATwJ3F26mf4UW3FcMqjqGeDvYHGNdSxYveM4RIUKFxNyJRaVEZGDwB+q6u0i0gEeU9U95zjug8DdqvqR8vP/B/ykqn7xMnb3ioGI/DRwo6p+30vdlwoVKuwMV/xKQFW7wDMi8ncBxDDxx/4+8LZy+yLmHnr6JelohQoVKrwEuKRGQESeFZEvl4yQe86xX0TkF0XkSRF5QETeuG3frFji0aMi8oiIfO0O2/xNzOVwi4gcFZEfBP5H4AdF5H7M5fDO8vA/AVZF5GHgz4H/5WJKA1S4/CiTvc4VpP3gS923ChVejrik7iAReRa4U1XP5eNFRN4B/AjwDswv+guq+qZy3/8L/BdV/fdlsLChqhuXrLMVKlSocBXiQtoplxrvBD6qZonuLmf/e4ABRgH8fgBVTYDkJetlhQoVKlyhuNRGQIFPi4gCv6qqHzpr/16em7xztNyWYVTCXyv99/cCP1qm1z8vFhcX9eDBgxer7xUqVLhCce+9966o6leVFPhtb2vq6lp+4QOBex+I/0RVX5YU9EttBN6qqsdLDvZnROTRMplrgnMl+mjZrzdi3P7Pi8gvAD+JqS4+ByLyHuA9AAcOHOCee74i9FChQoUKz4GIHPpqr7G6lvOFPzmwo2O9PU/sKDP+pcAlDQyr6vHy/9NYgszZOjFH2ZZhSpldWm4/qqqfL7f/LmYUztXGh1T1TlW9c2npUmf7V6hQoYJBgWKH/17OuGRGQESaItKevAe+FZMJ2I5PAu8uWUJvBjZV9YSqngSOiClWAnwL8PCl6muFChUqvFAoSqr5jl4vZ1xKd9Ay8AkRmbTzMVX9lIi8F0BVPwj8EcYMehIYAj+w7fwfAX6jZAY9fda+ChUqVHjJ8XKf5e8El8wIqOrTbBPJ2rb9g9veK/C+5zn/S8Cdl6p/FSpUqPDVQFHyK0Bx4aWmiFaoUKHCKxbFBcVvX/6ojECFChUqvAgokFdGoEKFChWuXlQrgQoVKlS4SqFAegXEBK54FdEKFSpUuBRQlHyHrwvh+Wqji8iPiMhjZQ30n922/f2l8OZj24sgicgdpWjnk6U45wUr71VGoEKFChVeDBTyHb52gI9wVm10EXkbpq/22rIG+r8ut9+KFSG6rTznl7fV2v4VTEHhpvJ1QamKyghUqFChwouAZQzv7HXBa52jNjrww8DPqGpcHjOpgf5O4LdUNVbVZ7A8q7tK8c2Oqn6upN9/FPiuC7VdGYEKFSpUeFEQ8h2+gEURuWfb6z07aOBm4OtF5PMi8pci8jXl9ucT3txbvj97+3lRBYYrVKhQ4UXAAsMXdLlPsKKqLzT51QfmgDcDXwP8johcz/MLbz7f9gs2UqFChQoVXiAsT2DHRuDF4Cjwe6Vr5wsiUgCLnF94c985tp8XlTuoQoUKFV4kCpUdvV4kfh/4ZgARuRkIgRVMePN7RSQSkeuwAPAXVPUE0BORN5esoHcDf3ChRqqVQIUKFSq8CFzMlUBZG/2bsNjBUeCngA8DHy5pownw98pVwUMi8juYsnIGvE91KlX6wxjTqA78cfk6LyojUKFChQovAoqQXyRniqq+63l2fd/zHP8B4APn2H4PcPsLabsyAhUqVKjwIvFVuHpeNqiMQIUKFSq8CChCot6FD3yZozICFSpUqPAiYMlir3xuTWUEKlSoUOFF4hJTRC8LKiNQoUKFCi8CqkKu1UqgQoUKFa5aFNVKoEKFChWuTlhg+JU/hL7y76BChQoVXgJUgeEKFSpUuMqRV3kC54eIPAv0gBzIzlbRK/UtfgF4BzAEvl9V79vJuRUqVKjwUuJiZgy/lLgcK4G3qerK8+x7O1sVcN6EVcV50w7PrVChQoWXFEXFDvqq8U7go6Uo0t0iMisie0o1vAoVKlR42cIE5CojcCEo8GkRUeBXVfVDZ+1/vgo5J3ZwboUXgNf8k58n6EMeQdaEcBMkh3geXAKIfa6tKeN5wR+By6weRdhV/LhAMiWvOQpP8FKl8M0fqgJZXRCFsJtTBI64Y/vCvk6vM5r3cLkiBUhRntew4ySz9lwOhQ+jRUE9aJxUGis5Wc2RhzCed7gMoo2CYFjQ321fYS9RvHTrfgsf/JESd+xHmkcwWrZ9LoFgYPdVWytoHB8icU66WCfp+MQzdk60WVB4QuexDThyEvYtc+xvLTDarcw/CO0jMfFcQNxxDJcFyaF9tKAIBJcqw2U37YuUGo+i9rkImJb76BwucKk9D5erPd+koAgco3lH60QGAr29PlLWKmyeynFJgXpCHjm61zq82PZ96Zf+0UX73lR4fihCWslGXBBvVdXjIrIL+IyIPFrW0pzgfJVwLnSuXcDKtL0H4MCBAxe7/1cMgr79nzWBAuI5G4jTFrjUjELrWEFW3xq8Cw/Cvg2EWeQgAvXAlQYgbYgN5g7CXkG0njJeDK2dhuASSNpQeA4vVaKuXV9yu07SsoHei8GPrb3Cg7RpfWicMgNQeCC5Mp63H1xttcCPbTRsnMlJ2m76TfJiZbTgaJzJUVcaGFXUF/KaggqNkzYQhz0lWk9xo5SiHhDPBtb3mlD44FIbxDX0kX3LbN42hz+C+QetrbTlM56zY5onFHXQPeCQAuor0DhVMJ5zuMTac5kZoyIwo7Ddk+AP8vKa3vTeRvN2QNp003aizQJ/bM8qmffxx4oXF9TWZPrcKlweqFIli10Iqnq8/P+0iHwCuAvYPpA/X4WcnZw7aeNDwIcA7rzzzguWUrva8Np//PPUVpWlh3ucfGsHbwy1dWW4Sxheo0RrNij7I1Afko7gMkjrgqgynnOEXbWVQgGSKogguSKF4HIl3CjIA2G0FDLc5Yi69mfImuAPBRQKT3BZQf1MznCXPx2wog1Fyr9a2ipXFs4GVX9sA2swyIlnfFz6lfeXtN20z0FfiTtC1C1IG876NrABtXu94I2F2grU1guSliPo5fi9GLKCzZtaJG1rf7xghilpC40zBYMDTbxxsTUQd+2aw10eWU0Ie0pWE4Z7wB+AyyGeE/wTSjJj/Qw3bbVS21B6+xySQa2r5KEQlH1UX6YGwB/m+PHWLLO+atslV1xckM16pC1bfalznPn67KJ8Xyq8EEiVLHY+iEgTcKraK99/K/C/n3XYJ4F/ICK/hQWEN1X1xA7PrbADLN4fEz1xEjxH61jL3BBAtC6Em/YFzho28KqzAdtLbIUQdm32WgRMZ9ut4xmgJC2HFIo/tMEpGOR0rw0RhTyErAZFxNTNATCec3ixuXPqa3Ze0nKog8X7+3hnuvRet4yXKFK6kNRBVvfMxZIpzRMZ8ZxPJo7RoqO+YjPjPBR6+62h1nEI+uXA6gnjOUfzqLmHsobgj5RgkFE7PURGKdliE39UEM945CG0j9hMG2xV4DIAR+FD63heGjyHCgRDM5CDsqhf1rBnVj8N/b0Of8j0meeh4FJoHymm91ZfyckiRz5jfa+t50imFL7DH5oRnqwiXKrgC3nkkTYd0aZdZzzrmLtn24z0By7Wt6fC+aBUK4ELYRn4hLFA8YGPqeqnROS9AKr6QeCPMHrokxhF9AfOd+4l7OsVi+jxE+B7dO+4BlQZlS6VIrRZK5irKBgpqFLbgOGSUFsrZ+KezeKDgc3K446dL4WW7g3HqC0M9vg0TtlA648Ul0J/v9gqokRWE2aOjgE484YayQzMPVowe+9pGMdsvNUWhV6iSD4xAjJ1AzVPZGQNj8KDeMbhj5TCN6MFEAyhcNDfK3hjj+YpJYugdSKbxjP8WHDlbLuoBRSdCBWxWX3dYiL+yNpOWuUsXcr2xpQxETN0aQv88ZZbp3HC+q5iMZP6isU2ALK69Q8gWs9Yvzmktm7xkbwmhL1i+pzUF0bztsrI65D6QvNEwWjBkUe2kgtLI5c2ZNqPtHlxvjMVdo4qMHweqOrTwOvOsf2D294r8L6dnlvhhUNnW4wOzNA94CGYmyOPzAAEQ8VLFNQGomjT3CjRBtTXzEedh0LWEbKGEG0UIOYvV2f/ZzVzCbUPK/U1C+D6g5zhss/s4wXq2Qognjc/+OptNeI5iDbMRdI8Nibd3SFeiKaDvwqMF3ySlv3AWicz0oaje9Cm1F6sBP3S5VQXEHPd9A8o9RNC55DtKzxYeKBn7yMfNmG4OyIYZHjDlHQ2Imt4jGc9wr4S9qF+JmOw22c8LwQD6B70CLtKEdgqabgkZE0LLrsMxnNC44yaAYgtVpI1IMX6lTa3VlQAeST0DoTmXlNIOh4uU/xhjjfKGC9GpcGxIDkDSJpC0nF2f6csFlP45saTQok27H7TxivfNfFKgvJV1Q9+2eCVb8YqnBen37LI5vUBgrFhoo0CKYyF4o+KklWjhD3z67vMgsIA3f0+g2WPrCHkoRmEwofBsjDcJRZADW2lABB3LIAphQWBi1Do73GMlgCFoGdxBX+05SJZu7XB2qsbDHZ55u/OIZ7xSFrm0+8cSkgbjuGu535V20diisDuSQqle6MSrQheWrJvtpE2VIT+gRrd6+pEmxnBmT5uEJPVza3ipXa/kivxrEfSFrwymKti9ye5Gc3GmdLA+GVAe2QGKBjodKAPe0rYUxRoHbPt3tiMRNgrqK/ktI+YkXWJ0jo8xhtlZA3f/i7jkpXVywm7Oe2jKa3jGUWkxuBaV+IZWPvGMatvM0rQeF6oryj1lSosdrmgQKr+jl4Xgoh8WEROl/WEz973T0VERWRx27b3i8iTIvKYiHzbtu13iMiXy32/WCbknheVEbjCUV8raJwumHssJRgqoyXzU4fdcqaJzSYng6YUNhvPavbVGO2CYKC0jhXTAVY9CPuAgD9UOodTGqe3ApPxnE9WdyRNIezbLLh53HznWcOOaZ4o8Ef2Pq+DP1ZGCx5J22IE9dWc1rGU/t6A0YKbUizDnk7fzz0ytOBoBkv3mvsFrD0vUZonUiTNGRxo4I+UsJdP+5jsbhP0M5KWK42fkkdCPOPwyjiGKESbNqjW1nL8YWEz/5NK2LOBPRjYSiprmIGcuGSCoVJbt2u2jufTAPUkIO4Pc2YfWKPz0BqSFxSRRxE5sshWAf5oK6ahvtDf7TP3kJsaodo6tO6r0bqvxmiXGQCXM/2bVrgcEPIdvnaAjwDf/hUtiOwH/hZweNu2W4HvBW4rz/llEZlMe34FY0tOknC/4ppn46VOFqtwiVFbSRgvBOSRw4uV1lEbJbxEGS7Z98ZcQTZIZpGbsnVq6wXRps1gwQKQLrUYgkttgNNCGC/4FrQEmqfMGKjYccNdPsnrBiSvA//hJnv/0mIC4bNnyJdnGe+qs3m9Tx4KncPm3C88Ia870paHOgsuR90CddA6NMIlGYNrW3gjj8apjKzuCHsl06YHeQDN1ZyV14akrZCgaz7z+mpB7XRM/5Z5RguOeEZIZsEbSRlMVlwNskgggmBTSVvmBitCCzCrg7gM4gZDMzjRpjJeEEDoHM4pAkGdBXk35n02D3pEm0rjTE7jmU2KWojkOUVtQqcNGO4KyCMhD8VyK1KLx0wfJpjbLjQXmPqQzMH8w2Ysevuq+dzlhnLxMoZV9bMicvAcu34e+HHgD7ZteyfwW6oaA8+IyJPAXaXUTkdVPwcgIh8Fvgv44/O1XRmBqwDbE7soV4dZzTj+WcNcGVKYL96PC3OBBMbikUKnfPvaejENmvrDnI0bQ/IQikBonCoIygCtOnmOO8Z71KbHzePgkhz/8BnyfYvkdZ/N6328sa0uvJEZkKJlvqLhokfaNjZN++k+8swx8psPMNzXnAaOwZLMhkse9bWCcCNl46Ya3YMBtVWFwvq+63MbJEsNslZA4+gAaBIMhPHY6JpoGfwtDZ4/sGfTPJmT1YTBboc3NoNUBLYKkHLxIwozz2Qkbc8S5jZz4jl7AGm7jL8MlPqxAXmnjuQF6vkM99Ttfsu/TX01J+54hL3c2FflLWrpbvPHRqdN21A/U9A6WsYqsD5NXGwVLh9eQGWxRRG5Z9vnD10oAVZEvhM4pqr3n+XV2Qvcve3zJMk2Ld+fvf28qIzAFY7+voi0aTPTaLNAysEu7Kn5sXPzn2eREJauj6xVUjITxcsUULLIkdXE+PVDJZ61WXFjxWaiXqIkHQ9/WODFBeILeWgMntYRIRwUdB7rWp/u2EfS8Qj6BfUVpXEiIWt6JHMh43LwDLuF+fw3wR8XpJ2IaGmBeCni1J0+ez6fEfRTNm+o0ziVTQPAkmREmzbD9uKCwveZf2iAW+9SG4xhNIZaRH59i+GSzeJqvUlwvKTJihmWcMNcY0nbo3GqwEvMeAZDiDsTF5KtMvq7fWobBZIrw90+o0XBSxy7P58alXaQkczXyeul+yk34yyZsnFjQG3dDLU/sthM0nIM9sHClwvCQYbkHqu3OzpPK0FP8RIzPsNlx3A31FYsz8PvX85v19UNVXkhK4GVFyKCKSIN4J9h9Piv2H2u7pxn+3lRGYErHMGgIJ71CHsWcBzu8ggGijcuGC3agNs+lk2zcpMZvwx6Kl5i3Pm0IdTWyySmMmjpJTD7TEbSNjdTEQj+sMDlyrjMZE3aQjwjNE8VhL2C9dtnprNbo3cKYTcna3qM5zz8kVI/k5FHDn9U4FLP4hW+EB3fZOMNi5x6k7D/TzPLC7i1QfuwZZC5QYwGZUbxWkra9PBHBfMPDfCPr0KjDkMLQoxuWCDczBgsh7gcegeEcLOUbSjzExCTqFAxOQZ1QjxJ/OrqlBYa9rZm4+Fmxub1IUVo2dfBoMCLjfUTz0V4aYE3LlDngdp9eZlda+pymzMX2GAf7P5cSuPLx9j4ugPEM472IWsPbIU2nrOge23F+u6N4ApQMXjFwALDl+yB3wBcB0xWAfuA+0TkLp4/yfZo+f7s7edFZQSucFj2bV4OYo6wWxB1C0YLng3o5ZiXRw515iLyx8ZfHy14pW+7II+MeTPRBJICojUl3MjJ66YnFM/azN9lNkD198PsEzplD9U2cmPaFEoRuKkEhfo2qw5K6QSLVUzyGYS444jfvEQyIyzcr3QP+EgOc4+PCc5sTX17N89O37ee7uKOr0AUQr1GEQXoTH26f+1WWy3EnS23TjBQW+WU2kFJ2zSG8prFTdIGNM6Y6yzaNF2ieMYhudI6aRfpHEoZLdnPKuxmZDUPlXLVUPNwSWGMpHHBcNfWfW7cYG3OPZ6jntA+mtP48jFIEtQx1QzK6raKGM044hnImoo3NjqrbKUaVLgsuHQ1hlX1y8CuaUvm779TVVdE5JPAx0Tk54BrsADwF1Q1F5GeiLwZ+DzwbuCXLtRWZQSucKgneHEBKN5aObB7NrjPPj4ir3tQGP1TPRusRvPmj3apsVnG8+VMt1sQ9mFYslH6+wLUlT7y2GbRFkOwmW37UBmkPZ3j4sJ0cYY5aduf+q+Hu3xziyj0Dmw5tdXZIBx2YbwgqMDCwym9/QGtYxmIkMwExLNzNhCr3UPrREbtxAB3cg2csxUAMN7TZLxochVB39hO/qggLXMRugccqJDVhfpaURrEicErVyMb1kb/Go/6mhmM8ayxd7xRgUsL4vmA9qEYb5yRdkLUF3rLoUlGrOUWN8iVIhSj5ya2AisCo6FmdcGLlazuOPKugwD437iG/sk8otA6mtHfGzD3eMyRb4loHrY+5gHnlNWocOlggeGLkycgIr8JfBMWOzgK/JSq/odztqv6kIj8DvAwkAHvU9UJL+yHMaZRHQsInzcoDJURuOLhMi31ZYx5YvRDJdzMQBV/M2G4v1G6QZRh6SLyYjWpCIzLHvaVrC6M5o0KmbSMS+8yS7LKA1h9LTRvML9//T/OUHhbbiRRS4hKOj55ZAlmYEwbLykHshCQrQzcsGsqpzNPFfT2OepHe9SPwuC6Dqu3ejRO2oolnrX8hplnM2rH+2YAOi0AiigAzzR20qZAYfELf1SQh/Icj6nLoX4mJ+mYJISXKHkgaBmUc5kN2saQynGJMp41lc+05SHqUVtJ8Lox2UxkCW9NR22jIG0KoyXf3HMzbnotyS27enLP6iz3AmCwv2Dm+g36D86T31ww85ij8cWnaXwR9Jol9v6lY7zgs36LkNWVpS9dim9QhfPhYmUMq+q7LrD/4FmfPwB84BzH3QPc/kLarozAFY5JBq5LCsBZEpQH44WA1rMJeTOYuhHy0E19zkVg/mUVG/RGC870gMKSIlpKPqNCHpTJTRtC/ffMcW6aOxZXkLQgq3tkdTdlJQ1KmWXJKWfAWFirsLyBxklLstr1+U3cKGX2ftDAY3hth3jWK7n6isuVqAutJzeRU6sUe5cAWHnzErOPD3HDlPGuBlnTm2rtuFRxSYFLJjkNQv2MEm3aAJ01BH+opM0tlpOtdkxUb+6RIeoL8UJE+0hq8s++R+NwD0TIOxHJbIAXK75fxlBiM6JZ3QxAVhdqa7mpsbakFNjbSjjbuNHxdXc9xF89cQM6m7P3T8uHA+CEjdtnQYTRghDvT9j9pxU16HLjSskYrozAFY7Bbh/1YPbJhPrhdZLdbZK2j5cUJPPRVGANjD00XJ7kDpi8hEvMpSSFsVGmsshlBi3YLNYfK0sPFAx2eWRNUwdtnDLXhSmBGu/dS5S4bcHWtAn1DQtYN09tObTjGY/ZBzcBcMdPQ6FQixi9fh95KNRX89KowfrNIUv3DlDnWPmOG4k2CuI3zJC0hfVXNab01nBQTN+P54XmuKDxwFGi5Tl6N3ZQD+LZMhYwY7IW0WZOb7/RPjuHC/xBTthNGe41F5NLC6KVMRo48siRLDQsIa7uTG5btuibWWSrjv4ecysFAyVtOcJujo4cSamgmjaFwV5h5knlv/71rTigdkbw4gx1cOJ7bqF3UDl4x1Ge/Zt9gFJ7JmTjRug8W2ULX25cFYXmReS7gX+FBSmkfKmqdi5x3ypcBLhM8XtKuDIk2d1mtBSQNB3BSMkDbxp0DIbm9w6GtnKYyjpbyGBKSZysGiYzZJcyde2g5ifPmqZtv3l9gBfbIBjPbkkuB0NlsNsCnAhTKeXm556CuRkakY/6Pu74aTTNkGaD+FV7SOsmSeGSguHy1sz38Nub7Lovxx+bcUra5l93OfilMFvz+JjewTp5aJTOxgNHwTlG+8xtlLQcgz3QOF3eXwAaW5+DobnP0pbHqBYBEG2k+P2UvBmQzPgkbY9IwBsXuFRJm8ZsCgZFKadRcv1HJtbnjYuSYmr5GOGgIGk6hssw86QF1xvHHMNrFH9ImaTmkTbNKAAEB/tkT7bBQbRuMZsKlw+qkBZXgREAfhb426r6yKXuTIWLj+apnDwUVl8/Qzw7SRhjGieINk1LCN1KChO1md3xGqMAACAASURBVPCE/WaVwyz42zhdkHRskI26Bf7QMnldpgx2ByC2CjhzV0H7CY/Ct4xaKQf8tCGMF2Hpfotj+YOc2gOHrKHFOXq3LpBHwuxnngDfQ8KA0e2W7zIxNioQbeSkTcfskxlL9yWkndDYOh1H1rRkrtGisPhASl5zjJciMw4ZpLOgCzOsfM0cw91CbRVGS2UdgBkIulsxj2BQKoqWSVzh6oisHaFO6B1sTBO9wl5uSXah9SFpO/Ka0TbTJoQ9u//WCZvRpw1HWkpWeIllO/uxUl8RWznUHe2jBTPPGlupt99+qoNXJ+CUZ+/bhxcLeDD7uDG+JoJ7FS4PzB30yn/mOzECpyoD8ApGrpx+o0/WUGorNpC3jlkJxLCbIUWZsSoW3EVtFhz2C7KauTCM7QMIdA868593bSabNRxh97kFTYK+0n7CY+aZ3BQ+y+xXf1DQPWiWpbfPY/H+IXnNhyCAVoOiVSNpO9qHYphpl/3PCbqWipw1arT/5iTajNi8fR4vUVy2NftNW6bXn0elrk/fYiJpy+GNrZRkb58jnoMjb5+fnhfP2gon3IS0saW/M8lK9hKrQOZ3YyROkUZgXH+gfWhEXjetpNGih0stQC45tI7YuWFfSZuOrF66hcSYWP6o1GySsoKbb9nbWWTGeZKz4MXKyhvK1ZZT/FMhLrZgt7dNK2i08MofkF5peAEZwy9b7MQI3CMivw38PhBPNqrq712yXlW4aBgtWUxg8X5j33ixzTrzUJCm5QYkbSmNQem7F8swzmoylYkAoy82TmlZ6MVNRc7Wbomor5ki6XjOkUVC47SSdFw5UNs1ege857Bx0lZA44tPo0kC/QHr77wVMF87/bLYgW9f0Xghovl0D4ZDenfsIRjaoOn3jReZNWwAHM9BvCtn9glHMCgYlW6jxokRJ95irp9J/QGXmKvLZRCd0akUs0k02/9eUlBbSXCDhKIRIIHHYG/Njivtz2BPwGjREs76e00mQh1ThlEwMKPrj2yV5cUFKo60abkXaUNKGepSnG+gqCfTnIzNGwV/YPkMeRxOn19t1e5BFDav9adVzCpcHlxMiuhLiZ0YgQ5W8GV7+rIClRF4BWC0KOy6J2c87xEMFZcoec1cEP1rSoaOlsqbZa3fvCgzWMVmm40TGcmMN/Xf56XC6GC3ZSI3zljpRS9RKy2pOg2ytg/H+N2YM3fM2Api3Uo97vnPx9DVNYo8h1ddB5Qz7rUMf7WPLs2VTJs6kuU0HzhOsTSL7jY13cGyz8xTMfF8xOZ1AXnNBm2XwvJfOSu2UveI5y2jdrCvQW3dgtV5zbF5rTd1d5n7ZVKVzOIWo10w+0SCS2yqLVlGEVg8wItLAxcrZ97YwKX27DZvVrJOQXTaY+ZppXk8JW15Zc0ALEvYE5yzPIGsLuUzs4LxExrucFcZjxGLX2RNxRtZPeagbwbBS2CwT2kdEtZvcVWOwEuCq8QdpKpVsbpXMEShv8+b1swtPCkLlQvRpkkkxzOOIrQgaNIyCmPcsQQtFUjbnq0USr69P7LiM7V1Y9y4zBQyJ/LREwmTsKskMwHrN9XKzpgBmH+kgN5Wpu/g2hZZ3QbVoJfC+ibSbpHsnyOPPIogJLmxxahMWquv2XJi5bURLjUpBbcBg3LwHO6yXAYwl5A/NqpqMCiN17L3nEpcjVPG2U9awmhRpnLXwz0hrUMmNZHsaiN5QdbwSToTI7glcS2FBWxHnmPmKZO/KEJnhiy0QTvolxLRqniho7ah05KT5ncz2mva9EhLyuz66zKkmcHhmpWqDCGZhSJUsmbB+uuV+jGfxQeqGsMvBa6KGsMisg9LPX4rtgL4K+BHVfXoeU+s8LKA5JjefamY4JfyAumM+c7Tlkf7SIHkNpuPNs2t4+KCeM70/V1mgd9gZJmswaAgKGsLDxdNXwdshuxq0D6ckjWtYEv3gIdfllWcebyPP2rS+eyTaBwjMx1Gr9lLVhNqqxn1R06g/QF6zS66r5oDTL9ntMv89WDlH+OOkHRKt41aUffC26qalragWVb6CoZKtJaavk9kVM7WiZy4Y4PwcMkkpYsAZp+yET2rCZ0nBrhRzHhvhyJ0FL5QPznGhUrQL1i/2SPsmttH8jJprgtzT1igPK85e+41S5jzxgVZw56JrbwUf2Bie0XoKALBGxckM75RcwvIIqCW07qvRl6H+DVDgsC80OkwIDhao3ESlv5mRFb3iOcqxvflhLGDXvliTTtZy/waVhD+GkyW9D+V2yq8AjApw+gPbAAFGFxjdWklh3BTyUNz7SQzZaygKAvA1IT6Sm6lDlOltpqhk0BvbrPYqGuicS4zFkv7cEqwEZsrY2T1edWzvAOA1h8/gI5jCAPGr76GZNYrK2/laBkHyOYajJYcoyVH2irvY2BuJ5dZhm3jtE7vT7Iyca10nwQDC+p6qRmA7ZDCNH+ymjBacNNM3fZRM4LjOUfjZIrXHzPe22G8WJa0TJVkLpwOtJ1DhQXL2ZLNAKPOJm1jB23c6BEMJwF0GyzcJN5QKF5ckEcO1Kii/b0Bvf1Ww7jwbBUz+8WI1omC+DVD5HCd8Uqd8SDEP1qjecyK86zeXievmxbUROCvwqXHJFlsJ6+XM3YydVhS1e2D/kdE5McuVYcqXFwUZZGSPLAAcDJjs9f6GZspN1Zy0oYrC8SXgeNAGF3jU1u1VYGoMtjlWZH1wFxEScfDpUb9LMIykFy6UUZ7G0ZBFdPZrx+3pYA8eWQaF47feIO5mTKon7FIbf8bbgYmekdKPGuumWjN8hiS5tacpbZeUFuH3l7z7U8GV6sgtqUGOloOTN5h3qNxOqO3zyerm7FwKTTKJDX1oXPIIsXRiS7x3g7jBZ8sgmzJo3k6n2obhd2CtVdbXxqnyv6smTsmqzuCvgnuNU4zpdBq7Sv/NlnTEtHUm7iMFCmsYIw/skB+61iBlxTs/zWfo98s1I755HWfxgmorRWMZ82NFnde+b7pVyKuCncQsCIi3wf8Zvn5XcDqpetShYuJpA2U/Hj1LakoK10mrRPm0/cSJRiajv143gbV5skcf2AKoVnkiLpK0LOEKbCC6XHH6gCjMFw2RpBLC8INE1LzxgXRWow8fsjyEIoCcQ65Zpmk45X9E+KZGo2VHFeWtfTigmjTlQOpsXayaKI+KtRXC6RQent986enJSW0ZDLlQbnK6Rf0d5tAXTDUKde+iCBXewaDvebDb5zK8HsJWTtk9S4LPmc1W+lE6zndgwEbtyjsGlP0A6Bgz587wr4ZkSKw+gkTrSYSiNYzgs2ErB3QODEui/j4iNrKYCJel9YtgW647HCJ5VkkbaFxuqC2muIyk9645q8dmwd92DADNsn0rq0ro8Wt+ESFy4OriR3094F/i5U5U+C/ltsqvEJQ+FDrQtKZ0BYhLxO8KEzKebDsM9gDtTVzbWT1koUyKg1FmQm7eb1HMChn3AMLZvpjxeWO+umM7sEIL7UBsPHQCSiUIssQ30ecQ2++FhnE5JGQNkuhtlQ58p0F13zKI55x5KH57ZsnLSHMKKlbNNbutQ5/aIOe5TQYtz7s5owWPLzSA5Q23TSgnTe3Km95Y3v5I2ieUBonU4J+RtYuyz1GAqXURbSes3l9QO+gGQCAhXvsZxMMMxOYc5Z4pz4UYi41MBccQNBNUM+RR14567fB2x/Z85Pc3FPe2O4ladr7Cfr7a6A20E9ceoVvhscfmxsuGJj7q8LlxdXCDjoMfOeLuXipgd0DciA7u7KOWLWEXwDegdFQv19V79u23wPuwUqsfceL6cPVjrQN9VPmaqiXxUfCns1W87IQzHCX1QjOa0L7iLk1XM5UmiFtWJUsgPlHbX/StoLoQT9nPO8znhdc5jP7xAj/yWNolpG85jrSjk/txDxuvc/mG5bxkoLRQofetcarH+1WJBfmPx/QK8tkBAMzUEnbw4sVqQuj5a1Su2ak7H191YTemidzovUUdWUt4MgRDgrqqzY97h40hlO0vjVQhr2C2krpzFelvzdksCx0jhRTF8vJN9kzaB4ToodqJkU91JLXX6qfRmU+RUZZJ5hSaiIBgc0bmtOiMVLoNL9guOxRWy1I2nbNrCblCsBWYb39IWu3Rkhu7quwZ/pLWU2msYykZecGQ31Oyc0Klx6qQnYlGwER+XFV/VkR+SXOUaJMVf/hDtt4m6quPM++t2MFEW4C3gT8Svn/BD8KPILlKlR4EQh6W4NHHgq1NXOl+LEiqXH+B+/skj5imUbeuEADh4sLgoGQ14zyOVy2ZKf6qmUYu8xmv2nLY7jkCPow9xfPWjbs0hxFM8IbpVbestGkt69NbV3JIx8vVsIN8FIbXCezXn9k8QqXlAZgXJA1HKPlUma6hBdbkfegbwNn2DWXlGQF9VNjxnMNgmExNRrrt3ikd/aZ/WTTRO90ayD2BglFLWD19ibxrMllDHfZDzvcVAJTxibasGQul5QsqNSCulJsJZ9NqqaZAcgZ76pNpRzUh3AjL/MDLI9BchOtk2JiIKC+kjOa90gOetTWFNdnWut5UmfAZRYvmZTftFXBc7OHK1weXOnuoIlUxD3nOearxTuBj6qqAneLyKyI7FHVEyU19b/FNLP/8SXswxWN2ppuuQ5GxvrxSillLQXPABa/vCW/4A1z8+nHBV7PMl4Rn/bh1Ng5npCJY/1mD2+8xTrS4YjilgPkkYcX5ySzES5XBrsdjTPWj4lMRRHawBVtWIJaFpWiaH2TU1aB2krC2q11JAM/s8Bzbc0GZy+xgTEYmuZR4Qv9A3Ur1LKNENTbb8Xq80NN4hkrd9k6ntN8xmoSZ3M1Nm6oEc/C/GO2yunts5/FxK1jtYdBRahtGK1zS//ffPNFYHkRLisH64bD5aYpBGbY6sf75I2Q9VdbBL22bnUGvGSSt2H6P5N6AnOPmj+pd7BBEQjxrDDYM9EqMmM4Ef9DmdZ/qHB5cMXHBFT1P5Vvh6r68e37ROTv7vD6CnxaRBT4VVX90Fn79wJHtn0+Wm47Afwb4MeB9g7bqnAONI9n0wxfoKwyZvkBowWP7nXAIyFpQwm7Str2Sz9/QVq384JBzvKnrdRh/2sOGCPHQf2M0jmU4PdTvJUe1Gt4J9bo37WPeMbhly6QSaAznrVZ7cQXn7aM/dO/Vph9XJm7zwbmIvTIGz4aOOqrBV4sFIFQ9EpRuwn9FJt9+0ObYff3+FOZ66RtM2VvBNEKJHPmNmmczgk3Es68eZbGadPzj7oFtXWdagZ5sRmc3DfXlFFOIRwXFAGM53yTs05tsM8jc0+lTaFzyDKtVYDMVgvNoyMrZN8IiRcj0rZYsfi4QHKxcprOKqhRwMIjMdEjx6HdJL5mBpfBeM4YU2EPUKOGTgLlLtVpkLnC5cWVYAR28s15/w63nQtvVdU3Ym6f94nIN5y1/1xPUEXkO4DTqnrvhRoQkfeIyD0ics+ZM2d22K2rBxPlTfNF2/usYQHY7nXlgHzcZrGIDagTBAMbXCfb0uuX8caF+cRTqK9aApT3zAnLAO606N2xl94+h/o2m1e3JUsN4GKb7SdtGyi7r09oHoO5B7tkrZAisOApQG9fyGCPJVIV/lb5xNp6gZea9AIYXXW4ZDLLyazVDYat4/0xLDxY0DhtWc0nvrZBtGk0zuNvz+jtday8zthKcceVrhdzs2SNLeqrSyyjunkqwx+aqyqtyzQZrn3EKLUqFhsYLPtmAIB4MTID0HQ0jxc0zuSljHf598nBH0LzVIHfT9n4hmuJr5kp78MMXjxjRiLasAxol1s2dFEqkbrUXhUuD674PAEReTsWsN0rIr+4bVcHq2t5Qajq8fL/0yLyCeAu4LPbDjkK7N/2eR9wHPjvge8UkXcANaAjIr+uqt93jjY+BHwI4M4776x+AWchr1m2a15z+EMLeI4WjE1y/e+Zw7t/sEWxrUataCl13BAaKznhU6fA9+leX5+KrIV9C4zmkcN77bWMF30kg9GiuX7AGD1p0/z5yRyE6+YCGi1ZYNMbwa4/D6ifThld02S45DFaMuXSrAV+35LCegeEaN1kmAfLPsNdHkHfaK1ZrZSKWLbYgjeyYLgU0DymtI5nRCsjete3GM/bQD/7tLnCBrsde/eusfHYbmafUMZzHsGgYDy/VVzG78PigynqC0nLKKFJ266T1cxVVPilASiDxZNnNPtkjEty8roF3sfzXllDGESdcfxTtQznUxbY7V7r6F7bsiI37cjorX2ltlFQeFtS3+M5q5QWDHJG8wGFLzRPV0GBy42LlScgIh8GJpPf28tt/xfwt4EEeAr4AVXdKPe9H/hBjHTzD1X1T8rtd7BVY/iPMHWH846L51sJHMfiAWPg3m2vTwLftoObaopIe/IeE6B78KzDPgm8WwxvBjZV9YSqvl9V95V1Nb8X+LNzGYAKF4YUFgPwh6XK57zH3KMj5u8+Sd4IyFolLbImeEkBauUX04YFf/1+NlXybB+KzZcfwsZNQh6Z1s7JN4dbGkKn86mrZjwPCAyuzUkWbd4wOFCUSVpK87QS9gr6+wJ6+3xGu4xmGXUtn6G+agHspfsz2kdtgIs2C4K+MYLySKbZua4MznZvS2m+aYXmMWXusRH+cGu+MlqQKQNnsNtWK70/2k1txe457BXTgHFWM5XOxQetHkEWOdKGmyasFb4Zs8K3GTxilFeA2kZBbaMg6MZImqNOyBpums0rhWVp2wBfTA0AWJawBbmBUslVPQg3twZ4f1jQOpYSraf09gX4sbGpRvOO0XzlFrpcUIWscDt67QAfAb79rG2fAW5X1dcCj1N6YETkVmxcvK0855dLJiUYueY9bBFuzr7mV+B8MYH7gfvLGfxgUs2+bCzawU0tA58wFig+8DFV/ZSIvLe8/gcxS/UO4EmMIlqJ1V1k+L2UrB0QdHPStkfzmFEii5kGyWwpiRAX0LYYQX3FuPbqQevZ8tg5U1rLWj7hptK9zvztJ99aEGx4tI5A3DG3iFi9+mmNYhQW77UgqUsLXO4IehZklcJyEFSsoHwemWsqrZfVyGYsFuAPi2nQM5612geN0+VorVaTWJ0ZmOVrNpDfWGT24U3iXU0Ge3ygNuW3xTMQbZqEc6FMmUl5aJz7rG6DrpdaG2nLs2B4rtTWTY1VcqV3neUpqJRV2cqfYFYqtEZrCcl8DRfnJHMhUpjcxqRymxQQ9E091CU6VTTN6rb6mchyQ6n/5ITaRk4eCLXVhHg+ZDRvf78ssuutveaSfIUqnAcXy9Wjqp8VkYNnbfv0to93Yx4SMELNb6lqDDwjIk8Cd5WU/I6qfg5ARD4KfBfwx+dreyfJYp8G/htgIvtYL7e95XwnqerTwOvOsf2D294r8L4LXOcvgL/YQT8rnAPjxdAG0ZnyTy2C+sLq6zvGT++XM9OaUF8pGCzbcVkD+vsjwm5OXmuiDkYLHnkozD1WlEqa3lQ8DbBEr5LD3r1eidZM9mA8X7JnMqitbhVqmRgLnM26C89m2Gm7ZL6oGYa1V/tTJkzhoHXSSjFu3ghFTZl9WEgbcMPHx/T3LzDz8CZrb5gh6Qibt+TUTns0ThijRgo1lxNWTKbzdClJ0RGyhkfSgrD8pktuAnadZ1M2bghIOvZcvLisyVzWCp6U6Cx8ps8xbflIrgyvsflSMCiorWamXTTvg9jzgq0iNi6Dxhmjr6pnhna0bLTceMazoj8C8WwNlS2pjDyEZEaYffTSfpcqPBcvsND8oohsZ1p+6BxEmfPh7wO/Xb7fixmFCSaEmrR8f/b282InRqCmqlPdX1Xti0hjB+dVeBlAlCk7yGXKcHdI2jS6oT/aOq6+skURzWtlbYGRBRrVQR45amv5dEbuj7a49oXP1B+uztxAQXdLzjlt2uw2D8tEtbw8tkx8ykMbzLLaZAZuM3Z1k2vb/plnMstNaDrWX1PwtW96lEc+bIVoDvznNeLlFvUzGcffNkttQ+kfUGqnPbwRDPZC+1DpculBf7/p/gQjm4W7lGl/O89acCSes+n5ymuC6T7RrdhJPLeV2DZJHGuezMlr7jmicZKBZJaZTcaUDgtbxWtETfTOpbBxoz3jrGmuprjjpoZ2UuQnaTlWXlfQeaLUcwKS1ov7jlR48dCdG4GVs5NldwoR+WdYHPY3JpvO1ZXzbD8vdmIEBiLyxkkmbxl4GF3gnAovE0huPHopLB6gzqiMYINT2Dc5CH9YkLY98sjcOK1DpQ9/t9EhpVDTEgrNF+9S4/MD0//zUHAJNI9bcZlwMyu/lj6NU7Elp9V98shR30jACau3NRgvQPMYzB7PGS6aqFq0Xl47N+qqHxfkoUlInHyLWZ8nfvnVLD2wgUYeq3fMsfIGxaVC/YT5/2unYbyopE1wqdDfJ+SRCdLNPFUKtpXPZ1IFLOzDeN6jCITTdxVAjt+zPoXr5j6KF5T2M1KK1RUMlz3qZ3Jj6wxz8sgRz3g0j1ugIm/Y9QCytmcV0cY6fdZaxgAms//GyTLXofz5isLGDcL8owXxjKO+muOlysKXhKRlcQSXmv5RhcuLSy0gJyJ/DwsYf8u2AO/zEWqOlu/P3n5e7MQI/BjwcRGZXGwP8D07OK/CywBZwxFu5qTNktFSl1K62dwh/lgIN0uhuLoFZtuHzT8xXCpnwq/12fPXsQUq647GaZNnGOzxbTALtn4ICw/aojFth/j9lGQupHEqJji2zvDVuxgslwJ0ddPLGey1mXl9zdgvwdCorPGs6QrV1yzDdzJQA9z062Ncktn2mk/3hiZnvj7Da6TU7rNF6oTr742FZD4nOG1xjqUvFVM3TNgzdpFLFVf+ElRAy/sJNzzySFFfCdft2YwXlXDD9he+sHqbZ9x9IOhmZE2P0aJH2LUaDcGqJXwNbpilCJwZ3LFlOqsP3tgMSbSe0t8b4Y21rIsgbN5Y3nABybzFKyYyGOu3CLNPWLKclzy34luFywPVS5snICLfDvwE8I2qOty265PAx0Tk5zCJ/5uAL6hqLiK9kmTzeeDdWC2Y82In2kFfFJFXAbdg87pHVbUqZvcKQtryGOwpWS2e+cbVQfOkEm3mjJbMR134MPuUzSZVSl56idN3RNTP2ACmAoM9puA5oS0WgbFiAMiV6FSf1TvmrPB7zREco7yuEIyU/jW26gi7Nlhv3GgF7MEME1BmAzNl1dRWM6ScDBnrxrF5U5PN64T67Aj9Usf4boXJNHgJDOZzbrntKI+Ge9n7GTe97oTBNLl2fSUDtXrBE4onQLQm1M+YGmteg+ZRIZmF4R5oHbZjgp4SrWeMFwPUmdQ0bMlIFPWIPLRiMlv5GmUJSQ9j+eyPrC9iNNsJgi50DuWWDKaWRe0NErhzhuGS0DqhNE6l+P2U0fI59KorXEII+c6YPxe+kshvAt+ExQ6OAj+FsYEi4DMlweZuVX2vqj4kIr8DPIy5id43Ie4AP8wWRfSPuUBQGHZWWayByTZcq6o/JCI3icgtqvqHL+w2K7wUCDdyhsv+VF65daIg3MwJ+hnJTCmOdrK06WqJV2nLEfYKdv3NmPFCML1WXnM0TpmLw4uVpG1sF3+suL5SOxMzWq7ZNeqmxOkyY7ps3rG7lI1Q24fN1usrxVQmIqtPxNkKpHDkoRD0c+pHumjgUUQBLskY7msyWG6y9nUx4WFTF/W+0Jkqg6YtMyxpC1wmPHH/fnZ9STh1V/lMNoXlL9gzyJr2E0ibHsNyldI8lRN2M/xRyOrrIV6w0pFWr2CrgEzaNtdXVheypoc/KvAHOeHpHrKyAVHI+JbdjOdtxYQqg2Wf9dcUzD5sf4/CEwbXRGWAVxjslrKSG+y61wyy6FbC2sk31Uk6dVpHIOqWNaMjR29fYxqjqXD58AJiAhe4jr7rHJv/w3mO/wAmqXP29nuA219I2ztxB/0alh/wteXno8DHgcoIvAIwXPZJZoSwb8lL0SPm1RvftnfKa59WuALSlqNxKiPoJgz31BjPedTXTCLBS3JGS+HUVz2ZqdfPJISPn2DlWw9OVw/+EOYeG+P1U3o3mopm0nKMF7aEz4BpKCsYFTROmoGJFyIax2PUc4SrQ8iVfDYkawZIEZB0PNbekiCiZW3ficiaJbGlDaucFnSh/YwjmQFQonULXC88lFsguuk/x4XSPJkTbqYm9xw4Nm6WKX9/IkGx8dYxmjkWPxugsUwL1BeB4I0Kgs0xMogpdi+itedeP215rL+mINh0hL3/n703D7I8y+76Puf+9rfnWpW1dlVPTc/SM9OzSDNoJCSxaXEEIgwIETZGtrAgAhswOAIU/kM2Bgc4bBxCgPAEBjQOQBZgGRlhbQNCSGJGmhlJs/Q2vVTXnnu+/bfe6z/OfS+rm+nuUqu6ppc8ERmZ773M3+/3Xr53zr3nfBe39CLIB2rhGeaOeKS6SvHIIbUjHmlLzVSO8XmFpS7mJdH0OOunh3bJPj6JBxNvee2gu+Jh59wfEZE/CuCcm3sJ6JN4E0TdEtIDx+DxEeb2PjQNbm2FYnD8ry8G4VJTqP+VGcVawvxUquSvvQZTWMq+t0esHE2iya/OhOTIEd8cYk+vkg+E7s1j/P50KwZiz3A1hLnCKvNVbYO0du9aujaO/fe1CGeOwVfmBIczbC+lacfLNodYx/h8hCmh95uxVxyFzq3Gy0RX7L0vpeppYYhHgEDnlhYGZ6B3VRFPTWZoIqEYGLK9hvH5gGzfYeoQqR2Hj0T0noPRZQ8nXXHYd5TQCBJYxCnO3xZKkgtnlmvfFnL6V7r0pwV1PwFRH4YgVz5E2TFsfkYI54ogmq+ZZUENSvVODkrH9KzgAqG17Th6Z+Yf19eud7U8/t+2AxUC9MgksfAWUDZ+84Ru7t70cS9FoBSRDP92FZGHgeJ1vaqTuG+R7Vm6z461AABubYXRo6teufLF8EZnhHxTMejRpCGc1ZS9iOQgx9QJZU8JZcnYUvSEjS96Mlk3ZX6mTfeGpex5prGHuJJXoQAAIABJREFUMo4uGpIhJEO9na9qS2XBAHbGo2bagdpRPpcvC4CNDLOtlHhY6+o8VbkLHLjQm8uXOvwuu8LuBwPqzBGNZZlcw7nOPcKZeJiqAVEvhSbVAlBnhs5NRdw4AzsfiWjd0YTavapw0vYNoTpKKK7k9D+dKqchgmy3xkbCtW/Tj1JyVFNtdmnSABcZ6kQYXwgou9B/ThVGm9RQp+rT0L6jOkhNJMRjNYg5/ZmKdGfO5GKbeKQDX/VsPs44SjLz1pii/8dodDKqe9DxdrGX/EHgp4HzIvKPgI8D3/t6XtRJ3L/o/8YuzDyit9dh/lCfMLde5My3g0qHC+RYD3/SEI3VDUuso+olFINQoZtjTTwrz9YkL2hfYv7wGsVip+BRivlL5AuqbMH0dS9KZk3MksXceb5E5prInAhNFhLOLfONiGim5+3crCh7oWcgq3haPhCG720IxoZwLmR7fodwp8aJDsOLvsJLo5ljdD4kPXLUKRS9UHcI12uqludTVMcr6vnm8QwgGULy2ZSg0MejqV1CPx/6qRInQrIzxcYhrhdhSkt7t2B8ocvgGW9D6UXvTA3tO/4+zxYWB/2rBdFRgQuEbEdbYlUvpOgFJCNFcS2ks0svzNfaqUm3Z4zeeSK4+yDD3cfB8Ncy7gUd9HMi8nngY2gH98++gknMSbzRwheA/NFzlL2QJlms+hWe6IwsdWycqFKmDYVykFB7KemF2qWNhXisEg42EMozfVxgyNdCXADTLe945bR10SSaOMOZI5qq9EIwP5ayzlcMrd1GCVhlg5Q1UpS4lipuukCYnAmWNpOgg9SgtNiOspebWFj/Uk6Yp4h1tLfV8tE0jnwQULWE+aYmdlNBsSKUfWXY4qD3wvFqesEbWH1S7xteCtXycQwHjzV0nw7o3LFLsleTiMJa55bk6gH1Zo/ZhS4uEMKpqoSWK+ky2deJqJlPrUVKHITTxr+2Bqk9b0FULXRyPqXsGro3a+KJXSZ/UARRONfXtc4Mex/sL6W7T+LBxVu6HSQi73LOPSkiH/J33fbfL4jIeeDAOffC636FJ/HbjvrCBpOzivJZsF2Xw9259SQuXY7aRDCFJV8NMBUEpUWcgFOVzXzFqJXjgRqoN7GKyN0dptYCEM6UkRt4GGZ8VFN1F8teGDxXYEpLMClwcYhtJ9BOMBMV9MkHBqlhtq76PfHYqdpp4/V9CoVjVt1wORi1Aew/GjA/ZWlfE5pMvX7Feo0hUY5E7B3DxHqMfWJeTKxbUQjropi1n9cCsHh+oGieqHK0ntylWekgXvLZGai6gfozh5q4F6v9IPdKox1VGx08U1O3AppUiI+0RWazEFM2tG+XdG44ykF0bB0ZqgDeogAATM4cc0BO4sHG/UIHfS3jlXYCfx5Vo/tfX+bxNRH5TefcH7v/l3US9zPqTrTEw5vKE6IC3/efN1S+JbIYLDZ+BxDmi6SmhitNqkPYJhGKtWO/R2dU4z49UDOX2ssL1i1Ij9SHeBGmdFSdgPSgIr4zBhFoHJLX2F6K1JbZ5QHzVWXWRjOVm8gOLDglRjmjlpI2grCw2FDIB4Y6UymHctWBcVQ9nT8gmshxCxMavZZkqPDVshcQTdRgZtEaU0E53/ff1+IS+pZU2VXiWTh3tG7Nca2E+ZlMk73X9q8zozuFUGiiYz5CkOsuJpzrgH10Kaa13RBNLS4SzFGDiwxNFh4riw4rql5EnRlsqBaUZdd4FVWPxsq9HtNJPLBw7i1eBJxz3++/f+vL/Y6I/OzLPXYSb5DotIh/+XHSfg+31kcOx7jJFDm9QbXZpRxEimBBsfLWSxcAjC6EHL2/pvWCl5K+5pYtotmGIShV0jkeKgO2c6sm21UylCxE5VZCqq6u5MuBJr9o0hBvT1TMLg6R2uJEmJ9KGV0ICecL4plyBmykbSbxc4Cyb5hsGdXwn1skEiYXAvX/LbXVEh8FhFM1maGlvgCm0lX85OvmmBuZdwzT652vq5fB4Bl1D0OgfcuqvDYq1pZdPQIRsrZWudlWRrGWwFqiaqOlW/IBFoVvYfLSpLrTmJyLMLVbzhyqFoweCuhet8SjmvnpdPm38TinXPHIKK/O2iRCeKdhthEw2xKyHUjmjvbt6oQx/DWItwVEVEQilIW2cAX7BdQqsnLO/b7X8dpO4j6EvXoD1zS48QRm8xepSVWdcJmsxTqynYLxxXTZEjl6f03/8ZDOjcarhuoQs8683MNI4ad3tyGSPZ1BVL1kKaTmnKJXTO2QhfOVMdjYv/0Cx/xch9EFvd3aa5bHXAxlbSBEucXGhtF5QzRVQ/hoKkzORvSfdUzOinoV3BZqL0fdvqm6PPm67gZm5yzRMxmrT1g/U1D5ivmGkO2qgfzkjF7HYlAeziymtuoZsNam6urrFk1VJ8gFCgVd+AkvBu6IopgWvX6A/rMFR+/UIlK1dN7Q2qmXDOaF57Op7bIAIKjutY/RQzGzLSEaq/R0ULIszifxYOMtPRO4K34EiIC/42//MX/fn3i9Luok7l+U3/Qo6Y0h9oUb0DRIECCZJpdoUmNDTWJSWYq12M8MHEHlWP11fXsElUIbgxKmp9QIve0Fa2enVS00mkByUCJFxfRyH+OlosV5Uk0ojC4GZLuO/jNTpKgQEcrNFofvjJdKmP0XGsqOGrCEuQ5h5xsB4cwxPue3KALjSyoWV/YimhTSfZV3AG2LTLeEcKpD6bBwmFoYXzzWHyp6ZulZsP7FnNadgOlWyHwtIB5pv322aejcVIhmFQWU/YG2hQpHUKnW0cIKsxgYioGhfbtetoUWiKZoXFF19QnW7YDujRpTWvK144+fDYWyrzDZ5LDBJiHBrPFM5IaqExKPGsSjUbrXdfA8Ox0Rj7QldsIYfrDhEOzbAR0EfJ1z7m5fgH8tIr/5el3QSbwO0VgkWAxkBVfVuE5K3QqXGPPKS0ikhzo5biLD4GnFwIuFSGB6KsQejwIo+9piCXJYfbpGGsf0cp+qbQhCbYk4hOHFAEFnEcmwITia4aIAaRp/zoVMsiWcqfSCiwxSWWw3JJzp4y5UeWVnoHVLKNZ0jrHo8S8YuKMLhuQI0n2LCzXB5mvaUmrdMEQzFc8TBxu/WSpXYclc1tbW+LwhOVJGstQOlxic6AxhsXuyyYsTQLavA2Z7l6BenRrqNCWcakI/VlY95kg4o6Q10NlB3Q6W85ggt+SrEePzBlPfdT4XkAwdydAXgOYtsCR9E8Zb4VW/lzLWeIIYACJyGfW1PIk3QSyZwSJaAJoG6Xcp1pWJKg7mG6Emu4X+W6Swz0UyW4i2NRnEQ0e6rzsF8MJxhw5TWCYXMmYbIbNNQ1g4XHTMiA1nqlvUujrERQEuiWi66XJ1n+7XhNMGnNM2TOPI10Imp41KUfjEmexDfOST/wS6NxzdG+5FfgirTzUEhaPqqJ1kE6Hia/vetKWB7k3dojSpoe4EROOKwTP50hchHkN7p0Fqp4byLVETl8aR7Kgy6ALu6ozKNtSpLIfL8VAhRGVXIbgLhzK9L1j6FDexkt0WMdsIiEe6UwiKhrplmJw1pAduea5o4ghySI4UOhuN62W7bXGOk3gA4QfD9/L1Ro572Qn8t8C/EZHn0I/iRU5sIN80kQxrXBxAEEBd4x59mAYdMNZ3kaOWyS6LmJ4xRGO3HGpOz8SY2tF7oSHILfONkHhoSYaaCF0kNJm2cJyxd7GBwaZG5aCBzrUc5+cA860WpnL0rpXULW2D2FRlEMp2wPS0ykx07liO3mGYXFTNHBsDvmCJhekpob2tksoL0/miZ5Z8CFD3r94LVn141wPqVIXl2tseMVVYypWY2q/s29v1so8f5A3hDNo3G2wcYGMDou2zuh+pEF8vJCgV7RNNG7WfvBCT7Tdke/paTM76OUOjyT85siTeN7joB5QdVRmNxxZTKex1fF4LdTTBt8dU/iJfEXrXLDYyvtgFS3eyk3jA8Raoua9YBLyf8AdQveq7paRPZCPeJFFnBrPRId49hFhX3VU/OV71x0KxruQqG8iS0Qo61Kw63h2rgWDeUPZCoolq59hAV7HzNf2daO6WMgqi6lqMzwe0b1myvZJwZ4TtZVT9VAegwrKN4SJhth4AAWVfPQbSQ8tsw9Ak0HlBGF2xBLnQe04o+urq1b7dgOgKfInEiYXaz1STI0c+ENJDmJ72UtJTbR2FM6utnkB1fUwF8aj2iCRDOKsJb+xBkmA7CfUgIZzV1J0YmwTKp1jxPs2ofpA0ugPqXis5uhIzeode0+BJ1E4z9MqpjaPoB8vnv9hZhbmj6urH0lTKcC56ypmIZo58xctspAqfBU4KwNcw3uir/HuJVywC3qTg9zvn/jfgCw/omk7iPsZ8PSAaNxTvvaDQzUaZp0U/0ETUE6oeDMOAaA6tnYbuNe3PN4kiZ1ygQnQQEo+0zRHOG2yorZR4YgnuYqsu5ByKtZDutYbuE/vYVky92QPAxmaJZgkqFXJbMIJdoK2jsFD46XwTmtQx/LqSwa8mlD2YntHfqTqQewtIF0J6YCk7spxjZHuWqmUI55o044kjmihzGY7bMEHuaN2pSJ7dxq73mZ9p6zC2GyFbqxw90qaJhPZOTZFELy6gA0M8URZ1NFX0UtUxgCHbt5hai5jxGP6wgHxNz5vtWaq2ksYWHI32rYaqGxKNa7I95wfPAe1tDzmtDfG4oWqZpWJra9dqayJ48yekN1M4wNo3/2t+L+2gXxGRv4WaHE8Xdy7sJk/ijR3t2/VSYjjamSDOMd9c9aqVmiCrnvbrAdXP8cNiU2oSW6yw3WK2bKFJA5pUE3g8sTSREHqG7GJwmu1UpLcnUNVArIPouxKVC4TxKUX+TE/r/YmXmJ6e1r68jaDZLDF7MaOHHaYQ4iEMvqJJMV8JSI8ss01D2VGopzQ6p1jATJOhJSwsdWIIC8vhlfDY8L6CbCfH5BXzd29pHz7TIpXtlkwutKhTob2taqqgA2GpFS3V2m30uReKFlq0oWyoqKkFc9rGOpheSDtke3ZJ9AKWq/qqGzLbMLQ4VnaNx37FXzta29o+E6stpXxFuR3iYbgn8QDDAW/1nYCPb/Df//Jd9zngd93/yzmJ+x3hvFGG7f4MKUpGj50CFtLO3rFrV9/InWtzZlvKEwgKu7SkdCGkezXFSkiTBUsymNQOY7zZyl07gWIlIDmoiQ8KpKyxfXVEMZWl6Gr7pE6PfXaLgSz9dusOtLxAyeEHaqQwxK0KM0qWLZ7u9cWQVGjt+gFsxxCGxx/IMFeVznCu/sThrDnmKIC2oiz0nxpj44B8s0U5CJBa2cDxUcN8PSYf6HDb1G5ZwEyhnAFprJ8JRFoQE1VQtSFq0NORJXIJ9HxlV3WBAMrei7kQQa7s6IXEtjMsHcmcEcJZvWw/LSIZ2WWxOIkHH28LnsArMYZfLUTkKjBG0US1c+4jL3lcgB8CvhOYAd/rnPu8iKTAL6LWaiHwz5xzP/har+PtHHUa6Oq8SWGgWdQFQvtOTdkLaG1XpFcPsa2E4lSL7hOH2G5C3Y6XLZowd+TrIVJ7vZyJDlmdaKJtEkNQQrpXYQOh9/QYM1Pde5vGNO2Yqh9TZapKan37Z7bJkp1ct5TpmxzB8IqD0zkcxgyeMPBEB9DkOF81TE8L7TuGZOiF5UT/LjvQxzE6MO5fbZZSD1hFAs3XlZ0L0P+12+Tv2ABY+iVE0wYbG2xiyFdVpsFUgHVaUAOh7Iak+yU2Ngwfzij6stwVTE8FSxhtuq9Fbr6mj4P3Pm6jMFoPr40ndqlHtLSgbNQxLJxbin6ghTKOlH8w9faYvq0lTo939zznJB5QvAWKwKtCREVkTUT+poh8XkQ+JyI/JCJrv4VzfKtz7rGXFgAf34EOna+gOkU/4u8vgN/l+QmPAd/uzZNP4rcY4dwjejYTypVYMf+TBlM60kOP4kkj6sGxP63UOg8Ic4VrLhJ1vmKWkgYLiQKVSdBjTs9ES8YrjcUFgm3HVN1oqbyZrwQML/k+eX18nUHhxdpSNYe3h5pJ83V93IbKEG5SbeHc7aoFWgCmpwxilYmbb8D21/nEPq6oO2oAnwwt8aih/2u63ajbAflaqDODo0ZX8F1D2TW4QC0kTeOoWwFlL+TgXQllzzC6lDK8dDxgt5EKuaVHFqkhPdDXrs7U1a2J9bkN3+nbPn2vZ8Rx68iGKrk9ORNQtVX6elGI9Ry+AMwaLQCBQCDLAiCNDvBP4kHFvcFD72V4LCJ/X0R2RORLd923KiI/JyJf8d9X7nrsB0TkGRF5SkS+7a77PywiX/SP/c17MQC7l3bQj6Gr8j/ob/8n6Hzg99zD375afBfwSeecAz4tIgMR2XLO3QYm/nci//UWqLkPPo6upLhAe9DSOCVtBUI0qYmfvk390Cmml/vYUOg+eUBxtoc4R+EHrjhHtq1J1Il6EItdtHO0KLR84m/frklujpCyolnp0LRC6lZI1Q60Py+e6LWtCbLsarukWNFdQOHf4i6A1q2AznVHelgz2wyo2kL7miWaWZyBoqcqn0Ghv7/3PiHyEytTqrNY57Zl/70RrZ2QbLcmPVjIOgjDj2wtHdLC3NG5VekgPNPkO19TCGnvqqKdgsKb3s+UZ9AkmtjFaj8/PbCk+yVNGlD0Y2wAzj9ediCeqC9zNFFpi2gO+QrLeU3R19mLaXQG4Ix4kT99zp3rSuIbXU4puyHt2zXUjmIQEI8ayjg4YQx/LeL+ZaV/CPwt4JN33feXgE855/6aiPwlf/svish7gO8B3gucAX5eRN7pzeZ/BF1Qfxr4V8C38ypm8/dSBFadc//jXbf/ioj8gXt6WvoS/ayIOFRv6BMvefwscP2u2zf8fbc9PPVzwDuAv+2c+8w9nvMk7op6sXKeNLpatEDjiK+q01jZi1Stc9KQn+urRg6ACL1ntA5L1TA73cNUflAbC+lhQ3xUqhwCgBGCaYXUDa6d0rT0reUiIV/R1Wzd0jmaTUT74A4mFxzNRoWMQkwpNJnFxZYgj4imluGlkLql+j8A+UCLU74my149HLOGuy+oxIULoegaelebJQooHuvQd3JGmc/hDLL9Fy+dpXHM18zSCS0oLaZeWEyqmU1QOm/3qEir7rMjbBpRriaMz4bEYzWsaRI/k5jrricoFIaL6G4lmnqSWct4+OgCqgsE+liQWwiEfF13Rk0ktHYbgryh7hx/fKOJZXrqXj7OJ3HfwoG7T+gg59wvishDL7n7u4Bv8T//KKrb9hf9/T/mofrPi8gzwNf79nvPOffvAUTkk8Af4FWKwL0whv+NiHyPiBj/9d3AT93D3wF83Dn3IbTt86dF5He+5PGv9go6UHiqc+4x4Bz6BB/9aicQke8Xkc+KyGd3d3fv8bLePlG31EC9zsyyVZNdH0ISMfvgeWwspLs6mXSheNSPJtr56Ywmi3BxSLqvrNQmkSVKqBzEOiw1Kgcd7U9xmU9Wdx0nmjvqlip6jh6tvA+AW6Jeolsx4cTQZJZgtUAKw/oXFpBISPe0VSSNMmKjqaV7XR+vWgqxjKaw8pSlGChSRmolfbVu5/SenRHv5ziB6emQoHCkB0q+CmdWlUm7alJT9gzdG3Z5bWU3XJq+zFfVED5f1XkBIsSjGslrmlS1fqKpo4m0LSO1zhNsoMigu4X2ei80bH5uRlA5bOglL4wOyUH7/JMzAcPLWmTDQiUrWrsN6V5BMK2IRhXtW8VyYJ0eNssW30k8qJB7/GJ9kaf81/ffw8FP+a4I/vumv//lFs9n/c8vvf8V416WDn8S9Rb4P/3tAJiKyJ/Xa3O9l/tD59wt/31HRH4C+Hq0tXT3RZ6/6/Y54NZLjnEkIr+Abmu+xEvC7y4+AfCRj3zkpGX0khg802BKS3Z9BC/cgnNbTB5ZUQ+AYU1UNFR9339fCUj3a7KbE5qoh6m0LVGs+Oa1QOtOjXhJ49lGSHbQkG1rEZHG0bRDXBj4frjBlI7+V6bsv69N+6aQHESEM5ivK5KmfVN74c5A3RbsTsr6bwpVG/JVHaimR5Ywt4wuqLxFMVCIqAtgvqrtHxfA/nsWuH+dZ9jI0PnMbUhiiiun2H1Mn2f3hsfti3IFTKWFZXZKjz8+q8PmeASTrQCxakIfT3SF33u+xCaGaFhpOydUvaD5RuTltc1SwqFJ9HUL545oZpltBPSfVdOc6Vmdw1RtJbvl6xAfHhcLU+kcoWrpfCKaWqJJQ5OGVJ2I2elwySLe+6YTf+GvSdx7xtl7mbnoa4mXWzy/7KL6leJe0EGvybhURNqAcc6N/c+/jxfDTAF+EvivROTHgI8CQ+fcbRHZACpfADJ0/vDXX8t1vN0jHjWkT9/BDcdIv8fsYp8gV2XM2aaOW9o3C+q2vhWymxMmD/cUJup3Dk2mvX+ZenZuLIqj9z32YKi9GJtE2CSkSQNvqmK0BRSmnPl3DcPLofbSk0V7RH9eaOuvf153GdJwjLjZbo41d/xyo+rC7mMBNnHER/q+jyb6BdDeqSk7hpV/+wLUjWLM/N91bijT2Wu3+aGsEFcNkzPHkM1wrppJ4rf7g8cn7H+g66/DS19cSmliAVpkB6odVHbl2AGt0tmJNKolVPZDoqmj8q+1M16+I/W+B+gOYPE8o6nXFsq0jVf0A1pzSzitQITSt8bSw0UL77fzTjmJ1xSv77JzezEjFZEtYMff/3KL5xv+55fe/4rxejYRTwE/4YfTIfCPnXM/LSJ/CsA593fRwcV3As+gENGFJtEW8KN+LmCAH3fO/cvX8VrfspF8/llc6VeJRkgOC5osxDSO7E5FMMmZXBnoXGBqyU+3iUc143MxR5cT3xqx1Jmh7AVLq8igdKS7BcG8Rooal8U0Pc22dWYYXjqWPkgOG9KbI6TpMboY4QJNdE2iiU5tLLUwFG2dF3RuNYRzbdVUnYB537DxGxXzjZA7v7NZDkGDPCQ+8mzbOzXRuCa+uku7bqBpcKfX2PmGdY7e4xg8rruKhVRDOLdeg8hx41tjqpWG078oy5V42RVOf3pKeDBl/J41soOG6elgie8/uqK7mXQfZFeHy+nOnHwzo+wF3ky+pOiHTM9oWyc5Uq2l2UbA3kcbWldDmvTY1c1GkB7oziE9UrezJhHma4YmgibSwp0dWIJcPQ2KQciVT1SMLisfg//s9X5XnQTwIMhiPwn8ceCv+e//4q77/7GI/A10MHwF+FWv8DD2SMrPoO+EH361k7xuRcA59xyqO/TS+//uXT874E9/ld/5AvDB1+va3lZR1aog6hx2dx+2VomfukWzu0/w0HnqzR75wOCMLPvJs82IOhM6txfIlWB5uAWaZTFHMNNiOQeos0DZtH515ALoP1OT3hxh01iF4vyhFoNca7xUxNyza3M1Wl9AQFUczZEMG+YbXoQtsrSe9udsAwKdW/bFcsqBAWuwnZR46shuy/GKGSVfuVAwueX5P2i49I4bzP+PM8ePizB4rubw3S1Wv2RpXZ/RtEKmpzPqVPwOR49rA2jd8ruhKMB5n4Fg1lC1VT3UBp5ZnQh527D3YQu1kJ+ytK+ZJcvZiRLAFrlFB9UBdaYzhmh+/ByDXH+vfWOujmSzE3jQg477RRYTkX+CDoHXReQG8INo8v9xEfk+4Brwh/Wc7ssi8uPA40AN/GmPDAI1APuHQIYOhF9xKAyvbDR/yTn3/Gt8TifxRgljoDkeFrpf/RLNQsc+PWafOqPSBtOtiLIrtO9YNZOZN0zORurN63cB0dRiyoZglONEmF7qkRyU/jhqHiMOulcbku0508t9QFfWC3P0oi/ey0AloaOZEqTm62bpH9Ak6nDmBIaXQsYPHye5OoPyfImrhd5zfti7M/cPNhAYyitbTM+lTDcFFx6LtKm9o6NODJPTIVCz//+eo1uqWX2dqcXmbCOg6gjbH+ty6lfGzLYS0gPL+LyhteNYe6Lh8B06R7BJyPBySnpkqVpadMuOIZyrfWU8Vd1/ZQELresBGJ1nZLuqgFr0VN9ooc8EMLoYU/kFvvP/ruSgXu4c4MUw05N4wHH/0EF/9GUe+t0v8/t/FfirX+X+zwJfFUTzcvFKO4F/BnxYRD7lnPuqF3ISb4I4d4pqo0N8dR8JDNy4jasrgocusP/BVS8prQklX1MzFlOrgbtUiuePZo6yq8Jl6e0pUulswIkwv9jn+u81mDJj83OaoHpXHZMzIbPNgP33dtUcXlR+onfVLf2CBd0B1Jn2ztMj5TPUmahuUQn7702oVVGZ1nUdkM7eBcVWRRA1nPlJ1ZaOxg1mOIN5TnNunaf/Cx269r+kLZsi1VV1nRmmm7q7yFeEaAarnw+1lTRtGF2Mma/pB7tJvYdABeVqQutOyex0TPeGFqPhQyGjKw2rXwyYnE8JC8dsQ5VBq646m4mz2EBdzKqWwkOjiRaaRRI/ekQIfP0KCqFuBey/K2T6cA00mFlA/2lZvjZlL2S+YZbeAre/Iab/nDvhCXwNQl7fmcADiVcqAkZEfhB4p0cCvSicc3/j9busk7hfUa13cIGQX1F5hPjGbYLLD7H7jZvYWBPLqGMQINvVoSqwFIGr2treaO02pDcmmMkcohAXh9z+3esMH7HQqVn55ZjkoFKJCgvF6vE1OIHp5ZreE6ESvQY6DE2VqoBYaO3ozmN6KgAHo0vHFmamVkno2SmhXHF0vxB7AbgQUCx9+tweFLobGT3cJuhpVjVVSNWB9i3Y+XBIsq+IG1PJkrGc7TVE04bZqZgwP77u/FRD+4WA9ECZxcWKflxmm9qfj0fw8D+rqNuO4cUQ0GF22VPv5bsHtU2ksw5FLenzGV3SojB46pg8ZxrH4TvC5bUFo4CVJ9Vn4PARQzxSNFHZ1aI63xCazLH9O2uivRfrCp3E6xyOtwSF9ZWKwPegRIMQeE0IoZP42oc0VvXvQyGcNpTf9OiS9GTmCmNcedYnfqvImSC3S3+BoHJ0vnCAi0PEWsrzK+QcPQbgAAAgAElEQVRrMTaE9S/lBGVKUETU2bFD2eSc0HteZRySHKbnoPNsSPuOZXpadfvDme4+Bs/obKFpBRxc0bdjNIcmVJhoOFO0zuyUrtpbOxDNrA6cD1T+GdACYC30upjKkf5GCxdoMVp5SiGmNgzBqDmNaRz779c/HT4i9J5OSA8tvedmzDY6uADS3YCwUAy/E5huGSVyoTuY9Mgy34hpvEJo2dfCIFZbPuLU27hqedRRqXBOG2vRW30SZhvC9LTuOMoehFOh6utrE4wD+s+oV7ELoHvNUfSF+Sl1WLOhRzqVQu/LEcUalGfLB/fmetuHvLVVRJ1zTwF/XUS+4Jx71eHCSbwxo1yJcUZoIqHYipYGJNnOsdctzuvjZIbQyzIABHkDuf6BjUNsL8GGRhU5rR+efqXgzkcTj4SxHD4SYAoYnzPL1WzvWbf8efNzc/benxFNHf1nc2wSMF8/fhuGhQ5AyxVN1vON4+cSD3XFLA1kOwXhwRRyL8HpHCQJs3dtMLysK+agcLR2PIx11mCakPjI22KGsPJl4fB9lvSOwcbQe27G+FJLBeMqhZTK7z3g9s0e/cdDmkjRTINnFW1V9gKqlsJCy76/xtFxW8YZZWzbGJKhKoQu5gDOQNn2BjFtFZITq+fEQfd5ECdLPaE6E5KhI8xBdvFqo44yVwXWzi3L6tNWT/DHf5tvmpO493iL7wQW8SseirRg+/5b4C8754av32WdxP2KfCVY9uBtdDzcBe8ZUFlN7JMKqUOcl2OWxhFOSqS22HZC0w5Vt96qlIJUlsN3Z8zXIR7DypMlo4diOjfUDKZq+5P4QlMMdNWU7gekh47Ode27BHkDhJQ9o+gYoySxbFe9fgFaO6rXE+bOE9YKott3vf2CALfWZ36xz85jIQhLk5smMSQHFeIcnZuqnFp2dSgdlNB/ypCvQTiFYiXBVGpWA7D2DXe4+fw6535GsIF6FoCKuolVQb0mhmINWnehsQNPPpueCmlitbdcGMAkR07lK1paeEyt3AVnYLYF2R7L+QDg5baFbF8riw6EVZTORtqTbm+rKJ4L3/yr0jddvAXmMPdSBP4+ytT9bn/7jwH/APiPX6+LOon7F0VPSI8W2H5dAaf7Nc6o9k4xiBDraDJVxAxmDbYVEBwUIML8bIeqE6i/QCcgmioUc/jehPjbdpnfWKEcBvSfUyRME6MJSwx1thg4C9FE2yETbyw/PZcqUibyhioWZpsq+ZDu686h7EF6qEkUgdmGJmEbpASnEpKjGnGqOld2Q+78DgM4Bk9C71pJ1QkJpw3BvGa+tSB2KVZ/vmYYXdYVOOicYOa1d5oUzGND5v/8NJee85LYiWHwbINYx8EjMVVXdyrR1Hm7Sm2tqQCdcPDOEBtB79oCL+sIKhhdEMK5zkYWA+bRRVVHHTxtsZEWqDB35CtGmcRr4MRQp7DxRd35jC7EpIdq5hN4LoU9kQ56sPE2MpV52Dn3B++6/T+IyG+8Xhd0Evc3Qr+qTI4aNYKxCy/bhmKgCdkZIT4o9TERwr1KJYo7XgcoEZo4YHxR6F5TSYTNP3CNg3kLIsvWr+gHIdurqVsB4ayhfdsyOaMM4YW8cdURoolKT882FIbZuWmXAnOgrSAbK2IJpwk7nC+WWyrsFs0UDbQI5yGvrVtCPHIkQ0vRD1Vdsx9S9sPl824iqAaGcqAM45Un9TjhTGUjihWhfGTOQlh79FBMNHNMtnT13dpplph9UARReuBN7Ne0SE7O6PNZDL7DufUoKL2/taMzDdUf0p2HqVUeIswdBGqSY2Ook7uY0NuWOgsI557PsRHQ2lVPhSqT/0AM7yRe/3iro4MWMReRb3TO/RKAiHwcmL/K35zEGyTCXIXSpNbVtE0MUjnqLFB/gLkjyB3FakxyWBEe6dJ48o6eSh745JmvCIOvKEQxHxjqT55n/1t0ldwkinJJj0qC0jLfiJBa4Z75mqFqH+sDmUo5AguPgmJgKH37pWlBckc9ijs3G4YPhQSlo24Zmljo3La6si8sQV4fK5UKJAclrVZK63ZJOC45fG9HYa0Tx/T0MZxSJS9Y9u3rzKg4XqO7jyaC7DcyIKNzu2Z6KmT7Y46VL4u+Tj3vD7zvSI505Q4w2wyWxa5cgc4LSuyKx8r6XWD4yxUHL2jxWHglxCPd/YSFo4lk2WcOp1oEkiOdMzSJMG2FuEB3EkGpkFScDsvL3glP4IHH26QI/CngkyLiR18ccjJ6etNEeqQGJEsTmLn1OHaFuQS5O5ZjHhdsf6OK2LR27NLTtliJiKZqtuKM6t1HM8v5nwhJd3LyTR2Q7ny4pVDPQq0YnVHzdzA4gWjkmK8LTaqJL9tXSYrxuZB039K+OWd6LltaObbvWKanAqKZI9tvSO94Vm4c0KQhNlQpi3xgaO80DC8Lw8sJK09GuqLvwcpTmkDrDGVOo8Pd9p1GDXNCoVgJOHiPsnaDEjo39HzXf6+BxiGVMDutO42wcKx/sWK6FVL0zXJuERSOfFWYnjVs/VLlReN0t9XEQtFXp7ONz8uyLdW95kj3amanFK1lQ6FOtaDOTuOlso93UE2ir2lrR5FX+arCXMM5TE8dD+JP4iR+K3EvAnK/CXxARHr+9uh1v6qTuG9RdrVX716ySHRG6NysMI0ydcNxuUySK0+VNF56Ol+L2X/UgIXeC47e1YJgUmGzkJ0PZcxXW8c6PqW2MYLEEU20UOQrulIVpzuAaKpJuLWjK3oXCu07atY+P5ViKu2Fq2KncPRuy8ZnhfigoFjTJs18MyLbrZeFbRHzsw0fff8z/OrmFZI9TeZ1ppr+VVuoWtC+7YjHlnSvJDqYcfDB1Rcdo3XbLdsqTiAe+8IxUjnn6ZZQdiLChXyDHPsLtLYd6eM1yZ7upuZnMv9aQ/+qHrP77JSjd3cISh12H12JMLWHhOaKDlqY60T+k9bE4HoqT9G7bnXYPHPULS0KamAP5QmQ+4HH26UdBJwk/zdrFF1DEzv2PuQIpoatT3vFWeeWMM/ocE49SJmeieler1VeuXRMzmrPpnPd0b5VE+YNh+9MOfi4QCNIlLP+84k3mVExtqMrQrbjSVNxsEy+YnVV29pRqvBi92EKS76mkshNqoqeLpClVMLFn6oJcpVPLlbV5zgoHGVPdzJidYBso4BkBz73i4+QjaB9S48/vqgr6/ZNWHlqTt0KyZ7Z09fmwiqmURhn57qibeqWMF8N2P+OnPD5jGis6KTZKWG+ribxkwtw6td0ZV6kkB40jM/pR6kYRATnItKDhvaNGS7U62yygLoVMLnU9tDR41V853ZN1TLM1w3RWGcAdUshsYt2nqlV5qJOhf1H1Z1s9UlH7aWq1SHtAb2pTkLDcd9kI76WcYIneItHUDmKgRBMhdOfqUm354wvt0kOtHcQzmqkrpmeUdJTclepb23XuECQ2uEiYbiVcPTNc6gN8c2YaASzU9B/zlJ1hHxFiIcqBFd7+eZw7t20jGLoy67RVWwmhLklGleYXri0dQSdH3Ru6vXFBwV1NyacVcRDQ9XWpBqPGqpOQJ0Ka49XDC9HmMqbwqPFYXZKC0C2AzgIZhXBTH9h9q4Nhhe9Hn9b5Z+71/Sco4ci0t/IqNuKFGq8P/JC9E4cmMqSr4THzmD+nEGpswKAphVhSkuxFmMD8W0uRRQ1qR5zUQAWrOn5qh4rOVQTmXS/VtN7Lxu98zELVlj9otFC7gSHzjKaY5vok3hQ8XbaCZzEmzOqtvaTzz5ZLdsn2XZF3VaNG2eg6WY+geo7WirrjWOMKnN656piIDgrnD19yO6107S3HaZSxFH3ekVyFJLu67B4vhEz3wgoPArHzFUdc7EDcEaIxjV1S6GUOKcmKr5fPt0K6b1QItaq5/FqstyZxBNNskVPaN/xbOcGyr4XuJsIs1NKohp85Rijf+ube6x9qeTwG3rq5jXWfvsiZqdCdr+1ov24Opl1r9ul0fuiAEzPweDpF3/yi5623IqBSkNY/xxsaGiSgHDSUC+K11CVRUOv+LkY7JZdob1tCQvn21DWE/eEJjaUPR0km9xgY0fRh6AUyp5KcJhKn89JPNh4W7SDRKQF/AXggnPuvxSRK8AjJ/r+b44wNXSvVwTzGtMEzLdaajhfu2XvWpqG9k0o1rW1E9aCNRAUmqgWEs6tXUfvJyLi0SpbUUU8rKjbIU1qsKHRhCkxdSoMH9bkufp4o9aIeaM2i96OMj5UvPvsQkI80vPYUGhtV5jKEcw1uVf9lPmpiHygg8/0QK0yDx/RgjCvQ6q2KBnudEHnc+mLkuHogmfltjSR734gJp7o67K4z0aw+3WWc1d2aE1ahPNYHcHGyli2oUpXgPbp60SYvFfhr73n1YS+SVXWwtSawINZg43UUMYFQnxU4kJD2Y+Waqaz9YB4aplsGfpXG3Vx68vSOjNfD9WTOYT27YZwbjxiS6Un6kw5BQhL9NNJPOB4C7zk94Ip+wdAAfwOf/sG8Fdetys6ifsa3Rs1wbymydTxa6G5v2QGVw1SW4r1RG0Rq4Vxe02yPaX0KKJwpivTaGopVsJlAQC1ahw9pElZLMzXDfGRSkSHhSMcV9hAaLIAsRANSybnUybntX9hQ4WiRtOGaFwR5DUuVL3/fE2Pm+1bUu9kVnZVdTOYayJsEjh81LL6C3q82RZMz2qSBx24hjP9vmgXNYk3vY9gdMmRnZ5yMNE/GH6oVHjrqlmSycxCkscprr9JYO1Llmy/WQ6SkyNL93pBMPPcg3lDkNcEeY2NAppYWzh1pq2h/nMF0cRSt1QGuuzq/yRfMUzOBDjRGUXVVSe3oIDswHpGtF6DON1pJUf681thZfqmCnePX2/guFey2B8RkT8K4Jybi7cLO4k3ftSpQaqQJtNkng8M7Ts18X5OcDSFsoQkIdktiIYGFxmigzkuChi9s8/tb4L1z0PTN/SfneMCQ5Y3zE8lS5JSemhJ91UcLiiE9m1L7MlcVdtw+3sbuj+TUQwAAuJhhKm1TdO9YXEh1KEhOaipuhHFakjZUdno9MBSdnxLJvetkolj/30QDwVToHo6DtLvvsMgrHjuS2fJbqvY29oTx4b02x/z/fzckO7C9LEcs63Di+qZLu7CnNWfzjDrwvAyxEN0de+Hx0GhhSOa6/1NKgwvhwyetfQ9s3hh+m6K5liJtR+Dc7jIqFxEoEifZuAtPXd0B5EeNkvrye6NmqN3hERjJaYt5iWTU/pD7FUzsj2F3R6+14F5g2ebt1i8VYruvRSB0vv8OgAReRjdGZzEmyQWswCxjtZ2TbI7Q4pKVTdDfQvY9Ng9rO6nzNdjdj9kGDwBydAzVE+nZLslQV4jTUiVCcWqEr5AkS75imH9CxOqXkzZC9n+w3Oqo4TioxVrvxaRHljV1m8bTd7WQeNNboxQt4NlAejeqBldCAlnSuSyEcvV8dYv1+x8OKT3TWq7eiqdMykTbvzSebK5wjUX4YwK2omztK/qeY8+rkv8ptsQHgVEI6H1856mfNdKu27pKnuhNbSIfFV3F4NnlcBWZ4ZoqonfVBaso2mHSzazC4RwUjPdTNj/oAMMZ/+NykxEs2Mryc6thnxglH08Pr7+MFfIbJBDMnIcPiK+BSQKGR0LyeHJ2uyBx9sEHfTfAz8NnBeRfwR8nGMv4JN4g0c8qin6oW8bWJJdnXBKbZcKnG5Vnc1doBBIaRztWzm9p3K2P74KogNbGwm7j6WMPlBy6l8H5F7hU6wWAFPr0HZ2JkMaR1Batv5JyrX/yHH+XwnhrKTsaWI0tSZ20wC1egmHeUO+FpIMLXsfMOSroSZgowPcIHfk66pDtPNhfet+aOM6n77zENc+dZHkEDKnZLZkqD32OhXm6yoTkd0ySxil7OoOINvxRi9jTyjzinfFKiQHWgBAV9wLUbq6JdRttcC8eyU4OxXTvTpHmhfbWAKEs4ZyEBFPHIMnfFFuaqKp6v9MToe09rTYZgeW6WZAPHVqIRkcy1EnIy0G0eQuWYrFLGL0FliWvsnibbETcM79rIh8DvgY+gn5s865vdf9yk7ivoTzmPyF/aOUNTQOpnNoZczesUbVDWjd0YJgQ4Ozgg0NdatDOHfMNgPSfUvVE7I9R/apiPm6UKw6zPkZPNumteOIpo5sz5+ntiBC1Ql55O/llCspk3ORwkWBbL8hOaxpEkPZD2gNS+osICgce48Zis2a4IVQe/ieQVuuaIPV9mtM3JA8nvHzP/1hQF00o6li6qOppYkNVVvY+zY//L6VEo+F1q4OYm2rIblzbN6CgfXvus73nf9l/rv/T7USsx1Dtm8p+jqwLvshB+8yVD1/HbEgNcwuRnRv1CTDhrIfUWcGGytJregZutcKhpe16KRH6k1gGjh6OGTlKzWjKwHrXyiX0FOsQ2yE1I5r3x4weMJ4noVjvuJdz2Ko2jrjSIaObO+ELvw1iftYBETkvwH+hD/qF9HFdgv4v4CHgKvAdzvnDv3v/wDwfUAD/Bnn3M+8lvO+6mDY20vuO+d+yjn3L51zeyLyqddyspP42kS2UxAdzIgOZkheIQdHkMRM363iNdI4muS4HVQOIppEcfvpYUPqZYzD4tijd+3xEnN+hrvaonP9+FzzjZiyHzF+KGO+EWNqx/R8m6rjSVOpQkWjqWV6JiacN/SfGBIdqhzVbNNQPzQn2Q5p33YMH4bxBUXBSCU0LUv7yZjuv8+wMURDXQlnOzoktt7ZrEmE+ZoQPp8RPp+x9gXIdjWhVz117Kpbx+qqo3dYvu/8L/MDv/CH6Lxg6LxgyPaUTa0mODXh7FigbfPXHFJr+yvbbbwdpqXsB9hYll7L3WtaXFu7Df3nC5qFOJ6PnQ+FrH+h1B2aA6yjboVIpQXA9WqKwV3kulKZwUHx4vbU+FxEvhaSr52gvh9YuOO5wKt9vVqIyFngzwAfcc49CgSosddfAj7lnLsCfMrfRkTe4x9/L/DtwN8RkeCrHfvV4pWM5lO0Cq2LyArHFiQ94MxrOdlJPPiIxhXBpECKGpeEuCxGypjZO9fVSL0lDJ5RyIw0DuMszgRLHgFAclQzuhjjAu2RD55tcAIb/zSj7Gm7xgWaENe+PFMSU6Mr39lmRDFQPfxsr6G9rWqZdcsoImhPJTKLMz22v16RQOZ6hqlhcl5wD83g6ZaKpI2F5CAkOVReQHKgBKs732wxRUj35oI/YJbQ0LUvWoaXDOOL6okMUA4cNrO0XwioulAB4cTwP/3v30MXba30rtbkq8FSqXO+mRDOGs7+2xmjS9nSI1jROkK+FvrWkyyVWzs3GopV3f3M1w29q47xOaOPW+g/vzDsMdgsJpzV3PloC9Nokt/6JQuEzDZgdEnIdtS4x5lFOwmSibqVJUNL1X7z96ffdHF/20EhkIlIhebeW8APAN/iH/9R4BeAvwh8F/BjzrkCeF5EngG+Hvj3r+WkLxd/EvhzaML/HMdFYAT87Xs5uIhcBcbodqV2zn3kJY8L8EPAdwIz4Hudc58XkfPAJ4HTqG3DJ5xzP3SPz+kk7goXGuRwDEms7Zm1Fqy12H9vRHrgWP9ijo2Mt0eMlqqYTSKEM0frxozZuZYyj9tC58Zd/e5A++/xsMIZwcbCfFOTv6kddWpoEoV3dq7llP1ouSOoUyE5anBJhNSWuhXQuaGfqNFloew7bOTIvtQiHrJUHYXjohPOYeejivbJ9h2TLU2O+br2+NN9OHynWcJCQY9j2w3t50Nl73qGdL6p7Z3WtiPbe7EkswuU2FZ1AkYXYyKvG1THAjgOrxiKdb0vu6OIpsUsYHImoLVtqVM4eFdEuQLh7eNdFaiSaQIUazFrXy6X/spNIhQ9lZfY+PWGydmAJlF/iKolRFNH2RbSI0s0aZaS0yfx4ELsq/+Oj3UR+exdtz/hnPvE4oZz7qaI/C/ANVSl+Wd9K/6Uc+62/53bIrLp/+Qs8Om7jnfD3/dbjleyl/wh4IdE5L92zv3wazm4j299hRnCdwBX/NdHgR/x32vgL/iC0AU+JyI/55x7/LdxHW/LiF7YBcC1NDk3saFuaQ86KCz5WsTkbED/ee0pLyQSnFHLyWolWUoUn/mZHaoN1X0+eHeLZOQdrXzCi0c1w0t6HhcI7e2a5JolPsyRqqE5lTC6eOwxjAjSZBy+KyYaO8qeX6mfKcE4zJGql6rWkEfJzBUpU3YEFx17etSZDnibbxzSjWuGT66Sn3bE+wYbKUcgnugxxIU6APcf4CaD/leUq5DtW51TdIXxRaFzXZ3UEFk+T7EKOY0nlvE5tbLEPxZN8CxfKAYBpoZ8zaOnCkiedUuLz+lWoD39I6ucCYH8XLhcXZYdTfiFf106N9WRrE505b+Qtc4HhmjS0CQnUtJv4Nh76SL47vDdlu8CLgFHwD8Vkf/0FY731bZ9r2lfci+D4R8WkUeB98DSawPn3CdfywlfEt8FfNI554BPi8hARLZ85VtUv7GIPIFWuZMi8FuNqoZ2C5tEiLWEMzV+GZ+PmfqmXnLocfa3p2Qi1O2IJguZnA2JZobe8znR7oRm0KJciSn6Ae3tGkRoUjWZiQ9LTF7RvW4wtQ43o4MZUjXMLq1AIMw2AmaPzel+JgOjpK8mijAlBJWu3qsu9L4QL1fvQa4tqPYdS+/xA1was/uhnrqRAdHWDPeVDpNvmVIXAUwSvu3RJ/lXn/sooAbuTsBFLE3iu1dVgTNfUxN6ABsJqR+u7r87Ij2E/jOObFfvS3ZnzE71ltaVky1hcs6w/gXN6OICqhbka5Cv++H3NrS3a68tpAm6SYRgrHId8cgti226XbL3fpXvqFrQuWPVWzhZ+BQrKxp3bLMZlE79jQcQzU5mAV+TuH/toN8DPO+c2wUQkf8b+AZge5ETRWQL2PG/fwM4f9ffn0PbR7/luJfB8A8CP+y/vhX4n4Hff4/Hd8DPisjnROT7v8rjZ4G7xor/4ZZGRB4CPgh85mWu7/tF5LMi8tnd3d17vKy3UbRbVFt9XGSwcch8M1kSj1o7+jV4vibeLzDTgrq9YP5qWyScWWxsoLFIbTFeSiI+qshuz5DGEQ1LZlspNg6pOoEqaeY1thVjU21tjM+GVB1o/XqmYm65msCnhw3xxDHbkOXaxoYqPBfOHOmRZfBcTbZTMn5kBRsHpIeKsJmvCdWdFtXpCnu9hRvGuGHM//Pvvg5peFEbCBQCGpRQrGgB6L6w8EPWEx++K2JyLqJ73S0lGMpBQDkIGF/uMnxYcAEMH9IXcOXphY+x/AfnalLfEmsZir7xNpRuaZWZHjXL/8PCcKZzs1HT+DvHPQaxKtchjW+/TSzxxGID1UeanncMnrGk+/Xy6yQeUNzHwTDaBvqYiLR8m/x3A08AP8mxf8sfB/6F//knge8RkURELqHdlF99LU/jXpYPfwj4APDrzrn/XEROAX/vHo//cefcLd/H+jkRedI594t3Pf6KWxoR6QD/HPhzLydl7ftqnwD4yEc+8hZA7d7fcGnE8GHdwCVHliY16r41s4hVOemgaHCRwSURQdFw9EgbJ7Dy5Qk2CwlGBbaVUA0SovH/z96bB0l2Xeedv3PfmpmVWWt39YZGYwexcREoSiZNaxnJsqQQaY+1jWTLNm2FPLRFz0yMLSlmxjGO4IxshzWWx2MzOJYlakYURctmiGPTkinJFCVTBAGSEEEQBNBAN3qvrr1yz7ec+ePczCyAAFEodjcajfdFZFTWy5f5lsq6595zvvN9GclqjzKJWH+gSeNSzmApQQqle6xG+9hYcC0hbwRs3Rbga8RmrJ7Zz/mnMi59a2yKoWemForNs2Y3qc4YQd1lARzB0FzGeodTukccnWNG0wy6DrqOuG29DFLYwDkeNGfO6eSf1WVG2XQjKypnM0J9pWT1zdZBDKb7kzWEtbeUNJ8NcCPh4Oe7XPxTDaIdGM5ZB2/njpzuzY7Df2iy2d3DNvBrYI5gQR9GsybwVlv3wnyF0npuQH85MfvIyET56ivK6pvMeyAYWHona0w9iNXZSiXZzMFZQXrUFOaeKSmfg3QjR0qlcyS+Jt+pCrtwhUYcVX1IRH4T+AKWDv8iNq7NAB8VkfdggeIH/f6Pi8hHsexIDrxXVfflL7one0lVLUUk98Yyl4Fb9/LhqnrB/7wsIh/Dqte7g8BLLmlEJMICwK+p6r/by/EqfC00shxI76DQOxiw/PCQaKNPrMrwYAPAC8oVlGnI1p0WABqXcoqZyOijLZ/nFxOAKxoxm3fX0cAG3szLOgw8hz0cQPummNpGQdaE/M4e8lwdDZRkQzj4HecJ/qvSloGfuYnZ08Z1HLVC1h5wDI5kzD7uVyR+Rh8OlfpKxvk/EyMF/PnvsoXhx37vbaQrQlGzom/gG9fKCOItGCwIYc9LQkdTZzEpMA8EhYNfKNm5yRF1jVm08caCmdMBc88UpJetzyDZgv5BCwBZa3p/RzMmQx3vGHdf1FJbdr+s63g4K95hDTrHU4KhMpxzDOeMBTSctRpC2Dfp735LSDd04lpWJFBbKyZ6T2DFdjBbSaPFCvXL1SrgmuMKTjtV9e8Df/8Fm4fYquDF9n8/8P5v9Lh7CQKPiMgc8H9jLKEOe1h2iEgDcD6n3wC+G/gHL9jt48DfEpGPYAXhbZ/7EuCXgCdU9Rf2fjkVXojRYp14p6R3MKBx0X9jA2GwVGewZANt83SODAs2H5hlOCsk20owLKA0rR6zYXTE6z2KRkznphQVqK3axCPqGvXRZTBzoaC/GJDXoV2f0pazhZyZZ0w2euM/HJ3k55ees8Hs1F90hFsmi5BeiEg2za5RQ5vZb9wjyI9tsQBcWpmlUOGL68dI1oSsCcG9O2TtlHItIupMVwRhHxAzaBnLVNc2bBU0mHMTNtRw0YJD52Zongyobdi9WntTAzfC6icCpef4Jyshs8/Y/WkfcxMtf+cFVeJtZThvTmrjACBqCqTdZWemMS9Y24Z9ZTBvbKCRb1f5FJ4AACAASURBVMwLhkownKYU2kdDausl/UW7343Llq7La9bBXOHaQXhF7KDrFnspDP+3/ukHROS3gZaqfmkPn70MfMxrzYXAh1X1t0Xkp/znfgD4BEYPPYlRRMdyFG8H/hLwmIg86rf9nKp+Ym+XVWEMddA8uUPrMZttd+9aJBh6qqYqUU8ZLMWwFBO3S7buDOgvC7W1AJcp27fGE3G0zftnJ/nzuG2j0nDOBNHCgUkZj1rOZv916C+XuAND4jgnXsyJHm1N1Dvbd2dIVKIuARfTeNYonevvGDL3uYTuUaF3W8bb7n6WR/74Thp3bHHp4hyHDm/h1mM+8fG3AZC/scdcq0ennzD3sKWXmmdNywes0Sz61g22uyl6oUb9opBu2QrGFVBbz+kdCClqyvo354iDsBcxQMgaAd0jUy8BFIJ7dhg90zTNnkRwmZLsKMkZS7X1l8xToEiNTlukMpF9sKCkzJwvaR+384u6ZroztqsMB2aok9fMv7hIZOKfMGqamX1/0U0KysNWwKhpbKGx0F6Fa4TXkYDcuJvt5vH+IvLOF+T2vwaq+ixWS3jh9g/seq7Ae19knz/ixesFFV4hwn6BitB+wIR+gmHJ9m016wMYKL0DjsZKTufI9KsQb0HnSIQG1t07ds6yz7PiZlYXhrM2Gx1LPI8NWGpryuW3KnNfdfTXa2QNmyar5++HA4g2QvLlEckWzFzKWb/bjr/0BzG9wzA4oLgd25asCfnaPMEDfVaeWiLqi6diWjK0208on2pOeglcAesP2PM3fMuzPLO+SJk7mmenFM/BgvkT9BdD0g0l2hZaz0QMFixVVIZji0f7nDKE4C3bdM/PkHa88c0RWPyyb6jbzunWLCcf9pT+ASFdNwnu/lIw6fgdY+GJjN6yF++LwGX2mfUVC2B5TaitFb7OoWQNx6gx7TYOB74w3oTaqqfIVrj2eD0EARH5h8APYwWIceFBeX5uv8J1iiINGM3NEA5KsppDAyHZKWkfDegcExoXYTgbkKeW0w4G0wInYK5XrcA7cdk3fjBvtFBR229cE5g5Z7mQ9vGEg5+zRqqFJ4aUkWPlrTH95ZKZsza7Pfiw0jifI8WIoh4xf1LYujUAhKAHkkHRKHns39+FFJDNQviUFU/jLdi5N2NmqUf4J7MoEA0g3TCT+KzmOPBFJdks2Pn0cRZiIWoXqBsxXAhZu98hCllTWX7IaJqLX1H6S47aGtaeiPkGOF+T6B1WeLZF47LQv79PeLpG/YIxgHpLAVu3JdTWrIO5eaqHlA0G83ZfzAzeHMDGGj9lZPch2bJO6jHHv7ccUFstbWbfso7uYOQlIwpl5oJ67wE7x6htUhJW4L8BRqTXGm6AW76XlcC7MSexSj76NQgplWR9RPdI6jX8HcHQWEGNi1Z0TDeU+ips3vX82WSRwKhpA/6oJXQPyUSvJt0w68rhHLSeU4oYLr85nTBhku3CrCcLJRzlLD8MnaMRm3dZ4AHoL6ckWxlZM5zMlMcMoqJRUj8XEPaYqJXWV2xGnjVBHLhPz1Lvj68Tku2SYOCplwMbaMNuQRkEFKlDcmX1TY5k096jTti6w+oQUkwZSmU87UrW0nj7jfNGKx21oPH5mpfBntpDgq0cFh/rMTiYkuwUZGPrTIzrX9swymjctigz9lEuEjepvQB0jzhmzhUU0S7Lz9L0h7p+9RD2TUCutq6kG8VkFVbh2uL1kg56FoioPARemyihqAWkmxmjpv25s7r4FIQNqmUkzwsAS18qSVeHbN1ZIxzYAD9G82xJ54ijvyg0Limd47DxBntvusZkQHSZ4nLj8xfeKGXc3etGXhFzMWA466iv5HQPhzTPlTTOD7j4rXWaJ20pIiU0zvlLiWywbp1Wgv5URyIcKHFbqV3qU9TMkjFdG5I1I7ZvTRjNwtzJnNUHI+Kd6QA/to0cK4kOTE9vwgAKOzbYjlq2Sqqv2Gvjf/ywp3QPecZRD+aeyekdqU06i4NMzWJSIdmyFYd1GzvKcJfM9GBKIS0jo5iOB/VR0/5W8yfNW2HUmp5j3DHabzAw1dSxt3GFa4jXSRDoAY965dBJIFDVn75qZ1XhiqFIzTKycywiHCjpppmXlFEwYa3s3OyYOQOtMyNcVtpgFDvmTho9cvVNKWHXBu9hyxG3lXTT3jv7dEBv2VYNZWR56ua5kp2b/SCtkLRLhrMOKWDxcT/j95aSwcjSSq3TI2MkYcFJ1AZ8nJeMCKB1ZkqDXnhKGc4GRB3bFgyV0Zz1K9TPddl4oMXGfUxE8OorZm2ZbDBJrwznxKwiIxv0ox3LtdfWSnaOO9LJvjKVmEh88OhbMGlcsuJ62LXzyFOrk7RvMmOcsR9Bf0k48OjAD9aO3kGTjAj7OglKRSik64qU5hmwfbsN6nNPWcCMuurlNux9wVAt2M3GiELYvwGoKq8l6OuEHYTROD9+tU+kwtWBy5SwlwMR3WVH64yXW+h6wbO1EY3zBfmM6de7YYGGY4mDADcqCXugoXX5jusCAGsP2Gy9DGxwnT1dTLjtLjfWi4aw+kbH7DM2UKtYQ1YZiQ2efUvhlLFj7W6resYdS59kLUuxjKWq3dD8dbuHQjrHhPplKOLAX0cBYrWEzXtbbNxjK48yVeoXjJMfdWwA7xwXskWb/jeeDSlqkK5CuqlkM2aeU7+sk45esJVAsqOEA8hqQtTX5+Xhu4dDwoFty+v2/u5hIWtYQGtcstm6fZbVAsaie8lGzs4tFjRjbxqTNYT6RSYmOLvZRbvRPZZ6LaZ99QlV+EbxelgJqOqHrsWJVLg6WHlrDMQEA0t9bN02zWFHXSHecagIyUqXohGzfXt9wqdvrJhBusuUjbsBp8x/2Rc7g6n5euu8kmyXRJ2c3rLljqSEooG3QLTBPOp5M5QZ8/91uSloFnFs0gkK9VWbWm3eYQqkM2egftnr85TK5t0xgwWTfwiGShFZXWI4Gxr9NLBZ+tyTdm6jlg2eUdekKcYF78ZJ++q73Arh2Yz1CbiRpb/6i0LUswax4Ykh8XMJwdCnfvomYJfXIez7e3XRAmCR2vF2Tsjk8yW3RrUidWQzAaPG2HISGisFBMLcydEkPbR5V0SemOBcngKp0DpbEHVyRq3Q6K8i5DV7FDHEbd8DUZnLXFPc0DUBEfmoqv6QiDzGi8Q7VX3gqp5ZhSuG4bzSPG2DVt4wYTOA2VPZJHefzaW0b06t07ZbEnVKBgs2Ym7cDzhl5rSxUlxug+bCV21wHsw7ok7OYD5i2LIZfvfwVI104QnTIOodCll9Z8b8w/GkWawMhbiNzeL9t6x3wFYsoxnjz7tC6S6HDOfsTcHIGELdI4L47tyw583YM3Claexc/DYl3A6oX/T9Ah1wA5tdB0OTgHB9SNbtM11hHcBlbF2/GkB5d5fw2QbxjhWMAYaJnddg0Q+8qzpJbYGjSITmGSVul7SPBahYoTybMU7/uDZSv1xQuzggb0aUsRWuh/MBgZ/9J5u+yL5jAVYKnfQ/ZGPV1Nge4+A2pp1WuEa4kYMA8D7/8/uvxYlUuDponlWits1OpZwGgMZKAWqFy+F8PPHLzWs2iG/dFhL4mWi8BemakHtphnHRdP0eG3lmzivr9yQkW0r3KIBJNQyWlIOPKGHPeg2yujD/sI2kYyN3V9pMXAoLLkY/tXOsrxbGaGoFZtU4Z7o5vSMFZrzk1Uc7vuis9nlBH/pLjjGjeTRrx0ONURN1YPP+Auo5M48lpJs6USUt4+kgrSFEX2zYSsL3JYAFq+G8rxOo5fvTLSvm9g54R7aN6egQdZUidjhfXxjXU+oXBozmYoYL4eSzo27JcN5qCeHA/j55TYi3lbwWmH4QkKchpRPv6TAtLle4hlBu7CCwy8jguWt3OhWuNIKBEg6EmXMZ4aCgjBxZI6AMxQYfsa7feMfRO+gH7znH7Kmc9rGQqGezzLw2ZdGMf9bW8O8fq3AK829eZaeXMnq6ycxZ8UykqUm6y5XBvDOtH7dLZ8eZj7AbwvzJgu5ywLBlevz9gxaIhguQ3zTArSaTgToYwGABWmdK4q4wmDMdoZ3bS+pnAuIdO/feEWX+KwJtGMxD/WyA5AGpn23XVjPax2KymWmgLGOb5YOlh1xhfr5Zw9zDxhLYyXbJ2r32r5Q3jFHUaQhuGFgKLBXUB5mwr2hgDWDbd1oNRAWinq0kikiIt22bFIomwmDe0TtgDXd53VY9YR+6R+2+gNlyFruMdypcfQg3fjqozdeJc6raeqnXKlxfqF/OCQe+cKiWgknXM8LuiJ3bGgznYfsupXbeUgzxjjKcC9AAustTV68iUWaftk7jwYJMGpZcDjtvHPFn3vAUD527mez0DFHPvHAj/y0KB0owLOkdCBnOWSduAJO+cFdMdXfW7w1I1yz49BbN7yCvQd6YUjFGs0rY84VXf2kb7+4C8IZDK3zp0Vvo3TnCPW4rj7JWAqZpNFhW4k1B46kQW/dwTH9JiNp+IB8Hv1QYztvnJ2teXroJoznzG5DC9IDymV03vNzFcNqVoi9DeV5DV16ztFI4tHuDTGsWybb9HvaV4az1Z1jPgN2w3GsVaWBprQqvDm7oIKCqTQAR+QfAJeD/wb6BPwY0r8nZVfiGYboyQl6birnV1kYEvYytu2aev+88zFwwhkwRTXnzZaiWdtiS56Ud4rZJKGdzJcePrTEqAwadmPlnZJLeaFzOyVNH1CsZzAf0Dz7vkARD47q3jzt6x2xAdiNhNAvpZWG4pOQNoagpGihsR7gCwp6YZPPIBuyL71Bi4Ne++Zf40c/+dbRpo6+8w6bKC/9hblKrCAYy0QPK6sJgwWiv4g1onG8QS7d04iUcdaxjukiEZNuooXlNxlkpytCCYRkpOKFMfEHYd2JnDUd9ddpxLQrDFgxbQuusT0UF5k2ggaXuxg109ZWSUcs8ksOeBUQNoXHeehjyBgxuHZI8l+z/i1Jhf7iRg8Au/FlVfduu3/+liDyEmctUuM4R9SwnX/qu1KhbkNcCtm9JGM4Zpz9dE9I1R15jwk13mfHmbbCxhqV0U1l7IyTrwnABwues63j9aMFzpw/QvGNIeCmhewSaz1lxNhiUtI+G9BeNpmlaQ0qy7Q1ZYuuQdTnMnHI0Vkq2bzURNoCwK+QzJZRC2HUEfZnM0jWEnTtK/uy3Pspd9RV+68ID/I9P/0XShxt07huBKMEn54i6SvDDl7n85BIUEG+LDyQ2IKMmg503rBM63SwpYvPw7S+ZYUyQ+QHa2Yy8DH1RNrEUjZS+b+CceOqosZlQCGJj8PSXhGAkDGendpdhz/j+/aXA3w8h3TTq7M4J/++pPgU0tA7sqOdlJyKTnB6IEF5MntfUV+Ea4XUSBAoR+THgI9gl/yhTDaEK1zkiHwBQa8rqH4gmJiXNcyWo5ZaTDdvfZVjKKLJZ5jgVA5YXB2Xw5h55JyK/HFnjVN1m3V/93AmCzFI9ed0GObABe9SyHPrBLwzpHIvpe9/duF1asxTQWLGVQDDYpdmvWADoydf8wwUDaDznePSOY/zO6j2E5yxH0hiAZo5bblmh+ynz0Nz5g4NwqCRdF9LV6TK+vwyNC1a8Dfs28Mdb9vXeuDsyttS2Lwr7BjaNrXieNUzCAkxIrr80DRxgA3fUU4rcVk15atTReNubz/Ssr2DUdBMBuGRLrQFOhKAPO7fa+Q0Wrcg/diGrrRuDq7ds0hpL52+ArqXXGl5HKqL/DfCL/qHAf/HbKrwGsP6GkMYlP+uOrEsXjHnTORywfVdJcrTNzlqNw59y5KnQPSzMP1Wyc7M5XHWPGXPom7/paW6urwPwm7//rTYDLiB4rkbrjWtsn0uZe9oXUheEPBHW7o8pIzj8xwPCtjUWuDwirxvbaNRylLG3fswc/YNQpIobWh48r0HoVTud99gdzcHCV3xqZUHYfOggQU0tD59D/H2rLJaO008e4qCfoQdDmH/Mm98sWZDL69YklmzZzB8xt7HOsciM4g+UhG1HNmMrm8G80WyDkdUKyhDqF+0cN+80TaT6akHYd3SOOEazQrxt2kTRVkkwhNlnrT6iTibBogws3ZRulQzmnGcWKeHQMXvSS1AMYDRj3ciIrUqksHNPtgqyxjTdV+Ea4kYPAiISYLZl77pG51PhCmM4Dwe/kKGB0D4WTZg9qLFt0lXHQBrMPenIE8t5pxvT9xc1ncx2NoY1HnrqQQBaZ20Q796a8QNv/hM+s3ICMAczyS190l+yjuF0HbZuT1n64oju8Qa9g5Z60gCydEq97B4FDZRgINaItqtobEqc9qhfGq9K7PryhpJsyqT3YOOxJVr3bjD7ZEBes/y+y6B/wIrCZa0g2ghJL0Nz1ww6GBhDp3fQTqh+1jFcMje0Irb7Fe/YgD2cZZLj7x2WafE6dYxmHPXLRmkdd2YXiRC3C5ItMbpsTaitlnQPO+ZO5rjCNIUAdk5EpJslo+Y0AJSxp7n6e9JftK5ks+usxONeLdzwshGqWojIN12rk6lw5XHsUxlhL2c0HzOaNd36PDWnsNln1StVOoKhpYi23lBSJkq0GVBGSnpZSHb8yHMftBa6dJ6dI2vA4K4BD9x8gf/w5L0AzD1rjKGiDmPN2bwOrMPMuYytu5v0l7xej2e3SAmjoyOiS5bQdiOZvo9dZvE6bYjKE5uNt28t0VCpnw9M5K1WIqUFkPyTi4Qjy9u73U20JQSdgHjLBtas7j0G1HSC+otu0qyVbsDsKSsm19dKauvQOWoDbus580JO2iULTyidQ47m+XJCh81TIeqYBASYj4OKMYKCQUlWCwgHyuKXRxSpo3swYDRrtRAV02gap+GyGQukZcjErzluK4MFR/Ocb9hbcFWvwKuAK5kO8g6O/wq4D1tj/DXgSeA3gBPAaeCHVHXT7/+zwHuw9PxPq+rv7Oe4e0kHfVFEPg78G6A73lj5/r42ELUzNu+q0Ts0zVO7ANonhNaz9g0++qkOZeToH0xMyrk1Ijpbs6JsDbbuVsKusPHkURYeDag3of4dq4SjiGc3FgmfrRFv20zbDU2/xzR0IK8ZxTGvRfQPQJlMJaP/3vf8FivZLB96/G3c+afOc/IPbgEgmy0JulYsHhdcwQZBsNl80fTWlmshvaMFh29b4/KXD5LcukNvp8aoE5snsKdpDo5luK5XJh0J8Y6lZcKhaRz1DghRXwi8RWaQKd2DIUGmNM8WJJsZ/YMxs6dKXGbTvyJ1FAOvgTS0BrUy8N3HuZpgn1f5lBL6B0JvEu+IO+YhnDcC2kcDZp/LqXkTmu6RiKwuE0ObxkrO9i1eidWLzfWXhOY5s8yMOoVngFUqotcUV75Z7BeB31bVvygiMVAHfg74PVX9eRH5GeBngL8nIvcAPwLcCxwBfldE7tyP2fxegsACsA58x65tClRB4DWA9s0p629WGmdkIqMMlloYG5MP5xPKWOgcC3CzfeRiauYyseX8w67Pf58JJr0B2587QPymLbIvzxJ5r9y8DvWtsTw1DJZLNC7pHrbjRKdSJPcz4xz+8W+925g3Ck8/fQuCpT7SNTehp47TH6LmMaCNAkYO18goN21aPPNswOX+QdTB4HQLFmz5UFs1Dr0o1E9FDJe8ZHNuVNeoa2yb0g+eeQ2aZ4pJ8XWMZDNDQyHZzOkcjdDAgsnsqZzBfGD3ya82gtLkIIrUegJGM440Mzppsl3Q8UJzZYjvAXCkWyasV4bCcG76L5nNTD0OamtK76BMCtRjSKF0D4eoVAHgVcEVCgIi0gLeCfwVAFUdASMReRfwbX63DwGfAv4e8C7gI97n5ZSInAS+GfjjV3rsvQjI/dWX26fC9YtR01G75J+3oL6iRF2ITxszaDgfsHOLg9I6gOd/v8bMpZzOYRNky+qQrNn747YFkaxhefj86VnEN5J17hkRn4/JmtA/VKJJCSpoqDinLM51OHHLGR7/93dSX9GJWFr7ZkCM8z6WbshTK6aiFqz6y5DPFshIYOBwI0ftVM26Z7tepG5HiHaM21/E3qJy0T5bgbIGc3dssHFulrmvhmQNYeFLO6BKMZOQbkUM5gKfu7fB2RVK+1gAxwJaz+VkDef9FayI3DsQTFJNQaZEHaVIhZ0TJhOd13zOWAKaz1l+bL6dU4aOInU2u1donjc2kEl7KEXkSHaU2pr1bGzdbn8L1IJksmOriLF0tEmDT5vmKlwbvMKO4SUReWTX7x9U1Q/u+v1WYBX4ZRF5I/B5TLpneZd6w0URGXfaHAU+u+v95/y2V4y92EseA/5PzPxdgT8C3qeq5/ZzwArXFp2bvMTATTZgNC4KyU6BeI8BAEponrNvszpjFJWx0Ubj9lR/P6vbiqD7oNl5xWmOe6TJ4M19ggspZax0D+XIyGbSjUMdBoOIhVaXtY0mG48vMb+yq2O2boN8um4BYLxKGdNJg5HtU1uB9qy9FnQd6ZqJwUUdC0jBCJIdUxUdzAmDA9OCncvss/I6DD+9CLfaqL38x9tGm81Lwq0+WSvCee+B4awxgmprTGQl+kumX1Qkz6eqRt2ph/CoZZaR4/uogRWS81RQJxSJo3M0orGSW0poR41Su5MznIsm3ge1jWLqtBY5xsuhMoL6ZX+O81BftYLzqDVdMVS4thiz7faANVV98Ou8HgJvAf62qj4kIr+IpX5e8tAvsm1f65K90Ap+GfMTOIJFmv/Pb6vwWoD6wXYgLH3B0yAbjrxuzWPDWUCMarn6oLJ1u3XrDheUxqWCxqWCMrJuVZdD+l2rLM53KAv76tzyPafgQkrYFYpUJwHg4PFNBoOIcjVl44mlyemMWkIZ2sA1DgLZjLGKwAqnySYTG8vaqlLG0DgdEHYcUVuIfGVKA2idLWmes16D7hGh8AVlS7dYAChSyFol9cvKgc8GHHh4GwpFo4BsoU7/WNNsIjEabW2jmBjYxG0T2rPeiansgxRQ2zBph2Co1FcLK+o6b1Iz41NbG+YXvPrmhM27I2obhUlpR0LcLmlcGFIGQtTOCXsFYa8gGJQka0MG8wFZw5FsWfoo3oHOTULnqKWF1h4IWL/P0f+mHptvzYh6UyG8CtcA+goeL49zwDlVfcj//ptYUFgRkcMA/uflXfvftOv9x4AL+7mMvdQEDqjq7kH/V0Tk7+znYBWuPfJWyeFPTyWIpVR6BxzDBWOhZE2TmQaY+4oj2bEpdFYT+ktmMD/W8199U8AdjQ6Pnz7C8idjegcSTtWb6D19hp0I1w/QRoaOAtYfXyKfLQgKIegJwanUzN1njGqZzfh+hYvCYAn05h7pJ2vmEZAI8Y5vpGqJZzVB84y/KLVBXkooA6OGqpiYmgbW3LV1X0HUDegfsXNf+JPAfI9zZedOK2xkdaNwZg0LcuOO2yIWRk3zYs5Tu2/h0FJY1i08ne0HIwsuZeyIOyWuEGrr9hkuMxnsPHbMXCgpIjONzxqOsDfuczAZjOGsI+qUxO2CInb0l9PJ3ytrCIOjOYOjMPdYSG2tZNhyDA5YA1rwdJ20629MhWuKK8UOUtVLInJWRO5S1SeB7wS+4h8/Afy8//lb/i0fBz4sIr+ATdDvAD63n2PvJQisiciPA7/uf/9RrFD8shCR00AbozDlL1wOiYhgFfHvxWws/4qqfsG/9q8xGevLqnrfXo5X4Wtx/D/aTFZK6C8GxB0l3hkrWZoe0GAJDn7BBsus4Twf39IeLoPuYUuFuBxWfvUEtz/Vp3OTyRyXASwv7XCxu0jzlFB/KOLCd5RILkTroUkwBzYbT+/d5A1LNpF5+LN3UrRywjvbaCcl/nKdnVtg9hmltmaBaNhybH3TiLQ1RB9vGvNmaOmirDUucnuKZ2HpEg1MdVSjkt6JEhk56mcC6isFnSMBrbM5ZSAUiX1W2C9R5+gvCUXpi9axva5uaitJqeQJtI8GBCM79sxFo3tKobZaAKSw+xaNrMEu7BaE3YLestl7to+GphbaEpvhR2ZEE3V88J0xG0xRSDcKRk1H94jQ/GpIuqnUNnKyutUm3FAIQzsXyaF3oCoOX3Nc2bj7t4Ff88ygZ4G/imVrPioi7wHOAD8IoKqPi8hHsSCRY/1c+6oK7SUI/DXgnwP/h//9v/hte8W3q+raS7z257AIdgfwNuBf+p8Av+KP+6uv4FgVXoDuoZB0syDslxz43DYr71iwImIJ9cs28ITPlnSOhiZ4Nuame1ewsSxCGcPin9gsfe2NdYoEurcW3HLHRc5/5hiJ2uDcOSaEWwHpuun4A4zm7D+lVRvw+bPHyDdSnEDQDuGLC8QLmHrpls3s+0vTwXfxMzHt4+ahOzZQyZrWZTvuTg776gXZfLH5LUPqT6YTqQaA9k0mr9BbCihSW2mUEYyals93mdfvD8UUPLHUVLqR0zsYTlZS9VXbt7aWM5wP2Lpj6qVcJNA8VzJsOpoXcopY2LwzZvZ0bk5rsXhZbtMj6h4KLD1Xtx4LFasfxDtWKB7OBQzmhNlnlc5hW0X0FwJE7T6P5T2STetbqCii1x5Xsk9AVR8FXqxu8J0vsf/7gfd/o8d92ZqAqp5R1R9Q1QP+8e4r6DHwLuBX1fBZYG6c/1LVTwMbX/fdFV4WJuGspBfarD04z+Y3+2R7ia0GSihix2DBZtBhz1ItUdcolumaNVuFPWE4L2R1G+zatxccOrHOqScPT/4R8ppX9+zJhOLZv9Xomt/3zs/TjIfkGynRVkC8LYRdG7QWnijJZkyZc9zwNM6lt49bLry+Yk1oRd0MV+aettWNvkAtoXdISE6mpH6tOi421y+XpFslrjCp7HSrmJjWZHWZmNZkXlhVA0g3C0at6QHCgZ1f95Cwdp8N/lJYkXbcxBX48+8cDhnMOeqrJVnDTmI4J+aZ4BvgisQCZdQ1Ibvh3Hi/wHyG688f1PsH3ORej30Eaiswc77E5eZkFrdvgBbW1xKuXE3gVcPLBgEROSYiHxORyyKyIiL/1jOG9gIF/pOIfF5EfvJF+YmALwAAIABJREFUXj8KnN31+yumOYnIT4rIIyLyyOrq6it56+sCw5aj9uXzbD5govjN+R7ld2wR9mHUEKJ2wfp9zlJDbXtPsqlQwua9Jb3DSuOcWTC6ERx/9yn+8L//Bf7xd/06jXjIbXdfmHzRNfT6+jPK7P1rcHeHw0c3+I2/8M94Q+MCT37xZsKd6aCarJtoXBnC3FMm2RCMlPrl0tI6C86Lu43Py1gwjQvlhLEENjh2l02ELRhC7bLVHorYVjzpBuyccGTe23c46xvnuvmkwxeskCu5p6gOx6wgRzZjs/DdGkNm7WjBbuaMsvBkztzJgt6BgOG88ffDgbJ+r2Mw7+geFnrLFpQGC+ZJgHgPBbEi+WjGbDDDnt3HIoW4o/QXjQKqAp2jQvsmq2VEHQvQ8U7hi/zua3ocKlxFKBPHvpd7XM/YSzrol4EP43NRwI/7bd+1h/e+XVUveG7rJ0Xkq36GP8Y3THPyXNsPAjz44IPXecy99lj+9GUGbzjC+gNWJA5OzlI/JzRWcoazAYPFkGDk7R1HVogsQ2E0Z4P6/Jct/9w9Jvzg9/8hH/nKg3zThb/JocVtVh8+RLwFLoHhooLAaLGknM1ZqPVoxkO6o5gf/iOL/0HfumCbZ3XCBtq6zU347bF3HisSYdRwEwtKDcb8eOu8Hcw7s2j03PgytFTUWIrCBmFAzNRmLGG9eZeQbBjtM08d3YMJmdfnUW+mM9bnyVNBA0d9paRxYUA2M+3YbZTm4tVdFpqn7Su3dp/RausXjJWUbpZ0DwcUdTVPhx0LssPZab9FkVg6YdS0e6IOirYwnDPmljoTrVPHRATQZbZayWsmSwG2cmgfdxOPhArXBjeKs9hepg0HVPWXVTX3j18BDuzlw1X1gv95GfgY1tG2G1eM5lThxVH/pW0u/Gmjvcw+HlA/Z4PeznEb1PpLQrzlB6gFo4pqCP1jObNfDaitF5NZ94c//XY4l8K5lNXPHSJq20CWtfx/QgnRtsNFBU+fOcTp8wdYf2qJ4Lka7nxKvO05++l0hjSmggZD8/fN61M2TjhURq3pPuJVRMe6QlJOrS3Hq4WxH/B4epFsMfECbvhvVpEIncOOUcty8+qsI9cV3uEs08n5NS4M/PmVZDMBw1lHnkznLhv3GjUVnTqjAWzdFhB1lMN/VDL/9JhuquT1aYpquGD1jUmOHxBV+gctTaRMXd0G81YzGKe/gpEV95MdpXvYmYNbhWsP1b09rmNcNXaQiDQAp6pt//y7gX/wgt0+DvwtEfkIVhDeHnfHVbgyWE53eMrkpshrkGxPZ6GDeUszZE0vrdxQ3E09Ohspx35b0KBk4w3BJE/eODMWmrNBKq9bAIh2TKO/SI1yWm4mEJdE6yFuZJTNdNOYOAg+1eImukBFYoNxVhPT3PErg1FTmDnvqaQrGVkzRAqlsWLMm2Co5HWhdbok2cwns7LOkcgGS4WsaYJy2w8OSU8lhF0LJtFQaR8X0nX/e7ecpFLGFNCop3RuSo3NE8ukOzjdKgmGJVIG1C9D7yAglnbKa1BftfV/f8HRPm6F3LmnbJuUlhaKty0FNliQieREsmNMo6hrUtSNy4qUSp4I3aNCr2YrqbgNKiYEuH2LIxjB7KmMdKVaClxr3AgrgVfKDlLgM+yNHbQMfMxYoITAh1X1t0XkpwBU9QPAJzB66EmMIjqRqBCRX8c0M5ZE5Bzw91X1l/Z2WRV2I3tHm+ChJsFoOrMsIxA3lRqQAoKeMBqEpJcCLr5D/WtqDVodb+q+aPsXqaUvws7U6auMzHUs7All5EwKomuNVva6FWDzmkOdBaAigdrqlI1TJMLGfeZmBjarj3rKzs0x9VU72SIyDv7W7aavX0ZCXg8mg7jLgYLn+SCPMXNBJ4yhsVpo/XLJzs0ByZb9R4+aQmOlpL/ofFOYp8/WhTISL2NtfQS7dZkAauue/z9nVNvxILH6FlMnHS2UzD3hGI0D66WSzhGHG8HOTSYkV4ZC86wVe4tUvLWn7d86a0yjzqEQl0O0rkR9ZbAQkq7s+ytSYT94DRR994K9aAedAX7glX6wqj4LvPFFtn9g13MF3vsS7//RV3rMCl+LT3z2TVArqcWg3iULLEeeN+x50LeZfZEqbn3qUVi7aF658TYTimYZ4SUlrIkr3mZiBVkklu5xI4j6/ji55dul9GYqAqMZYxm5XQWz9jH3PB8DMF2gIFP6C9aI1T5uuZDGxZI8FeorOpmddw9ZL8NgXggHUze08TksfTomHNjMOqu7iddxGcFgyRk9NbKGsairbJ8wTwBR3zvhDWdcBl0zK2NwsKT5bEDzzFT7H6BzyJHPwOyzSmPF0jXZjB1r7gnHzAU76azh6B00Exn1b88T82PuLQXmPtY3oTsVoXVmRHKpQ1mLyJO6BVOfHspmhPPfPvvKvhwVvmFc70XfvWAv2kEfwrSCtvzv88A/UdVX0itQ4VVCsh5QvzRl5OQ1G6TVWQ67qFkwKOqK5ILz6qFRWwiHUBZTw/kiNX6+y+z5ODWkYgNt/aIVRPOaEGRK/cKQ7rHUCrteq380bvISqF1Qkh2bcSfbTAbmua8K6abXyZ83Hn+eWk68vjrO1yvBSOguG0PH5UwUSsH3NyjMnBvr8ZR0l63RK2tCODB6ZW29sCJrT3GjktFsYOmhM5YCat9shvZRx+5b77ClwRrnoXXameBbap7F/UWhVzMtpHTTvBp2Ttgsf+lLNlpE3ZLRjKXCXGb0zsGcmyiGjr2OweQn4jZ0DjuSbetY3rl7zj6nbbWaMhIGcw6XKY1LV+97VOHFcSMEgb0Uhh8YBwAAb2jw5qt3ShWuNDbvKZk7OfKPfJIS2q06maxZzludDUbxlp/B+32KxHsReI67eRArgyW1juDEBvrtW40OGQyV4WJsdEyF3Ju0gwWe+opSW8sJ+gVZ3RgvLoPWaUuDZA034dcjVlQdO3mNm6IGczLxIo437aeljwC1onAZmlZR+5gFwp1bbJBNdq06Rk2HG5VkjWCSn3e5NZOFvuAcd0t6h+0cd793PIMfzchkRTQ+x+5Ry/ePr9tllsYZDxzxtukFpVslBz8/zecPFmHn9oLZU+WEqgrQXwonn6W+btE9FDCcFZLtGyAv8VqD8ropDDsRmd/lZrOwx/dVuA5w9FND1u9PeO6vFKSP1ZACurfnMHI0Tzlap5T2TULvaEm6arPWceMTMvW/HQ+G4lcB2awSb4s1cUW2rXvExN/ijunolxGezSOMvJtYGVsufuacRZP+gZDahlLEphOkgQWjqFeS1xzxeoErlLBT0D0Sm4rpYU/UdzYg11fNtUsujjX5zSJTA6OHqm9+KwIIO1YcTzdKK4bXTMht50RE2FPizlTbP90wO8jecsDOcUf/SIHrOxa/BN2jMnUNG5lBfPu4eNVQG/BrlyHZtmLvYMEb2pRQvzTyNFSTiAi7BZ2bUtRB3ClZ+Ird/Nw3iy1+xehReWP6GVnDUVvLCPuBrYBUSTcqLelrjddLYfifAJ8Rkd/EYt8PcQValStcG6zfn3D7Dz3Nl3/3DgBOfN8pAM58/BbyGqzfL+QNm5oGA0t1SDlVwURs8JbcUi7JDmwvK+mqsPh4TudoSJF6baA1TPdHoHvIF2kzCypR12bordMZLjczlyJxIDIRgwNjCCXtkiIxXaKs4azpazGgiGSSRhlLPAdDY+HU1ktPOVVAfA6f5xXugqH1Aoz59WOxuv4BR9SxAABTBzOXGWW1vlLgMkfjktUGahsFRRoybE0Lwe3j5oEQ9qyOAfj+CyWbcRPJ4cZKQdYMKRI3kYvO6hb4mucyht7TAOyeJNslveWIuFOa9lO7JGuId2uLjRLbs9rF7sa3CtcIr4cgoKq/6s0QvgNjX/8FVf3KVT+zClcEvbd3eeSJE7S2d23LI3qH1cTOMCevoG95cnVWIxCdMolcZgEgGNnKYOaM0DxTMJgPCHtK/8CUaqmhTxn5QXjmrJIh9nkO2scior5SW81NLK1Q8obzYmuWdiliy/U3LtkKwRXWvJU1nu8XXMQyYfrktaneUNxWOse8MU0JOGvIcol5BBSJ+EHZdP4bF6cDK+AZTOJn27s4/v4Y7aMh4tNNMJ7dP/++m4+B1S/inZLBgqO+ap29RWIBMqvb56XrOYVXKx3NOILMaiDjOorLYP2egNplqw/sxqgpNC6a/LQGVRC4lrhRmsX2lNbxg3418L8GEUU56RMN3LdvcPfiKg998XYAkq6QzSpuZDRPDYDSipo9X5CU0grJvSM2us4+5UCMnaOBTLp+676zIxiZX+/6PTJJIY0tEW0wnLqH9Q/4DlzB+/xO2UNhX0k3rNg6nLPBXJ03hp8Za+3YsV1hq5QiMjmHMrLUTOOCTj5fyik9Fazwrc5YONZsZj0UksPscwVFYoXiMvTG8EMrwJrnsTL0K5Jx+shugl3HcNaB72GQUs1gPhTSzXLSf1BG5iWcbI2L3xGdY26i2jpugBMV5p4piDoFtTXf2RzaKicYlGTNkLitRN2SqJ3ROZ5eja9QhZeC6isxlbluUQmN3ODIvjpL+4Ehdy+u8vDDdxil8dmAvK6UScnMPZtoYOYtUdeLt61jzJrvu8R3//BDBMt9ykaBGxmn3uVK58j0q+MKJe6UpFsFo6Ywd1KZe6acpErCIbTOlNTWi0lvgMlV+4Hff9Rg3u3Ks1tgUGeriyK1wTvdYLoEFxhbUGoIveXpdSfbpReYk0maZDhnPr/qhGSnnKwqBot2nNnn/Kx/qyDeLki2CqKuBUDrIlbW7nf8+b/xKbYesDcXiZA1hNAXcMcCcq5Q4p2CInGUfobuMiXol4S9KaVk1AwZLDpqazop7qYb9ph7xs6nv2QBs4zdxJZzDPMbcOzcUvPeCtVq4Jri9SAgV+G1jdGBjB970+f44vmjhEeMgVKkEIyEuZumOaL6qqlqFonNVLN37vC9Rx6fvH7490OaZzPStYw8Nb58uqGkG2r8/AVH50g4memnq0N6S1Yonf/qiHjbBk2XW9ppPJMvYqGIhDI2do0odA/bikMDSLaVIvEKpf3pdZWJzdzDwa5CNpa2iXoWqEYz1oHscjvH1nNm66ihCcP1lxzdo1b7mD1VEgxKnM/n5/UAdSY1PZaR7hyxBrhf+eN3ANC4XEwM4/sL08E+bpdE7YLRbGjNXn4lVMRCmdhArk4YNUPymjBzIZ/UIXRcj8j1eUFxNDsuClv+fzQbUsSWJuscC9i4VyaPCtcOont7XM/YS5/A3wJ+bcwOqvDawtxjEf/m0p+mtmrqlUUMlJDPlHS+Mo8bCi6FnZt9eiaAwQHQr7b4sHuQ+D/NcnDVxHe6h6dfl/5BUCfMP1l6q0TTvI86pkd0+a0JNEYc/5hj646YxkXTyO8vCoFfUWggDBaFoA/JVsmoaUqfvWXYvrMk3gi88Ysv6m57z+SeBaq079MuhXUfH/nMkHB7xPBASvt4hDozZukdCIm65pkApt8/mrX01MJXdDJ710BwoxJ1Qtgt6B8Icbk1e1EKredsBl//XUcwnJ5v1vCSEr5oHPQt9RO1c0azIdmMI9k2GWsplDJxDFtCulVOUmDphq1Q4h0YLASUkaWk4k6J5MpwLsCNLEjtnPDd056fOnO+ZO7pXcygr+dMW+HKQYHXSTroEPCwiHxURL7Hu4FVeI0gq9vgOVgwWmf31nxiFCOFDV7JBsw+m03eE2+al0DyH2epXy4Zzjn/sD/92rcUjO7qM//kWA8HOoeF2ppZIe7cXpJsOJKzMZ3DIY1LFih2brKv27iYa2Jv1jCWp8Jg3lIz2WJO/UIw8QgOBr5Zq1AaF6dGKkViVE4VaJ3JCbdHaOTIGgFFBDMXS4Zz00a5mQs5Wd0K3/VdEgu9ZUeR2MA/XgmMB/TuuBDrv/XDlpictIfzrKmZCznJ9nQgLmqObCaY1BIAz1hyE/ObYcuZK5nIpF4A45pIYcyi+vRfdLAYsnPCOro3b59e12DeWa3APypcQ9wA6aC9sIP+JxH5nzEBuL8K/HNva/ZLqvrM1T7BCt8YBvf1CU/XGB2wkah+JmTUUmrnHVHP0ixBBqtvjMxToGMplXSzJOzaoNY9FFNbK8nrjvU3KTJwhJdrZA1ons0IezlZvUb/oEw0/LMZJdmwVMfWbfY1K2pjsTYmA2kZmT5+MDQKqUaQXgwnXc1hf1o7GLasgB12bUCtXy5tkHTmGHb2uxo0TzqirlJb930A6bQg3DsQWA1hADPnc4rEEfZLki3j6icXtilma6zfb1EyrwGlWVmm60ZFldKC2GA+pH17ycHPeVppIIS9gmwmoL9gtKr6WkGyOWI0N23yKmIh7ugu8TxbTdhKQclSZ81z9WDSUzGY32Ums2Psqbg97SNItkok00kfQYVrhyuZ6hGRAHgEOK+q3+97sn4DOAGcBn5oV7/WzwLvwax7f1pVf2e/x91TTcBr/FzyjxyYB35TRP7Rfg9c4dqgzGxgSC6F1M6GuCGkq9PZYrIJg/ldOkK+wDnu1lUnpBte4C2F+gVHtOOoX5wGgNFsROPSlLt54PNCsmHHuPQ2n4KZ8aYwvulsYrWYGvW0iKfpqqhtTCCXWRBwBZMAoGJBa5xOMrN3y5PPP+Z8EdlSTsOW84Ytu2buBcw/leMKa0gDY9qEvYxitsbltzbJa0we3Vu8aF0MYzMZDaC/DK2nHPFOQbxTEPYKytiCRNS1InsRCaO5kKxuuf0iMTOYcX1EA1/38Kmwwbz9rca8/7HA3ZiB5Eb6PAvJPDUDmiDTCcW0wrWFlLqnxx7xPuCJXb//DPB7qnoH8Hv+d0TkHuBHgHuB7wH+hQ8g+8JenMV+WkQ+D/wjzF/4flX9m8A3Af/1fg9c4drAbY8rjjYLF09DDIc2yIxmIZ+ByKtgqpgBfdQpKRNH1gzoHHG0j02/KvWLMHdyRHKpS7BjWgntYyHJBrSeMzvLuZMlcydLRgdyS9ecVuqXi8mMGGzwr68aCwhgcNuI2mUzUAn6eIomE4N5l8No3gJAd9nRO2gaRf2laXOYOhtUs7pRRqWYMoWyhkyCx7DlGLYcUSdHVKFQ2rc0puc2gOHBgqDjKJLpP7GUSsc7YBRea8+NSkat6aJ6XIwe6/qMoc7qBNlMMJESkBwGC47+otVL+gvmkGZ6TOapMG4as+MzSU25XBm1dgW4rMRlN4CYzWsFe00F7SEGeLfG7wP+1a7N7wI+5J9/CHj3ru0fUdWhqp7CVJhf6NWyZ+ylT2AJaxB7bvdGVS1F5Pv3e+AK1wZhx9kguqtuWMZAbsXdrGl59/F0wOU2C83rbpIfDzLffVuaoXm6npNeaJPP11l5a40itdl7Pgu6bd646WZJb9mx/IeexwmMWm5CDU22bXDrL5mWT/9IQXoqJt0sad/kTJpZTN5BAyFPoHvM0k2DeUsBhT1bGRSpfWbzXEl/wXlvgGByLNTYQKgFgrHwWm29mDRY7dw5Y13MkekaDWeF1lMB3SNKMBBbkXghu/EgnG4pncPWOJZuFN5zQL+GxumK6bbxjF2dTArS1rSGt/jUScdxnkzTay4XgswCo+1XmtmO2oojGFXNYtca1ix2xfJB/xT4u8Bu8fPlsb+Kql70Do1gFryf3bXfK7bl3Y291AT+l6/z2hMv9VqF6wNP/dx/92qfQoUKNy72vvBa8soLY3zQW+PiJ9OXVfXzIvJte/isF4v2+45GlRBchQoVKuwTr2AlsKaqD77Ea28HfkBEvhdIgZaI/L/Aiogc9quAw8Blv/8VteWtqkkVKlSosB9coZqAqv6sqh5T1RNYwff3VfXHMfvdn/C7/QTwW/75x4EfEZFERG4B7gA+t9/LqFYCFSpUqLAvXHXtoJ8HPioi7wHOAD8IoKqPe5r+VzC25ntVdd864lUQqFChQoX94gobxqjqp4BP+efrwHe+xH7v5wpJ+ldBoEKFChX2A70x7CWrIFChQoUK+8V1bh25F1RBoEKFChX2i9d+DLi67CAROS0ij4nIoy/gyI5fFxH5ZyJyUkS+JCJv2fXa94jIk/61ShexQoUK1x2kLPf0uJ5xLVYC366qay/x2p/D6E13AG8D/iXwNq+D8X8B34VxYh8WkY9XtpYVKlS4bqC8kmax6xavdjroXcCveoG6z4rInG+KOAGcVNVnAUTkI37fKghUqFDhuoCgV1I24lXD1W4WU+A/icjnReQnX+T1o8DZXb+PNTBeavvXQER+UkQeEZFHVldXr9BpV6hQocIeoLq3x3WMqx0E3q6qb8HSPu8VkXe+4PWX0sDYszaGqn5QVR9U1QcPHDjwjZ1thQoVKrwSVEHg60NVL/ifl4GP8bVypy+lgXFFtTEqVKhQ4YpjXBPYy+M6xlULAiLSEJHm+DnmTPblF+z2ceAve5bQtwDbXjr1YeAOEblFRGJMT+PjV+tcK1SoUGE/qNhBXx/LwMe8JXEIfFhVf1tEfgpAVT8AfAL4XswUoYfZV6KquTe4/x0gAP61qj5+Fc+1QoUKFV4hrv9Uz15w1YKAZ/a88UW2f2DXcwXe+xLv/wQWJCpUqFDh+oNSBYEKFSpUeF3j+s707AlVEKhQoUKFfeJG6BOogkCFChUq7BdVEKhQoUKF1ylUoXjt54OqIFChQoUK+0W1EqhQoUKF1zFugCBQGc1XqFChwn6gQKl7e7wMROQmEfnPIvKEiDwuIu/z2xdE5JMi8rT/Ob/rPT/rpfafFJE/u9/LqIJAhQoVKuwLClru7fHyyIH/QVXfAHwLprV2D/AzwO+p6h3A7/nf8a/9CHAv8D3Av/AS/K8YVRCoUKFChf1AscLwXh4v91GqF1X1C/55G3gCU05+F/Ahv9uHgHf75+8CPqKqQ1U9hakuvFCbbU+ogkCFChUq7BdXQUVURE4AbwYeApa9nhr+50G/257l9l8OVWG4QoUKFfaLvQ/wSy+w2P2gqn7whTuJyAzwb4G/o6o7XnvtxbBnuf2XQxUEKlSoUGFfeEWz/DVVffDr7SAiERYAfk1V/53fvCIih1X1onddvOy3XzG5/SodVKFChQr7gQJlubfHy0Bsyv9LwBOq+gu7Xvo48BP++U8Av7Vr+4+ISCIit2A+7Z/bz2VUK4EKFSpU2C+uXJ/A24G/BDwmIo/6bT8H/DzwURF5D3AG+EE7rD4uIh/FfNdz4L2qWuznwFUQqFChQoV94crJRqjqH/HieX6A73yJ97wfeP83euwqCFSoUKHCfqCge+sBuK5RBYEKFSpU2C/20A18vaMKAhUqVKiwX9wA2kFVEKhQoUKF/UB1T8yf6x1VEKhQoUKF/aJaCVSoUKHC6xWKFvtiZV5XqIJAhQoVKuwHYynp1ziuesewiAQi8kUR+fcv8tq8iHxMRL4kIp8Tkft2vfY+Efmy19b+O1f7PCtUqFDhFePKSUm/argWshHvw2RRXww/Bzyqqg8Afxn4RQAfDP4GJo36RuD7ReSOa3CuFSpUqLAnKKCl7ulxPeOqBgEROQZ8H/CvXmKXezCjBFT1q8AJEVkG3gB8VlV7qpoDfwD8+at5rhUqVKjwiqBX1FTmVcPVXgn8U+DvAi91F/4E+AsAIvLNwM2YGt6XgXeKyKKI1IHv5fmKeROIyE+KyCMi8sjq6uqVPv8KFSpUeEloUezpcT3jqhWGReT7gcuq+nkR+baX2O3ngV/0gkmPAV8EclV9QkT+IfBJoIMFi/zFPsBrcn/QH7MtIk9e2St51bEErL3aJ3EVcCNe1414TXBjXtdd3+gHtNn8nd/V31za4+7X7f0TvUo8VxH53zFVvBxIgRbw71T1x19ifwFOAQ+o6s4LXvvfgHOq+i9e5piPvJxm92sNN+I1wY15XTfiNcGNeV034jXtF1ctHaSqP6uqx1T1BGaI/PsvDAAiMicisf/1rwOfHgcAETnofx7HUka/frXOtUKFChVer7jmfQIi8lMAqvoBrAD8qyJSYLrY79m1678VkUUgw7SyN6/1uVaoUKHCjY5rEgRU9VPAp/zzD+za/seYI86LvedP7+NQX+PZeQPgRrwmuDGv60a8Jrgxr+tGvKZ94arVBCpUqFChwvWPymO4QoUKFV7HqIJAhQoVKryO8ZoLAiLyGyLyqH+c3mXKvHuf1GsR/YnXHvpfd722ICKfFJGn/c/5a3sFX4s9XtNNIvKfReQJf03v2/Xam0Tks/79j/jGu1cd/397ZxtsVVXG8d9fQFFREXlRyoTMSwExlDBDQ2SSOcoH6kNB5ARXrZmcUsnBEYfChl7BtCZfYhhzLmE4dSXAnHwloAmMGJEXJUADSpLEMUPxbRKfPqxne7eHc8/dnLPPPedw1m9mz1l7rbXXfv5777PXXmvv9axKdXn61ZJ2etqC7rO+OHlo8jyzJJmkrN+ZV40crr+bJe1wH2DLJfXtXgXFyUFX3d0rqoKZNewC3ALMLRIvoI+HewEbgHG+vgCY7eHZwPxa68io6Szg4x4+BdgFDPf1R4BLPTwJWFNrHTnpuhB4DDjB1wfWWkelmjzubOBh4B9A/1rryOE8XQz09PD8evtPVaCrru8VeS0N1xJI8MFlUygyfsACh3y1ly/JG/DPAYs9vBj4fJVNzUwXmvab2SYPv0pwyve+JJkwGA/gNOD56lubnQp0XQX82Mze8vQD3WNx11SgCeCnBHcqdfVVRrmazOwRCz6+AP5CcP1SN1Rwrur2XpEnDVsJABOAF8zsmWKJCi6sNwMHgEfNbIMnDTKz/RAuAGBgt1ibjZKaEiQNAT5GaOEAzARulvQc8BPgxiraWA7l6moBJkjaIGmtpLFVtfLoKEuTpMnAv8xsS7UNLINyz1OaK4AHc7esMsrVVc/3ityoy0llJD0GnFkkaY6ZrfTwNEqMIjazw8Bo759cLmmkmT2Vv7XZyEOTl9MHWAbMtA73GlcB3zKzZZKmAL8ELsrH8tJUWVdP4HRgHDAW+K2kD5p7RIGdAAAGo0lEQVS3z6tFtTQpOEOcQ+g+6VaqfJ6StDkENzG/rtzibHSHrmOeWvdHlbMQbg4vAO/PmP8mYJaHdwJnWUd/4M5a68mqidCt9TBwXUH8QTrGfAh4pdZ6ctL1EPDp1PrfgQGNqgn4KKFluteXt4F/Amc2qqZU2gzgceCkWmvJ8fqry3tF3kujdgddBOwws33FEiUNSL5QkHRikt+T7ydcsPjvyiNLqAldaRLhCf9vZnZrQfLzwAUengiUbPZ2M5XoWkHQg6QW4HjqwxtjWZrMbJuZDTSzIRZ8au0jvJT8d3cY3QVlnydJlwA3AJPN7PWqW3p0VHL91eu9Il9qXQuVWbu3AV8viBsM/MHDowhuqbcS5iaYm8p3BmEim2f8t1+t9WTU9EnCi8StwGZfJqXSniC43N4AnF9rPTnpOh64x8/hJmBirfVUqqlgm73UyddBFZ6nZ4HnUvELa60nJ111ea/Ie4luIyKRSKSJadTuoEgkEonkQKwEIpFIpImJlUAkEok0MbESiEQikSYmVgKRSKShkHS3pAOSMg3+lDRF0nZ3ELe02vY1GrESiHQrkg7572BJ91VQzkwfgZuHTR92T5NPSjo3jzJTZd8laXgZ242WNCm1PlnS7Dxta2DagEuyZJR0HsGNyngzG0FwsRJJET8RjVQNST2tw7FYEnfIzPrkUPZeYIyZVTx4zG+uJ5rZTWVuf4TOHGxqJej7Zp7lHiu4n58HzGykr58L3AEMAF4HvmZmOxTcj+8ys7tqZWu9E1sCTYCkse7rvbekk71ZPLJIvumeb4ukJR53jqRVHr9K0ge6iG+TdKuk1cB8SUMlPS5po6TvpfY1JGnOS2qV9DtJD7nv9gWpfL9QmCPh3XkhJF1DGPCz2veDpIt9P5sktbsvmEJ9ybwLid/70/1peybw1aSsgm0OSbrFy10laYDHr5H0Q0lrgWslfcZbEtu8u+KEVL4xpWz087Pej/tfJZ0GzAOmegtlqh+j2zMc+597WbslfeForpMGZxFwtZmdD8wC7vT4FqBF0jo/95laEE1FrUerxaV7FuD7BA+jdwA3FkkfQfCV0t/X+/nv74EZHr4CWNFFfBvwANDD1+8Hpnv4G8AhDw8BnvJwK7Cb4Aa7N8HP/tkFdvQA1gCjfH1vytb+wJ+Ak339Bor7jt8KXODhecDPPPxd3LdUkW0MuMzDc4HbPbwGuNPDvQkjZlt8/VcER2RJvjGd2UgYFb0bGOvxpxL83bQm+0odo2TfpY59O+HhbjjwbK2vuypez+nrpw/wBh0jfjcT3EDg1+Jygn+goQRXHX1rbX89LbEl0DzMAz5LuCEVm6FrInCfefeKmf3H4z8BJC/TlhCG2ZeKB2i34MUVYDwdHhyXlLBvlZkdNLM3ge3AOR4/RdImghuQEYSbWyHjPH6dgvvwGantAfCn675mttajFgOfKmFPwjvAbzx8D+/VmcQPA/aY2a4SZXdm4zBgv5ltBDCzV6zrrqVSx36Fmb1jZtuBQRn0HQscB/zXzEanlo942j5gpZn9z8z2EB50zquZpXVIXbqSjlSFfoQnpl6EJ9fXCtJFtklOOsuTji8sO0u5b6XCh4GekoYSmvZjzexlSW0E2wsRYc6IaRn2UynFdCrDdkVtlDSKyieXSW+fPo5Z7Gp4LLjp3iPpi2bWLkmEFuMWghPCaUCbwlSeLYSWV8SJLYHmYRHwHYKv9/lF0lcRnrrPgDC/qsevB77k4cuAP3cRX8i6gnxHw6mEG+1BSYOAS1NprxKmA4Qwm9V4SR9y209S8Dr6LmZ2EHhZ0gSP+gqwlq45Dkj61r9McZ07gCHJ/jspuzMbdwCD5RPmSDpFUs8CfYVkPfbHJJLuJbitHiZpn6QrCcfhSklbgKcJs4JBcBH9kqTtwGrgejN7qRZ21yuxJdAESJoOvG1mSyX1ANZLmmhmf0zymNnTkn4ArJV0mND90gpcA9wt6XrgReBy36Sz+EKuBZYqTOC97GjsNrMtkp4k/Kl3EyqUhEXAg5L2m9mFCl/T3Ju8kAW+TZgvNs0MYKHCp6W7S9ic5jVghKQnCPM2TC1i55uSLgfa/Qa+EVj43iz2YjEbzWyXpKnAbQpuz98guD9eDcz2rqMfFewy67E/JinR4jvipa+FFwPX+RIpQvxENBIpgSr8pFXSNoKf/T05mhWJ5EbsDopEqoSkR4FtsQKI1DOxJRCJRCJNTGwJRCKRSBMTK4FIJBJpYmIlEIlEIk1MrAQikUikiYmVQCQSiTQx/wd9+Xbv/CAr4QAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "xdsc.plot()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.10" } }, "nbformat": 4, "nbformat_minor": 4 } rioxarray-0.18.2/docs/examples/read-locks.ipynb000066400000000000000000000160611474250745200214750ustar00rootroot00000000000000{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Example - Reading COGs in Parallel\n", "\n", "Cloud Optimized Geotiffs (COGs) can be internally chunked, which makes it possible to read them in parallel from multiple threads. However, the libraries `rioxarray` builds on, `rasterio` and `GDAL`, require some care to be used safely from multiple threads within a single process. By default, [rioxarray.open_rasterio](../rioxarray.rst#rioxarray-open-rasterio) will acquire a per-process lock when reading a chunk of a COG.\n", "\n", "If you're using `rioxarray` with [Dask](http://docs.dask.org/) through the `chunks` keyword, you can also specify the `lock=False` keyword to ensure that reading *and* operating on your data happen in parallel.\n", "\n", "Note: Also see [Reading and Writing with Dask](dask_read_write.ipynb)\n", "\n", "## Scheduler Choice\n", "\n", "Dask has [several schedulers](https://docs.dask.org/en/latest/scheduling.html) which run computations in parallel. Which scheduler is best depends on a variety of factors, including whether your computation holds Python's Global Interpreter Lock, whether how much data needs to be moved around, and whether you need more than one machine's computational power. This section about read-locks only applies if you have more than one thread in a process. This will happen with Dask's [local threaded scheduler](https://docs.dask.org/en/latest/scheduling.html#local-threads) and its [distributed scheduler](https://distributed.dask.org/en/latest/) when configured to use more than one thread per worker.\n", "\n", "By default, `xarray` objects will use the local `threaded` scheduler." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Reading without Locks\n", "\n", "To read a COG without any locks, you'd specify `lock=False`. This tells `rioxarray` to open a new `rasterio.DatasetReader` in each thread, rather than trying to share one amongst multiple threads." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import rioxarray\n", "\n", "url = (\n", " \"https://naipeuwest.blob.core.windows.net/naip/v002/md/2013/md_100cm_2013/\"\n", " \"39076/m_3907617_ne_18_1_20130924.tif\"\n", ")" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CPU times: user 2.4 s, sys: 361 ms, total: 2.76 s\n", "Wall time: 3.32 s\n" ] } ], "source": [ "ds = rioxarray.open_rasterio(url, lock=False, chunks=(4, \"auto\", -1))\n", "%time _ = ds.mean().compute()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note: these timings are from a VM in the same Azure data center that's hosting the COG. Running this locally will give different times.\n", "\n", "## Chunking\n", "\n", "For maximum read performance, the chunking pattern you request should align with the internal chunking of the COG. Typically this means reading the data in a \"row major\" format: your chunks should be as wide as possible along the columns. We did that above with the chunks of `(4, \"auto\", -1)`. The `-1` says \"include all the columns\", and the `\"auto\"` will make the chunking along the rows as large as possible while staying in a reasonable limit (specified in `dask.config.get(\"array.chunk-size\")`).\n", "\n", "If we flipped that, and instead read as much of the rows as possible, we'll see slower performance." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CPU times: user 8.58 s, sys: 1.08 s, total: 9.66 s\n", "Wall time: 11.2 s\n" ] } ], "source": [ "ds = rioxarray.open_rasterio(url, lock=False, chunks=(1, -1, \"auto\"))\n", "%time _ = ds.mean().compute()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "That said, reading is typically just the first step in a larger computation. You'd want to consider what chunking is best for your whole computation. See https://docs.dask.org/en/latest/array-chunks.html for more on choosing chunks." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Caching Considerations\n", "\n", "Specifying `lock=False` will disable some internal caching done by xarray or rasterio. For example, the first and second reads here are roughly the same, since nothing is cached." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CPU times: user 2.49 s, sys: 392 ms, total: 2.88 s\n", "Wall time: 3.25 s\n" ] } ], "source": [ "ds = rioxarray.open_rasterio(url, lock=False, chunks=(4, \"auto\", -1))\n", "%time _ = ds.mean().compute()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CPU times: user 2.48 s, sys: 292 ms, total: 2.78 s\n", "Wall time: 2.97 s\n" ] } ], "source": [ "%time _ = ds.mean().compute()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "By default and when a lock is passed in, the initial read is slower (since some threads are waiting around for a lock)." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CPU times: user 2.15 s, sys: 284 ms, total: 2.44 s\n", "Wall time: 5.03 s\n" ] } ], "source": [ "ds = rioxarray.open_rasterio(url, chunks=(4, \"auto\", -1)) # use the default locking\n", "%time _ = ds.mean().compute()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "But thanks to caching, subsequent reads are much faster." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CPU times: user 223 ms, sys: 64.9 ms, total: 288 ms\n", "Wall time: 200 ms\n" ] } ], "source": [ "%time _ = ds.mean().compute()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If you're repeatedly reading subsets of the data, using the default lock or `lock=some_lock_object` to benefit from the caching." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.1" } }, "nbformat": 4, "nbformat_minor": 4 } rioxarray-0.18.2/docs/examples/reproject.ipynb000066400000000000000000007040721474250745200214540ustar00rootroot00000000000000{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Example - Reproject\n", "\n", "To re-project with dask, see [odc-geo](https://odc-geo.readthedocs.io/) & [pyresample](https://pyresample.readthedocs.io)." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import rioxarray # for the extension to load\n", "import xarray\n", "import rasterio\n", "\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load in xarray dataset" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "xds = xarray.open_dataset(\"../../test/test_data/input/PLANET_SCOPE_3D.nc\", decode_coords=\"all\")" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset>\n",
       "Dimensions:      (time: 2, x: 10, y: 10)\n",
       "Coordinates:\n",
       "    spatial_ref  int64 0\n",
       "  * x            (x) float64 4.663e+05 4.663e+05 ... 4.663e+05 4.663e+05\n",
       "  * time         (time) datetime64[ns] 2016-12-19T10:27:29.687763 2016-12-29T...\n",
       "  * y            (y) float64 8.085e+06 8.085e+06 ... 8.085e+06 8.085e+06\n",
       "Data variables:\n",
       "    blue         (time, y, x) float64 6.611 5.581 0.3996 ... 3.491 5.056 3.368\n",
       "    green        (time, y, x) float64 7.921 66.15 30.1 ... 21.76 27.29 18.41
" ], "text/plain": [ "\n", "Dimensions: (time: 2, x: 10, y: 10)\n", "Coordinates:\n", " spatial_ref int64 ...\n", " * x (x) float64 4.663e+05 4.663e+05 ... 4.663e+05 4.663e+05\n", " * time (time) datetime64[ns] 2016-12-19T10:27:29.687763 2016-12-29T...\n", " * y (y) float64 8.085e+06 8.085e+06 ... 8.085e+06 8.085e+06\n", "Data variables:\n", " blue (time, y, x) float64 ...\n", " green (time, y, x) float64 ..." ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xds" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEWCAYAAACOv5f1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAA0gklEQVR4nO3deZhcRb3G8e+bjdWQhO2GzRAFFFACRBYFRCKrSlzYRC8J4EUQWfS6gIoibrhcFa8K5IKIyhYDalwAEUVFIRBkhyBJQBgSAiECYUtI8t4/qpqcdHpmziTdPT3Tv8/znGe6z1bVZ7p/p05VnTqyTQghhPYyoLczEEIIofki+IcQQhuK4B9CCG0ogn8IIbShCP4hhNCGIviHEEIb6vPBX9J5ks4oue4Nkj7UgDycIGmepOckrV/v/deDpD0lPdDb+QghtIY+FfwlTZR0Y3Ge7eNtf6kX8zQY+Dawn+11bT9Vx32PkzRD0guS/iTp1T3Y1pJeW3lv+6+2t6lX3upN0kaSLpM0R9Izkv4madeqdY6U9C9Jz0v6paQRhWWHSfp7PlY31Nj/QElfzvtfKOl2ScO6yM8kSQ9IWiZpYtWyCZJuk/SspA5J35A0qIt9dbm+pNdL+mP+3DMlvSfP/0AuUDwn6cWcl8r75/I6H5U0XdIiST+uSnc3SddJWiDpSUk/lzSyi3yeKenlYhqSRudl3f5/utjvRdXfR0nfkvRg/l/MkHRUF9u/TdLdkp6W9JSkX0jatMZ6I/LnvLEwb8+qz/Nczsv7amz/x7ys+L+5QdJLhW0fKCwbImmKpIfzdnuXOR6tok8F/97Q1Y862xhYE7i3zuluAFwFnAGMAKYDV9QzjRazLnArsDPp814M/FbSugCStgPOB/6TdMxfAH5Y2H4B8F3g7E72/0XgzcDuwNC8n5e6yM+dwEeAf9RYtjZwKrABsCswDvhEF/vqdP38/foV8BvS5z4O+JmkrW1fkgsU6wIHAnMq7/M8gDnAl4Ef1Uh3ODAJGAW8GlgIXNRFPgGuKKZhe3ae3+X/pzOS9gBeU2PR88C7gPWACcA5kt7cyW7uA/a3PQzYBHgQOLfGel8H7i/OyIWe4jF7J/AccE1VPj8AdPZb/2hhH9UFqBuBDwKPd7Jt67LdkAn4NPAY6Qv3ADAuzz8TmEIKZAtJP64dCtudBszKy+4D3pPnv570Y11K+uc9nef/GPhyfj2c9CN6Evh3fr1ZYd83AB/qJt8Tgb8B3yEFlC8DawDfAh4B5gHnAWsBW5O+xM55+mMdj99xwN8L79cBXgReV2Lbv+Q8PZ/zdTiwN9BRWOdh4JPAXXm9C0lB9ep87P8ADC+svxvwd+BpUmDcu1HfnUKazwI759dfBS4tLHsNsBh4VdU2HwJuqJo3PB+H16xCHm4EJnazzseBX/dgn6+sD2yf86bC8t8DX6raZoX/X419fhn4cTfp7gQs7GL5mcDPVuX/08nyQcDtwBvz9/G1Xaw7FfjvEmmuAXwNuK9q/u7ATcDRwI1dbH8RcFHVvPWAf+bvuIFBhWU30E3MyOt1NOM3Uc+pISV/SdsAHwXeZPtVwP6kYFMxHvg5qQRxKfBLpeoTSIF/z/wP+SKpFDTS9v3A8cBNTmfgYTWSHkD6574a2IIULL+/Ch9hV2A2sBHwFVKJYmtgDPBaYFPg87b/CWyXtxlme59aO8uXq51Np3WSh+1IQRYA28+Tjs12naxPYd298ssd8rHq7IrhfcC++bO9ixT4P0MqoQ4ATs753xT4LSnAjCCVWq+UtGEnn/c3XXze33SX/7yPMcAQYGaeVX08ZpGC/9YldvcGYAlwiKTHJf1T0oll8lHSXvTsyq+4vmosF+mkUG8r5FOpGu2uqnXelauJ7pV0Qmc7qv7/SNoi/3+3KKz2MeAvtqvTqN7XWsCb6OIYVvZP+k1/AvhGYdlA4AekmNPpeDWS1gYOIV21FH2VdCXRWen9a5Lm56quvbv6LH1KI84opAD5BPB2YHDVsjOBmwvvBwBzgT072dcdwPj8eiJVZ3UKJf8a2x5O+tHfQao2uY0aZ3HgANLVyUzSSemRPH8McDPpauNuYJdCKeMh0gmmUvIflJftnNedCXyPXKIjlViuyPOnAaMK6U8gXco+CEzI8y4kfSGn5flXkEreE0nB4Xt5X3cBO9X4LAa+WZj/LtKV04PAdaSrmA8Ull8JnFt4fxJwLakU+gSpxF/M87WVvDbg+zM0H8PTC/OuB46vWu8xqkpb1C75H5mPx4WkK7Y3kq4O9y2Rly5L/qSSZgewQcnPtsL6wGBSQeNT+fV+pJPatVXb7c1qlPzzZ15AJ7+zvM62pGqVgaQqsrnA+8v8f2qss3n+fq6X33da8icF42soXP10sd8RpFqF3QrzPlb57lIjRhTW+0/S77Z4lTWWFB8GkarHqkv+uwKvIv1+J5Cuile6giRK/ontmaQ6zjOBJyRdLmmTwiqPFtZdlg/cJgCSjpJ0R6WkSCoBbdBdmpL2lvRTSecrNQo+C1xC+iLvDHyeGnWPhVLDgaQv/67A/Lz4G6R65AHAlsDfc56uATYkVQ3dULXLc0lVNlvl6YA8/1jg37Zfm7f7ek5/BPCFnO4uwBckVaop9gW+Y3srUjVWpd72wML+j8tpVn8WgHdK2ja/PhJYlPd1PenKal4h3y/WeL8L8E1SNd2aQPH/sgfQaePhqsqlwF+TCghfKyx6jhR0ioaSjkd3Xsx/z7L9olNJ9HLgoJxmsTFwi073snJe301qYzjQ9vw8r9hIe3V369t+GXg38A5SyfO/gcmk30Rd5IbWq4FTbP+1s/Vs32d7ju2ltv8OnEMqKRf31dn/p9p3Scf7mW7y9k3Sb/ww5yjaFdsLSCeLX0kalOPKycBnu9uWFLx/UklH0gBSu9Eptpd0kt402wttL7J9MalK+KASabW8hjX42r7U9h6kgGVysMs2r7zI/4DNgDlKvVn+j3T5tr5T1c49LL807u7LsR2wDbCr7aHALZVkSMFuUY1tdgFm2p5tezGppF3pRVJJ70VSyWyy7WG21yM18swmlaQrn2UkMNT2TfkL9hPg3Uo9M74HHJVfXwAcll//ELjO9gLb/yaVyg8gXQK/mhR4IZX8/yPPH0/+Etu+GRiW037ls+RtfpPXBXgL6SoF0o9n7ZzngfkHeABwgqQP53VGkkpI15FO1j/Nn70yrWO7ZuOqpKtr9LCoGRCrtlsD+CWpRP/hqsX3AjsU1h1NKo39s7P9FVSqHWp+f7xiA+cjJfaHpANI39V32b67sK9LCvs6sLv18zZ32X6r7fVt7w+MZvl3d7Xk39QfSG0IP+3h5qZQLdXN/6faOOCbuZqtUp1yk6QjC/v7Iqmgsp/tZ3uQr0GkKtmhpO/8SOC+nM45wC453YGFtDYnXT39pLCfoaSS/xV521vz/A5Je3aS9grHpC/rrifLKsl1/puSzpIvkYJn8USzs6T3khp5TiYF5ZtJJVmTLsmRdDQr1n3OAzaTNCQH6mqDc1pP5xJ1Jdg9lNOfXWObTSlciZBK2EPy61NJ1RtLSQ2+e+R8vZZUT7gL6XK7uK9iia0D2NT2upLuAQ6w3ZH3MYtU2p9IKlWvsA2pdDUAGC/pt8ChpJL7jFwHv72kh22PKmxT/CzzgGV5HqQT2tMAtufmky6kK5JnSFczDwH/Jen3pMbflyVdRapX3zK//j3pOO9GOtGsVEItBr2ylNp8ppD+f0flK8KiS0jBY09SJ4GzgKtsL8zbD8z5GgQMkLQmsNT2y7ZnSfor8FlJJ5OC6+HA+7vIzxDS8RcwOO9vse1lkvbJ+XmP7W6DdHfrS3oj6SQ2gNTDaCSpOrNbSr2FBpGucAfmfC6xvSR/T/4I/MD2eSX2NZ7UWeBpUh38yaQ2oDL/n2pbs+Jvfi6p6vHOvL/TSVeje7mb7tE5VtxLKmitT+pafbvtBbkwMaqw+uF5v+NtLy3M/09SB4pZhXnPkGscss1JJ92dgSeVugLvCvyZVH18OKnd5NRC3tZg+clgSD7+i8pcxfS6RtQlkeoXbyFdki8glUA3ycvOZMXePrezYp31V/I280n/5D+T6+lJQfm3leV53pOky+WZpMD9HClYd5C++Cb9OA7Lyz9UlddDgQsK7yeRutRBKq2/jxScryJ1L3wWeIrcY4B0eVtJ403AHwr72pPlvTruZcWeR7NIX+RPAp8rzD+DdOm/IamENYP0g7sJmJHX+S2pFHlJfn896Qv7ymchNY4/TTqxHpaPS7G3z1JSm8wUUuBZkI/jQ6R653NJX/jR+bP9kdSWsCAf898CW9TxO/PWfBxfyHmtTHsW1jmS1FbxPKl75IjCsol5++L048LyTUknuOdIhYAPd5OfG2rsb++87E/52BTzeXUX++pyfVLVWuW7ezU16sbppM6f9HuqzueZedkXWN4T7ZWpsO0HgHsL7y8jfbefy9+7k8v+f0jtX8919p2gqs4/v19Uta/PFJYX931S/l4+n7+jlwOv7iSdidSo88+f59hu/uejWLH9bkPS1cBC0m/pZqraiUgdWaqP/6h6/S4aOTU/wR52J+vBfvemqsGLdGavNLgKeLbGdrtTaFwDTic3ZHW2PfDX/E9/OH8pFpCqqkaSA3Re7/3A+fn1tcDu+fUg0slNxXXysvPzPOV1BlXnM69zF/D6/P6BnHZXn+UBYGR+PRJ4IL++ktSHuvq47Eah4ZRUcvpBb39hY4oppvpM/f0mrzmkEgvAPhTq5wtuBbaStGW+1D+CVB3V6fa297Q9yqnK5bvAV21/3/ZcYKHSnZUCjiKVUMn7nJBfH0K6J8Ckk8J+kobnht79SAHcpBJjpcFtQtW+HgNmSNoNeCan3dVnKaZf3Ne1pLr+wQCStpa0Tt7XcC3vzrkP6b6LEEJ/0KizCqnh9Y7C9CypruzrpPq/SpfD4o1Ep5Oqbx6gRmm0m/T2ZuWS/x6k7p13khpyKzcM/YQVL8NfJNWPPwN8trvtq9I4E/hE4f1YUiP1LNI9BpUrhzVJ3UhnkqrERhe2OSbPnwkcXZhfafirdEFdI88XqVfPLFKXu7GFbQ4iVePMqvos65Oqhx7Mf0fk+QNI7Rd353z/ieXd8/YlXWHcTaqDHtLbpZWYYoqpPlMlMDVUbox7jNR4ciKwwPbZSjc4Dbf96dwl8TJSI+ompB4KW3vFRpsQQgh10Kxqn3HALNv/InU9rNxhdzGpjzN5/uVO/WkfIpV2d2lS/kIIoa00pKtnDUeQSvUAGzvVT+PU5XCjPH9TUmt6RaX74gokHUe6sQkNHrLzmsM3ql6lIQa+1PgrpIoBz9e6HaExFv3Hmt2vVAeDXux+nXrZfNMnmpbWnFnNG8H7pQ2b10S3yauebko6C2ZX37fXOM++MHe+7ZpDkpS1/9vW8VMLylVG3HbXomttH9D9mr2j4cE/NzweTKrP73LVGvNWiri2J5G6Y7L2xpv7tUd+fLXzWMbwf77clHQA1rqpVrt0Y8w8edvuV6qDDe7srlt4/Zzz1VUZzmnVfP6QiU1La8bxazUtrbP2uqop6fzsyB7fErLKfj/9zH+t7j7mL1jKtGs3K7Xu4JGzuh2ZoDc1o+R/IPAP25WhA+YpDdQ2N9+VWimmdVC485d8128T8hdCCCWZpd3e39Y3NOM68v0sr/KBzrscTgWOkLSGpC1Jd/vW5Rb3EEKoBwPLcKmp1TW05K80hOq+rDgOyNnAZEnHku7WPBTA9r2SJpP6ki8BToyePiGEVrOM/lHyb2jwt/0CqX95cd5TpN4/tdb/Cml4hxBCaDnGvNxPqn2a1dsnhBD6PANL+0CVThkR/EMIoQf6Qn1+GRH8QwihJANLmzAqQjNE8A8hhB7oHzX+EfxDCKE046jzDyGEdmPDy/0j9kfwDyGE8sTS/vEI3wj+IYRQloFlUfIPIYT2EyX/EEJoM+kmrwj+IYTQVgy87P7x6PMI/iGEUJIRS5v2AMTGiuAfQgg9sMxR7RNCCG0l6vxDCKEtiaVR5x9CCO0lPckrgn+vG/zvxWw65eGmpPWvo0Y1JR2ALR7duGlprTezOelc+vVvNSch4CMHHdu0tHa55I6mpTXi+Q2bltbcl4c3JZ0BD89tSjr1YovFHtjb2aiLPh38Qwih2ZZFnX8IIbSX1OAb1T4hhNBmosE3hBDaTn9q8O0fnyKEEJpkqVVqKkPSMElTJM2QdL+k3SWNkHSdpAfz34a0vkfwDyGEkox42YNKTSWdA1xj+3XADsD9wGnA9ba3Aq7P7+sugn8IIZRUafAtM3VH0lBgL+BCANuLbT8NjAcuzqtdDLy7EZ8l6vxDCKEkU75KB9hA0vTC+0m2JxXejwaeBC6StANwG3AKsLHtuQC250raqA5ZX0kE/xBC6IEeNPjOtz22i+WDgJ2Ak2xPk3QODariqSWqfUIIoSQblnpAqamEDqDD9rT8fgrpZDBP0kiA/PeJRnyWhgb/Tlqyd5B0k6S7Jf0613shaZSkFyXdkafzGpm3EELoqdTgO7DU1O2+7MeBRyVtk2eNA+4DpgIT8rwJwK8a8VkaXe1Tack+RNIQYG3gOuATtv8s6Rjgk8AZef1Ztsc0OE8hhLDK6nyH70nAJTk+zgaOJhXKJ0s6FngEOLSeCVY0LPgXWrInQmrJBhbns9xf8mrXAdeyPPiHEELLMqrrw1xs3wHUahcYV7dEOtHIap9iS/btki6QtA5wD3BwXudQYPPCNlvmdf8sac8G5i2EEFZJvbp69rZG5rDSkn2u7R2B50kt2ccAJ0q6DXgVsDivPxfYIq/7ceDSSntAkaTjJE2XNH3xshcbmP0QQliRgWUeUGpqdY3MYc2WbNszbO9ne2fgMmAWgO1Ftp/Kr2/L87eu3qntSbbH2h47ZMBaDcx+CCFUE0tLTq2uYcG/s5bsyg0LkgYAnwPOy+83lDQwvx4NbEVqAAkhhJZgqFtvn97W6N4+tVqyj5J0Yl5+FXBRfr0XcJakJcBS4HjbCxqcvxBCKM1Wn6jSKaOhwb+Tluxz8lS97pXAlY3MTwghrK4Yzz+EENpMGs+/9evzy4jgH0IIpcWTvFrCoo2GMPMjo5qS1n/csrQp6QBs9qOOpqX1u80mNyWd0dec2pR0AI659G9NS+umfTfvfqU6WbDva5qW1tO3rt+UdOa9ryEDVtZ2/urvInX1jJJ/CCG0lcrYPv1BBP8QQuiB/vIM3wj+IYRQUhrSOap9Qgih7USdfwghtJk0qmdU+4QQQltJwztE8A8hhDYTJf8QQmhLcYdvCCG0mejtE0IIbSqqfUIIoc3U+xm+vSmCfwghlGRgSZT8Qwih/US1TwghtBtHtU8IIbSdej/MRdLDwELSo2uX2B4raQRwBTAKeBg4zPa/65Zo1j+uX0IIoUmW5dJ/d1MPvM32GNuVR96eBlxveyvg+vy+7iL4hxBCSZWHudQ5+FcbD1ycX18MvHs1s11TVPuEEEJJRixZVrrMvIGk6YX3k2xPWmmX8HtJBs7Pyze2PRfA9lxJDXncWQT/EELogR7U+c8vVOV05i225+QAf52kGauXu/Ii+IcQQlmu73j+tufkv09I+gWwCzBP0shc6h8JPFG3BAuizj+EEEqqZ52/pHUkvaryGtgPuAeYCkzIq00AftWIz9KnS/5rzH2R15x9d1PSevjjb2hKOgBPz3l109Lad+GIpqQzYtqQpqQDcOnDb2taWi+dubRpaZ2+d0NiQE2/nDemKemcMvLnTUkHYOL59dlPHUv+GwO/kAQpFl9q+xpJtwKTJR0LPAIcWq8Ei/p08A8hhGYyYmn5Bt+u92XPBnaoMf8pYFxdEulCBP8QQuiBGM8/hBDajOvc4NubGtrgK2mYpCmSZki6X9LuknaQdJOkuyX9WtLQwvqnS5op6QFJ+zcybyGEsCpslZpaXaN7+5wDXGP7daS6rfuBC4DTbL8B+AXwSQBJ2wJHANsBBwA/lDSwwfkLIYQeKNfTpy9cHTQs+OcS/V7AhQC2F9t+GtgG+Ete7Trgffn1eOBy24tsPwTMJPV5DSGElhEl/+6NBp4ELpJ0u6QLcl/We4CD8zqHApvn15sCjxa278jzViDpOEnTJU1f7Jcal/sQQqhiw9JlKjW1ukYG/0HATsC5tncEnieNTncMcKKk24BXAYvz+rWOlleaYU+yPdb22CFaszE5DyGETixDpaZW18jg3wF02J6W308BdrI9w/Z+tncGLgNmFdbfvLD9ZsCcBuYvhBB6xES1T7dsPw48KmmbPGsccF9lhDpJA4DPAefl5VOBIyStIWlLYCvglkblL4QQeq7/NPg2up//ScAlkoYAs4GjgaMknZiXXwVcBGD7XkmTgfuAJcCJtpt373wIIZTglSqj+6aGBn/bdwDVQ5qek6da638F+Eoj8xRCCKujL1TplBF3+IYQQkmpt0//GAw5gn8IIfRAVPuEEEIbimqfEEJoM6ZvdOMsI4J/CCH0QCvU+kh6b4nVXrL9u84WRvAPIYSyDG6NoRv+j/R4x64ysxcQwT+EEOqhRap9rrZ9TFcrSPpZV8sj+IcQQg+0Qm8f2x9c3XX6dPB/afM1mfHZ1zclrTe8bnZT0gH4/Kt/3bS0jvnuKU1J5/Of6LIQUlefuvrIpqW1zXkLm5bW19Y+sGlpbTZyQVPS+cqdzftMcNNq76Eytk9vk7RXV8tt/6Wr5dBF8Jc0tUQeFtieWGK9EELo+wy0QPAnPwSrikkPzdoM6PZBWF2V/F8PfKiL5QJ+0F0CIYTQn7RItc+7iu8l7QF8FpgLfLTMProK/p+1/eeuNpb0xTKJhBBC/6BW6e0DgKRxwBmkUv9XbV9XdttOg7/tyVWJrGP7+a7WCSGEfq+OJf/8nPLpwGO23ylpBHAFMAp4GDjM9r9rbPcOUkn/GVJB/W89TbvbEYokvVnSfaSHryNpB0k/7GlCIYTQ57nuD3M5hRxbs9OA621vBVyf39fya1Ld/hLg05KmFqcyCZfp7fMdYH/Sw1awfWd3Lc0hhNBv1ankL2kz4B2kYew/nmePB/bOry8GbgA+XWPzt61u+qW6etp+VFrhTBYPWQkhtKnSpfoNJE0vvJ9ke1Lh/XeBT5GeZV6xse25ALbnVp58WK3YHitpwzzvybIZg3LB/1FJbwacn8h1MitepoQQQvtYVnrN+barH2YFgKR3Ak/Yvk3S3j3NglJp/Auknj0CBkhaAvyv7bPK7KPMUwmOB04ENiU9ZH1Mfh9CCO2l0s+/zNS1twAHS3oYuBzYJw/HME/SSID894lOtj817+NNtte3PRzYFXiLpI+V+ShdBv/cEv1d2x+wvbHtjWx/0PZTZXYeQgj9jV1u6nofPt32ZrZHAUcAf8zDMUwFJuTVJpAGb6vlKOD9th8q7HM28MG8rFtdBv/8APUNc3VPCCEEl5xWzdnAvpIeBPbN72sZbHv+SllL9f6DyyRUps7/YeBvufvQK/38bX+7TAIhhNCv1Hl4B9s3kHr1kGtVxpXYbPEqLntFmeA/J08DWN4q3QI3OIcQQvOpNaLfDpKerTFfwJpldlAm+N9n++cr7F06tMzOQwihX7GgBYZ3sN3twG3dKdPb5/SS80IIof9rbJ1/03Q1pPOBwEHAppK+V1g0lHRLcQghtJ8WCOyS/mF7p9VZp6tqnzmkAYcOBm4rzF8IlOpHGkII/U4LBH/g9ZLu6mK5gPW62kFXo3reCdwp6dK83ha2H1ilbIYQQn/QOg9zeV2JdbochqdMg+8BwLeAIcCWksYAZ9k+uLsNJQ0DLgC2Jx22Y4AXgfNILdJLgI/YvkXSKNKwEZUTzM22jy+RvxBCaJpW6O1j+1+ru48ywf9MYBeW90O9IwfqMs4BrrF9SL5RbG1gMvBF21dLOgj4BstHsZtle0zZzIcQQtO1QPCvhzLBf4ntZ6pG9eyWpKHAXsBEANuLgcWSTGo0hlQnNadHOw4hhF7UCiX/eigT/O+RdCQwUNJWpFE9/15iu9HAk8BFknYgNRqfQhqQ6FpJ3yJ1NX1zYZstJd0OPAt8zvZfq3cq6TjgOIA11hzGlj8vP8Te6lg4YLOmpAPwwTef0rS01mzO4ePCnXZoTkIAX25eUov/57mmpbXOwubVNa972EoPj2oIvbXmiMUN8WC9dtQadf6rrUw//5OA7YBFwGWkwHxqie0GATsB59rekTQ0xGnACcDHbG9O6jV0YV5/LqlReUfSgw0uzVcPK7A9yfZY22MHD16nRDZCCKFOyvbxb9LVgaT3SnpQ0jOSnpW0sJM7f1fSbcnf9gukZ0V+tof56gA6bE/L76eQgv8epCsAgJ+TGoSxvYh0giGPcT0L2JrU3TSEEFpDa1X7fAN4l+0eP2OlzDN8x0q6StI/JN1VmbrbzvbjpAfBbJNnjQPuI9XxvzXP24d8NSZpwzyENJJGA1sBs3v6gUIIoZG0rNzUJPNWJfBDuTr/S4BPAnfTk2fYJCcBl+SePrOBo0njU58jaRDwErn+ntQ4fFZ+Gs1S4HjbC3qYXgghNFZrlfynS7oC+CW55gTA9lXdbVgm+D9pu9TT4KvZvgOofozZjcDONda9ErhyVdIJIYRmkFuut89Q4AVgv8I8A3UJ/l+QdAFwPT08s4QQQr/TQr19bB+9qtuWCf5Hk24lHszyap9SZ5YQQuh3WqjkL2lr4FxgY9vbS3ojcLDtbjs8lwn+O9h+w+pmMoQQ+oMWq/b5P1Kb7PkAtu/K47F1G/zL9PO/WdK2q5e/EELoB9xyvX3Wtn1L1bxSQ+6XKfnvAUyQ9BCpzl+Abb+xZ3kMIYR+oLVK/vMlvYacK0mHkG6Y7VbZUT1DCCFAqwX/E4FJwOskPQY8BHywzIZl7vBd7aFDQwihv2ilOn/bs4G3S1oHGGB7YdltO63zl/SP7jYus04IIYTGkLSxpAuBKbYXStpW0rFltu2q5L/ajwkLIYR+p04lf0lrAn8B1iDF4im2vyBpBHAFMAp4GDjMdmfDrP4YuIjlY6/9M297YSfrv6Kr4L/ajwkLIYR+xXXtybMI2Mf2c5IGAzdKuhp4L3C97bMlnUYaEPPTnexjA9uTJZ0OYHuJpFJxuatn+EZdfwghVKtTyd+2gcoDIQbnycB4lj/d8GLSUxQ7C/7PS1qf5b19dgOeKZN+md4+IYQQSHXdPWjw3UBScUj6SbYnrbC/NJLxbcBrgR/YniZpY9tzAWzPldTVE28+DkwFXiPpb8CGwCFlMhfBP4QQeqJ88J9vu3pgyxV3ZS8FxkgaBvxC0vZld55PHG/N0zakc9MDtl8us32Z8fw/Kml42QyFEEK/5eUje3Y39Wi39tOk6p0DgHmSRgLkv090ss1SYLztJbbvtX1P2cAP5YZ3+A/gVkmTJR2gnj7JPYQQ+pNlJadu5AdYDcuv1wLeDswgVeNMyKtNID0DpTN/k/R9SXtK2qkylfkYZW7y+pykM0jjRR8NfF/SZOBC27PKJBJCCP1FHW/yGglcnKtvBgCTbf9G0k3A5Nxf/xHg0C728eb896zCPJOektilUnX+ti3pceBx0qBBw4Epkq6z/aky+2iE4Vs8y/u+d21T0vrZl97RlHQALprwv01La7c1mtPss//3dmhKOgBrPV7mgrY+Hntms6altXTt5t1aqvVfaEo6HeOaWJHwyzrtp369fe4Cdqwx/ynSY2/L7ONtq5p+t798SSeTLj3mkx62/knbL0saQHr+bq8F/xBCaCrTUmP7SPp4jdnPALflJyl2qkyxbwPgvdX9/m0vk/TO0rkMIYR+oJXG9iE9Jncs8Ov8/h3ArcDxkn5u+xudbVimzv/zXSxbpafGhxBCn9VawX99YCfbzwFI+gIwBdiLdP/Aqgf/EEIIyzXxQS1lbAEsLrx/GXi17RclLepkGyCCfwghlNdidf7ApaSnLVa6g74LuCwP8XxfVxtG8A8hhJKUp1Zh+0uSfkd64qKA421XhpT4QFfbRvAPIYSeaK2SP7ZvI9Xv90gE/xBC6IEW6+2zyiL4hxBCT0TwDyGENlPfh7n0qobeBy9pmKQpkmZIul/S7pLGSLpZ0h2SpkvapbD+6ZJmSnpA0v6NzFsIIawSl5xaXKNL/ucA19g+RNIQYG1gMvBF21dLOoh0E8LekrYFjgC2AzYB/iBp6zxsaQghtIT+UuffsJK/pKGku8wuBLC9OI9ZbWBoXm09YE5+PR643PYi2w8BM4FdCCGEVhIl/26NBp4ELpK0A6kr0inAqcC1kr5FOvlUhiTdFLi5sH1HnrcCSccBxwEM32SNRuU9hBBqipJ/9wYBOwHn2t4ReJ70FPoTgI/Z3hz4GPnKgNr3Tqx0mG1Psj3W9th1hw9pTM5DCKEWU7eHufS2Rgb/DqDD9rT8fgrpZDABuCrP+znLq3Y6gM0L22/G8iqhEELodZUHuNf7MY69oWHB3/bjwKOStsmzxpHGmphDeuAwpKfNPJhfTwWOkLSGpC2BrYBbGpW/EEJYJVHnX8pJwCW5p89s0mMgfwWcI2kQ8BK5/t72vfnxkPeRnhZ2YvT0CSG0GrkPRPYSGhr885NkxlbNvhHYuZP1vwJ8pZF5CiGEVdZHSvVlxB2+IYTQA32hPr+MCP4hhNAD/WV4hz4d/Oc9sx7fvro5jxG+4CvnNyUdgC/tdmDT0lr61L+bks5PH72hKekAfPqxod2vVCdzPrZl09L66mUXNC2t0391XFPS2ebcBU1JB+Dheu0oSv4hhNBm+kg3zjIaOrBbCCH0O3Xq6ilpc0l/yoNe3ivplDx/hKTrJD2Y/w5vxMeI4B9CCCXV+SavJcB/2349sBtwYh7g8jTgettbAdfn93UXwT+EEHpAy1xq6o7tubb/kV8vBO4njWc2Hrg4r3Yx8O5GfI6o8w8hhLJ61s9/A0nTC+8n2Z5Ua0VJo4AdgWnAxrbnQjpBSNpolfPbhQj+IYTQAz3o6jnfdvVNrivvT1oXuBI41fazUq0xLusvqn1CCKEn6ji2j6TBpMB/ie3KgJfzJI3My0cCT9Qx96+I4B9CCD1QrwZfpSL+hcD9tr9dWDSVNPox+e+v6v0ZIKp9QgihPAP1G9jtLcB/AndLuiPP+wxwNjBZ0rHAI8Ch9UqwKIJ/CCH0QL2Gd7B9I7UfYgVpCPyGiuAfQgglVfr59wcR/EMIoSy7ntU+vSqCfwgh9ECU/EMIoR1F8A8hhPYTJf8QQmg3Bpb2j+gfwT+EEHogSv4hhNCOordPCCG0nyj5hxBCu+nZkM4trU8H/yELzeZ/XNqUtE599PimpAOw8JsvNS2tTX7ZnAeQL1j256akA3DPBds3La0tvjGzaWk9vqR5D6Z/9O1rNSWddTqakw4A963+LgQoGnxDCKH9KOr8QwihzUS1TwghtKMY26cUScOAC4DtSefLY4BTgW3yKsOAp22Pyc+wvB94IC+72XbzKtpDCKGE6O1TzjnANbYPkTQEWNv24ZWFkv4HeKaw/izbYxqcpxBCWHVR8u+apKHAXsBEANuLgcWF5QIOA/ZpVB5CCKGu3H96+zTyGb6jgSeBiyTdLukCSesUlu8JzLP9YGHelnndP0vas4F5CyGEVVPHB7j3pkYG/0HATsC5tncEngdOKyx/P3BZ4f1cYIu87seBS/PVwwokHSdpuqTpLy9+vnG5DyGEGmSXmlpdI4N/B9Bhe1p+P4V0MkDSIOC9wBWVlW0vsv1Ufn0bMAvYunqntifZHmt77OAh61QvDiGExqo8zau7qcU1LPjbfhx4VFKlZ884lt9j93Zghu2OyvqSNpQ0ML8eDWwFzG5U/kIIoccMLCs5tbhG9/Y5Cbgk9/SZDRyd5x/BilU+kBqHz5K0BFgKHG97QYPzF0IIpYm+UaVTRkODv+07gLE15k+sMe9K4MpG5ieEEFbbsj5QrC+hkXX+IYTQv9Sx2kfSjyQ9IemewrwRkq6T9GD+O7z+HyKJ4B9CCD1Qx94+PwYOqJp3GnC97a2A61mxh2RdRfAPIYSeqFNvH9t/AarbNccDF+fXFwPvrmveC2JgtxBCKK1H3Tg3kDS98H6S7UndbLOx7bkAtudK2mhVcllGBP8QQijLQPnhHebbXqnDS6uIap8QQuiBBt/hO0/SSID894m6ZbxKBP8QQuiJxt7hOxWYkF9PAH5VlzzXENU+IYRQloFl9bnJS9JlwN6ktoEO4AvA2cBkSccCjwCH1iWxGiL4hxBCafUbt8f2+ztZNK4uCXSjTwf/JRssY8F/PdeUtIb9aN2mpAPw7BsGNi2tJ8Y2J63vznt7U9IBGPb+R5uW1nOfGtm0tM7aemLT0hqyfnPSWXv+0uYkVE8xvEMIIbQZA0v7x/AOEfxDCKE0gyP4hxBC+4lqnxBCaDN17O3T2yL4hxBCT0TJP4QQ2lAE/xBCaDM2LO2D3VNriOAfQgg9ESX/EEJoQxH8Qwih3Th6+4QQQtsxOG7yCiGENhTDO4QQQpuxYVkE/xBCaD/R4BtCCO3HUfIPIYR2U7+HufS2CP4hhFBWDOwWQgjtx4D7yfAOAxq5c0nDJE2RNEPS/ZJ2l3SFpDvy9LCkOwrrny5ppqQHJO3fyLyFEEKPOT/MpczU4hpd8j8HuMb2IZKGAGvbPryyUNL/AM/k19sCRwDbAZsAf5C0te3+cZoNIfQLjmqfrkkaCuwFTASwvRhYXFgu4DBgnzxrPHC57UXAQ5JmArsANzUqjyGE0GN9oFRfhtyglmtJY4BJwH3ADsBtwCm2n8/L9wK+bXtsfv994GbbP8vvLwSutj2lar/HAcflt9sADzTkA6yaDYD5vZ2JHupree5r+YXIczOUye+rbW+4OolIuianVcZ82wesTnqN1Mhqn0HATsBJtqdJOgc4DTgjL38/cFlhfdXYx0pnJtuTSCeVliNpeuVk1lf0tTz3tfxC5LkZmpXfVg7mPdXIBt8OoMP2tPx+CulkgKRBwHuBK6rW37zwfjNgTgPzF0IIbathwd/248CjkrbJs8aRqoAA3g7MsN1R2GQqcISkNSRtCWwF3NKo/IUQQjtrdG+fk4BLck+f2cDRef4RrFjlg+17JU0mnSCWACf2wZ4+LVkd1Y2+lue+ll+IPDdDX8tvr2tYg28IIYTW1dCbvEIIIbSmCP4hhNCGIvivAknbFIaouEPSs5JOlTRC0nWSHsx/h/d2Xiu6yPOZkh4rzD+ot/NaJOljku6VdI+kyySt2eLHuVZ+W/0Yn5Lze6+kU/O8Vj7GtfLb0se4FUWd/2qSNBB4DNgVOBFYYPtsSacBw21/ulczWENVno8GnrP9rd7N1cokbQrcCGxr+8XcIeB3wLa04HHuIr+jaN1jvD1wOelu+sXANcAJwH/Rmse4s/x+gBY9xq0qSv6rbxwwy/a/SENUXJznXwy8u7cy1Y1inlvdIGCtfG/I2qR7P1r5ONfKbyt7PenO+hdsLwH+DLyH1j3GneU39FAE/9VX7La6se25APnvRr2Wq65Vd7X9qKS7JP2olS7vbT8GfAt4BJgLPGP797Toce4iv9Cixxi4B9hL0vqS1gYOIt1s2ZLHmM7zC617jFtSBP/VkO9fOBj4eW/npawaeT4XeA0whhSw/qd3cray/AMeD2xJGul1HUkf7N1cda6L/LbsMbZ9P/B14DpSFcqdpPtsWlIX+W3ZY9yqIvivngOBf9iel9/PkzQSIP99otdy1rkV8mx7nu2ltpcB/0eqS20Vbwcesv2k7ZeBq4A307rHuWZ+W/wYY/tC2zvZ3gtYADxI6x7jmvlt9WPciiL4r57qwemmAhPy6wnAr5qeo+6tkOfKDzx7D+myulU8Auwmae08BPg44H5a9zjXzG+LH2MkbZT/bkEac+syWvcY18xvqx/jVhS9fVZRrm98FBhtu/JAmvWBycAWpEBwqO0FvZfLFXWS55+SLpUNPAx8uFLX2wokfRE4nHRpfzvwIWBdWvQ4d5LfC2jtY/xXYH3gZeDjtq9v5e9yJ/lt6e9xK4rgH0IIbSiqfUIIoQ1F8A8hhDYUwT+EENpQBP8QQmhDEfxDaFGSPiHJkmo+MFzSMElTJM2QdL+k3QvLTpL0QB787Bt53r6SbpN0d/67T2H9nfP8mZK+l7uqovRkvSvy/GmSRhW2mZAHfntQ0oTC/C3zug/mbYfk+cr7npnvxN2psM0BOb8z81hClfk9HmBO0tLCAG9TSx7u9mM7pphi6qUJ2Bv4cY35mwPXAv8CNuhk24uBD+XXQ4Bh+fXbgD8Aa+T3G+W/OwKb5NfbA48V9nULsDsg4GrgwDz/I8B5+fURwBX59QjS0/lGAMPz6+F52WTgiPz6POCE/PqgvG8BuwHT8vyBwCxgdP4cd5IGxwP4BnBafn0a8PUSx/S53v6/9oUpSv6hZUkaJelFSXfUaX9jVmWoX0mH5xLpb+qRj5K+A3yK1G+9Vp6GAnsBFwLYXmz76bz4BOBs24vysify39ttVwaauxdYM5fsRwJDbd/kFD1/wvKB3IoDvE0BxuWrgv2B62wvsP1v0nALB+Rl++R1YcVB4cYDP3FyMzAsp70LMNP2bNuLSaN2jq+R/iv7kjRQ0jcl3ZqvIj7c/SENRRH8Q6ubZXtMnfY1hlT6XInSKJw12b6CdLNWU0g6mFQqv7OL1UYDTwIXSbpd0gWS1snLtgb2zFUvf5b0phrbvw+4PZ8gNgU6Css68jzy30cBnEbRfIZ0g9Ur86u2WR94Oq/b6b6qlnU2HzofYO5Y0sB5bwLeBPyXpC3zsjUlTZd0s6R31/jsgcY/wD2EmnJAupBU6htIqnY43Hant+Xn+uZrSGPm70aqHrgI+CIpKHzA9i05CP4v8AbSd/xMUnXDWaThlvcAvkYaHngT0nj78yWdQqqm2CIneartv9XtQ6/4WaYBa5DuVh5RuLr5AvAZYL9udjEI2Ak4yfY0SeeQqkXOyMuGk47Rm4DJkkbnUj2StiMNjlZJQzX2726W9XT+quyrK/sBb5R0SH6/HrAV8BCwhe05kkYDf5R0t+1Z3eyv7UTwD73C9q25Me7LwFrAz7oK/AWvBQ4FjgNuBY4E9iCNVPoZUrXAZ4E/2j5G0jDSieUPwOeBsbY/CunpT8DOwB5OD1+5FPiO7RvzuDHXkk4QdWd715yHvYGJtifm928gjQp6Z25z3Qz4h6RdbD9e2EUH0GF7Wn4/hRT8K8uuysH+FknLgA2AJyVtBvwCOKoQEDtyOhWbsfw5BB2k9oeOfHW0HmkwtQ5Se0VxmxuA+aTqnEG59F9rX9XpDOlkPuQB5mzP1YoDzIl04ruWKpWqLduzJd1AauuI4F8lqn1CbzoL2BcYS2rYK+Mh23c7jd54L3B9DnJ3k0rwkEqFp+XS9A3AmiwvzVebavvF/PrtwPfzdlOBoZJe1ZMPtLryZ9vI9ijbo0gBc6eqwE9+/6ikbfKsccB9+fUvSfXuSNqaFFzn5xPhb4HTi1c0uTploaTdcp39USwfyK04wNshpJOqSSfG/SQNzz1w9gOuzcv+lNeFFQeFmwoclXv97EaqtplLOolvlXsJDSE1LE8tbFNrgLlrgRMkDa58Tknr5PyskedtALylcFxCQZT8Q28aQar2GEwK0M+X2GZR4fWywvtlLP8+C3if7QeKG0ratcb+imkOAHYvnAxaiqRNgAtsV9otTgIuyQFzNumRnAA/An4k6R7Sow4n2Lakj5KunM6QdEZed7/cIHwC8GPSVdjVeYJUNfdTSTNJJf4jAGwvkPQlUuAGOMvLB377NHC5pC+TBre7MM//HanNZSbwQiW/tpfkvF1LqgL8ke178zZnk6qtjiUPMJfnX0A62f8jn7CeJF31vR44P1/tDCA1fEfwryEGdgu9Jlf7XE6q5hhZqY4pLB8F/Mb29p28/3F+P6W4TNJXgaGkagFL2tH27ZLeBxxse0Le/kwKz33N1T632/5mfj/G9h359d7AJ2y/s0GHI4Smimqf0CskHQUssX0pqXT3JhVuOlpNXyJdTdyVS79fyvP/BGybb/45vMZ2JwNjc9fB+4Dj65SfEFpOlPxDy6ou6fdyXvYmSv6hH4mSf2hlS4H16nWT16rKVwk/BP7dm/kIoZ6i5B9CCG0oSv4hhNCGIviHEEIbiuAfQghtKIJ/CCG0of8HZeQBGrhHkK4AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "xds.green.where(xds.green!=xds.green.rio.nodata).isel(time=1).plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Reproject\n", "\n", "API Reference:\n", "\n", "- DataArray: [rio.reproject()](../rioxarray.rst#rioxarray.raster_array.RasterArray.reproject)\n", "- Dataset: [rio.reproject()](../rioxarray.rst#rioxarray.raster_dataset.RasterDataset.reproject)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "xds_lonlat = xds.rio.reproject(\"EPSG:4326\")" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset>\n",
       "Dimensions:      (time: 2, x: 10, y: 10)\n",
       "Coordinates:\n",
       "  * x            (x) float64 -51.32 -51.32 -51.32 ... -51.32 -51.32 -51.32\n",
       "  * y            (y) float64 -17.32 -17.32 -17.32 ... -17.32 -17.32 -17.32\n",
       "  * time         (time) datetime64[ns] 2016-12-19T10:27:29.687763 2016-12-29T...\n",
       "    spatial_ref  int64 0\n",
       "Data variables:\n",
       "    blue         (time, y, x) float64 6.611 5.581 0.3996 ... 3.491 5.056 3.368\n",
       "    green        (time, y, x) float64 7.921 66.15 30.1 ... 21.76 27.29 18.41
" ], "text/plain": [ "\n", "Dimensions: (time: 2, x: 10, y: 10)\n", "Coordinates:\n", " * x (x) float64 -51.32 -51.32 -51.32 ... -51.32 -51.32 -51.32\n", " * y (y) float64 -17.32 -17.32 -17.32 ... -17.32 -17.32 -17.32\n", " * time (time) datetime64[ns] 2016-12-19T10:27:29.687763 2016-12-29T...\n", " spatial_ref int64 0\n", "Data variables:\n", " blue (time, y, x) float64 6.611 5.581 0.3996 ... 3.491 5.056 3.368\n", " green (time, y, x) float64 7.921 66.15 30.1 ... 21.76 27.29 18.41" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xds_lonlat" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEXCAYAAAByAUkhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAA6zklEQVR4nO3dedxc4/3/8dc7iQhiS0KajQRBYwtiK20RS1BLi1aqFcrXF1XVBVHVqqVfS/vTahWxVKp2rTYUKSGKKqIiErFEpBLSRCRIEJHk8/vjukZOJjNzzn3PzJl7ks/z8TiPe+accy1nZu5zzbXMdcnMcM455/LUrtEZcM45t+rxwsc551zuvPBxzjmXOy98nHPO5c4LH+ecc7nzwsc551zuVonCR9JGkhZIat/ovDjn8iPpaknnZjx3rKQT6pCHkyXNivegrrWOv1mtlIWPpGmS9ik8N7M3zKyzmS1pZL7KkbS6pOsl/UfSfEnPSTqg6JzBkl6S9KGkRyRtnDi2V9z3nqRpZdL4rqTXJX0gabKkzSvk5wJJL0haLOm8omMHSXpc0ruS/ivpWklrV4ir4vmSekn6q6S5kmZIOinu/3z8Z10Q82yJ5wviF4qvSvpnfE3GFqW7eYz37Rj3aElbVMjnsZKWFKWxZzyW+v5UiPenMe/7JPadIWlijOt1SWdUCD9A0jhJ8+L2kKQBJc7rGD8fMxL7Niq6ngUxLz8oEf738dhmiX03SlpUFL594vgISS9LWirp2CyvRz3F9/Dx5D4zO8nMLmhgnlYD/h+wX7wHvVPDuMveE5rBSln4NKEOwHTgi8C6wLnAHZL6AkjqBvw57u8CjANuT4T/ALgBKHkTU/g2dzxwENAZ+BIwp0J+pgBnAn8rcWxd4EKgJ/BZoDdwWYW40s7/I/A60D3m7+eS9jKzx+I/a2dgq3jueoV9ZvYGMBf4FXBxiXTXA0YBW8S4nwb+WiGfAE8m4u9sZmPj/orvTzmSNgWOAGYWHwKOAdYHhgCnSjqqTDRvxTi6AN3iNd1W4rwzgNnJHYkvXYXXcRtgKfCnonzuAWxaJv1Li16T5Be454FTgH+XCbvSk9Qh5ZTuQCdgUo3TTbsntH1mtlJtwE2Ef7CPgAWEm2hfwIAO8ZyxhBviP+M59wBdgZuB94FngL6JOLcEHiTc7F4GvprDdUwADo+PTwT+mTi2Vry+LYvC7ANMK9rXjnDjHNyKPPwROC/lnK8AL7Qgzk/PJxSEBmyQOD4CuKkozHLvX4k4TwDGpqTbJcbRtczxY4HHW/P+VDjnfuBAYBqwT4XzrgB+kyHNDsC3gQ+L9vcDJgMHADMqhP8p8EiJOJ8Dto2vz2aJYzcCF2bI1+PAsS38bJ0FvAnMj/9Tg+P+84C7CDfS+YSCbbtEuOHAa/HYi8CX4/7PAguBJfF/+t3iayAU9vcCbwPz4uPeibjHAiek5PtY4AngcsL94EJgdeAXwBvALOBqYA1gc8IXQ4t5erglr1FKPjLdE9ryttLVfMzsm4QPwcEWvqldWubUo4BvAr0I3/qeBH5PuElNJvyjImktQsFzC7AhMBT4naStSsSJpN/FJqZS24Qs1yCpO+GDW/i2tBXhW2bhGj8g/AOWzEOR3nHbWtL02MzzM0m1eu+/QMu+1SXPV9HfwuOta5CvUun+12Kzh6Q9JL1bdM72kuZIekXSueW+1ZZ4f4jv7x6J50cCi8zsvkqZkiTg86S8hjGvC4HfAD8vOvwb4EeEm08lxwAji/Z9D/iHmZX7bJ4Smy2flXR4SvyZxObPU4GdzGxtYH9CAV1wKHAn4X/xFuAvsfkKwuf+84Qa6M+AP0rqYWaTgZNYVntdr0TS7Qj/4xsDGxFer9+24hJ2AaYS7gcXAZcQPg8Dgc0I95SfmNkrLF9r37tUZBXuF+9KGl4mD9XcE9qGRpd+9dgo+qZJ6ZrPOYnjvwTuTzw/GBgfH38NeKwo/muAn2bIx5GEm8pSYFCZc7YAxie29wnfBK8BLiB8w36H0DTVM4bZl/BNajrwLLB33L8PoZnmBULT2RXA5+K130+opk8j/NMNT+RhGPBq3IYl9t8NzIj7bwc6xv2Kcb8JLAYOS4QZEvM/pSiNLjGvSwjfHNeP+x8n3Dw7ATsQa5fx2APAu8AYqqj5EArfN4GhFc7ZhFCDaEdonnoROLvEeasBDwHXVIirc3zN+pX6PBad+zPCTWT1DJ+ntQjNXAcl9n0ZeCA+3pMyNR/CDXsB0Dmxr098n9aNz4trPjsQWgQ6EGpw84HdS8TdopoP4QY9O35eVys6dh7wr8TzdoRmy8+XiWs8cGh8fCxFtVcq1N4IhcW8xPOxZKv5vJF4LkLtZtPEvt2A1+PjvpU+u63dgOuBi4v2PdGS96HR20pX82mBWYnHH5V43jk+3hjYJfltBDga+EyGNCYSmpn+Ue4EM3vZzAaa2UBgEOHm9ibhm+FlZrYtoflrBvCTGGwOoeA5nVBw3JSIsiuhSt4/bjvE/ZOB2WbWl9CscSqApJcI3wZ7AKcBP5W0fgyzA+FG0J/QTHF83H9AzGvHmIezY1xfBO4j3OwXAUMTneO/JhS0+xGaOQvf6I4m3PSnA1cRmj4LneaXEWqnrSZpA+DvwO/M7NZy55nZVDN73cyWmtkLwPmEvpZkXO0Ir/Ui4utXxs8ITYevp+TtVEJt5CAz+zjtWix8u70a+IOkDWOt/FLgO2lhCZ+TP5nZgsS+XwHnm9l7ZdL7t5m9Y2aLLdTgbiZ8nqtiZlMIn5vzgNmSbpPUM3HK9MS5Swmfh54Ako6RND7xv7g1oS8slaQ1JV0TB468T/i/XE8tHwU7PfF4A2BN4NlEnh6I++tpAbBO0b51CF8QmsLKWvjUcqru6cCjZrZeYutsZieXOllhaOcCSQsIfUfPEr51/kNS2aaV2PzyN8KN7SAz+8TM3o+HJxG+pRau6xVCoTgpbp0krU6oXbQzsyctfBX6A7B9jHMPljW5TAA2iGn+DLg2XtP9hCbGIfFYd0INgBj2sPj4W4Tq/bfM7LeEf+AeMZ0HzWwtMxtA6Bg/VNL2hObKU8xsTFFcMwgF4zRCO/kuhMEBxHNb/c8UC9G/A6PM7KIWBjcSzYHx9bie8JocbmafVAg7GDhNYXTffwnv3R2SzkrE9y1CATzYzGaUiaeUdoSbXS/Cl4u+wGMxnT8DPWK6fRNprUGohRc3uQ0GLkvkE+BJSV8vk/Zyr0k1zOwWM9uD8Dk2QtNVQZ9E3tsRvsy8FUdzXUso+LtaaFqbmMhT2v/9DwhfgHYxs3UITbHQ8mtKpjOH8GV1q8T9YV0LAzwy0YojEpPbj8oEmwRsl4hjLUL3QU0HNtTTylr4zCI0o9TCvcDmkr4pabW47STps6VOtjC0Mzk6qDPwGPAFM6vUHnsVoaD4mZl92nYv6SJC/1Mf4GlJnQg1oAlm9hJwOKHDWITa2GJJnSR1JNzYuxOazLYE5krqTajBvEeoJfVi+W9yM2JaPYFPgHYxzbeAXpK2JjRL/tLM7kmE6VUmrm0I3wQ/NrM/xNdoJqG9HOAcwj/v7oQhqdsTamapJLWPeetQyGehb0DSOsBo4AkzK9dunozrgNiXg6QtCaOIkqPjriJ0ah+cfH/KGEz4Rj4wbm8B/wtcGeM/mtBvs6+ZTU3J176Sto/Xug7hNZpHKLAnEt6rQjonED77A1n+ffgyofnykaLoNyfcwArhIby3d8e0j5DUWVI7SfsB3yCMtivkrWN8/QWsFl//dvHYnpJKFgaStpC0d/zCtJDw/idH0e0o6Suxz+104GPgX4RmRyMMGEDScSzfPzgL6B0/+6WsHdN6V1IXYr9uNWLN7Frgckkbxnz1krR/C+LoXGEr7t8ruJvQj3t4iXtCc2h0u189NkKH5RuEf7gfUrrP54TE+RcCNyae7wNMSTzfglAreZvQ//IwMDAee4hwEyjeDk2EH0uZPp94vPDtzwjtxwvidnTinOtY9i1rbLymrQidjF9PhC9sYwk1rnsI1fH3WNZP9JMYrithiO6PE+mcS6ixFcf3fUJf0u/j8w8T+VwA7Ej4dn1dIq5vEmpOS1k24mcB4dvZvHjOeEK/UWGU0puE30QU4tiTMn0+hPb34nzeGI8NK/F6LgA2isc/DyxIxPULws3rA0Jn8vnE/ojE+7OwKK7k+7OA8v0S01i+D/J1QsGejOvqxPFJhbjja/pSPOdtQrPmtmXS2ZMSfT6EQviCDP83xX0+j8XPzfuEfqmjis4fW+L13zPx3v+zTDrbEmq38wl9fPeyrD/zPJYf7fYcsEMi7EUxzBxCQfwo8X+Z0Az8t8LxuO9Glo126xnzvIDQevC/VLgvlMn7sazYr9SJ8GVianytJgOnxWN9KfHZrdF9bp/42fj0nlDrNOq5NTwDq8JGSuETzzkU+HuF4xsDExPPe8d/oN0T+3oALyWeDyV2jMcb0G7xcYf4z6vkOfHYNXGf4jmFf8zdgNHJcxJhXo5pf3pO3H82sdO+cE4in4VBBX8C9q9w3XsC9zb6PfStZRvhy1LZ97VCuPOAPzY6/77Vf1tZm92a0VBguQ5xSf0TTw8hfMtB0nqEb3hnm9kThRMsNGfNl7Rr7KM4hmVNR6MItQEIHekPW/hvHw3sJ2n92EeyH6EAMUIzTaHTfVhRXMco2BV4L6b9DNBfUr/Y9HEUy5ppkukn4xoNnJxoLts8tl+7JmZmJ5jZ6Ebnw7VhjS79VuaN0NY+g9BmPYtlNYeewH2J89YkNOetWxT+T4QmvAmE5rNecf+PCc1D4xPbhvHYoBjmNcJvGBT3dyL8dmIKocljk0Q634r7pwDHJfZvEs+dEsOuHveL0H/xGqEpblAizIGEGtlrLD+cvSuh+ezV+LdL3N+O0GTxQsz3Iywb+vsYoanpo/g6tvibtG/NtdEGaj6EEYULSmxXNzJfK9tWuDE555xzufFmN+ecc7lLmxTPVdBhjbWs4zpdckmr/cL8aqjtPkj9vWNNfPyZTrmkA9AhbXB0DfXpNTv9pBp567V8ZuhfuEF+31N7rv1ubmnNnVr8O836ef/DmXPMrKofn+6/11r2ztz0yfmfnfDxaDMbUk1a9eaFTxU6rtOFzb7+/VzSWv+VSr9prK01nnw1l3SmnLbCygB10+35pbml9euft2a6sNb5yRHH5pLOSyetkUs6AOd/4c+5pfXHr2daGaMm/j7uvP9UG8ecuUt4anTv1PNW6/FaplkfGskLH+ecaxrGEsvvi1Q9eeHjnHNNwoClNZ09rHG88HHOuSayFK/5OOecy5FhLFlJfh7jhY9zzjUJAz7xmo9zzrm8eZ+Pc865XBl4s5tzzrn8rRyNbl74OOdc0zCMJd7s5pxzLk9m8MnKUfZ44eOcc81DLEGNzkRNeOHjnHNNwoClXvNxzjmXN6/5OOecy5XhhY9zzrkGWGpe+DjnnMvRUsQi2jc6GzXhhY9zzjURr/k455zLlff5OOecawCxxNo1OhM14YWPc841ibCSqRc+q7zV5i2i113TcknrP8f0zSUdgI2md88lnXWn5JIMALdc8ovc0jrlwONzS2vnm8fnkk6XDzbIJR2AmZ+sn1ta7abNzC2tWvFmN+ecc7kyE5+Yj3ZzzjmXozDgwJvdnHPO5coHHDjnnMvZyjTgoGFXIamLpAclvRr/luxllDRE0suSpkganhZe0r6SnpX0Qvy7dyLM1yRNkDRJ0qWJ/atLuj2m8ZSkvnW8dOeca7UlptQtC0nrSbpL0kuSJkvaLet9uRYaWYQOB8aYWX9gTHy+HEntgSuBA4ABwFBJA1LCzwEONrNtgGHATTGursBlwGAz2wroLmlwDHM8MM/MNgMuBy6p9cU651y1DPGJdUjdMvo18ICZbQlsB0wmw325VhpZ+BwKjIyPRwKHlThnZ2CKmU01s0XAbTFc2fBm9pyZvRX3TwI6SVod2AR4xczejsceAg4vEdddwGBJK8d4RufcSqMw4CBtSyNpHeALwPUAZrbIzN4l2325JhpZ+HQ3s5kA8e+GJc7pBUxPPJ8R92UNfzjwnJl9DEwBtpTUV1IHwovapzgdM1sMvAd0bf2lOedc7RnpTW6x2a2bpHGJ7cSiqDYB3gZ+L+k5SddJWots99WaqOuAA0kPAZ8pceicrFGU2JdpHT9JWxGaz/YDMLN5kk4GbgeWAv8kvAEtSie+iScCdGq/dpasOOdczWQccDDHzAZVON4B2AH4jpk9JenX1LGJrVwG6sbM9il3TNIsST3MbKakHsDsEqfNYFntBKA3UGhSKxteUm/gbuAYM3stkZ97gHviOScCS4rSmRFrResCc8tc0whgBMC6HbuvJAvaOueagRm1Gmo9A5hhZk/F53cRCp8s9+WaaGSz2yjCgADi37+WOOcZoL+kfpI6AkfFcGXDS1oP+Btwtpk9kYxM0obx7/rAKcB1JeI6AnjYzLxgcc61MWJphi2Nmf0XmC5pi7hrMPAi2e7LNdHI3/lcDNwh6XjgDeBIAEk9gevM7EAzWyzpVGA00B64wcwmVQoPnApsBpwr6dy4bz8zmw38WtJ2cd/5ZvZKfHw9cJOkKYQaz1F1umbnnGs1AxZlH82W5jvAzfGL/VTgOEKFpNR9teYaVviY2TuE0rZ4/1vAgYnn9wH3tSD8hcCFZdIcWmb/Qur4IjvnXC0YqtlicmY2HijVL7TCfbUefIYD55xrIj63m3POuVwZsNTndnPOOZcv+Xo+zjnn8uU1H+ecc7nzxeScc841hK/n45xzLldhPR/v83HOOZcrX8nUAR9v2JEpp/TNJa3PPL0k/aQa6X3DjFzSua/3HbmkA7DJA6fnlta3bnki/aQaeXLfPukn1cDcfTfNJR2Ad5/Jb0L5WYfXbdLmFV1TfRRhwIHXfJxzzuUoLCbnAw6cc87lLOOSCm2eFz7OOdckwpIK3uzmnHMuZ97n45xzLldhVmtvdnPOOZezVWJuN0mjKh2P5prZsbXJjnPOuXIMsXjpqjHa7bPACRWOC7iydtlxzjlXyaoyw8E5ZvZopRMk/ayG+XHOOVfGKjPazcxSf4Ke5RznnHO1sUoNOJC0OXAGsHEyjJntXad8OeecKxJGu60CNZ+EO4GrgWuB/CYZc845t5xVpc+nYLGZXVXXnDjnnKvIYNUY7SapS3x4j6RTgLuBjwvHzWxuHfPmnHMuyVadZrdnCYVt4WrPSBwzYJN6ZMo559yKarmYnKRpwHxCV8piMxsUKxy3A32BacBXzWxeTRIskjbarV/MZCczW5g8JqlTPTLknHOuvBrXfPYyszmJ58OBMWZ2saTh8flZtUywIOuYvX9m3Oecc65OCovJpW1VOBQYGR+PBA6rMstlpfX5fAboBawhaXuWNb+tA6xZr0w555xbUZheJ1OdoZukcYnnI8xsxArRwd8lGXBNPN7dzGYCmNlMSXVb6jWtz2d/4FigN/BLlhU+7wM/qlemnHPOlZaxz2eOmQ1KOWd3M3srFjAPSnqp+txll9bnM1LSTcBQM7s5pzw555wrxWrX52Nmb8W/syXdDewMzJLUI9Z6egCza5JYCan1NzNbCvxvvTLgnHMum1r1+UhaS9LahcfAfsBEYBQwLJ42DPhrfa4k+49MH5T0Q8IQvA8KO1f13/msPvMjNr34hVzSmvb9bXJJB+DdtzbOJZ1953dJP6lGujzVMbe0bpm2V25pLTwvnwlHzt6zbvegFfxl1sDc0vpujztzS+vYa2oTT41qPt2BuyVBKAduMbMHJD0D3CHpeOAN4MhaJFZK1sLnW/HvtxP7qvqdT9bx5JKGAL8G2gPXmdnFlcJL2he4GOgILALOMLOHY5ivAefEuP5mZmfG/ccClwFvxmR/a2bXtfbanHOuHmo1t5uZTQW2K7H/HWBw1QlkkGnYhJn1K7FV+wPTwnjy/sCY+Hw5ktoT1gs6ABgADJU0ICX8HOBgM9uGUG28KcbVlVDADDazrYDukpIv8u1mNjBuXvA459qkJdYudWsGmXIpaTVJp0m6K26nSlqtyrSzjCffGZhiZlPNbBFwWwxXNryZPVfoSAMmAZ0krU6opb1iZm/HYw8Bh1d5Dc45lxuzuv/OJzdZi8irgB2B38Vtx7ivGsuNJwdKjSfvBUxPPJ8R92UNfzjwnJl9DEwBtpTUV1IHQmHVJ3mupAmxcO1TIi4AJJ0oaZykcYuWn/TBOefqzkypWzPI2uezk5kl2wcflvR8WiBJDwGfKXHonIzplnoVLVNAaSvgEsIoDmJ/0MmEfqKlhBkaCk2H9wC3mtnHkk4i1KRKrlUUf4g1AmDd9t0y5cU552qjeWo2abIWPkskbWpmrwFI2oQM6/qY2T7ljknKMp58BsvXTnoDhSa1suEl9SbMwH1MIc8xP/cQChoknVi4htjJVnAtodByzrk2p1lqNmmyNrudATwiaaykR4GHgR9UmXaW8eTPAP0l9ZPUETgqhisbXtJ6wN+As83siWRkhakiJK0PnAJcF5/3SJx2CDC5mgtzzrl6yGFut9xkqvmY2RhJ/YEtCE1hL8V+lGpcTInx5JJ6EoZUH2hmiyWdCowmDI++wcwmVQoPnApsBpwr6dy4bz8zmw38WlKh+fB8M3slPj5N0iHAYmAuYUoh55xrWwyWNEnhkiZrsxuEQQZ9Y5jtJGFmf2htwuXGk8eRagcmnt8H3NeC8BcCF5ZJc2iZ/WcDZ2fNu3PONYKx8jS7ZSp84vxumwLjWdbXY0CrCx/nnHMt1TzNammy1nwGAQPMzEd3OedcA60sd+GsAw4mUnrItHPOuRytar/z6Qa8KOlp4NOBBmZ2SF1y5ZxzbgVmsCTbYnJtXtbC57x6ZsI551w2K0uzW9ah1o9WOi7pSTPbrTZZcs45V06zNKulaclQ60o61Sge55xzZRjN06eTplaFz0pSEXTOubat0TdbSV/JcNrC+BvNsmpV+DjnnKs3axPNbtcSpjOrlJEvUGJygKRaFT4NfzWcc25VYEsbfru938y+VekESX9MiyTrYnJrSWoXH28u6ZCixeS+mSUe55xz1TFL3+qbvn2jFudkrfn8A/h8nA16DDAO+BpwdExoYsZ4VioL+3TipXM+m0ta22w5NZd0AH6y8T25pPOtX303l3QAfvLD1C9iNXPm/V/PLa0trp6fSzr/t+YBuaQD0LvH3NzSuuj5/K4Lnqw6hrYwt5ukL1Q6bmb/yBJP1sJHZvZhnEH6N2Z2qaTnMoZ1zjlXCwY0vs/njBL7DNiOsOZa+yyRZC58JO1GqOkc38KwzjnnaqTRPzI1s4OTzyXtQVideiZhSZtMshYgpxOWHLjbzCbFlUwfyZqIc865WlBbGHAAgKTBwLmEWs/PzezBloRvyQwHj0paKz6fCpzWwrw655yrVg1rPpLaE/rw3zSzL0nqAtxOWLttGvBVM5tXFOYgQk3nPeCc4hWjs8o62m03SS8Sl5eWtJ2k37UmQeecc61kNZ/V+rvE+3o0HBhjZv0Jg8uGlwhzD6FvZzFwlqRRyS1rwlmb3X4F7A+MAjCz59NGPDjnnKuDGtV8JPUGDgIuAr4fdx8K7BkfjwTGAmcVBd2rFulnHjRgZtOl5UrUJeXOdc45Vy+ZajbdJI1LPB9hZiOKzvkVcCawdmJfdzObCWBmMyVtWBxxcqJpSRvEfW9ny/syWQuf6ZI+B5ikjoT+nskpYZxzztVatprPHDMbVO6gpC8Bs83sWUl7tiR5hVrITwkj2wS0k7SY8DOc87PGk3VVopOAbwO9gBnAwPjcOedcXgxYqvQt3e7AIZKmAbcBe8cpcWZJ6gEQ/84uEfb0GH4nM+tqZusDuwC7S/pe1kvJVPiY2RwzO9rMupvZhmb2DTN7J2sizjnnaqMW0+uY2dlm1tvM+gJHAQ/HKXFGAcPiacMIE4gWOwYYamavJ+KbCnwjHssk62i3zSWNkTQxPt9W0o+zJuKcc65GLMPWehcD+0p6Fdg3Pi+2mpnNWSFbod9ntRLnl5S12e1awo9MP4mJTCCUls455/JkSt9aEp3ZWDP7Unz8jpkNNrP+8W+pifYWVYiu0rHlZB1wsKaZPV002m1x1kScc87Vhhq9mhxsJ+n9EvtFC1a1zlr4zJG0KbFCJ+kIwjw+zjnn8lJ9s1r1WTDLNHFomqyFz7eBEcCWkt4EXicup+Cccy4vmUeztXmphU+c++dkM9snzu3WzszyWUTEOefc8hpc85H0bzPbodpzUgsfM1siacf4+IOWZdM551xNNb7P57OSJlQ4LmDdtEiyNrs9FyeMuxP4tAAysz9nDO+cc65abWMxuS0znJM6/VrWodZdgHeAvYGD4/aljGFLktRF0oOSXo1/1y9z3hBJL0uaIml4WnhJO0saH7fnJX05EWZHSS/EuK6I00QgaXVJt8f9T0nqW821OedcvcjSt3oys/9k2GakxZN1hoPjSmzfqvIaUqfujv1NVwIHAAOAoZIGpISfCAwys4HAEOAaSYUa3lXAiUD/uA2J+48H5pnZZsDlwCVVXptzztVHfX9kmptMzW6Sriix+z1gnJmVmn4hiyxTd+8MTIlTNyDpthjuxXLhzezDRPhOLBse3gNYx8yejM//ABwG3B/jOi+GuQv4rSSZNXrBWuecW14b+J1PTWTt8+lEaOe7Mz4/HJgEHC9pLzM7vRVpp07dTZjIdHri+QzCBHYVw0vaBbgB2Bj4ppktllSYFDUZV6/idOK57wFdgRWmkJB0IqH2xOqd1qPfnUtbdtWtNL9d71zSAfjG576bSzqd8nnpALh+h+3yS+zC/JJa9MsFuaSz1vz8+hk6f3Ve+kk1oi+Wuu3Ux6u1iqjxfT41kbXw2QzY28wWA0i6Cvg7Ye6fF8oFkvQQ8JkSh87JmG6pVzm13Dezp4CtJH0WGCnp/pS4MqcT18QYAbD2Or1Xku8gzrmm0Iaa1SR9hdBFsSHhHirAzGydLOGzFj69gLUITW3Exz3jMOyPywUys30qZHyWpB6x1lJu6u4ZQJ/E897AW/FxangzmyzpA2DrGFey+pCMq5DOjNg/tC5Qak4j55xrrDZS+ACXAgebWavWdss62u1SYLyk30u6EXgO+EX80elDrUmYbFN3PwP0l9QvLmJ3VAxXNnw8t0N8vDGwBTAtNtHNl7RrHOV2TCLNZFxHEKYXbztvsXPORY0e7ZYwq7UFD2Ss+ZjZ9ZLuIwwAEPAjMyvUGs5oZdoXA3dIOh54AzgSQFJP4DozOzD2v5wKjAbaAzeY2aRK4YE9gOGSPgGWAqckpv8+GbgRWIMw0OD+uP964CZJUwg1Hp+x2znXNuXYV5pinKTbgb8An7aAZf39Z9bRbgIGA5uY2fmSNpK0s5k93YoMFzL4ToyzeP9bwIGJ5/cB97Ug/E3ATWXSHEdogivev5BlhZdzzrVJOdds0qwDfAjsl9hnQO0KH+B3hPJ2b+B8YD7wJ2CnzNl0zjlXvTYy2s3MjqsmfNY+n13M7NvAwpjoPKBjNQk755xrhTbyI9NqV7jOWvh8EmcbKPxgcwPaUsujc86tItrQgIOqVrjOWvhcAdwNbCjpIuBx4Octy6dzzrmqtZGaD3GF66J9mVe4zjra7WZJzxI6+AUcVs0QO+ecc61goLbT5lTVCtcVCx9JXRJPZwO3Jo+Zmf8Q0znn8tR2RruVWuH6G1kDp9V8niVcqoCNgHnx8XqE39b0a3l+nXPOtVZbGWodJ3xu9QrXFft8zKyfmW1C+JHnwWbWzcy6Etby8YXknHNuFSWpu6TrgbvMbL6kAfFH/5lkHXCwU/yxJwBmdj/wxRbm1TnnXLVqMOBAUidJT8cFNydJ+lncn2mRz+hGQsWkZ3z+CnB61svIWvjMkfRjSX0lbSzpHMLKps455/ISBxykbRl8TFipYDtgIDBE0q5kWOQzoZuZ3UH82U1c9SB1+eyCrIXPUGADwnDru+PjoVkTcc45VyM1qPlYUFgMarW4GWFhzZFx/0jCgpvlfCCpK8tGu+3KspUPUmUdaj0XyGeFMeeccyWJzAMOukkal3g+Iq5FtiyuMHHAs4T12q40s6ckZVnks+D7hBUBNpX0BKFSckTWa0kban2emZ1X7TnOOedqJFvhM8fMBlWMxmwJMFDSesDdklaYdLmcWHB9MW5bEMrFl83sk6xxpNV8TpD0fqU8EKZTOC9rgs4551qpDtPnmNm7ksYCQ8iwSGcMs0TSoWZ2OTCp1Dlp0vp8rgXWrrB1juc455zLQ21Gu20QazxIWgPYB3iJbIt8Fjwh6beSPi9ph8KW9TIq1nzM7GdZI3LOOVd/NZpepwcwMjaftQPuMLN7JT1J6UU6S/lc/Ht+Yp8Rlt5JlXU9H1fC+hu9z+FXjM4lrT9ecFAu6QD8fthvckln19Xz+/jtf8V2uaW1xn+zDiKt3pvv9c4lnSVr5vezenX9MLe0ZgzOcW2cv9Qonhq8FXEG6u1L7C+5SGeZOPaqJg9e+DjnXLPId9bqiiR9v8Tu94BnzWx8Wvj8vqI555yrWhtaz2cQcBLQK24nAnsC10o6My1wpsKn2hXrnHPO1UjbWc+nK7CDmf3AzH5AKIw2AL4AHJsWOGvNp6oV65xzztVGG6r5bAQsSjz/BNjYzD4iTN9TUdY+nzXN7Glpuc65zCvWOeecqwEjzqTWJtwC/EtSYTj2wcCtcYmFF9MCZy18qlqxzjnnXPUUt7bAzC6QdB+wByFbJ5lZYUqfo9PCZy18qlqxzjnnXI20kdFuAGb2LGF+uBbLOrFoVSvWOeecq422spJptdImFi01jptC34+Z/b865Mk551w5q0LhQ5i/DcKspTsR5v2B0LH0j3plyjnnXAlWs+l1Gi7T3G6S/k4Yzz0/Pj8PuLPuuXPOObe8VaTmU1A8nnsR0LfmuXHOOVfRKtHnk3AT8LSkuwnl7peBP9QtV84550pbSQqfTDMcmNlFwHHAPOBd4Dgz+3k1CUvqIulBSa/Gv+uXOW+IpJclTZE0PC28pJ0ljY/b85K+nAizo6QXYlxXKI6ckHSspLcT4U6o5tqcc65e2tAMB1XJOrfbRsAc4O64vRP3VWM4MMbM+gNj4vPidNsDVwIHAAOAoZIGpISfCAwys4GElfmukVSo4V1FmPyuf9yGJJK73cwGxu26Kq/NOedqL8u8bitT4QP8Dbg3bmOAqcD9VaZ9KDAyPh4JHFbinJ2BKWY21cwWAbfFcGXDm9mHZlaY+qcTy2Zl6AGsY2ZPmpkRmg1Lpemcc22SCKPd0rZmkLXZbRsz2zZu/QmFwuNVpt3dzGbG+GcCG5Y4pxcwPfF8RtxXMbykXSRNAl4gTPmwOIabUSYugMMlTZB0l6Q+5TIt6URJ4ySNWzBvUbnTnHOuPlaxms9yzOzfhN/9VCTpIUkTS2yHpoUtRFEq+Qz5e8rMtop5PFtSp5S47gH6mtm2wEMsq1GVinuEmQ0ys0Gd1++YegHOOVdLMkvdmkGm0W5FMx20A3YA3k4LZ2b7VIhzlqQeZjYzNonNLnHaDCBZC+kNvBUfp4Y3s8mSPgC2jnEl1xz+NK64dGzBtcAladfmnHO5a6KaTZqsNZ+1E9vqhD6grLWXckYBw+LjYcBfS5zzDNBfUj9JHQlrCI2qFD6e2yE+3pgwO8O02DQ3X9KucZTbMYkwPRJpHgJMrvLanHOuLlaW0W5Zf+fzopktN6OBpCOpbpaDi4E7JB0PvAEcGePtCVxnZgea2WJJpwKjgfbADWY2qVJ4wvTewyV9Qlj54hQzmxOPnQzcCKxBGDBRGDRxmqRDCGsUzSXDKnzOOdcIzTKgII0sQ/ugpH+b2Q5p+1Y1q/fpY72+/71c0rruy9fkkg7AZbuVbS2tqSXvzMslHYA/vD42t7TOevOA3NJ663v9cknn57fm9+uDs795Ym5pdZjzQW5pjX7x58+a2aBq4lirWx/b6qD0e84zf/hB1WnVW9qs1gcABwK9JF2ROLQOvpKpc87lq4ma1dKk9fm8BYwDFhIWDCpso4D965s155xzK6jBUGtJfSQ9ImmypEmSvhv3Z5p5phbSZrV+Hnhe0s2JH24655xrAFGzms9i4Adm9m9JawPPSnqQ0N89xswujtOZDQfOqkmKRdKa3e4ws68Cz0krXnL8XYxzzrm81OB3PHH0b+FH+vMlTSb86P5QYM942khgLI0ofIDvxr9fqkfizjnnWiD7YnLdJI1LPB9hZiNKnSipL7A98BRFM8dIKjXzTE2kNbvNjA9PMbPlSj9Jl1CnEtE551xpGQufOVlGu0nqDPwJON3M3o8T/eci649M9y2xL7/xpM4554Iaze0maTVCwXOzmf057p5V+NF9hZlnaqJi4SPpZEkvAFvESTcL2+vAhHplyjnnXGm1mOEgzvJyPTDZzP5f4lCWmWdqIq3P5xbCLAD/x/Lr7cw3s7n1ypRzzrkSjJoMOAB2B74JvCBpfNz3I8rPHFNzaX0+7wHvAUMBYudTJ6CzpM5m9ka9Muacc25FtRhqbWaPU3qmf4DB1aeQLutKpgdLehV4HXgUmEb1i8k555xrgVVuMTngQmBX4BUz60coGZ+oW66cc86tyCzb1gSyFj6fxDVv2klqZ2aPAAPrly3nnHOlrGpLKrwbx4P/A7hZ0mx8YlHnnMtfkxQuabLWfA4FPgK+BzwAvAYcXK9MOeecK22VqvmYWXLRi5F1yotzzrlKDFjSJKVLirSJRedTupInwMxsnbrkyjnnXEnNUrNJk/Y7n7XzyohzzrkMmmQ0W5qsAw6cc861AatEzcc551wb0oKJQ9s6L3yq0HG+0efhJbmkdfr0k3JJB2D+ZQtzSafnX/rlkg7A3KWP5pbWxOu2zi2tjS6dkks6/12cX/fu9H3WyC2ttWbklxYvVh9FWMl05Sh9vPBxzrkmolVhtJtzzrk2xJvdnHPO5a955m5L44WPc841ER/t5pxzLn9e83HOOZcra571etJ44eOcc81kqdd8nHPO5cx/5+Occy5/K0nhk3U9n5qT1EXSg5JejX/XL3PeEEkvS5oiaXhaeEk7Sxoft+clfTkR5iJJ0yUtKEpjdUm3xzSektS3TpftnHOtZ8DSDFsTaFjhAwwHxphZf2BMfL4cSe2BK4EDgAHAUEkDUsJPBAaZ2UBgCHCNpEIN7x5g5xJ5OR6YZ2abAZcDl1R/ec45V1vCkKVvzaCRhc+hLFuYbiRwWIlzdgammNlUM1sE3BbDlQ1vZh+aWWGJ704kfg9sZv8ys5kpebkLGCxJrbgm55yrr6VL07cm0MjCp3uhIIh/NyxxTi9geuL5jLivYnhJu0iaBLwAnJQojMr5NJ147ntA1xZfkXPO1VMNm90k3SBptqSJiX2ZukNqoa6Fj6SHJE0ssR2aHjpEUWJfap3SzJ4ys62AnYCzJXWqVTqSTpQ0TtK4TxZ9UOoU55yrmxo2u91I6JpISu0OqZW6jnYzs33KHZM0S1IPM5spqQcwu8RpM4A+iee9gbfi49TwZjZZ0gfA1sC4ClktpDMj9g+tC8wtc00jgBEAa6/XuzkaV51zK48a9emY2T9KDK46FNgzPh4JjAXOqkmCRRrZ7DYKGBYfDwP+WuKcZ4D+kvpJ6ggcFcOVDR/P7RAfbwxsAUxrQV6OAB42a5JeO+fcKiROLJq2QbdCC03cTsyYQJbukJpo5O98LgbukHQ88AZwJICknsB1ZnagmS2WdCowGmgP3GBmkyqFB/YAhkv6hND6eYqZzYlxXwp8HVhT0oyYznnA9cBNkqYQajxH1fnanXOu5YysNZ85ZjaozrmpSsMKHzN7BxhcYv9bwIGJ5/cB97Ug/E3ATWXSPBM4s8T+hSwrvJxzrs2q82JyWbpDaqKRzW7OOedaKluzW2tl6Q6pCZ9exznnmoVRs4lFJd1KGFzQLXZD/JTy3Rk154WPc841jdqtZGpmQ8scWqE7ox688KnC4m5Lmfs/C9JPrIH1buicSzoA72/TPpd0Zg/KJx2AX80qO+q/5tYbOj39pBpZcGaPXNI5f/Njc0kHoGOOP+9ec86S/BKrlZVkIK4XPs4510y88HHOOZcrM1jShLW1Erzwcc65ZuI1H+ecc7mq4Wi3RvPCxznnmonXfJxzzuXOCx/nnHO58gEHzjnnGsJrPs4553LnhY9zzrl8mY92c845lzMDs6WNzkVNeOHjnHPNxGs+zjnncuWj3ZxzzjWEDzhwzjmXN1vqfT7OOedyVbvF5BrNCx/nnGsWPrGoc865vBlgPuDAOedcrszAf+fjnHMub+bNbs4553K3ktR8ZCvJyIlGkPQ28J8qo+kGzKlBdhqp2a/B8994zX4NWfK/sZltUE0ikh6IaaWZY2ZDqkmr3rzwaTBJ48xsUKPzUY1mvwbPf+M1+zU0e/4boV2jM+Ccc27V44WPc8653Hnh03gjGp2BGmj2a/D8N16zX0Oz5z933ufjnHMud17zcc45lzsvfJxzzuXOC58qSOoi6UFJr8a/65c5b4iklyVNkTQ8S3hJZ8fzX5a0f4k4R0mamHh+rKS3JY2P2wlNeA2rS7o9hnlKUt+2mH9JD0h6XtIkSVdLah/3N817UOEa2vx7IGlNSX+T9FLM/8WJ81v8HrSx/Lf49W9aZuZbKzfgUmB4fDwcuKTEOe2B14BNgI7A88CASuGBAfG81YF+MXz7RJxfAW4BJib2HQv8tsmv4RTg6vj4KOD2tph/YJ34V8CfgKOa7T2ocA1t/j0A1gT2iud0BB4DDmjte9DG8t/i179Zt4ZnoJk34GWgR3zcA3i5xDm7AaMTz88Gzq4UPnlOfD4a2C0+7gw8Hj/YtSh82tI1JM/pQPjFuNpa/hP7VgPuAb7WbO9BhWtoqvcg7v818D+tfQ/aWP5b/Po36+bNbtXpbmYzAeLfDUuc0wuYnng+I+6rFL5SmAuAXwIflkjrcEkTJN0lqU8TXsOnYcxsMfAe0LUN5h9Jo4HZwHzgrsR5zfIelLuGpnkP4jWsBxwMjEnsbul70Jby35rXvyn5xKIpJD0EfKbEoXOyRlFiX9r49pJhJA0ENjOz75VoC74HuNXMPpZ0EjAS2Bua6hrKhWkz+f/0gdn+kjoBNxNe5wdpkvfg0welr6Fp3gNJHYBbgSvMbGrcXfI9aKL8tyadpuSFTwoz26fcMUmzJPUws5mSehC+RRabASS/ffUG3oqPy4UvF2Y3YEdJ0wjv3YaSxprZnmb2TuL8a4FLmu0aEmFmxH/MdYG5bSz/nzKzhZJGAYcCDzbRe1D2Gmiu92AE8KqZ/SpxPSXfg2bJP2Ve/3J5b2be7FadUcCw+HgY8NcS5zwD9JfUT1JHQifiqJTwo4Cj4siXfkB/4Gkzu8rMeppZX2AP4JV40yZ+6AsOASY32zUUxXUE8LDFxu+2kn9JnQuvdbw5HAi8FJ83xXtQ6Rpogvcg5vtCwo359GQirXwP2kz+ad3r35wa3enUzBuhLXYM8Gr82yXu7wnclzjvQOAVwmiXc9LCx2PnxPNfJo6EKUq7L8t31v8fMIkwuuYRYMsmvIZOwJ3AFMI/6SZtLf9Ad8KNaEJ8vX8DdGim9yDlGprhPehNaIqaDIyP2wmtfQ/aWP5b/Po36+bT6zjnnMudN7s555zLnRc+zjnncueFj3POudx54eOccy53Xvg455Yj6TxJb2rZ5JwHljnvBkmzlZgcNu6/IM4wMF7S3yX1jPu7SnpE0gJJv02cv3YirfGS5kj6VTxWdqJNScMUJvN8VdKwxP5+8dxXY9iOcb8kXRHjmiBph0SYFk8aWuH1e0DSu5LuTX+1V11e+DjnSrnczAbG7b4y59wIDCmx/zIz29bMBgL3Aj+J+xcC5wI/TJ5sZvMTaQ0E/gP8OR4+HphnZpsBlxN/NCqpC/BTYBdgZ+CniYLhkpj//sC8GAfAAYTf2vQHTgSuinG1B66MxwcAQyUNiGGGA2NiXGPi8zSXAd/McN4qzQsfVzeSFtQhzkMK30wlHZa4SbQkjrGSBrXw/JclHVLiWN/ib/4rM0k/Sjx9BvgjMEBSt8JOM3s/cc5axOlhzOwDM3ucUAiVi78/YW60x+KuQwlT5ECYf26wJAH7E2aVmGtm8wizMwyJx/Zm2Vx1I4HDEnH9wYJ/AevFH6XuDEwxs6lmtgi4LZ5bnP6ncUlqL+kySc/EWtT/Jq5/DGG+PFeBFz6uqZjZKDMrrH9yGOGbah6ONrNR6ae1XvwG3lacGm+qNxQ1NX1a+JjZR4QfXi4uDizpIknTgaNZVvPJYihhGYHCDxDLTbRZbtLOrsC78dzkfiqEac2koccD75nZTsBOwP/EWQxcRl74uLqLbe2XSZoo6QVJX4v794y1irsUFta6OX5zRdKBcd/jsZ3+3rj/WEm/lfQ5wvQpl8V+gk2TNRpJ3RTmj0PSGpJuizfT24E1EnnbT9KTkv4t6U5JnTNcz44KC7E9CXw7sb/kt2FJ7ST9TmHhsHsl3SfpiHhsmqSfSHocOLJcfmKaj0p6VtJoLZse5zRJL8b0bquQ57ViQfKMpOfiazYx1ug+kPRR3M4iNEftDrxLKFymSvq8wqJna8SwN1d6jczsHDPrQ5i09NS01zThKMJkm59mvVT0rdjfmrgq2Q84RtJ44ClCodc/JYxL8MLH5eErwEBgO2AfQoFRmINre8L8VgMIC3XtrjDT8jWE6Uj2ADYojtDM/kmYB+uM2FfwWoX0TwY+NLNtgYuAHSEUUMCPgX3MbAdgHPD9DNfze+A0M9utaH+5b8NfIUwltA1wAmFy1aSF8TofKpUfSasRpsA5wsx2BG6I1wGhD2L7eG0nVcjzOYR5wnYC9iIsaLYL4fXvamZrANsCR5rZLEIhMBrYFXgTGG9mw4GP4ut9dIbXCcKCgYdnOVHSdoRpfp5N7P50ck4tP9FmuUk75xCa0zoU7adCmNRJQ2P6yUlDBXwn0VfVz8z+nuU6XeCFj8vDHoRp7pfEG9ujhJszhMlGZ5jZUsIcV32BLYGpZvZ6POdWqvMFQt8EZjaBMKcZhBvrAOCJ+A12GLBxpYgkrQusZ2aPxl03JQ6X+za8B3CnmS01s/8S5hxLuj0lP1sAWwMPxv0/Jtwgiddys6RvUKL5qyhvw2P4sYQ5xDYiLCZ3raQXCHOKDYg32WeA44CrgRlmlrkPI/bbFBzCsklL0wxlxfe63ESbo4H9JK0fmwX3Iyz2ZoTX94gYpniiz2NiTXxXwheFmbRu0tDRwMnxiwGSNpe0VsbrdPiSCi4fpZo1Cj5OPF5C+ExWOr+SxSz7QtWp6FipZhQROq2HtiANlYmrcOw7ZjZ6uZ3SQSlxflApP5K2ASaVqGkBHEQoXA8BzpW0VaK/ozhvh5vZy0VxnwfMItRK2xEGA1xKqKkuIqyBs7qkYwg1s06JsLcCexIKsAmSzjWz64GLJW0BLCWMXDspEWYasA7QUdJhwH5m9mI8/FVCM1/S9cBNkqYQajxHAZjZXEkXEAoOgPPNrLD0wFnAbQozRz8X4wC4L8Y/hbCQ4XExrsWSTiUUKO2BG8xsUgxzMXCHpOOBN4Aj4/7rCF+U/h2bit9m2WCExwhfoDpLmgEcX/yZcPis1r7VbwMWxL9fYdk/9gaEG9JnCDeuexPn/5awDPIahA7gvnH/zYXzSCyTTGiKOi4R/jrg5Pj4dGBafPx94Lr4eGtCITUo5uUNwuJ2EJqiNi9xHWOBQYnnE4A94uNLiDNzE4bv/gVYLT7fnDDa60jCkON2hBml5xKa0ACmAd3i45L5AToSbpiF5ZVXA7aK8fVN7JtFqJWVei9+Hl/fwmTC28e/lwM/iI+PC7cEg1Dj6pB4LX8VH88rXF8i7k+vwTffsm7e7ObycDfhhv088DBwpoXmp5IsjKI6BXggdsTPIoxyKnYbcEbsQN8U+AWhKeSfQLfEeVcRvoVOAM4krqliZm8TCrNb47F/Eb6xpjkOuDIOOPgosf864EXCt+GJhH6rDsCfCP0KhX1PlbqecvmxMPz3COASSc8Tmic/RyjM/xibzJ4j/Lbl3TJ5voBlNZSJ8TnA74Bhkv5FKOgKtbA9gfGSniP02fw67h8R46g44MC5NL6kgmuTJHU2swWxSeNKwoqPlzcoL2OBH5rZuCriKFxPV0Lht3ulAriZxKa0QWY2p9F5cc3Daz6urfqf2Dk+iTDC6ZoG5mUucKNK/Mi0Be6N1/MYcMHKUPAoDGEfT6hRLW1wdlyT8ZqPcysRSccB3y3a/YSZfbvU+c41ihc+zjnncufNbs4553LnhY9zzrnceeHjnHMud174OOecy93/B4e6kosxAiZXAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "xds_lonlat.green.where(xds_lonlat.green!=xds_lonlat.green.rio.nodata).isel(time=1).plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Reproject to UTM\n", "\n", "API Reference:\n", "\n", "- [rio.estimate_utm_crs()](../rioxarray.rst#rioxarray.rioxarray.XRasterBase.estimate_utm_crs)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "CRS.from_epsg(32722)" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xds_utm = xds.rio.reproject(xds.rio.estimate_utm_crs())\n", "xds_utm.rio.crs" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Reproject Large Rasters with Virtual Warping\n", "\n", "Using [WarpedVRT](https://rasterio.readthedocs.io/en/latest/topics/virtual-warping.html) enables re-projection from disk and reduces the amount\n", "of memory required with the re-projection." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEWCAYAAABxMXBSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d7xt2VXfiX7HnCvtfPLNoW6oKlVQLJVUAgkRbGgQDf0ejSNgN88Rdzs+G/yeP+3wcGO324a22zzj1NjYDRjshsYEYYFIiqVQKlUON4eTz84rztF/zHXOvXV1b1VJ1K3E/n0++3P2XnuttedaZ+855hi/MX5DVJUZZphhhhlmeLkwr/UAZphhhhlmeGNhZjhmmGGGGWb4sjAzHDPMMMMMM3xZmBmOGWaYYYYZvizMDMcMM8wwwwxfFmaGY4YZZphhhi8LM8PxJoOInBWRb3izfdbrCSLyfhF56mXu+8dE5LdvwxjuEpHPichQRP6HV/r8M8zwYpgZjhleVxCR7xSRj4nIREQ++lqPB0BEVERO7b5W1d9S1bteyzEBfxX4qKp2VPV/faVOKiILIvKfRGQsIudE5A+/Uuee4c2DmeGY4fWGLeCHgR96jcfxmkFEgpex2zHgsdvw8f8bkAP7gD8C/KiI3HsbPmeGNzBmhuPNiXeLyOMisi0i/1pEEgARmReRXxCR9fq9XxCRw7sHichHReTviMjv1CGQD4vI0nXvf1e9Ct0Ukf/P7Ri4qv4XVf1p4PKXe6yIPCgiD4vIQERWReQf1tuP117DnxSRyyJyRUT+8g3HfVxEdur3/omIRPV7v1nv9oiIjETkD4jIB0Xk4nXHf7+IPFffs8dF5L/5CsauIvJ9IvIM8Ey97UMi8vl6XB8TkbfW238N+Frgn9RjuvPL/bxbjKEF/D+Bv6GqI1X9beDnge96Jc4/w5sHM8Px5sQfAb4ROAncCfx/6+0G+Nf41epRYAr8kxuO/cPAHwdWgAj4KwAicg/wo/hJ5CCwCBzmFqgn051bPV6Rq/xS/AjwI6raxV/7T9/w/tcCp4HfD3z/dfxMBfxFYAl4CPh64M8CqOoH6n3epqptVf2pm3zuc8D7gR7wt4CfEJEDX8H4vx14D3CPiLwT+FfAn8Lf638G/LyIxKr6dcBvAX+uHtPTN55IRP7pi9z/L9zi8+8EqhvO9wgw8zhmeAFmhuPNiX+iqhdUdQv4QeAPAajqpqr+rKpOVHVYv/c1Nxz7r1X1aVWd4ifet9fbvwP4BVX9TVXNgL8BuFsNQFV/SFXnbvV4Ra/2GgrglIgs1SvmT9zw/t9S1bGqPoo3oLv35TOq+glVLVX1LH6SvvG+3BKq+h9U9bKqutqwPAM8+BWM/39S1a363v8J4J+p6idVtVLVHwcy4L0vc0x/9kXu/1tvcVgb6N+wrQ90voJrmeFNjJnheHPiwnXPz+E9BESkKSL/rA43DYDfBOZExF63/9Xrnk/wkwn1OfbOq6pjYPN2DP53ge/Fr5qfFJFPi8iHbnj/Vvflzjpsd7W+L38X7328LIjId18XUtoB7vtyjr/F+I4Bf/kGL+3I7phvE0ZA94ZtXWB4Gz9zhjcgZobjzYkj1z0/yjW+4C8DdwHvqcM5u2EYeRnnvHL9eUWkiQ+h3BQi8tfr+PtNH1/OxbxcqOozqvqH8GG2vwf8TB2338Wt7suPAk8Cp+v78td5efcEETkG/HPgzwGLtTf1xZd7/I2XcN3zC8AP3uApNFX1/3iZ4/r/v8j9vxWp/jQQiMjp67a9jdtDws/wBsbMcLw58X0iclhEFvCT4G5cvoPnNXbq9/7HL+OcPwN8SES+uiaO/zYv8v1R1b9bx99v+rjVcSJiazI/AIyIJCISXvf+WRH5Y7c49o+KyLKqOmCn3lxdt8vfqL2ue/E8zvX3ZQCMRORu4M/ccOpV4MQthtzCT/jr9Rj+ON7j+N3inwN/WkTeIx4tEfkWEXlZYSNV/dMvcv9vylnUXuR/BP52/XlfBXwb8G9fgeuZ4U2EmeF4c+LfAx8Gnq8f/796+w8DDWAD+ATwyy/3hKr6GPB99bmvANvAxRc96CvDd+GN24/iCecpfhKlNliL+LHfDN8EPFZ7ND8C/EFVTa97/zeAZ4GPAP9AVT9cb/8r+KSAYf1ZNxLgfxP48Tpk9J3Xv6GqjwP/C/BxvIG5H/idL++SvxSq+jCe5/gn+Hv9LPDHfrfnfRn4s/jvyBrwfwB/pv7fzzDDHmTWyGmGNwpE5KuB76vDUV/OcceBM0CoquXtGNsMM/xewsxwzPCmx8xwzDDDK4uXU6E6wwwz/C4hIu8Hfulm770Y5zPDDK9HzDyOGWaYYYYZvizMyPEZZphhhhm+LPyeCFVFEmtC66V3nGGGGX7PY8j2hqou/27O8Y1f29LNreol9/vMF7JfUdVv+t181muB3xOGI6HFe+TrX+th3BZs/7GHCMeO1qUU+dgjr/VwZpjhDY//oj9z7nd7jo2tik/+yi2l3PYQHnjuK1EYeM3xe8JwvFmhD72N5lpJ3rVM9yfYb343VWxonR2RHmwS/+dPv9ZDnGGG36NQKr2llNsbHjPD8QZGsDGkbM0TjoVwWBLupMg0B2sI+wU73/0QG29XOmcMybYj2a5mxmSGGV4FKOB48yYezQzHGxmqJOd3cK2EbF+T4f09gkwZHjG0Ljv6J4VkQ2itOpKNgmCUk33Lu6kiQxUJaqC5WhD82mde6yuZYYY3HdytxaPf8JgZjjco7OkTuLkWZnuEmWQE4wiWA1oXpnSeKdl4Z5d4C4KpEkwcZcsCES4UWhfGpMsNmmd30DjEPXg/46NNTKGoqb2X/zIzJjPM8JVCUYpZqGqG1xu0GWP6E/+iqghXB7QjQzBIcVFAY9vhIkM09O5ytFOg1gu2Fr2Y5OoE14qRwmd+dJ4dUrUiqthis4r8m95NcnWMZAVVr0HRjQg//PBrcq0zzPBGgwLVLFQ1w+sOqmgSIlmtoFFVxFdHUFaYvCBZjwhHFjWCKRx5LyRZmxJEBhca8uUGJne4QAgmJdlcTLw2waSCiwKCaemNijHYjSF2U+Deu9DAIOMUrKV66tnX9h7MMMPrGDOOY4bXHWSSAd7z2H1OUeI6CWaSE64NCeKA8R1dpITpkiWbaxENHc2LY8xgCqpgfQ8nOwiQLEdEMIA2IigrqCqwFo0DZJIh9UdRVaQfepCiZZj77JoPm41SqieeefVvxgwzvM6gQPUmVuWYGY43IOypO/aeyzQHY7wRAMxgiptrkS4lhJMSUyhFN6CKwQWCzQ3Dkx0aazHRxW1vGACpvHeB83FZGacgAiKMTy8QTCqCUYgd51CUoEqVCK2rmfdKNn2TuODEcQC0EUNeQBRSPfbUq3h3Zpjh9YE3L8MxMxxvfKhSLbax/enexO8iSzQosKOMot1GDSw+OqFsBkTbKWoNGG8UNI4gMEhe+okevMG4Dq3nd9DAULViJse7NC6NkUlG97Et75WoJ9XFXVthyTTDNROkqrCnTyDVC39G5fNnb/edmWGG1wyKvqk5jplW1RsQ1VIHpJ6oRbDbE9RaqlZEudAiWBtg0oJsuYmdOrqPbhJsjEiujDCDKbY/xW6NfZgry5HRFA0M2oxx822q+ZY3KOCNSOWQ0mHSkuTyxJPsImAMUrkXGIzrYSYpkhVfYjTAeyb2njv933vvup23a4YZXnWoQvEyHi8HIjInIj8jIk+KyBMi8pCILIjIr4rIM/Xf+ev2/wEReVZEnhKRb7xu+7tE5NH6vf9VxK8QRSQWkZ+qt3+ybkPwopgZjjca3vtW7NbYr/LDAAJLsb+DqPowkirZkXmqRki8MSVeHVH1GvX+ns+gqsA5H45ShciT7DLJMNsj7NYIyYu98BfWh8JMViDOYabFXkhLjaDmK2mvDZLm/klRYk/d8cLHnSd/t3dqhhleQwjVy3i8TPwI8Muqeje+B/wTwPcDH1HV0/iOlt8PICL3AH8QuBffEfOfikj9w+dHgT8JnK4fuxpZ3wtsq+op4B8Bf++lBjQzHG8w2P6Ui9+6j2J/jwvfusLGe5ZQEVwSsHPfPFv3NFEDF7++6bc3I6RwoOo9i11PwhiqpQ75kXmmR3veCO2+B94wiKCJb/etoUVDi6TFHsdBXkAcUe7rUS20v3IDUlaI073H7ufvGpDgxHHs6RN7/MkMM7zeoYDTl368FESkC3wA+JcAqpqr6g6+F/yP17v9OPDt9fNvA35SVTNVPYNvOfygiBwAuqr6cfW9NP7NDcfsnutngK/f9UZuhRnH8QaDxiGd8xWb9zeIt5WFRwaM72gTXe4z94Wc6dEeo0MRhz8yIVtpEKQVeSckWTPYYYqkmQ8zqSKV/+a6UHDNEKkcJi/8+642NqnnPaSslT5rTwNrcc0YM5oSbNQEu1PPn6h+Sfiq2NcDIwSr/VuGtvZQj89/jnkBj7KXGBBHUJRUTz/3u7+pM8xwG/AyPYolEbm+QOrHVPXHrnt9AlgH/rWIvA34DPDngX2qegVAVa+IyEq9/yHgE9cdf7HeVtTPb9y+e8yF+lyliPSBRWDjVoOeGY43EM7+4EOc/DfrmBJWHh5hdsZgDJ3HsjqoWhKMS+KB5er7mvSeq7C5I523mDJBlxLirQwzLSjnEpw1uFBAQa1BFH8e1WsEuSpSuRd6E9d5Iq7dwCUBwfrg2v43GAY1gikdVVJ7NdOMF8Pu54lTyGrD5RQNLOVim2BjiIogqte8kOvGPCPeZ3it4QsAX5bh2FDVB17k/QB4J/Dfq+onReRHqMNSt8DNPlRfZPuLHfOig5rhDYLmZWHjvcuMjghl0iKcNGg/26fqxNjNEZvv208wdbQuZ7ggRg0Ew5yNd0SIWqIdQzAJKTrQPq+gEKRKPKgoOyHBsMBY6zmQMIC8QFsJVRxghylUznscgUXyEilK3Hzbf+3iCC0rpPAFiS8wNHFE2Q4xuUNewmjs4mZeiUYhwfrAh7Qm6Q0HXPu8m4W0ZsZkhlcTChT6ijABF4GLqvrJ+vXP4A3HqogcqL2NA8Dadfsfue74w8Dlevvhm2y//piLIhIAPWDrxQY1MxxvIPTfUoHAyseErXuE/HCF3Vhg4TFY+KJj7skR6+9s03m2oPfIEMKAq+9fYOFRqGLI5kEFpAAUio6QLQjRyJFcGrBz3zyNZoBNK8ykQALD9HCbxrkhVSfBbo2oFtqYrEQDg5n4uhEDLyDLX8BVAEwzosvVXs3IVwpzo7H4MnCjMZkZkhluJxShegUoZFW9KiIXROQuVX0K+Hrg8frxPcAP1X9/rj7k54F/LyL/EDiIJ8E/paqViAxF5L3AJ4HvBv7xdcd8D/Bx4DuAX9OX6Ck+MxxvIHSetbQvVVQxFAuORicjHQaMjliqqEOQQvd8yeRoi+YlwcUB4iBdEvKesvLZisbVlCtf1SIaOQYnDM0rwnTBIq6LGigblioyREDZSCgTQ3qoTTCpcAfmCDdGaBRg0tJzD4FP2HDNBmaSQVV9SU3HLjSJIctvmp77UlBrvqLjboWZVzLD7YbTryxZ5Cb474F/JyIR8Dzwx/GJTT8tIt8LnAf+WwBVfUxEfhpvWErg+1R1d8X2Z4D/HWgAv1Q/wBPv/1ZEnsV7Gn/wpQY0MxxvEGTf8m6CqXL1fULrgqH3BOSXuujJHN2yDI/DyZ/c5sk/3+Yt/3BA2Uu48PuaoCAliION+y32dIsDH5uyeW9C7zkIps6HtCYV0VaOyUuqZoQGgi0cNlOS1QkqgoaGcqGF7acUC00wIKXiQoPJK6SokJpU3zUerpkgaeaJ9HH6FU/+r6TRuBVmXskMrxS+DI7jpc+l+nngZjzITduaquoPAj94k+0PA/fdZHtKbXheLm57Oq6IWBH5nIj8Qv367SLyCRH5vIg8LCIP3uSYIyLy63Wxy2Mi8ueve+9visil+vjPi8g33+5reD2geXZA+3KFnQqj4xXZPMgDfWRiMff3WXzUr/AXPxHy7N+I2TndJBxA56ySzzuy/SXZckW67Dj7LQnhBBYf3iYcOzrnpthpiYst6f4mLjTYSUkVWxpXxmhgfHV55Wp9K6HoBp70zivCjQkusmT7W3syJVCHrbIc12kiquSHepRLndfyNn5ZCE4c/5LHDDO8PAiVmpd8vFHxangcfx5fsNKtX/994G+p6i/Vk/7fBz54wzEl8JdV9bMi0gE+IyK/qqqP1+//I1X9B6/C2F832Hr7PHlXqJpKtH9C+HyHaW7RZkXxVJe1b0lZ/eoedgx6oUXRElwIm+9Qlu/cYJxFOCdMr7aRHKbLhqqXEA0Lim5E/3hANFJalwuirSk4R3LJ61JpM6aYSzBZRbYQ05wUNM8OGJ3qkc2FRIOSYJgTbY/9YOvwqE/P9Z6KpAXRpT7lYvuajlUYIGmOxiFSZ0+9plCfTvxi6cIzr2SGlwPfAfCNaxheCrfVcIjIYeBb8G7TX6o3K9eMSI9rzP4e6vzk3RzloYg8gc81fvzGfX8v4NL3v28vOc7FFcXlFo0cytUmh35TufT7KpJnGuQ9h5SgIQxPOMQJ0Y5h+7PLVDGIggWCiXiSvHJc+kCbIIVkU8nbQpIY1ApSAmWFRiGUjnBrgsYh8VZGvtggGBeYUsnbhioyhDeZa70mlg9juSSkXGp5zyYJcN0Ek5eIMUheoI34phlXmvh6jVcjVLUn4/JlYMaVzHAzqAq52pfe8Q2K2+1x/DDwV4Hr4xN/AfgVEfkH+FDZ+17sBLVuyjvwmQC7+HMi8t3Aw3jPZPsmx/1JfHk9Cc2v+AJeD2hdUqrIZ0EhICsp40mDfZ+A7Tstcwe2kEfmSY+VSFzRbKVMJjFhVFI836FcLCAzBEOLKSBbqMjuKHhuX4u5J5WiLWze7w3LdCWke6ZL79kJLm6SLoXYTFl9tyUcCJ2LjsZ6gYst4agknfc/DjO6LuPp+qJT56haEcHOlGwxoWzGBJOAsmlpXCo9JwK3TtMtSi/e+CoYjlsVL75gnxuI/5slAlxvTHbTkqtnz7yyg53hdQ/3CnEcr0fcNsMhIh8C1lT1MyLyweve+jPAX1TVnxWR78Qz+t9wi3O0gZ8F/oKq1hVm/Cjwd/Br8L8D/C/Af3fjsXX15Y8BdGXhDS1T2dgo6d8RYgqY+0KAzS1SQftixuCOBuMn5tH3T5lvT2lEBYNpwtuPXGRSRlwMKsbDhNbjEaPjFa4UNHZ0e1OGg5DxYUt2R4ZOLNKscFFIPxAamxGb94XgYLpPibeEyWFH2TKohCTbFY1zO8TdkORq3Ynw+orv3epzY7yeVWhJ1iZkSw1cZLC5w4xTXy8SWNTdXCxRKsdLZAa+Yrjeq7mVgdjdtmsQbvZ6d9/ra1leIIXvdOaVvMnhyfFZqOorwVcB/3XNYyRAV0R+AvhWPO8B8B+Af3Gzg0UkxBuNf6eq/3F3u6quXrfPPwd+4fYM//WDaFAAoZ9wmoI4WPn8kKoV0rqkBM8p25Mm24dCRtsBJodHTkVU2zEaOpKLIVUMdmKoGg7TLBle6KJWyU6kaGlo7hszvdRGBZpXoGgZumcdq+/xtR9BKgRDIepD60pOuJMyumsekysmL71HoHqtp4dzEIWkh7vEq2OkdGgQEq9NfTZWpV6d9zo595czGe/ixd7bff/LDTtdjxuPvfFzbmZUbqbVdaMhkcprgO31LbnumJlX8maCvKHJ75fCbTMcqvoDwA8A1B7HX1HVP1rzFV8DfBT4OuBLWsbVAlv/EnhCVf/hDe8d2NVoAf4b4Iu36RJeF8i++d1kc5bhSQdOCMcw/3SFmeRIXrLYzyh7MVffHyGFofscJFuO8VqT/lsqovWAsqmIA3copfeJBtPlBkXPIfM5rjB0FsdUn5pn5ZwDgaIFeccwOiqYXAkmQrqomFzonqsYHY5oWSEYVdjUK+1erym1l1UVBYQDP06cYvrFXlaVneS+CRX4LoTXFQfuhoyAF0zINxqWWxmU343BuB4vmPBvLGq8bp+b/b0Z9rS8rEWK8kv2vd4rgZkheSNjRo6/8vgTwI/Upe0pNQ8hIgeBf6Gq34z3Vr4LeFREPl8f99dV9ReBvy8ib8f/b84Cf+pVHf2rjOTKBLUtqo4SbAcUHUcVC9mBDkXb0n5yC51POPZ/VQTjks37G7TPjti8v0e8aknvyJBhgEZKq5mzc2+IFMLi5wybb4+JhkL5bIwGsHWf4CKlalag0Dof0LoE40NgMyFZVxBItipGByOa6yVVArqvQ7g99ROrrfkIESgddpj512GA2gA7zDyvUUuTAC80NrutcMPAk/M3/PZuNBp7p7jxeRjs6Vx9pXgxT+elcL0h+RKDU1W4dvIlApI3NSTXhf80iXFffPIrupYZXn1Ur1wB4OsOr4rhUNWP4j0MVPW3gXfdZJ/LwDdft89N77qqftftGufrETv3dMi7Qus5X/0dTA3xdobJHTYVXLcBwHQpYHJfRLKh9O/sEA6hisBuhT48NTVMz3egWxJuhYwPCiaHsqnkBzx5DnDwxAbDNKaTZFxuzJOvRjSuQDhSorEyPGxpXRVaV3I23hqz+HjB1qmA9pWA5uWpJ8lrbkOy3E981kBeIFFItq9NfGWANqJrHsd1hkOmvqfIrvdyqxDUrYzGHuoV/cv1Pq7f92Yhqa9YMv5mISwRcPj/nQhmnF3rvvglA7s2fkkz7J0ncZ0EySoky6meef4rGtcMtxeKUOibt776zXtlbwJc/ivvw5Q+dCQOooEQDiBdDD1HYCDvtUCVsiFUEUz2C401iPrK+LDgFgviczHZkZyolVOdb5EvVEhXUKuEA4sGjmA9pJiruHxuEdMqGZ3rIaLEm0LZAhcJwxNgChgfFqpmwMLnlO3TIXkXxocszdUOK58Cu1OT5VG4lxXl2hEuCYi2pmgcvvBCd1fVu4R63V0QI2hRfsnk/eVM4jeGt26FF7S9vYmx2t1+42ffbJubb2O2Rzf9DDW1pH1egJW95lraSqBSb2xfLBnAOcxgurfPjV7JLLz1+sCMHJ/hNcN0n6KhokYRJwQjQSrBXnakPUtjq6JoCumiwZQQDaBs1Meu1JNsasmOZpjQUVWG8PiIahijYsBB2XaYtZjFt60xSmNCWzGexujUG6KyCTaF3ZT0YAJSCeVCRf8uQ2MVlh4rmSxZwnEtdLgbbgKyI3PYtMJF9Y+orjZXAaMxUrprjaF2q86dg6pCCs8JaMM3mNLAeI/E3SQ19zoZ+BfDjbzFS+37Yq/3tlmLa8eYwRSpHHZz+KU92G/8rLoDo+z2Rtm9B8Z8yTXsGZwXucbd8+/xJNaCNbg4RD/32Ite5wyvPBSZhapmeG1QLRRQGMJeRjGI0GlAtqisdi2isPSpbdbet4QLhblnMtbfHtO64sjmDTbzRX0L790gNI5xHmGNY2OnzdtOXuCRp49CqKgTmBquXpknbmdkaUhZWBp9IXLC+I4SMzVIhec/jucEzzboPBHRPVeRbBZUsWXpkRFmkuOSgMGdXVAlGjqCUYELDeG690KkqijnmmjkK7SlrPkPEd9kylo/QUah79/hwOQlKgKVelHFSr5Uaff6NOAXMR43C0HdKsX2VmGqF3gZtaHb9QJu5p28YP8bEgGuH7dUDsXtkecvCOE5BW6euQXgOo09zoTA+lCfCMVCQviOe3FJgB1nyCSbeSWvEmbk+AyvOvq/eIr5nw9pfPsqvTjlidEh7KkR5Zk2LvGT+DN/fAmTQxUr6VKEyTxxPT5kCMYwOgzDz+3DTr1USdGrsGPDo6t3EI0FOxXKjqICOMjGETIMCPuGbEExFbTOBrgQTA75nBKsNQgmYHPId2s6tkrKVki1EJMu+q+UiiClY+fOBsm2w+Qx+VwEAtF27o1ApbgoQGOL7U89ob2b1quKZBWuHVG0QkRBigq1xmdkpby45wEvMCC3MhA3S7N9Ka9Ew8C32oVroaVdb0lvbmz2zs0tpOV3jU7tcWgSUbVj7DjHRQEYMP2b1MvUx+56eHseiyo4R3zZlz+ZSbaXySXvuhcpKtKDHeLNlHQlIf7Pn775uGb4iqDKLB13hlcfq+cXCD4wJZ80vDxzJYQf75AfcdipMPeUUHSE6Os3KH95id6Zgq27Q8YHAkwGKER9oWxC2VJEIRhYNPBpteKg6CguVlzskKkFAY2U/HAOmaUCFEvVcmjiwCrl2GIyARWivmBzy+CYJRoq2XxdJZ14Rd7xoRhnoYoM431NTAlx3+HCGDv1BX/BzhTGKdqIcI3QK+yWnueQwivuElrUQtFJsGmF2phgd+KsbcfeCv0l8HLqP14SVYXUoSONI//ZRrzR261jUf0Sr+b6c3+JN7M79uv+ilPylRZSKsEgpVrqgFPsribYCwZeG6+q7ntirR/Pbpq0MbhOAw0M2VKDyUpIslOx9kCbKhGifQ9RtITWqmNwzHDwf/7YS9+HGW4JT47PJEdmeJVhR4YqSxi3AvL1LpHzhHf7EkSDsq63MGx/cgldgMm+ABcr6TIoPm12N7yEgGTiI0AbBhd6zkKtopGCVaRTYKwy153QHyW4uMJtxt6YNCqwCpn/IVQtX++Ri8FOheaqeAHGhFoDy1+DyaDRVyb7BZtB1vCFhM0rGcEwwzVC1BgkAJlk2KJCo8D3EVEoezGSO1xo0EAwhaOKDUGle6tuUS+kuDdB7nocu5PoTXBjbcjNCO6XIuI1CmrDVtaG4roxBHYv3VgD6yvjd3u5q+J6Te89hMG1tGSROgxXF08WJRATXR3i2gkaWuzG8LqLqL0TgKqiWuq88P06s23vfjiHiwNcI8CFhvknhoyPtLwxX3VUoWBzL20z91zFxp96CFP4DpGNjZLVd0Uc/p9mxuTLwYwcn+FVR7VQQmpoLUzJWwXVxSamgqwn9E+GxFvKdJ8XI7QluAiibSGfU8KhkM85qgSCsSAVaAguVMqmFzl04rO0ysJQzCkutziFze15zFRwiTc4LlKiKyEuhqrh0GYFTjAjizjBpuIbQDX9+U0m2BxsBlUDxk0h3lHCEaiBcKKkyzG2F5KsTtEkQIapn+TKCgKDmTiqTowLDMV8iBrBpo502X9dm+uA8Wq9UtUr90gx4wy11kvAZwU3iwq9WBHfi2K3zqT2MKR0vs4kCesQmkWcw7UbEBhcYPZ6m7jQYNMSFEzpUCsUh+aQ3BGu9vcyrSgrn4lWGw7Tn+x5ILv95XHOcyH2mmcDYCb5C65RDdfOWRssMylwjYBkI0WKitEBCwYaG45o6AiHJTYtMaOczhPeiJedmLIdcvjXR2z9dw9hShge9d+pmSG5NRR5JRs5ve4wMxyvQzz7w++l/YQhXVbGay2CvmX+KQjHDjWGhScqNt5qyeedDxsBLlbypXqmFOvDUbXHkWwYqhhwYHOpV5Jgp0q6KEhlqRrGexIVuIZC6TkQDZV8pWRX/jZsFBRpgGsIGghVE6ZHFDsyBJOaS+lAtCMgUDXUf2auBJkileJCIZ23xOuCHedo7Ffv4NNTq0aIBobxgZCysbvyNwQTmH9iiJSOqhF6DqQRgELZCgjrjC3KerW9u+JW9UV2N5DNtzQY13MIu5xBXZAoVQW2VhAufN2JNn12WNWOcQ3fpyRcn/hCR2MIr44hDHBxSNWOCAYpaoR0JSZfWCZeT8GIL5bM8uvG58ditkfXss3CALX6wtCWtZ4Yv7EifTe1eXfsWU64obhmhJSO9pWK1tkRWMFMa2J91wOqeZayFRCMCtQI809MQMDmDfR71nl233vRhZylxSFb/RYn//DnX4Fv/5sHM49jhlcVYd8wXVGqXklzcUK11qVMBBcYghSifokpvFqtizxxXbWVE6eucmFjjkITpFFhNkKqpmNyUJHKGwGpDFFfCIdKa9WT2uIEUwka1KGmHGwqlG23F6YSqxirFIMIKQ0oaKsCUUitrymZcyRrFg0gGvr6k2DkJdzVQpkIUhnCqaN5tcQ1AqRwPnwSW5wVsvmAsmGoQijagqgfUzhRXAhFL8YFQpBWkIOUjmwxIZhWiFOvxLs98fxDI/J/Q4vkJZIW3kilBZqEe6EeGU33ak6k9AS8JrH3XIoKstyH1LT0vUPGKSJhbUDsXiGjVAHh1WE96YaQFpjdwr6yQkJLeLUPQDDJaA0y3xRrvkF0ZfACsv+m3IeIH6NTHwLbzUbLCx8yE7l23HVcywvSnbPcj8kY2s/0ce3ItwGGF+ynjYjpoRbZnKE6GGILpbHh73E4dpgfnmdpRVh/T8jC4QnrF+a59P3vY3KoQgrBlEL7rLDyT39veiUKuBk5PsOriagP4gTRgIlrIT2leQW65wryriWYFLggpn0Bdu5SzIkxscCh1g5XdrrY1YB8zqABEDvs0GclFe2KcGzpnisxhXoCfaAULaGwEG0birbiIqVsOTSqY/eFoDiqzIIKdmwoO5XvPpgJJhfCoZAuO9KVCpML2TwEUyHaFsKR4gKpiXEhjS1u0WJzEBcTjR0uENI5Q5DWXkkd4hL1Ia4ygWiqTFb8teQuIOiENVcjuFgoOoHvjb6vTbCT+Va37Yhs3nMmjSspVSPATkvvMVSKSUskjvZW5xoGdVgn9eGgwHpOYpj69wODRKGv9A58eGrPiyk9Ge0aXlVYrPWy8vMt7NYIGdfS83Hke6+nPhMqGl+TpP8SeZOaB9Ek9hlc+KwunMM1I18zElg0CtE48BX707zmW7jGoxhzjfNRLw0jVYXdHKHN+Jow5e44KsXmDmdt3ctFyDuG5pUMZ0PyrqW1WhB+1JL+4kGOoRRth00tLoLWZUfegfP/4/uI+jC4u4S44s4//pnb98N5XUFesdaxr0fMDMfrDJf+2vuoYkgPlJjUQOCI1izi/ARpC0WKinjbixk2rlqmBy1uO+a3x6cB0EMFYTun3EyQ1B8bDoRkPaR90ZGsZUwPJFSh4AKfBaWmflhFQ98ESjIDFjRwUBokdKgI5aLDboV1cSKUHUex6JC4Qp3gJgF2bDCZz+oCwaZQxUKZyF5cHYXGRoELhHI+8EKMgZDsVNi8zloy4AKIRhCOFZs6kvUp6XKDqmG8h6TeCyublrJhfZptEaKhoehagtQRjkqypRiTO8Kho4oCqthiigryAm1EvmlU4M+pgSHop2hgMKM61VXV12uEAW6uVdduXFMFlkmGtmo5kLwA59BWgt3lcGrpeN0t9AusN0STbK8/O85zJ3uTeO1J7KX9XmcAzPbIGxfn0HaDshP7XvGRvZZ5lV0nJLkL4wsDTeolYWRX3fj6VOaiJF4do9IimwtwATTWC8KtCeFatfeZUjXIewHxVkHzbJ/u4wZN/LSyc3eb8SEY3F0hSUVnbsKZn3wrxSCuOTI4+Vc+cZt+Sa8tFGZZVTO8eoi31cuMdA1Vr6L7xYhDv7RGsdwmGGbXSFnjDUnVgGoaMH9kh8FTC8ihKWUlFNsxArTOWUYnC4JxSN5T9DJM9yeM9xkvUxLD5I4C0yhxpYHCIIXBjn3RX7FcYholve6ErAiYDBJkElAt5VAYgp2AsuGgEoLLMcHYZ1A1ryqDO3ZTfsFkQj7vw1Y2hbJpsCnk3Yhg6vmGeHBtxetCoX0pw05Kxoeb3ug0hMlKQNlsoQbi7RKpCefJvphwXFElQhUZbObIewGtcyPMMKXY16V5ZkCx1CSfj5FSiS8PyPd1sHVIyqQlZJ4D0N0Q1zT3E/XupBoGaGhRgWq+6f8f4OtSrA8V2azYK1Q0w+meh4AxaBxQLDQRpxTtAJs5QhH/eSJQAJH3BnYzrHb7hOwR4jdT1y0dNi1xkcVk5QvrSnYfUQhlhes2qBohrhliR5m/xuuyr/Z4oaIiuTomXjOeBxmmLyDkJS8ZHYwYnBCWHoVgGHrV5omj6iaM9xuqxCG5QEM5ubDBox8/Bd0K13TYTsGz/+i9uLYX1UTBDgJO/r8/fnt/ZK8CVGUWqprh1cPiFyesv6OFKeDUj6VINgTnmO6P6a75+Pn2AyssPFWw+q7QS6ZPLP1+E3t44jM5MoOdyxEgGzTAKum+imjbMNlnatLVf17RU9rLY77m8HP82rnTTNebBH1D+wLkXaHsGGhA9vFFskVHUHrS2+xEmExoXfYTYLqkRAPZmwDGh4SyqWigOIRyzmFywVQQjoTWFUcV+b7oVSREI6XzzIB8qUneDShjYXgkBo29RzF0jA76Cbt/h+9kWLQM4sCUPmU0nQ+whTL3xR1Gp3p0ntxGowBtxoRbE88zlA5bKXaUkx7pYSclVRIgscVMcjQKMNPiWpZS4KU7dsM9av2kWrYjRBWTVr4FrnO4MECtoZxrYkrns63CYI9/QH1dhp2W5HMx00VLOFWKTkCynmJGOcVSk+hyf887AdAkwrViKB1mOKFcaBGu9l+YIVaHvWxWULVignH6pcYj90bBDFPSlQbh2Gd9BWnxAoOwy3NImoPEaMN67wpekDjQv3ee0WGfhDE4amlc9fcOVezWmNaVJqYyVBFwyfI5d5Rm3ydjBFOhaFmMg9bFkKIN2VJF1al4+l8+QPPZiGzREW+aN2z21qwAcIZXBfKuezn3TU1cqCw8VodFAku12CbZ8CRrudQhyJT+HXWtQ1N9iuxORGGVYC6HxGFEKdcTOutCseg1roKxkHdh/6cKpkuWvC00SmEw1+bh+AjpJCJet1QRLD6eUoWGzTSm6DZwMQRjQ9n0FeVSCi5Wxge9hxFvCUXHh7viHcjbPoQkpWBKMIUPUc0/DlXk+5ub4lqILNkoGJ3oYgqlsZoCCfFOgckqJgcS0nlLFdWfcV0EoLlWEkw9uTv3xSFXPrjI4OgC6aKycd8Sh34rxaQV+aEW6ZzFVDD3yCaIkDw/QVsJZTchXB1cK9qrpeFdMwYDVTMi3Bjh6lBWlXiexMWWqul/QjbLwAgutj6zC8gXG7WKcVl7Dsr4QERjwzBdtKSLhkHXX8/8k01Gh9pIBdGJmIUvjjCTgnIuwcWWdDEkbwmdSw2Sczve+xDZk2QXpz7BIAqQynleZpJD5a5lkFlfU1L2EoJJhZmW2FF2jfu4Tgtr18tJD7QZH4jongkI64WLOKXqtZgs+8JMqWD5kZRgc3yNhLeGcKJkGeQ9X9PT+2zskzlK8ZzVQIi3lWjgmC4bgqlldKKE3DA5mSPjgLKlXP6r76OxqlSxD2W+EQh3ZdY6doZXCRe+sUfrorLw+JRwe4prx+TzCcmlAXbLkR2eY3QoYnhMmB4qIfTNnQ4d2mJaBGxvt3HOk9nlKEEjZbJfMVOLSxztSzA8YhgcDXCBMLxD2f+JCtGA/pUVOJHSvAytNcfwSEzW8ynBZUtxjWthpMp6Yl0ygxSCrVOCVQAD08hPJiYXGqteeDEceWn2xkZJlRjSnqFKvFcDoDYiGioB0D/ZxIV+YkGE5tVaMHEhIhhX7JyKiEZK99kxdmdCsdLBZpUP9xhf02IzoYqVSx9IsCksfz4nSJXJiqHqJJSdiLLh+6arFYp9Xey0qEOBjnKxRd4LaaxOCfpTiiUfKlTnsNOCohsj6kl/SSxFr0MVCzZTtu+MMSUk247GWka6klAmhumiQS30T0S4SMl7DkQJxobBHYbxnTnznwrpns0xecXodI+i5UN0ZUNY/GJGfHHnWsW6c97Bi0LKxQbpQuSN8GZBsNsHxblrIa3K152Y3GeOmbx6YQGiCBqFe6T96J4Vdk4HZHOANFisjSuAyQpspoAQTCG6PPDV8w7/F5guGMZHlCpWTCEkW9Bc84ZneMRStD3vJU5prDumK4bkakC6v0Qyi3ZKqiJgmihLX6jYvCck3lbO/NBDmNz/n8uO4/T3ffK2/Sa/csw6AM7wKmHpCyXpgsVmnnzMlps0zmz7DJo5H+IYHY4pW4rJDHQKXGa5utnDBhUiipsGROuBnzgjBQPlYsnSx0L6p4Si7Yj6htZaRbZoufJVguvlLKwMSK/2SJeFqmEpWl5CPd4WijkHofNZVKmhc8bzEdt3ea2rKlGCsaDhLn+hEPoiQBcI4QjivuIs9E+EOIsPMRVKsqmEY1/bUUVC3hFcIERDJe8FZEd8w6jmmT7Tfb6SvbXmY+LpSoOwFRJuTSkWGgTOceDXt9h8YB5TKipC0VaqSPxrK3TPl2y+te0n+VTpphVVYkkPRYTjiPbZEcVCC1M4RJW8FxFvVJStgLJpCYcFag3hdurj/nHA4HjiQ4ABVCGYCoqWMjxmSTabAEyXPdcjJbQvKP27FI0dwY6l7DqqwznBpYTOxYqiY8kWOmzfaT3nlcPSo6mfnGsNKnHXSPlyvkHRDLCpIxoUSOW8AawJ9r2QVxx6WZes8mnBNxGGlCyHOELLivE+i50qSSUv2E+NbyQWTpSi7TXMxqcXaD2zRS3SBECQeaMYbwuty450wZD1oLGlRAMlmEC6KPRPGezUKy+jEPS9/E2l7HnKV99jMDn0T0OyJgxPl4jzodFn/+F7iQaGdKVk7vGAdBGO/q3X1ivx6bgzj2OGVwFRv/BVvXWr1cbz/ofo5lq4yLJzqlGT4iArKa7wmU7zvTFpEZBvJyBKcSSj6IfIfA4bMcu/HTI+ILhAaV4xJNuOYOpYeBwufx20n4jYns5D7JgeKrHPBjSvKvHAh5SCiWF43Pcrd5Gy80CBTC2SQ3RoTLqdUIrFtSpKheaZkO5Zx85dQu+sD4O4QPyCNAKcl7dwARQtIV30nkIwgfYVR9GEuafHlK0Qmxqi7Zydty6QzgvTRU+mNzY8cVu2I65+1TwLT2W4OMAYQ7JdMTwUUDUg7ylzTzvspMS2Lc2nN0kuNzCTbG9iHbx1mbzjaw+mB1o0rk4871F6/mHz3jl2a7minZBorHSey3FxQD4XUrR8ksEud1TFnsdBYHREcU2HZIJrOua+EJD3wE5AA6Fc8MkH7c80qBLYvM9nMM0947POOhcrTO6IVkeeb1Gzl3WlSYyGlnBtiCmaXihS5IVNocIA3c2YcordHPkGUjeIJF6PfLnljfaiEG8q8cDROZdeS+2txRPz7gLRwGBKwVzvudThqnCi2KyW5RehfakibxtcIDS2HMNDlrKjSOELRtMVSNYgXarTmyvD0iPK5r1e7WA3+2981JGsBqSHCl+NPw2oIkUKg1RKeqDi6X/9Lih8vRECd/7JV1fE8ZXUqhKRs8AQr4VQquoDIrIA/BRwHN8J9TtVdbve/weA7633/x9U9Vfq7e8C/negAfwi8OdVVUUkBv4NvsHeJvAHVPXsi43ptvtSImJF5HMi8gv167eLyCdE5PMi8rCIPHiL475JRJ4SkWdF5Puv274gIr8qIs/Uf+dv9zW8Ghj+wfcSbox88Vlo2Xxw2YcOmjGmP8GOMmyhFB2l7FS47RjZitDCsPn8PNPnuph2gTQqtDSEfQMbMY1Vw/Co5yE6Z31+fTR0pHOWjT8wQbo5ra9bg3b9wzc+lrz1DsfOKeMbNx2sK8EBbZWYnYBw26DzBcW5Fq3nQuJ1g6QGyQz5nLL+TiHehK27LP3jlvEBw/CoYbrkJwg1PnMK47kQAA2gaAgLj42QrCK+OiK5MqHs+MZPVSQUTS/QaLOKfKFB2QpYfDwlvthneKzB+jva9O8IyBb8BN59HuYf7eNiS/uJTdxcy6fcxn7NVK50Sed9wkDWE8897Gv4cE4gTBf8PagiH2ozpR9j/84OW3c3WH9rSDbvSX8NoOgq2YJjcqhicrCiWizoHBrgWhXHfk6xhdeDCsaCHRlsP6D5SIPBfTnifD/5xrovsnMx7JwM2Dkdodep3rpek42v3o9rhphxCtZgN0d+Uq+crxPZTb/d5UDq4j6p3F6q7h65vsttBF7SPrrcp2gaumcd809NCVJlfDAmX2nVyQKW7GCX0SFL0VbizXqRU9eCaDNGw4B4u8AUkM37ZInxPsvwDiHeqby3ue0IRkLVUPr3lNip50PU1ooH68LwsCHeEV+vEyhqfQg0n3OYkcUOfBjW5t4zSRcFKbwum0QOAsUOLU//s3fz9I8+yNM/+iDP/fu339bf8i4c5iUfXwa+VlXfrqoP1K+/H/iIqp4GPlK/RkTuAf4gcC/wTcA/FZFdC/aj+Fbdp+vHN9XbvxfYVtVTwD8C/t5LDebV8Dj+PPAE0K1f/33gb6nqL4nIN9evP3j9AfWF/m/A7wMuAp8WkZ9X1ce5dsN+qDYo3w/8tVfhOm4r+ncY5j7nM5TirGTxs1tgBJlkDO9bpnVxQhn7CQqrmJFFQy8NIpXglgrM1RjXrSBQ8oMF8aWQKoZkEzoXSoqWoX0hZfO+BhoI+TQkOpuwvhGjvZJwPWDpEWX1vb74T61l/fdlMAyJ7hvSFqX1Uz2ufsBRLJaYjcgLKy4pR3+1oGhbpguG/mk49BsVwbRi9YGYolMT5vO+7qP3tOdAqthXvQcTr6xbtDwXIkWFiyzOBKT7m7jA15vEO36iqyIhmw9pXE2pGhF5I2Dn5DJFx5Pnec/hGkrQN2RzwsXfN09zTYnnFon63kCWywlVYjCFIjV9o9Z3RRweDkjnW0QjV6f7Kt1zStYVpiteHyxIYectiusUtJ+KqEKoEsUF6qvtA0WM54IO/fWKQ+UW1VyT8f52nW7tlYnbd/QZHUigMHTOOZoXJ4hrMFm2BOO6MZfAs989j8lg8TGl90SfpU9tQl7g5lpI6ZC8YHTvMmXDMPfw6rUv1m5GFfiqeCOUy10QvDJxUfrak3G6Z2RQZe6xHRBherhN1vWZUfH2blW6EK2O6UUGOw1YemQIIjz5fcsc/XCFC4TRQct02euWBRPPbYQTR/sqbN4b0lhXhseEsqVUnQrTKpkcFUwqzD0pZD1h8fGCwbGAYIIPYcbC+JDDTgyNq8L4sPOKCEkFainmK8qOQLfAXokpVwpk5D04DBA4WvNTytLw9D9/NyYpcYWF3HDnn/7UK/p79hG72xqq+jauzZs/jm/N/dfq7T+pqhlwRkSeBR6svZauqn4cQET+DfDtwC/Vx/zN+lw/A/wTERHVW8tN31bDISKHgW8BfhD4S/Vm5ZoR6QGXb3Log8Czqvp8fZ6fxF/c49z6hr2h0TvjmB6f8xPVtNgLR0xOLdK4mjI61mR0zIebkvmU1DUgrrxi7XKGuZJQtSriKyH5QkVy1TI9UtK4FNBYd6y/LWD+Kcf6O5sM7qyQUmAnIr8jZW5uzPZql/JQxpX5gHDHF6aV945gtYnJhdFOg/hCRH63YEcCY0PVdtiR4Y6fm1K2Q8rYp9eiMFm2JP26+tv5boLts1A1hOZGyWi/pWpAuuQn13AAwdQT7NlKk7JhCIcVLhSS1Yx4x6/OhodjbzwV8l6EnTqaZ0ds3b3owxYF2KkQbxmSDa+btfBUiZRK48qY6cFWXUPiiwnBFxYGqVLUuljxjjI8ZhjEhipWbObVf13o+RtTCmkALnEc+1mhbFQUTcPaQxXRYoqrDEFYUVUCZ1tc+JYl2he9ovB0n5DNK1W3hMhRlH4xKMOArXsM23d1SLYgXQI1Sj7nsFNDcMeIbLXJzmlL60rC9umEzkW/GIiGFXHpzz//qatsv3s/85+++iXfsfzIPOlihAo+4UCVarHtVX7BiyfWxHa2v83quyKyBaWxKhz6jaEXkYwC1h7skeworUspSdMwONWmf6JLsgbbdxryDmAg7zribUPVUt+dMjE+DVyhfwryuYrGFUsxJ8jVGFGf2ts/BZ2zyuq7Qjrnay+jUrQSWhcNZQNc6HXXUJCpIT1cQODQ1Hph5JYjXAtBoVguoDQErYLpJMJlFkqBzRhb+Oy+p3/s3UjkOP3HXrnK9pfJcSyJyMPXvf4xVf2xG/ZR4MMiosA/q9/fp6pXAFT1iois1PseAq6vqrxYbyvq5zdu3z3mQn2uUkT6wCKwcatB326P44eBvwp0rtv2F4BfEZF/gF8HvO8mx+1dSI2LwHvq57e6YS+AiPxJvFtGQvMrv4JXARd/4H00ryrdZ1PPCNaG3vWaNM/uUC602LjfUjaVpXvXcSpY60if76D7MlxhSI6PqLYTskM5ZhSQL3jiVS2sPSC067uZbDmq85by3UOq59qUPSErAlqLEyaX25g6S6rsQhyXMKnFCp1QNqDqlIRzKcV2AsD8Y0KVWPKOj10DLD3iCemsa+pUW98TPZh6me7tO31nP2d9RbtU3tMIUmX+iSkutoSjivHBkOERQ3g0IBoozfXSy3yv5WSLIdOlAHGKyRu0L/iUznwO2hc8tzA66gn66aKlaAnZXJdszlex6zwsPjpGKqV5JmV8ct6HOyaO0aEAZyFb2C2887pbLvZJAC5UisM5wdWItXcK4RjyLmBguTdikodsX+nSeSpkfMRRxcL6u3ymV9H24ROcYOOK6SDBxhWUvld8/66K3nNCsglFU2h/0jFZNhQXOoQx8P5trmbzmByinYztO9sc/JVNssM92k9sodbQPj9l7YMH2LkT5p/w4x8dFYIJTA46Dn/EG4jz37ZMOILemYLmJEdV0SRmfKrLlfdZpFTu+Pl0Lw13870rzD09Jtn2ntjZb20gJbV0DaSLvpanbKpXVwayeYdrOortgHTZLxLUKlXb0TxvyRYU4ooqrqASZGqxE4OK0LqiFC2IB8p0xRDtqK8hKoXpMjRWfVqvCwwyMZRLBQSKTgLEiQ913V1gmyXVKKQqDFoabKOkkgBSQzVXQquAYfiKGg2vjvuyQlEb14WfboWvUtXL9Vz3qyLy5IvsezNrpS+y/cWOuSVum+EQkQ8Ba6r6GRH54HVv/RngL6rqz4rIdwL/EviGGw+/ySlf9EK+ZGdvlX8MoCsLX9axrzaCKXQuFZhxLW1RVmgcMT3QJNoOGB9OaKxCPidsf2aZsqWwnHnStTLIMKBcjWChpDk/Jd/selnzCBqrytJqTUQ2hPEBYXpXxj3LGzwHVBdaZOsRruFIrlhaV5TREdCkIjAO7u4z2mnA1HrC1xjKrIlxcMfP56w+EODCiGxByBaUYCRk80L3rCdU0+WIaKckGGac+1CPaAdwPmwVbQuNy16PKho5op0Sk1eE21Mmx7uIg3SfY9Ko2PeblrxjKZpC0UzqnH6oEsP4UJPmFWXuuZKN+wK23+awQ0PrsjA+rAyPClWiTA76dFFTCsd/bgcNLWU7RJoBiCfwq8TzMJOj3iMIV0OCsedidCK+oDGE5Jm41snyRiOf90Zm/eF9mFI49MWKjbd6Q5PPO1TYyyazi1OcM36VHzjM+YQqVganHa0LltFhKNqKBuCiABcKwVSREiaPzGMimHu2Il1KOPBrW7hOwnh/yHRpifaFKcH6kMVHHeGkxeigYbpPiU71fehkGnLpgzHLD8cUbWVyyNG+5An3wdtWyDuGMoHeUzD3XMalr2lw/D8MGd67RDyo2LmzxdrXFJz8Ccf8YzE7d3mDmC16Of/JAc8DOYe/p52KYDNgcsiT/VJ6XTObWh+mShQyizRLmr2U8XoTTX3a8mSf57PCsSfYTemFMouWf100/f0P6v+LGQVooEgp6ELOJI8BcLn18jm1cbLPNaDhPRkUqlHojfkrCC858spQyKp6uf67JiL/CR+RWRWRA/Xi+QCwVu9+EThy3eGH8VGdi/XzG7dff8xFEQnwkaCtFxvT7fQ4vgr4r2seIwG6IvITwLfieQ+A/wD8i5sce6uLh1vfsDcslh+5LtXSGly7gVQV8VZOthBhCiWYKuEYdt4Cy5+F7bsT8uWS4EqEVP7HI8czJtsNmjWZGIwBlPGKId5RopFj/SFH5wsxGystqkoIprX8emUoOsqgCfl8iUwt/XM92ucsnC4xmaGxptjMMD5eooFjshJRRTBd8XUl4VxGOohong2Ze3yAhpZkLduTwAiHXlRRDcR93w1QKiXZLLBpiR1mvjK7KDGZI+sFzD0ORTtk616ldVFoX6mwqWN0MCCb9wVk4NN4Jwd8Nlhj3cuptFYdc89VXHko4NBvFJhSufQ1EVVDee4P9LjjP40om5Yq9tk3LvDeSTiGxsWg1geD6ZESKWp14dyvaVzkZedN7j0QnO+wGA2EzjlH55kBg2Pz2BTGh6BqKuFYSA9kJEmBqiCijIcJxVJJtBZgCh+3t6lQdisQ6CeGZE0omz6rqOg4oh3D5lt8MaNUHZpndxgc7/pxrwcEwPhIk8F3Dsmf7nL0wznrqz2CibK45rj8/8hY/UaDjSqMCkUr5qk/u8KdPz6gakWsvbMJopi8ormqVPNNJsuG9uWK5lrJkf/LMDwS0lgvKRsBosoo8mnI4MNIUglVq6L7WIgLIFvw97JqOao2NC5ZWldgss+QrkCwFlPYmN6q1zfLFn24Ktmp6B8L6FysGBy3dRq3537E1d0tnf/MZM0w3e9FNstxgNuXIYAJHDKOqEwIouQHir2QWdgqcCpebucVxSsjOSIiLcCo6rB+/vuBvw38PPA9wA/Vf3+uPuTngX8vIv8QOIgnwT+lqpWIDEXkvcAnge8G/vF1x3wP8HHgO4BfezF+A26j4VDVHwB+AKD2OP6Kqv5REXkC+Bo8N/F1wDM3OfzTwGkRuQO4hM8S+MP1e7e6YW9IPP0vHuDuHx5dk7UANDQQGIZHE1woOAtlS9i5t0RaJePNhHyxJFlIqTbb5AsVRU9greFlRhaUcCS+q6r6cE3RgvUH8TpUX7PF6pU5wrUQKf2qzmSQ7StpnguQypIfz9DUkj6QEgJl1iCbF7JFR3LF98BwoaNsKzYVgqGl+3CTzsWCxtk1Nt+zjDilebXAzUWoERrrSrJdsfaAD1W1rlTYtEJUyRZjmI8Z7w/Iu76Qrmx6bat83q9MJ4fAhZbeWWXpCyNkWnD1axZoXXWYUmEV0gVD3hEWH8u9+m2pHP51R3x1RHqgTeuirwMZHA0496E2eU9J1gym9PcpHNWGrfQKv9miQ0ohOTAmm4Y4DWlcClh4sqJ5JeXZ70wg8ER8vO2vUQ1MD7WxU59p5cLr/uGjEHpTjCiVM2hlCNs50dMhoztK4qUpxxa3cQiTImSah0wORVTPt8FA56z3IKrY3/fLHwio/kib+CloX6qIL+5w7jv207yqZM92OflTA8xoyuELwuieRdrP9Gl/epHRMUfQjzn+czusvSfh0EcrJCuYnOrQ2HS0L2UE/ZS5ZywmLWmtVkwXrU9SGHoFY7U+iwlqD6CjFAdyWk/5lsFuaik6UDaUuaf8okcqIRh6I5h3dhc4wtzTStEUJgchW6gQ5wUxR/stNleGhy2tK86nby94NQK13ttBId72BiV1gjuQYtdiXB6hscMVAm2HNkvEKEFU4VQQoMwCNDe3JV33Faoc3wf8J/GZbwHw71X1l0Xk08BPi8j3AueB/xZAVR8TkZ/G88El8H2qutvS7M9wLR33l+oH+KjPv62J9C38fPuieC3qOP4E8CO1S5RS8xAichD4F6r6zTVB8+eAXwEs8K9U9bH6+B/iJjfsjYo7fyxDVPfUSfP9Ha6+JyFdcuz7VN3TYurbrzYvBJQtS7aorHzMMj7UITtYEQws5XyJFIZg5NVdowFMV5QUYf5px8YpoXHFMj1UsXO564unjk+wX2ihFrLFimDH0thQtu5TGIQ09o+ZrjVJrgZIpEwPVL6JkPOE4sbbPF8QDfyE0L5S0Di7A6osfnKd9NgctnDkcwHrbzfEW0LnQsnKw2Bzx+oDEaYIaK76jJvtOy2tS57QTpf8Cnb+ScfVo8rSZwzpktC+XNE/HjBZbpNsOw78lzUmJ+a5+t4QcT7s5ywUbUswcYwPBJRN0DsXaK45wrGy9k5LOIDWRSjqMJMLAauENQnfOaPYQghGQrxjCB/tsLjuUAOdZ7ZZf/cclz8QY6eCi+HwRwvG+0PU+HH3T4Q01h15W3CxIxwYsjunsBNhRdm50iXasESVkC8GVG+dElxKaB3JOLuxgKsMD93xPFcmPYajhm+y1SuY5j7EFI6E4nCOphazETM9XNC6FJAenWO63wEGNY5zf90QfHI/vTMVkxVD3p6nsemYf7oim4fRHR0WHpsSro8Y3rtI55mBz2qLfTOtaG1EerhLFXllZhf5jKf25RKpoLGh9E95yZl8uQQV8p7nMuItnwZedOoOkbV0f+ec0j+pZItCtlix8AVDFQqDU9RJDJalR0tGh3yPlmik2FRJ5w02VzrnHcOj3kusGoqdCtMVHyKzqVBt+jCiKX241mS+TshOIspuRVEaZBT4bKzblPj0SmVV1QlCb7vJ9k3g629xzA/iE5Ju3P4wcN9Ntqd8mfPoq2I4VPWjeA8DVf1tfKHJjftcBr75ute/iC9SuXG/W96wNyJsf7qXMjk9scDwcEjrsnLwN6asvqfF+LCjc8Zgc8jma7mHHLbfAuEQtFlRJrU67dDQWBWm+5T5JwvUhHTOVwyPWMIhZHNKctWSnk5ptDImg4Qg2I0TG3pPeRI13hLSfSXT7QYYKLp+wrSLGcGTTQ7/+pTVdzcQB50LfkLK5oQrDwUcYJ7GpRGoEm1nTA42aKzn2LSBWjj7rRE4ofu8DzsUHWVaCYOOxUXK6IgPaWngJ5XRQcsd/6c3ruJiokFFywrTRcNkxeDesUTv8R0O/UaLyx+Ima747KKNxNI942tYio4SbwkutIQjn+U1PlbhLluSVaF8+4h79q/x6BNHKeYdZj5j5w6h6vvY99K7N7n8/BI7uUHnc6Kz85gCTv5szuZbEjqXHFt3R+QdP1lFfZjsU9qXlGgMx37RceEbBDcMkV7B5IvzBBbKYylhXMI0JDif4AIYProIAuVCyeeuHma02kaaJcHQUCQWd2JK44tNTn7j83zxi8d4x/3Pc2Z7kfwTC7z9Tz3CRz59H4ufFaYrfjVePt8mf/uU6b6EIx8pyeYsc49skh7pMT5gWHii1kBbaBGMKy59/TyLjxc0zve9SnBofeFg4av7i5bQXHVs3ht6WZnCfw+zBSW5GFI1vMflYkUHwnReqZqObM5SLeb0ng0ZHheK+YrWeYvJLP2TiuBbEydrlmRLGRwN2HlHwR0/5UgXQ9L9hpXPTrn63gYugGRLyXpC2Pd1IMHUhwydhWAoBBM/aefzghpFQ6XarWbIjO/z4gTbLXDV7bEeM3XcGW4fnIPAsv2ORV/bkAiiynN/1uDKDLHKTqvub1F4/SXXrjAjS2NVaD8dMX37hOixJi7yHkrzsjA4HtC+6GisF4z317pALYdLBM0sRWRZWBoyPh+TL/r03O178UVY+0sIHI1nY9IVnyvfPi9k/SaHf2PK2Q8lSKUc+k1fVJbdaZl/yjE+YAiHJasPzYFA+7JPp7WTkmjg6zXynhBvC9tvK5FmSfx8gs18SKf9jCey83moYoVeQbZg6J+I6J4v2L4HIKRzIaMKY4JMCUcVGodEW1OO/59TNt/eY+PdDkY+RLTv4YL1t4VM7sywm3XjJ6PQKUnvybGBw1WGR586QrwakB3K4XKCGuieN8w/UzBZ3sdiCJMVwQ1i2heVKvTqveJg51SAC/015C0lXYKqVbH+9sBLx/dq8rZb4ArfLGvxEaHvEvb/TsnlrwqI+sLkgDd6LnKEvYyy9KTuvt+IMKWj+8yY8//VHO/79kf4L5+5FzuX88j5w2g/InrHkF/72P2EY79Cj75zlbUv7OPA265y8coCi4/B2e9QzAi2714m3oR9D08JrwxIj8+Tdy02VeafLmlc8PyUmRaUcw3CQU44gOGDHZJNb0DynieXq1iJt3yoLz1c0Hs09OnedZpr2fJthV0MpF42JO/5OqF407B9n5KsG4quX9TEO9A/rcSbgu1brj7k/2etS8qlD9ZZXHgJm7zjjYaLfNhUCgFRNBBfJxOqb6GMNyThSBi9pcBuRLiVDGMUV5hXNJtqF7Oe4zPcNux890O0L+Wc/VBIOPS1Dhr4H5QrDdHFCFMK1VtGFDZGtgOfpZN4+Yp0yf9wmp9pUrTBhYqo1FW5SjSoGB6NyeZ9W1cNlWTVMm2XuAsttlcC9GgGuSFeD8mWK9xyDtOAaC0iXXGYAuae9NXjh39tSroUUXYqDn3ES0vEWxlFJ2TjbcLCF5XpSrRXSb3x1sAbBdPyRqMrtC8ovTM58XaIGq/Ea0qlTISrH6z4znd/gt/5wfcwOGopJwnp/orttrD5Pug85tV97aRg8TMjr2Dbjr18ubVIVbH0qU3ELbJ9t7J9r7J9ryUcKEwt1XxJo5cSBBXDqx00FFwaYIYWA2RHM0zo0H0VwbmEcFxrPBmvMZUv+B7vo8P+vk9TIV/0E5ZJxaegqg+XNJ8LyBaUdJ+iVok3LK0vJmzf42VfJvtg+fOOjftCOmeVrffkzD8c0lxzrL/DEp5rU3SUk788xU4LhifaUDqqBD73L97KXZ8d8NT3tnyHx7mcqrSEA1/lvvbtU9jq0rhzh83fOAD7HFv3gt0JcIliU5h/OsdMS/JDPaaLAaZU8o6h98yIYqGJTUvUOHAKRtg53SLZdOQdYXTEFzuGA0O0LUwOV5jUIElF/35onAtJ91cM780hNyw/bFj9Km9MBidAQ6XzVMh0xRtxU3r9qXTFT/qNNW9cbSaEA8jnfRvh9nmlbMDkgNc1yxZ9Fp8aJZz4GpFd6X41MD5e4TJDMPGp5NlSidkJccs5Whq0Euzg9jRbUqCceRwz3A5s3g+DEzHiHMUdKb3ehO21DkURYjdDinnH/LFtVIWxQJEbwpHFZAYXO46+7yLPPXmQbN6nbkoJyYavas56Qt4OKJu+OjcaGNJORbrPpyRWiwUiPuPEJiVpqLSejrCpZXBnSdFxvvtfJWzfpxz5cMGlDzSYHi6R3NRpqJYqafjQSqfCFoa848MA2ZxSNZX2WUPrUsrG/Q2ffbQm7JwIGR8CDCw+6lh9r49tLzwc8PBPvYv2zojuF1KufMM+sgXBtSuSc74YTU+OWaNDNGjTuZgRrk+QNEOsReMA14wIUp/9JQ7yxYpsBaINS9ETpiRI6MAqwWaICz3JLA4O/Krh4ndVVIOIfKFiVAUMjwZ1bQsc/4WM6VLI9t2WxnlhdFTRZukF7SILgRJf9fsHEyXZgMEJQ3FySkZEuk9JlqfoWoeypeycNFQNZXxXgQSO9rdf5cKFRYINw/hUQbgecOH3N7DTJpMjJVe+eo5g6gUCd97SoXHJULaUsmNpXrJMDlZop0TWE+Jtw6SdEFmYP7HFYNjEOWH+NxO653KCSQVGKNoB3efGVM2QyT6fAm4KpYoNtvApxlk3JNmuyOb8PRUnHPytiu3ThvERn8XUWBdG84ZgKyCcQDExVPhQ6vZd1heirtW1NROf8gsQ9YV0yXsHUgqNvs+YstNrq/XGqtJcd0yWDFXsDcXkYF0PEmudxaVopEjhvQup8IWsu/ph3ZKgH6BGCS5FVIn/PJvdvt/3LFQ1w21BMBHSlZJkecpiZ8yliwtIoJTt2ju4HLAVzLH/2CY72y2oxLv5BqJty/lPHCYQH8vWwhfRAaCw/JkBV766x/BkhUYKaokvhxQ9f+5GN0VVyNaaRBcs9JRszqc2RpuW/HAOpWHuiwErnx6y+mDX9whvVDTOB0T9nKsPRbTPKfOP+4yetXcGzD9bkncCL3EeQLKpXPy6JqDEO8LoeIWGSvv5gNHJksGxADtVOmehsekwuVd2zQ/2sIUSbRtkyyCllygphjHDE47O84bNexN6z1ua59Q3aZpkSFrQ+/yUYLLI6KCl3Aj2qtPbZyxqfc8HKQST+z4hJ/5Dn82390g2Uk7/3YJz39706cVDr6e1+HjJeJ/l8lcle3LoedeHRZh6JVdpl5jAkR2p+1jsC2idt2SHcqQfEW9a0gMF6U4CJwsa50PyOSXeFqqNkKrpuFAuEnczXDvn/gNrfDE7RuusJXvXGAYRd959gacfO8xkxTI+rD52HyjtM5bRMU+ex+di8kVHur/k1E/kpCsx6cVFyveVxFcC4r4S9XPsMKNYahKOSvp3tvak2xceLyhbFtcOiAYVeccS7/j40M6pgKLlvYT+cZ90gArts4bxIfXV2RMhXVSv72WgcTaibChVwxuN3TTYfM6PXZz3Enpn6pTj2PMl4rw+2uiYD5UWHUvrkmPjpDcC4bYXNgwHBvAFhz4k5sny3Wy/MlGKuQrJDXbqz1/MOU+Ml8KJP3WbxA91Fqqa4Tbg6R99EDtSoi1LnrXY2uhg53xYY/5xYXzYN0oicEyyCIDmZbO3QgpHvrZj9f0O7VuSDSEYK1UszD09YXqw5VVkr1omR0uWvqCkc0I+BziYbjTB+Krd8XH/N1iNKFYKwo2Q5tOx1xmaKoOTbYK0/uEPAjSA/h0h6f4Skwcc/C3Pexz+9YJgVMDRgHAE+z5TcOkDIflCiZ0YLxFhINy25D0vPjfd52XebaoEE0f/REKQxlz9Kt+3ITgwplht+ErgNUPrUkjZ9FlXRdcxPG4x5QInfmqAGU7AOcp9PZrnB0T9BulSxP5PTDHTgmK+QdEJqKKA6ZESNXDoNwrKtlfcXXugTe9Myb5P54S/VrD+9oC553I27o9q7kGZf8JXxa+/p0LaJTIICQYGN7K4lYyoWZBvJ2igTA44bD9A92WkNkRKgzYqZGqJN6GxClvvKCGpmFsYs7PWodXI2Nce8ehzh1n6rGH7LUo1iLCDgOdXl8AJ40Pqs+giR5AUpPsFo8JCb0zr4CZnz6wQrQWc+z6l2FGCPjTOh/SedbQuZ9i6v0jRDojXU9AI1Gc+jQ9GRCOf3jw45pV/g9TRP+a79JWtemJu1OHPbsF0JQIDZmr2CiSrhoPKE+d512eahQPv/ZZdnwkYbfjaoWDsazeqyKsZB1Ookt3vuRAOvHrB2oPes5DccyXWGFzo/y8IVB3nkwi6Stj3vx+bQ3QuoGwq2XJJ2Ldo6HyL5Oz2eQTKrJHTDLcDoaPqKS6u0MpgL0W4xHsD/TstwcivhlvPRgwqQVIvz7D4qF+NTZcMeU/oPmHqnt1Ka9VhM4dLLFcftOT7SiQzmIlh55RfjUnd3tmOvNaUGVlfFZ1UNO7eYXy2R2NVGJ7wrWaTTbxSa2gIpobOOR+mWnp0Su9syNZdcPZDnuBunNvh3Lcvk/eU5lVhcCykfR76DUOy7uVH4nVLMPW91UeHhajvUykn+4XttwS4yIfVwn0jgkfaTKLES3cXQtQHm6nvK95QqnbF3CMhCJz/UI/m5S7jI8Id/+4qqBKmBaZocfFr2zQ2lOFRaF8Em0Pjkq9FWX0gYnpUaJ0xLDxZMjrg28+qFbIFGObhnrHunFffd8OCnRqcC9HYUXYh3DZUuSWfBhz4qG/aNDnoPR3OJRQdh0aK2QlI1g0rnx3x9J/wGWZklsHzcxy5Z5VKhSeePwilMF0WqrmCoFVQSl0B7XzGkh1aqp5ijJIN/cJio+iwuRnROj6keShnnEbYq61aVsSLDwbb3mi4yPeUH97R2qvH8N8rIUiFwVFL0VXsFDbuCyk6fnIW51u8aqhIw3+Zypbi5guC9Yhs2fMdJvc1GpP96r/XhVAecmjgkNL4Akf1agQuhCzxDcNQ0BBa5w1l06d5a+Cz72wq2NST7lWiqEDnnJAtWIpWnY479X1hxNVFiI06DFZBtGWpGuplTaa+oPN2YuZxzPCKo3EuYnqoRDNL40LI6JTXgKpKS1UJybqlc8HhAghHIYP3TDm0b5sr5QFaF6grpmHnbug+57vNRf2S8cGQrBf6NMmtAMV30mus+f2LjmF4yuIa3stoPRN4KYuDEWnsQxLBRFn4vM94GR8wbL7NoKGy72NeOqNMYHA8Yf0BaF3wWVzTA8r02Jyv5MXrFh368Cbjk3N0z7m9grG1d0WUTb/aXvxiRTh2TDcCWpczRocjOhcK+icidloteNsIhhHBW8a8ZWWVK//4FFtvMWQrFVJ3HezfU2EyoWo5kg2LlHDh2/bTuuLonpkSbE/oPd/kyjdUSFwxvqugOtMmHPlqdymF9nO+uvnCN8LiZ8A5Yf3tIWXLpwdroNiJMN1fV4kD0ZZv3ASWvOdoXhXCkZ9gt+7xq+Bg5GPteU8J+3UKqPhJ8Pw3tul+EYYnK+aO7tBNMtaHLSZbTWRiEYXx8ZLG2RCbh6RLStkTgkyIN4TRnQWoEP9Oh0QhGCvNTV9Qee6b20xLoXPGMDmgJJuCTR3lnGXjwXnCidK6lDFdDhkf8Kt3U0LrisMFQt6WuiWsr1HJln39TnLZt3LVSEmuBGQrgp0YooGQSYgL/MSfrBmfdWW8d2Fyv7JXq0hm0MR7YjaT2jhJ/dwXW0bbPgtLA6+sq8arKdvSd5QcHfNGLNkQyhZMjxRIboguWYJaiqRqKNlKRdCv29saqNqOcMfg5hxVWzn9525f50BlZjhmuA2YHirBQfu5kNGJEpMaqqtNDv6mMjhmifrKdKl2pR24wnLu+RVYKol2QjqXSt9n+tmAyX4vHVJFIdNlQ9GG5UdKsq5l6z6YHqqYnKqYezjiwG/2STa6pItCMPXeSrrgUxXT9YQjH/GaQq0zfUQXPFGZGYKJMv+ZdTbfs0zvbA7A+EpMuqwc/O0STMiFb7Ac/XDBZCVg4XPbUHhuoLkB8UYO1nsNar1MSeNJpXF5zHSpRzCtWPx8HxVhqZ9RtLpEj7fYuRsmlfDoE6fRd3jy/8DHK858hyCRQ5ol3d9JmO4PqGIv3957viDvWN8bu5PQuprRONeguj8j22jQGNWFi1uePJ3uc7QuGOzI0j/lJxgpauXVEqJtYXRPjkwt2qiwWwFVAvsermhe8k2fJgdithYt+f4CMwyYf1wYnPRNipItIaj5JxfB+MEJlRP0+YSTP5lx8esWGTWVsukQ41fLyZqhexbmv7DJ+W9dBGDhs9b3tTha0X4m5Mg3n+XJyVHmnhQa247t0wHj4xXBwNB7GtJlz6N1z5asvz0kmPhwlIrQv8PX1bgQ4q1duRWzp9/kgmv6UEXLeyd4OgE7Mr69q/MTYzj0QoNl23kl5EatP9Y35MZnmSmAMahVzMTu9X2xqZ/k86bz72XGexPGexb5nDfapv5/DE55gUW1MN3nU4KD7cCPT2B0xGH2p5TDkNbztdzJkqOKvbhklQgqSjC6PdlUu1CE0r15yfE375W9jnHmhx6idTYgueoJ4njdEm8Yom3D6gOGeFuxmdJccyw8kRFOlGAjRJolhEq6qORtw3glqLvNQTT0pPm+T46Ze9pRxQZT+Q5sGnnCdnRUGZ7sULT85LR9vyOdl1o+RMHChd8vhKOS9fcs0DuTocYrqlaJsP6+ZbpnUoJxQbiV4gJon8f37RY49VNjknM7dS9qr+4rFZhMCYYZwfaU5c9PsKlvGasGpgdaiFOKTki+0GD1q3rkCwn7PzYknCrtc0K04VenKn7Ffun9Ie1nQsILEW4cMj7idbnGRxw7byt8D/GWIKXDDlOC7Smty0q+nXjJlamPp6uB3jPQe9pnQQUToZwv/cT7lDD3lHDiZ3Youkp0JUTjimA9pHPWk8CrD1i27utQJRZbKEuPVoRrPrU6mxPa5+DYL03IO+pXyQbGh5QDPxMz/9GExlVhcjAhmPoeJcd+0aGBsvRZn1I6WTHkyy26ZxzJpviMosCvtkcnS87/8nEaVw3jw3D1PYbx/SlB3xCMhM2vzRjd4etndk4HdZqwUjaVfK4O6+R+Je+l76Fo++9n0WWvkM/kvgI8mAgmAww01gytcwHN85Z4y8t/iPoK7c4zlnAouMg3tFLxnxGOvbaXnfgwlp360JiKrwUxqRBteP0tm3kuLFt0lA3PUxQdJV12YKDq+hCZSxzaKqkS39N8eqhCHLQ+0cRMLZN7UrK7p7hW7fU4oepWSGEoe9Utfp2vHBzyko83KmaG4zWAr2L2k3fzXEC2XHkp6kAJ7hySzQvN9ZJwVJF3A2zmlUc1tcwvDX1hVeJjv3FfmXu+oHFljKlguj/B1NLsRcsrkeLAxhUnf2rAZMkQDX2vaDv2ceTOxQpTCOHSlIO/AXkvIBwr4wMR3QslrqEc+O0B4UR906CiYv3dXcqGsvLwCDMtOfhbQ9KlhMmJeXqfW0MDQ9GNiUbOt8Od5kjpCDZGNNcdZSIMDweMDwRMlwxX3xuyczqiaMOlD4S+Yhlorld0znrD0FgXXORXmyufzWhfgNaZgHy5xAVw+Ncqjv68sP5W70jv3O1nQkkLLykiil1Oka/epugqxVLJxntLxgeFyX4h2QA78l5I0fU9ODbeOUeyLrQuwtLHvKSIN7QQTIXpknDpgxFFw7D6HkOxUqDWh+rEwfB4g/ZFb6DGB5WFL/rjg9STyINjhnRZ2Xio5OLXBix8zvpiQgOdSxWX35/gQl/YOd3v4/y9pyyNiwGHP9wnSGvNpjtGNFoZ0d0Dpqe8zpgdWbIFbxCyRcfOPV5bTANluqKMj1ZUDfXe58RP/tk8VJFfyefzyvCkI11xnh9TrytVNnxP9T25mdKnHjev+tDW6GSJS3w1d7ztDVkw8d/3YOK9Pd/F0XNc8bbxBHfd6bXo+Mw1qTwPMTngDZDJ/eKBQnDNeuIv/BRWdL3HUjUdo6MO1/NS6eZKAk5wjQqsQiFos3rFGzd9CdSHql7q8UbFzHC8Bpjsd5T3jsgWHW/70BOYtp/YqqYy7SeYDMqG4eLXW7butr7l6qESQsf2aterqB4SwrEna4uWJV1p0ljLCQclZSw+U3TJx9ipBLmQsPpQD7VQNr2XgfowlguE/Z/MOfBvYqKdEjVCsl0STH2F9Ol/O2Vwqk0VCRoZLn5Dj/aViny54tk/0GLr3jYyLYh2cprn+mAt4+MdyqYlSJX1d7TZeecyozvnwAjtZ/pgYHiHY3jMhyRMBtFQqRI/Ka+/o8l0wWsTLX98m97ZiumyEm8ryYZw7ptDth4scBE0z4a0LyrJ1QlV5FerW/f75kyuGYEI+35tlbt+bEI5DBle7fiq4qGleSYkX6oo7p7Qf6uX3zj+n1OSdeXIz6+RLgnDk47td5Zs3adEO0L/Tt97fXK8IEh9WGf7LUK8KUSrnhsJh8LoKIwOGXbuUjYfqLCZsPMW2LzX0j9piPu+oK1qeI+wXCwYnPRpx0uPFrTOT1j5TEHREnrPKd1nIVn33tzB304ZH2/7xlUTIV9tMtlostCaEF+ICLaCWoZcqSKtaxsEk3kOIdmQPYFLcTBd8VpSVawUPV/BHkx8t0PXqsiXvHFO1v13uJh3FF0oW/iMpsg/pIRwy9K4ZPd6l5Qt9bVGBlyddaV1+/TJQUc+54i3LLaWR5fa6xBlz3hUnao2LlqHzGRv9tLY4dqVf8/6+oxgPfK6bUYx7QLqbpm+F8rt/43vchxvVsMx4zheZTz3Pz9EdGRE2o/54EOP8czOMvuX+6wHDj3fJFgPmRxQsvmAZL0upGv4tNzu52OmB5TsRIZdjRgeMXQuONbfKez/hFAai53WneYWvAz61tdkPpX1bED7il+llYk3HKYSMjXkbdh4R0jjivdifC8PiwbQvKo8+web2Ikw9zTsnEwom9A/HhBuKTYXuuczqm5MthAjqmzf1WLp05uU803KVoCLApKtgvO/L6RzcJnemYLxYUUOpuSbMcHEsu/TGUU3oGg7GqveE7IpVLFBVBnv8/0rtt9WQeTY95GA3jMZaw9E9O+tmHtWuPD7ezTWlPYF5fB/mbL9libpO7ssPTwAfG+Lu/75lLV3d9i+39+LdB9o6Ei+0CTaURqbjsHxBBfB2vuXybtK5zlD0TFMTuZMGwaMElwNKZKK/rsrGk96iZLJIS95bnJIT2fo1GLT+ifmID81xeWW5O4xw80WakPyniNYnlJmAbIZEW0LybYjWUuRrKBxucKFbdQKUb8kmwsYH7Bs3puw/PkJ4dDSPxGRnSzYtzzg0mP7kKZn4cOB7E2S2aLD1JLwpoB0xXlPNJVa6kZxMQSpEKQWF/iMqnjLMD4kNNaE7tmK9XcaknWhedWnwk6XIe9A+6JStL1HaArf/6SKaw+lrbUygtakuzcIpvBehM2kJtLxac+h1xNzUV2rEjsovacgqbcWUtZhO/A1OaPaa8FL6+DEp90mDia+34o0KkzoOPlHPvcq/NJn5PgMryA6Z4Wd+RgTV3z0iTt9/v5GGxlbkpEnj6WCuecKhocC0kXQTum9g1pOu/NITNH0EzwKy59VJouWeOBnieZayXh/6Iu1ppbkcsj43pTJwYj9v6N0zqds3tsg2VCyORgeh0MfLRkeCpiuCNFACYew/lDF+LBw5FeV5pkB6++dZ+GxCelCi86lis4l2LrbT1wrvzNk584mVdJg6WOrIEKwNaaKu6RLcGUxIupD3oONt4aUzcprLA18Bs7geMT4kJdTnxxytYCe0FyF8x9apEp8Dr/vZebDQFI4DnxkjX2fjL3HtS40NyvCQYVLrE89FqjaEdt3JwxOwql/tcbKw8LkQJtsf0lj/5B0GpEu+74ckwNeoTfv+R9967IyPqQUXW+QER/OKrrKyocjyoaw/Mktsv1trrw38p0Xx4JuhuCE6R05ZhBgJ4bKBpipZZR2wXhvIxwJVdlE2xVHft2xdZchnRPC/Q1c2CQcVTRWUyYHG+S9gOFhy+AtJYufsZhJweh0g50PpERRydpaj7hvWHjCMV3wRHze89+TZMOQLfqQT7riV+XNNZ89heBDmspe5lfS9w2TsqRux5vCzmmLSt2oKfAhq+ZV3ZP+r3xWsPd0mpBs+n3Uav3Xh/fU1BXfsa/v2E2XtRlo7sl1HL7pVmFwhvp1nUIbOFQEKcxeEoOLamOTeINIq0KMbze7W3Qo2yFV8iq4G3hyvJqR4zO8UigbMP9wiKzG2M3Q9wUYBUTblvYFZenRFLWwcyKkqntgR60cE1e16w6D0yW9M163qLlakHWEeOAoE0PYLzC5w+ZK0RGCTgH3DUGFZNXQfXpAlViqxK9sVz7jJcXPfpvQWq1YfKJk5bc36J8GM/FpuMNDFslyVn5zDZOWrHw2o0yEi9+g5F1l5y6l6iYsfXKDZLOgWmyTHp1DrSVbCFh6pPKZN5EPU0wOOsxijukUfkIGNh8sKVtK0fZ5/1XDUSyUrL9LWPpC4es27pj61eV2SHO1wDUCUKXsxJQtQzRS+scCznxbyMUPJsRDR/tqyeqDDarIr4Kf+d4VXGA48RNrHPiIZXq+Q9LIfZVxS8kXKsbfMGJ8T0aZeKOKQDAyxO3MazJVfjVvSmhfLMlWWpz5Q0rrkjL/mA8BLXzBy1k0n4murbCnluZFQ+Oipfd4wMmfHfsOePszzNQy3uf7V/gwUYWdOqZLAflcTLKeUyb+Mw/8umH5UzuYrGDxs9u0Ptug+WttonNecn2839+LXY2teNOT4vGmIRwaH67a8RNusu4LSeNtXz9Rxd77mC6rr5Kfd1SxDytm8563wIE4z3G4UMg7nlBX40n1cOg9mWze11Dsyoe0LnnvxqbiU8RXBTvxz3XXMYt8h0bEG9VoR0iuWhpXLWHfQOC9CQLdC2t576X2oqf+/2MGAbId+qSS3CCpwWaCmb56U96MHJ/hFYH76reTrihFV3DLOdVCyeSpORYeFe74TzuMjgjTpZB9nxj6rJKezxypzrf86qn+nsXrAcMjvorcpiWm9EV6eU+4+lATtULrkp/45HyDdBjTeCpm/yczpPQy1UULxvsN23daDnyiItyxpPMWFWHtfUu4CGwu3PUvJ3TPlWw/sII2Y85/S4/B8YiNtwrifAgjHBjs5ojpsTnstMQOUq8Tta+FzRSbOaJhLa/R9KGHpJGjTlCrFAsVf+TBT9C8c4fWBUNzeYzpFAQ7AWW34uLXBUQ7QuPzTeaO7xD1DS4yBBs+x9Xklc8y2++L7sKBj62vv82ycX9IOFTKpq9cjreFK+9v8dz3rJB3he6zhvzpLkXPGys7NhQXWyz8dkSy4Q112VTKnqMqLa3jfd/tb+L5i9UHQ0aHIpZ+K2J4B2RzQveM1krDfvXce1pY+ryXT5kccvBA34sMjnJ6TwnG+iyh+adSjv7ymO7ZkgtfHzE6GFA0hGgrpegG7Jw2DE46omGF5CXFcouz377gPdGGcOg3M+aehsa6b3gEXrdseNxP6tmiJ5DDoTdA8Y4SDxw29RxH0XZkK76Wp5iryHte+0lq4cZg7CXv21cremfKusNiwfIjJcEEwgk1h+Y9tdYlbxSige95XzZ8S9y8q747pXqPRUoIRnXKHBD2686UZa2eIN6g4IDcYPsBwXqIHVrfNjb0PWJ2w27hwGdumcx/D6Tw5yobyqm/9IlX5beub3JyfBaqehVRJZbjPz9l9cEmcx+PMRV0zheEgwKXBBz9hT5YoexESOX5Ayn9D8PtRLi6QGq3faYLYO1dLfI56J/2Am42FeLLA3DKsf+cYyY5T/+/Fjn86yPM1JO/3Sd32LxvHjfyHeuCUcWxXywwRYXdGtOca7Ly8YxiuYWUjub5Ac3nK8qlNsd/dp3JHXNsvtN4GZEMGusKYYBNK64+1KZ7rkHnqR0ufMsiwQiGJxyNVSGY+pTNeM0i+xTZiEg2DeV9Y3577SSD7SbcWRBkIa40uMXCTwhHx0yDpm/S86lFDv/WlPDq0P86I99er/dcyua9CYuPekJ/524oI0f7ohDvOBaeyBkcT2hdybj0tRHNy0LW84T8yZ/sk600qWLDxn3C3HM+wy1bELrP+8y1zfsNeRXzX73/8/z02rsZtg3xhqVsKltvVaqWo3ExIN5RwrFDrRDvCMufm+Aiy6Wv8dX17XOGadZFg5LR6R7TFaHdzJjutAk3xxQLTQDaFyCcqPccuxHJ6pT0iHLsPwpVbKg6CUE/o3MuoblWkqxNGJzugMLwmFfJBZ9o0DlPTUwb0mWfhOEqGHZgnFtfN1Gn+YZ9SzgWxPnaiHR/6bdvW4IJNNccRUMIB45gKgSTijKxXu6m4RtfAWTzQt5VnzW1c01lOBwI0bBusFRRp996wxCOvPfgd/YZWy7w3ocaqOYguerVBXYryfNF318+2OVqao5FrV9o7fYgR66lpb9a0DewYXgpzAzHq4i8F9Acl8w/Xfqq2FGFCw1lJ/RtTmOLHeQ+hLDlf2zxhpeLtqkhHHlvJd5WFh6bcOlrWuT7PAmJeKG3YtGx87ZF5h7ZxAxTAPZ/XFFr6mWQA2uJt4Xu+ZKdk/4rUDYtUb9CGxGj4y2KZpvu2QyXBBQrTZJLQ4K1AdOTi0Q7Oft+p0GyXZJ3DOm8oX/vPGqEA781QANff5B3lNGJCqm8rIjWYYvqcEo1jQgPjzn1rnUu7MwxKUJOHV2jnyZMsoj7D1/iyrjL6uoc8mSb5L4+01FMtR2RzYVs3LfCgQ9fxUXB/83enwfbnmV3feBn7/2bz3zufO+b38s5syqzKmtSlVBJaEISCIMkBIHBgFtutx0Q7m6M1W7btB2OwDQYbNN2NwYHYBshkFEIkAqpJKGpqlRDVmblPLx883DHMw+/ce/+Y/3uzaSUWVUqVVamRK6IG+/dc87v3N8ZfnvttdZ3YHRvQudqShUphqekX19FFpMJXLb3shAWG3sFVWzoveBYrikW25Zyorn8Jzrc84HrvPDyDipKqWJxkFMltK47UJJAyljzT/gQzZtGuC2BY+dflcS3p9z4/j5l4pidhjKWhXSx6VhuRgzvFUb79q/NKZs+7kVFuLdgfr5J86bD3elz7gsDsq0W3jTn8D0JysHq00vMTIQbAS7+bwHKOazvM7nYwEsdyUFJMMrJ1hImZ0XWRZfiumf9uvoySNtyIZUSVp18l/KOiGqiILllKFr1gmukStO57N5VLUw4aghmdr4T4i3ApIb2tRwvFXKdtxR9s+lZ6u+VqOn6U3HuS1e0zN48IBMVZ10BTvSpdCEujt7AoXNBACorqgMmk7lLMJIFuQpBp3J7tC/PuVyXv2uNeKIAJ6q5J0npmxK/uyuKrxbvJo5vYujSMbo3EZOg6zl5x8N6tQDcrMJZBZ50D5P9HFQgInNLaN0u8SeVLPCjHDPPiQ8Txj1o3hCP7fD2GIym7MSg6i+tZ2h/6QB8D4oS20nQ05TtfzXi6NEO/txx92MhOoe1pxRpP6FoCIFudH9I77kQAKfbxJcPhTMwyeg9MePqj26w9Zs5ratzXv3hFt5SYYoGrRcGWK+Bsgq90KBl6FolFTZUqGGAmmlKH545jNG5xsYV3/L4k/zcL3yAolPx1O0LON+R3PCEKHi3SbI9o7gVsvujGeWBwp9vsPLkiP6XJthY4KfRoWJ6T8U9f3/B5GKDcFTijVKKXkx0dYBrRDReyrCtiGs/2K531I5XP32W3i1Yrvvs/FqKso6s52OWljIxzLc0y1MVTgmBTmQxHGWi2f3WvlSBVb04L6UtFx05ln1N+5pluaI5eiQRnaUQ2iphvq5Z++IMM8ugrPCmOc7TbP/anDvf1qCMDdOzHXpPHIJn8OYFWT+sZc8VRaKIxjA9lYhhVg2WKBvSYmvdBJQs6OFQPNxVTfxLVxRlS4bQZiGExrwnbaNsVeYIx7BYb6EoE0FEWSVVhDWQdWV3n3dC+R4XsniXTtF9yWE9amSUaGHlHXVi1apKWdxdDCwhmNbe7FYqrWP/FiEuiiKvbUq1bf3ad6OUSiTekxmLyeR8rVdrVRVakFWBRTUqLv3b3xw01XG8W3H8DkIpZYAvALedcz+glPpJ4L767i4wcs49+mXH3Af85OtuugD85865v6mU+suIb3mNKOf/UdvMvqPj8N/7CK0bJf7SUcTi8gfgL+ry2coFNjub4M0tXlqJEqiFYOLQmcOkJWViQCmm97TpXMkxWUDehv3HQ2Y/1MefGPrPOnpPZRAbVF7iwtoCNPapGtLaQSn8hcMpcRXEKdK+zDjCkSM+tGz/6oyb392hc8UyuugzeGCL1aczMHJBnP8/jrCBR9GP8GeKzquW1jMH8vc8Tf95y/B+jT+D5Zqj8apfS5XLjrhoO/x+yoX1I15+/hQ/88XHUA0r7OJC0bwB0UCeo/WqwV7vkHxsQOf/22LvQ4a0D6MHOxSJomgrlmuiy7T6OY0ZL+l9fobtJMwutCkjxezUOl7qiPdC/MGC5A7kK4rTn4DBA8Ie3/xsQXBzKO/PrgatcMZQxl2UM+RtR3JHMfvognIScPu7QC8tZqko+hWtV2Qz0H+hIG9pZjuG0f2O5g2otGKxIf3/vG0oG4rBQ01s0CTvKFo3LI1bKf5gwalfknbX8P4Q247BOfQix0s88pZPfFQxPSUDdael5VY0ZNEEWUSX64r+SxVlKEx2XYiyr1M15DpGFvJj4cSlzAFUqUQAc6HpvABeZkm7iqwvmxjriT1uMHMEU8tsx4jE+nFLKYBsRSqDMhYZGH8un+UxFDxde61qKJqOYKIoI3lc1hHJewB/LgnIeYCWllbRFlkcXUgiyjuy+cpbr7WmlBMocZmoWiDymzvOdQ4q+27i+J3EXwBeANoAzrk/dnyHUuqvA+MvP8A59xLwaP0YA9wGfvp1D/kbzrm/9tad8jc+goljueoRH5XoUlOFIr6WNw26dKhA1/1iRRkagpm4nDXuipRI2dAEI2i8OqRYbzI5Y9i6taQKA0zmGH8ww9sNadxSxAcFqqqgcLjIZ36+hUkd8Y0xqrSUrRCUwmSWZAnLDY+i5RjdKwNQGyjaVyy3vqtD93JFFSim50TxNu17LDY6NG9nzLZDEcVrK9a/UDC6xye4b5V4dwFAYzdjvh2DFcMek4EpRDZ7esHhoopAweUvnqZ5V96TvOtqDoEsdMP7tPhf9GSXuhkKyTC8tMr2Lx1SdmJW/9oNnvmZB9j6dIVyjuSVAeP3rqJLaD17QOvZJUcf2WB8Cbovgyoto4d7FG3FmX9hmZ72OP2zhxx+cAV/WjB+3wZVAN2X5ujJElUVdJ8b030OXOCRrkeUccLs/hw99WRAq0UFoIygdcOSdQzBrKJxV6MrfZLUnOfIeqJ8G0yhbAgqKe/J0DpvxCgX039+jp7lrDyXovKSqhFgQw8zL8i3Q3Tp6jmGw587wpGg7mZbYiQVTmwtOJgxvD8mGjh05UgLzfScDLvjfVVrV0lrtAplJ18mDj0SfarluqJzxWJy2Rgo68g6mpWnBZhQtgI6qagyT84GzE4rTA7hUD6/xl1hnJvMsVgTI6Z0TTgiugCvBGfUScVSRlItLDbrmUVYy55MxH0Q9RrowGlJgKqG7jpPqiLRQ5Pjy1aFXmps/M2db8C7supfdyilTgHfD/zXwP/1y+5TwI8A3/FVnub3A686566/JSf5TYrZjiYcOQb3+7RuWfxxji48sp5HFSrCYUXekY8j62nm25pwIBedPxdrVRRMHuqT9mTecfvbmjLAXHV4t0Oq0ynzMmLtyVKsVLUjX0nwp4LaKfoJ3ihlsR3hFMy3NNare8s1AsVp8R2fnZL7hvcb/Ak4Y+m/UDK8x6f3csHdj8SsPCeeFss1DzT0XsqpIs3wgRbTM4pwKL4hqpRe9WJTFruy6XCBpfmKT9nwRX9rVSqw7gtQheI5cfT+CjPXeDsLvC81sQHcvtOnXY3ov5Rz+7tXxZfk/7TGZn+Bso4b35ug3r9BdAjtG6+15vpPDcm6fTovzzDznN3vMzx+8TovZffhpY79j67gzx3L9ZDpqeP3t4XJW6x9aYl/ewRadq3R7oL1ZURj12d8SUT5ypalihXhkSZvasb3QjjwiQ6F7Z71ZGdcRdK+ie/Kblz4KSJDM992RANF+3rF0UMNqqhJOLJ4Kz7DewzdV8Uno/PKDKcVLSfOgzqvZPENDStPLaiaAfMdaWkttkKpAkJF2pDk3bwBwcwSTGvTqZ6heTsnb3tyzJow/oumwltYso4M2720ZpQvZWZWtnywDpNblms+VSTVVBWJpI78q0j2K3QhLn7OiOjj8EEhBzolyC+9BJ1LhW0DSWj+zDE/Jcm+8qVNFQwl2Sor31lTQOWDVwiiSxdiwWxDR9FxmEUNzy3fWlHDLw/Hu62q30n8TeA/BlpvcN+3AnvOuVe+ynP8KPATX3bbf6iU+lNIC+z/5pwbfvlBSqkfA34MICL5bZ72Nzbsxx4lGtQ9WyXzjLLlYz25AIpYYXLN6KK0dURwD/KWIpiKoVHn5QXpesxiVQuc1wi80ptrYcq2StzMx3UsedsnGS5wvsEfp1Sxj84rzDSlWGngLSzLVWkvHLeObChaQ6tPL/EHC9KtJoMHQ7qvFCw2PHq/WBHdXdBzCZOzXt2SUOw/rjn3LxYM74tZ+8whBx9eZbGlSNct2f0Z3rUIkyr8hXhH56sVKq4IbwSUDU6kuNtXRCIlHpSML3jY0OGPjPgzXG2QPbxAX48Jbvu8+J+2ue+vzti5VpCd7jJ8tE/vCwfgHJufCVhsSLtovmmwQYPmyyV3P96naMDg4SZrnx3QfiLi1U/dS2sgrZzel0Zc+6E+Wc/iTxxlLImvimD3QzE6j9n61TE6K3BayzyJDsvVEGVVrcYLi3MFZeJhUsXsfMnsPHhTQzBS+DPZiTslA+zkwJJ2NdOL9gRKmvYd1hjKhlimTs/IwDvvWca2tsNttqh86FzLqQJN0Qyxvuzw5++JCceOyofmnYrlqifnta5I9tzJoDlvKqrAkLcV0ZFlfCHAnzl85wjmwtSvIlEZ0IW0i7xU4S8s0bBisRNhUkfW1TKTSC3hWDPb0aJSPITKyKYnb2qUkyQ1PWVEFLGUSqd93bJck02KM4pkzzLbEac+1VC0X3XkTZFPD8auTlziQX78PEElVZzTUm0UDamowiN1MkPc/quf/iZf9e8Ox7+uUEr9ALDvnHtCKfXxN3jIH+e3JoQvf44A+EPAj7/u5v8J+K+QpP5fAX8d+LNffqxz7m8Dfxugrfrut/8KvnHhfE0wtTUMsd45HSyZ3tOiSOo+bVMTH8oFgHrdELDgRH10uSJ+AyghPnkL4S04z0Fq2Dgz4ODlVQ4e8zEPrrL9qxOqyAOlcL4Rk6WuE79lK2JV3cuwsJr1z0+Zn04wC2kuDx4MmZ6zFA2fYAJZ11AmTeLdjPXPLrj7bR32P6C59PcPufvta1gf9j+2eqKoqiyo3YhkTxaBvCMLhTcxBDc8vAXMz1i6zytWvzhBVRVlOyJdC0/et8ZNQdQoB1NiNt+3yzQNmb3Q49b3Rqw9lRHdmRJeF9TR/rdtsvqlKcpGXP+Dhvv/uwPQGtuK2Pz0hHQt5ugRn6s/tMLOr6bc/K6QxabsRBcbfbyFENpsANGRqAk73xEMNP7UcffjHbY/OZAZj3MERwu2f2XJ7EKLvQ9qqtDhDT2KjYIqqND1t64qFbnTNRNeFr+iAaNL4tERjGTDkK7K52oDeQ/zjmJxtgTjCHblPfPnjvm2Il21HL3f0HvG0L5Rsux7zLc03twxPSOziLn1SFcU8aG0oUb3QbIrci7WyNzAKalwoyPZsAwveSeILJPK4mzmUhVNTxv8mVQfZfzaomiNvNDGnuib5S1N3hJJEaflnAHSnqb3SsHwkk9yVxjnAM3bAvHVVT3/s5IQei+VFA0t7PJQrGVN6nD1Z2R9GfR7YyEyRkeAdVJh5DIz5Jh1/jaEe1tXnbc23sqK46PAH1JKfR8QAW2l1P/mnPuTSikP+CPA+7/Kc/wB4IvOub3jG17/f6XU/wz8i2/8qX/jw+SO+aahdaukChWLMw1U5ehcTrGByF2Y3HLw3pDWLREenG+IHlBye4H1NY29krxtyDqa+MiS9Wt7zLmmWimYLkM6F4aMVxK86xHz0w3CUQEOsr4kgCqqvTc2xLdBF5beSxl6UeAtLXkvYnYqqH0aNHnXAULiytYUyW2HssImTu4oZvf18OeisJocVEQHOeMLMY27UkEcI4BUASiHt9By0Zew+kVoXV/iQkPaS4hvT5k/EpPsiSx8OLFUvgg66twx/6ebhD94QPisw19IX91pTXpxhfjaiGhs0aM58WRJ69UNbCdhfqZBfDelij0W6x7WSJVz5Y/WEGgjbOd0yxLdFe7C+lPCwp9eEEfG5EXF7LQMZQ8+JLOR9vUGrWcPWVzss+xpmtdhviNqr/PEiMNeXMLEp33ZUDSlXz++JIt6uiKMbTOXnbI/k9ZQFTqCkQyunYLeUwaTU8NVHeHYogtdC1Uasq7ioOtja4FB6yvyniXdcGR9LaS+vqKKLd0XFZML7kTOvPMqJ23E5YYjb2u8pQyoq1CSU7bm0LnMvpSV23Xt/069MCont89O+YSjY9ST/Jv2ZTDvzxw2UNz9sMfaU9XJQH2ppYoC2SCBJBtvAYMHPKIjx3xLEY5AFzLDqAJppx572ivriIYVVaCZbRuSfZmHqEw2Ylv/7Te72qhfx+/hiuMtgxo4537cOXfKOXcOaTf9snPuT9Z3fyfwonPu1ld5mt9SlSiltl73678FPPsNOuW3LPKORxlpWrdKFqsejeszikTjjGJ+KjqZbRQtQzBxDO4zFImi/0ImfgYOzKIgvj7C5JbmXRl8bn42Jd7V6FKhjMM5hdEOm3qsPOOIBlI9KFeTu2auls62xHcMrWvSOphvBeTrDWZbHpPzAgHOuiJTUUXSK56elSF4uh6yON1i9emCxZZjfM4jXVWc+sQBzWcP8A5nciEPKjY+P0fnMLtQUTYc0YHoKEVHgsxp7BaYrCJbCYkOU2wSkPYVi3WNNXD0iOKef/dF1r5UEh0oNn5jQPQ/9Oi8PGdwv2F4f8TyTItwkIG1tJ8+ZPbQGum5HtufHPDqD7fI2pqiE9TvA6QblqJnUb0c2yppPjBErWTgoHnT0XkFZqcM7Rspm59SrH/GML5HiGv3/j2Rlg/GjvE5Q77TIesaFtuKMlZ0XoFw4ETpdaYxuyGqlEXZW4qkR3QkVaQ/FQ5FFct3pPIV7auWcKho7lY07lriQ+nxl5FwHZSVnf7gIWherxFEFrK+SIOkmxXpWi1maGtHPYdIvQeOyflaiVfJDGB6VqqQxXbNBUIqwzICfwKtq5rwwBDta1SpyHqWMhHyXbZiqWLRrZrvwGLLkW5UTC9Ypucti+1jOK7MHrKeEC69pWJ8wTA7K5I5eUcSQBVJ+8l6klhNVr9nGsJa4yxdkZmJM3L/satlMLPMtmRWqCqBQGc1CswG39RL/SQEVaW/6s/XGkopo5R6Uin1L+rf+0qpTyqlXqn/7b3usT+ulLqslHpJKfU9r7v9/UqpZ+r7/vt6zoxSKlRK/WR9+2eVUue+2vm8XZIjv2VuoZTaVkr93Ot+T4DvAv7plx37V+sX/zTw7cB/9Faf7O8k9v+DbyE8KmhdXxDdWZAclIzva9O5PCc+yNGFLOplokm7soO0ITRv5ehSJCHKpo/KS2wzIjrI8acV4dhy9Q8GzM+VVKHj7NYRUVCQl+KuFh8WLNcCcDDbCSlDfTJcDAeataeKmtQF+99ecPhISJkoOldy+i9m9J93cH5B90VFMJQdn0mlXeYMzDc9zv3zBd7SER06bvzgGihFudqk/9k9nKeYn4oJZpbOc+JrbjIwuaV7uSCYwHLNxynYf8zn9re3uPldTfyZ+EdEA2nBvfATDxAeZjTvVNjYxxnF9HyDYAxHHyiZb3jc+J6WDK6tZbFmuPmdPumpFmc/kbH6qT3imxPCm0NaNzLiXS3w06mPd+QzvtnBWYVqlEzPKfKW9NnLyNC+PGXliQH9ZwXuujjdpH11weR8rRl2JmR8QZO3Hc6D6VnF+D6R7vBnwqrXmbCpF1uOvGuZn3JkXUe6XQqnI6jlxgMY3i/Vx+iCYXRJk/WkOgxmjiKRymB0rxDeZmch3pU5RDhUJzBUp6BsW1xUQavEtmWY4PVT3JklrllRbOTYRiUkRyeD+WAsC3J6Oidbr5g8VDC9UJ1AYJ0R7aiyKbt+nQn6Ku9IS8tp0JmmcVPLe+xgfrasNx+CGis6YixWxuBP9UnFgpMKI9mVjU3RgCqWIXfRUCfiiZ7wWaXyiRWT8zLDWKwYiqZsOIqWYn7asdywLDYd8zPl23DV1y/LffWf30Yco1OP4z8Bfsk5dw/wS/XvKKUeRNbXh4DvBf7HGpkK0ub/MeCe+ud769v/HDB0zl0C/gbw33y1k/mmEACdc78C/Mrrfv933uAxd4Dve93vC2DlDR73b78V5/hWxeanRqisgMqSne4yPeWx9sUpepFD08dLLZPTMsD05+Jk5k+hig3hzZm42M0LipUG852QMlI0dksOH/Kk37ta4vcLDj+5w+KRJXbpoVKNP5gRHFQU/YQiVqJ6O5UFUDnFbNsjbyuSOw5nAvKO7ELHy4Dm3ZLGbk7yP3vsPy6Lwvi+iviOkd75pmFyEVaeLhnf6+g9KyX54IPrTM9odJFw+p/v4+KAKvGxXowNNNGREy+OsiLaDVBZweB9K2JRWsHyvUuygxAbWja+bY/JU9tEA8vkQozJ6z76lRF3P77KYtux9mmPg4+UmGbJre9fp3O1Il1VJHckGVnfJ++us/qUonEnZ3xRBAfju4bF6RJOLaUffjfCn9bD6VWYnVXoUo5vXlPkHXjkB17k1b9zH6OLTYq2JV+rULW0RXt7ylx3CAYa6zl6zyvyNsSHMNsRTkHZK1G+pVwaWLGQiwx464rIgORdEffLalguWoyf/LkgkJwS21x/qiiashMXmLYozZ5ATpslLtciApgaCCsoNf7TDZZbFfgOlZSiEdat8CaGxaaj6pR4zQJ1FOJ8h8o1rlmRhhYqhU41tl2iUkNR+4kHQ1NzNqygnHJFuioVCZ6jccNjsWXJ+6Ie4I8Flux8hzdXtXulomgJSGO5puoEJdfOcl0StIgZKvFsciKZ4k8U0QDSVUXly3fXW8j7V0XSXrOB497/y1ts2PQV4hvVqnoTdOoPAh+v///3kfX1L9W3/yPnXAZcVUpdBj6olLoGtJ1zn6mf8x8Afxj4RH3MX66f66eAv6WUUs69eWp7lzn+Fsdyq0F8Z0a61SQ8SulcgWt/sM2ZX1hg5gVlIiiTztWcrOvR2LU0by7xRkvKTky2GhB4mrJhCIcl8wcCVr4wJdnsidWnVdhKMztfct/OPosi4ObNFfY+0mH16QU2kFnB/LQhq02cvIVIUDgFg0ctyW2D9WRmATK0XK4FHD2k66rEEgzFjzocO+bbmrM/l3Llh9voHFaenTGbJBw9bEgeP2Q4bLI7X2PtyTneOKVIEtaeSikbRvD1uUXlJYvzXZSV4ejeRxzhKzEbnyuYbXns3drBbldkHU3aF2XbtN9i/TdHdK4V2NCnjJw49i0M4cgx2zKkq5bwSOYoVe1Cd/C4ZTgLcEZYxsdltr4SU26UuM2MKvJPLE2Pd986h/lph8kUT/7yfcRNxfRRcddTmcY1Shr9JavNOYutkGXLJ9irPeAXkLclaczPlfL4QoQhWRrMXBOMZPjvLSQZ6AKCpSLvSgsqHErbJtO1/p+DbFVQaE4hciHtCr3QVK1KlGOXRhJDTT5TUw+T1rMqp/AmGrfQolhby3w4T0QCnVO4htjj4oBFjdirwPYKvLDCJSVVZlBzj3y9RM+McD/aFdbT+FN5D/2ZpmhKNVIZkfs45l4cM9H9iSYciOtgGQsiKutxQvjL1kt0pknu6BOBRGr9qSqQ77Iw2qU6zV+3zbRabn+7wqG+1sSxqpT6wut+/9s1sOf18Tf5rejUDefcXQDn3F2lVC22wg7weiXHW/VtRf3/L7/9+Jib9XOVSqkxsmk/fLOTfjdxvIUx+RMflkpiEaGs4/DRJq2bJc1bjsVmSDQoCEYFpu8xPhfQf2GBKi16UeB8g05LGldz5udbWE8xOWOIDxyqqmhfz7BeyOCso1j44Fsu767RSDK8pMSGAXsfTIiOHJMLAgX1p+IzYTLhU6QrIlkdHYgcRTiylIlitmmYn5Ihsi6hcUOTrgppK+1JwhneF3LhJyeoopLzeWZB80rE5eYK9/2vQ1BLUIpiNaGxV4kwX6jJVxuYLEKnBVnXYDLHbMegc0sVOuIbU5arPfKeJTjSpCuyiHsLhVMOG/tE+0v6lWO27Yto4Lp4tJeJLFg2hN6LwlLOW4poX+xYWzct+x+UxWTli4bpWTAjj6qlSO4aUQTOxH1v7wO+eGw7qdTm27DyXEbeDkVWI3FU2rCYhty1CmsV22eOGK3E5JlP+BsJ4/ss/lSRXPfEYrWGwjoNK89mZH2P+aYhHAr3waTH/X5HMJaF13rCiSgbFn9ucMicIBoIU7pqiAimKhTkBhc43Fx4NYQVzhrxv2hX4DnKFnj7fv0axMPbaYfKFbZSkGtZiA2SoDyLqlNtufDwmzmV9XCeOCjaxKLq9qhrlhRG5juCCKzNmgpJVGXLUTYsZVzDZUcyq2jcgckF0bQ6TvZV4PCHRixrS3lPqpZFpzXfyLfEBx5VDFUk4p8nicKC0nWSfhvja0xbh865x9/szq8BnfpbDnmTU3mz27/SMW8a7yaOtzKOGbMbIZ1nB1RBF29eknXEVNpbGFzDo3knJ+t5KOvQWUm5Uk9MLSzXA4pEkxyUrD5dEu7PAQj251QPRLi5h24VGK+imAekV2PsmZQygjP/fMDgfT22Pp0zPeMLLFIJ+sd6siPTuaKKFN3LhSxsnmJ4yRf/81RhlnIq0ZHoHE3PQ+O2oGiqZsB8OyTZyykTQ3J5wIWfrkmMGw2CgyVZV+YS4VFBOMjQ8wyc4+Ajq1QBTM8pLv3EkBvf18OfweyeDr3nJjjVliSXyjlHQ8f4gubgsQbJviUclZjCMW8p8XD3BMWz+qWKxZqmjBTzLfHYqCLZbc/uL9FTD1Uqjj5SoGYeaNHDWp6qRGV1rphteZz+hXn9tyrmW4ZwoLj9baHoQVUQ7ykWj2dUk4BlqYnaGXeurKJq57nxh1O0Z9HDhHTD0rkC0zNCLKwCRd7xasa2ZXJW5i7pqqtnQSL9Ua4U2JFgZnWhyPq1tL6G2WlJ6t5UWl42kF23TsVvQzmoIo1tVARDTRo6/AMhK6KhjCwYcHElrGuj0NpBpbCxE8e9Wk3WX11SFgYTWWxlaPSWzEexoFw9i9sqxM211LikoowqSqdQucZMNTZy5OvlSctLVYLSWmy5es4jc4u8Ky2sok4wZiFV7uxcJeeqJXmgHd7AZ75jxR0QeU+OXQGVVehUwduJanKcVH2/w3hDdCqwp5TaqquNLWC/fvwt4PTrjj8F3KlvP/UGt7/+mFs14rUDDL7SSb2bON7CiAZi9RmOSpZnOsy2DX5X075e4bQiGOW4QGNmOTrz0bNckkYljN/paYFiBmOHqbWripUEsywZ3dtgco+lcd1jcUpRtgqa/QWup+CFNrqEqz/SQ5WK+VZAsudIe5p0BbJ+BZ0CdRRQ9CqCsYe3rPDmBVjL6jLC/3ROuhoxOeudKKua1FF2S7yXPRFdPJrT3Ztw/Yc2WPtSwfi9q3SeOiA73cP6ivEDLXpPHLK40GPwcCKKpVGLxl3L5KLAW81Cc/i+rqjBPpsS3B5z/Y9usP5kQTRSJLfmpJsJZSS73vkpUZ+t7jVkq5bu847ulYz5ZoD1FYP7ZQ4zeKzEGxs6l2GxKQtmVWpst4BCY+IS77aPzuQ+M9P4c0X7hshq7H6kcYJo82eywHkLOHqvoMOUhfDZBBvIQDmdCoIKp9C5wTpFZ2fEYMcHz3LwWCBooVTaUpMzQhhUlQyFJxfA+e7EkKjsVNI+0qA2UuwowClLtOcRDoAVRdFw2EQ8NlQmlrYmVRT9ErRDZQb/0JMFeabl/Z6LORdOINJ66UmbS4GdS1J1oZXZiFXopETXTnqlNbhKMZ8lYo7UzbGFwS49vEZB6YBUg3F4rYLSM8L3KBUqsLiFEYXkTCqLYxFEMeiWSqLoiqKtKhRVS4b8ZuBTtV6bKQGU/QK1NODXzoylkaSRlLiFh6o0F/7SZ96W6/44vhEzDufcj1Pz2OqK4/9eUxr+38CfBv5K/e/P1If8M+AfKqX+W2AbGYJ/zjlXKaWmSqkPA58F/hTwP7zumD8NfAb4IQQB+27F8XaFt6ioIoHd+vMSk3t4qcObW/xFSRV72EDLrlwrgtAIKqZnqIJjsx1LGSucUVSRAedQpSGYWc5+omK+4ZP1NGVDsZiFmFsR/ecde99R4O/7dK45WjdyhveFBBNpVfkTTVkG2MiiCtEOyvo+/mCBTQL8SYYNDHnbkBxaqokimFiKhubcP3U4r2Sx5uF0h/jWlPjAcfiIz/oXcybvWaN5bUZ4c0niHCjRvsp6irUvZux9IOTutwucWOWacKCYXHKsP1GhCku+0xFcv3MkNxaMHmphjaKKhORVxiKH3ritaT6laN7J0blIWZglLC5azELRf9IwO10PT0NHvioChLMzWngIvkX70LrqWGwpTv/CgnQ95OghQ3LH1bIV0LixoLrYwHqK0QOyuC8u5bIwz70T32uK2hM7sNiFR/slj2HRA8+hQoc9lZIfiraXDaWNYzLIVwW1JMQ/8fUI9zyRALcKFzjsVJKPykW3q2wodCYzERaSUG0gA+QqcOiFwZvVvIt6N2/91zw3dC4ExiqxENcDE8+iUgOew0wNVd1NtzOfbBBA3brSeT2vaFW4QmRtlC+LvfYsrulwpaacBKioAiXDcLSDuMItjXA8AmSYX6+tztSVg1fflliUcRjtKLtKWmGhwwQWpZw8fy9HOeAwPJl9uIWHKmoDqLc53mIC4F8B/rFS6s8BN4Aflr/pnlNK/WPgeaAE/gPnXFUf8+8Dfw+IkaH4J+rb/y7wv9aD9AGCyvqK8W7ieKviw+/BzHLioqKKPdKVQExmSsdiw0NZkcUoI4W3dDW5yqeIa1mShfSZlYX4yKIqR7phiAbyHUi7Gn9WicdE4DNfCBA/GMHeRyu6qzNGRZv5jsfyB1K8fxWy/5GK3tMyzERBVRl0Aa3rEA4KXOhjxjKbQIX4c8v++zy8FHY+OSW/v0XW8wiHJf7C4i0qbvxAH13CmZ85wPmG6FohV0wt6+4aEcmNOeEgwN+bcPa6o1xtces7GyxPFczvKwlv+TSuz9DTFNuK8OcR09M+WVecDsvEEe8rovlxglAEI/GxLlqG+abP0cOKjc9XTB4vaD8bsthSlE2LDaD9KkwCw3JNJMHznsXbEzOnwSMWbwl3/qOC3j8MSXYdw4cd/WfEOe/lPxsT3xQJdQf4Y03RLgjigswpvAOfsucIDj3yzQJ9EOC0EPzCI5kvZKHFiwuKToEehjRuO7zUsVyVgbH1a0XXUtG6YoRBnitst6T1bMD8jFQVZqEpOxUWMDON84TA5y2UeHUHssBaLRBYYfFL1eI8TuxWqzqJJDc9slVL1RHIqosq9NSTmUkmVZULHDqTQX7RcQRDSXzO11jjcMoRRiVVqeUzt6CDChMXYosMrHRnDCYJxTjEnxhBSLXLkzkMpYZKSfWgHUqBF5b4fkVVaVTT4QclxljS1Edrh+kvyRcBrqo5TIGs0noh7cZz/9nbXG3wjScAvh6d6pw7QnT83uhx/zWCwPry278APPwGt6fUiedrjXcTx1sUZigKsa7ycEZTBaIamnYNy1VBy5QxNfpHdp+6dDT2S7x5hQ00ac+nqmUZ6Pt4S2FhzzcjgqnFKYhvThifXyHdEmmKounR2p4yOmjidzKap4eMn1pl/oA4uaWrimTXEUyF2e0voPtKRrA/wzZCKCtst0GVeMS7C079qs/wUsSN7+9IuyoHZT106bj+vSHeUohzd75rDVXB1if32P+2DSYX4dI/OITSgm8ws5xivYXOK8qGx/oXC6Z7nsiJnIO7v6/D9icrdFrSfSVncs7n4H2KYCQMZ39e0by5pEgaJAeWowcN8aF4jHupJITD92oaz0YkhyXJIRy8x8NbCgGy+xIMHnE4H7y5EAwXO47N3xQdp/D5FllbWOreDA4/KLvl1d/0OPxIAaUC4wh7Ke4oJssNfjOn3HDogY/OFPGVAL+2RNWVzC9m25qsUJTG4O8FmAwW24iD3VIW/ehAkfUhOhA4cL6doyY+7WckCZmFENnKjiCndFRhE4UrNCo15JETWQ0D1HtL6wPKUbYqVK7R3ZxWI2Xqmqhc448MRdtRNSuUJ60oSpljOQ+cX7fAcmmBOV/ReUkgsrZGMVEpsJo89bCpB0baTn6UU+YGZRxKOY5GTaqDCOWJaVSxYk+8w7VvRdPJOFr9Ob6pyEuPyC+prKLQBmssoV/inMKvq5vlPEQHFVVm0CtCdK2mvihOr1a87eF4e2csb3G8mzjeopg90KdxeSI6UQqS3ZzZqQBloXPNMt80sgtEXNLyrmOxqQhHPp2r+oRBm3UVzTtiBHQsBJe3IN6XFkXYCGlfK0j7AWXTka9UTHdbmKkhej7g6EyMO5WxuT7m6Kl1WjdEHsSfOWzoiK87wrsTbCNEZQXLiyuoUhjH44dFS6togX3PlOkgJr7lkexD69lDpqc2KBoQD0o6r+bsv7/B8kKf5KBi/VNDbCNkfqZB3tC0ry7xD2YsLvbwJwXKwsanBlz9oysUrYrWNc3gfT38hWWxqnGeYvUpy3K1hpVaKBs+wVSYwSaH+bbMXkQiHkDRvlaRXJ9z59s7bH6uYP8xn6ynam0v4T34h+pkt37wqAz7h/crWtehCsWEKdnzKBM4/FAJvsVvycJljCXop+TTgGIc4o0NVWJxnqNoO8qWonFDWmvLFY23gNbLPjr3BR1VS4kEQ7mvTGB21p0sNKqC5nOhLPwOZmfqAbBx+IceVayxVmGaBdXMew1JZCR56MJICzIH16xQxqLiEqUcy0WICitYGooV2UioUBZZPykpRiHBUJP3LESgokoqlBhU5ZOtCNig6FjcsRCXJ0oFAFgI2xnGWHy/wmhLZTVlqVHrSzy/IvRL5ssAZzVVobGFVBs6KpmNY8KkIAoKKqsoraYsDc7B0gYo5agqTSPOSPoFR4MmflyAUxRzXxJcUklCewfEu1pV78ZvKwZ/9iOY3FE92CWYVJhM+vdOqbrn/poQ4HLd4s0V5riloGB8rtYnAhp7soiL45rMPTpXLF4qekp6nqE6Ae1rlvm2JrnrkbfkMYf/1hyXe/zAg8/wq7cuYTLF4EHxZZjcU9G85hENS8p+g+V6bZdaQTisOHooIj6yRKOKcFgwudNk/2Oy2IzPa5rXxMmw/2LFfN1jeI+PqsCf5MSjJbe/Z428A+tPlKw8uw+eYfLICofv0TRveDT2Ku780Iogzxaa1o2C/fcFeKmhe7lkcsYj7Wm6rxYyw/A0ZWwwuWN8SUQBbehYdkQYsHFLs/3pJd5wiSoqdn5hQHqqRf/FirwlFUbeFsjr4px4mce3PJH+aEu7zksdZ382ZfhAzPQMhCOFXmrUXJNcD8l6Iqi3uL9mIytHMFIsE8i2SoJ2Rj6MWGYeyd1av2tPYMJVeCyrIb4cIhPiaF/WFJmQPmdn3Ym3RziU6iPa11SRIl8vTxZ7lKOaixy99M8sZEbQUb4D49ArBZ4vg+0i91Da4nmWqgyglwuCClDa4XkV2TyQuYpCUFXKoX0rZkS5pmxXLHwRakQDxonDHhoCC4WCSkv7qNCEnRQdWMpSFvqiMnja0o4yWlHGncMuXlDRSDLGowSbGXRY4XkVo0EDZZyg0rQgubS2WKtRypEVHotRDNpR5h5uaYSwGMnsjPAdUHGgvlGoqndkvJs43oKoAsg7mujQYXsGlMiDl0mtvTNyZB35UplckZ/K8fYDUOKa5i8c7as5gwdDqkCRdRROK5q3X9vCRAcZ3miJDX0RJTTQf7HALC2Hj4TMTmm8Z5vo90z5+VcfQD/fZPXpisH9hvLRGWvNJcura1hPsVwPyTqaZL8kGBcsNkOqULSi+s9qdOFRNCHc8yhjhzHiXOfPHCa1NO9UHPUC2jcqdj/cwGQN/KlAx6enDIePbIjyb1cG1a2bBbc/7mN9kRPf+IJldClg51fm3PqOBrNtQ94WBvH0tEf/uSV51wgxcVWLTEdbUTZEhFAvNN7CMT4X0VuWKGPQiwxvVhBfn7M802HwQCBw1RziWz7eHBq7luWqZvPTE6YXmrSuzDh6pCUy5qsV+Yb0+h2QrtSS8NYQ7huyTUEulU2HN9e4lYx84eONRMdjuanIuxZlNWVDYKb+tPaLCGHlacfknPAdnIb5GeEv6Fxet3I1MbAF+Y6o/5qBDM29pSJvW2xkxXY3UKikgqknEFrjqDKDLTTOKuJ2KgPl0qCUww1CbLtAD33cWkaJASeIpXSrwvQytLHk0wBKfTJP0YVUz1iETLiSUu3FuKy2aPUcLteosCJf+mTDCL+dk+Y+zimiuGSwiDHKobWl2o2ZlgnGgc6gSjzUUzHeRk3es4qiJS3Dysn8RgWWZaGlDWYsxrPoqKAqDbZSaOO48Cee+mZf8m8c71Yc78ZvJ4KZo6plsbHSFokGtrbslJaCP5fdYuUrrO9jUkXeq5ifrklsJhBiWCgubGXiSJeCz1//QokqLcVKg9mpEGvAy2QRR0G65kTgziqiJ1tsPJETDKekqxHLHVC54cMb1/i1bI1oPyPdCEVUblGRt32G9xqyvvAE9r7FER75hANBLZV9RzCBaCzKtYfv9Vl5tqT3SknjpSNazzjSsz2Co5TJfS2iw4Lo+pDpw2sUTYGglonh7M8uufEHYqoQ9h/XbH6mZPBwIpIm24rmDcdiW7H9GxmTCzFOSd9+vkON2YdoXxJyMBFhPpxjcrFB94UJLvQwWYULxJxo61NTbn5nS0ABkUBCdQlbvzyg7MWkPcXejzaFE+ILJ8DrZmyenXD3S5sUF5dEL8TkfSGbqUzjry9xzRx7s4G5EhMvZWZUNCBdqwUGOw5bs9DTVXeiLZV1ha+w3BGIbNkWddfGbU3Z4ESSwxmHmnqsPKVYbL7G5VCVItr3yNsWVWiYSbXgjT3hOzTq71s7pywMthbUc4MQf6Zwy0AqmNQTaC0I9yCuqHJDWfiohcFbKuJdQd55c0XWt7hA/qZ5oUEyguk5S3jknSTIdEvhTaSFV0wC7DSm6pYshzHBvkcwUrQmols1ufAakzwYalQJyV0ROwxHjiLxTuRwAIquoK/MTFM1Lbabo43FWoXNzNuloP5bw33jh+PvpHg3cXyD4/Zf+hZaNyzhxGJ9feLR7M8dwcziTwWiqyoYn/MIpmDyWqzuyJBulgRjjfUVo/sd3qwenBeKvC04//mmR3QIZcNjtqMJpg4zcZSxkVaGk5ZF60VD53pJeGdG2YspWrIb9m5E/OzR+7HvyVlsJ1z4JxPylRizKMRZ7oZIcRcbBSYqseOY5QZE+4qV5yvmG0b80L1aerurmZ3SLPvrzE7JbMafCW8huj1hfv8qZaRYezLFpCXTcwmT8zFF0+FCy5l/agl3Z4zP9VEWWtccuhKF1uG9IY3dimVfko4/rbkNFtrXKkaXRHQRwHqKtK8ouhF3PxLRvC2wWnlPAryFSHdnWrFch9YtS9mNKNriW2FDy+JcgYoqzN0QdzNh92qCdtD9pYjBIxYbW8xMEpb3VJPs4SU2sVQthzc2eKmgtvyJLOTOCFQ23awwc0MwEZ5G0RRWtSprgcBU49cQWn8C4diS9bTME3yH9UWaxuTCLUE78q6rB+cOq4UMWPQrgb5WApt1+xFqqqjWpH0jpE5BcwW7Hs6HolOJ58eeR+5bWJjjjhjFakHR1ZipEY5FBQQWZxWNO47lmqJ5Q6NzcCNh+VtfmPpoaFzxKRuOYBRgcmm5lrHIv5cNV1fiToQUlRP/8Fo92Fs6Oldy7nxrSBUJyjC6ayibQup0gcUOAzLfQ9VzoHv/zBNvx2X/xvFuxfFufK3RvGWxnshghyNHMBGF0WBUt4ACTRVowlFB865ickY+gmAknh3tq4bDR4W7ER/U85ACJveUEFfosU/e1cxPJxTJ8YWqWK5oWrcq5uuG9hUY+YbFhxb4i5jmKw5/f8rh90Q4v6L32BH7+x3MoU/Rrdj9aIetXx5I77oVUCbivxFeDzCZT9oXK8+iKagwk9VeCQdOZgYbCn8iM4RTvzznlT8tZLgzn7CgFI2XB7j7+1SRaFVlbdk9t65K22W2Zdh7vyQNXUDzbkl0Z0q22Txx1lt9YoiqHM7TqLxk8mBflF2HYthTtKB5q2JyzjC8NzwBHigrnhArzxeYzFK0DCY1VKEib2nmGzHLdUW2alGVov2sz+SioWpa9EKz8xslh4/4LLaQlVSJSjBasXwgRe+GKAPBkSZbr5iHmmAkPhjOA9ss8Q99ioalAsrS0LgljnY6FxMneC2B5B3RbKpCdcKG9maa5YYMzqUagvBQCyoqdsR7msWDKUVgwHfosUe8K5IlRV+Uer2lJwKAiaWKZa6kgXhXoQpDvlmSb5ZEt32s7ygbDtuoUHMPb64oWxaaBca3lAsPoorRAxpViECjDaS1FowVzVsyjzN3TZ04a+HCujrM2zKDG188llWR3F5F8t4GU0XRgLypyO4LhZuSqxPhQix4M4Ue+YRHsNipJVGa75h6o453K45342sML3Wk3XrnuHRE+wsO39fGnvFoXy9xRjSnerkluTXHm0eMLgU09gU5VTTEpW12X07ZEEmM7tkRepyg70SU3ZLFhhLL2LBuZ2gIRzA5I7IlqJpMOwyZXIS1zyiUFklslWuOnllD7aQkl8ZM77Ywmehf2TAgOFxQPBLSe0laHYt10amykbQoGnc8ZmcVjZuOaGwpDsWQZ/2JlOBgjo08gqOEfKXi8GGf9aKNUxCOCrxRyuximyo81p9yBDNpvWQrju6LklCsp7BJIK2mrkfj5SMwGopSNJmMpnV5QtUImG016FwtCIY5ztNk7YiiLYvw5Jyie9ly6l8OUVkOShE6RyMOsElA3g1x6x7xviMcaZZrAk5o3NS1ECQcPCrS72XLwVqGGgQiabG9wJVaOBC5JtuxeAe+qOxa0JHCVRAeBuJFciMgGgBO/C+sL6KSImboyFvqRH1xclFEJfOOxQWOshYGXO5U6FSSuOhqSYtnfqHAuxsSHUhLCSfvp1PCa8j6jiqWygUFBJZKQ/NFg84duqPQM4NtlWQ9S+cVef2z0z46r5FoI010JWK55ujs1kmuC83rUkmPLxiUg/bVisNHNf5UGPdVpEhuK5abrmbWQ+eqxRSOxm2HKeS1C+lTrh9wjO4V6fiyWWGWmmMjK2XldVeB+MXgFP5YWniqfIct1O+0PPYNjHcTxzc4yljRfTVDlZa8G1A1BbvfuFsx2/Jo7paEI8dizWNwX4f1J1PaNwRFZDKoEtltdZ8ImJ92tB4eMDhoS/spkd6ystLqgJoxbGWxRYl/edF2tF+BySV5rHIOF/rs/Ipl90OGsmUJL8fMOyE0K/y5wzYj9HhBudIk2bcEk4qsY9Clo3NZbGqzruHwYzkmLpn6Mf2fy2hdzrn13V323xdx6hNTVFFRdCzNKx7zsxXLmx7B1JJFGv/OGJNZqsgQjqD/vAhh+YMFrRsN/MMZw8dW8GclZpJiyor2kQ/WQlXhmjFOKfQ8RRUV03MxZQP8aYmZZizPtJifUgQTmQ30XnR0nx7Jgqw1y3Nd/FmJN5gzOZ/QupGycn2ETQKO3tPGayo2PzNl+ECT9vWMxUYgBMQmlC1bt4hqnkDNmm6tzpnPIkEnpYHwLRriBW+D4+G58CO8uSPvyoDZnyiCsTupiIKpoLBE30xMmGwsUFrvToitQQBVoyK55VEmx/bBCn/PFw0qhD0d7YsXyPGmoug4TKqptD3hX+ilJm9BMJa5BdpBIXIha08uKBse7WuOom2I9jIAdFpSdkNmOwGtmxmzbfE6n56RyqLyIW9pui/WfA8f2jdKDh/2cAbWvlhRRorFmkaX9flmoirgzY9tcV9jwrua5e4tBAwQjMS2drlTiTBjqVCVxltIhX/+L75eFPZtjnd5HO/G1xrjP/lh8qZisRGQtxT+3DF4MMabQTBTxAOLLhzdlxeMLyXoAkYXQtrXczrXSsbnPYq2tDB0KQvD4HZX8PTH+paV7EzLhFq9VLgHeUdRNEWYcONzFXc/aggvTVjcauI8jfM0g/s9krswV5rsXAZTD2/gyTD6tk8wE7e8zsszqtgn60gvf1G3SZanS7wDn6phcA3HnY8lrD/pcernh0zu6+ACD6c1F/9RxuR8DM4QHeXEVwYCatea0UUff+YYPWTpvhIw2zas/2ZKuhaQd3oEEyskwV6Ctz9h9EhXkGV9RZFAsudY/1RO0U+YnNMEI0DDjT/UB2RXmrziaF9zNK+Il/nsUo/mCwPiayNwjut/dIOi7bB+jD4bkbVl8YqOHPsfbJG34eBbDDiLSnJaX4zIVsDmoo2kaukMZxXLOxG2X4hPRUu2mN5MFGatL315fyIAien5Y20qEW+sIkgOLDYQK1hnZKhexVbEAEsFo0Ak0AFv6Wje9PDmjnRNdtlVKIN+p+Q7Ed8Vjsti2+GPZUGN7wqoonkHZtseRQOWpyq824ayIckjGGlmF4QDcfBYQutmKcZf4/LEQdEH/GFKb5hSNQKSvYKs75FWovDrLV9rDTZvWcYXNGCI9wUxljc1s1OKdN0S7WuxqI2k9VaFtXBmPRsJRiKwudiSGcgxDFjmQUrscxsWGzjm5yzuHQHB/dfjXR7Hu/E1haqg94r4aqQr4kaWd5yI0gHe0qLqnVY0qrCewWnIeh7Jbk77OjjjY5YOL3MkdzRFTxG3UhZ7DcxcY7dTitQjGPoyJC5EjloXMvjM25a9DxqqyBL9bJviHKi8xHmard9YkK6FFA2DPgqZn67ER2HsEexO5bzuzihbIWVimG9pihZUD85w1xo0rnostmUWYCNLMFYM7gtI+h6Tc5oi7tK6mXPn94U47eg/Z4lfPeLwY5uUMWx8Zsz2Jw8ouwnxkSCqNn7jCPJCmPWZZXjJZ+fKiGKlweLeFY4eUZTbOWrkYxaywN/4wTW8uUigWx/8/RnNmxHpqqL/gqX10pCj96+wON2i8eqQ5ktDaXVVFpxj4/MZ+4+HLFdh+9dnXPkjTaIDqYBufUdC444j3vfqAbZH1oeVL2pG92l0BTrzKRNH2akIjxRlW4uBUukDkviTfRFXDAdIJdgQZnh8VFE0NItNWeyPkWaqrP04BhplNUXLEe4K/8Tk0LgjPtplQxJQ2RDzJBmSi9x457IMq8sYGjekAtWFfN+adytuf5umcRsWZ0vwLJNHKmG5Tzx0rkhuGapI4OTLvqFsKFRpSFcUZ//5AFVU8h76Ht5wgecci40V1r6UMtsJKGORPdn87IyDxxqsPynyM7Ntn2DsZE7WFu5K99WC6SlP5nM7kvyyVTF80qmqocjupIVlffHyMLU0i/Vk/mN9J26H+h24Sr8DT+kbFW954qhtC78A3HbO/YBS6ieB++q7u8DIOffoGxx3DZgiOI7yWLNeKdUHfhI4B1wDfsQ5N3xLX8TXGMtVzfhCSDiSHnQwdpil6CGtPil9Wts2REdQJFKS61KG29OzIa2bGf7Mo4wgDxS9yzl5J8AedFi5KUijozCkdUOMeWwgKBVVSUtEZ4JwyTtAt+DoAx5rv2ko1pukKwGN6zOCiaF1UzF8QET5glbOMvG4+f1rbH5+iSosRcunaGqCiSMcwShpUPZL7E6Jm/mYiaH9ssfmrx6QbbeZbQdENU+jaIWYFLqXLe1njshP9RhfgpVnHeP72oSjEl3UyqihZn6xK3LuCqK9JRuDHIoSf2+CSRPigxZZEQqiKBNPjWPo8N7jAeEY7v7+NYKJwF6DcUnRT/AXgvYqH+7Tujwj3Uo4ekiS7fxcyfmfzgl3Z6iiIjposf2rY4puROO2zB+qSJH1xCM8W7Gkm472SwZvIT7gykJwaJhfEOZy8oKcYxnLvClviQJs0ZR5QDRwtG6UjM/74jPupHo61iSbnhbTrGRP3kddKPKWQ1eKU/9qRtEOMLmhmikWW7KwWl+kQbCK9lUIp5Z44Chj0TErmubku+k02Mgxf3yJGgbE1wX15s8dRUNmEM3rkDvZhDgP4gNL++Upep7iAv+knUlegCfP3XviAJeEdOYF2UqEPys5eqTB6tNLipYPStG6XZD2PLwMGr/pWK5qZtvSvrJejZTzINozFE2BEpdtkYg3mXB/bCTItXIqWlf+VInfS8tSBZp7/89vn9Pfm8a7rarfUfwFxCu3DeCc+2PHdyil/jow/grHfrtz7stdqI69dv+KUuo/qX//S9/YU/7tx/X/8iOoShAx89OO8FBRtGXXhHEUDY2qNKZwLNd8WXjmDpw7sUX1d6cEqwHRyDFfN2AdnatCUiuaitatiov/JGPv8YTeC47JedmZArRekb+32HRUmznrqxP431cpIzCTnGRZkm4mZG2RulalcEzKY4VTB3nbR1WOKtIUjVriREP3JUhXfMrYZ3mmwKSK0XtKqniNlWdzuq/MKROf3Q+FeAvZPbe/dABKobOKtacszaszDh9rUzR80hVF99WKMoLGZZEmSV5ZgnNo7xhba9GjOeGgSdGUPrw3V8x2NCaFdM0Q7zmadyvKSDN4QAa6ecfj6KEQk0PzpsWfWdKthCrUrDxfcPSgz/mftsy2fMI9BdZx6l8ecvDhFZyW3Xy+nRPeDMjWKpxniPYkUY8fKlCFJrllsIaaxS0S4P5MFuGsIy3KztVSNgqhoog1RaKYb3noypEHSto0dXtGlyKtXrTk/9HAka1A0aswc83w/gbJfinzgQ1N2SzxexlKORiHeHOZcc03NK2bFbMtTdnQNO44GncLqljg3+GBwbsucyGUoP5mp+Q72n9OOEZOy5ylfTUn3J2Dp7GNCL3IUHXCsI2Q5WZMMCpwnsIsS3RakvYN44s+RQNmpyMat1JmpyM6l+cUDcOyr1ls6Fo1weHPQAcOXcp7tlxTFG3AipKCNxM4MqsZpAbv0BdIrwfpjnwWOlP4A/NGl+TbHurdiuPrizfxyj2+TwE/AnzHb/Npf5A39tp9W6NoCtvVZGLKk3cc4UgRjBRloZlcEpZ0OJQBXykjALwFBCPH6lMTlud76NIRjEt07gj356SrXZI9sVD1Ukve9dn8zJTZuYagUGaCHFquyAUZjBWLFc3o8+tsDgrSviHbSNCFZb7uic/zQnbMZmqwucZpx/yxJdaPad6ymFzaFdYTBI+rE0jZcOCJVtH6pwzKWW5+t8fqFz36Xzzi9CdDVFGx+7Eei0sroCC+PUPZCL0savdBiA4dZaiofIXzDWUzIBgvyE91CfbnoCwuCVnuNFl5Ykg0bjM+67HckCsx7wjTOO0rkgNJJs6TdkcwLrG+6IApC7pyDC8FdK4X7D/qYzLw5iUrT8648+19dn7xCIqSlS9N0MuCYNqn8YmKV38so9tZMO+GpHdjbGKFXKfks+u95Ej7mpVnBUDgz8TR0HoIAiishS0LQR0tVz2yFcDKHKZoQeOOuC5aT+Fljv5zU6bnG0zOGXHnA6qGpUg8xhd8wqEVJWUntqTlKMQfymvNOxDvCxCifaMimIgsShVqnFL4ixJvLrt8Vcp7M74oLa/2FU3/S0OyjQZ5y2fl6Rmj+5ss13zaVxeorMJFPqq0LM62CQ9TgklBFRuyrke8D9bT9J4ZMXhvD7OE9qtzSf5lSLYSEQ1y4n3ZKM13ohMNNy+DspBEEkzkOyeQZNmtFy2wEx8zN5T9kqp2KIz6KdndhGCgCb/S1vPtCicbs9+r8VZXHH+T3+qVexzfCuw55155k2Md8AtKKQf8/17nw/tmXrv/Wiilfgz4MYCI5Ot/BV9jhEORGCkTYblaT+REVAXBRLSG3EpFFQUnHs/RgSbriZbRoGoTDSt0LkS+YFyw3GlRxApdKZq3S/xpcbKLCQcFPeuRN7UMDCuHXsL8g0vUICRbL9n7kM/5f3IEzrE420FXYJ1cpI3bwC3F7KyqbVmFl+GljrQjxMXlGiw3LckdTd6plU/3fXrPibBheJTR/9ycF368y3xrjfjA0X96wtYv7vPyv7uGySHe67H562MGj/XRBXRfybGBJtpbsthJOHx/j87VDJRisR5QRoboYMnwwRbJfsnex3p0rxRkK06c787IbEWECC2tF8cM7u/TvC6L5vRMwMYXSgb3eaR9Rd7yWW5A3vUJpgJ1vdGOqcKYsl8QH/bof24fVTmoLJ0XxxT9mMYzEaNLooHUujBmNo0oAyvOeMaw9zFL5zlNGSr8ytX6UiWVLxVV3jG0btZuhLHIyFRzRbbiBNV2YDBLeU+tB50XxlSNgNbVOZPzbVxoUTV3oWyIL3v78px0PSbrerTOzzikSVmFwsnIAQWzTY/ksJJkNBf492xL03x1TtEKWX26YnzekPektXf6kxXJqwfgGYqmof/cgqId0L6aoipLuhqhS4c3K7ChwZ+WlM0AnYuxWOPWknQtJJhIizCYWYJxyexsQpFoKh+CScWdj8asPVkQDjPmW4ZkT9pgVcNnciEWVKDjhOTpz8Ua1+QKFyqqfoEZiJBh1bako4jkrsyH1v/Wp9/y6/vrincrjt9+fA1euX8c+Imv8BQfdc7dqRPDJ5VSLzrnfu1r/ft1ovnbAG3Vf8s/wqxvSdcdwcDgTzXeXIbl3lLQUVQKLyil72wcyWWRzG7cll1VFYouU7JXER3JbrFMNMt1Rf8lWQBQCm8wp2pH5F2P6LCg9cqSO9/RIxw6pucU5kqM7VlUo6QKDJP7uzJ8tQ5/LmZMJnM0b+c1gzkiXRWjo85VzcGjmuhQkVwt8VKFsoZo4EjX4NQv5XjzkrsfbTB4yOPSP5xy+w9scP4nciZnRd23+4qHnqe0riq6Vwriq0Py7TbBzNJ9aYYqLeP72iwfaAqprYTqjubaj2yw9ZmMOx8N6b1kRCvrQR8U3P1IQHLXMd+B8EjTf6Eia0vCnF9q03+xYrojCKFw6Bif8yjqRWfjMyMWW13KpJYZKSBfsfgDTbDrMbwfnN6g98IUZS1qkRGUlsbdgOYtw/4HYHatgzeTmYUupefujwyLbZG5t0Mx6womlagDLCSRe7MK1ReIboEo+VaRon1ZMz+FQIdHirwLwbQjYpaezK2aVzzSFZFFz3pCqhvf2yDtiW7U/uUVus+LirBJpd0ZDSrSnpAsR/cEZJ2A5i3H4FHL4L0d6KYM8ojuZUvnk2NUfuzDIS3K5M6S/cebbHxqjHKO5U5DZMpjjbdUWF9TJtIWsl2P+G6K8zThUc2h6flMTxuKB8TnRZfgTxw20PRfrPCnokyw9uRS+EYadr8lYe2pnLwtraxw5OR9CiHr1ckkU+jUw58Jb4mRR3Qk7UH7Tob3vJs4vq54Q6/c2vbQA/4I8P43O9g5d6f+d18p9dPAB4Ff4829dt+2eOW/+7BUAgryfoXzHcGRIdqvzXXqirWZZIwyD+92yHKzwptrOBIUjmjzWPyFpUwMzlM0bi5QTmxTk13x9VZljFkWJHczJucj2nlF+1pFFajablOGuOP3VJQdy/S0of+itKysJycyOWsoI5E5QUMVy8738AeXuOsJ8x0HSGto9SmL9WHjc07sZUcLtj6jGN4bszzVYuMLC8wsY/1qxvixdbzDGXsfX2frk7vgezjfI9ifo/MYG3qYIiOYVhw+5hEeSZ/daVlU735LSHQE+4+LbEnrqqN1M2d6OsAZSbKdKzmqcowu1ZpLWtG+mhKMNKN7AoqGovdKifM8Vp7LcL44+mXHHImlIrmjmT+2xA2l+htf8mjf8Ek3VlCVeJxQf57tV0VAsXslZbkaML6ghcVc1pBo9Vovu2gavIWVuUUhrca1wyVV4uOMRlnxSymahioymNQRDS3FUIvCgIK0b1h/smCx5lH5injfI+s6Bg/KZ1c2LTa0dF70GD1Sce6nS6xfAy0qh5dpspZmet6idxaMWg06LxpGD5f0PxWy/qkBkwc6lN0IvSwxswybBKisQi8Lei9m6LzE+QZ/VlIkHv6sYrYTUiSqloZXbP3GFBt7mElO1fDJeuKFka4ASrhFlYZyQ1EmHo3diqLtEx6mzHciFusij9O8ack6hrQnlRlaWoFVKEgqf1p7hPhSjQAnrd4q+iZd4F9vvJs4fvvxZl659d3fCbzonLv1RscqpRqAds5N6/9/N/Bf1ncf++N+udfu2xbeXFG2LbQL0TjyBKEi7F7ZiftDw7iVwCiQx9byGlWgiAYOkwmLdtn3qALwl5rhvQEbnxlTNQNUYfHGGXqRgVYQ+0SDiunZmMZuzuhCiA3Fc3p6zopA3VoKNGQXWl+QaV8MpXovzljsxAxWPJSVC7ZIPZr3jZkdNoifMqA0u9/iWHtC4bQj7/ocPbxKfGjpXk4xi5zBw21WPzMF36PzpUOKrTYbv7yLS2TeoZxjcbZNcnUkUE6l0Lnl7M+m7H0gpnm7wPqanV8csPutfean3Um74vCDJfPtUBBkkaV51RAMM25+d0taaevCTF6uxoRDR7qqaF2X9zI+sOjSUjZ9uq9mjHQo7RwU04dyfM9SBJLg4z24++GYxSlhKeu8T/sKdK5mjC5FtKeg6tlT5wrMtwxFU9pHWUeTdRVlJANeMY6C8CAViRQliXF2OqSIVW2wBGlfxA71gSM+Khlf9DGZI+0rFuuaYOwoWu6EfBgeGrKVivXPKqwxdF5dsP0vp4weW6N5c4l3NAej8eYJ07MRyR1Nda4iM7D69JKNT+fgadCIIVbTZ7ma0H4hw0xSin5ClXh485KyHZGuhyxX5HszuSgt+2MhxHgP5mcSTObQsSwhaa/2YR9AFSuW65ZgookORHerjGtaPJEoJLTqGdQ+gn5LBH0WH0rbb7kumlreHJxW5JETVWSPWnpFAB3n/tO31+nvTeNdAuBbEj/Kl7WplFLbwN9xzn0fsAH8tMzP8YB/6Jz7l/VD39Br9+2MKhFbz8r6lGsFSjuG7/Xwh5rWNRmGlh0r5D3j0EtBBoUDRTR0BFNLOCwomh5xVhLdWTC5t4UuHPOzTcJhgQsMNjAEaQ7W4Yz4kHdenDK91CQaWfKuYXpfgd/KCZ5qYK42aN6xpF25KOc7AhWdPpgzudlAWRnOL7bFe1w1LVnm4TdzUDHxviXeh4PHRdqh+5JH844QrZxRqMqx+rlDQd2kOViLf3sEwNH7enReTfF3x4LUKUp2v3OT9vWSKtIcPGY4/XNHHH6gT/+5Gdl6g+WGo2hXdJ/zqCLwpobsgSXb/0fA6B7D2lMZOq/Y/FyOKh2DB0ImFy3hkWZ+2pHckYFrMMoI9yr2P9Rm7ak5i+2Y+Y7sXE0KauZRAN7EUHQtoxXZGqpCUfaE4zCMfZbrEc2bgvbBxYSTingvY3hvQtFxLDNNFQowoveSJKysrUkOSpzRwgCrHDY0lKGsvJNLIq2y8fmC6RmPg8fkEqzCGg7bkYVz+oi4AFJ7mhcNUY+NBiXxrSmqtLjIp/vMABv6splwjtnpiMWGQL/LF9qsvuhqj5IS24o4+GCP4cMOVSgu/eMZNgnQ8wxvmlElHovNkDKSRDg/JdLwtlHhDeQ8w4FidsZShQZ/Dq1bJU5LBbZcE35FFYgGlxL1kJoNL+20rGNENRoBODgtmyddQjCpFaNDuU/aXLWoZc3aBzCpzA7dcS56h8a7qKrfYbzeK7f+/d95g8fcAb6v/v8V4L1v8lxv6rX7dsSrf+3DMsMAaJe1+YyjAqrUZ7mmifbBnxiq2JxcLOFYcPImlz75YiOgcTuVPnfskezlBBNDeJRSdEN0YTHzAhd4qLzEHy6xgWH0UAtrBL2jKkFKqYOErOeIBorRRc36F3Omp3zWv2jJmxp/5tO6MuPm97RYnipQcYUflhR7MawvcTcS5luK5m3LYl1jGwUq1wwetbRuOJIbE3COshvjLTLB+Uc+qrLYZoxeZKw8OULNUwCCcQFas/bUnCrymJ3y6L9Qcu0Pr3D2ZwYcvb/Hck0Wg/iOBw7mp0Riwl6LGF0SA6Yq0kzubTO+oDnzz49oJ4ai5REOHO1rcPRex9anFphpRtFPhCDoaRrXZ+x9oE1YW7A2bmmSPZ8igdGDkqCqpoVWCZmGZS3XPpLFbnbB0r4GzRcH3Pr+daKBWNWm69B92VKGiuWapvtKSTgsKRsGb65wniZfbTA9FeAvnLg4Rpa8o7l9r5hIFS1L1RCp9nTFUPRLCCuiZk7qFEo7XKExQ82Zn1+isxKVFpQrTbzDKXgGnRVgHXsfX6s9yOW7kHcUw/tgttOXCm3DcepDt5keddn6ByF6vMAFPs4Y0q2mJLp6k3ysRMBqBrmhXCvwDn2sB43bmu6rJWWkWayKEq71RSon26gwM40/lWSg6udM9nKqUPglKJ+sIxDivCkbkLwrn384kk2Kt5TbsFJd2EASqg0c1q8FH4N3+Mr8Dj+930l81ZytlPoPlVK9b8bJ/G4MZwQyWXZLGPvoOxGeX+EyTdUQaGvrVkXjjijJKitM4DIWkpguHfFBQeO2LLLW1+jCstgI8GclyjrMssIphaps/TcNZTs6wef7C0t8WNJ7qUAVisZNWP2Sw5864gPH6GKAqdtiwwdg+JDl5X8vZHm6QDdK3NIQfbqJqhTBk02c51hsW6KjEm/pCHc9wn0hXs22PfY/0oeyQucVex9fB+co+gm2HZNuJ1z7oXUm97YpNzoUmx3MIsclIeZoxvR0ePK6z/3UPgcf6qEcZKviIVK0ZaFpvyLIrtO/lAnr/HMzdC6JLO9K0op3F6w+U7DYllmSzmG5EeGUwhsu6V5J0aXl9nd0pPILoPdSxfoTGaN7YfbxOd5aijOi8WT2AvpPePSeMVStitkZmJ7RhHuG5vU5aNGUyjuSNNLtgt1vq2jsl2x8bkG8t5Qqbl4x34moWhHj8wHBzBIdFQRTx84vS0KqQof3/qF4fmcCJ07vTfE7Gd5BQPVqk86TAc1nQvqbY5o3EWBEw6fYaIuMTBLiQp/RI31e/rFVJudh7YkxaV9x9NGc7HQucwAlirTRQyNu7Pc5/9cc/qzEBT6qqnC+bFB04cgbmtatDKdh7YsODkOoFGYgqrnRwKFKmJ7yCCYVuhQuShlDej7DhdUJy1vnUuGVsWLv8QinhfPRvJ3JEDyt9baW0Lph8WdCoi0TRRUprBHgSNF22MBSdSpcWHuhW8U9f/6zb9+F/zWEcl/953drfC0VxybweaXUF4H/Bfh5534vq7D89sIFTqwzlYOwQgUV6TgEoP2Sx2LLEYw1WU8WNpNDOJQBqrKQXJ3gYh9KC0Z2qUUrIBpK0qByeOMltsbRH8s+qMrHpBa74rFc06Q9jT93nP7FnPl2wGLzeE8gTGhvaRk8IKz1VGmKyLK6PebwZhcz10zuL+m8IOerM4XJFLMdn+W6It49lnzXjO6HCz8xZPrQKv68onm3wnYSvHFG0Y+IdhdUcZvdjyg6L8ds/OZYzrmsGHxonZUnjuS0ipLZg6tM7pFfy4Yl2jXoCjY+PabshOQdD+trVp6ruPqHG7RflZaHzuHGdyf4M4iOHEXDcfSoSFmkXU3LWihKzMyglwX9FyOWK4YycRw8qtn5dcXaU5ajoimD1obDZmIMNLpfER5pEZO8OGcxC+g+EVB0QoxvGLxHoLTpZonKNJf+UUYVGvSiQKc5hx9tsfpMRue5Ic4ovDSiaGiCqWJ0L+RrDtNeYm7GTHdbMusqQWWG6IqHSUVGpfdSSbS/xHka/cs+w0dg/1tWqULFygspe49HJLsRg4eh/xyorSXmlYTlVoOz/+yI+YWOfPq6Im9qmrdz9C8FHD4aY4Mlla9R7VAqmKyiSnxMWtK+IQN8k0O6oon3hAtiA4c1iryjmN2fo+aG6TlDdCiaUsoBS4NKKmy7JI006q5HMJYKqHmrxIaKwUMJOhfEVNESNQCBrMv3IJg6dCEmYnlbsViX68RpoFToVOxrk9u/C+YH/ybPOJxz/0+l1H+GDKj/DPC3lFL/GPi7zrlX3+oTfKeHC2TQjdXoZkFVicIowOS+ksY1D5TwOrQCtZT5RHxUkdxeUHUivP0J2ZkeurQUDY8q0oQDaT+oSvpgOi3k79R6S2ae1y0s2X0VLfmpQoH5qhKyPqimIjqUAW18IG2xMnFQKobjBuGBoWg5TLtgsV0P0Xsl1dTABwYsD1qEgxAvdfSeHtF71qCKktazB1z+sxuc+qUcPU3BWsLZEhcGBBNF4zZEI0e62SC6MyU91SU6qqAoyc70yHqeCP7dqQfG90+YNhOCOwFlJyTYmxLcKsEYDn9gHacc44tCDPMWkPVEqmN+2tK6apifckwvWM7/TA5lJS2caQpKEd9dEB4ZVp4qcEZhQ4/hvQFFy2Jjh5lKEz25KV4jiw1HfNsQvNCEbUfeFeZ8a5Jz6R+m5N2AO9/qidFRy8ebl+RrMdZL2Pn5A8p+g3SnxeD+gPRjU7wvtlisB+RrJd7EYPZjzv/TsQhPPtRCOXEwtB5UMax+KWO57hMODdbXVJFH81aO80Qb7MZ3hZStisWWwj81p/1zHpOXE4IhDO/38dIGjZdEir5qRaj1mLzjoSpP2Np5hWv5pGuhkAI9jfUU8e4Cb5wSAGmvR5HIgFpVwFwxP1exCBUmrLDGYic+6Uq9dXYKVWi8KKVYiH+59RBtrxK8tGLele9mmcgGwAaysFaBzEd0rddVNGufGeMo6ioDQBWaYKzxZrWT5js5juc7v0fja5pxOOecUmoX2AVKoAf8lFLqk865//itPMF3clz9Kx+RRUrVF8DSE7aodgS7Ps6DrOtY/2JB0QxOyvesK+Q1lMI7nJ0cr3JLtm0wuUMXYgOLBVWUON8TyQclfhSUFSariAZQxj7+VK5fXTha15YUnYDpKY/lusIpRdaF5YbsDuWPgdsLybYLdFRhvIrKgE0kEdpuyeHdDn4rY7EdsP75ueyOs0x64b5H+wrMTgUEo4jJxSbjC5pTvzStE5X0tfcej2i3OrWjX8ninhXG53yyFcg7lqoljnvhkz1MW5zzTFpCZXFRiEozei+XxPuG+LAkvjNj91t7ZH1ZaONdgz9x7PyK5eA9HuMLIR3VIbg9Fjl2QI8XaGD0/nVh5o9KooEl7WvSXk7zBcPoQUe6Zum+oFjddTjtWK5pvJnItOcNxWI7RlXSetn+9ZKjh32mpzw6VyzB0ZLFqQbjh/tERyXTHZ/x/SVnu1MOP2jJX2hz8R+VDO8zdF7NqRIRROw/NyVbiZie8ll7ds7Bow2yvk8wFQdJk5ZUkYfOKpZbEb2Xc4pmQLFeYRY+2SzEG8058y8rVGklWdafD3mBM5q0Z044ESg4eqSJv3BMT2uSPeHMWANZp0ljt2B0Scy8vIUg3LKerIAurnCRLOA6qPjWDzzPrzx7H9HNQLgtc03yfIO0LwS+YCKtqGQ/Z7nq07q2ZLEd4S0ti1rFoIzl63iigJvUMw1fvDjEkLz+ypaC7qsixfZfe4eiqV4f/yYnDqXUn0dgr4fA3wH+onOuUEpp4BWEGf5vZJiFwikZrKpC4TINnpjeOA+sJ65ok9M+ZQzJXUc8qDC3LGXDYHKfYDQH5/CmOWaWER94OKMw0xRnDMra15KGc7VWsxYE0+EC1YlYeTolW41rCROBwM43PGZnBB7ZfzHDeYqiETA7azFLRRnIfIZSY2ea3PrQqIh2PbJ1WNkZcjRoYl5oivBc4qMXxWsvvihZ/cKE4cNtbnxPG1OIAOHlP96gcVMY0sv1iDM/O+TFf79F46qHPzf0Xs5ZbsjigFOYmcEtDEXb0rghQ1e9yMFoVF5QrrfRuSXveAQzzeihDrNTIorYviby873LKVnPJ+9bvKXm4D0R7a5P67la5qzurDZuZ6SrATaQHbay0Hg5YLHpaF7zwMLgsYruM1rEAhOZSS02hWm/WDcsVyXJO8+gKtkhjy8ErH96ire0jM8HKAdH77MQWdLSI0t9lILgYE71SCR8i+GCfKOFDQyzbZ/peaiiBr1XcvJW7W8Raso4RFeO5XrA/vsU538mZePzDp5Q3P594B34LE818ccFSilox1BagW0rhQ0NyX5BMDdis6tqLxcnsOzlau3j0oIyUWTdkDI+JqUqUcuNZPH2Dn0ZUnuOKtD8ypfuxxt5ZKvCXSq0o7inxFyNKBtyfOOuZXw+xF84RvcmRKOK8TmfKqJ2lZTkZH2pTKpIPlsbOFSlpD2V6dpSV9G461iufVMv8687jnknvxfja6k4VoE/4py7/vobnXO2Zof/GxvOk0GuqU17dK7QC1E2tc7hp1JWZysQH9Rqtr6ijMQrs4wMAYBSmNFCnlQr/EkhSaOS2YDyAOcEsTRPT3bSFCXe4YxytUkwEBZvthIy3wroXEsZvCfkzCcW5L2AW7/f0HvO0bwNk/OKsi84eKcdqtDQLEiej8j6Dm+iObzbIbzjk3cE3RTsTaXacQ6XhOAce9/SEZHBR5bwXJPFD42JKs18LcB/NWZxIeflvxjReMYTf+y0dvcLBTo735EWXvsVTTi2zLfBn5XYJGB8KSEaVOjcEl8dEh7F6HmGCzzSfu9kcVt9Oifr+czXDeGReGqEE5G9QKkTFVeyHH93TNZfxWnFym/uMz29QdFyuIsLUqcoJwGd5z2qWMyhtj6dc/v3RZhU0botIoNVYGRR9SA+Esc6PXeMHunTeWlCu2GYnDNAxdrGmMEkwQHJvqJqBKw9vUTlltm9PcJRQdbza4VcRboCo8qnaL0GN7X+SSeIaABFJyDcW1A1Ay781IIrP9wh7RqSKyPS0x2CQUrRj6g2E8qGrofP4gNjljJDKJpSgVaB8CbmW7WfRwPyrvyxsmkpm5LgdS6D6mOzKJ0pyAxVu6JcKWivztHKMb7WpbIK27GYuUjwRMOKKtQseyJJPznjkbclSZQNQUsF49q/xMh8zfqOaE/XPCip0r2FVCE4UZ3+XRHfgNNUSkUI8TlE1uufcs79F19JJVwp9ePAn0OUxf+8c+7n69vfD/w9IAZ+DvgLdTcpBP4BQsg+Av6Yc+7aVzqvr4qqcs7951+eNF533wtf7fjfqzH74Q/ReQW6L0AwVARDTXwgnstY6cU3bjmCqeygioYiObCi3xMqmjdTgnH+WhXhHHiG8M4MbzBH5yWqtJIkilKUY2fL106gXsQBvIMpk4sNdGHxFhXTMxrvaMm9f3eAdzgluTyg87IibytGl/SJYq+NLCrXOOXwbofkHUf7VYgOFWEnRVXQvjgiPVVw5UfXmDzYI9/uoPKSw/d1iQ8t0UFOMYrQj42ZTyNOdceEUUHeq/AOfdZ/VhRzL/29A3Z+4UAEAceKyb0VVdNy+pMVW79ySDSsaNy1HD0cYb1azXWQEV0fgu+hR3OOHl/lzrf3MEtJONGRI+t6kjQmglqLRhWNWwsGD4TS0sty+QFwjuZzBzReGQhB0UF0pDj334P/XII3MZQfH4ssvYajhyL8ObSvW45tTY95CrqUxJV1FPN1gykc2XpCdJjTfz6n85Jh+tk1nNXoazFFAxY7CWaWc/SehHgvJW/7RHuCYNr+9RJvKeS5Y1vdsimnXQWSPKwRGZb5Oblj/4Mddn61oHUrY/zIisBUS4s/yZlvelhPndj0ztfFa2O+Jaz2Y3jr7JTCeU7IqKHclu3k8jq7JXolp+qWIt/+Os8LG4reGlaxfLELn+wTHWr8gSHaN6w842jeLeUcavUE8RZx+AuZ5ehCZGFsIEZP3lJg1yaVVle85+hcsfhzR+t2hT9zJIcV/uKbcIH/DuNrQVR9jaiqDPgO59x7gUeB71VKfZjXVMLvAX6p/h2l1IMIT+4h4HuB/7G2tgD4nxD9vnvqn++tb/9zwNA5dwn4G8B/89VO6p2s9PKOjuiolIvB1wRzQ9YWIbusrU52iGWsSPYt3gK81OJPSkyq8ScFqrKYo9lrT+gc5AXKGNklO4fzDVUnxjuYvPaY43hd4sAzdJ8bodIC31rO/MxEhuhAdrrH9T9naX1K2g551+HPFco4kt6c/OU2ZWJpvyqLVhVCY9dSPt3CvH/Et+68yueDMxwdrTO4zxBuGNotj7KhKBuK/Q+GNNanFIVhpT9jVgQsxxHxnmHn15ZUoSbthdz5nnWigXhkLLdk4N96xTC+YEguVySvDhnes07vcsFiK6T96hydC2JrsZOQ3JrTf3rE9FKbKlC4I5hvK+IDgRnntd7X+JzHwWMtwiMk4RqDbcfoici2Ly71ie4u0POU/gsVh48Y7vy+BtmKxbYq7CLAbhXc/RaPcz8z5fa3t4iGFYP7fBY7luY1WH22IhiXpH2PrK2Jx8LlCEYO62v8aYH1AnZ+PWVyPaZ5O+fGH/CZnDPc+u4GO79oUaUl2lty9N4mi3V5L8ORqNwWDen3B0OYn3LYxGJmmuSuVCLjC4bBAzGdK5a8Zch2ZF7SuF0wu9CqVY3Fv12X0L4OpoDVZwr2PuAz35EWUXgsnVIv4uFAviPs+uT9Ch3Wsy9lavc9h5nXboTTWlyzFAZ8OLT0Xi5ZrHl4mSTaMtEnvvV5W1qjIhci7ofHrZwqdrIQWUliqhJVZg/FfFNRNCFve1gfpuc8zv4X71BRwy+PbwCqqkawHi8Ufv3jeHOV8B8E/pFzLgOuKqUuAx+s/Y3azrnPACil/gHwh4FP1Mf85fq5fgoBQKmvhJ59N3F8naGcwxtmqKLCnW4RTCDrGDrXSqpIUYaaYCrJBQfxnflJZVE1w9r34A0+l6qCqsJ2G6i8xCxybK8pBjqeOUEMHct34BzTB/qY1JJcHUmVojUu8Mg2GphFyb3/rynFuqPo+CzWPLIOeO9dst2e8EqziV6KmOL6F3NGFwMO3g/R+TGzu02ebuyglexQm7drNIwng9N0Rcmc5wsdygeWjGcxYViwszNgd7DB4XtiNn91QE8rgkGKXogYXutWm73HDTs/u1u/mQqsZecTe2SnuozP+XSeloXetSKaLw+5851rLLYc0ZHAmht7lrXPT5jc12K+Ic6AwVj0mty0RuV0RBVZL3J5X7VmfN4nugu7v3+d9c9NWKy1hTOQWDAOpUAvDc0bcPC+Js3bltEFvxarVGR9SFcNq0+LGZcNZGGMBhaTSUKcnI9rE6+S7isVi+2Ie//ugJf/zAr+yBANMvQix4Y+y1VF3hdXRW9Ry+1vpkxbfq0Wq1CZqn3m5e2SRd4xOatp3bTEw4rptsfkXMRyTQy4pueEpOgcHD2kifdh8JBHFQl0XBfqpOrwp4pwJJ9nulHhGhWN7hLnIMt8KBXhnoe3rLWlehpdOPEfaWtptWnFcsWjChXpSu11XwqKL+9y0rZxWjzVUe6kDaecQHKPNdNsw5LVK9Mxudb5Ylugyt9FENevraJYVUp94XW//+3XKYEDHJvhPQFcAv4/zrnPKqXeTCV8B3i9+fqt+rai/v+X3358zM36uUql1BhYQebabxjvJo6vM4Jbo5P/J5eFm1ADRChXW9hIoJTB0fJkt3scOpDWy3EoWxvo+B4U5ckMwfnmtXaVtVDbgB4vtHIiPq1nD3FxgAs8xvd3yDqKjV8/BOtYbEcsHk1Ye0JQUeN7IN/O2IlTLt9dg1ZB/wsh/S+NsbFH55piueEz32+QbMy5fnuFsJETnZ8ymbdZeRZG9xjylsPkkG+U5IB3NyK+qZhetEzbJb0rogxcdSJp1bVDwskSlRccPuSRb+Vc+ZObbHy+pPHy0QmyzB+nKBtQdWLMcI4zmuFjK5SJSLtwqIgPLZOzmjJqYz3pzccHr9mmbv9GzsGjAdY3eKOFJFvANiK2fmGXfKfL5i/uAVC0OpgUscU9VVHlGqUdgw+U6KlH52XF+KHy5LMyqSEYKyZnRRo8HEM0KOuhs0cwzCgTRd5STC4khOMKfyrIu43P1wv10QIXeNjEJ1u12NDhwopRU6EqhZv7gqZzgiLyclmIsxVL45boPE3WHdGBYnSPGITZwDE/pWjcguk5aTeijhfq2tciFNHA4nSOHft4tRy7SWFy0cH2Ejf18Q588l2fYrUk2PMIl+Kj4gxkPY0/dQRziy4dZaxONhPjiyJ14nyBgx8LXKlK2mCSIGoJEfva7EZniqoGaygnToUuOP5+V7jcgGcF8uu/87zF3yy+xlbU4bG76ZuFc64CHlVKdREppoe/0p99o6f4Crd/pWPeNN5NHF9HmEvn37haqMM7nOLiALXM37C9pEdzIfchAm4gyYNMZKdVaeXYwJf21fFzOCfPUZSgNeVKA+9gKo+rHCrN6LwIZSuEQlRTF2ua/vMZ3mjB4XsTqsihJj636eGFFdU4YHg/5O0O7RslzZdHBA+sAh7Lsonu5ORLn8q3VCuWcFDSUj7+wnLwqIcKLJ0vhMzOOOY12snf95l92xz1SoMyjmnerQgP58JULkrKlkPNDUXHYgNFdrqLWZZkKyHhYUY4dui0wIUBelHQvJlx+J5IoLoZjC+J29/0rCIYyQB5dL9j8zOW4T2GyVmf1acLzDQDrcGVzB5eQ1Ww7LdZ/fwRi3tXSF46ZPVLGfOtgKKlCA+FJFhtZqixT3SgGd9jT3b+/lCDU8xPW1aeUrRuCDR5sR1RxLVp0zBj9ckpd7+1jZc68qapWzpN4v2cMjYcPt6jfU0kOFqvarzvO2QwbGC1kY84eA2Oo4YBRVu8uL2ZZnauIto3BEPNYsvifEu0K0KVVWwZPVzhzQzeHPypwLOtL1IryS1NtupIno8EyeTVQpGbOX5ciKNgU1H6juC2T3DgoQuZO3gLEZFc/VLO7ocC+i8qvEVF5XtMH5YEVTYrdKqxoUUXivBQ11WEQlmpFI8RWtaXZIInVYY3rfW12hUqqtCeRWmHVg4dFygFVaU4/6NPf6Mv57cm3DceVeWcGymlfgWZTbyZSvgt4PTrDjsF3KlvP/UGt7/+mFu1cnkHGHylc3mHy4T9Lg3nUIvstyaXN0g2xwkEXksiHENvs/zNE5S1eIczXBhIcilKpu9ZRy0y/L0Jd75vi+TVAVuf3GN2KgDr2PxXB4KI0Q7tW8pRwPpnFI3biubtivjOEirLqX+xz4X/fQ9/pLFzH2cV1UHE+qcVZcPgzy2HjwjL+eLpfdJvm9Y+1Q4XVYRHinI/pmw5sp6IC+5/oM3ex3rgHJf+l338sQzATWYJd2ccvK9BMMzxBnNM5iRxalBZjjOK1S+Jf7v14OxPD+heLgV8UAvjeTNNEYsuVzhxzHY80p0mzpOveBFrBvd5NHYLQaPNK/A9qkiGxv0XSrw5lJ0KlxrMUrO8PxV/65HBTDX5ZkF1z0L69huK3Q/FpGshTkPnWoouAa3Q05TeSwWD+wxHDyuiQclyzefo4QhvWVFGiis/Yhif98k7cHi7g/EsflKgUoMrNcazeEGJC6y0qypF0REr2axvSTcqvLki2vMomw4sxLuaxg2PsluSrYiHyvQ8TC9YZqctix1LGTvyrqN9rUJXUK4XtLoLHtq6y6X1Q5xFHCzXS/KViip2mAzCiVi97j0eSAURyNcwHljyrYJyOxOYbr9A5zI0z1atKPwm8lN0hLSJqwfjqcLMNWamBX6cWAgsQZITRgWeVxFGBc4ptLYY87sETXUc7mv4+SqhlFqrKw2UUjG1sjivqYTDv64S/s+AH1VKhUqp88gQ/HN1W2uqlPpw7b76p77smOPn+iHgl7+aOsi7FcfXEbaToCdLqSrK11BPX0u8PlEAuDiELD+5/bhtddK+eqN4XQWislyqEK1ovTQCpZg9uMLWrw5Jz3SJboxY+c39k/bWpb9/wN7H15idivCWCtxrLQcbGE7cm40mGCmKnsKlhv6zivbVBSjF+EKMN5dB7tUnd7Cxw20VbP2Cx+Gj/3/2/jtI9iy77wM/1/xs+iz7vOvXdrp7vMHMYAYDDGEFEFwBpEjQxHKpDS6lJVdkrEStNoIRWkZwFUtS3OVSEVhSIgVRdCAFEIQ3hBmM75numbavu59/r3xV2p+/9+4fN6vqdU/3GGIGmG70iaioqsz8pfll5j33nPM1ejFE9sZKOl9oGbU8g70808cJGD7r0KXj7oc09Q93IajIV1L6L/o+vSqXSW/PsO2E/QcjpuehfRvWPzFidrlH+8UxwnS59UcELrKk1wN06UhuT9l6zxL9F61vFRhHfarP4IkdBp/zlrTZfUuMLwWszWtaL+4zum8VYeHEJ+fcjloEcw8BHa8JTNsQbGjqniW+HVIu+VbV/EJDuKMYX1C0Ni16VNCqLAcPtlj+5BwTSdq3/S59djJg+Nycqt1i4wOxh7wC2UdmNHdSwl1NpfzOXPYq3CyAGOoshMgS3AmwAd4saiywoaAaWJqOxUYeSlucapCZwiZ+mxvteaBDPfAkOlFKXGRRrRp7N2bjI+B0g5CO6TjhuXqdYi9BFpJgPaOeL6BcwsOPEb4iUDVHMNubf9ZgphJqgXP+ejnR3uwqdtjIz41QDhqBKCWi8X7iDn+OZbMQsEygGViCtEJrS9NIrBVYKwgCg7WCsz/25a/3K/rtEd+cPHcC+CeLOYcE/qVz7t8JIT7Fa6iEO+eeWSh7PIsna/+lRasL4C9yDMf9xcUPwD8CfmoxSN/Ho7K+aryVOL7BkI8/RJN4xzQAFwhsN0btTo9uc28b6t5E8Foh8vIrjnt1EvmqcYiuagwetg3t53yVGd84ACmxba+Eanup77X/+22qH14jmDmGn98Fa7n2J9fpvWS9Lop1YB2nf22EU4Jbf6TH5KJj+YuGrfd1Wf5SDsSoCkBiKofc9WTFZEPQuWOZnvG7ymLZUSx7n/XuDV9deC/qDuVggQa6FjC/XBFMYXpG0n/J0HrBz+VEoIkP/H2EE0d2uk22IsmXBzSJQJYOk1g6Ny3t63NMJyLdcvS/uMPe+1e5/dEBF//1xKv3ZiWmE1N1FUvPFMjRnPzikFM/v0mz2kU0lvXPVZR9zeykpPNURL7m0IUnx1nlcO2GMhGosaZaNqhS07meM7vYZXxR0X+5YfROz1BTtWPtM97oykUByZ4l3XGM7tPkKOo4wA1qGhl49r6yKG1J+3MODtrIkcamlnpoCQ4kthGUQw+jjvY8AbEcWoKpoIoktl+zsjoh++0V76C37D8P/dUp8ywC4Tx0WkH79ISiCLB3Uky/odiPEZXAdhuoFd2lOfN5TD0Q1H2BHiuanqF1zasR7D2ucLlDpA1iL8QmFln6NpVN8MnisMlvPOHQhX64rafeg6Zue5RY3YWq7215AawVJNGidQZUjT76+40U34yn7Jz7EvCO17j8dVXCnXN/E/ibr3H554GvmI845wq+QXuKtxLHNximHaGnJRg/vCZQfqG9J1692L9e8nBJ9IrE8er7+LoSyOHc456YvG2J7pd2/D92ISFyiDCaeC7ImV/YZe/dS9z5vlWaFpQXSvYfbrH0lDmSrXBCYEPN8AVDMFnY2Saw+YHEzz2N71mb2FH3DXuPaJrUMXnEImfi6IvjCWSOoi8JTndIro8I7445eGCVYOIHo8n1kNnlmvbqnI2HYsreGqu/tUW91GJ+QpJsO3ovZejdGa0rYLsJ1/5oh3AsqNDIxqGmBUjJ6m9nHLx7hWhiCGaarff16F2rSV+q0DtT+tsTzKDF/ntXifc92koWNTKrkFmN1R1WP18wvi+hteHYewSCuaAcWsQkIN6V5GdqcFBcLtjMWqw8VZJuCqan/Veq6njFV5k3YCFfT8hWJOmupXPTMDsrcLUkuekH4XkcQKsG4di/3Uc0gnAkMaVHP1UnvOe26TWIXHlIa+IHxuWKQXZqpIDdnS6cMqR3lG/frdZYJ7BO4LYSaBlsbMmyCLsXkexK6iqg/wLsvN8Qd0rkFztMT4Ycuhu62KAu5ITKMg8ShLa4RnLm9B7jPCZdGbNz4AEhFF5FWc4kpmegFn7ILzzRNNqTRAeQ7Hk5krrjpVDCkaRccphGIQQ0SlLXCmsFSjmSqHq9r+Rb8QcQbyWObzDUuAAl/MDaGJyWr0gIr642vlrcmzRcFCDKY0mP1z321YnikB19qJnlHN0v7+LSiHqYEN4ZI+cFthUjrD3SuXKhpv/8jOxUyviiQu4FXmhuVpJfHJLcHFMPYqLNKZ2Rl8fYeVeHauColgyElnM/LRaaQ4KDRwXlSuNnAp0K9lLCkcfj22DR2xZe7M62I+QkR2dQn/dCdkTe6Gq2n9K6EhLMLdNHV2i/POHkb+SIosbFvkJxSUh2OmXwnOPgIY8g6tyYUy+1UHkNVjP4/A7NUptoXdHatjQtSXl2QHR3Ao2h6YQMvuy5L7YVHwk1isZzSlCSpc8XIEE2Paq2RM8lsvFVlAgtziwMiWq49se0BygYb3zUeT5gckGiKo+hHV32Hh9VV2ESiLf9opmfbJDtmjA0NJVCSi846ba8wrJowLYdGIFZrqCSuGAhMV759pAeaVwmMR2DHml0JjCJR6HJmWbSdAj6BcYBtZ/ZuGlCUHskE8D0rHepDK50yNe9VpcwflahDgLErRCZgx46TOqlXTb21r3vR+kX9ygTSOOJfk3bYQuJqAV6LlCF54z4ITpM2n721CwkTUyygNsCUjqaRqG19V5YRpIV4Vf9Ln1bxhuvSPq6463h+DcYYrFwO+EZ4jQWGyjM0C8QToqvqA5enURs+pVmyfcmjVdc/uoEIsRXVBhUta8sjB/4AshpTnh7xOTRZY/kKmtE1TB+dMnPZrISdTCnc2XE4ErD/f9wj5O/M2f6yBI3v1eBENz4/hCbBIvH9POKcCToPasRylIMFHUqKJYELjHofoVLDfZ2ip4J6nfOUG8b05wqsZEfZIvG+apHSqyG/vNAfMxKDjcD6o5j+wdKWjfn5CfbiLzyraayYfvDq2RnOrRfHJOtSdY+Zzj1WzOckuTrkff2rg23/ugadz7aAqBO/RzAaoELlFfw3fPJ6MgIyTlQ/nW7SGO6MbbtIc6zE4pwZkl2vRdFuWJQ2yHRncD7x685ZC5gMfgVtSR7V065ZNn4CGx8JxTLlvyEoUl9b79Y9x7jspDYUtHcSbGlotxLsKOFumzkSHYELrR0VmfQSDDCcxlmmnBbE21pei9CuC+JNjz3I9rzrZ/uhRH6RAaBxRqFUw49UdjIIUs/4K76ltYtgS6gc81Dd4OxIN7UXsK8AdNtMJFj9kAFAoLpQiJk4U5olfNzjcR5ld8I9EwweFoyeFaw8pQl3fLvv1MegmsCiA68TpUTeBWDdkMQNkhpkdIybGW+6jCScz/+xptvCPu1f96o8VbF8Q2E+a53YhvnzZXmFS5Q1J2QYFJ69M6Ch/HqePXiL7Pi635MJ+9JFEJ4SOuCZe5v4F7BIi/X2oTbc1+F1A2dF8dUp/v+cQtD76ldbDtCFDV7719j8PSE5LaX85ie8zvg4ZkDnvsrPdJrgpd/vMvgOVj6/AFppCj7AXUbOl/wFYw0ftEQmcKNNHKRYIL3HFDc6GFWCuR2RLopGF+CJklYmpXsvKePqqBu4Qlp2mIbyZlfK7nz4Rh5N2bzOxJMDE4vky8p2rcrVj4/olxJcVqy8mRJMK2oBhEqa0h2KoSx7LxvwPycQRaCzk3oPzvFtALUvEaUDWiFiTXVWkrV0/S+sIWwjmqtS7A99Uk1r3BRiKhq1j/p25KHG4DWVsLeo37jUK82yEKi54JgKinOl2AE8ZcT5ucbes9oxo/VyEKjc0E4hekl46GnPbMQ8pPI9QJXKVzNQt7Ds7jnp0F3ama3upAYZKkIFgTHursAISSQbjqCzFEs+YQc7Ujm+QBZCcT5AjMNiEaSdANMKKm7EO/B6hO+qpqd9NL5xUBy4jd2GT+6RDEQzE4LTNtXBTI02FOGplCosUYtiIlIX3XJuThmBDjvG25CR7amjipOWUEw88q503N+yG8SC9oilaPKQnTU0FSKW3upX4CTNw534xXxJq44vuWJY4EG+Dxwxzn3Q0KIfwE8sLi6D4ycc29/1TFn8KJb6/h9/U865/7e4rq/AfwFYNHE5792zv3Ct/hl+Fh8ENS88pVGEhBtzaBuaJbanrAHUDevP9f4OlpYgPeshiO2OUp5xVhrfZKKQp9AXoXoim4dvOJ+RF4R3vJ8hvpEl/13LzO5KGnd6bLyiW3mDyzRem6HwbPgZJf8NMyeXGLpJuy9q/EmTxcFs1NDhi8YBldqbOD70jo36FJT9RTBSHopEwvl0DHZ6ECrwRmBOjNn2omJthWdmxX56bZfpIaSsg9iprGRpX0lwEkP4bSrJXMihIG9hzVLzzbEt8Yghf/tHMFUg3OEOznz8210Zpid7JDsW87+gsWEkoMHFP3nIdjxQ/niwhCr/fNPbk2JthWunUBt/G0OvcKFQFT1wiXPIZrat/6259ggJRzB7JwlvaHJ1y3xjmdIh7d9S2V+viG+q5lcNrSWMrKijdOC2TnfkpHtmtaXE6qOwwWglgymUp7XIB2m7duBMrC4WhKs5qin2xTLlnK9ofN8QDBRvhLMvLCjbCAaWfIlD2/VM78wB7cjTORFNotlgVzsOfTCGyYYFQT9ACcFnZsVphOT3i0oewmdGzCKNYNnobWp2X/YVzUrT5VsfEfkZUQWycDEvk0lrN88sPDeaNoOG/jWV2AFqliQNdueEIl2yMgQhA1hq8E6QRg1iK6jqjTt9OvfaH27hOCbMxz/do3fj4rjLwPPAV0A59wfP7xCCPG3gfFrHNMAf9U59wUhRAd4YuH98ezi+r/rnPt/fYuf91dEsJv5+UZeQaA9K1lKmuU2elxgWiFSSoSUuLrxLaGpH0Y7Kfxin5dekrv56rsoYewxKkvJ4wXN2MV8xS6E+haJ5bDScc77WBzCdA+9GYwl2Jgw3IDhZx3Ncge0Ir024fYPn+DUb4youp4vcO4XMnbfnqJmEtl446d0LCg7Ep17QlyyMUeUBidanPr1GRvf2aOJ4cRncvYejql6mvn9FbbQOCcId71bHMD22wPPEA5h7XM1dz+ksZUACfsPRKjK4Q5CbOAIM0kwhyb2x44eX6L74hQ5yZGjOaN3rpLs1MT7FaKy7D8UevHF/QYtBGd+ceJbXWnE5HKHzrW5tzAdeWixOBRADANcpH37anEeCQPQElHWuCjwHh+BRlXOq/COBNma50+UQ2+ohfDEumhb+dlO25DNIi+ZEVuSm179Vu4q5qcNvXNjqkZR5KH3Fk8b5M0YGzhUrjGJQ54sSH+rTTkEPRc0WmJiL9NvA+8qaQPv3929WZFuC+brASaCcCIpliGoPZ+mdcfRvVkR3Z0wvzRYSJ6HNIlndMtaoQpFvuYtfvN1zzbPV0HViv5LDfN1xfY7fVJ3wjPPZeURU/m6/10OHTZy2JZBxg3OSG+nHCtMKDCpxfQbzynSFiFh2JlTNRolLfuTlChqWO7NaH/f1W/+l/n3I95KHP9hIYQ4DfwgHhr2X7zqOgH8OPCxVx+3IKsc6rBMhRDP4fVUnn31bX+/ovnYu7w+1ex4FmFaMbJscFLQ9GJMrAmmFfUgRo9KXCAR1T1D78Ui9bWShm3HyFkBgcZJiQ21H3D3Uj/ALQ0ohaiaYyb5PXHEND80fQJQkmaQHhlH6d0paMXmR4ec+pV9hLWsf2pCa7OF3p+z/psZB+/t4rTFGcks0cR7kvTqCNOJcYFCzkqQgux0i2DmCCYwPxHRvd4wPaNxL4bUj3t9tuEzIe3bBcF+xvmfHjN9ZIn9BxRb7wq8RpPzC2HZXzgU4nvpTcsRXIfui1Nwjv4T28evDeh/ae9It2t+/xCdObbfA/GeJt7OELWhWen43fT1jGs/2sEGcPl/Ko50v5xSuFhjWgHB7nEbUOQlIl9UiYd+71oSzAzzNUk0drTuwsEjEO16IED/inezS3b8a4n3Qo++WnZII+i9bJmekZgEXOiYTBPSVkkU1+TTADMOYKEh1bS894W+nqBqryBbd/GOhc5XD3ruwQdlX9J/qabqajpXRsi6xeiiT8Lrn25Ib4xBCPLTHaqupm4PkLWjtd0gGkc4EQu1ZlDzEnciIpw6QNDatFQdQZMImlj536kfdIcTj7RrEl9BWA2m49t3LvBDfTcKcYnhzPldbt1eokoFIvefSxUZTKkIkpq7d4eErYpq4n3OGSm2ZY82b8DE4d6qOH4v8d/jjZ46r3Hdh4Et59yLX+0OhBDn8Tjme53p/zMhxJ/Bt8D+6qEO/auO+0/xEsLEpP8hz/2V9+e88qnVEhfH6GlJ1QuJdzyyisaL3JlIoacVsmpgWuHiCJT5ugmC00dX6Xx5GxdoP9NQAtMKsLFGOIfKGppujMprXHNPkohCn5iE8AtiGPjfh0lKyqOkUZzpeY6HdZz4la2jykQUDd3nfBsICxf+meDGD0S4doOeSpY/6YmEapwftXNsIAhmhv7Et+fy5RBVWZaeyZGVYXy9xdb7IVuTdK57smR5uk+2IlEVDF40COsris61nKv/u8R7MpwqKOMAQsvSEzOEMbg4wCnlPUm0wnRj1P4cFweYdoSwjvlpXwHkK4Jw5D/eemtMs9IlX0/oXIXVT+15ZNVqF709QVjn5zXz8jgJhwEuANON2fxAm/VPzVDTEpGVRHcda5sgjGN6f5/Vzy0WzlggG0eyA92r3i98fjIkX5ZEI7+jn5+QZKcNLjUgHTbTzMchTi8cHwOLib3cBlN9BImNDyzxPsR7kvlJ7zvSpP7xnILVz8/987MWGwWUgwBpYPDMHBso6mGKMI5oNyeINDZU6Fm1AHr4CrdYTcnWNNl6i3jXEY38AKOJvSS/ibzBEvjqKph7d8BDnwwkmJYh6Beeb2okTa6RHQPCcXe3z/LahMZI8jIgCAzZPCJIak9+DA1SOkRgkeOAJnmDr7xv4OH314pvWeJYmDxtO+eeEEJ89DVu8p8A/+xr3Ecb+NfAX3HOLbTF+R+A/xb/Uf1vgb8N/O9ffexCYfInAbpi+Hv/BDoID0qcWiwA59sEE0O5nPh2UqyIN70CrpgXfiaBl8woLgyJr3ohRKfk0eAa4XeyTiua5TbB5pj2M4vRjblnwZ+W5CfbyNoiaoOalrhYI/PKt1f8C34FNNfGEXLqH8Mloa9OrL9dfHeKSyPPSRnl0BjyCwOS6yP/uAvkVnxjhJ6tUCVe7nr6tmXaV/3w+DDZpC/uvwIirPcC71a4iMETGYMn8LvdCwOyU8uYwCecJoWdt0sGzzt04ZieTwjHkmLZwihEDSvMTHP1TwzQc2/heuJXNv1jGYvM60VyVah5Rbo35+JVAVKy//aBT/ZxgMw0wlhaL49IbypfUUiJ3hqz/dF1lr84ASGOhSejEJxjfrFP69qYk79R+/c00AtCZegl8bWi88IBNvKABScEsqhoBn6oG2yPseGA9i1DseJnH2VX0rsK2UrA/LRv19Vri3ZZqTxyCkhuaNJNP7twyhFODJMzAUHuVW8PbYBlDeHcIYvGw63rBmksnS/nfrcmBOoQXLEwtTpEtaGkT/5JgCwawnFFenNCudZmfjKgc3VG1zicltS9iGwtIN2s2XlHRBMf274ewa21g9BSj45Rg7JVEycV2SRGhoZZHiGEo9pMaZYqVpcmbN4dIJRDb4TUgSMoBHXPIivBpb96r9DrGyveqjj+w+KDwA8LIX4AiIGuEOJ/cc79xEJI64/hHadeM4QQAT5p/FPn3L85vNw5t3XPbf5/wL/7Vr2Aw8h/5L3YQJDWlqalcVL4xW+oyYeSwZWScGfuIbqSoy+li/RihzpDWEez2vW79cMv8j0tpWDTj3peSfpz3gXQCoKsQWUNNtRevts437bKF4vOYWWxEEB0gTquJBYzGcxiN20sQgj0lu/Zuzgg2vecEjtoYyKFymuqQUx1oqbzbMipX90nP9VB1L69U57o4JQg2px5Fr31cu7iMOFphQu1T1h1gwsD4o0ZkZY0nYiDhyLKMxXBpu+vm9DvaoMZ5Kf8Vs1MA2S7pnKC4bv22NruYeJ1Tv3yvp89zAtcK/YGV4tzadOU6eUOqnLsPdoCCyufK8hPJqQ3rF9chWD+wBLRXsnKpw+OduleENEvlCIrifb9RgHncK3Yy8s0NWp/fnSORVEjF+feLLdxgUSPFy6NQhBt+c1EZ3OMWWrTvtrgAkX75Zp6KSXYybj73UNkDe1Nw/i8onvTMD2F96zvSuKx993oXauYnwgIZo7etYZ4O/fJEy9HciS5bx0uCf3GpLFHszGs9eiwXgrOYZIAF0jCu35PJvNm8bmBJhLsvqPLymcP2H1Hj3jfIgxsfCCi7jratwTZuqPuW5ITM8oyoNvOMVYy2Vw0GLQljBuqSrG0PGU8TRDCEQUNnJxTzCI2ry0hK4ksBHXf83lM5ZOnab1B0VSH8Vbi+MbDOffXgb8OsKg4/ppz7icWV38P8Lxz7vZrHbuYf/wj4Dnn3N951XUnDnXogR8Fnv7mP/tXRjDz8MnsRESyWVINQppYIhtHNHE0iUK1wiMklJISUTXHsiRJAFnhZUnCgPJEx7cNbnppEPEaEF7wsxBnLYQBwc7c77K1wrRChLGYQQs1K4+ql6Odv7W+hbNQo0W+ag5iLU4HVOtDottjRF4hipryVA+d1QT7mRcCjANE5oloo7f1CTKLDTXFyZR4M8OkIcI4yvU24c7cL1L+BFCvtFDzGicCpHMUp9rEGzNcoCiWAoKZwKU1zoVMLnoToUOXuGBfoUpBuWxofTFhdsGwvdul99mYqgsHb+8z/Mw2BL7l0gwHNC3F7qOa7jVLOLM0iSTdNszXFC4KaL00QRSLSinQxFu5P3fOYeOQrQ/2WP8dy/7jfZY+t0txYUi0nfnqaoFoo6qPKkmU9IN0a31SqY2/P4ufSZU1mIbxQ8sAtG4XzE/H9J/a88nXOY/QCjUnf31/sUFw5MMVpmcUrQ1LODWk18b+vVtUktHtY2j2kTyMcxBExwlCq+PnFkdHxM/8TJdy4L/y/S/sIIvGJxzrgRZImJ3rULUlgysFm+9LmN7fI1sX7L3b0nkhQFUQbAqvqhs74g1FJlsQW6pY009zOudLJkXEbJJQ7CWIUrJXaoK4oZiHFISIvRCWKkRqcE7Q/5Jg7x0CjEJUi9fYfm1u0xsiHG/qxPEHRQD8E7yqTSWEOCmEOITVfhD408DHhBBPLn5+YHHdfyeE+LIQ4kvAdwH/l2/1k9Vz/wGO9hvqbuA9FXLr4aQ9gUkk04stitXo+KCqPhqGy4PZsXx6URFtTAlGxxBD2/5KQuBhCOsQRXW08DstsZE+4jKAlxOx7ejYXxv8IiLxsxJjj2G9zmG7CaKoiW4eMH5s6ejy6NaBT3bGcvCeVfYfSnjwH+wzfL5eoGcc5VpK2VVsfGeP7Xcm3Pn4EuOL4dFj2jQEKcnWIupehJwXVOsdEIKDR/vc/libfMnLog9/NqX3IjRtiwlB5dC+7Vj5ot/dJncVdQt6zymSpxPKAZz51QnDz+4ctfs8Ospbo6oSpIFov0LnltElzdon9th8f8ejpxbkSOoGdTCHqmZ+acDkgQ5rvztGzAuWPrXF9KEh8Y3RUdVwtCAr5Vt56vhrc5g0qBtE5mcMRzwbpRDG0Xt2hKwM/S/s+IW+8gq9XtXYUC+n0Bi2PrKCzh3TS37uU/TVkZPjkTLA4XsLR0kCJY8l/K19RetQFCU0BtONvXf7yND/8oFPFFV9VI06LZF5TbJREM4s134kwgbQvjZDGAi3NdlJy/y8oYmhXDU4CfmZBtWvGK5MOD/c586NJfJac3Gwf7Rwtu5I5G5IGDZI7WAceJvYjQimmmhbMbkILnDIwvNhbGy57ye++LW/nN/G8U2yjv22jN8XAqBz7jfx1oaH//+517jNXeAHFn9/Al7TXATn3J/+VjzHrxZOCqSx1G1NPvQWlsHckexZ5mve8yKcOoqBIphpL3uxWGRei7MhisonA8Bp5RFUXyOEsUcJQDuHnkpMGvjLzKKldZgg4Oj3Edz0MORi0bMWF4X0n9iiXu+htyeg1JHpVNUWFMuC7GKf6SlNMHfMTmiqriefOQVV1yN9imVwcoAqoHOrQnQcOrcI6yjO9jGxrwaCGVQ9R3ZfDUYg54poVxDuK+qeo3MTshPCAwwyaG1Y6pZ3G9S5YOV3tijPDIhGvpqynRg1K6k7ita2oe5oulcmNO2Qnbdr+lc85+XkL2/5WdI958CmEShB6+rolQNx6e1OizM94uv71Os9gq3JUXJ1cYTMCpySVKf7vs2zgO46JTzB0FoINPnZHrOTit6XGlTxqt1zoP3CXdWEd0Y0Kx1vPTyQxJvQfeHAVztSfmXCWMjdHBFOD68//P/e6nKxcTCJRnRiklsT6mFKkyqESchXA/pPjxbkUo3en7P/0RbJln9/b31vD1VCvuZwiaG9Mqca9RCVoHVxTDcuaYclW9MOz7x4mqBboaTjmTsncHMNEvIVRzCWFC/0QDsvtCt8kjcOipO1vzxX2NWKahwQ7ive8PEGTgxfK96SHPka4b7j8SOhOmGgHAjSHUPZE1QtT6aqW17lM5pYbCCP3fm+1n0r+TWhua8O0Ri/oDQWPS5wgYfqekhpcLyIAKZzTyVzuABZeyR0aNMAFwXeDMo75fjFMQlZ+nLGuf9th72HAppEULcFowe8nIQNFwZAifMyGm1vO1p3BMFBgYkkrRf2qNuaybmQgwc05dAxO2cxaxXh3YDuygyWS29V+uAMs1oxegDmpw356ZpixbH3mCCcOsKZpW4Lnv+/9zm4P+TFv7BO04+Rld/pq8Jx84cc2Xszppc66GlJ96qldadANJbt71zlzg+dxHaTo5mOnC2cGSs/YC/ODdh9zxJoSeflKU1L0ax00ZPiFYi4ZinBDNtsf2QNWRp2P+CVcKkbX3lY66s2IUiu7nPql7Zf+b4cfjaq2iPfFoAGvTOle62gbnkf7/mFztH75T8sr9wQHD7mURVl7ZHY5tFm5RCqbS3BXobMa6b396k7msn5gPjWmO5Lcz+nmRY4IShP9ai7jtmlhupkTf5AwfRyg+s06APN/E6HcCSgX3OiM+VgnnDroE8/zRGBV/ddTuc0mUZ2akQtsInFpB5abCMvM6LnAlkJVCaJtjSi8InC5QpRv46g5xss3sySI28ljq8Rnnzn0U963jC4UmNCQZMKetcrWlvG+0vXjuigJtxfVA+LL/hXk0U/5AZ8I8/FJZHvWxvjh7MLW1lZ+raHbSdHC5Le8VyNV7Qw7gk1znGBojrdx3YT6vUed75/DZGV6L0ZWEfnlqVu+4QZzAVV12FCj+YxwwYXW2xkKR7KmZ637L6ri9OC3Q94C+S6LYgOvFe4DR1yJ6T12D7TSYKzguTkjGovxhWKasmglktEoWg6nmi48THDre+F8cMNQdQwOw9nfrVCTwqPdBKCvYcDWisZ7k7C9IxC1IbhZ7cJ9uaUJzosfWkGDj9Ibozv/y+QY7aXsvHxNTY/4FnQ1360z53v7hPvlJ7PEGoINPVal43vPUETK0wS0N5o2H5Xi8Hzc4rzA1wa4Q4H7AsY9OTxFV/ZHL2B7pXvwWGyNr5CMZFi6ZmG1S9UhGNfNWSXl147aRxGWR0BEw6TjO2mHgbu3FGFKbKS2eU+VsPuowGtLT9Il1kNSpJdGrDz3i63vscTL7vPazCC4FYEFuLroRcpTAyzCw1uptmc+iG4tZLrN1cIkprTwxHPP32G7vKcM2sHuMjipKMeNNjAa3NF+5Ig8wtnOPEVrJ5IXOxFGsOJ5Px/86lv6LvxbRfu6/x5g8ZbWlVfI2TZYEOFSfypKnsKEwm6NwwmlgRzi84sQdZgtSQ/mWB1SvepnSPr169XZuSI+Pc6IYzFlRXE0RGqxwUKogC5aH3JQ9goHPfo7xVFPOx/L4arwjjPiHaO+dk2J39zQYlZ9PbDicGGElEu9IgqD6ONdwX1UB55Y9tcE1SC9t2G5O4cbIsmlbQ2LfuPCJrU0rmqaFIoP72E7jpM6HBXYmLJUWPS7iukBZN6a9HkRkB+qiEcFNS7CSJ25KsB8c2aze9eY/BiRTh2HNzo4FZLmv2Y/GyPYFyRnYzpfmmHnQ+vMXyhYvTokHBiSK8eeFRRP2V8vycvnvjVbQ7etUKyJVj77IS6F4HzNsAIwfxU7PWseprxhYCVJ+cszw3CuCOo9dEMREpcGJAvSVTRIr01PWbwH1YBYcCRlIwxmG6Luquo2pKy5/kboz8juPhTFttvIQ9mx+9hoI9IpU6KV9gUNytdZG0w7ZBga8HTaMU4LXFSkK35nb3KLU0/oRyG3hlxw1L2BckO5Kswub8B7ag7HmLbPJgRJxXNPMLl/j7yIqCehVBJ4pWcs8MDrtxYR+eS7Eqfaau7aOYDRqBzwfBpR9kTxPuetzI7fSit4y2H2zdhdu4NvKIuQvA6vfY3SbyVOL5KmI++k7q9IGFZBw6isaFJJKqwmNj/tpFATBwoaF8ZeWgnvGKH+PUkj6+WNJySRxWKKMrjxUNKnBLYNPRMbvBkQS397MM5qN1XSK8DNMOW96GwlqafUgwkncPd+GIXG44q1j4nkLV/vZNzmvyERRjpF/PtxFvMBhLhYL6uqdtdVGlxSjA7JVEFxDuC1pZ//kVfEMwEgysNsq4JxiXTi22ayAv7zU4LbGBxsSW+IjjxKcP8ZErZk9QdKPrw8p9d5cTvNkS3Rqzelax+wrH33hX2HnMkVz1arbtY9JM9g6z9vCRbCzDJEslGwcFDKftvc3SueYZ950ZO+7Zk6/1dOrf8fR9CcftP7lKd7DK6FNG73nhEkhTIWUF5bsjoUkjvasXocsjgSkXV0xRDwf57LPf9k5jRu/qsfHrPI64ac2wPLASEAfl6TLai6L1csfPuALlaEL2Y0rQa9IwjNJhXQnavkK3xQ3mvjSZrw8HDHZY+s3NU0YjMIsIAEwqSXa9Uu/XukJOftMzXlZd/0QKdwey8xaSWeDmn2EkIJgLWK6pxxGwSIjPpFQQ2HZNLLdS5guWTIyZZzLXPnYGuoVnyXiVYQbCvsYGjdVNiAyi7vv2YrUu61w1rny0Y3ReRrS90zgZeofdNEW/8/Pe68VbiWJ0VkwAAgb9JREFU+CpR9TVFT5HsGawWlF1FNDELhrA4Ym2ntzOqfkR4UOCk9LyC15AC+Vpxr7GTi0PPtzhEU0WhX8wb30f3PfXFzjXUOCFwgUYYg5yV1CttgoMc0wpRo+aY57FYCJ2W6FFO0/PyIcJYVj6zf4S6wjm239OlvWm8N3hlqdu+YghOzikHAW4/JtpXtO460m2LCQWqdrRuZWQnE8JxQ69WyMYxOadJN0qQkN51lMvedtfLXyhvJ/vFA5pBAsT0fqsh3J5z40eHXH2PgNJy7t8ZgnnDxgcS9FxQdZXXBFgkxKUn9lj61CLxLbg029+xTLEsKIeKy//jDs/9lSHJjuT6D6cMnoNkW1K3YeNjK5z4NT+POPErE7Y+ukp6N4XGcvWPd1GZIBzDqV/aZvbQ0Hu+70z9uVQeSLD6mYyVSUV+MkEVlmCuENpx90MJZ39u35Pz4BUkS5xX3t17yH8Vlz9fEO5HVDaGyNG6siBY3pv4pVgYiekjoqjTivzikOkZTbJnsZ2Fx8jh4yze/4P7JU3bsfSU5dqPhNi0Yekzmt7VgvHFmGAiwQrqrkZYgTQCe6UFq42fV3QbTv6cpUkU0wsaexCyNR2ixwqnFx4euTeRMrEj2hfMz1rmZy02cPReUERjQ7LnSG7PKFdS0l3D8JmS2x9rIRyc/Ruf/L18bb9t4o2Mmvpa8Vbi+CqRbBbIKvKVRWmJJgZVOsKJ1/QRxqGKhnI5Ibk5pjjdJbo7Y/7gMq3ndo7v6HCBeFXVcW8VAUBZ4QKN7cSeyTzJMb0WLlI4IdD7c99LDxROCU9EW7CgiTVi5qGVth2iRwX1wFN77Yku+iD37YzwuBoq19uowlAOQsJRhelEqL3a28y2E/I1QdPSnPq1A6b3dZmdUswfKBHbKbIQhGPJ8pcb0lvzI9lxnCejRXsVTTugiQXR2DJ8riTYnuIi7QfyM4POjW+XNY5ov6ZZSlCTisFzju13pQSzEB6foMoAN9HsvF2y8hQsf6n2C/Ok9CZM8wXhzkmqMwOCncyjyZSmHBzrKu29d4VgDPuPwNpnLaNLChND1bXEe4Ls4oDk1pTyTJ+mJdh7W5u9d1nAEowVVR+wlvR25jkrWpGdbrP7mEbnkJ9uk61orIbV39oiX1rDlZK1Jyqf5O9RDDj6XEhJsd6ie91iA8H+Y13vURE47vsnY58kGnsMbqhqnFIQ6mPyJ1Cc7WMDwcpnDrz8Sm0wg9R/RpwjvzBgetZb+Drp2FlQb4M9TThzBPsZ4VrIylOOfKgYmxhpoW452jcFwmmE8dDzG98P3Ze9rLuoBeGeov+i5eBBz8WRtSDeEeRrMD9rSG8pihVLMJZUXdh6j0JngmHY9ei8tsQEMTr3arpvmngrcfzhDFF7sx1hHMHMzzAAROMQjUVlFSKviCuPyY+v7oEQpLdmr3ufR3wO693inJLYdoKNNbJZ6CUJ4bkfcUQ9jNHzGpVVNMMWNlKookGUxu8qx5mX/47UEfRSlAbbDsnXI1ThcBry5ZDucwdHhK962KJuK1TeEO0VmJaXy1ZScuOPreLeNeHc3xyz8dEeorHo3DK5H6gla78rmJ2RLD1TE0yaI7FD246RmeecyDAg2J6SHA7n7zmnLtSowjA9FyMbFtBdic58b15lFatP5tSpRv1sh9ZGxeb75dFAMd4pMLH2O+pD1eBAg3UE+zkv/cSA9k3P4k+3HeOO4PS/b9h+Z0DTNsQbitlJxZmf3WTze9a48C/2jgbUVDWySvwg14DoVejrMeEEL/rnnH/seYltRew9orEhTNcs00uS1U87VAVbH1tj/z018e0Q0ZQLCK07bk85rySw97aEg0ctZ37JcvCAJl919F9wnPhUQ9OJCDaLY5jtYnYlihLXio+G37YVUywHzE9I5msDgrmjbvmdfHtvRr3eY3Q5pOot2PUBdK5KbARYX006IdCZ5eb3KlQB5kRJ9HIMOCb3WVq3JU0C9XINyrHfVpAYWs9GVF3H3tsEzbBBZopGO2ZnHbISyEJQ9R3BVC4EGSGYCfovGaKDGqsFwmqKnm9pmog3R7g3Nmrqa8VbieN1wn3gcUTREO14zH7T0oQHBTbSqIlvuRwypUW1aEktJCvELH/lnUl53J44FAfsJt7TIw2wkUbWBicgP9NF1o5opqlXUsLdDBdqmn58VLFYLVG18dpTh/pUh387h+lE6HFO58WaepDglGB6JmT/HUN6L2fIokHPKsK9BiclSNCjEllUZJcGVH2HfKFDPaxIdnx77OD+gGBlRl1oEIqlp2vS62NMe/FNN9ZrPR3KnBz28BcSKIeLu1NiQWJUBHNLnUovq3FgfLstFMhSYiJFOKrQhWH30ZjT/z5DzTzKSc4KRB28AvbsAkV+ukO0W3D5p/aphynBfsbWB4d0rzl2Hg8QBi7+65pwe+ST53qP1U9P2PjYCpNLlrXPQPtWTrA9Zf0zcOfDCQ/8P6ZsfDxBVY6lT3tlXhMrZC/xGwvAhI5o35s4bX2XILkeUj+UIa2gf8Wy/a6IM1uv4lwoxf6DydGu9O6HFE2/Id7QjC87Vj4zY/Jgn+zEKr2n9/1rXUCHXRQyvdyl+9yIOx9fIjvh9at6L1vGFyV1R9DEMHzOD8f3HompW6BKL+niNNiPjpjtp+i9AP20RZQV6Y0Ja58ZsP39BfHzCSZx1Os1FBITSqqhRR0E6HMzZMdRXW8zf6SEuUaPJbpdYyqJ6FXYWYCJHeGupu5bTOwh3cFUEI2gTiQxUCwHOOErwmDuWP0Hb3A01b3xVsXxhy9kbTxSae7lGlTmTYP0Qqbi6CcMXjnLONxd3wOPPBIsDANsGmJSjajt4nE8TNYpSXY6Qs8t0eaEeqmFLAz1MKGJFTo3VD2NziwqX/S1I4VznrlsuiFyx0MrZeHNnUReIVshNlT0X8zZfSyh7oaEtfGMa61wkcSkoZebuNhGF5beS5AvC/S0olMarv/YKtEI3MstlIJgbkivjXzlMMoWYnnyaGG0Cza1TRe+G4FEVsYzySuLSRTFUFN1BK0Ng4kE4bj26K3a+RlBbslPxOi5YXbWooqE7s3AD77dolo7MrPyrzV9cYFu0opgd4bpxEwvekOj1S/UpC8fcPNHVzn5OxanBcHGBBcG6MzRuiOZnoPe8x7eGtwdo/MEpGD5ycz3qxfzIRtI6m5ItqoJx14pdv5ICY1AjTT5+Qqx5xPqzjsEZ3+18kPxQ/HHRfKQDcR7hmxb0zyYESrrFYEnmuf/T32S24q1JypsO2Z6PuXgAe+kJ2vQc9h675BmpSTYDOldtdSp5xXNT1uWv+AfqllqY2IvzOkem5LVijBayMZrizg75+6HW1y6FZCd7bL7mCBpVWTrIa5lUHGDVZL2dxxQvrCEWaoJBFTX2ySXJgTKMA0TahnCOEQPS7iVwKkCpSx1I8GALIV3fOx4Q6m6JXAyIt1umK/7luLsvobBP/mmf5X/wOLNPON4i8fxOiGaY6b2kZxEXvkkcC/B73BnDcfw18O/DyPQEIXM7uux9Z6O992uvP6VKGv0tESW3vo03syo1tpeyBC8RHttCXYz0js54X5B09LMz7W913niJdf1yA9Cq/UOphseLeDFil/A6k5A92aDrLyqrFvIrsuiQs0qgp053ecO0JlB1nDupzcRxlJ3Atq3HJ1bDeFEcOlfTVGlH+hiXkk0c1FIdaJLdrZFtdaiWEuoeiFVP6RcTggmFTaQTE8FlF1BNHbMTiriPb+QBfs5epzTujYlPChpX50iG8f5f1dRtwX5sjrmJjh3zIo/lAAJtBf3M5bxo0seRh07ymXLnY9qbBpx9md3mFyImZyNQSvycx3KoZ/NtO5aT65c3Nfpn9vyBlg7M2ZnYi/iuEAwWS3QhePg7YZiyaG2QoJ2hThZIDKFrAStG4ruyxDfGB1JwR+ho5yj93JOnXr5FecE1SzEZd6U22mLUzC6FCxapp5kuvSMIV831F2I9gRipjn5iYayK9h9nyF7e04wlZR9SbYesfHBFrPzluz+EvFkh6bQpFHNbC/FVYp6GvmkEig2PqhpuoaiCHCpQcwVrc+lMArZvT6ElRJKSTkPUWcynBPM5jGD3hwCz7tpSoVJLHauafY8AVXlEp0JZC2OhAtN4qjbgo0PaUYPQPmu+ZtvpX0T8zjeShyvEeryRd9uupewdfj3q+QfxKvZuq8K20upl9s0vZhovybdtew9kmBirw9k2hEu9Iq7es+3uLw9qfQtnUARjkrQEjkvEUVDfHfqCWLOoeZelkLkFfUgQc9qgt1swfHwb+/+Q5Hf1fUU+UqAjQJse6EvZaxHgdUeeRXeGR/5bph2SPryPibyrZT+iwY5zsiXfVtIlNXROanXurhYE27PSG/OF94lHp2z/1DAzuMBBw+2mZ4NEQ4vr9EVdO40jC5F1J2A/cf7ZGe7zC90KNYSnJaozLfVTv/8NsMvHhzrcR0uwPcwpqkbRNmQ3Tek+8KYvUcTzvyKof+cIN4WR+dj+MQeyX6DaUdUHcX6pzNsAJNzkmalc8yxWBAnzSAl2amPNgPJtQNUYel+aZfTvyIQQO8lcNdbNNOA1i1FMJYsP12z+vnp8WfoEObceIZ+sDWhfbMgnDjkzRhq3zZEO+I7AbKGYig4eKRLtirp3LLsPC5xkaV6KKN8PKNzVXFwf0Dnjkc9pU8lFCdqJpcsZVfiNAzv2ye+HlGuWLCQVwHp1ZDuygxRSVQp2Hl3j7rjWP68Qr+YgnQEI8nkbRXBRHDy0g5KW5KVDFdK0rgim0VIZdm5NfBy8IlBSIdcqvzrcBDuKpafdL5FJkDNFdWyoWk5xg8YqrXauwFuJNz/f/zc7/3L+20Ub2lV/WEL5xa4+Ne+7tXxyuThjtniUnqL06xi+tCQfChJ9iydWwYbKqq+Jt4uKZZjdGFo2qHXxNIxwajwTOfDHfYChisAAo0sDXUnwMTKC9R1Q4JRgY0DnIoQjSU7ldK6nYFISG/NKVdSgklF04uOhBsPZyS2FSFnBU0/Re/NKE/3ufORiLO/bDl43KKHBeNLLUaX11n/dIHK6qPjbKj8LjxUFGs9wv2KYOqVcQ8eCFA5EPvBqM79uZqflDgJyZ7H94/uC2gSmJ3ShBPf786XOujcEc4MaV57rso4889byWORP9Mck+uqmvTKLraXsvrZCXuPdymGAhtBuRwzfk+HdNuw+5gkOuhw+pd2mTw84MwvHRxXG4fvcRR6SZPdKVVvafFYvgqN7oyZPbzExgckyY5gcsnraeksoHXH0iTec0ROPDTbJd7jY+s7l1j7xMGRtljT0qx++oCVL2hGD7TZ+k6DmnvBxnTLMfzyhLsf6dEkoHJBOBaoIsA+XtA0ivlJx9KXIb06QlZLzB6s6C/PKKqAvWGIyxXl00souTj+VEl5pUtzrkbc6aKmkv4Vy+S8JFifs29Tepf2aa4MqNYa3nH5BsXFgI1JF+cE+TRCJIbpLAErKPcTRGyI2yXFRsszxfcVyZ4kP90gjDfpGrzYsPewplyxRNsKWQryszVUPhGG6288X/GvGo63jJz+MMa90Nkj7+/XkQ+5FykFHDO3jcX2vIptOGq8lLj0C4oz3jlvdiYm3m98hSGgSQPCaY0NNcIsvDSaexII0PQThMMz16c189MB4QRkElD1Qy/c5xztq15FLt7yxwWTCln5pCXHGeXpPtHGxMtwLGxoZ2cT+rtTTCJZetqg9+Y8+Pf9gB5TUpxqc/2HQu7/R1Ov6us8wqzpLCTWu4q6lZAtS3ThUIVvSbTvWIqBpOoIbAAm8X36yTmFzh116kX1TAR1xw9LZeN5Fk0iKLsDZmck65/SXnSwMceMafAtwygku28JaRzxtX2QkpVP77H14SXyFcGNHxLc9y9ynBSsf0YzvqCZ3d/3LP/DWMymXCte2PT69mNya0J5ooueVX6uA7Sf2eWkW2Z8QZNsCWbnvLxG/xfmVMPYK+weki07EflqiKrg7vcMGVypGd0XcPKXt6nXO2RrEVVX0H4xoElh+EJD+7l99t67Qjl0RAcCkwhk49Fdo1LjxiEP/NQBWNj+4LK3ry0CRk0HrIDAIoygGTTYXKGngs7PtxnfByuf0uw95mi6hs0Pg6iAzRSXWNKwpro45b6lXQ7KlM1RlzILiNIaUymSVokQMM+8YZXcCyjGC5h3YMEpzKMzmESUa4ZyDfYaSfsmIKAaWlyrIdgIqVca2lcC5mffXM0PwTenohBCnAH+Z2Adn4p+0jn394QQQ+BfAOeB68CPHzqhCiH+OvDnAQP8n51zv7y4/F3APwYS4BeAv+ycc0KIaPEY7wL2gD/unLv+1Z7Xm+vd+iaFtxJ9ZdI4vPzV8RXcDOnJVi70fAwbKpyShHsZ4U7une9iQd1W1C1FslOjM0O4lxNvzFCVpRiGNJ3geFG8h9AGoEc5eneGU5CdjFGlo25JyuXQcyMWbSfRWPIzHWRt2Hu8y93vbLHxoS7lMIBAE+5lYKxXsE397rr/xR3mDywTjGvq1mLAbyyiqBF1w+b7Qy78TMH40SXytQVPJFSYSB71/bNlic4d85OCqi/ITlvG93mf7boN1cDRJI7ZeUO27r25TeTlTGxsqQeGZtjgNIwfbKg6nlXcf9GgigUfQkovJriYd+x85zrZ+S42Euw9HHLtT62z8fFVbvzIMnVL0H/JculfNew8nnBwf0TrxX107mi9NHnlG6qkZ+XX92ha3fO5KNYSsstDkIL84pDZScX8lLdPjbckg2cktz7e9ezuODi6z723xbTu5ARzL8Gx/2CA1bD9oRXufGdC0feDbV1A56YjW/GildI4LwhYw/yUI9nxDPjgWozMvdPhwdv7TO7zHuVNy7F8auxh5HNNvKVY/rQmGPs5gw0gHAmmZ/05Vf2KeEODdsjlkmQ5487NJYoi4OrBkO1JGyEceiMiCBpkYFHKUuQh+kB7q9uW31q7bo3eCXGRo9qLQTiccDjlOPsrht5VQ+clL2KodkP6L0D7hYD5GcPl//wzvOnimzPjaPD22A8B7wf+khDiYeC/An7dOXcZ+PXF/yyu+xPAI8D3Af9ACHEoNfw/4O20Ly9+vm9x+Z8HDpxz9wF/F/h/fq0n9VbF8arQF8+/4v/DSuNrVRz3Xu8iPz8QpUHnNS5QlGst9LQm2iuRnYCqqwinlvnJkHDq/aTnJyLi3Zpw3KBKQ3m6R7Q5O95dVw0uDo4WtNbNDBtp6o7GaokJBHHWYHsp+XqKbBzpzQnZua7f6WuIckfr5tzLktSG6duW6XxpG6Rk4+PrpDse5dR6ec7yQU52eYn0pX2/WFc165+pufudKWd+dXrkKFd3vKR41dfkS97gSjZgYoeYC/Rc0KSOYtl5lFVsEbFBKEsTBjQrlmAnIBwJWjcV+ZpfjGQFyR1NseJoUokqoU5b9J+1uECiDubUa112H0vp3mzYfZv3Skm3HHVHUPb9EFbngt7zXv48GkUMnpsxv39INFnAhheaYl5jakGsWxhosUBCjR4dsveYoEkcneuSncdWkAaaGOJd379v2g4zE3RuWd+GvFVj2wkuUkRjx+RiSrWAyi4917D7iGZ62dC6rjGxIN2yjFcE5cD7gNffNaBJIBo5imWBiR1bH7SE+4LoQJBsQ76ySLjK4WKHjS0HkxS0xWmLmQRkJwSnfqvEaYGeN2y9N6W14Rg9WOC2YobfscndG0vYxsOh18/sU9aaKGjYemkZF1miizPyLKLbyTi420OUEhJLuBGgHpr6FpbyyreiFAgEcqpwyifV7XdIhIHBFYMNFFZD2Ydy2bH26TenqpN4jbb2NxoL07qNxd9TIcRzwCngR4CPLm72T/C2Ff/l4vJ/7pwrgWtCiJeA9wohrgNd59ynAIQQ/zPwR4FfXBzzNxb39dPA3xdCCOde/wW8lTi+zjhKGvdoPR2FUrhAHA09RVkdIWgOjZfyJY1uKeL9CqcEnasz5mfbyMbRuTJien8fJ3w7qWl7hz/ZCOrllCb2ekKqNIjKIgO/41bzCqck6Y0JphVSdz3Ut1EBCAjGlXfnO6jovyxwGnYf0dz4oS79K5ZwYuk8s3f0uk786qZfLBevw7Yi0msjzLCF2p9juwnjC5po35Gd8pBZ/xqFH4Qnfm5htaAcAMJR9RwmtZ4rMvOLh9r1SrD12RKkQ2jrcfwzr1Vkl2vCOyHl6dpDXMeaZAuf+MYWlEAWNTsfWkNVjmIVyoGmXLbYbkPz9op6O+HyT2VUg4jk2gH1Whc9zum97EEPred3jzkwdXMMdjgUiXQOyop6vYfKa5z0TOnOy4pi2YETLH2hoU4l+fKiEswEJoFcSlpblq2PrNB/ufI6Vtdr7n7IcxbMpYydKKXqWcJdP89obRjm64pwzIIj5DCRQOcwPwl13xAeSKpAEE4ErbuW6TmJVZBMHWZYE2wFuL5BAO3nQ2YPVpz/+Tlqf47ppwjrGD3QpupBtgb6pYRy1bC93+XUuT3yWtONS67fXEEohwwsLrK0ljOKl7uEF6Yc3O0hWzU29NyhKjWw61tWLrQ0id8cuH6Nuhkia0l+psbEfuOiM4sNlN8U7FpMIhldFnR/X77Fv4/x9VcUy0KIz9/z/086537ytW4ohDgPvAP4DLB26ITqnNsQQqwubnYKuNeo/fbisnrx96svPzzm1uK+GiHEGFgCdl/vSb+VOL5GfEWVcS9PY4HwsUngGdP3OPC5KMCkAbLyZk6d6znCOZwQKO1L+/a1KaYVMnmwT7xfEzeOph1iEokNQsJxRZMGyMZhYkmTBISTBll5y8+mG9N0AmTtpTt01jC54MlqTglkFaAzg40V4bRmdioi2XFkJwXZiqS1UeGSkNt/pM+Zn9kiu7xEMG0Itqc0S23235aC69DaNKSZ5yLkq37X3aSaU79+wPxCB9H4yqxu4RcQ5XfJwgryNYvTjvY1TdX3kuzhyM8xGIWQGNRWRLIpGD3SIDs17XZBlVastApmeUQuEkaPCsJdxX6oGaiU9Oac9kbDre/WCOswy17+QgSW9HfaFEu+xxxt++H0wf0x6V5A+5nFd0EIb61b3tMOXMw2nPbWv9P7ewQzy+Riws57LK7dUKxIVCZIdh1FX/kKZ8dDUa32Q3/hYHRJonO4+6GIZNux/2BI67bj4IMl8m5McaoG6agSSfu2woSC9oZhfMHfp7C+fYcDaTwLvjzlqx8TKeYnJXXboTPB/vtqTp3ap1pXFLVmepAye6REjgKcrH0ilAK7aHXWLUfrtmB62bB2dp9ZEXFnY0Dcrtjf6tJeypiPE4LQ85OKIsAsVxTzEDWXMIugYxC1RJZeLl8YgRUQjgXlqiG+FiGsPyfBvsZcKAijmpudFid+05Buemn81maK/vUnvtlf22+L+DpnHLvOuXd/zfsSog38a+CvOOcmQrxulfZaV7ivcvlXO+Z141ueOBb9tc8Dd5xzPySE+BfAA4ur+8DIOff21zju+4C/ByjgHzrn/tbi8tcdCv1e49VtKli0qqKF4Y6xx2Q+545E57wPhieG6VFOtdpGNBYbKepuSHLtAHlPUhEmpFj1ojyzU5p0x6AnHlZrgxBZWoJZjY0UOvNqqHouKIde6lvUXsiwOtElvjOlHqZkJyJat3L6V+ZUgwg9b8A6Rg+kDL88Qc5K5Jr/Mkf73gZWlgYai6zxg/ETmuFBxZ0fWPXD6oFPcHvvgtVPDogPDHXbYUPH9H7DC29P6H5OE8wcvWslLSmYnTxc+DzZS1jv8Ge1b13Z2FH1JO1bgvkpMEZ5bSYFwcAja+pa45xgMo+pS42IDHIrIt713h7Rfk1+qsWtPyJQOYvevcCmlvP/VBJv7DN6W9/reWUNGMPwuQy9O3slD2QhgQ4c+ZXYWFOsxOw/6KXGm0hRDAV6uaAeRSRb3pFQ1n5haCJobXrdreAgx4R95qcFxZph6QuS2XlL/4pgdkowuc8ipCM4NydWlvluSrTtz5eJhHf/23WkO4bJeU255FCFIN7xfijtF0KcAJ2z2L0LsrMNnaU5/TinHZTcnfXoxiUH8wT5TLTwQbeI2pCfbtG5XXLwYEzntmHwg1vMq5Dsbhs1LGknJXFYM89DVlfHzIqIItPIuUIZEGbRdmw5sAKnHSaycGi85LxkSPc5zey8RZWC9U8ZslVFcX9FXfsqxYQepm2SFk0i37S712+W5IgQIsAnjX/qnPs3i4u3hBAnFtXGCWB7cflt4Mw9h58G7i4uP/0al997zG0hhAZ6wP5Xe06/H+/ZXwaeA1+NOuf++OEVQoi/DYxffcAi2fx/gY/jX9TnhBD/1jn3LMdDob8lhPivFv//l9+KJ+6U9JagC1FBURpvnCSlF58TwivL1gZRZMhDN7d5jQ0k0d3jwWu10kI03spUzyqSW1NsGpDcbbzkSNFQnPLGOCprMLFGZTVyYTman+6AgLqjES4h2J4Rbk0pT3QXbR5fWZStiOTOHNMNGV1K6L9c+ME30LqdUz6ckm5Zei/45yac48QnpqAky09NEVXDqV8paLoxxWpE2VX0XyzY/ECbg0cU7kRBHNfkoxgmAU7B4PkMldfIyjA72UIYmJ8UOOEX2Pp0RVVL3xfHf6Gqrk8WshE0HUvTAjeNQDrMRGO7DUJbGAdeXK/bYLcDlr54wMZHh0zPW8KR7/UHE0e8Kxk/7JC1Y36hy+CpxV5i4f2td2cLU6sFtFkrP8A+nB0lIdP7OoSjhqKvyNctwdTPG7ILNZ2kwt3w5y7Zqdl5R+SrpymYRJJePfDueW1BsuUo1mH33QYiy+hy6O12WwZXaIpCg7a+DZcLiiEEGVgFOMHe2zThyHH613w1ND0bEkwEVsHgRcPokmL+QIXaC9AjRd6NeLFcodsqmMxjqqlXAjj7vOe1oLyfOEDd0kQHgrsfhdY8ZX6rg2sbwrChGxfc3uujlGN/kuJutkgvTUg/6RtJs3N+VmUih+zUuEYiDgJsv0aMAkTj5fKFg2jPq+Puvm1RaY4SPw9RMD0nGF+SnPvFKXr2JsbnfHNQVQL4R8Bzzrm/c89V/xb4s8DfWvz+2Xsu/1+FEH8HOIkfgn/WOWeEEFMhxPvxra4/A/x/XnVfnwL+Y+A3vtp8A77FiUMIcRr4QeBvAv/Fq64TwI8DH3uNQ98LvOScu7q47T/HD3Ce5fWHQr/neDUElzDAtEJEbY/E+4AF0sgt2Lz2KIkcVSGN9b7jiwXKRRrhvJKuaPzuzwmBmha4yCcm0woJD0pMqr273YKVbTqRv23hB646szSxQrVj5LxEVgukEVB3I+LtHDkv2Ht7F9ng21O7DSoXqHnF8lPWo6DS4Oj5y6LBBd5vvFlqoycFepQRhZLpKc2VvxDSehGCscCegSSqaFoKeTdg+FxF0/JkRj0piPcTslWJiRYw1FMljANI7LHsNiAMBBNBccLghIO2IYgb6izAJhYRWORO6FsgoUPOfdWy/YEBq09ktO9GpHdyqmFIfDdj9EiHiz9do0cl0UblE3pRH3uBL3SlDomDTkqEbaiGCcG0Qs4Kuk/tMHrXKlVPYFdKpics+vkUBGQv9xi8AFVXcPBQ5GcVifNqrlYh7JDdRzR1xw/jXWxQsUG/HFOcq4i7JZEDrS3VC10u/Oyc+SmNbBpMKCiGks6thpvfJ1n9jGD3HTA7F9KkjnRDcOJTNTf+I0Ew17TuOooVjQscpmWJA0MY+IW/HZXsBG3mmy1ufb/gwZfFEb8l2SrYfH8bnXkb1+KFHm6tIumU3L+yw5eePg+thlYvp65DWvePmN7qkgpo321QlfJoLQN7j8bUJypcpyHtFrirEaKBuufbpN2XHSb2M6nRJUm+4qhWG9RIE0x9lbb7eJulf/gm0qa6N755BL8PAn8a+LIQ4snFZf81PmH8SyHEnwduAj8G4Jx7RgjxL/FrZQP8JefcoT/1X+QYjvuLix/wiemnFoP0fTwq66vGt7ri+O+B/yvQeY3rPgxsOedefI3rjoY1i7gNvG/x9+sNhb4p4Q6TAOAW3gc2DfxAdrRIHPeyya1n4yKlRzw13sbVSXmEyrG9BJU1Xs0VvG+GtZ4H0VgvP9JYrzeVN9g0BOtlSdSkwIWaqh/SeWHkGdsOb96UBOhJgWlHzE/FpBsl2akUcTIh2TekN+dk51peRE5LRNEgqgY9K47goi5QXrZbCUw/9Uz0BUM62J4RnovpPh2y9tmMq380wVSS/Tt9RCM4+SV/u7qjibbH1MOUui3o3jRM7wMxqJDSEZzIKPPAVyitBrEdsfJUzY0/aVCbEYNnYXxJIWyEjvxiqO5GR2qrTjlc5CiXof+SQ+/PiSLvIZIPNenViuHndv15rRtsGi1UeANcrP1u+15r1TT0cF5rydYC+vv5kVR5/6k9tv7CEq2nY/SCa7jylCDZmHP3Ix2yx3LYi2CppP2FhOk7CjIiJpclNmkIRoriZI3aD7CJwoZAJSnzgPSZmNO/MsYFM9TBnLAbImvvU9+6W3L9BxMGT0PVwct3dC1OOFQhGd0XEC9Pmb5HM9n3lRkSBl9WyKYNDrYHA2YPVt6/W1tEq2bv3cssPbEHoZcuGbxQky9rOi9qppcbqCX5dspTe2dJ1uY0jaS40vMWHgcpuusY3wfzUx4+vPS04eAB5c2e2hXlZortSYpTnrlOr6bOFVZpuld9FZXsOnQWeSOnZa/W3L6RMf3Qay0Lb6L4JiQO59wneO0ZBMB3v84xfxO/WX/15Z8H3vYalxcsEs/XG9+yxCGE+CFg2zn3hBDio69xk/8E+Gevd/hrXPYNvQ1CiP8Uj1km5muL/Kv7LtzzSAuETVWjxsZLWrxW5Xav/Ii1vi2wWJzEQtBQOoecVd617/AwKfzcxDlk1WClBgkyb3yiChT6wMuPFKe7RJszpHGMHxlgNbQ2Kup2ADIkmFRUvRBV+QrocOAOgJaowhHfmeEihelGqKz2kNOi9jtywKYBMqsXKC1xLOGhJP3nZ75P7hz9KwnldkS860j2DWVP0Xl+zMHb+9g0pEkU8YFlekYRjB21jdAzgZoIOOkROjiBrLwWmFSO6L4Ju6sxcjfgzK81RDve6+LW9w2wsSK9K5mfMcQbmqblcMov/OVAU/U13ZsF80sDooOKqhsQb2eerb1IFKKqvWdH6WdFR4leOJpBSmuzolxNCXfyhX+74/I/nTJ+oEP/mTEmDZlcShAmQVbgrKB1bsL8dof5SYfLNO7yHJsHYATNiYbkxZiqb3GhhXMFp346pvv0BJiAtWT3L1Hc36KJBEHmgRN6UnDpX1bc/a4+85OOlS965NbstKJYcSRbgu7PtRl8ecLuu2Oiked6TM85lp9yTM9K5pcrkl6BXjJkWUT4XMr0PEgzZPDUAfnJFjiYnxLUHUe8pYn2YHLZ+A5erWh2YrT1jo1OAwJU4eca3Zf8x2JwxbKbCIpxhCok9vk23V1BseKoQoXu1MiNgPbdimBSI4uG2aU2TgrmlW9N3f1oB/UmI4vfG98sAuC3a3wrK44PAj8shPgBIAa6Qoj/xTn3E4sBzB/DMxVfK15vwAOvPxR6RSwgbT8J0BXDr/0W3qtmC8e6QofD1NdHMRxf9yrxQwleP+nVSadZeGlUxqOfsgobh7hQggA99bLt2Tk/vxh/YMDSlzPqlqJ9PaPuR5jIQ1+bNKboKQbPzRAOymUvo64qiyxqVGFACS9FIoVnjRc1SHHUzhGBol5Jj6TVkccJUU0LL42x0mH1d/d8MswqyvUOyVYBEjrXC2ZnU0wAqgadOcyFguSZhCZ19L5rk3K/i7uT0L6laRLY+FDEfX93wuYHeqgzjvYNweb7Je2bXXBw5uf32f7ggINHDWufFNSJ8yZFnQiZVSRb3hiqPNNn7xFNfkKS3pVEB12gSzhx9J4ZeUfEwsuLo/xsSs4LL/IYKvS0AuO8R/e215WS04L2rZB6mLD7aIyJINk1xAeO6TRgZiTD8wfEQcP+tEUxjgg7FUI4qo2Wl9KQDpUYLv53DXK+ewz7lZK9RwJWnygxkURWFmEs8ws9ko05TsDJ3zW0r4ww7Yj2bY0NJLPToSemLlpu40veNVEAm3+kJtgMEYUin8RQSIgtxZrh/M80FEteCDPZyJifbZFuOOqpoBzC9ILl5G/B+II/h+FcUPUt+qak7At6L0DVB7knWHp6xub72wgLJz5Zc+u7NabjPelZwJXVRNN+KqB/tSaYNehJAXVDuhEgS/97ejZidlqy9v9+czj9vV58LavoN3J8yxKHc+6vA38dYFFx/DXn3E8srv4e4Hnn3O3XPprPAZeFEBeAO/ie259cXPd6Q6Hf6xM+Nsy5NxZDVKQAeXy97aVHswGRLxbbe+xZga+8r0MbTyE8TLf0bm62HWO1xMYKqwQm0ZhIEkwb6o6me90T/pLt8sgfWlYWVVom5yKiiaVph4S7c6Jdr3ml5jXCOcKduVfB1ZKmEyEzzwBHSV8hOYec5ISL4al/cccVh+dzeJn0aq3N+HxEORSEY8fKp+dee0AI0q2SYsnLjoweUIhbMfVjM5Ry3L22jOzU2F6D2Q4wCRSnK6785yE6nOPuJv41lfgWTUuw+dEhZR86LymayKFqyC500ZlB73uuAEpy8+MhpuO9SZyE8WUwkcOlBoTnxgye2gdjj1qJAKJu0AdeLwrAdEOqk12cEMxPBKh6IXrYAlXAze9VBFOINxT5Gcdo3GJlOGWlO+NOqUnjiuk8RpWC8HRG71916H9x5D8Lh2ZTWnH34ytUXYesLAeXQ7o3G8qVmJ3HNc13dNFzmJ7WhKM2k3MRxZIgnDiEgdaOYXZ/j9lpgVOLGVLLEt0KKdcbVKvBFIr0tubEpwp23h6y9R5F03Zsva/DiU86gqkh2SrZem9KMAFVSmanYHaxofuiJlv39q7ZuufV1B1B1QEbOA4ebGE1rH2+YPfR2G8QjMJ0DHXPgHCk12LKAehZjcxqX8GKgN1HE2woKJb8+az6b95FFfhGeBxvyPiDQsL9CV7VphJCnMTDbn9gQUL5z4BfxsNx/0fn3DOLm77mUOj3ErMffz/d50c0gwSrJDaUhKMSNc6PfZ7rBXRTKeaXh5Q9SbpVIxtHsJBTr9c7BPu5F8t7tWfHvUnFOURZL1znlFeSDZXffWoBxvlKwTqi0hwNd9U4x8UB8XbOwcMdqrZA5w7hHHpWMb/YJZgaTCxxgUSPSmwnQk0K5KwkqA99PPQr5DRsJ/btm4UCL+oQerzwDClrrAophgHRxIKQDJ7LjvzQ9aTg7ncNaN+1zE8rwomHi5bTCDtWyPUSWyrQXm6jf8WS74cIA+UQulct8xPQuWWZr0uqgUPPBPmpBnVVM70AS0/7b2E50OB67D0SYZKUeBfmbXDaMT/fEO4o0vvHTPZa7D/kkT2jy8tc+OdbXo+rOTwHvp3nUi9B7xY/u49HdK8bTOhlzKN9mNzvj2lasPQSVI9UmFnArmzTSktWlyZs3hwiEkNQQfrzXfpf2vMzl7I6gv82A0+UqweWO9+Z4N4+hahi+vwQncHa5y3ZiiSYO5pEEeQOsQODpycI59h/rLd4HguZD+HVZ52CoFsSxzX1lQHn/vU2Gx9fxYRg3znFNZL2Z1t0n93FJgE3frDHqd8uqDua2QnF5D546O+P2PzIErL2UO3WHTwoYF1QLhn0XCJrR/9ly97DMXUboreNyF7ugXLoqKHZjZldNLRuKPYfSehd04zPB4zvd5z+jYbxxYAzv5qx9b7UQ8Df5PGWA+DvMZxzv4lHPx3+/+de4zZ3gR+45/9fwAtxvfp2e7zOUOg/NLovjJlf6NLEkjr1pjdqRWPiFstPzqCxCGsXMughxUBR9QTTsxHhGNqbAfFOhZ7VngwIx7IVhwge5Y4WYsDLiEQhomzQeXVk+3qE0FqYIrk08velFlpVQiAaS//KnJd/LMVqGH5ZUSctgswSTCr01PdXZVlDUeGUwkWBn6cckhUDTdOLMYm3cZVF7RfWw+d46FTY8Z4Kcl7Sfb6mWmlRtSPfgtAKGm82ZbXfoa8+UWISbwN7cH/E6AGH2IwIFtDT9i2LiQRVz+9o411H/4UZ6VbkJd8DqDv+NkjH/LQlOpDsPySId3x/PNksyU45RA3Vit/pisiiQoNcMkwnHvpZLRmSOwpVwd77VuncKgm3pou2lT+PTRKgci9FL+qG1bpD3dWMLwZMH6nQuwGiV+EOfKJpfmyPM3HJTtwm1A3jccp0kiASQ/vJmOELNcmdudf3aox//6qGZpCy/c4UG0L7ZcXssRJVK6rPL2FOG1a+IJicVQyf9yx1nRvCSc3kQsyt7+vhNKw+UVO3Pe+D0CIKRbVeI2caGsV0M0Z1/Ps3O+145ANXeeq5c+huxfTxkufu7zP4kiJ45wHy10KSzZr0Rs3ykwEHjw8ZPl/iZEyxDJ2blt23C5p+TbCvsYFDGtj4DokZVqT9nNmdLq7XEN8OKc9b4i1FuWRpUki3YOfxEBODU57AKivH/iMJVc9x/r95k6Kp7o23Ko43d+Qn2+jcMjvhpT3KvheAi0aOg4faVF1P+spXBNkpgwsNS08oZOrhu6NLiqQbYwNYfnLmKw5xnABEY45lLO6JI9YyvBKhdRjWel+Qw3kLIBb3qbKS+38yo1lqeY6CEJSnekwvtOg9c3DkU2HbkYf2KoFphTglkULQ9BPUuEAfZNg09FyU8lWoMQDj/IzAOjAN4caEQebFDZ0QNCttstWQYOa9toNxgbARJlZ0bjesfKHw/txJ4L0gTreQ+5ay5xfitU+OPIFyLaHsC2wIohGYnvEQ3NDihMRGXgepteWZ3E3icD3rfSO6JU2pcUDzcptkLMjONRBYsguWcEszfL6hbmvCu97RUeTeSyTYMbhIgxIcPLZM0Zc4BfmaQ440zUqF3IlgWGMcjKcpK605/TSnMoq0XTK/2UVWYvH6a3/fWvn3L6+oVzsI61j/9JTZ2ZS7H4PeYE5eBmRnDKIShBPD7KREz5sj8ujm+1OaFIpVQ7SnOHggoIk9877zpYCdDzTeB2PZq9V2n9Oc+sUtwCsLF0bz5z7wCV7OlvnEZx9GSIcqQf9vfVQ2Jj/VIr7r9cZ6L80xsSbet6TbjskF7z0utzU28nybnXeAOJUjraC81sEt1UhtKU5XqJ2Qpu21suoHCvJpSjBzJDsweN6R3s0RNkbWjv33volX1HvireH4H5JYeqZg44N+99y0HVUPOjcgGlnmJyXZKYNaLmlKxehBSf9Zf1x2ygKSZNsxP5PSGS/sVA/bXHBcPSzc3A79NYBj/serI9BezpxjWRNR1Ec7faRAj/Kj+zCJxIQeqisa51tSxnm9rNCz2OO7U2gMemfK+O0r9J7cOfKMOLrfQ06Kc8jsGA12+Pxl5mXeTS9GNt6pzkk/kM9PtpCVJbk5xrYixGJ2ImcltpuQbGQ07ZDBlZr5Cc32+/tH9z++7LCDiiBucLXCWlCdmrqS4CCawPSMom5D65agWPUcj1pExHcC6paj6RnUxRyRB6SdkvlOitOw91DAmV/YPVYAOEzs2hM4y5NddO4IAm9tKs7OUddaqLih7gniVrU4JYIXbqwTxA1xUjHbaaEaL7VhFQT7mQc+zEtfVS5cGKu2xGro3qiQA0P29IDwQOD6nqeBMJz8bU/KHD3Ypns1R1ZQnbSIQUWTx+hMsPJUzc3vVchGIlsNSlmCsCHfaDN8wb8vt35knQs/M8H+wjL/+P9wgv7SjKVL++ze7bH/mKDzssS0QpIbU8/fyfx7pA9yBntzrv/oMrqAumdxw8oT/WYKVUjcRkw4kdiHZ9jtBJsaUJ60YAPQE4WbJUwfLaFQLD2hqP7sAVdu91EzyeV/PCLcHHxzvrDfzuF4bSTmmyT+0CeO8Z96PyYUpLuGfEnTvWbZfYcgmAjfj25B/6WScKoJJop8NUWGXiNI1Y79h8FGlrojEEaQ7ljMsIXMa4SUfng+LzzJLw3ITsTeKlWAnpRHC7uTCzLeJD9+co3x1YoQqNzrSgF+0BsGCGMYPzKg95RH7aRX9ijfs3rEFhblgtPQWKQQxHeniLLBRRqnFL2ndhk/vkzrdoGall4pFo4/8PcKOgoBjcUmgWe1zxfw3cPEFkCdCsq+Jpg6iqUhVgv6V+ZHHuhyVlAvtQj2M1QaUiwpiqGkfdeSL0lsy5PJyjIAB4MTExormS8LbK7Z/Ahc/Jc10caU4nSXrXeH4AQ6kwyfr7j+xwSiklQ7KXoiaeqI2HhV2d41L3VPYxHGHBMEqxqz1CZf9sKQ5UCQr3oobD1sGLQK5tJhrSAIDNkkhkYSxTX5833iXBDvgg1h+emS4mSHaDf3xM52jEk1xUDSpAJhHOF+zv1/00A9Jb8woOpp2jfnR5poNlRYLdh6b4ulZysGV+DGnxI0yzXqdsjspEYsFdTzGHYiWM/JJjHRniK5eYBrxcwvGG60ulQ9i94WdE6VbO579rfKvRDjwQMJK787Q5QVZtA69qAPNZ1bjp13Ww8wqCQ6bWiMIL2mmF60lKuG4KUW7kQNxvusJ1uSqueIdwSTRyuoJcFY0SQC89vLnH+qYnJOMb/U5fz/7Q9Bm4q3Zhxv6tCFI5r4XbMHX8P6pwx1SxLvL3y/JyUmlMQjyfCFkvGFyLcQlgS9Fx2zc4pkS7D0bEE5CKj6EaIbEt2dUS4n6CSgXIrQuSHZ9lyJchDQxIogazCBRJULtvk9Ut6vhgCLoj4erlfeN7x7ZXKsXttv0blRkJ/voyqLHpVej0mIo52/CzSmE6P35zTDFr2ndrGdmM2PDDnx73f9PGbho34k4b44TtQNwpjjqsk5RNUweOqA9jDFJIr49uQVO62mn/rWnZK4KDhixZtY075TMTkfUwwlK0/mFMsJRd4hPTehCRTjScqplRGRNhyIFqZUbLw/4vy/GjFfCzj3M76CGD/cZ+PPlwTGL+gAM91Cd2rMXkQwlnReGLP/jgG9qzn6IMNFgW/hVTWzsymTC5Jy6Ohc9Z4W+lpK+sCENKw52O5AIzGdmiCpMYGiyENM4ohGgnwVdAbhnlfeFY2l6cbocU6xEhONLUtfmntpk0AhckN5us/sVEDdFnReNBD4+VWxEtG5WdHalOw9EjI7Y3EzS7ylGT/U0P+yxtYSu14TtirqnYRgKulcd0daW8ltRXapovVSSHbScOe5NezC61vPBHoGK5/yYo/Ncofx5ZTBM5bbH+9x4hOZF8lsG2RgUNrS1AqMIF/zjHM196ZMeRFStxzhRNCkUK3XNC1Nci1k7Yma6Sno3KlRpaHq+aUm3jmuYN/M8RaP400eqvSmTU2iwIHOLcHUIBt3pC1VLifYUBKNDPlKSLJvSJ4tEI1l6/1d+i9Yj3p5ICKYe90oWVlMx4sKHiaNw2FZ01KowhKOKqph6LWlWl4zybRCL5t+2MYSHmXlpbb98NwsBtaHVrMYB31PcpSVIbmVYdoRxbqX0o72CoTxi74LNbJs2PjYCr3rNXpfYJKAE7+553fkzh3ZnIrGkl8YEG/6RQ844nFg3UIN2L+oYGtC9vgy0Zby7Y/cQzH1OF8saCGyqJjfNyC9NsHEivjulO71kMGTnm+x/KWQYiCpr/ehD25g2X3hBO2bDve4Iyi8A97tH1qjWHb0X4xR45xg5s9VK/WL0nSW0FrJSKOK/IspxYrj1g8NPfx0XND0E/TOFNtOyC/2mJyX1B1vODR+AIKZoD5dUu+lFHkIynmPCeEIw4b5doJrL2YoZxwyF5z/Ge9PUi23kJUhX49oN5a6JQmnFlE0VKstLw9jwUS+/RbvW2yskbWhGsbkS4qD+zXCwuyspXVbkp3wwoYox+QDOdG1mHLV0IxTHvzJPTa+e4W6A7d+cIXTv7RPkzrUWFO/Y4Z2UM9C0qsh/ZcsyU6BntWM3zakSSTCOqqu4M7HegQzuPYXBSvDHfRBB2sFdRZ4YEdg0VONqBXmYsFIRwQTkDVem2tFcPKXFdmaJNmxyNpS9QR5oZieC1AltO9Yrv1IysU3N33DxyGi8k0af6gTx+zH30848dVFMDXUHS9mmK8EpNsV+bLXOdKF9RpRqSSYGaL9kqYVYEL/JUl2a4qhprXliA48f0LUlmoQUvYVqvI7bGEhvZ2R3CkX/hmBn0UEnpRn2hFVPyS5O6deStGTEhtq7wehJTZeSKEsbh9MK6YXWqjKEu94W1iZVV5SA6jbktadgmItQc8NsjRMLiYI6+c5wajAtiOm52IGkwKTBjjlFxMTKXYf90J+3eua7tW518aa+cXZRdonVilp+jF6WtK6W1KupGRrAZ2bpScyNjU7H15j+bMHYB2tF/aw3cTDjYWgfafyXJDKsvuY50qUQ8fJ32mYndKsfO4AUdQsPRkgqoadDyyz/PkDfw4WzyXeyRHPdNHv2WWaRbidiPCFmP0P59izhgs/03D7oyEnfzvz0OXdGXe/f52qC+d+7oC7H+wjL8wRRmJrSeNC5HaEO1FgZ168j3ZDMwuYjUJIDUmnJDcxrpYEE8X+Y13qtq8656diui/PsJEm3m8It+aeU7PnWfHVSot8RVMsCVQpaB5OCTJHfOA3FzaAJvUCkU5CdCCZnzbcf2mDl7eWKdcb0usBZ355THaxT/+lmslZTee2JT/XoX0LshMSnmtTrDcII+hdtdSpIHs4pm7HdG5akr2G7bd7zsr8lFdJto1g74urSAOm60hPT8n2U0SmKE4Yol1FlStOfcIxPi8plxx1V3j+yRlF+65FWMfu2yJWv1iw90hM8XBO+mTCxkcs9//Fz/6BfNf/IOKtiuNNGtGooW55L4R439CkkiYWqMqRrYbEBw3ZiqboK4LQY/HrVKJzTbiXs/3eHr3rNflyQBML4pEhWwuJRg0i8NDRcOqJeliHND5JGCVxWhDtFWAcTS9Czyps5Lkc5WqKVQKrYoSDqh8SZA1WSVTu5dLrXgwCWneKY+hsIKnX2z6h3Z2RbpSYWGNCyehiQLxviSbWuxDmDTZUiNoyeGbiNauEQJYNpuWd9PTcAcLLfIQKUUqvBSMEoqjZ/cAqS0+OKJe9gVTZ16RbJemWb1k0LU20K1n60vT4pAcaOS0IF7pd4d0aM0i59R8N6V+xzE9JVp50xJsZ6cuFr7ikOIIKr/yu9wcXjWXngyvsvr8BKxClpX5uiZUvOJK9hlsfC1DXEpSFvUciLvzMmPxEi/1HUlS50IMCXvwzPfrPwkGc4vo1rlC4boOcaOSdGLtSe82yWnqUV9sgtEVrg9AOV/ld9+yM4PSvzzGpRjYOjEMfZGghsGlI1T1kflus9g5/TnlWtg28pevkvD/vqgSNoHUbDt5XIuaak/ftcHfS9S2QSnoHRiBb1rQ3agYvltz+aEz7pmTp6Yx4lLD3NoHMJcmWJFuBtc/N2H5Xm3DsfeCjhXizMF7NVmdQlRHVek3QqlBWUr/YRZ4qECMvixPtQTgKyZccya5DlZ6+3rvW0KQezh7OnAca7GSM7w9wuWZ2n6/Q/lDFW4njzRk2EKjSYiJF2ff+zlSemW0XZ2bwzITZhQ6qtMQbGQdv6zI/EZJKQed2Q5NIolGDbCui/RrV0qjKK9iGo4qm7X2nbSRRs4Ym8YS/YNZgEs9kVkVD0wnJVheaU3i586oboCrn5UNKg5Ce9OWUPHru4P9XReMXrcVtq+UUJ8AGkqojCafeUa7sSYQNCZRENBbTClDz+kgePj+ZoDOLk4Le1cqr3i68PcQi8VVLKdHmFARUSynB1HgW9I3GL5iNAdcg82PTKZQAK73Y4qKMd0rRDBKEdeTnanQRoAroPbnzSpSXxfNbDst/rdj+wBLz75uhakWvkzF6eYhpG/rPTLBpyH3/64z8dAcnBdF+6WdNmSHdhp3HNcWZGmpBeKDI1r0EvHMgkga1FeGkI94VzNccy6fHjKYJsudQyiI/1SN7pyV5IcJpOPOrE7be1/Uot3mNnlZ+trTg5Yzub7H3mKD3ok8y+ZpPHE0K5YkaNdac+JRlcp8g2ZRIA9mqRWeSwdKMWRJRGcXsIOW+/8mgp1OqYUI50LQ2aw4uh+jcQ22TfcvO21uc+Pc79L6M1yWrDU5KilNtZmc86379M4Y7H9a07kK+6hOAifx8b3I2ZPiC4+ofl7Ba03ky8RL4tZcpccoht/3tg6m/v/0HNd2bFtk4dG4RVrLzvgGydjijsL0GGb4GcvBNHG9VHG/SEI3DBhJhHKrwi3ATS5zw+kvjSwnZSpdoYjGxpB7GRBPPKnZK+BbX3FJ1FXVLoqqA9MaEcr1NvFtQd0M/64gV4b6XJdGNwZWWpqWxgaBJFh7dlSPZqTm4PyScucWuWKALsIHChAnxbnUkhqglWCWp2wvIrQqOZieHkuxI740grCNbldgAWhseOtukCll7vSvSABMrZOXnPFb54w4XaxtK5mcjkl3vKBhMK+qVFoNnZ5RLMbOTGlWCrC3lcsh8zRMkTQjLTze0rk09ckxLsLDxPR6O2b3ZYLVg/wHF0mcdq5/cPe4L3zvjcc4r+ArB9R9bIz9b+zbZ1BtbjUwLWQnO/1vPRVELPkowqVHzGlnWmESjs5pigZ5KbgTk52pM5Fj7rOHuj9eYTKP2tSdP1oKT33eTWwd9dm4NSJYzio0W0Z6ifEdO8ELK8Hnvz16sJNRtmFyIiQ8M4ahGTAtQkqafIBsYPg1mAYoLR44m9cKBgy9qJhfh9vc4grFk+ema0X0BLnCUQ4fLIx47dZcvPHmJpSclwe6Y8duGhFNL2ZUUfUnvek0xULRvw+iy4vQv+7YgyjsZ1kstgr2554jYgHRTeM4SkJ10RLuCqudo2o7b3y1xyjC5P2Dlk96PJN5zzE55uHHrjqPqeekQHIRj6F0v0EWE1TD40ginFKJJmJ4OCPcl6t0j8pe7XPpr9zqkvsnD4WePb9L4Q504wl/2H+TRn/4AVvsWlQk8czw7EaEqh2wc4UGFSfXCvtW3s4KZpWpL0o2SJomIR4Z4K6cZJH5hbgfoee1lQqKAuh/TpIpg3mC1T051S3oL1y1LdFAzPxESzH17a3zRe3tbJYhnDTgohwHh2LeS/BxCIms/wPe6U1B1NcHc4KRAzxua1OtfpVsOVTl04VslwgosPok45ZC1ZfN9Ea0Nr4uEgPElwdrnG4TzLS4nvXObUx5aWg0iLyFy1aPOVG1xuaD/ovFJMVWkt+aYNMRpSb4WUnYks3PWq96uKdp3DaqGzq2appeg92ZH709+YUC0myOqhps/NPSLW9cnBZcYonZJuZtgS8nFnytwWngk2KKtFWxPjxj5dUex/1CEiTyBzmnoPxlQ9mH3UYmZgEgMzUrtDaQmAS996TSiEdz3bwte/o/bXPo3JVZLxndiVOkoe16GY//hgMGLBlk7or0SdZBh0wiZlcja0n15RtWPAF8BOiWYn/AEu2js6L0kqLp6YXClvNbTWCIrQb4f88T0PMFygdMpLlAEM8voYkDvugcg3PwBiSzApIaVz6hj7xEAKTGxQgxSbKhINwTZCUe93BDsauJdz+KXRqAzqE9VOCMgU8xOS1QF4/t8pTR43tAkkmTHE/uchKonGF/w56NzwyPmbKrQhWF2NkQ2UH+pT/oVdm1v/nir4niTR/+nXokr3/vzH6BqS8K5I5z6IbcN/GJpQkE0seQrmiB3ZCdjyq7ngZTLMTozRDsZ5XJCsFcdOfT9/9t782DJrvu+7/M7d+/97cu8WYEZbCQIEQsBSoy4yZQpanFkpeRElv7QEjuWS0nsyGKcilOOVaJccSxbZdmhKUaKtVASJVqyRJESKUEbARAESEBYBxhg9re/3rvvek7+OD2DwWBAYIAZzgzmfqq6Xvftvt3n3dfvnnt+y/ercvstOvNPtn4v1I4rvIHBG9ikaNIUaqcLq3wrMJ4Tpp7LSesOqrAndO0rnKQgj1zyigJRuGPNeMG3uln9nKzhErSzsyf4ykaOcV8yqXJHuTWDSjTGsWGTwlfMPJ2jMoMz1uQVh7BtTw7asaKK2rcrlNGCT9AtOP3NLktfynHGOSoW0pYPAoUreL3c+n07gso1Gti5ySFrGGYeE+rHY9x+gvEcdp0uyBvBWRXh9ffN03o+5cQHHVrP1Jl6LsYdgbq7S/Jsk2wmR3Vc1As+Cy9q8org7dhy26nNEShFvLuJ304Y7KngjjSbd7gYZa1sVQKqgKwGed2ABrfr4Gw6pC1N5bRvmz3HQvW0cPo9EdWTMFyyVXJG7OQerceMF0NaR3KCdkYeOgx3RTT6iT15KzlbrOANMrKaDYdqgTyy6gTjWas3Vjul6e9RbNwlBNsQDoX+benZ8I77ZJWFP98km62RTDk0judsvNMjXigwylC0CrwNjzw654sswuDGJu5Y0zlYwRvbpta8apDY6nhlDcEbWt8MlQrZwAXHYHxNPG+7+N2xIGPYuEuhcpj/iqb2Qo/Nu1rMPh7bixcBd2doP1cbtm8NWfpSyvEPuYSbthv/uqOsqrq+mPnFVzYo9b//XqTAxmyFicCgvXKtnczxRjlGhCJQuBP7TB16tA/5tikwEHp7lTUw+k6h9YRL0rKyHaM5l6Bnyy616zJeNLgDGwYYLDmoAryh/ewzyrVGbNlvESnSmoPK7Qm/CB3cMyuOfoqp+7jjgs4NAdWNAndkn1OFsa8d2xWQ189IXet3rn2FcW3SdDzjUD+ZIYXBHWUkMx7e0IaRFh8q0IGQtgK8XopxbdNksJOgA4d40brnbb7DXpEvPpSwfndA67C9Ah+s1Gm8MLYn1u0RkuSc/MgCYmDtXQHaL+jdILRvC3j7O4/w5AMHkH1Dqn6BerpJ82hBuJ2STHmgNWG74OSHp89Klo8XI4J2TrDaY/8Lhu7tM/T3OIRbhv4+6wuiUuuNrlKhCKF21MEbGtyhQ9qA2qmCdtWhcbRguOigPfC7hnAnRWU2LFh7rkOyWGe45DGeFcLtKv7m0IZstKaouEhucBJNMmPl7SWHvGZP2FlN6Dahsgp+24or1k7Z16ZLIAOH3X/UB6VImx5JQ0gaVkzSOA55ZAgODRl3XevI2Ixwu2OGB5rkkbJhKQ2D3bbsWAzoRo4phCRw8A87eKkhj4Rw1cG4Vg03qxuMZ9CZMF4uQAvhKcX6PYrKqsfMk0PyikceOazdG2BUhbnHcoYLDv194CQeez+XsXOz/5aXUL8Q5YqjhPqnHnzZ4yq2nLd6KrYn2on4oJcWjJcqaFco/Ijm0ZzBkks8K3gDGOxy2f25Ar8bk0e2/Ld9yCWrO9ROGLyBxjiKcMfYOKlg8w6unF1xgM1bjGdd3MTg94uz1ledG1zqpwqc2AA+Tmz9EmqrOe64QHuKIrDhNr+vySqu7SeZspLoKDl7dSi5obqeozKbcDeOLVs2Yv8pnNiQV60vRDITYBxI6g5O6uHvxPgbNuk+HdRxUk2wNWbmKYdkJsDfScmqoe3Or7uozIfQwx0ZOvemtKYHFLFPFGQEXs5jR3ZDq8A5WWHsglowrHyuTbJUx4kNJvDII9u9nEy5uGMbkisiRdGMUKMUd2yormqahwcYp07Y0eSBMFpQZ5V6K+sab2TYuFMRbgtiDK3nC+KWmuhoQdjR7Nwc4iRQ2chZ/5YZsrqQVScVUcNJJZarILHJ/TxySJvupPjBELY1eSwM9tgVUFHVjHYpiorG7SmKewfsmery/IsL3PSJLpIVDG6aYu1dztkyXW9gPTCKWgHPNXAK2L41pLpeEAYOw3mHnXdoRFt1g7P2aMogIxfjatyuItrSjGdtCGq0IDh9GC3bFYgUQt4oULFCZcJ4XlPUC3oHKvg9TdJUtpR429C52XD6WxyksMehv1eonZazFWzXFaWsesmrUftNO5mcWYXL3W9H0pwASKd8Ct9WEAU9jTe2/7XR5hmPAnvyzUOhuqbtP1tqJdKDtpDWhaBjT36qsFeJqjBoTygCF9EGN7HCf0YJKrdJ7KnnrJzJ5u0ejWMKb+QQbqY4IhS+rZBKWiGV0zF51ZaOGlcRro9AQzYV4qb6rNBeEdiJKmvYSagIFP0Vl9aRFARUosmrDtu3uvhdiLY1wdqA498xTWXNsHO7IdxQOKlDrd7AHWu6ez2cJZfqekE65bN+l0fQ8Rgt2k5sL8qo+HbCyH57ntZjAypNQ7jafUVjldexJbvpdERlNeGGp0a075imt8cjr8Lez+xQ1ANrr7vkUHhCemedvCKAonsjgKH1LICwfbtdeSw8aBgtCnmoGM1PQofzBq8vrN+j2HV/Tn+Py+Y7vIkwpkGw0utp04epAL+d2DLmwlYZubG2pd1j+3f0+5r6i4rOzfZ3yWsF/o5VvM12Ik4/0mDpRU1RD20xhTspjcbK1qczOW7PQQ0dKmtC9bSmdnLMyfdVqJ1UDFcEmhniaRh6Z/W8nBi7ujrhUPiQNuzKebRgu8PDbaHwDSoTwm1h7ClYTMh7HsGGS2XV2u7G0w6tw1YupXNjFUSjfZsPMbkQtK1BlDrPluZ6QOClIpW3IOXEcQkxD//12UVCMNmW/M270a5QOxFTBA6q0JhC0K6tqPIGGj/XDHb5kytCO1FU1zXuUJNXFWlVEfQ02rWTRFax2ije2OZH0rpzNoeS1h1qJ2OWv2T7PpIpl3jOel/ELYfaKUPQyclrHirTZDWrCKy90PYQZNpKoBib+7AJWxeVTrrrgelnY7SjUEnBzu0VaqsFSw/GtgS5l3Hk+6fIZjMq6y7NZycnOw+Gi4rRkqB9za77NZ0bXPuZqXUNrKwJvYMFkjmcOjrL8hcF17dGU0wFZ4Udje+eVaBVoxRdDWzYKCuIVyY5pQzmvpqz9q3TJFNWvl371oCqd0CINq3cTBFBuKHYen9MWE3JOyFO26N9C0RrsPoB6wcfrrmYlRjzbITKJpO4Y/sv4iVbmBCuucw8WaADRbg2Omv0ZYw1RFKZobKZE0+7YKC3164e/A64A4e0ZfA7Qr6voNkY0clauGOH6qqgMs3OTT7FQmxLsnOF9F3csTD9iCGpG8ZzCu2F5DXDzm2TIoDYoRjbzysCQ7Rpiz9QhvGc1VxLJ3mOPILqaaF/Q4HkgpPAeFEjhVB9MMIbGpsXiiBpCPNf7qJ9B7c9Io+q1I45DPYVFK0C2fIIdqy/+K6fvf7CVMArnT/fQpQTx2Um+MOHz04iZw529sE7KSIHxIag8oY3cfazcthubMNURWTFD/2BbSJ0kokKbWZluI0DfjuhCCK7kpixHe9GCYVnq2ncWJ9dMgf9wkpM1FwKXwCHoG1LYo0reN1skvcoSKZ83FFB4QpZRZEsC60j2dkci5MUOKOM2cdHNmZvgMihCOzkEp7yiGesOVO0keJvj1h7zxTFYsKNH7d2qeOZKu1boHqwQ3sQYto+xjPQ9Zn5mmI8i10Z3D1LZSMnWWkSnOySt0K8OIO8YHhoBtHG9mu0DW4/o5Zpgq7LcNE5O4n09wPGMFyBcMuG2eJpReUUDPcX0PEZ54qDv5hx+lt9pp/JOfERjSQOjWccBveNJleR0DgC8ZT9a6p3dHGO1immcqJNQx4KiGK4p0b9mR2Ma73l42mXtCGM54XKabuaMR6Em1AIFKH1FfeGhjBKybWylWMdRX8loPHC2ObUElsy7Qwc3KENc8UtQftC95YCCgiWhjSjhK0TLYKpmGQnwhk4+F17jEaLgjuwK6sihNpJg9+zFXdJwyGrOARtmH42sT1H3ZS05eMkmp1brKyOaMibAWqcYyKfxYdSens9gk3bp5RNafLIoXdIM/MN+l+7qihDVSWXGu8Lj+Cd8zj58N0YsZVThS+4Y1v6qjJD2rAnP+2JfS62oZqsqgi3M4qKizO2ISSV2BNoUbHhJZXZqintCSo1uAObC7HdycY2deWGtGlXFFnDwxvmdrLqZqRNj52brZRF60hG2nBwRzZ57vVzsqnQuhd6Nv9ypidl72fHthM+dFGjlOH+Bv6Wwe8a9v+ysHNLRPcQoKF+qE33eJP5B21z4sxTNvfjxhleOyZvBkimcTtjjO9SNCO8VdvynM/UqL7YRYcu8WKFInRwRjlpw8WJNe5YMdwlJNMaXGN9L7qK0aJGO7bSxzjg9hXsHZG1A5LZgMWHYvz1Abv+cIrCF4rAsPwbPknDIejlOIkhryhqawW9v2giAWRjj6xqCyYqL4yJF4KJZHmKjjy8kaZ9s4vfs656yja8U4TgjG3fSFaFlc+1eebtDWpLAyrP+cw+vA3GsPmuGdyxofG0hxFoHi3o3KjweobRsqBdWwklfkF6skp+pI6zX6O7NfyJ7Ls3MGeNyqJJqbcOoHfAXpCE2y71Y5qlB1M7OY1ztu+usvzFHmnLx7hC84UM7dsVc+eGkPGcoDKbG1r4iy16t07b/NC6Q9jWmCPqG/8PdlVQalWVXGaCz760KjlD8uG7UakGbFXVmVxG4dtSUndYWN9ybctJ80nHumjbr2FEyBoOKnup3Fe0Iau7hNsZ2pnIeE+Uee19IQ+t9IhxrNZVZcOgMnui1I4QTzl4I4NK7SThjHLSxWBSWmrLdX3BVhIVhnw2ZPtWl+oxxfRX24gxeItTFPMZZuTQ7VZQiZC0FMMVw8LDGV57bFV5HUUeVQnbfXq3TpHUbYLaG1SprGe4Ixs8l8w23Q2XA9K9toFyNGctVZPZgspJx5bXxkIyWyDNlFgCnKURWit06iCrEV4sGKfAa8foaoA70oTbBfGshxNrQg293S5BVzNaOGPxag2/nFSorGkKX+jvj6idSMibEd56DxULlVMjlschm7fbkKSTQtYw1I9D0C1Y/WaHqSdh6+4p/Dboky3qJ6xQ5nBXxMwTA4wjxHMhaU1ReIIztt4rc1/L2XinzXXoTBCB/j6NyoTKaaFxLKe/yyVt2vCj37W+39kMZA1s8YVvSOt2It18R8DcYwliDLN/bS0B3LiwzZQTteTV905T2dBsLxu8niBakc3X2LrdIdy2zY6D3Yrlf3l9hqmgrKp6U4iIA3wFOGWM+chk2z8EfhzIgT8wxvzkefvcBPzGOZsOAP+7MebnROT/AH4U2Jw8979ObGbfUgSffRiA2rkbv/Memxfp5mR152XJtyI4U16qz4aZ8kBR3YonOQzbeMbkvnaEtOngDTXas5OIE2uSKZswlwKCTkHStJ4K2lHUT6T09vmTSrCA+UcSxLHhrrThMv3kmI27K7SeN0hucFMrQZFXDKfe38Lv2mT+eH7yeSMFw4D9vzu2J6XUljSLMcS7mxSRQ9JUjOam6O0XUDD1jKbwhP5un7mHbEe6ldQQ4inFeE4YIiQzGicRvI5idGts/TXqII5hz+IOp7wmxZrVp3LXfJyRsPuLI9zOmGSxhr85JNyCZDrA7+SM5z3bpf1ihhsX+AOX/m4X40IRCtNPpbijwqrfTq40t2+vM9u3Qozat5LzKxsup7+1xWCvJtxUdG80SOEChvatVs6jmMqResLGUoXe92jmftmQzIQEW2NUqqmsFyTTLs0XczbudOndqNC1HEmU1ZOa9E04ic1HdPe5OImheto2darc/g2c2E4g2rX9GqKFrTvAb0M84xHf6FM/npMcqFN/po0OPHToEc9HNF/MGSw7NJ4Xhrus+dWxbw8JJpNG1rTWvtc15YrjTfETwNNAA0BE3gd8N3C7MSYRkfnzdzDGPAvcMXm9A5wCPnPOS/61Meb/uszjvuoI/8tLyqI+EH/kHqvUW3FJ68r2b7iCcSFrOITtHJVrxoshKjG4sV2h5BWbO/EGGuPaCQOxP11f8PoF/RWftKaorlq9Kq+f0TkY4Y5tuGPmqRztW29x7QqDXQ7tmyo0XtQ448KW2BYGJy7Y+9nUmjkp2Hlbg6xmiA4HqNyWt3o7I/JmhEpzxBjyVsRw2ad9K2djxXmjIFx32H67EK1bK1/jWrkYE9jAn8ohbdkKNOMZ8pkUcQym76HqGZ5XkPZ9Tm03yUY+YVshWwFB2ybni8DBze3vg1JWMiYzjOc9solNcF5V+N0UlTvEs5BVDcGOMFzyCNuK7oGI+omCwbKD1zds39HEH2g6Nzok0xX89sTWNigYNYTGkz79O2Iq9QRjIIl9blle55knd9N4zmH5FxKMkyNphq6GOImteCs8j7SmiJdynEaKWgvRUxnS82BSqqt9u1LNGpAXQudW20xYRIqpJzlbAYWx4SYEvJ4NZQ2WFbVTBYNll8p2Yd0cs4K84lE50ad7c5M8tKGuyprNzYwWrR4a8JIf/PWKeWtXVV3WAKSIrADfAXzinM1/H/iYMSYBMMZsvMbbfAA4Yow5dnlGee0S/v6XkS89hveFR2j+yoN4X3gESbWNXbtiDXRaAUE7owgVKrU5D3ekyUOxXe5bqfVlKKxPSFpT5JFD2Cnwh5r2oQDtCuOFwIaockNlu0AKQzzlkEx5DFZ8Rot2NeGNrASKN7TyFPGMR+dQhaLqgVJMP9Fjzx/FTD1b4HdtnsX4Lm5vovKrNZvfVGG4bFdQTmI1nSiEtKVRiZXIcFLb/GY8h7weEM/5xLOC37V9B85Mghfm6KGtKHKPheSpY1VvD1epP2lDRmlL4/cM3tjgDlJM4OL17KWyM8pJpl28gSbsaMK2of5Ml/V7qmy+w6MIbRUUBiqbOe6woHpaTxSUDY3jKa3nxiR1azucz2Yk0za0KEMXSRx6N+WoTZ9KkBKPfQ4tr/PM8UVULMw8mZBPV8FVGN8jWajgdq1cfWUjY/NdBaqa4fs5wY5Chi5+R9n+jrqVZh8ta+LFgnjOVkdJIWjPMJ4XxnPCeNEe36wx8bQvIOjC1HMZWVXhxgbtCod/oMp4VxVnlKEDl2grQxWQTBnSlm1iDDcVedUQL9kJ49Dfu34k1C+IeR2314GIfFJENkTkiXO2TYvIH4vIc5OfU+c891EReV5EnhWRD52z/U4R+evJc/9WRCZi1xKIyG9Mtj8kIvtea0yXO3P1c8BPYkvPz3AIeM9kgH8mIne/xnt8P/Dr5237cRF5fHJAL2hgLCI/JiJfEZGvZFwfrmMA8sBjVH/7Iaqffgj1Z1/F/9zDdA6EqNwwXghwxtZkyu9b8ymVFjiJYTRve0Oaz48I2pPKLF+obFr/kd5umy8JugUqtX0IRtmVRmUjZ/HBguYRe6U9WHbZvP1MSMshnhU27qxw+j11Tn2gyWgpoHpiRNISGseskZHxHLpvm+bY98zR32usLlWETdLGwtSTgjMSGkcNteOG2smUdC6iqHhkNZe0qtCOldPwp2K0FtJ2SO2Ih7/t0HoG5j4foDJh/tGCaMPQfF4TbSiSltDdrxjsrTDeVUfFOTJOGS2H+J2cnVtdxjOKIhCOfu80KoepwzZnUlm3RmBZ1WH7toCd26zmWbRlq4pOvq9C74BtpiMTUIbqcRcTFahY8JoJooXO47M4J0OO/OVeDvwSeD2FvzXC3RqA1pjQxeul5M0A4ypG8/b3ck6EFM/UyWoGt28njaRlw1RGwO8oKscdjG8ndpVZqZNkypA2DME2tA4blv7SKiKowlac9XbbUunOTUJ/xWH2UWGw6FJUPJxhSnCyS7SpyRu2B6n3tpTxrgKvL9YlMJbX+Ka+9RFjXvP2Ovkl4NvP2/ZTwBeNMQeBL04eIyK3Ys+Zt032+YVJ1Abg3wM/Bhyc3M685w8DbWPMjcC/Bn72tQZ02SYOEfkIsGGMeeS8p1xgCrgX+F+A3zwz813gPXzgu4DfOmfzvwduwIayVoF/daF9jTEfN8bcZYy5y3tF6vn6Yvr/fYDwv3yZyu88hPeFR8irDn4nsxLsowyVG4KeFWnUrmK0FJDWrOOhyiGeC/AGBqNguOjhJJpodWz7AYCs5qAy6xteXS8YLtvk+s5NtuTYiBXzc2KrDOv3Ck5+oE7r+YL6kT5GCac+0GLjTiGe0yCGvK4pGjlpU09EJ4X5r2qaR8ZMP9EjWOszmncpIpfePpfBijBe1GTTOUGQ4R4NqRxz0S7Mf1WjPWxCuycM5x1GC0L3gCLasKWoQcdgHMEb5OiKRzFVwe8XdA/4FL6thOrts/7l3UMFq99iLVg77x/Tvivj9AcLRkuGIoC0ahsyd251qR8zFJFtpms85RHu7zP3gVPIwEWHhmzkoTJb4uv1hBs+tYNKCvZ/at06MirrfVKELlnDR/uK9fuabN1hm0izuRzEVk25o4lfOrZaSweQNjTDfTnkgvYNRajPdv6HW0K4o0nrwvrdCieBwrNNnGnL/g1F216VsFPgJoaNO0NOf2CG0YEpgm5B5YTDeFcOmZqUkBtmH3LQ/hX8wl8tnGlW/Xq31/U25s+BnfM2fzfwy5P7vwx8zznbP2WMSYwxLwLPA/eIyBLQMMY8YIwxwP933j5n3uvTwAde7Zx8hsuZ4/hm4LtE5MNACDRE5FeAk8DvTAb/ZRHRwCwvJbvP5W8Cjxpj1s9sOPe+iPxH4Pcv4+/wliT4g4fP3tdA6N5KOh3RPVjDG2nilrJyHBWr/ira0DiRUfgKb5ijkoLBviqt50YMdkdEm9Yt0Y1tqMPvwuKDfdq31Bgu234BlRu696SYVOEPHJYeiCfttVaqJatBEWlQoCsFpApvxyVvaEigsmZjxmqUkU2FFAsV3LFh7Z4Ad2xj+c5YYOySnZrCMeDGnJ3w3NjgH7dWrioz5FXBSWG4JFa/qbBmTFL4hNs57kgznnUnUiQa41nZ83BL0B2H4YGM4e0ppuvjb9sTZVHTqNj2VFRe7BGdtBd6yVSTeNbQe1vGlJtz8tFlHAGTCrv+0FA50bF+5I7Dxr3TzD+4Y021emPr9V5YoU3JDWv3+dROGPb9lzEnf6JAVivUjkHtdM5gl4PXt/7fKrdJahGhcsJOoGnrJdmRdKZAew7GUcRzGu0bsoWC6mGf4aJi9rHMqhOMbP/JaM4hbdiqrHBHM1qwRRSt5wu8gUsRQPPFgvoz25z4jln2/rPrt5oKsGGo1+dbNSsi5+rNf9wY8/HXsd+CMWYVwBizek6ueBdwrj7Sycm2bHL//O1n9jkxea9cRLrADLD1ah9+2SYOY8xHgY8CiMh7gX9sjPkBEfl7wPuB+0XkEDbP+2oD/DucF6YSkaUzBwz4W8ATr9ir5KLQX3sKl0n1AhBhRR0raylFoBgse1ZZtWqvPqMdB79XkDZ98sjG+KsnY8QYkumA+UesR3nYLmyXdAD9PYoDv2RYv9ujejrGa48Z7amjkoKNO6v25Bxo8AwydGwjoAGnr4g2hcbRFCfR6MjF6yWkrSq9vQ5Oag2RpIDKqjDcrSlCcEcCGryhLSf2+gVJy4Zf4hnF0l/2Wf2WOv0DBdUTDsOVgtZTyvYnHPSR3CeZtpOKrmjbA9IRdv3xDuvfPEXSdZFmgnvY+r97fUhQeH1h4a92kKKgqAc8/9+F3PzzGxz92/NIomivNYj6QvWUIasL0fqY3qEGnYMOuz/fZe6RLmQ5uhGhemMkSUl3tRBt2LjTs2KFK8L2HQGVrzjMrRqGy4I/UDgxzD9gx5dXhNZhK6LoZAZ/oFl9t62cMgJ7f9fQPSB0D9nj7nYdZGTLndOGkNVsFZ4qrBBnVof6icKGuZoKf2DYfKew+48y1u4T5r4Cfiene9vUWRO06xnhdYeitowxd13Sj34l5uts/3r7vCpX4k/8SeCTk0RPCvyQMcaIyDLwCWPMhwFEpAJ8G/Dfn7f/vxSRO7C/2NELPF9yCTgj6ugA08DGP3g3ft8QdjXRplWkjVsO9RMpWd3FzzV5xSPcGLPztjp5VJkYXkG4bePrReiw+OUxhac4+aEpgm1DHkWMlm3z2u59W2x0a7Z7/XCFpS/ZxL3K7Mk/bblUTmWs3dcg3Hnpci6Z1lRPKOLZicrtJDSkPQi3rcRHVrW2phi7Cjn9njpp0+YShnsLjG8d+PyOsqKALsTLOZIL4apLHhmiTUP/YJPaaoGTOORHawz2GJb/siCrKfpGMfeolYo3vssLfzvCRDkv/ouIuJ3hNxPU07WJ/Imd7Pr7KnhDzd5Pb5EuN/HaY+J9U9aHxRjyekDactm+1SWeL3AHimwmx2u7DPfnJDMO+WxKPOsSbAvDXdMUoaEIzVnJfDGQxA7Vk4Cx5k2n/yvbZxPsKJzEhplGuwvQCuVB+yaHYAeaxzK6+xVZ06A9B79jJ7wigJnHDKMFj2BLkTYMvX0B0ZbNT5XwkhnZ5WH9zEX0JAx1psjoJLD7nNetAKcn21cusP3cfU6KiAs0eWVo7GV8QyYOY8z9wP2T+ynwAxd4zWngw+c8HsEr1QqMMX/3co2z5NWZ/3cvDz1EwOhH76MIFNHpIelUiDPKQYTqaoZRwvZtNnyVV4SZJxLGcx7GgfW7PVQCUVsTrcWsvTvC6zqcODqL10jJE4dwCMe/zcO4hsYRxfTTCZUTQ/o31Cki22yocmwPQWAYLxmylq3mcSZX360jVg3YyQx5YEtOW4dHdG6q2FJgDcm8jf9LrChaOXR8e+INAGVAC8l8wcJf2T6RaNucveLGQNAWentd/J5N5u/cGtA45jCac/D39mn85xrTj/bAxIz2txjNTZLUuSHo5lSO9cAYRjdOk9Uc8opD94A3WSV59PYFdG6ykvru0Fa/uV3XTgiF7RhXfoG3N2E872FiB2/bxRkLWc0KZvb3F7hDhfYNkgnVU8JgjybsKFQ2sbCdsaq8RtkCA8exx2f1Ppci1Hh9xXjOMJ6DuUc1TmaoH+4y2ttg4RErW+P3rVLygZ968JVfoOuN1x+qeqP8HvBDwMcmP3/3nO2/JiL/N7CMTYJ/2RhTiEhfRO4FHgJ+EPj5897rAeBvA38ySSW8KuWisuQNM/MfrW+JgbMSKvq+d+B3U5KZgNYRa7Nb+EIy5ZJHQtK0V+8SwmDZAULCdZuY9boeYjyc0CrR+j1hvC+jsmG/pse+s2kNg0aAgnjKlsOOWpq8kYEW3A2f+lGoreZox5YcS6HAKPIQ+vsjkpaVSBEN3qZLtphhQgOpoogM6UyBVHIcx6ADofpkyHAJWs/nRGsjnDggmfbII9vzEM9ZJzx3xETh12H73gz3+Tr1YzHpQo3OgQBVwMyjbeLlOl43RWWFrZjyXQZLLllD0J4iaBtqp3PW3l1h+qkclSnatwp5TROuOeR1jZqPYSdAVwvmpgaMU49UXNSZSUXbarQ8hNox21MSzyhGu3P6viLamHT5d+0KItywYap4IQfHUDQNwY6PE0M6n6PDSehwpOjtV0w9W9B+ewuVw9q9DlnNEG4q4vmC5q9egS/jVcilEjkUkV8H3ovNh5wE/hl2wvhNEflh4DjwfQDGmCdF5DeBp7AN1v/AGHOmoebvYyu0IuAPJzeAXwT+k4g8j11pfP9rjamcOEouKfLAY8BL6sDdH7j3rPNgb79QWbUS5r39UATQX7GKvZX1jHB9RDJfYf0uHz8T4oMJ4dGA1Q8n1B4PyA6N0JshWQOidVshNbjN1p1WnwzJKzD7eEHcVKjUUFkdYgKHtBlZmRVf0V+xnuNZzYaK8qa2KoMOqJFDuCFoz2HpczBccJj/qzb5jMHtxLa6qRmhAyvT4o2EvCrWG7xhcMfWLW/nNoPquTgpeFsDjn3PHOOVArenGC1Ms/SlMW7PSnkYzyFvhFbccmRIG1ZSf+MOOxXv3Oxajam6xhkp0pZBhxpHaby5MUGQsbnRwNnyETEUtYLKCZd4VuOEQvMwjBeE9u02cW87xO3ka6Xi7eSXzGqCLdt5LonCRJqkZf9u/rpLXrNKuo0j4CSardsdECs3gjHMfE0YLcLSX3zDv3JXL5do4jDG/J1XeeoDr/L6nwZ++gLbvwK87QLbYyYTz+ulnDhKLivNX3kpbFH9bftz8H3vYvcXM1Smad8UEfQKuvs9/LaDvzmmfswl7BSshj71o4as7jG4PcGMXagU4BckaUDrWVj8Jc3WbRFZHRpHrAtio2M70LPpEK+b4I5tI2PYMSQtIZvouBShIdh0iHcXiKvZ9WeauCmowjr0zX25h2Q53lqfYqqCqQW4O0P0UkTccqhs5owWPXSgCXYcG+J62wD1XBUQm2epBlTWDYhjpT0KiOd83Im9rE08u2jf2siKgbxhPTHSJjSfKdi5xaF6wmFwS2rDH7ki69upOc1Dai+4OIltwmNbES9ojGOITihEG4Y3Jexb2eL4+jTzfxjQO2BDXr2bi7OriKKqSTNBohwZ+bjb7kS2REhvHKPHLjpxyUOx5dauQSVWBmbvZ0e0b6ogGmq/9dA39gt21VKKHJaUXFLOPblM/xWkH7qL2ccTuzJR0Do8JJ4LmX9UE3Qypp/MOP7ttslt6Y41Tq5PkU/lOImD5IaFh/uMdkVIju0Gb7qEOymSaYa7q5NtwnDFSnGkLSsAWNQ0mTK4Wx5FTTNcsB7w818e4PRj0IZiqsL226tMPT223hMTCXfjWDVgI6ASRbgFw12glCHZneB4mqnPBIyXKsw9tMPgYJOsovB7mmhthPYdnCRDRHDHBVLYk79x7a1/sEAyob/bOuoN3x5Dqphb6jKMfbLUJXzY/m5WNgSiDUPY0azOCUHHIW1a4Urlak59ZRkvFTb+Rozs+MQLBuNpJFfksxmq7yIG6o+GpC37fpU1Q/+Aga2Aua8JvRugv9/QOGKPZ1Y3zH45t02kqWG8+NY9UV40BngLS46UE0fJFcf/vC1jP/NvZu57B9oTas91wVV0bmmw5/ft/dW1Jdx5w8qfZqg0JZ71iVbHqMxKoLhjQ7id4XZixsu1if+IIq/Y0MzgQA7KoLUQrLs23DIQal8TWn9t1XvHK3Wcimc73w/6LP7ZlvUhcRQoIdxK2bk5ontI4YygflTo3lSwcHCLtaMzuD2HuUcN/T2K2ccS4qUa1Rd6VvEX0NUQEQFtGO9vkVcU8awwOGAd/by+UASCmc7o3wFGC2GUEY8iOv2IfL3C9OPCYK8duzY2we0kcPpbwesIWU2jUiFtGHTmoBzs73oiIF3I8Wop6rkKWcOgxi4YG9bKI2xH/VZO+5DtHaluKnoHIK9o3JEw9VzKzs0BTiyc+KCD320gBSz/xXWsTXUBSiOnkpJvIPLAY0S8VJTS+Bqc+Oi7SacMBz7dRwoNSkGukcIw2FthNOeQ1+xVtzty6BxsITlnu9izum1yUyOF8Q3GNSBWoLD5Yo4Ta/o3WeG+rGpF+wpf8EaACFv3zaIdmH5mbENNMfh9ob9PEy/a/pP1F2bx+gq/I2QVmDpsVXVrpxIrVR/5bH9Ti6wmLN6/gwk9VKrp3uoRzxoqx21iO6vbyisdO6AMTs8h+KoPM+A+XyPKbI4mmBRMqtTKoQ93WS2qbE9C64GA/gGbJI+O+KTTmqxhxR9xDN7jVfKaLV8GMMow2KNoPafJKmK9V2KDyoVo0yC54PUVeRVe+F6H+QcNnYPQelYYLoM7hMrvlGGql1FOHCUlV5aVn3mpHNgA6m03gyO0bwpJG2J7ODIh3yfs3ObiDe0JUSUwXsnx2g5FVWNqBeRC42mPwodoSxNPORhlO6OLYNLDMWsT+X5fY5TtJXHH1vdkOG8rtOI9GjOVER0JqKwZ0rrNUagEqus52hOCdmGteCdKvmck6zffNcX8l7bYvi1gcEcMHY+8qsh2pczO9Ugyl956jdbXPOsL7xiW/jKliBzcUcGpb/WpHbc+4dmiIZ/LqD3jwy1DiqM1ikgIt2wpdGXNkDUElsboxEF1PEaHEtxNn2IhwT8WoH0hq2u6NyjSpiZat7a21ZOG9s2QzWW2Aq1V4M/EJM0axjNsf1PBrj8RenudV/nLXacYzrplvhUpJ46SaxL9xDMAzDz20rbDn7gLCiE87ZFHBrNnjN4MkcI2BRJoSBVO36F2SjOaV/h9TbiVcvpbKlZnqqUxriFadWwD4U6KCRzqxxN2bglJWh61NSsbj1hP77Sl8buKXX/SIV6s4g5zpJiYanWtc6GOPLbfUbX9H9jVwca7ZxnuMrh+jpnVZA0HUwjtbhVzKmLvn+YUYYETa/x2Stb08fo5xhFm/lpz+m9oZr7sMtaCyjySOwfo41VkZczAC9GBxus49PdBPptBx0dyQYca/6RPOlPgnQ5IFnO8LRevb8tpERjszwnXbd6lelJIRh7VU4ate6zboVuDbCYHMcRNj8Gey9u0cO1RJsdLSq4JDv3IV172+Miv3cHM14TW8wmSa1SuGa5UyEND5wbF8l+OSVsevf0h6ZTVtDKBQRIh3DGEbY1KClAKtztm6jlh7V0h8YyVaq+cUsRzQusZiHZyiopHdLxL75Yp6s/3kDQnXawzXPIZzSnETFYITUMeaZIFg7/lkPQDdu3eZvWZeZqHFc1jgjeI6e8OCDqayrEeecMaOcnE1wSq3PCrhiKE8axHZU3o1SsYzwoTqtR6n+cNbUtwRw5u3zZNqsza4UanXcYrOU4tw9Qy4oGH03NQuZW0T1uaeF+GX8lIOwHjvUAhuGHGeMklWHXRB0e03+4y81iphvsKyomjpOTa44b/9msve5x+8E7EGPyBYeZpTdryGM47DFcEdaBPshPh7TioHJpHUvztmM6tdeuprqF9MwQdq/+ktPVu97r2JNzd71J7rks6X8M4wmh3ncrRHnnFYTyjSKdsj0laVWzsLhAtuH3F/L2rnHp6gfjTC+x7IUUVGmeY0buhhhSgfWHnjikaL4zZuKtO2LbqwoNll+bRlPZBj3DHkEdWdj6va/TAw1Q0KlagwR0LRmyPiRNbq9u0LgxXtHWE3AmQVBDXwFKCFkOeK8zIRXoeaSH4rYRsK8IZKLy5AmfbKh9nnQA3EaY/+cAV+RtftRigeOuuwsqJo+S6wfvCI2c73M/Q+R/fTbyUI6tVqqtWJ37pgTGn3x2RNX2iVaG2qhksKxovWD/3rArxtHVaxMDMEzHOIKWo+oznfdKaMJpz8QYVOjd4qNTmJzbvCGyDnRF2f85KnHdXl1h5IbdNeFMu4U7G9u11ou0Cd1iw/bYA8942e2Y3OP7FmxjshZUvWmMp0TZfMloSsqpBFRCddhgvaptUjyFoK9yRYbxgRR9VCknTFgzUjimMo/C7huaLKUWoGM2HdA6BrmsrcQKY2GPxdxWb73AoIkP4+Qa10zaH09vn2nLgkvMwYMqJo6TkLcniz32JxXMeF+99J5Jq6sc1/T22k3rnFkW8kqGiHD1yUQPbNR1uKOonNMPlgNpxTVFx6e2bXOWP4Ni3B0Sbtpdi/e6AcNuw8BdbJMsNRgtW6bZ22pawqsyWDfd3B0Tbdlv3gI87NjR/ocrJqYPk92iKqiaZ9mwnvCP4AzspBDtik/cRRGvKKgSPraBjPCM0n9eEOwXDRZesZic9b2jwhtacyyjo3OghudXR8tsKyYXpZybOgNoQbhv8viHaKti52cOJDdqFqWfLmeOClKGqkpLrA+f+RwFoPmAlQl/42fsIt4TFP3Gorhbs3OJS2dD43Rx3lNO+ucJ4RiiCCoVvPTAwMNxTEGw5pA2onTCM54S5R3ogghMXeCOHpOEQbRWM5ly6ByFraMJ1RX+3a8toNw1FKKzf5RNtGsJNwT2m0K49mfvtmLTlEm04dlUxL3hDcBJr9xp0z5z0wR9ogu2Y8WwNv2/IQ6iuF/jtlPFCwM6ddtLwBraqDAW1VUP7oCJoQ6SgcdyKGXb3uxQhzD8Ss/HOiOCzD1/wWF7XlFVVJSXXLwf+yctj93P3g3rHLejIY7gSEc9a46R0SnCHVlIkbRqcsZX1MA4gsOv+IQDGVbg7Q5y6hxMauvs88ho4Y/tcUZn4fzcyiiiw9zVkDcFvQ3+fZrQspC/4iLE2e8MVM5GLt+XFZ0JRWUVoHUlJplyC7ZTxUsTUMwOMQPuWGltvc3FSl7QBWVPj9oXxLqvdFW4p4llIbxkRbwWoJ638etJQRFuaaFtIpj2W/6xzmUVgr2HKFUdJSckZ9GNPA1Cd3F782H1IZrWiRFsb19kncrZvc1n5oxEqzpBcgwiIEO9u4vUz8sh2tNsENkSbkFeFdMoQPR8SzxeYig1bmdGkwfGUgzuyApFBx/aFRBuK4YpGx4Lf18TT1vFPPCGPrOmWaMN4xkGKCJVpGscTRksh4wVD3ihQY0U6V6CqGWwH5BWbP2n8eUQRWZXdtG69SsJtq9HVfKJj7W1LLkw5cZSUlLwa+3/q5auStZ94N4UvRBuG7dsivFFI7WSK200o6gFeLyWveETrMePpCsm0bWCM52xuJJwbk08pKkFOPPYxmwGN5xTjBUPWsOErKWC8AH7HlthKYcthtSuE25rhks1z7NziUj+h8Xz7OgTGsy71k4n1gG8Lc48oaidjevtCNt7lE3QU2jFU1u1qynbeG2qnNfUXh0hWoNIA8gL91OErcMSvAYyB4q0rwVJOHCUll5jFf2O73KvnbOv83fuIIgfRBuO4eMMcAH9oULldrWjPkNUNztM1Gsdt17czZygqhrQByVKO03GpnoLxHCCgPSgiCLaF0Z6C0y1h6kkr9X7GydDrC50bXRpHNf1dDn7f0D4Y4sSGoA3DRUXnYAUnBVNJyWMr3phMWUtc0SC50LnRQUyV+uEubi8mn6ld0HO0ZEK54njjiIgDfAU4ZYz5yGTbPwR+HGs08gfGmJ+8wH5HgT5QAPkZX14RmQZ+A9iHtY79b4wx7cv9e5SUvBla/+nlq5L8A3fid2LCLZdk2mP3F2LW7o1wx5DWwY01owUhXUlxgwL/xphsFKA7LvE0TD+tGc/aCq7KlmbtPnCmEsxqSDxr8y0AEtgciPYN22+3KxUQGi/YsFg8Z/MyWc2QAzJ0UamVU0+mNOM9BVOPulRPQ/1kTnS8y/CGFklT4SSG2jf6QF5LlBPHm+IngKeBBoCIvA/4buB2Y0wiIvNfZ9/3GWO2ztv2U8AXjTEfE5Gfmjz+J5dh3CUllw33i4+gsc6JHrD9I/cxXtQUjQIZOaRNaxYeHA9oHdasf9AhfDGgumNdBv1uYfMYGtoHFcyOyRMHcW3uI562awG/DeNFqB2fJPGbhsK3K5XxvCGfycAIKswxO9bjwx1ZzS4pBHfHZbgCaKit2gR+5cUe4zunaP5WaRH76pi3dFWVupxvLiIrwHcAnzhn898HPmaMSQCMMRsX2vfr8N3AL0/u/zLwPW9ymCUlV5yZTzzADf/oQQ796MMc/IkHrYqtsUnzzk1C86sBOjAkTQi3BVUYGi/G9PbaSixZCxFloJUydTgBYLyrIGvYiSCt28qtyinrvT5cAe0ZyO0pQI+tT7kzFsJtg1HWlteJrXyJyoThvIuu+JjQZfqpwZU8XFc/BozRr3m7VrncK46fA34SqJ+z7RDwHhH5aSAG/rEx5kKF4Ab4IxExwP9jjPn4ZPuCMWYVwBiz+horlpKSa5Ib/tErr+Zf+Nh95HOafGHMybkK3sBn8cGEtXcFREMoNkIq64bBLkMRGSQVxisZzsBBCkHldiWRTRe4jRTneARK4YwE7VuPd79jcxuibUJc5TZsFW4ZKpsFOnAgcPC2Rrx1U7+XiFJy5OIRkY8AG8aYR0Tkved95hRwL3A31nD9gDGvCAh+szHm9GRi+GMRecYY8+cX8fk/BvwYQEjlTfwmJSVXBwfOq97a/uH76O/xWfliHxVnxMt1wpN9BoeaFKHt5aAQwk1FMmUFEZNpjWRCkSlMq4CgwFnIkWMV4nmN9hXBNtYAyjfUjisqW5poMyWruRSeYv3ugJWf+eqVOQjXCsaALieON8I3A98lIh8GQqAhIr8CnAR+ZzJRfFlENDALbJ67szHm9OTnhoh8BrgH+HNgXUSWJquNJeCCoa7JCuXjAA2ZfusGG0uuW2Z+8aWJRAOh3AIK3GHB9BOK0bxCe4rRkibcUiQ3jW0IJXbxTgVoD8xIkfsuZioHx6CHHllNmH7SMFhROKnBSTVZ1aVyrIdkBbs7AeU/1OugTI5fPMaYjwIfBZisOP6xMeYHROTvAe8H7heRQ4APvCwBLiJVQBlj+pP7fwP455Onfw/4IeBjk5+/e7l+h5KSa4kzjYn+4/afqgWc+KfvBteQTGtMx8drK/KawR3aFYk3FAb7Crxmgutqxrmi8B28oaJ2UlM/mWCU4PZT8mYECpxBeiV/zWsGU644LimfBD4pIk8AKfBDxhgjIsvAJ4wxHwYWgM+IyJkx/pox5nOT/T+GDW/9MHAc+L5v+G9QUnKNsPunv/Syx4c/cReSOKgCJAN3aAg2HcxODWcIFQeyhhUvLHyBwuB1E4yrcAYpovXZCark61EaOb1pjDH3A/dP7qfAD1zgNaeBD0/uvwC841Xeaxv4wGUaaknJW5rzza42/od3IwZqRw211Zx42mHznTC4QZOvOVQ3PJykQLsKdzQmWayXXcOvh1LksKSk5K3K/C+8fEWiP3IPM49bM6usapDcEM+HRKeGGKXw+mmZ33gdGMCUkiMlJSXXA+Hvf5nwnMeD73sXlbWUvB7grffOer2XvAbm0hk5ici3A/8GcLDh/I9dkjd+E5QTR0lJyatS+62Hzt5/614/Xx7MJQhVTSSb/h3wbdiK1IdF5PeMMU+96Td/E1zWzvGSkpKS6xajX/v22twDPG+MeWGSH/4UVj3jinJdrDj6tLe+YD597EqP4zxmOa8M+SrmWhnrtTJOKMd6ObhU49z7Zt+gT/vzXzCfnn0dLw1F5NyKhY+fo5IBsAs4cc7jk8C73uz43izXxcRhjJm70mM4HxH5yhnF36uda2Ws18o4oRzr5eBqGqcx5tsv0VtdSLn+itcnlKGqkpKSkquXk8Ducx6vAKev0FjOUk4cJSUlJVcvDwMHRWS/iPjA92PVM64o10Wo6irl46/9kquGa2Ws18o4oRzr5eBaGefrxhiTi8iPA5/HluN+0hjz5BUeFvJKUdqSkpKSkpJXpwxVlZSUlJRcFOXEUVJSUlJyUZQTxyVGRL5PRJ4UES0id52z/dtE5BER+evJz/dfYN/fm6gGX+h994nIWES+Nrn9h6txnJPnPyoiz4vIsyLyoTczzjc6VhH5nIg8NtnvP0w6cM9/30t6TC/nWCevu2TH9WLHKSIVEfkDEXlmst8FZS+uhmP6esc6ee0l/a5eNxhjytslvAG3ADdh1YDvOmf7NwHLk/tvA06dt99/Dfwa8MSrvO++V3vuKhvnrcBjQADsB44Azjd6rEBj8lOA3wa+/3If08s81kt6XC92nEAFeN/kvg/8BfA3r8ZjehFjveTf1evlVlZVXWKMMU8DTLxEzt1+rtfmk9iO0cAYk4hIDfifsVa3v3mNj/O7gU8ZYxLgRRF5Hiub8MCrvP6yjNUY05tsd7Enj29IFchlHOslPa5vYJwj4E8nr0lF5FFsT8Fl5zKO9ZJ/V68XylDVleF7ga9OvrAA/yfwr4DRa+y3X0S+KiJ/JiLvuawjtLyRcV5IImHX5Rneyzh/rIjI57HWwn3g06+y3zf6mMIbG+uVOK6vGCeAiLSA7wS++Cr7XRXHFF5zrFfqu3rNU6443gAi8gVg8QJP/VNjzNe1shWR24CfxdrhIiJ3ADcaY/4nEdn3dXZdBfYYY7ZF5E7gP4vIbedcrV4t43xDEgmXcqxnP9SYD4lICPwq1q74j8/b9aKP6RUc60Uf18sxThFxgV8H/q2xhmvnc9Uc09cx1qtSzuNaoJw43gDGmA++kf1EZAX4DPCDxpgjk833AXeKyFHs32NeRO43xrz3vM9MgGRy/xEROQIcAl5u6XaFx8kblEi4xGM9931jEfk9bFjij8977qKP6ZUaK2/guF6mcX4ceM4Y83Ov8plX0zH9umPlKpXzuCa40kmWt+qNVybyWthE3Pd+nX328epJ5zkmiTvgAHAKmL4Kx3kbL084vsAlSji+3rECNWBpct8FfgP48W/UMb1MY70sx/Vi/v7Av8Am79XXeb8rfkwvYqyX7bv6Vr9d8QG81W7A38JeySTAOvD5yfb/DRgCXzvnNn/evi87IQPfBfzzyf3vxSYAHwMeBb7zahzn5PE/xVaoPMsFqlku91iBBazGz+OTY/bzgHu5j+nlHOulPq5vYJwr2DDO0+ds/5Gr9Ji+rrFeju/q9XIrJUdKSkpKSi6KsqqqpKSkpOSiKCeOkpKSkpKLopw4SkpKSkouinLiKCkpKSm5KMqJo6SkpKTkoignjpKSkpKSi6KcOEpKSkpKLopy4ii5rhCRu0XkcREJRaQ68Wt425UeV0nJtUTZAFhy3SEi/wIIgQg4aYz5mSs8pJKSa4py4ii57hARHyvzEQPvNsYUV3hIJSXXFGWoquR6ZBorLljHrjxKSkougnLFUXLdMZEu/xRWEXXJGPPjV3hIJSXXFKUfR8l1hYj8IJAbY35NRBzgSyLyfmPMn1zpsZWUXCuUK46SkpKSkouizHGUlJSUlFwU5cRRUlJSUnJRlBNHSUlJSclFUU4cJSUlJSUXRTlxlJSUlJRcFOXEUVJSUlJyUZQTR0lJSUnJRfH/A5WhfRIBjMFqAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "url = (\n", " \"https://storage.googleapis.com/\"\n", " \"gcp-public-data-landsat/LC08/01/047/027/\"\n", " \"LC08_L1TP_047027_20130421_20170310_01_T1/\"\n", " \"LC08_L1TP_047027_20130421_20170310_01_T1_B4.TIF\"\n", ")\n", "env = rasterio.Env(\n", " GDAL_DISABLE_READDIR_ON_OPEN=\"EMPTY_DIR\",\n", " CPL_VSIL_CURL_USE_HEAD=False,\n", " CPL_VSIL_CURL_ALLOWED_EXTENSIONS=\"TIF\",\n", ")\n", "with env:\n", " with rasterio.open(url) as src:\n", " with rasterio.vrt.WarpedVRT(src, crs=\"EPSG:4326\") as vrt:\n", " rds = rioxarray.open_rasterio(vrt)\n", " rds.sel(band=1).plot.imshow()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" } }, "nbformat": 4, "nbformat_minor": 4 } rioxarray-0.18.2/docs/examples/reproject_match.ipynb000066400000000000000000010737311474250745200226320ustar00rootroot00000000000000{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Example - Reproject Match (For Raster Calculations/Stacking)\n", "\n", "`rio.reproject_match` will reproject to match the resolution, projection, and region of another raster.\n", "\n", "This is useful for raster caclulations and stacking rasters." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import rioxarray # for the extension to load\n", "import xarray\n", "\n", "import matplotlib.pyplot as plt\n", "\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "def print_raster(raster):\n", " print(\n", " f\"shape: {raster.rio.shape}\\n\"\n", " f\"resolution: {raster.rio.resolution()}\\n\"\n", " f\"bounds: {raster.rio.bounds()}\\n\"\n", " f\"sum: {raster.sum().item()}\\n\"\n", " f\"CRS: {raster.rio.crs}\\n\"\n", " )" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load in xarray datasets" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "xds = xarray.open_dataarray(\"../../test/test_data/input/MODIS_ARRAY.nc\")\n", "xds_match = xarray.open_dataarray(\"../../test/test_data/input/MODIS_ARRAY_MATCH.nc\")" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtUAAAEWCAYAAACpJ2vsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d9gt2VUeiL9rV9XJ53z5uzl0VgepJdS0JEQSxgg8gDAOY8Y2wYz54R/YZIPsscEBDxiQjLGNwAZkjZEJgwnDkBFYBDVSt6RudY63b75f/k4+ldb8sfbau+r27XSDWv11ree5z3dunTpVu3ZV7b32u971LmJmVFZZZZVVVllllVVWWWWXb+aVbkBllVVWWWWVVVZZZZW92q1yqiurrLLKKqusssoqq+wKrXKqK6usssoqq6yyyiqr7Aqtcqorq6yyyiqrrLLKKqvsCq1yqiurrLLKKqusssoqq+wKrXKqK6usssoqq6yyyiqr7Aqtcqorq6yyyiqrrLLnGBG9j4j+2Uvc94+J6H+/Bm34B0R0gYiGRLR0tY9fWWVX0yqnurLKKqussspe40ZEX09Ef1rcxszfzMz/6hVsUwTgPQC+hJk7zLx5FY/9l4joUSIaE9EfEdGxq3Xsyl67VjnVlVVWWWWVVVbZp92IKHyRXfYBaAB46CqfdxnA/wDwzwAsArgXwC9ezXNU9tq0yqmurLLKKqussleREdH3EtEZIhoQ0WNE9Jfs9h8gov+biH7RfvdxIrqz8LvvI6Kn7HcPE9FftdtvBfA+AG+zNIsdu/39RPSv7ecFIvpNIlonom37+fDLbPfXE9GfEdF7iWgLwA8QUZ2IfpSITlqax/uIqElENwN4zP50h4g+dKX9VrCvBvAQM/8yM08B/ACAO4nodVfxHJW9Bq1yqiurrLLKKqvsVWJEdAuAbwXw2czcBfBOACcKu7wLwC9DENgPAvg1S6MAgKcAfB6AOQD/AsB/I6IDzPwIgG8G8BFLs5i/xKkNgJ8DcAzAUQATAP/hMi7hLQCeBrAK4AcB/DCAmwG8EcCNAA4B+OfM/DiA2+1v5pn5iy51MCLaeYF/3/c8bbgdwP36H2YeQfrm9ufZv7LKXpLtOaeaiH6WiNaI6MGXuP/ftCv2h4jog9e6fZVVVllllXmrxuyXbRmAOoDbiChi5hPM/FTh+/uY+f9m5gTCR24AeCsAWGT2LDPnzPyLAJ4AcPdLOSkzbzLzrzDzmJkHEIf4Cy6j/WeZ+SeYOQUwBfD3AXwHM2/Z4/4bAH/rpR6Mmedf4N8PPc/POgB2L9q2C6B7GddTWWXO9pxTDeD9AL70pexIRDcBeDeAtzPz7QC+/do1q7LKKqusskvY+1GN2S/ZmPlJyHX/AIA1IvoFIjpY2OVUYd8cwGkABwGAiL6WiD6pSC6AOwAsv5TzElGLiH6KiJ4loj6ADwOYJ6LgZV7CqcLnFQAtAPcV2vQ7dvu1tCGA3kXbegAG1/i8le1x23NONTN/GMBWcRsR3UBEv0NE9xHRnxR4U38fwH9k5m3727VPc3Mrq6yyyl7TVo3ZL9+Y+YPM/LkQKgZDKBRqR/QDERkAhwGcteoW/xlCHVmyFI8HAZAe9kVO+10AbgHwFmbuAfh8Pc3LbX7h8waERnJ7AV2eY+bOSz2Y5YA/379/8jw/ewhAkWveBnADrnJCZGWvPdtzTvXz2E8D+IfM/GYA3w3gP9ntNwO42SZO3ENELwktqayyyiqr7JpaNWY/jxHRLUT0RURUh9AnJhBKiNqbieirrbLGtwOYAbgHQBvi0K7b43wDBKlWuwDgMBHVnufUXXuuHSJaBPD9V3otFkn/zwDeS0Srtl2HiOidL+MYnRf492+e52e/CuAOIvprRNQA8M8BPMDMj17pNVX22rY971QTUQfA5wD4ZSL6JICfAnDAfh0CuAnAFwL4GgD/hYjmP/2trKyyyiqrDKjG7JdgdQA/BEF5z0MS/oqI7K8D+F8BbAP4uwC+mpkTZn4YwI8B+AjEgX49gD8r/O5DEKT2PBFtXOK8/w5A0573HghN42rY9wJ4EsA9llbyBxBE/JoZM68D+GsQXvg2JHnyJfO4K6vs+YyYXyzi8+ozIjoO4DeZ+Q4i6gF4jJkPXGK/9wG4h5nfb///hwC+j5k/9ulsb2WVVVbZa9mqMfvqGBH9AIAbmfnvvNJtqayy16LteaSamfsAniGivwEAJKZcql8D8A67fRkSWnz6lWhnZZVVVlll1ZhdWWWVvXptzznVRPTfIeGtW4joNBF9I4C/DeAbieh+SHjrXXb33wWwSUQPA/gjAN9zNcugVlZZZZVV9sJWjdl7y2zxlkslDb7vlW5bZa8NeyGZTiL6biJiuyjXbe8moidJCim9s7D9zUT0KfvdvyeiF03Kvab0DyI6AZGoyQCkzHzXRd8TgB8H8FcAjAF8PTN//KX8trLKKqusssoqq6yyyopGRJ8PkU38ADPfUdh+BMB/AfA6AG9m5g0iug3Af4fotR+EcPpvZuaMiD4K4NsgOQS/BeDfM/Nvv9C5Px1I9TuY+Y3P4xR/GSTp5CYA3wTgJ1/GbyurrLLKKqusssoqq8zZpWQ6rb0XwD9GWdbxXQB+gZlnzPwMJGn2biI6AKDHzB9hQZ8/AOCrXuzc4ZU2/grtXZCVBEMyf+dJSqaeu5yDLS8v8/Hjx93/Hzp9wX2mDLKEsF3JdjlBufxTYwvucwCYzP+f9BYwkEd+Hz22Sf2x9XiUM7KaHCCYMjjQgxUazQDZaAEbKhxDPmR1krbrdRTaqsdh47ebxH7IAQ5lh7xGpUfIXVMOt6yi3PeJfm8yf01M/nzEQB6U+8Ak9nh6HrtvXiwLUOh/4ouuxZ6j2N90UX+yKRy+cB9LbSu0IZykSDryiJsUyBoo92V6Ufszdk2nRHZMev4V0d9e3G61YJohj4w9XmbbZ5B0jPudttvEjDwi2zbZmIfknq1iO03qP+ehv34uLom1Tc8TnCrte4l93P0jlIebwvNZOh6Re0bJtp8jAgfk+jEPqXQcADAZu/+zIdf/XHhOKAPGm6c3mPmyCkC88x1t3tzKXnxHAPc9MPtdZn7NybJ9ptjFYzYAPHj+Qun5B+T5cNv0OUVhDC689/qOZS0GUvuOJXY8098DyGuyXX7kz1Ucby4e0/X9BArtocL7lQPhNLf7ysasVh6v3PhRnIt0zC2863rM4hiq11Dsn2Kb3LyWXWJ8DZ57bsrLfXjxOU3hPO7YqfQdIP1XHEPlGtjNQ7P5wP1GjfLnDkGUAcHMjpmBnChp+3kriP3coJa2yu0DAEp8f1x8bUD5GO6eBIX7VxjqwimeYyVfobDNpPae14z7ji/hXWkfsfFt0zHdpMBtR/Y990evErvvvvsue8wGXvq4fd8Ds4cgUpJqP83MP/1ivyOirwRwhpnvv4jFcQiCRKudttsS+/ni7S9o19qpZgC/R0QM4KcuceGHUK6upI0+9xJ+CwAgom+CoNw4evQo7r33XvfdXd/4HgAyuWd12Za27Zc5UBv4wWm2KH+TDlDfgnfS7PfREAhixnTR34xwAkwXgdaavF6NbftiBYRwljtnAwCSdgCTMfKAECR+ex4SgjhHVjOlFz5tEtIWIRr5fWt9cdooY0wXTOkYjZ0crXNTTFfqbvtsziAPyDsysANaJtdXOl+LkNVk8CoOgCZlmMy/+Nq2pC2DQuu8P3ZrI0MeyGSSFZROp4vW0Swct76TIxrniDsGccdfiwxQjCBByeIuoTZg145oxGADpA1yCxdABqs8ApqbObZu88dlAoIZEI3kvgGASVjuGQOts2PfhlmGrFtDXg8QF5zq2ZwcL5wygllh0ZMCvcd2gFPnfYOP7UPWaeD829pu02Q/Y/FBoLWWugkEAGYLEWY9g/E+fx2UAc0NRjj1zre2GQDG+6QtxfsSjuGec6AwaZDcq+LkqzNC296/IGZ7fNm/+Mzo88zkHQUAmCwaLH9igOn+ZuGkwOBQiGjMSBu+3e0Lcr0m9rMSB4SsLsfrH/PHDWbA/f/hO5/FZdrGVoa/+N3DL2nf6MBTL6maXGXXxo4fP14aswHgpv/zvajZAtLqeMRzQK0vn4Oxf5aTOfkbjgAT2+/t3903z2A2ZSBqnyH3+3Aiz/bgKKF9rrwApJydM5UWFuHh1L53K/451bGZDSFt2XNPgYXHZIDRsXj3uHHjWdqQ9xTwDmHahBsvm+u+HxJbMDsu1P3Tfmls+/dztN+DNYkdbuo7MtZJ+/xxgpn2gf07ZszmyF6jtAUAZvP2fH3fB4ltR2MDGNrXq3Xet691QdrUWs/QPDMEAJz4KjlQbdtfQzQqgFTW6rs5uk8P7Xmk386/pe7uZfdkjqxR9qo37gRqO+VtzXVgvM9fo/ah9nlxfNT5KOkAWVMBAv/9wiPylwsOWDTRQdWDZNEoR31TGjo6JCdgQ5guFdpmh73WunxIWoTY9rv2dWMTuPfHvwOvViOiyx6zgZc+bkcHnpq+XPYCEbUA/FMAX3Kpry+xjV9g+wvatXaq387MZ62o++8T0aMWlld7oUa/2G9lZ3G2fxoA7rrrrr2nD1hZZZW9TGNk/DzhhMoqq6yyyj4D7ZqO2zcAuA6AotSHAXyciO6GgLlHCvseBnDWbj98ie0vaNfUqWbms/bvGhH9KoQIXnSMn+9iXspvX9RK4WdjV+GFezZb8OGrpFAUNenK9nAMdM74H6RNu6K3q/zakFEbSqisNsyRB/58ad0ADfgQXwBkAcEkXGpX0iIkrQCUA8GM3Tlqgxy1AVDfThDPyW1SlDDpGKQtcsiMyRhxlzBdaPlwWcIWSWGYlBF3LQXBog5sgLhDDi1xyDIDoUVhNQSYBzYU5/pB/rYuMGpD2Tec5m5/ytj10fCQj102Nn1fhrPc9iUjnEgj4q655DIrmDGaM8ZkyaCxJb8T6gEhGgvFRikK2n8X7iahVVg4vmvX0Hnor7WxJfeiuRbDTDw0njcjmDjDZF/DbRvtNyCL2JsEyFuKMhDqOwyuheAbj8BM5abs3r5grw8YXCdtW7R5yHlEyKPQIdAadVDUDPDoUv+op44AQHND+z4v/VavzVGRICFaJqG9AOV7r5bY6whilmd+ZEOw9hlNG8bdK2IgsEjzcL88k5t3dlEb+vuq7QlmHs0Pp+yejXjRDzmK/gWzHAuPyzEmy0HpWbscYwD5iwMKlX2G2hPv/g7c/n3vBeCfXTbsED2aA5LFtPSbdBhi4cHyc1N/to6mZwA6mpVGUJprcGN2kXaW2nMmbXLvXdyTHeq7jOamvCOjffJQp02ZSwBBzM+/zQ6Q9hGsb8NFJ5nIobTTJXvO1F+njq1FOhTYR1gjRetjdm3XaFP/GDl6QW3Xv19q0QiYLuh7bQ9tZAwFgPEquWMpyj1dJCT22tKbZVAfJwbNxwWRnaz64+u81jg/AQdyAYc/JLD/7g11DA/L90lPUFk5vvxdeGzmjrNzo4WTjadLjA4YNDfs2HNQxpjmeR+V0P7avZFBmZ1D+0D7jD2P7WuTeOqKotaU4jl0IwAY2whA6zyjNtCIhu83vb9Jy2D7JrlxepzawEcNGps+OqLjbdoi1PoW2V/z53zd98tz/+i/ePUi1pdr13LcZuZPQYokAXBCGHfZRMXfAPBBInoPJFHxJgAftYmKAyJ6K4C/APC1AH7ixc51zZxqImoDMMw8sJ+/BMC/vGi33wDwrUT0C5CKRrvMfO4l/vY59vCpC7j764TysfDwAEruOf/2noT/p+Ww2XhVHvDJPkZ9yw6uhRc5nHheVBYR4h45bi4AJBnJ4BaJM6EveDDlEv8YAJBbzq4NJSnvNBrLIG8yBodA03KKsohQ304wWfE8ivGqQb3vw3U60DII0RilwEQeEMYrhM65DME0R9Py/MarckHquKiDVd8Rh14HWABIOmVahZo6f8VBmw0QWYdsNucfKzfID+T8RVoBAOfsA37iMilQG7Cb6GY9QpAA9X7u7kdSNzAZy+Jj5I/Xv96G5IZ2gLdOqFJzilSTaCDtDQczIM0RH5RY4Wh/zbbNX39WlwkvmJW3t8/LcUdH22idGmNyRGKhtX6G/jGJUS/fb8830ntgJ+NCOFMHbd02tmUvQnttuviZLQjdJJwyZnMG8Zy/9vqWTC5K5QhiIBoz+sdkQaChTQJQ78tipHvGOycun6Cw6AtnOaYLARrbGcJxVtgu16COMyD0mKZdOFHhPptZDgMgnveeQtKhAs/UuOdx/fPKztLlWo4Kqa6sssoqezXZ1Rq3rUznFwJYJqLTAL6fmX/mUvsy80NE9EsAHgaQAvgWZtbJ7h8AeD+kkuhv238vaNcSqd4H4Fct1B4C+CAz/w4RfTMAMPP7IBIlfwWSbTkG8A0v9NsXOyEDmCwRVu6fwex6juy+P5cJe+e2TmlFqk6wOtQA0D3pndZ639/gpCMrUw69owN4JyiasENCOCwk+xV8hKxODtHmAqrNARAOcpgMaD3lyWfTI3Oo76bYvqnmjjtdJEQWHZ4VuLZpU84VTPVcut0gbRpkloOY2pVy0yK+WeEYrfUM4xXv+PROSuONRSrTtnyXtAzyCIg2fGdqokYWGYTjHPGc7KvONAeELADyXJH4DNOFoHz+tVz41ywouktuSxlxxy4crOlx1Smf2b/NNSCY+P3cIoGB2bxBVheuMgA01sYw4xjpYhtoRG4xoPdxNu/bFszkX+uCPB+KWPSPGnAAdE/lGB9uYbIUuGPoQkSdaQDoH7HfX4yM2FPlfg2FPBQuqUkE+QC8YzxeMaV961vF39sFxY7wxXsncgQxY/eYnLtuEZL6bn4Rr94ArXKExyUnJYwsMs4R1utXvjzgozrR2F6vdazVmS4taIbK4bbcdPscLNwbYfSiqSAvbAxGUtE/XrV257e/101MBz4iL/OpL/a8/foWMLZ78FH5PpsZbN+hCKZfUCtCySHAG7Jd+dgm9sloutjnwCfg1vrsk8k0qThh944r1zae9+/fbNG/w4oqzxZssjiA+Sf8c+kjjx580IhpNPToN+DHdZ2zFPEEgKYdhzuBH7snq4SGvV69NpN4kGdmF+Myttho1UzmKMC/37WBH3s2D3t3YXJUBqLFjxdyTubl7/C6NtpnpMEaZU2bHkWPe8DQxqeV575zUwOUC1qlnPTxoI7d66WP6tsF3ru9hrTl+0Pnt6zJ4Lr0xzQN/fxrfxPPMZprFpSyj1Q4AzqntQ8YuzfZz4U+137RxX8WwSX5t8/lmHtaowWycXgY6BSyxVyUpOXziyaWc10b2n0Sz3k/9rP/Fs/+vX+M15JdzXGbmb/mRb4/ftH/fxBSsv7i/e4FcMfF21/IrplTzcxPA7jzEtvfV/jMAL7lpf72xSyaMFbun6H+hE0Ys1nEo2MC6SqCB0iSlTrHRSdMHepgZkM82ib7MRyXqSIawmHyjkGRblGkM3TOyhvOAZUS+eo73sMa3yAjqYlz9I/JTk4FI/HI4HSBkBeSLjSBJS3kjNV32YX59GWt9Rmd0zOMD8ixdbAAgHFTBuXl+4duW7Dex+BOyfzwCGjmkjA14S61v+WAkLRNKYTfPpdiuhRKEmKiiKzsY+Ly4qW5kSNtEJIWuQkRIARTQfVN4vsbKGfgAzIQciDONJNHvwFC52wGytkllQAARwGC7THS5TYamzLqT5cijPYHqPULtBiShNQ8tCi6vb2jg4TeCXb7aKRhcChAY4cRjvPSwkGd6aIzq45/3KVSOLV9FpisyACs97W5Jp9VucBNxl3Zz/hLw2zOIBwzasMcWY3QOWeR8hVBlIvOflYzNgytE4qNpEw89UPaaBdLfZ8sq++AUm/y0KC+nWG24Cd5T52yE3zmrzkPqJQpryHbyzUGkFX0j8oqq6yyV43tlXH7lZbUu6pG0wT1x88BoUzm/TcflC+YMTgSePkkiFOS12TV3CoI+EXWn1ReMSxXt7Ej/x2veG+oscWOAlHkwOUBFTLD/fZZz8oL5f7BaW6kmM3LbZgUaAWjA7KtdcE7IkDBKUmA4RHrAI29Y1M0RdGDRBxptfU3iacdz3kHpjbIMX+fJXdN1QOPsPPZ++VjPwPsIoNSduF9daalDwjTRfm/0gBMnCNtBQgnjKTl0YrJsnHXoqhIEBfaHDOisXXSDJA1geEhgnrPwRRoX2CkdmHROScLFkqEejM8GKG5lSGcWTSgsHCJewJr1AAEaY5kX6ckETdeDcChoBGNLXUCn8uLA4CFx3JBIQgYLweOOxlO5VooNzCxdzrVSU86QOeMf0ZUtUStdU76oHNGnifldgaJV0aZzVHpN0lHFoiK6IfWWQ9HGcIRsH2zX8mxoZI8lDrTGgFI2vbBtQtODgmTxcD1wXTBIGsK11sR/eYGWyTPYLJkXLSksc124VBWTdF+TDoescprnot4JVZxql+9dv+/+w58/rt+BAAQnRII+Pr/K8D658viPo8IkaKr94nsBpsCHc4+uib1i8FgCEytzotToiC/WNUInix25XP3FCNulnnaHJADF/RdmS0EjoYVjoCpPebkoHxf2/KTwHif8eOdHWZXP5FiYFHgmVXSSNsehd330RkGRwsoDGR+cnQu+x5HE3YRO0rhch0mSyrzCcQXqWHUd31UM4+AnVvk2ronbH/kfoG9fI8MNtMlP9+lDQ8ydU/aCNiOD8+2TsmEarIORqseeHEosQW24h5hcJ2OPfJlNGI3vuWBB4BcjkgO1+86fjTWDKaHbRRzPoexkoqtM/pbf26NKASxfzaiAaHzLEoWd8jlDjl1kAguP4sDv733rH0m5gwGx2D7A8iamjfj78nFAEse+sh265kIt/4z4Vc/8q9eO/zqvTBu7ymnGgBAhPFt4gj2j1onlmXAyCOfgAGIQ13fkkFFudZpg5xDzcYPfHkkL3Z9x990J0OWsjBxrGkSG+Vc1rU0JNzjAm95tD9COBV6Q1EarmUTbExBlk8l5bKaHKd9RpNKhA8dThiTZT+AzxaB9llpw+CYjJwqCRjPiUPoznfOXuh0huGbfcJrEDOCaW4RYusQNQyS+QC1foak453qWc8gSBj1XX/c2UKI2ZxQVuIeOeQ4GrKTz1NTPdcsgpMbAoDR8RytU0J30JAcAPSPyj7LD/nOr/XF41wYpqCMES/UXJtru6nTjwYAijNwFCDcnmJ6sI3d64qac8DSo/64ScvYe5djsuxfG57IvZ/1jCT72Z/0r5O2JmOCScqTwWxBvtOkoWgsk3tji9HY0vPZBYUmUindokNobDOGB8uhbOlT2N/I37RF6D0TY/d6O3sU/IP6rg2RLvr7p89z0jZobPprT5sGcddgsuwXNfoe5SEQ2fBwWifAOiFF6arpgjjQ3TOZD+FmEj6Pe35CBGSCCQs0n8sxBpBdw0qxlVVWWWWVXV3bK+P23nKqA4MLX3YM3dMJtm6JvA9B4rBkdSpN9q1zEoYOZkVqAwMsK9pgxk7IH1NxrNIGOXRakQDR7yXMet6hFd1nQmvN/t5mfeuqtMgvTRvknI2iXjAgdIK0YfWRbSIg5YzRgcij4TY5bXDYOI7gbNEW0dhHiAZ+Ve4ykjdE0WLl4xN3zGR/D+P9DZ+proUAIgIMubYrijk8GLkwfh4QOufFERPOtezskipb4vRfXEAlLSBB4VSSEgFgeNS/XK1Tcr7es35bHsLx5JoFjem8brmWtghJatGN1tkpODIIJilg+d/JctO2LcB0PkB919M45ByEYOp1ReWaQ+G+WRRpcEgQB40UJBbxbZ+Re1JEk7OG0DPU+S1GMRpbXncbKCcAwvhsfUAWRuFUUKeiQ6oOfZGvPThas4mfOcarcsLWeo7YRk0UzeYQzpGub86QtqXRadM4fe7O2dx9rg0ZGEoEY3hAqxcAuzfY56HOaJ9UJRD5usjXl+IUjPoOSpZehAxerlWM6le3ffjXvwcA8GXXfzcAYOfNq+hfp2AFkDV8xAMQVLKxbhFZ+27mAVDbkc8m8/xpfe+CKQqos2xL2r7YVtzzuRP6fk8X/FidWcTTxOU8m97T8lf5s9pmoEwd1Id054YQE4uUxkty8sX7A3RPySRQf3YTwyMHLmo7u+MPVVGHvWZ0kMCBNPG8bIsGhd9rH4WeQhfEcBGAyefKIJWebiOYKCggfbDycX8JrTUf/lWwIW0aMMnnwPZVfWOKuNPS3sDyp8pv6Kxr0LwgjXPo88DTGikHtm+zSPiWzilAvCrnTy9E7hp7D9t2tD0I43j0ifCzAT/HJF1G1LdFWwyweFbatn2zLd5TB+qP2z60kbq0TahbIG6yaNw8Pzogvxnv92PzdNk/hzs3Gtceh9bbNnZPsEPWp0u+nbf+c4tY/8u9j1jvhXF7TznVSSdEXgN2r4/QPZNjeMhzPkW6jTGx4v3BxPM6w0nupeUisiF2cXKUD5tHovxRG3JJ2YAJLnSnfNjmuufiuoqKiQxgo32E0b7ADbKtNSmSoU6vIpMmYTS3spKjPl2I0D0ZI20HqPdzpDakFLelGEvS9WL36mBFAxmQgsKEEsz8ILN9q5d/amzlJYm2cMqo72ZeecImH7KR6yoqefSelVF6thA65w3wk4njQge6/wy719dLtBUOgcYOY+0uHYh93wHlQieueMk5+VKThoZHxfsMJ4y4Y9A+70nG0bpMFOPj8/Z8hHCUIWkLwq73iqxSS9IipA2bZNfVRY98X2wLE1xRn4srIbbW2S0U0raX5DOZR3izuhw/GnGp2I9TB8m9OgjgFx5KHwG8MxpMyworStcIZozuKat2Ms4wXY4cLQUAOienoCxHHhmkrdDRntw7YheSbbtwIhu4oIzRPZ24/uycBU59cVm+sbHNSNrkkqMAYPx6eSCX/qgcQQF8IunlGoOvGjePiH4WwJcDWGPmOwrb/yGAb4XEqP5fZv7Hdvu7AXwjgAzAP2Lm37Xb3wyfRf5bAL7N5pRUVllllb3m7WqO26+k7Smn2mSiWJE2DKJhhoXHrP7xXICsRpjNUym0XOszKOcSstfYTJB2AuQhlZLJAMuFZjjljjTwKORkFT5hDUBzXRyJYmXAPBSn0iQ+4zdtEcCCGOYhoXfS/0CdZsdvhTitUhaXEBeSAWtDuX5FQtpn7Sq841f1ahwIt2s2b0oyfP3jIguoK/A8BCZLgVudF5HV5mYmEnr298NDimySq9jo2jbwOsW9Zz23e+ERuRk7t0jjVBFi5T6lIfi2h+OykgpljMZmivqaQETDG33ZsXDCADNqA39jg7F3rsOp3z5djBB3jCDD9lpM6qsBqqNdGzCyBiGL4ErYA5ZzbZ3qcOLL8waxOOmjA4FDzlrnhaaTNso0lmgkz0pWI9dvJmZfHa2w8IjGwk9O6+R4oADQOWulGOvk2s5G+lC1vVUSr3F2gMZZABkjW2jZ/rTVQOsB8nohilI3iEayyARzqRKacCONi+aodvXCQ/661CgHGtvA4J3y4Hf+TB5UXYgqFzGt03OVUV6mMQPJ1Rub3w/gPwD4gG4goncAeBeANzDzzBaoAhHdBuBvAbgdonf6B0R0s5Vn+klI5dd7IE71l+IlyDO91u23n/5RAMA77/oBAIIYbN5hYGYa0ZH9ajvGvVNO0SP2i3o2QKNfHldAPnfGyXfOk/BlITStls1513et1mdHTTN2DE86QOSHNbcQ1UUv5YypTdoNpsDQcm2n+1Qlh1Df1nwV+TveBwyPSEMOZssO3NEo4mzeuGiWziVxx6PsWeSpdVp1MJ73Y6hTNYEHWMKJH5emiVUpmpEb9+eetCjqor/W7rMpsqa898oxH68ETnZVx4vJ/qZD+Gu7wNjSFDU62NzKHfKuyPrwIDmefH0baKx54AC23cFQedqyLW17qlw4BIztYgVBwpHfN7Q5O/UzfhxN2kD/iAfeANGZdpV8bXQ6HAVon5e5unsqx3RROlFzcNiQq9XQOe3HTQXk8pCw81flxuWPyHOddAiDY/L9zXd7YvfpXzsOALjxh9/raKEPvGfvodZXedx+xWxPOdWaaBaNBcVVGSN1jJrruRuIVNmDDWEyR+idEM8ntRzhrEaOQgD4MGEeen3dPIIgvNs5GtuFBJnES40pj9Yk7HSxg5lHbvOQ3GdiYLoktyQc586ZVpUGyuGcrta5GJFVYhivhi6UpAPB9peN0fmTthtki1xwdXa6p1PU1+UHZz+/60KCruwtgN6pvJTkp6YTR2apKc1NkePTvmmuF6SjQnE62+cSoV9Y275VRkwd6LMGIRzLRSZt4/qltluQditGCQLCmS9eQO9E5iYQkzKStrGor2931qphel0Ptd2kVHq8f0yiBtNFKihnyGKoyIdPW0IHopQkMcUVUpEoA6U24dAuuGbzIi1YRJini+JQhxNBjvX5jJuSNFjU/R4eJDQ2gdpIOO3F5282Zxw33dGLUE7+A0QiMQ8ItYF0cLhbkAbR53pgpa+W20IzackzpbJhgNX41uI6jcLKSu+DPWX7QorRft+3RYUbdaYXO3ZV+84xtj+6inDsHWpAFiujQrn2yzNCdslirS/fmPnDRHT8os3/AMAPMfPM7qPlG94F4Bfs9meI6EkAd9tCAz1m/ggAENEHAHwVKqe6ssoqq8za1Ru3X0nbW051BkT9FNMlWTUGrmKbII9Fnqqia8rz7B/XhDa7et31DjpgJfNqpoTUmQItoYjiUs5obmSYrASFqoTiJGX1cqIiB0AakivUoZZHtrBMiFLFOrWkW0gwmzEAQtwBJm/15D6VpOucZsw95aGU2ol1udZ9827b4qMpdq+Xx0GT5QDPsw0mKZKO9GvWNFB3dTrvL5yNFCap9/MSPaLzrDjuJk7BkV0IHGyidb5QjQSCzAcxI4i5VBiFjeVRRkBu0YzuqQSbt0t7Nu8InCZs+4LwfqUQiUH7lJx7aqsj7l5fd8okO9cHDhUJJt65r/elQmVzPXfPg0kZcdsgbQO1XZ+A6pDsYW4XXHIP4y4hi4wUOVG0jGRBRSy6tY4eYRH6yYrft7Et51SHWhdYUmSH0djOkDaNqy6m3zW2Ga11v5joPLmDrNcExRkos9USowBsaS1p13u+k5VInvN6OWlWz22S8nOrphEV+UL+hFN2z0DaJLT+qCMI0peJU7390VUsPlzU7JXzXblDLU0oCOy8mC0T0b2F//80M//0i/zmZgCfR0Q/CGAK4LuZ+WMADkGQaLXTdltiP1+8vbKXaL977w/grv/dFvZ6lAta8p73qkpAimSarJzDoc9jEcTQ59w/q8D4kPxo7vHA5eAoIj5d8rKXypOlzPNj55/KHRK+e51/L+qqWT3n9asp9RrMapTZ6GTXzy9rn1Xz+tIWJW6fJuSFRGdAFrHNLeWI5+gf8xUfAUiU1fjPgPx/4XG76J5kWH+9XPDCHzVdv6hiiEbOopEHFUySY+cmGYcVJIhG7KJdZlt2bD/TBx2VA+VR4Oh0GgGYLvl8J8eJr/vqxdI3ti/t3FzfBYaHFXiS7yarPtGZChxzVedQ5Bvw/R6NfB9JRE0BI2lb0vHRj8TmQi1/sg/kVmVkuYXGltys4SG5iOZGYQ4jHxDOCxTD8KPSH0XfofusfH9y/TgSDb4u6W8ZoeW3v/EfCs/6kz+xdxDrlzluf8bannKqASCej1yIrFjEIpxwqeCKPvAuYa7lBwTZXg4LAlJdrvh/Fe83qezvviMNFXqnIe4Y5+wUK9Pt3Gid+Zp3LABfhjqKPapOObvPecGp0WSd2SIQPOpHjbatUq80CwAIT64DYYBs/4IL2wFwDrXqPAPAwuNTkCb1dbzMhCDBOcbLgeNwa5vmTuToPu11rumZM8huPgoTpxgf9m1ziHOhP00qYdI89MVpAKC2k6B/vI48Ite2/vEIjU3G4Bi5SQqQhcncwzsY3NxDfTtFatvdOq2LDd+GztkcOCtRBSpQS8CCAM/mjAsPz3pSlTAc2f627a7v5G4RYFLGaL9PzsvqIiGolBzltusEXeQ+EwPdk5l7duNuAJNI2JAYqFm1jtlC4PpgeMC4/g9HQPe09FnzjFwrxSmynoYwCBxoeVDG+LDQPkqFXuxHLcMs1x04Gk0xudZXQ/S/dyHWqbRbqU/axuZ6DnxAMrKWZ1npedf3UVV6rtReBuKxwcx3vczDhwAWALwVwGcD+CUiuh645En5BbZXVllllVVmrUKqK6ussso+w4xxzQfn0wD+h000/CgR5QCW7fYjhf0OAzhrtx++xPbKKqusssrwaRm3Py22p5zqPBJOaW3ITldYTfnCyg3VMIxyVYvUi6zuqSJlnWn71yLeihCHtuqcT7CSBEhVy5C2AcODAeaflIZMl6PSMfW3mqyn7Sqi69IeBqWMvOmpKEoPodxfcHNdQqKds5mg09ZUgzruBeicnmE2L+1QxYXWudhRGBSljhdqoIQxVcmkhqhilEpqB17XOenVUbtfdKWIDMInTmP0OTeUrkP7LJikmC3KgbS/5p6eIRzGSDs1u0+ChUcSsPHXp8mNtV2RqGvZUr2tEyKpMfcXEm3PV+bdb7JWVKI1ON57HUChfDmTINPRhF07k2YAkOxrEqn8qJa0LMeZfaKKHMgqieT+WaNc+s8kXHo+TSKRlNTe73Ccw2SSvJrVyBUOCqeM4QGDvG6Qtp6rsLH0SQ/bTw/1fEi2X9Dc7oUwGSMtJCQGCSOvyf/1XIDw+fPAJysp3UTDqIsP5z5hkqV9kxVCa42dokc00Gca7v2jXGhLA6slnxQSaVUV5XKNASTFzr369msAvgjAHxPRzZA6QhsAfgPAB4noPZBExZsAfJSZMyIaENFbAfwFgK8F8BPXsoF70e79L9/pPn/BV0hxGM0hCCeAsZ81AhTMfOQI8BJ4Gvav9dmp5mhksnWB0dj0Kkea5zA6YHNwAqC+CXse3zZNBB/t8+dr2PMUi3fVCrJ2qlM/2Qe86R2PAQD+4hM3AgC6TwdYfEze2daj64gPL5T64vQXNVyELraRsPmnM6ceNZszLo9GlZE4gJOw1DbMPzFzVXF3bmqie6ZMNcxDoVkAUrgGKGvQjw63XFnvpCu/XXjIuPe6sSqN03EBkCT+3Tvk2szIVmjd8eOylnwPEmBk67cV5QB13pWx1faB0jwKyfrgMrUGkGdAi/8ojUSKCcm25gZj69bynNvY9OPs3GNWarAduaR0M8uQzMk8qsIATF4aUGUKAe+HcOD7VWNWs3lPd8nr/tq+/q/9PgDgl3/8L7vjaFTxxh9+L5783r1BAfk0jNufFttTTjWT8Dfjbgg2KBUh0ZCyOm61fg4QOVmxrMDhzQNxqhrbWSkxTqsHFvnCJuZSARO3b91IprjljrlKgitRqT0AREd729I9CvxpryVsX157Hg7JSsD5BzAPCJ1T/pC1kSRltk8MkK/OY+sN8oY3tjPEvQDRMMdsPiqF/1vnRK5PbboQoLGTucx1teZGhuGhAGDPX6xZSkM4tFraK0IE23nTMqJRjvOfLZ124C+s490J0FifYfcGX1e9dSFFOMkQDmXkiba1nB8ja9cxOuL3bViuXh5aHvgFaYjZtjNNTRxyc94TxE2jDuzfh/4xS9GwbQ9mVrJOGSksCabRRKokqrHBc6pAhpMc00OhpXWw42sGsWh0B7NyAuKsJ+oWNPM0GylOJM+iSho2dnJkdZLjLwaubYMjQlUJJ8DKJxP0j8qD1D2VIByliBd9H7lE3YjA8/6Bc6oAgyINKUJjW8ra67Oo1wz4xMWkMHkpJ7q5Lvc07gUYHjKYLQCzBULvaX/dqmCiC8HpovDNx1KnCY0NtyvSopbvZRiDkOHqDM5E9N8BfCGEe30awPcD+FkAP0tEDwKIAXydRa0fIqJfAvAwRGrvW6zyByDJje+HSOr9Nqokxcoqq6wyZ1dz3H4lbU851ZRLeezBYSnkoZzN2kD4sVm9UD48EKUJNuQQS0CcptZGhjyAK/wBeFWEPCyg3igkzMwFJeWFxnaOuOP/b1JfbS+P/DGaW6IFHXcNomFe4pmqw67IC4eCWNb7GbKacQ67nJ8QDcWZ1msGgO075sDGoypxTyoh5pGR6nWF4jaKVKoTHU4EzWyup5ishCWO+PyT4tDpappyxng5QCMkdB/exM6blt2+p78owNL9kkBXRIq3bhN4p1uQEYy2xqDEJ9SpZe0Qja3EIevSvhyLDwl/ODy76bajZR3LcSHLpVHH5IYl1HZTtM/ZcrsLXr5tcJQcrzoayQJtsuiflzyyKi0kSLPjsc8Z1Pq2mAl7jvFkSTjWWd0nQIbji9Fp/SvP6nifcUk6td0U0TDFxhtaSBteGqpzJsfogEHvaTnowhOyMggmKaYrDVDKCCyCQqk8P2xsP2qUJgBAhCBl7NzoIyaTJRKeOYBJodKicqxHh4H9H/H3qvWpMxi/4ZBb/AESNZD+4JLyiVsgFHTQJyvSb0U0ickr2FyJ5RfrYV6mMfPXPM9Xf+d59v9BAD94ie33Arjjub+o7HLsf/4/Uhzm7q+T5EXK/YJXF25pk1wBjmLRFQU0kjaVIpTe+DkfWxfKzzLgCycBQM0Wptq61TgUUcfG9lk/BkglUfmsUcm0QbjnIYnkkUtsB8xMDjC9bgmNZ2R8G922AgDYd2+KC3epUpT8xqTsABggcCi9Xm88D0xW5ZzX/Ya8ZNEjpzB7w3H5feavTSO1JvXbXM7FBqO5IRe0cUfkEHMt3jI6DMw/Jr+fe1IaN9nXcApbYpI4rpGCyYrvI805iXv+2rKaBzI0ijs64JW4NLm+iFSHk4ICkW17EXjSsZ+YRUoR4hfkdQXapC8bmwF6z0h/DY9LiC6rExoFVazYCgfoHBLG7HKr2Ph7reP/7g2EtCu/X/qkzre+bfVt3/YP/owg1I3EAz+jwzYHpca4+d9I0uLj/+TVj1hfrXH7lbQ95VQDknjVPpcJbULDKnNGquDNctT7Xg9XM3nDqX9Ym1vyoJuEEc+FhaIlXvZMHSdJrPOqDGqNbUEZixrVTL6ASB75gaN3KgUyFtk6AqDFZgJyme1q4UScpKQlZaOHlr1Z3wKam+x+pzZZDNyLr9spZ5dgyQEwm5cXurmegq1cYBF5V1k6yrxSSu+kR0hVE5RBaK1JsZrZW1dKZcaX7pfj9Y/6x40ySYQEfFEW2W77OwowuHkeF1vnaU9vMGc3kF53QBzqpi85mNcjmO0+sgNeUDVr2AI9K5ELQwLiZ8ZzKCcqQgbcYMqFSZddNcHiBB0NIbSQRjnakXQA5ITWOvvJPmfUd2XxEcTsNWfnjOhub5e1tQGg92xi2+37bvXj1pEeJpgty3Uz+XuXWWUPE8uzPusZez2epjQ8EAAISom3nbM5dm6w74SdzLqn5V1qbuXonvZta33qDBDHaN37DGZfLCHruGt8sZ/UT5g6eY32F0razwFp26L6U9+IaFSmXF2O7RVuXmWVVVbZa8X2yri955xqsKwQ2XgeVHMzA5MiibItq0sJWpMK7UDNpDmymkFi9apVkD6YCU9aeFwWYWj6lahUBvTbLxZ7J4hI/3SBnEMNiKOah4TOmQRJgXox3md8YYNhORyftL1DDdjCJBb9rluVCCapNpg1TcnRdhrbYVltJO4FTsHCFVkhYLxPHpGssO/udRFA4vwUq/Jt3Srtj7yPbKUIlffo9+2dkIuL5yJESvk2BtMD4rGODvoy7NrPRWqMObsBGIPw2QtAzaPXeUOW9+PbDmC6HKJzamaPVyCA6zESoH0+R/u8LHQmS7YSYEERRvnCJoFDO7qn/XWMV0nkHfKy/njSEYc6q/myxmlD9ovGVtVDJfx2cneNum/UzzFdqVuHG2ifFefaWJ67OtSKSqdtKXAUwjgt6ShlZA1xqE1Bli9IRLYwaRG6Z7yjrAocxQJJWUOKINV3MjRPF8jOrSbQamL7rhW3aefzBWpZ/t1GSXoyaSqqX9jWE2e6sSb8bJXEArw02uUbIdsD3LzKXtw++l+FZ/36736vQ2RdaevCMxjMyuMSIDJq+n5rPoVJ2L0/Wv0U8BSu4hyiOQN55AvKhENPkWquF35rUcvpPDlJT41WBmeBej905wRkrNCCWvOPj3Hmy6VMuZOV6zM6J+VzS+lX3QCTJYXJ/XW2zxfziOSLwTGJ5tUXbkDrhAAVo4M1nP8COcHBD6ncX4atWy3FzKoLtc7PYGLZ79AfTbHxJpH30SJhzU1f62Dpz+XY3bU+uCHHodEMixvykj/5dRLRDCe+RLXm6oRTOLCrCGQoqtx7lrFj+dxaJj6asEPWAa88VKx06xBh9n2l93+87KVO65Zb3z2ZY7JP2lushzCd99x7NZXgNQnQP27H8lF5fAMEia5vy+833+gRa40wb9xpEK/Iw9d72EcTdW7S6MDsSAKeSYfd9EPvxRPf92pGq/fGuL23nGqS8HsQ5whi/86oxnTcpVLJa8qBzpkYwSRD1vQlpoJpjqxhRDe5oG1NOTBZNG7wUCckmAlHVJ1GHagbW16vOY/8AJw2CwOddaIGRyKp5Nf0xwTKqLFeTx4Cc0+y52XbXYKZr9xkZrlbGBQl/JJu6PrKpF7H1UkMsuf6FmkOF/czoE6Spdj0PUc5K/DFlx5OMDgSYe6ZuKRnHNvEDiZgeNOCPZ5B50yC0UFJKFRnvHMuRRYR2ieHbnKCJi3WohJKjYAwXW25pMrt19nvrDMbxOwqnbkkxI5H7oGCHmthEtYIh0YplOqj++hCS+9nfctHB1w1y1zKsAMyeU9WrBNvnWuTMpprZSe3NsjR2IjdeYNpitlyA3lkEM8HiIZKNxH0O6sTGjbakjUM8kCuM6uRl+vrGFDOaOyU9cDziNA+L8+EoxzZr9OmweCmOfQ+JeTnU+/aJ334BZ6z3v1diQxo0tDcU6rdGmHuxAxzJ4CarYD51NcsomFLpoQjqV4H2CpohQjP5RgDyPcAN+9ami1IM4CUU08vlhUkIgLw4wD+CoAxgK9n5o8T0RFIdcn9ED/op5n5x+1vfgDA3wegy+R/wsy/de2vprLKKnu1214Zt/eWU82iJQ0In5QtR1jQQkEM1PE1GSMcZgim5Wpz8WIdaTuAScuheDaEieVea8GT+q5wshWlUHpHOGHUht5BBoSfC3gkQvnWJpNVtDrPTng+AkDA5usBdVzbNwgE0/wVgfzUaZO2MqKJR3KJGbVBijygUgVBdZLVaVJ01vPVqLCvHkyc/NTnwAGA4ysCvijB3FM5BocNlh4Wz6h5eoDmaWB8TDytzdt9W1rnpd3af7N5wmy+BpPK+Trn5N40zornWkw6RE+gi3SxDTNOAM16X2mBWO7BZNl4+AOei6fOtON3Kwez4JtrZnbTaovHPet4U/lYWU1oRkyEtFnk24ujHU7LTmI0zCTakTJqu3J9/WM1dM6loJTdQog4QOtCDMoYlOQIJnKQdE5uynQpxHTBIG77xMa4IxESpYpkkWxPG4S4a9wzltXl+ijjUoVRVTYByjQiwKNHj36rItM55q7fAQAMH7Q3/xCQtXPMPWYw91SC1sdEAab1MQCGwPuXMT0o0NGh/5lguhRitEqIF/x5piuMlU/iioyZEBer01T2fPYOZt54nu++DKJechOAt0DKrL8FkoD5XdbB7gK4j4h+n5kftr97LzP/6LVu+MX2qR/9Dtz1jZZfrdG4gFzhknDqF75J13OE2+fLXCOhSvlkY7VxgTKW23FR0VGTeBpc2vGLc0UdTQqw0WMSBkfKY0l9B5jZhejoBhkT5h4MnZLE4HjTKxNpcnMOp9KktLr2+RytdbtwbhsHBIxX5XyLj3h61+CInY/OB9i5Qd7f2QLQe1iONbQJxDs3GKzcX+bGBaPYKUPljdBX17VjxMKjEyx+yNbTtoAHtxvIm7Z42IqHnfd9VMbX9TcFzhvp32ijAqlXzogGHsDQuWbjTkAHb8rsHFygHSYdxvzjFizS+a5QYEvLrUcjAcAAYPmhDNNzof3ezufTHFFfBsbY5vQk7cJzMmYMDpejtOPrfL5O0gXGB0tdiKUHfHGsni34Mn/PKWAqaNp04UYkWxZ4UrCnQ258dpWadyLk10loMV9r4OZ/bfnV/8erD7HeK+P2nnKqiX0BFo7IcUoBmwRYM65oSmYI6VKEjk2eyNq2CuMs96g1UFLY0MSrvKDmkLSlIAlTmd6gzqo6auqU6EtXlGPKQ7gRNov8MQZHCLUdIHrzDgCg+T/m7DG9M60WxDkoKSRWNrWalin9hnJxqiZdi5JeIizmnGcdn2w1w2J1sfp2gSYCYPUvdtG/uYf5+zcxfz+Agcw4vNjD+FhPFCzgw2DRwCey6eBf74vs4P4Pi/NMFyQ5Jz+04hzq9DoZ7XduamL+8bE41ACmq16TTRVMiuovgKdm6HNhYuHKx1GAtElorvv+1N8qjxqQCEQ4ZpjMh3sBX4inWLjEJIL86sQHSBEeDgmUMaarDQQT6fzuqQQmY0TbM1eUpXVyIAuCgJC1a8gi6fx4PhJ+tHWGw1m5zVmdfLQjlvufNlCKgphYqDR5SG5xMFk2qO/mmCwGZQoQ/AJs50aDz737Ibf9T5+Q5Cqet7z7hHDwfwJAjuZHnwRI9SLlvDt3zOPcX5J9D3wolGTODJgd8d7L/j+4CpVfAOR7gJv3Ctu7AHzAqprcQ0TzRHSAmc8BOAcAzDwgokcg1SEffoFjVVZZZZW9qO2FcXtPOdVZ5PmrbAgmK0vRBdMcebtcFY5rAdh45QtAEq5qg1ycpYJTxJGG2v2+6hyz8VwvObj8URpHkMDxui+24uqz6Mwo+tH9b1qv1CdGEgPt835nXYkr0gmIQ6UUpaBQYjoJfCVIU0BjTCoSgEX+Wvs8I+4Q0raUO1ebf6SPnVt7mH9412/70JNSZ7RRR77fJwm6ErvzhE4h2a02yErtBYCV+0ZgY2DOrTuUw2wN0H/bMQByb9R2bmlZ7niKeP6FV7izOQPMiWPdnnlnu7E2ERpCnmPzjXO2r4RLLyoZsl/aJJhUeInB0PeDOtQc2GfBqaHI31bhHqlDHS/WEY69pmxtJ7bfG7RPyaojXmohHCYgZphJimTeE43jrvDkm+u5rx4a2ERJ9s9QHkq7pouyXTVqVf86LPRDcyNz6IspA1PYuVH6vHb3Fh5YF25n/5l5YCEGj7wT3DpjEMxStP78CdDCvNt+7p0H0NjOnUMNAOufBQCMbDFB/ZTnu+/ciCs2SXh59YcRr7ExgN8jIgbwU5cozX4IQEErwZVWP6cbiOg4gDdBtLfVvpWIvhbAvRBEe/viExPRNwH4JgA4evTolV+JtXt/RvjVd3+9RawNIxrZd2zkAZfAJnWP99FzEpTr/RyznlfN0ERlTQRPW4TYvvNaujptwr33jQ0PoPSv80m/ikrWdzxo4bi9RvJtAABPyY67d6ToPqaIqXFIqg5IHPi5RY892u/zcDj0gIDS8RSl1t8DXisbAJK5XBpTsGACbN8oJ1h4Ujpr+/Ye5h+RBo8Pthyirn2w9lktrMLSw2yNBJrFMIs9d9zhUQEPIivB2j7rk6anlhfeOeMpjrs3Mmq7ZYdr7kmvn6+UPSY/9gYzcnkcbP2CrAGwTQ3R8XC2AFfSfe4Z329zTyfut+ODMv7qs1EbeCWj5nruNK9d9GHLl3ev94HmBRsZsM9G3PWAlkZMN95xGNu36tUx/vo7/xwA8Gu/+nYAQiNUGVPNjzn0xxlOfXVo22Tc7bvhR9/j+uDxf/rqQK33yri9p5xqABjvs2oWG7lDJOtn+6BJjNl1S65AChtBpafLNQTT3BVZGRyWMufTBYP6Tu6cqqRtHGVDedlpE4jty1x2Tv2LXdS01hfOZIVkuIanfERjH0ILp4yFR0V9YrRacJTt+VTYHxDurOoI6yATjRiXiqTMusYNyEkbqGmyTMxCj5kyohNWVm05QHMjQ3MDaD+6ga23yEA5/0gfyBjzD+7CnF3zB88Ljrt1ArNGgLROiIY5mpuM1NJPlFoTjjLs3CQXvXLfCMbSHNa/3HtX9R2LGs+XZQRrVvtYE3oAS8kJBcktcriDmcjZtc/6WbT1wGnkB5aAPMfgxh5qKnsUiDpMsf9MCkyXgO6zUhBGJ0Q2hOEhX4inc847quEoQ63vuR/jA3aRkOTImwaNNZkBKc3BkQEYmByQySaY5oiX6jBxbqkZFmVOlMIkjrEuMkzq+9a1OQNGy1Yre+wR51o/R9oyCGKvha5KNiYBwF71ZLpg3MRW/+UFrN+lnHAC1uoAA40Nm5T0kPTt6HNvwmwucPdqcJwxOE648brzOPGJYmFBoPGMfeALTe+duMTK82XZ3kh4ucb2dmY+S0SrAH6fiB5l5g8Xvr8UZORuDBF1APwKgG9nZiWC/SSAf2X3+1cAfgzA33vOQcSB/2kAuOuuu670ZldWWWV7wvbGuL2nnGqCIHbNzRzdJz3hN94vS8bJSuQ4qNFYkhHrWylGByKfwWsArQxX0oxOGdEYJQmyuEs2zI+SA5ZDQu8ceJSW0sI+7BFORwdJxOkxBa3KcMIAM9oXfHZ32ibUd4SHvHu9eDu7b51i8X9axF2L3Mx7qgIbT/+IxoysJuilybyTrguFaOSdwuWPrAMb28DCHLgeYuGTQseYHJlD49wI5uwaOCmg5bUIiCLMXnfAbUuakhQXzhgmzp0TP94nDZ0VOHAnv6yN1Y9bZ3vq+8FpbBccakmms/008G1un5UfDo4LHKSLFOVHhuMUtSfP2wMbmAvbGL3pEAB/f2KbuDg6ALTsmmEqtWyQR0AcGac7GvdI+OzWCVWeNCBRg0mjXqLp1Heko8NhgqypeoQB4rkQ4Th3xYnqBJDKOZqCqkhbKjtqZELv16xnpALZauGZzW2luVSy4lVSL6sTav0MWd04+gfl8gzWRjnitnH9Nt4n27vPipzjwkNWVrANjA8yOif9+WbzooGu16DoUWOdsP9LBfSMjvvsz/TJrkNWilrVRT30y7G9kvByLY2Zz9q/a0T0qwDuBlB0qp+v5DqIKII41D/PzP+jcMwL+pmI/jOA37xmF/AC9tH3C2L92X/vPYi0Mm7GPi/CvufNDXbRmkArvM4ypA1Z/NZGfrwfr3qkUxFOHROyWiGp2QCT1XJ7pkuM+paNci4XdaXlb9IExm+RjV95y6cAAB/6ubc4RLvW9/NIUQFJC1PpmE8M9z4V2+ASyBsedHEqWI2yPnJbCtGibwvgHvt/B+jfIC+yyq9ufBaQ1WROTTqe46xVCbun81KEFxAaYLxiAYNJ5vWWD8gYGHsQG63z+iOvLjX3BGH3JksX3FQaG7v5Q1HfIPNjPmU+2qugVzTwlEzl0zd2gN3rNLeInNKLzv8mYXRO2E6y88qsZ1wV2OywlxLVeT2cwN2L2SLQtPOIAkHTeYJzGWxfJC1C72nbL3/ZKy1Nr/NyYVsQsOq69z3htt18XiiRw6MhNu+wCPZbXEAJb/oW4Vl/4j9+ZiPWe2XcfvVfQWWVVVbZRZYxvaR/r0UjorZNMgQRtQF8CYAHL9rtNwB8LYm9FcAuM5+zqiA/A+ARZn7PRcc9UPjvX73EMSurrLLKntf2wpi9t5DqHOieycCGEC+1nMa0ZkcPjzM6J2TfaEJIWoS4HSFreCSTMlmtarZ2MZEviBlxxzgEThEA1bsu3m+HkM7Kf+u7OeIeOT6tIpyNzTIvuLEpMAaTL22e1YCa5W7t3J6BuoJ6Nh5rYLxfVuHF6n2uYlRe5G/Z6x8BnXOZ44WpVnfj7Ahmajtjw8KHSYLh61ccmtM6sWMvnEGBbbPlaaPbRh4WeOuacd8yQMs4GsPU8s9VixoAVj+uCYQ56nHuNLK1WpWi6gDQsKJditzU+v5GDY433XmzutVmjhnt03LDeEmIdhufvYDWui/Drol8lAlKDQBDy1aIBkBrjdHcUDUQK1dYUBXIQ8J4v9yrcJwL+psyGuseds8aIYJp6lFqAOMDNeQBIekETpkkDwmGgSwkcOCTbjmw95ioxO2fzQsaQ/DUolqfnXZ5WvdJiVmdkNUNkja5ZNGkRYjGua2yyRgelL5obAoCFncJ4dSjz+EEWL3P01DU0pZBkDD6RwxWvuSMb18m15s+2fU3kQU1Kmq4dk+Wi99cjjEICe+poe1q2z4Avyr+MUIAH2Tm3yGibwYAZn4fgN+CyOk9CZHU+wb727cD+LsAPkVEn7TbVDrv3xLRGyGg0wkA/79Px8VUVlllr37bK+P2q/8KCkYZu7B42g6cBF4eAcPjOTonjEsUAEshFxhCOPFqDyZhW41RKt6l6pTNGHFXwuXqtLCRRAiVXzMFpyVtolTkhZhR6zPiniozKI86RzDJQSxC+0VKEZOnSQBwVI71u6UBnY9LHGvumQz9Y4FLlpC+QIkVqWGy6bKEojrnxHmZe1LCWlkjRG19LAmCasuidTa4TeKc6vSH+7qoPfgsEBY4LzbcNzk2L/3f9AmVABBZWoQmhNZ3hKeetAgdy3OO+uLMJ70aRgdCtxAIx17QX53ppCvSWGkjwNzTMTJbsCFr1BCNctt3gUtESpqEzTua2P8nW9j4bK/htnF7CBhxHie+jolbkASFeidxhxB3QpgMpb7W8J2eF/Cc8drmxJVbzxoh2BDSVoTJauTujy6wmutJiQeu/TftGZjUSkZ1DUCixEJpodR5DC/f56S6JJExbRgEce6SW7TaYR6Qk/ISGUPGdCFAOGOXmJXVySmN5CE5aa9wyo7WUtS61iSf0a0xRqdshxrG4YNbOHf/fiCwScMzQh6IQz33lA9pBwk7+s3l2l5JeLlWxsxPA7jzEtvfV/jMAL7lEvv8KS7NtwYz/92r2Mwrto/97Hfitn8ioe/WBb/YrFu6GGWeQqH1wbunvBrR4JAfUzWHpajbr2pIlPmCL1kNPkndrqVrCZXHdduOmV1f1naBbEcO9uH/+BYAMjE7+keBkqcL2FmPnKya0lmCqSyuZaM/vwJGk1VG55QdR2x7G5vAyieEerL+phaWHpLP+37dLoibDXTq4iaMDkkbo75xQELvZI7Zjlxc97ScKBilCDeFD7PxxT4RVecgNr6QjFIslFIDeFpNEBM6Z2S/9tkplj4ln8+/VVb2SZtcrF0X+ybx/cGBz2kytq/SDFh4zAIxdk6iHFhI5Ue1fgpYLEmBjDw0yG2V2kCVv+Y8RbHW97KwgdZ9aPuxeTbvKSc6jrcv5C4fRmkkQQJs327v9dk28htk31uPC5Xj3KCHwYZ1YKwIA68u4dSXyIM0/7kXoPIAp9dkjsuHEfBGuc7j/0mULk/8/78bn4m2V8btPeVUgwWZ3HiDQes80L/eosAbQPO8OCP6kgIy2GQ1QR+LpZFzSDGN5lbm+Gp5JAoKxYxwgFEbWqeCPU8tmDGCmbwkigxPFwnTRS/bVi/wRjkiZCEhmOYIYr99uqJkOd+2aMhY/ESApCPOtFrvZCYIpB2kSEBEhLbCU/+4d4DjOWAQBFi+f+zKdwOA2dgBogjoeHm6vNNwL3/32cIqYc7OCEMLM1qlDnWM05YXfe5+Qkhy3K5j9w6vChLEUoxFqwQC4lADssjRstYmgasgufVZVobuiQDREJh/QtrkSs5PfJZ/Y0s0swFZ4Iz3A0//jcVyZTXlvc37QdDpzO76AQ/wjrbPxLe8vcAvkhpbljO9PQUCAs0S0Ey25VELbAJxqOElGOubU2TNsORQT5b9tZuUsf5ZHkU3sTgJJvHnrQ0Z0SjHeDV0k/HgSIDOmQyUM7Kaccm4lEuyYx74awLJM1/vi9Qek48kaAJkUaJQHerJUuB43eNVg8H1dsI6XUN8VO5NeKGG8xf2I5j5SZAymYAaViW5+D4UEfjLMcarI0xYWWWVVVaZ2NUct4noZwF8OYA1Zr7DbvsRAF8BIAbwFIBvYOYd+927AXwjpBjWP2Lm37Xb3wzg/QCakOjdt1nA4XltTznVeURYf5NX91i+X7Z7Kgb7gh/wUjZJ27iKdaqCAGgJcdlXaQpMZdRhZpHnoka1O37kKQWtCz7pLIi9MkVtkDn0YXQgdKhfcysXtCH27QHgHJzWmk+8qQ1yrw5R1K6eMQZHddnu26VOZdIpyKF97GlwbCGNoY/Hb7/rNjlWzDAFHWy3T2g7qJCwOFuqo/10AeIdj8ErCxi8btHRU4JYnLdaP0U49AoZStlRhxoApgtA2mJknRz7/kz7gp0zNymg+WBG6/wUw6Mt51ADkiwSxBeptMS+NkxRRq6+7ikRbpuNRlAuEnOKdugiqLERI68Zcaat5fUQFAXII3tNhxruGABQ3/SLlNEBuYbJslVHsecbHgIAcoUm2ADNDS8d5SIeoxyj/aEtcCT7NnYyXyJ+moOtbrTJ2CU2lq9RkRn/HOWhLZQ0hXPKAf/cD44B6imbBAhHBpQKPSRb81J5ZlaW3WpsSv83rLLL4KAt0xzJou9KbS8kvFR25fbwv/HJWbf+M0Gtec1KoW1mWPmIJF9vvEXKZYv6k+zf2sjRP6r0MdmmSeKAHzPSBpC2bQRmSqUxBrDJa5eQX6/t+M/dx8tJh9GIXfXYzdsM6rbulVZknSz7BWoxEdElUS77KqWaBDz/KKHmEh3lx41txvqbBDlY+cTYKzhp5drJFNFJu/I9JAnd3RPsqgoDfkF89u2CZB/5vRTpkuiyatn05qZXoxI0vZw0Wt/2SYVaVIxY5AQBYP4j626uaa1Je+OuR+unqzbSnAHtE4V336lhFTbZpG+l6pnUS/tRxq7q8OyAjF+zHrmIhZYhr+/kLqKWh37+V1nd6bKnXEYjILxI/lCi4dp/NgpSI8w9KsfcfV2O3/3ZzwHgUfikC4T22Tz7NbcAkOdB+2vtgVW8+yt/FQBwz6Jkmv7BI68DhnJSLbt+99e/xyXzfqbZVRy33w/gP0Cqv6r9PoB3M3NKRD8M4N0AvpeIbgPwtwDcDuAggD8gopuZOYMoGn0TgHsgTvWXAvjtFzrxnnKq2QALj1jJr4JzmUWEaMIuZAWIA6DUhGK4Oen4h72o6BHEhOZmme85mzNOhg0AMpdZTS5k57KCI0FL2cCWjLbnaxk3cBQXaUpdoRwuG1mv8eK2pQ1C+5zVOiZ/kPH+CK0LudMZBmTwaq1ZbrSteAfAO9SFRVhy5/XOaatvea8zfOY8EATgxZ4bfGmrj+zIipS/XvPp5ObcOnj/svu/OqGKqBcrHo4PNrF9k0q8+Uzq6aq0ofNk4NoXjXMMDwbAwaCkq33ojyV8mdUIrTWvc5pYpy7zfp6jAmnRlqJjrc6mOqjRSIqnjEVV0NEc5p+MYZIc4RmZnLljVUd6nted2sJC9Z3McbGb67FzsgHvTCtlKGsAw6OM2jZhcvsUtaetQ84SbswDQmsj8+doGJFDLHDUZz0Dk4pDnTRN6XmnXJ4bp+kae7Wbkpa6Up3s7VL6EiCDfTCFi6RQJu9V3JOye2qUWo3vUBYEatGIMVk0pYqT0+XyfbgcY8aekGaqrLLKKnut2NUct5n5w1ZHv7jt9wr/vQfAX7ef3wXgF5h5BuAZInoSwN1EdAJAj5k/AgBE9AEAX4XXmlMNCGqnFfwAT9eg1BbIgC2MQSI0nxcc1MYWY7YgTkBQlLebsqNXOPm0gWybzRGikU8MbJ5LEM8Fpap7gJTHzhoG0dAXPVH0rzbwJaMBOHRanVr5DOdUzub9w7f4iA2z9z3yuf7mOdfO7kl/jP71hPYFYO5j57wjDYCzDGQM+OZjbtvocAOUM+pbKZrP7vgLyTLwyoJHMwCkx/ch6UaobU8RnN922/Mj+0BJhsFNAj9q0mHSIsw9NUPWMMgagnAMDwilQ9EHRYdaZ0Qzun3eX8d4OYCJvZyT0ghGtiKhOtOagAmInvfusQA1C6Ir/9AAAHkEP20SmluMySI5DXGl+FAunPT5Jwuaf8xIDy4i6BceGABZvVzVUo8NAON93rsf7zMF3Wv5OzzKSHs50h4QXPCFX3rP2Ht6SpBxRaKzOnnuuX1GnLPKQDjLXd/HPRL6RenZ0kgKCYVGJbfqhHCcu4iHUkuCqSAwtV1g51ZLfVkjJF2/kIyGdmEy8vdydLjA+7f8wmIJ36KDfbkmCS+v/nK3lV1de+RfCWr92d8goiWzeYOtuyxCfcxyjW+ZoPdn8pAnHUKq9C/72KYNj0TrmDObA4iVWlWusKqm73cwea4kXzQEWuvy0ijAUhvmiJ6UY/aP+PEj/moZW8cn5t22+rr9Tb/Aw97x81dmtyVtKUQCAPvuEeg2fPos0BVUYuNz92PpE7ZxxQh3LC+l5qfUBuzkTeOOcXxhtfNva7ucDOVODw8Yx0FPezmioaXr2WGUckbPFlvZtnULKPfj4fj2A6hvFsZcCKddkd/Os7Lj8FiO8SE5d+sMuTlDE+NNBl9SvABA1PpycWk7RDQor+pnvdCBCZqEHxSod1IYzKLNDW0bI5ja30QelFCEX3K/yv5BHhVyZKb0nIhdY7MwN9r9pvPkgJhDbzqHD5x6KwDgrx6UMP2HgpuR1eUexLbQT9IyeNv/9mMAgI988LvwmWIvY9xeJqJ7C///6UsUr3ox+3sAftF+PgRxstW00FViP1+8/QVtTznVxOIkzxYChOOC7rAdAPLAa1BmNXEs1JFqbIlHPJszqG9b1I5QUkcA5OVRqkVat1UZSf5pGCzpBk5xQ52e+kCSEcNJLpUO7ftkMkZjm0v0EwBorUt7ig5Z3JY2TPbJC6aal/GcjN7bN5VHt6RF7iXuXy/HX3wkl34ZyIVzVkDfjxzE6FjHnVOd/Ghg3+Bty0nodkDTBPGRBZfMkXSlDdPVJuIbO5h7TDzX82+TjJg8BNprXKIbbLyhjnjeJx9qX5sd+X9Rczmceq1YPR7g718RzQ/iHM1NQW/VsobBaF+AcFqe7PQZaV3wCagmlaTEIPYIcjT02q+1UY6xDQ12nvWOdLzqlS3IJpKkrdDpQ09WtUIalcISRYUZbUNjnTDsAcHIYOkBQGf15noKythXAKUiAq9ttcmEE4WZbWja/qZ7KkPaEoe8OLFINIUBZje468QRTkRP1y00DbB9ZwozCcDLMqrP9jPMM02pIFcrvH/z9vg1f660nWP7jYz6hRAmhQtvzz1zhTC1tb2Q8FJZZZVV9lqylzhubzDzXZd7DiL6p5Bg6s/rpkvs9txVj9/+grannGrAr26TTrnwh4nLvOdwyg6tS1rkE8NSKdNcsxniTuGgLrxrre4HiBM4WQoczy1peY4VB+IIahlpJmA6b3zBkiIHm4GsJZndrtypEZSQcvaldNviUCtaWSsUAhitBuUKgAkQzhjjFXkulh/QbGtg/vefAM/EETK2nDT3Ohi+zpLwlGIxzBD1Y4SPy2KNU5st3QXiI7Lvube1bF8AnbOpozec/xyv5p8HQHOLkYflCpPe2ZK/0yWhbGiWeFDgJirK4VbyifRvVheeY/us37m2MUL/dXJwjQiYQpl2RfCjseW3F2gQgCxe4p5NBFQuXAT0bKXJ7tMFgp51auO5GkzCToWkti19NTnuL3iyaB1gW3Ch6EznAWyFQ/n/6GgOSgidEwSA0Vy3D4EhsCFJJgyoVDzHLYJG/sDC1yck7cBTb2oG0ShHNAJIn+9WIEmXBAQFvzYcZ5guhuieTLB1a+TaPDyaw0wNgoNjt695RMh/09UcZrUgIziVPggaBQrRsy0EM6B9Vvph7inp6LQdlKJMl2MMQl4lKlb2PPaxnxM+6ef8zR/DmXfaYlMdO7Ccb7qk6N4zvlCLjvGUF3ix9hGrDcghrsUxS1Hj4qNoEmD3JvmsRU7ymqebBQXQR4ECVX0CgPDXJTQXXg8sPKZzhQVXeuToWuGEsXNbuYhSYy1AYKuVTvYLANM91wC3ZHCde3qKs++QcX3BSl+2ntoGdgUgmfukVDCZHl90+Tgrf+Ir6l74fEEdgsRHulQa1qShA7dMYjC8UbbPHxLofPKni2huesqjXoOCUmc/N0Js57JwV8/I4Eij0ApKEaK+RsAYqY0WN30zvXyunRIaW5kDhxq7Q8xWZRwb7tfy34zWBXk+NMl8eMDf1GgMbHyOpV/aGvadp0LHda4NGDs32rY/K9uyGhWK9ijoB+fGzT1J7jnT/bK6j44o2BHMvPrS2q4HdX7T3CHtyQmUyfdcs4XCFg2UbP62/+3HPmPQ6k/HuE1EXwdJYPxLhYTD5yt0ddp+vnj7C9qec6qjgSSSpK3yAFcbioqBOrlTDYV0yDlogDygC0/koIwxm/MJjPGcyPsQA2bmB6vWeoZZzyDuGof6mRQwU6vf654RQjgTakraoDLnu05SyntSlhMLYgbY81hNxth/T4JoZ4bJoZaTSAPEUTNJOXw+myMc+LMBRkfa6H34SbddaR8018P49T6akdUJTB61B4DwzCaYc5HwOSKVmxjAZFk8YaVSAMDgSIjpkk+y831kB/1CRcS4B4QWZS46tKN9np6jySVZHY43rdtqfa+yUkSpaxsjTA90UNtNEfdC18/EIiM46xk3CNUHOcYrPrFVJ1ANu/UKmsn6m94TI5iJp9lMD1kkviZyjSXN5k6E9tkEs4XQHi/H9s2BG2zVYU+b/lltbEl72+cI0wVC75S0ISug7sVQdGO7oGZjEfG4V3itWRKeTOYTn8JZDkoYQeE51sUoB6JCo5Ni3AtR62fYuSlypdoBoHnOYHTrDO17vHi4hpnVoY6izP2NZyHyxCA87aMpjU1JjmyfmWF0UCb2+naKYHblKHOFVFdWWWWVvbrsWo7bRPSlAL4XwBcw87jw1W8A+CARvQeSqHgTgI8yc0ZEA1v86i8AfC2An3ix8+wpp5oyOB5zOPFZ0eHMy4KNbFELNhaVU63JXQ2v+1B62vTZxc11tuhBjnCq1IwAo1WbeLaRFYprGBtCZxeCn80HUpSmIyWgi0U+wEIdSRuEUHnVLIlm2n4AaJ0XhxqQtusxBoeldHVeKydGrn5MPN7uHzyCPLG8uCAAIktDuPWgczqny7LNpEBgr6/2zBrYqnykb7je9fN4Xx0T64wqGgPA8Q+LlIJozM4JNIl3OFtrjMmS5ywD1nG12qLRGG5BEk7FqS5mcFMmOuImAepbfiUxuGkO0TBzjqUm8g0Oh6gNuKSpPFkyJeQpsQt95QEWVVd6z1gN1uEUHJBzpqXvItT6ouKii7Z4qQ7kjKQTOO10AOg9m2PrVoPus+W+yyNBZora5u3zOfJAi6/4tigNZv4p7/SblMEhIasVnW/l+SvKZv9ahzqrGwSq6MISuUlbASZLgXvmRvsNsppPJiwiPvMfE0e4uWmf8TmD3S8cg042Ya4fYbphL7CZIToj+yo6R5lPmN28w3dEOA1Ki6TLMQaQX6WEl0tJMxW++24APwJghZk37LarJs30Am36jZew2xYzf/3lHP+1Yn/+S9+FO7/tvQCA3TfLreidoBIyqGOQLvajkR9jdYFJuZ9H0kIhseL77QqFRUDzgv8dIHNRapFqpfSlDXLqRbUh3BjqKGi7HqRwOtWFsSOrE2pb5YjPdCXHxhtk2+Ij9uSTqUOiwzMEfNatAGS8BAATz6Fhv4cFYxqPnwcgAEu64BfVK/fuAAA23zTnAQMbva1vJYg7Nds2IOhLO/pd6aTuCFh/Y9kd6feA478pHZfVGmis2wJSHbjj6AhYpJZFI+VWklMUUaBkdCRH+6S0aeUBWzztmS3kXZnok/mmi242rXTqZNE4up1GFGZLngo3fMMMtx8TAPOhR0SX28w8DY9yoGHpbfo8pU1y0Q+nYZ2Ri8gy+UimIuom9hKvCt7E8z66mZ1pg3LZ/tRQDkRBDoQ2opFp/o1Hv/tHjdOvVg3tp//RK4NcX+Vx+78D+EII//o0gO+HqH3UAfy+LXx1DzN/MzM/RES/BOBhCC3kW6zyBwD8A/hx+7fxIkmKwB5zqtnAqXE4dQnI4KMvVfGeNS2XN5gxWhveQUlaBrN5g3Di5cnCqegfZxEhW7TyZysBGpsqrVakluQYrQqvuogwasJCkBQq8rnEBdmuyLgMtPK7ohrD5FDLbdNISXOTURtkGB4IsXJf3+1Lz5wBshyclLO/qF7H9PbDSLp+0FWKSXPdw/v5Qg+jzxIkuyinFvekIIjKBwHSVuXFeh1vILZoetqWhDVjHczGdo7GttALNDHFVwu0bSqEAbun5LtMJacmPkkk3xe5wjvTRaEPtNYzgNlNDoB3RjUqoY5i64IV0i+8Dc31BE2gpE5SP9fHzDrT0yW7MxHSOpCuBE4eTjqPMTgqjd29Udq28nHG1q3SHyJFp+eXv7UBO2knuTavCqOVI4XPLzQZ1SAH9HkJSs93MPPodNGSbgAOCcRAUrP0mMw+2zV5lserPhSr9ySclNVTVPNdaSXhOEfv50Kc/iKCeaADxaSzZigJnhf8bxtbudCh0nKCri4kr8wI2aXrk1yOvR/PlWYCER0B8JcBnCxsu6rSTC9gtwL431/gewLwHy/z2JVVVlllr4BdvXGbmb/mEpt/5gX2/0EAP3iJ7fcCuOO5v3h+21NONeUoFz+x5hxq8pQDoFiFiTCySWTqXLfWMkGLrcqGIuBZZJxDVxsw8pqoI1CBzjE4Js5UNOJS+WwtmV00dYLSJpXUQuIuwJFUm6vtyjHykBBMMnBAzikHfIGXlb/Y8X1xSqowPceh7shFh6ME4SjB6FCzdH2zOR+eb27KdSja4EqOF6IBat2TOcarRipFdQpJeDkj6ZJQKwqJn9LuDP2jNYdqsBG0WDW9falxKjnUgE0ODTyNZrLk+6O9ZjVHc5RSDdRpVmQnCwRNamwB0SQHFXS489DAxDmiXc8Nnh6eAzFjvOobEncI9X4uVJSp//3FDjUAbP3VMeKtBmprIXon/Hbl0Ydj/6xw6HneqhgCCAo290zurrvoRNf6KYJJitmieL7aHsqBrGlKiZscEBh+YZYZ0XnXxVOR+67V5JKO12hvbDNm8wYLjxXkE+MM8VwNhz8UI20F2L7ZKtxc1O9yfOGMuve0mGJwhcIdDFw19Y9LSTNZey+Afwzg1wvb3oWrKM30AvZPmfl/vtAORPQvLvPYrym7/8e/AwBw0/8piHWtzy452aQFXXuLOucRMLoo/59yoIDhuPFMxzEAGFkObm0AtM/Ke9k/ZsdVLlTqs5a0fZSUdsuoOCDt0s/6d7IMrNwv6EhtJ0bcEwDGJ+Mb9F8n38/9dysBOosBm6yevvFGrN4nUfGt2+W39QsjUXoCwGE5ORoA8nqA2ilBU5KD8267Iq5bB5X6ZnwEijzPN3hKOnZ0COhYnQVFY5MecOHN0gmNbc+vnn/Cj7Obd9g+zHybxgdtbskuobFpN9qv2yeNUwfJrSb09Pii+21tc1ym2gEIOoSdG+Q6dM4zSSGp/Mk6zi0J2BLMyQMzuKUGPCZjUO9U7ih/jh5IUuUX8NrXwQzYtYICUe7HQaUlRjG76rs6/o8PkpMg7d2wjQMdOVEjlI0fv+8GoK7olI2iXjdF+AZ5SNv1GKNn5PojWxnzrX/7x3DPz3/60eqrOW6/krannOrKKqusMmZ6OWHEly3PRERfCeAMM99P5UjAVZVmej5j5l+6GvtUVllllX2m2Msctz9jbU851XnoUen6DhBb7pWiDdFIZPAAj55RjhL1QysemlRWhbW+6oeqrjQcEtu+YDPHRxmypgFZPm1zQ1eeucsqBhGymk+aU26vJiaajF1iIgDwvGRyJ22CSeXcjQ25kHg+khLfFomsb8mqk06cAfKyjJoaGfuw9qRTxgcEASgmD+YWHdX+UKTYJFINSxHx3rM58shgvGrQtPqqWYNQ7zMmSwbBjMs0hKnQBtoXymXYd26owSQXUXI2RI2lNswdalpEqYt82/puhqRtMOsax2UG4BI4NRkV8M9FMH0uD3zz9QZzTxFa5/29AoBwFCNZkH5iIowOWuS+Se4+qYxiOM6xe33k0IudW+wOBRWMeEuOtfSQ7KQIhefB+/ZmNePQiHDiEd08FHTezHIwAbVtWxa+GyGYCDqhz4lcn0VYCih4sY+SAgoejSUPYLzPOPTDxABY6CFaWhwQakn32VgQfVtmfufmNuaeGGO2UpcqjEqdmniqjVKD9LlTXvVk2T8EVG7qZdnLKCLwsuSZiKgF4J8C+JJLfX2JbfwC26/IiOgu25ZjkLGcADAzv+FKj11ZZZVV9um2vVC0a0851Wp5KKEwTQ6Ie+JQMxXkdGbiXC0+Zr0HrbbIAEeE0T7pmtEB2dw+ZxMsCskgaZNc2C6YeMUEk4rDa4oO5E01146SnJ6xlAjrBHsZJdGyLhYv6R+vI0iAzqkpkk6I1kPnChfNQLeDfFMumsIQnKaSmAi4oi40mmH7s6TgQdI2JbkndUxPfaW0++ivEdKGcdUDtcpj+0IOyhnt81nh94SkJfSAtOmLJkRDTyXoHzOo71gajdUJZ+OTJlShBRB6glJnJkuBE7svmjqGUnDBh9XUAS/qUde3rcrG1CcNEYtTPfcUo3XenyAaJKA0Q9r1BOLRwUjaZi4qGrCTgRjYvV5O1r9eFyJAfkhOtLQg8df8j1fk+GO5p67NgfSDSdklGnIIZKEv0lJUhWFDaK7nqO145znqx8LHJ3JFZ7Qfpb/Lvw8n8swlzcD3vV3oBX4d4HIU4jZJwZcCjxsAdm6ue33xDBhc18Rk2aC+y07JBPDPgIZwg9gWVGpY5Zuxf/+KC6TLMQaQXz1O9cV2A4DrAChKfRjAx4noblxlaaaXYD8P4HsAfAol9n9lL9eeeLfQQG75l+91S6CkB7f00XkjHALtM3abfU9mi54WEI7886typs0NdnSvuEcuyVsXrkHsi5K5glRZOSlYj1/XYlQtcnkwSg2pbwPTBXmfpwtNBxzpWBxMgWhTNl54h5SG3fdrffBELiQYxdi6U9AHnctmq2007j8h/7E0kfHbb3LtWntzDbXbCtWbAIz3+dLo2m+71xuMD9sE+E2gc0q2q6wqx8CofBhEfT+PpFPC/NNywTo3EwPzT0h/DA8rEAKEtuhK2vBzgFJCaruExoZ83z8ix1l8ZOpymYbXdR240dyQOWE2T5iulNuGvJyD039QbkJ0oyR1Rueb6JzzMrb6HM0suFPrF2QSnYyiqD5JhxR8AQuuzHqmVEsBADonPbCzlS3hidsENXzzIelgjhiNZXl4Xr9f/IX1SRsrTZ/1v2YWXd8BolB257cLHer+f/cd+HTZNR63P222p5xqYuHkNi/IQ9ew2buNLeGDJi1yiF/3lK2g1DCC4hXm8XCYwSwGGBwldN+67raPP7KC1nmge0petqQTgANBMEXpwx9keDBEOGX38MddAAy0z4lKRO6cC0Y0Egk/Shnjff6WJG3C6GDojhvEjOZGivChEwimM2Bxwe2b7V9EMJzCBAXEbzhGdt1BUJ5jdFRreXeQNoQ7W3Q6FR1c/7zUZQk/+xVA45xB51Q5QW2ybNA5myKLPO83GuYIZoTJkvFVyCCOrC4mlJsLWCcrLMvpJS1yE1qRi+6ctpQdvzjuGjeYlHjTylHXicQugkwM1GKrS24jDZSLTrImmUbDQvXFVoThIX/R6uzXd+WctR3fvu2bIlfZMV3xzrnRTO/flBHZAGhuZo5XV1zQZHUS7nhh8aD3JG2Q63+TAt1Ts+det+plL/g2K88/aZtSPzuues24vtVJHSSDuV4vIPfFpFIcR/WyTZJj56aGKO4U0G4OpMKXSX1UKA9F+i9pUymJdbpAtiqpv5honOPKpUrpmiEezPwpAKvuTMKXvouZN6wqx1WTZnoJts7ML0UJpLLKKqvsM9yu3bj96bQ95VTnoVcYCCfeeQJUgo5LiXJZ3YAyRlY3LjxuEsbgqDgm3beuY+eTK/Z4wPID4lBwqCoSOdKGsYgrufMlTUIQS2KFOkPdM7lTcBD6gEem9dxx18uJjQ5YOb0doPe0ZCpwYBA+eQYIQ6ABxDfss8cLwBEBaKJxTlalwfYQu+8QRCGIc4c2swGGR0WPurbrZer6N1jH8kKE7gnZNjpkpZt6cI4SIEVeAFE2UQoKB4TpvLGybP6eqIOUNm1ymk26UIdey9kCPgGyfT5Dfdt7l9Ml6cSixJ06nMGU0ZwWHNxbAgQzFJx9dSCpIJhvFUi2cmQNQvu0hZwKlJnBUfEIVUoLkIQT/W1x8aMOdX0HqH+yZj8zNt6ZYe5Pmy4REZDnxEnbXQTImsSjEkg9TahYhTKIGeN9NXROyn1ObREGTZ4sKmk4+k7qK3ZqG8b7RLlGnWl9TqMxY9Y1WhsAcZfQWhN97/a5xC1adm5sIKuXqRrNzdzdwzyEK3SUR1J+mU052ZUycawb214BxKQoSRBejjFw1YoIXEqaiZkvmUV+taWZXoJ9PxH9FwB/CMDF0Jj5f1yFY78m7bF/7pG513/ne11Smy76arkvQz4+Ln/Tbu6SvNLjjOVP2l/YMWj3BnKIanMjdwlomqho0nJRK0DeHZ0LOACCmZxfEx6joadiaTLebB5YelDGssGxhkOLZx578SCDjjOBj2qZ7RGioSTcadXgeC5E/Pk3AoCrdaBzDAA0VruYSuCzlNys52x6TArBxBZHi4DJvvJv8ogRDeSc01XbcQPjqu0WASuNBOQBOWECHZco92hwVi/QPC1Q1Nj0tNDuGZnHwp0pYCN6s4WOO5aCKu0LOcKxKZ1bhAVkv7RdKBL0IV+ARcdtrTMBwCHezU1ftdbNa1wev/VzaOsJhBOhXQIoFf3avN3P7cGn5OI+8SmRRmwAMKdsm/4XQaqPdHZwfiLbnnh2P+oX5Bmo78huo32hgIAA7v669wAAPvpfvxPX2q7muP1K2jV1qi2KM4DISaYXcxdJ4qc/DuCvABgD+Hpm/njh+wDAvZCkoC9/0fPZgcgkZQWBrEZWHo8LKJ1oTgMAJbnL+M0awOhdfbTrsXOoAWDlkylMnIMjUyr+QpGUes4axYeBMN5HJXWM5jNewcN4QBTBJEfcC0E5Y3jQNzoaCio692fPFjsMvLIAijPkCy0EExueWoyQtISDm9wgb/rgcBf1XXFi4m7ownDBjBHt2s8JfFb0GcJ4P5xDDQDt0zIoSWEU/7LPeoHNWPf9kNniNf3jVEK1i9fjzmn/RsOybrRqtGrUgCxXt3lh6iqAqXOoiGbalHu7fYvvu+nbh8iebWPp/mL1RKE7zOaNi2AAQO8xyZbOGx6237yj7cKwOtAA8DJzqaeAZHVCZDO7kxbQOWsH/BBY/MNGmV4zY5hEpfFMQcHDlkRfMqI6g7LDHU59CXVVgpmuWk58gRZiMgaHHkVP7TOh0nw6yOeWejObNyUpSO0ryoG6LSpjMsbE5hNs3u5vbGOLYYYoPctJi2xBHp141Gmw4ct5cnq8eSQLttpAKm3q85lH3lm4XGPQ1VT/uJQ0U/H74xf9/6pJM70E+wYArwMQwdM/GEDlVFdWWWWvKrua4/YraZ8OpPodWhjhEvZlkBDpTQDeAtFyfUvh+28D8AiA3nN/+lxzyJilFehq261yya80KYfjPEsRGPm89s3iCe+Om1j+lHe+dN+gkPA1W4xcVbqggIBHoxygUGgidrM6FiYgJEHgnPuNOy3COLXoQ8HJmfvYOfDYe+b5LUeR1QPULgwAIsTzgqYmbXGeRvu9g9Val2RBNl6XWfqGEE1kNV/iHO8AC48wQJ7qoKt8RXuLDhRTOSFu6zbJ/qMUCNMyWt3Y8sV1ilUuKecSHYANIRrlyEPCeF/dFzWIGUnbIEg80qmmCW5auAW3iEMNyGpeV/Sds3Lf2udSNM56PllqExF3bvBSgupQO769NVcQIfHcYDWVv1KUQ8vHFrWrg1luy89bxKbAA58uGOQRMDxkOc79Mp9Oy6ynLaFyEAtiVhsUk2ylGmLzrNeNzFo1DI81S2j3eBVYelhQZYfex749SnEBxGkvUma0OubcE9KHg+OFG022dPq8LDT7x8t9VBsUIgw2mkCZLW5UuK3FQjeXa/lro6Lincz8+le6EXvVPvWe78Drv/O9pW1pAxgfei59XcfY+raX+VRZucaWH2uTgt6/lpyOCiisRsZMBvfOpQ2PYDc37EKcCoVC7KOedOHkNAE/bjuUvc/onrTVTh+1nNskBVuuNKWpa7sujKfzBp3zlip5owjW7N7UcghzPOeTwF1fjMsINSDtb563tLvURygHx+wiOyFXkbV53kZpR37OyWqE4UEt6CXbZoXzKme9f5xc9d1wVECQbV9zCCw8mdl+k3NPjnbQPCljpsmAkUWOi/dPx/GdG20S/O0TZOPCBOqvHgDQOleu16CmEYe4R07nX69x1jOuX8OppzpqjgwxCnlb8jdplSMECl7pPaltA0uPyMOz/vHr5Ddt48bY4A5gtt9G4AM5UHPNV0VWlP2N//C9+ORPXHt+9V4Yt19p+se7AHzAVha7h4jmiegAM58josMA/hcI6vOSYg+Uy4OsTqHSFJTDagphZUos0tkOsHvMr44atu52/b+Jl9Y6K/GywCaXjY75ClKUSSnycJKDQ6/hSymjeypB65E1ZKuyHshrAdJ25FRExqteTYQJaO0ywilj7kEbszt9QXSE4xjGaksHuxMEALgWgqYpJiuynY0MOp2zuRtw4g4BLOhhOPWDuoa+wNJfOkhnNQIHsi31l4j6NqNzVl7KcOgpGRqGmtpy5a010c8eHdIKWv4YTvmhMHlQKg5yVqdCaE8qUMbdoBRpGK8EyEOgscOFAYQwXhX+roYSASB/uo1wSmisw1WskuuQ+xdt+UVKvCIOoRbBaWxn9q98n7aMUzzJI9Hgns4LjcHxmQmIJkKj0QqP7pz9HHlULNzikds88PxxAKgN7HkKZc45AEgTawvzuCsvXlAL0Qmivj1D1iokWB5uCu+5S24SWnrYqsYUeOGx7YM8BKZLBfTbXs/C4/Ie1B+R/LrsyArSVoTmWoLpkjxcYZIj6YhyyGTZOGpR2gDmTtg+KCxG8tA+/wVqCph9aPoyjRnI9kAY8SXYPUR0GzM//Eo3pLLKKqvsSmyvjNvX2qlmAL9HRAzgpy6h/3oIwKnC/1W/9RyAfwcprtDFCxgRfROkUhnqjXnUdjIElspRdFAo51KBlrQtTsRkKUBtCPRlEYcIwOD+JZiW7DtZleVq50QqDnWBdxskckznkNTUsUnRemQNiGMEp2WJnF+/D1nDOP6UInbRQKgE3VPiPeVtOV+wtABe24CZK4D04wl27z7s+NFaSpoyiJh8AY3UQh1xT75T5Dic+AzypOPD8VkNGHzOGPREG/OPW87xdobmWVnq51HgnMDwzCZmN4knqyveaMyIO4Te04w88nyzIBbHKemKE6kIbIlXrMcd51JMZ5ZbR9rzc+VchJntDmJZKOQRUC/EQeIFpYcwshocnQIATJJh/a3z7v/6XR5KAZf+USvWfzJDXiPn6AJSKChpFZIwbZuDGVzg3aTljG5dGIz2+9esuWm5+ym7ojoAMFmyqFRB7q97yiMZquLBJOfMIyoVE2qfnoBydgmLADBbriOc5ti9Xs7fOa0o1HMdePfs6CFV5i8QTiFgHequXeDtjJG25jBdijxVhchRQHSBBsiCY7xi0D6XI0z9/dcse1OUQ+xcHaRiL3DzXoJ9LoCvI6JnIJxqQiWpd1XtU+8RdO7GHxFuKZgQDZQbbKllfUI8Z5/rDqFpx6P2eY0yeTriaJ8vne2URc74KKu+83GPUNcoFxFmFjFUmmHcLUQO7XGSLmP3eluGvBBlY8ubbp8VCUwA4NiulvPcya3yzi46T8l0O71rwZ1nqxva44TuupSiFY2A1poCM/Z8xqPoihqbGMjt91kDIItk+9yXsrQqIOi/jv1p0yugqCLRbJ6cXK4r2U5exWK2nMMklqdtmZxZJ0Pz9zRCaHnWGwlG18l1D44GrviMgitZg5y6SPJ6ObgBcPstUkz1zGAO+I2lUtuK4xsbH71Q9DqP/Zir3PnWRuZAHMrYlUtXS1umNMcDMv/1npHPo4M+YqqgVtwDdq8T0ENBxnCco75rE87TGnZv9BFYQCIeei9aBYGx2/4Pido8/K+vHWK9F8bta+1Uv52ZzxLRKqTe+qPM/OHC95fqQSaiLwewxsz3EdEXvtAJrKP+0wDQnTvMOsFzQI6/WrS0JQ9qUZ+5f51/YSf3LKFtX6Zan10Lh9e1EQ0zpE3jnFlAyo1HwwyzhRDtMwW9PWvJ9TaZsB0hmOaIxgZxh0oScc3NHGkrQLSbIHjGP8W0OA806th9g2SCmJQxOCw0CJOKDJHsKP8oLydFOHS6V5DLGTKmi2WVCQDovzFG84E2GlvAwoN931/dOswsA0fGLSg23nEE3dMxBodriOc0oUUknkwqA6FPiJHKhdGQ0dgu0GlSS+m4qC/ziJA2yokYWVMSTGaF9QVgq1rZuUPDr90HfVIH4Hm9adNg93gd9b6nN2R1qYZ59isydB+oIbbJNRsLAWrbwOIgL5XNppwRzKTSmUuwCf0CqUizMQmDM9E3bxdkEV059SX/6iVNn8CpTnX3VO6llupePktUQkIkLaGWtE8XiPsZY7bf01hUclAruIUFDrwmDW7fLO2o7QIwlo4x9qHP1lqOzklp3M7nH8P8J8RjmB0U2LuoO67h2dmcUIxU2rDuqD9FCRKCyYRTX6zkGMR8xeofjL1RROAl2Jde7g8vN9/Flmf/AID9kKXXTzPzj9vfLAL4RQDHAZwA8DeZefty21hZZZW9dmyvjNvX1Klm5rP27xoR/SqAuwEUnern03X96wC+koj+CiSBtUdE/42Z/86LnVPpFRc7jVndIKt7qba4GzqkbvmBHL0nhYx04a09NDct17rgMEVDW+hl4pMa85Dc9sZmirRj+VQPXQC360C7jrTteVejAyHyQBIY1TGvDXLH5w5mGXhJPLt0ue34cZMlPR8AktV42vBIoyYRJl1yWbuUAbl1jIKx74c8EjpIVrcIinVgWo/XAPJhfkAcagDYvlWW7ooqjPcJ5zlt+8xzdfpUo1S50xzY89gQfzG0rw61Q6Ttyl4K3hR40hDEJCuguJoc2LRayKrnHfcCdJ6VFUQyV3dO9e5xg/mnPYceECfv1FfJtt6XncfOh/ZLG2fiCI5WA8elm84b1z6VipNjeMSoueGdZz1vUUIvqxPqcYbJSlhK5swawqmvjXLU7OLHlQ/XLHy7CKRcKBRLD8lNNbFH4icH5D4pxcIkQq+hzGpgF5Dt6bzBbMGrv3Aoz1Rt4B1qQFQ7+sc66J7OMV42GP9lUZPTRVOtqNltUZrGDmM2Z9DaKDrxhDwyLjFVF7/BNAcbKpS2L/PQL8cYQLIHBucXM2Z+9goPcTn5LimA77IOdhfAfUT0+5aC8n0A/pCZf4iIvs/+/3uvsI2fEfbk9wgD8cYfeY+LVjUvyDM7W/TKFWBg+1b5vPQpH2nSd5IY0oPwqOJ4Hzm0VxOg6ztesSec5Zisytyii/lo5BfgqvIx9wQ5NDgpRMEU3ZzsizD/0fOy0c4z+fk1UKTC/jmyrjRq+V456IW3L0q0s2CTFUJz3UdJh1aRRHnSJmU3byovPGv48dwkwNbtihLb/bp+rtV5ZroE9J61uSSFhHZF7Wse+3HzXhB7dLyxZpyWuM5HSTvExKqV6Dyf1wz6xzxvmS4afhpbOcb7LDizIf1z9JYLCI3sOPnIEsxc+TzFiKGAW4pa243kOeELT6hvUciPIXJRCfVl0rpHtX2JegGhADsXa8BRBQGmfjzXaMjmHd4nyUOZ7wA/pucREGriuH2etM8A4E3f8l4XHfnEf7p6qPVeGbevmVNNRG0AhpkH9vOXAPiXF+32GwC+lYh+ATJg7zLzOQDvtv9gkervfikONUh4rEnTIGsQsoa8KBpSqfUz9I/5ByoaCX9THWpAJImmyzXkUdkx55BAKSNrmFLYfLwaon0+dTJ7AIA0BY2AyS2rJek1HRhqQ++I5CEhsaglZQzYgiPT5VAGGfYVGifLBo1tdkVonGazhgZrvnpkvCCDlDqf6pDm1pnO6kAwAdp2MK8NxTnPIoP0oIT4J0sB2MggalIvJZU1xFkOh35bY5cxOEpugFdqhckYo30hOBAeeVS4di0k4njSzJgsGzcoBgUQVgdkHUzSDtA+4x3q+obsXN8ABtd3UN9JMTrg73XdJl4woZDQadB7AOgWHGoAaG3oBOdH19qQMV4ld25nQ+n35QflYeGCAw2UVTzYEKZLodfSLug7Jx2AjUFtqAssQWwpE358caCff3KGrB4g6vsFUNYMHY2imOiXNgloSoKMDsjTefm+tcaO790/FqB9QRd6opIix4L9/rlc+SARio2TLWyQ44tHQ3aJj8SCWmcRoXPGa7xHI3lGBocj1yftAl3n8m1vIB7PZ0T0cWb+rCvd50XsefNdIPQ82LH9EQhl72H7my+0v/+vAP4Ye8Sprqyyyq617Y1x+1oi1fsA/KqtOhYC+CAz/w4RfTMAMPP7APwWJLz4JCTE+A3XsD2VVVbZa8T2QmWuF7BbieiBF/ieAMy9wPfAleW7yEmIjgN4E6SgDQDss043bLL5Ki5hxTyYo0ePvkgzK6ussteK7YVx+5o51cz8NIA7L7H9fYXPDOBbXuQ4fwxBPF6yBQkjmuROBURkwxjTxQALjwqiOTzSwOI9EgpLDs67UJuqWeSBhFU0sYwSTTphhwhOlmyy43KIzukCnzqUbg2mGbrPWs3gTojZvGzfuck/OAuPwR6DsHu95wTMPc1WHzp3SX0aIgxmUn1vuli45ljQ3HjRygXVGJQQon6AyUFGHspvu89o+XNGOPUJg1oUZ3g4KiQGAjCCSmehp3qgL6FHpysNobMsPspWNo5KSiuOw1xQfkjaBJMptcGvThVtLy5Y+7cnWD4gUHP4wSW338Jjci+5IFM1uF5g5OHBCNNFcvSGIGbEXSq1QROGBr+1H42hp+SYguyimmpUpw1B/5UTP/+EfHCUoEJbXAjWborGol6iBRyU4hFOvPSTJs8kbY8sxz3C3AmP4CpCTUkhXGhpRmnLuN/p+UW+jh3lpDbMRV976C9QUWotvKJti4Y2zKy3s3Bf0gaVilmYhFHrZ5guloeVcJyjsxkjqwcuz6G+nWP3+rqUK58BsH0/WbxypGKvZJG/gL3uJezzYpD/ZeW7uC+JOgB+BcC3M3P/Evs+rxXzYO66664rk3r5NNuT3/OdOP6ffwQAkNVs4t4ZQl4I67dsATKNRJnUKwCZNMBf/3t/BAD42XvfDgDY96HI0eL0NxNbLAmQd1pD86qbX+v7gl76vtd3cxeF2ni9f48O/5FV7nnsrNs2fpOwLqdvO+C2Ld63gS1L9QtnTdseYHRcHqVoW1709MgU/czmazxac/JtRbpC95S0qWnnLA58Xsj4SCEPwya017eMo7No/8VdoG8l91bv82FjpcJMlsiNPTp+MQFbVmSScnIUEVfcauT7S2mV0QBYflD6aOOOOmZL2p9+LNbjTO0y8eRj+3BhU05+25c+iUd/RwrkKNVG6iLIvuHUR+1UwpRyX+xs+6bQti3E/FPSjqQbuPbpvaesXNcBEIqMo3rEfl+NMDa2vETs2c8pJMyv2bZNfO6Vyt6mLZ9oOrBrXo4Y9S0bqW166b7P/gZJ4P3Yz115cZi9Mm6/0pJ6V9VU4k4HKJVRS7oBkrYpJRLOP9JHPtdC1q4hnvc0AVVGUEUPdZwBoLmRlf6vL3TnhBzX6Q8vyEihHGsAGC8HqO0y+tcpf1i2n3+7nC/aCRBOPMds1iOX2KfydZTLi6rKHnr+cAKApeR27xkr25apc5ijfYGcnnM0sG0nAuW5eyHZSIY5k68QqC9W+yysPJ/83+QSzp/NESLrDM7myFE+LtYZns1rtrXf1lqTa5t1jRt8lKLCBhgf9gPvvoM7yJicQw0AS5/cxWy1jXCcYveGBoR6L4Mq5cB00fIdHdfNFuMh7xCr5LXy7hyPuUaOhqGTnNPMTsrtj+cCx1nOA7+YMJlw5KeLQUlFZHCdSM4Vxw4mGYRVe1pNB9CiQ13fipG1ImSNAPULIyTztgiMLU9OuS8IYzKGGQvfPY/Ki4RomNtS9XYijHXys+cu8NdVdjGIPS3EVcpskeP0R6MMMITGTobZXOBoV41N4SSJ4o59r6zzrJOd5wj6SfFKbC+EEZ/PrgKX+kryXUBEEcSh/vmLqjdeKEiiHgCwdqXtrKyyyl47thfG7T3lVIMI0TBFFmlBEO+h1IY5QIRwIA7w6KggmtNF5Zd6x2W0P3RO79zTfoWctgzq/dxVmNNV5/CIeJ+aBAlIkl/S9A+Ic6atE6GOXDInDrXK4rj2DnLkkTg9nstsEE4Ys3mRrJstWo5sCCw8KOWvG4VKeKPV0CcpFCrWNXYYWVSWPgKA0cFyAkh9yzo7dFEJWuuo1jbgpPOYRKSejax4ndwTSdLfZJFgcknAAYDYKlP0rwfaNqCsahHKQ165SaBx838twQCYe3jXIaWzVTnx+pua2L0lw/K9dkFjkehoJO0sFpspFrtxxh4VrxWQW0W0FQ0CBBVoW7CHLsIB85BQ62dOJk+dztogd2Vkg5lXmSny9RtbxSiIbFOHmk0ZvQ3HgTv+dH9bVFkusnrfR1eSTuAQEYfEx+zQ/UR53U2/kGhdiD3a1g4xWQxElSMgF9GYLBHqu1yqtKkSUOqox1Y5ZTbvFUnUNGmGcmA6TyWt8fbp5+z+skyyyF/9iMe1sivJd7GqID8D4BFmfs8lfvN1AH7I/v31a3kdr5Sd+PvfAwB4/XeLxJgWGwNkAasL0obNP9DcEUBUfc7bzL8vuO1xAMADH73DLdK1OJnWFwAAbPJzEr0pB9rnbXVVOz7M5gy2b5efNM/5sa9+ekc+zGLErz8m35+UQT5tzGN4QH7/9NesuGikJkZndaD9rB9zACA/X0djU5Pk4UARjfyF04J6k/0z91SCyUpk+8i/m1nHouB9Ax2eFdF2kVEIOu1KkrvIGGB0HrVj3HgfkM7LIPq5n/sY/vTpG+T4j8lNaZz0FV/nHhdEaLZcx8br/ATnonSj4tgmf9snA3ddk1X5/qlfuRH1RK9do8mXGGMBjPf7/CeNOvgS9exKo4O9apLO/9GY0Tkpode0I7213q5jcL08O8uf8CCJzjNZw5/HJWsWkkKXHppi++ZGqQ/zmkeih8dsPtqOL0xDEdx91Xnyzm97L67U9sq4vaec6jwg51AD5aIStW2bIGUr6NUGKfrHagV9S98VlDEQCQIX97xjrvJqmv2dtqT4SDSWsLe+rLPVdiF0Z9HGp6UoTW2YY+cm45yW1oWghFoWw4DBjJHVqFQCPWmLwkc878MxgIT+OPRFZeQac0QTcs6qO0fMrviLK1jD0sa4ICFnEhtusk61y97OZOArOuRBItQIkJXXK6CiuQE653JRLrH3JIuA3RuBvMEYXCf7zT9MiOfkXM1zBr1fFsd5eASYe7jv+hYQJZW4R9i9RUaH4VHfF6qt2dj29BZAEi4BHw6T/pdBLRqzo0vEPUJjK8ds3vhiOfAOdbHMOQcymfVOJNi5wXd03APmnvEOtZrQZi5KgrW7lKgpuq1BMDGjfd4XMuKQYGY5ODKlqAClohRABd3nWj9FrQ/MCpQMDrzaRlDYV5MrRwfrqGs59AUpSa8ThOppA8DOzYRwTJh/QiMq/t5KgwrXSHpd9ry5L70ejRlsJ2nKC1SYyzQGkO4BxOMa2pXku7wdwN8F8Cki+qTd9k+Y+bcgzvQvEdE3AjgJ4G98ei6nssoqe7XbXhm395RTDRS4rRE5bqxJGeP9sgLU1RjgaQlhQWVCnbBgWi6hrQ511vC8JcDL8hQLWGgpapOyc8CGB0KHBC48ljsHJmmRUwMxiS9Nqg465dIWQBx05VFHfXIrx8VH5LjjZePQ2NYau3MI16rMmQWEj6b7ALCawR51mc2JHJunPMD2oa2GZ/wqmq3Gscnk94q+1nczsCGkDQIbwsYb7Gq4keNtb3kUH7nnVsw/7Nuw9GCC5pkB0rkGsoYtm7qe4uw75gGUqyQOjzKCiUE0oJJSyEiq6aL7rN83bRCiQVmmr3WhUPY38M+GSYTCUlzs1IZA74R0RNwNHCqjSPbG66Xji4j+7nUGxD5K4MT1raOuxVgAv5gqKstkDXJolD7XJmVkNYOsZpA2PdVJ0R1K2SmQmDh3Tmxaf67DTrl3dqXAjPyljB2FJJhJEQPlNrpy7IF3fota3kUkTSM5gDznbAjbr/cLkt4TEnkpaasblBYyl2t7IYx4rexK8l2Y+U9xab41mHkTwF+6ei39zLZP/eh3AAA+6x94lC5t+rFPEdWkZZxuftwh/MFvvxkA8De+4k8AAA/AK1SFtnIvVoICGEKldwmQd7i+IwNKHlrp1WXj6hGMjuboWCpg3hOU1mztIPzoo/L7m44DANqnRmidkf3W7m67d1rnwZjJzSlckAFVYCKY+fFtZt/btAGsfsIi0AMrOfvMJpZqUoFlvBq6dzyvy4CZdH1/aYlsLVKm16sosNp00bdNx9asAQQDOeZH/uAOZMvSny1Le5wtkMuTOvOFvnRw+5wdfyNCPK9catuO3dwh8+NCRK2x4VFnHX91vI17Xt62ueH51Sq9mK7K/FW0uSfIhWmZyEUWFWzpnEkcQj3eJzejfYERW0peOMmBSfk3433kJBHzwv3rnbL3Z3OM1Y/ITV+/W5wLGrND1GvbRZBSr9vfK5cvNCxfy+XaXhi395RTrSN9HpEv5YwC6lenklMN2AqDu/6BoIydo1tEDuv9HONVU0IYo5Ek5lEmoR590BTVMykjGsrbtvBEiuliZCvhlRFmrcTHpuD8akit8IxRDrTPyhdFLd/2CVtafbeF4UF56YIZI4iB1nlZAcwWIt82Buo70q7tW2p2e2GgtCG19jmRHKwNpfz51i1eK9Uk0sa6HayCWDjB7bMJOCBXeISN8LRBwh//4s9+0LX7T377TjTHcJrLcS9C84wccHzAUwYGh3wnFJFSsvciXsiBBbstJoQTQmOzXOBnsioIMQeixQz4xZT2sYb70rouOLwGtX6nXPv+UfnR6GiGzonADZpJQdPV89Xlb1YH0g6jtkNorqHEtR7vCxCOuSSzpw518RmIO0YGbpLFhpo60sWkzbxmIyuWhuR44TPfHv2s3wmXn0uRBjaSeFRMsK1vSbIrgJKLpYu2YnVJddB3b/T79Z6wFK0WIRp6R7r4Ll628d4II76YEdFXA/hhAKuAloACM3PvBX9YWWWVVfaZZntk3N5TTjWYQTnj4sIvs3nLCSs4J7rCpRQYHCL0TnrEWbiiObKl0CEE4xVJqMsaQGPTo7ByLMJkKUBTaQEsDmY4ypwI/GwhdG1on0swWbalQRVhzC1yWEhUy0MqIZeaTFbvC8eutuudqni5hdlc6Jy/1oWZJO0luWgYO6TDtm2YSFLZlrQj7hjworRBtabzUPSZh/tD5LWC2H6Bh6yJeRwAUZ+RWQdOFwV5KEmVF95CADP+4KN3AABW/8JgDozuyRnMSKCOepph5/ULyGrAxpsKKK6NAjTPlV84bee04EiaRBD82bwgHpOCqBelwtPzCZ6isGISQWOLaG4Qy6JEeWiUiXqMUhxGRz2pemrzJ4ua1LVtzzGM5/0X3WfK3EhAHGpAUJTOadX3BsKxRanrnuahSEj7jDQsa/kHJouoRHfRxFlFkotIj1J3HE+OxcGt92WB6BB38nSO+ScKF8j+d/p55wbC/JPCpy9y0ZubGc7fHWDxEYYvgiBl7ZU32iigUq1CBcrLMUnPffUPzi/B/i2Ar2DmR17phryW7eM/+R3u8+f8zR9zkReXz0FwCb6zHrnaAR/8sKh/4LYcaUteslq/wNWzFWzDKTuQQhN7555NUTvXt9vm5TQcuohWMDWuGMvO6wQyXTy7AbMwZw8t323d1sHgiI/QOX60Iq5zniOetWxS/cBILU34qBsAJHM2MXnNoHnBJu83ZXwa37SM3eu9u6HVa+mi+U/PCXhOOqARVYvCRr5/NfIYL8mPKSaYmY2GhkBtwyprDArttLkfytnevYnRsFTKaMzY/xbhD55clsmjthFi6UFFGZS/7qN2WR1ILaqtQgP1XXYIfhD7udvztI0HUJQaFwCkuU91YKbRbO3jE4CZlpN5spqnO+aRH7enC7YPCo+TRjHSJrB5q/TBaP8ixrZEg4Jptb6vN6GR6KTr70deK0c7ZQdcse2VcXtPOdUcSIhZUeqkXVDqMLDhcvl/OJHQt6KzikqHkxwmFucwGufOmQmnjKRD6J4sP9RsvELIaL9VNlgBDvzZrCw/1tSESHn6GltynNGB0B0f8AMG4F+IlY/K05y37IiaMZL5ujjGAPJ65Jzvlh3MojPyVoxvXUU4SjE66G91OJWky7RB2H6dbSRbJJfgFgeU20IeY0bKVCqGMpsXeoRSQ2oDRhDnyCJySWiApxfs/3NG+9QUW7fL6LPw0K5MGjnAlubRv6GNrAasf16K5vwEcSzbGx9v4WILZsJtTzpAMCUnJWh2AwQzi7wvAiuftMVNjhpXACa0IbLaIHcJgSZhtCxyPF0ohLx0wAvJDX67NxBqOwVntm6Pt11w7lORIZwuF/jNO/qMiUqNl2QU9FwdagCI+vKgpvYZ1uhGrW/vTSZ/myf8bJE365gcbBbUYjxyHE7LckwcCq2o3i8kUZ2Umzk85MnywZRlsCVpg/ZH/wY7CfX9oB8vMtbuJix/Qv6vYVYAuOGXd/H0X5srOebRmJ3jUXy21DG4EtsLiMdLsAuVQ11ZZZXtFdsL4/aecqoBmfjzSMLxo4OFJK5MVnUa+teV1vKDghor6gwAk5UQjZ0M04WgxJGdf0ocneJ9z0Nymc7FSntrbxbHRMu5qtOsv1VnGhCEIA8IcZfcSjaPNBTOGB+XaG5jbQpYJ6l+YYjNN8tyv3UhddrAqrMdnRGHGgC2Xtdw6H00Eb3m6UKArO4rLhJbBY8msHOjKbUdsE4PKcpotxU452yAtGEQ2pLrRsuwz3IQs1thr/7ZuuwfBWBjMLi55xzG3esIWRPOoY4eVg0/OGTE0RVCQQCmN06QbdVwy+1eMuLRJw6hca6ILgCtdUFQ87BMu7iYpwcA3VOJQ2yKVRlVg7QYTQhHQDgiNNcFFQ8KWdcA0D5NzunkEBgfACgjtM/AIQQAEA0Y0TBzqPx0OSr1da3g/DbXxRONzu2CLScxb9YxPC4LFkXMKZPITWs9tUgXuXbodehir312hoFVsSn1iX1eVZJR1T8A/+wsPST39tznGXGoWehHjQ1pZzCK8fRfE/hpvOJfns45jap4mCMcJpjse65ayMsxxt4YnF+C3UtEvwjg1wC4TI+LZO4q+zTan//Sd+Gtf/vHAHid+GIeTu9Uju2bZPvCg/J38ZEJkp687/0jtsZBzKLfjnICs/Ji465B/CapHT1/n4yp21+2zyOH5BU4dJw+/1XXo31O3lWNjmkeDGAjkfZU00JZag7snNSykbMZ+TFkSsga8v38ozbvIwFGh+QdHlrq3uiQjyAn3Rzh2CYmWyWQpJejsS779p620eFVf57aropx+uRqHhOyIwqtKzhCSOas+lFGaJ6wc5kFipprM2zfItC7Srh2TvvclN3rCfiTgwCAb/1ffwcA8JO//U6Mdfwbag4LufE7XUiBXQusHZZtrTVGYsGZrA4Ql+fOPPLotutn8mixiRnJfDnikTWMm18aG1Z4oRs6sGSy7J8TjfxNFzyQqFHbzmmv/tG/gT333+UbkStdXrMqIEFSzhfKL/IctR7EldheGbf3llPNPhwxWTYubB1OUSp8oVazjnRzKys5yo0dm1yx5R1tKbVcDtcAQP+olRGrSQKimjpgiuRyQGiuJZLE2AwcdxqwSXFGBlInxG6dlyDOEVhHNenVkDYN2s/0nUMNAIOjEaIRIxr5xLT+m/Z7ikYhNDNdIARTIGuXXwQt2U6Z5yIHMzjt5KL+N0AwsaWK7Cjvl8ABIZjmYCoUUGFGtD4E1yPk9RDJsowkeRSgf52or8SfJyud7PEukoMzBJ/soREXZADtU5o1Cg5jDozulhHm+C3n8cT9IqmbtXIs3avFAYybUHRgMQkjtOWx03bgPhepG+pQD454h1ql+moDRveewgJsKbDSh0JHSQqgug6QzXV7WCOTVdQXcf5i/2v57tFBn01S382QtA3qOxkap3fddpqlz/mcHOw95zoolxLxtWHuC9HAL+ycZBdE8cNrm5c1rXePG0RjuXZFvucfZ9QGObIauSSsI7+XO5pT55Q/+NkvmENjA5j5RxaLj6XIajrpGNQ3ZRTfft1zoxIv1xiENL9ytPtVYD2IMseXFLYxgMqprqyyyl5VtlfG7T3lVGuSIeAzdwHhhK48MMNkJXKONACXRBjPeeeJA3JcVhQcFJXWSzqmhHSufkKch+lS5JLEKGNLh/CSfM21BCa1GeC9Ares61fAbDw1QR3Y2naMrCn7p02DuBcgvnNBHPyLEuy0ciQgKInjyxZ4tsHUO8x56K+x6ExppcRoIprc0ZhhkrzkaJmOQVajguqJOOX1cwNwFLhqf1mn4Rzq6Urd0VQmSwG2PneGRjtG/ogskU0OzN1bR9oWZQldFNR3pX9G+8khwABgTjRx6LPP4ORDvipY93HhwacNQv+GAvXCVsfa91G/wlDeX9pWvju5fga8Iw14HfNaP0XaDEpFgLZvl8VI85xHVlSuMBqVufzKuStmYtd2GTs3yobeSe8wh6MM4ShDtOsdVNrYsZ1SA2o1TK+TjG2NVARTdlzM0T7ZduFtAJBj/uFy5CZuE9r2upK2QR7A5QAoWr17XIrVZDVBvlTZQN+B1vmZKzwzmwvctZ5/i68eo9nnKkkICK/RxOwiG7MlTzkpPmeXa3uBm/dixszf8Eq3obLn2j0//10A4BDrIPZc16wGR0NTACXcGCFpz9l9/Zg1WpVnuHs6hw7UkUV4R/uNAx1qN0tSx8HfvoCx/Rx3DbZutQnC++QdX7g/xPobZdyKF+Qlm3/UoH3GzjmZz59orsl5Btcxgol8bixLQnnrYIz0/xElj+FRoHnBzrl2PdzYZq9zrYzFTu5KfLZPBF6WtmmjVWeMU+BQ5Dyc+kJk0xVgYsdn5RDHXVHBKp7H3DLA37/lo9IeDvBrP/WFKFrS9sojCkBMV4ChRZgbmx50+C+/8KXSFxMfeYzt+FjfYbTWNPIXunlUay7MeuT1pwvVhT3NFBhZlF3HzDAi1IaeD65AkNZ2mM4HMLHl3u/I3MUBIRr5JHX9jY7jLg8KQPdE+boBoPckYXBcPrekwDSCqfQJAEzsfWpeAJq7z63j0FyTE2qVyyu1qzVuE9HPAvhyAGvMfIfdtgjgFwEcB3ACwN9k5m373bsBfCOkEu0/YubftdvfDOD9AJoQmdFvY01IeB579S8LKqusssqKxhJGfCn/XsyI6GeJaI2IHixs+xEiepSIHiCiXyWi+cJ37yaiJ4noMSJ6Z2H7m4noU/a7f2+LqFyREdFhe/41IrpARL9CRIev9LiVVVZZZZ92e4nj9ku09wP40ou2fR+AP2TmmwD8of0/iOg2AH8LwO32N/+JiBQ1+0kA3wTgJvvv4mM+x/YUUu0quc2R4wIBwPyTsqqb//CzfmOaYnrnMQBwmdV6DKe6UEiYSqwsWFGZIOrHyGsBpksRpguFcuZbnhurVRbziDBbqMmDU8jIbW7mSJvkVqvKl609fg7J9fuwe6NH/JQjp1qiC48JghnYhMXBjR6eD2bCIZ7arPPpUjkbWLVAnWIJ2SpQhhBNClrCz0xsX4QuaS4PCa2zM3BgUFu3HW0MaDgB12vI5mvI67qvAeWRKFj0AlddautzYhAxsse6MPZ0jXVZndd2BbF3yXlDlizkvCijJzSKtT88hPlNnzGuutOzRaC+TSWUeOmhrISCKkKt93lkV9vNzUzkAc9nqO3KCWcLEWp9qdZJKWPnZouQtNjx0+I5z39T7tvO26fg1Ddi+cOWKz3zg4NmgXfOZe4ZDuw9iHanMFv+Yc73L8Ns95EdWCy1HfDosq9sCOy+Lke0+1w+tNKg9PkAJB8hGnGJU13rC/eQMolgaKSBUkatnziUGrAc7gwYHLGJkrZf6ttA72SO8YpBXaMgNjFRufx63MZ2XoqsXI5dZW7e+wH8BwAfKGz7fQDvZuaUiH4YwLsBfO9Fg/NBAH9ARDczcwY/ON8DQTy+FMBvX2Hbfg7AB+GLrPwdu+0vX+FxK6ussso+rXY1x21m/jARHb9o87sAfKH9/F8B/DGA77Xbf4GZZwCeIaInAdxNRCcA9Jj5IwBARB8A8FV4kXF7TznVbKRASmOLkbQJSw8IaTV82sZkiqh9q4XGE+sY3inZBs6ZmTFm80IhoMw7EbV+juaF6f/H3p9GW5Zd1YHwXPu0t39tvOgzIiNb9R2SkExnMEaUy6JswGi4BxvbAxc2YBdQnWxcfANXASrKrs9YtoWRBz1lytiAEGALWYgU6lJKZZ/R969/tz/trh9rr733jYzsIiJJ6emuMWLEe+fde/qzz9pzzTUnsuXE8j8lcRSqRsNwsFWpAWIKhiTVfqJTNsjq8UqiHGRA+3KG+KmrdheLXozpAtlyjViHJqYMI8k0AAxPtECl14Rm7k0ppYlV6WQVgOaSvM/p5STc0EdEMWJcIl+IUbRYKUTOxcLTE0RbI0Ap6MgcVxpBhQpVM0IdBc45MSFQTRivBig6BKFMdR6JMV3mBFqSLznOcMLUGdn36SLbqdeBO77GdUOvGHJ5bfnxypzPAEWTMD3A5+jQf3XHKEYEvkzh6HCI5kaF0YHQliQHzQCNLY3WlQzRdT7p0XVgepwz9ytf5WZF4ZCs8Y1viT4y9q5+Qt19OEbe5QZUDWcbHo/kfNf2ukk5LVyO0Nseou65CVN+YhUgQtF11r2q0JZ7PzjiJngrnyEAGnG/trQW6RnwJQSrhKzFfdZ111qaeSar7Eh58CF3z00OMGVD5MJkX1o3NCDmvRDRsEJvWLlGnVg5jj550ox3KBd+OQdnrfWHvV8fAvCt5uc7Oji/iFjVWv+M9/u/JaK/f5vrnMcdCqGBfNW3/B+2fwBwk9t0x4A3i037vIshWetqjekS/7xzv7L9OkLPqEM3bu6eNE3qiwfQPc2Iy/BgC9mq+UBt1vPWHJ1FY829zYNd3o5ts2CeYIa+BnATdnGKEYL4Yzz+TWugOZAxyxmwiM94XpFtzBRhgHFOM0YiQo0IzHtifKRG0RXZUPeZhjEck34UwMmBkgayu3jQDa/y5L56uoMP4q0AgObvdSyZoHmFj2F8uGHl/OJdOUbPlMVr6ZDzWzae7RsR92EpH8EUGN9Vmp8NMLMJ23vl9yMJvaeKCXVkzuHINHh62v7B1FEEBRDTAIIiMMta5nO1dW0OpixEADgJP6o1JquuKRVg2oy8WzVx4yIAJMb7YrKs7LmR5satdxRYesgYnEVu3yZLN9g132a8zI2Ka1rrqwCgtb5KRCK4ewQ8jktcMssK8/ONy5839lVSDfCAtWAsrdXVLfcHraGXXadU/zVLlnsLOEcrHRj3Ks0cZ+k0jrczy/sUdYJoWKFsKoAIzc0Kykj56YhsY5gYcFDFyKugkqODboARzlR8eQ/1wSW7fPte0/R1xcGr1lY9APr3ukRruqjQ2K4tpxxNpwFcxc6JkSpnetLcmOVIaUUIRxX6J90oqYk52wtPT+ykJNidQMchdBo6PdOFGFXC5yWcOMfI8YGQTVRydsuTR0aDH+Y6cANW6yojyY31DHWksPUaXp8mlm1ThWv+i4aucbFMCVnPcN6bhOExINlU6J5zHPMgq62GtiR/kgyOVwM0N0r07xKkmr9TtkIU9ywA4EFq+wE+L90z9rShfzfMZzXKFqDNQKm7/NYg5SZyMpFi3ry2EzkASMwLdnyQ92HrdSxD2HtkE0giVN3EngtRYQmmtT0f9jp0ghkDFWkirFJlz/NoLUCyW89qSW9Ws/bldlDm8ykapT6KLOfPovO562nwFT1ET72OyD4PvIDdH2tfZ9zT777V0CBUL77hZYWIPuX9/n6t9ftfwua+E8zTA+7w4PwiYpOI/hKAXzC/vwfA1vN8fh7zmMc8vijjJYzbtztm3xg3y+T18yx/3thXSbUqgaVPrKPupLMJtVJAl7sT+q9ZmvlOOKlnlS1KbX6Xxg3TWLeW2lJ1NHTNjo3rU+hAIe9GSLZdQ1lgkiBpVATYYCUZ1JgsK8+CFmhd46yk7rguvMnhlmlQwYyNsyoZjRfjEoAT6rwL5F2nxSyJlTSZueMFOp4esjQcSIND2QrQXOftjtZ4A70zUwQ7Y7eSKIBOQ9SRsk2URTtgZY0xJ2eCzDe2KmQ9ZWyrnSTR+AA3xtWxQ+DLpkL3zASbr2+ibDhKR9nQSHa42Sc0lynvMApSJXysIokYDYHGJnFDab9yCJE5hb4OeDhlS93GZoWyoexxq0IjzPQMdeT6W/iCNa/NNh5K88fQGCgkVqs6QdEGsnun6D3E17VoirQWJ9S+I2IdESYrAbZe59ad7JaYHltAkHnXKw2gjQ61jzQPjApN3gF6Z2QiwXQeabgsvSbP4eEArWuOaqEqAJW2yJKfcB/8hNFWX58gWzbH0g4Q92ukWwVGRte6MPclAFQNZSksElTDoulyDjXBGDaZyUhAiPq37yTwEhpeNrXWb7mVbRDR/wSgBPBzsugmH7vlwflFxHeCqSnvM+v7uFk2jy+i+K//7z/EV3znT/Iv2lVFxZRpcLhpm3kzYyRVpcrKmoVjN4H1gTxBVWVZNAaGx7m0FA9rrH7CTHrN45T1AlDJL4OesApreIgqnIyfQYNVDugt/kWqb0ufU9gzOvXplkPP5bvO4AQWtGqfVajM/lax23eZkDcvK2TLZiwqDFUx1pgckOZ/YPEJQ28zrsg6B+Imr0DfzQcZf7qF3i8x2BTv5dZ85vw387Jki425AGD0FYwu0RU3MFbdCu2nwpnzmy9o1Mu8nd6nzHu952zIVQ6EO7OpVLJbY7pkqJdLzuzGSdFp6ITPZ22PF8gX+K+dMzRjDAewBJ+8v0QGr0yVHTvriCy9Mq6c8EBqKJ5Dz5lYTF1Iu/zAB0mszF7XXMuCsPtqT6L2okHXpcp8B5rLgRc9bt/qmH2diA4ZlPoQAFMHwSUAx7zPHQVwxSw/epPlzxv7KqkOxiUwnkCNJ7N/6LYxvpvv6tC+1Mkir75tOOBQujqkWak1wGgJG/rFtIQOxGhDI19IzM9AtsCn1v9+YhQTfIWHoqWQnOenfHJq2S7Peiy7VyX0LCvpcKLtAwt4FI89t62iwYh7lfCEobnuvuuHPJBVQghyIN2wcrdon+WBhCY3JDlFBd2MUTVCa7ATTmo2wlmNEI1ri/yDWC6uShSqxCmSxANOpNiwh5dNFwjr35FCRxWS9cB2hocT4/BEnjygBtrXSqtAIoNE2VBOt3M5sJJ649WAKSwxa4gCLskcHg7Z6dLYggcFJ9S+DN2NluN+TA5wshy4ORWKNl+P5FOpvX7y/ayr0Nx0ibK8ZHfvI5z4DdPVTYRknfk5deweU230bFVeI86BaI8/PzjeQd4BFp5xo5sOHYINuIlT1iW0rs2OgnXgPksa6J1zOx15nebSdR6OA+hAoeiGiA2tpjJUoMRQnqQyoBVLLcpEC4BFxJumezy97iZt/fusYOothdYvv94pEf1VcHf513vd4Hd0cH6h0FpfAPBnb3c985jHPObxSscfw7j96wD+KoAfM///B2/5zxPRT4J7Ye4F8Eda64qIBkT0dgCfAPBXAPyzF9rIvkqqUdfu/8C9wKfHFwAAOiSUideYlSpQpWc0o8NMo0zYFdAvRUvSJgk1AGRLiZ2hBZ59aN4LEeSMgNtSfV5bOobI6AFA69IUxcEuoqucEYt9uQ4Ykc7bZNFd4diVKSHZhWcF7rhryivFA9wQFk71DCKtlXPGm7ExHVcoW6GVGgQAKmtQZtCAJk8aqnaKqhWCaj0zacg7nLgGGaFKHQ2gShVqkzxbus2UE+qsRxYVCaZA45piQ4Kc+coANx9WKaF1zTUahuMKRZu521lPWdpB3uVzoQqNsunoNlXK11BVwOCoOXhiTre1XLXnk+z5kglX65pGslsh74gLonv4JZkWZB0A8pUKyV5grWEB5rtVEZD0ayQ7bqKSdxgqOPZ7LpFNL+4CAMqlFqioUSzySRKKUdTnz+aLPDNYerxAthgw8utdE634PvYNJNpXKntfznzWfMTfN02EfDEFVRrhiBtzJUaHY+QdZZ+fdNebsN4Q4zWRhRTqikayV6NKFBrr7rj793VmOO+3GvplHJyJ6JvADS5fo7X2Sjh3dnB+nu3/D1rr/52I/hlugnhrrb/3Vtc9j5cnPvmB7wcAvPWv/uRMVQYQcxb+WQw4iralKCPZgUVFZZwPJ7CUPkF7y9SZh2n1bPSwc7HE2PBrK0EEFewdFA8dcGM5zxmjzABsk3G6XWHpMR70tl/VQu/0LOiiI0JpGqhDA2r0zpbYPcXj3M7rKrTOBTPbqSMnzWet0j2JOGmsB9x7WdeEKOL3bvhf3ODbusig2uYbWygFcX+QT9w4D0HnGaZXF/h/HWrUB80YVCgMT/CJEw54vVig9aipxhk5Ptbt55/LhvMikPfvZEVZ3nE0BuhtTEkd7TXsMQYbpmndXGi9nKHxuKE8KnfuRofMu/SaTyU01eSDTsa0c7FkOipgqw/inAy4inC24MQOqtTdJ4JYB7l7F3TOGBQ9Cu21otq9N3YfNNKMj90EbbqFuFPjNhH9ArgpcYWILgF4LziZ/mUi+i4AF2AavLXWjxLRLwN4DFx5/B7TXA4AfwdOUu+38CL6YPZXUi2hFMpjKyjbfLeKLrSPSNvys5pViJCHkGpGK23Dn0lSy4ZLKmxZpqFQNpQtpUtS4OscTxdCtK+VNqEOxGFREeLLu8iOL0HltWuIAKN5RQcohEdtBkBpOhSkNRwzKhl6DofhhI1kRMnB1+cWxHC6qNDceLZut8qNoUsUgHLjItn0rKsHE2QrC9ABYXjYOx8l0NysbGMjAIzXIj5WYl4zVcL9VdABlxklKV16YooqVhgcjzFddNzm1no1g6QCPCEqmgpZj/VApaEiGvKgkewSDxJC+0iMs9kUM2lI0Qbal8X62/1BXlThDRSGeFDNKL045J2/s/cgn7vOUwFqBcSeIY+USauEMD4Yg9zcBdGkRnJu2/5eHuB6sPD45QUcjrjZL19IoJWrpGRmn0g7Wog/MfTvDUmoxfgGMJWWXsh8+MhXFKmgiRAO+ITIpLJ/d9PeyzOou7n3Nbl9Blwy7VdKdEBoXp1ifDABYMqqLWUbOG89XpL00vOv6eaD8w+Dd/h3jDLeQ1rrv32nB+fnCbEm/9Tzfmoe85jHPL5k4s6N21rr9zzHn77+OT7/owB+9CbLPwXgNS9l2/syqS6PG2H6Iw6G9WdfAFznrnmBi4wcmaSh8pJnAKglUclc4jtdcrPtIHc23qoCoDXqmJC3pGER6B8PmWKggWTbSUWMH1hFFRPKhppBQOO+RtGZTfpVyck0aTfbBDwHRk8OLdmtnBtjxzses4mFMxnyDt8C6ZaxlB5m0IZuoEYZ6lYCtBJGrKf8mfHJBT7+BWdAIPs4XgmMM6Pbnzpis5A6IjsR0QGjIItPlygMTaDohBithUh3apOkmklKwOd6eJQs764ONVoXCHViZvUGEa4Svh5Fi5Ur5JoXbe7Y1spNSgCgsWmQ31HtWciaCZJ2ibwqeZI1XQwwXpvlZQdTx0FsnXUqL92LcrDCbzfJtZlsRYW7Vs0nGOqoFhkKoaLG6HgTQT5LkSk6AcqGQrJdQodk5wfSF+DzrCMjmyeJbmEoF4LqLzzjsvqyyZz4oq0Q71YIvcpLMClRN0I72QKA1tUc7UsaRTeauT/lutdeRSjvEIJMzyBngqhtvbaJKnLNs2XDJeC3E3cK8XiOwfnfPM/n79jg/Dzb+I/mx7HW+lf8vxHRt93kK/P4Iok/+tnvtz9/xV9nnnU41SCj0CGqC1XTyYf2T2q0L7oKH8DvAQveyMR+6PpAdED2XSLI67Hf5R4XACib0gRf2UbhwVFlq6n2mdawiiC9MwbNrbVt1u+dy7B3ggc/cYVtPb2D0T1Mt9y5j788nsYzFurCHe49Y7i/leNKi3Fb3Pfs0mvnAGupeIFG+huMUPfO8r6tvyEBzJi99PgU2w+a/ewyTHuk1cenLt1ntmnG4QGhMJP6qlsBLWMKJ+lRrqwJTWJwD00OeIlzBxZY6drYoyoSMLrG47qODHU0LaEjzk8CY+hTIUH2On6pj3cTiFuO7GcwVehe4IViPkaVU/WYLAdoXeV9b1xkaL9YbmH3XkbHybyHWtcc/U4r9+6S92LnYok9oygj4zKmwHgNNiZHjBnaNu9HcNtACMfLWWH844p9l1TXKwsWofb1du2DaJFLTkKk6TCcGB5oolAnnFTVIc0kAmwx7lBYWa/wtLfv5xts8ekSquJEcrIsnGvm7Apani1zrSXIXWk+b7vkKdllnen2ZedOBTgkHXCNFI0tR2HxmygDQxWoEmWRdkGp0+0C8bUBYuOiBCJGpqclaCqe3uZPZY3J4SYA3uDwIEsO+mV64S5Xsad9DQBaI8iZjuF/Pu5zsl00FMLMJX/tSwWGRyKEmcZ4lXcgW+SBvehq1NKpqDSKLp9/VWIGkfZfCDIBaqybRrnMlTiTPW0T97wb2IRQ0Ok6JPt3QV2tI5bHn64jvgaDI4SWV6ITXnnuTWh8XrxE88rEVgImhxt222x/zvbvsk8ii5cvBKgih1RXETex+Pe8TKjqtvDezT3QZHpT/2Rsn4fWtQpVSjy5iAhFyENDspnZxkhpSgVc8hwOXOm3jgNUKVdtam9kaWxWmC4FnvsmP395h1zDrtmPcDrrKncroTVQ1V/6g/OLiB8G8CsvYtk85jGPeXxRx34Zt/ddUq2mOQDWoE6/4Liae+88AQA2gQszIL06QbaSIpxUKDzrcJXVKFvBTBIoCUGZzibadQRgCmzf775/6RsUGlcV4j7QvO4nmPyfP6srGgpFmzm8vkamTAJ85Y/WtcomzT4KL5bRtQdG65CQGTSijslSDZJd/iG+ZghhvrEbERAFQGX0nNs8yx8f4R0T22uAk0s/eZaJRrJXz8jkUWUoCWL9LehKxOhwFStEg9KsI8DwSAQdAjsnXIMmFBu9hGOyOq6kOUnWAaBrx0WkGqgNpcRH8iWmK44Xl3cInUusTFImQLor3eVmWUpWA7R5vcJkOeBu6i3HaZPzCwDtK+66SvNeMK3Ru+IaZ4cnGYbxE8y8F6MxzDA62XXnN+WJUB0TyzEKum1kHG0XuNCTSo/qIQocqUK2oBANNXTgkKBwyuojmpyFeN4NEOTAwul6hh6TrXKyL9comPD/VJoJw6LXOW94lNG4RtZV9r4EgPbFHOOD0cz9pgptURh/MpB4VKVbjf1sU05E7wLwzQCOENH/5f2pC6adzONLID75M4xav+lvvc8um7BtgkUfAaB7xmnIWx3jmqzRldAOWcnBIZCCrqrcINYHw2epbowOBmheN8CS32htxtNg6vjMQ6PyE41ra5i2dyKxFt5lg99Jo8MrtsInNtmZ128S7QSIzPIb1af8/agjh9zrAE6lxLz6kt3ajnnRDn/p0B9WKNr8ntp8bYzCjG87l1kE4NJwDYGg+Wagy5a11Yp+w6vP4uuXmV31fz7yJ3ndn267827Omypg1aLyDtmxLjHHBQ3snTT89RRoXuSfu+eMjOuByGmOi5V7E1Bn+AIlQ2Bs0OBoYMClZWDDINSrn+W/jQ4FSHdM9SLXSNdnX3rR1ggNA+BNTGW9irUd9+O+qwxkC/KtcOZ6SIj/wOgQofeYeHQ8+3O3E/th3N5fSXWgUF+8gvjiFVR5gWCVHyS93EP3iR3QzgB6aBQV7j2OYDBBczBBccCpDQi9IxpWzDM19Ag/wbaucrXGdFFhuqgwvLcE5XzzN66a5GLkXAGjUW2bCASBBTyKQwTEnr6woNPty+6ulWR8shqhc97RR7JFaW4kS/OQwUYSPtHbrkPi0pBJbuo0NsdS20RJG5SSpiXGd7XRP35DKQheU5o0t+0550hglp9MpQYC17wIsE535yKf5zp0zRXxqMb2g4oTapmETEVuyENhx2QpH1JKBJgGohWAmlFzKxXYBKavmkBdaiDd5GWNTQ1NQDysQLWrQJQNwmRVKBKiYkJIBrWVwbLHVmtLs1Dei7Bxbtd+T84xAkL7whjZYoIqVU5eLiSM7+qyoYt5WSmv0ZQ/NIuAhzATC6+ZVpJaeclOl3himC3QbNNtJMfp9KeLNtC5yJOcuO+r0zhnTD4wcy8M8pmE2p4PzRNFVQCTFf5u53yO/gk+B+ND7h4QY4cgd2Xr1tVixiXyVkJjf5QRnyeugPnUfxbAp73lAwDf94rs0TzmMY953Ebsl3F7fyXVWQ40AZ0XUGkCPTDtruMJqN2yCTUAqCfPAYfXUBzooGiHM8kJ4BITUSYYH0xQJfQsZQNVANtvLtF7zJ3K9qUKeVc5ThWc4kfZIIw824eoz+tLt7X9u4RoTUsynWxyVps+dgXZfYds8hFOmK9cBS55sg5OBWsVi2oEAGSHu0iuj2al2pQCApO0H23b5ZJQly2ge9FljbKfPqIiyVodEAKTVKtCo47ZeKR/TNkkN8hYq7oRuiZKQd97pzWmiw65V4VRA5mQ3V7RNmj3AGhdhkXip8sAyM3+x0dNJ/fREaIv8OSpY7jOVcy6ylWsZioQklA3NvSM2svwsLhlOV49T060pXqo0qtMEKFYdgY9RYfvM1VpqFFlqTgiLQg4ykY8qFA2A4RjR0ty63U/as82nK+Hu4/blwtQqTG4K55p0lW5RrZAtnsdAHpn+ARa6ou3P+J2qMraJtczCbVZdZDVz+JvA7hpQh0NOKlvbtSoYkLrKj8sUtG4vbhzDS9fjKG1/hyAzxHRrwEYSTMkEQWQjs95fMnEZ/7l9+Edf+EnAADlNQO8HMTM+0NCTKKypdBORIV6B40ZamLvNC9vXudne3QwtM9nc0O+40yoVOFQYFGayDtkkcwDH74IALj0547bbeSLrp+ld563E+0V2HmQaWzy7qKaMDGc3DrWCMezz2cdumqVHE+yU9nxYLqkkG4a+c0Nfg+qUYbaoOPjY4azHJA9BzoA7v6acwCAx0/zSzfddH1AUskMcrJ0tYc/fg8+G94zu29LGo2rBu0/6cCkaGSqs7u1U9vwxi9ptId27plyzdq5wpVvNtW/1Izxw4jfw+D38fH7r8/sx85vHrb0wa1XG8DigrYATJjVUIPpzHdQO6UpkYjVyimXTFeA8Qn+++JnInts0qMlimNV6imcFMCU29ZmAKrbj/0xbt8ZHZR5zGMe8/giCq1f3L8v8fgwWE1EogHgd1/MF4noHBE9QkQP3+BOJn8nIvq/iOgZIvo8Eb3J+9sHiGidiL5ww3f+ERFdNut8mIi++RaPax7zmMeXYeyHMXt/IdVEIKVAD9wNnLtstap1nkNv56AgcPq8h3naHK0PAHSsVF6QS5OaQjgujdyXWb0GVKbtbD5v85wk3ggxWXU8J8BwiT1LZ5klTlYZdY3M7F540OODs53cvTOa1RwaasapUV3bxuTVh/kXs/o6ZpQ1nNRQZv/LFqtwiF5obnhmzfUCyXXeeLDtoMq6x7Dw9GALu6c87rQ5/HQLVuM0nDDaypbnntkIsVpGlRKq1HQn10xh2L4vYATZnLvxYY0Dn9bYO6Fw49wunBCq1M2C65hR++miQ5OjkfcF70GL+zyTHh/ibYXCR7vSQmPKetOWv0vMWRe3R4nVzxr5uErb+2Lv7tDayavCXdtoUKFqKFSpQjQsrYNjdaSLqhEg3i1QdLzHLCBQUSPvhjOOg4JUCxdbzmdhruONn6siQpjVFqGOBgWiAVB0Ivt5+VvDSN7J9QP4fEZjD2H36EHAjRrtcm/O7gvAlBPb5Buzu1eyWyIekEX2hX/e8SodU6PHLlUKoZn4z8ztxH4oI76ISLXWQ/lFaz0koubzfeGG+Dqt9eZz/O1dYJ3tewG8DcC/MP8DLA34zwF88Cbfe5/W+sdfwj7MYx7zmAeA/TFu76ukum6lwIkjzA0+egj1+Uv2b2QSbEqN7u/1TdDaiuVTW0F+YrUFlVes/uA1lAn1Q8pT0bhiWoUy0ji+uoHQL0yy1tiuMVpTNhn0TUF0CGQxZhQTxgcIS09ViPZyhLteo9ubjyKY1jM0lGBao06UbbCUkOS4seH2K+rnqBsRgt0x6o57/+Yr/PPe3a4BUgNQGdA7z0160gAnSWk4rZ2aiuFuT5cVwrG2/OLRAQIQoGoCwQSYrrp92Xyd4Z5L04phFEQjLs0JxUL41cmetjJRdWT40yEQDrTVNp4sKXaQvMo0m3zR0Cm2FaqUk9HRASd7B3A5bOURN3GRRLrvSzJmUvLTKFpk+fGdUlvDlTINrIsg1UYKcDmyvHnSziTI14gW+cYyJUyW3TZFHsmnftQRAdpJQPoNj0WHvytJcNkNWRvcfKRzydWTp8uzj34dMbUpyGrkPU+thFzJGQE5Wsi4QtkKbEINOGWZ2Dgq+s2cw6MBlh6rnLrNdonxwQh1rMxkzGxPzTYC30pwF/mXRRFuRERv0lp/BgCI6M0AJi/wnRcb7wbwQeMW+RARLYjFr9b6o0R04g5tZx4APv5LPwAAePB/4abF1iVg6Ql+eaSPXXYf7DAXo3kWuP41LM5fpu55jUcyOQbalz2kAEBzo0JQmGY1M8wEBRtwATxmWdfVhWcnN6PXMZhz9N9fwM472SA0X1SWkjc6wGPKwl5h6XgyXiS7GqqSdRIGJ0yToGmmjPqE7rnZ7+SdwAFYXcJ0iX858p+Zt1Eutaw0oNDmylbgZFAL4PTHTvD6RZK0rRENzPjoNW1Kk54qCVVk3t2GohLvAm3jQFubFRVfMYQO+FpMl5S1ApfxeHBMORnUNlBc5/088NAuAGB4dxeHf5OXXTH1HAprqFUeo6OkQBIYSp7ide9o1zQq/1epM4fbPRVitMZg4eonuFlmcqQDWJMhN7BG5thUrpBsR2aZo6COPXt4gPMAuS6qYEMiwPkyTJeD29Yc2i/j9r5KqgEgO9hBen4H9aUrNpEGYBFqXbgmrLqd2ofSnyCpUrM8mMePivolwlBQQq/RMKux8FTG8mcm+QkmNQxNzSpm1JHj+aZb2vG+Qu6+tQ5WYoTylFFZqDT2Xr0IgFHhoqVQtNjFTpRAZLvT5RCjNZPUecfkqykEuzwg6SgAVRWqjuPG7twX205i3k92aArHNTrj2tZeik6IcFqDCterW7RDZD1lTUZkgqBD5mNrxf83r7gTnRlXdueSCHQuaUyWWVowHrpBoIoJo4NkO8OjEZBu1SjahDDTHlewRv8uZbubm5eMQcm6RtEmr8PZJe2rn8sZYZfkldzgGJmJRKl5+eAYO2U1jNX5eDVAc70ClXpmQlMlzF325eEEOa4DmtFxlhB1DgBobNU24QQcXx0A4n4JHfEkKu9JaSNEFRseorcf8rLxedhsbCQqAe4PZYNmzI0AnkBVDQWtCOG0RjD27qVpDU1kG2UBPj+qvMnAqIHtB2N7f4eZtkm3DsjeW7ebUNvNfQmUCe9A/H0Av0JEYnl+CMBfeJHf1QA+TEQawL/UWr//hr8fAXDR+/2SWXb1Bdb7d4nor4AbKX9Aa71z4weI6LsBfDcAHD9+/MY/z2Me8/gyjf0wbu+rpFqHhPQ8j+EUzh6aNjJxamnBLpuuODqilYCrNSarpmzdd2/4+NwGsnsOoIrUDMpHGkg3OSOWZkARWR+thag8xmO8x9rTOnCodtZyyKtI1si6wlGB4XG3gvFqaFQaKoSZtvrBQn+QhBpwTRhyDM1zPLXVUQDKSugkQh0H2Hmg6X2HV5RumYmH1rOue2Y7cb9EHRCmy6FdNjxoaA8RIelrO9MFgGQL9hjtumogNIXrziXvSdKamx58qT+wQsTSkzVGB53YfNFm5LRM3QRidFBxY4jZpjR7gnjW3djSNjEfHiIsPl06KbiBk4urGiEWnpliusIzoTpgy/N4wMm+lYszTXxl01ml++fdbxxM1kcolhpMN5m4pj6d8CRCZLMAGLt3N1mQ5DyYVPa6D4/6SLqZ8LSDmYqJhK+VnXcUgoLVUYSuEuSYGdHkuo5XAzS2aqsIEmQ+hYPPzfCIu+/SbY28O2tYFPcZ3Q+mQOu6pyzSDnhyOPAmuvGdQSr2QxnxhUJr/UkiegDA/eBp0xNa65u0t9003qm1vkJEB8DOkE9orT/q/f1mJ/CFXnn/AsA/MZ/7JwB+AsB33mS/3w/g/QDwlre8ZR+8Ru9cPP5PWLzlzd/9PgTWL8CrVDX5mdt4y4KtHAqAERTOxyCaaAyPGBTHnOGk78atwFSYgryGtFJnCxGmi7PSp1XCEqWAo54Vx1fs+Ny+6GQ5S7OizTc0bDPg3r3u8nZP8/+kYRv/5Dvds16VN5H/3S1YtIEDnxKzCW3+7iy6+3fxsTa2KktRS3dgTXWcbTdZSVWRbF14OsfwGH+/WC6hxs5YBQCKLrB7D29I1KDqqy2L8AdTWNUma/U95UZsgBvpZZ/69/PJqgPC+lt5WftR/pL28IzRqQjnnnASqwBwz7ecw7nfPcHrn8weA8DyvZvv5j80N3p2ufL8KiQKIzQwOAHkC/z35Yc9ENHkD4VJD8q2k5wNt2AlXdunTcPkpTuDhuyHcXtfJdVUa0xPMKqbrHtUwapirnXi+NHT+9bsQ+vzgosW0xws8vkFBmaKY8tQWYXpoktkbCKuDQpp7sms55LycUMSNv5wc73EZDW0NAZV8L/2adGk9MrpnQjhVGNspMlkMBCqw4333+IzpaVhTFYCJP0a7QucQdJEBDYV6i4/7dlygvYVHriHh0NQzWVBkeFTnp62Dgi5QUCjYWVtsS2vfOhs03fvcztWJa7cprxqpHQfUwUMjgiPlznPIDEFMddnyjzo6aJyyWOTdazrmLUtZXn7cm1fDMmenqHUSEezdEs3ttxgmG45PnQ0rVAlCkU7sOczyDQj59rxkAFYVFjMhFy3u7bnrXHFcX2i7Qmy1SYjxFJOKzWCaYW8G9rtAVzao/IGWlEjwHiVuc3ijsYbctfJLiJOXCcrAdLtyirQWE3VPY2sJ9qlfL6r6NnSgVUMTFZCdM47ioz0GmQL7nPJrrbXSq6RbOfGayFUEWjNybWH6OvbzKs1aF8Mzi8Uhj/9/QDu0lr/TSK6l4ju11r/pxf6rtb6ivl/3aiIvBWAn1RfAnDM+/0oWMrv+dZp5QqI6F8BeMH9mMc85jEPYP+M2/sqqbYz8it94OgacHnd/omSBNWpw8/6iqpm+aVVTAjH2jaMDd7E30k3MowPphgd9mZzA43OpcKW9XNjIFM2mNcbTjW65w0iMKkAIouCy3KqOYmQpjWfcuI43MZKewyk214i5SUfVapMEmVk9qYazWucxYbX92wjIgAU3YQbGb1krXshB1WaZd+EX66YpqDy2jaSAcDuPeJYOUvRGAtanXjo7I7hx/U04tzJuBUt08Q4drP71nVOqKNRjWpBzRiCAJyAi363qphaInQB4a7rgKwovyq11UouU0Z04qFDzFVpEkyRhDN8ZzE8qQMn4SemQVTq2aRPa8S7BWJT5BYkt+jECLKKKRyRQT6KCmU7RjCtUPQie98EeW3vHTmfeUfZJj4f7R4c55OV7DHS7V/D0cFwBu3w5Q6nSwFLP0GOR8+sO8gJuama5G3lkPFMo3WVT664gAIumdaKEJmKw3ONh3snFDqXap60CUXqBltbfzJwJ+LLBP78GbBO9Vea3y+BmY3Pm8wSUQuA0loPzM/fCOBHbvjYr4OpHL8IblDc01o/L/VDONfm1/8OwBee7/PzeO749Pu/D9/0uv+ZfwkUUJqxoBSTkdoCGoKIVqVXsWqQky81Y0TeUVbaTShbqnSOwPLuAJxEWjTWdoI9WjNVwklogYlqkWbGGYCb8cumQYs3TCU2dn4C0cAZvIi0nz9uafFQiFz1bu2TJcKRqQiPeTyKlELR5bFaKmBFS2G6ZMaYKayttwgFFE2yDfCyzctfHaNqmPFuEADyTjEocPuStpVHAWzKlDA0U87GdWB0xEnP8TEA2rj/1p4Ub9u0eVURoXt6dsyjCazsYHIttIh9scTHdnmvZxFqe65C55wcZEDvd6TuwMfdOttHvto0f3eV7aYZ0+OBG9MnxhJewDWAqx8AkF644b1nqaX8/43v6luN/TBu76+kmkxCu9pG9PAZUGzujDhC/qpjCMYFih7fqVXCrnnTRUb9fIRwdFBheFShe76y5PzxwdQiuII6A5yIVWmAoh3YBxfghKaKyJbNJWkSoxDy7h5NTB8ICo3hQXdJhM/b2PDK42KuogEYNLRKFQbHeIRoXeH1NzZzxJd2+e+LbVBtBs5eavabk0nrxuUlblrc+hQZlDxA7qpJiExi7NMVxNCmSoD2eXcu+/fWCKaE7plZdRPAKXjIBAPEaG8dmuYLj44gA7skxPJ/OAWCqcbUa6xJd7j6MDjqNfAM+Bone7WzCh+bc1CyTnRpGv3yttMYd7SH2UaVcGw0WYdAeGkTSBLUbVcJqcMEOgjt5wCgbMeok+BZuuFS/Yi8ikk4rjE+EKJ1tXA0HwCdCzwY7t7Lg2H/HneOoj2gdRUOtVb8T5XGfcy7xlmPbdn9ZPZmtJFwqpEtOkWR6YJoa/MLd7pI9t6pEkKVEKIxo9LTRQ91l2dnfMM2iJ6lKHLboQG9D+xuX0Sc0lr/BSJ6DwBorSdE9GIOfA3Ar5mPhgB+Xmv9ISL622Y9Pw3gN8Gujc8AGAP46/JlIvoFAF8LYIWILgF4r9b63wD434noDeA78ByAv3UnDnIe85jHl0Hsk3F7fyXVME1cRMjfeMouI61RJQGqJLCz3SqJkS04iTBB5sYrCtqclb27AkRmZhgPWGS9dUXPJAGV13ktCaoqnDSf38QlKIIqNeI9R33MTFKVdwLbvQ3NCU+yW1mDD163hg7ZYlroA0JhkIQaAOKrfdSdFDoIUDVvcpnNKoXyAMU82DL1kXJGToUzK8hH1XCNlZJMTw7I+eCOvv69nkX1BcJ0ieXuBJVWBdNZFp6uZvjTQnURRIXXqW7K8BRE2v9+0mdL7uliANIepxpAer1khFv6EWtOqKVSUXmc74bhyadPcUVbd5oAEUozKbHGC9cHqA4w5Wh8rGnvIztJ04FcJpQtdx1sgyE8hNdDISR5F2WQwFPZUJXG0hMZJqsR+veYZHWP0L4ox+WS3DrkiQx1yTahikGBVvD4ieZeas6qbyR7fL/KsuZ1YyTQYWWR1jVnWSwJNW/DNZXGfW2dIf3JpKxzRkZP3xkDmP1QRnwRkRNRA2YaRUSnAGTP/xVAa30GwOtvsvynvZ81gO95ju+/5zmW/+UXt9vzeDHxoc//b/bnd538fgBAtsYcwCDXtndHeMN1CM9ECqjD2b8D7HbKy9x2ZMyfrcDxf1lP2YbirCfGNBGW/4jh3jBbxOAoj2WCdJZN7cZreb2UsIogPiotDfvhVCMy776saypmXadSAQBajKcOMdc4vtqHDNmRGed3Xt31lDyckpOg+Qy4mDHP2p0TwglvZ+ULJbYeMCi+rVJqS52TMa1sAIlxo80XHDIvlvB1Q6NuGGWMILDL5XjjobYosESQadtTMjriDHKCK7w/2ZVFlGu8nZ5BuTUB/bvEURmIjBJI66kdu14yBmaybXbZNZbzI2f+44sLSCQ72n4nN8bTZRtYesxUAEx1Q3qdbjf2w7i9r5LqOmL1Aqt4IKGB9MIeyuUmyhY/SarQgGZEWQecTEuUTSAYwybUgMe71rMcbCln+05WZZOMG56eKY2JO54/oNWhQjSoUHocU0AScEZXbane0x/WESFbEI5zjWgItE/vgXIeuaShRccGiU+MjFwsJUNTIvP5uhGjjq7pwiRsUt6XU0ROWs5PdouORnUgx94BQG3y9rtnyDaySOLN58IsWw5mzoc80D6CWiY8wJUpWat0KY2BCEXDLQ/HGllPGddCRrEBTkR1QKiC2QYYgJO6YKrR3HOosiprROc3UK84iH5yuIVwUkFllb2PaLUDqmrs3t+y5xAAWuslqNSoUuXZh8OeV5VrTJc8JH3IzoK+rX1jG3yPanZQk6hDRneznsLCE7PnYyZBJaCxrZn6EhHGRkqwsWmqFp7aiNy/quTr3DvjCPC+2otEOK6gA7ZVF+50kGnL1/YVQIRKVTQdrUTKqJoIrfVypu7n86tvNfZDF/mLiPcC+BCAY0T0cwDeCeCvvaJ7NI95zGMetxj7YdzeV0m1yrVNXFnv1vDC1jkrjDZHmBxgYcyy4V7weUvZpEw4TUUXaF/1GhiF2uHxlpNdoyiS1zNJhNW89vmttfc/OYS7Dgk65AaxYFrbJFeSsxlzlZBApZtZNtbdVDe9ajJfKxnISa2VDPSTVEEqA8Jgze2kqH+MDs4mncnes1GM0UHmR488mnodmwR20/G0+qc0VEYIcszwwRaeNrP4Rbf91HB+xwcMImGsrsU2nCrHnY5GGmXDcNX0rCZya53PQZkoy4UGgJ17+VykW+7JFbSgsT61zanhMEedRpg8eMhypCcrsaUXxXtkl09XYlSJsklp67q7/1RVI6i0k88zVBM5BqFyVI0AVcRKJoLo1oFLsP0kU/axTE0zp1l1OOb117FT3hCU3t4vm+5cCDc977omUua4z/YHkJZqhEJzo3bPV+CuiW0AtXbm3JMgny2bTI2i2u1/sltjuhigscUUK0uvidVt00E09gfi8UKhtf4dIvoMgLeDp7d/73nMXObxJRy/dfYnAQB/6h2MXhedwD7XPp9VxiFfucpO5hOyE2lZphWDQIAxJTMo7uZrDXL7+Ro7986CAo1NwubbGJYOM+1kVEUR4iJZVFpog1U6K50qfGWhEPrjtKOvKfuOTTbGqBODII950K5bCaomgxuD41xBHB0iK9vp73Pr2rPHFPlbuqXtOcg7geV5i5jAeEVh737T13SAX2JRVGK0ZbjKowAqE0617Dysikg0cOdD0OA6fDYlrkzJvpvSLWDrddqcL3PNHOZjK77pjrYqJABQmHfm5leyXm3nQoFoNzPr53NUR2Rzk7LhjZNSXPUWyd8bWzXkZRONgZ37ZpHp9pU7AIRgf4zb+yqpJmYeQBMh3hq75RknL/03rNllRYsHGKpm0VpprJBBqX3BZYLjQ+ms6UomiJ9xbvTus3SzRJ0om4wHuUbVCAwq6uTUAE60lJkE2IEn00g2p8iWEsDbZrYYoEwJrSsF4m1X6bUItdeQWHZTqKJGHSlrVgLMltwkqoQH3bLhUM9gwqWess1i84IuC/K88/oSnYOczA/PdxEd5g+ovuMWiyLIwlPSLOOV8xSh6fHFAWB4JETeZl5z6A+OQruW8zNlqoI1pPEGZVsR8K7r2OiFp9uuNEk1DyALTwxQx65xc3qAz2G+EIBKQfj5+sS7FbQiTrIBgIDpgpHx261v6n7o86dBBB3OLks3MuTdCFWqLIe/SgjJTomiYxRBZLXmf5lwhO42t/efnCN7rm+idiTJtC/JlPT5vgz8+yLmZFxoGxZ1rzSqWM32BijZJ76mM0o5Mqn0JQb7NeqIrN46AOsIeluh8dxdk/sgiOgBrfUTnnW4NAceJ6JjALa11udfod2bxzzmMY+XHvtk3N5XSfU85jGPeQD7o4z4PPH9YPOUn3iOvy8T0efmHOd5zGMeX0qxH8btfZVUa3INXtlaC+lpVwmdnlqZ+awgnJbP602QFp+aItxlmHR4qmOXcxleI11n9LroJShageUgSzSvF85dUYTXY6YihAaVS7d5/dMDDctzztvKlvwXHx8hX0h4/yrfFMSUlPqFbdwIjUtincaoWo56YZvdUmVRWCk5hVON/nEHrQ9P1mhcVY6rDHY8VDmQ7ILpMeYcTdY06lZlUWoA0N0S+TBGeo63H+/y8mUjCi8NjWIN2z8RoHndUSEk0p0aVLKleHPDHXfWYSdD3/ERmlF3oXsAjADXgZOaE4SaNMtEhRNtS1q9pw2yvjUAdRoY3+XE9stUgUpHaYj2mFOsA3ZerD21GCmZBlmNWtBiDRAIwbRytrk5uyQGU41oJ7MNpENTupwuKGs52znH95iqNAbH4tnGosRxyP37dsrMJnQuunOUtwkIZlVXhocZWZ9tSKy5alNpkJ5tKAVurhITjWapIKyoo5F3Q5Qp2e+CHIVFkPyiqRALh91rNL0TTYoA7Ysu8ucKrfV3m/+/7rk+Q0Qf/uPbo3n8ccXvfJxl9v50+69a0xa1xI3S9doi1BZLM+XHlxCZd9j0kDE4QPCs9954JbDVryoFxof4uem+lt2z9u6LkJ/nd6BIwIUTbStl44MEZapd0siuCSjNUNo9748XTupUQhrTp4uha/JO3HZsIz2RfZ/BvOOo8vo8pPE+ddW7dFtbeT7ZZpU4KoZUaqvENWcXDbJUQjlXV/9kDZqad+klfoGVqxlUYuifWxGKldmuw2AvtNVVTcB933AGAPDI2SMAgM7DiaWZCGWjaHGDIgAsPQr0nubl2aI5nk0gtOfaDd5rf9jnfWrHtqotldRsMbQyvtJ4qZWr/HLDK2ZDu/dembjKqTQq6tC9F0SFy/emuPXYH+P2vkqqAeai6pAQDUvkRxftcnGUkwRArLvzLi8XVQMAiK/soW4m0Gk4U5pOL/ZRdxKU8lCXTOWQpFoe0rwXoo5YFq2KfdqFApWclOdLnEipUoOqCtPlcKaBrn+Kh0xxawSYb7r0eX6ARKsTAOqE7+zaS6iLXmw7vQGXFNURDyCTZT7u4Ul+OMXOO8jcQ+ybtZQN98ADgOoUGFxyE47FL8xyrPwkbrKkWGO669Qfmte1vQZ2UkKcPANA21MymSw59ZHRmjtHvXPCafcG7mGJKgmsuobw/IJc20Fy8ZE9/t4Oa/pN71md3Q+zLwAQjLym1IaY8My6J9ZmkPG52tBAOOVmPqFMFK0A6VaOOlYoezHGa+LWCMuLk/VOjVa2aMPW7tKisamhydB0zCYny44OIj9XKdN2RAGkf8zsR48HaJ97KOuxNA2hBoZOtYYqPePKJTKNYiADsH51us20Dhlwpavff5lGA55syHb8c+9PWG457hDiQUQfAPBnAKxrrV9jli0B+CUAJ8DScd8udtxE9MMAvgssFPu9WuvfNsvfDODfAmiA5er+nlHYuJ19iwD8HQBfbRZ9BGw5Xmitv/F21j2PecxjHn/sMUeqnz+I6ByAAfgFU2qt33LD3wnAT4H1UMcA/prW+jNElILdvRKzj7+qtX7vC26vNi/uUqNshTapDAqPq2ykyeqIFRjSzdJK0wFAem4HOo1AdY0ydacnvcjJLJW1bQ6rIoWyFSCc6pmEWJKJKlHMtwXzbSVBnxx2vGfh1obTWa1s+ezosOOlti8Z8fsBZ0M6dslM3YqR99xnyxsULqQhcLIKNDY5IVMlsPC4Qck7jpPr82zjPSdoH0y9hogdYwt7zSANK/xZVZgk08xFxgeUacrAjISQoBY3ovzdCwWKdjBjuS77k7fd56arwHQ1QLINrDxSIxrwysWgJJjWGB6NZhoY436FZH1kk2kAGL7+IJ+vlGYUXBpblVVbAbhJVGSVfF648MsbGxp5N7BoDcDJ4eBYaGf14VQj76aYLBHi4U2qJXD3zvBwgGiobfOmTCySvvmO5usn+xIPvXNkTt1kTWOyBkR9QrzLybRElXBSLWYzwvG3SLLXwDJZNvfwdu3QKOWMFmKzT5nRCq8jQmO9tG6TwnGfGTBFDjJx3+EDw7PMJF5y6Dva8PJvAfxzAB/0lv0QgN/TWv8YEf2Q+f0HiehVAL4DwKsBHAbwu0R0n9a6Alt4fzeAh8BJ9TcB+K3b3Ld/ASAC8P83v/9ls+xv3OZ65/FFHr89/Fn86Qaze6prbHKm9vrQkfFD+PyeraWn+hAAIHvVgqsemTGiuVnZsYX7OHh59lFudGt89RZq44grEnR5h2Ya1wf38wMb7kpjnmtK3ztpqoJnta3Yxbs58gWjzS9NjqEDFGQSDrhGucHJNtoXx2Y/xWgggBKkWr5CwOQg/9K87qT05D0TjWrvXS19Jdp+f+cBQjjhzzY2eFnrGQ8YM++gKk9tz48moO4b8649s84JMDlkxtKkxpPrRvpqHNpzpirfzZYbAA/9gQfipFJpNs3pLfdeFe4xaWB4om2PsbEt+Q3s8UrPl39eRaUp66oZUArgd0HtuRkDLMqgCjOeT+pnvbdHB+9AhfHOjtuvWPxxINVf9zwd6e8CcK/59zbwC+FtYK3VP6m1Hho05mNE9Fta64eeb0NaAaNDEeJBPZvk1nwzqrx2DnKVRpDXKFshmg9fsp8t7zqAYDBFsdQ0ZWtzkytAJxGKxdR+tkoVPxA022yVmBt79x7HpRivKmBVoXuxnDWJERTTDCjN9dnGPcAl08nlvj0gnUaoW77ZiHnwGoKKOvS3igiTVbc+qjSikZh18LIgd93F6gal22DMVBD7/RpoXnEDqIQ8tGVK9uEXxHr5iRJawTbisbwdN4vKwJoYbeq8Tayf6TVzFu3ZRlDRCO2eq5F3Amy9mkeRxadL26BIlbbXOxrVCMclqnaCwSmP5tF03fCyz9Jx7svTFQ0unU5W2Cp9dNh9r3tOs664cu5kon+d7miMDxj0eZndB1XFyaskobKeIHeTDQDonJ2gTgNkixHaV82EzMjwOaUNmHPG6w0KRwNJtr1mRgU0r5ljafEECMAM4m6VPzq+iZF5MW/X0IrsCwDEL1eVu8bX7oWSFT3MPSzjY9EK7PMRTj398SQAEnIJtXcubjvuEOKhtf4oEZ24YfG7weYnAPCzYIT4B83yX9RaZwDOEtEzAN5qwIWu1voPAYCIPgjgW3D7SfVXaK1f7/3+n4noc7e5znnMYx7zeGVijlTfdrwbwAdNGfQhIlrwrG6FsBuZfy94umuj8ztuBjPyYcLV0gF54viG9vBZdswoT7AyyHQ1AVYT1CEnyumlPbuefKkB0hp5R+zITTKgWdu5ec1BsWU7mLHwlkShTFlabEaBQ988maYaaF0toXKXiFBu5IQaCSoPSS+bIc/0PKUQK5GjXKk/2XMcqiqGK/ubTQj1AwCmazWiPU6wageCIz9QIDwboe1xd9OdCuMDAbIuy/UUBozvXqgRjWuLbPgzXEnorWul4T8LPytygDI65zVGh2YtcUXycHBcoblu0NJegMZGieHhcAal5glENEPHqRJeHxuVaJtMWx58ouwkRa510eREvHdGOOpAslOijmjGeluMVcqU0NiYVVnh9ThFD0ED2pcKlE1jfrOVQ0cKdaSQ9RzXXpQ5tNHb9tH7wHAJu+eejfSoAo53GHPFonndfS7InbmDb32ujGRe3lacdHu3V8sk+r5TY+cc32iTA4nlCgKw9vTuPARWZz3uV8h7zqnxzsSLRjxWiOhT3u/v11q//wW+syZ23Frrq0QkCuxHwEi0xCWzrDA/37j8dqMiolNa69MAQER3Q/yJ57Hv47cn/w4A8Cf+3I8DAFpnvYfs6XMgZZR6NncBAL3HgOlhpuwJxaoOCK1rRq1nKXTmJKb6hF9aQmDu1KY3jkmFrLGhUUeziGsdufdFtspj6XaqsPKIAbTGBbK7GJwKxwaEqB3lTN7NeVdh75QBm64R0i1eqSh7Va0Yk4O8nmgsUqQBgokAN9o570pVULvJ/uCovGfIeigUC5Xtccoe4LGsLgKoHUOxTHk7yXpgx9to7M5n0RHknbDwhOE3rxLUZR6o6a18jbL1pkXRhdpXNYDuBddzIuOwU4QCwhH/PDTXpHtOW0RbBw50ETCLtEIq6LUFqVzVdbpMaF++IbUiz6RGgDKPSlo2lH2vCBDjyw/fXsyR6hcKDeDDRKTBXL8bX1ZHAFz0fpeXzVUiCgB8GsA9AP5vrfUnbrYBIvpucFkVUWcRZcpoXdEiNK8bmbnYoYowCUByuQ+aZECaAFOWNOPPcHOEIGvTo65mLs0BlthvmiC6z3D+T4V7n40PMhp6I6FfKB6+Y2C8m6PoeFkrwA6HWiMcl4iv9u1i3UpRx+GMS2KVBtARoUyUNdUAXFOgX1GZHJCSF2amKcPjJklcLUCmlKVyQtXQqBo1wkGAYtm4DF6OUMWMqsqEZe+k4TAnjHh3L7iHbGqcK+uQMF32dsZs3+faDo4RwjEn1LL/nfMaQabRPecmBHXk+Nfdc5WVDBRL945B92UwGB42++dxk6WhpbH17DxEuMOC1GpFmC4Skj2NxM2zEPdrBHkNVZI1ZQG4QYQ0J6XWFn2ibfLauua2qRWhc7qPOo0sjSVfSoBKY3DcvEgGUgVwjTxlOvuiq0OeHPjJfR0QVMXnXiY6cZ/3ybeZt5KL2gy+4oQ20SgTPq4qdvd+sls7kyWPPjU1DTL+fdjcMJMVD6UWl9C4z8sibwI6WrsDw9KLH+M3b6Sl3Ubc7I2gn2f57cY/APBfiOiM2cZd8OzE5zGPeczjSyruVG7+CsbLnVS/U2t9xSA5v0NET2itP+r9/TlfNoaH+AYiWgDwa0T0Gq31F571YU7U3w8AjUPHdNkEuk8a04mG8Ki4KUqHhMZFkxEpAEmE8T1cK/dVG9IN5j9UjXDGIrwKTaOah7ZGwwqTgw3EeyVCk1TrOES6ZQxIDPJYR87Mo7lR2USX+WWmU3chcMm20Ba2Ro47HZhmyziYsUcXpZEqJatEMVkm5Av898kxB//1vmCSNINEDI94x7daILriss5oAIyPVgiWMuglgLYc3WTl87PmLapkfnFqiD6+SoRQFKJR7dBnAgZHA8QDPUNBSHY5Ye5c9JKsgwrN67NdylQCresl6pDQvOo67qQbPF8yjX4HjfpHzQhsHRNrVZtIdyprqCMTnipmYwVVaORdd607RsnEpytQDeSdEPGgZC1yc12Ep5juum1NzbLW1RJ1pBANXHWCpiWCska+wg2qwbjCzgMJ4r6GqrTlyFPlaDqCzgMGWdDGzEFQ9RZ3ulMFIAS6511S27yWIV+MbZNhHTJiLscsiHqVkOW0++d/eDgAEKB3frbCEmba3tuSTKebvAI1rZCtMTwT9QtEfZ4Q+s2Pck1uKzRebr3T61JRI6JDANbN8ksAjnmfOwrgill+9CbLbzkM6PB6MHXufvBY+oShnszjyyg+9u//AQDgzd/9Pqw+xKodiGPLqa73THN7q2kb9iVIA/0TDtBJTA+HIJBVTIj7pqrqGZHJJH/7wdACRsLHhnZN7sHY8ZOFd5tuprZnQxqx021t312CvO7dQ5ZeWLTZHh0Aoj5/JxhMERtwaeN1id0HC+hojdjhUbxIkeMomypf2QYa5gmuo8CCLVVuxqrSIdALpiHfp6hRDXTO88/OKRhWLSMcOn518CgvTOCMzKT6Go09MzTtxBR6pvKYdZWt/smYrCrn2lwmhNxQChN572iXB8n1i40/AACk2w6Vrrx3jFVrEkWWlDA8KIIM7p0u1Ym4fwey4Ts4bhPR94F7SzSAR8BgQxMvscH8VuJlTaq11lfM/+tE9GsA3gpuQJR4rpeQv45dIvoIuLHnWUn1jdHYZPvmxnqJxiV+oqaHO2g8YQilsbPvHt6/BFVxQp1s8x2uA4V8MYbK6pmEWhLeYFwh9ZBVQd+oqq2cXTDxEmqzinCqmTMcEMKhS0SyJZZLk1J4aQaU5tUpgr0xN0aaqAyHumjPXja5D+UhBICt15oE/NgUGIfoPG7KVwEnrgAn1IK6JnsEfTnG5MAsTzq9HiArU+hAY+Uzkvw4K3O/xN8wSZ5PuwgKjcmqUVhZ95BKAtqXKwyOB5aaIohuHQLbDyo7SE9WgcmqQvuiW7dw3ZvXMoAI5FFkyk4MVWgMj7kJgio0woyTPhkookltmxH9RFl+VhW8BldtS2p+Y4c04U2XjLPXEW/CNWZ+uJT5VAn0zhTQxkEwMvcBVTUQKoAIkzVez2RJcVMiwSiJSBmOrFmRr7ASFNpw1t2y5vUKRVshnGhEY43uo+aFW1bITiwhmFYIhFYCpkfVISPg4oTWvO7Oib89OS+iIiPnKJzUAAHta+XM+Kims5PFohVa2og/SS1aZF/stxMvs97prwP4qwB+zPz/H7zlP09EPwluVLwXwB9prSsiGhDR2wF8AsBfAfDPbmcHzDr/rNb6fQA+fzvrmsc85jGPL4a4E+M2ER0B8L0AXqW1nhDRL4MbyF+Fl95g/pLjZUuqiagFQGmtB+bnbwTwIzd87NcB/F0i+kVwg+KeQX9WARQmoW4A+AYA//SFthlMge75HFWs0Hx6E7rBSVX6h08y/H30EIb3L5rPsntcHQLJnktyy3bIJfyAMF4NrGKFIM/x1tjqfjK3SCHIagRTQtTn6eN01cxwRxWKtplVT1wDW9ENbcIxNhqS0rXbuO65JFaa9TkThyToMLCIoc9zkkQv2ZHvt6CPTdF+yGR0wt8dA9NlAKAZzrJWnKQl27D85yoFsmXeb5dQO0rLdIlmdKZFmSL06Af946GZNPDEoTCz99XPcEKd9wD05Bh43aI2Ig13VAEtM9WqrG4mu1O2P2H+kLgEuuytYXgknrFbT/YI8BJqwFnPq1LP8IilWXDs0RBsskyMogv/OOvFyBZMo2EGNDwUvIoIpDWWHvdkERN2TUy2c8txI6WgAEwPtpBsG8pSEFm0wKdSWKqMZlqT/F4rMvQSbfmFgFMnaV7LUBzgk5/3InvvyLq1p2WdLTn0pDC3j1xnn/Ms10n4igDLDUajGpocX7JKQ1ClkfdijA+6cyoTBb9SsflVZgP/D24v7lBSTUS/AG5KXCGiSwDeC06mf5mIvgvABQDfBgBa60fNAP4YgBLA93gD89+Bk9T7Ldx+kyIAfJyI/jkYfbFPs9b6M3dg3fP4EotPv//78Pa/yH5AwX0L6PznJwEAJBXO6xvoPcyf7b+OO9fLpqOi5R3nALz4KZ5NT04uIuvy2DpecxPoziUep/y+jL5R+oh3XaUxM8pBeRfoCF+4HaCxbVSvjL333inC0uOG92waxJceg82yypRs1TA3YgHJ5dw6sLauO2R1cNQAUxvaUdRMZD2FhvU/MOtr8/sJAIqVAnVqxuDd2KxTId7l/ezfY/axBFTBy9qXHGILT2fZqWaxAhPA9uMAj6MCjvRPkDkuoNwkczy1rSKm5p2gmsr1RnlItBVfKAitZ2abUqrEud7GfQP2NQKLdGsVWKRaaINVSgiMX4JQXPvH1AzVUD7bv8u8mw7PVkBuOe4cGBICaBBRAUaorwD4YbyEBnMAf3irG365Yg1M25Dt/LzW+kNE9LcBQGv902BpqW8G8AxYUk/4gIcA/KwpcSoAv6y1/k8vtEGqNJJn1gGtUW9ugyLDk+51Aa0xvqtnH7KyyQ2DIGB8QHohOXkOphXKZojWtRLTZWNvvT4BFRWGp7p2HToghOPK/r77ACct0Zjl8zQB4UiUJAwSaCgGktTEQ8dLblybIug7W3RJpquuo10IvaBsqJmyedkEOmfHmK7yk3z4v1YARdg7CUDDK+ebppB6VjpPEipfKqloa6x8hhsP/QZB0VT2E+rmddO0ZpK8/nFeoSR1yQ4wPA7Lmdp4Q4A60QjHNKOHrQqRigNaV91yMXjJ224HF3//PFNispzraQCye7nhdO9u3u+2aQ8Lxxp1MOP47h0786GF3wsAWw9GdlAETKMnsQnOZEV5Ca8zDuhcKtG4wtdv6/V8L2hyOtXSJNm8NsXeqYYtoXFS2bQvGsBJ/ElpVcqtdeQS2yDXdkCkipPpcFRZje6iRVaRpWi5R12QYV8hp0w5sZZJj0/5IO2uo7wUqpRfJONVQnPD7U8dErJegCoGOqYMG454h+N+gbjPP4vhTZAxB3zkvbDvSK/KHSojaq3f8xx/+vrn+PyPAvjRmyz/FIDX3JGdcvEO878PVmgAf/IOb2ce85jHPF7+uAPjttb6MhH9OBjwmAD4sNb6w0T0UhvMbyletqRaa30GzPm7cflPez9rAN9zk898HsAbX+o21bQAihJ6bBJTY06BBr/AdejMJloXmPw0uKcF0q5RSnSsBVGTxGd4om1VIQR9LpqEKg4wWovQ3JhFCCXh9WfK2UJgk1M/gQtHZibqq3xkJSgrUfecpnWVBjYZzxacO5bQJtbf3MbCaaMOEhOiQYmVz5coG05yzkbNiZJNnirzz5vYLz3K/yd7vB1fOzoaads1DjC9omwq2xAYmZlu3nXap51zwOZb+TvRToA6BvJY21k8AOsUOJNQXysBYk3v1FyDxqMGoc5y6INO72/37gSjI578ntA3pt4s2/LFnMoHgBm+4fQAEPUxw8mTxsnAQ7tVCaz90QjT1cQm1ICrPEwXFSbGNayxWSHZKTA8liLINUaHZtH/vOO0sgX1b53OULZCZAalCTKjsV4yoiPd2RZlaAQz+xd7VZjpyuw9MDxCVk82X3DXnmo3yarbZrnm7vSRYQa3DDrjoxcAT7iYBqKtk1d5jLfbvuL2RVRMolGF3VMxRofN/l6MsfikxnncXjzLJWwfxvM5Ks7jyzMe+rkfsD+/7a/8JABg6bee4gVxhNGD7CwszwdVGoMjYozm1nP6LzM40fEexPFBs5pdjwKnHQWwfYEXpTsVpkaFYuFp9zkJHhNnk6d0w/WKWPMn7fwfBicIbSNpkEjjvlFYAoB4YPqZFKF31tDqamfuJrS4bAHonzKAlnkvNTzTrmw5QHxxdpzMTk2hNlLzHbff7UtyEr33qPRu7wJ5xZ+dembOAtRM1oB0c/YcqNwJGuRd5QCRtvC4tQPlDPLQ9hreqa5txTU9y+hHeaCL0VEuN06Nh0OyXSBfML1GldOsFj53suc41yNx2LxYz1R5t15tFF9ewwWyYstDoG4jXuS4/byKTUS0CEafTwLYBfArRPSXnm+zN1l2y2+QV1pS785GXUP3mRBMSoEWDa8gy6B7baQbU1QNg+ItMrTZeWYEHSoEQ66rFCstZIsRopFG1lUzPGWV1wgnGtNF99ANjiqogm94K0MzcBJy0lwBuERCVU4GJ93IoBUhHBVQe2P7Wd2IoeMQVdP7/qRE2YiRLQSYLhKwyNvTASOpklADQPPsHuo0Rraaon9XhMgIFOqARfwrj+frNmq2k8/+TZJpH9kWbrNPm9CK0LlcYroQWInA5jowWWWpJkmoAaDs8XlNrrtbMN51SLmfsEtDX3xuAyilK8P8Pebzs/4ON3IVPY3GVU7mU4+fK2UySaYBHgTDSQ2qNTKD8G68SaFYrFAsAt2PioSRsg2OmgiFaXJZ+yMeVNpPsnD24FUuwR8dnC2JTVYCTFYC7N5rONveuU+32Dyle87J+qXrnPFSWdvRNu8GCDINVQLJrpPgq8wgmHlUkSBnXr+1nDXjXhUTdt5YonkutMi0fz60Yj44wPeLTCx8mke6W6HenG1wEZOYrEvIumQnYwDQ2K7tPS8hNueNrRorn+Nj7d/dxG2Hppky7H4NIloG01H+BPjp/RiAH9Fab72iOzaPecxjHi81Xvy4/UKKTd8A4KzWegMAiOjfg6t6L7XB/JbiDtjgzGMe85jHF1noF/nvSzt+EcAGgD8P4FvNz7/0iu7RPOYxj3ncatyZMfsCgLcTUdO4dn89gMfhGsyBZzeYfwcRJUR0EqbB/FYPYX8h1VpbYj0A6O1d/r+qoA9x11v8pJmABAGqa+sITvAEpTxgdKXzGtMFBa0I8bC2FJ8qIYQj5l9LcxfVwOLTrLDgh5Upi2bRSN+hT2T7ZLka8e/SXAmwpF/ZCBCODZ94MQZpZwct5bqlJ6WJcgo1ZZi5Tnk9ZTNAc6OesRFN9jRyc2C1t+tOT9ktqxKmTpSebXW6U9lmPtE31oosIprsVRa9lPLb5ltLUOQQ4uZTZv9a3okzm2hfqVG0FWKvShCf28BMJDFQlKiOMy0q9ixYG1dNU4inwxwUzKkWaUWJIlFI9kqc/fMKwhU5ec8VnH36EA5+1H1u4XSF6aKCJmJ+t5nj7jzIyOrSF4wayUVXbUi2Qmy/umHvoTIlpx0ealTm6WtfJNQB0LpWo3nFfX96oIF4J0e+GNvBRAcEEjfQZmDXrUqNvBOgDmjGdKhKCHVFyLuEzTd73J6SMF2r0X1K5BhZom+yTEh3vOqDKMv0+VmQ617HvB86IItQA2wLTCUQTWAlsvxQmdsHTUDeC9G65G44n0J1W/GlnzC/mFjSWv8T7/f/jYi+5ZXamXl8ccUnPvj9AICvfA83L4aT2tEfzxkTktUmVMED0XRROX16894anARC0wLbNYZXpB1VLsg1SkNzEOrC8GhgvyMVNP+dUSWEIOfvi4lMONX2Z+kf4Y3xf411rypqTG2qdmIrzzJO1SHZnpEg1/adW0v/CDk3XnnfjQ+S3d/GdcL0VTwe3XuEB/lnrq1iujo7oNSNGoVpVk/XXV+NnIPGhqPQhW5It42GYegs1GXbTMUwh1g5tSm/j0goISI72nxiA+UaV+QHd6V2W3tvZPpOulVgeFjN7FtXRU4+r4aVaxXjt2xRobHJ2xHZVq3IejxkPafMVXyWX+A3kEtvPe7AuK21/gQR/SqAz4Abxj8Lll1u46U3mL/k2F9JNRE/cFUFajYctxoAPfwU6jxHZTrVKAgAXaN85gyC19xvP7f12iaUUVDIugqJ4RsVTYUqjuyDDwDNdaP7OKgRTNw1GB6JePDSrnFPXJFkYBH+dB0HiDZH0ERAFGJ0kpP7ZDtnl0QA2bJrVOzfZfhVGugYqkCZkOWIj+7u2c/WkbL7G3lJpzQazkielUAVAMme0yiV701WFEJvmXVk9BrdqOYmNaq0NYIBgMEpo3piEur4okmmG0B+LEd8OUa2xrSV7hn+XpBx17bQH3gFCigKIHADTH7vIT7moylGB7zJlNl84DsDlkyZ0KTtQF0aLvXeiRhAiZP3sOzi1n88ii5Ytk8GZZlI1REwOBLO8JaLNuH62ztoX67ROs8jZNUMMT6UIN2urcrH6BChua7RXGfDmd1T7oVANTet1gkv27ubuRp1rEC1dtbhWqOxWZjmWs8prGY969izdyftuIRVTGheNL/Ii9NrEG1saKPYwfQNiXioEU617RwXx85wXKN/V4wydaYy4lamI4A8WUZRNGGutgzmvN9tc9+ODzfs50VZ5bbiyyOp/i9E9B0Aftn8/q0AfuMV3J95zGMe87j1uEPjttb6vWBqnB8ZXmKD+a3E/kqqtQZ1mOyqOy1Qk9/2lGWoNrag4hi6NI18eY7w1EnoZoKtNy/aBsIg04AGsgUFKmHleQCAapahk4YK0Uq2aiCRMfdYr9g9cFFZnnX7UgGqNOLNEepGBDXmjEaNmaM7uauHOiZc+jaBthVoPcKRj84id+1Lntaz52R34V1Mjm15TCBpkKgj11RBtbP/Lr3egtZ13s7ooLJ8WrLIM0vOSSIZTAxqOXD7Io0Po0Mhwimw82rPKGBHQa1zMj055TI5FVUoT0yw8hFJqLRFl1WhHce8rJhDTYTKVByqJMD6Wxrms6wpDXjqFWNg92SAxWdcqUATMD7gNSMuEuI+S8i1zobY+wx34YVgni/gksB44JCUMmXrWXscFbD4JCtvZCupOc965vsAsPBMhSolxIMaV97pqXF0eefDSQgc4uVJnxtDbmYdPjgWow7oWU6QmsCa3dr9LpM7f//r0GuIieW8OcknVQJjnq8gHnICrRUh77p9Hq+yAsrwLrdf4ZDQ2ODr0VovrQZ43g2R7Jbo3+VVYVLgwKeGGB7jZ1T41QBQHLpNeSYN3Cn1jy/y+FsAvh/AvzO/BwBGRPT94D7w7nN9kYjOARiAzQ7KGzmKpmz6U2B1pjGAvyZSfUT0AQB/BsC61vo13neW8BzmCvN45eIPf4GbF7/yPT9hq1jTw/yeTK8MkRgt+vE7F6yykKCn46XamqSkmwZYiB3CrMmNldIs7WvXCxo8WQ5cEzw5sMlKu5EDa/yGSVlnuuPes6KKFe6MwWppQNFK7XoEACqbhOHh2XEgGgGjo9p+FgCSXbIV02xRo5rwOPfEM9w9/cA9V/AMWIKQzE7WO6kzuVrXtvHSlxiMB7xs9363TICocOwqwiKPN1NhjAkbbxQknJepGug+aqzTjZLU3hvXLEhUtBRyI3+Ymmuyd3dilb8k6nD2fZKYnhnppQontXWU9nvCRHwA2jOuMd+druL2Y5+M2/srqY4joN1EfrCD6PrQLW82ECwtoN5z8Fl46iQAYPsNnFBbukKbb16tACSuhKNKfhA0Ae11j9OhHfUh88o0eUdBFRrNTZcsRHv8QATrfeiugfeKCpO7GF2++KcUYLUxeX+KlrJIHx+jaZw77C7dxNzQQe4SaRmk6gjonvObCfl/Sajlwc66iqkJGpgs8TZa1zSqlOwDaBHEnkLnPD9V0nwmHeRS0mpedOdCB4weT+5xCbUuCIiAxY80ZpLDYModzOm5bXfMBY/01VHXjHj6L0YASgTdHO2PN+0MV44r2WaJO1/Le7qgoCrNTZ4myiY34lF1Q3OkSfL8RHCy/OwHXpL53bsVVh6pbDIdZDWa13KMD8Yz+p8AsHciROsysPugO+6lR9goyC99ZoaGBDjEuei4UqUOnOReHSjEwxrTRXK6z1I63aqN1bjZ59LdB9KwWjaBxSc0+neZl4PxSqoiLqeS5mO0JdMTvLJgGNh1Na/zeqWJdbLC92g40di915gueSD0zgP8JuufJBz8BJ+LyWqIeOjOwa3Gl4n6R+eFP/W88XVa683n+Nu7wNzCe8EeAv/C/A+w3vY/B/DBG77zQ7iJucJt7uM85jGPL5PYD+P2vkqqdRggX+tAB4RirY06ckBN8kkGTIK7TwAABq9ZwXSBbT+DHGhsciKQ7rDQuaRPDY/K2/KTabCRC9WcwBatwM40s17AVuQKSC9xck9VBZrkQBSiXu6AjKX55K4edu+JsHd/DbTd+hf/wMnfuONj7lbWC5At3eT4vZxvdDevq/u4oRiYZEb42GXqNIft8ZgcT2gtAFNbRmss01Z5roP9k7x/vnGHcMiTXTdz1wGQL/KT0vl8jP6DfDwHPhYCCC0dBnBIRHrGvOcz31kmRv+UI2AHXZ4NdH/fIBVt91FB69ffHCIxxxhk4hJIMwYmMuNubFYWVRYzoPFajNBw4AbHyMrzje7yFGEWcjQ+10C6zbQfkdIrW4G1PR8cd9BLFRmb1xw49atuR8qWRtYLMF2Q88k28411oGjx7wDb+QaFtuv2Y2RQeEF/IoMw1wExl9CzTO+f5GULT3lI80Sjex4zFCfhye/cE0KVwOiId736bES0+Bj/LtJMO/cr1LGylvVFiykiMrmSELS/amhc/lqjyrNcItq8Awy9fTA4v8LxbgAfNLKnDxHRgnTOa60/SkQnnuM7X2t+/lk4c4V5fBHEH/7CD+BP/Pkfn1k2OtFB53EGMHzaX2BAne7Tyr5XOlekdyezvSThVKN1hQfRzLjK1jHs89e5bMbDBlkEO5xqJFZSVjT8yUrzdc/xADZZcYAG0/tE8s0AT1lhtyPOtmUz8Pp8GBgCnDFN+aYhynVHNQOA0YJG8zyPP/Euofcgw69fdeg0AOCz20dRbc/CvSufVhgbc7HRYff+aV1znxFaXDgiC1KI3r/PsxbZOlxV1ko8yGo01l3vFgAEE67Q+tG+MEL/HvfyEwDHGr4M6xk/C4BVmtJdV7lW8t41SllVTNYpuvR6vDLTH7X4VI6qwT/vnRBzO9yZ2Afj9gsm1UT0dwH83JdCGU8TWz7rMEDRCZ1EXFajeB0j01PzoJI2ls85l4ssP1hrpkIQIW+TRebaV0qQ5kbG2qNdQGuE0xoIvEHDDE7tJ7xTFhDyo4tQRW33AQB27wmhcuDw7wOqCqwecR0ByW5ttX4B93CFU43FJ7V1cdq9h2X9Si+xbJ/m9UYjTnwLk4+qyqG50xXXtFFHblCNJi5xGhxxRiISqgRQceOdr2sdZJyYUe0aHPIeIV/kBhAAOPx7fI5UwRzedMcllsnTpg5ZmMmF13QqP69/s8lyK0J4lgfHog30zrodCac1rr/FJdQAI7JBPjvx0IrPxeiYRtx3A8/oIA+g6U6NwXEzsJl3gCTkasEl/GE2a+Jj12N0qH3rcKkMLD0xsfSdsjXbbAOwbjQAaxsvCbGYwjDirmwVoUoIrWslG9n4Cbe8dKba3rdSfeme1Rbppoot1bXiJN4iym2Cqgjjgxp1qqGMA5qqAqtjLpqmedvdo/6ErWzw8qrh/i73rnVuXPbkFte8ydQtxn5APF7m0AA+TFzP/pe+zquJIwAuer+LIcJVPHc8l7nCTBDRdwP4bgA4fvz4Le7+POYxj/0W+2HcfjFI9UEAnySizwD4AIDfNujFF12Q1ih6UmYmi6wG0xp1HECVtU1kNGDLzPHAdUWrrIY234v77iLXgeMS28+WnGDnCxFUqdG8zolBerkPHYeoWwnPpgEUyzxtHR9KoYra0hIOfIaTxJ37UgSZRm6axFQB9E8oNK/rmcR1eJSgMkLrem31o6MBo59lm3+WaGxqqFJjdFDNoLMyS/Z1p5ce51+qpssAxyuBnW1H3kxUK07iyubsjBsAhsfYIVF42dFQY+FJ5tAFuZ7Zj3SLf0lOX3cLBZ2uayCSVuoUe29agyo0Go+4RDqcMB868pg+oZl1J1s8gZCkUSgTgrwCwNbrzA9KY+MrgPSaMQXoO+WQIx/hlQ9ONjFaY/pD50yAosP7kewATcNH95NiQaf9hFqoIiuPTDA+6JCPosnUDJ+WIusSjWhBpqk2zoVmElQJqKuB0VqIZFDPVBTKlLu2m+sagdjZ5sDSE+yGKF3ew8MEVTkkxXLmCmNbroFwqFBH/PmFp4i5ehq2mZePl9C5wJNUmbwV4qq55RJ6GOntOmKqU/dRPpDB67h59bZjH3DzniuI6KTW+uxtruadWusrJvH9HSJ6Qmv9UX8zN/nOHRn3TQL/fgB4y1ve8kX5Ltmv8bH/5x8AAL7mv/0/ADC9a/cNrK1PlZtMN42VN5WuuuTGoBpLj/K4ODraRNjnd5gqDOc5SO17bHhYjEtgK33DIwRVGsAhdOOaVEg33uCafWR8AoCFszyAxobaqWOXvmSLxmiqQTOg186rjIqFmQqWj7QRtg2nWpq4w8pyqqtmjck6s6p+t3ACBmQUThrmHTE86gECbTde2sZwr4l/+Qu1PR9WdaOCrTYXh/nL05UYBz5lAIqOQvuy4UWfMGomE+dOG27zC23rratWmatseGodghEq2CdZrNjzRY36iqnK7mqUhsI5PGLypRwIJ/x+E/BD3rUAcO1tbnxuCg52u0Q0iX0wbr9gUq21/p+J6H8B8I1gG/F/buRH/o3W+vTLvYMvJbRBi5O92cRidIhf2MpV7TlBWy+NdI1HYYgJKmclhSpRM0kRNAByDXwAo+BSKgkHmbeeECorbDJdxWyLHo4rTjAzj+dMhIWnM2y8PrGOS6oEOhdrBJm2EkGcUPPfB0eV5chaF8JLrvyjStcMcuDTLiPefB0/LNFIo3d66vbXlJUEKQccBzjM+OEUtQgdM5opsjoA87rr2H0m9ow/nHsX0Fh350gGBky97D4IuCkxcUnn+AEmje/d7fatdYWPtWgTemc8pz5TBlRGr04MW+xxhk6JZfFRAATsvEYjvaYs1aOOWcZo5fNDDE46MxJVAChmmzLoT21jAmD3che9x9zjJMluNIKVIlp6nAdEcbbyqTOSUOdOvAXJjlNt8SdWWvG5LJrkGiJjOT7Hs866hGjClZPpgkLSdyvJTeVBjGgAvk7BlNdlHRVTsIpNTmhfcM2xVPFnorFGYQd1oc/wPsn5pA3e5zoEuhekrMjKNNJEI42ynUshonGJp3EbYZoz93H8KoA3E9Hvaa1v2s3+QqG1vmL+XyeiXwPwVgB+Un0rhgjPZa4wj3nMYx7PH/tk3H5RnGqttSaiawCugXX8FgH8KhH9jtb6f3g5d/ClhCTH00WFKiYrN2bRSs+q2leuUKW2s2y1U6FsR4gGOUIiq4NZR2RnfKqcVeQIhzmorFE3eEM6DlG1QtSxQhU79QYdEMu0Fe77qtTYem0TkxVOhAXhXXwiR7YYYnwgsMlx+5JG0SJkvRucEM1+Bd7xZQtkZ33plpsZiAZx+yJnPJLwBtMK4zXOcHKxxJ5qBFNOiLQiO9MFWIKtDsk2SQKMGCe7GlTNnmvZv+Y1lzxHV/f4B7/oERi73LVlZAc7qA0XbP0NoV2P0Apk8tC+zJwxn3tOWqN92Wh7d92x+x3rAM/I6wjoPakwdUaIFtXOFhOLrI/WlOXNLb/DEecun+XmyaO/TQAqm7DvnVRWZWXxCVOtaPHEShRIKg+Qzcz2m17aEmZG5s6bgEWjGpOlwFIuRF0mGrFkoMglAkDnco0qJiR7zO8XrmHWUTwBKoHlR6UPQCEe1Mh6yip/AEBj0yTPpgJC3sQ0nGpOlg2ClfS1paOEU3d8rPnO94vYF6tScxKfzbpexv1qRkf8lmMfDM7PE4qI3gvgPqP0MRNa6598vi8TUQuA0loPzM/fCOBHbvjYrwP4u0T0i+AGxT2hdjxPiLnCj2HWXGEeX2Tx+//xHwIA3vHtP4HxqnPMtXQyM75EeY3QVHTFjyFY76Myvg5hpjE5wgNjss2ISlBoqFKQWd5eNNKIDY86WwzRv8spiQDSO2K2aSqPRdsBQ+2rGrsneexoXjDo96Sw7nXNa7zt8cHYNsvnHULTILLjw7ye1iWCKsy+GQAr3g3tz+FQAQPeKTN8Q1eE4AYd6mjgkFu/4ivvZR24AWi6rOx5mJ40ql/90HoEDANDSa34swAwuAt23xfOmDG6S+ifMiDPKQHrHIjiv0+cJwZZgEQ8EupIg4xzYZC5d7U0yQ+OKqtwRua72eIst7tnqgbSE9XcuEM+gvtg3H4xnOrvBQ+QmwD+NYB/qLUuiEgBeBrAF01SrQO+8aQU4xuWCF9Y0MFwavilYEqAyjyjkR1OOMuuQ0utBE1ANlEGgOT6GFRVqLoNUGU0rY2sTb4UIzBmF7rm5rVgWgOhQjDhu3brtXynizLG0f/AA8Z4LUKQs8ScJIPjNUI05GZKHbhSnSTTpYd82kaRSxXKZoDpkjdwVhqjo0aCyFuHDjnJTkySU6bkGhwXgXTLoaY64OQ1Gnnn2KCqfsOLlNhUAUwOJDYJXLq6B2gN3UoBI4eUrzYRXx8iO8i1pN27TfNI3yG4kuR2jfqIyLb51296gK9b0XYyTnIcmtxAXyWMOodjRthv5PmWLX8yUiPdAXbv5RVt9PlFEi9PsfRrLQBMBRI++spjNajkpFiSWQAYHL2JXBwxtz0auqpJmLlqhg4IsZkECm9/ssLnxT/XAKPEfhUk3a2gaVbmSt5EQlsBjPlCW4EqYOGp2pZ67f1R3CB7pQy/uwGvaZbQOcefrSKuwABA73yJyTLbq0v5s4oJ0KxMokOW7eNrMvt83WpQ/cKf+RKO7wDwLeDx+1YKr2sAfo1V8xAC+Hmt9YeI6G8DgNb6pwH8JlhO7xmwpN5fly8T0S+AGxJXiOgSgPdqrf8NOJl+lrnCPOYxj3m8mNgP4/aLQapXAPw5rfV5f6HWuiaiP/Py7NatRziZRfYkyDgUta4anepEbX5GQAAA2iJJREFUgQptZ8KTNU7smpfGGB9pgvTsBVY5J0l1ogAzC0w2pqhbMVRWIu9FNpEtOgE3R7aVTagGxwhLT1SoI8L2AyGCnKeX8Z/ewMZGD8gUENe4+g7+/JGPVsgW2DEv7ksmw2jg8IhCkLnkUGTXACdpJ7N9SaYlqgSoNFlKh0TeIYRT5m/7FJBsgRMpSagBMxsvgemS226Qu6Ta1xkdr/C6kj1etyR8e284gGS3RLI+Qr7qKBbZoQ6KVoDBscDqiQLAwhP8f/eCa2Ir2kaybVTNJNWOoqAtokuVZlUSz/1PaBxaMWrh01lUyY17EgMjNafesIedUQPt3zFJ9VCjsc731ORABBimjU32K20T0cGRwHLP/G3JOWGOv9B3WOFDjkUczCbLDplgfrVbj1BOyKM+bbw2RPsKc/Xlencu1lw98OZgo4PcdFo2gd5p2KbLOiJoYq5gOHXnUyan2dKsiUyVcCVl9REPvgGQmsRenrd0hylaQaGBgo2KJPRN5h0vOfYB4vFcobV+EsA/JaLPa61/6xa+fwbA62+y/Ke9nzWA73mO77/nOZZv4TnMFebxxRkf/+UfsD8/8I/eh2SXn2vh81apsqhr90nT4JHGGB5nEnKVkB2/ysOOC53s8nhcmCbsvENoX2Qg6fB/zbD5ev6+gCTSXwE4Ja7ORX4HSnQuGY3tNf5u4/IAZds5B/P6NAJpAG84x95oaMarZaBKTW/JxEzwFVCe4IH75KFNnL3G1cdOi8ewwV4DdcHjU/uCqcRlTtu/TIHuGd5OtuAG1Ylp06Xajfe9h3l/+6dq9O/j4xHEOsgcfz3enTVsA/jdL5VdySsmay4PCId4lipUkGnLVdfE35lCOUnV2PWWCeDlOyoL8t68BkwX+efGlkbzKgOPlTGoK9M7MWhjX4zbL4ZT/b8+z98ev7O7M495zGMetxek90cX+YuIjxPRTwL4avP77wP4Ea313iu4T/OYxzzm8ZJjv4zb+0qnmmrDDyI3UwYYNcwWA6RbjoisshpBXqMOFYq2m2UN7mkhmGpQpREOCstN0gHbRYebvsgxQY1yFCsMD0+XHfe3igPkHUJmZnedC2w1bZsHv+UCACBWFWoQtq53EV+KceDTbr9lf0cHxWVPIxxXaK5zuVwMYKhihDGcznJe65j5rlrNot15l5CDkQFBoIVXJXbcAJB35PxhRqZNuFn+rFIoI6Kz6SMMyZ62Gt7xrrG7NmhCdqAFMrNvrQiFoVxo5Thlsu/JXo2s525Z4ejlvRC5WT46qNC+UtkZu6C3dUuhipxUHcBofh0Cy18wjaZjV5oYrxmL+EWnBDP8iglSAOmHXDdhPKjQPxEjGmsMDxGGxhExNpWC5rq7IGWDz2Vjy+hMm1NapYR023D6pXJi6BrRiOUdh4fc+RdeeewhGeGktgiDKMv0j/N3tl8NrDxczyivTBcVQKyxyiccZvtA4dFVwqkGweiNe+ZGdQyUCRD1HZqR7GqUDVamGR+IrG51OKmQ9YwaiqG3jFdZyx2AbcQFgKLxbKfIW4p90EX+IuIDAL4A4NvN738ZwM8A+HOv2B7NYx7zmMetxj4Yt/dVUo3aJYdVTC5JMkm2UD4AIJxWKI2A+XRRITJNjcJPrgNCthQj8XSUg74paYemweBEG8lugdHBGFRrLwEnTBdZomzhaVN6MTJ00wWFxobG7gddY/3W13L9fPkLtZPiISDMa4TjEu3KUQkmqxHCcY0qVrZMBgBTZZohzNfrkBU6wsksdUMa2axChEkaqwlzXHOPoVmZ5DkxfXnCK1cFJ4t7J0Lb3CB0gbLJTaKWXz3SCEcVqoayCTXA0kBSOpLQ5Jpdmk1XSmxe5WXhIMfoOO9U3lFmksLXfHTQCf4PjgZQJV/LmclAA1AZoD1vkd5pjbKhZidclbaJoiTlkzdM0Hi4AaCBcKKRmknbyCTf19/O1I3FR12CGEw1sq6yRjgAJ9QyARkdDMwyd49IEyNVrglk+1Xu+21Dwoom2rgX8n5IsmpdLwGAgHxBY+Vh80ykntqIMacUU4KyASw+XWKyFCDMnNGPpQhJS4H0FowIZTIreUU1X+8qITQ3KgzNZFAHoV2PPJ9acWJNlZ6hL0Xj2jbK3lbsA8TjRcQprfWf937/x0T08Cu1M/P40o4n/tH34bX/4H0AgOERfgYP/kEfate07JkeibrbcCZO5HwNZDJehw4I6p3ngbSKFUpD16NCoXeGx3QBtPKOctQ5wX9C8sQHyPaPWBMrIrtP1vyl4agN7SvajgPrf5rf3W84eQmP/ME9AIDY1HOoBug0A2OXTh9DfZz3bXTdgCdxjdYRRkmyRV5WFLDNfI11Z/4i+zZeI2uI0rqmba7Yv9s0dW8plC1DhbzfjP+RRvsMn490m3tTACDu84ZUVqHo8QtpuORUmJr2/eyor7JveVdZgKlh8gBVk1PyUoTxitnmjlHOKoHBCf67NKhPlx1gF+RA2TaKakZ0oXvmBm3dW419MG7vq6TacqBFUUKQwITtqcnzu69DNs4YHOObQ/hEklSLu58vk5cfaCKYlJZ/DQBZL4QqtUVeATZA6YxqljcT8LrmmzLdrTFdUOifcryuo/8h5H3XtZX9o1IjHJeYHEisw1/eDdkhLzQopxxmrdE5X2B0KLQd1HXE8mjNdY28TbYJT1BmUabweePRWCMaO/cpgA1CREUl9ExhdEDoXqxmpAt9bU7Ri0alEU4qhJMKKncIpCTUvqaoSBOqvEbnzNjK/GlFCAc5hieco2K2SGhsaOaIJ2QnGOMDTmrQ35+8A0+FxGvkM8l0tuiQdUnyhoc9dPjRBlrX3SAtCePuq2uWuDMd5eOD9isIh9IU65a1rpQom8om1ABP6qgCoGDPNeDMY/zqQ+eS0SmdVGxwZEKV2r7URh6qvfQFTrj9slrRIKQbnJhLE+zSYwXKpnISfsLtG9SoA2Cywnbkhccz1yEwOE5IjYFQ3Ne2ibV//NmmRb4rZ9nke1CeG+EF5h2F5ubtj6z7oYz4ImJCRH9Ca/0xACCid8KmJvOYxzzm8aUV+2Hc3l9JtbgbVkwB8e05i6ZCsltZjemiM0usTzxZL1Vq6JAQ77oOrHy5gZ37YgAxFp80tqyLoS1XtK645DtbNHatoXObAwT1I8QDjUMfd9ujGkjXp5ispTBKNyi6CkFLYXAswHgtsPsYTLkBMpxo29AVZhpFJ0C2QFaST5VMF6lDRgcl2daBMxRpbNW2RA8Ag6N8Oyw96pa1Lk8wOtqAKl2T2nRBobHNjWaTFXeOdx+ssfrp2fJ9usHv+Do2MnKpCCADdawArS11Y3oXZ/6t9QrxboErX+UmL6971zkM33cvhkfd9vZOEdqXNKKRtg2ZqoR1j/Sb+GQS0bpWIVvgz6Y7NaqGsmiIJNM7DzgUQNbRvsT3jdiQX/xTbj8koY4G7lqLNF6YucS1d5onPgAnz74RAMBNJYKySBNo0eH7Y+0TBrYgTqgBvvVkn6uELFq//JhHOUk9tQ0TSb9GHRHSzdJaiY/XQsSD2qLZpdm3ohFgugqkm9x4IxOWOuCfJaHm8+cqMlS5hsPGZo0q5smDVEjqiNGdOmCqjF/1m3rNPrcUNzQZ324Q0fcB+Bu8ZjwCVsJoAvglACcAnAPw7eI6S0Q/DOC7AFQAvldr/dt3bm9m4m8D+CARCR9pB6zUNI953FI88uPfBwB4y3exKmP/nja6z/Df6ClTJuscs2NW1XCGJ7WXTchz7lPJxGSkWA5sZbN1md+bOkgs9U2AFvk8wI3ksUFNh0ek1NhCvMEvPJGzjYbKJmZFS9nt3P0BXvbwdx5FbF7V0sQYjoCyaYCjMSG+xO+hOjb7EwNVZQAOb2iS96gYZgFAYtDv3rkau6f4O+M1wvCUr4HL7wyV8d/jXf4/X/TUmHzA46NOwjUOTfVPrQEALv5pQF80VMEhINJOMp76gguC9G++0e1HMCH7bhTKplNzAg59nN/f197WcEIMDUJq3jti1FMlAB7C7cUdHrdfqdhXSbUOCKi01Tf21S18jjXAOtWSzLUvFzNOe1RpUFmz7J15ivZO8oMmCTXAaGw4rqAVYboc24R983UBUHMiJshz5wI/ycGwQNmLoXK+e66+vYEgByZLTTS2GcWWqBKWB5SEP28rBIkpJWkulQOAyjXKRUJjS9skijR3JVvtT/PgRCPH8w2yGlCuzN++Us44UbYuTzBZS6EKjdHBYEaloorJbgvghJpXBMTbmUWls2V+6CYHeNBrbLjBpfIGTYmW2berX5licoR/ftvrnsEfffpe4KuBwBxHOHGJbtlwmuRCtahDGLUXM4lqEVrXKqSbuU0ko+0x+g8uOq1nK09H9qXRvCoDvdu3zdeE0N7TH5tkWsqJACeMjS09gxrv3R3NINF2FeToM5LEN68blYzH+Hwlmw7urloR8l44Q5vQih3JfIm9xmV+4WSrKSYr4YyNejDV2L03snz1skkom4xGB9NZE5qyCQwNW0l42YG4xfvmhy2CDvhc1ZHTV61iTv6jscZ4zU0krMyhcsZMqpqlIN1y3CHEg4iOAPheAK/SWk+M8dV3AHgVgN/TWv8YEf0QgB8C8INE9Crz91cDOAzgd4noPq31HSCKz4bW+nMAXk9EXfN7/05vYx7zmMc8/thijlR/8cXINO/5yHPeVVa4fkamRmske9om44BzSwwGOcqFFDv3pzPfK5tuJiw8Lk1ANChx7Ss5wwjGANRssq6yClTUmBxpgiqN/gNOAzvuawQFI8CCKAaFRtyvkew5nq1vY966VlrUMxo5JDpvu8MLDU+6dc2diyoho8tdz+gwizlNsuUQ98nBFNCO+yuJT9ZTCDKWihM5nrt+g5O/aGAkCyMze+4XGJ5omP3RlkMnXKwqJptcNrZr7NwToI6A8V0uB3n4d+9HjNkELtk1CC+xHNyNIcl065pL4tNLeyiWW4i2Hf8r3SwwPhQjyLRFV5Yfra2soI+6T4xxyfT1E2CDr1+8yw1/0U3SmckKAbWb0Ij1uUXQ9Wx1BHDyepOVEFXC93PZIBwwSXXV4p1M1zNQXaN/yshLmckKeWY62Srfu9liCFXNGsUItUSqD6pwFAxVaYtAlw1CBkal6/DZRgd14BAkgK9xPOQqhmyvaBL27tNoXiVrrKNDdt2sUq7cCLKSd8giQLcVd3ZwDgE0iKgAI9RXAPwwWKsZAH4WwEcA/CCAdwP4Ra11BuAsET0Ddiv8wzu6R17Mk+l53On41L9hT6F3nfg+6KF5aI05FxWVRaV9V97RIR7nO+cLJIafu/0Aj1dJX1saXJmQdZDdeg1/p/e0hvDzZPIfThylLdnxTEpMH0kwLUElj3vBgP8vevFM47P0mEyXeCxMnwJ6Z8x6+q5RemoqrjqA5TpHfeFrB8AGz/TlHRiNNEaGHhiOgPYVM7ab8Xv7wcCOY8O7NNqnnagAAAxfmyFYMdTDXfMuWQ/tODg8TMwJB9D/iqMAgO6nLgMD5nY3L/K43zrXw/Befue2n44s2CE5il+Jlhxh8THC1jv5JZRsx8h7cl4N33sbOPCwkRO8i8/bwU9MsHcqNeeSMMlMVdu4BJ97zx0acOdJ9RdX1MqVp69+tcfVHREWn9SWiA/wg6Ry5gmrQlujiiCvoEacUAOzN6U0jgWGW1wZbd2x4de2L7o7onWFLdAlSa+TADuvbWH7nRkW/ijB7puNeUlU43WnzuKZf/nADFUkGmrkXebaDu7iZVQSGsb4N1sM7SBltai98gnVsBziokVI9gyqXWkur8UKwbSesVyvY4XhsdQ1exoKQDxkWoJPIdCK73/R/QaYE11HCjpQmKy5bkAqgaDkdYgZjlBz/HLP3glTDusD8RcCq/MpybSfbIkN+uC41Ln4P5UZF8CIsPjkBKXhbqeX9kDTAvHlXWt7HowrjA/xyn0nQqGD1BEwOGYabk7zcW69awp1tgEfY4/6zF0H4JDY2pVFh8flf4W1TzqTE9nprEdoXy4RZBq7p7zzZvjJQQZsvYEH9dTQT1qGW905715q2XKMcFxZzVbAlVArt1qjNsJKHe2rbtIhLzCf0kOlaY4kRqwbG9II7F5y8n/RVEj6FcpEYbqsEJkJV/9us38Lbh+WntAoE34JVTHcYErOZe124iVw81aI6FPe7+/XWr9fftFaXyaiHwebmUwAfFhr/WEiWhOHQWPLbe5WHMFsIfSSWTaPecxjHvN4nphzqr/IgjQne4zmagQj08H8CU4c0usTDO7mGV6yzcvqWAEFNwXa9ZQlVFZhcLJxAxeV/699G2UCmtdL6ICs4QcA6IhQRoHtrC2bhP47JkCpUHzDHuIvcH391Fedw+d/7UFgjU05pLxetAnRUGNwTGHhKYNeLhOqBFh6ssR41SVOQilgIX6z0EwwQkMHyDsGqR9rBHmNsqFcMyEYYR53U6jCSbIBrkRfxTTDmRMb8HjbQZdlh7OhcFygc5YPJFtKWCbPnLLSIg8VinYwQyFZfqzA3snIJciF+19m+EL5AFwCC4KdbPBOA4tPTRCMCwRjXsn0SBeN01s2oQaA7QcTBDk3esosHnB2rZ0L7p7onzAI8cMN5L1Zm/gqNaYnC25ZY8Ot0x8oBKGfLoYWGU93atO86CWz5tLItfUrL+l2gaoZoQ6VvW+z5Rh1QMg7oUW9y4Zi58taIxp56h9mf26WUFPNNBLL7V5Q9nokO9o2q1JNSLdKS7WS45waXt72a2pAmQ3VhHRToXnVVxPRIE2MkEdu3/hn/HHGptb6Lc/1RyJaBKPPJwHsAvgVIvpLz7O+mxHC98GrYh5fjvFb596Hb1r8G/yLEIovXUfvNEvClm97EPEz1wEAK3/A3F913ylkRw3R2HylDghlIn0pNbbXeCAITdGwaDvKnTRDV5EbZ6ORtg7JyS4vK1sRwh2z/par/FozrtXI0tZkrF35fI2m1/8EMCiyYFx9h0cJrS1T9V1w35V3X2D2N1sgu+9aufeT5AatK05BKt0BpmZd8bs2eD/iHBe+YPRMu0aI4HABHfCOds676mX3c+blFkVAl3ek6PH+rn0yQzzgY+/frZFuzaL9eVvNKKIBAP67TSybY9erhPQ/8W+WQrlKGB3kd/n4AH+nfZHQPcMATvcMcOWruMIg78XQ0b6/7GNfJdWSUEdDjaXPE9qXGA2uUoXGNSbcN67zA5cvhFCFtq57Pv+66vANowonIycSQlTUM0mSVoQ6IkZ85XVquK7jlWDGYUnXhCMHd3DlyQMQ4HDrA3ehBc37UsPK8nUuFqBKQ5UOYuydzu02k5gw8RLrbMFQIsy+KaMBkPRr5G1lJeDk+0GuEQ1cUlU2Q5af09qpp5hzcGNCHeQao0OhtQoHAKprRHtTlN0E2ZIb4KSpJO9yiSzxqgWZR2WR8HnlUpYCnCOWTaTBdAWqgN5ZbZFmkQraeEMDddTA8hd4wc79MXbuPzRzHEJbkEE8cKAvoLl5b+Pr+H5ZfIiPIdnlf1LB2LtbocnvFDvIAq7UNjrqlsnkaHzAKJ946HHWZTUamUhkC4Rkz6mN+NKAdSilSkLRMYPakHsEVOmfMylvBmb/ZrtA/ImZbCfvsM60vMDCTIMqfqn4VZtkh3sJfEvxrMucapbr01BTQzGJNaIBkPWcK1qVEPIuWe67r6Ht00luOe5cGvsNAM5qrTcAgIj+PYB3ALhORIcMSn0IgEzrLgE45n3/KJgucseDiJoAfgDAca313ySiewHcr7X+Ty/H9uYxj3nM42WNfQA/7KukGuBSeediAU2wKF44Nihqzcm0HzqYVfkId8bQsemwDRt2uco1yoRAcWCTFUmoAZ5V1ibBEO5tmAEyJx6+iTO2/OfXcOJygb27Df8615aHFQ0ri2QCzMNuXK8wOmKS/EkJHQfon+BZ6njNHPOEaQ916GabqoSlfDSvF6gaon+sEQ1nO5EB1gsNpjXqmGz3NSfozDX2G+ya10sERY1gVEKbBK9sxCCtrfZ3/67I7oftjtbMFQaYPlAaq2tZBrhkdOf1nnlPuwCeSRGOZqkBzWssC1emjss2PsDdzJKwCs8dcLxnmUBlPacFGkwdOlyHhK03VkCrQpjyBwZfWwDnWjMJNQA0Nnh9kqyLDbmvZiHJdJkQyrUQ0xXmWQutZXBUWVqFb/0u/HlfZxwApishwnGNINO24VUHhGhYIZiWNtGWRlDRlq69HHpqJARjQ2kqE7Ld5pyYzyqTCHXKb44cHQpnNbg3mWfYvqjRvKrshLRsMNpNETA4Zk4+uXsWBBTmHgmHuP24s13kFwC83SSwE7AN96cAjMBKGz9m/v8P5vO/DuDnjdPhYQD3AvijO7Y3s/EzAD4N4CvN75cA/AqAeVI9jzsWH9r51wCAb1r5brtMLXClNfyjJ1CLeZcBhOqnTiN8nMeLFXARaPM1Mff4gHtNRP9Y0OBg6tBVoVn27wqsgpBvhy59OelWDh2K9jVvb7Ia2neVVkDvGf557x7e9vaDCkWD35/CBx8ed6Wx5+rnENQ5MxBv57z722TVjWvpjkHjtypr4MX7bI53yoDTxoUlkKnkHT/O6HUvnuLs48yVCzKHzOvEHOPIIexCn7zy1ZHTnI40dl5rKHkDowT1aO36Vcz7pP79FUwPmEb4DULDnHc51/EeMLjLKLAYCd7T3xpj5bOGDtrXWDLXd3TIKJPt3Py8vaS4s+P2Kxb7LqkWUXmfziF6x0U3tC96AJauoaYeimse0jqN0D4/QbbCD0EVsdZvOK5tYiE3q/CERYZMmhm0ApomWer+Gic6cd9wYS86aC7eK1C2QoSDAtkqb0/lGsMj/LOU3MfHmihTVlHYflDN3IDdCxVAZCkdwZS5tSqroQOyyRcUoUoDRHt8niYHeBvSyBn3awRmuqgqjTJRaF8qkC2FFuUHwMooAKqGu4XKNEDeCzBdUDP0iO45J8wvUZgETgTyAU6oJYmjnIAl3sf2p4XfDkzMRKJh0OHJMlkJPYnJqkONAw89Fg66NORR7T5XR+6B3noj78TRw1vYHhqzmad6aF023/WQ1KkZZG15UMY9MmYofWC05sqWYroyXWKzHzlugCkQkb+/YymXuvszGFcoOoHVUdczOt9mEmkk98JJhbzn4HCrsGHu+3hUY3jIk7xqshyfVs68Z3hYGnxN06G5T4q2u8a+AczS4yxZqAr3UqDaO79md+M+TyqENx4Z5RQdwHKxbyvuVN+M1p8gol8F8BkAJYDPAng/gDaAXyai7wIn3t9mPv+oUQh5zHz+e14O5Q8Tp7TWf4GI3mO2PSHyRb/mMY95zONLKOZI9RdXBDmXy4NpOZPsCYLsN+UBmNGilpku1TVQA0F/gvHdCzOdxJGx2pZkWhL3aHeKwT3dGYk4KbX7tJJoVLO2NYDWZcc1KFvGEns1gTKzRuEqRUNtKR1UcxNZuqMR77pEbulpk0wNHOJepZxQVw2XgPmfGR7jRFW41uFUIxxr1CEhyN3no1GFaFBYVQ8AUFmJqsn7N112SZtQZMQhEHDnnDQsEgp4yTTBJl9Vwknuzmv4+0sfkX3khHp8yJ3L0RGeHVtNap+6gWcvGx3XiJ8mm1ADfB2HR4HmdaB/0t0bjYMjLHdGNqEGgHItx94acPDDRlN7yTVVVjFQtzmhVu4SMKquHcpRtF1CLwk1ny++94ZH3D0rHOrm9RxlK0QwdnlZ3C9BlUaVBDaRBpziit/wKlSesqkswh6MK/TOVEb9xVQazKFKt7x/raKhxnRRoWwQEiPBp4krDUnfTZDalyqUDcXnodLWpVQs0X3lkCrh+zke8H0sifSNRjW3EoQ72/CitX4vgPfesDgDo9Y3+/yPAvjRO7cHzxk5ETVgXkVEdAquODaPedzR+NCm7d/FN73hf+UfDi5BjXnQUwNWCSmvXkfw4H0AgPUHjOZz6FHhaqBsG+DGvFYma2TRX2mQ752rLEUt6wEd05zeuM4Du8oraON7MDROu0GmsfMXGfXIsgjdj/JyGW+rhGxz++abEvMd/yg12udMhZABZJQN1uMGgNggsuM1B8K0LjuUV3jLO6dCLJ42iiRNZel75TNcygzhATFmRcMixsn/9gwA4NoHTto9Gt67CABoP71j0WoB8hZev2E/1//kKqaHDdjVNPnH4wGKpmu8B4BskUUPYPbB93MAgMagQt41vhILfM6DCWHr9Z4Qg9HGFkDFN4G71bjT4/YrFfsqqZ7HPOYxDwD7AvF4EfGPAHwIwDEi+jkA7wQb08xjHvOYx5de7INxe38l1cKJTQJQrWcssOvA8UgBbo4LRwXCPZ710sQ0ATZioOYVJRsZoj1T7u5Gloss3wEcEjs8GqB/yqGP9/yScYrykOqiZxwDPZR6spYgGlaoUoUyUYBBMtOtGqpktQVV8npHB2OkO8ztDieO54paI94rUCWelJppTov7ZrbcDs06GqhDQtJnLWZRWqhSlt2jWs84WalCQ4dqBuXPl3gdwm0DmK8liKxvqy0d47lpBiw9ZYfJIY3uaUJpUABVMrpLGlh8RGHzKx06fs/Jaxj/l2Mz51MMSnwebu98ZRVF1r/CXf/XvuUM8Bbg0Y+fQvMqL8sYAMDeOxk2Txpueyc727i61UM15fPWeYSv3Z6Rh/ObEqMx/6sSlnUEHPe7StlWD3BoxurDpoGwLVUCYHQwtHQPAEi3S6iCqTvBtBJAmY2JzLUIh25/pTIz4+AZCQpttFqNMkccMMqSLQSWnlQ0pGscz4qySYAGOpccKr57T8i8cA/5Fz3zxrahtRiERPiBPpJfpYwAlQ22jZeueVZQuU3UQ+8PxOOFwkj7fRrA28En7e9prTdf4d2axzzmMY+XHvtk3N5XSbUOCXkvtKoW0pwHOFUNX2lCTSugrkFZCeSGBpLnQJKgXG5b2ggAxLs56iRAtD2Bjtx6B8Z8w0+oVz5D2L23gWSvRrrJyXXRixEOS4RDgKoa48OcSRYtxf8aZM1BJPKOwuBoYEvulmPruRJKjA8mqBLC9p/jbK/z2wmXrUyi7fSFCarUyNuEvOMSve55NuzQnlxgkGnWPW4EyJbcrZK3nVC+RLrNMmxCJ5EIp2zsISYxwgEeHteI9wjTFW5YAzip7t/L52DlL51HmnPGloYFznzhCLBao3HVrV/oHQtnfWUT/v/62wFAzzykj378FNINV3bLT01BpEHXONMvPC23j+dcflv9iNBbtG3K850TJamU/yWZDjJu0Iw8/nVkKC+STA+NecDwcIiF0zWKJqF1zSXKPl9agswES/oB5B6196rWNpmWa1E02JkzHrjzVEeEaFRbyUfeP9YST3cqTJZNc8wN0n679/hexEzjkbKiSBFKKdBXvpFzNjzB/6dbQOeiRh0A2SLZps3xYe2k+G4n9kHDywsFEf2e1vrrAfzGTZbNYx4vW3zo4R8BAHztN/1TVA2mNBRNbhhJdp3kkYwJRdt5LKgcDmwxDcqdC7WVfpMJtiZWrwK4H0eWByMDgAUBikUeOIQysv0qQvc3TBNlx5mhiWIS1W4sal7j72y9QYMKQ0HslRgfkv4n2H0Uy3JpRE83yb638g7QvibNlcYXIAY2X81jJcu28mcj474bjlwCeW6Vz1t4KbUUGAqBpnnPtx81FI/MIR7JaW4q2v6N4zj2F5gysn50AdEm77s0x1OtMToy+x7x6S5lE9j8b/jF1PkYU2X6JwLrOjyxYA7QPM4vs7uXtvDULqNLDfO5oLhD2fAdGreJaAHAvwbwGjD+/Z0AngTwSwBOADgH4Nu11jvm8z8M4LvAGNj3aq1/+1a3va+SaoB1gKtUoYqVvdBUa1Ch0bxeItngpFMrBTUxd1ddA6EQnAwvNVZWGg8AakH9ei7xmqzwA73xJoWFx90+JMbxqQ4J44P8+SoltIel5cD6yG/RIGRLQLakZm6q0CRh0gBZJoSVzzMsW3Rj5F13+a5/G3+4MO5M2dsKHPtNhfFqgHTbrTTI2cpcB4TQU7ygWvNA56HMwYSbMstWAFUYbiw4gVTlLHLZP877Eo5Zn1MSrTrkwTEoZg1WDv1BhfU3h4j6QPsbnMi0qgKstoYY5g4CvfSxY4gx29Robbx3ZrnrO/cY5ZUhULVqtM7xH86cO4XOlDnYoze4SkE9ioBOhXDXSy77BHyhieY1QOpRkxWyvODxYSDZ4s/qgPl+yS6jrP6AJQOO31A6XWKFD19ve+F0jXBUIRy5Zs5oVLlGWk8RBmZyWBke/o1W5QAhNBWVvBNbBHr9bRoCdx/5L06Vw7c1B3FCXYfEja9mnSJxOFkOZiYJs9vl69u6XqNMWUlEJj1Jn6srgxPuO5NVlkksm0YJxnDjowEh2bkD/Lx9gHg8VxBRCnZ2XDE62nLCumDFkXnMYx7z+JKLOzhu/xSAD2mtv5WIYvB4+T8C+D2t9Y8R0Q8B+CEAP0hErwLwHQBeDR4/f5eI7rvVBvN9lVRTpaFytsIm7Wa80ZBlZdL1sffZilG/ogSmLhPSS2bqLAofPlpYzybDrStGDP3JKa6/cwmt6yJdwYhw1nNJy2SZMFlO0X99jmP/r7KNAAAwNX4k5Gn1hhPX4BYPXVIlCDdV2jYUakU49Aspqohw+Rt52bHfJITjCt1RhWwpBJl1sUY1UEec/ProuMor1BFZhZTQqKJMDWopEn1VTNh5kDBdCjE5ZBomHgeCKSOdRZtQGEpHuqMxXZHr4I5v/c28zq9+z6ftsoeunQAAXPi9u3h7pimkYU65oB68L0YnORGZJodgi0xT44qyih8SWgG04RsFmOvrXeZowOefaSkGdV3i/cmWMPP5hdM1Jsu87camnkmqRQJKpAMBoGwRFp7UiEY1Fp4xqzKH5WtRj9d4wtY5xzMJqtx1Kk2TqFY0k1SrkiX28gWjXT3Rloqz8Lhn0lKZBttRbasOsq/DgyGam9UMzUboHKMD7p6NR/qmCiRC+SibQOuaOf7UXX9Bprpnzb6UQFi6e6NKWbLptmMfJ9UA/haAvw9+AXwa7u7tA/i/X6F9mseXYXzkQz+It//Fn5hZNjwSobHJA4/8X0WhbfaLxtpWvuK+jL9kVZBEUk8rso376ba279K6Ic2PZKXlpNK19JhGYjwZtlZCOx4LwhwNHD1x51X8/8JjCiPjeZpuRciWTIO1eS93nyFMDsxO9H3a29LjJYaHBeTgZXXiwJSyARQdcxzmfTM4VUFl/OHOZxxQJ+tdOO+SgbrHCLK6OrGgH5SRFdypceXfMWocPqBtNUAk8RafBA58hsf7jdcZd+Fd7zgiQO/w+sdfw4NweallGy5P/Cc+gTv3pZgMuALwDHrIDvFJ/Pp3s3nshy89wAKftxt3YNwmoi6Arwbw1wBAa52Dm7rfDeBrzcd+FsBHAPwg2NzrF7XWGYCzRPQMgLcC+MNb2f6+SqolVMUqICJFF28Z3nTuuSYatQ9MTNbVckoPVbdhk2ftKVSJjJxI9FGlEQymyNbaWHgmt0Yn4VQ7FYW2+37/9Vy+GRx1bnplC9Bv5jrTaMvtw9Jn+NI0Nj0ljkmNKmajmWTbI78SIdweoVhu4b4PmAEpUtAE5Isxwom2VIAyIahKW3UJlc/WW8QQR4696ARI+tWM7vKVryHoWKNIS7Q/ywNCmfLnZbAUqsPufUZmsGD1i/pB7hD/zld/HADwM499pVvxU1yra5pkWmTd5JxWEdkqAOCSucmKQvdbnL/G5YcPId2gGc3R5oYxa7nPHUjVLTHqAumlCEE2S9UoW8DKuy/iwkPs4/GWr+NSxEOfvB+tiwq9s756hylReu6QjQ0eFIuOe8TkXGy/Blj9rNNdZd46YXQotBMHcfwUSTxBsJOdkqsKNVAshDaxFXpT3gut4oe8cFSp0bpWYXjI4+uQuY/M+dx+IESywy+F0YEAvXN8f5VN53rZ9qhTQvHon/CcPcecyE9W+W/TRW8yYW7tZJv/z3o8aVTFLJIfTJ1b5y2Hxr5OqrXWPwXgp4jov9da/7NXen/mMY95zOO2486N23cD2ADwM0T0ejDw8PcArGmtrwKAMe06YD5/BMBD3vcvmWW3FPsuqa4ayl4Yq6XcDBFtG5RakOaRyfpMMj2+Z9muo+gEaF7LQGUN8lC4sh1x85gSCbgAebcDVWqbUANAtqCQbtWYrCg7Kw7HwNrv8WcmK25/syUNnO1AHeP9izcNjcIzW4nM5CAclQhHLtGCl/BPjvegSm3pJUUzBtXaoqh+02Yw4eQp2fGSpERcDAM0r7mEXZD/rdcoK5mnY2P7/mRqkyVxFQQB44Pu+KqWaVrr8XdUydv5V5/7E0geayA/XCHecYmZyln72bcdD6eM7EbwZv+psshG/x0T9Ne565CuOE1rEFtuSwwPKdRNd8zpJZEtlI27ba68+yIA4B9/2y/aZf/Tb327OQYn9t/YZNQl6xE6Fzw+tOKEevsBt9I64mu6+lmDuJhrUgeEqblOdtJgtMXrkGb0vSdrEZpXc+QLEbKuAroG7biQIe+FM4YDqZk4STItOtWjQyGKJrD4dIntB9wQ0Llo+gq8gS3eK5iDWGsUvchSUsJS48I3BWifd02bVDO3Md1mi3afcy9IUuxVDkROKx5oK+HXO+uVa24j9jP9Q0Jr/c+I6DUAXgUg9ZZ/8IW+S0TnwIrrFYDyRqt2o3f9UwC+GcAYwF/TWn/G/O2bzN8CAP9aa/1jZvk/AvA3wS80APgftda/eRuHOI8vgXjo534AAPD6v/8+ANysLSZgAh5FA6B11auKloJAG4fjTojY9EJlPXnRaEvhDDdLxHv8WekfyT3fCUHEBSwAgAOfyXH9zTzwCPq8+ESNiekjaVx1zdGVsVDXihAb+pmMa+OD7r2z/AVnetI748aq7jn+uQ+XBwh9sw6BwqBS1isg894LYrrigTqDuyJ0DFpNE/5fL3RBu7PuNJwn8M7VkZOnFd54mbr1rn5ezm9gqZhBAWRCvfskg1pBDEzXeJ3X3uZQ9NYV15c1Me/4q1NGr/VvuPzpduJFjtsrRPQp7/f3a63f7/0eAngTgP/e+Az8FJjq8ZybvcmyW36D7LukOhpWCEd88wR9R8KlqXkABiaDiiIgiQGtMXrVKqiQRoQAVGlMVmPE/coqb0ijQ77gVECqSIFq19w1OmTKKwa59PmqklyrUmP5MfcwTt5hHphzTUQA2he9YzFIbWYSp6IZI8gZdc47jRnbaWlCGx1zTijy4EjyCXCSKeWx0WHnNti+lCFbjNB73HXhFYtcrxsfUGisc/IKAOG1FMGE0Lrqjm/3XlF6MNs05S4qCGWvAtWE1lPegDPi8lqyESBk8Bo6YrOWcIoZ/WqrKuIhmlVCmCwTRm+ZIDzrnC8XnjSDsJmI+Dxuce0L+jyKlU1tzEZoRvWif0+NvUsH8P/7yl/DD3/kW+3y7nmXSEuIdrkqZCB2STsj6QpF133+wCfdz8JRB4DGBl8Tv3IgtJvRmkLruiuJjo4ktmly5XOeEk0NNDcqe39mixGqmNDYqjE4ppwtu5kIrb8pRO+0NL8Wtt8gX3YVE+Fwl80QVGiM13ifNt+kobslBq8Fmk/yfZRuu5clVe6eF4OcIHPlzXhgGpGM9mzHoNODo5HVt76t+DJIqonoveBy5qsA/CaAdwH4GIAXTKpNfN3zqIW8C+wGeS+AtwH4FwDeRkQBmGLyp8CIzieJ6Ne11o+Z771Pa/3jt3A485jHPL7c48WN25s3ggA3xCUAl7TWnzC//yo4qb5ORIcMSn0IwLr3+WPe948CuIJbjH2VVFOlb55QZybRGQw5kTYxvm8FOiTs3OtOg8qB9pUKcb8CVdrSP4KsQrYUz1h8JzvMN5qs8Wxu4Rkjo2e+k/XctmqTp1QpId2GvXmO/qsI2UKI9a8AOufIond1RMi7PBP13QnTjQzpBqt9SBRtZdHM8apLIiOTrHYuepbftUaVsByeKjVaVxwJuH2mjzoNbbNktshJ8OgoUCxWSE675LVzng+gf7ebgZ9853k88Qz3SdHUky88GwKam/kkpkueNbjJLQWd3npjhYXHAptwiXRg1lUWnReXwqXfTQHMnqOySSib7LSY7PI6xgcJ02UNNQpQtU0iPFGI97hZrugA+aJJXHt8Ef7JB78Dkl4KahHvMYVGqBBVRMg7bKxStAMrMyji/Ac+M2ucMzzeMN9ztryBB87mHWmUleM019Vwxkk71ZXOxQrZkpuoJDu8ojI1+zCpsXt3BBAj51lPPsdGOpJQA6yUMz7eQThyDYoAmwhtvTrG0uOFTagBYOkRhWQvxO4pZdGFbJH59ACsbKFsT0KQGqEfgQjxoMLogFt35R6bW479YHf7IuJbAbwewGe11n+diNbAHe93It4N4INaaw3gISJaMC+iEwCe0VqfAQAi+kXz2ceec03z+LKIz/2f3wcAeOAfv8+qRwinuUpgq6bNjdpW6UTqNespFG1+8GVi7v9cdAP7bhckukqUHR9FdWlwUmP5c7xs+9WEv/TNHwEA/P76Pfyd1yvEH2CYtYqlOgg0LRfZTfxlDKTKATs798v4Dmw/aMZe7apuoiyV7Lj+kemKU6HSBhTtniFMDGdb0HxoWMx0fBCoYv7D3ikubQdTYPkR3rnJIfNmImDnfrOji1OE5zzNWjA10UqpGvOv1tUcdWhUU2KTjwB2f6oE0G0+4NExY0O+GWB0SDjvbv2tkC/w/8fef8dbll3VofCYO594872VU+egbrXUkhASig8Q4ZFMsk3GYPzAyASTvs/P74H1PpkgjJ/9kIUxwUYGgeEhsJAQAqEsdZQ6d1V15apbN9978k7r+2OuudbaVd2t7qrb6u7bZ/5+9bun9tlh7XDWHmuuMceQc73a2I5+Wym1SERniOgGpdRjYJOuh/W/7wXwTv33z/Um7wfwXiJ6F7hO5ToAn7vS4+8oUA0Afkfzpze6QI0fMBWL1d80aJMz1f1b2J5v7YaAp6t1gdXkser0s2SqASDayDCaDlE/z4C9t48f7CfjX28d5Ie2MgWeAJPHcxSJB0+DrrQdIG0TJh/jh1642IYj2/TQuKjpFiup4csKIAOAXAOV0SQZgFZbLTFq8baexdTI6h6CYYlgwCoNIrkXX+BpJa9XYLSHfyFhr8CF10bwh0D7Hh+b19j9dPdrCsw1tvjz5McOgmYKxCs+RjN8fskyn4/8cEWTurbEHGuXnrH4Rv7cPBogT4Daqr4GLQ/dXZytXb9BD3L0mElmAzYP26yvChgEZw2bpTdqJDWHC71ki+oAIOjqfXRjKF9V1EakU60v8/UUpy+AgbU7dQfYZ8LNXG8d1kWmQk/S98ofKYAI69d5mDhZ5WeXoR58OCP45tnLi5JLnzCYjZhfrqciV2/hk04nGeS6bo+zX6ju49L2jmb4+V2/NoBXABvXM+9css9StOry1sXxsrbEz31Dy0zJi4+Pw3/TlmdkFnsOWI83y8rMyhXFDudUOzFQSpVElOvinCUwn/CZhALw10SkAPynS6ZPAeYUOvNmhmf4ZMtf4/z/x4joewDcDeCnRLLKDSL6YQA/DAAHDhx4hs0dxzjGsaNje/vtfw7gD7TyxxNgUywPwPuI6AcBnAbwbQCglHqIiN4HBt05gB+9UuUPYKeBaikkXtcIp7TZMADIZuqAntouYg8b1/pI1vguzj7AYHw4EyLaYvUDlpOzmUAx1ti6xlIslMcWy/WzffT32WlzP2PpOkf6GM2zOkM6cqb4pzzEW6XWz8wNF0p4264ixGA+NtvUlwtj0iIj66nHUgxn+ZY2Tw/RhOZfe4SsboHNxpHA0EDiizzIUHGIoh4i2Bohr1vAKNJvW0fIgPO8rpDGmiO8xeCrdjpAtAkkyz7KEIg2ZJjPf4qEQZ3QLMqIOWdpy8PGzfq6DD34fc+A6e5ul0sMDOc8lJr75g8IySpnr/u7bKZAeN/CUxMwnc4zWIwvBibrLAOeUAPD4bz9RUcbhDKy0n1Zk9A+qUfvC74ZUUvBnvLZ3l3urWSsZXAFwNAarNGKfQ7Wr+NzXbrTKXbUOqqu7bur9tHdY+9T/SJz+PMEWLtRc8X7bOcuWeNgdHmPJc90GRLPJsACagCYeSjF+o2RyTiJlmwRE0btKj1n7j6xW/fRWCyNMkuywZJ6yq8Wn6YN+d4pxu0WFZWYKwnCVdvHvFjibq3H+lvgYpwunnmG5XVKqfO6WOfDRPSoUupjzvdPxTN8Ov7hbwL4Jf3/XwLwa2B92OrKDODfAwB33nnnS2P48xKKR//1T+DWf8n8auEV19aVUfLoz3mmcFwG88lGaaQ7pY/zcqtK5I8Ko8hVmtnjErHuu/tzOuu8Rlh5Je+7dYzw3z7wJgDAv/rmPwYAHBsu4PffyinZhY/JfhS6e3Rtyill+kShrVHumLjppz9ts9Y+wIpQ5n2ju04qbeE7KSDXs6NFIuodNiEhyiRuoizaINNXSvF6MCyRtR3ZEX2cXZ/RL7/P+Ng6zB+l2DvayLCpkzmiOBYMPGPVDlj+tbxDs6aCt8Uv0vbj9h0sCbD+gofJR3hfF26f0Nfq6n/G29lvK6XuB/BkFJEn1fBXSr0DwDu249g7ClRTmptMNOIIqm4fwKIZo4g8AxiDfoHZLzD/tAw9DGcseF67iX8ZEycco5i0NFNVrtyYFJZlU/ZYqeZAz97fgb/Jvcrmy2ZRX2Tg3jlUM8BKxO2jrQIgqqhslBEZR0QA2DzMx1A+obcrMBnsFL4pkmsf5fOnrMBgbxOFBt4iSu9lnMVNm0ylGE1xgV+ywtsvv6KOUP+Ih9MWSKd7bJrTr+UoRj68jRDROb4mYY+50HmNO0NzjRR3rALGXDUUJbNnzjlnk4UpcjGA/PWbwOMTaN2+aq/Fo9MY7lKIVvX0n96XV7A0YdQF0LXtqF8MMJBaX6PNDeRNNp8palaYv77IU2H1i8oA2toqD8TSFhm5IsBy4A1AJisLJVSOyAGSMiMSdUv05+2DFG0BnSMK8ZpD39GPsgukiwj6Oa4C2uGMZzTIA0fWr60pHpXZigYh09rjknGGppV09ycAWfWRzWsieJm9R+79SzaE81/tCpvnioqzo+ism2PB1gkArIMtgD/s2qLZq4qXAFRTSv1v+uO7ieiDANpKqS88w23P679LRPRnYAkpF1Q/Fc8weorlUEpJuTKI6LcA/OWzOqFxjGMcL+3YAf32Nry9njqI6CQRPUBE919SrSnfExH9eyI6RkRfIKJX6OX7iejviOgRInqIiN7+XLZzHOMYx84KUs/s34s9iGgvEX05gAMAJonoDc9gmwYRteQzgK8C8OAlq70fwPfoPvrLAGxqOaq7AFxHRIf11Op36nWhOdcS3/wk+xzHOMYxjqeMndBnfyky1c+6whzMa/kppdS9uvO/h4g+7FSYP3VoLrJKQpSxNskIPWQt/iy24YAlxW9cm6Dn+JDJtEwlI70ywGi6hWTFZo79YY50KoI/LI1SAwC0TwzhjXKTpQaA5hnmHGxe16gcW1QqDC/bydIlKynKyMNIm3kk6yXCboGtQxEaF3PUT/C8Tf0EZ6bLZmL1twHAI/ipwupNtm291wzQ/DRPBylLh0ZPW7MWIVBM64ztkkIRsZ15eCFCNqOL89II3sAHSBnqRNjlLLUUmdWXnKksXSBRxITayHLF/UyhP0cIt/ic519zAesf2c22sK/eQqyl+66fWsWbb/wYPrJ6Ex65uMDH2+LJIpluCxz+czDgKbPRBBkONwC0TvKxO4eczG8MFHPA3H2l0fJWPnPAXRMSEcPvzxP8gXVL5HPNjXqMZKcBLpgMRspkd6nkAk0A6O31TAGfTLs1zjiyh/oxzWusgiJThM0zymapU5jZisGsj6zBMwtusYdkjN2pxbDLxarBQJnzArFetswObFxnKSDCg3aNgrj4kSpZ6q0DPtv1apKAFBkF+tDyrAOWM562CPGWLTQdTQWVmYsrjhdB53u1QUT/FsB3gLmA8sNXqGacnywWAPwZq+YhAPBepdQHiehHAEAp9W6wmsjXAjgGltT7fv1dTkQ/BuBDYEm9/6KUekjv95eJ6OW6DSfBJjXjeAnGg7/CRYuv/r53AWBpN+gZq7CvzO9fkdXSH+r3jvx2a2vKUBYa56zKkcwYD2Z9s67MxNUXFRrnyRyzeZqX/8a7vg0AsPEVA8x/QiT79B+PaW4AG9cI5URoc2VARtpvOCm0TCsdG23BCFoWurMLNsn0pY1zhM0b+HN/Pzd0+n6nkF+bZJW+fc/4IxiZUZHXdft1KSjPGz5yTe0M+iWmHuUXR6Fn5NPJ0NBQxNG2vkgVC3apKXL3T7mumXLoq65a1fod/NLaeID5Ju1z20Tc2AH99vNN/3jSCnOdERGR7g4RPQIukHl6UK0UkDBFoqxZOoY3yhGPchT1EMNZu1w0fV1ALUBn8kSO0gfqZ3WpKxHaR7vIG6EpIswbIbxUobM/RNhXaJyzgN3fGgKlQjHNIHo4X63KrS87chXEVuBU2CrhaD2FN8zgDQFPOxvmzRBeXmLy2NAMHgAYIO1tDdC/RqM2n9DZy7e3/3KLOFsaUPsp84TrS1ZZI68Rwh5MAZmyeAteBrQf5f2lE9DV3daK2px3agvUAKD98BpUInbutkTYz1iKcDQD0LXMc7h41274CVDc3ANyH8Meb3fveh0H6ms41FjFo/dxFfelYLpCIWmza5QimPYJPy2vk1EZEc7c3H1VA5VgyO6QYdcOUPpzIQazQKKfD9/hJxvXr6U+EqkiP8Io2DWESda5EFUA8sRJbWev+9f+gu1oM03bLxIG+dLh9fYyT795ygJqgF9UYd+aDplrQvbc3UFiMODrL8+buJglKylWbqsZoA9YCT6X8Cb0pWCgjMlLc1Guo267Uw/gFQp53avopctLo3OAMPFE9Zm7qlAvGfWPbwJwg3YCe8ahlTtuf5Ll73Y+KwA/+hTbfwAMui9d/t3Pph3jGMc4xmFih/TbzzWovtIKcyPIRUSHANwB4LN4knAryZOAQVu2e4ItyKURGk1IoR8AM7oDrJwOALTOaoL/Kr+nvB7/LZuJKVo0pjK1AJ391pJVROn5Sw0wdDtq5/sYzSQAWMou2rCoxR/mGM7XEG1Y3nJ/d4LmiQxlZG8RF7/5iNdS+MMcZZ2RJY20nfhuW0ApgDpr6nO8T6dsRXliqLhAUgpF1gv04gBhX1Vk+UTVIuxauaDakgaVCoidbG6gQVXgyA52bphC/cIQvb01JOtW2UF5MJmJbJFRm9qVIRt68M/UUcylwJbluf+/H38VACAWurXOyJZ+lS/sD9kitrtbeLy8fDRlMwACpkUWUNrkalV393kAvErRXOuMzijYZmHzGoKfaYdNVTeZ6tWXafmoRVvgsXmIl009bjMTEkVMiDdKZA37DEmWoKLPrZd5uULa8tk9FDBg2i0ENIMinTlONmQA5Vs7XX1PRxMeJo7zCKR5zl7QjpZUEsDsgl5pV31ZD1hiQthXpgA06jqZ6Rqh9AndvXYHoxmFsEOYPGbXEw31q44dkPF4BvEEgBDAswLV4xjHlyo+97s/aT5/+XewnXmekJnRDJykzMQJ/u1vHtaKVE4NRtYMjDLR8h288dRjValYgLPXZgb65hLtY9zRNU/ztlPvAXJtAHb2Ldz51S946C/YmTlJaEhiwUsB0vU2LS020FWe7Z8rkre8nuvh4GUKtRUxYYP+PkVvD79ItnSNTm3ZqmNlLSC/Q9dHfYxf4s0zQ4NhetrQq7FYmjqdrOGht0cfXxu1rNwB/M43/SYA4J/e+118XfbHaH2BzzfasG0f7NaJDR9o6lnTSMvaNhZzJEucwVr88jbmPsXXbvnL+eS3bsD2xA7ot59rUH2lFeb8JVETwP8A8C+UUltPsm6lknyivlupJDRAtgwtQBlNRxUg3TjHCKqIPXYvOmt/GdF6ChV6CJc6UJ6WuOun8AMPlJdIp23WuX1CIzE3C7iZotRFkgykOcIOaxZ7wwx5i78XB8RoI0U6GZkiLSoUegeaKAOq6HYCbMSR1wMkF6xgZPeaFjaPWJQmHUs6AYTHayj0j9UfOdXEvcIUMvZ28aNw8ctLTN8nIBFINSgPu3afksmmQhlQ5mWs8NDb5SPqWsem5rkCG9fXbdGhpiNEPYWhdpY8css50+4LH+YaqHxQrXLm41Vl4eDxbptnbTuoYAAnU2YjPV3nao26Gsqu5OHaTbZzE/qFUFcAa0az+nJ7PxqnNXjXWtq1ZWlggvoif+ru5WvsZ9Y4JtoqKk6JAHeKovdpuGOEStZYZP5kADBqCTq26iK1JXfAVqB7IKnYu4tWOZWoVIF7GT+rZhoWPEjxwcWE8WZZkcdrXmDHx9LpRYRuEq/nZpBZhATKgXSqCqgBYPKoLtR12jeYu/pu6cXAvduG6AO4n4g+AgdYK6V+/Plr0jjGMY5xXFnshH77OQXVV1FhDiIKwYD6D5RSf/pMj5nNNrB1SKtk6Hd4sl4ir3vsOHfBorIiZkfE9onUcpz7uXbCY5k5ibLGn9dvaVWydVMPdfX39lIKHSObrZlMomhYe8MMZRwa57zV21qYerSPdFJnnQv7VJUBbyM0lVTTBmYe1o6ImmIAwADqwsGiWYvBoZdZXmzWAqa+8TzwK3NYfK1jTqObL4BaIury9evPeeYaycjY1eV2s7dFSMaSNmuwMUqReMYFEACWrwMAha99yz34qw9b5RtJ9pOTsJTPbsbWHzEXTLjNLvAU0O9lCkW/yp8GLHWkjAh17VS4fIdDmwCQx8D8fUP0d0X6PHg/K68o4eWExmm7fn/WQ/PUAGXk4+KdDEzDLba/BaqZjAtv0lSdoYfdH7fn5aeAl5VGOUYyFsrjdgd2/ASvAAZzxMoqmhfvuhAKv79xbgQvV2g/McBgITZUFBkcDKfJZOJFOlAAtXv9ZeDR3eMZCUrRB6dSGYCf1wjIGFDDs4NBKhU6+9gASLh8k8d5IJRolREqt7k33QGd8zOI9+t/4xjHCz4+9UdsZ/6yn/71y77LWrY/FdOvwbTn9DMeSM+Kzj6olYkOBmamVN4NtZXCJNOUr9A9wN+3TwkX2jeD9rn7+LvlO4CWfB/avjZZ5+97uwldFslCuagTJKmdBc4mn5y2YGX4yEoD6kUb10YGQIqHQ9awNUlBH5j67/wSCLRNedYKjcW6JH2GU55R1soTQk3PGq7drPHGCPinv/PPeN1rLPbp7ef1mqcIW9fKC5b/NE/4Bg9IAq52ctNs2z6Vo6tnwtsPh+a6bUvsgH77OQPVuqrc05xoqTD/xUtWez/YLOAPwQWKm9pCkgD8NoBHlFLvehYHNXbiijTwADCY89G4oNA8myJcs/ziSCkMdzUqP4h0IkS0mcHvjthdUMfG9Q2zX4nGYo50JoE/YvfFYI1/jbnmUaOEAej+kMF60YhAucLarZaqsXZLHbXlAlRaOT4AhqvqHjMYAptHWOastsY/hsG0b3i6+fWMsuhUHcpXyOtAskLmBz7/Fs4K+z97kbk3n7JjmsN/uoF01mptp21tSX0bbzzcwz/u2c+GpkORtnm5BbbBSKG/IFSHFOfeGCHcZPk6ybR+81cym+fPPvIaINQUlIu6OKLGetOyb7/kTisY2GVlxA6NwykgqJEBl4ClSBSOrFvY4zbWl0sMprUhjS68IwXM31sax6+szoB6/Xo7y9A9CKSTBZonuVObPM7Xfmu/j/l7+L5vXJsY10iR73MBtdike0N9nIa9v1FHYTTpGdBZRHyOkl13XRflGhSxO1AgxJuqMijr79GzISPJ2jszN5PcMUvmXGYWCq0fLi8zABg2+fkRQA3YAZ87iBMalAo4C+5yuGsrVb41AIR9HmxRrkwhZRl4qC85F+0KYzszHloL+j8DuBXc7f8AgMcA/BHYYfAkgG8XoxMi+nkAPwguHvxxpdSHtq81NpRSv/dc7Hcc4xjHOJ6PGGeqnz6uuMIcwOsAfDeAB4jofr3sF3SBzFNG6XtI2z6irRLr11tulctvgga5lJcY7mJgO5i3w6zWSUZ9igg0KrB+24T5bjRBZhQNaEF6ACgVFAHZHCNNpkUwoohWGe2VSQjlE+sAwwHKHlBb1mDEt4LvnX1WV7p53pka11nrvA50dIXvSNcmCqAGgGw6R/M43153FLn2P/fqa8X/nz1lUc4T3zqJfR9NceJbBQ2VCDZ8+EMG1Ml53lF3P9B+QlVoAmXAlcTxhh0lA0Dy9RuYBrB4ka/jN992PwCgUIT7VvchXrHrGhH8W7YwWq2DIk3jWQkRbjpVk7Cc6nhTAzUB4EPFo3iqguraGu9r1CbUNfgbTnrwcpu57TpzJid+SGHy7xlMS7SO+aitqQrXr7FYYuXlDXhpteBV2lPWUYn4YoCgxxXf7mBJ7rdbbS0ZEzdrLBw34YiLZWyyZtskHZPoQwtlI3faIuB9MGO55pIdD9ystz6OlwNpmwwI522UyZhceuzhpG8KEUXrezDjVWYUGkslKFcoI89QRbhY9iqrVRSMFvk2xW8A+KBS6lu1jFwdwC8A+IhS6p1E9HMAfg7AzxLRzWCZuVvAlrd/Q0TXX41D16VBRO9TSn07ET2AJ8ntKKVu265jjWMc2x0P/OpP4GU/ydlqUWIa7U+x8Lf8fmme4U7F9Y4ofUIuCl7neXpt68Ckmf2U4vgi8owB2O6Pk0kySK1K1vCwpY958C0sDfKq1jJe2z4GAPhXf/4daB/XM3m678taTAkEgI42AJ39QmnM14Kek8jRfaj7boy2lDFfk7514kSGzv5qlpcKp++uW+O3wFEca17Qy3QR/WA+tJr/HhBr7wDhRNdWS2xoY7HkOKfBR3POu6IAJh5jMLB5A+/TTZREHV7WuWkKK7f5pr0i6CCRX/Keu6LY/n77eYnnDFRfTYW5UuoTeHK+9dOH3mL9eh8zj9h3WPPhFYz2TSLctFURRTNG2M3ROcS/gmhLA605fqJE2c7l1HYO+Ig37Q9jMBsh7BUIejzdXTiFilQyoC4T2zF0DvKxhD4BVIsxXMkaKeAQwA1YdYi8xj8GAdPZjWIRSMi7umPSgDrWU0u5TYyjrwsSsukc7VO8z+U7PKTzGZ74dkLzGG87mlYIrtHFEl1LFWlrpQa3sE+oDhu3FGjv3cKb9x0FADze4ZTtbTefBwA80Z0121z86F47HwbmbSdvXEF/GMGvZyhz/rJ+TqbugJmHbAcjswCuyoS4+G1cS4bTDPDUmHRe/XlHzkhnRc99hf0plPsGaDRHyL5uhHSVL1zrgRA1namVQhrATsMN5nVWWcB0AGQtzZ8+wtWexcNtA5R7u8lO+9W0WQ2A5LS931sH+DgTp5xnYN5n6cJYrtnlQ/u0aZ8jKbopA8tHl467sLcUwxmgcZ5pGK5xizyHUmzpZp+LmKc1RW4KRIBSGLUtoAZgZgBcQO0VCoMZNqCJuqUZ2Fza/isJwvZlPLT99xsAfB8AKKVSACkRfSOAN+nVfg/ARwH8LFjR6A+1IscJIjoGpr19entaBAB4u/779du4z3GMYxzjeN5iO/vt5zOeb0m9bY+wW+DABzgNRwOL+sKNAQZ7m4jXeFl/l0YlSipeHQyvFEbTES/TN3n1Fh9FAmxcT4g2eN2ZhzN4mUIZ+dg8EqF9kvctGfLB3iaG07ror+BMH2B5SoCVYxtNMr/blRyrLVeL2YIBZ4dlVDia1vbegEl912d0ZnwGqH2wbYBkRXJuWvNYwxLnv5730XgoRjoPNI/ZQUC8QkiOtrD6+hEmP2eHrz2t4NC/xqKk19z4BADg7k9fDwD488+/3Hy3a/cG1gd1LD08B38ft897pAGEbJHafzUvm2z30R9GKBUherxmbGCF3zV5tDAAWq7L8tcMkTxUQ/haRqije6aR3diHOl/DZguo65E9KUKyVqIMgNLJGUrGfuKoXbYRJPCuH2DjYgtaRhVFHejWLc3EzdD29mhuMzmKHgpIrt1CWRLS4zoFHyt4GcHLLI8OsAoqsWPXXSQeGkvKZGLcgYDygInjpdGlBvj5lcGaS7GQzLI/Uugc8CptT9YVOvulWtxu42UKhSMFKJa3ec3y6uU+uFxo+UxaFUZsyJVvueFGqaWwILu72ze8bTfjflXxzDvn2UuMqd5ziUrREQDLAH6HiG4H24G/HcCClv6EpqyJX+deAJ9xthdFo20L57intnO/4xjHlyoeeNdPAABu/Necsd77lz4kTSlW3n6mMJiWz+yCDACjOX4Bzt7fw+rLOGsg2VovszOJyiOT7ZX3/GDOM3U4ge7MnujO4L5/cwcAYGKB4GuOckPX20wdU/CH/DnscCaitpJjMMufN28oEG1wOz3dt1Jps8ZhtzSCADILV4Y2i+5LH14jYxmetYDeLsluR3o/NqE0WLDvaUlopVMASj3jqV/X69d7hpJopFwPb5htN6IJeJnMRvLfZM3OWp7+Kn75eql9H+TtApINkySLm2C7qhiD6hdWUKmQLPZMAV3ntjnznT/SsmbXWDeQIuapZuUT+nOOMsjFHGVAFSBTvwh0DlYlaLp7QhQJg4N4q8Romi9n0NdUg0m7fRkyKA57rLwg4Euk0LyMs6l1JzMdbebIa1FFoaK2ouDlCouvBSYf1W1+tI6BPtWsYfkDSvubNc8ok8ENhsD0vSE6hxTyhRSNh3RmfgOIPxeiuZhj9UY+D9Fknv37CIBCf7f9YQ3nFLytAMqzv4K7P3094hVCvjIlcuHIbhjg4uOcnQ4HBDzOnWCoLcQHr+kZxN/Tih/l4y0gqdJWasuqIp23qie4b9l/AdgPHF9lnbw3fN39+PBjN0LNpmjfZwcCwukdTtv7zNSPAFmd+cIyWAg3CaO7pjG9Ys1avBHzvAXgy8Amr8F0hFQCpc4M+6/ghYMLDYSZpVgAPFXY22OfpdZZDao3bafZq0UYampGZ7+PeF1eCoTWaa2Y4cyiSAGLqxQTddjcRTjV048wit08EhqakUxrliEDb7FEr1+sshXymlfJJtdWeIDjmsrIFKuAaXdKMOzy9RM1GTTZ0Ka+WFVgcY9xNUHqGffOK0qpO5/m+wDAKwD8c6XUZ4noN8BUj6c89JMs29ZXBRF1nm6fSqn2U303jnGMYxwv1HgW/fYLNnYUqAaAVI9ixYUQYO6sn0phlUMViJiDNZgHmmd5mRhqZA0PeWI5q939DJqKBIZWIDwqKXgT4A4AaduvZAyNxJuYc8iMeamcYjSFTE99N86lKOo+kg1NLwHQ3Rcb0LTwGUBG9sKZiteBeJ3Pb/rRFBdeG6F5RrKgypx/57DC5GMAHosw9YiVlRhpY5y9f98xy/p76xhOekgnCL5TDEgZUMYKyRIf+wsfuAGxPt/S4WSVy/yfsKOzpJpO0LkhA/kKrSRDr6fB9KMtlL7la7n8XVGJEGpC4ww78T0+PILmaUCGSn93zcsRAJj9fInG+QH6C7zv/rxw6mzblMmAlwgGJVpnRSc1hvIY7LnOiaNJnXV1QKALqDuH7Q33nmijjEuEm3bl9Hrm6zfu4daK+QsA4+bY22U5GUGfgakAagCYfkxnjfVzLGDapWXITIif6gJApeBlSuucM5XDHVxIGCqSo+riFfx/4XVLMSLA2fQiuVyxJuwrnSnRgxTR+lZVqUfTblWlhlScG68kFLYTxp4FcFYpJTr5fwIG1RfFqErbcy856z+potF2hVJKLMZ/EcAigP8Kvtj/GEDraTYdxzheUPHo/8kZ65t/4dcx9bikbK1ilnmHKoV0ogpX/GGBmQf4/VXU+bversgU+4ddZWaCZRatebZAbxf3g2f/5LDZVzjF39cvFgYjiPnXYC6EH4vXBa/v5aGpr5p41MdAuytOORKh7iyztMMfOP1nrGueRPGjx0X+ABD2gfpFp1ME4I0KeHomO53nbVVgk1/iFwAAw+TyWhmjAPaJaeSv4nd88wnfpAF6+7nt67cU8NLq+8HLgbyu6YzrPspr+bqHDzT0ueDqY3v77ectdhSoVh4h18V7wdAxlNjkDFi85WgOJ4TBDAPqxgULlDYPB0jWlCngGk7x8qDrSrHxXwECAmjEUhXQHNa8WvQ1mNHT5wpGao+34wJFzyYq0dvLB2metTyDYKCMYoRbvLb3Y0O9TJmps4uviuDlrKk8cz9VBhONc4Roq0Tj3ABU2GsSdrgB/b02xbihpfrKyCp39PfoTi+w50ClVbooQyBr6c5lXRdsbvB3W7fYjqIxNUCpCOFRO3sQdfleNBaVua611QJZQ4NH/cS2zxTwhyWiLbY7FzpCW/OPlQfkNd+sn6yXWLvRAylguMDr+H3P8LWzhof+nG/WHcx6KH1WHgH0tOKaXleyrbB0BmsU4FznM7y/wcus4kxwsobRDFB3YFba8pDHhI0jsTGmqa0w1zjqAq0TdjSzeS13Yi4v37Ql599Ab4HMNZIXVBmSGfT1dmu+vUM3CXslX0MB1Ppvd4+H2nIJr1CIN+11LhLPtMGd+nOlmATcjyY8KK86oBHrXLluhpeNqgvllcZ2cfOUUotEdIaIblBKPQbgrWBn14cBfC+Ad+q/f643eT+A9xLRu8CFitcB+Nz2tOay+Gql1Guc//8mEX0WwC8/R8cbxzjGMY7nLMac6nGMYxzjeAHGNtvd/nMAf6CVP54AqxR5AN5HRD8I4DSAbwMApdRDRPQ+MOjOAfzodip/XBIFEf1jAH8IzvH8Q7CM3zjGMY5xvOhibFP+AgtSXMzgDwqkUxEyPf3i5Zw1G014hl86nOKssRTDudMX/kihvgx09hLy5qVHqWaJi5ipBcEARoSd5eV0VrNuyf+S4aTC2mdL5rm7l5C1FWYe0PvV2fClOyxHuraq9Zy1PrXnZPdkCl6oIgt3ASe/PsDsfZqXq6XhGheAxnktcbZg9x1viMB8YCgm/VmbpfYymyVOlgm9QwXqZ21mXgr4hprbbfje+nqUPhf7kTOr5H1sAnkdqK/aZca1cas0WWB/WGjpNUIWWMfJMiREmodc+iI16OmsOZ/D8ssdUwGhlZy30kDpBLBR8+APLc1C5O1ci3LJ9CuPM7MypVbqNmd1oHnSq4y0JessdA+AOe2KOMNtOPt62kvW5/Pgc1n4LDdiOM/3Kt4qUEQ6S0y4xM2Qr7OolGQNLn4N+mWFjy6Fh26Ik6ci/h0JXQYAenu01e9ZZ+oy5OcvbZHJVIuJTbxZIE88S3XS1y0YVLPV7vMsBb3y+7zq2MaMh1LqfgBPxrt+61Os/w4A79i+Fjxl/COw3N9vgM/4k3rZOMbxooqH/6+fwOu/5VcBwMw2MzXSCgl09Qyc1Ib4wxxej2dyvRHTPSfXhxjO80yrChyVrVVej4oSK7czQ4pu4emy3e+OzazocCYw6kNSTB4MSkPlqGmSFymYupS0SWYmVt4d7aJKBxVlLz/TMrhtz/aFJMcGJljZD3mNsHmYQUD7NJ9vUQvMtXGlZY2tem7PV2YCs5ZV/kr38zWIT8agz/M1SF/TxUybqRzCG1t8bM70n8GA9zn5uDKz+XkCDG7kc3vn9/8eAODtn/hObEuMM9UvvPAHBYqaD39YwB8yCEhbgeFZCcjlIjUNFi8DJ7rQygHURcz8pNkvlEiWLSXDyxXWbq4bQA1YOkjmFGopH2idKdHd46EMrD5wY5G362r9S7HKBoBE83mNNrbzwHmZgqft2JVPgO6A8oY9kZn7CYpYscRsl9piNtG8BizXu34xN/SAsK8Q9hUa54ZY/LJ6RUGkdUw6PlT+Ns7KNbTrUsEVzo0lhf41evsHeYXpR0tTJCrX0Lg4LTJtoqgFyFsMEMXOOtpIkbVCbB7h0ZBwdAFg8lgOFRFWbgusHvNCCbXpIa9ZuoLccz/l50EUL4zWslX/M9SWrM2fhRvuKQaLabt6zmGPi1sptwM2kacLhooLU3VR3ki3PXQ465PHNRVnDwNyKSAEwEA2U+jPkeH8G3euDUubkftcxB4KuNSMEqMJv3INoq7VzaZCmReG2LwHPVuI6LajDO2zXF9WiDcLbB3gnYrlunv9ImegEm+U7Mg4LM1AL20HtmL/SkPtjGnEpwsi8sFZ8G98vtsyjnGMYxxXHTuk395xoDqdCOFlCqQU0pY9PT9VyGpUkc4LNNXVfflPnCgMj9jNXh/4kB7pOtWpAlomjzFaMgBPZ6mTVZvdFfUJyX66ILy+lCE/yqPS/i57TAE8RuD+gkIwVMhrHrxQIdIccco0V3ZvYkaTWY2wcSN/DrfsPhuLhd43Id4sK3rCdV2k2TzPf720hJcVGE1HmHo8x8YR3aAnwTzKs+oWXCCnVy15IJPoQsn975fZgxx5wgMMKUwLBvxXBi3ppDgCFkZOKRiIa5+HouajvlJg9SbfFI36I5t1pRLoHeZRfvvhEFAMdsW61ku5EIYKHmApZxAk7ofGgMXX+uClBdQAf/YyhWiLM8cjB9ybdfR1KUNdPCM8Yp2VrS8BqXY0bJ3RAvwRwR+wq40rsyjR126h8nz5fX6mRG8dAKItvo+93fxsCYjPa6wPrTzr2JgnrOThZari6pnobLLJ5DimBoN5Hvi5BTJsUV9g/QZXOUfP4Phk2tu4wO2M11Lk9cC4d/I13YY5wB3QOT9dKKUKInrl892OcYxju+ITf/rTlf+/5rvfZeor/FSheU5k7XTmNglAOrHk9fmFo0JbeAeyyYjRDL9LersCNM/w14Mh52a7e6uF1i39/pPZzqzhYaiTC91Det1SHwD8TpF6o12f45fDaMpail/zg4/jxCbLSA3fx5ma/gKZpJngj6AL9PbwPmvLVokpbfl6Pdv39rSy19TR0iQqNq7xzGys0gkef+jUr6R8DYa7CwRaAvAHb/409oWckr+Y88vrP5z4SlAu7wqdgJu1xl/BUCE/zhnHf1n+AwBAdHY7KhWxI/rtHQWqFVlKhD8oMNrPYEIAbH2lMPbKAExhmkiUAUC8ngHwWWJuA2iftlVYpKo20EXNr/y/fYLXXbk9NmBMHpK0SVAeGVAe9u0xtw5qQL1g1y9irXlJ1rRjMENonVXwCoX+nG/aL9vEjsRaGRHaTzBg7C8A7VO6g2h6CLs6K9iiCrgvtfyalzqOSyWQrKRYfHW9sgzgfQuIJ2UBGhfF6an99RLJOgP0MvIqkm+XVlkDDDSzdoQyJHMvy8BDvMK91tptdgS0dqu0w+4z2iAUERk3rOl7bPpY5N/q5+0zkDX5Wgc9IHcGV7GmpAQOgJ44XmLrAOt+yjUw9tohWJva0Z9WxNQZGRyRYmAZ9kvkMVX4Y/LC8Ad24WjKzgYI5aiz3zP78lNU7NkHs4TBbIC5+x2To8hDspqjjDzkNS27p0G9ZKN5h3p9Da5lujLaUqBSgcpqAaFUwUcdq80ddUoDyOuL1X2XPiHq2nNTHlBbGiGbiMz5mNWvsmOlbdjHiyTuI6L3A/hjAEbGRyn1p89fk8YxjnGM49nHTum3dxSohgJGkwEa54fYuN7yWMWmuX3a3rGs7iHsWTWN2gojV29UYPeneijqAYNgBwR6owIqsJbKAFMvysCDl5bYuI5Ha0HfySA6oFUky3JHuWEw7aPnWEMIQBEnxImTBTYPafB/VmstTzE4dTOYKgCWb7ftmjiujz9SaJ225i9RpzT0lrBvqQIiSu8PC3N+QS/Hyu0Mpt1p+1xnhTMHhOZ1oHXSgmwB2N6oNIBtMO2hu8/JjGt+WhE5GnWK1T5A1qaVNAhcv6VtwOXqyzRoTUpQTqifF84aUxbiLQV4ZABtMAQ2r9U89xnLKW48wSsUjkth4yxnl8O+QtaUbARzuOtL1cytqLxIuC6F8ZYCBvba9md9hFoNxnfUkmQAMmoTRjpjK4MdAd7yzNSXFHpaL1yR5dNJZ9RYLCvOngBQRh6KiIzah5gauTSLWEsWbh3mQUi05Tz3GQ/AsoaV1qtf4Gvq8vpFqopKPid30BDp83E50719idm/hMxIXG24pjQ7OKYBrAJ4i7NMARiD6nG86OOz//Un8eXf8WsAmINs6HV7ud9onBui1LJ0kqmmzS7imFcc7q6ZfkBmqJtnbWcjiaaLd0ZoXJD1gOXb9TtB73vhy89j/dN7+HutePVVr7sf9yyxcmbvk3OmNquvJVHzhMyxLv6fhzG1zNmPbJrb2bjgoa9l8UTulxMNknTThTaw79T6cmFoexPa1XjrOzpoxLzP/L45866VpF4RA51b9TlrmbzX3v44/uDQRwEA33vqDXj3Q2+qXPfaed9ktyWpFHWUeT+WAeFf/K9/AQB4173/C1/3eHv6253Qb+8oUC2FCUuvZCAogEpAT3ePBW9mCj5l4BRtaVrCqDCal/HFHoqGRUm9fQzUxb1p4uQIpS6cy1o+GotaT3qv/rGMVGXkJcAor5HJGqYObxsAJo/xBvFmCUVMiZh5RIPpmQB5YjO8Lg+8x795lBFvv34T0DpFFec/gDPVpc+gzbX3lkKMYGABmQBqyYTzD525v1sH9LnoVSaO6navlMiaHpIVizQ3ruNOzqVGkAIGc0DzrHOB9MeNawIUMTD7Bb5J3X0huvsmkDatnB+VnOltnPVR2PETiog1uUsfCB3nyjVtFlM0HPv64wGUz6Bdke2IykhTNsjKzsk1F46xq6Hdn2eXRK+w4JZyvj9uNrim3QJHmuoh5yuDo2Td2nXL81kkBOVdXhwLVKXs6tr9y72no6nALBOTIwl5FmtL9j6RAiaeyDCc9s3Uo4DgTGhCDlBmqpIt0qHSDgLc2QoZQOQJmf2KpCTlfO1dSb2rDvs+2tGhlPr+57sN4xjHOMaxLbFD+u0dBaqLmI1QhPPqAsq8zhxqybIi0UoMHmHiidRk3IokgJeWCDaHFUC9eS2jxwpomQjM9L9b9Ld5nX4yPNaIBmBoJ2mLQamA6TJiesf0owXSlmcNOABEohu9YNtBJetVU2nBmfIsV3taA/DuPt8AvyJyqBm6mWXAoNSlY1ABbB1wUq36q/qyzrTqgsLRJAyQbZ62q0vba0s2G7B+I+9vOF0FgY3zum2hcz0neR0Bjct3ONQNzVmbfMyuH3W58BOwPOd4U1m+sZMAl+1r5+0jL9ekqAHwrMUsf6dQhNX7LQV5Yd9SIboHgNEh3jA6FZuMRZgyWB61yQj69+fJGLoAltNfwHKMZb+RYxVOTK0GAGwdtDw+5VWzvK6GNJ8/O3fmCSFP/Mr1aIhjogO0KS0xmA2MugzAFJT+vIdcii2dayRgun3Grh92c2xcE1ecQWXA5t5/qbAvIqB1rjADVcCrtPNKYydIM32xIKJ9AP5vAK8D/1o/AeDtSqmzz2vDxjGObYpP/dFPAQBe962/aozRhC6YToRIlqQwSneEQQBvwJ1UnjQwnNQJME3NLBLPvItLnRWdPFqa9+DWIR+1i7yrwQL/Xf3wHtT1+7UP3t+Hj96ELzt8AgDw+OuA0V+Le7OmzfVKlLEk6kqM5rWdunZZri+mCAbax2DOFsj3d0myQ8/YwtYIdXcHaJ3RKl3ayKu32EQ35M5u/uXLWDnGElKNodPn6s/RHF+rC702vvnYV5lrPDHHJ7e5zKCkjIFc6I36spKySbXhFOHDKzdz24b8Pp08fZXF5Tp2Qr+9o0A1AIy0M1LztJuVY1mZvAHzg1G+k/0jgiBIUdTIJhMUtcBM0cjUU9Szd10A9XDah1cAA1PEpQBPoXnSw2iSl5Q+NIhlIFE62HX6USkeZIMYAGifSjGc0hlep0BBHuzuXrtsOMvGJNOPWCAz+XiG0XSAIgKW32CR19RdEaItZTjHLsc8EiNFvcjLLTB1bdxrK9yOtEkVcxvJPnYcYC50CKHECBDL6oR0EkiWYa4RwGAx6LPyhlsQ6InUnsPLvfAmBaBAsOmbLHPngPC0ARROxrfGknr+CAYgFjUgnVRonNFAVme2i5hQBgyG06a9PtLBKN/KFPlDIExyqCd4gTwnoynrxjnSWW5/yJnfdIJpKSLLFwy0AUyd0Ljgyt15pj0SLU1hijolunt9Q+vpzzGdqbZamA4XsBlpV7mlvlRAEVA/P0SqC3iERy8GScLnNu0eWgdRwMoPulJ9YZfbPvU437jeHlu8ktXkxeFw6vWzsXHYN/J62wGoeUfbtJ8XdvwOgPdCa2QD+C697CuftxaNYxzjGMeVxg7ot3cUqPZS4Mj/O8DSK+oVnquMfgRQA0DrbMHauf0SUMrwjEdT/KYXHqxM5/spZ4bDvjKyfL0FoXlwBlw4xtEGIVkhLlJzQEIR8zpeaosPAWD1Zl6peU45yxiQiL04AM29JmTtErVFwnCWv5u/m+dN/FQZDnhe9+APSwwnfUzeHVVoKFmdtEqGc+1KC5pksEGKPw+nPC6YlAI3DezdbKSM9EdtH8FAGe40FZxR7R3gdelVPCpWdzEXZDhni+3CrgV/klmWtskyyWjyoIQBNWAl9ajU7dTnK5xjf8BUg6wBdI8IMThH84EYRQwk61aH03XeFN6xC0qLmpMhVkB4XwNUVmcMgqF9TtxrP5oio7xhOIKKiwynjtmHVuTrZDAjHO5kTSGSglQFMwASmkkRecYSdzjjqHhcYv1dPz9EOhkBeiA0mAsRbxYYajAdOoPH0ZS+Lht2+2DIvxkqlaGsQPmItnJDbYrX7fnkiR6cunUAPv8+oo7NsruD1quJnVDw8gxiTin1O87/f5eI/sUz2ZCITgLogCdKcqXUnZd8T2D9668F0AfwfUqpe/V3b9Pf+QD+s1LqnXr5NIA/AnAIwEkA366UWr/CcxvHOEx88k9+Gm/+6n/L/9G/7Wh9CBrpjnikX6hJjM1bWWljxakx8nLubOsrhUn+DHXWON4qEWqlpNqKZ/rXmp513LjWN+8XmV2c/+MIp9QNAIByxkemVbskUTCa9BBv2gSZONvKO2H1FpuhkP417MBwu6m0NFKRI22dzhCvcxY+7HLb5z+dYOlN/D5bPjOF5ulqPU3nlgy79lR/gkudJk4/wHzRZIkwXOBjBvq1WCQK4Sa3czgtW5FJfADAwx9nbdz2CrY1dkK/vaNAtYitt84WGMz6RqqmfUpbZm/lRjz9UmtxV0GiDFlFAXD4r9AAc7L60FoZOSBc1NsLlzsFoIFTXuNpFUADMlFbcJb158noKgMMqNdvtMefumMZy0dnAAIGu0v4PWmLBVpmyqkAOnt1p7GpKrbo/Vmv0k65HlRUubulz/rSAv6EXyz7qlIj+FhiYBI4oFhkAht7bbXjcEbPKJxx0KoCRvpH7KVWJ1yKNouao4JxSMHveog2uX3utJEivq6uznj9gjY2KYDWUTF/YUpE1KkWG0onltcJiTZS6e0moNQFmwO7/nDG0kaSdXuNjb6zo84B4oFLGfL5GapIVyHeKhE4KijdPcKHrrZtOE0YzPrmuZPzNlQRhz6UaA63gF5Xbq9zpI54Lcdo2j4EYvZTGVT4hInjJcqIkLbI7BNg6bsyIh6Y6hD5vsGsh8ljWvoq9pCslRhO29+Om/VOW0Bz0QHxrepv7FmHgnmJ7fBYIaLvAvDf9f//Ibhw8ZnGm5VST/Va/Bqwxfp1AF4D4DcBvEbrY/9HcDb8LIC7iOj9SqmHAfwcgI8opd5JRD+n//+zz/akxjGOcbwEY4f02zsKVJeRh8F8bPQhpx/ml3owLFCG1jEOsBkzyU66NIjRpIdoS6G/YJdJRg2wOs68ro+0SRXgI9P67jIvc8C089zU9CtN2uWCjaW3ZAjPR5i6Y9ksi/f2kJ1sgjJCXWfe+wsesrqoXzhqI1tCFSiQ6++HUx48ByjLGXoOtUHaZwCuBnANRyatt+Db9cGDCyOztmHVT/q7gHz/EARgcKJt5f/WLCVCQgB5W0scSlHbcNLqGx/8DpY1+cL9h1G7oJ2vVu01B2wx49TDl1CAYm6XgGZpiz9SKAOdUdCRtgIoInT328JBydSWEVBIRfZFZYB+dy9ZUxi9zKWQkGIKSm8PS/YZTndCKEaEwUKIzUMWUArFhNU0UAmj2uKA9mTNKrvIdgKolU9mAMmKNcBg3v78FdkZiAqvzedsvVCQjGHOSJlnqrPf2Y9uV14HVm7jhyzocyadJSX5++EMPyfym3IdHAvHROdKYydw855B/ACA/wDg1/X/P6mXbUd8I4DfV0opAJ8hokki2g3OQh9TSj0BAET0h3rdh/XfN+ntfw/ARzEG1ePYpvi7D/Gj9Oav4oy1IoLX546x2G3taCfvlinpBXT3aj6y7sejrodA6+DXlnUH7BPWbrLTtsrjbVonh3q9xHCdpR5mMO0jWedOPlkvoLSjb23FJi6kMLw/H5r3pCRboi07uzp/j/ZgcJSPhjMBvIzX7WhjuLjjG0EFmQ2EAloPWrpl5xbtNlnnv/U4w8XHWRs7XrWzvDJhmLXYIZmvJy/zciDTM8ppX8/cdyKsvEyLMuwdAYWmJta4769deOFxqnUC4G4A55RSX/90M2lE9PMAfhA8c/fjSqkPXelxrzIlNI5xjGMcL6wgaOrSM/j3Yg6l1Gml1Dcopeb0v29SSp16ppsD+GsiuoeIfvhJvt8L4Izz/7N62VMtB4AFpdQF3bYLAOafzfmMYxzjeOnGM+23n0W8HcAjzv9lJu06AB/R/wcR3QzgOwHcAuBtAP4fDcivKHZUplqirmXCgqHDZRD5MicjnazqTHYvxdY1Up3rYTTF3NfhfInaOV052wVAVf1eqeRVPtBbsM6FIz1oLhztxomjmg4wlOJG246UjZ2QNW02dOv2FG+86XHgJiDVxOz7zu9DdpI5DUHfbtc4z3+lcFKOU8SEaKtAf87e5tEkF9BRzoRIE85AU7KstWVgpCk0ZQys3iL8ZYX2cT5vt8hwNKvQPkqVrHHe0Nz0Zc4ESFY3nVAI+nxQo7Vc2PNXHmHtm4yfBf7g1b+Nf3P66/GF+w+bZf3rtbb4Q3ak3r2GDzB9L7dVMgsAMFxQ8IdU4WvXloHaqnak3O3IJ+pZCqPXOeDMcdCvFtMVIQEh8+KodApQc8uHFxfLjWt9pJN8npIVlvPOY9aBdikrEhV+eca8fH+oJezyy9d3n3F/pKB8qtCbxEXTLTINRswpD/olQFQxepHstKtMA+Ii1d4ul7cobVTI61ShvgiX0LV+d58fKQLdjiw1lNoR04hfLK5S/eN1SqnzRDQP4MNE9KhS6mPu7p9kG/U0y59Nu38YwA8DwIEDB57NpuMYxzh2amxjv637xq8D8A4AP6kXP9VM2jcC+EOl1AjACSI6BuDVAD59JcfeUaBaefKP4BXOFIkTYvICAH6f3+QbN1gkIwBiOK9dB6WIoMfc5KxJyJqa7xoCIAsUBgv2gRDgFW3wO2gwB7TOXA6oswZPgfd2A9lkiWySlx/Yx7yQ1Kl0HHYjTB0nDGarzn0NPYjIEwtwwn6JsA9TeDZwckZZHYa77cqcCWe6c8Dup79P89E3POR1e35b1ygkSw5lRhdN9vYBRU1BeaLmoIDN0NIh+naboMcDAxGYD/rA6h284g+98e/we4+8BgADagB46Pwu+POMMPMBo6/rDi5iccpxobnQwvS9PqKew4UGkE0woJbjSESdElmdMJz2EPStokWRcPtcWg5brvP/E6eANK+RpWN03X3zwKa3W7jtlkKT18gUFAo3vb/rcm31MlRQgXVfLLX7Yxkw0Be6UBEBadsDFdY2XIpHFQGjKa9aMNlmVZlE17D4qTLc6GpxLRkQLuo17r5FHxvgwkgvU1BkLXj5XC0dqHHOLpeah7wByNhgeGSE+NTVW96+2LPQzzCuWP1DKXVe/10ioj8Dv0RcUH0WwH7n//sAnAcQPcVyALhIRLuVUhc0VWTpKY79HgDvAYA777zzpXGnxrFt8Xd/zTSQr7nuZ7RyF+D1mAZStmIMD3NWq4gJ7ZP8Pok6/Le7N8TazVXYM/l4WaFqCtWN9id62xKpNl3Z9Vl+WYVrAwx3M25Yvy50EkmaBrJa5TGITOlgho9tCwCBzSNi6AIkq9rEpgxMHyu1WFsHPAynnCwRgPrFwtBdB/NAdI7fi7tey5TRhVoXn891DdEWtzfcBAqxoHA8EFxMEXyC1x29jDHSD/zQX+H//uDbAADf+fK78ebWwwCAVHfs//yD34PtiGfYb88S0d3O/9+j+xQ3/h2AnwHQcpZVZtJ0QgHgmbbPOOu5s2/POnYUqAbBugV2qyk85RErOThZv6IeYvNwjNGk5USHPYWwByQrHjqH2F1PIhVeqWsA6NkMtZshbOhJWCleKyKrQey68InsWv0iQBc8NL+V30+/dM2fAwB++fTbzD6nPsu/rrnPa/1qhxMbbuUIt6wjUdYOMZzy0dlnOcFybAHUDQcQCXgkZQs7hY8WbWhr7MJmb70UFUWQoMfAsqhpIJc4BW1bWlGi6wDqLl871wZ87fYSb3vN57E/WcePTn0eP/rlnwcAfNMj38Hn1HX0un0+ztHTC2hNDkB/NwkAaIOBffQYsHGNozRBQF5TaJy1y8I+jK02YDlwwzaDY+E0A0YkAxMnysr17O5mZZSwx9dDCFXJqgW2UjU9anvIE3YlpNx2IFnTzm4Id1p5XIXdOKcHAvo5GcxzVtfLqvyzZI1rAJIOjEtoGRDiTWVAcebMIAiYlgx2ViP4I2KXSoeXndW5vaIe4uqabx300ThfVlRGFF2eyJQXjGhTA9x2tntX6DYIwyOWNO66Ul5xvDSg2hWpfxBRA4CnlOroz18F4BcvWe39AH5Mc6ZfA2BTv4iWAVxHRIcBnANPm/4jZ5vvBfBO/ffPr/zUxjGOcbzk4pn12yuXqhW5QURfD2BJKXUPEb3pGezvqmff3NhRoJoKflmHnQKFk6VWxC/vYFCa7PVgNkAZ2MKBhlYfSFtkwPHk48qof/ipzfa6hhtSxKccsBqvcyGgqwaRtgi9fQrxKpkCQADYmskwfW9oANKpkywi/z0n/wluvY4R/WOf0ZSHg3zs5jkG1KLZnDU8+EMP/rDA6i0WOY2mwJLZzvhCbLbjTZvFBGzh4sDRoy49oHnCQ+NiiZXbPUOFADQgVEA6aZcVdUmnEoINR+d4oK/hwI6KhSZRBkD3MG/31a+9n9vopfidzZvw5+dvM/tY+eBetGBB+MadKUAKk3fFAGIjKbd1mDD16iXg1UD62CygBwKRlghydZWpsLJuUFVaR6YnL9zRe7JeooioYs0NaAUXVbVyz5oE9GzhHmABqYBeV3/aS/malA79QbTWXVqJFKdSqdiOXT9jZUSYOspmOO4xZSA4mrBFocGIjxM4NvWJnqUYTYopi21bvMUUkrBbmMzQ1kG+WEuv9Az9SGYAgpGq0E0ABurBSBnKyajtmQFg0AcmP8cDxu5+bEu8RDLVV6r+sQDgz1g1DwGA9yqlPkhEPwIASql3A/gAWE7vGFhS7/v1dzkR/RiAD4HTcv9FKfWQ3u87AbyPiH4QwGnYDPo4xrHt8VdHf9l8ftvL/j8AxLyNO/mJYzk2ruP3YaoVhQYzhNGM1uRftR3lzIPceSkPyFrcCWcNUQojI4GbJzpBBMAf8XFqa4HxqBBan9DdAO734zXewa7P8t/BfGzeByKDWztvXyC0K0ZPF0dGOgFy7dcfx6N/y1J2pi/ve8aILepYuuKitlU/PVcYF9zEMXKRcJOG049qc5gvsxii/RBfi98I3gpM8Q7ODKbw+4PXAQDWRpzy/vg3/hoO/CiuOrap334dgG8goq8FkABoE9F/w1PPpD3VrNwVxc4C1SVrNZexhyIiI7EnN2owFxoQkTW0zfVFxSBJrxNtKay+jB9mUagAGKAa/WMBooGdwo7X+R9glSh6u8gA8N4+Tf24g3+8edeip7zmqCrULQJ+9HOHANhsdhkB0Sawfn0AP7UgLlnlbXp7YwMM07bVwp6/12YBu/u05JlkF0nOu0R/QSukONdUstl7Pplj7frAbJPJpIq7cin0Cmfgp78XwCXZXy+zHUPjFB/3/uv24TsO3IN/f8+beZuzVgqlodddv11fn8zD4cMXsXHX3ooVuD8Atv5+HsNdpb42Dod+mWX5XPpHEbJWduM84Gu+uz/kwUfa8ir7jja4E+3tCQzn2nRom9rgx70eioG73Fvlsc55MFQYzJChbgiQbp20nfJglox75mD28oF00GcDFlm/yBmk11aVdQ0FsHWIuc1eZgcN8Sa7Rbq24mnL04Y0+tl36C3iYAYnC+0PgK0jls8PWPUWoTmNJuxLK+poHXUNtpP1Av0FH1mjej9mv8ANOn7ZGT+LULBTCzs7XPUPBeBTeAbqH1q54/YnWf5u57MC8KSvSaXUB8Cg+9LlqwDe+gzbPo5xjGMcNrap31ZK/TyAnwcAnan+aaXUdxHRr+DJZ9LeD+C9RPQuAHvAMqKfu9Lj7yhQXYZcYOWnbEhRBtrWtFdiNCHaxLyunyrjoAcAF77C7ifaYEqHW3AHdflnf8CFcK2T/P/uPv6brFoAI8Lur3z947j79H5cv5sHR4/dc9C2W3i0GdC4mw86nAPKQCHsWCBTX2RwMpokJKvKyAJ294QIRsoCZVggPvPASLeVwejE0RydwzUABBBnMAEGQFL45mbYh9Me2qcdQA0LqCtZ2BSIUja8cWUDrWycXlEGJJEFX/SPrWTgv//IV+v2XgKGI6C/27br8GFO2W7cVGD+cx66e3h9ycSHvap9OWAlAmUgFG3wdQaYKy3ZBZm18DJlqAhlRAj7Hrq7fQRDaxTjpTq70eDZDBeMZiKl50j4DaYJRcxgO9CDoqjDz4siIG2I5BLvR5wz3Yy5It0eB/Ab8x0HyHoZ0DrFRavdPYSWNhcqA1t/4GbuFbEkoHtfoy4XLpYBwcsVevM2nT/9iOat73KyMhnQ2+Vdxi0H+BzFclcoKdEmr9M6y6NPKf692ngpZKqVUqcBfMPz3Y5xjOP5jg8+8A4AnLEe7OeXmp+VaJ3lzNKWdvn1R0DjdNWngRSQthkY1M534fd4m7DJs2fD2Qitc9yJiw9E73AbyUV+ufjDEk2dXIg3eb0i8oxEXhF7WL+R3+vmfRhSRf4WALLWBBpnOFucNgmpdoeWZNXnHz4Imq5m2UeThNYp/a7YR8BX8osi/Ljo4Vq3Yelr3c9ertDT75ize2rmO2mZmTklZd7db516BP/mA9/C59HmE3r90Z/AdqhnPsf99pPOpCmlHiKi94FlQXMAP6qUKp56N08fOwtUB8DazR4mjmvwoLmh/bkAfqbMND/AU9oy/dzd7cPMkUyloL0Zuis11E8GmDhpiat5QujtJgOS2mdK4AywddBD1gDSKVvcKA/Hq1951Gz/D268HwDwJ3/7WrMsXicD0IaT9lzat3Ol1+aDM4YGIOCk9ID+HFXAb3ePV6EOSEFF0OEOonegYc5BMtK5Y6ZiTETqwOaMBqjazObinQGKxAFwI03ncLST85reh6aFXJqxBaoa3NMP68z9NAF/Na8/A35NssUOr7cJZC2FmVtt9dvWKMHayUnMf47PxdXQHk4xR97NgK7fqlBbpMo16u8BkiUABDTP2/ss1IfSoUCMJhnwFRFAJWG4oIH3kIyeaOuUpXQIGM/rth2ikU0lH1MMcsrQDuBEu7RxgVBbKTH3Bb5Bwkfu7vFM4UoZkNF5LvSzXl92jFh2cabdKxTaZ5TR/R61yXC/3foAAcJCBQGA3ryP2lppXhBxR86PzDETh3AggNzNguc1QtQtKzUHUhQb6+y/TLW61Kqrim1W/3i+NE+/SJt+D6z2saH/PwXg15RS26VVPY5xjGMcX7rY5n5bKfVRsMrH086kKaXeAVYKuerYUaBa+cCuT2fwcmWKzgCgsy/kkWHqAi8PtRU2RRlNA8kyo4HgVILuoQiz97M0XC68V2LAlKwBay9nINA+Q9g6KCLoVl2i1FJ6r3/VI1gc2OLTzz5+p9lOQuTkekcYTXzDHVyc96mLh7D5IM+ny+i2P8+AXuTHXFqAqCsIwNm4NkHzbIagYwE178MCauU75jehtlt3svO9vXJdLwe6Uqjork8Fg2k302kUWXwL0gHmtgE2kw8AeUPzvdd1NtfhgqsQWHtgFu1bbMp24jHfHF9UOQALzAZzMBasZa1A7zDgd314qQaDmlHVOqudBx0ZOeUxHUSemdGkZ4CylwL1MzpTMKugAoV4jTCasgWFZcSDgWjL3puwyzMD8QYuy1L0tUpJhUKkFPKEaRkCqutLCp2DZDINcq29QiFPiGUUdaV7/SJnIobTHoIhFyMCroSgvVGTx3IUsYewXyKrexXnUH5mvIrVuWSa85ptswyazGDLYa30FqT9dh9exmD60muxHfEcZDzeDtY8FamZJ3UPvETzdA+AvyGi668m8/E0cZsAagBQSq0T0R3PwXHGMY4XRXzwgXfgDd/wKwCA5Rtj0wdJLY5XABOPVdWyqLCOw4M9TWMFLhgiXs+wfDt3bnP3WaWDdJJfCPXzQwwX+Pu0pc1QLg5RJPx55bYIzXNVNRBFNhEisqLpFIFKfqG5/ZfUKtHIg4p14k7XeqUTQOuM7s8PAOoi4w09ScoiCnpfkrCpyLASVWZdAZ7JnX2Au6sLr9UOzasRPvHtvwoA+IqP/5jZR7CmldBmnkTb9QpiJ8ww7ihQHXYUSAFBn29wOsUPvTxMXkaGb1pbURhOeagvF5h4wq/o45ahh7zG4ECy3f5IYeOmEmWsEK7zU7hyG9tfdw9U5eXiLf68eKsF1Bc7LbSne+g+MQnAgunhDfxrv+3geRxqrOF/PnaLPZ8hoXHe6lEDnEkuYAskAQazmbzqNahuns0wnAkwnGkhbZMBhFKAJwDIVZDoX6unvRar8gsCQu3/rf6z51AbzA/C+WEYacF1djQMnHZ3jmjnxIA3qJ/TOtj6XIpJ3ZmUTqHIh61zVqCXuVbeo0kGeXKeMgFBqWfOI9rQX0VA85wytA/3B+0V3NkKpSbo2X25VIyJE5oCoUFxfaWqqNLd65lsMmCVVYZTFrTGndJQKbpa97l1rmTnw5AwmCYDVPOE0DqtTIbZHQiIjrQUn/Kgh/Wk/ZFCpot0RSt95kGrp1gkDKh78z7SCUJthddJW2T2N3KUUmQwo3wrKUk5ywbKtGrhKOPJLItrVd46a3GmAOvegm/ad8WhZ0u2K55PzdMvEh4RTTkZ8mnssD59HOMYx0sktrnffr5iR3XAVLKaQecgI0bRW1bEBWVeZqe4y4iAUlcFK5vZHk2SAT7Jih19nXtjhKBDSMPishsfdoj372g+r31Ziv6aTcMOl+vwhh5aJ/g4Qh8AgFsPMiHrb89ch+AJPVLVX/fnLwF7KSrfA7b4L5sosW440iEai8qoP5h12gpeSkj38o5+/rW23ugvl1htozxigdoj9x1C0KXKtPxoroTf8yqqIr5WlFCezcwCll4gYHrzBidhFyggJwOmAaC/l7+n3CmK04WP4U2bwHk+wXSC/xUxZ8BltK8C5kkP92bwNwOo0EX4/Kd5rnoDvZwzvUL7sNfesc7W44zJJ/hLP9XZ7diDCph24Q+V4TT7KQPZiSeKyv0TO/lLDWRIcWbcZM1rhLxmixk9p4BDiglrK8K3YYvbwVyAeKNAEensQq7g5UBe81AkZNRiuIiXt+vv4tGkgOewp1BbUQZIt0/nKEJCX3OpJVudrAPDSZ7lcTMfhoPuDFItoCZDeQkGPGCRAkaxvQdg2nalQcBl6iNXGf8Oz5Pm6ReJXwPwKSL6E/CD8O3YpinMcYzjxRofe/+/BAC8/lt+1SQv1m/m75rOLHHzFE8r9vbVsXEtd1wTx1OkE/w52uR35MVXN01ibuV2fj9PnMyNasdoNoavrc8N/a8e2JquLsyMdv2i7pcI6NiyKt7nUYXNw/adY4r7J/md+KpbnsDJTcYUq49yJkOFCst36GRJBxCdbJmxrq0VGPwTnkpcW+VMkxrYF3T7kcCcm/Td/hA4+w18zH/6qr8FAPzNxRvx3Y9/JwDg41/xH/D6P/7pSttVcXkx/bON56Dffl5iR4FqKAYQeULo7aGqju8ygyfJVGc15j7n6x7idWW4xdOPZIjXRihDLcEzz+m2dIZX8CZSZNDTPud8ZC0m9uc1SzUYLgDRuQi4cYThsuUlTD5KSFtA70CJuWstEfXk+jRKRcgenDDLRBrH5SFLdtrLwFlIvet0QlMckhLNo3xL/ZRBzGCOp75kHQDImwreZoiffdufm2UXswm8auoUfu+h1+DG3VwE+Mh9hxDqrLuX2YGA37vc3d4FUa4Gs4Dq3m5UAW5gizAka59NFth9DfOmlx60bjXhTcx16G/VgDu4o0uOR2zIooDBQhXYDffyCEAFyhZM6ix1+ziZzH8wVPAyBqylT+YZ6M8xyHU1tFtn+EuTUXU0wusrBRTxNKFQIVRAGE6zVKIAVC8rEXUKjCZ9lGG1qDEYcHGt0CrMtSv5XgofWQoSo60SWYMQdexD3jo9QhH7ZiBVgLXDJZstajFBv+Si3oZv6COKgIlTuflsjjcqUYScPXZlooQeEq8BjYu8XWdfYJ4DlwIkZkdS0AkwKPcyZZRFvFyKipUZNFxN0DPn5j2tkcDzrXn6dKGU+n3d9rfo436LUurh5+JY4xjHOMbxXMez6LdfsLGjQHUZe7j4Kh9Fo0TQIQNwRD/afdEXdc6uxuvK2JrzSsBoKjZFat19jAr9roLaOwRdSDDzqOYztYHaskJvlzbIWNZZ4TpPgZfHWqhr7muyZmkc0ZqHzc+x7ET08g0AMIBajGQABoquzXZ9Q+9XAxe3WK5oa7m3l1skGJ5IzH4qmV99ur/y599klnkZUFzbh3+0jqNHDwMAJs+wkYooaLSO2wtopvwF05FVQyEFowUKAKpRwF8PUDQcPm0jQ7keI9yy+2w+4aPzxAIGWuVD7tfwZJt1pg+nSI5bakptGegeVAg3qUI9qZ/gCyQuj3wN9P08wPrjAIx6BhUKZY3Qn3PwkOaLt07bzLpkoUvH4bC+ogv41jMUiQ8vt+cYr+fo7rWjDeXzs1RfKpCsAUFPu3zti7gAslDV+yTHWLJtKBKm8gRDBQyV4VonmcJwmo8Vb9r1u7sDKJ/P1biFTjM/ejThIdXku2RDYdT2EXUKPj996UaTAbKmPd/uHp1p9zgDI4Caj6uz3/MWRPMHHtAWMdA669yTQiGveUYbG6gaxFxxPLtpxKc1EsDzrHn6xUKD6DGQHsc4LolP/OlP43Xfyjxg5XO/svCZDrw+J2Y2bmOFjNpyZvr2zWsihF3Nr57n/jTaUoj1e/ziV2j52j0h5u7XSabRk81yhiZLPpqyahviURD2FOINXmYlV23xuvKtm3EyY3ncByZ4o1e+4QwA4ON//ArjYaA8YOoOVtJqvYpf2ifv2YcZ3Zl7S5wgTC4Sdr2Ntz9/Zr95L++5mZNpv3itTbZ9YPPl3O7Sx9fsZjn6r/j4j6GsVTniX3bLcZzGVcYOoX9swxtsHOMYxzheSKG4ivyZ/Ptie1Lq55VS+5RSh8AFiH+rlPouWPdA4HLN0+8koli7Dl6V5uk4xjGOcbw0Ynv67Oc7dlSmuoiAolGituix1qJnl5cB4JX8DwASzauNt0oUiYdkhUevK7cxZ0p5nFkzGclFQvRYDWVU5ZWOJgh+6hTGgQsH68vVLDPlPFrt7QVG+y1BOT/KGerEyVADusjtthThYoS6k+cqaryv/v7S0CmKkBUovLgqMDDxSh61btw/Z5cd4238FFh9WZUr7R/lBjfP6Gu0USLZYA7vaIIqEnWSvSbnkFRy9lKy2ABnqbndJbyhB8w5nIqwhJc5HDI9IBfKiWTtswmgdhGoXYysTFuds9SAlTIEgGSJ9ydZ/KkjPF2x9cCMtQXX2YLpL2yhe6iJvKazGPfYjEDnAGf5XdfDqMPFrWK4AnDBYfvECIV22sodJ8/BjNZGd6Tk/FQZHe9cy8iJwkjfcbMU/ejm+QJFZCu084SQNQjBgMx5AEDa1u5fBJSRfrbXC9SXC8TrGTaP2KrBIiL053zkdZiCRCgg3ioMR1x4zew4SShrTFGR2gPJlg+nfUtZ0buSAkV5trwcPJORwmTGaysFhtPiWGaaxjM+G9UsyJXEl6CK/EuieTqOcYxjHC+VGKt/vMCCcmD68x4GCxYUS3g5jKUzwNxYf6hMgUF3X2zWG84AKFn6zFW3ALhwqz9XBUteXi1SDHoMbmpLdplxLtwAoo0Q/b3uNDhhNMPfCUjt3ZQyLxtAb7/m0W4QBtopUEWWrKtCrZLh2X3OTDKB9tDEOh7qWFANMLjJE8LEUQv8B3O2jQLgBjMWQPojVNwa5ZoIIJLvh7NAPmExBHV9Bvwpr1j7gtXgk2OLDJ0YqABVGkzrFMvFuRz5dAIIuoSsXSLsWFQmxjQCptfOap76VI7p+9iafuHTm2b95gkmrxdN+7Bk7RDJRoGhY0QiAFHa4HLIV29lAN4+ZakQWcMzKhYCJAVQD6d8lL5jvKKYKx117f2TKUhjrztrue3K48IX93oIOG6dsvIqec1HvJ6hDDy0TmcoEtG6DoxkobhIegXrWPuZgqoUoCqgaakdNe3emceeMbdxr4VYtrumO1GHC2bdQRkpoLZa2N+S7COsDi6uOJ6DjMbzoXn6dKHtwv9A1D/GMY5xVOOTf8IFdW/6GmtpXjS5v5b6qsFciEwkQmNAXoSpTpS1zimjDtY4zh9612RYfjl/TlZscb5QOsKeMn1a2HUM3nTfmk7QZVQHKhlfAMDWgQCtJ3TR+yP8UnvgKwG6jz8PduuXxy0joMM7bx3zsX4fv+s7uq899JYzOHnPPt1OLcYwq4Bf5PWCV8C8F5Y+txsA8M+2/jHSc1z8QroAsUxK/M4Gv/j9sECuMcfuvdz1XOi7NdxXES+CTPQXix0FqsuIi9YAYDAPZG2LOuY/pzUntxzAlymUEaHvFJ1lNQA64+qCnP48y4yt3mTXFS5TvMaueAJKJctXBlbKTn5UvTsHKDsRvJZF4WGSw7u7hdFtNlPqn0/0MWwbekcyUOoBWje6sYuB83DIv97pds+su7LGD/naQ7OI4VQdg50Dqaxm0v0R/wu7qGRiBTQbIA0wCEylgK56LWoXgc4EQI4MnxQ2yo8a0MfpMhCXzs1PuTgwGAq/TBd+TmrFFGdsIIAyXtNKF6KxOcHAs3vfDBd7HuFOavo+bqgLqOUHTHmJYGOAwT7bMQwn/csUN4qI2IimaSXnAOtAOZh1JD0UZ3KL+HLnLCneDLv2+ZRtpRAxbROS9RKDloe0ZQcbprBQa4wbXeuEEG+WUB4Z10IQsHFNAioV6suFAehRV6EYWb1zAIi2cuQ1H0XssW5rbp/hxsUcZUhmGQAEoxJl6FWkAeUlUYb8z1VZKWL+N/W4ww+PCfFWic4+z8xS0HbkdNXOqCJ/BrELwF1EdC+A/wLgQ9pefBzjGMc4XlyxQ/rtHQWqAQsUkxXriDf1MAzgzRpSaEUmS63IgkYBhyBWLRAtZUBxQZVTy1bUFJqnCI1FRgJmuj9kkxYqHP3kaaD1mmUkAGb39fDIKR4VJg1GS4ffdgKP3H/QFKoFPT3NniiUdS0zp7O98wcYSa1uWlOXcjnBynJiNaUXRvAu2Oy7KEIEfUtVKSMLikUHWUAjYLOfeY0Q9ixwHU1akJesWZrAaIJtyhsn/QoIl6xlaDG/2cZ1APQyYDDrGeDY22MvtqhGGFDp8UCmDLldrvFIOlmifs5DfUmhvsT3pHE+RbwyAJwfrYo1ZaOdIK/76C/Yn4MiwBtYgX6A5Ylqa1YWD7CDNC6wq2YfypAqRSwAPxM1rSdt3AzJStzV1nh/o7aP7h5eId4ERvp6Kp3ol6xvslaaa9nd66G7NzYDjrDD+ytiQtb0jOZ62C3hD4FkLTMqN6VP8NISXlqlXrANO8EvFKKNFEWdr1F3b4QiIgRDZVRSBjOEMuDC4DIEuvv1eZf2d7Bymx14lCHPzgxeaVPYRT/E/N9vQ7f04u+bv2gopf6/RPSvAHwVgO8H8B809eS3lVLHn9/WjWMcL5z46F/9jPn8mu9+F4Bq8khmfRuLVn2od4T7YuX75v0i759gPTCmaL0DCvXzYhtu9ycJgjJgB2cAGMw5faJOasiM+nCKjHkMAEw8wZ2myJlGH2+ZbeY+L233TUb8/BtLRPv4JUv3cILo7Cf2Y1JXEE4e4446awXI9HGSdYXBgs5Ga9M6NQjRPMhTxd1TOjvd9TCKuKHxxMhgkbW7WaVr+k53Wv4qYgf02zsLVBP/NpIVYO5em/Xt7k+Ms5+4KHmZQh57GE1UdZyLmLN/RcxgMFm0AEpMP+x0NyHe5B+hmIQAPFXeOjXEaMYqVazfDnzlwil0iwh/d9/NZvmwx6OA458/DMyUCDsWgI2mdXVx18mOTzGa9b0Secfu3y/4Ryyazr5W/oi2qtbPA61UJyDHnaaXAcNgl+b47uH/Tz+ooIjMgCPsA0HfgmnTBp297u2xy2J9zSKZAnN+NFQwxaSxyOc5ahO8VEvLTVbpO5cCcoDvJxWcnZZBQaoNY+JNzoS2T9gZgeF8Xa/DjW490UNR0zrNbb+iViE60TJbEXVKM4p2M7auWoU/UlZKMCB4OkMd9pyBQ+G0Xa/rZSUA3wBqvl4loi4MPUL0sQE+r+5u1lOX6y+8bJcSMvX4AHk9QKEHD3LPQGR0tv0hHzOv+ShqPv9+VlPDDVc+QflWDcTljJeBpRKZZSHTpzwn41y/yOsqDxjN2PUAXpdO1pHPb5c/uT7Fl0jCVimliGgRwCKYwz0F4E+I6MNKqZ95+q3HMY5xjOOFEzuh395RoFp5XKjYvkehjHz0F8LKd35qzVAGBwleDoSbQDoJZC2Hbz3SmdrVEr4ekUWd0sqMTQjlQGlAwfuS78NeieFshCImrN3E695y0wk80Z3BQyf3YOHjFpiMJglFyBJ/yZKH4c08GCi7IbyBznxPWWCoUh8Xz04h2PQBzV32e3okq+293chaQPzydWSfY9F4AcajaW5s/YKjPSwFhnv1gORCDdMP8kevUCgh2W4L4ATEpW0ytuYuiBdtZCixpZZrDAPiBZT5KcwgR1wPAQbuogcusXFrgdo5H1kTyNsFhAZcP+0jWbcydGVsQa/MUoje8tqtTfgjBslu0Z/y2MHQpW1wtpmQtjxEnbKSfQ6GLFfnFllQyYBUZkMAmILI/jxh4mRRAef1pRxUKBQOaGVQX4IKC0KLiMF687y21i3svhuLClQqk13P2ryRcP99fbygVyCveyimQ3NN4q3SPNfKi6xF70YO5Ap53cdgITHLAQvkjdV9DKTzfCcmHgosRWezRBET8pgqWutpyz4rjccdYvZ2pCt2QOf8xYKIfhysPLIC4D8D+JdKqYyIPABHwYY14xjHOJz47H9lU9Q3f/W/BQDkdd/Uw2wdCswMYvO4rfcwM7maIdg+QVi/Xb91kgK1z/OLtXGBl3mZwvoNvMzPgM5B3Sc3dRH5GiEXd2P9zk7WgM3XcJZL5R42X8HLwwsM0+qLcArWNd86s3Vhe/7ew+bBKre5f0MKfyjt4AP158kk1ZpnS7SPS5/Of7eujdEnXjfIbN1YeIb7aO94CJJidL2fzU9aX4mrih3Qb+8oUB1tKuz+GBtKKM9mCAczvnGTi/Q0zGiaDEhLVrkIUGI4CzRP8/RQ2NdTQB4DF+Wx8QagaQAm2+gYg+z2DR9YHrqLv38IAHDt4wOMpgsDZpI1hc4+D6UPTL3uInRZHS70OKXXOkHACX6C60slzr+lRLDpg3JCuKqNXka6gM23x5PpquQWporc9rWPmfN7ZGUe2bFJFO0cHU0rmNrVAR6ahjrYR/SgJVtvHQYmjiuEPWV0nSVc2+qNV2pTlvYI6qEWaix5idK3RYyZZatgOMfXdPJxhdFklR4BVIvflM90h/4uIJ3V9yMs0T9UwtMDivppC0brF7X+8x4f7TO5bit/n9XJcKWlowwGJZTnGVqHUIiK0gGQGkQXMTCIPQMGk3UHYJcOB1t3Op29jlNgyufcvMAgU3SqlU+WS+Z0KlIkAmXNbcKUedNeoZi3rZ/PoFdgNB2gCMkUSA4nfWQNQthn0F/oAWXWCBB12ABGgHHW8KAIxkwm7OtnvOkbmgcpC3eTNeZoD2Y948gVrwNBN0CyrpC2bdGN/E7YbMcZjGjN9YqCTI6qXviVhIKxlN/hMQs2fDnlLlRKldq0ZhzjGMc4XhyxQ/rt5xRUE9FJAB1wPi2/1GSBiAjAbwD4WgB9AN+nlLpXf/dfAIib2a3P9Jjxeo6s5UN5ZDKhtbUC/qDEcDYw7m7hlgVV/sjyqPwhc3WjLmfuSucK1ZcLVk7QmUA/A4bTlkIxmHezeJbDDHD2M+qW6O7XBYg6e9jdT6i9jl0E88LDRpcRXXJWj06X7FO2dqOH5DxLnglYrVzPwtJYACCdz7BQ48Y9smJHkp1TE0Co4HcCtK9j0L2x2gB2jTD193VWP4EF5oMZwmCG0D7tZl25AM91v0vaIxSPtYDA0kyaZyyHO2vBKoxoPJ4nZK6fAGmhiZgBgg/TJmowmq09lmA4r6UNL/gV2oNwkf2RdT6kUqEMmMIiGXcqFZI1O8CRqaewZ63AL73GQDUTL+t5lxQjBhXLcru8viSZCiuxUWpb8a2DPtonNRB1uf8jzkBLhAMG8kG/AIiP318I2NVxszTc6bzGBalpi7nObGsOA7oHM7ZGoH06h/KIn0ulTFGjlyoEA80BDwj+SFN1JoRSYq9HMFQIwRns+pLCQEvmBUNl1EukSl5UQrxUF10KVz6qzkhcSRDUjphG/GKhlPrfn+a7R76UbRnHOF5s8Xcf+lkAwGv/4a+ZupB4wzrH5rp+5cm0iIKBQrDOnVm+u0BtxSZIAMaGU49xx18kHoqY11WeVXESdTCpP8oTYOKz/NLNHBGB/n6tUBZaTBMMLI012eBl/rBEqGe3M9128kqjGNY8p2cf1+27djDrmbomoQROnCxx7o2WWiphJIpjFhkAbLKntnr1/e1O6be/FJnqNyulVp7iu68BmyNcB+A1AH5T/wWA3wXwHwD8/jM9UBkSspZ+kQ8c7eLzHQz2tpC2qML1LEMGBW4WtraUIWv56O7VYEw/NMFQYfMwLzMgUekMdt1OC0lkLYWgS6gv2odk1PY4M1faH2x/f4Eg9zHTYNLw5j0scaEC/uFtXOsZcFtoJZBklQyXGKjyoovEHm//Ab7si2u2ajBfS0CwDoP9+9lVavICt8vVmC5DtncXmaDBrO1eBMRKlnHmUxE6ByLAr4JOcZHMpBDU4WBPHuUiPsmWimwbKZZVk+I9f8QAcXDTEMlj1re9rR0ec7sIwUAXQC6VSJteBYyqgDtNNwuetqqqGwBTLOR5cDWm401bFCjZ6dqyFJPoDtYZZEgRn4DY0ifUVnTmfNr+9PrzgiiBrYO8vIiBxgWmeKgAGOp2ts7n5tjr19uOb0KDcQG7AEtCBUK3yC1QT9v6PhC7fQHAaj1AvMXAWzp+AMjrHqItBu9e4VwPYlWWYGCLcNImW8A3z6tK9rmISReQ2mVexr+beI331T4lsz+0PVql5Q5IeYxjHOMYx0spdkC//XzTP74RwO9rGajPENGkWP8qpT5GRIeezc6otHJ2yfmOWb5yJyOH9VenmLhPNO70l4pHl5JpHM6GXKgWV7O+jQsMwNO2HaUBFtD6I7t+GQJeTqitAKMpksNweMD8153B8cf2mOPXowwnHtuNoOOLWh4AC7yN3JgGwgKEBLwOjvCH3XvXcPFhThF/3RvuAQAc685yBdMaI89ww2ZxywCoX7DHqy+XqC8DF19lwXNDDwr8VBlQLRlP5dtCvc4Bawcf9iz9odAjbgHmrlY4lZqP7IBcAVSuIUh/lx5hH0sMp6y2xPxwGdG7mer6UgkvZxMR4UpnDTLUn/qyRXzS/qxulTuCgWLA6dJSci5+lOMn6zozEZCljTiAWgYKAqgBoLeL0NsVonVOaEk6Q17wYCZeu7Q4k9eTYkWAbcd5GzkXDUYbLG8Xdap0mv4uvpYthyBQBtooyUqGm0JQkchzCx+HUz5I8W9Lfl+SzanyzvnvQOtMxxv2Oy+v8uTTCZZfZOm90swIxVvb0KnukGnEcYxjHM99fPq//xRe/y1sZ964kGHlFu7IJAnQPmFrboJzvKz0Cfs/IlOQZHSuJdPqZcqYewE2abAhakuhnc2V2exoyybsqAS6R6r6ov7IvhQ7h/hv6wRh4xrxzbBKIIPrOJvS/EJiZltHE3IcZWY4mdaqz01jmazpw9eYw/XfkHd5OlViuI/b1jjGB+zuvUrKHrBj+u3nGlQrAH9NRArAf1JKveeS7/cCOOP8/6xedgFXEJIFrT3IT/7amw6a71bekKE11Uf5Fn6Ce8cnMPUwQXlA2iC0NPe2jD0s3aGB55CVLgA7bROvV4va8jrQOVwawAsAE0cJuXY+lKV7v/0EAOAPrv0zAMCHD/Av6p7eYdy1egDX3Hge5z66v6KmQQXL3Cj9A6ACyCYUlA9MXb+KTp+B8uGpDQzzEP/+xj8EbuRt7xocxl9cvA2P3cfXIBg5gE//yOJVC4TaZyywmXzcKdp0wJVQUZTH4HIw7YDv89whCDiTDGkwslNNjfP2F6N8znq6gHowx1xladOlFAzRZAaqsoAsD2e/2zrkYfJYWS0+JC6CnHAMWoJejqBnjX8q5jJtpqW49J88IcPNN+2oe2awURnUaam7tO1ZjrD+4xY5AsLh5+0mTuoCS58MmJZBFADUli1YD4YKq7fwseX6Z02qaorrQw2nHZrGgJd7o0vW09rlpceDBYCv7+Tj9pyF0lIk3DkXIZnOWjjzXi4Sf7bj9lKmvsg9Dbu8XrKuOBOuo4g9pA5X/0pjJ0wjjmMc4xjHSyl2Qr/9XIPq1ymlzhPRPIAPE9GjSqmPOd8/2fDmWV1VIvphAD8MAGFz6ousPY5xjOMlETugcx7HOMYxjpdU7IB++zkF1Uqp8/rvEhH9GYBXA3BB9VkA+53/7wNw/lke4z0A3gMAE7XdqnZyHcOb9qC/EOLiV7oCzZz16x2fsNvqs2+dsuttHfDZKTBkiTDoTPVQ4/Xaqi086x7gv2W9ABRh6n4pRmBVj3SCcP23P272/UdHPoJ3b16LlyensDfgtOvvbrwOZz7JlyDIYSXSpFBBkfmsApZfaBzmSq5vu+4+s+9vmLgPi3kbZzKu6PvVe74SZeojHHA2vkrz0ColC3ZMs3GNnZZqXLDZ6axBxjLbpWQUIfNkJdMs/OFUT4MJ1QKwIvvDKc9M748meWdhT5ltJJMqBYqSjQY4C5o1rCRgtGmvUdayWWblswD/xTurNt7tJ/R1TexJ9OZjXWx6+dhOpr1cxRPJUpc+oZSClFCKHnkdl1oynOJnzi3i8HIr7yjLA60tXl+x244mPfiZQn/eFpcAnN2vLxfIa1auEQC2rtU0nb49l0u1yGUWQXmarpRYycMyAMKBQjCCOSYAUMamMs3zJaCYHy3hWqcDms/u8ayAP7RUFn/Ey4YzTttS2aZEkXhGSSbeLCv0lSsLtSM65+cyiMgHcDeAc0qpr7/kuymwQ+M1AIYAfkAp9aD+7u0AfgicEPktpdS/08v/D718We/mF5RSH3juz2Qc47j6+MSfsp35kd94F/x+9bvuPhJvGPPOCfpAsqHVt9ISvq7hcmtztg5w/19E1iStpYv9e7s8DF7DHXLh6Zqbu+wLTwWAl1Zn7GrLlj4Zb/K7orMvMP07RbZ98SnufHv7S0QbvJ/6In83nKJKNlPqZLK6FPXbd4a8b+sXFfr6XVcmdmZeKCNyflcXO6Pffs5ANRE1AHhKqY7+/FUAfvGS1d4P4MeI6A/BBYqbSqkron5IDPdPAgA2ricEFxnx5e0Sfs9D/9gEGmft49Q8x6hjOOM46ennWH5YhlMUMzgqfcu99YfAYHcBSj1M3+8bUJQ2PWzcwMe5vsnactfXFnHdR78PALBrxsobLN+1C6Rt0V0+bV5XJo8vbVChQjmRY1ebycufXD4CALhz9gx+7OF/iOunl/Hp44fNPqJzkbGylmLH1hlufH+eC8IEDIq1tD/kHx3AYKixWFYsqwGmLwiFQa5XVidrRDK0FAcB0UMNonu7PH3tSxSJUAF4/wKmhL5QOAWIVFqzF0ADbuJlrlqEl3HnI2ohYj4zmrR24qO2AwxnLi+MU8T3wh0YeAWQtjx4mWKKimN4Ur9YonGezX68kUXyYVfOR1dq50ChByG9/Z5xrJR7sHKrY/Ijndn56rVonSnQ260NYY4qrN7Oy5OLcr3tefQXrJoNYAdA0ZbCYI7Pu79Ln9+Iee9UcAcqNA0qgKjHSjiu86inHUNFxUP2Lxz8qKMgdfNZU6uEWOaNockISM81R7u/yzccwysOhYpz5jieNN4O4BEA7Sf57hcA3K+U+mYiuhHAfwTwViK6FQycXw0gBfBBIvqfSqmjertfV0r96peg7eMYxzh2WuyQfvu5zFQvAPgzVs1DAOC9SqkPEtGPAIBS6t0APgCW0zsGzgl/v2xMRP8dwJsAzBLRWQD/Win12093QO9ggVNfGyLsUEUFY+IhIfLbdf0U2DoQsKh5T1WybtEGj/jCLtuLSwyn2a7biL4DSM4FiDeA2mphRrPMQyZk7RLv/djreL9DC8JWH6uZtkjRYxEzkHLbLaR9X2/rDwmZ1mk+enqXWe3EqXn4nQCfxqzJVKpA2YJKxyZalDJMZlcGESkX4qXNqoxcGRHKyNFRBhcTBpeAorQNJA7nWcC0gOBgqDCcJjTPWdApbXAzmMrnjGrQB7r7q+uFXVu8KQOOeI1BY4VHrJhj7J5vsq5QxIT+PBnuvfLtrIM7oBHesstvL0JC2C+1qYttk5cqNM7zcD3css/FcIYRrHCQASCPCVTaZ239Jud6rZNpO8Ag19jYOoMLKUoRab7dn6jynYuENKDl67J+PSHqVGcZZMDnqrSQAvoLzHFvnFeVjMvmEZHXs+sr6IJcZx9+ygMyKVB0r5/MVkhtgvIJyXqJvMb3RIpxw051uyuNncDNe66CiPYB+DoA7wDwk0+yys0A/n8AoJR6lIgOEdECgJsAfEYp1df7+XsA3wzgl78kDR/HOJ7jeOLtP4kjv8E25mqWX4T+sYSTXADylvhd+Fi/QTpVD7MP6Jos2ZGTCibF71EAgC5c9wqg8SkuQul9OWesXQUx5QPhps4gT+j+fFMZm/PBXKCX2YJHwM5odg/p48yN0Lpfuyt3rUpTb69933g6gSOF62Vg+3rBDf0FAolR1/HAzHpKv07Vmsorjp3Qbz9noFop9QSA259k+budzwrAjz7F9v/w2R6z34sxBSBvaGWEswIw+fvQyYApz2Y/0xZVHgqZQunvtvuqLZKpxqW6dk1aipFNKMw+WBqnOwBYu8kD5UC4aZFMtFlVE5GHtQwdqgcsgJZfZzCw35exQrke42hnL+A5xYRdVmfwnGJELyVkTc7aAjDVvGGfZeziDTYEEYdJmboPHd3hsK8sAA2dfetrlbZsljdZBeDBALp4nU8wbQe2ungADHVxo/zAi9BmhPu7mFIS9JkGEOsMdLKWY+kVkdkH4ABf0f10AF9e1wDPkQccEg+IXEm/IuJ/vnQWixag+kOFtO0ZTXLAZupdWcZkNUMR+xjMh6gvpkgn+GHzcoUytFrTEvGWQn25wLk32IaEXQaz/sACSi/jwY2AfSnelGtiaDY6C82a6gTKGegDwOqtHrKWwmYLCHpOoao8C471uwwIgx5TfkThZfOwZ66t6+zo59plq2/pO/5Ia6XXCXmdzMCjtqwq0oSAHmRN2gy+e19cbfYrjh3QOT+H8e/Aboutp/j+8wC+BcAniOjVAA6CqXkPAngHEc0AGIATInc72/0YEX2PXvZTSql1PEm4dTAHDhy46pMZxzjGsUNiB/Tbz7ek3rbGRKuPt73hXnz8v70SQNWVTzKSbsYur1nKg5sNLBINdhv2Bo9e1UMIIFtLoHq8492fKKF8wurNWnDd4QADQFEv0TijJcpGMBzkvG7bpjygqPFxwi0LPJJVXkf5MDpzZaDbkxMQKeOoKKCntuRYnmqVktpKCZCdbgeYE1zEPKgQCkIRcdbZzTxmYmwi9taOPJzhEjs63nyeCmEnR9bS/CxlXfp8x01PjtPZb29I+ySvF6/nGE0FSByDFNH7rmQxFUvLZS0yg5C8DvRu5gxDciJGoIGjkfsbKQx0ZlwGOcEq//Wd8zNW9HmVoiHnKDGY5xvppwqj6dDQXrzc0kyMDOBqacxTph+y+1u9o0TtHBuxWGtvnWXXl6zlZPhFdWU0BYw0b5sUS9SJlra0OdokMyvi0mTqyzxzIPePYCknzQuFGUzMPJIja3jo7uFjTjyheeURZ92zus1M5zXCcE6upZ3xKBJCEfFMg/z+RhOEIrHcvcnjQqgnJBcctH8loVBxtxyHDe20uKSUuoeI3vQUq70TwG8Q0f0AHgBwH9i86xEi+rcAPgygCwbf8iP9TQC/BL76vwTg1wD8wJPt3K2DufPOO8c3ahwvqHji7VUbcyDF0su5c5x8TN5XyrzDlA90d9lkioT05VIPBADDGeutYGbnHnSybTrKEBjNVdO/6zd7KBLN3dbmckVMZkZ6844UP3DnJwEA733c+uzJbHLpeBZIxBtONrpmvy+dmdtLl1Fp5QYlUekqbV1x7JB+e0eBagD425PXA6/vYLiZoPGoAB79UDgguwwcBz/HKlmAFhUMcgWQKADZMECyaFHdhdcr1BYJWVtnZ9fI7I8fdK/iFuhSFITmoTwGpv6QkKxaeoPyNWc1sdnreJVQ1KTdHhpaMzOPgZoUCnTs9vGmQhkSoq3CZE2LmLPLyuPsqMmExlpCsFd1TZRtAGBN+1rOft4WqQXOD1SmgrYOWlMSKdwThz4XmG9cK65Qco0ItaUMed2HP1Lo7rE3zHQETj8jBYapk2+T9RJt7d48b48nVBCX+y2zAPWl0pxnb5dX0VjmY/B3jYtVjWmA71NtrahI5WV1gpdXtat5Gw/9XUDrlMLqHVXOdhlUpQHlnroGNsNJLsCU59Llg+cNYOsar2IGlE5zeycf8ZDqQZ8UqjYWS2M841Kjtvb7xkwGxJbl9SWqDCaCvuXEy/UsYqtFXSTWplxeLt1dgc3E50C4ygO/+lKJrClFPYTkqqoqgJ1S8PIcxesAfAMRfS2ABECbiP6bUuq7ZAWl1BY0FU+73p7Q/6ApeL+tv/u/wMXmUEpdlO2J6LcA/OWX5GzGMY5x7JDYGf32jgLVm7066puMnGpPhCbzpsLLrY+LWKsSeFUTDJkaF7dCw3E+VYenr1bWcjOVCvXzhDKuHoMUZ3+NGPu8nj7XNswuAM/rmh5SQ6VIK2vxNpLx81Jr6yyqDQDQOluijDgbKACVSu0qSQTl2erltCmVvoBXVmkTQsno7LOAUUDe5nX2nNduJtSWYLLAAJuAKI9Bn6vl3NEV0I0LvMwFnvWLnC0VfjAAbB4RmocDJKdspbG0UbSfBQy6o+/Zj0XwcsXFdA4gNSYtDt3Gy7iIcTjrmaJG5TFgjzqWdiEqIJuHdCX1kmT4CcFIIWt4leufNS/nLfe0389wvsBwHpj+gp3hkKpwAe9udHc5vOwmA9famkJtzdqj93Z7pujQHTxOPqILQ8/bC5QnHpTvODnCVm+bKndHJaWMmE/en/UNiC8DvkeuOgpvT2if5ocqXuSHtKyF6B5oIFkvzAxHGXBhq7gxCtjOmoRzb54A7rnsMjy72AGd83MRSqmfB/DzAKAz1T/tAmq9fBJAXymVAvgnAD6mgTaIaF6rOR0AU0Req5fvdorMvxlMFRnHOF60ITbmAPCq72eetVD/4o3CUNoGM76luq3yCt09AUaTvCydKUE6sxxpnnT94uW1I5s359b6fFcKP+Z9xQ8wQPEHwFArM4U6eZZO2ETcof3L+OrWAwCA0we4GOzvjl2P0c3cuMapKh0V4P5e+vBAF9ZnrapLM1BNulAJjKZ5m8GCTvzMDoH/hKuPbei3iWg/2Il7F3gO+z1Kqd8gomkAfwTgEICTAL5dKGpE9PMAfhCctvtxpdSHrvT4OwpUyxs/ORkiWbOmGeEWPzxlZB8OAaoCsCpW3zXObqeTytAKVMAZ4yK23OUyZEANaHqBqHWI0+ECr8PLCCpgWZu8Zn9QbBhi6QlCQ8ma4ALDlMEnoAHcQCFPCO1TKZTOPqNUQA8YOtbXXsGFeSCqUBeCgUJvj+bAdoDGRd1LKMsZFq6tP2JeuSLOkovVeE3npKQDAbjwDABiTfXInAztaILpFM2zytBwjCHMojLSfsGArxlQ5SGLHGCesAELoH/4AwaZABfX8QW1AJsHEDrbrsFx1rYyQIq0BJy+bC6XVyy9BcQDtgDVHQQEQwWQs//m5RSXjRucKcGCvxdADbBM0qVgugwJaainDZU9T4B560VoZwYAHiSFW3zuMiAMO3ztZx7J9fWrZtcbF8rLpu1IMTVDuPFSYDOYFnK9044uP4tukWcwYoUc31FBKep8s105PiqVMcspQ0Jvt57JGFRrH64oFIBiB1hzfQnjkgLymwD8PhEVAB4Gv2wk/ofmVGcAftThTf8yEb0cfPVPAvinX6Kmj2Mc49gJsX39dg6u6biXiFoA7iGiDwP4PgAfUUq9k4h+DsDPAfhZIroZwHcCuAXAHgB/Q0TXK6WuqPxyR4FqygjJyRC1Ff6/68BnLL/1C9sUXGmA5WarlQdkbVVxSfT7mg/qgIqwR8gmtGW2cyVFzg1gMM075XUGs0DeVGbECmib6hmmh0i21B/wNmEPht+arLFaQtwpMZoOUD/PI4P+npiz0R5s1XGhAVKLAEUGaJlzIAZnYtMtah1pmywoneC2yS7bx+15iU23ZB5lP5IZTh3ZusnjCnlss5KA/u0QVbSyRe1Dji9838GcptMoGGAP8AAkWbGSfADzlgGgs8/nYj9dtFdRGNEfRbeztsq6zy5IjTcyfQ0s+KUCaJ9miUHJencO6gGBVEM7Mwj93fparfA6oyloyo7P9uxCQxFunsP3lyyHPJem4NSlz1xnN5AZh9bZUk/I62LHtHTujd2/KZT1HR7/RonOPo9VbyakyFLrlWuKTeFkwaOOPq+2nXWprSiQAtKJAMPZSbOu8oB43RmEBYQyJFOs6MoXuuozVxYKUNsDqp/vrMdzGUqpjwL4qP7sFpB/GsB1T7HNVzzF8u/e/haOYxwvjLjrd5hnfecPcsa6P+eb94U7MyszedOPDLFyO2fIytCDuplfDNIDDh9oVmYxASBeDDDapSlzgd1nf4/93DrO/eVQK35QCaRaEez8+gTuGhwGAHz37KfM3x/57X8GAGjo5Fx3N2HyCX2cXJm6nP5e3qeXAZnU4Wxw39485zg7K4VCJFeP8HkNVxwAdcWxPf22njG7oD93iOgRsFP3N4IV5QDg98B938/q5X+olBoBOEFEx8CyoZ++kuPvKFANAIODGYbzPqYe9jB5zHIb8ho/jBvXVE+ZSlSAsgCbyUdJA2D+/5MVewlAV8SAS8j7gNXvlWKEvGYzl8KN5uUOIFy0Ws+Fz8WKfqrMMpE2a59W8EcKoxlOj3oZ606HXWXOJY/J8HndAko5buuUQm0lr0jleSmht8uhzRDvu3muRNr2bMGipjsAVToHKc7aRlvKgGrh7/oZ84vd4w0nWe1DitsABlShztoLkAu7l9ufD2a5yAJARVmis8831wQAtg7rrPzQ8uUbZ+3xJNuetjzDzW6d4Y2zhm+AveUC6wyusV5XGE1U+daAZNSrhZ8yYIo39eyF7JtsZyz0HH9k71uyavch91SkHk37PDuj4R5TCmhk0MT70/JPIQEa1CYb/P38PX2s31CvAPzOId22qQKNU3whJk7w+l2HKtS4yAOFwWy1aIcLJgtjfS7R2+WjiPRMiAbV8aYysxFXFdtH/3hesx7jGMc4xvGSiWfWb88Skas69B5d/HxZENEhAHcA+CyABaGoKaUuaKdvgAH3Z5zNzuplVxQ7ClRTDpB2TvRSYOsAo8P1twyw9488bB4J0LnRId+mHlrHPXi5LbBK1tn4YqDl2LKWBSO1RZ3x06/HItb85k0G1C4QidcYwAroCTswgDebsOuVsymggPrjMVRoTWeUz6Aqg80cSxZ0MO2xxq8LPvS0vYAzV9HE1b8Ujna0xU52Qa/QxyOMpgLEW8oA5dGEdVd0VSVGLQ9+yhnJcCBAjikM0ZZCspoZINjbEwFkucICQAFbTSxgEwDqyyW6uzzEW8oYmfgjri52OWjxJljVRA9aKsorioFlz/lZUA40T1fvUTBSlUJCua9bhxgxB31lCisD7ZhVxB6yRlWCUUxlAEtPWX61rtIeeKhpY5aixv8yfS1apx1uvs6kS4Fkf4HMTEted5U0+G9tSa6DptvUqeJcCWi+nF5WX3QGmHWtGFICrbOZXbebYetIDX6mkDtUjXSKT3bXJwnCh8rrxLrtTma+vphB+YQi9lie0Sl6FRpJ0BfOYYRgoJA2Cc0LzmCwRpVjX1EobFsV+fOd9RjHOMbxwom7f5sz1q/4kV83s7J5Qua9IjPTm7clKIWdGQLJZ5rmMyDvNP482FOYbYVTjfUAZaTprDpbXFthQy/ej6aEzqfYvbDBx/zoAv6fe/9XAED7jfyC+Ilr/gaD6/SMtq4H2vX3ATr7+Dj1pcLMICbL3LjhnFU2cWu8REPaTaSphxhcRNvgLfAs+u0VpdSdX2wlImoC+B8A/oVSakt7pjzpqk/RmiuKHQWqw4HCxFF+cNbfMjDLkwdqWL35EoFysQDVf1xgNJgF+nvZ6CNetSjMtV02QQyoS99mG4UKQJkzza6vdJFUDV6S47zTZLU6tV4EvI0KAO1obhQ9eH9kHoW0TSxhltnjGPqABmEuZ3z+3tQ8MqOpoNI+RTbDmKwzbSJZA1A6tAntHJnXPFMo52UK9eUSaUvbwe+xCiClzwC1t9t5dj0GvvVFZXi99WVdUHGx1AoXdv2wp57UvlrOU3jR/oALMIuEDWBGmi4i+s6ivwxUC/qiTonBnFUjCfrVbHIZeqbjTNYcGoNHSNseg8EaYeQMmLyBLmq8aO+3iO5TxtNwvD/dRkdxpIjZ7VC49qbTTrV+eECVgU7UYXlH12yGSu7wJ4+Jjy3/CQYF8oTvk3IuaXd/woOjplPQ0i2x65Ok+dDK0H243QLYbWq80LxtUkBet7QTlt/zDKiurRXoz/mIN5h/7/Lzk9UXpk7185H1GMc4xjGOl0xsU79NRCEYUP+BUupP9eKLUlBNRLsB6NQUzgLY72y+D8D5Kz2298VXGcc4xjGOF1ko9cz+6alE598PP9nuLs16PM2RtzXrMY5xjGMcL5l4Zn3204aWAf1tAI8opd7lfPV+AN+rP38vgD93ln8nEcVEdBhcT/K5Kz2FHZWplqn8a7/9KADgwb+xtTZUAIe+7oT5fz8PsfKBfVzAWAN6++y7MG9wpqx+zo45giEwnOasm2Q4ixjWpY9s1q9ImG5QEVnXr+FNLUGTLNvjzTyUo7s34Oxeze5D+ay04WZXQcyFdQvvgh6vG3aVWR72WO0k7HMWevIYZxO9XIF0JrqInTGVKUKAzWJrOklWYwWRSE/n5zUPVDJ/VlQ6ZEqoiIDOwajiRGgsvR2ur8wMsCkOfxZai6wvRYaAlX8zmdWSixYps1lqPgh/J7MJwukGbEGjTNuxY6FWt5iz18IfKVPIac/B0mJYipE/53WmD9UvFli/3jdmOrUVXq6Is7ISRcKNHbVthpqUYmdEAjr7LQccsNNvfuYU8qX62ih7LtklhaKAVXYRIx6530GvQBmLCQEfT3n2eRVKCACMJn1zjYqYzPphX5lMeX/BpvyjbonBjG8MfwBrDDCaICifZzCKiJ8LUxwqz19ZzYZfUSgFFM+YwvxFpxKfz6zHOMYxjhde3Pvun8CtP/PrALg4W/pFr3Deqfpj66Rd1P0q5sv11hJ4XU1VHeoVCSj1LDZlQLLK++wdkhqYwLzrfusfsH7db55/C751nunFv7D+TcBZBhCr9/LE2c8ufivI575YqLHDaTJiCmXgowx9/ZmXhR3b/04d5WOHvQLr1/Gs+mgKxrZd3tX1C9tUB/PM++2ni9cB+G4AD2gDKwD4BbCp1fuI6AcBnAbwbXxY9RARvQ+sdJSDVY2uuCE7ClSXzRL91/Vw9yOHkJwLK0WFR775OPLSQz+3AKC/Wz8YhX0ginqJZKUKpgGWLJNiN5mK5yluVCzFJQSg+JbKitIHmqeFT6t5VLnCcMpnesQuMjxj4SSL7TPvi7lO4rQnPOKsBTTPaLqCWEprXrEUUXb28XmHA4XaMjcua/r2XArmFxeh5WVHWwrKIwOmBVSWARuZNBaV2b70WcPTKzRQE/54Uxvv6CfNpdkUERuKuDzrrMEFkWGvyncWgCtKE1nbobRkMB2YDEo8fR1FCQawANpVwRBw3LhQGt63fO+2yxacEvKab7YL+wpBnzeQ4j1ZT/Y1nNR61A19bUsusjQAmJzOaRGXhQuoZWAiVuSyXbRVGgt4Mdxx1WrcAZRxYXSugxQvCn1DnheAn/FLCwjlGXAHSp0DBMA3fO/ubnvMdJJrD0RfPN60MoKNC7b/8oelkWe8qti+acQvlvV4Jy7PeryXiN4FLlS8qqzHOMYxjnG8ZGIb+m2l1Cfw5DOGAPDWp9jmHQDecdUHxw4D1QCQbnEmLNoCvDdzKvDQJJOSA6/EiUd3m3XjvgA0Jws40C99nUUsLDXYqEcImIs6nL02vFeHrO+CaaAquSeAGrBgp7eLjysDgTLg40SXmGuIk1/atgLwVLA+cla3vHGv1BrMxO0UnrSXKaPO4J6f8rkQkBzDFOURwgEDa97O5dMycBSTFj+DdfpT9lqQcgxaCgtUgwFn/IfT1QJEyVyO2haQKZ/1oJWTPW5eUNg66JkBTazBerxu3R7jDUd7u1/NUvO5cxGoZMRFMkj5tihDwHFeY6USKlVFQ1t5/J0Mogaztt3xJmfzXS1oydAGfVX52YsAv3LdIR0bXPksWX3ReXYdFQVM28ZZycMytFl+kYASfjOgresTLuaVbd0QACyulLVVOxsQdXg/HQQGUIOA5iIfZ+1Gvibub2I0afW+s4ZnBnogoHbOqX680tg+TvXzmvUYxzjG8cKMB3/5JwAA1/zau9A8w8uk4LwM7Ls4awCJrpfxP8+ZsOTlHbz+jicAAPcu7eMV/2LGJIW6B5VJrI20R8BoV47GLBds/eh9/wgA8B/veC9e5jrB7ePsT7HIO9q9ex1/cPPvAQDe+tEf5/bUE1MfNpyumqEBgArZKRoAikhL+E355l3f20OmiFKie/Dpr9Uzjh1g2rWjQDWRQrQcIlkBvDdZSYnE5xf2Z++71iyLV/hBlWkM11kw6HLG03Uz9EecPe7vYpAqIZlQ+TEAVleybBSYus+phoN2FiSbIRWHPskautW2fsqgLNngX+eo7aO7zyqOSHgFZ9JdaooqLdgHHCtwp8ARcDSSc6Xty2H0k/kL/ZAroHVGn1dIyGqEqGu1lodTbHsedrh9cj3KiIFk1KlmTqXy2XPgBuUsKcfg1QLzMgTSkBBvWDWOtEVI1hhYlv4lWVdd2Om6MprBg2elAQVMC7XEvYeiUT5xihs4mPENGI02cwxn+KcjEoHyVwpJAQa+fgmsa0pHfbHaTrkWYjCT1a2qSDBSKEIysxRyHwTY82e7M5Grc4s7pYhUMvSixsEuWnyg4ZR9Podive70a8YhUt8vAfHDacLk8QJUKKOMsutzqTm+K583fy9/7w9LDOa0soq+j2G3MNcKAIJejq0b2sC9uIpQ26n+8bxmPcYxjnGM46UR29dvP5+xo0C1GjIK69w2AtYaeM11JwEAd93F3OrWaZtF7O/SgKPJL/z2tYxS849OGzAn6gaABSuuZrAA2ObXLeLVc6fM8r94/FZk3Qgzn7WApXUmQ9byDaDr7rHZOwF8tVV7vGDAHN5ko0Bnr71Nk8eYJjJ5vDRZ1P6s8LksSG1cKA3ntgytZrXymNJiMuf6kMGQj+dKzuV1zqQHAwUkFvwpsoBfFDmEk6sC5prL6Fd5nNWWrLloYFMOHlzAAjUZwKiAl4usYbJmlTEEfDF9QPOsfbpMR7qIGUy2T/GAqj9XpWxICKB2DXv8IaMoAdQA0FjMmYuu4VW84SqAiO02GSDL7QJWXmYv6Df/0Efxu59+PWY/w42VAU0Rk8nwByMXlFfNXgB2ygw71njHpXUoT2g/7sxLCSq9SgZAAHXass+VAOraikIZMMA3+xjZeyMupZPHNV+74RnNcrkmZXRJ/bNS8IcaWKfu+Snkda+iQNKfrw5CrygUoLbJ/GUc4xjHOJ4ujv/UT+J13/ZrlWXRVo4zb7HT3P09/FfcgRt/2sTn5m8HAPT26QTDvFNLs6+H8lrO9BUrOrt9KsJog+Ws4jXuNH/srh/Bz37/HwMAvuGGB/CXR28FAOQe73MyGeD+0S4AwMsPs0HDff1DqJ/kvj+dBMrEyr8C7BzdvUbeb/yuCgZWacudHS3rkhTZDsrezui3dxaoDhTSuQzf9XKmMP7x43cAAII9fdQ+1uSsqZ6+jjeIQSOAyf027eu9YR3FJ6dQW1aV6fTNQ3ypXKpC9gZOBX/tnoewkjXxF4/far7b/bcBoq3cFAUCQLKSob+LQYPLRZUCOtb25c/Cj83r9hYJGNz1GZ7iWXqFTa1GWwyM6xftjvOGz0A2sPQEKi2vNVm3xjKm0DAkw08Oe+yiRIq/F0k8RXpbz2ZmlacL2Wo646t/Y8JFvhTElzFrcpOyvHWZkvIKC6gBpnwkG4Wma9jrKUYpLkj2MgaV/ohdHwV4B0M2pEnWygpFQ7SsRaccsNxol98r91E0nr3M/vhFRtAFjJ39fIzGOeCbfuSjAIDf/fTredkSP1f9OfswSVZd6D3xprKGQ07RnwDqdEJLIWoM6qXKDKhcHVHPl0GPXTacCuHlVc5683yO0YRvpRXdnkEDai9XxtlxOOVVZgK4TdIBX061Me2t9DiXF4n2d2F7YmxTPo5xjGMcL67YAf32jgLVAFCfHuBPj9+O4uE2cANzjWofazJPtoDh4OZNfsEHWz66D0+hfuMGAKD4JKfiko0SZUjo7nFQtM4EDrQirQ/gu66/C+89xuIBrb/nOfJ4UyHaYoTT220vsUx5e7m10167yWM+lsY3UgwWdVi/2aViUAE0zwxx9i0MpkcHLGflyH/lfa/dzMg0awCTxwqUERmlCIDBuj+ygwPJEmZ1QtZg1RABRWVgM6dp2647nGH96nS6wMx9Wu84ANIWZ6L9Iczx0knelkpeJ1q35xJqwC084SIkHvh4TKuRAYZoGEu2EwA2D4fmWvP1kuyrLb4cTtmLJzQKodsAliOfaKAo9BaQpSVIqMBmhalUBmynTY8zyhpQd8RhsLQc4g+94w0AgN0Q+kcJyko0zmvjllZgCv8kxAly+mFuh9yHMvYATTVxdbaVTxg1CaFjmWsKHBW336WGFAkhGKrKICVZ0VXmESFt83MraiZeqi4z4HEVOySEYkK5MhSQPJFZGWWuiWTCi5gNg4Qr39/lYerRq5wCVAooX/yd8zjGMY4XR3zyj3+q8v87f/BdKOq6LywJ0bpWQNIzoqMZMlikcdYWy8fr3Af3lhtIv4U7yzuuPQ0A+PzmEbN/sSn39/bxv3/8mwAAUwsdNOqcAekO+OX2+pnjeGTImaN9tQ0AwL2+Mu7PRb2EN5RaIp0gKwnU5ORc73b+659NzGzlcHcOivm9FCWOxNnVxg7pt3cUqPYHBLqrjbwBzqgt87TJcJYL2FzOrCKe9vBG/EANP89g2tOZ7AqYhi64I7bUFnCZP9rGH338rcAbNxH99YRZ10sV8sQzxV0Agx4p8oq6Cms3aeqCB3QOEqYeKzkT62A5MS5pnrcgY/mOGuJ1YOta+/Ad+DMPeRPoOgBeADWrhZAp3hNQk6xxFpY0jitqbBVd+mRAriKWUCtinvqRTHI6l4NSQrTmo3tAzlnTBHTWWWzFoy2gu58BdbhlXRTLEIi6VsUC4Iy1GvG6E09k8HJdULeZQoUe0skInQM6019Ys5yoU6A/Z8893mK3ydyhMGSajiJAWtoGsOxehWahgOF0gHizgJfa62xmHehyK+7Ofo8HEs5uxLbcpdT4oxKlD+StwMxW9HZp0xmnf2qf1LxpMdfR/OkyIFCpEHZyVm/xbSGlXBf3PABbDCvPYzhQzj12Vo9sVluKaZXH/x+JnbmWBywSzwxk3NmY0aSPeKNgCopue28hMLM+IrXoGepLVbpwz8edKZyriR1Q8DKOcYxjHC+p2AH99o4C1QJepIhvOM1/swmFbAIoGgWiZa3Zq7WoRU6voim9xmBj8niGzSOM3MxU/LqlK5QhFxYGfzVhMs+AtYlOHSWHYAj4BbDyZVpKr8nDvvBoDVOPlaYNwlfq7CWTJXTVIwRMx2sesMacreXb2bbabUMZMmF5a79X4UDlieXHukVzQkERQAowX7qItL12DGQzudmuft6vAEixY/eHfB6SZS5DoHGB95O2La0gXud9BgNLV1DEGfT26Rx53UP9DF9oFXpIp2NkNc+0czhFaF4odTvtACje4mXJRgFsAOvX2kc8b3DbhBef12AUKPoLjmrHhhTNOVJvowJpOzQzCqI9PWp76DnScfJ9+7RuW9vhJuuBhzgNCg3Fffaa5y8f+fsDe6OKGlvLZ02tLRra59ctRAR0dj3hgZXbjjxmK/Bk3a0S1YWOuujTHQgUMau8BE47qGCHRCqAMNfXQt+H4UyA+mKGrUOWU7h+rV+5LvLshF2F4ZSH5rnMtHk7Qu2AjMc4xjGOF2fc/ds/iUO//04AQNIaIdMZsljP1CoPGC7oPmrNkR6dkGQNkLyPE333fxVnhGhuhNr9nBkM9Du8m9fhayWOjaABb5373LoWUPitj78Je6/hqdgLK5z4C9YDKM259oaEYo773uQEb5tOKiR1zr7FEb+PanObmE6sisKrprmG7Hfv/nIAQOsBRybtKmIn9Ns7ClSXtRJeDvQO8I0Jd/NDEAAYrXOaOG/amyZZan9Q1ZgGGFD3FwIDDvtzbIAigBqwhYyyjgAXKpTJksr6XOBFoKEHmrU/DoCLvYKBqoDfZF0X4DngZv31Q8Zs+ofj8rJb53IogikaAxjcF/owlQLLwHK2BaR6OYPb/jyZjLTymIPuaSMbP9U/+BHTN5SjuqECINzU62bKTO9TyYWYZaCvsfObiTeYNyyqGkVIqK0xdxoK2LyRZxqW71TY9QmmLEgxXNQlZHUyoFKoNVJsGQyZsyz0ELk3ySpQW3YaQVys6FqEN85bWo0/0oBxmq/55pEAk8dzrF1nfzqlz+ftGs0Mpq2qi7QtTwh5EiCvcZGia2neOnv5CF0ywGnbN89GVveQ1T2jCBP0LQgvhUsthjwxoYh4QBN17T2RAYHQMgBbeEqKr4lkyEdt39A7BjPVwYtoqAvvP6uTKWbt7Q5NNtzLFUYTngXUsHKMkgGXQQJgeeNXHmpHZDzGMY5xjOOlEzuj395RoBoAurekiM5FwA1dpGuJWV4/o6tdHU1qcTUM+5YaInJ5y7eHaCwqU9Qn6/kjZTKLUkAmGc3eLjtaExdENwM60CPT4IkaMk3taJ2S9XmnApLWb6gh7JXoHHAyqEcTjGZLUE7ImspUAM/fn5vspFAJAKvAQYWt3A17GuiJLrIUKoY6Kx3bTHbp8/rpBKoya4LjSkvzUKSzsDVN43DMWIyUnrL0BOXpgsIUSBui4gEMppkTvX4zUMZ80NYxD919QLRpucxZnQso85glAt2iuWCoDGAUMK207nfzXG60N01WWSuEuJnp+DxPdxQTdvAjGs4rtzo/GzGKmQZG02QGL0HPDjhMQaCyz9nGTRZgzn9ODwz6JUpfPhdMGarJedj7Wl/RHHNHZzqdDECFvT5uyLURwFtEnrk/MguSNQjxBss9ujxrT/O3R7rgU9RbBrMe/CGDb1cpRPYXbTnZ9YhnXSrFjcSAPN7QA2CHw543qtSrZx0KO0KaaRzjGMeLN05+z88BAG79mV/HaK/uR6ft963jeqZSJ8fyhEyCrrOPMNTuy7VHGcd4I7ttqfvvZJlQ6PdLlkbwU/uuAYDGCR/Lq1z9LW+t/MgAZaaPvRbhwD5Oa5/K5wAAFJUoNaAYjGzhzhoYUMzXrS72b73xdwEA/3Tjh57JJXn62CH99o4D1eMYxzhe2qEAqO2xux3HOMYxjnF8CWKn9Ns7C1Qr4iw1AHq4Cc1isNbOI5ud9jLm+4aaJiRcp3SC6Qp5A9i8hhA6BirWzY7/nzU8o7agPMLEcT6Q2ED3FzxTnEg5UD/vIWtarUqA9asBm6FOJ3hk2FjM0dmn+d8OXWnuHm5/Z7/NDl74Mp2Fn8vRfkS3TVuYJ6tAfalAb7fN/ilPuwkWNsuofKF42OMFA1b6UD5ztkWOsAx5mT+wBYDssKhdE9tkNad9y/H1M5vBri9xoWQR2GV+qozWcusEwcv0CLzFWfAiIdNeP3XUMsiqe8SbfD+kKE8y4/ULpeEEhw43WDLArnxe2NH6oBM1LL3KEuMly+wWvI7mNR1l1Ueyaq9dEYkVeZWfPFjgv+3H7cJoi++9WxQpWs9UAqMJz2QwAFvs54Mz1ADTQnh9SyMSecGwo23ptS618uwMhaX/KKRONtyVByx9QtivSvBJQSqVjnmNzlJzoS6ZmQAqrAGNu49kTUsXZopVTVAtnLziUArYAXqn4xjHOMbxkokd0m/vLFBdEPJmiaDrVYvoNLAiZQvqvJJBdhFzYWPq8FtzDUhDK1/NBiZU1UkOuyW8ggFBnnimmFGMXcrYHk8AhgDqyWOat0uEeJE5FOffOompx3mDzr4AVHDRpEwZNS5Y1YbJY7YdF97MD2Lr0cCAkvZJhbRFqC9ZFQeAQZC4R/qpBU9UaldEZ+Z949W84uTnIoCAxqJI37GjXhlY+kdeA+rLJfpzLNknWtdezhKEtSUG0nKNegse4GmTGh2DWUKRAM0zzLV2ud2UM/e6IslGQiOxvGxF2qKdWIe8vuS4DmrQPHIKPxsXUvNd0BVJCoWiVUPnsJUKkUGKP+R/Wzc4RYxdD0WsMJwmhHpmLN6Q663MIExk8mINvhOHxy2AWqTsgmFpJPBkoOBGGRKGs6HR6vbTqr08wNcvWcl0+33LV9MPCVk6tuHYi428P7LXKOooFDHxtdXX38tZF9stdpV2ZjW+N+Y7Tc9xATWDeEv/cMG0qwF+paF2wDTiOMYxjhd/PPjLP4GD//lXAACl0E+DEuoCv+Ckq8rrVH1Pa6m74Zyu3dokqJv5BTPakGydgl/njnz2Qwn6WmrP+BdkQDrJ/en3vfFjAIDrk0X87cZNpn0fO3mNPqbuhIc+phc429gdchu/7dB9uH9zP5/PxV14fJmpInfNHAQAqDmHm3IVsRP67R0FqqkAgq7HwNC38nGAY9MtmUTPfj+Y52wowA+zARtOhlHAtFh5A6ziEHUKw9+VbKGfWRAm67ZPaVWKVd55ct56nedTdVx8VQ1FAqzcxrck7LBaiMvByuqcqU3Wq3ztiYc9JKsK/blqsVyyXiJts7SftMM1bHEBkUju5Q1gsIcBY3wqApW8nzIgdPbZrHa8DoCAubv4PDrXNFh/e00hj23meDDPANIfcuGkZLbhsXJK1vCMxbcAauUBzfOFUaSQor+wV1o+tHNtyxBmEOVnVlUDymZP5ZqJGQxg9a+NLF0z1Nc1sm2SzmnEIHg0wYCx/bgdffT2KPi6AzRmN6EGkomDFp2PyYYyGefu7gCkgHijNMBYFFG8XFWMW/g6sZ25AGrAcp/ddcNugSJxr5ebadYqKtNuYasU2tpjidydDFry2O5DsvLyHLFTJ8HXGXIB0bI/18TGTwEoPrfCyZwHg/JJeeHPOnZAxmMc4xjHOF5SsQP6bVI7oNpSgoiWAZza5t3OAljZ5n0+n7HTzgfYeee0084HePbndFApNXclByKiD+rjPZNYUUq97UqOM46rj+egz36x/HbG7dzeGLdze+NK2nnFfTbwrPrtF3SfvaNA9XMRRHS3UurO57sd2xU77XyAnXdOO+18gJ15TuN44cWL5Tkbt3N7Y9zO7Y0XSztfiOF98VXGMY5xjGMc4xjHOMYxjnE8XYxB9TjGMY5xjGMc4xjHOMZxlTEG1V883vN8N2CbY6edD7DzzmmnnQ+wM89pHC+8eLE8Z+N2bm+M27m98WJp5wsuxpzqcYxjHOMYxzjGMY5xjOMqY5ypHsc4xjGOcYxjHOMYxziuMsagehzjGMc4xjGOcYxjHOO4ynjJg2oi+iMiul//O0lE9z/JOvuJ6O+I6BEieoiI3v5stv9Sx9Wek/7+nxPRY/q7X/6SNf5JYhvu0f9BROecfXztl/QEniS24x7pdX6aiBQRPVNd5ucstuE+/RIRfUFv/9dEtOdLegLjeN6DiHwiuo+I/lL//3Yi+jQRPUBEf0FEbWfdnyeiY7qf+mpn+Sv1+seI6N8TsYsUEcX6GT1GRJ8lokPONt9LREf1v+/9Im08qfd/PxHdrZdN0/+/vXMPtqqq4/jnq9d8P8BXKiZqQmo5luDooImPbDQHeykapYjVWL7I0cKh0DTLR5Zjpow5Dr4wxbeWKZLgJJokiigiItBIkpgaPlIL+fXH+h3YHM7r3nPO3ftef5+ZNee3f3utdb5rn33WXnvttfaSJnv6yZL6FFTnUf6/WyFpUFn8Ium8RNJcrw/ulLRZQXVWrbOKpDOzb43rRV46ey1mFsEDcCkwroJ/G+Bzbm8MzAN2azR9TysTcCDwELCub2+VdzmaLM+5wJl5a29lmdy3PfAAafGMLfIuRwt+p00y8U4Dxuddjgjdft6cAUwE7vPtGcABbo8Cznd7N2AWsC6wI/ASsLbvewLYl7SG6f3AYe7/fumcAo4BbnG7L7DAP/u43aeGxkXl/zfgYmCM22OAiwqqc1dgIDAVGJTxF03noUCH2xcV+HhWrLOKptP9a1wv8tTZW8NHvqe6hN+FHQ3cXL7PzJaY2Uy33waeB7ZrNH1eNFGm7wEXmtkHvn9p9yiuTbO/URFpsky/Bn7IykXai0FXy2Rmb2WibkjByhW0F0n9gC8B12TcA4FH3J4MfM3tI4Hfm9kHZrYQmA/sLWkbUkPnMUtX+uuBL2fSXOf2bcDBfq5+EZhsZm+Y2Zv+PZ1dsS2b93Vl31kYnWb2vJm9UEV/kXQ+aGbLffNxoF9BdVarswql06l0vSiizh5NNKpXsT/wqpm9WCuSP+r4LPDXrqTvZrpapgHA/v5oZ5qkwe2V2TDN/Ean+GO6a5V5NFsAulQmScOAf5jZrLYr7Dxd/p0kXSDpZWAEMK6dIoPCcRnpor8i43sWGOb2UaTeNkg3Yi9n4i1233Zul/tXS+MNtmXA5jXyqoYBD0p6UtJ33be1mS3xvJcAWxVUZzWKrHMUqae0kDqr1FmF0lnjepGnzl5JR94CugNJDwEfr7BrrJnd7fax1OlllrQRcDswuuwOtaH0raTNZeogPb7ZBxgM3CppJ79jbQttLs9VwPmkyuZ80tCEUa3QXUdLW8okaQNgLOkRabfS7v+SmY0Fxko6GzgFOKclwoNCI+kIYKmZPSlpaGbXKOBySeOAe4D/lpJUyMZq+LuaphJDzOwVSVsBkyXNrRG3UDrN7JEqcQupU9JYYDlwU1F1VqmzCqWT6teLPHX2Sj4SjWozO6TWfkkdwFeBvWrEWYfUCLjJzO7obPpW0+YyLQbu8Eb0E5JWAFsArzUtvArtLI+ZvZqJ8zvgvqYFN0Aby7QzafzbLJ870g+YKWlvM/tnK7RXo93/pQwTgT8QjeqPCkOAYUqTiNcDNpF0o5l9E28MSBpAGh4CqY7aPpO+H/CK+/tV8GfTLPbzdFPgDfcPLUsztZpQM3vFP5dKuhPYG3hV0jZmtsQfnZeGzBVNZ7VGdeF0+kS3I4CDMx06hdOZiZKts4qk8wCqXC/y1NlrsQIM7M47kMb9TKuxX6QxRZd1JX1PKxNwEnCe2wNIj3TUg8uzTcb+AWkMWY/+jcriLaIgExWb/J12ydinArflXZ4I3R9IF+bSRMWt/HMtP29G+fburD7BagGrJljNID1lK02wOtz9J7P6BKtb3e4LLCQ9nevjdt8q2jYENs7Y0/2cv4TVJypeXESdmf1TWX2iYqF0epgDbFkWv2g6K9ZZRdNZFmcRqyYq5qKzN4fcBRQhABOAk8p82wJ/dHs/0mOMZ4CnPRxeK33eoZkyAR8DbiSNZ5wJHNTDy3MDMNv33UOmkd1Ty1SWZmUlmXdo8ne63c+5Z4B7ge3yLk+EXM6hoaxqVJ9OekPMPOBCMjf3pEfaLwEv4G8mcP8gP49eAq4opSH1gE8iTcZ6Atgpk2aU++cDJ9TQthOpETILeI407AnSmNIpwIv+2begOr9C6lH8AHgVeKCgOueTOnNKdcT4guqsWmcVSWdZnEVkrhd56OzNIZYpD4IgCIIgCIImibd/BEEQBEEQBEGTRKM6CIIgCIIgCJokGtVBEARBEARB0CTRqA6CIAiCIAiCJolGdRAELcNXrFwq6dkG4x8taY6k5yRNbLe+IAiCIGgX0agOgqCVTCC9v7UuknYBziatALY7MLp9soKg9yLpHf/cVtJtTeQz2ldsbYWmT0l6WtJTknZuRZ6ZvK+RtFsX0u3pCwyVtodJGtMCPf0lvSfp6U6mGy5pvqRuWZAsaD/xSr0gCFqKpP6k9wx/2rd3Bn4LbAn8B/iOmc2VdDEwz8yuyU1sEPQwJHWY2fIy3ztmtlEL8l5EWhTmXy3Iawywvpmd08X0a5SzBZpGksp3Sovz7U+mzutk2qHAmWZ2RCs1BfkQPdVBj0DSYEnPSFpP0oY+XKDTFViQC1cDp5rZXsCZwJXuHwAMkPSopMclNdTDHQRFoNE6SdJxHm+WpBvct4OkKe6fIukTdfwTJP1K0sPARZJ2lPSYpBmSzs98V//S0CtJIyXdIelPkl70m9hSvKsk/c01/9R9p5EWanrYvwdJh/r3zJQ0SdIaDXfv/X3cNd8pqY/3Bo8Gvl3KqyzNO5Iu9XynSNrS/VMl/VzSNOB0SQd7T/dsH1q2bibeoFoa/feZ7sf9CUmbAucBw70HfbgfoysaOPaXe14LJH29gXOjv6S5Sj3qz0q6SdIhXte9qLREeNAbyXv1mQgRGg3Az4Bfkno9z85bT4Sqv1N/4Fm3NwLeY9XKaE8Dz/u++4A7gXVIS+QuBjbLW3+ECI2GenUSaRnoF1i1LHRf/7wXON7tUcBddfwT/P9SWkL6HuA4t08G3nE7+98bSVp2elPSKnh/B7Yv07E2acnyPXx7UUbrFsAjwIa+/SNgXIUyPgMc4PZ5wGVun0vqga103AwY4fY44Aq3pwJXur0eaVXFAb59PTA6E29QNY2kVYEXAIPdvwnQ4cfkioyOldt1jv0kUifkbsD8CuVZedwz28uBz3i6J4FrSUt+H1nK2+MOxVcQjdDzQ/RUBz2J84AvkCrTi+vEDYrBWsC/zWzPTNjV9y0G7jaz/5nZQlLjY5fclAZB56lXJx0E3GY+nMLM3nD/vkBpYu4NwH51/ACTzOxDt4cAN2fiVWOKmS0zs/eBOcAO7j9a0kzgKVLDv9L45H3c/6jSWOHjM+kB8N7fzcxsmruuAz5fQ0+JFcAtbt/I6uUs+QcCC81sXo28q2kcCCwxsxkAZvaW1R9KUuvY32VmK8xsDrB1/eKBa59tZitIS4ZPMTMDZpMa3UEvpCNvAUHQCfqSej7XIfVivJuvnKAeZvaWpIWSjjKzSZJE6hWbBdwFHAtMkLQFaTjIghzlBkFnqVcnidQrW49qcbL+8rwbyfeDjP0h0CFpR9IwrMFm9qakCSTt5QiYbGbHNvA9zVKpnGogXUWNkvagsePTqKbscWxEV3maFZntFUTbq9cSPdVBT+Jq4CfATcBFOWsJKiDpZuAxYKCkxZJOBEYAJ0qaReqxOdKjPwC8LmkO8DBwlpm9nofuIOgi9eqkKaRe4c0BJPV1/3TgGLdHAH+p4y/n0bJ4nWETUsN1maStgcMy+94GNnb7cWCIpE+69g0kDchmZGbLgDcl7e+ubwHTqM9aQGls8jeoXM65QP/S91fJu5rGucC2kga7f2NJHWXlK6fRYx8EVYm7paBHIOk4YLmZTZS0NjBd0kFm9ue8tQWrqNGrtcYkRH8UeoaHIOhRNFInmdlzki4Apkn6kDTcYiRwGnCtpLOA14ATPEk1fzmnAxMlnQ7c3hndZjZL0lOkG9wFpAZ6iauB+yUtMbMDld6WcXNpgiDwY2Aeq3M8MF7pVXwLamjO8i6wu6QngWXA8Ao635d0AjDJG8QzgPGrR7HXKmk0s3mShgO/kbQ+aV7HIaSb9zE+VOQXZV/Z6LEPgqrEK/WCIAiCIOg21OQrACXNBob5XIzcUbxSL3Bi+EcQBEEQBD0CSZOB2UVpUDsfApuqC4u/kF4x+mY7RAXdT/RUB0EQBEEQBEGTRE91EARBEARBEDRJNKqDIAiCIAiCoEmiUR0EQRAEQRAETRKN6iAIgiAIgiBokmhUB0EQBEEQBEGT/B+kYUd44pd2YgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, axes = plt.subplots(ncols=2, figsize=(12,4))\n", "xds.plot(ax=axes[0])\n", "xds_match.plot(ax=axes[1]) \n", "plt.draw()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Original Raster:\n", "----------------\n", "\n", "shape: (200, 200)\n", "resolution: (231.6563582639561, -231.65635826375018)\n", "bounds: (-7274009.649486291, 5003777.3385, -7227678.3778335, 5050108.61015275)\n", "sum: 23209796.0\n", "CRS: PROJCS[\"unknown\",GEOGCS[\"unknown\",DATUM[\"unknown\",SPHEROID[\"unknown\",6371007.181,0]],PRIMEM[\"Greenwich\",0,AUTHORITY[\"EPSG\",\"8901\"]],UNIT[\"degree\",0.0174532925199433,AUTHORITY[\"EPSG\",\"9122\"]]],PROJECTION[\"Sinusoidal\"],PARAMETER[\"longitude_of_center\",0],PARAMETER[\"false_easting\",0],PARAMETER[\"false_northing\",0],UNIT[\"metre\",1,AUTHORITY[\"EPSG\",\"9001\"]],AXIS[\"Easting\",EAST],AXIS[\"Northing\",NORTH]]\n", "\n", "Raster to Match:\n", "----------------\n", "\n", "shape: (100, 150)\n", "resolution: (386.65122672362685, -386.65122672362685)\n", "bounds: (485124.8828918401, 4990535.635952473, 543122.5669003841, 5029200.758624835)\n", "sum: 4903477.0\n", "CRS: EPSG:32615\n", "\n" ] } ], "source": [ "print(\"Original Raster:\\n----------------\\n\")\n", "print_raster(xds)\n", "print(\"Raster to Match:\\n----------------\\n\")\n", "print_raster(xds_match)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Reproject Match\n", "\n", "API Reference:\n", "\n", "- DataArray: [rio.reproject_match()](../rioxarray.rst#rioxarray.raster_array.RasterArray.reproject_match)\n", "- Dataset: [rio.reproject_match()](../rioxarray.rst#rioxarray.raster_dataset.RasterDataset.reproject_match)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "xds_repr_match = xds.rio.reproject_match(xds_match)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Reprojected Raster:\n", "-------------------\n", "\n", "shape: (100, 150)\n", "resolution: (386.6512267236268, -386.6512267236231)\n", "bounds: (485124.8828918401, 4990535.635952473, 543122.5669003841, 5029200.758624835)\n", "sum: 4930593.0\n", "CRS: EPSG:32615\n", "\n", "Raster to Match:\n", "----------------\n", "\n", "shape: (100, 150)\n", "resolution: (386.65122672362685, -386.65122672362685)\n", "bounds: (485124.8828918401, 4990535.635952473, 543122.5669003841, 5029200.758624835)\n", "sum: 4903477.0\n", "CRS: EPSG:32615\n", "\n" ] } ], "source": [ "print(\"Reprojected Raster:\\n-------------------\\n\")\n", "print_raster(xds_repr_match)\n", "print(\"Raster to Match:\\n----------------\\n\")\n", "print_raster(xds_match)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Raster Calculations\n", "\n", "Now that the rasters have the same projection, resolution, and extents,\n", "you can do raster calculations.\n", "\n", "It is recommended to use ``assign_coords`` to make the coordinates the exact same\n", "due to tiny differences in the coordinate values due to floating precision ([issue 298](https://github.com/corteva/rioxarray/issues/298))." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "xds_repr_match = xds_repr_match.assign_coords({\n", " \"x\": xds_match.x,\n", " \"y\": xds_match.y,\n", "})\n", "xds_sum = xds_repr_match + xds_match" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Sum Raster:\n", "-----------\n", "\n", "shape: (100, 150)\n", "resolution: (386.6512267236268, -386.6512267236231)\n", "bounds: (485124.8828918401, 4990535.635952473, 543122.5669003841, 5029200.758624835)\n", "sum: 9814687.0\n", "CRS: EPSG:32615\n", "\n" ] } ], "source": [ "print(\"Sum Raster:\\n-----------\\n\")\n", "print_raster(xds_sum)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8AAAAEWCAYAAACpLv6AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9d9hl51ne+3tW2X1/fXrRjKRRd8NCNrZp4QRMThJKKieHnnDIodqGgCEEE0JCYls6BEIxzTgHUxJCOQmmhBKaZSHZlmX1NtL0ma/vvvda6z1/PG/Z33gkjaQZacq6r+u7vr36u9611r3e9ZT7EWMMJUqUKFGiRIkSJUqUKFGixJWO6NVuQIkSJUqUKFGiRIkSJUqUKPFKoPwALlGiRIkSJUqUKFGiRIkSVwXKD+ASJUqUKFGiRIkSJUqUKHFVoPwALlGiRIkSJUqUKFGiRIkSVwXKD+ASJUqUKFGiRIkSJUqUKHFVoPwALlGiRIkSJUqUKFGiRIkSVwXKD+ASLxsi8tMi8gPnue6fisg/vQht+OcickpEuiKyeKH3X6JEiRIl15UoUeJqQMl1Ja50lB/AJV4UROTrROQvpucZY77ZGPPDr2KbUuBO4IuNMS1jzMoF3PcXicgjItIXkT8RkWsu1L5LlChx6aLkupLrSpS4GlByXcl1VyPKD+ASlzxEJHmBVXYANeDBC3zcJeC/AT8ALAD3Ar92IY9RokSJEg4l15UoUeJqQMl1JV5tlB/AVzBE5HtE5JiIdETkURH5Ijv/PSLyX0Xk1+yyj4vI66a2+14RedIue0hEvsLOvxn4aeBzbEjKup3/QRH5N/b3vIj8dxE5IyJr9vfeF9nurxORvxSRu0RkFXiPiFRF5H0i8qwNiflpEamLyA3Ao3bTdRH545fbb1P4SuBBY8x/McYMgfcArxORmy7gMUqUKPEyUXLdy0bJdSVKXAYoue5lo+S6EkD5AXzFQkRuBL4V+GxjTBv4EuDw1CpfBvwX1AL2YeC3RENOAJ4EPheYBX4I+H9FZJcx5mHgm4GP2pCUuXMcOgJ+EbgG2A8MgJ94CafwJuApYDvwI8C/B24AXg9cD+wB/pUx5jHgVrvNnDHmb5xrZyKy/jx/3/scbbgVuN9NGGN6aN/c+hzrlyhR4hVGyXVbUXJdiRJXJkqu24qS60q8HFw1H8Ai8gsiclpEPn2e6/9DayV7UEQ+fLHbdxGQA1XgFhFJjTGHjTFPTi2/zxjzX40xEzTPoga8GcBaxo4bYwpjzK8BjwN3nM9BjTErxpjfMMb0jTEdlOQ+/yW0/7gx5seNMRkwBP4Z8A5jzKrd778F/vH57swYM/c8fz/6HJu1gI2z5m0A7ZdwPiVKvCIoua7kupLrSlwNKLmu5LqS60q8VFw1H8DAB4G3n8+KInIIeDfwVmPMrcB3XrxmXRwYY55A2/0e4LSI/KqI7J5a5cjUugVwFNgNICJfIyKfdJY04DZg6XyOKyINEfkZEXlGRDaBPwPmRCR+kadwZOr3NqAB3DfVpt+z8y8musDMWfNmgM5FPm6JEi8HH6TkupLrXhxKritxOeKDlFxXct2LQ8l1JYCr6APYGPNnwOr0PBG5TkR+T0TuE5E/n8oB+GfAfzLGrNltT7/Czb0gMMZ82BjzNjRsxaDhJg773A8RiYC9wHFRNbyfRcNsFm04zKcBcbt9gcO+C7gReJMxZgb4PHeYF9v8qd/LaMjNrVPWvVljTOt8dyaa2/Jcf9/3HJs9CEzn0DSB67jAogwlSlxIlFxXcl3JdSWuBpRcV3JdyXUlXiqumg/g58AHgG8zxrwR+C7gJ+38G4AbRBP27xaR87IwXkoQkRtF5G+ISBUNNRmg4TMObxSRrxRV4vtOYATcDTRRkjpj9/P1qKXQ4RSwV0Qqz3Hotj3WuogsAD/4cs/FWjJ/FrhLRLbbdu0RkS95EftoPc/fv32OzX4TuE1E/p6I1IB/BXzKGPPIyz2nEiVeYZRcV3JdyXUlrgaUXFdyXcl1JV4QV+0HsIi0gLcA/0VEPgn8DLDLLk6AQ8AXAF8F/JyIzL3yrXxZqAI/ilrZTqKiA9MWsd8G/hGwBnw18JXGmIkx5iHg/cBHUVJ8DfCXU9v9MWopOykiy+c47v8D1O1x70ZDWi4Evgd4ArjbhuD8T9QiedFgjDkD/D0032UNFXA47/yUEiUuBZRcV3LdC6HkuhJXAkquK7nuhVByXQkHMeaFIh+uHIjIAeC/G2NuE5EZ4FFjzK5zrPfTwN3GmA/a6T8CvtcY89evZHsvFkTkPcD1xpj/89VuS4kSJS48Sq5TlFxXosSVjZLrFCXXlSjx4nDVeoCNMZvA0yLyDwBE4fICfgv4Qjt/CQ2deerVaGeJEiVKvByUXFeiRImrASXXlShR4nxx1XwAi8ivoOEfN4rIURH5RuCfAN8oIvej4R9fZlf/fWBFRB4C/gT4bmPMyqvR7isVogXPzyVc8NOvdttKlLicUXLdpYWS60q8WMjzlPcRke8SEWM/4ty8d4vIEyLy6HQOpYi8UUQesMv+o4i8WNGiSxol111aKLmuxOWEqyoEukSJEiVKlChR4lKGiHweWq7lQ8aY26bm7wN+DrgJeKMxZllEbgF+Ba3puhvNo7zBGJOLyD3Ad6B5m78L/EdjzEde2bMpUaJEiUsPV40HuESJEiVKlChR4lLHucr7WNwF/Au2lpP5MuBXjTEjY8zTqKjQHSKyC5gxxnzUqKfjQ8CXX9yWlyhRosTlgeTVbsArgaWlJXPgwAEAHnr2lK9cZgRMBGJF5AXIq/o7yvQNEzmB+QKM7S0TQTSZWmbwryMT6Y6kCMeYhonOKpzm1rPlxN12MvV6K5KtxyAK232GCWNqOxPZtmZhnvttoql92+PJlJi+icO+5Kx9UoR5RkIbjOj+s/pn7lNy7a9o5E4YTKI9YRKhiLeeuztksjHUdeqqzj9pRxSpLqtsmC37yWqhzVFm2zjdj3Y7vdCc0/xjzpoXj6YX6qZul2LC9TUJRGP8xc3TcJ2jSdj+7GMUVbh1947PbMgliPvuu2/ZGPOiitR/yRc2zcpq/sIrAvd9avT7xpjLrjTFpYRprgP49MlTQHgOPc/kBA4Rne+eP0x4vvOGgUz8PRxNbVdU7L09RWie9yK7H7duOrVObo/pnoMCkmFh14vIK1P8Em1tl+NX2MprJoIiDtNRvpXPpo+/hfPPxb8m/J7ul+ljOO535yCZ9gdon5g4PPdRZogmupPRXIxMtVuKre8DySEe5bZNEZOmIxiIx1vfJ1lja1tkEs51+rzOfhf5vo2nroGdlwz5DEixZRWkgCiz16sS6avpHCOJaGLfQbbPiiRcs1v2Xdqc9wpw3YNoGRuHDxhjPvB824jI3wWOGWPuPyuSeQ/q4XU4audN7O+z518R+AyuO265zmx9x7rnGFDucs9sbpe5sVAF/2xGE/ts2pu+SLby0BbIWWOC+BzrTC13z0CRBD5xbd7yrLlLLGeNzaKtfCXF1PIpXjWRHZNNj1Onxr5nj4/cMtcn09wgU5wvReCSLWPLMUR5GLxlDQn9wlT/AfGw2HLsrB6R1/R3MgzXwcTaT45ftnBnbvvBndN0/0Vbz81MvRtcu6fbPr3ulnGdQDwxdh86TjXT989ZbXHbFSnctuvS5jiHq3lcd1V8AB84cIB7770XgDd8y11+MJRVIW9AuqHTUQGdg3qzV5cFE0F1TZfFIxgu2u0a0DgJtTV92qKJDnIAJq0II5AMdTqvTI8OYVKXLR+UyUAnRrO6XqVr7D7DSoPFSD/o7MOd1yAe2LY07a7twxxPwkOY1WHShsapcLzaSmHbKXbf+j/KobaqxyximLTFk6prI8B4Rkj6YV5WE280KCpQXzasvNb251hIO/q7sgn1lYLWs/rOl3HOaEkZbzQfM5qN/D7jscHE2q7539XSbNmtBwA49vl1Bru0Yft+3xAPC4aLehuv3Rj5NtfPKMHF49D23i7dZ5FC0sUT7jTh5XW2YOapsL0OqkPb4pHx13e4KLSO5phIpzt7I3+dW8fdfWLvkWZ4O28eFO791+/gcoCIPPNit1lezfnY7+89r3XTXU8uvfBaJZ4P01wHcOjf3QVAZUNf0ONZnV/ZhLivv4sUJrOQ9HQ6GuvHFsDGG0dEKxWax8Rv557Tzn6hecJQWAOUFMZ/QGU1HRQ4HuxvC/d82jOYSPwHXDyE+UeV0IbbqmwciIgnYT+JbWeUK6fl9kOzfiac96QN45kwXdmA2trUs79T/Ghl0oTqumuLDmjctvEIEsutSd8wmpVwTnUYzYX+kxwmdrvaMnTtbd44qftrnNLjN87k1I91ATj85XNU1kI7095WA2N1o6D9lK47maly8k1KrvEY2s8W5LXwPlm20j6VddnSH/0d4Rwm7dB/08ZdgEkL8roe3L0/5h/W/2bqAysdGDCB99JeQXVFb5DeniomEoaLU+85+55qnCmYNISxfbeN5qBmMy7v/bFLm/NeAa4bGmNufxHtaQDfD3zxuRafY555nvlXBM7mupveo1wXZeFeBx0rTdr29zC89ysb+ly5dXvX5FRP65dS45Q+/2780N8eUenYZ6XY+mFZJHgOjCaGSVM8f01/SEqhY4a6HYP1t8WMbbuifCvXFclWg32lE85n3Arnk3aVs9zYLa8Ik5Yuy5q6n6qNI4iycO55qhwRTX1ounYmAzt2dGPLPBy/c9CQdsRzcG0lfHy3j+ZUOhlix8Jn3lALPpsM0r7x46O5xwbEQz24SWJWbmuwfqOuPf+wUF/WnY5nIvrbhOH2MC534+BKR9voxmxZPbzD8trWD/xJy2wxGlRXJbw/jL67/DWaaP+4/mydyGxbYobzYbybdgJ3VzoFk6aQV/X8ervg3n95aXOcw9U8rrsqPoBLlCjxasGQm+KFVytRokSJyxoXleuuAw4Czvu7F/i4iNyBenb3Ta27Fzhu5+89x/wSJUqUeBm4MsZ1V90H8Cf+U7DKvO477yJrqfcD1FqWblpr9ZIhGoXQv9q6gRUbajtQz8a4pSazdGDIrbHVCCCQ1a1XJIdJY6s1fdq766xZ1Q3dZjTnthMfnhyP1HrmPYh5FMLKYrXexS5sbwjYZSZSi1jfRmLMPmk0RAW1HOo+xJ+7t6z1DenAMGpHdpl4D3f9jDuQPZ++IbVWy9Gs0Nsp5G21mOUTobasjZk0odIRNq5Xc938AxtUNrVzK5sTzME6/W0hJNp53s98xc0sPNgj3tRY5PazNZKe7rO3A+orOfHItc2GIVsUCXT3huvQOG37c2gYzgcPdzTRUOTpa+KsoZvXSvACGz3fcTuEJToPFwjdvbGGZaPep+G8vV/qQjIwZA3daVYTxIrPtZ8x3Pjf/rU/9qNf+a+4kmCA4spxOlx2ePzdyne3fu9d5DUwkY04mQOxvDdZ0Oc16yrhzH868FX1mSr1qQiSKDNk1gtZPw1FLFtCazPrYZg01VI/ntGF1Q1DfUUfuN6OWL2p87pu0oOTn2PN+EajbnzYmYSImeGieiqdFyOrnxXaZkJETLoZoj+KWGieNGxe47w06v2B8Pym1nMwnBd/DiYS0r6hv123a540Yb0FYTIP2Q3qau1PIuqPKYkMtus6zitUOznAxNrQvX88ZOO6quelyUzwig4XYP7RkHOxfn3Vh2tGE+jtiqgvK0l3d0fUT+qyeKz9sHG99WLkQmVTlzWPhcilaKJROs6DIdnW0EqA/k5tV+Ok8R6vItG+8N6URsTaobo9VvDEgJ6LixCYNISsIVQ2rSf8dDjOTT94F4/80OXhITlfXEyuM8Y8AGx30yJyGLjdimD9DvBhEbkTFcE6BNxjRbA6IvJm4GPA1wA/flEaeAngkfcEriusF9TERjnBXpbx9gzJIrssZvZx9QoD5Cdi/yw6z+3EvrM1UsSOlWIN9XVjvDzFe3yLRKhuGtJeiOxz47/xPEQjYbBNuUAy/HMaT2wYmovea209NzfO0w1DesVoAdrPBL50HkyAzRl9Zn1Ey9BgLH9ldSGrhyyYeDwdxSikHbOFE/s7bb/sGzKY4rrRfDiH/raYxtE+JtU+2/YJ5TrQ6LvRgvj+PXVHnZ1368AxHmi+Yc2Nr2swWNSTTfsFYoTGiTCOc/2wcb1BcqFhebC2PMV1LszcenIln0peExgtGJKBi2oyPvIyq4tP5QON9ly5Rd+LyUDH4i5aKO3gx56ThpDVw/fC7JOG695/p+5jPuOZb/gXXEm4UsZ1V90HcIkSJV5ZFFz+lsISJUqUeCFcKK6z5X2+AFgSkaPADxpjfv5c6xpjHhSRXwceAjLgW4wxzrTxz4EPAnXgI/avRIkSJV4WroRx3VX3AXzLv7zL/77mD86QLTT99OrNDW9BSnriPRQAnb3qRQCYxMJgm4R8g7qEPLWJ2SI8VaRQ7VjBkFiYNMVb8duPrdM/oG6Yzr6EIlXPLIRcPbcPFUOxHoU1w7jp8u4079bloqa9gv52tcDNHi6Ix4X3VI/mQh5LOigoqhHzT+h7crAQec9OVhOq68WWPJrMebGNenqceEPa0/wHgLSv3tvmk9ZiNoS067wSagXc86d6gjLJKWa1XZ39VYyoNRO075yHZrgNju5q0joyZZ20fT1pQ21d2Lwm8sfw+Rld9UpMZqZyeDPnAbLnaa2stRWwKSDMPK0iDom17A0WIu8NjkeG4VxEkYZ+cstmnsnBGDr79NzHM9A65rztBdFUJIDmPrrrZZj97RYj6y2+9uj7eerb38WVAoNhcgWEylyueN13Kt8lwK6PDjjyv4Ukd5cb1ifB7B+Qj/RmXrston7Sco21qnsBwGXxVvVorM+4iyoxsfhcqsqm5ly5ZyWaGG/VNyKM58LxRwtBQCrdVK9CYfls7vFw7xRpxKQVvB+TVuBLx9XOmxOPt0be1JdzWnFwFw+2u/MTotz4fYqBkeXeaKJRK04IL6+GqJxKR/9W9oZX6GC/kv7Cx3WeyxfuHmzSPKYNG88mWzwF4xno2uDVyiasH6ohhbqg5x8d0O8ooW1cG1FdC15lMUEEKx6rF8rl85pqzjDTNkQZwfs1a6ifFi9SmIygdTToGWwcki395/LZJk3RnDjLdc0TBbM2KmbzmojuXmgd8d3gPUlZQ7UrnM5EpRuuXTyCa37hP1xRnpELyXXGmK96geUHzpr+EeBHzrHevcBtZ8+/EnHL9yvXLT6SUV3TG239UI3B0lT+/yhlvEuXmThi41DwICYDHW+AjTSphHzTeDwlnJfrc+i8f/EIP3ZKJobm8QnDJTcOkKC7sKE85TyYSR+GNjvSxELraPAqR6Ot+bkwlaPbDzm5eUfHh0UcdBjSvrZr9qmIrC7eY1mk4pc5gazMLsty9U7reiBTwoeV7pRuwMkaySTwdfMYPo+50jNksxXEvg96u6t+XJrXNJLEcaJJ4OSblcCqa7qt2FCiaQ2DwbZI86EroQ8df+XtAhMbhpMprrMYzxrqpwJf109B2g9c190bIgDjMYxbrp0qdDXNdS5XuLM/YrAtcF08DjniWUOjMse2bWlPmHtUfw8X0pLrLlFcdR/AJUqUeOVggPwKCJUpUaJEiedDyXUlSpS4GnClcN1V9wH80L8JeUdf+svvJDk5Ye3NuwAYbAsW6qICCN7b6Kx+oIp7RqC/w06vhHwzLa0UVPK0dEbwRMRj41WAV9+w4HPkhkvQOB6sjK2jhsxa4IfboDateNoUbyGbe3LMqdsrjOb1+K0jEXt+3648HEOaMHiLpg41T04lfInLc3FWP6FxOrf7jxjOR97qlvQh7jnLYWgvQHcBnLksHmlfVGwfto7nbO5T82V9pWDhkYLBTueBqtM4ou6bxqkYKQz9nXrAyibeYts6ahi3xCsu1lYLRtZzHI1h3JbgLV4M6ohJ35b0sM9o82jw5JhIrX4ud2XgM6ugu0eonw7q3TNHMlZuchr8UF0vGC7oOVU3Cp8PrNZZoboRPNVOdbq6Fm9RqE0G+ByhZGgYLETeitp+IvJqli6n6XLHlZArcrni/v9H76HP+7L3kh5Z5dr/rPfumc/b4b2zaUeI72t4D0PWDN4GV04stp7W4RJBxVjUGu+iQ9SAr7/bRwzjeuA9E4vnyEqnYDQfe89I0oOhpYXB7oLKalCM7u+ItmghbP9ERsd6XUczIec3HsOOe0Z09lf8ti6KQ6yCfuoU99uRVz2udAtV2Xce2SnV5OqGRpQ4j/f6jYb2YXuuhWoJLN2tC4eLwVOT1dQ73X7WKpeuB9dE40iXKG/R2x77fvEe2Z56jDoHrVJ/s+55Qr08wSub14Jmw3hWuax2WvttuLdgPGeV5zOhcSx4N7J68KbE48DjaUdoTWmBjlvi8+IkA1K2lOxz/TfzjPJx5xrbZ+uQ17UdzRO2b13JKAll96IMGk+n3PwDynUP/3DJdSVeHh76Eb2Hvvhzfpj4jL7c29UlRnOVkP6ZQeWEPrPppnoiHdel3fBMZQ19TlyEiZHw3BQJEMHEuBzS0Ia8InT3pn784HRYQKM0ameCcvxozlA7I75dTjMEoHU8aI248cnMYfdMGxpHlaRWXtcmGQVPpPO+gnqD84r4c0iGxo83i5QtEYfxKDybWQs2dxmvLh+PwjnOPClEWfDkTo+RMYasEVM9owOt5rER1Q3daVZLKKqhr6tngpr/YAeYM7JFpdnpPERjyOemFOzHoQJK3I0+o9RRZd2ul6katotcGs8Ffo6rwswzxmvOjNtBpyCv6rjRHc/EYUzeOK152j0rK1ddE/ou8rILmFA2U6bKgRYVaD2ecuMPK9c9+gMl110quOo+gEuUKPHKwQC5ufyJskSJEiWeDyXXlShR4mrAlcJ1V/UH8EeevpMvPfhOkr41+0XxFvW9ykawUm2FVcq0dR6LivjcjWRgSPshNn7SiEKOnECeCtWhLh+1I29xnPbwgq2haT0YtRUhHRgm9aBC6FT5oGKV9XRZd59h+U1q1l/62DIMx0Gp2IRatFlDva6T5rRF0Fr8xqp86tRdJ02nohfUBqvrwVrZu8GqOR9PGS6GPmucFpY+PdxyXv0d1su7kTOZVTNfujEmmuRIpsvGMzD/mK0D145onirY3K+mw9pq2FeUwdrNULXKgvEYCnu47j715NSWXa5tUCqNcrUwTmwO3fQ19t4R1+yTISpgsCRU14MVczgf+VrQzvLqr1ESrKv9HepNctutv3FM82F3UCEebz0vl3Ny03vuuiK8wJd/psjljz/77e/mS6/9LtbfqO6EzYMyVVfckFfFew1rZyKvpl5Yq7rz4iXDcB/HQ+UKl482aYa8qvGM5l85y/pwXnwETV63+cO90L6Zp/S/U0p3bZtM8TEFrF+XMLBey/FizsL9atZvH5lQfWaF7j6N5jGRemjdPrsLSciFnQlKqXlF85FdvXIXHQJWGT8P02lHGLxNH+rsaJN4IOQ13em2j4dmNk7rzgc2DzCrRxjR33EiVJeHjFuWfBCWHghPyKgdUT+lfTCeDbl+lQ3tk7VbLP+uhjrK4+0TslOpP4eZh5LgGR8GD3Y00Xy77n7LVW1Duhn58144XrB2g07nVag+Zs97YMiaQnUt6CI0Tmube7si+juDh2i4FLww69dHFGnwhCRDaB/WfUSZMFzEq/3f/K/u4uHLpB7686Hkulcff/DRH+BLr/0uAIaLiebdWs4yiSEaKw+NFg1JT7BBbRRJqCJRG9gxkR0hJ/0Q5Yds5TrnTQXlO8d9oOMMt894ojzqxnpJT7ZwzaQVIlrEBH4uUugezKlsKtctfrpPvKoPezxunTWui7bUsM3qISIPgrZMNNa2uRrnRoKnM+3qWLC4TblufLTpPcd5zbD9PmicsrovvRBV2N+eYgQmM9qAZJBTXdYDxNe0mMzC/KOFb5u7Jr2GMGlC6tSqB8HrnVftOMpeo96BnHTNKkR3dDzm3hHROFyHvKrjw3EzcF1h1amTgXrYXU318SxU1wMvZQ0812VV8VE4w3lRfpuKHHRcN56F/p6cyqq2LcrDuLS6ph5zF6l44w/fdUV4ga8ErruqP4BLlChxcWEwV0SuSIkSJUo8H0quK1GixNWAK4XrrvoP4I88fSe3fbfG5kcjvJeg4RSfW6H+WG09KOjFI+OtfEUerGdRbojGhs39agka7MTnUlTXdbvVm4KXo3ECv0+isJ+8Eo49+3TGuB2Ru7pzjZDP0N+lliWXF1EfC73d+nv09m3Ul0M92ngIdWuVwhj6S3HIrcgg7VpF6G2J5j44BcRRsKwVqda5w4Y/9A7mMAl5EM6iD9ZTcMxJJ8L6DQ3vBaps5lTOqIWxd90cRSLUl20eRk28Yqzkho2DISdwuCDe4ieF5qS4tiUDvFmqSLWPqus6PZ4JtT5dLVE3XekEy2jlpHosXC5HZ29CbS086EUaaiLHY6ifCYWHJ62E+mphlwUPefuo2ZKb0z6ScOx/1+0aT1RgHCyelc9aI/49K2lrLv96mcbA5PLnySsCH3nqfXzJ7e+xU21WbrO59CPNj6+s21z+YfAMROOtdbFrmyFqBNEoFRcpMpoTzRVF1U4bJ0N+cGXTMJ61Cqddq+AcSt76KJnWMYMUhuF87NvStfmlwx0F5EJ1zeXNia9x3t2XsjtfIndRLBPDaM5pExgq3aD0KTneSxJlmus2nnPTgVsLlEec3kI8hOEk9n1mIph9wmoiLIRzaT+TkdcTr47f3xbTPGFz9AwMdtYDD25Af0nbWd0w1FcL7wUfz0F3t1WObyq31k4HLne8F3djTBy8RyaBxEafRMWUF6un55ZYNdTqscBRkyZs7ov8e6S2ErZLuwVJL6Z5Ul1J7SMFwwU9eG3VYKKgSdE6anzdZskNRSKsf4U2pni47d9pnWsMN9wRko6P/tYBrv/3+h5unIJP3Xn5cV7JdZcOPvLU+wB401ffSeNkiJirLEtQNG7JFkVlKYKCuYn0ufeq60XIsx3ORwy2hzEXaIQXQG+PEI2mokgmbNEwMBEUdszVPlqEPNgl1SFwESXda9RDDOp9LjZjP67r72yw8JBGz43mrHK7WC7PDEViozhq6on0EYiRHePaZfEwVPMw8ZRC+xAmswVYrkv6ocpJ44QwWIDmxPFQTm+3KyyuHujqqp78pJ0yaeqyZGA0Z3YpeGGn65FP2ngONglUl23/VXVd9/7JR1HIFc5Vsd9FvkR5qEOfdHXaRTVWj4VxohHlOrddbWVr9CNGPNdJYRjN6gWsrWrdYXf/tI4a37cYaD8bsf4VutPi4ba/7oNdhkNveoaHH9Xk4fqRxHPdE99z+fEcXDlcd9V/AJcoUeJiQsiRF16tRIkSJS5rlFxXokSJqwFXBteVH8DAp9+rVpi3/oP3+zqWo9mIvCK+bm6UBSvUaEZonA61I7Oa1n8DW1utHlFf1en6arCyjWeEvKoqw6BWSaemF4/VAuesYtVN4xWXB0u6g7nH9ICTVszGtTZ3K4H6/3aGwR9qAbtkAFjLZKVrmHlqwMbf1GSxeAD93TZn7rCheTrkb0huyKx657ilVq76GZvjnODzJRYeGrByW6glunhvEvJfWy6HLvTZcLue0PJrE+YfKbz3dtKKYd+M7T+hupZhIr0de7vEqwDG41Cb0vWTbLo2syVfI8qgaS2VaV9zzJy6cjKEccv1rSp+162VsbZmqK+E625iaNhazVlNvMervlpQ2cxpPasWzrgbXFjD3W3yavBUZw2hZr3BRmDSDsuSoWHm/pB4HI9h6a0n/PS+r34YgI//4c3MPG144zeptfC+D1x+1kJDqLFc4tXH79/7HgBu/6d3Mv+Ie27UW+q4J6uGHPgoN0geokGKJOSbidFcLq8eWtc8KIDZxzS6xEVSDBclRDms22fX0sjck4V/xly0R9U+46NZVWsFkCzaEmEieeRV36MJnP6sivc+jhZU+R2gmNfa4c7bUl813ju7eU2s7XCG/Gjr7/nHMpKBntOZ11SZ/5O674dxO+gKpL2pKKBJwfqh1NcyTnuGwnJDtJbTfHoT2a8NL9LYq71mDWG4KFsUT523yHlY3TGqG8Z7nbp7I9JeiCJJ+vh+GM8ExWbnIXZ9mPbCNZBCedDx/KQVogAmrYilT25CoX02XmpQW9V3UXdPlfqy8XVQkSDMWtg6qsk97dC3Fu1nhGfPHPCKuCxCUbHK+APh9d92F5/88cuL70quu/Twsf/8Tu74ujup2fFYXhEfhRCvbs19LSrhnseg9bqzcEGdAns81mfIVXZIu0FPJO1qNMg4DtPOY5jV1OvrqoB09kb+Oa2taO5wbqNbigoM91htlUdSqquBC+IBXnPG1WiPBy6ixEboAdLV/H13fp09obJHpQNFFHiicbrwytVRBu2nIuKHlByy+lQt4lj7yD3v69fXvD5EVhfSHowWq3Y/hvppN0aqMpqTUHe4QeDZ2HqjbduiwdS5DiHtGu+tHQzEr5fX1dPr1bkNW94HUQ+ax+0xohAxk/Y1GsZpKLiIToBkUNA42vMRjsMdzS33QJRtzQV3lVqcdkTy1+2wrtOxWMh4+PAumts15HC0NuvziF//rXfxyZ+4vHgOrhyuKz+AS5QocVFxJVgKS5QoUeKFUHJdiRIlrgZcCVxXfgCXKFHiosFwZRBliRIlSjwfSq4rUaLE1YArhevKD+Ap/OV/eRdf+CX/HtAwZk2Id+EO4WI3T+b0d8R+OqsB6/q7umnI6iGsBsBFflU2DckI+tuDKJYLo54OCQSV2fehFqiIQNa0wlAGZp8KZSi6f7GN1t9Ubf3VB5ZoPaP7b56YkJxcZ98f6j76O6usH9J9TFpCY9kQ97Whk5nEh/iAht858axKx/iSIgCLnx7Q2xPEDVxIT3Ujp7cz9vspUryAAMDaTaHsU9wX3zM77hvQ211lsGjDumOVrQcwPaG2HMKN4hFedEfDn2Fk21ldMz7MzpUw8bL4lSBMIZmGFDrBhNGseFn/ZGA0NNCeQ3dPkOtvnIZJMyYZOIGu1J9b2tEL2dsZzre3M/L9JwU+5GfSCKH1RaIxg4Nf1/Itw0UYnlbFjnkrtObugxv+zV3+fC4X8QQDTKZjH0tcErj3597pf3/+33kvk0YQMooa4sU94pHx9zFo2JkLoa1sGrK6+LSRxilDbUWfDRNpqH9vlw0Ri0NZCB8yZ0PQejvC/mtr+gw6VDrTZceEwQ54wxc+CsDHPnE97af0eAuPZjQeOcN477zf9ujfsGXWNjX9Ye4pPXARC6NZy1nrBiPiQ/ymy5zNPT4iHuWsH1Jibh8LhR+KRIVv+jtC2SCH3t4GG4eESVvXn38womNFEWvbWyRDw2CbTas4Y9i4TWMko17sBRMBqquhXFNvt4q9eDGYaiiTIoUNdbb9OmnhuWY6ZDyvQ2VNw6dBhV9caGF92bB6czh2bSXsb/bRLlkzJZroAaNRzmQ2tcfScnlORDDthH3EY3vdbag2JqT8JDbM0Z3D1/29P+S//Njf9Nsa4bITiim57tLEPR8MXPeWf/R+/wxJYUUtLdel6+fiuiDi58KOpTBUNoOYnOM60PQtF34LVojJiaVWVEDL8V/a28p11Y1QUq6/JJhYn7Fbv+LRc3IdQPvZeSbthFOfrQfJq3ghwOapjKwW+ZDvZIQvJ5RXbFkeO904OUFymxZysEbzeOHTISodw9imcE0aOm5yKStRFgTGioqhcVQ8180/WjBYUA4ebLPjnH2B6+onQ8nIagfw6TJQs+lpkybEo8B1SBjTgb5DnEBXpRPOJ2sChYZPg4Zsu31KYdi4Xvy67WeC2Fl1bULeSH1aX9LPmKSB6/I0jDfTTgghl0zb5UodmSi8E+buTxktgPR1RnbrmJknQwrcTT94F+M53dFT7wj36qWMK4Xryg/gEiVKXDQYhJzLnyhLlChR4vlQcl2JEiWuBlwpXFd+AJ+FP/n97wHgTV9zJ3kKUW6tVHHwIOa1iHgYyj2kPbyAQF4xJP3CC1gBvoh42tcNXEmMwdKUtbEG849n9LfZ8kmLQW497eq205ZLl5hfXy6obAorDy7p9BnxnpXaoyfZeNNef4zKZk79TDimTAs8pOI9uSZW65UTrGqdML5EUvrIETY/73ovrCK5oXFCO2a4lBJNYPHTav7MWilJT1csEmHt5jrDebfPgvaTul68vEkrm6P1rC7bONQgGYT+m7YI5tUgUNXfFjGeDf2ZV7VMkrsm1fWtAhfTvxungogZ4K9XNDGMZyKGi2FdV5qgvyNi+71dBjvUqpkvVahs6vlN2omKZthjxCNDZEshGRHSYeGFIzr7hKyl+5x5Utd3VlQthRAk+aMM72FLe+JFd27+gbt4+IcvD89IYeSFVzoPiMgvAH8bOG2Mue2sZd8FvBfYZoxZtvPeDXwjkAPfboz5fTv/jcAHgTrwu8B3GGMMVyn+1//33dzxtXd6K3syCNyW1YXKZuACCBb4SVM8pwWYLT8bpz5TRCax21Se0f+rN0c+qkMKFS6JPL+EiI+0q2JLdz94nS6Lg8BgNCoYHlyk9rS6mXu3bGPHvbqTU7cnJP3AmUm/AHTD3s6IIg0lOAbbDQd/R13h6cNHGL32gH+m86p4sZQo02nXtvqyob6sx1u+LSXdhPop5dPeXph7VLebfaLPYEeNmcOhfBrUfF8PtoVzj0ch8iWxIl6+pMo4eNfFQG11qwfYefPzCt7T0Tpi+8pVpjNGS1cBJhaKqiGv6U1QW4mZeVp30j3QJK8KtfUQ1jRu2yiYDJKx8RFSJgpeFxPBxnVC1tbtFj8Z+3aBeqedMNmHf/5vUnN1NQz09ooXxbrh397FY993dXFdiYuDv/q1d/HGf6aRBXIW5Wd1IbXlw4qKPlde4K8mwVtrL3Eob2Q87TWPG42KCAGCNE/oM1WkwuY1wZsZD4NIILBFbLC2bogKPdDHHriOuB9ECmsnenReo4p3lY0MBOYet+WTdsnU/lyZHiuyV1WvNtiIkQKWHlAeqn76Gbqfcy2g/GBiHS8CTJohcq95qiAe2+MCvV2p9zi7UkJLn9JljWc2Ge7SF8fM4ZzhUoVokvi+m7ioES9yqP+T3lnigoWKlro+q62G/spqIUomnxIxc+s4aFk853HeynWTZsziA0pMvd21LVyXVYVJK/LtSzK2eKOTXoim2bgWz3XzD8ah3NaMttvx89xfV4inuM4k4ZqVXPfK4vL/hC9RosQlC5crcj5/54EPAm8/e6aI7AP+JvDs1LxbgH8M3Gq3+UkRccOSnwK+CThk/z5jnyVKlCjxYnCBua5EiRIlLklcKVxXeoCfAx/7kMbif85XvR+AvB15q5SJbFkku24yNGGZRNSygmRgrUutYD0rYs3rdflnRYKX55+0hO7OxK9bXzFU123ZiXZEXlErPagnQ8R5LLU9M0+GXLvUWqU2b9/DcCHako/svNjJwJBXhc39alZMB4b6sq7oPJD97VH4b3/Xji4wbgmnP1fNW/v+R0R/Z+rXmz2cE410WbUzxKT6zTHe2aT97MTnCDZOjSjqevvFkRB3hkhfzaGLqz16hxbsPmNGs0L3Gm23ZDBpaFvSnp7/aNZ636swsh7maKJeEOe5iiZQsZ6ncUvIK+LLuRQp9OZ1n7NPZfR2hD5rHzY+X7fSySjSyHs7osxQVKzXPELzpO3z3tsReY9967ihvxR5z3V1Q9j2Kf3d+sQxOp+1h2SkK49mAmGYSL30Ljd6sNNQXQnlRm56z1088p5L3Voo5BcoV8QY82cicuAci+4C/gXw21Pzvgz4VWPMCHhaRJ4A7hCRw8CMMeajACLyIeDLgY9ckEZeprjnl97Ja75LPSPTuUzOE+w8Fc5DAqpZkDWE+rL1ik4MWS1wWzQJuXFipnJ5F4QiDXlkSRdfDqd+xm5jn7HhnFBf0WclHkN8HKqbwYvg8vi7e1LmHutz7G9rLr3k+HIgrWehcSbzXsvBYsj/AmieNL5kEQida9RNUp2/jsbhTXq71U158vNzdv+xzR1ey1m9OaV9VNvWODkiGitp7PmTIctvaJNaj1F9BXo7df+Lf7VJ+/QmpqacKb0RC8vKwU987ZLmxtqWnF2WZdoLP5oTZqwHff2QkPTwx5vWcpi0t+pRJAOCS13w166/JNpnlp/bzxYMdoRyJlFmGM6F/G6HtF8QTWDzQIi8SXtheXUNqmu63crrcxY/qb8rnYLl10WMt6n7ZuahdEuEU7oJo326zIwqHPpRvTcf/95Lme8uHNeVuHi472f1HnrD/30XWV1LLYI+Fi46AqM5nq50mJYCsnmiG4XPGQX1KDqPXhGrh9fx5bgdtEDikUaluYFjPA78WsQwqQppr9i6LjD3QKKaJnbd9VtmfCTKym1VkkGIbmmeCiXeurtTijRoiKR9fHnO7h4tX7dxULktHu7zY8+1G4RkILSfDVours21lYzKenBbt3JDZMM4TKTP9cjyRPPhEbUjulMpCtITBdUVdfueeGvdE91oUUs7RW5sOgy8ntW0792yohrGsMaWcXLLsllfqQ0KvZYub7u2urVsaXVFSPrazplncsYzlo8Lo7o2doyZ1YLHPhlqqarhkuuL8A5L+4bqmjDzdGyvrZkqWaf86KKMmsemdWxEx/apjZoZyWWifXBlcN1FPQMROSwiD4jIJ0Xk3nMsFxH5jyLyhIh8SkQ+y87fJyJ/IiIPi8iDIvIdU9u8R0SO2X1+UkT+1sU8hxIlSrx0GKAgOq8/YElE7p36+6YX2r+I/F3gmDHm/rMW7QGOTE0ftfP22N9nz39ZKLmuRImrGy+S6y5blFxXosTVjSuF614JD/AXupy8c+BLCWGIb0JDE98EZMC7jDEfF5E2cJ+I/KEx5iG73V3GmPdd7IYDfPRX3gXAm776zmChNpobUFtzHtNoS25TlJktFkKv9FwEj6Oux2es49Q0QRjNqjXJqZe6Yuv9qdzhtK95oiEvT1XzAIbzMRRQW3M5KHhL3rglFGlCw3p9h3MR2FyHtFswWIyZfVobuHEw8ee+/toF8prQelwP2NuxVb06HuRIZk1mUYRM7P4Xtt5q0SgjPqJKhlSrYAzFvLo48npCPLKeldPQ35FQsWqm4/lglY0ytZRWbM7ZMA3WuqxuVfjsZRgtgBTOS6EeDeeJT4bG55/k1Yj5JzJ//frbY8a2tnmlo0Xeo5GTX9VrD1pAvb899h4byZnyaBiG24SsrjMaZ4y3ABaLM7QeXWP5zTbp+ItXvQco/50F790GSDrCcLsurZ9UL/VNP6TWwkd+8NK0FhojjKcTop4fy8aY2893ZRFpAN8PfPG5Fp+rOc8z/0Lgsua6B96n99Dt33jnlGdCGLeDJ1IKw6QdPCbNk0EZeTQTBfVoa5Xvb5vylNgctsRGbhiXX9fC58xVOoVG10RuP0JnX+SPV12HkfUW967LmP207mTSEjoH6t6jaeKQqyXGsLk/8W1tnDGMnXL9ZkF/e8TCw7ps/bqIzj7r+TgZs37dgo8qmXkooWtz9devi9h2fyDwuDf2vFfUEqLc+PzW+UcGLPzxKZ2o1zDNGkVd+TPfFty6O+7JOfOG2L+VN68PvJR2VLHZeeBHC7D8OrelQXJhPMUVE6sxMPeYeEXTwTblx+GC3WcPaqva5qUHc4YnEq+hkAwL0k19KY3nUibNqWvbN3T26gVLu9A/GLQPJm3o7/bNYPFTxudKzjwjzN1tbVLDEcP565mspv56ObVa1UGAaF2XFQf7FKfVJXTDv7mLx/7lFcF1lzsua64D+MRPvoPb/+mdftqI+LFFZdO9o+0zFSlXYGfl1eB1xRDGVW1dHrkx3pTOSNbQ+9qNC+YfLUI+aVV5djSnC6NMeRJ03DfYaWg/rW0ZzQrxMHg2TRw8inlF6OyxHthTBZOmUFjPdW2t8FF9848VrF8XeS7YuLbmc2TFqEe2u9vyfBryeuNRgWSF57psR917awFqZ0a0/jpwHTYCMK/XyOuJRtAB849arkOj+kZLBpm4vhd/7mlXuW64zXLPSLzuA+g7xUVfNk+EazJcEOJe0BjIq9A8oSTVPmLob0so7LIoC5F78cSQV6LwPuoWdHfrRNI3jObDe6VIobcntKv9NCTWM18/PaH+tA5aR/vnOP2mBFO1+gqnU/LZ0NdRDlliI0Fnc+Ke9tGhH73rko14uZBcZ1PYPgTsROMCPmCM+TEReQ/wzwD7ocD3GWN+125zQfRdXu0Q6C8DPmQbeLeIzInILmPMCeAEgDGmIyIPo16ah55nXyVKlLgEUVy8PJDrgIPA/TYlYC/wcRG5A/Xs7ptady9w3M7fe475Fxsl15UocYXjInLd5YSS60qUuMJxAbnunIYxu+wzjGJn6bvsBv6niNxgjMkJ+i53ox/Ab+d50tsu9gewAf5ARAzwM8aYD5y1/LnCFE+4GTbn7w3Ax6bW+1YR+RrgXrTj1s4+sA2f/CaA/fv3v+wT+dh/fidv+hq1FsYjrYubNULeprMKzRyekAxzspq1fNVir94Xj4TBkngV1KwuweLeV89mdS2oyjll4O6umCIJXpIiVVU5sOrTxnjlzXgoW+qkNU/mW3LCqlbZbzQTA4Zxy+XsiVdF7O3SNq+39fYwUfBMj+Yjn3cMMNge8gVbxwrGMwmjebuy4L2sGLXGtY85CVIh369KhvHRZZAaMlIT4Ghv06thT1pbFZtnDxvG1gPV3yGMZ0POcm3V+JqTRoJHAWzdSdsv4xlh0hLqp41fN3e5hLsjoixi7gl1YVU6QuOkHjya5BRphf6OxF8/l+NYW81JhkEZsrZumDT0+JNmxMzTxiuFF7F4S2/W0L7q7tdlN86FW/mJ+QXEwPzj2mdzTxTUTmvRu8e+rk39ZMR4Ro9/0w/ddUl6gVUs4eKEwRhjHgC2u2mb33u7MWZZRH4H+LCI3ImS5CHgHmNMLiIdEXkzyilfA/z4hWgOVwjX3fvz7+SOr1Ouk8iQ9oRKLzwr8YrNG90h3kMJ6iEZzVg+STU6pW7XzRrC2PJXMrRRI07xdBlvjd88GJH0w3NUXQ8RJskAiKDi8pCfTHwN3fajCcOFyHs0ISixxiPd33QunvM+j2Yj8lQ9ug5uO1cHfTLr9hnWiQewdn3C/BN6/LVbZ5h7WBvW391Q7rGbnf6sBtvZoefw7BlkNCZamPH76u7X0J60m9M8HntvznBRaB0LUUMb1xsqG4HTZp8IysuTJluUtF0U0Gg2qIzmNTCdkFs4mofNa/RkZ5/Wvph9yubdJkJ/t764RjMRlU7B0Ook1M8UvpawEa1X7KJkqptQP2V5rqLzXS5cXhGWv1BtT2s3Axj+/pf8FQC/9Ztv9dULFh4qmDQj9vypbnjkKxMqnchfguved6c/v8e+/9LhvIvJdZcYrhyu+7l3cvs3KtdFudb3BX2G8poQu9romfH5uUWiXlU/vjCBM6qb+t53nFXphHrnSV85zNXC3twfagIXieayujGKFFNRMV2IjggDOx6srmytHywFPjpDtRa0XYPFSD2bdtX+9si3a/16Vd53Hu/OAfHPadY0mFiIbKpvbQW6u5Uwa6sR2TVVrzMzbomPUqtuGHq7azSnuS6yHm1gPFf1+0FU7d/39bL4KKPRHPR3Wd0V6w2e5rrxlBZC2gvvitEs5DbnNx5YrR57ToOlEFHpONtxnRSG0azuZLigmj1un/XlIqjax9oX7viSBe0drRYSlLCzWoXebh2arN0Mzd2b/J2Dnwbgt4681b8bFh4uqHSEmT/SNj31NUK8qu3MWobr33snT3z3pVcb+EJy3fMYxp4LF0zf5WKz9VuNMZ+FhsR8i4h83lnLnzccUURawG8A32mMsdTET6Gen9ejnfb+cx3YGPMBY8ztxpjbt23b9vLOokSJEi8RKpZwPn8vuCeRXwE+CtwoIkdF5Bufa11jzIPAr6Pehd8DvsVaCAH+OfBzwBPAk1wYAayS60qUuKpx4bjuEkfJdSVKXNV4UVx33tou5zCMfavVEfgFEbHJSBdO3+WieoCNMcft/9Mi8pvAHcCfTa3yXGGKiEiKkuQvG2P+29Q+T7nfIvKzwH+/aCdwFpwy9Fv+oXKzswhGk+ABHi0kDKOEmSfVUxflqXc3SI5aGF2+wch47+ykpZ6J6ZxPZwF01nVfH3KMN12IgfUbhUNvPgzAqQ8fCFbETL2Nrp15Kl7J06nbufpqav2z3ugB3mvtljmPc3VN81qc6uHCx1eRTU3Y2Lx9D4Ol2OfMtY4ZbymMMsPMo5t+nyaOiU9ozc7x9TvBGJJeSJhxFk5/zlOKzU6tGhOTNUJ/xWNVjQW1ulY2Q36Iq20c9h88xwsPDrzq7GQmwURC0rXqpBsjn0M3mamS1SOfCzRciKl0dH9ZPbK5OcHj5ayt9VVVjXS5MnkFosxZNFUt0LXtCxYf4xefeDMAg9cN2PaRmvfSL3z0Kd/OxU/MgBjE7ie/o+Pzme79uUvHYujEEi7Ivoz5qhdYfuCs6R8BfuQc690L3Hb2/JfZtiuK6+75oN5Dn/0Nd5KOjH8GxjMhP6q+bEhGBfHAKZfmZDW9ySs99Q72twfvo/M8Dhf1GfCK0pFGkjgMFw3VVevFWFLPCSgXTOrQf5PO+Ls3PsAf/+KbAPUSVzaDUmraDbnJ/aWYIg3Lzj5ePAwRICYK0S15jS3aDs2jsKkliLnmf3TYvK7pFU+XPwvyihL1pKV5a6nlhvbRAqbSkMzCDONt6haKB7n/NOjtSnzdX4DGSfyyaGyYfVzYOKQzqitCZNVdR7PqvYm9pzV4XU0SVFLTjiqgulzo2jpsHAwRQMnQeA9GNDG0DtuTP1BnNBN5DYp873Rlg+CZBz3v+mn9Xdk0DOcEnylm8FExM09B7292/LkODwZl2VWqHPzpx/30DSd30t2v79CV2yL2vMk7EnnDt9zFJ/7TpeEFvpBcdynjSuO6e39euW66FnqUGc01dVEVBv8ebp4Yk3YienFq14V8qjZ6kYTatFtyRq0uwcSO51xkCliOkym9mBz6KmjPrrcc4/CxJdr36yDBRGGf8dioB9WNIxsh8mXStJzpxo/jqShCN/I3YZlTrpZCWPpUxrhtK3+s5nT26Ql290RkDaiftuOXBB/lE48MaTcn3lB+LrbNUlRtjn+qHmenDZHVxefnRpnqsiSOAoyqUIO+K6Is1HuftMI+ikTHTf5cJIxT44nyT6VjdXoqEcMFPR/JDM3TGdHYevQrEal9h5lN6O6M/PUbLgavueR6DKdlEU/CdYjGVq3ajldNhNeRSbrwuXuf5MRQo/2KW7vIw+pG7u6N2PPhx/24bu9vH2Q0q/25eVDY8dbjHPwJ/d54+lvfxaWCF8l156XtcrZhTER+Cvhhe7gfRo1i38AF1He5aGwtIk0bz42INFGhmk+ftdrvAF9jVQPfDGwYY06IJvT9PPCwMebOs/a7a2ryK86xzxIlSlxCyI2c19/lipLrSpQoASXXWZRcV6LEFY4LyXXnMowZY04ZY3JjTAH8LGpogwuo73IxPcA7gN+04jQJ8GFjzO+JyDcDGGN+Gk1S/ltoKGIf+Hq77VuBrwYeEJFP2nlOAew/iMjr0S/7w8D/dRHPoUSJEi8DBmFiLmqgyaWAkutKlLjKUXJdyXUlSlwNuJBc91yGsSnhPNhqFLtg+i7yPArRVwxuv/12c++9n1Gu7mXhte+4i8YZmxwfTYVDZ4ZxOwiZNI+PyZoav9HbmZD2Q3/nFU3Od5A8CCboDP0XDzWcMJT1CKEWWU2FFjav0/0ufRIvrAXQPpIHuX5g3Na2jG0Bb1ckvbdLtoRYZ9UQOtM8HsJxWs/C4qe7W0L64sMntS3Xav2Llddq3LErT6SdZBADjeMa51J5/AQ0NLZk7U07GbfF95n2p9nSBw6jOfFhQq1jOfWTQy/Jv/L6dgjxiYOwDmj/TYf/SB4EEuaezKlsWAGu+ZRoYnwJEDEgExsek0ZIVjBe0BiY/rbY91k0MWR18WEvRYIPZ6xsqjhGZMO4Jw3xAjvpQK9hd78tW/KIsPrGoCxUPZWw9KnCn8PmNRq00b0u5+2ffT+/d99r/brJuhOYMMw8KXz8py9saKCI3PdiyhQBXPuapvk3v3l+0cb/5NA9L3r/JbbiYnDdLd93F41TjuuEiuU6yVUExT2j7SMTJi19yDp7YqoboQTOtBDfYLstE+aWVdjCdQheJESKEBaYNVRwr3ODPriL94YyDMNFmHk2hD1HExUn1O00LDCeEllxIc/xUPmuu0/Pr3VE/HNbW4Ftn+hz5g1Kyts+0Sd54pgurNeY7F+it0e5YPXmiPZhK4i3rmJg7aMaqxf3MpIVjfdefqvGXrtUFxPZEGnwIXr+nOZDuF/rWEHz+Mhz3ck3N32/FBUb7minTbyV6xzPSa6lVyobme/biX0fVDZ1ng8LTCIvijiaS+nviP21rGwaJvb9IbkK6XhRxG1Qt8Gsla6+F10o5aQRQkM3btTj/IPPvRuABzZ2c6KjHd95dJ4b/t1jmO1aGu6Zv7fE3Nt8hCynVmYoulNKjxNty+H/+7u4UCi57tLHxeI6gOZJQxFPcV2GF99EPpPrKp0wFiwq4lOvJq0wVsur9tm0z4rnOoDi3FwHyneL98Z+bJjVYeaZwMFiAtdNmoGP45Fy7ZbjWQx2GFpHxKfANY8rvwH0d9VonBh6rjM7l8hmlOfWbmwwnoHqup5vMgzinu2jYyrHO8hET3j5bTvIalMCfBLCpbP61oHdZ3DdsaE9P8OpO5qhLF/C1pDkKIRAbyl9dxbX5bUIY8tBnZPrbInS0bxynUPSNz7NzkR6Dd3xTawCjq4fAF9KCkLsbedQTvVMzO63aXrq2qDB+oqGQLceqLDrr3r09upOT74V/re3fAqAvzx2kEG/QrERBrLVM9q2R3/gwo3tXm2uE5G3AX8OPIB/8/N9wFehmgDeKOY+iEXk+9Fw6AwNmf6InX87oQzSR4Bvu5TLIJUoUeIKhuHyDvkrUaJEifPBheQ6EfkF4G8Dp40xt9l57wX+DjBGxfu+3hizbpddkLqYJUqUKPFCuJBcZ4z5C86dv/u7z7PNBdF3KT+AXyI+ddc7eP23qbVw0oA9/0utZ6OFGtXVjI3r1EKdVyvUV6ylKVUrohNK8qJYAAL9HcFyLwW+xIiJrBCAs3SZYCmsbKr1acEGB0QTQ/O4E0eJ6O2IvTUy/vxVzB9p5fMigbQPmbWKNU4bb60bz6rYVdN6fdJuwc7feFJ3sjCHqaYUFW1MfOQUJtOGJsdX6N+yywtYJYPCez17OxNGc9Cxlq72rgNeEAWgtlr4UiSSB5GotG9oHR2xca1aIOORii1ou3KSE6t+H/GotUVEDGC4pP+bR4NHejQjpH1D44y6RsatiKxWsf0i1FYybxHM6wmjHVXfn43l3AsCVdcLxrbsi4mFeGS8tXW0EMoK5FX18mK9YFEWLKGjWfW8zz+kyzavg6WPWS/9jLB5U876dbHto3C/VE/H/Mn/+Cze/r9/HIBH1ndw+FGtk5D0Ikbz8Dn/h4onfPTDr654wtUgDHMl46F/G6zNN//AXZjTthzOSs62j66w/CZ9yDp7U+/haywXbO6PvFW/uh68hlGmz0PWDKXbnFATWMGTKQefQ2Vd/7cf0+ehSKcjRYSVWyKqlg5q6yZE10Rbha6q64EXRvPKdXOPWO9At8BJY9TWDGfe0PCeEQrjxUoYDEmfXYY9KjLZPmxIp0qTVDcLjr9VeWPfH2Rki2rxHywK9RXjeV5LojgO0bYY72kNwl3DhYi5j56BRBc2Tje8RyqvwXB74T29zcNTz1ukpUL85MTQ3xnEe9KubiS5YdJOGO1SHhzNiC91lPYL5TpfMi+IFI7mhOFSEN1Ke3gxGy3dJ94VUt0M3qLZRyI2bir4/V94C6AebBdxlEzg+FfdSG3dlUKB059Sz/m7/+5vcvfCdfzPh2/SlbsJ1RXtzDu+7k4v3vZq4QJy3QeBnwA+NDXvD4F3G2MyEfn3wLuB77mQdTGvdkxz3U0/eBf1B8IzPfe4eiVXXtNg40DFcoWOSYaL4n8nA0M0tgJIfbwoaFE1yCREsE0P+U1iVXzsc1RZD57j2Qft+9+WyOzHwoYbK2XQ31PQOBZEqZxoYFZXD6UTUR3P4flx7hGh0i1YeMh6Q3PDYLvyVeP4gGSt76P8ZHmdqK6u4nhiqC+H53/SFO/NPf7WKts/HvtnfDwj3lM8WhDyKoj9aJIsiPENliLS3pSAVCykR1QglTimutFgPBO8sK50U94oaB6OqNh3R14LXJf2dCzmuA4D1Y3AdVkzoTfFdfVVdy0NtdXCl+8sEvx4fdzeynXxKFzDrKYigk7Y0Xn7AeYejNm4qWDtN/fa/QB7dSeTNpx+Y9MLkFWX4Y/+9HWA5brNrVzncIVx3auG8gO4RIkSFw3GcCWU/ShRokSJ58WF5DpjzJ/ZkiDT8/5gavJu4O/b3xesLmaJEiVKvBCulHFd+QH8MvDJH1dr4dv+3vvo7rdmKYG1GyIG16tZqvZUhaympiATqydkOpfX5QRPGkLjZCiHY0IagubGSrCQNU4bn/MhBmprocyGicQXRR9GWq6i93q1XNbuWWDulM03m4t8DgVoAe+urStfP6X7dBbO6qmB9zyYJGLjllky681sLlSpf9rmxY3GND7xDMWbDug5NSOwXuXmqYzaWuS9QGm/oHFST2gyk9DdmXjr2WBnkJrPOkJtJfbeiCI19HZqo1dvqrBzdYZTb1Z5+f5O9ZKCzTOc8qL3d8K4p8eur1jr4JJ2cjwJ1sHq8pDxbIWsqZbD/o6EPA2m2rwSPLtigjz/cF7Ia+LLphgJ1sjGckE80pwisCWSbL9EuRaQH9i87eYxfM5JlMHCx2N/HQBvmUy7MHlzhz8/qnVZeidbuHojed1QPw0Ta5n97K+/k7/+xVfHWqhiCfELr1jissDDP/wOPvvrVadiNBexevsSnWusxf/GATN/qREek5Zozpp1oGS14OWtLcNodsobUITnyJVwc89RPNhaPintQuNMyJl1z0b6hLC5L7yQx1+5Rv/wnJ+unol89ERWD97keAB5PZRLq27Cjrv1wU2eOg7tFstv08iKxU+sb9E+YDzx/FLpGO+R1YiSsNrJz2n6iI/20YLursjzfDZTkHa13ckQpDDMPKUuorVDFf+uMBH0b91FdSUk8rl9FAm0nonoXqMr9/cY7xFqnjS+NFyUQ2dvHLzmhHy4rJmQdoL2wGgm8V6XItGyIE4vIquL15XIa5BXDfHQrpvitRzSgSufFfjTXd9oAtFQGM+GfqpZp09eU0527Y5HsOcNqoXyoSNv5it2388fxzfYPigYz7sSMBGf83+8/1WLeHmRXLckItMJrB8wxnzgRRzuG4Bfs7/3oB/EDq7+5YQXWRezRMAjP/QO7vha5ToTwcYBTcLtHMpBYPYRW1KyGvLsjegYLLGPqRTBY5g1ND/XfTeYCP9oRBPlJBfxkVdDxFra1eiZpO/Kl0WM7IadgwVFM8dEkd9OrIc5Hut0bnOHKxuh1FGUGWqrObUjSooyGsNBzblfvaXJ/GMR6YYtU5bnxM9qbbNk3wHNcW6FMYrzaKcd6O1IqK/qCTePF3T3BE/1ZHuB5GH84rigdSKnvy1mokEy9LcJzQPqcR5sr2gkj+2X0Xw4Xm6E/m5DbcWO604bX9py0hQwQqWjfVbpFsRD/T1pJeTVrR9vLhqxSEQ5yx5vPCP+ehUVfU+l9tom/eAdjjKb/+0il0zo67wK1eXIn58YmHlC7x0p9F3nvNpJH7Z9vnLd/3vkTdTTCVFsI0jrOZLFvr3luO7lo/wALlGixEVFfgWEypQoUaLEC+FFcN151cY8F6wATAb8spt1jtVeUl3MEiVKlDgfXAnjuvID+ALgL34jqE/e8bV3qtre2OYQVLaqIY/bQvNU8Oh1d1mLmLXKOxXhyqbxr6+8KlpE3VnBZoWhGutonFJrUDQJOSDxhs1nGGvO1fyfqzsir8H69Xq8uScKsqr4fA0xsPQpPcDya4XxXMSeP7XKyDvqNE6HW2X2gVVOv3XJTw9uU6Ny/ek1yHNan1Zr4XjfAr3dmmfRfHgZ06iy+vo5XdaKkEmwILVOZqwd0mPUT0L3gOszYe2GlPlHtS3j2djnjuSpcPwLZunttZbSjvjcPmd59fl0ayHHbJQL9eVg5cMYRjaXt3ayoHZyKmmOFv0dupNkYEj7BZOGrtvbHnmv1uZNOeTQOqzn1DxuvDLkcEG97U5RMu0WSBHZfhD628I4pbJufE6NiTQ3x3mLi4qwcaO1OI4hP9bEbFoSWsiJRoGQRrPic4bGs8INP6L56o99/4VVhn4hGISiFMG6ouCszm/5h+/n2JfkJC1rkj9Zp2ur8808rdZsl8cpxZSGgUClE7wk8VT+b1YPHkRQa//GIf3dOGkVj621Pp5SIE2GhigP3pXktxdIrtXf848aTGS8R5Mi5LCt32K9KqdtNMhhw2Cn8mX7RA3TqDL7lDb0+BfOM/+EkkjjyTXY6DD7SeW64YEFJi01/2/7c5136vM0bzWeBG2A2kpGlCXeWxxNIrrXq+d1bs8mg79YoL4S+T5z7cwrwvG3pYwtVyQb4AjMpAbJJOgmbKpnBCBrCvXToT/jcXiP1FZzr4Ra2+gy2t6ku1MvUqVjaJzS6zrYntLdFS5K2oflt+hFM+OY1pOJ965XOob1620bn9F2O6+IGPGefgRmnxB/TxRp8GjXlvXd5TwoWU04vdH2x//v0W2YwqlQC6ai5zBaiIDoVdM+eCW4TkS+FhXH+qIpMasLVhezxFbc80vKdXd87Z307Tgjnh9jTtV8lEd1LVTvqK1ptQunRRKPt1bvSPqEvNGzuM4k0NNgExongnK+8yA7/YFoEubNPBmBiejb7eYfNT5izUXgtJ6147o3Fp4j5j8dkdUj8jmN2EmWcyqnddxTWUrZPFCjPqMhgY0nVmGgHDj7ydMMDyzQ3aMP9cLHTmOq+hCf/pxFojxwctoraNv4g+6eiMbRiO512vBhpaBI7T4eVs0VF72XV4Sjf0M7d7grI9kIXlhiQ5FNcVFHGC6GsbPjOjF67q4Pk5M5SU85qzLJGe5sMljQ41c6htqatms0F9PbFflrNtgOk91KRPFyheZR0bE5UMTidSYaZwxRFq6LSWA85fGdju4sphyn8Ui5T7UgFEdPa9J4MYppL/QpxjaCNIvIWpbXOxpxeNu/0HHdp/9DOa57Kbj8P+FLlChxSSMnOq+/EiVKlLiccTG5TkTeDnwP8HeNMf2pRb8D/GMRqYrIQUJdzBNAR0TebGttfg3w2y/vDEuUKFHiyhjXPacHWER+5zy2XzXGfN2Fa87lj3t+6Z181v91Fwv3atdGWaiFKTbfczivN0VWD7ViJzNqHXf5bsnIeOtgkQhxbutlojkhkluvYAzjmcirLUcZrN7kTO62fnDu9qnWSoCR3WbmWSdJCL1d2tD5RwxrNwndvaH+WGNozfFrGwDM7tKGd/ekPueD/gCzOIsRZ7ksaD+jlsN8rokY49sSTWC0oMdrHRnS3VsN+WAG8pauaDYSGqcLVm7Tc5q0Yd8fhnd/kdZJBuL70ym95hW1rLm86WQQvEOVDVX+62vZYvb+yYTI1vqN1rqM986HunOVkH+S1YSsHtPZHyxfsc1VrJyJqb9+le5QrXfxULznPxnqebsc4Lwpfv+VjmGSi7cO5tVQj1nrzoXcyWhiaD6r+xhug6QX2hGNIoqankOyGVNUoL9jSnX6jK53/Xvv5InvfuXyRgxQXOJiCSXXvTT81a+/i9d9x11svFFv5pnDwduXVwGB3g7nDQiekOGi/nZ1KbNa8AK7GotuWZGGurJSWBXQRoiScdERnb0RlS7+WR1sD3U0x21bB3gU2u48A5VVta4Pt2njll8bs/CwM/8PYaNDYvNp+ayb6ey1vD6epbbRgbHVenjsJKBumGxeE7q23bsOwMobZoM3sxFRXZ0wblV8P8Wb2obNdp12D868PryWN+374cB/H5JXatTO6LKsFTwKOVBUQpRR2hOIQkSQ49XevoLmsxHbPqWcX3t6laKthDmZqzNpxV4NdbAQUVRc/V5htBi4rvvaEbdeo47EBx/eTzTSd5K7Rs6Tg2i+sIsCyGoQ2fdWXt36bhKD57lJQ9954zmdHs9otIvuX3iyW0VsXhyJwUzts0hhc7+2+8BPvs97vJ769ovvDb6QXCcivwJ8AZorfBT4QVT1uQr8oX7Pcrcx5puNMQ+KyK8DD6Gh0d9iFaAB/jlb62J+s4h88wscvuS6s3DPL72T132Hetv6ozrN42yJXnDP92CbjhfcWM3l34LmyDJ1z2+5VYzmydZP2mnBe5hNJCQDQ3e3HTc2wrMiBvJ0alw3K55n6ys6hnTRJs1nYobbrZL0Thi3YhonbBTJyirY+r2zIpz83HmcqEitUSGyVTFMElM506edK1Fniy1fL7x9PGOwGHtura4bisQ++9UQgacNDYr9Z16XUFS1UgfAwiPKdQCVtYSsOTWuqwWuk0JUZyUKWgHTXLf0CaF1TLmu+uwq2Q5dmDUrZI3Yq/ZnNfG1yru7lXcc103mc249YLlusB8TxT4HWXJDpROi9SYN8RVKNCdYfJvzGr7CbVSADQDUnO0sjFOHiwazXLXrCR3TRCr2hhlH/p4bz+v95O6hAz/5vgtaB/2FcDmM684HzxcCfTPwT59nuQD/6cI2p0SJElcWhPycqWiXFEquK1GixMvEheM6Y8xXnWP2zz/P+udVF1NEHqfkuhIlSrwsXBbjuhfE830Af78x5n8938Yi8kMXuD1XBD7+M+/glu9Xa6EUssXzYCK8lyKaqgPsLEDOqt9fCtaVtK95Fc47UlsLStJZQ+sKO4XOIhVqq9ZaF1u1zSyodzpMWqrkZyKbB9EtvKVQ87NgRcuRsfDA1MlZa99gm/Nww2hGLYWN+TYymvjHIpureS9vkQiN40N6u5y1Xvy5b+6vM1owzD7u+sXQflb32d+Jr3mnx4eTb1azanUNausFE2tlbZ4o2Dhgc/n6MJkJFrLp2rvjtvals8R2d4eiozNmgawekjTiQUHVWvJ6O2OGC0FZWvKQTxdl0OnUmXvM5oSczr0atxQRvZ2Rvw8q3YK05+RdAWLvAcur4vP+QPfv6g5rf1hr5wDGNw1ot9VUufn0HOmarY9aNQx2G4rUbtfKiFbVJC0TeOvffx9/+V9fGWuhgctBLbDkupeI+3/sHRz6d8p1lc1QezfKrJfCclaRQm9Kf1YKmBJX989Gw9YedzxR6aiaKMDmNRFigvIm4FXl8xrIBl4bQYopL0mhfwOrD7Dt/ozKui4czzRIu1BbVaLYvClj9ldUjtiMxpDnZK+/HoDt9/VZvdVyz6keZts8JrEEI+FkimpM5cgqk91zfp7j9dXdCTPPRiTuHER8NE/8ZJ3eHmhZT8ikoRwGcOqNNWprIb9u7vGgI7FyW+T3AdDfbUg3dLq2gs85bD4b0d9jKB7RNg8PLPhtKit98lrg2bglrF/ntA9s3qE9ZO2JKicWtWHx7JjOjRV4VJ/xmSOF5/UiUdVbp0af9gt/nTeuFdIiVDtI+pC6d1isKtP93eFemrlOXVy7WpvUkoyP36fq91QLsF6m8cEhyWtHNKt6bXtPL5Cu6zm9+Z+8n7t/+eJ6gUuuu7Jx/49pnuUN//YuH2EGNpLBruPGd97zW0wpO1dsDW0b3ZJ2w/0/XID6Mr7axWBJvLK0Gw84z2M0UV4EG1XBlAp1HDzT3V3CzDMFLo5vPCO0D2tL+zttjdsT6oY1k8yP7XoH2rSPqjIz6PjD5fkiQt6ukDWtAnYrpv6slu/oL8UMlsJ4t7M/9RxcXzZEuZD07XZN6By0/bCp7e7ZbPW8Wgv6JW2h9UTBcEGf48H2UHcYMUyakNjqIZKrRgRAZT2itxvikROeWPT6OskgJ+nlRJmNcGnGbF6jv917y3Fd5UzMsb3qOY470ZbrnvZCbfu8opF7bhwf90O04zAVq+dir98A0mxqjFfguS4eCu3X6TXZ1drk6OYsm0/P6YrVgnxWD2C25STtEeOxPb/lmo9QcPfpxcRlwnUviOf8ADbG/PoLbXw+65QoUeLqhTFyyYfKlFxXokSJl4uS60qUKHE14HLguvPBC6pAi8jtwPcD19j1BTDGmNde5LaVKFHiCsDlUjC95LoSJUq8HJRcV6JEiasBlwvXPR/OpwzSLwPfDTyAT+Mu8UJ46Ec0DOHW773Lhy7nNRV3cUJXmBCGW6SAWJl8NOx5NOPEnYT6SoET7c5q4hPsixiiiFAqZyquMBmqJL9L8K90Ci9QUFs1rN4iVNenygI60a1IQ2sqazqjuxf4Ug0DXPxvnwZg7kFVmFm/ddYfe7LYpPLQs5hcTyo/MM+Z19myGpswmmuEkORJCHssYmgcFzYOaVuqa+JDIeOBtsuVGUi7YbvRPLSO5bSeUvn+tdtmfZjzYFFIN7VkB9jQIHuCLiSpuhLOe+6xge+GtDBMmtruSSumumpD6nbWrTCV7d9+eCAqG1D7yzojK8JQ3RCyKBwvHmoIIGgIpwsbn75WoGE1lY7tv6pe59gKnA3nYhYe1mVrh2LSJ+pMXmNFeE5Hvo8Wb1mmkYbaMqv9Bp0Njdupn4yobmR83pe9V/c5H3PPBy+eKJYh9PtlgJLrXgIef7dy3Y3/+i7PIZMZwARxq6QLzWP6Ox7CaEFDawGSHv4e72/TEmUzh20I3Iww2BbC0+Ix5JZvRnMhrMyVv3D7rK4ZL5YlmYZGO6GY4XzMcF5J2STKLU50K11JOPWFOwDY8VubmMGQ2JbPWH3drOev0fYmtfsPg+W6/lsP+f44/cYKlVt2++n+jnDseAwb10b09+p2lRVoHdFl4zkwY+iFTUk3Q0mTbCjMPaUhcL0dieexuccN3b1CYqu3JUPxAjpFii+JVNkQasvC5j7ltoWHh/490j3YpkiF+rItfTcnDLeFdlCEknIAm5/WWPP0+g7pyTqtE4U/nkvxGc0q7/vSVEPjxYGaJ1QsyPFelIVSdFLotW49q+tWNwtWcz3e47dUeeOeIxib3lFbGvCanScAODNosq0eStidjhZ8n6S9gtd9513c//9cvPDAkuuuDjz2fe/YwnX5fAhPTrsaQusEnjBB2C8ZKde5ENpxW0ODAeq5CvX5NDQTwmmzuopkurDctDPVmAjqq6F0omTQOaCLGid0W7dPk0y1padCeqferqWOtv/Xh2GsJ9E40mX1dbM+lNpzHWDynPGBQ2zud+MjqOyd099NnY5tX8SDEJK8/MaCykpMw4l8RYEXJm09Vzf2Hc8EIb2Fh0ZsXFf1/VtdgWjGnYNoqUs7lDJxEMFKe5oGF8LGC9+fo/mUvBq4LqvFZLZkUZEaopF4rotHMLxHU0XyXTnJsTiMWxPx+y9SLd3mxsJiwruptmbAhFKnEIQco0xD42cfDyHfHbF5PK+Fbq/m+2nPwWUOzGjH9LMKhRGe2VDR1c6g4ctuvu0r30d3d8wnf6LkuhfC+XwAnzHGnI9KaokSJUqcBbmcLIUl15UoUeIlouS6EiVKXA24rLjuOXE+H8A/KCI/B/wR4OWcjDH/7aK16grCgz/6Dt7wLZqcPmmq1ct5ffOaegdA5ydDqNlyNUUyVeaiBslAmH1KPRFZI6a3S81ezZM5WT0KQgvG+HI7k6ZQ3TDeyj6eibygwnBOmHkK5h8OJYVMpObBzv6Ioho8rbv+qk/80GG/ntSq9Peppn1eCbL7edVa8GNtW5QVKlOPFTnYLd5L2TyGl4xPhlqWaObpICnvLJrOO+Nk6Yfb1MoKamUdLiaAlsiI8mBVbB8t6OyPgnx+0LmiSKF5YkpIpyVM2rpC7dgm/YOzXgCiul4wWlQzZuNUTtKPvGXv9O3QfiqUYIomQWirSEO/jNpiC9Vr4+YeL/y559VQEkk7j61iNMMCY73647ZQWNGdrKmW5uivZv26rWP22p7ZxulDOfG89Q7XgzcYA909FQaLwXr3ln/0fgD+6tcuvEiMyuVfNpbCkuteBh79V8Hi/Jp33kV/j8G5SSqFRnoA9A9A1i68QFF2wLD0SV0mBWxcJ8xZi3h9ufAW/s1rIhUamRKD8UIxQ2NLHVnBul3ieSLOVQxqNKfTi58e0rlGiaG6ppEkDvEoiAbieGxNSSztzvgImvFswvjzrmfmz54AoHYiRJDUtrcZLgUxGgjHcOXI4oGee5HCwL4DikQ9EKktrTHcXkBH16udYYs4XjwJPJ9bkRXPN7Ph3WESvEBWbQXGLWgfU1dIsj4Eu4/RfAsTKTcANE8VJP3IHyurCxOlWbJm8NbU/ljfAxPr0RjPhGd9uE350F2v4XzkvcOO//w7YFSQDJwXOWI0G/azcmvkeT1+oMUnHrgZS+tER9rwv6sHeF9rnZODNo8/o+WoqqdiH23V25EwbsMdX3snoGVtLjRKrrt6MM11t777Ll/O0kSAwNAK7mVN4+/d2rIwbgfh06IaShXOPqU8Nx0F4Z5nyWHLbRVB5J6foTBYEv885o0golfpGJpHh3QO2FJnzTD+iiYw+4Rh9gnlLZEIk1jB0lq65fhZMyY/uEuP9/QJ0o0JNSe4mQqD7fbYVfVOO95LezC23F07FYPBlzabNMP+46FyXTrFdc5LnrViLSUaO1FEw3h2apzYCMczSSh9V93QYyQjPUi6NmC8TU/elQ3t7bRcd7Ig7YUoo82D+MiRrAmRfTrmPh17jy3ApK3XU3/D/CMhoiWrEcRuM7Ygyg3V9Wmui/w3QW9P6Jf+PYukQMO+x9aO72TwVu2YxYY2cH1ZXdfVrvgx7uaBmEmz5Lrzwfl8AH89cBOQEkJlDFASZYkSJZ4XBrmc1AJLritRosRLQsl1JUqUuBpwmXHdc+J8PoBfZ4x5zUVvyRWMT/wntRa+4VvuUs+utSA57y+orH2RBMshK+K9idHEMJqN2DyoG+ap5ggDFBWh0i3YOKg3o5b0UHNSVo9Uot9al+Kh2eL529wFjTM1P+08DM0TWlap/YRameKnj3tviMkyqFRofFLNjMn1O1m7SfexebDC2g030FjW9+mkHkoy9bdpjlr7GVcaSD2vELy2zkPUPBW8ARuSMJ7TfBZQj4KTsy9S7cv+jnAbO+tg84Rh5nDu+2UyE6x6eV3zypynp7YGlXU18xXNKpIZb73r7Itpngq5u8NFYfNG7dBdB5c5tUNNvzN/VfclDEBzzlyuYnXTEI9DvojmuIXct8pGRtYKZJJXnDy/qEfLXjJXDgs018fnkqPerbHtz6X7R2y/r2A8l9r9VBnebvs6hu4eobZs22KC1fmzvvkuPv7TFz5vpOCyCZUpue4C4YE738Fr3nmXn85q0N+zNdXQlQOprol/HvKq5n85D8AkDnxVW4Z0ygva2xFKhUxamvfqnrH6ssGI+H2aSK30AKOFit9H2lUvdWVT99t+dkj6iCblmkmGyXMkUxN+lBnvsRzORbROZmTXa22njUMN74kYz4ZcNFBvqfP8go0UORmeY8fznWuEYiLkNk+vfjLynKWeB6G7Ww8iBV5vAGDmsGHzgI38aQWuS/r4Z90kMP9E7vN+B/tbvoRJlENvPvKe49qqlpgDWL8+YnjrgLw/FUYTzo7GifA+mkY8EsYzQutY4c/BcY2Wgwm5i3k19pEwJtJ1XXm7aU962tW+rdic6sWHJ5z5uNZTmTQjxu2I2Fa9He3MMLFuXD+t3iHnoX79t93FJ3+85LpXuxFXAh78d+/gtu9WrhOj+gZZW+95GYf3d17Ve9DlamJCrulgKdKylTZYKx4Zz3WDhYgixXNUkYqPuHClNF10holCtEmRCPGw4j2Q9WWDsXzaOjahfngDOW1Lvo3HSEV5MXn2DPW5PWxeo897d3fMcF49jfXt19LbGR7IrB7Gb5U11ThwxyuS4M1M+jrGdZ7PjYPRFm90+6nIrwv4cU53dwImcF2lK8w+rf2wca0wnjGk3fCOmI7sa5wuiIe609H2JtHEXpMCejsiEleWcjNwzNqtsHTjGVY2bFTh0w0/FiwqUOmG8kayaUj6dlx1WiNxXHnLaa9vker7zUUPTdIwFjSRXmt3PWFKj6IXopYAtn98gvy1vsT6M3NMWhHyRm3cpG3o7tN9nM11r/v2u7j/P17VXPecOJ8zuFtEbrnoLSlRosQVB2MgN3Jef5cASq4rUaLES0LJdSVKlLgacJlx3XPifDzAbwO+VkSeRnNFSrn8lwjnCb7ph9Ra2Dhh1VJRj0c0CZ6P0XxQCDSR5sIV1io2WBRv3al01CvYPqKWp6wmZHW1a1Q3c8bt4FmcLsYtuebhnnqjLm+chPnH1fyo6sNQ1PX2iPLcF0lHBLOxCda7ki63qHTUbTCaFZjKca50goV/9rC2r7PXKVKH9UAtMc4znlfEmxXV8hmU/sYN8UqvRjRX2Hmuq5shP2SwGHlvDaiFz3llogxOvDXYfvb8r5zBDpsTaBWfvZq2QGYtd0m/wAiYRM9lMEl54zXqLXrs7htIhsZbErNGyFtzllCf010VnytSXR2DMaTWupvXYkJEWvCWgHp4K11dr3FS83mcNdnEYVnnmgqjOaEy5ZGefcypDhqKVIKS9RCmxfw+++vv5K9/8cLmjFyoXBER+QXgbwOnjTG32XnvBf4OMAaeBL7eGLNul70b+EYgB77dGPP7dv4bgQ8CdeB3ge8wxhhKrrugeODOd3D9ezUPCSM+x6tIDemmMJ610SAtoW69lM2TmjPqnvfejuAlwUB8LHBY+0jhebC6XoCIV87PayE/K8p020nbeQ5iFh4NJnoTxzSP2+c+iTBjJ+1ZIFGEWdfEstaTbYa3q3tl3IbVduI9jM2Thti2K+1B43RQPDZReN4mLfXyOHXUvAZivcNSqIdzWlvEeckLq+DquK/SNYzm7DM9Vn0A95glPRgtWU/EJKg5562c+h+I5+7a8oTeQe2kzv6YSUOjYVz/dfdaj8VrekTArTeqLPOxziz8zqJvhxTG86WJgjc/7RuKccgPToaGxrJ2UtIvkNwwmYp8yRo28qURInwAZp4Oyth5TbUfXM7lxsGU1vHM77O6kRFl2rkb1yfe0zJpa7+6SCKAW/6lvocf+jcXzjtyGeXFlVx3AfHp9+o9dP1/uItkAEk3cF1ic/rzumGYio8GqXRDfnyRQH+7YOx9XdkU70WsrWseseOT+nLux3h5RccTjl+iLKhEb15ryKuB66J65D3FzjNqbHQLxlAMbD7waET96Ay9ncp1o9ngcc5qCZWO8c9m41RQ+h8uCNE4cHdenapyUtEooNRG7xGFdka5nr/TiynSKbXqAVQ7geuyKuBygAWiTBgvWM9uJpy53Y6HqgV7/kAYzyg/15bHjOZT3868BqkbR8bqtQeIdvUxBr7ouscA+IOV1zD3WMgPdu0D9fhGuUv0tWNm+66qdAqNJERzfotYyOtuPCeeL/OULd7f1pHQFszWKL+Ng6lvQ9pTHZmFB3Sf057irKmRRa4/RfDRWA/ceVVy3XPifD6A3/5Sdy4ih4EOOgDNjDG3n7VcgB8D/hbQB77OGPNxEdkHfAjYiX4NfMAY82N2mwXg14ADwGHgHxpj1l5qG0uUKHHxYLigBdM/CPwEyg0Ofwi82xiTici/B94NfI/1bvxj4FZgN/A/ReQGY0wO/BTwTcDd6Afw24GPUHJdiRIlXiIuMNddbJRcV6JEiZeEy4zrnhMv+AFsjHnmZR7jC40xy8+x7EuBQ/bvTejA9E1ABrzLkmYbuE9E/tAY8xDwvcAfGWN+VES+105/z8ts4yuKR35QrTDX3nUnjeM2J+OI2aLSN/NM4WuKpb0CMTBc1Buutxve8LlqoXrsV29g5tnMe3rzSsiT29yn1rrNg7qf+UeLLd6+6oZBinATrx2yOSADQ+NMTvKJxwGQxXmyPWrxT06uQ6frc9+6++sM50J+aRGr9xWg90VdCqtA2vzLJkU6VcuubxBrPcsr4vPXAPo7hdZRnY7Hmgvm88AKvGenfVT7yNUQ7eyNfB7uuC3k1WBFTbtBfdEd0+WcDRZiZg6P7DlEdPalXj16Oi8F0Vp96ao2ZjCf8tSGmutcPvI0ppWniYIF0Qj0tuv1igcx8TC4wp0XRM+9YNIM040zoY6zGLWOunzodMrbLgUsPjhm9cbQIGeVrXTUE1Jbd30fmjhYElrH4U1frV67j/3nl+8JNsDkAhGlMebPROTAWfP+YGrybuDv299fBvyqMWYEPC0iTwB32MHbjDHmowAi8iHgy4GPlFx34fHEd+s9dP177/TcVj8ljBaC2jEG1m7W34sPFD7fFWzNbvvcqGq+0DhtPYw94+uYm0hIRgWD7VbJdMqjkNVV7Xn2cetZrMBk6jmbNITBDn1Y5+45CYvq+ShOnkbSFAolgbxdY+leHZOfeuuC90ICDLYJ9TPWo51Dd9eUhkMW8sYmLfU+uHzkaAKrtzqPrM73OWaF1i8GmHkm1JgEVc2f5rNxO3hiJi2tCw5WQd/NbyYMlrA15aGoRGxeE/t+nua62mpBf4dV6V6usf/GUySRjXz56CKRjaaJx/hca3DekSltBwn5e/OP5ySDwHVGxOskRBPr3cHWry9ACud1UgVr7K6jSciTy6shImDlNr2G7l0RjaZqzaeQTHneB05rA9XmwMAnfvLleUcuJNddbJRcd3HwxL94Bwd//P0+2qV5TPz9n3aE6lpQfm4fKfwzN2lETGYgv97KOd/fIBrbMdDEaJ1cV8FjIfa5pp1rImorITKkiPFjoGii45XuLhvJNzF+zJNujpDRmOKAjuOik8swUXe0bFukd2CG6oYeYzwT+7FM1oC11xTew908KvStCnTasyrILsU5FobWm1lUoFg0PmIn7QUOLHLlHqcQ3X52qp5ubuhvF6ob9vi1MP6Lx/pc109Y5ewMHPcUacRgCR8dUqQRnf1WuTrZynVJP+jKZMs1qgubnBnZnOcTsfeauzq+bl0Tf2Yt3P52F+FYENucYyNCURE/dosmYWwYZToWc+eb1baOU6NJ0ELIqzBzRM9n5ebwngPLh7Yp8Qi9BnZ6sB1S23+f9X/dxcd/5uV7gS8nrns+POcZiMjHX2jj81nnBfBlwIeM4m5gTkR2GWNOGGM+DmCM6QAPA3umtvkl+/uX0MFriRIlLkmopfB8/oAlEbl36u+bXuTBvgH15ILyxZGpZUftvD329/T8f/yCZ1FyXYkSJZ4XL4rrXp0WluO6EiVKvGxc+lx3Png+D/DNIvKp51kuwOzzLAc1FPyBiBjgZ4wxHzhr+XMNUn2mjvX4vAH4mJ21wxhzAsAYc0JEtp+zcTp4/iaA/fv3v0AzS5QocbFwtpX0ebB8djjd+UJEvh/1MPyym3WO1cxzzG+VXFeiRImXixfBda8WynFdiRIlXjYuA657QTzfB/BN57F9/gLL32qMOW7J7A9F5BFjzJ9NLX+uQaouFGkBvwF8pzFm8xzrPicsKX8A4Pbbb//MGg2XAJ56xzt5/bdpcnpWE5AgDDBphBIfJoJobKitakjFdV/9BPfedz0Au4/nmFiorevK43YUQqf7ho3rhcQW0o6yUK4ir6hYiQtz6eyNfBjNtj9UsZPiOn3B5M0QJ3v6C3cTT0LJjdoyPlw4HkLeJoTZ3NvyoWp6IiEkLauBu/zJEJonYOM6XVZUDZv2twsbcv2S10L4m4mhdXzsxQYGCzVfCijtahmB1ZvVArX05pMM/utO3y8a8hdui7in4T95IyGv4UN3aisakg0wXIypdPChLPlDbcwxjceJExXkcucXjwyJL+shNrw4xN04w1hej8nrsb9m41bkhRVqawWSB5GErCG+VBRoP7uwnHFLfGjjcCHi5B0VLywEIINwDaobhokvPxLCLE2ioeMOF0IQy6kFXkyIyNei4lhfZMWsQAdd+6ZW2wsct/P3njX/V4Hve4HDlFz3MvDEd7+TAz/7XgDySkLzmOCzL0TFVECfoSiDtOvKScT8/W/4EwB+4d63suOPUy+ylNWFwYLuxESaPuCev+o6VDZtCYzZiGQYuG44F7H8mmCZ3vsnI6qPHvfT/TfobTP8nF0ALNynD9LqzQ2SUd0eG3oHctI1fSCzfUM2cxsW+EiF8SxbwnvbR7TN9dNaikRsWHd/X+CEbhOqq5EXgGmcCuF+m9cI2++b+HUH2xNf0s7E0DxlvAjW6mtC+HBlM6Q5uBBFl6KSdmDp09phy7dVGS0aqhtW+KoZQqyH2+HZR3dwakXP9Za3P8Ejv6fvn0lD9J1i77pkqIIvAPFYQ5knTZ1eO5SQ9nTIMffkiEk79m2JR/iUGMeFjpeiSQjjjkfaJ7VVnR7NwfG3hGFM/fRUOGiKFwLMGioU1LHfTCY1VFfFX8u0q3wHvGTOeyW47gKgHNddZDz9be/i0L/TcV1e2RrSCvjSkHklpG9VOwXrB0fsXVoH4EzSoGLf7fFIQ2RHc1Ppajfpby0vZHx61aQh/llJhprG0NdhD/OPGNqPa2Oi/gjTrDHervG1m7df78cdkmsJHXcrmwiG23RZZVOQTPz4Javjy7ZJoeHBLgQ77Rgfxt3bA/lcQa6RxYyHkX/+JLNjOrvP4bww/5irE2TYqFZ8GLLkKjgIKpAot3TgHiXJtBdSvaJNSEYhtDkWfLpMZ79oGLS9y/NqRMWGCI9nI449vIO149qY/qEJyUMarxyNhWRk/PtH8lDK0+3bjQ17OxPicWz7rGA8E3keTLshFD2rCXkFnx4kBf7dkA5g3ILamvH9cuJzEn/dkx5bBGHdWNBxXc+KH5rUEA8sr0cXptzlZcJ1L4jn/AC+ADkiGGOO2/+nReQ3gTuAaaJ8rkEqIpKiJPnLxpjp4uynXDiNiOwCTr/cdpYoUeLi4WKGwYjI29Fcsc83xvSnFv0O8GERuRMVwToE3GOMyUWkIyJvRr0PXwP8+Mvlu5LrSpQocamH/JXjuhIlSlwIXOpcdz44HxXolwQRaQKRMaZjf38x8K/PWu13gG8VkV9FRRI2LAEK8PPAw8aYO8+xzdcCP2r///bFOodXAp/8cbXEvP7bVIgjb7glam0CiLGiR1a6fn1c4/rXaBrj+if2UV/JvUWuupYTTZWWWLq/oLPPCp3khkrfCqCkwrgds36DtZAN/Cac+tJr2P4bDxMN1NU6fsNB4pGayxpnMoYLsS/YHmWAK9VRsSU45u0ZmGCh2ur5BYwQj/X8JnVh5vCYcUtdFaMFIWvZZW1D42SwNMVDvKVy3IyA1Fv56qsF41bkuo+sJiRWCOfEw9sp3hhKnzSfTGgf099Jv0Cs4zCvxaEKEdA8GSY6+yLyqnoLwFocnfDAUD0VycCWo6pHwcMsasVz3ukiEW+pHM1GxGND7MoiFeF4WV1oHhuF419TY+U2JxZkiMeG0Yy1BA+gs9/K9Y/VQth+Vq2oaWdC1lQr5mCbPvK+rNRskPWffVKLtbtpE8Pt33j24/fioGqBF8ZSKCK/AnwBmit8FPhBVPW5inoiAO42xnyzMeZBEfl14CE0NPpbrAI0wD8nlEH6CCFv+KW2q+S688Dhf/bdALzmu+7aIkQiWSh7UVuFtB+egfaRgpNWberzb3mMT91zG43TujyemKkSO8CKwUTW65oZv//myZzhQsRoVp+PtVuhboMx4zFUj67DSAlt/JprqD+rXpKsNkd3V8RTX6Wm9NpKiJDIq9B8JvbPf3GySm3FtqUPGHz5pmRoS8QBCMw+OWGwLbXnHp6NvJWTbkY47TzJpsSfUK9v7soNxfgSKtFQvaz9HTqdzU1429seBeAvnrqO9FHt3NqzhnhkmH1M7USjpSrLN4UhwLQXAVRMC6D5bAwCg+267MnfuJ7qxJ2b7tNYr6+LLAGNnMkroZRHNFEhHoDunoqPRgEV73HRSa1ne2StlDNNVcXqXFuw9AknbqNl8FzUUXV9SuTLCogtPqgvpLUbat7rUlSUt7vX6E1RWY+8gIykel2c8NrrvuMuXgouJNddqii57vzw+Lt1XPea77rLv2uNuHKIjrOML9VoBMxqldtuUmL6H/u3037GCmUaQ3WzwMQ6HWXBKzhYiEgGxj9XSR/vKR4sRYznoGo5pLczYvaj6zoxHDF6w0HSTX14ausJPSt6N9ihvOOizfIq1E+7KDSIh0LVcd2AIHqVgoxDBIfjOoDRfErWjChSO85q5SRHXJlN5TovTCXQ36HL8lSUN9x4czoirgnD9Rq7/4aGD51amaHymHJdy3Jd44QOQIfbavS3B+5MOxo1AzCcEzIbaVM/JVq2zvLL3KdSf+xkaEBCO4uK+GjE4aJ6lR0nmziMDSfNCEwoWVnEUF/RoUhlY8Jge5UzrwuRMK0zwZObDFWc1C2rqAYjlU2obhZU13RMu3lNxZdJLVL12hc13U/jaPDYF7Eu+6x/rhxXvMQvwCuF6y7aBzCwA/hNOyhNgA8bY35PRL4ZwBjz02gJkr8FPIHK5X+93fatwFcDD4jIJ+287zPG/C5KkL8uIt8IPAv8g4t4DiVKlHgZMEB24VSgv+ocs3/+edb/EeBHzjH/XuC2C9IoRcl1JUpc5biQXHcJo+S6EiWuclwpXHfRPoCNMU8BrzvH/J+e+m2AbznHOn/BufNIMMasAF904Vp6aeCTP/4OPvcr3udL2UxDCrWEuZyyjd/cz+b11gz1BsPsY4m3pGNCDm48LMgakbc8ATQe0Fy38fU7yOoRlQ3nlQyWrfbRCbJtEXNSK7bXHj7O6hdeA6i1LBni80tNHLw3o0WorAevb3U1eBEmCzDYVTD/oD40iw/0KFLnrRWyeuwLk9cfNz63YrgAkya+QHzahdRawaho3pvznvZ3BKt+kYh6BOw5JZ2IxJYGGS4a0j7e+hoPC058rh6gebKgsVz4XLgiFZ9DN/t0TmdPPOWln7YGaq6viQIpjNv6u76ipV0Ka7kczav1EqB9GKiIz5tLe0Uokl7Zei8k/YKqzTns7hXmHi+o9KY8xra0S9YAChgsaWc0HjhOMqsHNDLLcDHxnp7pfMS8ItTWtuYpO2v1S7UUwpURKvN8KLnuxeGB973DW6BB+cPlxZlYS4K4SIpxS/ifH3kjAP/g7/w5n0KfA4Ckn8E2W/7Nlt9xUSUQ8uyr6xOKpMJgyUZL9KC3X/fRejqimKkTra7rsnsewRw6AEDzSI/GsYjTdzTt8YJuwNhopISZKiM2mtP/8Ug9FraSBlkNtn9CLf5pJ6f29AqLFfUq97cnjO16RTVh0p4qWbYB1bWt55MMw/RwIVj8o8mUFkMn4aP/U+07+VJGw+onjOaF+krOsS9o+n00T1ivRCqM58Tn2lU3Cu/Rdp7l2rLjpZCnZiJhPCM+V7m+HPKB046QbYfu/tBmV4oKMRgJUU55RWgdU/dJ1krp76h4D814LtwPDAx5RXwpmfFMKG0EMHMkJ11RD/f2j/Y5c4eKOUjf0N8pVNYCF7n7o7Zs+9w2Le2+9NTSkutKrpvGA+97B3d8nTq7i8RFMIT7a7q02ewjER8xbwBg702n6T6gybvxWDS/1vKCFJA5L/JAI13qpzVSrKjG5FWbszpR7+nEjp3qTxvMotU3e/YEtfsP07/jWt+25ilbtieOkBzE6ZTUQpSF5JBuih+/mCjsP92EyqaheSKzxzckVluleTyhfkZ8FNxkJvJlkEy8letMHPKPk6GOBd040iQhYi2vKtet3KsEVSxlXiumqAjpcs7RL9QN0y6+TF2xLoxngjZBY7mgb8dtTvvFjWGzGl7LJasLCOfkuiIVRnOQNW0k35pQO+M8zsZ7hkG5zpWDK5KIvBLG08NF/DssyvWaO4/3eAafJy0FLH2qT9TXCxMP66wf0oF4ZdMwWBTSjeDxDtoYRr3DNmrSebdfCq4ErnvBMxCRrxSRx0VkQ0Q2bf7cixIuKFGixFUKo6Ey5/P3aqPkuhIlSrxklFxXokSJqwGXEdc9H87Hr/MfgL9jjHn4Yjfmasef/+Z38blfrkqpg8WY2FqNJFVLYXXDpTBGzDyhtovtf91j/aZGyGfKg4IqaB6CU4+WwkBN86rS1QHJTELStyqqcbDymUSYbGuRVHSn67fM0V8K3oa8RrDy90Oum2QwXDIkfZuz0JzyRo8g3YzoWhXOpfuN5tsCG9dVkAJ6KrrKpA2N4+G386iAtdrbfN20q+3JXB5g3zDYZq1ls3o+ziJX2RBq1spWWxaSoaF+yuY4z1W896Z+Rq18G1+mib537HmWe/7gVgAaJ2PqKwVDK19bpCHfORqpF2ruSZsD3Ii8KnNeFWqrOYPFxF4HqJ2xfWbUUuq8vb1dsbdwLn1qiEymEpJFvJpsXlErp/Mcj+ZC7m6RqEXV5bxsfuM1tA9bL/l2IRkFL0c0gcZp/T2aFybWagx6zzmPV/wSLYWGy0ouv+S6Vwgf/6mgQvmWf/h+xjOWM8aAhDy20YyQ2mH5h//srXBLQdbQG72ymYYdGqPegqZul1dg9hn1RFRObJJX5hBLVHktIh666AzD+k1tFo4rOUTzszgh8dVbWnT2hecBg88xHs9aBdSGPp9pJ/LaAT7qZVZn1E5H1E+pCT6vx/QPLbFxbXj1jp1mgs2Dc1El49mgdgwuGsM+/6lsyX0dLxaIVVyNRuLfB5XlxHtFtG2xzyveOGSoWSXWtG/Y+aYTPLu03W+3+GnHPRGj2eBhzqshgqW2rHm8jp/jsVYsAJdPHIWoJgnebRlDUYWR9WRNWsBhe7Shvudc5E3jBD4qpkhUDbWYuvRO5yGrw8rNMb2d6sbp7wwVAyqbWk3AedEmU0rSGr0zlYM45a15MSi5rsS5cM8Hg6r4Z3/9nT6PX4qgUuwiOBpHlZd6j+5ktOi20god09EtrkIIRj2ErhJGZb1L1lAvb7YhaNKqrpoMDf1r1H3Z7I8Y7Zv3mim9nRFj6xyOMn2mch0qUqQwmQnHrqyHqDETh+dmuLOgdUyIx4XdZ8Um2Fvl5QperTqrh+c2GrsoIDs9Mj7yzMRBRwVgPGv8b5MY4n7k9WsazwSuq68WZLUoqC03IB7ZCMobDZ/3uQ/wp3drlEz9VET7WRdBqVEwzjsNQeW6dUS97bWxX5VKN0TQpB1Iu+E9Jn6Xwmg2jJOra8Yr3ktWgFSobNrx2Fg+k+sqoa+d/sykBc/8rRZNO07u7ww6PpWOkPZVo0b7zGpkoN7nohKumYuCfLG4zLjuOXE+H8CnSpIsUaLES8WlbgWcQsl1JUqUeMkoua5EiRJXAy4jrntOnM8H8L0i8mvAbwFekvYsCfsSFwh//lvf7X+/9e+/D4DhQkzaN4xm1Xw9HXq/cUODuUf6ZG21tHX3pExsLmgyNMQT43NRJ03BxJp71v74cVoPDuntVLdrVnN5dAAJ/W0xKpILzVM5dZsPJgb624L3IRoHtTspIOkLk1lnVQpqx/FI8yoatobbxqFmyIUx0NuN9ypHEyGzXpSZp2HzIN5723q2oLs7eK0rm8bvx3lDXVuclRLUcujyituHobqeeysc4C1pgyWhvmxI71YT4H3prcS+XWrpa5xR89nm/uD1KVJYeCQP3g5jfH7PpCmMW0nw2Gy3+RwAIqQScjLSrvGW3v6OCq1nBkQTpxiYeRXnIo4YLIR8oqRviCa6j+ZJQ1aDqvWcDXJhOG/z92oQT/Aet9pKsKjOHM4ZLMZebXz28Nh7vNYOTSXavQgYLiuiLLnuVcBf/fq7ePM/eT+g+b95LeQszRwpWDukz/v8pyMWHh4wmVGi2tyX+GclGW3NmS8qIQd//IYl5u47w9qXaq6YFPh7fjSrdWxPfrnmwjVP5PR3ONV89bT4Op4Cw6XQbhMbiob1Vo7EW/jNUMhrhrlHrCr7BHp71H3a3RPR2xNywibtwkfMSCZMZgpqZ3S7madMUC61UR1O3z+eGIzdLt9nwIh//iezOZLr7/rhiLqNAKqfHrF2Yz14NI6Kr2m5ca3An+/mW//R7wHwUx/5Evo2Z7rSNUgmvp5oNp/Bhrakt1cjSCbz1vNeBbHPu4lshE5IOd6qmj82TOaCxySvWSXUAdSWJ0za2qFZTbwSKqgCruOzKIPBdnc+es02r5vKJ/eeHCEaQaXr+m+rrsH0b+c5ebEoua7EC+Gvf/GdfM7/oVw3mo1CDmmi3j2XgxpNYO+fqktvMpPS2Zv4ezQZhkiGoqL5sd0D+lA3jkc0H9EQj42DO/QZtJ7c/lJEbKtGdPbupHki98r4aS88p0lPn6vRtNaJ89zOZ0yyxHNdPBTvpZ19VKtkOIX7wTaht8d6OnPImoHrKhtCf5eNkDkTMfuUobtrK9eBRhhKPhUBmIC4CI1cmMzkZDaXt/30Vq7r7K+FmuBJqB6Sbgp/9XuvpfFaPUhxZtar+1c3tI65q8ubzRQ0D7v8YKF5wvh1iwpM7G8K7T/nNU97YZyeDDTCxmu71MTr3ySjnNpKxtBGB2b1oPocZfruscM/kiHeS984bWvR77btrIf664iqXLvxZvN4GPvGIz3HoFD90vjqMuO658T5fADPoEp+Xzw1zwAlUZYoUeJ5YRCy4rIRSyi5rkSJEi8JJdeVKFHiasBlxnXPiRf8ADbGfP0LrVPi4uAv/+t3AfA5X/V+oomhZhV/iyShfcTVeB2TtVLGM3opK5uF92A4S5XPRYihu1uXpd0dpBsjlj6pSRP9PQ3623XZ+o2GompgTk1IK2sVWk8Ha0/rRLHF6+usWaN5wISacWk/WJp6e4S0i/eQxiNDf3vIpc2ahuZR5z0N+WaDbdA4GerxDhYin9c1msPm/Fo1v1PGW/wQ3Ue2TfvpTTc+zRO/cCMAi/d3GO6qs/w6q4wchZyaSUvb6PYTZcE7kNU0n8PV3Jt5tmDj2kACazfENKxyqRh8DneyUoCI97AXifhcmME29Zo7T0xWE+85rm4W5M2EUV3NivUTfUbz6hqvdAvGRD6X42yFWNePAPXVKdXJltZGduqrvV1C67ix5x5pbVV7jUbXVb0V0+fHvQRcLrkiJde9erj7l98FwJv/yfuJxyGHNa9A1XoDihSS5R6TpprBp3PietuF9tECd9OnfaG3M9TFrtywyO6PaL3I/g2L3ju8enPExo6c+fv1gGdeHzOe15t97pGI5jHjuSFPA7d1DhrigVBbUsXhxu4x2f+n0TXd/VpPcmK9CLW14DXIK5C3ClwKX/NwHLwNdUPjWOSVmaM85G6NFmC4DQY2IqNxIqiRppuqVB/dqFz+z268h4kNvfmtn/kC30eTpipOu/fBcBt099o2rqh39ud+9e0A1Kdq7Y5FqK4bGqedhybx3NI8oXnavibxVFSNqp1Cb5/1yEaQWC9IpWvrZloerK4bhnO2zuk4pbI+8rWF057431GmHOy98lglfcJ5zTxhr9EBfXeAepyH22Bg+7p+CuobgdTyilA/rY0ZbH/pkvcXiutE5BeAvw2cNsbcZuctAL8GHEAzpv+hMWbNLns38I1ADny7Meb37fw3Emqe/y7wHUZRct2rhI9+WLnuTV8dSiFHub53Z57V6XhkND8U9xwZr6A8moGKzXWVwpAMhO4uO5aKazTteGzn/1qnd22bwaId191kyOb0Ho83EjZuiIiVvqgtQ+volOK84J+53i719AIU/RhTMcza6JbufnxN4ElD1fyHLhrEch1AshHTPBp5rhu3oXFM12ue0Gi5aa5zUR0DEZrHgzc13RTvZU2u7fA1N97Dz378bQC0jwRhgM0DNQaL4jlhtADDJed91vPLP67vkWQAmd2n5EJ9JdQ1F6O1lLWdmm/tuG56vJVXBMnRcTMwrOs7QK+l9bTa1asbhnHbVi+oRdROD5m03Lg86ExEE9SbayNSpAg11VXrJ+RRdw4IdasrEw81J9hxZNoVXwnGRHoOLnJQzhoyvhhcQK7bB3wI2InGVH7AGPNjF5LvnuvY56MCvVdEflNETovIKRH5DRHZ+1JPtkSJElcRDJeNWmDJdSVKlHjJuLBc90Hg7WfN+17gj4wxh4A/stOIyC3APwZutdv8pIi4aPmfAr4JOGT/3m63KbmuRIkSLw0Xlusy4F3GmJuBNwPfYjntgvHdc+F8fNi/CPwOsBvYA/x/dl6JEiVKPC9crsjl8AFMyXUlSpR4ibiQXGeM+TNg9azZXwb8kv39S8CXT83/VWPMyBjzNPAEcIeI7AJmjDEftV6QD01tU3JdiRIlXhIuMNedMMZ83P7uAA+jnHQh+e6cOJ9Yn23GmGli/KCIfOd5bFfiAuGjv/IuPvcr3udFQtJBEC6azFQoEvFCMRDCY/KKiggkfVvmZjYk96/cUqF1PCEeuRhafIjG7OMa5jGerfl9io3ZiyYwnAvHymshPKW/P6eyHNO2oTSDRaG6ob+bx1UEQEtjaNtiG0ISD6F5NISW5NUglpLXNPTRhSyaqTs26WlYd/NYED3ZPGTDxBs5c59KKWIVb/rE0RuZKbaG+DhBgf5tQ6ITGgPTPKahLC40ZLAdRgshVG728YiJzX0YzwSxnnFb+306JNmF3LiQlvqyPfe6ARtSVFnT/Tj5fA0p130M5yOGC1WaJ7XzuwdaXrhr0ohIRoZKx5a4mgo9HCzGGkZtL180JQbWPKbhPU5Eo75s6O7WY/f3FGy7L5RNmBZbezk1zy+Rj9vzQcl1rzLu/uV38blf/l7yyjSf6b1dW8vJ5xs+RHU0JzRP6P0/XBDWboyYf9SGDaZsKQ23fjBhOK9xdTNP9unu1PSH0bYcCmHtDk33aM/3Ga0qSY5bFSQTxjY8ziTh+U56wuS6AZW/UBIZFtDoOEE6W6bHPsfjXDxPVDrQHwuVtXB+jvfiSOjvKZhYoRoThWX1045TdFrFpvT36JoxyYkK+eMaE/0h7qDxR/pbgMZxzefo764znofKujsHSDv6bLr3guP5rD6VOhPZcDo7HQ+hf40NpRwm1JfxnKHpHZbXx1rerUhtv/Qiz0Um0v24Eh/DRXG7J57EDBebxENXUk582ks6MERj48uzDbbFvs3jtoaNO7ppHYXquk2dWYyorIfQypW3TFi4Wy9QkWo7BgtTtZVeIi4y1+0wxpwAHTSKiD0b9gB3T6131M6b2N9nz4eS6151fOw/v5O3/T0VOi1iLU/oytIkw4KspffjxjUxeSMIgU7aMLLc1jhlBUytsF1/h5DZlKnKtpTKek6R6Ms+6QlJV/eZtQx5pSAauxwn8WkaJg4lyADyZkFWtWkhn0rI6qGdteUwlohyDfV1KSOVTZisuGNvLTVmYsNwhz2fGSukVdjUr7WpcmmZcvlwmx3j7R5SeVxPdvJ0i5/d+Dzm/1rPSYqcpO9KMKV0bs6onNaOSrpTx06UK4qa7nO8ALXT4bnNa+EcdFr/ZzVI+kEszEQy9T6wPGK5Lt2IfB8WsRNQ1enhoviw9NaJgvF1TZ9WN811lV6h/G8C1/nUoAZb2tg6Gq5JVhdqK4HrNl/7mVw3abx8nroYXCciB4A3AB/jwvLdOXE+w9plEfk/RSS2f/8nsHI+J1OiRImrGwYhL6Lz+rsEUHJdiRIlXhJeJNctici9U3/f9DIOfa6RqHme+VByXYkSJV4iLgbXiUgL+A3gO40xm+dax616ziY9P9+dE+fjAf4G4CeAu+zO/srOK/EK4s9/87t8qRAxeNn0aGyYtCLv9R3NB+tdMvxMz11iRQ/UyifkFbVEVTo51c3g6exvi6hsBDGWwYLeW64gu7P6SR5KHaWraqFauVXXXXzQsHmNFW05aS3z9nacloUft9Tq5UoDZc0gu5901WLnrGeYaSuiekZcMfJJU5g2Sq2/dsLcp3TDmWdy0k3d6WhbjZXbEqprul6vl5DPqDlt1E+YtE0QMBhAdTWUXTJRsE6mvWAdjCZqIaxu6H7GMzGjOfz1wkD3GtufE/HXZbSo2zpPT2O5YGS93VkDWscLL4oFMGnowZtWsMWVTyqScKG9VXIYhLWc56VIRQU27Dp5VRjssNbcMxFFYrzHeouo1iUglvAKoOS6SwB//lvfzWd/gxWIMXieGM1EdHY3PE+MFkPpnGik3Day0SnTPJA1dDq13NfdX6fS1Qdg28ci4gm+xJxkFWatNwVbLsmXHxmFMhfRGMxKld41up+F+yM2rtOD1lbUa5FYr6+LegF9FltPR+TW45pXgvc1HqswzGgx8ERRsdb/7RqZMv/IFNfZMheVxhhz7YTKfeqamP21JpUNXZjXY575Wzq/uqIRJ73PVo+wHA8RPvlMTuuxJIjUzBmKRd3H7L1VxrPiRbeiMSRrYehQXS8YLrhSITCet92XABiM9R4VE/Ee3/EctJ8KvCRF8Kzkqb5TMndtJ+FdMakLlTzwV221oLsncF8RB891Xgn3Qzy2ZZFm7MKJsH5reN81jkTeo/IKCf4tG2Nuf5G7PyUiu6w3ZBdw2s4/CuybWm8vcNzO33uO+VBy3SWBv/gNFTr97G+4U5+BqhPLixi39BkzsYpzOsRD/Ps4r+qz4soEFalGbwBIIUgW+wiaZBBESBFd5rg0God95DVd1425kk6EDepg48aChfsjOgdsVNtpfKSLE9d0Y5tJU6hOea2LaijflAwEsQJOk5bRsm0uqrGlZXwA2sdU/MuVeJNKTn6Lbli7r8nsx2Iqm4Hrjr9NG1NdgXgzJrtWuS4/VvMCVZIJ1VUhz130i/Gc23pG2+H6MJqE8V4y1AiU4aK9RvXwPsjauR0L2zHXTAG5Ew0UmscCrxRpiBzManq8cctGd3ZD/+WpDphdSbukbxjYY0e58quLfskrer3dtSwqMFrUA0ad2JewQ1RIy7XlUuE6EUnRj99fnirFdiH57pw4HxXoZ4G/+0LrlShRosTZMObyCYEuua5EiRIvFa8A1/0O8LXAj9r/vz01/8Miciea03sIuMcYk4tIR0TejIYUfg3w49rWkutKlCjx0nAhuU5EBPh54GFjzJ1Tiy4Y3z0XnvMDWET+hTHmP4jIj3MO/48x5tvP9wRLXBi4UiFv+Ufv91YpE2vZHJ+jOw6W9PEszD4Vyng47y1o+aC8GnKk8mooyi4FzD828V5mgPkn1FQ/XLClKrzlPljnGyfUMlXZtB7F1YzquvXezMU0D4+Jxi6vK/Hem/YzY0wsLL9WPRKjBWjaYKzG6YLO3sjnrREFqxdG2+883pKDqetCSQsW/qLK7GG1Dia9jLUb1ay3/HkTYEzf5r/UjobzNDEU9YL+HucBjsjrwUxWP7XVpe7yNdzx+zY/McoMTWt7Wn3rCDZDflmRGtJBII/xQk7V5sqMZiNvfcwr6v1yXmXAe4N72xNaxybgPcBT/UKQuwf1trvtohyaJyZ09lV8H277hNu35iJtHLKW0lyY2DJSi/e89Pw4c4l/AJdcd+nhr3/hnQDc8bV3+vwoEwtpP0Q6TdrBM5KiuWPOS1np4EuZDRfUA+iegbRnPqO8V/uIElp/W0zuLNsRYKDSxR5/Kl93BK2nI6qe63IWHlIyWL2lyeyTE38uJhXvzUz6htmnM9av0+dv7bU5zcOWU22emIs+wbCl/E9lI/RPlBmMtfinaU7yJ7N+WfPIgOU36Esgq0J0sy11N06QZ+pEzyrBmMRQ7LSuiElE90Dhc5OL+QnN/5+9P4+z7bzKO/Hv2tOZT413HnSv5smWPBsbjMEBbDqJyUAgTYA4ThzSpAEZ0kB+nTaBOO0QsEI6HYhJDJgOYEND44BHRmNs2ZZlWZI1+Up3HmuuM589vL8/1rvffUrcoVS6slTSfj6f+tQ5e3z3rtrPec961nrWV1TeiJuqnudZRkkN13LDG8Ng3nPKbtgHeY1mr/XWamDAXwjtfQAzp+erPVLVtkjWn6K3R6ifKx69ylpGb7feF+MVf5+k7qlCU7dZMlVtrwfaFi/oF1k5khXZUP5YswBaT1q+DAP3t5RMVePVW2yd48NbL8e4WlwnIr8JvBFNHzwFvAudCH5IRN4OnAC+U89pviIiHwIeRh1Vf9AYk38a/DOKtiAfBW4HPlJy3fMLX3j/O3nN970XyR99v/g/CoYQjwuuS6rQPK2vs3BjBtlwvlBZ8/U5JIP6Qt5KU+cHNTvPcsowyptm4hiVFc0OA6isG6rLKa2T+u/VORA5rvNSQ1r1HNfVF1I331u6LWJ9d0rjeJ5xaNtmonxnpMjckAyqS/om8y3X2ay0KEwJ/kS5rrpiaJwZsniHpq2s3WgID2zkOsm5zjcwq3PBLPYYRIGbF2fthMYjUXE/k6L1UF73C5rVY5riMomGuwzenvxNiMnAX7Zc54PZoVznL1bVUyH3V6hDZSWv9Tb4I+O4bjQtG7gu88V9S0srRcZMWtG/0yTX5a2Nxk1tuTTzFc9tm597OK88OTyk92L6ixPF3k8TV3Fe93rge4EHReR+u+xfcnX47qOXO/HlFOBH7O97n+bFlChRooTF88bh+XIoua5EiRLPEFeP64wxf/8Sq950ie3fDbz7IsvvRb/06ghF/oZ9WXJdiRIltoirynWf5uL1u/AM+e5KuOQXYGPM/7Av+8aY355cJyLfudkTlLj6+MwHf5RXvU0zBcSowtfdVyiBuVKg7p2ZqxM1jVxBgfFIqK5MFACkhtUbirBf3PSculk/j3MSrC6ndPYHTkketcVFy6orGs2qn9MdJTUs3qFKRONcytqhCjs/dR6A4e3zrF2jx6zMVRm3pVBzujCygsZwzqN2vhhm0DOMZvKaCI1c5tcEhkO/Y7frZ8CAoKNRuJXbp4rm5p2AHdcvsfzlHbqXj1MRshDmrlnh63c/6c75B3/6KgDmHtCIYP6oRhM102JL9nNX5s7ewMXXW/drrWDQ0Yhc7UJR75xWoXbGp7+vCMa3jukJBjth1BEXDe3vLKKW3sjgxxl+rOeLFvqkDY3mrV9Xp76QTbijFrV3GdDdF250eLbX448Mg3lh+nHrCr0LQusaufTqGP4LW8LzXQEuue75i8//2jvd61e97b0EQ+NqnaJVXC2txLB+2NA8WdSvu7r3QJQXrVeA1vHbZ2xe6B7KOPBHum1tKSWp68di80xK5gud/Va9nfRUMOpNMPWkVVAzw2CXhuOnjo1YO1TRDA2g8dUVeter3LFyY0B/GBW1V6L1sABTRwxinVQB4oZ1X8a6P2c6Bshr06z6/IdTTB0dceHOvEBZmH3EqtG3VJlqK7nta6xz76kbXU1Z2BFidJ+0nUIjYZxPCcYeo1l9WVlWjvDzmuNxoTYM55RbcgUKgd45JXITZvjVBBMqh/h9IbXnG720T3+1AnndbSr4Q7257RMpg7nC3VlSnGtq42xC7eQa8Zx+rqzeUEOsS2rjnKofroauovVuoAry2uHAZQUwVH7LMdiXEi3rOXI31a2g5LoSW8XnPlBw3Sv/8XudB8egqR0y8vmYZBDbLLE8O8U5AFcLhTKvM+3vsLWuDRju1O3aX/WIOsYpv41zKQOb3ZfUrfI6kTmYP4tTT44gM6xdp1zXuJDQuUaf77kv9/Bin57lwd4ez6nRWQTe2HOqL4LzYMlC5Zf8uc1CiJvWEXrV4I9hx/22nvXeFpVVvbDhbMhgZ4XqsnV+7npcO6+S9tHFOWLf4NtuGzIW0lAv4vC+CwRexiMPaxlp9Xjk5kdeX+9bfr1BD+dqb3wYt4tsy/ppoVvPi4AFb+jpBMv+jeScruvfOIahT2Sz/OJWRtC12YcrGYN5330eeDGuA0K0mlI70yWe1vu5ekPNfYZ5q8p1uT+F8YvPjahjGE2L42svKRyhww709xqiM3rBvb1sGc93rtsMNpPr85ObXFaiRIkSG2AMpJls6ud5gJLrSpQosSWUXFeiRIkXA7YZ110Sl6sBfgvw7cA+EfmPE6vaaN51iecQX/gVWyP3D9+r/SJttEfSQl1s2v64eQSrtlwolo1zGUYKh1WA9lFdv37YwxtD+2jRm6zoqWmormSuvlRMUWcymhIqa9DfrRGrcJCx83OrAFx4zTRpFVZeaVVXT6hZZXM0JUiyMSKYo7JqiBviFIcsEFc/YXzRvmnjYp0/zh36Aqpnu8QzGiqtX0hYvV4PfM0tZ1noNp2S6yVFfY2XQOdL8wy+VduJffyB26jZXpmDWejcnBAu683Y89nifoadhLgZuIhnpZPR2+25ez37SOpqswfzHoMD+ghVTwdkkUYTdQCFs2DY0XqNxdt13FNHiyLfsJcRLfSRRb2/VCuMD2gBZOZrFLO3t4hvrd9p+5zeHxE3hcY5Hfu4Ke5++yO9D/n5m6eNU7n3/mXKCbaG57sLdMl12wNf+JV38vJ/erd7P9i9se69/WSR1WI88O2Hb21R+8YW7sATLuyz4I2F7m59ppN6oXT2dvvUz6dOdQWtOwZVY6I16O7ThyXsZ8QNPejaoQppFZKaPli9vfNFDdt6kd0CEK74hOvFuCZ7dgfDggujVVuXZx+lLCz8G7zEEK4M2fNZvRlxM2DxJRrhj9uwcnoOgFPdXfgeGJuaMpozBD0d8523HeVNc4/wHx78Zh3XF5vuHvljVSbqFyxntMRlulRsf+C1w0p8aRXqJ/V1+5hHf2dIaq8hiwrF3nuyTqUL/X065rDjMdJhsjDns+NLKb09NutoRXv/AlQvqLwVLmnaUW0ucspVGhnG7UI1jxs4J34INtxbgMbZov546mH/r6zfCkquK3E1cO9/LbhOjH4m53W50Zo+E6CZLsaDvHi4ccG4vrHGE7JQqK7q+7U5wRvlGTJsUAnHTY+oZ+uDQ09d2HMn5An/ge6+CmEvo3FO/1VWbgo1Kw5YemnDzTX1QFr3D9rVI1wretxWVnG8IAngF74yXlw47xtPX+deAX6sXKf7GZK6z+p1eqD0+j7Hl1ViHp5tEBhIq3lhMXBSyef2Gx/iWG8ObAaNN9J6XoBsTaguG6e06iCK12FPWD9YZATN3qsDjXqG/k6he1C3DTtC3NTXleMR/riYl4frE1w37TP3lcz1YK6sGaI1Ozc8uWrPqjc4GBl3X4YzQlIr+iNXF2TC0Vs/RyZ7KeffD5IGtJ8osiajjuEIW8Pznes2g8vVAJ9B60T+JvDFieUd4K5nc1AlSpR4YcCwLVJlSq4rUaLEM0LJdSVKlHgxYJtw3RVxuRrgLwNfFpHfA3q5y5aI+GALeUo85/j8r6oS/LL/RaOFabWIpNXPJ9QfPAOpRtl7rzjoaqmyUFwUD2Aw77v3ez49Iqv4rNyoKkJtKXMR+KTmkUaCb2u+KmumqDH2oLYQO9fWlZsqLLxkGrDuoBm0jmv0bvWGvNmmHn8442mdG1bdWCmusbqcOQWl2k+JVnWcad1nOO1TWdXrq5zr4fW1PmS0f5rB3ibYWr/unsBFxJb7dYZPtKlaB0QvLhwIo46hv1v45D0v1WOuelSWi+1m7g/o2U5jZ78uYP4BjZqKDc1loUYH+/MezdOFQjya8V3UrXEuZclGH4f7Ery+jyQTZHKHOhnW/rhQdEFVluYZq/qkHlktxK9pdDCdaRLa3p9Ta7B2XY3G2ULlzdG4YIhr4iK1WeS5CG41NtQWi0jl8m2QV0ns/fRWXaCf/yZYJddtH9z3X+7idd+l/dCTc57rb+jFG7errKSMZm0fTU99EvKa/Mm+2lNPGOrnE3pWAc4Cob5gNzTqcJ8fOwtxTsXjlhA3YOcnTgJw6m8fdMccz2jt2NRx5alwLWblFuU77cEtDGz9aRYZgn4xniwo+m+HfUNlRbktqXkMZz2qi1YdWBjg9ZTrslpI/0DT1TUn1aI3+7XfeIxHntin+yxqZk/uauqPi8ye+z9zPV8Kri/GMWuonbXceVizhcJeXpeXOSU6qVlfg6X8nkHVjtl40Bx7nPl2HbNfTUmtp4DxPIzncfCmwuBh5SNakGZ8WLrNp3XCKjRjQzDKe1paCSmzCvRKTGwdoY2n7rL550j/UMzMffZ8otw+tP3s0+qEk3UMwx1QtT1La4tbrQEuua7E1cN9/0XjEa/4J3era3PukdKD5hklpaAbM5qvFPO6QKgtWSXXVw+VvA/wji+lBANdt3Y4xB8XWSSQ950tuDSvl08rqrwCTD/a4ew3tElq1qF9ogfx1NEx43bgetVGXcPQHnOwS7nOm5jnBK6m2SjXLefux77rK15bTqme7Tmui3c06e9v2HMLwxnPcd2Ney7w8OM6OatZrsvHFvaLzJvf+8wr8cYelU7uCA+N47a7xqGMxZfD/H25IruR68YtoTHhVp9ztZcYmqeEziv0hPEuQ9rL50w+6VjY+wptC3Liq7tofbW4fys3eTRPWtV+kj4yQ1avEHT1mM1TwvohfUQrq3ovewdtF5eq7/hLMu0dPJnV6JysK9C51hBYLp978IXLdZvBZmqAP4FaSueoAX+0mYOLyDEReVBE7heRv+I6KIr/KCJHROQBEXn5xLr3i8gFEXnoKfv8lIictse8X0S+fTNjKVGixHMDYzb38zxAyXUlSpTYMkquK7muRIkXA7YR110Sm/kCXDXGdPM39nX9aZzjm4wxdxpjXnmRdW9BmxjfALwD+MWJdb8KvPkSx7zbHvNOY8xHnsZYSpQo8TWGMbKpnyvhYpMnEZkVkU+KyFft75mJdT9pJ2GPici3TSx/hZ3AHbETtfzkJdeVKFFiy7haXPc1QMl1JUqU2DK2EdddEperAc7RE5GXG2PuA508AoMr7LNZvBX4gDHGAPeIyLSI7DHGnDXGfEpEDl2l87zg8aX/bNNl3nE3cw/q55p/ahGyDDM/DcBw1nepvv7YMJz1nblAdTkjWtXcl+GOCllQmJ5AYYk/nPbUeMHPW3WIS6EF6O4Pmf2KGpTs+FLMqTdpHkZlxTBuCWvX28bkHq6dkT8UgqGhfs6moewtTBD6O4X6+SKtWzJYeJk1nunBzGNDwiXN70imayTWMn6wS9NPxO43mi7MbZJ7ZqgPi3M0Lhgap206YeQxnI0I1zQ25I8KUyhNzTbOHGLmEdFG5UBS9UgrwnC6MAdbO2zTeBYM1dXMhcOWbg2YuV9TYNZuzDC+Ybhfb3BjZ8/dy/TNK/gfnaGyrvulkZBWbAuTXsZj/7jCrk9pOtDsfUvE0zZ3WbSdS566Ewxh7i/yhueGcGAYzlir/U7RZD7/G+cmMmFX0zwBlm8qWmQ9Hahb4GbibJvCrwL/CfjAxLKfAP7YGPMeEfkJ+/7HReRW4LuB24C9wB+JyI025e8X0YnZPcBH0AnZRym5blvgMx/8UQBu+Vd301CvOmYfHVN9+HSxUatB/ai+PP+NO0mqxf9v1CvMRJqnlRTqC/rP78e+M2fxY1GDvrxFRaLGMZPovVTTdvf/7glWXq/pd+MZD0mht1NPMr0WOx7KfNH0tTQ/jtA5ZE2pZiFcF9rHim3HrbxkRVtwDGd1cPv+pE8yqw9nUg/whxlJw6bVeUXa9hOfPoStyiBuGsKOkNivOf64MInyEiENDX6/aDHVPFeY4sSv6mJ8Pd9w1nOtR7zY0DngOcOsuAnxeb3unfes0r22zd6P6Psz3w4S2P12xISVmIqvNybwMlbyMpQ1/UmrRSrl6nV6jN6uXez43DKDfbkbmRD2J8wI+4I31sFUlkNXdpLUhP7OooWJN8Jxtxdryc3aLbpyOOfDhgZBm8NV5rpnGyXXbRN88Zfv4vZ/cTdzD+n/eeuJdbzztkasXiNuR9Rt+VrnYEh/3rbzig1h19iWkJoam1asMef5TFsg2dhvGhVtiMRoWVueQqtzRt1uPFNl7x8vc+abtUeamZgWrF8TUVnNHL9kobj2kl6q/JWv61wDFVuCVrUlZmvX6RzFi4s2a3HNI6oEJC3bPm02dGnCWSjEjYKfn/iLQ1SzfJ1ySMUagPljbXkH4Pc3PqNegjMKGww8TGDcdY3bnivpi+s6HxraFG9vDDWbdtw6GbN0S4WZT+n8c/nrxo7rZE/MzFTXcd0tt57k1OOHAB2j6W7kuhNvVo6fftRy3R7LdWJTstFU6bAviOszVaSpJzXRezTRWin/2wZ9CPpCf6+di97uvRi47pLYzBX8CPDbIvIXIvIXwAeBf77J4xvgEyLyRRF5x0XW7wNOTrw/ZZddCf/cpta8f1LxmYSIvENE7hWRexcWFjY53BIlSlxtXK1UGWPMp4Dlpyx+K/Br9vWvAd8xsfy3jDEjY8xR4AjwahHZA7SNMZ+1E7QPTOzzI5RcV6JEiS1iG6UF/ggl15UoUWKL2EZcd0lcUQE2xnxBRG4GbkLDQI8aY+Ir7Jbj9caYMyKyE/ikiDxqJ7E5LqaPX+mW/SLwM3a7nwF+HvhHFxn3+4D3Abzyla98nv8Zrh6++L67ePX3vxeAaVQFlmWV9Ga/BMsv088Vf2RV3Ilo2mgusq8BA2E3b1ERYwIbVV/KiKciChSKyWBe6O0RGmdsof7KiJlHrYmLNSrJDWiCgXHtjNYPC5VVcdG61gnoHLTb9dX+PbHK57jpUT+v2/V3CRdeXmXfJ1UB9vsxaV0HE3Yz4qbnzFOqy0IaWSOtIYQ9Q3evVW8rcO7Vtnn7bWO8paJlSmVJnDLaOpWSVoTd99jrnRNnX298vf5cLY7WCzOJ0YwQdYSkpfegecawdp3u137Cmmbt0t/p6amitUsCEsCoXbRIah/TlVkgeH2PmjXFMZWQoFc8lnGz6iKXleUxZ15v1ajHcBFTvZ/C2EZ6o46amuXRQgxMPaHHj1bHPMzW8DTSYOafUlP2PvscXw67jDFn9TzmrOUa0AnXPRPb5ZOw2L5+6vKS67YZHvmZu3jFO+4GwB8m4BXx3KwesfDKaUC5Jgtwxn1JBUKrMHT3RWCgYtt9RZ0Mf2DV4HFGAxhNK6cMZzxn+JdWIKtQZMIcnHdqSvOkGsnlbc8W76w5M5a1G/S87Sf0vRic2VTSKFrP5efIMz5A1dWd99qLMIa0kiu+qr7UlnTcXmKoWoFIsoLjk7qqOr4muzD91THdA7Zd0pw147PcE7dh9Xq9n9NHMrKzDUZTecYOruVTGun7PCumcbpou7d+U5vMFy68Wt83vxJtUIx614Uce7Tt3l//HccAOPZHh/AHxTgB6uf177P41gH1hSm33BtlTtUCiGtC55C+Hk9nzN1frAv7EFsFKmkWqk+wpAZAzSd0cK1TEwT5NPF8T/nLUXLd9sJD/77gunojwsu5bjiicq7HwqungYLrQJXNNMJlm6SR5/4KlfWM6mKKl1oTp3HmjK3SqgfGc9w2bhft35JjHv5U1WUHxg3PmWYmdc0WyVsdrd1gCAZ6jPoZqC5Bf+IbR242lwVCXNc5KajBYH+37rfvz4d445S0qjt6saG/Q8dZWcuIOoYktrw0LuZcwznlz+6+4l9xPGczWqoZ0WJQmH31VZ0GmH/QMG4W6nfQL+ZfWaRt9/JsHkmKuVR3X0TUNSypdyqNRyL3FMQtWGxXWO3q30xSGN2mJ288ESIpzngxCyBatZmQe2BqZwPJ7N8oNYynfHduLzWsXa/rwo5QP1tcq/Egnajwz7ku7NksJNvWqnE25nG2hu3CdZfDFRVgEakDPw78sDHmQeCQiPz1zRzcGHPG/r4A/B7w6qdscgo4MPF+P2rTf7ljnjfGpMaYDPjlixyzRIkSzxMYNlcnYsl00RjzyomfK335vRwuNQm75OSs5LoSJUpsFU+T655TlFxXokSJrWI7cd3lsJka4F9B+8V9nX1/Cs0a/4PL7SQiDcAzxnTs628Ffvopm30YTXv5LeA1wFqu5lzmuHsmtvlbwEOX2/7FiM//mrZGesvhd2oOQqh/5v41bcJeUSeQVIXQ2qMHg8y1tMit8mNbU+YlpnidGvxhxmi6+NfJm4ZX1jNGbQ/fqq5JPXRqQFwXV8cL0N0vTjWoLmvkK1cYwi60jtvo/NCQ+YUKixQN1KeeTIk6CSay0cG1PnlBsjQCJC2s/eO6ONv9xrmEuOlRWbf1ullRY9y6P2I0D76thgpG7pBOQc5/Z1FRQ8dCoQQDDGfB2FsUrULnoOfaEmWh0LDlitUVbYIe1gtL/vwYgzlD7bwQ2LLgsGOc8lJdStj5haI10XBXndoJDeul7RpeXKjYAHs+k9hx+SC4ul9/ZGjmT5PR2uIco7ZHZtWV4a6JQu+niWc5TH8+5wSb3nzBLr/UJOyUff3U5VBy3bbDF9+n3gdvfun/Dr4HiRKFJJlTdcdNj6QGqX3G/ZG2AgN97v3YMLbZGdWVlNFM4NYFQ80kyZGrFmHfMGp79HbZertB4FrFpTNFrSnAYAckdeu1sCBkEYyndV3YKdqB1BfMBoXUiGg2DsoTu76QuCwPrz8mtCpQ3K7QOJ84bhjOFipM+0Tq2gTFdaG6WPDL6TdEpDVbI9fxtY7Mqq7NU8bdv+GMR1IVuvZpqp2H3r6inZARMIFVMCriuKV5Svm3/UQxCRLLq4NdUDkXuIyZeDbh9NqUvZf2+oP875W5cU19sgGkNI5qVtN4Rx1/ZP8+Bupnx0SdIkNpYFsiSaafG3kWQPXERKYL2Po6fZm3NtkKtpEkWXLdNkPOdW+56SeKhZ6QTFeJunbOVvfcvMoM9X8557pghFMTxy2PamIYTuVzPOU6wPFd1WboNc4r14G2AvLrhXqa1NjAdb29f5XrQPku7BStx8JewXVizAaua5zLqDxa8LjXHZLPdNJKzc0304owmhbHda2TqeNAIzrfzD1M4hbkxcPBmq8ZOfZhra4Yly2XVLVOOW+vVztfZPIk9Y1cV1kROo2c6wxpKLSO6bb+AHc9SQPCjueU+fGORDNzUMXaS4rMyNpiyvQR+/cTiJuB47p4tuZUcoy2gNv1uciNLa4XPOulRStRf2SKubfRuXaekZRWt17Hu4247pLYzNVfZ4z5WTR1EGPMgIurKE/FLuDTIvJl4PPAHxpjPiYiPyAiP2C3+QjwJFqf98vA/5LvLCK/CXwWuElETonI2+2qn7UOrg8A30TZvL1EiecvDJhMNvWzRXwY+H77+vuB359Y/t0iUhGRw6gj6eftJKsjIq+17s/fN7FPyXUlSpTYGp59rruaKLmuRIkSW8P24rpLYjMK8FhEahRpgtcBo8vvAsaYJ4E7LrL8lyZeG+AHL7H/37/E8u/dxJhLAB89+l7ecuguxod2ABB2EjoHVMnLI2C5umk8z6l/XmJIqoWz53A2cKrwYM7HS3wXMZNUayZAm64DBCMNfVUXE1dH4iWGwQ4hslH2pF7UayR1jQ7mEFNE6oOhIeinjNsaLkxqQuOshrP82DYBrwX2d1FPVj3bI2m0Gdh6ETycA+H6wYDKuqG2aPePwB/bSN6ZlHjRYziT1yAbV5s8nPFYfkWMhLpfcLbiGoz3d+v15NHXuJ0RrttopKfKUe5C7cVFxNH42ow+jXSc/T1F0/LaOY1G5seMOkyoObaezsoks/cukMxp4UrnUA1/mLn6wd7OGjXr2hqtZ4zbRTQyj6aC1uKsXldIUDOPF6pSUts6kV2tNBg7eXojWit8CngX8B7gQ3YidQL4Tj2n+YqIfAh4GEiAH7QO0AD/DHWUrqHuzx+1y0uu26b42AP/BrBZL8BoVxPfKrJiDJKJ+583fqEaZIFx0XhQ19HJGvlJHtSd9ddoyqOyljGasjX8u0PmPq+WoMFohs7+wKmPSd0UXy08jfjndWSTim9SVTf8PEtn1BZXXxdad+bci2G8p010VpWBEAjXDCu36caj6SKjJan5RabNitYI5hk0lVVxNXrzDyUs3Ry4TJtgVKjiga3xrVj7ufF0ofJ4YyGrGbKadVD2fTzLpUlViLrGcTkUdX5Z5NHbZwjsdflnAkZn1J8i2WWYekKc2+v6NYG7T2HX0Hh8xR1P4sypJ1kgjKYr7v5l4cTf3P7OfSeyQBjndY1NmH04dcpXb/fWHO9hW9XFlVy3TfHRx97jXn/bK3+KLPTcM2D8oi41tR4FuaMy4DwMjGiGVz4H024ehaeAZEWm22BW3Nxl3PSQNKC6pDum1YjuHvs/L8oL+fmzirqtg1WJZaP/SP6cGk/Pn49lMlMwq/iM97QJOjqA6oU+kimhrR+KNLMnyq/Xd8eP1jUDLr/esKd8BzaTrlXMP9NIWL2huAZ1oda3wx04/je+IW1mkPskjH3XMcN4mhWU3yco5lYX47qcjwY519lzPJXrpu9fJmtYB+zpsOC6UBjMV50rtBcX3TyySMfvDwuu6+619zOE2UcKruvvfFFw3SWxmS/A7wI+BhwQkf8OvB74h8/moEqUKPHCwdVyArzU5Al40yW2fzfw7ossvxe4/SK7lFxXokSJLeP57no6gZLrSpQosWVsI667JDbjAv1JEbkPeC0ax/5hY8zisz6yElcFHz12N285pNlE6c4ZWif1T65KLoUL9ETk0B9mpFGhhGRB4eIcDI0qFf3ivz/Mo26djLXDvovcd/eHrp4q7BvGQ2GkQX5ax3EReLA1GvY4waCIurkx5fV1FWFg+2vOfFnlZGPdUL1BXPS1q0cYKXr4khVRvfy4+Tn8MdSWbL3btEfUMcw8puHBlRsjjI0iDnZC7UToonfjmQxja4y9sZBWDf5Q3zdOFbLRaA66hwxzX9ZlWaiqL2j0cTTluV6/ecQS1LkvDYt63bBnCEYafqwsjVm7vuZqrFfvnKf9uIYjvbjqlKn8WvNa6Lz/r3N7rYlzxB23hNqicc7Wq9cH7u+1VRi2T6Sw5Lrtj48eVQf8b3ndvyF2PXRlQ11nUhVX3wr2+bDZEpN9JY2nzsl5vVQ4MCy+xCqmD2Ss3FBwZG1RWHyNSr7ByBD0DZl95ponxSm+4ymtm833C/pF3W11JXOu9ToAzcwBqKymVBb6ZBVbn9yPnTKQ1kM6B6v09hQuzZPX1ji3caaSn7u6ZEhs3di45VNfMK5XZn/eY+0m3TDcOSAME3pLmkLj93y8UV4DbMCA19d7HXaKa80C/cmVpLBvnIJRXTJUl2DppdbroV/sB6rq5DWIuTcEQNwUFr9ujtYJ5edwdURS1TSmLBSM/5RsFfsyp6B8nfK9Z8cFKzcWSkjzzNZmdiXXlfha4+P3/hTf8rp/Q3XVZpDt9B3X5XW1uQLsxcbxnPFFMyRsNogRiFvFc+qPjet32zyjXAdaJ28Cj7hhe/YmOB+Z/i5oHReXYZJWi/pZsfOv/BkPu8ZxXRYIxi9qlatLY4J1JcWsEuD1Y7CZhGkjYrBDTzCa1kzGXDH24kJVlkx/XL1wJIS5V82aOl7n88+0BknDbtdKCBoJaUfPIUPPZQhJCsFqwRNZaBjYWuGgJ6TVorZWMuPmYJUVgz8S+rt0Xa4a6z1Sv4hcyZUUBvOeuy9Lr5lj6ohOXP1hRt9ee168ms/VkppsyFRKI5CkULXzXstJTbkud4gOumwJ24nrLodLfgEWkZuNMY+KyMvtotyg4KCIHACWjTHHn/URlihRYvvCUMw+n6coua5EiRLPGCXXlShR4sWAbcB1m8HlFOB3Au9A+7FdDHMi8uWydqNEiRKXwzZIlSm5rkSJEs8YJdeVKFHixYBtwHVXxCW/ABtj3mF/f9OlthGRTzwbgypxdfHRY3e7129uvw2A6nCEv2sH2c5pAOToGdJbrgHAXx8wmpp1KSr+CGeGlKf15ekdoxmh9wpN0Qie1LyKeNWm2RrjrNnHLTVSyFNusqKDD61TGf4oYzCn6SXNMwnDuaA4z5Tn0lwyv2hTkdvnG9+aTUUBxqZAS5KxfsjbkA7o0iCFDSZRXlwYBiRVIW4KaVUHOP1ETGpbAXUPeGCKdk7GN0hapB2OZw3+IE+lxBnKSAbTh1bpLc4C2hTeGTBUtHVAz+bqTT9epCEO5oT6gsEbW6OD1FA7UeSsTB0p0rhHcxX6BzWnR1JD2C/+VpXVok9BbakwSwA1J8u3qy1mhJ2U4Wzxx8lTeibTdp4env9OgCXXvfDwyc/873xbU83BG4A3O0O2S/P5vaUO44P6LIarQ4Z7moByTzAoTFz68z4YTeUD6O8R2i9ZAmDtxpDx8ZZr8RMMCjPA/m7BGxWpeUYgsWZWbdvebdJwMEd/3mc4E2wo98jTF9PIAxGy0D7wjQhJbdpcnGl7ODvOoA/V5SINMj9HWtE045wH00qR7h3XhMpa5s539pszZKjnSk/VSXaM8CqpvX8h8XzhbOWvBa6kwgjc+NeeBODBo/to3V+hvmBb4TXFtSXp7TPMfgWmvmo/T2agahNwgxF4SZEKvuuz6yRN63TjCYP5yLWqGuwojLuMpymEhfkZBYzyZ2I5P60UJlgmUD7OP5NWb9wqX5VcV+Jrjw1cl2Z488pt2e5ZvDOLjG/YA0C4MqB7vbYaM541xLPlCeOJVm/jpjCaFWqvVa47e6GFt2qNTZc1ZTe27X/iVmF05SU6P8ts2Vn7uCm4JxSqq0VLttGUx9CWd/ixjiPnnizwXClbFnpQD137JokzhrMThl8pRJ2C6xx3RoKYIv07DcXNc4YzPo1zqXt/9psyxLZS89cDskqK8W1pxsBzXCcDH08KXhcDt778KAAPRtfQftwnWi+4Lm+lFLdg9iuGykpeNgI1y4n+WD8DKst60MrigNr5jVzX32NLPIIJ7o60rCe/v8GwmAti9Jj531Zs6yPQVGlJJ4zSttzd8vnPdZvBFWuARSREXVPfYBf9GfBfjDGxMeZbn8WxlShR4oWAbRIpLLmuRIkSzwgl15UoUeLFgG3CdZfDZlygfxHttPCf7fvvtcv+8bM1qBLPHj62/isAvHnqH5HtnEaOawmQGY/xH3xCN7pmL+1Hlhnv1hB5Fniu0XrQS+jtrbhoU2XF4H1Old/OtRk7Py+MG4WyOm5bNXOXtjpyzcCnitfRuocfCzOPqJtCcHaZ7CUatUyqHpIZ/LhQQvLo48KrZpi/fx1vbJWJ9QHpjBq19PfVyUJrroWqC7kBiz82GmG0UcbRdBHJqqxlLN1WREPbfsDadVbl6am6khsINI/6G8y6/JFXREMnvGw6hw3rR2YIrH9CZT1z15BUhdYxQ33BNn5PDd39ob231l7ftqBKqh6j3SqhZKEQNzzXTgkg6NuTVjxVO4ohONt7b2w2tF7JEKqLhZqTNHxmHtX3Sd2jv8u2RthqsM9sK7OEkuteQPh499cA+Lba95Keu4C3pmkMJgwIH1ADPYyhavYwunUasJkZ9pmuL6YMZj2XKVJZgdGn5gCovWGJrFMYvoxbG01IOjelzjAl7IBvDfjWDgtTR4ssjGh1zHhaDxL2DVmAy5rJDV1AI/edw02aJ5Uj04pPTihenOlkxD5mg92G+vl8vyJ7J+zlWS+WB0fGTWJWbhaCgUdtQd83jhQXkzQhHVcJbDaNEcjWlbyjNcEfwGCPVT4qGY9d2Kkb9gM6N6V4qY4zjQrDnD1/aU0Aq1ZlroozzPFSPUmu4HYPNd011JZTsrBQ0OOGv+E+RZ2MUbvguhxZIGQUZmiV1RQvzlX/zB0foLd7su/V00DJdSWeIziua36/m9fIkZOYLCP8smZkyFSL5hHdvnetKsG5Yto8l9DbWZgGVpYLrgte3qP2gKqSWZCbBupx4hYkO4uWaMbD8VBvlzjzpcbZhNqZLr3DmgpjvMyN03hq0JVnYKwfirAd2IjWxkiSuVaXcTN085e4qWpsZc0eRwrDPcmUR/M5X9jL6O7Tgw7nYXy+MIKqnJ9sBwX+0eqGdk0sWH7uaUZcrN0mGc+nPHRc+wtJovw1ivMMExwH1x/IdDzNnG+KcQaDjMwXty5uFlwXdbMNXJdG/oaWVmE/c63qvNi4SZrxlO9yo0d/mLnjV5dT4obnFP/8Wp42thfXXRKb+QL8KmPMZN+3P7FN0EuUKFHiytg+kcKS60qUKLF1lFxXokSJFwO2D9ddEpv5ApyKyHXGmCcARORaXCvoEtsVH1t7P9/2infBXhutf/JksfL4GYhCsAqwl2Rk5NbsHrULMaPp/F9HCM9rpKl93LB22KN5ykbnm+JqIqpL0DlY1M9W1mCwQ1+vXQ9hT2jaFk3edIukZmsyxoXyq79xqmd3n7B4Z5uZx1VekeHYtVLyYqNRPRukilvQPq4nH7d8JDNENkLW3xkQ9HS74YxHUjdOBeoeEOKpyZYpnts2C6BxVseyflgI+lBfLFoK5VHFaFUYTxW1hZ0Dnou8iYFd96aIreVIap6rt/VHWle4eoPel/o5qJtiO9B2Bvm2eUsmSY2rWwZtrp6jtmjrBe221dXUqTDD2YA0YkMz9/YJvWfPLNi3bSKFJde9APHxwa/z9X/752gc7RQLv3oMAPE8ZHGVqYd18XBvi8xG5zNfaJxLGM7q85NUCz7jg7P4+3D1rVC0pKgtGLLQJ7WlXFlY1JeOdmQsVz3mH7Q1YP2Y0TVaiBX0VSnIlU9/mDG2aubadUL9nFBd0gNFS31S24pksLtK2M/IfI3y+wNxNWyTbVDEigSd/bkqIgws/cfTKVnkMbpZZd4s9vFW9FxZNaNywce36m3Yx92juGXIAmH6UZvps0PwTiu5yas7jC7USazSkkVF9kz7hCGuFxksmS9OVQp6QncftI9Z7q96TvUZzPqqQlm5vbqcTrSOE8Ytr2jfcnpihib279fbyJ/566QmhLa1X/PspPzzdFFyXYnnDh/v/hrf/C3vASBcHOAtrZEtr+jK5VVkqClq1VaVuBW659h40Dinn/XD2UCfFVtb2/r9GutqD0PrpFFesxOCypOG7oGcLzVDLrZ+B71rMkazeeaGhwl9p1gGA4Pxco4SdVSyx+xcA2lFuW32YUO02ENCm0VSK3xd8laW+XM7bhaeBsHAMJou2jwlNY/Bbssn9YwBPslum66XCf5y3g8KGAsVe8vGrY1tlkwAjdw3HZ9s3Sq3czGjaXHKrvEgPG23GhuSWjFvTGoTKvKUBwZap/L5td5HgFHbs2p7kcGT1y0D9Hb5JJrwSOOcW0wW6Bwu58V41ndZTJL6ZCHUlvVGVVd4Btg2XHdJbOYL8I8BfyoiT6JXfA3wtmd1VCVKlHjh4JnMJ7+2KLmuRIkSW0fJdSVKlHgxYPtw3SVx2S/AIuIDdwA3ADehRPmoMWb0NRhbiWcZH//iv+Y13/deAGZSA2cv6ApjYBxTOaougN3bd7p9vFTo7fRd4+7Zz56nf+O8brc3JFovGpwHI61bBejt0WhWxdaEGBstBEjqWqObK5HdO6bc+Vav82ifMASDwpF65WZbS9FTt7vBDo0WNtdHGOuSGq7HhL0Af0mjfrWl1EUHK+up1jD4uUuyobfX1i2PIewWkS1/CNUF62qd6Fhri0Wz9VyZyNWK3MHZH0FiHfZqF4CsUITDrv7k9+H8ywNmH7GOrgZmHtXHK2n4xE1PXRHRyGCuDkVdrVvL660raeFIXT/TZ7irhmcboTfPpC4CmNfEBM712nM1b14C9QuZ87fPQnER2/781uvitkO/uJLrXtj49O/+GK94h7rh77hnCSIrzxpDtraO19BQ+rhVFMiLgfVDhSN6ZTVzakMaCdG6OF6Cwo10+ZaALMSpCJjCTd3va51t/sxVF6vENX0+ert8qsuGMHcurXqsXW/V2o6qBv3dth5t3cfvqBQS1QMWXlpx52ufKJ7hSfd244nW2lr1IWlabgKy0Fd/g7FKtGGi6i7A9EP+hpo4yaBlO8UGfRjM4RyVg25RD+x/pUWFIqNE0qIGeDijDtuVNRUdp44ZV7sbNwV/pK7N+X65e/N4WqisFrXLSc1zf4NoXRWSvO4wqcqE8qFKTF4XnFaFrv0bBEPlvlyxzzODnjauMteJyF1oTa4BHkS/oNaBDwKHgGPA3zPGrNjtfxJ4O6rk/pAx5uOXOG7JdS9g/MknfwKAV7zjbnbckyIdO9nIMrKuypDBhXV6e4t5nWSG/n79OuAPDdNHhs6bYDhTZKUFg4xgUMyd1g57zvugugQIGPuMp1VxngLDGY80ajquW79GaJzRZzEcGIzA2g0F1+X+MP3dIeF6gCT5M56wdkg5urYAzdMF19WGxfwo83W+Ndhlry+FyLowx4lynZzWlBNvguvaR2QD19UWi9dZAGmIc7KvLMPAOj1Xz4T4Q63v1fPDUJsOEPaU65pnYntfPMd1oxmxddW563ThsD1uK9fl99cfZuSpiWFq8MdCkncdqYmbi/pj3Wc4U8zZ8mNorXBxjjTcIl9tk3ndlXDZWa0xJgX+pjFmZIx5wBjz5ZIkS5Qo8XRgzOZ+ntsxllxXokSJZ4arxXUisg/4IeCVxpjb0T5d3w38BPDHxpgbgD+27xGRW+3624A3A//ZftG9yBhLritRosQzw3aY110Jm0mB/oyI/Cc06tjLFxpj7nvWRlXia4bPfeCdALzhb/576uHE5+XRU8R7pwGoLI9dL7JhQ905E9vPrXvbDudaF4wM3X1CUtV/q+knYjKrNgQ9qJ/PnKOd8cBLrJNoJ1PnOlvnG/QLp+LGOQi76YbIXvuoDdGJMG4K1WMaWfOGY4w9d1oLaJ5OXMRfTKEwJ1XBHxnnjNzfIYS2PDDqGFZvFOIZVSaiJZ/xxGvJYDhT9HPLa4Dznp0NWz/W3ecVvdY21I2o+uqOUYHKKoymi5q2pJnX8mUkVY/qqlVUhoXyIZmqGVMX9Nr9UUrctL2T56pULwyJWyppjKcCorwX8LS/wf0VYOqYFrmsHbI1wHYq1N/hYSxDyKSl9NPF85wEJ1By3QsYX3zfXQC89nt+Hv/GaQBaf/IY4vuY8ypVTN0P6y9Vc4Kk7tE4l7osiLjuMXOvWnsODs8wakfOJR2gdUofkvr5whcAIFqF1kklg9Gcx7gNrRO6Tdz0XT1WMBLWrhNmH8kzTAyztjYZY0iq4mqCxzNVKqdVWvXGGY3zhbrZ2e+52mRVDRSjKY/aQqEijJsw0ttAPB+TVROy1cge0yNatWrN9QZJwLMOp81ThVpKVnChng/CdesvsGR7rNs63/VDwtiqIsmi0DifMZrK3UkTPPuZ4g/ZoPJKavDtuRtHrIpSyXvNqyoEkNR8/BEYT4+Z87yOT/C7xjnPrh/wNtRv+yPD+jVWD9h70e+Nm8PV5boAqIlIjCq/Z4CfBN5o1/8a2r7ox4G3Ar9lv8geFZEjwKuBz17i2CXXvcDxxffdxeu+6+ep7tJJWOXoEixoVh++R+vJDus3aOrGuO0RdvWf1/jQ3V+hfl6ftTAUN1/p7vepLhnnzVJZKfgubmjmRiWfr/TFPQ95FkjeTUSyoptH1DXgwfRjxcOTWCd8LwETeEis8xfjCc0zNhtwbBi3vA2eJfk8ZTSlynTVKtBioLfHHnv3iHhcpNP5nYCgb7Nw9un159k0Qa/omRv0DfEOKeZEE8cPBjpvyn0MxvO4ax/MCfULGeO28kq0njquCzs6H8z7qEtqXObe9JEYLzHEDevOXfGoLOvFJo2ABI/Icuu4VXQgyXy9N3m20uq1Bdd5if6d+paHZYvJLsB2mtddEpv5Avw6+/unJ5YZ4Juv/nBKlCjxgsP2SZUpua5EiRJbx1XiOmPMaRH5OeAEMAA+YYz5hIjsMsactducFZE8j3UfcM/EIU7ZZZdCyXUlSpTYOrbPvO6SuOIXYGPMN30tBlLiucWnPvwveN13/bx73z51jvAJtZYbvPSAq7OSVBjOFg6nvd2Bc9prnTTULhgGO/XBWL0udC7CAOOm51zsKqupq0NFbN+2RtG/sb8zdwvUTfJnzfjiXE2TmtZQOMdjEYxfZPX7I4OxTnhJJK73ZlrR2rDOQRtljHFuetVlVaeDNdvDcw3Ge60CbJflakc2oZYmNXWBrdrLzWt8AYazEK2ZwpG6PlFnYvQaq8tFhNPYyGTngLo0OmXpkQtkUzrQeLpG0E2Jzql0nU7XGE0XyoUJqvjub2bo7yoe9bgmVFetU3fdw7MO1LkSLDaquHpHRrCq+zWPb53sZJtECkuue3Hgnv/+o+71a77vvcx+9HF1vQd6t8y7/1dJDZ19/oa+2U98rxaV5TWwfVsDFq1O9J01WsfaPKFvqyspw1k9yPRXN2ZfDGc85xsAqijkKkYWicshSytC55DQtGb9lbPrRQGTMUSd1PHb1NHE8cu47ReuotOwfp1HZNWN2lIxkNGcT3SyqHceXTfEW1Ciy2vnmqcKvs55TzLwV2Fs/QeG88W1pVWtwasuFteX10JnoVWdeoUSntfBZZGQIDTPFabEkukFebGhenSJZKdazfb21xjO6YdRZTlmPB04NSXqZFprjPZ3z0Kht0fH0j6ZbegTvHSbT3q7CqHxUpWt4mlw3byI3Dvx/n3GmPe544jMoKruYWAV+G0R+QeXO/VFll1yNCXXvTjwmQ9u5LqZj6zpm/UugxtnnZJrPBjM5YWi6l+ycpM+V63j2gMXVCHNfGHmiD5k/liIm9b3ZLiR62rLBdeloboS93YVc648sy33Y8nHktSEnrbXpbIGXndIVqu4bcO+ckHmC2G36Cc8bgrGusz39tr5mXWMbpw1ztslXQ+pLnkMd1qi8Ay+raXNIqXc2gU7lrq4J0uMjidXeYdz6nkAqhoP5zZ20MjnrsFQs1Fyb4f+rsA5NPsjQ/1CjDfO7LX7BDZrJVoZ441i0qoq+OOWTxboyaP1BEScip73PQaorGfqf1DNPw8yx62SwYVXC6atHzLh6TyV5+lju8zrLocrfgEWkTngXcDXo//OnwZ+2hiz9CyPrUSJEtsdRlya5PMdJdeVKFFiy3h6XLdojHnlZdb/NeCoMWYBQER+F1Vtz4vIHqv+7gGsjRmngAMT++9HU6YvipLrSpQosWVso3nd5bAZa9ffAhaAvwP8Xfv6g8/moEqUKPECgtnkz3OPkutKlCixdVw9rjsBvFZE6iIiwJuAR4APA99vt/l+4Pft6w8D3y0iFRE5jDo8f/4yxy+5rkSJElvH9pnXXRKbqQGeNcb8zMT7fyMi3/EsjafEc4jJdJmv/9s/t6HFR/24+uD3DrepX0icecm4XbT36RwUgj60TuRGB4X9uj8ypBXj0jTieuCK9HNjrKCrKSlpxaNpY9fjlhA3ixzEsFukxfljoX08o7KgvvvGFySxqTlDj6RWpP+llcIQxUuEcUOIVrH7FePs7xTaT8L6tfq+d21Ka9Yen4jxNKTV4qlevdEaviwU+wNUl4xLDQoGMNgh1KwRQRpNpP+gNviuIb3grleM3jexKcqjw3OuNVUQBYxmKox3t+y2xpn1JLWieXt+X/K2VZpqVJjPTGI44+PFxqWiz36xaG/yjHqeP89JcAIl173I8LkPvJOv+/s/X5R4GGgc07KC0Y46XhwU7SS84rnqHFaDlPaThcle3kLJHxuSVFxpSHe/T2BTCNNQqK6kjvPSiuCPLZe2hGBoGLesOUxn4sERbVnk2fIEPI+0qelwaS3QgLxNq4sbnksnlMyQVcQdo7KMS+nu7xY3rtp5YXjrgBv2qaB45NwOhjuK82e1jHjKGvVdKEo4slDbkeRtS/LWdqDph0GgfATWUMalJ2ubo3y/cbOIxYc9Q3Ulpf6okmqya4rONVV3/LWX7aK6pB863b2eu89tLyStFGNLKsLImr2MZjxqi4b6hTzlU8hs9t9oyqOyAvGXtL9JkQi+BVwlrjPGfE5Efge4D0iALwHvA5rAh0Tk7eiX5O+0239FRD4EPGy3/0Hr9nwplFz3IkPOdVCkETeeVK4bHGy6edxo2iMLJrjuUPFct580aoJqy85yrgMteZjkOklxvBr2Mn0204LrcsRNcQZcekxonNLXUScDz3PtLWFjOVzcKFKnvRTiajHnMsONXJeXpcVNj/ENA26yXPf4AwcYzVleCAwmNKxYw9TqeSbKSbStUz6nDPqQ2XRorwMSFeUrQU/HA1oaIxmM7bzKTHzrCoaGLBCqT2pdirdryhnOSjskq1QcN/Z2C8EgnycG9rPDzinDgvf681paUpSXiDPWGreE9hEYt3OzQ7aO7TOvuyQ28wX4T0Xku4EP2fd/F/jDZ29IJUqUeEFh+xBlyXUlSpTYOq4i1xlj3oWmKU9ihKrBF9v+3cC7N3n4kutKlCixdWyfed0lsZkvwP8UeCfw6/a9D/RE5J2AMca0L7WjiBwDOmhj9uSpNS82tecXgG8H+sA/zG34ReT9wF8HLtg+ePk+s1yiEXyJq4dP/+6P8ca3/CwAlYU+xrZIaj6yxMqrdjKcLYwP8sL/tKoW+I0zRVipe0BDZNWVlGAhZTCnxzEC1SUNlw3mA4KhcVFFLzFIqk9XMMBFuUAj97kaOW4KteWUrKoxe39cyJ5Z5OGlhlGjaImRN2EfTwlppTC+kgzG7dzWXxhPQ3ZAHQxu2nuBXqzRsnM7p/TYFd129sueU0irq8YpzABLt3kuapo0NDI4nCvuWWJVmca5jKCfuhZQAGvX2ejjkkZRw7Wxu6buS9SEZzijNv+5olJdzZw5WFoVkqogNjIrqcGz99NkhjTyqKzpjmEnob+rMEKIOpkzKsMI1WV9OZxlazBsJ7fAkutehPjsb/6oU0aibsZwr5qOVM90qZyH/uunATVuydWN/mxG0oTqoj6rWVSoGkagtpQ5Psg5D1SRGMz5hQme4Ezo/JHum5uLTJpv+SNDdaVoa5RVQoKVXG6tEzeq7jEL+sa1EenuLZ69sAe9/cZtV1kVEhU9Gc0Y0kHAo0fUfebm689wBG0HJWLIVorj1y8YZ9yVt0CJOtb48KaCA9OKZgTlZjCVVePaoACkkbDwslxVBs+uan9lSBZ5rL1sl7tHeVbKuB1RXcpYu9aq35XiHmXBhEIOVNaLz6ZgkBF2U/q7C33XqU5GtxNNcmK4g62h5Lp8fcl1z1N89jc1y+/r/87PUVmJSWZUbawfXWNwQP/knf0e3hhC+zyMZnFzrrBnMAEM5/KWZYbaos1msXOsXF0eNz1SO68xviqUOdcFg0Ih1fXFObIAZ9JJajCBhzdUeVqqgePHtCIYKZTVwQ5cNghA0jQuWy9a8Uist12yZ8zO2S7nuzp5C/f2GXesIhqlRE/UXEZgbcmQ2uy8YNHQ31VkPA7njeNxI0IwKLi7ca7guszXeevCy2124ATX1c8OySq+47qkLiR2njqYV66LbcukLCgybUyQz5Pt3yUuxlJdzog6Kb09ejOMB0E/Nz318YxmAsHzg+suxgki8lPAP0FLMwD+pTHmI3bdTwJvR/nnh4wxH7fLXwH8KlADPgL8sDGX70R8xRpgY0zLGOMZY0L749llrcuR5AS+yRhz5yUMH96C1qrcALwD+MWJdb+KNnR/Ki7aCL5EiRLPT4jZ3M9zjZLrSpQo8UxQch1Qcl2JEi94XEWu+1Uuzgl3W465c+LL763AdwO32X3+s4jkoeJfRPkm556LHXMDNqMAP5t4K/AB+y39HhGZzh0OjTGfEpFDl9jnjfb1ZCP4ElcZf/bR/w2AN/zNf++WNR4bWvXQ1nI0itqDoAejaWHmK4UCLLZIIqkI9XMjxq2q3c+jt0f//aorGZlf2LZHC6lTPQe7q6QVcXV4cw/1Gc1qtK62nNLZFxCtakgumW3gDWwrn8Qwng4wvo3ejYromSTQe0lM9UQRIcujj6NZQ2VZyLq6bqHXZHlJFaHWOW3s7lorNYpI3vohYfaR4mlvHzWMp2z7kNOG4Zy4qOJ4ShUiAC9WxdUb2ajptE9kOxXkNRzBotbp9G+adxFUjKq/eW1vUtXWTqCBucEOIeoUf8v8+HFL21YF9thr11bI7D0aTYMXe05FGcyKq3HJ65e3hKs44RORu4B/bI/6IPA2oM4l1INLRQufA5Rc9zzGpDKSo3eoReuRZedVAOo7AND+qocRaJ1RvomWRqzcoiklwVCzYEazyiFZhHsGWqdTkpo4VTgYGirruRTikUZFW5H2sRGD+SI7o7dTyHm3shbhjawUYSDopyR1m+1S9xzXNM4Z1g9bvnp5l+RCrTjetKF+XEkxWhWmblnnG/Y8AcCXlveTLhfy6vwXPfq79Ti9vRA38+Pr79hm0wQ9oW6Xjdsba4J7ewTO5u3tMvxRRu2CvpcMfKsUpxWbbXRC5fb165vF/R9pDWKurrgWeGgbl+pqoYR4w8wpSWkk+MOUpFbcz1FbzzPz+Ji05rN2yNZwD9g6ngdfbp8HKLnueY5P/78/toHrJK0TdpXLqquBUz0B6ue1jRFAdSkm6MfEt2rqiD821BZ0rtbfE5FFxVytcT5zc5JR26O6mrmsv+FccY7RtDD/YMF1YWzoHNBj1C8I/qhGuKb9jCQzrt0bxiATTsTROqzebttJBga/72EifSCHexOqZ5XrZC2gvm/MXF358+Fz+wgX7QV6huoixDYzpnOw8IqJOjoPGrdt9stpKdToqqrYeU1tXBe8NM/4M2QhVBd1XTAqaoW9cUo8FVFd0bF0mhFY/gr7ul/ewsgbF74ScU0IRjp/BFWYncdNCqOpgHGzqM3OAtuaailjMOsxnrLXtMbWcfX8Di7FCRfDW4HfMsaMgKMicgR4tc1KaRtjPgsgIh8AvgP46OUOthkX6GcCA3xCRL4oIu+4yPp9wMmJ91dq3g6woRE8sPNiG4nIO0TkXhG5d2Fh4WKblChR4muAqxUpFJF9wA8Br7SpMj4aDbyoenCFaOHVRsl1JUq8yLFdFOBniJLrSpR4keNpcN18/szan4txxsXwz0XkARF5v+2LDpfmln329VOXXxaXVIBF5LAx5ugmB3opvN4Yc0ZEdgKfFJFHjTGfmjzNRfa5Kh8Ptqn8+wBe+cpXbv+PnOcQn/rwv+Cbvu3fAdC/cc65BQNUOsZFs/zYYJZB+hoGM7WQ2oJGtirn1IIvWrOqiD/hAlhX18F8YtDfGRDV8roHW1NiN1++rU51WaNeeeN2b6xRP299iIlslM8YVUnzGg2veD3YCc2Hi2KRpAlhJ1d1bc3Igh5nZTgD07HbD6B2HnsNxT0yAqvXe7SPFzVu0VpeH5fS2x0Q2KbslVVYu1bHPtwFlUWPfX8+tOf3aZ/Q6xlNeVRWU9JZDUfWH1tk7WXFvCCtCsaqvOomqOeLm8JwHiqrNr5loJor3FaVXrpNrz/saOQU9P4M5j1XG7friwN6+yaK7LaKq1sXFwA1EYlR5fcM8JNcXD24aLQQ+OzkAUuuK5Hj0//vj/GNf0MzXtJQWL1zztVZGQ/qC9YtOtE6rFzFkCxj9ivKcb39dYL1oYvOZ37VqQbdvbb+19JEd5/gJQXXSQb1C7py4c6qG1dtUf+s00d1MNH5ruM6gNFM4GrHJrl15VZD/ay+Th5sEjSNqy1Og9TVAKf1jMGFFn8U3+T2zT0Eauc8uvsLv4G4WdTWZj5O5QGYeyhz16qur7aGEIj3jhlalWfnvcK45dE8rde6dshzymvQiwmWeyy9WgvUkpo4J+n6Ba1hzhVuRDNXAMYzhuyMULEO+0nVo7vPqjBjCAY1UisAB4NiXOdeowvrltfj3Pl+K3ie1wCXXFcixyTXDecixm2bjZHqfCJ3offiwrlYMgPGMHV0BGhtb7Cuc5dq5JEFoXvGBrNeIbFl0N3nUQ/0QFlQOBjXFg0Ld1SdVwAU/yy1hZhoYYLrjCGpFvwyyXXr1xnqJ5TcslBrgMW6H6eNzKmnYuDYyR00ZvSEEmakDeWh2jlVR/O5YlqBsf3qVV2BLBQ3zupyRne/rXEWvU+dQ7ou3jsmOK83Yu9fJsSBR+ukHrS326Ni51jG96g/vsTSa3Vel0YF10VdgxeDl09VBYbz+jKpaYZfZcV2/qgKY1u4MJ6CsFu4eBuB4ZwdV9OjsmKoLhZZjFvG5rnuSj3PL4ZfBH4G/Vf4GeDngX/EpbllS5xzOQX4dwBE5I+vdJBLwRhzxv6+APweOvmcxNNq3m5x3jaA5ymN4EuUKPF8g3kaP1eIFBpjTgM/h7b/OAusGWM+waXVg80qESXXlShR4pnh6XHdc4WS60qUKPHM8CxznTHmvDEmNcZkwC9TcMyluOWUff3U5ZfF5WqAPRF5F3CjdQZ86gDfe7kDi0gD8IwxHfv6W4GffspmH0Zl7t8CXoNOaM9eYcx5I/j3sLERfIlnEX/6cS3HueOH7sYE2vsRbJ83scpDIISdBOlo7Va8axejaf0XS2pt7a9p6ze8pOgJDNA4Wzg493cHjKaK2ExSm+gD3DNOfW6cS5HMELc00lZd7SND65gc1BFT9Bju7fRdjKi2qArOpNtqHi3LAo3ApXVdKZlgOnoNXgrN41CzCvTKTZ5TgdvHi75rAFlDnEOp8X2iDqzclvc79ph6It9WrzN3y86jm6BRTC/xSQ9qmC69senco0EjtRsdsvV30C/camFjpLS2mGI8cXV23rhwUhWrmOcOsr19FWrnbX114xlkDm+eBC8bKbRpMG8FDgOrwG+LyD+4zPE2GxUsua6Ew5//j38BwOv+3s/T3+Hhq9iBFxtS65AejjOCriG2PRr9C+ukOzUEH4wMg31NKsvKRX5sXB/GtKIcFtm639FMwPo1hZN07QLEDXuOblFr6yWG5lnD6mF9DusnfGSgz6YH1M+N6e9WHkxqhSN1/YzQ32v58pTgxUJqheVoNXCvg64HnYicNkwq+BO9fsNOoZjm90PHBcYvHqnhnOf4ZHh4jLce0H7ccpwfORV5OOfRuUbHBzD9ZMbIKsfr19XhurpT17MQpypBXhOXf+YUbv5ZqDWB+fgmVazOfk853854RjOFyuMPYOpo0Zu5vvAMKsOe/5pkyXUlHHKue/k/vdtlPkTrWmuf19oa3xDamntJMyQ1bk6WRR5i7ZVVBS26eeg8UffzxxlrhwP6uyzX+RB2Jxzqu8WYom5GdUVf93aHVM6J4zqa0YSTvMdouphn1c+K48toDcQUvive2HcZcgDeekDPs1Jrz6di3fzDjnoX5DXAtQWc67MfK3/nXjKDea/ovXvjRq7rSeS4oLs7YDhfZBkG/cLhf/26OtmNded/kwWFsOol2O4dds6c4o5pvI1ZjbXljOqqvu7s18+snNvTajG/BQgHhsqKLkjqz0+uyz0D7Nu/BTxkX38Y+A0ReS+wFzW7+rwxJhWRjoi8Fvgc8H3A/3Wl81zuC/B3o0XEAbCVpKBdwO+pIz4B8BvGmI+JyA8AGGN+CbWq/nbgCGqX/7Z8ZxH5TTStcV5ETgHvMsb8N5Qg/0oj+BIlSjw/4Vq+PHP8NeCoMWYBQER+F3gdVj0wxpx9inqwWSWi5LoSJUo8Y1xFrnu2UHJdiRIlnjGuFtddjBOAN4rInejX7GNo2zaMMV8RkQ8BDwMJ8IPGmNxF8p9RtEH6KFcwwILLfAE2xjwG/DsRecAYc8UDXWT/J4E7LrL8lyZeG+AHL7H/37/E8iUu0Qi+xLOPL//Hu7j9f7ubwY48muU7R2OAtOZDRcP10ek1xlNatDBu+XCo+LyN1lLnQNfbExCtx25dZXnIyq0ayvMSjYrlykttKSVa0+jVeCrAeOLUSVMJMUHeSzhDUs+5hIqBga2DGM8YvMM9gi9NuIta6SOeTanv6pKctGOdGbNjTgttFxbbRA9HrubNH0Jk1YZxS9xYQaOYxjqgdvZ7eDE0TtroZ1ioKO3jZkMFQ9g3NE7rSm+cMpovanC7+wrFprqk9yJXSdKq545hPF1fRP2Mq+HxupqXElvH2OrIuNrkLNL6ubxHcP34OoN9eh8keQbhvqsXKTwBvFZE6sAA5YF7gR4XVw8uGi38K8Mrua7ERfCZD6kz9M0/dTegfXPzmtW06mF8Q/sxW0BfjejmmRoVdeRM9hY1vJVVfabiRsC4JTRP6sO59y9GLN6h+3mxckNeq1ZbzGidtErxtD6vrVN6/uGuBrXTyktJMyKpF74Mvl/UkSWNQmkZzUFaNfgDyxkeJIe0oO3wnkWOnpun1VDu6azVyGLlq+YJQzCC2KrKSRXaT2LHZXtW2qIDyaBi1Zup+yPWr8tYv1HH3H68UNNNANEqG7JmKuu5vGFI6h4D2wY4rUBgFaKc73LH0/qFDCPWTwF1v87V4qhb1AvmdXs5J9bPwdDW9tWWDPWzQ9K6zVaqfk2yXZ4TlFxX4mK477/c5V7f8q/uJuoI9fPWYdgXEuvJUj/aR5KM+LDOnZK6kIZFeoY/NtQX9CHr7iu+XkSrMbs+X3BdEBc8l4XKdblD9Hiq2C8YGJLpGn43rzkusu4k00y+se1lO54ypHM6jzSnI7KgUJbjVkb7oE44k9QjSX12Tyt3n1maQs7quMKuZpHkX+7iBjRsyHzU1jlezi/xVMFLjUciRvPGuSu3jhU9jzNfCDvQPKNcHvSzIqPOGHq7fVfb6w+hYufFaUVIqrIhUyXPvExDvf58vunFGVkwkR1oCkfqKMF5TtSWMlpHeozmC9V+y7hKXHcJTvhvl9n+3cC7L7L8XuD2v7rHpbGZNkifsRPIN9j3fw78tDHmmRholyhR4kWAq+l6aoz5nIj8DnAfGv37EmqI0uQi6sEVooUXQ8l1JUqU2BK2mcNzyXUlSpTYErYZ110Sm0kAfz/QAf6e/VkHfuXZHFSJEiVeQDCyuZ/NHMqYdxljbjbG3G6M+V5jzMgYs2SMeZMx5gb7e3li+3cbY64zxty0CcWj5LoSJUpsHVeR655llFxXokSJrWP7cN0lsRkF+DpjzN+ZeP+vReT+Z2k8JbYBHvrZu7jh/9S0wMbpItVDMkPjKxcwNgV6/fZZt65xZsxgZ0gwtC0q6kUT8eaZhOF8pIZagCQ+049q/vBovkLc9Kiu5A2/wQS5OYM2XQ8G9hyAjKwxzFjza/yR7ldZ1Z8cZ5o1eJnmr3gPNd1zGqz5yNEpct+tZL3K2nGbyrh/zHB6wrihU7TM8G0acZ7S1znguRSi1mld1ttpzQyAtettal4PBrsMzeP6vnE+Y7BT719tYUxlcUTc1vfBoGg/IpkhbnjOTCc1xrUvqqwaersDOgeKsbaP6+/V60PGU8V4s1BcGs30kYS04hE3NC422tWkel5zwwf7i3Txp43tEyksua7EX8GjP6XpgS/5sbvp7tNnY/dfruOt9goDwHbNlRkgEA4y4nre3gh6u3Xl1PGENPJImrZdW+wx9aQ+1HHTZ9zyNLkfjbDnXJcFwnBGCPvFM56fGxGCfurSFI0HzTN5OjFc+DZNH7zz8Cke/MvrXemJZCBPaK70qScOkB0c0ztvc/iijMY+5cfRzBRxjGt3V7tQmHNVVg39XeJaGDXOGcel69cKlSXPtZZbuynDhPq6+aRPdVmNZQCi9QRvZNPEp0K6s+IMs+rnCiOaYKRt9/KWLWkk1Jb0mF4meGOceU9/3qe6YlvkJdqiJLRt44ZzRVsnfwxJM3Rtq9pP2tqVraDkuhLbHI/8zF285MfudmZ8rRMx1aNLujIM6B+ecVwXdbLCLEvUxDPnodYp5TqApBEgqWHmMeWi0UygXAf465brwrxETBjMWiPAvqF+ziBpMcf0rPFnFhiCkaF9tBj7hW/TZ/ia15/g6OcPupKLaMVjtDzjthvvSDl1UtOes9kx6Q5rUNrXcrXcPCvsFiahUcfQ3Scurbp1vOC67gEh6ArjaR3buC0kU3rM5hM+tSXjDKeiTkrtgg5sPB1iAjXGAgh7E7w0MmRhYeQVDAvOT+YgEQh61jjwYFBYfhptDZfzddgvrsf4wniu6koOvXQzXwEvge3DdZfEZhTggYh8ff5GRF6P+4guUaJEicvjaTRMf65Rcl2JEiW2jJLrSpQo8WLANuK6S2IzX/9/APiAiNjQMCuo0UyJFzG++pOFacJbrlcrfXNhERMESFvlAX8849TEpBqSVIWwr1ExD6G/Q2XW2bNDhodrapQFhP2MwEYOxy2PynrmIlgYGLf13zZuiGtd4eDrMWScEgxS0tzQRIoWQ8aDfX9sQLR/xup1ahADGolLKxtNU9y5B9pKKTdSGU0Xr10roUyfeCOwcrPuGE9lkAlZRUN70XJhspKFOPVX9y9amEx99jyMRgSNhj3mTk5+m15787gQ9MB4uZkCzgShspbSOJfQ3a/b+iNYv6ZQnI1fWORXT2T0bGuCtUMBjXMZmTUck9Sw9DJ97OPmFlNZzLZwRs1Rcl2JS+LBn7uLV75du8SsX9+kfQTkcZta0TrgIvdpTdt8ZBOfrrnhS64KJ1XLDXO+a2XWOD3C+JUN5in5dqDPbGQVzO6+EM15gWihT1YLCbuF4V/Ou/7YcO37dZ/7/9F+opEaY4FyQWLbvQV9IToVkUX23BGkqT2effQj6/c1bhfXVVmDqWMZq9fptv1dQve6oueGxII3ssrHqsd4piCDYGAc181+6pxbHgUBxtvFyW/T9+akP9EmxcNIMbGSDKeKL75Ml+UmX2GvMA/LWzjt+YwS+7nX1JyCEdeEqics3KmkmFaAe3j6KLmuxAsED/7cXXzTt/47AKKVIRj7sKys4e2fcm0VkylxcyB/ZDbMXxpnDUk7N85TMsyz/LzEEHULVTfzhXEzz+ooniNJIW6F7n3QHQOaEWcCIQsNSc3OVzI48Nt6npMvP4jvwXha9/PGuEyUoC+Eq0VbJJN4ePkXtUxN/vIMuaRu2w9ZROvQ36OvuwchmdaVEmRIJ0BSO8/qQrRUzD39Ma7N2+ynzkGi+4XVis7rvl03rR8PXJbKU/XJYGic4ezqzYIXQ9wuWivlnzdpBaoL0LigF9XdI4TW5DVvo3nhFTr3TWrAJ3j62F5cd0lc8QuwMebLwB0i0rbv15/1UZUoUeKFg+d5FDBHyXUlSpR4Rii5rkSJEi8GbBOuuxw2nQBeEmSJS+GjR/49AG858MOYwQCzruH6xuMrdG7Ruov62SGrN9UZzNl2HifHZHv09eKdDaKOcerpuOUxnLbRLwHwXNuLYGTwUg095c3Y6+e0niGtRwSrWkwhth1S0NPwZFyP6O6z9XQhhD2f6SO2Fcmnhwx2qoS7dsjHBDg7+8kG7cFR30UGQSNgeU1udUXbB+V1Le0TGd4TOs7+zoCkCr2v152TaQ/OqdrgD4XxNMw+bNXhTkr7fltv4wmEIdmUSjarN4akLb3W0UxIdclsiE4GVl0X7XSkyjOQzI+Y+2TV3gfBWy5q+GrnR7Qf0Xu2+pIZOgc9R2yjqQqrN9uIbfoM2G6bEWXJdSUuhXv/2zsBeMuhuzDdXpFxEqcuAj/1hD7nvT1aX9s6HlOxtajLN4dU1ovWY0lFa3sBlm6vMfVVQ17M5Y+N8zeI6x6VFZyHQrSW4g+VvyRJ8DsJ8ZQqI7n6CzCa8hjO6rNffRymnjTONyBueAznbd2wrwpJuF60t2NBDQ68VL0NenuLLJLmGeUFf2RYvsV36nD3GkPzCVvfnEL3JSP8eR3naLVCdEHXGYHuXnG1yuuv2k/73tN6kE6X+skGjWNKwt0bYppftZ4OQ+W3qFPID3mt4szDwtLrx1SW9T6MpwzRms2KWYad94/oXKP3YvfnBqxdp6+Hs8JgFDD7iHLrsb9fcl2JEn/6iR8H4C0HfwTTt0WqaUblXIfBDp3XTT0xcnOnwbxH63jsWpUt3xS61mZerBl4wxnly6QB9XN2XSr4Q+PmeONW4etSXc3wxxneyMrMSYY3tnX9Y49s2net2NIQBnPKL7ULWoOcZ8X1dvmOv+KGtjoK8kyRkyG+vTwvA4lVBQZt6dawXi6axSO0n7SeLvuE6qKer3dNSri3z7ivPJV4IYHNyAm7kFRg9lE7/9s/T3Bq0Z7QI6l5ePbzYLAnI+zZzBs7H859ZSQtMonCjpDd3KNyj84N41ahWksKOx4cOZU+7PmsX6P3fdyGLAzd9fVuHrNlbDOuuxieQQV0iRIlSlwZz/c6kBIlSpS4Gii5rkSJEi8GvBC4rvwCXOKq4aMnf4E3z/zjomjs5Bmax08BkL78Rub/9BTpaa318q+7htlEi8mWb61qXaqNHNYXU5Zv1H/N1qmMccsjrejTNvTFRcG8RB3u+rt1Qf0c+D2NdHn9MSEw2KcRstrCGIwqA6vXe8QNdcQD8AZjahf0mHGjRm+POKfULFB1JEdvnzpfg9YJJ1pKwRB1B8zrAHWMGsmrrGYw7WGsZWClGpP2VR0a7cioLHos36onaZ7yAC1Irj6pSrC3uArAji9VCDsauuscgtWbhLkHrRIzNq5WedS092CHhgQrD9To7dZ17eMZw1nPRQuXXlIjbtbc9e39VI+1G+rufXXBc/e2RIkSio8eu3sj1506z9QTJwBIXnML0ZHzzP+lPjTejdcx2m8LZ8XW9lo+qy1nLNsa/KCvtfY5h8RNIZ3kul5R71ZZhaShK4MVyBoVN7bahZjBDl3XPVCoBvMPZNTPjNx24TpMN5RPuvuFxpK4mrksLGrK/D6MpsU5lRpvgucCoXHGuDrA6goM7TGitywwH4058dBeXdBOGO9VldX4Ia3jRQeB9pcvQGgH2g6Ip6rs+oKONepUWL/WKkJLgj82rl4wGBr3ucHfWmQOMDv0ffUP5pySNNgh9HZH9K0Tf/Ok0H5SSbD9JJz5hhrrh+z9LLmuRAmHj574D8p1OY6f2cB17S/oHK9x+izejdfhpcp1g/nIqZCZb7nultwPoPAVkRTM1FO5Tl8PZzz8oUdaszXEK30k1flNVvGoXYjB6I6rN8oGrqssjsjCPBsmcn4w45bWLSd22mNCdVUG8M9NeL6g20x28om6Bde1jxnXFWTHoWUa0ZgTp5TrsnZCnDtEH/RoHRdGMzq41oMLEFhyjWNqF2J2/6W9hhs8OtcoZ809qMp5WilctnN/luYrF1k8O8X4VuXT+XtCMp3eMm7D6vUVhvaa6ucMO76k3geDHRGdgz5JngH4RMSLGVd0gRaRuoj8KxH5Zfv+BhH568/+0EqUKPGCgNnkz3OMkutKlCjxjFByXYkSJV4M2CZcdzlsRgH+FeCLwNfZ96eA3wb+4NkaVInti4+t/FfePPWPAJC5GcRG9b2jF8iWVzBJ7LZdvtUWIhhIauKclC8cDJzCMJj3qF/ICIaqdKZhEY7r7/KprCTuIfPiFOPlDdygc22L7veqlLt+rsWeP9FV7RNFrQnAue+adsdsntR6ijyS2DpWODynFaifN/T26BhqC4bI1ggb0Zq63JHUH2YMZ307TutuONLHLTlaB6sqR/t7VK6LMR9Xm1J/ZMii/BoCSBLia3fZ8/v09hV1eHEb1qz76sxjmasZGbWF4Tw079EQ53BOa+BAe2RGnYKVBrPCqGiPx/q1dSprtpY4NaShjjl6qtv2ZrG93AJLriuxaXxs5b/y5vl3uPfetNasBp9/lMwYjH0es8efIHhECW2eV7J4e+Tqzwbz4lw/x9Nax5W7Qoe9zNVuGV+VgLxOLm76VJe0fssEARKnDHbkTqtFNsjUEeN6ji/f4hHXqq5GuXuw6sYeXaQS1Lndz0HreLF8sEP7nIN6H9SWUuftoGOz1zOssHBiFrEWqwcPLjAV6bmPPnIt/qhQtE0lQHqFOp1WPM68wX52jHH9g1deYgg6HnNfsX3hRXtuAmR/Ps9wp6G6YPl5bFz2TrQGnWvEZew88Xcj5r8k9toNs4+k9KwnRWXlr96LTaHkuhIvUHxs5b8C8OaZf4w0G0ikz2b04HGyrsq1Jk2RpRW8HZp1V79gGOwo5msrc557PuKWukSDZnFIomovaH1w3h/cS4zNOLGOzUHAeEZ569SbPKLlgPZRm0XypHF+Cp19HqvXNais6nEkLeZxJoBgvVB6swiqdrvhHDTOFAp0XIfBDpvJt2aorhRcN27KRq47egmu+x/KdU7JneC6bK5NWvFYeJmewxsDvh5j+VahcVpcDfKo7dHXqSD+n88TTHCdGIM3LvwOhjtgNKvH6e8xgN6zaN3QOpHixX5xvq1ge3HdJbGZPsDXGWN+FogBjDEDipbLJUqUKHF5bJ9IYcl1JUqU2DpKritRosSLAduH6y6JzSjAYxGpYS9FRK4DRpffpcSLGR9b08aTb77z/2C4W6OB1XM9vGYdTmgBbXrkKLYslfNv2ElaLWoyvHHxOg010pRUbF/LuFA3/JFhNO3T/qqG6/zOgGRGz+fFKWuHPdJY/8WrcwP6O9XVtH0iJQuEuGajbonWqAD0d0F2Y89dizzZcKoBqNqQ18KNZoS67bXmx4bebq/oT5lM9PoNtIfnzOe03qK3B8ZzqggF97eQxWLmIWZC5U4zMIbwnMozq9+wk9brFgAYfGIHlUXoHbQuqn2PwR59ndcox3bc0RrUFwomqi4k9HbrfRnPFO6Bo8MjRrf1GFo1uraUub7Nrs7uaULYVmYJJdeVeFr42OL73Os33/l/6Ivds3j9MV5HeSQ5ex7/lhsBuHBzRBZAb7/dKYOkWTilDnaJU1vTijB1THmiv8NnNAWtNVs7fH7o3FBNNaB7sO7U4ZXv6TAaqULT/lSduYcyd7zOQWHx5SqF+Bv+sw3NY0JV6YWkpv2MAaIV5cU84t84XfgipJGwcl3AzBO5275HZrkiOdIiYKKWWDK6sXLg4b/xJOfef9idvXvDDM2vqvQqvRH+KGP6jgW3fv0LOwAY7k1I6xnmEd+er6j7G82AJFKcb0LdqHVSxm2fdNry9UBYuqMgpsZJn9qivp/MMno6KLmuxAsduRL8pjf+WwCCzghvoHKtnFsgWVginNOUsuEdNVfXG+vUy3Fd2BHn3u7F4BlDdUUJZuB7jKZ03dQTCdULfbKKdY+v+KxebzNDRobGaxZZnNZi17kvQ/OcHmPc8OgchtXdtovFWMjmC0KoLlTwimRExyHRqma4hDYjprpi3Fj6O4TeroDqinVlNgVHyv1t/LYhbSknnzw7y4muHtTcmFBb8IveybMNwtzJen3A+IYWB19zEoAnvrqH6mm91sGBhB4+iZ2nhv2Cd+M2BD0h0NJevKTosZxWhF4kkCu09ZT1N9tH+9Em9XOFs/SLhOsuic18Af4p4GPAARH578Drgbc9m4MqUaLECwjbhyh/ipLrSpQosVWUXFeiRIkXA7YP110SV/wCbIz5hIh8EXgt+sX/h40xi8/6yEqUKLH9YbZPpLDkuhIlSmwZJdeVKFHixYBtxHWXwxW/AIvIHxtj3gT84UWWlShxSXzs/p/mG/+nnwVgPFdnNBvi32DNnoYZ6zs1RSRuaXpdLU/TNbic4HFLkMzgx9YEwRfCburOMW56eGNNvzOVkKSlxxxN15g6mrGG5t60TmWMbSeSUdsjqYpL6Zt5pHiSl24XsnNFW6D+Lm1kDmruMthRjK26pEYIoM3S2ydS1g9qjkpaL0xkJAN/UKR1N0/DyLZr6h1MAd8ZOWSBEA3t9aWppkEPNEd5xydOsMBB3e+lGUHXo3bepgodT5myqZNrh3yqS8XfQTI4+0Z7TM9QORO687WOGXcfukmFERU8zSInWxd3Dd19z6A8bJuYJZRcV+KZ4GP3/zQAb3zzvyOttYjr8wBUVve7baKOIW6Ka7vmjXGtlMZtaJ3ICIYFF+QtOCrrGUnNIwt0gd8bY3ybBjwTkVaE5Vt1XfsPpwhsyuG4CVmgKXSS2XKIc7rd0p0Gsb060qmE/p7QmWGN25BF1nCrBdVFwbNZdONWkWq4fo1HGsHibTqV8MdFqnTYEYJeMVE6tmOe4JSasbSOgwRQX1CCaX5lAUZFimLlifMs/6Fy3YHvepIL+6f1mIsh048bZ/jXm+ClPKU7L1lZ/J8GtD6tb9YP+VQXYWDLZySF+kF1H7t2donHV6+lZr/+5Z81W8JV5DoRmQb+K3A7+qn4j4DHgA8Ch4BjwN8zxqzY7X8SeDuQAj9kjPn4ZY5dcl2JLeOP/+xfAsp147b9GnH7HGE3JbZtGBE1nAKon7et0ya4rrqsD0swNGSB4I/1fXW1MMQCwBiySI85mqlSsWUg/ZEgvzNHc6o45thOziSD5gnwkoLr6Ng06mpGf09h/JfUIQtzJ1WoXig4JQsKE6qc63IzKzFsSKOunxbSqk1fvjUhXNUxt45qGUh1RbkuPLMKQ0tWIkx/9hRn55TrGt+yRi9VZ63KhYDpxwx+rOdfucErylbGgIG1m3VeF84NCR7UiVvQ17aVI2sINs5CRpaXvENDkrUqoS3jy028toRtMq+7HC75BVhEqkAdmBeRGYoyxTaw92swthIlSrwA8HyPFJZcV6JEiauBq8x1vwB8zBjzd0UkQjnqXwJ/bIx5j4j8BPATwI+LyK3AdwO3oZz1RyJyozEmnTxgyXUlSpS4Gni+z+s2g8spwP8U+BGUFL9IQZTrwP/97A6rxAsFf/6H/5t7/fIfuJuwn/8b+cS2BUZlVZuLV5f1szoLxCkdjfMp8YTyEQwyZyYQdlPCToqxUcVkquIUk7CfkYbC7GMadfPGhsqKHv/s60KmjxhnGrN8axFZC4YQXvBcfUMwAt8qMtE6tE7GLNypRi5eDNNHVLVIqx79Hb57SiTb2FB90nBm/XBhPz/zoK/b2qBp8/SYaMGG53r9jTezWqGyqmG3cM0nWisMrCabtc89HLN0a0jUKZZNP1A86qt3xvQHoXu/9y/y89QYzAuDXXq91/9PT7ptOn94HVvG858oS64rcdXwZx/7cV77PT/v3nf3hdQWlXtqiylpGDjzlLBvCAY5vwhIYQ4T9jKMZ41ixobqsnFt1rJa5DgxragyMfuwrquspizNW0V2VBjQhB1VYVZu1ffTD3v09unr6lLIaNYwVK8p2keEwc6CVPIWIgCzjyR091o1xYOsUqi+SQ3ilo6jekHoXJfijZQIW/dVNxxv+nghn2RTdbyz1tHF98HznSnOmV+/luBma/51QdsZzTymm+68L2HhpdbocNUe21KbWanT/0ZN30lONUgj4dAfKBGv3Fhl0NG2VUeYYrQn5U1vvQeAT5y6WZsEbQVXietEpA28AfiHAMaYMWpc9VbgjXazXwP+DPhx4K3AbxljRsBRETkCvBr47FMOXXJdiauGP/vYj/OKf3I3oJkTo+kQz2ZQVJcMvm335scGL8ZlbtQWC2PNuCHKdXZeF/Qz6hNtkJJWxbWGzPcHmHs4s/vp89/bW6i6/hAGOyFu2ZZoZ4UssseMfbJwYs51EiS1Rld7AMGpzNWVjN5u24rO032M5TpDcYygC53rn8J1eUJjAO0nY4K+TafzPMjsQUQgiBzXjT83RWQz8CorquLmmZE77y+4Lm/v5B+xY3uywfjVynXxk028MRz4E50crtxYZdDNsy0Dat+8wJv2PQ7Ab37h1WwZz/953RVxyS/AxphfAH5BRP5XY8z/9TUcU4kSJV4o2AZW+CXXlShR4hnj6nLdtcAC8Csicgf6ZfWHgV3GmLMAxpizIrLTbr8PuGdi/1N22cYhllxXokSJZ4ptMK/bDDZjgvV/icjtwK3k3ZR1+QeutK+IHAM6aE1KYox55VPWC5rm8+1AH/iHxpj77Lo323U+8F+NMe+xy38K+CfohwPAvzTGfORKYynx3OO+X7qLl/+ARgu1ubkuT6pC1DEuAujHRc1v0ImJljLG0xq+EwMmVz5CoXamTzKt/5aSZi5SmAWCP8rIrM27lxiWbtdj+Let43+lyait204dMXSu0e2iVUA2KrbD2VzWhbAfOOv5oG/oHLRW957gJYbKqnHXlCvAwx1ak5G3WqosF43Wja8qUK7g9nZHrB1SuWXnp2OyRoXhLlvU5gmBVa2DntYj5y2PgkGGl9gWH8OU1imfcWuilsXeB+NB/Wjo6qH9EZx9nR6/edrQOGeo2frh6TcMeGJdWwzUFrbOdtslVabkuhJXC/f89x/ljh9Rrss8SGr68GehKrGNs0UBVf7cVpdjxq2AqKNKwWgqAFO0WQsWE6I1lUayyHO1d15sVGG2mTCSGnbepykm518RMZrVY8w8mjGY96md1e1G05BWrLeCJ0QrRYu3/u5C1Z17KKW3x2fqyUKxbR/T1+so/+WcmAUQWzLzUpwiAsp/k1kpnWtCWlYFlkGMmVZSktV1e8ycODLXpiSpCdEaJPbpjDqw44H8fvmMpgTfDnPUgPALWuTmRzDclXHuNYUK3ThjW4FEwmA3nB2qImz+cI6t4mlw3byI3Dvx/n3GmPdNvA+AlwP/qzHmcyLyC2i68yVPfZFllxxNyXUlrha++Mt3AXDHj9xN5oFn1dQsLBTZsKdeI5LabJdO4jL5jCekVW+iF6RQXbIpcgbwhLhRtJWM1m37N1+QxDj+HBxI8B9XoqjEhtqFYg6GKTLyjKgnS36+wS5VW0HnU1mkmX8AcdOjspZztUfcBLFCbjxVzGElhXDdd5l9xlOe15XQORAS9pWvpxd7mJ3qhWNCH3xxXBf2YLDH1kb3PCorhUeLNzbMPKZvRlPehqyctALeg8p1pgZJy3Dm9fpYR2sbuS64I3NcN3tfyAm2hu0yr7scNmOC9S405eZW4CPAW4BPA1ckSotvuoy74FuAG+zPa4BfBF4jIj6ajvMtaCTzCyLyYWPMw3a/u40xP7fJ85coUeK5xDYhypLrSpQo8Yywea5bfOoXx6fgFHDKGPM5+/530C/A50Vkj1V/9wAXJrY/MLH/fuDMpQ5ecl2JEiWeEbbJvO5y2Ewf4L8L3AF8yRjzNhHZhToTXg28FfiAMcYA94jItCX1Q8ARY8yTACLyW3bbhy95pBLbAvf9ko0W/tDdBDaS5o9VORjMaoiusm4I+hpaSxoBUTwmbmkE0EsM/tg2Io8NvQMNKitWRUgKFTkLhcF8SNdOCeYfKFygX7LrHPd9x37CUM8x9xt1auf1+MFQI26DHbauuFbU6yYN6O7xnMKQ1+rl+2WBOKUi7BlG0zbCKRoRzFVlfwTDueLaJ9HdK66+Y/lVWpA3/bCGUYe76ozbRT1KayJ0N5oJqFiXwawZaKRvMBH1G+ZjVuc/z0YuZx4vWCzsZXT3+Iy0jz0PLe1muqrSznrrYgLD5iDbxy2w5LoSVw1f/g/KdTf/67up5g7DI43WD+aU6+oLhadB3AwYTXnETesxkBTPppcY4rZP0NNnXFJDWtFj9HZ5ZBF0Duv2c1/2WL5Nj/kPvv3P+PML1wOQ3uERvX83qc2SqaxB3X596lyj48pVEkkLF/uVm3z8ESzfkhfXFu6nWaDqSc6tw3njlAGD0H5S1DkfVYTcpElUZU4jPebadfPOz2DuwQqDPXWn0Kzc5MGMrgyOqapRW1JSGU77RB193Tg7JgsiV1tYXcadO62AaSb0Dih/VhZ9envyWmvdpmFln/xatoKrxXXGmHMiclJEbjLGPAa8CeWEh4HvB95jf/++3eXDwG+IyHvR+t4bgM9f5hQl15W4qvjyf7iLW/9/d+Nb1dcbQ2rrbgdzHtWVDM8+/3Gz+Ooxbnl4iXHKapBkDHbojrWFMZIal8E2bgpJXV93Dhvmv+SxcrO+f9tr/pJPHrwZAN/LGL9/N+mKElowLOqHu/tE50A5h/k6LwLNLPESzTQBy4GZnVMGmnEymrLX0DCEHbtdpuqx45sICpcV6O2DyrK9hjfMu2ude7DDYHeNtKrrhvPgjWwm5AjSqlCzbtmjad/xc205ZTBbvPcF599gPEO4VszXxMBgzs5FAxh06zTmnz9c91zCu/ImDIwxGZBYY4YLaH3KZmCAT4jIF0XkHRdZvw84OfE+r1u51PIc/1xEHhCR91snw78CEXmHiNwrIvcuLCxcbJMSJUo82zBP4+e5R8l1JUqU2BquPtf9r8B/F5EHgDuBf4t+8f0WEfkqqqS+B8AY8xXgQ+iXyY8BP/hUB+inoOS6EiVKbA3ba153SWxGAb7X9qP7ZdSIocvlI4uTeL0x5ow1avikiDxqjPnUxPpL1a1crp7lF4Gfse9/Bvh5tD/ekGurGAAAaOBJREFUxo21nuZ9AK985Suf53+GFx++/B/vcu6BwdAQdTNXB2t8cbUiSd1n8c6Gc8lLfZmI8CdUT/bIQo3qj6cj+vP6Oo/2Rat6zLgh1M/p6yd+/UbaAqNvXdN1TY+oq8fPf+fHbJ42JHl0LhXSCk7lNQFO2RnMiXN2Ba0Bjm10TQx0DhnqZ3NHV5g+onOTwQ4ff1yco3mm+FeVzFBdTklaRbFHXv+y697E1R8DVJYTRrP6OI9bgiRFHzjjFdFOL9GefKNpfb98q9B+sqg/aZ1K8GI9TvcL83TzE1x0OnJlCBd/mLeKZ7M3JiXXlXgW8Oi77uL2f2G5bgC1FYNns1j6OzzqC8o5khqqqxnDaY1Lq6+AHsMfGfxRCtYVOhP1OACorOtxcoVh8RUZrSP6+v/5yBv5V3/rtwE4MtzFB960g12fEnfM7l7rWnpcVZY8M0WSCRd7sX07rTfAaLbwM8giVQLyejcxkDQtV1d98Io6wLiFy94BiFaFsJfXBBqCoe4Xt5XvcoVh9z0x3KMnXD8MzdMJ0aoS2trhmsuKCQYenYPF4xStFbwXNw3eekD78SLmX7+gJ+jv8ph+xOfsHSrtDOe29ghdba4zxtwPXCxN+qK9eo0x7wbevcnDl1xX4qrj4XffxUvvKrgur5+VTNXb2nLuOYDjOS/VLDWx30bCrqG2nhfTGuJG4OZHYoqOF5VlYf1Q4YPywQ+9kfQOnbF83YFj3HPz3om5jWE0pedrnNW5Ve6RklYn5nS+Zvrl87rRbKFiGx/GE94wYmC4W+djXuzjj6Fhiw5G0wXXZYFQO4/rOuKPoWLncTnX5dl6uz8bu3ncaErnY3mGUG+35z4PslDPkdcg+0PlO4DRDMTTmeO6sK/eLvkxxve1+Hh8i278POG65wqbMcH6X+zLXxKRjwFtY8wDmzm4MeaM/X1BRH4PteWfJMpL1a1El1iOMeZ8vlBEfhn4g82MpUSJEs8Rru405Re4yr0x3TBLritRosQzwTb5SlZyXYkSJZ4RtgnXXQ6bSYFGRPaJyOuAg8C0iLxhE/s0RKSVvwa+FXjoKZt9GPg+UbwWWLMW/18AbhCRw3aS+912W2wtSY6/dZFjlihR4nkEMZv7ueJxit6Y/w3AGDM2xqyidWS/Zjf7NeA77Ou3YntjGmOOAnlvzMudo+S6EiVKbAlXi+u+Fii5rkSJElvFduK6S2EzLtD/DvgutLYkV04MGyN+F8Mu4PdEWzMEwG8YYz4mIj8AYIz5JdR98NvRiWkfeJtdl4jIPwc+jtrlv9/WuAD8rIjcacdwDG3sXmIbIrfP/7r/+eeJG0UsRjKjtvho+4/KasZwRt9XlzOXBiKJwQQeZ79eHQzmHkmKFDuB+ukxwzn9F08rRcKGEU2Na/92C1CDmTzdL657GF8Y5unDUrQQqqwYwp5RUxYg6INnU7Ura0K3XaRcV5cN7eOa/tM56DP1BDRPqpFL55oKmU3jrqxqq6b8fGEPbWkC1M8MySqF/T8GjB1Lbz4gbgr183qO098Y8va/8UkA/r/3/DU6B8SlxERd40wQxlPaAiBPS2ycMwytWVdcF5Jq8XeIpzOCrr5vTlZuPV1sngSv1BrkWemNmaPkuhLPFh7698p1r/6H79UWPpaPwn5R/mBEzWBc2zWDSxkct30ap4fueHEzYGDLPTCaRli3aW6NM+LaBDVPwC+89zsBWP2GATs/Hbjn0Xgw9xVNNezuC/FHhvpZXZcF4lrRDaeFLFLTKrDcYY+fBoZgTVw+XOO0sHaTvu4fSJm9v+CvxjnjUqfTSPBHuDTEYGA2mKoEvZTEtj5J6h5BX1fOPDoirfuMpzVnMexA55DuUz8nROuFsUtS32jUIomQFl2Q3GcKwMrLYlYfPAxA+/QzSO57nk/4cpRcV+LZwgN3F1wX14vUZS/FcZ0XG0Kb9tvd4xH2ceUQWSR46/rgrl1fo7aUurI3gOpKUbJlfHHtgKJ18P5EWwF9ds/tTD9h3POYVsSlY/f2egT9whg06OPaS3YOCF6s3AHKL+m8vvYSnd/lZqZJTUg7efnFxvlg83SRVh03dd/coLW6miCTBoejjLSmXDScD0jtfo2zKavXBazfqSec+wvfcV11UX9yw9Jkoj2TPxLCxYLrxMiG+9e7NsZb0JWtFwHXXQ6bqQH+DuAmY8zoShtOwjr93XGR5b808doAP3iJ/T+CEulTl3/v0xlHiRIlnkOYp+UWeKXWIM9qb0xKritRosRW8fS47rnGd1ByXYkSJbaC7cV1l8RmvgA/iTp6Py2iLFFis/jsb/wor3rbe6muWvOUSIibGlkLuymV9QxjzV+Gsx7tY+pskkUeCSF7Pq19LM5+fYO5RzQMllQ9TOi5/VZugdYxPZ+k0Do5duv8OOPcqzSMOHU0Y9wqooOAi6QZX01b5h/Uc/R2B07B8BII14vWIXk7JYDWiRRE6B7Qc7SOj+jvUWeFwZxH1DGE1m1q+euKvkjX/apH3Coe0dGUP2GkYKguwcqN1kgihl/+8tfrhi+DLMqQLDeZEBcpBMiaGqHM7+/0Q+pgY0QY7mnQ26vnnPuSOLOsZEI5edq4epHCZ7U3JiXXlXiW8flffScAr/uunwdUEclNVnLOmTqqgtzaYd+pFqCqb9BXgll4WcTMY0Upu2TGKcKSweqtul/7iEfzhO4z8z5I6gmnvlmf7/pZj/6uqDh+Y8IsbwxiW3y0TmV0jVcoCklxPdUFoXF2Qs2IDbVF5Z3M19ZEvb0qaaxfI9SscW9SU1Os5GVKfPKppsuQGeys0Nvj0zhnTbHq4jKEenuFxhnD4sv0OL/yHb/IP73vHwCweqBC64HIZeEADPZY0x0fmieFaM2q5OcSqhe0xdu517XZ8ZmAhdfpha3fxNaxfVSRkutKPKvIuQ6U75KqOEW4sg7+0D6L5w29XeKedyjaJLWfHHDmDXVmH1aum8xMGcx5DHbiFODqErRO6jM89YTOGc+8QbmneQLSeRsPFxi3CoXWGxftKGcey+jt9UgmDE1d+8oh1JaMm+OxYkCskVYEzVOx47ruXqG6Yk+XwdpNGeGePgDh79apLuv1jNs+gx0Fzxspvlgu3uHj94tx7P/+J3jo1F49fqtC45jnilglg7htlfGOUFs0NM7rOYJO7MwTl26rMn9PyNoN9h7uYuvYPlx3SWzmC3AfuF9E/pgJsjTG/NCzNqoSJUq8YHC16kC+Br0xS64rUaLElvF8r3mbQMl1JUqU2DK2EdddEpv5Avxh+1OixLOGL/zKO7njh9U+3x/B0qtjt27u8yG1JdueKIC0YuuDRxliDElLo27VJUNvp6ogUdeQBeLaGrWO+hhbf9Y8o5GxlZt0P/NNq6SJhgD/5j+4hw/9p28hy5+MiuCrUMDqLYZx06O2aGtmG7go2HBWI4ROORZcc3N/aPDSjDxct364aGvkj20tiV008/mI1ikNMWaRKiq93ToYL8U1gQ/6BhPBlLX5X7tWaHxRw5a9fbosbtpLWC0U3/VrDd5IXJ1J2EnpHdJa6OZjy6S1Fo0zVuHeGxTN4ie7uj9dXF2izHtjRqiK8Tb0xn5IRN4OnAC+E7Q3pojkvTETrtwbs+S6El8TfOaDPwrAS37s7g3L41ZRl1pZMwxmi1YWknnIuj5M8w8lrF2jvFBZ12yT3DsgCz2Mb+vrDhrax23rpMhnsCNgx5d03cLLoJWvCyHoFfV1vT1C12aNZOc8/HHBJ/H0X01/K1omSZGlAqxeH7mJUnXZciaqmAR9mPlN5axgEBNbHh/M+/ijokY3GBZ10rUFw/Ktgme/sv3TX/lnDK8rsmZ6BwxNe03r16euCKJ51CcLtN0SQO3YmtunfTyhuy+g/XDo7sWWsX0mhSXXlfia4TMf/FFe+s676R603DDwqFvf76APUQfGlvuCQdEmLgt92scMvT12XtcxGDs309aYHuuHLYf5uOe9tydk6U5cre3U3znDyv/YV2yX6bwIYP06w9j6oNTPC5mPmysOpousmNzNIJ87BSPcOCXdyHVRt6gjTirQetKj9Wc516WYQM83mPeRFMbNgutS6/PSPGlYvUGoHNfJ4UML15LusIOpGOKpovXR+vUpkuZzQ0FSiG1dce3JHuPdOsdrnVSuq50veH/L2D5cd0lspg3Sr11pmxIlSpS4FK5mpPDZ7I1Zcl2JEiWeCbaLKlJyXYkSJZ4JtgvXXQ6X/AIsIh8yxvw9EXmQi3zXN8a89FkdWYkXHb78C3e517f9pCojYReaZxMqSxrlD1sho5k8FufhD7MiyvfEkO5BLVSL60IwzNx/bvNM4mp+jUDcCpyiwRemefVfVzPKX/6jNzGdaTN20ChfZVkV0UrHp7ZQqA39UUR/pz1moISQFuKuixymFSFFqKzocUZToRuXl2jEL3dHlQzWrbKz474ekhkwunFS9+kc0A07B4X5BzSaB1BbVNdAwIVCOzfZWsKKR9i1boyJ0D5mGE3lNSEVVx8s2SwrN/hkoY22rhVRzC3DAM9zs4SS60o8V3jw5+7iJe9UruscEkYHxuz6E1u3dnLEcK4I0We+FNkuZ7qsH5wGYDCv9XNppBF/E8Cev7DPe2pc/Wzc8Fg/JFzzzScAeFVrga9rHwHgX/3+d9F+onCjj1u4et3OQZh/IHMO8UGv8EVIaxSu1UC0bojrhZIzdTSmc6BQVsVSlBjlltwNP1gsCoubZ4WgmzLYqfuN2kWtW2XV0DwpLiNo9QaP6hNaxzzakdlr1m2nHvNZsxzonGI7+r5zywyLL/XduCorxd9ky5xXcl2JEpfEA++9i1v/pc148YpskPaxBH+YuY4dRgA/n1cJrWMDxrfrQzmaEuoXbF2/J0Qdw9xDVoXNYNzSZ3o0I4Tr8I1vuR+ALy3sY/AN6jcQ3NektqBzL4DaeaG2kGfNaf1sf1fuTl/wSRZqtp57xgWMrRWurBsqa5lTsTdwgacZL7lHw8yjY/flsSl6nO4evfbuHqFxXlemodA4i+v0sXq9B6vKdf1DMaM5wYttd5SFwm1fHfuFaN1+BlyE6zJr/TA5X31auIpcJyLvB/46cMEYc7tdNgt8EDiEusL/PWPMil33k8DbUff6HzLGfNwufwXwq0ANNdr7YWvId0lcTgH+Yfv7r2/lokqUKFFC2BaRwpLrSpQo8YxQcl2JEiVeDLjKXPerwH8CPjCx7CeAPzbGvEdEfsK+/3ERuRXtH34b6uvyRyJyoy1t+0XgHWjry48AbwY+erkTX/IL8ERfzeNbvKgSJbaMr/yfqga/9J13g4HU9sM1ApUVDcmNZnxGfkhlWaXWcHXI1FCVhJVbmhoNtAGgqJO5ul5/bEg9qFmvYC8xPLCwB4DpRzxapxP6rsemcfUalWXt35a7OTdPjRg3VArp7zF4YyGwrn2jtrfBwXWyD1zzVMxwXtWNNNTecbVl3S6uC02r5I6ntKYk74k8mirqA6M1iJs+nhWkh/OQBUUU0MuAih6ncnJjdDCui6v9GM1A0tR7dO7VAV6qve/ybfOammDCjfBp43k+KSy5rsRziQffq1x387vuZt8f2AI1IK36hePprI8fQ9C33Lejzvz96n6/9JIGo7aHF+c9yQvX/CwSx4GDHR61RQhsAe+T3Tm+9G/UTnlql+APDQ2rNswcMfhDfR12ImqLCYN5lQ3WbkqJVpVTvJEqL5VV60DazRxfhT3tcS62N6afgqnpuKI1VZl7u3O1OCLsFirwYFehfI+mYZy72GceaaVwv6+s6nEApg6vArAaTenYYsFLbO/NZXWePvGt1k9hXKjWSTsFfFfH7BdJPk8fJdeVKHFJPPxvletu/d/vZvZR5TIxYELP+bUMZn2ySPmluphhfGHuwY1cBzpvqqxlG3rcSpbX5Ar1c3C6r1ywcGqG/R/V7fq71FulYnsN1xYLrlu/JqJxLmY0rVzXPVRwXdhRxbRifRL82Die9RKDPzKklbweWRyfVKz3Qa44j6dD55OQhaLXM9Gwsb/D9ojv6X5r11rPm2FRs9uc79NdqjOcszv6hnDN3hfr19Dbb6/psLfBsyFuFTXOub/NlnD1zE0/JSKHnrL4rcAb7etfA/4M+HG7/Lds+7ajInIEeLWIHAPaxpjPAojIB9BWb1v7AiwiHS5zicaY9uUOXKJEiRIAcvkslOccJdeVKFHiaqDkuhIlSrwY8DS4bl5E7p14/z5jzPuusM+uiWDdWRHZaZfvQxXeHKfssti+furyy+JyCnALQER+GjgH/Doap/geoHWlA5cocTXwwHvv4vV/9+cIenaBL8Q2yuaNtQ/baFbDYv6ogjfQ8P3sA2t0rmsTN22ftpHg2VoOf5hROzNgNK2f9eHAEP7GNADGMwxmfRcxa5wZu168cStg+dZChZU0cvWzU18VBjtx6m3YSZ0SEjc8vDhzUcbONUXvzTQSwr5xEcFoPSNaLRywjScMdhQu0NF6Ue8CEPb1xXg0MS6jSvnU/VaxuXPM1H36OlyH/l6cS6w3EqqLE2pItajv6x1KaBy1195gazBsB1Wk5LoSzzke/ddaIzfzuCUqYzC2z6Rk+n48VXxk+0Pdbu7BHmk9oLdbn/Fx23MeBt7YOFWkeSqlt9vn1O8cdscIZ3Rd/XxKWhHCrh5zsCPEt277g53gJSEV20N36lGfwW7df+arGdFaSlIr+Cd3RvUHef2tjjmLcDwejAxhH+rnC67zRrq95wvjncGE2yvUFwoSGVbF9eZMakWNXvzpWZJXdWg+mRsqQO+A8uPKbSneeGKMCSR1y7krPtn1PcIHG3a8bA0l15UosSk8/G/u4mU/qPXArZMJRnAeBl6Cy1oZzQaYjke0rA/8/Je7DHZr4e1g1iNueK6fsB8bgp7lnCgkjYSz/125blZgMKfnDruGqJO6+eBoymdsvVSGs8p1uXo79ajveuW2j2/kuiySDVw3mg2cW/1Tua7SMVQnfA68xM7b2j5ZUMy/qiuFUgwwQlzfdeNPpB1/dorqqzuEj+SPrNA7qMcczRm8sUfQs/czLrguGAjpTT2CR76mXLdojLmYcelWIBdZZi6z/LLYTBukbzPGvGbi/S+KyOeAn93EviVKlHiRYxvUxeUoua5EiRJbRsl1JUqUeDHgWea68yKyx6q/ewBbsMgp4MDEdvuBM3b5/ossvyy8K20ApCLyPSLii4gnIt+Dum+VKFGixBUh2eZ+ngcoua5EiRJbRsl1JUqUeDHgWea6DwPfb19/P/D7E8u/W0QqInIYuAH4vE2X7ojIa0VEgO+b2OeS2IwC/D8Dv2B/DPCXdlmJEl8T/OXv/Biv+d73AlBZT50xTFz3GE17NM7mOSIGb2BT6oZj2l9JGO0rSpryVJOgn5BVQ2d2cvbbEmbv0fTBylpGODSuXYZkht7u4jGpLRZhr3HTc83Ug6Fh7qFi/jDYGZLY9JK4KSRVj7Smx6msFi2SRjMQnsCZJ8QNwUuL8w3mfMbNotVSdcmmBk3nNv3WVKZb3K+ll6WEqz7+0N6WTHjj2z4PwPK4wV88coPbNjoVadsBYPpIhvHg3Lfq/RTgb37XXwLw//2/r2fL2D6qSMl1JZ5TPPxv7+Lr//bPAdr2LE9f9hKD8YWubc8x+0iMbw3/vN4IbxQyvaIP/HBn3Rn3AVSWNH1Q0ozFO1rIbepyt+eXKi7VbzgXMG56VK0ZXzDIXKpf7YJG+8OeNXFpCtGqbtfZ79FOwR8VM53hjDVtiX1Gba8onxAY2jTEqSPaUmTtsPJu+0Ts+DGp+yATqc0NnJkVqBlNbnyVNGB8QK+vcqyCfLnF+DVKhnPtnsvpPffYDjAFX04/bpwRTFKFwc0Z73mbtsb94U9/98X/OJtByXUlSmwKX/q/1RDrtf/gvQSDzJnlgbh2Ql5iqC2keH2dMHnDMQ07x6ssV4kbASbUZ9ofZo4TK6seJ98ieAM9zt6/yNyXMeNBFha8lIbasg2gdkFII3GlZlkkNLVrHOOmp3NIO8y0AuN23m4uQtKifCyp41pbeis6V80CLdWrrKUM64E7ZtIoTEbHLRA7IfNi5bq8ZVH3UIap6EVECwHjsw3u/NuPAVD1Y+6/sBeAtaUmjDxNJWcj1y3fagiDjH/3vZbrPvq9V/5DXQpXietE5DdRw6t5ETkFvAt4D/AhEXk7cAL4TgBjzFdE5EPAw0AC/KB1gAb4ZxRtkD7KFQyw4ApfgEXEtyd469O/rBIlSrzoYbZHWmDJdSVKlHhGKLmuRIkSLwZcRa4zxvz9S6x60yW2fzfw7ossvxe4/emc+7JfgI0xqW0uXKLEc4rP/fo7AXjN9753g4V8bTEDZxRjMJH9l44CZDCmcnodgNG+tntgx+1ww8MrnYA4b2i+BkndI6lr5LB+HmYeU6/4/q4Kvb2eUzEwhdFBWhWGswE77tNQ3rhVcwqz95YFeut15n9fT2J8IbV29pUVoT8vbjy1RcNw2rfnjsn8wJnPpJGwemPekgn8kdrdgzZs71tjmtZXffr7DZlVoP/V1/8P/nDhpQA89BfX01wqrj1ah+qKRhWTum0ZckxDjqPZjN/7/1T5jToX/bNsDttgUlhyXYnnCz79uz/mXueZL0lV8MeG5um8NVFMWlWukyTD648xYWH+lFuCGE8YzSkR9HYHNE/CYKi6aHdf8WBmgdA6o23eQI37hjbLpHvI2M5MRXuOvH3G7s8PGc2EDGzbuOve/jhH12YBGH5onv4uobqo247bENhMld5eobZQtBEZt3ynpgD09qjBFmh2y+p1tu3RCpgQl90SdsAb6/UN96QEqz5vv/WzAOwPlzmfaBuU/3T0W5BESGq2JdS8uGyeYGhInmjyL7K/o+c7tVVnGEquK1HiaeKe/6eY24FyXZ5t4o8N/iAlq9kJky94fZ1YBSt94maR4ZfUPNKKzl36OwMqFwqeGLc8p8gaT2ieS6gsq3DY2xfRn7ctkvYr1/njPFsQZ0K1+/NDensrLrNvkuvMB+cZt4Uwz8QzhXLb36VclxtkhV1xLS0lhTTCzQeDQTGny52dcqW6ecyjv8fy5VzKTTef4pbWWQD+5PyNjGP9PPAXQsKOEFiOHk0V97O6IPRqDX5o+XsAqC1upgr2EtgGXHclbCYF+ksi8mHgt4HcixdjzO8+a6MqUaLECwJXuWH6s42S60qUKLEllFxXokSJFwO2GdddEpv5AjwLLAHfPLHMACVRlvia43O//k6+4W9pjZwfa1StflZrwIzvFW1DkgT6A6Sl4TMvyTC2tiINPYxA67iGB5unhGBdjzHc02Aw5zOcsRHB+Yjx1+fyZ4J/b4u9ry/ajZ1Y0Ahg/fN16guG4Q4ND/ojQ3XJFvr++zYNX/BHeo604jOcC+yYhcBAdVXVjtzSHyCreLROxYxbGroMBoalg3rM6kv7jL4w42pHkhpEa/q6czjDGws7bl8A4IboPBf6GlZM6xkseYR2ymP8omavupKRVsSpNF/37Q/xp/fdBkC05l/5j3MJ5HWM2wAl15V4XiHPfHndd/08o7b3/2/vvcMkOct77fupqk4z0xN3ZvNqV6uEBMqSwSJIyETLgoNJPiZjY/uDg5CIMsf4GB9sECCBD7YJJhqwCYZj4JBkISFQQFlIQivtanPQ7uSZzt1V7/fH+3Z1z7IzOzs7s5Oe+7r6msr1dG3Xb6veJxE5TwFr07Tus/oVpQK8QgUZtTduKpWgtNpGm0hkc4cB2vZa7WjfZe/HgxcmaT1gp40P/ecEccuilb+7n+E7bE6ZCQzPv+QB7j1ki2/mb+sl7aJICquS1NISH/vg32yiq9+KUrW7QusBj0Kf80xUJM45zhwyJAqNXhrGh5Z+65Epd/h0bDeMvcrqbmuqQu3+Xruj2KibevuO8adWwbU3esY5j/O1jbfw+l3PBuDTj1waX8fMfp/EOATOI5QcN/ExokB4xx98n+vv+z17itTM9Uq1TlFmRrPWVVudt7RgqHQlSQ24G1cEKlZrpOaRyNWotrnXmKChL+27KmR3Q+BasQ09JRO3F6q2Wa0rnGqfudatfZLKHasBSJ08xjPX7eD+fttC9nCtiwJo29fQuqxrRWf8CmHKi1tWRomm1kZDVuuM5yIXA6HN1a0pt/sEByD3chup2N6W58BdVneDAniVRr2Y8bMm17pdu3oJRuy50wOCVyGOQEyNNrTOq8G7Lv9/sdZF/nReAY/MItK6STnqtzfGvPFEGKIoyhJkEfTGrKNapyjKjFGtUxRlObCItG4qjvoCLCLrgP8DXIL9yr8ErjLG7J1yR0WZI37x3UaO3LOv/ChRwo6KBSMlvLIbLhvLQTIZN1SvdCTivAuvBumBajxyWG3z8Tusa0UiQ1A0ZJrKtydutDlzUrNe5/ATNtm2+rZBwqFGvpgdtbTnMGIrQYPNP0kUDMkxu67c4VPuaIwQVtugbX/jhAU3ipjMR7TvG0ci680ZeFqS7IP2fGOn+XQON2wcOSPCdxVOTTpCVpYZyrUA8JZ//QuqbfY6SAiVronl6ev5vV5o8AqGMGO9vT+/46lxn7Q4t2UGLJC2H0dFtU5ZqNz+jXdyycs/RrXN3pGJXEjFaVb6UNF6RQKrG16xTC1tI19KnR4dO6wrIEzbKqaRG7nv3BrFXpGxjT6Zg1Bcac83eOMaWtw9X8Djxq1P4embdgDw+CVQ/qnzyOKRzEdEKaet5Yhynz13udOn5ckKQdHqSbG3UeugsErIHILMoPWghCmP3Gprf3ZPlWqbT/5JG7WSS0T0nWujWQa29dBa8mLvBiWPZK9NdjuQb+e/bXt+fM06enOM9ttjRCmoReC7/x7E4DzQUOoSbhw4k7Bkz9+5u6HNx4pqnaIcH3WtqxOMVzG+qyw/UmhsKILxheIKe9+GSSHrIlFsPrBHrdVqT2Ywir3DYcrm6noVm6Q7+uBqWuodMw518Osr1sSnKJxUI8jXX5M8/Kqh0u68vEnBqzReobzQxN08wlQjSiVMCV6N+PxeCKbq6q0M1RjbmKD8uM1l3r0yDR1WE72aT6XDxPnIiCG72j6s7cl1ctqtryOZdJ0AUiGhq9ofZnxM0KR1kSHhLluxV/jM48+KtS7bP/m/w9FYLFo3FdPJgP4itvfSGmAt8H23TFEU5eiYaX7mH9U6RVFmjmqdoijLgcWjdZMynQDwXmNMszB+SUTeMZ2Di8hOYBzbYL1mjLnwsPWC7UP3YqAAvMEYc59b90K3zgf+xRjzYbe8G/gGsBHYCbzSGDOMsiy59Xvv5vLL/h6AWmeawKZS4NFmvcCOKBDGN9T7xdnqy/URrPRQlTDRGAtqGSlTWGWH7xK5MM4BGdmcoJIVcmvtbdP7yW5OsuVR2XUFdGzxCZP1Sn/1Gn7QubVEfm2KSrsdjaylhUpn4zskxol7bkoEiYKrfjoeIbWI1EGbsNuV8tj/LHuMjkcCRk+P8Er2HL0nDzK4ZYX7QiG1UkByj/0OqSFi73ByHIKCYfh5pfj81Ueth9mreuTWCZUOVx11zKPjCTs9unnKf4YpWUTFElTrlAXLbd9+F5e94CN2xkDS9f2VchXKFUjb+330qd0MnNPQM69mPcUtAyFe2KgynxqLSIxZD0JmwCM5HpGpa90pPhVbQJmgCH3fSrLLnA5A1ONTdRXnwySUOz1So/Z87bsqcdRNtUUYPCsd21HusloH0HrAIBGxlkoNsrtdf8/hMomcT98ddt9Dl4b07+kCoG23Pc/4WXbbVWsat8Oh8TZ2P7SG9CGrdaWVhsB1iAzThsSoUOquby1kBhvC9JtfbKZ9YIqLP01U61TrlOPntm/bKL/Lnv8RoqRPkLdaZwIPydWTW5PkVycZfkqjb24yb7UtkY9IFCKqrpuHX45IjNejTZIkxyNa3P0+fKpP2coLUQLaPtMTvxglz/epuQ4hYRKCssTPeO07K/EzXaXdo9rixf3Jq22QcM+iQcmA0KgCXTCkhux38AtVJIJyp9VoI0lq3VaTje8T9tSouefUrt7G8+zefT0k9ySJnJc3GdiuIACF08qQD6ilrW0SeYSuInUtA+FjHXTusbaUYz08dhaR1k3KdDzAAyLyGhHx3ec12OIJ0+UyY8y5h4uk40XAqe7zFuCfIe5T949u/ZnAH4nImW6f9wE3GWNOBW5y84qiLEQM9oF4Op/5R7VOUZSZoVpXR7VOUZYyi0vrJmU6HuA3AZ8CbnDzt7lls8FLgK8YYwxwp4h0ishq7CjgNmPMdgAR+Xe37W/c30vd/l8GbgHeO0v2KIuQm26+FoDnXv5hvCHnYkiniFZ1U15hh++ioJGDERSh3BWQGrYjbbUWnzBRz90Q8muCuD+laSp+7FfsfN1zXG31CUp2pmOLT2rEkB5xVQE9iY9Z7E0iocGruoqnnkdyxK7r2FUjyNcaI4AeRGlraL7PJ0y207Lf5rhlDhTovc/mtBVXiO015yqWHtrXRbDGbpfY3kJquJGDUm2zec/ges4lhdZf2esy+rQqUa/9Dpl+DwRClwAdZg2jTiIyyyNXRLVOWdDc/BP7z3/Z8z8SV7z3CmXC1T3xNp33HARsMm9urUduvYv+yHkEpYhMvxMDXxh6SqOGgfE8sjutpyXTn6awyu5Xa4Fit0962GpbejjE+C63bqBeBdVVze9LxJpZ7hSSY8Se5L57Q4JCGJ+v1BPguVy48Q2QGrc7Jsc8ahk/Dp/LPpyM9xk/q4rfUqUl5SqxPr6C1KDVyygJvhB7YdL9giv8j1eD6kU5KgV7rMR4koGn2f2qa8sQeoQZp3UHFk4OsHtpvAfYZ4y5YipPqYhcC7wZ65l9uzHmJ1McWrVOWfDc/NP3ctkLPoKUrMdUKmGsdWFbgpYnq+RX1kscQ36Vvaezu22ESf2ZK0x5jK9zrztitS416iLtxog9wMaHcoeNhrHHIdaQzGCI8SSuxF9Y2dC6MCn4ZQhdwEvfvSGJvNW6Wsaj1uIh7kC5NYLnmgm37TH4xRpte12l/LJQdCeorLZa19ZqNXl0e2esdcmk/b51W4JSw87WR1NUL8hRabFalx5KUnQlG6pryyAwnrDrFpLWzQfTqQK9G7hyhsc3wE9FxACfMcZ89rD1a4E9TfN73bIjLf8dN73SGHPA2XZARPpmaJuiKHPMYuoXp1qnKMpMmSOtuwp4FGh383VP6YdF5H1u/r3Ok/pq4CxsXu9/ichpxpjwSAdVrVMUZaYspue6qThqCLSIrBOR74rIIRE5KCL/4SoITodLjDHnY0Ne3ioizz788EfYx0yxfNqIyFtE5B4Ruae//zjcV4qizJzphsksgFAZ1TpFUWbMLGud057fB/6lafFLsB5S3N+XNi3/d2NM2RizA9gGXDzVsVXrFEWZEYvouW4qphMC/UXg68Ar3Pxr3LLnHW1HY8x+9/eQiHwXK8i3Nm2yF1jfNL8O2A8kJ1kOcFBEVrtRwtXAoUnO/VngswAXXnjhwv5XUGaFn930Pl50yrvtTKmMpBL4ZRunkShErL21Em878NQ0A0+z8SPJUejcZrfzqiBJaD1owwT9QhiX0q+lhc4nKiQP2mIEtc5MfLygGBAUDTXXDiSRD4lc6f70YJXCqiRB2f4Mc2uFVbeOACC1GmE2Q+tuW8Egf1IbYyfb54TWiwcY/vkKit027Nk03a2lHmjf6lF1foHyU8vU8i4eZmWVlicTcfEGBFLuLkmNR4RJodxuz5HZlaDSbe0qrIY1l+ylPWlt+eCG/+Sqra8CYO+9a6fxL3BkFtFIoWqdsii4+afv5UWnvsfOiODly0RZG1ZX2tQTt+No3xmSdMVfcmsTDJ3ZEJHOx6M4NQKg3C7IehvDlxyPqHRY3Vv1qxKJoSKl1VaHhk9t0hZ8MoMTY+HSQ/Z8xZ6gqegUjJ7s07HdbTNYQaIgbsMUpWBsg9XLUpdt39Zy0B1nhU/R+QOT+xKsekY/KzNWgx+s+URj1q7EKIQtjVQXCSE91Dh/8Ms2yk+zodNv+tMf8X9+/EIAXn3uPVyW/Q0VJ7D/48ev++0LPk2OQetWiMg9TfOfPYIn9RPAe4Bs07LJPKVrgTubtqt7XSdDtU5ZFNz8kyatMyZudRllAqodAe27rU74FUOp22rW8Bk+YYq4gGlmwMRalyjY8Oh6Uaqg2GgT1LHVFhytZm2IcG6Nj+diKModHumRKE73CIoRUWCnowCKPUL7bquFxmuEJKf7y+ROylDutPOl8wtESatxxZ4WjAeJvP0pV1shcLZ4+xJ0XzQcX4fi6gLi2rp5FRv+nMi775Szy8CGYUcPtmE22uuUeN4A1ZL9Pn+4+SHe3nM7Xx09B4B/uuXyaf0bHIlF9Fw3KdMpgtVrjPmiMabmPl8Ceo+2k4i0iki2Pg08H3j4sM2+B7xOLE8HRp243w2cKiKbRCSJDe35XtM+r3fTrwf+cxrfQVGU+cJM8zMNXMGW+0XkB26+W0RuFJGt7m9X07bXisg2EXlMRF4wjcOr1imKMnOmr3UDxpgLmz4TXn5F5ArgkDHm3mme+Vi9q6p1iqLMnFl8rpsvpuMBHnAVAv/Nzf8R06sWuBL4rthCHQHwdWPMj0XkzwGMMZ8Gfogtlb8NWy7/jW5dTUTeBvwEWy7/C8aYR9xxPwx8U0TeDOymMYKpKPxo20cBeNG6tyOVGl7VjsilD5XiIieFVckJo1eVDhjdZMeCOp8I6dpSiAvM1NoSsUeh2iKMr0+SxY7CJfePU+uxI3np4YhSl0dqxJ6v2uYjoT1JqSdBdmeBKGlHJzu3Q3lVKwCpJ/P440VcNyXGNvgkR+x0GHlgiL0o2b0Rnit7X0t7E1oppR7K4OoakBiz3o+O7fb8iUJEIue8Kb0JsrvKsMF6iyQS6s9OpZMr7Ny/AlO01+kl29/aGMZc2fCeHyuzPFI4JzlxDtU6ZdHwo63XxdMvfNr7CdP2vvUqIR3brLtj5NQMlawVsGKPUO6J4kIqAD0PW3eD8aCaTVB10S7Gk9ijUEv7JAC/bG+dzFBAsbvR0qPa0nj38mqNFh+rflWh2JeKvbxSM2T2N1p5yKoUeVdoKzkMp1zxBABbfrYZvwRBwdoZZmz7NrBtlJ68Yw27e91tHEHaaWJdZ1r3Nq5R9xZbGPDA063Luv0RGyXzyeBy6LI77il28ZXiJQyVrZb/4iUfZ8Nbj3zNj8Ysat0lwJUi8mIgDbSLyFeZ3FM6mdd1MlTrlEXDBK076/2AfTRJjlZjj+z4hhTVVvfcloFqR4REVkMy/Yaeh60WHK51YUriYlaVzhTp/eN49YJ4QybWumQVKm1eo/iTQNtuVzTwkJAeSsZalxirkhhxrSaNodzRSuTetsJiQPE0G2VntqdIDTaKlHrVRiGtoAhDd/dRa3fRiSWPhNO6RM5+/5YBu67S6tH5hD3fwNPS+CVo2WW1bqS1NRamWw6cyu39myhV7bqXX3I3Hz+Gf4dmloIH+FirQBvgdqZRLdBV+jvnCMs/3TRtgCP+V2OM+SFWSA9fPgjM3G+vKMqJwwDh7ChlU07ch4Br3OKXcOTqoXFOHLBDROo5cXdMcQrVOkVRZsYsap0x5lrgWgARuRR4lzHmNSLyUayH9MNM9JR+D/i6iFyPHfA7FbhrilOo1imKMjNmUevmk7muAq0o88KP9v4DLzjvr/Hy1htR60gRBQ3Ph1+GdbfY4bQw7cVe3tRwlVpbguQhm1xhAiHIOQ+GK6sfJpxnojODV3L5J+WIzsfL8fGjpE9QsMN6Ycpn9JTWRr5bQhrl+dM2vSuzz3pimr263NVNZZXBq9gRyNSYR9t+e8y2fbbFSTwKZxrtPySyzdfjUc2sRy1jba60CeMXp0mNNbZNjdjpUi7gRc+4Pz79f/3wgnj0MfYEz4BZzIv7BHOXE6dapyxafvzQh3jh06xnpLi+A99FvmT3VhjbYEND/DK07vZiT4QYqLRbT0Bmfw4/XyHR5vKIVyTJ7rNaE6U88pvaSR+0Hga/FNHmfIup0Rph0ovbG4Upj+EzrLfVq0GYEPxqQwCq2Q4AWvcUqbQJlS63LhIe/M1J1q5u66Uud1rNye4y5NY5/XneEIlfdINnxS3I2xoOdZKjxDqbXyvsXZOJlxsabUMQEwcNX971KP/7hy8jbLff95lbr2amHXhOgFfkiJ5SY8wjIvJNbEuhGvDWqaJdVOuUxcqPH/kQAC889wOUXCQd2LoFtbSLsnvcUEt78TNQomCoZu3Nnz6QQ2qGxLhrIxc2olTClFBa3UZizD4b+qWIzh3GTYeECY+geHStq7T7eH1WS1v3Fim3N57tgoNJal1Wa8o9EX7Ji3N5s3saWpdfH9K6ywfPPrsFORsBY20GIqhmXPReN+xb5+o3jNj1xj2OhhWfp2y0gv2KVfdO0Lpv7bsA+OYxXf86S8EDPJ0q0F8Wkc6m+S4R+cKcWqUoytJh+tUCJ82LOwE5cap1iqIcH3NQGdUYc4sx5go3PWiMudwYc6r7O9S03YeMMZuNMacbY3401TFV6xRFOS6WSRXos40xI/UZY8ywiJw3dyYpyuzwk/v/Jp5+zu9fx9hGOwJYWAmt+yA5WIrXl1bZkbxaa0CYEBIj9taQCAaf5kYZPWg90CibGrY0bp+gGFJrDfBL1vMioeHQ+TanzATQcshQ7miMN5VcXgke+AUYW2+dmqlBGN9kRaPnjAH693QRudPnagEXvtnWG/Ek4qe/PI9T/s3m1JV7M5Q67XBn//l2++xOe45qW6MyapCH9DBxRcL8+ojUkGuuPuzxnPbHeO/Nr7S2RDbvBCDMzLzr+SyNFM51Thyo1imLmB8/ZD0jz77yo/SfYb0PCARO5rwQOh6rUUvbe1pCg+fC2Ipr2kgNl+N8utRwlf5zrEeh936bO1fptJ7klv0lSivtuko2IHOwFOcfD5ydpG1fQyuMWM8IWM2pdNlpiTITdCFsiZCytcukIiodQsU6i8nuichvcMc7mKVNbJ0Du4B4O6lLs6vfYPxGZdRKO6x4KOTAM+w5vMEkv3zlxwB41i/ehtQgGLLfIexpKo19jCwir4hqnbKo+fEDH+RZL/0oIyfb+7ba3qj6nOyPaNtfo9xpn/mMR1wZv9qVwatG5J3H1AhxhFzrgRpeaKh2WK1LD1apuGOQ9gnyNcZd/ZT8aqH1QMNzbDwodrgc5BZiLS13tpLIQ2Gd1cXk2jzVYZfom61RXJkge6lt6XVgXxdSs/t1PBIQFG0uMEB+LXHETGpAiFK2VgPY59S6d7jSYXWvvq03mODzl38LaGidP26vWdS+LLRuUqZTBdo7rLJqN9N7cVYUZbkz3UqBRxFTY8y1xph1xpiN2OJWPzPGvIbJq4d+D3i1iKREZBNHz4kD1TpFUWbKLGndCUK1TlGUmbG4tG5SpiN4HwduF5FvY7/OK7FFaBRl0fDz//cenv6a6wFIjcLwaUI9lbR9d5XMfpuEUVzTSqnbIzViRwCD8Qq991l3Q//57eRXNm6Z9t0mrvRsfAEDgcs5DtMBSZc7XMkKhT6h5ZDbVhoeYL9kY3XrPX7DRKMioAgEnWX8x6wLOD0Iv/zuufH5o3Uho6fZitSHLjL4K20ecTSYZuNpT3Jok12X+mlHvE+1DcY2QW2DdQt98OL/5MGCzb07Nf0k9xdOIjHgRgcTNm8Q4JxnPsHO6V/uGIH4Gs0Rs5IT51CtUxY9t37v3TzzZda7WeryGD7TLm/bYzWnbZfVuvy6FkZOsTrX8USFSkeS5KjVr4MXt8We1YFzMnTsrCEuT668IhVHuoQpIWwJ4voKiRyMnWSnWw7aPNvxkxq2dWy1x6hX3a/3vKx1hlx0lm0SvHO0i8EtKzAJu23/eT7BeP0IPulByNR7Df/JMEODrk+6q17f/qj9W+mA0FXG90uw98qQP7voZwD818EzeO3jrwbgF8/6FM/81rtiG004s3oHJ0DrZhPVOmXR84v/+26e8d9tHePaiDDktM54Ph07Da17GlqXX2t1obMYgTFkd1jxOXhxGzXnkK22JiZoXTXb6FXulW0P4Hqer18WcmutVrQctL2FKx0Nj2zKeaNL3S4apeyqSQch605+EoAn9vaRGBf6H7YdyFIlodJtta2WhlJPo26Bf+o4Xa3WHTycz2C2ZEkP2HXlLiisdt7otojfu+Bhzs/ustvWWrl+4FkAnL9hD/cePBVxT0Kr1w6xawbXfZFp3aRMpwjWV1xhmudiv/fLjDG/mXPLFEVZEsgs54EYY27BVnuesnqoMeZDHMNDnWqdoijHw2xr3VyhWqcoyvGwWLRuKqYV8uKEUcVRWdTc+VXbOefZL/koG7+Xxys0etuOndUDWI9GUILRTTbPI5lLxtskcxGDT/UIW+yNX1iVYOU91Xi9CYRyjx1KrGUalaWjBCTH4s0od0g8HyUbuRsAtT7wqnak8NDBDnr7Rmm7ZDheP/DDdfF0Zr/P4BV2hDOTrBH+2rpsfIEDA2vj0cFaS+P4lU6Q03L8yRm/AuCvbv5DUitckglncf6avfScb9No+x/uJSjMvPozsCjCYJpRrVOWAr/8jvVoXvLyj2F8K0Qr7xzHK1QYOds2Fs/0V+O6BKObkyRyhmKfdTckxwwpV1354LNq5Nck6H3Aen39siFMNjwdhb4EpS57nHJXoypztVVI5E1cZT4KmmoRFK1XpJ4Xl+6paxBs6Bjhgmfv4RffssUMomRjv67z+sleVGLnvVYHe8TgHbJanT4orHrhHvbvsan/YWvEmjMPAvDBU2xmxA9Hz7W2RT4vWm1b0D7rF28jaqpx8PSznmD3MVzrGNU6RTnh3PH1dwJW6zq22joovfeMIJUaI+fY5zq/bPBL9uYcOcVqXT2HNTlm4v7BI2dXya9JsPKeRi2XuvZ4gU+1RWKtq7Y1tC5KCFHQPA++e7wUA5UsmKTzKtd8ulNW79acto3MU6pxZJ/xIDFiv0PrZf1kUw2tq+aT9O+00S7pg0L+jCp+yep1tWOi1n3x4LP4+dDpABwoZGOt++X4yUTpCK9ov8M5PfsmtMqYNotM6yZDcz4URZlDFn4lQEVRlONHtU5RlOXA0tA6fQFWFGVOWQrVAhVFUY6Gap2iKMuBpaB1R30BFpG3AV8zxgwfbVtFWQzc+p/v5rnP+zDhShsbXOoOKLn2HH4ZwnSjeMrwmbDqTlf0oGLDlVuetNvmNhhGNtsQlDAFLf2GoNhQhXqJ+syAazXS4xqv1xotO8RAdm+VaqsNScnuCcmvdlUPtiYw3gr2nGFnUwNCz+N2x/H1rkT+nbZAlt+IxKbn4RLF3iQtT9pCV7n1acqdrp1RAQr9GT6Xs0UREkMB5pAtBhamDXeMnoI3Xu8eb6idbQtF5KqNUPBjZpGMFKrWKUuN2779Li590XXxfNiWjgu+FHsTVLOubUcKQKjYCDuy+wyhk6HWJxLkN1fpP9cuSA80ivalRiCRN3GhlkTOhjqD1blKh0wIlRMXady+u8bYhoDsdqtL/qNZHnqe2+b+LMXVIZzlKvCNB2S3WU0avr+X8QJsfO4eAHbeu470gGs3ssLAB3sJXBu4MO1x6K7VAPzF2B9T2deKuAJXUTriiyPt9tyJkFoiYvVae9sfKGSnf4EPR7VOUeaFZq2rdmeotvqN57qSUHG3dZiGwkqhxdahIjVm8F2ruLatCfKbawyeZUXMq0DCFepL5Ax+xaZuAKSGsdnzQNWlmdWLS4lAergRRp0a9UiOuRZsj2a5b3ObWycY35B0YdZhijh1bexXveRLEJ5sn/m67kzF31Ui6Pq+x+im+nfy2PvYSmBqrauWAkwiom+jrdA1WG47pms8gUWidVMxnTZIq4C7ReSbIvJCETnOpEBFUZYNxv4HMJ3PAkC1TlGUmaFapyjKcmBxad2kTKcK9P8Ukb8Cng+8EfiUay/yeWPME3NtoKLMBT+78X08+8qPAhCUDNl9drSu2uqRHmm+aT3G1zeeDTIDUFxhp4O8UFhjp9P9UOoSnHMlLhJTnw6KjWIKkd8Yeaq2ws4rPXrut8OK+dU+ZdedMXMIMgMhq29zHuhShOdK8Gf3wO4/jOi6y3pmK1lo2++Kc61OkhqqUWuxt7dfgWKvO3cC0gd9yputy1jCRiuSoCCUkj6tu611UQCVvPUw7/COQ8gWtgbGqNYpS5FbfvSeePp3Xns9iULTDWmsTrU+aahlhPzJ1oVhfJ/QiZnxIBgOML7dL7/B0LLfFb3qtMeoez6iwHpUAIq9AhF4LjolTBF7ZCpZq00d2613o9Dnk/yFddF4Veh90ABWE6ME7H+O1efkujxyb5a9v7SFrjp3Q+c2676pZgOq2YD0sDv/SiFKudZzxQRtJ42R2+W8vjmPctJ6VFIdZaTiMXRPHwDdFx46tgvcjGqdoswbh2tdZtC1a0sKibyLyBs0FFdI3J6tPNrQr2ob+KM+lc76M5fEob5GxBa2qs8H1its93PHcJF9tRY4eJFrO7fbwwTWm2yPA52Pu2jAqiEzGMYvimHaY+8fWGO80QTJISG7xT3HlQzZvVZMw5RHmJTYGx2mDL5rs2QiwXTU8A/asBy/6Mda5xV8grLQP2QfCOXspf9cNxXT8QBjjDHAk+5TA7qAb4vIdVPuqCjKskeMmdZnIaBapyjKTFGtUxRlObCYtG4yppMD/Hbg9cAA8C/Au40xVRHxgK3Ae6baX1EWKrd+790AXPqi6/DLdtTNL/lUOnzK7XZsKFEgzovzqpBfDW37Gjf1sGu8nl8HvfdBy0E7Qjf0lCSB6+wRJmF8Q8Mj3LnVMLapMd9zn8/g+fb8UhPS/fbcxT7A+GQG3fBk2ou9MIlcjQ3/ETC+3p1/fUTeTa++DYZPa+Ts+tVGXkkyZ2jbU2GfpOP19VFErwKZfR40OoKQds3cUz9snfJaTskCF8E6qnXKUudX/3oNl73gIwDUWnzad1mXxdjGgMiHticaXlffpeBWs9C+Qxg+x7k30iGZB62+tB6o4VUNw6fbeb8K4ydZbau2GVJDQs3pZ5iC9JCdHv2dEqbmMerydRMHgjgnz/hQS3v41Ubky5qfu3ZNJ1kvceH0iluXxK9a70ahT/Bq0LbXClj7E0I9SW/slBQFSRFUG3UYEnush8R7IoGk7DKA0dv6Znp5VesUZYFwuNb5aXvvF1ZaLUnW208K1NzjTVCA1gPC8Nn2mSvqiOjYZl+TWvfXKPYFVFzdhEhg5FQ3nTS07RFKLjowCiC7y66ra52M2+MEOS/WusDIBK0LChHrvm81ePQkobgKSput1nn3JBk+Nem+j30erbeYS44KqTGre/1hK77YZ0mwupapa13F6nBd63I/XTnTy7totG4qplMFegW2Sfqu5oXGmEhErpgbsxRFWRIYJrxQL3BU6xRFmRmqdYqiLAcWl9ZNynRygD8wxbpHZ9ccRTnxNOeNPOf3r6PlyQqlTushDYqGVFNOcMF4cYPzTH+NaosdWevcUYOwEfLRua3aKAAgQqUjQSJnZ4s9Qsp5QiSCRCGiY4vfOMcq+9erQn4tlHrtuuxuE1eSFld2Neny7dqf8OLK0pU2aBmIiAI3OhlAOu+8KeWIKOmx7habN3fgd9MThMz44DnPtUBcHTGZm9lon7Dww2DqqNYpy4Gbf/JeAJ7xRx8ncPd3asRQbRFqGTt/eG5UUDQEw/ZxobY6JDNQzxUWIqDrMSuKYdojTNntjCd4VVvLAKDSTlyBuuNX6bhyKkBhfUQu4aJiBIKiF9c7SI9YLzBAouhTzYB4dr64KqJtn90vNWw918UV1vqW/gi/Yrfr2Bmx7zkTK9mbpsqriVyjMn9mULXuRNqiKHNFXesuefnHSOasFpQ7PXyItc+Izf21M5AZiCgesM9cXs0nM1Bv2QHpoZCWg/YejxJCta2hdWEKMs6zGyWJc2Sz96UJE1C15QeotRlyLlpPQqHjCY/QFXj2Sz4SuSi/IpgBKPr2Wa/cDe07689xQpQg3jY9amKtW/9fTuvqz3WmoXWI9XLX85GXg9ZNhfYBVhRlbomWwFChoijK0VCtUxRlObAEtE5fgBWliZ//v/dw8euvj+draSG/ynoY2ndFJHKNfr4QsOIhO4xYy/jgC5EbavMrEWGy4Ufpu6/K0BmuWabXyMEAqGS9OA+3kgUT2JG11l1CajQiKDpvxwp/QkXVKAGjp7kqp6mQtidctcAylLNeXL3QqxpKrg9wUBYygyGHzrSuGL/YsCWRN4xtFEqr7Pk6H/VIjUbu+8xwtG+JhMooylLjjn97J8982ccAaD1QZeCsJJVOu659h6HaanUu2AeRL6y/ybkNkLh/sBiDVzXUWhsRLO277A0/kvCsR9al1AYFSI7Z6WqbjX7JuarTAH65oZfjGyG7w55jZLNPFDRyk4unlmn7tdOvMpQ77D7JMQMisbejlpHYy1Nt863WVeJTEDoPdKUrorQupHWb1efc2hl2BFKtU5QFyW3ffhdPf419rkvkDYUVQsV122jfbnUDIExAud1j9e1WKKJACNNWUEwAXjkizDS0rucRq1/Dp/tEAY0Imirx81fkQ5iBSrfdNjXgk3Tdt70QSj3E0YGlHutZBij3GExvmfQWq3XJUSh31Psa2w4eYcpt2w4ZV69ldFOSoADinhX9akODyytCEiM+LQfsfK1leWvdtKpAK4qizJSlUC1QURTlaKjWKYqyHJhNrRORnSLykIg8ICL3uGXdInKjiGx1f7uatr9WRLaJyGMi8oKZfgd9AVYUZW4xZnofRVGUxYxqnaIoy4HZ17rLjDHnGmMudPPvA24yxpwK3OTmEZEzgVcDZwEvBP5JRPwjHfBozHkItDPsHmCfMeaKw9Z1AV8ANgMl4E3GmIfduquAP8XW4vmcMeYTbvn/csv73WH+0hjzw7n+Hsry4a4vX8NpH7oBsKEm9XZGI6d5BDlbgh5sY/TUqL2FvIohdSBPLWurGQyf1mgzFCWh9UBIdo8Ngcmv8hm6wMWnCHQ+mKDqyvAnxyFKipuOKHc0xqha99fIr7Hnk0iQPNTHsCqdHtk9VmzG1wuZfoPxXFhPWuKCMgDFHj8u5AU27AdsOGFqGGou9NEWrKmff6bxLsvngU+1Tlls/PI77wLg5E9ej19oLM+tE4yLjqu12PDl9IhLsahE+C4tw6vZe3tsg33+CJOQHrLLsrsj8qs8ir+Tt+s8Q3R3W3wOE4BXaehbxv3KU8OG1GjI+Dp3vhJIsmFLaleK/Hp7/uRIo6VIqUtoDuiLAqHaUtdLe5zIHafloKHgQg2jdITUGuHSdfuPHdU6t061Tllw3PnVa4CG1sVtzzZLnFpWa7EtkZq1LjVsV0YJj2JvQLHHalaYgpZDR9Y6r0nrwrQNia5rXVAAV8OP1IihfVdD64IiGNd+LkoIYTWFuG1LvcRaF2Zs8a76OlJCfpU9RpgEr9zQuuSgiUOdq90G41vtBQjGFrTWvQS41E1/GbgFeK9b/u/GmDKwQ0S2ARcDdxzrCU6EB/gqYLKqgn8JPGCMORt4HfBJABF5KlYMLwbOAa4QkVOb9rvBjRScqyKpKAsYA4Rmep/Fj2qdoixXVOvqqNYpylLm2LRuhYjc0/R5yyRH/KmI3Nu0fqUx5gCA+1tv0L4W2NO071637JiZUw+wiKwDfh/4EHDNETY5E/h7AGPMFhHZKCIrgacAdxpjCu44Pwf+G3DdXNqrKHUef//VAFzwlhsoucyDxCjU2iDhGqhn90VU2lxT9VzE6Bnt8f6tB2sU+lzbkLT1+lbcar8EiSG7LnNQqLY1ytSXuhs2jJziEabB7LErx05qjFd5FcifZIja3TBmTailrBemc2tImPbIrW4cS0yjKXotRTz0JTVbTMGe226T3Wn/JvKGoGgf1uojpDNhOeS8qdYpi5ntV13DyZ+8HrPCuh/8bWlqLfa+rWUjkmM+w6fX9cdjxUNWdyKg2e0qphHBQsnghdB6uw1vyf9unmq2sa3xITHqPBMdhuSoPV+xVyj2BiRH7Xb1Ai5gI1RyGw1er7Uz+0A6btFWaRPyayVuP+IlracEbCs4r9Lw+hRWSlwkpvWJgEQeEgW7ozTqch0zqnWAap2ygNl+1TWc8dc3UF5h3afpfi+OwANIjUBuTb2YqUeq1U5LzWpEscduZwIod9Zbt9nie/5j9kCVrgic1hkfaoHBK9ltSysMqUEXfeILuXVB3G4yTEO5y8T7hdnQihfQ/RsTe3yLK8RqaVzotEnrfOdxdlpX7JU4gK9tW0BQaGhdczHWY+UYtG6gKax5Mi4xxuwXkT7gRhHZMtWpj7BsRsI71x7gTwDvYfL4yQeBlwGIyMXAScA64GHg2SLSIyItwIuB9U37vU1Efi0iX2hOjG5GRN5SH3Ho7+8/0iaKopwIlkde3CdQrVOU5Y1qHajWKcrSZxa1zhiz3/09BHwXGyVyUERWA7i/rqM8e5moG+uA/TP5CnPmARaRK4BDxph7ReTSSTb7MPBJEXkAeAi4H6gZYx4VkY8ANwI5rKDWxyr+Gfhb7Bv/3wIfB950+IGNMZ8FPgtw4YUXLvr/cZT54d7PXs3lz/17AAqrkhR6vThHLChG1DIuB7fNs14G9ystd/oTxqTCFPEoX3ZvBJ4bVXQDfJN5WDP9dlQQrAejPspXfeY4F61u3PO/engzBdeuqbDKJzEOSVdaX0JIjdhnlfH1nvUCuzxmv0bcginyoNhrc4EBMgOG/MrjHCMzQLS0bz/VOmUpsP2qa7jsBR9xcxUOnWuTyDof8wATa5TxIefyzeo5wHXPRLWV2JtS6vGopRs1FBIPN7lZsC2Nyr0Nd+vwmS63Lh3hVSRu8ZHIweh5tmjBmy68ja8/3nAmhCkhcnpV197USGO+kGlMR6nGuZvnJYJKJyQK9e9wPK1Blvbtp1qnLAW2/M3VsdZVsj6jJ9uHoPSQIShZLypYrStnrS55NYPxGu0lw6TVMLAaEhQabdYyT3qETl+8CkRG4ogapPEcV2sDosZxSitDNpx2EIDfW/kYX91yEZXIPgDmVwWkXBu5oGifG+taV8kSn088652uj055oV0P4Ffsp+La2NWf/Y6ZWdQ6EWkFPGPMuJt+PvBB4HvA67F68nrgP90u3wO+LiLXA2uAU4G7ZnLuuQyBvgS4UkReDKSBdhH5qjHmNfUNjDFjwBsBRESAHe6DMebzwOfdur/DvvVjjDlY319EPgf8YA6/g6Iox8WS8HgcDdU6RVn2qNaBap2iLH1mVetWAt+1UkEAfN0Y82MRuRv4poi8GdgNvALAGPOIiHwT+A12AO2txpgZJa7M2QuwMeZa4FoAN1L4rmaRdMs7gYIxpgL8CXCrE09EpM8Yc0hENmDDaZ7hlq+uJ0Zj80cenqvvoCgAN/3sWgB+53XX09IfIW7M2qtEJFxBk1JPQOZQI6GisCpgfFPjGFIjzmkrd3hx4/NyJ1Q6DSbh8j5Sjaiy7KM2N6TYWz8IVLN2u9S9WZ7+mu2UXDm/Aydn2e1qBARDgc1TdocyAuXOek6LXRaPXDZpmBFoOdiYHz7diysJVruPI1lkiT8UqtYpS4Wbf/LeePqiN14PWA9CaiQkCqzXoNjjxx7fzGBIbk1AudPOV3oipOKq2I8KLQcnehlGz7Q6EgwH1FZV8FP2uSX1UAbfeYpLfUJiHCoddr6WgY3rbbjrC7IPsXtDNzdvOw2A8pkRrbsaUSrJUeLq1Ym8Ici5HONsIwIH4rQ6wHpvyt2G4krnzV5Rgs8cy1VrYpa0TkTWA18BVmGV/LPGmE+KSDfwDWAjsBN4pTFm2O1zLfBmIATeboz5yawY04RqnbJUaNa6i99gtU4iSI6FGN9F063wSeZcxflcxPjagPwau0/YOlHrvKrt4gG27kt5g3tmqnpIRwUvcM9uE7TOeWi73TkGfZ7Ttw2A38s+zO6N3dxcs1pXWO8huxqRg37FaiNAUGrobDXromGcFEV+wy4iyK0zRCmndT3lmV/AWdI6Y8x2bFG8w5cPApdPss+HsDUIjos5b4N0OCLy5wDGmE9jiyJ8RURC7Nv8m5s2/Q8R6QGq2Df8Ybf8OhE5F/vPuxP4sxNkuqIox4oBwpm2UJrIQn0onMJe1TpFWS7MotZhPRvvNMbcJyJZ4F4RuRF4A7Y35odF5H3Y3pjvlYm9MdcA/yUip83UM3KsqNYpyjJidrVu3jghL8DGmFuwPZzqAllffgc2fvtI+zxrkuWvnX0LFeXo/Oor13DO228g5XqnBSUvrkeXHI+sN9WNitUyQsLlayRy1uNa9zqUO5v6txlI9wuR60lZXgGtu+0oX2rUUO6QuOp0rQ1a97ncDQ9+nVvL59ffBsBgNcvwj+zQZHa3PXjdu5scqyEuX2N0U4rxDXbUEUByje/X+qSx36ee45ISis7j7OWPI1nELJ+HQtU6Zalw9xdtgd8L33w9hV4/rhxa94iA1ZjuR0sMnGPz1KKEhznTikoIlB5qm1DfIPWkFcHyqhoSNI5TWNMU+fKER6mvoZGVFSH7h607+O7iJl674nZeu+J2AP78839B60FrV2610Lm9hri85HKXT8E1x/CqUA0gOWL1s22fwdiQO8QYwowgJ1u7SwOZGV6x2dM65w2ttwAZF5FHsa0+XsIc98Y8BhtvQbVOWQLc9SWrdRf86Q1Iu49Xcd7asSiuc4CB1Jih4irXm5xHcZW934urDIgXa5bxIHXQal21IyKKhKjfhtNFCeJq+KkhKHdDctg+89VaDA+P2ee4d/Tczct67uHBfjtfuT1DeqRR8b59T0PrcmsDRq2jGK8KpipxxEvbXoPxJmpdZZX1/Ea5xAyv2Kw+180bJ6IPsKIoy5lZqhZojDlgjLnPTY9j+1DWHwq/7Db7MvBSNx0/FBpjdgD1h0JFUZTZZ/paN53emACIyEbgPOBXnIDemIqiKEdlCVS8P+Eh0IqymHnwH66Opy9+/fX4lcYNHiZ9vKrLrag18myTOdu/rf88O5/uF1v9D6y3VaDS6XLhBv2JvSojyJ9k1/VuHGIk1xKf7/Yfnc2FFzaeccZPsdvl13skhyWu5tzzSGOcq9wxseJ0zyNVxtdbQ4srBARSbpTReJAasiOHrfuNrWJyrBxbtcAVInJP0/xnXdXP32Kqh0LXSw7sA+CdTbvpQ6GiHCP3fP4azv/zG+Ioklpa4r7lXlUYPTtN5OajBKTvbIun/XKjKnRxTYhXtXoSDAcwHBAl7THTI0JmwG5XWAlRwhD22YIFq1eOMHrLSgD+6b4/oP05h7h683/ZY55aprDRnnzVzwPG1wW0HHJaOhyS7rfaVuq1VayDQuN71ftYhq5vsXnEumWSJ6Yy6nR6YyIibcB/AO8wxoy5QjFH3HQSixRFmSb3fu5qzv+zG0g6bbB1D5xmFQ3FHomf67wKdDxutSe33ublVt1zXa0tiiPwosDgH0rilxrRe6khuy6/PiJYVQTfelN72wr85menAHDB+v/B5pMOsq7dFo+5//wOxsbtK1t2u1DsbuQnG68pUjBjyDTVXqi2NaShrr+JnTZiJ9EUAXhMLJGK9/oCrCjK3DK7DdP1oVBRlIXJLHo8RCSB1bmvGWO+4xYfrBeMmqvemIqiKEdlgXt3p4OGQCuKMrfMYqjMVA+Fbr0+FCqKMj/Mkta59kGfBx41xlzftKreGxN+uzfmq0UkJSKbOI7emIqiKEdFQ6AVZfly15evicvne1VDtUWIgsaYUr1JOcaGvUSdNrY5Gkk0upS7olPJYRuvUu4JSY7Y6dJKQ3JISD9p51/67F8zUI+xAb4zegHc0+POD7LSHtQrCbUMtDxpt8uvbNzmmUFDEZnQmqTrsWI83X9ehrGNDcdp3DYpOamXdWqMgXB2ak5N46FwzhqmK8py5r5PX81T33MDAJkBQy1t9cAL67HQ9k92Z2Of3PNz5IfSeDkrNl5T0cAobZAqpAftgvzGGlHC6pQJ4HN/+Bn+ef9zAXh53z385fBL7Y57Mwze18d7n3w5AOJHSNHpZbdQ6oEosPNRwo8LDybG7Xm6tloNTuRDhk9NAVDussVn6gVsWg7Mv9Zh++2+FnhIRB5wy/4Sq3Fz2htTUZYz933mas65ympdcryhdWGqHgptt0uOEbdc8zbnKO1rgdAVmwonhh2HrREp91yX31jDHLLCFOQ9PnPRv3LT2FkAnN2yJ9Y6f2+G3QfWU11jH8JMKNSD3cRAfpVQKdhjGiFuzxkUbUum9q02182vRgw8zWpdYYXVunootD/TLkizq3Xzhr4AK4oyt8zeKKA+FCqKsnCZvd6Yv+TIKRwwx70xFUVRjsoC9+5OB30BVpTjoF4+f9OnPs6GH9XidkZjG4J4dK3cIbQMRCQO2uoJYqCy3o7qtT2cJJGH0NYkoLapQqXTtuFIjAmlNSFkXFEXr0otsiN+N+48ndYdQVx0wfgQrLRDk2ev3c+9D55MrcVuW20lLolfaxFM010/ckqCvnusLbmNGWqZRvEE40PVtUEq9R2H2OlDoaIseh6+zhYA3Pzx62lz9YaLPUIU2AIwYLWm3qrDf7CN9LnjPPO87QDcd2gdfN9GrNQykDvJkB60+5W7fcqrrAujdUWet97/3/nH874OwNOSTZVa1hUJn8ywevUwAF8788tcfsvb7blb0oQpKHXbTWuNeoGYhCHzpBAmrau61OUTFK2d+TUSF+MCyJ10HBdpCTwUKspy58FPWq3b+M8fo/cuqxnGtwXz6kVKK+2QHnQFQ7e2EfXU2LTZht3t2LaKzofsg1YtA7mn1uIHq2DMp7LWPnNl2kt8e+giXtD5MADby32EQ9Zba7pq+ONBrHXv3vwT3nnHKwGrddX2pufGFsAzsZ3Nha/G1yXjwidh2hAlDWGLDXepdhzHRVoCWqcvwIqizCFmSVQLVBRFmRrVOkVRlgNLQ+v0BVhRZoEdb3snz77xoyRH7fDgiodq7Hu2HZ4LM1DNerQcsNsmcobUsG2KnsgbWg7W4uPkNqaodDYajAdjHl6/HTn8ygMvpPv39wFQKQWEm6u0bbVeZf93h3nhhkcBuH94HX7RI7/OtWSqSuwp9su2fH/dOzJybpVyl+1T0rrfri+st+4cr+KRXG+9L9+56DOcddUMLowBswQapiuKYnninddwySs+Hs8nx2rseW4yni+ssX9bDkDrd9q4q+8cAPLrDAnXoMwvQbAuT3SK9YSEA22kd9ljlEfaSQ0Jb7v7zwF47xu/xZWnPwTAD7Y+lZpn6EzbaJcHyqs4d9NeAO4vbKRlZ0Cl054jSkd4Rc+dT8htDgHnhSlC2W0Xtytpsbon0UxzgFXrFGUpsfMv3sUlP7Na55cjsrsj9lxudcokDKUVVitSg9Cx1WdgyzoAWjLEnuLUMOR9Q+WcPABhIYHv2rNVBhPccvcF/OgsmwP87FO3sfkMW6fziS1r8NcUeNbKJwDYXukj02bDCgsbAxKDAZXOxkuoX3ZtlsSQe2qZWov1JKcHIXTPe2HaYBKGVJ/tB/cHmx+hoeTHwBLROn0BVhRlbgkXv1AqiqIcFdU6RVGWA0tA6/QFWFFmiVv/891cftnfAzB0ZjrOz5AQ/CJUs3Z+fCOkB+y0VxMS41WMqx7dd1fAoRfbhN3OzgK5B3oI7GAdpW7Yscu6UDaddIjdB7vxy3YkcWyolT29XfaYYiZUeU6M2TyUIyEVj+pTrDclTwa/3KhIXekKKQ7bL/Hi710DvOvYL4oxEC1+oVQUpcFt33pnPH3hm6+Pc8okEpLD1hNR7oFyj8QV71v3Cq0H7ExquEa+v5XKy6wH+LxTdvPg6MnxMUt94K+1wveBX7yUrpXj9hgtZXLFVp7ZY70ij5bWsi4zAsB9vqHSSWyLVxKM7/LiIkHaquTPcZVR96bjGg2l1TUkFZJMNyJxZoRqnaIsOZq17ry33jBB6+rPZpVOKKyDwMoU6UFo22f1xKtEeDelqLzM5vKevPYAD45ZrfNKHqU+Q5C00ScPD64ijFxJfYHKWJIOV3Z6uNpKa8rqZd5vwfjWC22PI3FFagTEN5izrTG5rdlY64xvoLVG5Kr3f+eRc4BvHvtFWSJapy/AiqLMLUugWIKiKMpRUa1TFGU5sAS0Tl+AFWUWuenmawE4/YM3UHWV/toeSk6ovJw5KCTH7HRqNCJK+Rw611X+8yG1xbpri2RIFaDloBWacodgAuvx3TOyhvSA7XsJ0HF/krv6zwDA35QnyoSknnR9NT3wT7WjgZV9rbTu8YgSzpiWMNax5IV2hPKMHuuevu/ezUjNeoM7HvPYNcNrYpbASKGiKEfmns9fw8avfBiAdLZMtdwO2Nw340HJ9SdnqNEjvdIR4NUg/U0btfLA81uQXuumyDyQIShDzhUq8JOGkcDWKfCGk7QMwOd+cSkAazf3c2DAljINhgOMZ/BKrm9nb5X0DpuvV+k0pFsqpJLWK5PpHaU7XYjtuah7F1+653cByD7UyGc+VlTrFGXpcv8/Xs3mb9imEuFQijDlepxXITkkceRdUALjWx0aOcU+/0U32/L092/uiPv5tu4FEwg5rNYNJjJxP3IvEjI7fD5XvRSwWjc4bIu51LWOTldDIfRirau2QypTJZ2y0S5dF+0lHVjdW9syypaRPvbutQ+Oy13r9AVYUZQ5xCyJkUJFUZSpUa1TFGU5sDS0Tl+AFWUOeOwDV8fTp/3dDdRaDVG7qxB9W0BqtCEepe5EnKNRbQfPTaeHobAKRjfb4cIoSTw62LJXQIg9ybUWSI3Y7ZLpCi1rK7DWrivc3002Yw86mM6Q22hI9No8Yyk3koVTbpTQc13j2jeNMLr3eBrFAYYlUS5fUZTJ2fm69wHw1PfcQHmti1hx/XizT1jPr1eFWtpqVCJvGF8nlFbabTNb0rHuAUQepPudJzcjVCvWU+FXBAy07rC61T+4Kn6IqZ1cJKp6eEN22w3rBthV6wVAkhGREYrlRHyOIed16Wuxle4/95wvAfBnI386s4ugWqcoS54nXvV+AE7/2xsor7C5uyZhaN0RkHGdPiQ0lNsbuldY0ejZ27bDj7twlLtt1F+Qs1rnV4TQOWX9MpgA0ges1u3PdsY2dJ45xNCezrhuQSpZY9xJT7q9jIih6qL3jBEilyDsYTij8xDr20YAuG/3U2Z2EZaI1ukLsKIoc4YBTBjOtxmKoihzimqdoijLgaWidfoCrCjK3GEMLIF+cYqiKFOiWqcoynJgiWidvgAryhzz+F9ezcn/8HG8cRuSMnBBRM/9jdBjiQyZIRdO4gnF3sa+XgXyp9tiBt5Y43ZNjAntuyIKvTbMxi/ZdksAuUe6Oe+Zj7OuxRa1uj+9jotX2BJW3zhwEX7Op5q3oYCJ1io1FwZ9cucQ20e6uXvbRnugsodXtscvrZj59zdLIFRGUZSj8/B1V3PSv3wUgKjdQBBhDtgCf5GBWosNxTOeTeeoF6wq9RoSo27dmTnKI2kQqxt+S40VP7Hxg4U+iBI2rBCg0hnxhufcCsBp6Sf52UgjpO/WnZuRyFWbKfl0ryyQK1lbXrHxfh4YXW9tPriKx/t7ubvnJHv+3qZY7GNEtU5RlgeP/dXVnPT56wAQDwpnlEnkrb4QCZ57HvNLBr8kVLMuNaRH8Gztqt/SOq/o03uP1axCn9gCpu4904wkJ2pd31PY3HIIgC/+5hlQtc9q5UKCVX2jsdY9b9WWWOt+sedkwtAjCKxx5b6Ze3GXgtbpC7CiKHPLEhgpVBRFOSqqdYqiLAeWgNaJWQKVvI6GiPTDjLu4NLMCGJiF48wWas/UqD1H51hsOskY03v0zRqIyI/dOabDgDHmhcdyfGUiqnUnDLXn6Cw0m1TrlhCqdScMtefoLDSbVOumwbJ4AZ4tROQeY8yF821HHbVnatSeo7MQbVLmn4X2u1B7pmah2QMLz6aFZo+yMFhovwu1Z2oWmj2w8GxaaPYsVLyjb6IoiqIoiqIoiqIoix99AVYURVEURVEURVGWBfoCfGx8dr4NOAy1Z2rUnqOzEG1S5p+F9rtQe6ZmodkDC8+mhWaPsjBYaL8LtWdqFpo9sPBsWmj2LEg0B1hRFEVRFEVRFEVZFqgHWFEURVEURVEURVkW6AuwoiiKoiiKoiiKsixYNi/AIuKLyP0i8gM3f46I3CEiD4nI90WkvWnba0Vkm4g8JiIvaFp+gdt+m4j8g4iIW54SkW+45b8SkY1N+7xeRLa6z+ublu90x3pARO5xy7pF5Ea37Y0i0nWibJrEnleIyCMiEonIhJLq82TPR0Vki4j8WkS+KyKd82zP3zpbHhCRn4rImvm0p2n7d4mIEZEVTcvm/DetLAxEtW5KmyaxR7VugWrdZDY1rVO9W6aIat2UNk1ij2qdap1qHYAxZll8gGuArwM/cPN3A89x028C/tZNnwk8CKSATcATgO/W3QU8AxDgR8CL3PL/D/i0m3418A033Q1sd3+73HSXW7cTWHGYjdcB73PT7wM+cqJsmsSepwCnA7cAFzYtny97ng8EbvojC+D6tDdNv73pePNij9t+PfATYFd9/YmwZ77vb/2o1h3PvYNq3YLVusl+Q2656t0y/qBap1qnWqdaN8PPsvAAi8g64PeBf2lafDpwq5u+EfhDN/0S4N+NMWVjzA5gG3CxiKzG3hh3GPtr+Qrw0qZ9vuymvw1c7kZbXgDcaIwZMsYMu/O8cApTm4/z5cOOf8JtMsY8aox5bBI758Oenxpjam72TmDdPNsz1jTbCpj5tMdxA/CeJlvm2x7lBKJap1q3jLQOVO+WLap1qnWqdfNu06JmWbwAA5/A/nCipmUPA1e66VdgR1cA1gJ7mrbb65atddOHL5+wj7uRR4GeKY4F9kf8UxG5V0Te4patNMYccMc5APSdQJuOZM9kLAR73oQd1ZpXe0TkQyKyB/hj4APzaY+IXAnsM8Y8OPFSnbDftDL/fALVOtW6paV1HMkm1btlzydQrVOtU61TrZshwXwbMNeIyBXAIWPMvSJyadOqNwH/ICIfAL4HVOq7HOEwZorlM93nEmPMfhHpA24UkS1TfY0TYNNv2WOMufUI2867PSLyfqAGfG2+7THGvB94v4hcC7wN+Ov5sgd4Pzac6HBO1G9amUdU66a9j2rd4tI6jmQTqnfLFtW6ae+jWqdaNxs2LUmWgwf4EuBKEdkJ/DvwXBH5qjFmizHm+caYC4B/w8bOgx31WN+0/zpgv1u+7gjLJ+wjIgHQAQxNcSyMMfW/h4DvAhcDB13oAu7voRNl0yT2TMa82SM2Mf8K4I9daMe82tPE12mEW82HPc/B5oA86H7r64D7RGTVibAHZSGgWqdaN2f2NHFCtc7ZonqnNKNap1o3Z/Y0oVq3lDELIBH5RH2AS2kUS+hzfz1sfPyb3PxZTEwq304jqfxu4Ok0kspf7Ja/lYlJ5d90093ADmxCeZeb7sbmFWTdNq3A7dhY+48ysVjCdSfIpnVHsqfput3CxGIJ82KP+/wG6D3s33W+7Dm1yYb/AXx7Ifx7ueU7aRRKmPPf9Hzf2/pRrZuNewfVuoWmdZP+hg67LjtRvVuWH1TrJrNJtU61TrVuKu2YbwNO6JedKJRXAY+7z4cBadru/diRw8dwldPc8guxOSZPAJ+q7wOkgW9hE9DvAk5u2udNbvk24I1u2cnuR/sg8Ajwfre8B7gJ2Or+dp8Im6aw579hR4XKwEHgJ/NszzZsjsID7vPpebbnP9yxfw18H1g7n/Yc9lvfSVMlwbm0Z77va/2o1h3vvYNq3YLUuql+Q4f93neiercsP6jWqdap1qnWzeBTvyCKoiiKoiiKoiiKsqRZDjnAiqIoiqIoiqIoiqIvwIqiKIqiKIqiKMryQF+AFUVRFEVRFEVRlGWBvgAriqIoiqIoiqIoywJ9AVYURVEURVEURVGWBfoCvIwQkZz7u0ZEvn0cx3mHiLTMkk1niMgDInK/iGyejWM2HftfROTMGex3roi8uGn+ShF53yzYs1FEiiLywDHu9yoR2SYiPzheGxRlOaBaN+39VOsUZRGjWjft/VTrlAloG6QliogExpjaYctyxpi2WTj2TmwD9YFZONb7gIwx5q9nuP9vfc9ZsOkN2O/3tlk+7kZsv8KnzmDfS4F3GWOumE2bFGWxo1p3XDa9AdU6RVkUqNYdl01vQLVOaUI9wHOMiFwkIr8WkbSItIrIIyLyWzeKiLzObfegiPyrW3aSiNzklt8kIhuOsvxLInK9iNwMfERENonIHSJyt4j8bdO5NorIw276DSLyHRH5sYhsFZHrmrb7ZxG5x9n8N27Z24E1wM3uPIjI89157hORb4nIb4mxG32709n8XRHpcqNx7wD+pH6sw/bJicjH3XFvEpFet/wWEfk7Efk5cJWIXO5GGh8SkS+ISKppuwunstH9+9zurvtdItIBfBB4lRvBfJW7Rp+axrX/B3es7SLy8mn8NjaKyBaxI5oPi8jXROT3ROQ2929x8dGOoSgLBdW6+Fiqdb/9/VTrlCWDal18LNW63/5+qnWLBWOMfub4A/xv4GPAPwLXHmH9WcBjwAo33+3+fh94vZt+E/B/j7L8S8APAN/Nfw94nZt+K5Bz0xuBh930G4DtQAeQBnYB6w+zwwduAc528zubbF0B3Aq0uvn3Ah84wnf8NfAcN/1B4BNu+n9hR8COdN0M8Mdu+gPAp9z0LcA/uek0sAc4zc1/BXhH03YXTmYjkHTf/SK3vB0I3DX5VJMd8fxRrv23sINKZwLbjvB94uveNF8Dnub2uxf4AiDAS+rHdtteih1lnPffs370M9kH1TpQrZtw3ZvmVev0s2Q+qNaBat2E6940r1q3CD7qAT4xfBB4Hvamve4I658LfNu40BNjzJBb/gzg6276X4FnHmU5wLeMMaGbvgT4t6btJuMmY8yoMaYE/AY4yS1/pYjcB9yPFfMj5V083S2/TWwOxOub9gfAjb51GmN+7hZ9GXj2FPbUiYBvuOmvMvF71pefDuwwxjw+xbEns/F04IAx5m4AY8yYOXrYzVTX/v8aYyJjzG+AlUf/euBsf8gYEwGPYP8tDPAQVkgVZTGhWqdaNxmqdcpSQrVOtW4yVOsWAcF8G7BM6AbagAR2ZCt/2HrBjoodjcm2aV5++LGnc9xy03QIBCKyCXgXdhRtWES+hLX9cAS40RjzR9M4z/FypO8p09jviDaKyNlM7/pM16bm6zgduw7fJ2qaj9D7U1l8qNbNDqp1irKwUa2bHVTrlHlBPcAnhs8CfwV8DfjIEdbfhB2V6wEQkW63/Hbg1W76j4FfHmX54dx22HbHQjtWjEZFZCXwoqZ140DWTd8JXCIipzjbW0TktOYDGWNGgWEReZZb9Frg5xwdD6jnXPx3jvw9twAb6+ef5NiT2bgFWCMiF7nlWREJDvt+hzPda68oyxHVOtU6RVkOqNap1imLGB2JmGNE5HVAzRjzdRHxgdtF5LnGmJ/VtzHGPCIiHwJ+LiIhNjTlDcDbgS+IyLuBfuCNbpfJlh/OVcDXReQq4D+OxW5jzIMicj82fGM7VnTrfBb4kYgcMMZcJra63r/VixQA/xN4nIm8Hvi02DL726ewuZk8cJaI3AuMAq86gp0lEXkj8C0ncncDn564iek/ko3GmMdF5FXA/xGRDFAEfg+4GXifC6v5+8NOOd1rryjLCtW6GNU6RVnCqNbFqNYpixZtg6QsWOQ4y/uLyEPAlcaYHbNo1owRLZevKMoRUK2bsO+lqNYpypJEtW7CvpeiWjdvaAi0siQRkRuBhxaKSDpCoENm0DAd+CdgeC6MUhRl8aJapyjKckC1TplN1AOsKIqiKIqiKIqiLAvUA6woiqIoiqIoiqIsC/QFWFEURVEURVEURVkW6AuwoiiKoiiKoiiKsizQF2BFURRFURRFURRlWaAvwIqiKIqiKIqiKMqy4P8HRfkqsGkDRIwAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, axes = plt.subplots(ncols=3, figsize=(16,4))\n", "\n", "xds_repr_match.plot(ax=axes[0])\n", "xds_match.plot(ax=axes[1]) \n", "xds_sum.plot(ax=axes[2]) \n", "\n", "plt.draw()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" } }, "nbformat": 4, "nbformat_minor": 4 } rioxarray-0.18.2/docs/examples/resampling.ipynb000066400000000000000000000071001474250745200216040ustar00rootroot00000000000000{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Example - Resampling\n", "\n", "This example demonstrates how to reproduce `rasterio`'s resampling example [here](https://rasterio.readthedocs.io/en/latest/topics/resampling.html)." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from rasterio.enums import Resampling\n", "\n", "import rioxarray\n", "\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load in xarray dataset\n", "\n", "See docs for [rioxarray.open_rasterio](../rioxarray.rst#rioxarray-open-rasterio)\n", " \n", "Notes:\n", "\n", " - `masked=True` will convert from integer to `float64` and fill with `NaN`. If this behavior is not desired, you can skip this." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "xds = rioxarray.open_rasterio(\n", " \"../../test/test_data/compare/small_dem_3m_merged.tif\",\n", " masked=True,\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Resampling\n", "\n", "API Reference for `rio.reproject`:\n", "\n", " - [DataArray.reproject](../rioxarray.rst#rioxarray.raster_array.RasterArray.reproject)\n", " - [Dataset.reproject](../rioxarray.rst#rioxarray.raster_dataset.RasterDataset.reproject)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "upscale_factor = 2\n", "new_width = xds.rio.width * upscale_factor\n", "new_height = xds.rio.height * upscale_factor\n", "\n", "xds_upsampled = xds.rio.reproject(\n", " xds.rio.crs, \n", " shape=(new_height, new_width), \n", " resampling=Resampling.bilinear,\n", ")" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(1, 245, 574)" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xds.shape" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(1, 490, 1148)" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xds_upsampled.shape" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(3.0, -3.0)" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xds.rio.resolution()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(1.5, -1.5)" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xds_upsampled.rio.resolution()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" } }, "nbformat": 4, "nbformat_minor": 4 } rioxarray-0.18.2/docs/examples/transform_bounds.ipynb000066400000000000000000016700161474250745200230450ustar00rootroot00000000000000{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Example - Transform Bounds\n", "\n", "The [rio.transform_bounds()](../rioxarray.rst#rioxarray.rioxarray.XRasterBase.transform_bounds)\n", "method allows you to correctly estimate\n", "the bounds of your raster in a different CRS without\n", "needing to re-project it. If you simply calculate the bounds\n", "by transforming the bounds, there are often situations when\n", "this is incorrect due to nonlinear transformations." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "tags": [] }, "outputs": [], "source": [ "import pyproj\n", "import rioxarray # for the extension to load\n", "import xarray\n", "from shapely.geometry import box\n", "\n", "import matplotlib.pyplot as plt\n", "\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "tags": [] }, "outputs": [], "source": [ "xds = xarray.open_dataarray(\"../../test/test_data/input/MODIS_ARRAY.nc\")\n", "transformer = pyproj.Transformer.from_crs(xds.rio.crs, \"EPSG:4326\", always_xy=True)" ] }, { "cell_type": "markdown", "metadata": { "tags": [] }, "source": [ "## Original Raster & Bounds" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "tags": [] }, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAHQCAYAAACvPR6sAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZRdVZk2/p47T1W35qpUkspEgAAhIAgEROGnDWIjrdiNrV8r7YDtov1oxbTf58L+NSiKjbOgja1pEWLD+lzd9JL++CEgCshkEwwYCBnInFSlUuOtO4+/P/b77Fvve2+FhEwk7GetWrfuvWfY55x9zt3vs5/3eb1arVYjBwcHBwcHB4c3OXxHuwEODg4ODg4ODm8EuEGRg4ODg4ODgwO5QZGDg4ODg4ODAxG5QZGDg4ODg4ODAxG5QZGDg4ODg4ODAxG5QZGDg4ODg4ODAxG5QZGDg4ODg4ODAxG5QZGDg4ODg4ODAxG5QZGDg4ODg4ODAxG5QZGDg4ODg4ODAxG5QdFhx+OPP07vfe97qb+/nzzPo//8z/884G3UajX65je/SSeeeCKFw2GaO3cufe1rXzv0jXVwcHBwcHgTI3C0G3C8I5PJ0LJly+hjH/sYfeADH3hd2/i7v/s7euihh+ib3/wmLV26lCYnJ2lkZOQQt9TBwcHBweHNDc8VhD1y8DyP7rvvPnrf+95nPysWi/SlL32Jfv7zn9PExASddtpp9E//9E900UUXERHRunXr6PTTT6e1a9fSSSeddHQa7uDg4ODg8CaAmz47yvjYxz5GTz75JN1777304osv0l/8xV/Qu9/9btq4cSMREd1///20cOFC+q//+i9asGABzZ8/nz75yU/S2NjYUW65g4ODg4PD8QU3KDqKePXVV+mee+6hX/ziF3ThhRfSokWLaMWKFfS2t72NfvrTnxIR0ebNm2nbtm30i1/8gu666y668847afXq1fTnf/7nR7n1Dg4ODg4Oxxecpugo4vnnn6darUYnnnii+LxQKFBnZycREVWrVSoUCnTXXXfZ5VauXElnnXUWrV+/3k2pOTg4ODg4HCK4QdFRRLVaJb/fT6tXrya/3y++SyQSREQ0a9YsCgQCYuC0ZMkSIiLavn27GxQ5ODg4ODgcIrhB0VHEmWeeSZVKhYaHh+nCCy9suswFF1xA5XKZXn31VVq0aBEREW3YsIGIiObNm3fE2urg4ODg4HC8w2WfHWak02natGkTEZlB0Le//W26+OKLqaOjgwYGBuiv/uqv6Mknn6RvfetbdOaZZ9LIyAg9+uijtHTpUnrPe95D1WqV3vrWt1IikaDvfve7VK1W6W//9m+ptbWVHnrooaN8dA4ODg4ODscP3KDoMOO3v/0tXXzxxQ2fX3311XTnnXdSqVSim2++me666y7atWsXdXZ20vLly+mmm26ipUuXEhHR7t276X/+z/9JDz30EMXjcbrsssvoW9/6FnV0dBzpw3FwcHBwcDhu4QZFDg4ODg4ODg50jKfk33jjjeR5nvjr6+vb5zqPPfYYnXXWWRSJRGjhwoV0xx13iO/vvPPOhm16nkf5fP5wHoqDg4ODg4PDUcYxL7Q+9dRT6ZFHHrHvdRbXdGzZsoXe85730DXXXEOrVq2iJ598kq699lrq7u4WJThaW1tp/fr1Yt1IJHLoG+/g4ODg4ODwhsExPygKBAKvyQ4Bd9xxBw0MDNB3v/tdIjKp7c899xx985vfFIOi/WGc9oVqtUq7d++mlpYW8jzvdW/HwcHBweH4R61Wo6mpKerv7yef7/BN4OTzeSoWi4dkW6FQ6LgkC475QdHGjRupv7+fwuEwnXvuufS1r32NFi5c2HTZp59+mi655BLx2aWXXkorV66kUqlEwWCQiEzG2Lx586hSqdAZZ5xBX/nKV+jMM8+csQ2FQoEKhYJ9v2vXLjrllFMOwdE5ODg4OLxZsGPHDpozZ85h2XY+n6cF8xI0NFw5JNvr6+ujLVu2HHcDo2N6UHTuuedap+c9e/bQzTffTOeffz699NJL1hF6OoaGhqi3t1d81tvbS+VymUZGRmjWrFl08skn05133klLly6lVCpF3/ve9+iCCy6gF154gRYvXty0HbfccgvddNNNDZ/vIKLWQ3KkDg4ODg7HK1JENJeIWlpaDts+isUiDQ1XaMvqedTacnBsVGqqSgvO2kbFYtENit5IuOyyy+z/S5cupeXLl9OiRYvoZz/7GV1//fVN19HTWUi+w+fnnXcenXfeefb7Cy64gN7ylrfQbbfdRt///vebbvOLX/yi2F8qlaK5c+dSKxG1vvwyUVdXwzrv+rt/JiKiasDstxqW35dj/E/VvITS/F4N8ovt5rUUN6/hcRyoXM7j9QIZ8+ovmeMutMkF/awnL/B2o3tlcmJk0jSo6jfr+QvmvVeWy5XjRtvlq9Tk8iW5HI7fV+TthszNWlPtL0fMB+WoeQ1m5XZCU+YAq0EfH6/5Pp+UNz/2h+OI7jEMX6ErJJYrtJr1qj5uX1Xuz+Pr4lXInuuGNnNbq4aAJF+J1ynL5XCOfBW0UX5f4WMvcZ+osWwuOizbFB2tiO9xLipBub1Cuzwnuj1hPjeBnHktxc3yxbharyrb7y9RUxQTpv2hNPcFPj5cQ5w3XONKUN2jvNsaH0dkzOx4/CTZHmzHX8D2+T33aR/3PVx74tMXHcrJ4yqa81iJmz5RDZv9lFrqFwb9Awjk+RwUzWslZBqD+65l06T5Z9ewWI/6u3lf5odl+OyY+DrfY7bX9gq3daTMxygfBMU2c3IK/GOX65bnEO2IjNVEe6vqXPvU/Znr1vePbH6AT11F3j7kqZxmXJt63yS1gHwbG5bn07avLLeHvmfbp55LuDdxLwC5NvO+84/mwZrvUT/svF5mVoACObOPclieq/heeQ08fobZQ/Lj2S73PTWn/r4tl6Ff3vlP9W0cAblFa4vvoAdFxzOO6UGRRjwep6VLl9oK8xp9fX00NDQkPhseHqZAINCUWSIi8vl89Na3vnXGbRIRhcNhCofDzb/s6iLq7m74eCJqynjgR7ryWoMivv88NSgq8HJ2UIRZvBkGRUHent/Pg4aYXJCbQ3nebiGqBkV5OSgKcAM9v1yuFJ5hUORrPijy8y9sZX8HRWqQEirOMCiKzjAo4odmMWRugby6foWIT7RbP3wPZFCEHww/T+U3DIrK+x4UYTt6UFSIyDYVw3wO9KBI/WDpc+LTgyI+N8EqnyM+F8XoDIMibv9MOQ5Fbn+orAZFfE4x6LGDolDzQRF+SKMRHhTFZxgUYfv8Ofq0L8CDorwcFBWD+rh4UBTiQVHIHFgxPG1QFFGDIt6Yn0cDFf4BxbWuBvgfX5TkiubGrQTNj/J4LC6+ziW4kfybXQzxoKgmHwSFcFC0KxtrPiiK8kAU7W0YFKn7OBt7jUERv+rn18EOiorct/XzAoHFaw2K8FyqzTQo4r4cCPJzIqyuC683FQ1QkANn9E+gFJbXwOc1HxRV1KAoFTu6A5JKrUrqtL2ubRyvOK4GRYVCgdatWzdjyYzly5fT/fffLz576KGH6Oyzz7Z6Io1arUZr1qyxRoqHCvhxtsAPA+5N1efA3NiHAj9cSgm5XKlFLhfgaDmxS24QP7QAIj5E82Cm8AMbSsvBkN0ObngEWjXZvgoGFSX8IKoHSww/+GYFPFf8hZpoZ2iqyq/m+/C4OcBi0nRh/dArJcz7cgxMlPkcD9Fii/k8346RBu+X2xnM4KnBA5Yy1sOgq74v/GiDEcHgRg9GsI9AAQNF+TXel+LqHKvndWwPrhGiflwbuRwGhri26dnNRy2RUdk3AgX1PoftmAPDOdADbw1cwyi/5jrNemB6PDuwleyfZVlqsg8Ae87h8wx2kn/5WrbJ/eMHHNcBLAn6YHTYdApfTlJc1ah5Fvh4oJ3rrbMImT55/bEP3G9V7m9gYMMTPPDjwXfthLlm+bzZ9+Sp7WLfuFZTC8x6HWvVMQXBPgbE+7xi/+KD8levpn6HUwPNB7jREblcbI/sC3o/OH6cDwywq3zOMSipaCKm0rxdAJ4LYIrs8ywjByI1vpZlHgzqvovBmZ9ZnHSf/MkbXWYemHi+AdOPE/0Yr5ZlU7dTsUNuG8vVt2P20b7BvOa6/BRWyxwJVKlGVT0KfR3bOF5xTA+KVqxYQe9973tpYGCAhoeH6eabb6ZUKkVXX301EZlprV27dtFdd91FRESf/vSn6fbbb6frr7+errnmGnr66adp5cqVdM8999ht3nTTTXTeeefR4sWLKZVK0fe//31as2YN/eAHP3hdbbzkM/9ME5H6yKX9ZfOrDu5o6AKjOrJRLlP9kXEVsfXIH4Zcr/k+PGY+x8PFp6Yw8JCt4QeCH6LFVvyw8Of80CpV5MMIER0eEmA7/LiZNSOFZlsmBcvpyJUHHzxoQxSGQQvaGx2riHZjMJTrliOObI9pXzjF04JJNbDgALxmf4AJHwhg0Jfl6YfEYIWPl6fb+DXbU7919CAG1wI/iDNN+ZUSzUcV+odC/8Dphy2WD6ofjEJS3t66b2Cgab+fIXwsKqodfceuV8b25HRYoRVTpuZ9OMXROzerxANq7NcOfDNy/6mFcn/BtHwf4R/yyLg8nmJCtjs4Jc9PYIpp1TIzYv3mBzLTJ/sWBtBEdUYEA1VM1U1fhogoPiTbkhkwHTC2w3S83Fxz34dSpk2peTIo63qB25yR28n2yF9izV7gGujvs7PEx3YaHcBAvtAuGS70tQJPQxeTcr3wmHlFEITnBp4T6POpeXIwie2j9bhvMSBu2SXpS83C1lRwhcFQvt00JDJudhTIqmtekOcPAx0AxxmdFih46r7w8b7Qu4ptcpu4rxvYMs4qw/Ni74VlqqTKRPeQwxsIx/SgaOfOnfShD32IRkZGqLu7m8477zx65plnbKHUwcFB2r59u11+wYIF9MADD9DnPvc5+sEPfkD9/f30/e9/X6TjT0xM0Kc+9SkaGhqiZDJJZ555Jj3++ON0zjnnHPHjc3BwcHBwOJSoUlVPRLyubRyvcGU+DgNSqRQlk0maJKLL/+bLNB5LUPcLJqQM7xgXy1bapIZg4hTDKmntUL5TRkZFldaW2NmcIYnPQH/bOX4eFuvIUbMVwZycRrLL6VlApU8Bva6n32pqGg7RU3jCHDgi19ir8nzl58pQdXxxSByHbW9aRYCK3UAUh/aCodPaiMiE3A5Ey+Vpmg3NUGihMI492y0jysSgPFk+Rf1DrF5iDQJYu7her6z3r5idpNmOvqb6GmAKBaJ1RN36eMD45DuggJbbJXtupb6mURyv2q2ErBANV8DKSD20BbaL/RVYRItrGR0xnydfSZnlsobGKHfIey/bZ1bQOpvJBdOnUvgQ+VJiKhP3ndXcKA1Ny44qr4+pRL9os2YbW3bJB0Bqruw7uD/0/RdS/d5OE7NkUmuCwB5iWlrr3QBMh6EPgiECcI0wTR2ZkLotAEzS5DxzPGCIAEzVaoas3KBtas7OAtFheSC439Oz5QnQrKeWGQSz095j6l0xQ5qRxDHYZ4wSr+e5f9YCRO25ND360/+XUkSUJKLJyUlqbT08Ocv4XdrxyuxDkn029+Rdh7W9RwtOgu7g4ODg4ODgQMf49NmxgM6XChQIBSm8UWa9kd+MRzPzZLSqU1BzHI1rJkdHzZohshGtT0VUKrKEEFsLtkOp5owQWAMtPLZQ20/sVtoAZGQoETIYIo3sIiNERcp+ap5cEdGYxxGv1gjk25EWK7cbmpTvtZg5PImME/k5zivOT2JngbKzZJs045GNysiy64W0eO/faxiMqWXSQ6uuzzDnRtseIC27rLaPc4xUes1CgGnKd5rb32aRlXDMcj1E/2CIgOhIlZeHWF6yEugMYOGg48J+dF/U7Cj6EtYH66JT+evRPuvAdvP5YiF3eFQ6+NaCZkP+cdOgcpe5ByOjJW6/oUMyfWa5kLk8ps/yrpAybplQ6Kn4dsj0mwVbtyqqhNeHVm6Kxe9gJAPMTGh2zqfOjT53moUDQ5TrkcvFd5vXHIsawZSi/0eH5XswRGCU8GoTOpBUp0ySoc0JZJEUgOxSaPXAnkoNj2aIkI3qWe2jes6x5imYay6wBootuJacbaYE4/hci/qrAR+FWZ9UaFd6roZkFWYsK82vhWXJj/KvrhNa7xtuUOTg4ODg4PAmQZVqVHGDohnhBkWHGeFX91DYP0UUkFFG6qx+8w9LuqZYM6AzhOxcPr9CSxQblMsFJflg074teD+RCflxVpm8aXM3u3pD+jjrRDJqOUUcFVrlip7yF4IZXaFNdsWcyubJzJLfx/aYV0RngH6P85mey6wFsxWaCdPQWT1I1U/sLIjP955Zp5KQmRPfxftgzUzbamXYlwfdZBiJibfKOnvISCIfMoFYo6Ai0JkYonyH/BxRONi2Mtsf4FyB4cG5ynX5xPcAWBFkFjWcoyIyCjky5r4AvUl6tmR0wADFWZdTVmweNFceNBm8errfnDewLYEC2zbMwDYWW83y4PP8rMEq9Rp6tMaZkeibyPCqZ2ya18hYzTI2+tyUlC9Q+3o+52XZ9mwXs1Ql3Gfmc5xLj0+aryiZC82sgtlN7JIMlfZ0AvC8wDVKcB/FfWytMLhd2ojTaqbUdtEOMNdgAwOKuUIqPRjv8RPlAYHRVlY/DcyQ1qGBDSXFnCM7Ldch+zoYIvRJ7A8WCtCfgc3MdfqslQQ0asgMrrNzMmUfTLHuEzhXYB6r2rLjCMExRfuG0xQ5ODg4ODg4OJBjig4/PI/I8yh7imQDUgNsVsgDbkRgeA0qDREYImR96KgFkaZmiBA5Qgtj98NkQlhlVzXa6vN7nVWmHXM5ytaRHiJA66WjIshMn2kQmCkYIGpXYzBDDe1iQNNRN+yT+43vQlaLjMARQYIdAQodvN5ueVxT88yJz3fU2weGCOyAbfOgZJXAEKXPkgUfrXaIPZDq2SoceULj0wZdhIm6SwnJCKH0BKJ9lOuw37ebk4OoHxl60OTgFZ9rx2oArAX6LpiUotK1ZeabDcR2cPYcnL3zYjFKDcj1ul6SnS2UkrRFe5oZJGQDtZsN4zyFJs33vpIuw8BlUFhTFBg3Dcn3G03R5ILmBq6dr9Tbg0zAen+GEZ98lNZy8r6x1wZmhPx5aoF5xTkpZcHa8X2gNG0wccXy0MxZvy9mQMD4RsbQbqWVUZmHYMXyfP/huZLuV+upU6QZajxXkJ3ZuoVNKhfqOiDybXhSXivNdurnEhiiyKjsK2V2qobWMdcl2Un9XLXu6px9Z0t5TNML6YxUnHOcU2QKIiPOGlN6uK/MezBEQM1r1IYdCVRqNaocZNL5wa7/RoYbFDk4ODg4OLxJUKWGggmvaxvHK9yg6DBj+J1zaSKaoJadJtodO8mEWjZA4H8Q2WE+Wkcn0ATY4ptMQtQzlHjkjuidmaO6NT13Y0SkHPFahikvs0SAeu0g848uhImIEMxMbBhW1hw1oVkqItLeHmiH9h/RNv8A9CTW3l+5OYO5yswy5xsMkXbeRXFGaDvAECHay/ZyhMmRJNiO0rSkQTgqowRE9/M50YZSnwkVs30m7AeTo/VX1h8H7JqHfckFoanRdeUSQzJqrvsb8bXTLt8xyZZZt2H1xGvIssG5Uh4v6QEZPYIhAlq3NdcoaXlCdHdWLhdWLAx0MBVokbjv7TYNq7FPkz+H1CrWEHXJFENoq/LMwCHjULMYtj5fvtrAuKT7TdvQP6G3mpoNt27zXmvYStzfoT9Df9TaHTBFyO7SzIzuQ3iO6HpyOivTwi4nPwYTimtdbMFxqNUbihvL91MDIbEcNEFwoI/tZTdxpT2EJgkMlmaEwqPmAViOmxMFhqigCkAndlfF59bHKY3jMQ1OQ7PIq08uqp+vatj8H9/O/UoRwNp/rH4fMWM7QU1RjnpUPn4Jl2MWblDk4ODg4ODwJkHlEGSfHez6b2S4QdFhRi1k2IXJhSaiaWHH1DRHkogg60U3WePSjWjXbEd7XwTYl8MWH2U2oJ49IiPGii0kCZ8h8zkiJ53ZBJZiao7KCmPfk+he3q6SCoAxQvYK2IAMMy6ZXln4FX4vlilS26uqgrJgiDRjlW/n87ud3YrjcMzljCtoDeLw8DHrwW9F+64AYIhsdg48c6ZptbTOYnwJMxJ8SlEAVXujgJ2DnkJH2QXlRI1zq/tC6zZpEgPtEKJxQDNA2mkXLFrrNhMKTy40dGWDZxWid9ajDZ8t2ZPwiOwDgHZT1s/V+KBcAZqM9ICkMXCPgG2MD8njD+6VdEp2fhu3m9kPZhXBwOFesYVoVd0+sEPliL+hxhmYIayjj9EyrX55f2pPJvS72F5mjJiFQ80+XXgWfQX9E8wy2gdmVGeH6oxBzIPommmaBUSWm92OYg9xXzQ+p5RmkRmrlh2yNlm+C0V45fKJ7WbDXoUd8YMo9MwnhLUtDftV2bNxZlGtfxFIQV4PTD76SIL9nHa8q34P4ZpBbwUfr0JS7IqyS6VorvM3kvafrkc8GqjUrDn3QW3jQPD444/TN77xDVq9ejUNDg7SfffdR+973/vEMuvWraP/9b/+Fz322GNUrVbp1FNPpf/zf/4PDQwMEJEp+L5ixQq65557KJfL0Tvf+U764Q9/SHPm1DWa4+PjdN1119Evf/lLIiK64oor6LbbbqO2trb9bqsbFB1mJHaWqRIu22meYNrcWe3rueI4//DhgYzU0ICcQbA/TKBk9Q8ojOfKLL4F5T+TkM+mxuOFH9plf/PUWwyGtBlddK98QMz0Q4gfXFtWgH+3bLkM3ixoc7S/dbvcIAY3gJ5awoDAllngqaiiMjDE/nEekS4LYbXdviraWo6Jt1TzE8XZiA7lJfSPfWq+LKYbHpeicJR8CKofkIbSBaOmsbbwK2YCZsuLhR8s+8Or+oAVpSubBQyGgPZ1shNOnGQOXpdQ6V6tRbDcl/hcoS/rASd+kDA1Eh6WKtj0CbJ8gP2B5R/CkCrw6s8qB0Gsl9ciXnO+MKiyU0s1tFMO1IFKyLPnDtPTEJnb/o0fzjE5FYdBkTX4K3HZj6IckGVmsTUHH0psSCYGYJpLi9Ux+MG5t4kKmJEt4nu5ni6zgUQIvGJqsqymDWGQCWDaH+cMfRftQWAAYDAU2T3Fr9gQn49203kwGAKqYX6+hdX0O7/HecDgE32loTgrnndRTJ9zsNonfxLbX6r/rweYGAhHxs3r1KXmoZJ4UjrhagPN1m0cqIU9iqjB2/GKTCZDy5Yto4997GOi1ijw6quv0tve9jb6xCc+QTfddBMlk0lat24dRSL1gOizn/0s3X///XTvvfdSZ2cnff7zn6fLL7+cVq9eTX6/6Rcf/vCHaefOnfTggw8SEdGnPvUp+shHPkL333//frfVDYocHBwcHBzeJDgaQuvLLruMLrvsshm/v+GGG+g973kP3XrrrfazhQsX2v8nJydp5cqVdPfdd9O73vUuIiJatWoVzZ07lx555BG69NJLad26dfTggw/SM888Q+eeey4REf34xz+m5cuX0/r16+mkk07ar7a6QdERAlJ3EZlUQ81Tz6N7ZeHIhjId/D7HgszWrTxdpNKzbUq6EqXq1FabRsofW4YIUz9c7BTRECJAMD62KCj2C2EoR2rZHkWzF+T32L+eykF7UIoC5Q80M4SyAHZqSLEisUFzfoJs85/tMdvTZT0wTTl+maE1Ek+YkFpPc2gLg+nRY8tOZjz2mo3tfruZk/MrAiPTJxvZysVCZzIfBPQUAVLQwSBB8KmjYvQpAAwV2AtMW1lhMmN8iaQVwPSAJQlk5UnHtcG1RCkVzXg1TNVyO3a9y+Sbt27l6URmbOpFUyUbEFTi+krMzL3mF7Ty/s1xFVvlYy41T07hYjqjXqpCsp7Tpx3BmOD+9Mq4z3BsOGY5HYwyFdZk0Q9mGOUwuA+oaSy0DQxRgPsp9o/nSBHsILdVTx8htT4yat6HwKjkJWOF+xHCZF0w1SZSMGYyKozt5TR1Ps7QlOxbgUl1U6g+4Z8yVFiRS7BYQXhMPufAsgK2OLNKGQdTPxPAqMf3mHZm+hp/GrVUAMwQ0JFgSvRS8zr+e0MRgSkFQwT4Ko2M/5FAlTyq6Afl69jGoUK1WqX/+3//L33hC1+gSy+9lP7whz/QggUL6Itf/KKdYlu9ejWVSiW65JJL7Hr9/f102mmn0VNPPUWXXnopPf3005RMJu2AiIjovPPOo2QySU899dR+D4qceaODg4ODg4PDASOVSom/QqHw2ispDA8PUzqdpq9//ev07ne/mx566CF6//vfT1deeSU99thjREQ0NDREoVCI2tvbxbq9vb00NDRkl+np6WnYfk9Pj11mf+CYosOM4FSZgoWyLTIJoJAhIr6ZUmdtKj1Dp3+m5sO4ToldJxWjwZGoLeyKQouKVWgoMwJNkI72WZMUHTGhTo7bBZ0KIkREphCCavNGRNhlpD0Xmy8HgXg9ojWfawsBjVKLMoGz55cjbJ7+z50n9Sz1oqYGiZ1mveSr8qYPbd1r/6/0tonvOtj0b3KhvM1gqGffq3RjMDalhOkzFWYXdVCZb5MXxZZK4M1BZK7Fv4ltsiaCr2hWgKlhtt/QaLEhLQIyL2A7tR2E1uCgz4C9gP6mylYBLTtMZxs9Vd4bo6exxorTv+N7ZFo1XqOjLLTeYY4n3ysF2RCKo8zJxEKz3WKbPCybzGDPGwu5WbQMpq0S8eqFkJm1ghA6NAnNHx+rYoDRT+vMrNxHhQXE0LBhO7hfwbBaRheicGiYlM4r1y23A6YX7dcMEVg4a0rJTFJkHEWHzRfpft3nsH2zPBgiILFpwhxfq+lTMND0KtJIsxZRxVZbJC2T6zZ9xD6/YF2izrNmkmdKJtDQWsXpukCwbriPoO+K/YbLxOD+ukwyRB0vN3824VmW6fUolD3youtqzfwd7DaIiObOnSs+/8d//Ee68cYbD2xbVXOe/uzP/ow+97nPERHRGWecQU899RTdcccd9I53vGPGdWu1Gnle/RxO/3+mZV4LblDk4ODg4ODwJkHlEEyfYf0dO3ZQa2s9ISIcDs+0yozo6uqiQCBAp5xyivh8yZIl9Lvf/Y6IiPr6+qhYLNL4+Lhgi4aHh+n888+3y+zZo0ofENHevXupt7d3v9vjBkWHGaVkkIrhYD0bgqFNCpGVUlP2+zr6bjDWi8kU3PpyKkJS90CgUG36OVJeAUTP2J5dXo28QynZMGT26MgRWSfAxAkyIsS8vTUyZMT2yO0HmVGqF5JsrsHSGVaIMAGYNfpfkfqZ+G7xtiETK7CdGaKAnyp95iatROXtpBkim87PbWrfwOnGZVXkMiGZk7qWho3vuKgobAQAHGtyq1muZbPUPHhbjFNg5UST4gqGKDtHHrvW/OjnJ9iGfDsyHc3nUZVhFJowTFBqvnlQ4pri+FPzzXFGRs32puZxX1YGgWANky9PmOVONA/h8Lhpf5nPV2ynquFA8rhg5Ed8baGH8xQhBpYA+hkwU4FCzVpBgKFBgVPbr/glPCGZGNzHOHcw+gQDhPXB1CIbUltBaONArTMDk9Sy3TQQz51iCwpOy2wsvIbYFqLA11QzKulZzGS1yONu2SmveXSX+cLjvgWGyMKPPoB6PKw9nCPTOvXzUT+noKMDUHhaZyRqk9iGLDT9vFC/iIF8za4DjZm+76xm764uIiLqKrCeKth84GHtR4KNWb5HAodyUNTa2ioGRa8HoVCI3vrWt9L69evF5xs2bKB58+YREdFZZ51FwWCQHn74YbrqqquIiGhwcJDWrl1rxdnLly+nyclJ+v3vf0/nnHMOERE9++yzNDk5aQdO+wM3KHJwcHBwcHA4bEin07Rp0yb7fsuWLbRmzRrq6OiggYEB+vu//3v64Ac/SG9/+9vp4osvpgcffJDuv/9++u1vf0tERMlkkj7xiU/Q5z//eers7KSOjg5asWIFLV261GajLVmyhN797nfTNddcQz/60Y+IyKTkX3755fstsiZyg6LDjlLUo1LEsyaJuqAkoDOUkD1RVXPmOntMa28QcWptUmOhVvWeIzjNpMAkEqhnS0jfJBgNAoiA0v3m87ZN8gBh1qbbobMx4Imjj1szaoAtTMsReTUqtVNag+RVZQOsKSWzwPBjscwQY3pRV5QoSOw0YXyhzRxbdES2GZlw0JNohgiFTT2O5vNcZBSRZZl1F40Gl+Z1euFSIqJSK5svvrDZbNdjxmPjTiIiypy/iJpBX3NonAodZsf6Wic3m+MOpJEJGeL1TGjdvo6N8XzyXMP3CEC2GkpZxFivFts6Jff37E7xvtrdJt5XYqzFUvdOQ6YkmH5+xfUCKwFWKGiNVatUiiLNTG4DDE90RLF+MZXFhazOMU1Z8GZhHFmVGjp8bhmnGUrF2M+V7xiy22xpmIDU5IBpgX4GzBD8gOA5NZOBYecaSe/lZxv2QD+/gindRwOiXWXlPwSmqxpSfmSqLAhYVGgZ9XmBFqqsfJqg+2nwS+PzkOv2rMEsMgGDKkPQPrtr8lrhGTw1INtaUl5nRxrVmkfVg6xEe6DrP/fcc3TxxRfb99dffz0REV199dV055130vvf/36644476JZbbqHrrruOTjrpJPr3f/93etvb3mbX+c53vkOBQICuuuoqa9545513Wo8iIqKf//zndN1119kstSuuuIJuv/32A2qrGxQ5ODg4ODi8SXAop8/2FxdddBHVlE2Cxsc//nH6+Mc/PuP3kUiEbrvtNrrttttmXKajo4NWrVp1QG3TcIOiw4xyxKNy1KNiiznViGDCk8o7Rs0tIxq3Wh0PXiraq6a5hgZRLrJHtE6kHFXMjuoJ2I/vNSoWIrILqYwdncWG7BG7Pz2XzodhfUYYQcXsNBaOrDZtJ+z66yUcZOhoi6jukM0IZaRPVJxZimpPGxERjZ2e5HZWbHvQRjBEWg8BhgilRwBociLsT4T3GsjwS8/m76FxYJ1JSOlMAmlVHLfbpNJNnGk0D4iqh94qL/qsZ5H1xu3ay+U+FkldSIy9XAI5ZtHSqszGOKdz8UOwEjd0Smau3A7OIVANqCy9PeYAfeNKZBSSVJlvSKbz+SJM3/QZcWVqHut3lAs09DnWG0jpbOC5FeTDgZaLqH4f6zIWuI/AtuVnB8S+0a/A6IBlQCFYtEn7DKHsBphUj5ez/kjISgvK5wRKy0RY4wQm2LavQ/apqblSZwVfpO41rA8b4HI6nDkYyJgFix3y2mqGCGWGam3yxtf3rdYETZzAurNxaLOI36vC1YoZ0v5FJZa9gOnSmWHRvXwc/HxBGaZCO1GhnfUzm2VbtRu49VbrkJmE2T7ZNhSQJmoyQ+Bw1OEGRYcZ0fEqFbJVmpojK3Hj4YWq0RBz4qFVr+ou6W8IA/VUAB7OmHLA4MivUvq1+Rke4vWbs/lgCIM0bdKGh1NRlcOoG++Jj+1gCPuL8jQC6n8VW1AOBbWO1HbVYA20OwZBoNXDXP0agyFdswo/QpiqwWAI1wMYP80MgqxpJT9U8fAMpSpWnA5G2doo8A+hpv4x+ME1w8ASD+Zcd4C3LdvStkn+MNWnWlisyj/aET4XLS8bPwQMhoCd/49ZrvMFmUatp5vGTpE8f4squRIcM+JzryR/yJBmDVTi5ngiY2b9gvphxA90x0tSKB3YPSreU0yJdrPSWoB4MJRbZAaBoUlzPuODZn/5djmwAKYGpJVBkJuB65nrqN+TdtCBxAnYFKDsB9+/tio7j+ds5XSMv2DC2ikF2HY6DoMSVIufwVHO1kIryedKtpeNNPk+w7kIps3ryOkxbjevz30pwbUZMzx91rpZ3sDtG02nxpRqvttsANPVfi5f4injzZpPDfghD8DHHPT5eXkMhnDcOE9WLM/IdcjtagF2hme5+56WfTf2R5N0kD19NhE1Blv2uZCqB5TaWLNhgKlqG+a6+dC4SeFx8TXVvJnLMB1OVMhHlYO0KDwKnpNHDG5Q5ODg4ODg8CZB7RBoimpHYzR3hOAGRYcZ1YBH1YBH8UE2K4NAmIMORJSI+PycKm+ru8NGX6WWWnqdX1A9HkDkWEwGxHtb9kOVA0DkWk+3bm7SBoAhssJuNV2Ge0YzNJYpYvq/dQdqR3A0hlIXWI0j36oqi6BhC22iJAQErsw8pdljLMwzLdFRNe2hhNuIQCOq9EbVnj9E5vX2YCqj0Gb+AfNTU6VUNAuny1UgsoRRJ4rigiGy+4OxJp+s2DCnVfPUaeE8E6oWk/LYwBABqQH5GMD+YRlg26mqzzeU62CGaOrENtoXEpvldJhvt5lPKC+YRUTTGKKoNGOshrmSOk+nVWZ1iO8rEXkcmLKFkaFtJze7mOTj0Cn5aBefBxitmqQGJBaowsSyBqhlGqwgO4JX2Ra7HgurY3sh6paJDGCYwQZa48ySbI8tsjsOdqN5TN+6Td6wYCeBnufltfenmeXrMgdS85r36UoEBW0lo4M+WT+nVfE+PQtMDVsCqN9cMEQTi9RzkJ0yWnbK5yvsIfA5AIaIioZCiz23xbTvXSeYj/l5MT0xBawdTBs105jpkyxTgftVOa4E2XklOs8cnTIfDvuGGxQ5ODg4ODi8SXA0hNbHEtyg6HCjVjN/nkwVRTSOOXBERnXNgXkFEwPtD6IWiF0BH6d3Q0NTUgViyzGYxckIVOtSEA3Z5nM7QlZUKJfTZmiIVLGVEEfM0HNo8zmwIRAnJ3aZiLSkRMnQSOj1dYo92gvDQzBEdnnWBVSUtgmaJlsYkoukosSGZpKmH7ctsKr0T9ApaOM+q7PycGzyNqyo7UwuCIrlcc206H5sSXNdBFAv8aJtF+R2WrfKk1xMmv0H4UrAqfX5WZIeyfTzcpnmfUmL5sEQYXuBbexGG1Ki/IgUVmdPMYwSLAsSOwq8f+VVoAA2Nj5U5VfePu8u19nIEhDV07XLMa+eQKB+E1p2ynOIQsj4tJ6mjbYwo5mQDBGuDe4HaH6wPiw4rPkiSpNMoOC0YmZ5O0FmnvPdRrRUZ5bMcvHd5sB8yiZCM0TQDCFpAO0NsEYFhVeDljmSDJFPlRXxW8E5GF7Ww+2SFIo2sQ1IL1XLwKGPh5nhje6Udg5Wl8av42d3i68n3i51al2/ijQ840rqHIMZst+zqBvMUGSYj4HtAIJSOnfEUan5qDKTSG2/t3GIGvMGhCsI6+Dg4ODg4OBAjik67Kj5PKr5PPIXYfvPn3vyVWdJQaMDFsKz2SFmA35Oh64gtd6WA0DxSo7copIhArC9XIc0qNMRGSJbZLvZjCmdhTYmi49q1gTReJkDtfgQa3JU+vrUXNaNlCXb0FDeQKfgq8gd7UhugvYHC8rlLHMGbQRrujTTpsuTlFqm3TqebBOi74YSLWAB/fJ7bZjZAPV1PTLlDEaW6OiU84qyPeh82XQqnOPkFrYKUMUwwQwBOLfpxe28f7M8WD0wRGAN8JoY5FIP3Bfi25m6QokYZeZoGSKlJUJpiHyPyZgCQwSMn8zLKzYF7ENiF3Q6upyK0s3xdSkpg7/pjFs4pZlJpRFC2R3F0umyO+j30LhpJhJmiTimyIRcH0xTrrt5qRL0xehwc8YFWZaRkaI4Dn+ejTqZGYJmrsg6uWAaWXNS24Q+HGFtI54/yC7DuUffsOVHEmDnauI49b2D5wmeG7jHbPapukfQp6cWm5ul9Y+GldzxZ7IGVuAd0s6h5VdSp1acVsEi+arp7+nZfP8wo5rcar4PDRsK6NUPmW2AIbL7Yoao0M7v04336JFAlTyqHiQfUtUP0uMIblDk4ODg4ODwJoHTFO0bblB0mOEvVClA9egS/h01ZobqGgLzPbLBbDYVR0Iw5EMkBwQmTaRX7DBaAcz1I1LU2SfWH0X5HOU5qwumklgONv4AmCy0D+VLtJYB3i6ANoeEr5E1o0PkpxggZNHYiIo3O7qUxAfxRZNivei/y4l+ROL188IZRYo9QAmO0FRZrFdsVbqfaeyOLsoJbYo+Zn9RnpOKLijNX4MVKytbHgDMEFCQwS0lXzXHNDXHtAMMEfQVUa6SkZ0nCzmOniobHBuS5wp9odCGV6PhgUYK7QZDFNkt6RJtskitUpNU7jAUjS+LVEzeT7ehTcC0oe/lurgPKw2QLgmjWQoLFeyWFUEVll2KonsrVGxV7JLapGVOsC+wg8yO4Zpq0z4wJQFm+7T5aZDvf6sBRD9m/6HUPHMtcO7xPRhPj2mw2B4uNQPtH2uEUJKlnJSdMt9p+gSyUYtxaQaJ+xjXBllsuF+xHJgfZHdpXyaca7QLDC6eQ7qcCqAZNvu5kpe98hloh0x7kgsnxPfptXwTGdsiqsR5ufU+yxDF/nszv/JK3LZan/EBy/ebSrGzHzPL49xlWF9WbJdtynfXqJA+8ozLodEUHb9MkdMUOTg4ODg4ODiQY4oOPzwZTdasDT/CW+XgHJJz8RWORsqdJvRKbJUhZiVuPoe/UUWV77DLKVdl7c5aVWUFwApAZ2HdmnPNWREA0baO1LTGQvtzWFZFhd6VoNzf1FzWREzwds8y/0T/QzJDWpOgGShovBAp2/XU+dN6G2wXEXslTJRrkct46tgCynjZMkA6yMU2g/VtE9UZmPC4yl5j9DxrwuzUiYb5aXthlF95gSkjZqh1mO/BEOWVGzCyYlDwUvcR6GnCzFSh2G/f45IB8vaY/Vdnm+hcM0TlBabuwcRicyLaNphUIssQMaAhsuupjERdKgewbtN4z9ca7s7wsimyrxJYzuhedbxq+9O9iaCpg+M0+rNmVqvqdoS2Da9gPqCZ8VQE3r7OnBvrdcVMSr6Hs8FYW4iyG2Atg+Om02TnmHMY285ZWDgkFICOmxu1EjSdrchu49ZPSGkRA4Xm5wjMqdUA8rnG/WOds5VWENfEPv9Qnqco2UDsB/5hMznma9Z24gSz/tvOeUl8/ruNshhyrY2ZuJLZf/9j+KZK0d9zdXcPtvbyGk+c1kZERIPvNNuY9ah5mFm3cj6Xhbny2d33SJDalA7wSMBoig5u+utg138jww2KHBwcHBwc3iSoHoIyH05o7fC6AUdrwDpHV5oXMkX2WDWu2AdoE0Ls+Ao5hWKAMGeP7BIbqaoItKaywzTjo5kc7A96knrD5FuwGsie0/5LM0FrBSo2slTtUD22ZRV0MRxBtzc/b/EhuSHtxtzg68QRrp569ysWouSvL4C2+pReBNcYeiztfoyMGugz4GeSUN43besMRTOxhBmhl6Xope1RjmiR6cS1wKp9UnSkrwWuaUK5/0KPps8N0L2aGSjOIvMNspERZ4/5xgw7kVo+T6xXVMzaxEmGzah7RHFxzrbm+50Jlslh0hCMUbwgGZ/IcI5f+YOq+X70DLMi+i68ver1uaYxHHytUfjUr7QhmiEC42rvK+sPJpeLqX6qGSJoB5ENCU1NaKKo1jNtj+8w16jYac5xgH2HwEj5uIZZqU1qiXCNsP3oXtYeocYamGwwssjexHmB2zovl++Qy4UnePmKzEINqGuFYsjwNcLy+rkAgBkCQucYlvLFvcbbKrWlzXzRzll3GZn+FduFbF2zg9hTG8lrbxPLDF5qtgVXfzBEwN634D/WTXWYcx7eIenziROIvMzxy7gcq3CDosOMXLefstOmZKIjoPJ5KmK3+aHzcuYmLSwwxSy9qvxRxvRYvsvcWBg8YSpgag5Po5Xk4ACmbhi84OGiC7jaHwKe2imqtOTGH3rerHqoa3GxFqJaYTWvV696LX9UgmzOVuHnCATo7a/w9ABPW2R61GBGtTusUpmRKqyraOM81wvx0j5R4B+Nmr8+EEQqd4jPFaYArHge5SK28lQAl2zAgz/KXobxV8w/Y+ea9GEMhuCY1rbWDIZ8u1XOr0r7BvCDhxIMKB2DKQuUPMHnWpwf4DIkE4vNxcBgyJeTI9m9l58g3tu+x0CJFl36JaSqjSPl2W4H4n8ULy5gCkb+ANbFueZ9fLf85Yy9aBTm1VnmHsNgaOoEM8hE0oC1TAjLKWSier/P8yZatsl0f0yVIvhBtXU9EE0MynODcxxKyXOanSXV3z6e7q3ysUeGTefz2HSxhrIzED7PMoMhPC+KnaYv4PlTFzLzYK8kEz2wIQxatFC6PIOdBO7zTJe01IDpIgY3KHpszWX53oHxqS47ZIOnmnwO4PuqSnEP/8Kom/eezYMpnh6j4fD0w6PIiPm88yXZZzJvW2yLYaPfTs2v8at5f8IC4wK69Q9zmp0KimxRWoKjPA5yQut9ww2KHBwcHBwc3iSoks/5FO0DblB0mFH1m7/oKBco3CTzqYt9LeI9ilgi9TWYlWaM4TETyWRmmeXsgB+vSFtmVkKbKCLyAhOjmRxEQ3UBKC+nBaP8as0o+XtdfqCBceHvQb83CLB5v5YmVyJlG8FypBLncifFFmZBWOgKhgjC18mF5kAmzzPKxo7H1DQkHyemkrSAFstBaI0ItRKqTw1gWbBVukhuMCPZga6nebppZNy8tpvpm1rY3Jbta4xgOTfXfB4ZZIaGGaJaSU0JwvwwaF4LJ88S35ei0igPolmwBmC4sr0y3C6ogrLbLzMH2PO8YpSUaFRPwWqGqG7AJ5cLTMnzFN8tNzw1X3oVgE3Uae6BrDk/oU1czwPTfHvM+c6cOVssj75aVKaOGT6NseE6QwSg3xSDSJjgaa5WsG6S0QCQSg9gijLHU556Wj08ITsTpsEqUTlPhQLQAX5ugOUAoeOp6V/0a1t2BGJ2LK+mmdGHUeAVfRxp54APBaf5/gXDBpNYazILdjLFpo9hMEZsGYCSNryfEO8fz0dc+2yvXA4MHs5j+0tc/ojvzWy/+TyxXbYbxZzRHpy/6etG9pp1+t69Q6wbnC8fZuVN/GxX44/w+LT/VbkSh6MPNyhycHBwcHB4k6BS86iio+HXsY3jFW5QdJiRGKxQOVyxc/cQPGIOPTUgL0Ga56sTW837YI7FuZwCXOQUfAiRER0j6sbcf80nIzydJo5IDFExoiBdKkIXotX3QkVNl1uhtSrLAV0IImgIOHUEHRltLrLF5wDaAWYN7QhNqpTcUznVtsWEkJH15sRlTVY4Bafk8WmGCLCmefz59ONGKnti0HwJfYMu2hvZzUxPni/ayLj4nkpcRmCpSWX3s04ltnVCLodivn4+R34ViraYi1kNKNG50hyVuA8SvyJqzysxPXRWQM/zqrAr9HH8igK3YO8ArfeK7JXvdcFYROsAGCJ9HJpdiO+UnbjWaZi2kbcafUlsL66TFtdD1GzeZyTRRuk59f4SGzb7gh4MgBYGrNlM5T2yfabfgtGxjAgzG5G98hgqEXNOYd5qGSJGdpbpkLivwDxB64T94rFQwXMCpqbQGEEQbosWm+91IkahjZfD8weL83FAJ6YLLkODpMuD4BqC2bWGoSibwufJWoMwE57uNx9ERnn/fHzWZJZPI55vYK56VjfXTAFW41SqUWqu+b/7kl3yHFTkNbDMEMC7gG5SF4Jt2V6hREE9aI4AKocg+6xyHE+fOfNGBwcHBwcHBwdyTNFhh1epiXl5GNChzAY0Cen5JhJKbOXPwUTU5Nw6jMMQ8YCBgSYAkR/WQzZaGdF0AenhzefuwWih6KgudeBTEZ4tW6CYIVsuIyU1FgD2iwgQrAgivfB4hdsjt4tIUetetPZn7zmSdUg8b8K15BazYGoeay0Us2QZtRnYYehr8sbZn6LDdYYISG4yFwfRfWgvmxMOKmqkS/r+T50iBStgywK9JgINrd1mvgjofG95DLl5beI9srR0BlRQ6Vpg74B0aWQqIlpPcDZXMCXFO6VW01kzs8zx4hyCddMFb8EQlVrwyn2Js+OSm832oaOrRMz2oWep9wEuYcGHUWKmZ/Q00yn7njDp2GCIgBGUM+G+ApYh1y0Wa2AL/VP1/5G9WUwExLK6P+mAWh+DzvQLjZq+U2NjSfQh3JflmOn3uR7u/7wdXe4iupfLdkSbx73oC/lWZJPJ7DJsFwaiOMdW88ddoKEsCa+HzEP7/IngecMFl5Fiz9sFS4fjKLDTRr2EDLLM+J7g98icRB/TZpNggKIjMgNUa7a02et0o87MEnOwmR3cQZhum9Nv+tfgC0w7+/mZW8CxmI/BEKH8DuAv1RqMRo8EqjUfVQ8y+6zqss8cHBwcHBwcjnW46bN9ww2KDjMqIR9Vwj4aOZ11JpwIk1rI2gH2pokOyQgtsUtFFUVsT2oZGnyC+BU+PNExNnmz5QWkiRo+r2t7mOHhRIqyMmer+yYhKuL3JbTPvCIjC68NJRRSsuEwk4TWAdkp/qJcLt+tjEgUo4Psn44/mOOHUSIYIqB1O7JdeL+2zAIaZF6g+QBS8yVLU0wSTbG2p+sFwwghugd8IxPcOG57QpavqCYMi6VNDVu2KfotqTQLaQ5Bo9LLRjM55Zj8vuUPQ+J9LW7ogMnTpMkj2Dy8+sryXIAhAsBaZvrYY4b7RHqubPbYW7g0xUazHDIQ2zbK4y2x3g0Zh1rPFhmThW/RF6EX2/wXHWL7Fur3wOpjYDiqiLgQs6WlaZdNs0hoCwC2DNvSRWojY2ZngXGmWpgh8Qol8VoNsrGljxnmHtn/cW7Co2Y70BpphgieWLb9YHyYMdn7FqmnAhMU2yOXx3HA0wnMV7YH+zXLTc01+0vswnMK2Zrw9/LE5zgOsCs+xdjieYbnhtVOsuYJujftm6RLtWiGCNutH4dp39TC+nqhnaafFwdMBwvsMe+H9piOBmYI/Qrn0M+veMbbNqln35FGlQ5eKH10j+DwwmmKHBwcHBwcHBzIMUWHHaNLfTQ2zfcETEvXC+a1MXsLEZUcyev3mJO3ZUOU8yuQ7TaRELLIdCYRIi09xVxQGiBdCFYDRUyhDYjtae6HgkgTkSw0FTr7A/oUMFVRROI1uR19vDpSRJZQsVWWP9E6l4ZyK3wdpga0fke+nc5ClBKqZMB/bzarFJWBTlqmoYz/2Sly32BmVLFavR4F+KIqvyKgwO7F8c1T8ossFxntNlqbqZMNo2L1G0UZjYdS5gt44wDI0AHAEAH5dizHfTphttv7pDTV0v5NOaUXg2YqNmTYkPSAYU/AEAGFDrTfvDa4sPN7HeXqkhFhxWpCU0XUqLEDU4vyEu3rmzOckRGzc+i2LEPEqLI3lcdaoir7HmVmS5ZPM8PhUcmuwb8MyLGjdEi1O20tmlijyF0L9ync1W2ZHt6v1QJmwAqyLxJc21nrGJlgJlY9twJw4vdk2Q7tezT9nBM1Mj71rNiafF+Bdojbr7RW+rk2NQ//ScfsQIZ1eOX6MVWG5cPaV1BsCzcRGjX0t4hydp/qN42tBol8uSP/E3xozBuPXz7FDYocHBwcHBzeJDg0ZT7coMjhdSK5sUa1SD3y1IwEtCxwetW+JohcdOaQdt0toZaZTn5RRIe/yMzLaHN/DGRdhNLNmaEKSisxQxVSUT4iSmiVoPPAPYTIsR4Rmi/yHfJ49JR3Tn2P/SBCtevpbDV1/GCe4oOqgKYndwgfmdgesyNdaBKutLHh+vGDGbLb1AyRytgoLVtIRI16E7iWA4EtrAFi7VKtg1NzuM3emHFJr8w12THoQyh8CiD7rdbXRc0AdqMSbB4BA9l+IxwZX6x0KigGiiKgPfK4Epv4C1u3ymw43c+f90sdGDD7t9L2F30ILCD6WklF7pqFrer3QfmqGSPNVgRy07QrzIjCSRnA/dO2yVx7sH2BXaNiuVrCnMNKa3PvpTL7kYWZcYH/ERDdyxlRikkCMwTg/oOvWXqANUHj7D90qqFUQpvNAnjOIGsU2WCxEakNQjaZreenGOiCzWojXo6zzlQmJJ5j9VqInniPe0M78zcUmFZ9tMGpXzFEDb5sYMSgqSphPSLNw3plsPO8a/4VjSrtEM4Jnl266HW+iyivyF+How83KDpCAN2c75APN21eiNRXVJ+21ab5ps13ynRPIDLGNHS7vGH9ukxGXpmmYVDG7YBpGr5HCjpucAggo4PmDi+yDT5M1zRgHof06mBaVl7X9Db2r1Nr9TSZHkjYEg9q4IEipEDHOjndEEjJ93vPMl4E+rq0bJfvUwt5cLWHKPnfg2bXahBUq/APCZeXqJ04T3yfmcM/RPxDg8FQdNuEWI54O5juIjWAK883v8ylFvNDGuKpGf/QuFiuOtcs55XM9qYWJ8X3MFvEYCD5qjk39dR4Mx2XniUF0hX5u2yvRWwXDALN+/iQPIdZFv9imgHTXwAEqpk5SpiuZte0SSbaO8m2CyGePYSgGrA9g08njgcDnugYftTYIHC81pB4gB/vKNfmbduk3E+5P5b7zcH5U+qGRJvD2khSTQtH1aC9N6TeQ5Suds+bwWCo3MoFWHlc7d8TFsu3blH9foec9sOAFM+HBtuFGqZ+ZTts4gIXtkZfw2DFipMb7msd9MCSpCaOr94eFt8P6PPJ2+PLgzR5TCtOLEEgYbYDu4jp05XBtJxq1GVlMnP0s1xds365vK/UOBA/EqiSR9WDrEp7sOu/keEGRQ4ODg4ODm8SuOmzfcMNig4zCu0e5WMeFWA6hkKsKD6pimSCrraMTkhGUjq9ODKGwoVsvDeu6GZrEmc+r08JSIG2NWOEWRtS8D35inTSEkd6jeUvzILhKWnGCMYIETC2B2FkZByRX3MBNEozADqSLsblceV4WgOiR2simZQ0w/hiRXMwbHmBXHOGqGPdtLIIU/KigCGymGtCxMy8hGi7ZsOCUyq8HucwtsWs5+WZnZtrGCOUZgBDBOR7TFhcPMGsl1xvqJKh5a1iObCQ8WHdNwxGTjedodhm3sN0EX0J8E3IZuvioBC9ZtXnVfX00X1bT41iei/K1xRTOAAYokyvLLWhmSU9pYqkgHqpDfMKg0YwArkuz7Yx1yO3gWlklNtIbGvOCBV7pK2CV5HzPuUYynlUeT/yJMHiQs8P6TI+9nOIf7mIaRoMEQuJO1/Ekmz1sbfM2+PnSEj9+DFLWZ+alO2AJQbudwvF4Pp5uy07uPxHTDJRejquPh2PB5NkpDSjBMasBIYIl4MPZ3yZOU5fjhnrLsOKFvp4u1vMioFsfdrVPrPb5KFVQ3rq0xz7+BnMAO9hg0/uV2Hj+UjJLWVKFo4CVeSwT7hBkYODg4ODw5sEh8a80TFFDq8TXtX8gW2EiBSRlk4f1qnviJb1nDuiepiygVFBNILUcwDfo9wHGJmwShcFCwBTs8iETk/mMiTQOvnRTm4fyo1AA9WG1FuxmcYUf35bYfkI0sFRNkFrB6DDgQaL4pIh0tqIkCo2mumBpkk2w6bkckSa7ZaRcNeLnK7OkWvbwxupVpC6JF97m9l2q7nY6ZPb1bGyOJX1VTBbDGzYKRcrc9TO5AIYImBwuTlZ0MygDIcW5Q6drxgi/hqaGVxLzdw0RsTmFbo2CJ2hOwO01qIiZSt140Cc67xcLsx9Lr5bbig0YsQcqZNlw6BPm6lkAvRhwSzaB7GwFPUCYB2LKDUBNqJQv+6tW+VKLZuVYlbpvorJkGgjWK3QuGQKcvPlRYCeCYB+C0yIZohwbXENcAyZAWZuS2Z7ia3YrmSIUEYIz4eqKhzbcK0125mRDapbbbBWh8scWVE/M0bQXELr4+F5FfOL48Rzxa8IlkCWi/x2mPPXst1ctLElQbF+ms+DL89sbb8U8fvWyarF+Z4q+XpUcd68vEb+iEqM2GbuS4jc47tJtAFaPZR8OtKo1jyqHqx540Gu/0bG8Tvcc3BwcHBwcHA4ADim6DAjkK5RsFKz2VllZkJ0NI0UeJgPgnHJt6tUUtY56CgbUW/7Ro4IYYqWlMxQkSM9lBGB5sdXkJEvNDxIrUUJCpuFhsAyD7ZBapisKRxHS4gE0c4GawKraZJaHm09YLUDSOnl7BVok/qeMScmOGF2nJttTjjMLu3+OOLWrAWAiHjWk4aGycw1EWTr45vEctMzzrykCcuzS2eLZXBsCK6gAwOQrl2r8TWAzmRu3/RDpVyXzDgCQwRMzTW3c57rymrDPiCmzAm1rg3sQkBpfDSjkultrhFCtA/mR6fY28wf4yTQUDJGa4nAEOVnmQ2FJsGIQavBrCGvhgK96Lvoc9C5ZbuV/QO/hd6vKJPybEmY6duy3200bfPlJFuYn63YuZAs9KzNSsts/BnfbTpioT3A+2Z9yomcSZeSbcM5s9lV6rmCrNT4oNkfnietO2QfrCh9lrb2wHFHxlX5obx8j2tS3w7S9OR9ivfIRvNK6APNLT5wjcBYYb/4HPsNpcxxTSw25xPPKdwT0UHWnS0xJy7+jGSGKlHZ/OksUTBYEa/FApswljjzb6fUJ0LPCOPJ+C6zz0y/uTHC4+VGg9YjgOohmD5z5o0ODg4ODg4OxzyqNR9VDzJ77GDXfyPDDYoOM8pxj0rTPEagBYBfBrQrujxFph9z++a9nUtXNiihSWgCzHudFQJ/EzAjKMyKLA+YqgXynAUSNREpNDcACtCCqamE0TBkgcisk0Iba3bAUCWQXUJiORsxcwCJ7DZEpoGCZIYQ/QP4PjYkGSIA5w37m5rDx8WfI3LXppM9/y1pmJZH1pnvS1ywk40UKVi/hfJLTJaZLbnSpQrDwjuKz3VoizG3qanyHeXTF4r32V4TWeYUw1FWUW1Z2vk0ZPBY7yXFAvhKsu9BK5TrrPvziP2ALeFTYBkiyDNwzrmvgikKatkNswZgRcHWhcckbQc/JWiwNBsBfdnUHGYLpqRmCMh1SqNAraGCN03LTlWEeJpHVusWScX40+YgwWBohijfxd5RKVnOBsdc5FIsxMcAfRTOjd3vNtOmsSWctbXNfK77APovNHt+eTtQfIjvO9wGYFxVMWKdKdj2qmSW0MdrAWSjaaZJ+prpTmc1gYohwnPFDwalJjWV0BhB84j7P9OH50tzo0T4SNnj+W8pdIuO8nOLmfXJi0xn9rZHybeQmcoRPtlRZox2yW2g2DfaOt3YlYho9DR5sQJ5P1V9R15XVCGPKgfpM3Sg6z/++OP0jW98g1avXk2Dg4N033330fve976my/7N3/wN/cu//At95zvfoc9+9rP280KhQCtWrKB77rmHcrkcvfOd76Qf/vCHNGfOHLvM+Pg4XXfddfTLX/6SiIiuuOIKuu2226itrW2/23r8DvccHBwcHBwcjjoymQwtW7aMbr/99n0u95//+Z/07LPPUn9/f8N3n/3sZ+m+++6je++9l373u99ROp2myy+/nCrTLFA+/OEP05o1a+jBBx+kBx98kNasWUMf+chHDqitjik6zAhmahSaFvXpEgrQc2gdg2YnwQQB0GHAfh9AdhicnBExgqGCXgMMCtpT6TAhZo4LyEZGlXZA+4AwwwRGCdG31iYgcrVMl7XP94v2ATbLjper+SRjptkQbfcPDZH+HvuPjpoPUIg2zYVnu1dLsYa3ZRcfEGsXStqil5cLhyl/qolU4N1kv1MZMijNAFTbDauQeYvUIGmXb+imcM0LbUqPwocM/xNAu3IXla6qzHIKOPTWPaOq/Mrfc2bP+OIQt4+Xx/GpoNGWYOFr27JDLo/iwdoDCqxmlQvC+lD0l13g8Wo9q2qSIQI0ywHGSrMHKOEC1NTTMLrXrGDj+2mLhwdNfyloZqiTN+JJ368y7iuV7QmGaGpAmilNnmA+737evIIhAuqFTHEs8j3YMrBrgPb3wn0RTOtCyTLDEE7Rdj17P/rFe8BmpXn7ZhRwz4Bxwv1aCnFGIfzP8JyyWbucHdoj2T/dJ20xV1XiBZpK217OhsNxtv7UXMed/49HvhcN1QnFUCUaEPuMqnMf4eLVNvO2DDZM9vdCq48K+SPPSxyN6bPLLruMLrvssn0us2vXLvrMZz5Dv/rVr+hP//RPxXeTk5O0cuVKuvvuu+ld73oXERGtWrWK5s6dS4888ghdeumltG7dOnrwwQfpmWeeoXPPPZeIiH784x/T8uXLaf369XTSSSftV1vdoOgwoxLwxECooYaZHgzhZlYi15LUA9opjwybu+nBUWwYPxzmBYMkXY6jwtW48QOFh2kV02v8kPCUMHpqnnyIY6oG0wR2++F93zz63sIPo25nkac2arzb5KumXaFJNS2R45IYfqRVy4GKfrh3Pzsh3ns7BmX7ZhoMJeoXJJApidfM7GjTYygkpRAzOirPoa46jykGvR1dyqGFxbj4gYjzjz3MBxu214Jriy/MizZlxGAoNWB+UXQdO0w3wfxQ7wc/sHowBFhjUH9z8T2mSID4sOxbVvitfnf14AaDuAq/YsopwoPIYA5iX12JnX/U+AczOFmfu87PMTeuV8OPszw4nHtMB1sxuRImzzQYAsbeby5Sccz0ndAwC7C3yuVgXQHg2gF20KHGZLp8CITayS2cuq6uib5fQylzcf0581ro4L6ijtMGTVGI39XgjPsA9maDNl4MZrQ6YNBToGFtIZKQQRWmgvE8bF+v6gMWeYqWLRTmPFq0Az+I3WfqX/U2QZogEwDqK9T/1dfjSKBCBz791WwbRESplAwmw+EwhcPhxhVeA9VqlT7ykY/Q3//939Opp57a8P3q1aupVCrRJZdcYj/r7++n0047jZ566im69NJL6emnn6ZkMmkHRERE5513HiWTSXrqqaf2e1Dkps8cHBwcHBwcDhhz586lZDJp/2655ZbXtZ1/+qd/okAgQNddd13T74eGhigUClF7u/Rq6+3tpaGhIbtMT09Pw7o9PT12mf2BY4oOM0qtRMVpMzrhCfNaZPGpT6XQQowK2l1HJYgsNDOESAi0MiI8lA0JpZoXpLXW9RxRxfeodHE2Y0OEB2FkdETRzyyURFRdLwegWAR+CxGsTrnHFI5Ova9hyog3D/bEV+ZpiRF5IottQbEdRK7hMak89bbyNFlVCjtnAoq7Ums9zzw7SzJADaVbVJSuK44DEKtbQ0xQ+dtgGGn2DUYouhfFdsFKQCAty4g0TG3ALJGnFMAsYQoBmFgEw0Fqup3oCDNPbCQKg8w688P7UQyRTrkPM9sH24RCC8S2KupX03/arkKzrjjOmQTpo0vN9pKv8lTRkOy7tr0Z07dK7RGq8XeZfsXygXFRCQN2G3wtJxeymSB/PXGS6m/KKBAMEdD5ktxuEEyunpVT0/RWgKyYH0xx4r5EX7VmsHxfg7kJjZtzUebSMmCIAH0fomyJ3Z9isAB9bUuKwcJUMO4RFMC11iC2IDS/593Y6Xi88j3Rso0L3YINLJvjnDjRMMDJjYahK3SH7TPJShD4VU/Hoo36/teC61xX/VhLgYNjbF4PDuX02Y4dO6i1tT6F/HpYotWrV9P3vvc9ev7558l7jelWjVqtJtZptr5e5rXgmCIHBwcHB4c3CVAQ9mD/iIhaW1vF3+sZFD3xxBM0PDxMAwMDFAgEKBAI0LZt2+jzn/88zZ8/n4iI+vr6qFgs0vj4uFh3eHiYent77TJ79uzRm6e9e/faZfYHjik6QsDcd67LvELPAKM8MERWkMyRj6fM2TrWK/VuVTEqHCFmeuWlzcwyr3GWzMBYT6fsIuL162KcOWmWZsWDecUQMSZYlKuPr6G8B2/P6lkUUwNWwVeRhWRje+R5SM03BwSBdmKHibhLCdZcvSS1Qva8cbHV6qi5IF7ALG9LbPgVs3aiUbh6GXPixt/SZb9DtKsd8DXjseMKc64G/pPFuKyvQDowkOuQGiEwS/GhitoP67BiSpTO1xLMCIqZah1Gah4XE54Au8fMFmRpVtdhXrXRKFCzrKRZEZogf3NZloVmCWzKPPQjNilArqcLvYb5eWmNDPPy1bKUfD6Sr0o7BwCFeb0y21S01FW6YIjssXPTtf1BaKIi9gmGCEgtlDYE1dmSIepsNxer+ttu2bas7Pf2HHE31fcnGCIwzpWAvLZgUjVjiwQHsJGhCckAoTSNLeAMZjismejmjJXej30u8P1fYmsQ29eUvUKDNUlaJxV4Yrmg0hICEyea5waeP2CYphaYTpTr8lm9FowwAX0f4b7Bs9sW9Y5AdO9xW+rPbM2avhnxkY98xIqngUsvvZQ+8pGP0Mc+9jEiIjrrrLMoGAzSww8/TFdddRUREQ0ODtLatWvp1ltvJSKi5cuX0+TkJP3+97+nc845h4iInn32WZqcnKTzzz9/v9vjBkUODg4ODg5vEtTIo+pBCq1rB7h+Op2mTZvq1QC2bNlCa9asoY6ODhoYGKDOzk6xfDAYpL6+PiuOTiaT9IlPfII+//nPU2dnJ3V0dNCKFSto6dKldkC1ZMkSeve7303XXHMN/ehHPyIiok996lN0+eWX77fImsgNig47SgmTOYa0TcyBI20TjBGyJBDtI8Js2SEjQ7AKdm5eBRoBTsH1sXZoasBsr+U8mdOffdpEoDAca9lR4nagUKrUTtTNGeUO0/2mC1lGh5uLbDG0Lz4os8SqNqri1OGMLE+CbLesYrygJcpgvzCpK0LrZBoQeGmr+TzPVFiHFOhV+jrM92y+5/MrtiJtNAWVBcYvw2PNUWYAWiLzWo549lxp5kIX69x7oWlbrWKW3/Ze83mESw8kOHVdpw9Dg4CCr8hmBKOCdGp/wXwOTZG2LwCDotk7nbFjI2Bkl6sgG31UPxd15qHOZrNFiZnBgmGg1t80ZJPpDEV1XGA7oSsJ8astnpyQ5wsFOrXNRDAt77VKzFzQ9Oz6BdHsGEo4AGCIgHEuN1HoUMfQLdkpnzrm8n+Z+xOHHh2V9w+gWUlk/NnMP8XS6T4JBgZ9Dvdvyw5FIetrogvetstOq7NVwQbqvqR1dWCS0HcqiiGqG4M2ZyvRN23pF6TNc8FblNWYWGy0WjgfWsNky4kU6ucEOk9cA1hX4JmkLTCgebPHYmeWsHy1QeN1JDB9+utgtnEgeO655+jiiy+276+//noiIrr66qvpzjvv3K9tfOc736FAIEBXXXWVNW+88847yT+Nzf/5z39O1113nc1Su+KKK17TG0nDDYocHBwcHBwcDhsuuugiqr1GEst0bN26teGzSCRCt912G912220zrtfR0UGrVq16PU20cIOiw4zoXqL8NM8hMBulRPOIL6D8ggD4/YBJwXswRmBypgZkxAaGaGJNN2/ffN71ooyKa9ZbA2U2sD/+nkNZy2hBe4SyHyEZcbawORpYDKCepcPMUx7mcDKELbKpG77PzFLlPSbMa+tmw+jUmOkJbOJsMtYGwXGtuKiX989MmM3OMfRJZNCcGP+4uViTFy8W+0NmVr3Arvk8PeDVM3MmzSsYmNQixUTsMaxBy1bzPjNbrgcGxzIffInAEAEwyLRFMVFiok1eM82oaFYBzJH1VWHfIs14wfAS0L5J0DiFxyUtke+UfXF6uYzp7QSgY4vmFdtyEmuT+LxotiGYln1QM0DIOAI7C/YhvlMJU9RDe2pAikanF8Bt3SH9hwDNbGqGCNmn4TUhfm/WH7nUHHPyd+aiaN8h3H+aWWnwwGHYQsdgIspyeTBElvVjWFPEXtO+xHbp44PCtdqXSZ+HhsxKlAVRlBjeZ3ulaWxFMVgA2BhkKIJKQ8YX/NlQDig+WOL9mOUmTjAPBLA2ug+i3Mf0Pg7mFHoj3B/5Dvks0L5i2DYYI3gk4Vz5yq+ttzscqNY8quqHwevYxvEKNyhycHBwcHB4k6BCPqocZOL5wa7/RsYxPSi68cYb6aabbhKfTTdzaobHHnuMrr/+enrppZeov7+fvvCFL9CnP/3ppsvee++99KEPfYj+7M/+jP7zP//zdbXRn69RwKvVvV6U+6ktzGrLcWAuXEa/Ae0QW0JExYUQmRHJ/JlxGI2HjbACDBHQvYbn1pn5qLH3DfxI7PaZSUFWTcPcPiHCQ/vlt9EtMgSr+5/I5ZDVhiKfOO50vzxRyJyChiP55DbVHM686jbaIY+daavtMd6PuQAFLmeCciiIYEuLjD/J1JwW3g+J9hRbTPuQWYJoLzg57VgQ9fGpiu/ic9Rn3oMhAuI7zSsygxBxBpQ2ocCu3IjytVsw9CNwJU/Nbx5lawTT8j3aj9fgDJk/oZSiJ9Rbjz1fonsME5Prk147YAeQEYSgEywi7gEwRED+AtPgyjZzrTpf4Hby+apn9TCbwMwZGCKgdb104a1GJOsxelqc15fHBZaHqO4VBaCki71fcE3krqjE7F1it1kOLETHr805ashcBKtQ0tdc9l+cU/RP6MrAnMzEKFnXZd48HOKBfI/y4JrBVwx9GJqqsrq/dHkRMFRVlemIa9ag91L3BNobZl0P2pFTPmyjp8qbABlkPu77+nmEdlkH8mkMGI5B64BQdqeMY0KWJj8bbJUAPke4RtUgUbW5bdNhhWOK9o1jelBERHTqqafSI488Yt/7VQr1dGzZsoXe85730DXXXEOrVq2iJ598kq699lrq7u6mD3zgA2LZbdu20YoVK+jCCy88bG13cHBwcHBweOPgmB8UBQIB6uvr269l77jjDhoYGKDvfve7RGRS+J577jn65je/KQZFlUqF/sf/+B9000030RNPPEETExMH3c6qyuRBJNng2wPbkZKM4LQPkPUzYtZg+NOSqpnMGm1C1x/leno7fqXlAZPiV8yRX2mckC1GnjkwZK9ZR1kVTflY91Lyo4AsaymWKW0CfEU4ktMRY/K/jd9QLSuPt3rSABHVfVJCe6a4fZzp1GZEBMiCQfsyfTKCje1F5E3iNaDkJ2C+gjmiQpI/0745E+a1fR0fAxgRvvbarTyovFZ0FItrrl2Dx06Rls1gLQLImlHaImQ8hpRuxa/c1XGNdJRumR7uAzgX2V5zjsGG2uyvOByq5XY1pjv9EtVrq9FJkiECCklPvCZ2y74cHzQnILI7Iz4vt0v2Y2KRfK8ZogZvMGosQgsmGMyuRkXuou5ADx8yZuN0wVjch1he1xLUXk7QbaEvpmfz/ZDSfUu95+cNGB48d6zTNV9TFFKuHwf8gJgd3C3px0rMMDXpeVwPUGmYslyVofNlqeWxTvRgVZTfkc76A4OlMw4B3NfJjbIvTM3XFab53uT9Fdo8y/6BgdUI4VFjXbP5fVV+HgDrNP3UHwWboir5qHqQ018Hu/4bGcf8oGjjxo3U399P4XCYzj33XPra175GCxcubLrs008/LQrKERmTqJUrV1KpVKJg0DxJvvzlL1N3dzd94hOfoCeeeOKg2hfM1ShYqzWkjkI8q1NsQQMDmCazUwxx83SanCcZsQjuTEZ4VYt4H9tt7lS/Mn/LzJM/NBByW/EtTBv5vRUV8kMVg6HYumEiIqr0GLVwlatcl+PmnOryItkepP6TOL7YpBRgJ9eOmy92Gk8DnJ1a0TwtfVyY1T/JQml8H+LpuLw53lx3XLQfP16J3bJMgi2iyjvCQxyDIvzYoEzL9GVt+u+InPrEMeL7sjzlFGYBZmK3VF0G0vI9ynwA+S7zg4MpEmujMFsuFx6T+2soT6AG5hhU6cKu9QE8pnp56rNFXksgy5XhERBEJuQ0gp2C7amnPxMR5ZT5bHWzOWGBPA8c9srtAeFx2beDY3LgXOyWP4Co0A5Exiv8KvePgUIgW7XXAIaaELfbDGVPvga5CRDfI9jR1wC2BOhf9ar1arpKle9psEWY0kVtdao5r9YwAJbvdVBEqmyIFkyHx83FwyAIyMwxgyGb+t6Cgax5j8GQ3c5E84QLAH0n36nOizqf7RukpUB4nfFhqMw1coIy2y1Eh0u8PfM+wM/bUqJeRgSDdVuCiQe4ya1qSlMNiNFW+4zTvgu1WoPdxJFApeZR5SCnvw52/TcyjulB0bnnnkt33XUXnXjiibRnzx66+eab6fzzz6eXXnqpwQyKyBSM03bfvb29VC6XaWRkhGbNmkVPPvkkrVy5ktasWbPf7SgUClQo1G9CXTnYwcHBwcHB4Y2PY3pQdNlll9n/ly5dSsuXL6dFixbRz372M2sOpaELw8E7wfM8mpqaor/6q7+iH//4x9TV1dVs9aa45ZZbGgTfQHCyQqF8hfwRRXurCA5RuTY9AzMEoHRCiFnq1ALeD38/9YIZDPpicju5HjO1kdhqomnLEKk0ZDttV4bAWEVqHA0hKgdDRMzc+HeOmOUWmsEnhOAzpWMHmeACRd2yQ4aw1TiX7+g0AurasNm+L9kqliOeTps8Zw4RNZbMAHVtU3D59Gs6H7Q7IjikydupLyYbICwHyzN9XQguIXSeOt/kunsbzTlv28Ap4sxMRHdn5TEHEc7zvnaNmmNaLAf0MD+0hSh5/62bmU3g6L7ElxpTEYhcEbVjP5himTHtG+1hgTT6QoBZhTozxIJT9XRB2nShVW4X7AhewyNqPVX4FceL8wumDPCVzPu957WJz/VyaCdYmtSAaX/r9oo4vunsC84lhPp6atJOfyNGUoQLpkTr07I8XatYtkyfPHkwb6xvR053AblOea50MdyWHWo6He1h5qmm2o8+pBmr+E5zA6CvaDPHQpe5b5EgMrlQHk9iJ4TM+2a29P3ZMGtjS8Jwu/Yo5okZImphRnnC3GvlmKGqwBDV+7i0KvAXag1MLxijbDfS/s0XgbK8f3RRXp8ucJzwUbVy5BkXJ7TeN47pQZFGPB6npUuX0saNG5t+39fX15CZNjw8TIFAgDo7O+mll16irVu30nvf+177fZWdjAOBAK1fv54WLVrUsN0vfvGLYhCWSqVo7ty5h+KQHBwcHBwcDhlqNZ+tcn8w2zhecVwNigqFAq1bt27GjLHly5fT/fffLz576KGH6Oyzz6ZgMEgnn3wy/fGPfxTff+lLX6KpqSn63ve+N+NAJxwOz1gd2COZDouITKfYapRjJjxBdK0BhgiMRe4ZwxDFlR7CCix5M+kFJmIKcjkQpJkGlPlakdPAsVyh3XSV+C5l/69QYoYIWiIIMINZsx+wGdq0DKZpOO7gpFnAv0UWcvU62sw/EXO+J083jB4i56k5UtRrI2EQUErzYbVErUoPoETTYIwCHCVCFJ3v8Br0DEDqDLPT6IvmnEPg3L5WTq+WW8yx+AqsDYJ2iFm8kYtNv2vZWeRj5GK7LDDGK7RAOGabAqzMICt+eQwoVwBYmwIIpGfoG4iEobGA4BmoMEsRGeXvFbln9wcBttIzQ8fVsla2D1omAH0Yr5NcHDjMpxmiXKuNYqZr93vN+W55kc+nISNppJ3ZWL6XOpgpgiEgUZ0NQGkVCKlxzm1ihUq51oJ9sAc1GP2x9i6uCh77VMJBvlOVv4GdgSQdLVMEhkgXIMU5wbmvlwkx2wdjAgE4GKL6Btj+QNku6CK/8d3qGipbCW2AOH6i2T/S2sEQWdFyFu01r7Fhs73EdnkCJt4+j4iI2v5g6MdCf1J871eJJyhbBBSSntWFoSCxNtbU2wDbBH0oRPS4X2wJkWKtIZHE4ejjmB4UrVixgt773vfSwMAADQ8P080330ypVIquvvpqIjIMzq5du+iuu+4iIqJPf/rTdPvtt9P1119P11xzDT399NO0cuVKuueee4jI2IifdtppYh9tbW1ERA2fOzg4ODg4HGuokEeVgywIe7Drv5FxTA+Kdu7cSR/60IdoZGSEuru76bzzzqNnnnmG5s0z0cHg4CBt377dLr9gwQJ64IEH6HOf+xz94Ac/oP7+fvr+97/f4FF0KFFo81M+UhcMzMQqYM4ekQ+Ka8I0UM+1d71oopPWTUZctOc8E4aDcQFqKmIF8wMg6ob2x6aaq+UioyaULCfMBmMvcTYYa36IX8EQAZlZ3H4/Mph4v8w+QK+hDQn9YE1YS1TuYkO9DpndApM6q19B8hg0QDaCRySt5vWZiUMBW5ynqiL+/CoCR9QXyNevmTXoRCbdhpBok86IAUMEjC+RAhWwWDDIRMo7stfAwGiGJcvSozAzHVpLZNupsmF0mrZmiKxWSGklkEYNJsqm0jNwbitK36KNDaNjcn8xZkvATCW2yXTqUpLPh2WIzGvb5hnsKzii3/E+ZeZ4mZlSn3jUWHv4+DKBEchwpmRkomqzzfQ5KOv+wudc2yqgYLFdT5ka6sKvYG7CbEaa6zYdXRtzgqmCpUWI7RJCfMpmKhwLgJG2liGsp+p8SXZ8X1E+F3KzZJ/FemDALBPFq6GPaY0SzmuB2TrodvD8wn2MJNuKOt8ouZGaZ9JCW3ayzo0zx7J/YnL//YroDmVknwspW4zIRM3qE2Mjmt3C/cBMJTNC2ijTluPh5W2GK3lU9B35aahq7eA1QTO4ahwXOKYHRffee+8+v29Wffcd73gHPf/88/u9j/2t4Ovg4ODg4OBwbOOYHhQdCwhNVSlcrFIpinIc0CBwwdOsjD7AEKXmScYF2VmItMAQAZ1rTYgI7xpoYjQzBb8hZJdphgjI9rCGaKgs1rMom889juhyJ5lITBfEbCgRkW7OPpSURgJ+SdQS4uNi3yEEqvx1lKM3eImg6CIiSWuOx5oLrR1CxO3jyB66EsusKTYDbEd1Gjtk98UsWHyYWTC+RGCnKogo+w3Vg0xC6Cly3ZJxQUYNWAAwPYG0/D7CjMbUADIDZZuRdQWNQ4avEbYHzyhtHhlUfdOycax1wjkvJcRi9jwAmjmyfk28XnxXc4YoPJLjV/P51EKzQniCMyhnyXsEpVkABMN1g07z2vqiedeiGCK7/5EZjEqp3n/hrQSU1TkgvkboX11r5Y1YU0wQoFkGsAvQEGl9qy2wzMC1qDEDEUrLwrU4J+jfYC20T1HbJvYdYjPUYEpSLJWoaY/OqEJGZEP7+L6BBgvaJjBEQIzvHfg0peZBY6UYHTaTRVmQoupjqXn79upCli2ujy0qHME9WPeDwndgu3GNoDGqMGuY2GWucSnB5ywjWbWpOWYFXMP4cIVihSNf56N6CITWB7v+GxluUOTg4ODg4PAmQZU8qh6kJuhg138jww2KjhAQmQRZwwOH63r2AbKZTJTR/oqJktNzDU3Q8Yy0Eij1t5m1EEl2SZEBohrMxUOr4KnIzmcddjn671S+SMzQJHaqyfiA7Dr+PGfybOOsNtYeFdrkchOL5c3Uvl5uNtdlvp9cKI8nyd479aKpcKI2nyPCtO0pyEg83yH3A80HWIxiB2uYQuw1UmJtVcqcj1w/3JjZT2kLOxl7RLE9cOEm0aaQKo2S5kgRjIuNbpFsBmYIDtCsGSJmq5BJpEs2QJ/V8Yr0fkHf0C7pukSCduK1GiHloaJZAM2y6eAxdaqJnLtmSQon8G+dYv329ZJaqqmSDmCIgHQ/XNL5GsEtughvLa/pcemyKlMPGIYoAkavIO8FYDqLogvB4v4Co4isx7aNkhmqaJ8ydYwl5TdkHbGz0gU8M0sdE7yjoNVT2jfruxOXDA0A5jS5VTIWmhnySqq8h9IOWtdv3r4+nnrpC8nQhKxzN7SMsm9qhshTfRnHj7JA1pdJa140w8aMEJjmut6O711m7PMdjT+RePYkRovcdj+vaz5HkdrJheyxxvdHAKeU+1muw0fh3JFnXJyj9b7hBkWHGbWAR9WA1yBihfkhSg0ghVWnvLetM0/batIIGitxTh9uUzXDlAmaNl3Ug53oSKXp59pELrFV0eYskKy2y1oVGAQB2S5Oa+apndSC5invQxfIdgcneFqRH/IRnjop8MNbp49D5GgNB/lFmzDaqSf8/vJycfZ2a+VBjg+CUPvDyKnIe8z2rOX/tKoqMK7z2NNKC5nRdjxHCjxA02JRtKVeYoTbAvErnzOkvgez8r02J9SDGABVvS3UW6Q32+WxHUwbKME0znF2jlyvt3/CLM8HjsEQ0LnGDJYKPVzGg0vQTNpaZLJyPAYnGAzZ9nGWtb8oxfz1OoLmVYtD/So9HvvBYCqkfqDLUa/h/tDWEjh3xSTX+FMCYwyGMFBFf0NiAYIiXa5jakG97MT0tuq2YxCla5bZY1DT2XowFB7jH3oug4Fp/vAeM/IstZlrUmyXQUu9TA7uIz4+7qNIBsB9r6frMBjCgBhCdm1FoM+/NqeMqqlPDJQxzabPG4xWMcVtp7x8sCKoUCEppQ6RUWkwWzfY5QCqo3nwANiaaNXG6VKHow83KHJwcHBwcHiTwGmK9g03KDrMCGTKFCyVrcgW0MUobVTKrENgyjA0mQE5dZBXUYhmB1AeQJsPJjfLkBZ0N0oc5DhC1WZi6bmSzgCtbLfDaeUllVrcwAypaAlReomjfDBErVuoKRA5I4K0r1aMzPR9DpEhpg3M94UOnp7kHt++FuyONDC0YmQWmms2B1NFOL+RiZplcMAM6XUy/UpsDlNBFn/aqJkX0+UxwITY9Zk9w7FZhiMshdtg6WxaOC+HVPMcMy5gosJcYLWojPdSXF85zj6aFdW3dLTbvdjM+/nu5pIz/HnyZZ5G4w/AEAF7zzRh/+RJpo91PcespJoGw3RZnSGS+9d9vwEgFdVzXTNDevpteumYPJNelt1jaLNG2yYWVuP+wf2nmQv089FTYZxpPg8o8bpOoIgoOwOfKjyrGSIr7lfPk0BWMce8Wr6PCyoH9/1jGE7JaXqIjjF9Z/eDqUp+3ugp05IVaDdn7WJ7ivxq3pfjAT4e+RzDdjGVjTIouAcaLDoSqqzRNOuFIpt3FtqkUaWGT/UBy3DyM2l6wWNf5shPQ1XpEJT5OI41RcfvcM/BwcHBwcHB4QDgmKLDjErA18ASETUa54XGZehXajfRSGjKhPmpeawlUmU/at4MqewwF0Sx0FYZAU0vWUBUL2xZtoUQeTNZKTxEai+i/IYUYV4fwmgIyhHpTSxmIzSO8GJ7mN2YIfCwhS+jaBeEmrA2aC4Shoi52GaWD4/J5SA2hvgWaekAIvZgjvczA/vgK9Ys84CI0JYs4M9xLorqnCOat1G8YoogAkfkWS/FINvgt2wAie3Y8h9Kv1HlZiQGq2J5y3TxsU6ewMtHOOV/gXnf9jKf46Rsb3SQU95/YfpGmqviJF+WvgboOzD2hNgXDBGQHpDXLCYrvlCErQd0AVtYG9j9tcn10PfAoqCPQxyM9kTGuLwH0r6nkbaaIcKyALQvYJdat5qdTSySHQnlY5JbJEOkURfZy7bb/anVGkTm+nuknjOjAusNMFqwDPBBtB9E6rvcEPokigLrRI5QqizaXVDCZTA5dUNDA7/ajrYuyPRzKZdJ1mJxaRbcc5p50oVyJ07E89G8tm2UTLTd7/TLNYOOy77n+8eP4t5aN8X9rDZavy+jWhh/BFA7BNlnteOYKXKDIgcHBwcHhzcJqrVDMH3mss8cXi+qEZ+wtLdZFZjzZyYk2ydFN3oOXmcMaY2Bjpb9nBobVHPmmiGy5QFUxr0uF6LTlBF54thwHIiY08wCaC1A+3qZgouCk9rU0bIoiiECEIXhOMFQ6dT7YIq1R9zTO9bJ9qAMAHQoSO3XkSl0K2iHTA3m6Br6JrVuvSCkbDuyxqBDacxkMq/QDuEYcO6hp7LMFBJnwCzxfqA3QVSNiBbtwvuR07mdEbPi8nNfISKip59ZQkR1hgjoZEPC6C6TildOms5UiZiGRvcalmD3xW1ivciE0q0NsJVADpl9fM1VH8/Mlu9btsnt4HiQGahNI8EQ6QwlXDdrRcDXAazI9Oc/DDnB/ADI9gTzOF1/REQ0slQyRFo3NsnZZWA6oF3TjJA2ykzsVPeNynLVpqxgiOJDFfW5vI8rIZ94xX2I73VpGZjBWoapKG0hgLK6NzSDZdlWD8fD7/3yPe4/ZLvhvsTzNTVPH7fcjrYu0M/F6efRPmuU3hLPLhzj+FJVPmaj1Dk2FJ321VlbhzcOXteg6Ne//jX9+te/puHhYapWZUf413/910PSMAcHBwcHB4dDC5d9tm8c8KDopptuoi9/+ct09tln06xZs8jzjl8a7VACEYz2E2qY6weDEm9+XsEQIXsCQOSkmRetLUC2GUzodCSKciJoJ7aLOXpEWnrOHpFVMG1CufaN5jXfwYaFQWRmNdf22IjQJ18tM6MynGaKMOO75YKRCWUGt3VKvA9PGjEVDAGxPzBDsSFJoRXa2aofx1+rl50Axk8K8TK8TptsKzLv4oOSLQSrhmMZOwnFgM17XCucizAfCiJYfB7fXRJthAcWIlrLfPArvKLe9da1op1P/H/LiKiue0Bx0GKrOQdgiIDsLJmVMzW7+YNT6zs81QeL7XwC2vl76z/EWh82tdT6upypNGP1Kzj/KCKq2VXdh9D3wWbUmT/z6ivXl7FtVVmkqQGz0cyAYWISW3HDyH2VWuX7mTRC2Hc5wX1kwrQtOoxjU8xnLzx1JNMKaIZInwMwL5bhQRLYXtnHddkf/TyohnS5D/ke51Yz1Lo8j/YlqvuVNdft4HhadpjvtVksMj5jyhRSS2SmM8H62YRzBEB7B4AhAvBMhsEktGnhyRqFckfeqMhNn+0bBzwouuOOO+jOO++kj3zkI4ejPQ4ODg4ODg4ORwUHPCgqFot0/vnnH462HJfwqjXyqrWGSBAotClfEBW5ac8VzOVPzTYj9dbtcFGGbgT+G6zd4UKSYBOy3cqdmIP7yKjUndT3z94a7HwdRZZNTbITAXaChbtzoV1lmaAI4qA5ESgf4tPahKp81ZEiNBJaK6Gdb8NcCgMRb2hS7qjYZRiiQtK0AwxAbE+Bj4Pbwdb9tgCmKsvi1YgCab64cMEd46wqRN0d8phQsBUMEFi9NDymUAIBSVsz+Or4LItn3gf5mCsqKrfuxsgs4q/3nAu2yyzwyO9PIyKinmfNAknecct2c058GUOfhcvmWk8sNVQOHHtHzmyuCwOig82jS13ANq9ZyJLUhYF5C02aVzBEAO4RMEp1N3P0Cdk+9HGtd8E9Y/VkxTqDAOdpna0EhsgeizTxbmA8Q3zsugQJsiaBli3NmVkADBFQaDfLJ3aiGLD5PJBVWqKwzCrTGqD4LmkCVYnJ/aAYqtY0TtdREjVqdnS5EZ1RiWuN8wW2xd7XftknwPToLNG2jZpilm89eTvTxCLORtsEFrdRH4aSSUPnmHPRsQ4bwf0FvRMznMo5HSyX2P8RhKt9tm8c8MTgJz/5Sfq3f/u3w9EWBwcHBwcHh8MITJ8d7N/xigNmivL5PP3Lv/wLPfLII3T66adTMCiH5t/+9rcPWeOOB9R8HtV8XoOWqBRvzhDVszzMe+ggbN2sNrl9aIYCXGgWTAbYgiAzRogEbcFGjmJatje34LWOt6o2WqaP6/t0m/eznuTJf+1XpNiK2LCkyiJjZr/wqgEaIkgViWvmrPv3RiRQjSnLbGis2kwICjanGkZRVuWBwwxRcJekLbJLDA0RyJgLkunX7a27EyP7afxkycZZjQv0GWOymC3qYSFTsMwLBjOqBpmq34RsNbj1+jnjB+dMO+vq51jfU+xRs8OEsmOnmjS39peYgqmBYuK3nFWWWmSWA0O090JzbqJtprMWi2a5yPMx2hegG4FHFjKr/Hn2ruEivb5Jv1jearWYgeteYxoIPU94Uu4HDBH0N9rdGYxRjL/PtzePFWveNC2NOpeTzDCEJhSTEla+PeOa8eHluFvlu9TyEzrrlPtMQDK4uS5envVTYIiAYEoypeW4bie3PyX7nFeR76NKk1eNmvsr12+MlOq1CLG+PB7c3w0O23z8yCYNq3a0bJfPj/RsSS1hPVvPDswR9GH8PrVI7heFfNH3iux8P3yOWa7rD/VlwRABi35hOtrmDySJqJGVwv2sHden39dh9btwJOA0RfvGAQ+KXnzxRTrjjDOIiGjtWinMdKLrRlRCHlXCHlWDUnCZ6VdTHBUsb17xcNNTJl1r5fSTnu7KdfMP0oQ0NdMpwG2vKuGkunR46CJtHCirlODhs+TDKbqXp+/U4EZvXw+GML2IAQJEtJjWwmCoLjDn6cD5RrEaGeanoa4Iv8eoG0fPMlM9sT0QgMv957vMiQ/uMu8xGALGTo6IdgaRZtvi2XOMKQA8aK2RHB7QbMA3cYK5qDhXGvah6cnpLvu9slmwA2qUOskrOwUWj4cgnufBji8v+07Pk3vN9oIoF2K2N3ViKx+fac8kl3DB8ejBUPBlVLLlDavnvh3c4IeQfzTyJ5jtVMbMtTjp1J1ivVc2mpz8yKBZsXOtKv2wtz7lQTRtelKJkXXf1GjZgYq+8vPMrPqIHNM5gJ7mDWTwysJoc2rtVB/sBiqqYkR8J4vj+T6z5qKzzKtX4ZR69NM+uX5wCgkPPKDkAV++S0YTDSVO1CAkulf+kgcHzQCgFuYpXh4MpefLUi3o8xgMYeAfY6F2yZaQ8cTx2XbxeURQFd9tOsuUKjfUcA3V8wWFmwEEDvZ4pJ8odb5kztfghWY9Oxiq1ZMvIiPmnPh5GhmDISCrTEMTg3KfsT1yYBdIlyhSUkpzh6OOAx4U/eY3vzkc7XBwcHBwcHA4zHBM0b5xUOaNO3fuJM/zaPbs2a+98JsUXlWmjSKCgSAQIryKmv3RpochxQhFxyBsluuBIbLvx+R7RHJ6WkpHWqkBVRiR2wfzRUBHzJjSgRAyytNmNsU4iqkQndrsE8tB5AqGSEd6mCryMytSajUNtBHmFhMKgiECpgbMBsFAgZWBwDR1Zp9oB6CF8nkWsvrzRBUOllGoFMA+rOFdBccKewbz3gqh+ZSDpauLafk9B+9WsD0hzRhxznFOrAFeCaJwPua9hj2rYSqRo/9SlzkQsJqpBbK0TPFCQ19WNhhXxFK/OQD/GmbrYDiIornq6QJWxLIJfByZc2Su/PyThoiIaOMLpk5IJWYW7HxObjDXiSliyRABOG4kAWDKCO+BBrGrej81t86y6OK06JctzyjGtlMKsS3TybOzJTWz6FdiXDBL6Id5nh4Dw4EyNrrPJXbJjprplw8WMMtgbNCHIjvlnKNXUCdTfV7ql54C+hyCIcr0ShNXlFIB9PNLi5JRzgNTwVq8r1PyJ+ejT5j3uD5grto2yKlULT+Y+xCXdpmWKJLYIRu1+x2GIYpwYeaCfMRQx/oyb1sZ5bL4PDxq7pvxk2NUy1WJ/puOKNygaN84YKF1tVqlL3/5y5RMJmnevHk0MDBAbW1t9JWvfKXByNHBwcHBwcHB4VjBATNFN9xwA61cuZK+/vWv0wUXXEC1Wo2efPJJuvHGGymfz9NXv/rVw9HOYxalmEelaaLCkpyCt4xR94smesh1mw80MwRTRKCYVBoBZgl0yq2OenVh2BKnjWvdRc8fZHSU75SmhYi86iLfmtg+GCJfWW632Cq7nC4wifR0RMgQluoU5NC4oSOQKg+GCPsvLuN0cTBivD1tvudXKfaIZDXL0VhGpX5NwfjYdXjRmaLaEKcVBzk6zXF6t2U8StLEEfAlUHrBU9uX5yg8aBgdaIO8kukTlYShajRDlO8Oc/uleHfsbebAInFzrqvrDD3h43YlnzPrlblPo3QCrh0Ez7immT7WIikdjW+rESfNfqsRymx/aZb4vmWDtJWASDe1SPWJSRm99v5esibRPVK/UY5r2whOzVdJAtPZodiwvL9Q8LTMDKhOTBg/VbKEsCWAlkYXEQbzo5lKsBL1Nsn3IdbaTZwgv2jdLp8bYMnwGpyU97k3MiE3HIbI0bzmFxh1u9bkQegMcT4YImDPcttyIiJqe7m5prLIprXxYclo2ZI2SrcKbREYIitc52ZDE4lSN/o5B3PWYnuIl4eerr7M0LlRsU5RkmQNxYFLCbMNJL1ojV+hU/kPHGHU6OBT6o+Ck8ARwwEPin72s5/RT37yE7riiivsZ8uWLaPZs2fTtdde6wZFDg4ODg4Ob1C46bN944AHRWNjY3TyySc3fH7yySfT2NjYIWnU8YgiRywoKAm0bZLRa9vj2+QCZc6WWjZPfFzP4jCAdqHBnC2iLOeVRT2ysYBgilmBkIl2wBAhwwqApkmzIaFURbSnwBEYQgudUo/Cs7Ai0BEysmBCGwZN+xf2EhHR5AkyetNZcrrgY/t6ExH705I9mDpBUnfQOiHizLfJBuU7pUaEqG4iaNsMg0ukzhfAfnFGXU4VjtwiNTUoqAoNDBicGGfi1PzM7rE2iDhLzEub7dQ4uq+0mddqGNtBurRpvDXuY3atxNdg7Hxzzj0WilTWS4YownoXnCMcP1g9m96dhuUAHxhOCwqushYDOpnhXxttYhvKeHByjy7gilT88HjzPoNMIs20aWZI3xuZHi5ky6nXtmwKl8YITZZsmRcwRBWkoDNLN3Eis2ExyRABOCZrCKlKj0xcYPpprSzb1vW4YoYLKitUlfNIDMr70K/6HBgi35h8IFX7jHjJN24uSmVWh/henzOdBQaWBPfH5MlV3t++s8G0hlLfd+hTYHr1fmF7gYxInHewsriHcJ1CKdMJwRABNmuO15+a65v2nXmFLgzGuTDEhbGkttLQWahoS2S8SpGjkJJ/NPD444/TN77xDVq9ejUNDg7SfffdR+973/uIiKhUKtGXvvQleuCBB2jz5s2UTCbpXe96F33961+n/v5+u41CoUArVqyge+65h3K5HL3zne+kH/7whzRnzhy7zPj4OF133XX0y1/+koiIrrjiCrrtttuora1tv9t6wJqiZcuW0e23397w+e23307Lli070M05ODg4ODg4HCEcDfPGTCYz49ghm83S888/T//wD/9Azz//PP3Hf/wHbdiwQcxGERF99rOfpfvuu4/uvfde+t3vfkfpdJouv/xyqlTqkceHP/xhWrNmDT344IP04IMP0po1aw64JNkBM0W33nor/emf/ik98sgjtHz5cvI8j5566inasWMHPfDAAwe6ueMelahH5ahn57RR6LXzRSMeCGwelCvU1GxtzKSpRDaa8Dy9TBqT1AvNmvUKbVJ/gcgH0Qn8SKJ7TKSI+W1kRIBVALSWxzJE+JzvDWhxwBQhYqy307wiooXfkGZ4oM9J7DL/gCECSknWNrRx5MfNCCoGDoVm7XYVQwR/FZSEgMZD3+vaADE8YV5hXkm1usZAZwLVWSep/YGXUiBrdl5kRgfsHzQzuGZtGw2dEBzlHTAzBM1QNWJOro+ZoEoMRXihj2D2gqNtr2pes93MEHF2WRXFNP/I55hLVIAJQqSsM43AEKHP4ZwhQw/+TVYXwuc6uoffQ08D4ovPT+c6syHoPJDpmO+R13bWE7I9wSlVqkYZdcKAM7aXDUSZIYKJ5BSXsohy6Rt45QT3pCnIbc4PSI+a3RdKJieQliwWzp028svMUwWiFUPUuoYzALmP4b7BJQjAg0pp5VDmB/0516NMR5kBTjJTVE1KxrQ4nzs4a3hKrAW0xqDMEPuVXmZqtrzvu57HuQdDA2bYHKfOltWlVtBnI+NKl9Mq75GKJI7t/Zlj76C+Z+T9n+uRuh4Yo+qs3Pg0ryH4DBVRGoi9oJJpZIGa5VAMVz878ay05Xm8Rq3ikcDRmD677LLL6LLLLmv6XTKZpIcfflh8dtttt9E555xD27dvp4GBAZqcnKSVK1fS3XffTe9617uIiGjVqlU0d+5ceuSRR+jSSy+ldevW0YMPPkjPPPMMnXvuuURE9OMf/5iWL19O69evp5NOOmm/2nrATNE73vEO2rBhA73//e+niYkJGhsboyuvvJLWr19PF1544YFuzsHBwcHBweEYRCqVEn+FwqExo5ycnCTP8+y01+rVq6lUKtEll1xil+nv76fTTjuNnnrqKSIievrppymZTNoBERHReeedR8lk0i6zP3hdPkX9/f1OUL2fCKZrFCrXqO1laaHqGxyVCzJDVOuUphep08ycvs68AWxECI8aZFNhe/D94cguNGY6rc6AyPVGuL3s6QI/EY4UYyPMEPEceI0jKu07gigJDBUiPa15yPTJ9cITSiOwy9AT1T6paRhbLLtsYrfKbmtp7jScWiwjYZRygP7H+i3xq/ZLQcZXHsVdUWBzmiYktrfadB0wNcj4SS0Aq8AZfbxr6CXADOEa+idYKxQyx45yG9gumKZKWKZ1wXsF1yDLbAGYG+snhEvN6+FKJNhQGgyP1dgMSs1OdJhZRtbXjJ4WEccFd2Z4PcGTB8yQ9i9CH9cMUdrYFlF4xOyndatk4FBKRxfERfRfUDoVMGVwW07Ng6ZI9kVokUontNmMorGTJTPUulm8pdRC+b4c5/uXu2EtyPdnq2QwPJ/cd93B3QCsHI5ZF6QNj0vmJctFhkdPN+9R2iX5R05n40zESqvpFJYAUFleYIRw7XTh2GKLf4b2qnuCNUm41hkuZBueYH8gXXyVnzt4vqHIqm0XGPGq7CMRJW/VjIzuC/Wiv8hCnZZxqJyodXFp60WlfImI94nSMFVd6Lhca3B7PxI4lEzR3Llzxef/+I//SDfeeONBbTufz9P//t//mz784Q9Ta6uhSIeGhigUClF7u/x97O3tpaGhIbtMT09Pw/Z6enrsMvuD/RoUvfjii3TaaaeRz+ejF198cZ/Lnn766fu98zcD2lePkC+QpWoLl4nQgyGeCqFWWT8DgyENPGQaDP7KNfU5bx7lQ1Dtngc/WvyHwRCA6TWIeout5uEZHpOjBX+rHFzplH9Uig9zKiwM93Q16/iQnFfA+QJy/ebXpGWnTvHXDxrzWsbgRlVGx2AI0xHFVlkvSz/UdYovgMFQi6oxZZaV1wCAcDo2bI4h0ysfosnNLAYfVypxTIPxYAiDD9gR2BRgmBVm5Q8JvoeAGD88GNTgBwHC6GyPTING+jcGMRgwt242J2FkmZl3KvMUBsTE5ShbBIxjqsN8HuBTDANClLTBYA3XAEaD2G90BMcjp2qtSZ56zuupEAx0yxFsjwMAHkThutjzWJB9h4hoz9my48b4WavF3i1b5fv0XD14wfswH5N5V1hsGpl8xjQSJo9+G4DLwVB0b/Mf6FyXuXij6nEcnuDEjbltvF2dmMF9LSgPSE9rTSlzV1zL5GYMUGVygTa9LCtbhnS/2V58SNYFtNPX1gJErqcHUX3PqhqLw6aPFjr5fPK9gGm8yKhZPsO11ErquUFUH2RrsTpg7yOYpqq+gGesPSbuXzX/wQ1MXi9qNY9qBzkowvo7duywAxcionD44OwGSqUS/eVf/iVVq1X64Q9/uB/tqInyYs1KjellXgv7NSg644wz7CjsjDPOIM/zqKa1L9yg6aInBwcHBwcHhzcOquQdtE8R1m9tbRWDooNBqVSiq666irZs2UKPPvqo2G5fXx8Vi0UaHx8XbNHw8DCdf/75dpk9e/Y0bHfv3r3U29u73+3Yr0HRli1bqLu72/7vcADI5Yj8HvmyuebfM0OUXShpwYCNOrjzqkFoJdy8U9fNCA1sKuoMer564UjQ4yaSBEMEIMopctV5REcQdtvl1H7CyixNm8nZcgPbxsXnuUWd4j2mUhCB4vh15XQAkV6+Qx5Hg3BapdMjLR3nEfsBIxcblttvBkSCto3MxET2yvn2xBbJjnk5VUvENoqZnxhPk4EhQtmKnIxQYQAa5KlVTLHiOYhSEEjJx2u9gGrziNaybSxyH/5LniYLmvaFh017wBAFciyqx6WF0BSHyacwMYSyCFLEC6YKTI6eOoZRIkwvMR1mherMcMWGMfUsVqd0P6YhzXuk3mOqGZ9PnyLW5V40K6BhC8DypdflPMAQWabyuYhYXu+nwMwmprMBPY0Ga4D5/5dtHDhSDg/LbIBqSBlYtkomzMfldELcVYOTXKB1wFBDYIjaNinBOBIXfM2fU2BRIZgGQ6RhxflqO3jOJLfKExWckO/Rd0P8eSDLTBg/3yAgD7E4vxKUD5Jwqn6ewRihLbbEUEKz47KtsWH5zIvsqTPB0ZJihd+kwIBo48aN9Jvf/IY6O+Xz/6yzzqJgMEgPP/wwXXXVVURENDg4SGvXrqVbb72ViIiWL19Ok5OT9Pvf/57OOeccIiJ69tlnaXJy0g6c9gf7NSiaN2+e/X/btm10/vnnUyAgVy2Xy/TUU0+JZR0cHBwcHBzeODga2WfpdJo2bdpk32/ZsoXWrFlDHR0d1N/fT3/+539Ozz//PP3Xf/0XVSoVqwHq6OigUChEyWSSPvGJT9DnP/956uzspI6ODlqxYgUtXbrUZqMtWbKE3v3ud9M111xDP/rRj4iI6FOf+hRdfvnl+515RvQ6hNYXX3wxDQ4ONgiaJicn6eKLL3bTZzMBdeH8MqrID7SJ9xDllcNKLAqBYkXO2QPQP2Du3xZQVGmhVcWogCECCh2SCQL8eXldkZaKwqw27dnzxOdasKzLesR3mgVKfYYqDQ5K6ibXxdE8WIOYFFxCB5Pv0JoFjownuFl8GupsiGyXTwktARixwSxO64VqPq8hjV8bVELjA8GuLtnicSkUryCZo1rMXAuU56jw+mDtNCsHsSuO3c8GfxV+D8Eo+lJVMUBYD8eKKBu2CdD8gO2IDqFPmvc4h0hHh+ki9g8mBn0L5wWRNiJw6ESg74D+C9cMTBL6AkT8EGyjj+MemJqDvsnb4S6mWZ56H+HtKR1MJexRfIj1TpxKjnMO5Lq0QFnuA3or+76LWbZJFKuV3wdhiImCsqyFCY9LyqrYIkVvc38tGZPIjgnxvtzBlhR8/5faufCqMhMMpuR2iu3mJHesM/svsKmr1c2oPolzjOeQPqeJ3fB5aM4E2e2oe0wfP5gwtA/PyUBGmtECKJSL5xGep5EJxXjNwHQREWVVKRP0Q5Q8gS0ImFgkJACpE1vIl/eI9i3TPeQ4lJqi/cVzzz1HF198sX1//fXXExHR1VdfTTfeeKM1WzzjjDPEer/5zW/ooosuIiKi73znOxQIBOiqq66y5o133nkn+af9pv785z+n6667zmapXXHFFU29kfaFAx4UzSRaGh0dpXg83mQNBwcHBwcHhzcrLrrooqY6ZGBf3wGRSIRuu+02uu2222ZcpqOjg1atWvW62gjs96DoyiuvJCIjpv7rv/5roTKvVCr04osvHtC83ZsOnGVWnmts9MsJE/rpAqlaK9SQyeDzmn5eVqJ/sAlYDgN7n2JCUMiyvp7aLvQcUWQsySw3QGeX5FlrBL2IZogQTeF4QrsmiIioMNDB7WT2BFlyvB4YohJrGWA8aM8HLwiGyB4Hswi2aCkyobLNU57B9jSUE1CFeqfrCZDZBlNAQDNDviJrhFCwtSi/B0ME+Kc4g6arzXzPDA4ydgAYUUJvos0gs73moGzxTr5kSGX3Khxt87UCO6cZoo5XzD/I+poaYLNHlsVZ00Mu6jmTLgSMFTQ7YKSg24EeB9lnBXP4FJ4Ak4MDl+0EY2RZGvW8hY4nsUuVY6jIBbXRok4vJ6prUXQZHF1QGCwXtjm5xKzXsoENOLn/hjJSS6izNK29Qp85eE9lOKKETHirzEkv90gxrLbksAWlM9KIEBpCtAf3Y0Edr7VTeA2mWt9vmiHC/u3X0DIyM21tJlR2XICZbDBGgSl58cCIpxaadD79PGrQaE17vuHZqbPFtM2I1hli+dig6YjZPpxz81qM+6joUw/yIwBX+2zf2O9BUTJpeN9arUYtLS0UjdYtREOhEJ133nl0zTXXHPoWOjg4ODg4OBwSHI3ps2MJ+z0o+ulPf0pERPPnz6e///u/pxiXn3DYP5QHusX79GwZAiKCbOhrKrDSWiJEhp7SBlUUAwRUFRMFDQEivXyHKvMBw70iMphkJIisODBFRWYnkPmTGjBdDHoSy+SMyUgue7I5P9AcgJnSGg0UeGxgiNBe+BQpQ0BdIFYXpPQrRgiaEV3GoKQ0JNMzW9s2G81AscUcc2RUHqM/zZlAnPHjy7DpYZwjSH61GqO8WT+7oE1sB8UyoeHR5yDLHjWI0q0OLS9ZsBBnBiJzCSwhGCJkQLVvNCe1xNekxMeXYU0FSjDU2RCZPYY+lWZtT6ETbCMzSts5Wywsjwf6Gms2yX2xxLP0KO2gTSJRHBTb0axhdETpZiw7Y97DB8oa/uHF59lzWve9MseW7VWsAbNUYKsqismNb5GFU1t3KBaK7ytfWbFripENqoLMsVf2yuXbzUnB8yEzYJ7buEY6sxD9G/dfeIyzUZk5wd60T5r2MQqqAq+aWS6B8Y3Jz9s2SeqrHJMeXNajiu/PgNI6+nNm/SpnaIKVBeKD5qZJ7OTtcbZdg75sGmtYVfpOGMTiWazZ9aAquTK61JxzsH7wOCtHiZwC942HA+buPvrRj9KuXbsaPt+4cSNt3br1ULTJwcHBwcHB4TCgdgiKwTqmaBr++q//mj7+8Y/T4sWLxefPPvss/eQnP6Hf/va3h6ptxwWqnUmqBuJWQwRorUqD/4nVSciITDtPB3LsrwGvmXBz7Y+OZhAZVWbwgEF7AoopGTvJRG5gD8AYhZRjNfYHhkhrpQqdhkqyfkAqAoZ2qB7tI3I27xO7WGugynpobZX9nIlN6F0aGDd1Xv0qCwfnF5qs6VqiyJg5WaGhKX7lL5hVs9oh9oDCqw5JwBDl+sHCmtd0nyzyq6PuoNJpQGuDEiYWKBvCDJP1Awo0Z+PAYoAhChRkpmFipzlusJ7IgMx2s0aINUbQb5VaJUNEPkTraA+/gixQWqEGTyBIo/g1yh5S1mFYeVjBKVtnGMKF3WYs5ZqzHP5irUFXovutzrbEOUS/m5qNTDyttdHlaiQjOZMPFxDbzaVglB4t1x8Vx2BLUvCr1RLlZKFW2442s2O4g+Ncg/XA5/p5phnWqvLyQfvBFOE5klpgOi+ef/b5wc8ny+qhzBBbw4RHmIVVWiN4egFaNxaYkg9eZKlB71aO+hr0YXBCBwPqU2wdnnV4NmldGPp1IN+YnXgkUKMG27vXtY3jFQfMFP3hD3+gCy64oOHz8847j9asWXMo2uTg4ODg4ODgcMRxwEyR53k0NTXV8Pnk5KTzKGoCX75EvkCREPVHNpo5/8ha6VkxecF88R5ReYAXiwwiA8mIZcAQlVT2GjRCqLOlWQAd1YAh0kyS9drhSGbsJLmfne9i741B1KEyn8f2aHZCvtUMjdWpJKQ3TFlJ1jSTpmueIaLUjI/WboWUw7b2bYJ2ohCTxwvNFLJ9UEOKqM4QWWjLCryHWy7fJ9WEtFjOzpYHnVE+KDg3mgHSLB/8UXQhV/gJ2UwhxQrU2QRuLkflyDILTpV5f6wR4nMLJmh8PrQWvEHefJD7RiDL57ZNsg5ay1Tj98gwxPdVlQWndWIa+S7eDmuNELm37JRsJtjFCLORyNqz30fQJz2K7TEnEW7aWCbCJQ1x7gGdlZnYrbIZpxRDyQxLcrd0wE8vkHYn+j4uJg3DEmXdWmaBzDYD8wGm0/ZnFG7m97ogtK4fZ7NYQXbq7DL4KvH+UHg1mIaGySxXikuGyTJXvP16bUJ2smd2s+1VdBaxWyp0S4YMfRWA1ghsLABfIwDtttvJVq2LuH52JHaw5q+Pbxiv+bMWWZ3AdFYtUDjynEuVPPIOUZmP4xEHPCi68MIL6ZZbbqF77rnHmiZVKhW65ZZb6G1ve9shb+CxjuruIap6EQrt2E1ERJWi+XX3dxsb81qnyeprfWWciIi8cfMDW0sblWl18YBZntOyY/xa6mkR+9GCaTzcbEori2P1IMm2006zsRkip5fjNb2YHypFORgCIC4EdYwf1HJMLoepFaChLAlEwKowq54mS+xSDz31cEGpi5ZtUuxcaFdlDVA0tUWKk2171I+aX005RXdMNjwMqxFOl2bDTv0grjHlj2m07Dzzqw1ROhCQv4uNxnK827CyCdAlH/SUgYdj5GOvqEFVps9co5Yd5j36UjUgC68ifXxsCQzw0DDePA9eILovtqkplizSwMXHVGyT7/G9nT7j04BpwnoRYPOaP8WcON9OM3UU4YLwMJPEeQvZe0ROISPVOtetRcBVe61RvgY/mBq4j7TgWJeZiW6dUCvywJT7EK5RYrsZARbYZBE/3rYIKffH7LxWsR0M8LQVB+5PCzWfguk89Eg7gFX3hx5E2OdHhwzKMBBuuL9UX0VRYVS5x4C2ZYccoIdSulyQtkRQ14Wn0ZCqrwdDGjjeUtRXt4jgBAY8U1LzpWFmdpY8FkznAlbcjrIygyWKFmco7XMY4bLP9o0DHhTdeuut9Pa3v51OOukkuvDCC4mI6IknnqBUKkWPPvroIW+gg4ODg4ODw6FBteaR53yKZsQBD4pOOeUUevHFF+n222+nF154gaLRKH30ox+lz3zmM9TR0XE42nhcoMYRgS/CZmhT7EjHhWK9hKHHwRABvvVbzT/9psovGKJSgtmGcnP61aYTM2AxDwMxMDozFmzkAGbsLBORJV+WXSWxk8sccKTcML2lzNEQfWdmy+WCKbn/yJia3lMGaWHFIIEhCo9IWiXysmHmCifOIqJ6RAtBKSLUil9GsDqSrRcH5eWUALvQ30rhPczq6eKaMGbzKxZrTkK81wxRmWdKWndIWkGfC0+xDjrqRhkPPzNFVljN0Tai4dRcvoYcfIPxyfYwK4jSKMxI6SnJ5KtgF+XUpxVOo/xHDlM25j1YADtdx7OQcU5uxVRlHrUh+fCqMkCn7By2BJhjrkNwrWRR6ywDRMWYMpIMEabCNEMU3YvzV7/2KCZrlxmRTG2dPWTxthJS+xR7aJmdTjlNBvsD3Oc+XMuMLJGii/cCYJIwTYcUd5RYASoq7Xym2REwUvq5o9lIFB3GclPzuJixtgRh9gRMki6/k9wsGaEGETz6OB+nT7UD5xnM0YwMETfLr5IJiOpT+8BrMUTox2C9Yntl/4sPlvh7H1WOgnmjw75xwIMiIqL+/n762te+dqjb4uDg4ODg4HAYUasdguyz4zj97HUNip544gn60Y9+RJs3b6Zf/OIXNHv2bLr77rtpwYIFTlek4Hk+8nw+8k5eaD7YymEw67FqRRNG19jM0ENxO44cPWaIgOAwQikTDaNMhzVXZCAyCmRZt9InhYiIaH0FmX5dTMjIJbTXdJEce092/0HZ8EO8q5ipktISYX2wBkEmxLTQOdun2A7uocnNksmpm8vJnFbfkBEj5E7tlxvm5lmBKYqScuSJsiIQqNv9KM1EkRm62LCJ9sASERH5x2SYW01K4XS+z7AAE4t0aRfZVIh2s90c1eckS4BzrqNmW44AJSIieJWiYOhJxk5EX+P2ch/I9pv99Kw2r5PzcQ6aR7VggFBeAxoeMDpg98Ak1dvRdHMNIlqI+ME8ZWfJ9gamWNS725zfKHcJpL0HVFkTiPRt6r4q59H9B1UiooI+56fJhZwCPtHcUsNqiZiZgeUFmEqUfAFLVZndysuZaxGaMBsCQ2TBjAhMGFEeyK/7gGKKtJDbGl3Gm2voGiwHkHIPzSKsQTiVHaxIqSUotqeZpKgqo4G+DaCPwF4CzJoWlDckjjQUvNbPj+bHCdQZZL5eITDfzEBPlCk0ZbYJdlCL6VsUo5vvkteuoTRQHPfj0RlZOE3RvnHA3N2///u/06WXXkrRaJSef/55KhQM1z41NeXYIwcHBwcHB4djFgfMFN188810xx130Ec/+lG699577efnn38+ffnLXz6kjTsuMNBHFIjXM5DmmDC3um2nWMwyRHgP7dEeE3Z7vSa/uCHrDFoCGAVCI1NExhDPuauIS2uJEKEFWWtgtTM+VY5EG5VpDQ4H2Ugbz/RyhKxYAZ1xhLTuArML2jAt22Pa27GBU+8nzY4CEyp1+aw5ph3IylHHic9hcqktDADN5kBXAgRTZv/VaJD8EyYzqNoimaFil3w/uVCeS2zRxxqe5DaZ7g2GSBvjwVDTGnzqYrydYAnBMJnPMz1YjrNGuXl+PoX5brmfkdNVhiEzNhUly8C1RYo8WEidjQY2AKVbLNOD7DIU6eUSLEhXznVA82TexwalPq3YzrqZMbAy3E5mOTI9sqQGgCygrj9KtlEXSU5N01BZQ0i4LGSQxg89FWfuoRwIL2dtEJi1q9gCy+ZzWxKlk4v2stbGnktVzkIXTtVlfaCTynXKg44PSo2O1hJZXRqyWBUTpZkbMER2fX7+lMFkqaxYoGWnFCHmO5v/FNlUfR/sHpgpSypzS2RijiuhHbfHao/4+Yb7HQyRPR5lMhlK1b/XDFF6jlm242VZRBelUZCqDw1fncnFq0fVypFnXBxTtG8c8KBo/fr19Pa3v73h89bWVpqYmDgUbXJwcHBwcHA4DHDZZ/vGAQ+KZs2aRZs2baL58+eLz3/3u9/RwoULD1W7jhsUehJUCCUoss34EFV3mqwozQxpr5taSUZ0MPorK1NB3TcRTVu7+qiO9s12A2puvqLs8RGRtW3goqUoD8CRJbQMKuHJGg4iKteZQpFRaHU4AkQJCE660Vls8Lrp2CDPB7JdJk9tN8fD7YEvC16RnWa9dlRkjAgVjJbNGVLHpb2AwA4RTSvjwaaMlRZJpYyfaE5CZFyGy5FRNkOMgdkxx9CCTCVWM0JfAoYIuhI0EZmIhaRkiACwbjjXyG5DxIr3sd3yoAud4m1dh8WH3sJFNXOdiObN5yHlzQMmK8N6MZTCAMMUGeVrl4B+RXpBIXsnNY8ziKQvIcXYjDE2XBPbKbSp9iu2ovsF1vNBg4W+wadBsyLBXI0sMcrLTM2VBZCj3AZoZmLD7IUEjZpiJG2xW2aGtG+X1uaA8dD9WAPMFRDlc6xZC7tddSPDBwhlM3yWoYHIz7zCKwoMjT4+Xe5DZ7VBV6MZXf0emZeaxQPApuJ5h/Vxz/hVtp1lkvm5q/3LpmxG5j7OM1+asSVcsgimosiIVcyS1Wvxfe1VG01zHY4+DlhT9Dd/8zf0d3/3d/Tss8+S53m0e/du+vnPf04rVqyga6+99nC00cHBwcHBweEQANlnB/t3vOKAmaIvfOELNDk5SRdffDHl83l6+9vfTuFwmFasWEGf+cxnDkcbj2lEdkxSIVCnP7xA81NeUyVSfB1t4n2+K9p0vXqpBI7au+X2wykZioS2mjIjhRN6iKjOEOk5fWw3MiKpm7pztrwrwBBVVDPhTA0PHNj8Q5tUUBEtGKb4oMruQdmTDBchHZA7yvJx1x1wzflE1GYLRaqbGQwRoEtH6PMX2zrJ22N2qFCmWhjaAfPZ+MlSS6SZGzBEeLJofQiAa4CoHSwBrhW+T/epIpgc9Ye5sGu2R57j8Kjcj9baWEYoLT8HM2TB7YdTdEN5EwbYj471rDPr44zJgmR2rB6FiTawGXDYxrWLqPZb7yrod/h0oggrmKk0+8mgmHFDSYcpWQoCxUTbNpkN5LtC9TZGpa8O2DFbCkL55YANRAFU23bVv7TfT3jY0GmlDtPfbcYc/LaYTatZ3zHzfWS8eSkYv2LhAFwjP2tsdGHV9BylLdTleliLozWHGrrQLfzM/PyYAfOELDCbGTjDrzDuATBzYMS047W/oDPEJIWdni2PF35pxVavoRAxCiaDjQNDFN+jXLYTsp/r0iPVkG9Gn7nDCTOoOVhN0SFqzBsQrysl/6tf/SrdcMMN9PLLL1O1WqVTTjmFEonEa6/o4ODg4ODg4PAGxesaFBERxWIxOvvssw9lW45L5AeSlA/VB4zh4RG5ADNEHjubemFpWpM/0fgUaSdY7VFTisuMJR0JxtYOmuXmGqGIjyOnfLuMALXuoqHmEUdNhWRzRiobRfFQuaHYsImSwGQhA8m6HvNr4lUZ0QWVzwqyXaAhyHI9opIak+tCizMFRu2b4BvD2Tq8PRxPYrvMTPJyHLry9aq21hmrQqe5dondZpvwNUF0X7E6Kz72GYpBQntQ5GsKPVShXUXZ7CkVYkanrLLCJk5UurEwIlbtKizX067CYF6mZnO7OeCFDxAYoortStBzyOw51NGzDFEM7IVZC7ocFJvEcoldVbE+AIZIZyqGVN+DXifKDBP0ZgCYO1v4ljO9oDFCxF8JebZNVjcFtk85Vjdqh3DuauLYtFcNrn10t0zPDI5xQehuw0JazY1yZEeWGnyMdGYivKvgFt6QTcqaHTAv2G50VLGZmjRU/kDWD4nPHe6ryBi3r6V5kVVc00IS5xzfoI8xCzpD7Tksn2OvoJZt8v7Vfm0oWGv3PyH77PTMT/RXtHGm/qcz2Kw2EMxRsfl9f6Tgss/2jf0aFF155ZV05513UmtrK1155ZX7XDaRSNCpp55Kn/70pymZTB6SRh4PCO/mfOY5bMa4S1YLxGCoskiZDiogvVpPd9kSBjxVo03bpt5ithvZi3If5hc006+nEMz6SJnV9C4etjBPxEMTD49WTisHDY8fTD2th+VshXRUxFCDPS0Ub7QSYME3T3vhodsARYFj6qT+8PaJ44gNyZFCYI+ZNtOGjKXWcN3wUf3AtG5nQ86KFEx7qnSItQcoQiyu7AFOkANXTAdpQXNWT6OF1VTMuDx3xST3laKcCoLo3Zos8rnFD058jxwMwQyy0ibPoQYGVyjui74MAbgWnWLqBD+4sWFdKoOnjPkHF4NC/EhhsIjpQQzm7A+xeq5jQKErrmPKzKvUTQztMSH1Xqsz+YcQZoyhcbUvDkpKLSHx3gqhMT1bYgFzAmJeXi8ZFPuHeSvuTwB9xA5CVMKAnq6bGpDTShALI8jSfTzTZ/ZXU+MAXYIGQKHYsCpurIMYtMtfRICg+m4C02tykBkfVAWgO+Xx6EEQ7sEg95X9+a2HmWnLTpYSIOgJy0H/TBADSP+RH1zUqGFM+7q2cbxivwZFyWSSPH4AvtZAp1Ao0B133EFPPvkk/fKXvzz4Fjo4ODg4ODgcEjimaN/Yr0HRT3/606b/z4SXX36Z3vrWt77+Vh1HqER8VA77yNdt5neCazYTEZEX4vCVX4unzCUiIn+Wbf6TKNwqTd7y7ZLW1vQ4RKnpOeYVjAyiXTBEVbWenu5CRIoSEaB+dfkORISgtSFw1BFrULEaepoO9xgEqaD1031qOzm5YnSvEi+q1GK7H56mAEM0NVeGtvHdpn3RERNphnZOiO8r7eb6eVVmc5L1uSqbdgyhL+9LR+FATRnSYQoQpopFFXcE1XSWFtFmuzVDZF4T2+S5SC3m9OS8+bx1sxK5q6eBNtxEXwJDZO0fmEUIpfl4lQpTT3FYuwYl8AYD5sd0W5tsX4TZFkwdT81RRntT8p4AywEWw05x4TqB5YF4mqdmwUJoe4hQqmytKurHooX6pj+CeQjs5OlyZoKrCcVCBdik1R8Q6wNgiKphLgs0Q2FiPQ2uTRdx7Nkesx8UJdWC6pbtkmmZWCyZltQJ8toGDYFK8UH+AF3AJ1/B0oEh0oVbMV2Ge6ahsO1rCLjBThbaZbkRIN8GNpfbncWULlhA7jthT7wGszV7X2BZQD97g9kZ2qjuF4c3Nl63poiIaOfOneR5Hs2eLUufn3TSSfTUU08dVMMcHBwcHBwcDjHc/Nk+ccCDomq1SjfffDN961vfonTahEMtLS30+c9/nm644Qby+Xzk9/tp2bJlh7yxxyKCU2UKFcrWJKx45iLxPVLbKxwJ4hWp55WwidQKbZIhAjCnnu1iLYK6opPzWKzLpRwQTUN8Gt9da7pdMEQaYEEQcelCtNoETc+vYz+hSRmGF1Ski9TdUEayD4ggwxOcOqwLREKvg1RlfM3raZEtGCIgNGi0X1U2YKz5URJjH7eKYpIh2CWfTJPWxWW12aFOC0Z0DZsDzVyAIcr1qP1HcM7N/sEQAYntnNrfwftH+Y6Q3A/E620bJUNk998l+0hElViwKe+vwbRrrZDeD6wFwPiALQULaFPy0Q5OjbaaJTQDRBH3wQZdnmKuosqOIrJhD9VQyoXbWE5KdTv2Fdxj6L1KT7v4PjvXrI/7VrMNOEgQJeV4835XVIkODbMZsvpNA6Oly4L4VbkLMDkdrxgNYq7bnJzUCcygTJrXxA65HzwfwLSAZcGrx8V4YWRabtAM4h+5HQBiZ60/CzNjZQvSqu9je2ShXTB+8SFp+jqdIQJgv2C1fNwfoaUDGpJUdLfWBWBr1GDdcERwCKbP9kt8dYzigAdFN9xwA61cuZK+/vWv0wUXXEC1Wo2efPJJuvHGGymfz9NXv/rVw9FOBwcHBwcHB4fDigMeFP3sZz+jn/zkJ3TFFVfYz5YtW0azZ8+ma6+91g2KFMoRP5XD/ka7e4ADhch2E+qUO00kWY7z3Djm0pHwg+iXAz0wRHZ/KPLJGUNBFTHqVH5sV3+uC0XC/K2+H46UY8xsZaGjUftT9vo6eqoGkMKPLJvm6ax1xklG2Mha0VlyVi/C+h0wbdA2QfOReNWcd6/IBokxqaGohZSGi5k8ZAkRNUa7DWnOQalbsFGp1iQos0QbNfNiuvioZmBKLdzGHqMLmWQGyTdijgkaIl0mQzNN2sASBWr1tdOspNaBlFHCgrsA+lCA+2RFymss+1KKyuXQt1DGBCyGjzVP0CD5lB6l4sd+mke1iNyxfmxS6nl8bOIY3GYMT6tddbFXrj/ObUQBZZS54KywblO42auYbUycFBfbRp+ID8MwUmre8KrPOfoMmF5kcwFgHbGcZT6Y1YiO8YJ4nvBroUNeTJttVpbnvu0Vboe6dg0sCJ/yKJsg2sxAPu4sF+mNjmhrEdWH1HPHmsDyvZHcLDVQM5XEAfA8qinmuG4Pgezd+nq61IfO7IXOEuyfto7ALAGu9dGeejoUjtTOvHEaxsbG6OSTT274/OSTT6axsbEmazg4ODg4ODi8EeCyz/aNAx4ULVu2jG6//Xb6/ve/Lz6//fbbnY6oCQK5CgWmlfBA9ggiq+CwpAeCIyb8zfUYwQdYCG34VeQIB9F0rlfut8RsQGJQRWIqewwRHXx6oNUB4J2joyXtV9LgU9Iwny73B82SLVMQkOZsYNbAulRUVplmtrA+Im6dhRYdVvqQQUXL2AK8kilqKMCr2ZBpLBG+m+qVJ0OX+UBhVA3oIho9b+R68BPKKEurakjpt0ZU5tAiZlQKfI45yPYrNtFqiBh5ZRoZUR4z2R7Z4GIC3lQqE5A3i/2C+YJmw3pQWa2Q3I+NtBllZjO1d9D4YnnNUIQY8CttVnTYiEXQFwNp08BqxLA+uSWzzHqFCuVQHgKanyj8fzy7DFG9jAQYV814xPcwY4FsMmaU/Mx2VVVx2rofkWw7ssWgEcJ9gmxTMER4r1kz/VzRpq9ot9VbcbMsm8iLI5sVfVfrvBruR8UQwbvKvm8FI8a7sZ5Z6jnYKkve1DMxuUgwFxPWDBGAPmm1lkrj4yvXLDOEbYAdx7MUbcO5Q4Yd7hsYX+IaQM9UDfmOik+Rw75xwIOiW2+9lf70T/+UHnnkEVq+fDl5nkdPPfUU7dixgx544IHD0UYHBwcHBweHQ4Gad/BCaccU1fGOd7yDNmzYQD/4wQ/olVdeoVqtRldeeSVde+211N+/bzfmNyU884d55dCoFGx4BRn6pc6QlA/m2PFqo23F1ET26owdnXEk6YDsLM6uUg7R2odFuytrRigywloclERQ8+uIYOv6DemQCyAS9ikmzRYn5bn+8IiJ6gsdEKzI7aAUBiLc+G52FB4ryP0Vlb+Rcqout5rz42NNArJ3yoppm84AaCdn6C4QnZej8nMwNOWEfA0xY4RoXGuAxpeZtrf0GbYrvc0sEOyXfcuXksIPXQakbYOKulW0jr4RU15QQHq2eXwUud1F6woul9M6M3tNeTnoOQLKg0ozQA36NHUPZHsVQzQG4YzcL57nba8Yyg2FfMF+5ntkXyiyHs0r+y0jgv4ZmpCMj2aS8nBQhnYQPj1lzbQq7UxBU61gVJt/D6f6YquhdKBJ0gxReNxcS2hvrK5NSvbqx55QDK3Sm83EEOu+RDNIKu1+WvVzSH6P5xmeG359r/FpBwOlM8GsRgt+RKwJbPBL8+njrff9hpJI+hLpYr5oM7NkKNcD+IpV8oqvcWIOA5ymaN84oEFRqVSiSy65hH70ox85QfV+ohr0iXTYQq8RXEZelTXQ8ou6mq6vfyj0jajFtu0bzC9NYEL+MqUXtYj3ddrcvEaGzS80TCMxGNIp7ABSXKtKkI1BFR46+GELqAdCZIwrj/eYkcJ04TJR/QcWD/P2dWZasdhm2mfPQ0VXA5dP6WCKTepY0B2YkE/1aoSnOeJyqqkhhTkCQ7/GVGoMhlIDct/pBSxuHcSxiK+pYMrQ2SmC8ARvD+NX3kWul6dU4uYcYjAE1FrZMDNtjiGyVR5LiLfbuXPfpo8Q6afmm+OI7Wk+ZQPARNIrQxxsPseUBVDgEhOobYZ07PoB8P4xkFXTZBgA4AdeT91iMIQfuOiI+Qf3DqbnkhvVoHHUDIq8FtMHs/Pk6BMWCqgT5qvUKDgpBbxW1B3GMSrxvLp/7dQJdxVbWxD13vJqWq04baqF6oOB4LgZNcAqIj0gR7wYjMFQs2WrDIowTTQ111wU/Vwph6XY3UI9b2DrALTsUANtDKr4eLVBaLpfDhobU+35fCMY5HbjvGkbCdtMJfzWA5ZgRj6P9HXE+sXWgO2Xdh84JDX1iIEuAsOQEu5rq4ly1EdVXX/I4ajjgAZFwWCQ1q5da0t+ODg4ODg4OBxDqJEzb9wHDnj67KMf/aj1KXJ4bVR9HlX9nhUCB9Mc1c9pF8vBrBCwJoWqgGOxVS4HxgYI7TZzL9UYlw+IBHi/iqnZAZNCs1yZmRIr6MxLUzMArAjM41CqAWUEKiE9vYRoWzJSxQ6enoLZGovRYainBaGpRTKlOaKM9RBJd7yYEp/7spLmqIYlBV5VDFEpad6Xos0jOESQoMS9aj1lHQBDFNupWTTzWuBLr6vTA5hmy8xWkWiLOeapnZL1a1/b3GgT0NF5rgNTCeY9pucQfYMh0n3P9gW+NGCAgIQywsR+bPs5cM70ymub3KqnFVRUz/cM7BC0cSGuBSJ3za62/9HcE75xWbckf0K3eN/AiqrYzz/NrE+bHyJRAVOBtm2Y7uLuqkXf1hIjL4XAYCbB2EZGWfzN/bzM/TTby2VAuDmFpNw/2pNXRW4zKhmgKm8Dy7ZhqtGynNzeXGfzaTV8DtYQU8HaxDE1l4+PXQ4iTJz71dSr/vFtmLKCYwlvV5vF1st3qPJEVcVmJuX5QOHYyFjV9i8865AgAOipUNiL2KQadQzT+1lDUsURgMs+2zcOeFBULBbpJz/5CT388MN09tlnUzwuf6y+/e1vH7LGOTg4ODg4OBxiHMdMz8HigAdFa9eupbe85S1ERLRhwwbxnZtWa4SvUjORBEcTsO0HEwHBtI6AYAqHKAXRM4TNOpUzsnWciIhqnEaMSKgcUeLTHZJJ8digDlPbFQiKOUIFM6SZG13ME5EYtAwQlGqGKtcvRaxaMGr312BsKLeT6ZcNSOyUzJFvSoacMGG07WeGqJiU2ynPYPQHIM02xyRDdKQeRYMJaVtnzkGRCR0tRtUiUkTTFSWERuFWoDQuw/nokNlwvktuB6yEZSn41CF1Hp9Dj6FT1HX5gpl0Za3buXQCG25mepszYwAE2UC+G69m/TDbnHX9kfvOlNl+oVMeN1jM9Bxz7XTqfihlDjg8bJghzRCll/WJ99CM6LR5pFJPNwYF41tULFljSrl4S9G90KjADFR+Dy3S1FxzcXANLTPLwv9cBydsoOBsrvnzw26Xu3e6H+al/ByZaM7qoaQKAJYD7cVxhqSsrX5t+bRABwerkGCK15sw78EQATb5AKU00s0TMjQrA6NPexyd8rpExiBsN+/BzKBP5/m4Ubqj0Kafcx5FWeNmn4lK8N8wwFDP5lLDsxPKf6Jq9c3xm/n444/TN77xDVq9ejUNDg7SfffdR+973/vs97VajW666Sb6l3/5FxofH6dzzz2XfvCDH9Cpp55qlykUCrRixQq65557KJfL0Tvf+U764Q9/SHPmzLHLjI+P03XXXUe//OUviYjoiiuuoNtuu43a2tr2u60HTN795je/mfHv0UcfPdDNHRRuvPFG8jxP/PX19e1znccee4zOOussikQitHDhQrrjjjvE9//xH/9BZ599NrW1tVE8HqczzjiD7r777sN5GA4ODg4ODkcEmD472L8DQSaTsR6HzXDrrbfSt7/9bbr99tvpv//7v6mvr4/+5E/+hKampuwyn/3sZ+m+++6je++9l373u99ROp2myy+/nCrTfAA//OEP05o1a+jBBx+kBx98kNasWUMf+chHDqitB8wUTceOHTvI8zwxUjvSOPXUU+mRRx6x7/3+mfUVW7Zsofe85z10zTXX0KpVq+jJJ5+ka6+9lrq7u+kDH/gAERF1dHTQDTfcQCeffDKFQiH6r//6L/rYxz5GPT09dOmllx5w+7K9QcpEgtY2voFxAVHD1xXZJpgLR7YFCq+CaYqt2Sm2U55najX4mSEpdaBwJYn1MQyusbam1C7pCVtmAMG51zydNDwm30+cIDULNrOJX1t3cCqwSmn3VJFUrcmIDTdPBwfAEIV3SQYMJxbMWTUu29dgUheFhqO5rgSmeLlu9XWlRkEmInBtbdQL4zl1CD7FoAAozYKsNLsPvnSx3Sqzbkoup7UONmuGL5XWFnW+YhqG6BnZXfUyGdIOAsZ5YVX4FRlG2L8+tygsqxkzMENA61ZzoNDXjZ5qrl37Ri6FUWquF8ErGC6kUVcS5kJMLVJZZaqPeeoe1Aam0zOZSqwlAkOT4zI70LJk+utaM3NMEL2wRgfmhyhDoYrTIjMv28NaoE7cf7KNtvxGW/NjqRtkSkaoZYvR9FU5SxOFmBODZsM5VTak0czQvIIZQnvANiIbLTw2Qyo/H39syLyWWH0BlhPQz4EG00bF1OnsMjBE0PXUn2dYHwy8eY97pXW7OUBrvDjt+YNxAHRe+pkIXRgADRyhOG7wDcIKHQWh9WWXXUaXXXZZ803VavTd736XbrjhBrryyiuJyJQT6+3tpX/7t3+jv/mbv6HJyUlauXIl3X333fSud72LiIhWrVpFc+fOpUceeYQuvfRSWrduHT344IP0zDPP0LnnnktERD/+8Y9p+fLltH79ejrppJP2q60HzBSVy2X6h3/4B0omkzR//nyaN28eJZNJ+tKXvkSlUum1N3CIEQgEqK+vz/51d3fPuOwdd9xBAwMD9N3vfpeWLFlCn/zkJ+njH/84ffOb37TLXHTRRfT+97+flixZQosWLaK/+7u/o9NPP51+97vfHYnDcXBwcHBwOCaQSqXEX6EwQ8S3D2zZsoWGhobokksusZ+Fw2F6xzveQU899RQREa1evdpaAgH9/f102mmn2WWefvppSiaTdkBERHTeeedRMpm0y+wPDpgp+sxnPkP33Xcf3XrrrbR8+XLbmBtvvJFGRkYapqMONzZu3Ej9/f0UDofp3HPPpa997Wu0cOHCpss+/fTT4qQSEV166aW0cuVKKpVKFAxKfUmtVqNHH32U1q9fT//0T/80YxsKhYLoDKlUnbWohDyqhD3KxpoXQNReFzUVretCsrE/7BDvy/PNpL3NLuHXakAyPJGdMhQrdpgUJ48j2CKbuZXVHD0iXDAosSE58EUBV2gAgAbfE1Xg0hYHhQkbMp9egxnC+vFBs5yvqKL6ospKi5rzUVHaKlu+A7tXpm068wgRPjQPKGMwPbPERqPwXFHSA2SdAfle1s5MythE67WKPeaYAls4qldeMBFmblBks9CKPmS+LzFp2Lqd95dFFC33o1ky7asEJkmbJE6cqKJ6KeGhlm3MosxiFkWdF12KZmqA+9owsyGcGRRlE8l0v9m/1hLVmTo2MAzp45H7R19HHwRDpA1MbamOqK/h/sC5BfuU3AxNnPkcZok2Q05lR9lrwPcZ7gtokOptEG/rTIrNXpPLg0FFSQpkr9VYMwgfLhR6xbnRpojoQ/he68L80vqpzowx9PnSXj84T2Bgkflot89MDtpZ345isFS5DvicWYZJ3c/xQZXxqJimlq11TWKuh73blJFlSDG1ABgiFKG2y7PWrZiEWWijtuzIwKOGE/K6tkE0d+5c8ek//uM/0o033nhAWxoaMrRhb680Lu7t7aVt27bZZUKhELW3tzcsg/WHhoaop0dVtyainp4eu8z+4IAHRffccw/de++9ggo7/fTTaWBggP7yL//yiA6Kzj33XLrrrrvoxBNPpD179tDNN99M559/Pr300kvU2dnZsPzQ0FDTE18ul2lkZIRmzTI1jiYnJ2n27NlUKBTI7/fTD3/4Q/qTP/mTGdtxyy230E033XRoD87BwcHBweFQ4xBOn+3YsYNaW+vT0+FweIYVXhs6UatWq71m8pZeptny+7Od6TjgQVEkEqH58+c3fD5//nwKhUKNKxxGTB+YLV26lJYvX06LFi2in/3sZ3T99dc3XafZideft7S00Jo1ayidTtOvf/1ruv7662nhwoV00UUXNd3mF7/4RbG/VCplR9CViCmvgDl36DNieziCVFlWdadmjl5ZK+PlmImKcKfLS1t/6B4QHev57vwcme7hKytmBzeJOj+tm2SaiVeS2832Sb2GzXzS2WnqOCNKlxKaMCFhqUWtaDfM7AdfL+hGQoNSS1SLG41UNcR+R6qgKwrR1jhyR1HRfHtzd2e7XXVP5XrqH9gsK/WgSQ+oaL/bnBwvxRlGRWY2onztoqyJmWI38U6zfGQXmA+zHehEwDJOLlC+PdxFoGUCQwTk25ABJTVAeeU9o49HZ/5MzWWmJYt2mVecOzBEYEfAIqCvoY9ov6PWrSi8aT6PqjIjLSrTEHowMEiA9t7RJSqQXTYTGrxtKjXLKObbzSsYQxTzBUIpXCNkP7GuhM+11QS1SzduMB5gaKBd0oxJfEg5MnO7Wl5l/zHW0iGDr4iyOHCyHpD3GRgWlILR2seydSuXfcAW0c3La22/hwt5RfY1MGyhlDxeuKTb/eoC1ug70K3x1z64l4fl+cU9g/OLYq2agdcZYyjoS9T4bIjtlefer7RENaWpA0MEBKex6g3lXI4xtLa2ikHR6wGSo4aGhiwxQUQ0PDxsSYy+vj4qFos0Pj4u2KLh4WE6//zz7TJ79uxp2P7evXsbyJB94YAHRX/7t39LX/nKV+inP/2pHRUWCgX66le/Sp/5zGf2uS7S5A4Ef/Inf0LRaHS/lo3H47R06VLauHFj0+/7+voaaLTh4WEKBAKCWfL5fHTCCScQEdEZZ5xB69ato1tuuWXGQVE4HD6oEbKDg4ODg8MRwRvM0XrBggXU19dHDz/8MJ155plEZPwQH3vsMStbOeussygYDNLDDz9MV111FRERDQ4O0tq1a+nWW28lIqLly5fT5OQk/f73v6dzzjmHiIieffZZmpyctAOn/cEBD4r+8Ic/0K9//WuaM2cOLVu2jIiIXnjhBSoWi/TOd77TqseJTHr7dEz3JdgfeJ5HGzdunFEjpFEoFGjdunV04YUXNv1++fLldP/994vPHnroITr77LMb9ETTUavVXpeAjMi4E5djRK3rK+pzZnQy0v0UUUZ0B0xneAXWSWRPkMWGdA0lFIYEKtGA2K79PKAceZWeBExTrs8MSFHHJ8BMUY2ZmMiojOKhYYCGQkeciLLAvIAhKrbJsB7z8ZZR0rWLRjPcDj4OlXWIzyuqFpqu1VZhDQdqVMGRt9gmFqPcXMlOJNfW+0tIebukZ6tzzQxRcLc8RmSPZeewlqXDXLsaX2JvVA60u15U7F+79LyBNw7cgQGdmaN1DGCerBaImz81h/VizCLojCDUagPj07JDRr2ZPtYG7WnUXxHVmaw4WFPuo7FB6TGFOmOAZT3sfphtQRYZ603AwtrCsAz0KWR+2b4awqvsw9hesbXed1pUHTmdWVQvjGraFpoyx2gLJXO/1K7fkQnZ1rz6Hlo6aIKCU/JienneDzPBxS6T3uVnb53xk825Q58Fg1NWeiudMQl9F2A9nawmjz+PyoxFbMfqyPgXp3Wb7MuxIWa+2809Ah0ZMibBROlroYsua28s3efg14RibMltzUU9KEA9nSHGsysyInfiY6ao0Guelai3GGQWDNdaM49HDTXv4KvcH+D66XSaNm3aZN9v2bKF1qxZQx0dHTQwMECf/exn6Wtf+xotXryYFi9eTF/72tcoFovRhz/8YSIiSiaT9IlPfII+//nPU2dnJ3V0dNCKFSto6dKlNhttyZIl9O53v5uuueYa+tGPfkRERJ/61Kfo8ssv3+/MM6LXMShqa2uz6euAFlvtCzOJoZqhpaVln9+vWLGC3vve99LAwAANDw/TzTffTKlUiq6++moiMtNau3btorvuuouIiD796U/T7bffTtdffz1dc8019PTTT9PKlSvpnnvusdu85ZZb6Oyzz6ZFixZRsVikBx54gO666y7653/+5/0+xumIjNYomq1Z2hspntGd5o7J95tjjL6ihGA8FYkf9/RJ5pfSplcj23OMBZR+NgzkhwpoWT0Y0oMNPCwjampEU8IeF15F4VR/rvlgCD+oVryKQQ3T04G0XK/QIQtSanEiBNr4ofRPmjkQT03/VVTKfSnRvGvre1mXshhdqgZXc/kHOmu217KOU/xx/ifqy2IwhKmU8CQPdHeZY8xxt9ep9JE9LMzkOYqa35y7ruetCtcckxq4auFnVP1waSEyjEJz3apUzLCi/3mziV3m8ykudAuRuU6txw/X2BI2ABwn3g9ezeeJHbJdflUhHD+MmML1lIi+3MJ9m48jPVcOMvF5gDeDHzYYnwZzMg3etl8NaPR73HNetT6dpe0NdGkSbfCX75BB19RsFYTw1B7sDVDqBQPY5GYubIwEjALMUdmuAIWRAyjFYpbL9Zr9Npgz4hCVUBuDGr8SMuvjxfd1Owf5fWyPOX6UP8F5g/C59aVRs2CZBxTzzfMNzx0/Bjloph/Tj7waT+cVk9if3L8tzaHarRNAdIketDPAfYU8osQQW1eoZ4dPPSMRuJXYNkWLtxvu37hHody+S/QcL3juuefo4osvtu8hN7n66qvpzjvvpC984QuUy+Xo2muvteaNDz30kBgDfOc736FAIEBXXXWVNW+88847hQ3Pz3/+c7ruuutsQtUVV1wxozfSTDjgQdFPf/rTA13F4uqrr97vqTAior/6q7/a53zlzp076UMf+hCNjIxQd3c3nXfeefTMM8/QvHnziMjQa9u3b7fLL1iwgB544AH63Oc+Rz/4wQ+ov7+fvv/974tBXiaToWuvvZZ27txJ0WiUTj75ZFq1ahV98IMffB1H7ODg4ODg8MZBrWaTHQ9qGweCiy66yOpBm8HzPLrxxhv3mbkWiUTotttuo9tuu23GZTo6OmjVqlUH1jjdltq+WurwupBKpSiZTNIkEV399htoMpSwAujYBjO3UYtylLttt1x5jhGapU8yYjIIArXgMMzTWb4CR2TJ5iL3DKdp+21BSsnURHcZIXV+lsm1LatCqIhI0Y5gyoTh+W45uEVUhJIP/pwMyay4lqcoEHVlu+W4PKpMIaN7JFUdGJP53ijwWuM02BpPC8LkEtDHpSP78LjZz+YrzXQDGKLEM2oQj8iaI/v8tCRHRPW6pICOVvE5ynoUOuW56nxhhjRmRp5LPfhVQdnYsC6ZIt+nBuQ0U6FNrl/ioKz7eckQIRq37SnKdunyJDqijqsurtPHkSTQ/uhmuWBYTakuNmLJ9GzzeaZPTecxQ4fpPn2NdRYyxLgN6d3q/XQLApTZ0NvE1KFOHcc5tqaK3J1DaSXCR4FhfhzrsjWY9oVwGQyxbQafw8Ck6be4n227u819oi1AtIhYi+mtsBlTiWUwRMz8WiE4mCDZ57LMSsLY07KBDJTZ0fcn2gVWUt9DKG2DaTlMVQH63tD3EPoshPK6iDD2G8xUbX8OqGMLZFjEjuK8fbKRup/r6eeRC0vUkUrT89fdTCkiSpLJfD5Y4fJMwO/SnNtuIl808tor7APVXJ52/s9/PKztPVo46pOcmzZtol/96leUyxmnVTdGc3BwcHBwOEyApuhg/45THFSZj4PB6OgoffCDH6RHH31UCKo/+clPUltbG33rW986Wk07pAhvGaGwP2v5xuqIqW3gsbDbS/Iom7/PzjNhuWaI7Fw4GJYeaBTMKxggzMnDnDDO8+G2jMCwGXwitT7NJRCwP8zdQxOhU1cnTjZ0AiJCCLJtNMXCcbTXagFUSj4iQ5g+6gg2OsQaolROfA5mCKi0Si2RFlZjP1rkaNPGtxjKJ99tIqf+JyAgMfuZXMArcPPqwk5erNrIAti2zsAQAaUEtEPMnkGWpU0fk/LcNTBEe5QRnYr2wRDpIqXQ/qQH0GDzsvcMFrmGYX/ALMEM0Xe9WKh5jQ/K5eLKkBPGekD7Y9vMP9AGFHhHfI7BEAGTC+X5SnDFmwDrVaBv0X6cGhB241WnTo8uYSuEaUE1dFVWO8fd05b74H6MlH2tYWnZyZrC3WbF0WVSN1ljLVC93I5KB+f7YnKRYTBx7usshOnY0TGV2q6K3mrLDLBr+FwzKzgurG9Lq/BzAPd9MckFr1EaRpWeKSkGt9EwtLkVgDUiVTJT3HNgovGq+3qEJUy4lkjVz3azuH+vPE70iULSb5dt2Y5jlScnxMJqvKYHJAsDmwJbCqb3zaEjOlZx1Jiiz33ucxQIBGj79u0Ui9VNYT74wQ/Sgw8+eLSa5eDg4ODgcNzCqx2av+MV+8UUdXR00IYNG6irq4s+/vGP0/e+973XzAx7LTz00EP0q1/9qqGY7OLFi62193GBUoWoWqZaVjIethKsmttFthg6XXy7dJybOiEuvocRWCCnTRXlpUVEmZ5vtAa6lAG0QIg4kZac4ewVmLZpzYBmYDSzhGwyzX7oqDyQkWxCQ/mOQlm8VpPSXREMkdYmYP/QDOjMqeGzzPloe9VEeWC0kOrc9WKZtyuLlAog/ZqjUxu9VtSrYg06XpLvoW8AMr0qQ4mjbrB/ADQwYBW1iWEwjTRm1qOMy/22bDWvI+eY7QbHmSniCLkY4mufklF8QHXpBoYI7YTPHve5CL9GX1JiI2aIan3SjX5ioaGMMrPNe30Ncf61hgNA9O8r7rvvohAtkEe2IOtVQtN0K9rcUzOduN96f280cCjDA4YI0Bo6aGlyXSgLZL4PjzMLMTci9peZpctf4FgkMxRWthHxV00nhfau0IrCtub7uobIvIdmKZSRrAdQ4ftDnwdYeWjku5pboCCD08+nCdYY+t7Be7Cx1YRaDswuSwIz/DMTZ1YR7I82owTAzgZytXrxX9Y/lufKtid2y2PUpVJguzKxiLVw/ebz0I4QBTNH1vCYiN5wPkVvNOwXU1QsFm09r5/97GeUz+dfY43XRiaTEQwRMDIy4owQHRwcHBwcHI449ospWr58Ob3vfe+js846i2q1Gl133XUzptb/67/+637t+O1vfzvddddd9JWvfIWITEpetVqlb3zjG8LP4FhHbSpNtWlueZ6PNULtnNLDppC1pAl1InvNgBOmi6V2OUBs2cSmhexH4k+b5Uts0lZoZ3t/jugQAWo/HkTNiILy7cpHZY5ZD5EnIkVEnqGp5kVFs31yOzpqQpYaNBMwm7TZLDxf75uUDBmy9Wq2fIfaTw6MDpu/MUMEbQe1Sx0KtCFgiIDYFpPCVI3wdlhrlJrH55WrnthCmcF6NGqPUQfHKqqCJkgvp5khrVHSvkM6S8qWetjFOjI+ByiyGxs2y9mIl68lGCKgnJR9JbxHPiZCE9ifbJ9msLSxYGgrCzfKqMiqTkBIXtPh87vE+1LSHG90UDJekQmV6ajNKhVDBDYBXjTo2wXWw+x9izmwUjtndppEUGp93KM0+wtpQ0hogUrMWIAhAhLrx8T7qVMkG5bpa64zAWOE14nFKjNRnUJoZwptZjmUTAEzDE0hYP2+WExUbGXGBx5PvP3whCwwW1FeTgWVxYY+juW1Z48tJ8LM7PiZ3Ee38nNvhokIq1Xk3cHfCffjdDaPqDGrLMJFf6sjsv3QMuU6FdPc6tkCy5rJhW4LzzINMER2+VGzfNcL5hqkFsaobQZ287DiKJg3HkvYr0HRqlWr6Dvf+Q69+uqr5HkeTU5OHjRb9I1vfIMuuugieu6556hYLNIXvvAFeumll2hsbIyefPLJg9q2g4ODg4ODQxO46bN9Yr8GRb29vfT1r3+diIwB4t133920Cv2B4JRTTqEXX3yR/vmf/5n8fj9lMhm68sor6W//9m9FUbhjHp7XUGSViKg2NmFeK5y9NUuW7witZ70FZ+RUhkyY758v3cPLPUbIgmg438b+HswaILsLA3tERAEOZJHFBi0DIrH2jdKRVgM2/IDNWlGRK6JwDV2OBMv5MvJz6+fEAIMGjQ8Kw8LJG1orRMp2O9zcjvWKvRg1g3tf3oS2YIgARLqxvebEoHQFEJ6sUVFFTVVdw1KRAFqLg0w27SoMwH0c5TjqbZPXWkfjYAdxzcECAGCIvKBylt6gzkFctlf7/SR2m/XRV0KKlbQMkQZ8iEqmHZUB6XQfUplLYIgAXTwULsvIPtOlc4BSGOyp2e+WD+CCme0tOMHce1s2mudQ3+P19dteNcdmfXT43rYZdszGjS+R0oCOteoc75BMaHjU9OuxU6O8XfO5zRrTBYoDzLjyEzyxg7PK+NjjQ2Z/sd1yP/keLtszzuV1+L6x5Tr8MrsMruO4D9AuZDhChwX/pFBa67a4XRX0QWYnz1IiIS6Ym+81n7du4Ow7FKJlt3aU4YmMa6ZObi6cks893DvQDOL4cLyaIYKjuFcmCvL9GszteySgi7ti38jIi++UN34wW6XgMV4Q9njEAafkb9my5aB3WiqV6JJLLqEf/ehHdNNNNx309t7Q8HlEPh8RD368GD/0lPDaW7OBiIiqRfOwqvAD3UOaco0fTpuMwZ3/NFnLZXSpeWr6lImanT7j6a5SDKm+TJe3yKeJNgDENJlfCbnTs9lSAM8JfrWV11XVaf2DDiF1lQXdwRGeFsQAMmi6ZmaBGfTBrK6sqt4XOuX0Ymqe/OFH+1pQeZ0f0lrAnlmYFO9RW0qfH51iPD1dvqEMAP9OVlASZJK3kdVCTH7gc1p3QH2vMz102jIGlEgjxgN/coE8V1OL1DSSGgyFdpgfSPwgFOeacx7iMiWFXjOF0rpZbtemHOebT9GQxz84JZ6q9CuB82IZBGXmmF/CTI8a2M5QagKwZowwz7R52ualrITVk/Mx+DMrLDjBlNoZvd+ocpHVjYGBV601mB0iGJiaHeBlVQo6l+3Yc56ZD0rsMtuKbzP9vcL9OTvL9OMIT8ngWmZmcco4DwowBRodhXiXaxvyMSKoweCkGjbfTy6UCR3VEIIgDG74uNgaJDpirlXd+sMA01E2iKlIAXZVJYro8h+YLovtgG+C/F7bPkRZCF03UDSvmNICYIaJwCKUksGPnZ7n52JqHvd1HnSWeNCJdmN/tSCRp8ryhMdUvTkr+oYNg+wDCfWsyfbvf1WHwwLHFO0Trysl/7HHHqP3vve9dMIJJ9DixYvpiiuuoCeeeGK/1w8Gg7R27VrymjAoDg4ODg4ODocJtUP0d5zigJmiVatW0cc+9jG68sor6brrrqNarUZPPfWULc6GqravhY9+9KO0cuVKOy13vMJLxMnz17nvWgun1HPmncdC68peo5D0oRBsmVPEmTkKLDIugrWYiShHzzLqT6R72xRZO33EkSAHNRBO23ZVYa5GYjldpFOn2NeYQYlzEVFER4igEXmhTAFYixAzQdWoiTx92SK/8nZRwJLNK0Fz7/wLRGV8PMNm/dmPN6edEzsrTT+vKeZq+2VSyalLUeSlxtcyAomdiJTN++A0PW1ZOefH9zSvGg9xqBYEQ8gJATVYB5RMsVMBU/IYi23yNs7MMu//f/b+PM6yqjwXx99TZ6xzaq7uqup5boYGZBRBAlEmZ6Mx3KhJjPFnUIwCwhejJhGjtoGrQMSBq0FBCeBN1Ku5omG4giKo2NACTdNAz1N1dc115vH3x3qfdep9TlVBQXcDzX4+n/7s3ufss/fae6+9a73Pet7njajsb2QNMUIjKqIfsNNkuRU2TG+KKru21DE/c+5FhOvaxdNXaLcXybOgGsaEOlVc0dIsAydTyRiYQurPGwz7dPejy9zvO58hVkCvU7aHUuw7YdLo1gs6Y53aqmzKw44hwtWEMBaoRkLe5JAZRNz73FwSQus5dG6yJoeFOe4HzCpUaaqv4xmdAqUEhz2vJRPENrK4yOn32hcwnQQmmcuRsGh/QovtgvEFM8Xw7GjIMkSeuSImma+fT6mnDP0iZlbpOkNIDjYwqyRjTBMgwASBGSq22euUnWtNNtNL7HlH0nq+OuPbVKpPjaKQMPYZH3Wfg3UCMOXX83vXqPQiO/c5WYDNU24BXnzMelD0hS98Qa6++mq59NJL/WcXX3yxXHPNNfK5z33uOQ+KisWi/Nu//ZvcddddcvLJJ0sqZYUL11xzzWybFiBAgAABAgSYCUH22YyY9aBoy5Yt8ta3vrXh87e97W3yqU996jnv5/HHH5cTTzxRRESeeuqp2Tbj5YNUUiSSlGKflsfYl7bfq8Yo3NUhIiLVMTuBDYYIGD7eMkReRKupwE2UsopSCYjIEGFFPEPjli1UisELL0nEWyDhNbQIiDSTgzaijI7ZLMXwgAvTa20aPWm5ETBEwM5z9TijLgprKpJYVssD8Py+UDkRNjLMzbWbI3UYzBBHuIhg27Zx+nv9/8wQQUgNPZcXyeouUFQ01Q97Ar3GFK37aF6Xrdstk4NU4IkFXNrEtie5094zCL+h0cmttPutlUBJuUWnMkTMFoBFRLsT22zaudcQob0LLf22+b2gB7RETZtrR8sDesH0cvD1jethUDKjoZiosqTos96WAUfT3YMxwrPUYClAKdWTGQEIfqdDExEro8tdm+Y8hjI4ygIqU5Dsd+ee7Yvp57ZvAGNLVbS7W/d7lD1Q12OoFeMWYGaAAiViAND+gJmJWEeBermeKLa3ZXpwjX25Ebo8YN2g6ZuueDIAmwvcq84n3XmMLyENZL9urxYBeC/g+cV1R5/PLiWjxXTYHD+5z7Znsg1Gbo4ysKqrGl1lGSI+h5EjbaA/vsy1se+3+s6bG5F4/tBX2joQjtSveEfryVi0aJHcc889snLlSvP5PffcI4sWLZrmV434xS9+MdtDBwgQIECAAAFeCAKh9YyY9aDosssuk4997GOyfv16Of300yUUCsn9998vN910k/zrv/7rc97PdOVCMpmMfPSjH33OJpAvdRTnpqQYa/GRVqnXUTrVqK1YGH9oxKyHly8VEZGJY1x0jegX2SxgOJoHNeNHfz6+SCMlakczZUVzkU4A8+beJE13VEq5iAqRIVLyk/vVUkCjpMQux4SFkG2X04ZqNlm1293vEDFEoyu1AOsReuAW277OX9uoLD5sWQhfHkV/jvZBNzIdmAXOLLfHbdtoHxGc5+SUfzAZ0DswuMTJdBl+KBQJvQMb5I0vs9egXgTUgW0R4qPIatPUdI2Wi532jdb6qNvv+FHumvbcj3N2S84cZJ1ZYsugWfcFXQFNvR9fYSPncJvNUmu7z2ovYIQIsO5r4CTVduh1h9ll0ZOOYODs77igLkppQM8Tp9IU2V7X/kheZGKRXnOSgmSWkDlqhztI8x8c5ZFQdgtZmyjvUdbnqkIM58Riy/5V9N5CJ4YsrRX/aU+unIJmSM1LfT9VRrnDrTVrFlvJ3xJNdVdTSmT2cbsYGdJt4R5ESdvjs1F1gb4JgEXB9x1PkdZH2Zm27W6dNV1sRzGy0vUNPAuZBdSHx7X8kP6s8wm3xLPo93NEk8/US2g3R7FbZKwx8wqwvqzS7A62+4/VoLK7LKWJssj3JcBLCLPOPvvwhz8st99+uzz22GNyySWXyMUXXyyPP/64fP/735cLL7zwOe/n5ptvllwu1/B5LpeT7373u7NtVoAAAQIECBAgwAvC85rQfMc73iHveMc7ntcBx8fHpVarSa1Wk4mJCUkk6oKBSqUid9xxh/T09Mywh5cXQpWahCpVqUW04GqrXnKNUKApKB1ntUP5OdaMEIZ+iHLhZeM9a9RfxGc8haA1siwBihdivzB9ZF8h7C8CVsCbnME0kbw4nrRMF7YvLnQaqKZS1ZwXMIqITs9r/n3aLjX3gS4HLEhcSzqgVAXABSPhV9K5CREvjmfLl5SJjWjZbNuD7DKwMoisoRmZrHeBLgmaF7S5wZcoZxsLjxsAkSjgDTH9MS0rBiBKr3vJuHV43BTVU6nobok077PHmX+PlmQoWW+YxIhlI+JP77MHLrFjZ2jG9YE3Kd2hhn6RrVYEBYaofas9QfTFfSdbhgiADgXPCLOAYPlwzzKL4GljY8NMn/W+QpbdxOKmBtaPWSgwRL7Nek/AsLKPkT8mFXZlfx82/Ox60n0ABhqFXQE+dzBEQA7FblXCCObGm0VC5+Z1WVY7iPcOdFhg2arMLNHp4rnE+6ZKf4Hatur3+uzgevv3GCyv9Dn0Op4WtNcts326n4RmRBbwvbuwXIwZBXChzZz8bDED7I0ddZsKr1ONV+4zpe6pWfpDhZAcAE3RAWnJSxOHXOXV0dEhoVBIQqGQrF69uuH7UCh0+Bs6BggQIECAAAFecjjkg6Jf/OIXUqvV5PWvf7384Ac/kK6uuugjFovJkiVLZP78+Ye6WQcNpbaolOL10AFz7NCLQJ8BZ+cmLdCICBADeji2Apj79oyPMk410qH4DBtymGXvG7+fsmWOih3qK6Rao+Q+F+UkdmsWmRZorabi2g4XOpe6rT4kO8+F52CMkDHU87DNThtZ7bZD9g3KAiAiH1/apO2wbAiQXqjba2QI5gzFVhEZQ5sBpihqk/6kebBmzhseQ8wMRCaZ1XIB166N9oNK0ob/WS3yWbKXypcVABANIzpHRk7EGuV6pFX34tku3S6qfahjk1vHuYG94HNLDBFDtJkYItYOVWHepGF+s7uXYyf26v7dcZofc6E1GCGfrdeFdtrdRkjDBIYIbB1YBc6YYp3J0HFCG7jv95/iVhP9mlGlzwz7MC24Ny0Ty9zFR38CA9u6BUywOzcUq02SVxUzOKwdYoaIs9jmPOYuVpbYLDCZYBU5446Py4VToR3C84Q+wWwntE14MWV6lbXT9xHr4MA4VfUVCNYy7MuIuM+7nnTLrOpw8Pyl54Phcd8XrRTT/z6kXRV9CO+zSBpMs/b9p/T9i8un28VJS4T3X+uOWv25U4axRG1Af/Ssl62xW9f6aQZt2wb3wcRxRQk1vQiK5SAlf0Yc8kHRWWedJSKuXMjixYsDV+sAAQIECBDgUCHIPpsRh94kQbFkyRL51a9+Jf/rf/0v2bJli/zHf/yHLFiwQL73ve/JsmXL5IwzznixmnZAke8KSy4R9n4XHEll5lkrV44MfXSt2WKIftn5FnP5cKzFdhWt98QRqO/UYIooqobWKZwnp9wJy35UlSlihqjiayvp77JuP56dKNjjwdG642m3//2vcqEc3GERAbfurJrfw5ekzhDZ04STt/dnIhYmtQvnWzPboZ1Azzr7w8Hj6joY1C5r32xZr2rcXnToowD2oIH+BMwQmJ4a3H1VRwEWAoD3EqJxrh8VG7PnwnoCaB6aB+zFiwwT9ZKni4u6fHCsjlv2InukNYUaW27PH9lk/l6qLqR9C3nJZCmzq2JfW8iYYni3ZI36O6Ej0cs+coz6KylDBPYQ17GonlxzHnXUFVgikUmsmi7z5H8VOtcJy9BrRnc7eqH9Cdv2in38vYYNbejaaNm6fPfMGYjMENUz8RzQd7iGHzOu6IPoGziOr7NHuhmvKdLzQW0ysJ7QICKLFg7bvp2koxtdZdfRZ8N0j/w9hrbPayXd71t26Me+0K39HRiwkmo2uRhzfNKzg/4R0kxeXCPsq22HZhQ227qJFftYePa6dVdEOl4En6IAM+N535FisShbt26VFStWSCQy+9384Ac/kL/8y7+U9773vfLwww9LQctdTExMyNq1a+WOO+54vk17SQJCRdDUEMOyvT2EiACXdAB88UudjmrSSurllqj+TsuDoLSCVpeHoJCVcpg2Y0TSbj8hTKtpmQ5Mm1VU4Im0VQyGvFg3DIG4TveVqDSEngcK2ubm4HO3xNRP55OuHYVOLaDZEza/R/kNiJQL7XY/HnTeYbrePtWe6OHEkB3gTK7S3bLTDobqL3B3T7K99q1Y1MERjo0XPV6ymGItdNi2ojgm/gCxESWmnSCaxR8A7lN8DZL9drAT3TtmN6jR78P2WtR6u1171aC0qgPxgePpvQDhtk+hJ7G+FkvFQJ5tF0Lajpbd9qYW22x7OF0btxJTLXjm2je54+S7bTN5Gq7QqVPDpfq0GdsFdJ/eb9Z3b7VGlQv/G23S9H99LsaW6bQuHbPzSQ0yUja44NIlLOot0LkkycYgUrAi+gjdA9gv5LrccarTTIdhUIXna3JhZBGRVtzLGGwOrHVHWQtTF9T81Q/odX/dG2D9oVOaE3Yd5T2AZk2X94Mdmg5nsTOeCT+wQTvH8V5tHAzhWuP5hKTBlzrqsu8k/x7QxysxSlYc4xWJFqd+vx9UBEzRjJh1Sn42m5UPfOADkkwmZc2aNbJjhxuKf+xjH5tVHbPPf/7zcsMNN8i3vvUtiUbrI4PTTz9dHn744dk2K0CAAAECBAjwLICj9Qv9d7hi1hTPJz/5SfnDH/4g9957r7zhDW/wn59zzjnymc98Rv7+7//+Oe1n06ZNcuaZZzZ83tbWJqOjo7Nt1ksWxdaQFJpDDYZxTNNy2jbo6kiepsl0iemxpoKNNGIjlrUot1mWgktJIHUeDA8Q3+coGpgwVtqadV0tBNpsiFrsQnkCFXBrQ2FO5w3/IsqS5FxICIYI4JITC3/sfp/tdQNnCEAhggUrkO3VCFbZEphZemM1PT1mhso0/cARUKsWmC2rSDrfpe3X6K+pUpPMQluHgo8FUze8SGArgKibywMUNGU+MWTF5DgXMCbRDPUhmhLhPlVjEa8SMbmeuGlPF5giPU4tpeeny+Jcd89iWrIGDBEwutydMMS8PIWD47ZR2ZIQTVly3873kLi4RQ34uLSNAmwIpi+wxFQXhOqYbgQTwKwC+rBIvd+hf42usgfdP+4opFi3ew67fgR3RJvAAFuGOU8og1q2DA6YFGBiIc9/E/R3sIOIEosBRqhh2lrbE1NGGpYbAJhb3EvuUwCmmXj/iVFliLR9vH8Oy1mYDkYHU5m4Nx1PWSaK731Y+xgnktRtGTBd5tbrJq8qsN5W3w+mODHF3769bM7Fl2SJ410KttktUOIE7wEUra3EQ1J9MZLbA6ZoRsyaKfo//+f/yFe/+lU544wzjEj66KOPls2bNz/n/cybN0+eeeaZhs/vv/9+Wb58+WybFSBAgAABAgQI8IIwa6Zo//79U5orZjKZWWWSXXjhhXLxxRfLt7/9bQmFQrJnzx558MEH5fLLL5d/+qd/mm2zXrII59xF5rl7RsgLqN16aq8LdaDPCJUwh2/3k+t10Xtylwt7swtcFI/IiAWUMGtEZIr9iwoo4/tdhFtNaSHWgouKiu0Il9yi1IooSZmjFhQ/1SKlmhbe9aRqKFSbMHykO8Fw0e0vdr5TLe7fr3RCQdsTc/vde7pbX/BLt59ChxZw1K4WG0cI6BbQBKQXWEYHLAEXwgQQMXI6OJghhmcfaqEGgTQAFgvRri9BQoJraIdwz8AQAV4XhXTrLnsOYW80OTMzlJ1DbOCYbRci3rHj3fMdH3UHjA84wQsYIt/ueY4hQgmYiUVumVlo29HxpG1H2w7LEJVa7GsoooVYmSmqkcGof2aiIbPuy5t0U6FY0mB5qwMlwljAjusO40ARkQkqSNp0vGPVRjKuA7XcpUyRMjXNA1YXlevR50gFyA3sWMXqUVDst2TJuIa2MkNTt/Cw7w3PrNC1LOrzjEK3rHWsp+rbz1koHiIN0v5j3b1t2aOMT5tldpA44QkTejwzfdYqAHYU7ZvRHtsH8F5AYok3i0TBWGKGwRBxcgJYn0K7yNzHKMFAgTwJMEa4xmATve0K2HntCtVovV9Wq7PmJV44AqZoRsx6UHTKKafIT3/6U/noRz8qIuIHQt/61rfktNNOe877ueKKK2RsbExe97rXST6flzPPPFPi8bhcfvnl8nd/93ezbVaAAAECBAgQ4FlwIDRBgaZoEr74xS/KG97wBnniiSekXC7Lv/7rv8qGDRvkwQcflPvuu29W+/rCF74gn/70p+WJJ56QarUqRx99tLS0tDz7D19GiBRqEgnVJhVCtNEvIsVCp4s2EkM2swamjMjeqkaQ/WJpgImVTrsAHQui5siEC0+QSlsLN5n1yCBXy9TU9owLnUpzbAmGfDcEMm5RUdNJsCLQw7Tu0MiwFSnx9inq+RMn0I+pBwHm1of2udTl2C7HVPWss9eLr0+mT83jlCFC6n9SC15i/j49320HTYI3QESaLelIfMovaRaYmSq2hQRBJqJrMD2c9YUMRKBI0X+obI8JlC1B0xClxSmrJUJlRMCu+e2VIULpCSCmzBCzCIUe17egZQLbVkrZ/eIaJfeoTmXcNhS2FIV2+9qJjduLX9TvsYRxZsse1bfR9QFbUdVMLaxzaQuwgGBjux8nu4msvR7ZXtvOQmfIa2vSpziqB2qyxM+tcAoanfGlriNBi5OeF9Kl6q6ImUwO2Db5khLaN5qHLOPjn0OlLRLDU2d3spbHF/kNoT2cbWnbFSMWEn2MLS6Qjj6+2O5veI1bzlmv2bL02vHPhv4sA/9e6utg70qkufJsLH6G4sctVD5Fn+uyMr3RcbtfX+5ENZ+pfVXJKruHDLhITlnrdjLeVP1Wdq4tlg0gk9CvN4ckn3sRmKIAM2LWd+T000+XX//615LNZmXFihVy5513Sm9vrzz44INy0kknzboByWRSTj75ZHn1q1992A2IAgQIECBAgJcU4Gj9Qv8dpnhePkXHHnus3HzzzS/owPl8Xq6//nr5xS9+IQMDA1Kt2gjncEnLjxRqEpkU7nifoqydSweDxBqiSB6GYDYqQWQVVb8jzqpClktBs8LiVNQzPE7z5MpApZe2aHvc9pk+LUxbrZkl2ASYxcF0suNpzbSg0hQwbYPXzuh3F5nDD/2xndTvfryeoeEOrM1UxiySdaFdC7LwdJmbG9XvkZ2ixx20/SvfpKwCEpqgRdAnAkaJiIRZ5zPZl4X1FwW9JpWczUJhZqhCDFDcWt34TEFE1WARxpYqyzCh956KjELXhb4GrRGW0OxUNKoHQwREMiVt39SvB7wP48P2niWTNgsvuZeKo6p3VmaxO3GwiHU2UbfTvgyGCH0JGVjYDn2+gVlTdgVGnjW6P+2bwQa4HTews+hT5HFViYrkjncdonk9GFS3hO8Ysq0yxDLte43V+HRusPEozgV6s9wce05giJgVzPSF9XsqJ6K7h68RmFDPECmGj7bHadluVv37BfuD3xCbx8I/yEO/Lna4389Zb/soG5eimDKQ1GcB97Lzac34Ui8gaDSh22E9HzNMXtejGZtgilBOxDcblWoy9YwyMD5pZaVr4ciUx2TvIzBGYO1ZzxjNViVKJWwOCQJN0YyY9aAoHA7L3r17G8TWQ0ND0tPTI5XKczOj+pu/+Ru566675F3vepe8+tWvDsp9BAgQIECAAAFeVMx6UFRjd1tFoVCQWCw25XdT4ac//anccccd8trXvna2TXh5gq+b91DRKBlZJ+QjBA0RWIOJRTbshd8GM0VhikC4PEexx0Xr8AtCFhsA3Qc0CawzQWTcmoHWSbNWIDkCEaZjZLi5gjEaX6Esh7IpC38cMb+D0REYKGivwBDBWyc+ptlxbYje0A7LMCGyAdPVul2ZMNV2wAkbrA9cplHAEhlI8LKZrPNhN2LO+IOeBO7c48vstWzbqueWm1q3AeAetO1UpocyfTyrRvAFVaEzU00Elk3kqssMUZXuPZd+QUZj6xZ3gihvgnsBhii9NGV+B0YN7GHdT0g/V3Yv22OZJN9OOl/PxNFlSPbb68rMEPR8AEf0KEoqIpLY4KiL1D6rLfPbKpswusYypqGS3We2z/4ukqbny9qNSWqPazNYQDBEAJhjr43T43Kfysyz9AZr6Vp3WUYZfaTUavsE3gus7cmQNqnrcbfE88gCXZTXSGjpDDBT0Ch2PeHag/NuKE+izYLeB1lnuTnog3qcFtsueAZNLIYWS/czbjMya2GR8cX23Pn5BlOL5xHvBrwX+N2Jfl5sbZJY9tBrigKh9cx4zoOir3zlKyLiss3+7d/+zeh/KpWK/PKXv5QjjzzyOR94wYIF0tra+uwbBggQIECAAAEODILpsxnxnAdF1157rYg4puiGG26Q8KT6R7FYTJYuXSo33HDDcz7wl7/8ZfnEJz4hN9xwgyxZsmQWTX55IZyvSqRW9VE6M0QAIi5oizAPDT+g6cAaA8/saGQWG7W6jmK3i3RHVoPVc8vOTba2GAvpUnss01TotIyVL8xI7EV93l3bozqYeQ/YdiP6Sgy4EBnMVVV3V0K9sBR8kOB07Za4DmDI4JuESBnZKNAi4Lqi1hlYHJ+FohEjzgt6ATBK2B+ykUTqug5ErcDEQvuYdW2w36d2O51KZmGztsF6q3g91rD1P8mR79DoUe77ueuUaRmizL39NlWoGqM6WgncRHyPYmwavSt7mF9iGeGUap1iqkPb80eWdTzujdtERCR97Sq3XGjbPbbCtRf168AGwCPKZxxZoqnBM4cZu1Q/vK1UOwT/GNUSsS4GDNHIkfZzsCnhYr2NQPOwvcY7zyUmhhii6IRdn642GZiS9s2W0fTb5eqal8ltBOBbhOePva3ge4Tnrve3yhBBu5cjjyjI4/Qa4bjQfQHdT1D2HGmHOHMQhWHR1xODZV2675EBiGeKtUhlbUdJNZfwosLvc6ryQB8Ck4R1MET+PJvsshIP+WuLZx4MJlhjsHRgmbFEfTwcE5mGh7FGeUqUy2W58sor5d///d+lv79f5s2bJ3/9138t//AP/yBNqu2s1Wry2c9+Vr75zW/KyMiInHrqqfK1r31N1qxZ4/dTKBTk8ssvl9tuu01yuZycffbZ8vWvf10WLlx4QNv7nAdFW7duFRGR173udfLDH/5QOjs7X9CBTz75ZMnn87J8+XJJJpOm/pmIyPDw8DS/fJmhUhOp1OomiQoW6XGqPoCCsEVKY27Z7V5iTVTdHoMpFHDF9BhSb8eW2T9oGAwBmGpBajtegqjOjf0PHqdPur5U8ccC012tO+wgKpxWGrxdTSF1ymXva9xAAH/gcl2Oe8YAAAMCAC9jbI/BEFJvw3H9Y0DTZlEVXjcp1V3G1I0KWPHyBi1c1r/rJarejT+8WE5OoYaRpTRZ8WeLTn34Pyj6BwCDIQwAMUWKqRH8YYMRH/6g8B8aDIY89BxiwwU9Zx0cdNvBijcSVDTvt9NKlcTM1H6K0sf3nub2n1vgPj/1OOdY/7t1bjAkWtUnrNcOInYeaCAdGn/4WXTsB+De6NQOWDEYSgwWdem2iw67ke/4Ue7dxdexXsJi6oFGcm/N/4Hjcx88RqdvaW4lRoOg2JjdJ/5woh/y9NPYck0coGkwwB9Of8aiezwnyX3288QT9l7HB+18XSXljov3Dk8pevuFAdcALv/RvDtr1gtztW/MgXkrT/drAsYqTX/XoARleFBmp15CR7R9Zjd+6ipt8zh8skKYpiW5oK5Q0FMN1wc5HVvsYAjXBOeOUkN+EMVlZ3Qd78imikiEBvaHBAdg+mw2TNFVV10lN9xwg9x8882yZs0a+f3vfy/vf//7pb29XS6++GIREbn66qvlmmuukZtuuklWr14tn//85+Xcc8+VTZs2+RmlSy65RP7rv/5Lbr/9dunu7pbLLrtM3vKWt8i6desMSfNCMWtN0S9+8YsDcuB3v/vdsnv3blm7dq309vYGQusAAQIECBDgYOMQT589+OCD8va3v13e/OY3i4jI0qVL5bbbbpPf//73ble1mlx33XXy6U9/Wt75zneKiMjNN98svb29cuutt8qFF14oY2NjcuONN8r3vvc9Oeecc0RE5JZbbpFFixbJ3XffLeeff/4LPKE6nldK/q5du+QnP/mJ7NixQ4pFO9S95pprntM+HnjgAXnwwQflVa961fNpwssG2b6IZJrrl5mnu4ptMGO0YQULCjGFAeM9L94DM0SMUVjFreUOF6GNHJGYcr8QMCJyAEPkD6uHiU64yLL/NC38ikAQbAgxVyjRECq5882h/Ih+P36kLe6JyBCFHMEQgR1BSm1M6fa4RtxIOQargjICQKrftRvTDzh/ZoCKZJEVoXT6VL+9b2Csmio1b7BZJjNDMD+4V/Ehy57l+hLmGCyeRUSJdGecI+4VGKQlP7VRf3TCimWrUbff6Lj7PL3UGnKChYAhaFOJzlXvAVgJsHgjK8O6f/d5dontO+vvPsK10+/HfC3xUbf0jIxecpR2mA5ghvx6vz3/xC7XOUrdbr4NDJH/Xg1Ls/NQxBjTle77bp3e5HIsk6cjkRoO5F+ltNd+169jo9aMECaB08GzYT4lXNs6Yu8FTxn6yssKNknFuYGhgcg3o2amYOV6lCkCQwQkBlyfDallyvgKd02ZVQxRIgmYIb+u0/Lo02Dp8DyyABzTaWB4KvZ14d8zmP7CeeAJ89Nl+uoNkwMJT6fFJuz3eCZi6WpdQK1tRqmQsdVum+ReZTYhrIb4W9/VmPKDdADv1GJr6MWZSjvEg6IzzjhDbrjhBnnqqadk9erV8oc//EHuv/9+ue6660TEzUL19/fLeeed538Tj8flrLPOkgceeEAuvPBCWbdunZRKJbPN/Pnz5ZhjjpEHHnjgxR0U3XPPPfK2t71Nli1bJps2bZJjjjlGtm3bJrVaTU488cTnvJ8jjzxScrncs28YIECAAAECBHjJYXzcjvbj8bjE43YE+4lPfELGxsbkyCOPlHA4LJVKRb7whS/Iu9/9bhER6e93plS9vb3md729vbJ9+3a/TSwWa5Dt9Pb2+t8fKMx6UPTJT35SLrvsMvnnf/5naW1tlR/84AfS09Mj733ve+UNb3jDc97Pv/zLv8hll10mX/jCF+TYY49t0BS1tbXNtmkvSTRVbCrx3jMpvVnNxDo3aeQzMrU1PAoWIk3bsxAhaGw0vTpjGSKAxb9s4hbOQcRrI7ZsH2mZdlKUrnqZJmKskJY9cqyLLIdf60K1jt+5B2b0JNfOUNQd97gVTrP2zP9yGYws2I6mwQTZ1OMJ1eiHyqoRGjA/8xEqUpwbCrz6VH275LRuMEsoVYHzrYZDIipIhsibWTsIltOLEtoWK5IFwPx4kSeJUr0IVNdRNBhAqjwKTqKkS67XPlsoGREu2+NBE8VJAJyCPLbUfg+xeexxLSrag/bLlNv59TF7nSaoNATuAUwYm1UbhL7RuckFVWW1EABDFMq76xLbPSoiItkjnfo2rCwoGCJgshGnSKMAGwzSxKKIFz4DQ290Hatpq4rk7Rl4hgjWDoDXn0DUTpKI9GIs3R57H5qaqcRFwjm07HY3FwzR6Aq695NSzd12eh7HO91GgoTjKUrRb91uRTkF1RqCYYb2ByiTLo0LyNbLk6iGSBmflr2WieLUf04yQJ/25pN6eaAx8rYPeuu5BI9PpEDCi5aeKcebJK+FhfEOGl9uzwEFnYGuJ/VcdGyAe+Gfh8nStReBKTqQKfmLFlnx1mc+8xm58sorzWff//735ZZbbpFbb71V1qxZI+vXr5dLLrlE5s+fL+973/vq+yQJTa1We1ZZzXPZZraY9aBo48aNctttt7kfRyKSy+WkpaVF/vmf/1ne/va3y4c//OHntB8MoM4++2zzOU7yuZpABggQIECAAAEOPXbu3GkIDGaJRET+v//v/5O///u/lz//8z8XEVcRY/v27fLFL35R3ve+90lfnzPtQmYaMDAw4Nmjvr4+KRaLMjIyYtiigYEBOf300w/oOc16UJRKpaRQcOHF/PnzZfPmzT5tbnBw8Dnv50AJtl/qqDW5f3Wti2pnMi766Pst6SH2ueh3YrljWOLD9nufJo0yIFma2y8rc6OanollLoJtTIW17eToGBFMcp8tEhoizUIN8+2qW8mqaRqyRsZP1ynSsmqnznHRfOxxlzay4o+2iYjIoz86ym2nDGrrTls4EuZriNYmFrn9dTylmolupAq77bs2uXbDah/gLB6fzebFCLpAyQnKqkFJCmSchItVXy4iQoaZ0PZk25Bd5j7H9gBnqeBeVenpBAsAILsMKLdaBiSSdQds3eqWhS53cXwhV7rl0JfFla2ExoiztLrVUG9sWXTK/eA8seQsLs42A2vioavM+iHC7nzK9amwnh+W+QXu5dy82VUzBUMEDB/lzh+6HBh5sr4M2g+gdUf9uo8vJc2NlvtAFlSDwaQStuhnzCqAweA2cCTPOq+8MqC+CLFqj+rmjjOzffwcsNYxMYxSL+4AMJHF+wYMEYw9i63W7BV9HIwUrjW0Uj61ns7z2RginAey3rzlALJUqSvFR/Q9qUx4SD0+YODJWcG47vlJRZSHj0FWqX6JfQy63yb3imkL9J+hGumi9F7h3CtRkQoVxn25oa2t7VlndbLZrE+9B8LhsC/ttWzZMunr65O77rpLTjjhBBERKRaLct9998lVV10lIiInnXSSRKNRueuuu+SCCy4QEZG9e/fK448/LldfffUBPadZD4pe85rXyK9//Ws5+uij5c1vfrNcdtll8thjj8kPf/hDec1rXjPjbx999FE55phjpKmpSc4666xnPdaGDRvkiCOOkEjkeenBAwQIECBAgACTcYiF1m9961vlC1/4gixevFjWrFkjjzzyiFxzzTXyN3/zNyLips0uueQSWbt2raxatUpWrVola9eulWQyKe95z3tERKS9vV0+8IEPyGWXXSbd3d3S1dUll19+uRx77LE+G+1AYdajjWuuuUbSaedCdeWVV0o6nZbvf//7snLlSm/wOB1OOOEE6e/vl7lz5864HXDaaafJ+vXrZfny5c++8UsUpZaQFJMhz3B0Papz5rtcuAovmOZ+Kzpv3udCiGKHRmAl0uxMUwix0mozi+pRu+pH6I4jO4wjU18uIwrvDYhvsGMbkoEhghmi349GVQv6RkREZM8mJzhBvD30bScKSulT5s/Ta3zceuvOkmlHU9lG7O2bbVoO2h9X1iVHjBEidp8BpafXRNp/mMvBBylBflK1ppD3XEGGHgCtiy9YigwdytTxkeQ0DBH2jwy6tu32XJEZFB1zeo9ym2NEwAwB6QX2mhU1wGvZoxl9pGcrTJPJB0znJVVst+cXpRIWzAyB3QOj1K5lT6CTaaKMq/3Huz5ejbpl9+Nug5EjYrp0FDxfR84w4tIP7GGDFz8MBPe/riSdv3Gf4dqh/2AJ7d7YcmUR9tldRmwiXANDlCEfOjChQLaHSrBwMeI2WxYIfQvPJbJX+Y8aF9UFMwSAKS61qm9S2vqncdZbNM3aSGJss0RdKZjZ5XbC1DK1T5kxeFohM7OC9rslaynRx71nWMyeJ/o8GC5XqFavZV5NGmN43vU3yhK27rJFrDE7wL5aTZPZoZe5pui54Prrr5d//Md/lIsuukgGBgZk/vz5cuGFF8o//dM/+W2uuOIKyeVyctFFF3nzxjvvvNNUvbj22mslEonIBRdc4M0bb7rppgPqUSTyPAZFkwcoyWRSvv71rz/n39ZqNfnHf/xHSSaTz76xSEO6f4AAAQIECBDg5YPW1la57rrrfAr+VAiFQnLllVc2iLQnI5FIyPXXXy/XX3/9gW/kJDzvealisSgDAwN+XhBYvHjxtL8588wzZdOmTc/5GKeddpo0Nzc/+4YvYTQVRcLhOtMBXwrMzSNy9HoQvZxgiBiI2Lh8R2TE7agWs7+rRYg5gqMzygNoqQdEdswQ+d+h9IRGVuzTElF5C1Qu6RNt2F281YmFlqqf0dhy9YjR9iBDA0B7WEsBrVTzPrfMLNCsH3Xurun5jC+12XdZ1SqFc9iPW/oyHjkwUG4dWWZAUpm7ipYTAGMVTZOIZBKgyUFWGqJx6DDq0Zb1yWG9B3RdYb0W4Yyeq0bz5WZ1G69Bz2HvzfiSqDm3IksA9HDey8YXvbV9AN/78yOWY+RVlh0ItWhI/Ixm3amepEpZaUnNqEUxULiJo09ke+Bpo78ndgTeWQB7AoFNRUQfJh0HGCKfCab6uqET9HxSWkA3UZKJP9Yfb1PN36hbZUaieb89NrNWKLMxnU8NGCI8p2VlqxxzMUmbo6c+oaVToFECuLwH+3glhqYO+fN6r8Ho4F7AiR7vITyn4XxZz8vdHHZDD3Ohawru81SUN6bZsTh/MERAnZkCk233x1m87MgN1pXd0psHlZXVIsAtO2uS3GvZN68J1J+GfHai/ZzfMfi8pM9fJN3I9B8yvNDps8MYsx4UPfXUU/KBD3xAHnjgAfP5c8kau/fee2fdwJc72rYXpRarD2BYGI3UdaDUZqfLABY4N1Gl8hrprqoJ96S2bHejgMIcN0cBI7K6WSMEi0ob00val65QlL1pod3O2/7rS7ntR/YvV2ycUnt32vXYmJYBSenLWEXKhbmu3RjMpRfYKSEIKLOLHPvoTeFUCD18lKbwE1vftkNPQNM5IZJGWjtSi2HMiD8C+KOA6cNKIizRMTtAzfWooJkMOWE8GQYdX8EfPrddyy4Iot01wBQq4Eu2KCrN9p6XE67NxXatA9Vha4f5c99G9alI+F2iP0BhmlLEYIj/EIWK+rsudz1a1rEthFvmdIDaTFNLEMtzjTP/vc668xRUmNa5wryfnqtO/XsMsvC9HwwpFs53wu3hdFKKT7mRVWq33bfQ1Fy+m47BU6KIHvCHFaaNOqDL6BQjBl0YDPn9d7ll9+Na648GqBX/HNjfceIA126DbQFqA4YpeYArvmMw5PevNdOwLLbTCFbhS13Qew2DoTSZOSK1HrXVfIkNNX9Mz2fzW9tOPItY8jOBwRDQtbFeN68+GCIbBeo3uJewnsCAlW0QomN2/ZDjEGuKXm6Y9aDo/e9/v0QiEfm///f/yrx584LyHAECBAgQIECAwwKzHhStX79e1q1bJ0ceeeTBaM/hBx2VI6Li6L5KQj82/vO7mabqfaik5TQwjamL8LgL77PLO0SkbgIJRNMUAdK0nt9u1IXdEysd58u0OAsmmQ6GSSRMFIHUbhvOgyECmCHiVGgI18F4IRqDqVtCU3Fjo+5zROpdT1NkO2GvZyVhGSJMl3HEPPl3MGUEkLYPQzhE55iWCRftvqIZdw+Rws9lOpoK2neS9hrku+06i+ibh+xxuG/h2vHUBDND3giv2doegHEZOcYep+vehO7XrYMhys4zm0lmgVvGnQa/gSFqED7LzN9nFus9f9q2E0AfT6uYGSLo8WXEnvS5uanuVrccTtc1kOVed9/HlO3qu9NedJiDMltQ1TIyYIhYPF4lYz8wGSgYy+cChsi3ecgyPukFtl2ccp/cpyav+tyFqbxPbNw1AH2mEsdzQEx3NEzrFCRTUgEsAzDdiOO2b1GG1guydWqY5KcoeQNw38V7AZXr0WfjWkYIfQBTw7AmATvaskvb0YzSOnVGF9O72LcvwkslRJiZRP/HOwhtrEZCEnsRijocaqH1yw2zHhQdffTRs/IjChAgQIAAAQK8RBBMn82IWQ+KrrrqKrniiitk7dq1h3V5jgMNaIeQYl6luXkID1lwiDToSMaxB5ExGx6Hci7iqzUjJKUU1P0ujImO6Zx6m7tfLBBu2C+xCumFKmBeYfe/8vs2TGKmqNRuRbDMEOV649oeF6GBiYLORjTqSijrAQ2CL3dSdstMnzsOGCJonyIaiXnhpV5/aJgqpOnioq6ImP35tET0eJoWHgn5tH2kQ3vDvgTSoGEcByGxvUh1uwSUMLHXvthVP5Zrg20jxLOsk2DNj9BUd5FS0suW8JLcPNWHbVaxr2r2fTFNaCa0uZ2PufYPnmaZrpXLnJI6+wtXEoD7CIwPgUjarrdv1+idTCQHTrHrx568xf3nZLfY8MAKEamb6xU67X7HXmvD9HizbfeyVldtdO+Qa2AlH5HWx2x/HiO3ENYrQdODJViEKgTYJDr3fUfXWXcydz2lureAlXTrmT4IpG0fSqgJLBIXoA2Chg6mpaFpCkxH0vbaNDDexBDVqFxQmUwYYY4Y8+aOblnQz6FNLDUTi/ksCck+OUCb37rLPhSjK1EYWs+DGDguygzbCZF6IViIzsFCMfuHe4jnBctkv2WMCx0iRbr/hwIBUzQzZj0oglFSUJ4jQIAAAQIECHA4YdaDoldKeY4DhVJbRIrxSIOxX4XSpsEiAGyU57PNlAkKFZBfrYVV4emktWfK3U6MwJolaJLAXEWHXbRcI23AxAor8GCGaM7DLtoZXeXCILAhiUEXNoEhiigjheg/VNFssfnud9A6+aVGXyhbwIBeZ0KZK2gFGrJq9k+fKi8iku3TbDxllIbf6UL51v/W66fRHTNJ9cKSYGdqnnGBhgbRfdt2FNnVzD4qpYKI0xfT1D6B7DN/zpTFxuxBYtiWPMA1YkDjBF0FCtDW9+u+SEObM+bWkfmEFGMwReOrqE/8xXbXnqK7homIYxe2PK7ioblu++a9lK5N2qCOrZxObb/f543zra4MAEOU0LR4aDmKK9yBQvqDUL+lxkoVu/5AcZlZn3tv1B+TU7ljY7YNzEDwOhgisAywSYAhIBDlzD/qC2lNHU/PdyfZsVmz0ZTVSPVbhoezxxihMunQKDsM7xN+r0A7BIaI+yCeazA9sQl7j8E0QYMIM1gAeh70BTC/uW533s9WxgQMUf2AbgH9HDLJuMRLZRIDxsa0fM/TS7VtLllRWndiVkB/3wnDSLeenV+TRPpFoFyC6bMZMetB0XMpzxEgQIAAAQIEeAkiGBTNiOc0KJpcs+zRRx+dcdvjjjvugDTscEFTqSpNTVWvlYGtfNiXs9ClrsOoL75fzRi1kF5TjlIcoB2CPxFZnftIjkzLqjzX326j49wcO8m9/0QtvLrRHj4+RpGesiDZPrc/6GlalCnirBXWLCCSLKj/SqELogt73AhFzt7cTpdzHrWClFKbO59im+3q+/7M7qg0qqUxTnWR9aI73PFRdiAxbBsC08lyIuSj7wiZAHr2D1oemlkO56xHFPRMKAOALBewDGBoWCcxvtieG1gzr/3RKBiMCZgimBiinAYw79euoQMnqf5CM3RazrEVWpsqrr1zU+6ap4uWDtl1v9MQoUdxVltyH+leiB0EKzCykoxC9RZXUm771Da34ZZtjiFq1fuAbLbM8ZaKqmb0grSqp84osRLjej0ed6lPMJcUqdUZIso8ys53y7iyBGDzYBgJvyGUl+GMpWbKXWHmA75EMGPkorpgiCKayQijTGRRIcOxwe+MzFGFGOsKZYWyCWKdxdNnQJ/3oprRsiZo4FTs3/1wwS8oOw3tJeYX1xsMEd438BtrKAyryHUrI04MHKNu8KkMG8qIJEI+ww2MJthpvHMmltp9wU8L5W2QQedNUbVfRidCEsnMzNwFOPR4ToOi448/Xvr7+6Wnp0eOP/54CYVCUqs1DhUDTVGAAAECBAjw0kUgtJ4Zz2lQtHXrVl/EdevWrQe1QYcbQsWaNIVqPmMInQmRDvyCEL0nBmz6SqiCCE8jupKG/3nK+uqirD+O6FhLADaDGJvUHhtVt21y6/te60LV1D44QbsFtDXwD0GEB3fiXLdjjsZf5cQEi/6Pag7abHSepxrBISrFAIaIM6xi5LcErZLfj54fvIEQ6c67TRkt1QzsPs99v+gOjXhV59OmETZ0PiE9PvYTLopUo5aZYcajqajRrR4L2WYRciXPd5O3jOq0cI1HjlKNj7YlN899DxYvDM2QRr0oeFpqRrvUZ4X0MFHK9gJDBJz57nVm/Tf9S836jnuW2Har71AzvThZrwG20RfnjNt2wXMKKHbY/TXvsZlXDFyH0H7LYDUP0LNAq2AV0OfKzfUNwWTiHLHO+wJzB9XKNgAAtJJJREFUk+u25wDnZGaKuMwNl1gpq2N1xyb1zFHtTcczeli61lzgNdtrGeDWbZa2g9avfnzywILjPb1XkA0Kp/dihxaMzSGLzbarYyP7spEvWsYWYObrktbsuuSgZYiAZmJ0Mz1cPkSv/7M4dZcmXX8wPan+Ojts2qzPD3RhbfQnEu+MSNluX0mIxClb8ZAgmD6bEc9pULRkyZIp/x8gQIAAAQIECHC44DkNin7yk5885x2+7W1ve96NOZwBV1SMsOGzExsif6AiaW9KFGrlKCxOWcvXSpsLa5kBqpFHDdfR8j5KYFYm3HEKvS6LreMZx/SkF2gkqKxEg8Msed+AIQImFrouB50L5tdrJ9kqnpkhe15dD9uu2jxIrtA5y6rgPOLDZGyCWmfDTnRR6nYNWP1tZZJUcwXmrtipWXQa+SKrpl4DrtbgFtxEjtX+c+jIKsgCUyanFZl0FXNsYM9ZGqXH1Lsl4e5dyyOO7YK/EPbHmTfIYBpdTVG+snFwTa4e5a7J36yxdQ2/88RptkFPtZjV5Ij9GvWoAPQVsHKsR+MoHQxR25/sMZ/vXu8ssRP71d2dCr8m99vrPkbnW2lz1y2jEX1il+uEYG1Yd4K+OeftO0VEZMdvFsnJr7Piut88dISIiKR2uja3b2WnaWJgiGVo3m8p0VKr7ed8z4aPccu5j1jPnLrXlfscBU/BzsWH7fPONcmg5YmPqJM1tEUgqLVANRgWzpYttkOwpvc6bt8LYJRS/e7ep+dRCmWInlvtI8NHRrRdunvdLRig9m3qzK21Cvn6tlAWb4X8lMaXkl5NmRs8Q7m59e3zncTekdt23NlaeR0ZmGM8Z6wTC+cbGcNDgoApmhHPaVD0J3/yJ2adNUWT658FmiKLanOTe0FQJ8KgpJJUMesw8agY1GRInUqDoOxKW3kSf2CT/e5pw7RbiP7wlFu0cnrJTishBb3Y5vLL8TLDYAgoqKARpor4Qwa6HC+X3nvs73JU2LLQpee5VY+3yF6H2KCa0eWmfgoxGIpkYHLpPm8oREmDwtxi9+bC+fkq30mtOF/FNKB9ubPpZjhXf1HjDwrAfxhQqDXZbwdqKGWCKdahY3Rghr8zMbvfxCYdDGlXQLkKD21its9+DGEyUGon24eyO+63/nCGO58n3AC7ON/d1NiI/QMCszoUP222Omw/GMKUCO4I/jjAxJKLmY6f7vr8+IBzWwztmbqwLM4zOWDPC8VEq0m6bru4VIxtr9BUDAZDwGf/7Hb//0//7AL7Uz0UKqVjmgz9FgLe1h2UIo+pTh0MDR9J/S1q+/3cRyhFXvsjlnnqr34ASgWNMX3PxYBzve4aJfe6m4vpMBiTii5bd7j3CwZDEDQDiVG+J9R3tFkYvJW0L3dqGR4MhoDWnVTeiKdm1YzVp8nr81vS9wAE5hFd7niDa0+Lc5Hw7yv0TUzlJoZrvn+yFUaFjBdjFK82kQQAA1QIt9u3lqS1SBsdAgSaopkxtaEJoVqt+n933nmnHH/88fKzn/1MRkdHZWxsTO644w458cQT5ec///nBbm+AAAECBAgQIMBBwax9ii655BK54YYb5IwzzvCfnX/++ZJMJuVv//ZvZePGjTP8+pWHSKYi0VLFMxkACrYCoTxFDBMaxqKMSlzDEmXoMkc7ZTJS+cEQgX7OzXXbx3RKBuUwqhEWr9qyHxWdPgJTwmZpiOwSNC3AKbQssAQj0/2EPc/c6RQ5b3MhI2L6FhusN0zNIIIFw4NUeUxzFVsd28GFa9k8LrPImlVymjqzGWAn4qP1/WTm29CxZZeLpgud7mzaN1q3t1KnFYVne5RlUMYFjElETQbDOU0X3kvGdKvYFJLa3grbB2UH2lFEWPf3lGVQwLZB/B7fHzaf13TzMKYaECHrYVH+oKHsCE0fIBqHKD9zsp7vVntdIC727cvZHTXcK8o5CI/r1EpS+7RG/EiZ5tIR4yvd/sd29YiIyNrTfiQiIp+8911+m7btUwuoAS643FSybeTCy/UpRJTjsfvreWjq0NwXJ0U79tt+zVO5LObP9LrfIwUdjHFmgROns0nlnD/QdL/uPqnHxXsEfR7T2ZhGBJMGtq9EU1ADJ7r2tW+u6fm49wMsSoBiN/2QpvPKysDj/ZjtdeuDJ2of0KnUiWO1/Zu0TJBOgTVNsi7AuwzLvCXn/RQYrDNwbpgGj4/ZtrXu1mMvjEo4R4z2oUAwfTYjZj0o2rx5s7S3tzd83t7eLtu2bTsQbQoQIECAAAECHAQE02czY9aDolNOOUUuueQSueWWW2TePCd87O/vl8suu0xe/epXH/AGvtwRyVYkUqpHhQ0MUYHCaTBEccs6ZFc7MQ6ElCOr7K2DvqNlj+o/lCFiUW+4gBRzt38uDBsfscq/XK/Vc3Q8UzD7AwpU+LVKgRzMHBGJIdJY+C3VLKiQc+AU93nrNqSv6/5UIIm0V2g1mI1IaAFclHhAOQ8AZRJYS5Gda88HBSOB1p02AgeTVomHvBbIi0n32GvYssUpgqsJvWcoftlpo8TMQm1jpztWfLNlTFq32zfR+HKIvd36stc6gcSTz8y3bc1TkeGtECu5BYwFARgFhsmMEpPtrB0aOsE1oOMJFYxrZOyL8Cq8LkX7TqbXXvOuu9HXpr63SFPHEuaM8VFlA/qgq9HfZ1x7Ki1aPDinLMWYNdUraXmWYqeyJe2Wvfzcd/9cRESS0ljwFRoWCO8h7IWgF4xlbELLb2hfwTJcsExOz8Pu2NEJ24b0YtsXKmDrlBkNTyNNKSqDzCn6YIiALDSByAch/Qz6f6HL9tn4iD1wOaHnpWze6HLdXg9fN0nE7/X47k+JZ4gAlEPKLnY3CeaUAPZX0eMOrXHvoa6Nrl1giIAuLVocH3Ofj66w542iwaVJCSMoKAygzQw8h5x4gf4OdjrTM+s/uwcWAVM0I56TpmgybrzxRhkYGJAlS5bIypUrZeXKlbJ48WLZu3ev3HjjjQejjQECBAgQIECAAAcdsx6yrlq1Sv7whz/I3XffLU8++aTUajU5+uij5ZxzzjFZaAEcwum8hCP1sCs0qkxQs4uKa3G6Bc0uTA+Nue2ya+aZr4ePUE3PsGqJNGrueGbmLIYmKvQYG3XbI/JL7nEMVmahpXieLbV/fIlliBoyNDT479isEbRmHDVphIzyG8U2mNNp+zSyRsp/QwpwC7QQbr+JQaXKyGkdkTRQJq0Tijwi0ob2odBq999EvyslYRxY9RoXpAMjgy++1+aMN8EIcr6ju1B6Ye9pqodSZqZtnfv92Ap7zPQiSjFfYWmLbb90HmKhbmWaBrXAbLcW691vYyDP2ilgUggmCKn6nN3Vf5Zdb3na3UNYAzQPWV1Xus/qVkaO0GtOiZWsSxtbRoVw9VEBWwOmCHqvKskzqs2UHk+mjZxSHUnr8dKOXayFaw3tZPYqud/2D5SFAcAY+Yw5Aj9frDUaX0ZmpJzFqv3WmxyGwCSrRcA22zcBXCvPBtJ+W3bNnEWMbDeUBfI2Cttcg4bW2JsB402wLk2k45rz6NTHe7brU+h2xx/Rgq+4D6Orrd0C9EAwRAXY1iFrX7fSPFB/p6X63W+ZZau31S09O0jFXjPEWsXHqhInE8lDgoApmhGzGhSVy2VJJBKyfv16Oe+88+S88847WO0KECBAgAABAhxghKTBxP157eNwxawGRZFIRJYsWRJ4ET0PhEYoVERBV2JeSsiq0CW8bkZXojCpHaLPecyFevluFxlBS4S59nqxURu5VdnEbIXNvsLvoxrtJHe58DxLTBIK23qWxEqQpGUXZeGQhgLZM/FxmMK5z2NjZV3a8/DtJ41Ersdqh7BfZMXAE6diN5POTS5kzc9xj0LLDnc9YU/o/Y70+GCIgNHlkYZMtPg+x/LV4pqBoyUTIuMubIXRHMDFPVkrhKwp1Fv13jXjLkpu3qFGfXqtEpotBjYgNgotjz133CtE7cjCqir5hzIXiHxHj1ZtTl5LMGQ1W27Ith8+QUCu1y3zc9U/KA4GRnVmWkQVmiP4K0FPVqO3VJXYSJxnsYf0cfvU40qZJWYxo8QS5HvsecRGlYHS65HcV/Nak7Zt9liZXs3+hM8NPV/ILkO5GTwH0BYBzLxGyZ+LC6yGKbsMDBEwcDKZRfbTOmWR8nMGpOfbdib3WX8ysITDR2o2q17zzALdnnQ5kcLMVAPeT/49Bf2bfg+GCOje4DrvyJHKupIpojcQVe1XoY2MTPV2zn3E/m1LLwh7hsh7F6mGDToyn81ImbFFylhl76ZouiKRQvC39KWGWWuK/uEf/kE++clPyvDw8LNvHCBAgAABAgR46aB2gP4dppi1pugrX/mKPPPMMzJ//nxZsmSJpFKWYXj44YcPWOMOB4TGMxIKT+pBmlVWS1rKotLi1isxjbyUTUBhUsy5I1usqn5CYIiA4aNsBNW+lVyLi4hQ7a3nwopciqHUadtbbLM/mLPeMWHhMUcvjB3rsuWS/dbXZGKp00gg4gVDBIDpAoPGJS/AEMXG7XmNLbPtQ2Se0QKS0AYVxV1XdhZue9qxOyirklvguCJooIDxJaqJ0p9HsnV9E9pc6HQpLIlBe4z9J6oHkzrb5rssIwQU51vBRbhZ9VgFzXIbVVZwt7qha6Yc/IKgDUL06++tdkMwQIie/XGpREuNNDp8L0odysI1c8kGt6icodTVUy7VqPVVQ2azsSedfi7f59oRG2I3Zz0PdAm9nDE4UesS55dUZijXY5vjix/DSVtpwCb4y+j1ik64hif73XpuLvarnjlDVWnWUwCDC3fiiSVUXoL8tZjRQV/xBVBbpy5cCpSoQCwKIcPbyn+u7NfEcvf7+DBlVZKLNzNDcGmuv4emZlTgnA3NHpjiCDE0bZRN1qDNSyGTUPu23mOv/aFsuPQipaTgAaTlS8ZWxMzvua9y3wbbAzBzBLTsrjSw6mUqXMw6pULb1FxDXqsAgCVrcFQ/RAhS8mfGrAdFXPLjxcSVV14pn/3sZ81nvb290t/fP+1v7rvvPvn4xz8uGzZskPnz58sVV1whH/rQh/z33/rWt+S73/2uPP744yIictJJJ8natWufv91A1fbAWsK96as6tYJaW6VW+xcoMWjfLmx8N7rSvRwyNvu6QTjYMNgZdH8RC12tehwyldRyF6j5hVpHbPrWttX9BW5SSwEMhoCWnVYEPLbKDp5xPmzE1yDsplIZEFRX9aVdUPNJVKaPpt1bd3ypaz8GQ8mtY7rU4+jgp9qSMOseTZjucO0ZOopM705159vyYF0IW6N07cw8e0+RRl3RwVByQCn9GNK33ffRva7tpW4dDBX1hZ/TvwzanzD9g5crBkNcfgDHASBi9+3Sl3yzvqx9hXIY36ldQXTcfd5zqpsLGbnHqVJhk1B9tWtQXMuSrO50I4jXHflLERG5Z+goERHZuK9X94c/LnaaCojkpl5HuQSYNpatFllat9nznVhKf/h1/FzRQc/cRzAw0fIqepkhRI+N1/dX4erzPVY03jxo25Ic0FpiJRqA0iAIg4+IvwduHc8JbBKAzALUKnPrXFIitZMNPe33uGYw2oQtQcvOmmkPgClWPE+5OWotkLIDe35P8YCCEx8wPY8+CKsNf51DOL+aWQdGV9lOw6axeC/UN3ALDAZ5MDS+WMt/9E8alKENKBVCAwJ+h7GoHQPn+Li1mih0RqSYf5HT8wM0YNZ35DOf+czBaMfzxpo1a+Tuu+/26+FweNptt27dKm9605vkgx/8oNxyyy3y61//Wi666CKZO3eu/Omf/qmIiNx7773y7ne/W04//XRJJBJy9dVXy3nnnScbNmyQBQsWHPTzCRAgQIAAAQ4aguyzGfG8h6nr1q2TjRs3SigUkqOPPlpOOOGEA9mu54xIJCJ9fX3PvqGI3HDDDbJ48WK57rrrRETkqKOOkt///vfypS99yQ+K/v3f/9385lvf+pb853/+p9xzzz3yV3/1V7NvYDwuEqlP7VSb7TQPmJZ4AQViHZ2Qn2O344KLzBCxoViHTptBlJrcpXMsSttjuggCbKS8Yx1FSicWQTipxoS7bcgZHtc5G5gZdjlGKN9DimsCUpk9QhCE23IlINliIy5UbdJyKE162Ka8TuGgwK1aD3Q8Y9vlD0OMUJOaaWZXwLFQp0MW2Ecje7ylLVonMUQQKEOEmxzQ1Ps2GEViqkTPJQ1DTbNLHwQj6m97Uu0K1OguMWi3DNuZyYb2QCAKtD3hqI9awkbX+0+0dTHAEHmjPS1rEFrp+sy+hxxDFNZbXDlaT6zs7l0+4/b/8IibLlycdMddmnLM0ZOPrBSRZ2eGGqbrUN1+1H6P68BCV7AdsBjg8gxgiAA8A5iGDKOgbbreZ7JzXT9DYeMEPXdhEhA3ETOSGMjq0q1PLG+1bSaWAUwHrClKdnNp36aMJ8WC2V77QckStV5kD1YMDE9mgU2YQMFUMEQA3gdYon2Av3e65HvDDDYYInyO5x7TiwCY4sHj3PPHDBmXDWFmiYXqOG6+E+ab3Cfq/2eWsKkCVk0TCMJTM0TAxGK33r6l/vxzHz9kOIwHNS8Usx4UDQwMyJ//+Z/LvffeKx0dHVKr1WRsbExe97rXye233y5z5849GO2cFk8//bTMnz9f4vG4nHrqqbJ27VpZvnz5lNs++OCDDTYC559/vtx4441SKpUkGo02/CabzUqpVJKurq6G74BCoSCFQn2wMD4+Pu22AQIECBAgQICXJmY9KProRz8q4+PjsmHDBjnqKKcReOKJJ+R973uffOxjH5PbbrvtgDdyOpx66qny3e9+V1avXi379u2Tz3/+83L66afLhg0bpLu7u2H7/v5+6e3tNZ/19vZKuVyWwcFBX7ZkMv7+7/9eFixYIOecc8607fjiF7/YoG1ilOa5cD9EJoo1Cpk4tbycnFq0l6RSC627bCQXG7KMTlPGrUNDwyn64ZwyVc2uS4Ahah60zAq0PB4Viqz0/Jr3uIi40A3GyJbCgHmkP75qmfI9zfq9FRtn57n9tGwtaTts162nNqtx4nDR7LeqBWNDlAKbn2dDaGaIYGAIJB9RhmhSpAVGwdsKaATpi+iqQSeiai4pwsZ+0AhVtSlgOjwLgfTkcRvuRSjKjVAJl4kjnAA8uddRIZkFzdpOFd+rPgRdEkJwoNTvwvBan7sHJaTm71T7iLl6z8Zt3/o/vzrFrMfBTpAOBWwHi3HBBFX10UjPY6GrWxY6p9bRgCHiMilc5JcLw6YXoq+75WRhbOtOuy82jhxboWxeyTI2oZq7VtAUDR1rnyeIvGHzMLbUft/5FB2XzVJVm4NSE6WU/T1bZjQU6aXv8byivWBHmBlqYIKYBcXX+nliFGyq2y8zR+j7OE77ZkuLtuy2nWRiEdlc0LPQ0B467+R+m2aPZ3WyjUOMivyCAQZDlF5gD1LQcjMQ8Hc8Y38fH634GYJDiUBoPTNmnZL/85//XL7xjW/4AZGIyNFHHy1f+9rX5Gc/+9kBbdyz4Y1vfKP86Z/+qRx77LFyzjnnyE9/+lMREbn55pun/Q27btfUAXkqN+6rr75abrvtNvnhD38oicT000Gf/OQnZWxszP/buXPntNsGCBAgQIAALxqClPwZMWumqFqtTjnNFI1GpVqtTvGLQ4dUKiXHHnusPP3001N+39fX15CZNjAwIJFIpIFZ+tKXviRr166Vu+++W4477rgZjxuPxyUej0/5XS0RkVok2sAQIaUeQIFWZoZSu234ilTgiSXuHjQwRKq9QVZbdMDRELUmLZeRVQYlouvarmKXHfS1baWwmTUAY5oFRtYCdWbIAYUtsYQmqNzqfgcmx7dfGaJiR8ycL9iXzGJH3VS1MC4iWUY5GTHLxF5b4TW9wokzxpZTJE9dGHqeqBZnRfo2WAhkQonUi1UijR92AMC+093Oux5R3ZT+tEhsFBgJb2RJ5QJwLRBNIzMHUW6mL6y/0zIfmqWF6Hp0tQov2MwRJSk06s/Psd8vX7PbrO+9a5FZL+emfgbq7db2UtdC30JzYGaJ88PvEJlHyNAQpVr8/rkUBxkHsokjMHyUapC0mDBnbE3O2iuTNmXoeNum1A5is6g4bvN+XAT3vCQpYTa9ABmAuv0gZRCOww5h6rgWDBEyAxsie5/VZT/m0ivMnqH8DWwO2FyyeYAZYNfO9GJ3nmz1Mbmwslt3n0N/AzSV7HuFWUywibi1SH9HujyX5mjZ6z7He6RKfwknZ83FR5RtVpYcz0lI+1mxc2qGCOh4mmxH6BocagRM0cyYNVP0+te/Xi6++GLZs2eP/2z37t1y6aWXytlnn31AGzdbFAoF2bhx45TTYCIip512mtx1113mszvvvFNOPvlkM9D7n//zf8rnPvc5+fnPfy4nn3zyQW1zgAABAgQIEOClgVkzRV/96lfl7W9/uyxdulQWLVokoVBIduzYIccee6zccsstB6ON0+Lyyy+Xt771rbJ48WIZGBiQz3/+8zI+Pi7ve9/7RMRNa+3evVu++93viojIhz70IfnqV78qH//4x+WDH/ygPPjgg3LjjTcaHdTVV18t//iP/yi33nqrLF261DNLLS0t0tLS0tiIZ0GpKymlWErGl5K5IObWVc8BhgiRUnLv1AwRIiswOd7vRwsl1igDAqUmgGqzXR9Z02raA3RusM5i1WbbVTiLqzRHs0EqyKygSE8ZIvgzwURy6Dh3/M4nnQYJDJE/DvkWIbIDkJVXpKyc7ids+zKU5cMMEZf/QJYP2AJE1GAj8H3n2/eI/E+XXNB/mm07R59giBgwI0RfyM61fYGN+/jasp4FQESb2mv1JWA8wGjl5tj97V/ljyQiIm96/ToREfnZXTZAYHkZe8Q0rBMLh2uLwqzs8cMsBjNmYMgq2al9iABkucH4EyUqgP0nUOaULsu6n55HHA2R7Ys16JAGT9SyHWW91jvsvrJaBqNle07b4PrAvpMd8wGvqUKHbXOI2K69f0xZk6rnmvcr3V5PCcxOUwkFl5EBafcHDQ+uVcQSqV7XlYP+TS8KSqYwQwTAzwxZqmBy27a488/1ugMiy44ZNzBAYEthnMnfA9zHmAVMz3cnivJIXHQY71NcN98emEiOlL1nGc4Fv5lYqA84MmT1XnZstkxnYtjezMnFrcPlF2F2JUjJnxGzHhQtWrRIHn74YbnrrrvkySeflFqtJkcfffSMQuSDhV27dsm73/1uGRwclLlz58prXvMa+c1vfiNLliwREZG9e/fKjh07/PbLli2TO+64Qy699FL52te+JvPnz5evfOUrPh1fROTrX/+6FItFede73mWO9ZnPfEauvPLKQ3JeAQIECBAgwMFAMH02M0I1KI0DHDCMj49Le3u7jInIX531DzIWa5H0QnWw1kAkRxlIqb3uNrTsciFLdNhO7of0NuX7XLbUdM6xsTEX4oTTmm2WsOPe0SMs28VZH6l+crjWbC0wNpFhF1KWu2zWVjUCN2B46EydVRHSaGv4GCpAqxFesxZwxflxOZF8J7Mmdv8R8u4B29A8rOU7utyB0ovtduXVLgQObdcMq7B9LBKDNjOr5/V1fU24yd6MnQ9Yrc2yH466c5ljTVSKbfbeDB5H5zrfNX7Ob13f4Uw4nDs0NNMxK9AUdT7l+tbusxx1EtWsLZS9gJ7kTf/jN2Y/P7rnVLOe2EfMjLIQYGS8f5AyQXU2036PQq9gBcD24R5GyCGcM6MqxJBFie1I7teipV3KFpC7Mb/Yc1q6Al43YIhGVtcPnF6ibdUSJy3bLDXR+bQ6qms2VM8626jho22/55IkzBDBm6nQ674AQwTMeVj7pV5T7/bdQVmtqg/DPWLdVUP5D9abEfuGax0fU/aEGF2+tuzfBN0bAKYMfQYaKi7PAcYLnlbM/OD9gOeUC2izRorPi7NtQ7V6/+V3ZZlKADUwoVTaBe8+fF6NNEl7MS0//n+fk3ERaReRsbExaWuzvmEHCvi7dNzfrJVwbGYfuWdDpZiXR7/9qefc3t27d8snPvEJ+dnPfia5XE5Wr14tN954o5x00kki4hKePvvZz8o3v/lNGRkZkVNPPVW+9rWvyZo1a/w+CoWCXH755XLbbbdJLpeTs88+W77+9a/LwoULX9C5MGatKRJxpTLe+ta3ysqVK2XVqlXytre9TX71q18d0IYFCBAgQIAAAQ4wDnH22cjIiLz2ta+VaDQqP/vZz+SJJ56QL3/5y9LR0eG3ufrqq+Waa66Rr371q/LQQw9JX1+fnHvuuTIxUfcrueSSS+RHP/qR3H777XL//fdLOp2Wt7zlLVKpHFjh+qynz2655RZ5//vfL+985zvlYx/7mNRqNXnggQfk7LPPlptuukne8573HNAGvtxRag1LMR6WmHrYjKzWzCMNIsAQNSCMDAetPdbHEaYNk1u3WWYJuhP48owc126+B3uASM8flnx84AiNyLE019EK9QwoKkg55ML7qtZ4A3PkCzn69ul/9OdgiPz3YbhAY/7eHgesSMse+zt2/oZeZUIL7BbIgxMMEVDqciF0y2b7aLBuZ/in9ZIv7BUzZ7uNELe8q0NERBbe68LUre/CubjtIqNuB8igAUOU2OMOmlbiqU2dcFlXAe0CMo3io9rGo8kd+S3uC1yC/n22T7zjuPUiIlLRm/PIkIvA4oPkV0T6rfAaJ6YoDLmLHYppJDyobuhjU1t3s08R/IZ8xO0dqzXCLtjPK1RXq3mYC3Oqhkijf2QkgSVhPUvaEnyy9YPuuB336fdL6t+1PhPWY9a07fbYcBMfPN49t8i4Yyd6zgCssiOzIq7FbqH9SfXb5xLg54TZNdYOsSYnRu8D9n4CQ5QYnloLA4aIi6Zy9leZzpNrNua6lXGG7ow0UZyByAwy7nFR+wBn74G54gxDYDLTle+AblH3NWTPHQxjQ/059ZoCQ4TsNSzLzSEp5qcvS3XQcIg1RVdddZUsWrRIvvOd7/jPli5dWt9VrSbXXXedfPrTn5Z3vvOdIuJsdXp7e+XWW2+VCy+8UMbGxuTGG2+U733ve16qc8stt8iiRYvk7rvvlvPPP/8FnlAdsx4UfeELX5Crr75aLr30Uv/ZxRdfLNdcc4187nOfCwZF0wCDoe6N9i3U8oRTlxYWdoiISHTMzv9UWhy/G1UjPlSZB5Cam59reWCqo9pQBHRCCx/iDxFeMrk5OrWi6eWRDOZm1P4/NjVlzIMhf5wltr0sGuY/JkC+0x6Hp8V4EMVlDfASxUsfg6HSkTQno39VymnXbh4MxYft5mUql5CdV387YEDVtt21BQLeYo97W265QFPjn4lom3RKcoWduwilrWAbgyGgIU26w66PrnEn3bbA/aV53UJnUfHUhJ2rOe7oPWZ9S9rm4O+7Vwd+9N7GVEviLNd3s3ktHpxUMb2W+0jupsGbnlb3Bjt3w8kBXE6hQn9gR1fqYIfS2CHe5QFstseeQGrAHn/3H9EAeKELMFIt7i9m6c1uWRxKSetjampK0zJjy+wx+I8tpsn8tJWeEga0pVZKuV/uIuTKE26ky4OZjBpYomhtSft7jKbBEjvsc4KCp0D7dnqO9Fr54sI8bZae+a8higkDXF7E20hoH+ZpNi5mDOPNlHZViJS50Cy/H2B+CfDUF/qUHxz5grOY29VpyLZwQ7kODIIAHgwh2QQBGr6H+SMPxl/O4OoNU9nT/OQnP5Hzzz9f/uzP/kzuu+8+WbBggVx00UXywQ9+UERcTdL+/n5TbSIej8tZZ50lDzzwgFx44YWybt06KZVKZpv58+fLMcccIw888MABHRTNevpsy5Yt8ta3vrXh87e97W2ydevWA9KoAAECBAgQIMCBB4TWL/SfiEu8am9v9/+++MUvNhxvy5Yt8o1vfENWrVol//3f/y0f+tCH5GMf+5jPCkeG91TVJvBdf3+/xGIx6ezsnHabA4XnlX12zz33yMqVK83n99xzjyxatGiaX71yEclUJFqqyOI77Ig6lLPhfnRUU1YXuOkplKnI9lGoRrp4jrJ9hKNmkP57/dnQGhe9gFYfXa0C7VG37H5CTRZLoHzd9mPL3f7atlkrAADtznehoKv7HPQ1MNnsUKSxYCYEoj4ipPMDQ8Smdb6wo04tMT1f6NLUaXxA8w7JbmW6NDJt/rmL0Jl1aChS2lVnHUJRd4w9b3HL1AZ374rKErQ8Y3eGaanE024+augMRy90/M7e8wyVD8iusKHpqUduMeu/f3C1Wf/xH443633zRkVEZCTnLtLAE85SILzQXYOmjRrea3NjyiZmX+2+72hzSzBEVb0osae0bIir+9pgSdChImQwQXwP97/RhfuJDW4/0dMcDVJY52g+sHy1Pe77MZ3GS+7VqeIa2BMIWbUdPCNMzFc7eb2ORtzD0bTaPZOj+9yBQk0iFe1XaWU8WQzODBGmy/x2YIjQBu3+iZXu/VCtug2Km/Xk4m6DppKmheutTxCDySVfUOYDgP1CagCMMPUpYtPArLRvtiVgkKqP9wozv/xemG7aamKxmlPS9UqM6PeL1OLAkpke3o6BCui27LYsIPoY2sUsZIgLRvN6rX5tiyiDo5eKbQ18eRqYiBKDlJ4XNr9PDFdfnIKwB3D6bOfOnUZoPZWJcbValZNPPlnWrl0rIiInnHCCbNiwQb7xjW+YIutTVZuYqtLEbLeZLWY9KLrsssvkYx/7mKxfv15OP/10CYVCcv/998tNN90k//qv/3pAGxcgQIAAAQIEeGmira3tWbPP5s2bJ0cffbT57KijjpIf/OAHIuIqTYg4Nmiy8fLAwIBnj/r6+qRYLMrIyIhhiwYGBuT0008/IOcCzHpQ9OEPf1j6+vrky1/+svzv//2/RcSd4Pe//315+9vffkAbdzggMZCVQiTUYLg3cdxcsx4u2BBrbIXV4mAOPJpx2yFSg9EfkNqnlvRqcsgRYHKfHl9Fo7FR2970fEcPgElCtINip4UuFXxmSdTaYY8DhgUMDgTTOA9EylxYEseDPiRJ2qHYmDu/cjOYMNt+RKYwWus/zX3e8aQe50kX6ufs5ZdSioTgZIrestO2HxqGroejMrHUfVfudSwaGCIInuO/U72S2h0MHamlR0bsMebcB0GF21+WCp/m5+q5jbvf15psuAeGCAxUedC9PBIavJWOcMzHvqesdiia0+M85RgiaIYQCedOVUGLhrUZKudRfUpZDb2EzK41a7FNLvQ6RNVz1izSehxKOG8ecrTdmW9eLyIid2060jVjjrvObY/YdjQP2j6Z76K+5QXW7voh9R5p22DkIAwvPOQYqq5B7E+kSZkN2AkwGwaGEpocsGyAL36rZFz4RLtBbq/eg5IVGgN4LsFA4flt3UVM0ZhlTDL6vOS76T2k1gFxZWhgFdK6g0pTkCYxN8c+eFxuB4wwmBlOye/a6B70seUqxqeCsii1gr6E39eaiOHdN3XmERgi1u8g5d63i5hqLqBbnGTWyeyzf06Q6ADLDLURQEICtG/8rio3h6TMSvtDgFCt5i1eXsg+nite+9rXyqZNm8xnTz31lPcTXLZsmfT19cldd90lJ5xwgoiIFItFue++++Sqq64SEZGTTjpJotGo3HXXXXLBBReIiPMhfPzxx+Xqq69+QefCmPWgSETkHe94h7zjHe84oA0JECBAgAABAhxkHOLss0svvVROP/10Wbt2rVxwwQXyu9/9Tr75zW/KN7/5TRFx02aXXHKJrF27VlatWiWrVq2StWvXSjKZ9Ilb7e3t8oEPfEAuu+wy6e7ulq6uLrn88st9MfgDiVkPih566CGpVqty6qnW0O23v/2thMPhoFYYodjdLMVYPcQodNgwGmnC4eLMGTfIykD2F7JZWna5JRgiABFPWSNLpNIi7djPsev3iGY4hZcN75jRKrZZiwGgoWgnMUJ4qDCHz2ZyyAYpaTYLCuNWNLU+MWqz49IL47ofe9xe70PoGji6yrYjPoKlu95dT7rj7NWSHWCI/PajljGaWFaTDgRBm9xvOjfaVKHCHMtoLLhvwqxnF7j+gb5QVLuEMOlVQsqiVVVnkhhw2z96xxGubWzoyeUu9tsPohP2WsASYOIId6CQGli2Jtx6JuN+X33ShcBg++LEeLGOhMscIHMotVNtIVSz8VR+uYiItKgJPbjSX6w4XkTqL6s5f1DN1h7HfGW1dES2Z+bMp1qDxkktEXJu2brL9amxZW5/YMq8seikMiTI+PP6EmIBpmOIJpbZm9S0RbVrevOiY3ZHxdXWaiO1zjLI7dssU1Jstdcg02fTuaBtAusBhgjo2kSaHHoPgSHibC4ADBEYGM/E1KCNwnOtGYqaJcasHqMhS5XLCFXs52w1wKaM0FjhfTddOaFotjYpA08/owy/+rvMLVFE2n/dZLdjrdGhxqF2tD7llFPkRz/6kXzyk5+Uf/7nf5Zly5bJddddJ+9973v9NldccYXkcjm56KKLvHnjnXfeKa2tdf+Pa6+9ViKRiFxwwQXevPGmm26ScPjA2hrMOvvsIx/5iOzcubPh8927d8tHPvKRA9KoAAECBAgQIMDhgbe85S3y2GOPST6fl40bN/p0fCAUCsmVV14pe/fulXw+L/fdd58cc8wxZptEIiHXX3+9DA0NSTablf/6r/86KMlds2aKnnjiCTnxxBMbPj/hhBPkiSeeOCCNOpxQbg5LOV4fyUbyNuKBTxDmvqHd8b9XbQ28McAQpVR+gQh1bJnqVIbhkUF6FNWmRTTKqZIfiLf/pyiGI0IwQ/538B3RAJMZIrTbM0mIligyQ5YatAXMHGUW2Aa37LJiCxyXC3ZyxLjgl3n6HlksWqjzlJg5/tDx7vvu9erTRJFzanfIG3Omdud0n/YeRifsyYAZAkapOC3uBcpuZOdTxmGEM2Z0SdcMeoxSq9sgNkJGm6N2+/E19uanOrWIqWqJok+TRxY0Fdp8bygIQ84hd/FLKcps0j7TttN9H9ZnIjaurCkyi1T30UZeOth/uTls9gdWc/hI7XN6mfK9epys+5z9k8CqZueGzX5yWswVjFi4Wmc64sO0DyrBwvqpBi8bYoZTO+01yh1rGaLINnftC5odmaSsLDBEYHZGlzt6Az4/YLnglYN717rV0pFjKy29xtllDDwn0PpkevWe7USaGjEwUWiMXDsy88gXjLLmoKH0WWOcaaTrKPzarKVd8H6BOS1+D4aIz4u9vyZrxcB++RIqynqjHzIjGbVEcMO9955I8iLVEDvE02cvN8yaKYrH47Jv376Gz/fu3SuRyPOSKAUIECBAgAABDgEOpE/R4YhZj2LOPfdc+eQnPyk//vGPpb3dTZ6Ojo7Kpz71KTn33HMPeANf7ojkKhKpVCScc5FTsdPRAKVmlByYOgpBtgWcncEGwAMGYMdZ/C6p2RsTmlFTpkiWwYwK9gudBgowRrTkQr20BEXMSXLapePiOGDImNlJa3tLbcrQPKbtIWZr4AQrfmoeYh2LPaGmkv2eNQTQJvU+5Na3vcWd4JxHKFtHs/bA1KX21CPbXK9tU3zUhoilVrdP3PPsnKkZIkSWngHZr1H4UndOyV32d+yVk6fMOp95h+Mgc0p3A++dEIVITb90zzf0J0nqe6wjA2MGliSc1+K+vsyB3lstDeNLxfhixqQ9Uq1AOWmfgRDpxvYfP7VODGjeE9bjuHVoPkb1GYSWCvoaLpUxWUPCTCHYAjANyDrzlUr0P8h0a9lmWSwAjA7A2iFkO/oiwHqNfXYp9gd2jPbns+L0Wvb+1gpj8j2u78bHkZ1FjAo5cAO4puhLcPoG+wbNILJVmUFjXyFGhaz5cf64fqwjy8y36y27SEuk7cX7AG7VuH+4X1iPj1V84VfWReLe493IjNF07yR4uYULtYasvAAvPmY9KPryl78sZ555pixZssSnz61fv156e3vle9/73gFv4Msd4XxVwpWKVJpR36pilkX9Q8nV4PEyqqcRu6X/gzntS8q+tHkwhMEOUn3nPOreAon9djoKf7iHj3ZvUwyGAJ5WK1G6KqZUWne6/YPeRnsxvYcpF4Cr1w8fZc8nMWi/97Xbpnm34OXXVLZWBuIF3ppOn7IXEtNluM4wufT71ZfmZGE3113jl2hSxfCYMkCFbyxTu91fvv7XJM2xAdTbAvwggQYnqV12nVPkMTAN6xKGftkVepzH7Q+6nnQHgP0D9wU25Gzud38lKpr6Xm61fyBjY+7AsVF3EUut7nhjy+0InwWrHc+461fTwdXgcW7/qJuV69V7PIZ0bD1PvVf8rIT9PXRLGAE2DFgmORhMV8Uen2OABbcE/MFEXTq+F0iAgFUG9oPnlMtX4Np76wqddi/QtYrSQLljM03hzreDLk5194MFfX6yczG9re2ka5QYtVOnnPCAwQ2GKLgXSPUvtE89LR/TsiL8LGBAjen2QofdAGVROMWezw/3A++j5H5Mu7mWji+udxrcQ98G6gtcYgVTgej3mCZGIFVsizTIBA4JgumzGTHrQdGCBQvk0UcflX//93+XP/zhD9Lc3Czvf//75d3vfrdEo9Fn30GAAAECBAgQ4EXBoc4+e7nheYmAUqmU/O3f/u2BbsthiWJrRIrxqGcsYHoFhghA6mqpGVbyFPlY3WVD1NK+1UU2LNrl6bXF/20ZITbh4giv4xkbqiKa52kzTOthyoeN9DiNldmG5IALfctP23mybJ/9HUf7KFeQ2lsz+4V5W1NU2Qmd2gmVbLsyC9y0AZgtXP/RI+1xolTFO9Vfp+WRvou0YS4gmSS7hJY9br2pqFMKJbcvlGbpfMp9P7pcT/ZZ/N38FA4Z/dXTonU3fipHpzhH7T1Y9BNM6apBZsKyexAgI4UdYJax2BHX9qhtQtZOYUR0Krmm02hgUVHNfugoW4oG58VTKTifzDLXd9qe0KBMT8vbUCxWdkXFzZ5h02aBUaoR21miZyySEQmF7W/8dAsxOp4xKqH/2WkoZnYYOGcwGSjE2iDaxXT5gFuHnQPQupPMCv29g4nqzJ0LDBGA5xt2EXjeUJgaiI2TeeQ8+1yD4YJY3jPgnmnS7RLWZNFPexGznqCpKmayUf4HQMIKmGcwREAFthF7KzJyBBvgknhcryGuTWqvvRYo2VROYlYg0N6+lBHcnQABAgQIEOCVgmD6bEYEg6KDjKZyTZomlWOA4LqwyEVODYyJRstgHwCkCwNswx8fQQiptv2jYpZtO2zOKRgiFhwjaufPgbatbj+Dr3JsQCRDG+jPimp1D60CM1JRKhMyvoQYIhRM1p/5oosgJSA41dOCJgDlDpCSi+vmrx+dVpzKF0AM3KY1VsEmoD1t25XRU1PJaLr+ezBEfE+rVOoADBHgRfSD7mT6X52c8nu/7oty6roejvUJ9fRntwGYHpQXQTuqMSv6B1hUHE3bCBj7LbXFzPF8MWFlguKDluYcPs5SMMPWjqSh76FYMdiOfKdtV9c6O23PpRuSe6ZOn/e6He3DZWKG4iQsn6zvQaHUcS1siuesLtSlPoAm6sdc0NVrBPUxADuHews2As8NUu+5b7TsJrNVYvUKndPo0vTWTiwiNq6G83FLFvWDqc3NcQ2eu95SZhBsJ4a0/FAMei/LEAFc7oNZ0goxR0hEiakBKPQ7OK9yYmqGCIhp+jyE4tA4TWaikv1Ttwn3JJa219hbUgy4l1Wp3b7bJk89vVjTUIfz9NcLxaxT8gMECBAgQIAAAQ5HBEzRQUaxPSKFeERSe1wENbraZn1keu24tG2HHcKXNIUWERSnsDcru9Ck+o15D7iwt5JE0VCNKIkFwPbQdSCCA6BpQrQPVmF0lTJEGjFy6YQwsSRsz18m07ScpqdmFsiU8KUkKLJGeYOxpW6D1l1UDLTTsh+snUC797/Knnf7ZnscsCGtWnoCET0iysnZfsgiQ6QI4zm/L804xLWGDcDgqywzxFksZSq9wloXpFu3btM2kus9GKQmlGih6DunJRbSC0kLNWC3q8Rox3qrYdLoI2hldELEAoyscQ0HKzF0rO4Gv0uo7qusmUB7YObovkeGEcqCSBP6qFsFkzO2kpihbkuhpbbYTlvRRxLMEbL3oOvBfS21hPxziPueHJhay8Kmpgy2mPDnpKQa+g5sG6JkihqeRlsEFFTzV1D9CrOXzDDhucT5ZKgYMe4R0s6ZaUj1w2Rx6jgbfR5sHzKzvHYSjFjMHjdOJWLGl1lWEAwRAOYJrC3el+hzSbXSiJDmC8j0NTJpuLYNFhR0TfkeZBbaB5dZsUi24nV3hxS1WoOp5vPax2GKWTNFf/3Xfy2//OUvD0ZbAgQIECBAgAAHEYF548yYNVM0MTEh5513nixatEje//73y/ve9z5ZsGCaMD+Ax8BJlg2YLpJMz7eRSkO2CbLUVLOD0ghgfsAQAfF9yhylbGiaWWgZq4LOobdvK2j7yDep1bUr1a8FWBdQ9hyiKXpYmBnirJPis5hKdjwD3xCNLHV3yIDq3qgFJbvVE0eDM9bDcNZaZr5dr8bccUaOcuut26HHmbpd0BRVw/UovBLjc7XXMJKz68wQsd6p7mPk1scX0/715+1PEzunmX9oY2LQdrLRVTba5kwo3MOcmkC27KKG0eroCndxwbTMedR12vTCqC7dAXCvUbYkVLW6mJSaUlZs1/SsCorxgj2Mkj/S8HH0u5SNwls2K3sKLRZ5fkFb5MuskH4tPlpt6Ffsj8PFcLM90Fm5dZgX4hrD6wb9kzU1zcOkCaLsMs+wEBMK/RieN36PQJsDZms681aAy2Ak99l2cd8vdEam/B4MGGfX8nuiecD2WVyv9i3uRGCACCacWZoSZYAKsTz1rFZ9j47q2hTeX6zNY5au7K+lXmvSxOEeo5+FSy/yiCIQWs+IWTNFP/jBD2T37t3yd3/3d/If//EfsnTpUnnjG98o//mf/yml0otc/jdAgAABAgQIEOB54nlpirq7u+Xiiy+Wiy++WB555BH59re/LX/5l38pLS0t8hd/8Rdy0UUXyapVqw50W1+WGFvWJKOppkYfE2IgEPXDj8jrSHTpbf41GmnfoloiFM9MaAkJ1f5ExtwPmCEaW2nZiYYIr93th7Nn2K15bBWFCpphBydozp4rtrolWA+wBr60hUaiXU/C6VuzekiTFOPiqr2U2aGbo0As1hFhe70P6Xa6lHFKL3TnyRE/2Aowe9VJlwPnimNxFhei8PHFJCShS5jcb88VDtKFDm0DMSgtO+w6X6vmARukjBxpj5/vcktmAVJ7pvZsAdAe/I5Zhf0nUDYYeWx1bLL7Q/ZOmko0+PIbY8gkJJ0LSZz4OM177OuNWVl/PeGNQ88k7iNKQ0x+VrjgMvo1WAM4sxeW2p3GtruLBV+vKNy2w9AAaQajshJgmqDhKxO5iPcFiB72yEF7Yv49YdvtGRH9eHwJnZeyZ94/iBknen+g4KrXJMLXSY9b1sLLfO9S+4iqIiYpVESRXhS+ttsjqw5lP8rUJyN0b7kYsi9gq4im1StsRVyS++maEgPMz0+xxX6Pd0frbs089pltTRLPH3pZb6jaqI96Pvs4XPGCss/27t0rd955p9x5550SDoflTW96k2zYsEGOPvpoufbaaw9UGwMECBAgQIAABwK1A/TvMMWsh6mlUkl+8pOfyHe+8x2588475bjjjpNLL71U3vve90prq6MDbr/9dvnwhz8sl1566QFv8MsNxY6aFFrqPahlx9S6kHLKLpu1FpLXP3CSQgj7Ue+bsh26lzocxYT6U9ket+TaSzHOkCKGCHP30ELkuuxxwRCh0CVYBESIdfbELRE1VYk0AUME1Gukuf22bXfhWL6T9DBtHLHb9qPArD+fOapRGnafd220x+14yoXCha6Iae/+M22I3PmQ+yI2XmvwzWGWDF4oHvBYgtaAomYwRECzuu7i3OABFaGMJNYyTBAzxRlPnEGI6BmO18UOt57Q4sK4twBYBOwHNcKYFW3irB3yddn7x2i3OmCPuQsCjc8Eaak8y6e3DuwFmB8UhAUbC9YA3xc73PFSO/k+KZsSt2wnWBtcd5FGXQnuIZ5fXINoQuu1bbHVQvEcFjp1O/L7KmgbsB/oWeBYjecDztq+xpoyrNDopPZy+huxGKSRaqXsV2RZphcow6Obo49CA4UMxFKL7cysFeIaZsmBivk8qVm6xW5309jTKz4+s++Sv166rFDmJor+AlygFgwR0PlUvTNn5lv6Ce73AHux8fM2ukxZaHXfroUbn/0ALz5mPSiaN2+eVKtVefe73y2/+93v5Pjjj2/Y5vzzz5eOjo4D0LyXP5b8LC8d0bAMnOhGP0zhMw2JwRDQqlWefUVmmB7WbGpwodM+gZwOziZsmE7y6cb68sr0soDaLTGdh3RwGOolBvUljcEOPeSYWsHvfCFVopyHjrY/bNldo+/tCwmiW6Ce0q+puG3u/Jv71fBPB0M9v8fvVDSpg0BYFqCKOIo35jtcuzp+706QheSlZGhSGQr7HQYD/GIOsdhW12Ej4AdN+oeXB3pM5/N0XaFNBxU6aEKqvTd91MNkFtv9hE5xo43aQ1Z5nVfBNQY/GJTwHzievuLBEL7H9EF9YGwHQwAKwvqBNQYifA8wENH9Q9iKz9PLkY/tvmh5zN0o3K/ESP2PlEjjH16gGgs1nLM/AyrY7EuNPJIy58DTtxDpl5L8B9buv9BpBdM+9Z9MIWGm2PmMfdFwYVQeeGN/Ca1yHyNTU3/NtZksCEcqfhNMFbunnoSAAJzhB0Md2il0gJ+b604QBVrzNAji9xwGmQBMNQFcb7w3YfYIQTo6AcqUICFERCQ+Yq9pOWHflQ22H2F87pYIjjDlGMtUG6wSDgWC2mczY9aDomuvvVb+7M/+TBKJxLTbdHZ2ytatW19QwwIECBAgQIAABxiBT9GMmPWg6C//8i8PRjsOe4DxyakZGwq6tm0nITEilCRSTu1+im1kLkZTJoiAIEgEOJXXsxMdU0d0jcVF3TLar8ehnuOZH41cQetXmT1BJK3NaWBX9HsITGNUiBUM0ciR9nw6T3BzPPuf7jb7z81z1zecwXlOHQlXtdgo6PSJBfY6Q+zLU1TZOfXrx9eE0515ChQRZFg/56lNGNzxMVncyiL4fLfdDxcT5iK7qQVWdZ7vtsdroWkmsAaFLvsx+kBZRfRsuAk2xZeUWKpsXVpLNYy5z3EdmEWtUZ8pk50DjPmwHY7T+nRY92tFvojcG9hbWscUUGK4Vjc11LZ5o82c3RfuAYu3EzR9wyn9XEbDPycag+La4Fp7wbYWjAXLFaGSLOn5nCJv2wugcCreU/weCHn2k94nJPJPkJVAmaaauIDsxHLHpMOsEdPXAEwsAWbzwNKg/ApMIGHiyO0BE4ztIlR2aHIB25w+4x3PuJcTChNjn/kumpKchi9AsklL/2GsUj4MEDhaBwgQIECAAK8QBNNnMyMYFB1k5OfEJBeP+8gL6HrCRR0RlH6I0hw/AtJp5qkBFvUWOmyBxGwviYApSgZa9tiQsdABc0XVMnD0TOnh/L03qyNmiPUgEBEDrNngqGvg9W6H0T0ukgNDBMQXOMVqaZujEUIlt8OkarWyWlYF5VMANlSLU/mA2IS7T9Ac+TIilUaGB6fA6cv+3k3HtFBUnqJClJlee/OxP0TzDcUuR3U7fcrBEJUX5U07c1vbTLsgQgdYOM1MVBsVJ4ZtRF5ZEC4Fs+R/uFoqj65fJiIizXvtvQD7wX0Mpo9A5xPTJC0ok4TjeuaH+h7Ey2D4IOYHiq1q9qhJDelFIX9PWasCfVRF70lyn2rViB2E8B/XlIW+LOrGHx+Ix2E6imK1PoFBmZtKQZmeXtcpx5baa1u2eu96AdtpTEqZqY4SkwW2pEq2Db4gazO/v5TBaQubdZ9Y0WM7C94HrKtrSAmHfidmrQ0A7B/3vEzP/8QiOu6kr9GvBo9z19Rr61RXVS967T7H84Hnj9+1sA0QEYlnX4Tyo4F544wICsIGCBAgQIAAAQJIwBQdMiTJth4MkQeNvJkBSgxZ2iGScVHt+AoX+oEhQvYFslXyPZqFtVsZJGggdPdcUBEMkW+WrmZ63TKqGp8CsQWVuN1P+9OklaAsi3yX/R7z7UAJupRRtxx/lTvfs456yn2g5TiKSn09smeh+902KzRBVIf9p/bY47AFgS/ZEYemyd2n7FzSaHW4ZTRTZyIasmunyVQCO9CMVHcq8Aod1tAaZevaXZvatFgt7gmnyBc0w65Nrz0zLeUUZSTut4IusBo4XiRrT8AXA9XtmC1BxDz8Jza//N9ffaOIiHx+x1tEpM4QAdnVlqFp2mAzKdMr7LPS9TCnfdt25HtVq5RXVoZNHfW6Nw9NryMREckQyxqdmGSuqtfC2xpw1iWYE0q9B8PhM++073A2ZarfnfPoSu0DHfp7vRQNzIl+XtZ+i0KorLtiNGQM6msG2aJgtHz5i2kK3AL83gIzA0aINZBFKsfBNhMR/3tdh/YnBDPIqRkhgA1N8TscJ9NneYFGxrvmNWWs9+KMQVhSANM9p7BzqETrxqCHEsH02cwIBkUBAgQIECDAKwVB9tmMCAZFBxm1JvxTbQ4iuuYGXsGgedBGz+GsZYpGj7AhIEdIYIiAIpnEIZsKhWVLLWpWiMhFgyCOfnK99mHgCBn+RSgm2rpzZoYI7APm3TPz9PMOLWra4dYXL7TioyIZIuXTqjHajOwZ93mCMqBSA+w1YiPFqEai0E6wLwrrdkrJxgw5tv1HFhkwsZg8YxZSBuIoDPjstRtf4dYTA6Qjm0PaI0eaSaUZmgdE27rdmLvJDXoWYoZgngiWDaVmEDEPnWB38MGzfiEiIjdvPFVE6gwRsGGPEzWFexw9Uc7ZMHnVEpfa2N9J1Nle1wAwRDHyyEFGWKndMkT187K7Q+YhIn1kD0WyyDB020HPhutQC9U/A3NSIpYqQYwPNDUN2hwqM8PGkZl57lzjmpHH+jJf6FWZTs5IhH5susLT1aj2CSpRA5bSF8fV3/tyIii4rExXUT2nwFQl9+s1JO8saIMKqsVr8GFqw1KzxWDAWQRrydlm9ve4bsw8sXkst4sL28JfCeWTaqGQJEj3CAaWtXKp3Xa9SN3YG/TiWMsLEhufRsx1EBEwRTMj0BQFCBAgQIAAAQJIwBQddFQjIZOZwTbyAJgkZE8IzfVXkppNssyFcvA3QQSETAgwQYlBN96dWOrWU7vs/oqcnUGRl3feJRaENQOp7fZ7+LAgkpxuzr/ebvt7ZImFNCOp5V1OBPS5FT8221294w1mvfO3Vh8z9w9UOJayWqLqB4Xzg7Ntqc1dZzBEEwtt+6G5wHlMZolSFHVyJh2iK3hTpRfYmAQMkd++4nYQhZ8OGChyvI5kLBsBhsi3I0EeLePkCpwmZgWO1XBRp+yz4Ve5/b3h1D+IiMgiDes/0unWP3K6W/7Jxv9hfldKU/HesG3n0zuccK21w3X+0C86REQEATcYsNgmtxxdQZlNulrW80/tIk0Q9GVtU8eC0L3k9YBgcyZnbJEkRtq32muLe5KeZ93JfT/3qYlukRiyOwSTgVIQcP/Gc+Q9r7R7o09Bg8daP2SV+b6R0Guze2pWEExomLJHOdsLztfIbk1oH4WWCe8JMNLM4JRI7wZmCID2CKU0wppV57NyKdsNrB+uDztnM0M0vsQ9A6k96jVEDty1ED28k8BaNC4Ai2sFzR3eLWm9Nvnlh54dMgiyz2ZEMCgKECBAgAABXiEIps9mRjAoOsgIVd2/qPrcVEhL5N13NZqI5FyYAc0RnKnBTLADbkrdURGJMZPT8ZRGnOpoDb0La2PYU4c9c2rEjMA3BR497NSL9mQWqtPukPqHkDfPeLc7cNfDbkcckW7f5sRJf7Xt/yciIsesspTXpt9oJtMSex4tOr8PhghFSFEDKpzH0t2XoTU2dPU1lPS0WJORHKifL6JhoB7N2t/kqN5UVVdbtrr/gGkafJUW2yR/E/8i0iUykoBKki5eVbNmRqloZo4yhFAzDM7aVMgSfS+9zO3//NPWm++TSmF9Z8ylBP54z3Hm+8Gfu8J0SDAE8zR6snZGPbGOh8D2uSXYz/Flrr2drx5wX7/aLYqbVDimjFpsjFg90kz52m9UkwrXk/VxJcrcmqxPAxMBLU9Taeq/Et6xXb+OkZYImj6BbolILGY4wMTU90/nrJfU1yKkPsgFqTkbLkm1F/FewnsHBVXBaHc+razn/KYp28+MdKHdLZHVFinYdkLX5WuxkR6vQA78rKWCvxhYvyicvZX5AUMEDJykz94eHN+2P1KoNWTMAWCrkCGHjDawe7h2fl+6747fuU6RXiQSSdOLN8CLjmBQdJARLtUk3FTzZSTwEIcL7mHnETcKIOKlgJcgXl4pNYXzL2G8bPVlMHQsvSTIiA9/7BuKa+IPufYIFgliEIQlp3tn+vDHQdcXksD6BPu2Kaft29qXBaEeGU7a0ciTv1tq1jEtgZc6SkWMrHY7wiAQf4wSQ3Z/mQXuBYU/iDhvLljb87AdJaYXTioDwMUvvd2Bu2kwjAT4FcvTbvN/7do4vBrug25RItuChh1VWWBMUwC0Pf8BwDQR7iGbNqa2u/NYv8rNY/2PxetEROQr615n97vLOm6maD8jr0LFVre/ZcvcX+LRh9zgiYuNYtA2fp8byef7qKTEENlXaMo9yorweSKZAIVu8QcxnIdQ261j4IvK85PbFRu1I66MltFAGn+Fng9fwkT7WUOkret+YKq3HtPqSMGHZUSuW49D5T+A1m1ifodCsXiP4A84Pp8OuHYYDGF/FZhG6qAM031lMlsdX2rT2X1BWxTf1YAC98Sn/usS1x7Xg80g2cogmuaR8NQBwPhyt2SLDjYmnZwoUmin6W4Vx/ui0jp4SoyojYearZbIvgGY82hVOvIvQsmPas39e6H7OEwRDIoCBAgQIECAVwoCTdGMCAZFBxnleEjKiZCPJhDpVCOIPl2kUGi3tC4iP/wOUQlj7x/ZdVjLQ0DMjM60nVk/RyQFQzxEnEBaxa4oxcBTDmCiTjrDmSz+fsciERFZPW/AbLdp3RKz3lBgViPK1O/dCSCqr0Y0Yp2wEWBSC9XiOoHuh5AV5VLS89Wqv4CIm1LySfjd/ZhliMI5FyK3P+2WE8uaxVM5SDtuxxI0un6t0TVPNSIlvG0HMUQKZogapljAhhUh1hfTnummABsKV4It1N+znULovbakylfuOd+s87ScZ2x0f9l5dn9giIDRo1yE3fM7d4Lp+W5/k6cqRUSiGXsBmNHiKVqwf3g20JcApNVDrJuigp1gZSux+rRRVMszpDV1HgwOngfckzrjq23Vz5nh8NNoCi5NklMrC0zHgVGCKB6WFjg+pnCLyjSzSSvKjQBsXeGngHG+xN7xtB6zKHh+WzURA9cH97R1tz6XnhGzS576hPAZ95qfAUyPgxmCjADtzPRQmaWNtv1gurn9mb6mae0TfNt01ygUy6JysIRA6y63czbKDfDSQDAoChAgQIAAAV4hCMkBEFofkJa8NBEMig4yRo5okpFUk7Rvtr0QIj2Uj0BBUhZ/QjjIoj1EqCIaIXW6EDS0wEUh6UHHsCS3uf23b7PRL1J8YXyHyLRtp2630y3Gl2gBVY10i50q7FZGiB+uV5/0tFn/0yPXm/X//H+nmfX4iKbaUtCU77Drba+yDmpjj7vJfwhHOXqDiDk7F2ZwdP1UGMpajL7fWtohMmHFRZnF7kLg+k3WC4GV82nTJBeoKCMxpnoQsFvAvpPVQDNBUXmBdBEkgvfHxfFIkD2dfsW3ixijrieYydLj/0w1PcrEhCn1n00TIVQutbrtuo+x93C84A48vK1DROoMEcCGhflOa0PBGo2RYzSdvV/ZArq3WS2mmgBpqc1t2WNvFIt3q5PWUbIBUT5YsJDqufK9bl9NeWjs7L7AnECLUyFROxhaXz6Eitr6e6y7hakizpWZ4aKylqm9qv0ZdDuY+6ilYpBW7p8L63DhmRcwUhVKiU/up5IpfVaH1aR6m7adEFJr4gWE2MT8sEUIszUswAYT1KwFaiNZe37xCVzv0JTtB/MNTGaiWOcEth/sFCe3sFlrnPRnpZRra1Opkb09JAgcrWdEYN4YIECAAAECBAggAVN00NHzUEni8ZKf20aqKDCx0IV4iFy4QGlebfGbB120UU5q4VeN1hP7tUTBdhd1p5e60HPOerc/RI4oFIkIE5EqtATDx7v9t+1E6iqlvjYjM0ejcCoAe8YpG0VEpD9nBTC/fepks479A6WUWZXMcpui+rYT/iAiIg/sWyoidYYIQKSV7bGMV5gyXTnLhi36ESmOrnTXsUXn/SMoP7LYNjTb08gQeT0HUr6hCyvY7YDMArteC8/MvLB5I+/PM1RITKSQh3UbaCczVshsArw9gaKcsu0E2+f1LhT91vQ6DD/mUujb1lgBS/sm1xA+Hy6hwbYRKCWDArDVZncBMurSEE5rRK5aq4SVtUnrrqnZU99uvU4+K61Y8ynhzPDg3iR36vOppVdqqoFDFiiuZYSyJsGqwfIC/RMMCXRqMAQMT2MBkJ1HrAVni9aQJWazusAUQb81sQQ2B3b/dc0P9oN7DybJ3QOk9uO950upKBELU8bGory203Y8U9b9K/OURYkWt56nFP36c+mWbOLIeh9cF1wnZk0NK0tzRhnKKk0OTG3kCWZount2qPFi+xR98YtflE996lNy8cUXy3XXXSciIrVaTT772c/KN7/5TRkZGZFTTz1Vvva1r8maNWv87wqFglx++eVy2223SS6Xk7PPPlu+/vWvy8KFC1/YyRACpihAgAABAgR4paB2gP49Dzz00EPyzW9+U447znqZXX311XLNNdfIV7/6VXnooYekr69Pzj33XJmYqJu1XXLJJfKjH/1Ibr/9drn//vslnU7LW97yFqlUKnyYF4SAKTrIgKgtkrXhc7HThYiY8wegQYDfR/OgRlrKGCX3uw7QvkU1DaSbqEa1LIBGQGFvjgZ/JLe/0aN0PlwZn+iI29+g9tXkXrdML1bvDSpCGh+36/3HWIZo34Rbb+tyIXF6S4f5HgxR/gir4TluiTMOWZpybMJPN60x30eVPYG/SJEys6DbwWPCJpRgU0rkwyTKFIEhyndHdOkOABO6CkX2Io3RJWuJsiutLinaTzQD2lqcWr4IFqLMzAllKD2bdqiheC9YBBQBpWs1sZzKlijrkdxtd8SeVhUt5gudDXs+le+ybF+Evsc1xvlBx4Nonk0VIasLFbWYJ11HZJ2BlWnRzCdkmwF8/ZABBf+ZXHeTZ3iE7jFnb7VvpewmYnCSg1OXhEHpl9iE+dqXhgHwPgDiWuSWs6rSqu1p3e2+B1ON9wGy2jybqcxP6w7SOIr93h93bJrSNp7NVJ8i9UXC+6fUbLP2gO7HbWeoJCxDBO1QsR0aKfd7MEBcWqdAJV2YjcQzgcLXYDlRiHdyVmyFdFasYwQbBrTumvqPNRijTG9Y8rlDz0uEajUJvUBN0PP5fTqdlve+973yrW99Sz7/+c/7z2u1mlx33XXy6U9/Wt75zneKiMjNN98svb29cuutt8qFF14oY2NjcuONN8r3vvc9Oeecc0RE5JZbbpFFixbJ3XffLeeff/6Ux3w+CJiiAAECBAgQIMCsMT4+bv4VCtPXdfvIRz4ib37zm/2gBti6dav09/fLeeed5z+Lx+Ny1llnyQMPPCAiIuvWrZNSqWS2mT9/vhxzzDF+mwOFgCk6yKiF3Dz8xBJLJ0wsbvLfi9QdcDEPDS2Bz3whh1doAxD5wZeHI8rEoGWodp/lwuWIZmMUo6h9MHX74Qfk20dR/fBr3AfZYSs8ye93tEaTltNo3WpDOGTpAMcssday/2/nKtfOLe7ADeyLlilpiO6pffy7MmmYSu1ugxHvLeSoN2Q+cZkC/L7Uplk1xZAUF9iDfvK0O8z6/x2wVHF1ud3nxkeWiohIJI2MJdvGwlzXxrD683DGSp0NdEuvGaKnm6N+ZobGjqDIVpkhKWu2HDFE2QV2+1CZsuTIUTt6lIbfe9zFBkuKJSJxaJzAEOE84C+U1wzL8Jj7ohZlSsyughli4DpCH4PMpMa+Vo8dWUvUsYWK7Ra1TI9qYNB2ZGdBnwRfH2gIwaC0b3HXlPs1NDQAs37QJOJ3OA50U2BssGR2s4lKWbBzdLNnttx2yO7KafYsMqwqMfRRfT7K2J9qsRI2c6vu8G+Pn+1znZkZIGSzgSHC5/D4wnXIki8RtEUoPAstErSZrIObfJ85i7GRIQIbJrqsM4uTt8e9zvS+yP5EVWlgOp/XPkRk0aJF5uPPfOYzcuWVVzZsfvvtt8vDDz8sDz30UMN3/f3uge/t7TWf9/b2yvbt2/02sVhMOjs7G7bB7w8UgkHRQUaluUnK8aZ6Cvz8qV+8MLrzLxF9aaGaNFLgyyPuQYPtPqaDuja6PxTxYfeXDtNoQK7H/cUpdts/ZE3t7g96SdxbAH/4YBgIoSVoZ4ha89p/Y7v17XGkOy4GQ0DHkzr40v1lFmtK8EqbA7ttxL2dqvqWKz1u5xW5DljDS53+wPuBBWh8bVaxnVL3tYJ8y9O2LAhedBDzQiDKvy+31KRpzL01P/GGH5vv9pXcOZzS6R7smzecKiIiR85zKlQMhqI0FYm2Y+AYzsxM6PJLG+BK6jwoysxzy4ZBRYTWdRoMU56lDteH5q2wKfYDj9uCen4QpMiOayc6wV3kxGbXd3Av0c5cr20/gMEQgOk8b05J02Ztm23fw1QNri8GAjD2xLMEGwe0JzJphrd1p31+WDyb6bGv1KQmSOCPd3xEn9MRnIOm8nfZ2n/YvqnkPoCAGVYAuOdsAok/yBjUsLDY9wE9Dvo7mx0CKFWDckOxCfviat3hHrxKXKe1MM2sDx4G6DzthrI7EZ0Ww3ReWUXJfmCvP2vfbjuDN5dEu7VsUiVqp+V4ipSF2XGd9kztUzPWhVprctIzxQkL3qKCvsfzgYEXTD+59EhTuW5XEH8RynwcyOmznTt3Sltbff48Ho83bLtz5065+OKL5c4775REgh1jJ+2TSrLUarWGzxjPZZvZIpg+CxAgQIAAAQLMGm1tbebfVIOidevWycDAgJx00kkSiUQkEonIfffdJ1/5ylckEol4hogZn4GBAf9dX1+fFItFGRkZmXabA4WAKTrI2H98WIZbwlJJqamYTkchUkQKLsBRCYTDmCIBQ5Qc4Lxntyh0uk5ZJQO69EJNC00r7bzAhb+hvW7k3g1GRwf9zfuV6u2zUXRiv0Z02i4IEavPuHA8qeQAhKcshI4NuxMc+52jYGLHj5rvGxgiuj5gD1h0nByl9hB7wqZ6lTYq6Hm8FXxHt9qIxrMuPEU06Tb8zx//ifkOjERlpXPiCz/tGv300y5nvEMNMjOaUcrlKlo3284AMahvExn5cYkWMB2FbhLDpty5h0fULDJFqcQp1/DqiFarH7ftaFGR/8QW9zLKUfkO9OH8NteZfPX6ZZYhApqVJU0v0ch6zDI16NvJrfamIu0d4HuTXuyWHU/pfqlUBQTUVWVVwBDVN3ALsKStO+p9hstagLHAPQFDBIAhqiTUJqBMBn8jriOlF9hzrIUtvZcccPvF8xXJuHUUKPZmknpuDf2ViAnsD8D0FvbjhdC6ROp+ooRUe9ve+JjdX3qeTnHqaeAe4DmFOBnTW7iuRS17klAmrNDmdgDGzF9v9PEOt0OUS2EmHqaU6JuQJ4AhqrefpvF66tfPv5vBTPqiuG7Zumvq/oWpwwKxVMWWJimGXwRe4gVkj5l9PEecffbZ8thjj5nP3v/+98uRRx4pn/jEJ2T58uXS19cnd911l5xwwgkiIlIsFuW+++6Tq666SkRETjrpJIlGo3LXXXfJBRdcICIie/fulccff1yuvvrqF3gyFsGgKECAAAECBHil4BA7Wre2tsoxxxxjPkulUtLd3e0/v+SSS2Tt2rWyatUqWbVqlaxdu1aSyaS85z3vERGR9vZ2+cAHPiCXXXaZdHd3S1dXl1x++eVy7LHHNgi3XyiCQdFBRiVZlUqqKs39KrpTJgVRByIyRE5NVbtMkEg0rnP8SFVNDLroe/A4m2vq9w9DPUSwWgIhtsltjzRlFiIWNOUVmgNOgwZzlNQon5kbMCs4XxgVFhZZXUj5acsMJYgZ8ueDlOXjXIOQ1p60+mwvCMfxs4s0FVl1MxVdQo/SFJ86bbb9JFv8dHS9rSLa/kz9vuAaDR07tVAaDBHQogwRShUkRt06dCC49lzGgpmkEDUd9xhRMDNLYIiASjPYM+0sc+kAUf2+ZKNZCEr9ZqSJArunkipp3odlzLQTfQYMEYBSMkBigBgzEul3Lneddvwxl+rfIFJWPUzXo65h6aWuMyOCB3rX2RObWGzZQhgUitTFs0iNj2ZJfKuft21VzU3CMj7lZrue66aC0FQ6wpu64mNo4GEMSKav2blUoJX6SsseCKNV+6OHh/YH1yySs+tAsc22t15A1rUjPqImjmohAqZsbLmdXsHxs3PVwFP7BITU9XJHal5LAnYItL1hKiwH9D0AjRUSUpgBy3epFgraK+o7k9PwvRYN5BIYWn3+wW7BaBf7BngWgJ/fVzKuuOIKyeVyctFFF3nzxjvvvFNaW+tTDddee61EIhG54IILvHnjTTfdJOHwgRWuB4OiAAECBAgQ4BWCF9vRWkTk3nvvtfsLheTKK6+cMnMNSCQScv3118v111//wg7+LAgGRQcZHRuaRJqbfEYNMzgAoo84FS5FdosvNUDZCumFcfP7PHzxdDOUBWCjPwCprIjUOEL1acuU6g4TO0SIzVRCgS3xYaAXG3UahOwCnn9XlqTbbo9oKnOUa4DPdlNkFtV0e80W6yP9TMym89Si9vtQE5nHddjKk0vbHQuxYcIyRUC4WI+u27UWLqJdZK7xtUBUi5RdZhmgH8N2bI6Ie+jLUND2YIjK7ZQyr2UvPEtWtKFr86OWbWT2D/ccWTZh6hOs/2rdrpqKxNQ6D6Tiw4qg1OY2iE7YdpVIlwZmCBjepTvqdJ216xHNINK3W++DNguuZatNZay02Iex1Ob6aELTzPMd9UiUWUA+J9ayDR1j2aY2yqIqpVD+gtiyFjC1liHKd+pzqk3yDJDXuejzkLb7i9K6t/ZQoAwOzg99C+V++Dw9k6No3W7TP8GEgSGqRtSaYwe0VShAq7o2KhGD9x0yBFFAFu/DWoMthbZHGW3WBjUPuR+AaYL2COD75t/PtUaGFiwhMu2Y0cWAoXnI3Ry8WxuOFRWpvsDBxfNCUBB2RgTZZwECBAgQIECAABIwRQcd+bkiuUmGgTm1ckFUDPT8zkYumEMHQhohIassS34o8DMS0pVwxIhsCkR6Q0fZ/VTJnA4+Hr7sAObRyWwNDBNrpIDMyU6vUZ1wGzS1UumLhIvkmn7vaIHCcVbfEd5jI25oF/z+tZAsSj0IFVdN9bkLks/bkLCrLWPWB4ctLTG8wdEuCByT++x+S8lQg0bGt7lgl7gnzAyx1mA6ZghsXd1bRpd0z6DhmVACJUT+Pex7lBgkTVDaLut6E3t8+PdgifOAjiPfQR4xRLYx+xAfJh0MtBp6HmAx0o84OtF7Vy23DBHADBFHtyHNAIuMur6WW2jvPRiiycaG3vxQn0No7Uot9rkCEsT85uaQ/sF7IanmLW4ZEQZ7TUXT9iLy/sEcgdWAdjCnTBGyQ3FPG4oIU5FjX2BW2T+U+QCTg8KteE+MrnCdJqSUCDRGYKrwfqrgWSEmLjauDI8yT9g/Mrtwfnj/IJsMvkfsuxQpwBdJC8p28gnb1Wq0zuywCSjYJCw7nyLNnt5L6EAnFiorqK+2UOXF0RWFqo3P3vPZx+GKYFAUIECAAAECvFIQTJ/NiGBQdJBRTloGIaEmwGB8Op/QL0h3Aq2Bn0snLRG0PGAVmC3wGgR1X60X91Tfjw4b0QGVZvd9y3aNvPptKIMsGURi3r9HN/NFPNU+v/VUl8UFnmfOQsfMbNzu7JQTKcsYLXvDVvf9+iW6f523z9iGVhIaISa1LALpY3oWW93J0Jit71Hd71o0qEvvhtzrQtamvVZngvNiHcHkrLwqsWRhctl+NlYBLERUySswJSh3wRqexLDNvEHWGtqR2gaXYfs71khELVnmgf2iRAUAxiY3x3q/AHBtB0r20tfdinUJFhIROc4bTte4jkUtNJvcrcWRB5R9GHANTe1xP4wPaihOpStqccoAa3MHKCfd59le+zr0rtLYXbR+Xs3DFV3qOVIZDmZ64e/jH7gGRkKfc2VgK+QzhuermQqweuYoZH/P7YTPT3q+vQYofFrQPlKjgqmsl0kMo7CsW0cB2/QC97z4DMgJe3ywJiW9DjhfMF3ok4lh1SApk4NssiYtn4Ilo8kzXXodKtAaui8qyYi2E35O+hwrQwe2M9etz5B2hdh4vV+mFyHFTo9JuqbB46bWDkEfmTvJXsxKNiqhcaLGDgUOsU/Ryw2BpihAgAABAgQIEEACpuiQoBaqM0RzH7ZamfQiF61y9FzW7AzUz0HWBNgAAAVKMa+NOX+s+wisn3Qkw7aN9ewLaAXgxqpZXd0UCev3rdvdAQrdlqoaeZVbntu73Z2nio1+8cjRZrt8xgpxNv/BuT1LNzKR7PkWuqgAZ5o0UZ2WTgmr4VN5wrYvXLFO3SheGiYnaziOc9YRtGEiUxRoJSaG2bhcn7t22fn2867HlfkJWcYnqgFmhLVIpC8Jk+YoQ/uP0z1H/Smv/6LoD9cG9z7Vr67DbYjebR8pdrjtObNyOiYKQJ/H8aAhYobIn8cYjuOO27bV3vN8j+1TRdUGtW5xDak0W10ZPHfYsZiLqMbSNV/7K0QsFGtX6syQBZgcX48OtbtIQxTNEDtH2hN/zaA3K2F7dy5gaAAUYMU954woLmyLa5uep9d4u2WI2BeJNSadT7n3XDmJ7DJ7PN+XwXARAxTOqy8RtES6BHuXGCqa7+FDhCWnjLMvlGdztetwbTa8D/Pdjdc+uc/uA/cCmbMNbvr6eWib65flnheBHZqEA1n77HBEMCg6yKiknHlj2zoIpUHVk50/9MFFK4zMLYFg0H0f1T8I+ANUauV0bvtwNw8pPV1ExWZ9qVOfhr2+/0PnXxL2+PgdXtr5OUpH60t0+Ci3nzVHuWmwLWn3Rtiwzf2F7v2VfTkVVIxb0cuBsiYw7MsfrQLttNugKUcvNxoE1Yru+327OkVEJDKm22t6ejhjfx8bgUBUpgTSwePHu9Fm6Xduv5OnKwtd9mIm95LAmEwUZYEOjPe6uYqux+3XvlCpYKpu6j9AWKKvwCDT74dFq9ZtoC7g1u18qj2m/Wgwhz6BPyQ8QMc0gd+9XmouLgyMHqNTUChCrNOLZS3BgrFmcof7HsaiXJqiGrcDEEw9+3UtCjp8jDsAzg8DGTYm9FMwXvxbv/71aS0dCLba54qnvTA9gz+g/Nz5ArDhqafJ2WASiRLt2yrmHACU/8GgrUKDgfoAD4M79zn+kKP9GKS17LGp8VKx7Ur16yBPhdSYYoStAdBgRqntRpmSsk4/VrRsCO4hRMpcVqXW5B5AXLf4KOr/6PtLp0RzvQmznT8+Deq8+aO+B4o99UinfUNEz9GtQ1yOd15ZlyhKjecJInZ+DlNP1a9NMjtNNeeDiUBTNCOC6bMAAQIECBAgQAAJmKKDjt4HaxKP1ySadhGRL0ioTAuEyzFKrY2NqyBahdIcZSeGdLvRqVmJlh16HGUZoll7fER6XuyqEZkXjFIggGgHUXNmnms30q/9dhpg7fvuUvP5SqXTC12uHYgEIRZGuiqEo52vdRy1zqTI3gxcKR1at+p5b3WhXXLAtX/P6zXNWhkiCLWjQ66rhymaQ4Toizva2TNJrLGC7ePetMmsbxzskdIzHe63bW4nEypa7exTtekGpzqvLXHzYLHH7fTOuM4Ytm/We5WxS0ahzcYyoydZtizR5k6ytsGFqkjRx7Vls0cWQiN1Hn0DBVULlGLP6cQ8bYD9Q6yb7XPL4hzti2qkmV2qIlpi8cAQ+fV9VGxURcNtO911L1DpCTBEYDlY+B7JIZ1cDf2077O1QqVaP+8wMUFgGHNxTHe7daS+M3PEbn1lYignFthz4FT5lr2WpQDT4qeNaFqvwYagQu3BLBaY6KJNsfcMEawD9D2C4xa6dHosaoXLsDMAC4f3EBizirKbpZT7AEybF5wXweLpe0qbje2AaFbfWy06zUYC6pBtviSGrSUAkgUwZQv5QUSn5RMjNZ+oAKNbfkfiWE0lYgmpOHVDWZ5y/bofUtTEi8Vf0D4OUwSDogABAgQIEOAVgkBTNDOCQdFBRmy0LPFYWUqtEHNqNKELCCLDOWh03C1BKj1KJ3CUC8EmNAIQ9yK9GcwT5uLZTBEmat5mHxGaRrp5Taln0XCuh+fmKTpSVgDniXZAUA5AY4A01+bXDprvyxXX7tG0C9sTu+wJgBkCho9U5mmPLRjJ7AgD0VuZ2JKiiiF7m+0F2DjYY9YntreLaJHZ8IQ7aNsqF26ODulO+9zBO+9z5wLhJbNSSAfGsm0H60twj+y9B8AQVTapmEGvAUThKETLxX19GQ1ki9OkutcS6aVgRoiF2p51Q9kRS/JJKOWubfMmdwHyPVQAdq+yfBTNcjo57mmmB5oPa+TnLRL0xPA92ALWHuFFD2E4X9/p+pBIo26Ef8tCagAsA2tm2H4B9gNAfNhSDNWY/f34EmXRtim7kWJNjk3hDxGDFc1ZpgsMEYTRsC8AgwOdDZgenL/XvbXaVPfmQWV0qbyJT+jQ/YKdQXu9NknvFRgfaCHB/gHYPlzA+5AF326J+4f2oIuHizV/7XNa4BXboDQKgHfO5BIhrm26CiNMEE0xkeqLq7kOMAWCQVGAAAECBAjwSkFNDoDQ+oC05CWJl/Wg6Morr5TPfvaz5rPe3l7p7++f9jf33XeffPzjH5cNGzbI/Pnz5YorrpAPfehD/vsNGzbIP/3TP8m6detk+/btcu2118oll1zyvNtYbglLaVI6KkcyiT2O2sktcOE6IipOA0V0jsiGdSfNAy7kACOVXmBvLeauEeWMLaMyITAWxBw8tEeqr+CinP53mv2Gop7Jfvu0QP/i59VREkNN4rKLVKNQdu3uTtn87bF1TuCCKAwR3ehKzVZRtqVCZT8SQzbl3qd5c7q8AmaQwKLFlrnqH7YOiOVhLV8gdd0SkF3vaLaOvW4d58xZaLgmCedv6Yv3AtA7AMyc4Ny6H3CUyMRipUagk6IotEj3sESmjlxCouNpayQInQcX24RuIzvXtRfsA5gVb+twlLv4iU1UJHWzPc8yMWgoi+DNJJUlRNo7sxzoK/FRZY6I2Sq2Tl0KA8D5sqZrcgZVnEwU0Tb8tnm/ZXK4LA8zSWwi6LPWVCvUPGj3By1Pff9Tl6sYX2ILrqb22mwyXKu8XpPWPWVzHsDIamtp0b6N2kMMTFHfJxFi18Aigrny5rPehFL355I8ZUhT+uPKmINh8oy7AtlrsXHLaOE96u+dLlCCBn0rrhpOFOLFs9Kyp9agBfKlWLxlBJ1jCW3SfcMKA+zXdug3Q5LKvwijiyD7bEa87LPP1qxZI3v37vX/HnvssWm33bp1q7zpTW+SP/qjP5JHHnlEPvWpT8nHPvYx+cEPfuC3yWazsnz5cvmXf/kX6evrOxSnECBAgAABAgR4CeBlzRSJiEQikec8eLnhhhtk8eLFct1114mIyFFHHSW///3v5Utf+pL86Z/+qYiInHLKKXLKKaeIiMjf//3fv+D2NRVrEp7ENYIZAgZP7jTrI692E9Dtj3hBhAWYHNjfK7WTnxM13yOrhbUyKWUvwDghUkPxT4AZFR/16/58SYYyIlm3XugMTW5GHTr87nmzE7Zs3jTftDcZc+HV1k2u/EdkwoWOVNfVM0yAL65IbE3BXtZ6aYrllj6Zt8CFcfuecMKbN5+5znz/TNrRO+AewRBFR+uRMa4N9BLJvfbYKJORVEZo3yk2FkkRuwZGBkwRomMArASYkonFbh1Gk4DXxqBwJWVVMTMVp+KlYKY8a0GMC3vusBYp22fvSfwZeMa49eYBt4T2p0TtY2YMDBHYhsSoRtypkFkic9P/bv90JTdwXOhU3MJnVIK1mJR1B8YVBpJsoJkY0WwwZSa4/EeDTon8clhjk9FrmOlzF791NxWA7UaBVLcONhLsRKORpv09mzim5xHDXOFriWtuC6rGJqbOUETGIfpG63bbHp+Npn2gQs83G39yAVdcP8/GdqoeTZtdZy01my1J15+0XhVLiElubv14YB4B9EP25wIr7bM+fUFZ1V2ByRyvSrzwIlRWrUqDB9nz2sdhipc9U/T000/L/PnzZdmyZfLnf/7nsmXLlmm3ffDBB+W8884zn51//vny+9//Xkql5694KxQKMj4+bv4FCBAgQIAALzUg++yF/jtc8bJmik499VT57ne/K6tXr5Z9+/bJ5z//eTn99NNlw4YN0t3d3bB9f3+/9Pb2ms96e3ulXC7L4OCgzJs373m144tf/GKDtonR/Phusz78x0vM+uCZblDW2ukonOrr3TKz2YUdnU8oA6PD2KJGxa3q0QJX34ETKENHGZ8oZYUBYAfY1Rfz4RPL1PmWmJj2p5FlIvq9LvX7BRdsNdv/+8ofmfW7FjtmZl3GmfQ8NOTojhVH7hERkd33LnLtpUjcO/DGVRMRstqhUnvN/K5ztTN0msg6lmJZ56iIiOTLLnz7ypG3uw2PdIuHcq49/7XvOBER2fSIvU8RcgyfnJEUV+8oRJttO21kCMD3x+9jmpIJYEZ8toqeU66LmCZ3ybwujKNr6DqwZMYntWdqJspncdH2iJ7BvnF07bPkSE8CDxiAs+DAGNWLg9rvx5e643Y8Yxki324wO+q03b7d6l4imbIu3Xp6oaVRmJmCU7jPupt0H5GRx/5iABii6XRhYC5QYLV+TLd9dq7VwAANvkeKuj+Z7UtwvoY2iZkhZlSb90/NXGE5tEadrKnPocgxFx/m9iOr1Wd75ex2TZzhh99Di6jvpSqeCco07Hhq6vuB7D5oEMEmIuu2oOwOe3Y1lScXv7XvYGSVITvNF3RO138r4ryO3DEtY1mJN/k+e0gRaIpmxMt6UPTGN77R///YY4+V0047TVasWCE333yzfPzjH5/yN6EQvUj15vLns8EnP/lJc7zx8XFZtMj9UW/eMSbFSEnyR7npIpT32HcuF9OyLysMhnw76U61bre/H1+s0036oOIPGWzrRQdFeX4J6h9y/C692H6PKvR4ejvXayquvhhgvljUP0SrL3jK/P77y+8REZEbxlaKiMjxCcefL4i4v5A3jb5WRER2/nqR+V0Ef8+QMk9TK2gPPq9FrEtbatmY2fzPVj1i1t/W7tb7y+4tvrPkBtFfWneuO28tFxLN2Rdh49RY/eWQ6bV9aHSF/YOIewKxK/5AeoO7NAmGicf1tgk0uGGRLsT6AE8nRalsCKYkfEmFDntgCI59EgB1Xa791pDyn7JL/AGDISnfW4j66yUwRNvllvtObjLfA21EEqN+IJDpcQ9D3XZi5me+idLiJwuveTCEQYdfRu2+G6YCaUoP0z5A89DUUzVcDgjbRbL2eMlBu3/cU0wXZclaAwNWDITRPvyhR/keYHwlDezp+M9WDxADd38+mJ7HoIXq8kV1ShMDe25/SO9peoHbYQsG+tpMiKMBTqfnQZoPREL1tvt6koX6dyIi+W7aF/UbJNdUtD8i+YTF+gFeGnhZD4oYqVRKjj32WHn66aen/L6vr68hM21gYEAikciUzNJzRTwel3h8muJZAQIECBAgwEsFAVM0Iw6rQVGhUJCNGzfKH/3RH035/WmnnSb/9V//ZT6788475eSTT5Zo9OAU5ssvaJN8rB46j67WVNB97njlNi3YmlHa/BnHEKV22eijZbcNvfLd9tYxqxDO2nUfvejYDREmIltEVIiKcvNcpBjSQrJd610kiwgUYtXRI2w7V7c4deHqZjf4XHXvX5vv+7otg7P/IafERCQN6pkFouWkFb/yedXUQLHa7q5TX5vVdf16/3IRETl5jhN6/90T73bt7HLq5wc3LzPbx3aj4KRbRyQN+r11Z/2lgKgV4k6ci2frdIlrm++0jA+qz3NqOKJ2TJnw1AnuOcSjPNXoI1z9HZggIE+MUKZPo+zdiGzt8cBksZiWp0zYlNIzPvDlw1QnHouQ/Z5L2iCKb1ahOptBQlQMJilBgvFCG7EE3fZ+McAAoA9OZtqQ4u1NA5V58VOJdM2S+9zJp/a4m1Hodv2qiQS20TRfU90/jDDp9ZRZBBG+ZR2BwWPs+6FKU5zJPXa93q/dCaKMDwB7hqFXufXEPmKaSEaZVZUCm8r69uj54Nrm5tp7AoE2ptOQFIC+k9xnp6zweSxjTWtxL9FHfWFr3Z6NFj2bOyn5ASJySHDRb73xI7NiBRJvE0tV1uc12xcWydJDeygQDIpmxMtaaH355ZfLfffdJ1u3bpXf/va38q53vUvGx8flfe97n4i4aa2/+qu/8tt/6EMfku3bt8vHP/5x2bhxo3z729+WG2+8US6//HK/TbFYlPXr18v69eulWCzK7t27Zf369fLMM88c8vMLECBAgAABAhw6vKyZol27dsm73/1uGRwclLlz58prXvMa+c1vfiNLljhx7N69e2XHjh1++2XLlskdd9whl156qXzta1+T+fPny1e+8hWfji8ismfPHjnhhBP8+pe+9CX50pe+JGeddZbce++9s2/jOVEZbolKdEKjfTIJbN9gIwUW5ULrM77YfYGoBPoGzI0jUkV6KHQaYF4KXXa/voyIzu2PvMqGO4ndapqm+2se0lTjENqF89DUY2W8bv2l0wg15afWawxtajbnyVYAiNwQ2fL14lTQcD5klqU5Vkvx9A5r17B1uxN4oyTHg+IUqtBEQJvE7cJxcf0nGwxylF7Xfbgl0rdhaMcC5GosZJacBo3oOTJNBIooOEFCZgAMEZvQ+eKd2hdaKN2bz4u1E2Cm0IcQOacXTf17XFNvq0BdBIwPWIUG0S70YsRy4F6AIcJ1AYMHY0C0l0toMCvJYuPJDBx0XShEyronrKPsBBgiIDrOjK+lgLjcR1nPBQaVrIUZOcq2PT5CF1VPBYwL68GY1RtdQUV4qbzIvPvtTa0LmFV4rqwK7uHI6pBZZ0abmWZun2eOeq3oP7VHGTpiV8eW2wOwvgdbe0sROh76BtjcyWn4zMSyNg9JLLBLQVFgsFnoj9AtRSdEojk59AhS8mfEy3pQdPvtt8/4/U033dTw2VlnnSUPP/zwtL9ZunSpF18HCBAgQIAAhxOCgrAz42U9KHo5oZwiE7RdYCbsdlHSAnkdBukykAnE0T9n8mTn2eM397vfpZfbH4aSLoJtGnBhM1Lb5zxuC0NCQ4FsFKTiR8dshOYziyjFFQDjgoitIbtMAQaIIxNEWz5FV1P0qyOu/U9PLNADUZZM2pq7NVGKfZMWuIVuADoW/3tEeRolVmKhejkJvZdI5eZMFtxbRKfYB5fXqFHmEpd88fdezyExhA3doq6BcIiPlLVdroENJSa0nXlN9Y9RFlyF9B8wZQTjBYYI2TRgxhJatHTgRCtowfEaGJkmvhdm1d9rH81T2ZR8yLKffF29QSBS/4klgLYLCCuTBn1PZdJ9mVzyQ6TxHiWG3M4rWuIn1+MuYrLfNb7YDuZX+0B06oKtAMpQICts95n25KBJ8vo1Ko2CPod7xuwYrgnuHdCQyaiMT73QtPZFfZ7BkA0do/obLQM0hhrFGbu/MDElbCfBKeuwU0DGJoxNx5ahMKzd3lt44LqgnXhvZW1mJa6PLxSdDHkNEN7B6LfcB3wbwcCSZs+/8ybdOmbOArz4CAZFAQIECBAgwCsFgdB6RgSDooOM15/2qKQ7E/KrW04yn7MhHuscOIKADoMzmVgTgHXPwBBDVTjFhVo4fEnLVtQy7hNoBjAvPnS0jUjZg8YfN6lZNjtRFFTMkhkhrOM8K83kpTNuozCwIf53voAkojZ6SGE2qYVio0MamdN1RqkJRM4JMrP0JTagpSJdTzUc8r/1keQgWCTse2p/nxIxNqyP4JIPDd435am3QxujE26DUqs7dzBLsQliREoz6zomFtnO2LbN/h5MVKHTHQcMEcBFglmbAaEHtFQlsBNk2Jc52oqxElvdhQd70FDmRK8Dss2YtYwM2fUwXUfW9zSVaw06Kf9b6hdghvz3yqAUutznnnnVS8UZcr4UypBmp1K2WtcGe/yhE9z3zbtBLetCfwYGyGvhiORoKB9CBqEweSxQGQ2UsmDPHRw3NqYMFv2l4QxD+H1B38ZmsJw917LXUTlg77o3al/X8iPp+bb97VvUSBW6PdVoIXMTbC9Y1Pzc+m/xrvUsWwLZoG4dWjm8y2AeincxezR1bNYHrCkkbQVKXTsUqNamT72czT4OUwTkXYAAAQIECBAggARM0UHHr3askJGxlMgZbjI+P+bCh9STLmIEQ8QaGwARVsPnuu7nvikKxudgXLAfjO9LeY3q+23YvvcMqz0qtZE+ZdhqF+pZWsoQoSSCft+QQaRAVpnXTOn5Q0MEZggMmc/ugb9Iwm4fH9LojBg1tCulVVZQHLV5mCIdZMfAl2gMWg/NnlGLfmg/wP6EanX9B44J5sg74KLUChXjZG0P+5kMH+OWc/7glpx5FKEgk7NhxpfY8LqhMGqrjYmYcRpdSUyJBri4Js0D7oNyUt3UlS1Jz7edlX1chPQ37CxdbLXf8+/BEAEte2y7y8Se+qwzvQ+sX0M5FVx/+DVxAVDXNtvW1L6pC7QC6K/Nw8pskNcUmAqf1Uh9or4/9THTZMrW7ardOcG2EdomPO9cKoX7fYgifuhgvNcW/YVgggHvnfEV9vkHil32+nRsdNshEzNJujLourI90CzJlBhf5G5q+zZLKSErMDkAjRCxr9mpPbjQR7w31Wj9O7xr2na4YzFbmO6LmH14vdKQZZ3Rz0otbsNKLCSJfOBT9FJDMCgKECBAgAABXjE4AIMiCQZFAZ4nCuNxyUs9dG3e4qJozJHXkNkzxr90aKi34zU4djvO4ii2037g97PdhclNdOeRJQLkejTbZY+yIIigqJ2IHDG/DrYk16PfI3KlelfMOCF691lren4RysbzdbF0v7gu0Ap5h2sNwGLkN9S6y2oL0G6wIIgCUa9INKPJe5DAIbelHmmWtO1N3qPGHpOzuSYWWjaBo/mxVXb74aPBzGjbKEMH9azQNxDtc32uicU2Kk3ttd8ziwHXYDA57Fkztpyzyoh16CRmC+7Gej180VMFswLMEM35pbpBl2vme2Y7UIwVYGYI9xoO2Hkt2gqfJH8du6zHTiVm65+JiIwttcfCNcK1hLcUtC7c30ot9hqwnisz367neyq6dOtdj4Z1P269dQcVmCVmi5Huo2ul+wFTAmapeRjtc+uZeZa5ApjRBjMEtOyxNxX16fC8giECEsRscTYa17fDcw3GKDvHaqDQx9BX+X7Wj+P207aj/jDH+93LpNrsTjK92NFkiRGwyGDl4Vekv6Pag/i81BKSUnjm+3NQEDBFMyIYFB0iJLa5Bwl/ACFcjKo4FA87Bg94eNnoj1/wTFdjsIRpuWIH3gZ6HOxXp50w6EJqejVqB0OAF7Hqx/zyzqmtP37fVLKWA0ktOdcwHearhtNxcD46nvQCbxp44A+3/yOkLztUMW/b7jasIeUZf0B1YJHvso9AU8UaAGJQxJQ5jpOZX79OYf3jmdqHIrp6SErdRdoxzhm2CegDmAos6dQjxKwAjDSBGr1Y4ySkZkE3KoJDSNyyyzWUiwkDKHmAgrdIqcc99+2gNHIunotpLdwbDHAxoC+TiB8Gfb7P0SCpPjC1A1wA1w+DMVxfX+yT3n6Y3vC/T5HNxKTBLZuX8oDRT0XqMRva9iyDodEjaJqrYrfHYAiIj9jUcgb+YBf13vpq8HoYvvawdYAdA0/NIhDA+wv3BsFY1KfuuyWE0AAPZhDkYKCOKScGBjcQM6OdVRrQ57rY58Ku4l6iL7JFAQaz1XCoQeReSdoHhKe9MUivv9vsVDwGlJEXw7gxwLMiGBQFCBAgQIAArxRUa/KCp78O4+yzYFB0kBHfGZVEKirNg/T5iF0v03QYpo0aUvenYYYAXyRUBdKhso1iUCjWp/xT346quVpJIzxM2fDUBhflBMAQ1VkSt8yp0V65xX2BVF0AkSL2C4E2pjT89GAN7XRLpOQmhq2lPtiSgjJByT2OlsnOdyGhnw7DdUBztB0+IkXkrTQDImFz/ZD9r1EriuVyAVaYOnJUjXPn2Lhts10HTQ/46L+Fom56YRUp3btjs0bJGh0zvV9Bs5UlA0MEoIwHwAwORPM5TWv2Ynw9DBgcfzyU6RjE9rY9SEsHJhY6FsAbEiprw2VIADBEYCvr+3XXE32G2ZD4qKVviu119gH3rG2HLeaLqbuJJTR1SFOeXEYGbCGQGHS/B6OMRAER1wYwUTACZCNKtvTAVCHA7w2YlLItATC6aubyGZiWll36vb837vPGPmp/z32oSuxnYtT9AFPPvnwRCr+SyW2JxPpcUDc2Qexpm53O94V2a3WjzfycDvMbHDNOz2Utgn1pej+ZOJoCw6UXYXBRq7p/L3QfhymClPwAAQIECBAgQAAJmKKDjvyikuRaS5LvcSFd5xNuHNrxjA21ys12fDq6Yupb4yMsCjA4Mux40kUpdYbGLZ/NRI2FzYiyERkXO+z3fi5e2+PLb2gkyloJTp0vN08dKcESwKfK6hKp+mAH8D0XgmzboToZnc8vdMdMe1Cc0bMS0FaoPoBTo9m0cnKkjfTo5kFN2aWCrigdkukjkT3ps1CQFWUlwD6wWNe3gXQUvh4RmCuNSMEUcfoz2AWcK7c734G0Zl2fa772n0dJB4YoHdE8l26I6O/QN1F0GGANFpghgPvU+DJtJ1LuyZ4itcuusyYL1gSwAmjdaQ9QSqlYt9xoPMmGm1ywFNoX3xZK4S/71HBlEfl5IRE+rCLqx3dL/5zS4wTdFe4V92NfIgbtYf0ZFZIGC4j3DTR9vj3UfqSr+/YTe5oYshSRNyhVdgUMEdCzzr2gRo5ImnYAE0vterHT3evUdk3h32r3l6akh9Q+y8Dl5tTbj3tdN6bUItnTlPvI9CH13q17zaA+l/GxmsQLLwZTdGiF1l/84hflhz/8oTz55JPS3Nwsp59+ulx11VVyxBFHTNpdTT772c/KN7/5TRkZGZFTTz1Vvva1r8maNWv8NoVCQS6//HK57bbbJJfLydlnny1f//rXZeHChS/sXAgBUxQgQIAAAQK8UlCtHZh/zxH33XeffOQjH5Hf/OY3ctddd0m5XJbzzjtPMpl6tHT11VfLNddcI1/96lfloYcekr6+Pjn33HNlYmLCb3PJJZfIj370I7n99tvl/vvvl3Q6LW95y1ukUqlMddjnjYApOsgI5cISitTDS8zFjy924cPI6x21suD7bnw6ttzdkokjOdXGfd+6GSyC+xipsyhPgUgPUThQarURUnP/1NkfYH58SrsySWCIODJDJAvmxBeIRV+mZwdaJaA6p2i2Sz6lmh+UM4EGyqex6hKRNY5HGg2UKUiMqNaIzNpwPETyiLCnK5/CGoXJlgCxcRjCaVZJRiPIMHQh7p4iQgTDg8yc1F7SslDJhIIyGWDH0NZoDpl+NvMIDBGKkoINyMzXkBW2ApSpxKxGlTJymLVI7nftRFq3j4CVOfLsRMqyfvXzFNMetpVoKCmj5w02IrPAfo2+17JDN6e+CsaN2RD/e72n40utACWiWqNIvla3alBU4lr4NAW2ze4TzyUD/XH/q+3+mnJuf837LKOKZYnuWesOu/8c6apgQJlVXViDlhFFdn0JC/s9NIV+f9o3YTrJOqx8p2p8tBn8PQri1o9vOwVYmNZdJbuftFsfX+4uBGwoypT5BWYI6Ps1vtf3gLYbdgv83kj263HDyEprqhd0JvNVzniLZN2x0/qcIUMVbF0LnnOw0s0hKYdehJT8Q4yf//znZv073/mO9PT0yLp16+TMM8+UWq0m1113nXz605+Wd77znSIicvPNN0tvb6/ceuutcuGFF8rY2JjceOON8r3vfU/OOeccERG55ZZbZNGiRXL33XfL+eeff8DaGzBFAQIECBAgwCsFmD57of9EZHx83PwrFArPcnCRsTEXDXV1ubnZrVu3Sn9/v5x33nl+m3g8LmeddZY88MADIiKybt06KZVKZpv58+fLMccc47c5UAiYooOMti1NUplkJgdmCEg85iKfoaPdOkeaYIg8aJUjUTBE2QUuqvEFIYdIj0IsAPsheTahwy0xxw6WgrNpQqhxiHIl1LMQgXoTSbR/s20IWA3OFqmg3AnKlcCETSNfLs8BeH0KzqfN6k+gq8F+G7J0KHLm7L+eh4sNbBiYIb4GXkOk2oSEth1ZU97EsWq3Tw7aTgH9GRgiLMHcFFtt9O0ZIuxevwYDkplH0ap2FTAyKOjqyxXstxEzdDL10hDsy6T6mo6Zo2K+9t5TSx8ZmGPinqT26O+QqUj6OF/MV8GZnAAK5Obm4rq6zyPEcjSV62VemIVKDFMGkmY3Qh8GdgpLsIR+3zkygSStTmYB6ce0jel51HcUXKIEzzvMFtkPDOcDJhsMD+4ls5e4Zp4NpeK56AtgxDqeoQdHTyeS0wzAhO2zbNKYXuRuumdFKZsNRqVghureQXoeVEyZTSHBEAGVST5KeOeVk7YESr2orDLEyhShpEt2rjsnaObgFzZZ0xYhD6RDgpocAE2RWyxaZFNRP/OZz8iVV145/c9qNfn4xz8uZ5xxhhxzjKtj1N/v0kJ7e63xWW9vr2zfvt1vE4vFpLOzs2Eb/P5AIRgUBQgQIECAAAFmjZ07d0pbW91jIx6Pz7C1yN/93d/Jo48+Kvfff3/DdyGaSqzVag2fMZ7LNrNFMCg6RFh5wdNm/fG7V5l1MERL37zVfJ4tu/B28A6nsPd+RrrMLLQdopyykUdyNxf9dMu8ZpX46J6KmSJjCKwCIjtEcIjWoeNgn5E4RaJjvcQQ7bft7t7gdpBe4Lqkj86gqdDjgRGCyzOzAWin9wghjQUYLuwH2WfYzp+3kitR+EXpk9LxjIsofSbKpOwj6EvqbeHsMP3PNHomRJI+uyUD7yVEqDYzBmwEZ6Eh22VCC8JWKEpu8IihjCFmH8EiIpOP9Vq8v7rbswOXbvAsADxl9J0K9oOdpj07Su7nAGfVsc8RrpvXzZAOBQyRbz8ygsh/avK++JrXy/AoI5S02r+kupyPrHY3Dz44zYN2O1ybZmKeKgl7UcCOgSFC5iFKkqDtE4ssMwpwlmmY/HLgbu7vJS4J2JFn8cbyru6KUqttP54V6O+q9OyAYfIMFr1foDkCCh2a6UX3FuvYHxgwZr6yvZZGBPOU6w57VsyfC7lt4zmuhfV5g3RPf8a6qrpLfq0hW/CQ4ABmn7W1tZlB0Uz46Ec/Kj/5yU/kl7/8pckY6+tz9GV/f7/Mm1c37BoYGPDsUV9fnxSLRRkZGTFs0cDAgJx++ukv7FwIwaDoICN3alaybSH5/calIiKS2O0ePk6FX/4O59RXrmpNobJ9SLPz6EVPtv+VpHsCE4NTy8QwGII9P6cve/MzTxXrDxvKW9h1flmFydQNf8BbdrBAtKK/10FJp5rSYUqnTw3QdJDGqcMYREI4iZc3/sD7Sul6WC/QVsF0y06aGtF24/yxH7YkmFjo7gtEzs376xcA1a/9taxYYS8GJzgGBNH4QxojISf+8HoDTK2YjrIbOA6uMSqkY+nF5Rh06TWYboqTB0M4vrc1ICE2LAJwDzFNxkLmyYMKkbpRHgZD/Adb8PdOz4+NTZsoGGVj1MayC/Z7LkeC0hIQnvP2k8+b+399Wgz33v7xRVV2gFPC+Vrh2Hn9I+8F3LiEmA4fxfZ2AMdtZ8NKBg+GeIDcRANcP2DX5IJ8F0377dckg2nMYTlwKHROLbQGOGW/QuVB8DwCeG9hGp0TLPhZ4vOdWIztdfA6SWienmePDWkB3uWo5YdjcyJDaq8dKIbzVWl6MabPqlVpeLE/r308N9RqNfnoRz8qP/rRj+Tee++VZcuWme+XLVsmfX19ctddd8kJJ5wgIiLFYlHuu+8+ueqqq0RE5KSTTpJoNCp33XWXXHDBBSIisnfvXnn88cfl6quvfmHnQggGRQECBAgQIMArBYfYp+gjH/mI3HrrrfLjH/9YWltbvQaovb1dmpubJRQKySWXXCJr166VVatWyapVq2Tt2rWSTCblPe95j9/2Ax/4gFx22WXS3d0tXV1dcvnll8uxxx7rs9EOFIJB0UFGcSIqRakLXSFwbHqd472Xdtgc2YiqSbc+aX3/41mK0tuI7s5RKi4JL7kgJRvcIVoH/Y7ptQZBJqVVMzMEMAsBgCHy7aLIEQwRgCjMF8hFO6epbo0IEEC5EFgEgPFBQU4wZ/gcYl5fNNRPoej3qNCuEfZkczd/TjBrC9tUdEw1Irr3rELOrtf3zeJQtwS7gJRfiMXrQmf9AWY+SCTfUI1ezx2MCNgQTKkifZnvPU8LFNpomgyCbi0dUb+Wbh0pyuNLQHnZ/aPIKdLI+XqALYEYmNvDUzpgvsCU8TQfKqPXr5f9vtwc8tce02V8L/2+muq/mXxMIDfHXiuwC2D9eIqGp2S8CJzkFFz1vUZWEsyM4Fx9WY7C1NfQi4vpsQMz1AD0NZq6RZ/yfSFtbzrEyn57pMYnrGUJH4fBLA2Y42aYv9IUbGzCHXdC/yQaKwLdVUu/a+vwkTTdSu9AJBRwkWAwq55dPvyz8UVE5Bvf+IaIiPzxH/+x+fw73/mO/PVf/7WIiFxxxRWSy+Xkoosu8uaNd955p7S21jvwtddeK5FIRC644AJv3njTTTdJOEwvpheIYFAUIECAAAECvFJwiJmi2nPYNhQKyZVXXjlj5loikZDrr79err/++ud87OeDYFB0kBEbjEosH/XFLpv+2FI4ibANIX/7yEqzHh+0o+BycmotDBBRMzLoMCabDE5eQqPjU3TrxqEi0qjTYF1Hdj6lO6fcgTofmTrvGboNL9jWyHps6cyFIhsEoUUbUSdG3XELbe6DtOr32HwSACviGSISmte8ZmLK0/ARNaf6mzZCjwQxNhgb0gB58EtDV1t3VrVtymop6xBL22uQ7wyZcwArhmuAewfxOFgH3HPWf5SIRWwiMgCMF5eQwLXEcdGeorYfaeJgjhDNIz3a3wswNawvsaSqZ8oAZkNrTVbz9GwCcO7jXEy5fXtFct2uccxwxMbcRcl3a6IAlUzhdbaO8GJw3e2ICqShCeJr4QF9GonLYa6I5x/GldC1QYtX348VozPLFibtC5e2YBsGLnTKOi8YIXpzxoztZPlO+x7JEwPMDBEzYNyH8QyC9ezY7I6H+wJTzr7fuRfq5PPhc+152F6LcB6WDq7NESqqG03bc8O1jWTKEisRhXgoUK3JtBTbrPZxeCIwbwwQIECAAAECBJCAKTpkmDhOQ7BhF8KcumqbiIg89JBNzW/dYcep2T6KuFpslNK20lEh5XudCIh1H2xSxhEdZ3WxwV3Lm12o+uq5283n//WUM94qpV143v1b+0MU1SypkSAXzkzPR+kKt85RfvOQ3R6sAHQhYIgmFtgu3PGMzV7r2Iy0dreeJV0KZ2x5RotSkMHWYD9gVyL5KfRTNXxn28yGf8iU8enJYD5U/4DoH9E0s2TQLnDaMlLaYa+A42A7aJNYNwUmCUyQZ/Wwqv9hPQaOh+1gIIrjsJEgrmk9S4e1SFbbw30H5wX2oW27azDM8ljfw1ojZojy3fZ8oFvDXtq31yP9VL8W/UWbiHCJj7KJo1viucO5MZOCcx081rbtHR+8V0REbnrwDBERmfMb+4CDlcS1YD1ZpEEjpL/LTx3pNylzEp0gbY/2f9YActYqn1c4B9sGdDZiUYghKlLqPjNEsDLAeZaI8WJGHChoFjcYIgA6Hyz5/lVjU/AGYNXyxBg1ZOppBlzSlj4Bsj1RacpXRH7XeIiDiVqtKrXadNTjc9/H4YpgUBQgQIAAAQK8UlCrvfDprxeqSXoJIxgUHWQU55Sk2FqSvzjehgP/8ZTzY4jMd6KZ5l86Exmv+1C2ID4KDYB+rr/vWGTFMk1nOsFF5dcuJGpWQzvODhlbam85M0ulM62Y5k3zN4iIyKCa3IAhAub9P7e/2DhF0IrEoAtls32WSWINABvu1Yswus/ZD6WctOfBbEDfb6yhzMCJVjACzRDYnOQ+26BySlkHsCgRm0WEiBveJCJ1nx9c0wZTRWTi0Lkh6wnRNn6H8htog9+//h5MC9a9UZ2eqtfI6O/ZY2c6hgveUCjG60u7oFgu+QSBZeMixMgyA6tXz/6y9wraJIDvJfoKWAivixtx+wXT5LVKbdAqqdaDMr24kCyKKgPsJQRGoBYONfRvLmjaVLK/5ZIrzCZMLLJtS+12yz/50L0iUmeI/PcD9nkGOwawzgrZmD67je45GxMyQ1Rstz8Akwz/ItabcZ9vCnNWnl2Hdgh9gn2bWva4B67QHp6y/Q1Gn8QQYb/N+3E8YmUJxfbpryfrrBquTcNfU3subBKa7ROR9CskBe1lhGBQFCBAgAABArxSUDsAQuuAKQrwfNHckZdke1h+uPlVIiJSeUKNc45waWJgiLw3CiIvFFRUF2JEIZFxzbJ6wjFCySNH3X6VIQISozZzKT2fKCHSAuR63BJb/cXqh0RE5NZnTjY/a73PaaIQecbGbaiYmWe7FGdigGlpHlLPj6NcQ1p26gYUOMGRFqwD/Fs4gwvXrWWnozN2vd4yQ4XFNk1v+fdsu4aPjuv+3XrHM1p+AK7OVO4AzFW40Mi2gdmB3gH7RAkRRJ/+npLuA95K2A80LyhFUuxybet+RNks3U9RLT3ANnqnaN09HHixf58tpr+PaXYXrmWUmKUwZTB5VlP7EjIWwYBNLnzp2mNZibFllj3kjCx4x4BtYU1WntyQOaOKMxvZmyux364j2w99kLOGROqZSKyt8X5FyoygYKnX8DBDtNB6M7HXzX9/4UwREYFbWT37TDU6ykil9rglymiwYzMwvsxem64n7LmhD/pyG5Qtx1pDXwhWWb4oZeOxU7b3zIpA+0Qsqj7neF8wm5gYtFlaeC6LbeorNMhZufZ9wc9oQwkeYoGik9zlwQ6i7WVy1ca9xT1knRMYXDjY412W7XuR8pyq1RnSGZ8jDmNNUZB9FiBAgAABAgQIIAFTdNARWt8qoWSLj1Ixty37HQWUVx0GXHvZK8VrWhJuZN5UoDn5PziGqClhPm5khtAe6EbAQsy1xyk/6WiE7//qbPfBWU67FLuz3ewHkRiiJnaQRSRZpnYhowoMEaL/iSVu+85N7jy9/oSCdRTCBFr22Ahv/wnuAuJ6jq+0Ec3iH7kDgoFLE7PFDFG9lppbh6vy5Mge2hWccwjBtt7L+DiyxuDrY7VE2De0OoUOMevFuarXKmrEOaxs4WL3PbyqfOYN1RIDQwUdVXqRW4Ihiurn0BKBFYilsX/KBNT911AEVffTvgXFct31iIy5htWi2kc6HLU0sVh1JHpvK8RCgCHKzrX3Jq71tnC9mBmC9xTAzBB7T6GQbEMmlmcD3fHjY1qnr9jIHtQ/cAs4nDPT4bVD+Jh+ntpHPkAUrsInCAxpWZkh9M8MsQ7soN22jbLCuOYZ9q9sCJiT6ITbka/rh+eatD/8nD5bzTO8L+Dmzk7anKlVI60StElwyPeZlPp5ocMeL6EFduGMHSPtFN9PFJiNj1bqGXW6zPS6a896TTCorJfEc8w1AOf/qiTtBdr4UCCYPpsRwaDoEIFNBFFGo9SuNK+OOSpqghjbH9F1+7LkQrAN1emRbq2bdWx2D93YcveXp0FoqYMH/KHDH0SYJkZ+5hqG6S7f/k5+ydn9Yn9hfW8Mvsa+QJpa3F/U6NNu5IDBEJ8XBnETC9wJMU3O5RB4EBQf1nYOuz/I+90sprfx5/PyZQn0MOP6x4zLG2CwNzn1lxlpFo/zH3Wk1MOOAIMovERL3WWz3+SesGmbPy4X5dVrj2uI6Szc29Ree1w/Xad9AwNKtAMCbW8tgEukzWnb4Q6E1OOkTmH6wVCXTk02u3VcF5hOtuy1Fw5/kABcNwDCbRl1i5GVtlNjMITzh+0EAg4uv5DtpZIbZCEQmZQ2Hi7olF6bXkz6443q9ih5kpk3DRmvv2vbQefeRinmNODFNQYgIuf3AACh8nRAyjxQabbV6zEYAvB81PsWDebQNzDNmLADBT6/MpIDdAnxvAdNc7GxJw8eMVWFKepIjt+f+r7V6+inist636jv5bsjkux3jR9fan1DRlbabf29pOez3t9VKrDb7a8WCUmN3ueHArVqVWovcPosSMkPECBAgAABArz8ETBFMyIYFB1kNJXdv8xiSn2d56gY3IDCiJ1nKpNJI0+bhTV65zRrAAxRVqlesAVIIfeFJWmqhc0eucAkIj1EXDyFgf3BLA0hcSivkdkcF/I2r7fzhDBPQ4THzAxKPHhjP4oQR87ITzqaiIzYqI4p7dbdLtT1ougUGfppVFeh6cwGs8tIo10AIkNE02BYsj12msyn0uutx/b1gqU6RYLSCxrV1jhaxjTYGO2nhKjY3nMwRF7ojT7EBVlHrSAcpS0wTQBWxKdh6z0bO9LNTe4/2X3Qdz/OM6T7VTZU05HRPi4eOp35JfoY0tEh0GYWAveqeT+dmG4GE0dmhlJ7pq5yHC5UpNBl+xUKlHZsdhd9eBWlaXsDSrfElB2Qo75Tfy4xPY0pVrdfsF0wbSzYWW1p3TXzHyueJipqeRw8b2BQsEyQmWEkO7Xg2aMJfRxspGUlMX2Oe44+BEwnYvYMEZqvh8U0IMr8sGAaZVkAsI54lvD+gsUH2jW5bEpmnmMFMcWHqdFCu2srs31csJmn8iazb5VA1vuSQzAoChAgQIAAAV4pqNYao87ZImCKAjxfZI4oSrqtKLHdGippKn5x2DJDyZ32VhTbKCV1PxvcuSUiRy7ouv9VLrpJ9VuGiH9fj36wHxv1RMiGP9NnI+XmQbs96zNyvbS/La7BJdWxtG637W6m1FtEpiNHuN9BwzCxmHQgT7vrWZijkaAW8yy1uPOLD7v1nvWWIaqfF5tD2u8RWUIEDfFyqCoSITbNmzdGbZQMhgj6EES/2FcRUT+9bxr0IlX7O18GBLoT7RNeEN1kP+cCsFhCLOvLhsAsUYmTorJpOL9cl02VHzlamxd3v2t9xn2BIr0xmE2GLUOE9zN0JXWzSRZ4W3E/AIYIjBk0VS3KBlZQqoHuOcqD+P1TX4/vsULASnudNgRDBAweQ69SIqcKXViqdmYIx9Sm0fZeyIxrQ4zl6FH2Bz2/I5YtC2G2shZZFSR7oTRfQ7ueHCQ7hSyZOnbYwrc1Mmlk8L0EE4N7w8wvtIJYxketXQIL2ZvIQqBApWNgHwENFvpImNhUPr6ISIw0bWC/oG9sMIRE0kqS2q6YbPUQKTTaPhx01GrS0EGf1z4OTwTcXYAAAQIECBAggARM0UFHtD8msYk6uxJ6wuktUCmBtS7Qj4AZwvfIHALDAyBTCCwDWAlk4Iyt0NRXSkfmFFhEqtDWsBkbUl3bVatUIOM8METIykJGVHKPahQ0BT6517YDhWMB1iwU28F4uc8nFtouy4Vk566zEd/EIru+9zXEyGm6e9tGMe0EENEntbxCZp4971rTZPsAG3XWSE/CxW+h5YE5I7ZHZhy0Rrj3+B56MqSgo/Aq2AQwPmBQwCDh98ySQZ+CaD05YC0GKhH7PXQeXAy0dSv6rEb5mpGI40NThOuD68FGgw2R9hiXzpg6HTypWWyccRSldWZFJpfxEBGJTlhNERiigVPqKZbM3PB6occyALEhd/HRnzx7qMv4qFtOl1WV67XrbU/ZDVBmB5hsHyDSWNgUx4EuhrWDFdJ3odeDISoleX9WC8ilWZDaD8Bs0qfSk4NIXZfnlsW2qeN3NsUEM4ZSMWwdwHYVuA5e60TZrE3Fmtd1oV+CNYZuCuBjwarDH1uvBQwyayGRaujQ8xK1ak1qL3D6rHYYM0XBoChAgAABAgR4paBWlRc+fRak5Ad4nqikqlJuqUokTeZtihDbcmBaGhlE2vfAIHkjMJU7eB2KokxMBzKSALAKMA7kuXkwRGA9ENVAx4FMpPR8mrOP23azfoMZoo5nNBrXdsT7M+b7PWd3iIhI51OWIcL1gh8TtBqpvVObwHU8Y9f3vs4+zK1PasQK3xg1uQMbkaQCnJ4dwX2ZRCp4TxmNXrEN/Hi4NMnoqy0j0fE7pQ20LdCDwdwwr3oU3ANoirz/jmZZZefWS5C4RupC7w1KuoCRAjOE/WagC/v/t3fnUVFc2R/Av83STdMNGERBBUV0UFHZxPG4IJiEUZKDmEQxjIkhojFjPC45JopxFE1ijv6cIY7b6JlxHWdJXCcS1xEUxSgijRHZbBEUUUQjoiLNcn9/QFWoplswdtNI7uccjnbVq6pXt7q7br969arhH5XeOELCAJZCS5b6uvQuNf2764T3hHD3WpPHIcik5YVWBqG8cGyEz4I46KW9tP4C/f4tVXq//lUl0rgL5W0eNmy44b1f61Af2IqeP48Cqd+SKPZNafj3QR+9vjgNn/vahn5WwjG0bRgYU2ghEogtLg27pP94DoVeS5Od3p1z+i1EwmMwbJ5IB2cU11f+9JObcEfgE5f6N6Hw8F7hGOrf7UXi3WcN9SuTtgSLd14JLQ16zZb6Y27p39lZ5aTX8qN3V64wQKLQiiO+dxrqK3zfCa2L+n259ONRrZT93EIkzNLr89ZkIEuxdctwnyL9llrWtnBSZGYvPaw/c1k/arglXX+gvSZPdYaknJXeh1Y8IQqXUPRGA67Se4J5k8tterfwC8mP8CVhWyXcsqrXnA5pUmT7WC8pEuotnBP0Pvj6z9Fy1OklRTXSilY+rt+QU1X9im0qhTOudD26hsXsnxhOivRV6XUkVz+WfgSUDeupbjh5KPU6Qto+lt7CLGt0frXVGxlZvERR2XCiaIiRcPKXP5CenJ0qpUmRQrglXbgc9lgvKaqUrk/ZcOJTVDYM6KeXFAkdke0akillpXQ58db7x9KkyL5hfm3Dt7ldQz2Eeqn0YqZ/SUS4TChvWI9wua664QRaIwzQJyRR1dLyYkfyhulPGvZPODJKvWeq6Y/WXKP3ZrTXGUmKqoUxFKTLCyNe21VaoVp/pGm9yzE2eiMlC597gTC0hvC5lOt/HvV+pFg/0kti9D/PQt0a3qdW1Xon9ar6gyqMiP2sgwXW6ZXXCaOyNxwL/aRIf7BFhU6aFNVU6V9+bnjP6H9/CNur1Nu+/mU9vdEThM9gbZ00KRLLVz89KdLfn2o0SoqM/KDVf3/pH0NFlfBDE03q1KFK+mOwNfDls6fjpMjMjn71f5auwovpkpnWu89M62Xtl8bSFWDMhPjy2VNxUmQGQhb9oJlyjDHGmHCuaI0WmBpUP/eA1jWwwDPbWgknRWZQUVE/aJCHhevBGGPsxVFRUQEnJ6fmC/4Ccrkcbm5uOHXre5Osz83NDXK5vPmCLxgZteeLgxZSV1eHmzdvwsHBATKZZXvVPXjwAB4eHrh+/TocHR2bX4A1i2NqHhxX8+C4mp6pY0pEqKioQNeuXWFlZb7b9J88eQKdzvBjbJ6VXC6HnZ1d8wVfMNxSZAZWVlZwd3e3dDUkHB0d+QvRxDim5sFxNQ+Oq+mZMqbmaiFqzM7Orl0mMqbEI1ozxhhjjIGTIsYYY4wxAJwUtXsKhQJLliyBQqFovjBrEY6peXBczYPjanoc0/aLO1ozxhhjjIFbihhjjDHGAHBSxBhjjDEGgJMixhhjjDEAnBS90JKTkyGTyQz+paWlGVymuroa8+fPx8CBA6FSqdC1a1dMnjwZN2/eFMtcu3bN6Hq//fbb1to9izFXXAVnzpzByy+/DJVKhQ4dOiA0NBSVlZUG1tp+mDOmoaGhTdb59ttvt8ZuWZy536tA/cCC4eHhkMlk2Ldvnxn3pu0wZ1ynT5+OXr16QalUolOnToiMjEROTk5r7BZrAe5o/QLT6XS4d++eZNof//hHHDt2DFevXjU4mnZ5eTnGjx+PadOmwc/PDz/99BPmzJmDmpoanD9/HgBQW1uLO3fuSJbbtGkTVq5ciVu3bkGtVptvp9oAc8UVqE+IxowZg7i4OEREREAulyMzMxMRERHt+k4Wc8Y0NDQU3t7eWLZsmThNqVS2ymB4lmbOuAoSEhJw9OhRHDx4EHv37sW4cePMtTtthjnjumnTJvTt2xfdu3fHvXv3EB8fD41Gg4KCAlhbW5t931gziLUbOp2OOnfuTMuWLXum5c6dO0cAqLCw0GgZf39/mjJlyvNW8YVkyrgOGTKEFi1aZOoqvnBMGdOQkBCaPXu2iWv4YjL1d4BGoyF3d3cqKSkhALR3714T1vbFYc7v1szMTAJAV65ced5qMhPgy2ftyH//+1+UlZUhJibmmZYrLy+HTCZDhw4dDM5PT0+HRqNBbGzs81fyBWSquJaWluLs2bPo3Lkzhg0bBldXV4SEhODUqVOmr3QbZ+r36s6dO+Hi4oL+/ftj3rx54kOZf21MGdfHjx8jOjoaa9euhZubm2kr+oIx13fro0ePsGXLFvTs2RMeHvwI8TbB0lkZM53w8HAKDw9/pmUqKytp0KBBNGnSJKNl/vCHP1C/fv2et3ovLFPF9cyZMwSAnJ2dafPmzXThwgWaM2cOyeVyysvLM3W12zRTvlc3bdpER48epR9//JH+9a9/kaenJ7366qumrO4Lw5Rx/eCDDyg2NlZ8jV9xS5Gpv1vXrVtHKpWKAFDfvn25lagN4aSoDVqyZAkBeOpfWlqaZJnr16+TlZUV7dq1q8Xb0el0FBkZSQEBAVReXm6wzOPHj8nJyYlWrVr1XPvUFlg6rqdPnyYAFBcXJyk/cOBAWrBgwfPtnIVYOqaGnD9/ngBQenr6L9qntsDScd2/fz/17t2bKioqxGntISmydFwF9+/fp7y8PDpx4gRFRERQYGAgVVZWPvf+sefHHa3boLKyMpSVlT21jKenp+Rpx59//jnWrFmD4uJi2NraNruN6upqREVF4erVqzh+/Dg6duxosNyOHTsQGxuL4uJidOrU6dl2pI2xdFwLCgrg5eWFHTt24J133hGnT5w4ETY2Nti5c+cv2CvLsnRMDSEiKBQK7NixAxMnTmzZjrQxlo7rnDlz8Je//AVWVj/3sKitrYWVlRWCg4ORnJz87DvVBlg6robodDq89NJL+Nvf/obo6OiW7QgzGxtLV4A15eLiAhcXlxaXJyJs2bIFkydPfqYPbX5+PpKSkp76of373/+OsWPHvvAJEWD5uHp6eqJr167Izc2VTM/Ly0N4eHiL69WWWDqmhmRlZaG6uhpdunRpcb3aGkvHdcGCBZg6dapk2sCBA5GQkICIiIgW16utsXRcn7adqqqqFteLmZHF2qiYyRw7dowA0OXLlw3O79OnD+3Zs4eIiKqrq2ns2LHk7u5OGo2GSkpKxL+qqirJcvn5+SSTyejgwYNm34e2yBxxTUhIIEdHR/r2228pPz+fFi1aRHZ2dr+aPgWmjumVK1do6dKllJaWRgUFBZSYmEh9+/algIAAqqmpabX9sjRzfQc0hnZw+exZmTquWq2Wli9fTufPn6fCwkJKTU2lyMhIcnZ2ptu3b7fafjHjOClqB6Kjo2nYsGFG5wOgLVu2EBFRQUGB0WvpSUlJkuXi4uLI3d2damtrzVj7tstccf3qq6/I3d2d7O3taejQoZSSkmLGvWhbTB3ToqIiGjlyJDk7O5NcLqdevXrRrFmz6O7du62wN22Hud6r+uv4tSVFpo5rcXExhYeHU+fOncnW1pbc3d3p97//PeXk5LTC3rCW4D5FjDHGGGPgx3wwxhhjjAHgpIgxxhhjDAAnRYwxxhhjADgpYowxxhgDwEkRY4wxxhgATooYY4wxxgBwUsQYY4wxBoCTIsYYY4wxAJwUMdbuyGQy7Nu3DwBw7do1yGQyaDQai9bpedy6dQthYWFQqVTo0KFDq28/JiYG48aNM+s22sNxau9OnjyJiIgIdO3aVfIZexZEhFWrVsHb2xsKhQIeHh5Yvny56SvLfjF+ICxj7ZiHhwdKSkqe6SGYLeHp6Yk5c+Zgzpw5Jl2vIQkJCSgpKYFGo4GTk5PZt6dv9erVMOXA/zExMbh//77kpGqu48RM59GjR/Dz88P777+Pt9566xetY/bs2Thy5AhWrVqFgQMHory8HGVlZSauKXsenBQx9gKqrq5u0VO7ra2t4ebm1go1Mh+tVotBgwbhN7/5jUnXq9PpIJfLmy3XGolYezhO7V14eDjCw8ONztfpdFi0aBF27tyJ+/fvY8CAAVixYgVCQ0MBANnZ2diwYQMuXbqEPn36tFKt2bPiy2eMNXLnzh24ublJmrTPnj0LuVyOI0eOGF3uxo0bePvtt+Hs7AyVSoWgoCCcPXtWnL9hwwb06tULcrkcffr0wY4dOyTLFxUVITIyEmq1Go6OjoiKisLt27fF+fHx8fD398fmzZvh5eUFhUIBIkJ+fj5GjhwJOzs7+Pj44OjRo5L16l+WSU5Ohkwmw//+9z8EBQXB3t4ew4YNQ25urriMVqtFZGQkXF1doVarMXjwYBw7dkycHxoaisLCQsydOxcymQwymUycl5qaipEjR0KpVMLDwwOzZs3Co0ePnhrzp8XG09MTu3fvxvbt2yGTyRATE2NwHcIlrqVLl6Jz585wdHTE9OnTodPpJPWeOXMmPv74Y7i4uCAsLAwAcOLECfz2t7+FQqFAly5dsGDBAtTU1DRZt4CIsHLlSnh5eUGpVMLPzw+7du2S1CcrKwuvv/46HB0d4eDggODgYGi1WsTHx2Pbtm3Yv3+/GLvk5GSDl8+aq1doaChmzZqFTz/9FM7OznBzc0N8fPxTY83M5/3338fp06fx73//GxcvXsSECRMwZswY5OfnAwC+++47eHl54cCBA+jZsyc8PT0xdepU3Lt3z8I1ZxKWfBotY21RYmIi2draUlpaGlVUVFDv3r1p9uzZRstXVFSQl5cXBQcHU0pKCuXn59N//vMfSk1NJSKiPXv2kK2tLa1bt45yc3PpT3/6E1lbW9Px48eJiKiuro4CAgJoxIgRdP78efrhhx8oMDCQQkJCxG0sWbKEVCoVjR49mi5cuECZmZlUU1NDAwYMoNDQUMrIyKATJ05QQECA5GnmwpO7MzIyiIgoKSmJANCQIUMoOTmZsrKyKDg4WPIkcI1GQ3/961/p4sWLlJeXR5999hnZ2dlRYWEhERHdvXuX3N3dadmyZVRSUkIlJSVERHTx4kVSq9WUkJBAeXl5dPr0aQoICKCYmBijsWsuNqWlpTRmzBiKioqikpISun//vsH1vPfee6RWq2nixIl06dIlOnDgAHXq1IkWLlwolgkJCSG1Wk2ffPIJ5eTkUHZ2Nt24cYPs7e1pxowZlJ2dTXv37iUXFxdasmSJZN2RkZHi64ULF1Lfvn3p0KFDpNVqacuWLaRQKCg5OZmIiG7cuEHOzs705ptvUlpaGuXm5tLmzZspJyeHKioqKCoqisaMGSPGrqqqqslxakm9QkJCyNHRkeLj4ykvL4+2bdtGMpmMjhw5YjTezDQaf8aIiK5cuUIymYyKi4sl5V555RWKi4sjIqLp06eTQqGgIUOG0MmTJykpKYn8/f1p1KhRrVl11gxOihgzYMaMGeTt7U2TJk2iAQMGUGVlpdGyGzduJAcHB7p7967B+cOGDaNp06ZJpk2YMIFee+01IiI6cuQIWVtbU1FRkTg/KyuLANC5c+eIqD4psrW1pdLSUrHM4cOHydramq5fvy5OO3jwYIuSomPHjonLJCYmEoCn7qOPjw+tWbNGfN2jRw9KSEiQlHn33Xfpgw8+kExLSUkhKysro+tuLjZERJGRkfTee+8ZrRtRfeLi7OxMjx49Eqdt2LCB1Go11dbWElF9EuHv7y9ZbuHChdSnTx+qq6sTp61bt06yXOOk6OHDh2RnZycmvILY2FiKjo4mIqK4uDjq2bMn6XQ6o3VtnGQRNT1OLalXSEgIjRgxQrKewYMH0/z5843GiZmGflL0zTffEABSqVSSPxsbG4qKiiIiomnTphEAys3NFZdLT08nAJSTk9Pau8CM4MtnjBmwatUq1NTU4JtvvsHOnTthZ2dntKxGo0FAQACcnZ0Nzs/Ozsbw4cMl04YPH47s7GxxvoeHBzw8PMT5Pj4+6NChg1gGAHr06IFOnTpJ1tu9e3e4u7uL04YOHdqi/fP19RX/36VLFwBAaWkpgPoOpZ9++qlYB7VajZycHBQVFT11nenp6di6dSvUarX4N3r0aNTV1aGgoMDgMs3F5ln4+fnB3t5efD106FA8fPgQ169fF6cFBQU12f7QoUMllwCHDx+Ohw8f4saNG022cfnyZTx58gRhYWGS/dy+fTu0Wi2A+vdDcHBwi/p8GdPSejU+jkD9sRSOI2s9dXV1sLa2Rnp6OjQajfiXnZ2N1atXA6g/NjY2NvD29haX69evHwA0+9lirYc7WjNmwNWrV3Hz5k3U1dWhsLCwycmnMaVS2ez6Gp/cgPp+KcK0xv83VgYAVCpVk/nNbceYxidsYZm6ujoAwCeffILDhw9j1apV6N27N5RKJcaPHy/pn2NIXV0dpk+fjlmzZjWZ1717d6PLPS02ptBcDA1t31C9gJ9jlJiYiG7duknmKRQKAC17PzSnpfXST7xkMplYR9Z6AgICUFtbi9LSUgQHBxssM3z4cNTU1ECr1aJXr14AgLy8PAD1P3hY28AtRYzp0el0mDRpEiZOnIgvvvgCsbGxkk7P+nx9faHRaIx2mOzXrx9OnTolmZaamir+SvTx8UFRUZGkRePy5csoLy8XyxgiLHfz5k1x2pkzZ1q0j0+TkpKCmJgYvPHGGxg4cCDc3Nxw7do1SRm5XI7a2lrJtMDAQGRlZaF3795N/ozd5dVcbJ5FZmYmKisrxdc//PAD1Gq1pCVNn4+PD1JTUyUJZmpqKhwcHJokPUJ5hUKBoqKiJvsotPT5+voiJSUF1dXVBrdpKHbPWy9mfg8fPhRbgACgoKAAGo0GRUVF8Pb2xqRJkzB58mTs2bMHBQUFSEtLw4oVK/D9998DAF599VUEBgZiypQpyMjIQHp6OqZPn46wsDBJ6xGzMAtdtmOszZo3bx55enpSeXk51dbW0siRI+n11183Wr6qqoq8vb0pODiYTp06RVqtlnbt2iX2O9m7dy/Z2trShg0bKC8vT+xMnJSUREQ/d7QODg6m9PR0Onv2LA0aNKhJR2s/Pz/Jdmtra8nHx4deeeUV0mg0dPLkSRo0aFCL+hT99NNP4noyMjIIABUUFBAR0bhx48jf358yMjJIo9FQREQEOTg4SDqbh4WF0dixY+nGjRt0584dIiLKzMwkpVJJM2bMoIyMDMrLy6P9+/fTzJkzjcauudgQtbxPkVqtpujoaMrKyqLvv/+eXF1dacGCBWKZkJCQJh3mhQ7NH330EWVnZ9O+ffua7Wj92WefUceOHWnr1q105coVunDhAq1du5a2bt1KRERlZWXUsWNHsaN1Xl4ebd++Xew38uWXX1L37t0pJyeH7ty5QzqdzmhH66fVy9D+tCRW7JcRPjv6f0K8dTodLV68mDw9PcnW1pbc3NzojTfeoIsXL4rrKC4upjfffJPUajW5urpSTEyM0b6IzDI4KWKskaSkJLKxsaGUlBRxWmFhITk5OdH69euNLnft2jV66623yNHRkezt7SkoKIjOnj0rzl+/fj15eXmRra0teXt70/bt2yXLFxYW0tixY0mlUpGDgwNNmDCBbt26Jc43lBQREeXm5tKIESNILpeTt7c3HTp06LmTooKCAho1ahQplUry8PCgtWvXNjkBnzlzhnx9fUmhUFDj31bnzp2jsLAwUqvVpFKpyNfXl7788kujcWtJbFqaFEVGRtLixYupY8eOpFaraerUqfTkyROxjKEkgogoOTmZBg8eTHK5nNzc3Gj+/PlUXV3dZN2Curo6Wr16NfXp04dsbW2pU6dONHr0aDpx4oRYJjMzk373u9+Rvb09OTg4UHBwMGm1WiKqv6NOiBEASkpKanKcWlIvTooYMz0ZkQmHamWMMQswNEq0qURHR8Pa2hr/+Mc/TL5uxljbwn2KGGPMgJqaGly+fBlnzpxB//79LV0dxlgr4KSIMcYMuHTpEoKCgtC/f398+OGHlq4OY6wV8OUzxhhjjDFwSxFjjDHGGABOihhjjYSGhooPKm38cNK2LiYmRqy3OTpbM8Z+HTgpYoxJTJs2DSUlJRgwYIDZtpGcnAyZTIb79++bZH2rV69GSUmJSdbFGPv14sd8MMYk7O3t4ebmZulqAKgfXdzYaNiNOTk5wcnJqRVqxBhrz7iliDFmlNCic/jwYQQEBECpVOLll19GaWkpDh48iH79+sHR0RHR0dF4/PixuBwRYeXKlfDy8oJSqYSfnx927doFALh27RpGjRoFAHjppZcgk8kQExMDoP7y3cyZM/Hxxx/DxcUFYWFhAOofe/Laa69BrVbD1dUV7777LsrKylo3GIyxdo+TIsZYs+Lj47F27Vqkpqbi+vXriIqKwtdff41//vOfSExMxNGjR7FmzRqx/KJFi7BlyxZs2LABWVlZmDt3Lt555x2cOHECHh4e2L17NwAgNzcXJSUl4pPEAWDbtm2wsbHB6dOnsXHjRpSUlCAkJAT+/v44f/48Dh06hNu3byMqKqrV48AYa9/48hljrFlffPEFhg8fDgCIjY1FXFwctFotvLy8AADjx49HUlIS5s+fj0ePHuHPf/4zjh8/jqFDhwIAvLy8cOrUKWzcuBEhISFwdnYGAHTu3BkdOnSQbKt3795YuXKl+Hrx4sUIDAzE8uXLxWmbN2+Gh4cH8vLy+GGajDGT4aSIMdYsX19f8f+urq6wt7cXEyJh2rlz5wDUX+p68uSJeOlLoNPpEBAQ0Oy2goKCJK/T09ORlJQEtVrdpKxWq+WkiDFmMpwUMcaaZWtrK/5fJpNJXgvT6urqAED8NzExEd26dZOUUygUzW5LpVJJXtfV1SEiIgIrVqxoUrZLly4t2wHGGGsBTooYYybl4+MDhUKBoqIihISEGCwj3FFWW1vb7PoCAwOxe/dueHp6wsaGv7IYY+bDHa0ZYybl4OCAefPmYe7cudi2bRu0Wi0yMjKwbt06bNu2DQDQo0cPyGQyHDhwAHfu3MHDhw+Nru+jjz7CvXv3EB0djXPnzuHq1as4cuQIpkyZ0qKkijHGWoqTIsaYyX3++edYvHgxvvrqK/Tr1w+jR4/Gd999h549ewIAunXrhqVLl2LBggVwdXXFzJkzja6ra9euOH36NGprazF69GgMGDAAs2fPhpOTE6ys+CuMMWY6/EBYxpgoNDQU/v7++Prrry1dlV9EJpNh7969GDdunKWrwhh7AfHPLMaYxPr166FWq/Hjjz9auiot9uGHHxq8O40xxp4FtxQxxkTFxcWorKwEAHTv3r1Fj9hoC0pLS/HgwQMA9Xek6d/BxhhjLcFJEWOMMcYY+PIZY4wxxhgATooYY4wxxgBwUsQYY4wxBoCTIsYYY4wxAJwUMcYYY4wB4KSIMcYYYwwAJ0WMMcYYYwA4KWKMMcYYA8BJEWOMMcYYAOD/Aau4lfi9wb4VAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ax = plt.subplot()\n", "xds.plot(ax=ax)\n", "ax.plot(\n", " *box(*xds.rio.bounds()).exterior.xy,\n", " color=\"red\",\n", " linewidth=3,\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Determine bounds of re-projected raster\n", "\n", "The [rio.transform_bounds()](../rioxarray.rst#rioxarray.rioxarray.XRasterBase.transform_bounds) method allows you to safely convert a bounding box into another projection taking into account the effects of nonlinear transformations." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "tags": [] }, "outputs": [], "source": [ "reprojected_raster = xds.rio.reproject(\"EPSG:4326\")" ] }, { "cell_type": "markdown", "metadata": { "tags": [] }, "source": [ "### Boundary calculated from the re-projected raster (inefficient)\n", "\n", "This is the benchmark. However, this method is computationally\n", "inefficient. So, if you don't need to re-project, [rio.transform_bounds()](../rioxarray.rst#rioxarray.rioxarray.XRasterBase.transform_bounds) is a more efficent method." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "tags": [] }, "outputs": [], "source": [ "reprojected_raster_box = box(*reprojected_raster.rio.bounds())" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "tags": [] }, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHFCAYAAADyj/PrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADxhElEQVR4nOydeZgU1bn/v6e23rtn31gGRBEU3CABTFRcgSgYNdGIQcU110QlinuMSxASomISr1HRBLeI9+Ym/uISFI3EXRHEoCKisgwww+zd03tX1fn9capPTQuMM8wgML6f5+mH6qpzTr3nVPdw+tS3vi/jnHMQBEEQBEF8A1D2dAAEQRAEQRBfFzTxIQiCIAjiGwNNfAiCIAiC+MZAEx+CIAiCIL4x0MSHIAiCIIhvDDTxIQiCIAjiGwNNfAiCIAiC+MZAEx+CIAiCIL4x0MSHIAiCIIhvDDTxIYh+zH333YdFixZtt3/Dhg1gjO3w2FfRm7q95eWXX8bYsWMRCATAGMPTTz/9tZ178eLFOOyww+D1elFTU4NZs2YhHo9/becnCKJv0PZ0AARB7D7uu+8+lJWV4fzzzy/YX11djbfeegvDhg3bM4HtApxznHnmmRg+fDj+8Y9/IBAI4MADD/xazv3EE0/gxz/+MS666CIsWLAAn376Ka677jp8/PHHePHFF7+WGAiC6Bto4kMQ30A8Hg/Gjx+/R2OwLAumacLj8XSr/NatW9Ha2orTTjsNxx9//G6OzsWyLFxzzTU46aSTsHDhQgDAsccei1AohHPOOQf//Oc/MWXKlK8tHoIgegfd6iKIr4GmpiZccsklGDRoEDweD8rLy/Gd73wHL730kiwzceJEjBo1Cq+99hrGjx8Pn8+HAQMG4Oabb4ZlWQXt3XbbbRg3bhxKSkoQDodxxBFH4OGHH0bnnMNDhgzBRx99hH//+99gjIExhiFDhgDY8e2qzz77DDNnzsQBBxwAv9+PAQMGYOrUqVi9enWv+58/3/z58zFnzhwMHToUHo8Hr7zyCgDgvffew7Rp01BSUgKv14vDDz8c//M//yPr33rrrRg4cCAA4Lrrrivoy+7m7bffRn19PWbOnFmw/4c//CGCwSD+/ve/fy1xEATRN9CKD0F8DcyYMQMrV67EHXfcgeHDh6O9vR0rV65ES0tLQbmGhgb86Ec/wvXXX4/bb78dzz33HObMmYO2tjbce++9styGDRtw6aWXYvDgwQDEf86XX345tmzZgl/+8pcAgL///e/4wQ9+gEgkgvvuuw8Aulxd2bp1K0pLS/HrX/8a5eXlaG1txSOPPIJx48bh/fff75PbSr///e8xfPhw3HnnnQiHwzjggAPwyiuvYPLkyRg3bhzuv/9+RCIRLF68GGeddRaSySTOP/98XHTRRTj00ENx+umn4/LLL8f06dO/cqXINM1uxaSqKhhjOz3+4YcfAgAOOeSQgv26rmPEiBHyOEEQ+wicIIjdTjAY5LNmzeqyzDHHHMMB8P/3//5fwf6LL76YK4rCN27cuMN6lmXxXC7Hb7/9dl5aWspt25bHDj74YH7MMcdsV2f9+vUcAP/zn/+803hM0+TZbJYfcMAB/Oc//3mP6u7sfMOGDePZbLbg2IgRI/jhhx/Oc7lcwf5TTjmFV1dXc8uyCtr47W9/261zAujW66v6cccdd3AAvL6+frtjJ510Eh8+fHi34iEIYu+AVnwI4mvg29/+NhYtWoTS0lKccMIJGDNmDHRd365cKBTCtGnTCvZNnz4dCxcuxKuvvoof//jHAIB//etfmDt3LpYvX45YLFZQvrGxEZWVlT2O0TRNzJ8/H48//jg+++wz5HI5eWzNmjU9bm9HTJs2raDfn332GT755BPceeedMoY83/ve9/Dss89i7dq1GDlyZI/PtXz58m6VGzp0aLfK7WxVqKvVIoIg9j5o4kMQXwNPPfUU5syZg4ceegg333wzgsEgTjvtNMyfPx9VVVWy3I4mLPnj+dti7777Lk466SRMnDgRCxcuxMCBA2EYBp5++mnccccdSKVSuxTjVVddhf/+7//Gddddh2OOOQbFxcVQFAUXXXTRLrf5Zaqrqwveb9u2DQAwe/ZszJ49e4d1mpubd+lchx12WLfKqara5fHS0lIAYvy/fH1aW1tRUlKyS/ERBLFnoIkPQXwNlJWV4Z577sE999yDTZs24R//+Aeuv/56NDY2YsmSJbJcfiLQmYaGBgDuf8CLFy+Grut49tln4fV6Zbneeto8/vjjOPfcczF37tyC/c3NzSgqKupV23m+vDpSVlYGALjhhhtw+umn77DOrmqLdrSitiP+/Oc/b/e4f2dGjx4NAFi9ejUOOuggud80TXzyySc4++yzdyk+giD2DDTxIYivmcGDB+NnP/sZXn75ZbzxxhsFxzo6OvCPf/yj4HbXX/7yFyiKgqOPPhqAmDxomlawUpFKpfDYY49tdy6Px9Pt1RrG2HaC4eeeew5btmzB/vvv3+3+9YQDDzwQBxxwAD744IPtJly9pa9udY0bNw7V1dVYtGgRzjrrLLn/r3/9K+Lx+E4nbARB7J3QxIcgdjPRaBTHHnsspk+fjhEjRiAUCmH58uVYsmTJdv9plpaW4r/+67+wadMmDB8+HM8//zwWLlyI//qv/5JPcJ188sm4++67MX36dFxyySVoaWnBnXfeucOnnEaPHo3Fixfjqaeewn777Qev1ytXML7MKaecgkWLFmHEiBE45JBDsGLFCvz2t7+Vj5HvLh544AFMmTIFkyZNwvnnn48BAwagtbUVa9aswcqVK/G///u/u9Tu2LFj+yQ+VVUxf/58zJgxA5deeinOPvtsrFu3Dtdeey1OPPFETJ48uU/OQxDE1wNNfAhiN+P1ejFu3Dg89thj2LBhA3K5HAYPHozrrrsO1157bUHZqqoq/Pd//zdmz56N1atXo6SkBDfeeCNuu+02Wea4447Dn/70J/zmN7/B1KlTMWDAAFx88cWoqKjAhRdeWNDebbfdhvr6elx88cXo6OhAbW0tNmzYsMM4f/e730HXdcybNw/xeBxHHHEE/va3v+EXv/hFn49JZ4499li8++67uOOOOzBr1iy0tbWhtLQUBx10EM4888zdeu7u8uMf/xiqquLXv/41Fi1ahJKSEpx77rm444479nRoBEH0EMZ5J8czgiD2GBMnTkRzczP5whAEQexGyLmZIAiCIIhvDHSriyCIXvFVDsmKokBR6DcWQRB7B/TXiCD2EpYtW7bP3ebasGEDdF3v8nX77bfv6TAJgiAktOJDEMQuU1NT85WPjdfU1HxN0RAEQXw1JG4mCIIgCOIbA93qIgiCIAjiGwPd6tpFbNvG1q1bEQqFKEkhQRAE0SWcc3R0dKCmpma3iv3T6TSy2Wyv2zEMoyAlTn+CJj67yNatWzFo0KA9HQZBEASxD1FXV7fb3NDT6TSG1gbR0Gj1uq2qqiqsX7++X05+aOKzi4RCIQBAHYDwng2FIAiC2MuJARgE9/+O3UE2m0VDo4X1K2oRDu36qlKsw8bQMRuRzWZp4kO45G9vhQGEP/4YcLJMH//z+8GdUbU8gOV8ZvQ4wGyxnSkCFGclkiuAYgKedqExz0QYtIxbztsktj0dNtScKMNMjlzA/VCrWbHf1gpvueX84j3rJF/XUhzM5khHRIJLI2nDXy+CSZfpyIS3/7IoJoBOTWci4o2aA+BYuGhZDtvJmWn5GHJ+se1t5vC1OL8+VIZsp7gzRQyKc8jTbsNWRbu5AAPs/Lk5VOccuSCDHhedUTMc3DlfJqhItZqtA6myL8UOwNcCsBzgaxMn9DWkwbLiYLbEh1xINNa5/56YDcsQMUXWxoDNTub0ARXYemyxLOdrFjEFtrjLyx2DDKQqGJjTv+BWG7Yu2lJy7gVJlSuwnc+LlgIsQ2wzDnBnzK3Of3c44G90xyDfP8Yhx1/LcFi6e8ECm5NIlzuNKAzpiOK0y+B3fhky043J8rpj0DFIwWu3/AQEQewizc3AQQfJt1+HNCIcUno18env0MSnLygrA8rLAQDtvqCc+JjeThMfq9PEJwAoTpn8xMebFv/xpP0MmuKW88XFtidnQ1VEGUXlyHb6z0llO5j4MCDn3cHEh3MwiyPtcyY+to2cIWZaKY+BjG8HE58cCiY+aWdCpWYBlp/4KFz+B252mvj4fBxZj/jPlausIO60n8n/uL3pThMf35cmPjmxnfUxGM5/0CrrNPHxuRMfSwdSgU6xO+2nk2LMM0kRS1ZXwbgz8TH8yHpUty0HT8aG5XE6rlmA4nO2A2jzB2W5jFfEZBruxCfmM5D0uxMf09tp4qO6FyTp7zTxgZgsA1+a+Pjc/oADWa87BnLiY6NTO1xO2ADA1BnSHtEIVxjSzjUwfUxem84xmZ2uUcyvyM82QRD7Bha3YfXieW2L230XzF4ITXz6iNFXLwAAeE2O4g/icn/9d8WypmUAXmdVJ2sxJAaLD5bRrkDJAmZK/EflbePIhp2JRVJMjAAgE1Hkyo6W4nIiwsxOEx4GMOfTngsocsJgdFjQO8T/kMlKA4lKFZ6YKJesUBCv9jntdpok2YCvVcSoZmwky1WnXfc/cy3JYTqTIGSclRoH1Vm1UkzAdCYTasaGf1sOmSLxsQvUc6TKxDFbZdCcyZ8Rt5EuEvuzYQanG/C2cZjORCQ/YQQALc3hbXcmNCEViQHOBMMCbGcFxRPlyAaZ7Iea9sDb6H658ytoppch50yc4gNVeFvEdsNRxfA3RgAAwY0JlHwiTh4brCEbFOfLRjSkylTZph4HjA7nmocVJKqdeBPuhA8AgltEHLGh7oTDaBcTSwDQt3HEapkc1/z1zvkZQpvzMx8mPx9cYcj5GYJbxMjlwh6kSp1+ZzhMn/NZa7dlW2qOI+OsAtqq+zkINHCMvehuAEDz0VlsOPd6EASxd2ODw8auz3x6U3dfgNbCCIIgCIL4xkArPgRBEATRj7Bhozc3q3pXe++HJj4EQRAE0Y+wOIfVi6QMvam7L0ApK3aRWCyGSCSCKIBwY2OBAPS4E38NAPCsbZD7ohNczx9bZ8h20sNAAXKOgFXNQupv0kVM6jxyfsDocMp0eioo/+QWAIABwa1C62IZTIpp9YQNZrt14tUabN2tltfjpIsB2xHXGjH3uBHlsi01wxGqExUS1QaynZ4cyOuRyj5IQGsUDcQOrZDaE2ZyqBkbZkCV5U2/o+UJKgg0CL1KpkiF4oiYk2UK/M3ur4/800odg91+B7dwIcCG0PvkRb7pYkXGpCeFxie02XmKiQP+zQmxnbOQK3KfemoeLbZt3e2Tpw1yDOODGIrWOfqnLBAfIAp52jnUjCiT1y7lBcp6kksNVKoS8NeL/Rn34TAYMbe8CMwJKetqbrQkh+acI1GpyCfKjLgN0xGzWx4GLcWhpWw57nlyIRUdAxV5PsXRhKlZ99ymj8l+G3G3bjbE5NgCwKo//BwEQXwFTU1ARQViACIAotEowuHdY4KS/3+p7pMBvX6cfdCILbs11j0JaXwIgiAIoh+RFzf35tVTXn31VUydOhU1NTVgjOHpp5/ersyaNWswbdo0RCIRhEIhjB8/Hps2bZLHM5kMLr/8cpSVlSEQCGDatGnYvHlzQRttbW2YMWMGIpEIIpEIZsyYgfb29h7FShMfgiAIguhH2OCwevHalYlPIpHAoYceinvvvXeHxz///HN897vfxYgRI7Bs2TJ88MEHuPnmmwsMEmfNmoW///3vWLx4MV5//XXE43GccsopsCzXiXr69OlYtWoVlixZgiVLlmDVqlWYMWNGj2LdayY+8+bNA2MMs2bNkvvOP/98MMYKXuPHj+92m4sXLwZjDN///ve3O3bfffdh6NCh8Hq9GDNmDF577bU+6AVBEARBfPOYMmUK5syZg9NPP32Hx2+66SZ873vfw/z583H44Ydjv/32w8knn4yKigoA4hbgww8/jLvuugsnnHACDj/8cDz++ONYvXo1XnrpJQBixWjJkiV46KGHMGHCBEyYMAELFy7Es88+i7Vr13Y71r1i4rN8+XI8+OCDOOSQQ7Y7NnnyZNTX18vX888/3602N27ciNmzZ+Ooo47a7thTTz2FWbNm4aabbsL777+Po446ClOmTClYciMIgiCIfZG+utUVi8UKXplMZtfisW0899xzGD58OCZNmoSKigqMGzeu4HbYihUrkMvlcNJJJ8l9NTU1GDVqFN58800AwFtvvYVIJIJx48bJMuPHj0ckEpFlusMef6orHo/jnHPOwcKFCzFnzpztjns8HlRVVfWoTcuycM455+C2227Da6+9tt39v7vvvhsXXnghLrroIgDAPffcgxdeeAF//OMfMW/evF3uS55/LXVN3qYMEQJQLWWjbbgz3LYrIlZyQDYMeFvFe6ODu4LaGJfCYDXjCk6VnCui1eMoSF+RDbrbeSGqqgLZIsecThMC1bwYWOkkfA3XFRoE5p2mtTRHyhHmJqoZuCqCTxczKcAN1LsCZK05jo5DxCyecVeYq1gcuZAq42UcyDgCPDXHC5yn83GAOU7OEALcfIqL8EaOZJnYny5iUqxtG0yKtW0DKP1QCKY9bTmgk44/Xe5BttjrjK0FNS3KsYyFyHoxcNEhGiIbXKfBnDO25assdAzKmzBa0B2TQmYDLQc7QudWFAjIMyUMmtBSw9MK6Il8LK4hJCDcvgFhdhl3jBjtInGdAWH0mDeNVHJAyhmDVJmKyHoRq+lTYWtCJA4A3hZTmkjm/O7nKBdyxeKemCvkzrqm1CKtxTZxbT3tvEAYfegVwrTzg9+TyJkg9ib66qmuLyfivuWWW3Drrbf2uL3GxkbE43H8+te/xpw5c/Cb3/wGS5Yswemnn45XXnkFxxxzDBoaGmAYBoqLiwvqVlZWoqFBPCjU0NAgV4g6U1FRIct0hz2+4vPTn/4UJ598Mk444YQdHl+2bBkqKiowfPhwXHzxxWhsbPzKNm+//XaUl5fjwgsv3O5YNpvFihUrCmaVAHDSSSd1OWPMZDLbzX4JgiAIYm/D7oMXIDLJR6NR+brhhht2LR5btHjqqafi5z//OQ477DBcf/31OOWUU3D//fd3WZdzXpDfbEe5zr5c5qvYoys+ixcvxsqVK7F8+fIdHp8yZQp++MMfora2FuvXr8fNN9+M4447DitWrIDH49lhnTfeeAMPP/wwVq1atcPjzc3NsCwLlZWVBfs7zyp3xLx583Dbbbd1r2MEQRAEsY8TDof75HH2srIyaJqGgzolawWAkSNH4vXXXwcAVFVVIZvNoq2trWDVp7GxEUceeaQss23btu3ab2pq2u7/9K7YYys+dXV1uPLKK/H444/vNO39WWedhZNPPhmjRo3C1KlT8c9//hOffvopnnvuuR2W7+jowI9//GMsXLgQZWVlOyyT58uzw6+aMd5www0FM9+6urqv6CFBEARBfP305omu/KsvMQwD3/rWt7YTIH/66aeora0FAIwZMwa6rmPp0qXyeH19PT788EM58ZkwYQKi0SjeffddWeadd95BNBqVZbrDHlvxWbFiBRobGzFmzBi5z7IsvPrqq7j33nuRyWSgqmpBnerqatTW1mLdunU7bPPzzz/Hhg0bMHXqVLkvv8SmaRrWrl2LQYMGQVXV7VZ3Ghsbu5wxejyena4ydcU/NwgdxJFn3oWizx3zvE5pc1NlKvS4O+HSk1wa5RkxE5mIuES66WpG1KzIdA44ZoghJuvmM5ZzBpmkNF2sIl0qto0OoUXJ60oCW01YUv+hyGzknpibwDJTpBRkAc8b3Smmm008PkBBaLMY64YTKpH/3mTDItElAFi6Bj3FC0zwwptEkPEaDeliN2u41DlFOWw1H2sWasYVxCg5x2iwkzYoWc6gJ92xVNOO0WAsg44DwrCdrOVa0kYu6GSob0pCyYg4MtVhWB5FjnM+uSfv9FHM+VSpf+oYpEr9jekFStbYTmzO2Jc6eqY2IF0i9mlxdwyZBamTMjtlYbc1hsgXttOuq+sJ1Fuw8tnVvQDPiv2+FkvqvkrfawU4hxUSDZpBHYrhjom+iTsxcqm/6qzpSlSprvFj3M30bvoY7O9ExRi8HoHl/F4Z/+O7YavAu49cBYIg9jwWRy+zs/e8Tjwex2effSbfr1+/HqtWrUJJSQkGDx6Ma665BmeddRaOPvpoHHvssViyZAmeeeYZLFu2DAAQiURw4YUX4uqrr0ZpaSlKSkowe/ZsjB49WkphRo4cicmTJ+Piiy/GAw88AAC45JJLcMopp+DAAw/sdqx7bOJz/PHHY/Xq1QX7Zs6ciREjRuC6667bbtIDAC0tLairq0N1dfUO2xwxYsR2bf7iF79AR0cHfve732HQoEEwDANjxozB0qVLcdppp8lyS5cuxamnntoHPSMIgiCIbxbvvfcejj32WPn+qqvED6HzzjsPixYtwmmnnYb7778f8+bNwxVXXIEDDzwQ//d//4fvfve7ss6CBQugaRrOPPNMpFIpHH/88Vi0aFHBfOCJJ57AFVdcIXW606ZN26l30M7YYxOfUCiEUaNGFewLBAIoLS3FqFGjEI/Hceutt+KMM85AdXU1NmzYgBtvvBFlZWUFE5Zzzz0XAwYMwLx58+D1erdrs6ioCAAK9l911VWYMWMGxo4diwkTJuDBBx/Epk2b8JOf/GT3dZggCIIgvgY6C5R3tX5PmThxIr4qA9YFF1yACy64YKfHvV4v/vCHP+APf/jDTsuUlJTg8ccf34UIXfb44+w7Q1VVrF69Go8++ija29tRXV2NY489Fk899RRCoZAst2nTJihKz6RKZ511FlpaWnD77bejvr4eo0aNwvPPPy/vNRIEQRDEvooNBgvdf8ppR/X7M5SkdBfpKknpV3H8cfOQKjPke2ZzoJOwWs2K+Xaiwp2XWl6hdwEAo8OWGpF88lBZznDfa2kn0WeFInUyXAX0hKvN4Ux4xgBC8/HluqKQG1+6SJHeMbkJHcBHYhIa3AQUfZ4W8a1vcuOpKka6QohB2odp0BJAeKPIvKqlLOSCoo+mX0W6aPuEp55OfQ1tSEHJCo1PvDYgk3BCcTVBAJAsyydBZVIvZesM2TCQczxq9A5AS7l1yt8XJjupKi9SJaJ+phjIFonjakokQwVEss78tVByHMlKx7unzdXD6EmhZcoFHS2W5mpoLMP1I9KSgJbKJzZl0NJOl7KAv0kIq3IBV2Nla0C8RpFjlPd/8jdb8LRknLoWmGmDa44WKGQgWel+3jJh9zOST0Kq5LjUjXX2O8qG3YFlpqtD4hqkbqz0I9Gx2CC37Ee/IW8fggCwR5KUrvy4EsFeJCmNd9g44qBt/TZJ6V674kMQBEEQRM+xuXj1pn5/hiY+BEEQBNGPsHp5q6s3dfcF9rhzM0EQBEEQxNcFrfjsAV7+l2v7PW7G3TDiHNlgPh8Vh+n4tHTW2egpSL1KJqLIXE9a2gZX3Nl53odHS7q6/ECDJb2DkhUaTC9Q9JkwmkmXaUiXiDrMYtAdzYeW6tQuc7UyeoJLXYhVH0TrCFHE9APNo4WWp2adhY5vuTlejA4hUAlvZEKv0skkwjacviYtcMfzxvIKHQwABBrdsuraTWBMlFEGDJN+O1rSgp4Sopnofl6ppSlZ3QErKMyP1JQJrjC0jfA7Y8ik1075e+3yHKEVLfBXCNdQK6AjWS0CSZUqIjcZAF8Ll7ojrjKENolzp8pU6fejZgt1W54ol3GBu55MzHJ1WUaH0G/lyWtu1CwKyOd5M32At01sJ8tV+DeLcU4ODAAA9FheI6RK/ZaS4+DOwwCcdfJkynFYzvk6BiowHS1Uycc2TG/nfoh/LYNB78jXBcC59I3KBYCRNwv/qjW/Iq0PQXzd0IpP19DEhyAIgiD6ETZnsPmuT156U3dfgCY+BEEQBNGPoBWfriGND0EQBEEQ3xjIx2cX6Y2Pz5c58sy7ZL4mrkLmubIMBm+70I+YHkV6wgCAr9nNWZULOvmg3F0AB7Kd/FryOhJvuw3LYFLbkQ0xmTtLzQKR9TknDiY1NKlSd36sJzkU09EahRXk/E48rVzG7W23pD7IVl3/GlsX5/K0iUC5zpAJq7JOno6BhQuReY8ef6MtPWgyEQZPTJzQ9Ln9LPk4I7eNxg6pbeKGhtiBEXks9HkHlC3Cb8jcrxpaW9I9YUqY6ZjVJbC9Ir74QA+SFeI8Sk7oWOR5HK2LmgaMhOhsukhBpggyb5gIwt00nXELb7Sl1ihVpkDJur5DejKfs82Cp1UIfXIRA8lyEVNooyv+sfwq1LQzrop7fQEgVaFD7eTpxJ3h5cyNAwCK17r1dccjyf/BFiAjxrT1pANkXjhmQ+YGUyxxPfJEh9vwtLifGSMm/v3P3aT3Ib6B7AEfn399OKjXPj7HjaojHx+CIAiCIPZ+eC81Pryfa3zoVhdBEARBEN8YaMWHIAiCIPoRJG7uGpr4EARBEEQ/wuIKLL7rN3Ssfq78pYnPXsCb/3O13J4w/S4pGtXSXIqEMxEFqmNCZ2uAmnaN7vLb2bDqJppkAHcM9BjnwlAPQnSrpThMvyN2buPSTC9ZwdB0uHjjbYY041NyrsA452cwOlwzQ1sT7VgGk+LdnF+B7hgoMoXJ+NQ0kAupyBSrTlyQwupMRIUp/A8LEo523m4brsBwDPS4BpkstewjEywnzpELa7JOtqhYinyNDgu5AJMib21AAD5nfLSNje75IiHALzJxZks9SJWKWHMBBn+jawKYT5CaC6qybmwwQ6pcnFyPA+FNrtFhLuD+gmK2myA1E1FkGcsL+OJiW81yaZiYC2hIlouBKvo8DTWcF7PbUJyEtmZARbJCXDsjbiMTVuFtEQaGesJN9OprtZEJuwaZrFnst3U3IamaBTKG6Jc5bhDCH4pC8YEMgWPcBLTpF8plf4o+y0mTxOK1QN2JIhbfNjeB7ME3LJBC7tV3ktCZIIg9A018CIIgCKIfYYPB7oWE10b/XvKhiQ9BEARB9CNI49M19FQXQRAEQRDfGGjFZy/jrb+4ep/vnn4nmLPiGNhmyv22xpApEpeOq0BofQIAoJg6MsVCW8FswBNzdUB5bYua4cgUuboL08tgOUkvmeXqekwfoDintDzutpLlMmllRy1D8FtC/6H8TyksZ382qMgEq2rKBtcdrYpfkfGLdhmyTjJMxQZUR/di6662h9lAzimjpiD1RUYHpObJ90U7WIcYg8ThA5B2NETpIibNBW2dwYjZiA8Qx/wbO8C2tTgnV5AbVgUAaD/Ah9JVQkjk3RoHIE6uJRXYzhhylck+eFtM2E7/whsV2cf8WGUiihzDfOy5AJPjDACWo7FSM5DXonhNEiFN1E2XGlAz4lpahuJqwOJZmQhVj+Vga4YskyliUDPiJFwT2ixA6HfyhpKZCJMJUD3tttQhqRkujSK5wtA2Rmh5LC9wRHkdAGDpupHAOHHBrDYDgQYV4ZfXimumaTjgP6LdNb+pRXiViEu1gNgRwgxx3Ll3451HrwJBEH1P78XNdKuLIAiCIIh9BKHx6UWS0n5+q4smPgRBEATRj7ChwCJx804hjQ9BEARBEN8YKEnpLtKXSUq74vDLFgAQ2htfixBnRD5sA0sJcUbs0Arp9aPmuEzKGR+gSV8Vod8Qc9xsmIHZQKbYPYfi5PVULDfRqa1BJk5lnfbrSS69WCyDSS2PnrCRqHK8X3yAJ+qcO8plklOuQJYHhJYk7x1jq+L8gNDG6Cm33c5pYzIRcY7iD6Nu/JsbATufIdWDxOEDRRxeBZrjIWR6FRgxE20jhN6kYnkCSlp0pHlMEbxtTnLRYgXZkGgqn1wzH7uRcHRLaRumo+WxDCBQLwRQ/v9sgVVdCgDo2F9kMc35OumCHC2PHufQnP5xFYjXOL48HAhusZ0yFvQOEV+yyisTw/q2pcEs26mrIF3ukXWZUyafXDZPNqzA7qQpyo9zopLB057f515XAPJ82aAity0PQ0IMLSLrOFoOc8t7GxlKP3KEYIwhNkicsGMox8gxGwAAa94fIsvrUSY/X+H1HMv/RHofop+yB5KULl51EPwh9asr7IRkh4UfHfYxJSklCIIgCGLvx4ZCPj5dQLe6CIIgCIL4xkArPgRBEATRj7A4g8V7YWDYi7r7AjTx2ct5/z43p9HR034LAOg4sBjpIrFYlylyy3IF8Lbl3wg9DiD0JXlNiZbmTq4oN8dWJiKqqElAcXxdMkXCV0bUgczDxRmDnhAiEV+z6xPELI7wBvE+WalJn5otJ9kIrhOxFn1uIV2sSL2Q5WHSk8YKMtjOd82/zYanVQSidWSgbHUSShWFHVcdIHZwKTxtQlPi2QzAcAQ0uZzUOTGbS72LHrfAFYbwBlGn9aAAgluEqKXk4ySyYVFfCTLoCRFIslrkF8sT2SDKmz4FesLJjxZS0TFQ1G0fNgTVr4oLkA0qSFQDPif0VIWrk8pEmBx/APA3ucvK+dxlpl+V/Qitj8PWxYBaAQ2pcnE+rjCp3fFvy8HyiTeKyZEqVWU+ts7tKjnAdNZ5PVHA1yKC4iqT+dxMH0Mm5OiObNd/KK0xhDY47ekMxR/l2+TQMjZsXZH9y68l22VZfLSxBgAw7JDNWP+BEAnZhvv5UnLA0aeKz/ar/+8aEATRO6xePtVl0a0ugiAIgiCI/gGt+BAEQRBEP8LmCuxeODfb/fxhb5r4EARBEEQ/gm51dQ1NfPYhXv2Hq3/Y/7d3AwD89QyedkcnYzDp3QNA6jT0JAdzfG7SxQqY7Wo+9ARHcKt7jkzEyUHVyqU/EACYfvGvEXPzT5l+BVrS1fnEa4TGxNfKAUcvUvSBJn1jskFxbtXxi+msn8t73ABA02EqvK0+Uf9zHf5N20T5hiaZmyq0rRkt3x8JAFByA2Vd/dMt8P9ni3MCjvjYQaI/2xJQtjaDlxU5Y1UCM+BqYoz2rOxTIij2MxNI1oh+lK0CEtUiyMDWHFIVYju41XJzlw1UsOE01yBJyUDqp5SMq/HxtrnjqWSBbFDUT1UAxWsdfZLF3Wtp24AiLpiaMIHyfD42DtUZfi1lIVEj9qfKGIwokC4RxyyPm4PNv83NiRZoFJorcT5ITZGS5TLPW87PpFaIa4DRnvdFYvLzYWsMtgnXK4gDSZH6DJ4NHvlZ2/rpILDivP5KeCAB4jPHbBHHEf+1QOYu++D3rr6NIAiir6CJD0EQBEH0I2z07sks+6uL7NPQxIcgCIIg+hG9NzDs38890cSHIAiCIPoRFldg9ULc3Ju6+wL9u3cEQRAEQRCd2GsmPvPmzQNjDLNmzZL7zj//fDDGCl7jx4/vsp2//e1vGDt2LIqKihAIBHDYYYfhscceKyhz6623btduVVXV7ujWbuOza67CZ9dcBVsVSS/1uCNMtdyXluHQMhxcBRJVChJVCnJBYRjHNfGyvAxcFeJXWwP8TTb8TTbUHGB5xUuxOHzNNnzNNmxdiFq5wqCmuTyX6VdEokwuRLLMhnwpOSHUZVycO1XCkCphCGzNylfNqzH4mjl8zRyRzzn0DvGqH68BoaB4AYBpAqYJPmwgSlZ3oGR1B+KDfdCbE9CbE0BJEXhxSLxKwvC0ZuFpzYIbGuAxYPs8sH0ehNbFwBVh+hjdz4AV0GAFNDFeTAivmQUE6hgCdQypMiZMHLkQOWdDDNkQQ8tBKjJhBZmwgvAmG8E6jmAdR+V7JspXm1CzgJoV4wAmXqkKyLaMOIeeEC9/PdC+v4L2/RUky1UwzsE4h+0zoEaTUKNJQGHw12fhr89CyXKYXgbTyxAd5oWa4VAzHIopBM3ZYo5sMUemOgcrYMMK2EiVOQlJLQ4lY8Po4DA6ONQsh+lXYPoVcJXJa+drtZGJMGQiDJwBuYCCXECBlnE/X0bCBleAZAVDsoIhU8TgaQU8rYC/HjCDNsygjVwQYDkmXhbgaxQvWweaxjA0jWGwdCBdLl4H/moBRtwiXgRBdB8brNev/sxeMfFZvnw5HnzwQRxyyCHbHZs8eTLq6+vl6/nnn++yrZKSEtx0001466238J///AczZ87EzJkz8cILLxSUO/jggwvaXb16dZ/2iSAIgiD2BPlbXb159ZRXX30VU6dORU1NDRhjePrpp3da9tJLLwVjDPfcc0/B/kwmg8svvxxlZWUIBAKYNm0aNm/eXFCmra0NM2bMQCQSQSQSwYwZM9De3t6jWPf4xCcej+Occ87BwoULUVxcvN1xj8eDqqoq+SopKemyvYkTJ+K0007DyJEjMWzYMFx55ZU45JBD8PrrrxeU0zStoN3y8vI+7RdBEARBfFNIJBI49NBDce+993ZZ7umnn8Y777yDmpqa7Y7NmjULf//737F48WK8/vrriMfjOOWUU2BZliwzffp0rFq1CkuWLMGSJUuwatUqzJgxo0ex7vGJz09/+lOcfPLJOOGEE3Z4fNmyZaioqMDw4cNx8cUXo7Gxsdttc87x8ssvY+3atTj66KMLjq1btw41NTUYOnQofvSjH+GLL77osq1MJoNYLFbwIgiCIIi9jbyBYW9ePWXKlCmYM2cOTj/99J2W2bJlC372s5/hiSeegK7rBcei0Sgefvhh3HXXXTjhhBNw+OGH4/HHH8fq1avx0ksvAQDWrFmDJUuW4KGHHsKECRMwYcIELFy4EM8++yzWrl3b7Vj36FNdixcvxsqVK7F8+fIdHp8yZQp++MMfora2FuvXr8fNN9+M4447DitWrIDH49lpu9FoFAMGDEAmk4Gqqrjvvvtw4oknyuPjxo3Do48+iuHDh2Pbtm2YM2cOjjzySHz00UcoLS3dYZvz5s3Dbbfd1rsO7wY+/K1r8nbIzxcg55jhWR43waYREy9AmPXZGpPHtDSXCUwVkyNZ5pgQtlgwOkSZVKkizeqYxcHV/DkYLE/exA7wtTjuDwzS1E9LcxiOGZ7lVaDkODIl4lhigOEm+yzSkA2J/UpO6EcAwGgHot+qBgBE/hUHd2b+yrY2xMYJc0I1w5EcUgQA8C//wr07XRyB7RHaoPoJfpR+4kUmIvqXKnPvYXvaOVoPdD9PaWfxz2h3E4jmdS6iH+746wnRX0D0ObxRGCEaTUlER0YQ3GLLMcwnjQWEtig/bvkxzPkAj5NkVk9yxAeImCKfJWCFhKFjLqSDa6K8vz6NbNjvtM9kIMwGoAp9EgCon+loGy3GzdviHAfAdQY1azvxKPKaKSaHp9WUsUbWu8luO19XxRT7syEFRtyGEXfHwegQ7bbtr8nx0Q7ogP1xSLTFgPR3RYVcyv0zlKo1YW0IAADCXzBp+nj0qb+lBKYE0U1szmD3xsfHqfvlH/gej6fL/3u7bNO2MWPGDFxzzTU4+OCDtzu+YsUK5HI5nHTSSXJfTU0NRo0ahTfffBOTJk3CW2+9hUgkgnHjxsky48ePRyQSwZtvvokDDzywW7HssYlPXV0drrzySrz44ovwer07LHPWWWfJ7VGjRmHs2LGora3Fc8891+WsMhQKYdWqVYjH43j55Zdx1VVXYb/99sPEiRMBiAlVntGjR2PChAkYNmwYHnnkEVx11VU7bPOGG24oOBaLxTBo0KCedJkgCIIg9hm+/H/cLbfcgltvvXWX2vrNb34DTdNwxRVX7PB4Q0MDDMPYTvJSWVmJhoYGWaaiomK7uhUVFbJMd9hjE58VK1agsbERY8aMkfssy8Krr76Ke++9V67WdKa6uhq1tbVYt25dl20rioL9998fAHDYYYdhzZo1mDdvnpz4fJlAIIDRo0d32W5vZroEQRAE8XVh9zJXV97AsK6uDuFwWO7f1f8DV6xYgd/97ndYuXIlGOvZShTnvKDOjup/ucxXscc0PscffzxWr16NVatWydfYsWNxzjnnYNWqVdtNegCgpaUFdXV1qK6u7tG5OOfIZDI7PZ7JZLBmzZoet0sQBEEQexv57Oy9eQFAOBwueO3qxOe1115DY2MjBg8eDE3ToGkaNm7ciKuvvhpDhgwBAFRVVSGbzaKtra2gbmNjIyorK2WZbdu2bdd+U1OTLNMd9tiKTygUwqhRowr2BQIBlJaWYtSoUYjH47j11ltxxhlnoLq6Ghs2bMCNN96IsrIynHbaabLOueeeiwEDBmDevHkAhBZn7NixGDZsGLLZLJ5//nk8+uij+OMf/yjrzJ49G1OnTsXgwYPR2NiIOXPmIBaL4bzzzvt6Or+b+M8CV+8z9qK7YetucsmkXB1kgAJ4m8Q7W2VQM0JIkQsoUrfBVQbLmXt6ohzJCvFF8Lba0FKiPOOQmiA1JxJaAoBiujoSJedqgrgCmD6RQBMAfI05mH5VhhXYZjt1bPi2ikyaRQCUdZtErLkcmDMhTh3kTlJtDcg62h31kCHIFLsf6/y5vW1A64GaTA7qae2kSQJg6e6vhdBG3qmvjkanzBXiqRmR3FWew/mloVhAfIDIvKkX6chEFPgbxViFtliIDRIxmn5AS+XHx43D0Bl8jTnZLuOO9iqWRmag+NWVKtdgOpogr4fB1yLaN30aogeI8uUrgNaD3P74twGRteLcRZ+byPmcJLMe93ePZTB57Y12C7YhjuWCbpm8T5DoNJdJSaVOK+T+WGnbX1wDrgHhT0Ub9hchBOtFWS3NgRVCt7T1uwr0OHPGhiOw1dFSGWKsASBRoWHMJQucMeNY/ucd35ImCGLvY8aMGds9wDRp0iTMmDEDM2fOBACMGTMGuq5j6dKlOPPMMwEA9fX1+PDDDzF//nwAwIQJExCNRvHuu+/i29/+NgDgnXfeQTQaxZFHHtntePbalBWqqmL16tV49NFH0d7ejurqahx77LF46qmnEAqFZLlNmzZBUdw/zolEApdddhk2b94Mn8+HESNG4PHHHy/QC23evBlnn302mpubUV5ejvHjx+Ptt99GbW3t19pHgiAIguhrLDBYvTAh3JW68Xgcn332mXy/fv16rFq1CiUlJRg8ePB2Dw7puo6qqiopSI5EIrjwwgtx9dVXo7S0FCUlJZg9ezZGjx4tJ00jR47E5MmTcfHFF+OBBx4AAFxyySU45ZRTui1sBvayic+yZcvkts/n28508KvqAMCcOXMwZ86cLussXrx4V8IjCIIgiL2ezrerdrV+T3nvvfdw7LHHyvf5h4HOO+88LFq0qFttLFiwAJqm4cwzz0QqlcLxxx+PRYsWFUhfnnjiCVxxxRXy6a9p06Z9pXfQl9mrJj4EQRAEQfQOC7u2atO5fk+ZOHEiOOdfXdBhw4YN2+3zer34wx/+gD/84Q87rVdSUoLHH398FyJ0oYlPP+W9h67Cwde7OY78jh4s4zwpaAp5BXIhSE1M0WcWVGFDA8XkUveSKnVn/+kSBYF658NtcwQahN9LLqjCExX6DZbjyAXFDJ1xIFXm1mcWoDt+L41jDRStE3V8TVlkioWOxtYVcF3UUT/eANhOu4oifXy8b34C30Ch84mOKkUmIspngx7pkRNotABLxKonRb4x2/HA4arQtQBALsCkdoUrTO63dSat25Ws0PDkyeunhAeSqJvzMaFdgdApgSlIlzj9yADeNnEszRgyRXDqA5liR3PjByKGGAN/g4m8AU5e3wMIPZMtZESwvAq0pOnEDXBVtN/4bUCtTCLXIQqWfqhKHQ5nkFoey8Og5NzxyWP5FKhZ8T64MQVb73T9bO7Eqkkdl+kX+btyPua0ZSOwTZRLVoocbgDgbe+sFeMINIgP25BnbDFeANIVXkSHqM4Yun5H+c8rAPg7OA77maP3sYCVf3S1bQRBEF8FTXwIgiAIoh+xJ2517UvQxIcgCIIg+hG7mmi0c/3+TP/uHUEQBEEQRCdoxacf89GvXe3D8LlCE+HbBvgbXf+aZLmC8CY3L5Oac7Ueelzsbz3Yg9IjhR14y5tVYI7Bj7fNhuX4WVkGA7OExiNdocFwNCXRwQqK17k+QQBgxMT74FaORJX4CGYiXpkzzNeUg7pWePewSAhWlRAmKR0ZKCnH2KUjDjsgTq5YnfQpnbKfpEoVNH8n3zcbJe/osBx9jGIBwa0iDiPu6n1SpQw5kSoKplcBd74hnnZIDyC4wwdbYwhuccU/bu4yBs4AzcmJlg0yqVdRcq7OKf8vILQ7pqOTyRSrCNal5bHo/q7IhXU6f16/yFXAaBcnyNRmYKY1GGGhocmGAlK71RlbY7ItS2dSv8MZkAk72qSkJn2eCuoaCpijFbJ1BWqGS3+nzjncPG1cxmh5mPTlsQzhIQUAsWGdBDwcMlajgyMXcNppsaWuytaZ1CRZOsO4GXfjncfI14cg8nAw2L0QN/Ne1N0XoIkPQRAEQfQj6FZX1/Tv3hEEQRAEQXSCVnwIgiAIoh9hcwab7/rtqt7U3RegiQ9BEARB9COsXmZn703dfQGa+HxD+PRGIXQ++IYFyIYUKWTVkxzpYiFWNuIctpOLU83asDXx4S/7wAJ38r+ZPkjTQiXLC4TF+SSVeopLQ0E1A8QGi/2R9SZMvwLTL44xC/DERP34AAYj7oibP9wC+ITglYcDgJMEtOOgEpkIVc1xxAbnzfAgRdZqGshGxDZXGEKrRYe0tDDDy5vp2ZqbYFXLcKiO8aAR5zAcwXH7cPdXT6YY0DvEticK6E6sppchGxJx6Akb/nqh3hUmgR6kSp0x6ZTUtKPWbTcxmKPqTfdYfty0NIeaFAlLba+Ook9FVtMtR/vhwpCsEP1jJuCvF3v1mAe2BwhsNWRf86JpNc2lgL2zIWMmzKTovbN4OlmlwxMTfbAMhmynpKX5+uJz4J4j51fAHYd5NculaaTRwZHNi5VjHLFaEV82JAwNZbuOptvSAa+TwNX0uYLpdLEbn54Qx8afc5c4X4bjjb/OBkEQxM6giQ9BEARB9CPoVlfX0MSHIAiCIPoRNhTYvbhd1Zu6+wI08SEIgiCIfoTFGaxerNr0pu6+AE18vmF8NE9ofY45eT4AkeiyM/nklIBrOJgqUxF7vwoAUHZoI5KfVQAAjA4bofUJAEBiUEDW87Sa0uRQ1xlK3nTEJ+kMcsOq0HSoa1iXNwjU44C32TEb9PvAtzUBABjnUDtEodQhQWgZ17jO1+TGmteR2EFX7+Nr7qSdCTPYGpCqFO+r37bg25IUMeiK1BGZfg0dg4RupvRDG1lnDGy9U3JQD6DkRHlvWydBDGPIFhvybbJSha3l+8mQDTnbCqCmnK5uZmg+RLQV2gj4G8UYeNpyaBwnxEr+bRZsx2AxssGGksvHwaQJYyasIlUmyigWoLe5ZopaisvEpLbBZOJUX4sbuxHn6Bikyvd5s8bQJo6co8niCuBtc8woO2l9AltEZ9LlHqff7rFgvSWT3YoGxTmSFYprJmkCoTrRKW9duyzafliZND/MhpgcfzXnNudvsgEOqU3jCsO3LrhbHl/+JzI2JAiiEJr4EARBEEQ/gjQ+XUMTH4IgCILoR/BeZmfn5NxMEARBEATRP6AVn28o/37uWrk9boariWC20H1wBqkrUUyO8BfO0ucHZShdJwxtYsODiO0fdOpx6HGnruYuk3rbLCQPLAcA+Nc2QWtNoOgz8bFL1GgyUaWa5cgFhf7D3r8UPo8oky0NIFPq+NHoQDIsyjPL9ZHRkpBaENPvanwS1QxGTGwrlvDwCWwR75tHqxi8Oe/FoyG6n0fGnKrIt8XgaXHrp0vEtr/BPUe6REFgm2uIk9camT4Go4MjVeokPy1zk2/auhMzhH+NzzmHlubwbRMmNtkiDzKOH5GviYHlPXNyHJtPM53x9EBNi3EyokBosxj/ZIWCbFiG5CRgdTRC600oWff3Tl4H5G0xYXp1OYbeZnGccTeBK7M5EpWa3C5aJ7Q9XGVQ0u4YhOps2W7Or0hfoHSRIvukJyD1T2oWaB0prrE5pgKqm5tVJjX1xLib5NUEMhE3YSlXxOcVEDqkvMdSuljBEZeK5LwrH3AT9hJEf8cCg9WLRKO9qbsvQBMfgiAIguhH2Lx3Oh2bf3WZfRm61UUQBEEQxDcGWvEhCIIgiH6E3Utxc2/q7gvQxIfAO48Jr5OjT/2t3McA2KZYKvU3WdA7hK6kY5AHarvw7gls0ZGqcLQZXoZchdDoBOpNGDGh+bB1hlSF+JilS6sR3JyB/5NGAICaKYMZEHXa99fQfkDeR0ZF8dpSAEB0P3e5NvIFR6DBEYwwJjUfppchJXNRAclBjreNYYOvE7qV5GALwS9UeNpFHe8Gjnit8B5Klbl+O9kiyHYDWwHTK7a1FFD8qVj/ZTaH4vgdKSaXucfsTtomZgvvoLxGRU1Drq9marMoq24FAOQer0R4QydRi5P7LFOkwr+NO/Ep0l/JMhREVjhaKM3NH6bmuPTFCdRbsDVVxm56gbKPTTc27o5bPvdZNqhDTzrnq3A9h3IJBt3xHNITgJEQ4x+vUqRvj79OCJb8G0WSs3R1AICIMed3c2zpSQ7d0TbZOmT/LC8D65TzLV0sBioXgOxT5+vta7ER3iSucaokn2dOxKUlLKhZsZ2JeKXv07hz74bpxLFiIel9iP6NDQa7Fzqd3tTdF6CJD0EQBEH0I8i5uWv693oWQRAEQRBEJ2jFhyAIgiD6EaTx6Rqa+BCSV//fNXL7yDPvgp7Im8cwpEuEViZUl0F6qDC0idUayAobH+gJSL+W6H56QR6ovPYlGwayIS8CRSLvl5q2pd7E08bhaXNOZwLtwx19UQOkh03Oz2AZ4gupZoBsmHU6h/iXK4Bvs9B9RNa7vjHh1xWYHldHomY4TJ/ixO7uZ5zJXFimF4BzKFHt5udiFpP5okyf0P/k8W9z+80shrZR7nv/VidH1joDvodFYMF4VB5vOTwi+xQbacLTIDrlr3fHUDGBTIl7vmSVCDDyOYPmxBofoMDXbKNjoDifEQdig0Vb3lZbamW8LSbSxeK6ZiNAh98dT6lNygK2I72yVYA7Oc08UY5ElTiQKgkhsM2U7TLeKU9YmsPX3ElflPf0KdVknjbTw6QnEwCpNQrXWUgXq7Je3hMpUamg7QBxssh6x7OnyDl5sSJj5Ir7uWA2pNfTIVctwH/uJp0P0X+x0cuUFf1c49O/p3UEQRAEQRCdoBUfgiAIguhH8F4+1cX7+YoPTXwIgiAIoh9B2dm7hm51EQRBEATxjYFWfIgd8ub/XC23v/ODO2Hr4hdApkiH5XWEtjkO5vwyyEaAQIMQmhoJjmzAESFnObS0a1QHDuSCzrGcm3jSE7XBnAQxeocFNSNEt1wTRnuAEMrKHyKMwRN1kox6gOBmsZsrDN42Vylb8Ykw1cuU+4UpYH1GHkuXCXc8xgE97hjilRtICu011DQQ2CrOUfSFhbbh4uti6wB39LreVkB1+udvNJEL5MW4HAZsnPKdlQCAF/45FtwRCVeszEGLCtPC6EERxGvc3x95IXHgMw3pctFu+0EczBFWB+sYVEdMnaoEPO1OEtRyILRJ7NcTHJaHwXDMDU0f4Gtxrk3Mkslgmw7TpbhcyQHcUUcrWQZbd85RIQTVogyDr0WMU7JSlcJvX4vlJAt1ErR6meyrp9WSSWs7Pyiixy0pLgdzz2F6GRTTMVIsVaFm8qaRgNcRv7cfUPhrlCtuwlrFBJjlGBiGFbQe5IyrlyO8Lp/JFBh1jUhe6mknQ0Oi/0FPdXUNTXwIgiAIoh9Bt7q6pn9P6wiCIAiCIDqx10x85s2bB8YYZs2aJfedf/75YIwVvMaPH99lO3/7298wduxYFBUVIRAI4LDDDsNjjz22Xbn77rsPQ4cOhdfrxZgxY/Daa6/1dZcIgiAI4msnn6urN6/+zF5xq2v58uV48MEHccghh2x3bPLkyfjzn/8s3xuGsV2ZzpSUlOCmm27CiBEjYBgGnn32WcycORMVFRWYNGkSAOCpp57CrFmzcN999+E73/kOHnjgAUyZMgUff/wxBg8e3Led6we88dfZGH/OXQCEnkJ3EkKaXhVGh6Oz8bkJL9MlDEFHG+OJ2dJ8T09ypIsV6E6iS8tgUieSKlVhO5e2+FMLnnYh+khU69LA0NNqgquOiV21Bs3J7clsSA0SZ4B/a9rZbyNb6hPnjmXBNQ/gmNsZm9uQC5eLtqo0mewytMlCulR1+gQkK/KxKwhvFHGLPuSTiTJYIadMIp9kVeiGmA2899sjAAC1mxJQsk5HOIflF521NYaOQ4TuKFycBH+rWNS3AG+T0yeVwXSMImMjXGNDJQdEvhAxxQYpUgvla7FhehmMXF57ZEsjwGSF+5UPNHCZBJZrkLoevcNJqgrA8gKZMtsZfwWZiPitxEwgWS3K+JoZvG052a4SUJEqc8YwoMLbkhXtNidgO/1OVfvldfW1WMg6ui/OxGcpH3ceT2sO8YGibumHtjQjtAyG6DAGPSbem0EgUyr6XbaSo+odsR1c34HPzxSmkUWfcqlHUnMc3/mh+Gwzm+P1/5sNgtjXoVtdXbPHV3zi8TjOOeccLFy4EMXFxdsd93g8qKqqkq+SkpIdtOIyceJEnHbaaRg5ciSGDRuGK6+8Eocccghef/11Webuu+/GhRdeiIsuuggjR47EPffcg0GDBuGPf/xjn/ePIAiCIL5O8hOf3rz6M92a+BxxxBE9eo0ZMwZbtmzpVgA//elPcfLJJ+OEE07Y4fFly5ahoqICw4cPx8UXX4zGxsZud45zjpdffhlr167F0UcfDQDIZrNYsWIFTjrppIKyJ510Et58882dtpXJZBCLxQpeBEEQBEEAr776KqZOnYqamhowxvD000/LY7lcDtdddx1Gjx6NQCCAmpoanHvuudi6dWtBG5lMBpdffjnKysoQCAQwbdo0bN68uaBMW1sbZsyYgUgkgkgkghkzZqC9vb1HsXbrVteqVatw9dVXIxgMfmVZzjl+/etfI5PJfGXZxYsXY+XKlVi+fPkOj0+ZMgU//OEPUVtbi/Xr1+Pmm2/GcccdhxUrVsDj8ey03Wg0igEDBiCTyUBVVdx333048cQTAQDNzc2wLAuVlZUFdSorK9HQ0LDTNufNm4fbbrvtK/tEEARBEHuSPXGrK5FI4NBDD8XMmTNxxhlnFBxLJpNYuXIlbr75Zhx66KFoa2vDrFmzMG3aNLz33nuy3KxZs/DMM89g8eLFKC0txdVXX41TTjkFK1asgKqK2+fTp0/H5s2bsWTJEgDAJZdcghkzZuCZZ57pdqyMc86/qpCiKGhoaEBFRUW3Gg2FQvjggw+w33777bRMXV0dxo4dixdffBGHHnooAHGb6rDDDsM999yzwzr19fWora3F4sWLcfrpp++0bdu28cUXXyAej+Pll1/Gr371Kzz99NOYOHEitm7digEDBuDNN9/EhAkTZJ077rgDjz32GD755JMdtpnJZAomc7FYDIMGDUIUQLixESgv72JE+hcTpt8lt2ODxaKhlgIsR6MTrOcwYo6AgwFf/g7lvWPy2h9A+O/EakVblgFENgh9R87nJgQFAF+T0P6YfgU5vyifiTCoQkYCo8OWiTCNqAnTL74swS9iaB5bJJNn+httGRfXgExo+8VP3ulngSfKwSwRuK0z6bfTuT+mh8HfZMm+GTETiuV+vfR28fmx/DpsJ9lq02gPMLEdAJCIe6B/5miS4m6CTVsXSWABIDM+jqHlLQCAtV/UoHi543ekuMk9FRPwNpswHU8hPW4BzteccSA22NXJWV5nrGIcnqiIPVGlSb1Pzg/Yzm8MNeUmL02XQ+pqGAdKP8oV6IfyXjyedgu+OlGQZdxkpamhxchGOpV39Ei5gCK1YrYOeGLb/3lSctxNiDtEgZ4EvG2OT1GHJRPZamlX2xTclMa2b/tkG/mxLV1jCa0ZgMCWNFpH+gGQtw/RhzQ1ARUViAGIQPwwD4fDu+VUsVgMkUgEJz5/KfRA13rYrsglslj6vQd2OVbGGP7+97/j+9///k7LLF++HN/+9rexceNGDB48GNFoFOXl5Xjsscdw1llnAQC2bt2KQYMG4fnnn8ekSZOwZs0aHHTQQXj77bcxbtw4AMDbb7+NCRMm4JNPPsGBBx7Yrfi6teKzfv16lPfgP/aPP/4YNTU1XZZZsWIFGhsbMWbMGLnPsiy8+uqruPfee+VqTWeqq6tRW1uLdevWddm2oijYf//9AQCHHXYY1qxZg3nz5mHixIkoKyuDqqrbre40NjZutwrUGY/H0+UqE0EQBEH0J74s6ejL/wej0SgYYygqKgIg5gS5XK5AhlJTU4NRo0bhzTffxKRJk/DWW28hEonISQ8AjB8/HpFIBG+++Wa3Jz7d0vjU1taCse4vfQ0aNGi7ScuXOf7447F69WqsWrVKvsaOHYtzzjkHq1at2mH9lpYW1NXVobq6utuxAOL2W361xjAMjBkzBkuXLi0os3TpUhx55JE9apcgCIIg9jY4evdIe36dddCgQVJLE4lEMG/evD6JL51O4/rrr8f06dPlilJDQwMMw9juIafOMpSd3XmqqKjoUqryZXbpcfb29na8++67aGxshG3bBcfOPffcbrURCoUwatSogn2BQAClpaUYNWoU4vE4br31Vpxxxhmorq7Ghg0bcOONN6KsrAynnXZawfkGDBggL8i8efMwduxYDBs2DNlsFs8//zweffTRgie2rrrqKsyYMQNjx47FhAkT8OCDD2LTpk34yU9+sivDQRAEQRB7DX2l8amrqyu41dUXqz25XA4/+tGPYNs27rvvvq8szzkvWHjZ0SLMl8t8FT2e+DzzzDM455xzkEgkEAqFtguouxOfr0JVVaxevRqPPvoo2tvbUV1djWOPPRZPPfUUQqGQLLdp0yYoirtwlUgkcNlll2Hz5s3w+XwYMWIEHn/8cXnPEADOOusstLS04Pbbb0d9fT1GjRqF559/HrW1tX0Se3/nrb+4ebwOu1zkPGI2ULEiCQDQPu+k1A/40XGouIVoepnUwwCAlrSlL4+/Pg1/vdhveVSp/8iEFPhahDYkF1Bk3ifLcNvyN9nSX8bWGUr+tUGeY/OPhgIAkuXiV4SvWUzUA3UJdAwNAMjn93I0RQH38xyvcLctgyG0WZxQS9tQsqI81xhyTl4y08Pgcfxs9LYUrKAHiqNryRV5kCkVghrboyDh6GG4CqQ/KQIAeNsBXQwhmAmZiyxdwmDldTYfBLE1IR4yKEkBwS2i/UxEReM4d3CrX1NhRE3nHAzxAeJ+v7/RRM75+viaOSJfCHGU0diB1CDhcxPbD1JDwxVAc2IyA0B8P0e7FTRhrBJBeaIcscE6DMfbyNNqSp+dZKWGbFiMffhTd9lczdrSwwkA1LQ4YcdAVWqVfK1c6n28bRYsjxjnZLkCb7so720FciHXb6l1hIbqt8Q1sLyK1J21jfTBv020G2jIIVPkeCFlbSimk4eu1IC/WfTvqNPulLG99nfy9iG+mYTD4T7VI+VyOZx55plYv349/vWvfxW0XVVVhWw2i7a2toJVn8bGRnk3pqqqCtu2bduu3aampi6lKl+mxxOfq6++GhdccAHmzp0Lv9/f0+pdsmzZMrnt8/nwwgsv9KgOAMyZMwdz5sz5ynqXXXYZLrvssp6GSBAEQRB7NXujgWF+0rNu3Tq88sorKC0tLTg+ZswY6LqOpUuX4swzzwQgHmj68MMPMX/+fADAhAkTEI1G8e677+Lb3/42AOCdd95BNBrtkVSlxxOfLVu24IorrujzSQ9BEARBEL1nT0x84vE4PvvsM/l+/fr1WLVqFUpKSlBTU4Mf/OAHWLlyJZ599llYliU1OSUlJTAMA5FIBBdeeCGuvvpqlJaWoqSkBLNnz8bo0aOlz9/IkSMxefJkXHzxxXjggQcAiMfZTznllG4Lm4FdmPhMmjQJ7733XpePqhMEQRAE8c3hvffew7HHHivfX3XVVQCA8847D7feeiv+8Y9/ABBPWnfmlVdewcSJEwEACxYsgKZpOPPMM5FKpXD88cdj0aJFBQ87PfHEE7jiiivk01/Tpk3Dvffe26NYu+Xjkw8YEPfSbr/9dsycOROjR4+GrusFZadNm9ajAPZV8n4J30Qfnx0x4ey7EP4sDgBQ6lvcA6EA2g8vAwCoGeG/0vnHRF6nwywu820BjvcMAK0jB64LbYeStZCNuN4U2bCYt6dLXS2HZQDlHzi6lba0LBvbP4hsJ68exeTQ0uLkyTIFWSFvgREFvO3uV6JjoIip+FNL7rM8DIprSYNEpdtu9SvNbrmQD7mw+H5kSjQY7U4bKoPpdT2I8loX08/Ane+3koXMB5YNM5kXy/Rx6B1MxqrHnfFKcXic9m2dIRtUZP/UjA3bGUPTx2ROLyNugzn90NKu3qrpUFXqrTo/9xkf5G4b7UDqiBQAIPimD2oG8HTYzjEL3LmWyXIVLYeKOIY8a0ptFADknOtnetyTdAxWkHVu+5d+ZEvfJQAy7lwACG0W7TCbw9YY0kVuG6GtolPM5MiGxID6mrOIDxSaJM5EDjkAUFNWoa+Uk8Ors8cUOJd6qZdfuQEE0SP2gI/Pd//xU2iBXRcim4kMXp/237s11j1Jt1Z8dmRCdPvtt2+3jzEGy7K2208QBEEQxNcD5wy8F7e6elN3X6BbE58vP7JOEARBEMTeSd6Ppzf1+zM9zs7+6KOP7jAPVzabxaOPPtonQREEQRAEQewOejzxmTlzJqLR6Hb7Ozo6MHPmzD4JiiAIgiCIXSP/VFdvXv2ZHj/VtTOHxM2bNyMSifRJUMS+x1tPuqaGUwZdCeRvj6bSwtAOgOVTYRkMpk98frRkJ129zmRiS8XiMrmokrNhBpyPqaVBSwsNWaZIl+W9rTbUjCN25UCqXJRXMzr0re0AACPqg+ljyIYcYW8HEK/JC36FER4gEmNmIqKMHucI1OfV1wzc+ZnQWdhsGQyRDWKHHsuBe4XKWmmLQ0tlASa+E8wGckHRp2xIkUJdLcPh3+YmXs2LdLU0R7rETdqqOjpto90VQKtZwNdiObFaUuxteRkS1QxGLJ/sU5EGiHanb3yqQpGJRoP17v7iT20Zn6fdRi4o4vA0M5m8lCuAsl4k/eQagIwrCE5UawhvEALzcNyCnshXAoxtHaKvJQF4twlxdLbIAyMqygfrgEyxCDZTrBYkhu2chDWPrTEw2xUre1s6HWRAsE64L9qGKkXkuSCD4YjC85+zPJkiVwQeaLBkQ1qHWOUef85dePuJq0EQezOk8emabk98Dj/8cDDGwBjD8ccfD01zq1qWhfXr12Py5Mm7JUiCIAiCIIi+oNsTn/yTXatWrcKkSZMQDAblMcMwMGTIEJxxxhl9HiBBEARBEN1nb3Ru3pvo9sTnlltugWVZqK2txaRJk3qcIZ0gCIIgiN0P3erqmh5pfFRVxU9+8hOsWbNmd8VD9AP+Wfc7uT1l8CzocaG7iA/UoWYhtRaWl0HJuTofNe7aJtiOxiRTrMvyqsWRqBH6DyXHXU2QyWWi0GzQ1bOoGQNcFcnuuMZgxGyki4SmgyuA5XVjzjqJO5UsoDsPLTIOaCkuy3tbc05Z92vDVTfBJgCYAaFnUXRH7+bE7mnogLmf2GdrkDod08fQMdA1AZWmg1kgUC80JqZfgWed5cbtGP7ZGqA4MpT4QF0aBfq3MlheIOucm2uAknPGVQdyIXFA72AymahlAHrCdsaTyfJggCcqTmLpKpJVooKaEnocQIxjuhQwNkHGHh9oyPHJkynW4N0g2mKmhfhgkSRWy9hIDPTL8cjrdPSEjYxzvWwV0J3Ph5qGNFvMhhhyfobidSLgXEiF6XM0SW0mTL8YW2ZzhD8Xeh/Lp4FZoq1sUaEBa940kiuQiW/1BEfHMPEBSZUrOOLSBbCEvAkf3PNzEASxb9Hjp7pGjx6NL774YnfEQhAEQRBEL+G9fKKrv6/49Hjic8cdd2D27Nl49tlnUV9fj1gsVvAiCIIgCGLPwQFw3ovXnu7AbqbHj7Pnn9yaNm1awWPt+cfcKWUFQRAEQRB7Kz2e+Lzyyiu7Iw6in/LPTfdgykE3AgBKF38Kns1BGTnMLbBJGMiw6gq5K35gidTNMJvDDAidRy6kygSnppdJDUb7oTmwnNj2bYHrvQPIxJTZIIOa5fDEHA0HYzA6+XAGt4gJu5q2kS4VX4tAQxYZRwNi60Cq3NGLmJB+Nlqaw1PvrHQqCmyfU8bigGnLNdXEsCLEakU/1BTga3Z0QUwkCAUAyyhMomo7+hhmA60HipjCm2x42oUGJlWuY9u38glcAd82MTjpcg4t4ep3sp1yDOpxwNvCZJ3EdxJinOr8KF7jJPRscZOD5vwKUs6lKfrUlhqkTESBt825Rhag5rj03PFviALOjyLbp4Mrjv6q2EDyQJGwlivCryl/Djc+G7YzDpwBnmj+HByWweR4ZIrcZKJ6kiO6n+60JTyaRP9U5JzPjhEzkS4VZYwOC/kL49uaQrZEfEZsjwItlddrKdLzKRNWkKhxx9CfBgznczRxynws++e1IIi9CRsMjFJW7JQeT3yOOeaY3REHQRAEQRB9AD3V1TU9nvgAQHt7Ox5++GGsWbMGjDEcdNBBuOCCC8i5mSAIgiD2MDZnYOTjs1N6LG5+7733MGzYMCxYsACtra1obm7G3XffjWHDhmHlypW7I0aCIAiCIIg+gXHOeyTgPuqoo7D//vtj4cKFMm2FaZq46KKL8MUXX+DVV1/dLYHubcRiMUQiEUQBhBsbgfLyPR3SPsHk8Exg6EDxpq4BPCtyNDFFARtQJctlK4VviuXToGTz/jI2kpWOHsNgUlOSKVLQUeueo3ylKJ8LMJnXKRdkSFYCuqP/sDXAFlYz4BoQ/sLxz8lx+LcKIx/ji0akDhbiDq4IL6A8eT2OkrNhOhoVT6sJzzbhFaPERR4qOyL8abYe466GWl7A2yK2tRSH6ngZaUnb1fkwyJxmRsxG24GO/xAD0hWivKel8FcZc+QpnjZAT3JXB6MASl5SZELmHEuXu7m7ckUW/FvEOUo+tpAqU502ufBeAuBrMsFsce6Wgw142hw/oCQHsyF9lcA51IzYNn0KPO15j51OaW4MBVrS8QfyKtAS7kMR+Zxmao7DVvP5xoRGCwCMtizMkKOlytlgNmA53j2JCk1qm/SELXN4FYxTzgbXlYL3ctvpgm0o8nNna0xqhTxRV18l3ltSewQOvP632dudj/iG09QEVFQgBiACIBqNIhwOf1WtXSL//9LBT10D1e/Z5XasZAYfnfXb3RrrnqTHt7ree++9gkkPAGiahmuvvRZjx47t0+AIgiAIgugZpPHpmh7f6gqHw9i0adN2++vq6hAKhfokKIIgCIIgiN1Bjyc+Z511Fi688EI89dRTqKurw+bNm7F48WJcdNFFOPvss3dHjARBEARBdJP8ik9vXv2ZHt/quvPOO8EYw7nnngvTdHLq6Dr+67/+C7/+9a/7PECif7Ek9mdMnPwbAACr2h/G6x/JY3zrNrGha9CbhAjGHLc/LK+Yn1tQYMTEZ87yqTCiQjvibVEQ2uTkkMq6eg01p0kdSS6hwtJV6b/jb+Sw8vnAIkBHrVM/zaDHnXxbg8tl3qdcQJG6FTVrQ3F0Ie37u1+hjoEGStaK8oF1OXBNAcuKeEs/yiJV0SknVyqv67GkNsfWmeMxA6RLNeQC+T8+ipvfzA/h0QNAzYgcWQAKPIksr9AHBRpEw7FaBSzt9LvFlu16PgcS1flzqIATR7pYQUrY7YDZ7h/AQL0Ny5vXAWWRLhP9yYYY0iVMjq2vCfA3mrJPiWrDGTfIcdMSltTTMMv1akqVusm9fM2W1CN1zomWC+vyuliGCm+rCdP5jIQ3ZcEVJttNVomg8nnIACBXVJgbjTsaLS1lQ0uJ8Veyrp9TbJAic5fFBxoFtraWoUqvIVtj+M4P7pTH3vgr6X2IPQM91dU1PZ74GIaB3/3ud5g3bx4+//xzcM6x//77w+/37474CIIgCIIg+oxd8vEBAL/fj9GjR/dlLARBEARB9JJ8zq3e1O/P9Hjik0gk8Otf/xovv/wyGhsbYduFj4tS5naCIAiC2HOIiU9vnurqw2D2Qno88bnooovw73//GzNmzEB1dXVBolKCIAiCIIi9mR5PfP75z3/iueeew3e+853dEQ/xDWDZkuvk9tGn/hYAoGQ5vG9/KnZmc2AeYb7lX9OIjsNcY8O8WJkrQKpciGYjy+uRG1QCAEhWeWSCTQDQ444AP24hWM/QMUgIWW2NIbRRKFa1Ck2a/QW32LA8oowZ0KSgNlmuIlkuyhR/ZkvRbdFnphTpWoaCbMhJilkWgN4Qg1UUEO9bM+COGV+iSoOlMycud1wYd80FORPJPwGRkFVzxMmZYsD2iBMym8n6egLIBfLlgfAmLs/n38bhbRf9SBcryPldcXS+fnAzR7rYSV5qijoAoOYAxTFYjNUaUIW3I3zNHKH1wqwxWeODnnRNC8Ehk31yhXVKvspl8lKuA96tSWc3R7pSaAQDDVyOeTasymvJbEijSHDRDwAIbLPANSYTvebND/PXLB+7qrplwADLyI85QybsGEV2MGQion5oYwpKTvx59LZBGjfmr0O+3XxsAGAFGLRU/riNo74vPtuvPX0NCOLrhHx8uqbHE5/i4mKUlJTsjlgIgiAIguglHAUPH+5S/f5Mj318fvWrX+GXv/wlksnk7oiHIAiCIIheQD4+XdPjFZ+77roLn3/+OSorKzFkyBDoul5wnBKVEgRBEASxt9Ljic/3v//93RAG8U3l1f/n6h+OO1EYYHLGwJzHCixdkZoPrjNpSKeYQKpM/CrpOG2ATEyppQBvqyivZjmyYfER15I2wDmCW5yEpzmOTLGjx+mwYTjJSz0tWRlPpsRALiAWRfUkR2Cbm0gzr/GwdYb8j6PYIAXBetG+3pyAVRKA5dOdcoqsE9ySg+3oXiwPk9oVzoD4ALHNTHeMQltsJCvEfjUD+BvECWP724h8KvZnw4Dq6E9sD6BmuNQL5XyKNPVTs65eJV30pV91ncwCbSchay4IeNrFfn+TJdvhChAbJnQ5lvPbx9MqgvbWu8IltcgnE7IqGROJQQGnHxzxWrGtJW1AcWPJGz12/tFpxC0kncSp3nYboU05N2yTY8NUcZ31qIJgndjPLCAXcuJVGVib215eq2R63UStmQhDoEFc40yJATUjrqWn3TXGNP0KUqUK9ISokw0zGFEneWrcvUHAFSa1X0eddqdMOPvWX64GQex26F5Xl/R44nPLLbd0q9yTTz6JadOmIRAIdKv8vHnzcOONN+LKK6/EPffcAwA4//zz8cgjjxSUGzduHN5+++2dtrNw4UI8+uij+PDDDwEAY8aMwdy5c/Htb39blrn11ltx2223FdSrrKxEQ0NDt2IlCIIgiL2W3t6u6ue3unqs8ekul156KbZt29atssuXL8eDDz6IQw45ZLtjkydPRn19vXw9//zzXba1bNkynH322XjllVfw1ltvYfDgwTjppJOwZcuWgnIHH3xwQburV6/ufucIgiAIgtgn2WXn5q+Cd9MBKR6P45xzzsHChQsxZ86c7Y57PB5UVVXtoOaOeeKJJwreL1y4EH/961/x8ssv49xzz5X7NU3rUbsEQRAEsS9Azs1ds9smPt3lpz/9KU4++WSccMIJO5z4LFu2DBUVFSgqKsIxxxyDO+64AxUVFd1uP5lMIpfLbfcI/rp161BTUwOPx4Nx48Zh7ty52G+//XbaTiaTQSaTke9jsVi3YyC6x7+WXg8AOHrab6X/jgobRkOHLGONENcx52fwNwrdRSakIFUpjmcjwncFALJBRWp/siEF3jYLipOsMlOsQnF0NKbX1WNYPk1+67Wkm0jT0pn0oLE8TOo/GHdXhYu+MKWXDTc0qC1xsIjQwWTKfNJXBxDaIABIVLm+M1qSgztvuQroTreT5QqyYbHtawISA8S2UpJBbH+PrK9knOSj7a73TZ58jJkIk1ogy+t6BaXKmNStWDqTvj9qlhe00XZAPl4V3hbX6ye0MS31P2aRD7YmFpM7J2Y1ohqYJep0DHL/9ATq3QSk3GDwREVQtgo5nqZfKdDQ5PVZaobD8iooXyH2p4sBM5AfT8jkolqKS52UGEdxPsvDwLX8+AG5oCLbzY9fslxBZKOTXDVpw+9KvWB0cCim83lJWEiXOY3pTOq0mM2hOOP43dPvhOKMQWd9G0H0JeTj0zW77VZXd1i8eDFWrlyJefPm7fD4lClT8MQTT+Bf//oX7rrrLixfvhzHHXdcwQTkq7j++usxYMAAnHDCCXLfuHHj8Oijj+KFF17AwoUL0dDQgCOPPBItLS07bWfevHmIRCLyNWjQoO53lCAIgiCIvYI9tuJTV1eHK6+8Ei+++CK8Xu8Oy5x11llye9SoURg7dixqa2vx3HPP4fTTT//Kc8yfPx9PPvkkli1bVnCOKVOmyO3Ro0djwoQJGDZsGB555BFcddVVO2zrhhtuKDgWi8Vo8kMQBEHsfXDWO4EyrfjsHlasWIHGxkaMGTMGmqZB0zT8+9//xu9//3tomgbLsrarU11djdraWqxbt+4r27/zzjsxd+5cvPjiizsUTXcmEAhg9OjRXbbr8XgQDocLXgRBEASxt5HX+PTm1VNeffVVTJ06FTU1NWCM4emnn/5STBy33norampq4PP5MHHiRHz00UcFZTKZDC6//HKUlZUhEAhg2rRp2Lx5c0GZtrY2zJgxQ959mTFjBtrb23sU625b8amtrd3O3LAzxx9//HZPUs2cORMjRozAddddB1VVt6vT0tKCuro6VFdXd3nu3/72t5gzZw5eeOEFjB079itjzWQyWLNmDY466qivLEvsfl79h6t9mDhlPtIDxCTT93kLwqvEk4KxwyplGTXLEdrovGGAb5sQdujtKXQME3U1R5OT/0YrWS49ehgHjHYx0ba8Ckyv+LXja85BcbRGzKdKXY7pZfBvEbdbs0VGXkaERI37ddJjBtSc5eqFUhYsr/hMmz5Fal2MGJc5wEwPkxofywOky0QZ3zYm9T6xA2xYARFraSSJVlP0wbPBA6NdlAlttpGoVGD63TH1N+U9hCzpKZNLKXJ/NsRg+kRZbxtHusjJhdVoSf0NAJR+JMY2Wen21dYAZnHoW4S4igd9SAwJyeNKJ08i1fEyMjpcn6FsWIGTOkvoYZxrpVpcjrl/S1J6IiUGeKT3TnBzBpZXRccgccwT5TIPGuBqmGJDGEJ1Tl+DTOp9/E02so7Xj611ysHV6QevJ8qFXgziuJrl8voB4nqK+prUOTHb1f4oFgfLbf8/yXfPuBOv/9/s7fYTxL5IIpHAoYceipkzZ+KMM87Y7vj8+fNx9913Y9GiRRg+fDjmzJmDE088EWvXrkUoJP5ezJo1C8888wwWL16M0tJSXH311TjllFOwYsUKOSeYPn06Nm/ejCVLlgAALrnkEsyYMQPPPPNMt2Pt8cSnrq4OjDEMHDgQAPDuu+/iL3/5Cw466CBccsklslzeR2dnhEIhjBo1qmBfIBBAaWkpRo0ahXg8jltvvRVnnHEGqqursWHDBtx4440oKyvDaaedJuuce+65GDBggNQJzZ8/HzfffDP+8pe/YMiQIdKbJxgMIhgMAgBmz56NqVOnYvDgwWhsbMScOXMQi8Vw3nnn9XQ4CIIgCGLvYg8YGE6ZMqVARlLQHOe45557cNNNN0mZyiOPPILKykr85S9/waWXXopoNIqHH34Yjz32mNTkPv744xg0aBBeeuklTJo0CWvWrMGSJUvw9ttvY9y4cQDEk9sTJkzA2rVrceCBB3Yr1h7f6po+fTpeeeUVAEBDQwNOPPFEvPvuu7jxxhtx++2397S5naKqKlavXo1TTz0Vw4cPx3nnnYfhw4fjrbfekrNDANi0aRPq6+vl+/vuuw/ZbBY/+MEPUF1dLV933nmnLLN582acffbZOPDAA3H66afDMAy8/fbbqK2t7bP4CYIgCGJP0Fe5umKxWMGrJw8WdWb9+vVoaGjASSedJPd5PB4cc8wxePPNNwEI+UsulysoU1NTg1GjRskyb731FiKRiJz0AMD48eMRiURkme7Q4xWfDz/8ULog/8///A9GjRqFN954Ay+++CJ+8pOf4Je//GVPm5QsW7ZMbvt8Przwwgs9qgMAGzZs+Mo6ixcv7mFkBEEQBLEP0QdePF9+gOeWW27Brbfe2uN28ndeKisrC/ZXVlZi48aNsoxhGCguLt6uTL5+Q0PDDu1sKioqepR5occTn1wuB49HeIe89NJLmDZtGgBgxIgRBSsvBNEXLPvntXL72+ff7WowAGhpRwPTYoM5egquMXjWiS9Abkg5wp9GAQDZUiF40WPiFwvjXunRkwso0mNHS1hIVAnFSabII/NQhessqf1RTI62kaI9f1OhCL/snU6WCCoDN8RXjCtM5g3LBpnUkFg6g+VocfwNHFYm7xUEeJvcbdsRwQQ2KUg5+pSOxlL4UmK/3gHpw9MxSIGacT1sIutNmXuLK0xqm4rX5pCoFjEpWQ7YokyyjMnzZYpVhDc6v/4GKyj5VPTXv82E6VflmNm6guiYKmc8O2lsbEBPumOU7eSTk4mI7UQ1EFmfTxTm+g9lilQkKxz9k8+A7qQAMzq4PEfrSB/0BEfxmqQYK7+GTET0KVWqSp2Nt5UhUZm/fkDOeTYhXa5Ac8ZNT7jxdfZA0pO2jJVZzufO6SJXIDVCStbVMPm3WcgFxfjYOoNuijFQ0zYsj2jL9DKMP+cuGdObT1EeL2Lvoq6uruBBnvz//bsKY4VPi3HOt9v3Zb5cZkflu9NOZ3p8q+vggw/G/fffj9deew1Lly7F5MmTAQBbt25FaWlpT5sjCIIgCKIP6atbXV9+knlXJz75LAlfXpVpbGyUq0BVVVXIZrNoa2vrssyOUmE1NTVtt5rUFT2e+PzmN7/BAw88gIkTJ+Lss8/GoYceCgD4xz/+UZAIlCAIgiCIPQDvg1cfMnToUFRVVWHp0qVyXzabxb///W8ceeSRAERCcV3XC8rU19fjww8/lGUmTJiAaDSKd999V5Z55513EI1GZZnu0ONbXRMnTkRzczNisVjBvbhLLrkEfr+/i5oEQRAEQfRH4vE4PvvsM/l+/fr1WLVqFUpKSjB48GDMmjULc+fOxQEHHIADDjgAc+fOhd/vx/Tp0wEAkUgEF154Ia6++mqUlpaipKQEs2fPxujRo+VTXiNHjsTkyZNx8cUX44EHHgAg5h6nnHJKt5/oAnbRx4dzjhUrVuDzzz/H9OnTEQqFYBgGTXwIgiAIYo/DUGBGtUv1e8Z7772HY489Vr7PZzo477zzsGjRIlx77bVIpVK47LLL0NbWhnHjxuHFF18seEp7wYIF0DQNZ555JlKpFI4//ngsWrSowNfviSeewBVXXCGf/po2bRruvffenvWOdzeNusPGjRsxefJkbNq0CZlMBp9++in2228/zJo1C+l0Gvfff3+PAthXicViiEQiiAIINzYC5eV7OqRvBIfOWgBACHe1VF646opnFQvwr2kUbxhDcngZAMA2FGmMJ8s6wtdcUJWC38hnCbCcaC86whX1dXZwtzXA55zTaM8hF+5k1Gk74tYvxH1qKyJcAS2/DssjvryZIhUZxyAw53OrctUVMasZyOXmxCAOXu6Ispvde+zMBKxSoWD21BmoWCGcAqNDNZh+yCSZ4Tpbxm9rDOnSvDJXmPMBQMfgTh3kQGS9k4A045oIZkMMvmYxhrkAg6/RMXfkwvixY4Don2UAetJtztcsxkpP2LANR7BtKMhEXMF1XqiupTj0uCjPNYZMxGmz0xBraVcY7WuxEVzfAdsrCmRKDSl0j9XqnRLRCpE4IAwa82JvT8z9TGSDijRGtHUgtNn9XCUqVdlXrrjiZ2YCzPkT6m2z3WSrGoPpiJjTpa6iILQpBy0l2s2FtMJEsk4xSl7az2hqAioqEAMQARCNRneb83/+/6VBf7wVim/HqaC6g51Ko+6/bt2tse5JeqzxufLKKzF27Fi0tbXB53P/ap922ml4+eWX+zQ4giAIgiCIvqTHt7pef/11vPHGGzAMo2B/bW0ttmzZ0meBEQRBEASxC+wB5+Z9iR5PfGzb3mEC0c2bNxfcqyMIgiAIYg9A2dm7pMcTnxNPPBH33HMPHnzwQQDCTCgej+OWW27B9773vT4PkCA688E9P5fbYy4Rep90iYrSFUJTkxoQkjob6Ko0i2Mc0BMm0mVipVJN27Cc5JKKyRFoyAIAMsUeaGkxsQ/WpaGkhEgkW+qVOiAA8hcRV5nUi+R1JwCgdwShNyegxtJiB2NS4+Npt6SmBQC2HuXWs8qEZifwsQGPY2ehxxg8m8T9eq5AJhMFgJTP0Q1VWEhWaE77HMxi0Bxzw2xAgScqxCSZIib0QwD8ja72R48zaXgIANH9HA1MO0NKyKRQ+pEtk3OGv0jLskrWghkyoCfz5oQMWsZJ0Okk9ZSxO9fD1oUmRo5bfjwVIBsWfTJiljxfqlqRBo2mj3XSQtlIDgzA2yg65d/YgfZRReIcGqAnRX09wWVy1nxcgDARtFVX8yS1Ru0coTWtAID0oAiKHN1RJqKBa0C8WvRDSwN5IajQODlaINs9t6fdhpaynX4zsLijCdqWQqZcXEyWs6WcdPw5d0EVH0e88b9kakgQfU2PJz4LFizAsccei4MOOgjpdBrTp0/HunXrUFZWhieffHJ3xEgQBEEQRDfhXLx6U78/0+OJT01NDVatWoUnn3wSK1euhG3buPDCC3HOOecUiJ0JgiAIgtgDkManS3bJx8fn8+GCCy7ABRdc0NfxEARBEATRG0jj0yW7NPF57LHH8MADD+CLL77AW2+9hdraWixYsAD77bcfTj311L6OkSB2yIoHXb3PlKHCLMu3fjO4Y3bFQkGZNDLnU5Cq8MhEo2rKhh4T+h0zqEGLClGFkTWRHCxE+qZPgbdVaDlS5Rq0pNBp6AnXfMX0usZaapaLZJ8AUhUeaG1JmaSUZU2oKceTxqvKvyuWh6F8pdg2OizkHSbahwGZErFfS7k+NloGUqNj64B/i2jT38DBnVC4IjyBLMfGw7/NjTdUZ6L5EBFTplhB1nkegdmA7RGxG20MzHl+wVaFNxIgtDiBBjFm8cE+FC/b4PZdU8GZyMez5WgDgXrmjBVknzp7ojFbXAMASO2nyljVtKtNSpYryAXd8oEGy9mvQnXKcJUJnY4hzhHbv0gkgQUQaHD7nS5WYOv5cXZ/zjLujq2v1ZYeQvEBGtoPK3XK28iEXR1WJqJIz51EDaA5nkVqCjADbh/z/kfJcga/k3CW2cLHCQAC9TkYbeJzxxUxpi4ixqGPz5Pjtv6cG0AQRO/psY/PH//4R1x11VWYMmUK2tra5BNexcXFuOeee/o6PoIgCIIgegDjvX/1Z3o88fnDH/6AhQsX4qabboKmuQtGY8eOxerVq/s0OIIgCIIgeshelqR0b6PHE5/169fj8MMP326/x+NBIpHok6AIgiAIgiB2Bz3W+AwdOhSrVq1CbW1twf5//vOfOOigg/osMILoCf9cfzcAYHLEFdzzjji8/xKrkMahw6Ft3AarqQUAoA4ZhFyVyEGjR7NoPlyIXbxtNiyPK0ZpGSkSPIW2WMj5xe8Ey6vAdvQ0tg6ZD0pLcoCJur7GDMySAPSGmIjF5zqdaykLluO/E692tSelawBvoxCv1GzIwfaJA/HaABJVjm9MErCdnysKh9T1pMoZAvXiZ5rlYWC2q+3RE5b0M7IMhtIPnYAZk95DjceYYLoj5mn3IudoVXJBwCuGDEacy9xSxW9uBfLu7dwGsjlocWEEVPypjo6Bzjg0d9LT2JC5sLQ0B3P8ljpG5jBq/80AgA/XDUT1K6JQzs+gOF5GgUYLyXLR2bL/xAuet238VghJxw/H9AOpKnEsOpzBv0XEEaznCH8ufphxhSFdLq5rNqzCiItOKSaHmfd2yrn6zkxYkdd46/E2ABssK8qFP1VkvjOuAmh3hoQBnpjjCZR0x5+rDPEasZ2oMmB0iDH0RLnUkKmdcspVPW8guEl4Jn3n6bvI14foHiRu7pIeT3yuueYa/PSnP0U6nQbnHO+++y6efPJJzJs3Dw899NDuiJEgCIIgiO5Cj7N3SY8nPjNnzoRpmrj22muRTCYxffp0DBgwAL/73e/wox/9aHfESBAEQRAE0Sf0aOJjmiaeeOIJTJ06FRdffDGam5th2zYqKip2V3wEQRAEQfQEWvHpEsZ5z8yp/X4/1qxZs53G55tGLBZDJBJBFEC4sREoL9/TIRFfYsrgWe4bQwdSadit7QAAO5OGNmwoAKDpmCrpW8MVwDbyubcgNS16AgjUi0Jq2paPe9qGm+spXaIgtEnoXDyNCcB2tRqpQWFsnmHK99X/m9fHCN0H4NyWd36KtI5wnzsIbAHSzsfL1oDQRlfLsyOvHltjUCwOy8h76XBoSSf2rFsuU6QjWSHO0zbKgtEqNDRKDkgPE2ZBmseNOfJSQObXMmImvBscAU4qDXNQGWxD1N/2La/UxGRDkDm2AKD407y+CEhUis5yFUg7nkX5/GQA4GuxpYYpG1SQDTvbYcjrVfmeGO9sxPFI0pn0WVKzHFuPEvvNiJtYuXiVBl+zKJMLFuYoy/kdbVKLJa99LuheC64A4ECiRpTLBSDrKxbgbRbbtubm/fK12LDynj4ViszD1T6CQ4s7nkNbgGC96bSpFPgGla4WAxiv9UFP2IgOEeP2we9dHytiL6apCaioQAxABEA0GkU4HN4tp8r/vzTozl9B8Xl3uR07lUbd7Jt3a6x7kh4/1TVu3Di8//77uyMWgiAIgiCI3UqPNT6XXXYZrr76amzevBljxoxBIBAoOH7IIYf0WXAEQRAEQfQQeqqrS3o88TnrrLMAAFdccYXcxxgD5xyMMenkTBAEQRDE109v3Zf7u3Nzjyc+69ev3x1xEARBEATRF5C4uUt6PPH5pouaiX2Hf266B8cfN0++54zBNgYBALzLPwM0IXz1RDk6Bgq5m5oFfE2O8NWvyASRzHR/BdkeBYpjMsdMDsXZr2aBbER8pTzbOFg6B6tI3Ar2bk0g8E4RACB2RAabvy+ErCVveBCqE+pYW2fIOMaGzM1XimSNOD8ApIdkoSWFMNrXzKUYNzpUkUaDgBA+BxzBM7M5EtWaPAfrtCibN08MrlelsDhVCahN4hzeBg+8Lfm/glwaB1oexRVvewxodc1onTgYABBo4Gg7VQhy/a8EZaJRPQ7EBufjcJOtZsOQSUdtDQjWuwJsT7vouK3qSJU7CWbTQLJWdGLLeVmEX3Zvt/tabSlOjw1W4XHGJLBZQ+mHmfzoIDFA9C8bZMgUO/F1uONixF3RM7OBbMhd+jc6OIJbnHEwxOcKADqGuoJmLcVh+pz9A1XZV9MPREeI/tl+C/k/wYwz5ALigreMUqRI2jKALRNF/7gGWIYCyy/OMeSR30BtFhfw86uvAkEQ3aPHE59//OMfO9zPGIPX68X++++PoUOH9jowgiAIgiCIvqbHE5/vf//7UtPTmc46n+9+97t4+umnUVxc3GeBEgRBEATx1TD0UuPTZ5HsnfT4cfalS5fiW9/6FpYuXYpoNIpoNIqlS5fi29/+Np599lm8+uqraGlpwezZs3dHvARBEARBELtMjw0MR40ahQcffBBHHnlkwf433ngDl1xyCT766CO89NJLuOCCC7Bp06Y+DXZvggwM9z1OOGYuskVCE2FrDHpc6ESYyZGqFPtNr/tbxxO1pYkdAJlU01YZ1LSb2DJvQGgbDCwnynibUmBZE9kyoc9Il+pQTHHMiJpoO1AkyVQzrhYkFwSCW53EnYOY1IV0JlUOGI4WJbCFu7qXrFtGcbaLPhMblleRCT4zxQyao6fhnX72dH56NV3uGgnqcci49YT7p8LbmoPns0anghOoJhaQ248aLMs1H6JI/Y7eARR/7hoi5vU+lu6aHCoWR8uhznk6xRT+VIG3TewPf55EwwRH96ICuRBQ/Il7ofLanI7BbjJZxXT3+5sLzR7TJa5hpdFJ56M5MTEuNDuAMDwEANXR8lheBsvjtNvothuvUmA7+5kFab6oZiETwELhUmMV+ZTJX+hGB5fJXE0vQ2KAG5MeE/0FhE4qf53iozPYMON6EHshe8DAsPbXd0Dx9sLAMJ3Gxutv6rcGhj2+1fX555/vcCDC4TC++OILAMABBxyA5ubm3kdHEARBEETPoKe6uqTHt7rGjBmDa665Bk1NTXJfU1MTrr32WnzrW98CAKxbtw4DBw7suygJgiAIgiD6gB5PfB5++GGsX78eAwcOxP77748DDjgAAwcOxIYNG/DQQw8BAOLxOG6++eYetTtv3jwwxjBr1iy57/zzzwdjrOA1fvz4LttZuHAhjjrqKBQXF6O4uBgnnHAC3n333e3K3XfffRg6dCi8Xi/GjBmD1157rUfxEgRBEMReCe+DVz+mx7e6DjzwQKxZswYvvPACPv30U3DOMWLECJx44olQFDGP+v73v9+jNpcvX44HH3xwh+kuJk+ejD//+c/yvWEYXba1bNkynH322TjyyCPh9Xoxf/58nHTSSfjoo48wYIC4Wf7UU09h1qxZuO+++/Cd73wHDzzwAKZMmYKPP/4YgwcP7rJ9Yt/lpX/fKLcP+fkCqBlVvteTjv9Kmks9BwCp5dFjWShZoQnKFXkK2uWOGEXJcni3CpGIGfHCLPPB9IvvhJ5yE1VaXgUln6QBAK0jvYiOF9sD/q7L5JSR9bb0Fuqc5DO4WfjYAEA2zKS2J1TnmvNkgwoYB5JVQkCi5Di0vAyn3hb+RF+C2RxcEfF5Wt1zGvHOehjI5KPxGgOejaJ9HgkiUxGAp6HDqW+idaT4nqoZwL8NTp+yUHKONipjobxZBJWq9MpEoFwBwuvEtuVxk7NmSl19TaosgFCd44XjePb4LtwKANgWCyH0t7AzJjY05/qxHIcZcK93fECnxKOOliiw1U0Sa8TcfutJjlSp4pwbCNRzmTxVS3J4onkNlI1EhWjA6ABM55L4G22ZMNb0MoSdz5rpZVAdTRjv9AhOJsyQcBbMQ+uByGdu+cA2E+liJ/GqzxVBVb1g4Ki/3SnGzWB486mrQXxzIefmrunxxAcQj65PnjwZEydOhMfjAWO7/vBbPB7HOeecg4ULF2LOnDnbHfd4PKiqqup2e0888UTB+4ULF+Kvf/0rXn75ZZx77rkAgLvvvhsXXnghLrroIgDAPffcgxdeeAF//OMfMW/evO3aJAiCIAiif9DjW122beNXv/oVBgwYgGAwKFNY3HzzzXj44Yd7HMBPf/pTnHzyyTjhhBN2eHzZsmWoqKjA8OHDcfHFF6OxsbFH7SeTSeRyOZSUlAAAstksVqxYgZNOOqmg3EknnYQ333yzx/ETBEEQxF4F3erqkh5PfObMmYNFixZh/vz5BbedRo8eLTU+3WXx4sVYuXLlTldZpkyZgieeeAL/+te/cNddd2H58uU47rjjkMns4DnfnXD99ddjwIABcmLV3NwMy7JQWVlZUK6yshINDQ07bSeTySAWixW8CIIgCGKvgyY+XdLjW12PPvooHnzwQRx//PH4yU9+Ivcfcsgh+OSTT7rdTl1dHa688kq8+OKL8O7EbyCfCR4Q/kFjx45FbW0tnnvuOZx++ulfeY758+fjySefxLJly7Y7x5dvz+Vdp3fGvHnzcNttt33lOYl9g/8s+DmOuHQBAKHr8USFIEPJcaRLxNfC22JK/YcZ1JENic+Q5WHQE0IDYkRNqJZTN23BCjj+PIksLK+GbND9bZENi8aMDgX5r142BByxXx0AYOulYbSvFBPyyuU2Sj4RgppEpQaPozmxdQYtKbaTmiq9eNr3U6F0ysGlx0XbAgbDmadraUjfmWwnVwpP1P3sM+56zRhxFGieYrVCXxLcYiN2aIUoExNxZqqdEzKG8CYRTJSpMjdYJuL+ufFETWSK3Pf5c1gGoKWcWBRIzyHYgOUTm0Wf2dATotFESEOmmCHxvBDF6BNbkXW0QMEOG5mIiDdezWDERX3/NgvBzaJ++wGqzHFmeQFvqy3HIK+3yoZcDZiSE9egs6eRkuVO/1SknN9TmRKOsved4bBdfVKiBlJUpFiAf6vY1tKubohZgMdxA0mXAD5n29aBbEiFr1XEnipRYXlE/WzQ9WeyPEx+tlc+8HMQ3zxI49M1PV7x2bJlC/bff//t9tu2jVwu1+12VqxYgcbGRowZMwaapkHTNPz73//G73//e2iaBsuytqtTXV2N2tparFu37ivbv/POOzF37ly8+OKLBaLpsrIyqKq63epOY2PjdqtAnbnhhhukU3U0GkVdXV23+0oQBEEQxN5Bj1d8Dj74YLz22mvbZWn/3//9Xxx++OHdbuf444/H6tWrC/bNnDkTI0aMwHXXXQdVVber09LSgrq6OlRXV3fZ9m9/+1vMmTMHL7zwAsaOHVtwzDAMjBkzBkuXLsVpp50m9y9duhSnnnrqTtv0eDzweDw7PU4QBEEQewWcFdqx70r9fkyPV3xuueUW/OxnP8NvfvMb2LaNv/3tb7j44osxd+5c/PKXv+x2O6FQCKNGjSp4BQIBlJaWYtSoUYjH45g9ezbeeustbNiwAcuWLcPUqVNRVlZWMGE599xzccMNN8j38+fPxy9+8Qv86U9/wpAhQ9DQ0ICGhgbE43FZ5qqrrsJDDz2EP/3pT1izZg1+/vOfY9OmTQW37giCIAhin+Rr1viYpolf/OIXGDp0KHw+H/bbbz/cfvvtsG3XFoJzjltvvRU1NTXw+XyYOHEiPvroo4J2MpkMLr/8cpSVlSEQCGDatGnYvHnzroxAl/R4xWfq1Kl46qmnMHfuXDDG8Mtf/hJHHHEEnnnmGZx44ol9Fpiqqli9ejUeffRRtLe3o7q6GsceeyyeeuophEJSvIBNmzZJ/yBAGBNms1n84Ac/KGjvlltuwa233gpAaIdaWlpw++23o76+HqNGjcLzzz+/3SoW0b/prH/4zg+EB4qtK1LvY/oVaClHW6MxGB1if6zYkB4qXGVQHY2HtyOLTJkQomhJBZlizdWueJnM5cRsSG1GqM7GlvvErePGsYCa/4PDxTkBILglh1xQrID6GnPSn8fbYktdSHiDhXiN2J8pBjJFQueTf59yJG56nMn8Y4EGjthQcY6kDyhZ4/6RyuuIuMKkB42tM/iaRYBq1gYz87oXG0rWhhnQtqtf8X5O+h/ZHhVqUtwO7xgakF46RqfnBHIB1yuImYCSf46BAb56pz9FCnTnuqhZwNfEkahxYnyjBH4nj1a6SIHl5F5LDLGQyjl9rVJlHi5wwMxrh74w0T5U9IHZkOOkpd3cWcwG4oOA6rdEn9SkhVxIXASjw4a/Ie9HxGBrTm43zdUEBTcz+ZnwNZnI5b2FmJsTzVYZbN39m5bvmxETXkr5vGumz72WSg5IVKoyxjyHzloAT7to991FV4Egdge/+c1vcP/99+ORRx7BwQcfjPfeew8zZ85EJBLBlVdeCUAsStx9991YtGgRhg8fjjlz5uDEE0/E2rVr5f/ps2bNwjPPPIPFixejtLQUV199NU455RSsWLFih3eBdpVd8vGZNGkSJk2a1GdB5Fm2bJnc9vl8eOGFF3pUBwA2bNjQrXNddtlluOyyy3oQHUEQBEHs/Xzd4ua33noLp556Kk4++WQAwJAhQ/Dkk0/ivffeAyBWe+655x7cdNNN8sGkRx55BJWVlfjLX/6CSy+9FNFoFA8//DAee+wx+RT2448/jkGDBuGll17q0zlHj291EQRBEASxF/M13+r67ne/i5dffhmffvopAOCDDz7A66+/ju9973sAgPXr16OhoaHAP8/j8eCYY46R/nkrVqxALpcrKFNTU4NRo0b1ucdet1Z8iouLu+3O3Nra2quACIIgCILY83zZr25nD/lcd911iEajGDFiBFRVhWVZuOOOO3D22WcDgHyKekf+eRs3bpRlDMNAcXHxdmW68tjbFbo18bnnnnvkdktLC+bMmYNJkyZhwoQJAMQy1wsvvNDjxKQEQRAEQfQxvbzVlV/xGTRoUMHuzlrZzjz11FN4/PHH8Ze//AUHH3wwVq1ahVmzZqGmpgbnnXeeLNdT/7zulukp3Zr4dA78jDPOwO23346f/exnct8VV1yBe++9Fy+99BJ+/nMyzCL2Pd7462y5fczU3wJwjOcc8aket2CreUFyFh2DhGu5lrTBbPFXIlfkgdEiMog2jQ3BNoCSNSKLqJlVZMLTXFBF24HiLnNwE4NiifpDnsmCO+dQcjYaDxeKZKNDlefIhnUprFYCDIqT5JLZKoJbhHBYsTSYXvcPhZYUyULzBLY5wtwsh9dZoOUKk4JrJcelsDpdrMpEpZYONI3N/zVVcMCToq8sayFb6kXSSdDpazJh+UT/TL+CRKVXnrflO2J7/LT/4JX3DhZxJBQUrWXOOAOMi3Okypm8Ge+v58gFRJmy1WnZFyWkwNQYIl+IGFtGKVKwHdwEBLcIpXS6VEOy2lX9SgEwB4wOcb6mQzToIs8q1IwwDAScZKKOgD3QwEXSVed6aIksAPFZyEY0eNsc0XVGge4IvP1bkvK8bSOD8pplwypyfid5qZ9JM0qr0w/qTIm7rZiQQvP8+7y4PdRky8+FrQOpMib7mQ2J7cMuXyBNLT+eS3+n+zW9dV926tbV1SEcdp1Od2bpcs011+D666/Hj370IwAik8PGjRsxb948nHfeeTLfZkNDQ4EdTWf/vKqqKmSzWbS1tRWs+jQ2NuLII4/sRWe2p8canxdeeAGTJ0/ebv+kSZPw0ksv9UlQBEEQBEHsWcLhcMFrZxOfZDJZ8HQ1IJ7Mzj/OPnToUFRVVWHp0qXyeDabxb///W85qRkzZgx0XS8oU19fjw8//LDPJz49fqqrtLQUf//733HNNdcU7H/66adRWlraZ4ERBEEQBLEL9NGKT3eZOnUq7rjjDgwePBgHH3ww3n//fdx999244IILAIhbXLNmzcLcuXNxwAEH4IADDsDcuXPh9/sxffp0AEAkEsGFF16Iq6++GqWlpSgpKcHs2bMxevTonSYx31V6PPG57bbbcOGFF2LZsmVS4/P2229jyZIlPU5SShAEQRBE3/J1P87+hz/8ATfffDMuu+wyNDY2oqamBpdeemmBqfG1116LVCqFyy67DG1tbRg3bhxefPHFAl++BQsWQNM0nHnmmUilUjj++OOxaNGiPvXwAQDGOe/x8Lzzzjv4/e9/jzVr1oBzjoMOOghXXHEFxo0b16fB7c3EYjFEIhFEAYQbG4Hy8j0dEtHHjL3obplYtGM/GwNfdr8qeW2Gp82C7eguPK1ZeZxZHG0j/PK9v8kCc7Q8XGWAI9VgJoetu7qNWK34LdIxPoVwWGSdHFrUirXPCZPDUB2XGhA94epeUqUMpfmkphUaGOdSs2MZrimgluRS3+Jts2D6HRPBDrsgoWo+Jq5A6oVsDQhvEg15G1OyrBkyoCZNZEpFYLlO7RjtrsGf5WFIF+U7XqhfyScyDW3iSFQ5upcA4GsU+5UsUL7SfcJEiQrdTGJkGaK1mkzQmQu6mh0ACNSLeKNDdZmU1Qy65w1uEgaPAOBvcMczFwSKPxVBJStUqffxtnFkwq4ep7N2yhO14W0ROiuuMZiOzomrTJoT5gIKuOKOZ/6XtbfdzU2YCyhyPLgqjBjz+JtsaIm8IaSCbEgcs1WgabxzYTngaXIML7cBniiXbWWcz7NtAKvvJJ3P10JTE1BRgRiACIBoNFqgm+lL8v8vDbtxLtSdJP/uDlY6jc/n3rhbY92T7JKB4bhx4/DEE0/0dSwEQRAEQRC7lW6Jm7/8LP9X0dHRsUvBEARBEATRS75mA8N9jW5NfIqLi9HY2NjtRgcMGIAvvvhil4MiCIIgCGLXyGt8evPqz3TrVhfnHA899BCCweBXFwaQy+V6FRRB7A2895Cb1PHwny6AmhafazVlwmgT+7muwPSLr1GmxICnzdV4lH4QQ/RAIdzLhhQozteCcUBLOjoNnUHNiL8yiSoNRkxs+1f60OF45tT9bRjyT5Ey7mo2PK05OPk1UfyJhcQAcU+/eG0S0WE+JIV1BvSY61vDOOCJ5b1mOACxrWRs+JyYMiW6q0nxM+hJsW16mUyQySwvjHahaVKTJiyv+6ckVarIxJ8YqMC/zUnUarjaJiPGwSzxpu1w9++FretynJSc21fTy1A3SWgNWA4AxLYZFP3Ln0/JQeqytCTQMUiIc6Lj09B9Qu9jbQigbJU8pdTcZEMMOUfOwBnQME70NbTR1QFZOoPtAXyNTiLUEib/k8hGFNiGIdvNJ2rVOyy33+05ZCMiJsujSH8m06MgXez+Ds2PfzbMENos2jF9DKaPQTFFOSVrw/SIGFPlQOl7bsLT/C920w8kKxytl0ckdc1vH/irBQAAbzPwwe9I70N8c+jWxGfw4MFYuHBhtxutqqqCruu7HBRBEARBEL2gn6/a9IZuTXy6m/GcIAiCIIg9zNfs47OvQdnZCYIgCIL4xrBLj7MTxDeN9//75zj6VJHDSyZIclBz7s+jTLG4xWu058A1BUUftosDto3E/kIokgsoULNuXiw1LbQ1pe/H0XZIEQAgsI0j8r9C2MMVDr1B6FOyERW+bSJXlenXYHnFbxfLoyBV5uTH8vrgidmIfC7eZ4oYIhtMGaMec7QuXlXmBrN1Bj1jOfWZzO+kpTm0hOifHrdlX41oDnASBwqfGhu5gOi7t42DNYtyintaZENM+tNYXiZ1R+GPdHQME28yJTZC60XcuRAQHcac8RS6GwBQrU6anqzQLSUGivrBDQryzmTxgYAZcHKZNXkw6LAmAECzJ4vGSuGxVLnEA4+jq0qVMunXo2QBnyiOTDGgOj5BmRJxPiMu6vhaLMQHaE6/3VxgetyGlnI6awvNV558zjY1bcvxt7wKDGec/dtcP6jGwz1oOdjJ67aZIxtiSJXm88epbg6xepHvCwBMD+B3xj+vzwKAZKXi+g5xwNPuhKcDR1wq9D5qjmP5n1xtG7Fv8nUbGO5r0MSHIAiCIPoTdKurS+hWF0EQBEEQ3xhoxYcgCIIg+hF0q6trdmni89prr+GBBx7A559/jr/+9a8YMGAAHnvsMQwdOhTf/e53+zpGgtgrePX/XSO3jzzrLgCAmuXCnwaAmrGhOLIOLZ4Fy7oCF5bOIfhJCwAgWx2W2g7OmPSRiY6MQMnl9SYKMmGh5Qg0WMg625bBwByPFz2WQ7JKaFXiA1wNSSbCoCdVqeeoeDchjyUG+mCWC6+Zlh8lkIkJHdGA5zR5DsXkUHJOzio/k7m6fC02LGcbto5cwNU6JaoVqecJ1Zky55iW5NLDRktzWSZTxBDeKAardbiKwSMaxNiYGqoPE07x7Rkvtrw1EIDI2+VvcK9FZL2o2zbcyaOV7z5z82dZByTlbjOhY8P7A51xYyiud/Z7OFIVnfQ3IgUYuAaZ/6vzsr9/m/BEahue190wZCLiWHiDBcsj9qtpW+ZmY6YNlnb8egKuzYetMan9MaI5JMuED1N0iActR4j+DXjZzacGCP2UEXO1RHm9D+B6NekpyJxjppfB056PQ+R3E9sMHUNF+dAGMb4AkChmGH6H0Pt8ehN5++yz0K2uLunxra7/+7//w6RJk+Dz+fD+++8jkxF/ZTo6OjB37tw+D5AgCIIgiB5AKSu6pMcTnzlz5uD+++/HwoULC0wKjzzySKxcubJPgyMIgiAIguhLenyra+3atTj66KO32x8Oh9He3t4XMREEQRAEsYuQxqdrerziU11djc8++2y7/a+//jr222+/PgmKIAiCIIhdhG51dUmPV3wuvfRSXHnllfjTn/4Exhi2bt2Kt956C7Nnz8Yvf/nL3REjQex1vPnU1XL7mKnC2ND0KlByQpTKNQUsK4StAABdA2JxsWloMCNCyMoVBq47QtlNKdhO0snAFhuWr1PizzKxnfMzNB0hlKjt384AEGZ3oQ88YBPbZPlocxBFK8Wt6HitD3pCxME44GsUujz/7zRorUJIbIV9sJ04MqUGfK2iH8kyFb4WS7YrDfEUBqPDMTz0KQhvcstsOplBjQhlsG+lD2raqWKJ5JgAkKgGUmWOmPqgDpw5YAUA4L/XHIOW9ytkW/5G57wJDi2d33bFvaFNNkIXb5bvt2wdLM9X+Tcv6p1nLRQAVpmTZDZpwHIMEE2FYciU9QCACl+HbOfd/zsE/7+9M4+vojr//2eWO3dL7s2+kZCw7yqCRXABZJOqxeXnVitirdWvKyLVorZiVXBBwGpdsCq4fcFvK61WRaEKFnHBIBUBEWSHhOy5+zZzfn+cuWdyBQKBhGB43q/XfWXuzDlnnnNucnPmzGc+j7PGOk9S4M1jSkAN88+jvrcEZuNjEs1UxZg09NCg+fl+R701NnGnDEetGYfOoCNpQKnAVZMcTwmF/zHPJwGRDL6dvluHrDPU9uHntjeKZuHapwvhuRoyxGcJAA1d+bazhiFYkBTiA859/HgkJ5n4FdDqAcXcPuXWOfD+EMeK9+4CQXQkWjzxueuuu9DY2IiRI0ciEong7LPPht1ux9SpU3HLLbe0RYwEQRAEQRwu9FRXsxzR4+wPP/ww7r33XmzYsAGGYaBv375IS0tr7dgIgiAIgmghpPFpniM2MHS5XBg8eHBrxkIQBEEQBNGmHNbE5+KLLz7sBt96660jDoYgfoqseIcbG44Y/5jYZ2gK5BCAhKnvCIa4zgeAFIoi3tkDAIily5BMUz+7bOlI4hk22AKmXkiR4DA1N9EMGa5qrj2xLddE0k+AwfUMX3WtvD4ChzcCf5fkn7el9zBUCcEiLrTR7RLQhWuNbEEmzmeoEqJeXkdigL+Ea3EyN8VFO+FcFWm7ub7IXRlEItOBhJOX8663IXhmMuko4NnK6zT0ZFDDpsYkBsTT+WWl4bPjmVcvAABoQUA3JT42PxDN4NuSLonEpIYiC92M5meoeK8zItlmYF7AXWFdrmat4/0IFQChpKmfm8Hv4WXStstYv74zAGBjRgxG1DQE7B2DZHCjR1cVgy3A+xNLlyEZDN4tXMPk7+xCPJnYNM6QMJPGSgagmKaFcacMzUwMa3gVVJ/Cx99VbcUZzpGQu9YUJzEVNlMrFM2ywVnLz13fU4GkW2aD7gqGzPU+0UY0hw+QEjWQSOOffTBPQbDU1GsNiCNjFf+85QSQcJjj7OM6H17X0vhoPoZwrioSmK55ngwNfzLQra5mOayJj9frFduMMSxevBher1es+JSXl6OhoaFFEySCIAiCIFofutXVPIc18Xn55ZfF9t13343LLrsMzz33HBTFtNHXddx0003weDxtEyVBEARBEEQr0GIfn5deeglTp04Vkx4AUBQFU6ZMwUsvvdSqwREEQRAE0ULIx6dZWixuTiQS2LhxI3r16pWyf+PGjTAM4yC1CKLjs/x9y+9kzJkPA7IMSGYy0pwMsS01+MFMOU8sTUaC5xmFLShBNhOQ2utigKn5iXg1MPMSxVljJb9M25NAYxnXoTAFaOjGxSa5r8pQIgaiGbxcLF0SSTwTTkkkSHVX6nBUR0XM0WzeVsIhiZicNcxKqGqTEHfzQOw+A8EiXt5pk+DY44NezG+JZ26OI5LLhSjuPVzbAwBqWALry72MsCkNhtP8vogq0E29ib0esNckx6OJbxCAyhFcJ5P2vQ2yzi+8AoUS3BWM65UAeLda30H1PWWwJt9w2j4+PrrbgO4yzPGQodXxtoyAQ1wJ2mslMebhLAmOeibGubGrBmc1r5P9rQ41ZGquggk0duUdUSKMjzsALcAQ85qBMCb8dwKdJKhmUlRJB8I5fDwlBkRyTG1SrgzvNi668RfLiOQAnu3J8TEQKOO6ruTvDQCooQRqe6ui3cz1irmtwG4mOA3lyAgV8fLOfXzck+dm5jVt3C1BCzDYwrztU2+cI87z1V+ngDiOIY1Ps7R44nPttdfi17/+NbZs2YLTTz8dAPD555/jkUcewbXXXtvqARIEQRAEcfhIENc6R1y/I9PiW12zZs3C73//e8yZMwdnn302zj77bMyZMwd33XUXHn/88SMOZObMmZAkCZMnTxb7Jk2aBEmSUl7JydbBWL9+PS655BKUlZVBkiTMnTt3vzLTp0/fr92CgoIjjp0gCIIgiJ8GLV7xkWUZd911F+666y74fPxRyqMVNa9evRrz5s3DSSedtN+xc889N0VcrWlas22FQiF07doVl156Ke644+CPX/br1w/Lli0T75tqlgiCIAjiJwvd6mqWIzYwBI5+wgMAgUAAV111FV544QU89NBD+x232+0tWo057bTTcNpppwEAfv/73x+0nKqqtMpDtBlLV94LABhfZk6+NQWGm/u3RPsWQjK1EpmbwgDj23V9XEJ3YWsEMrZx/5W07QE09uRaDmdNAkrEzOnkUqEFeV337gi0qoA4fyLDhVA+F+owCVBNnYajNgbd9JrR6mPQzdxgsQwVapC3a/dJyFrLhShSXIdht1kd68zjqO2rIj6Iny/8aRoc+dkwzG+TcK4ENWiWZ4Crki+c+/rGIVeY4iGPgayvFbMfgG5ez6hhBlcV16EYmrXgnnBISPuex1Fw7i5U/LuElx9Sj555ezE6awMAYNbGMYj9N4PXtwFK2Ao9cxMfg2ChjORit6MG8JeaocpAXrmZd8sjCa2Ls8YQ2qZgoRmTedBVpYv7AqECuxWvU4Jkyo0auksiDjkBMU5yFMKHKeECageYMdVaMXt26KjvyfutxID0nRD6sIRLhmHGqNsl8RlHM5xI28tPHs6VYZgfn9Tk/oWz1oBkWAv+jgZeVzIYmKktMxRA8xsIZ/FycpyJx5yHTJwt4vhyAel9jjfocfbmafGtri5duqBr164HfbWUm2++Geeddx5Gjx59wOPLly9HXl4eevbsieuvvx5VVVUtPseB2Lx5M4qKitClSxdcccUV2Lp1a7Plo9EofD5fyosgCIIgiJ8WLV7xaarBAYB4PI6vv/4aS5Yswe9+97sWtbVw4UKsWbMGq1evPuDx8ePH49JLL0VpaSm2bduGP/zhDzjnnHNQXl4Ou91+wDqHw5AhQ/DKK6+gZ8+e2LdvHx566CEMGzYM69evR3Z29gHrzJw5Ew888MARn5MgCIIgjgl0q6tZWjzxuf322w+4/y9/+Qu++uqrw25n165duP322/Hhhx/C4XAcsMzll18utvv374/BgwejtLQU77777lG5RI8fP15sDxgwAEOHDkW3bt2wYMECTJly4GXbadOmpRzz+XwoKSk54hgIgiAIos3o4JOXo+GoND5NGT9+PKZNm5YiRG6O8vJyVFVVYdCgQWKfruv45JNP8PTTTyMaje4nOC4sLERpaSk2b97cWmEDANxuNwYMGNBsu3a7/ahWmYgTk/e38zxH43veDT2H62M0X1zoegAg2Mkptl17+U+mQvj1GJqCzK+58ENPc0B3c9GGVhuBvzgdABDL1GBo3EfHsasBan0QGRu4zqOhb5rQqGgNcdh8MdFuJIe3lb41AEPjf2/xNAXxLK7FUSIJSDHunxMpcAttkuYDogYXeegaEMmSoPn4saxNOgKFvC01yhDz8nLZX9oQzeT9swUgNDBpuy3vHTViwBbg5wvnaEJno4YZHHW8nR1fFSPRyRTHVKTj06198R97b2vQs02tUq0i9DeSAfjKkvocQDbzURka7wsAKDUS4k6rfDK+hFNCOJvXdVanegtFvTIau/Egs75j4lhjdwmuSl4mY4uBxi58/F01TGhxEo4mudncksjZFs0EdPOrJlSgIHOjmfMrjZdPnsNQrBjdlQlEvTwOJvGYASDnvxFEsi2NVmMXXiatgsHeyNvRNSAhvtok4dsjQ+L6MDPnmK+sSc43DcjYzPcPP+8xrHjX8rAiiOOdVpv4/O1vf0NWVtZhlx81ahTWrVuXsu/aa69F7969cffddx/wKava2lrs2rULhYWFRx1vU6LRKDZu3IizzjqrVdslCIIgiGMNiZubp8UTn4EDB0Jq8ngAYwyVlZWorq7GM888c9jtpKeno3///in73G43srOz0b9/fwQCAUyfPh2XXHIJCgsLsX37dtxzzz3IycnBRRddJOpMnDgRnTp1wsyZMwEAsVgMGzZsENt79uzB2rVrkZaWhu7duwMApk6digsuuACdO3dGVVUVHnroIfh8PlxzzTUtHQ6CIAiCOL4gjU+ztHjiM2HChJSJjyzLyM3NxYgRI9C7d+9marYMRVGwbt06vPLKK2hoaEBhYSFGjhyJRYsWIT09XZTbuXMnZNlagt27dy8GDhwo3s+aNQuzZs3C8OHDsXz5cgDA7t27ceWVV6Kmpga5ubk4/fTT8fnnn6O0tLTV4icIgiAI4vijxROf6dOnt0EYnOTEBACcTic++OCDFtUBgLKyMjDW/HR14cKFRxIeQRAEQRz3tMetrj179uDuu+/G+++/j3A4jJ49e+LFF18UOl7GGB544AHMmzcP9fX1GDJkCP7yl7+gX79+oo1oNIqpU6fif//3fxEOhzFq1Cg888wzKC4uPvLOHIAWT3wURUFFRQXy8vJS9tfW1iIvLw+6rrdacATRUXj/+0fF9jmjHoGvi5lcVJLgqOd/M7Ywg7uCC491hyKExIk0GwwbF0arjVGoDby84bRBNgXQ4SwZWRU842WswAPVF4Fk/i26K+JQg1w5K0fiMOz8z76ujxNpFXx/oNQt4mOKhPqe/EnLeDqQtYErgRMuBQ3drNVVdQOvE/cAesIS3+ZeswtVK8p4jDZrdVjzW8kwHXUGIqYxXiRLbpIcSIZu4/EpUYikmpLOhdIA4KqQECjhdS8btQr/9+EwOJKJRm2W4DdZL9mWzTRVVMNMLOVLDLCb5n0xj4yYRxL7XfushsJ5ZoDVQOb3UTR0t55EjWfwcv5OMtQoL1fy7wgqT+Nl6ntZYxboJCHY01QxR2QULTeTq25n8JXK5jhb4ms1AAQLeBlZh0hqCqQKsO11MRg2fr6EQ0LCHPd9pzng2sfMcZYgm6eOpUvC/DDuBtKbCMyTBoZxFxesa35eP3u9AX+x9S9DMkzTQ51h5NhHzf7ZsPplMjRsd47xra76+nqcccYZGDlyJN5//33k5eXhhx9+QEZGhijz2GOPYfbs2Zg/fz569uyJhx56CGPGjMGmTZvEXZzJkyfjnXfewcKFC5GdnY0777wT559/PsrLy1s1u0KLJz4HW02JRqOHTCdBEARBEETbcqxXfB599FGUlJSkPNVdVlYmthljmDt3Lu69915hRbNgwQLk5+fjjTfewA033IDGxka8+OKLePXVV4Wh8WuvvYaSkhIsW7YM48aNO/IO/YjDnvj8+c9/BgBIkoS//vWvSEtLE8eSj6G3psaHIAiCIIj248cZCg5m6/L2229j3LhxuPTSS7FixQp06tQJN910E66//noAwLZt21BZWYmxY8emtDV8+HCsWrUKN9xwA8rLyxGPx1PKFBUVoX///li1alX7THzmzOF+JIwxPPfccynLTpqmoaysDM8991yrBUYQBEEQxBHQSre6fmzSe//99x9Q57t161Y8++yzmDJlCu655x58+eWXuO2222C32zFx4kRUVnJTq/z8/JR6+fn52LFjBwCgsrISmqYhMzNzvzLJ+q3FYU98tm3bBgAYOXIk3nrrrf2CIwji8Pjo37/HyHFcExHzqKjrwy8iJB0wFH67OGudD1KC6y4ihWkIdOb6jfQdgOKLAgDkcFx8QcU9Eur78FXY9N0xJLwOMPPpSzmqI+Hif+oquIYHALQAQ6CI73fUGk10NkDcXNCVYzwZJsB1RAo/NaJZIk8n0CsA+WtrBXjbx2XQ/HzbUAHvNks/ojVykcm2yySoDaYBYnYc2h7eb88PDLF0c78dIqFqsJih6NQKAIAdgL+Se4bZJB3dT9uJncv4E5lMARwncyGRv9EJqZZfnTr3SoiZOZWZLKXogJSI2dc4g2oOgqPOQNRjaXMyvzP1Vk4JO8c6wLqagqFtbihB05ywmsHewBsO5WuwN/AiwU4QY2vYANs+y1CwoQf/6dxn6Z8kA9CbmNknY5UMQIkyBDqZRoYBwFHH4wp0dgoTwqjX+iB1BxDNkMS5mdkl3Q44a8w+uSQE8y2DxST2RgMJpwwlapjtWoaQzloreWk0XRNaMXujgdN/NduMT8d//tGyNEZEK9FKE59du3alJCM/mImvYRgYPHgwZsyYAYDb3qxfvx7PPvssJk6cKMo1fSIc4AspP963XyiHUaaltDhJ6ccff0yTHoIgCILo4Hg8npTXwSY+hYWF6Nu3b8q+Pn36YOfOnQCAgoICANhv5aaqqkqsAhUUFCAWi6G+vv6gZVqLw1rxmTJlCh588EG43e6D5rJKMnv27FYJjCAIgiCIlnOsxc1nnHEGNm3alLLv+++/F954Xbp0QUFBAZYuXSp89mKxGFasWIFHH+Wr34MGDYLNZsPSpUtx2WWXAQAqKirw7bff4rHHHjvyzhyAw5r4fP3114jH+fOVa9asafVlJ4IgCIIgWolj/Dj7HXfcgWHDhmHGjBm47LLL8OWXX2LevHmYN28eAH6La/LkyZgxYwZ69OiBHj16YMaMGXC5XPjlL38JAPB6vbjuuutw5513Ijs7G1lZWZg6dSoGDBggnvJqLSR2KLc/4oD4fD54vV40AvBUVQG5ue0dEvETZdQIfl9c9UfFPn93j9BWRDIV6HZT1xFkiLv5trsyAUPl26F8RXjWRL2AvcHSiThrrT9xNWQgmsHvcDPZSnipaxJ00/tFiTOR5NJZrcNu6nL8JZrQm8gJIJJpXQCF84CEm7elBiWk7TRjyQBUU0PTeHoErm95UPYGwF3JAw42iR0AgkVm3RwDTDETZsZl2GtMrYoGsD4BAEBsnws2vwytkddJnOYHY7yc3ZZAeBNP3OqslISmRfMbqDiTj8Hgod+L8xY4GvGvTQMAAK7VTqTvsoRAwUJZ9DvutsaWKYCjhm9Hsi3/HUm3Eo0q1scK3Qk4BtcBABp2e2Gvsh4SSWqmsr+1zuuoSSBYaDPbl2CvZwiZnkKenYbw5QnlymKbn9P8LCIMapi319hVhS1gJUhNxsVkwFHPyyhxhnC2pYDQfAxKjB+Lu2XEmuiekgldbUH+OQPc98m1z2pXDfPt8nl34ISluhrIy4MPgBdAY2Njim6mNUn+Xzp54gwomuPQFQ6CHovgv6/c06JY//Wvf2HatGnYvHkzunTpgilTpoinugDLwPD5559PMTBsmroqEongd7/7Hd54440UA8Mfi6yPlhZrfH7961/D7/fvtz8YDOLXv/51qwRFEARBEMSRITF21K+Wcv7552PdunWIRCLYuHFjyqQH4Ks+06dPR0VFBSKRCFasWLFfvk6Hw4GnnnoKtbW1CIVCeOedd1p90gMcwcRnwYIFCIfD++0Ph8N45ZVXWiUogiAIgiCOENYKrw7MYT/O7vP5wBgDYwx+vx8Oh7WMpus63nvvvf3SWBAEQRAEQRxPHPbEJyMjA5IkQZIk9OzZc7/jkiThgQceaNXgCOJE4N/L7xHbZ100CwCgxJjl38IAVxUXwSScktD7BDqpQkfiqGUI5/D9TAFChYCjlh+LeiTYGw1Rv6kvjGTqQuIZ1n6DAbqZfSaaISOeponyabt4LrFIjk3kvpITgL0RcO/hxwxNRuXPTF1Kvo7sr7l4xfuZA65qfhL3nggknW/bfDZEs3j5hm6WV5B7p4xQEb/0NNw6kl9XShiIbzF9g9INSAlLWxP125GRExDjKZu5sxIu7mPD42XI/4K3u6O8B+xm7rM9DhkFZp4qzRcTOasi2arQSdX3khApTCB9E48lba+BuOlz5Ky2xs0WtDQ7sTSeZwsAlBjQsIvrjuSYpbOJnRQUMdfIbuR9xSsEim3i8064AFcVUPQfq6yvu4t/Nox7JiU/p6RGSwsYQgeWvlNHsFAR5W0hQ5RJmH5JuiaJuu5Kfjzm4XXiLklohwxFEl5NWtAAU2Rx7rhLhAeF/0pg8G9mi75+8Srl8mpr2iNJ6U+Jw574fPzxx2CM4ZxzzsHf//53ZGVliWOapqG0tBRFRUVtEiRBEARBEIfJMX6q66fGYU98hg8fDoA7OJeUlECWWywPIgiCIAiijaEVn+ZpcXb2pCFRKBTCzp07EYvFUo6fdNJJrRMZQRAEQRBEK9PiiU91dTWuvfZavP/++wc8ruv6AfcTBHFo/rN4KgDgnDGPQI7yvyUlogqdhW6XoIZ4WabwXFoAECywPHXSdzPU95LgL+OXbflfMjireEFJN1DXl4sw1DBDoJiv3CZcEF44dp+lF0rmmwKA2pOBur5cVOSoaXKMMTjrdJFXS44zFH/Mg0y4bfAX89iVKLDvNN5ugW5Z34ezFcgJHmvOujhi3qbeNknPIVX41EgJyx/GvZsfT+p3vOUa7PWZYkxMyY3wEgKAhEOGexdvQHeqiHv416BzXxQxD2+osUxDjEtxkLlZR/XJitk3wLVDRdS80x/JlWEzJUU2S1qEeBqQMH1uJB2ImFl+bH4gfbMiYk7G7frcLfRWugNCi2MLMJi2RJB0IJQnQfPzsdM1GWqYmWNr5TgL50oilkCRAs2f9EJiwq+HyRJsQdMnKkMR+iBbiMFdwX/vYh4Z0QwJqikpUqIMMTMPmK4BrirTKyjMYJg2ZrrT0lvZApbuyF1pQDZ9qYZd/gRWLboTRBtCt7qapcX3qyZPnoz6+np8/vnncDqdWLJkCRYsWIAePXrg7bffbosYCYIgCII4TJK3uo7m1ZFp8YrPRx99hH/+85847bTTIMsySktLMWbMGHg8HsycORPnnXdeW8RJEARBEARx1LR4xScYDAq/nqysLFRXVwMABgwYgDVr1rRudARBEARBtAwyMGyWFk98evXqJbKwnnLKKXj++eexZ88ePPfccygsLGz1AAmCIAiCaBl0m+vgtPhW1+TJk1FRUQEAuP/++zFu3Di8/vrr0DQN8+fPb+34COKE5KOlvxfbwy94HJqfC06jGTJspqDVFrTM6UK5Mpy1VnJLm09C2k7TxK4xLsz4wCR4t5lC5wRD2m6+u3qgXYiHw1myMD/UNQmOen7uglVAOIeLbkMFQFQIdiWEc1R4dvLzSzpDqLtpesggxLVRrwTPNh5HbT8Fnh18v7NWRySTtxvNVKEmjfX8CTj5gjLkqI7KIZYzXvLLWdcAWwgidjnBhGg3+zsG1uTSLmqKppU4QyyTx8dUSYhu5WgCwSKuSJZ1hlAnczwKZDj5Vx6UOBDzAO495vuYlaAzOR7mMFufhR9wmok7nTWGlejT4EaVQKqxpBJvYiCZKQkRsRI1zQlNEbktZCCSYQnBbUFeLpIpIW76O9rreUJSAIhnS8hdy10EdbsMQ0sKlSUhLpcMiP1KjAuYDfMUsg4hdA4WARFTAJ+xSYa7wjSjDEpgUlKNDSG+jqXJSK/jv3fMJmHY5U+I8336fyR0Jo4tLZ74XHXVVWJ74MCB2L59O7777jt07twZOTk5rRocQRAEQRAthDH+Opr6HZgWT3x+jMvlwqmnntoasRAEQRAEcZSQgWHzHNbEZ8qUw8+tMnv27CMOhiAIgiAIoi05rInP119/fViNSZJ06EIEQbSIFe/8Tmz3+eMcKKZ5nxJVkDBlL2oYaCwztR9BbgSoxE3NTdwQGo7G7k7RVsIuCUO7zM0JBPP410FjXwMw/5Sz10pC18MUnnAT4NqMvHJdbNsClnFpqMAmtCuSAQTzTI2JB8hez8+n22WhaYm7ZUgGL89kIJ5mmio6bYilWSKdpGmhq9pAKI/vj+YC0WzAs5XXtzcaUMO84bo+NlE3qXkBAPdeGYbN1BRlNNXj2MDMb0Q1BGRs4NtawECgiBcyZG7QF0/nx6IqEPeY566ThAlhsr8AYGiAWtekr+ZQRbIBNWSaDuYBia68g8p2J9K3W+0kTQATTgkJFxAPJwOWkbaXN6ZrVvJaV7V1ue4rk2Azk4nKCcDfWRPHkolTmQroplYsniaJ5KRKVIccMxDOtZn9SwBZPBh7fZMEq14JMQ+v79mhwxY0DRDTLf1RwinDV+YQ/UhqmNL36DjtWn6xzBTgq79SAtNWgQwMm+WwJj4ff/xxW8dBEARBEEQrIBkQFxZHWr8jc9QaH4IgCIIgjiNoxadZKMU6QRAEQRAnDLTiQxA/ITb+6Q78bBLXREQyrWSUCReQMHUstiCQcCuAmcwUNhnxNK63cFYnEM7lf/ZqlAnPlqBXRczUpKTtkEWCzrjLSqRpqNY55DjQ0M1MnOoA0vbIIklm8jgABIuBeLrpk6NbnjLerQmhMUk4ZAQK+TVYHNzHhiMh7k5tDwDCObJ476oE7I1NLk8lS+viqGUIFEuifrCMnzDcCXDuMXVLkpVc1BaymomlAQl3sjMyFDMZbMOABNRGBbaA2W4McFSbfjh2QDN1SA39E5CdXPDjWucQmilbyIo15pGQzNWqNQC2tVx/ZWhc/wMAmg8wklocheuckslPdQcQzjWTmfq5TgsA4mkKQrlJDyfA3mBqkHyGSBirhiztkL3BQCSLj79kWJ83k2TYdCZiZzZJ1MnYrKO+l2LWt8YtniYj4UpqzSxtmRrVhZYqaFfFZ+zrbCVI1XzA6Vdxf5/PXydvn6OBnupqHpr4EARBEERHgnx8moVudREEQRAEccJAKz4EQRAE0YGgW13Nc9ys+MycOROSJGHy5Mli36RJkyBJUsrr9NNPb7ad9evX45JLLkFZWRkkScLcuXMPWO6ZZ55Bly5d4HA4MGjQIPznP/9pxd4QRNvx5fwp+HL+FHwz5w64K3W4K3VoPqDg8zgKPo8ja2MUtoCOeJrCX+kKDE2CoUmIZKmIeiREPRKC+RL8nfhLd/BcUEoUyPhBh6MacFRz7xdDtfQgWj1/yVFw7YcEKBFAt0uQ41xLw2Sud9HtfLu41z4U99oHZ6kfNScDNScDDd1U+Iv4K5wlQwswaAEGu4+JPhmqFZNu2c/AUPl7XQMiOUCgkwQ1zEReKH+xCn+ximiGJGJXQ4BnkwLPJgWKN4ZY3zB/ZRuIp3GfH0MBIpn8Zdh4nipXFYOu8WOGAgzrvxm6y4CUAH/pvI9MBiJ5BpQIHw/PBhWO7xxwfMf1PeEc/oq7JDir43BWx+HdpsNRy+CoZTA0wO7jL81nndsWZAgVSAgVSDBsPK7kOez1XA9kaFwXFeikItCJf1AJN3+F84GGXhIaekmo7acg5gViXiCSxTVCuoNrpuwNBuwNBhx1BhIOCQmHBN0hIZqhiDEMZytiHAxNQtZGHVkbdThrDDCJ66WiHglKlEGJMkS9Mhq6qmjoqqK+u4qGbvwVzgUSDv5SwxAxxdN5Tq9YmowBU+ag3+/nHNs/rI4EZWdvluNi4rN69WrMmzcPJ5100n7Hzj33XFRUVIjXe++912xboVAIXbt2xSOPPIKCgoIDllm0aBEmT56Me++9F19//TXOOussjB8/Hjt37myV/hAEQRAEcXzS7hOfQCCAq666Ci+88AIyMzP3O26321FQUCBeWVlZzbZ32mmn4fHHH8cVV1wBu91+wDKzZ8/Gddddh9/85jfo06cP5s6di5KSEjz77LOt0ieCIAiCaC+St7qO5tWRafeJz80334zzzjsPo0ePPuDx5cuXIy8vDz179sT111+PqqqqozpfLBZDeXk5xo4dm7J/7NixWLVq1VG1TRAEQRDtTvKprqN5dWDaVdy8cOFCrFmzBqtXrz7g8fHjx+PSSy9FaWkptm3bhj/84Q8455xzUF5eftDVnENRU1MDXdeRn5+fsj8/Px+VlZUHrReNRhGNRsV7n893ROcniNbk079NBQCcesMcxLymr4ppN28LmTmXIjpg7mvsahfeMY56S7vj78Lg3s2NVvzFCpiZZinR5Bsimm1tu/cAtiD/ckw4JEQzLK8dW9Aq1+VnOzGr698AAH/afQG2/JsbBHl2Wbm9wBg0n5nkymDwl/KcTtEMrjECuIdN0kvHXWHlEnPv4z/3nMNj0eoU6A7Tt6ZWEvWDRYDuMgeh2g6Wxs8vG5LIzxVPs650lShQeQYvf8fIJbg1g98GH7/p54BLR7i7madMMZCZxTss/zsbgWJeP3MTQ0MGDzKaa8C1m19jGjagoTsXLBkq18sAgBIGwrnWkDhr+U85xoRnEDM1VUnfIlnnnyHAtTWS8EUCYulWW8k+RbMY3LvMnFzpTfoaAcLZpo+SB7CbecUMFZAMy5tJd1ieRzFZgiOZC86AyPkWyZSFHkvzG9DMPGG6JgmvILWJX1JyrACeJyyJ5gcCnYEur88EAGy7ahoIorVot4nPrl27cPvtt+PDDz+Ew+E4YJnLL79cbPfv3x+DBw9GaWkp3n33XVx88cVHdf4fJ1RljDWbZHXmzJl44IEHjuqcBEEQBNHW0FNdzdNut7rKy8tRVVWFQYMGQVVVqKqKFStW4M9//jNUVYWu6/vVKSwsRGlpKTZv3nzE583JyYGiKPut7lRVVe23CtSUadOmobGxUbx27dp1xDEQBEEQRJtBT3U1S7ut+IwaNQrr1q1L2Xfttdeid+/euPvuu6Eoyn51amtrsWvXLhQWFh7xeTVNw6BBg7B06VJcdNFFYv/SpUsxYcKEg9az2+1HfHuNIAiCII4VtOLTPO028UlPT0f//v1T9rndbmRnZ6N///4IBAKYPn06LrnkEhQWFmL79u245557kJOTkzJhmThxIjp16oSZM/m94Fgshg0bNojtPXv2YO3atUhLS0P37t0BAFOmTMHVV1+NwYMHY+jQoZg3bx527tyJG2+88Rj1niAIgiCI9uC4dW5WFAXr1q3DK6+8goaGBhQWFmLkyJFYtGgR0tMt5d7OnTshy9Ydu71792LgwIHi/axZszBr1iwMHz4cy5cvB8C1Q7W1tfjTn/6EiooK9O/fH++99x5KS0uPWf8IojVZ8/wdYvusi2aBSRDJOhWbhHga/xtR4gy2IN+vhhmUGL+0CxbLCJt3eu01VjJSMG6QBwBMYbDXm8k5E0DUy7clBkSzGZRSLvKNAYgFeKXoh51xJaYAAOIDg9C78PNFsxUoYSv+9N18hddRayUvhQQhyi74ynqwwF+sIeGy9HgJB5C+xYxRBtzmXWwtoKOutyLilYJ8DBJuA1LA3B+VrKScCoTw21CBtK28zLzt58F93VsAgC0VeVCrbEIIDgB1p/ByXh3wbOf985VJQuzNZCuxqOaHuI2g6EC4M9/2/MBgb+Tbul0CM7/SbGEDqhl3zMuT0Uq6Oe4GoPl4Y7YgQ8Jpft4xnrwVACJNBNO55ZaA2r3H2lZkQDUF6WoYIrFoMqmsv8wsF7bE8M5qhlhSjCwBhiqJMUxuN30ySIky+MzP3r1HEuORvssqYyiAs9EUTCcAvUqGGuT6z5NvmwNnHS/7+WtTQBwCg/HX0dTvwBxXE5/kxAQAnE4nPvjggxbVAYCysjKww3gU76abbsJNN93U0hAJgiAI4vjmaHU6HXve0/4+PgRBEARBEMeK42rFhyAIgiCIo0PCUYqbWy2S4xOJHc59IWI/fD4fvF4vGgF4qqqA3NxD1iGIY0nPh3iSR+/W1D9xQ+Ffa/ZGQ3w5BgplBIZx0Y3LFYX+ZQYAwLPNENqRcK4kNBm+UglxUwcUz9QBBowcvB4A0CXpvgdg/kfDYa+xFpbj6bx+/in7ULmOi4qyvrViC2dLcJhajnCOZS5Y8HkUqj8myvl68pMH8yUk3JZ5IsC1MADgqgDCeXxbdzIoEVOfFLc0N1IT1wzJ4C8AwgQRALLWA5EsXjeSBeguqy0pYfWp+KQK7PyBnzD3c0XodAAglm7qqkJA/QB+EnutVcDmN40ZTXSNl0+4JEQzk/t4vLEMU4MTk5C+gx8zmiRxZRKEASWTUw0DEy4zHg+Q841pcBkzEEvnFRq7Wv/y0ncy6JoERwMvFyyQhWmlGmYI55qmjDLE5wRAmBbaGw1EvbxM+u6EOB7KVaDbrPOwJg/wJj8PLci4gWKTz8fRwN/E0qxx++x/78RxT3U1kJcHHwAvgMbGRng8njY5VfL/0hmjpkNVD+yPdzgkEhF8+u/pRxzrzJkzcc899+D2228XicIZY3jggQcwb9481NfXY8iQIfjLX/6Cfv36iXrRaBRTp07F//7v/yIcDmPUqFF45plnUFxcfMR9ORB0q4sgCIIgiFbhYEnHH3vsMcyePRtPP/00Vq9ejYKCAowZMwZ+v1+UmTx5MhYvXoyFCxdi5cqVCAQCOP/88w/o63c00MSHIAiCIDoQ7ZWk9GBJxxljmDt3Lu69915cfPHF6N+/PxYsWIBQKIQ33ngDAF8Je/HFF/HEE09g9OjRGDhwIF577TWsW7cOy5Yta41hEdDEhyAIgiA6Eq3k3Ozz+VJeTfNVHoiDJR3ftm0bKisrU5KD2+12DB8+XCQHLy8vRzweTylTVFSE/v37t3oCcRI3E0QH5fv7uLfP8J8/JvbZAnFUDOVCj0iWLPQVzmqgaCE3tAlnO5D85gvnyFDM7zpXJUPFCL7kbKtX4NrLdRq6U4ajSsLab/nSdt2VP2C3nwttMnvUIbYjBwAQOs0y7jkr/wf8vYH7cTWG3bBZq90IFJt+NBGIc+8eaUfabm6yo4abXI4yrmlJ6nqa6nQaB0ehVnLxi6RDaG6Svj2AeWVrWNssaU2jS9BMX51gISCb8qJYlg6oDLZG/tUZ9zAYZlbYXRsKoMRNLVCGBNWMXW9i+J5wAc5KHkgkzxAnjGUAusb3u/ZZ/VPDTCR9jWZw/xtnlanRqgPsPlN/UyjDVWXV85fwMpoPcNaYCUSzZKG/SdtjWP5FqizUrJoPUCPJweFjGTK1PI46Bi3A20o4JThr+PlibgnOOr7fFrBuSRiahEAhrxvOVhD1WLqeZPLYmMfSB0lxCC+jSIYEXQO0gDVukWxeML1JgtuBN83B189YHlZE61JSUpLy/v7778f06dMPWLa5pOPJFFEHSg6+Y8cOUUbTtJSVomSZ5hKIHwk08SEIgiCIDoTEGKSjeG4pWXfXrl0p4uaDpW06nKTjQMuTgx9umZZCt7oIgiAIoiNhtMILgMfjSXkdbOJzqKTjyZWe5pKDFxQUIBaLob6+/qBlWgua+BAEQRBEByK54nM0r5aQTDq+du1a8Ro8eDCuuuoqrF27Fl27dkVBQQGWLl0q6sRiMaxYsQLDhg0DAAwaNAg2my2lTEVFBb799ltRprWgW10E0cFZ8d5dYnvI1bMRLOMaCfcOBfYGvl+3Aw3dTd2KG8hfY4owqqx2DFWCdwMvEx4aREDjWiHXHgnOaoZQAV+OXv9pNzCVf3FqDRIcpmbEsdaJhJtvf+jpDfzA3zT1cYlmN9G3hLjOAwBi2TpqiyyfG9XF45O3OWELAAnzEo7JPKcYAChVGuQuXCDDNqchfScvE84Fkqe0+Zvks9Itz5uECwh2NrUk7gTkeh4IsxtQ0+JINPBxcFRJSLYWLmIwbKbuJVNC3AoX0WxTA9MgiydmtDpZ7JejEqJZ/ICrCrCF+LaUAPydretTOQ54dpianQwZ0Qx+TA0Casj05YkYcJp6HyYDgU5czCPpgHuf5acTzrLymMXdVp6vpBbK3mgg4ZThqOftxtJlkX9LjkuQE3x/1KMIn6JYugrNb+Zj80pw1pq/Bz5D5IgzVOt8toCVt0sLAO59utmmjFC+hEgTuUdSCxR3y1AiyTiAQdfPEX1tmrOOOHYcKuk4wB9VnzFjBnr06IEePXpgxowZcLlc+OUvfwkA8Hq9uO6663DnnXciOzsbWVlZmDp1KgYMGLCfWPpooYkPQRAEQXQkjsNcXXfddRfC4TBuuukmYWD44YcfpiQdnzNnDlRVxWWXXSYMDOfPnw9FUZppueXQxIcgCIIgOhKMidW5I65/lPw4gbgkSZg+ffpBnwoDAIfDgaeeegpPPfXUUZ+/OUjjQxAEQRDECQPl6jpCKFcX8VPn1BvmCM2NrlneKo5aBsXMfWWvtzQhvjIbItnJ/Za3DQDIOoOhmr4+DisXlhxHikdP8lIr7gaCxaaOpYkbvb1WQtxa+Raam3ChDmb65Uiq9ZVlc8WRl+FHd28NAODLd/rDZT440jRXlr8MwqvGvdvS0ABAwmF672RbjrVyzNIeBbolIEXNxjQDUkSGs4K/150/yoVl9tvmBxz1vLFk3i0ACJQAcQ/vhxqQhRYqt381KvZYgpaM/3JdTsEqn7j6TqRxnVHcw4/FPArkOD8WyZChmroXw2ZpaDw7Eki4rIGIpvNtJf6jr33zLVMg8nElYw/nmnnJ9FQPpKSPj2d7FAmnYpax6jZ21aCbTzan7TEgJ6xjSb+kcLYCm+nLpPkNMVaxdAmRLEl4IKmWBRTArPeuagOhPKt/hnkP479PHkdan3bI1TV82B+OOlfXilUPtmms7Qnd6iIIgiCIjsRxcKvreIZudREEQRAEccJAKz4EQRAE0YFomrrlSOt3ZGjiQxAEQRAdCbrV1Sw08SGIE5Q1z9+BHjMt8zenaVbIZEskGs1QIJtCZ2e1gViabO4HbGYCSX83U6zrt0S8ybY8O3WEcpp4cJhXkjEPUNhvHwAgzxXAllqeyBQ9gPBOLqa0+WToplgYbl0IjItLa1DVaCmg9/yQi4qoaWmfxSCbiULlmGV6Z6+3hMfxdCBuGu45qxmUGP+StzdIiHNPRshxQDPN9xy1KsK5ybh5DIYpunXUQgiDk2Z9ADfvSzhN0XQWhIgcAJQw36+GAMng23XleZAyuco7p1xGipGK+U9IierQnaoQYCccgIqk8SCDLWhdpiuxJoJfxRSdaxACYzXCkLCb46QDNjP5qKFKwozQWavDsFmff8Jl/V6oISCSaZ47qiHQiZ9P0gHPTt6WvdGAHjGF0QagNXChvKFZsTWNmcmAo5qfzO5SYaiaWHmIZAOymfTVsANhU28byZGF4FrX+OcMAD3/9iC87/FBX/3SFBBEU2jiQxAEQRAdiePQwPB4giY+BEEQBNGBaK3s7B0VmvgQBEEQREeCND7NQhMfgjiB2TzNMnor+8sTAID0FYBumvoxRYJuSjLq+klC78EkIJLHBRjpP8hw1jDETN2FvdH60gxnKcI40FAB9z5ex1kHVNkKAAAFwzcjGOCimZwPHJAzTBM7LxDvbyYZ9WuQTd3Knn2ZYHG+LTfYAG8CzNT12OtkxLz8fBID0gdyY0P/mhwRUyzbgHMvr1/fB1BK+TniFS5krTONCe3WGMlxBvdes66Xj0FS6yLHIW4LBAolKE1MHe0NZqJQSRLaE6ZCaGjsDUDDAK57URsVwDQzDBZKyPqOj1OgLE3ocuJuGXGXBCVq6nTCDHG3LD6PWNKcMMYQdyVNB2URqy3MhHGgoUqQTeNIJcJE3VCehMzNlmmloyYBW4AfS7hkYVDIFEvPBUmCd6suyiQTy2oBAzB1YJFMBWqEa73iTlkYLNobDSvRaoSJ9hMuBc4aXWiqHLUS4qZOKtAjLk6d8V+bSIqq2yWE8vh+fbsbjd35OfreOwfuCl6G9D4EQBMfgiAIguhYMIgHCY64fgeGJj4EQRAE0YEgjU/zkHMzQRAEQRAnDLTiQxAEAGD7zXcCAAavmQ1HPV8nVyLWennRf4D6XlaWyrTd/LpJ8xtwVcURzeDCmEimJHQX8XQglrTckbjvCt9vPW/7zYoeyNqS1LFIwrtFjgLedJ6NsqCgCt9/2oXHVGMlX4x5GVxbbKKOrgGK6fcSzTaQ4eD1M4btwu76DACAUetEqBMvowZlOD9J4+fLBoLmfiUMyDGuETE0y8k2fQf3qvF15e+DhVyrA3BNUcSUEhkqoPlgjg+zkqIyIOq1rjfVNK5Xse1W4d7Dv44TTqC+p6l7CQNq0Gzf4NqjZP8STkvvIycYIpmm3qeJbZLEANUsk3BIcFVzLU4wTxE+Q/BIIsFp2l5DJD6NZvJ4QnmSiF03vX/Sd1srAppfh25680SyJHi283MwCYh6eTDhHAmxdN6eHLdijHkURM3crM5qSRgvMZlrmOwN5sBLXPcDANlf2Kz66YCryorFXm9qm5ilQZLjVuLVn02ajS/nnwA6H4ajFDe3WiTHJTTxIQiCIIiOBD3V1Sx0q4sgCIIgiBMGWvEhCIIgiI6EAWEjccT1OzA08SEIIoWvXrQ0EKf+zxzkv7tDvA8UlfKNi2vEvtg/chD12uHdyvUqlafbEDZ1IfZ6wMVTckHSrZxVNr+EYCn/dtVtDJEs04MmCnS/YjMA4P+6LhPnmFnbE/KZfPl980ddYZgaDyUiwdCAWEbSX4bBWewHAPTOqsefu/4fAODzcGf8w34qAGDNnm5CvyPHuYaHx8Q1LqJfpkeOs9aAZHreMAVgsgT3Hl4/4bQ0N0wCHNXmtgqh6zGaePcknJYXkq4Baat4AjHdwXOLAYCkNcntxXheLIB73sQTEqJe6z+ad7vpAxTUYdh4RwwFQqcTzrJyWTnqGRKOZJ90+Er5179k8D4BgBoxEMq3tD2uKib8iHxdJKTtNMcqaCBYwD+EWLqKiNDpALF0vr+urwT3HogxiGSbQUuAzdQ/yXGrf7E0wLCZOiWZvxJm7rSMzQZcpgdUsFCG5jPzl8UkNHQ39VAhqzyTgDRTh5RwSgjl8jLeHQkMv+Bx3r9cpcP6+tBTXc1DEx+CIAiC6EiQxqdZSONDEARBEMQJw3Ez8Zk5cyYkScLkyZPFvkmTJkGSpJTX6aeffsi2/v73v6Nv376w2+3o27cvFi9enHJ8+vTp+7VbUFDQ2l0iCIIgiGNPcsXnaF4dmOPiVtfq1asxb948nHTSSfsdO/fcc/Hyyy+L95qmNdvWZ599hssvvxwPPvggLrroIixevBiXXXYZVq5ciSFDhohy/fr1w7JlloZAUZQDNUcQJzRrnrVyeY0c9yg8O7kQZefGbMsvpi+De5cEpnKdiHcLQziHb8fTgIRpu6P5LD0HUwCt3vR+KUzAFkz61jD89z89AACPZmzHyxuGivOXZPOEV0wGbGYOKN3B/XqaCjlDfn5CNdvALT9cBgAIxOzYV88NhZT8MLCDi0GUiOUDE8qVECi0cnUltT+RsAzvdq4vkWMMut3y6FEiksjrxRRAjZh9rTWaeNXIiHMpD5x11j+UhFMSecUAIJplbUtmuqyEC/CbPkjRDBmSYWll7PVAbV/+Fe7dKkO3mTnO0nFAdJsEZh5TYgpcVabGSpPg2RY2Y9DgruAntwUUxDwSmMTbTep7AK4dCufybcOydgJTIT57915AC5j6oB6As5Lv13xAyLzO1PxWXVuAIZxr/t6k89+jJJFMWeis1BBEOTnGvYoAMxecmZNL8zEEC8zretkaz0CBCls4qQ/iebySbX4zx/pd/8lDt7qapd1XfAKBAK666iq88MILyMzM3O+43W5HQUGBeGVlZR2gFYu5c+dizJgxmDZtGnr37o1p06Zh1KhRmDt3bko5VVVT2s3NzW3NbhEEQRAEcRzS7hOfm2++Geeddx5Gjx59wOPLly9HXl4eevbsieuvvx5VVVXNtvfZZ59h7NixKfvGjRuHVatWpezbvHkzioqK0KVLF1xxxRXYunVrs+1Go1H4fL6UF0EQBEEcdxit8OrAtOvEZ+HChVizZg1mzpx5wOPjx4/H66+/jo8++ghPPPEEVq9ejXPOOQfRaPSgbVZWViI/Pz9lX35+PiorK8X7IUOG4JVXXsEHH3yAF154AZWVlRg2bBhqa2sP2u7MmTPh9XrFq6SkpIW9JQiCIIi2J/k4+9G8OjLtpvHZtWsXbr/9dnz44YdwOBwHLHP55ZeL7f79+2Pw4MEoLS3Fu+++i4svvvigbUtSqnMTYyxl3/jx48X2gAEDMHToUHTr1g0LFizAlCkH9nWYNm1ayjGfz0eTH4IgCIL4idFuE5/y8nJUVVVh0KBBYp+u6/jkk0/w9NNPIxqN7ic4LiwsRGlpKTZv3nzQdgsKClJWdwCgqqpqv1WgprjdbgwYMKDZdu12O+x2+6G6RRAdlo8/uBtdnnrCfMeEqNS9gy8c+4vNBJOSZeon6xDL5vF0IMTzgcIWACJFXHGqpMfR2Iv/rRf+x0BeOb9ImR8bA2YKZ7VGYLcrTcSim2LhhItBiUiQo7yO7mBAlKuSv20sg+HkilhJBqQAP4cStha64+mWGNcWgkj6CfBkqwAXwYbyeB17IxPmegBPAKqafU2aFAIAUyTYaxLJoYIaNkW7LkkIfjUfEyLpaIYEp3kX395owFdmxeisFptgMo8HAOJuLu4GgNoBsqgvG9xYEbBMEQHAFmbQzfGMuSXRDgD4y3gFd0UM4VxeSIkwOOoYwtmKOLfDTBpaebqEZCZLW0CyEsN6rPgMG0+MCgDpP1jnUiIM7t2mwaXPQOUw65gaMMc8ygXMrMk9iaQw3lVtIJphGR0mf7/UKIQQO5QnWYJ3Zv0+GjYgZorwYQAO04dTdwInT56D/87tIAJnEjc3S7vd6ho1ahTWrVuHtWvXitfgwYNx1VVXYe3atQd8yqq2tha7du1CYWHhQdsdOnQoli5dmrLvww8/xLBhww5Sg+t3Nm7c2Gy7BEEQBPGTwGBH/+rAtNuKT3p6Ovr375+yz+12Izs7G/3790cgEMD06dNxySWXoLCwENu3b8c999yDnJwcXHTRRaLOxIkT0alTJ6ETuv3223H22Wfj0UcfxYQJE/DPf/4Ty5Ytw8qVK0WdqVOn4oILLkDnzp1RVVWFhx56CD6fD9dcc82x6TxBEARBEO3CceHjcyAURcG6devwyiuvoKGhAYWFhRg5ciQWLVqE9HTLqGLnzp2QZWvhatiwYVi4cCHuu+8+/OEPf0C3bt2waNGiFA+f3bt348orr0RNTQ1yc3Nx+umn4/PPP0dpaekx7SNBEARBtDp0q6tZJMY6eA/bCJ/PB6/Xi0YAnqoqgHyAiBOMsudn8Q1nAo4fLP2bvcEqYyhAwpLmQE7qYTJMPQ4ApjJoDfziJe5hQrPhqJWgmW1JjCf1BIBwPk9GCgBaowTDxo0IAdNEMMi3o1lNtEZRS5ejBQDNz+vrGkTSUDXCIOmmmWGedatdb/LshbOGwV9saXnsDUBjT15HjknwbLPK2hsNcwys8uFcCe4Kyzgwaf4Xzpbg3sfbiaVJUE2TvWimVddZwxDKlcDMy9Wm+hf3XgY5YY1VUrcUyrf6x8fLqps0D0wmNE3GZ6+3xkO3S+J4LN3SBQU7AdE8XdRL+4GPl2eHgajHNKNsopcK5ktQzDgcdUy0GSiUES7k25IuIW2X2d4e3pl4Gm83lCeJxKSsyYMqdp8hPrNwriKS16phBjWSHE8Znh08cEdFAIaL/yIFSlxIOHlbTEnVd/lLZKx/pJX0PtXVQF4efAC8ABobG+HxeFqn7R+R/L80uuttUOUj16QmjCiWbf1zm8banhy3Kz4EQRAEQRwBtOLTLO1uYEgQBEEQBHGsoBUfgiAIguhIGAxJu4Ejr99xoYkPQRBHxPYbport3g/Mgd00PpcYEHdZ5RSe/5In7TTlGUoMkBP8TcJl6XfkGLgREHii0GR53QaR0JNJAAx+IJrBYNgtjZBkcG8egPu+JJNT2oKAo55ra1K8YSKWV0zcbfnRAEDMlDYwGWJt3FCArO90hHO4mMRQAXutJPot9En1lud/PF2CZL61+YFAEW/MVcWE1kiJWn1NOIFAZzMJZxwiOWfMI0HzNRlbBqGJMVQJ9kZe0F+iwGZ6BakeKTmccDWxN7OFGGwhM/FqnCHm4f1J380gmf/0dJuEYCH36UmSHB/JAFy7FDHOSaIeGYqp3zFUrl0Sx7zWGCQTqibSAJvf6qu90Ty3XYZhs+q69hlCwxTJkISfkL+TDJup6YIB6C5rrJIDmraHoXog/wVzlGTBUc/HiakQsWo1OgybhFAu/5foqAMG/ZYnMC2f9xP09mEGfx1N/Q4M3eoiCIIgCOKImTlzJk477TSkp6cjLy8PF154ITZt2pRShjGG6dOno6ioCE6nEyNGjMD69etTykSjUdx6663IycmB2+3GL37xC+zevbvV46WJD0EQBEF0JJLi5qN5tYAVK1bg5ptvxueff46lS5cikUhg7NixCAaDosxjjz2G2bNn4+mnn8bq1atRUFCAMWPGwO/3izKTJ0/G4sWLsXDhQqxcuRKBQADnn38+dF0/0GmPGLrVRRAEQRAdiWOs8VmyZEnK+5dffhl5eXkoLy/H2WefDcYY5s6di3vvvVfk2VywYAHy8/Pxxhtv4IYbbkBjYyNefPFFvPrqqxg9ejQA4LXXXkNJSQmWLVuGcePGHXl/fgRNfAiCOGq+u/8ODJjKNRH+7jqyvub6D//oIAre4EY4Oy8wIMX4InP6FkVoNhybAZ/pHRousL6wbX45VWdjfherEUAN8G1D41qOpIYm5gX0Ui4q0r5zAqZ2iClAPI2fu6luBgDUsLUdyzVzRYUh4otmWseDRRK0gIT0XdyUJpyrQjU9hEK5EmwhJuJK5u6SY0x42CQcEtL28mCdNXEEC3mAUa+EaIZ1nqSWxl4HuKp4+bhbTomXyU30TGEglM/HXNe4RxDAdVK2gDUGST0TU4C4y/ROcklcTwXAFmSwme1rfgNpe2QxDk21UWm7gJohfBDlsAxboyzGSo6b+bl2MjHO9kaGkC0Zk6WrUkNWfACQSMZhcD+j5HgCEpwVUbOvKqQE35+1SUcov8m/sRA/h7+njvyV/CSGauUsYwpgC/LxTDAZSjhVy5L0+/F3tol+/+ya2SLn2Jrnf4J6n6PA5/OlvD/cnJWNjdwwKisrCwCwbds2VFZWYuzYsSltDR8+HKtWrcINN9yA8vJyxOPxlDJFRUXo378/Vq1a1aoTH7rVRRAEQRAdiVa61VVSUgKv1yteydRQzZ+aYcqUKTjzzDNFWqpk4vAfJwvPz88XxyorK6FpGjIzMw9aprWgFR+CIAiC6EgwHKWBIf+xa9euFOfmw1ntueWWW/DNN9+k5MdMIjVx3Qb4JOnH+/YL5TDKtBRa8SEIgiAIYj88Hk/K61ATn1tvvRVvv/02Pv74YxQXF4v9BQUFALDfyk1VVZVYBSooKEAsFkN9ff1By7QWtOJDEESrsG6WpX/o/dafAABxvx31PUyPmO8U9LnwewBAqK8NG9eUAQACJUDyEtNeJ4u8W2oYiLv5djxdFIFkAHqWWSbE9TDJHFJqEGBVTn6+nTpi6da1nb+UXzU6ai2Nj93HIMfMvFHFMmKmZia9kcGI8PLuvRA5oADu95P0rlGilo7FWcuPweyO5jNzctklJOxJrxqGmKk1Sjg1oR2RE5bWRbcDrn3mtgYwM9dXwsH9dxz1zHzf1CPHyvsFCCskyPHU7SRSE2mLGmGw+628VkmfoFiaDDXMRD4rACKHmC1koPBjuUkcTPQ7OQZxlyTygTFFgqvK1D/ZJDFmaoO1KqHErHxZks4gGVYfXVUJxNP5v6uEXYZub+otxOs46nQknDwm9l9FfJZKjKX4DwULrH97/gH8g83YbCBYKAuvKJsPYpzjaRLS9vABG37B4+J34T//+B2OW45xygrGGG699VYsXrwYy5cvR5cuXVKOd+nSBQUFBVi6dCkGDhwIAIjFYlixYgUeffRRAMCgQYNgs9mwdOlSXHbZZQCAiooKfPvtt3jssceOvC8HgCY+BEEQBNGRMAwIN80jrn/43HzzzXjjjTfwz3/+E+np6WJlx+v1wul0QpIkTJ48GTNmzECPHj3Qo0cPzJgxAy6XC7/85S9F2euuuw533nknsrOzkZWVhalTp2LAgAHiKa/WgiY+BEEQBNGROMYrPs8++ywAYMSIESn7X375ZUyaNAkAcNdddyEcDuOmm25CfX09hgwZgg8//BDp6emi/Jw5c6CqKi677DKEw2GMGjUK8+fPh6IoaE1o4kMQBEEQxBHDDmOiJEkSpk+fjunTpx+0jMPhwFNPPYWnnnqqFaPbH5r4EARBEERH4hiv+PzUoIkPQRCtzncX/xEAcPK//oBgLvflyOxfg+2NfLtv9j4YTq4j0KoVJNymYNfNkDAFzaiVhCDXvReImIJmrREpprS6EwiUmpqE9AS8a7gpYKBYEaLUhm6WaDruAuwNZl0bN+0DAEctQyifi2aDRTwhKADEnRDCYXsDF+0ix/zqbPKUrZzgotzk/qSIWQsyqLoh9ke1ZDZSCONANWKJjxNuCGEuN160TmLYLGNENWIJlyUGuCvNBJ+aFROTJJF01LA1NQS0hMNMBmRTbJxwWp1KOHkiWc8OS6SdJJYmW4lXAwx6E6F1MkFrKE+GYcaiBnksAGBvNBA3BdNqlAuzefuAI54USUtwVyaEsBuSBD055MxMCAvLjBDgYy8Sm0qWGWLCIVkJTrOt/mVs1pH7X75fCevQ/LJ1vibIcdkyb9SZSGw6+uyHseyTe/crf1xA2dmbhR5nJwiCIAjihIFWfAiCIAiiA8GYAcaO/Kmuo6n7U4AmPgRBEATRkWDs6G5XkcaHIAjiyPjv+Q8C5/PtsvmP4oafrQAALPjudDhyuQugsjUdSsw0vXMDWSdXi/qBT3IBcI1I3nYu1PCVqTDMm/TSyHqoAK4uWwcAeHPzQDjquCDHUW9lIk3bIwktCWAZ+BmqBH+xIval7eL7bUEGz3buelc1yAGHaSarhhlc+xKIp/E6cZck9CahHAkO05CPydwYEOAalmTiTslgYOaTuZEsCfZGJs7NnFaC1GTyUXu9pQMyVCCeZhkdJhzWOEczeXsAkF+eENofAPCVqqJPyf1MBlzVfDxj6YoYG8lIGkpytIYm+qZGPeWfaXIMlLhlcqjErOO6Bvxm0vsAgCc/H43O/7CCirvMQWAMhqmrsQUZ10+BG0sqUQPRDB67YZOE0aSsMyvpaBOxRjxdgWwmL9V8DGkB/iGHs61CTJWgBs0x88pgclIvxcskP0s1bAi9lr3RMkaMZFv/MsO5Gk6awhPzhgoZtvxuCoifBjTxIQiCIIiOBDtKcTOt+BAEQRAE8ZPBMFLzkrSUDq7xoae6CIIgCII4YZDY4VguEvvh8/ng9XrRCMBTVQXk5rZ3SATxk6HvfXNEok/A8qPRnUDMY+5Tra8mNdDEJ6YWwj/HUIBwk8TNaf3qgCXc8MdZYwgvnaZoQQN1fWRx3qzvTJ8bFQgUWedJ3833h3Ik+HtyvVDJEr4vqZtxVxgiFn8nGYrpxWNvSNXyqGHz3D5DJE7VHUCwiO9PeHXY6kzNTBQiqSYMy3MoUMKTsjLVGodkgk5DtZKUen+Iw17HTYsieU74S3gFXQMcdVaCU7ufX9Un7BISLktjlRz/pI9R+i7r6l83PYicpj4IACABoTx+DjlhjaHU5G6LZ6ch9DjJmJNxBwtlUTfpqQRwvx85xs8tGVyLBPD+Jz2I7A2G8CnSNeuzNjQpNeFpk/9yyTh0TULUy9846gzoDgmaOSaSzhD1KmZfreyuCbcCQ23iZ2R6Kml+BluI113xzo+Sl1ZXA3l58AHwAmhsbITH40FbkPy/NCrtl1Al7dAVDkKCxfDvwBttGmt7Qre6CIIgCKIDwQwD7ChuddHj7ARBEARB/HQgcXOzkMaHIAiCIIgTBlrxIQjimLPhoTvQ/c2H+Jttbmi9GgEAwToXnLu4WCXmARzV+3vvyAkrb5ekc68ZZ415bGMmND/X46ghA6E8fm3nrLGW7hu6y4hm8fc2v4xYk1xYuWu5nsPf2SYumHUnYK/ieo895xjQ6mTkfc01LkwCGrryr9GEG0im5Ip5rFxfWiMTOaBC+bLw5ZHjgHuPWT6giFxdPPZkp4GEi2+m7eKx6KaWJ+G0tC7uSkvPFMpXsXt0GgDA0BjStplx+Jo86CMDkQxeXg0zkV9LjstCm8QUwLvV0ubYQgacNZY3kn03/8z0DBfqe/GgkrEC/MGgpB+R35CF/1BTdCfg687PnfeF9TnYQgaUiCF0PUktDQC4qnU4q3kc0QybiE8yGGIes08RJvYbqiR0WHGXBHuDYZVRTI2UJiHulhDJNHVWEcu/KOrVhEZI8zGRC023S1DD/EDcLYHJ/ITDL3gccRffXrXozv07fSwwmiQ0OxI6+IoPTXwIgiAIoiPBGICjeZy9Y0986FYXQRAEQRAnDLTiQxAEQRAdCGYwsKO41dXRXW5o4kMQRLuw5bL7xHbZX54AANgCstBm2OskoUlRYlY9KWH53ESyAa0RCOfw945ay5tFYoBnB9fiJFwyfJ1Nv5gY4NpjnkSG0GxkbLFENrmrGxAu5jqZaKMK2ZS2RGIyPNsMxN3WYrmvP6/n2WCDs5r/w7CFrH8cgSJZxO+oY6JPkSxJ5NuK9IrA8wV/42hgQscTzpOE3sfuNxCVZaEFChYB2et5Y0yWEPPy/e4KwFGV9NuxdDaRLMDuk8w4DIRzeB9i6ZLwH7KFGJhketMEDBiqNfaxdAVqgA8EUyQkMt18nA0Drn08Dl+ZDCUsuo5QFz7+ukOBEuHtJvOhAVzLpAaS2iTufwTwXF28cXPcGgzL60mTYNjMHF4qEDNzhtnCTMRqqBIcDfzc8TRF6JbUcBO9VZaMaAbfr0TMn0n/JBlCv6M00V5JDCK/lxKz/IHiTkn4+8gJQI7zA2deMgsZkQD+hWMMM3B0t7o69uPsdKuLIAiCIIgTBlrxaQ1qato7AoL4SZPl54/8qEFrRUOO8atnIHXFRwkD8eQTN3bA1sQB2h6GyNDtiFoZthOyDCXUJEt3clMCbOYKhSdqXdo74iFo0eT5VEjmik80CKRHjJQHZiLmU2TpIRscZkZ2WxN3YlvI6pMasVZ8oiEJCbNdhy+C9DDvrD3CoJv9doSsFR9nxEBUk8XlqhYEMiLWio8txFccXBEmth1hhoS5wpHQAc3sqyNiwBHmDRkKRNwAEDNXNDSz7eSKh84kOGP8g2CKBDXOg5QMA7JZXwnKYvUEAGx+XkYOWis+7iYrQlICUM2nvewhQDNXWZxRHXKcIR7hSzWyzlIyzifHXzckxBTeD1uTPjAZsEfN1T6bIj5vJlu/U1FNRsxc7Uuu9CSzvkOCyAavNDWpNoA4ks7UTKwEJiQJUvIza/J7BwnIiAZxrKFbXc1DE5/WoG/f9o6AIH7SrGnvAA7EusMst7hNo/hpcFx+gCcwdKurWWjic4QkZ8S+do6DIAiCOP5J/q84FqspCcSPyrg5gfihC/2EoYnPEeL3+wEAJe0cB0EQBPHTwe/3w+v1tknbmqahoKAAKyvfO+q2CgoKoGlHnuj0eIaysx8hhmFg7969SE9PhyRJh67QAfD5fCgpKcGuXbs6ZMbeg3Gi9hs4cftO/T6x+g20fd8ZY/D7/SgqKoIst91zRZFIBLFY7NAFD4GmaXA4HK0Q0fEHrfgcIbIso7i4uL3DaBc8Hs8J96UInLj9Bk7cvlO/Tzzasu9ttdLTFIfD0WEnLK0FPc5OEARBEMQJA018CIIgCII4YaCJD3HY2O123H///bDb7e0dyjHlRO03cOL2nfp9YvUbOLH7fqJB4maCIAiCIE4YaMWHIAiCIIgTBpr4EARBEARxwkATH4IgCIIgThho4kMQBEEQxAkDTXwIwZo1azBmzBhkZGQgOzsbv/3tbxEIBMTx2tpanHvuuSgqKoLdbkdJSQluueUW+HzNZyyLRqO49dZbkZOTA7fbjV/84hfYvXt3W3fnsDlUv//73//iyiuvRElJCZxOJ/r06YMnn3zykO1WVlbi6quvRkFBAdxuN0499VT87W9/a8uutJi26jsAfPbZZzjnnHPgdruRkZGBESNGIBwOH7riMaAt+w1wl97x48dDkiT84x//aIMeHDlt0fe6ujrceuut6NWrF1wuFzp37ozbbrsNjY2Nbd2dw6atPvPj/fuN2B+a+BAAgL1792L06NHo3r07vvjiCyxZsgTr16/HpEmTRBlZljFhwgS8/fbb+P777zF//nwsW7YMN954Y7NtT548GYsXL8bChQuxcuVKBAIBnH/++dB1vY17dWgOp9/l5eXIzc3Fa6+9hvXr1+Pee+/FtGnT8PTTTzfb9tVXX41Nmzbh7bffxrp163DxxRfj8ssvx9dff93GvTo82rLvn332Gc4991yMHTsWX375JVavXo1bbrmlTa36D5e27HeSuXPnHpepbNqq73v37sXevXsxa9YsrFu3DvPnz8eSJUtw3XXXHYNeHZq2/MyP5+834iAwgmCMPf/88ywvL4/pui72ff311wwA27x580HrPfnkk6y4uPigxxsaGpjNZmMLFy4U+/bs2cNkWWZLlixpneCPgiPt90033cRGjhzZbNtut5u98sorKfuysrLYX//616MLupVoy74PGTKE3Xfffa0Wa2vSlv1mjLG1a9ey4uJiVlFRwQCwxYsXt0bYrUJb970pb775JtM0jcXj8SOOt7Voq34f799vxIFp/8sv4rggGo1C07SUK3Kn0wkAWLly5QHr7N27F2+99RaGDx9+0HbLy8sRj8cxduxYsa+oqAj9+/fHqlWrWin6I+dI+g0AjY2NyMrKarbtM888E4sWLUJdXR0Mw8DChQsRjUYxYsSIVon9aGmrvldVVeGLL75AXl4ehg0bhvz8fAwfPrzZNo8lbfmZh0IhXHnllXj66adRUFDQOgG3Im3Z9wPV8Xg8UNX2TwnZVv0+3r/fiANDEx8CAHDOOeegsrISjz/+OGKxGOrr63HPPfcAACoqKlLKXnnllXC5XOjUqRM8Hg/++te/HrTdyspKaJqGzMzMlP35+fmorKxs/Y60kJb0O8lnn32GN998EzfccEOzbS9atAiJRALZ2dmw2+244YYbsHjxYnTr1q3V+3EktFXft27dCgCYPn06rr/+eixZsgSnnnoqRo0ahc2bN7d+R1pIW37md9xxB4YNG4YJEya0etytQVv2vSm1tbV48MEHW1SnLWmrfh/v32/EgaGJTwdn+vTpkCSp2ddXX32Ffv36YcGCBXjiiSfgcrlQUFCArl27Ij8/H4qipLQ5Z84crFmzBv/4xz/www8/YMqUKS2OizHWphqItug3AKxfvx4TJkzAH//4R4wZM6bZGO677z7U19dj2bJl+OqrrzBlyhRceumlWLduXVt1G0D7990wDADADTfcgGuvvRYDBw7EnDlz0KtXL7z00ksdtt9vv/02PvroI8ydO7fN+ngw2rvvTfH5fDjvvPPQt29f3H///a3d1RSOp343pa2/34ijg1JWdHBqampQU1PTbJmysjI4HA7xft++fXC73ZAkCR6PBwsXLsSll156wLorV67EWWedhb1796KwsHC/4x999BFGjRqFurq6lKuik08+GRdeeCEeeOCBI+xZ87RFvzds2ICRI0fiN7/5DR5++OFm2/7hhx/QvXt3fPvtt+jXr5/YnxRYPvfcc0fYs0PT3n3ftm0bunbtildffRW/+tWvxP7LL78cqqri9ddfP8KeNU9793vy5Mn485//nHI7Rdd1yLKMs846C8uXLz+yjh0G7d33JH6/H+PGjYPL5cK//vWvlPO1Be3d7/b6fiOOkvaVGBHHMy+++CJzuVysvr7+oGU++eQTBoBt27btgMeT4r9FixaJfXv37j2uxX8H6ve3337L8vLy2O9+97vDauObb75hANiGDRtS9o8dO5Zdf/31rRluq9IafTcMgxUVFe0nbj7llFPYtGnTWjPcVqM1+l1RUcHWrVuX8gLAnnzySbZ169Y2ivzoaY2+M8ZYY2MjO/3009nw4cNZMBhsg0hbl9bo90/x+41gjCY+hOCpp55i5eXlbNOmTezpp59mTqeTPfnkk+L4u+++y1566SW2bt06tm3bNvbuu++yfv36sTPOOEOU2b17N+vVqxf74osvxL4bb7yRFRcXs2XLlrE1a9awc845h5188skskUgc0/4djEP1+9tvv2W5ubnsqquuYhUVFeJVVVUlyvy437FYjHXv3p2dddZZ7IsvvmBbtmxhs2bNYpIksXffffeY9/FgtEXfGWNszpw5zOPxsP/7v/9jmzdvZvfddx9zOBxsy5Ytx7R/B6Ot+v1jcJw91cVY2/Td5/OxIUOGsAEDBrAtW7ak1OvIf+eMHf/fb8T+0MSHEFx99dUsKyuLaZrGTjrppP0exf7oo4/Y0KFDmdfrZQ6Hg/Xo0YPdfffdKVdM27ZtYwDYxx9/LPaFw2F2yy23sKysLOZ0Otn555/Pdu7ceYx6dWgO1e/777+fAdjvVVpaKsocqN/ff/89u/jii1leXh5zuVwHbLu9aau+M8bYzJkzWXFxMXO5XGzo0KHsP//5zzHo0eHRlv1uyvE48WmLvn/88ccHrNPcavCxpq0+8+P9+43YH9L4EARBEARxwkBPdREEQRAEccJAEx+CIAiCIE4YaOJDEARBEMQJA018CIIgCII4YaCJD0EQBEEQJww08SEIgiAI4oSBJj4EQRAEQZww0MSHOKEZMWIEJk+e3KHOO2nSJFx44YVH1UZZWZlI8tjQ0HDQcvPnz0dGRsZRnYs4OJMmTRKfwz/+8Y/2DocgOgQ08SGIduCtt97Cgw8+KN6XlZW1S1bv5vjTn/6EiooKeL3e9g6lw7N8+fIDTjKffPJJVFRUtE9QBNFBUds7AII4EcnKymrvEA5Jeno6CgoK2jsMAEA8HofNZmvvMI45Xq+XJp4E0crQig9BNKG+vh4TJ05EZmYmXC4Xxo8fj82bN4vjyVs7H3zwAfr06YO0tDSce+65KVfliUQCt912GzIyMpCdnY27774b11xzTcrtp6a3ukaMGIEdO3bgjjvuELc1AGD69Ok45ZRTUuKbO3cuysrKxHtd1zFlyhRxrrvuugs/zkLDGMNjjz2Grl27wul04uSTT8bf/va3Ixqf+fPno3PnznC5XLjoootQW1u7X5l33nkHgwYNgsPhQNeuXfHAAw8gkUiI49999x3OPPNMOBwO9O3bF8uWLUu5lbN9+3ZIkoQ333wTI0aMgMPhwGuvvQYAePnll9GnTx84HA707t0bzzzzTMq59+zZg8svvxyZmZnIzs7GhAkTsH37dnF8+fLl+NnPfga3242MjAycccYZ2LFjx2H1/VD9mj17NgYMGAC3242SkhLcdNNNCAQC4viOHTtwwQUXIDMzE263G/369cN7772H7du3Y+TIkQCAzMxMSJKESZMmHVZMBEG0HJr4EEQTJk2ahK+++gpvv/02PvvsMzDG8POf/xzxeFyUCYVCmDVrFl599VV88skn2LlzJ6ZOnSqOP/roo3j99dfx8ssv49NPP4XP52tWn/HWW2+huLhY3Fpqya2NJ554Ai+99BJefPFFrFy5EnV1dVi8eHFKmfvuuw8vv/wynn32Waxfvx533HEHfvWrX2HFihWHPzAAvvjiC/z617/GTTfdhLVr12LkyJF46KGHUsp88MEH+NWvfoXbbrsNGzZswPPPP4/58+fj4YcfBgAYhoELL7wQLpcLX3zxBebNm4d77733gOe7++67cdttt2Hjxo0YN24cXnjhBdx77714+OGHsXHjRsyYMQN/+MMfsGDBAgD8cxk5ciTS0tLwySefYOXKlWJiGovFkEgkcOGFF2L48OH45ptv8Nlnn+G3v/2tmGg2x6H6BQCyLOPPf/4zvv32WyxYsAAfffQR7rrrLnH85ptvRjQaxSeffIJ169bh0UcfRVpaGkpKSvD3v/8dALBp0yZUVFTgySefbNFnQxBEC2jXFKkE0c4MHz6c3X777Ywxnk0dAPv000/F8ZqaGuZ0Otmbb77JGGPs5ZdfZgDYli1bRJm//OUvLD8/X7zPz89njz/+uHifSCRY586d2YQJEw54XsYYKy0tZXPmzEmJ7f7772cnn3xyyr45c+akZIsuLCxkjzzyiHgfj8dZcXGxOFcgEGAOh4OtWrUqpZ3rrruOXXnllQcdlwPFc+WVV7Jzzz03Zd/ll1/OvF6veH/WWWexGTNmpJR59dVXWWFhIWOMsffff5+pqsoqKirE8aVLl6ZkMU9mwJ47d25KOyUlJeyNN95I2ffggw+yoUOHMsYYe/HFF1mvXr2YYRjieDQaZU6nk33wwQestraWAWDLly8/aL8PxqH6dSDefPNNlp2dLd4PGDCATZ8+/YBlk9nN6+vrD3gcx2GWd4L4qUIaH4Iw2bhxI1RVxZAhQ8S+7Oxs9OrVCxs3bhT7XC4XunXrJt4XFhaiqqoKANDY2Ih9+/bhZz/7mTiuKAoGDRoEwzBaNd7GxkZUVFRg6NChYp+qqhg8eLC43bVhwwZEIhGMGTMmpW4sFsPAgQNbdL6NGzfioosuStk3dOhQLFmyRLwvLy/H6tWrU1ZCdF1HJBJBKBTCpk2bUFJSkqIdajpWTRk8eLDYrq6uxq5du3Ddddfh+uuvF/sTiYTQwJSXl2PLli1IT09PaScSieCHH37A2LFjMWnSJIwbNw5jxozB6NGjcdlll6GwsPCQfT9Uv1wuFz7++GPMmDEDGzZsgM/nQyKRQCQSQTAYhNvtxm233Yb/+Z//wYcffojRo0fjkksuwUknnXTIcxME0brQxIcgTNiPtDFN9ze9HfJjka0kSfvV/fHtk4O13RyyLO9Xr+ktt8MhOdl699130alTp5Rjdru9RW0dTh8Mw8ADDzyAiy++eL9jDodjv7FsDrfbndIuALzwwgspE1OATyyTZQYNGoTXX399v7Zyc3MBcI3QbbfdhiVLlmDRokW47777sHTpUpx++ulH1a8dO3bg5z//OW688UY8+OCDyMrKwsqVK3HdddeJz+w3v/kNxo0bh3fffRcffvghZs6ciSeeeAK33nrrYY0HQRCtA018CMKkb9++SCQS+OKLLzBs2DAAQG1tLb7//nv06dPnsNrwer3Iz8/Hl19+ibPOOgsAXxn4+uuv9xMqN0XTNOi6nrIvNzcXlZWVKZOFtWvXppyrsLAQn3/+Oc4++2wAfAWkvLwcp556quiT3W7Hzp07MXz48MPqw8Ho27cvPv/885R9P35/6qmnYtOmTejevfsB2+jduzd27tyJffv2IT8/HwCwevXqQ547Pz8fnTp1wtatW3HVVVcdsMypp56KRYsWIS8vDx6P56BtDRw4EAMHDsS0adMwdOhQvPHGG4ec+ByqX1999RUSiQSeeOIJyDKXTr755pv7lSspKcGNN96IG2+8EdOmTcMLL7yAW2+9FZqmAcB+vwMEQbQ+NPEhCJMePXpgwoQJuP766/H8888jPT0dv//979GpUydMmDDhsNu59dZbMXPmTHTv3h29e/fGU089hfr6+mZXOsrKyvDJJ5/giiuugN1uR05ODkaMGIHq6mo89thj+H//7/9hyZIleP/991P+qd9+++145JFH0KNHD/Tp0wezZ89O8YJJT0/H1KlTcccdd8AwDJx55pnw+XxYtWoV0tLScM011xx2v2677TYMGzYMjz32GC688EJ8+OGHKbe5AOCPf/wjzj//fJSUlODSSy+FLMv45ptvsG7dOjz00EMYM2YMunXrhmuuuQaPPfYY/H6/EDcfaiVo+vTpuO222+DxeDB+/HhEo1F89dVXqK+vx5QpU3DVVVfh8ccfx4QJE/CnP/0JxcXF2LlzJ9566y387ne/Qzwex7x58/CLX/wCRUVF2LRpE77//ntMnDjxkH0/VL+6deuGRCKBp556ChdccAE+/fRTPPfccyltTJ48GePHj0fPnj1RX1+Pjz76SEyoS0tLIUkS/vWvf+HnP/85nE4n0tLSDvuzIQiiBbSbuoggjgN+LDKuq6tjV199NfN6vczpdLJx48ax77//Xhx/+eWXU8S8jDG2ePFi1vRPKR6Ps1tuuYV5PB6WmZnJ7r77bnbppZeyK6644qDn/eyzz9hJJ53E7HZ7SlvPPvssKykpYW63m02cOJE9/PDDKeLmeDzObr/9dubxeFhGRgabMmUKmzhxYoqQ2jAM9uSTT7JevXoxm83GcnNz2bhx49iKFSsOOi4HEjczxgXExcXFzOl0sgsuuIDNmjVrv/FYsmQJGzZsGHM6nczj8bCf/exnbN68eeL4xo0b2RlnnME0TWO9e/dm77zzDgPAlixZwhizxM1ff/31fud//fXX2SmnnMI0TWOZmZns7LPPZm+99ZY4XlFRwSZOnMhycnKY3W5nXbt2Zddffz1rbGxklZWV7MILL2SFhYVM0zRWWlrK/vjHPzJd1w86Di3p1+zZs1lhYaH4vXnllVdSBMu33HIL69atG7Pb7Sw3N5ddffXVrKamRtT/05/+xAoKCpgkSeyaa65JOTdI3EwQrYbE2BGIDwiCOGwMw0CfPn1w2WWXpbg1H8+UlZVh8uTJxySdx6effoozzzwTW7ZsSRGNExaSJGHx4sVHnYqEIAjy8SGIVmfHjh144YUX8P3332PdunX4n//5H2zbtg2//OUv2zu0FnH33XcjLS0NjY2Nrdru4sWLsXTpUmzfvh3Lli3Db3/7W5xxxhk06TkAN954I93yIohWhlZ8CKKV2bVrF6644gp8++23YIyhf//+eOSRR4QA+afAjh07xNNIXbt2FYLd1uCVV17Bgw8+iF27diEnJwejR4/GE088gezs7FY7R0vp16/fQR2cn3/++YMKqtuaqqoq+Hw+ANw2oemTbgRBHBk08SEI4oSn6UTvx+Tn5+/nDUQQxE8XmvgQBEEQBHHCQBofgiAIgiBOGGjiQxAEQRDECQNNfAiCIAiCOGGgiQ9BEARBECcMNPEhCIIgCOKEgSY+BEEQBEGcMNDEhyAIgiCIEwaa+BAEQRAEccLw/wEGKnbVTQeUzAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ax = plt.subplot()\n", "reprojected_raster.plot(ax=ax)\n", "ax.plot(\n", " *reprojected_raster_box.exterior.xy,\n", " color=\"red\",\n", " linewidth=3,\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Boundary calculated from original corners (incorrect)\n", "\n", "Directly transforming the corners is an incorrect method to calculate the new boundary." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "tags": [] }, "outputs": [], "source": [ "transform_box = box(*transformer.transform(*xds.rio.bounds()))" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "tags": [] }, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHFCAYAAADyj/PrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADwIUlEQVR4nOydeZgU1bn/v6e23qdn31iGRRAV3CAB1CiKCkTBqIlGDCquiYmKimtiRC9CxAWTeE0UTXCLeG9u4s8tKBqJGlERxKAiorIMMMMwW/f03lV1fn+c6lPTDo4zzCAwvp/n6YfqqnNOvedU93D61Le+L+OccxAEQRAEQXwLUPZ2AARBEARBEN8UNPEhCIIgCOJbA018CIIgCIL41kATH4IgCIIgvjXQxIcgCIIgiG8NNPEhCIIgCOJbA018CIIgCIL41kATH4IgCIIgvjXQxIcgCIIgiG8NNPEhiD7MAw88gMWLF3fYv2nTJjDGdnns6+hJ3Z7y6quvYsyYMQgEAmCM4ZlnnvnGzr1kyRIcfvjh8Hq9qK6uxqxZsxCLxb6x8xME0TtoezsAgiD2HA888ABKS0txwQUX5O2vqqrCihUrMHTo0L0T2G7AOcdZZ52F4cOH49lnn0UgEMCBBx74jZz7ySefxE9+8hNcfPHFWLhwIT799FPccMMN+Pjjj/Hyyy9/IzEQBNE70MSHIL6FeDwejBs3bq/GYFkWTNOEx+PpUvnt27ejubkZp59+OiZOnLiHo3OxLAvXXXcdTj75ZCxatAgAcPzxxyMUCuHcc8/FP/7xD0yZMuUbi4cgiJ5Bt7oI4htg586duPTSSzFgwAB4PB6UlZXh6KOPxiuvvCLLTJgwASNHjsQbb7yBcePGwefzoV+/frjllltgWVZee7fddhvGjh2L4uJiFBQU4Mgjj8QjjzyC9jmHBw0ahI8++gj/+te/wBgDYwyDBg0CsOvbVZ999hlmzpyJYcOGwe/3o1+/fpg6dSrWrl3b4/7nzrdgwQLMnTsXgwcPhsfjwWuvvQYAeO+99zBt2jQUFxfD6/XiiCOOwP/8z//I+nPmzEH//v0BADfccENeX/Y0b7/9Nurq6jBz5sy8/T/60Y8QDAbx97///RuJgyCI3oFWfAjiG2DGjBlYvXo17rjjDgwfPhytra1YvXo1mpqa8srV19fjxz/+MW688UbcfvvteOGFFzB37ly0tLTg/vvvl+U2bdqEyy67DAMHDgQg/nO+4oorsG3bNvz6178GAPz973/HD3/4Q4TDYTzwwAMA0Onqyvbt21FSUoLf/OY3KCsrQ3NzMx599FGMHTsW77//fq/cVvrd736H4cOH4+6770ZBQQGGDRuG1157DZMnT8bYsWPxxz/+EeFwGEuWLMHZZ5+NRCKBCy64ABdffDEOO+wwnHHGGbjiiiswffr0r10pMk2zSzGpqgrG2Fce//DDDwEAhx56aN5+XdcxYsQIeZwgiP0EThDEHicYDPJZs2Z1Wua4447jAPj/+3//L2//JZdcwhVF4Zs3b95lPcuyeDab5bfffjsvKSnhtm3LY4cccgg/7rjjOtTZuHEjB8D//Oc/f2U8pmnyTCbDhw0bxq+++upu1f2q8w0dOpRnMpm8YyNGjOBHHHEEz2azeftPPfVUXlVVxS3Lymvjrrvu6tI5AXTp9XX9uOOOOzgAXldX1+HYySefzIcPH96leAiC2DegFR+C+Ab47ne/i8WLF6OkpAQnnngiRo8eDV3XO5QLhUKYNm1a3r7p06dj0aJFeP311/GTn/wEAPDPf/4T8+bNw8qVKxGNRvPKNzQ0oKKiotsxmqaJBQsW4IknnsBnn32GbDYrj61bt67b7e2KadOm5fX7s88+wyeffIK7775bxpDj+9//Pp5//nmsX78eBx10ULfPtXLlyi6VGzx4cJfKfdWqUGerRQRB7HvQxIcgvgGefvppzJ07Fw8//DBuueUWBINBnH766ViwYAEqKytluV1NWHLHc7fF3n33XZx88smYMGECFi1ahP79+8MwDDzzzDO44447kEwmdyvGa665Bv/93/+NG264AccddxyKioqgKAouvvji3W7zy1RVVeW937FjBwBg9uzZmD179i7rNDY27ta5Dj/88C6VU1W10+MlJSUAxPh/+fo0NzejuLh4t+IjCGLvQBMfgvgGKC0txX333Yf77rsPW7ZswbPPPosbb7wRDQ0NWLp0qSyXmwi0p76+HoD7H/CSJUug6zqef/55eL1eWa6nnjZPPPEEzjvvPMybNy9vf2NjIwoLC3vUdo4vr46UlpYCAG666SacccYZu6yzu9qiXa2o7Yo///nPHR73b8+oUaMAAGvXrsXBBx8s95umiU8++QTnnHPObsVHEMTegSY+BPENM3DgQPziF7/Aq6++in//+995x9ra2vDss8/m3e76y1/+AkVRcOyxxwIQkwdN0/JWKpLJJB5//PEO5/J4PF1erWGMdRAMv/DCC9i2bRsOOOCALvevOxx44IEYNmwYPvjggw4Trp7SW7e6xo4di6qqKixevBhnn3223P/Xv/4VsVjsKydsBEHsm9DEhyD2MJFIBMcffzymT5+OESNGIBQKYeXKlVi6dGmH/zRLSkrws5/9DFu2bMHw4cPx4osvYtGiRfjZz34mn+A65ZRTcO+992L69Om49NJL0dTUhLvvvnuXTzmNGjUKS5YswdNPP40hQ4bA6/XKFYwvc+qpp2Lx4sUYMWIEDj30UKxatQp33XWXfIx8T/Hggw9iypQpmDRpEi644AL069cPzc3NWLduHVavXo3//d//3a12x4wZ0yvxqaqKBQsWYMaMGbjssstwzjnnYMOGDbj++utx0kknYfLkyb1yHoIgvhlo4kMQexiv14uxY8fi8ccfx6ZNm5DNZjFw4EDccMMNuP766/PKVlZW4r//+78xe/ZsrF27FsXFxbj55ptx2223yTInnHAC/vSnP+HOO+/E1KlT0a9fP1xyySUoLy/HRRddlNfebbfdhrq6OlxyySVoa2tDTU0NNm3atMs4f/vb30LXdcyfPx+xWAxHHnkk/va3v+FXv/pVr49Je44//ni8++67uOOOOzBr1iy0tLSgpKQEBx98MM4666w9eu6u8pOf/ASqquI3v/kNFi9ejOLiYpx33nm444479nZoBEF0E8Z5O8czgiD2GhMmTEBjYyP5whAEQexByLmZIAiCIIhvDXSriyCIHvF1DsmKokBR6DcWQRD7BvTXiCD2EZYvX77f3ebatGkTdF3v9HX77bfv7TAJgiAktOJDEMRuU11d/bWPjVdXV39D0RAEQXw9JG4mCIIgCOJbA93qIgiCIAjiWwPd6tpNbNvG9u3bEQqFKEkhQRAE0Smcc7S1taG6unqPiv1TqRQymUyP2zEMIy8lTl+CJj67yfbt2zFgwIC9HQZBEASxH1FbW7vH3NBTqRQG1wRR32D1uK3Kykps3LixT05+aOKzm4RCIQDiQ1xQUCD3H3vFf4M7o2p6AMv5zOgxgNliO10EKGmxzRVAMQFvi5BapQoZtLRbztcgto02G2pGlFFMjkzQ/cWgpsV+W2u38sQA0yfes3YqLjXFwSyOdKHI86QnbAS2ixMmSw1kwh1/iShZ0V6OVKF4o2YB5jzJrKU57Fy/fQxZv9j2NXL4GsWXkKsM2YDbfqqIQXG+n55WG1wR7WaDDHDGSjE51KzYzoQYjDZnDDIc3ElVlQkq8qatpQPJ0naxW7k4RD+8zWKHvy4JlhXbmWIfMiHRWPv+GxEblkfEVLguCmwVyULRrwLbJhbJcv6dIqbANvdXVttAA4lyBuacP7jdBneuDzPdC5IsU+S4aUnAMsQ24wB3xtzyuf0BBwL17hgozvgzG247KQ7LcC9YcEscqXLRCFcY0k4fTR+Df4cIUGkXk+lzx6BtgIJ3/uvn2KM0NgJDh+bv+/xzoLR01+UJYj8kGo1iwIAB8v+OPUEmk0F9g4WNq2pQENr9VaVom43Bozcjk8nQxIdwyd3eKigoyJv4qIZXTny4B4CTPknNuBMf1eOKq7gCKCqgGtw5xqByt5zq/Eeo6TZUR4euMA5bbzfxsXc98eFGx4mPZnEwhcM0xH/0WtaG5tTTdAOWsYuJD0PexEd1JgMqA5hTXOUcLNdvg8HO9dvg0HR34mO3a1/1MPkft6bbsFXRrm20m/goHM5uqAZzx4m7Ex/LcCc+0AG13fc0175qiH7kYtE0Dmabzrh5Yeuq21ZurHQbTHfGRk0DzMgFDtXjniQXk6a165thQPW4Ex9Nt2E7bSntLojqUeS4qRbk56X9xAftU3Bx5I2BM1fMn/hYXMYt4rKg6SJerjCYTh+5weR4tI8J7T9bHiXv871HSKc77guFgD19XoLYC3wT0oiCkNKjiU9fhyY+BEEQBNGHsLgNqwfPa1vc7r1g9kFo4tNLjLp2IQDAa3IUfRCT++uOEcualgF4W8UnMWMxxAeKD5bRqkDJAGZS/ArwtnBkCpwVlYRYEQKAdFiRt7q0JJcrMMxst9LDAOZ82rMBRd4iMtos6G1idSNRYSBeocITFeUS5QpiVT6n3XarQzbgaxYxqmkbiTLVabfdKkaCw/Q7506LYzlU50e8Yrq3TtS0Df+OLNKF4mMXqONIlopjtsqgpcTJjZiNVKHYnylgcLoBbwuH6aw25W4RAuLWjrfVuW0VUhHv56ysWIDtLNJ4IhyZIJP9UFMeeBvcL3fuFpzpZcgGxL5YfxXeJrFd/70i+BvCAIDg5jiKPxEnjw7UkAmK82XCGpKlqmxTj0HemssUKIhXOfHG3ZUuAAhuE3FEB7e7zdYqVgkBQN/BEa1hclxz1zvrZwhtzd3rYvLzwRWGrJ8huE2MXLbAg2SJ0+80l7dAva22bEvNcqTDqnMt3M9BoJ5jzMX3AgAaj81g03k3giCIfRsbHDZ2f+bTk7r7A7QWRhAEQRDEtwZa8SEIgiCIPoQNGz25WdWz2vs+NPEhCIIgiD6ExTmsHiRl6End/QFKWbGbRKNRhMNhRCKRDk+9nHDSbwAAnvX1cl9kvOv5Y+sMmXZ6GChA1nlkWc1A6m9ShUzqPLJ+wGhzymTdS5b1t2uHAcHtQutiGUw+RaTHbTDbrROr0mDrbrWcHidVBPk0lhF1jxsRLttS0xyhWlEhXmUg0+7JgZweqfSDOLQG0UD0sHKpPWEmh5q2YQZUWd70O1qeoIJAvdCrpAtV+Xh1olSBv9H99WE5cbQNbPe49jYuHrmH0Pvknm5KFSkyJj0hND6hrWJ8GAf8W+NiO2shW+g8paUwNI4S27bu9snTAjmGsQEMhRsc/VMGiPUThTytXFoL5LRLuSez9ASXGqhkBeCvE/vT7lPxMKLtnuQCpI5LybiaGy3BoTnniFco8DW6uijTKypYHgYtyaElbTnuObIhFW39FXk+xdGEqRn33KaPyX4bMbduJsTk2ALAmt9fjV5h506gvDx/X0MDUFbWO+0TxD5AZ/9n9PY5aj/p1+PH2QeM2LZHY92bkMaHIAiCIPoQOXFzT17d5fXXX8fUqVNRXV0NxhieeeaZDmXWrVuHadOmIRwOIxQKYdy4cdiyZYs8nk6nccUVV6C0tBSBQADTpk3D1q1b89poaWnBjBkzEA6HEQ6HMWPGDLS2tnYrVpr4EARBEEQfwgaH1YPX7kx84vE4DjvsMNx///27PP7555/jmGOOwYgRI7B8+XJ88MEHuOWWW/IMEmfNmoW///3vWLJkCd58803EYjGceuqpsCzXiXr69OlYs2YNli5diqVLl2LNmjWYMWNGt2LdZyY+8+fPB2MMs2bNkvsuuOACMMbyXuPGjetym0uWLAFjDD/4wQ86HHvggQcwePBgeL1ejB49Gm+88UYv9IIgCIIgvn1MmTIFc+fOxRlnnLHL47/85S/x/e9/HwsWLMARRxyBIUOG4JRTTkG5c5s7EongkUcewT333IMTTzwRRxxxBJ544gmsXbsWr7zyCgCxYrR06VI8/PDDGD9+PMaPH49Fixbh+eefx/r167sc6z4x8Vm5ciUeeughHHrooR2OTZ48GXV1dfL14osvdqnNzZs3Y/bs2fje977X4djTTz+NWbNm4Ze//CXef/99fO9738OUKVPyltwIgiAIYn+kt251RaPRvFd6Vy7rXYnHtvHCCy9g+PDhmDRpEsrLyzF27Ni822GrVq1CNpvFySefLPdVV1dj5MiReOuttwAAK1asQDgcxtixY2WZcePGIRwOyzJdYa8/1RWLxXDuuedi0aJFmDt3bofjHo8HlZWV3WrTsiyce+65uO222/DGG290uP9377334qKLLsLFF18MALjvvvvw0ksv4Q9/+APmz5+/233J8c9lrsnblEFCAKolbbQMd4bbdkXEShbIFADeZvHeaOOuoDbKpTBYTbuCUyXrimj1GPLyX7XP4ZUToqoqkHFyc9maEKjmxMDtczQV1OYbBOZSbGgpjqQjzI1XMXBVBJ8qYlKAG6hzBchaYwxth4pZPOOuMFexOLIhVcbLOJB2BHhqluel3MjFAQZkHcM9NePm3irYzJEoFftThUyKtW2DSbG2bQAlHwrBtKclC7TT8afKPMgUeZ2xtaCmRDmWthDeKAYuMkhDeJPrNJh1xrZsjYW2ATkTRgu6Y1LIbKDpEEfo3Iw8AXm6mEETWmp4mgE9novFNYQEANNZ9fW2csQcI0a7UFxnQBg95kwjlSyQdMYgWaoivFHEavpU2BpkPjZvkylNJLN+93OUDblicU/UFXJngm48lpfBv0NcW08rzxNGH3alMO384He9JHImCKJX6K2nur6ciPvWW2/FnDlzut1eQ0MDYrEYfvOb32Du3Lm48847sXTpUpxxxhl47bXXcNxxx6G+vh6GYaCoqCivbkVFBerrxYNC9fX1coWoPeXl5bJMV9jrKz4///nPccopp+DEE0/c5fHly5ejvLwcw4cPxyWXXIKGhoavbfP2229HWVkZLrroog7HMpkMVq1alTerBICTTz650xljOp3uMPslCIIgiH0NuxdegEjCHYlE5Oumm27avXhs0eJpp52Gq6++GocffjhuvPFGnHrqqfjjH//YaV3OeV5+s13lOvtyma9jr674LFmyBKtXr8bKlSt3eXzKlCn40Y9+hJqaGmzcuBG33HILTjjhBKxatQoej2eXdf7973/jkUcewZo1a3Z5vLGxEZZloaKiIm9/+1nlrpg/fz5uu+22rnWMIAiCIPZzvpyEe3cpLS2Fpmk4+OCD8/YfdNBBePPNNwEAlZWVyGQyaGlpyVv1aWhowFFHHSXL7Nixo0P7O3fu7PB/emfstRWf2tpaXHXVVXjiiSe+Mu392WefjVNOOQUjR47E1KlT8Y9//AOffvopXnjhhV2Wb2trw09+8hMsWrQIpaWlnZ7/y7PDr5sx3nTTTXkz39ra2q/pIUEQBEF88/Tkia7cqzcxDAPf+c53OgiQP/30U9TU1AAARo8eDV3XsWzZMnm8rq4OH374oZz4jB8/HpFIBO+++64s88477yASicgyXWGvrfisWrUKDQ0NGD16tNxnWRZef/113H///Uin01BVNa9OVVUVampqsGHDhl22+fnnn2PTpk2YOnWq3JdbYtM0DevXr8eAAQOgqmqH1Z2GhoZOZ4wej+crV5k64x+bhA7iqLPuQeHnjnleu7S5yVIVesydcOkJLo3yjKiJdFhcIt10NSNqBuCqo//QGTIhJutyZ8g4g0xSmipSkSoR20ab0KLkdCWB7SYsqf9QYHlymg83gWW6UJFJNZntGt0pJmA5QxLrpyC0VYx1/YkVyH1vMgUi0SUAWLoGPcnzTPAKtoggY9UaUkVOotB2BnqeCIet5mLNQE27ghgl6xgNttMGJcoY9IQ7lmrKMRqMptE2rAC2IcpqCRvZoGjY2JmAkhZxpKsKYHkUOc655J683Ucx61Ol/qltgCr1N6YXKF5nO7E5Y1/i6JlagFSx2KfF3DFkFqROyvS557A1hvAXttOuq+sJ1FmwvLmEqgDPiP2+JkvqvkreawY4hxUSDZpBHYrhjom+hTsxcqm/aq/pileqrvFjjMNyxsz0MdhHR8QYvBmG5fxeGfeTe2GrwLuPXgOCIPY+FkcPs7N3v04sFsNnn30m32/cuBFr1qxBcXExBg4ciOuuuw5nn302jj32WBx//PFYunQpnnvuOSxfvhwAEA6HcdFFF+Haa69FSUkJiouLMXv2bIwaNUpKYQ466CBMnjwZl1xyCR588EEAwKWXXopTTz0VBx54YJdj3WsTn4kTJ2Lt2rV5+2bOnIkRI0bghhtu6DDpAYCmpibU1taiqqpql22OGDGiQ5u/+tWv0NbWht/+9rcYMGAADMPA6NGjsWzZMpx++umy3LJly3Daaaf1Qs8IgiAI4tvFe++9h+OPP16+v+Ya8UPo/PPPx+LFi3H66afjj3/8I+bPn48rr7wSBx54IP7v//4PxxxzjKyzcOFCaJqGs846C8lkEhMnTsTixYvz5gNPPvkkrrzySqnTnTZt2ld6B30Ve23iEwqFMHLkyLx9gUAAJSUlGDlyJGKxGObMmYMzzzwTVVVV2LRpE26++WaUlpbmTVjOO+889OvXD/Pnz4fX6+3QZmFhIQDk7b/mmmswY8YMjBkzBuPHj8dDDz2ELVu24Kc//eme6zBBEARBfAO0Fyjvbv3uMmHCBHxdBqwLL7wQF1544Vce93q9+P3vf4/f//73X1mmuLgYTzzxxG5E6LLXH2f/KlRVxdq1a/HYY4+htbUVVVVVOP744/H0008jFArJclu2bIGidE+qdPbZZ6OpqQm333476urqMHLkSLz44ovyXiNBEARB7K/YYLDQ9aecdlW/L0NJSneTniScm3jCfCRLDfme2RxoJ6xWM2K+HS9356WWV+hdAMBos6VGJJc8VJYz3Pdaykn0Wa5InQxXAT3uanM4E54xgNB8fLmuKOTGlypUpHdMdnwb8JGYhAa3AIWfp0R8G3e68VQWIVUuxCCtQzVocaBgs8i8qiUtZIOij6ZfRaqwY8JTT7u+hjYloWSExidWE5BJOKG4miAASJTmkqAyqZeydYZMAZB1PGr0NkBLunXK3hcmO8lKL5LFon66CMgUiuNqUiRDBUSyzty1ULIciQrHu6fF1cPoCaFlygYdLZbmamgsw/Uj0hKAlswlNmXQUk6XMoB/pxBWZQOuxsrWgFi1Isco5//kb7TgaUo7dS0w0wbXHC1QyECiwv28pQvcz0guCamS5VI31t7vKFPgDiwzXR0S1yB1YyUfiY5FB7hlP7qzG94+lKSU+BbwTSYpXf1xBYI9SFIaa7Nx5ME7+myS0n12xYcgCIIgiO5jc/HqSf2+DE18CIIgCKIPYfXwVldP6u4P7HXnZoIgCIIgiG8KWvHZC7z6T9f2e+yMe2HEODLBXD4qDtPxaWmvs9GTkHqVdFiRuZ60lA2uuLPznA+PlnB1+YF6S3oHJco1mF6g8DNhNJMq1ZAqFnWYxaA7mg8t2a5d5mpl9DiXuhCrLojmEaKI6QcaRwktT/UGC23fcXO8GG1CoFKwmQm9SjuTCNtw+pqwwB3PG8srdDAAEGhwy6rrt4AxUUbpN1T67WgJC3pSiGYiQ7xSS1O8tg1WUJgfqUkTXGFoGeF3xpBJr52y91rlOUKrmuAvF66hVkBHokoEkixRRG4yAL4mLnVHXGUIbRHnTpaq0u9HzeTrtjwRLuMCdz2ZmOXqsow2od/KkdPcqBnkkcvzZvoAb4vYTpSp8G8V45zoHwAA6NGcRkiV+i0ly8GdhwE4a+fJlOWwnPO19VdgOlqo4o9tmN72/RD/WgaD3parC4Bz6RuVDQAH3SL8q9b9F+XxIohvGlrx6Rya+BAEQRBEH8LmDDbf/clLT+ruD9DEhyAIgiD6ELTi0zmk8SEIgiAI4lsDrfjsZd55/BocddY9QhMCJydUu/xJ3lahHzE9ivSEAQA17WpBTF9OowOZr4krDJl2fi05HYm31YaaYUhUiEufCTHYzvRXNQF/g+nEwaRHULLEnR/rCQ7FdPxsggwex0fGE+Ey7viR/WUOKFsFMiFxLltjYBaHpTv+Mn4VmaDixMUR2ibO3dZfg5p22mqXN8o+/kDpQZMOM3ii4iRmP9fOvPjjtNxWkmmoMWGMww0N0QPDUp9U8kEUyjbhN2QOqYLW4iT48vug7mwVdbRi+OszTuweJMrdc2cD8jQw2sT51ZTIcZYbs3QhZN6wTAFD+7x/ppAaoWCzDSWW8/FRkPW7Odj0RC5nmwVPs4gjGzYQ2C7KhDa74h/LryJbKMQ/WsICZ67HU6ZAheroxWLVKrjzrefMjQNQUbRefNbCGxl0xyPJ/8E2IC3GtPnkYTIvHLPdz5rpY0iHFTc/WbkNT5O4aCPmLIQRFfv/cy/pfQjim8CCAqsH6xrW1xfZr6GJD0EQBEH0IXgPNT68j2t86FYXQRAEQRDfGmjFhyAIgiD6ECRu7hya+BAEQRBEH8LiCizeA40Ppawg9jRv/c+1cnv89HukaFRLcWkimA4rUB0TOlsD1JQrbs5tZwpUN9EkA7hjoMc4l+LpVKECLclhOiJabwuXZnqJcoadR4g33kZIMz4l6yYNzfoZjDbXzNDWRDuW4Yp3s34FumOgyBQm41NTQDakIl2kOnGJvoj+qTCF/2FewtH22y3DFRiOgR7XIJOlln5kgmXFObIFmqyTKSySBn1Gm4VsgEmRt9YvAJ8zPtrmBvd84RDgF5k4MyUeJEtErNkAg7/BNQHMJUjNBl1hdXQgQ7JMnFyPAQVbXKPDbMD9BcVsN0FqOqzIMpYX8MXEtprh0jAxG9CQKBMDVfh5CqqTOJRZNhQnoa0ZUJEoF9fOiNlIF6jwNgmxuB53E736mm2kC1yDTNYo9tu6m5BUzQBpQ/TLHDsABR+KQrH+DIHj3AS0qZfKZH8KP8tKk8Si9UDtSSIW3w43gewhNy2UAui1d5PQmSCIvQNNfAiCIAiiD2GDwe6BhNdG317yoYkPQRAEQfQhSOPTOfRUF0EQBEEQ3xpoxWcfY8VfXL3PMWfcLY0AAztMud/WGNKF4tJxFQhtjAMAFFNHukhoK5jtmukBroGhmuZIF7q6C9PLYDlJL5nl6npMH6A4p7Q87raS4TJpZVsNQ/A7Qv+h/E8JLGd/JqjIBKtq0gZ3jPSyfkXGL9plyDjJMBUbUB3di6272h5mA1mnjJqE1BcZbZCaJ98XrWBtYgziR/RDytEQpQoZjLZcmwxG1EbMMTv0b24D29HknFxBdmglAKB1mA8la4SQyLs9BkCcXEsosJ0x5CqTffA2mdIosGCzIvuYG6t0WJFjmIs9G2BynAHAcjRWahryWhStSyCkibqpEkMaVlqG4mrAYhmZCFWPZmFrhiyTLmRQ0+IkXIM0RlQzkMlS02EmE6B6Wm2pQ1LTXBpFcoWhZbTQ8lhe4MiyWgDAsg0HAWPFBbNaDATqVRS8ul5cM03DsP+IdtfdWYOCNSIu1QKiRwozxLHn3Yt3HrsGBEH0Pj0XN9OtLoIgCIIg9hOExqcHSUr7+K0umvgQBEEQRB/C7mHKir4ubiaND0EQBEEQ3xpoxWcf5s2/zcYRly8EILQ3viYhzgh/2AKWFOKM6GHliA0UGTPVLJdeKrF+mtz2tNrSDyhTwMBsIBMW58iGAMXJ66lYgOr4yNga8rU/zsqnkoX0YgnWAtqGEgDCKybuczxvCgDm3F/2RJhMcsoVSO1Prg5XHd2PCjkN19s49CR3y7RbdU2HxTmKPozIfayxGbBF+cDqrcAR/UXdmALN8RAyvQr0mAUwUd8KGFCqSwEAjaML4W2xnXFm2D6hEABkcs1c7Ebc0S2lbJiOliddqCBQJwRQRa9vgVUlxqPtgAC4BjAnLi3JZDJZI8qhJd2ktLFqZ3w0VweUKTSgt2Wda8Hk4Ph2pGC0igtmezSkysRFYtxNXGt5FAS3uWkGM35FeixZOlxPpyIGVeRwRTbA5HXN+pm8TpmgIpPS+nYA/3zpSABA8QaOpsNFeQVA6wEManqYc0EYogPEOCvNHANO3wgAWPf+ICjNQu/TegDDgf8lPtsD17VhGQiC6C1I49M5NPEhCIIgiD6EDYV8fDqBbnURBEEQBPGtgVZ8CIIgCKIPYXEGi/fAwLAHdfcHaOKzj/P+A25Oo2On3QUAaDuwCKnCnMbELcsVwNuSewPoiZyOhElNiZbiTq4oN8dW2tH7qAlAcXxd0oXCV0bUgdSIcMagx4V+xNfo+gQxi6Ngk3ifqNCkT822k20EN4hYCz+3kCpSwBz5ieVh0pPGCjLYznfNv8OGp1kEorWloWx3EkoVFjiuOkD0kBJ4WoS2xrMVgOGY4WSzYE6GPWZzWJ5c7iwLXGEo2CTqNB8cQHCbELUUf5xApkDUV4IMelwEkqiC1MAAQHiTKG/6FOhxJz9aSEVbf1G3deggVL0uLkAmqCBeBfic0JPlkP1Oh5kcfwDw73SXlXO5y0y/KvsR2hiDree0SRqSZeJ8XGFCGwXAvyMLy9FYKSZHskSV+djat6tkAdNZ5/VEAF+TCIqrTGp/TB9DOuTkA7Nd3VFKYwhtctrTGYo+yrXJoaVt2Loi+5dbS7ZLM/hoczUAYOihW7HxA6G/sg3385XTFhEE0TtYPXyqy6JbXQRBEARBEH0DWvEhCIIgiD6EzRXYPXiqy6anugiCIAiC2F+gW12dQxOf/YjXn71Obh9w170AAH8dg6fV0ckYTHr3AJA6DT3BpZ9MqkgBs13Nhx7nCG53z5EOOzmomrn0/gEA0y/+NaJu/inTr0BLuDqfWLXQmPiaOeDoRQo/0KA42pZMUJxbdTQd7fVztu5u7zxchbfZJ+p/rsO/ZYcoX79T5qYK7WhE0w8OAgAo2f6yrv7pNvj/s805AUdszADRnx1xKNsbwUsLnbEqhhlwNTFGa0b2KR4U+5kJJKpFP0rXAPEqEWRgexbJcrEd3G65ucv6K9h0epGMRUlD6qeUtKvx8ba446lkgExQ1E+WA0XrHX2S5XoywbYBRVwwNW4CZbl8bByqM/xa0kK8WuxPljIYESBVLI5ZHjcHm3+HmxMt0CA0V+J8kJoiJcNlnresn0mtENcAozXni8Tk58PWGGwTUm8EDiRE6jN4NnnkZ237pwPAinL6K8ASlj7IFHQUUk64+Y9YvuiWDvsJgiB6Ck18CIIgCKIPYaNnT2bZX19kv4YmPgRBEATRh+i5gWHffu6JJj4EQRAE0YfoecqKvj3x6du9IwiCIAiCaMc+M/GZP38+GGOYNWuW3HfBBReAMZb3GjduXKft/O1vf8OYMWNQWFiIQCCAww8/HI8//nhemTlz5nRot7Kyck90a4/x2XXX4LPrroGtAnqMQ485wlTLfWlpDi3NwVUgXqkgXqkgGxSGcVwTL8vLwFUhfrU1wL/Thn+nDTULWF7xUiwOX6MNX6MNWxeiVq4wqCkuz2X6FTAukmUyS5gk5l6KkzyVcXHuZDFDspghsD0jX9WvR+Fr5PA1coQ/5yJRaRtH3TgNCAXFCwBMEzBN8KH9Uby2DcVr2xAb6IPeGIfeGAeKC8GLQuJVXABPcwae5gy4oQEeA7bPA9vnQWhDFFwRpo+RIQasgAYroInxYkJ4zSwgUMsQqGVIljJh4siFyDkTYsiEGJoOVpEuUJAuUFCwxUawliNYy1HxnomytSbUDKBmxDiAiVeyHLItI8ahx8XLXwe0HqCg9QAFiTIVjHMwzmH7DKiRBNRIAlAY/HUZ+OsyUDIcppfB9DJEhnqhpjnUNIdiCkFzpogjU8SRrsrCCtiwAjaSpeJ6KhaHkrZhtHEYbRxqhsP0KzD9CrjK5LXzNdtIhxnSYQbOgGxAQTagQEu7ny8jboMrQKKcIVHOkC5k8DQDnmbAXweYQRtm0EY2CLAsEy8L8DWIl72LdedUCXDgfy3EiFvFiyCIrmOD9fjVl9knJj4rV67EQw89hEMPPbTDscmTJ6Ourk6+XnzxxU7bKi4uxi9/+UusWLEC//nPfzBz5kzMnDkTL730Ul65Qw45JK/dtWvX9mqfCIIgCGJvkLvV1ZNXd3n99dcxdepUVFdXgzGGZ5555ivLXnbZZWCM4b777svbn06nccUVV6C0tBSBQADTpk3D1q1b88q0tLRgxowZCIfDCIfDmDFjBlpbW7sV616f+MRiMZx77rlYtGgRioqKOhz3eDyorKyUr+Li4k7bmzBhAk4//XQcdNBBGDp0KK666ioceuihePPNN/PKaZqW125ZWVmv9osgCIIgvi3E43EcdthhuP/++zst98wzz+Cdd95BdXV1h2OzZs3C3//+dyxZsgRvvvkmYrEYTj31VFiWJctMnz4da9aswdKlS7F06VKsWbMGM2bM6Fase33i8/Of/xynnHIKTjzxxF0eX758OcrLyzF8+HBccsklaGho6HLbnHO8+uqrWL9+PY499ti8Yxs2bEB1dTUGDx6MH//4x/jiiy86bSudTiMajea9CIIgCGJfI2dg2JNXd5kyZQrmzp2LM8444yvLbNu2Db/4xS/w5JNPQtf1vGORSASPPPII7rnnHpx44ok44ogj8MQTT2Dt2rV45ZVXAADr1q3D0qVL8fDDD2P8+PEYP348Fi1ahOeffx7r16/vcqx79amuJUuWYPXq1Vi5cuUuj0+ZMgU/+tGPUFNTg40bN+KWW27BCSecgFWrVsHj8Xxlu5FIBP369UM6nYaqqnjggQdw0kknyeNjx47FY489huHDh2PHjh2YO3cujjrqKHz00UcoKSnZZZvz58/Hbbfd1rMO7wE+vMtNYnro1QuRdczwLI+bYNOIihcgzPpsjcljWorLBKaKyZEodUwImywYbaJMskSRZnXM4uBq7hwMlidnYgf4mhz3BwZp6qelOAzHDM/yKlCyHOlicSzez3CTfRZqyITEfiUr9CMAYLQCke9UAQDC/4yBOzN/ZUcLomOFOaGa5kgMKgQA+Fd+4d6dLgrD9ghtUN14P0o+8SIdFv1Llrr3sD2tHM0Hup+nlLP4Z7S6CURzOhfRD3f89bjoLyD6XLBZGCEaOxOIHBRGcJstxzCXNBYQ2qLcuOXGMOsDPE6SWT3BEesnYgp/FocVEoaO2ZAOrony/roUMgV+p30mA2E2AFXokwBA/UxHyygxbt4m5zgArjOoGduJR5HXTDE5PM2mjDW80U122/66KqbYnwkpMGI2jJg7DkabaLflAE2OjzasDfbHIdEWA1LHiAqxHe0ywTpYPg5/vWv6eOxpd+H1/3ddh3IEQXTE5gx2T3x8nLpf/oHv8Xg6/b+30zZtGzNmzMB1112HQw45pMPxVatWIZvN4uSTT5b7qqurMXLkSLz11luYNGkSVqxYgXA4jLFjx8oy48aNQzgcxltvvYUDDzywS7HstYlPbW0trrrqKrz88svwer27LHP22WfL7ZEjR2LMmDGoqanBCy+80OmsMhQKYc2aNYjFYnj11VdxzTXXYMiQIZgwYQIAMaHKMWrUKIwfPx5Dhw7Fo48+imuuuWaXbd500015x6LRKAYMGNCdLhMEQRDEfsOX/4+79dZbMWfOnN1q684774Smabjyyit3eby+vh6GYXSQvFRUVKC+vl6WKS8v71C3vLxclukKe23is2rVKjQ0NGD06NFyn2VZeP3113H//ffL1Zr2VFVVoaamBhs2bOi0bUVRcMABBwAADj/8cKxbtw7z58+XE58vEwgEMGrUqE7b7clMlyAIgiC+Kewe5urKGRjW1taioKBA7t/d/wNXrVqF3/72t1i9ejUY695KFOc8r86u6n+5zNex1zQ+EydOxNq1a7FmzRr5GjNmDM4991ysWbOmw6QHAJqamlBbW4uqqqpunYtzjnQ6/ZXH0+k01q1b1+12CYIgCGJfI5edvScvACgoKMh77e7E54033kBDQwMGDhwITdOgaRo2b96Ma6+9FoMGDQIAVFZWIpPJoKWlJa9uQ0MDKioqZJkdO3Z0aH/nzp2yTFfYays+oVAII0eOzNsXCARQUlKCkSNHIhaLYc6cOTjzzDNRVVWFTZs24eabb0ZpaSlOP/10Wee8885Dv379MH/+fABCizNmzBgMHToUmUwGL774Ih577DH84Q9/kHVmz56NqVOnYuDAgWhoaMDcuXMRjUZx/vnnfzOd30P8Z6Gr9xlz8b2wdTe5ZEKuDjJAAbw7xTtbZVDTQkiRDShSt8FVBsuZe3oiHIly8UXwNtvQkqI845CaIDUrEloCgGK6OhIl62qCuAKYPpFAEwB8DVmYflWGFdhhO3Vs+LaLTJqFAJQNW0Ss2SyYMyFOHuxOUm0NyDjaHfXQQUgXuR/r3Lm9LUDzgZpMDuppbqdJAmDp7q+F0Gberq+ORqfUFeKpaZHcVZ7D+aWhWECsn8i8qRfqSIcV+BvEWIW2WYgOEDGafkBL5sbHjcPQGXwNWdku4472KppCur/41ZUs02A6miCvh8HXJNo3fRoiw0T5slVA88Fuf/w7gPB6ce7Cz01kfU6SWY/7u8cymLz2RqsF2xDHskG3TM4nSHSay6SkUqcVcn+stBwgrgHXgIJPRRv2FyEE60RZLcWBVUK3lDq8YyZo/3aGFr8YawCIl2sYfelCZ8w4Vv5517ekCYLY95gxY0aHB5gmTZqEGTNmYObMmQCA0aNHQ9d1LFu2DGeddRYAoK6uDh9++CEWLFgAABg/fjwikQjeffddfPe73wUAvPPOO4hEIjjqqKO6HM8+m7JCVVWsXbsWjz32GFpbW1FVVYXjjz8eTz/9NEKhkCy3ZcsWKIr7xzkej+Pyyy/H1q1b4fP5MGLECDzxxBN5eqGtW7finHPOQWNjI8rKyjBu3Di8/fbbqKmp+Ub7SBAEQRC9jQUGqwcmhLtTNxaL4bPPPpPvN27ciDVr1qC4uBgDBw7s8OCQruuorKyUguRwOIyLLroI1157LUpKSlBcXIzZs2dj1KhRctJ00EEHYfLkybjkkkvw4IMPAgAuvfRSnHrqqV0WNgP72MRn+fLlctvn83UwHfy6OgAwd+5czJ07t9M6S5Ys2Z3wCIIgCGKfp/3tqt2t313ee+89HH/88fJ97mGg888/H4sXL+5SGwsXLoSmaTjrrLOQTCYxceJELF68OE/68uSTT+LKK6+UT39Nmzbta72Dvsw+NfEhCIIgCKJnWNi9VZv29bvLhAkTwHnH29ZfxaZNmzrs83q9+P3vf4/f//73X1mvuLgYTzzxxG5E6EITnz7Kew9fg0NudHMc+R09WNp5UtAU8gpkQ5CamMLPLKjChgaKyaXuJVnizv5TxQoCdc6H2+YI1Au/l2xQhSci9Bssy5ENihk640Cy1K3PLEB3/F4axhgo3CDq+HZmkC4SOhpbV8B1UUf9eBNgO+0qivTx8b71CXz9hc4nMrIE6bAonwl6pEdOoMECLBGrnhD5xmzHA4erQtcCANkAk9oVrjC539aZtG5XMkLDkyOnnxIeSKJu1seEdgVCpwSmIFXs9CMNeFvEsRRjSBfCqQ+kixzNjR8IG2IM/PUmcgY4OX0PIPRMtpARwfIq0BKmEzfAVdF+w3cBtSKBbJsoWPKhKnU4nEFqeSwPg5J1xyeH5VOgZsT74OYkbL3d9bO5E6smdVymX+TvyvqY05aNwA5RLlEhcrgBgLe1vVaMI1AvPmxlL+36wQMl6/od5T6vAOBv4zj8F47exwJW/+HqXdQmCILYNTTxIQiCIIg+xN641bU/QRMfgiAIguhD7G6i0fb1+zJ9u3cEQRAEQRDtoBWfPsxHv3G1D8PnCU2Ebwfgb3D9axJlCgq2uHmZ1Kyr9dBjYn/zIR6UHCXswJveqgRzDH68LTYsx8/KMhiYJTQeqXINhqMpiQxUULTB9QkCACMq3ge3c8QrxUcwHfbKnGG+nVmo64V3DwuHYFUKYZLSloaSdPQgbTHYAXFyxWqnT2mX/SRZoqDx6FzfbBS/o8Ny9DGKBQS3iziMmKv3SZYwZAOijOlVwJ1viKcV0gMI7vDB1hiC21zxj5u7jIEzQHPSUGWCTOpVlKyrc8r9CwjtjunoZNJFKoK1bg6ryAGuyIW1O39Ov8hVwGgVJ0jXpGGmNBgFQkOTCQWkdqs9tsZkW5bOpH6HMyBd4GiTEpr0ecqrayhgjlbI1hWoaS79ndrncPO0cBmj5WHSl8cyhIcUALQO8wIr8ttXs4AnyZENOO002VJXZetMapIsnWHsjHvxzuPk60MQOTgY7B6Im3kP6u4P0MSHIAiCIPoQdKurc/p27wiCIAiCINpBKz4EQRAE0YewOYPNd/92VU/q7g/QxIcgCIIg+hBWD7Oz96Tu/gBNfL4lfHqzEDofctNCZEKKFLLqCY5UkRArGzEO28nFqWZs2Jr48Jd+YIE7+d9MH6RpoZLhecLiXJJKPcmloaCaBqIDxf7wRhOmX4HpF8eYBXiion6sH4MRc8TNH24DfELMywsCgJMEtO3gYpkIVc1yRAfmzPAgRdZqCsiExTZXGEJrRYe0lDDDy5np2ZqbYFVLc6iO8aAR4zAcwXHrcPdXT7oI0NvEticC6E6sppchExJx6HEb/jqh3hUmgR4kS5wxaZfUtK3GbTc+kKPyLfdYbty0FIeaEAlLba+Owk9FVtNtx/rhwpAoF/1jJuCvE3v1qAe2BwhsN2Rfc6JpNcWlgL29IWO6gEnRe3vxdKJShycq+mAZDJl2SUtz9cXnwD1H1q+AOw7zaoZL00ijjSOTEytHOaI1Ir6A1lF5rcU5rCDgdRK4mj5XMJ0qcsvpcXFs3Ln3iPOlOf7919kd2iMIgshBEx+CIAiC6EPQra7OoYkPQRAEQfQhbCiwe3C7qid19wdo4kMQBEEQfQiLM1g9WLXpSd39AZr4fMv4aL7Q+hx3ygIAItFle3LJKQHXcDBZqiL6fiUAoPSwBiQ+KwcAGG02QhvjAID4gICs52k2pcmhrjMUv+WIT1JpZIdWYudhrhlfziBQjwHeRsds0O8D37ETAMA4h9omCiUPDUJLu8Z1vp1urDkdiR109T6+xnbamQIGWwOSFeJ91dsWfNsSIgZdkToi06+hbYDQzZR8aCPjjIGtt0sO6gGUrCjvbWkniGEMmSJDvk1UqLC1XD8ZMiFnWwHUpNPVrQyNh4q2QpsBf4MYA09LFg1jhVjJv8OC7RgshjfZULK5OJg0YUwXqEiWijKKBegtrpmiluQyMaltMJk41dfkxm7EONoGqPJ9zqwxtIUj62iyuAJ4WxwzynZan8A20ZlUmcfpt3ssWGfJZLeiQXGORLnimkkm0IHi1U1oGxOQ5oeZEJPjr2bdcv6dNsAhtWlcYfjOhffK4yv/RMaGBEHkQxMfgiAIguhDkManc2jiQxAEQRB9CN7D7OycnJsJgiAIgiD6BrTi8y3lXy9cL7fHznA1EcwWug/OIHUlislR8IWz9PlBKUo2CEOb6PAgogcEnXocesypq7nLpN4WC4kDywAA/vU7oTXHUfiZ+NjFqzWZqFLNcGSDQv9hH1ACn0eUyZQEkC5x/Gh0IFEgyjPL9ZHREpBaENPvanziVQxGVGwrlvDwCWwT7xtHqRi4NefFoyEyxCNjTpbn2mLwNLn1U8Vi21/vniNVrCCwwzXEyWmNTB+D0caRLHGSn5ZCJgq1dSdmAN5mDp9zDi3F4dshEpNmCj1IO35Evp0MLOeZk+XYerrpjKcHakqMkxEBQlvF+CfKFWQKZEhOAlZHI7TRhJJxf+/kdEDeJhOmV5dj6G0Uxxl3E7gymyNeocntwg1C28NVBiXljkGo1pbtZv2K9AVKFSqyT3ocUv+Ul3TVoe6EUsT9ikxq6olyN8mrCaTDbsJSrojPKyB0SDmPpVSRgiMvE8l5Vz94NQji24IFBqsHiUZ7Und/gCY+BEEQBNGHsHnPdDo2//oy+zN0q4sgCIIgiG8NtOJDEARBEH0Iu4fi5p7U3R+giQ+Bdx4XXifHnnaX3McA2KZYKvXvtKC3CV1J2wAP1Fbh3RPYpiNZLvQ3ppchWy40OoE6E0ZUaD5snSFZLj5mqZIqBLem4f+kAQCgpkthBkSd1gM0tA7L+cioKFpfAgCIDHGXa8NfcATqHUEIY1LzYXoZkjIXFZAY4HjbGDb4BqFbSQy0EPxChadV1PFu4ojVCO+hZKnrt5MphGw3sB0wvWJbSwJFn4r1X2ZzKI7fkWJymXvMbqdtYrbwDsppVNQU5PpquiaD0qpmAED2iQoUbEq5F8PJfZYuVOHfwZ34FOmvZBkKwqscLZTm5g9Ts1z64gTqLNiaKmM3vUDpx6YbG3fHLZf7LBPUoSec85W7nkPZOIPueA7pccCIi/GPVSrSt8dfKwRL/s0iyVmqKgBAxJj1uzm29ASH7mibbB2yfx50XFdXTMAyIPvU/nr7mmwUbBHXOFmcyzMn4tLiFtSM2E6HvdL3aex598J04li1iPQ+RN/GBoPdA51OT+ruD9DEhyAIgiD6EOTc3Dl9ez2LIAiCIAiiHbTiQxAEQRB9CNL4dA5NfAjJ6//vOrl91Fn3QI/nzGMYUsVCKxOqTSM1WBjaRGsMZISND/S468cSGaLn5YHKaV8yBUAm5EWgUOT9UlO21Jt4Wjg8Lc7pTKB1uKMvqof0sMn6GSxDfCHVNJApYO3OIf7lCuDbKnQf4Y2ub0zBmwpMj6slUdMcpk9xYnf3M85kLizTC+TkJ/EqNz8Xs5jMF2X6hP4nh3+H229mMbSMdN/7tzs5sjYY8D0iAgvGIvJ40xFh2afoQSY89aJT/jp3DBUTSBe750tUigDDnzNoTqyxfgp8jTba+ovzGTEgOlC05W22pVbG22QiVSSuayYMtPnd8ZTapAxgO9IrWwW4k9PME+GIV4oDyeIQAjtM2S7j7fKEpTh8je30RTlPnxJN5mkzlY7L6lqSo+QTE6kiVdbLeSLFKxS0DBMnC290PHsKnZMXKTJGrnzJK8g5zaHXLMR/7iWdD9F3sdHDlBV9XOPTt6d1BEEQBEEQ7aAVH4IgCILoQ/AePtXF+/iKD018CIIgCKIPQdnZO4dudREEQRAE8a2BVnyIXfLW/1wrt4/+4d2wdfELIF2ow/I6QtssB3N+GWTCQKBeCE2NOEcm4IiQMxxayjHf8zKAA9mgcyzrJp70RGwwJ0GM3mZBTQvRLdeE0R4ghLLyhwhj8EScJKMeILhV7OYKg7fFTZhZ/okw1UuX+YUpYF1aHkuVCnc8xgE95hjilRlICO011BQQ2C7OUfiFhZbh4uti6wB39LreZkB1+udvMJEN5MS4HAZsnHr0agDAS/8YA+6IhMtXZ6FFhGlh5OAwYtXu74+ckDjwmYZUmWi39WAO5girg7UMqiOmTlYAnlYnCWoZENoi9utxDsvDYDjmhqYP8DU51yZqyWSwOw/XpbhcyQLcUUcrGQZbd85RLgTVogyDr0mMU6JClcJvX5PlJAt1ErR6meyrp9mSSWvbPyiixywpLv+qVfVkiQo1nTONBLyO+L11WH4FrrgJaxUTYJZjYFigoPlgZ1y9HAUbcplMgZHXieSlnlYyNCT6HvRUV+fQxIcgCIIg+hB0q6tz+va0jiAIgiAIoh37zMRn/vz5YIxh1qxZct8FF1wAxljea9y4cZ2287e//Q1jxoxBYWEhAoEADj/8cDz++OMdyj3wwAMYPHgwvF4vRo8ejTfeeKO3u0QQBEEQ3zi5XF09efVl9olbXStXrsRDDz2EQw89tMOxyZMn489//rN8bxhGhzLtKS4uxi9/+UuMGDEChmHg+eefx8yZM1FeXo5JkyYBAJ5++mnMmjULDzzwAI4++mg8+OCDmDJlCj7++GMMHDiwdzvXB/j3X2dj3Ln3ABB6Ct1JCGl6VRhtjs7G5ya8TBUzBB1tjCdqS/M9PcGRKlKgO4kuLYNJnUiyRIXtXNqiTy14WoWwJF6lSwNDT7MJrjomdlUaNCe3J7MhNUicAf7tKWe/jUyJT5w7mgHXPIBjbmdsbUG2oEy0VanJZJehLRZSJarTJyBRnotdQcFmEbfoQy6ZKIMVcsrEc0lWhW6I2cB7dx0JAKjZEoeScTrCOSy/6KytMbQdKnRHBUUJ8BVFor4FeHc6fVIZTMcoMjrCNTZUskD4CxFTdIAitVC+Jhuml8HI5rRHtjQCTJS7X/lAPZdJYLkGqevR25ykqgAsL5AutZ3xV5AOi99KzAQSVaKMr5HB25KV7SoBFclSZwwDKrxNGdFuYxy20+9klV9eV1+bq8nKYXmZ/GyJc2cR6y/qlnxoS12QZTBEhjLoUfHeDALpElGvdDVH5TtiO7ixDZ+fJUwjCz/lUo+kZjmO/pH4bDOb483/m90hFoLY36BbXZ2z11d8YrEYzj33XCxatAhFRUUdjns8HlRWVspXcXHxLlpxmTBhAk4//XQcdNBBGDp0KK666ioceuihePPNN2WZe++9FxdddBEuvvhiHHTQQbjvvvswYMAA/OEPf+j1/hEEQRDEN0lu4tOTV1+mSxOfI488sluv0aNHY9u2bV0K4Oc//zlOOeUUnHjiibs8vnz5cpSXl2P48OG45JJL0NDQ0OXOcc7x6quvYv369Tj22GMBAJlMBqtWrcLJJ5+cV/bkk0/GW2+99ZVtpdNpRKPRvBdBEARBEMDrr7+OqVOnorq6GowxPPPMM/JYNpvFDTfcgFGjRiEQCKC6uhrnnXcetm/fntdGOp3GFVdcgdLSUgQCAUybNg1bt27NK9PS0oIZM2YgHA4jHA5jxowZaG1t7VasXbrVtWbNGlx77bUIBoNfW5Zzjt/85jdIp9NfW3bJkiVYvXo1Vq5cucvjU6ZMwY9+9CPU1NRg48aNuOWWW3DCCSdg1apV8Hg8X9luJBJBv379kE6noaoqHnjgAZx00kkAgMbGRliWhYqKirw6FRUVqK+v/8o258+fj9tuu+1r+0QQBEEQe5O9casrHo/jsMMOw8yZM3HmmWfmHUskEli9ejVuueUWHHbYYWhpacGsWbMwbdo0vPfee7LcrFmz8Nxzz2HJkiUoKSnBtddei1NPPRWrVq2Cqorb59OnT8fWrVuxdOlSAMCll16KGTNm4LnnnutyrF3W+Fx33XUoLy/vUtl77rnna8vU1tbiqquuwssvvwyv17vLMmeffbbcHjlyJMaMGYOamhq88MILOOOMM76y7VAohDVr1iAWi+HVV1/FNddcgyFDhmDChAmyDGNf8gLhvMO+9tx000245ppr5PtoNIoBAwZ8XTf7DG8/6fr6jJ8urq+W4ogOFIuGWhLIhMTxgi0cRtTRbTDh95PD3+AmJrU1JrUa3lYb0RrRVv13PAhvsp0ykAlBk+U6fDuF9sfbYiPrF+WzAQZVyEjgidqIDxC6HiNiwvSLL4tnRxzxg/ywnGSd/tIK6QlkxGykQ6KtZImKoOOHw9t9O2ydgVmOz1CCy+SXeozL/qSKFPh3WrJvnhYTilPH8mtS42MFDNhOstVEKUOoUBjzxNq80L25dt0Em7YOeJqdQIanMOjAJgDA+i+qkdomhDl6XHgmAUJv5W00YTqeQnrclj5FjAPRga5Ozr/DGYMohyciysQrNan34QzwNCpOu5DamFQZpK6mbaACo03J0w9pSRGLlrCgN8bFudMm1LS4fmqhB5bh+CKpu/jemSIZqSfq9KmfIccZcBPXxisYfA2At8XxKWqzZCJbLWVJbZMZNOBtFHVSxUyObck6W2jNAPjr0hh9ifD3IW8fYn9mb0x8pkyZgilTpuzyWDgcxrJly/L2/f73v8d3v/tdbNmyBQMHDkQkEsEjjzyCxx9/XN4BeuKJJzBgwAC88sormDRpEtatW4elS5fi7bffxtixYwEAixYtwvjx47F+/XoceOCBXYq1SxOfjRs3oqysrEsNAsDHH3+M6urqTsusWrUKDQ0NGD16tNxnWRZef/113H///XK1pj1VVVWoqanBhg0bOm1bURQccMABAIDDDz8c69atw/z58zFhwgSUlpZCVdUOqzsNDQ0dVoHa4/F4Ol1lIgiCIIi+xJclHb35/2AkEgFjDIWFhQDEnCCbzebJUKqrqzFy5Ei89dZbmDRpElasWIFwOCwnPQAwbtw4hMNhvPXWW12e+HRJ41NTU9PpasiXGTBgQIdJy5eZOHEi1q5dizVr1sjXmDFjcO6552LNmjW7rN/U1ITa2lpUVVV1ORZArObkbr0ZhoHRo0d3mH0uW7YMRx11VLfaJQiCIIh9DY6ePdKeW1wdMGCA1NKEw2HMnz+/V+JLpVK48cYbMX36dBQUFAAA6uvrYRhGh4ec2stQ6uvrd3nnqby8vFOpypfZrcfZW1tb8e6776KhoQG2becdO++887rURigUwsiRI/P2BQIBlJSUYOTIkYjFYpgzZw7OPPNMVFVVYdOmTbj55ptRWlqK008/Pe98/fr1kxdk/vz5GDNmDIYOHYpMJoMXX3wRjz32WN4TW9dccw1mzJiBMWPGYPz48XjooYewZcsW/PSnP92d4SAIgiCIfYbeutVVW1srJyYAemW1J5vN4sc//jFs28YDDzzwteW/LEPZ1SLM10lVvky3Jz7PPfcczj33XMTjcYRCoQ4BdXXi83Woqoq1a9fiscceQ2trK6qqqnD88cfj6aefRigUkuW2bNkCRXEXruLxOC6//HJs3boVPp8PI0aMwBNPPJGnFzr77LPR1NSE22+/HXV1dRg5ciRefPFF1NTU9ErsfZ0Vf3H1PodfITQRzAbKVyUAANrn7ZT6AT/aDhO3EE0vy9NpaAlb+vL461Lw14n9lkdFJiw+mumQAl+T0IVkA4rM+2QZblv+nbb0l7F1huJ/bpLn2PrjwQCARJn4FeFrFBP1QG0cbYMDAHL5vWznHO7nOVbublsGQ2iro1tJ2VAyojzXGLJOXjLTw+Bx/Gz0liSsoAeKo2nJFnqQLhECHtujIO7oYbgKpD4pBAB4WwFdDCGYCZmLLFXMYDl/b9QPgtgeFw8ZFCeB4DbRfjqsomGsO7hVb6gwIqZzDoZYP6Hr8TeYyDpfH18jR/gLIY4yGtqQHCB8bqJDxPUUYwNoTkxmAIgNccQ1QRPGGhGUJ8IRHajDcLyNPM2m1G4lKjRkCsTYF3zqLpurGVt6OO0KxeII7LClN5S3xYLlcXRRZQq8rSJAbzOQDbl+S80jNFStENfA8iqwHDlTy0E++HeIEwbqs0gXOl5IGRuK6eShKzHgbxT9+97pd8tY3vg7efsQ304KCgryJj49JZvN4qyzzsLGjRvxz3/+M6/tyspKZDIZtLS05K36NDQ0yLsxlZWV2LFjR4d2d+7c2alU5ct0e+Jz7bXX4sILL8S8efPg9/u7W71Tli9fLrd9Ph9eeumlbtUBgLlz52Lu3LlfW+/yyy/H5Zdf3t0QCYIgCGKfZl80MMxNejZs2IDXXnsNJSUlecdHjx4NXdexbNkynHXWWQCAuro6fPjhh1iwYAEAYPz48YhEInj33Xfx3e9+FwDwzjvvIBKJdEuq0u2Jz7Zt23DllVf2+qSHIAiCIIieszcmPrFYDJ999pl8v3HjRqxZswbFxcWorq7GD3/4Q6xevRrPP/88LMuSmpzi4mIYhoFwOIyLLroI1157LUpKSlBcXIzZs2dj1KhR8imvgw46CJMnT8Yll1yCBx98EIB4nP3UU0/tsrAZ2I2Jz6RJk/Dee+9hyJAh3a1KEARBEEQf5L333sPxxx8v3+fsX84//3zMmTMHzz77LADxpHV7XnvtNWk1s3DhQmiahrPOOgvJZBITJ07E4sWL8x52evLJJ3HllVfKp7+mTZuG+++/v1uxMs55J3faBbmAAXEv7fbbb8fMmTMxatQo6LqeV3batGndCmB/JRqNIhwOIxKJ9Oo90P2V8efcg4LPYgAApa7JPRAKoPWIUgCAmuZgNtD+x0ROp8MsLvNtAZC+M1pbFlwX2g4lYyETdj1oMgVi3p4qcbUclgGUfeDoVlpSsmz0gCAyIVcLppgcWkqcPFGqICPkLTAigLfV/Uq09RcxFX3q5pOyPAyK6fYhXuG2W/Vao1su5EO2QHw/0sUajFanDZXB9Io66bCbr8z0M3Dn+61kIPOBZQqYzItl+jj0NiZj1WPOeCU5PE77ts6QCSqyf2rahq3nvHiYzOllxGwwpx9aytVb7TxMlXqr9s99xtrZVhmtQPJI4T8UfMsHNQ142mznmAXuXMtEmYqmw0Qcg543pTYKALLO9QsigRefnYP2jLv+diib/LA87mciF3c2AIS2inaYzWFrDKlCN9DQdtEpZnJkQmJAfY0ZxPoLTRJnwu8JANSkle8r5fgU5fLLiQpc6qVefe0mEMTu8E38n5E7xzHP/hxaYPeFyGY8jTen/Xef/f+tSys+P/jBDzrsu/322zvsY4zBsjomHCQIgiAI4puBcwbeg1tdPam7P9Clic+XH1knCIIgCGLfJOfH05P6fZluZ2d/7LHHdpmHK5PJ4LHHHuuVoAiCIAiCIPYE3Z74zJw5E5FIpMP+trY2zJw5s1eCIgiCIAhi98g91dWTV1+m2091fZVD4tatWxEOh3slKGL/Y8VTrqnhlAFXAbnbo8mUMLQDYPlUWAaD6ROfHy3RTlevMyimeK9YXCYXVbI2zIDzMbU0aCmhIUsX6rK8t9mGmnbErhxIlonyalqHvr0VAGBEfDB9DJmQI+xtA2LVbvJNr5ME1NYdwTFEAtJAXU59zcCdnwnthc2WwRDeJHbo0Sy4V6islZYYtGQGYOI7wWwgGxR9yoQUKdTV0hz+HaK+6VekSFdLcaSKFeccgOrotI1WVwCtZgBfk+XEakmxt+VliFcxGFFHqKsr0gDRbveNT5YrMtFosM7dX/SpLePztNrIBkUcnkbmJi9VAGWjSAbLNQBpVxAcr9JQsEkIzAtiFvR4rhJg7GgTfS0OwLtDiKN1f7sBdSh/L4uGSsjEsLbOoDufl/bjb2sMzHbFyt6mdgcZEKwV7ou2oUoReTbIYDii8NznLEe60BWBB+ot2ZDWJla5x517T17CXoLYFyGNT+d0eeJzxBFHgDEGxhgmTpwITXOrWpaFjRs3YvLkyXskSIIgCIIgiN6gyxOf3JNda9aswaRJkxAMBuUxwzAwaNAgnHnmmb0eIEEQBEEQXWdfdG7el+jyxOfWW2+FZVmoqanBpEmTup0hnSAIgiCIPQ/d6uqcbml8VFXFT3/6U6xbt25PxUP0Af5R+1u5PWXgLOgxobuI9dehZiC1FpaXQcm6Oh815tom2I7GJF2ky/KqxRGvFmIVJctdTZDJZaLQTNDVs6hpA1wVye64xmBEbaQKhaaDK4DldWPOOIk7lQygOw8tMg5oSS7Le5uzTln3a8NVQE25cZsBoWdRdEfv5sTuqW+DOUTsszVInY7pY2jr75qAStPBDBCoExoT06/As8Fy43aSddoaoDgylFh/XRoF+rczWF4g45yba4CSdcZVB7IhcUBvYzKZqGUAetx2xpPJ8mCAJyJOYukqEpWigpoEgrVOXS+QKgGMLZCxx/obcnxypIs0eDeJtphpITZQJIn1RN3kpRIm4kk718tWAd35fKgpSLPFTIgh62co2iACzoZUmD5Hk9RiwvSLsWU2R8HnQu9j+TQwS7SVKcw3YM2ZRnIFMvGtHudoGyo+IMkyBUdethCWkDfhg/uu7hg7QRD7NN1+qmvUqFH44osv9kQsBEEQBEH0EN7DJ7r6+opPtyc+d9xxB2bPno3nn38edXV1iEajeS+CIAiCIPYeHADnPXjt7Q7sYbr9OHvuya1p06blPdaee8ydUlYQBEEQBLGv0u2Jz2uvvbYn4iD6KP/Ych+mHHwzAKBkyafgmSyUg4a6BbYIAxlWVS53xQ4slroZZnOYAaHzyIZUmeDU9DKpwWg9LAuWFdu+bXC9dwCZmDITZFAzHJ6oo+FgDEY7H87gNjFhV1M2UiXiaxGozyDtaEBsHUiWOXoRE9LPRktxeOqclU5Fge1zylgcMG25phofWohojeiHmgR8jY4uiIkEoQBgGflJVG1HH8NsoPlAEVPBFhueVqGZSpbp2PGdXAJXwLdDDE6qjEOLu/qdTLscg3oM8DYxWSd+dFyMU60fReuchJ5NtkwOmvUrSDqXpvBTW2qQ0mEF3hbnGlmAmuXSc8e/KQI4P4psnw6uOPqrIgOJA0XCWq4IvyYAUpPTHm4o4AqDJ5I7B4dlMDke6UI3maie4IgM0Z14hUeT6J+KrPPZMaImUiWijNFmIXdhfNuTyBSLz4jtUaAlc3otRXo+pQsUxKvd2PwpwHA+RxOmLMDyf1zfIX6C2JvYYGCUsuIr6fbE57jjjtsTcRAEQRAE0QvQU12d0+2JDwC0trbikUcewbp168AYw8EHH4wLL7yQnJsJgiAIYi9jcwZGPj5fSbfFze+99x6GDh2KhQsXorm5GY2Njbj33nsxdOhQrF69ek/ESBAEQRAE0St0e8Xn6quvxrRp07Bo0SKZtsI0TVx88cWYNWsWXn/99V4Pkti/+cfH8+T25IJ2iWxr68GzjmHM1jqwfpUAgOAnTchUCN8Uy6fBcDQtimkjUeHoMQwG/07H1+U9HW01ohkz4OovMiFF5nViHIj1Z9Ad/YetAbawmgHXACMqfgOoXoZgrUiMZXzRAPsQIe7givACymE5ibuYxREZVQwA8DSb8OwQXjFKTOShssN+AEDrENfQJlsKgDk5uZIcXHW2E7bU+bTPaWZEbXBN1G8dqiBVLrQqniYGNdluoB1pU8FnQveS08EoOwAlJykyIXOOpcoA9rnw0jELLSQqxTm8zUDWn9PTcIQcfx6jzQKzxUkSFYbM56UnOGyNyV9R8SFhqGlXv+NpzTrj3G78DAVawtFVsY7PkNiq0ADZjl+P5VOgOsZERksGatbRUmVtMFscB4B4uSa1Tbbu5vDiugItndN3AbaTo8vy+8Cyjn9R2kYuFMZFnjJA6Ig8EVHeE3H1Vbk+HXPm3XL83/zb7A59IYhvmtzTWT2p35fp9sTnvffey5v0AICmabj++usxZsyYXg2OIAiCIIjuQRqfzun2ra6CggJs2bKlw/7a2lqEQqFeCYogCIIgCGJP0O2Jz9lnn42LLroITz/9NGpra7F161YsWbIEF198Mc4555w9ESNBEARBEF0kt+LTk1dfptu3uu6++24wxnDeeefBNMX9bl3X8bOf/Qy/+c1vej1Aom+xNPpnTJh8JwCAVR4A482P5DG+fYfY0DXoO5sAAObYA2B5Hd0LFBhR8ZmzfCqMiNCOeJsUhLY4OaQybt4sNatJHUk2rsLSVem/42/gsHL5wMJAW41TP8Wgx5x8WwPLpMdMNqBI3YqasaE4upDWA9yvUFt/A8XrRfnAhiy4poBlRLwlH2WQLG+Xk8vJAaYlLDAnZFtnjscMkCrRkA3k/vgobn4zP4RHDwA1LXJkAcjzJLK8IgdYoF40HK1RwFJOv5ts2a7ncyBelTuHCjhxpIoUJIXdDpjt/gEM1NmwvELrUvxxBqlS0Z9MiCFVzOTY+nYC/gZT9ileZTjjBjluWtxy9TS78IlNFaqw40zqkdrnRMsW6PK6WIYKb7MJ0/mMFGzJgCuOPsniSFSKoHJ5yAAgW5ifG437c3orG1pSjL+Scf2cogMUmbss1t/Is7W1DFV6Ddkaw9E/vFse+/dfSe9D7B3oqa7O6fbExzAM/Pa3v8X8+fPx+eefg3OOAw44AH6/f0/ERxAEQRAE0Wvslo8PAPj9fowaNao3YyEIgiAIoofQU12d0+2JTzwex29+8xu8+uqraGhogG3beccpcztBEARB7D3ExKcnT3X1YjD7IN2e+Fx88cX417/+hRkzZqCqqiovUSlBEARBEMS+TLcnPv/4xz/wwgsv4Oijj94T8RDfApYvvUFuH3vaXQAAJcPhfftTsTOTBfMIo0L/uga0HV4py+fEylwBkmVCNBteWYfsAGEimKj0yASbAKDHHAF+zEKwjqFtgBCy2hpDaLNQrGrlmjT7C26zYXlEGTOgSUFtokxFokyUKfrMlqLbws9MKdK1DAWZkJMUszQAvT4Kq1AYBBrNaXDHjC9eqcHSHfO/mDsujLvmgpyJ5J+ASMiqOeLkdBFge8QJmc1kfT0OZAO58kDBFi7P59/B4XXM+FJFijQnVNPu+YNbOVJFjuGhKeoAgJoFlKzYjtYYUNOivK+RI7RRmDUmqn3QE1yKv8Ehk31yhbVLvspl8lKuA97tor4vk8CXCdVmkCr1yWvJbMD0K7KZVJEjIt9hgWtMJnrNBl2jyESZKmNXVbcMGGAZuTFnSBc4RpFtDOmwqB/anISSFX8evS2Qxo2565BrNxcbAFgBBi2ZO27jez8Qn+03nrmuQ/8IYk9CPj6d0+2JT1FREYqLi/dELARBEARB9BAO7OJZye7V78t028fnv/7rv/DrX/8aiUTHX2kEQRAEQexdyMenc7q94nPPPffg888/R0VFBQYNGgRd1/OOU6JSgiAIgiD2Vbo98fnBD36wB8Igvq28/v9c/cMJJwkDTM4YmPNYgaUrUmfDdSYN6RQTSJaKXyVtp/eTiSm1JOBtdpKXZjgyBeIjriVsgHMEtzkJKbMc6SJHj9Nmw3CSl3qaMjKedLGBbEAsiuoJjsAOSx7LaTxsnSH34yg6QEGwTrSvN8ZhFQdg+XSnnCLrBLdlYeeSkXqY1K5wBsT6OclPTXeMQttsJMqdJKppwF8vThg9wEb4U7E/UwCojv7E9gBqmku9UNanSFM/NePqVVKFX/pV184s0HYSimaDgKdV7PfvtGQ7XAGiQ4V3l+X89vE0i6C9da5wSS30wdvkNJ82ER8QcPrBEasR254Wd1xzpEpdk0IAMGIWEqVOEtVWG6EtWTdsk2PTVHGd9YiCYK3YzywgG3LiVRlYi9t+TqtkekXCWgBIhxkC9SKWdLEBNS2upafVNcY0/QqSJQr0uKiTKWAwIk7y1Jh7g4ArTGq/vnf63TLh7Iq/XNuhrwTR69C9rk7p9sTn1ltv7VK5p556CtOmTUMgEOhS+fnz5+Pmm2/GVVddhfvuuw8AcMEFF+DRRx/NKzd27Fi8/fbbX9nOokWL8Nhjj+HDDz8EAIwePRrz5s3Dd7/7XVlmzpw5uO222/LqVVRUoL6+vkuxEgRBEMQ+S09vV/XxW13d1vh0lcsuuww7duzoUtmVK1fioYcewqGHHtrh2OTJk1FXVydfL774YqdtLV++HOeccw5ee+01rFixAgMHDsTJJ5+Mbdu25ZU75JBD8tpdu3Zt1ztHEARBEMR+yW47N38dvIsOSLFYDOeeey4WLVqEuXPndjju8XhQWVm5i5q75sknn8x7v2jRIvz1r3/Fq6++ivPOO0/u1zStW+0SBEEQxP4AOTd3zh6b+HSVn//85zjllFNw4okn7nLis3z5cpSXl6OwsBDHHXcc7rjjDpSXl3e5/UQigWw22+ER/A0bNqC6uhoejwdjx47FvHnzMGTIkK9sJ51OI51Oy/fRaLTLMRBd45/LbgQAHDvtLum/o8KGUd8my1gjxHXM+hn8DUJ3kQ4pSFaI45mw8F0BgExQkdqfTEiBt8WC4iSrTBepUBwdjel19RiWT5Pfei3hJtK0dCY9aCwPk/oPxt1V4cIvTOllww0NalMMLCx0MOlSn/TVAYQ2CADila7vjJbg4M5brgK60+1EmYJMgdj27QTi/cS2UpxG9ACPrK+kneSjra73TY5cjOkwk1ogy+t6BSVLmdStWDqTvj9qhue10TIsF68Kb5Pr9RPanJL6H7PQB1sTi8ntE7MaEQ3MEnXaBrh/eoqSHReejagFw7TkeJp+JU9Dk9NnqWkOy6ugbJXYnyoCTOfuupaATC6qJbnUSQGAb6fon+Vh4Fpu/IBsUJHt5sYvUaYgvNlJrpqw4W8nSTLaOBTT+bzELaRKncZ0JnVazOZQnHE85oy7oThj0F7fRhC9Cfn4dM4eu9XVFZYsWYLVq1dj/vz5uzw+ZcoUPPnkk/jnP/+Je+65BytXrsQJJ5yQNwH5Om688Ub069cPJ554otw3duxYPPbYY3jppZewaNEi1NfX46ijjkJTU9NXtjN//nyEw2H5GjBgQNc7ShAEQRDEPsFeW/Gpra3FVVddhZdffhler3eXZc4++2y5PXLkSIwZMwY1NTV44YUXcMYZZ3ztORYsWICnnnoKy5cvzzvHlClT5PaoUaMwfvx4DB06FI8++iiuueaaXbZ100035R2LRqM0+SEIgiD2PTjrmUCZVnz2DKtWrUJDQwNGjx4NTdOgaRr+9a9/4Xe/+x00TYNldXzEtaqqCjU1NdiwYcPXtn/33Xdj3rx5ePnll3cpmm5PIBDAqFGjOm3X4/GgoKAg70UQBEEQ+xo5jU9PXt3l9ddfx9SpU1FdXQ3GGJ555pkvxcQxZ84cVFdXw+fzYcKECfjoo4/yyqTTaVxxxRUoLS1FIBDAtGnTsHXr1rwyLS0tmDFjhrz7MmPGDLS2tnYr1j224lNTU9PB3LA9EydO7PAk1cyZMzFixAjccMMNUFW1Q52mpibU1taiqqqq03PfddddmDt3Ll566SWMGTPma2NNp9NYt24dvve9731tWWLP8/qzrvZhwpQFSPUTk0zf500oWCOeFIweXiHLqBmO0GbnDQN8O4SwQ29Nom2oqKs5mpzcN1rJcOnRwzhgtIqJtuVVYHrFrx1fYxaKozViPlXqckwvg3+buN2aKTRyMiLEq92vkx41oGYtVy+UtGB5xWfa9ClS62JEucwBZnqY1PhYHiBVKsr4djCp94kOs2EFRKwl4QSaTdEHzyYPjFZRJrTVRrxCgel3x9S/M+chZElPmWxSkfszIQbTJ8p6WzhShU4urAZL+igBQMlHYmwTFW5fbQ1gFoe+TYireNCH+KCQPK608yRSHS8jo831GcqEOv7+UjI2dMuSY+7flpCeSPF+Hum9E9yahuVV0TZAHPNEuMyDBrgapugghlCt09cgk3of/04bGcfrx9ba5eBq94PXE+FCLwZxXM1wef0ASL8hW9OkzonZrvZHsThYtuP/JMeceTfe/L/ZHfYTxP5IPB7HYYcdhpkzZ+LMM8/scHzBggW49957sXjxYgwfPhxz587FSSedhPXr1yMUEn8vZs2aheeeew5LlixBSUkJrr32Wpx66qlYtWqVnBNMnz4dW7duxdKlSwEAl156KWbMmIHnnnuuy7F2e+JTW1sLxhj69+8PAHj33Xfxl7/8BQcffDAuvfRSWS7no/NVhEIhjBw5Mm9fIBBASUkJRo4ciVgshjlz5uDMM89EVVUVNm3ahJtvvhmlpaU4/fTTZZ3zzjsP/fr1kzqhBQsW4JZbbsFf/vIXDBo0SHrzBINBBINBAMDs2bMxdepUDBw4EA0NDZg7dy6i0SjOP//87g4HQRAEQexb7AUDwylTpuTJSPKa4xz33XcffvnLX0qZyqOPPoqKigr85S9/wWWXXYZIJIJHHnkEjz/+uNTkPvHEExgwYABeeeUVTJo0CevWrcPSpUvx9ttvY+zYsQDEk9vjx4/H+vXrceCBB3Yp1m7f6po+fTpee+01AEB9fT1OOukkvPvuu7j55ptx++23d7e5r0RVVaxduxannXYahg8fjvPPPx/Dhw/HihUr5OwQALZs2YK6ujr5/oEHHkAmk8EPf/hDVFVVydfdd98ty2zduhXnnHMODjzwQJxxxhkwDANvv/02ampqei1+giAIgtgb9Faurmg0mvfqzoNF7dm4cSPq6+tx8skny30ejwfHHXcc3nrrLQBC/pLNZvPKVFdXY+TIkbLMihUrEA6H5aQHAMaNG4dwOCzLdIVur/h8+OGH0gX5f/7nfzBy5Ej8+9//xssvv4yf/vSn+PWvf93dJiXLly+X2z6fDy+99FK36gDApk2bvrbOkiVLuhkZQRAEQexH9IIXz5cf4Ln11lsxZ86cbreTu/NSUVGRt7+iogKbN2+WZQzDQFFRUYcyufr19fW7tLMpLy/vVuaFbk98stksPB7hHfLKK69g2rRpAIARI0bkrbwQRG+w/B/Xy+3vXnCvq8EAoKUcDUyTDeboKbjG4NkgvgDZQWUo+DQCAMiUCMGLHhW/WBj3So+ebECRHjta3EK80gAApAs9Mg9VQa0ltT+KydFykGjPvzNfhF/6TjtLBJWBG+IrxhUm84ZlgkxqSCydwXK0OP56Diud8woCvDvdbVuEhMAWBUlHn9LWUAJfUuzX2yB9eNoGKFDTrodNeKMpc29xhUltU9H6LOJVIiYlwwFblEmUMnm+dJGKgs3Or7+BCoo/Ff317zBh+lU5ZrauIDK60hnPdhobG9AT7hhl2vnkpMNOP0o7PkFieRTEKwwkyh39k8+A7qQAM9q4PEfzQT7ocY6idQlRz68hHRZ9SpaoUmfjbWaIV+SuH5B1nk1IlSnQnHHT42587T2Q9IQtY2WW87lzQuYKpEZIybgaJv8OC9mgGB9bZ9BNMQZqyoblEW2ZXoZx594jY3rracrjRexb1NbW5j3Ik/u/f3dhLP+7zjnvsO/LfLnMrsp3pZ32dPtW1yGHHII//vGPeOONN7Bs2TJMnjwZALB9+3aUlJR0tzmCIAiCIHqR3rrV9eUnmXd34pPLkvDlVZmGhga5ClRZWYlMJoOWlpZOy+wqFdbOnTs7rCZ1RrcnPnfeeScefPBBTJgwAeeccw4OO+wwAMCzzz6blwiUIAiCIIi9AO+FVy8yePBgVFZWYtmyZXJfJpPBv/71Lxx11FEAREJxXdfzytTV1eHDDz+UZcaPH49IJIJ3331XlnnnnXcQiURkma7Q7VtdEyZMQGNjI6LRaN69uEsvvRR+v7+TmgRBEARB9EVisRg+++wz+X7jxo1Ys2YNiouLMXDgQMyaNQvz5s3DsGHDMGzYMMybNw9+vx/Tp08HAITDYVx00UW49tprUVJSguLiYsyePRujRo2ST3kddNBBmDx5Mi655BI8+OCDAMTc49RTT+3yE13Abvr4cM6xatUqfP7555g+fTpCoRAMw6CJD0EQBEHsdRjyzKh2q373eO+993D88cfL97lMB+effz4WL16M66+/HslkEpdffjlaWlowduxYvPzyy3lPaS9cuBCapuGss85CMpnExIkTsXjx4jxfvyeffBJXXnmlfPpr2rRpuP/++7vXO97VNOoOmzdvxuTJk7Flyxak02l8+umnGDJkCGbNmoVUKoU//vGP3QpgfyUajSIcDiMSiZCL8zfIYbMWAhDCXS2ZE6664lnFAvzrGsQbxpAYXgoAsA0FStrOaysnfM0GVSn4DX8WB8uK9iIj3Ova3sHd1gCfc06jNYtsQTujTtsRt34h7lNbYeEKaPl1WB7x5U0Xqkg7BoFZn1uVq66IWU1DLjfHB3DwMkeU3ejeY2cmYJUIBbOn1kD5KuEUGBmswfRDJsksqLVl/LbGkCrJKXOFOR8AtA1s10EOhDc6CUjTXJoIZkIMvkYxhtkAg6/BMXfkwvixrZ/on2UAesJtztcoxkqP27ANR7BtKEiHxXY4HcerT+Q/DXraCbeg1R9COuy02W6ItZQrjPY12QhubIPtFQXSJYYUukdr9HaJaIVIHBAGjTmxtyfqfiYyQUUaI9o6ENrqfq7iFarsK1dc8TMzAeb8CfW22NLskWsMpiNiTpW4ioLQliy0pGg3G9LyE8k6xSh5ad/km/g/I3eOAX+YA8W361RQXcFOplD7szl99v+3bmt8rrrqKowZMwYtLS3w+dy/2qeffjpeffXVXg2OIAiCIAiiN+n2ra4333wT//73v2EYRt7+mpoabNu2rdcCIwiCIAhiN9gLzs37E92e+Ni2vcsEolu3bs27V0cQBEEQxF6AsrN3SrcnPieddBLuu+8+PPTQQwCEmVAsFsOtt96K73//+70eIEG054P7rpbboy8Vep9UsYqSVUJTk+wXkjob6Ko0i2Mc0OMmUqVipVJN2bCc5JKKyRGozwAA0kUeaCkxsQ/WpqAkhUgkU+KVOiAA8hcRV5nUi+R0JwCgtwWhN8ahRlNiB2NS4+NptaT5IgBs/55bzyoVmp3AxwY8jp2FHmXwbBH367kCmUwUAJI+RzdUbiFRrjntczCLQXPMDTMBBZ6IEJOkC5nQDwHwN7jaHz3GpOEhAESGOBqYVoakkEmh5CNbJucs+CIlyyoZC2bIgJ7ImRMyaGknQaeT1FPG7lwPWxeaGABQPB1/XmaDKli7ZKDJKkUaNJo+1k4LZSPRPwBvg+iUf3MbWkcWinNogJ4Q9fU4l8lZc3EBwkTQVl3NU+66aK0coXXNAIDUgDAKY+IzkQ5r4BoQqxL90FJATggqNE6OFsh2z+1ptaElbaffDCzmaIJ2JJEuExeTZW0pJx137j1QxccR//5fMjUkiN6m2xOfhQsX4vjjj8fBBx+MVCqF6dOnY8OGDSgtLcVTTz21J2IkCIIgCKKLcC5ePanfl+n2xKe6uhpr1qzBU089hdWrV8O2bVx00UU499xz88TOBEEQBEHsBUjj0ym75ePj8/lw4YUX4sILL+zteAiCIAiC6Amk8emU3Zr4PP7443jwwQfxxRdfYMWKFaipqcHChQsxZMgQnHbaab0dI0HsklUPuXqfKYOFWZZv41Zwx+yKhYIyaWTWpyBZ7pGJRtWkDT0q9DtmUIMWEaIKI2MiMVCI9E2fAm+z0HIkyzRoCaHT0OOu+YrpdY211AwXyT4BJMs90FoSMkkpy5hQk44njVeVf1csD0PZarFttFnIOUy0DgXSxWK/lnR9bLQ0pEbH1gH/NtGmv56DO6FwRXgCWY6Nh3+HG2+o1kTjoSKmdJGCjPM8ArMB29HaGC0MzHl+wVaFNxIgNEyBejFmsYE+FC3f5PZdU8GZyMez7VgDgTrmjBVkn9p7ojFbXAMASFV2/CObLFXQ6tORDbrlA/UikESZCtXRL3GVCZ2OIc4RPaBQJIEFEKh3+50qUmA7Y2i0uT9nGXfH1tdsQ3e0PLF+GloPL3HK20gXuDqsdFiRnjvxakBzPIvUJGAG3D7k/I8SZQx+J+Ess4WPEwAE6rIwWsTnjitiTF1EjIOfmC/HbeO5N3UYJ4Iguk+3fXz+8Ic/4JprrsGUKVPQ0tIin/AqKirCfffd19vxEQRBEATRDRjv+asv0+2Jz+9//3ssWrQIv/zlL6Fp7oLRmDFjsHbt2l4NjiAIgiCIbrKPJSnd1+j2xGfjxo044ogjOuz3eDyIx+O9EhRBEARBEMSeoNsan8GDB2PNmjWoqanJ2/+Pf/wDBx98cK8FRhDd4R8b7wUATA67gnveFoP3n2IV0jhsOLTNO2DtbAIAqIMGIFspctDokQwajxBiF2+LDcvjak6aDhIJnkLbLGT94neC5VVgO3oaW4fMB6UlOMBEXV9DGmZxAHp9VMTic53OtaQFy/HfiVW52pOSdYC3QYhXqjdlYfvEgVhNAPFKxzcmAdjOzxWFQ+p6kmUMgTrxM83yMDDb1fbocUv6GVkGQ8mHTsCMSe+hhuNMMN0R87R6kXW0Ktkg4BVDBiPGZW6pore2Azn3dm4DmSy0mDACKvpUR1t/Zxwa2+lpbMhcWFqKgzl+S7Hh7QyEHDwRDlUFFMfLKNBgIVEmOlv6n1je87YN3wkh4fjhmH4gWSmORYYz+LeJOIJ1HAWfix9mXGFIlYnrmilQYcQcPyGTw8x5O2VdfWe6QJHXePtEG4ANlhHlCj5VZL4zrgJodYaEAZ6o4wmUcMefqwyxarEdrzRgtBmyvzkNmdoup1zliwaCW4Rn0tHP3EO+PkTXIHFzp3R74nPdddfh5z//OVKpFDjnePfdd/HUU09h/vz5ePjhh/dEjARBEARBdBV6nL1Tuj3xmTlzJkzTxPXXX49EIoHp06ejX79++O1vf4sf//jHeyJGgiAIgiCIXqFbEx/TNPHkk09i6tSpuOSSS9DY2AjbtlFeXr6n4iMIgiAIojvQik+ndGvio2kafvazn2HdunUAgNLS0j0SFEHsLksjf5LbUwbOktYxSkMEAMAcjx/zsy+g88EAgJ3HVcp8UpkQg23kcm9BalrilSoCdUIDo6Zs+binbbi5nlLFCkJbhF5Fi6QA2wb3iK9Ysl8QW2eYMraq/xX/hjdZ4E5906ugbYgQ1zSPcJ87CGwDso7fTroICG12tTy78uphttDjmH7HO4ar0BJO7Bm3XLpQRzbgjFBKgb5daIq4ApjVwixI85hIiWGC55UA1LSIKzWsDN5NjgAnmYI5qAK2oTpjxZwcVqIfertnHoo+zemLgLaBQt9S9H4GXyYTYvBEbKlhSpSpyAhJFjZPCUqfoYr3sgh/kUUm7Hgk6QyFnzlamQzH9u85WqphFuqPFYNVtEaDr9HJnaUBiqNnyAQZss6Y+Zosee2zQQWWE0f5WyrAgXi1KJcsB9JFYluxAG8jZLu5D59iKjKfW6JckTnUYjXtrpHJYDiaoEyBmucbFHS0ULYGHDvtLkQGic/UB79zfawIIg+a+HRKt5/qGjt2LN5///09EQtBEARBEMQepdsan8svvxzXXnsttm7ditGjRyMQCOQdP/TQQ3stOIIgCIIgugk91dUp3Z74nH322QCAK6+8Uu5jjIFzDsaYdHImCIIgCOKbp6fuy33dubnbE5+NGzfuiTgIgiAIgugNSOPTKd2e+HzZuJAg9lX+seU+TDxhvnzPGYNtDAAAeFd+BmhCseqJcLT1F3I3NQP4dgpVa9avSIEqM91fQbZHgeKYzDGTQ3H2qxkgExZfKc8ODpbKwioUt4K92+MIvFMIAIgemcbWHwiRb/G/PQjVCkG0rTOkHWND5uYrRaJanB8AUoMy0BJCFOxr5FKMGxmsSKNBQAifA47gmdkc8SpNnoO1W5TNmScGN6rw5LTKFYC6U5zDW++Btyn3V5BL40DLowC2o/71GNBqG9E8YSAAIFDP0XKaUDT7XwvKRKN6DIgOzMXhJlvNeNEBX5ONtAfwtIqO26qOZJmTYDYFJGpEJ7adn0HBq+7tdl+zLcXp0YEqPM6YBLZqKPkwnRsdxPuJ/mWCDOkiJ7429/xGjEFxfBWZLcTW8lgbR3CbMw6G+FwBQNtgYcwIAFqSw/Q5+/ursq+mH4iMcITVfgu5P8GMM2QD4oI3jVSkSNoygG0TRP+4BliGAssvzjHo0TuhNooL+Pm113QcRIIgdkm3Jz7PPvvsLvczxuD1enHAAQdg8ODBPQ6MIAiCIAiit+n2xOcHP/iB1PS0p73O55hjjsEzzzyDoqKiXguUIAiCIIivh6GHGp9ei2TfpNuPsy9btgzf+c53sGzZMkQiEUQiESxbtgzf/e538fzzz+P1119HU1MTZs+evSfiJQiCIAiC2G26veJz1VVX4aGHHsJRRx0l902cOBFerxeXXnopPvroI9x333248MILO2mFIL4ZXv3nTXL7xOPmwQw6hnbHDYceEzoRT3MWti60EqaXIRsUv3fCm1wTOwAyqWbOsBAAlCwHz0ldIhZY1klYaYivlhkSWpJUiY6CzeJ8pf8BWg70yPqRweLc2SAQ3C7qK6argWmPtsOAnct3yoXuAwD0BGD5nJgyor6nRehjLK8ixYrZAKSBHlcg9T5qCjCd+pYHCGwVfdRj7i9HPc6l2aKWNAEzJzwSgRa/thkA0Pq9gSj5Pz8AoPFQQE26cRV97po45vQ+Skf/QtSPA5oLgNyfqIJPGUJbRCAFnydQP97RvagBxPsDRZ+Ii2AZkNocKJD9tjWg6RAx5v5GG4opDnhbASiuYaXh6HwSFQo0x3iRcUCPifLZIEMmxKA6Wh5bZ7BEsyj50P2wtPVTYDv7mQUkKpxxzgBq3NGTJZnUWNkakC4U+4vXcZnM1fQyxPu542JEgKztGCamDanLGvT4b7Bpxo0dB5L4dkKPs3dKtyc+n3/+OQoKCjrsLygowBdffAEAGDZsGBobG3seHUEQBEEQ3YOe6uqUbt/qGj16NK677jrs3LlT7tu5cyeuv/56fOc73wEAbNiwAf379++9KAmCIAiCIHqBbk98HnnkEWzcuBH9+/fHAQccgGHDhqF///7YtGkTHn74YQBALBbDLbfc0q1258+fD8YYZs2aJfddcMEFYIzlvcaNG9dpO4sWLcL3vvc9FBUVoaioCCeeeCLefffdDuUeeOABDB48GF6vF6NHj8Ybb7zRrXgJgiAIYp+E98KrD9PtW10HHngg1q1bh5deegmffvopOOcYMWIETjrpJCiKmEf94Ac/6FabK1euxEMPPbTLdBeTJ0/Gn//8Z/neMIwOZdqzfPlynHPOOTjqqKPg9XqxYMECnHzyyfjoo4/Qr5+4Wf70009j1qxZeOCBB3D00UfjwQcfxJQpU/Dxxx9j4MCB3Yqd2H945V83y+1Dr14INa3K93rC8V9JcWhJ91uvpoRuQ49moGSEICZb6MlrlzvPQCgZDu92IRIxw16YpT6YfvGd0JM2LF2Us7wKij8RWTybD/IiMk5s9/u7LpNThjfa0luofZLP4FahxwGATAGD6uhjQrWuOU8mqIBxIFEpBCRKlkNz9EJanS38ib4Eszm4o3XxNLvnNGKubsXWhHYIAGLVBjybnaSm4SDS5QF46tuc+iaaDxLfUzUN+HfA6VMGSla0p6QtlDWKoDyFHd3eQxsVpAsVpMrE+3QJpPYqWRpAqNbxwnE8e3wXbQcA7IiGEPpbgTMmNjTn+rEshxlwr3esnzsGOTlDYLurmTKibr/1BEeyRHHODQTquEyeqiU4PBHxedHjNuLlogGjDTCdbvkbbFhGLhEtQ4HzWTO9DGpOE9buEZx0AUO8f24cgPBnbvnADhOpIifRrs/VYVS+ZOB7f7sbAGAZDG89fW2HMSW+PZBzc+d0e+IDiEfXJ0+ejAkTJsDj8YCx3RdCxWIxnHvuuVi0aBHmzp3b4bjH40FlZWWX23vyySfz3i9atAh//etf8eqrr+K8884DANx777246KKLcPHFFwMA7rvvPrz00kv4wx/+gPnz53dokyAIgiCIvkG3b3XZto3/+q//Qr9+/RAMBmUKi1tuuQWPPPJItwP4+c9/jlNOOQUnnnjiLo8vX74c5eXlGD58OC655BI0NDR0q/1EIoFsNovi4mIAQCaTwapVq3DyySfnlTv55JPx1ltvdTt+giAIgtinoFtdndLtic/cuXOxePFiLFiwIO+206hRo6TGp6ssWbIEq1ev/spVlilTpuDJJ5/EP//5T9xzzz1YuXIlTjjhBKTTu3jO9yu48cYb0a9fPzmxamxshGVZqKioyCtXUVGB+vr6r2wnnU4jGo3mvQiCIAhin4MmPp3S7Vtdjz32GB566CFMnDgRP/3pT+X+Qw89FJ988kmX26mtrcVVV12Fl19+GV7vLpL1wM0EDwAjR47EmDFjUFNTgxdeeAFnnHHG155jwYIFeOqpp7B8+fIO5/jy7bmc6/RXMX/+fNx2221fe05i/+A/C6/GkZctBCB0PZ6IEGQoWY5UsfhaeJtMqf8wgzoyIfEZsjwMelxoQIyICdVy6qYsWAGh/1HjGVheDZmg+9siUyAaM9oU5L56mRBw5JBaAMD2ywrQulpMyCtW2ij+RAhq4hUaPI7mxNYZtITYTmgquNN86xAVSjupjB4TbQsYDGeerqUgfWcy7VwpPBH3s8+48PsBACOGPM1TtEboS4LbbEQPKxdloiLOdJVzQsZQsEUEE2Gq9ApKh90/N56IiXSheK+nYvgyahJQ23kOwXZ9igo/s6HHRaPxkIZ0EUP8RSGK0Sc0I+NogYJtNtJhx7episFwTuPfYSG4VdRvHabKHGeWF/A223IMcnqrTMjVgClZcQ30uDsmSoY7/VORdH5PpYs5St93hsN29UnxakhRkWIB/u2OL1LK1Q0xC/A4biCpYsDnbNs6kAmp8DWL2JPFKiyPqJ8JMjlWlofJz/bqB6/uMLZE34c0Pp3T7RWfbdu24YADDuiw37ZtZLPZXdTYNatWrUJDQwNGjx4NTdOgaRr+9a9/4Xe/+x00TYNldRQ8VlVVoaamBhs2bPja9u+++27MmzcPL7/8cp5ourS0FKqqdljdaWho6LAK1J6bbrpJOlVHIhHU1tZ2ua8EQRAEQewbdHvF55BDDsEbb7zRIUv7//7v/+KII47ocjsTJ07E2rVr8/bNnDkTI0aMwA033ABVVTvUaWpqQm1tLaqqqjpt+6677sLcuXPx0ksvYcyYMXnHDMPA6NGjsWzZMpx++uly/7Jly3Daaad9ZZsejwcej+crjxMEQRDEPgE5N3dKt1d8br31VvziF7/AnXfeCdu28be//Q2XXHIJ5s2bh1//+tddbicUCmHkyJF5r0AggJKSEowcORKxWAyzZ8/GihUrsGnTJixfvhxTp05FaWlp3oTlvPPOw003uWkJFixYgF/96lf405/+hEGDBqG+vh719fWIxdzl9GuuuQYPP/ww/vSnP2HdunW4+uqrsWXLlrxbdwRBEASxX/INa3xM08SvfvUrDB48GD6fD0OGDMHtt98O23ZtITjnmDNnDqqrq+Hz+TBhwgR89NFHee2k02lcccUVKC0tRSAQwLRp07B169bdGYFO6faKz9SpU/H0009j3rx5YIzh17/+NY488kg899xzOOmkk3otMFVVsXbtWjz22GNobW1FVVUVjj/+eDz99NMIhaR4AVu2bJH+QYAwJsxkMvjhD3+Y196tt96KOXPmABDaoaamJtx+++2oq6vDyJEj8eKLL3ZYxSL6Nu31D0f/UHig2Loi9T6mX4GWdLQ1GoPRJvZHiwzpocJVBtXReHjbMkiXCiGKllCQLtKkPsbyMvgbHP2IDanNCNXa2PaAuHXcMAZQc39wuDgnAAS3ZZF1coz5GrLSn8fbZEtdSMEmC7FqsT9dBKQLhc4n9z7pSNz0GJP5xwL1HNHB4hwJH1C8zv0jldMRcYVJDxpbZ/A1igDVjA1m5nQvNpSMDTOgdahf/n5W+h/ZHhVqQtwObxsckF46vh0df3/ZXoCZgJJ7joEBvjqnP4UKdOe6qBnAt5MjXu3E+O9i+J08WqlCBZbX0dYMspDMOn2tVGUeLnA3R1nhFyZaB4s+MBtynLSUmzuL2UBsAFC1QvRJTVjIhsRFMNps+OsVOW625uTz0lxNUHArk58J304T2Zy3EIPMH2arDLbujkmub0ZUeCklylwfn1yMShaIV6gyxhyHzVoIT6to993F13QYZ4LoDe6880788Y9/xKOPPopDDjkE7733HmbOnIlwOIyrrroKgFiUuPfee7F48WIMHz4cc+fOxUknnYT169fL/9NnzZqF5557DkuWLEFJSQmuvfZanHrqqVi1atUu7wLtLrvl4zNp0iRMmjSp14LIsXz5crnt8/nw0ksvdasOAGzatKlL57r88stx+eWXdyM6giAIgtj3+abFzStWrMBpp52GU045BQAwaNAgPPXUU3jvvfcAiNWe++67D7/85S/lg0mPPvooKioq8Je//AWXXXYZIpEIHnnkETz++OPyKewnnngCAwYMwCuvvNKrc45u3+oiCIIgCGIf5hu+1XXMMcfg1VdfxaeffgoA+OCDD/Dmm2/i+9//PgBg48aNqK+vz/PP83g8OO6446R/3qpVq5DNZvPKVFdXY+TIkb3usdelFZ+ioqIuuzM3Nzf3KCCCIAiCIPY+X/ar+6qHfG644QZEIhGMGDECqqrCsizccccdOOeccwBAPkW9K/+8zZs3yzKGYaCoqKhDmc489naHLk187rvvPrnd1NSEuXPnYtKkSRg/fjwAscz10ksvdTsxKUEQBEEQvUwPb3XlVnwGDBiQt7u9VrY9Tz/9NJ544gn85S9/wSGHHII1a9Zg1qxZqK6uxvnnny/Lddc/r6tlukuXJj7tAz/zzDNx++234xe/+IXcd+WVV+L+++/HK6+8gquvJsMsYv/j33+dLbePm3oXAMd4zhGf6jELtpoTJGfQNkC4lmsJG8wWfyWyhR4YTSKD6M4xIdgGULxOZBE1M4pMeJoNqmg5UNxlDm5hUCxRf9BzGXDnHErWRsMRQpFstKnyHJkCXQqrlQCD4iS5ZLaK4DYhHFYsDabX/UOhJUSy0ByBHY4wN8PhdRZoucKk4FrJcimsThWpMlGppQM7x+T+mioY9pToK8tYyJR4kXASdPp2mrB8on+mX0G8wivP23S02B437T947b1DAADeYMe/0GqSI1sGeTPeX8eRDYiYStemZDklpMDUGMJfiBibRipSsB3cAgS3CXPFVImGRJWr+pUCYA4YbeL8Ow/VoLc5508Lw0DASSbqCNgD9VwkXXWuhxbPABCfhUxYg7fFEV2nFeiOwNu/LSHP23JQUF6zTIGKrN9JXupn0ozSaveDOl3sbismpNA89z4nbg/ttOXnwtaBZCmT/cyExPbhVyyUppYfz6O/032anrovO3Vra2tRUOA6nX6Vpct1112HG2+8ET/+8Y8BiEwOmzdvxvz583H++efLfJv19fV5djTt/fMqKyuRyWTQ0tKSt+rT0NCAo446qged6Ui3NT4vvfQSJk+e3GH/pEmT8Morr/RKUARBEARB7F0KCgryXl818UkkEnlPVwPiyezc4+yDBw9GZWUlli1bJo9nMhn861//kpOa0aNHQ9f1vDJ1dXX48MMPe33i0+2nukpKSvD3v/8d1113Xd7+Z555BiUlJb0WGEEQBEEQu0Evrfh0lalTp+KOO+7AwIEDccghh+D999/HvffeiwsvvBCAuMU1a9YszJs3D8OGDcOwYcMwb948+P1+TJ8+HQAQDodx0UUX4dprr0VJSQmKi4sxe/ZsjBo16iuTmO8u3Z743HbbbbjooouwfPlyqfF5++23sXTp0m4nKSUIgiAIonf5ph9n//3vf49bbrkFl19+ORoaGlBdXY3LLrssz9T4+uuvRzKZxOWXX46WlhaMHTsWL7/8cp4v38KFC6FpGs466ywkk0lMnDgRixcv7lUPHwBgnPNuD88777yD3/3ud1i3bh045zj44INx5ZVXYuzYsb0a3L5MNBpFOBxGJBLJuwdK9B3GXHyvTCzaNsRG/1fdr0pOm+FpsWA7ugtPc0YeZxZHywi/fO/faYE5Wh6uMsCRajCTw9Zd3Ua0RvwWaRuXREGByDo5uLAZ618QJoehWi41IHrc1b0kSxhKcklNyzUwzqVmxzKEHgQAtASX+hZviwXTL5anjTY7L6FqLiauQOqFbA0o2CIa8jYkZVkzZEBNmEiXiMCy7doxWl2DP8vDkCrMddzVrxTFY1hxV77r+zFX3I6dZUH4GsR7JQOUrXafMFEiQjcTP6gUkRpNJujMBl3NDgAE6kS8kcG6TMpqBt3zBLcIg0cA8Ne745kNAkWfCi1UolyVeh9vC0e6wNXjtNdOeSI2vE1CZ8U1BtPROXGVSXPCbEABV9zxzP2y9ra6uQmzAUUmduWqMGLM4d9pQ4vnDCEVZELimK0CO8c5F5YDnp2O4eUOwBPhsq2083m2DWDt3aTz+Sb5Jv7PyJ1j6M3zoH5F8u+uYKVS+HzezX32/7fdMjAcO3Ysnnzyyd6OhSAIgiAIYo/SJXHzl5/l/zra2tp2KxiCIAiCIHrIN2xguL/RpYlPUVERGhoautxov3798MUXX+x2UARBEARB7B45jU9PXn2ZLt3q4pzj4YcfRjAY/PrCALLZbI+CIoh9gfcedpM6HvHzhVBT4nOtJk0YLWI/1xWYfvE1Shcb8LS4Go+SD6KIHCiEe5mQAsX5WjAOaAlHp6EzqGnxVyZeqcGIim3/ah/aHM+c2r8NRe4pUsZdzYanOQsnvyaKPrEQ7yfu6RetTyAy1IeEsM6AHnV9axgHPNGc1wwHILaVtA2fE1O6WHc1KX4GPSG2TS+TCTKZ5YXRKjRNasKE5XX/lCRLFJn4E/0V+Hc4iVoNV9tkRDmY5XgFHdDx74Wti8Sbub6aXobaSUJrwLIAILbNoOhf7nxKFlKXpSWAtgFCnBMZl4LuE3ofa1MApWvcc+U0N5kQQ9aRM3AG1I8VfQ1tdnVAls5gewBfg5MItZjJ/yQyYQW2Ych2c4la9TbL7XdrFpmwiMnyKNKfyfQoSBW5v0Nz458pYAhtFe2YPgbTx6CYopySsWF6RIzJMqDkPTfhae4Xu+kHEuWO1ssjkrrmtg/8r4UAAG8j8MFvSe9DfHvo0sRn4MCBWLRoUZcbrayshK7rux0UQRAEQRA9oI+v2vSELk18uprxnCAIgiCIvcw37OOzv0HZ2QmCIAiC+NawW4+zE8S3jff/+2oce5rI4SUTJDmoWffnUbpI3OI1WrPgmoLCD1vFAdtG/AAhFMkGFKgZNy+WmhLampL3Y2g5tBAAENjBEf5fIezhCodeL/QpmbAK3w6Rq8r0a7C84reL5VGQLHXyY3l98ERthD8X79OFDOFNpoxRjzpaF68qc4PZOoOetpz6TOZ30lIcWlz0T4/Zsq9GJAs4iQOFT42NbED03dvCwRpFOcU9LTIhJv1pLC+TuqPQJx1vi2tJgBcAkaHMGU+huwEA1Wqn6ckI3VK8v2gsuElBzpks1h8wA04us50eDDh8JwCg0ZNBQ4XwWKpY6oHH0VUlS5j061EygE8UR7oIUB2foHSxOJ8RE3V8TRZi/TSn324uMD1mQ0s6nbWF5itHLmebmrLl+FteBYYzzv4drh9UwxEeNB3i5HXbypEJMSRLcvnjVDeHWJ3I9wUApgfwO+Of02cBQKJCcX2HOOBpdcLTgSMvE3ofNcux8k+uto3YP/mmDQz3N2jiQxAEQRB9CbrV1Sl0q4sgCIIgiG8NtOJDEARBEH0IutXVObs18XnjjTfw4IMP4vPPP8df//pX9OvXD48//jgGDx6MY445prdjJIh9gtf/33Vy+6iz7wEAqBku/GkAqGkbiiPr0GIZsIwrcGGpLIKfNAEAMlUFUtvBGZM+MpGDwlCyOb2JgnSB0HIE6i1knG3LYGCOx4sezSJRKbQqsX6uhiQdZtATqtRzlL8bl8fi/X0wy4TXTNOP40hHhY6o3wuaPIdicihZJ2eVn8lcXb4mG5azDVtHNuBqneJVitTzhGpNmXNMS3DpYaOluCyTLmQo2Ox4GfXvONaDv78Rqr8I21aIg2YA8Ne7x8MbRd2W4U4erVz3mZs/yxqWkLvNuI5N7/d3xo2hqM7Z7+FIlrfT34gUYOAaZP6v9sv+/h3CE6lleE53w5AOi2MFmyxYHrFfTdkyNxszbbCU49cTcPVMtsak9seIZJEoFT5MkUEeNB0p+tfvVTefGiD0U0bU1RLl9D6A69WkJyFzjpleBk9rLg6R301sM7QNFuVDm8T4AkC8iGH4HULv8+kvydtnv4VudXVKt291/d///R8mTZoEn8+H999/H+m0+CvT1taGefPm9XqABEEQBEF0A0pZ0SndnvjMnTsXf/zjH7Fo0aI8k8KjjjoKq1ev7tXgCIIgCIIgepNu3+pav349jj322A77CwoK0Nra2hsxEQRBEASxm5DGp3O6veJTVVWFzz77rMP+N998E0OGDOmVoAiCIAiC2E3oVlendHvF57LLLsNVV12FP/3pT2CMYfv27VixYgVmz56NX//613siRoLY53jr6Wvl9nFThbGh6VWgZIUolWsKWEYIWwEAugZEY2LT0GCGhZCVKwxcd4SyW5KwnaSTgW02LF+7xJ+lYjvrZ9h5pFCitn43DUCY3YU+8IBNaJHlI41BFK4Wt6JjNT7ocREH44CvQejy/L/VoDVHAQBWgQ+2E0e6xICvWfQjUarC12TJdqUhnsJgtDmGhz4FBVvcMltOYVDDQhnsW+2DmnKqWCI5JgDEq4BkqehrSb9Yh/H95O3BaA4G4W9wzhvn0FK5bVfcG9piI3TJVvl+2/aB8nwVf/OiznnWQgFglTpJZhMGLMcA0VQYBk3ZCAAo97XJdt79v0Pha3TPkxN4A4C/wYSWFNejZQQD18WYpIs0OSatwwwYbWK/t8Udm6xPgbfJicPisJAzoFThb8yNJ0PVG875GJAqFNuhrRYUi6PpIHFuT8QdL/8OSwrPtf/f3pnHV1Gd//9zZubuyc2+kpCw71oEi+CCKItULS4/UWtVrLX6xQ2RSlFbcQMXBKzWBauCW8FvK61WReCrYBEXDFAREEG2AAkh683N3WfO748z90yugUBIAhie9+s1r8ydOefMc85Nbs4985nPEzDkewkAtV3FvquSoyE3LsQHXPvF+VBmPPErYK8BVHP/Z7fPQcoPUaz84B4QREeixROfe+65B3V1dRgxYgRCoRDOOeccOBwOTJkyBbfddlt7xEgQBEEQxJFCT3U1y1E9zv7oo4/ivvvuw6ZNm2AYBvr27YukpKS2jo0gCIIgiBZCGp/mOWoDQ7fbjcGDB7dlLARBEARBEO3KEU18LrvssiNu8J133jnqYAjip8jK94Sx4bljn5DHDLsKJQAgZuo7GgJC5wOABcKIdvYCACLJCphp6udQLB1JNNUGm9/UC6kMTlNzE05V4D4gtCe2FXaZ9BPgcD8nVl3LbwrBmRJCfZf4n7el9zA0hoZ8IbTRHQzoIrRGtgYur2doDOEUUYdxoL5QaHHStkRlO8EsDUl7hL7IU96AWJoTMZcol7LRhoazRIzhdMC7XdSp7cmhBU2NSQSIJpvamHp700HlgL0OCKeKl0xnMjGpoSpSN2Ov5yj7oDNCGWa9FMBTZn1dTd8g+hHIBQJxUz8PR71XlEnaqWDjxs4AgM2pERhh0xCwdwTMEHG5KzhsftGfSLICZnCkbBMapvrObkTjiU2jHDEzaSwzANU0LYy6FNjNxLBGiooDPxPj7z5gxRnMZMhab4qTuAabqRUKp9vgqhLXrumpgumW2aCnjCNto0+2Ec4UA6SGDcSSxHvfkK2iocjUaw2IInW1eL+VGBATu7D5hM5H1LU0PnYfRzBLkwlM175IhoY/GehWV7Mc0cQnJSVF7nPOsXjxYqSkpMgVn5KSEtTW1rZogkQQBEEQRNtDt7qa54gmPq+++qrcnzp1KsaPH48XXngBqmra6Os6Jk6cCK/X2z5REgRBEARBtAEt9vF55ZVXMGXKFDnpAQBVVTF58mS88sorbRocQRAEQRAthHx8mqXF4uZYLIbNmzejV69eCcc3b94MwzAOUYsgOj4rPrT8Tkad9SigKAAzk5Fmpsp9VlsPbsp5IkkKYiLPKGwNDIqZgNRRHQFMzU8oxQ5ufkVxVVrJL5P2xlBXLHQoXAVquwmxSdbrCtSQgXCqKBdJZjKJZ8zFZIJUT7kO54GwjDmcIdqKOZmMyVXJrYSqNoaoRwTi8BloyBflXTYG514f9AJxSzxtaxShLCFE8ewV2h4A0IIMvK/p2bMlCYbL/Lyot75ExXFUAVHeyDcIQPm5QieT9L0Nii7q+PMYPGVc6JUApGy3PoNqeirgjT7h7PvF+OgeA7rbMMdDgb1atGX4nfKboKOKyTEPpjM4a7gc57qudrgOmB5E3+rQAqbmqiGGuq5COKOGuBh3AHY/RyTFDIRz6b/j78SgmUlRmQ4EM8V4Mg6EMk1tUpaClB1CdFNfoCCUCXh3wryeAX+x0HXFf28AQAvEUNVbk+2mbVTNfRUOM8FpIFNBIF+Ud+0HHKYFFOOij4BIdGr3c9iCou3Tbpkjr/P1XyeDOIEhjU+ztHjic8MNN+A3v/kNtm3bhjPOOAMA8MUXX+Cxxx7DDTfc0OYBEgRBEARx5DDI7zpHXb8j0+JbXbNmzcIf/vAHzJkzB+eccw7OOecczJkzB/fccw+efPLJow5k5syZYIxh0qRJ8tiECRPAGEvY4pOtQ7Fx40ZcfvnlKC4uBmMMc+fObVJm+vTpTdrNzc096tgJgiAIgvhp0OIVH0VRcM899+Cee+6BzycepWytqHnNmjWYN28eTjnllCbnLrjgggRxtd1+kEdfGxEIBNC1a1dcccUVuOuuQz9+2a9fPyxfvly+bqxZIgiCIIifLHSrq1mO2sAQaP2EBwD8fj+uueYavPTSS3jkkUeanHc4HC1ajTn99NNx+umnAwD+8Ic/HLKcpmm0ykO0G8tW3QcAGFtsTr7tKgyP8G8J980DM7USaVuCABf71X3cUndhqwNSdwj/laSdftT1FFoOV2UMasjM6eTWYG8QdT17QrBXWDmvYqluBHKEUIczQDN1Gs6qCHTTa8ZeE4Fu5gaLpGrQGkS7Dh9D+nohRGFRHYbDZnWss4ijqq+G6CBxveBnSXDmZMAwP02CWQxag1meA+5ysXDu6xuFUmaKh7wG0teJayej6ZeO5L06osmJubKSvhdx5F5QirL/KwQAaENq0DN7H0ambwIAzNo8CpH/pgIADBugBq0207aIMWjIUxBf7HZWAvVFZqgKkF1iegt5mdS6uCoNqW1qyDNvApgn3RW6vC8QyHVY8boYmBl+bXcm41BikOOkhCF9mGJuoGqAGVOVFbN3l46anqLfagRI3g2pD4u5FRhmjLqDyfc4nOpC0j5x8WCWAsN8+1ij+xeuKgPMsBb8nbWiLjM4uKktM1TAXm8gmC7KKVEuH3Mect1sGcdXC0jvc6JBj7M3T4tvdXXp0gVdu3Y95NZSbr31Vlx44YUYOXLkQc+vWLEC2dnZ6NmzJ2666SZUVFS0+BoHY+vWrcjPz0eXLl1w1VVXYfv27c2WD4fD8Pl8CRtBEARBED8tWrzi01iDAwDRaBTr1q3DkiVL8Pvf/75FbS1cuBBr167FmjVrDnp+7NixuOKKK1BUVIQdO3bgj3/8I8477zyUlJTA4XActM6RMGTIELz22mvo2bMn9u/fj0ceeQTDhg3Dxo0bkZGRcdA6M2fOxIMPPnjU1yQIgiCIYwLd6mqWFk987rzzzoMe/8tf/oKvv/76iNspLS3FnXfeiaVLl8LpdB60zJVXXin3+/fvj8GDB6OoqAjvv/9+q1yix44dK/cHDBiAoUOHolu3bliwYAEmTz74su20adMSzvl8PhQWFh51DARBEATRbnTwyUtraJXGpzFjx47FtGnTEoTIzVFSUoKKigoMGjRIHtN1HZ9++imeffZZhMPhJoLjvLw8FBUVYevWrW0VNgDA4/FgwIABzbbrcDhatcpEnJx8uFPkORrbcyr0TKGPsfuiUtcDAA2dXHLfvU/85BqkX49hV5G2Tgg/9CQndI8QbdirQqgvSAYARNLsMOzCR8dZWgutpgGpm4TOo7ZvktSo2GujsPkist1Qpmgrebsfhl38vUWTVETThRZHDcXAIsI/J5Trkdokuw8IG0LkoduBUDqD3SfOpW/R4c8TbWlhjkiKKJfxlQ3hNNE/mx9SA+PZ39T/y1ETBXNZnjJakMNZLdrZ9XUBYp1McUxZMj7b3hf/cfS2KmeYWqUqVepvmAH4iuP6HEAx81EZdtEXAFArGaIuq3w8vpiLIZgh6roOJHoLhVMU1HUTQaZ/x+W5uu4M7nJRJnWbgbouYvzdlVxqcWLORrnZPEzmbAunAbr5URPIVZG22cz5lSTKx69hqI3GsDyGcIqIgzMRMwBk/jeEUIal0arrIsoklXE46kQ7uh2IyY82Jn17FDChDzNzjvmKG+V8swOpW8Xx4Rc+gZXvWx5WBHGi02YTn7///e9IT08/4vLnn38+NmzYkHDshhtuQO/evTF16tSDPmVVVVWF0tJS5OXltTrexoTDYWzevBlnn312m7ZLEARBEMcaEjc3T4snPgMHDgRr9HgA5xzl5eU4cOAAnnvuuSNuJzk5Gf3790845vF4kJGRgf79+8Pv92P69Om4/PLLkZeXh507d+Lee+9FZmYmLr30UlnnuuuuQ6dOnTBz5kwAQCQSwaZNm+T+3r17sX79eiQlJaF79+4AgClTpuDiiy9G586dUVFRgUceeQQ+nw/XX399S4eDIAiCIE4sSOPTLC2e+IwbNy5h4qMoCrKysnDuueeid+/ezdRsGaqqYsOGDXjttddQW1uLvLw8jBgxAosWLUJycrIst3v3biiKtQS7b98+DBw4UL6eNWsWZs2aheHDh2PFihUAgD179uDqq69GZWUlsrKycMYZZ+CLL75AUVFRm8VPEARBEMSJR4snPtOnT2+HMATxiQkAuFwufPTRRy2qAwDFxcXgvPnp6sKFC48mPIIgCII44Tket7r27t2LqVOn4sMPP0QwGETPnj3x8ssvSx0v5xwPPvgg5s2bh5qaGgwZMgR/+ctf0K9fP9lGOBzGlClT8Le//Q3BYBDnn38+nnvuORQUFBx9Zw5Ciyc+qqqirKwM2dnZCcerqqqQnZ0NXdfbLDiC6Ch8+P3jcv+88x+Dr4uZXJQxOGvE34wtyOEpE8Jj3alKIXEsyQbDJoTRWl0YWq0ob7hsUEwBdDBdQXqZyHgZyfVC84XAzL9FT1kUWoNQziqhKAyH+LOv7uNCUpk47i/yyPi4ylDTUzxpGU0G0jcJJXDMraK2m7W6qm0SdaJeQI9Z4tus60tRsbJYxGizVoft9VYyTGe1gZBpjBdKbWonVt3HiZCiyKSaTBdCaQBwlzH4C0Wd8eevxv8uHQZnPNGozRL8xusBgBoGbKapohbkcimfccBhmvdFvAoiXiaPuxuJroPZZj8OAGnfh1Hb3XoSNZoqytV3UqCFRbnC/wuh/HRRpqaX1T9/J4aGnqaKOaQgf4WZXHUnh69IMcfZEl9rfqAhV5RRdMikpkCiANtRHYFhE9eLORli5rjvP90J937Rv1A6g2JeOpLMpPlh1AMk77H6GjcwjLqFYN1eL+pnbDRQX2D9y2CGaXqoc4wY/bjZPxvWvEqGhsedY3yrq6amBmeeeSZGjBiBDz/8ENnZ2fjhhx+QmpoqyzzxxBOYPXs25s+fj549e+KRRx7BqFGjsGXLFnkXZ9KkSXjvvfewcOFCZGRk4O6778ZFF12EkpKSNs2u0OKJz6FWU8Lh8GHTSRAEQRAE0b4c6xWfxx9/HIWFhQlPdRcXF8t9zjnmzp2L++67T1rRLFiwADk5OXjrrbdw8803o66uDi+//DJef/11aWj8xhtvoLCwEMuXL8eYMWOOvkM/4ognPn/+858BAIwx/PWvf0VSUpI8F38MvS01PgRBEARBHD9+nKHgULYu7777LsaMGYMrrrgCK1euRKdOnTBx4kTcdNNNAIAdO3agvLwco0ePTmhr+PDhWL16NW6++WaUlJQgGo0mlMnPz0f//v2xevXq4zPxmTNH+JFwzvHCCy8kLDvZ7XYUFxfjhRdeaLPACIIgCII4CtroVtePTXofeOCBg+p8t2/fjueffx6TJ0/Gvffei6+++gp33HEHHA4HrrvuOpSXC1OrnJychHo5OTnYtWsXAKC8vBx2ux1paWlNysTrtxVHPPHZsWMHAGDEiBF45513mgRHEMSR8fH//QEjxghNRMSrobqP+BLBdMBQxe3i9A0+sJjQXYTykuDvLPQbybsA1RcGACjBqPyAinoZavqIVdjkPRHEUpzg5tOXSlhHzC3+1DUIDQ8A2P0c/nxx3FllSLM/AIiaC7pKRCTDBISOSBWXRjjdMhdELz+UddYK8I5PimGvF/uGBqTssPQj9johMtkxnkGrNS9oiwCvJY6R7gAiLsiEqg0FHPmnlQEAHADqy4VnmI3p6H76buxeLp7I5CrgPFUIierrXGBV4tupax9DxMypzBWWoANSQ2ZfoxyaOQjOagNhr6XNSfvO1Fu5GHaPdoJ3NQVDOzxQG0xzwgMcjlrRcCDHDketKNLQCXJsDRtg228ZCtb2ED9d+y39EzMAvZGZfTxWZgBqmMPfyTQy9APOahGXv7NLmhCGU6w3UncC4VQmr80Va3xdlWaf3AwNOZbBYhxHnYGYS4EaNsx2LUNIV5WVvDScbJdaMUedgTN+PduMT8d//tmyNEZEG9FGE5/S0tKEZOSHMvE1DAODBw/GjBkzAAjbm40bN+L555/HddddJ8s1fiIcEAspPz7WJJQjKNNSWpyk9JNPPqFJD0EQBEF0cLxeb8J2qIlPXl4e+vbtm3CsT58+2L17NwAgNzcXAJqs3FRUVMhVoNzcXEQiEdTU1ByyTFtxRCs+kydPxsMPPwyPx3PIXFZxZs+e3SaBEQRBEATRco61uPnMM8/Eli1bEo59//330huvS5cuyM3NxbJly6TPXiQSwcqVK/H442L1e9CgQbDZbFi2bBnGjx8PACgrK8O3336LJ5544ug7cxCOaOKzbt06RKPi+cq1a9e2+bITQRAEQRBtxDF+nP2uu+7CsGHDMGPGDIwfPx5fffUV5s2bh3nz5gEQt7gmTZqEGTNmoEePHujRowdmzJgBt9uNX/3qVwCAlJQU3Hjjjbj77ruRkZGB9PR0TJkyBQMGDJBPebUVRzTx+eSTT+T+jw0DCYJoOZ98NFXun3+uuC+u1YflsfruXqmtCKWp0B3iy0Z9ZyeiHpFJ01Meg71elIm5rTL7T3PAUWvpRFxV1qeYFlARNn1zuCI0GaI+g256v6hRDpvpF+M6oMNh6nIiXgWauQrtPgCE0swvQGVJCGYDMY+4jtbAYK8Tp8KpQCBbXK/ujBDc34qgMtYAnnLTv8jb1AYj5gQaOhvgqpkwM6rgwIp8ACJBpq2PHwDw+qdnwVavwG760yi96hGKCA1NkjeEYJlYmldilqbFXm+g7CwR0+Ch38tr5jrr8O8tAwAA0TUuJJdaQqCGPEW246gG9IDwMOIq4KwUZeo7MzTkWXqteKLRxt47ugvwDKgGANTuSYESFeX9nS3NVMa31nWdlTE05In+hDKENimezNRdYUhfnkCWIvftfqEFAgBtL4cWFO3VddVg81sJUuMaMHsd4KwRZdQoRzBD9FW3W4lnRd85lJioE05RoJtvmxIFqvqIfyXRZMC9XxwPZmgY9DvxUEzJvLtAdFxOP/10LF68GNOmTcNDDz2ELl26YO7cubjmmmtkmXvuuQfBYBATJ06UBoZLly5NyMQwZ84caJqG8ePHSwPD+fPnt6mHD3AUGp/f/OY3qK+vb3K8oaEBv/nNb9okKIIgCIIgjg7Geau3lnLRRRdhw4YNCIVC2Lx5s3yUXcbEGKZPn46ysjKEQiGsXLmySb5Op9OJZ555BlVVVQgEAnjvvfeaPFnWFrR44rNgwQIEg8Emx4PBIF577bWD1CAIgiAI4pjB22DrwBzx4+w+nw+cc3DOUV9fD6fTet5S13V88MEHTdJYEARBEARBnEgc8cQnNTUVjDEwxtCzZ88m5xljePDBB9s0OII4Gfi/FffK/bMvnQUAUCPc8m/hgLtC6GFiLia1PP5OmtSROKs4gpniOFeBQB7grBLnwl5maXlcLMEXJq4XiaZaxw0Oqd8IpyqIJtll+aRSkUsslGmTua+UGOCoAzx7xTnDrqD856YuJUdHxjpxfz7lcyfcB8RFPHtDYLq5X2lpm+KoEcCzW0EgX3z1NDw64h9XahCIbjN9g5INsJiV2ypc70Bqpl+2o5i5s2Ju4WMj4uXI+VK0u6ukBxxm7rO9TgW5Zp4quy8ic1aFMjSpk6rpxRDKiyF5i4glaZ+BqOlz5DpgjZutwdLsRJJEnq14v2pLU0QcESZ9kSKnNMiYKxUPsr8WFfwFNvl+x9yAuwLI/49V1tfdDUD8jhjmpzkzxPsMAHa/AUMT+8m7dUuDxAFbwJBlYk5L1xOv6ykX5yNeUSfqZlI7ZKhMejXZGwxwVZHXjrpleFDFrwQG/3a27OuXr1Mur/bmeCQp/SlxxBOfTz75BJxznHfeefjHP/6B9PR0ec5ut6OoqAj5+fntEiRBEARBEEfIMX6q66fGEU98hg8fDkA4OBcWFkJRWiwPIgiCIAiinaEVn+ZpcXb2uCFRIBDA7t27EYlEEs6fcsopbRMZQRAEQRBEG9Piic+BAwdwww034MMPPzzoeV3XWx0UQZys/GfxFADAeaMegxIWf0tqSJM6C93BpC8MV0UuLQBoyLVMRZP3cNT0YqgvFl/bcr7icFWIgkw3UN1XiDC0IIe/QKzcxtyQ3jsOn6UXiuebAoCqU4HqvkJU5KxsdI5zuKp1mVdLiXIUfCKCjHlsqC8QsathYP/pot1c3bK+j7kBrEoch+Q9BnSnpR3hiiZ9algM0MwHSz17xPm4fielxA5HTZock7hDkBay2o45FXhKRQO6S0PUKz4GXfvDiHhFQ3XFdkSEFAdpW3UcOFU1+wa4d2kIm3f6Q1kKbKakyGZJixBNAmIuM14dCJlZfmz1QPJWVcYcj9v9hUfqrXQnpBbH5ufgzGonkM1grxdjp9sVaEFuji1HJFkUDGYxGYs/X4W9Pu6FxKVfD1cYbA2mT1SqKvVBtgCHp0z83kW8CsKpDJopKVLDHBEzD5huB9wVpldQkMPIMmN3WXorm9/SHXnKDSimL9WwK5/C6kV3g2hH6FZXs7T4ftWkSZNQU1ODL774Ai6XC0uWLMGCBQvQo0cPvPvuu+0RI0EQBEEQR0j8Vldrto5Mi1d8Pv74Y/zrX//C6aefDkVRUFRUhFGjRsHr9WLmzJm48MIL2yNOgiAIgiCIVtPiFZ+Ghgbp15Oeno4DBw4AAAYMGIC1a9e2bXQEQRAEQbQMMjBslhZPfHr16iWzsP7sZz/Diy++iL179+KFF15AXl5emwdIEARBEETLoNtch6bFt7omTZqEsrIyAMADDzyAMWPG4M0334Tdbsf8+fPbOj6COCn5eNkf5P7wi5+EvV4ITsOpCmymoNXWYJnTBbIUuKqs5JY2H0PS7ngSyqg04wNnSNlhCp1jHEl7xOEDAx1SPBxMV6T5oW5ncNaIa+euBoKZQnQbyAXCUrDLEMzU4N0trs90jkB30/SQQ4prwykM3h0ijqp+Kry7xPHUqqYPRKhhDld9FC6xoAwlrKN8iOWMF/9w1u2ALQAZuxLjUrSb8R0Hb/TVLpxiiqyjHJE0ER/XmBTdKuEYGvKFIlnROQKdzPHIVeAqM+OKAhEv4Nlrvo6IRKyANR7mMEts9YDLTNzpqjQQ8ZpBGcKoEkg0llSjjQwk05gUEath05zQFJHbAgZCqVbyRluDKBdKY4ia/o6OGpGQFACiGQxZ64WLoO5QYNjjQmUGJSbqMgPyuBoRAmbDvISiQwqdG/KBkCmAT92iwFNmmDFYyU/BIMXXkSQFydXi947bGIZd+ZS83mf/S0Jn4tjS4olP42yrAwcOxM6dO/Hdd9+hc+fOyMzMbNPgCIIgCIJoIZyLrTX1OzAtnvj8GLfbjdNOO60tYiEIgiAIopWQgWHzHNHEZ/LkI8+tMnv27KMOhiAIgiAIoj05oonPunXrjqgxxtjhCxEE0SJWvvd7ud/nT3OgmuZ9algV5n8Qhn51xab2owHI3BCFGjU1N1FDajjqurtkWzEHk4Z2aVtjaMgWHwd1fQ3A/FPOWM+kroerIuEmILQZ2SW63Lf5LZ1OINcmtSvMABqyTY2JF8jYKK6nOxSpaYkn+WxM1KMgkGpDJMk6FzctdB8wEMgWx8NZQDgD8G4X13PUGdCCouHqPjarvSSrbc8+BYZN9Cmc2liPYwM3PxG1AJC6Sezb/Qb8+aKQoQiDvmiyOBfWgKjXvHY1kyaE8f4CgGEHtGqrX8wcqlAGoAVM08FsINZVdFDd6ULyTquduAlgzMUQcwPRYDxgBUn7RGO63Upe6z5gfV33FTPYzGSiSgyo72yX5+KJU7kG6KZWLJrEZHJSNaxDiRgIZtnM/sWAdBGMo6ZRgtUUhohX1Pfu0mFrMA0Qky39UcylwFfslP2Ia5iS9+o4/QbxZZmrwNd/pQSmbQIZGDbLEU18Pvnkk/aOgyAIgiCINoAZkF8sjrZ+R6bVGh+CIAiCIE4gaMWnWSjFOkEQBEEQJw204kMQPyE2P3QXfj5BaCJCaVYyypgbiJk6FlsDEPOogJnMFDYF0SSht3AdiCGYJf7stTCXni0NKRoipiYlaZciE3RG3VYiTUOzrqFEgdpuZuJUJ5C0V5FJMuPnAaChAIgmmz45uuUpk7I9JjUmtoM8QhJ1M0RcCqKexPYAIJipyNfucsBR16g+s7QuzioOfwGT9RuKxQWDnQDXXlO3xKzkoraA1UwkCYh54p1RoJrJYGsHxKDVqbD5zXYjgPOA6YfjAOymDqm2fwyKSwh+3BucUjNlC1ixRrwM8Vyt9lrAtl7orwy70P8AgN0HGHEtjip0TvHkp7oTCGaZyUzrhU4LAKJJKgJZcQ8nwFFrapB8hkwYqwUs7ZCj1kAoXXwHZob1fnOmwKZzGTu3MVkndauOml6qWd8at2iSgpg7rjWztGVaWJdaqgaHBtV8/3ydrQSpdh9wxjXC3+eLN8nbpzXQU13NQxMfgiAIguhIkI9Ps9CtLoIgCIIgThpoxYcgCIIgOhB0q6t5TpgVn5kzZ4IxhkmTJsljEyZMAGMsYTvjjDOabWfjxo24/PLLUVxcDMYY5s6de9Byzz33HLp06QKn04lBgwbhP//5Txv2hiDaj6/mT8ZX8yfjmzl3wVOuw1Ouw+4Dcr+IIveLKNI3h2Hz64gmqWJLVmHYGQw7QyhdQ9jLEPYyNOQw1HcSm+4UuaDUMJD6gw7nAcB5QHi/GJqlB7HXiE0JQ2g/GKCGAN3BoESFloYrQu+iO8R+Qa/9KOi1H66ielSeClSeCtR201CfL7ZgatOPIU+FDkOzYtIt+xkYmnit24FQJuDvxKAFucwLVV+gob5AQziVydi1AODdosK7RYWaEkGkb1BsGQaiScLnx1CBUJrYDJvIU+Wu4NDt4pyhAsP6b4XuNsBiEJsu+sgVIJRtQA2J8fBu0uD8zgnnd0LfE8wUW9TN4DoQhetAFCk7dDirOJxVHIYdcPjEZvdZ17Y1cARyGQK5DIZNxBW/hqNG6IEMu8jv5e+kwd9JvFExj9iCOUBtL4baXgxV/VREUoBIChBKFxoh3Sk0U45aA45aA85qAzEnQ8zJoDsZwqmqHMNghirHwbAzpG/Wkb5Zh6vSAGdCLxX2MqhhDjXMEU5RUNtVQ21XDTXdNdR2E1swC4g5xaYFIWOKJoucXpEkBQMmz0G/P8xp57+kDgxlZ2+WE2Lis2bNGsybNw+nnHJKk3MXXHABysrK5PbBBx8021YgEEDXrl3x2GOPITc396BlFi1ahEmTJuG+++7DunXrcPbZZ2Ps2LHYvXt3m/SHIAiCIIgTk+M+8fH7/bjmmmvw0ksvIS0trcl5h8OB3NxcuaWnpzfb3umnn44nn3wSV111FRwOx0HLzJ49GzfeeCN++9vfok+fPpg7dy4KCwvx/PPPt0mfCIIgCOJ4Eb/V1ZqtI3PcJz633norLrzwQowcOfKg51esWIHs7Gz07NkTN910EyoqKlp1vUgkgpKSEowePTrh+OjRo7F69epWtU0QBEEQx534U12t2Towx1XcvHDhQqxduxZr1qw56PmxY8fiiiuuQFFREXbs2IE//vGPOO+881BSUnLI1ZzDUVlZCV3XkZOTk3A8JycH5eXlh6wXDocRDofla5/Pd1TXJ4i25LO/TwEAnHbzHERSTF8V027eFjBzLoV0wDxW19UhvWOcNZZ2p74Lh2ePMFqpL1DBzTRLsUafEOEMa9+zF7A1iA/HmJMhnGp57dgarHJdfr4bs7r+HQDw0J6Lse3/hEGQt9TK7eUJNUpwFb9WsiLaNE9xFdJLx1Nm5RLz7Bc/954nYrFXq9Cdpm9NFZP1G/IB3W0OwgEHeJK4vmIwmZ8rmmR901XDQPmZovxdI5bg9lRxG3zsll8Abh3B7maeMtVAWrrosPJ/GfAXiPppWzhqU0WQ4SwD7j3iO6ZhA2q7C8GSoQm9DACoQSCYZfXfVSV+KhEuPYO4qamK+xYpungPAaGtiecAizmBSLLVVrxP4XQOT6mZkyu5UV9DQDBDxBf1Ag4zr5ihAcywvJl0p+V5FFEYnPFccAZkzrdQmiL1WPZ6A3YzT5huZ9IrSGvklxQfK0DkCYtjrwf8nYEub84EAOy4ZhoIoq04bhOf0tJS3HnnnVi6dCmcTudBy1x55ZVyv3///hg8eDCKiorw/vvv47LLLmvV9X+cUJVz3myS1ZkzZ+LBBx9s1TUJgiAIor2hp7qa57jd6iopKUFFRQUGDRoETdOgaRpWrlyJP//5z9A0DbquN6mTl5eHoqIibN269aivm5mZCVVVm6zuVFRUNFkFasy0adNQV1cnt9LS0qOOgSAIgiDaDXqqq1mO24rP+eefjw0bNiQcu+GGG9C7d29MnToVqqo2qVNVVYXS0lLk5eUd9XXtdjsGDRqEZcuW4dJLL5XHly1bhnHjxh2ynsPhOOrbawRBEARxrKAVn+Y5bhOf5ORk9O/fP+GYx+NBRkYG+vfvD7/fj+nTp+Pyyy9HXl4edu7ciXvvvReZmZkJE5brrrsOnTp1wsyZ4l5wJBLBpk2b5P7evXuxfv16JCUloXv37gCAyZMn49prr8XgwYMxdOhQzJs3D7t378Ytt9xyjHpPEARBEMTx4IR1blZVFRs2bMBrr72G2tpa5OXlYcSIEVi0aBGSky3l3u7du6Eo1h27ffv2YeDAgfL1rFmzMGvWLAwfPhwrVqwAILRDVVVVeOihh1BWVob+/fvjgw8+QFFR0THrH0G0JWtfvEvun33pLHAGmaxTtTFEk8TfiBrlsDWI41qQQ42Ir3YNBQqC5p1eR6WVjBRcGOQBAFc5HDVmcs4YEE4R+4wD4QwOtUiIfCMAIn5RKby0M67GZABAdGAD9C7ieuEMFaqZ0JMHNGBJYn8UHULAbOqRc7+2HiyoL7Aj5rb0eDEnkLzNbEsBPOZdbLtfR3VvVcbLGsQYxDwGmN88HmZWUk4VUvhtaEDSdlFm3s4L4bnxHQDAtrJsaBU2KQQHgOqfiXIpOuDdKfrnK2ZS7M0VK7GovR7yNoKqA8HOYt/7A4ejTuzrDgZufqTZggY0M+5IikhGy3Rz3A3A7hON2Ro4Yi7z/Y6I5K0AEGokmM4qsQTUnr3WvqoAmilI14KQiUXjSWXri81yQUsM7zrAEYmLkRlgaEyOYXy/8ZNBapjDZ773nr1MjkdyqVXGUAFXnSmYjgF6hQKtQeg/T71jDlzVouwXb0wGcRgMLrbW1O/AnFATn/jEBABcLhc++uijFtUBgOLiYvAjeBRv4sSJmDhxYktDJAiCIIgTm9bqdDr2vOf4+/gQBEEQBEEcK06oFR+CIAiCIFoHQyvFzW0WyYkJTXwIooPxn8XC1LDnIyLJY8r2xE/AuPZEDXP54egqB/zDTNFN/zDYV6kAAO8OQ2pHgllMajJ8RQxRUwcUTdMBDpzTeTsAoEvcfQ/A/LrhcFSaxnUbPODJon7GsHKUbxCiItfXTT+hY3aRCDVuLggD0OqFg2FaXQS+nuLiDTkMMY/VJwCo7ifidZepMkbdxaGGxHFHtSI1JsxodE239Trq5Yh6xX76RuDPLwjfMDUd0N1c6qFYDFBqRZApF+/D7h+yAQBZX6hSp+MpY5ahoAHUDBAXcVQpMu5wGhPGjAC0EIduF7H6OmsIm5l8dLtIilpfbGpwIgzJu0Q5o1ES15iLSQNKe61lGBhOYZZhZRGQ+Y1pcBkxEEkWFeq6mi6JAJJ3c3AGZP5XlGvIVaRppRbiCGaZpoxKo/cJkPorNcoQThFlkvfEULBSWJQEslRoAdNI0W3FygxhXAkA9gYOez2Ho9Zq11En6g+9+il57PO/3Q3iILTWfbmVzs0zZ87EvffeizvvvFMmCuec48EHH8S8efNQU1ODIUOG4C9/+Qv69esn64XDYUyZMgV/+9vfEAwGcf755+O5555DQUFBq+L5MXSriyAIgiCINuFQScefeOIJzJ49G88++yzWrFmD3NxcjBo1CvX19bLMpEmTsHjxYixcuBCrVq2C3+/HRRdddFBfv9ZAEx+CIAiC6EAcrySlh0o6zjnH3Llzcd999+Gyyy5D//79sWDBAgQCAbz11lsAgLq6Orz88st46qmnMHLkSAwcOBBvvPEGNmzYgOXLl7fFsEho4kMQBEEQHYk2cm72+XwJW+N8lQfjUEnHd+zYgfLy8oTk4A6HA8OHD5fJwUtKShCNRhPK5Ofno3///m2eQJw0PgTRQfn+fuHtM/wXT8hjNn8UZUPdAIBQuiL1Fa4DQP5CYWgTzHAi/skXzFSgmp917nKOsnPFkrOtRoV7n9Bp6C4FzgqG9d+Kpe3qq3/AnnqRjDStRzUiuzIBAIHTgzKOs3N+wD9qhfDFV9lUStmQb+pEzGvvGeFA0h5hsqMFG30d5SJ5Z0RcDsywdDp1g8PQyoX4hemQmpu4bw9gfrM1rH0et6bRGeymr05DHqCYCVIj6TqgcdjqxEdn1MthmFlhSzflQo2KBkKpDJoZu97I8D3mBlzlIpBQtiEvGEkFdLs47t5v9U8Lcpn0NZwq/G9cFXGtEuDwmfqbPAXuCqtefaEoY/cBrkozgWi6IpOGJu01LP8iTZFqVrsP0ELxwRFjGTC1PM5qDrtftBVzMbgqxfUiHgZXtThu81u3JAw7gz9P1A1mqAh7rfc5njw24rX0QSwK6WUUSmXQ7YDdb41bKEMUTG6U4HbgxDlY95zlYUW0LYWFhQmvH3jgAUyfPv2gZZtLOh5PEXWw5OC7du2SZex2e8JKUbxMcwnEjwaa+BAEQRBEB4JxDtYKgXK8bmlpKbxerzx+qLRNR5J0HGh5cvAjLdNS6FYXQRAEQXQkjDbYAHi93oTtUBOfwyUdj6/0NJccPDc3F5FIBDU1NYcs01bQxIcgCIIgOhDxFZ/WbC0hnnR8/fr1chs8eDCuueYarF+/Hl27dkVubi6WLVsm60QiEaxcuRLDhg0DAAwaNAg2my2hTFlZGb799ltZpq2gW10E0cFZ+cE9cn/ItbPRUCw0Ep5dqvRJ0R1AbXdTt+IBctaaIowKqx1DY0jZJMoEhzbAbxdaIfdeBtcBjkCuWI7e+Fk3cE18cNprGZymZsS53oWYR+wv9fYGfjBfKP4mMeseDhYQ3jUAEMnQUZVvme5obhGfssMFmx+ImV/huCJyigGAWmGH0kUIZPjWJCTvFmWCWYApbYKtvlE+K93yvIm5gYbOppbEE4NSIwLhDgNaUhQx07vHWcEQby2Yz2HYTN1LGkO0kUdQOMPUwNQq8okZe7UijythhnC6OOGuAGwBsc9iQH1n6/upEgW8u0zNTqqCcKrpkdQAaAHTlydkwGXqfbgC+DsJMQ/TAc/+mGwrmG7lMYt6rDxfcS2Uo85AzKXAWSPajSQr0t9FiTIoMXE87FURSTa1Sska7PVmPrYUBleV+XvgM2SOOEOzrmfzW3m77H7As18321QQyGEINZJ7xLVAUY8CNRSPAxh00xzZ18Y564hjx+GSjgPiUfUZM2agR48e6NGjB2bMmAG3241f/epXAICUlBTceOONuPvuu5GRkYH09HRMmTIFAwYMaCKWbi008SEIgiCIjsQJmKvrnnvuQTAYxMSJE6WB4dKlSxOSjs+ZMweapmH8+PHSwHD+/PlQVbWZllsOTXwIgiAIoiNxnJ2bgaYJxBljmD59+iGfCgMAp9OJZ555Bs8880yrr98cpPEhCIIgCOKkgVZ8COIk4svXJ8v9026eIzU3ut3yVknezRFOEUvLjhpLE+LP12TuK8+nHultAwBcBRzmwxhaEDK/lxIVOhXRluXTEq3LgF4gvlUa4abfLlmMIZxuaW4aL90zjUMPm/qU7g1IS61H95RKAMBX7/WHu1xcmysAvhcB1xeL/FQA4NljaWgAQA2b3jsZkF8F7T7A1iCu4e/GYZiaJWYwGBVOuGpFuViSFaOrnMl+2+oBZw03x5bBtV807C8EIl4zJ5dfgRIR5bMGHEDZXiFoOTAMSP2v0OXkrvYh2cy1FksSOqOoV5yzBRmUqDgXSlWEBgeAka5IDY13Vww26XvE4c8VH/lq1Oq/YYPUzHAVMh+XbmcwVKChWIwD04FglvUvI+7jk/5dCDFXvIzVbiDLjoj5JLQWZFBipvYqAhm3kaHC4zN1QPWGzFEW9xiK5yDTggD0eLsMWtDMx3bAQCDb+v5+6p1C7/Pfp09urU9r3Jfj9TsyNPEhCIIgiI7ECXCr60SGbnURBEEQBHHSQCs+BEEQBNGBaJy65Wjrd2Ro4kMQBEEQHQm61dUsNPEhiJOUtS/ehR4zLfM3l2lWyBVhMgcA4VQVSlTsuw4YiCQp5nHAZvoO1nczxbr1Vj6deFve3ToCmY08OMxvkhEvkNdvPwCge/hAk9hiSQYYB3TT3A4eHSwsrl1QVImKOsv7Y+8PWSgLm5b26RyKmShUiVimd44aSKO8aDIQNQ33XAc41Ij4kHfUMkSFJyOUKGA3zfecVRqCWfG4TQGx6dzvrIIUXcfN+gBh3hcXOofSIUXkAKCawlwtIMTSAFBdkg2WJtS7mSUKEoxUzH9CaliH7tKk8DTmBDTEjQc5bA3W13Q1YqkYDNVMJmuHFBhrIY6YwxwnHbCZyUcNjUkzQleVDsNmvf8xt/V7oQWAUFo8kawd/k7iekwHvLtFW446A3pIlGEGYK8VKnfDbsXWOGauAM4D4mIOtwZDs8uVh1AGoJhJXw0HEDRF06FMRQqhdbslsO/594eR8oEY9DWvWIJ+ggBo4kMQBEEQHYsT0MDwRIImPgRBEATRgWir7OwdFZr4EARBEERHgjQ+zUITH4I4idk6zTJ6K/7LUwCA5JWA7jRNAFUG3ZRkVPdjUu/BGRDKFgKM5B8UuCq5NKtz1FkfmsF0FaYMBYYGePaLOq5qoMKWCwDoeUqjTKgmydsVBPKAaH8zyWi9HYqpW9m7Pw08KvaVWhuQEgM3dT2OagWRFNEG40DyQGFsWL82U7YdyTDg2ifq1/QB1CJxjWiZG+kbxHHdYcWiRDk8+8y6KWIM4loXJQp5W8Cfx6A2MnV01JqmgIxJ7QnXIDU0jlqgdoDQvWh1KmCaJDbkMaR/J8bJX5wkdTlRj4Kom0E1DR+1IEfUo5jXgDQwVCMcUbeprdEVGastyMHle8GgmIaAaojLuoFshrStlmmlszIGm1+ci7kVaVDIVUvPBcaQsl2XZeKJZe1+AzB1YKE0FVpIaL2iLstg0VFnWIlWQ1y2H3OrcFXqUlPlrGKImjopf4+ovHTqf20yKaruYAhki+P6Tg/quotr9L1vDjxlogzpfQiAJj4EQRAE0bHgkA8SHHX9DgxNfAiCIAiiA0Ean+Yh52aCIAiCIE4aaMWHIAgAwM5b7wYADF47G84asU6uhqz18vz/ADW9bPJ10h7xvcleb8BdEUU4VQhjQmlM6i6iyUAkbrnDhO+KOG49b7tpddcmsTAufFtSkoMAgNzcCnz/WRcRU6VTloukcLi32aTfi24HVNPvJZxhINUp6qcOK8WemlQAgFHlQqCTKKM1KHB9KhKZKhlAg3lcDUImEDXslpNt8i7hVeMzQ27IE1qdeMwhU0pkaCLRqRgfbiVF5UA4xfq+qSUJvYptjwbPXvFxHHMBNT1N3UsQ0BrM9g2hPYr3L+ay9D5KjCOUZup9GtkmMQ5oZpmYk8F9QGhxGrJV6TMEL4NmJilN2mfIBKLhNBFPIJvJ2HXT+yd5j7UiYK/XoZvePKF0Bu9OcQ3OIJPdBjMZIsmiPSVqxRjxqgiL3KxwHWDSeIkrQsPkqDUHngndDwBkfGmz6icD7gorFkeNqW3ilgZJiVqJV38+YTa+mn8S6Hw4WilubrNITkho4kMQBEEQHQl6qqtZ6FYXQRAEQRAnDbTiQxAEQRAdCQPSRuKo63dgaOJDEEQCX79saSBO+585yHl/l3ztzy8SO5dVymORf2YinOJAynahVyk/w4agqQtx1ABukZILTLdyVtnqGRqKxKer7mn6KVt86Xb836DP5OuZVT2hnCWW37d+3BWGqfFQQwyGHYikxv1lOFwF9QCA3uk1+HPX/wUAfBHsjH86TgMArN3bTep3lKjQ8IiYhMZF9sv0yHFVGWCm5w1XAa4wePaK+jGXpbnhDHCaace4BqnrMRp598RclheSbgeSVosEYrpT5BYDAGZvlNuLi7xYgPC8icYYwinWf7SUnaYPUIMOwyY6YqiQOp1gupXLylnDEXPG+6TDVyQ+/pkh+gQAWshAIMfS9rgruPQj8nVhSNptjlWDgYZc8SZEkjWEpE4HiCSL49V9GTx7IccglGEGzQCbqX9Solb/IkmAYTN1SorYYmbutNStBtymB1RDngK7z8xfFmGo7W7qoQJWec6AJFOHFHMxBLJEmZRdMQy/+EnRvyy1w/r60FNdzUMTH4IgCILoSJDGp1lI40MQBEEQxEnDCTPxmTlzJhhjmDRpkjw2YcIEMMYStjPOOOOwbf3jH/9A37594XA40LdvXyxevDjh/PTp05u0m5ub29ZdIgiCIIhjT3zFpzVbB+aEuNW1Zs0azJs3D6ecckqTcxdccAFeffVV+dputzfb1ueff44rr7wSDz/8MC699FIsXrwY48ePx6pVqzBkyBBZrl+/fli+fLl8rarqwZojiJOatc9bubxGjHkc3t1CiLJ7c4blF9OXw1PKwDWhE0nZxhHMFPvRJCBm2u7YfZaeg6uAvUZ87zKSmmp8Nn7RFY932Y9XNw2VxwozRMIrrgA2MweU7hR+PY2FnIF6cUEtw8BtP4wHAPgjDuyvEYZCak4Q2CXEIGrI8oEJZDH486xcXXHtTyioIGWniFGJcOgOy6NHDTGZ14urgBYy+1plNPKqURAVUh64qq1/KDEXk3nFACCcbu0zM11WzA3Umz5I4VQFzLC0Mo4aoKqv+AhP2a5At4lBkL5JP0K3MXDznBpR4a4wNVZ2Bu+OoBmDHZ4ycXGbX0XEy8CZaDeu7wGEdiiYJfYNy9oJXIN87z37ALvf1Af1AFzl4rjdBwTM75n2equuzc8RzDJ/b5LF71GcUJoidVZaALKcEhFeRYCZC87MyWX3cTTkmt/rFWs8/bkabMG4Pkjk8Yq3+c0c63f9Jw/d6mqW477i4/f7cc011+Cll15CWlpak/MOhwO5ublyS09PP0grFnPnzsWoUaMwbdo09O7dG9OmTcP555+PuXPnJpTTNC2h3aysrLbsFkEQBEEQJyDHfeJz66234sILL8TIkSMPen7FihXIzs5Gz549cdNNN6Giomkm58Z8/vnnGD16dMKxMWPGYPXq1QnHtm7divz8fHTp0gVXXXUVtm/f3my74XAYPp8vYSMIgiCIEw6jDbYOzHGd+CxcuBBr167FzJkzD3p+7NixePPNN/Hxxx/jqaeewpo1a3DeeechHA4fss3y8nLk5OQkHMvJyUF5ebl8PWTIELz22mv46KOP8NJLL6G8vBzDhg1DVVXVIdudOXMmUlJS5FZYWNjC3hIEQRBE+xN/nL01W0fmuGl8SktLceedd2Lp0qVwOp0HLXPllVfK/f79+2Pw4MEoKirC+++/j8suu+yQbTOW6NzEOU84NnbsWLk/YMAADB06FN26dcOCBQswefLBfR2mTZuWcM7n89HkhyAIgiB+Yhy3iU9JSQkqKiowaNAgeUzXdXz66ad49tlnEQ6HmwiO8/LyUFRUhK1btx6y3dzc3ITVHQCoqKhosgrUGI/HgwEDBjTbrsPhgMPhOFy3CKLD8slHU9HlmafMV1yKSj27xMJxfYGZYJJZpn6KDrlsHk0GAiIfKGx+IJQvFKfJPNbkWpnfGJhvHwVuCmftdcAed5I8r5ti4ZibQw0xKGHxxUZ3ciAsVMnf1hXDcAlFLFMA5hefJ2rQWuiOJltiXFsAMuknIJKtAkIEG8gWdRx1XJrrASIBqGb2NW5SCABcZXBUxuJDBS1oinbdTAp+7T4uRdLhVAaXeRffUWfAV2zF6DpgjQtXRDwAEPUIcTcAVA1QZH3FEMaKgGWKCAC2IIdujmfEw2Q7AFBfLCp4yiIIZolCaojDWc0RzFDltZ1m0tDyMxjimSxtfmYlhvVa8Rk2kRgVAJJ/sK6lhjg8e0yDS5+B8mHWOc1vjnlYCJh5o3sScWG8+4CBcKpldBj//dLCkELsQDazBO/c+n00bEDEFOHDAJymD6fuAk6dNAf/ndtBBM4kbm6W43ar6/zzz8eGDRuwfv16uQ0ePBjXXHMN1q9ff9CnrKqqqlBaWoq8vLxDtjt06FAsW7Ys4djSpUsxbNiwQ9QQ+p3Nmzc32y5BEARB/CQweOu3DsxxW/FJTk5G//79E455PB5kZGSgf//+8Pv9mD59Oi6//HLk5eVh586duPfee5GZmYlLL71U1rnuuuvQqVMnqRO68847cc455+Dxxx/HuHHj8K9//QvLly/HqlWrZJ0pU6bg4osvRufOnVFRUYFHHnkEPp8P119//bHpPEEQBEEQx4UTwsfnYKiqig0bNuC1115DbW0t8vLyMGLECCxatAjJyZZRxe7du6Eo1sLVsGHDsHDhQtx///344x//iG7dumHRokUJHj579uzB1VdfjcrKSmRlZeGMM87AF198gaKiomPaR4IgCIJoc+hWV7Mwzjt4D9sJn8+HlJQU1NXVwev1Hu9wCOKYU/ziLLHjisH5g6V/c9RaZQwViFnSHChxPUyqqccBkBasR8l90xPaHvzQgwiEk2E322JcJPUEgGCOSEYKAPY6BsMmjAgB00SwQeyH0xtpjcKWLsfuB+z1or5uh0waqoU4mG6aGWZbt9r1Rs9euCo56gssLY+jFqjrKeooEQbvDquso84wx8AqH8xi8JRZxoFx879gBoNnv2gnksSgmSZ74TSrrquSI5DFwM2vq431L559HErMGqu4bimQY/VPjJdVN24eGE9oGo/PUWONh+5g8nwk2dIFNXQCwtm6rJf0gxgv7y4DYa+ZNLSRXqohh0E143BWc9mmP09BME/sM50hqdRsb6/oTDRJtBvIZjIxKW/0oIrDZ8j3LJilyuS1WpBDC8XHU4F3lwjcWeaH4Ra/SP5CN2Iu0RZXE/Vd9YUKNj7WtnqfY/E/I36NkV3vgKYcvSY1ZoSxfPufO+z/txN2xYcgCIIgiKOAVnya5bgbGBIEQRAEQRwraMWHIAiCIDoSBkfcbuDo63dcaOJDEMRRsfPmKXK/94Nz4DCNzxkHom6rnCryX4qknaY8Q40ASsxMNGkkGo4CgBI1k3+ap3QbZEJPzgCYdcKpHIaDw14rFq+ZIbx5AOH7Ek9OaWsAnDVCW5PgDROyvGKiHsuPBgAiprSBK5Br44YKpH+nI5gpxCSGBjiqmOx33FMmfi0AiCYzMPOlrR7w54vG3BVcao3UsNXXmAvwdzbHJgqZnDPiZbD7Go0th9TEGBqDo04UrC9UYTO9gjQvE+MFwN3I3swW4LAFzMSrUY6IV/QneQ8HM//p6TaGhjzh0xMnPj7MANylqhznOGGvAtXU7xia0C7JcynWGMQTqsaSAFu91VdHnXlthwLDZtV17zekhimUyqSfUH0nBTZT0wUD0N3WWMUHNGkvx4GBQtfjLEyHs0aME9cgY7VX6jBsDIEs8S/RWQ0M+p1IYFoy7yfo7cMNsbWmfgeGbnURBEEQBHHUzJw5E6effjqSk5ORnZ2NSy65BFu2bEkowznH9OnTkZ+fD5fLhXPPPRcbN25MKBMOh3H77bcjMzMTHo8Hv/zlL7Fnz542j5cmPgRBEATRkYiLm1uztYCVK1fi1ltvxRdffIFly5YhFoth9OjRaGhokGWeeOIJzJ49G88++yzWrFmD3NxcjBo1CvX19bLMpEmTsHjxYixcuBCrVq2C3+/HRRddBF3XD3bZo4ZudREEQRBER+IYa3yWLFmS8PrVV19FdnY2SkpKcM4554Bzjrlz5+K+++6TeTYXLFiAnJwcvPXWW7j55ptRV1eHl19+Ga+//jpGjhwJAHjjjTdQWFiI5cuXY8yYMUffnx9BEx+CIFrNdw/chQFThCaivruO9HVC/1E/sgG5bwkjnN0XG2ARscicvE2Vmo30fU3bi7kNKA0/0tmYn8VaCND8Yt+wCy1HXEMTSQH0IiEqsn/nAkzvH64C0SRx7ca6GQDQgtZ+JMvMFRWEjC+cZp1vyGew+xmSS4UpTTBLg2Z6CAWyGGwBLuOK5+5SIlx62MScDEn7RLCuyiga8kSA4RSGcKp1nbiWxlENuCtE+ahHSYiXK430TEEgkCPGXLcLjyAA0B0iL1p8DOJ6Jq4CUbd4EXWbeioAtgYOm9m+vd5A0l5FjkNjbVRSKVA5RAyiElRgq1PkWClRMz/Xbi7H2VHHEbDFY7J0VVrAig8AYvE4DOFnFB9PgMFVFjb7qoHFxPH0LToCOY3+jQXENep76shZJS5iaFbOMq4CtgYxnjGuQA0malnifj/1nW2y3z+/frbMObb2xZ+g3qcV+Hy+hNdHmrOyrk4YRqWnpwMAduzYgfLycowePTqhreHDh2P16tW4+eabUVJSgmg0mlAmPz8f/fv3x+rVq9t04kO3ugiCIAiiI9FGt7oKCwuRkpIit3hqqOYvzTF58mScddZZMi1VPHH4j5OF5+TkyHPl5eWw2+1IS0s7ZJm2glZ8CIIgCKIjwdFKA0Pxo7S0NMG5+UhWe2677TZ88803Cfkx4zCW+AQn57zJsSahHEGZlkIrPgRBEARBNMHr9SZsh5v43H777Xj33XfxySefoKCgQB7Pzc0FgCYrNxUVFXIVKDc3F5FIBDU1NYcs01bQig9BEG3ChlmW/qH3Ow8BAKL1DtT0MD1ivlPR55LvAQCBvjZsXlsMALCnAfjfxLZc5QpiChD1iNfRZMhvocwAdCEdgBYQeph4DimtAeAVLnG93ToiydZ3u/oi8a3RWWVpfBw+DiVi5o0qUBAxNTPJdRxGSJT37IPMAQUIv5+4d40atnQsripxDhCx2n1mTi4HQ8wR96rhiJhao5jLLrUjSszSuugOwL3f3LcD3Mz1FXMK/x1nDTdfN/bIsfJ+AZDePUo0cT8OayRt0UIcjnorr1XcJyiSpEALcpnPCoDMIWYLGMj7RGkUB5f9jo9B1M1kPjCuMrgrTP2Tjckx02qtVQk1YuXLYjoHM6w+uitiiCaLf1cxhwLd0dhbSNRxVuuIuURM/L+qfC/VCE/wH2rItf7t1Q8Qb2zqVgMNeYr0irL5IMc5msSQtFcM2PCLn5S/C//55+9xwnKMU1ZwznH77bdj8eLFWLFiBbp06ZJwvkuXLsjNzcWyZcswcOBAAEAkEsHKlSvx+OOPAwAGDRoEm82GZcuWYfz48QCAsrIyfPvtt3jiiSeOvi8HgSY+BEEQBNGRMAxIN82jrn/k3HrrrXjrrbfwr3/9C8nJyXJlJyUlBS6XC4wxTJo0CTNmzECPHj3Qo0cPzJgxA263G7/61a9k2RtvvBF33303MjIykJ6ejilTpmDAgAHyKa+2giY+BEEQBNGROMYrPs8//zwA4Nxzz004/uqrr2LChAkAgHvuuQfBYBATJ05ETU0NhgwZgqVLlyI5OVmWnzNnDjRNw/jx4xEMBnH++edj/vz5UFUVbQlNfAiCIAiCOGr4EUyUGGOYPn06pk+ffsgyTqcTzzzzDJ555pk2jK4pNPEhCIIgiI7EMV7x+alBEx+CINqc7y77EwDg1H//EQ1ZwpcjrX8ldtaJ/b4Z+2G4zCSZ+5s+qhpJ54iFLUGuZx8QMgXN9jokmNLqLsBfZGoSkmNIWStMAf0FqhSl1nZToJpGg1E34Kg169qEaR8AOKs4AjkiloZ8kRAUAKIuSOGwo1aIdpFpfnQ2Cl2JCVFu/HhcxGxv4NB0Qx4P2+PZSCGNA7WQ1deYB1KYK4wXrYsYNssYUQtZwmXGAU+5meDTbsXEGZNJRw1bY0NASzjMFUAxxcYxl9WpmEskkvXuskTacSJJipV41c+hNxJaxxO0BrIVGGYsWoOIBQAcdQaipmBaCwthtmgfcEbjImkGT3lMCrvBGPT4kHMzISwsM0JAjL1MbMosM8SYk1kJTjOs/qVu1ZH1X3FcDeqw1yvW9RqhRBXLvFHnMrHpyHMexfJP72tS/oSAsrM3Cz3OThAEQRDESQOt+BAEQRBEB4JzA5wf/VNdran7U4AmPgRBEATRkeC8dberSONDEARxdPz3ooeBi8R+8fzHcfPPVwIAFnx3BpxZwgXQ9m1TXUVaz2qw1BD8n2YBEBqR7J1CqOEr1mCYN+nZiBpoAK4t3gAAeHvrQDirhSDHWWNlIk3ay6SWBLAM/AyNob5AlceSSsVxWwOHd6dwvasY5ITTNJPVghzu/TFEk0SdqJtJvUkgk8FpGvJxRRgDAkLDEk/cyQwObj6ZG0pncNRxeW3ushKkxpOPOmosHZChAdEky+gw5rTGK5wm2gOAnJKY1P4AgK9Ik32KH+cK4D4gxjOSrMqxYQbgL7Tq2msb6Zvq9IR/pvExUKOWyaEasc7rduC3Ez4EADz9xUh0/qcVVNRtDgLnMExdja2BC/0UhLGkGjYQThWxGzYmjSYVnVtJRxuJNaLJKhQzeandx5HkF29yMMMqxDUGrcEcsxQFXInrpUSZ+HupBQ2p13LUWcaIoQzrX2Ywy45TJovEvIE8jm2/nwzipwFNfAiCIAiiI8FbKW6mFR+CIAiCIH4yGEZiXpKW0sE1PvRUF0EQBEEQJw204kMQxDFh54SpAKYCAF5/a46V6DPqb1K2dlMGqlI9QKbpTeNk8BeKjytnFaDENTor0hDMAf62+RwAQFK/aqlXUaKK9NIBIBNV2hsMVPcxk1kyIP070+dGA/z5om7Ey6BIcQ1QfarQCxUu4dAdDP58Ud9TZjTy8mEyQaej1tLy6A7ry7etgcPQzPh0oLan6ZmTosNWrco447HGnJbnkL9QJGWNmYlbnVVWgk4taCUpZVEOZ7UwLQplu6SHTSSZwVkd9/phiLkV2e84MRekfibuYxS/YxJJUqCbHkSuAzHY6vV4t8GVeFtMjiHjwMuvjAUA5O82ZPJTNczhrDZk+fj46U4mPZWiHgYlpsLmF9dghtAiifFk0oPIUculT5Fut95rxiHH2VltSO2Oq8rSBel2S/elhoUXkc3UBTGdI5yimn2NQg2J4zGPKttN2sulp1LSXo7hFz8JAFj53gmQvJRudTULTXwIgiAIogPBDQO8Fbe66HF2giAIgiB+OtCKT7OQxocgCIIgiJMGWvEhCOKYs+mRu9D97UcAAM4NTc+rZh4q54Gm3jtKzMrbxXThNeOqNM9tToPd1J5oAQOBbPHdzlVpLd3XdlcQThevbfUKIo1yYWWtFwmz6jvb5Bdm3QU4KoTeY+95BuzVCrLXCeEMZ0BtV/ExGvMA8ZRcEa+V68tex2UOqECOIn15lCjg2WuW96syV5eIPd5pIGZqY5JKRSy6qeWJuax8W55yQ+qZAjka9oxMAgAYdo6kHWYcvkYP+ihAKFWU14Jc5tdSoorUJnEVSNluSE2MLWDAVWl5Izn21InxSXWjppcIKh4rIB4MivsR1RuK9B9qjO4CfN3FtbO/tN4HW8CAGjKkrieupQEA9wEdrgMijnCqTcbHDI6I1+xTiMvjjXVEUTeDo9awyqimvssu9FmhNFNnFbL8i8IpdqkRsvu4zIWmOxi0oKVJiuuchl/8JKKmfmr1orubdvpYYDRKaHY0dPAVH5r4EARBEERHgnMArXmcvWNPfOhWF0EQBEEQJw204kMQBEEQHQhucPBW3OriHXzFhyY+BEEcF7aNv1/sjDgAPPKnhHNcARzVTGpS1Ih1jsUsn5tQBmCvA4KZ4rWziiGcYuVd8u4SWpyYW4GvsziuRAD3XnOxW4HUbKRus0Q2WWtqESwQOplwnQbFlLaEIgq8OwxEPdZiua+/qOfdZIPrgPiHYQtY/zj8+YqM31nNZZ9C6Uzm2wr1CsH7pXjhrOVSxxPMZlLv46g3EFYUqQVqyAcyNhrmeDFEUsRxTxngrIj77Vg6m1A64PBZ3jbBTNGHSDKDarZpC3BwJsrY/QYMzRr7SLIKzfTV4SpDLE0YCjHDgHu/iMNXrEANyq4j0EWMv+5UoYZMz5tS67wWADR/XJskfHkAkatLNG6OW60h84zpdgbDZubw0oCImTPMFuQyVkNjcNaKa0eTVKlb0oKN9FbpCsKp4rgaMn+av1dQIPU7aiPtFeOQ+b3UCJcymqiLWf5MMUCJihNnXT5LasU+mP87HDO4gdbd6urYj7PTrS6CIAiCIE4aaMWntVRWAuHw4csRBHFwKiuPdwQE0aGgW13NQxOf1tKt2/GOgCAIgiAs6FZXs9DE5yiJz4h9hylHEETLiYVD0A0NPK6vaKzxiQC6uchqhKx9ANAjAI+Jv81Y1ADT4/sK9LB1Zz/u8QLFyk0Vi1pijpgeRiyqmW1q4KbGRw+b7Tb6QmwEdfOcDj0iTrCoVUAPK0A0Hrul8dHDDHFXHCMQgh6J94FD51YZFs/bFTWgRxQr11RIHBP9YdDDzKp/sH1zfBq3BQCGCsQaxxthsgwA+R7oCkMsJhrgnAExcYIZBmJR1epro/fDCJqJwkIqWCgek3Wex8R7GB/b+PjFojqUGJftKjEuNT6AZVGjMyb70XjMwYBY1NR3RVX5f5wrkLnL9Ihi/e5EfvSTATwSF/BYzYIDuhrPRcbB421pTO43/r0Dg9T4+Hw+c+zafzUlhmirjJtjCZ3ueDDe0de02ok9e/agsLDweIdBEARB/IQoLS1FQUFBu7QdCoXQpUsXlJeXt7qt3Nxc7NixA06nsw0iO7Ggic9RYhgG9u3bh+TkZDDGDl+hA+Dz+VBYWIjS0lJ4vd7jHc4x42TtN3Dy9p36fXL1G2j/vnPOUV9fj/z8fChK+z1XFAqFEIlEDl/wMNjt9g456QHoVtdRoyhKu83aT3S8Xu9J96EInLz9Bk7evlO/Tz7as+8pKSnt0m5jnE5nh52wtBX0ODtBEARBECcNNPEhCIIgCOKkgSY+xBHjcDjwwAMPwOFwHO9Qjikna7+Bk7fv1O+Tq9/Ayd33kw0SNxMEQRAEcdJAKz4EQRAEQZw00MSHIAiCIIiTBpr4EARBEARx0kATH4IgCIIgThpo4kNI1q5di1GjRiE1NRUZGRn43e9+B7/fL89XVVXhggsuQH5+PhwOBwoLC3HbbbfJHDSHIhwO4/bbb0dmZiY8Hg9++ctfYs+ePe3dnSPmcP3+73//i6uvvhqFhYVwuVzo06cPnn766cO2W15ejmuvvRa5ubnweDw47bTT8Pe//709u9Ji2qvvAPD555/jvPPOg8fjQWpqKs4991wEg8H26kqLaM9+A8Kld+zYsWCM4Z///Gc79ODoaY++V1dX4/bbb0evXr3gdrvRuXNn3HHHHairq2vv7hwx7fWen+ifb0RTaOJDAAD27duHkSNHonv37vjyyy+xZMkSbNy4ERMmTJBlFEXBuHHj8O677+L777/H/PnzsXz5ctxyyy3Ntj1p0iQsXrwYCxcuxKpVq+D3+3HRRRdB1/Vm6x0LjqTfJSUlyMrKwhtvvIGNGzfivvvuw7Rp0/Dss8822/a1116LLVu24N1338WGDRtw2WWX4corr8S6devauVdHRnv2/fPPP8cFF1yA0aNH46uvvsKaNWtw2223tatV/5HSnv2OM3fu3BMylU179X3fvn3Yt28fZs2ahQ0bNmD+/PlYsmQJbrzxxmPQq8PTnu/5ifz5RhwCThCc8xdffJFnZ2dzXdflsXXr1nEAfOvWrYes9/TTT/OCgoJDnq+treU2m40vXLhQHtu7dy9XFIUvWbKkbYJvBUfb74kTJ/IRI0Y027bH4+GvvfZawrH09HT+17/+tXVBtxHt2fchQ4bw+++/v81ibUvas9+cc75+/XpeUFDAy8rKOAC+ePHitgi7TWjvvjfm7bff5na7nUej0aOOt61or36f6J9vxME5/l+/iBOCcDgMu92e8I3c5XIBAFatWnXQOvv27cM777yD4cOHH7LdkpISRKNRjB49Wh7Lz89H//79sXr16jaK/ug5mn4DQF1dHdLT05tt+6yzzsKiRYtQXV0NwzCwcOFChMNhnHvuuW0Se2tpr75XVFTgyy+/RHZ2NoYNG4acnBwMHz682TaPJe35ngcCAVx99dV49tlnkZub2zYBtyHt2feD1fF6vdC0458Ssr36faJ/vhEHhyY+BADgvPPOQ3l5OZ588klEIhHU1NTg3nvvBQCUlZUllL366qvhdrvRqVMneL1e/PWvfz1ku+Xl5bDb7UhLS0s4npOTg/Ly8rbvSAtpSb/jfP7553j77bdx8803N9v2okWLEIvFkJGRAYfDgZtvvhmLFy9Gt27d2rwfR0N79X379u0AgOnTp+Omm27CkiVLcNppp+H888/H1q1b274jLaQ93/O77roLw4YNw7hx49o87ragPfvemKqqKjz88MMtqtOetFe/T/TPN+Lg0MSngzN9+nQwxprdvv76a/Tr1w8LFizAU089BbfbjdzcXHTt2hU5OTlQVTWhzTlz5mDt2rX45z//iR9++AGTJ09ucVyc83bVQLRHvwFg48aNGDduHP70pz9h1KhRzcZw//33o6amBsuXL8fXX3+NyZMn44orrsCGDRvaq9sAjn/fDcMAANx888244YYbMHDgQMyZMwe9evXCK6+80mH7/e677+Ljjz/G3Llz262Ph+J4970xPp8PF154Ifr27YsHHnigrbuawInU78a09+cb0TooZUUHp7KyEpWVlc2WKS4uhtPplK/3798Pj8cDxhi8Xi8WLlyIK6644qB1V61ahbPPPhv79u1DXl5ek/Mff/wxzj//fFRXVyd8Kzr11FNxySWX4MEHHzzKnjVPe/R706ZNGDFiBH7729/i0UcfbbbtH374Ad27d8e3336Lfv36yeNxgeULL7xwlD07PMe77zt27EDXrl3x+uuv49e//rU8fuWVV0LTNLz55ptH2bPmOd79njRpEv785z8n3E7RdR2KouDss8/GihUrjq5jR8Dx7nuc+vp6jBkzBm63G//+978TrtceHO9+H6/PN6KVHF+JEXEi8/LLL3O3281ramoOWebTTz/lAPiOHTsOej4u/lu0aJE8tm/fvhNa/Hewfn/77bc8Ozub//73vz+iNr755hsOgG/atCnh+OjRo/lNN93UluG2KW3Rd8MweH5+fhNx889+9jM+bdq0tgy3zWiLfpeVlfENGzYkbAD4008/zbdv395Okbeetug755zX1dXxM844gw8fPpw3NDS0Q6RtS1v0+6f4+UZwThMfQvLMM8/wkpISvmXLFv7ss89yl8vFn376aXn+/fff56+88grfsGED37FjB3///fd5v379+JlnninL7Nmzh/fq1Yt/+eWX8tgtt9zCCwoK+PLly/natWv5eeedx0899VQei8WOaf8OxeH6/e233/KsrCx+zTXX8LKyMrlVVFTIMj/udyQS4d27d+dnn302//LLL/m2bdv4rFmzOGOMv//++8e8j4eiPfrOOedz5szhXq+X/+///i/funUrv//++7nT6eTbtm07pv07FO3V7x+DE+ypLs7bp+8+n48PGTKEDxgwgG/bti2hXkf+O+f8xP98I5pCEx9Ccu211/L09HRut9v5Kaec0uRR7I8//pgPHTqUp6SkcKfTyXv06MGnTp2a8I1px44dHAD/5JNP5LFgMMhvu+02np6ezl0uF7/ooov47t27j1GvDs/h+v3AAw9wAE22oqIiWeZg/f7+++/5ZZddxrOzs7nb7T5o28eb9uo755zPnDmTFxQUcLfbzYcOHcr/85//HIMeHRnt2e/GnIgTn/bo+yeffHLQOs2tBh9r2us9P9E/34imkMaHIAiCIIiTBnqqiyAIgiCIkwaa+BAEQRAEcdJAEx+CIAiCIE4aaOJDEARBEMRJA018CIIgCII4aaCJD0EQBEEQJw008SEIgiAI4qSBJj7ESc25556LSZMmdajrTpgwAZdcckmr2iguLpZJHmtraw9Zbv78+UhNTW3VtYhDM2HCBPk+/POf/zze4RBEh4AmPgRxHHjnnXfw8MMPy9fFxcXHJat3czz00EMoKytDSkrK8Q6lw7NixYqDTjKffvpplJWVHZ+gCKKDoh3vAAjiZCQ9Pf14h3BYkpOTkZube7zDAABEo1HYbLbjHcYxJyUlhSaeBNHG0IoPQTSipqYG1113HdLS0uB2uzF27Fhs3bpVno/f2vnoo4/Qp08fJCUl4YILLkj4Vh6LxXDHHXcgNTUVGRkZmDp1Kq6//vqE20+Nb3Wde+652LVrF+666y55WwMApk+fjp/97GcJ8c2dOxfFxcXyta7rmDx5srzWPffcgx9noeGc44knnkDXrl3hcrlw6qmn4u9///tRjc/8+fPRuXNnuN1uXHrppaiqqmpS5r333sOgQYPgdDrRtWtXPPjgg4jFYvL8d999h7POOgtOpxN9+/bF8uXLE27l7Ny5E4wxvP322zj33HPhdDrxxhtvAABeffVV9OnTB06nE71798Zzzz2XcO29e/fiyiuvRFpaGjIyMjBu3Djs3LlTnl+xYgV+/vOfw+PxIDU1FWeeeSZ27dp1RH0/XL9mz56NAQMGwOPxoLCwEBMnToTf75fnd+3ahYsvvhhpaWnweDzo168fPvjgA+zcuRMjRowAAKSlpYExhgkTJhxRTARBtBya+BBEIyZMmICvv/4a7777Lj7//HNwzvGLX/wC0WhUlgkEApg1axZef/11fPrpp9i9ezemTJkizz/++ON488038eqrr+Kzzz6Dz+drVp/xzjvvoKCgQN5aasmtjaeeegqvvPIKXn75ZaxatQrV1dVYvHhxQpn7778fr776Kp5//nls3LgRd911F379619j5cqVRz4wAL788kv85je/wcSJE7F+/XqMGDECjzzySEKZjz76CL/+9a9xxx13YNOmTXjxxRcxf/58PProowAAwzBwySWXwO1248svv8S8efNw3333HfR6U6dOxR133IHNmzdjzJgxeOmll3Dffffh0UcfxebNmzFjxgz88Y9/xIIFCwCI92XEiBFISkrCp59+ilWrVsmJaSQSQSwWwyWXXILhw4fjm2++weeff47f/e53cqLZHIfrFwAoioI///nP+Pbbb7FgwQJ8/PHHuOeee+T5W2+9FeFwGJ9++ik2bNiAxx9/HElJSSgsLMQ//vEPAMCWLVtQVlaGp59+ukXvDUEQLeC4pkgliOPM8OHD+Z133sk5F9nUAfDPPvtMnq+srOQul4u//fbbnHPOX331VQ6Ab9u2TZb5y1/+wnNycuTrnJwc/uSTT8rXsViMd+7cmY8bN+6g1+Wc86KiIj5nzpyE2B544AF+6qmnJhybM2dOQrbovLw8/thjj8nX0WiUFxQUyGv5/X7udDr56tWrE9q58cYb+dVXX33IcTlYPFdffTW/4IILEo5deeWVPCUlRb4+++yz+YwZMxLKvP766zwvL49zzvmHH37INU3jZWVl8vyyZcsSspjHM2DPnTs3oZ3CwkL+1ltvJRx7+OGH+dChQznnnL/88su8V69e3DAMeT4cDnOXy8U/+ugjXlVVxQHwFStWHLLfh+Jw/ToYb7/9Ns/IyJCvBwwYwKdPn37QsvHs5jU1NQc9jxMwyztB/FQhjQ9BmGzevBmapmHIkCHyWEZGBnr16oXNmzfLY263G926dZOv8/LyUFFRAQCoq6vD/v378fOf/1yeV1UVgwYNgmEYbRpvXV0dysrKMHToUHlM0zQMHjxY3u7atGkTQqEQRo0alVA3Eolg4MCBLbre5s2bcemllyYcGzp0KJYsWSJfl5SUYM2aNQkrIbquIxQKIRAIYMuWLSgsLEzQDjUeq8YMHjxY7h84cAClpaW48cYbcdNNN8njsVhMamBKSkqwbds2JCcnJ7QTCoXwww8/YPTo0ZgwYQLGjBmDUaNGYeTIkRg/fjzy8vIO2/fD9cvtduOTTz7BjBkzsGnTJvh8PsRiMYRCITQ0NMDj8eCOO+7A//zP/2Dp0qUYOXIkLr/8cpxyyimHvTZBEG0LTXwIwoT/SBvT+Hjj2yE/FtkyxprU/fHtk0O13RyKojSp1/iW25EQn2y9//776NSpU8I5h8PRoraOpA+GYeDBBx/EZZdd1uSc0+lsMpbN4fF4EtoFgJdeeilhYgqIiWW8zKBBg/Dmm282aSsrKwuA0AjdcccdWLJkCRYtWoT7778fy5YtwxlnnNGqfu3atQu/+MUvcMstt+Dhhx9Geno6Vq1ahRtvvFG+Z7/97W8xZswYvP/++1i6dClmzpyJp556CrfffvsRjQdBEG0DTXwIwqRv376IxWL48ssvMWzYMABAVVUVvv/+e/Tp0+eI2khJSUFOTg6++uornH322QDEysC6deuaCJUbY7fboet6wrGsrCyUl5cnTBbWr1+fcK28vDx88cUXOOeccwCIFZCSkhKcdtppsk8OhwO7d+/G8OHDj6gPh6Jv37744osvEo79+PVpp52GLVu2oHv37gdto3fv3ti9ezf279+PnJwcAMCaNWsOe+2cnBx06tQJ27dvxzXXXHPQMqeddhoWLVqE7OxseL3eQ7Y1cOBADBw4ENOmTcPQoUPx1ltvHXbic7h+ff3114jFYnjqqaegKEI6+fbbbzcpV1hYiFtuuQW33HILpk2bhpdeegm333477HY7ADT5HSAIou2hiQ9BmPTo0QPjxo3DTTfdhBdffBHJycn4wx/+gE6dOmHcuHFH3M7tt9+OmTNnonv37ujduzeeeeYZ1NTUNLvSUVxcjE8//RRXXXUVHA4HMjMzce655+LAgQN44okn8P/+3//DkiVL8OGHHyb8U7/zzjvx2GOPoUePHujTpw9mz56d4AWTnJyMKVOm4K677oJhGDjrrLPg8/mwevVqJCUl4frrrz/ift1xxx0YNmwYnnjiCVxyySVYunRpwm0uAPjTn/6Eiy66CIWFhbjiiiugKAq++eYbbNiwAY888ghGjRqFbt264frrr8cTTzyB+vp6KW4+3ErQ9OnTcccdd8Dr9WLs2LEIh8P4+uuvUVNTg8mTJ+Oaa67Bk08+iXHjxuGhhx5CQUEBdu/ejXfeeQe///3vEY1GMW/ePPzyl79Efn4+tmzZgu+//x7XXXfdYft+uH5169YNsVgMzzzzDC6++GJ89tlneOGFFxLamDRpEsaOHYuePXuipqYGH3/8sZxQFxUVgTGGf//73/jFL34Bl8uFpKSkI35vCIJoAcdNXUQQJwA/FhlXV1fza6+9lqekpHCXy8XHjBnDv//+e3n+1VdfTRDzcs754sWLeeM/pWg0ym+77Tbu9Xp5Wloanzp1Kr/iiiv4VVdddcjrfv755/yUU07hDocjoa3nn3+eFxYWco/Hw6+77jr+6KOPJoibo9Eov/POO7nX6+Wpqal88uTJ/LrrrksQUhuGwZ9++mneq1cvbrPZeFZWFh8zZgxfuXLlIcflYOJmzoWAuKCggLtcLn7xxRfzWbNmNRmPJUuW8GHDhnGXy8W9Xi//+c9/zufNmyfPb968mZ955pncbrfz3r178/fee48D4EuWLOGcW+LmdevWNbn+m2++yX/2s59xu93O09LS+DnnnMPfeecdeb6srIxfd911PDMzkzscDt61a1d+00038bq6Ol5eXs4vueQSnpeXx+12Oy8qKuJ/+tOfuK7rhxyHlvRr9uzZPC8vT/7evPbaawmC5dtuu41369aNOxwOnpWVxa+99lpeWVkp6z/00EM8NzeXM8b49ddfn3BtkLiZINoMxvlRiA8IgjhiDMNAnz59MH78+AS35hOZ4uJiTJo06Zik8/jss89w1llnYdu2bQmiccKCMYbFixe3OhUJQRDk40MQbc6uXbvw0ksv4fvvv8eGDRvwP//zP9ixYwd+9atfHe/QWsTUqVORlJSEurq6Nm138eLFWLZsGXbu3Inly5fjd7/7Hc4880ya9ByEW265hW55EUQbQys+BNHGlJaW4qqrrsK3334Lzjn69++Pxx57TAqQfwrs2rVLPo3UtWtXKdhtC1577TU8/PDDKC0tRWZmJkaOHImnnnoKGRkZbXaNltKvX79DOji/+OKLhxRUtzcVFRXw+XwAhG1C4yfdCII4OmjiQxDESU/jid6PycnJaeINRBDETxea+BAEQRAEcdJAGh+CIAiCIE4aaOJDEARBEMRJA018CIIgCII4aaCJD0EQBEEQJw008SEIgiAI4qSBJj4EQRAEQZw00MSHIAiCIIiTBpr4EARBEARx0vD/AbnWXK60tv/jAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ax = plt.subplot()\n", "reprojected_raster.plot(ax=ax)\n", "ax.plot(\n", " *transform_box.exterior.xy,\n", " color=\"red\",\n", " linewidth=3,\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Boundary calculates using transform_bounds\n", "\n", "[rio.transform_bounds()](../rioxarray.rst#rioxarray.rioxarray.XRasterBase.transform_bounds) is both computationally efficient and a correct method for calculating the bounds of your raster in the new projection." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "tags": [] }, "outputs": [], "source": [ "transform_bounds_box = box(*xds.rio.transform_bounds(\"EPSG:4326\"))" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "tags": [] }, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHFCAYAAADyj/PrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADxhElEQVR4nOydeZgU1bn/v6e23rtn31gGRBEU3CABTFRcgSgYNdGIQcU110QlinuMSxASomISr1HRBLeI9+Ym/uISFI3EXRHEoCKisgwww+zd03tX1fn9capPTQuMM8wgML6f5+mH6qpzTr3nVPdw+tS3vi/jnHMQBEEQBEF8A1D2dAAEQRAEQRBfFzTxIQiCIAjiGwNNfAiCIAiC+MZAEx+CIAiCIL4x0MSHIAiCIIhvDDTxIQiCIAjiGwNNfAiCIAiC+MZAEx+CIAiCIL4x0MSHIAiCIIhvDDTxIYh+zH333YdFixZtt3/Dhg1gjO3w2FfRm7q95eWXX8bYsWMRCATAGMPTTz/9tZ178eLFOOyww+D1elFTU4NZs2YhHo9/becnCKJv0PZ0AARB7D7uu+8+lJWV4fzzzy/YX11djbfeegvDhg3bM4HtApxznHnmmRg+fDj+8Y9/IBAI4MADD/xazv3EE0/gxz/+MS666CIsWLAAn376Ka677jp8/PHHePHFF7+WGAiC6Bto4kMQ30A8Hg/Gjx+/R2OwLAumacLj8XSr/NatW9Ha2orTTjsNxx9//G6OzsWyLFxzzTU46aSTsHDhQgDAsccei1AohHPOOQf//Oc/MWXKlK8tHoIgegfd6iKIr4GmpiZccsklGDRoEDweD8rLy/Gd73wHL730kiwzceJEjBo1Cq+99hrGjx8Pn8+HAQMG4Oabb4ZlWQXt3XbbbRg3bhxKSkoQDodxxBFH4OGHH0bnnMNDhgzBRx99hH//+99gjIExhiFDhgDY8e2qzz77DDNnzsQBBxwAv9+PAQMGYOrUqVi9enWv+58/3/z58zFnzhwMHToUHo8Hr7zyCgDgvffew7Rp01BSUgKv14vDDz8c//M//yPr33rrrRg4cCAA4Lrrrivoy+7m7bffRn19PWbOnFmw/4c//CGCwSD+/ve/fy1xEATRN9CKD0F8DcyYMQMrV67EHXfcgeHDh6O9vR0rV65ES0tLQbmGhgb86Ec/wvXXX4/bb78dzz33HObMmYO2tjbce++9styGDRtw6aWXYvDgwQDEf86XX345tmzZgl/+8pcAgL///e/4wQ9+gEgkgvvuuw8Aulxd2bp1K0pLS/HrX/8a5eXlaG1txSOPPIJx48bh/fff75PbSr///e8xfPhw3HnnnQiHwzjggAPwyiuvYPLkyRg3bhzuv/9+RCIRLF68GGeddRaSySTOP/98XHTRRTj00ENx+umn4/LLL8f06dO/cqXINM1uxaSqKhhjOz3+4YcfAgAOOeSQgv26rmPEiBHyOEEQ+wicIIjdTjAY5LNmzeqyzDHHHMMB8P/3//5fwf6LL76YK4rCN27cuMN6lmXxXC7Hb7/9dl5aWspt25bHDj74YH7MMcdsV2f9+vUcAP/zn/+803hM0+TZbJYfcMAB/Oc//3mP6u7sfMOGDePZbLbg2IgRI/jhhx/Oc7lcwf5TTjmFV1dXc8uyCtr47W9/261zAujW66v6cccdd3AAvL6+frtjJ510Eh8+fHi34iEIYu+AVnwI4mvg29/+NhYtWoTS0lKccMIJGDNmDHRd365cKBTCtGnTCvZNnz4dCxcuxKuvvoof//jHAIB//etfmDt3LpYvX45YLFZQvrGxEZWVlT2O0TRNzJ8/H48//jg+++wz5HI5eWzNmjU9bm9HTJs2raDfn332GT755BPceeedMoY83/ve9/Dss89i7dq1GDlyZI/PtXz58m6VGzp0aLfK7WxVqKvVIoIg9j5o4kMQXwNPPfUU5syZg4ceegg333wzgsEgTjvtNMyfPx9VVVWy3I4mLPnj+dti7777Lk466SRMnDgRCxcuxMCBA2EYBp5++mnccccdSKVSuxTjVVddhf/+7//Gddddh2OOOQbFxcVQFAUXXXTRLrf5Zaqrqwveb9u2DQAwe/ZszJ49e4d1mpubd+lchx12WLfKqara5fHS0lIAYvy/fH1aW1tRUlKyS/ERBLFnoIkPQXwNlJWV4Z577sE999yDTZs24R//+Aeuv/56NDY2YsmSJbJcfiLQmYaGBgDuf8CLFy+Grut49tln4fV6Zbneeto8/vjjOPfcczF37tyC/c3NzSgqKupV23m+vDpSVlYGALjhhhtw+umn77DOrmqLdrSitiP+/Oc/b/e4f2dGjx4NAFi9ejUOOuggud80TXzyySc4++yzdyk+giD2DDTxIYivmcGDB+NnP/sZXn75ZbzxxhsFxzo6OvCPf/yj4HbXX/7yFyiKgqOPPhqAmDxomlawUpFKpfDYY49tdy6Px9Pt1RrG2HaC4eeeew5btmzB/vvv3+3+9YQDDzwQBxxwAD744IPtJly9pa9udY0bNw7V1dVYtGgRzjrrLLn/r3/9K+Lx+E4nbARB7J3QxIcgdjPRaBTHHnsspk+fjhEjRiAUCmH58uVYsmTJdv9plpaW4r/+67+wadMmDB8+HM8//zwWLlyI//qv/5JPcJ188sm4++67MX36dFxyySVoaWnBnXfeucOnnEaPHo3Fixfjqaeewn777Qev1ytXML7MKaecgkWLFmHEiBE45JBDsGLFCvz2t7+Vj5HvLh544AFMmTIFkyZNwvnnn48BAwagtbUVa9aswcqVK/G///u/u9Tu2LFj+yQ+VVUxf/58zJgxA5deeinOPvtsrFu3Dtdeey1OPPFETJ48uU/OQxDE1wNNfAhiN+P1ejFu3Dg89thj2LBhA3K5HAYPHozrrrsO1157bUHZqqoq/Pd//zdmz56N1atXo6SkBDfeeCNuu+02Wea4447Dn/70J/zmN7/B1KlTMWDAAFx88cWoqKjAhRdeWNDebbfdhvr6elx88cXo6OhAbW0tNmzYsMM4f/e730HXdcybNw/xeBxHHHEE/va3v+EXv/hFn49JZ4499li8++67uOOOOzBr1iy0tbWhtLQUBx10EM4888zdeu7u8uMf/xiqquLXv/41Fi1ahJKSEpx77rm444479nRoBEH0EMZ5J8czgiD2GBMnTkRzczP5whAEQexGyLmZIAiCIIhvDHSriyCIXvFVDsmKokBR6DcWQRB7B/TXiCD2EpYtW7bP3ebasGEDdF3v8nX77bfv6TAJgiAktOJDEMQuU1NT85WPjdfU1HxN0RAEQXw1JG4mCIIgCOIbA93qIgiCIAjiGwPd6tpFbNvG1q1bEQqFKEkhQRAE0SWcc3R0dKCmpma3iv3T6TSy2Wyv2zEMoyAlTn+CJj67yNatWzFo0KA9HQZBEASxD1FXV7fb3NDT6TSG1gbR0Gj1uq2qqiqsX7++X05+aOKzi4RCIQBAHYDwng2FIAiC2MuJARgE9/+O3UE2m0VDo4X1K2oRDu36qlKsw8bQMRuRzWZp4kO45G9vhQGEP/4YcLJMH//z+8GdUbU8gOV8ZvQ4wGyxnSkCFGclkiuAYgKedqExz0QYtIxbztsktj0dNtScKMNMjlzA/VCrWbHf1gpvueX84j3rJF/XUhzM5khHRIJLI2nDXy+CSZfpyIS3/7IoJoBOTWci4o2aA+BYuGhZDtvJmWn5GHJ+se1t5vC1OL8+VIZsp7gzRQyKc8jTbsNWRbu5AAPs/Lk5VOccuSCDHhedUTMc3DlfJqhItZqtA6myL8UOwNcCsBzgaxMn9DWkwbLiYLbEh1xINNa5/56YDcsQMUXWxoDNTub0ARXYemyxLOdrFjEFtrjLyx2DDKQqGJjTv+BWG7Yu2lJy7gVJlSuwnc+LlgIsQ2wzDnBnzK3Of3c44G90xyDfP8Yhx1/LcFi6e8ECm5NIlzuNKAzpiOK0y+B3fhky043J8rpj0DFIwWu3/AQEQewizc3AQQfJt1+HNCIcUno18env0MSnLygrA8rLAQDtvqCc+JjeThMfq9PEJwAoTpn8xMebFv/xpP0MmuKW88XFtidnQ1VEGUXlyHb6z0llO5j4MCDn3cHEh3MwiyPtcyY+to2cIWZaKY+BjG8HE58cCiY+aWdCpWYBlp/4KFz+B252mvj4fBxZj/jPlausIO60n8n/uL3pThMf35cmPjmxnfUxGM5/0CrrNPHxuRMfSwdSgU6xO+2nk2LMM0kRS1ZXwbgz8TH8yHpUty0HT8aG5XE6rlmA4nO2A2jzB2W5jFfEZBruxCfmM5D0uxMf09tp4qO6FyTp7zTxgZgsA1+a+Pjc/oADWa87BnLiY6NTO1xO2ADA1BnSHtEIVxjSzjUwfUxem84xmZ2uUcyvyM82QRD7Bha3YfXieW2L230XzF4ITXz6iNFXLwAAeE2O4g/icn/9d8WypmUAXmdVJ2sxJAaLD5bRrkDJAmZK/EflbePIhp2JRVJMjAAgE1Hkyo6W4nIiwsxOEx4GMOfTngsocsJgdFjQO8T/kMlKA4lKFZ6YKJesUBCv9jntdpok2YCvVcSoZmwky1WnXfc/cy3JYTqTIGSclRoH1Vm1UkzAdCYTasaGf1sOmSLxsQvUc6TKxDFbZdCcyZ8Rt5EuEvuzYQanG/C2cZjORCQ/YQQALc3hbXcmNCEViQHOBMMCbGcFxRPlyAaZ7Iea9sDb6H658ytoppch50yc4gNVeFvEdsNRxfA3RgAAwY0JlHwiTh4brCEbFOfLRjSkylTZph4HjA7nmocVJKqdeBPuhA8AgltEHLGh7oTDaBcTSwDQt3HEapkc1/z1zvkZQpvzMx8mPx9cYcj5GYJbxMjlwh6kSp1+ZzhMn/NZa7dlW2qOI+OsAtqq+zkINHCMvehuAEDz0VlsOPd6EASxd2ODw8auz3x6U3dfgNbCCIIgCIL4xkArPgRBEATRj7Bhozc3q3pXe++HJj4EQRAE0Y+wOIfVi6QMvam7L0ApK3aRWCyGSCSCKIBwY2OBAPS4E38NAPCsbZD7ohNczx9bZ8h20sNAAXKOgFXNQupv0kVM6jxyfsDocMp0eioo/+QWAIABwa1C62IZTIpp9YQNZrt14tUabN2tltfjpIsB2xHXGjH3uBHlsi01wxGqExUS1QaynZ4cyOuRyj5IQGsUDcQOrZDaE2ZyqBkbZkCV5U2/o+UJKgg0CL1KpkiF4oiYk2UK/M3ur4/800odg91+B7dwIcCG0PvkRb7pYkXGpCeFxie02XmKiQP+zQmxnbOQK3KfemoeLbZt3e2Tpw1yDOODGIrWOfqnLBAfIAp52jnUjCiT1y7lBcp6kksNVKoS8NeL/Rn34TAYMbe8CMwJKetqbrQkh+acI1GpyCfKjLgN0xGzWx4GLcWhpWw57nlyIRUdAxV5PsXRhKlZ99ymj8l+G3G3bjbE5NgCwKo//BwEQXwFTU1ARQViACIAotEowuHdY4KS/3+p7pMBvX6cfdCILbs11j0JaXwIgiAIoh+RFzf35tVTXn31VUydOhU1NTVgjOHpp5/ersyaNWswbdo0RCIRhEIhjB8/Hps2bZLHM5kMLr/8cpSVlSEQCGDatGnYvHlzQRttbW2YMWMGIpEIIpEIZsyYgfb29h7FShMfgiAIguhH2OCwevHalYlPIpHAoYceinvvvXeHxz///HN897vfxYgRI7Bs2TJ88MEHuPnmmwsMEmfNmoW///3vWLx4MV5//XXE43GccsopsCzXiXr69OlYtWoVlixZgiVLlmDVqlWYMWNGj2LdayY+8+bNA2MMs2bNkvvOP/98MMYKXuPHj+92m4sXLwZjDN///ve3O3bfffdh6NCh8Hq9GDNmDF577bU+6AVBEARBfPOYMmUK5syZg9NPP32Hx2+66SZ873vfw/z583H44Ydjv/32w8knn4yKigoA4hbgww8/jLvuugsnnHACDj/8cDz++ONYvXo1XnrpJQBixWjJkiV46KGHMGHCBEyYMAELFy7Es88+i7Vr13Y71r1i4rN8+XI8+OCDOOSQQ7Y7NnnyZNTX18vX888/3602N27ciNmzZ+Ooo47a7thTTz2FWbNm4aabbsL777+Po446ClOmTClYciMIgiCIfZG+utUVi8UKXplMZtfisW0899xzGD58OCZNmoSKigqMGzeu4HbYihUrkMvlcNJJJ8l9NTU1GDVqFN58800AwFtvvYVIJIJx48bJMuPHj0ckEpFlusMef6orHo/jnHPOwcKFCzFnzpztjns8HlRVVfWoTcuycM455+C2227Da6+9tt39v7vvvhsXXnghLrroIgDAPffcgxdeeAF//OMfMW/evF3uS55/LXVN3qYMEQJQLWWjbbgz3LYrIlZyQDYMeFvFe6ODu4LaGJfCYDXjCk6VnCui1eMoSF+RDbrbeSGqqgLZIsecThMC1bwYWOkkfA3XFRoE5p2mtTRHyhHmJqoZuCqCTxczKcAN1LsCZK05jo5DxCyecVeYq1gcuZAq42UcyDgCPDXHC5yn83GAOU7OEALcfIqL8EaOZJnYny5iUqxtG0yKtW0DKP1QCKY9bTmgk44/Xe5BttjrjK0FNS3KsYyFyHoxcNEhGiIbXKfBnDO25assdAzKmzBa0B2TQmYDLQc7QudWFAjIMyUMmtBSw9MK6Il8LK4hJCDcvgFhdhl3jBjtInGdAWH0mDeNVHJAyhmDVJmKyHoRq+lTYWtCJA4A3hZTmkjm/O7nKBdyxeKemCvkzrqm1CKtxTZxbT3tvEAYfegVwrTzg9+TyJkg9ib66qmuLyfivuWWW3Drrbf2uL3GxkbE43H8+te/xpw5c/Cb3/wGS5Yswemnn45XXnkFxxxzDBoaGmAYBoqLiwvqVlZWoqFBPCjU0NAgV4g6U1FRIct0hz2+4vPTn/4UJ598Mk444YQdHl+2bBkqKiowfPhwXHzxxWhsbPzKNm+//XaUl5fjwgsv3O5YNpvFihUrCmaVAHDSSSd1OWPMZDLbzX4JgiAIYm/D7oMXIDLJR6NR+brhhht2LR5btHjqqafi5z//OQ477DBcf/31OOWUU3D//fd3WZdzXpDfbEe5zr5c5qvYoys+ixcvxsqVK7F8+fIdHp8yZQp++MMfora2FuvXr8fNN9+M4447DitWrIDH49lhnTfeeAMPP/wwVq1atcPjzc3NsCwLlZWVBfs7zyp3xLx583Dbbbd1r2MEQRAEsY8TDof75HH2srIyaJqGgzolawWAkSNH4vXXXwcAVFVVIZvNoq2trWDVp7GxEUceeaQss23btu3ab2pq2u7/9K7YYys+dXV1uPLKK/H444/vNO39WWedhZNPPhmjRo3C1KlT8c9//hOffvopnnvuuR2W7+jowI9//GMsXLgQZWVlOyyT58uzw6+aMd5www0FM9+6urqv6CFBEARBfP305omu/KsvMQwD3/rWt7YTIH/66aeora0FAIwZMwa6rmPp0qXyeH19PT788EM58ZkwYQKi0SjeffddWeadd95BNBqVZbrDHlvxWbFiBRobGzFmzBi5z7IsvPrqq7j33nuRyWSgqmpBnerqatTW1mLdunU7bPPzzz/Hhg0bMHXqVLkvv8SmaRrWrl2LQYMGQVXV7VZ3Ghsbu5wxejyena4ydcU/NwgdxJFn3oWizx3zvE5pc1NlKvS4O+HSk1wa5RkxE5mIuES66WpG1KzIdA44ZoghJuvmM5ZzBpmkNF2sIl0qto0OoUXJ60oCW01YUv+hyGzknpibwDJTpBRkAc8b3Smmm008PkBBaLMY64YTKpH/3mTDItElAFi6Bj3FC0zwwptEkPEaDeliN2u41DlFOWw1H2sWasYVxCg5x2iwkzYoWc6gJ92xVNOO0WAsg44DwrCdrOVa0kYu6GSob0pCyYg4MtVhWB5FjnM+uSfv9FHM+VSpf+oYpEr9jekFStbYTmzO2Jc6eqY2IF0i9mlxdwyZBamTMjtlYbc1hsgXttOuq+sJ1Fuw8tnVvQDPiv2+FkvqvkrfawU4hxUSDZpBHYrhjom+iTsxcqm/6qzpSlSprvFj3M30bvoY7O9ExRi8HoHl/F4Z/+O7YavAu49cBYIg9jwWRy+zs/e8Tjwex2effSbfr1+/HqtWrUJJSQkGDx6Ma665BmeddRaOPvpoHHvssViyZAmeeeYZLFu2DAAQiURw4YUX4uqrr0ZpaSlKSkowe/ZsjB49WkphRo4cicmTJ+Piiy/GAw88AAC45JJLcMopp+DAAw/sdqx7bOJz/PHHY/Xq1QX7Zs6ciREjRuC6667bbtIDAC0tLairq0N1dfUO2xwxYsR2bf7iF79AR0cHfve732HQoEEwDANjxozB0qVLcdppp8lyS5cuxamnntoHPSMIgiCIbxbvvfcejj32WPn+qqvED6HzzjsPixYtwmmnnYb7778f8+bNwxVXXIEDDzwQ//d//4fvfve7ss6CBQugaRrOPPNMpFIpHH/88Vi0aFHBfOCJJ57AFVdcIXW606ZN26l30M7YYxOfUCiEUaNGFewLBAIoLS3FqFGjEI/Hceutt+KMM85AdXU1NmzYgBtvvBFlZWUFE5Zzzz0XAwYMwLx58+D1erdrs6ioCAAK9l911VWYMWMGxo4diwkTJuDBBx/Epk2b8JOf/GT3dZggCIIgvgY6C5R3tX5PmThxIr4qA9YFF1yACy64YKfHvV4v/vCHP+APf/jDTsuUlJTg8ccf34UIXfb44+w7Q1VVrF69Go8++ija29tRXV2NY489Fk899RRCoZAst2nTJihKz6RKZ511FlpaWnD77bejvr4eo0aNwvPPPy/vNRIEQRDEvooNBgvdf8ppR/X7M5SkdBfpKknpV3H8cfOQKjPke2ZzoJOwWs2K+Xaiwp2XWl6hdwEAo8OWGpF88lBZznDfa2kn0WeFInUyXAX0hKvN4Ux4xgBC8/HluqKQG1+6SJHeMbkJHcBHYhIa3AQUfZ4W8a1vcuOpKka6QohB2odp0BJAeKPIvKqlLOSCoo+mX0W6aPuEp55OfQ1tSEHJCo1PvDYgk3BCcTVBAJAsyydBZVIvZesM2TCQczxq9A5AS7l1yt8XJjupKi9SJaJ+phjIFonjakokQwVEss78tVByHMlKx7unzdXD6EmhZcoFHS2W5mpoLMP1I9KSgJbKJzZl0NJOl7KAv0kIq3IBV2Nla0C8RpFjlPd/8jdb8LRknLoWmGmDa44WKGQgWel+3jJh9zOST0Kq5LjUjXX2O8qG3YFlpqtD4hqkbqz0I9Gx2CC37Ee/IW8fggCwR5KUrvy4EsFeJCmNd9g44qBt/TZJ6V674kMQBEEQRM+xuXj1pn5/hiY+BEEQBNGPsHp5q6s3dfcF9rhzM0EQBEEQxNcFrfjsAV7+l2v7PW7G3TDiHNlgPh8Vh+n4tHTW2egpSL1KJqLIXE9a2gZX3Nl53odHS7q6/ECDJb2DkhUaTC9Q9JkwmkmXaUiXiDrMYtAdzYeW6tQuc7UyeoJLXYhVH0TrCFHE9APNo4WWp2adhY5vuTlejA4hUAlvZEKv0skkwjacviYtcMfzxvIKHQwABBrdsuraTWBMlFEGDJN+O1rSgp4Sopnofl6ppSlZ3QErKMyP1JQJrjC0jfA7Y8ik1075e+3yHKEVLfBXCNdQK6AjWS0CSZUqIjcZAF8Ll7ojrjKENolzp8pU6fejZgt1W54ol3GBu55MzHJ1WUaH0G/lyWtu1CwKyOd5M32At01sJ8tV+DeLcU4ODAAA9FheI6RK/ZaS4+DOwwCcdfJkynFYzvk6BiowHS1Uycc2TG/nfoh/LYNB78jXBcC59I3KBYCRNwv/qjW/Iq0PQXzd0IpP19DEhyAIgiD6ETZnsPmuT156U3dfgCY+BEEQBNGPoBWfriGND0EQBEEQ3xjIx2cX6Y2Pz5c58sy7ZL4mrkLmubIMBm+70I+YHkV6wgCAr9nNWZULOvmg3F0AB7Kd/FryOhJvuw3LYFLbkQ0xmTtLzQKR9TknDiY1NKlSd36sJzkU09EahRXk/E48rVzG7W23pD7IVl3/GlsX5/K0iUC5zpAJq7JOno6BhQuReY8ef6MtPWgyEQZPTJzQ9Ln9LPk4I7eNxg6pbeKGhtiBEXks9HkHlC3Cb8jcrxpaW9I9YUqY6ZjVJbC9Ir74QA+SFeI8Sk7oWOR5HK2LmgaMhOhsukhBpggyb5gIwt00nXELb7Sl1ihVpkDJur5DejKfs82Cp1UIfXIRA8lyEVNooyv+sfwq1LQzrop7fQEgVaFD7eTpxJ3h5cyNAwCK17r1dccjyf/BFiAjxrT1pANkXjhmQ+YGUyxxPfJEh9vwtLifGSMm/v3P3aT3Ib6B7AEfn399OKjXPj7HjaojHx+CIAiCIPZ+eC81Pryfa3zoVhdBEARBEN8YaMWHIAiCIPoRJG7uGpr4EARBEEQ/wuIKLL7rN3Ssfq78pYnPXsCb/3O13J4w/S4pGtXSXIqEMxEFqmNCZ2uAmnaN7vLb2bDqJppkAHcM9BjnwlAPQnSrpThMvyN2buPSTC9ZwdB0uHjjbYY041NyrsA452cwOlwzQ1sT7VgGk+LdnF+B7hgoMoXJ+NQ0kAupyBSrTlyQwupMRIUp/A8LEo523m4brsBwDPS4BpkstewjEywnzpELa7JOtqhYinyNDgu5AJMib21AAD5nfLSNje75IiHALzJxZks9SJWKWHMBBn+jawKYT5CaC6qybmwwQ6pcnFyPA+FNrtFhLuD+gmK2myA1E1FkGcsL+OJiW81yaZiYC2hIlouBKvo8DTWcF7PbUJyEtmZARbJCXDsjbiMTVuFtEQaGesJN9OprtZEJuwaZrFnst3U3IamaBTKG6Jc5bhDCH4pC8YEMgWPcBLTpF8plf4o+y0mTxOK1QN2JIhbfNjeB7ME3LJBC7tV3ktCZIIg9A018CIIgCKIfYYPB7oWE10b/XvKhiQ9BEARB9CNI49M19FQXQRAEQRDfGGjFZy/jrb+4ep/vnn4nmLPiGNhmyv22xpApEpeOq0BofQIAoJg6MsVCW8FswBNzdUB5bYua4cgUuboL08tgOUkvmeXqekwfoDintDzutpLlMmllRy1D8FtC/6H8TyksZ382qMgEq2rKBtcdrYpfkfGLdhmyTjJMxQZUR/di6662h9lAzimjpiD1RUYHpObJ90U7WIcYg8ThA5B2NETpIibNBW2dwYjZiA8Qx/wbO8C2tTgnV5AbVgUAaD/Ah9JVQkjk3RoHIE6uJRXYzhhylck+eFtM2E7/whsV2cf8WGUiihzDfOy5AJPjDACWo7FSM5DXonhNEiFN1E2XGlAz4lpahuJqwOJZmQhVj+Vga4YskyliUDPiJFwT2ixA6HfyhpKZCJMJUD3tttQhqRkujSK5wtA2Rmh5LC9wRHkdAGDpupHAOHHBrDYDgQYV4ZfXimumaTjgP6LdNb+pRXiViEu1gNgRwgxx3Ll3451HrwJBEH1P78XNdKuLIAiCIIh9BKHx6UWS0n5+q4smPgRBEATRj7ChwCJx804hjQ9BEARBEN8YKEnpLtKXSUq74vDLFgAQ2htfixBnRD5sA0sJcUbs0Arp9aPmuEzKGR+gSV8Vod8Qc9xsmIHZQKbYPYfi5PVULDfRqa1BJk5lnfbrSS69WCyDSS2PnrCRqHK8X3yAJ+qcO8plklOuQJYHhJYk7x1jq+L8gNDG6Cm33c5pYzIRcY7iD6Nu/JsbATufIdWDxOEDRRxeBZrjIWR6FRgxE20jhN6kYnkCSlp0pHlMEbxtTnLRYgXZkGgqn1wzH7uRcHRLaRumo+WxDCBQLwRQ/v9sgVVdCgDo2F9kMc35OumCHC2PHufQnP5xFYjXOL48HAhusZ0yFvQOEV+yyisTw/q2pcEs26mrIF3ukXWZUyafXDZPNqzA7qQpyo9zopLB057f515XAPJ82aAity0PQ0IMLSLrOFoOc8t7GxlKP3KEYIwhNkicsGMox8gxGwAAa94fIsvrUSY/X+H1HMv/RHofop+yB5KULl51EPwh9asr7IRkh4UfHfYxJSklCIIgCGLvx4ZCPj5dQLe6CIIgCIL4xkArPgRBEATRj7A4g8V7YWDYi7r7AjTx2ct5/z43p9HR034LAOg4sBjpIrFYlylyy3IF8Lbl3wg9DiD0JXlNiZbmTq4oN8dWJiKqqElAcXxdMkXCV0bUgczDxRmDnhAiEV+z6xPELI7wBvE+WalJn5otJ9kIrhOxFn1uIV2sSL2Q5WHSk8YKMtjOd82/zYanVQSidWSgbHUSShWFHVcdIHZwKTxtQlPi2QzAcAQ0uZzUOTGbS72LHrfAFYbwBlGn9aAAgluEqKXk4ySyYVFfCTLoCRFIslrkF8sT2SDKmz4FesLJjxZS0TFQ1G0fNgTVr4oLkA0qSFQDPif0VIWrk8pEmBx/APA3ucvK+dxlpl+V/Qitj8PWxYBaAQ2pcnE+rjCp3fFvy8HyiTeKyZEqVWU+ts7tKjnAdNZ5PVHA1yKC4iqT+dxMH0Mm5OiObNd/KK0xhDY47ekMxR/l2+TQMjZsXZH9y68l22VZfLSxBgAw7JDNWP+BEAnZhvv5UnLA0aeKz/ar/+8aEATRO6xePtVl0a0ugiAIgiCI/gGt+BAEQRBEP8LmCuxeODfb/fxhb5r4EARBEEQ/gm51dQ1NfPYhXv2Hq3/Y/7d3AwD89QyedkcnYzDp3QNA6jT0JAdzfG7SxQqY7Wo+9ARHcKt7jkzEyUHVyqU/EACYfvGvEXPzT5l+BVrS1fnEa4TGxNfKAUcvUvSBJn1jskFxbtXxi+msn8t73ABA02EqvK0+Uf9zHf5N20T5hiaZmyq0rRkt3x8JAFByA2Vd/dMt8P9ni3MCjvjYQaI/2xJQtjaDlxU5Y1UCM+BqYoz2rOxTIij2MxNI1oh+lK0CEtUiyMDWHFIVYju41XJzlw1UsOE01yBJyUDqp5SMq/HxtrnjqWSBbFDUT1UAxWsdfZLF3Wtp24AiLpiaMIHyfD42DtUZfi1lIVEj9qfKGIwokC4RxyyPm4PNv83NiRZoFJorcT5ITZGS5TLPW87PpFaIa4DRnvdFYvLzYWsMtgnXK4gDSZH6DJ4NHvlZ2/rpILDivP5KeCAB4jPHbBHHEf+1QOYu++D3rr6NIAiir6CJD0EQBEH0I2z07sks+6uL7NPQxIcgCIIg+hG9NzDs38890cSHIAiCIPoRFldg9ULc3Ju6+wL9u3cEQRAEQRCd2GsmPvPmzQNjDLNmzZL7zj//fDDGCl7jx4/vsp2//e1vGDt2LIqKihAIBHDYYYfhscceKyhz6623btduVVXV7ujWbuOza67CZ9dcBVsVSS/1uCNMtdyXluHQMhxcBRJVChJVCnJBYRjHNfGyvAxcFeJXWwP8TTb8TTbUHGB5xUuxOHzNNnzNNmxdiFq5wqCmuTyX6VdEokwuRLLMhnwpOSHUZVycO1XCkCphCGzNylfNqzH4mjl8zRyRzzn0DvGqH68BoaB4AYBpAqYJPmwgSlZ3oGR1B+KDfdCbE9CbE0BJEXhxSLxKwvC0ZuFpzYIbGuAxYPs8sH0ehNbFwBVh+hjdz4AV0GAFNDFeTAivmQUE6hgCdQypMiZMHLkQOWdDDNkQQ8tBKjJhBZmwgvAmG8E6jmAdR+V7JspXm1CzgJoV4wAmXqkKyLaMOIeeEC9/PdC+v4L2/RUky1UwzsE4h+0zoEaTUKNJQGHw12fhr89CyXKYXgbTyxAd5oWa4VAzHIopBM3ZYo5sMUemOgcrYMMK2EiVOQlJLQ4lY8Po4DA6ONQsh+lXYPoVcJXJa+drtZGJMGQiDJwBuYCCXECBlnE/X0bCBleAZAVDsoIhU8TgaQU8rYC/HjCDNsygjVwQYDkmXhbgaxQvWweaxjA0jWGwdCBdLl4H/moBRtwiXgRBdB8brNev/sxeMfFZvnw5HnzwQRxyyCHbHZs8eTLq6+vl6/nnn++yrZKSEtx0001466238J///AczZ87EzJkz8cILLxSUO/jggwvaXb16dZ/2iSAIgiD2BPlbXb159ZRXX30VU6dORU1NDRhjePrpp3da9tJLLwVjDPfcc0/B/kwmg8svvxxlZWUIBAKYNm0aNm/eXFCmra0NM2bMQCQSQSQSwYwZM9De3t6jWPf4xCcej+Occ87BwoULUVxcvN1xj8eDqqoq+SopKemyvYkTJ+K0007DyJEjMWzYMFx55ZU45JBD8PrrrxeU0zStoN3y8vI+7RdBEARBfFNIJBI49NBDce+993ZZ7umnn8Y777yDmpqa7Y7NmjULf//737F48WK8/vrriMfjOOWUU2BZliwzffp0rFq1CkuWLMGSJUuwatUqzJgxo0ex7vGJz09/+lOcfPLJOOGEE3Z4fNmyZaioqMDw4cNx8cUXo7Gxsdttc87x8ssvY+3atTj66KMLjq1btw41NTUYOnQofvSjH+GLL77osq1MJoNYLFbwIgiCIIi9jbyBYW9ePWXKlCmYM2cOTj/99J2W2bJlC372s5/hiSeegK7rBcei0Sgefvhh3HXXXTjhhBNw+OGH4/HHH8fq1avx0ksvAQDWrFmDJUuW4KGHHsKECRMwYcIELFy4EM8++yzWrl3b7Vj36FNdixcvxsqVK7F8+fIdHp8yZQp++MMfora2FuvXr8fNN9+M4447DitWrIDH49lpu9FoFAMGDEAmk4Gqqrjvvvtw4oknyuPjxo3Do48+iuHDh2Pbtm2YM2cOjjzySHz00UcoLS3dYZvz5s3Dbbfd1rsO7wY+/K1r8nbIzxcg55jhWR43waYREy9AmPXZGpPHtDSXCUwVkyNZ5pgQtlgwOkSZVKkizeqYxcHV/DkYLE/exA7wtTjuDwzS1E9LcxiOGZ7lVaDkODIl4lhigOEm+yzSkA2J/UpO6EcAwGgHot+qBgBE/hUHd2b+yrY2xMYJc0I1w5EcUgQA8C//wr07XRyB7RHaoPoJfpR+4kUmIvqXKnPvYXvaOVoPdD9PaWfxz2h3E4jmdS6iH+746wnRX0D0ObxRGCEaTUlER0YQ3GLLMcwnjQWEtig/bvkxzPkAj5NkVk9yxAeImCKfJWCFhKFjLqSDa6K8vz6NbNjvtM9kIMwGoAp9EgCon+loGy3GzdviHAfAdQY1azvxKPKaKSaHp9WUsUbWu8luO19XxRT7syEFRtyGEXfHwegQ7bbtr8nx0Q7ogP1xSLTFgPR3RYVcyv0zlKo1YW0IAADCXzBp+nj0qb+lBKYE0U1szmD3xsfHqfvlH/gej6fL/3u7bNO2MWPGDFxzzTU4+OCDtzu+YsUK5HI5nHTSSXJfTU0NRo0ahTfffBOTJk3CW2+9hUgkgnHjxsky48ePRyQSwZtvvokDDzywW7HssYlPXV0drrzySrz44ovwer07LHPWWWfJ7VGjRmHs2LGora3Fc8891+WsMhQKYdWqVYjH43j55Zdx1VVXYb/99sPEiRMBiAlVntGjR2PChAkYNmwYHnnkEVx11VU7bPOGG24oOBaLxTBo0KCedJkgCIIg9hm+/H/cLbfcgltvvXWX2vrNb34DTdNwxRVX7PB4Q0MDDMPYTvJSWVmJhoYGWaaiomK7uhUVFbJMd9hjE58VK1agsbERY8aMkfssy8Krr76Ke++9V67WdKa6uhq1tbVYt25dl20rioL9998fAHDYYYdhzZo1mDdvnpz4fJlAIIDRo0d32W5vZroEQRAE8XVh9zJXV97AsK6uDuFwWO7f1f8DV6xYgd/97ndYuXIlGOvZShTnvKDOjup/ucxXscc0PscffzxWr16NVatWydfYsWNxzjnnYNWqVdtNegCgpaUFdXV1qK6u7tG5OOfIZDI7PZ7JZLBmzZoet0sQBEEQexv57Oy9eQFAOBwueO3qxOe1115DY2MjBg8eDE3ToGkaNm7ciKuvvhpDhgwBAFRVVSGbzaKtra2gbmNjIyorK2WZbdu2bdd+U1OTLNMd9tiKTygUwqhRowr2BQIBlJaWYtSoUYjH47j11ltxxhlnoLq6Ghs2bMCNN96IsrIynHbaabLOueeeiwEDBmDevHkAhBZn7NixGDZsGLLZLJ5//nk8+uij+OMf/yjrzJ49G1OnTsXgwYPR2NiIOXPmIBaL4bzzzvt6Or+b+M8CV+8z9qK7YetucsmkXB1kgAJ4m8Q7W2VQM0JIkQsoUrfBVQbLmXt6ohzJCvFF8Lba0FKiPOOQmiA1JxJaAoBiujoSJedqgrgCmD6RQBMAfI05mH5VhhXYZjt1bPi2ikyaRQCUdZtErLkcmDMhTh3kTlJtDcg62h31kCHIFLsf6/y5vW1A64GaTA7qae2kSQJg6e6vhdBG3qmvjkanzBXiqRmR3FWew/mloVhAfIDIvKkX6chEFPgbxViFtliIDRIxmn5AS+XHx43D0Bl8jTnZLuOO9iqWRmag+NWVKtdgOpogr4fB1yLaN30aogeI8uUrgNaD3P74twGRteLcRZ+byPmcJLMe93ePZTB57Y12C7YhjuWCbpm8T5DoNJdJSaVOK+T+WGnbX1wDrgHhT0Ub9hchBOtFWS3NgRVCt7T1uwr0OHPGhiOw1dFSGWKsASBRoWHMJQucMeNY/ucd35ImCGLvY8aMGds9wDRp0iTMmDEDM2fOBACMGTMGuq5j6dKlOPPMMwEA9fX1+PDDDzF//nwAwIQJExCNRvHuu+/i29/+NgDgnXfeQTQaxZFHHtntePbalBWqqmL16tV49NFH0d7ejurqahx77LF46qmnEAqFZLlNmzZBUdw/zolEApdddhk2b94Mn8+HESNG4PHHHy/QC23evBlnn302mpubUV5ejvHjx+Ptt99GbW3t19pHgiAIguhrLDBYvTAh3JW68Xgcn332mXy/fv16rFq1CiUlJRg8ePB2Dw7puo6qqiopSI5EIrjwwgtx9dVXo7S0FCUlJZg9ezZGjx4tJ00jR47E5MmTcfHFF+OBBx4AAFxyySU45ZRTui1sBvayic+yZcvkts/n28508KvqAMCcOXMwZ86cLussXrx4V8IjCIIgiL2ezrerdrV+T3nvvfdw7LHHyvf5h4HOO+88LFq0qFttLFiwAJqm4cwzz0QqlcLxxx+PRYsWFUhfnnjiCVxxxRXy6a9p06Z9pXfQl9mrJj4EQRAEQfQOC7u2atO5fk+ZOHEiOOdfXdBhw4YN2+3zer34wx/+gD/84Q87rVdSUoLHH398FyJ0oYlPP+W9h67Cwde7OY78jh4s4zwpaAp5BXIhSE1M0WcWVGFDA8XkUveSKnVn/+kSBYF658NtcwQahN9LLqjCExX6DZbjyAXFDJ1xIFXm1mcWoDt+L41jDRStE3V8TVlkioWOxtYVcF3UUT/eANhOu4oifXy8b34C30Ch84mOKkUmIspngx7pkRNotABLxKonRb4x2/HA4arQtQBALsCkdoUrTO63dSat25Ws0PDkyeunhAeSqJvzMaFdgdApgSlIlzj9yADeNnEszRgyRXDqA5liR3PjByKGGAN/g4m8AU5e3wMIPZMtZESwvAq0pOnEDXBVtN/4bUCtTCLXIQqWfqhKHQ5nkFoey8Og5NzxyWP5FKhZ8T64MQVb73T9bO7Eqkkdl+kX+btyPua0ZSOwTZRLVoocbgDgbe+sFeMINIgP25BnbDFeANIVXkSHqM4Yun5H+c8rAPg7OA77maP3sYCVf3S1bQRBEF8FTXwIgiAIoh+xJ2517UvQxIcgCIIg+hG7mmi0c/3+TP/uHUEQBEEQRCdoxacf89GvXe3D8LlCE+HbBvgbXf+aZLmC8CY3L5Oac7Ueelzsbz3Yg9IjhR14y5tVYI7Bj7fNhuX4WVkGA7OExiNdocFwNCXRwQqK17k+QQBgxMT74FaORJX4CGYiXpkzzNeUg7pWePewSAhWlRAmKR0ZKCnH2KUjDjsgTq5YnfQpnbKfpEoVNH8n3zcbJe/osBx9jGIBwa0iDiPu6n1SpQw5kSoKplcBd74hnnZIDyC4wwdbYwhuccU/bu4yBs4AzcmJlg0yqVdRcq7OKf8vILQ7pqOTyRSrCNal5bHo/q7IhXU6f16/yFXAaBcnyNRmYKY1GGGhocmGAlK71RlbY7ItS2dSv8MZkAk72qSkJn2eCuoaCpijFbJ1BWqGS3+nzjncPG1cxmh5mPTlsQzhIQUAsWGdBDwcMlajgyMXcNppsaWuytaZ1CRZOsO4GXfjncfI14cg8nAw2L0QN/Ne1N0XoIkPQRAEQfQj6FZX1/Tv3hEEQRAEQXSCVnwIgiAIoh9hcwab7/rtqt7U3RegiQ9BEARB9COsXmZn703dfQGa+HxD+PRGIXQ++IYFyIYUKWTVkxzpYiFWNuIctpOLU83asDXx4S/7wAJ38r+ZPkjTQiXLC4TF+SSVeopLQ0E1A8QGi/2R9SZMvwLTL44xC/DERP34AAYj7oibP9wC+ITglYcDgJMEtOOgEpkIVc1xxAbnzfAgRdZqGshGxDZXGEKrRYe0tDDDy5vp2ZqbYFXLcKiO8aAR5zAcwXH7cPdXT6YY0DvEticK6E6sppchGxJx6Akb/nqh3hUmgR6kSp0x6ZTUtKPWbTcxmKPqTfdYfty0NIeaFAlLba+Ook9FVtMtR/vhwpCsEP1jJuCvF3v1mAe2BwhsNWRf86JpNc2lgL2zIWMmzKTovbN4OlmlwxMTfbAMhmynpKX5+uJz4J4j51fAHYd5NculaaTRwZHNi5VjHLFaEV82JAwNZbuOptvSAa+TwNX0uYLpdLEbn54Qx8afc5c4X4bjjb/OBkEQxM6giQ9BEARB9CPoVlfX0MSHIAiCIPoRNhTYvbhd1Zu6+wI08SEIgiCIfoTFGaxerNr0pu6+AE18vmF8NE9ofY45eT4AkeiyM/nklIBrOJgqUxF7vwoAUHZoI5KfVQAAjA4bofUJAEBiUEDW87Sa0uRQ1xlK3nTEJ+kMcsOq0HSoa1iXNwjU44C32TEb9PvAtzUBABjnUDtEodQhQWgZ17jO1+TGmteR2EFX7+Nr7qSdCTPYGpCqFO+r37bg25IUMeiK1BGZfg0dg4RupvRDG1lnDGy9U3JQD6DkRHlvWydBDGPIFhvybbJSha3l+8mQDTnbCqCmnK5uZmg+RLQV2gj4G8UYeNpyaBwnxEr+bRZsx2AxssGGksvHwaQJYyasIlUmyigWoLe5ZopaisvEpLbBZOJUX4sbuxHn6Bikyvd5s8bQJo6co8niCuBtc8woO2l9AltEZ9LlHqff7rFgvSWT3YoGxTmSFYprJmkCoTrRKW9duyzafliZND/MhpgcfzXnNudvsgEOqU3jCsO3LrhbHl/+JzI2JAiiEJr4EARBEEQ/gjQ+XUMTH4IgCILoR/BeZmfn5NxMEARBEATRP6AVn28o/37uWrk9boariWC20H1wBqkrUUyO8BfO0ucHZShdJwxtYsODiO0fdOpx6HGnruYuk3rbLCQPLAcA+Nc2QWtNoOgz8bFL1GgyUaWa5cgFhf7D3r8UPo8oky0NIFPq+NHoQDIsyjPL9ZHRkpBaENPvanwS1QxGTGwrlvDwCWwR75tHqxi8Oe/FoyG6n0fGnKrIt8XgaXHrp0vEtr/BPUe6REFgm2uIk9camT4Go4MjVeokPy1zk2/auhMzhH+NzzmHlubwbRMmNtkiDzKOH5GviYHlPXNyHJtPM53x9EBNi3EyokBosxj/ZIWCbFiG5CRgdTRC600oWff3Tl4H5G0xYXp1OYbeZnGccTeBK7M5EpWa3C5aJ7Q9XGVQ0u4YhOps2W7Or0hfoHSRIvukJyD1T2oWaB0prrE5pgKqm5tVJjX1xLib5NUEMhE3YSlXxOcVEDqkvMdSuljBEZeK5LwrH3AT9hJEf8cCg9WLRKO9qbsvQBMfgiAIguhH2Lx3Oh2bf3WZfRm61UUQBEEQxDcGWvEhCIIgiH6E3Utxc2/q7gvQxIfAO48Jr5OjT/2t3McA2KZYKvU3WdA7hK6kY5AHarvw7gls0ZGqcLQZXoZchdDoBOpNGDGh+bB1hlSF+JilS6sR3JyB/5NGAICaKYMZEHXa99fQfkDeR0ZF8dpSAEB0P3e5NvIFR6DBEYwwJjUfppchJXNRAclBjreNYYOvE7qV5GALwS9UeNpFHe8Gjnit8B5Klbl+O9kiyHYDWwHTK7a1FFD8qVj/ZTaH4vgdKSaXucfsTtomZgvvoLxGRU1Drq9marMoq24FAOQer0R4QydRi5P7LFOkwr+NO/Ep0l/JMhREVjhaKM3NH6bmuPTFCdRbsDVVxm56gbKPTTc27o5bPvdZNqhDTzrnq3A9h3IJBt3xHNITgJEQ4x+vUqRvj79OCJb8G0WSs3R1AICIMed3c2zpSQ7d0TbZOmT/LC8D65TzLV0sBioXgOxT5+vta7ER3iSucaokn2dOxKUlLKhZsZ2JeKXv07hz74bpxLFiIel9iP6NDQa7Fzqd3tTdF6CJD0EQBEH0I8i5uWv693oWQRAEQRBEJ2jFhyAIgiD6EaTx6Rqa+BCSV//fNXL7yDPvgp7Im8cwpEuEViZUl0F6qDC0idUayAobH+gJSL+W6H56QR6ovPYlGwayIS8CRSLvl5q2pd7E08bhaXNOZwLtwx19UQOkh03Oz2AZ4gupZoBsmHU6h/iXK4Bvs9B9RNa7vjHh1xWYHldHomY4TJ/ixO7uZ5zJXFimF4BzKFHt5udiFpP5okyf0P/k8W9z+80shrZR7nv/VidH1joDvodFYMF4VB5vOTwi+xQbacLTIDrlr3fHUDGBTIl7vmSVCDDyOYPmxBofoMDXbKNjoDifEQdig0Vb3lZbamW8LSbSxeK6ZiNAh98dT6lNygK2I72yVYA7Oc08UY5ElTiQKgkhsM2U7TLeKU9YmsPX3ElflPf0KdVknjbTw6QnEwCpNQrXWUgXq7Je3hMpUamg7QBxssh6x7OnyDl5sSJj5Ir7uWA2pNfTIVctwH/uJp0P0X+x0cuUFf1c49O/p3UEQRAEQRCdoBUfgiAIguhH8F4+1cX7+YoPTXwIgiAIoh9B2dm7hm51EQRBEATxjYFWfIgd8ub/XC23v/ODO2Hr4hdApkiH5XWEtjkO5vwyyEaAQIMQmhoJjmzAESFnObS0a1QHDuSCzrGcm3jSE7XBnAQxeocFNSNEt1wTRnuAEMrKHyKMwRN1kox6gOBmsZsrDN42Vylb8Ykw1cuU+4UpYH1GHkuXCXc8xgE97hjilRtICu011DQQ2CrOUfSFhbbh4uti6wB39LreVkB1+udvNJEL5MW4HAZsnPKdlQCAF/45FtwRCVeszEGLCtPC6EERxGvc3x95IXHgMw3pctFu+0EczBFWB+sYVEdMnaoEPO1OEtRyILRJ7NcTHJaHwXDMDU0f4Gtxrk3Mkslgmw7TpbhcyQHcUUcrWQZbd85RIQTVogyDr0WMU7JSlcJvX4vlJAt1ErR6meyrp9WSSWs7Pyiixy0pLgdzz2F6GRTTMVIsVaFm8qaRgNcRv7cfUPhrlCtuwlrFBJjlGBiGFbQe5IyrlyO8Lp/JFBh1jUhe6mknQ0Oi/0FPdXUNTXwIgiAIoh9Bt7q6pn9P6wiCIAiCIDqx10x85s2bB8YYZs2aJfedf/75YIwVvMaPH99lO3/7298wduxYFBUVIRAI4LDDDsNjjz22Xbn77rsPQ4cOhdfrxZgxY/Daa6/1dZcIgiAI4msnn6urN6/+zF5xq2v58uV48MEHccghh2x3bPLkyfjzn/8s3xuGsV2ZzpSUlOCmm27CiBEjYBgGnn32WcycORMVFRWYNGkSAOCpp57CrFmzcN999+E73/kOHnjgAUyZMgUff/wxBg8e3Led6we88dfZGH/OXQCEnkJ3EkKaXhVGh6Oz8bkJL9MlDEFHG+OJ2dJ8T09ypIsV6E6iS8tgUieSKlVhO5e2+FMLnnYh+khU69LA0NNqgquOiV21Bs3J7clsSA0SZ4B/a9rZbyNb6hPnjmXBNQ/gmNsZm9uQC5eLtqo0mewytMlCulR1+gQkK/KxKwhvFHGLPuSTiTJYIadMIp9kVeiGmA2899sjAAC1mxJQsk5HOIflF521NYaOQ4TuKFycBH+rWNS3AG+T0yeVwXSMImMjXGNDJQdEvhAxxQYpUgvla7FhehmMXF57ZEsjwGSF+5UPNHCZBJZrkLoevcNJqgrA8gKZMtsZfwWZiPitxEwgWS3K+JoZvG052a4SUJEqc8YwoMLbkhXtNidgO/1OVfvldfW1WMg6ui/OxGcpH3ceT2sO8YGibumHtjQjtAyG6DAGPSbem0EgUyr6XbaSo+odsR1c34HPzxSmkUWfcqlHUnMc3/mh+Gwzm+P1/5sNgtjXoVtdXbPHV3zi8TjOOeccLFy4EMXFxdsd93g8qKqqkq+SkpIdtOIyceJEnHbaaRg5ciSGDRuGK6+8Eocccghef/11Webuu+/GhRdeiIsuuggjR47EPffcg0GDBuGPf/xjn/ePIAiCIL5O8hOf3rz6M92a+BxxxBE9eo0ZMwZbtmzpVgA//elPcfLJJ+OEE07Y4fFly5ahoqICw4cPx8UXX4zGxsZud45zjpdffhlr167F0UcfDQDIZrNYsWIFTjrppIKyJ510Et58882dtpXJZBCLxQpeBEEQBEEAr776KqZOnYqamhowxvD000/LY7lcDtdddx1Gjx6NQCCAmpoanHvuudi6dWtBG5lMBpdffjnKysoQCAQwbdo0bN68uaBMW1sbZsyYgUgkgkgkghkzZqC9vb1HsXbrVteqVatw9dVXIxgMfmVZzjl+/etfI5PJfGXZxYsXY+XKlVi+fPkOj0+ZMgU//OEPUVtbi/Xr1+Pmm2/GcccdhxUrVsDj8ey03Wg0igEDBiCTyUBVVdx333048cQTAQDNzc2wLAuVlZUFdSorK9HQ0LDTNufNm4fbbrvtK/tEEARBEHuSPXGrK5FI4NBDD8XMmTNxxhlnFBxLJpNYuXIlbr75Zhx66KFoa2vDrFmzMG3aNLz33nuy3KxZs/DMM89g8eLFKC0txdVXX41TTjkFK1asgKqK2+fTp0/H5s2bsWTJEgDAJZdcghkzZuCZZ57pdqyMc86/qpCiKGhoaEBFRUW3Gg2FQvjggw+w33777bRMXV0dxo4dixdffBGHHnooAHGb6rDDDsM999yzwzr19fWora3F4sWLcfrpp++0bdu28cUXXyAej+Pll1/Gr371Kzz99NOYOHEitm7digEDBuDNN9/EhAkTZJ077rgDjz32GD755JMdtpnJZAomc7FYDIMGDUIUQLixESgv72JE+hcTpt8lt2ODxaKhlgIsR6MTrOcwYo6AgwFf/g7lvWPy2h9A+O/EakVblgFENgh9R87nJgQFAF+T0P6YfgU5vyifiTCoQkYCo8OWiTCNqAnTL74swS9iaB5bJJNn+httGRfXgExo+8VP3ulngSfKwSwRuK0z6bfTuT+mh8HfZMm+GTETiuV+vfR28fmx/DpsJ9lq02gPMLEdAJCIe6B/5miS4m6CTVsXSWABIDM+jqHlLQCAtV/UoHi543ekuMk9FRPwNpswHU8hPW4BzteccSA22NXJWV5nrGIcnqiIPVGlSb1Pzg/Yzm8MNeUmL02XQ+pqGAdKP8oV6IfyXjyedgu+OlGQZdxkpamhxchGOpV39Ei5gCK1YrYOeGLb/3lSctxNiDtEgZ4EvG2OT1GHJRPZamlX2xTclMa2b/tkG/mxLV1jCa0ZgMCWNFpH+gGQtw/RhzQ1ARUViAGIQPwwD4fDu+VUsVgMkUgEJz5/KfRA13rYrsglslj6vQd2OVbGGP7+97/j+9///k7LLF++HN/+9rexceNGDB48GNFoFOXl5Xjsscdw1llnAQC2bt2KQYMG4fnnn8ekSZOwZs0aHHTQQXj77bcxbtw4AMDbb7+NCRMm4JNPPsGBBx7Yrfi6teKzfv16lPfgP/aPP/4YNTU1XZZZsWIFGhsbMWbMGLnPsiy8+uqruPfee+VqTWeqq6tRW1uLdevWddm2oijYf//9AQCHHXYY1qxZg3nz5mHixIkoKyuDqqrbre40NjZutwrUGY/H0+UqE0EQBEH0J74s6ejL/wej0SgYYygqKgIg5gS5XK5AhlJTU4NRo0bhzTffxKRJk/DWW28hEonISQ8AjB8/HpFIBG+++Wa3Jz7d0vjU1taCse4vfQ0aNGi7ScuXOf7447F69WqsWrVKvsaOHYtzzjkHq1at2mH9lpYW1NXVobq6utuxAOL2W361xjAMjBkzBkuXLi0os3TpUhx55JE9apcgCIIg9jY4evdIe36dddCgQVJLE4lEMG/evD6JL51O4/rrr8f06dPlilJDQwMMw9juIafOMpSd3XmqqKjoUqryZXbpcfb29na8++67aGxshG3bBcfOPffcbrURCoUwatSogn2BQAClpaUYNWoU4vE4br31Vpxxxhmorq7Ghg0bcOONN6KsrAynnXZawfkGDBggL8i8efMwduxYDBs2DNlsFs8//zweffTRgie2rrrqKsyYMQNjx47FhAkT8OCDD2LTpk34yU9+sivDQRAEQRB7DX2l8amrqyu41dUXqz25XA4/+tGPYNs27rvvvq8szzkvWHjZ0SLMl8t8FT2e+DzzzDM455xzkEgkEAqFtguouxOfr0JVVaxevRqPPvoo2tvbUV1djWOPPRZPPfUUQqGQLLdp0yYoirtwlUgkcNlll2Hz5s3w+XwYMWIEHn/8cXnPEADOOusstLS04Pbbb0d9fT1GjRqF559/HrW1tX0Se3/nrb+4ebwOu1zkPGI2ULEiCQDQPu+k1A/40XGouIVoepnUwwCAlrSlL4+/Pg1/vdhveVSp/8iEFPhahDYkF1Bk3ifLcNvyN9nSX8bWGUr+tUGeY/OPhgIAkuXiV4SvWUzUA3UJdAwNAMjn93I0RQH38xyvcLctgyG0WZxQS9tQsqI81xhyTl4y08Pgcfxs9LYUrKAHiqNryRV5kCkVghrboyDh6GG4CqQ/KQIAeNsBXQwhmAmZiyxdwmDldTYfBLE1IR4yKEkBwS2i/UxEReM4d3CrX1NhRE3nHAzxAeJ+v7/RRM75+viaOSJfCHGU0diB1CDhcxPbD1JDwxVAc2IyA0B8P0e7FTRhrBJBeaIcscE6DMfbyNNqSp+dZKWGbFiMffhTd9lczdrSwwkA1LQ4YcdAVWqVfK1c6n28bRYsjxjnZLkCb7so720FciHXb6l1hIbqt8Q1sLyK1J21jfTBv020G2jIIVPkeCFlbSimk4eu1IC/WfTvqNPulLG99nfy9iG+mYTD4T7VI+VyOZx55plYv349/vWvfxW0XVVVhWw2i7a2toJVn8bGRnk3pqqqCtu2bduu3aampi6lKl+mxxOfq6++GhdccAHmzp0Lv9/f0+pdsmzZMrnt8/nwwgsv9KgOAMyZMwdz5sz5ynqXXXYZLrvssp6GSBAEQRB7NXujgWF+0rNu3Tq88sorKC0tLTg+ZswY6LqOpUuX4swzzwQgHmj68MMPMX/+fADAhAkTEI1G8e677+Lb3/42AOCdd95BNBrtkVSlxxOfLVu24IorrujzSQ9BEARBEL1nT0x84vE4PvvsM/l+/fr1WLVqFUpKSlBTU4Mf/OAHWLlyJZ599llYliU1OSUlJTAMA5FIBBdeeCGuvvpqlJaWoqSkBLNnz8bo0aOlz9/IkSMxefJkXHzxxXjggQcAiMfZTznllG4Lm4FdmPhMmjQJ7733XpePqhMEQRAE8c3hvffew7HHHivfX3XVVQCA8847D7feeiv+8Y9/ABBPWnfmlVdewcSJEwEACxYsgKZpOPPMM5FKpXD88cdj0aJFBQ87PfHEE7jiiivk01/Tpk3Dvffe26NYu+Xjkw8YEPfSbr/9dsycOROjR4+GrusFZadNm9ajAPZV8n4J30Qfnx0x4ey7EP4sDgBQ6lvcA6EA2g8vAwCoGeG/0vnHRF6nwywu820BjvcMAK0jB64LbYeStZCNuN4U2bCYt6dLXS2HZQDlHzi6lba0LBvbP4hsJ68exeTQ0uLkyTIFWSFvgREFvO3uV6JjoIip+FNL7rM8DIprSYNEpdtu9SvNbrmQD7mw+H5kSjQY7U4bKoPpdT2I8loX08/Ane+3koXMB5YNM5kXy/Rx6B1MxqrHnfFKcXic9m2dIRtUZP/UjA3bGUPTx2ROLyNugzn90NKu3qrpUFXqrTo/9xkf5G4b7UDqiBQAIPimD2oG8HTYzjEL3LmWyXIVLYeKOIY8a0ptFADknOtnetyTdAxWkHVu+5d+ZEvfJQAy7lwACG0W7TCbw9YY0kVuG6GtolPM5MiGxID6mrOIDxSaJM5EDjkAUFNWoa+Uk8Ors8cUOJd6qZdfuQEE0SP2gI/Pd//xU2iBXRcim4kMXp/237s11j1Jt1Z8dmRCdPvtt2+3jzEGy7K2208QBEEQxNcD5wy8F7e6elN3X6BbE58vP7JOEARBEMTeSd6Ppzf1+zM9zs7+6KOP7jAPVzabxaOPPtonQREEQRAEQewOejzxmTlzJqLR6Hb7Ozo6MHPmzD4JiiAIgiCIXSP/VFdvXv2ZHj/VtTOHxM2bNyMSifRJUMS+x1tPuqaGUwZdCeRvj6bSwtAOgOVTYRkMpk98frRkJ129zmRiS8XiMrmokrNhBpyPqaVBSwsNWaZIl+W9rTbUjCN25UCqXJRXMzr0re0AACPqg+ljyIYcYW8HEK/JC36FER4gEmNmIqKMHucI1OfV1wzc+ZnQWdhsGQyRDWKHHsuBe4XKWmmLQ0tlASa+E8wGckHRp2xIkUJdLcPh3+YmXs2LdLU0R7rETdqqOjpto90VQKtZwNdiObFaUuxteRkS1QxGLJ/sU5EGiHanb3yqQpGJRoP17v7iT20Zn6fdRi4o4vA0M5m8lCuAsl4k/eQagIwrCE5UawhvEALzcNyCnshXAoxtHaKvJQF4twlxdLbIAyMqygfrgEyxCDZTrBYkhu2chDWPrTEw2xUre1s6HWRAsE64L9qGKkXkuSCD4YjC85+zPJkiVwQeaLBkQ1qHWOUef85dePuJq0EQezOk8emabk98Dj/8cDDGwBjD8ccfD01zq1qWhfXr12Py5Mm7JUiCIAiCIIi+oNsTn/yTXatWrcKkSZMQDAblMcMwMGTIEJxxxhl9HiBBEARBEN1nb3Ru3pvo9sTnlltugWVZqK2txaRJk3qcIZ0gCIIgiN0P3erqmh5pfFRVxU9+8hOsWbNmd8VD9AP+Wfc7uT1l8CzocaG7iA/UoWYhtRaWl0HJuTofNe7aJtiOxiRTrMvyqsWRqBH6DyXHXU2QyWWi0GzQ1bOoGQNcFcnuuMZgxGyki4SmgyuA5XVjzjqJO5UsoDsPLTIOaCkuy3tbc05Z92vDVTfBJgCYAaFnUXRH7+bE7mnogLmf2GdrkDod08fQMdA1AZWmg1kgUC80JqZfgWed5cbtGP7ZGqA4MpT4QF0aBfq3MlheIOucm2uAknPGVQdyIXFA72AymahlAHrCdsaTyfJggCcqTmLpKpJVooKaEnocQIxjuhQwNkHGHh9oyPHJkynW4N0g2mKmhfhgkSRWy9hIDPTL8cjrdPSEjYxzvWwV0J3Ph5qGNFvMhhhyfobidSLgXEiF6XM0SW0mTL8YW2ZzhD8Xeh/Lp4FZoq1sUaEBa940kiuQiW/1BEfHMPEBSZUrOOLSBbCEvAkf3PNzEASxb9Hjp7pGjx6NL774YnfEQhAEQRBEL+G9fKKrv6/49Hjic8cdd2D27Nl49tlnUV9fj1gsVvAiCIIgCGLPwQFw3ovXnu7AbqbHj7Pnn9yaNm1awWPt+cfcKWUFQRAEQRB7Kz2e+Lzyyiu7Iw6in/LPTfdgykE3AgBKF38Kns1BGTnMLbBJGMiw6gq5K35gidTNMJvDDAidRy6kygSnppdJDUb7oTmwnNj2bYHrvQPIxJTZIIOa5fDEHA0HYzA6+XAGt4gJu5q2kS4VX4tAQxYZRwNi60Cq3NGLmJB+Nlqaw1PvrHQqCmyfU8bigGnLNdXEsCLEakU/1BTga3Z0QUwkCAUAyyhMomo7+hhmA60HipjCm2x42oUGJlWuY9u38glcAd82MTjpcg4t4ep3sp1yDOpxwNvCZJ3EdxJinOr8KF7jJPRscZOD5vwKUs6lKfrUlhqkTESBt825Rhag5rj03PFviALOjyLbp4Mrjv6q2EDyQJGwlivCryl/Djc+G7YzDpwBnmj+HByWweR4ZIrcZKJ6kiO6n+60JTyaRP9U5JzPjhEzkS4VZYwOC/kL49uaQrZEfEZsjwItlddrKdLzKRNWkKhxx9CfBgznczRxynws++e1IIi9CRsMjFJW7JQeT3yOOeaY3REHQRAEQRB9AD3V1TU9nvgAQHt7Ox5++GGsWbMGjDEcdNBBuOCCC8i5mSAIgiD2MDZnYOTjs1N6LG5+7733MGzYMCxYsACtra1obm7G3XffjWHDhmHlypW7I0aCIAiCIIg+gXHOeyTgPuqoo7D//vtj4cKFMm2FaZq46KKL8MUXX+DVV1/dLYHubcRiMUQiEUQBhBsbgfLyPR3SPsHk8Exg6EDxpq4BPCtyNDFFARtQJctlK4VviuXToGTz/jI2kpWOHsNgUlOSKVLQUeueo3ylKJ8LMJnXKRdkSFYCuqP/sDXAFlYz4BoQ/sLxz8lx+LcKIx/ji0akDhbiDq4IL6A8eT2OkrNhOhoVT6sJzzbhFaPERR4qOyL8abYe466GWl7A2yK2tRSH6ngZaUnb1fkwyJxmRsxG24GO/xAD0hWivKel8FcZc+QpnjZAT3JXB6MASl5SZELmHEuXu7m7ckUW/FvEOUo+tpAqU502ufBeAuBrMsFsce6Wgw142hw/oCQHsyF9lcA51IzYNn0KPO15j51OaW4MBVrS8QfyKtAS7kMR+Zxmao7DVvP5xoRGCwCMtizMkKOlytlgNmA53j2JCk1qm/SELXN4FYxTzgbXlYL3ctvpgm0o8nNna0xqhTxRV18l3ltSewQOvP632dudj/iG09QEVFQgBiACIBqNIhwOf1WtXSL//9LBT10D1e/Z5XasZAYfnfXb3RrrnqTHt7ree++9gkkPAGiahmuvvRZjx47t0+AIgiAIgugZpPHpmh7f6gqHw9i0adN2++vq6hAKhfokKIIgCIIgiN1Bjyc+Z511Fi688EI89dRTqKurw+bNm7F48WJcdNFFOPvss3dHjARBEARBdJP8ik9vXv2ZHt/quvPOO8EYw7nnngvTdHLq6Dr+67/+C7/+9a/7PECif7Ek9mdMnPwbAACr2h/G6x/JY3zrNrGha9CbhAjGHLc/LK+Yn1tQYMTEZ87yqTCiQjvibVEQ2uTkkMq6eg01p0kdSS6hwtJV6b/jb+Sw8vnAIkBHrVM/zaDHnXxbg8tl3qdcQJG6FTVrQ3F0Ie37u1+hjoEGStaK8oF1OXBNAcuKeEs/yiJV0SknVyqv67GkNsfWmeMxA6RLNeQC+T8+ipvfzA/h0QNAzYgcWQAKPIksr9AHBRpEw7FaBSzt9LvFlu16PgcS1flzqIATR7pYQUrY7YDZ7h/AQL0Ny5vXAWWRLhP9yYYY0iVMjq2vCfA3mrJPiWrDGTfIcdMSltTTMMv1akqVusm9fM2W1CN1zomWC+vyuliGCm+rCdP5jIQ3ZcEVJttNVomg8nnIACBXVJgbjTsaLS1lQ0uJ8Veyrp9TbJAic5fFBxoFtraWoUqvIVtj+M4P7pTH3vgr6X2IPQM91dU1PZ74GIaB3/3ud5g3bx4+//xzcM6x//77w+/37474CIIgCIIg+oxd8vEBAL/fj9GjR/dlLARBEARB9JJ8zq3e1O/P9Hjik0gk8Otf/xovv/wyGhsbYduFj4tS5naCIAiC2HOIiU9vnurqw2D2Qno88bnooovw73//GzNmzEB1dXVBolKCIAiCIIi9mR5PfP75z3/iueeew3e+853dEQ/xDWDZkuvk9tGn/hYAoGQ5vG9/KnZmc2AeYb7lX9OIjsNcY8O8WJkrQKpciGYjy+uRG1QCAEhWeWSCTQDQ444AP24hWM/QMUgIWW2NIbRRKFa1Ck2a/QW32LA8oowZ0KSgNlmuIlkuyhR/ZkvRbdFnphTpWoaCbMhJilkWgN4Qg1UUEO9bM+COGV+iSoOlMycud1wYd80FORPJPwGRkFVzxMmZYsD2iBMym8n6egLIBfLlgfAmLs/n38bhbRf9SBcryPldcXS+fnAzR7rYSV5qijoAoOYAxTFYjNUaUIW3I3zNHKH1wqwxWeODnnRNC8Ehk31yhXVKvspl8lKuA96tSWc3R7pSaAQDDVyOeTasymvJbEijSHDRDwAIbLPANSYTvebND/PXLB+7qrplwADLyI85QybsGEV2MGQion5oYwpKTvx59LZBGjfmr0O+3XxsAGAFGLRU/riNo74vPtuvPX0NCOLrhHx8uqbHE5/i4mKUlJTsjlgIgiAIguglHAUPH+5S/f5Mj318fvWrX+GXv/wlksnk7oiHIAiCIIheQD4+XdPjFZ+77roLn3/+OSorKzFkyBDoul5wnBKVEgRBEASxt9Ljic/3v//93RAG8U3l1f/n6h+OO1EYYHLGwJzHCixdkZoPrjNpSKeYQKpM/CrpOG2ATEyppQBvqyivZjmyYfER15I2wDmCW5yEpzmOTLGjx+mwYTjJSz0tWRlPpsRALiAWRfUkR2Cbm0gzr/GwdYb8j6PYIAXBetG+3pyAVRKA5dOdcoqsE9ySg+3oXiwPk9oVzoD4ALHNTHeMQltsJCvEfjUD+BvECWP724h8KvZnw4Dq6E9sD6BmuNQL5XyKNPVTs65eJV30pV91ncwCbSchay4IeNrFfn+TJdvhChAbJnQ5lvPbx9MqgvbWu8IltcgnE7IqGROJQQGnHxzxWrGtJW1AcWPJGz12/tFpxC0kncSp3nYboU05N2yTY8NUcZ31qIJgndjPLCAXcuJVGVib215eq2R63UStmQhDoEFc40yJATUjrqWn3TXGNP0KUqUK9ISokw0zGFEneWrcvUHAFSa1X0eddqdMOPvWX64GQex26F5Xl/R44nPLLbd0q9yTTz6JadOmIRAIdKv8vHnzcOONN+LKK6/EPffcAwA4//zz8cgjjxSUGzduHN5+++2dtrNw4UI8+uij+PDDDwEAY8aMwdy5c/Htb39blrn11ltx2223FdSrrKxEQ0NDt2IlCIIgiL2W3t6u6ue3unqs8ekul156KbZt29atssuXL8eDDz6IQw45ZLtjkydPRn19vXw9//zzXba1bNkynH322XjllVfw1ltvYfDgwTjppJOwZcuWgnIHH3xwQburV6/ufucIgiAIgtgn2WXn5q+Cd9MBKR6P45xzzsHChQsxZ86c7Y57PB5UVVXtoOaOeeKJJwreL1y4EH/961/x8ssv49xzz5X7NU3rUbsEQRAEsS9Azs1ds9smPt3lpz/9KU4++WSccMIJO5z4LFu2DBUVFSgqKsIxxxyDO+64AxUVFd1uP5lMIpfLbfcI/rp161BTUwOPx4Nx48Zh7ty52G+//XbaTiaTQSaTke9jsVi3YyC6x7+WXg8AOHrab6X/jgobRkOHLGONENcx52fwNwrdRSakIFUpjmcjwncFALJBRWp/siEF3jYLipOsMlOsQnF0NKbX1WNYPk1+67Wkm0jT0pn0oLE8TOo/GHdXhYu+MKWXDTc0qC1xsIjQwWTKfNJXBxDaIABIVLm+M1qSgztvuQroTreT5QqyYbHtawISA8S2UpJBbH+PrK9knOSj7a73TZ58jJkIk1ogy+t6BaXKmNStWDqTvj9qlhe00XZAPl4V3hbX6ye0MS31P2aRD7YmFpM7J2Y1ohqYJep0DHL/9ATq3QSk3GDwREVQtgo5nqZfKdDQ5PVZaobD8iooXyH2p4sBM5AfT8jkolqKS52UGEdxPsvDwLX8+AG5oCLbzY9fslxBZKOTXDVpw+9KvWB0cCim83lJWEiXOY3pTOq0mM2hOOP43dPvhOKMQWd9G0H0JeTj0zW77VZXd1i8eDFWrlyJefPm7fD4lClT8MQTT+Bf//oX7rrrLixfvhzHHXdcwQTkq7j++usxYMAAnHDCCXLfuHHj8Oijj+KFF17AwoUL0dDQgCOPPBItLS07bWfevHmIRCLyNWjQoO53lCAIgiCIvYI9tuJTV1eHK6+8Ei+++CK8Xu8Oy5x11llye9SoURg7dixqa2vx3HPP4fTTT//Kc8yfPx9PPvkkli1bVnCOKVOmyO3Ro0djwoQJGDZsGB555BFcddVVO2zrhhtuKDgWi8Vo8kMQBEHsfXDWO4EyrfjsHlasWIHGxkaMGTMGmqZB0zT8+9//xu9//3tomgbLsrarU11djdraWqxbt+4r27/zzjsxd+5cvPjiizsUTXcmEAhg9OjRXbbr8XgQDocLXgRBEASxt5HX+PTm1VNeffVVTJ06FTU1NWCM4emnn/5STBy33norampq4PP5MHHiRHz00UcFZTKZDC6//HKUlZUhEAhg2rRp2Lx5c0GZtrY2zJgxQ959mTFjBtrb23sU625b8amtrd3O3LAzxx9//HZPUs2cORMjRozAddddB1VVt6vT0tKCuro6VFdXd3nu3/72t5gzZw5eeOEFjB079itjzWQyWLNmDY466qivLEvsfl79h6t9mDhlPtIDxCTT93kLwqvEk4KxwyplGTXLEdrovGGAb5sQdujtKXQME3U1R5OT/0YrWS49ehgHjHYx0ba8Ckyv+LXja85BcbRGzKdKXY7pZfBvEbdbs0VGXkaERI37ddJjBtSc5eqFUhYsr/hMmz5Fal2MGJc5wEwPkxofywOky0QZ3zYm9T6xA2xYARFraSSJVlP0wbPBA6NdlAlttpGoVGD63TH1N+U9hCzpKZNLKXJ/NsRg+kRZbxtHusjJhdVoSf0NAJR+JMY2Wen21dYAZnHoW4S4igd9SAwJyeNKJ08i1fEyMjpcn6FsWIGTOkvoYZxrpVpcjrl/S1J6IiUGeKT3TnBzBpZXRccgccwT5TIPGuBqmGJDGEJ1Tl+DTOp9/E02so7Xj611ysHV6QevJ8qFXgziuJrl8voB4nqK+prUOTHb1f4oFgfLbf8/yXfPuBOv/9/s7fYTxL5IIpHAoYceipkzZ+KMM87Y7vj8+fNx9913Y9GiRRg+fDjmzJmDE088EWvXrkUoJP5ezJo1C8888wwWL16M0tJSXH311TjllFOwYsUKOSeYPn06Nm/ejCVLlgAALrnkEsyYMQPPPPNMt2Pt8cSnrq4OjDEMHDgQAPDuu+/iL3/5Cw466CBccsklslzeR2dnhEIhjBo1qmBfIBBAaWkpRo0ahXg8jltvvRVnnHEGqqursWHDBtx4440oKyvDaaedJuuce+65GDBggNQJzZ8/HzfffDP+8pe/YMiQIdKbJxgMIhgMAgBmz56NqVOnYvDgwWhsbMScOXMQi8Vw3nnn9XQ4CIIgCGLvYg8YGE6ZMqVARlLQHOe45557cNNNN0mZyiOPPILKykr85S9/waWXXopoNIqHH34Yjz32mNTkPv744xg0aBBeeuklTJo0CWvWrMGSJUvw9ttvY9y4cQDEk9sTJkzA2rVrceCBB3Yr1h7f6po+fTpeeeUVAEBDQwNOPPFEvPvuu7jxxhtx++2397S5naKqKlavXo1TTz0Vw4cPx3nnnYfhw4fjrbfekrNDANi0aRPq6+vl+/vuuw/ZbBY/+MEPUF1dLV933nmnLLN582acffbZOPDAA3H66afDMAy8/fbbqK2t7bP4CYIgCGJP0Fe5umKxWMGrJw8WdWb9+vVoaGjASSedJPd5PB4cc8wxePPNNwEI+UsulysoU1NTg1GjRskyb731FiKRiJz0AMD48eMRiURkme7Q4xWfDz/8ULog/8///A9GjRqFN954Ay+++CJ+8pOf4Je//GVPm5QsW7ZMbvt8Przwwgs9qgMAGzZs+Mo6ixcv7mFkBEEQBLEP0QdePF9+gOeWW27Brbfe2uN28ndeKisrC/ZXVlZi48aNsoxhGCguLt6uTL5+Q0PDDu1sKioqepR5occTn1wuB49HeIe89NJLmDZtGgBgxIgRBSsvBNEXLPvntXL72+ff7WowAGhpRwPTYoM5egquMXjWiS9Abkg5wp9GAQDZUiF40WPiFwvjXunRkwso0mNHS1hIVAnFSabII/NQhessqf1RTI62kaI9f1OhCL/snU6WCCoDN8RXjCtM5g3LBpnUkFg6g+VocfwNHFYm7xUEeJvcbdsRwQQ2KUg5+pSOxlL4UmK/3gHpw9MxSIGacT1sIutNmXuLK0xqm4rX5pCoFjEpWQ7YokyyjMnzZYpVhDc6v/4GKyj5VPTXv82E6VflmNm6guiYKmc8O2lsbEBPumOU7eSTk4mI7UQ1EFmfTxTm+g9lilQkKxz9k8+A7qQAMzq4PEfrSB/0BEfxmqQYK7+GTET0KVWqSp2Nt5UhUZm/fkDOeTYhXa5Ac8ZNT7jxdfZA0pO2jJVZzufO6SJXIDVCStbVMPm3WcgFxfjYOoNuijFQ0zYsj2jL9DKMP+cuGdObT1EeL2Lvoq6uruBBnvz//bsKY4VPi3HOt9v3Zb5cZkflu9NOZ3p8q+vggw/G/fffj9deew1Lly7F5MmTAQBbt25FaWlpT5sjCIIgCKIP6atbXV9+knlXJz75LAlfXpVpbGyUq0BVVVXIZrNoa2vrssyOUmE1NTVtt5rUFT2e+PzmN7/BAw88gIkTJ+Lss8/GoYceCgD4xz/+UZAIlCAIgiCIPQDvg1cfMnToUFRVVWHp0qVyXzabxb///W8ceeSRAERCcV3XC8rU19fjww8/lGUmTJiAaDSKd999V5Z55513EI1GZZnu0ONbXRMnTkRzczNisVjBvbhLLrkEfr+/i5oEQRAEQfRH4vE4PvvsM/l+/fr1WLVqFUpKSjB48GDMmjULc+fOxQEHHIADDjgAc+fOhd/vx/Tp0wEAkUgEF154Ia6++mqUlpaipKQEs2fPxujRo+VTXiNHjsTkyZNx8cUX44EHHgAg5h6nnHJKt5/oAnbRx4dzjhUrVuDzzz/H9OnTEQqFYBgGTXwIgiAIYo/DUGBGtUv1e8Z7772HY489Vr7PZzo477zzsGjRIlx77bVIpVK47LLL0NbWhnHjxuHFF18seEp7wYIF0DQNZ555JlKpFI4//ngsWrSowNfviSeewBVXXCGf/po2bRruvffenvWOdzeNusPGjRsxefJkbNq0CZlMBp9++in2228/zJo1C+l0Gvfff3+PAthXicViiEQiiAIINzYC5eV7OqRvBIfOWgBACHe1VF646opnFQvwr2kUbxhDcngZAMA2FGmMJ8s6wtdcUJWC38hnCbCcaC86whX1dXZwtzXA55zTaM8hF+5k1Gk74tYvxH1qKyJcAS2/DssjvryZIhUZxyAw53OrctUVMasZyOXmxCAOXu6Ispvde+zMBKxSoWD21BmoWCGcAqNDNZh+yCSZ4Tpbxm9rDOnSvDJXmPMBQMfgTh3kQGS9k4A045oIZkMMvmYxhrkAg6/RMXfkwvixY4Don2UAetJtztcsxkpP2LANR7BtKMhEXMF1XqiupTj0uCjPNYZMxGmz0xBraVcY7WuxEVzfAdsrCmRKDSl0j9XqnRLRCpE4IAwa82JvT8z9TGSDijRGtHUgtNn9XCUqVdlXrrjiZ2YCzPkT6m2z3WSrGoPpiJjTpa6iILQpBy0l2s2FtMJEsk4xSl7az2hqAioqEAMQARCNRneb83/+/6VBf7wVim/HqaC6g51Ko+6/bt2tse5JeqzxufLKKzF27Fi0tbXB53P/ap922ml4+eWX+zQ4giAIgiCIvqTHt7pef/11vPHGGzAMo2B/bW0ttmzZ0meBEQRBEASxC+wB5+Z9iR5PfGzb3mEC0c2bNxfcqyMIgiAIYg9A2dm7pMcTnxNPPBH33HMPHnzwQQDCTCgej+OWW27B9773vT4PkCA688E9P5fbYy4Rep90iYrSFUJTkxoQkjob6Ko0i2Mc0BMm0mVipVJN27Cc5JKKyRFoyAIAMsUeaGkxsQ/WpaGkhEgkW+qVOiAA8hcRV5nUi+R1JwCgdwShNyegxtJiB2NS4+Npt6SmBQC2HuXWs8qEZifwsQGPY2ehxxg8m8T9eq5AJhMFgJTP0Q1VWEhWaE77HMxi0Bxzw2xAgScqxCSZIib0QwD8ja72R48zaXgIANH9HA1MO0NKyKRQ+pEtk3OGv0jLskrWghkyoCfz5oQMWsZJ0Okk9ZSxO9fD1oUmRo5bfjwVIBsWfTJiljxfqlqRBo2mj3XSQtlIDgzA2yg65d/YgfZRReIcGqAnRX09wWVy1nxcgDARtFVX8yS1Ru0coTWtAID0oAiKHN1RJqKBa0C8WvRDSwN5IajQODlaINs9t6fdhpaynX4zsLijCdqWQqZcXEyWs6WcdPw5d0EVH0e88b9kakgQfU2PJz4LFizAsccei4MOOgjpdBrTp0/HunXrUFZWhieffHJ3xEgQBEEQRDfhXLx6U78/0+OJT01NDVatWoUnn3wSK1euhG3buPDCC3HOOecUiJ0JgiAIgtgDkManS3bJx8fn8+GCCy7ABRdc0NfxEARBEATRG0jj0yW7NPF57LHH8MADD+CLL77AW2+9hdraWixYsAD77bcfTj311L6OkSB2yIoHXb3PlKHCLMu3fjO4Y3bFQkGZNDLnU5Cq8MhEo2rKhh4T+h0zqEGLClGFkTWRHCxE+qZPgbdVaDlS5Rq0pNBp6AnXfMX0usZaapaLZJ8AUhUeaG1JmaSUZU2oKceTxqvKvyuWh6F8pdg2OizkHSbahwGZErFfS7k+NloGUqNj64B/i2jT38DBnVC4IjyBLMfGw7/NjTdUZ6L5EBFTplhB1nkegdmA7RGxG20MzHl+wVaFNxIgtDiBBjFm8cE+FC/b4PZdU8GZyMez5WgDgXrmjBVknzp7ojFbXAMASO2nyljVtKtNSpYryAXd8oEGy9mvQnXKcJUJnY4hzhHbv0gkgQUQaHD7nS5WYOv5cXZ/zjLujq2v1ZYeQvEBGtoPK3XK28iEXR1WJqJIz51EDaA5nkVqCjADbh/z/kfJcga/k3CW2cLHCQAC9TkYbeJzxxUxpi4ixqGPz5Pjtv6cG0AQRO/psY/PH//4R1x11VWYMmUK2tra5BNexcXFuOeee/o6PoIgCIIgegDjvX/1Z3o88fnDH/6AhQsX4qabboKmuQtGY8eOxerVq/s0OIIgCIIgeshelqR0b6PHE5/169fj8MMP326/x+NBIpHok6AIgiAIgiB2Bz3W+AwdOhSrVq1CbW1twf5//vOfOOigg/osMILoCf9cfzcAYHLEFdzzjji8/xKrkMahw6Ft3AarqQUAoA4ZhFyVyEGjR7NoPlyIXbxtNiyPK0ZpGSkSPIW2WMj5xe8Ey6vAdvQ0tg6ZD0pLcoCJur7GDMySAPSGmIjF5zqdaykLluO/E692tSelawBvoxCv1GzIwfaJA/HaABJVjm9MErCdnysKh9T1pMoZAvXiZ5rlYWC2q+3RE5b0M7IMhtIPnYAZk95DjceYYLoj5mn3IudoVXJBwCuGDEacy9xSxW9uBfLu7dwGsjlocWEEVPypjo6Bzjg0d9LT2JC5sLQ0B3P8ljpG5jBq/80AgA/XDUT1K6JQzs+gOF5GgUYLyXLR2bL/xAuet238VghJxw/H9AOpKnEsOpzBv0XEEaznCH8ufphxhSFdLq5rNqzCiItOKSaHmfd2yrn6zkxYkdd46/E2ABssK8qFP1VkvjOuAmh3hoQBnpjjCZR0x5+rDPEasZ2oMmB0iDH0RLnUkKmdcspVPW8guEl4Jn3n6bvI14foHiRu7pIeT3yuueYa/PSnP0U6nQbnHO+++y6efPJJzJs3Dw899NDuiJEgCIIgiO5Cj7N3SY8nPjNnzoRpmrj22muRTCYxffp0DBgwAL/73e/wox/9aHfESBAEQRAE0Sf0aOJjmiaeeOIJTJ06FRdffDGam5th2zYqKip2V3wEQRAEQfQEWvHpEsZ5z8yp/X4/1qxZs53G55tGLBZDJBJBFEC4sREoL9/TIRFfYsrgWe4bQwdSadit7QAAO5OGNmwoAKDpmCrpW8MVwDbyubcgNS16AgjUi0Jq2paPe9qGm+spXaIgtEnoXDyNCcB2tRqpQWFsnmHK99X/m9fHCN0H4NyWd36KtI5wnzsIbAHSzsfL1oDQRlfLsyOvHltjUCwOy8h76XBoSSf2rFsuU6QjWSHO0zbKgtEqNDRKDkgPE2ZBmseNOfJSQObXMmImvBscAU4qDXNQGWxD1N/2La/UxGRDkDm2AKD407y+CEhUis5yFUg7nkX5/GQA4GuxpYYpG1SQDTvbYcjrVfmeGO9sxPFI0pn0WVKzHFuPEvvNiJtYuXiVBl+zKJMLFuYoy/kdbVKLJa99LuheC64A4ECiRpTLBSDrKxbgbRbbtubm/fK12LDynj4ViszD1T6CQ4s7nkNbgGC96bSpFPgGla4WAxiv9UFP2IgOEeP2we9dHytiL6apCaioQAxABEA0GkU4HN4tp8r/vzTozl9B8Xl3uR07lUbd7Jt3a6x7kh4/1TVu3Di8//77uyMWgiAIgiCI3UqPNT6XXXYZrr76amzevBljxoxBIBAoOH7IIYf0WXAEQRAEQfQQeqqrS3o88TnrrLMAAFdccYXcxxgD5xyMMenkTBAEQRDE109v3Zf7u3Nzjyc+69ev3x1xEARBEATRF5C4uUt6PPH5pouaiX2Hf266B8cfN0++54zBNgYBALzLPwM0IXz1RDk6Bgq5m5oFfE2O8NWvyASRzHR/BdkeBYpjMsdMDsXZr2aBbER8pTzbOFg6B6tI3Ar2bk0g8E4RACB2RAabvy+ErCVveBCqE+pYW2fIOMaGzM1XimSNOD8ApIdkoSWFMNrXzKUYNzpUkUaDgBA+BxzBM7M5EtWaPAfrtCibN08MrlelsDhVCahN4hzeBg+8Lfm/glwaB1oexRVvewxodc1onTgYABBo4Gg7VQhy/a8EZaJRPQ7EBufjcJOtZsOQSUdtDQjWuwJsT7vouK3qSJU7CWbTQLJWdGLLeVmEX3Zvt/tabSlOjw1W4XHGJLBZQ+mHmfzoIDFA9C8bZMgUO/F1uONixF3RM7OBbMhd+jc6OIJbnHEwxOcKADqGuoJmLcVh+pz9A1XZV9MPREeI/tl+C/k/wYwz5ALigreMUqRI2jKALRNF/7gGWIYCyy/OMeSR30BtFhfw86uvAkEQ3aPHE59//OMfO9zPGIPX68X++++PoUOH9jowgiAIgiCIvqbHE5/vf//7UtPTmc46n+9+97t4+umnUVxc3GeBEgRBEATx1TD0UuPTZ5HsnfT4cfalS5fiW9/6FpYuXYpoNIpoNIqlS5fi29/+Np599lm8+uqraGlpwezZs3dHvARBEARBELtMjw0MR40ahQcffBBHHnlkwf433ngDl1xyCT766CO89NJLuOCCC7Bp06Y+DXZvggwM9z1OOGYuskVCE2FrDHpc6ESYyZGqFPtNr/tbxxO1pYkdAJlU01YZ1LSb2DJvQGgbDCwnynibUmBZE9kyoc9Il+pQTHHMiJpoO1AkyVQzrhYkFwSCW53EnYOY1IV0JlUOGI4WJbCFu7qXrFtGcbaLPhMblleRCT4zxQyao6fhnX72dH56NV3uGgnqcci49YT7p8LbmoPns0anghOoJhaQ248aLMs1H6JI/Y7eARR/7hoi5vU+lu6aHCoWR8uhznk6xRT+VIG3TewPf55EwwRH96ICuRBQ/Il7ofLanI7BbjJZxXT3+5sLzR7TJa5hpdFJ56M5MTEuNDuAMDwEANXR8lheBsvjtNvothuvUmA7+5kFab6oZiETwELhUmMV+ZTJX+hGB5fJXE0vQ2KAG5MeE/0FhE4qf53iozPYMON6EHshe8DAsPbXd0Dx9sLAMJ3Gxutv6rcGhj2+1fX555/vcCDC4TC++OILAMABBxyA5ubm3kdHEARBEETPoKe6uqTHt7rGjBmDa665Bk1NTXJfU1MTrr32WnzrW98CAKxbtw4DBw7suygJgiAIgiD6gB5PfB5++GGsX78eAwcOxP77748DDjgAAwcOxIYNG/DQQw8BAOLxOG6++eYetTtv3jwwxjBr1iy57/zzzwdjrOA1fvz4LttZuHAhjjrqKBQXF6O4uBgnnHAC3n333e3K3XfffRg6dCi8Xi/GjBmD1157rUfxEgRBEMReCe+DVz+mx7e6DjzwQKxZswYvvPACPv30U3DOMWLECJx44olQFDGP+v73v9+jNpcvX44HH3xwh+kuJk+ejD//+c/yvWEYXba1bNkynH322TjyyCPh9Xoxf/58nHTSSfjoo48wYIC4Wf7UU09h1qxZuO+++/Cd73wHDzzwAKZMmYKPP/4YgwcP7rJ9Yt/lpX/fKLcP+fkCqBlVvteTjv9Kmks9BwCp5dFjWShZoQnKFXkK2uWOGEXJcni3CpGIGfHCLPPB9IvvhJ5yE1VaXgUln6QBAK0jvYiOF9sD/q7L5JSR9bb0Fuqc5DO4WfjYAEA2zKS2J1TnmvNkgwoYB5JVQkCi5Di0vAyn3hb+RF+C2RxcEfF5Wt1zGvHOehjI5KPxGgOejaJ9HgkiUxGAp6HDqW+idaT4nqoZwL8NTp+yUHKONipjobxZBJWq9MpEoFwBwuvEtuVxk7NmSl19TaosgFCd44XjePb4LtwKANgWCyH0t7AzJjY05/qxHIcZcK93fECnxKOOliiw1U0Sa8TcfutJjlSp4pwbCNRzmTxVS3J4onkNlI1EhWjA6ABM55L4G22ZMNb0MoSdz5rpZVAdTRjv9AhOJsyQcBbMQ+uByGdu+cA2E+liJ/GqzxVBVb1g4Ki/3SnGzWB486mrQXxzIefmrunxxAcQj65PnjwZEydOhMfjAWO7/vBbPB7HOeecg4ULF2LOnDnbHfd4PKiqqup2e0888UTB+4ULF+Kvf/0rXn75ZZx77rkAgLvvvhsXXnghLrroIgDAPffcgxdeeAF//OMfMW/evO3aJAiCIAiif9DjW122beNXv/oVBgwYgGAwKFNY3HzzzXj44Yd7HMBPf/pTnHzyyTjhhBN2eHzZsmWoqKjA8OHDcfHFF6OxsbFH7SeTSeRyOZSUlAAAstksVqxYgZNOOqmg3EknnYQ333yzx/ETBEEQxF4F3erqkh5PfObMmYNFixZh/vz5BbedRo8eLTU+3WXx4sVYuXLlTldZpkyZgieeeAL/+te/cNddd2H58uU47rjjkMns4DnfnXD99ddjwIABcmLV3NwMy7JQWVlZUK6yshINDQ07bSeTySAWixW8CIIgCGKvgyY+XdLjW12PPvooHnzwQRx//PH4yU9+Ivcfcsgh+OSTT7rdTl1dHa688kq8+OKL8O7EbyCfCR4Q/kFjx45FbW0tnnvuOZx++ulfeY758+fjySefxLJly7Y7x5dvz+Vdp3fGvHnzcNttt33lOYl9g/8s+DmOuHQBAKHr8USFIEPJcaRLxNfC22JK/YcZ1JENic+Q5WHQE0IDYkRNqJZTN23BCjj+PIksLK+GbND9bZENi8aMDgX5r142BByxXx0AYOulYbSvFBPyyuU2Sj4RgppEpQaPozmxdQYtKbaTmiq9eNr3U6F0ysGlx0XbAgbDmadraUjfmWwnVwpP1P3sM+56zRhxFGieYrVCXxLcYiN2aIUoExNxZqqdEzKG8CYRTJSpMjdYJuL+ufFETWSK3Pf5c1gGoKWcWBRIzyHYgOUTm0Wf2dATotFESEOmmCHxvBDF6BNbkXW0QMEOG5mIiDdezWDERX3/NgvBzaJ++wGqzHFmeQFvqy3HIK+3yoZcDZiSE9egs6eRkuVO/1SknN9TmRKOsved4bBdfVKiBlJUpFiAf6vY1tKubohZgMdxA0mXAD5n29aBbEiFr1XEnipRYXlE/WzQ9WeyPEx+tlc+8HMQ3zxI49M1PV7x2bJlC/bff//t9tu2jVwu1+12VqxYgcbGRowZMwaapkHTNPz73//G73//e2iaBsuytqtTXV2N2tparFu37ivbv/POOzF37ly8+OKLBaLpsrIyqKq63epOY2PjdqtAnbnhhhukU3U0GkVdXV23+0oQBEEQxN5Bj1d8Dj74YLz22mvbZWn/3//9Xxx++OHdbuf444/H6tWrC/bNnDkTI0aMwHXXXQdVVber09LSgrq6OlRXV3fZ9m9/+1vMmTMHL7zwAsaOHVtwzDAMjBkzBkuXLsVpp50m9y9duhSnnnrqTtv0eDzweDw7PU4QBEEQewWcFdqx70r9fkyPV3xuueUW/OxnP8NvfvMb2LaNv/3tb7j44osxd+5c/PKXv+x2O6FQCKNGjSp4BQIBlJaWYtSoUYjH45g9ezbeeustbNiwAcuWLcPUqVNRVlZWMGE599xzccMNN8j38+fPxy9+8Qv86U9/wpAhQ9DQ0ICGhgbE43FZ5qqrrsJDDz2EP/3pT1izZg1+/vOfY9OmTQW37giCIAhin+Rr1viYpolf/OIXGDp0KHw+H/bbbz/cfvvtsG3XFoJzjltvvRU1NTXw+XyYOHEiPvroo4J2MpkMLr/8cpSVlSEQCGDatGnYvHnzroxAl/R4xWfq1Kl46qmnMHfuXDDG8Mtf/hJHHHEEnnnmGZx44ol9Fpiqqli9ejUeffRRtLe3o7q6GsceeyyeeuophEJSvIBNmzZJ/yBAGBNms1n84Ac/KGjvlltuwa233gpAaIdaWlpw++23o76+HqNGjcLzzz+/3SoW0b/prH/4zg+EB4qtK1LvY/oVaClHW6MxGB1if6zYkB4qXGVQHY2HtyOLTJkQomhJBZlizdWueJnM5cRsSG1GqM7GlvvErePGsYCa/4PDxTkBILglh1xQrID6GnPSn8fbYktdSHiDhXiN2J8pBjJFQueTf59yJG56nMn8Y4EGjthQcY6kDyhZ4/6RyuuIuMKkB42tM/iaRYBq1gYz87oXG0rWhhnQtqtf8X5O+h/ZHhVqUtwO7xgakF46RqfnBHIB1yuImYCSf46BAb56pz9FCnTnuqhZwNfEkahxYnyjBH4nj1a6SIHl5F5LDLGQyjl9rVJlHi5wwMxrh74w0T5U9IHZkOOkpd3cWcwG4oOA6rdEn9SkhVxIXASjw4a/Ie9HxGBrTm43zdUEBTcz+ZnwNZnI5b2FmJsTzVYZbN39m5bvmxETXkr5vGumz72WSg5IVKoyxjyHzloAT7to991FV4Egdge/+c1vcP/99+ORRx7BwQcfjPfeew8zZ85EJBLBlVdeCUAsStx9991YtGgRhg8fjjlz5uDEE0/E2rVr5f/ps2bNwjPPPIPFixejtLQUV199NU455RSsWLFih3eBdpVd8vGZNGkSJk2a1GdB5Fm2bJnc9vl8eOGFF3pUBwA2bNjQrXNddtlluOyyy3oQHUEQBEHs/Xzd4ua33noLp556Kk4++WQAwJAhQ/Dkk0/ivffeAyBWe+655x7cdNNN8sGkRx55BJWVlfjLX/6CSy+9FNFoFA8//DAee+wx+RT2448/jkGDBuGll17q0zlHj291EQRBEASxF/M13+r67ne/i5dffhmffvopAOCDDz7A66+/ju9973sAgPXr16OhoaHAP8/j8eCYY46R/nkrVqxALpcrKFNTU4NRo0b1ucdet1Z8iouLu+3O3Nra2quACIIgCILY83zZr25nD/lcd911iEajGDFiBFRVhWVZuOOOO3D22WcDgHyKekf+eRs3bpRlDMNAcXHxdmW68tjbFbo18bnnnnvkdktLC+bMmYNJkyZhwoQJAMQy1wsvvNDjxKQEQRAEQfQxvbzVlV/xGTRoUMHuzlrZzjz11FN4/PHH8Ze//AUHH3wwVq1ahVmzZqGmpgbnnXeeLNdT/7zulukp3Zr4dA78jDPOwO23346f/exnct8VV1yBe++9Fy+99BJ+/nMyzCL2Pd7462y5fczU3wJwjOcc8aket2CreUFyFh2DhGu5lrTBbPFXIlfkgdEiMog2jQ3BNoCSNSKLqJlVZMLTXFBF24HiLnNwE4NiifpDnsmCO+dQcjYaDxeKZKNDlefIhnUprFYCDIqT5JLZKoJbhHBYsTSYXvcPhZYUyULzBLY5wtwsh9dZoOUKk4JrJcelsDpdrMpEpZYONI3N/zVVcMCToq8sayFb6kXSSdDpazJh+UT/TL+CRKVXnrflO2J7/LT/4JX3DhZxJBQUrWXOOAOMi3Okypm8Ge+v58gFRJmy1WnZFyWkwNQYIl+IGFtGKVKwHdwEBLcIpXS6VEOy2lX9SgEwB4wOcb6mQzToIs8q1IwwDAScZKKOgD3QwEXSVed6aIksAPFZyEY0eNsc0XVGge4IvP1bkvK8bSOD8pplwypyfid5qZ9JM0qr0w/qTIm7rZiQQvP8+7y4PdRky8+FrQOpMib7mQ2J7cMuXyBNLT+eS3+n+zW9dV926tbV1SEcdp1Od2bpcs011+D666/Hj370IwAik8PGjRsxb948nHfeeTLfZkNDQ4EdTWf/vKqqKmSzWbS1tRWs+jQ2NuLII4/sRWe2p8canxdeeAGTJ0/ebv+kSZPw0ksv9UlQBEEQBEHsWcLhcMFrZxOfZDJZ8HQ1IJ7Mzj/OPnToUFRVVWHp0qXyeDabxb///W85qRkzZgx0XS8oU19fjw8//LDPJz49fqqrtLQUf//733HNNdcU7H/66adRWlraZ4ERBEEQBLEL9NGKT3eZOnUq7rjjDgwePBgHH3ww3n//fdx999244IILAIhbXLNmzcLcuXNxwAEH4IADDsDcuXPh9/sxffp0AEAkEsGFF16Iq6++GqWlpSgpKcHs2bMxevTonSYx31V6PPG57bbbcOGFF2LZsmVS4/P2229jyZIlPU5SShAEQRBE3/J1P87+hz/8ATfffDMuu+wyNDY2oqamBpdeemmBqfG1116LVCqFyy67DG1tbRg3bhxefPHFAl++BQsWQNM0nHnmmUilUjj++OOxaNGiPvXwAQDGOe/x8Lzzzjv4/e9/jzVr1oBzjoMOOghXXHEFxo0b16fB7c3EYjFEIhFEAYQbG4Hy8j0dEtHHjL3obplYtGM/GwNfdr8qeW2Gp82C7eguPK1ZeZxZHG0j/PK9v8kCc7Q8XGWAI9VgJoetu7qNWK34LdIxPoVwWGSdHFrUirXPCZPDUB2XGhA94epeUqUMpfmkphUaGOdSs2MZrimgluRS3+Jts2D6HRPBDrsgoWo+Jq5A6oVsDQhvEg15G1OyrBkyoCZNZEpFYLlO7RjtrsGf5WFIF+U7XqhfyScyDW3iSFQ5upcA4GsU+5UsUL7SfcJEiQrdTGJkGaK1mkzQmQu6mh0ACNSLeKNDdZmU1Qy65w1uEgaPAOBvcMczFwSKPxVBJStUqffxtnFkwq4ep7N2yhO14W0ROiuuMZiOzomrTJoT5gIKuOKOZ/6XtbfdzU2YCyhyPLgqjBjz+JtsaIm8IaSCbEgcs1WgabxzYTngaXIML7cBniiXbWWcz7NtAKvvJJ3P10JTE1BRgRiACIBoNFqgm+lL8v8vDbtxLtSdJP/uDlY6jc/n3rhbY92T7JKB4bhx4/DEE0/0dSwEQRAEQRC7lW6Jm7/8LP9X0dHRsUvBEARBEATRS75mA8N9jW5NfIqLi9HY2NjtRgcMGIAvvvhil4MiCIIgCGLXyGt8evPqz3TrVhfnHA899BCCweBXFwaQy+V6FRRB7A2895Cb1PHwny6AmhafazVlwmgT+7muwPSLr1GmxICnzdV4lH4QQ/RAIdzLhhQozteCcUBLOjoNnUHNiL8yiSoNRkxs+1f60OF45tT9bRjyT5Ey7mo2PK05OPk1UfyJhcQAcU+/eG0S0WE+JIV1BvSY61vDOOCJ5b1mOACxrWRs+JyYMiW6q0nxM+hJsW16mUyQySwvjHahaVKTJiyv+6ckVarIxJ8YqMC/zUnUarjaJiPGwSzxpu1w9++FretynJSc21fTy1A3SWgNWA4AxLYZFP3Ln0/JQeqytCTQMUiIc6Lj09B9Qu9jbQigbJU8pdTcZEMMOUfOwBnQME70NbTR1QFZOoPtAXyNTiLUEib/k8hGFNiGIdvNJ2rVOyy33+05ZCMiJsujSH8m06MgXez+Ds2PfzbMENos2jF9DKaPQTFFOSVrw/SIGFPlQOl7bsLT/C920w8kKxytl0ckdc1vH/irBQAAbzPwwe9I70N8c+jWxGfw4MFYuHBhtxutqqqCruu7HBRBEARBEL2gn6/a9IZuTXy6m/GcIAiCIIg9zNfs47OvQdnZCYIgCIL4xrBLj7MTxDeN9//75zj6VJHDSyZIclBz7s+jTLG4xWu058A1BUUftosDto3E/kIokgsoULNuXiw1LbQ1pe/H0XZIEQAgsI0j8r9C2MMVDr1B6FOyERW+bSJXlenXYHnFbxfLoyBV5uTH8vrgidmIfC7eZ4oYIhtMGaMec7QuXlXmBrN1Bj1jOfWZzO+kpTm0hOifHrdlX41oDnASBwqfGhu5gOi7t42DNYtyintaZENM+tNYXiZ1R+GPdHQME28yJTZC60XcuRAQHcac8RS6GwBQrU6anqzQLSUGivrBDQryzmTxgYAZcHKZNXkw6LAmAECzJ4vGSuGxVLnEA4+jq0qVMunXo2QBnyiOTDGgOj5BmRJxPiMu6vhaLMQHaE6/3VxgetyGlnI6awvNV558zjY1bcvxt7wKDGec/dtcP6jGwz1oOdjJ67aZIxtiSJXm88epbg6xepHvCwBMD+B3xj+vzwKAZKXi+g5xwNPuhKcDR1wq9D5qjmP5n1xtG7Fv8nUbGO5r0MSHIAiCIPoTdKurS+hWF0EQBEEQ3xhoxYcgCIIg+hF0q6trdmni89prr+GBBx7A559/jr/+9a8YMGAAHnvsMQwdOhTf/e53+zpGgtgrePX/XSO3jzzrLgCAmuXCnwaAmrGhOLIOLZ4Fy7oCF5bOIfhJCwAgWx2W2g7OmPSRiY6MQMnl9SYKMmGh5Qg0WMg625bBwByPFz2WQ7JKaFXiA1wNSSbCoCdVqeeoeDchjyUG+mCWC6+Zlh8lkIkJHdGA5zR5DsXkUHJOzio/k7m6fC02LGcbto5cwNU6JaoVqecJ1Zky55iW5NLDRktzWSZTxBDeKAardbiKwSMaxNiYGqoPE07x7Rkvtrw1EIDI2+VvcK9FZL2o2zbcyaOV7z5z82dZByTlbjOhY8P7A51xYyiud/Z7OFIVnfQ3IgUYuAaZ/6vzsr9/m/BEahue190wZCLiWHiDBcsj9qtpW+ZmY6YNlnb8egKuzYetMan9MaI5JMuED1N0iActR4j+DXjZzacGCP2UEXO1RHm9D+B6NekpyJxjppfB056PQ+R3E9sMHUNF+dAGMb4AkChmGH6H0Pt8ehN5++yz0K2uLunxra7/+7//w6RJk+Dz+fD+++8jkxF/ZTo6OjB37tw+D5AgCIIgiB5AKSu6pMcTnzlz5uD+++/HwoULC0wKjzzySKxcubJPgyMIgiAIguhLenyra+3atTj66KO32x8Oh9He3t4XMREEQRAEsYuQxqdrerziU11djc8++2y7/a+//jr222+/PgmKIAiCIIhdhG51dUmPV3wuvfRSXHnllfjTn/4Exhi2bt2Kt956C7Nnz8Yvf/nL3REjQex1vPnU1XL7mKnC2ND0KlByQpTKNQUsK4StAABdA2JxsWloMCNCyMoVBq47QtlNKdhO0snAFhuWr1PizzKxnfMzNB0hlKjt384AEGZ3oQ88YBPbZPlocxBFK8Wt6HitD3pCxME44GsUujz/7zRorUJIbIV9sJ04MqUGfK2iH8kyFb4WS7YrDfEUBqPDMTz0KQhvcstsOplBjQhlsG+lD2raqWKJ5JgAkKgGUmWOmPqgDpw5YAUA4L/XHIOW9ytkW/5G57wJDi2d33bFvaFNNkIXb5bvt2wdLM9X+Tcv6p1nLRQAVpmTZDZpwHIMEE2FYciU9QCACl+HbOfd/zsE/7+9M4+vojr//2eWO3dL7s2+kZCw7yqCRXABZJOqxeXnVitirdWvKyLVorZiVXBBwGpdsCq4fcFvK61WRaEKFnHBIBUBEWSHhOy5+zZzfn+cuWdyBQKBhGB43q/XfWXuzDlnnnNucnPmzGc+j7PGOk9S4M1jSkAN88+jvrcEZuNjEs1UxZg09NCg+fl+R701NnGnDEetGYfOoCNpQKnAVZMcTwmF/zHPJwGRDL6dvluHrDPU9uHntjeKZuHapwvhuRoyxGcJAA1d+bazhiFYkBTiA859/HgkJ5n4FdDqAcXcPuXWOfD+EMeK9+4CQXQkWjzxueuuu9DY2IiRI0ciEong7LPPht1ux9SpU3HLLbe0RYwEQRAEQRwu9FRXsxzR4+wPP/ww7r33XmzYsAGGYaBv375IS0tr7dgIgiAIgmghpPFpniM2MHS5XBg8eHBrxkIQBEEQBNGmHNbE5+KLLz7sBt96660jDoYgfoqseIcbG44Y/5jYZ2gK5BCAhKnvCIa4zgeAFIoi3tkDAIily5BMUz+7bOlI4hk22AKmXkiR4DA1N9EMGa5qrj2xLddE0k+AwfUMX3WtvD4ChzcCf5fkn7el9zBUCcEiLrTR7RLQhWuNbEEmzmeoEqJeXkdigL+Ea3EyN8VFO+FcFWm7ub7IXRlEItOBhJOX8663IXhmMuko4NnK6zT0ZFDDpsYkBsTT+WWl4bPjmVcvAABoQUA3JT42PxDN4NuSLonEpIYiC92M5meoeK8zItlmYF7AXWFdrmat4/0IFQChpKmfm8Hv4WXStstYv74zAGBjRgxG1DQE7B2DZHCjR1cVgy3A+xNLlyEZDN4tXMPk7+xCPJnYNM6QMJPGSgagmKaFcacMzUwMa3gVVJ/Cx99VbcUZzpGQu9YUJzEVNlMrFM2ywVnLz13fU4GkW2aD7gqGzPU+0UY0hw+QEjWQSOOffTBPQbDU1GsNiCNjFf+85QSQcJjj7OM6H17X0vhoPoZwrioSmK55ngwNfzLQra5mOayJj9frFduMMSxevBher1es+JSXl6OhoaFFEySCIAiCIFofutXVPIc18Xn55ZfF9t13343LLrsMzz33HBTFtNHXddx0003weDxtEyVBEARBEEQr0GIfn5deeglTp04Vkx4AUBQFU6ZMwUsvvdSqwREEQRAE0ULIx6dZWixuTiQS2LhxI3r16pWyf+PGjTAM4yC1CKLjs/x9y+9kzJkPA7IMSGYy0pwMsS01+MFMOU8sTUaC5xmFLShBNhOQ2utigKn5iXg1MPMSxVljJb9M25NAYxnXoTAFaOjGxSa5r8pQIgaiGbxcLF0SSTwTTkkkSHVX6nBUR0XM0WzeVsIhiZicNcxKqGqTEHfzQOw+A8EiXt5pk+DY44NezG+JZ26OI5LLhSjuPVzbAwBqWALry72MsCkNhtP8vogq0E29ib0esNckx6OJbxCAyhFcJ5P2vQ2yzi+8AoUS3BWM65UAeLda30H1PWWwJt9w2j4+PrrbgO4yzPGQodXxtoyAQ1wJ2mslMebhLAmOeibGubGrBmc1r5P9rQ41ZGquggk0duUdUSKMjzsALcAQ85qBMCb8dwKdJKhmUlRJB8I5fDwlBkRyTG1SrgzvNi668RfLiOQAnu3J8TEQKOO6ruTvDQCooQRqe6ui3cz1irmtwG4mOA3lyAgV8fLOfXzck+dm5jVt3C1BCzDYwrztU2+cI87z1V+ngDiOIY1Ps7R44nPttdfi17/+NbZs2YLTTz8dAPD555/jkUcewbXXXtvqARIEQRAEcfhIENc6R1y/I9PiW12zZs3C73//e8yZMwdnn302zj77bMyZMwd33XUXHn/88SMOZObMmZAkCZMnTxb7Jk2aBEmSUl7JydbBWL9+PS655BKUlZVBkiTMnTt3vzLTp0/fr92CgoIjjp0gCIIgiJ8GLV7xkWUZd911F+666y74fPxRyqMVNa9evRrz5s3DSSedtN+xc889N0VcrWlas22FQiF07doVl156Ke644+CPX/br1w/Lli0T75tqlgiCIAjiJwvd6mqWIzYwBI5+wgMAgUAAV111FV544QU89NBD+x232+0tWo057bTTcNpppwEAfv/73x+0nKqqtMpDtBlLV94LABhfZk6+NQWGm/u3RPsWQjK1EpmbwgDj23V9XEJ3YWsEMrZx/5W07QE09uRaDmdNAkrEzOnkUqEFeV337gi0qoA4fyLDhVA+F+owCVBNnYajNgbd9JrR6mPQzdxgsQwVapC3a/dJyFrLhShSXIdht1kd68zjqO2rIj6Iny/8aRoc+dkwzG+TcK4ENWiWZ4Crki+c+/rGIVeY4iGPgayvFbMfgG5ez6hhBlcV16EYmrXgnnBISPuex1Fw7i5U/LuElx9Sj555ezE6awMAYNbGMYj9N4PXtwFK2Ao9cxMfg2ChjORit6MG8JeaocpAXrmZd8sjCa2Ls8YQ2qZgoRmTedBVpYv7AqECuxWvU4Jkyo0auksiDjkBMU5yFMKHKeECageYMdVaMXt26KjvyfutxID0nRD6sIRLhmHGqNsl8RlHM5xI28tPHs6VYZgfn9Tk/oWz1oBkWAv+jgZeVzIYmKktMxRA8xsIZ/FycpyJx5yHTJwt4vhyAel9jjfocfbmafGtri5duqBr164HfbWUm2++Geeddx5Gjx59wOPLly9HXl4eevbsieuvvx5VVVUtPseB2Lx5M4qKitClSxdcccUV2Lp1a7Plo9EofD5fyosgCIIgiJ8WLV7xaarBAYB4PI6vv/4aS5Yswe9+97sWtbVw4UKsWbMGq1evPuDx8ePH49JLL0VpaSm2bduGP/zhDzjnnHNQXl4Ou91+wDqHw5AhQ/DKK6+gZ8+e2LdvHx566CEMGzYM69evR3Z29gHrzJw5Ew888MARn5MgCIIgjgl0q6tZWjzxuf322w+4/y9/+Qu++uqrw25n165duP322/Hhhx/C4XAcsMzll18utvv374/BgwejtLQU77777lG5RI8fP15sDxgwAEOHDkW3bt2wYMECTJly4GXbadOmpRzz+XwoKSk54hgIgiAIos3o4JOXo+GoND5NGT9+PKZNm5YiRG6O8vJyVFVVYdCgQWKfruv45JNP8PTTTyMaje4nOC4sLERpaSk2b97cWmEDANxuNwYMGNBsu3a7/ahWmYgTk/e38zxH43veDT2H62M0X1zoegAg2Mkptl17+U+mQvj1GJqCzK+58ENPc0B3c9GGVhuBvzgdABDL1GBo3EfHsasBan0QGRu4zqOhb5rQqGgNcdh8MdFuJIe3lb41AEPjf2/xNAXxLK7FUSIJSDHunxMpcAttkuYDogYXeegaEMmSoPn4saxNOgKFvC01yhDz8nLZX9oQzeT9swUgNDBpuy3vHTViwBbg5wvnaEJno4YZHHW8nR1fFSPRyRTHVKTj06198R97b2vQs02tUq0i9DeSAfjKkvocQDbzURka7wsAKDUS4k6rfDK+hFNCOJvXdVanegtFvTIau/Egs75j4lhjdwmuSl4mY4uBxi58/F01TGhxEo4mudncksjZFs0EdPOrJlSgIHOjmfMrjZdPnsNQrBjdlQlEvTwOJvGYASDnvxFEsi2NVmMXXiatgsHeyNvRNSAhvtok4dsjQ+L6MDPnmK+sSc43DcjYzPcPP+8xrHjX8rAiiOOdVpv4/O1vf0NWVtZhlx81ahTWrVuXsu/aa69F7969cffddx/wKava2lrs2rULhYWFRx1vU6LRKDZu3IizzjqrVdslCIIgiGMNiZubp8UTn4EDB0Jq8ngAYwyVlZWorq7GM888c9jtpKeno3///in73G43srOz0b9/fwQCAUyfPh2XXHIJCgsLsX37dtxzzz3IycnBRRddJOpMnDgRnTp1wsyZMwEAsVgMGzZsENt79uzB2rVrkZaWhu7duwMApk6digsuuACdO3dGVVUVHnroIfh8PlxzzTUtHQ6CIAiCOL4gjU+ztHjiM2HChJSJjyzLyM3NxYgRI9C7d+9marYMRVGwbt06vPLKK2hoaEBhYSFGjhyJRYsWIT09XZTbuXMnZNlagt27dy8GDhwo3s+aNQuzZs3C8OHDsXz5cgDA7t27ceWVV6Kmpga5ubk4/fTT8fnnn6O0tLTV4icIgiAI4vijxROf6dOnt0EYnOTEBACcTic++OCDFtUBgLKyMjDW/HR14cKFRxIeQRAEQRz3tMetrj179uDuu+/G+++/j3A4jJ49e+LFF18UOl7GGB544AHMmzcP9fX1GDJkCP7yl7+gX79+oo1oNIqpU6fif//3fxEOhzFq1Cg888wzKC4uPvLOHIAWT3wURUFFRQXy8vJS9tfW1iIvLw+6rrdacATRUXj/+0fF9jmjHoGvi5lcVJLgqOd/M7Ywg7uCC491hyKExIk0GwwbF0arjVGoDby84bRBNgXQ4SwZWRU842WswAPVF4Fk/i26K+JQg1w5K0fiMOz8z76ujxNpFXx/oNQt4mOKhPqe/EnLeDqQtYErgRMuBQ3drNVVdQOvE/cAesIS3+ZeswtVK8p4jDZrdVjzW8kwHXUGIqYxXiRLbpIcSIZu4/EpUYikmpLOhdIA4KqQECjhdS8btQr/9+EwOJKJRm2W4DdZL9mWzTRVVMNMLOVLDLCb5n0xj4yYRxL7XfushsJ5ZoDVQOb3UTR0t55EjWfwcv5OMtQoL1fy7wgqT+Nl6ntZYxboJCHY01QxR2QULTeTq25n8JXK5jhb4ms1AAQLeBlZh0hqCqQKsO11MRg2fr6EQ0LCHPd9pzng2sfMcZYgm6eOpUvC/DDuBtKbCMyTBoZxFxesa35eP3u9AX+x9S9DMkzTQ51h5NhHzf7ZsPplMjRsd47xra76+nqcccYZGDlyJN5//33k5eXhhx9+QEZGhijz2GOPYfbs2Zg/fz569uyJhx56CGPGjMGmTZvEXZzJkyfjnXfewcKFC5GdnY0777wT559/PsrLy1s1u0KLJz4HW02JRqOHTCdBEARBEETbcqxXfB599FGUlJSkPNVdVlYmthljmDt3Lu69915hRbNgwQLk5+fjjTfewA033IDGxka8+OKLePXVV4Wh8WuvvYaSkhIsW7YM48aNO/IO/YjDnvj8+c9/BgBIkoS//vWvSEtLE8eSj6G3psaHIAiCIIj248cZCg5m6/L2229j3LhxuPTSS7FixQp06tQJN910E66//noAwLZt21BZWYmxY8emtDV8+HCsWrUKN9xwA8rLyxGPx1PKFBUVoX///li1alX7THzmzOF+JIwxPPfccynLTpqmoaysDM8991yrBUYQBEEQxBHQSre6fmzSe//99x9Q57t161Y8++yzmDJlCu655x58+eWXuO2222C32zFx4kRUVnJTq/z8/JR6+fn52LFjBwCgsrISmqYhMzNzvzLJ+q3FYU98tm3bBgAYOXIk3nrrrf2CIwji8Pjo37/HyHFcExHzqKjrwy8iJB0wFH67OGudD1KC6y4ihWkIdOb6jfQdgOKLAgDkcFx8QcU9Eur78FXY9N0xJLwOMPPpSzmqI+Hif+oquIYHALQAQ6CI73fUGk10NkDcXNCVYzwZJsB1RAo/NaJZIk8n0CsA+WtrBXjbx2XQ/HzbUAHvNks/ojVykcm2yySoDaYBYnYc2h7eb88PDLF0c78dIqFqsJih6NQKAIAdgL+Se4bZJB3dT9uJncv4E5lMARwncyGRv9EJqZZfnTr3SoiZOZWZLKXogJSI2dc4g2oOgqPOQNRjaXMyvzP1Vk4JO8c6wLqagqFtbihB05ywmsHewBsO5WuwN/AiwU4QY2vYANs+y1CwoQf/6dxn6Z8kA9CbmNknY5UMQIkyBDqZRoYBwFHH4wp0dgoTwqjX+iB1BxDNkMS5mdkl3Q44a8w+uSQE8y2DxST2RgMJpwwlapjtWoaQzloreWk0XRNaMXujgdN/NduMT8d//tGyNEZEK9FKE59du3alJCM/mImvYRgYPHgwZsyYAYDb3qxfvx7PPvssJk6cKMo1fSIc4AspP963XyiHUaaltDhJ6ccff0yTHoIgCILo4Hg8npTXwSY+hYWF6Nu3b8q+Pn36YOfOnQCAgoICANhv5aaqqkqsAhUUFCAWi6G+vv6gZVqLw1rxmTJlCh588EG43e6D5rJKMnv27FYJjCAIgiCIlnOsxc1nnHEGNm3alLLv+++/F954Xbp0QUFBAZYuXSp89mKxGFasWIFHH+Wr34MGDYLNZsPSpUtx2WWXAQAqKirw7bff4rHHHjvyzhyAw5r4fP3114jH+fOVa9asafVlJ4IgCIIgWolj/Dj7HXfcgWHDhmHGjBm47LLL8OWXX2LevHmYN28eAH6La/LkyZgxYwZ69OiBHj16YMaMGXC5XPjlL38JAPB6vbjuuutw5513Ijs7G1lZWZg6dSoGDBggnvJqLSR2KLc/4oD4fD54vV40AvBUVQG5ue0dEvETZdQIfl9c9UfFPn93j9BWRDIV6HZT1xFkiLv5trsyAUPl26F8RXjWRL2AvcHSiThrrT9xNWQgmsHvcDPZSnipaxJ00/tFiTOR5NJZrcNu6nL8JZrQm8gJIJJpXQCF84CEm7elBiWk7TRjyQBUU0PTeHoErm95UPYGwF3JAw42iR0AgkVm3RwDTDETZsZl2GtMrYoGsD4BAEBsnws2vwytkddJnOYHY7yc3ZZAeBNP3OqslISmRfMbqDiTj8Hgod+L8xY4GvGvTQMAAK7VTqTvsoRAwUJZ9DvutsaWKYCjhm9Hsi3/HUm3Eo0q1scK3Qk4BtcBABp2e2Gvsh4SSWqmsr+1zuuoSSBYaDPbl2CvZwiZnkKenYbw5QnlymKbn9P8LCIMapi319hVhS1gJUhNxsVkwFHPyyhxhnC2pYDQfAxKjB+Lu2XEmuiekgldbUH+OQPc98m1z2pXDfPt8nl34ISluhrIy4MPgBdAY2Njim6mNUn+Xzp54gwomuPQFQ6CHovgv6/c06JY//Wvf2HatGnYvHkzunTpgilTpoinugDLwPD5559PMTBsmroqEongd7/7Hd54440UA8Mfi6yPlhZrfH7961/D7/fvtz8YDOLXv/51qwRFEARBEMSRITF21K+Wcv7552PdunWIRCLYuHFjyqQH4Ks+06dPR0VFBSKRCFasWLFfvk6Hw4GnnnoKtbW1CIVCeOedd1p90gMcwcRnwYIFCIfD++0Ph8N45ZVXWiUogiAIgiCOENYKrw7MYT/O7vP5wBgDYwx+vx8Oh7WMpus63nvvvf3SWBAEQRAEQRxPHPbEJyMjA5IkQZIk9OzZc7/jkiThgQceaNXgCOJE4N/L7xHbZ100CwCgxJjl38IAVxUXwSScktD7BDqpQkfiqGUI5/D9TAFChYCjlh+LeiTYGw1Rv6kvjGTqQuIZ1n6DAbqZfSaaISOeponyabt4LrFIjk3kvpITgL0RcO/hxwxNRuXPTF1Kvo7sr7l4xfuZA65qfhL3nggknW/bfDZEs3j5hm6WV5B7p4xQEb/0NNw6kl9XShiIbzF9g9INSAlLWxP125GRExDjKZu5sxIu7mPD42XI/4K3u6O8B+xm7rM9DhkFZp4qzRcTOasi2arQSdX3khApTCB9E48lba+BuOlz5Ky2xs0WtDQ7sTSeZwsAlBjQsIvrjuSYpbOJnRQUMdfIbuR9xSsEim3i8064AFcVUPQfq6yvu4t/Nox7JiU/p6RGSwsYQgeWvlNHsFAR5W0hQ5RJmH5JuiaJuu5Kfjzm4XXiLklohwxFEl5NWtAAU2Rx7rhLhAeF/0pg8G9mi75+8Srl8mpr2iNJ6U+Jw574fPzxx2CM4ZxzzsHf//53ZGVliWOapqG0tBRFRUVtEiRBEARBEIfJMX6q66fGYU98hg8fDoA7OJeUlECWWywPIgiCIAiijaEVn+ZpcXb2pCFRKBTCzp07EYvFUo6fdNJJrRMZQRAEQRBEK9PiiU91dTWuvfZavP/++wc8ruv6AfcTBHFo/rN4KgDgnDGPQI7yvyUlogqdhW6XoIZ4WabwXFoAECywPHXSdzPU95LgL+OXbflfMjireEFJN1DXl4sw1DBDoJiv3CZcEF44dp+lF0rmmwKA2pOBur5cVOSoaXKMMTjrdJFXS44zFH/Mg0y4bfAX89iVKLDvNN5ugW5Z34ezFcgJHmvOujhi3qbeNknPIVX41EgJyx/GvZsfT+p3vOUa7PWZYkxMyY3wEgKAhEOGexdvQHeqiHv416BzXxQxD2+osUxDjEtxkLlZR/XJitk3wLVDRdS80x/JlWEzJUU2S1qEeBqQMH1uJB2ImFl+bH4gfbMiYk7G7frcLfRWugNCi2MLMJi2RJB0IJQnQfPzsdM1GWqYmWNr5TgL50oilkCRAs2f9EJiwq+HyRJsQdMnKkMR+iBbiMFdwX/vYh4Z0QwJqikpUqIMMTMPmK4BrirTKyjMYJg2ZrrT0lvZApbuyF1pQDZ9qYZd/gRWLboTRBtCt7qapcX3qyZPnoz6+np8/vnncDqdWLJkCRYsWIAePXrg7bffbosYCYIgCII4TJK3uo7m1ZFp8YrPRx99hH/+85847bTTIMsySktLMWbMGHg8HsycORPnnXdeW8RJEARBEARx1LR4xScYDAq/nqysLFRXVwMABgwYgDVr1rRudARBEARBtAwyMGyWFk98evXqJbKwnnLKKXj++eexZ88ePPfccygsLGz1AAmCIAiCaBl0m+vgtPhW1+TJk1FRUQEAuP/++zFu3Di8/vrr0DQN8+fPb+34COKE5KOlvxfbwy94HJqfC06jGTJspqDVFrTM6UK5Mpy1VnJLm09C2k7TxK4xLsz4wCR4t5lC5wRD2m6+u3qgXYiHw1myMD/UNQmOen7uglVAOIeLbkMFQFQIdiWEc1R4dvLzSzpDqLtpesggxLVRrwTPNh5HbT8Fnh18v7NWRySTtxvNVKEmjfX8CTj5gjLkqI7KIZYzXvLLWdcAWwgidjnBhGg3+zsG1uTSLmqKppU4QyyTx8dUSYhu5WgCwSKuSJZ1hlAnczwKZDj5Vx6UOBDzAO495vuYlaAzOR7mMFufhR9wmok7nTWGlejT4EaVQKqxpBJvYiCZKQkRsRI1zQlNEbktZCCSYQnBbUFeLpIpIW76O9rreUJSAIhnS8hdy10EdbsMQ0sKlSUhLpcMiP1KjAuYDfMUsg4hdA4WARFTAJ+xSYa7wjSjDEpgUlKNDSG+jqXJSK/jv3fMJmHY5U+I8336fyR0Jo4tLZ74XHXVVWJ74MCB2L59O7777jt07twZOTk5rRocQRAEQRAthDH+Opr6HZgWT3x+jMvlwqmnntoasRAEQRAEcZSQgWHzHNbEZ8qUw8+tMnv27CMOhiAIgiAIoi05rInP119/fViNSZJ06EIEQbSIFe/8Tmz3+eMcKKZ5nxJVkDBlL2oYaCwztR9BbgSoxE3NTdwQGo7G7k7RVsIuCUO7zM0JBPP410FjXwMw/5Sz10pC18MUnnAT4NqMvHJdbNsClnFpqMAmtCuSAQTzTI2JB8hez8+n22WhaYm7ZUgGL89kIJ5mmio6bYilWSKdpGmhq9pAKI/vj+YC0WzAs5XXtzcaUMO84bo+NlE3qXkBAPdeGYbN1BRlNNXj2MDMb0Q1BGRs4NtawECgiBcyZG7QF0/nx6IqEPeY566ThAlhsr8AYGiAWtekr+ZQRbIBNWSaDuYBia68g8p2J9K3W+0kTQATTgkJFxAPJwOWkbaXN6ZrVvJaV7V1ue4rk2Azk4nKCcDfWRPHkolTmQroplYsniaJ5KRKVIccMxDOtZn9SwBZPBh7fZMEq14JMQ+v79mhwxY0DRDTLf1RwinDV+YQ/UhqmNL36DjtWn6xzBTgq79SAtNWgQwMm+WwJj4ff/xxW8dBEARBEEQrIBkQFxZHWr8jc9QaH4IgCIIgjiNoxadZKMU6QRAEQRAnDLTiQxA/ITb+6Q78bBLXREQyrWSUCReQMHUstiCQcCuAmcwUNhnxNK63cFYnEM7lf/ZqlAnPlqBXRczUpKTtkEWCzrjLSqRpqNY55DjQ0M1MnOoA0vbIIklm8jgABIuBeLrpk6NbnjLerQmhMUk4ZAQK+TVYHNzHhiMh7k5tDwDCObJ476oE7I1NLk8lS+viqGUIFEuifrCMnzDcCXDuMXVLkpVc1BaymomlAQl3sjMyFDMZbMOABNRGBbaA2W4McFSbfjh2QDN1SA39E5CdXPDjWucQmilbyIo15pGQzNWqNQC2tVx/ZWhc/wMAmg8wklocheuckslPdQcQzjWTmfq5TgsA4mkKQrlJDyfA3mBqkHyGSBirhiztkL3BQCSLj79kWJ83k2TYdCZiZzZJ1MnYrKO+l2LWt8YtniYj4UpqzSxtmRrVhZYqaFfFZ+zrbCVI1XzA6Vdxf5/PXydvn6OBnupqHpr4EARBEERHgnx8moVudREEQRAEccJAKz4EQRAE0YGgW13Nc9ys+MycOROSJGHy5Mli36RJkyBJUsrr9NNPb7ad9evX45JLLkFZWRkkScLcuXMPWO6ZZ55Bly5d4HA4MGjQIPznP/9pxd4QRNvx5fwp+HL+FHwz5w64K3W4K3VoPqDg8zgKPo8ja2MUtoCOeJrCX+kKDE2CoUmIZKmIeiREPRKC+RL8nfhLd/BcUEoUyPhBh6MacFRz7xdDtfQgWj1/yVFw7YcEKBFAt0uQ41xLw2Sud9HtfLu41z4U99oHZ6kfNScDNScDDd1U+Iv4K5wlQwswaAEGu4+JPhmqFZNu2c/AUPl7XQMiOUCgkwQ1zEReKH+xCn+ximiGJGJXQ4BnkwLPJgWKN4ZY3zB/ZRuIp3GfH0MBIpn8Zdh4nipXFYOu8WOGAgzrvxm6y4CUAH/pvI9MBiJ5BpQIHw/PBhWO7xxwfMf1PeEc/oq7JDir43BWx+HdpsNRy+CoZTA0wO7jL81nndsWZAgVSAgVSDBsPK7kOez1XA9kaFwXFeikItCJf1AJN3+F84GGXhIaekmo7acg5gViXiCSxTVCuoNrpuwNBuwNBhx1BhIOCQmHBN0hIZqhiDEMZytiHAxNQtZGHVkbdThrDDCJ66WiHglKlEGJMkS9Mhq6qmjoqqK+u4qGbvwVzgUSDv5SwxAxxdN5Tq9YmowBU+ag3+/nHNs/rI4EZWdvluNi4rN69WrMmzcPJ5100n7Hzj33XFRUVIjXe++912xboVAIXbt2xSOPPIKCgoIDllm0aBEmT56Me++9F19//TXOOussjB8/Hjt37myV/hAEQRAEcXzS7hOfQCCAq666Ci+88AIyMzP3O26321FQUCBeWVlZzbZ32mmn4fHHH8cVV1wBu91+wDKzZ8/Gddddh9/85jfo06cP5s6di5KSEjz77LOt0ieCIAiCaC+St7qO5tWRafeJz80334zzzjsPo0ePPuDx5cuXIy8vDz179sT111+PqqqqozpfLBZDeXk5xo4dm7J/7NixWLVq1VG1TRAEQRDtTvKprqN5dWDaVdy8cOFCrFmzBqtXrz7g8fHjx+PSSy9FaWkptm3bhj/84Q8455xzUF5eftDVnENRU1MDXdeRn5+fsj8/Px+VlZUHrReNRhGNRsV7n893ROcniNbk079NBQCcesMcxLymr4ppN28LmTmXIjpg7mvsahfeMY56S7vj78Lg3s2NVvzFCpiZZinR5Bsimm1tu/cAtiD/ckw4JEQzLK8dW9Aq1+VnOzGr698AAH/afQG2/JsbBHl2Wbm9wBg0n5nkymDwl/KcTtEMrjECuIdN0kvHXWHlEnPv4z/3nMNj0eoU6A7Tt6ZWEvWDRYDuMgeh2g6Wxs8vG5LIzxVPs650lShQeQYvf8fIJbg1g98GH7/p54BLR7i7madMMZCZxTss/zsbgWJeP3MTQ0MGDzKaa8C1m19jGjagoTsXLBkq18sAgBIGwrnWkDhr+U85xoRnEDM1VUnfIlnnnyHAtTWS8EUCYulWW8k+RbMY3LvMnFzpTfoaAcLZpo+SB7CbecUMFZAMy5tJd1ieRzFZgiOZC86AyPkWyZSFHkvzG9DMPGG6JgmvILWJX1JyrACeJyyJ5gcCnYEur88EAGy7ahoIorVot4nPrl27cPvtt+PDDz+Ew+E4YJnLL79cbPfv3x+DBw9GaWkp3n33XVx88cVHdf4fJ1RljDWbZHXmzJl44IEHjuqcBEEQBNHW0FNdzdNut7rKy8tRVVWFQYMGQVVVqKqKFStW4M9//jNUVYWu6/vVKSwsRGlpKTZv3nzE583JyYGiKPut7lRVVe23CtSUadOmobGxUbx27dp1xDEQBEEQRJtBT3U1S7ut+IwaNQrr1q1L2Xfttdeid+/euPvuu6Eoyn51amtrsWvXLhQWFh7xeTVNw6BBg7B06VJcdNFFYv/SpUsxYcKEg9az2+1HfHuNIAiCII4VtOLTPO028UlPT0f//v1T9rndbmRnZ6N///4IBAKYPn06LrnkEhQWFmL79u245557kJOTkzJhmThxIjp16oSZM/m94Fgshg0bNojtPXv2YO3atUhLS0P37t0BAFOmTMHVV1+NwYMHY+jQoZg3bx527tyJG2+88Rj1niAIgiCI9uC4dW5WFAXr1q3DK6+8goaGBhQWFmLkyJFYtGgR0tMt5d7OnTshy9Ydu71792LgwIHi/axZszBr1iwMHz4cy5cvB8C1Q7W1tfjTn/6EiooK9O/fH++99x5KS0uPWf8IojVZ8/wdYvusi2aBSRDJOhWbhHga/xtR4gy2IN+vhhmUGL+0CxbLCJt3eu01VjJSMG6QBwBMYbDXm8k5E0DUy7clBkSzGZRSLvKNAYgFeKXoh51xJaYAAOIDg9C78PNFsxUoYSv+9N18hddRayUvhQQhyi74ynqwwF+sIeGy9HgJB5C+xYxRBtzmXWwtoKOutyLilYJ8DBJuA1LA3B+VrKScCoTw21CBtK28zLzt58F93VsAgC0VeVCrbEIIDgB1p/ByXh3wbOf985VJQuzNZCuxqOaHuI2g6EC4M9/2/MBgb+Tbul0CM7/SbGEDqhl3zMuT0Uq6Oe4GoPl4Y7YgQ8Jpft4xnrwVACJNBNO55ZaA2r3H2lZkQDUF6WoYIrFoMqmsv8wsF7bE8M5qhlhSjCwBhiqJMUxuN30ySIky+MzP3r1HEuORvssqYyiAs9EUTCcAvUqGGuT6z5NvmwNnHS/7+WtTQBwCg/HX0dTvwBxXE5/kxAQAnE4nPvjggxbVAYCysjKww3gU76abbsJNN93U0hAJgiAI4vjmaHU6HXve0/4+PgRBEARBEMeK42rFhyAIgiCIo0PCUYqbWy2S4xOJHc59IWI/fD4fvF4vGgF4qqqA3NxD1iGIY0nPh3iSR+/W1D9xQ+Ffa/ZGQ3w5BgplBIZx0Y3LFYX+ZQYAwLPNENqRcK4kNBm+UglxUwcUz9QBBowcvB4A0CXpvgdg/kfDYa+xFpbj6bx+/in7ULmOi4qyvrViC2dLcJhajnCOZS5Y8HkUqj8myvl68pMH8yUk3JZ5IsC1MADgqgDCeXxbdzIoEVOfFLc0N1IT1wzJ4C8AwgQRALLWA5EsXjeSBeguqy0pYfWp+KQK7PyBnzD3c0XodAAglm7qqkJA/QB+EnutVcDmN40ZTXSNl0+4JEQzk/t4vLEMU4MTk5C+gx8zmiRxZRKEASWTUw0DEy4zHg+Q841pcBkzEEvnFRq7Wv/y0ncy6JoERwMvFyyQhWmlGmYI55qmjDLE5wRAmBbaGw1EvbxM+u6EOB7KVaDbrPOwJg/wJj8PLci4gWKTz8fRwN/E0qxx++x/78RxT3U1kJcHHwAvgMbGRng8njY5VfL/0hmjpkNVD+yPdzgkEhF8+u/pRxzrzJkzcc899+D2228XicIZY3jggQcwb9481NfXY8iQIfjLX/6Cfv36iXrRaBRTp07F//7v/yIcDmPUqFF45plnUFxcfMR9ORB0q4sgCIIgiFbhYEnHH3vsMcyePRtPP/00Vq9ejYKCAowZMwZ+v1+UmTx5MhYvXoyFCxdi5cqVCAQCOP/88w/o63c00MSHIAiCIDoQ7ZWk9GBJxxljmDt3Lu69915cfPHF6N+/PxYsWIBQKIQ33ngDAF8Je/HFF/HEE09g9OjRGDhwIF577TWsW7cOy5Yta41hEdDEhyAIgiA6Eq3k3Ozz+VJeTfNVHoiDJR3ftm0bKisrU5KD2+12DB8+XCQHLy8vRzweTylTVFSE/v37t3oCcRI3E0QH5fv7uLfP8J8/JvbZAnFUDOVCj0iWLPQVzmqgaCE3tAlnO5D85gvnyFDM7zpXJUPFCL7kbKtX4NrLdRq6U4ajSsLab/nSdt2VP2C3nwttMnvUIbYjBwAQOs0y7jkr/wf8vYH7cTWG3bBZq90IFJt+NBGIc+8eaUfabm6yo4abXI4yrmlJ6nqa6nQaB0ehVnLxi6RDaG6Svj2AeWVrWNssaU2jS9BMX51gISCb8qJYlg6oDLZG/tUZ9zAYZlbYXRsKoMRNLVCGBNWMXW9i+J5wAc5KHkgkzxAnjGUAusb3u/ZZ/VPDTCR9jWZw/xtnlanRqgPsPlN/UyjDVWXV85fwMpoPcNaYCUSzZKG/SdtjWP5FqizUrJoPUCPJweFjGTK1PI46Bi3A20o4JThr+PlibgnOOr7fFrBuSRiahEAhrxvOVhD1WLqeZPLYmMfSB0lxCC+jSIYEXQO0gDVukWxeML1JgtuBN83B189YHlZE61JSUpLy/v7778f06dMPWLa5pOPJFFEHSg6+Y8cOUUbTtJSVomSZ5hKIHwk08SEIgiCIDoTEGKSjeG4pWXfXrl0p4uaDpW06nKTjQMuTgx9umZZCt7oIgiAIoiNhtMILgMfjSXkdbOJzqKTjyZWe5pKDFxQUIBaLob6+/qBlWgua+BAEQRBEByK54nM0r5aQTDq+du1a8Ro8eDCuuuoqrF27Fl27dkVBQQGWLl0q6sRiMaxYsQLDhg0DAAwaNAg2my2lTEVFBb799ltRprWgW10E0cFZ8d5dYnvI1bMRLOMaCfcOBfYGvl+3Aw3dTd2KG8hfY4owqqx2DFWCdwMvEx4aREDjWiHXHgnOaoZQAV+OXv9pNzCVf3FqDRIcpmbEsdaJhJtvf+jpDfzA3zT1cYlmN9G3hLjOAwBi2TpqiyyfG9XF45O3OWELAAnzEo7JPKcYAChVGuQuXCDDNqchfScvE84Fkqe0+Zvks9Itz5uECwh2NrUk7gTkeh4IsxtQ0+JINPBxcFRJSLYWLmIwbKbuJVNC3AoX0WxTA9MgiydmtDpZ7JejEqJZ/ICrCrCF+LaUAPydretTOQ54dpianQwZ0Qx+TA0Casj05YkYcJp6HyYDgU5czCPpgHuf5acTzrLymMXdVp6vpBbK3mgg4ZThqOftxtJlkX9LjkuQE3x/1KMIn6JYugrNb+Zj80pw1pq/Bz5D5IgzVOt8toCVt0sLAO59utmmjFC+hEgTuUdSCxR3y1AiyTiAQdfPEX1tmrOOOHYcKuk4wB9VnzFjBnr06IEePXpgxowZcLlc+OUvfwkA8Hq9uO6663DnnXciOzsbWVlZmDp1KgYMGLCfWPpooYkPQRAEQXQkjsNcXXfddRfC4TBuuukmYWD44YcfpiQdnzNnDlRVxWWXXSYMDOfPnw9FUZppueXQxIcgCIIgOhKMidW5I65/lPw4gbgkSZg+ffpBnwoDAIfDgaeeegpPPfXUUZ+/OUjjQxAEQRDECQPl6jpCKFcX8VPn1BvmCM2NrlneKo5aBsXMfWWvtzQhvjIbItnJ/Za3DQDIOoOhmr4+DisXlhxHikdP8lIr7gaCxaaOpYkbvb1WQtxa+Raam3ChDmb65Uiq9ZVlc8WRl+FHd28NAODLd/rDZT440jRXlr8MwqvGvdvS0ABAwmF672RbjrVyzNIeBbolIEXNxjQDUkSGs4K/150/yoVl9tvmBxz1vLFk3i0ACJQAcQ/vhxqQhRYqt381KvZYgpaM/3JdTsEqn7j6TqRxnVHcw4/FPArkOD8WyZChmroXw2ZpaDw7Eki4rIGIpvNtJf6jr33zLVMg8nElYw/nmnnJ9FQPpKSPj2d7FAmnYpax6jZ21aCbTzan7TEgJ6xjSb+kcLYCm+nLpPkNMVaxdAmRLEl4IKmWBRTArPeuagOhPKt/hnkP479PHkdan3bI1TV82B+OOlfXilUPtmms7Qnd6iIIgiCIjsRxcKvreIZudREEQRAEccJAKz4EQRAE0YFomrrlSOt3ZGjiQxAEQRAdCbrV1Sw08SGIE5Q1z9+BHjMt8zenaVbIZEskGs1QIJtCZ2e1gViabO4HbGYCSX83U6zrt0S8ybY8O3WEcpp4cJhXkjEPUNhvHwAgzxXAllqeyBQ9gPBOLqa0+WToplgYbl0IjItLa1DVaCmg9/yQi4qoaWmfxSCbiULlmGV6Z6+3hMfxdCBuGu45qxmUGP+StzdIiHNPRshxQDPN9xy1KsK5ybh5DIYpunXUQgiDk2Z9ADfvSzhN0XQWhIgcAJQw36+GAMng23XleZAyuco7p1xGipGK+U9IierQnaoQYCccgIqk8SCDLWhdpiuxJoJfxRSdaxACYzXCkLCb46QDNjP5qKFKwozQWavDsFmff8Jl/V6oISCSaZ47qiHQiZ9P0gHPTt6WvdGAHjGF0QagNXChvKFZsTWNmcmAo5qfzO5SYaiaWHmIZAOymfTVsANhU28byZGF4FrX+OcMAD3/9iC87/FBX/3SFBBEU2jiQxAEQRAdiePQwPB4giY+BEEQBNGBaK3s7B0VmvgQBEEQREeCND7NQhMfgjiB2TzNMnor+8sTAID0FYBumvoxRYJuSjLq+klC78EkIJLHBRjpP8hw1jDETN2FvdH60gxnKcI40FAB9z5ex1kHVNkKAAAFwzcjGOCimZwPHJAzTBM7LxDvbyYZ9WuQTd3Knn2ZYHG+LTfYAG8CzNT12OtkxLz8fBID0gdyY0P/mhwRUyzbgHMvr1/fB1BK+TniFS5krTONCe3WGMlxBvdes66Xj0FS6yLHIW4LBAolKE1MHe0NZqJQSRLaE6ZCaGjsDUDDAK57URsVwDQzDBZKyPqOj1OgLE3ocuJuGXGXBCVq6nTCDHG3LD6PWNKcMMYQdyVNB2URqy3MhHGgoUqQTeNIJcJE3VCehMzNlmmloyYBW4AfS7hkYVDIFEvPBUmCd6suyiQTy2oBAzB1YJFMBWqEa73iTlkYLNobDSvRaoSJ9hMuBc4aXWiqHLUS4qZOKtAjLk6d8V+bSIqq2yWE8vh+fbsbjd35OfreOwfuCl6G9D4EQBMfgiAIguhYMIgHCY64fgeGJj4EQRAE0YEgjU/zkHMzQRAEQRAnDLTiQxAEAGD7zXcCAAavmQ1HPV8nVyLWennRf4D6XlaWyrTd/LpJ8xtwVcURzeDCmEimJHQX8XQglrTckbjvCt9vPW/7zYoeyNqS1LFIwrtFjgLedJ6NsqCgCt9/2oXHVGMlX4x5GVxbbKKOrgGK6fcSzTaQ4eD1M4btwu76DACAUetEqBMvowZlOD9J4+fLBoLmfiUMyDGuETE0y8k2fQf3qvF15e+DhVyrA3BNUcSUEhkqoPlgjg+zkqIyIOq1rjfVNK5Xse1W4d7Dv44TTqC+p6l7CQNq0Gzf4NqjZP8STkvvIycYIpmm3qeJbZLEANUsk3BIcFVzLU4wTxE+Q/BIIsFp2l5DJD6NZvJ4QnmSiF03vX/Sd1srAppfh25680SyJHi283MwCYh6eTDhHAmxdN6eHLdijHkURM3crM5qSRgvMZlrmOwN5sBLXPcDANlf2Kz66YCryorFXm9qm5ilQZLjVuLVn02ajS/nnwA6H4ajFDe3WiTHJTTxIQiCIIiOBD3V1Sx0q4sgCIIgiBMGWvEhCIIgiI6EAWEjccT1OzA08SEIIoWvXrQ0EKf+zxzkv7tDvA8UlfKNi2vEvtg/chD12uHdyvUqlafbEDZ1IfZ6wMVTckHSrZxVNr+EYCn/dtVtDJEs04MmCnS/YjMA4P+6LhPnmFnbE/KZfPl980ddYZgaDyUiwdCAWEbSX4bBWewHAPTOqsefu/4fAODzcGf8w34qAGDNnm5CvyPHuYaHx8Q1LqJfpkeOs9aAZHreMAVgsgT3Hl4/4bQ0N0wCHNXmtgqh6zGaePcknJYXkq4Baat4AjHdwXOLAYCkNcntxXheLIB73sQTEqJe6z+ad7vpAxTUYdh4RwwFQqcTzrJyWTnqGRKOZJ90+Er5179k8D4BgBoxEMq3tD2uKib8iHxdJKTtNMcqaCBYwD+EWLqKiNDpALF0vr+urwT3HogxiGSbQUuAzdQ/yXGrf7E0wLCZOiWZvxJm7rSMzQZcpgdUsFCG5jPzl8UkNHQ39VAhqzyTgDRTh5RwSgjl8jLeHQkMv+Bx3r9cpcP6+tBTXc1DEx+CIAiC6EiQxqdZSONDEARBEMQJw3Ez8Zk5cyYkScLkyZPFvkmTJkGSpJTX6aeffsi2/v73v6Nv376w2+3o27cvFi9enHJ8+vTp+7VbUFDQ2l0iCIIgiGNPcsXnaF4dmOPiVtfq1asxb948nHTSSfsdO/fcc/Hyyy+L95qmNdvWZ599hssvvxwPPvggLrroIixevBiXXXYZVq5ciSFDhohy/fr1w7JlloZAUZQDNUcQJzRrnrVyeY0c9yg8O7kQZefGbMsvpi+De5cEpnKdiHcLQziHb8fTgIRpu6P5LD0HUwCt3vR+KUzAFkz61jD89z89AACPZmzHyxuGivOXZPOEV0wGbGYOKN3B/XqaCjlDfn5CNdvALT9cBgAIxOzYV88NhZT8MLCDi0GUiOUDE8qVECi0cnUltT+RsAzvdq4vkWMMut3y6FEiksjrxRRAjZh9rTWaeNXIiHMpD5x11j+UhFMSecUAIJplbUtmuqyEC/CbPkjRDBmSYWll7PVAbV/+Fe7dKkO3mTnO0nFAdJsEZh5TYgpcVabGSpPg2RY2Y9DgruAntwUUxDwSmMTbTep7AK4dCufybcOydgJTIT57915AC5j6oB6As5Lv13xAyLzO1PxWXVuAIZxr/t6k89+jJJFMWeis1BBEOTnGvYoAMxecmZNL8zEEC8zretkaz0CBCls4qQ/iebySbX4zx/pd/8lDt7qapd1XfAKBAK666iq88MILyMzM3O+43W5HQUGBeGVlZR2gFYu5c+dizJgxmDZtGnr37o1p06Zh1KhRmDt3bko5VVVT2s3NzW3NbhEEQRAEcRzS7hOfm2++Geeddx5Gjx59wOPLly9HXl4eevbsieuvvx5VVVXNtvfZZ59h7NixKfvGjRuHVatWpezbvHkzioqK0KVLF1xxxRXYunVrs+1Go1H4fL6UF0EQBEEcdxit8OrAtOvEZ+HChVizZg1mzpx5wOPjx4/H66+/jo8++ghPPPEEVq9ejXPOOQfRaPSgbVZWViI/Pz9lX35+PiorK8X7IUOG4JVXXsEHH3yAF154AZWVlRg2bBhqa2sP2u7MmTPh9XrFq6SkpIW9JQiCIIi2J/k4+9G8OjLtpvHZtWsXbr/9dnz44YdwOBwHLHP55ZeL7f79+2Pw4MEoLS3Fu+++i4svvvigbUtSqnMTYyxl3/jx48X2gAEDMHToUHTr1g0LFizAlCkH9nWYNm1ayjGfz0eTH4IgCIL4idFuE5/y8nJUVVVh0KBBYp+u6/jkk0/w9NNPIxqN7ic4LiwsRGlpKTZv3nzQdgsKClJWdwCgqqpqv1WgprjdbgwYMKDZdu12O+x2+6G6RRAdlo8/uBtdnnrCfMeEqNS9gy8c+4vNBJOSZeon6xDL5vF0IMTzgcIWACJFXHGqpMfR2Iv/rRf+x0BeOb9ImR8bA2YKZ7VGYLcrTcSim2LhhItBiUiQo7yO7mBAlKuSv20sg+HkilhJBqQAP4cStha64+mWGNcWgkj6CfBkqwAXwYbyeB17IxPmegBPAKqafU2aFAIAUyTYaxLJoYIaNkW7LkkIfjUfEyLpaIYEp3kX395owFdmxeisFptgMo8HAOJuLu4GgNoBsqgvG9xYEbBMEQHAFmbQzfGMuSXRDgD4y3gFd0UM4VxeSIkwOOoYwtmKOLfDTBpaebqEZCZLW0CyEsN6rPgMG0+MCgDpP1jnUiIM7t2mwaXPQOUw65gaMMc8ygXMrMk9iaQw3lVtIJphGR0mf7/UKIQQO5QnWYJ3Zv0+GjYgZorwYQAO04dTdwInT56D/87tIAJnEjc3S7vd6ho1ahTWrVuHtWvXitfgwYNx1VVXYe3atQd8yqq2tha7du1CYWHhQdsdOnQoli5dmrLvww8/xLBhww5Sg+t3Nm7c2Gy7BEEQBPGTwGBH/+rAtNuKT3p6Ovr375+yz+12Izs7G/3790cgEMD06dNxySWXoLCwENu3b8c999yDnJwcXHTRRaLOxIkT0alTJ6ETuv3223H22Wfj0UcfxYQJE/DPf/4Ty5Ytw8qVK0WdqVOn4oILLkDnzp1RVVWFhx56CD6fD9dcc82x6TxBEARBEO3CceHjcyAURcG6devwyiuvoKGhAYWFhRg5ciQWLVqE9HTLqGLnzp2QZWvhatiwYVi4cCHuu+8+/OEPf0C3bt2waNGiFA+f3bt348orr0RNTQ1yc3Nx+umn4/PPP0dpaekx7SNBEARBtDp0q6tZJMY6eA/bCJ/PB6/Xi0YAnqoqgHyAiBOMsudn8Q1nAo4fLP2bvcEqYyhAwpLmQE7qYTJMPQ4ApjJoDfziJe5hQrPhqJWgmW1JjCf1BIBwPk9GCgBaowTDxo0IAdNEMMi3o1lNtEZRS5ejBQDNz+vrGkTSUDXCIOmmmWGedatdb/LshbOGwV9saXnsDUBjT15HjknwbLPK2hsNcwys8uFcCe4Kyzgwaf4Xzpbg3sfbiaVJUE2TvWimVddZwxDKlcDMy9Wm+hf3XgY5YY1VUrcUyrf6x8fLqps0D0wmNE3GZ6+3xkO3S+J4LN3SBQU7AdE8XdRL+4GPl2eHgajHNKNsopcK5ktQzDgcdUy0GSiUES7k25IuIW2X2d4e3pl4Gm83lCeJxKSsyYMqdp8hPrNwriKS16phBjWSHE8Znh08cEdFAIaL/yIFSlxIOHlbTEnVd/lLZKx/pJX0PtXVQF4efAC8ABobG+HxeFqn7R+R/L80uuttUOUj16QmjCiWbf1zm8banhy3Kz4EQRAEQRwBtOLTLO1uYEgQBEEQBHGsoBUfgiAIguhIGAxJu4Ejr99xoYkPQRBHxPYbport3g/Mgd00PpcYEHdZ5RSe/5In7TTlGUoMkBP8TcJl6XfkGLgREHii0GR53QaR0JNJAAx+IJrBYNgtjZBkcG8egPu+JJNT2oKAo55ra1K8YSKWV0zcbfnRAEDMlDYwGWJt3FCArO90hHO4mMRQAXutJPot9En1lud/PF2CZL61+YFAEW/MVcWE1kiJWn1NOIFAZzMJZxwiOWfMI0HzNRlbBqGJMVQJ9kZe0F+iwGZ6BakeKTmccDWxN7OFGGwhM/FqnCHm4f1J380gmf/0dJuEYCH36UmSHB/JAFy7FDHOSaIeGYqp3zFUrl0Sx7zWGCQTqibSAJvf6qu90Ty3XYZhs+q69hlCwxTJkISfkL+TDJup6YIB6C5rrJIDmraHoXog/wVzlGTBUc/HiakQsWo1OgybhFAu/5foqAMG/ZYnMC2f9xP09mEGfx1N/Q4M3eoiCIIgCOKImTlzJk477TSkp6cjLy8PF154ITZt2pRShjGG6dOno6ioCE6nEyNGjMD69etTykSjUdx6663IycmB2+3GL37xC+zevbvV46WJD0EQBEF0JJLi5qN5tYAVK1bg5ptvxueff46lS5cikUhg7NixCAaDosxjjz2G2bNn4+mnn8bq1atRUFCAMWPGwO/3izKTJ0/G4sWLsXDhQqxcuRKBQADnn38+dF0/0GmPGLrVRRAEQRAdiWOs8VmyZEnK+5dffhl5eXkoLy/H2WefDcYY5s6di3vvvVfk2VywYAHy8/Pxxhtv4IYbbkBjYyNefPFFvPrqqxg9ejQA4LXXXkNJSQmWLVuGcePGHXl/fgRNfAiCOGq+u/8ODJjKNRH+7jqyvub6D//oIAre4EY4Oy8wIMX4InP6FkVoNhybAZ/pHRousL6wbX45VWdjfherEUAN8G1D41qOpIYm5gX0Ui4q0r5zAqZ2iClAPI2fu6luBgDUsLUdyzVzRYUh4otmWseDRRK0gIT0XdyUJpyrQjU9hEK5EmwhJuJK5u6SY0x42CQcEtL28mCdNXEEC3mAUa+EaIZ1nqSWxl4HuKp4+bhbTomXyU30TGEglM/HXNe4RxDAdVK2gDUGST0TU4C4y/ROcklcTwXAFmSwme1rfgNpe2QxDk21UWm7gJohfBDlsAxboyzGSo6b+bl2MjHO9kaGkC0Zk6WrUkNWfACQSMZhcD+j5HgCEpwVUbOvKqQE35+1SUcov8m/sRA/h7+njvyV/CSGauUsYwpgC/LxTDAZSjhVy5L0+/F3tol+/+ya2SLn2Jrnf4J6n6PA5/OlvD/cnJWNjdwwKisrCwCwbds2VFZWYuzYsSltDR8+HKtWrcINN9yA8vJyxOPxlDJFRUXo378/Vq1a1aoTH7rVRRAEQRAdiVa61VVSUgKv1yteydRQzZ+aYcqUKTjzzDNFWqpk4vAfJwvPz88XxyorK6FpGjIzMw9aprWgFR+CIAiC6EgwHKWBIf+xa9euFOfmw1ntueWWW/DNN9+k5MdMIjVx3Qb4JOnH+/YL5TDKtBRa8SEIgiAIYj88Hk/K61ATn1tvvRVvv/02Pv74YxQXF4v9BQUFALDfyk1VVZVYBSooKEAsFkN9ff1By7QWtOJDEESrsG6WpX/o/dafAABxvx31PUyPmO8U9LnwewBAqK8NG9eUAQACJUDyEtNeJ4u8W2oYiLv5djxdFIFkAHqWWSbE9TDJHFJqEGBVTn6+nTpi6da1nb+UXzU6ai2Nj93HIMfMvFHFMmKmZia9kcGI8PLuvRA5oADu95P0rlGilo7FWcuPweyO5jNzctklJOxJrxqGmKk1Sjg1oR2RE5bWRbcDrn3mtgYwM9dXwsH9dxz1zHzf1CPHyvsFCCskyPHU7SRSE2mLGmGw+628VkmfoFiaDDXMRD4rACKHmC1koPBjuUkcTPQ7OQZxlyTygTFFgqvK1D/ZJDFmaoO1KqHErHxZks4gGVYfXVUJxNP5v6uEXYZub+otxOs46nQknDwm9l9FfJZKjKX4DwULrH97/gH8g83YbCBYKAuvKJsPYpzjaRLS9vABG37B4+J34T//+B2OW45xygrGGG699VYsXrwYy5cvR5cuXVKOd+nSBQUFBVi6dCkGDhwIAIjFYlixYgUeffRRAMCgQYNgs9mwdOlSXHbZZQCAiooKfPvtt3jssceOvC8HgCY+BEEQBNGRMAwIN80jrn/43HzzzXjjjTfwz3/+E+np6WJlx+v1wul0QpIkTJ48GTNmzECPHj3Qo0cPzJgxAy6XC7/85S9F2euuuw533nknsrOzkZWVhalTp2LAgAHiKa/WgiY+BEEQBNGROMYrPs8++ywAYMSIESn7X375ZUyaNAkAcNdddyEcDuOmm25CfX09hgwZgg8//BDp6emi/Jw5c6CqKi677DKEw2GMGjUK8+fPh6IoaE1o4kMQBEEQxBHDDmOiJEkSpk+fjunTpx+0jMPhwFNPPYWnnnqqFaPbH5r4EARBEERH4hiv+PzUoIkPQRCtzncX/xEAcPK//oBgLvflyOxfg+2NfLtv9j4YTq4j0KoVJNymYNfNkDAFzaiVhCDXvReImIJmrREpprS6EwiUmpqE9AS8a7gpYKBYEaLUhm6WaDruAuwNZl0bN+0DAEctQyifi2aDRTwhKADEnRDCYXsDF+0ix/zqbPKUrZzgotzk/qSIWQsyqLoh9ke1ZDZSCONANWKJjxNuCGEuN160TmLYLGNENWIJlyUGuCvNBJ+aFROTJJF01LA1NQS0hMNMBmRTbJxwWp1KOHkiWc8OS6SdJJYmW4lXAwx6E6F1MkFrKE+GYcaiBnksAGBvNBA3BdNqlAuzefuAI54USUtwVyaEsBuSBD055MxMCAvLjBDgYy8Sm0qWGWLCIVkJTrOt/mVs1pH7X75fCevQ/LJ1vibIcdkyb9SZSGw6+uyHseyTe/crf1xA2dmbhR5nJwiCIAjihIFWfAiCIAiiA8GYAcaO/Kmuo6n7U4AmPgRBEATRkWDs6G5XkcaHIAjiyPjv+Q8C5/PtsvmP4oafrQAALPjudDhyuQugsjUdSsw0vXMDWSdXi/qBT3IBcI1I3nYu1PCVqTDMm/TSyHqoAK4uWwcAeHPzQDjquCDHUW9lIk3bIwktCWAZ+BmqBH+xIval7eL7bUEGz3buelc1yAGHaSarhhlc+xKIp/E6cZck9CahHAkO05CPydwYEOAalmTiTslgYOaTuZEsCfZGJs7NnFaC1GTyUXu9pQMyVCCeZhkdJhzWOEczeXsAkF+eENofAPCVqqJPyf1MBlzVfDxj6YoYG8lIGkpytIYm+qZGPeWfaXIMlLhlcqjErOO6Bvxm0vsAgCc/H43O/7CCirvMQWAMhqmrsQUZ10+BG0sqUQPRDB67YZOE0aSsMyvpaBOxRjxdgWwmL9V8DGkB/iGHs61CTJWgBs0x88pgclIvxcskP0s1bAi9lr3RMkaMZFv/MsO5Gk6awhPzhgoZtvxuCoifBjTxIQiCIIiOBDtKcTOt+BAEQRAE8ZPBMFLzkrSUDq7xoae6CIIgCII4YZDY4VguEvvh8/ng9XrRCMBTVQXk5rZ3SATxk6HvfXNEok/A8qPRnUDMY+5Tra8mNdDEJ6YWwj/HUIBwk8TNaf3qgCXc8MdZYwgvnaZoQQN1fWRx3qzvTJ8bFQgUWedJ3833h3Ik+HtyvVDJEr4vqZtxVxgiFn8nGYrpxWNvSNXyqGHz3D5DJE7VHUCwiO9PeHXY6kzNTBQiqSYMy3MoUMKTsjLVGodkgk5DtZKUen+Iw17HTYsieU74S3gFXQMcdVaCU7ufX9Un7BISLktjlRz/pI9R+i7r6l83PYicpj4IACABoTx+DjlhjaHU5G6LZ6ch9DjJmJNxBwtlUTfpqQRwvx85xs8tGVyLBPD+Jz2I7A2G8CnSNeuzNjQpNeFpk/9yyTh0TULUy9846gzoDgmaOSaSzhD1KmZfreyuCbcCQ23iZ2R6Kml+BluI113xzo+Sl1ZXA3l58AHwAmhsbITH40FbkPy/NCrtl1Al7dAVDkKCxfDvwBttGmt7Qre6CIIgCKIDwQwD7ChuddHj7ARBEARB/HQgcXOzkMaHIAiCIIgTBlrxIQjimLPhoTvQ/c2H+Jttbmi9GgEAwToXnLu4WCXmARzV+3vvyAkrb5ekc68ZZ415bGMmND/X46ghA6E8fm3nrLGW7hu6y4hm8fc2v4xYk1xYuWu5nsPf2SYumHUnYK/ieo895xjQ6mTkfc01LkwCGrryr9GEG0im5Ip5rFxfWiMTOaBC+bLw5ZHjgHuPWT6giFxdPPZkp4GEi2+m7eKx6KaWJ+G0tC7uSkvPFMpXsXt0GgDA0BjStplx+Jo86CMDkQxeXg0zkV9LjstCm8QUwLvV0ubYQgacNZY3kn03/8z0DBfqe/GgkrEC/MGgpB+R35CF/1BTdCfg687PnfeF9TnYQgaUiCF0PUktDQC4qnU4q3kc0QybiE8yGGIes08RJvYbqiR0WHGXBHuDYZVRTI2UJiHulhDJNHVWEcu/KOrVhEZI8zGRC023S1DD/EDcLYHJ/ITDL3gccRffXrXozv07fSwwmiQ0OxI6+IoPTXwIgiAIoiPBGICjeZy9Y0986FYXQRAEQRAnDLTiQxAEQRAdCGYwsKO41dXRXW5o4kMQRLuw5bL7xHbZX54AANgCstBm2OskoUlRYlY9KWH53ESyAa0RCOfw945ay5tFYoBnB9fiJFwyfJ1Nv5gY4NpjnkSG0GxkbLFENrmrGxAu5jqZaKMK2ZS2RGIyPNsMxN3WYrmvP6/n2WCDs5r/w7CFrH8cgSJZxO+oY6JPkSxJ5NuK9IrA8wV/42hgQscTzpOE3sfuNxCVZaEFChYB2et5Y0yWEPPy/e4KwFGV9NuxdDaRLMDuk8w4DIRzeB9i6ZLwH7KFGJhketMEDBiqNfaxdAVqgA8EUyQkMt18nA0Drn08Dl+ZDCUsuo5QFz7+ukOBEuHtJvOhAVzLpAaS2iTufwTwXF28cXPcGgzL60mTYNjMHF4qEDNzhtnCTMRqqBIcDfzc8TRF6JbUcBO9VZaMaAbfr0TMn0n/JBlCv6M00V5JDCK/lxKz/IHiTkn4+8gJQI7zA2deMgsZkQD+hWMMM3B0t7o69uPsdKuLIAiCIIgTBlrxaQ1qato7AoL4SZPl54/8qEFrRUOO8atnIHXFRwkD8eQTN3bA1sQB2h6GyNDtiFoZthOyDCXUJEt3clMCbOYKhSdqXdo74iFo0eT5VEjmik80CKRHjJQHZiLmU2TpIRscZkZ2WxN3YlvI6pMasVZ8oiEJCbNdhy+C9DDvrD3CoJv9doSsFR9nxEBUk8XlqhYEMiLWio8txFccXBEmth1hhoS5wpHQAc3sqyNiwBHmDRkKRNwAEDNXNDSz7eSKh84kOGP8g2CKBDXOg5QMA7JZXwnKYvUEAGx+XkYOWis+7iYrQlICUM2nvewhQDNXWZxRHXKcIR7hSzWyzlIyzifHXzckxBTeD1uTPjAZsEfN1T6bIj5vJlu/U1FNRsxc7Uuu9CSzvkOCyAavNDWpNoA4ks7UTKwEJiQJUvIza/J7BwnIiAZxrKFbXc1DE5/WoG/f9o6AIH7SrGnvAA7EusMst7hNo/hpcFx+gCcwdKurWWjic4QkZ8S+do6DIAiCOP5J/q84FqspCcSPyrg5gfihC/2EoYnPEeL3+wEAJe0cB0EQBPHTwe/3w+v1tknbmqahoKAAKyvfO+q2CgoKoGlHnuj0eIaysx8hhmFg7969SE9PhyRJh67QAfD5fCgpKcGuXbs6ZMbeg3Gi9hs4cftO/T6x+g20fd8ZY/D7/SgqKoIst91zRZFIBLFY7NAFD4GmaXA4HK0Q0fEHrfgcIbIso7i4uL3DaBc8Hs8J96UInLj9Bk7cvlO/Tzzasu9ttdLTFIfD0WEnLK0FPc5OEARBEMQJA018CIIgCII4YaCJD3HY2O123H///bDb7e0dyjHlRO03cOL2nfp9YvUbOLH7fqJB4maCIAiCIE4YaMWHIAiCIIgTBpr4EARBEARxwkATH4IgCIIgThho4kMQBEEQxAkDTXwIwZo1azBmzBhkZGQgOzsbv/3tbxEIBMTx2tpanHvuuSgqKoLdbkdJSQluueUW+HzNZyyLRqO49dZbkZOTA7fbjV/84hfYvXt3W3fnsDlUv//73//iyiuvRElJCZxOJ/r06YMnn3zykO1WVlbi6quvRkFBAdxuN0499VT87W9/a8uutJi26jsAfPbZZzjnnHPgdruRkZGBESNGIBwOH7riMaAt+w1wl97x48dDkiT84x//aIMeHDlt0fe6ujrceuut6NWrF1wuFzp37ozbbrsNjY2Nbd2dw6atPvPj/fuN2B+a+BAAgL1792L06NHo3r07vvjiCyxZsgTr16/HpEmTRBlZljFhwgS8/fbb+P777zF//nwsW7YMN954Y7NtT548GYsXL8bChQuxcuVKBAIBnH/++dB1vY17dWgOp9/l5eXIzc3Fa6+9hvXr1+Pee+/FtGnT8PTTTzfb9tVXX41Nmzbh7bffxrp163DxxRfj8ssvx9dff93GvTo82rLvn332Gc4991yMHTsWX375JVavXo1bbrmlTa36D5e27HeSuXPnHpepbNqq73v37sXevXsxa9YsrFu3DvPnz8eSJUtw3XXXHYNeHZq2/MyP5+834iAwgmCMPf/88ywvL4/pui72ff311wwA27x580HrPfnkk6y4uPigxxsaGpjNZmMLFy4U+/bs2cNkWWZLlixpneCPgiPt90033cRGjhzZbNtut5u98sorKfuysrLYX//616MLupVoy74PGTKE3Xfffa0Wa2vSlv1mjLG1a9ey4uJiVlFRwQCwxYsXt0bYrUJb970pb775JtM0jcXj8SOOt7Voq34f799vxIFp/8sv4rggGo1C07SUK3Kn0wkAWLly5QHr7N27F2+99RaGDx9+0HbLy8sRj8cxduxYsa+oqAj9+/fHqlWrWin6I+dI+g0AjY2NyMrKarbtM888E4sWLUJdXR0Mw8DChQsRjUYxYsSIVon9aGmrvldVVeGLL75AXl4ehg0bhvz8fAwfPrzZNo8lbfmZh0IhXHnllXj66adRUFDQOgG3Im3Z9wPV8Xg8UNX2TwnZVv0+3r/fiANDEx8CAHDOOeegsrISjz/+OGKxGOrr63HPPfcAACoqKlLKXnnllXC5XOjUqRM8Hg/++te/HrTdyspKaJqGzMzMlP35+fmorKxs/Y60kJb0O8lnn32GN998EzfccEOzbS9atAiJRALZ2dmw2+244YYbsHjxYnTr1q3V+3EktFXft27dCgCYPn06rr/+eixZsgSnnnoqRo0ahc2bN7d+R1pIW37md9xxB4YNG4YJEya0etytQVv2vSm1tbV48MEHW1SnLWmrfh/v32/EgaGJTwdn+vTpkCSp2ddXX32Ffv36YcGCBXjiiSfgcrlQUFCArl27Ij8/H4qipLQ5Z84crFmzBv/4xz/www8/YMqUKS2OizHWphqItug3AKxfvx4TJkzAH//4R4wZM6bZGO677z7U19dj2bJl+OqrrzBlyhRceumlWLduXVt1G0D7990wDADADTfcgGuvvRYDBw7EnDlz0KtXL7z00ksdtt9vv/02PvroI8ydO7fN+ngw2rvvTfH5fDjvvPPQt29f3H///a3d1RSOp343pa2/34ijg1JWdHBqampQU1PTbJmysjI4HA7xft++fXC73ZAkCR6PBwsXLsSll156wLorV67EWWedhb1796KwsHC/4x999BFGjRqFurq6lKuik08+GRdeeCEeeOCBI+xZ87RFvzds2ICRI0fiN7/5DR5++OFm2/7hhx/QvXt3fPvtt+jXr5/YnxRYPvfcc0fYs0PT3n3ftm0bunbtildffRW/+tWvxP7LL78cqqri9ddfP8KeNU9793vy5Mn485//nHI7Rdd1yLKMs846C8uXLz+yjh0G7d33JH6/H+PGjYPL5cK//vWvlPO1Be3d7/b6fiOOkvaVGBHHMy+++CJzuVysvr7+oGU++eQTBoBt27btgMeT4r9FixaJfXv37j2uxX8H6ve3337L8vLy2O9+97vDauObb75hANiGDRtS9o8dO5Zdf/31rRluq9IafTcMgxUVFe0nbj7llFPYtGnTWjPcVqM1+l1RUcHWrVuX8gLAnnzySbZ169Y2ivzoaY2+M8ZYY2MjO/3009nw4cNZMBhsg0hbl9bo90/x+41gjCY+hOCpp55i5eXlbNOmTezpp59mTqeTPfnkk+L4u+++y1566SW2bt06tm3bNvbuu++yfv36sTPOOEOU2b17N+vVqxf74osvxL4bb7yRFRcXs2XLlrE1a9awc845h5188skskUgc0/4djEP1+9tvv2W5ubnsqquuYhUVFeJVVVUlyvy437FYjHXv3p2dddZZ7IsvvmBbtmxhs2bNYpIksXffffeY9/FgtEXfGWNszpw5zOPxsP/7v/9jmzdvZvfddx9zOBxsy5Ytx7R/B6Ot+v1jcJw91cVY2/Td5/OxIUOGsAEDBrAtW7ak1OvIf+eMHf/fb8T+0MSHEFx99dUsKyuLaZrGTjrppP0exf7oo4/Y0KFDmdfrZQ6Hg/Xo0YPdfffdKVdM27ZtYwDYxx9/LPaFw2F2yy23sKysLOZ0Otn555/Pdu7ceYx6dWgO1e/777+fAdjvVVpaKsocqN/ff/89u/jii1leXh5zuVwHbLu9aau+M8bYzJkzWXFxMXO5XGzo0KHsP//5zzHo0eHRlv1uyvE48WmLvn/88ccHrNPcavCxpq0+8+P9+43YH9L4EARBEARxwkBPdREEQRAEccJAEx+CIAiCIE4YaOJDEARBEMQJA018CIIgCII4YaCJD0EQBEEQJww08SEIgiAI4oSBJj4EQRAEQZww0MSHOKEZMWIEJk+e3KHOO2nSJFx44YVH1UZZWZlI8tjQ0HDQcvPnz0dGRsZRnYs4OJMmTRKfwz/+8Y/2DocgOgQ08SGIduCtt97Cgw8+KN6XlZW1S1bv5vjTn/6EiooKeL3e9g6lw7N8+fIDTjKffPJJVFRUtE9QBNFBUds7AII4EcnKymrvEA5Jeno6CgoK2jsMAEA8HofNZmvvMI45Xq+XJp4E0crQig9BNKG+vh4TJ05EZmYmXC4Xxo8fj82bN4vjyVs7H3zwAfr06YO0tDSce+65KVfliUQCt912GzIyMpCdnY27774b11xzTcrtp6a3ukaMGIEdO3bgjjvuELc1AGD69Ok45ZRTUuKbO3cuysrKxHtd1zFlyhRxrrvuugs/zkLDGMNjjz2Grl27wul04uSTT8bf/va3Ixqf+fPno3PnznC5XLjoootQW1u7X5l33nkHgwYNgsPhQNeuXfHAAw8gkUiI49999x3OPPNMOBwO9O3bF8uWLUu5lbN9+3ZIkoQ333wTI0aMgMPhwGuvvQYAePnll9GnTx84HA707t0bzzzzTMq59+zZg8svvxyZmZnIzs7GhAkTsH37dnF8+fLl+NnPfga3242MjAycccYZ2LFjx2H1/VD9mj17NgYMGAC3242SkhLcdNNNCAQC4viOHTtwwQUXIDMzE263G/369cN7772H7du3Y+TIkQCAzMxMSJKESZMmHVZMBEG0HJr4EEQTJk2ahK+++gpvv/02PvvsMzDG8POf/xzxeFyUCYVCmDVrFl599VV88skn2LlzJ6ZOnSqOP/roo3j99dfx8ssv49NPP4XP52tWn/HWW2+huLhY3Fpqya2NJ554Ai+99BJefPFFrFy5EnV1dVi8eHFKmfvuuw8vv/wynn32Waxfvx533HEHfvWrX2HFihWHPzAAvvjiC/z617/GTTfdhLVr12LkyJF46KGHUsp88MEH+NWvfoXbbrsNGzZswPPPP4/58+fj4YcfBgAYhoELL7wQLpcLX3zxBebNm4d77733gOe7++67cdttt2Hjxo0YN24cXnjhBdx77714+OGHsXHjRsyYMQN/+MMfsGDBAgD8cxk5ciTS0tLwySefYOXKlWJiGovFkEgkcOGFF2L48OH45ptv8Nlnn+G3v/2tmGg2x6H6BQCyLOPPf/4zvv32WyxYsAAfffQR7rrrLnH85ptvRjQaxSeffIJ169bh0UcfRVpaGkpKSvD3v/8dALBp0yZUVFTgySefbNFnQxBEC2jXFKkE0c4MHz6c3X777Ywxnk0dAPv000/F8ZqaGuZ0Otmbb77JGGPs5ZdfZgDYli1bRJm//OUvLD8/X7zPz89njz/+uHifSCRY586d2YQJEw54XsYYKy0tZXPmzEmJ7f7772cnn3xyyr45c+akZIsuLCxkjzzyiHgfj8dZcXGxOFcgEGAOh4OtWrUqpZ3rrruOXXnllQcdlwPFc+WVV7Jzzz03Zd/ll1/OvF6veH/WWWexGTNmpJR59dVXWWFhIWOMsffff5+pqsoqKirE8aVLl6ZkMU9mwJ47d25KOyUlJeyNN95I2ffggw+yoUOHMsYYe/HFF1mvXr2YYRjieDQaZU6nk33wwQestraWAWDLly8/aL8PxqH6dSDefPNNlp2dLd4PGDCATZ8+/YBlk9nN6+vrD3gcx2GWd4L4qUIaH4Iw2bhxI1RVxZAhQ8S+7Oxs9OrVCxs3bhT7XC4XunXrJt4XFhaiqqoKANDY2Ih9+/bhZz/7mTiuKAoGDRoEwzBaNd7GxkZUVFRg6NChYp+qqhg8eLC43bVhwwZEIhGMGTMmpW4sFsPAgQNbdL6NGzfioosuStk3dOhQLFmyRLwvLy/H6tWrU1ZCdF1HJBJBKBTCpk2bUFJSkqIdajpWTRk8eLDYrq6uxq5du3Ddddfh+uuvF/sTiYTQwJSXl2PLli1IT09PaScSieCHH37A2LFjMWnSJIwbNw5jxozB6NGjcdlll6GwsPCQfT9Uv1wuFz7++GPMmDEDGzZsgM/nQyKRQCQSQTAYhNvtxm233Yb/+Z//wYcffojRo0fjkksuwUknnXTIcxME0brQxIcgTNiPtDFN9ze9HfJjka0kSfvV/fHtk4O13RyyLO9Xr+ktt8MhOdl699130alTp5Rjdru9RW0dTh8Mw8ADDzyAiy++eL9jDodjv7FsDrfbndIuALzwwgspE1OATyyTZQYNGoTXX399v7Zyc3MBcI3QbbfdhiVLlmDRokW47777sHTpUpx++ulH1a8dO3bg5z//OW688UY8+OCDyMrKwsqVK3HdddeJz+w3v/kNxo0bh3fffRcffvghZs6ciSeeeAK33nrrYY0HQRCtA018CMKkb9++SCQS+OKLLzBs2DAAQG1tLb7//nv06dPnsNrwer3Iz8/Hl19+ibPOOgsAXxn4+uuv9xMqN0XTNOi6nrIvNzcXlZWVKZOFtWvXppyrsLAQn3/+Oc4++2wAfAWkvLwcp556quiT3W7Hzp07MXz48MPqw8Ho27cvPv/885R9P35/6qmnYtOmTejevfsB2+jduzd27tyJffv2IT8/HwCwevXqQ547Pz8fnTp1wtatW3HVVVcdsMypp56KRYsWIS8vDx6P56BtDRw4EAMHDsS0adMwdOhQvPHGG4ec+ByqX1999RUSiQSeeOIJyDKXTr755pv7lSspKcGNN96IG2+8EdOmTcMLL7yAW2+9FZqmAcB+vwMEQbQ+NPEhCJMePXpgwoQJuP766/H8888jPT0dv//979GpUydMmDDhsNu59dZbMXPmTHTv3h29e/fGU089hfr6+mZXOsrKyvDJJ5/giiuugN1uR05ODkaMGIHq6mo89thj+H//7/9hyZIleP/991P+qd9+++145JFH0KNHD/Tp0wezZ89O8YJJT0/H1KlTcccdd8AwDJx55pnw+XxYtWoV0tLScM011xx2v2677TYMGzYMjz32GC688EJ8+OGHKbe5AOCPf/wjzj//fJSUlODSSy+FLMv45ptvsG7dOjz00EMYM2YMunXrhmuuuQaPPfYY/H6/EDcfaiVo+vTpuO222+DxeDB+/HhEo1F89dVXqK+vx5QpU3DVVVfh8ccfx4QJE/CnP/0JxcXF2LlzJ9566y387ne/Qzwex7x58/CLX/wCRUVF2LRpE77//ntMnDjxkH0/VL+6deuGRCKBp556ChdccAE+/fRTPPfccyltTJ48GePHj0fPnj1RX1+Pjz76SEyoS0tLIUkS/vWvf+HnP/85nE4n0tLSDvuzIQiiBbSbuoggjgN+LDKuq6tjV199NfN6vczpdLJx48ax77//Xhx/+eWXU8S8jDG2ePFi1vRPKR6Ps1tuuYV5PB6WmZnJ7r77bnbppZeyK6644qDn/eyzz9hJJ53E7HZ7SlvPPvssKykpYW63m02cOJE9/PDDKeLmeDzObr/9dubxeFhGRgabMmUKmzhxYoqQ2jAM9uSTT7JevXoxm83GcnNz2bhx49iKFSsOOi4HEjczxgXExcXFzOl0sgsuuIDNmjVrv/FYsmQJGzZsGHM6nczj8bCf/exnbN68eeL4xo0b2RlnnME0TWO9e/dm77zzDgPAlixZwhizxM1ff/31fud//fXX2SmnnMI0TWOZmZns7LPPZm+99ZY4XlFRwSZOnMhycnKY3W5nXbt2Zddffz1rbGxklZWV7MILL2SFhYVM0zRWWlrK/vjHPzJd1w86Di3p1+zZs1lhYaH4vXnllVdSBMu33HIL69atG7Pb7Sw3N5ddffXVrKamRtT/05/+xAoKCpgkSeyaa65JOTdI3EwQrYbE2BGIDwiCOGwMw0CfPn1w2WWXpbg1H8+UlZVh8uTJxySdx6effoozzzwTW7ZsSRGNExaSJGHx4sVHnYqEIAjy8SGIVmfHjh144YUX8P3332PdunX4n//5H2zbtg2//OUv2zu0FnH33XcjLS0NjY2Nrdru4sWLsXTpUmzfvh3Lli3Db3/7W5xxxhk06TkAN954I93yIohWhlZ8CKKV2bVrF6644gp8++23YIyhf//+eOSRR4QA+afAjh07xNNIXbt2FYLd1uCVV17Bgw8+iF27diEnJwejR4/GE088gezs7FY7R0vp16/fQR2cn3/++YMKqtuaqqoq+Hw+ANw2oemTbgRBHBk08SEI4oSn6UTvx+Tn5+/nDUQQxE8XmvgQBEEQBHHCQBofgiAIgiBOGGjiQxAEQRDECQNNfAiCIAiCOGGgiQ9BEARBECcMNPEhCIIgCOKEgSY+BEEQBEGcMNDEhyAIgiCIEwaa+BAEQRAEccLw/wEGKnbVTQeUzAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ax = plt.subplot()\n", "reprojected_raster.plot(ax=ax)\n", "ax.plot(\n", " *transform_bounds_box.exterior.xy,\n", " color=\"red\",\n", " linewidth=3,\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As seen below, this is equivalent to the [Transformer.transform_bounds](https://pyproj4.github.io/pyproj/stable/api/transformer.html#pyproj.transformer.Transformer.transform_bounds) method in pyproj:" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "tags": [] }, "outputs": [], "source": [ "pyproj_transform_bounds_box = box(*transformer.transform_bounds(*xds.rio.bounds()))" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "tags": [] }, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHFCAYAAADyj/PrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADxhElEQVR4nOydeZgU1bn/v6e23rtn31gGRBEU3CABTFRcgSgYNdGIQcU110QlinuMSxASomISr1HRBLeI9+Ym/uISFI3EXRHEoCKisgwww+zd03tX1fn9capPTQuMM8wgML6f5+mH6qpzTr3nVPdw+tS3vi/jnHMQBEEQBEF8A1D2dAAEQRAEQRBfFzTxIQiCIAjiGwNNfAiCIAiC+MZAEx+CIAiCIL4x0MSHIAiCIIhvDDTxIQiCIAjiGwNNfAiCIAiC+MZAEx+CIAiCIL4x0MSHIAiCIIhvDDTxIYh+zH333YdFixZtt3/Dhg1gjO3w2FfRm7q95eWXX8bYsWMRCATAGMPTTz/9tZ178eLFOOyww+D1elFTU4NZs2YhHo9/becnCKJv0PZ0AARB7D7uu+8+lJWV4fzzzy/YX11djbfeegvDhg3bM4HtApxznHnmmRg+fDj+8Y9/IBAI4MADD/xazv3EE0/gxz/+MS666CIsWLAAn376Ka677jp8/PHHePHFF7+WGAiC6Bto4kMQ30A8Hg/Gjx+/R2OwLAumacLj8XSr/NatW9Ha2orTTjsNxx9//G6OzsWyLFxzzTU46aSTsHDhQgDAsccei1AohHPOOQf//Oc/MWXKlK8tHoIgegfd6iKIr4GmpiZccsklGDRoEDweD8rLy/Gd73wHL730kiwzceJEjBo1Cq+99hrGjx8Pn8+HAQMG4Oabb4ZlWQXt3XbbbRg3bhxKSkoQDodxxBFH4OGHH0bnnMNDhgzBRx99hH//+99gjIExhiFDhgDY8e2qzz77DDNnzsQBBxwAv9+PAQMGYOrUqVi9enWv+58/3/z58zFnzhwMHToUHo8Hr7zyCgDgvffew7Rp01BSUgKv14vDDz8c//M//yPr33rrrRg4cCAA4Lrrrivoy+7m7bffRn19PWbOnFmw/4c//CGCwSD+/ve/fy1xEATRN9CKD0F8DcyYMQMrV67EHXfcgeHDh6O9vR0rV65ES0tLQbmGhgb86Ec/wvXXX4/bb78dzz33HObMmYO2tjbce++9styGDRtw6aWXYvDgwQDEf86XX345tmzZgl/+8pcAgL///e/4wQ9+gEgkgvvuuw8Aulxd2bp1K0pLS/HrX/8a5eXlaG1txSOPPIJx48bh/fff75PbSr///e8xfPhw3HnnnQiHwzjggAPwyiuvYPLkyRg3bhzuv/9+RCIRLF68GGeddRaSySTOP/98XHTRRTj00ENx+umn4/LLL8f06dO/cqXINM1uxaSqKhhjOz3+4YcfAgAOOeSQgv26rmPEiBHyOEEQ+wicIIjdTjAY5LNmzeqyzDHHHMMB8P/3//5fwf6LL76YK4rCN27cuMN6lmXxXC7Hb7/9dl5aWspt25bHDj74YH7MMcdsV2f9+vUcAP/zn/+803hM0+TZbJYfcMAB/Oc//3mP6u7sfMOGDePZbLbg2IgRI/jhhx/Oc7lcwf5TTjmFV1dXc8uyCtr47W9/261zAujW66v6cccdd3AAvL6+frtjJ510Eh8+fHi34iEIYu+AVnwI4mvg29/+NhYtWoTS0lKccMIJGDNmDHRd365cKBTCtGnTCvZNnz4dCxcuxKuvvoof//jHAIB//etfmDt3LpYvX45YLFZQvrGxEZWVlT2O0TRNzJ8/H48//jg+++wz5HI5eWzNmjU9bm9HTJs2raDfn332GT755BPceeedMoY83/ve9/Dss89i7dq1GDlyZI/PtXz58m6VGzp0aLfK7WxVqKvVIoIg9j5o4kMQXwNPPfUU5syZg4ceegg333wzgsEgTjvtNMyfPx9VVVWy3I4mLPnj+dti7777Lk466SRMnDgRCxcuxMCBA2EYBp5++mnccccdSKVSuxTjVVddhf/+7//Gddddh2OOOQbFxcVQFAUXXXTRLrf5Zaqrqwveb9u2DQAwe/ZszJ49e4d1mpubd+lchx12WLfKqara5fHS0lIAYvy/fH1aW1tRUlKyS/ERBLFnoIkPQXwNlJWV4Z577sE999yDTZs24R//+Aeuv/56NDY2YsmSJbJcfiLQmYaGBgDuf8CLFy+Grut49tln4fV6Zbneeto8/vjjOPfcczF37tyC/c3NzSgqKupV23m+vDpSVlYGALjhhhtw+umn77DOrmqLdrSitiP+/Oc/b/e4f2dGjx4NAFi9ejUOOuggud80TXzyySc4++yzdyk+giD2DDTxIYivmcGDB+NnP/sZXn75ZbzxxhsFxzo6OvCPf/yj4HbXX/7yFyiKgqOPPhqAmDxomlawUpFKpfDYY49tdy6Px9Pt1RrG2HaC4eeeew5btmzB/vvv3+3+9YQDDzwQBxxwAD744IPtJly9pa9udY0bNw7V1dVYtGgRzjrrLLn/r3/9K+Lx+E4nbARB7J3QxIcgdjPRaBTHHnsspk+fjhEjRiAUCmH58uVYsmTJdv9plpaW4r/+67+wadMmDB8+HM8//zwWLlyI//qv/5JPcJ188sm4++67MX36dFxyySVoaWnBnXfeucOnnEaPHo3Fixfjqaeewn777Qev1ytXML7MKaecgkWLFmHEiBE45JBDsGLFCvz2t7+Vj5HvLh544AFMmTIFkyZNwvnnn48BAwagtbUVa9aswcqVK/G///u/u9Tu2LFj+yQ+VVUxf/58zJgxA5deeinOPvtsrFu3Dtdeey1OPPFETJ48uU/OQxDE1wNNfAhiN+P1ejFu3Dg89thj2LBhA3K5HAYPHozrrrsO1157bUHZqqoq/Pd//zdmz56N1atXo6SkBDfeeCNuu+02Wea4447Dn/70J/zmN7/B1KlTMWDAAFx88cWoqKjAhRdeWNDebbfdhvr6elx88cXo6OhAbW0tNmzYsMM4f/e730HXdcybNw/xeBxHHHEE/va3v+EXv/hFn49JZ4499li8++67uOOOOzBr1iy0tbWhtLQUBx10EM4888zdeu7u8uMf/xiqquLXv/41Fi1ahJKSEpx77rm444479nRoBEH0EMZ5J8czgiD2GBMnTkRzczP5whAEQexGyLmZIAiCIIhvDHSriyCIXvFVDsmKokBR6DcWQRB7B/TXiCD2EpYtW7bP3ebasGEDdF3v8nX77bfv6TAJgiAktOJDEMQuU1NT85WPjdfU1HxN0RAEQXw1JG4mCIIgCOIbA93qIgiCIAjiGwPd6tpFbNvG1q1bEQqFKEkhQRAE0SWcc3R0dKCmpma3iv3T6TSy2Wyv2zEMoyAlTn+CJj67yNatWzFo0KA9HQZBEASxD1FXV7fb3NDT6TSG1gbR0Gj1uq2qqiqsX7++X05+aOKzi4RCIQBAHYDwng2FIAiC2MuJARgE9/+O3UE2m0VDo4X1K2oRDu36qlKsw8bQMRuRzWZp4kO45G9vhQGEP/4YcLJMH//z+8GdUbU8gOV8ZvQ4wGyxnSkCFGclkiuAYgKedqExz0QYtIxbztsktj0dNtScKMNMjlzA/VCrWbHf1gpvueX84j3rJF/XUhzM5khHRIJLI2nDXy+CSZfpyIS3/7IoJoBOTWci4o2aA+BYuGhZDtvJmWn5GHJ+se1t5vC1OL8+VIZsp7gzRQyKc8jTbsNWRbu5AAPs/Lk5VOccuSCDHhedUTMc3DlfJqhItZqtA6myL8UOwNcCsBzgaxMn9DWkwbLiYLbEh1xINNa5/56YDcsQMUXWxoDNTub0ARXYemyxLOdrFjEFtrjLyx2DDKQqGJjTv+BWG7Yu2lJy7gVJlSuwnc+LlgIsQ2wzDnBnzK3Of3c44G90xyDfP8Yhx1/LcFi6e8ECm5NIlzuNKAzpiOK0y+B3fhky043J8rpj0DFIwWu3/AQEQewizc3AQQfJt1+HNCIcUno18env0MSnLygrA8rLAQDtvqCc+JjeThMfq9PEJwAoTpn8xMebFv/xpP0MmuKW88XFtidnQ1VEGUXlyHb6z0llO5j4MCDn3cHEh3MwiyPtcyY+to2cIWZaKY+BjG8HE58cCiY+aWdCpWYBlp/4KFz+B252mvj4fBxZj/jPlausIO60n8n/uL3pThMf35cmPjmxnfUxGM5/0CrrNPHxuRMfSwdSgU6xO+2nk2LMM0kRS1ZXwbgz8TH8yHpUty0HT8aG5XE6rlmA4nO2A2jzB2W5jFfEZBruxCfmM5D0uxMf09tp4qO6FyTp7zTxgZgsA1+a+Pjc/oADWa87BnLiY6NTO1xO2ADA1BnSHtEIVxjSzjUwfUxem84xmZ2uUcyvyM82QRD7Bha3YfXieW2L230XzF4ITXz6iNFXLwAAeE2O4g/icn/9d8WypmUAXmdVJ2sxJAaLD5bRrkDJAmZK/EflbePIhp2JRVJMjAAgE1Hkyo6W4nIiwsxOEx4GMOfTngsocsJgdFjQO8T/kMlKA4lKFZ6YKJesUBCv9jntdpok2YCvVcSoZmwky1WnXfc/cy3JYTqTIGSclRoH1Vm1UkzAdCYTasaGf1sOmSLxsQvUc6TKxDFbZdCcyZ8Rt5EuEvuzYQanG/C2cZjORCQ/YQQALc3hbXcmNCEViQHOBMMCbGcFxRPlyAaZ7Iea9sDb6H658ytoppch50yc4gNVeFvEdsNRxfA3RgAAwY0JlHwiTh4brCEbFOfLRjSkylTZph4HjA7nmocVJKqdeBPuhA8AgltEHLGh7oTDaBcTSwDQt3HEapkc1/z1zvkZQpvzMx8mPx9cYcj5GYJbxMjlwh6kSp1+ZzhMn/NZa7dlW2qOI+OsAtqq+zkINHCMvehuAEDz0VlsOPd6EASxd2ODw8auz3x6U3dfgNbCCIIgCIL4xkArPgRBEATRj7Bhozc3q3pXe++HJj4EQRAE0Y+wOIfVi6QMvam7L0ApK3aRWCyGSCSCKIBwY2OBAPS4E38NAPCsbZD7ohNczx9bZ8h20sNAAXKOgFXNQupv0kVM6jxyfsDocMp0eioo/+QWAIABwa1C62IZTIpp9YQNZrt14tUabN2tltfjpIsB2xHXGjH3uBHlsi01wxGqExUS1QaynZ4cyOuRyj5IQGsUDcQOrZDaE2ZyqBkbZkCV5U2/o+UJKgg0CL1KpkiF4oiYk2UK/M3ur4/800odg91+B7dwIcCG0PvkRb7pYkXGpCeFxie02XmKiQP+zQmxnbOQK3KfemoeLbZt3e2Tpw1yDOODGIrWOfqnLBAfIAp52jnUjCiT1y7lBcp6kksNVKoS8NeL/Rn34TAYMbe8CMwJKetqbrQkh+acI1GpyCfKjLgN0xGzWx4GLcWhpWw57nlyIRUdAxV5PsXRhKlZ99ymj8l+G3G3bjbE5NgCwKo//BwEQXwFTU1ARQViACIAotEowuHdY4KS/3+p7pMBvX6cfdCILbs11j0JaXwIgiAIoh+RFzf35tVTXn31VUydOhU1NTVgjOHpp5/ersyaNWswbdo0RCIRhEIhjB8/Hps2bZLHM5kMLr/8cpSVlSEQCGDatGnYvHlzQRttbW2YMWMGIpEIIpEIZsyYgfb29h7FShMfgiAIguhH2OCwevHalYlPIpHAoYceinvvvXeHxz///HN897vfxYgRI7Bs2TJ88MEHuPnmmwsMEmfNmoW///3vWLx4MV5//XXE43GccsopsCzXiXr69OlYtWoVlixZgiVLlmDVqlWYMWNGj2LdayY+8+bNA2MMs2bNkvvOP/98MMYKXuPHj+92m4sXLwZjDN///ve3O3bfffdh6NCh8Hq9GDNmDF577bU+6AVBEARBfPOYMmUK5syZg9NPP32Hx2+66SZ873vfw/z583H44Ydjv/32w8knn4yKigoA4hbgww8/jLvuugsnnHACDj/8cDz++ONYvXo1XnrpJQBixWjJkiV46KGHMGHCBEyYMAELFy7Es88+i7Vr13Y71r1i4rN8+XI8+OCDOOSQQ7Y7NnnyZNTX18vX888/3602N27ciNmzZ+Ooo47a7thTTz2FWbNm4aabbsL777+Po446ClOmTClYciMIgiCIfZG+utUVi8UKXplMZtfisW0899xzGD58OCZNmoSKigqMGzeu4HbYihUrkMvlcNJJJ8l9NTU1GDVqFN58800AwFtvvYVIJIJx48bJMuPHj0ckEpFlusMef6orHo/jnHPOwcKFCzFnzpztjns8HlRVVfWoTcuycM455+C2227Da6+9tt39v7vvvhsXXnghLrroIgDAPffcgxdeeAF//OMfMW/evF3uS55/LXVN3qYMEQJQLWWjbbgz3LYrIlZyQDYMeFvFe6ODu4LaGJfCYDXjCk6VnCui1eMoSF+RDbrbeSGqqgLZIsecThMC1bwYWOkkfA3XFRoE5p2mtTRHyhHmJqoZuCqCTxczKcAN1LsCZK05jo5DxCyecVeYq1gcuZAq42UcyDgCPDXHC5yn83GAOU7OEALcfIqL8EaOZJnYny5iUqxtG0yKtW0DKP1QCKY9bTmgk44/Xe5BttjrjK0FNS3KsYyFyHoxcNEhGiIbXKfBnDO25assdAzKmzBa0B2TQmYDLQc7QudWFAjIMyUMmtBSw9MK6Il8LK4hJCDcvgFhdhl3jBjtInGdAWH0mDeNVHJAyhmDVJmKyHoRq+lTYWtCJA4A3hZTmkjm/O7nKBdyxeKemCvkzrqm1CKtxTZxbT3tvEAYfegVwrTzg9+TyJkg9ib66qmuLyfivuWWW3Drrbf2uL3GxkbE43H8+te/xpw5c/Cb3/wGS5Yswemnn45XXnkFxxxzDBoaGmAYBoqLiwvqVlZWoqFBPCjU0NAgV4g6U1FRIct0hz2+4vPTn/4UJ598Mk444YQdHl+2bBkqKiowfPhwXHzxxWhsbPzKNm+//XaUl5fjwgsv3O5YNpvFihUrCmaVAHDSSSd1OWPMZDLbzX4JgiAIYm/D7oMXIDLJR6NR+brhhht2LR5btHjqqafi5z//OQ477DBcf/31OOWUU3D//fd3WZdzXpDfbEe5zr5c5qvYoys+ixcvxsqVK7F8+fIdHp8yZQp++MMfora2FuvXr8fNN9+M4447DitWrIDH49lhnTfeeAMPP/wwVq1atcPjzc3NsCwLlZWVBfs7zyp3xLx583Dbbbd1r2MEQRAEsY8TDof75HH2srIyaJqGgzolawWAkSNH4vXXXwcAVFVVIZvNoq2trWDVp7GxEUceeaQss23btu3ab2pq2u7/9K7YYys+dXV1uPLKK/H444/vNO39WWedhZNPPhmjRo3C1KlT8c9//hOffvopnnvuuR2W7+jowI9//GMsXLgQZWVlOyyT58uzw6+aMd5www0FM9+6urqv6CFBEARBfP305omu/KsvMQwD3/rWt7YTIH/66aeora0FAIwZMwa6rmPp0qXyeH19PT788EM58ZkwYQKi0SjeffddWeadd95BNBqVZbrDHlvxWbFiBRobGzFmzBi5z7IsvPrqq7j33nuRyWSgqmpBnerqatTW1mLdunU7bPPzzz/Hhg0bMHXqVLkvv8SmaRrWrl2LQYMGQVXV7VZ3Ghsbu5wxejyena4ydcU/NwgdxJFn3oWizx3zvE5pc1NlKvS4O+HSk1wa5RkxE5mIuES66WpG1KzIdA44ZoghJuvmM5ZzBpmkNF2sIl0qto0OoUXJ60oCW01YUv+hyGzknpibwDJTpBRkAc8b3Smmm008PkBBaLMY64YTKpH/3mTDItElAFi6Bj3FC0zwwptEkPEaDeliN2u41DlFOWw1H2sWasYVxCg5x2iwkzYoWc6gJ92xVNOO0WAsg44DwrCdrOVa0kYu6GSob0pCyYg4MtVhWB5FjnM+uSfv9FHM+VSpf+oYpEr9jekFStbYTmzO2Jc6eqY2IF0i9mlxdwyZBamTMjtlYbc1hsgXttOuq+sJ1Fuw8tnVvQDPiv2+FkvqvkrfawU4hxUSDZpBHYrhjom+iTsxcqm/6qzpSlSprvFj3M30bvoY7O9ExRi8HoHl/F4Z/+O7YavAu49cBYIg9jwWRy+zs/e8Tjwex2effSbfr1+/HqtWrUJJSQkGDx6Ma665BmeddRaOPvpoHHvssViyZAmeeeYZLFu2DAAQiURw4YUX4uqrr0ZpaSlKSkowe/ZsjB49WkphRo4cicmTJ+Piiy/GAw88AAC45JJLcMopp+DAAw/sdqx7bOJz/PHHY/Xq1QX7Zs6ciREjRuC6667bbtIDAC0tLairq0N1dfUO2xwxYsR2bf7iF79AR0cHfve732HQoEEwDANjxozB0qVLcdppp8lyS5cuxamnntoHPSMIgiCIbxbvvfcejj32WPn+qqvED6HzzjsPixYtwmmnnYb7778f8+bNwxVXXIEDDzwQ//d//4fvfve7ss6CBQugaRrOPPNMpFIpHH/88Vi0aFHBfOCJJ57AFVdcIXW606ZN26l30M7YYxOfUCiEUaNGFewLBAIoLS3FqFGjEI/Hceutt+KMM85AdXU1NmzYgBtvvBFlZWUFE5Zzzz0XAwYMwLx58+D1erdrs6ioCAAK9l911VWYMWMGxo4diwkTJuDBBx/Epk2b8JOf/GT3dZggCIIgvgY6C5R3tX5PmThxIr4qA9YFF1yACy64YKfHvV4v/vCHP+APf/jDTsuUlJTg8ccf34UIXfb44+w7Q1VVrF69Go8++ija29tRXV2NY489Fk899RRCoZAst2nTJihKz6RKZ511FlpaWnD77bejvr4eo0aNwvPPPy/vNRIEQRDEvooNBgvdf8ppR/X7M5SkdBfpKknpV3H8cfOQKjPke2ZzoJOwWs2K+Xaiwp2XWl6hdwEAo8OWGpF88lBZznDfa2kn0WeFInUyXAX0hKvN4Ux4xgBC8/HluqKQG1+6SJHeMbkJHcBHYhIa3AQUfZ4W8a1vcuOpKka6QohB2odp0BJAeKPIvKqlLOSCoo+mX0W6aPuEp55OfQ1tSEHJCo1PvDYgk3BCcTVBAJAsyydBZVIvZesM2TCQczxq9A5AS7l1yt8XJjupKi9SJaJ+phjIFonjakokQwVEss78tVByHMlKx7unzdXD6EmhZcoFHS2W5mpoLMP1I9KSgJbKJzZl0NJOl7KAv0kIq3IBV2Nla0C8RpFjlPd/8jdb8LRknLoWmGmDa44WKGQgWel+3jJh9zOST0Kq5LjUjXX2O8qG3YFlpqtD4hqkbqz0I9Gx2CC37Ee/IW8fggCwR5KUrvy4EsFeJCmNd9g44qBt/TZJ6V674kMQBEEQRM+xuXj1pn5/hiY+BEEQBNGPsHp5q6s3dfcF9rhzM0EQBEEQxNcFrfjsAV7+l2v7PW7G3TDiHNlgPh8Vh+n4tHTW2egpSL1KJqLIXE9a2gZX3Nl53odHS7q6/ECDJb2DkhUaTC9Q9JkwmkmXaUiXiDrMYtAdzYeW6tQuc7UyeoJLXYhVH0TrCFHE9APNo4WWp2adhY5vuTlejA4hUAlvZEKv0skkwjacviYtcMfzxvIKHQwABBrdsuraTWBMlFEGDJN+O1rSgp4Sopnofl6ppSlZ3QErKMyP1JQJrjC0jfA7Y8ik1075e+3yHKEVLfBXCNdQK6AjWS0CSZUqIjcZAF8Ll7ojrjKENolzp8pU6fejZgt1W54ol3GBu55MzHJ1WUaH0G/lyWtu1CwKyOd5M32At01sJ8tV+DeLcU4ODAAA9FheI6RK/ZaS4+DOwwCcdfJkynFYzvk6BiowHS1Uycc2TG/nfoh/LYNB78jXBcC59I3KBYCRNwv/qjW/Iq0PQXzd0IpP19DEhyAIgiD6ETZnsPmuT156U3dfgCY+BEEQBNGPoBWfriGND0EQBEEQ3xjIx2cX6Y2Pz5c58sy7ZL4mrkLmubIMBm+70I+YHkV6wgCAr9nNWZULOvmg3F0AB7Kd/FryOhJvuw3LYFLbkQ0xmTtLzQKR9TknDiY1NKlSd36sJzkU09EahRXk/E48rVzG7W23pD7IVl3/GlsX5/K0iUC5zpAJq7JOno6BhQuReY8ef6MtPWgyEQZPTJzQ9Ln9LPk4I7eNxg6pbeKGhtiBEXks9HkHlC3Cb8jcrxpaW9I9YUqY6ZjVJbC9Ir74QA+SFeI8Sk7oWOR5HK2LmgaMhOhsukhBpggyb5gIwt00nXELb7Sl1ihVpkDJur5DejKfs82Cp1UIfXIRA8lyEVNooyv+sfwq1LQzrop7fQEgVaFD7eTpxJ3h5cyNAwCK17r1dccjyf/BFiAjxrT1pANkXjhmQ+YGUyxxPfJEh9vwtLifGSMm/v3P3aT3Ib6B7AEfn399OKjXPj7HjaojHx+CIAiCIPZ+eC81Pryfa3zoVhdBEARBEN8YaMWHIAiCIPoRJG7uGpr4EARBEEQ/wuIKLL7rN3Ssfq78pYnPXsCb/3O13J4w/S4pGtXSXIqEMxEFqmNCZ2uAmnaN7vLb2bDqJppkAHcM9BjnwlAPQnSrpThMvyN2buPSTC9ZwdB0uHjjbYY041NyrsA452cwOlwzQ1sT7VgGk+LdnF+B7hgoMoXJ+NQ0kAupyBSrTlyQwupMRIUp/A8LEo523m4brsBwDPS4BpkstewjEywnzpELa7JOtqhYinyNDgu5AJMib21AAD5nfLSNje75IiHALzJxZks9SJWKWHMBBn+jawKYT5CaC6qybmwwQ6pcnFyPA+FNrtFhLuD+gmK2myA1E1FkGcsL+OJiW81yaZiYC2hIlouBKvo8DTWcF7PbUJyEtmZARbJCXDsjbiMTVuFtEQaGesJN9OprtZEJuwaZrFnst3U3IamaBTKG6Jc5bhDCH4pC8YEMgWPcBLTpF8plf4o+y0mTxOK1QN2JIhbfNjeB7ME3LJBC7tV3ktCZIIg9A018CIIgCKIfYYPB7oWE10b/XvKhiQ9BEARB9CNI49M19FQXQRAEQRDfGGjFZy/jrb+4ep/vnn4nmLPiGNhmyv22xpApEpeOq0BofQIAoJg6MsVCW8FswBNzdUB5bYua4cgUuboL08tgOUkvmeXqekwfoDintDzutpLlMmllRy1D8FtC/6H8TyksZ382qMgEq2rKBtcdrYpfkfGLdhmyTjJMxQZUR/di6662h9lAzimjpiD1RUYHpObJ90U7WIcYg8ThA5B2NETpIibNBW2dwYjZiA8Qx/wbO8C2tTgnV5AbVgUAaD/Ah9JVQkjk3RoHIE6uJRXYzhhylck+eFtM2E7/whsV2cf8WGUiihzDfOy5AJPjDACWo7FSM5DXonhNEiFN1E2XGlAz4lpahuJqwOJZmQhVj+Vga4YskyliUDPiJFwT2ixA6HfyhpKZCJMJUD3tttQhqRkujSK5wtA2Rmh5LC9wRHkdAGDpupHAOHHBrDYDgQYV4ZfXimumaTjgP6LdNb+pRXiViEu1gNgRwgxx3Ll3451HrwJBEH1P78XNdKuLIAiCIIh9BKHx6UWS0n5+q4smPgRBEATRj7ChwCJx804hjQ9BEARBEN8YKEnpLtKXSUq74vDLFgAQ2htfixBnRD5sA0sJcUbs0Arp9aPmuEzKGR+gSV8Vod8Qc9xsmIHZQKbYPYfi5PVULDfRqa1BJk5lnfbrSS69WCyDSS2PnrCRqHK8X3yAJ+qcO8plklOuQJYHhJYk7x1jq+L8gNDG6Cm33c5pYzIRcY7iD6Nu/JsbATufIdWDxOEDRRxeBZrjIWR6FRgxE20jhN6kYnkCSlp0pHlMEbxtTnLRYgXZkGgqn1wzH7uRcHRLaRumo+WxDCBQLwRQ/v9sgVVdCgDo2F9kMc35OumCHC2PHufQnP5xFYjXOL48HAhusZ0yFvQOEV+yyisTw/q2pcEs26mrIF3ukXWZUyafXDZPNqzA7qQpyo9zopLB057f515XAPJ82aAity0PQ0IMLSLrOFoOc8t7GxlKP3KEYIwhNkicsGMox8gxGwAAa94fIsvrUSY/X+H1HMv/RHofop+yB5KULl51EPwh9asr7IRkh4UfHfYxJSklCIIgCGLvx4ZCPj5dQLe6CIIgCIL4xkArPgRBEATRj7A4g8V7YWDYi7r7AjTx2ct5/z43p9HR034LAOg4sBjpIrFYlylyy3IF8Lbl3wg9DiD0JXlNiZbmTq4oN8dWJiKqqElAcXxdMkXCV0bUgczDxRmDnhAiEV+z6xPELI7wBvE+WalJn5otJ9kIrhOxFn1uIV2sSL2Q5WHSk8YKMtjOd82/zYanVQSidWSgbHUSShWFHVcdIHZwKTxtQlPi2QzAcAQ0uZzUOTGbS72LHrfAFYbwBlGn9aAAgluEqKXk4ySyYVFfCTLoCRFIslrkF8sT2SDKmz4FesLJjxZS0TFQ1G0fNgTVr4oLkA0qSFQDPif0VIWrk8pEmBx/APA3ucvK+dxlpl+V/Qitj8PWxYBaAQ2pcnE+rjCp3fFvy8HyiTeKyZEqVWU+ts7tKjnAdNZ5PVHA1yKC4iqT+dxMH0Mm5OiObNd/KK0xhDY47ekMxR/l2+TQMjZsXZH9y68l22VZfLSxBgAw7JDNWP+BEAnZhvv5UnLA0aeKz/ar/+8aEATRO6xePtVl0a0ugiAIgiCI/gGt+BAEQRBEP8LmCuxeODfb/fxhb5r4EARBEEQ/gm51dQ1NfPYhXv2Hq3/Y/7d3AwD89QyedkcnYzDp3QNA6jT0JAdzfG7SxQqY7Wo+9ARHcKt7jkzEyUHVyqU/EACYfvGvEXPzT5l+BVrS1fnEa4TGxNfKAUcvUvSBJn1jskFxbtXxi+msn8t73ABA02EqvK0+Uf9zHf5N20T5hiaZmyq0rRkt3x8JAFByA2Vd/dMt8P9ni3MCjvjYQaI/2xJQtjaDlxU5Y1UCM+BqYoz2rOxTIij2MxNI1oh+lK0CEtUiyMDWHFIVYju41XJzlw1UsOE01yBJyUDqp5SMq/HxtrnjqWSBbFDUT1UAxWsdfZLF3Wtp24AiLpiaMIHyfD42DtUZfi1lIVEj9qfKGIwokC4RxyyPm4PNv83NiRZoFJorcT5ITZGS5TLPW87PpFaIa4DRnvdFYvLzYWsMtgnXK4gDSZH6DJ4NHvlZ2/rpILDivP5KeCAB4jPHbBHHEf+1QOYu++D3rr6NIAiir6CJD0EQBEH0I2z07sks+6uL7NPQxIcgCIIg+hG9NzDs38890cSHIAiCIPoRFldg9ULc3Ju6+wL9u3cEQRAEQRCd2GsmPvPmzQNjDLNmzZL7zj//fDDGCl7jx4/vsp2//e1vGDt2LIqKihAIBHDYYYfhscceKyhz6623btduVVXV7ujWbuOza67CZ9dcBVsVSS/1uCNMtdyXluHQMhxcBRJVChJVCnJBYRjHNfGyvAxcFeJXWwP8TTb8TTbUHGB5xUuxOHzNNnzNNmxdiFq5wqCmuTyX6VdEokwuRLLMhnwpOSHUZVycO1XCkCphCGzNylfNqzH4mjl8zRyRzzn0DvGqH68BoaB4AYBpAqYJPmwgSlZ3oGR1B+KDfdCbE9CbE0BJEXhxSLxKwvC0ZuFpzYIbGuAxYPs8sH0ehNbFwBVh+hjdz4AV0GAFNDFeTAivmQUE6hgCdQypMiZMHLkQOWdDDNkQQ8tBKjJhBZmwgvAmG8E6jmAdR+V7JspXm1CzgJoV4wAmXqkKyLaMOIeeEC9/PdC+v4L2/RUky1UwzsE4h+0zoEaTUKNJQGHw12fhr89CyXKYXgbTyxAd5oWa4VAzHIopBM3ZYo5sMUemOgcrYMMK2EiVOQlJLQ4lY8Po4DA6ONQsh+lXYPoVcJXJa+drtZGJMGQiDJwBuYCCXECBlnE/X0bCBleAZAVDsoIhU8TgaQU8rYC/HjCDNsygjVwQYDkmXhbgaxQvWweaxjA0jWGwdCBdLl4H/moBRtwiXgRBdB8brNev/sxeMfFZvnw5HnzwQRxyyCHbHZs8eTLq6+vl6/nnn++yrZKSEtx0001466238J///AczZ87EzJkz8cILLxSUO/jggwvaXb16dZ/2iSAIgiD2BPlbXb159ZRXX30VU6dORU1NDRhjePrpp3da9tJLLwVjDPfcc0/B/kwmg8svvxxlZWUIBAKYNm0aNm/eXFCmra0NM2bMQCQSQSQSwYwZM9De3t6jWPf4xCcej+Occ87BwoULUVxcvN1xj8eDqqoq+SopKemyvYkTJ+K0007DyJEjMWzYMFx55ZU45JBD8PrrrxeU0zStoN3y8vI+7RdBEARBfFNIJBI49NBDce+993ZZ7umnn8Y777yDmpqa7Y7NmjULf//737F48WK8/vrriMfjOOWUU2BZliwzffp0rFq1CkuWLMGSJUuwatUqzJgxo0ex7vGJz09/+lOcfPLJOOGEE3Z4fNmyZaioqMDw4cNx8cUXo7Gxsdttc87x8ssvY+3atTj66KMLjq1btw41NTUYOnQofvSjH+GLL77osq1MJoNYLFbwIgiCIIi9jbyBYW9ePWXKlCmYM2cOTj/99J2W2bJlC372s5/hiSeegK7rBcei0Sgefvhh3HXXXTjhhBNw+OGH4/HHH8fq1avx0ksvAQDWrFmDJUuW4KGHHsKECRMwYcIELFy4EM8++yzWrl3b7Vj36FNdixcvxsqVK7F8+fIdHp8yZQp++MMfora2FuvXr8fNN9+M4447DitWrIDH49lpu9FoFAMGDEAmk4Gqqrjvvvtw4oknyuPjxo3Do48+iuHDh2Pbtm2YM2cOjjzySHz00UcoLS3dYZvz5s3Dbbfd1rsO7wY+/K1r8nbIzxcg55jhWR43waYREy9AmPXZGpPHtDSXCUwVkyNZ5pgQtlgwOkSZVKkizeqYxcHV/DkYLE/exA7wtTjuDwzS1E9LcxiOGZ7lVaDkODIl4lhigOEm+yzSkA2J/UpO6EcAwGgHot+qBgBE/hUHd2b+yrY2xMYJc0I1w5EcUgQA8C//wr07XRyB7RHaoPoJfpR+4kUmIvqXKnPvYXvaOVoPdD9PaWfxz2h3E4jmdS6iH+746wnRX0D0ObxRGCEaTUlER0YQ3GLLMcwnjQWEtig/bvkxzPkAj5NkVk9yxAeImCKfJWCFhKFjLqSDa6K8vz6NbNjvtM9kIMwGoAp9EgCon+loGy3GzdviHAfAdQY1azvxKPKaKSaHp9WUsUbWu8luO19XxRT7syEFRtyGEXfHwegQ7bbtr8nx0Q7ogP1xSLTFgPR3RYVcyv0zlKo1YW0IAADCXzBp+nj0qb+lBKYE0U1szmD3xsfHqfvlH/gej6fL/3u7bNO2MWPGDFxzzTU4+OCDtzu+YsUK5HI5nHTSSXJfTU0NRo0ahTfffBOTJk3CW2+9hUgkgnHjxsky48ePRyQSwZtvvokDDzywW7HssYlPXV0drrzySrz44ovwer07LHPWWWfJ7VGjRmHs2LGora3Fc8891+WsMhQKYdWqVYjH43j55Zdx1VVXYb/99sPEiRMBiAlVntGjR2PChAkYNmwYHnnkEVx11VU7bPOGG24oOBaLxTBo0KCedJkgCIIg9hm+/H/cLbfcgltvvXWX2vrNb34DTdNwxRVX7PB4Q0MDDMPYTvJSWVmJhoYGWaaiomK7uhUVFbJMd9hjE58VK1agsbERY8aMkfssy8Krr76Ke++9V67WdKa6uhq1tbVYt25dl20rioL9998fAHDYYYdhzZo1mDdvnpz4fJlAIIDRo0d32W5vZroEQRAE8XVh9zJXV97AsK6uDuFwWO7f1f8DV6xYgd/97ndYuXIlGOvZShTnvKDOjup/ucxXscc0PscffzxWr16NVatWydfYsWNxzjnnYNWqVdtNegCgpaUFdXV1qK6u7tG5OOfIZDI7PZ7JZLBmzZoet0sQBEEQexv57Oy9eQFAOBwueO3qxOe1115DY2MjBg8eDE3ToGkaNm7ciKuvvhpDhgwBAFRVVSGbzaKtra2gbmNjIyorK2WZbdu2bdd+U1OTLNMd9tiKTygUwqhRowr2BQIBlJaWYtSoUYjH47j11ltxxhlnoLq6Ghs2bMCNN96IsrIynHbaabLOueeeiwEDBmDevHkAhBZn7NixGDZsGLLZLJ5//nk8+uij+OMf/yjrzJ49G1OnTsXgwYPR2NiIOXPmIBaL4bzzzvt6Or+b+M8CV+8z9qK7YetucsmkXB1kgAJ4m8Q7W2VQM0JIkQsoUrfBVQbLmXt6ohzJCvFF8Lba0FKiPOOQmiA1JxJaAoBiujoSJedqgrgCmD6RQBMAfI05mH5VhhXYZjt1bPi2ikyaRQCUdZtErLkcmDMhTh3kTlJtDcg62h31kCHIFLsf6/y5vW1A64GaTA7qae2kSQJg6e6vhdBG3qmvjkanzBXiqRmR3FWew/mloVhAfIDIvKkX6chEFPgbxViFtliIDRIxmn5AS+XHx43D0Bl8jTnZLuOO9iqWRmag+NWVKtdgOpogr4fB1yLaN30aogeI8uUrgNaD3P74twGRteLcRZ+byPmcJLMe93ePZTB57Y12C7YhjuWCbpm8T5DoNJdJSaVOK+T+WGnbX1wDrgHhT0Ub9hchBOtFWS3NgRVCt7T1uwr0OHPGhiOw1dFSGWKsASBRoWHMJQucMeNY/ucd35ImCGLvY8aMGds9wDRp0iTMmDEDM2fOBACMGTMGuq5j6dKlOPPMMwEA9fX1+PDDDzF//nwAwIQJExCNRvHuu+/i29/+NgDgnXfeQTQaxZFHHtntePbalBWqqmL16tV49NFH0d7ejurqahx77LF46qmnEAqFZLlNmzZBUdw/zolEApdddhk2b94Mn8+HESNG4PHHHy/QC23evBlnn302mpubUV5ejvHjx+Ptt99GbW3t19pHgiAIguhrLDBYvTAh3JW68Xgcn332mXy/fv16rFq1CiUlJRg8ePB2Dw7puo6qqiopSI5EIrjwwgtx9dVXo7S0FCUlJZg9ezZGjx4tJ00jR47E5MmTcfHFF+OBBx4AAFxyySU45ZRTui1sBvayic+yZcvkts/n28508KvqAMCcOXMwZ86cLussXrx4V8IjCIIgiL2ezrerdrV+T3nvvfdw7LHHyvf5h4HOO+88LFq0qFttLFiwAJqm4cwzz0QqlcLxxx+PRYsWFUhfnnjiCVxxxRXy6a9p06Z9pXfQl9mrJj4EQRAEQfQOC7u2atO5fk+ZOHEiOOdfXdBhw4YN2+3zer34wx/+gD/84Q87rVdSUoLHH398FyJ0oYlPP+W9h67Cwde7OY78jh4s4zwpaAp5BXIhSE1M0WcWVGFDA8XkUveSKnVn/+kSBYF658NtcwQahN9LLqjCExX6DZbjyAXFDJ1xIFXm1mcWoDt+L41jDRStE3V8TVlkioWOxtYVcF3UUT/eANhOu4oifXy8b34C30Ch84mOKkUmIspngx7pkRNotABLxKonRb4x2/HA4arQtQBALsCkdoUrTO63dSat25Ws0PDkyeunhAeSqJvzMaFdgdApgSlIlzj9yADeNnEszRgyRXDqA5liR3PjByKGGAN/g4m8AU5e3wMIPZMtZESwvAq0pOnEDXBVtN/4bUCtTCLXIQqWfqhKHQ5nkFoey8Og5NzxyWP5FKhZ8T64MQVb73T9bO7Eqkkdl+kX+btyPua0ZSOwTZRLVoocbgDgbe+sFeMINIgP25BnbDFeANIVXkSHqM4Yun5H+c8rAPg7OA77maP3sYCVf3S1bQRBEF8FTXwIgiAIoh+xJ2517UvQxIcgCIIg+hG7mmi0c/3+TP/uHUEQBEEQRCdoxacf89GvXe3D8LlCE+HbBvgbXf+aZLmC8CY3L5Oac7Ueelzsbz3Yg9IjhR14y5tVYI7Bj7fNhuX4WVkGA7OExiNdocFwNCXRwQqK17k+QQBgxMT74FaORJX4CGYiXpkzzNeUg7pWePewSAhWlRAmKR0ZKCnH2KUjDjsgTq5YnfQpnbKfpEoVNH8n3zcbJe/osBx9jGIBwa0iDiPu6n1SpQw5kSoKplcBd74hnnZIDyC4wwdbYwhuccU/bu4yBs4AzcmJlg0yqVdRcq7OKf8vILQ7pqOTyRSrCNal5bHo/q7IhXU6f16/yFXAaBcnyNRmYKY1GGGhocmGAlK71RlbY7ItS2dSv8MZkAk72qSkJn2eCuoaCpijFbJ1BWqGS3+nzjncPG1cxmh5mPTlsQzhIQUAsWGdBDwcMlajgyMXcNppsaWuytaZ1CRZOsO4GXfjncfI14cg8nAw2L0QN/Ne1N0XoIkPQRAEQfQj6FZX1/Tv3hEEQRAEQXSCVnwIgiAIoh9hcwab7/rtqt7U3RegiQ9BEARB9COsXmZn703dfQGa+HxD+PRGIXQ++IYFyIYUKWTVkxzpYiFWNuIctpOLU83asDXx4S/7wAJ38r+ZPkjTQiXLC4TF+SSVeopLQ0E1A8QGi/2R9SZMvwLTL44xC/DERP34AAYj7oibP9wC+ITglYcDgJMEtOOgEpkIVc1xxAbnzfAgRdZqGshGxDZXGEKrRYe0tDDDy5vp2ZqbYFXLcKiO8aAR5zAcwXH7cPdXT6YY0DvEticK6E6sppchGxJx6Akb/nqh3hUmgR6kSp0x6ZTUtKPWbTcxmKPqTfdYfty0NIeaFAlLba+Ook9FVtMtR/vhwpCsEP1jJuCvF3v1mAe2BwhsNWRf86JpNc2lgL2zIWMmzKTovbN4OlmlwxMTfbAMhmynpKX5+uJz4J4j51fAHYd5NculaaTRwZHNi5VjHLFaEV82JAwNZbuOptvSAa+TwNX0uYLpdLEbn54Qx8afc5c4X4bjjb/OBkEQxM6giQ9BEARB9CPoVlfX0MSHIAiCIPoRNhTYvbhd1Zu6+wI08SEIgiCIfoTFGaxerNr0pu6+AE18vmF8NE9ofY45eT4AkeiyM/nklIBrOJgqUxF7vwoAUHZoI5KfVQAAjA4bofUJAEBiUEDW87Sa0uRQ1xlK3nTEJ+kMcsOq0HSoa1iXNwjU44C32TEb9PvAtzUBABjnUDtEodQhQWgZ17jO1+TGmteR2EFX7+Nr7qSdCTPYGpCqFO+r37bg25IUMeiK1BGZfg0dg4RupvRDG1lnDGy9U3JQD6DkRHlvWydBDGPIFhvybbJSha3l+8mQDTnbCqCmnK5uZmg+RLQV2gj4G8UYeNpyaBwnxEr+bRZsx2AxssGGksvHwaQJYyasIlUmyigWoLe5ZopaisvEpLbBZOJUX4sbuxHn6Bikyvd5s8bQJo6co8niCuBtc8woO2l9AltEZ9LlHqff7rFgvSWT3YoGxTmSFYprJmkCoTrRKW9duyzafliZND/MhpgcfzXnNudvsgEOqU3jCsO3LrhbHl/+JzI2JAiiEJr4EARBEEQ/gjQ+XUMTH4IgCILoR/BeZmfn5NxMEARBEATRP6AVn28o/37uWrk9boariWC20H1wBqkrUUyO8BfO0ucHZShdJwxtYsODiO0fdOpx6HGnruYuk3rbLCQPLAcA+Nc2QWtNoOgz8bFL1GgyUaWa5cgFhf7D3r8UPo8oky0NIFPq+NHoQDIsyjPL9ZHRkpBaENPvanwS1QxGTGwrlvDwCWwR75tHqxi8Oe/FoyG6n0fGnKrIt8XgaXHrp0vEtr/BPUe6REFgm2uIk9camT4Go4MjVeokPy1zk2/auhMzhH+NzzmHlubwbRMmNtkiDzKOH5GviYHlPXNyHJtPM53x9EBNi3EyokBosxj/ZIWCbFiG5CRgdTRC600oWff3Tl4H5G0xYXp1OYbeZnGccTeBK7M5EpWa3C5aJ7Q9XGVQ0u4YhOps2W7Or0hfoHSRIvukJyD1T2oWaB0prrE5pgKqm5tVJjX1xLib5NUEMhE3YSlXxOcVEDqkvMdSuljBEZeK5LwrH3AT9hJEf8cCg9WLRKO9qbsvQBMfgiAIguhH2Lx3Oh2bf3WZfRm61UUQBEEQxDcGWvEhCIIgiH6E3Utxc2/q7gvQxIfAO48Jr5OjT/2t3McA2KZYKvU3WdA7hK6kY5AHarvw7gls0ZGqcLQZXoZchdDoBOpNGDGh+bB1hlSF+JilS6sR3JyB/5NGAICaKYMZEHXa99fQfkDeR0ZF8dpSAEB0P3e5NvIFR6DBEYwwJjUfppchJXNRAclBjreNYYOvE7qV5GALwS9UeNpFHe8Gjnit8B5Klbl+O9kiyHYDWwHTK7a1FFD8qVj/ZTaH4vgdKSaXucfsTtomZgvvoLxGRU1Drq9marMoq24FAOQer0R4QydRi5P7LFOkwr+NO/Ep0l/JMhREVjhaKM3NH6bmuPTFCdRbsDVVxm56gbKPTTc27o5bPvdZNqhDTzrnq3A9h3IJBt3xHNITgJEQ4x+vUqRvj79OCJb8G0WSs3R1AICIMed3c2zpSQ7d0TbZOmT/LC8D65TzLV0sBioXgOxT5+vta7ER3iSucaokn2dOxKUlLKhZsZ2JeKXv07hz74bpxLFiIel9iP6NDQa7Fzqd3tTdF6CJD0EQBEH0I8i5uWv693oWQRAEQRBEJ2jFhyAIgiD6EaTx6Rqa+BCSV//fNXL7yDPvgp7Im8cwpEuEViZUl0F6qDC0idUayAobH+gJSL+W6H56QR6ovPYlGwayIS8CRSLvl5q2pd7E08bhaXNOZwLtwx19UQOkh03Oz2AZ4gupZoBsmHU6h/iXK4Bvs9B9RNa7vjHh1xWYHldHomY4TJ/ixO7uZ5zJXFimF4BzKFHt5udiFpP5okyf0P/k8W9z+80shrZR7nv/VidH1joDvodFYMF4VB5vOTwi+xQbacLTIDrlr3fHUDGBTIl7vmSVCDDyOYPmxBofoMDXbKNjoDifEQdig0Vb3lZbamW8LSbSxeK6ZiNAh98dT6lNygK2I72yVYA7Oc08UY5ElTiQKgkhsM2U7TLeKU9YmsPX3ElflPf0KdVknjbTw6QnEwCpNQrXWUgXq7Je3hMpUamg7QBxssh6x7OnyDl5sSJj5Ir7uWA2pNfTIVctwH/uJp0P0X+x0cuUFf1c49O/p3UEQRAEQRCdoBUfgiAIguhH8F4+1cX7+YoPTXwIgiAIoh9B2dm7hm51EQRBEATxjYFWfIgd8ub/XC23v/ODO2Hr4hdApkiH5XWEtjkO5vwyyEaAQIMQmhoJjmzAESFnObS0a1QHDuSCzrGcm3jSE7XBnAQxeocFNSNEt1wTRnuAEMrKHyKMwRN1kox6gOBmsZsrDN42Vylb8Ykw1cuU+4UpYH1GHkuXCXc8xgE97hjilRtICu011DQQ2CrOUfSFhbbh4uti6wB39LreVkB1+udvNJEL5MW4HAZsnPKdlQCAF/45FtwRCVeszEGLCtPC6EERxGvc3x95IXHgMw3pctFu+0EczBFWB+sYVEdMnaoEPO1OEtRyILRJ7NcTHJaHwXDMDU0f4Gtxrk3Mkslgmw7TpbhcyQHcUUcrWQZbd85RIQTVogyDr0WMU7JSlcJvX4vlJAt1ErR6meyrp9WSSWs7Pyiixy0pLgdzz2F6GRTTMVIsVaFm8qaRgNcRv7cfUPhrlCtuwlrFBJjlGBiGFbQe5IyrlyO8Lp/JFBh1jUhe6mknQ0Oi/0FPdXUNTXwIgiAIoh9Bt7q6pn9P6wiCIAiCIDqx10x85s2bB8YYZs2aJfedf/75YIwVvMaPH99lO3/7298wduxYFBUVIRAI4LDDDsNjjz22Xbn77rsPQ4cOhdfrxZgxY/Daa6/1dZcIgiAI4msnn6urN6/+zF5xq2v58uV48MEHccghh2x3bPLkyfjzn/8s3xuGsV2ZzpSUlOCmm27CiBEjYBgGnn32WcycORMVFRWYNGkSAOCpp57CrFmzcN999+E73/kOHnjgAUyZMgUff/wxBg8e3Led6we88dfZGH/OXQCEnkJ3EkKaXhVGh6Oz8bkJL9MlDEFHG+OJ2dJ8T09ypIsV6E6iS8tgUieSKlVhO5e2+FMLnnYh+khU69LA0NNqgquOiV21Bs3J7clsSA0SZ4B/a9rZbyNb6hPnjmXBNQ/gmNsZm9uQC5eLtqo0mewytMlCulR1+gQkK/KxKwhvFHGLPuSTiTJYIadMIp9kVeiGmA2899sjAAC1mxJQsk5HOIflF521NYaOQ4TuKFycBH+rWNS3AG+T0yeVwXSMImMjXGNDJQdEvhAxxQYpUgvla7FhehmMXF57ZEsjwGSF+5UPNHCZBJZrkLoevcNJqgrA8gKZMtsZfwWZiPitxEwgWS3K+JoZvG052a4SUJEqc8YwoMLbkhXtNidgO/1OVfvldfW1WMg6ui/OxGcpH3ceT2sO8YGibumHtjQjtAyG6DAGPSbem0EgUyr6XbaSo+odsR1c34HPzxSmkUWfcqlHUnMc3/mh+Gwzm+P1/5sNgtjXoVtdXbPHV3zi8TjOOeccLFy4EMXFxdsd93g8qKqqkq+SkpIdtOIyceJEnHbaaRg5ciSGDRuGK6+8Eocccghef/11Webuu+/GhRdeiIsuuggjR47EPffcg0GDBuGPf/xjn/ePIAiCIL5O8hOf3rz6M92a+BxxxBE9eo0ZMwZbtmzpVgA//elPcfLJJ+OEE07Y4fFly5ahoqICw4cPx8UXX4zGxsZud45zjpdffhlr167F0UcfDQDIZrNYsWIFTjrppIKyJ510Et58882dtpXJZBCLxQpeBEEQBEEAr776KqZOnYqamhowxvD000/LY7lcDtdddx1Gjx6NQCCAmpoanHvuudi6dWtBG5lMBpdffjnKysoQCAQwbdo0bN68uaBMW1sbZsyYgUgkgkgkghkzZqC9vb1HsXbrVteqVatw9dVXIxgMfmVZzjl+/etfI5PJfGXZxYsXY+XKlVi+fPkOj0+ZMgU//OEPUVtbi/Xr1+Pmm2/GcccdhxUrVsDj8ey03Wg0igEDBiCTyUBVVdx333048cQTAQDNzc2wLAuVlZUFdSorK9HQ0LDTNufNm4fbbrvtK/tEEARBEHuSPXGrK5FI4NBDD8XMmTNxxhlnFBxLJpNYuXIlbr75Zhx66KFoa2vDrFmzMG3aNLz33nuy3KxZs/DMM89g8eLFKC0txdVXX41TTjkFK1asgKqK2+fTp0/H5s2bsWTJEgDAJZdcghkzZuCZZ57pdqyMc86/qpCiKGhoaEBFRUW3Gg2FQvjggw+w33777bRMXV0dxo4dixdffBGHHnooAHGb6rDDDsM999yzwzr19fWora3F4sWLcfrpp++0bdu28cUXXyAej+Pll1/Gr371Kzz99NOYOHEitm7digEDBuDNN9/EhAkTZJ077rgDjz32GD755JMdtpnJZAomc7FYDIMGDUIUQLixESgv72JE+hcTpt8lt2ODxaKhlgIsR6MTrOcwYo6AgwFf/g7lvWPy2h9A+O/EakVblgFENgh9R87nJgQFAF+T0P6YfgU5vyifiTCoQkYCo8OWiTCNqAnTL74swS9iaB5bJJNn+httGRfXgExo+8VP3ulngSfKwSwRuK0z6bfTuT+mh8HfZMm+GTETiuV+vfR28fmx/DpsJ9lq02gPMLEdAJCIe6B/5miS4m6CTVsXSWABIDM+jqHlLQCAtV/UoHi543ekuMk9FRPwNpswHU8hPW4BzteccSA22NXJWV5nrGIcnqiIPVGlSb1Pzg/Yzm8MNeUmL02XQ+pqGAdKP8oV6IfyXjyedgu+OlGQZdxkpamhxchGOpV39Ei5gCK1YrYOeGLb/3lSctxNiDtEgZ4EvG2OT1GHJRPZamlX2xTclMa2b/tkG/mxLV1jCa0ZgMCWNFpH+gGQtw/RhzQ1ARUViAGIQPwwD4fDu+VUsVgMkUgEJz5/KfRA13rYrsglslj6vQd2OVbGGP7+97/j+9///k7LLF++HN/+9rexceNGDB48GNFoFOXl5Xjsscdw1llnAQC2bt2KQYMG4fnnn8ekSZOwZs0aHHTQQXj77bcxbtw4AMDbb7+NCRMm4JNPPsGBBx7Yrfi6teKzfv16lPfgP/aPP/4YNTU1XZZZsWIFGhsbMWbMGLnPsiy8+uqruPfee+VqTWeqq6tRW1uLdevWddm2oijYf//9AQCHHXYY1qxZg3nz5mHixIkoKyuDqqrbre40NjZutwrUGY/H0+UqE0EQBEH0J74s6ejL/wej0SgYYygqKgIg5gS5XK5AhlJTU4NRo0bhzTffxKRJk/DWW28hEonISQ8AjB8/HpFIBG+++Wa3Jz7d0vjU1taCse4vfQ0aNGi7ScuXOf7447F69WqsWrVKvsaOHYtzzjkHq1at2mH9lpYW1NXVobq6utuxAOL2W361xjAMjBkzBkuXLi0os3TpUhx55JE9apcgCIIg9jY4evdIe36dddCgQVJLE4lEMG/evD6JL51O4/rrr8f06dPlilJDQwMMw9juIafOMpSd3XmqqKjoUqryZXbpcfb29na8++67aGxshG3bBcfOPffcbrURCoUwatSogn2BQAClpaUYNWoU4vE4br31Vpxxxhmorq7Ghg0bcOONN6KsrAynnXZawfkGDBggL8i8efMwduxYDBs2DNlsFs8//zweffTRgie2rrrqKsyYMQNjx47FhAkT8OCDD2LTpk34yU9+sivDQRAEQRB7DX2l8amrqyu41dUXqz25XA4/+tGPYNs27rvvvq8szzkvWHjZ0SLMl8t8FT2e+DzzzDM455xzkEgkEAqFtguouxOfr0JVVaxevRqPPvoo2tvbUV1djWOPPRZPPfUUQqGQLLdp0yYoirtwlUgkcNlll2Hz5s3w+XwYMWIEHn/8cXnPEADOOusstLS04Pbbb0d9fT1GjRqF559/HrW1tX0Se3/nrb+4ebwOu1zkPGI2ULEiCQDQPu+k1A/40XGouIVoepnUwwCAlrSlL4+/Pg1/vdhveVSp/8iEFPhahDYkF1Bk3ifLcNvyN9nSX8bWGUr+tUGeY/OPhgIAkuXiV4SvWUzUA3UJdAwNAMjn93I0RQH38xyvcLctgyG0WZxQS9tQsqI81xhyTl4y08Pgcfxs9LYUrKAHiqNryRV5kCkVghrboyDh6GG4CqQ/KQIAeNsBXQwhmAmZiyxdwmDldTYfBLE1IR4yKEkBwS2i/UxEReM4d3CrX1NhRE3nHAzxAeJ+v7/RRM75+viaOSJfCHGU0diB1CDhcxPbD1JDwxVAc2IyA0B8P0e7FTRhrBJBeaIcscE6DMfbyNNqSp+dZKWGbFiMffhTd9lczdrSwwkA1LQ4YcdAVWqVfK1c6n28bRYsjxjnZLkCb7so720FciHXb6l1hIbqt8Q1sLyK1J21jfTBv020G2jIIVPkeCFlbSimk4eu1IC/WfTvqNPulLG99nfy9iG+mYTD4T7VI+VyOZx55plYv349/vWvfxW0XVVVhWw2i7a2toJVn8bGRnk3pqqqCtu2bduu3aampi6lKl+mxxOfq6++GhdccAHmzp0Lv9/f0+pdsmzZMrnt8/nwwgsv9KgOAMyZMwdz5sz5ynqXXXYZLrvssp6GSBAEQRB7NXujgWF+0rNu3Tq88sorKC0tLTg+ZswY6LqOpUuX4swzzwQgHmj68MMPMX/+fADAhAkTEI1G8e677+Lb3/42AOCdd95BNBrtkVSlxxOfLVu24IorrujzSQ9BEARBEL1nT0x84vE4PvvsM/l+/fr1WLVqFUpKSlBTU4Mf/OAHWLlyJZ599llYliU1OSUlJTAMA5FIBBdeeCGuvvpqlJaWoqSkBLNnz8bo0aOlz9/IkSMxefJkXHzxxXjggQcAiMfZTznllG4Lm4FdmPhMmjQJ7733XpePqhMEQRAE8c3hvffew7HHHivfX3XVVQCA8847D7feeiv+8Y9/ABBPWnfmlVdewcSJEwEACxYsgKZpOPPMM5FKpXD88cdj0aJFBQ87PfHEE7jiiivk01/Tpk3Dvffe26NYu+Xjkw8YEPfSbr/9dsycOROjR4+GrusFZadNm9ajAPZV8n4J30Qfnx0x4ey7EP4sDgBQ6lvcA6EA2g8vAwCoGeG/0vnHRF6nwywu820BjvcMAK0jB64LbYeStZCNuN4U2bCYt6dLXS2HZQDlHzi6lba0LBvbP4hsJ68exeTQ0uLkyTIFWSFvgREFvO3uV6JjoIip+FNL7rM8DIprSYNEpdtu9SvNbrmQD7mw+H5kSjQY7U4bKoPpdT2I8loX08/Ane+3koXMB5YNM5kXy/Rx6B1MxqrHnfFKcXic9m2dIRtUZP/UjA3bGUPTx2ROLyNugzn90NKu3qrpUFXqrTo/9xkf5G4b7UDqiBQAIPimD2oG8HTYzjEL3LmWyXIVLYeKOIY8a0ptFADknOtnetyTdAxWkHVu+5d+ZEvfJQAy7lwACG0W7TCbw9YY0kVuG6GtolPM5MiGxID6mrOIDxSaJM5EDjkAUFNWoa+Uk8Ors8cUOJd6qZdfuQEE0SP2gI/Pd//xU2iBXRcim4kMXp/237s11j1Jt1Z8dmRCdPvtt2+3jzEGy7K2208QBEEQxNcD5wy8F7e6elN3X6BbE58vP7JOEARBEMTeSd6Ppzf1+zM9zs7+6KOP7jAPVzabxaOPPtonQREEQRAEQewOejzxmTlzJqLR6Hb7Ozo6MHPmzD4JiiAIgiCIXSP/VFdvXv2ZHj/VtTOHxM2bNyMSifRJUMS+x1tPuqaGUwZdCeRvj6bSwtAOgOVTYRkMpk98frRkJ129zmRiS8XiMrmokrNhBpyPqaVBSwsNWaZIl+W9rTbUjCN25UCqXJRXMzr0re0AACPqg+ljyIYcYW8HEK/JC36FER4gEmNmIqKMHucI1OfV1wzc+ZnQWdhsGQyRDWKHHsuBe4XKWmmLQ0tlASa+E8wGckHRp2xIkUJdLcPh3+YmXs2LdLU0R7rETdqqOjpto90VQKtZwNdiObFaUuxteRkS1QxGLJ/sU5EGiHanb3yqQpGJRoP17v7iT20Zn6fdRi4o4vA0M5m8lCuAsl4k/eQagIwrCE5UawhvEALzcNyCnshXAoxtHaKvJQF4twlxdLbIAyMqygfrgEyxCDZTrBYkhu2chDWPrTEw2xUre1s6HWRAsE64L9qGKkXkuSCD4YjC85+zPJkiVwQeaLBkQ1qHWOUef85dePuJq0EQezOk8emabk98Dj/8cDDGwBjD8ccfD01zq1qWhfXr12Py5Mm7JUiCIAiCIIi+oNsTn/yTXatWrcKkSZMQDAblMcMwMGTIEJxxxhl9HiBBEARBEN1nb3Ru3pvo9sTnlltugWVZqK2txaRJk3qcIZ0gCIIgiN0P3erqmh5pfFRVxU9+8hOsWbNmd8VD9AP+Wfc7uT1l8CzocaG7iA/UoWYhtRaWl0HJuTofNe7aJtiOxiRTrMvyqsWRqBH6DyXHXU2QyWWi0GzQ1bOoGQNcFcnuuMZgxGyki4SmgyuA5XVjzjqJO5UsoDsPLTIOaCkuy3tbc05Z92vDVTfBJgCYAaFnUXRH7+bE7mnogLmf2GdrkDod08fQMdA1AZWmg1kgUC80JqZfgWed5cbtGP7ZGqA4MpT4QF0aBfq3MlheIOucm2uAknPGVQdyIXFA72AymahlAHrCdsaTyfJggCcqTmLpKpJVooKaEnocQIxjuhQwNkHGHh9oyPHJkynW4N0g2mKmhfhgkSRWy9hIDPTL8cjrdPSEjYxzvWwV0J3Ph5qGNFvMhhhyfobidSLgXEiF6XM0SW0mTL8YW2ZzhD8Xeh/Lp4FZoq1sUaEBa940kiuQiW/1BEfHMPEBSZUrOOLSBbCEvAkf3PNzEASxb9Hjp7pGjx6NL774YnfEQhAEQRBEL+G9fKKrv6/49Hjic8cdd2D27Nl49tlnUV9fj1gsVvAiCIIgCGLPwQFw3ovXnu7AbqbHj7Pnn9yaNm1awWPt+cfcKWUFQRAEQRB7Kz2e+Lzyyiu7Iw6in/LPTfdgykE3AgBKF38Kns1BGTnMLbBJGMiw6gq5K35gidTNMJvDDAidRy6kygSnppdJDUb7oTmwnNj2bYHrvQPIxJTZIIOa5fDEHA0HYzA6+XAGt4gJu5q2kS4VX4tAQxYZRwNi60Cq3NGLmJB+Nlqaw1PvrHQqCmyfU8bigGnLNdXEsCLEakU/1BTga3Z0QUwkCAUAyyhMomo7+hhmA60HipjCm2x42oUGJlWuY9u38glcAd82MTjpcg4t4ep3sp1yDOpxwNvCZJ3EdxJinOr8KF7jJPRscZOD5vwKUs6lKfrUlhqkTESBt825Rhag5rj03PFviALOjyLbp4Mrjv6q2EDyQJGwlivCryl/Djc+G7YzDpwBnmj+HByWweR4ZIrcZKJ6kiO6n+60JTyaRP9U5JzPjhEzkS4VZYwOC/kL49uaQrZEfEZsjwItlddrKdLzKRNWkKhxx9CfBgznczRxynws++e1IIi9CRsMjFJW7JQeT3yOOeaY3REHQRAEQRB9AD3V1TU9nvgAQHt7Ox5++GGsWbMGjDEcdNBBuOCCC8i5mSAIgiD2MDZnYOTjs1N6LG5+7733MGzYMCxYsACtra1obm7G3XffjWHDhmHlypW7I0aCIAiCIIg+gXHOeyTgPuqoo7D//vtj4cKFMm2FaZq46KKL8MUXX+DVV1/dLYHubcRiMUQiEUQBhBsbgfLyPR3SPsHk8Exg6EDxpq4BPCtyNDFFARtQJctlK4VviuXToGTz/jI2kpWOHsNgUlOSKVLQUeueo3ylKJ8LMJnXKRdkSFYCuqP/sDXAFlYz4BoQ/sLxz8lx+LcKIx/ji0akDhbiDq4IL6A8eT2OkrNhOhoVT6sJzzbhFaPERR4qOyL8abYe466GWl7A2yK2tRSH6ngZaUnb1fkwyJxmRsxG24GO/xAD0hWivKel8FcZc+QpnjZAT3JXB6MASl5SZELmHEuXu7m7ckUW/FvEOUo+tpAqU502ufBeAuBrMsFsce6Wgw142hw/oCQHsyF9lcA51IzYNn0KPO15j51OaW4MBVrS8QfyKtAS7kMR+Zxmao7DVvP5xoRGCwCMtizMkKOlytlgNmA53j2JCk1qm/SELXN4FYxTzgbXlYL3ctvpgm0o8nNna0xqhTxRV18l3ltSewQOvP632dudj/iG09QEVFQgBiACIBqNIhwOf1WtXSL//9LBT10D1e/Z5XasZAYfnfXb3RrrnqTHt7ree++9gkkPAGiahmuvvRZjx47t0+AIgiAIgugZpPHpmh7f6gqHw9i0adN2++vq6hAKhfokKIIgCIIgiN1Bjyc+Z511Fi688EI89dRTqKurw+bNm7F48WJcdNFFOPvss3dHjARBEARBdJP8ik9vXv2ZHt/quvPOO8EYw7nnngvTdHLq6Dr+67/+C7/+9a/7PECif7Ek9mdMnPwbAACr2h/G6x/JY3zrNrGha9CbhAjGHLc/LK+Yn1tQYMTEZ87yqTCiQjvibVEQ2uTkkMq6eg01p0kdSS6hwtJV6b/jb+Sw8vnAIkBHrVM/zaDHnXxbg8tl3qdcQJG6FTVrQ3F0Ie37u1+hjoEGStaK8oF1OXBNAcuKeEs/yiJV0SknVyqv67GkNsfWmeMxA6RLNeQC+T8+ipvfzA/h0QNAzYgcWQAKPIksr9AHBRpEw7FaBSzt9LvFlu16PgcS1flzqIATR7pYQUrY7YDZ7h/AQL0Ny5vXAWWRLhP9yYYY0iVMjq2vCfA3mrJPiWrDGTfIcdMSltTTMMv1akqVusm9fM2W1CN1zomWC+vyuliGCm+rCdP5jIQ3ZcEVJttNVomg8nnIACBXVJgbjTsaLS1lQ0uJ8Veyrp9TbJAic5fFBxoFtraWoUqvIVtj+M4P7pTH3vgr6X2IPQM91dU1PZ74GIaB3/3ud5g3bx4+//xzcM6x//77w+/37474CIIgCIIg+oxd8vEBAL/fj9GjR/dlLARBEARB9JJ8zq3e1O/P9Hjik0gk8Otf/xovv/wyGhsbYduFj4tS5naCIAiC2HOIiU9vnurqw2D2Qno88bnooovw73//GzNmzEB1dXVBolKCIAiCIIi9mR5PfP75z3/iueeew3e+853dEQ/xDWDZkuvk9tGn/hYAoGQ5vG9/KnZmc2AeYb7lX9OIjsNcY8O8WJkrQKpciGYjy+uRG1QCAEhWeWSCTQDQ444AP24hWM/QMUgIWW2NIbRRKFa1Ck2a/QW32LA8oowZ0KSgNlmuIlkuyhR/ZkvRbdFnphTpWoaCbMhJilkWgN4Qg1UUEO9bM+COGV+iSoOlMycud1wYd80FORPJPwGRkFVzxMmZYsD2iBMym8n6egLIBfLlgfAmLs/n38bhbRf9SBcryPldcXS+fnAzR7rYSV5qijoAoOYAxTFYjNUaUIW3I3zNHKH1wqwxWeODnnRNC8Ehk31yhXVKvspl8lKuA96tSWc3R7pSaAQDDVyOeTasymvJbEijSHDRDwAIbLPANSYTvebND/PXLB+7qrplwADLyI85QybsGEV2MGQion5oYwpKTvx59LZBGjfmr0O+3XxsAGAFGLRU/riNo74vPtuvPX0NCOLrhHx8uqbHE5/i4mKUlJTsjlgIgiAIguglHAUPH+5S/f5Mj318fvWrX+GXv/wlksnk7oiHIAiCIIheQD4+XdPjFZ+77roLn3/+OSorKzFkyBDoul5wnBKVEgRBEASxt9Ljic/3v//93RAG8U3l1f/n6h+OO1EYYHLGwJzHCixdkZoPrjNpSKeYQKpM/CrpOG2ATEyppQBvqyivZjmyYfER15I2wDmCW5yEpzmOTLGjx+mwYTjJSz0tWRlPpsRALiAWRfUkR2Cbm0gzr/GwdYb8j6PYIAXBetG+3pyAVRKA5dOdcoqsE9ySg+3oXiwPk9oVzoD4ALHNTHeMQltsJCvEfjUD+BvECWP724h8KvZnw4Dq6E9sD6BmuNQL5XyKNPVTs65eJV30pV91ncwCbSchay4IeNrFfn+TJdvhChAbJnQ5lvPbx9MqgvbWu8IltcgnE7IqGROJQQGnHxzxWrGtJW1AcWPJGz12/tFpxC0kncSp3nYboU05N2yTY8NUcZ31qIJgndjPLCAXcuJVGVib215eq2R63UStmQhDoEFc40yJATUjrqWn3TXGNP0KUqUK9ISokw0zGFEneWrcvUHAFSa1X0eddqdMOPvWX64GQex26F5Xl/R44nPLLbd0q9yTTz6JadOmIRAIdKv8vHnzcOONN+LKK6/EPffcAwA4//zz8cgjjxSUGzduHN5+++2dtrNw4UI8+uij+PDDDwEAY8aMwdy5c/Htb39blrn11ltx2223FdSrrKxEQ0NDt2IlCIIgiL2W3t6u6ue3unqs8ekul156KbZt29atssuXL8eDDz6IQw45ZLtjkydPRn19vXw9//zzXba1bNkynH322XjllVfw1ltvYfDgwTjppJOwZcuWgnIHH3xwQburV6/ufucIgiAIgtgn2WXn5q+Cd9MBKR6P45xzzsHChQsxZ86c7Y57PB5UVVXtoOaOeeKJJwreL1y4EH/961/x8ssv49xzz5X7NU3rUbsEQRAEsS9Azs1ds9smPt3lpz/9KU4++WSccMIJO5z4LFu2DBUVFSgqKsIxxxyDO+64AxUVFd1uP5lMIpfLbfcI/rp161BTUwOPx4Nx48Zh7ty52G+//XbaTiaTQSaTke9jsVi3YyC6x7+WXg8AOHrab6X/jgobRkOHLGONENcx52fwNwrdRSakIFUpjmcjwncFALJBRWp/siEF3jYLipOsMlOsQnF0NKbX1WNYPk1+67Wkm0jT0pn0oLE8TOo/GHdXhYu+MKWXDTc0qC1xsIjQwWTKfNJXBxDaIABIVLm+M1qSgztvuQroTreT5QqyYbHtawISA8S2UpJBbH+PrK9knOSj7a73TZ58jJkIk1ogy+t6BaXKmNStWDqTvj9qlhe00XZAPl4V3hbX6ye0MS31P2aRD7YmFpM7J2Y1ohqYJep0DHL/9ATq3QSk3GDwREVQtgo5nqZfKdDQ5PVZaobD8iooXyH2p4sBM5AfT8jkolqKS52UGEdxPsvDwLX8+AG5oCLbzY9fslxBZKOTXDVpw+9KvWB0cCim83lJWEiXOY3pTOq0mM2hOOP43dPvhOKMQWd9G0H0JeTj0zW77VZXd1i8eDFWrlyJefPm7fD4lClT8MQTT+Bf//oX7rrrLixfvhzHHXdcwQTkq7j++usxYMAAnHDCCXLfuHHj8Oijj+KFF17AwoUL0dDQgCOPPBItLS07bWfevHmIRCLyNWjQoO53lCAIgiCIvYI9tuJTV1eHK6+8Ei+++CK8Xu8Oy5x11llye9SoURg7dixqa2vx3HPP4fTTT//Kc8yfPx9PPvkkli1bVnCOKVOmyO3Ro0djwoQJGDZsGB555BFcddVVO2zrhhtuKDgWi8Vo8kMQBEHsfXDWO4EyrfjsHlasWIHGxkaMGTMGmqZB0zT8+9//xu9//3tomgbLsrarU11djdraWqxbt+4r27/zzjsxd+5cvPjiizsUTXcmEAhg9OjRXbbr8XgQDocLXgRBEASxt5HX+PTm1VNeffVVTJ06FTU1NWCM4emnn/5STBy33norampq4PP5MHHiRHz00UcFZTKZDC6//HKUlZUhEAhg2rRp2Lx5c0GZtrY2zJgxQ959mTFjBtrb23sU625b8amtrd3O3LAzxx9//HZPUs2cORMjRozAddddB1VVt6vT0tKCuro6VFdXd3nu3/72t5gzZw5eeOEFjB079itjzWQyWLNmDY466qivLEvsfl79h6t9mDhlPtIDxCTT93kLwqvEk4KxwyplGTXLEdrovGGAb5sQdujtKXQME3U1R5OT/0YrWS49ehgHjHYx0ba8Ckyv+LXja85BcbRGzKdKXY7pZfBvEbdbs0VGXkaERI37ddJjBtSc5eqFUhYsr/hMmz5Fal2MGJc5wEwPkxofywOky0QZ3zYm9T6xA2xYARFraSSJVlP0wbPBA6NdlAlttpGoVGD63TH1N+U9hCzpKZNLKXJ/NsRg+kRZbxtHusjJhdVoSf0NAJR+JMY2Wen21dYAZnHoW4S4igd9SAwJyeNKJ08i1fEyMjpcn6FsWIGTOkvoYZxrpVpcjrl/S1J6IiUGeKT3TnBzBpZXRccgccwT5TIPGuBqmGJDGEJ1Tl+DTOp9/E02so7Xj611ysHV6QevJ8qFXgziuJrl8voB4nqK+prUOTHb1f4oFgfLbf8/yXfPuBOv/9/s7fYTxL5IIpHAoYceipkzZ+KMM87Y7vj8+fNx9913Y9GiRRg+fDjmzJmDE088EWvXrkUoJP5ezJo1C8888wwWL16M0tJSXH311TjllFOwYsUKOSeYPn06Nm/ejCVLlgAALrnkEsyYMQPPPPNMt2Pt8cSnrq4OjDEMHDgQAPDuu+/iL3/5Cw466CBccsklslzeR2dnhEIhjBo1qmBfIBBAaWkpRo0ahXg8jltvvRVnnHEGqqursWHDBtx4440oKyvDaaedJuuce+65GDBggNQJzZ8/HzfffDP+8pe/YMiQIdKbJxgMIhgMAgBmz56NqVOnYvDgwWhsbMScOXMQi8Vw3nnn9XQ4CIIgCGLvYg8YGE6ZMqVARlLQHOe45557cNNNN0mZyiOPPILKykr85S9/waWXXopoNIqHH34Yjz32mNTkPv744xg0aBBeeuklTJo0CWvWrMGSJUvw9ttvY9y4cQDEk9sTJkzA2rVrceCBB3Yr1h7f6po+fTpeeeUVAEBDQwNOPPFEvPvuu7jxxhtx++2397S5naKqKlavXo1TTz0Vw4cPx3nnnYfhw4fjrbfekrNDANi0aRPq6+vl+/vuuw/ZbBY/+MEPUF1dLV933nmnLLN582acffbZOPDAA3H66afDMAy8/fbbqK2t7bP4CYIgCGJP0Fe5umKxWMGrJw8WdWb9+vVoaGjASSedJPd5PB4cc8wxePPNNwEI+UsulysoU1NTg1GjRskyb731FiKRiJz0AMD48eMRiURkme7Q4xWfDz/8ULog/8///A9GjRqFN954Ay+++CJ+8pOf4Je//GVPm5QsW7ZMbvt8Przwwgs9qgMAGzZs+Mo6ixcv7mFkBEEQBLEP0QdePF9+gOeWW27Brbfe2uN28ndeKisrC/ZXVlZi48aNsoxhGCguLt6uTL5+Q0PDDu1sKioqepR5occTn1wuB49HeIe89NJLmDZtGgBgxIgRBSsvBNEXLPvntXL72+ff7WowAGhpRwPTYoM5egquMXjWiS9Abkg5wp9GAQDZUiF40WPiFwvjXunRkwso0mNHS1hIVAnFSabII/NQhessqf1RTI62kaI9f1OhCL/snU6WCCoDN8RXjCtM5g3LBpnUkFg6g+VocfwNHFYm7xUEeJvcbdsRwQQ2KUg5+pSOxlL4UmK/3gHpw9MxSIGacT1sIutNmXuLK0xqm4rX5pCoFjEpWQ7YokyyjMnzZYpVhDc6v/4GKyj5VPTXv82E6VflmNm6guiYKmc8O2lsbEBPumOU7eSTk4mI7UQ1EFmfTxTm+g9lilQkKxz9k8+A7qQAMzq4PEfrSB/0BEfxmqQYK7+GTET0KVWqSp2Nt5UhUZm/fkDOeTYhXa5Ac8ZNT7jxdfZA0pO2jJVZzufO6SJXIDVCStbVMPm3WcgFxfjYOoNuijFQ0zYsj2jL9DKMP+cuGdObT1EeL2Lvoq6uruBBnvz//bsKY4VPi3HOt9v3Zb5cZkflu9NOZ3p8q+vggw/G/fffj9deew1Lly7F5MmTAQBbt25FaWlpT5sjCIIgCKIP6atbXV9+knlXJz75LAlfXpVpbGyUq0BVVVXIZrNoa2vrssyOUmE1NTVtt5rUFT2e+PzmN7/BAw88gIkTJ+Lss8/GoYceCgD4xz/+UZAIlCAIgiCIPQDvg1cfMnToUFRVVWHp0qVyXzabxb///W8ceeSRAERCcV3XC8rU19fjww8/lGUmTJiAaDSKd999V5Z55513EI1GZZnu0ONbXRMnTkRzczNisVjBvbhLLrkEfr+/i5oEQRAEQfRH4vE4PvvsM/l+/fr1WLVqFUpKSjB48GDMmjULc+fOxQEHHIADDjgAc+fOhd/vx/Tp0wEAkUgEF154Ia6++mqUlpaipKQEs2fPxujRo+VTXiNHjsTkyZNx8cUX44EHHgAg5h6nnHJKt5/oAnbRx4dzjhUrVuDzzz/H9OnTEQqFYBgGTXwIgiAIYo/DUGBGtUv1e8Z7772HY489Vr7PZzo477zzsGjRIlx77bVIpVK47LLL0NbWhnHjxuHFF18seEp7wYIF0DQNZ555JlKpFI4//ngsWrSowNfviSeewBVXXCGf/po2bRruvffenvWOdzeNusPGjRsxefJkbNq0CZlMBp9++in2228/zJo1C+l0Gvfff3+PAthXicViiEQiiAIINzYC5eV7OqRvBIfOWgBACHe1VF646opnFQvwr2kUbxhDcngZAMA2FGmMJ8s6wtdcUJWC38hnCbCcaC86whX1dXZwtzXA55zTaM8hF+5k1Gk74tYvxH1qKyJcAS2/DssjvryZIhUZxyAw53OrctUVMasZyOXmxCAOXu6Ispvde+zMBKxSoWD21BmoWCGcAqNDNZh+yCSZ4Tpbxm9rDOnSvDJXmPMBQMfgTh3kQGS9k4A045oIZkMMvmYxhrkAg6/RMXfkwvixY4Don2UAetJtztcsxkpP2LANR7BtKMhEXMF1XqiupTj0uCjPNYZMxGmz0xBraVcY7WuxEVzfAdsrCmRKDSl0j9XqnRLRCpE4IAwa82JvT8z9TGSDijRGtHUgtNn9XCUqVdlXrrjiZ2YCzPkT6m2z3WSrGoPpiJjTpa6iILQpBy0l2s2FtMJEsk4xSl7az2hqAioqEAMQARCNRneb83/+/6VBf7wVim/HqaC6g51Ko+6/bt2tse5JeqzxufLKKzF27Fi0tbXB53P/ap922ml4+eWX+zQ4giAIgiCIvqTHt7pef/11vPHGGzAMo2B/bW0ttmzZ0meBEQRBEASxC+wB5+Z9iR5PfGzb3mEC0c2bNxfcqyMIgiAIYg9A2dm7pMcTnxNPPBH33HMPHnzwQQDCTCgej+OWW27B9773vT4PkCA688E9P5fbYy4Rep90iYrSFUJTkxoQkjob6Ko0i2Mc0BMm0mVipVJN27Cc5JKKyRFoyAIAMsUeaGkxsQ/WpaGkhEgkW+qVOiAA8hcRV5nUi+R1JwCgdwShNyegxtJiB2NS4+Npt6SmBQC2HuXWs8qEZifwsQGPY2ehxxg8m8T9eq5AJhMFgJTP0Q1VWEhWaE77HMxi0Bxzw2xAgScqxCSZIib0QwD8ja72R48zaXgIANH9HA1MO0NKyKRQ+pEtk3OGv0jLskrWghkyoCfz5oQMWsZJ0Okk9ZSxO9fD1oUmRo5bfjwVIBsWfTJiljxfqlqRBo2mj3XSQtlIDgzA2yg65d/YgfZRReIcGqAnRX09wWVy1nxcgDARtFVX8yS1Ru0coTWtAID0oAiKHN1RJqKBa0C8WvRDSwN5IajQODlaINs9t6fdhpaynX4zsLijCdqWQqZcXEyWs6WcdPw5d0EVH0e88b9kakgQfU2PJz4LFizAsccei4MOOgjpdBrTp0/HunXrUFZWhieffHJ3xEgQBEEQRDfhXLx6U78/0+OJT01NDVatWoUnn3wSK1euhG3buPDCC3HOOecUiJ0JgiAIgtgDkManS3bJx8fn8+GCCy7ABRdc0NfxEARBEATRG0jj0yW7NPF57LHH8MADD+CLL77AW2+9hdraWixYsAD77bcfTj311L6OkSB2yIoHXb3PlKHCLMu3fjO4Y3bFQkGZNDLnU5Cq8MhEo2rKhh4T+h0zqEGLClGFkTWRHCxE+qZPgbdVaDlS5Rq0pNBp6AnXfMX0usZaapaLZJ8AUhUeaG1JmaSUZU2oKceTxqvKvyuWh6F8pdg2OizkHSbahwGZErFfS7k+NloGUqNj64B/i2jT38DBnVC4IjyBLMfGw7/NjTdUZ6L5EBFTplhB1nkegdmA7RGxG20MzHl+wVaFNxIgtDiBBjFm8cE+FC/b4PZdU8GZyMez5WgDgXrmjBVknzp7ojFbXAMASO2nyljVtKtNSpYryAXd8oEGy9mvQnXKcJUJnY4hzhHbv0gkgQUQaHD7nS5WYOv5cXZ/zjLujq2v1ZYeQvEBGtoPK3XK28iEXR1WJqJIz51EDaA5nkVqCjADbh/z/kfJcga/k3CW2cLHCQAC9TkYbeJzxxUxpi4ixqGPz5Pjtv6cG0AQRO/psY/PH//4R1x11VWYMmUK2tra5BNexcXFuOeee/o6PoIgCIIgegDjvX/1Z3o88fnDH/6AhQsX4qabboKmuQtGY8eOxerVq/s0OIIgCIIgeshelqR0b6PHE5/169fj8MMP326/x+NBIpHok6AIgiAIgiB2Bz3W+AwdOhSrVq1CbW1twf5//vOfOOigg/osMILoCf9cfzcAYHLEFdzzjji8/xKrkMahw6Ft3AarqQUAoA4ZhFyVyEGjR7NoPlyIXbxtNiyPK0ZpGSkSPIW2WMj5xe8Ey6vAdvQ0tg6ZD0pLcoCJur7GDMySAPSGmIjF5zqdaykLluO/E692tSelawBvoxCv1GzIwfaJA/HaABJVjm9MErCdnysKh9T1pMoZAvXiZ5rlYWC2q+3RE5b0M7IMhtIPnYAZk95DjceYYLoj5mn3IudoVXJBwCuGDEacy9xSxW9uBfLu7dwGsjlocWEEVPypjo6Bzjg0d9LT2JC5sLQ0B3P8ljpG5jBq/80AgA/XDUT1K6JQzs+gOF5GgUYLyXLR2bL/xAuet238VghJxw/H9AOpKnEsOpzBv0XEEaznCH8ufphxhSFdLq5rNqzCiItOKSaHmfd2yrn6zkxYkdd46/E2ABssK8qFP1VkvjOuAmh3hoQBnpjjCZR0x5+rDPEasZ2oMmB0iDH0RLnUkKmdcspVPW8guEl4Jn3n6bvI14foHiRu7pIeT3yuueYa/PSnP0U6nQbnHO+++y6efPJJzJs3Dw899NDuiJEgCIIgiO5Cj7N3SY8nPjNnzoRpmrj22muRTCYxffp0DBgwAL/73e/wox/9aHfESBAEQRAE0Sf0aOJjmiaeeOIJTJ06FRdffDGam5th2zYqKip2V3wEQRAEQfQEWvHpEsZ5z8yp/X4/1qxZs53G55tGLBZDJBJBFEC4sREoL9/TIRFfYsrgWe4bQwdSadit7QAAO5OGNmwoAKDpmCrpW8MVwDbyubcgNS16AgjUi0Jq2paPe9qGm+spXaIgtEnoXDyNCcB2tRqpQWFsnmHK99X/m9fHCN0H4NyWd36KtI5wnzsIbAHSzsfL1oDQRlfLsyOvHltjUCwOy8h76XBoSSf2rFsuU6QjWSHO0zbKgtEqNDRKDkgPE2ZBmseNOfJSQObXMmImvBscAU4qDXNQGWxD1N/2La/UxGRDkDm2AKD407y+CEhUis5yFUg7nkX5/GQA4GuxpYYpG1SQDTvbYcjrVfmeGO9sxPFI0pn0WVKzHFuPEvvNiJtYuXiVBl+zKJMLFuYoy/kdbVKLJa99LuheC64A4ECiRpTLBSDrKxbgbRbbtubm/fK12LDynj4ViszD1T6CQ4s7nkNbgGC96bSpFPgGla4WAxiv9UFP2IgOEeP2we9dHytiL6apCaioQAxABEA0GkU4HN4tp8r/vzTozl9B8Xl3uR07lUbd7Jt3a6x7kh4/1TVu3Di8//77uyMWgiAIgiCI3UqPNT6XXXYZrr76amzevBljxoxBIBAoOH7IIYf0WXAEQRAEQfQQeqqrS3o88TnrrLMAAFdccYXcxxgD5xyMMenkTBAEQRDE109v3Zf7u3Nzjyc+69ev3x1xEARBEATRF5C4uUt6PPH5pouaiX2Hf266B8cfN0++54zBNgYBALzLPwM0IXz1RDk6Bgq5m5oFfE2O8NWvyASRzHR/BdkeBYpjMsdMDsXZr2aBbER8pTzbOFg6B6tI3Ar2bk0g8E4RACB2RAabvy+ErCVveBCqE+pYW2fIOMaGzM1XimSNOD8ApIdkoSWFMNrXzKUYNzpUkUaDgBA+BxzBM7M5EtWaPAfrtCibN08MrlelsDhVCahN4hzeBg+8Lfm/glwaB1oexRVvewxodc1onTgYABBo4Gg7VQhy/a8EZaJRPQ7EBufjcJOtZsOQSUdtDQjWuwJsT7vouK3qSJU7CWbTQLJWdGLLeVmEX3Zvt/tabSlOjw1W4XHGJLBZQ+mHmfzoIDFA9C8bZMgUO/F1uONixF3RM7OBbMhd+jc6OIJbnHEwxOcKADqGuoJmLcVh+pz9A1XZV9MPREeI/tl+C/k/wYwz5ALigreMUqRI2jKALRNF/7gGWIYCyy/OMeSR30BtFhfw86uvAkEQ3aPHE59//OMfO9zPGIPX68X++++PoUOH9jowgiAIgiCIvqbHE5/vf//7UtPTmc46n+9+97t4+umnUVxc3GeBEgRBEATx1TD0UuPTZ5HsnfT4cfalS5fiW9/6FpYuXYpoNIpoNIqlS5fi29/+Np599lm8+uqraGlpwezZs3dHvARBEARBELtMjw0MR40ahQcffBBHHnlkwf433ngDl1xyCT766CO89NJLuOCCC7Bp06Y+DXZvggwM9z1OOGYuskVCE2FrDHpc6ESYyZGqFPtNr/tbxxO1pYkdAJlU01YZ1LSb2DJvQGgbDCwnynibUmBZE9kyoc9Il+pQTHHMiJpoO1AkyVQzrhYkFwSCW53EnYOY1IV0JlUOGI4WJbCFu7qXrFtGcbaLPhMblleRCT4zxQyao6fhnX72dH56NV3uGgnqcci49YT7p8LbmoPns0anghOoJhaQ248aLMs1H6JI/Y7eARR/7hoi5vU+lu6aHCoWR8uhznk6xRT+VIG3TewPf55EwwRH96ICuRBQ/Il7ofLanI7BbjJZxXT3+5sLzR7TJa5hpdFJ56M5MTEuNDuAMDwEANXR8lheBsvjtNvothuvUmA7+5kFab6oZiETwELhUmMV+ZTJX+hGB5fJXE0vQ2KAG5MeE/0FhE4qf53iozPYMON6EHshe8DAsPbXd0Dx9sLAMJ3Gxutv6rcGhj2+1fX555/vcCDC4TC++OILAMABBxyA5ubm3kdHEARBEETPoKe6uqTHt7rGjBmDa665Bk1NTXJfU1MTrr32WnzrW98CAKxbtw4DBw7suygJgiAIgiD6gB5PfB5++GGsX78eAwcOxP77748DDjgAAwcOxIYNG/DQQw8BAOLxOG6++eYetTtv3jwwxjBr1iy57/zzzwdjrOA1fvz4LttZuHAhjjrqKBQXF6O4uBgnnHAC3n333e3K3XfffRg6dCi8Xi/GjBmD1157rUfxEgRBEMReCe+DVz+mx7e6DjzwQKxZswYvvPACPv30U3DOMWLECJx44olQFDGP+v73v9+jNpcvX44HH3xwh+kuJk+ejD//+c/yvWEYXba1bNkynH322TjyyCPh9Xoxf/58nHTSSfjoo48wYIC4Wf7UU09h1qxZuO+++/Cd73wHDzzwAKZMmYKPP/4YgwcP7rJ9Yt/lpX/fKLcP+fkCqBlVvteTjv9Kmks9BwCp5dFjWShZoQnKFXkK2uWOGEXJcni3CpGIGfHCLPPB9IvvhJ5yE1VaXgUln6QBAK0jvYiOF9sD/q7L5JSR9bb0Fuqc5DO4WfjYAEA2zKS2J1TnmvNkgwoYB5JVQkCi5Di0vAyn3hb+RF+C2RxcEfF5Wt1zGvHOehjI5KPxGgOejaJ9HgkiUxGAp6HDqW+idaT4nqoZwL8NTp+yUHKONipjobxZBJWq9MpEoFwBwuvEtuVxk7NmSl19TaosgFCd44XjePb4LtwKANgWCyH0t7AzJjY05/qxHIcZcK93fECnxKOOliiw1U0Sa8TcfutJjlSp4pwbCNRzmTxVS3J4onkNlI1EhWjA6ABM55L4G22ZMNb0MoSdz5rpZVAdTRjv9AhOJsyQcBbMQ+uByGdu+cA2E+liJ/GqzxVBVb1g4Ki/3SnGzWB486mrQXxzIefmrunxxAcQj65PnjwZEydOhMfjAWO7/vBbPB7HOeecg4ULF2LOnDnbHfd4PKiqqup2e0888UTB+4ULF+Kvf/0rXn75ZZx77rkAgLvvvhsXXnghLrroIgDAPffcgxdeeAF//OMfMW/evO3aJAiCIAiif9DjW122beNXv/oVBgwYgGAwKFNY3HzzzXj44Yd7HMBPf/pTnHzyyTjhhBN2eHzZsmWoqKjA8OHDcfHFF6OxsbFH7SeTSeRyOZSUlAAAstksVqxYgZNOOqmg3EknnYQ333yzx/ETBEEQxF4F3erqkh5PfObMmYNFixZh/vz5BbedRo8eLTU+3WXx4sVYuXLlTldZpkyZgieeeAL/+te/cNddd2H58uU47rjjkMns4DnfnXD99ddjwIABcmLV3NwMy7JQWVlZUK6yshINDQ07bSeTySAWixW8CIIgCGKvgyY+XdLjW12PPvooHnzwQRx//PH4yU9+Ivcfcsgh+OSTT7rdTl1dHa688kq8+OKL8O7EbyCfCR4Q/kFjx45FbW0tnnvuOZx++ulfeY758+fjySefxLJly7Y7x5dvz+Vdp3fGvHnzcNttt33lOYl9g/8s+DmOuHQBAKHr8USFIEPJcaRLxNfC22JK/YcZ1JENic+Q5WHQE0IDYkRNqJZTN23BCjj+PIksLK+GbND9bZENi8aMDgX5r142BByxXx0AYOulYbSvFBPyyuU2Sj4RgppEpQaPozmxdQYtKbaTmiq9eNr3U6F0ysGlx0XbAgbDmadraUjfmWwnVwpP1P3sM+56zRhxFGieYrVCXxLcYiN2aIUoExNxZqqdEzKG8CYRTJSpMjdYJuL+ufFETWSK3Pf5c1gGoKWcWBRIzyHYgOUTm0Wf2dATotFESEOmmCHxvBDF6BNbkXW0QMEOG5mIiDdezWDERX3/NgvBzaJ++wGqzHFmeQFvqy3HIK+3yoZcDZiSE9egs6eRkuVO/1SknN9TmRKOsved4bBdfVKiBlJUpFiAf6vY1tKubohZgMdxA0mXAD5n29aBbEiFr1XEnipRYXlE/WzQ9WeyPEx+tlc+8HMQ3zxI49M1PV7x2bJlC/bff//t9tu2jVwu1+12VqxYgcbGRowZMwaapkHTNPz73//G73//e2iaBsuytqtTXV2N2tparFu37ivbv/POOzF37ly8+OKLBaLpsrIyqKq63epOY2PjdqtAnbnhhhukU3U0GkVdXV23+0oQBEEQxN5Bj1d8Dj74YLz22mvbZWn/3//9Xxx++OHdbuf444/H6tWrC/bNnDkTI0aMwHXXXQdVVber09LSgrq6OlRXV3fZ9m9/+1vMmTMHL7zwAsaOHVtwzDAMjBkzBkuXLsVpp50m9y9duhSnnnrqTtv0eDzweDw7PU4QBEEQewWcFdqx70r9fkyPV3xuueUW/OxnP8NvfvMb2LaNv/3tb7j44osxd+5c/PKXv+x2O6FQCKNGjSp4BQIBlJaWYtSoUYjH45g9ezbeeustbNiwAcuWLcPUqVNRVlZWMGE599xzccMNN8j38+fPxy9+8Qv86U9/wpAhQ9DQ0ICGhgbE43FZ5qqrrsJDDz2EP/3pT1izZg1+/vOfY9OmTQW37giCIAhin+Rr1viYpolf/OIXGDp0KHw+H/bbbz/cfvvtsG3XFoJzjltvvRU1NTXw+XyYOHEiPvroo4J2MpkMLr/8cpSVlSEQCGDatGnYvHnzroxAl/R4xWfq1Kl46qmnMHfuXDDG8Mtf/hJHHHEEnnnmGZx44ol9Fpiqqli9ejUeffRRtLe3o7q6GsceeyyeeuophEJSvIBNmzZJ/yBAGBNms1n84Ac/KGjvlltuwa233gpAaIdaWlpw++23o76+HqNGjcLzzz+/3SoW0b/prH/4zg+EB4qtK1LvY/oVaClHW6MxGB1if6zYkB4qXGVQHY2HtyOLTJkQomhJBZlizdWueJnM5cRsSG1GqM7GlvvErePGsYCa/4PDxTkBILglh1xQrID6GnPSn8fbYktdSHiDhXiN2J8pBjJFQueTf59yJG56nMn8Y4EGjthQcY6kDyhZ4/6RyuuIuMKkB42tM/iaRYBq1gYz87oXG0rWhhnQtqtf8X5O+h/ZHhVqUtwO7xgakF46RqfnBHIB1yuImYCSf46BAb56pz9FCnTnuqhZwNfEkahxYnyjBH4nj1a6SIHl5F5LDLGQyjl9rVJlHi5wwMxrh74w0T5U9IHZkOOkpd3cWcwG4oOA6rdEn9SkhVxIXASjw4a/Ie9HxGBrTm43zdUEBTcz+ZnwNZnI5b2FmJsTzVYZbN39m5bvmxETXkr5vGumz72WSg5IVKoyxjyHzloAT7to991FV4Egdge/+c1vcP/99+ORRx7BwQcfjPfeew8zZ85EJBLBlVdeCUAsStx9991YtGgRhg8fjjlz5uDEE0/E2rVr5f/ps2bNwjPPPIPFixejtLQUV199NU455RSsWLFih3eBdpVd8vGZNGkSJk2a1GdB5Fm2bJnc9vl8eOGFF3pUBwA2bNjQrXNddtlluOyyy3oQHUEQBEHs/Xzd4ua33noLp556Kk4++WQAwJAhQ/Dkk0/ivffeAyBWe+655x7cdNNN8sGkRx55BJWVlfjLX/6CSy+9FNFoFA8//DAee+wx+RT2448/jkGDBuGll17q0zlHj291EQRBEASxF/M13+r67ne/i5dffhmffvopAOCDDz7A66+/ju9973sAgPXr16OhoaHAP8/j8eCYY46R/nkrVqxALpcrKFNTU4NRo0b1ucdet1Z8iouLu+3O3Nra2quACIIgCILY83zZr25nD/lcd911iEajGDFiBFRVhWVZuOOOO3D22WcDgHyKekf+eRs3bpRlDMNAcXHxdmW68tjbFbo18bnnnnvkdktLC+bMmYNJkyZhwoQJAMQy1wsvvNDjxKQEQRAEQfQxvbzVlV/xGTRoUMHuzlrZzjz11FN4/PHH8Ze//AUHH3wwVq1ahVmzZqGmpgbnnXeeLNdT/7zulukp3Zr4dA78jDPOwO23346f/exnct8VV1yBe++9Fy+99BJ+/nMyzCL2Pd7462y5fczU3wJwjOcc8aket2CreUFyFh2DhGu5lrTBbPFXIlfkgdEiMog2jQ3BNoCSNSKLqJlVZMLTXFBF24HiLnNwE4NiifpDnsmCO+dQcjYaDxeKZKNDlefIhnUprFYCDIqT5JLZKoJbhHBYsTSYXvcPhZYUyULzBLY5wtwsh9dZoOUKk4JrJcelsDpdrMpEpZYONI3N/zVVcMCToq8sayFb6kXSSdDpazJh+UT/TL+CRKVXnrflO2J7/LT/4JX3DhZxJBQUrWXOOAOMi3Okypm8Ge+v58gFRJmy1WnZFyWkwNQYIl+IGFtGKVKwHdwEBLcIpXS6VEOy2lX9SgEwB4wOcb6mQzToIs8q1IwwDAScZKKOgD3QwEXSVed6aIksAPFZyEY0eNsc0XVGge4IvP1bkvK8bSOD8pplwypyfid5qZ9JM0qr0w/qTIm7rZiQQvP8+7y4PdRky8+FrQOpMib7mQ2J7cMuXyBNLT+eS3+n+zW9dV926tbV1SEcdp1Od2bpcs011+D666/Hj370IwAik8PGjRsxb948nHfeeTLfZkNDQ4EdTWf/vKqqKmSzWbS1tRWs+jQ2NuLII4/sRWe2p8canxdeeAGTJ0/ebv+kSZPw0ksv9UlQBEEQBEHsWcLhcMFrZxOfZDJZ8HQ1IJ7Mzj/OPnToUFRVVWHp0qXyeDabxb///W85qRkzZgx0XS8oU19fjw8//LDPJz49fqqrtLQUf//733HNNdcU7H/66adRWlraZ4ERBEEQBLEL9NGKT3eZOnUq7rjjDgwePBgHH3ww3n//fdx999244IILAIhbXLNmzcLcuXNxwAEH4IADDsDcuXPh9/sxffp0AEAkEsGFF16Iq6++GqWlpSgpKcHs2bMxevTonSYx31V6PPG57bbbcOGFF2LZsmVS4/P2229jyZIlPU5SShAEQRBE3/J1P87+hz/8ATfffDMuu+wyNDY2oqamBpdeemmBqfG1116LVCqFyy67DG1tbRg3bhxefPHFAl++BQsWQNM0nHnmmUilUjj++OOxaNGiPvXwAQDGOe/x8Lzzzjv4/e9/jzVr1oBzjoMOOghXXHEFxo0b16fB7c3EYjFEIhFEAYQbG4Hy8j0dEtHHjL3obplYtGM/GwNfdr8qeW2Gp82C7eguPK1ZeZxZHG0j/PK9v8kCc7Q8XGWAI9VgJoetu7qNWK34LdIxPoVwWGSdHFrUirXPCZPDUB2XGhA94epeUqUMpfmkphUaGOdSs2MZrimgluRS3+Jts2D6HRPBDrsgoWo+Jq5A6oVsDQhvEg15G1OyrBkyoCZNZEpFYLlO7RjtrsGf5WFIF+U7XqhfyScyDW3iSFQ5upcA4GsU+5UsUL7SfcJEiQrdTGJkGaK1mkzQmQu6mh0ACNSLeKNDdZmU1Qy65w1uEgaPAOBvcMczFwSKPxVBJStUqffxtnFkwq4ep7N2yhO14W0ROiuuMZiOzomrTJoT5gIKuOKOZ/6XtbfdzU2YCyhyPLgqjBjz+JtsaIm8IaSCbEgcs1WgabxzYTngaXIML7cBniiXbWWcz7NtAKvvJJ3P10JTE1BRgRiACIBoNFqgm+lL8v8vDbtxLtSdJP/uDlY6jc/n3rhbY92T7JKB4bhx4/DEE0/0dSwEQRAEQRC7lW6Jm7/8LP9X0dHRsUvBEARBEATRS75mA8N9jW5NfIqLi9HY2NjtRgcMGIAvvvhil4MiCIIgCGLXyGt8evPqz3TrVhfnHA899BCCweBXFwaQy+V6FRRB7A2895Cb1PHwny6AmhafazVlwmgT+7muwPSLr1GmxICnzdV4lH4QQ/RAIdzLhhQozteCcUBLOjoNnUHNiL8yiSoNRkxs+1f60OF45tT9bRjyT5Ey7mo2PK05OPk1UfyJhcQAcU+/eG0S0WE+JIV1BvSY61vDOOCJ5b1mOACxrWRs+JyYMiW6q0nxM+hJsW16mUyQySwvjHahaVKTJiyv+6ckVarIxJ8YqMC/zUnUarjaJiPGwSzxpu1w9++FretynJSc21fTy1A3SWgNWA4AxLYZFP3Ln0/JQeqytCTQMUiIc6Lj09B9Qu9jbQigbJU8pdTcZEMMOUfOwBnQME70NbTR1QFZOoPtAXyNTiLUEib/k8hGFNiGIdvNJ2rVOyy33+05ZCMiJsujSH8m06MgXez+Ds2PfzbMENos2jF9DKaPQTFFOSVrw/SIGFPlQOl7bsLT/C920w8kKxytl0ckdc1vH/irBQAAbzPwwe9I70N8c+jWxGfw4MFYuHBhtxutqqqCruu7HBRBEARBEL2gn6/a9IZuTXy6m/GcIAiCIIg9zNfs47OvQdnZCYIgCIL4xrBLj7MTxDeN9//75zj6VJHDSyZIclBz7s+jTLG4xWu058A1BUUftosDto3E/kIokgsoULNuXiw1LbQ1pe/H0XZIEQAgsI0j8r9C2MMVDr1B6FOyERW+bSJXlenXYHnFbxfLoyBV5uTH8vrgidmIfC7eZ4oYIhtMGaMec7QuXlXmBrN1Bj1jOfWZzO+kpTm0hOifHrdlX41oDnASBwqfGhu5gOi7t42DNYtyintaZENM+tNYXiZ1R+GPdHQME28yJTZC60XcuRAQHcac8RS6GwBQrU6anqzQLSUGivrBDQryzmTxgYAZcHKZNXkw6LAmAECzJ4vGSuGxVLnEA4+jq0qVMunXo2QBnyiOTDGgOj5BmRJxPiMu6vhaLMQHaE6/3VxgetyGlnI6awvNV558zjY1bcvxt7wKDGec/dtcP6jGwz1oOdjJ67aZIxtiSJXm88epbg6xepHvCwBMD+B3xj+vzwKAZKXi+g5xwNPuhKcDR1wq9D5qjmP5n1xtG7Fv8nUbGO5r0MSHIAiCIPoTdKurS+hWF0EQBEEQ3xhoxYcgCIIg+hF0q6trdmni89prr+GBBx7A559/jr/+9a8YMGAAHnvsMQwdOhTf/e53+zpGgtgrePX/XSO3jzzrLgCAmuXCnwaAmrGhOLIOLZ4Fy7oCF5bOIfhJCwAgWx2W2g7OmPSRiY6MQMnl9SYKMmGh5Qg0WMg625bBwByPFz2WQ7JKaFXiA1wNSSbCoCdVqeeoeDchjyUG+mCWC6+Zlh8lkIkJHdGA5zR5DsXkUHJOzio/k7m6fC02LGcbto5cwNU6JaoVqecJ1Zky55iW5NLDRktzWSZTxBDeKAardbiKwSMaxNiYGqoPE07x7Rkvtrw1EIDI2+VvcK9FZL2o2zbcyaOV7z5z82dZByTlbjOhY8P7A51xYyiud/Z7OFIVnfQ3IgUYuAaZ/6vzsr9/m/BEahue190wZCLiWHiDBcsj9qtpW+ZmY6YNlnb8egKuzYetMan9MaI5JMuED1N0iActR4j+DXjZzacGCP2UEXO1RHm9D+B6NekpyJxjppfB056PQ+R3E9sMHUNF+dAGMb4AkChmGH6H0Pt8ehN5++yz0K2uLunxra7/+7//w6RJk+Dz+fD+++8jkxF/ZTo6OjB37tw+D5AgCIIgiB5AKSu6pMcTnzlz5uD+++/HwoULC0wKjzzySKxcubJPgyMIgiAIguhLenyra+3atTj66KO32x8Oh9He3t4XMREEQRAEsYuQxqdrerziU11djc8++2y7/a+//jr222+/PgmKIAiCIIhdhG51dUmPV3wuvfRSXHnllfjTn/4Exhi2bt2Kt956C7Nnz8Yvf/nL3REjQex1vPnU1XL7mKnC2ND0KlByQpTKNQUsK4StAABdA2JxsWloMCNCyMoVBq47QtlNKdhO0snAFhuWr1PizzKxnfMzNB0hlKjt384AEGZ3oQ88YBPbZPlocxBFK8Wt6HitD3pCxME44GsUujz/7zRorUJIbIV9sJ04MqUGfK2iH8kyFb4WS7YrDfEUBqPDMTz0KQhvcstsOplBjQhlsG+lD2raqWKJ5JgAkKgGUmWOmPqgDpw5YAUA4L/XHIOW9ytkW/5G57wJDi2d33bFvaFNNkIXb5bvt2wdLM9X+Tcv6p1nLRQAVpmTZDZpwHIMEE2FYciU9QCACl+HbOfd/zsE/7+9M4+vojr//2eWO3dL7s2+kZCw7yqCRXABZJOqxeXnVitirdWvKyLVorZiVXBBwGpdsCq4fcFvK61WRaEKFnHBIBUBEWSHhOy5+zZzfn+cuWdyBQKBhGB43q/XfWXuzDlnnnNucnPmzGc+j7PGOk9S4M1jSkAN88+jvrcEZuNjEs1UxZg09NCg+fl+R701NnGnDEetGYfOoCNpQKnAVZMcTwmF/zHPJwGRDL6dvluHrDPU9uHntjeKZuHapwvhuRoyxGcJAA1d+bazhiFYkBTiA859/HgkJ5n4FdDqAcXcPuXWOfD+EMeK9+4CQXQkWjzxueuuu9DY2IiRI0ciEong7LPPht1ux9SpU3HLLbe0RYwEQRAEQRwu9FRXsxzR4+wPP/ww7r33XmzYsAGGYaBv375IS0tr7dgIgiAIgmghpPFpniM2MHS5XBg8eHBrxkIQBEEQBNGmHNbE5+KLLz7sBt96660jDoYgfoqseIcbG44Y/5jYZ2gK5BCAhKnvCIa4zgeAFIoi3tkDAIily5BMUz+7bOlI4hk22AKmXkiR4DA1N9EMGa5qrj2xLddE0k+AwfUMX3WtvD4ChzcCf5fkn7el9zBUCcEiLrTR7RLQhWuNbEEmzmeoEqJeXkdigL+Ea3EyN8VFO+FcFWm7ub7IXRlEItOBhJOX8663IXhmMuko4NnK6zT0ZFDDpsYkBsTT+WWl4bPjmVcvAABoQUA3JT42PxDN4NuSLonEpIYiC92M5meoeK8zItlmYF7AXWFdrmat4/0IFQChpKmfm8Hv4WXStstYv74zAGBjRgxG1DQE7B2DZHCjR1cVgy3A+xNLlyEZDN4tXMPk7+xCPJnYNM6QMJPGSgagmKaFcacMzUwMa3gVVJ/Cx99VbcUZzpGQu9YUJzEVNlMrFM2ywVnLz13fU4GkW2aD7gqGzPU+0UY0hw+QEjWQSOOffTBPQbDU1GsNiCNjFf+85QSQcJjj7OM6H17X0vhoPoZwrioSmK55ngwNfzLQra5mOayJj9frFduMMSxevBher1es+JSXl6OhoaFFEySCIAiCIFofutXVPIc18Xn55ZfF9t13343LLrsMzz33HBTFtNHXddx0003weDxtEyVBEARBEEQr0GIfn5deeglTp04Vkx4AUBQFU6ZMwUsvvdSqwREEQRAE0ULIx6dZWixuTiQS2LhxI3r16pWyf+PGjTAM4yC1CKLjs/x9y+9kzJkPA7IMSGYy0pwMsS01+MFMOU8sTUaC5xmFLShBNhOQ2utigKn5iXg1MPMSxVljJb9M25NAYxnXoTAFaOjGxSa5r8pQIgaiGbxcLF0SSTwTTkkkSHVX6nBUR0XM0WzeVsIhiZicNcxKqGqTEHfzQOw+A8EiXt5pk+DY44NezG+JZ26OI5LLhSjuPVzbAwBqWALry72MsCkNhtP8vogq0E29ib0esNckx6OJbxCAyhFcJ5P2vQ2yzi+8AoUS3BWM65UAeLda30H1PWWwJt9w2j4+PrrbgO4yzPGQodXxtoyAQ1wJ2mslMebhLAmOeibGubGrBmc1r5P9rQ41ZGquggk0duUdUSKMjzsALcAQ85qBMCb8dwKdJKhmUlRJB8I5fDwlBkRyTG1SrgzvNi668RfLiOQAnu3J8TEQKOO6ruTvDQCooQRqe6ui3cz1irmtwG4mOA3lyAgV8fLOfXzck+dm5jVt3C1BCzDYwrztU2+cI87z1V+ngDiOIY1Ps7R44nPttdfi17/+NbZs2YLTTz8dAPD555/jkUcewbXXXtvqARIEQRAEcfhIENc6R1y/I9PiW12zZs3C73//e8yZMwdnn302zj77bMyZMwd33XUXHn/88SMOZObMmZAkCZMnTxb7Jk2aBEmSUl7JydbBWL9+PS655BKUlZVBkiTMnTt3vzLTp0/fr92CgoIjjp0gCIIgiJ8GLV7xkWUZd911F+666y74fPxRyqMVNa9evRrz5s3DSSedtN+xc889N0VcrWlas22FQiF07doVl156Ke644+CPX/br1w/Lli0T75tqlgiCIAjiJwvd6mqWIzYwBI5+wgMAgUAAV111FV544QU89NBD+x232+0tWo057bTTcNpppwEAfv/73x+0nKqqtMpDtBlLV94LABhfZk6+NQWGm/u3RPsWQjK1EpmbwgDj23V9XEJ3YWsEMrZx/5W07QE09uRaDmdNAkrEzOnkUqEFeV337gi0qoA4fyLDhVA+F+owCVBNnYajNgbd9JrR6mPQzdxgsQwVapC3a/dJyFrLhShSXIdht1kd68zjqO2rIj6Iny/8aRoc+dkwzG+TcK4ENWiWZ4Crki+c+/rGIVeY4iGPgayvFbMfgG5ez6hhBlcV16EYmrXgnnBISPuex1Fw7i5U/LuElx9Sj555ezE6awMAYNbGMYj9N4PXtwFK2Ao9cxMfg2ChjORit6MG8JeaocpAXrmZd8sjCa2Ls8YQ2qZgoRmTedBVpYv7AqECuxWvU4Jkyo0auksiDjkBMU5yFMKHKeECageYMdVaMXt26KjvyfutxID0nRD6sIRLhmHGqNsl8RlHM5xI28tPHs6VYZgfn9Tk/oWz1oBkWAv+jgZeVzIYmKktMxRA8xsIZ/FycpyJx5yHTJwt4vhyAel9jjfocfbmafGtri5duqBr164HfbWUm2++Geeddx5Gjx59wOPLly9HXl4eevbsieuvvx5VVVUtPseB2Lx5M4qKitClSxdcccUV2Lp1a7Plo9EofD5fyosgCIIgiJ8WLV7xaarBAYB4PI6vv/4aS5Yswe9+97sWtbVw4UKsWbMGq1evPuDx8ePH49JLL0VpaSm2bduGP/zhDzjnnHNQXl4Ou91+wDqHw5AhQ/DKK6+gZ8+e2LdvHx566CEMGzYM69evR3Z29gHrzJw5Ew888MARn5MgCIIgjgl0q6tZWjzxuf322w+4/y9/+Qu++uqrw25n165duP322/Hhhx/C4XAcsMzll18utvv374/BgwejtLQU77777lG5RI8fP15sDxgwAEOHDkW3bt2wYMECTJly4GXbadOmpRzz+XwoKSk54hgIgiAIos3o4JOXo+GoND5NGT9+PKZNm5YiRG6O8vJyVFVVYdCgQWKfruv45JNP8PTTTyMaje4nOC4sLERpaSk2b97cWmEDANxuNwYMGNBsu3a7/ahWmYgTk/e38zxH43veDT2H62M0X1zoegAg2Mkptl17+U+mQvj1GJqCzK+58ENPc0B3c9GGVhuBvzgdABDL1GBo3EfHsasBan0QGRu4zqOhb5rQqGgNcdh8MdFuJIe3lb41AEPjf2/xNAXxLK7FUSIJSDHunxMpcAttkuYDogYXeegaEMmSoPn4saxNOgKFvC01yhDz8nLZX9oQzeT9swUgNDBpuy3vHTViwBbg5wvnaEJno4YZHHW8nR1fFSPRyRTHVKTj06198R97b2vQs02tUq0i9DeSAfjKkvocQDbzURka7wsAKDUS4k6rfDK+hFNCOJvXdVanegtFvTIau/Egs75j4lhjdwmuSl4mY4uBxi58/F01TGhxEo4mudncksjZFs0EdPOrJlSgIHOjmfMrjZdPnsNQrBjdlQlEvTwOJvGYASDnvxFEsi2NVmMXXiatgsHeyNvRNSAhvtok4dsjQ+L6MDPnmK+sSc43DcjYzPcPP+8xrHjX8rAiiOOdVpv4/O1vf0NWVtZhlx81ahTWrVuXsu/aa69F7969cffddx/wKava2lrs2rULhYWFRx1vU6LRKDZu3IizzjqrVdslCIIgiGMNiZubp8UTn4EDB0Jq8ngAYwyVlZWorq7GM888c9jtpKeno3///in73G43srOz0b9/fwQCAUyfPh2XXHIJCgsLsX37dtxzzz3IycnBRRddJOpMnDgRnTp1wsyZMwEAsVgMGzZsENt79uzB2rVrkZaWhu7duwMApk6digsuuACdO3dGVVUVHnroIfh8PlxzzTUtHQ6CIAiCOL4gjU+ztHjiM2HChJSJjyzLyM3NxYgRI9C7d+9marYMRVGwbt06vPLKK2hoaEBhYSFGjhyJRYsWIT09XZTbuXMnZNlagt27dy8GDhwo3s+aNQuzZs3C8OHDsXz5cgDA7t27ceWVV6Kmpga5ubk4/fTT8fnnn6O0tLTV4icIgiAI4vijxROf6dOnt0EYnOTEBACcTic++OCDFtUBgLKyMjDW/HR14cKFRxIeQRAEQRz3tMetrj179uDuu+/G+++/j3A4jJ49e+LFF18UOl7GGB544AHMmzcP9fX1GDJkCP7yl7+gX79+oo1oNIqpU6fif//3fxEOhzFq1Cg888wzKC4uPvLOHIAWT3wURUFFRQXy8vJS9tfW1iIvLw+6rrdacATRUXj/+0fF9jmjHoGvi5lcVJLgqOd/M7Ywg7uCC491hyKExIk0GwwbF0arjVGoDby84bRBNgXQ4SwZWRU842WswAPVF4Fk/i26K+JQg1w5K0fiMOz8z76ujxNpFXx/oNQt4mOKhPqe/EnLeDqQtYErgRMuBQ3drNVVdQOvE/cAesIS3+ZeswtVK8p4jDZrdVjzW8kwHXUGIqYxXiRLbpIcSIZu4/EpUYikmpLOhdIA4KqQECjhdS8btQr/9+EwOJKJRm2W4DdZL9mWzTRVVMNMLOVLDLCb5n0xj4yYRxL7XfushsJ5ZoDVQOb3UTR0t55EjWfwcv5OMtQoL1fy7wgqT+Nl6ntZYxboJCHY01QxR2QULTeTq25n8JXK5jhb4ms1AAQLeBlZh0hqCqQKsO11MRg2fr6EQ0LCHPd9pzng2sfMcZYgm6eOpUvC/DDuBtKbCMyTBoZxFxesa35eP3u9AX+x9S9DMkzTQ51h5NhHzf7ZsPplMjRsd47xra76+nqcccYZGDlyJN5//33k5eXhhx9+QEZGhijz2GOPYfbs2Zg/fz569uyJhx56CGPGjMGmTZvEXZzJkyfjnXfewcKFC5GdnY0777wT559/PsrLy1s1u0KLJz4HW02JRqOHTCdBEARBEETbcqxXfB599FGUlJSkPNVdVlYmthljmDt3Lu69915hRbNgwQLk5+fjjTfewA033IDGxka8+OKLePXVV4Wh8WuvvYaSkhIsW7YM48aNO/IO/YjDnvj8+c9/BgBIkoS//vWvSEtLE8eSj6G3psaHIAiCIIj248cZCg5m6/L2229j3LhxuPTSS7FixQp06tQJN910E66//noAwLZt21BZWYmxY8emtDV8+HCsWrUKN9xwA8rLyxGPx1PKFBUVoX///li1alX7THzmzOF+JIwxPPfccynLTpqmoaysDM8991yrBUYQBEEQxBHQSre6fmzSe//99x9Q57t161Y8++yzmDJlCu655x58+eWXuO2222C32zFx4kRUVnJTq/z8/JR6+fn52LFjBwCgsrISmqYhMzNzvzLJ+q3FYU98tm3bBgAYOXIk3nrrrf2CIwji8Pjo37/HyHFcExHzqKjrwy8iJB0wFH67OGudD1KC6y4ihWkIdOb6jfQdgOKLAgDkcFx8QcU9Eur78FXY9N0xJLwOMPPpSzmqI+Hif+oquIYHALQAQ6CI73fUGk10NkDcXNCVYzwZJsB1RAo/NaJZIk8n0CsA+WtrBXjbx2XQ/HzbUAHvNks/ojVykcm2yySoDaYBYnYc2h7eb88PDLF0c78dIqFqsJih6NQKAIAdgL+Se4bZJB3dT9uJncv4E5lMARwncyGRv9EJqZZfnTr3SoiZOZWZLKXogJSI2dc4g2oOgqPOQNRjaXMyvzP1Vk4JO8c6wLqagqFtbihB05ywmsHewBsO5WuwN/AiwU4QY2vYANs+y1CwoQf/6dxn6Z8kA9CbmNknY5UMQIkyBDqZRoYBwFHH4wp0dgoTwqjX+iB1BxDNkMS5mdkl3Q44a8w+uSQE8y2DxST2RgMJpwwlapjtWoaQzloreWk0XRNaMXujgdN/NduMT8d//tGyNEZEK9FKE59du3alJCM/mImvYRgYPHgwZsyYAYDb3qxfvx7PPvssJk6cKMo1fSIc4AspP963XyiHUaaltDhJ6ccff0yTHoIgCILo4Hg8npTXwSY+hYWF6Nu3b8q+Pn36YOfOnQCAgoICANhv5aaqqkqsAhUUFCAWi6G+vv6gZVqLw1rxmTJlCh588EG43e6D5rJKMnv27FYJjCAIgiCIlnOsxc1nnHEGNm3alLLv+++/F954Xbp0QUFBAZYuXSp89mKxGFasWIFHH+Wr34MGDYLNZsPSpUtx2WWXAQAqKirw7bff4rHHHjvyzhyAw5r4fP3114jH+fOVa9asafVlJ4IgCIIgWolj/Dj7HXfcgWHDhmHGjBm47LLL8OWXX2LevHmYN28eAH6La/LkyZgxYwZ69OiBHj16YMaMGXC5XPjlL38JAPB6vbjuuutw5513Ijs7G1lZWZg6dSoGDBggnvJqLSR2KLc/4oD4fD54vV40AvBUVQG5ue0dEvETZdQIfl9c9UfFPn93j9BWRDIV6HZT1xFkiLv5trsyAUPl26F8RXjWRL2AvcHSiThrrT9xNWQgmsHvcDPZSnipaxJ00/tFiTOR5NJZrcNu6nL8JZrQm8gJIJJpXQCF84CEm7elBiWk7TRjyQBUU0PTeHoErm95UPYGwF3JAw42iR0AgkVm3RwDTDETZsZl2GtMrYoGsD4BAEBsnws2vwytkddJnOYHY7yc3ZZAeBNP3OqslISmRfMbqDiTj8Hgod+L8xY4GvGvTQMAAK7VTqTvsoRAwUJZ9DvutsaWKYCjhm9Hsi3/HUm3Eo0q1scK3Qk4BtcBABp2e2Gvsh4SSWqmsr+1zuuoSSBYaDPbl2CvZwiZnkKenYbw5QnlymKbn9P8LCIMapi319hVhS1gJUhNxsVkwFHPyyhxhnC2pYDQfAxKjB+Lu2XEmuiekgldbUH+OQPc98m1z2pXDfPt8nl34ISluhrIy4MPgBdAY2Njim6mNUn+Xzp54gwomuPQFQ6CHovgv6/c06JY//Wvf2HatGnYvHkzunTpgilTpoinugDLwPD5559PMTBsmroqEongd7/7Hd54440UA8Mfi6yPlhZrfH7961/D7/fvtz8YDOLXv/51qwRFEARBEMSRITF21K+Wcv7552PdunWIRCLYuHFjyqQH4Ks+06dPR0VFBSKRCFasWLFfvk6Hw4GnnnoKtbW1CIVCeOedd1p90gMcwcRnwYIFCIfD++0Ph8N45ZVXWiUogiAIgiCOENYKrw7MYT/O7vP5wBgDYwx+vx8Oh7WMpus63nvvvf3SWBAEQRAEQRxPHPbEJyMjA5IkQZIk9OzZc7/jkiThgQceaNXgCOJE4N/L7xHbZ100CwCgxJjl38IAVxUXwSScktD7BDqpQkfiqGUI5/D9TAFChYCjlh+LeiTYGw1Rv6kvjGTqQuIZ1n6DAbqZfSaaISOeponyabt4LrFIjk3kvpITgL0RcO/hxwxNRuXPTF1Kvo7sr7l4xfuZA65qfhL3nggknW/bfDZEs3j5hm6WV5B7p4xQEb/0NNw6kl9XShiIbzF9g9INSAlLWxP125GRExDjKZu5sxIu7mPD42XI/4K3u6O8B+xm7rM9DhkFZp4qzRcTOasi2arQSdX3khApTCB9E48lba+BuOlz5Ky2xs0WtDQ7sTSeZwsAlBjQsIvrjuSYpbOJnRQUMdfIbuR9xSsEim3i8064AFcVUPQfq6yvu4t/Nox7JiU/p6RGSwsYQgeWvlNHsFAR5W0hQ5RJmH5JuiaJuu5Kfjzm4XXiLklohwxFEl5NWtAAU2Rx7rhLhAeF/0pg8G9mi75+8Srl8mpr2iNJ6U+Jw574fPzxx2CM4ZxzzsHf//53ZGVliWOapqG0tBRFRUVtEiRBEARBEIfJMX6q66fGYU98hg8fDoA7OJeUlECWWywPIgiCIAiijaEVn+ZpcXb2pCFRKBTCzp07EYvFUo6fdNJJrRMZQRAEQRBEK9PiiU91dTWuvfZavP/++wc8ruv6AfcTBHFo/rN4KgDgnDGPQI7yvyUlogqdhW6XoIZ4WabwXFoAECywPHXSdzPU95LgL+OXbflfMjireEFJN1DXl4sw1DBDoJiv3CZcEF44dp+lF0rmmwKA2pOBur5cVOSoaXKMMTjrdJFXS44zFH/Mg0y4bfAX89iVKLDvNN5ugW5Z34ezFcgJHmvOujhi3qbeNknPIVX41EgJyx/GvZsfT+p3vOUa7PWZYkxMyY3wEgKAhEOGexdvQHeqiHv416BzXxQxD2+osUxDjEtxkLlZR/XJitk3wLVDRdS80x/JlWEzJUU2S1qEeBqQMH1uJB2ImFl+bH4gfbMiYk7G7frcLfRWugNCi2MLMJi2RJB0IJQnQfPzsdM1GWqYmWNr5TgL50oilkCRAs2f9EJiwq+HyRJsQdMnKkMR+iBbiMFdwX/vYh4Z0QwJqikpUqIMMTMPmK4BrirTKyjMYJg2ZrrT0lvZApbuyF1pQDZ9qYZd/gRWLboTRBtCt7qapcX3qyZPnoz6+np8/vnncDqdWLJkCRYsWIAePXrg7bffbosYCYIgCII4TJK3uo7m1ZFp8YrPRx99hH/+85847bTTIMsySktLMWbMGHg8HsycORPnnXdeW8RJEARBEARx1LR4xScYDAq/nqysLFRXVwMABgwYgDVr1rRudARBEARBtAwyMGyWFk98evXqJbKwnnLKKXj++eexZ88ePPfccygsLGz1AAmCIAiCaBl0m+vgtPhW1+TJk1FRUQEAuP/++zFu3Di8/vrr0DQN8+fPb+34COKE5KOlvxfbwy94HJqfC06jGTJspqDVFrTM6UK5Mpy1VnJLm09C2k7TxK4xLsz4wCR4t5lC5wRD2m6+u3qgXYiHw1myMD/UNQmOen7uglVAOIeLbkMFQFQIdiWEc1R4dvLzSzpDqLtpesggxLVRrwTPNh5HbT8Fnh18v7NWRySTtxvNVKEmjfX8CTj5gjLkqI7KIZYzXvLLWdcAWwgidjnBhGg3+zsG1uTSLmqKppU4QyyTx8dUSYhu5WgCwSKuSJZ1hlAnczwKZDj5Vx6UOBDzAO495vuYlaAzOR7mMFufhR9wmok7nTWGlejT4EaVQKqxpBJvYiCZKQkRsRI1zQlNEbktZCCSYQnBbUFeLpIpIW76O9rreUJSAIhnS8hdy10EdbsMQ0sKlSUhLpcMiP1KjAuYDfMUsg4hdA4WARFTAJ+xSYa7wjSjDEpgUlKNDSG+jqXJSK/jv3fMJmHY5U+I8336fyR0Jo4tLZ74XHXVVWJ74MCB2L59O7777jt07twZOTk5rRocQRAEQRAthDH+Opr6HZgWT3x+jMvlwqmnntoasRAEQRAEcZSQgWHzHNbEZ8qUw8+tMnv27CMOhiAIgiAIoi05rInP119/fViNSZJ06EIEQbSIFe/8Tmz3+eMcKKZ5nxJVkDBlL2oYaCwztR9BbgSoxE3NTdwQGo7G7k7RVsIuCUO7zM0JBPP410FjXwMw/5Sz10pC18MUnnAT4NqMvHJdbNsClnFpqMAmtCuSAQTzTI2JB8hez8+n22WhaYm7ZUgGL89kIJ5mmio6bYilWSKdpGmhq9pAKI/vj+YC0WzAs5XXtzcaUMO84bo+NlE3qXkBAPdeGYbN1BRlNNXj2MDMb0Q1BGRs4NtawECgiBcyZG7QF0/nx6IqEPeY566ThAlhsr8AYGiAWtekr+ZQRbIBNWSaDuYBia68g8p2J9K3W+0kTQATTgkJFxAPJwOWkbaXN6ZrVvJaV7V1ue4rk2Azk4nKCcDfWRPHkolTmQroplYsniaJ5KRKVIccMxDOtZn9SwBZPBh7fZMEq14JMQ+v79mhwxY0DRDTLf1RwinDV+YQ/UhqmNL36DjtWn6xzBTgq79SAtNWgQwMm+WwJj4ff/xxW8dBEARBEEQrIBkQFxZHWr8jc9QaH4IgCIIgjiNoxadZKMU6QRAEQRAnDLTiQxA/ITb+6Q78bBLXREQyrWSUCReQMHUstiCQcCuAmcwUNhnxNK63cFYnEM7lf/ZqlAnPlqBXRczUpKTtkEWCzrjLSqRpqNY55DjQ0M1MnOoA0vbIIklm8jgABIuBeLrpk6NbnjLerQmhMUk4ZAQK+TVYHNzHhiMh7k5tDwDCObJ476oE7I1NLk8lS+viqGUIFEuifrCMnzDcCXDuMXVLkpVc1BaymomlAQl3sjMyFDMZbMOABNRGBbaA2W4McFSbfjh2QDN1SA39E5CdXPDjWucQmilbyIo15pGQzNWqNQC2tVx/ZWhc/wMAmg8wklocheuckslPdQcQzjWTmfq5TgsA4mkKQrlJDyfA3mBqkHyGSBirhiztkL3BQCSLj79kWJ83k2TYdCZiZzZJ1MnYrKO+l2LWt8YtniYj4UpqzSxtmRrVhZYqaFfFZ+zrbCVI1XzA6Vdxf5/PXydvn6OBnupqHpr4EARBEERHgnx8moVudREEQRAEccJAKz4EQRAE0YGgW13Nc9ys+MycOROSJGHy5Mli36RJkyBJUsrr9NNPb7ad9evX45JLLkFZWRkkScLcuXMPWO6ZZ55Bly5d4HA4MGjQIPznP/9pxd4QRNvx5fwp+HL+FHwz5w64K3W4K3VoPqDg8zgKPo8ja2MUtoCOeJrCX+kKDE2CoUmIZKmIeiREPRKC+RL8nfhLd/BcUEoUyPhBh6MacFRz7xdDtfQgWj1/yVFw7YcEKBFAt0uQ41xLw2Sud9HtfLu41z4U99oHZ6kfNScDNScDDd1U+Iv4K5wlQwswaAEGu4+JPhmqFZNu2c/AUPl7XQMiOUCgkwQ1zEReKH+xCn+ximiGJGJXQ4BnkwLPJgWKN4ZY3zB/ZRuIp3GfH0MBIpn8Zdh4nipXFYOu8WOGAgzrvxm6y4CUAH/pvI9MBiJ5BpQIHw/PBhWO7xxwfMf1PeEc/oq7JDir43BWx+HdpsNRy+CoZTA0wO7jL81nndsWZAgVSAgVSDBsPK7kOez1XA9kaFwXFeikItCJf1AJN3+F84GGXhIaekmo7acg5gViXiCSxTVCuoNrpuwNBuwNBhx1BhIOCQmHBN0hIZqhiDEMZytiHAxNQtZGHVkbdThrDDCJ66WiHglKlEGJMkS9Mhq6qmjoqqK+u4qGbvwVzgUSDv5SwxAxxdN5Tq9YmowBU+ag3+/nHNs/rI4EZWdvluNi4rN69WrMmzcPJ5100n7Hzj33XFRUVIjXe++912xboVAIXbt2xSOPPIKCgoIDllm0aBEmT56Me++9F19//TXOOussjB8/Hjt37myV/hAEQRAEcXzS7hOfQCCAq666Ci+88AIyMzP3O26321FQUCBeWVlZzbZ32mmn4fHHH8cVV1wBu91+wDKzZ8/Gddddh9/85jfo06cP5s6di5KSEjz77LOt0ieCIAiCaC+St7qO5tWRafeJz80334zzzjsPo0ePPuDx5cuXIy8vDz179sT111+PqqqqozpfLBZDeXk5xo4dm7J/7NixWLVq1VG1TRAEQRDtTvKprqN5dWDaVdy8cOFCrFmzBqtXrz7g8fHjx+PSSy9FaWkptm3bhj/84Q8455xzUF5eftDVnENRU1MDXdeRn5+fsj8/Px+VlZUHrReNRhGNRsV7n893ROcniNbk079NBQCcesMcxLymr4ppN28LmTmXIjpg7mvsahfeMY56S7vj78Lg3s2NVvzFCpiZZinR5Bsimm1tu/cAtiD/ckw4JEQzLK8dW9Aq1+VnOzGr698AAH/afQG2/JsbBHl2Wbm9wBg0n5nkymDwl/KcTtEMrjECuIdN0kvHXWHlEnPv4z/3nMNj0eoU6A7Tt6ZWEvWDRYDuMgeh2g6Wxs8vG5LIzxVPs650lShQeQYvf8fIJbg1g98GH7/p54BLR7i7madMMZCZxTss/zsbgWJeP3MTQ0MGDzKaa8C1m19jGjagoTsXLBkq18sAgBIGwrnWkDhr+U85xoRnEDM1VUnfIlnnnyHAtTWS8EUCYulWW8k+RbMY3LvMnFzpTfoaAcLZpo+SB7CbecUMFZAMy5tJd1ieRzFZgiOZC86AyPkWyZSFHkvzG9DMPGG6JgmvILWJX1JyrACeJyyJ5gcCnYEur88EAGy7ahoIorVot4nPrl27cPvtt+PDDz+Ew+E4YJnLL79cbPfv3x+DBw9GaWkp3n33XVx88cVHdf4fJ1RljDWbZHXmzJl44IEHjuqcBEEQBNHW0FNdzdNut7rKy8tRVVWFQYMGQVVVqKqKFStW4M9//jNUVYWu6/vVKSwsRGlpKTZv3nzE583JyYGiKPut7lRVVe23CtSUadOmobGxUbx27dp1xDEQBEEQRJtBT3U1S7ut+IwaNQrr1q1L2Xfttdeid+/euPvuu6Eoyn51amtrsWvXLhQWFh7xeTVNw6BBg7B06VJcdNFFYv/SpUsxYcKEg9az2+1HfHuNIAiCII4VtOLTPO028UlPT0f//v1T9rndbmRnZ6N///4IBAKYPn06LrnkEhQWFmL79u245557kJOTkzJhmThxIjp16oSZM/m94Fgshg0bNojtPXv2YO3atUhLS0P37t0BAFOmTMHVV1+NwYMHY+jQoZg3bx527tyJG2+88Rj1niAIgiCI9uC4dW5WFAXr1q3DK6+8goaGBhQWFmLkyJFYtGgR0tMt5d7OnTshy9Ydu71792LgwIHi/axZszBr1iwMHz4cy5cvB8C1Q7W1tfjTn/6EiooK9O/fH++99x5KS0uPWf8IojVZ8/wdYvusi2aBSRDJOhWbhHga/xtR4gy2IN+vhhmUGL+0CxbLCJt3eu01VjJSMG6QBwBMYbDXm8k5E0DUy7clBkSzGZRSLvKNAYgFeKXoh51xJaYAAOIDg9C78PNFsxUoYSv+9N18hddRayUvhQQhyi74ynqwwF+sIeGy9HgJB5C+xYxRBtzmXWwtoKOutyLilYJ8DBJuA1LA3B+VrKScCoTw21CBtK28zLzt58F93VsAgC0VeVCrbEIIDgB1p/ByXh3wbOf985VJQuzNZCuxqOaHuI2g6EC4M9/2/MBgb+Tbul0CM7/SbGEDqhl3zMuT0Uq6Oe4GoPl4Y7YgQ8Jpft4xnrwVACJNBNO55ZaA2r3H2lZkQDUF6WoYIrFoMqmsv8wsF7bE8M5qhlhSjCwBhiqJMUxuN30ySIky+MzP3r1HEuORvssqYyiAs9EUTCcAvUqGGuT6z5NvmwNnHS/7+WtTQBwCg/HX0dTvwBxXE5/kxAQAnE4nPvjggxbVAYCysjKww3gU76abbsJNN93U0hAJgiAI4vjmaHU6HXve0/4+PgRBEARBEMeK42rFhyAIgiCIo0PCUYqbWy2S4xOJHc59IWI/fD4fvF4vGgF4qqqA3NxD1iGIY0nPh3iSR+/W1D9xQ+Ffa/ZGQ3w5BgplBIZx0Y3LFYX+ZQYAwLPNENqRcK4kNBm+UglxUwcUz9QBBowcvB4A0CXpvgdg/kfDYa+xFpbj6bx+/in7ULmOi4qyvrViC2dLcJhajnCOZS5Y8HkUqj8myvl68pMH8yUk3JZ5IsC1MADgqgDCeXxbdzIoEVOfFLc0N1IT1wzJ4C8AwgQRALLWA5EsXjeSBeguqy0pYfWp+KQK7PyBnzD3c0XodAAglm7qqkJA/QB+EnutVcDmN40ZTXSNl0+4JEQzk/t4vLEMU4MTk5C+gx8zmiRxZRKEASWTUw0DEy4zHg+Q841pcBkzEEvnFRq7Wv/y0ncy6JoERwMvFyyQhWmlGmYI55qmjDLE5wRAmBbaGw1EvbxM+u6EOB7KVaDbrPOwJg/wJj8PLci4gWKTz8fRwN/E0qxx++x/78RxT3U1kJcHHwAvgMbGRng8njY5VfL/0hmjpkNVD+yPdzgkEhF8+u/pRxzrzJkzcc899+D2228XicIZY3jggQcwb9481NfXY8iQIfjLX/6Cfv36iXrRaBRTp07F//7v/yIcDmPUqFF45plnUFxcfMR9ORB0q4sgCIIgiFbhYEnHH3vsMcyePRtPP/00Vq9ejYKCAowZMwZ+v1+UmTx5MhYvXoyFCxdi5cqVCAQCOP/88w/o63c00MSHIAiCIDoQ7ZWk9GBJxxljmDt3Lu69915cfPHF6N+/PxYsWIBQKIQ33ngDAF8Je/HFF/HEE09g9OjRGDhwIF577TWsW7cOy5Yta41hEdDEhyAIgiA6Eq3k3Ozz+VJeTfNVHoiDJR3ftm0bKisrU5KD2+12DB8+XCQHLy8vRzweTylTVFSE/v37t3oCcRI3E0QH5fv7uLfP8J8/JvbZAnFUDOVCj0iWLPQVzmqgaCE3tAlnO5D85gvnyFDM7zpXJUPFCL7kbKtX4NrLdRq6U4ajSsLab/nSdt2VP2C3nwttMnvUIbYjBwAQOs0y7jkr/wf8vYH7cTWG3bBZq90IFJt+NBGIc+8eaUfabm6yo4abXI4yrmlJ6nqa6nQaB0ehVnLxi6RDaG6Svj2AeWVrWNssaU2jS9BMX51gISCb8qJYlg6oDLZG/tUZ9zAYZlbYXRsKoMRNLVCGBNWMXW9i+J5wAc5KHkgkzxAnjGUAusb3u/ZZ/VPDTCR9jWZw/xtnlanRqgPsPlN/UyjDVWXV85fwMpoPcNaYCUSzZKG/SdtjWP5FqizUrJoPUCPJweFjGTK1PI46Bi3A20o4JThr+PlibgnOOr7fFrBuSRiahEAhrxvOVhD1WLqeZPLYmMfSB0lxCC+jSIYEXQO0gDVukWxeML1JgtuBN83B189YHlZE61JSUpLy/v7778f06dMPWLa5pOPJFFEHSg6+Y8cOUUbTtJSVomSZ5hKIHwk08SEIgiCIDoTEGKSjeG4pWXfXrl0p4uaDpW06nKTjQMuTgx9umZZCt7oIgiAIoiNhtMILgMfjSXkdbOJzqKTjyZWe5pKDFxQUIBaLob6+/qBlWgua+BAEQRBEByK54nM0r5aQTDq+du1a8Ro8eDCuuuoqrF27Fl27dkVBQQGWLl0q6sRiMaxYsQLDhg0DAAwaNAg2my2lTEVFBb799ltRprWgW10E0cFZ8d5dYnvI1bMRLOMaCfcOBfYGvl+3Aw3dTd2KG8hfY4owqqx2DFWCdwMvEx4aREDjWiHXHgnOaoZQAV+OXv9pNzCVf3FqDRIcpmbEsdaJhJtvf+jpDfzA3zT1cYlmN9G3hLjOAwBi2TpqiyyfG9XF45O3OWELAAnzEo7JPKcYAChVGuQuXCDDNqchfScvE84Fkqe0+Zvks9Itz5uECwh2NrUk7gTkeh4IsxtQ0+JINPBxcFRJSLYWLmIwbKbuJVNC3AoX0WxTA9MgiydmtDpZ7JejEqJZ/ICrCrCF+LaUAPydretTOQ54dpianQwZ0Qx+TA0Casj05YkYcJp6HyYDgU5czCPpgHuf5acTzrLymMXdVp6vpBbK3mgg4ZThqOftxtJlkX9LjkuQE3x/1KMIn6JYugrNb+Zj80pw1pq/Bz5D5IgzVOt8toCVt0sLAO59utmmjFC+hEgTuUdSCxR3y1AiyTiAQdfPEX1tmrOOOHYcKuk4wB9VnzFjBnr06IEePXpgxowZcLlc+OUvfwkA8Hq9uO6663DnnXciOzsbWVlZmDp1KgYMGLCfWPpooYkPQRAEQXQkjsNcXXfddRfC4TBuuukmYWD44YcfpiQdnzNnDlRVxWWXXSYMDOfPnw9FUZppueXQxIcgCIIgOhKMidW5I65/lPw4gbgkSZg+ffpBnwoDAIfDgaeeegpPPfXUUZ+/OUjjQxAEQRDECQPl6jpCKFcX8VPn1BvmCM2NrlneKo5aBsXMfWWvtzQhvjIbItnJ/Za3DQDIOoOhmr4+DisXlhxHikdP8lIr7gaCxaaOpYkbvb1WQtxa+Raam3ChDmb65Uiq9ZVlc8WRl+FHd28NAODLd/rDZT440jRXlr8MwqvGvdvS0ABAwmF672RbjrVyzNIeBbolIEXNxjQDUkSGs4K/150/yoVl9tvmBxz1vLFk3i0ACJQAcQ/vhxqQhRYqt381KvZYgpaM/3JdTsEqn7j6TqRxnVHcw4/FPArkOD8WyZChmroXw2ZpaDw7Eki4rIGIpvNtJf6jr33zLVMg8nElYw/nmnnJ9FQPpKSPj2d7FAmnYpax6jZ21aCbTzan7TEgJ6xjSb+kcLYCm+nLpPkNMVaxdAmRLEl4IKmWBRTArPeuagOhPKt/hnkP479PHkdan3bI1TV82B+OOlfXilUPtmms7Qnd6iIIgiCIjsRxcKvreIZudREEQRAEccJAKz4EQRAE0YFomrrlSOt3ZGjiQxAEQRAdCbrV1Sw08SGIE5Q1z9+BHjMt8zenaVbIZEskGs1QIJtCZ2e1gViabO4HbGYCSX83U6zrt0S8ybY8O3WEcpp4cJhXkjEPUNhvHwAgzxXAllqeyBQ9gPBOLqa0+WToplgYbl0IjItLa1DVaCmg9/yQi4qoaWmfxSCbiULlmGV6Z6+3hMfxdCBuGu45qxmUGP+StzdIiHNPRshxQDPN9xy1KsK5ybh5DIYpunXUQgiDk2Z9ADfvSzhN0XQWhIgcAJQw36+GAMng23XleZAyuco7p1xGipGK+U9IierQnaoQYCccgIqk8SCDLWhdpiuxJoJfxRSdaxACYzXCkLCb46QDNjP5qKFKwozQWavDsFmff8Jl/V6oISCSaZ47qiHQiZ9P0gHPTt6WvdGAHjGF0QagNXChvKFZsTWNmcmAo5qfzO5SYaiaWHmIZAOymfTVsANhU28byZGF4FrX+OcMAD3/9iC87/FBX/3SFBBEU2jiQxAEQRAdiePQwPB4giY+BEEQBNGBaK3s7B0VmvgQBEEQREeCND7NQhMfgjiB2TzNMnor+8sTAID0FYBumvoxRYJuSjLq+klC78EkIJLHBRjpP8hw1jDETN2FvdH60gxnKcI40FAB9z5ex1kHVNkKAAAFwzcjGOCimZwPHJAzTBM7LxDvbyYZ9WuQTd3Knn2ZYHG+LTfYAG8CzNT12OtkxLz8fBID0gdyY0P/mhwRUyzbgHMvr1/fB1BK+TniFS5krTONCe3WGMlxBvdes66Xj0FS6yLHIW4LBAolKE1MHe0NZqJQSRLaE6ZCaGjsDUDDAK57URsVwDQzDBZKyPqOj1OgLE3ocuJuGXGXBCVq6nTCDHG3LD6PWNKcMMYQdyVNB2URqy3MhHGgoUqQTeNIJcJE3VCehMzNlmmloyYBW4AfS7hkYVDIFEvPBUmCd6suyiQTy2oBAzB1YJFMBWqEa73iTlkYLNobDSvRaoSJ9hMuBc4aXWiqHLUS4qZOKtAjLk6d8V+bSIqq2yWE8vh+fbsbjd35OfreOwfuCl6G9D4EQBMfgiAIguhYMIgHCY64fgeGJj4EQRAE0YEgjU/zkHMzQRAEQRAnDLTiQxAEAGD7zXcCAAavmQ1HPV8nVyLWennRf4D6XlaWyrTd/LpJ8xtwVcURzeDCmEimJHQX8XQglrTckbjvCt9vPW/7zYoeyNqS1LFIwrtFjgLedJ6NsqCgCt9/2oXHVGMlX4x5GVxbbKKOrgGK6fcSzTaQ4eD1M4btwu76DACAUetEqBMvowZlOD9J4+fLBoLmfiUMyDGuETE0y8k2fQf3qvF15e+DhVyrA3BNUcSUEhkqoPlgjg+zkqIyIOq1rjfVNK5Xse1W4d7Dv44TTqC+p6l7CQNq0Gzf4NqjZP8STkvvIycYIpmm3qeJbZLEANUsk3BIcFVzLU4wTxE+Q/BIIsFp2l5DJD6NZvJ4QnmSiF03vX/Sd1srAppfh25680SyJHi283MwCYh6eTDhHAmxdN6eHLdijHkURM3crM5qSRgvMZlrmOwN5sBLXPcDANlf2Kz66YCryorFXm9qm5ilQZLjVuLVn02ajS/nnwA6H4ajFDe3WiTHJTTxIQiCIIiOBD3V1Sx0q4sgCIIgiBMGWvEhCIIgiI6EAWEjccT1OzA08SEIIoWvXrQ0EKf+zxzkv7tDvA8UlfKNi2vEvtg/chD12uHdyvUqlafbEDZ1IfZ6wMVTckHSrZxVNr+EYCn/dtVtDJEs04MmCnS/YjMA4P+6LhPnmFnbE/KZfPl980ddYZgaDyUiwdCAWEbSX4bBWewHAPTOqsefu/4fAODzcGf8w34qAGDNnm5CvyPHuYaHx8Q1LqJfpkeOs9aAZHreMAVgsgT3Hl4/4bQ0N0wCHNXmtgqh6zGaePcknJYXkq4Baat4AjHdwXOLAYCkNcntxXheLIB73sQTEqJe6z+ad7vpAxTUYdh4RwwFQqcTzrJyWTnqGRKOZJ90+Er5179k8D4BgBoxEMq3tD2uKib8iHxdJKTtNMcqaCBYwD+EWLqKiNDpALF0vr+urwT3HogxiGSbQUuAzdQ/yXGrf7E0wLCZOiWZvxJm7rSMzQZcpgdUsFCG5jPzl8UkNHQ39VAhqzyTgDRTh5RwSgjl8jLeHQkMv+Bx3r9cpcP6+tBTXc1DEx+CIAiC6EiQxqdZSONDEARBEMQJw3Ez8Zk5cyYkScLkyZPFvkmTJkGSpJTX6aeffsi2/v73v6Nv376w2+3o27cvFi9enHJ8+vTp+7VbUFDQ2l0iCIIgiGNPcsXnaF4dmOPiVtfq1asxb948nHTSSfsdO/fcc/Hyyy+L95qmNdvWZ599hssvvxwPPvggLrroIixevBiXXXYZVq5ciSFDhohy/fr1w7JlloZAUZQDNUcQJzRrnrVyeY0c9yg8O7kQZefGbMsvpi+De5cEpnKdiHcLQziHb8fTgIRpu6P5LD0HUwCt3vR+KUzAFkz61jD89z89AACPZmzHyxuGivOXZPOEV0wGbGYOKN3B/XqaCjlDfn5CNdvALT9cBgAIxOzYV88NhZT8MLCDi0GUiOUDE8qVECi0cnUltT+RsAzvdq4vkWMMut3y6FEiksjrxRRAjZh9rTWaeNXIiHMpD5x11j+UhFMSecUAIJplbUtmuqyEC/CbPkjRDBmSYWll7PVAbV/+Fe7dKkO3mTnO0nFAdJsEZh5TYgpcVabGSpPg2RY2Y9DgruAntwUUxDwSmMTbTep7AK4dCufybcOydgJTIT57915AC5j6oB6As5Lv13xAyLzO1PxWXVuAIZxr/t6k89+jJJFMWeis1BBEOTnGvYoAMxecmZNL8zEEC8zretkaz0CBCls4qQ/iebySbX4zx/pd/8lDt7qapd1XfAKBAK666iq88MILyMzM3O+43W5HQUGBeGVlZR2gFYu5c+dizJgxmDZtGnr37o1p06Zh1KhRmDt3bko5VVVT2s3NzW3NbhEEQRAEcRzS7hOfm2++Geeddx5Gjx59wOPLly9HXl4eevbsieuvvx5VVVXNtvfZZ59h7NixKfvGjRuHVatWpezbvHkzioqK0KVLF1xxxRXYunVrs+1Go1H4fL6UF0EQBEEcdxit8OrAtOvEZ+HChVizZg1mzpx5wOPjx4/H66+/jo8++ghPPPEEVq9ejXPOOQfRaPSgbVZWViI/Pz9lX35+PiorK8X7IUOG4JVXXsEHH3yAF154AZWVlRg2bBhqa2sP2u7MmTPh9XrFq6SkpIW9JQiCIIi2J/k4+9G8OjLtpvHZtWsXbr/9dnz44YdwOBwHLHP55ZeL7f79+2Pw4MEoLS3Fu+++i4svvvigbUtSqnMTYyxl3/jx48X2gAEDMHToUHTr1g0LFizAlCkH9nWYNm1ayjGfz0eTH4IgCIL4idFuE5/y8nJUVVVh0KBBYp+u6/jkk0/w9NNPIxqN7ic4LiwsRGlpKTZv3nzQdgsKClJWdwCgqqpqv1WgprjdbgwYMKDZdu12O+x2+6G6RRAdlo8/uBtdnnrCfMeEqNS9gy8c+4vNBJOSZeon6xDL5vF0IMTzgcIWACJFXHGqpMfR2Iv/rRf+x0BeOb9ImR8bA2YKZ7VGYLcrTcSim2LhhItBiUiQo7yO7mBAlKuSv20sg+HkilhJBqQAP4cStha64+mWGNcWgkj6CfBkqwAXwYbyeB17IxPmegBPAKqafU2aFAIAUyTYaxLJoYIaNkW7LkkIfjUfEyLpaIYEp3kX395owFdmxeisFptgMo8HAOJuLu4GgNoBsqgvG9xYEbBMEQHAFmbQzfGMuSXRDgD4y3gFd0UM4VxeSIkwOOoYwtmKOLfDTBpaebqEZCZLW0CyEsN6rPgMG0+MCgDpP1jnUiIM7t2mwaXPQOUw65gaMMc8ygXMrMk9iaQw3lVtIJphGR0mf7/UKIQQO5QnWYJ3Zv0+GjYgZorwYQAO04dTdwInT56D/87tIAJnEjc3S7vd6ho1ahTWrVuHtWvXitfgwYNx1VVXYe3atQd8yqq2tha7du1CYWHhQdsdOnQoli5dmrLvww8/xLBhww5Sg+t3Nm7c2Gy7BEEQBPGTwGBH/+rAtNuKT3p6Ovr375+yz+12Izs7G/3790cgEMD06dNxySWXoLCwENu3b8c999yDnJwcXHTRRaLOxIkT0alTJ6ETuv3223H22Wfj0UcfxYQJE/DPf/4Ty5Ytw8qVK0WdqVOn4oILLkDnzp1RVVWFhx56CD6fD9dcc82x6TxBEARBEO3CceHjcyAURcG6devwyiuvoKGhAYWFhRg5ciQWLVqE9HTLqGLnzp2QZWvhatiwYVi4cCHuu+8+/OEPf0C3bt2waNGiFA+f3bt348orr0RNTQ1yc3Nx+umn4/PPP0dpaekx7SNBEARBtDp0q6tZJMY6eA/bCJ/PB6/Xi0YAnqoqgHyAiBOMsudn8Q1nAo4fLP2bvcEqYyhAwpLmQE7qYTJMPQ4ApjJoDfziJe5hQrPhqJWgmW1JjCf1BIBwPk9GCgBaowTDxo0IAdNEMMi3o1lNtEZRS5ejBQDNz+vrGkTSUDXCIOmmmWGedatdb/LshbOGwV9saXnsDUBjT15HjknwbLPK2hsNcwys8uFcCe4Kyzgwaf4Xzpbg3sfbiaVJUE2TvWimVddZwxDKlcDMy9Wm+hf3XgY5YY1VUrcUyrf6x8fLqps0D0wmNE3GZ6+3xkO3S+J4LN3SBQU7AdE8XdRL+4GPl2eHgajHNKNsopcK5ktQzDgcdUy0GSiUES7k25IuIW2X2d4e3pl4Gm83lCeJxKSsyYMqdp8hPrNwriKS16phBjWSHE8Znh08cEdFAIaL/yIFSlxIOHlbTEnVd/lLZKx/pJX0PtXVQF4efAC8ABobG+HxeFqn7R+R/L80uuttUOUj16QmjCiWbf1zm8banhy3Kz4EQRAEQRwBtOLTLO1uYEgQBEEQBHGsoBUfgiAIguhIGAxJu4Ejr99xoYkPQRBHxPYbport3g/Mgd00PpcYEHdZ5RSe/5In7TTlGUoMkBP8TcJl6XfkGLgREHii0GR53QaR0JNJAAx+IJrBYNgtjZBkcG8egPu+JJNT2oKAo55ra1K8YSKWV0zcbfnRAEDMlDYwGWJt3FCArO90hHO4mMRQAXutJPot9En1lud/PF2CZL61+YFAEW/MVcWE1kiJWn1NOIFAZzMJZxwiOWfMI0HzNRlbBqGJMVQJ9kZe0F+iwGZ6BakeKTmccDWxN7OFGGwhM/FqnCHm4f1J380gmf/0dJuEYCH36UmSHB/JAFy7FDHOSaIeGYqp3zFUrl0Sx7zWGCQTqibSAJvf6qu90Ty3XYZhs+q69hlCwxTJkISfkL+TDJup6YIB6C5rrJIDmraHoXog/wVzlGTBUc/HiakQsWo1OgybhFAu/5foqAMG/ZYnMC2f9xP09mEGfx1N/Q4M3eoiCIIgCOKImTlzJk477TSkp6cjLy8PF154ITZt2pRShjGG6dOno6ioCE6nEyNGjMD69etTykSjUdx6663IycmB2+3GL37xC+zevbvV46WJD0EQBEF0JJLi5qN5tYAVK1bg5ptvxueff46lS5cikUhg7NixCAaDosxjjz2G2bNn4+mnn8bq1atRUFCAMWPGwO/3izKTJ0/G4sWLsXDhQqxcuRKBQADnn38+dF0/0GmPGLrVRRAEQRAdiWOs8VmyZEnK+5dffhl5eXkoLy/H2WefDcYY5s6di3vvvVfk2VywYAHy8/Pxxhtv4IYbbkBjYyNefPFFvPrqqxg9ejQA4LXXXkNJSQmWLVuGcePGHXl/fgRNfAiCOGq+u/8ODJjKNRH+7jqyvub6D//oIAre4EY4Oy8wIMX4InP6FkVoNhybAZ/pHRousL6wbX45VWdjfherEUAN8G1D41qOpIYm5gX0Ui4q0r5zAqZ2iClAPI2fu6luBgDUsLUdyzVzRYUh4otmWseDRRK0gIT0XdyUJpyrQjU9hEK5EmwhJuJK5u6SY0x42CQcEtL28mCdNXEEC3mAUa+EaIZ1nqSWxl4HuKp4+bhbTomXyU30TGEglM/HXNe4RxDAdVK2gDUGST0TU4C4y/ROcklcTwXAFmSwme1rfgNpe2QxDk21UWm7gJohfBDlsAxboyzGSo6b+bl2MjHO9kaGkC0Zk6WrUkNWfACQSMZhcD+j5HgCEpwVUbOvKqQE35+1SUcov8m/sRA/h7+njvyV/CSGauUsYwpgC/LxTDAZSjhVy5L0+/F3tol+/+ya2SLn2Jrnf4J6n6PA5/OlvD/cnJWNjdwwKisrCwCwbds2VFZWYuzYsSltDR8+HKtWrcINN9yA8vJyxOPxlDJFRUXo378/Vq1a1aoTH7rVRRAEQRAdiVa61VVSUgKv1yteydRQzZ+aYcqUKTjzzDNFWqpk4vAfJwvPz88XxyorK6FpGjIzMw9aprWgFR+CIAiC6EgwHKWBIf+xa9euFOfmw1ntueWWW/DNN9+k5MdMIjVx3Qb4JOnH+/YL5TDKtBRa8SEIgiAIYj88Hk/K61ATn1tvvRVvv/02Pv74YxQXF4v9BQUFALDfyk1VVZVYBSooKEAsFkN9ff1By7QWtOJDEESrsG6WpX/o/dafAABxvx31PUyPmO8U9LnwewBAqK8NG9eUAQACJUDyEtNeJ4u8W2oYiLv5djxdFIFkAHqWWSbE9TDJHFJqEGBVTn6+nTpi6da1nb+UXzU6ai2Nj93HIMfMvFHFMmKmZia9kcGI8PLuvRA5oADu95P0rlGilo7FWcuPweyO5jNzctklJOxJrxqGmKk1Sjg1oR2RE5bWRbcDrn3mtgYwM9dXwsH9dxz1zHzf1CPHyvsFCCskyPHU7SRSE2mLGmGw+628VkmfoFiaDDXMRD4rACKHmC1koPBjuUkcTPQ7OQZxlyTygTFFgqvK1D/ZJDFmaoO1KqHErHxZks4gGVYfXVUJxNP5v6uEXYZub+otxOs46nQknDwm9l9FfJZKjKX4DwULrH97/gH8g83YbCBYKAuvKJsPYpzjaRLS9vABG37B4+J34T//+B2OW45xygrGGG699VYsXrwYy5cvR5cuXVKOd+nSBQUFBVi6dCkGDhwIAIjFYlixYgUeffRRAMCgQYNgs9mwdOlSXHbZZQCAiooKfPvtt3jssceOvC8HgCY+BEEQBNGRMAwIN80jrn/43HzzzXjjjTfwz3/+E+np6WJlx+v1wul0QpIkTJ48GTNmzECPHj3Qo0cPzJgxAy6XC7/85S9F2euuuw533nknsrOzkZWVhalTp2LAgAHiKa/WgiY+BEEQBNGROMYrPs8++ywAYMSIESn7X375ZUyaNAkAcNdddyEcDuOmm25CfX09hgwZgg8//BDp6emi/Jw5c6CqKi677DKEw2GMGjUK8+fPh6IoaE1o4kMQBEEQxBHDDmOiJEkSpk+fjunTpx+0jMPhwFNPPYWnnnqqFaPbH5r4EARBEERH4hiv+PzUoIkPQRCtzncX/xEAcPK//oBgLvflyOxfg+2NfLtv9j4YTq4j0KoVJNymYNfNkDAFzaiVhCDXvReImIJmrREpprS6EwiUmpqE9AS8a7gpYKBYEaLUhm6WaDruAuwNZl0bN+0DAEctQyifi2aDRTwhKADEnRDCYXsDF+0ix/zqbPKUrZzgotzk/qSIWQsyqLoh9ke1ZDZSCONANWKJjxNuCGEuN160TmLYLGNENWIJlyUGuCvNBJ+aFROTJJF01LA1NQS0hMNMBmRTbJxwWp1KOHkiWc8OS6SdJJYmW4lXAwx6E6F1MkFrKE+GYcaiBnksAGBvNBA3BdNqlAuzefuAI54USUtwVyaEsBuSBD055MxMCAvLjBDgYy8Sm0qWGWLCIVkJTrOt/mVs1pH7X75fCevQ/LJ1vibIcdkyb9SZSGw6+uyHseyTe/crf1xA2dmbhR5nJwiCIAjihIFWfAiCIAiiA8GYAcaO/Kmuo6n7U4AmPgRBEATRkWDs6G5XkcaHIAjiyPjv+Q8C5/PtsvmP4oafrQAALPjudDhyuQugsjUdSsw0vXMDWSdXi/qBT3IBcI1I3nYu1PCVqTDMm/TSyHqoAK4uWwcAeHPzQDjquCDHUW9lIk3bIwktCWAZ+BmqBH+xIval7eL7bUEGz3buelc1yAGHaSarhhlc+xKIp/E6cZck9CahHAkO05CPydwYEOAalmTiTslgYOaTuZEsCfZGJs7NnFaC1GTyUXu9pQMyVCCeZhkdJhzWOEczeXsAkF+eENofAPCVqqJPyf1MBlzVfDxj6YoYG8lIGkpytIYm+qZGPeWfaXIMlLhlcqjErOO6Bvxm0vsAgCc/H43O/7CCirvMQWAMhqmrsQUZ10+BG0sqUQPRDB67YZOE0aSsMyvpaBOxRjxdgWwmL9V8DGkB/iGHs61CTJWgBs0x88pgclIvxcskP0s1bAi9lr3RMkaMZFv/MsO5Gk6awhPzhgoZtvxuCoifBjTxIQiCIIiOBDtKcTOt+BAEQRAE8ZPBMFLzkrSUDq7xoae6CIIgCII4YZDY4VguEvvh8/ng9XrRCMBTVQXk5rZ3SATxk6HvfXNEok/A8qPRnUDMY+5Tra8mNdDEJ6YWwj/HUIBwk8TNaf3qgCXc8MdZYwgvnaZoQQN1fWRx3qzvTJ8bFQgUWedJ3833h3Ik+HtyvVDJEr4vqZtxVxgiFn8nGYrpxWNvSNXyqGHz3D5DJE7VHUCwiO9PeHXY6kzNTBQiqSYMy3MoUMKTsjLVGodkgk5DtZKUen+Iw17HTYsieU74S3gFXQMcdVaCU7ufX9Un7BISLktjlRz/pI9R+i7r6l83PYicpj4IACABoTx+DjlhjaHU5G6LZ6ch9DjJmJNxBwtlUTfpqQRwvx85xs8tGVyLBPD+Jz2I7A2G8CnSNeuzNjQpNeFpk/9yyTh0TULUy9846gzoDgmaOSaSzhD1KmZfreyuCbcCQ23iZ2R6Kml+BluI113xzo+Sl1ZXA3l58AHwAmhsbITH40FbkPy/NCrtl1Al7dAVDkKCxfDvwBttGmt7Qre6CIIgCKIDwQwD7ChuddHj7ARBEARB/HQgcXOzkMaHIAiCIIgTBlrxIQjimLPhoTvQ/c2H+Jttbmi9GgEAwToXnLu4WCXmARzV+3vvyAkrb5ekc68ZZ415bGMmND/X46ghA6E8fm3nrLGW7hu6y4hm8fc2v4xYk1xYuWu5nsPf2SYumHUnYK/ieo895xjQ6mTkfc01LkwCGrryr9GEG0im5Ip5rFxfWiMTOaBC+bLw5ZHjgHuPWT6giFxdPPZkp4GEi2+m7eKx6KaWJ+G0tC7uSkvPFMpXsXt0GgDA0BjStplx+Jo86CMDkQxeXg0zkV9LjstCm8QUwLvV0ubYQgacNZY3kn03/8z0DBfqe/GgkrEC/MGgpB+R35CF/1BTdCfg687PnfeF9TnYQgaUiCF0PUktDQC4qnU4q3kc0QybiE8yGGIes08RJvYbqiR0WHGXBHuDYZVRTI2UJiHulhDJNHVWEcu/KOrVhEZI8zGRC023S1DD/EDcLYHJ/ITDL3gccRffXrXozv07fSwwmiQ0OxI6+IoPTXwIgiAIoiPBGICjeZy9Y0986FYXQRAEQRAnDLTiQxAEQRAdCGYwsKO41dXRXW5o4kMQRLuw5bL7xHbZX54AANgCstBm2OskoUlRYlY9KWH53ESyAa0RCOfw945ay5tFYoBnB9fiJFwyfJ1Nv5gY4NpjnkSG0GxkbLFENrmrGxAu5jqZaKMK2ZS2RGIyPNsMxN3WYrmvP6/n2WCDs5r/w7CFrH8cgSJZxO+oY6JPkSxJ5NuK9IrA8wV/42hgQscTzpOE3sfuNxCVZaEFChYB2et5Y0yWEPPy/e4KwFGV9NuxdDaRLMDuk8w4DIRzeB9i6ZLwH7KFGJhketMEDBiqNfaxdAVqgA8EUyQkMt18nA0Drn08Dl+ZDCUsuo5QFz7+ukOBEuHtJvOhAVzLpAaS2iTufwTwXF28cXPcGgzL60mTYNjMHF4qEDNzhtnCTMRqqBIcDfzc8TRF6JbUcBO9VZaMaAbfr0TMn0n/JBlCv6M00V5JDCK/lxKz/IHiTkn4+8gJQI7zA2deMgsZkQD+hWMMM3B0t7o69uPsdKuLIAiCIIgTBlrxaQ1qato7AoL4SZPl54/8qEFrRUOO8atnIHXFRwkD8eQTN3bA1sQB2h6GyNDtiFoZthOyDCXUJEt3clMCbOYKhSdqXdo74iFo0eT5VEjmik80CKRHjJQHZiLmU2TpIRscZkZ2WxN3YlvI6pMasVZ8oiEJCbNdhy+C9DDvrD3CoJv9doSsFR9nxEBUk8XlqhYEMiLWio8txFccXBEmth1hhoS5wpHQAc3sqyNiwBHmDRkKRNwAEDNXNDSz7eSKh84kOGP8g2CKBDXOg5QMA7JZXwnKYvUEAGx+XkYOWis+7iYrQlICUM2nvewhQDNXWZxRHXKcIR7hSzWyzlIyzifHXzckxBTeD1uTPjAZsEfN1T6bIj5vJlu/U1FNRsxc7Uuu9CSzvkOCyAavNDWpNoA4ks7UTKwEJiQJUvIza/J7BwnIiAZxrKFbXc1DE5/WoG/f9o6AIH7SrGnvAA7EusMst7hNo/hpcFx+gCcwdKurWWjic4QkZ8S+do6DIAiCOP5J/q84FqspCcSPyrg5gfihC/2EoYnPEeL3+wEAJe0cB0EQBPHTwe/3w+v1tknbmqahoKAAKyvfO+q2CgoKoGlHnuj0eIaysx8hhmFg7969SE9PhyRJh67QAfD5fCgpKcGuXbs6ZMbeg3Gi9hs4cftO/T6x+g20fd8ZY/D7/SgqKoIst91zRZFIBLFY7NAFD4GmaXA4HK0Q0fEHrfgcIbIso7i4uL3DaBc8Hs8J96UInLj9Bk7cvlO/Tzzasu9ttdLTFIfD0WEnLK0FPc5OEARBEMQJA018CIIgCII4YaCJD3HY2O123H///bDb7e0dyjHlRO03cOL2nfp9YvUbOLH7fqJB4maCIAiCIE4YaMWHIAiCIIgTBpr4EARBEARxwkATH4IgCIIgThho4kMQBEEQxAkDTXwIwZo1azBmzBhkZGQgOzsbv/3tbxEIBMTx2tpanHvuuSgqKoLdbkdJSQluueUW+HzNZyyLRqO49dZbkZOTA7fbjV/84hfYvXt3W3fnsDlUv//73//iyiuvRElJCZxOJ/r06YMnn3zykO1WVlbi6quvRkFBAdxuN0499VT87W9/a8uutJi26jsAfPbZZzjnnHPgdruRkZGBESNGIBwOH7riMaAt+w1wl97x48dDkiT84x//aIMeHDlt0fe6ujrceuut6NWrF1wuFzp37ozbbrsNjY2Nbd2dw6atPvPj/fuN2B+a+BAAgL1792L06NHo3r07vvjiCyxZsgTr16/HpEmTRBlZljFhwgS8/fbb+P777zF//nwsW7YMN954Y7NtT548GYsXL8bChQuxcuVKBAIBnH/++dB1vY17dWgOp9/l5eXIzc3Fa6+9hvXr1+Pee+/FtGnT8PTTTzfb9tVXX41Nmzbh7bffxrp163DxxRfj8ssvx9dff93GvTo82rLvn332Gc4991yMHTsWX375JVavXo1bbrmlTa36D5e27HeSuXPnHpepbNqq73v37sXevXsxa9YsrFu3DvPnz8eSJUtw3XXXHYNeHZq2/MyP5+834iAwgmCMPf/88ywvL4/pui72ff311wwA27x580HrPfnkk6y4uPigxxsaGpjNZmMLFy4U+/bs2cNkWWZLlixpneCPgiPt90033cRGjhzZbNtut5u98sorKfuysrLYX//616MLupVoy74PGTKE3Xfffa0Wa2vSlv1mjLG1a9ey4uJiVlFRwQCwxYsXt0bYrUJb970pb775JtM0jcXj8SOOt7Voq34f799vxIFp/8sv4rggGo1C07SUK3Kn0wkAWLly5QHr7N27F2+99RaGDx9+0HbLy8sRj8cxduxYsa+oqAj9+/fHqlWrWin6I+dI+g0AjY2NyMrKarbtM888E4sWLUJdXR0Mw8DChQsRjUYxYsSIVon9aGmrvldVVeGLL75AXl4ehg0bhvz8fAwfPrzZNo8lbfmZh0IhXHnllXj66adRUFDQOgG3Im3Z9wPV8Xg8UNX2TwnZVv0+3r/fiANDEx8CAHDOOeegsrISjz/+OGKxGOrr63HPPfcAACoqKlLKXnnllXC5XOjUqRM8Hg/++te/HrTdyspKaJqGzMzMlP35+fmorKxs/Y60kJb0O8lnn32GN998EzfccEOzbS9atAiJRALZ2dmw2+244YYbsHjxYnTr1q3V+3EktFXft27dCgCYPn06rr/+eixZsgSnnnoqRo0ahc2bN7d+R1pIW37md9xxB4YNG4YJEya0etytQVv2vSm1tbV48MEHW1SnLWmrfh/v32/EgaGJTwdn+vTpkCSp2ddXX32Ffv36YcGCBXjiiSfgcrlQUFCArl27Ij8/H4qipLQ5Z84crFmzBv/4xz/www8/YMqUKS2OizHWphqItug3AKxfvx4TJkzAH//4R4wZM6bZGO677z7U19dj2bJl+OqrrzBlyhRceumlWLduXVt1G0D7990wDADADTfcgGuvvRYDBw7EnDlz0KtXL7z00ksdtt9vv/02PvroI8ydO7fN+ngw2rvvTfH5fDjvvPPQt29f3H///a3d1RSOp343pa2/34ijg1JWdHBqampQU1PTbJmysjI4HA7xft++fXC73ZAkCR6PBwsXLsSll156wLorV67EWWedhb1796KwsHC/4x999BFGjRqFurq6lKuik08+GRdeeCEeeOCBI+xZ87RFvzds2ICRI0fiN7/5DR5++OFm2/7hhx/QvXt3fPvtt+jXr5/YnxRYPvfcc0fYs0PT3n3ftm0bunbtildffRW/+tWvxP7LL78cqqri9ddfP8KeNU9793vy5Mn485//nHI7Rdd1yLKMs846C8uXLz+yjh0G7d33JH6/H+PGjYPL5cK//vWvlPO1Be3d7/b6fiOOkvaVGBHHMy+++CJzuVysvr7+oGU++eQTBoBt27btgMeT4r9FixaJfXv37j2uxX8H6ve3337L8vLy2O9+97vDauObb75hANiGDRtS9o8dO5Zdf/31rRluq9IafTcMgxUVFe0nbj7llFPYtGnTWjPcVqM1+l1RUcHWrVuX8gLAnnzySbZ169Y2ivzoaY2+M8ZYY2MjO/3009nw4cNZMBhsg0hbl9bo90/x+41gjCY+hOCpp55i5eXlbNOmTezpp59mTqeTPfnkk+L4u+++y1566SW2bt06tm3bNvbuu++yfv36sTPOOEOU2b17N+vVqxf74osvxL4bb7yRFRcXs2XLlrE1a9awc845h5188skskUgc0/4djEP1+9tvv2W5ubnsqquuYhUVFeJVVVUlyvy437FYjHXv3p2dddZZ7IsvvmBbtmxhs2bNYpIksXffffeY9/FgtEXfGWNszpw5zOPxsP/7v/9jmzdvZvfddx9zOBxsy5Ytx7R/B6Ot+v1jcJw91cVY2/Td5/OxIUOGsAEDBrAtW7ak1OvIf+eMHf/fb8T+0MSHEFx99dUsKyuLaZrGTjrppP0exf7oo4/Y0KFDmdfrZQ6Hg/Xo0YPdfffdKVdM27ZtYwDYxx9/LPaFw2F2yy23sKysLOZ0Otn555/Pdu7ceYx6dWgO1e/777+fAdjvVVpaKsocqN/ff/89u/jii1leXh5zuVwHbLu9aau+M8bYzJkzWXFxMXO5XGzo0KHsP//5zzHo0eHRlv1uyvE48WmLvn/88ccHrNPcavCxpq0+8+P9+43YH9L4EARBEARxwkBPdREEQRAEccJAEx+CIAiCIE4YaOJDEARBEMQJA018CIIgCII4YaCJD0EQBEEQJww08SEIgiAI4oSBJj4EQRAEQZww0MSHOKEZMWIEJk+e3KHOO2nSJFx44YVH1UZZWZlI8tjQ0HDQcvPnz0dGRsZRnYs4OJMmTRKfwz/+8Y/2DocgOgQ08SGIduCtt97Cgw8+KN6XlZW1S1bv5vjTn/6EiooKeL3e9g6lw7N8+fIDTjKffPJJVFRUtE9QBNFBUds7AII4EcnKymrvEA5Jeno6CgoK2jsMAEA8HofNZmvvMI45Xq+XJp4E0crQig9BNKG+vh4TJ05EZmYmXC4Xxo8fj82bN4vjyVs7H3zwAfr06YO0tDSce+65KVfliUQCt912GzIyMpCdnY27774b11xzTcrtp6a3ukaMGIEdO3bgjjvuELc1AGD69Ok45ZRTUuKbO3cuysrKxHtd1zFlyhRxrrvuugs/zkLDGMNjjz2Grl27wul04uSTT8bf/va3Ixqf+fPno3PnznC5XLjoootQW1u7X5l33nkHgwYNgsPhQNeuXfHAAw8gkUiI49999x3OPPNMOBwO9O3bF8uWLUu5lbN9+3ZIkoQ333wTI0aMgMPhwGuvvQYAePnll9GnTx84HA707t0bzzzzTMq59+zZg8svvxyZmZnIzs7GhAkTsH37dnF8+fLl+NnPfga3242MjAycccYZ2LFjx2H1/VD9mj17NgYMGAC3242SkhLcdNNNCAQC4viOHTtwwQUXIDMzE263G/369cN7772H7du3Y+TIkQCAzMxMSJKESZMmHVZMBEG0HJr4EEQTJk2ahK+++gpvv/02PvvsMzDG8POf/xzxeFyUCYVCmDVrFl599VV88skn2LlzJ6ZOnSqOP/roo3j99dfx8ssv49NPP4XP52tWn/HWW2+huLhY3Fpqya2NJ554Ai+99BJefPFFrFy5EnV1dVi8eHFKmfvuuw8vv/wynn32Waxfvx533HEHfvWrX2HFihWHPzAAvvjiC/z617/GTTfdhLVr12LkyJF46KGHUsp88MEH+NWvfoXbbrsNGzZswPPPP4/58+fj4YcfBgAYhoELL7wQLpcLX3zxBebNm4d77733gOe7++67cdttt2Hjxo0YN24cXnjhBdx77714+OGHsXHjRsyYMQN/+MMfsGDBAgD8cxk5ciTS0tLwySefYOXKlWJiGovFkEgkcOGFF2L48OH45ptv8Nlnn+G3v/2tmGg2x6H6BQCyLOPPf/4zvv32WyxYsAAfffQR7rrrLnH85ptvRjQaxSeffIJ169bh0UcfRVpaGkpKSvD3v/8dALBp0yZUVFTgySefbNFnQxBEC2jXFKkE0c4MHz6c3X777Ywxnk0dAPv000/F8ZqaGuZ0Otmbb77JGGPs5ZdfZgDYli1bRJm//OUvLD8/X7zPz89njz/+uHifSCRY586d2YQJEw54XsYYKy0tZXPmzEmJ7f7772cnn3xyyr45c+akZIsuLCxkjzzyiHgfj8dZcXGxOFcgEGAOh4OtWrUqpZ3rrruOXXnllQcdlwPFc+WVV7Jzzz03Zd/ll1/OvF6veH/WWWexGTNmpJR59dVXWWFhIWOMsffff5+pqsoqKirE8aVLl6ZkMU9mwJ47d25KOyUlJeyNN95I2ffggw+yoUOHMsYYe/HFF1mvXr2YYRjieDQaZU6nk33wwQestraWAWDLly8/aL8PxqH6dSDefPNNlp2dLd4PGDCATZ8+/YBlk9nN6+vrD3gcx2GWd4L4qUIaH4Iw2bhxI1RVxZAhQ8S+7Oxs9OrVCxs3bhT7XC4XunXrJt4XFhaiqqoKANDY2Ih9+/bhZz/7mTiuKAoGDRoEwzBaNd7GxkZUVFRg6NChYp+qqhg8eLC43bVhwwZEIhGMGTMmpW4sFsPAgQNbdL6NGzfioosuStk3dOhQLFmyRLwvLy/H6tWrU1ZCdF1HJBJBKBTCpk2bUFJSkqIdajpWTRk8eLDYrq6uxq5du3Ddddfh+uuvF/sTiYTQwJSXl2PLli1IT09PaScSieCHH37A2LFjMWnSJIwbNw5jxozB6NGjcdlll6GwsPCQfT9Uv1wuFz7++GPMmDEDGzZsgM/nQyKRQCQSQTAYhNvtxm233Yb/+Z//wYcffojRo0fjkksuwUknnXTIcxME0brQxIcgTNiPtDFN9ze9HfJjka0kSfvV/fHtk4O13RyyLO9Xr+ktt8MhOdl699130alTp5Rjdru9RW0dTh8Mw8ADDzyAiy++eL9jDodjv7FsDrfbndIuALzwwgspE1OATyyTZQYNGoTXX399v7Zyc3MBcI3QbbfdhiVLlmDRokW47777sHTpUpx++ulH1a8dO3bg5z//OW688UY8+OCDyMrKwsqVK3HdddeJz+w3v/kNxo0bh3fffRcffvghZs6ciSeeeAK33nrrYY0HQRCtA018CMKkb9++SCQS+OKLLzBs2DAAQG1tLb7//nv06dPnsNrwer3Iz8/Hl19+ibPOOgsAXxn4+uuv9xMqN0XTNOi6nrIvNzcXlZWVKZOFtWvXppyrsLAQn3/+Oc4++2wAfAWkvLwcp556quiT3W7Hzp07MXz48MPqw8Ho27cvPv/885R9P35/6qmnYtOmTejevfsB2+jduzd27tyJffv2IT8/HwCwevXqQ547Pz8fnTp1wtatW3HVVVcdsMypp56KRYsWIS8vDx6P56BtDRw4EAMHDsS0adMwdOhQvPHGG4ec+ByqX1999RUSiQSeeOIJyDKXTr755pv7lSspKcGNN96IG2+8EdOmTcMLL7yAW2+9FZqmAcB+vwMEQbQ+NPEhCJMePXpgwoQJuP766/H8888jPT0dv//979GpUydMmDDhsNu59dZbMXPmTHTv3h29e/fGU089hfr6+mZXOsrKyvDJJ5/giiuugN1uR05ODkaMGIHq6mo89thj+H//7/9hyZIleP/991P+qd9+++145JFH0KNHD/Tp0wezZ89O8YJJT0/H1KlTcccdd8AwDJx55pnw+XxYtWoV0tLScM011xx2v2677TYMGzYMjz32GC688EJ8+OGHKbe5AOCPf/wjzj//fJSUlODSSy+FLMv45ptvsG7dOjz00EMYM2YMunXrhmuuuQaPPfYY/H6/EDcfaiVo+vTpuO222+DxeDB+/HhEo1F89dVXqK+vx5QpU3DVVVfh8ccfx4QJE/CnP/0JxcXF2LlzJ9566y387ne/Qzwex7x58/CLX/wCRUVF2LRpE77//ntMnDjxkH0/VL+6deuGRCKBp556ChdccAE+/fRTPPfccyltTJ48GePHj0fPnj1RX1+Pjz76SEyoS0tLIUkS/vWvf+HnP/85nE4n0tLSDvuzIQiiBbSbuoggjgN+LDKuq6tjV199NfN6vczpdLJx48ax77//Xhx/+eWXU8S8jDG2ePFi1vRPKR6Ps1tuuYV5PB6WmZnJ7r77bnbppZeyK6644qDn/eyzz9hJJ53E7HZ7SlvPPvssKykpYW63m02cOJE9/PDDKeLmeDzObr/9dubxeFhGRgabMmUKmzhxYoqQ2jAM9uSTT7JevXoxm83GcnNz2bhx49iKFSsOOi4HEjczxgXExcXFzOl0sgsuuIDNmjVrv/FYsmQJGzZsGHM6nczj8bCf/exnbN68eeL4xo0b2RlnnME0TWO9e/dm77zzDgPAlixZwhizxM1ff/31fud//fXX2SmnnMI0TWOZmZns7LPPZm+99ZY4XlFRwSZOnMhycnKY3W5nXbt2Zddffz1rbGxklZWV7MILL2SFhYVM0zRWWlrK/vjHPzJd1w86Di3p1+zZs1lhYaH4vXnllVdSBMu33HIL69atG7Pb7Sw3N5ddffXVrKamRtT/05/+xAoKCpgkSeyaa65JOTdI3EwQrYbE2BGIDwiCOGwMw0CfPn1w2WWXpbg1H8+UlZVh8uTJxySdx6effoozzzwTW7ZsSRGNExaSJGHx4sVHnYqEIAjy8SGIVmfHjh144YUX8P3332PdunX4n//5H2zbtg2//OUv2zu0FnH33XcjLS0NjY2Nrdru4sWLsXTpUmzfvh3Lli3Db3/7W5xxxhk06TkAN954I93yIohWhlZ8CKKV2bVrF6644gp8++23YIyhf//+eOSRR4QA+afAjh07xNNIXbt2FYLd1uCVV17Bgw8+iF27diEnJwejR4/GE088gezs7FY7R0vp16/fQR2cn3/++YMKqtuaqqoq+Hw+ANw2oemTbgRBHBk08SEI4oSn6UTvx+Tn5+/nDUQQxE8XmvgQBEEQBHHCQBofgiAIgiBOGGjiQxAEQRDECQNNfAiCIAiCOGGgiQ9BEARBECcMNPEhCIIgCOKEgSY+BEEQBEGcMNDEhyAIgiCIEwaa+BAEQRAEccLw/wEGKnbVTQeUzAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ax = plt.subplot()\n", "reprojected_raster.plot(ax=ax)\n", "ax.plot(\n", " *transform_bounds_box.exterior.xy,\n", " color=\"red\",\n", " linewidth=3,\n", ")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.10" } }, "nbformat": 4, "nbformat_minor": 4 } rioxarray-0.18.2/docs/getting_started/000077500000000000000000000000001474250745200177535ustar00rootroot00000000000000rioxarray-0.18.2/docs/getting_started/crs_management.ipynb000066400000000000000000001273731474250745200240160ustar00rootroot00000000000000{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Coordinate Reference System Management" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "xarray \"... is particularly tailored to working with netCDF files, which were the source of xarray’s data model...\" (http://xarray.pydata.org).\n", "\n", "For netCDF files, the GIS community uses CF conventions (http://cfconventions.org/).\n", "\n", "Additionally, GDAL also supports these attributes:\n", "\n", "- spatial_ref (Well Known Text)\n", "- GeoTransform (GeoTransform array)\n", "\n", "References:\n", "\n", "- Esri: https://pro.arcgis.com/en/pro-app/latest/help/data/multidimensional/spatial-reference-for-netcdf-data.htm\n", "- GDAL: https://gdal.org/drivers/raster/netcdf.html#georeference\n", "- pyproj: https://pyproj4.github.io/pyproj/stable/build_crs_cf.html\n", "\n", "Operations on xarray objects can cause data loss. Due to this, rioxarray writes and expects the spatial reference information to exist in the coordinates." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Accessing the CRS object" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If you have opened a dataset and the Coordinate Reference System (CRS) can be determined, you can access it via the `rio.crs` accessor.\n", "\n", "#### Search order for the CRS (DataArray and Dataset):\n", "1. Look in attributes (`attrs`) of your data array for the `grid_mapping` coordinate name.\n", " Inside the `grid_mapping` coordinate first look for `spatial_ref` then `crs_wkt` and lastly the CF grid mapping attributes.\n", " This is in line with the Climate and Forecast (CF) conventions for storing the CRS as well as GDAL netCDF conventions.\n", "2. Look in the `crs` attribute and load in the CRS from there. This is for backwards compatibility with `xarray.open_rasterio`, which is deprecated since version 0.20.0. We recommend using `rioxarray.open_rasterio` instead.\n", "\n", "The value for the `crs` is anything accepted by `rasterio.crs.CRS.from_user_input()`\n", "\n", "#### Search order for the CRS for Dataset:\n", "If the CRS is not found using the search methods above, it also searches the `data_vars` and uses the\n", "first valid CRS found.\n", "\n", "#### decode_coords=\"all\"\n", "\n", "If you use one of xarray's open methods such as ``xarray.open_dataset`` to load netCDF files\n", "with the default engine, it is recommended to use `decode_coords=\"all\"`. This will load the grid mapping\n", "variable into coordinates for compatibility with rioxarray.\n", "\n", "#### API Documentation\n", "\n", "- [rio.write_crs()](../rioxarray.rst#rioxarray.rioxarray.XRasterBase.write_crs)\n", "- [rio.crs](../rioxarray.rst#rioxarray.rioxarray.XRasterBase.crs)\n", "- [rio.estimate_utm_crs()](../rioxarray.rst#rioxarray.rioxarray.XRasterBase.estimate_utm_crs)\n", "- [rio.set_spatial_dims()](../rioxarray.rst#rioxarray.rioxarray.XRasterBase.set_spatial_dims)\n", "- [rio.write_coordinate_system()](../rioxarray.rst#rioxarray.rioxarray.XRasterBase.write_coordinate_system)\n", "- [rio.write_transform()](../rioxarray.rst#rioxarray.rioxarray.XRasterBase.write_transform)\n", "- [rio.transform()](../rioxarray.rst#rioxarray.rioxarray.XRasterBase.transform)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import rioxarray # activate the rio accessor\n", "import xarray\n", "from affine import Affine" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "rds = xarray.open_dataset(\"../../test/test_data/input/PLANET_SCOPE_3D.nc\", decode_coords=\"all\")" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'units': 'DN', 'nodata': 0.0}" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rds.green.attrs" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'spatial_ref' ()>\n",
       "array(0)\n",
       "Coordinates:\n",
       "    spatial_ref  int64 0\n",
       "Attributes:\n",
       "    spatial_ref:  PROJCS["WGS 84 / UTM zone 22S",GEOGCS["WGS 84",DATUM["WGS_1...
" ], "text/plain": [ "\n", "array(0)\n", "Coordinates:\n", " spatial_ref int64 0\n", "Attributes:\n", " spatial_ref: PROJCS[\"WGS 84 / UTM zone 22S\",GEOGCS[\"WGS 84\",DATUM[\"WGS_1..." ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rds.green.spatial_ref" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "CRS.from_epsg(32722)" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rds.green.rio.crs" ] }, { "cell_type": "markdown", "metadata": { "tags": [] }, "source": [ "## Setting the CRS\n", "\n", "Use the `rio.write_crs` method to set the CRS on your `xarray.Dataset` or `xarray.DataArray`.\n", "This modifies the `xarray.Dataset` or `xarray.DataArray` and sets the CRS in a CF compliant manner.\n", "\n", "- [rio.write_crs()](../rioxarray.rst#rioxarray.rioxarray.XRasterBase.write_crs)\n", "- [rio.crs](../rioxarray.rst#rioxarray.rioxarray.XRasterBase.crs)\n", "\n", "**Note:** It is recommended to use `rio.write_crs()` if you want the CRS to persist on the Dataset/DataArray and to write the CRS CF compliant metadata. Calling only `rio.set_crs()` CRS storage method is lossy and will not modify the Dataset/DataArray metadata." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'spatial_ref' ()>\n",
       "array(0)\n",
       "Coordinates:\n",
       "    spatial_ref  int64 0\n",
       "Attributes:\n",
       "    crs_wkt:                      GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["...\n",
       "    semi_major_axis:              6378137.0\n",
       "    semi_minor_axis:              6356752.314245179\n",
       "    inverse_flattening:           298.257223563\n",
       "    reference_ellipsoid_name:     WGS 84\n",
       "    longitude_of_prime_meridian:  0.0\n",
       "    prime_meridian_name:          Greenwich\n",
       "    geographic_crs_name:          WGS 84\n",
       "    grid_mapping_name:            latitude_longitude\n",
       "    spatial_ref:                  GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["...
" ], "text/plain": [ "\n", "array(0)\n", "Coordinates:\n", " spatial_ref int64 0\n", "Attributes:\n", " crs_wkt: GEOGCS[\"WGS 84\",DATUM[\"WGS_1984\",SPHEROID[\"...\n", " semi_major_axis: 6378137.0\n", " semi_minor_axis: 6356752.314245179\n", " inverse_flattening: 298.257223563\n", " reference_ellipsoid_name: WGS 84\n", " longitude_of_prime_meridian: 0.0\n", " prime_meridian_name: Greenwich\n", " geographic_crs_name: WGS 84\n", " grid_mapping_name: latitude_longitude\n", " spatial_ref: GEOGCS[\"WGS 84\",DATUM[\"WGS_1984\",SPHEROID[\"..." ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xda = xarray.DataArray(1)\n", "xda.rio.write_crs(4326, inplace=True)\n", "xda.spatial_ref" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "CRS.from_epsg(4326)" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xda.rio.crs" ] }, { "cell_type": "markdown", "metadata": { "tags": [] }, "source": [ "## Spatial dimensions\n", "\n", "Only 1-dimensional X and Y dimensions are supported.\n", "\n", "The expected X/Y dimension names searched for in the `coords` are:\n", "\n", "- x | y\n", "- longitude | latitude\n", "- Coordinates (`coords`) with the CF attributes in `attrs`:\n", " - axis: X | Y\n", " - standard_name: longitude | latitude or projection_x_coordinate | projection_y_coordinate" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Option 1: Write the CF attributes for non-standard dimension names\n", "\n", "If you don't want to rename your dimensions/coordinates,\n", "you can write the CF attributes so the coordinates can be found.\n", "\n", "- [rio.set_spatial_dims()](../rioxarray.rst#rioxarray.rioxarray.XRasterBase.set_spatial_dims)\n", "- [rio.write_coordinate_system()](../rioxarray.rst#rioxarray.rioxarray.XRasterBase.write_coordinate_system)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "rds.rio.write_crs(\n", " 4326\n", " inplace=True,\n", ").rio.set_spatial_dims(\n", " x_dim=\"lon\",\n", " y_dim=\"lat\"\n", " inplace=True,\n", ").rio.write_coordinate_system(inplace=True)" ] }, { "cell_type": "markdown", "metadata": { "tags": [] }, "source": [ "Option 2: Rename your coordinates\n", "\n", "[xarray.Dataset.rename](https://docs.xarray.dev/en/stable/generated/xarray.Dataset.rename.html)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "rds = rds.rename(lon=longitude, lat=latitude) " ] }, { "cell_type": "markdown", "metadata": { "tags": [] }, "source": [ "## Setting the transform of the dataset\n", "\n", "The transform can be calculated from the coordinates of your data.\n", "This method is useful if your netCDF file does not have coordinates present.\n", "Use the `rio.write_transform` method to set the transform on your `xarray.Dataset` or `xarray.DataArray`.\n", "\n", "- [rio.write_transform()](../rioxarray.rst#rioxarray.rioxarray.XRasterBase.write_transform)\n", "- [rio.transform()](../rioxarray.rst#rioxarray.rioxarray.XRasterBase.transform)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'466266.0 3.0 0.0 8084700.0 0.0 -3.0'" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "transform = Affine(3.0, 0.0, 466266.0, 0.0, -3.0, 8084700.0)\n", "xda.rio.write_transform(transform, inplace=True)\n", "xda.spatial_ref.GeoTransform" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Affine(3.0, 0.0, 466266.0,\n", " 0.0, -3.0, 8084700.0)" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xda.rio.transform()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.4" } }, "nbformat": 4, "nbformat_minor": 4 } rioxarray-0.18.2/docs/getting_started/getting_started.rst000066400000000000000000000046511474250745200237020ustar00rootroot00000000000000.. _getting_started: Getting Started ================ Welcome! This page aims to help you gain a foundational understanding of rioxarray. rio accessor ------------- rioxarray `extends xarray `__ with the `rio` accessor. The `rio` accessor is activated by importing rioxarray like so: .. code-block:: python import rioxarray You can learn how to `clip`, `merge`, and `reproject` rasters in the :ref:`usage_examples` section of the documentation. Need to export to a raster (GeoTiff)? There is an example for that as well. Reading Files ------------- xarray ~~~~~~~ Since `rioxarray` is an extension of `xarray`, you can load in files using the standard `xarray` open methods. If you use one of xarray's open methods such as ``xarray.open_dataset`` to load netCDF files with the default engine, it is recommended to use `decode_coords="all"`. This will load the grid mapping variable into coordinates for compatibility with rioxarray. .. code-block:: python import xarray xds = xarray.open_dataset("file.nc", decode_coords="all") rioxarray ~~~~~~~~~~ rioxarray 0.4+ enables passing `engine="rasterio"` to ``xarray.open_dataset`` and ``xarray.open_mfdataset`` for xarray 0.18+. This uses :func:`rioxarray.open_rasterio` as the backend and always returns an ``xarray.Dataset``. .. code-block:: python import xarray xds = xarray.open_dataset("my.tif", engine="rasterio") You can also use :func:`rioxarray.open_rasterio`. This objects returned depend on your input file type. .. code-block:: python import rioxarray xds = rioxarray.open_rasterio("my.tif") Why use :func:`rioxarray.open_rasterio` instead of `xarray.open_rasterio`? 1. It supports multidimensional datasets such as netCDF. 2. It stores the CRS as a WKT, which is the recommended format (`PROJ FAQ `__). 3. It loads in the CRS, transform, and nodata metadata in standard CF & GDAL locations. 4. It supports masking and scaling data with the `masked` and `mask_and_scale` kwargs. 5. It adds the coordinate axis CF metadata. 6. It loads raster metadata into the attributes. 7. `xarray.open_rasterio` is deprecated (since v0.20.0) Introductory Information -------------------------- .. toctree:: :maxdepth: 1 crs_management.ipynb nodata_management.ipynb manage_information_loss.ipynb rioxarray-0.18.2/docs/getting_started/manage_information_loss.ipynb000066400000000000000000000155221474250745200257200ustar00rootroot00000000000000{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Managing Information Loss with xarray operations\n", "\n", "Sometimes, you can lose important information from your dataset when performing operations.\n", "You will likely want to keep track of the attributes, `nodata`, and `CRS`.\n", "\n", "API Reference:\n", "\n", "- [rio.to_raster()](../rioxarray.rst#rioxarray.raster_dataset.RasterDataset.to_raster)\n", "- [rio.write_crs()](../rioxarray.rst#rioxarray.rioxarray.XRasterBase.write_crs)\n", "- [rio.write_transform()](../rioxarray.rst#rioxarray.rioxarray.XRasterBase.write_transform)\n", "- [rio.update_attrs()](../rioxarray.rst#rioxarray.rioxarray.XRasterBase.update_attrs)\n", "- [rio.update_encoding()](../rioxarray.rst#rioxarray.rioxarray.XRasterBase.update_encoding)\n", "- [rio.crs](../rioxarray.rst#rioxarray.rioxarray.XRasterBase.crs)\n", "- [rio.nodata](../rioxarray.rst#rioxarray.raster_array.RasterArray.nodata)\n", "- [rio.encoded_nodata](../rioxarray.rst#rioxarray.raster_array.RasterArray.encoded_nodata)\n", "- [rio.write_nodata](../rioxarray.rst#rioxarray.raster_array.RasterArray.write_nodata)\n", "- [rio.transform()](../rioxarray.rst#rioxarray.rioxarray.XRasterBase.transform)\n", "\n", "Note that `write_transform` is only needed if you are not saving the x,y coordinates. It is for\n", "GDAL to be able to read in the transform without needing the original coordinates and is useful\n", "if you read in the file with `parse_coordinates=False`." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import rioxarray\n", "import xarray" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "See docs for [rioxarray.open_rasterio](../rioxarray.rst#rioxarray-open-rasterio)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "rds = rioxarray.open_rasterio(\n", " \"../../test/test_data/input/PLANET_SCOPE_3D.nc\",\n", " variable=[\"green\"],\n", " mask_and_scale=True,\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice the original data:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "({'nodata': 0, 'units': ('DN', 'DN')},\n", " {'dtype': 'float64',\n", " 'grid_mapping': 'spatial_ref',\n", " 'scale_factor': 1.0,\n", " 'add_offset': 0.0,\n", " '_FillValue': nan,\n", " 'source': 'netcdf:../../test/test_data/input/PLANET_SCOPE_3D.nc:green'},\n", " CRS.from_epsg(32722),\n", " nan)" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rds.green.attrs, rds.green.encoding, rds.green.rio.crs, rds.green.rio.nodata" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice how information is lost in the operation:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "({}, {}, CRS.from_epsg(32722), None)" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "new_ds = rds.green + rds.green\n", "new_ds.attrs, new_ds.encoding, new_ds.rio.crs, new_ds.rio.nodata" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To preserve attributes, xarray has [set_options](http://xarray.pydata.org/en/stable/generated/xarray.set_options.html#xarray-set-options) with `keep_attrs=True`. However, it does not preserve the encoding." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "({'nodata': 0, 'units': ('DN', 'DN')}, {}, CRS.from_epsg(32722), 0.0)" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "with xarray.set_options(keep_attrs=True):\n", " new_ds = rds.green + rds.green\n", "new_ds.attrs, new_ds.encoding, new_ds.rio.crs, new_ds.rio.nodata" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Another solution is to save the original attributes and then copy them over\n", "once the operation is complete:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "({'nodata': 0, 'units': ('DN', 'DN')},\n", " {'grid_mapping': 'spatial_ref',\n", " 'dtype': 'float64',\n", " 'scale_factor': 1.0,\n", " 'add_offset': 0.0,\n", " '_FillValue': nan,\n", " 'source': 'netcdf:../../test/test_data/input/PLANET_SCOPE_3D.nc:green'},\n", " CRS.from_epsg(32722),\n", " nan)" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "new_ds = rds.green + rds.green\n", "new_ds.rio.write_crs(rds.green.rio.crs, inplace=True)\n", "new_ds.rio.update_attrs(rds.green.attrs, inplace=True)\n", "new_ds.rio.update_encoding(rds.green.encoding, inplace=True)\n", "new_ds.attrs, new_ds.encoding, new_ds.rio.crs, new_ds.rio.nodata" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "new_ds.rio.to_raster(\"combination_keep_attrs.tif\")" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{\"bounds\": [466266.0, 8084670.0, 466296.0, 8084700.0], \"colorinterp\": [\"gray\", \"undefined\"], \"count\": 2, \"crs\": \"EPSG:32722\", \"descriptions\": [\"green\", \"green\"], \"driver\": \"GTiff\", \"dtype\": \"float64\", \"height\": 10, \"indexes\": [1, 2], \"interleave\": \"pixel\", \"lnglat\": [-51.31732641226951, -17.322997474192466], \"mask_flags\": [[\"nodata\"], [\"nodata\"]], \"nodata\": NaN, \"res\": [3.0, 3.0], \"shape\": [10, 10], \"tiled\": false, \"transform\": [3.0, 0.0, 466266.0, 0.0, -3.0, 8084700.0, 0.0, 0.0, 1.0], \"units\": [null, null], \"width\": 10}\n" ] } ], "source": [ "!rio info combination_keep_attrs.tif" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" } }, "nbformat": 4, "nbformat_minor": 4 } rioxarray-0.18.2/docs/getting_started/nodata_management.ipynb000066400000000000000000000240171474250745200244640ustar00rootroot00000000000000{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Nodata Management" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If you have opened a dataset and the nodata value can be determined, you can access it via the `rio.nodata` or `rio.encoded_nodata` accessors.\n", "\n", "If your dataset's nodata value cannot be determined, you can use the `rio.write_nodata` method.\n", "\n", "### Search order for nodata (DataArray only):\n", "1. Check if DataArray values are masked. If they are masked, return `NaN`. If the DataArray is masked, the original nodata value can be retreived from `rio.encoded_nodata`.\n", "2. Look in attributes (`attrs`) of your data array for the `_FillValue` then `missing_value` then `fill_value` and finally `nodata`.\n", "3. Look in the `nodatavals` attribute. This is for backwards compatibility with `xarray.open_rasterio`. We recommend using `rioxarray.open_rasterio` instead.\n", "\n", "### API Documentation\n", "\n", "- [rio.write_nodata()](../rioxarray.rst#rioxarray.raster_array.RasterArray.write_nodata)\n", "- [rio.nodata](../rioxarray.rst#rioxarray.raster_array.RasterArray.nodata)\n", "- [rio.encoded_nodata](../rioxarray.rst#rioxarray.raster_array.RasterArray.encoded_nodata)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import rioxarray\n", "import xarray\n", "\n", "file_path = \"../../test/test_data/input/tmmx_20190121.nc\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example of loading unmaksed data\n", "\n", "In this case, the nodata value is in the attributes." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "xds = xarray.open_dataset(file_path, mask_and_scale=False) # performs mask_and_scale by default\n", "rds = rioxarray.open_rasterio(file_path)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "nodata:\n", "- xarray.open_dataset: 32767\n", "- rioxarray.open_rasterio: 32767\n", "\n", "encoded_nodata:\n", "- xarray.open_dataset: None\n", "- rioxarray.open_rasterio: None\n" ] } ], "source": [ "print(\"nodata:\")\n", "print(f\"- xarray.open_dataset: {xds.air_temperature.rio.nodata}\")\n", "print(f\"- rioxarray.open_rasterio: {rds.air_temperature.rio.nodata}\")\n", "print(\"\\nencoded_nodata:\")\n", "print(f\"- xarray.open_dataset: {xds.air_temperature.rio.encoded_nodata}\")\n", "print(f\"- rioxarray.open_rasterio: {rds.air_temperature.rio.encoded_nodata}\")" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "attributes:\n", "\n", "- xarray.open_dataset:\n", " {'_FillValue': 32767, 'units': 'K', 'description': 'Daily Maximum Temperature', 'long_name': 'tmmx', 'standard_name': 'tmmx', 'missing_value': 32767, 'dimensions': 'lon lat time', 'grid_mapping': 'crs', 'coordinate_system': 'WGS84,EPSG:4326', 'scale_factor': 0.1, 'add_offset': 220.0, '_Unsigned': 'true'}\n", "\n", "- rioxarray.open_rasterio:\n", " {'add_offset': 220.0, 'coordinates': 'day', 'coordinate_system': 'WGS84,EPSG:4326', 'description': 'Daily Maximum Temperature', 'dimensions': 'lon lat time', 'long_name': 'tmmx', 'missing_value': 32767, 'scale_factor': 0.1, 'standard_name': 'tmmx', 'units': 'K', '_FillValue': 32767.0, '_Unsigned': 'true'}\n" ] } ], "source": [ "print(\"attributes:\")\n", "print(f\"\\n- xarray.open_dataset:\\n {xds.air_temperature.attrs}\")\n", "print(f\"\\n- rioxarray.open_rasterio:\\n {rds.air_temperature.attrs}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example of data loaded in with mask_and_scale=True\n", "\n", "When the dataset is opened with `mask_and_scale=True` with `rioxarray.open_rasterio` or `xarray.open_dataset`, the\n", "nodata metadata is written to the encoding attribute. Then, when the dataset is written using\n", "`to_netcdf` or `rio.to_raster` the data is decoded and it writes the original nodata value to the raster.\n", "\n", "When this happens, `rio.nodata` returns `numpy.nan` and `rio.encoded_nodata` contains the original value." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/snowal/miniconda/envs/midas/lib/python3.10/site-packages/rioxarray/_io.py:618: SerializationWarning: variable 'air_temperature' has _Unsigned attribute but is not of integer type. Ignoring attribute.\n", " rioda = open_rasterio(\n" ] } ], "source": [ "xds = xarray.open_dataset(file_path) # performs mask_and_scale by default\n", "rds = rioxarray.open_rasterio(file_path, mask_and_scale=True)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "nodata:\n", "- xarray.open_dataset: nan\n", "- rioxarray.open_rasterio: nan\n", "\n", "encoded_nodata:\n", "- xarray.open_dataset: 32767.0\n", "- rioxarray.open_rasterio: 32767.0\n" ] } ], "source": [ "print(\"nodata:\")\n", "print(f\"- xarray.open_dataset: {xds.air_temperature.rio.nodata}\")\n", "print(f\"- rioxarray.open_rasterio: {rds.air_temperature.rio.nodata}\")\n", "print(\"\\nencoded_nodata:\")\n", "print(f\"- xarray.open_dataset: {xds.air_temperature.rio.encoded_nodata}\")\n", "print(f\"- rioxarray.open_rasterio: {rds.air_temperature.rio.encoded_nodata}\")" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "attributes:\n", "\n", "- xarray.open_dataset:\n", " {'units': 'K', 'description': 'Daily Maximum Temperature', 'long_name': 'tmmx', 'standard_name': 'tmmx', 'dimensions': 'lon lat time', 'grid_mapping': 'crs', 'coordinate_system': 'WGS84,EPSG:4326'}\n", "\n", "- rioxarray.open_rasterio:\n", " {'coordinates': 'day', 'coordinate_system': 'WGS84,EPSG:4326', 'description': 'Daily Maximum Temperature', 'dimensions': 'lon lat time', 'long_name': 'tmmx', 'standard_name': 'tmmx', 'units': 'K'}\n" ] } ], "source": [ "print(\"attributes:\")\n", "print(f\"\\n- xarray.open_dataset:\\n {xds.air_temperature.attrs}\")\n", "print(f\"\\n- rioxarray.open_rasterio:\\n {rds.air_temperature.attrs}\")" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "encoding:\n", "\n", "- xarray.open_dataset:\n", " {'zlib': True, 'shuffle': True, 'complevel': 5, 'fletcher32': False, 'contiguous': False, 'chunksizes': (585, 1386), 'source': '/home/snowal/scripts/rioxarray/test/test_data/input/tmmx_20190121.nc', 'original_shape': (585, 1386), 'dtype': dtype('uint16'), '_Unsigned': 'true', 'missing_value': 32767, '_FillValue': 32767, 'scale_factor': 0.1, 'add_offset': 220.0, 'coordinates': 'day'}\n", "\n", "- rioxarray.open_rasterio:\n", " {'_Unsigned': 'true', 'dtype': 'uint16', 'grid_mapping': 'crs', 'scale_factor': 0.1, 'add_offset': 220.0, '_FillValue': 32767.0, 'missing_value': 32767, 'source': 'netcdf:../../test/test_data/input/tmmx_20190121.nc:air_temperature', 'rasterio_dtype': 'uint16'}\n" ] } ], "source": [ "print(\"encoding:\")\n", "print(f\"\\n- xarray.open_dataset:\\n {xds.air_temperature.encoding}\")\n", "print(f\"\\n- rioxarray.open_rasterio:\\n {rds.air_temperature.encoding}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Manually masking data\n", "\n", "If you use `xarray.where` to mask you data, then you need to ensure that the\n", "attributes stored on the DataArray reflect the correct values.\n", "[rio.write_nodata()](../rioxarray.rst#rioxarray.raster_array.RasterArray.write_nodata) can help ensure that the nodata attributes are written correctly." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "nodata: 32767.0\n", "encoded_nodata: None\n" ] } ], "source": [ "xds = xarray.open_dataset(file_path, mask_and_scale=False) # performs mask_and_scale by default\n", "raster = xds.air_temperature \n", "raster = raster.where(raster != raster.rio.nodata)\n", "# nodata does not reflect the data has been masked\n", "print(f\"nodata: {raster.rio.nodata}\")\n", "print(f\"encoded_nodata: {raster.rio.encoded_nodata}\")" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "nodata: nan\n", "encoded_nodata: 32767.0\n" ] } ], "source": [ "# update nodata value to show the data has been masked\n", "raster.rio.write_nodata(raster.rio.nodata, encoded=True, inplace=True)\n", "print(f\"nodata: {raster.rio.nodata}\")\n", "print(f\"encoded_nodata: {raster.rio.encoded_nodata}\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.4" } }, "nbformat": 4, "nbformat_minor": 4 } rioxarray-0.18.2/docs/history.rst000066400000000000000000000342141474250745200170230ustar00rootroot00000000000000History ======= 0.18.2 ------ - BUG: Fix reproject with geoloc arrays not named xc|yc (#840) 0.18.1 ------- - DEP: Pin rasterio>=1.3.7 (pull #826) - BUG:merge: Ensure dims and coords match input array (pull #828) 0.18.0 ------ - ENH:reproject: Support geolocation arrays (pull #822) - REF: Add positional arguments requirements (pull #806) - BUG:merge: Fix merging masked and scaled data (issue #814) - BUG: Fix chunk arguments for normalize_chunks (pull #820) - BUG: Squeeze when using interpolate_na with extra dim (pull #810) * BUG: Properly handle encoding/decoding scales and offsets by (pull #821) - DOC: Clearer coordinate docstring for `open_rasterio` (pull #811) 0.17.0 ------ - REF:reproject: Make NaN default float nodata & update integer defaults 0.16.0 ------ - ENH: Add `allow_one_dimensional_raster` option to `rio.clip_box` (issue #708) - MNT: recommend `rio.write_crs`` & deprecate `rio.set_crs` (pull #793) 0.15.7 ------ - BUG: Remove grid_mapping from attrs when writing (pull #783) - BUG: Ensure gcp_crs exists before writing in `rio.write_gcps` (issue #646) 0.15.6 ------ - BUG: Raise OverflowError when nodata data type conversion is unsafe (pull #782) - BUG: Support writing GCPs to netCDF (issue #778) - BUG: Fix reading dask chunks when band_as_variable=True (issue #761) - REF:merge: Use merge path & rio.to_raster (pull #781) 0.15.5 ------ - BUG:reproject: Allow rotated rasters (issue #746) 0.15.4 ------ - BUG:reproject_match: Remove setting spatial dims on output resampled dataset (issue #768) 0.15.3 ------ - BUG:merge: Use `rasterio.io.MemoryFile`` for reading (pull #765) - BUG:merge: Add simple defaults for unused payload/colormap (pull #766) 0.15.2 ------ - BUG: Add decode_coords kwarg to backend entrypoint (pull #763) - BUG: Avoid DeprecationWarning: xr.Dataset.drop() -> xr.Dataset.drop_vars() (pull #740) 0.15.1 ------- - DEP: Support Python 3.10-3.12 (pull #723) - DEP: rasterio 1.3+, pyproj 3.3+ (pull #725, #727) - DEP: xarray 2022.3.0+ & numpy 1.23+ (pull #728) - ENH: Robust handling of GCPs without `z` component (issue #731) 0.15.0 ------ - BUG: Fix setting spatial dims internally during propagation (pull #682) - ENH: Pass on on-disk chunk sizes as preferred chunk sizes to the xarray backend (pull #678) - MNT: add __all__ to top level module (issue #680) 0.14.1 ------ - BUG: Fix :mod:`rioxarray.merge` CRS check (pull #655) - BUG: Remove tags with metadata added by rasterio in :func:`rioxarray.open_rasterio` (issue #666) 0.14.0 ------ - DEP: Drop Python 3.8 support (issue #582) - DEP: pin rasterio>=1.2 (pull #642) - BUG: Fix WarpedVRT in :func:`rioxarray.open_rasterio` when band_as_variable=True (issue #644) - BUG: Fix usage of `encode_cf_variable` in `rio.to_raster` (pull #652) 0.13.4 ------ - DEP: pin numpy>=1.21 (pull #636) 0.13.3 ------ - BUG: Handle data type error in `rio.reproject` (issue #618) 0.13.2 ------ - BUG:dataset: Fix writing tags for bands (issue #615) - BUG:dataset: prevent overwriting long_name attribute (pull #616) 0.13.1 ------ - BUG: Fix closing files manually (pull #607) - BUG: Add GDAL 3.6 driver auto-select fix (pull #606) 0.13.0 ------- - ENH: Added band_as_variable option to open_rasterio (pull #600) 0.12.4 ------ - ENH: Added band_as_variable option to open_rasterio (issue #296) - BUG: Pass warp_extras dictionary to raster.vrt.WarpedVRT (issue #598) 0.12.3 ------ - BUG: Handle CF CRS export errors in `rio.write_crs` (discussion #591) 0.12.2 ------ - BUG: Fix `mask_and_scale` data load after `.sel` (issue #580) 0.12.1 ------ - BUG: Handle `_Unsigned` and load in all attributes (pull #575) 0.12.0 ------- - ENH: Allow passing in bounds of different CRS in `rio.clip_box` (pull #563) 0.11.2 ------ - BUG: Fix reading file handle with dask (issue #550) - BUG: Fix reading cint16 files with dask (issue #542) - BUG: Ensure `rio.bounds` ordered correctly (issue #545) - BUG: Allow reading from `io.BytesIO` (issue #549) 0.11.1 ------ - BUG: Fix WarpedVRT param cache in :func:`rioxarray.open_rasterio` (issue #515) - BUG: Always generate coordinates in `rio.reproject` when GCPS|RPCS present (issue #517) 0.11.0 ------ - TYPE: Add more type hints (issue #373) - ENH: Add additional GDAL information to :func:`rioxarray.show_versions` (pull #513) 0.10.3 ------ - BUG: Remove xarray crs attribute in rio.write_crs (issue #488) 0.10.2 ------- - BUG: Lazy load colormap through _manager.acquire() in merge (issue #479) 0.10.1 ------- - DEP: pin rasterio>=1.1.1 (pull #471) - BUG: Corrected bounds and transform args to float (pull #475) 0.10.0 ------- - DEP: Drop Python 3.7 support (issue #451) - ENH: Add GCPs reading and writing (issue #376) 0.9.1 ------ - BUG: Force coordinates to be exactly the same in `rio.reproject_match` (issue #298) 0.9.0 ------ - ENH: Allow additional kwargs to pass from reproject_match() -> reproject() (pull #436) 0.8.0 ------ - DEP: Make scipy an optional dependency (issue #413) - BUG: Return cached transform when axis data missing (pull #419) - BUG: Fix negative indexes in `rio.isel_window` (issue #421) 0.7.1 ------ - BUG: Handle transforms with rotation (pull #401) 0.7.0 ------ - BUG: `rio.clip` and `rio.clip_box` skip non-geospatial arrays in datasets when clipping (pull #392) - ENH: Add option for users to skip variables without spatial dimensions (pull #395) 0.6.1 ------ - BUG: Fix indexing error when `mask_and_scale=True` was combined with band dim chunking (issue #387, pull #388) 0.6.0 ------ - ENH: Add pad option to `rio.isel_window` (issue #381; pull #383) - BUG: Fix negative start in row or col window offsets in `rio.isel_window` (issue #381; pull #383) 0.5.0 ------ - ENH: Allow passing in kwargs to `rio.reproject` (issue #369; pull #370) - ENH: Allow nodata override and provide default nodata based on dtype in `rio.reproject` (pull #370) - ENH: Add support for passing in gcps to rio.reproject (issue #339; pull #370) - BUG: Remove duplicate acquire in open_rasterio (pull #364) - BUG: Fix exporting dataset to raster with non-standard dimensions (issue #372) 0.4.3 ------ - BUG: support GDAL CInt16, rasterio complex_int16 (pull #353) - TST: Fix merge tests for rasterio 1.2.5+ (issue #358) 0.4.2 ------ - BUG: Improve WarpedVRT support for gcps (pull #351) 0.4.1 ------ - BUG: pass kwargs with lock=False (issue #344) - BUG: Close file handle with lock=False (pull #346) 0.4.0 ------ - DEP: Python 3.7+ (issue #215) - DEP: xarray 0.17+ (needed for issue #282) - REF: Store `grid_mapping` in `encoding` instead of `attrs` (issue #282) - ENH: enable `engine="rasterio"` via xarray backend API (issue #197 pull #281) - ENH: Generate 2D coordinates for non-rectilinear sources (issue #290) - ENH: Add `encoded` kwarg to `rio.write_nodata` (discussions #313) - ENH: Added `decode_times` and `decode_timedelta` kwargs to `rioxarray.open_rasterio` (issue #316) - BUG: Use float32 for smaller dtypes when masking (discussions #302) - BUG: Return correct transform in `rio.transform` with non-rectilinear transform (discussions #280) - BUG: Update to handle WindowError in rasterio 1.2.2 (issue #286) - BUG: Don't generate x,y coords in `rio` methods if not previously there (pull #294) - BUG: Preserve original data type for writing to disk (issue #305) - BUG: handle lock=True in open_rasterio (issue #273) 0.3.1 ------ - BUG: Compatibility changes with xarray 0.17 (issue #254) - BUG: Raise informative error in interpolate_na if missing nodata (#250) 0.3.0 ------ - REF: Reduce pyproj.CRS internal usage for speed (issue #241) - ENH: Add `rioxarray.set_options` to disable exporting CRS CF grid mapping (issue #241) - BUG: Handle merging 2D DataArray (discussion #244) 0.2.0 ------ - ENH: Added `rio.estimate_utm_crs` (issue #181) - ENH: Add support for merging datasets with different CRS (issue #173) - ENH: Add support for using dask in `rio.to_raster` (issue #9, pull #219, pull #223) - ENH: Use the list version of `transform_geom` with rasterio 1.2+ (issue #180) - ENH: Support driver autodetection with rasterio 1.2+ (issue #180) - ENH: Allow multithreaded, lockless reads with `rioxarray.open_rasterio` (issue #214) - ENH: Add support to clip from disk (issue #115) - BUG: Allow `rio.write_crs` when spatial dimensions not found (pull #186) - BUG: Update to support rasterio 1.2+ merge (issue #180) 0.1.1 ------ - BUG: Check all CRS are the same in the dataset in crs() method 0.1.0 ------ - BUG: Ensure transform correct in rio.clip without coords (pull #165) - BUG: Ensure the nodata value matches the dtype (pull #166) - Raise deprecation exception in add_spatial_ref and add_xy_grid_meta (pull #168) 0.0.31 ------ - Deprecate add_spatial_ref and fix warning for add_xy_grid_meta (pull #158) 0.0.30 ------ - BUG: Fix assigning fill value in `rio.pad_box` (pull #140) - ENH: Add `rio.write_transform` to store cache in GDAL location (issue #129 & #139) - ENH: Use rasterio windows for `rio.clip_box` (issue #142) - BUG: Add support for negative indexes in rio.isel_window (pull #145) - BUG: Write transform based on window in rio.isel_window (pull #145) - ENH: Add `rio.count`, `rio.slice_xy()`, `rio.bounds()`, `rio.resolution()`, `rio.transform_bounds()` to Dataset level - ENH: Add `rio.write_coordinate_system()` (issue #147) - ENH: Search CF coordinate metadata to find coordinates (issue #147) - ENH: Default `rio.clip` to assume geometry has CRS of dataset (pull #150) - ENH: Add `rio.grid_mapping` and `rio.write_grid_mapping` & preserve original grid mapping (pull #151) 0.0.29 ------- - BUG: Remove unnecessary memory copies in reproject method (pull #136) - BUG: Fix order of axis in `rio.isel_window` (pull #133) - BUG: Allow clipping with disjoint geometries (issue #132) - BUG: Remove automatically setting tiled=True for windowed writing (pull #134) - ENH: Add `rio.pad_box` (pull #138) 0.0.28 ------- - rio.reproject: change input kwarg dst_affine_width_height -> shape & transform (#125) - ENH: Use pyproj.CRS to read/write CF parameters (issue #124) 0.0.27 ------ - ENH: Added optional `shape` argument to `rio.reproject` (pull #116) - Fix ``RasterioDeprecationWarning`` (pull #117) - BUG: Make rio.shape order same as rasterio dataset shape (height, width) (pull #121) - Fix open_rasterio() for WarpedVRT with specified src_crs (pydata/xarray/pull/4104 & pull #120) - BUG: Use internal reprojection as engine for resampling window in merge (pull #123) 0.0.26 ------ - ENH: Added :func:`rioxarray.show_versions` (issue #106) 0.0.25 ------ - BUG: Use recalc=True when using transform internally & ensure stable when coordinates unavailable. (issue #97) 0.0.24 ------ - ENH: Add variable names to error messages for clarity (pull #99) - BUG: Use assign_coords in _decode_datetime_cf (issue #101) 0.0.23 ------ - BUG: Fix 'rio.set_spatial_dims' so information saved with 'rio' accesors (issue #94) - ENH: Make 'rio.isel_window' available for datasets (pull #95) 0.0.22 ------- - ENH: Use pyproj.CRS internally to manage GDAL 2/3 transition (issue #92) - ENH: Add MissingCRS exceptions for 'rio.clip' and 'rio.reproject' (pull #93) 0.0.21 ------- - ENH: Added to_raster method for Datasets (issue #76) 0.0.20 ------ - BUG: ensure band_key is list when iterating over bands for mask and scale (pull #87) 0.0.19 ------- - Add support for writing scales & offsets to raster (pull #79) - Don't write standard raster metadata to raster tags (issue #78) 0.0.18 ------ - Fixed windowed writing to require tiled output raster (pull #66) - Write data array attributes using `rio.to_raster` (issue #64) - Write variable name to descriptions if possible in `rio.to_raster` (issue #64) - Add `mask_and_scale` option to `rioxarray.open_rasterio()` (issue #67) - Hide NotGeoreferencedWarning warning when subdatasets are present using open_rasterio (issue #65) - Add support for loading in 1D variables in `xarray.open_rasterio()` (issue #43) - Load in netCDF metadata on the variable level (pull #73) - Add rioxarray.merge module (issue #46) 0.0.17 ------ - Renamed `descriptions` to `long_name` when opening with `open_rasterio()` (pull #63) - Make `units` & `long_name` scalar if they exist in rasterio attributes (pull #63) 0.0.16 ------ - Add support for netcdf/hdf groups with different shapes (pull #62) 0.0.15 ------ - Added `variable` and `group` kwargs to `rioxarray.open_rasterio()` to allow filtering of subdatasets (pull #57) - Added `default_name` kwarg to `rioxarray.open_rasterio()` for backup when the original does not exist (pull #59) - Added `recalc_transform` kwarg to `rio.to_raster()` (pull #56) 0.0.14 ------ - Added `windowed` kwarg to `rio.to_raster()` to write to raster using windowed writing (pull #54) - Added add `rio.isel_window()` to allow selection using a rasterio.windows.Window (pull #54) 0.0.13 ------ - Improve CRS searching for xarray.Dataset & use default grid mapping name (pull #51) 0.0.12 ------ - Use `xarray.open_rasterio()` for `rioxarray.open_rasterio()` with xarray<0.12.3 (pull #40) 0.0.11 ------ - Added `open_kwargs` to pass into `rasterio.open()` when using `rioxarray.open_rasterio()` (pull #48) - Added example opening Cloud Optimized GeoTiff (issue #45) 0.0.10 ------ - Add support for opening netcdf/hdf files with `rioxarray.open_rasterio` (issue #32) - Added support for custom CRS with wkt attribute for datacube CRS support (issue #35) - Added `rio.set_nodata()`, `rio.write_nodata()`, `rio.set_attrs()`, `rio.update_attrs()` (issue #37) 0.0.9 ----- - Add `rioxarray.open_rasterio` (issue #7) 0.0.8 ----- - Fix setting nodata in _add_attrs_proj (pull #30) 0.0.7 ----- - Add option to do an inverted clip (pull #29) 0.0.6 ----- - Add support for scalar coordinates in reproject (issue #15) - Updated writing encoding for FutureWarning (issue #18) - Use input raster profile for defaults to write output raster profile if opened with `xarray.open_rasterio` (issue #19) - Preserve None nodata if opened with `xarray.open_rasterio` (issue #20) - Added `drop` argument for `clip()` (issue #25) - Fix order of `CRS` for reprojecting geometries in `clip()` (pull #24) - Added `set_spatial_dims()` method for datasets when dimensions not found (issue #27) 0.0.5 ----- - Find nodata and nodatavals in 'nodata' property (pull #12) - Added 'encoded_nodata' property to DataArray (pull #12) - Write the raster with encoded_nodata instead of NaN for nodata (pull #12) - Added methods to set and write CRS (issue #5) 0.0.4 ------ - Added ability to export data array to raster (pull #8) rioxarray-0.18.2/docs/index.rst000066400000000000000000000006161474250745200164300ustar00rootroot00000000000000Welcome to rioxarray's documentation! ====================================== GitHub: http://github.com/corteva/rioxarray .. toctree:: :maxdepth: 1 :caption: Contents: readme installation getting_started/getting_started examples/examples modules contributing authors history Indices and tables ================== * :ref:`genindex` * :ref:`modindex` * :ref:`search` rioxarray-0.18.2/docs/installation.rst000066400000000000000000000031311474250745200200150ustar00rootroot00000000000000.. highlight:: shell ============ Installation ============ Stable release -------------- 1. Use pip to install package from `PyPI `__: .. code-block:: bash pip install rioxarray 2. Use `conda `__ with the `conda-forge `__ channel: .. code-block:: bash conda config --prepend channels conda-forge conda config --set channel_priority strict conda create -n rioxarray_env rioxarray conda activate rioxarray_env - `rioxarray` `conda-forge repository `__ .. note:: "... we recommend always installing your packages inside a new environment instead of the base environment from anaconda/miniconda. Using envs make it easier to debug problems with packages and ensure the stability of your root env." -- https://conda-forge.org/docs/user/tipsandtricks.html .. warning:: Avoid using `pip install` with a conda environment. If you encounter a python package that isn't in conda-forge, consider submitting a recipe: https://github.com/conda-forge/staged-recipes/ From source ----------- The source for rioxarray can be installed from the `GitHub repo`_. .. code-block:: bash python -m pip install git+git://github.com/corteva/rioxarray.git#egg=rioxarray To install for local development: .. code-block:: bash git clone git@github.com:corteva/rioxarray.git cd rioxarray python -m pip install -e .[dev] .. _GitHub repo: https://github.com/corteva/rioxarray rioxarray-0.18.2/docs/make.bat000066400000000000000000000014031474250745200161670ustar00rootroot00000000000000@ECHO OFF pushd %~dp0 REM Command file for Sphinx documentation if "%SPHINXBUILD%" == "" ( set SPHINXBUILD=python -msphinx ) set SOURCEDIR=. set BUILDDIR=_build set SPHINXPROJ=rioxarray if "%1" == "" goto help %SPHINXBUILD% >NUL 2>NUL if errorlevel 9009 ( echo. echo.The Sphinx module was not found. Make sure you have Sphinx installed, echo.then set the SPHINXBUILD environment variable to point to the full echo.path of the 'sphinx-build' executable. Alternatively you may add the echo.Sphinx directory to PATH. echo. echo.If you don't have Sphinx installed, grab it from echo.http://sphinx-doc.org/ exit /b 1 ) %SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% goto end :help %SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% :end popd rioxarray-0.18.2/docs/modules.rst000066400000000000000000000001001474250745200167550ustar00rootroot00000000000000rioxarray ========= .. toctree:: :maxdepth: 4 rioxarray rioxarray-0.18.2/docs/readme.rst000066400000000000000000000000331474250745200165470ustar00rootroot00000000000000.. include:: ../README.rst rioxarray-0.18.2/docs/rioxarray.rst000066400000000000000000000023051474250745200173360ustar00rootroot00000000000000rioxarray package ================= rioxarray.open_rasterio ----------------------- .. autofunction:: rioxarray.open_rasterio rioxarray.merge module ---------------------- .. autofunction:: rioxarray.merge.merge_arrays .. autofunction:: rioxarray.merge.merge_datasets rioxarray.set_options ----------------------- .. autoclass:: rioxarray.set_options rioxarray.show_versions ----------------------- .. autofunction:: rioxarray.show_versions rioxarray `rio` accessors -------------------------- rioxarray `extends xarray `__ with the `rio` accessor. The `rio` accessor is activated by importing rioxarray like so: .. code-block:: python import rioxarray .. autoclass:: rioxarray.rioxarray.XRasterBase :members: :undoc-members: :show-inheritance: .. autoclass:: rioxarray.raster_array.RasterArray :members: :undoc-members: :show-inheritance: .. autoclass:: rioxarray.raster_dataset.RasterDataset :members: :undoc-members: :show-inheritance: rioxarray.exceptions module --------------------------- .. automodule:: rioxarray.exceptions :members: :undoc-members: :show-inheritance: rioxarray-0.18.2/environment.yml000066400000000000000000000005741474250745200167310ustar00rootroot00000000000000# Configuration file for creating a Conda Environment with dependencies needed for rioxarray. # Create the environment by running the following command (after installing Miniconda): # $ conda env create -f environment.yml name: rioxarray channels: - conda-forge dependencies: - python - rasterio - libgdal-netcdf - libgdal-hdf4 - libgdal-hdf5 - scipy - xarray - netcdf4 - dask rioxarray-0.18.2/mypy.ini000066400000000000000000000004601474250745200153330ustar00rootroot00000000000000[mypy] python_version = 3.10 [mypy-affine] ignore_missing_imports = True [mypy-dask] ignore_missing_imports = True [mypy-dask.*] ignore_missing_imports = True [mypy-rasterio] ignore_missing_imports = True [mypy-rasterio.*] ignore_missing_imports = True [mypy-scipy.*] ignore_missing_imports = True rioxarray-0.18.2/pyproject.toml000066400000000000000000000033311474250745200165500ustar00rootroot00000000000000[build-system] # Minimum requirements for the build system to execute. requires = ["setuptools", "wheel"] [project] name = "rioxarray" version = "0.18.2" description = "geospatial xarray extension powered by rasterio" maintainers = [ {name = "rioxarray Contributors"}, ] keywords = [ "rioxarray", "xarray", "rasterio", ] readme = "README.rst" license = {text = "Apache"} classifiers = [ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "Natural Language :: English", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", "Topic :: Scientific/Engineering :: GIS", "Programming Language :: Python", "Programming Language :: Python :: 3.10", "Programming Language :: Python :: 3.11", "Programming Language :: Python :: 3.12", "Programming Language :: Python :: 3.13", "Programming Language :: Python :: 3", "Topic :: Software Development :: Libraries :: Python Modules", "Typing :: Typed", ] requires-python = ">=3.10" dependencies = [ "packaging", "rasterio>=1.3.7", "xarray>=2024.7.0", "pyproj>=3.3", "numpy>=1.23", ] [project.urls] homepage = "https://corteva.github.io/rioxarray/" documentation = "https://corteva.github.io/rioxarray/" repository = "https://github.com/corteva/rioxarray" changelog = "https://corteva.github.io/rioxarray/stable/history.html" [tool.setuptools.packages.find] include = ["rioxarray", "rioxarray.*"] [options.package_data] rioxarray = [ "py.typed", ] [project.entry-points."xarray.backends"] rasterio = "rioxarray.xarray_plugin:RasterioBackend" [project.optional-dependencies] interp = [ "scipy" ] all = [ "scipy" ] [tool.black] target_version = ["py310"] rioxarray-0.18.2/requirements/000077500000000000000000000000001474250745200163575ustar00rootroot00000000000000rioxarray-0.18.2/requirements/dev.txt000066400000000000000000000000561474250745200176770ustar00rootroot00000000000000-r doc.txt -r test.txt pylint mypy pre-commit rioxarray-0.18.2/requirements/doc.txt000066400000000000000000000000471474250745200176660ustar00rootroot00000000000000sphinx-click nbsphinx sphinx_rtd_theme rioxarray-0.18.2/requirements/test.txt000066400000000000000000000000631474250745200200760ustar00rootroot00000000000000pytest>=3.6 pytest-cov pytest-timeout dask netcdf4 rioxarray-0.18.2/rioxarray/000077500000000000000000000000001474250745200156545ustar00rootroot00000000000000rioxarray-0.18.2/rioxarray/__init__.py000066400000000000000000000007501474250745200177670ustar00rootroot00000000000000"""Top-level package for rioxarray.""" __author__ = """rioxarray Contributors""" import importlib.metadata import rioxarray.raster_array # noqa import rioxarray.raster_dataset # noqa from rioxarray._io import open_rasterio from rioxarray._options import set_options from rioxarray._show_versions import show_versions __version__ = importlib.metadata.version(__package__) __all__ = [ "open_rasterio", "set_options", "show_versions", "__author__", "__version__", ] rioxarray-0.18.2/rioxarray/_io.py000066400000000000000000001250161474250745200170010ustar00rootroot00000000000000""" Credits: This file was adopted from: https://github.com/pydata/xarray # noqa Source file: https://github.com/pydata/xarray/blob/1d7bcbdc75b6d556c04e2c7d7a042e4379e15303/xarray/backends/rasterio_.py # noqa """ # pylint: disable=too-many-lines import contextlib import importlib.metadata import os import re import threading import warnings from collections import defaultdict from collections.abc import Hashable, Iterable from typing import Any, Optional, Union import numpy import rasterio from numpy.typing import NDArray from packaging import version from rasterio.errors import NotGeoreferencedWarning from rasterio.vrt import WarpedVRT from xarray import Dataset, IndexVariable from xarray.backends.common import BackendArray from xarray.backends.file_manager import CachingFileManager, FileManager from xarray.backends.locks import SerializableLock from xarray.coding import times, variables from xarray.core import indexing from xarray.core.dataarray import DataArray from xarray.core.dtypes import maybe_promote from xarray.core.utils import is_scalar from xarray.core.variable import as_variable from rioxarray.exceptions import RioXarrayError from rioxarray.rioxarray import _generate_spatial_coords FILL_VALUE_NAMES = ("_FillValue", "missing_value", "fill_value", "nodata") UNWANTED_RIO_ATTRS = ("nodatavals", "is_tiled", "res") # TODO: should this be GDAL_LOCK instead? RASTERIO_LOCK = SerializableLock() NO_LOCK = contextlib.nullcontext() def _ensure_warped_vrt(riods, vrt_params): """ Ensuire the dataset is represented as a warped vrt """ if vrt_params is None: return riods if isinstance(riods, SingleBandDatasetReader): riods._create_vrt(vrt_params) else: riods = WarpedVRT(riods, **vrt_params) return riods class SingleBandDatasetReader: """ Hack to have a DatasetReader behave like it only has one band """ def __init__(self, riods, bidx, vrt_params=None) -> None: self._riods = riods self._bidx = bidx self._vrt_params = vrt_params self._create_vrt(vrt_params=vrt_params) def __getattr__(self, __name: str) -> Any: return getattr(self._riods, __name) def _create_vrt(self, vrt_params): if vrt_params is not None and not isinstance(self._riods, WarpedVRT): self._riods = WarpedVRT(self._riods, **vrt_params) self._vrt_params = vrt_params @property def name(self): """ str: name of the dataset. Usually the path. """ if isinstance(self._riods, rasterio.vrt.WarpedVRT): return self._riods.src_dataset.name return self._riods.name @property def count(self): """ int: band count """ return 1 @property def nodata(self): """ Nodata value for the band """ return self._riods.nodatavals[self._bidx] @property def offsets(self): """ Offset value for the band """ return [self._riods.offsets[self._bidx]] @property def scales(self): """ Scale value for the band """ return [self._riods.scales[self._bidx]] @property def units(self): """ Unit for the band """ return [self._riods.units[self._bidx]] @property def descriptions(self): """ Description for the band """ return [self._riods.descriptions[self._bidx]] @property def dtypes(self): """ dtype for the band """ return [self._riods.dtypes[self._bidx]] @property def indexes(self): """ indexes for the band """ return [self._riods.indexes[self._bidx]] def read(self, indexes=None, **kwargs): # pylint: disable=unused-argument """ read data for the band """ if numpy.isscalar(indexes): indexes = self._bidx + 1 else: indexes = [self._bidx + 1] return self._riods.read(indexes=indexes, **kwargs) def tags(self, bidx=None, **kwargs): # pylint: disable=unused-argument """ read tags for the band """ return self._riods.tags(bidx=self._bidx + 1, **kwargs) RasterioReader = Union[ rasterio.io.DatasetReader, rasterio.vrt.WarpedVRT, SingleBandDatasetReader ] try: _DASK_GTE_018 = version.parse(importlib.metadata.version("dask")) >= version.parse( "0.18.0" ) except importlib.metadata.PackageNotFoundError: _DASK_GTE_018 = False def _get_unsigned_dtype(unsigned, dtype): """ Based on: https://github.com/pydata/xarray/blob/abe1e613a96b000ae603c53d135828df532b952e/xarray/coding/variables.py#L306-L334 """ dtype = numpy.dtype(dtype) if unsigned is True and dtype.kind == "i": return numpy.dtype(f"u{dtype.itemsize}") if unsigned is False and dtype.kind == "u": return numpy.dtype(f"i{dtype.itemsize}") return None class FileHandleLocal(threading.local): """ This contains the thread local ThreadURIManager """ def __init__(self): # pylint: disable=super-init-not-called self.thread_manager = None # Initialises in each thread class ThreadURIManager: """ This handles opening & closing file handles in each thread. """ def __init__( self, opener, *args, mode="r", kwargs=None, ): self._opener = opener self._args = args self._mode = mode self._kwargs = {} if kwargs is None else dict(kwargs) self._file_handle = None @property def file_handle(self): """ File handle returned by the opener. """ if self._file_handle is not None: return self._file_handle self._file_handle = self._opener(*self._args, mode=self._mode, **self._kwargs) return self._file_handle def close(self): """ Close file handle. """ if self._file_handle is not None: self._file_handle.close() self._file_handle = None def __del__(self): self.close() def __enter__(self): return self def __exit__(self, type_, value, traceback): self.close() class URIManager(FileManager): """ The URI manager is used for lockless reading """ def __init__( self, opener, *args, mode="r", kwargs=None, ): self._opener = opener self._args = args self._mode = mode self._kwargs = {} if kwargs is None else dict(kwargs) self._local = FileHandleLocal() def acquire(self, needs_lock=True): if self._local.thread_manager is None: self._local.thread_manager = ThreadURIManager( self._opener, *self._args, mode=self._mode, kwargs=self._kwargs ) return self._local.thread_manager.file_handle @contextlib.contextmanager def acquire_context(self, needs_lock=True): try: yield self.acquire(needs_lock=needs_lock) except Exception: self.close(needs_lock=needs_lock) raise def close(self, needs_lock=True): if self._local.thread_manager is not None: self._local.thread_manager.close() self._local.thread_manager = None def __del__(self): self.close(needs_lock=False) def __getstate__(self): """State for pickling.""" return (self._opener, self._args, self._mode, self._kwargs) def __setstate__(self, state): """Restore from a pickle.""" opener, args, mode, kwargs = state self.__init__(opener, *args, mode=mode, kwargs=kwargs) class RasterioArrayWrapper(BackendArray): """A wrapper around rasterio dataset objects""" # pylint: disable=too-many-instance-attributes def __init__( self, *, manager, lock, name, vrt_params=None, masked=False, mask_and_scale=False, unsigned=False, ): self.manager = manager self.lock = lock self.masked = masked or mask_and_scale self.mask_and_scale = mask_and_scale # cannot save riods as an attribute: this would break pickleability riods = _ensure_warped_vrt(manager.acquire(), vrt_params) self.vrt_params = vrt_params self._shape = (riods.count, riods.height, riods.width) self._dtype = None self._unsigned_dtype = None self._fill_value = riods.nodata dtypes = riods.dtypes if not numpy.all(numpy.asarray(dtypes) == dtypes[0]): raise ValueError("All bands should have the same dtype") dtype = _rasterio_to_numpy_dtype(dtypes) if mask_and_scale and unsigned is not None: self._unsigned_dtype = _get_unsigned_dtype( unsigned=unsigned, dtype=dtype, ) if self._unsigned_dtype is not None and self._fill_value is not None: self._fill_value = self._unsigned_dtype.type(self._fill_value) if self._unsigned_dtype is None: warnings.warn( f"variable {name!r} has _Unsigned attribute but is not " "of integer type. Ignoring attribute.", variables.SerializationWarning, stacklevel=3, ) if self.masked: self._dtype, self._fill_value = maybe_promote(dtype) else: self._dtype = dtype @property def dtype(self): """ Data type of the array """ return self._dtype @property def fill_value(self): """ Fill value of the array """ return self._fill_value @property def shape(self): """ Shape of the array """ return self._shape def _get_indexer(self, key): """Get indexer for rasterio array. Parameter --------- key: tuple of int Returns ------- band_key: an indexer for the 1st dimension window: two tuples. Each consists of (start, stop). squeeze_axis: axes to be squeezed np_ind: indexer for loaded numpy array See also -------- indexing.decompose_indexer """ if len(key) != 3: raise RioXarrayError("rasterio datasets should always be 3D") # bands cannot be windowed but they can be listed band_key = key[0] np_inds = [] # bands (axis=0) cannot be windowed but they can be listed if isinstance(band_key, slice): start, stop, step = band_key.indices(self.shape[0]) band_key = numpy.arange(start, stop, step) # be sure we give out a list band_key = (numpy.asarray(band_key) + 1).tolist() if isinstance(band_key, list): # if band_key is not a scalar np_inds.append(slice(None)) # but other dims can only be windowed window = [] squeeze_axis = [] for iii, (ikey, size) in enumerate(zip(key[1:], self.shape[1:])): if isinstance(ikey, slice): # step is always positive. see indexing.decompose_indexer start, stop, step = ikey.indices(size) np_inds.append(slice(None, None, step)) elif is_scalar(ikey): # windowed operations will always return an array # we will have to squeeze it later squeeze_axis.append(-(2 - iii)) start = ikey stop = ikey + 1 else: start, stop = numpy.min(ikey), numpy.max(ikey) + 1 np_inds.append(ikey - start) window.append((start, stop)) if isinstance(key[1], numpy.ndarray) and isinstance(key[2], numpy.ndarray): # do outer-style indexing np_inds[-2:] = numpy.ix_(*np_inds[-2:]) return band_key, tuple(window), tuple(squeeze_axis), tuple(np_inds) def _getitem(self, key): band_key, window, squeeze_axis, np_inds = self._get_indexer(key) if not band_key or any(start == stop for (start, stop) in window): # no need to do IO shape = (len(band_key),) + tuple(stop - start for (start, stop) in window) out = numpy.zeros(shape, dtype=self.dtype) else: with self.lock: riods = _ensure_warped_vrt( self.manager.acquire(needs_lock=False), self.vrt_params ) out = riods.read(band_key, window=window, masked=self.masked) if self._unsigned_dtype is not None: out = out.astype(self._unsigned_dtype) if self.masked: out = numpy.ma.filled(out.astype(self.dtype), self.fill_value) if self.mask_and_scale: if not isinstance(band_key, Iterable): out = ( out * riods.scales[band_key - 1] + riods.offsets[band_key - 1] ) else: for iii, band_iii in enumerate(numpy.atleast_1d(band_key) - 1): out[iii] = ( out[iii] * riods.scales[band_iii] + riods.offsets[band_iii] ) if squeeze_axis: out = numpy.squeeze(out, axis=squeeze_axis) return out[np_inds] def __getitem__(self, key): return indexing.explicit_indexing_adapter( key, self.shape, indexing.IndexingSupport.OUTER, self._getitem ) def _parse_envi(meta): """Parse ENVI metadata into Python data structures. See the link for information on the ENVI header file format: http://www.harrisgeospatial.com/docs/enviheaderfiles.html Parameters ---------- meta : dict Dictionary of keys and str values to parse, as returned by the rasterio tags(ns='ENVI') call. Returns ------- parsed_meta : dict Dictionary containing the original keys and the parsed values """ def parsevec(value): return numpy.fromstring(value.strip("{}"), dtype="float", sep=",") def default(value): return value.strip("{}") parse = {"wavelength": parsevec, "fwhm": parsevec} parsed_meta = {key: parse.get(key, default)(value) for key, value in meta.items()} return parsed_meta def _rasterio_to_numpy_dtype(dtypes): """Numpy dtype from first entry of rasterio dataset.dtypes""" # rasterio has some special dtype names (complex_int16 -> numpy.complex64) if dtypes[0] == "complex_int16": dtype = numpy.dtype("complex64") else: dtype = numpy.dtype(dtypes[0]) return dtype def _to_numeric(value: Any) -> float: """ Convert the value to a number """ try: value = int(value) except (TypeError, ValueError): try: value = float(value) except (TypeError, ValueError): pass return value def _parse_tag(*, key: str, value: Any) -> tuple[str, Any]: # NC_GLOBAL is appended to tags with netcdf driver and is not really needed key = key.split("NC_GLOBAL#")[-1] if value.startswith("{") and value.endswith("}"): try: new_val = numpy.fromstring(value.strip("{}"), dtype="float", sep=",") # pylint: disable=len-as-condition value = new_val if len(new_val) else _to_numeric(value) except ValueError: value = _to_numeric(value) else: value = _to_numeric(value) return key, value def _parse_tags(tags: dict) -> dict: parsed_tags = {} for key, value in tags.items(): key, value = _parse_tag(key=key, value=value) parsed_tags[key] = value return parsed_tags NETCDF_DTYPE_MAP = { 0: object, # NC_NAT 1: numpy.byte, # NC_BYTE 2: numpy.char, # NC_CHAR 3: numpy.short, # NC_SHORT 4: numpy.int_, # NC_INT, NC_LONG 5: float, # NC_FLOAT 6: numpy.double, # NC_DOUBLE 7: numpy.ubyte, # NC_UBYTE 8: numpy.ushort, # NC_USHORT 9: numpy.uint, # NC_UINT 10: numpy.int64, # NC_INT64 11: numpy.uint64, # NC_UINT64 12: object, # NC_STRING } def _load_netcdf_attrs(*, tags: dict, data_array: DataArray) -> None: """ Loads the netCDF attributes into the data array Attributes stored in this format: - variable_name#attr_name: attr_value """ for key, value in tags.items(): key, value = _parse_tag(key=key, value=value) key_split = key.split("#") if len(key_split) != 2: continue variable_name, attr_name = key_split if variable_name in data_array.coords: data_array.coords[variable_name].attrs.update({attr_name: value}) def _parse_netcdf_attr_array(attr: Union[NDArray, str], *, dtype=None) -> NDArray: """ Expected format: '{2,6}' or '[2. 6.]' """ value: Union[NDArray, str, list] if isinstance(attr, str): if attr.startswith("{"): value = attr.strip("{}").split(",") else: value = attr.strip("[]").split() elif not isinstance(attr, Iterable): value = [attr] else: value = attr return numpy.array(value, dtype=dtype) def _load_netcdf_1d_coords(tags: dict) -> dict: """ Dimension information: - NETCDF_DIM_EXTRA: '{time}' (comma separated list of dim names) - NETCDF_DIM_time_DEF: '{2,6}' or '[2. 6.]' (dim size, dim dtype) - NETCDF_DIM_time_VALUES: '{0,872712.659688}' (comma separated list of data) or [ 0. 872712.659688] """ dim_names = tags.get("NETCDF_DIM_EXTRA") if not dim_names: return {} dim_names = _parse_netcdf_attr_array(dim_names) coords = {} for dim_name in dim_names: dim_def = tags.get(f"NETCDF_DIM_{dim_name}_DEF") if dim_def is None: continue # pylint: disable=unused-variable dim_size, dim_dtype = _parse_netcdf_attr_array(dim_def) dim_dtype = NETCDF_DTYPE_MAP.get(int(float(dim_dtype)), object) dim_values = _parse_netcdf_attr_array(tags[f"NETCDF_DIM_{dim_name}_VALUES"]) coords[dim_name] = IndexVariable(dim_name, dim_values) return coords def build_subdataset_filter( group_names: Optional[Union[str, list[str], tuple[str, ...]]], variable_names: Optional[Union[str, list[str], tuple[str, ...]]], ): """ Example:: 'HDF4_EOS:EOS_GRID:"./modis/MOD09GQ.A2017290.h11v04.006.NRT.hdf": MODIS_Grid_2D:sur_refl_b01_1' Parameters ---------- group_names: str or list or tuple Name or names of netCDF groups to filter by. variable_names: str or list or tuple Name or names of netCDF variables to filter by. Returns ------- re.SRE_Pattern: output of re.compile() """ variable_query = r"\w+" if variable_names is not None: if not isinstance(variable_names, (tuple, list)): variable_names = [variable_names] variable_names = [re.escape(variable_name) for variable_name in variable_names] variable_query = rf"(?:{'|'.join(variable_names)})" if group_names is not None: if not isinstance(group_names, (tuple, list)): group_names = [group_names] group_names = [re.escape(group_name) for group_name in group_names] group_query = rf"(?:{'|'.join(group_names)})" else: return re.compile(r"".join([r".*(?:\:/|\:)(/+)?", variable_query, r"$"])) return re.compile( r"".join( [r".*(?:\:/|\:)(/+)?", group_query, r"[:/](/+)?", variable_query, r"$"] ) ) def _get_rasterio_attrs(riods: RasterioReader): """ Get rasterio specific attributes """ # pylint: disable=too-many-branches # Add rasterio attributes attrs = _parse_tags({**riods.tags(), **riods.tags(1)}) # remove attributes with informaiton # that should be added by GDAL/rasterio for unwanted_attr in FILL_VALUE_NAMES + UNWANTED_RIO_ATTRS: attrs.pop(unwanted_attr, None) if riods.nodata is not None: # The nodata values for the raster bands attrs["_FillValue"] = riods.nodata # The scale values for the raster bands if len(set(riods.scales)) > 1: attrs["scales"] = riods.scales warnings.warn( "Scales differ across bands. The 'scale_factor' attribute will " "not be added. See the 'scales' attribute." ) else: attrs["scale_factor"] = riods.scales[0] # The offset values for the raster bands if len(set(riods.offsets)) > 1: attrs["offsets"] = riods.offsets warnings.warn( "Offsets differ across bands. The 'add_offset' attribute will " "not be added. See the 'offsets' attribute." ) else: attrs["add_offset"] = riods.offsets[0] if any(riods.descriptions): if len(set(riods.descriptions)) == 1: attrs["long_name"] = riods.descriptions[0] else: # Descriptions for each dataset band attrs["long_name"] = riods.descriptions if any(riods.units): # A list of units string for each dataset band if len(riods.units) == 1: attrs["units"] = riods.units[0] else: attrs["units"] = riods.units return attrs def _decode_datetime_cf( data_array: DataArray, decode_times: bool, decode_timedelta: Optional[bool], ) -> DataArray: """ Decide the datetime based on CF conventions """ if decode_timedelta is None: decode_timedelta = decode_times for coord in data_array.coords: time_var = None if decode_times and "since" in data_array[coord].attrs.get("units", ""): time_var = times.CFDatetimeCoder(use_cftime=True).decode( as_variable(data_array[coord]), name=coord ) elif ( decode_timedelta and data_array[coord].attrs.get("units") in times.TIME_UNITS ): time_var = times.CFTimedeltaCoder().decode( as_variable(data_array[coord]), name=coord ) if time_var is not None: dimensions, data, attributes, encoding = variables.unpack_for_decoding( time_var ) data_array = data_array.assign_coords( { coord: IndexVariable( dims=dimensions, data=data, attrs=attributes, encoding=encoding, ) } ) return data_array def _parse_driver_tags( riods: RasterioReader, attrs: dict, coords: dict, ) -> None: # Parse extra metadata from tags, if supported parsers = {"ENVI": _parse_envi} driver = riods.driver if driver in parsers: meta = parsers[driver](riods.tags(ns=driver)) for key, value in meta.items(): # Add values as coordinates if they match the band count, # as attributes otherwise if isinstance(value, (list, numpy.ndarray)) and len(value) == riods.count: coords[key] = ("band", numpy.asarray(value)) else: attrs[key] = value def _pop_global_netcdf_attrs_from_vars(dataset_to_clean: Dataset) -> Dataset: # remove GLOBAL netCDF attributes from dataset variables for coord in dataset_to_clean.coords: for variable in dataset_to_clean.variables: dataset_to_clean[variable].attrs = { attr: value for attr, value in dataset_to_clean[variable].attrs.items() if attr not in dataset_to_clean.attrs and not attr.startswith(f"{coord}#") } return dataset_to_clean def _subdataset_groups_to_dataset( *, dim_groups: dict[Hashable, dict[Hashable, DataArray]], global_tags: dict ) -> Union[Dataset, list[Dataset]]: if dim_groups: dataset: Union[Dataset, list[Dataset]] = [] for dim_group in dim_groups.values(): dataset_group = _pop_global_netcdf_attrs_from_vars( Dataset(dim_group, attrs=global_tags) ) def _ds_close(): # pylint: disable=cell-var-from-loop for data_var in dim_group.values(): data_var.close() dataset_group.set_close(_ds_close) dataset.append(dataset_group) if len(dataset) == 1: dataset = dataset.pop() else: dataset = Dataset(attrs=global_tags) return dataset def _load_subdatasets( riods: RasterioReader, *, group: Optional[Union[str, list[str], tuple[str, ...]]], variable: Optional[Union[str, list[str], tuple[str, ...]]], parse_coordinates: bool, chunks: Optional[Union[int, tuple, dict]], cache: Optional[bool], lock: Any, masked: bool, mask_and_scale: bool, decode_times: bool, decode_timedelta: Optional[bool], **open_kwargs, ) -> Union[Dataset, list[Dataset]]: """ Load in rasterio subdatasets """ dim_groups: dict[Hashable, dict[Hashable, DataArray]] = defaultdict(dict) subdataset_filter = None if any((group, variable)): subdataset_filter = build_subdataset_filter(group, variable) for subdataset in riods.subdatasets: if subdataset_filter is not None and not subdataset_filter.match(subdataset): continue with rasterio.open(subdataset) as rds: shape = rds.shape rioda: DataArray = open_rasterio( # type: ignore subdataset, parse_coordinates=shape not in dim_groups and parse_coordinates, chunks=chunks, cache=cache, lock=lock, masked=masked, mask_and_scale=mask_and_scale, default_name=subdataset.split(":")[-1].lstrip("/").replace("/", "_"), decode_times=decode_times, decode_timedelta=decode_timedelta, **open_kwargs, ) dim_groups[shape][rioda.name] = rioda return _subdataset_groups_to_dataset( dim_groups=dim_groups, global_tags=_parse_tags(riods.tags()) ) def _load_bands_as_variables( riods: RasterioReader, *, parse_coordinates: bool, chunks: Optional[Union[int, tuple, dict]], cache: Optional[bool], lock: Any, masked: bool, mask_and_scale: bool, decode_times: bool, decode_timedelta: Optional[bool], vrt_params: Optional[dict], **open_kwargs, ) -> Union[Dataset, list[Dataset]]: """ Load in rasterio bands as variables """ global_tags = _parse_tags(riods.tags()) data_vars = {} for band in riods.indexes: band_riods = SingleBandDatasetReader( riods=riods, bidx=band - 1, vrt_params=vrt_params, ) band_name = f"band_{band}" data_vars[band_name] = ( open_rasterio( # type: ignore band_riods, parse_coordinates=band == 1 and parse_coordinates, chunks=chunks, cache=cache, lock=lock, masked=masked, mask_and_scale=mask_and_scale, default_name=band_name, decode_times=decode_times, decode_timedelta=decode_timedelta, **open_kwargs, ) .squeeze() # type: ignore .drop_vars("band") # type: ignore ) dataset = Dataset(data_vars, attrs=global_tags) def _ds_close(): for data_var in data_vars.values(): data_var.close() dataset.set_close(_ds_close) return dataset def _prepare_dask( *, result: DataArray, riods: RasterioReader, filename: Union[str, os.PathLike], chunks: Union[int, tuple, dict], bidx: Optional[int] = None, ) -> DataArray: """ Prepare the data for dask computations """ # pylint: disable=import-outside-toplevel from dask.base import tokenize # augment the token with the file modification time try: mtime = os.path.getmtime(filename) except (TypeError, OSError): # the filename is probably an s3 bucket rather than a regular file mtime = None if chunks in (True, "auto"): from dask.array.core import normalize_chunks if not _DASK_GTE_018: raise NotImplementedError("Automatic chunking requires dask >= 0.18.0") block_shape = (1,) + riods.block_shapes[0] chunks = normalize_chunks( chunks=(1, "auto", "auto"), shape=(riods.count, riods.height, riods.width), dtype=_rasterio_to_numpy_dtype(riods.dtypes), previous_chunks=block_shape, ) token_filename = filename if bidx is not None: token_filename = f"{filename}-{bidx}" token = tokenize(token_filename, mtime, chunks) name_prefix = f"open_rasterio-{token}" return result.chunk(chunks, name_prefix=name_prefix, token=token) def _handle_encoding( *, result: DataArray, mask_and_scale: bool, masked: bool, da_name: Optional[Hashable], unsigned: Union[bool, None], ) -> None: """ Make sure encoding handled properly """ if "grid_mapping" in result.attrs: variables.pop_to(result.attrs, result.encoding, "grid_mapping", name=da_name) if mask_and_scale: if "scale_factor" in result.attrs: variables.pop_to( result.attrs, result.encoding, "scale_factor", name=da_name ) if "scales" in result.attrs: variables.pop_to(result.attrs, result.encoding, "scales", name=da_name) if "add_offset" in result.attrs: variables.pop_to(result.attrs, result.encoding, "add_offset", name=da_name) if "offsets" in result.attrs: variables.pop_to(result.attrs, result.encoding, "offsets", name=da_name) if masked: if "_FillValue" in result.attrs: variables.pop_to(result.attrs, result.encoding, "_FillValue", name=da_name) if "missing_value" in result.attrs: variables.pop_to( result.attrs, result.encoding, "missing_value", name=da_name ) if mask_and_scale and unsigned is not None and "_FillValue" in result.encoding: unsigned_dtype = _get_unsigned_dtype( unsigned=unsigned, dtype=result.encoding["dtype"], ) if unsigned_dtype is not None: result.encoding["_FillValue"] = unsigned_dtype.type( result.encoding["_FillValue"] ) def _single_band_open(*args, bidx=0, **kwargs): """ Open file as if it only has a single band """ return SingleBandDatasetReader( riods=rasterio.open(*args, **kwargs), bidx=bidx, ) def open_rasterio( filename: Union[ str, os.PathLike, rasterio.io.DatasetReader, rasterio.vrt.WarpedVRT, SingleBandDatasetReader, ], *, parse_coordinates: Optional[bool] = None, chunks: Optional[Union[int, tuple, dict]] = None, cache: Optional[bool] = None, lock: Optional[Any] = None, masked: bool = False, mask_and_scale: bool = False, variable: Optional[Union[str, list[str], tuple[str, ...]]] = None, group: Optional[Union[str, list[str], tuple[str, ...]]] = None, default_name: Optional[str] = None, decode_times: bool = True, decode_timedelta: Optional[bool] = None, band_as_variable: bool = False, **open_kwargs, ) -> Union[Dataset, DataArray, list[Dataset]]: # pylint: disable=too-many-statements,too-many-locals,too-many-branches """Open a file with rasterio (experimental). This should work with any file that rasterio can open (most often: geoTIFF). The x and y coordinates are generated automatically from the file's geoinformation and refer to the center of the pixel. .. versionadded:: 0.13 band_as_variable Parameters ---------- filename: str, rasterio.io.DatasetReader, or rasterio.vrt.WarpedVRT Path to the file to open. Or already open rasterio dataset. parse_coordinates: bool, optional Whether to parse the x and y coordinates out of the file's ``transform`` attribute or not. The default is to automatically parse the coordinates only if they are rectilinear (1D). It can be useful to set ``parse_coordinates=False`` if your files are very large or if you don't need the coordinates. chunks: int, tuple or dict, optional Chunk sizes along each dimension, e.g., ``5``, ``(5, 5)`` or ``{'x': 5, 'y': 5}``. If chunks is provided, it used to load the new DataArray into a dask array. Chunks can also be set to ``True`` or ``"auto"`` to choose sensible chunk sizes according to ``dask.config.get("array.chunk-size")``. cache: bool, optional If True, cache data loaded from the underlying datastore in memory as NumPy arrays when accessed to avoid reading from the underlying data- store multiple times. Defaults to True unless you specify the `chunks` argument to use dask, in which case it defaults to False. lock: bool or dask.utils.SerializableLock, optional If chunks is provided, this argument is used to ensure that only one thread per process is reading from a rasterio file object at a time. By default and when a lock instance is provided, a :class:`xarray.backends.CachingFileManager` is used to cache File objects. Since rasterio also caches some data, this will make repeated reads from the same object fast. When ``lock=False``, no lock is used, allowing for completely parallel reads from multiple threads or processes. However, a new file handle is opened on each request. masked: bool, optional If True, read the mask and set values to NaN. Defaults to False. mask_and_scale: bool, default=False Lazily scale (using the `scales` and `offsets` from rasterio) and mask. If the _Unsigned attribute is present treat integer arrays as unsigned. variable: str or list or tuple, optional Variable name or names to use to filter loading. group: str or list or tuple, optional Group name or names to use to filter loading. default_name: str, optional The name of the data array if none exists. Default is None. decode_times: bool, default=True If True, decode times encoded in the standard NetCDF datetime format into datetime objects. Otherwise, leave them encoded as numbers. decode_timedelta: bool, optional If True, decode variables and coordinates with time units in {“days”, “hours”, “minutes”, “seconds”, “milliseconds”, “microseconds”} into timedelta objects. If False, leave them encoded as numbers. If None (default), assume the same value of decode_time. band_as_variable: bool, default=False If True, will load bands in a raster to separate variables. **open_kwargs: kwargs, optional Optional keyword arguments to pass into :func:`rasterio.open`. Returns ------- :obj:`xarray.Dataset` | :obj:`xarray.DataArray` | list[:obj:`xarray.Dataset`]: The newly created dataset(s). """ parse_coordinates = True if parse_coordinates is None else parse_coordinates masked = masked or mask_and_scale vrt_params = None file_opener = rasterio.open if isinstance(filename, SingleBandDatasetReader): file_opener = _single_band_open open_kwargs.update(bidx=filename._bidx) vrt_params = filename._vrt_params if isinstance(filename, (rasterio.io.DatasetReader, SingleBandDatasetReader)): filename = filename.name elif isinstance(filename, rasterio.vrt.WarpedVRT): vrt = filename filename = vrt.src_dataset.name vrt_params = { "src_crs": vrt.src_crs.to_string() if vrt.src_crs else None, "crs": vrt.dst_crs.to_string() if vrt.dst_crs else None, "resampling": vrt.resampling, "tolerance": vrt.tolerance, "src_nodata": vrt.src_nodata, "nodata": vrt.dst_nodata, "width": vrt.dst_width, "height": vrt.dst_height, "src_transform": vrt.src_transform, "transform": vrt.dst_transform, "dtype": vrt.working_dtype, **vrt.warp_extras, } if lock in (True, None): lock = RASTERIO_LOCK elif lock is False: lock = NO_LOCK # ensure default for sharing is False # ref https://github.com/mapbox/rasterio/issues/1504 open_kwargs["sharing"] = open_kwargs.get("sharing", False) with warnings.catch_warnings(record=True) as rio_warnings: if lock is not NO_LOCK and isinstance(filename, (str, os.PathLike)): manager: FileManager = CachingFileManager( file_opener, filename, lock=lock, mode="r", kwargs=open_kwargs ) else: manager = URIManager(file_opener, filename, mode="r", kwargs=open_kwargs) riods = manager.acquire() captured_warnings = rio_warnings.copy() # raise the NotGeoreferencedWarning if applicable for rio_warning in captured_warnings: if not riods.subdatasets or not isinstance( rio_warning.message, NotGeoreferencedWarning ): warnings.warn(str(rio_warning.message), type(rio_warning.message)) # type: ignore # open the subdatasets if they exist if riods.subdatasets: subdataset_result = _load_subdatasets( riods=riods, group=group, variable=variable, parse_coordinates=parse_coordinates, chunks=chunks, cache=cache, lock=lock, masked=masked, mask_and_scale=mask_and_scale, decode_times=decode_times, decode_timedelta=decode_timedelta, **open_kwargs, ) manager.close() return subdataset_result if band_as_variable: dataset_result = _load_bands_as_variables( riods=riods, parse_coordinates=parse_coordinates, chunks=chunks, cache=cache, lock=lock, masked=masked, mask_and_scale=mask_and_scale, decode_times=decode_times, decode_timedelta=decode_timedelta, vrt_params=vrt_params, **open_kwargs, ) manager.close() return dataset_result if cache is None: cache = chunks is None riods = _ensure_warped_vrt(riods, vrt_params) # Get bands if riods.count < 1: raise ValueError("Unknown dims") # parse tags & load alternate coords attrs = _get_rasterio_attrs(riods=riods) coords = _load_netcdf_1d_coords(attrs) _parse_driver_tags(riods=riods, attrs=attrs, coords=coords) for coord in coords: if f"NETCDF_DIM_{coord}" in attrs: coord_name = coord attrs.pop(f"NETCDF_DIM_{coord}") break if f"NETCDF_DIM_{coord}_VALUES" in attrs: coord_name = coord attrs.pop(f"NETCDF_DIM_{coord}_VALUES") attrs.pop(f"NETCDF_DIM_{coord}_DEF", None) attrs.pop("NETCDF_DIM_EXTRA", None) break else: coord_name = "band" coords[coord_name] = numpy.asarray(riods.indexes) has_gcps = riods.gcps[0] if has_gcps: parse_coordinates = False # Get geospatial coordinates if parse_coordinates: coords.update( _generate_spatial_coords( affine=riods.transform, width=riods.width, height=riods.height ) ) unsigned = None encoding: dict[Hashable, Any] = {} if mask_and_scale and "_Unsigned" in attrs: unsigned = variables.pop_to(attrs, encoding, "_Unsigned") == "true" if masked: encoding["dtype"] = str(_rasterio_to_numpy_dtype(riods.dtypes)) da_name = attrs.pop("NETCDF_VARNAME", default_name) data: Any = indexing.LazilyOuterIndexedArray( RasterioArrayWrapper( manager=manager, lock=lock, name=da_name, vrt_params=vrt_params, masked=masked, mask_and_scale=mask_and_scale, unsigned=unsigned, ) ) # this lets you write arrays loaded with rasterio data = indexing.CopyOnWriteArray(data) if cache and chunks is None: data = indexing.MemoryCachedArray(data) result = DataArray( data=data, dims=(coord_name, "y", "x"), coords=coords, attrs=attrs, name=da_name ) result.encoding = encoding # update attributes from NetCDF attributes _load_netcdf_attrs(tags=riods.tags(), data_array=result) result = _decode_datetime_cf( result, decode_times=decode_times, decode_timedelta=decode_timedelta ) # make sure the _FillValue is correct dtype if "_FillValue" in result.attrs: result.attrs["_FillValue"] = result.dtype.type(result.attrs["_FillValue"]) # handle encoding _handle_encoding( result=result, mask_and_scale=mask_and_scale, masked=masked, da_name=da_name, unsigned=unsigned, ) # Affine transformation matrix (always available) # This describes coefficients mapping pixel coordinates to CRS # For serialization store as tuple of 6 floats, the last row being # always (0, 0, 1) per definition (see # https://github.com/sgillies/affine) result.rio.write_transform(riods.transform, inplace=True) rio_crs = riods.crs or result.rio.crs if rio_crs: result.rio.write_crs(rio_crs, inplace=True) if has_gcps: result.rio.write_gcps(*riods.gcps, inplace=True) if chunks is not None: result = _prepare_dask( result=result, riods=riods, filename=filename, chunks=chunks, bidx=open_kwargs.get("bidx"), ) else: result.encoding["preferred_chunks"] = { result.rio.y_dim: riods.block_shapes[0][0], result.rio.x_dim: riods.block_shapes[0][1], coord_name: 1, } # add file path to encoding result.encoding["source"] = riods.name result.encoding["rasterio_dtype"] = str(riods.dtypes[0]) # remove duplicate coordinate information for coord in result.coords: result.attrs = { attr: value for attr, value in result.attrs.items() if not attr.startswith(f"{coord}#") } # remove duplicate tags if result.name: result.attrs = { attr: value for attr, value in result.attrs.items() if not attr.startswith(f"{result.name}#") } # Make the file closeable result.set_close(manager.close) result.rio._manager = manager return result rioxarray-0.18.2/rioxarray/_options.py000066400000000000000000000052051474250745200200620ustar00rootroot00000000000000""" This file contains global options for rioxarray Credits: This file was adopted from: https://github.com/pydata/xarray # noqa Source file: https://github.com/pydata/xarray/blob/2ab0666c1fcc493b1e0ebc7db14500c427f8804e/xarray/core/options.py # noqa """ from typing import Any EXPORT_GRID_MAPPING = "export_grid_mapping" SKIP_MISSING_SPATIAL_DIMS = "skip_missing_spatial_dims" OPTIONS = { EXPORT_GRID_MAPPING: True, SKIP_MISSING_SPATIAL_DIMS: False, } OPTION_NAMES = set(OPTIONS) VALIDATORS = { EXPORT_GRID_MAPPING: lambda choice: isinstance(choice, bool), } def get_option(key: str) -> Any: """ Get the global rioxarray option. .. versionadded:: 0.3.0 Parameters ---------- key: str The name of the option. Returns ------- Any: the value of the option. """ return OPTIONS[key] class set_options: # pylint: disable=invalid-name """ Set the global rioxarray option. .. versionadded:: 0.3.0 .. versionadded:: 0.7.0 skip_missing_spatial_dims Parameters ---------- export_grid_mapping: bool, default=True If True, this option will export the full Climate and Forecasts (CF) grid mapping attributes for the CRS. This is useful if you are exporting your file to netCDF using :meth:`xarray.Dataset.to_netcdf()`. When disabled, only the ``crs_wkt`` and ``spatial_ref`` attributes will be written and the program will be faster due to not needing to use :meth:`pyproj.CRS.to_cf() `. skip_missing_spatial_dims: bool, default=False If True, it will not perform spatial operations on variables within a :class:`xarray.Dataset` if the spatial dimensions are not found. Usage as a context manager:: with rioxarray.set_options(export_grid_mapping=False): rds = rioxarray.open_rasterio(...) Usage for global settings:: rioxarray.set_options(export_grid_mapping=False) """ def __init__(self, **kwargs): self.old = OPTIONS.copy() for key, value in kwargs.items(): if key not in OPTIONS: raise ValueError( f"argument name {key} is not in the set of valid options " f"{OPTION_NAMES}." ) if key in VALIDATORS and not VALIDATORS[key](value): raise ValueError(f"option {key!r} gave an invalid value: {value!r}.") OPTIONS[key] = value def __enter__(self): return def __exit__(self, exc_type, exc_value, traceback): global OPTIONS # pylint: disable=global-statement OPTIONS = self.old rioxarray-0.18.2/rioxarray/_show_versions.py000066400000000000000000000050031474250745200212730ustar00rootroot00000000000000""" Utility methods to print system info for debugging adapted from :func:`sklearn.utils._show_versions` which was adapted from :func:`pandas.show_versions` """ # pylint: disable=import-outside-toplevel import importlib.metadata import os import platform import sys def _get_sys_info() -> dict[str, str]: """System information Return ------ sys_info : dict system and Python version information """ blob = [ ("python", sys.version.replace("\n", " ")), ("executable", sys.executable), ("machine", platform.platform()), ] return dict(blob) def _get_main_info() -> dict[str, str]: """Get the main dependency information to hightlight. Returns ------- proj_info: dict system GDAL information """ import rasterio try: proj_data = os.pathsep.join(rasterio._env.get_proj_data_search_paths()) except AttributeError: proj_data = None try: gdal_data = rasterio._env.get_gdal_data() except AttributeError: gdal_data = None blob = [ ("rasterio", importlib.metadata.version("rasterio")), ("xarray", importlib.metadata.version("xarray")), ("GDAL", rasterio.__gdal_version__), ("GEOS", getattr(rasterio, "__geos_version__", None)), ("PROJ", getattr(rasterio, "__proj_version__", None)), ("PROJ DATA", proj_data), ("GDAL DATA", gdal_data), ] return dict(blob) def _get_deps_info() -> dict[str, str]: """Overview of the installed version of dependencies Returns ------- deps_info: dict version information on relevant Python libraries """ deps = ["scipy", "pyproj"] def get_version(module): try: return importlib.metadata.version(module) except importlib.metadata.PackageNotFoundError: return None return {dep: get_version(dep) for dep in deps} def _print_info_dict(info_dict: dict[str, str]) -> None: """Print the information dictionary""" for key, stat in info_dict.items(): print(f"{key:>10}: {stat}") def show_versions() -> None: """ .. versionadded:: 0.0.26 Print useful debugging information Example ------- > python -c "import rioxarray; rioxarray.show_versions()" """ print(f"rioxarray ({importlib.metadata.version('rioxarray')}) deps:") _print_info_dict(_get_main_info()) print("\nOther python deps:") _print_info_dict(_get_deps_info()) print("\nSystem:") _print_info_dict(_get_sys_info()) rioxarray-0.18.2/rioxarray/crs.py000066400000000000000000000021751474250745200170220ustar00rootroot00000000000000""" This module contains helper methods for rasterio.crs.CRS. """ from typing import Any import rasterio import rasterio.crs from packaging import version from pyproj import CRS from rasterio.errors import CRSError def crs_from_user_input(crs_input: Any) -> rasterio.crs.CRS: """ Return a rasterio.crs.CRS from user input. This is to deal with change in rasterio.crs.CRS as well as to assist in the transition between GDAL 2/3. Parameters ---------- crs_input: Any Input to create a CRS. Returns ------- rasterio.crs.CRS """ if isinstance(crs_input, rasterio.crs.CRS): return crs_input try: # old versions of opendatacube CRS crs_input = crs_input.wkt except AttributeError: pass try: return rasterio.crs.CRS.from_user_input(crs_input) except CRSError: pass # use pyproj for edge cases crs = CRS.from_user_input(crs_input) if version.parse(rasterio.__gdal_version__) > version.parse("3.0.0"): return rasterio.crs.CRS.from_wkt(crs.to_wkt()) return rasterio.crs.CRS.from_wkt(crs.to_wkt("WKT1_GDAL")) rioxarray-0.18.2/rioxarray/exceptions.py000066400000000000000000000023161474250745200204110ustar00rootroot00000000000000""" This contains exceptions for rioxarray. """ class RioXarrayError(RuntimeError): """This is the base exception for errors in the rioxarray extension.""" class NoDataInBounds(RioXarrayError): """This is for when there are no data in the bounds for clipping a raster.""" class SingleVariableDataset(RioXarrayError): """This is for when you have a dataset with a single variable.""" class DimensionError(RioXarrayError): """This is raised when there are more dimensions than is supported by the method""" class MissingSpatialDimensionError(DimensionError): """This is raised when the dimension cannot be found""" class TooManyDimensions(DimensionError): """This is raised when there are more dimensions than is supported by the method""" class InvalidDimensionOrder(DimensionError): """This is raised when there the dimensions are not ordered correctly.""" class OneDimensionalRaster(DimensionError): """This is an error when you have a 1 dimensional raster.""" class DimensionMissingCoordinateError(RioXarrayError): """This is raised when the dimension does not have the supporting coordinate.""" class MissingCRS(RioXarrayError): """Missing the CRS in the dataset.""" rioxarray-0.18.2/rioxarray/merge.py000066400000000000000000000226361474250745200173360ustar00rootroot00000000000000""" This module allows you to merge xarray Datasets/DataArrays geospatially with the `rasterio.merge` module. """ from collections.abc import Sequence from typing import Callable, Optional, Union import numpy from rasterio.crs import CRS from rasterio.io import MemoryFile from rasterio.merge import merge as _rio_merge from xarray import DataArray, Dataset from rioxarray._io import open_rasterio from rioxarray.rioxarray import _get_nonspatial_coords class RasterioDatasetDuck: """ This class is to provide the attributes and methods necessary to make the :func:`rasterio.merge.merge` function think that the :obj:`xarray.DataArray` is a :obj:`rasterio.io.DatasetReader`. """ # pylint: disable=too-many-instance-attributes def __init__(self, xds: DataArray): self._xds = xds self.crs = xds.rio.crs self.bounds = xds.rio.bounds(recalc=True) self.count = int(xds.rio.count) self.dtypes = [xds.dtype] self.name = xds.name if xds.rio.encoded_nodata is not None: self.nodatavals = [xds.rio.encoded_nodata] else: self.nodatavals = [xds.rio.nodata] res = xds.rio.resolution(recalc=True) self.res = (abs(res[0]), abs(res[1])) self.transform = xds.rio.transform(recalc=True) self.profile: dict = { "crs": self.crs, "nodata": self.nodatavals[0], } valid_scale_factor = self._xds.encoding.get("scale_factor", 1) != 1 or any( scale != 1 for scale in self._xds.encoding.get("scales", (1,)) ) valid_offset = self._xds.encoding.get("add_offset", 0.0) != 0 or any( offset != 0 for offset in self._xds.encoding.get("offsets", (0,)) ) self._mask_and_scale = ( self._xds.rio.encoded_nodata is not None or valid_scale_factor or valid_offset or self._xds.encoding.get("_Unsigned") is not None ) def colormap(self, *args, **kwargs) -> None: """ colormap is only used for writing to a file. This never happens with rioxarray merge. """ # pylint: disable=unused-argument return None def read(self, *args, **kwargs) -> numpy.ma.MaskedArray: """ This method is meant to be used by the rasterio.merge.merge function. """ with MemoryFile() as memfile: self._xds.rio.to_raster(memfile.name) with memfile.open() as dataset: if self._mask_and_scale: kwargs["masked"] = True out = dataset.read(*args, **kwargs) if self._mask_and_scale: out = out.astype(self._xds.dtype) for iii in range(self.count): out[iii] = out[iii] * dataset.scales[iii] + dataset.offsets[iii] return out def merge_arrays( dataarrays: Sequence[DataArray], *, bounds: Optional[tuple] = None, res: Optional[tuple] = None, nodata: Optional[float] = None, precision: Optional[float] = None, method: Union[str, Callable, None] = None, crs: Optional[CRS] = None, parse_coordinates: bool = True, ) -> DataArray: """ Merge data arrays geospatially. Uses :func:`rasterio.merge.merge` .. versionadded:: 0.2 crs Parameters ---------- dataarrays: list[xarray.DataArray] List of multiple xarray.DataArray with all geo attributes. The first one is assumed to have the same CRS, dtype, and dimensions as the others in the array. bounds: tuple, optional Bounds of the output image (left, bottom, right, top). If not set, bounds are determined from bounds of input DataArrays. res: tuple, optional Output resolution in units of coordinate reference system. If not set, the resolution of the first DataArray is used. If a single value is passed, output pixels will be square. nodata: float, optional nodata value to use in output file. If not set, uses the nodata value in the first input DataArray. precision: float, optional Number of decimal points of precision when computing inverse transform. method: str or callable, optional See :func:`rasterio.merge.merge` for details. crs: rasterio.crs.CRS, optional Output CRS. If not set, the CRS of the first DataArray is used. parse_coordinates: bool, optional If False, it will disable loading spatial coordinates. Returns ------- :obj:`xarray.DataArray`: The geospatially merged data. """ input_kwargs = { "bounds": bounds, "res": res, "nodata": nodata, "precision": precision, "method": method, } if crs is None: crs = dataarrays[0].rio.crs if res is None: res = tuple(abs(res_val) for res_val in dataarrays[0].rio.resolution()) # prepare the duck arrays rioduckarrays = [] for dataarray in dataarrays: da_res = tuple(abs(res_val) for res_val in dataarray.rio.resolution()) if da_res != res or dataarray.rio.crs != crs: rioduckarrays.append( RasterioDatasetDuck( dataarray.rio.reproject(dst_crs=crs, resolution=res) ) ) else: rioduckarrays.append(RasterioDatasetDuck(dataarray)) # use rasterio to merge # generate merged data array representative_array = rioduckarrays[0]._xds with MemoryFile() as memfile: _rio_merge( rioduckarrays, **{key: val for key, val in input_kwargs.items() if val is not None}, dst_path=memfile.name, ) with open_rasterio( # type: ignore memfile.name, parse_coordinates=parse_coordinates, mask_and_scale=rioduckarrays[0]._mask_and_scale, ) as merged_data: merged_data = merged_data.load() # make sure old & new coorinate names match & dimensions are correct rename_map = {} original_extra_dim = representative_array.rio._check_dimensions() new_extra_dim = merged_data.rio._check_dimensions() # make sure the output merged data shape is 2D if the # original data was 2D. this can happen if the # xarray datasarray was squeezed. if len(merged_data.shape) == 3 and len(representative_array.shape) == 2: merged_data = merged_data.squeeze( dim=new_extra_dim, drop=original_extra_dim is None ) new_extra_dim = merged_data.rio._check_dimensions() if ( original_extra_dim is not None and new_extra_dim is not None and original_extra_dim != new_extra_dim ): rename_map[new_extra_dim] = original_extra_dim if representative_array.rio.x_dim != merged_data.rio.x_dim: rename_map[merged_data.rio.x_dim] = representative_array.rio.x_dim if representative_array.rio.y_dim != merged_data.rio.y_dim: rename_map[merged_data.rio.y_dim] = representative_array.rio.y_dim if rename_map: merged_data = merged_data.rename(rename_map) merged_data.coords.update(_get_nonspatial_coords(representative_array)) return merged_data # type: ignore def merge_datasets( datasets: Sequence[Dataset], *, bounds: Optional[tuple] = None, res: Optional[tuple] = None, nodata: Optional[float] = None, precision: Optional[float] = None, method: Union[str, Callable, None] = None, crs: Optional[CRS] = None, ) -> Dataset: """ Merge datasets geospatially. Uses :func:`rasterio.merge.merge` .. versionadded:: 0.2 crs Parameters ---------- datasets: list[xarray.Dataset] List of multiple xarray.Dataset with all geo attributes. The first one is assumed to have the same CRS, dtype, dimensions, and data_vars as the others in the array. bounds: tuple, optional Bounds of the output image (left, bottom, right, top). If not set, bounds are determined from bounds of input Dataset. res: tuple, optional Output resolution in units of coordinate reference system. If not set, the resolution of the first Dataset is used. If a single value is passed, output pixels will be square. nodata: float, optional nodata value to use in output file. If not set, uses the nodata value in the first input Dataset. precision: float, optional Number of decimal points of precision when computing inverse transform. method: str or callable, optional See rasterio docs. crs: rasterio.crs.CRS, optional Output CRS. If not set, the CRS of the first DataArray is used. Returns ------- :obj:`xarray.Dataset`: The geospatially merged data. """ representative_ds = datasets[0] merged_data = {} for iii, data_var in enumerate(representative_ds.data_vars): merged_data[data_var] = merge_arrays( [dataset[data_var] for dataset in datasets], bounds=bounds, res=res, nodata=nodata, precision=precision, method=method, crs=crs, parse_coordinates=iii == 0, ) data_var = list(representative_ds.data_vars)[0] xds = Dataset( merged_data, attrs=representative_ds.attrs, ) xds.rio.write_crs(merged_data[data_var].rio.crs, inplace=True) return xds rioxarray-0.18.2/rioxarray/py.typed000066400000000000000000000000001474250745200173410ustar00rootroot00000000000000rioxarray-0.18.2/rioxarray/raster_array.py000066400000000000000000001236021474250745200207300ustar00rootroot00000000000000""" This module is an extension for xarray to provide rasterio capabilities to xarray dataarrays. Credits: The `reproject` functionality was adopted from https://github.com/opendatacube/datacube-core # noqa: E501 Source file: - https://github.com/opendatacube/datacube-core/blob/084c84d78cb6e1326c7fbbe79c5b5d0bef37c078/datacube/api/geo_xarray.py # noqa: E501 datacube is licensed under the Apache License, Version 2.0: - https://github.com/opendatacube/datacube-core/blob/1d345f08a10a13c316f81100936b0ad8b1a374eb/LICENSE # noqa: E501 """ import copy import os from collections.abc import Hashable, Iterable, Mapping from pathlib import Path from typing import Any, Literal, Optional, Union import numpy import rasterio import rasterio.mask import rasterio.warp import xarray from affine import Affine from rasterio.dtypes import dtype_rev from rasterio.enums import Resampling from rasterio.features import geometry_mask from xarray.backends.file_manager import FileManager from xarray.core.dtypes import get_fill_value from rioxarray._io import FILL_VALUE_NAMES, UNWANTED_RIO_ATTRS from rioxarray.crs import crs_from_user_input from rioxarray.exceptions import ( MissingCRS, NoDataInBounds, OneDimensionalRaster, RioXarrayError, ) from rioxarray.raster_writer import RasterioWriter, _ensure_nodata_dtype from rioxarray.rioxarray import ( XRasterBase, _get_data_var_message, _make_coords, _order_bounds, ) # DTYPE TO NODATA MAP # Based on: https://github.com/OSGeo/gdal/blob/ # dee861e7c91c2da7ef8ff849947713e4d9bd115c/ # swig/python/gdal-utils/osgeo_utils/gdal_calc.py#L61 # And: https://github.com/rasterio/rasterio/blob/ # 9e643c3f563a679aa5400d9b1a263df97b34f9e0/rasterio/dtypes.py#L99-L112 _NODATA_DTYPE_MAP = { 1: 255, # GDT_Byte 2: 65535, # GDT_UInt16 3: -32768, # GDT_Int16 4: 4294967295, # GDT_UInt32 5: -2147483648, # GDT_Int32 6: numpy.nan, # GDT_Float32 7: numpy.nan, # GDT_Float64 8: None, # GDT_CInt16 9: None, # GDT_CInt32 10: numpy.nan, # GDT_CFloat32 11: numpy.nan, # GDT_CFloat64 12: 18446744073709551615, # GDT_UInt64 13: -9223372036854775808, # GDT_Int64 14: -128, # GDT_Int8 } def _generate_attrs( *, src_data_array: xarray.DataArray, dst_nodata: Optional[float] ) -> dict[str, Any]: # add original attributes new_attrs = copy.deepcopy(src_data_array.attrs) # remove all nodata information for unwanted_attr in FILL_VALUE_NAMES + UNWANTED_RIO_ATTRS: new_attrs.pop(unwanted_attr, None) # add nodata information fill_value = ( src_data_array.rio.nodata if src_data_array.rio.nodata is not None else dst_nodata ) if src_data_array.rio.encoded_nodata is None and fill_value is not None: new_attrs["_FillValue"] = fill_value return new_attrs def _add_attrs_proj( *, new_data_array: xarray.DataArray, src_data_array: xarray.DataArray ) -> xarray.DataArray: """Make sure attributes and projection correct""" # make sure dimension information is preserved if new_data_array.rio._x_dim is None: new_data_array.rio._x_dim = src_data_array.rio.x_dim if new_data_array.rio._y_dim is None: new_data_array.rio._y_dim = src_data_array.rio.y_dim # make sure attributes preserved new_attrs = _generate_attrs(src_data_array=src_data_array, dst_nodata=None) # remove fill value if it already exists in the encoding # this is for data arrays pulling the encoding from a # source data array instead of being generated anew. if "_FillValue" in new_data_array.encoding: new_attrs.pop("_FillValue", None) new_data_array.rio.set_attrs(new_attrs, inplace=True) # make sure projection added new_data_array.rio.write_grid_mapping(src_data_array.rio.grid_mapping, inplace=True) new_data_array.rio.write_crs(src_data_array.rio.crs, inplace=True) new_data_array.rio.write_coordinate_system(inplace=True) new_data_array.rio.write_transform(inplace=True) # make sure encoding added new_data_array.encoding = src_data_array.encoding.copy() return new_data_array def _make_dst_affine( *, src_data_array: xarray.DataArray, src_crs: rasterio.crs.CRS, dst_crs: rasterio.crs.CRS, dst_resolution: Optional[Union[float, tuple[float, float]]] = None, dst_shape: Optional[tuple[float, float]] = None, **kwargs, ): """Determine the affine of the new projected `xarray.DataArray`""" src_bounds = () if ( "gcps" not in kwargs and "rpcs" not in kwargs and "src_geoloc_array" not in kwargs ): src_bounds = src_data_array.rio.bounds() src_height, src_width = src_data_array.rio.shape dst_height, dst_width = dst_shape if dst_shape is not None else (None, None) # pylint: disable=isinstance-second-argument-not-valid-type if isinstance(dst_resolution, Iterable): dst_resolution = tuple(abs(res_val) for res_val in dst_resolution) # type: ignore elif dst_resolution is not None: dst_resolution = abs(dst_resolution) # type: ignore for key, value in ( ("resolution", dst_resolution), ("dst_height", dst_height), ("dst_width", dst_width), ): if value is not None: kwargs[key] = value dst_affine, dst_width, dst_height = rasterio.warp.calculate_default_transform( src_crs, dst_crs, src_width, src_height, *src_bounds, **kwargs, ) return dst_affine, dst_width, dst_height def _clip_from_disk( xds: xarray.DataArray, *, geometries: Iterable, all_touched: bool, drop: bool, invert: bool, ) -> Optional[xarray.DataArray]: """ clip from disk if the file object is available """ try: out_image, out_transform = rasterio.mask.mask( xds.rio._manager.acquire(), geometries, all_touched=all_touched, invert=invert, crop=drop, ) if xds.rio.encoded_nodata is not None and not numpy.isnan( xds.rio.encoded_nodata ): out_image = out_image.astype(numpy.float64) out_image[out_image == xds.rio.encoded_nodata] = numpy.nan height, width = out_image.shape[-2:] cropped_ds = xarray.DataArray( name=xds.name, data=out_image, coords=_make_coords( src_data_array=xds, dst_affine=out_transform, dst_width=width, dst_height=height, ), dims=xds.dims, attrs=xds.attrs, ) cropped_ds.encoding = xds.encoding return cropped_ds except AttributeError: return None def _clip_xarray( xds: xarray.DataArray, *, geometries: Iterable, all_touched: bool, drop: bool, invert: bool, ) -> xarray.DataArray: """ clip the xarray DataArray """ clip_mask_arr = geometry_mask( geometries=geometries, out_shape=(int(xds.rio.height), int(xds.rio.width)), transform=xds.rio.transform(recalc=True), invert=not invert, all_touched=all_touched, ) clip_mask_xray = xarray.DataArray( clip_mask_arr, dims=(xds.rio.y_dim, xds.rio.x_dim), ) cropped_ds = xds.where(clip_mask_xray) if drop: cropped_ds.rio.set_spatial_dims( x_dim=xds.rio.x_dim, y_dim=xds.rio.y_dim, inplace=True ) cropped_ds = cropped_ds.rio.isel_window( rasterio.windows.get_data_window( numpy.ma.masked_array(clip_mask_arr, ~clip_mask_arr) ) ) if xds.rio.nodata is not None and not numpy.isnan(xds.rio.nodata): cropped_ds = cropped_ds.fillna(xds.rio.nodata) return cropped_ds.astype(xds.dtype) @xarray.register_dataarray_accessor("rio") class RasterArray(XRasterBase): """This is the GIS extension for :obj:`xarray.DataArray`""" def __init__(self, xarray_obj: xarray.DataArray): super().__init__(xarray_obj) self._obj: xarray.DataArray # properties self._nodata: Optional[float] = None self._manager: Optional[ FileManager ] = None # https://github.com/corteva/rioxarray/issues/254 def set_nodata( self, input_nodata: Optional[float], *, inplace: bool = True ) -> xarray.DataArray: """ Set the nodata value for the DataArray without modifying the data array. Parameters ---------- input_nodata: Optional[float] Valid nodata for dtype. inplace: bool, optional If True, it will write to the existing dataset. Default is True. Returns ------- :obj:`xarray.DataArray`: Dataset with nodata attribute set. """ obj: xarray.DataArray = self._get_obj(inplace=inplace) # type: ignore obj.rio._nodata = input_nodata return obj def write_nodata( self, input_nodata: Optional[float], *, encoded: bool = False, inplace=False ) -> xarray.DataArray: """ Write the nodata to the DataArray in a CF compliant manner. Parameters ---------- input_nodata: Optional[float] Nodata value for the DataArray. If input_nodata is None, it will remove the _FillValue attribute. encoded: bool, optional If True, it will write the nodata value in the encoding and remove the fill value from the attributes. This is useful for masking with nodata. Default is False. inplace: bool, optional If True, it will write to the existing DataArray. Default is False. Returns ------- :obj:`xarray.DataArray`: Modified DataArray with CF compliant nodata information. Examples -------- To write the nodata value if it is missing: >>> raster.rio.write_nodata(-9999, inplace=True) To write the nodata value on a copy: >>> raster = raster.rio.write_nodata(-9999) To mask with nodata: >>> nodata = raster.rio.nodata >>> raster = raster.where(raster != nodata) >>> raster.rio.write_nodata(nodata, encoded=True, inplace=True) """ data_obj: xarray.DataArray = self._get_obj(inplace=inplace) # type: ignore input_nodata = False if input_nodata is None else input_nodata if input_nodata is not False: input_nodata = _ensure_nodata_dtype( original_nodata=input_nodata, new_dtype=self._obj.dtype ) if encoded: data_obj.rio.update_encoding({"_FillValue": input_nodata}, inplace=True) else: data_obj.rio.update_attrs({"_FillValue": input_nodata}, inplace=True) if input_nodata is False or encoded: new_attrs = dict(data_obj.attrs) new_attrs.pop("_FillValue", None) data_obj.rio.set_attrs(new_attrs, inplace=True) if input_nodata is False and encoded: new_encoding = dict(data_obj.encoding) new_encoding.pop("_FillValue", None) data_obj.rio.set_encoding(new_encoding, inplace=True) if not encoded: data_obj.rio.set_nodata(input_nodata, inplace=True) return data_obj @property def encoded_nodata(self) -> Optional[float]: """Return the encoded nodata value for the dataset if encoded.""" encoded_nodata = self._obj.encoding.get("_FillValue") if encoded_nodata is None: return None return _ensure_nodata_dtype( original_nodata=encoded_nodata, new_dtype=self._obj.dtype ) @property def nodata(self) -> Optional[float]: """Get the nodata value for the dataset.""" if self._nodata is not None: return None if self._nodata is False else self._nodata if self.encoded_nodata is not None: self._nodata = get_fill_value(self._obj.dtype) else: self._nodata = self._obj.attrs.get( "_FillValue", self._obj.attrs.get( "missing_value", self._obj.attrs.get("fill_value", self._obj.attrs.get("nodata")), ), ) # look in places used by `xarray.open_rasterio` if self._nodata is None: try: self._nodata = self._manager.acquire().nodata # type: ignore except AttributeError: try: self._nodata = self._obj.attrs["nodatavals"][0] except (KeyError, IndexError): pass if self._nodata is None: self._nodata = False return None self._nodata = _ensure_nodata_dtype( original_nodata=self._nodata, new_dtype=self._obj.dtype ) return self._nodata def reproject( self, dst_crs: Any, *, resolution: Optional[Union[float, tuple[float, float]]] = None, shape: Optional[tuple[int, int]] = None, transform: Optional[Affine] = None, resampling: Resampling = Resampling.nearest, nodata: Optional[float] = None, **kwargs, ) -> xarray.DataArray: """ Reproject :obj:`xarray.DataArray` objects Powered by :func:`rasterio.warp.reproject` .. note:: Only 2D/3D arrays with dimensions 'x'/'y' are currently supported. Requires either a grid mapping variable with 'spatial_ref' or a 'crs' attribute to be set containing a valid CRS. If using a WKT (e.g. from spatiareference.org), make sure it is an OGC WKT. .. note:: To re-project with dask, see `odc-geo `__ & `pyresample `__. .. versionadded:: 0.0.27 shape .. versionadded:: 0.0.28 transform .. versionadded:: 0.5.0 nodata, kwargs Parameters ---------- dst_crs: str OGC WKT string or Proj.4 string. resolution: float or tuple(float, float), optional Size of a destination pixel in destination projection units (e.g. degrees or metres). shape: tuple(int, int), optional Shape of the destination in pixels (dst_height, dst_width). Cannot be used together with resolution. transform: Affine, optional The destination transform. resampling: rasterio.enums.Resampling, optional See :func:`rasterio.warp.reproject` for more details. nodata: float, optional The nodata value used to initialize the destination; it will remain in all areas not covered by the reprojected source. Defaults to the nodata value of the source image if none provided and exists or attempts to find an appropriate value by dtype. **kwargs: dict Additional keyword arguments to pass into :func:`rasterio.warp.reproject`. To override: - src_transform: `rio.write_transform` - src_crs: `rio.write_crs` - src_nodata: `rio.write_nodata` Returns ------- :obj:`xarray.DataArray`: The reprojected DataArray. """ if resolution is not None and (shape is not None or transform is not None): raise RioXarrayError("resolution cannot be used with shape or transform.") if self.crs is None: raise MissingCRS( "CRS not found. Please set the CRS with 'rio.write_crs()'." f"{_get_data_var_message(self._obj)}" ) gcps = self.get_gcps() if gcps: kwargs.setdefault("gcps", gcps) use_affine = ( "gcps" not in kwargs and "rpcs" not in kwargs and "src_geoloc_array" not in kwargs ) src_affine = None if not use_affine else self.transform(recalc=True) if transform is None: dst_affine, dst_width, dst_height = _make_dst_affine( src_data_array=self._obj, src_crs=self.crs, dst_crs=dst_crs, dst_resolution=resolution, dst_shape=shape, **kwargs, ) else: dst_affine = transform if shape is not None: dst_height, dst_width = shape else: dst_height, dst_width = self.shape dst_data = self._create_dst_data(dst_height=dst_height, dst_width=dst_width) dst_nodata = self._get_dst_nodata(nodata) rasterio.warp.reproject( source=self._obj.values, destination=dst_data, src_transform=src_affine, src_crs=self.crs, src_nodata=self.nodata, dst_transform=dst_affine, dst_crs=dst_crs, dst_nodata=dst_nodata, resampling=resampling, **kwargs, ) # add necessary attributes new_attrs = _generate_attrs(src_data_array=self._obj, dst_nodata=dst_nodata) # make sure dimensions with coordinates renamed to x,y dst_dims: list[Hashable] = [] for dim in self._obj.dims: if dim == self.x_dim: dst_dims.append("x") elif dim == self.y_dim: dst_dims.append("y") else: dst_dims.append(dim) xda = xarray.DataArray( name=self._obj.name, data=dst_data, coords=_make_coords( src_data_array=self._obj, dst_affine=dst_affine, dst_width=dst_width, dst_height=dst_height, force_generate=not use_affine, ), dims=tuple(dst_dims), attrs=new_attrs, ) xda.encoding = self._obj.encoding xda.rio.write_transform(dst_affine, inplace=True) xda.rio.write_crs(dst_crs, inplace=True) xda.rio.write_coordinate_system(inplace=True) return xda def _get_dst_nodata(self, nodata: Optional[float]) -> Optional[float]: default_nodata = ( _NODATA_DTYPE_MAP.get(dtype_rev[self._obj.dtype.name]) if self.nodata is None else self.nodata ) dst_nodata = default_nodata if nodata is None else nodata return dst_nodata def _create_dst_data(self, *, dst_height: int, dst_width: int) -> numpy.ndarray: extra_dim = self._check_dimensions() if extra_dim: dst_data = numpy.zeros( (self._obj[extra_dim].size, dst_height, dst_width), dtype=self._obj.dtype.type, ) else: dst_data = numpy.zeros((dst_height, dst_width), dtype=self._obj.dtype.type) return dst_data def reproject_match( self, match_data_array: Union[xarray.DataArray, xarray.Dataset], *, resampling: Resampling = Resampling.nearest, **reproject_kwargs, ) -> xarray.DataArray: """ Reproject a DataArray object to match the resolution, projection, and region of another DataArray. Powered by :func:`rasterio.warp.reproject` .. note:: Only 2D/3D arrays with dimensions 'x'/'y' are currently supported. Requires either a grid mapping variable with 'spatial_ref' or a 'crs' attribute to be set containing a valid CRS. If using a WKT (e.g. from spatiareference.org), make sure it is an OGC WKT. .. versionadded:: 0.9 reproject_kwargs Parameters ---------- match_data_array: :obj:`xarray.DataArray` | :obj:`xarray.Dataset` DataArray of the target resolution and projection. resampling: rasterio.enums.Resampling, optional See :func:`rasterio.warp.reproject` for more details. **reproject_kwargs: Other options to pass to :meth:`rioxarray.raster_array.RasterArray.reproject` Returns -------- :obj:`xarray.DataArray`: Contains the data from the src_data_array, reprojected to match match_data_array. """ reprojected_data_array = self.reproject( match_data_array.rio.crs, transform=match_data_array.rio.transform(recalc=True), shape=match_data_array.rio.shape, resampling=resampling, **reproject_kwargs, ) # hack to resolve: https://github.com/corteva/rioxarray/issues/298 # may be resolved in the future by flexible indexes: # https://github.com/pydata/xarray/pull/4489#issuecomment-831809607 x_attrs = reprojected_data_array[reprojected_data_array.rio.x_dim].attrs.copy() y_attrs = reprojected_data_array[reprojected_data_array.rio.y_dim].attrs.copy() # ensure coords the same reprojected_data_array = reprojected_data_array.assign_coords( { reprojected_data_array.rio.x_dim: copy.copy( match_data_array[match_data_array.rio.x_dim].values ), reprojected_data_array.rio.y_dim: copy.copy( match_data_array[match_data_array.rio.y_dim].values ), } ) # ensure attributes copied reprojected_data_array[reprojected_data_array.rio.x_dim].attrs = x_attrs reprojected_data_array[reprojected_data_array.rio.y_dim].attrs = y_attrs return reprojected_data_array def pad_xy( self, minx: float, miny: float, maxx: float, maxy: float, *, constant_values: Union[ float, tuple[int, int], Mapping[Any, tuple[int, int]], None ] = None, ) -> xarray.DataArray: """Pad the array to x,y bounds. .. versionadded:: 0.0.29 Parameters ---------- minx: float Minimum bound for x coordinate. miny: float Minimum bound for y coordinate. maxx: float Maximum bound for x coordinate. maxy: float Maximum bound for y coordinate. constant_values: scalar, tuple or mapping of hashable to tuple The value used for padding. If None, nodata will be used if it is set, and numpy.nan otherwise. Returns ------- :obj:`xarray.DataArray`: The padded object. """ # pylint: disable=too-many-locals left, bottom, right, top = self._internal_bounds() resolution_x, resolution_y = self.resolution() y_before = y_after = 0 x_before = x_after = 0 y_coord: Union[xarray.DataArray, numpy.ndarray] = self._obj[self.y_dim] x_coord: Union[xarray.DataArray, numpy.ndarray] = self._obj[self.x_dim] if top - resolution_y < maxy: new_y_coord: numpy.ndarray = numpy.arange(bottom, maxy, -resolution_y)[::-1] y_before = len(new_y_coord) - len(y_coord) y_coord = new_y_coord top = y_coord[0] if bottom + resolution_y > miny: new_y_coord = numpy.arange(top, miny, resolution_y) y_after = len(new_y_coord) - len(y_coord) y_coord = new_y_coord bottom = y_coord[-1] if left - resolution_x > minx: new_x_coord: numpy.ndarray = numpy.arange(right, minx, -resolution_x)[::-1] x_before = len(new_x_coord) - len(x_coord) x_coord = new_x_coord left = x_coord[0] if right + resolution_x < maxx: new_x_coord = numpy.arange(left, maxx, resolution_x) x_after = len(new_x_coord) - len(x_coord) x_coord = new_x_coord right = x_coord[-1] if constant_values is None: constant_values = numpy.nan if self.nodata is None else self.nodata superset = self._obj.pad( pad_width={ self.x_dim: (x_before, x_after), self.y_dim: (y_before, y_after), }, constant_values=constant_values, # type: ignore ).rio.set_spatial_dims(x_dim=self.x_dim, y_dim=self.y_dim, inplace=True) superset[self.x_dim] = x_coord superset[self.y_dim] = y_coord superset.rio.write_transform(inplace=True) return superset def pad_box( self, minx: float, miny: float, maxx: float, maxy: float, *, constant_values: Union[ float, tuple[int, int], Mapping[Any, tuple[int, int]], None ] = None, ) -> xarray.DataArray: """Pad the :obj:`xarray.DataArray` to a bounding box .. versionadded:: 0.0.29 Parameters ---------- minx: float Minimum bound for x coordinate. miny: float Minimum bound for y coordinate. maxx: float Maximum bound for x coordinate. maxy: float Maximum bound for y coordinate. constant_values: scalar, tuple or mapping of hashable to tuple The value used for padding. If None, nodata will be used if it is set, and numpy.nan otherwise. Returns ------- :obj:`xarray.DataArray`: The padded object. """ resolution_x, resolution_y = self.resolution() pad_minx = minx - abs(resolution_x) / 2.0 pad_miny = miny - abs(resolution_y) / 2.0 pad_maxx = maxx + abs(resolution_x) / 2.0 pad_maxy = maxy + abs(resolution_y) / 2.0 pd_array = self.pad_xy( minx=pad_minx, miny=pad_miny, maxx=pad_maxx, maxy=pad_maxy, constant_values=constant_values, ) # make sure correct attributes preserved & projection added _add_attrs_proj(new_data_array=pd_array, src_data_array=self._obj) return pd_array def clip_box( self, minx: float, miny: float, maxx: float, maxy: float, *, auto_expand: Union[bool, int] = False, auto_expand_limit: int = 3, crs: Optional[Any] = None, allow_one_dimensional_raster: bool = False, ) -> xarray.DataArray: """Clip the :obj:`xarray.DataArray` by a bounding box. .. versionadded:: 0.12 crs .. versionadded:: 0.16 allow_one_dimensional_raster Parameters ---------- minx: float Minimum bound for x coordinate. miny: float Minimum bound for y coordinate. maxx: float Maximum bound for x coordinate. maxy: float Maximum bound for y coordinate. auto_expand: Union[bool, int] If True, it will expand clip search if only 1D raster found with clip. auto_expand_limit: int maximum number of times the clip will be retried before raising an exception. crs: :obj:`rasterio.crs.CRS`, optional The CRS of the bounding box. Default is to assume it is the same as the dataset. allow_one_dimensional_raster: bool, optional If True, allow clipping to/from a one dimensional raster. Returns ------- xarray.DataArray: The clipped object. """ if not allow_one_dimensional_raster and (self.width == 1 or self.height == 1): raise OneDimensionalRaster( "At least one of the raster x,y coordinates has only one point." f"{_get_data_var_message(self._obj)}. " "Set allow_one_dimensional_raster=True to disable this error." ) if crs is not None and self.crs is None: raise MissingCRS( "CRS not found. Please set the CRS with 'rio.write_crs()'." f"{_get_data_var_message(self._obj)}" ) crs = crs_from_user_input(crs) if crs is not None else self.crs if self.crs != crs: minx, miny, maxx, maxy = rasterio.warp.transform_bounds( src_crs=crs, dst_crs=self.crs, left=minx, bottom=miny, right=maxx, top=maxy, ) if ( self.crs is not None and self.crs.is_geographic # pylint: disable=no-member and minx > maxx ): raise RioXarrayError( "Transformed bounds crossed the antimeridian. " "Please transform your bounds manually using " "rasterio.warp.transform_bounds and clip using " "the bounding box(es) desired." ) resolution_x, resolution_y = self.resolution() # make sure that if the coordinates are # in reverse order that it still works left, bottom, right, top = _order_bounds( minx=minx, miny=miny, maxx=maxx, maxy=maxy, resolution_x=resolution_x, resolution_y=resolution_y, ) # pull the data out window_error = None try: window = rasterio.windows.from_bounds( left=numpy.array(left).item(), bottom=numpy.array(bottom).item(), right=numpy.array(right).item(), top=numpy.array(top).item(), transform=self.transform(recalc=True), ) cl_array: xarray.DataArray = self.isel_window(window) # type: ignore except rasterio.errors.WindowError as err: window_error = err # check that the window has data in it if window_error or cl_array.rio.width <= 1 or cl_array.rio.height <= 1: if auto_expand and auto_expand < auto_expand_limit: return self.clip_box( minx=minx - abs(resolution_x) / 2.0, miny=miny - abs(resolution_y) / 2.0, maxx=maxx + abs(resolution_x) / 2.0, maxy=maxy + abs(resolution_y) / 2.0, auto_expand=int(auto_expand) + 1, auto_expand_limit=auto_expand_limit, ) if window_error: raise window_error if cl_array.rio.width < 1 or cl_array.rio.height < 1: raise NoDataInBounds( f"No data found in bounds.{_get_data_var_message(self._obj)}" ) if not allow_one_dimensional_raster and ( cl_array.rio.width == 1 or cl_array.rio.height == 1 ): raise OneDimensionalRaster( "At least one of the clipped raster x,y coordinates" " has only one point." f"{_get_data_var_message(self._obj)}. " "Set allow_one_dimensional_raster=True to disable this error." ) # make sure correct attributes preserved & projection added _add_attrs_proj(new_data_array=cl_array, src_data_array=self._obj) return cl_array def clip( self, geometries: Iterable, crs: Optional[Any] = None, *, all_touched: bool = False, drop: bool = True, invert: bool = False, from_disk: bool = False, ) -> xarray.DataArray: """ Crops a :obj:`xarray.DataArray` by geojson like geometry dicts. Powered by `rasterio.features.geometry_mask`. Examples: >>> geometry = ''' {"type": "Polygon", ... "coordinates": [ ... [[-94.07955380199459, 41.69085871273774], ... [-94.06082436942204, 41.69103313774798], ... [-94.06063203899649, 41.67932439500822], ... [-94.07935807746362, 41.679150041277325], ... [-94.07955380199459, 41.69085871273774]]]}''' >>> cropping_geometries = [geojson.loads(geometry)] >>> xds = xarray.open_rasterio('cool_raster.tif') >>> cropped = xds.rio.clip(geometries=cropping_geometries, crs=4326) .. versionadded:: 0.2 from_disk Parameters ---------- geometries: Iterable A list of geojson geometry dicts or objects with __geo_interface__ with if you have rasterio 1.2+. crs: :obj:`rasterio.crs.CRS`, optional The CRS of the input geometries. Default is to assume it is the same as the dataset. all_touched : bool, optional If True, all pixels touched by geometries will be burned in. If false, only pixels whose center is within the polygon or that are selected by Bresenham's line algorithm will be burned in. drop: bool, optional If True, drop the data outside of the extent of the mask geometries Otherwise, it will return the same raster with the data masked. Default is True. invert: boolean, optional If False, pixels that do not overlap shapes will be set as nodata. Otherwise, pixels that overlap the shapes will be set as nodata. False by default. from_disk: boolean, optional If True, it will clip from disk using rasterio.mask.mask if possible. This is beneficial when the size of the data is larger than memory. Default is False. Returns ------- :obj:`xarray.DataArray`: The clipped object. """ if self.crs is None: raise MissingCRS( "CRS not found. Please set the CRS with 'rio.write_crs()'." f"{_get_data_var_message(self._obj)}" ) crs = crs_from_user_input(crs) if crs is not None else self.crs if self.crs != crs: geometries = rasterio.warp.transform_geom(crs, self.crs, geometries) cropped_ds = None if from_disk: cropped_ds = _clip_from_disk( self._obj, geometries=geometries, all_touched=all_touched, drop=drop, invert=invert, ) if cropped_ds is None: cropped_ds = _clip_xarray( self._obj, geometries=geometries, all_touched=all_touched, drop=drop, invert=invert, ) if ( cropped_ds.coords[self.x_dim].size < 1 or cropped_ds.coords[self.y_dim].size < 1 ): raise NoDataInBounds( f"No data found in bounds.{_get_data_var_message(self._obj)}" ) # make sure correct attributes preserved & projection added _add_attrs_proj(new_data_array=cropped_ds, src_data_array=self._obj) return cropped_ds def _interpolate_na( self, src_data: Any, *, method: Literal["linear", "nearest", "cubic"] = "nearest", ) -> numpy.ndarray: """ This method uses scipy.interpolate.griddata to interpolate missing data. Parameters ---------- src_data: Any Input data array. method: {'linear', 'nearest', 'cubic'}, optional The method to use for interpolation in `scipy.interpolate.griddata`. Returns ------- :class:`numpy.ndarray`: An interpolated :class:`numpy.ndarray`. """ try: from scipy.interpolate import ( # pylint: disable=import-outside-toplevel,import-error griddata, ) except ModuleNotFoundError as err: raise ModuleNotFoundError( "scipy is not found. Use rioxarray[interp] to install." ) from err src_data_flat = src_data.flatten() try: data_isnan = numpy.isnan(self.nodata) # type: ignore except TypeError: data_isnan = False if not data_isnan: data_bool = src_data_flat != self.nodata else: data_bool = ~numpy.isnan(src_data_flat) if not data_bool.any(): return src_data x_coords, y_coords = numpy.meshgrid( self._obj.coords[self.x_dim].values, self._obj.coords[self.y_dim].values ) return griddata( points=(x_coords.flatten()[data_bool], y_coords.flatten()[data_bool]), values=src_data_flat[data_bool], xi=(x_coords, y_coords), method=method, fill_value=self.nodata, ) def interpolate_na( self, method: Literal["linear", "nearest", "cubic"] = "nearest" ) -> xarray.DataArray: """ This method uses scipy.interpolate.griddata to interpolate missing data. .. warning:: scipy is an optional dependency. Parameters ---------- method: {'linear', 'nearest', 'cubic'}, optional The method to use for interpolation in `scipy.interpolate.griddata`. Returns ------- :obj:`xarray.DataArray`: An interpolated :obj:`xarray.DataArray` object. """ if self.nodata is None: raise RioXarrayError( "nodata not found. Please set the nodata with 'rio.write_nodata()'." f"{_get_data_var_message(self._obj)}" ) extra_dim = self._check_dimensions() if extra_dim: interp_data = [] for _, sub_xds in self._obj.groupby(extra_dim): interp_data.append( self._interpolate_na( sub_xds.squeeze(dim=extra_dim).values, method=method ) ) interp_data = numpy.array(interp_data) # type: ignore else: interp_data = self._interpolate_na(self._obj.values, method=method) # type: ignore interp_array = xarray.DataArray( name=self._obj.name, data=interp_data, coords=self._obj.coords, dims=self._obj.dims, attrs=self._obj.attrs, ) interp_array.encoding = self._obj.encoding # make sure correct attributes preserved & projection added _add_attrs_proj(new_data_array=interp_array, src_data_array=self._obj) return interp_array def to_raster( self, raster_path: Union[str, os.PathLike], *, driver: Optional[str] = None, dtype: Optional[Union[str, numpy.dtype]] = None, tags: Optional[dict[str, str]] = None, windowed: bool = False, recalc_transform: bool = True, lock: Optional[bool] = None, compute: bool = True, **profile_kwargs, ) -> None: """ Export the DataArray to a raster file. ..versionadded:: 0.2 lock Parameters ---------- raster_path: Union[str, os.PathLike] The path to output the raster to. driver: str, optional The name of the GDAL/rasterio driver to use to export the raster. Default is "GTiff" if rasterio < 1.2 otherwise it will autodetect. dtype: str, optional The data type to write the raster to. Default is the datasets dtype. tags: dict, optional A dictionary of tags to write to the raster. windowed: bool, optional If True, it will write using the windows of the output raster. This is useful for loading data in chunks when writing. Does not do anything when writing with dask. Default is False. recalc_transform: bool, optional If False, it will write the raster with the cached transform from the dataarray rather than recalculating it. Default is True. lock: boolean or Lock, optional Lock to use to write data using dask. If not supplied, it will use a single process for writing. compute: bool, optional If True and data is a dask array, then compute and save the data immediately. If False, return a dask Delayed object. Call ".compute()" on the Delayed object to compute the result later. Call ``dask.compute(delayed1, delayed2)`` to save multiple delayed files at once. Default is True. **profile_kwargs Additional keyword arguments to pass into writing the raster. The nodata, transform, crs, count, width, and height attributes are ignored. Returns ------- :obj:`dask.Delayed`: If the data array is a dask array and compute is True. Otherwise None is returned. """ if driver is None: extension = Path(raster_path).suffix # https://github.com/rasterio/rasterio/pull/2008 if extension in (".tif", ".tiff"): driver = "GTiff" # get the output profile from the rasterio object # if opened with xarray.open_rasterio() try: out_profile = self._manager.acquire().profile # type: ignore except AttributeError: out_profile = {} out_profile.update(profile_kwargs) # filter out the generated attributes out_profile = { key: value for key, value in out_profile.items() if key not in ( "driver", "height", "width", "crs", "transform", "nodata", "count", "dtype", ) } rio_nodata = ( self.encoded_nodata if self.encoded_nodata is not None else self.nodata ) return RasterioWriter(raster_path=raster_path).to_raster( xarray_dataarray=self._obj, tags=tags, driver=driver, height=int(self.height), width=int(self.width), count=int(self.count), dtype=dtype, crs=self.crs, transform=self.transform(recalc=recalc_transform), gcps=self.get_gcps(), nodata=rio_nodata, windowed=windowed, lock=lock, compute=compute, **out_profile, ) rioxarray-0.18.2/rioxarray/raster_dataset.py000066400000000000000000000536361474250745200212500ustar00rootroot00000000000000""" This module is an extension for xarray to provide rasterio capabilities to xarray datasets. """ import os from collections.abc import Iterable, Mapping from typing import Any, Literal, Optional, Union from uuid import uuid4 import numpy import rasterio.crs import xarray from affine import Affine from rasterio.enums import Resampling from rioxarray._options import SKIP_MISSING_SPATIAL_DIMS, get_option from rioxarray.exceptions import MissingSpatialDimensionError, RioXarrayError from rioxarray.rioxarray import XRasterBase, _get_spatial_dims @xarray.register_dataset_accessor("rio") class RasterDataset(XRasterBase): """This is the GIS extension for :class:`xarray.Dataset`""" @property def vars(self) -> list: """list: Returns non-coordinate varibles""" return list(self._obj.data_vars) @property def crs(self) -> Optional[rasterio.crs.CRS]: """:obj:`rasterio.crs.CRS`: Retrieve projection from `xarray.Dataset` """ if self._crs is not None: return None if self._crs is False else self._crs self._crs = super().crs if self._crs is not None: return self._crs # ensure all the CRS of the variables are the same crs_list = [] for var in self.vars: if self._obj[var].rio.crs is not None: crs_list.append(self._obj[var].rio.crs) try: crs = crs_list[0] except IndexError: crs = None if crs is None: self._crs = False return None if all(crs_i == crs for crs_i in crs_list): self._crs = crs else: raise RioXarrayError(f"CRS in DataArrays differ in the Dataset: {crs_list}") return self._crs def reproject( self, dst_crs: Any, *, resolution: Optional[Union[float, tuple[float, float]]] = None, shape: Optional[tuple[int, int]] = None, transform: Optional[Affine] = None, resampling: Resampling = Resampling.nearest, nodata: Optional[float] = None, **kwargs, ) -> xarray.Dataset: """ Reproject :class:`xarray.Dataset` objects .. note:: Only 2D/3D arrays with dimensions 'x'/'y' are currently supported. Others are appended as is. Requires either a grid mapping variable with 'spatial_ref' or a 'crs' attribute to be set containing a valid CRS. If using a WKT (e.g. from spatiareference.org), make sure it is an OGC WKT. .. note:: To re-project with dask, see `odc-geo `__ & `pyresample `__. .. versionadded:: 0.0.27 shape .. versionadded:: 0.0.28 transform .. versionadded:: 0.5.0 nodata, kwargs Parameters ---------- dst_crs: str OGC WKT string or Proj.4 string. resolution: float or tuple(float, float), optional Size of a destination pixel in destination projection units (e.g. degrees or metres). shape: tuple(int, int), optional Shape of the destination in pixels (dst_height, dst_width). Cannot be used together with resolution. transform: Affine, optional The destination transform. resampling: rasterio.enums.Resampling, optional See :func:`rasterio.warp.reproject` for more details. nodata: float, optional The nodata value used to initialize the destination; it will remain in all areas not covered by the reprojected source. Defaults to the nodata value of the source image if none provided and exists or attempts to find an appropriate value by dtype. **kwargs: dict Additional keyword arguments to pass into :func:`rasterio.warp.reproject`. To override: - src_transform: `rio.write_transform` - src_crs: `rio.write_crs` - src_nodata: `rio.write_nodata` Returns -------- :class:`xarray.Dataset`: The reprojected Dataset. """ resampled_dataset = xarray.Dataset(attrs=self._obj.attrs) for var in self.vars: try: x_dim, y_dim = _get_spatial_dims(self._obj, var=var) resampled_dataset[var] = ( self._obj[var] .rio.set_spatial_dims(x_dim=x_dim, y_dim=y_dim, inplace=True) .rio.reproject( dst_crs, resolution=resolution, shape=shape, transform=transform, resampling=resampling, nodata=nodata, **kwargs, ) ) except MissingSpatialDimensionError: if len(self._obj[var].dims) >= 2 and not get_option( SKIP_MISSING_SPATIAL_DIMS ): raise resampled_dataset[var] = self._obj[var].copy() return resampled_dataset def reproject_match( self, match_data_array: Union[xarray.DataArray, xarray.Dataset], *, resampling: Resampling = Resampling.nearest, **reproject_kwargs, ) -> xarray.Dataset: """ Reproject a Dataset object to match the resolution, projection, and region of another DataArray. .. note:: Only 2D/3D arrays with dimensions 'x'/'y' are currently supported. Others are appended as is. Requires either a grid mapping variable with 'spatial_ref' or a 'crs' attribute to be set containing a valid CRS. If using a WKT (e.g. from spatiareference.org), make sure it is an OGC WKT. .. versionadded:: 0.9 reproject_kwargs Parameters ---------- match_data_array: :obj:`xarray.DataArray` | :obj:`xarray.Dataset` Dataset with the target resolution and projection. resampling: rasterio.enums.Resampling, optional See :func:`rasterio.warp.reproject` for more details. **reproject_kwargs: Other options to pass to :meth:`rioxarray.raster_dataset.RasterDataset.reproject` Returns -------- :obj:`xarray.Dataset`: Contains the data from the src_data_array, reprojected to match match_data_array. """ resampled_dataset = xarray.Dataset(attrs=self._obj.attrs) for var in self.vars: try: x_dim, y_dim = _get_spatial_dims(self._obj, var=var) resampled_dataset[var] = ( self._obj[var] .rio.set_spatial_dims(x_dim=x_dim, y_dim=y_dim, inplace=True) .rio.reproject_match( match_data_array, resampling=resampling, **reproject_kwargs ) ) except MissingSpatialDimensionError: if len(self._obj[var].dims) >= 2 and not get_option( SKIP_MISSING_SPATIAL_DIMS ): raise resampled_dataset[var] = self._obj[var].copy() return resampled_dataset def pad_box( self, minx: float, miny: float, maxx: float, maxy: float, *, constant_values: Union[ float, tuple[int, int], Mapping[Any, tuple[int, int]], None ] = None, ) -> xarray.Dataset: """Pad the :class:`xarray.Dataset` to a bounding box. .. warning:: Only works if all variables in the dataset have the same coordinates. .. warning:: Pads variables that have dimensions 'x'/'y'. Others are appended as is. Parameters ---------- minx: float Minimum bound for x coordinate. miny: float Minimum bound for y coordinate. maxx: float Maximum bound for x coordinate. maxy: float Maximum bound for y coordinate. constant_values: scalar, tuple or mapping of hashable to tuple The value used for padding. If None, nodata will be used if it is set, and numpy.nan otherwise. Returns ------- :obj:`xarray.Dataset`: The padded object. """ padded_dataset = xarray.Dataset(attrs=self._obj.attrs) for var in self.vars: try: x_dim, y_dim = _get_spatial_dims(self._obj, var=var) padded_dataset[var] = ( self._obj[var] .rio.set_spatial_dims(x_dim=x_dim, y_dim=y_dim, inplace=True) .rio.pad_box( minx, miny, maxx, maxy, constant_values=constant_values ) ) except MissingSpatialDimensionError: if len(self._obj[var].dims) >= 2 and not get_option( SKIP_MISSING_SPATIAL_DIMS ): raise padded_dataset[var] = self._obj[var].copy() return padded_dataset.rio.set_spatial_dims( x_dim=self.x_dim, y_dim=self.y_dim, inplace=True ) def clip_box( self, minx: float, miny: float, maxx: float, maxy: float, *, auto_expand: Union[bool, int] = False, auto_expand_limit: int = 3, crs: Optional[Any] = None, allow_one_dimensional_raster: bool = False, ) -> xarray.Dataset: """Clip the :class:`xarray.Dataset` by a bounding box in dimensions 'x'/'y'. .. warning:: Clips variables that have dimensions 'x'/'y'. Others are appended as is. .. versionadded:: 0.12 crs .. versionadded:: 0.16 allow_one_dimensional_raster Parameters ---------- minx: float Minimum bound for x coordinate. miny: float Minimum bound for y coordinate. maxx: float Maximum bound for x coordinate. maxy: float Maximum bound for y coordinate. auto_expand: bool If True, it will expand clip search if only 1D raster found with clip. auto_expand_limit: int maximum number of times the clip will be retried before raising an exception. crs: :obj:`rasterio.crs.CRS`, optional The CRS of the bounding box. Default is to assume it is the same as the dataset. allow_one_dimensional_raster: bool, optional If True, allow clipping to/from a one dimensional raster. Returns ------- Dataset: The clipped object. """ clipped_dataset = xarray.Dataset(attrs=self._obj.attrs) for var in self.vars: try: x_dim, y_dim = _get_spatial_dims(self._obj, var=var) clipped_dataset[var] = ( self._obj[var] .rio.set_spatial_dims(x_dim=x_dim, y_dim=y_dim, inplace=True) .rio.clip_box( minx, miny, maxx, maxy, auto_expand=auto_expand, auto_expand_limit=auto_expand_limit, crs=crs, allow_one_dimensional_raster=allow_one_dimensional_raster, ) ) except MissingSpatialDimensionError: if len(self._obj[var].dims) >= 2 and not get_option( SKIP_MISSING_SPATIAL_DIMS ): raise clipped_dataset[var] = self._obj[var].copy() return clipped_dataset.rio.set_spatial_dims( x_dim=self.x_dim, y_dim=self.y_dim, inplace=True ) def clip( self, geometries: Iterable, crs: Optional[Any] = None, *, all_touched: bool = False, drop: bool = True, invert: bool = False, from_disk: bool = False, ) -> xarray.Dataset: """ Crops a :class:`xarray.Dataset` by geojson like geometry dicts in dimensions 'x'/'y'. .. warning:: Clips variables that have dimensions 'x'/'y'. Others are appended as is. Powered by `rasterio.features.geometry_mask`. Examples: >>> geometry = ''' {"type": "Polygon", ... "coordinates": [ ... [[-94.07955380199459, 41.69085871273774], ... [-94.06082436942204, 41.69103313774798], ... [-94.06063203899649, 41.67932439500822], ... [-94.07935807746362, 41.679150041277325], ... [-94.07955380199459, 41.69085871273774]]]}''' >>> cropping_geometries = [geojson.loads(geometry)] >>> xds = xarray.open_rasterio('cool_raster.tif') >>> cropped = xds.rio.clip(geometries=cropping_geometries, crs=4326) .. versionadded:: 0.2 from_disk Parameters ---------- geometries: list A list of geojson geometry dicts. crs: :obj:`rasterio.crs.CRS`, optional The CRS of the input geometries. Default is to assume it is the same as the dataset. all_touched : boolean, optional If True, all pixels touched by geometries will be burned in. If false, only pixels whose center is within the polygon or that are selected by Bresenham's line algorithm will be burned in. drop: bool, optional If True, drop the data outside of the extent of the mask geometries Otherwise, it will return the same raster with the data masked. Default is True. invert: boolean, optional If False, pixels that do not overlap shapes will be set as nodata. Otherwise, pixels that overlap the shapes will be set as nodata. False by default. from_disk: boolean, optional If True, it will clip from disk using rasterio.mask.mask if possible. This is beneficial when the size of the data is larger than memory. Default is False. Returns ------- :obj:`xarray.Dataset`: The clipped object. """ clipped_dataset = xarray.Dataset(attrs=self._obj.attrs) for var in self.vars: try: x_dim, y_dim = _get_spatial_dims(self._obj, var=var) clipped_dataset[var] = ( self._obj[var] .rio.set_spatial_dims(x_dim=x_dim, y_dim=y_dim, inplace=True) .rio.clip( geometries, crs=crs, all_touched=all_touched, drop=drop, invert=invert, from_disk=from_disk, ) ) except MissingSpatialDimensionError: if len(self._obj[var].dims) >= 2 and not get_option( SKIP_MISSING_SPATIAL_DIMS ): raise clipped_dataset[var] = self._obj[var].copy() return clipped_dataset.rio.set_spatial_dims( x_dim=self.x_dim, y_dim=self.y_dim, inplace=True ) def interpolate_na( self, method: Literal["linear", "nearest", "cubic"] = "nearest" ) -> xarray.Dataset: """ This method uses `scipy.interpolate.griddata` to interpolate missing data. .. warning:: scipy is an optional dependency. .. warning:: Interpolates variables that have dimensions 'x'/'y'. Others are appended as is. Parameters ---------- method: {'linear', 'nearest', 'cubic'}, optional The method to use for interpolation in `scipy.interpolate.griddata`. Returns ------- :obj:`xarray.DataArray`: The interpolated object. """ interpolated_dataset = xarray.Dataset(attrs=self._obj.attrs) for var in self.vars: try: x_dim, y_dim = _get_spatial_dims(self._obj, var=var) interpolated_dataset[var] = ( self._obj[var] .rio.set_spatial_dims(x_dim=x_dim, y_dim=y_dim, inplace=True) .rio.interpolate_na(method=method) ) except MissingSpatialDimensionError: if len(self._obj[var].dims) >= 2 and not get_option( SKIP_MISSING_SPATIAL_DIMS ): raise interpolated_dataset[var] = self._obj[var].copy() return interpolated_dataset.rio.set_spatial_dims( x_dim=self.x_dim, y_dim=self.y_dim, inplace=True ) def to_raster( self, raster_path: Union[str, os.PathLike], *, driver: Optional[str] = None, dtype: Optional[Union[str, numpy.dtype]] = None, tags: Optional[dict[str, str]] = None, windowed: bool = False, recalc_transform: bool = True, lock: Optional[bool] = None, compute: bool = True, **profile_kwargs, ) -> None: """ Export the Dataset to a raster file. Only works with 2D data. ..versionadded:: 0.2 lock Parameters ---------- raster_path: str The path to output the raster to. driver: str, optional The name of the GDAL/rasterio driver to use to export the raster. Default is "GTiff" if rasterio < 1.2 otherwise it will autodetect. dtype: str, optional The data type to write the raster to. Default is the datasets dtype. tags: dict, optional A dictionary of tags to write to the raster. windowed: bool, optional If True, it will write using the windows of the output raster. This is useful for loading data in chunks when writing. Does not do anything when writing with dask. Default is False. recalc_transform: bool, optional If False, it will write the raster with the cached transform from the dataset rather than recalculating it. Default is True. lock: boolean or Lock, optional Lock to use to write data using dask. If not supplied, it will use a single process for writing. compute: bool, optional If True and data is a dask array, then compute and save the data immediately. If False, return a dask Delayed object. Call ".compute()" on the Delayed object to compute the result later. Call ``dask.compute(delayed1, delayed2)`` to save multiple delayed files at once. Default is True. **profile_kwargs Additional keyword arguments to pass into writing the raster. The nodata, transform, crs, count, width, and height attributes are ignored. Returns ------- :obj:`dask.Delayed`: If the data array is a dask array and compute is True. Otherwise None is returned. """ # pylint: disable=too-many-locals variable_dim = f"band_{uuid4()}" data_array = self._obj.to_array(dim=variable_dim) # ensure raster metadata preserved attr_scales = [] attr_offsets = [] attr_nodatavals = [] encoded_scales = [] encoded_offsets = [] encoded_nodatavals = [] band_tags = [] long_name = [] for data_var in data_array[variable_dim].values: try: encoded_scales.append(self._obj[data_var].encoding["scale_factor"]) except KeyError: attr_scales.append(self._obj[data_var].attrs.get("scale_factor", 1.0)) try: encoded_offsets.append(self._obj[data_var].encoding["add_offset"]) except KeyError: attr_offsets.append(self._obj[data_var].attrs.get("add_offset", 0.0)) long_name.append(self._obj[data_var].attrs.get("long_name", data_var)) if self._obj[data_var].rio.encoded_nodata is not None: encoded_nodatavals.append(self._obj[data_var].rio.encoded_nodata) else: attr_nodatavals.append(self._obj[data_var].rio.nodata) band_tags.append(self._obj[data_var].attrs.copy()) if encoded_scales: data_array.encoding["scales"] = encoded_scales else: data_array.attrs["scales"] = attr_scales if encoded_offsets: data_array.encoding["offsets"] = encoded_offsets else: data_array.attrs["offsets"] = attr_offsets data_array.attrs["band_tags"] = band_tags data_array.attrs["long_name"] = long_name use_encoded_nodatavals = bool(encoded_nodatavals) nodatavals = encoded_nodatavals if use_encoded_nodatavals else attr_nodatavals nodata = nodatavals[0] if ( all(nodataval == nodata for nodataval in nodatavals) or numpy.isnan(nodatavals).all() ): data_array.rio.write_nodata( nodata, inplace=True, encoded=use_encoded_nodatavals ) else: raise RioXarrayError( "All nodata values must be the same when exporting to raster. " f"Current values: {attr_nodatavals}" ) if self.crs is not None: data_array.rio.write_crs(self.crs, inplace=True) # write it to a raster return data_array.rio.set_spatial_dims( x_dim=self.x_dim, y_dim=self.y_dim, inplace=True, ).rio.to_raster( raster_path=raster_path, driver=driver, dtype=dtype, tags=tags, windowed=windowed, recalc_transform=recalc_transform, lock=lock, compute=compute, **profile_kwargs, ) rioxarray-0.18.2/rioxarray/raster_writer.py000066400000000000000000000270641474250745200211330ustar00rootroot00000000000000""" This module contains a dataset writer for Dask. Credits: RasterioWriter dask write functionality was adopted from https://github.com/dymaxionlabs/dask-rasterio # noqa: E501 Source file: - https://github.com/dymaxionlabs/dask-rasterio/blob/8dd7fdece7ad094a41908c0ae6b4fe6ca49cf5e1/dask_rasterio/write.py # noqa: E501 """ import numpy import rasterio from rasterio.windows import Window from xarray.conventions import encode_cf_variable from rioxarray._io import FILL_VALUE_NAMES, UNWANTED_RIO_ATTRS, _get_unsigned_dtype from rioxarray.exceptions import RioXarrayError try: import dask.array from dask import is_dask_collection except ImportError: def is_dask_collection(_) -> bool: # type: ignore """ Replacement method to check if it is a dask collection """ # if you cannot import dask, then it cannot be a dask array return False # Note: transform & crs are removed in write_transform/write_crs def _write_tags(*, raster_handle, tags): """ Write tags to raster dataset """ # filter out attributes that should be written in a different location skip_tags = ( UNWANTED_RIO_ATTRS + FILL_VALUE_NAMES + ( "crs", "transform", "scales", "scale_factor", "add_offset", "offsets", "grid_mapping", ) ) # this is for when multiple values are used # in this case, it will be stored in the raster description if not isinstance(tags.get("long_name"), str): skip_tags += ("long_name",) band_tags = tags.pop("band_tags", []) tags = {key: value for key, value in tags.items() if key not in skip_tags} raster_handle.update_tags(**tags) if isinstance(band_tags, list): for iii, band_tag in enumerate(band_tags): raster_handle.update_tags(iii + 1, **band_tag) def _write_band_description(*, raster_handle, xarray_dataset): """ Write band descriptions using the long name """ long_name = xarray_dataset.attrs.get("long_name") if isinstance(long_name, (tuple, list)): if len(long_name) != raster_handle.count: raise RioXarrayError( "Number of names in the 'long_name' attribute does not equal " "the number of bands." ) for iii, band_description in enumerate(long_name): raster_handle.set_band_description(iii + 1, band_description) else: band_description = long_name or xarray_dataset.name if band_description: for iii in range(raster_handle.count): raster_handle.set_band_description(iii + 1, band_description) def _write_metatata_to_raster(*, raster_handle, xarray_dataset, tags): """ Write the metadata stored in the xarray object to raster metadata """ tags = ( xarray_dataset.attrs.copy() if tags is None else {**xarray_dataset.attrs, **tags} ) # write scales and offsets scales = tags.get("scales", xarray_dataset.encoding.get("scales")) if scales is None: scale_factor = tags.get( "scale_factor", xarray_dataset.encoding.get("scale_factor") ) if scale_factor is not None: scales = (scale_factor,) * raster_handle.count if scales is not None: raster_handle.scales = scales offsets = tags.get("offsets", xarray_dataset.encoding.get("offsets")) if offsets is None: add_offset = tags.get("add_offset", xarray_dataset.encoding.get("add_offset")) if add_offset is not None: offsets = (add_offset,) * raster_handle.count if offsets is not None: raster_handle.offsets = offsets _write_tags(raster_handle=raster_handle, tags=tags) _write_band_description(raster_handle=raster_handle, xarray_dataset=xarray_dataset) def _ensure_nodata_dtype(*, original_nodata, new_dtype): """ Convert the nodata to the new datatype and raise warning if the value of the nodata value changed. """ # Complex-valued rasters can have real-valued nodata new_dtype = numpy.dtype(new_dtype) if numpy.issubdtype(new_dtype, numpy.complexfloating): nodata = original_nodata else: original_nodata = ( float(original_nodata) if not numpy.issubdtype(type(original_nodata), numpy.integer) else original_nodata ) failure_message = ( f"Unable to convert nodata value ({original_nodata}) to " f"new dtype ({new_dtype})." ) try: nodata = new_dtype.type(original_nodata) except OverflowError as error: raise OverflowError(failure_message) from error if not numpy.isnan(nodata) and original_nodata != nodata: raise OverflowError(failure_message) return nodata def _get_dtypes(*, rasterio_dtype, encoded_rasterio_dtype, dataarray_dtype): """ Determines the rasterio dtype and numpy dtypes based on the rasterio dtype and the encoded rasterio dtype. Parameters ---------- rasterio_dtype: Union[str, numpy.dtype] The rasterio dtype to write to. encoded_rasterio_dtype: Union[str, numpy.dtype, None] The value of the original rasterio dtype in the encoding. dataarray_dtype: Union[str, numpy.dtype] The value of the dtype of the data array. Returns ------- tuple[Union[str, numpy.dtype], Union[str, numpy.dtype]]: The rasterio dtype and numpy dtype. """ # SCENARIO 1: User wants to write to complex_int16 if rasterio_dtype == "complex_int16": numpy_dtype = "complex64" # SCENARIO 2: File originally in complext_int16 and dtype unchanged elif ( rasterio_dtype is None and encoded_rasterio_dtype == "complex_int16" and str(dataarray_dtype) == "complex64" ): numpy_dtype = "complex64" rasterio_dtype = "complex_int16" # SCENARIO 3: rasterio dtype not provided elif rasterio_dtype is None: numpy_dtype = dataarray_dtype rasterio_dtype = dataarray_dtype # SCENARIO 4: rasterio dtype and numpy dtype are the same else: numpy_dtype = rasterio_dtype return rasterio_dtype, numpy_dtype class RasterioWriter: """ ..versionadded:: 0.2 Rasterio wrapper to allow dask.array.store to do window saving or to save using the rasterio write method. """ def __init__(self, raster_path): """ raster_path: str The path to output the raster to. """ # https://github.com/dymaxionlabs/dask-rasterio/issues/3#issuecomment-514781825 # Rasterio datasets can't be pickled and can't be shared between # processes or threads. The work around is to distribute dataset # identifiers (paths or URIs) and then open them in new threads. # See mapbox/rasterio#1731. self.raster_path = raster_path def __setitem__(self, key, item): """Put the data chunk in the image""" if len(key) == 3: index_range, yyy, xxx = key indexes = list( range( index_range.start + 1, index_range.stop + 1, index_range.step or 1 ) ) else: indexes = 1 yyy, xxx = key chy_off = yyy.start chy = yyy.stop - yyy.start chx_off = xxx.start chx = xxx.stop - xxx.start with rasterio.open(self.raster_path, "r+") as rds: rds.write(item, window=Window(chx_off, chy_off, chx, chy), indexes=indexes) def to_raster(self, *, xarray_dataarray, tags, windowed, lock, compute, **kwargs): """ This method writes to the raster on disk. xarray_dataarray: xarray.DataArray The input data array to write to disk. tags: dict, optional A dictionary of tags to write to the raster. windowed: bool If True and the data array is not a dask array, it will write the data to disk using rasterio windows. lock: boolean or Lock, optional Lock to use to write data using dask. If not supplied, it will use a single process. compute: bool If True (default) and data is a dask array, then compute and save the data immediately. If False, return a dask Delayed object. Call ".compute()" on the Delayed object to compute the result later. Call ``dask.compute(delayed1, delayed2)`` to save multiple delayed files at once. dtype: numpy.dtype Numpy-compliant dtype used to save raster. If data is not already represented by this dtype in memory it is recast. dtype='complex_int16' is a special case to write in-memory numpy.complex64 to CInt16. **kwargs Keyword arguments to pass into writing the raster. """ xarray_dataarray = xarray_dataarray.copy() kwargs["dtype"], numpy_dtype = _get_dtypes( rasterio_dtype=kwargs["dtype"], encoded_rasterio_dtype=xarray_dataarray.encoding.get("rasterio_dtype"), dataarray_dtype=xarray_dataarray.encoding.get( "dtype", str(xarray_dataarray.dtype) ), ) # there is no equivalent for netCDF _Unsigned # across output GDAL formats. It is safest to convert beforehand. # https://github.com/OSGeo/gdal/issues/6352#issuecomment-1245981837 if "_Unsigned" in xarray_dataarray.encoding: unsigned_dtype = _get_unsigned_dtype( unsigned=xarray_dataarray.encoding["_Unsigned"] == "true", dtype=numpy_dtype, ) if unsigned_dtype is not None: numpy_dtype = unsigned_dtype kwargs["dtype"] = unsigned_dtype xarray_dataarray.encoding["rasterio_dtype"] = str(unsigned_dtype) xarray_dataarray.encoding["dtype"] = str(unsigned_dtype) if kwargs["nodata"] is not None: # Ensure dtype of output data matches the expected dtype. # This check is added here as the dtype of the data is # converted right before writing. kwargs["nodata"] = _ensure_nodata_dtype( original_nodata=kwargs["nodata"], new_dtype=numpy_dtype ) with rasterio.open(self.raster_path, "w", **kwargs) as rds: _write_metatata_to_raster( raster_handle=rds, xarray_dataset=xarray_dataarray, tags=tags ) if not (lock and is_dask_collection(xarray_dataarray.data)): # write data to raster immmediately if not dask array if windowed: window_iter = rds.block_windows(1) else: window_iter = [(None, None)] for _, window in window_iter: if window is not None: out_data = xarray_dataarray.rio.isel_window(window) else: out_data = xarray_dataarray data = encode_cf_variable(out_data.variable).values.astype( numpy_dtype ) if data.ndim == 2: rds.write(data, 1, window=window) else: rds.write(data, window=window) if lock and is_dask_collection(xarray_dataarray.data): return dask.array.store( encode_cf_variable(xarray_dataarray.variable).data.astype(numpy_dtype), self, lock=lock, compute=compute, ) return None rioxarray-0.18.2/rioxarray/rioxarray.py000066400000000000000000001343351474250745200202570ustar00rootroot00000000000000""" This module is an extension for xarray to provide rasterio capabilities to xarray datasets/dataarrays. """ # pylint: disable=too-many-lines import json import math import warnings from collections.abc import Hashable, Iterable from typing import Any, Literal, Optional, Union import numpy import pyproj import rasterio.warp import rasterio.windows import xarray from affine import Affine from pyproj.aoi import AreaOfInterest from pyproj.database import query_utm_crs_info from rasterio.control import GroundControlPoint from rasterio.crs import CRS from rioxarray._options import EXPORT_GRID_MAPPING, get_option from rioxarray.crs import crs_from_user_input from rioxarray.exceptions import ( DimensionError, DimensionMissingCoordinateError, InvalidDimensionOrder, MissingCRS, MissingSpatialDimensionError, NoDataInBounds, OneDimensionalRaster, RioXarrayError, TooManyDimensions, ) DEFAULT_GRID_MAP = "spatial_ref" def _affine_has_rotation(affine: Affine) -> bool: """ Determine if the affine has rotation. Parameters ---------- affine: :obj:`affine.Affine` The affine of the grid. Returns ------- bool """ return affine.b == affine.d != 0 def _resolution(affine: Affine) -> tuple[float, float]: """ Determine if the resolution of the affine. If it has rotation, the sign of the resolution is lost. Based on: https://github.com/mapbox/rasterio/blob/6185a4e4ad72b5669066d2d5004bf46d94a6d298/rasterio/_base.pyx#L943-L951 Parameters ---------- affine: :obj:`affine.Affine` The affine of the grid. Returns -------- x_resolution: float The X resolution of the affine. y_resolution: float The Y resolution of the affine. """ if not _affine_has_rotation(affine): return affine.a, affine.e return ( math.sqrt(affine.a**2 + affine.d**2), math.sqrt(affine.b**2 + affine.e**2), ) def affine_to_coords( affine: Affine, width: int, height: int, *, x_dim: str = "x", y_dim: str = "y" ) -> dict[str, numpy.ndarray]: """Generate 1d pixel centered coordinates from affine. Based on code from the xarray rasterio backend. Parameters ---------- affine: :obj:`affine.Affine` The affine of the grid. width: int The width of the grid. height: int The height of the grid. x_dim: str, optional The name of the X dimension. Default is 'x'. y_dim: str, optional The name of the Y dimension. Default is 'y'. Returns ------- dict: x and y coordinate arrays. """ transform = affine * affine.translation(0.5, 0.5) if affine.is_rectilinear and not _affine_has_rotation(affine): x_coords, _ = transform * (numpy.arange(width), numpy.zeros(width)) _, y_coords = transform * (numpy.zeros(height), numpy.arange(height)) else: x_coords, y_coords = transform * numpy.meshgrid( numpy.arange(width), numpy.arange(height), ) return {y_dim: y_coords, x_dim: x_coords} def _generate_spatial_coords( *, affine: Affine, width: int, height: int ) -> dict[Hashable, Any]: """get spatial coords in new transform""" new_spatial_coords = affine_to_coords(affine, width, height) if new_spatial_coords["x"].ndim == 1: return { "x": xarray.IndexVariable("x", new_spatial_coords["x"]), "y": xarray.IndexVariable("y", new_spatial_coords["y"]), } return { "xc": (("y", "x"), new_spatial_coords["x"]), "yc": (("y", "x"), new_spatial_coords["y"]), } def _get_nonspatial_coords( src_data_array: Union[xarray.DataArray, xarray.Dataset] ) -> dict[Hashable, Union[xarray.Variable, xarray.IndexVariable]]: coords: dict[Hashable, Union[xarray.Variable, xarray.IndexVariable]] = {} for coord in set(src_data_array.coords) - { src_data_array.rio.x_dim, src_data_array.rio.y_dim, DEFAULT_GRID_MAP, }: # skip 2D spatial coords if ( src_data_array.rio.x_dim in src_data_array[coord].dims and src_data_array.rio.y_dim in src_data_array[coord].dims ): continue if src_data_array[coord].ndim == 1: coords[coord] = xarray.IndexVariable( src_data_array[coord].dims, src_data_array[coord].values, src_data_array[coord].attrs, ) else: coords[coord] = xarray.Variable( src_data_array[coord].dims, src_data_array[coord].values, src_data_array[coord].attrs, ) return coords def _make_coords( *, src_data_array: Union[xarray.DataArray, xarray.Dataset], dst_affine: Affine, dst_width: int, dst_height: int, force_generate: bool = False, ) -> dict[Hashable, Any]: """Generate the coordinates of the new projected `xarray.DataArray`""" coords = _get_nonspatial_coords(src_data_array) if ( force_generate or ( src_data_array.rio.x_dim in src_data_array.coords and src_data_array.rio.y_dim in src_data_array.coords ) or ("xc" in src_data_array.coords and "yc" in src_data_array.coords) ): new_coords = _generate_spatial_coords( affine=dst_affine, width=dst_width, height=dst_height ) new_coords.update(coords) return new_coords return coords def _get_data_var_message(obj: Union[xarray.DataArray, xarray.Dataset]) -> str: """ Get message for named data variables. """ try: return f" Data variable: {obj.name}" if obj.name else "" except AttributeError: return "" def _get_spatial_dims( obj: Union[xarray.Dataset, xarray.DataArray], *, var: Union[Any, Hashable] ) -> tuple[str, str]: """ Retrieve the spatial dimensions of the dataset """ try: return obj[var].rio.x_dim, obj[var].rio.y_dim except MissingSpatialDimensionError as err: try: obj[var].rio.set_spatial_dims( x_dim=obj.rio.x_dim, y_dim=obj.rio.y_dim, inplace=True ) return obj.rio.x_dim, obj.rio.y_dim except MissingSpatialDimensionError: raise err from None def _has_spatial_dims( obj: Union[xarray.Dataset, xarray.DataArray], *, var: Union[Any, Hashable] ) -> bool: """ Check to see if the variable in the Dataset has spatial dimensions """ try: # pylint: disable=pointless-statement _get_spatial_dims(obj, var=var) except MissingSpatialDimensionError: return False return True def _order_bounds( *, minx: float, miny: float, maxx: float, maxy: float, resolution_x: float, resolution_y: float, ) -> tuple[float, float, float, float]: """ Make sure that the bounds are in the correct order """ if resolution_y < 0: top = maxy bottom = miny else: top = miny bottom = maxy if resolution_x < 0: left = maxx right = minx else: left = minx right = maxx return left, bottom, right, top class XRasterBase: """This is the base class for the GIS extensions for xarray""" # pylint: disable=too-many-instance-attributes def __init__(self, xarray_obj: Union[xarray.DataArray, xarray.Dataset]): self._obj: Union[xarray.DataArray, xarray.Dataset] = xarray_obj self._x_dim: Optional[Hashable] = None self._y_dim: Optional[Hashable] = None # Determine the spatial dimensions of the `xarray.DataArray` if "x" in self._obj.dims and "y" in self._obj.dims: self._x_dim = "x" self._y_dim = "y" elif "longitude" in self._obj.dims and "latitude" in self._obj.dims: self._x_dim = "longitude" self._y_dim = "latitude" else: # look for coordinates with CF attributes for coord in self._obj.coords: # make sure to only look in 1D coordinates # that has the same dimension name as the coordinate if self._obj.coords[coord].dims != (coord,): continue if (self._obj.coords[coord].attrs.get("axis", "").upper() == "X") or ( self._obj.coords[coord].attrs.get("standard_name", "").lower() in ("longitude", "projection_x_coordinate") ): self._x_dim = coord elif (self._obj.coords[coord].attrs.get("axis", "").upper() == "Y") or ( self._obj.coords[coord].attrs.get("standard_name", "").lower() in ("latitude", "projection_y_coordinate") ): self._y_dim = coord # properties self._count: Optional[int] = None self._height: Optional[int] = None self._width: Optional[int] = None self._crs: Union[rasterio.crs.CRS, None, Literal[False]] = None self._gcps: Optional[list[GroundControlPoint]] = None @property def crs(self) -> Optional[rasterio.crs.CRS]: """:obj:`rasterio.crs.CRS`: Retrieve projection from :obj:`xarray.Dataset` | :obj:`xarray.DataArray` """ if self._crs is not None: return None if self._crs is False else self._crs # look in wkt attributes to avoid using # pyproj CRS if possible for performance for crs_attr in ("spatial_ref", "crs_wkt"): try: self._set_crs( self._obj.coords[self.grid_mapping].attrs[crs_attr], inplace=True, ) return self._crs except KeyError: pass # look in grid_mapping try: self._set_crs( pyproj.CRS.from_cf(self._obj.coords[self.grid_mapping].attrs), inplace=True, ) except (KeyError, pyproj.exceptions.CRSError): try: # look in attrs for 'crs' self._set_crs(self._obj.attrs["crs"], inplace=True) except KeyError: self._crs = False return None return self._crs def _get_obj(self, inplace: bool) -> Union[xarray.Dataset, xarray.DataArray]: """ Get the object to modify. Parameters ---------- inplace: bool If True, returns self. Returns ------- :obj:`xarray.Dataset` | :obj:`xarray.DataArray` """ if inplace: return self._obj obj_copy = self._obj.copy(deep=True) # preserve attribute information obj_copy.rio._x_dim = self._x_dim obj_copy.rio._y_dim = self._y_dim obj_copy.rio._width = self._width obj_copy.rio._height = self._height obj_copy.rio._crs = self._crs obj_copy.rio._gcps = self._gcps return obj_copy def set_crs( self, input_crs: Any, inplace: bool = True ) -> Union[xarray.Dataset, xarray.DataArray]: """ Set the CRS value for the Dataset/DataArray without modifying the dataset/data array. .. deprecated:: 0.15.8 It is recommended to use `rio.write_crs()` instead. This method will likely be removed in a future release. Parameters ---------- input_crs: object Anything accepted by `rasterio.crs.CRS.from_user_input`. inplace: bool, optional If True, it will write to the existing dataset. Default is False. Returns ------- :obj:`xarray.Dataset` | :obj:`xarray.DataArray`: Dataset with crs attribute. """ warnings.warn( "It is recommended to use 'rio.write_crs()' instead. 'rio.set_crs()' will likely" "be removed in a future release.", FutureWarning, stacklevel=2, ) return self._set_crs(input_crs, inplace=inplace) def _set_crs( self, input_crs: Any, inplace: bool = True ) -> Union[xarray.Dataset, xarray.DataArray]: """ Set the CRS value for the Dataset/DataArray without modifying the dataset/data array. Parameters ---------- input_crs: object Anything accepted by `rasterio.crs.CRS.from_user_input`. inplace: bool, optional If True, it will write to the existing dataset. Default is False. Returns ------- xarray.Dataset | xarray.DataArray Dataset with crs attribute. """ crs = crs_from_user_input(input_crs) obj = self._get_obj(inplace=inplace) obj.rio._crs = crs return obj @property def grid_mapping(self) -> str: """ str: The CF grid_mapping attribute. 'spatial_ref' is the default. """ grid_mapping = self._obj.encoding.get( "grid_mapping", self._obj.attrs.get("grid_mapping") ) if grid_mapping is not None: return grid_mapping grid_mapping = DEFAULT_GRID_MAP # search the dataset for the grid mapping name if hasattr(self._obj, "data_vars"): grid_mappings = set() for var in self._obj.data_vars: if not _has_spatial_dims(self._obj, var=var): continue var_grid_mapping = self._obj[var].encoding.get( "grid_mapping", self._obj[var].attrs.get("grid_mapping") ) if var_grid_mapping is not None: grid_mapping = var_grid_mapping grid_mappings.add(grid_mapping) if len(grid_mappings) > 1: raise RioXarrayError("Multiple grid mappings exist.") return grid_mapping def write_grid_mapping( self, grid_mapping_name: str = DEFAULT_GRID_MAP, inplace: bool = False ) -> Union[xarray.Dataset, xarray.DataArray]: """ Write the CF grid_mapping attribute to the encoding. Parameters ---------- grid_mapping_name: str, optional Name of the grid_mapping coordinate. inplace: bool, optional If True, it will write to the existing dataset. Default is False. Returns ------- :obj:`xarray.Dataset` | :obj:`xarray.DataArray`: Modified dataset with CF compliant CRS information. """ data_obj = self._get_obj(inplace=inplace) if hasattr(data_obj, "data_vars"): for var in data_obj.data_vars: try: x_dim, y_dim = _get_spatial_dims(data_obj, var=var) except MissingSpatialDimensionError: continue # remove grid_mapping from attributes if it exists # and update the grid_mapping in encoding new_attrs = dict(data_obj[var].attrs) new_attrs.pop("grid_mapping", None) data_obj[var].rio.update_encoding( {"grid_mapping": grid_mapping_name}, inplace=True ).rio.set_attrs(new_attrs, inplace=True).rio.set_spatial_dims( x_dim=x_dim, y_dim=y_dim, inplace=True ) # remove grid_mapping from attributes if it exists # and update the grid_mapping in encoding new_attrs = dict(data_obj.attrs) new_attrs.pop("grid_mapping", None) return data_obj.rio.update_encoding( {"grid_mapping": grid_mapping_name}, inplace=True ).rio.set_attrs(new_attrs, inplace=True) def write_crs( self, input_crs: Optional[Any] = None, grid_mapping_name: Optional[str] = None, inplace: bool = False, ) -> Union[xarray.Dataset, xarray.DataArray]: """ Write the CRS to the dataset in a CF compliant manner. .. warning:: The grid_mapping attribute is written to the encoding. Parameters ---------- input_crs: Any Anything accepted by `rasterio.crs.CRS.from_user_input`. grid_mapping_name: str, optional Name of the grid_mapping coordinate to store the CRS information in. Default is the grid_mapping name of the dataset. inplace: bool, optional If True, it will write to the existing dataset. Default is False. Returns ------- :obj:`xarray.Dataset` | :obj:`xarray.DataArray`: Modified dataset with CF compliant CRS information. Examples -------- Write the CRS of the current `xarray` object: >>> raster.rio.write_crs("epsg:4326", inplace=True) Write the CRS on a copy: >>> raster = raster.rio.write_crs("epsg:4326") """ if input_crs is not None: data_obj = self._set_crs(input_crs, inplace=inplace) else: data_obj = self._get_obj(inplace=inplace) # get original transform transform = self._cached_transform() # remove old grid maping coordinate if exists grid_mapping_name = ( self.grid_mapping if grid_mapping_name is None else grid_mapping_name ) try: del data_obj.coords[grid_mapping_name] except KeyError: pass if data_obj.rio.crs is None: raise MissingCRS( "CRS not found. Please set the CRS with 'rio.write_crs()'." ) # add grid mapping coordinate data_obj.coords[grid_mapping_name] = xarray.Variable((), 0) grid_map_attrs = {} if get_option(EXPORT_GRID_MAPPING): try: grid_map_attrs = pyproj.CRS.from_user_input(data_obj.rio.crs).to_cf() except KeyError: pass # spatial_ref is for compatibility with GDAL crs_wkt = data_obj.rio.crs.to_wkt() grid_map_attrs["spatial_ref"] = crs_wkt grid_map_attrs["crs_wkt"] = crs_wkt if transform is not None: grid_map_attrs["GeoTransform"] = " ".join( [str(item) for item in transform.to_gdal()] ) data_obj.coords[grid_mapping_name].rio.set_attrs(grid_map_attrs, inplace=True) # remove old crs if exists data_obj.attrs.pop("crs", None) return data_obj.rio.write_grid_mapping( grid_mapping_name=grid_mapping_name, inplace=True ) def estimate_utm_crs(self, datum_name: str = "WGS 84") -> rasterio.crs.CRS: """Returns the estimated UTM CRS based on the bounds of the dataset. .. versionadded:: 0.2 .. note:: Requires pyproj 3+ Parameters ---------- datum_name : str, optional The name of the datum to use in the query. Default is WGS 84. Returns ------- rasterio.crs.CRS """ if self.crs is None: raise RuntimeError("crs must be set to estimate UTM CRS.") # ensure using geographic coordinates if self.crs.is_geographic: # pylint: disable=no-member minx, miny, maxx, maxy = self.bounds(recalc=True) else: minx, miny, maxx, maxy = self.transform_bounds("EPSG:4326", recalc=True) x_center = numpy.mean([minx, maxx]).item() y_center = numpy.mean([miny, maxy]).item() utm_crs_list = query_utm_crs_info( datum_name=datum_name, area_of_interest=AreaOfInterest( west_lon_degree=x_center, south_lat_degree=y_center, east_lon_degree=x_center, north_lat_degree=y_center, ), ) try: return CRS.from_epsg(utm_crs_list[0].code) except IndexError: raise RuntimeError("Unable to determine UTM CRS") from None def _cached_transform(self) -> Optional[Affine]: """ Get the transform from: 1. The GeoTransform metatada property in the grid mapping 2. The transform attribute. """ try: # look in grid_mapping transform = numpy.fromstring( self._obj.coords[self.grid_mapping].attrs["GeoTransform"], sep=" " ) # Calling .tolist() to assure the arguments are Python float and JSON serializable return Affine.from_gdal(*transform.tolist()) except KeyError: try: return Affine(*self._obj.attrs["transform"][:6]) except KeyError: pass return None def write_transform( self, transform: Optional[Affine] = None, grid_mapping_name: Optional[str] = None, inplace: bool = False, ) -> Union[xarray.Dataset, xarray.DataArray]: """ .. versionadded:: 0.0.30 Write the GeoTransform to the dataset where GDAL can read it in. https://gdal.org/drivers/raster/netcdf.html#georeference Parameters ---------- transform: affine.Affine, optional The transform of the dataset. If not provided, it will be calculated. grid_mapping_name: str, optional Name of the grid_mapping coordinate to store the transform information in. Default is the grid_mapping name of the dataset. inplace: bool, optional If True, it will write to the existing dataset. Default is False. Returns ------- :obj:`xarray.Dataset` | :obj:`xarray.DataArray`: Modified dataset with Geo Transform written. """ transform = transform or self.transform(recalc=True) data_obj = self._get_obj(inplace=inplace) # delete the old attribute to prevent confusion data_obj.attrs.pop("transform", None) grid_mapping_name = ( self.grid_mapping if grid_mapping_name is None else grid_mapping_name ) try: grid_map_attrs = data_obj.coords[grid_mapping_name].attrs.copy() except KeyError: data_obj.coords[grid_mapping_name] = xarray.Variable((), 0) grid_map_attrs = data_obj.coords[grid_mapping_name].attrs.copy() grid_map_attrs["GeoTransform"] = " ".join( [str(item) for item in transform.to_gdal()] ) data_obj.coords[grid_mapping_name].rio.set_attrs(grid_map_attrs, inplace=True) return data_obj.rio.write_grid_mapping( grid_mapping_name=grid_mapping_name, inplace=True ) def transform(self, recalc: bool = False) -> Affine: """ Parameters ---------- recalc: bool, optional If True, it will re-calculate the transform instead of using the cached transform. Returns ------- :obj:`affine.Affine`: The affine of the :obj:`xarray.Dataset` | :obj:`xarray.DataArray` """ transform = self._cached_transform() if transform and ( not transform.is_rectilinear or _affine_has_rotation(transform) ): if recalc: warnings.warn( "Transform that is non-rectilinear or with rotation found. " "Unable to recalculate." ) return transform try: src_left, _, _, src_top = self._unordered_bounds(recalc=recalc) src_resolution_x, src_resolution_y = self.resolution(recalc=recalc) except (DimensionMissingCoordinateError, DimensionError): return Affine.identity() if transform is None else transform return Affine.translation(src_left, src_top) * Affine.scale( src_resolution_x, src_resolution_y ) def write_coordinate_system( self, inplace: bool = False ) -> Union[xarray.Dataset, xarray.DataArray]: """ Write the coordinate system CF metadata. .. versionadded:: 0.0.30 Parameters ---------- inplace: bool, optional If True, it will write to the existing dataset. Default is False. Returns ------- :obj:`xarray.Dataset` | :obj:`xarray.DataArray`: The dataset with the CF coordinate system attributes added. """ data_obj = self._get_obj(inplace=inplace) # add metadata to x,y coordinates is_projected = data_obj.rio.crs and data_obj.rio.crs.is_projected is_geographic = data_obj.rio.crs and data_obj.rio.crs.is_geographic x_coord_attrs = dict(data_obj.coords[self.x_dim].attrs) x_coord_attrs["axis"] = "X" y_coord_attrs = dict(data_obj.coords[self.y_dim].attrs) y_coord_attrs["axis"] = "Y" if is_projected: units = None if hasattr(data_obj.rio.crs, "linear_units_factor"): unit_factor = data_obj.rio.crs.linear_units_factor[-1] if unit_factor != 1: units = f"{unit_factor} metre" else: units = "metre" # X metadata x_coord_attrs["long_name"] = "x coordinate of projection" x_coord_attrs["standard_name"] = "projection_x_coordinate" if units: x_coord_attrs["units"] = units # Y metadata y_coord_attrs["long_name"] = "y coordinate of projection" y_coord_attrs["standard_name"] = "projection_y_coordinate" if units: y_coord_attrs["units"] = units elif is_geographic: # X metadata x_coord_attrs["long_name"] = "longitude" x_coord_attrs["standard_name"] = "longitude" x_coord_attrs["units"] = "degrees_east" # Y metadata y_coord_attrs["long_name"] = "latitude" y_coord_attrs["standard_name"] = "latitude" y_coord_attrs["units"] = "degrees_north" data_obj.coords[self.y_dim].attrs = y_coord_attrs data_obj.coords[self.x_dim].attrs = x_coord_attrs return data_obj def set_attrs( self, new_attrs: dict, inplace: bool = False ) -> Union[xarray.Dataset, xarray.DataArray]: """ Set the attributes of the dataset/dataarray and reset rioxarray properties to re-search for them. Parameters ---------- new_attrs: dict A dictionary of new attributes. inplace: bool, optional If True, it will write to the existing dataset. Default is False. Returns ------- :obj:`xarray.Dataset` | :obj:`xarray.DataArray`: Modified dataset with new attributes. """ data_obj = self._get_obj(inplace=inplace) # set the attributes data_obj.attrs = new_attrs # reset rioxarray properties depending # on attributes to be generated data_obj.rio._nodata = None data_obj.rio._crs = None return data_obj def update_attrs( self, new_attrs: dict, inplace: bool = False ) -> Union[xarray.Dataset, xarray.DataArray]: """ Update the attributes of the dataset/dataarray and reset rioxarray properties to re-search for them. Parameters ---------- new_attrs: dict A dictionary of new attributes to update with. inplace: bool, optional If True, it will write to the existing dataset. Default is False. Returns ------- :obj:`xarray.Dataset` | :obj:`xarray.DataArray`: Modified dataset with updated attributes. """ data_attrs = dict(self._obj.attrs) data_attrs.update(**new_attrs) return self.set_attrs(data_attrs, inplace=inplace) def set_encoding( self, new_encoding: dict, inplace: bool = False ) -> Union[xarray.Dataset, xarray.DataArray]: """ Set the encoding of the dataset/dataarray and reset rioxarray properties to re-search for them. .. versionadded:: 0.4 Parameters ---------- new_encoding: dict A dictionary for encoding. inplace: bool, optional If True, it will write to the existing dataset. Default is False. Returns ------- :obj:`xarray.Dataset` | :obj:`xarray.DataArray`: Modified dataset with new attributes. """ data_obj = self._get_obj(inplace=inplace) # set the attributes data_obj.encoding = new_encoding # reset rioxarray properties depending # on attributes to be generated data_obj.rio._nodata = None data_obj.rio._crs = None return data_obj def update_encoding( self, new_encoding: dict, inplace: bool = False ) -> Union[xarray.Dataset, xarray.DataArray]: """ Update the encoding of the dataset/dataarray and reset rioxarray properties to re-search for them. .. versionadded:: 0.4 Parameters ---------- new_encoding: dict A dictionary with encoding values to update with. inplace: bool, optional If True, it will write to the existing dataset. Default is False. Returns ------- :obj:`xarray.Dataset` | :obj:`xarray.DataArray`: Modified dataset with updated attributes. """ data_encoding = dict(self._obj.encoding) data_encoding.update(**new_encoding) return self.set_encoding(data_encoding, inplace=inplace) def set_spatial_dims( self, x_dim: str, y_dim: str, inplace: bool = True ) -> Union[xarray.Dataset, xarray.DataArray]: """ This sets the spatial dimensions of the dataset. Parameters ---------- x_dim: str The name of the x dimension. y_dim: str The name of the y dimension. inplace: bool, optional If True, it will modify the dataframe in place. Otherwise it will return a modified copy. Returns ------- :obj:`xarray.Dataset` | :obj:`xarray.DataArray`: Dataset with spatial dimensions set. """ data_obj = self._get_obj(inplace=inplace) if x_dim in data_obj.dims: data_obj.rio._x_dim = x_dim else: raise MissingSpatialDimensionError( f"x dimension ({x_dim}) not found.{_get_data_var_message(data_obj)}" ) if y_dim in data_obj.dims: data_obj.rio._y_dim = y_dim else: raise MissingSpatialDimensionError( f"y dimension ({y_dim}) not found.{_get_data_var_message(data_obj)}" ) return data_obj @property def x_dim(self) -> Hashable: """Hashable: The dimension for the X-axis.""" if self._x_dim is not None: return self._x_dim raise MissingSpatialDimensionError( "x dimension not found. 'rio.set_spatial_dims()' or " "using 'rename()' to change the dimension name to 'x' can address this." f"{_get_data_var_message(self._obj)}" ) @property def y_dim(self) -> Hashable: """Hashable: The dimension for the Y-axis.""" if self._y_dim is not None: return self._y_dim raise MissingSpatialDimensionError( "y dimension not found. 'rio.set_spatial_dims()' or " "using 'rename()' to change the dimension name to 'y' can address this." f"{_get_data_var_message(self._obj)}" ) @property def width(self) -> int: """int: Returns the width of the dataset (x dimension size)""" if self._width is not None: return self._width self._width = self._obj[self.x_dim].size return self._width @property def height(self) -> int: """int: Returns the height of the dataset (y dimension size)""" if self._height is not None: return self._height self._height = self._obj[self.y_dim].size return self._height @property def shape(self) -> tuple[int, int]: """tuple(int, int): Returns the shape (height, width)""" return (self.height, self.width) def _check_dimensions(self) -> Optional[str]: """ This function validates that the dimensions 2D/3D and they are are in the proper order. Returns ------- str or None: Name extra dimension. """ extra_dims = tuple(set(list(self._obj.dims)) - {self.x_dim, self.y_dim}) if len(extra_dims) > 1: raise TooManyDimensions( "Only 2D and 3D data arrays supported." f"{_get_data_var_message(self._obj)}" ) if extra_dims and self._obj.dims != (extra_dims[0], self.y_dim, self.x_dim): dim_info: tuple = (extra_dims[0], self.y_dim, self.x_dim) raise InvalidDimensionOrder( f"Invalid dimension order. Expected order: {dim_info}. " f"You can use `DataArray.transpose{dim_info}`" " to reorder your dimensions." f"{_get_data_var_message(self._obj)}" ) if not extra_dims and self._obj.dims != (self.y_dim, self.x_dim): dim_info = (self.y_dim, self.x_dim) raise InvalidDimensionOrder( f"Invalid dimension order. Expected order: {dim_info}. " f"You can use `DataArray.transpose{dim_info}`" " to reorder your dimensions." f"{_get_data_var_message(self._obj)}" ) return str(extra_dims[0]) if extra_dims else None @property def count(self) -> int: """int: Returns the band count (z dimension size)""" if self._count is not None: return self._count extra_dim = self._check_dimensions() self._count = 1 if extra_dim is not None: self._count = self._obj[extra_dim].size return self._count def _internal_bounds(self) -> tuple[float, float, float, float]: """Determine the internal bounds of the `xarray.DataArray`""" if self.x_dim not in self._obj.coords: raise DimensionMissingCoordinateError(f"{self.x_dim} missing coordinates.") if self.y_dim not in self._obj.coords: raise DimensionMissingCoordinateError(f"{self.y_dim} missing coordinates.") try: left = float(self._obj[self.x_dim][0]) right = float(self._obj[self.x_dim][-1]) top = float(self._obj[self.y_dim][0]) bottom = float(self._obj[self.y_dim][-1]) except IndexError: raise NoDataInBounds( "Unable to determine bounds from coordinates." f"{_get_data_var_message(self._obj)}" ) from None return left, bottom, right, top def resolution(self, recalc: bool = False) -> tuple[float, float]: """ Determine if the resolution of the grid. If the transformation has rotation, the sign of the resolution is lost. Parameters ---------- recalc: bool, optional Will force the resolution to be recalculated instead of using the transform attribute. Returns ------- x_resolution, y_resolution: float The resolution of the `xarray.DataArray` | `xarray.Dataset` """ transform = self._cached_transform() if ( not recalc or self.width == 1 or self.height == 1 ) and transform is not None: return _resolution(transform) # if the coordinates of the spatial dimensions are missing # use the cached transform resolution try: left, bottom, right, top = self._internal_bounds() except DimensionMissingCoordinateError: if transform is None: raise return _resolution(transform) if self.width == 1 or self.height == 1: raise OneDimensionalRaster( "Only 1 dimenional array found. Cannot calculate the resolution." f"{_get_data_var_message(self._obj)}" ) resolution_x = (right - left) / (self.width - 1) resolution_y = (bottom - top) / (self.height - 1) return resolution_x, resolution_y def _unordered_bounds( self, recalc: bool = False ) -> tuple[float, float, float, float]: """ Unordered bounds. Parameters ---------- recalc: bool, optional Will force the bounds to be recalculated instead of using the transform attribute. Returns ------- left, bottom, right, top: float Outermost coordinates of the `xarray.DataArray` | `xarray.Dataset`. """ resolution_x, resolution_y = self.resolution(recalc=recalc) try: # attempt to get bounds from xarray coordinate values left, bottom, right, top = self._internal_bounds() left -= resolution_x / 2.0 right += resolution_x / 2.0 top -= resolution_y / 2.0 bottom += resolution_y / 2.0 except DimensionMissingCoordinateError as error: transform = self._cached_transform() if not transform: raise RioXarrayError("Transform not able to be determined.") from error left = transform.c top = transform.f right = left + resolution_x * self.width bottom = top + resolution_y * self.height return left, bottom, right, top def bounds(self, *, recalc: bool = False) -> tuple[float, float, float, float]: """ Parameters ---------- recalc: bool, optional Will force the bounds to be recalculated instead of using the transform attribute. Returns ------- left, bottom, right, top: float Outermost coordinates of the `xarray.DataArray` | `xarray.Dataset`. """ minx, miny, maxx, maxy = self._unordered_bounds(recalc=recalc) resolution_x, resolution_y = self.resolution(recalc=recalc) return _order_bounds( minx=minx, miny=miny, maxx=maxx, maxy=maxy, resolution_x=resolution_x, resolution_y=resolution_y, ) def isel_window( self, window: rasterio.windows.Window, *, pad: bool = False ) -> Union[xarray.Dataset, xarray.DataArray]: """ Use a rasterio.windows.Window to select a subset of the data. .. versionadded:: 0.6.0 pad .. warning:: Float indices are converted to integers. Parameters ---------- window: :class:`rasterio.windows.Window` The window of the dataset to read. pad: bool, default=False Set to True to expand returned DataArray to dimensions of the window Returns ------- :obj:`xarray.Dataset` | :obj:`xarray.DataArray`: The data in the window. """ (row_start, row_stop), (col_start, col_stop) = window.toranges() row_start = 0 if row_start < 0 else math.floor(row_start) row_stop = 0 if row_stop < 0 else math.ceil(row_stop) col_start = 0 if col_start < 0 else math.floor(col_start) col_stop = 0 if col_stop < 0 else math.ceil(col_stop) row_slice = slice(int(row_start), int(row_stop)) col_slice = slice(int(col_start), int(col_stop)) array_subset = ( self._obj.isel({self.y_dim: row_slice, self.x_dim: col_slice}) .copy() # this is to prevent sharing coordinates with the original dataset .rio.set_spatial_dims(x_dim=self.x_dim, y_dim=self.y_dim, inplace=True) .rio.write_transform( transform=rasterio.windows.transform( rasterio.windows.Window.from_slices( rows=row_slice, cols=col_slice, width=self.width, height=self.height, ), self.transform(recalc=True), ), inplace=True, ) ) if pad: return array_subset.rio.pad_box( *rasterio.windows.bounds(window, self.transform(recalc=True)) ) return array_subset def slice_xy( self, minx: float, miny: float, maxx: float, maxy: float, ) -> Union[xarray.Dataset, xarray.DataArray]: """Slice the array by x,y bounds. Parameters ---------- minx: float Minimum bound for x coordinate. miny: float Minimum bound for y coordinate. maxx: float Maximum bound for x coordinate. maxy: float Maximum bound for y coordinate. Returns ------- :obj:`xarray.Dataset` | :obj:`xarray.DataArray`: The data in the slice. """ left, bottom, right, top = self._internal_bounds() if top > bottom: y_slice = slice(maxy, miny) else: y_slice = slice(miny, maxy) if left > right: x_slice = slice(maxx, minx) else: x_slice = slice(minx, maxx) subset = ( self._obj.sel({self.x_dim: x_slice, self.y_dim: y_slice}) .copy() # this is to prevent sharing coordinates with the original dataset .rio.set_spatial_dims(x_dim=self.x_dim, y_dim=self.y_dim, inplace=True) .rio.write_transform(inplace=True) ) return subset def transform_bounds( self, dst_crs: Any, *, densify_pts: int = 21, recalc: bool = False ) -> tuple[float, float, float, float]: """Transform bounds from src_crs to dst_crs. Optionally densifying the edges (to account for nonlinear transformations along these edges) and extracting the outermost bounds. Note: this does not account for the antimeridian. Parameters ---------- dst_crs: str, :obj:`rasterio.crs.CRS`, or dict Target coordinate reference system. densify_pts: uint, optional Number of points to add to each edge to account for nonlinear edges produced by the transform process. Large numbers will produce worse performance. Default: 21 (gdal default). recalc: bool, optional Will force the bounds to be recalculated instead of using the transform attribute. Returns ------- left, bottom, right, top: float Outermost coordinates in target coordinate reference system. """ return rasterio.warp.transform_bounds( self.crs, dst_crs, *self.bounds(recalc=recalc), densify_pts=densify_pts ) def write_gcps( self, gcps: Iterable[GroundControlPoint], gcp_crs: Any, *, grid_mapping_name: Optional[str] = None, inplace: bool = False, ) -> Union[xarray.Dataset, xarray.DataArray]: """ Write the GroundControlPoints to the dataset. https://rasterio.readthedocs.io/en/latest/topics/georeferencing.html#ground-control-points Parameters ---------- gcp: list of :obj:`rasterio.control.GroundControlPoint` The Ground Control Points to integrate to the dataset. gcp_crs: str, :obj:`rasterio.crs.CRS`, or dict Coordinate reference system for the GCPs. grid_mapping_name: str, optional Name of the grid_mapping coordinate to store the GCPs information in. Default is the grid_mapping name of the dataset. inplace: bool, optional If True, it will write to the existing dataset. Default is False. Returns ------- :obj:`xarray.Dataset` | :obj:`xarray.DataArray`: Modified dataset with Ground Control Points written. """ grid_mapping_name = ( self.grid_mapping if grid_mapping_name is None else grid_mapping_name ) data_obj = self._get_obj(inplace=True) if gcp_crs: data_obj = data_obj.rio.write_crs( gcp_crs, grid_mapping_name=grid_mapping_name, inplace=inplace ) try: grid_map_attrs = data_obj.coords[grid_mapping_name].attrs.copy() except KeyError: data_obj.coords[grid_mapping_name] = xarray.Variable((), 0) grid_map_attrs = data_obj.coords[grid_mapping_name].attrs.copy() geojson_gcps = _convert_gcps_to_geojson(gcps) grid_map_attrs["gcps"] = json.dumps(geojson_gcps) data_obj.coords[grid_mapping_name].rio.set_attrs(grid_map_attrs, inplace=True) self._gcps = list(gcps) return data_obj def get_gcps(self) -> Optional[list[GroundControlPoint]]: """ Get the GroundControlPoints from the dataset. https://rasterio.readthedocs.io/en/latest/topics/georeferencing.html#ground-control-points Returns ------- list of :obj:`rasterio.control.GroundControlPoint` or None The Ground Control Points from the dataset or None if not applicable """ if self._gcps is not None: return self._gcps try: geojson_gcps = json.loads(self._obj.coords[self.grid_mapping].attrs["gcps"]) except (KeyError, AttributeError): return None def _parse_gcp(gcp) -> GroundControlPoint: x, y, *z = gcp["geometry"]["coordinates"] z = z[0] if z else None return GroundControlPoint( x=x, y=y, z=z, row=gcp["properties"]["row"], col=gcp["properties"]["col"], id=gcp["properties"]["id"], info=gcp["properties"]["info"], ) self._gcps = [_parse_gcp(gcp) for gcp in geojson_gcps["features"]] return self._gcps def _convert_gcps_to_geojson( gcps: Iterable[GroundControlPoint], ) -> dict: """ Convert GCPs to geojson. Parameters ---------- gcps: The list of GroundControlPoint instances. Returns ------- A FeatureCollection dict. """ def _gcp_coordinates(gcp): if gcp.z is None: return [gcp.x, gcp.y] return [gcp.x, gcp.y, gcp.z] features = [ { "type": "Feature", "properties": { "id": gcp.id, "info": gcp.info, "row": gcp.row, "col": gcp.col, }, "geometry": {"type": "Point", "coordinates": _gcp_coordinates(gcp)}, } for gcp in gcps ] return {"type": "FeatureCollection", "features": features} rioxarray-0.18.2/rioxarray/xarray_plugin.py000066400000000000000000000046111474250745200211140ustar00rootroot00000000000000""" This module allows for open_rasterio to be used with the xarray open methods through a backend entrypoint. """ # pylint: disable=arguments-differ import os.path import xarray from . import _io from .exceptions import RioXarrayError CAN_OPEN_EXTS = { "asc", "geotif", "geotiff", "img", "j2k", "jp2", "jpg", "jpeg", "png", "tif", "tiff", "vrt", } class RasterioBackend(xarray.backends.common.BackendEntrypoint): """ Requires xarray 0.18+ .. versionadded:: 0.4 """ # pylint: disable=abstract-method def open_dataset( self, filename_or_obj, *, drop_variables=None, parse_coordinates=None, lock=None, masked=False, mask_and_scale=True, variable=None, group=None, default_name="band_data", decode_coords="all", decode_times=True, decode_timedelta=None, band_as_variable=False, open_kwargs=None, ): if decode_coords != "all": raise RioXarrayError("Only 'all' is supported for 'decode_coords'.") if open_kwargs is None: open_kwargs = {} rds = _io.open_rasterio( filename_or_obj, parse_coordinates=parse_coordinates, cache=False, lock=lock, masked=masked, mask_and_scale=mask_and_scale, variable=variable, group=group, default_name=default_name, decode_times=decode_times, decode_timedelta=decode_timedelta, band_as_variable=band_as_variable, **open_kwargs, ) if isinstance(rds, xarray.DataArray): dataset = rds.to_dataset() dataset.set_close(rds._close) rds = dataset if isinstance(rds, list): for dataset in rds: dataset.close() raise RioXarrayError( "Multiple resolution sets found. " "Use 'variable' or 'group' to filter." ) if drop_variables is not None: rds = rds.drop_vars(drop_variables) return rds def guess_can_open(self, filename_or_obj): # pylint: disable=arguments-renamed try: _, ext = os.path.splitext(filename_or_obj) except TypeError: return False return ext[1:].lower() in CAN_OPEN_EXTS rioxarray-0.18.2/setup.py000066400000000000000000000000771474250745200153520ustar00rootroot00000000000000"""The setup script.""" from setuptools import setup setup() rioxarray-0.18.2/test/000077500000000000000000000000001474250745200146135ustar00rootroot00000000000000rioxarray-0.18.2/test/__init__.py000066400000000000000000000000001474250745200167120ustar00rootroot00000000000000rioxarray-0.18.2/test/conftest.py000066400000000000000000000103651474250745200170170ustar00rootroot00000000000000import os from functools import partial import pytest import rasterio import xarray from numpy.testing import assert_almost_equal, assert_array_equal from packaging import version import rioxarray from rioxarray.raster_array import UNWANTED_RIO_ATTRS xarray.set_options(warn_for_unclosed_files=True) TEST_DATA_DIR = os.path.join(os.path.dirname(__file__), "test_data") TEST_INPUT_DATA_DIR = os.path.join(TEST_DATA_DIR, "input") TEST_COMPARE_DATA_DIR = os.path.join(TEST_DATA_DIR, "compare") RASTERIO_GE_14 = version.parse(rasterio.__version__) >= version.parse("1.4.0") RASTERIO_GE_143 = version.parse(rasterio.__version__) >= version.parse("1.4.3") GDAL_GE_36 = version.parse(rasterio.__gdal_version__) >= version.parse("3.6.0") GDAL_GE_361 = version.parse(rasterio.__gdal_version__) >= version.parse("3.6.1") GDAL_GE_364 = version.parse(rasterio.__gdal_version__) >= version.parse("3.6.4") # xarray.testing.assert_equal(input_xarray, compare_xarray) def _assert_attrs_equal(input_xr, compare_xr, decimal_precision): """check attrubutes that matter""" for attr in compare_xr.attrs: if attr == "transform": assert_almost_equal( tuple(input_xr.rio._cached_transform())[:6], compare_xr.attrs[attr][:6], decimal=decimal_precision, ) elif ( attr != "_FillValue" and attr not in UNWANTED_RIO_ATTRS + ( "creation_date", "grid_mapping", "coordinates", "crs", ) and "#" not in attr ): try: assert_almost_equal( input_xr.attrs[attr], compare_xr.attrs[attr], decimal=decimal_precision, ) except (TypeError, ValueError): assert input_xr.attrs[attr] == compare_xr.attrs[attr] def _assert_xarrays_equal( input_xarray, compare_xarray, precision=7, skip_xy_check=False ): _assert_attrs_equal(input_xarray, compare_xarray, precision) if hasattr(input_xarray, "variables"): # check coordinates for coord in input_xarray.coords: if coord in "xy": if not skip_xy_check: assert_almost_equal( input_xarray[coord].values, compare_xarray[coord].values, decimal=precision, ) else: assert ( input_xarray[coord].values == compare_xarray[coord].values ).all() for var in input_xarray.rio.vars: try: _assert_xarrays_equal( input_xarray[var], compare_xarray[var], precision=precision ) except AssertionError: print(f"Error with variable {var}") raise else: try: assert_almost_equal( input_xarray.values, compare_xarray.values, decimal=precision ) except AssertionError: where_diff = input_xarray.values != compare_xarray.values print(input_xarray.values[where_diff]) print(compare_xarray.values[where_diff]) raise _assert_attrs_equal(input_xarray, compare_xarray, precision) compare_fill_value = compare_xarray.attrs.get( "_FillValue", compare_xarray.encoding.get("_FillValue") ) input_fill_value = input_xarray.attrs.get( "_FillValue", input_xarray.encoding.get("_FillValue") ) assert_array_equal([input_fill_value], [compare_fill_value]) assert input_xarray.rio.grid_mapping == compare_xarray.rio.grid_mapping for unwanted_attr in UNWANTED_RIO_ATTRS + ("crs", "transform"): assert unwanted_attr not in input_xarray.attrs open_rasterio_engine = partial(xarray.open_dataset, engine="rasterio") @pytest.fixture( params=[ rioxarray.open_rasterio, open_rasterio_engine, ] ) def open_rasterio(request): return request.param def _ensure_dataset(rds): # https://github.com/OSGeo/gdal/issues/7695 if GDAL_GE_364 and isinstance(rds, xarray.DataArray): rds = rds.to_dataset() return rds rioxarray-0.18.2/test/integration/000077500000000000000000000000001474250745200171365ustar00rootroot00000000000000rioxarray-0.18.2/test/integration/__init__.py000066400000000000000000000000001474250745200212350ustar00rootroot00000000000000rioxarray-0.18.2/test/integration/test_integration__io.py000066400000000000000000001535241474250745200237320ustar00rootroot00000000000000import contextlib import io import itertools import logging import os import pickle import shutil import sys import tempfile import warnings from unittest.mock import patch import dask.array import numpy import pytest import rasterio import xarray from affine import Affine from numpy.testing import assert_almost_equal, assert_array_equal from packaging import version from rasterio.control import GroundControlPoint from rasterio.crs import CRS from rasterio.errors import NotGeoreferencedWarning from rasterio.transform import from_origin from rasterio.warp import calculate_default_transform from xarray import DataArray from xarray.testing import assert_allclose, assert_equal, assert_identical import rioxarray from rioxarray._io import build_subdataset_filter from rioxarray.rioxarray import DEFAULT_GRID_MAP from test.conftest import ( GDAL_GE_36, GDAL_GE_364, TEST_COMPARE_DATA_DIR, TEST_INPUT_DATA_DIR, _assert_xarrays_equal, _ensure_dataset, ) from test.integration.test_integration_rioxarray import ( _check_rio_gcps, _create_gdal_gcps, ) def _assert_tmmx_source(source): # https://github.com/OSGeo/gdal/issues/7695 if GDAL_GE_364: assert source.endswith("tmmx_20190121.nc") else: assert source.startswith("netcdf:") and source.endswith( "tmmx_20190121.nc:air_temperature" ) @pytest.mark.parametrize( "subdataset, variable, group, match", [ ( "netcdf:../../test/test_data/input/PLANET_SCOPE_3D.nc:blue", "green", None, False, ), ( "netcdf:../../test/test_data/input/PLANET_SCOPE_3D.nc:blue", "blue", None, True, ), ( "netcdf:../../test/test_data/input/PLANET_SCOPE_3D.nc:blue1", "blue", None, False, ), ( "netcdf:../../test/test_data/input/PLANET_SCOPE_3D.nc:1blue", "blue", None, False, ), ( "netcdf:../../test/test_data/input/PLANET_SCOPE_3D.nc:blue", "blue", "gr", False, ), ( 'HDF4_EOS:EOS_GRID:"./modis/MOD09GQ.A2017290.h11v04.006.NRT.hdf"' ":MODIS_Grid_2D:sur_refl_b01_1", ["sur_refl_b01_1"], None, True, ), ( 'HDF4_EOS:EOS_GRID:"./modis/MOD09GQ.A2017290.h11v04.006.NRT.hdf"' ":MODIS_Grid_2D:sur_refl_b01_1", None, ["MODIS_Grid_2D"], True, ), ( 'HDF4_EOS:EOS_GRID:"./modis/MOD09GQ.A2017290.h11v04.006.NRT.hdf"' ":MODIS_Grid_2D:sur_refl_b01_1", ("sur_refl_b01_1",), ("MODIS_Grid_2D",), True, ), ( 'HDF4_EOS:EOS_GRID:"./modis/MOD09GQ.A2017290.h11v04.006.NRT.hdf"' ":MODIS_Grid_2D:sur_refl_b01_1", "blue", "gr", False, ), ( 'HDF4_EOS:EOS_GRID:"./modis/MOD09GQ.A2017290.h11v04.006.NRT.hdf"' ":MODIS_Grid_2D:sur_refl_b01_1", "sur_refl_b01_1", "gr", False, ), ( 'HDF4_EOS:EOS_GRID:"./modis/MOD09GQ.A2017290.h11v04.006.NRT.hdf"' ":MODIS_Grid_2D:sur_refl_b01_1", None, "gr", False, ), ( 'HDF4_EOS:EOS_GRID:"./modis/MOD09GQ.A2017290.h11v04.006.NRT.hdf"' "://MODIS_Grid_2D://sur_refl_b01_1", "sur_refl_b01_1", None, True, ), ( 'HDF4_EOS:EOS_GRID:"./modis/MOD09GQ.A2017290.h11v04.006.NRT.hdf"' "://MODIS_Grid_2D://sur_refl_b01_1", None, "MODIS_Grid_2D", True, ), ( 'HDF4_EOS:EOS_GRID:"./modis/MOD09GQ.A2017290.h11v04.006.NRT.hdf"' "://MODIS_Grid_2D://sur_refl_b01_1", "sur_refl_b01_1", "MODIS_Grid_2D", True, ), ( 'HDF4_EOS:EOS_GRID:"./modis/MOD09GQ.A2017290.h11v04.006.NRT.hdf"' "://MODIS_Grid_2D://sur_refl_b01_1", "blue", "gr", False, ), ( 'HDF4_EOS:EOS_GRID:"./modis/MOD09GQ.A2017290.h11v04.006.NRT.hdf"' "://MODIS_Grid_2D://sur_refl_b01_1", "sur_refl_b01_1", "gr", False, ), ( 'HDF4_EOS:EOS_GRID:"./modis/MOD09GQ.A2017290.h11v04.006.NRT.hdf"' "://MODIS_Grid_2D://sur_refl_b01_1", None, "gr", False, ), ( "netcdf:S5P_NRTI_L2__NO2____20190513T181819_20190513T182319_08191_" "01_010301_20190513T185033.nc:/PRODUCT/tm5_constant_a", None, "PRODUCT", True, ), ( "netcdf:S5P_NRTI_L2__NO2____20190513T181819_20190513T182319_08191_" "01_010301_20190513T185033.nc:/PRODUCT/tm5_constant_a", "tm5_constant_a", "PRODUCT", True, ), ( "netcdf:S5P_NRTI_L2__NO2____20190513T181819_20190513T182319_08191_" "01_010301_20190513T185033.nc:/PRODUCT/tm5_constant_a", "tm5_constant_a", "/PRODUCT", True, ), ], ) def test_build_subdataset_filter(subdataset, variable, group, match): assert ( build_subdataset_filter(group, variable).search(subdataset) is not None ) == match def test_open_variable_filter(open_rasterio): with open_rasterio( os.path.join(TEST_INPUT_DATA_DIR, "PLANET_SCOPE_3D.nc"), variable=["blue"] ) as rds: assert list(rds.data_vars) == ["blue"] def test_open_group_filter__missing(open_rasterio): with open_rasterio( os.path.join(TEST_INPUT_DATA_DIR, "PLANET_SCOPE_3D.nc"), variable="blue", group=["non-existent"], ) as rds: assert list(rds.data_vars) == [] def test_open_multiple_resolution(): rds_list = rioxarray.open_rasterio( os.path.join( TEST_INPUT_DATA_DIR, "MOD09GA.A2008296.h14v17.006.2015181011753.hdf" ) ) assert isinstance(rds_list, list) assert len(rds_list) == 2 assert rds_list[0].sizes == {"y": 1200, "x": 1200, "band": 1} assert rds_list[1].sizes == {"y": 2400, "x": 2400, "band": 1} for rds in rds_list: assert rds.attrs["SHORTNAME"] == "MOD09GA" rds.close() def test_open_group_filter(open_rasterio): with open_rasterio( os.path.join( TEST_INPUT_DATA_DIR, "MOD09GA.A2008296.h14v17.006.2015181011753.hdf" ), group="MODIS_Grid_500m_2D", ) as rds: assert sorted(rds.data_vars) == [ "QC_500m_1", "iobs_res_1", "num_observations_500m", "obscov_500m_1", "sur_refl_b01_1", "sur_refl_b02_1", "sur_refl_b03_1", "sur_refl_b04_1", "sur_refl_b05_1", "sur_refl_b06_1", "sur_refl_b07_1", ] def test_open_group_load_attrs(open_rasterio): with open_rasterio( os.path.join( TEST_INPUT_DATA_DIR, "MOD09GA.A2008296.h14v17.006.2015181011753.hdf" ), mask_and_scale=False, variable="sur_refl_b05_1", ) as rds: attrs = rds["sur_refl_b05_1"].attrs assert sorted(attrs) == [ "Nadir Data Resolution", "_FillValue", "add_offset", "add_offset_err", "calibrated_nt", "long_name", "scale_factor", "scale_factor_err", "units", "valid_range", ] assert attrs["long_name"] == "500m Surface Reflectance Band 5 - first layer" assert attrs["units"] == "reflectance" assert attrs["_FillValue"] == -28672.0 assert rds["sur_refl_b05_1"].encoding["grid_mapping"] == "spatial_ref" def test_open_rasterio_mask_chunk_clip(): with rioxarray.open_rasterio( os.path.join(TEST_COMPARE_DATA_DIR, "small_dem_3m_merged.tif"), masked=True, chunks=True, default_name="dem", ) as xdi: if isinstance(xdi, xarray.Dataset): xdi = xdi.dem assert xdi.name == "dem" assert str(xdi.dtype) == "float32" assert str(xdi.data.dtype) == "float32" assert str(type(xdi.data)) == "" assert xdi.chunks == ((1,), (245,), (574,)) assert numpy.isnan(xdi.values).sum() == 52119 test_encoding = dict(xdi.encoding) assert test_encoding.pop("source").endswith("small_dem_3m_merged.tif") assert test_encoding == { "_FillValue": 0.0, "grid_mapping": "spatial_ref", "dtype": "uint16", "rasterio_dtype": "uint16", } attrs = dict(xdi.attrs) assert_almost_equal( tuple(xdi.rio._cached_transform())[:6], (3.0, 0.0, 425047.68381405267, 0.0, -3.0, 4615780.040546387), ) assert attrs == { "AREA_OR_POINT": "Area", "add_offset": 0.0, "scale_factor": 1.0, } # get subset for testing subset = xdi.isel(x=slice(150, 160), y=slice(100, 150)) comp_subset = subset.isel(x=slice(1, None), y=slice(1, None)) # add transform for test comp_subset.rio.write_transform() geometries = [ { "type": "Polygon", "coordinates": [ [ [subset.x.values[0], subset.y.values[-1]], [subset.x.values[0], subset.y.values[0]], [subset.x.values[-1], subset.y.values[0]], [subset.x.values[-1], subset.y.values[-1]], [subset.x.values[0], subset.y.values[-1]], ] ], } ] # test data array clipped = xdi.rio.clip(geometries, comp_subset.rio.crs) _assert_xarrays_equal(clipped, comp_subset) test_encoding = dict(clipped.encoding) assert test_encoding.pop("source").endswith("small_dem_3m_merged.tif") assert test_encoding == { "_FillValue": 0.0, "grid_mapping": "spatial_ref", "dtype": "uint16", "rasterio_dtype": "uint16", } # test dataset clipped_ds = xdi.to_dataset(name="test_data").rio.clip( geometries, subset.rio.crs ) comp_subset_ds = comp_subset.to_dataset(name="test_data") _assert_xarrays_equal(clipped_ds, comp_subset_ds) test_encoding = dict(clipped.encoding) assert test_encoding.pop("source").endswith("small_dem_3m_merged.tif") assert test_encoding == { "_FillValue": 0.0, "grid_mapping": "spatial_ref", "dtype": "uint16", "rasterio_dtype": "uint16", } ############################################################################## # From xarray tests ############################################################################## ON_WINDOWS = sys.platform == "win32" _counter = itertools.count() @contextlib.contextmanager def create_tmp_file(suffix=".nc", allow_cleanup_failure=False): temp_dir = tempfile.mkdtemp() path = os.path.join(temp_dir, "temp-{}{}".format(next(_counter), suffix)) try: yield path finally: try: shutil.rmtree(temp_dir) except OSError: if not allow_cleanup_failure: raise @contextlib.contextmanager def create_tmp_geotiff( nx=4, ny=3, nz=3, transform=None, transform_args=[5000, 80000, 1000, 2000.0], crs="EPSG:32618", open_kwargs=None, additional_attrs=None, ): # yields a temporary geotiff file and a corresponding expected DataArray if open_kwargs is None: open_kwargs = {} with create_tmp_file(suffix=".tif", allow_cleanup_failure=ON_WINDOWS) as tmp_file: # allow 2d or 3d shapes if nz == 1: data_shape = ny, nx write_kwargs = {"indexes": 1} else: data_shape = nz, ny, nx write_kwargs = {} data = numpy.arange(nz * ny * nx, dtype=rasterio.float32).reshape(*data_shape) if transform is None and transform_args is not None: transform = from_origin(*transform_args) if additional_attrs is None: additional_attrs = { "descriptions": tuple(f"d{n + 1}" for n in range(nz)), "units": tuple(f"u{n + 1}" for n in range(nz)), } with rasterio.open( tmp_file, "w", driver="GTiff", height=ny, width=nx, count=nz, crs=crs, transform=transform, dtype=rasterio.float32, **open_kwargs, ) as s: for attr, val in additional_attrs.items(): setattr(s, attr, val) for band in range(1, nz + 1): s.update_tags(band, BAND=band) s.write(data, **write_kwargs) dx, dy = s.res[0], -s.res[1] tt = s.transform crs_wkt = s.crs.to_wkt() if s.crs else None if not transform_args: a, b, c, d = tt.c, tt.f, -tt.e, tt.a else: a, b, c, d = transform_args data = data[numpy.newaxis, ...] if nz == 1 else data expected = DataArray( data, dims=("band", "y", "x"), coords={ "band": numpy.arange(nz) + 1, "y": -numpy.arange(ny) * d + b + dy / 2, "x": numpy.arange(nx) * c + a + dx / 2, }, ) if crs_wkt is not None: expected.coords[DEFAULT_GRID_MAP] = xarray.Variable((), 0) expected.coords[DEFAULT_GRID_MAP].attrs["spatial_ref"] = crs_wkt yield tmp_file, expected def test_serialization(): with create_tmp_geotiff(additional_attrs={}) as (tmp_file, expected): # Write it to a netcdf and read again (roundtrip) with rioxarray.open_rasterio(tmp_file, mask_and_scale=True) as rioda: with create_tmp_file(suffix=".nc") as tmp_nc_file: rioda.to_netcdf(tmp_nc_file) with xarray.open_dataarray(tmp_nc_file, decode_coords="all") as ncds: assert_identical(rioda, ncds) def test_utm(): with create_tmp_geotiff() as (tmp_file, expected): with rioxarray.open_rasterio(tmp_file) as rioda: assert_allclose(rioda, expected) assert rioda.attrs["scale_factor"] == 1.0 assert rioda.attrs["add_offset"] == 0.0 assert rioda.attrs["long_name"] == ("d1", "d2", "d3") assert rioda.attrs["units"] == ("u1", "u2", "u3") assert rioda.rio.crs == expected.rio.crs assert_array_equal(rioda.rio.resolution(), expected.rio.resolution()) assert isinstance(rioda.rio._cached_transform(), Affine) assert rioda.rio.nodata is None # Check no parse coords with rioxarray.open_rasterio(tmp_file, parse_coordinates=False) as rioda: assert "x" not in rioda.coords assert "y" not in rioda.coords @pytest.mark.parametrize("chunks", [True, None]) def test_band_as_variable(open_rasterio, chunks, tmp_path): test_raster = tmp_path / "test.tif" with create_tmp_geotiff() as (tmp_file, expected): with open_rasterio( tmp_file, band_as_variable=True, mask_and_scale=False, chunks=chunks, ) as riods: def _check_raster(raster_ds): for band in (1, 2, 3): band_name = f"band_{band}" assert_allclose( raster_ds[band_name], expected.sel(band=band).drop("band") ) assert raster_ds[band_name].attrs["BAND"] == band assert raster_ds[band_name].attrs["scale_factor"] == 1.0 assert raster_ds[band_name].attrs["add_offset"] == 0.0 assert raster_ds[band_name].attrs["long_name"] == f"d{band}" assert raster_ds[band_name].attrs["units"] == f"u{band}" assert raster_ds[band_name].rio.crs == expected.rio.crs assert_array_equal( raster_ds[band_name].rio.resolution(), expected.rio.resolution() ) assert isinstance( raster_ds[band_name].rio._cached_transform(), Affine ) assert raster_ds[band_name].rio.nodata is None _check_raster(riods) # test roundtrip riods.rio.to_raster(test_raster) with open_rasterio( test_raster, band_as_variable=True, mask_and_scale=False, chunks=chunks, ) as riods_round: _check_raster(riods_round) def test_platecarree(): with create_tmp_geotiff( 8, 10, 1, transform_args=[1, 2, 0.5, 2.0], crs="EPSG:4326", open_kwargs={"nodata": -9765}, ) as (tmp_file, expected): with rioxarray.open_rasterio(tmp_file) as rioda: assert_allclose(rioda, expected) assert rioda.attrs["scale_factor"] == 1.0 assert rioda.attrs["add_offset"] == 0.0 assert rioda.attrs["long_name"] == "d1" assert rioda.attrs["units"] == "u1" assert rioda.rio.crs == expected.rio.crs assert isinstance(rioda.rio.resolution(), tuple) assert isinstance(rioda.rio._cached_transform(), Affine) assert rioda.rio.nodata == -9765.0 def test_notransform(): # regression test for https://github.com/pydata/xarray/issues/1686 # Create a geotiff file with warnings.catch_warnings(): # rasterio throws a NotGeoreferencedWarning here, which is # expected since we test rasterio's defaults in this case. warnings.filterwarnings( "ignore", category=UserWarning, message="Dataset has no geotransform set", ) with create_tmp_file(suffix=".tif") as tmp_file: # data nx, ny, nz = 4, 3, 3 data = numpy.arange(nx * ny * nz, dtype=rasterio.float32).reshape( nz, ny, nx ) with rasterio.open( tmp_file, "w", driver="GTiff", height=ny, width=nx, count=nz, dtype=rasterio.float32, ) as s: s.descriptions = ("nx", "ny", "nz") s.units = ("cm", "m", "km") s.write(data) # Tests expected = DataArray( data, dims=("band", "y", "x"), coords={ "band": [1, 2, 3], "y": [0.5, 1.5, 2.5], "x": [0.5, 1.5, 2.5, 3.5], }, ) expected.coords[DEFAULT_GRID_MAP] = xarray.Variable((), 0) expected.coords[DEFAULT_GRID_MAP].attrs[ "GeoTransform" ] = "0.0 1.0 0.0 0.0 0.0 1.0" with rioxarray.open_rasterio(tmp_file) as rioda: assert_allclose(rioda, expected) assert rioda.attrs["scale_factor"] == 1.0 assert rioda.attrs["add_offset"] == 0.0 assert rioda.attrs["long_name"] == ("nx", "ny", "nz") assert rioda.attrs["units"] == ("cm", "m", "km") assert isinstance(rioda.rio.resolution(), tuple) assert isinstance(rioda.rio._cached_transform(), Affine) def test_indexing(): with create_tmp_geotiff( 8, 10, 3, transform_args=[1, 2, 0.5, 2.0], crs="EPSG:4326" ) as (tmp_file, expected): with rioxarray.open_rasterio(tmp_file, cache=False) as actual: # tests # assert_allclose checks all data + coordinates assert_allclose(actual, expected) assert not actual.variable._in_memory # Basic indexer ind = {"x": slice(2, 5), "y": slice(5, 7)} assert_allclose(expected.isel(**ind), actual.isel(**ind)) assert not actual.variable._in_memory ind = {"band": slice(1, 2), "x": slice(2, 5), "y": slice(5, 7)} assert_allclose(expected.isel(**ind), actual.isel(**ind)) assert not actual.variable._in_memory ind = {"band": slice(1, 2), "x": slice(2, 5), "y": 0} assert_allclose(expected.isel(**ind), actual.isel(**ind)) assert not actual.variable._in_memory # orthogonal indexer ind = { "band": numpy.array([2, 1, 0]), "x": numpy.array([1, 0]), "y": numpy.array([0, 2]), } assert_allclose(expected.isel(**ind), actual.isel(**ind)) assert not actual.variable._in_memory ind = {"band": numpy.array([2, 1, 0]), "x": numpy.array([1, 0]), "y": 0} assert_allclose(expected.isel(**ind), actual.isel(**ind)) assert not actual.variable._in_memory ind = {"band": 0, "x": numpy.array([0, 0]), "y": numpy.array([1, 1, 1])} assert_allclose(expected.isel(**ind), actual.isel(**ind)) assert not actual.variable._in_memory # minus-stepped slice ind = {"band": numpy.array([2, 1, 0]), "x": slice(-1, None, -1), "y": 0} assert_allclose(expected.isel(**ind), actual.isel(**ind)) assert not actual.variable._in_memory ind = {"band": numpy.array([2, 1, 0]), "x": 1, "y": slice(-1, 1, -2)} assert_allclose(expected.isel(**ind), actual.isel(**ind)) assert not actual.variable._in_memory # empty selection ind = {"band": numpy.array([2, 1, 0]), "x": 1, "y": slice(2, 2, 1)} assert_allclose(expected.isel(**ind), actual.isel(**ind)) assert not actual.variable._in_memory ind = {"band": slice(0, 0), "x": 1, "y": 2} assert_allclose(expected.isel(**ind), actual.isel(**ind)) assert not actual.variable._in_memory # vectorized indexer ind = { "band": DataArray([2, 1, 0], dims="a"), "x": DataArray([1, 0, 0], dims="a"), "y": numpy.array([0, 2]), } assert_allclose(expected.isel(**ind), actual.isel(**ind)) assert not actual.variable._in_memory ind = { "band": DataArray([[2, 1, 0], [1, 0, 2]], dims=["a", "b"]), "x": DataArray([[1, 0, 0], [0, 1, 0]], dims=["a", "b"]), "y": 0, } assert_allclose(expected.isel(**ind), actual.isel(**ind)) assert not actual.variable._in_memory # Selecting lists of bands is fine ex = expected.isel(band=[1, 2]) ac = actual.isel(band=[1, 2]) assert_allclose(ac, ex) ex = expected.isel(band=[0, 2]) ac = actual.isel(band=[0, 2]) assert_allclose(ac, ex) # Integer indexing ex = expected.isel(band=1) ac = actual.isel(band=1) assert_allclose(ac, ex) ex = expected.isel(x=1, y=2) ac = actual.isel(x=1, y=2) assert_allclose(ac, ex) ex = expected.isel(band=0, x=1, y=2) ac = actual.isel(band=0, x=1, y=2) assert_allclose(ac, ex) # Mixed ex = actual.isel(x=slice(2), y=slice(2)) ac = actual.isel(x=[0, 1], y=[0, 1]) assert_allclose(ac, ex) ex = expected.isel(band=0, x=1, y=slice(5, 7)) ac = actual.isel(band=0, x=1, y=slice(5, 7)) assert_allclose(ac, ex) ex = expected.isel(band=0, x=slice(2, 5), y=2) ac = actual.isel(band=0, x=slice(2, 5), y=2) assert_allclose(ac, ex) # One-element lists ex = expected.isel(band=[0], x=slice(2, 5), y=[2]) ac = actual.isel(band=[0], x=slice(2, 5), y=[2]) assert_allclose(ac, ex) def test_caching(): with create_tmp_geotiff( 8, 10, 3, transform_args=[1, 2, 0.5, 2.0], crs="EPSG:4326" ) as (tmp_file, expected): # Cache is the default with rioxarray.open_rasterio(tmp_file) as actual: # This should cache everything assert_allclose(actual, expected) # once cached, non-windowed indexing should become possible ac = actual.isel(x=[2, 4]) ex = expected.isel(x=[2, 4]) assert_allclose(ac, ex) def test_chunks(): with create_tmp_geotiff( 8, 10, 3, transform_args=[1, 2, 0.5, 2.0], crs="EPSG:4326" ) as (tmp_file, expected): # Chunk at open time with rioxarray.open_rasterio(tmp_file, chunks=(1, 2, 2)) as actual: assert isinstance(actual.data, dask.array.Array) assert "open_rasterio" in actual.data.name # do some arithmetic ac = actual.mean() ex = expected.mean() assert_allclose(ac, ex) ac = actual.sel(band=1).mean(dim="x") ex = expected.sel(band=1).mean(dim="x") assert_allclose(ac, ex) def test_chunks_with_mask_and_scale(): with create_tmp_geotiff( 10, 10, 4, transform_args=[1, 2, 0.5, 2.0], crs="EPSG:4326" ) as (tmp_file, expected): # Chunk at open time with rioxarray.open_rasterio( tmp_file, mask_and_scale=True, chunks=(1, 2, 2) ) as actual: assert isinstance(actual.data, dask.array.Array) assert "open_rasterio" in actual.data.name # do some arithmetic ac = actual.mean().compute() ex = expected.mean() assert_allclose(ac, ex) def test_pickle_rasterio(): # regression test for https://github.com/pydata/xarray/issues/2121 with create_tmp_geotiff() as (tmp_file, expected): with rioxarray.open_rasterio(tmp_file) as rioda: temp = pickle.dumps(rioda) with pickle.loads(temp) as actual: assert_equal(actual, rioda) def test_ENVI_tags(): # Create an ENVI file with some tags in the ENVI namespace # this test uses a custom driver, so we can't use create_tmp_geotiff with create_tmp_file(suffix=".dat") as tmp_file: # data nx, ny, nz = 4, 3, 3 data = numpy.arange(nx * ny * nz, dtype=rasterio.float32).reshape(nz, ny, nx) transform = from_origin(5000, 80000, 1000, 2000.0) with rasterio.open( tmp_file, "w", driver="ENVI", height=ny, width=nx, count=nz, crs="EPSG:32618", transform=transform, dtype=rasterio.float32, ) as s: s.update_tags( ns="ENVI", description="{Tagged file}", wavelength="{123.000000, 234.234000, 345.345678}", fwhm="{1.000000, 0.234000, 0.000345}", ) s.write(data) dx, dy = s.res[0], -s.res[1] crs_wkt = s.crs.to_wkt() # Tests coords = { "band": [1, 2, 3], "y": -numpy.arange(ny) * 2000 + 80000 + dy / 2, "x": numpy.arange(nx) * 1000 + 5000 + dx / 2, "wavelength": ("band", numpy.array([123, 234.234, 345.345678])), "fwhm": ("band", numpy.array([1, 0.234, 0.000345])), } expected = DataArray(data, dims=("band", "y", "x"), coords=coords) expected.coords[DEFAULT_GRID_MAP] = xarray.Variable((), 0) expected.coords[DEFAULT_GRID_MAP].attrs["crs_wkt"] = crs_wkt with rioxarray.open_rasterio(tmp_file) as rioda: assert_allclose(rioda, expected) assert rioda.rio.crs == crs_wkt assert isinstance(rioda.rio._cached_transform(), Affine) # from ENVI tags assert isinstance(rioda.attrs["description"], str) assert isinstance(rioda.attrs["map_info"], str) assert isinstance(rioda.attrs["samples"], str) def test_no_mftime(): # rasterio can accept "filename" arguments that are actually urls, # including paths to remote files. # In issue #1816, we found that these caused dask to break, because # the modification time was used to determine the dask token. This # tests ensure we can still chunk such files when reading with # rasterio. with create_tmp_geotiff( 8, 10, 3, transform_args=[1, 2, 0.5, 2.0], crs="EPSG:4326" ) as (tmp_file, expected): with patch("os.path.getmtime", side_effect=OSError): with rioxarray.open_rasterio(tmp_file, chunks=(1, 2, 2)) as actual: assert isinstance(actual.data, dask.array.Array) assert_allclose(actual, expected) @pytest.mark.timeout(30) @pytest.mark.xfail( error=rasterio.errors.RasterioIOError, reason="Network could be problematic" ) def test_http_url(): # more examples urls here # http://download.osgeo.org/geotiff/samples/ url = ( "https://github.com/corteva/rioxarray/blob/master/" "test/test_data/input/cog.tif?raw=true" ) with rioxarray.open_rasterio(url) as actual: assert actual.shape == (1, 500, 500) # make sure chunking works with rioxarray.open_rasterio(url, chunks=(1, 256, 256)) as actual: assert isinstance(actual.data, dask.array.Array) def test_rasterio_environment(tmp_path): log = logging.getLogger("rasterio._env") log.setLevel(logging.DEBUG) logfile = tmp_path / "file.log" fh = logging.FileHandler(logfile) log.addHandler(fh) with create_tmp_geotiff() as (tmp_file, expected): # Should fail with error since suffix not allowed with rasterio.Env(CPL_DEBUG=True): with rioxarray.open_rasterio(tmp_file) as actual: assert_allclose(actual.load(), expected) assert f"GDAL: GDALOpen({tmp_file}" in logfile.read_text() @pytest.mark.parametrize("band_as_variable", [True, False]) def test_rasterio_vrt(band_as_variable): # tmp_file default crs is UTM: CRS({'init': 'epsg:32618'} with create_tmp_geotiff() as (tmp_file, expected): with rasterio.open(tmp_file) as src: with rasterio.vrt.WarpedVRT(src, crs="epsg:4326") as vrt: # Value of single pixel in center of image lon, lat = vrt.xy(vrt.width // 2, vrt.height // 2) expected_val = next(vrt.sample([(lon, lat)])) with rioxarray.open_rasterio( vrt, band_as_variable=band_as_variable ) as rds: if band_as_variable: rds = rds.band_1 actual_val = rds.sel(dict(x=lon, y=lat), method="nearest").data assert_array_equal(rds.rio.shape, (vrt.height, vrt.width)) assert rds.rio.crs == vrt.crs assert_array_equal( tuple(abs(val) for val in rds.rio.resolution()), vrt.res ) assert expected_val.all() == actual_val.all() def test_rasterio_vrt_with_transform_and_size(): # Test open_rasterio() support of WarpedVRT with transform, width and # height (issue #2864) with create_tmp_geotiff() as (tmp_file, expected): with rasterio.open(tmp_file) as src: # Estimate the transform, width and height # for a change of resolution # tmp_file initial res is (1000,2000) (default values) trans, w, h = calculate_default_transform( src.crs, src.crs, src.width, src.height, resolution=500, *src.bounds ) with rasterio.vrt.WarpedVRT(src, transform=trans, width=w, height=h) as vrt: with rioxarray.open_rasterio(vrt) as rds: assert_array_equal(rds.rio.shape, (vrt.height, vrt.width)) assert rds.rio.crs == vrt.crs assert_array_equal( tuple(abs(val) for val in rds.rio.resolution()), vrt.res ) assert rds.rio.transform() == vrt.transform @pytest.mark.timeout(30) @pytest.mark.xfail( error=rasterio.errors.RasterioIOError, reason="Network could be problematic" ) def test_rasterio_vrt_network(): url = "https://storage.googleapis.com/\ gcp-public-data-landsat/LC08/01/047/027/\ LC08_L1TP_047027_20130421_20170310_01_T1/\ LC08_L1TP_047027_20130421_20170310_01_T1_B4.TIF" env = rasterio.Env( GDAL_DISABLE_READDIR_ON_OPEN="EMPTY_DIR", CPL_VSIL_CURL_USE_HEAD=False, CPL_VSIL_CURL_ALLOWED_EXTENSIONS="TIF", ) with env: with rasterio.open(url) as src: with rasterio.vrt.WarpedVRT(src, crs="epsg:4326") as vrt: # Value of single pixel in center of image lon, lat = vrt.xy(vrt.width // 2, vrt.height // 2) expected_val = next(vrt.sample([(lon, lat)])) with rioxarray.open_rasterio(vrt) as rds: actual_val = rds.sel(dict(x=lon, y=lat), method="nearest").data assert_array_equal(rds.rio.shape, (vrt.height, vrt.width)) assert rds.rio.crs == vrt.crs assert_array_equal( tuple(abs(val) for val in rds.rio.resolution()), vrt.res ) assert_equal(expected_val, actual_val) def test_rasterio_vrt_with_src_crs(): # Test open_rasterio() support of WarpedVRT with specified src_crs # create geotiff with no CRS and specify it manually with create_tmp_geotiff(crs=None) as (tmp_file, expected): src_crs = rasterio.crs.CRS.from_epsg(32618) with rasterio.open(tmp_file) as src: assert src.crs is None with rasterio.vrt.WarpedVRT(src, src_crs=src_crs) as vrt: with rioxarray.open_rasterio(vrt) as rds: assert rds.rio.crs == src_crs def test_rasterio_vrt_gcps(tmp_path): tiffname = tmp_path / "test.tif" src_gcps = [ GroundControlPoint(row=0, col=0, x=156113, y=2818720, z=0), GroundControlPoint(row=0, col=800, x=338353, y=2785790, z=0), GroundControlPoint(row=800, col=800, x=297939, y=2618518, z=0), GroundControlPoint(row=800, col=0, x=115698, y=2651448, z=0), ] crs = CRS.from_epsg(32618) with rasterio.open( tiffname, mode="w", height=800, width=800, count=3, dtype=numpy.uint8, driver="GTiff", ) as source: source.gcps = (src_gcps, crs) with rasterio.open(tiffname) as src: # NOTE: Eventually src_crs will not need to be provided # https://github.com/mapbox/rasterio/pull/2193 with rasterio.vrt.WarpedVRT(src, src_crs=crs) as vrt: with rioxarray.open_rasterio(vrt) as rds: assert rds.rio.height == 923 assert rds.rio.width == 1027 assert rds.rio.crs == crs assert rds.rio.transform().almost_equals( Affine( 216.8587081056465, 0.0, 115698.25, 0.0, -216.8587081056465, 2818720.0, ) ) def test_rasterio_vrt_warp_extras(tmp_path): tiffname = tmp_path / "test.tif" src_gcps = [ GroundControlPoint( row=2015.0, col=0.0, x=100.61835695597287, y=-0.19173548698662005, z=685.0004720482975, id="22", info="", ), GroundControlPoint( row=8060.0, col=18990.0, x=98.84559009470779, y=-0.3783665839371584, z=-0.00012378208339214325, id="100", info="", ), GroundControlPoint( row=20150.0, col=7596.0, x=99.61705472917613, y=-1.6823719472066612, z=-7.35744833946228e-08, id="217", info="", ), GroundControlPoint( row=22165.0, col=22788.0, x=98.2441590762303, y=-1.5732331941915954, z=-4.936009645462036e-08, id="250", info="", ), GroundControlPoint( row=12090.0, col=17724.0, x=98.88075494473509, y=-0.7646707270388453, z=-0.0003558387979865074, id="141", info="", ), ] crs = CRS.from_epsg(4326) with rasterio.open( tiffname, mode="w", height=23063, width=25313, count=1, dtype=numpy.uint8, driver="GTiff", ) as source: source.gcps = (src_gcps, crs) with rasterio.open(tiffname) as src: warp_extras = {"SRC_METHOD": "GCP_TPS"} with rasterio.vrt.WarpedVRT( src, **warp_extras, ) as vrt: assert vrt.crs == "EPSG:4326" assert vrt.shape == (28286, 29338) def test_rasterio_vrt_gcps__data_exists(): # https://github.com/corteva/rioxarray/issues/515 vrt_file = os.path.join(TEST_INPUT_DATA_DIR, "cint16.tif") with rasterio.open(vrt_file) as src: crs = src.gcps[1] # NOTE: Eventually src_crs will not need to be provided # https://github.com/mapbox/rasterio/pull/2193 with rasterio.vrt.WarpedVRT(src, src_crs=crs) as vrt: with rioxarray.open_rasterio(vrt) as rds: assert rds.values.any() @pytest.mark.parametrize("lock", [True, False]) def test_open_cog(lock): cog_file = os.path.join(TEST_INPUT_DATA_DIR, "cog.tif") with rioxarray.open_rasterio(cog_file) as rdsm: assert rdsm.shape == (1, 500, 500) with rioxarray.open_rasterio(cog_file, lock=lock, overview_level=0) as rdso: assert rdso.shape == (1, 250, 250) def test_mask_and_scale(open_rasterio): test_file = os.path.join(TEST_INPUT_DATA_DIR, "tmmx_20190121.nc") with open_rasterio(test_file, mask_and_scale=True) as rds: rds = _ensure_dataset(rds) assert numpy.nanmin(rds.air_temperature.values) == numpy.float32(248.7) assert numpy.nanmax(rds.air_temperature.values) == numpy.float32(302.1) test_encoding = dict(rds.air_temperature.encoding) _assert_tmmx_source(test_encoding.pop("source")) assert test_encoding == { "_Unsigned": "true", "add_offset": 220.0, "scale_factor": 0.1, "_FillValue": 32767.0, "grid_mapping": "crs", "dtype": "uint16", "rasterio_dtype": "uint16", "preferred_chunks": dict(band=1, x=1386, y=585), } attrs = rds.air_temperature.attrs assert "_Unsigned" not in attrs assert "add_offset" not in attrs assert "scale_factor" not in attrs assert "_FillValue" not in attrs def test_no_mask_and_scale(open_rasterio): with open_rasterio( os.path.join(TEST_INPUT_DATA_DIR, "tmmx_20190121.nc"), mask_and_scale=False, masked=True, ) as rds: rds = _ensure_dataset(rds) assert numpy.nanmin(rds.air_temperature.values) == 287 assert numpy.nanmax(rds.air_temperature.values) == 821 test_encoding = dict(rds.air_temperature.encoding) source = test_encoding.pop("source") _assert_tmmx_source(source) assert test_encoding == { "_FillValue": 32767.0, "grid_mapping": "crs", "dtype": "uint16", "rasterio_dtype": "uint16", "preferred_chunks": {"band": 1, "x": 1386, "y": 585}, } attrs = rds.air_temperature.attrs assert attrs["_Unsigned"] == "true" assert attrs["add_offset"] == 220.0 assert attrs["scale_factor"] == 0.1 assert "_FillValue" not in attrs def test_mask_and_scale__select_band_values(open_rasterio, tmp_path): # https://github.com/corteva/rioxarray/issues/580 output_nc = tmp_path / "test.nc" data = numpy.hypot( *numpy.meshgrid(numpy.linspace(-100, 500, 50), numpy.linspace(-150, 700, 60)) ) xds = xarray.Dataset( {"var": (["y", "x"], data)}, coords={"x": numpy.linspace(40, 51, 50), "y": numpy.linspace(55, 62, 60)}, ) xds.rio.write_crs(4326, inplace=True) xds.rio.write_coordinate_system(inplace=True) encoding = {"var": {"scale_factor": 0.01, "_FillValue": -9999, "dtype": "int32"}} xds.to_netcdf(output_nc, encoding=encoding) with open_rasterio(output_nc) as rds: if isinstance(rds, xarray.Dataset): rds = rds["var"] assert_array_equal(rds.values[0], rds.isel(band=0).values) def test_mask_and_scale__to_raster(open_rasterio, tmp_path): test_file = os.path.join(TEST_INPUT_DATA_DIR, "tmmx_20190121.nc") tmp_output = tmp_path / "tmmx_20190121.tif" with open_rasterio(test_file, mask_and_scale=True) as rds: _ensure_dataset(rds).air_temperature.rio.to_raster(str(tmp_output)) with rasterio.open(str(tmp_output)) as riofh: assert riofh.scales == (0.1,) assert riofh.offsets == (220.0,) assert riofh.nodata == 32767.0 data = riofh.read(1, masked=True) assert data.min() == 287 assert data.max() == 821 def test_mask_and_scale__unicode(open_rasterio): test_file = os.path.join(TEST_INPUT_DATA_DIR, "unicode.nc") with open_rasterio(test_file, mask_and_scale=True) as rds: rds = _ensure_dataset(rds) assert numpy.nanmin(rds.LST.values) == numpy.float32(270.4925) assert numpy.nanmax(rds.LST.values) == numpy.float32(276.6025) test_encoding = dict(rds.LST.encoding) assert test_encoding["_Unsigned"] == "true" assert test_encoding["add_offset"] == 190 assert test_encoding["scale_factor"] == pytest.approx(0.0025) assert test_encoding["_FillValue"] == 65535 expected_dtype = "int16" if GDAL_GE_36: # https://github.com/OSGeo/gdal/pull/6369 expected_dtype = "uint16" assert test_encoding["dtype"] == expected_dtype assert test_encoding["rasterio_dtype"] == expected_dtype def test_mask_and_scale__unicode__to_raster(open_rasterio, tmp_path): tmp_output = tmp_path / "unicode.tif" test_file = os.path.join(TEST_INPUT_DATA_DIR, "unicode.nc") with open_rasterio(test_file, mask_and_scale=True) as rds: _ensure_dataset(rds).LST.rio.to_raster(str(tmp_output)) with rasterio.open(str(tmp_output)) as riofh: assert riofh.scales == (pytest.approx(0.0025),) assert riofh.offsets == (190,) assert riofh.nodata == 65535 data = riofh.read(1, masked=True) assert data.min() == 32197 assert data.max() == 34641 assert riofh.dtypes == ("uint16",) def test_notgeoreferenced_warning(open_rasterio): with create_tmp_geotiff(transform_args=None) as (tmp_file, expected): with pytest.warns(NotGeoreferencedWarning): open_rasterio(tmp_file) @pytest.mark.xfail( version.parse(rasterio.__gdal_version__) < version.parse("3.0.4"), reason="This was fixed in GDAL 3.0.4", ) def test_nc_attr_loading(open_rasterio): with open_rasterio(os.path.join(TEST_INPUT_DATA_DIR, "PLANET_SCOPE_3D.nc")) as rds: assert rds.sizes == {"y": 10, "x": 10, "time": 2} assert rds.attrs == {"coordinates": "spatial_ref"} assert rds.y.attrs["units"] == "metre" assert rds.x.attrs["units"] == "metre" assert rds.time.encoding == { "units": "seconds since 2016-12-19T10:27:29.687763", "calendar": "proleptic_gregorian", } assert str(rds.time.values[0]) == "2016-12-19 10:27:29.687763" assert str(rds.time.values[1]) == "2016-12-29 12:52:42.347451" def test_nc_attr_loading__disable_decode_times(open_rasterio): with open_rasterio( os.path.join(TEST_INPUT_DATA_DIR, "PLANET_SCOPE_3D.nc"), decode_times=False ) as rds: assert rds.sizes == {"y": 10, "x": 10, "time": 2} assert rds.attrs == {"coordinates": "spatial_ref"} assert rds.y.attrs["units"] == "metre" assert rds.x.attrs["units"] == "metre" assert rds.time.encoding == {} assert numpy.isnan(rds.time.attrs.pop("_FillValue")) assert rds.time.attrs == { "units": "seconds since 2016-12-19T10:27:29.687763", "calendar": "proleptic_gregorian", } assert_array_equal(rds.time.values, [0, 872712.659688]) def test_lockless(): with rioxarray.open_rasterio( os.path.join(TEST_INPUT_DATA_DIR, "cog.tif"), lock=False, chunks=True ) as rds: rds.mean().compute() def test_lock_true(): with rioxarray.open_rasterio( os.path.join(TEST_INPUT_DATA_DIR, "cog.tif"), lock=True, chunks=True ) as rds: rds.mean().compute() def test_non_rectilinear(): # Create a geotiff file with 2d coordinates with create_tmp_geotiff( transform=from_origin(0, 3, 1, 1).rotation(45), crs=None ) as (tmp_file, _): with rasterio.open(tmp_file) as rds: with rioxarray.open_rasterio(tmp_file) as rioda: for xi, yi in itertools.product(range(rds.width), range(rds.height)): subset = rioda.isel(x=xi, y=yi) assert_almost_equal( rds.xy(yi, xi), (subset.xc.item(), subset.yc.item()) ) assert "x" not in rioda.coords assert "y" not in rioda.coords assert "xc" in rioda.coords assert "yc" in rioda.coords assert rioda.rio.crs is None assert rioda.attrs["scale_factor"] == 1.0 assert rioda.attrs["add_offset"] == 0.0 assert rioda.attrs["long_name"] == ("d1", "d2", "d3") assert rioda.attrs["units"] == ("u1", "u2", "u3") assert isinstance(rioda.rio.resolution(), tuple) assert isinstance(rioda.rio._cached_transform(), Affine) def test_non_rectilinear__load_coords(open_rasterio): test_file = os.path.join(TEST_INPUT_DATA_DIR, "2d_test.tif") with open_rasterio(test_file) as xds: assert xds.rio.shape == (10, 10) with rasterio.open(test_file) as rds: assert rds.transform == xds.rio.transform() for xi, yi in itertools.product(range(rds.width), range(rds.height)): subset = xds.isel(x=xi, y=yi) assert_almost_equal( rds.xy(yi, xi), (subset.xc.item(), subset.yc.item()) ) def test_non_rectilinear__skip_parse_coordinates(open_rasterio): test_file = os.path.join(TEST_INPUT_DATA_DIR, "2d_test.tif") with open_rasterio(test_file, parse_coordinates=False) as xds: assert "xc" not in xds.coords assert "yc" not in xds.coords assert xds.rio.shape == (10, 10) with rasterio.open(test_file) as rds: assert rds.transform == xds.rio.transform() def test_rotation_affine(): with create_tmp_geotiff( transform=Affine(0.0, -10.0, 1743817.4113815, -10.0, -0.0, 5435582.5113815), crs=None, ) as (tmp_file, _): with rasterio.open(tmp_file) as rds: with rioxarray.open_rasterio(tmp_file) as rioda: for xi, yi in itertools.product(range(rds.width), range(rds.height)): subset = rioda.isel(x=xi, y=yi) assert_almost_equal( rds.xy(yi, xi), (subset.xc.item(), subset.yc.item()) ) assert rioda.rio.transform() == rds.transform with pytest.warns( UserWarning, match=r"Transform that is non\-rectilinear or with rotation found", ): assert rioda.rio.transform(recalc=True) == rds.transform assert rioda.rio.resolution() == (10, 10) @pytest.mark.parametrize("dtype", [None, "complex_int16"]) def test_cint16_dtype(dtype, tmp_path): test_file = os.path.join(TEST_INPUT_DATA_DIR, "cint16.tif") with rioxarray.open_rasterio(test_file) as xds: assert xds.rio.shape == (100, 100) assert xds.dtype == "complex64" assert xds.encoding["rasterio_dtype"] == "complex_int16" tmp_output = tmp_path / "tmp_cint16.tif" with pytest.warns(NotGeoreferencedWarning): xds.rio.to_raster(str(tmp_output), dtype=dtype) with rasterio.open(str(tmp_output)) as riofh: data = riofh.read() assert "complex_int16" in riofh.dtypes assert data.dtype == "complex64" def test_cint16_dtype_nodata(tmp_path): test_file = os.path.join(TEST_INPUT_DATA_DIR, "cint16.tif") with rioxarray.open_rasterio(test_file) as xds: assert xds.rio.nodata == 0 tmp_output = tmp_path / "tmp_cint16.tif" with pytest.warns(NotGeoreferencedWarning): xds.rio.to_raster(str(tmp_output), dtype="complex_int16") with rasterio.open(str(tmp_output)) as riofh: assert riofh.nodata == 0 # Assign nodata=None tmp_output = tmp_path / "tmp_cint16_nodata.tif" xds.rio.write_nodata(None, inplace=True) with pytest.warns(NotGeoreferencedWarning): xds.rio.to_raster(str(tmp_output), dtype="complex_int16") with rasterio.open(str(tmp_output)) as riofh: assert riofh.nodata is None @pytest.mark.parametrize("dtype", [None, "complex_int16"]) def test_cint16_dtype_masked(dtype, tmp_path): test_file = os.path.join(TEST_INPUT_DATA_DIR, "cint16.tif") with rioxarray.open_rasterio(test_file, masked=True) as xds: assert xds.rio.shape == (100, 100) assert xds.dtype == "complex64" assert xds.rio.encoded_nodata == 0 assert numpy.isnan(xds.rio.nodata) tmp_output = tmp_path / "tmp_cint16.tif" with pytest.warns(NotGeoreferencedWarning): xds.rio.to_raster(str(tmp_output), dtype=dtype) with rasterio.open(str(tmp_output)) as riofh: data = riofh.read() assert "complex_int16" in riofh.dtypes assert riofh.nodata == 0 assert data.dtype == "complex64" def test_cint16_promote_dtype(tmp_path): test_file = os.path.join(TEST_INPUT_DATA_DIR, "cint16.tif") with rioxarray.open_rasterio(test_file) as xds: tmp_output = tmp_path / "tmp_cfloat64.tif" with pytest.warns(NotGeoreferencedWarning): xds.rio.to_raster(str(tmp_output), dtype="complex64") with rasterio.open(str(tmp_output)) as riofh: data = riofh.read() assert "complex64" in riofh.dtypes assert riofh.nodata == 0 assert data.dtype == "complex64" tmp_output = tmp_path / "tmp_cfloat128.tif" with pytest.warns(NotGeoreferencedWarning): xds.rio.to_raster(str(tmp_output), dtype="complex128") with rasterio.open(str(tmp_output)) as riofh: data = riofh.read() assert "complex128" in riofh.dtypes assert riofh.nodata == 0 assert data.dtype == "complex128" def test_reading_gcps(tmp_path): """ Test reading gcps from a tiff file. """ tiffname = tmp_path / "test.tif" gdal_gcps = _create_gdal_gcps() with rasterio.open( tiffname, mode="w", height=800, width=800, count=3, dtype=numpy.uint8, driver="GTiff", ) as source: source.gcps = gdal_gcps with rioxarray.open_rasterio(tiffname) as darr: _check_rio_gcps(darr, *gdal_gcps) def test_writing_gcps(tmp_path): """ Test writing gcps to a tiff file. """ tiffname = tmp_path / "test.tif" tiffname2 = tmp_path / "test_written.tif" gdal_gcps = _create_gdal_gcps() with rasterio.open( tiffname, mode="w", height=800, width=800, count=3, dtype=numpy.uint8, driver="GTiff", ) as source: source.gcps = gdal_gcps with rioxarray.open_rasterio(tiffname) as darr: darr.rio.to_raster(tiffname2, driver="GTIFF") with rioxarray.open_rasterio(tiffname2) as darr: assert "gcps" in darr.coords["spatial_ref"].attrs _check_rio_gcps(darr, *gdal_gcps) def test_writing_gcps__to_netcdf(tmp_path): """ Test writing gcps to a netCDF file. """ tiffname = tmp_path / "test.tif" nc_name = tmp_path / "test_written.nc" src_gcps, crs = _create_gdal_gcps() with rasterio.open( tiffname, mode="w", height=800, width=800, count=3, dtype=numpy.uint8, driver="GTiff", ) as source: source.gcps = (src_gcps, crs) with rioxarray.open_rasterio(tiffname) as darr: darr.to_netcdf(nc_name) with xarray.open_dataset(nc_name, decode_coords="all") as darr: assert "gcps" in darr.coords["spatial_ref"].attrs _check_rio_gcps(darr, src_gcps=src_gcps, crs=crs) def test_read_file_handle_with_dask(): with open( os.path.join(TEST_COMPARE_DATA_DIR, "small_dem_3m_merged.tif"), "rb" ) as src: with rioxarray.open_rasterio(src, chunks=2048): pass def test_read_cint16_with_dask(): test_file = os.path.join(TEST_INPUT_DATA_DIR, "cint16.tif") with rioxarray.open_rasterio(test_file, chunks=True): pass def test_read_ascii__from_bytesio(): ascii_raster_string = """ncols 5 nrows 5 xllcorner 440720.000000000000 yllcorner 3750120.000000000000 cellsize 60.000000000000 nodata_value -99999 107 123 132 115 132 115 132 107 123 148 115 132 140 132 123 148 132 123 123 115 132 156 132 140 132 """ ascii_raster_io = io.BytesIO(ascii_raster_string.encode("utf-8")) with rioxarray.open_rasterio(ascii_raster_io) as rds: assert rds.rio.bounds() == (440720.0, 3750120.0, 441020.0, 3750420.0) rioxarray-0.18.2/test/integration/test_integration__io_uri_manager.py000066400000000000000000000067441474250745200263040ustar00rootroot00000000000000""" Tests based on: https://github.com/pydata/xarray/blob/071da2a900702d65c47d265192bc7e424bb57932/xarray/tests/test_backends_file_manager.py """ import concurrent.futures import gc import pickle from unittest import mock import pytest from rioxarray._io import URIManager def test_uri_manager_mock_write(): mock_file = mock.Mock() opener = mock.Mock(spec=open, return_value=mock_file) manager = URIManager(opener, "filename") f = manager.acquire() f.write("contents") manager.close() opener.assert_called_once_with("filename", mode="r") mock_file.write.assert_called_once_with("contents") mock_file.close.assert_called_once_with() def test_uri_manager_mock_write__threaded(): mock_file = mock.Mock() opener = mock.Mock(spec=open, return_value=mock_file) manager = URIManager(opener, "filename") def write(iter): nonlocal manager fh = manager.acquire() fh.write("contents") manager._local.thread_manager = None with concurrent.futures.ThreadPoolExecutor(max_workers=2) as executor: for result in executor.map(write, range(5)): pass gc.collect() opener.assert_has_calls([mock.call("filename", mode="r") for _ in range(5)]) mock_file.write.assert_has_calls([mock.call("contents") for _ in range(5)]) mock_file.close.assert_has_calls([mock.call() for _ in range(5)]) @pytest.mark.parametrize("expected_warning", [None, RuntimeWarning]) def test_uri_manager_autoclose(expected_warning): mock_file = mock.Mock() opener = mock.Mock(return_value=mock_file) manager = URIManager(opener, "filename") manager.acquire() del manager gc.collect() mock_file.close.assert_called_once_with() def test_uri_manager_write_concurrent(tmpdir): path = str(tmpdir.join("testing.txt")) manager = URIManager(open, path, mode="w") f1 = manager.acquire() f2 = manager.acquire() f3 = manager.acquire() assert f1 is f2 assert f2 is f3 f1.write("foo") f1.flush() f2.write("bar") f2.flush() f3.write("baz") f3.flush() del manager gc.collect() with open(path) as f: assert f.read() == "foobarbaz" def test_uri_manager_write_pickle(tmpdir): path = str(tmpdir.join("testing.txt")) manager = URIManager(open, path, mode="a") f = manager.acquire() f.write("foo") f.flush() manager2 = pickle.loads(pickle.dumps(manager)) f2 = manager2.acquire() f2.write("bar") del manager del manager2 gc.collect() with open(path) as f: assert f.read() == "foobar" def test_uri_manager_read(tmpdir): path = str(tmpdir.join("testing.txt")) with open(path, "w") as f: f.write("foobar") manager = URIManager(open, path) f = manager.acquire() assert f.read() == "foobar" manager.close() def test_uri_manager_acquire_context(tmpdir): path = str(tmpdir.join("testing.txt")) with open(path, "w") as f: f.write("foobar") class AcquisitionError(Exception): pass manager = URIManager(open, path) with pytest.raises(AcquisitionError): with manager.acquire_context() as f: assert f.read() == "foobar" raise AcquisitionError with manager.acquire_context() as f: assert f.read() == "foobar" with pytest.raises(AcquisitionError): with manager.acquire_context() as f: f.seek(0) assert f.read() == "foobar" raise AcquisitionError manager.close() rioxarray-0.18.2/test/integration/test_integration_merge.py000066400000000000000000000247631474250745200242650ustar00rootroot00000000000000import os import pytest import xarray from numpy import nansum from numpy.testing import assert_almost_equal from rioxarray import open_rasterio from rioxarray.merge import merge_arrays, merge_datasets from test.conftest import RASTERIO_GE_14, RASTERIO_GE_143, TEST_INPUT_DATA_DIR @pytest.mark.parametrize("squeeze", [True, False]) def test_merge_arrays(squeeze): dem_test = os.path.join(TEST_INPUT_DATA_DIR, "MODIS_ARRAY.nc") with open_rasterio(dem_test) as rds: rds.attrs = { "_FillValue": rds.rio.nodata, } arrays = [ rds.isel(x=slice(100), y=slice(100)), rds.isel(x=slice(100, 200), y=slice(100, 200)), rds.isel(x=slice(100), y=slice(100, 200)), rds.isel(x=slice(100, 200), y=slice(100)), ] if squeeze: arrays = [array.squeeze() for array in arrays] merged = merge_arrays(arrays) assert_almost_equal( merged.rio.bounds(), (-7274009.6494863, 5003777.3385, -7227678.3778335, 5050108.6101528), ) assert merged.rio.shape == (200, 200) assert_almost_equal(merged.sum(), 22865733) assert_almost_equal( tuple(merged.rio.transform()), ( 231.6563582639536, 0.0, -7274009.649486291, 0.0, -231.65635826374404, 5050108.61015275, 0.0, 0.0, 1.0, ), ) assert merged.rio._cached_transform() == merged.rio.transform() assert sorted(merged.coords) == sorted(rds.coords) assert merged.coords["band"].values == [1] assert merged.rio.crs == rds.rio.crs assert merged.attrs == { "AREA_OR_POINT": "Area", "add_offset": 0.0, "scale_factor": 1.0, **rds.attrs, } assert merged.encoding["grid_mapping"] == "spatial_ref" @pytest.mark.parametrize("dataset", [True, False]) def test_merge__different_crs(dataset): dem_test = os.path.join(TEST_INPUT_DATA_DIR, "MODIS_ARRAY.nc") with ( xarray.open_dataset(dem_test, mask_and_scale=False) if dataset else xarray.open_dataarray(dem_test, mask_and_scale=False) ) as rds: crs = rds.rio.crs arrays = [ rds.isel(x=slice(100), y=slice(100)).rio.reproject("EPSG:3857"), rds.isel(x=slice(100, 200), y=slice(100, 200)), rds.isel(x=slice(100), y=slice(100, 200)), rds.isel(x=slice(100, 200), y=slice(100)), ] if dataset: merged = merge_datasets(arrays, crs=crs) else: merged = merge_arrays(arrays, crs=crs) if dataset: test_sum = merged[merged.rio.vars[0]].sum() else: test_sum = merged.sum() assert_almost_equal( merged.rio.bounds(), (-7300984.0238134, 5003618.5908794, -7224054.1109682, 5050108.6101528), ) assert merged.rio.shape == (84, 139) if RASTERIO_GE_14 and not RASTERIO_GE_143: assert_almost_equal(test_sum, -126821853) else: assert_almost_equal(test_sum, -131734881) assert_almost_equal( tuple(merged.rio.transform()), ( 553.4526103969893, 0.0, -7300984.023813409, 0.0, -553.4526103969796, 5050108.610152751, 0.0, 0.0, 1.0, ), ) assert sorted(merged.coords) == sorted(list(rds.coords) + ["spatial_ref"]) assert merged.rio.crs == rds.rio.crs if not dataset: assert merged.attrs == { "AREA_OR_POINT": "Area", "_FillValue": -28672, "add_offset": 0.0, "scale_factor": 1.0, } assert merged.encoding["grid_mapping"] == "spatial_ref" def test_merge_arrays__res(): dem_test = os.path.join(TEST_INPUT_DATA_DIR, "MODIS_ARRAY.nc") with open_rasterio(dem_test, masked=True) as rds: arrays = [ rds.isel(x=slice(100), y=slice(100)), rds.isel(x=slice(100, 200), y=slice(100, 200)), rds.isel(x=slice(100), y=slice(100, 200)), rds.isel(x=slice(100, 200), y=slice(100)), ] merged = merge_arrays(arrays, res=(300, 300)) assert_almost_equal( merged.rio.bounds(), (-7274009.6494863, 5003608.6101528, -7227509.6494863, 5050108.6101528), ) assert merged.rio.shape == (155, 155) assert_almost_equal( tuple(merged.rio.transform()), ( 300.0, 0.0, -7274009.649486291, 0.0, -300.0, 5050108.61015275, 0.0, 0.0, 1.0, ), ) assert merged.rio._cached_transform() == merged.rio.transform() assert sorted(merged.coords) == sorted(rds.coords) assert merged.coords["band"].values == [1] assert merged.rio.crs == rds.rio.crs assert_almost_equal(merged.rio.nodata, rds.rio.nodata) assert_almost_equal(merged.rio.encoded_nodata, rds.rio.encoded_nodata) assert merged.encoding["grid_mapping"] == "spatial_ref" assert_almost_equal(nansum(merged), 13760565) @pytest.mark.xfail(os.name == "nt", reason="On windows the merged data is different.") def test_merge_datasets(): dem_test = os.path.join( TEST_INPUT_DATA_DIR, "MOD09GA.A2008296.h14v17.006.2015181011753.hdf" ) with open_rasterio(dem_test, group="MODIS_Grid_500m_2D") as rds: datasets = [ rds.isel(x=slice(600), y=slice(600)), rds.isel(x=slice(600, None), y=slice(600, None)), rds.isel(x=slice(600), y=slice(600, None)), rds.isel(x=slice(600, None), y=slice(600)), ] merged = merge_datasets(datasets) data_vars = sorted(merged.data_vars) assert data_vars == [ "QC_500m_1", "iobs_res_1", "num_observations_500m", "obscov_500m_1", "sur_refl_b01_1", "sur_refl_b02_1", "sur_refl_b03_1", "sur_refl_b04_1", "sur_refl_b05_1", "sur_refl_b06_1", "sur_refl_b07_1", ] data_var = data_vars[0] assert_almost_equal( merged[data_var].rio.bounds(), (-4447802.078667, -10007554.677, -3335851.559, -8895604.157333), ) assert merged.rio.shape == (2400, 2400) assert_almost_equal( tuple(merged[data_var].rio.transform()), ( 463.3127165279158, 0.0, -4447802.078667, 0.0, -463.3127165279151, -8895604.157333, 0.0, 0.0, 1.0, ), ) assert sorted(merged.coords) == sorted(rds.coords) assert merged.coords["band"].values == [1] assert merged.rio.crs == rds.rio.crs assert merged.attrs == rds.attrs assert merged.encoding["grid_mapping"] == "spatial_ref" assert_almost_equal(merged[data_var].sum(), 4539666606551516) @pytest.mark.xfail(os.name == "nt", reason="On windows the merged data is different.") def test_merge_datasets__res(): dem_test = os.path.join( TEST_INPUT_DATA_DIR, "MOD09GA.A2008296.h14v17.006.2015181011753.hdf" ) with open_rasterio(dem_test, group="MODIS_Grid_500m_2D") as rds: datasets = [ rds.isel(x=slice(1200), y=slice(1200)), rds.isel(x=slice(1200, None), y=slice(1200, None)), rds.isel(x=slice(1200), y=slice(1200, None)), rds.isel(x=slice(1200, None), y=slice(1200)), ] merged = merge_datasets(datasets, res=1000) data_vars = sorted(merged.data_vars) assert data_vars == [ "QC_500m_1", "iobs_res_1", "num_observations_500m", "obscov_500m_1", "sur_refl_b01_1", "sur_refl_b02_1", "sur_refl_b03_1", "sur_refl_b04_1", "sur_refl_b05_1", "sur_refl_b06_1", "sur_refl_b07_1", ] data_var = data_vars[0] assert_almost_equal( merged[data_var].rio.bounds(), (-4447802.078667, -10007604.157333, -3335802.078667, -8895604.157333), ) assert_almost_equal( tuple(merged[data_var].rio.transform()), ( 1000.0, 0.0, -4447802.078667, 0.0, -1000.0, -8895604.157333, 0.0, 0.0, 1.0, ), ) assert merged.rio.shape == (1112, 1112) assert merged.coords["band"].values == [1] assert sorted(merged.coords) == sorted(rds.coords) assert merged.rio.crs == rds.rio.crs assert merged.attrs == rds.attrs assert merged.encoding["grid_mapping"] == "spatial_ref" assert_almost_equal(merged[data_var].sum(), 974566547463955) @pytest.mark.parametrize("mask_and_scale", [True, False]) def test_merge_datasets__mask_and_scale(mask_and_scale): test_file = os.path.join(TEST_INPUT_DATA_DIR, "tmmx_20190121.nc") with open_rasterio(test_file, mask_and_scale=mask_and_scale) as rds: rds = rds.to_dataset() datasets = [ rds.isel(x=slice(100), y=slice(100)), rds.isel(x=slice(100, None), y=slice(100, None)), rds.isel(x=slice(100), y=slice(100, None)), rds.isel(x=slice(100, None), y=slice(100)), ] merged = merge_datasets(datasets) assert sorted(merged.coords) == sorted(list(rds.coords) + ["spatial_ref"]) total = merged.air_temperature.sum() if mask_and_scale: assert_almost_equal(total, 133376696) else: assert_almost_equal(total, 10981781386) def test_merge_datasets__preserve_dimension_names(): sentinel_2_geographic = os.path.join( TEST_INPUT_DATA_DIR, "sentinel_2_L1C_geographic.nc" ) with xarray.open_dataset(sentinel_2_geographic) as mda: merged = merge_datasets([mda]) assert sorted(merged.coords) == sorted(mda.coords) for data_var in mda.data_vars: assert_almost_equal(merged[data_var].sum(), mda[data_var].sum()) assert merged.rio.crs == mda.rio.crs rioxarray-0.18.2/test/integration/test_integration_rioxarray.py000066400000000000000000003431611474250745200252020ustar00rootroot00000000000000import importlib.metadata import json import os import platform import threading from functools import partial import dask.array import numpy import pytest import rasterio import xarray from affine import Affine from dask.delayed import Delayed from numpy.testing import assert_almost_equal, assert_array_equal from packaging import version from pyproj import CRS as pCRS from rasterio.control import GroundControlPoint from rasterio.crs import CRS from rasterio.windows import Window import rioxarray from rioxarray.exceptions import ( DimensionMissingCoordinateError, MissingCRS, MissingSpatialDimensionError, NoDataInBounds, OneDimensionalRaster, RioXarrayError, ) from rioxarray.rioxarray import _generate_spatial_coords, _make_coords from test.conftest import ( GDAL_GE_361, RASTERIO_GE_14, TEST_COMPARE_DATA_DIR, TEST_INPUT_DATA_DIR, _assert_xarrays_equal, _ensure_dataset, open_rasterio_engine, ) try: SCIPY_LT_17 = version.parse(importlib.metadata.version("scipy")) < version.parse( "1.7.0" ) SCIPY_INSTALLED = True except importlib.metadata.PackageNotFoundError: SCIPY_LT_17 = True SCIPY_INSTALLED = False @pytest.fixture( params=[ partial(xarray.open_dataset, decode_coords="all"), partial(xarray.open_dataarray, decode_coords="all"), open_rasterio_engine, ] ) def modis_reproject(request): return dict( input=os.path.join(TEST_INPUT_DATA_DIR, "MODIS_ARRAY.nc"), compare=os.path.join( TEST_COMPARE_DATA_DIR, "MODIS_ARRAY_UTM_GDAL361.nc" if GDAL_GE_361 else "MODIS_ARRAY_UTM.nc", ), to_proj="+datum=WGS84 +no_defs +proj=utm +units=m +zone=15", open=request.param, ) @pytest.fixture def modis_reproject_3d(): return dict( input=os.path.join(TEST_INPUT_DATA_DIR, "PLANET_SCOPE_3D.nc"), compare=os.path.join(TEST_COMPARE_DATA_DIR, "PLANET_SCOPE_WGS84.nc"), to_proj="+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs", ) @pytest.fixture( params=[ partial(xarray.open_dataset, decode_coords="all"), partial(xarray.open_dataarray, decode_coords="all"), open_rasterio_engine, ] ) def interpolate_na(request): pytest.importorskip("scipy") return dict( input=os.path.join(TEST_INPUT_DATA_DIR, "MODIS_ARRAY.nc"), compare=os.path.join(TEST_COMPARE_DATA_DIR, "MODIS_ARRAY_INTERPOLATE.nc"), open=request.param, ) @pytest.fixture def interpolate_na_3d(): pytest.importorskip("scipy") return dict( input=os.path.join(TEST_INPUT_DATA_DIR, "PLANET_SCOPE_3D.nc"), compare=os.path.join(TEST_COMPARE_DATA_DIR, "PLANET_SCOPE_3D_INTERPOLATE.nc"), ) @pytest.fixture( params=[ partial(xarray.open_dataset, decode_coords="all"), partial(xarray.open_dataarray, decode_coords="all"), open_rasterio_engine, ] ) def interpolate_na_filled(request): pytest.importorskip("scipy") return dict( input=os.path.join(TEST_INPUT_DATA_DIR, "MODIS_ARRAY.nc"), compare=os.path.join( TEST_COMPARE_DATA_DIR, "MODIS_ARRAY_INTERPOLATE_FILLED.nc" ), open=request.param, ) @pytest.fixture def interpolate_na_veris(): pytest.importorskip("scipy") return dict( input=os.path.join(TEST_INPUT_DATA_DIR, "veris.nc"), compare=os.path.join(TEST_COMPARE_DATA_DIR, "veris_interpolate.nc"), ) @pytest.fixture( params=[ partial(xarray.open_dataset, decode_coords="all"), partial(xarray.open_dataarray, decode_coords="all"), rioxarray.open_rasterio, open_rasterio_engine, ] ) def interpolate_na_nan(request): pytest.importorskip("scipy") return dict( input=os.path.join(TEST_INPUT_DATA_DIR, "MODIS_ARRAY.nc"), compare=os.path.join(TEST_COMPARE_DATA_DIR, "MODIS_ARRAY_INTERPOLATE_NAN.nc"), open=request.param, ) @pytest.fixture( params=[ partial(xarray.open_dataset, decode_coords="all"), partial(xarray.open_dataarray, decode_coords="all"), rioxarray.open_rasterio, partial(rioxarray.open_rasterio, parse_coordinates=False), open_rasterio_engine, ] ) def modis_reproject_match(request): return dict( input=os.path.join(TEST_INPUT_DATA_DIR, "MODIS_ARRAY.nc"), compare=os.path.join( TEST_COMPARE_DATA_DIR, "MODIS_ARRAY_MATCH_UTM_GDAL361.nc" if GDAL_GE_361 else "MODIS_ARRAY_MATCH_UTM.nc", ), match=os.path.join(TEST_INPUT_DATA_DIR, "MODIS_ARRAY_MATCH.nc"), open=request.param, ) @pytest.fixture( params=[ partial(xarray.open_dataset, decode_coords="all"), partial(xarray.open_dataarray, decode_coords="all"), rioxarray.open_rasterio, open_rasterio_engine, ] ) def modis_reproject_match_coords(request): return dict( input=os.path.join(TEST_INPUT_DATA_DIR, "MODIS_ARRAY.nc"), compare=os.path.join( TEST_COMPARE_DATA_DIR, "MODIS_ARRAY_MATCH_UTM_GDAL361.nc" if GDAL_GE_361 else "MODIS_ARRAY_MATCH_UTM.nc", ), match=os.path.join(TEST_INPUT_DATA_DIR, "MODIS_ARRAY_MATCH.nc"), open=request.param, ) @pytest.fixture( params=[ partial(xarray.open_dataset, decode_coords="all"), partial(xarray.open_dataarray, decode_coords="all"), rioxarray.open_rasterio, partial(rioxarray.open_rasterio, parse_coordinates=False), open_rasterio_engine, ] ) def modis_reproject_match__passed_nodata(request): return dict( input=os.path.join(TEST_INPUT_DATA_DIR, "MODIS_ARRAY.nc"), compare=os.path.join( TEST_COMPARE_DATA_DIR, "MODIS_ARRAY_MATCH_PASSED_NODATA_GDAL361.nc" if GDAL_GE_361 else "MODIS_ARRAY_MATCH_PASSED_NODATA.nc", ), match=os.path.join(TEST_INPUT_DATA_DIR, "MODIS_ARRAY_MATCH.nc"), open=request.param, ) def _mod_attr(input_xr, attr, val=None, remove=False): if hasattr(input_xr, "variables"): for var in input_xr.rio.vars: _mod_attr(input_xr[var], attr, val=val, remove=remove) else: if remove: input_xr.attrs.pop(attr, None) else: input_xr.attrs[attr] = val def _get_attr(input_xr, attr): if hasattr(input_xr, "variables"): return input_xr[input_xr.rio.vars.pop()].attrs[attr] return input_xr.attrs[attr] def _del_attr(input_xr, attr): _mod_attr(input_xr, attr, remove=True) @pytest.fixture( params=[ partial(xarray.open_dataset, decode_coords="all"), partial(xarray.open_dataarray, decode_coords="all"), rioxarray.open_rasterio, partial(rioxarray.open_rasterio, parse_coordinates=False), open_rasterio_engine, ] ) def modis_clip(request, tmpdir): return dict( input=os.path.join(TEST_INPUT_DATA_DIR, "MODIS_ARRAY.nc"), compare=os.path.join(TEST_COMPARE_DATA_DIR, "MODIS_ARRAY_CLIP.nc"), compare_expand=os.path.join( TEST_COMPARE_DATA_DIR, "MODIS_ARRAY_CLIP_EXPAND.nc" ), open=request.param, output=str(tmpdir.join("MODIS_CLIP_DUMP.nc")), ) def test_pad_box(modis_clip): if isinstance(modis_clip["open"], partial): # SKIP: parse_coodinates=False is not supported return with modis_clip["open"](modis_clip["input"]) as xdi: # first, clip clipped_ds = xdi.rio.clip_box( minx=xdi.x[4].values, miny=xdi.y[6].values, maxx=xdi.x[6].values, maxy=xdi.y[4].values, ) # then, extend back to original padded_ds = clipped_ds.rio.pad_box( minx=xdi.x[0].values, miny=xdi.y[-1].values, maxx=xdi.x[-1].values, maxy=xdi.y[0].values, ) # check the nodata value try: nodata = padded_ds[padded_ds.rio.vars[0]].rio.nodata if nodata is not None and not numpy.isnan(nodata): assert all( [padded_ds[padded_ds.rio.vars[0]].isel(x=0, y=0).values == nodata] ) else: assert all( numpy.isnan( [padded_ds[padded_ds.rio.vars[0]].isel(x=0, y=0).values] ) ) except AttributeError: if padded_ds.rio.nodata is not None and not numpy.isnan( padded_ds.rio.nodata ): assert all([padded_ds.isel(x=0, y=0).values == padded_ds.rio.nodata]) else: assert all(numpy.isnan([padded_ds.isel(x=0, y=0).values])) # finally, clip again clipped_ds2 = padded_ds.rio.clip_box( minx=xdi.x[4].values, miny=xdi.y[6].values, maxx=xdi.x[6].values, maxy=xdi.y[4].values, ) _assert_xarrays_equal(clipped_ds, clipped_ds2) # padded data should have the same size as original data if hasattr(xdi, "variables"): for var in xdi.rio.vars: assert_almost_equal( xdi[var].rio._cached_transform(), padded_ds[var].rio._cached_transform(), ) for padded_size, original_size in zip( padded_ds[var].shape, xdi[var].shape ): assert padded_size == original_size else: assert_almost_equal( xdi.rio._cached_transform(), padded_ds.rio._cached_transform() ) for padded_size, original_size in zip(padded_ds.shape, xdi.shape): assert padded_size == original_size # make sure it safely writes to netcdf padded_ds.to_netcdf(modis_clip["output"]) def test_clip_box(modis_clip): with modis_clip["open"](modis_clip["input"]) as xdi, modis_clip["open"]( modis_clip["compare"] ) as xdc: clipped_ds = xdi.rio.clip_box( minx=-7272967.195874103, # xdi.x[4].values, miny=5048602.8438240355, # xdi.y[6].values, maxx=-7272503.8831575755, # xdi.x[6].values, maxy=5049066.156540562, # xdi.y[4].values, ) assert xdi.rio._cached_transform() != clipped_ds.rio._cached_transform() var = "__xarray_dataarray_variable__" try: clipped_ds_values = clipped_ds[var].values except KeyError: clipped_ds_values = clipped_ds.values try: xdc_values = xdc[var].values except KeyError: xdc_values = xdc.values assert_almost_equal(clipped_ds_values, xdc_values) assert_almost_equal(clipped_ds.rio.transform(), xdc.rio.transform()) # make sure it safely writes to netcdf clipped_ds.to_netcdf(modis_clip["output"]) def test_clip_box__auto_expand(modis_clip): with modis_clip["open"](modis_clip["input"]) as xdi, modis_clip["open"]( modis_clip["compare_expand"] ) as xdc: clipped_ds = xdi.rio.clip_box( minx=-7272735.53951584, # xdi.x[5].values miny=5048834.500182299, # xdi.y[5].values maxx=-7272735.53951584, # xdi.x[5].values maxy=5048834.500182299, # xdi.y[5].values auto_expand=True, ) assert xdi.rio._cached_transform() != clipped_ds.rio._cached_transform() var = "__xarray_dataarray_variable__" try: clipped_ds_values = clipped_ds[var].values except KeyError: clipped_ds_values = clipped_ds.values try: xdc_values = xdc[var].values except KeyError: xdc_values = xdc.values assert_almost_equal(clipped_ds_values, xdc_values) assert_almost_equal(clipped_ds.rio.transform(), xdc.rio.transform()) # make sure it safely writes to netcdf clipped_ds.to_netcdf(modis_clip["output"]) def test_clip_box__nodata_error(modis_clip): with modis_clip["open"](modis_clip["input"]) as xdi: with pytest.raises( rasterio.errors.WindowError, match="Bounds and transform are inconsistent" ): xdi.rio.clip_box( minx=-8272735.53951584, # xdi.x[5].values miny=8048371.187465771, # xdi.y[7].values maxx=-8272967.195874103, # xdi.x[4].values maxy=8048834.500182299, # xdi.y[5].values ) def test_clip_box__one_dimension_error(modis_clip): with modis_clip["open"](modis_clip["input"]) as xdi: var_match = "" if hasattr(xdi, "name") and xdi.name: var_match = " Data variable: __xarray_dataarray_variable__" # test exception after raster clipped with pytest.raises( OneDimensionalRaster, match=( "At least one of the clipped raster x,y coordinates has " f"only one point.{var_match}" ), ): xdi.rio.clip_box( minx=-7272735.53951584, # xdi.x[5].values miny=5048834.500182299, # xdi.y[5].values maxx=-7272735.53951584, # xdi.x[5].values maxy=5048834.500182299, # xdi.y[5].values ) # test exception before raster clipped with pytest.raises(OneDimensionalRaster): xdi.isel(x=slice(5, 6), y=slice(5, 6)).rio.clip_box( minx=-7272735.53951584, # xdi.x[5].values miny=5048371.187465771, # xdi.y[7].values maxx=-7272272.226799311, # xdi.x[7].values maxy=5048834.500182299, # xdi.y[5].values ) def test_clip_box__one_dimension_error__allowed(modis_clip): with modis_clip["open"](modis_clip["input"]) as xdi: # test after raster clipped assert xdi.rio.clip_box( minx=-7272735.53951584, # xdi.x[5].values miny=5048834.500182299, # xdi.y[5].values maxx=-7272735.53951584, # xdi.x[5].values maxy=5048834.500182299, # xdi.y[5].values allow_one_dimensional_raster=True, ).rio.shape == (1, 1) # test before raster clipped if not isinstance(modis_clip["open"], partial): assert xdi.isel(x=slice(5, 6), y=slice(5, 6)).rio.clip_box( minx=-7272735.53951584, # xdi.x[5].values miny=5048371.187465771, # xdi.y[7].values maxx=-7272272.226799311, # xdi.x[7].values maxy=5048834.500182299, # xdi.y[5].values allow_one_dimensional_raster=True, ).rio.shape == (1, 1) def test_clip_box__nodata_in_bounds(): with rioxarray.open_rasterio( os.path.join(TEST_INPUT_DATA_DIR, "clip_bbox__out_of_bounds.tif") ) as xds: with pytest.raises(NoDataInBounds): xds.rio.clip_box( 135.7821043660001123, -17.1608065079999506, 135.7849362810001139, -17.1580839999999739, crs="EPSG:4326", ) with pytest.raises(NoDataInBounds): xds.rio.reproject("EPSG:4326").rio.clip_box( 135.7821043660001123, -17.1608065079999506, 135.7849362810001139, -17.1580839999999739, ) def test_clip_box__reproject_bounds(modis_clip): with modis_clip["open"](modis_clip["input"]) as xdi: clipped = xdi.rio.clip_box( minx=-93.1558, miny=45.403, maxx=-93.1557, maxy=45.4065, crs="EPSG:4326", ) assert_almost_equal( clipped.rio.bounds(), ( -7272851.367694971, 5048487.015644904, -7272156.398620179, 5049181.9847196955, ), ) def test_clip_box__antimeridian(): xds = xarray.DataArray( numpy.zeros((5, 5)), dims=("y", "x"), coords={"x": range(-180, 180, 72), "y": range(-90, 90, 36)}, ) xds.rio.write_crs("EPSG:4326", inplace=True) with pytest.raises(RioXarrayError, match="antimeridian"): xds.rio.clip_box( minx=1722483.900174921, miny=5228058.6143420935, maxx=4624385.494808555, maxy=8692574.544944234, crs="EPSG:3851", ) def test_clip_box__mising_crs(): xds = xarray.DataArray( numpy.zeros((5, 5)), dims=("y", "x"), coords={"x": range(-180, 180, 72), "y": range(-90, 90, 36)}, ) with pytest.raises(MissingCRS): xds.rio.clip_box( minx=1722483.900174921, miny=5228058.6143420935, maxx=4624385.494808555, maxy=8692574.544944234, crs="EPSG:3851", ) def test_slice_xy(modis_clip): if isinstance(modis_clip["open"], partial): # SKIP: parse_coodinates=False is not supported return with modis_clip["open"](modis_clip["input"]) as xdi, modis_clip["open"]( modis_clip["compare"] ) as xdc: clipped_ds = xdi.rio.slice_xy( minx=-7272967.195874103, # xdi.x[4].values, miny=5048602.8438240355, # xdi.y[6].values, maxx=-7272503.8831575755, # xdi.x[6].values, maxy=5049297.812898826, # xdi.y[4].values - resolution_y, ) assert xdi.rio._cached_transform() != clipped_ds.rio._cached_transform() var = "__xarray_dataarray_variable__" try: clipped_ds_values = clipped_ds[var].values except KeyError: clipped_ds_values = clipped_ds.values try: xdc_values = xdc[var].values except KeyError: xdc_values = xdc.values assert_almost_equal(clipped_ds_values, xdc_values) assert_almost_equal(clipped_ds.rio.transform(), xdc.rio.transform()) # make sure it safely writes to netcdf clipped_ds.to_netcdf(modis_clip["output"]) @pytest.mark.parametrize("from_disk", [True, False]) @pytest.mark.parametrize( "open_func", [ rioxarray.open_rasterio, partial(rioxarray.open_rasterio, parse_coordinates=False), partial(rioxarray.open_rasterio, parse_coordinates=False, masked=True), open_rasterio_engine, partial(open_rasterio_engine, parse_coordinates=False), partial(open_rasterio_engine, parse_coordinates=False, mask_and_scale=False), ], ) def test_clip_geojson(open_func, from_disk): with open_func( os.path.join(TEST_COMPARE_DATA_DIR, "small_dem_3m_merged.tif"), ) as xdi: # get subset for testing subset = xdi.isel(x=slice(150, 160), y=slice(100, 150)) comp_subset = subset.isel(x=slice(1, None), y=slice(1, None)) if isinstance(comp_subset, xarray.Dataset): comp_subset = comp_subset.band_data # add transform for test comp_subset.rio.write_transform(inplace=True) # add grid mapping for test comp_subset.rio.write_crs(subset.rio.crs, inplace=True) if comp_subset.rio.encoded_nodata is None: comp_subset.rio.write_nodata(comp_subset.rio.nodata, inplace=True) geometries = [ { "type": "Polygon", "coordinates": [ [ [425499.18381405267, 4615331.540546387], [425499.18381405267, 4615478.540546387], [425526.18381405267, 4615478.540546387], [425526.18381405267, 4615331.540546387], [425499.18381405267, 4615331.540546387], ] ], } ] # test data array clipped = xdi.rio.clip(geometries, from_disk=from_disk) if from_disk and not isinstance(clipped, xarray.Dataset): _assert_xarrays_equal(clipped[:, 1:, 1:], comp_subset) if comp_subset.rio.encoded_nodata is not None: assert numpy.isnan(clipped.values[:, 0, :]).all() assert numpy.isnan(clipped.values[:, :, 0]).all() else: assert (clipped.values[:, 0, :] == comp_subset.rio.nodata).all() assert (clipped.values[:, :, 0] == comp_subset.rio.nodata).all() else: if isinstance(clipped, xarray.Dataset): clipped = clipped.band_data _assert_xarrays_equal(clipped, comp_subset) # test dataset if isinstance(xdi, xarray.DataArray): clipped_ds = xdi.to_dataset(name="band_data").rio.clip(geometries) else: clipped_ds = xdi.rio.clip(geometries) comp_subset_ds = comp_subset.to_dataset(name="band_data") # This coordinate checking is skipped when parse_coordinates=False # as the auto-generated coordinates differ and can be ignored _assert_xarrays_equal( clipped_ds, comp_subset_ds, skip_xy_check=isinstance(open_func, partial) ) # check the transform assert_almost_equal( clipped_ds.rio.transform(), (3.0, 0.0, 425500.68381405267, 0.0, -3.0, 4615477.040546387, 0.0, 0.0, 1.0), ) @pytest.mark.parametrize( "invert, from_disk, expected_sum", [ (False, False, 2150837592), (True, False, 535691205), (False, True, 2150837592), (True, True, 535691205), ], ) @pytest.mark.parametrize( "open_func", [ rioxarray.open_rasterio, partial(rioxarray.open_rasterio, parse_coordinates=False), ], ) def test_clip_geojson__no_drop(open_func, invert, from_disk, expected_sum): with open_func( os.path.join(TEST_COMPARE_DATA_DIR, "small_dem_3m_merged.tif") ) as xdi: geometries = [ { "type": "Polygon", "coordinates": [ [ [-93.880889448126, 41.68465068553298], [-93.89966980835203, 41.68465068553298], [-93.89966980835203, 41.689430423525266], [-93.880889448126, 41.689430423525266], [-93.880889448126, 41.68465068553298], ] ], } ] # test data array clipped = xdi.rio.clip( geometries, "epsg:4326", drop=False, invert=invert, from_disk=from_disk ) assert clipped.rio.crs == xdi.rio.crs assert clipped.shape == xdi.shape assert clipped.sum().item() == expected_sum assert clipped.rio.nodata == 0.0 assert clipped.rio.nodata == xdi.rio.nodata # test dataset clipped_ds = xdi.to_dataset(name="test_data").rio.clip( geometries, "epsg:4326", drop=False, invert=invert ) assert clipped_ds.rio.crs == xdi.rio.crs assert clipped_ds.test_data.shape == xdi.shape assert clipped_ds.test_data.sum().item() == expected_sum assert clipped_ds.test_data.rio.nodata == xdi.rio.nodata @pytest.fixture def dummy_dataset_non_geospatial(): ds = xarray.Dataset( { "stuff": xarray.DataArray( data=numpy.zeros((6, 6, 6), dtype=float), dims=["time", "y", "x"], coords={ "time": numpy.arange(6), "y": numpy.linspace(4615514.54054639, 4615295.54054639, num=6), "x": numpy.linspace(425493.18381405, 425532.18381405, num=6), }, attrs={ "_FillValue": -1, }, ), "non_geo_stuff": xarray.DataArray( data=numpy.zeros((6, 6), dtype=float), dims=["time", "bb"], coords={ "time": numpy.arange(6), "bb": numpy.arange(6), }, ), "meta": ("time", numpy.random.random(6)), } ) ds.rio.set_spatial_dims(x_dim="x", y_dim="y", inplace=True) ds.rio.write_crs("EPSG:26915", inplace=True) return ds def test_clip__non_geospatial(dummy_dataset_non_geospatial): # check for variables without spatial dims geometries = [ { "type": "Polygon", "coordinates": [ [ [425499.18381405267, 4615331.540546387], [425499.18381405267, 4615478.540546387], [425526.18381405267, 4615478.540546387], [425526.18381405267, 4615331.540546387], [425499.18381405267, 4615331.540546387], ] ], } ] ds = dummy_dataset_non_geospatial assert ds.stuff.shape == (6, 6, 6) with pytest.raises(MissingSpatialDimensionError): ds.rio.clip(geometries) ds_clip = ds[["stuff", "meta"]].rio.clip(geometries) assert ds_clip.stuff.shape == (6, 4, 4) assert "meta" in ds_clip.data_vars with rioxarray.set_options(skip_missing_spatial_dims=True): ds_clip = ds.rio.clip(geometries) assert ds_clip.stuff.shape == (6, 4, 4) assert "meta" in ds_clip.data_vars assert "non_geo_stuff" in ds_clip.data_vars def test_clip_box__non_geospatial(dummy_dataset_non_geospatial): ds = dummy_dataset_non_geospatial assert ds.stuff.shape == (6, 6, 6) with pytest.raises(MissingSpatialDimensionError): ds.rio.clip_box( minx=425500.18381405, miny=4615395.54054639, maxx=425520.18381405, maxy=4615414.54054639, ) ds_clip_box = ds[["stuff", "meta"]].rio.clip_box( minx=425500.18381405, miny=4615395.54054639, maxx=425520.18381405, maxy=4615414.54054639, ) assert ds_clip_box.stuff.shape == (6, 2, 3) assert "meta" in ds_clip_box.data_vars with rioxarray.set_options(skip_missing_spatial_dims=True): ds_clip_box = ds.rio.clip_box( minx=425500.18381405, miny=4615395.54054639, maxx=425520.18381405, maxy=4615414.54054639, ) assert ds_clip_box.stuff.shape == (6, 2, 3) assert "meta" in ds_clip_box.data_vars assert "non_geo_stuff" in ds_clip_box.data_vars def test_reproject__non_geospatial(dummy_dataset_non_geospatial): ds = dummy_dataset_non_geospatial assert ds.stuff.shape == (6, 6, 6) with pytest.raises(MissingSpatialDimensionError): ds.rio.reproject("EPSG:4326") ds_reproject = ds[["stuff", "meta"]].rio.reproject("EPSG:4326") assert ds_reproject.stuff.shape == (6, 8, 2) assert "meta" in ds_reproject.data_vars with rioxarray.set_options(skip_missing_spatial_dims=True): ds_reproject = ds.rio.reproject("EPSG:4326") assert ds_reproject.stuff.shape == (6, 8, 2) assert "meta" in ds_reproject.data_vars assert "non_geo_stuff" in ds_reproject.data_vars def test_reproject_match__non_geospatial(dummy_dataset_non_geospatial): ds = dummy_dataset_non_geospatial assert ds.stuff.shape == (6, 6, 6) with pytest.raises(MissingSpatialDimensionError): ds.rio.reproject_match(ds) ds_reproject = ds[["stuff", "meta"]].rio.reproject_match(ds) assert ds_reproject.stuff.shape == (6, 6, 6) assert "meta" in ds_reproject.data_vars with rioxarray.set_options(skip_missing_spatial_dims=True): ds_reproject = ds.rio.reproject_match(ds) assert ds_reproject.stuff.shape == (6, 6, 6) assert "meta" in ds_reproject.data_vars assert "non_geo_stuff" in ds_reproject.data_vars def test_reproject_match__geographic_dataset(): lat = [0.1, 0.15, 0.2] lon = [0.1, 0.15, 0.2] data = numpy.arange(1, 10, dtype=numpy.float32).reshape(3, 3) ds = xarray.Dataset( data_vars={ "foo": (["lat", "lon"], data), "bar": (["lat", "lon"], data), }, coords={"lat": lat, "lon": lon}, ) ds = ( ds.rio.write_crs(4326, inplace=True) .rio.set_spatial_dims(x_dim="lon", y_dim="lat", inplace=True) .rio.write_coordinate_system(inplace=True) ) ds_match = ds.rio.reproject_match(ds) assert_almost_equal(ds_match.x.values, ds.lon.values) assert_almost_equal(ds_match.y.values, ds.lat.values) def test_reproject_match__rotated(): rotated_affine = Affine(1, 0.2, 0, 0, 1, 0) image = numpy.random.randint(0, 255, size=(100, 100), dtype=numpy.uint8) rotated_dataset = ( xarray.DataArray( image, dims=("y", "x"), coords=_generate_spatial_coords( affine=rotated_affine, width=image.shape[1], height=image.shape[0], ), ) .astype("uint16") .rio.write_nodata(0, inplace=True) .rio.write_crs("EPSG:4326", inplace=True) .rio.write_transform(rotated_affine, inplace=True) .rio.write_coordinate_system(inplace=True) ) squared_affine = Affine(1, 0, 0, 0, 1, 0) squared_dataset = ( xarray.DataArray( image, dims=("y", "x"), coords=_generate_spatial_coords( affine=squared_affine, width=image.shape[1], height=image.shape[0], ), ) .astype("uint16") .rio.write_nodata(0, inplace=True) .rio.write_crs("EPSG:4326", inplace=True) .rio.write_transform(squared_affine, inplace=True) .rio.write_coordinate_system(inplace=True) ) reprojected_to_squared_dataset = rotated_dataset.rio.reproject_match( squared_dataset ) reprojected_to_rotated_dataset = squared_dataset.rio.reproject_match( rotated_dataset ) assert ( "xc" in reprojected_to_rotated_dataset.coords and "yc" in reprojected_to_rotated_dataset.coords ) assert ( "x" in reprojected_to_squared_dataset.coords and "y" in reprojected_to_squared_dataset.coords ) assert reprojected_to_squared_dataset.rio.transform() == squared_affine assert reprojected_to_rotated_dataset.rio.transform() == rotated_affine def test_interpolate_na__non_geospatial(dummy_dataset_non_geospatial): pytest.importorskip("scipy") ds = dummy_dataset_non_geospatial assert ds.stuff.shape == (6, 6, 6) with pytest.raises(MissingSpatialDimensionError): ds.rio.interpolate_na() ds_interp = ds[["stuff", "meta"]].rio.interpolate_na() assert ds_interp.stuff.shape == (6, 6, 6) assert "meta" in ds_interp.data_vars with rioxarray.set_options(skip_missing_spatial_dims=True): ds_interp = ds.rio.interpolate_na() assert ds_interp.stuff.shape == (6, 6, 6) assert "meta" in ds_interp.data_vars assert "non_geo_stuff" in ds_interp.data_vars def test_pad_box__non_geospatial(dummy_dataset_non_geospatial): ds = dummy_dataset_non_geospatial assert ds.stuff.shape == (6, 6, 6) with pytest.raises(MissingSpatialDimensionError): ds.rio.pad_box(*ds.rio.bounds()) ds_pad_box = ( ds[["stuff", "meta"]] .rio.clip_box( minx=425500.18381405, miny=4615395.54054639, maxx=425520.18381405, maxy=4615414.54054639, ) .rio.pad_box(*ds.rio.bounds()) ) assert ds_pad_box.stuff.shape == (6, 6, 6) assert "meta" in ds_pad_box.data_vars with rioxarray.set_options(skip_missing_spatial_dims=True): ds_pad_box = ds.rio.clip_box( minx=425500.18381405, miny=4615395.54054639, maxx=425520.18381405, maxy=4615414.54054639, ).rio.pad_box(*ds.rio.bounds()) assert ds_pad_box.stuff.shape == (6, 6, 6) assert "meta" in ds_pad_box.data_vars assert "non_geo_stuff" in ds_pad_box.data_vars @pytest.mark.parametrize( "open_func", [ partial(xarray.open_dataset, decode_coords="all"), partial(xarray.open_dataarray, decode_coords="all"), rioxarray.open_rasterio, partial(rioxarray.open_rasterio, parse_coordinates=False), open_rasterio_engine, partial(open_rasterio_engine, parse_coordinates=False), ], ) def test_transform_bounds(open_func): with open_func(os.path.join(TEST_INPUT_DATA_DIR, "MODIS_ARRAY.nc")) as xdi: bounds = xdi.rio.transform_bounds( "+proj=merc +lon_0=0 +k=1 +x_0=0 +y_0=0 +ellps=WGS84" " +datum=WGS84 +units=m +no_defs", densify_pts=100, ) assert_almost_equal( bounds, ( -10374232.525903117, 5591295.917919335, -10232919.684719983, 5656912.314724255, ), ) def test_reproject_with_shape(modis_reproject): new_shape = (9, 10) mask_args = ( dict(masked=False, mask_and_scale=False) if "rasterio" in str(modis_reproject["open"]) else dict(mask_and_scale=False) ) with modis_reproject["open"](modis_reproject["input"], **mask_args) as mda: mds_repr = mda.rio.reproject(modis_reproject["to_proj"], shape=new_shape) # test if hasattr(mds_repr, "variables"): for var in mds_repr.rio.vars: assert mds_repr[var].rio.shape == new_shape else: assert mds_repr.rio.shape == new_shape def test_reproject(modis_reproject): mask_args = ( dict(masked=False, mask_and_scale=False) if "rasterio" in str(modis_reproject["open"]) else dict(mask_and_scale=False) ) with modis_reproject["open"]( modis_reproject["input"], **mask_args ) as mda, modis_reproject["open"](modis_reproject["compare"], **mask_args) as mdc: mds_repr = mda.rio.reproject(modis_reproject["to_proj"]) # overwrite test dataset # if isinstance(mds_repr, xarray.DataArray): # mds_repr.to_netcdf(modis_reproject["compare"]) # test _assert_xarrays_equal(mds_repr, mdc) assert mds_repr.coords[mds_repr.rio.x_dim].attrs == { "axis": "X", "long_name": "x coordinate of projection", "standard_name": "projection_x_coordinate", "units": "metre", } assert mds_repr.coords[mds_repr.rio.y_dim].attrs == { "axis": "Y", "long_name": "y coordinate of projection", "standard_name": "projection_y_coordinate", "units": "metre", } @pytest.mark.parametrize( "open_func", [ rioxarray.open_rasterio, partial(rioxarray.open_rasterio, parse_coordinates=False), open_rasterio_engine, partial(open_rasterio_engine, parse_coordinates=False), ], ) def test_reproject_3d(open_func, modis_reproject_3d): with open_func(modis_reproject_3d["input"]) as mda, open_func( modis_reproject_3d["compare"] ) as mdc: mds_repr = mda.rio.reproject(modis_reproject_3d["to_proj"]) # test _assert_xarrays_equal(mds_repr, mdc) if mdc.rio.x_dim in mdc.coords: assert mds_repr.coords[mds_repr.rio.x_dim].attrs == { "long_name": "longitude", "standard_name": "longitude", "units": "degrees_east", "axis": "X", } assert mds_repr.coords[mds_repr.rio.y_dim].attrs == { "long_name": "latitude", "standard_name": "latitude", "units": "degrees_north", "axis": "Y", } def test_reproject__grid_mapping(modis_reproject): mask_args = ( dict(masked=False, mask_and_scale=False) if "rasterio" in str(modis_reproject["open"]) else dict(mask_and_scale=False) ) with modis_reproject["open"]( modis_reproject["input"], **mask_args ) as mda, modis_reproject["open"](modis_reproject["compare"], **mask_args) as mdc: # remove 'crs' attribute and add grid mapping # keep a copy of the crs before setting the spatial_ref to 0 as that will # set `rio.crs` to None. mda_rio_crs = mda.rio.crs mda.coords["spatial_ref"] = 0 mda.coords["spatial_ref"].attrs["spatial_ref"] = CRS.from_user_input( mda_rio_crs ).wkt _mod_attr(mda, "grid_mapping", val="spatial_ref") # keep a copy of the crs before setting the spatial_ref to 0 as that will # set `rio.crs` to None. mdc_rio_crs = mdc.rio.crs mdc.coords["spatial_ref"] = 0 mdc.coords["spatial_ref"].attrs["spatial_ref"] = CRS.from_user_input( mdc_rio_crs ).wkt _mod_attr(mdc, "grid_mapping", val="spatial_ref") # reproject mds_repr = mda.rio.reproject(modis_reproject["to_proj"]) # test _assert_xarrays_equal(mds_repr, mdc) def test_reproject__masked(modis_reproject): with modis_reproject["open"](modis_reproject["input"]) as mda, modis_reproject[ "open" ](modis_reproject["compare"]) as mdc: # reproject mds_repr = mda.rio.reproject(modis_reproject["to_proj"]) # test _assert_xarrays_equal(mds_repr, mdc) def test_reproject__no_transform(modis_reproject): with modis_reproject["open"](modis_reproject["input"]) as mda, modis_reproject[ "open" ](modis_reproject["compare"]) as mdc: orig_trans = mda.rio.transform() _del_attr(mda, "transform") # reproject mds_repr = mda.rio.reproject(modis_reproject["to_proj"]) # test if hasattr(mds_repr, "variables"): for var in mds_repr.rio.vars: assert_array_equal(orig_trans, tuple(mda[var].rio.transform())) else: assert_array_equal(orig_trans, tuple(mda.rio.transform())) _assert_xarrays_equal(mds_repr, mdc) @pytest.mark.parametrize("nodata", [None, -9999]) def test_reproject__no_nodata(nodata, modis_reproject): mask_args = ( dict(masked=False, mask_and_scale=False) if "rasterio" in str(modis_reproject["open"]) else dict(mask_and_scale=False) ) with modis_reproject["open"]( modis_reproject["input"], **mask_args ) as mda, modis_reproject["open"](modis_reproject["compare"], **mask_args) as mdc: orig_fill = _get_attr(mda, "_FillValue") _del_attr(mda, "_FillValue") _del_attr(mda, "nodata") # reproject mds_repr = mda.rio.reproject(modis_reproject["to_proj"], nodata=nodata) # replace -9999 with original _FillValue for testing fill_nodata = -32768 if nodata is None else nodata if hasattr(mds_repr, "variables"): for var in mds_repr.rio.vars: mds_repr[var].values[mds_repr[var].values == fill_nodata] = orig_fill else: mds_repr.values[mds_repr.values == fill_nodata] = orig_fill _mod_attr(mdc, "_FillValue", val=fill_nodata) # test _assert_xarrays_equal(mds_repr, mdc) @pytest.mark.parametrize("open_func", [rioxarray.open_rasterio, open_rasterio_engine]) def test_reproject__scalar_coord(open_func): with open_func( os.path.join(TEST_COMPARE_DATA_DIR, "small_dem_3m_merged.tif") ) as xdi: xdi_repr = xdi.squeeze().rio.reproject("epsg:3395") for coord in xdi.coords: assert coord in xdi_repr.coords def test_reproject__no_nodata_masked(modis_reproject): with modis_reproject["open"](modis_reproject["input"]) as mda, modis_reproject[ "open" ](modis_reproject["compare"]) as mdc: _del_attr(mda, "nodata") # reproject mds_repr = mda.rio.reproject(modis_reproject["to_proj"]) # test _assert_xarrays_equal(mds_repr, mdc) def test_reproject__gcps_kwargs(tmp_path): tiffname = tmp_path / "test.tif" src_gcps = [ GroundControlPoint(row=0, col=0, x=156113, y=2818720, z=0), GroundControlPoint(row=0, col=800, x=338353, y=2785790, z=0), GroundControlPoint(row=800, col=800, x=297939, y=2618518, z=0), GroundControlPoint(row=800, col=0, x=115698, y=2651448, z=0), ] crs = CRS.from_epsg(32618) with rasterio.open( tiffname, mode="w", height=800, width=800, count=3, dtype=numpy.uint8, driver="GTiff", ) as source: source.gcps = (src_gcps, crs) with rioxarray.open_rasterio(tiffname) as rds: rds.rio.write_crs(crs, inplace=True) rds = rds.rio.reproject( crs, gcps=src_gcps, ) assert rds.rio.height == 923 assert rds.rio.width == 1027 assert rds.rio.crs == crs assert rds.rio.transform().almost_equals( Affine( 216.8587081056465, 0.0, 115698.25, 0.0, -216.8587081056465, 2818720.0, ) ) assert (rds.coords["x"].values > 11000).all() assert (rds.coords["y"].values > 281700).all() def test_reproject_match(modis_reproject_match): mask_args = ( dict(masked=False, mask_and_scale=False) if "rasterio" in str(modis_reproject_match["open"]) else dict(mask_and_scale=False) ) with modis_reproject_match["open"]( modis_reproject_match["input"], **mask_args ) as mda, modis_reproject_match["open"]( modis_reproject_match["compare"], **mask_args ) as mdc, xarray.open_dataarray( modis_reproject_match["match"], decode_coords="all", ) as mdm: # reproject mds_repr = mda.rio.reproject_match(mdm) # overwrite test dataset # if isinstance(mds_repr, xarray.DataArray) and "band" not in mds_repr.coords: # mds_repr.attrs = {key: value for key, value in mds_repr.attrs.items() if key in ("_FillValue", "grid_mapping")} # mds_repr.to_netcdf( # os.path.join(TEST_COMPARE_DATA_DIR, modis_reproject_match["compare"]) # ) # test _assert_xarrays_equal(mds_repr, mdc) if mdc.rio.x_dim in mdc.coords: assert mds_repr.coords[mds_repr.rio.x_dim].attrs == { "axis": "X", "long_name": "x coordinate of projection", "standard_name": "projection_x_coordinate", "units": "metre", } assert mds_repr.coords[mds_repr.rio.y_dim].attrs == { "axis": "Y", "long_name": "y coordinate of projection", "standard_name": "projection_y_coordinate", "units": "metre", } def test_reproject_match__masked(modis_reproject_match): mask_args = ( dict(masked=True) if "rasterio" in str(modis_reproject_match["open"]) else dict(mask_and_scale=True) ) with modis_reproject_match["open"]( modis_reproject_match["input"], **mask_args ) as mda, modis_reproject_match["open"]( modis_reproject_match["compare"], **mask_args ) as mdc, xarray.open_dataarray( modis_reproject_match["match"], decode_coords="all", ) as mdm: # reproject mds_repr = mda.rio.reproject_match(mdm) # test _assert_xarrays_equal(mds_repr, mdc) def test_reproject_match__no_transform_nodata(modis_reproject_match_coords): mask_args = ( dict(masked=True) if "rasterio" in str(modis_reproject_match_coords["open"]) else dict(mask_and_scale=True) ) with modis_reproject_match_coords["open"]( modis_reproject_match_coords["input"], **mask_args ) as mda, modis_reproject_match_coords["open"]( modis_reproject_match_coords["compare"], **mask_args ) as mdc, xarray.open_dataarray( modis_reproject_match_coords["match"], decode_coords="all", ) as mdm: _del_attr(mda, "transform") _del_attr(mda, "nodata") # reproject mds_repr = mda.rio.reproject_match(mdm) # test _assert_xarrays_equal(mds_repr, mdc) def test_reproject_match__pass_nodata(modis_reproject_match__passed_nodata): mask_args = ( dict(masked=False, mask_and_scale=False) if "rasterio" in str(modis_reproject_match__passed_nodata["open"]) else dict(mask_and_scale=False, decode_coords="all") ) with modis_reproject_match__passed_nodata["open"]( modis_reproject_match__passed_nodata["input"], **mask_args ) as mda, modis_reproject_match__passed_nodata["open"]( modis_reproject_match__passed_nodata["compare"], **mask_args ) as mdc, xarray.open_dataarray( modis_reproject_match__passed_nodata["match"], decode_coords="all", ) as mdm: # reproject mds_repr = mda.rio.reproject_match(mdm, nodata=-9999) # overwrite test dataset # if isinstance(mds_repr, xarray.DataArray) and "band" not in mds_repr.coords: # mds_repr.to_netcdf( # os.path.join(TEST_COMPARE_DATA_DIR, modis_reproject_match__passed_nodata["compare"]) # ) # test _assert_xarrays_equal(mds_repr, mdc) @pytest.mark.parametrize("open_func", [rioxarray.open_rasterio, open_rasterio_engine]) def test_make_src_affine(open_func, modis_reproject): with xarray.open_dataarray( modis_reproject["input"], decode_coords="all" ) as xdi, open_func(modis_reproject["input"]) as xri: # check the transform attribute_transform = tuple(xdi.attrs["transform"]) attribute_transform_func = tuple(xdi.rio.transform()) calculated_transform = tuple(xdi.rio.transform(recalc=True)) # delete the transform to ensure it is not being used del xdi.attrs["transform"] calculated_transform_check = tuple(xdi.rio.transform()) calculated_transform_check2 = tuple(xdi.rio.transform()) rio_transform = tuple(xri.rio._cached_transform()) assert_array_equal(attribute_transform, attribute_transform_func) assert_array_equal(calculated_transform, calculated_transform_check) assert_array_equal(calculated_transform, calculated_transform_check2) assert_array_equal(attribute_transform, calculated_transform) assert_array_equal(calculated_transform, rio_transform) def test_make_src_affine__single_point(): point_input = os.path.join(TEST_INPUT_DATA_DIR, "MODIS_POINT.nc") with xarray.open_dataarray(point_input, decode_coords="all") as xdi: # check the transform attribute_transform = tuple(xdi.attrs["transform"]) attribute_transform_func = tuple(xdi.rio.transform()) calculated_transform = tuple(xdi.rio.transform(recalc=True)) # delete the transform to ensure it is not being used del xdi.attrs["transform"] assert xdi.rio.transform(recalc=True) == Affine.identity() assert xdi.rio.transform() == Affine.identity() assert_array_equal(attribute_transform, attribute_transform_func) assert_array_equal(attribute_transform, calculated_transform) @pytest.mark.parametrize( "open_func", [ xarray.open_dataset, open_rasterio_engine, rioxarray.open_rasterio, partial(rioxarray.open_rasterio, parse_coordinates=False), partial(open_rasterio_engine, parse_coordinates=False), ], ) def test_make_coords__calc_trans(open_func, modis_reproject): with xarray.open_dataarray( modis_reproject["input"], decode_coords="all" ) as xdi, open_func(modis_reproject["input"]) as xri: # calculate coordinates from the calculated transform width, height = xdi.rio.shape calculated_transform = xdi.rio.transform(recalc=True) calc_coords_calc_trans = _make_coords( src_data_array=xdi, dst_affine=calculated_transform, dst_width=width, dst_height=height, ) widthr, heightr = xri.rio.shape calculated_transformr = xri.rio.transform(recalc=True) calc_coords_calc_transr = _make_coords( src_data_array=xri, dst_affine=calculated_transformr, dst_width=widthr, dst_height=heightr, ) assert_almost_equal(calculated_transform, calculated_transformr) # check to see if they all match if not isinstance(open_func, partial): assert_almost_equal( xri.coords["x"].values, calc_coords_calc_trans["x"].values, decimal=9 ) assert_almost_equal( xri.coords["y"].values, calc_coords_calc_trans["y"].values, decimal=9 ) assert_almost_equal( xri.coords["x"].values, calc_coords_calc_transr["x"].values, decimal=9 ) assert_almost_equal( xri.coords["y"].values, calc_coords_calc_transr["y"].values, decimal=9 ) @pytest.mark.parametrize( "open_func", [ partial(xarray.open_dataset, decode_coords="all"), rioxarray.open_rasterio, partial(rioxarray.open_rasterio, parse_coordinates=False), open_rasterio_engine, partial(open_rasterio_engine, parse_coordinates=False), ], ) def test_make_coords__attr_trans(open_func, modis_reproject): with xarray.open_dataarray( modis_reproject["input"], decode_coords="all" ) as xdi, open_func(modis_reproject["input"]) as xri: # calculate coordinates from the attribute transform width, height = xdi.rio.shape attr_transform = xdi.rio.transform() calc_coords_attr_trans = _make_coords( src_data_array=xdi, dst_affine=attr_transform, dst_width=width, dst_height=height, ) widthr, heightr = xri.rio.shape calculated_transformr = xri.rio.transform() calc_coords_calc_transr = _make_coords( src_data_array=xri, dst_affine=calculated_transformr, dst_width=widthr, dst_height=heightr, ) assert_almost_equal(attr_transform, calculated_transformr) # check to see if they all match if not isinstance(open_func, partial): assert_almost_equal( xri.coords["x"].values, calc_coords_calc_transr["x"].values, decimal=9 ) assert_almost_equal( xri.coords["y"].values, calc_coords_calc_transr["y"].values, decimal=9 ) assert_almost_equal( xri.coords["x"].values, calc_coords_attr_trans["x"].values, decimal=9 ) assert_almost_equal( xri.coords["y"].values, calc_coords_attr_trans["y"].values, decimal=9 ) assert_almost_equal( xdi.coords["x"].values, xri.coords["x"].values, decimal=9 ) assert_almost_equal( xdi.coords["y"].values, xri.coords["y"].values, decimal=9 ) def test_interpolate_na(interpolate_na): mask_args = ( dict(masked=False, mask_and_scale=False) if "rasterio" in str(interpolate_na["open"]) else dict(mask_and_scale=False) ) with interpolate_na["open"]( interpolate_na["input"], **mask_args ) as mda, interpolate_na["open"](interpolate_na["compare"], **mask_args) as mdc: interpolated_ds = mda.rio.interpolate_na() # test _assert_xarrays_equal(interpolated_ds, mdc) @pytest.mark.skipif(SCIPY_INSTALLED, reason="Only test if scipy is not installed.") def test_interpolate_na__missing_scipy(): xds = xarray.open_dataarray( os.path.join(TEST_INPUT_DATA_DIR, "MODIS_ARRAY.nc"), decode_coords="all" ) with pytest.raises(ModuleNotFoundError, match=r"rioxarray\[interp\]"): xds.rio.interpolate_na() @pytest.mark.xfail( SCIPY_LT_17 or platform.system() != "Linux", reason="griddata behaves differently across versions and platforms", ) def test_interpolate_na_veris(interpolate_na_veris): pytest.importorskip("scipy") with xarray.open_dataset(interpolate_na_veris["input"]) as mda, xarray.open_dataset( interpolate_na_veris["compare"] ) as mdc: interpolated_ds = mda.rio.interpolate_na() # test _assert_xarrays_equal(interpolated_ds, mdc) def test_interpolate_na_3d(interpolate_na_3d): with xarray.open_dataset(interpolate_na_3d["input"]) as mda, xarray.open_dataset( interpolate_na_3d["compare"] ) as mdc: interpolated_ds = mda.rio.interpolate_na() # test _assert_xarrays_equal(interpolated_ds, mdc) def test_interpolate_na__nodata_filled(interpolate_na_filled): mask_args = ( dict(masked=False, mask_and_scale=False) if "rasterio" in str(interpolate_na_filled["open"]) else dict(mask_and_scale=False) ) with interpolate_na_filled["open"]( interpolate_na_filled["input"], **mask_args ) as mda, interpolate_na_filled["open"]( interpolate_na_filled["compare"], **mask_args ) as mdc: if hasattr(mda, "variables"): for var in mda.rio.vars: mda[var].values[mda[var].values == mda[var].rio.nodata] = 400 else: mda.values[mda.values == mda.rio.nodata] = 400 interpolated_ds = mda.rio.interpolate_na() # test _assert_xarrays_equal(interpolated_ds, mdc) def test_interpolate_na__all_nodata(interpolate_na_nan): rio_opened = "open_rasterio " in str(interpolate_na_nan["open"]) with interpolate_na_nan["open"]( interpolate_na_nan["input"], mask_and_scale=True ) as mda, interpolate_na_nan["open"]( interpolate_na_nan["compare"], mask_and_scale=True ) as mdc: if hasattr(mda, "variables"): for var in mda.rio.vars: mda[var].values[~numpy.isnan(mda[var].values)] = numpy.nan else: mda.values[~numpy.isnan(mda.values)] = numpy.nan interpolated_ds = mda.rio.interpolate_na() if rio_opened and "__xarray_dataarray_variable__" in mdc: mdc = mdc["__xarray_dataarray_variable__"] # test _assert_xarrays_equal(interpolated_ds, mdc) def test_load_in_geographic_dimensions(): sentinel_2_geographic = os.path.join( TEST_INPUT_DATA_DIR, "sentinel_2_L1C_geographic.nc" ) with xarray.open_dataset(sentinel_2_geographic) as mda: assert mda.rio.x_dim == "longitude" assert mda.rio.y_dim == "latitude" assert mda.rio.crs.to_epsg() == 4326 assert mda.red.rio.x_dim == "longitude" assert mda.red.rio.y_dim == "latitude" assert mda.red.rio.crs.to_epsg() == 4326 def test_geographic_reproject(): sentinel_2_geographic = os.path.join( TEST_INPUT_DATA_DIR, "sentinel_2_L1C_geographic.nc" ) sentinel_2_utm = os.path.join(TEST_COMPARE_DATA_DIR, "sentinel_2_L1C_utm.nc") with xarray.open_dataset(sentinel_2_geographic) as mda, xarray.open_dataset( sentinel_2_utm ) as mdc: mds_repr = mda.rio.reproject("epsg:32721") # mds_repr.to_netcdf(sentinel_2_utm) # test _assert_xarrays_equal(mds_repr, mdc, precision=4) def test_geographic_reproject__missing_nodata(): sentinel_2_geographic = os.path.join( TEST_INPUT_DATA_DIR, "sentinel_2_L1C_geographic.nc" ) sentinel_2_utm = os.path.join( TEST_COMPARE_DATA_DIR, "sentinel_2_L1C_utm__auto_nodata.nc" ) with xarray.open_dataset(sentinel_2_geographic) as mda, xarray.open_dataset( sentinel_2_utm ) as mdc: mda.red.attrs.pop("nodata") mda.nir.attrs.pop("nodata") mds_repr = mda.rio.reproject("epsg:32721") # mds_repr.to_netcdf(sentinel_2_utm) # test _mod_attr(mdc, "_FillValue", val=65535) _assert_xarrays_equal(mds_repr, mdc, precision=4) def test_geographic_resample_integer(): pytest.importorskip("scipy") sentinel_2_geographic = os.path.join( TEST_INPUT_DATA_DIR, "sentinel_2_L1C_geographic.nc" ) sentinel_2_interp = os.path.join( TEST_COMPARE_DATA_DIR, "sentinel_2_L1C_interpolate_na.nc" ) with xarray.open_dataset(sentinel_2_geographic) as mda, xarray.open_dataset( sentinel_2_interp ) as mdc: mds_interp = mda.rio.interpolate_na() # mds_interp.to_netcdf(sentinel_2_interp) # test _assert_xarrays_equal(mds_interp, mdc) @pytest.mark.parametrize( "open_method", [ partial(xarray.open_dataarray, decode_coords="all"), partial(rioxarray.open_rasterio, masked=True), partial(rioxarray.open_rasterio, masked=True, chunks=True), partial( rioxarray.open_rasterio, masked=True, chunks=True, lock=threading.Lock() ), open_rasterio_engine, ], ) @pytest.mark.parametrize( "windowed, recalc_transform", [ (True, True), (False, False), ], ) @pytest.mark.parametrize( "write_lock, compute", [ (None, False), (threading.Lock(), False), (threading.Lock(), True), ], ) def test_to_raster( open_method, windowed, recalc_transform, write_lock, compute, tmpdir ): tmp_raster = tmpdir.join("modis_raster.tif") test_tags = {"test": "1"} with open_method(os.path.join(TEST_INPUT_DATA_DIR, "MODIS_ARRAY.nc")) as mda: if isinstance(mda, xarray.Dataset): mda = mda.__xarray_dataarray_variable__ delayed = mda.rio.to_raster( str(tmp_raster), windowed=windowed, recalc_transform=recalc_transform, tags=test_tags, lock=write_lock, compute=compute, ) xds = mda.copy().squeeze() xds_attrs = { key: str(value) for key, value in mda.attrs.items() if key not in ( "add_offset", "crs", "is_tiled", "nodata", "res", "scale_factor", "transform", "grid_mapping", ) } if write_lock is None or not isinstance(xds.data, dask.array.Array) or compute: assert delayed is None else: assert isinstance(delayed, Delayed) delayed.compute() with rasterio.open(str(tmp_raster)) as rds: assert rds.count == 1 assert rds.crs == xds.rio.crs assert_array_equal(rds.transform, xds.rio.transform()) assert_array_equal(rds.nodata, xds.rio.encoded_nodata) assert_array_equal(rds.read(1), xds.fillna(xds.rio.encoded_nodata).values) assert rds.count == 1 assert rds.tags() == {"AREA_OR_POINT": "Area", **test_tags, **xds_attrs} assert rds.dtypes == ("int16",) @pytest.mark.parametrize( "open_method", [ partial(xarray.open_dataset, decode_coords="all"), partial(rioxarray.open_rasterio, masked=True), partial(rioxarray.open_rasterio, masked=True, chunks=True), partial( rioxarray.open_rasterio, masked=True, chunks=True, lock=threading.Lock() ), open_rasterio_engine, ], ) @pytest.mark.parametrize("windowed", [True, False]) @pytest.mark.parametrize( "write_lock, compute", [ (None, False), (threading.Lock(), False), (threading.Lock(), True), ], ) def test_to_raster_3d(open_method, windowed, write_lock, compute, tmpdir): tmp_raster = tmpdir.join("planet_3d_raster.tif") with open_method(os.path.join(TEST_INPUT_DATA_DIR, "PLANET_SCOPE_3D.nc")) as mda: assert sorted(mda.coords) == ["spatial_ref", "time", "x", "y"] xds = mda.green.fillna(mda.green.rio.encoded_nodata) xds.rio._nodata = mda.green.rio.encoded_nodata delayed = xds.rio.to_raster( str(tmp_raster), windowed=windowed, lock=write_lock, compute=compute ) xds_attrs = { key: str(value) for key, value in xds.attrs.items() if key not in ("add_offset", "nodata", "scale_factor", "transform", "grid_mapping") } if write_lock is None or not isinstance(xds.data, dask.array.Array) or compute: assert delayed is None else: assert isinstance(delayed, Delayed) delayed.compute() with rasterio.open(str(tmp_raster)) as rds: assert rds.crs == xds.rio.crs assert_array_equal(rds.transform, xds.rio.transform()) assert_array_equal(rds.nodata, xds.rio.nodata) assert_array_equal(rds.read(), xds.values) assert rds.tags() == {"AREA_OR_POINT": "Area", **xds_attrs} assert rds.descriptions == ("green", "green") # test roundtrip with rioxarray.open_rasterio(str(tmp_raster)) as rds: assert rds.attrs["long_name"] == "green" assert numpy.isnan(rds.rio.nodata) def test_to_raster__custom_description(tmpdir): tmp_raster = tmpdir.join("planet_3d_raster.tif") with xarray.open_dataset( os.path.join(TEST_INPUT_DATA_DIR, "PLANET_SCOPE_3D.nc") ) as mda: xds = mda.green.fillna(mda.green.rio.encoded_nodata) xds.attrs["long_name"] = ("one", "two") xds.rio.to_raster(str(tmp_raster)) xds_attrs = { key: str(value) for key, value in xds.attrs.items() if key not in ("nodata", "long_name", "grid_mapping") } with rasterio.open(str(tmp_raster)) as rds: assert rds.tags() == {"AREA_OR_POINT": "Area", **xds_attrs} assert rds.descriptions == ("one", "two") # test roundtrip with rioxarray.open_rasterio(str(tmp_raster)) as rds: assert rds.attrs["long_name"] == ("one", "two") assert rds.rio.nodata == 0.0 @pytest.mark.parametrize("chunks", [True, None]) def test_to_raster__scale_factor_and_add_offset(chunks, tmpdir): tmp_raster = tmpdir.join("air_temp_offset.tif") with rioxarray.open_rasterio( os.path.join(TEST_INPUT_DATA_DIR, "tmmx_20190121.nc"), chunks=chunks ) as rds: rds = _ensure_dataset(rds) assert rds.air_temperature.scale_factor == 0.1 assert rds.air_temperature.add_offset == 220.0 rds.air_temperature.rio.to_raster(str(tmp_raster)) with rasterio.open(str(tmp_raster)) as rds: assert rds.scales == (0.1,) assert rds.offsets == (220.0,) # test roundtrip with rioxarray.open_rasterio(str(tmp_raster)) as rds: assert rds.scale_factor == 0.1 assert rds.add_offset == 220.0 assert rds.rio.nodata == 32767.0 @pytest.mark.parametrize("chunks", [True, None]) def test_to_raster__offsets_and_scales(chunks, tmpdir): tmp_raster = tmpdir.join("air_temp_offset.tif") with rioxarray.open_rasterio( os.path.join(TEST_INPUT_DATA_DIR, "tmmx_20190121.nc"), chunks=chunks, ) as rds: rds = _ensure_dataset(rds) attrs = dict(rds.air_temperature.attrs) attrs["scales"] = [0.1] attrs["offsets"] = [220.0] attrs.pop("scale_factor") attrs.pop("add_offset") rds.air_temperature.attrs = attrs assert rds.air_temperature.scales == [0.1] assert rds.air_temperature.offsets == [220.0] rds.air_temperature.rio.to_raster(str(tmp_raster)) with rasterio.open(str(tmp_raster)) as rds: assert rds.scales == (0.1,) assert rds.offsets == (220.0,) # test roundtrip with rioxarray.open_rasterio(str(tmp_raster)) as rds: assert rds.scale_factor == 0.1 assert rds.add_offset == 220.0 assert rds.rio.nodata == 32767.0 @pytest.mark.parametrize("mask_and_scale", [True, False]) def test_to_raster__scales__offsets(mask_and_scale, tmpdir): tmp_raster = tmpdir.join("air_temp_offset.tif") with rioxarray.open_rasterio( os.path.join(TEST_INPUT_DATA_DIR, "tmmx_20190121.nc"), mask_and_scale=mask_and_scale, ) as rds: rds = _ensure_dataset(rds) rds["air_temperature_2"] = rds.air_temperature.copy() if mask_and_scale: rds.air_temperature_2.encoding["scale_factor"] = 0.2 rds.air_temperature_2.encoding["add_offset"] = 110.0 else: rds.air_temperature_2.attrs["scale_factor"] = 0.2 rds.air_temperature_2.attrs["add_offset"] = 110.0 rds.squeeze(dim="band", drop=True).rio.to_raster(str(tmp_raster)) with rasterio.open(str(tmp_raster)) as rds: assert rds.scales == (0.1, 0.2) assert rds.offsets == (220.0, 110.0) # test roundtrip with rioxarray.open_rasterio(str(tmp_raster), mask_and_scale=mask_and_scale) as rds: if mask_and_scale: assert rds.encoding["scales"] == (0.1, 0.2) assert rds.encoding["offsets"] == (220.0, 110.0) else: assert rds.attrs["scales"] == (0.1, 0.2) assert rds.attrs["offsets"] == (220.0, 110.0) def test_to_raster__custom_description__wrong(tmpdir): tmp_raster = tmpdir.join("planet_3d_raster.tif") with xarray.open_dataset( os.path.join(TEST_INPUT_DATA_DIR, "PLANET_SCOPE_3D.nc") ) as mda: xds = mda.green.fillna(mda.green.rio.encoded_nodata) xds.attrs["long_name"] = ("one", "two", "three") with pytest.raises(RioXarrayError): xds.rio.to_raster(str(tmp_raster)) @pytest.mark.xfail(reason="Precision issues with windowed writing on python 3.6") @pytest.mark.parametrize("windowed", [True, False]) def test_to_raster__preserve_profile__none_nodata(windowed, tmpdir): tmp_raster = tmpdir.join("output_profile.tif") input_raster = tmpdir.join("input_profile.tif") transform = Affine.from_gdal(0, 512, 0, 0, 0, 512) with rasterio.open( str(input_raster), "w", driver="GTiff", height=512, width=512, count=1, crs="epsg:4326", transform=transform, dtype=rasterio.float32, tiled=True, tilexsize=256, tileysize=256, ) as rds: rds.write(numpy.empty((1, 512, 512), dtype=numpy.float32)) with rioxarray.open_rasterio(str(input_raster)) as mda: mda.rio.to_raster(str(tmp_raster), windowed=windowed) with rasterio.open(str(tmp_raster)) as rds, rasterio.open(str(input_raster)) as rdc: assert rds.count == rdc.count assert rds.crs == rdc.crs assert_array_equal(rds.transform, rdc.transform) assert_array_equal(rds.nodata, rdc.nodata) assert_almost_equal(rds.read(), rdc.read()) assert rds.profile == rdc.profile assert rds.nodata is None def test_to_raster__dataset(tmpdir): tmp_raster = tmpdir.join("planet_3d_raster.tif") with xarray.open_dataset( os.path.join(TEST_INPUT_DATA_DIR, "PLANET_SCOPE_3D.nc") ) as mda: mda.isel(time=0).rio.to_raster(str(tmp_raster)) with rioxarray.open_rasterio(str(tmp_raster)) as rdscompare: assert rdscompare.scale_factor == 1.0 assert rdscompare.add_offset == 0.0 assert rdscompare.long_name == ("blue", "green") assert rdscompare.rio.crs == mda.rio.crs assert numpy.isnan(rdscompare.rio.nodata) @pytest.mark.parametrize("mask_and_scale", [True, False]) @pytest.mark.parametrize("chunks", [True, None]) def test_to_raster__dataset__mask_and_scale(chunks, mask_and_scale, tmpdir): output_raster = tmpdir.join("tmmx_20190121.tif") with rioxarray.open_rasterio( os.path.join(TEST_INPUT_DATA_DIR, "tmmx_20190121.nc"), chunks=chunks, mask_and_scale=mask_and_scale, ) as rds: rds = _ensure_dataset(rds) rds.isel(band=0).rio.to_raster(str(output_raster)) with rioxarray.open_rasterio(str(output_raster)) as rdscompare: assert rdscompare.scale_factor == 0.1 assert rdscompare.add_offset == 220.0 assert rdscompare.long_name == "tmmx" assert rdscompare.rio.crs == rds.rio.crs if mask_and_scale: assert rdscompare.rio.nodata == rds.air_temperature.rio.encoded_nodata else: assert rdscompare.rio.nodata == rds.air_temperature.rio.nodata def test_to_raster__dataset__different_crs(tmpdir): tmp_raster = tmpdir.join("planet_3d_raster.tif") with xarray.open_dataset( os.path.join(TEST_INPUT_DATA_DIR, "PLANET_SCOPE_3D.nc") ) as mda: rds = mda.isel(time=0) attrs = rds.green.attrs attrs["crs"] = "EPSG:4326" attrs.pop("grid_mapping") rds.green.attrs = attrs attrs = rds.blue.attrs attrs["crs"] = "EPSG:32722" attrs.pop("grid_mapping") rds.blue.attrs = attrs rds = rds.drop_vars("spatial_ref") with pytest.raises( RioXarrayError, match="CRS in DataArrays differ in the Dataset" ): rds.rio.to_raster(str(tmp_raster)) def test_to_raster__dataset__different_nodata(tmpdir): tmp_raster = tmpdir.join("planet_3d_raster.tif") with xarray.open_dataset( os.path.join(TEST_INPUT_DATA_DIR, "PLANET_SCOPE_3D.nc"), mask_and_scale=False ) as mda: rds = mda.isel(time=0) rds.green.rio.write_nodata(1234, inplace=True) rds.blue.rio.write_nodata(2345, inplace=True) with pytest.raises( RioXarrayError, match="All nodata values must be the same when exporting to raster.", ): rds.rio.to_raster(str(tmp_raster)) @pytest.mark.parametrize("windowed", [True, False]) def test_to_raster__different_dtype(tmp_path, windowed): test_da = xarray.DataArray( numpy.zeros((5, 5)), dims=("y", "x"), coords={"y": numpy.arange(1, 6), "x": numpy.arange(2, 7)}, ) test_da.values[1, 1] = -1.1 test_nd = test_da.rio.write_nodata(-1.1) test_nd.rio.write_transform( Affine.from_gdal(425047, 3.0, 0.0, 4615780, 0.0, -3.0), inplace=True ) test_nd.rio.write_crs("EPSG:4326", inplace=True) tmpfile = tmp_path / "dtype.tif" with pytest.raises(OverflowError, match="Unable to convert nodata value"): test_nd.rio.to_raster(tmpfile, dtype=numpy.uint8, windowed=windowed) def test_missing_spatial_dimensions(): test_ds = xarray.Dataset() with pytest.raises(MissingSpatialDimensionError): test_ds.rio.shape with pytest.raises(MissingSpatialDimensionError): test_ds.rio.width with pytest.raises(MissingSpatialDimensionError): test_ds.rio.height test_da = xarray.DataArray(1) with pytest.raises(MissingSpatialDimensionError): test_da.rio.shape with pytest.raises(MissingSpatialDimensionError): test_da.rio.width with pytest.raises(MissingSpatialDimensionError): test_da.rio.height def test_set_spatial_dims(): test_da = xarray.DataArray( numpy.zeros((5, 5)), dims=("lat", "lon"), coords={"lat": numpy.arange(1, 6), "lon": numpy.arange(2, 7)}, ) test_da_copy = test_da.rio.set_spatial_dims(x_dim="lon", y_dim="lat", inplace=False) assert test_da_copy.rio.x_dim == "lon" assert test_da_copy.rio.y_dim == "lat" assert test_da_copy.rio.width == 5 assert test_da_copy.rio.height == 5 assert test_da_copy.rio.shape == (5, 5) with pytest.raises(MissingSpatialDimensionError): test_da.rio.shape with pytest.raises(MissingSpatialDimensionError): test_da.rio.width with pytest.raises(MissingSpatialDimensionError): test_da.rio.height test_da.rio.set_spatial_dims(x_dim="lon", y_dim="lat", inplace=True) assert test_da.rio.x_dim == "lon" assert test_da.rio.y_dim == "lat" assert test_da.rio.width == 5 assert test_da.rio.height == 5 assert test_da.rio.shape == (5, 5) def test_set_spatial_dims__missing(): test_ds = xarray.Dataset() with pytest.raises(MissingSpatialDimensionError): test_ds.rio.set_spatial_dims(x_dim="lon", y_dim="lat") test_da = xarray.DataArray( numpy.zeros((5, 5)), dims=("lat", "lon"), coords={"lat": numpy.arange(1, 6), "lon": numpy.arange(2, 7)}, ) with pytest.raises(MissingSpatialDimensionError): test_da.rio.set_spatial_dims(x_dim="long", y_dim="lati") def test_crs_empty_dataset(): assert xarray.Dataset().rio.crs is None def test_crs_setter(): test_da = xarray.DataArray( numpy.zeros((5, 5)), dims=("y", "x"), coords={"y": numpy.arange(1, 6), "x": numpy.arange(2, 7)}, ) assert test_da.rio.crs is None with pytest.warns(FutureWarning): out_ds = test_da.rio.set_crs(4326) assert test_da.rio.crs.to_epsg() == 4326 assert out_ds.rio.crs.to_epsg() == 4326 test_ds = test_da.to_dataset(name="test") assert test_ds.rio.crs is None with pytest.warns(FutureWarning): out_ds = test_ds.rio.set_crs(4326) assert test_ds.rio.crs.to_epsg() == 4326 assert out_ds.rio.crs.to_epsg() == 4326 def test_crs_setter__copy(): test_da = xarray.DataArray( numpy.zeros((5, 5)), dims=("y", "x"), coords={"y": numpy.arange(1, 6), "x": numpy.arange(2, 7)}, ) assert test_da.rio.crs is None with pytest.warns(FutureWarning): out_ds = test_da.rio.set_crs(4326, inplace=False) assert test_da.rio.crs is None assert out_ds.rio.crs.to_epsg() == 4326 test_ds = test_da.to_dataset(name="test") assert test_ds.rio.crs is None with pytest.warns(FutureWarning): out_ds = test_ds.rio.set_crs(4326, inplace=False) assert test_ds.rio.crs is None assert out_ds.rio.crs.to_epsg() == 4326 def test_crs_writer__array__copy(): test_da = xarray.DataArray( numpy.zeros((5, 5)), dims=("y", "x"), coords={"y": numpy.arange(1, 6), "x": numpy.arange(2, 7)}, ) assert test_da.rio.crs is None out_da = test_da.rio.write_crs(4326, grid_mapping_name="crs") assert "crs_wkt" in out_da.coords["crs"].attrs assert "spatial_ref" in out_da.coords["crs"].attrs out_da.rio._crs = None assert out_da.rio.crs.to_epsg() == 4326 test_da.rio._crs = None assert test_da.rio.crs is None assert "crs" not in test_da.coords assert out_da.encoding["grid_mapping"] == "crs" def test_crs_writer__array__inplace(): test_da = xarray.DataArray( numpy.zeros((5, 5)), dims=("y", "x"), coords={"y": numpy.arange(1, 6), "x": numpy.arange(2, 7)}, ) assert test_da.rio.crs is None out_da = test_da.rio.write_crs(4326, inplace=True) assert "crs_wkt" in test_da.coords["spatial_ref"].attrs assert "spatial_ref" in test_da.coords["spatial_ref"].attrs assert out_da.coords["spatial_ref"] == test_da.coords["spatial_ref"] test_da.rio._crs = None assert test_da.rio.crs.to_epsg() == 4326 assert test_da.encoding["grid_mapping"] == "spatial_ref" assert out_da.attrs == test_da.attrs out_da.rio._crs = None assert out_da.rio.crs.to_epsg() == 4326 def test_crs_writer__dataset__copy(): test_da = xarray.DataArray( numpy.zeros((5, 5)), dims=("y", "x"), coords={"y": numpy.arange(1, 6), "x": numpy.arange(2, 7)}, ) test_da = test_da.to_dataset(name="test") assert test_da.rio.crs is None out_da = test_da.rio.write_crs(4326, grid_mapping_name="crs") assert "crs_wkt" in out_da.coords["crs"].attrs assert "spatial_ref" in out_da.coords["crs"].attrs out_da.test.rio._crs = None assert out_da.rio.crs.to_epsg() == 4326 assert out_da.test.encoding["grid_mapping"] == "crs" # make sure input did not change the dataset test_da.test.rio._crs = None test_da.rio._crs = None assert test_da.rio.crs is None assert "crs" not in test_da.coords def test_crs_writer__dataset__inplace(): test_da = xarray.DataArray( numpy.zeros((5, 5)), dims=("y", "x"), coords={"y": numpy.arange(1, 6), "x": numpy.arange(2, 7)}, ) test_da = test_da.to_dataset(name="test") assert test_da.rio.crs is None out_da = test_da.rio.write_crs(4326, inplace=True) assert "crs_wkt" in test_da.coords["spatial_ref"].attrs assert "spatial_ref" in test_da.coords["spatial_ref"].attrs assert out_da.coords["spatial_ref"] == test_da.coords["spatial_ref"] out_da.test.rio._crs = None assert out_da.rio.crs.to_epsg() == 4326 test_da.test.rio._crs = None test_da.rio._crs = None assert test_da.rio.crs.to_epsg() == 4326 assert out_da.test.encoding["grid_mapping"] == "spatial_ref" assert out_da.test.attrs == test_da.test.attrs def test_crs_writer__missing(): test_da = xarray.DataArray( numpy.zeros((5, 5)), dims=("y", "x"), coords={"y": numpy.arange(1, 6), "x": numpy.arange(2, 7)}, ) with pytest.raises(MissingCRS): test_da.rio.write_crs() with pytest.raises(MissingCRS): test_da.to_dataset(name="test").rio.write_crs() def test_crs__dataset__different_crs(tmpdir): green = xarray.DataArray( numpy.zeros((5, 5)), dims=("y", "x"), coords={"y": numpy.arange(1, 6), "x": numpy.arange(2, 7)}, attrs={"crs": "EPSG:4326"}, ) blue = green.copy(deep=True) blue.attrs = {"crs": "EPSG:32722"} with pytest.raises(RioXarrayError, match="CRS in DataArrays differ in the Dataset"): xarray.Dataset({"green": green, "blue": blue}).rio.crs def test_clip_missing_crs(): test_da = xarray.DataArray( numpy.zeros((5, 5)), dims=("y", "x"), coords={"y": numpy.arange(1, 6), "x": numpy.arange(2, 7)}, ) with pytest.raises(MissingCRS): test_da.rio.clip({}, 4326) def test_reproject_missing_crs(): test_da = xarray.DataArray( numpy.zeros((5, 5)), dims=("y", "x"), coords={"y": numpy.arange(1, 6), "x": numpy.arange(2, 7)}, ) with pytest.raises(MissingCRS): test_da.rio.reproject(4326) def test_reproject_resolution_and_shape_transform(): test_da = xarray.DataArray( numpy.zeros((5, 5)), dims=("y", "x"), coords={"y": numpy.arange(1, 6), "x": numpy.arange(2, 7)}, attrs={"crs": "epsg:3857"}, ) affine = Affine.from_gdal(0, 0.005, 0, 0, 0, 0.005) with pytest.raises(RioXarrayError): test_da.rio.reproject(4326, resolution=1, shape=(1, 1)) with pytest.raises(RioXarrayError): test_da.rio.reproject(4326, resolution=1, transform=affine) with pytest.raises(RioXarrayError): test_da.rio.reproject(4326, resolution=1, shape=(1, 1), transform=affine) def test_reproject_transform_missing_shape(): test_da = xarray.DataArray( numpy.zeros((5, 5)), dims=("y", "x"), coords={"y": numpy.arange(1, 6), "x": numpy.arange(2, 7)}, attrs={"crs": "epsg:3857"}, ) affine = Affine.from_gdal(0, 0.005, 0, 0, 0, 0.005) reprojected = test_da.rio.reproject(4326, transform=affine) assert reprojected.rio.shape == (5, 5) assert reprojected.rio.transform() == affine @pytest.mark.parametrize( "dtype, expected_nodata", [ (numpy.uint8, 255), pytest.param( numpy.int8, -128, marks=pytest.mark.xfail( not RASTERIO_GE_14, reason="Not worried about it if it works on latest." ), ), (numpy.uint16, 65535), (numpy.int16, -32768), (numpy.uint32, 4294967295), (numpy.int32, -2147483648), (numpy.float32, numpy.nan), (numpy.float64, numpy.nan), (numpy.complex64, numpy.nan), (numpy.complex128, numpy.nan), pytest.param( numpy.uint64, 18446744073709551615, marks=pytest.mark.xfail( not RASTERIO_GE_14, reason="Not worried about it if it works on latest." ), ), pytest.param( numpy.int64, -9223372036854775808, marks=pytest.mark.xfail( not RASTERIO_GE_14, reason="Not worried about it if it works on latest." ), ), ], ) def test_reproject_default_nodata(dtype, expected_nodata): test_da = xarray.DataArray( numpy.zeros((5, 5), dtype=dtype), dims=("y", "x"), coords={"y": numpy.arange(1, 6), "x": numpy.arange(2, 7)}, ).rio.write_crs("epsg:3857", inplace=True) if numpy.isnan(expected_nodata): assert numpy.isnan(test_da.rio.reproject(4326).rio.nodata) else: assert test_da.rio.reproject(4326).rio.nodata == expected_nodata class CustomCRS: @property def wkt(self): return CRS.from_epsg(4326).to_wkt() def __str__(self): return self.wkt def test_crs_get_custom(): test_da = xarray.DataArray( numpy.zeros((5, 5)), dims=("y", "x"), coords={"y": numpy.arange(1, 6), "x": numpy.arange(2, 7)}, attrs={"crs": CustomCRS()}, ) assert test_da.rio.crs.to_epsg() == 4326 test_ds = xarray.Dataset({"test": test_da}) assert test_ds.rio.crs.to_epsg() == 4326 def test_get_crs_dataset(): test_ds = xarray.Dataset() test_ds = test_ds.rio.write_crs(4326) assert test_ds.encoding["grid_mapping"] == "spatial_ref" assert test_ds.rio.crs.to_epsg() == 4326 def test_crs_is_removed(): test_ds = xarray.Dataset(attrs=dict(crs="+init=epsg:4326")) test_ds = test_ds.rio.write_crs(4326) assert "crs" not in test_ds.attrs def test_write_crs_cf(): test_da = xarray.DataArray(1) test_da = test_da.rio.write_crs(4326) assert test_da.encoding["grid_mapping"] == "spatial_ref" assert test_da.rio.crs.to_epsg() == 4326 assert "spatial_ref" in test_da.spatial_ref.attrs assert "crs_wkt" in test_da.spatial_ref.attrs assert test_da.spatial_ref.attrs["grid_mapping_name"] == "latitude_longitude" def test_write_crs_cf__disable_grid_mapping(): test_da = xarray.DataArray(1) with rioxarray.set_options(export_grid_mapping=False): test_da = test_da.rio.write_crs(4326) assert test_da.encoding["grid_mapping"] == "spatial_ref" assert test_da.rio.crs.to_epsg() == 4326 assert "spatial_ref" in test_da.spatial_ref.attrs assert "crs_wkt" in test_da.spatial_ref.attrs assert "grid_mapping_name" not in test_da.spatial_ref.attrs def test_write_crs_cf__grib_wkt(): # https://github.com/corteva/rioxarray/discussions/591 grib_rotated_wkt = """GEOGCRS["Coordinate System imported from GRIB file", BASEGEOGCRS["Coordinate System imported from GRIB file", DATUM["unnamed", ELLIPSOID["Sphere",6371229,0, LENGTHUNIT["metre",1, ID["EPSG",9001]]]], PRIMEM["Greenwich",0, ANGLEUNIT["degree",0.0174532925199433, ID["EPSG",9122]]]], DERIVINGCONVERSION["Pole rotation (GRIB convention)", METHOD["Pole rotation (GRIB convention)"], PARAMETER["Latitude of the southern pole (GRIB convention)",-33.443381, ANGLEUNIT["degree",0.0174532925199433, ID["EPSG",9122]]], PARAMETER["Longitude of the southern pole (GRIB convention)",-93.536426, ANGLEUNIT["degree",0.0174532925199433, ID["EPSG",9122]]], PARAMETER["Axis rotation (GRIB convention)",0, ANGLEUNIT["degree",0.0174532925199433, ID["EPSG",9122]]]], CS[ellipsoidal,2], AXIS["latitude",north, ORDER[1], ANGLEUNIT["degree",0.0174532925199433, ID["EPSG",9122]]], AXIS["longitude",east, ORDER[2], ANGLEUNIT["degree",0.0174532925199433, ID["EPSG",9122]]]]""" test_da = xarray.DataArray(1) test_da.rio.write_crs(grib_rotated_wkt, inplace=True) def test_write_crs__missing_geospatial_dims(): test_da = xarray.DataArray( [1], name="data", dims=("time",), coords={"time": [1]}, ) assert test_da.copy().rio.write_crs(3857).rio.crs.to_epsg() == 3857 assert test_da.to_dataset().rio.write_crs(3857).rio.crs.to_epsg() == 3857 def test_read_crs_cf(): test_da = xarray.DataArray(1) test_da = test_da.rio.write_crs(4326) assert test_da.encoding["grid_mapping"] == "spatial_ref" attrs = test_da.spatial_ref.attrs attrs.pop("spatial_ref") attrs.pop("crs_wkt") assert test_da.rio.crs.is_geographic def test_get_crs_dataset__nonstandard_grid_mapping(): test_ds = xarray.Dataset() test_ds = test_ds.rio.write_crs(4326, grid_mapping_name="frank") assert test_ds.encoding["grid_mapping"] == "frank" assert test_ds.rio.crs.to_epsg() == 4326 def test_get_crs_dataset__missing_grid_mapping_default(): test_ds = xarray.open_dataset(os.path.join(TEST_INPUT_DATA_DIR, "test_find_crs.nc")) assert test_ds.rio.crs.to_epsg() == 32614 def test_nodata_setter(): test_da = xarray.DataArray( numpy.zeros((5, 5)), dims=("y", "x"), coords={"y": numpy.arange(1, 6), "x": numpy.arange(2, 7)}, ) assert test_da.rio.nodata is None out_ds = test_da.rio.set_nodata(-1) assert out_ds.rio.nodata == -1 def test_nodata_setter__copy(): test_da = xarray.DataArray( numpy.zeros((5, 5)), dims=("y", "x"), coords={"y": numpy.arange(1, 6), "x": numpy.arange(2, 7)}, ) assert test_da.rio.nodata is None out_ds = test_da.rio.set_nodata(-1, inplace=False) assert test_da.rio.nodata is None assert out_ds.rio.nodata == -1 def test_write_nodata__array__copy(): test_da = xarray.DataArray( numpy.zeros((5, 5)), dims=("y", "x"), coords={"y": numpy.arange(1, 6), "x": numpy.arange(2, 7)}, ) assert test_da.rio.nodata is None out_da = test_da.rio.write_nodata(-1) assert test_da.rio.nodata is None assert out_da.attrs["_FillValue"] == -1 assert out_da.rio.nodata == -1 out_da.rio._nodata = None assert out_da.rio.nodata == -1 test_da.rio._nodata = None assert test_da.rio.nodata is None assert "_FillValue" not in test_da.attrs def test_write_nodata__array__inplace(): test_da = xarray.DataArray( numpy.zeros((5, 5)), dims=("y", "x"), coords={"y": numpy.arange(1, 6), "x": numpy.arange(2, 7)}, ) assert test_da.rio.nodata is None out_da = test_da.rio.write_nodata(-1, inplace=True) assert "_FillValue" in test_da.attrs assert out_da.attrs["_FillValue"] == test_da.attrs["_FillValue"] test_da.rio._nodata = None assert test_da.rio.nodata == -1 assert out_da.attrs == test_da.attrs out_da.rio._nodata = None assert out_da.rio.nodata == -1 def test_write_nodata__missing(): test_da = xarray.DataArray( numpy.zeros((5, 5)), dims=("y", "x"), coords={"y": numpy.arange(1, 6), "x": numpy.arange(2, 7)}, ) test_da.rio.write_nodata(None) assert not test_da.attrs assert not test_da.encoding def test_write_nodata__remove(): test_da = xarray.DataArray( numpy.zeros((5, 5)), dims=("y", "x"), coords={"y": numpy.arange(1, 6), "x": numpy.arange(2, 7)}, ) test_nd = test_da.rio.write_nodata(-1) assert not test_da.attrs assert test_nd.attrs["_FillValue"] == -1 test_nd.rio.write_nodata(None, inplace=True) assert not test_nd.attrs def test_write_nodata__encoded(): test_da = xarray.DataArray( numpy.zeros((5, 5)), dims=("y", "x"), coords={"y": numpy.arange(1, 6), "x": numpy.arange(2, 7)}, ) test_nd = test_da.rio.write_nodata(-1, inplace=True) assert test_nd.attrs["_FillValue"] == -1 test_nd = test_da.rio.write_nodata(-1, encoded=True, inplace=True) assert not test_nd.attrs assert test_nd.encoding["_FillValue"] == -1 assert test_nd.rio.encoded_nodata == -1 assert numpy.isnan(test_nd.rio.nodata) test_nd.rio.write_nodata(None, encoded=True, inplace=True) assert not test_nd.attrs assert not test_nd.encoding assert test_nd.rio.encoded_nodata is None assert test_nd.rio.nodata is None @pytest.mark.parametrize("nodata", [-1.1, "-1.1"]) def test_write_nodata__different_dtype(nodata): test_da = xarray.DataArray( numpy.zeros((5, 5), dtype=int), dims=("y", "x"), coords={"y": numpy.arange(1, 6), "x": numpy.arange(2, 7)}, ) with pytest.raises(OverflowError, match="Unable to convert nodata value"): test_da.rio.write_nodata(nodata) @pytest.mark.parametrize("nodata", [-1.1, "-1.1"]) def test_nodata_reader__different_dtype(nodata): test_da = xarray.DataArray( numpy.zeros((5, 5), dtype=numpy.uint8), dims=("y", "x"), coords={"y": numpy.arange(1, 6), "x": numpy.arange(2, 7)}, attrs={"_FillValue": nodata}, ) assert test_da.attrs["_FillValue"] == nodata with pytest.raises(OverflowError, match="Unable to convert nodata value"): test_da.rio.nodata def test_isel_window(): with rioxarray.open_rasterio( os.path.join(TEST_INPUT_DATA_DIR, "MODIS_ARRAY.nc") ) as mda: assert ( mda.rio.isel_window(Window.from_slices(slice(9, 12), slice(10, 12))) == mda.isel(x=slice(10, 12), y=slice(9, 12)) ).all() def test_isel_window_wpad(): with rioxarray.open_rasterio( os.path.join(TEST_INPUT_DATA_DIR, "MODIS_ARRAY.nc") ) as mda: w1 = Window.from_slices( slice(-5, 10), slice(-5, 10), height=15, width=15, boundless=True ) wb1 = rasterio.windows.bounds(w1, mda.rio.transform(recalc=True)) res1 = mda.rio.isel_window(w1, pad=True) exp1 = mda.rio.pad_box(*wb1).isel(x=slice(0, 15), y=slice(0, 15)) assert (res1 == exp1).all() w2 = Window.from_slices( slice(195, 210), slice(195, 210), height=15, width=15, boundless=True ) wb2 = rasterio.windows.bounds(w2, mda.rio.transform(recalc=True)) res2 = mda.rio.isel_window(w2, pad=True) exp2 = mda.rio.pad_box(*wb2).isel(x=slice(195, 210), y=slice(195, 210)) assert (res2 == exp2).all() def test_write_pyproj_crs_dataset(): test_ds = xarray.Dataset() test_ds = test_ds.rio.write_crs(pCRS(4326)) assert test_ds.encoding["grid_mapping"] == "spatial_ref" assert test_ds.rio.crs.to_epsg() == 4326 def test_nonstandard_dims_clip__dataset(): with open(os.path.join(TEST_INPUT_DATA_DIR, "nonstandard_dim_geom.json")) as ndj: geom = json.load(ndj) with xarray.open_dataset( os.path.join(TEST_INPUT_DATA_DIR, "nonstandard_dim.nc") ) as xds: xds.coords["lon"].attrs = {} xds.coords["lat"].attrs = {} clipped = xds.rio.set_spatial_dims(x_dim="lon", y_dim="lat").rio.clip([geom]) assert clipped.rio.width == 6 assert clipped.rio.height == 5 def test_nonstandard_dims_clip__array(): with open(os.path.join(TEST_INPUT_DATA_DIR, "nonstandard_dim_geom.json")) as ndj: geom = json.load(ndj) with xarray.open_dataset( os.path.join(TEST_INPUT_DATA_DIR, "nonstandard_dim.nc") ) as xds: xds.coords["lon"].attrs = {} xds.coords["lat"].attrs = {} clipped = xds.analysed_sst.rio.set_spatial_dims( x_dim="lon", y_dim="lat" ).rio.clip([geom]) assert clipped.rio.width == 6 assert clipped.rio.height == 5 def test_nonstandard_dims_clip_box__dataset(): with xarray.open_dataset( os.path.join(TEST_INPUT_DATA_DIR, "nonstandard_dim.nc") ) as xds: xds.coords["lon"].attrs = {} xds.coords["lat"].attrs = {} clipped = xds.rio.set_spatial_dims(x_dim="lon", y_dim="lat").rio.clip_box( -70.51367964678269, -23.780199727400767, -70.44589567737998, -23.71896017814794, ) assert clipped.rio.width == 7 assert clipped.rio.height == 7 def test_nonstandard_dims_clip_box_array(): with xarray.open_dataset( os.path.join(TEST_INPUT_DATA_DIR, "nonstandard_dim.nc") ) as xds: xds.coords["lon"].attrs = {} xds.coords["lat"].attrs = {} clipped = xds.analysed_sst.rio.set_spatial_dims( x_dim="lon", y_dim="lat" ).rio.clip_box( -70.51367964678269, -23.780199727400767, -70.44589567737998, -23.71896017814794, ) assert clipped.rio.width == 7 assert clipped.rio.height == 7 def test_nonstandard_dims_slice_xy_array(): with xarray.open_dataset( os.path.join(TEST_INPUT_DATA_DIR, "nonstandard_dim.nc") ) as xds: xds.coords["lon"].attrs = {} xds.coords["lat"].attrs = {} clipped = xds.analysed_sst.rio.set_spatial_dims( x_dim="lon", y_dim="lat" ).rio.slice_xy( -70.51367964678269, -23.780199727400767, -70.44589567737998, -23.71896017814794, ) assert clipped.rio.width == 7 assert clipped.rio.height == 7 def test_nonstandard_dims_reproject__dataset(): with xarray.open_dataset( os.path.join(TEST_INPUT_DATA_DIR, "nonstandard_dim.nc") ) as xds: xds.coords["lon"].attrs = {} xds.coords["lat"].attrs = {} xds = xds.rio.set_spatial_dims(x_dim="lon", y_dim="lat") reprojected = xds.rio.reproject("epsg:3857") assert reprojected.rio.width == 11 assert reprojected.rio.height == 11 assert reprojected.rio.crs.to_epsg() == 3857 def test_nonstandard_dims_reproject__array(): with xarray.open_dataset( os.path.join(TEST_INPUT_DATA_DIR, "nonstandard_dim.nc") ) as xds: xds.coords["lon"].attrs = {} xds.coords["lat"].attrs = {} reprojected = xds.analysed_sst.rio.set_spatial_dims( x_dim="lon", y_dim="lat" ).rio.reproject("epsg:3857") assert reprojected.rio.width == 11 assert reprojected.rio.height == 11 assert reprojected.rio.crs.to_epsg() == 3857 def test_nonstandard_dims_interpolate_na__dataset(): pytest.importorskip("scipy") with xarray.open_dataset( os.path.join(TEST_INPUT_DATA_DIR, "nonstandard_dim.nc") ) as xds: xds.coords["lon"].attrs = {} xds.coords["lat"].attrs = {} reprojected = xds.rio.set_spatial_dims( x_dim="lon", y_dim="lat" ).rio.interpolate_na() assert reprojected.rio.width == 11 assert reprojected.rio.height == 11 def test_nonstandard_dims_interpolate_na__array(): pytest.importorskip("scipy") with xarray.open_dataset( os.path.join(TEST_INPUT_DATA_DIR, "nonstandard_dim.nc") ) as xds: xds.coords["lon"].attrs = {} xds.coords["lat"].attrs = {} reprojected = xds.analysed_sst.rio.set_spatial_dims( x_dim="lon", y_dim="lat" ).rio.interpolate_na() assert reprojected.rio.width == 11 assert reprojected.rio.height == 11 def test_nonstandard_dims_write_nodata__array(): with xarray.open_dataset( os.path.join(TEST_INPUT_DATA_DIR, "nonstandard_dim.nc") ) as xds: xds.coords["lon"].attrs = {} xds.coords["lat"].attrs = {} reprojected = xds.analysed_sst.rio.set_spatial_dims( x_dim="lon", y_dim="lat" ).rio.write_nodata(-999) assert reprojected.rio.width == 11 assert reprojected.rio.height == 11 assert reprojected.rio.nodata == -999 def test_nonstandard_dims_isel_window(): with xarray.open_dataset( os.path.join(TEST_INPUT_DATA_DIR, "nonstandard_dim.nc") ) as xds: xds.coords["lon"].attrs = {} xds.coords["lat"].attrs = {} reprojected = xds.rio.set_spatial_dims( x_dim="lon", y_dim="lat" ).rio.isel_window(Window.from_slices(slice(4), slice(5))) assert reprojected.rio.width == 5 assert reprojected.rio.height == 4 def test_nonstandard_dims_error_msg(): with xarray.open_dataset( os.path.join(TEST_INPUT_DATA_DIR, "nonstandard_dim.nc") ) as xds: xds.coords["lon"].attrs = {} xds.coords["lat"].attrs = {} with pytest.raises(MissingSpatialDimensionError, match="x dimension not found"): xds.rio.width with pytest.raises( MissingSpatialDimensionError, match="Data variable: analysed_sst" ): xds.analysed_sst.rio.width def test_nonstandard_dims_find_dims(): with xarray.open_dataset( os.path.join(TEST_INPUT_DATA_DIR, "nonstandard_dim.nc") ) as xds: assert xds.rio.x_dim == "lon" assert xds.rio.y_dim == "lat" def test_nonstandard_dims_find_dims__standard_name(): with xarray.open_dataset( os.path.join(TEST_INPUT_DATA_DIR, "nonstandard_dim.nc") ) as xds: xds.coords["lon"].attrs = {"standard_name": "longitude"} xds.coords["lat"].attrs = {"standard_name": "latitude"} assert xds.rio.x_dim == "lon" assert xds.rio.y_dim == "lat" def test_nonstandard_dims_find_dims__standard_name__projected(): with xarray.open_dataset( os.path.join(TEST_INPUT_DATA_DIR, "nonstandard_dim.nc") ) as xds: xds.coords["lon"].attrs = {"standard_name": "projection_x_coordinate"} xds.coords["lat"].attrs = {"standard_name": "projection_y_coordinate"} assert xds.rio.x_dim == "lon" assert xds.rio.y_dim == "lat" def test_nonstandard_dims_find_dims__axis(): with xarray.open_dataset( os.path.join(TEST_INPUT_DATA_DIR, "nonstandard_dim.nc") ) as xds: xds.coords["lon"].attrs = {"axis": "X"} xds.coords["lat"].attrs = {"axis": "Y"} assert xds.rio.x_dim == "lon" assert xds.rio.y_dim == "lat" def test_nonstandard_dims_to_raster__dataset(tmp_path): with xarray.open_dataset( os.path.join(TEST_INPUT_DATA_DIR, "nonstandard_dim.nc"), decode_coords="all" ) as xds: xds.attrs.pop("grid_mapping") xds.coords["lon"].attrs = {} xds.coords["lat"].attrs = {} xds.squeeze().rio.set_spatial_dims(x_dim="lon", y_dim="lat").rio.to_raster( tmp_path / "test.tif" ) def test_missing_crs_error_msg(): with xarray.open_dataset( os.path.join(TEST_INPUT_DATA_DIR, "nonstandard_dim.nc") ) as xds: xds = xds.drop_vars("spatial_ref") xds.attrs.pop("grid_mapping") with pytest.raises(MissingCRS, match="Data variable: analysed_sst"): xds.rio.set_spatial_dims(x_dim="lon", y_dim="lat").rio.reproject( "EPSG:4326" ) with pytest.raises(MissingCRS, match="Data variable: analysed_sst"): xds.rio.set_spatial_dims( x_dim="lon", y_dim="lat" ).analysed_sst.rio.reproject("EPSG:4326") def test_missing_transform_bounds(): with rioxarray.open_rasterio( os.path.join(TEST_COMPARE_DATA_DIR, "small_dem_3m_merged.tif"), parse_coordinates=False, ) as xds: xds.coords["spatial_ref"].attrs.pop("GeoTransform") with pytest.raises(DimensionMissingCoordinateError): xds.rio.bounds() def test_missing_transform_resolution(): with rioxarray.open_rasterio( os.path.join(TEST_COMPARE_DATA_DIR, "small_dem_3m_merged.tif"), parse_coordinates=False, ) as xds: xds.coords["spatial_ref"].attrs.pop("GeoTransform") with pytest.raises(DimensionMissingCoordinateError): xds.rio.resolution() def test_shape_order(): with rioxarray.open_rasterio( os.path.join(TEST_INPUT_DATA_DIR, "tmmx_20190121.nc") ) as rds: rds = _ensure_dataset(rds) assert rds.air_temperature.rio.shape == (585, 1386) def test_write_transform__from_read(tmp_path): with rioxarray.open_rasterio( os.path.join(TEST_COMPARE_DATA_DIR, "small_dem_3m_merged.tif"), parse_coordinates=False, ) as xds: out_file = tmp_path / "test_geotransform.nc" xds.to_netcdf(out_file) with rioxarray.open_rasterio(out_file, parse_coordinates=False) as xds2: assert_almost_equal(tuple(xds2.rio.transform()), tuple(xds.rio.transform())) assert xds.spatial_ref.GeoTransform == xds2.spatial_ref.GeoTransform def test_write_transform(): test_affine = Affine.from_gdal( *numpy.fromstring("425047 3.0 0.0 4615780 0.0 -3.0", sep=" ") ) ds = xarray.Dataset() ds.rio.write_transform(test_affine, inplace=True) assert ds.spatial_ref.GeoTransform == "425047.0 3.0 0.0 4615780.0 0.0 -3.0" assert ds.rio._cached_transform() == test_affine assert ds.rio.transform() == test_affine assert ds.rio.grid_mapping == "spatial_ref" ds_transform = ds.rio.transform() assert all([isinstance(getattr(ds_transform, arg), float) for arg in "abcdef"]) da = xarray.DataArray(1) da.rio.write_transform(test_affine, inplace=True) assert da.rio._cached_transform() == test_affine assert da.rio.transform() == test_affine assert da.spatial_ref.GeoTransform == "425047.0 3.0 0.0 4615780.0 0.0 -3.0" assert da.rio.grid_mapping == "spatial_ref" da_transform = da.rio.transform() assert all([isinstance(getattr(da_transform, arg), float) for arg in "abcdef"]) def test_write_read_transform__non_rectilinear(): test_affine = Affine.from_gdal(305827, 14, 9, 5223236, 9, -14) ds = xarray.Dataset() ds.rio.write_transform(test_affine, inplace=True) assert ds.spatial_ref.GeoTransform == "305827.0 14.0 9.0 5223236.0 9.0 -14.0" assert ds.rio._cached_transform() == test_affine assert ds.rio.transform() == test_affine assert ds.rio.grid_mapping == "spatial_ref" da = xarray.DataArray(1) da.rio.write_transform(test_affine, inplace=True) assert ds.rio._cached_transform() == test_affine assert ds.rio.transform() == test_affine assert da.spatial_ref.GeoTransform == "305827.0 14.0 9.0 5223236.0 9.0 -14.0" assert da.rio.grid_mapping == "spatial_ref" def test_write_read_transform__non_rectilinear__rotation__warning(): test_affine = Affine.from_gdal(305827, 14, 9, 5223236, 9, -14) ds = xarray.Dataset() ds.rio.write_transform(test_affine, inplace=True) with pytest.warns( UserWarning, match=r"Transform that is non\-rectilinear or with rotation found" ): assert ds.rio.transform(recalc=True) == test_affine da = xarray.DataArray(1) da.rio.write_transform(test_affine, inplace=True) with pytest.warns( UserWarning, match=r"Transform that is non\-rectilinear or with rotation found" ): assert ds.rio.transform(recalc=True) == test_affine def test_missing_transform(): ds = xarray.Dataset() assert ds.rio.transform() == Affine.identity() da = xarray.DataArray(1) assert da.rio.transform() == Affine.identity() def test_nonstandard_dims_write_coordinate_system__geographic(): with xarray.open_dataset( os.path.join(TEST_INPUT_DATA_DIR, "nonstandard_dim.nc") ) as xds: xda = xds.analysed_sst.rio.set_spatial_dims(x_dim="lon", y_dim="lat") xda.coords[xda.rio.x_dim].attrs = {} xda.coords[xda.rio.y_dim].attrs = {} cs_array = xda.rio.write_crs("EPSG:4326").rio.write_coordinate_system() assert cs_array.coords[cs_array.rio.x_dim].attrs == { "long_name": "longitude", "standard_name": "longitude", "units": "degrees_east", "axis": "X", } assert cs_array.coords[cs_array.rio.y_dim].attrs == { "long_name": "latitude", "standard_name": "latitude", "units": "degrees_north", "axis": "Y", } def test_nonstandard_dims_write_coordinate_system__geographic__preserve_attrs(): with xarray.open_dataset( os.path.join(TEST_INPUT_DATA_DIR, "nonstandard_dim.nc") ) as xds: cs_array = ( xds.analysed_sst.rio.set_spatial_dims(x_dim="lon", y_dim="lat") .rio.write_crs("EPSG:4326") .rio.write_coordinate_system() ) assert cs_array.coords[cs_array.rio.x_dim].attrs == { "long_name": "longitude", "standard_name": "longitude", "units": "degrees_east", "axis": "X", "comment": "geolocations inherited from the input data without correction", "valid_max": 180.0, "valid_min": -180.0, } assert cs_array.coords[cs_array.rio.y_dim].attrs == { "long_name": "latitude", "standard_name": "latitude", "units": "degrees_north", "axis": "Y", "comment": "geolocations inherited from the input data without correction", "valid_max": 90.0, "valid_min": -90.0, } def test_nonstandard_dims_write_coordinate_system__projected_ft(): with xarray.open_dataset( os.path.join(TEST_INPUT_DATA_DIR, "nonstandard_dim.nc") ) as xds: xda = xds.analysed_sst.rio.set_spatial_dims(x_dim="lon", y_dim="lat") xda.coords[xda.rio.x_dim].attrs = {} xda.coords[xda.rio.y_dim].attrs = {} cs_array = xda.rio.write_crs("EPSG:3418").rio.write_coordinate_system() assert cs_array.coords[cs_array.rio.x_dim].attrs == { "axis": "X", "long_name": "x coordinate of projection", "standard_name": "projection_x_coordinate", "units": "0.30480060960121924 metre", } assert cs_array.coords[cs_array.rio.y_dim].attrs == { "axis": "Y", "long_name": "y coordinate of projection", "standard_name": "projection_y_coordinate", "units": "0.30480060960121924 metre", } def test_nonstandard_dims_write_coordinate_system__no_crs(): with xarray.open_dataset( os.path.join(TEST_INPUT_DATA_DIR, "nonstandard_dim.nc") ) as xds: xda = xds.analysed_sst.rio.set_spatial_dims(x_dim="lon", y_dim="lat") xda.coords[xda.rio.x_dim].attrs = {} xda.coords[xda.rio.y_dim].attrs = {} xda.coords["spatial_ref"].attrs = {} cs_array = xda.rio.write_coordinate_system() assert cs_array.coords[cs_array.rio.x_dim].attrs == { "axis": "X", } assert cs_array.coords[cs_array.rio.y_dim].attrs == { "axis": "Y", } @pytest.mark.parametrize( "open_func", [partial(xarray.open_dataset, mask_and_scale=False), rioxarray.open_rasterio], ) def test_grid_mapping__pre_existing(open_func): with open_func(os.path.join(TEST_INPUT_DATA_DIR, "tmmx_20190121.nc")) as xdi: assert xdi.rio.grid_mapping == "crs" assert _ensure_dataset(xdi).air_temperature.rio.grid_mapping == "crs" @pytest.mark.parametrize( "open_func", [partial(xarray.open_dataset, mask_and_scale=False), rioxarray.open_rasterio], ) def test_grid_mapping__change(open_func): with open_func(os.path.join(TEST_INPUT_DATA_DIR, "tmmx_20190121.nc")) as xdi: xdi = _ensure_dataset(xdi) # part 1: check changing the data var grid mapping xdi["dummy"] = xdi.air_temperature.copy() xdi.dummy.rio.write_grid_mapping("different_crs", inplace=True) assert xdi.air_temperature.rio.grid_mapping == "crs" assert xdi.dummy.rio.grid_mapping == "different_crs" # part 2: ensure error raised when multiple exist with pytest.raises(RioXarrayError, match="Multiple grid mappings exist."): xdi.rio.grid_mapping # part 3: ensure that writing the grid mapping on the dataset fixes it xdi.rio.write_grid_mapping("final_crs", inplace=True) assert xdi.air_temperature.rio.grid_mapping == "final_crs" assert xdi.dummy.rio.grid_mapping == "final_crs" assert xdi.rio.grid_mapping == "final_crs" @pytest.mark.parametrize("dataset", [xarray.Dataset, xarray.DataArray]) def test_grid_mapping__attrs_to_encoding(dataset): xds = dataset(attrs={"grid_mapping": "wrong_spot"}) xds.rio.write_grid_mapping("correct_spot", inplace=True) assert xds.encoding["grid_mapping"] == "correct_spot" assert "grid_mapping" not in xds.attrs def test_grid_mapping_default(): xarray.Dataset().rio.grid_mapping == "spatial_ref" xarray.DataArray().rio.grid_mapping == "spatial_ref" def test_estimate_utm_crs(): with rioxarray.open_rasterio( os.path.join(TEST_INPUT_DATA_DIR, "cog.tif"), ) as xds: assert xds.rio.estimate_utm_crs().to_epsg() in (32618, 32655) assert xds.rio.reproject("EPSG:4326").rio.estimate_utm_crs() == CRS.from_epsg( 32618 ) assert xds.rio.estimate_utm_crs("WGS 72") in (32218, 32255) def test_estimate_utm_crs__missing_crs(): with pytest.raises(RuntimeError, match=r"crs must be set to estimate UTM CRS"): xarray.Dataset().rio.estimate_utm_crs("NAD83") def test_estimate_utm_crs__out_of_bounds(): xds = xarray.DataArray( numpy.zeros((2, 2)), dims=("latitude", "longitude"), coords={ "latitude": [-90.0, -90.0], "longitude": [-5.0, 5.0], }, ) xds.rio.write_crs("EPSG:4326", inplace=True) with pytest.raises(RuntimeError, match=r"Unable to determine UTM CRS"): xds.rio.estimate_utm_crs() def test_interpolate_na_missing_nodata(): pytest.importorskip("scipy") test_da = xarray.DataArray( name="missing", data=numpy.zeros((5, 5)), dims=("y", "x"), coords={"y": numpy.arange(1, 6), "x": numpy.arange(2, 7)}, ) match = ( r"nodata not found\. Please set the nodata with " r"'rio\.write_nodata\(\)'\. Data variable: missing" ) with pytest.raises(RioXarrayError, match=match): test_da.rio.interpolate_na() with pytest.raises(RioXarrayError, match=match): test_da.to_dataset().rio.interpolate_na() @pytest.mark.parametrize("with_z", [True, False]) def test_rio_write_gcps(with_z): """ Test setting gcps in dataarray. """ gdal_gcps, gcp_crs = _create_gdal_gcps(with_z) darr = xarray.DataArray(1) darr.rio.write_gcps(gdal_gcps, gcp_crs, inplace=True) _check_rio_gcps(darr, gdal_gcps, gcp_crs) def test_rio_write_gcps_no_crs(): """ Test setting gcps in dataarray, when gcp_crs is not present. """ gdal_gcps, _ = _create_gdal_gcps() gcp_crs = None darr = xarray.DataArray(1) darr.rio.write_gcps(gdal_gcps, gcp_crs, inplace=True) _check_rio_gcps(darr, gdal_gcps, gcp_crs) def _create_gdal_gcps(with_z=True): src_gcps = [ GroundControlPoint( row=0, col=0, x=0.0, y=0.0, z=12.0, id="1", info="the first gcp" ), GroundControlPoint( row=0, col=800, x=10.0, y=0.0, z=1.0, id="2", info="the second gcp" ), GroundControlPoint( row=800, col=800, x=10.0, y=10.0, z=3.5, id="3", info="the third gcp" ), GroundControlPoint( row=800, col=0, x=0.0, y=10.0, z=5.5, id="4", info="the fourth gcp" ), ] if with_z is False: for gcp in src_gcps: gcp.z = None crs = CRS.from_epsg(4326) gdal_gcps = (src_gcps, crs) return gdal_gcps def _check_rio_gcps(darr, src_gcps, crs): assert "x" not in darr.coords assert "y" not in darr.coords assert darr.rio.crs == crs assert "gcps" in darr.spatial_ref.attrs gcps = json.loads(darr.spatial_ref.attrs["gcps"]) assert gcps["type"] == "FeatureCollection" assert len(gcps["features"]) == len(src_gcps) for feature, gcp in zip(gcps["features"], src_gcps): assert feature["type"] == "Feature" assert feature["properties"]["id"] == gcp.id # info seems to be lost when rasterio writes? # assert feature["properties"]["info"] == gcp.info assert feature["properties"]["row"] == gcp.row assert feature["properties"]["col"] == gcp.col assert feature["geometry"]["type"] == "Point" if gcp.z is not None: assert feature["geometry"]["coordinates"] == [gcp.x, gcp.y, gcp.z] else: assert feature["geometry"]["coordinates"] == [gcp.x, gcp.y] @pytest.mark.parametrize("with_z", [True, False]) def test_rio_get_gcps(with_z): """ Test setting gcps in dataarray. """ gdal_gcps, gdal_crs = _create_gdal_gcps(with_z) darr = xarray.DataArray(1) darr.rio.write_gcps(gdal_gcps, gdal_crs, inplace=True) gcps = darr.rio.get_gcps() for gcp, gdal_gcp in zip(gcps, gdal_gcps): assert gcp.row == gdal_gcp.row assert gcp.col == gdal_gcp.col assert gcp.x == gdal_gcp.x assert gcp.y == gdal_gcp.y assert gcp.z == gdal_gcp.z assert gcp.id == gdal_gcp.id assert gcp.info == gdal_gcp.info def test_reproject__gcps_file(tmp_path): tiffname = tmp_path / "test.tif" src_gcps = [ GroundControlPoint(row=0, col=0, x=156113, y=2818720, z=0), GroundControlPoint(row=0, col=800, x=338353, y=2785790, z=0), GroundControlPoint(row=800, col=800, x=297939, y=2618518, z=0), GroundControlPoint(row=800, col=0, x=115698, y=2651448, z=0), ] crs = CRS.from_epsg(32618) with rasterio.open( tiffname, mode="w", height=800, width=800, count=3, dtype=numpy.uint8, driver="GTiff", ) as source: source.gcps = (src_gcps, crs) with rioxarray.open_rasterio(tiffname) as rds: rds = rds.rio.reproject( crs, ) assert rds.rio.height == 923 assert rds.rio.width == 1027 assert rds.rio.crs == crs assert rds.rio.transform().almost_equals( Affine( 216.8587081056465, 0.0, 115698.25, 0.0, -216.8587081056465, 2818720.0, ) ) def test_bounds__ordered__dataarray(): xds = xarray.DataArray( numpy.zeros((5, 5)), dims=("y", "x"), coords={"x": range(5), "y": range(5)} ) assert xds.rio.bounds() == (-0.5, -0.5, 4.5, 4.5) def test_bounds__ordered__dataset(): xds = xarray.Dataset(None, coords={"x": range(5), "y": range(5)}) assert xds.rio.bounds() == (-0.5, -0.5, 4.5, 4.5) @pytest.mark.skipif(not RASTERIO_GE_14, reason="Requires rasterio 1.4+") @pytest.mark.parametrize( "rename", [ None, {"xc": "longitude", "yc": "latitude"}, {"y": "lines", "x": "pixels", "xc": "longitude", "yc": "latitude"}, ], ) def test_non_rectilinear__reproject(rename, open_rasterio): test_file = os.path.join(TEST_INPUT_DATA_DIR, "2d_test.tif") with open_rasterio(test_file) as xds: x_2d_name = "xc" y_2d_name = "yc" if rename: xds = xds.rename(rename) x_2d_name = rename["xc"] y_2d_name = rename["yc"] if "x" in rename: xds.rio.set_spatial_dims(rename["x"], rename["y"], inplace=True) xds.rio.write_coordinate_system(inplace=True) xds_1d = xds.rio.reproject( "EPSG:4326", src_geoloc_array=( xds.coords[x_2d_name].values, xds.coords[y_2d_name].values, ), georeferencing_convention="PIXEL_CENTER", ) assert x_2d_name not in xds_1d.coords assert y_2d_name not in xds_1d.coords assert xds_1d.coords["x"].shape == (14,) assert xds_1d.coords["y"].shape == (10,) xds_1d.rio.transform().almost_equals( Affine( 216.8587081056465, 0.0, 115698.25, 0.0, -216.8587081056465, 2818720.0, ) ) rioxarray-0.18.2/test/integration/test_integration_xarray_plugin.py000066400000000000000000000042171474250745200260420ustar00rootroot00000000000000import os.path import pytest from rioxarray.exceptions import RioXarrayError from test.conftest import TEST_INPUT_DATA_DIR xarray = pytest.importorskip("xarray", minversion="0.18") @pytest.mark.parametrize( "kwargs", [{}, {"engine": "rasterio"}, {"decode_coords": "all"}] ) def test_xarray_open_dataset(kwargs): cog_file = os.path.join(TEST_INPUT_DATA_DIR, "cog.tif") ds = xarray.open_dataset(cog_file, **kwargs) assert isinstance(ds, xarray.Dataset) assert "band_data" in ds.data_vars assert ds.data_vars["band_data"].shape == (1, 500, 500) assert "spatial_ref" not in ds.data_vars assert "spatial_ref" in ds.coords assert "grid_mapping" not in ds.data_vars["band_data"].attrs assert "grid_mapping" in ds.data_vars["band_data"].encoding assert "preferred_chunks" in ds.data_vars["band_data"].encoding def test_xarray_open_dataset__drop_variables(): input_file = os.path.join( TEST_INPUT_DATA_DIR, "MOD09GA.A2008296.h14v17.006.2015181011753.hdf" ) with xarray.open_dataset( input_file, engine="rasterio", group="MODIS_Grid_500m_2D", drop_variables=[ "sur_refl_b01_1", "sur_refl_b02_1", "sur_refl_b03_1", "sur_refl_b04_1", "sur_refl_b05_1", "sur_refl_b06_1", "sur_refl_b07_1", ], ) as rds: assert sorted(rds.data_vars) == [ "QC_500m_1", "iobs_res_1", "num_observations_500m", "obscov_500m_1", ] def test_open_multiple_resolution(): with pytest.raises( RioXarrayError, match="Multiple resolution sets found. Use 'variable' or 'group' to filter.", ): xarray.open_dataset( os.path.join( TEST_INPUT_DATA_DIR, "MOD09GA.A2008296.h14v17.006.2015181011753.hdf" ), engine="rasterio", drop_variables="QC_500m_1", ) def test_xarray_open_dataset__invalid_decode_coords(): cog_file = os.path.join(TEST_INPUT_DATA_DIR, "cog.tif") with pytest.raises(RioXarrayError): xarray.open_dataset(cog_file, decode_coords=False) rioxarray-0.18.2/test/test_data/000077500000000000000000000000001474250745200165635ustar00rootroot00000000000000rioxarray-0.18.2/test/test_data/compare/000077500000000000000000000000001474250745200202115ustar00rootroot00000000000000rioxarray-0.18.2/test/test_data/compare/MODIS_ARRAY_CLIP.nc000066400000000000000000000252411474250745200231570ustar00rootroot00000000000000HDF  *`OHDR " iD a_NCProperties9version=1|netcdflibversion=4.4.1.1|hdf5libversion=1.10.1 3 coordinates spatial_refžOHDR  ?@4 4b  0CLASSDIMENSION_SCALE "NAMEy>OCHK <nbOCHKB 4 _Netcdf4Dimid  P _FillValue ?@4 4 B long_namey coordinate of projection ?standard_nameprojection_y_coordinate !unitsm&+nBSABSA6FBSA3́[rmG[Z [KKOHDR  ?@4 4W b ' 0CLASSDIMENSION_SCALE "NAMEx7mOCHKFx ïOCHK 4 _Netcdf4Dimid  P _FillValue ?@4 4 B long_namex coordinate of projection ?standard_nameprojection_x_coordinate !unitsmOHDR  @ ? b1OCHKX spatial_refh ^OCHK E spatial_refPROJCS["unnamed",GEOGCS["unnamed ellipse",DATUM["unknown",SPHEROID["unnamed",6371007.181,0]],PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433]],PROJECTION["Sinusoidal"],PARAMETER["longitude_of_center",0],PARAMETER["false_easting",0],PARAMETER["false_northing",0],UNIT["Meter",1]] =crs_wktPROJCS["unnamed",GEOGCS["unnamed ellipse",DATUM["unknown",SPHEROID["unnamed",6371007.181,0]],PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433]],PROJECTION["Sinusoidal"],PARAMETER["longitude_of_center",0],PARAMETER["false_easting",0],PARAMETER["false_northing",0],UNIT["Meter",1]]IQOHDR (  G B _FillValue=|`OCHKy]0__xarray_dataarray_variable__OCHK  transform ?@4 4 l@[ lBSA? 3 grid_mapping spatial_ref `DIMENSION_LIST 2sOCHK tREFERENCE_LISTdatasetdimension OCHK tREFERENCE_LISTdatasetdimension AGCOL]] rioxarray-0.18.2/test/test_data/compare/MODIS_ARRAY_CLIP_EXPAND.nc000066400000000000000000000324641474250745200242230ustar00rootroot00000000000000HDF  45`OHDR " F J_NCProperties"version=2,netcdf=4.7.4,hdf5=1.10.6xl_OYOHDR  ?@4 4|3  0CLASSDIMENSION_SCALE "NAMEy 4 _Netcdf4Dimid  P _FillValue ?@4 4 B long_namey coordinate of projection ?standard_nameprojection_y_coordinatedOiOHDR 2 ?@4 4   0CLASSDIMENSION_SCALE "NAMEx 4 _Netcdf4Dimid (f=d :o̞BSA6FBSA3́[rmG[OCHKX4 P _FillValue ?@4 4 B long_namex coordinate of projection ?standard_nameprojection_x_coordinateHUOHDR  @ :`xu .OCHK!X spatial_ref ~[FSSE7 r6FHDBZ spatial_ref~PROJCRS["unknown",BASEGEOGCRS["unknown",DATUM["unknown",ELLIPSOID["unknown",6371007.181,0,LENGTHUNIT["metre",1,ID["EPSG",9001]]]],PRIMEM["Greenwich",0,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8901]]],CONVERSION["unnamed",METHOD["Sinusoidal"],PARAMETER["Longitude of natural origin",0,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8802]],PARAMETER["False easting",0,LENGTHUNIT["metre",1],ID["EPSG",8806]],PARAMETER["False northing",0,LENGTHUNIT["metre",1],ID["EPSG",8807]]],CS[Cartesian,2],AXIS["easting",east,ORDER[1],LENGTHUNIT["metre",1,ID["EPSG",9001]]],AXIS["northing",north,ORDER[2],LENGTHUNIT["metre",1,ID["EPSG",9001]]]] GeoTransformS-7273083.024053235 231.65635826345533 0.0 5048950.328361431 0.0 -231.65635826345533FHIBP׺fFRHP: (PXBTHDd(dBTHD  d(~oR FSHDPPx(!//BTLFTXKX ?$!P D\J7 sN7FU>P VP`A[v9Jo` Y5 {P` 87_%]T: ú'z>eBTLF PPTX?`v9777 T: ` P >P  {5UFHDBklongitude_of_prime_meridian ?@4 4prime_meridian_name Greenwichgeographic_crs_nameunknownhorizontal_datum_nameunknownprojected_crs_nameunknowngrid_mapping_name sinusoidallongitude_of_projection_origin ?@4 4false_easting ?@4 4false_northing ?@4 4FHDBA8Jcrs_wkt~PROJCRS["unknown",BASEGEOGCRS["unknown",DATUM["unknown",ELLIPSOID["unknown",6371007.181,0,LENGTHUNIT["metre",1,ID["EPSG",9001]]]],PRIMEM["Greenwich",0,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8901]]],CONVERSION["unnamed",METHOD["Sinusoidal"],PARAMETER["Longitude of natural origin",0,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8802]],PARAMETER["False easting",0,LENGTHUNIT["metre",1],ID["EPSG",8806]],PARAMETER["False northing",0,LENGTHUNIT["metre",1],ID["EPSG",8807]]],CS[Cartesian,2],AXIS["easting",east,ORDER[1],LENGTHUNIT["metre",1,ID["EPSG",9001]]],AXIS["northing",north,ORDER[2],LENGTHUNIT["metre",1,ID["EPSG",9001]]]]semi_major_axis ?@4 4˯MXAsemi_minor_axis ?@4 4˯MXAinverse_flattening ?@4 4reference_ellipsoid_nameunknownOHDR (  <"@ P _Netcdf4Coordinates bOCHKyK0__xarray_dataarray_variable__ XKOCHK B _FillValue 3 grid_mapping spatial_ref 3 coordinates spatial_ref `DIMENSION_LIST|#|#9J:GCOLKKlOCHK tREFERENCE_LISTdatasetdimension  '}OCHK tREFERENCE_LISTdatasetdimension  Jrioxarray-0.18.2/test/test_data/compare/MODIS_ARRAY_INTERPOLATE.nc000066400000000000000000002652711474250745200242270ustar00rootroot00000000000000HDF  j`OHDR " D __NCProperties7version=1|netcdflibversion=4.6.1|hdf5libversion=1.10.1EXx7ɆOHDR < ?@4 4 @ 0CLASSDIMENSION_SCALE "NAMEy 4 _Netcdf4Dimid  P _FillValue ?@4 4 B long_namey coordinate of projection ?standard_nameprojection_y_coordinate !unitsm=OHDR  ?@4 4 k@ 0CLASSDIMENSION_SCALE "NAMExZumMOCHKw,;OCHK 4 _Netcdf4Dimid  B long_namex coordinate of projection 7z2ʻ 2CSA HhCSAN^.CSA͈tBSABSABSA6FBSAop BSAXASAAASA* _ASAX#%ASA9@SAO@SAew@SA?{=@SAy@SA?SAo뽏?SAX'U?SA@a?SA)>SA>SA+n>SAHA4>SÂW=SAm=SAۃ=SA0ڙL=SAnjد=SAWU'5SA'4SAɖݳ4SAy4SA< @4SAv4SA53SAK3SA$aX3SAl^w3SAU2SA>҆2SA' p2SAF62SA1SA1SA}1SA-|'O1SAgz=1SAxS0SAlvi0SAUug0SA=Os-0SA&q/SAo/SAm/SA6lE/SApj /SAh.SAf/.SAeE^.SAlXc[$.SATaq-SA=_-SA&^v-SA@\<-SAyZ-SAX,SAV,SA'U U,SAaS!,SAQ7+SAkOM+SATNcm+SA)d)SAkR[u[osʻ[W$rꐻ[@^pW[(n[l,[ kB[EiXo[gn5[e[c[-b[lg`M[T^[=\ٸ[%[[OYf[W4,[UJ[S`[6Rv~[pPD[N [iLж[QKΖ[:XI\["G"[ E[D&[?Bh[<~Ǵ[}';[fa9S[N7[75߳[4쥳[I2l[02[ټ..[,D[0+Z[j)pJ[z'[c%ֱ[K$[4R"b[ ([[ [9 {[s6A[L[bͯ[x!x[`[Y[H[1[ Ы[C q[| 7[Ӷ[(ĭ[*>[dTP[tj[]ܬ[F[.Lh[.[[[3[mG[/ [EӪ[r[[ZUq_[B%[+[泱[VV*<NNtHHaT443j**%%,]1K  JJTxv!P(((+66""+-CssVV==,66,nn=11  {O0u*;-9zkivjmmGC,uu ::}+k33tHaak3hnn00 ,e__mPTT~~`Hv\H!(688y3-..]sL**6n}{nnT=OuulK;--JJnn``0))??iij^vB,*&&77gHHjf>k1AtFF\khhUU l66e_mWWeePBBBB`H\HHnny:3.]_*W^}ookf\\))T==zzKKHJ  ``00))?J  "^    5&x|[=ZZ'pPA..\\\KKHHQAAiRl6 eBB92XX n22:HiidD_WW^^X77okff)FF  ));;ppzz(77__AZV** )Y*-<<f:luBJ[`KoP6bjFKK  8yy AJJiRR^^gg  YY2 9#22F eemHIdDDV""XssHHM Fhh7VVAA$$Z;;CZyyyKPfQQz`%33Fh55`8 HHI AAgccDD22  'FCCuum{{[IIy}V,WHMMPPpFFSSYY:VF;C88XrrZH2% T9+Tz. yGjVhBHgI44KK Abb  \\-D||'66u11  [}}vvWW!WWbbRccpp%]AAY:*F~8Xii62EEyaa-Q%eTPgmynnSP@<ggSSK   4\-##U%LL{{vv.  &nn%ZZp**E~LL]]66S22EEwyy$-O^Wgxr00)!c@/bCI9LL<<  4--#DDLfo  l%%;;G\\A   PP556&,//4~~S   p99EE+ ]SSYv$""^^gIIg7H"//w;I_>9aeJ``''DDN88#2?l((ee)'ffGEE.A <<P)6$$,4]SEE  u?dd%  ZZvvGdCI{u|T/!bHH2==:)_ioRSS`bUDNN%%? 115)AAMf(((.||sUUZZ&&")' \]]jj88??vvd%88Z,RR~xGbb=]:XGi4I+rrbUU..xxllJ5 ?M*((0ss<UUZ  ZNE"''+@@\\pyjFFggAA"1&&8,,'~xxbmmjK<dZ|A2,4!I.H   .''RR>>G'<<iE ??!d*kk00<UUgMVV= p+NEE  ++  @jjiiyyqg71UU::  9''ja||  VZZMMc\Pdz`\ErR ;ZH&11! jjR#>ddFEEn!ddF22wgMM6=ggZZ++]G    peeiqq##D7U33`-9jaajj??GG1ZTTc[DCC\rY/x uO90'CbL&=!!  jjCC#UFF~~dvFFppww__66Z//__GG. KQQ;""8  #44D""3e6`--  @CCGGG1vv~=C]lbF5-;rru(A LL^=R;    ghm'vvzz__EEa_V!..  \^^8<  <"88BB4\166<G    jjLBB3C((8Ijjv~~lb^^ZCYRH "':LT??"ee_`cxx_<<#ttlz??Eaa?ZZb!33/ \rr^8< <00\11MMIGGSS@LB38IIkhh^H_Z( 68:%T?#nR9b,bbY.WW_``3L66 P;Em7 /88|\?   !?ZbD/<<F=0''22jj@|VVk??JJS~6~dRP,gY&..==I_X\kZR  X|QQH\  !BBAD555FFt=/'GG@ll_2j  l||#J55jV&?''RRS ce><+~u|Lt  &&  II??EJZZ33HXjjGs}}NHH9++3A<<.555}tq/ Gdd@..V_blQQ~#JJjz<R .gkarSZ/TB+S#LuKKb*>>YY,?&g%IT)H   <6FFC$N89 +33] .((qB33ccdyVb~!!zz-<qnMM.YH"a6ZB//]T5``V#QQ,r|->>3VV*..QQ"ooc|66Tpp9DDEE..8N} pp]]"2  33hhc00WWyy]$$TJJbbUh--_Wqnn00PP"Sd1:%bg::HH88&&8#WQ#r  `|r))Q  (([[Z>''%FQ  :J"66ww}}pAAKK22z  hRRO0((W]]TT@{{J UPh_WWMAS1))VV3$$11@@zu@#T2#+|``)WW%%*Chh$.w22NHHw$ff==zz>>\;;== eOA(W{{[[O@@T QQPddczz33zzMdAA(qKK#uan22QQ||Wlll}Jt^VYDDcmUUAG=;9[   ^^z"`\__%;  ceAWW {++ ppr@4ffQ  daazz53zzzd44N$$ / kr7**OO'}BB?-GcL0FP<!6JG1111^`rrS% cc33nn  uu||Y "pr44 @44]qqMMVV]]55d4NN||$$GlY/B/]?9De&& ^(MMJrSSL ccynn|Y.."*` ]J]||TddH << << vB`/]]GsCCD7 TT$JJfLL}  wwzzLL RR@LL~yF{*``  MM !TH33; lN/==xxhAA``rrGi99lG6<D(('JfDD}}2KK{{  RRR@~yAA'F& WW{{ee   FFllY!!  0zH=.aCKK..A\\UUPP<55Tmm$.tt22aa99QQ uu{66CUURR`A'DD&  ^^::g klYY* NNq$$KKAVrsW))&&!!0UvYYlg]]LLGJXXBB^Q u##f6CCc|sR``0\$$GG^??3P00kg  vkooZqqee  GGtD4u-^qq3{{rr_fv||zUUYVV fz<<l28:s{z;Z^^<<YY}#fnnc||Ks\\}0\\&G''TTZ``z||v3fP1_k%%vvQQ|WW  ,ZZSceG--cc^Si166UU&&P2- f?|z8}}V1G::|J~KF;GZuuc<Y}}knKK}}rvveZZddzPP*vhh ff31__  zW D,__cc%-22^YC7VVTTggE`82O.@?DD88}7&\996 VjK9G  cOO<ck[[//vvuuFFT,P**N mm``33 885zDD__""m%LL ^ii7Qss@@00ffq-tt5K.@@g+M}77  _VNN YIyHi<cc\uBB%%##mmOOubbFT0b,N33``^[[|8f5KKOd""EmUU1L  RPP778"JJsKK  KKG:g++MM0fQ))RxX( 1>Jjjdja)2\uu::!yynn##DD'',0bb--TT||]]c<"Od,,++[EE1  !!))u%UU((Jf7-  ::rrxHHQq> }  $0&0077Uu8a?2:aayy**D  g55,,M$$--T Q]cmm`<"" ,,?X[[!!9uuU11  33MMZZ4r3KKHl}}ITQQ&#77))xz$12EE]a8BBeKKgjLLojj Qm``(-  VVdX[[F\\lrC44??Z4Kl<llzh,,3.M~}}y;;]um88ebKKjpj  Fg--VQQT ]ddK\lVVVV rrm** ?ZZC  <PP$RtrBBhhv;CE8bwwY44QQBBFgg&KKT  D;]gg@@OyyVj aa(( m PP##gg CC;//qq$$ tKV:(3;C7YllD4EE11c%%4K[D;;@@mIIOO4jaaAA(   !77F`} w!@;;$uK UqkjNNgbbyy!DkkvE7c<<eR%SSU4[[,AA++{I4ookkt !!uF"FF|}}99w@@>>88NN7799=5pp0>sG10aaP C`ldhh+**[[y!!3v>>G7ejjRR**   U!,,))ss+{  ,,ktt5uuFFCC99_9IIVvvS--((7x<<5XXV'';m0\sPGT~~}:rdl~wC*444RR@23Gmmf^^mkk"!!))7BB66 SS,50>>>>55&%%NOOEv6SSg(//\mmoXV??;mmz\ gg888 jjL} R@uu_n22@  ffUNNCC^""xmik i}}""ss--  ::lB    GG1133((1::>>FFR5&&KZNNuOEDDSSdg\2o%%?,;z >>??sh#Fyu__$n@@`` NNC''0xYYri ii--.:l' ::GG;; 31PP::.FR{{K/uD""dd22  ;;lBB777ss,];/ h$$CCzzW5h'001ar&99PSk.ff!':II 44s((&&PPC{XDD22=]"{{G  #SSBB7wxYZj``F`VPa]LJv..-L@ccWW5555Yh111aaKH&22BB99PPpp6kk!!RR!II94s(DD%%WWC44=XX;; 2=uuY])5NGGj"">>--MS#SSJ[[wKHWy|A^P:8-R@F5YY5KHH**22,,\\iip6OO@}}HR!SSm9%*  vv4W94==N$$ Ycc),5NN7>>r-MSJJ"=!!oQmHII&y=A^] -&;F35**tt,,ZOBwwHSmmI--vv& v4))r944$$at77frII"==k(QQPkk#L,,%S5;clN<;yeeo3CClt 9Zxxp{""^QQnnv&rraCC;;ww4~~ff%3o$$]k((GGPP|* 58Y;c`<(f;yy>o]]kkll99rbp{{}}E9^^nn\\*h&&ssC7;;jj$44_~OO%33o==]]KK  GG||ppx)o$`3oo7f+<[>>R5rbb"CCSS92UU{**66c\))hsxx&jd$__OLJJPPKK //Y {8Sx$8a>oE3o7%[LWyyIR55'7">S&  0022x{{AA6cE\A[[x&==_LL>>J~ HH/Y  zz|8ic,WaVaueTZ~W$ILLPP77ff>>$ <nwxMBBEE:PAAU=SkQQ^ >>JJ11~zW||v*Wm>39uf#eyUR~#MP]]]]~~Q$<nnwwMMPPAU|Skk   !01mmhzzP,W<<zz>>Z ##UowXR::EM|MMs{__]]QQ__8''GGO 1AAPPm99999 (  nn!440thuP,,t>*Z T%7xoEw^dE{s{{22##QQ9_GOO   & 11Pmmc911k9k9 $a((!  O  }4tt\u;;\ttSSwwa%Z#;LoWK!^b:c 99__ ;&  IITcckk11kS$aaAA   Ozz}}<\\''tt6SSSD7Qa__FFLW<sD:c  !!11KK%;;?{{ \wTTt??21iS/  z  b<&&xx'6  TD`7QQFT&s%p(\,,!!00c!! +%CC{jjs \wwttyy2iXX5I @b!!xx>> <*TT```Tl*B<F(E6u\TTKK! ++..ANNisRAANYX##~~eIt"~~@!bb@@DDtt  H<**00RR PP--F=- K ccKUUAVV>NiiWAADDYY00q~etk""`@!!--bDDCC*HGG55  }} ZZ4y_}@-=4J>jjCWWAAGG 0{{sk ``++.^^qC **55ZZ" ((Z a(p`|a%%> M=//qqCCI G    w{ss||kk|``xq  XX22Z"k)ZZ==  ZZ 4: ~F`   \\~~CCi88yLLq    3w@a|*`xc_k))200  4l@ '  7B ==CN LL_3~~aF*==<<cPbb E_DDG2 l@@TAC<<nNnt!UU **5@@6<<egg=K_llFF(Pb eeEEG66WW--\77AA|TyyI99?]<44 Z@U6>>]eeggN=   KPP3lG((00e>>W\\N7+|iimm&&ZY?({}||XsT<}} ZZVjjUUVV]]U>NNZZB   HP$33GGs[[&&K>QQ[[t+Nmm++m9!7[ ee44vX};ssjbbrV>>>>**ZBtt4H**n$ lrr&#7KyyutZOO4411P##77 nnmII}  ;sSSCrK>>~nnt44*Ln ll11r#!77ff+TTddsu44uZj]RRmmC4eeRRP==t99mhW33RUU    &jjSCCwKkk//rrgnBBJJQ QQ  ''!!66kk++dsspu''jjp@RRvCKKUR99k{9kgg &&>XXjwll>>rg((ssQ&&ggQ22``cc  S =HH66kpW44@@""qvU  ;@@2B__  ]]kWWjjkkl\\kk (**  $`--N""@?S==[[ .nnzJ!zzeWWqq _]SS;112dd$%%J{  n&ll=55]OOZW&&qqk yy$$-VN" @??<<  //inUzJ!!ee ssrraa __]]jfY16  %ee}[r+dooKKqTT  33$$<  ^88>></iPUj77rvv OO<<fY666##yyJf11U!!;  ~$0xxllRDDv3)g$<^^88>MM{,,4PF@j||(7%JJvJ 88OODww00''kM>WYPQAAh$hRREEVVG$vTT3 UUjg*yJ}{,44]F@@||((II**J!!JJ1166&&D  Y'33<DHH{{MMrr@k99HxzzHHehEEbbGG00^$${{>> j2LL44**py'J}}__YY__I  !11__&rrYY=II//W3``ccMzzAAY(_Idb[[m0^FF>``R}}4X<<p$''g&&KKY99 *zOO<ppbbGGddB((==hh%x! 99\\  RR05w_7di11mkF>>`ooGvvI0m&ooC$$eMMOOSK9II**zzGGjjpRggGG1dB2ddhS!* }((>>A993@DD2kkc}}nn55oGGImD&&CTTee  /MkROSMM**wwxj-  RR1m22QQ55RKzzp!ccIIGdIY"<ssfy}}^^5`AAIIz&@&_//ss RS;M77wwxd-##L UU%m))qqNFRROq8aaOOrr!< SE>1f^5&&N``ggnGG  ww??#7yyABs2  };;Eoo-ddULuuXX_%%_9||qNN`FFIIt>t0    a55NEEn#RFYT7$$qyA%Bwwl2}Knnl""PP-(U__v_9IIR``zxxKKBB++DDp==Lodd**EEdxRRdgfDQs#>$&qpp %%qlHKKCY"JJP((//  WWLRLLOOGGzx||B\\PP]ONz~#0099k  dd{t[]naUgjD_ P6F>7Qp qHH<<<<YCC!!/MMEEyy]LLrrLLGz 33u66  .,n~..\> M~T WW@er]O$@.<6y_mP@@$QhOO</XX'iiUMXyJJ]ddNr   >>bb22=T!&!!Xo>nMKKsTRRW~r]++XqqZ:=$(hhrr((3XPT'AAUXX##paJzdNN  kkMYYESS ?} 80(yacogr*ww77//~~rBhRR1 B(WW (3PTT~~eA__JJCQQ::pp#ppazzSSa~~Y) 5 ]]T<BB+))$zyN|TOJrPPInzz{m.ee4f9W++  ..bba~??eejJ|}C99Q +pk  {{s~)aaMX:e   8HK88FS[e77YB9  Pn22:J f9q+t.+aa9jjyy}}II2 +xOOAAkkyyR  {s8PP.M:__ ,,`1K<[hd^  )W  ")02**xx4^3!trrD+xxB||mzzRyQQ::22uuzJxx###ATTXyaR    jj}88}88..88VM'ImB\]  %%]tYs/B~~WVn 22>e*JJ^X^~;+RRz}}gkbN gxxDD""||wwm;;GR8QM:  uuzJJ##wwXwwaa}}cc\\38  8VV}A' \Uc\][Y@@h%#L=WVAkp  eebb'9b^??-eR}kk,NgYkxDDL" (;GGB8HHMM   &&VYY'w844D\3AA}AA##FFm#SS6EE&*(/fE#DP=+Vff Q##''GGeD#{U&,FknnLLJJG((B__BB!!i  * &OOCCY['88x;;LLdssDDq990/66(nnsB>O# xqtRRX-!% u&$ v*F t_inJGBppii3*CCCm;;LddZjjIsyyUU[[MbhTT "1SS7s.BVVRD ,,A"%u3n9??n i,,upiiJJ63dxxJ88xCmm  *ZZjj;;I~jU..[[$$AAM((y9 ---.S3T::*-?Senn=HUEPR4DDA::l rY!oBduu0053bdxxZZJJJxxppII  5**]}hh  ~~paj00A--((^^(y%bq*?vvknNaXWW'CCn:00? av2hs// lldFtt3AAbbaaHuu~~I ++ 55}}ff  __5CCEpaa??..(8%%Q[b;;jcyh CnAAdB0KwG88@v]=D33ffMdddnF,t,_A##aBHH??9~||**+  DD  5CEEbb??""IIII.8xxQ1(*}@yyw HH<22-ddKG#;[@h=Luu qqnn3Y,%%__YY #BB9?99|  dd.."LLIYO8VV>>v1 *YY\\Bz%,}r\22ww62 g-==KKg;U[>*= wwn6  $3YY;;}}  {AA99 VVrHHdd.77..EEu~~sZZOOee88$ Vvv[[d!ChD\!!BLLD>>w6O gg^::EP*><DD??ku99.q$$VrrJJXX {)) vvQr??}UHAAnn7W*nnVu  c~ssHHe$  [dd:++ bpA&DzMMOOoo^^ E*22vviik``,*rrNNJ>>WW DDrrXX  vQQUUeA99nbbWW{{nn//2VV cGGHBB@@8833:qiAhqqoo44  ..7e ddFj,,H2 K::\\tWD,,rr QIIeVVIbee{{/2aa;;+  pSS83DDIdD hooKK04``((f]mm33 ]] tZZ\,paaRQQ zzYYxVIIa ;;hii++ppS##-DDIDqv:oqK0  ||&ffll${{ooe2aad=oo  nn\\ccaQRmzxUUBII iiwpp@@DD}#-mm  xkk9P088q%% Zx44&&eennff$SSe8QTrjjJ33  &&nnLcxQmmFBBll(U,,wwZZ!'']]}m||  HHko9P8GZxxo4LL77nW%%])1/Y8`DD  VVhhYYU&-&&LxxyFaaMM;;ljj((,ppZZzG!]]''C]^|--..OO',px9G}<pp(WW']``UUbDZncWkxx7<<D&pFF6yrMMS;<guujj.gg]]~GG'CBB``^^.}}%O''2U993wwii%pd(''tt >>".wGGh6pp++pp))66srrooS4<<ggH!!22/.ggTT~vvP``66%XX2UUtHKKgss[[i%:ddqDDttnnr}[s{#Q<{Dkk22#xx,,,,>>)\ssoo4!!2//O hP__t6ttq{{sa::lq__cc%866nrrLIIaa~~.UUJ{{  1,s>11  \\xx'LMO  hh **FFmmxtccJqeel55%%NNx6&&JJ  ''~}}^)MMCC  e\ svv# ..,,KKTTg'',ggMM__   m77xx;cJJwOfeeuXXSSooNxZZMff/\\uu)OF8MM00hhYY#CC,,jjKeegSS,nn99  ];;U''{{wOOAb!!"LuuXPPdoKKZMM^fcc \Y@@  bbP  "e;;N@@\nn,,&9 ==s.]]eekU~~''bbYYAr!%"LL$K0d[GHH kk#;l+LL11llsxxbbxx>==G3`[["NNMJ@\\^^&&\\ddsu.00ekk''~~b%%Qb]]%%cj  $$00Qqq&[GGYYHC'``CyWe//||wvKGooa}vvYMJZZ^V\}dqqFFjjNuuBB00xxZ zzqqnnr%QQ]][[3KclljjS; ouQTT&&QeYC''!!88,S2vyW++S1&Dl<(('GGEEYjjZZ//fV}}qqF]Nhhee*Z!!&  qq rr   883KK;;lPP;@@|oHuuT((e<<Yxggjj8qq',PSSBB[[>><,4&&??'GGEM&Umm++<</ffxx,]  hhqq+***&wbb  BB8    8w``\\%PRhhYY@||BH@@( zzOnn<YYxOO..gg7b'XvLFb6F<cg99MM&&UU<+vY,,F ll$$++##**<<ww  B887 K  ``yy%%hjuUBG..``5zOOm..77bb_Xpd28==[CC++&&4L;s88`9MMK2xx<<{{~vvYaa($x#K<__r77vKK*??Cjuu**UU466HHww..`5YYVmPG&&__ZZpZWW``}}O-RR3@@h4..%%``22~II{b~a(##xffKK~_rrFKvoo*8?C...&k*MM--66wssoopYVVj33nnSRG]]&&5Woo%1DDdd05bbrr]d~__/bbQQ+@BYY#  xx4~~~AAFFKK..9&kk,,----}}s5_p\j|SS2N:==@@$$Ccyykk88?^^DG.cd++_//2yQ++&&@BB88 66~DA!toSS 99iinn-}5__\\ WWjjjj]]PP2N@@::_8  uC##ps=DjjFFUU22yy\\F&kYYh:UUSDffww!ttppSS==  &&3i((d3zz((II\j0DD]{{Z||__e$vG7fhhi00RR_dvv&PFVVkkNNhh:$$ffXX""<SSBBww_ph=tt&00..W(ZZjjW(Qd  33AA(9DD)\00% vvMMByyO\\ZZCCtt_ ~~-& ==>>MMMll8u&PP7!+ffLL"<<opBRR>>__RhtKKtR))WWZ#WQ(''YYTD))@$%  BDDoOMMbbPPCU  ~~--T-B$$/QQ;;wuuWcujjg771!!V++eooLjjpp>HRRd}}]K)kk#xff%%>'cYT@@@$$''33rDoobOOUU,~PP=4     `DimK]]wgg,,{1``V  VV\\coUUjjxZZ33HHUd]]>>i2ppkffZ%>c@Q'LL33rrgAAAG,,yyttbb JJDPPvv55y{kkd`VV\c||u xx993$$UUtt??>i22DVppFzzeZ##Jx!!QQ77I++}gBBAAnTT88Gqpp||tAAWcRR~"44zdyyK*d==|uu$$  ""95S++9$wwDVVUUFFzeeJ\xQQ!!ZZ+}} BNND8qppJJ>|ddww b>,::'tEbhK**66=Z$HH+955++7$$JJ^wli?ffQQuu\\nDQHHZZ#cc\\  kkV''DjjVVj>::@@^^OO!ssMM_P**eeYY_[ 6,,ZZH++  yF77Y9==EEJ^li??!!caadubbzzDD3P  #JJ\\zDDVV))-jwwYY,Vjj#Fjj==8:,,Uh0X;;I` i%%99GG-ff$$^% EE/  yyFY99||rE99cc==a&adPzzL==33mm 2JuuDDjj)--#8**uupY,99#<=88WWUIIGGEEuua(22uu^?IIG..'/  -*22|rrf9B"||rv&aa))PPFFooy=YYm2<<3A#88OOpptd9<<[[TT?99 DDIIO#RRQ%ouuC''&&--*]]ttf""YY|-->WW|  nrrvv{)II00oyIIpp33eAzOOXXlttWd..VV[W`HyM6b[4||&@#uu}}D)i""..Gmmtt]cc..OOMY||->>&goo nn$$Hp~>>,p&&ezz^^nlZZuW!!OW``^^HHLL   n@ww  .GGmmk]((hh  MM__SS  ggW!!ttqpp}f~p,55D  nn|ZuuWW:OOhhRYY--u2244ynU99^^d8ii~~uu466h J_  ]WW  z!tq/}ffmmpp5;dDQQ55%% xx|ooW:nhnn  llUULL:__@--2~yy+ii  ++uu445506oo$$JYYOOOzyww//==ffnn>>m  ;ddQQ++%OO~~{ii]ounnWW nP ))]Ud/b##bg^^K28+JJ66~11,,__  kk00  4ollNEOO..yy=jjTTff>>hyy z#O{UU][[uu=tZZ  Pp)YY]d//C5@@y'm55hF\\$H11N  qkkX 4lNTTT__QBIIb=xx55>nnhhzhzzYt#F/=ttZZ  &pxxYhhlllW  eeOO=//&[^~~Fee{ qqXXGGqqjjSTTT__TTGD+BIbb<x  gPIIzhhEE%Y  tppMMF//{{mNN  &&>zhVllww 0jjj(33KK.88YYMFmzzvv8GNNqqASS#11TGG{DD&seIIgPP  RR% ..ggl&&mm00' ::>>zz\VVl66dHuu  6YZHCC*II8--3N""`Annw{{U1,,KK~~Iss$ii=R2!!:^^gl88&&%0'  ((N:S0LL\\DDj|H;;kkSSQf\\AAww{i%ppTT5GG33PP\"``11an&ww^^155P5BB}=  <$NNii==yyO22::@@+KK6%##>>((NNSn00==PPv>..jjW22ccppk/PP@  \\_ 1PPRRaaRRY&&@RR--VJ:<kkXX2yOOkVV@++==KK66+>]]rOnnhhv`>..::NNYQ400],AApKR__zz  RZRYYffEE::YY.|;;Xjj]]v2kVv((===''33++HHrOOhhf``8833%RR  jY]]   \\0BBrpRD&z}}bbZppMMd/}m\M**33j==vQ%yyvvM(u'w3,,??22L3f\\ 3%%  7pp-%,dIIjj30D&+bba}}NNMMddfCo88Sll vv-=mWQ%%UU#MMrroouw66 ???`3^^LL300\\rr> !!iiPP3--#wwggNl0##/dd>4qa]]}H>D2bbp9R `W.-FFm  WW''::U##5555FF&$$^   `33^^nn vuuBB=>!EE]P::II-``ii 0,dv33H>%A4o]HHOO;;vQyHT] ]]:zz55GGF&&$$^0QQHt   rrevvpB==;ss""]"">::PP*vv <<< LHnf%Su<+@bYYggOfT--itVOO@WWQQX]]]FF%%K  zzGOO$((ss00ccH~tt  =ree%--IIppk;;88ssQ">>P*22C3*<<##44fS<<Nbbggr()VV''1qqxIIf>c%KKR||UGG_Os33@@~~UU||kku=44%%I((kk>>88##  *Q??911.2CCccIIwbbTD:{NN  rr"//M:(( `zz!%%`ShQQt{{>>xccUU_@@vvO:N22  kuu44BB<<>22QQ<<B **?99#..;;kT  4a2WMM   03H7||".;W6B4dd(+z4x  qqqc$$!^llIOww8:NN22lDD}Ghh QMB~~/ #;VVw  wva2nM{  c 00??5}};+ jjg  kCYYoj$vv[qq$!![eeGGlII@w88..88llee  }}Gh  MM MMSS//V--  ""   3 .''-555KK2[?3R9 R#TOTT3JJMMqv [CC 99[[`ehG'@OO;Qe  rr&~""`M  SVVcDD   .f'=N677++)$zzHQQ1HHhm@@Y .xx' 0C  99``phr''00h;55Q OOrrn&&~~QQD`ALLZZWcc44n 18ZZy~ Qp@@7{8 uVuu`)IIIm ;;dv["-SS*pp!!pp(}rFPPxxhhYY#5##*O-nFFQDDxAA""Lq>>ZW477nn<<   [yxxYh~m #'Qf71{%)'  CCPKUff 00H77 HH*p22!<< (}}FFxY#x**=}Fq/xCC8>7rrL<     [[VVBq)YYmUU2#7/c211e||`CZZfPaa  XXFhhn{{xxU$Lcvw3ttI<  HHpxxzz==xW}{{qqVV//||'C88p)wL400 DD\\BB!q  ++r^8=O8pq3ZffhhNd..~~6--FBYYWwWW>IH??+QpAA88`jj(xWWcc(%AA22OOG'ppCC#ww44>>'0DD??\\!!^^  crk(3e}q7NaasN\\a,--W- nvvOyE|(>+QQ}}````(()**(%22NGGCC11##i>'EED66[[yy)^jjuu+ .cS W\@@~ooGGzlNN~~fsv-STT+Nneiss7ONNl%%&}ll`)f*ZNuuyy  //OiiCCPEUU[)):ju,,  .KKFHHWW'z}llddggpfqq_^^  ++ >><@@Evj^57%*` 33MlvvV))77&&yy\l))bb::fMMZZ  u/OO*.CPPUUUU~~:TTjj##pHr[Gaa[,PP,,gpp__%%AAA~rrN;  >M@(IvVVQQ77$y\))  66MMEE ccM669*..BBc66wY  ~~T##/ H6ryP[;,<<#%`NNsP]]%//w22,>$$ZlldJJddX$\)]]++(66%%  MM$699ddO,,cccc6wwYY  nn;{{m// ! KK||PrrG;##VVn``Urrj(::kk=!!ffpQdXX8\\ ]!!=((rr66q%K/$$V99-O##J,zzUUdEE;;''mm AABB[Yp9NS P 22  jz_Vn::5UyyWW-Q.. cc>b+^!   +Q8  GB!==rqqGK//bbVV00 --"#JJwwUU]]EddCCEEcc7;'AA==R[OpNN# jvzzyy_HH/:55  y..+? kCaa+  y .5  d[,,MdTTPPGGB55GGb=OO  "QQE5C''55i7;;  SSOOaR!!EDDNMyZ/EE||))+  ,hgga9N z.+8tt  @i8 ))PPII''}}5ggx``gg..rObbAA=55))'5}}iinn; aaSpOaa%%/E  wNOO Z|,,{{|GGsT5V  ]72I'ww KK"gxx``gdrr$bOzz9A))22=e  ''8aanXX;Uap22[[/XX.?($R    __jp((*Ksh:@M%"77I  "iddz992jjee99Q88~~>XUUOO[[>//22?]] EE 4mm__j t[qtv44\Q -'B@]]RRNI}ii==N=LL49jjQKK@\\>>33NN>@@r2..YLLA2!!&& ZZEE%400  m}..uua4K,ohv{{`$?]YDP 3H-0F22c]NNp}}U>1122EE!!N==IIKKU44++ojaaCK@@^^\\AANNaa@rrMM..[ A&dssL%% .affwZ=""BUiRDPTc*$0`rp>>SSc277FF\\9!PPIIWKUU#yy+ooCHHJJ--A M[[    ,7M>ddTsLL[~~PP-- 2waaZ'$((,&2DST*`r]Sc@@1F77YYFFP9W#  5EE99 -ii8  k{{!j >>{{TTgEE[[||@@[[AA-nn/$=H4/,"@DEE!,,u]]xx11ZZ<YFPP 55iEE''<9   ;88kk%A{{QQS""YY((.gg[EBBr@ppBBHvvin//{{[) #2<!!`mIO<e1A3<jkx2<<!!,myy88""i<<} ;; %AASS::H>>DD*(.IIP[.BrSSyBBBHH8&i{ dp2G\`4I''$$Sj!,hl=x2!,,--mm8,"}}  4 :HH??>1*6xPP.77SyyBBWDD8&&f !uu(<H`9Y4"bT,lG=X`xJ`kkTT-ii%",ll$$44F VVW?qq6xx99bbUUvD GGggf~<KK94~b>h2X`nJ`0Tu%%""gFF!hhllFF::!!#WWZ33R9??//CCv XYYgg~rbb~81V~eBaQ2N -${'00*HHug((aaS!TTh22:!^^//o##..,ZZ13RRjj?vJ/++XXwY~hhv;:MkT/Q Se*;Q{B _e**ML%%aSSYT{{66 2>>  ^^R/oohh::c,0011Q''JJ%%+{{wwq//''o`MTw^'A\?;1qTvveemm MMUL%dYbb))6   000  WRR%%hhCCH:ccee}}0  Q..TT9%{{00q[[/!o``((;\i?9],hzZQUKKWW!ddMM))?E MM~~)W^^9%CH??)eeLL00@@8.9955Ov[rr !!='' .pzHBARboYD9B\\*zxxkkM44<W!!M||--?__Y EE  MM~))99JJ>##?))rioxarray-0.18.2/test/test_data/compare/MODIS_ARRAY_INTERPOLATE_FILLED.nc000066400000000000000000002652711474250745200252460ustar00rootroot00000000000000HDF  j`OHDR " D __NCProperties7version=1|netcdflibversion=4.6.1|hdf5libversion=1.10.1EXx7ɆOHDR < ?@4 4 @ 0CLASSDIMENSION_SCALE "NAMEy 4 _Netcdf4Dimid  P _FillValue ?@4 4 B long_namey coordinate of projection ?standard_nameprojection_y_coordinate !unitsm=OHDR  ?@4 4 k@ 0CLASSDIMENSION_SCALE "NAMExZumMOCHKw,;OCHK 4 _Netcdf4Dimid  B long_namex coordinate of projection 7z2ʻ 2CSA HhCSAN^.CSA͈tBSABSABSA6FBSAop BSAXASAAASA* _ASAX#%ASA9@SAO@SAew@SA?{=@SAy@SA?SAo뽏?SAX'U?SA@a?SA)>SA>SA+n>SAHA4>SÂW=SAm=SAۃ=SA0ڙL=SAnjد=SAWU'5SA'4SAɖݳ4SAy4SA< @4SAv4SA53SAK3SA$aX3SAl^w3SAU2SA>҆2SA' p2SAF62SA1SA1SA}1SA-|'O1SAgz=1SAxS0SAlvi0SAUug0SA=Os-0SA&q/SAo/SAm/SA6lE/SApj /SAh.SAf/.SAeE^.SAlXc[$.SATaq-SA=_-SA&^v-SA@\<-SAyZ-SAX,SAV,SA'U U,SAaS!,SAQ7+SAkOM+SATNcm+SA)d)SAkR[u[osʻ[W$rꐻ[@^pW[(n[l,[ kB[EiXo[gn5[e[c[-b[lg`M[T^[=\ٸ[%[[OYf[W4,[UJ[S`[6Rv~[pPD[N [iLж[QKΖ[:XI\["G"[ E[D&[?Bh[<~Ǵ[}';[fa9S[N7[75߳[4쥳[I2l[02[ټ..[,D[0+Z[j)pJ[z'[c%ֱ[K$[4R"b[ ([[ [9 {[s6A[L[bͯ[x!x[`[Y[H[1[ Ы[C q[| 7[Ӷ[(ĭ[*>[dTP[tj[]ܬ[F[.Lh[.[[[3[mG[/ [EӪ[r[[ZUq_[B%[+[泱[VV*<NNtHHaT443j**%%,]1K  JJTxv!P(((+66""+-CssVV==,66,nn=11  {O0u*;-9zkivjmmGC,uu ::}+k33tHaak3hnn00 ,e__mPTT~~`Hv\H!(688y3-..]sL**6n}{nnT=OuulK;--JJnn``0))??iij^vB,*&&77gHHjf>k1AtFF\khhUU l66e_mWWeePBBBB`H\HHnny:3.]_*W^}ookf\\))T==zzKKHJ  ``00))?J  "^    5&x|[=ZZ'pPA..\\\KKHHQAAiRl6 eBB92XX n22:HiidD_WW^^X77okff)FF  ));;ppzz(77__AZV** )Y*-<<f:luBJ[`KoP6bjFKK  8yy AJJiRR^^gg  YY2 9#22F eemHIdDDV""XssHHM Fhh7VVAA$$Z;;CZyyyKPfQQz`%33Fh55`8 HHI AAgccDD22  'FCCuum{{[IIy}V,WHMMPPpFFSSYY:VF;C88XrrZH2% T9+Tz. yGjVhBHgI44KK Abb  \\-D||'66u11  [}}vvWW!WWbbRccpp%]AAY:*F~8Xii62EEyaa-Q%eTPgmynnSP@<ggSSK   4\-##U%LL{{vv.  &nn%ZZp**E~LL]]66S22EEwyy$-O^Wgxr00)!c@/bCI9LL<<  4--#DDLfo  l%%;;G\\A   PP556&,//4~~S   p99EE+ ]SSYv$""^^gIIg7H"//w;I_>9aeJ``''DDN88#2?l((ee)'ffGEE.A <<P)6$$,4]SEE  u?dd%  ZZvvGdCI{u|T/!bHH2==:)_ioRSS`bUDNN%%? 115)AAMf(((.||sUUZZ&&")' \]]jj88??vvd%88Z,RR~xGbb=]:XGi4I+rrbUU..xxllJ5 ?M*((0ss<UUZ  ZNE"''+@@\\pyjFFggAA"1&&8,,'~xxbmmjK<dZ|A2,4!I.H   .''RR>>G'<<iE ??!d*kk00<UUgMVV= p+NEE  ++  @jjiiyyqg71UU::  9''ja||  VZZMMc\Pdz`\ErR ;ZH&11! jjR#>ddFEEn!ddF22wgMM6=ggZZ++]G    peeiqq##D7U33`-9jaajj??GG1ZTTc[DCC\rY/x uO90'CbL&=!!  jjCC#UFF~~dvFFppww__66Z//__GG. KQQ;""8  #44D""3e6`--  @CCGGG1vv~=C]lbF5-;rru(A LL^=R;    ghm'vvzz__EEa_V!..  \^^8<  <"88BB4\166<G    jjLBB3C((8Ijjv~~lb^^ZCYRH "':LT??"ee_`cxx_<<#ttlz??Eaa?ZZb!33/ \rr^8< <00\11MMIGGSS@LB38IIkhh^H_Z( 68:%T?#nR9b,bbY.WW_``3L66 P;Em7 /88|\?   !?ZbD/<<F=0''22jj@|VVk??JJS~6~dRP,gY&..==I_X\kZR  X|QQH\  !BBAD555FFt=/'GG@ll_2j  l||#J55jV&?''RRS ce><+~u|Lt  &&  II??EJZZ33HXjjGs}}NHH9++3A<<.555}tq/ Gdd@..V_blQQ~#JJjz<R .gkarSZ/TB+S#LuKKb*>>YY,?&g%IT)H   <6FFC$N89 +33] .((qB33ccdyVb~!!zz-<qnMM.YH"a6ZB//]T5``V#QQ,r|->>3VV*..QQ"ooc|66Tpp9DDEE..8N} pp]]"2  33hhc00WWyy]$$TJJbbUh--_Wqnn00PP"Sd1:%bg::HH88&&8#WQ#r  `|r))Q  (([[Z>''%FQ  :J"66ww}}pAAKK22z  hRRO0((W]]TT@{{J UPh_WWMAS1))VV3$$11@@zu@#T2#+|``)WW%%*Chh$.w22NHHw$ff==zz>>\;;== eOA(W{{[[O@@T QQPddczz33zzMdAA(qKK#uan22QQ||Wlll}Jt^VYDDcmUUAG=;9[   ^^z"`\__%;  ceAWW {++ ppr@4ffQ  daazz53zzzd44N$$ / kr7**OO'}BB?-GcL0FP<!6JG1111^`rrS% cc33nn  uu||Y "pr44 @44]qqMMVV]]55d4NN||$$GlY/B/]?9De&& ^(MMJrSSL ccynn|Y.."*` ]J]||TddH << << vB`/]]GsCCD7 TT$JJfLL}  wwzzLL RR@LL~yF{*``  MM !TH33; lN/==xxhAA``rrGi99lG6<D(('JfDD}}2KK{{  RRR@~yAA'F& WW{{ee   FFllY!!  0zH=.aCKK..A\\UUPP<55Tmm$.tt22aa99QQ uu{66CUURR`A'DD&  ^^::g klYY* NNq$$KKAVrsW))&&!!0UvYYlg]]LLGJXXBB^Q u##f6CCc|sR``0\$$GG^??3P00kg  vkooZqqee  GGtD4u-^qq3{{rr_fv||zUUYVV fz<<l28:s{z;Z^^<<YY}#fnnc||Ks\\}0\\&G''TTZ``z||v3fP1_k%%vvQQ|WW  ,ZZSceG--cc^Si166UU&&P2- f?|z8}}V1G::|J~KF;GZuuc<Y}}knKK}}rvveZZddzPP*vhh ff31__  zW D,__cc%-22^YC7VVTTggE`82O.@?DD88}7&\996 VjK9G  cOO<ck[[//vvuuFFT,P**N mm``33 885zDD__""m%LL ^ii7Qss@@00ffq-tt5K.@@g+M}77  _VNN YIyHi<cc\uBB%%##mmOOubbFT0b,N33``^[[|8f5KKOd""EmUU1L  RPP778"JJsKK  KKG:g++MM0fQ))RxX( 1>Jjjdja)2\uu::!yynn##DD'',0bb--TT||]]c<"Od,,++[EE1  !!))u%UU((Jf7-  ::rrxHHQq> }  $0&0077Uu8a?2:aayy**D  g55,,M$$--T Q]cmm`<"" ,,?X[[!!9uuU11  33MMZZ4r3KKHl}}ITQQ&#77))xz$12EE]a8BBeKKgjLLojj Qm``(-  VVdX[[F\\lrC44??Z4Kl<llzh,,3.M~}}y;;]um88ebKKjpj  Fg--VQQT ]ddK\lVVVV rrm** ?ZZC  <PP$RtrBBhhv;CE8bwwY44QQBBFgg&KKT  D;]gg@@OyyVj aa(( m PP##gg CC;//qq$$ tKV:(3;C7YllD4EE11c%%4K[D;;@@mIIOO4jaaAA(   !77F`} w!@;;$uK UqkjNNgbbyy!DkkvE7c<<eR%SSU4[[,AA++{I4ookkt !!uF"FF|}}99w@@>>88NN7799=5pp0>sG10aaP C`ldhh+**[[y!!3v>>G7ejjRR**   U!,,))ss+{  ,,ktt5uuFFCC99_9IIVvvS--((7x<<5XXV'';m0\sPGT~~}:rdl~wC*444RR@23Gmmf^^mkk"!!))7BB66 SS,50>>>>55&%%NOOEv6SSg(//\mmoXV??;mmz\ gg888 jjL} R@uu_n22@  ffUNNCC^""xmik i}}""ss--  ::lB    GG1133((1::>>FFR5&&KZNNuOEDDSSdg\2o%%?,;z >>??sh#Fyu__$n@@`` NNC''0xYYri ii--.:l' ::GG;; 31PP::.FR{{K/uD""dd22  ;;lBB777ss,];/ h$$CCzzW5h'001ar&99PSk.ff!':II 44s((&&PPC{XDD22=]"{{G  #SSBB7wxYZj``F`VPa]LJv..-L@ccWW5555Yh111aaKH&22BB99PPpp6kk!!RR!II94s(DD%%WWC44=XX;; 2=uuY])5NGGj"">>--MS#SSJ[[wKHWy|A^P:8-R@F5YY5KHH**22,,\\iip6OO@}}HR!SSm9%*  vv4W94==N$$ Ycc),5NN7>>r-MSJJ"=!!oQmHII&y=A^] -&;F35**tt,,ZOBwwHSmmI--vv& v4))r944$$at77frII"==k(QQPkk#L,,%S5;clN<;yeeo3CClt 9Zxxp{""^QQnnv&rraCC;;ww4~~ff%3o$$]k((GGPP|* 58Y;c`<(f;yy>o]]kkll99rbp{{}}E9^^nn\\*h&&ssC7;;jj$44_~OO%33o==]]KK  GG||ppx)o$`3oo7f+<[>>R5rbb"CCSS92UU{**66c\))hsxx&jd$__OLJJPPKK //Y {8Sx$8a>oE3o7%[LWyyIR55'7">S&  0022x{{AA6cE\A[[x&==_LL>>J~ HH/Y  zz|8ic,WaVaueTZ~W$ILLPP77ff>>$ <nwxMBBEE:PAAU=SkQQ^ >>JJ11~zW||v*Wm>39uf#eyUR~#MP]]]]~~Q$<nnwwMMPPAU|Skk   !01mmhzzP,W<<zz>>Z ##UowXR::EM|MMs{__]]QQ__8''GGO 1AAPPm99999 (  nn!440thuP,,t>*Z T%7xoEw^dE{s{{22##QQ9_GOO   & 11Pmmc911k9k9 $a((!  O  }4tt\u;;\ttSSwwa%Z#;LoWK!^b:c 99__ ;&  IITcckk11kS$aaAA   Ozz}}<\\''tt6SSSD7Qa__FFLW<sD:c  !!11KK%;;?{{ \wTTt??21iS/  z  b<&&xx'6  TD`7QQFT&s%p(\,,!!00c!! +%CC{jjs \wwttyy2iXX5I @b!!xx>> <*TT```Tl*B<F(E6u\TTKK! ++..ANNisRAANYX##~~eIt"~~@!bb@@DDtt  H<**00RR PP--F=- K ccKUUAVV>NiiWAADDYY00q~etk""`@!!--bDDCC*HGG55  }} ZZ4y_}@-=4J>jjCWWAAGG 0{{sk ``++.^^qC **55ZZ" ((Z a(p`|a%%> M=//qqCCI G    w{ss||kk|``xq  XX22Z"k)ZZ==  ZZ 4: ~F`   \\~~CCi88yLLq    3w@a|*`xc_k))200  4l@ '  7B ==CN LL_3~~aF*==<<cPbb E_DDG2 l@@TAC<<nNnt!UU **5@@6<<egg=K_llFF(Pb eeEEG66WW--\77AA|TyyI99?]<44 Z@U6>>]eeggN=   KPP3lG((00e>>W\\N7+|iimm&&ZY?({}||XsT<}} ZZVjjUUVV]]U>NNZZB   HP$33GGs[[&&K>QQ[[t+Nmm++m9!7[ ee44vX};ssjbbrV>>>>**ZBtt4H**n$ lrr&#7KyyutZOO4411P##77 nnmII}  ;sSSCrK>>~nnt44*Ln ll11r#!77ff+TTddsu44uZj]RRmmC4eeRRP==t99mhW33RUU    &jjSCCwKkk//rrgnBBJJQ QQ  ''!!66kk++dsspu''jjp@RRvCKKUR99k{9kgg &&>XXjwll>>rg((ssQ&&ggQ22``cc  S =HH66kpW44@@""qvU  ;@@2B__  ]]kWWjjkkl\\kk (**  $`--N""@?S==[[ .nnzJ!zzeWWqq _]SS;112dd$%%J{  n&ll=55]OOZW&&qqk yy$$-VN" @??<<  //inUzJ!!ee ssrraa __]]jfY16  %ee}[r+dooKKqTT  33$$<  ^88>></iPUj77rvv OO<<fY666##yyJf11U!!;  ~$0xxllRDDv3)g$<^^88>MM{,,4PF@j||(7%JJvJ 88OODww00''kM>WYPQAAh$hRREEVVG$vTT3 UUjg*yJ}{,44]F@@||((II**J!!JJ1166&&D  Y'33<DHH{{MMrr@k99HxzzHHehEEbbGG00^$${{>> j2LL44**py'J}}__YY__I  !11__&rrYY=II//W3``ccMzzAAY(_Idb[[m0^FF>``R}}4X<<p$''g&&KKY99 *zOO<ppbbGGddB((==hh%x! 99\\  RR05w_7di11mkF>>`ooGvvI0m&ooC$$eMMOOSK9II**zzGGjjpRggGG1dB2ddhS!* }((>>A993@DD2kkc}}nn55oGGImD&&CTTee  /MkROSMM**wwxj-  RR1m22QQ55RKzzp!ccIIGdIY"<ssfy}}^^5`AAIIz&@&_//ss RS;M77wwxd-##L UU%m))qqNFRROq8aaOOrr!< SE>1f^5&&N``ggnGG  ww??#7yyABs2  };;Eoo-ddULuuXX_%%_9||qNN`FFIIt>t0    a55NEEn#RFYT7$$qyA%Bwwl2}Knnl""PP-(U__v_9IIR``zxxKKBB++DDp==Lodd**EEdxRRdgfDQs#>$&qpp %%qlHKKCY"JJP((//  WWLRLLOOGGzx||B\\PP]ONz~#0099k  dd{t[]naUgjD_ P6F>7Qp qHH<<<<YCC!!/MMEEyy]LLrrLLGz 33u66  .,n~..\> M~T WW@er]O$@.<6y_mP@@$QhOO</XX'iiUMXyJJ]ddNr   >>bb22=T!&!!Xo>nMKKsTRRW~r]++XqqZ:=$(hhrr((3XPT'AAUXX##paJzdNN  kkMYYESS ?} 80(yacogr*ww77//~~rBhRR1 B(WW (3PTT~~eA__JJCQQ::pp#ppazzSSa~~Y) 5 ]]T<BB+))$zyN|TOJrPPInzz{m.ee4f9W++  ..bba~??eejJ|}C99Q +pk  {{s~)aaMX:e   8HK88FS[e77YB9  Pn22:J f9q+t.+aa9jjyy}}II2 +xOOAAkkyyR  {s8PP.M:__ ,,`1K<[hd^  )W  ")02**xx4^3!trrD+xxB||mzzRyQQ::22uuzJxx###ATTXyaR    jj}88}88..88VM'ImB\]  %%]tYs/B~~WVn 22>e*JJ^X^~;+RRz}}gkbN gxxDD""||wwm;;GR8QM:  uuzJJ##wwXwwaa}}cc\\38  8VV}A' \Uc\][Y@@h%#L=WVAkp  eebb'9b^??-eR}kk,NgYkxDDL" (;GGB8HHMM   &&VYY'w844D\3AA}AA##FFm#SS6EE&*(/fE#DP=+Vff Q##''GGeD#{U&,FknnLLJJG((B__BB!!i  * &OOCCY['88x;;LLdssDDq990/66(nnsB>O# xqtRRX-!% u&$ v*F t_inJGBppii3*CCCm;;LddZjjIsyyUU[[MbhTT "1SS7s.BVVRD ,,A"%u3n9??n i,,upiiJJ63dxxJ88xCmm  *ZZjj;;I~jU..[[$$AAM((y9 ---.S3T::*-?Senn=HUEPR4DDA::l rY!oBduu0053bdxxZZJJJxxppII  5**]}hh  ~~paj00A--((^^(y%bq*?vvknNaXWW'CCn:00? av2hs// lldFtt3AAbbaaHuu~~I ++ 55}}ff  __5CCEpaa??..(8%%Q[b;;jcyh CnAAdB0KwG88@v]=D33ffMdddnF,t,_A##aBHH??9~||**+  DD  5CEEbb??""IIII.8xxQ1(*}@yyw HH<22-ddKG#;[@h=Luu qqnn3Y,%%__YY #BB9?99|  dd.."LLIYO8VV>>v1 *YY\\Bz%,}r\22ww62 g-==KKg;U[>*= wwn6  $3YY;;}}  {AA99 VVrHHdd.77..EEu~~sZZOOee88$ Vvv[[d!ChD\!!BLLD>>w6O gg^::EP*><DD??ku99.q$$VrrJJXX {)) vvQr??}UHAAnn7W*nnVu  c~ssHHe$  [dd:++ bpA&DzMMOOoo^^ E*22vviik``,*rrNNJ>>WW DDrrXX  vQQUUeA99nbbWW{{nn//2VV cGGHBB@@8833:qiAhqqoo44  ..7e ddFj,,H2 K::\\tWD,,rr QIIeVVIbee{{/2aa;;+  pSS83DDIdD hooKK04``((f]mm33 ]] tZZ\,paaRQQ zzYYxVIIa ;;hii++ppS##-DDIDqv:oqK0  ||&ffll${{ooe2aad=oo  nn\\ccaQRmzxUUBII iiwpp@@DD}#-mm  xkk9P088q%% Zx44&&eennff$SSe8QTrjjJ33  &&nnLcxQmmFBBll(U,,wwZZ!'']]}m||  HHko9P8GZxxo4LL77nW%%])1/Y8`DD  VVhhYYU&-&&LxxyFaaMM;;ljj((,ppZZzG!]]''C]^|--..OO',px9G}<pp(WW']``UUbDZncWkxx7<<D&pFF6yrMMS;<guujj.gg]]~GG'CBB``^^.}}%O''2U993wwii%pd(''tt >>".wGGh6pp++pp))66srrooS4<<ggH!!22/.ggTT~vvP``66%XX2UUtHKKgss[[i%:ddqDDttnnr}[s{#Q<{Dkk22#xx,,,,>>)\ssoo4!!2//O hP__t6ttq{{sa::lq__cc%866nrrLIIaa~~.UUJ{{  1,s>11  \\xx'LMO  hh **FFmmxtccJqeel55%%NNx6&&JJ  ''~}}^)MMCC  e\ svv# ..,,KKTTg'',ggMM__   m77xx;cJJwOfeeuXXSSooNxZZMff/\\uu)OF8MM00hhYY#CC,,jjKeegSS,nn99  ];;U''{{wOOAb!!"LuuXPPdoKKZMM^fcc \Y@@  bbP  "e;;N@@\nn,,&9 ==s.]]eekU~~''bbYYAr!%"LL$K0d[GHH kk#;l+LL11llsxxbbxx>==G3`[["NNMJ@\\^^&&\\ddsu.00ekk''~~b%%Qb]]%%cj  $$00Qqq&[GGYYHC'``CyWe//||wvKGooa}vvYMJZZ^V\}dqqFFjjNuuBB00xxZ zzqqnnr%QQ]][[3KclljjS; ouQTT&&QeYC''!!88,S2vyW++S1&Dl<(('GGEEYjjZZ//fV}}qqF]Nhhee*Z!!&  qq rr   883KK;;lPP;@@|oHuuT((e<<Yxggjj8qq',PSSBB[[>><,4&&??'GGEM&Umm++<</ffxx,]  hhqq+***&wbb  BB8    8w``\\%PRhhYY@||BH@@( zzOnn<YYxOO..gg7b'XvLFb6F<cg99MM&&UU<+vY,,F ll$$++##**<<ww  B887 K  ``yy%%hjuUBG..``5zOOm..77bb_Xpd28==[CC++&&4L;s88`9MMK2xx<<{{~vvYaa($x#K<__r77vKK*??Cjuu**UU466HHww..`5YYVmPG&&__ZZpZWW``}}O-RR3@@h4..%%``22~II{b~a(##xffKK~_rrFKvoo*8?C...&k*MM--66wssoopYVVj33nnSRG]]&&5Woo%1DDdd05bbrr]d~__/bbQQ+@BYY#  xx4~~~AAFFKK..9&kk,,----}}s5_p\j|SS2N:==@@$$Ccyykk88?^^DG.cd++_//2yQ++&&@BB88 66~DA!toSS 99iinn-}5__\\ WWjjjj]]PP2N@@::_8  uC##ps=DjjFFUU22yy\\F&kYYh:UUSDffww!ttppSS==  &&3i((d3zz((II\j0DD]{{Z||__e$vG7fhhi00RR_dvv&PFVVkkNNhh:$$ffXX""<SSBBww_ph=tt&00..W(ZZjjW(Qd  33AA(9DD)\00% vvMMByyO\\ZZCCtt_ ~~-& ==>>MMMll8u&PP7!+ffLL"<<opBRR>>__RhtKKtR))WWZ#WQ(''YYTD))@$%  BDDoOMMbbPPCU  ~~--T-B$$/QQ;;wuuWcujjg771!!V++eooLjjpp>HRRd}}]K)kk#xff%%>'cYT@@@$$''33rDoobOOUU,~PP=4     `DimK]]wgg,,{1``V  VV\\coUUjjxZZ33HHUd]]>>i2ppkffZ%>c@Q'LL33rrgAAAG,,yyttbb JJDPPvv55y{kkd`VV\c||u xx993$$UUtt??>i22DVppFzzeZ##Jx!!QQ77I++}gBBAAnTT88Gqpp||tAAWcRR~"44zdyyK*d==|uu$$  ""95S++9$wwDVVUUFFzeeJ\xQQ!!ZZ+}} BNND8qppJJ>|ddww b>,::'tEbhK**66=Z$HH+955++7$$JJ^wli?ffQQuu\\nDQHHZZ#cc\\  kkV''DjjVVj>::@@^^OO!ssMM_P**eeYY_[ 6,,ZZH++  yF77Y9==EEJ^li??!!caadubbzzDD3P  #JJ\\zDDVV))-jwwYY,Vjj#Fjj==8:,,Uh0X;;I` i%%99GG-ff$$^% EE/  yyFY99||rE99cc==a&adPzzL==33mm 2JuuDDjj)--#8**uupY,99#<=88WWUIIGGEEuua(22uu^?IIG..'/  -*22|rrf9B"||rv&aa))PPFFooy=YYm2<<3A#88OOpptd9<<[[TT?99 DDIIO#RRQ%ouuC''&&--*]]ttf""YY|-->WW|  nrrvv{)II00oyIIpp33eAzOOXXlttWd..VV[W`HyM6b[4||&@#uu}}D)i""..Gmmtt]cc..OOMY||->>&goo nn$$Hp~>>,p&&ezz^^nlZZuW!!OW``^^HHLL   n@ww  .GGmmk]((hh  MM__SS  ggW!!ttqpp}f~p,55D  nn|ZuuWW:OOhhRYY--u2244ynU99^^d8ii~~uu466h J_  ]WW  z!tq/}ffmmpp5;dDQQ55%% xx|ooW:nhnn  llUULL:__@--2~yy+ii  ++uu445506oo$$JYYOOOzyww//==ffnn>>m  ;ddQQ++%OO~~{ii]ounnWW nP ))]Ud/b##bg^^K28+JJ66~11,,__  kk00  4ollNEOO..yy=jjTTff>>hyy z#O{UU][[uu=tZZ  Pp)YY]d//C5@@y'm55hF\\$H11N  qkkX 4lNTTT__QBIIb=xx55>nnhhzhzzYt#F/=ttZZ  &pxxYhhlllW  eeOO=//&[^~~Fee{ qqXXGGqqjjSTTT__TTGD+BIbb<x  gPIIzhhEE%Y  tppMMF//{{mNN  &&>zhVllww 0jjj(33KK.88YYMFmzzvv8GNNqqASS#11TGG{DD&seIIgPP  RR% ..ggl&&mm00' ::>>zz\VVl66dHuu  6YZHCC*II8--3N""`Annw{{U1,,KK~~Iss$ii=R2!!:^^gl88&&%0'  ((N:S0LL\\DDj|H;;kkSSQf\\AAww{i%ppTT5GG33PP\"``11an&ww^^155P5BB}=  <$NNii==yyO22::@@+KK6%##>>((NNSn00==PPv>..jjW22ccppk/PP@  \\_ 1PPRRaaRRY&&@RR--VJ:<kkXX2yOOkVV@++==KK66+>]]rOnnhhv`>..::NNYQ400],AApKR__zz  RZRYYffEE::YY.|;;Xjj]]v2kVv((===''33++HHrOOhhf``8833%RR  jY]]   \\0BBrpRD&z}}bbZppMMd/}m\M**33j==vQ%yyvvM(u'w3,,??22L3f\\ 3%%  7pp-%,dIIjj30D&+bba}}NNMMddfCo88Sll vv-=mWQ%%UU#MMrroouw66 ???`3^^LL300\\rr> !!iiPP3--#wwggNl0##/dd>4qa]]}H>D2bbp9R `W.-FFm  WW''::U##5555FF&$$^   `33^^nn vuuBB=>!EE]P::II-``ii 0,dv33H>%A4o]HHOO;;vQyHT] ]]:zz55GGF&&$$^0QQHt   rrevvpB==;ss""]"">::PP*vv <<< LHnf%Su<+@bYYggOfT--itVOO@WWQQX]]]FF%%K  zzGOO$((ss00ccH~tt  =ree%--IIppk;;88ssQ">>P*22C3*<<##44fS<<Nbbggr()VV''1qqxIIf>c%KKR||UGG_Os33@@~~UU||kku=44%%I((kk>>88##  *Q??911.2CCccIIwbbTD:{NN  rr"//M:(( `zz!%%`ShQQt{{>>xccUU_@@vvO:N22  kuu44BB<<>22QQ<<B **?99#..;;kT  4a2WMM   03H7||".;W6B4dd(+z4x  qqqc$$!^llIOww8:NN22lDD}Ghh QMB~~/ #;VVw  wva2nM{  c 00??5}};+ jjg  kCYYoj$vv[qq$!![eeGGlII@w88..88llee  }}Gh  MM MMSS//V--  ""   3 .''-555KK2[?3R9 R#TOTT3JJMMqv [CC 99[[`ehG'@OO;Qe  rr&~""`M  SVVcDD   .f'=N677++)$zzHQQ1HHhm@@Y .xx' 0C  99``phr''00h;55Q OOrrn&&~~QQD`ALLZZWcc44n 18ZZy~ Qp@@7{8 uVuu`)IIIm ;;dv["-SS*pp!!pp(}rFPPxxhhYY#5##*O-nFFQDDxAA""Lq>>ZW477nn<<   [yxxYh~m #'Qf71{%)'  CCPKUff 00H77 HH*p22!<< (}}FFxY#x**=}Fq/xCC8>7rrL<     [[VVBq)YYmUU2#7/c211e||`CZZfPaa  XXFhhn{{xxU$Lcvw3ttI<  HHpxxzz==xW}{{qqVV//||'C88p)wL400 DD\\BB!q  ++r^8=O8pq3ZffhhNd..~~6--FBYYWwWW>IH??+QpAA88`jj(xWWcc(%AA22OOG'ppCC#ww44>>'0DD??\\!!^^  crk(3e}q7NaasN\\a,--W- nvvOyE|(>+QQ}}````(()**(%22NGGCC11##i>'EED66[[yy)^jjuu+ .cS W\@@~ooGGzlNN~~fsv-STT+Nneiss7ONNl%%&}ll`)f*ZNuuyy  //OiiCCPEUU[)):ju,,  .KKFHHWW'z}llddggpfqq_^^  ++ >><@@Evj^57%*` 33MlvvV))77&&yy\l))bb::fMMZZ  u/OO*.CPPUUUU~~:TTjj##pHr[Gaa[,PP,,gpp__%%AAA~rrN;  >M@(IvVVQQ77$y\))  66MMEE ccM669*..BBc66wY  ~~T##/ H6ryP[;,<<#%`NNsP]]%//w22,>$$ZlldJJddX$\)]]++(66%%  MM$699ddO,,cccc6wwYY  nn;{{m// ! KK||PrrG;##VVn``Urrj(::kk=!!ffpQdXX8\\ ]!!=((rr66q%K/$$V99-O##J,zzUUdEE;;''mm AABB[Yp9NS P 22  jz_Vn::5UyyWW-Q.. cc>b+^!   +Q8  GB!==rqqGK//bbVV00 --"#JJwwUU]]EddCCEEcc7;'AA==R[OpNN# jvzzyy_HH/:55  y..+? kCaa+  y .5  d[,,MdTTPPGGB55GGb=OO  "QQE5C''55i7;;  SSOOaR!!EDDNMyZ/EE||))+  ,hgga9N z.+8tt  @i8 ))PPII''}}5ggx``gg..rObbAA=55))'5}}iinn; aaSpOaa%%/E  wNOO Z|,,{{|GGsT5V  ]72I'ww KK"gxx``gdrr$bOzz9A))22=e  ''8aanXX;Uap22[[/XX.?($R    __jp((*Ksh:@M%"77I  "iddz992jjee99Q88~~>XUUOO[[>//22?]] EE 4mm__j t[qtv44\Q -'B@]]RRNI}ii==N=LL49jjQKK@\\>>33NN>@@r2..YLLA2!!&& ZZEE%400  m}..uua4K,ohv{{`$?]YDP 3H-0F22c]NNp}}U>1122EE!!N==IIKKU44++ojaaCK@@^^\\AANNaa@rrMM..[ A&dssL%% .affwZ=""BUiRDPTc*$0`rp>>SSc277FF\\9!PPIIWKUU#yy+ooCHHJJ--A M[[    ,7M>ddTsLL[~~PP-- 2waaZ'$((,&2DST*`r]Sc@@1F77YYFFP9W#  5EE99 -ii8  k{{!j >>{{TTgEE[[||@@[[AA-nn/$=H4/,"@DEE!,,u]]xx11ZZ<YFPP 55iEE''<9   ;88kk%A{{QQS""YY((.gg[EBBr@ppBBHvvin//{{[) #2<!!`mIO<e1A3<jkx2<<!!,myy88""i<<} ;; %AASS::H>>DD*(.IIP[.BrSSyBBBHH8&i{ dp2G\`4I''$$Sj!,hl=x2!,,--mm8,"}}  4 :HH??>1*6xPP.77SyyBBWDD8&&f !uu(<H`9Y4"bT,lG=X`xJ`kkTT-ii%",ll$$44F VVW?qq6xx99bbUUvD GGggf~<KK94~b>h2X`nJ`0Tu%%""gFF!hhllFF::!!#WWZ33R9??//CCv XYYgg~rbb~81V~eBaQ2N -${'00*HHug((aaS!TTh22:!^^//o##..,ZZ13RRjj?vJ/++XXwY~hhv;:MkT/Q Se*;Q{B _e**ML%%aSSYT{{66 2>>  ^^R/oohh::c,0011Q''JJ%%+{{wwq//''o`MTw^'A\?;1qTvveemm MMUL%dYbb))6   000  WRR%%hhCCH:ccee}}0  Q..TT9%{{00q[[/!o``((;\i?9],hzZQUKKWW!ddMM))?E MM~~)W^^9%CH??)eeLL00@@8.9955Ov[rr !!='' .pzHBARboYD9B\\*zxxkkM44<W!!M||--?__Y EE  MM~))99JJ>##?))rioxarray-0.18.2/test/test_data/compare/MODIS_ARRAY_INTERPOLATE_NAN.nc000066400000000000000000005214711474250745200247200ustar00rootroot00000000000000HDF  9`OHDR " D __NCProperties7version=1|netcdflibversion=4.6.1|hdf5libversion=1.10.1EXx7ɆOHDR < ?@4 4+ @ 0CLASSDIMENSION_SCALE "NAMEy 4 _Netcdf4Dimid  P _FillValue ?@4 4 B long_namey coordinate of projection ?standard_nameprojection_y_coordinate !unitsmv/OHDR  ?@4 4 k@ 0CLASSDIMENSION_SCALE "NAMExZumMOCHKw,;OCHK 4 _Netcdf4Dimid  B long_namex coordinate of projection 7z2ʻ 2CSA HhCSAN^.CSA͈tBSABSABSA6FBSAop BSAXASAAASA* _ASAX#%ASA9@SAO@SAew@SA?{=@SAy@SA?SAo뽏?SAX'U?SA@a?SA)>SA>SA+n>SAHA4>SÂW=SAm=SAۃ=SA0ڙL=SAnjد=SAWU'5SA'4SAɖݳ4SAy4SA< @4SAv4SA53SAK3SA$aX3SAl^w3SAU2SA>҆2SA' p2SAF62SA1SA1SA}1SA-|'O1SAgz=1SAxS0SAlvi0SAUug0SA=Os-0SA&q/SAo/SAm/SA6lE/SApj /SAh.SAf/.SAeE^.SAlXc[$.SATaq-SA=_-SA&^v-SA@\<-SAyZ-SAX,SAV,SA'U U,SAaS!,SAQ7+SAkOM+SATNcm+SA)d)SAkR[u[osʻ[W$rꐻ[@^pW[(n[l,[ kB[EiXo[gn5[e[c[-b[lg`M[T^[=\ٸ[%[[OYf[W4,[UJ[S`[6Rv~[pPD[N [iLж[QKΖ[:XI\["G"[ E[D&[?Bh[<~Ǵ[}';[fa9S[N7[75߳[4쥳[I2l[02[ټ..[,D[0+Z[j)pJ[z'[c%ֱ[K$[4R"b[ ([[ [9 {[s6A[L[bͯ[x!x[`[Y[H[1[ Ы[C q[| 7[Ӷ[(ĭ[*>[dTP[tj[]ܬ[F[.Lh[.[[[3[mG[/ [EӪ[r[[ZUq_[B%[+[泱[cAߐ]p#A8 .A!8A@CAcGMAuvXAcAF[mA6GxA+A)Y|AʆAkA ~MAZAO=5AjA A2SAAt!}AOX$$A|3 *AWZ0A!6Aŏ,<A:3*7BA`{AHA|V`LNA1VTA aZA_0l`AEvfArflAByrATxA/7~A%) ҫAVlAgA˖Aw=֜AJ SA:.sAh A.AÿC ApAvy ALQ+ASz,5AJ@AJA6UA0`Ax^tjAOPuA*A[A ABA>pVAߝrAM!A!(''A&-AcT\3A9A?AFp-EA L LA8'cRA)fXAʓݘ)^Al34dA >jAoiIpAOJJTvAw%^|A:iA2sAo~At. A\mAH@AW#ۨAuAA:@ȸAmFӾA|kAF|A!A_$ARLAABAi(AE2A%6 S=A AHkD Aؑ AUvF߳ A% , A!z A: A Aghjb A8ׯ AE A,J! A $ AzZ' AJ2* Ai- A0 AD3 ALh7 A]: A.z= AP@ AϧhC A>F ApC9#I A@l(L A-O Aᙌ!3R A0n8U Ag=X AS^ C[ A#BWH^ A􋰤Ma A"Rd A?Xg AeP]j A6fbm A~'hp ABums Arv AxBxy AHي]}| Ap Af AE A4A A[ˮ A+b. A{ Au#/SA2.SA [b.SA3].SAY4-SAQ@-SAD,SAˑ7,SAH,SA,+SAiBTHD  d(*GcFSHDPx(//cBTLFXKX \>$!h20"P D\JP sNJFUrPVdP`A[b` מ`9Jo*xP` 8O6_%V]C úN'z` X5Yv*BTLF NdPPX\>`9O6JP C b` ` "P rPhV*xVVFHDB6 prime_meridian_name Greenwichgeographic_crs_nameWGS 84horizontal_datum_nameWorld Geodetic System 1984projected_crs_name UTM Zone 15, Northern Hemispheregrid_mapping_nametransverse_mercatorlatitude_of_projection_origin ?@4 4longitude_of_central_meridian ?@4 4@Wfalse_easting ?@4 4Afalse_northing ?@4 4!scale_factor_at_central_meridian ?@4 4x#? GeoTransformP485124.8828918401 386.6512267236268 0.0 5029200.758624835 0.0 -386.6512267236231FHDBcrs_wkt.PROJCS["UTM Zone 15, Northern Hemisphere",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",-93],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",0],UNIT["Meter",1],AXIS["Easting",EAST],AXIS["Northing",NORTH]]semi_major_axis ?@4 4@TXAsemi_minor_axis ?@4 4З?XAinverse_flattening ?@4 4mtr@reference_ellipsoid_nameWGS 84longitude_of_prime_meridian ?@4 4FHIB**KOHDR (dd   8shuffledeflate9Ed"E Y|OCHKxK0__xarray_dataarray_variable__`!?`(OCHK P _Netcdf4Coordinates  B _FillValue 3 grid_mapping spatial_ref `DIMENSION_LIST $ $ u%GCOLKFRHP4 (9AjLBTHDd(95 }SBTHD  d(97 [=3_FSHDPx(͘BTLF BL P$!B70<O?x/RF"_h4e >%iXBTLF 0F"h4P! BO?% BTLF BL P$!B70<O?x/RF"_h4e >%iXBTLF 0F"h4P! BO?% FHDB -?CLASSDIMENSION_SCALENAMEx _Netcdf4Dimid  _FillValue ?@4 4axisX long_namex coordinate of projectionstandard_nameprojection_x_coordinateunitsmetretREFERENCE_LISTdatasetdimension `!FHDB 4CLASSDIMENSION_SCALENAMEy _Netcdf4Dimid  _FillValue ?@4 4axisY long_namey coordinate of projectionstandard_nameprojection_y_coordinateunitsmetretREFERENCE_LISTdatasetdimension `!TREE/qOdx^Ś <̵/ٳD*$={YR$Q!E.*EB}+e^4}zp(O8wN+Q׶Uk Q++Tk k. (+;-NO1 ڞ߯~Νsi8DͫI]iwPPN}[Yv_FFiZwaFW&J[Ak+Qfh%%G0'=( iX$Sc@*&-Oد97|꣦|5r+eף>T=tuAtxDݮ]sDuNrļI׊quh-˥켼٤R/BT;|J9'~BBG7t0ׯ?K=.[u53E"s/څrL 65mhr-jbwXm^~2Y}(K5g ^dF*_<5".?|xٌZ_QK+U=,{3S85T4)WНܓ1.4kᄜ]-lm '?8sf8==M""bv֭zio8}V62C^PCWmPMm0[ugژdh>hn׽LhA?k.}Fc_ҩZMͽ._B)h/|di֩2ڱkxfIamhI݌KZhA.gG'6G8ӟ`e6Be[ԋ {S';UQ9-ll۶i0E^lyUI&fkf漦st)43N!mX:00D R\5;MB{{^C+]Xb ԹIKFQm۷{ߨS=z䀓7ǰ<:kڝ6d,25&i~tlbMӖϞ5]QKHV@7YFf Z՚HXVOn{:Y}Oo0}I5-ˊ,$8m;gϯhMBz6t~cDֺNNF~ cQ͔ڜLL?hkk{TJRs~j(#dm 7z2w7DK:hqKvY)UVصhnd!Ȫ/s}g灻חieᚚf4"ef9Tv/S{t%79^RLQ|s{ʲe엖}Κ |XoIIzv[{e JռjH7@rJQhmB\^B4>A["U.=sөSh_Z*T<}h{T̲OI~ƛRŏƄ {~d`$UߺUԴs5,,Rldll3ڜ.Fogvz@QAAvOt88t(D20fX~V6g>iy7ܡR'*qpO}HH50?H>Z*tƆ5T,/hStf邒[ 2MJedW_&:{Em֖UTtiY0)/4x;.+Çqe(fcﯕ_ӵa9ˑ{䆿<-;ԓ'6)m'no=]pK~,/7:ow{U8H8[[<"_U(hvA,{{jRQ浻 L9ܛc`1X S]K}[;%Xyrv]) A9OW@uYqKmCŧ-//.%  jnޢ|*{آc'^=W.\7Q2uM}]c## uv_P.#xw Bb!WU@H؛ƻ6z#^A ˌ\9nvQLN ?lcW[b/f62ڧD+I 3Kz'^U5/ZgCfxv:h' ** ˫|pvC]ǟ_qa웜e:#195n{gZi@VtS<3.|~Q..끧~OgAVVi*z<<5%,ކ'XgȫCCw GK.橎[[jXYɫ71$s {]8}S">uBjG'aū*gW_1ffN5͛}gVgZ51֨K'Z]?{J#Gs4Ҟjk(~eoa1CٝVДaS0i9g]FFIoo >H︸ol`M߼Cʲ=[FZpzz(!䓖Vc;q($ZRma+,%JBr800{]f*IGJMog_ꤢrvܞWevr3ĦtSP5՛*fOfaխI QY(Y?Cj‹G?+}r{=SeЍn'lL}MǞ-όv,^z;/;i߻ֿE5^Ww7ZuQs!Q=kf-5 WLM-~=  {6B{zxM JIg[*snY'55sxs\ܭtH7V||iM~ .>X08T LjhhyI e:XoU-F]^:::3 [ojxe㙙VA|$G,ܿPE՗z՜GH_dXĕQf,EF\mMi,o#޲gJfOi9i.\~ZgJCsaAa^^sQw{:r\Wna/&73h#w||ώRvx^\Li6y:/55{)3ge]-m oyD5vT>]Z2=Dew((-o|WO&lv9N'u%ce`tO=iv[ ƌ&H~?ĻbdVf@z 3ىݟ?:[1mtTHH_(WJʼP,/诒)rI/Txkk;F"|%JJw ''߼ZKK~ACfSVJ?ho6:ꪣ3J;rbfjqǖaB#d g[PEN Až~=bHzz7~PDSP\y}ٳ#9.uZ>D nP_ZOIׯ^8eIy7 Tii12q ;s^ɺ)Yv=!!k^!Q(';-ЫGૄ[Sh*mD(.-\l_ 8@3/Af洷7k5uSj:>T ޔA1wRzUyyTymqOELDzR"5+U < nPV P}*-K$o,첫*mmEvep"ܺc$ˉ;~" NhJw}V+>k*@=I:I)Wvvo uL dSTwcuw?4KU$,8:<}iCcF=Ov=lP˿BMD)kkUN0o *ZhdO]pƆaɸ1RG /J,Hv3xۻM"nW YcP pdccv5hnFɤo,H RڹPV}$ n=ج@;޾}(O;r35I7VG27eǎ^#; qU^^6L1S鶊uQ~ aNN&m"[^YO-6l}~94ۮ[rLJBettϰ[nExoI}]@X:/ -]G/e*x/;S'c΁H:ǣ12>3܏UCteT*D//~{{$sKUWBgJϮt]1;U4-6n pĉ⩃HHb]V T?|[X2FVUzo-t]vv$cQMM5/7&3\}}VnSQ DEyz fu>2 +FMp!S̙)||*/OEW/m5O9}ۣǺ$z٫ugg{9}Y.,LXRlOp]ce-O=Y[/͋)v?᎔589/Y>ڕoFϲnj;һjSe7<|mvŹiq΃4?6m)KuU$+_}.rY)ux226#lln(T6i w j5;:_Pu8›-Ⱥ+4  a X3g h#pa= 9 @GфV+HLmʭ-DaW[FCj1mvBQߌ(( >"X,b 7bPC J (ga Dh)s U BQ!\% ^$!DĂnAh E ?&ow +(D&p[Uo_aڀ&‚q?j`z4P껫*r@;/Q X%Y$ލ.X|n/ uXp<?<? \_2 #Ca ep'C&HhLA Ah* ZqT/4Hk>XcK[H(\5s#J8k$.XQL ?@aBAE >†q@c" )Z!>W$Vz"m1Hp$hKa(,#|mD97v@` iy+= ] ?"C)1W \*pD{"QAX p !(",\TuPE䏐$](%DXE"Y!ԊSV!\(J ދ? ᛂR(| XXD8 | _lD @Ɇ0YA{Q! #wPS<T`r   G$&~ Vq1H|!:j$xW %1?OH9 $u?$%? K[T DT8Whqcq _3 bwۃ|:{(6 DW n;ߢj 殬_|7ExSDVZGyB =PZh<" _|+^K߯Kp6\ZW *l10#6T0C@.v^ C̈́Co%FcAc"4<ACKH^~2R vL!"9ǂgi0~/vhRE`,L1@6pU->$#@r[;/@p h7u =[cH~OO@ >XaP?jDPt  G ]y?(Uf%(L!Ym/P RBO; QTQ HCDT D}8QgwRطHo%@ƼX?j}-@T/;]$%v$HL hfL\tc*WXMMB@k/`Ȑ`#VqHVXDPh4ce.VHFp51! ߘg@HxOCc?U5:2pEQV ͭy(rioxarray-0.18.2/test/test_data/compare/MODIS_ARRAY_MATCH_PASSED_NODATA_GDAL361.nc000066400000000000000000001000551474250745200263670ustar00rootroot00000000000000HDF  -0COHDR " ;#X Syb ,OHDR 7 ?@4 4* 2FRHP ( LY@jBTHDd(b j.6BTHD  d(b MwFSHDPx( `5>BTLF(9L D$ B7W+<a:x/R_+e > il Ac1BhBTLF AW++D (9a: l 5*mOHDR dd ?@4 4* O 5FSSE-E88ZOCHK E_NCProperties"version=2,netcdf=4.9.0,hdf5=1.12.2tZFSSE'DFHDB2c' _Netcdf4Coordinates CLASSDIMENSION_SCALENAMEx _Netcdf4Dimid  _FillValue ?@4 4axisX long_namex coordinate of projectionstandard_nameprojection_x_coordinateunitsmetre0REFERENCE_LIST6datasetdimension /"OHDR  @*7OCHK spatial_refeR`FRHP- (OBTHDd( wBTHD  d( mUFSHDPx(D|FRHPv] (!qBTHDd(%*BTHD  d('/FSHDPx(//繲FSSE]e WFSSE-'>cAߐ]p#A8 .A!8A@CAcGMAuvXAcAF[mA6GxA+A)Y|AʆAkA ~MAZAO=5AjA A2SAAt!}AOX$$A|3 *AWZ0A!6Aŏ,<A:3*7BA`{AHA|V`LNA1VTA aZA_0l`AEvfArflAByrATxA/7~A%) ҫAVlAgA˖Aw=֜AJ SA:.sAh A.AÿC ApAvy ALQ+ASz,5AJ@AJA6UA0`Ax^tjAOPuA*A[A ABA>pVAߝrAM!A!(''A&-AcT\3A9A?AFp-EA L LA8'cRA)fXAʓݘ)^Al34dA >jAoiIpAOJJTvAw%^|A:iA2sAo~At. A\mAH@AW#ۨAuAA:@ȸAmFӾA|kAF|A!A_$ARLAABAi(AE2A%6 S=A AHkD Aؑ AUvF߳ A% , A!z A: A Aghjb A8ׯ AE A,J! A $ AzZ' AJ2* Ai- A0 AD3 ALh7 A]: A.z= AP@ AϧhC A>F ApC9#I A@l(L A-O Aᙌ!3R A0n8U Ag=X AS^ C[ A#BWH^ A􋰤Ma A"Rd A?Xg AeP]j A6fbm A~'hp ABums Arv AxBxy AHي]}| Ap Af AE A4A A[ˮ A+b. A{ Au#/SA2.SA [b.SA3].SAY4-SAQ@-SAD,SAˑ7,SAH,SA,+SA il Ac1BhBTLF AW++D (9a: l 5*mFHDBOwY _Netcdf4Coordinates CLASSDIMENSION_SCALENAMEy _Netcdf4Dimid  _FillValue ?@4 4axisY long_namey coordinate of projectionstandard_nameprojection_y_coordinateunitsmetre0REFERENCE_LIST6datasetdimension /"FHIB1-)BOHDR $dd +#Ed E _Netcdf4Coordinates  PKOCHKx0__xarray_dataarray_variable__/"XOCHK  6 _FillValue - grid_mapping spatial_ref \DIMENSION_LIST55&KbBTLFLKX ?4$!IZ20G D\JH sNEEFUHVaI`A[ W מ`2JorIsU 8/_%O]: úK'zcW X5bBTLF KaIIL?4sU2/EEH : W cW G HIZOrnFHDBE' spatial_ref.PROJCS["UTM Zone 15, Northern Hemisphere",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",-93],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",0],UNIT["Meter",1],AXIS["Easting",EAST],AXIS["Northing",NORTH]]FHDB[~geographic_crs_nameWGS 84horizontal_datum_nameWorld Geodetic System 1984projected_crs_name UTM Zone 15, Northern Hemispheregrid_mapping_nametransverse_mercatorlatitude_of_projection_origin ?@4 4longitude_of_central_meridian ?@4 4@Wfalse_easting ?@4 4Afalse_northing ?@4 4!scale_factor_at_central_meridian ?@4 4x#? GeoTransformP485124.8828918401 386.6512267236268 0.0 5029200.758624835 0.0 -386.6512267236231FHDBhrcrs_wkt.PROJCS["UTM Zone 15, Northern Hemisphere",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",-93],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",0],UNIT["Meter",1],AXIS["Easting",EAST],AXIS["Northing",NORTH]]semi_major_axis ?@4 4@TXAsemi_minor_axis ?@4 4З?XAinverse_flattening ?@4 4mtr@reference_ellipsoid_nameWGS 84longitude_of_prime_meridian ?@4 4prime_meridian_name GreenwichGCOLbbTREE0-Pdx^Ś <̵/%I(KR!-(HB(*Q!](EB}+e^4}zp(:!ќ1.љegZ[k-tjVwVwvqiIco j~%nڢK8\r2}̌܎~l5rmϙ55Wͅ] 54aYb蜒̧t юzxeY\ΤLzzǏ]edM,GqMޚ'FB&~ލt]L4BB3#ifb?/k|p)e+L@YZ3WD4NT| a7 6eM3^ޞksgτ+e sVPZ*==UD$ΏP37w] Mn$|옂'>>¬22` bgO, K<25S_)FO5ԥ# [er4۶1>pKy"u"ӧ 7mONM>if{TII g نv@69f"ѽ4r;>?=ESMceb{Eg9]2kkfD^ܵ Ec&H\mjH8[vCRݱŐڼeS!,U32#+< JɌT |<kjy7S;]]ϤqMY_>M.y_A^NN{˜Uч˯{x/l[Z)^n@/K%F\ߪ4krVU։.]4;,El7Y]+²a׮I*ZE竪߼n"am*yVҲjнr`ץ IC$tjB שּׂox=# us'-vW33bL|azy?޾MYN:takbh;:+*^pNN|Ӵݛj[wiyu,o禞ZN` hfGω\74J㔔~.Y OS]=IONV6ZIIztA9UUheխ]L?萩Z8Lݺmw Qm=%zpMQ%4s%ci ص|iln]ARv6VX:"dz<)MwnɍXw'6Gs֜UU{XX*gH{\%;# ;derGHÇ4yucT'_}agm}m^mkzJ RO7o6 E}UrrJo"xxCO h|-+N>P/0*"M9Qi@KSSd`@Z㰉&&c&%U/.6ddT٭'WcW0im4#@(ԕ+--Gz{Hoǟ˒~8E.$_Ř|kM|$x"ߦ*+[-@eލ~=#;ĘW}wlӐ ;v~$M/KKW\hrl8hSQz0ǫА[Bl:|F7ǣP/^x,34 JPv0\A{'O=dbkd!M͵yeM3A6hwIv$?ه+|Woʥ9SQYx;w(#9]\_j (}04^W7'4?avS'_!xSW_ & qu%9ϝTDxe)L2𪌑l!3\rMa8ՕGιdhQR=<>=?8[u>5A~C_5QScMn=NY|*=򁀳sϱv0%lޖnpggҲ$/eg[lݪJ{ˤQ}~/:FJC 59Oml՝ic"g|g2`5T@+- E}k SmU56*E!A+EŢA I{= hnXpخ:@5^/0leEA7]u{^EӧײG-\Ty,b-%&'youNJ'슒82&HZuf_t}~6QTS VH: :n$|?fJ dز%g+}- ͙OZ{vkͻw{K+nI ?j}E_>88$og]t&bCCj*4(:`~dݤMϞ{x qAܲMxq#;ۺ蘱璝edfr cm`,Y[dRp$1=uʇ8۾>Dy͍t3b|۶).yK310WȹMb5>^@.eˉoɂ>%H,}dqq&Os܎w^eTy,lyG4{1e<odalyAV.NcE_չեɿ s'G"ªFR5 ՛\sC9.;s-Y`=kAA:IttB43KiiH$+Tjag>/1~ť-#D#?u}k[gm0۽Xܧf֘W̭ʴQw޶w*CKLLjeK/9sVZ$*I==OYRE_XXOu8R9&|,&C˪Ra;\SRexr*Qm:$xz~̘+ou&_F^A\m'ٞUUHl[$q3 ,S::+^S9[zc(D6my[j\H6X.yX٧wd*Ǐeg4Jxiѣ?fX['#Q+<0F #;yeѕc>|""Û_GTY.//^uZ`s#<[ݻgˮG7'-ӣO~^Y GR9sյ|)ݦa2"¼sih}$^)\+}F|r`Q|t'-vԓ)H /7}.$K.pnaa\T?J]EϱjIEC09=u4eoI馠j7U,{ ⥫[GG7?۳qpSj'C~VMuU{plA731~sb<3u_h[짦}Zx]ݽJDαF}4\_(%E׬ÜREh4 R73(-KBCmy2ۖ݊"Eq5%d煄TgEE}J搫L|«vA[!c-YRk0u<)-V--iXY=. #iҿ[訋(YKM{šêOX ˃\mO| zqU]]EuĺdUV7$8'J&$^ެ]Aĥ )MyPF̼ú%Ҡk ;7\'&}Admz515!}Hnts@܎} Oϻ;ϝ{閬ef%ݱrRyR =[K^9}D 5^]9Y$r V B}4q'+fjN{yOHxFK7C鴞^}l}aVh*ɯJEwΘtݚ|=/eɍnP8qsj}3 j|H>Aތ6 h9]V'1$|8op)?_8$ḐfiMz/m0eo/`On24Z[LjOWbW2xhy_/Ve伸xԲFGX^rzWw6 99HEp4_]&%gC2ZkuPabrQrbuq94mYVh9 ЧDim% z7cĎG Iqh]NQQnբۮZ  RM} =I-ǹKIe郥>RzSyyTy@mqޅOELDxV"5+U8 j WV P}*-K$o,k*mmDwat$ںc4ˉQ7 Nht}hv|tqDoCf$_AGçz8ҦšdY|L:omɼe/EGOW5jIVuk +g;7y QreИӻ%S߾+*+_U*1B{TrdO.D7'b`˴<5?Ou#z$m11l# yϚiMT]vvZґa,(87^b19qfy8ڽǗML^9 rwoJhvmt\󭬬n};=֖}wQ75T˼gf`?qy}%YLPFF&i'Znhx›*;:_zr\IgQQ -Eάԧ>K)Yf~Yh(jRCvb"_ǺnniUp q}&..t(tf݇ {~jC NE15e\:64{?)D^P0]洴,6$) k-yZ!\k;7Yݼ}e74iIHNH uv> j޲缾HIkJ B󏶆p*{x_VAsƯlDd 5' YmeMkn?١;?vkR᪆|90.үVV7nTNK*p9}Ïzy!}qrȵv3R*mnc;:Ӛ&K-1Yrc326!(GII9wL)cRR y9lKp82UO*% 2B6bbb|6zjm}3'o(lvu$F*G$B E##,5=¯CCvRW^:zʅ )oL]]jf̚eHWg&_/-}d̨֮AW@H%Sڇ+t{㍼ۨ/"SE.44\xT2|TPpC+zҤ " *}AgX[HVX~':%U3Y]L4Q99z[6$YE*nh(>]R|-WV$AN=6 ϓvzj=c8@mw] }MM0{L }ٱ#Ȭŝ~wov&lLpb^LB쁣 W;gS?!u߿}ImWdm.9;Cdd::g9,"$tT]@XZOQ-]G.e*tЍ`O;SGcH:#12~ϳ܎~U}Tedf*gOOS-vT] g+=zc2WE,n\۰APG''"Yk#͸~ea7{٥w$)s*<+Zpى{Hj^nHg(..|_$}DtW(bVS{g3%%'ʓ%Wy:dU^/dJ14E_loԋr6q(^GuױI|USWA$l';r:6]hf-P6;[2z>kp_eS>'BSھ6'xW=[ϖ&edvwn< qŋj,i*~(m]ͪHV_.-{}]Figu8226#)(T7j w n5;PP}8܋=+4  a X3g h#pa= 9 @GфV+HLmʭ-DaW[FCj1mvBQߌ(( >"X,b 7bPC J (ga Dh)s U BQ!\% ^$!DĂnAh E ?&ow +(D&p[Uo_aڀ&‚q?j`z4P껫*r@;/Q X%Y$ލ.X|n/ uXp<?<? \_2 #Ca ep'C&HhLA Ah* ZqT/4Hk>XcK[H(\5s#J8k$.XQL ?@aBAE >†q@c" )Z!>W7.HTи]uz>ބ5[ p;"NrhN+ %^P~"!aD("&A&4u8ہ  ?@:p+Pĭ4^q%ⷥh& 3" x8Ax}H/c(fCt6.H @KbrAH$h#IKw%?취 p P1јп:f^ SbGGAdx>Ipw =  "+@cwnoQ5_Qs 5وHQs~JVP:/\z𑁳J '0b֑|DDm&\ 8.4IHQ5,@=* >FfCDBSalu_:43" !fsLjx{*z3+n? TeHnϭp;oE!~ b4ucz,,BSdp"zp)U|IO #7YA^m0fĆ sf%qN BC wD}(4wwDQM PXf{KT wP0$$N Y~6T ~""ߤ\0Nm(BW ؋[Fr난?aDB&mIvb|G AaJF4aM;v0~ph4ŠAx,!PQ "nuwT>oS5\لCῐW  -!y»` Ha01  2BIgn0L‹ۄ_Uo D @_-A-lb 9=>1]bcԋBz AсX@'Hs 4dwT``(cAߐ]p#A8 .A!8A@CAcGMAuvXAcAF[mA6GxA+A)Y|AʆAkA ~MAZAO=5AjA A2SAAt!}AOX$$A|3 *AWZ0A!6Aŏ,<A:3*7BA`{AHA|V`LNA1VTA aZA_0l`AEvfArflAByrATxA/7~A%) ҫAVlAgA˖Aw=֜AJ SA:.sAh A.AÿC ApAvy ALQ+ASz,5AJ@AJA6UA0`Ax^tjAOPuA*A[A ABA>pVAߝrAM!A!(''A&-AcT\3A9A?AFp-EA L LA8'cRA)fXAʓݘ)^Al34dA >jAoiIpAOJJTvAw%^|A:iA2sAo~At. A\mAH@AW#ۨAuAA:@ȸAmFӾA|kAF|A!A_$ARLAABAi(AE2A%6 S=A AHkD Aؑ AUvF߳ A% , A!z A: A Aghjb A8ׯ AE A,J! A $ AzZ' AJ2* Ai- A0 AD3 ALh7 A]: A.z= AP@ AϧhC A>F ApC9#I A@l(L A-O Aᙌ!3R A0n8U Ag=X AS^ C[ A#BWH^ A􋰤Ma A"Rd A?Xg AeP]j A6fbm A~'hp ABums Arv AxBxy AHي]}| Ap Af AE A4A A[ˮ A+b. A{ AOHDR  ?@4 4W b / 0CLASSDIMENSION_SCALE "NAMEx=.OCHKFx ïOCHK 4 _Netcdf4Dimid  P _FillValue ?@4 4 B long_namex coordinate of projection ?standard_nameprojection_x_coordinate !unitsm] OHDR  @   `b5SOCHKwX spatial_refv׊OCHK * spatial_refPROJCS["UTM Zone 15, Northern Hemisphere",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",-93],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",0],UNIT["Meter",1]] "crs_wktPROJCS["UTM Zone 15, Northern Hemisphere",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",-93],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",0],UNIT["Meter",1]]OjOHDR (dd  k40u B _FillValue1v-OCHKy]0__xarray_dataarray_variable__kdOCHK Qcrs1+datum=WGS84 +no_defs +proj=utm +units=m +zone=15 Pres ?@4 4#lk*x@#lk*x@ A is_tiled  transform ?@4 4 #lk*x@mA#lk*x.O0T/SA? 3 grid_mapping spatial_ref `DIMENSION_LISTk$k$ӐPOCHK tREFERENCE_LISTdatasetdimension kaOCHK tREFERENCE_LISTdatasetdimension k$'GCOL]] E^ra&Q*H*$$GGQ<1_)kkS7<v66j_Pl1,S|LO2< YM;$n  _nb_&-f,))(aNc?"2g'9.4HfIy!MMp!Bs)M,,;7nq __nKK~T_% 2 }Mvv .dA((QQhe_s2__<h-O9{u}0!!aI &&/M WW_-_P(* -NV<,,.[=W0*z=EET&E/G>V*<NtHT43**%1K JTP((66"+-CsV=6,n=1 Ou-9zkijmC,u ::}3taan00,e_meBBB\Hn:._*W^}ok\))T=zKHJ ``00)?J "  5&x=Z'pPA.\\KHQAileB2FeeHdDV"sHHM Fh7VAA$Z;yyKfQz3h5`8 HIAgcD22 'CCum{[Iy}WHMPpFFSYVFC8XrrZH2%T+z GjBg44K Ab  4-#%LL{v. n%Zp*E~L]62EEyy-OWx00!@/C9L<  4-D#2?((e)'fE. <P6$,]EE ud% ZZvGdIuT!bH=:_oRS`UDN% 1)AM((||sUUZ&")' ]j8?vv8,R~xGb=:G4r  'RR>G<iE ?d*k0<UgV=+EE + @jiyg71U::  'j|  ZZM\Pz\ErR ;H&1!jj#>F~dvFppw__6Z/_G. Q;" 4""3e`- @CG1v~C]bF5-ruAL=R;  gm'vz_Ea_.. ^< <88BB4\6<G  jLB3(8Ijjv~l^ZCYH ':?n9b,bbW``3L6PE7/8|\?  !?bD<F=0'2j@|VVk?JS~dRPgY&.=IJZ33Xjjs}}H9+3<.55t/ d.VblQ#Jj<gaS/BSLKK*>YY?gITH  6FCN8 +3] .(q3cyVb~!z-M.YH1:bg:H8&8Q#r `)) ([Z'%F :J6w}pAK2z RO0(W]TT@{J Uh_WS)V3$1@u#T|`ll}t^YDDmUU=9  ^z"\_% eAW + pr4f  az5z4N$ /7*O'B?-GL0FP<!J111`rS cc3nn u|Y"pr4@4]qMMV]5dH <<<vB/]GsCD7T$JJL  wzzL R@LLF{`  M !TH3; lN=xxA\UP<5Tm$tt2a99Q u6CUUR'D  ^::gkY*Nq$KKVrW)&!0UYl]LGJXB^u##6Ccs`0\$GG^?P0k vo|W ZSeG-c^i16U&&2 ?|8}VG::J~KFGZu<Y}kKK}rveZddPPvh ff3__ z ,_c%22C7VTgEK.@+}7  VNN IyHic\uB%#mOubFT0,3`^[|85Kd"EUUL RP77"JKK KGg+MMfQ)xX 1Jjda2\u:!yn##D',bb-T|]cm<",?[[!!uuU1 3MZ43Kl}IQ&#7)x12E]a8BKKgLj Q``-  VX[\C*ZZC  <P$RrBhhv;C8wY44QBFgKT D]g@@OyV a( m #ggC;/qq$tK(;7Yl4E1c%SU4[,A+{I4ookk!uF}9w@>>8NN779=5pp>GaPC`ldh+*[!3>G7ejR* !,)s+ ,0>>Ov6Sg//mmX??;mz\g8jL}@u_2 fUNCC^"xmi i}}"s- ::B  GG13(1:>FNuEDSSd\o%,; >??#Fyu_n@``h00a9S.f!II44(&2="{ #SBwYZj``VaLJv.LcW555Y111aK&2BB9Pp6k!RRI9%* v4 Yc,N7>r-SJ=!omIIy=^] &;35**t,ZOBwwHmm--v&vt7fII"=kQQPkkL,%5cN<yo]kl9bp{}^^n\h;jj$4_~O%3o=]]K  G|po$`of<[>>Rrb"CCS92UU6cE&=_L>>J~H/ z8iWaaue~$ILP77f>$ nxBEEP=SkQ >J1z||*W>3oX::|Ms{_]QQ_8'GGO 1A( nn440hu,t*T%7xoEw^E{s{2#QGO& aaA   zz}<\\'ttSSS7a_FLW<sD: !!1K;{{ /  b&xx'6 D`QTl<F(E6TTK!+..ANi~eI~!b@Dt H*00RRP--ccKUjjW{sk`+.^C **5Z"(( p`a%% =/qqCI wss||k`q X2k)200 @' B =CLL~a*=<b E_Dl@TC<<NnUU*5 Z@UPPG(0e>W\N7|im&&ZY({|X<}ZVjU$3G[&KOO441P#7nnI}  sSl11r!7f+Tdsu4ZRRmCeRP=t9mh3g&>X&&gQ2`cc  H6kW4@"qU @2B_  ]k*  `--N"@?S=[[/nUz!!e sraa _]jY %e}+o$ 8>><i7rvv OO<f66k>WYUjgy},4]F@|((I*!J16&&D  '3<DH{MMrj2LL4*p'g&KY9zOOpbGd(==hImoC$MOSII*zGjpRgG1B2Q5Kz!&@/s SM7wwx-#LUU%m)qRRqaG  w??qA%wl}Kn""P(U_v9IR`zxKB+xRdfD#>&p %lK"JP(/ WLrLG3rO@<6_P@QhO/XiiUXyJ]dr r]+Xq1B(W (PT~e_JJCQ::pp#pazSnz{me9+ ..ba?ej|}9Q+xOOAky 2*x^trDxB|mzzyQQ:2uzJx##TTyR  jj2>*J^?-eR}k,gkDDL (;G8HMM  &VYw4Q#'GeD#{,knLJJ(B_B!!i *&CCC;LdD,A"%u39? i,uiJ6dx8xmm Cn:0? v2s/ ldt3AbbaHu~I +5 CnAB0w8@]D3fMddF,_B99 dd\2ww2 g=Kg;[>* wn6 $3Y;} {A99VrHdMOoo^ *2vvi`*rNNJ>WDDrrX vQUhqo4 .7 dj,H2 : ZZ\paQ zzYoK  |&fll${o2ado n\ccaQRm8GxxLL7W%%)1Y`D VhYY&&&Lx9}<pW]``UDnc"wGh6p+p)6rKKgs[i%dqDDtnr}[{#<{kk2#x,,>>)\se5%Nx6&JJ '~}}^MMC e sv#..,eeuXSoNZZf\Y@ bP r%L$0d[Hk;+L11lxxbx>=G`[cljS ouTT&eYC'!88SvyW+S&Dl<K;lP;@|HuT(<YggbvFbFc`y%juUBG.``zOm.7b_Xd28=[C+&C...*M-6wssopVj33nSR]]&5Wo%1Dd0.&k,,---}5_\j|jj]P2N@::8 u&(z(IIjDD{{Z||_$vtR)WWQ'YD)@  BDoMMbPCU ~--Tkk#xf%%'cT@Q'L3rA,yi2DpzZ#J!Q7+gBAATT8Gqp|i?fQu\nQHZZc\\ kV'jVj>??!caubz==3m2JuDj)-#*uuY,9|r&a))PFoyYm2<3#8OOptd9&on$Hp~>p&ez^nZuWgW!tq}fmmpdQ5%xx|oow/=ffn> ;dQ++%OO~{ii]QBIbx5nnhzzt#+IgP  R%.gl,,K~Is$i=2!!^^g8@R-V<kXyOkV@+ff\M*33j=vQyvM(fCo8Sl v=mW%%UMrF;vyH] ]:z55G)V'qxIcK|UG//M((`z%%SQt{>xc$rioxarray-0.18.2/test/test_data/compare/MODIS_ARRAY_MATCH_UTM_GDAL361.nc000066400000000000000000001000541474250745200250260ustar00rootroot00000000000000HDF  ,0OHDR " ;#X Syb ,OHDR 7 ?@4 4* 2FRHP ( LY@jBTHDd(b j.6BTHD  d(b MwFSHDPx( `5>BTLF(9L D$ B7W+<a:x/R_+e > il Ac1BhBTLF AW++D (9a: l 5*mOHDR dd ?@4 4* O 5FSSE-E88ZOCHK E_NCProperties"version=2,netcdf=4.9.0,hdf5=1.12.2tZFSSE'DFHDB2c' _Netcdf4Coordinates CLASSDIMENSION_SCALENAMEx _Netcdf4Dimid  _FillValue ?@4 4axisX long_namex coordinate of projectionstandard_nameprojection_x_coordinateunitsmetre0REFERENCE_LIST6datasetdimension /"OHDR  @*7OCHK spatial_refeR`FRHP- (OBTHDd( wBTHD  d( mUFSHDPx(D|FRHPv] (!qBTHDd(%*BTHD  d('/FSHDPx(//繲FSSE]e WFSSE-'>cAߐ]p#A8 .A!8A@CAcGMAuvXAcAF[mA6GxA+A)Y|AʆAkA ~MAZAO=5AjA A2SAAt!}AOX$$A|3 *AWZ0A!6Aŏ,<A:3*7BA`{AHA|V`LNA1VTA aZA_0l`AEvfArflAByrATxA/7~A%) ҫAVlAgA˖Aw=֜AJ SA:.sAh A.AÿC ApAvy ALQ+ASz,5AJ@AJA6UA0`Ax^tjAOPuA*A[A ABA>pVAߝrAM!A!(''A&-AcT\3A9A?AFp-EA L LA8'cRA)fXAʓݘ)^Al34dA >jAoiIpAOJJTvAw%^|A:iA2sAo~At. A\mAH@AW#ۨAuAA:@ȸAmFӾA|kAF|A!A_$ARLAABAi(AE2A%6 S=A AHkD Aؑ AUvF߳ A% , A!z A: A Aghjb A8ׯ AE A,J! A $ AzZ' AJ2* Ai- A0 AD3 ALh7 A]: A.z= AP@ AϧhC A>F ApC9#I A@l(L A-O Aᙌ!3R A0n8U Ag=X AS^ C[ A#BWH^ A􋰤Ma A"Rd A?Xg AeP]j A6fbm A~'hp ABums Arv AxBxy AHي]}| Ap Af AE A4A A[ˮ A+b. A{ Au#/SA2.SA [b.SA3].SAY4-SAQ@-SAD,SAˑ7,SAH,SA,+SA il Ac1BhBTLF AW++D (9a: l 5*mFHDBOwY _Netcdf4Coordinates CLASSDIMENSION_SCALENAMEy _Netcdf4Dimid  _FillValue ?@4 4axisY long_namey coordinate of projectionstandard_nameprojection_y_coordinateunitsmetre0REFERENCE_LIST6datasetdimension /"FHIB1-)BOHDR $dd +#Ed E _Netcdf4Coordinates  PKOCHKx0__xarray_dataarray_variable__/"XOCHK  6 _FillValue - grid_mapping spatial_ref \DIMENSION_LIST55&KbBTLFLKX ?4$!IZ20G D\JH sNEEFUHVaI`A[ W מ`2JorIsU 8/_%O]: úK'zcW X5bBTLF KaIIL?4sU2/EEH : W cW G HIZOrnFHDBE' spatial_ref.PROJCS["UTM Zone 15, Northern Hemisphere",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",-93],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",0],UNIT["Meter",1],AXIS["Easting",EAST],AXIS["Northing",NORTH]]FHDB[~geographic_crs_nameWGS 84horizontal_datum_nameWorld Geodetic System 1984projected_crs_name UTM Zone 15, Northern Hemispheregrid_mapping_nametransverse_mercatorlatitude_of_projection_origin ?@4 4longitude_of_central_meridian ?@4 4@Wfalse_easting ?@4 4Afalse_northing ?@4 4!scale_factor_at_central_meridian ?@4 4x#? GeoTransformP485124.8828918401 386.6512267236268 0.0 5029200.758624835 0.0 -386.6512267236231FHDBhrcrs_wkt.PROJCS["UTM Zone 15, Northern Hemisphere",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",-93],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",0],UNIT["Meter",1],AXIS["Easting",EAST],AXIS["Northing",NORTH]]semi_major_axis ?@4 4@TXAsemi_minor_axis ?@4 4З?XAinverse_flattening ?@4 4mtr@reference_ellipsoid_nameWGS 84longitude_of_prime_meridian ?@4 4prime_meridian_name GreenwichGCOLbbTREE/-Pdx^ś <̵/%I(KBBٳ'J(HB(*Q!](EB.}߳oſܫ>O_;3y }ȯB(1SW$Y3"kN==fml:nRnf6:),J4٦-yGg18VՁ;֒{rwn}ᆆ쩩(D5u Ďq,L_?Z7%lNo[V붹NV{-TKsMOONS; W+rϬ/(Qffv cٗ~7:(h.,b Cd>U[V\K8,zv%NOg=~d* 3n`Yh<4rm>8mhHGѥTC#$1#I+|Fmdľl&s,TyK(3az" b(}$q{&~oF@e_~H^R""q~< swJhv'#`Ue<fݲX[L>i- vCrO((k> -z h748zzo uHk*9a`$z^PH};̱'Rg-,?}z).pӦd䣙fG `yzFTC:V#n&l{(K)h\4TC7mZSfM0uzf!fooIr&[rtv<ꮻcYYGsVI,dFUmTײaM@<UU۠B=ǧ)۵k-vfﺇkua:*~V6ݴmjtt廚~:,)yv呑%%G)2A λq--Uz6i>u`} }i(OOwp0iVMi4Dr;)z B95|w梧fD?kqj}_]ݤy)u'eY}W]nW!hrFdY#Z5M5J ?XL$M ~[֔MR:;IM*-"Xyjc> H?6aaݱeunY[;S$:tncNe 9_ppI#ED4So K5êrۗ9̢OT_Ȍh?nVMfe`9XS|oG$ֿmإ,,z&=Аm@hiuys/M{eBw:9y33OLLʤ7]v-wVAU+ܳ}JIt4s{վ/Ap^ӈ"Y['8'waܔ/khue ˆݻ&PhONƪcaoY*Z\JKjbuP.+ݗ"(w0$ Щ 1H쎀S^$G\l09l޾ٖ/&Tj*{kДC֬>j.|1Ҩ 'J,P8޺MӫcQNo7 BTtW@3;|Nظm亡Q:~.fw3Z~tD\2!O|22ъң]nU^Z3KQJXFy(4ѭ~{`=ݶ\\2J37_"9[:/mɭ/H t}NZjK=ey-"ן~8'Ceyy s-T554D5db9ꫧU7)Zq#*=J{sez>tSo2MkN/E\li9D;>>M_/l,v!/nxX%n\-ەvUV!Lj*n٩Dž$Ƽ2['fsnwiH2d`}ŅI+&F=Y=^5 b+>׫3|("}£eI#0>0~Z ^nljn (DwCʶrzQۨ{\K=\44dvw$8nO# qϞ]+EwxS!y,Ǐ\r3?8[}>5A~_UQScM n=AY|*ɽrǟc:h8<C: ـ-vmgeI_ζضM-J Qz))}, y}]fLcԽ㙝 M٧cbʀvpK }F1,s,[w*FO64NMŎ0j4{4r=xۭ#Θo:VENVZV':lhN -Ђ&Goė6bG8ӟ`cb($$IyNeL0vrZًoWgXxOlmhy _7/GL,-#ttS;&efFMq-H!zț7ulJ[=Xq^ฏ@We0?mknui}˶w/y՘!G:*p ή`˫MScmmRJ$4o\30mѼfUznCCMZ[W QYAbTK.6fQQW)5u uޟH{_BڲBvvV/tcgJ;JAi][5'AѝYu.Ost 2]lbb9Vz[[˗]&RSC 'M>posnS2ˊ)Wj԰\ϡYoݽ6bAAAMHLYݰ0m-([Vu 6ndݿs[3V\2֚̌na^~ Pp4kkcL >f^Ig'(OyFov%oiR?QQbf 9BP/w+/[NL$|O)ARf#3|[vS*,c2=(>l?iÇɳ9ؖ;ŏ5 }UV&*GZI/JHנ.k%}ũȹs7Mn}N4ٮ^=:h3jfc !{ۺt>xRUO[m7/@4NTLpѲyyS[ɢ&?˽zs:55rK%Lvp-Fm%w>՛\sC9/?s-Y`]kAA*IttB43KiiH$+Tjag>/1~ť-#D#?u}k[gm0۳XܧfֈW̭쪴Qw޶w۫BKLLjeK/9sVZ$*I==OYRE_XXOu8R9&|,ƶU\wTv, yMH-c 5`k+-yqq]d{OTW#q|GynTE0\L:pMl}!lfRٴGOo|]oMUs!ٜc:ybol?rd&]05ݧGUW`mhD^g|lF7 3E+GW)DD71Y\4&,PQA-ֵP{s AFJ9w7΄_n|NZڧG?>(དྷď>r振kBSM%dDy\%|I$#bcS>yl^-mӦ;(˃]+}F"\R`Q|t'Mvԓ)H /7}.$^lk< R?kVaN)@"4tpH~%!"mf;eޞ8yͱ#4n\~z5=|LC@9PJbq'?X@b[3(IFz==ۯJGo3uq)O^=i%GHhxJW}ƒ=TCūW99Yy41KzlBӫR֜- eW hٲR~ӔXVh2^HU"񙋉 ۹MՂBvN86ڽD8Jzyq1٤ur_JJ@1QPg6 uʺVȵT0ҝO>Q,wiCgj]%S+//v"kp~] KFY'컝Ie󏕧 [z(Kdh-nh܍g2xW\]`19% bLfvqEM( Žչ% q'' )񭋊*![BWVCZy`xRҭ[ "33z\*F!:ZøQmQ^3SCU< -!/qqxLRKmZͱmJ{pS,ZTVj㪚huȈ׻TnH(r,&OLHMY#Յ?1˞ĥ )MyPN̼%Ҡk;7\/&а .Pv=ؚtMj^in $H TBK{n>]X|]N?tKȲ _aÜTB֒WfNPmKW{dN⬡+|oz8}:f|zU~p=ͼ`ʇ9^^ެQI(~ٽ1=ֳۇwh:hyTvg;h)n1{SAWx]?qmVT'nNM}"3?S|Ɲ\: pXZL}ׁ8`:ahD\> E--Fi|M!!:g>5SWNSj}}{WP=EnP0k]I0~? _Q]i[vf}adTW}gۗ |⩇S-vbzm]߽0笭| ##!HM"@Dv[] Lh&k{ZtAG5弮.д]pdINNx[^X, ``p>"Bu_:v ;*$ͦUt9FYӻUSnJjH5Y((,ܾu.%͖J cd,wO6Quy>2aNS]SXԬT?WdvV(5\Ii$$dBgnptَ'4-xS˯e+^IБLjAt8/'Fw,,$;^灛#28ږdD 9u 'Sj)~2ڻ~NMcN,Rΰot|{rj;+v1('hwAG6mFDa$1|J)ݮK)nx.IFTC1-֗oK-||,:ziUK2mͭRX9ة-^s/Cͻݜ|Ar><GXxM||?k:&Q&Qen9PSs{kGzFOh_66z6ݽ)yڵF~CUs%Ϸ/]Y06+577m<ݑeoޯkϩ֞yUdd[*|22Z448Hsg8!xǏ_]xSmvBlWOnVTݛK`c# ,*!/j#$ә5c𵐆'u33yI#:o_jTWױ!--%yU4grs"9==3Y_}10p]pн&&Kdžxcc31E+Ps >ÜEBцd7P=!x%Os0$`km{&˻bWUWozdž&M ٣ I·T[ ]5V1=i?VUEyT#Puuh0c.Ruyoȼяyt hl'H[Y;NvݡJŠTcAqW++7zE8>z˞G89wfZ;*FT67wѶhiMK%֘f,91IJmlBţghmII9wL)}cRRx9LM҄6?6L=%xU蓲e ȟih\P4u7fǦZ[$̩7}DgV^ۯȔ5~\dThahdgTuh蓐.Cjj֫WG^cVVp!`q}@YSӵ ɿlФzu=u h^7*55|JKpNRxE1B$܅/<*w>F*(nuiR^Wwvzy~3,LJ$,A,.&ͨ~ݭii "wj70QA.)Iy++ѿ{'v}xA;]#R[1C_x:>>k$C_v ?2kq灟]l$([!{h&>Nv}Obz:oj#xKVP0 7YmHnJ876S=bTvK{KG .]r9t#шk _UxpjczmkknY9u)$sKWCfJϭxC1;UQ4;,t7lxĉ)S$kM$ѱ׽_|#fO6;.$.եgZ ._<;q_rSS I wx_{Z;:TTz^[H@xtQTT\jjT;63sDE$?* C**e,U)kzqC&f6 jk)t='Iǎ:ȬE*"%Y;,鲱VZ%)vz!r)m_x\gKF 3nj9һjS7}viqNS*ӲҦ%_lެdo%Һ}e vV###k?Q2@ڸQKX}̼?EPvYԅ"Jg^GXq_ ]Wh*ķ | Rhy` tM؁ſR!Ą1 ~܊BF{e4C0a'激%xBAGdEQ7wQp7A,e:.*B⋂ #,1>G+U@UTZOL3 hB8 Kx@ HB1ۅ݂9ZB ?&w +(D&p[Ua&‚q? `F4P껳*r@;/ X%Y$ލNXDغE,8?BQҿ#0#W`LDPpc.=\c)0"cߙ  @c5!G@Bc*.v5F8U`8G0"H4F~i `(Ly *rhOp[2u\mB&1XaPhHRPa/P cpTHXw{6&/rk\,@AуBڀ 9Qy9oB-"UD'vb|Y1Gx *T_;YQelWP5J̄NE"1 v g$ނk`&<.YGX+fC6=`!hۏF# ACCcEaagm#,Ѹ @HHV8xLڭH"P̍8t. NO pVpEC8\xF&2Bb!>+)@Ƕr S1BB!n=?BW5"NadP+=QC0PỂR(| XXD8 x lD @Ɇ0YAkQ!O #wP]<T`r   Gn$&~ Vq6H|!j 5?W %1?OH9!$ ?$%? K[T p P1јп:g^ SbGGAdx>\#x`@oEF $seg?@]Ba6)xǃ$@d +wD.P P1H"|a>  $Ϩp #L CDBSal _:43zD@1 C*?"T t`P!Elme]| G MNOPh"<AX,a$! DXnS@r,ND~Cx.e/IVpi]a6+Pf<´L$.{G&H.EJ m&*z%F4bAc"^4;(~x쏬H~U?ba~*Y?pQJoRS. '2LMaW-#9uANx0"!C$D;H0%v#M;v0~ph4ŠAx,!TQ ".uwT> ߦ '* >`@Br_Nb&`4? ' +#l".( x,)-OŎM wES$/M\) 9=\KD$/,=S $'~'s@l0qFQhQ@7x"(: HNG ]~P00 ̂K6P$ CBA'8^(7pH #(H_DQG av 7_RD9SA"GSA`үSĀSA݆#SAaSAZ;ZaSA4SA~SAv=SATnSA~f{SAX^vSA3VPSAN N*XSAESA=ޕSA 54SAHv-SAP%lrSA*FSA SAA NSASASAm+SA;HaSAy";iSASASA5ESAsãSAe}SA?W"SA/1SAm `SAΚSAꨒSA(<SAg]s SA7zMz SAr' SA"i SAaaV SAY SAzQ SAUIi3 SAZ/AC SA 9q SA0 SA(Ѯ SAT M SArSAL_SA'9*SANSAgSA˵SA 砥SAHjzDSADTSA.SA!SAAӾSA^SASAapSA;|̌#?AVN5EAo4MHKASZQAmWAHXo]AӤϑcA]0iA]ߐoAauA7Q{APqfAhA)ksA$Ao47A=IAt[AUnARyA0AI ~wAbfطAz‚8AAzA ZA2A&A{8A)GJAB<]A[oAt[A^ AAo!AˣA'&%A @+A"*2A;<8AT/b'>Am9DAP4#LJA^PA9pVAdD\A=bAhAyBfnA4tAM1G'zAfɇAKAEHAP(A ;AYUjMA_AZ+rA-n܋AF^얷A_&LAxcA A:hnA–Al/ANA q)A&P<A?cvNAXaA=9 AŻ~B AL AJU AEBz^ Asg Ap A z AF; A),k A5Zɛ AB ̞! ANK$ AZ,' Ag\* As@- AnP0 A3 A6 AN9 A&U~< AT? AʂC Aװ F AY?I A oL A:ܟ(O A i1R A^;U A"ş0DX A.`M[ A;!"V^ AGOc_a AT}hd A`!rg Al&R{j Ayhm A5p Acs A+v AlCy As| A AI0Ă Awq΅ A饲4׈ Ad A5 A0v A^ A'% A49V A@z AM AYD) Afr>3 ArG< A~wE AN A*CW AXa A8j Ais AG| AɅ A> Al * ALZ Aɍ Aκ A % A-SQ A9K AF{ AR A_ V Ak9 Axg< Am AZ A A! AM.+ A{_^4 Aϩ= AF!A#O!A3dY!AbOb !A k!A't!A&h}!A2!A?H@!AKv,q!AXm !AdҮѫ#!Aq&!A}.12)!A\rb,!A/!A2!A55!Aw#8!ABS;!Ap>!A:B!A{E!AH!A)D#K!AW?u,N!A5Q!A+>T!A8HW!ADD6QZ!AQ=fZ]!A]kƖc`!Ajlc!AvHuf!A'i!A#Wl!AQ o!AMr!Au!Ax!A I{!A7Ry~!Aeȁ!Aф!A ۇ!A V:!Aj!A$Lٚ!A1z!A>[!AJ֜+!AV[!Ac2$!Ao``-!A|6!A@!A#MI!Ae}R!AF[!Atd!AƢ(n!Ai>w!An!A,잉!AZ-ϒ!An!A/!A_!A*2!A6As!ACo!AOHDR  @ `bHOCHKX spatial_refvOCHK * spatial_refPROJCS["UTM Zone 15, Northern Hemisphere",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",-93],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",0],UNIT["Meter",1]] "crs_wktPROJCS["UTM Zone 15, Northern Hemisphere",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",-93],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",0],UNIT["Meter",1]]OjOHDR (ww  s< B _FillValue1oOCHKy]0__xarray_dataarray_variable__s C{OCHK Qcrs1+datum=WGS84 +no_defs +proj=utm +units=m +zone=15 Pres ?@4 4cp Ix@cp Ix@ A is_tiled  transform ?@4 4 cp Ix@.*Acp IxjSq/SA? 3 grid_mapping spatial_ref `DIMENSION_LISTs,s,0NOCHK tREFERENCE_LISTdatasetdimension s(eOCHK tREFERENCE_LISTdatasetdimension sGCOL]] ^mr?[lQ*EHn$KQ1_%Lk(<6\bjI @c8&,$$tjA$kK/6wffu1 J /%<_&&,)*(aNc?""'99?4HfIy!Mp!JM)M,;;77nq _Qn?..B44-T,K" }``9xg'd.."$   . X!!ttO{{u}0!aqI &//MM WxT]p~YB))dhhUwM.I  WdXXMz2f17zg"tEGu}<0tqj&]H1W_xxP((+6"+-CsV==6,n=1 Ou-9zkijmC,u ::}3takhn0 ,_PTT~v\!88.]s*6n{n=ul;-Jn`)??ijv, 5&x=Z'pPA.\\KHQAil eB92Xn22:Hid_W^X7okf)F );pzz7_*Y-<:lBJ`PbFK 8y AJiR^g Y2 9FCum{[II},HMPFSYVFC8XrrZH2%T9+z. GVhBg4KKAb \-D|'6u1 }vW!Wbbcpp]A:*8i62EEyy-OWx0)!@bC9L< 4-DLf  %;G\A  PP56&,/4~S  p9E+]SS$"^^Ig"/;_9ae`'DN%?15AAf((.|sUZ&")' ]j8?vv8,R~xGb=:G4rbU.xxlG'<i ?!*k0UgMV= +NE + @jiyyg71U::  'j|  ZZM\Pz\ErR ;H1 jR#dFEndF2wgM6=gZ+]   eeiq#DU3-9jaj??GZT[DCrYx u0'bL&!   gh'vz_E_!. ^< <88BB4\6<G  jLB3(8Ijv~l^ZYH 'LT?"e_66PEm 8? !?bD<F=0'2j@|VVk?JS~dRPY.=_\Z X|Q\ BA55F=G@l_j  |#5j&'R erSTB#LKb*>>Y,?&g%TH  6FCN8+3.(33cdyVb~!z-M.YH6Z/]T``V#Q,|r)Q ([Z''F  J66w}pAK22z RO0(W]TT{{J Uh_WS)V3$1@zu#2+|`W%*hhw2NHwff=z>\;= O({[O@TQQPdcz3zzd4N$ kr7**O'}B-c0P6G11`rS cc3nn u|Y"pr4@4]qMMV]5d4N|$$Gl`]GCD7 T$JL  wzzL R@LLF{`  M !TH3;N==xAA`ri9lG<D(fD}}2K{ RRR~yA'& W{e :gkY*Nq$KVsW))&!0vYlg]LGJXXB^Q u#6Ccs``\$$G^?P0k voZqe GD4-6U&P2 |}1G:J~KFGZu<Y}kKK}rveZddPPvh f3_  z D,_c-2^CVTg`2O.?D8}7&\9 VK9G cO<[[/vuFF,3`^[|fKKd"EU1L P78"JK  KK:++M0Q)x 1Jjda2\u:!yn##D',bb-T|]]<O,,+[E1 !)uU1 33MZ43K}ITQ&7)x$2EEaBeKKgLj Q``-  VX[F\\rC4?ZKl<lh,.}};;]m88b44QBFgKT D]g@ya( P#gC;//q$ t(;7Yl4E1c%K;@IOOokt !FF|}99@>8N79=5pp>GaPC`ldh+*[!3>G7ejR* U!,,)s{  ,kt5uuFC9_9IVvS-(x<<XX';0\P~}:rd~@u_2 fUNCC^"xmi i}"s- :lB   G113(:>FR5&NuODSdg\o%; >?h#Fyu_n@``N'0Yr i--:l'II4s(&P{XD22]{G #SB7wxj```Va]Jv.-cW555Y111aK&2BB9Pp6k!R!I4s(D%WC4=XX;=uY)5NG">-MSSJ[wQmHI&=] -&;F35**t,ZOBwwmI-v&v)r94$a7frI"=kQQPkkL,%5cN<eoCl 9x{"^^n\*h&ss7;j$4~OO3=]KK G|po$`of<[>>Rrb"CSS92U{*66\)x&d__LJJ~HH/ z|i,aaue~$ILP77f>$nxBE:PAU=kQQ^>J11W|W3u#eUR~#]]]QQ_8'G1APm99(  n!40hu,,t*Txw^E{s{2#QGO    1Ickk1kSaA  Oz}<\\'ttSSS7a_FLW<sD:c  !11K;{\TTt?2/  &&x'6 D`QTsp(EuTK! +..ANiRANX#~~It"~!b@Dt H**0RP--ccKUAV>iWAGG {sk `+.^q *5Z" ( p`a%% =/qCIG   {s|k|`x X2Z"kZZ=  Z @' B =CL_3~aF=<cb E_Dl@TC<nNntU **5@U6>>eg  KPG(0>W\N7|im&&ZY(}|Xs<}ZVjUVV]U>NZB H$33Gs[&&K>Q[tOO441P#7nmI ;sSrK>~nt4*n l1r7fTddu4uZjRRmCeRP=t9mh33U  &>Xjl>r(sQ&gg2``c  H66kW44@"qU @2B_  ]Wjkl\kk(** `-N"S=[[nnz!!e sraa _]jY6 %e}+oKqT 33$ 8><i7rvv OO<f66#yy>WYQAh$hREVG$vT3 UUg*y}{,4]F@||((I*!J16&&D  '3DH{Mrk9HzzHeEEbGG^F>`R2L4*pyJ}&&K9 zOpbGd(==hhx!9\\ R0w_di1kF>`oGvI0&oo$eMMOSK9I*zGjpRgG1BQ5Kzz!cIGIY<sfy}^^5`AI@/s SM7wwx-#LUU%m)qRRqaOrr<Ea55EGG ww?qA%ww}n""P(U_v_9IR`zxKB++Dp=Ld*ExRdgDs#>&pp%qlHKYJP(/ W]LrLG3u6 ,..> M WWe]$.6ym@@QhO/X'iiUXyJ]dNr >bb2=S ? 8(yog*w7//]+XRR1 (W (3PT~e__JCQ::pp#pazSa~Y 5 ]]<B)$y|TOrPnzmef9+ ..ba?ej|}9QxOOAky {PPM:_ ,`K[h^ W  "02*x4^trDxB|mzzyQQ:2uzJx##TTyR  jj8\8 VVA Uc\[Y@%#L=VAp 2ebb^?-Rk,NgkxDL"(;G8HMM  &VYw4D3AA}A#F#SE&*/s>##'GD#{&nLLJ(B_BB!i *&CCC;ddZjIsyU[MhT "Ss.BVR ,,"%u39?,upiJ3dx8xmm Z ~pj0A-(^(y%q*?vkNXW'C:0?a2h/ lFtAAbaHu~I +5}}f _5CEaa?.(%1(}@yyCnAd0KwG8@v]D3fMddFY%_Y B99 dd."LIYV>v Y\\Bz,r22w2 g=K;[* ww $3Y;} {A99VrHdnn7*nu csHH$ [d+ p&zMOo^ E2vi`rNNJ>WDDrrX vQUeA9nbW{{n/2V GHBSS8dDqoo4  . dj,2mm3 ] ZZ\paQ zzYxIa ;hi+p#-DIvPq0 |&fl${oo2adoo n\ccaQRFBll,,wwZ'']m| HHk9GZx4L7nW%)1Y`D VhYY&&&LxxaM;;jj(]G'CB`^^.}%''U9G}pW]tt >"wGh6p+p)6rroS4<<gH!2/gTT~vP`6XtKss[%:dqDtnr[{#<{kk2#x,,>>)1 \\x'O hh *FFmxccqel5%NN6&J '~}^)MC e sv#..,KTT'gMM9  ;U'{{OfeuXPPoKM^c Y@ bP e;@\n,& =.]]ek~b%Qb]r%Ld[GHk;+L11lsxvGoavYJZ^\dqFjNuB0xZ zqnr%Q]][cljj ouT&QeYC'!88SvyW+S&Dl(('GEYjZZ<fx,] hq+**&wb B8  KK;%RhY@|H@(zOn<YxO.gbvFbFc9M&U<vY,F l$++#*<w_r7K*`y%huB.`zOm.77bXp}OR@@4.%`2~II{~(#fK~_rFvo?..*M-66wsopVV33nSR]]&&Woo1Dd0br]d+_/y+&BB88 6~D!toS 9iin}5_\ Wjj]P2N@::8 u#s=DjFU2y\F&kY:UX"<SSBw_=t&&i(z(IjD{{ZCt ~& =>MMll8P+fL<oBR>>_Rd}KtR)WZ#W''YT)@$% DoOMbPCU ~--TB$Q;  DimK]wgg,{1`  V\cUUjjZZ3HU]>pfZ>@'L3rgAAG,ytbbJDPv5ykk`V=|u$  "95S+9$wi2DVpFze#J!Q7+gBNDpJJ|dwb,::tEhK*6ZH+5+7Y9=EE^?fQQuu\nDHZ#c\\ kV'jVV>,,h;I %%9G-f$% E yyF99|r9cc=a&dPzL=3mJuDjj)-#*uuY,9<88WWUIGGEu(2uu?uu'&-]ttf"YY->|vaa)PFoyYYm233AzOXltt..V[WyMb[|&@uu}i"".Gmt](hh M_SS &go n$p>>p&ez^nZZW!!hY-224yU9^d8i~u466 J_W z!tq}fmpdDQ5% x|oW:nn lUL:_^28JJ611,__ kk0 ollzw//==fn>hy OU[utZ P)Y]d/C@55F\$1N  qXGGqjSTT_TGBIb=x5>nhzzzt#/{{N  &>zhVlw jj(3K.8YYmzzv8NNqAS#n{seIIgP R .gl&mm0 :>z\VDDH;kSSQ\AAw{%pT5G3P\`1nww^U1,K~ <Ni=yy2:@@+KK6#>(NS0==Pv>..j22cpApK_z  RZYY@R--:kX2OkV=='33+HOhf`83%R  Y]  \0BrD&}}a}NMd}\M*3j==vQ%yv('w,??2L3\rr!!iPP-wwgN#/d>4a]}H>D2b9R`.-F W':U#55FF$^  3^nnuBB>E]::Iv<< LHf%u<@bYgO;yHT ]:zO((s0ct  =ee%--Ipk;;8s">P223<#44N r(V'1qxIfcKKR|UGGOs3@~UU|ku4B<>2Q< *?9#..;kT 4a2WM  0?5H|";6B4d(zx qqc$^lOw8NN2lDDhQB~/ "   ''-5K[?3} jg kCYjv[C 99[`hG'@O;e  r"`  VcD  .ZZ Q@{zzQHhm@ .x' 0  9`ph'0;5Q#*-FQDA"L>ZW477n<   [yxh~ #'Qf1e|  CPKf0077 HHp2!<(}FFxYx*=FqxC>w40DD\Bq +OpZfa XFhh{-FYYwW>?QpA8`jxWcc(%A22OGpC#w4>'0D??y)ju.SW\@@~oGNaa\\a-W-nvO|>+%}ll)fZuuy //iCPUU):u, .K[Ga,Pldgpfq^ +><@E^5% 3MlvV)77&y\)b:MZ u69..BB6w ~~T## 6ryP[;,gp__%`N]]/w22>$ldJdX)]++6%% M$69dd,ccc6E;;'m ABY9NP2  #Vn`r:k=!ff8 B==qK/bV00-"JJwU]EddCEc;SSOa!EDNzy_H/5  .? a   .5 [,,dTTPPG5Gg.rbA=5)'5}in aSpOa%E $y,{{Gs5 ]2I'wK"x`dr$Oz9A)2e9Q8~>UO[>/2]]  _jp(*Kstv4Q 'B]RRI}i=NL4jQK@\>3arMM.[A&ZE40 m.ua4,oh{{$]YP30F2]NN}USc27F\9PIWKUy+oCHJ-A ! &dsL[~P-2aZ$(,2DT`rSc@177YFP5iE'<  ;8k%{QQ">{TgE[|@[[AAvn/{) 2!!mO<1A<kx<!,y8"i<} ;  HH?1D*II[BrSBBH8ip2G4I'$jl=`x`kTi%"l$4F!Wq6x9bUUD Ggf~<K4bhX`J`0Tu(aa!T22:!^/##.,ZZ39?/Cv+XwY~h;MkTQ e;QB e*ML%SYT6  00 WRR%hCH:ce1'J%+{ww/'o`i]hzQKKWWdM)EM~)9J>#?)0@895Ov[r !=' .pHBRbYD9\*xrioxarray-0.18.2/test/test_data/compare/MODIS_ARRAY_UTM_GDAL361.nc000066400000000000000000001212071474250745200241150ustar00rootroot00000000000000HDF  0}oOHDR " C;X Syb ,OHDR 7 ?@4 4* 2i@XFRHP ( LY@jBTHDd(b j.6BTHD  d(b MwFSHDPx( `5>BTLF(9L D$ B7W+<a:x/R_+e > il Ac1BhBTLF AW++D (9a: l 5*mOHDR ww ?@4 4* O&|̌#?AVN5EAo4MHKASZQAmWAHXo]AӤϑcA]0iA]ߐoAauA7Q{APqfAiA)ksA$Ao47A=IAt[AUnARyA0AI ~wAbfطA{‚8AAzA ZA2A&A{8A)GJAB<]A[oAt[A^ AAo!AˣA'&%A @+A"*2A;<8AT/b'>Am9DAP4#LJA^PA9pVAdD\A=bAhAyBfnA4tAM1G'zAfɇAKAEHAP(A ;AYUjMA_AZ+rA-n܋AF^얷A_&LAxcA A:hnAÖAl/ANA q)A&P<A?cvNAXaA=9 AŻ~B AL AJU AEBz^ Asg Ap A z AF; A),k A5Zɛ AB ̞! ANK$ AZ,' Ag\* As@- AnP0 A3 A6 AN9 A&U~< AT? A˂C Aװ F AY?I A oL A:ܟ(O A i1R A^;U A"ş0DX A.`M[ A;!"V^ AGOc_a AT}hd A`!rg Al&R{j Ayhm A5p Acs A+v AlCy As| A AI0Ă Awq΅ A饲4׈ Ad A5 A0v A^ A'% A49V A@z AM AYD) Afr>3 ArG< A~wE AN A*CW AXa A8j Ais AG| AɅ A> Al * ALZ Aɍ Aκ A % A-SQ A9K AF{ AR A_ V Ak9 Axg< Am AZ A A! AM.+ A{_^4 Aϩ= AF!A#O!A3dY!AbOb !A k!A't!A&h}!A2!A?H@!AKv,q!AXm !AdҮѫ#!Aq&!A}.12)!A\rb,!A/!A2!A55!Aw#8!ABS;!Ap>!A:B!A{E!AH!A)D#K!AW?u,N!A5Q!A,>T!A8HW!ADD6QZ!AQ=fZ]!A]kƖc`!Ajlc!AvHuf!A'i!A#Wl!AQ o!AMr!Au!Ax!A I{!A7Ry~!Aeȁ!Aф!A ۇ!A V:!Aj!A%Lٚ!A1z!A>[!AJ֜+!AV[!Ac2$!Ao``-!A|6!A@!A#MI!Ae}R!AF[!Atd!AǢ(n!Ai>w!An!A,잉!AZ-ϒ!An!A/!A_!A*2!A7As!ACo!ABTLF(9L D$ B7W+<a:x/R_+e > il Ac1BhBTLF AW++D (9a: l 5*mFHDBOHj _Netcdf4Coordinates CLASSDIMENSION_SCALENAMEy _Netcdf4Dimid  _FillValue ?@4 4axisY long_namey coordinate of projectionstandard_nameprojection_y_coordinateunitsmetre0REFERENCE_LIST6datasetdimension 7:FHDB$ spatial_refPROJCS["unknown",GEOGCS["unknown",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",-93],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",0],UNIT["metre",1,AUTHORITY["EPSG","9001"]],AXIS["Easting",EAST],AXIS["Northing",NORTH]]WO@/SA.2G`.SAm ?:~.SA6.SA.-SA(&Z-SAgu,SAO|,SA)V7,SA"0+SA` u+SA+SAݒ*SAmQ*SAZGq)SA!K)SA%.)SA(SATk(SA (SAd'SA?gH'SANA&SA&SA͋$&SA %SAH{b%SA\s%SA6k]$SAc7?$SAAZ#SAR|#SAJ#SAyB"SA;T:yY"SAz.2S!SA*-!SA!6!SA5 SAss SAq  SAKoSA/&HPSAm"SASA,SA(ذSAgiЊjSACd SA>SA"GSAaүSĀSA݆#SAaSAZ;ZaSA4SA~SAv=SATnSA~f{SAX^vSA3VPSAN N*XSAESA=ޕSA 54SAHv-SAP%lrSA*FSA SAA NSASASAm+SA;HaSAz";iSASASA5ESAsãSAe}SA?W"SA/1SAm `SAΚSAꨒSA)<SAg]s SA7zMz SAr' SA"i SAaaV SAY SAzQ SAUIi3 SA[/AC SA 9q SA0 SA(Ѯ SAT M SArSAL_SA'9*SANSAgSA˵SA 砥SAHjzDSADTSA.SA!SABӾSA^SASAapSA;sqݷy5}V֕[g.g?׫d7WOff6 TmaSn |Ҿ 6ry \\cYlfSǃlq}`ȵU;%vc_‘Va_UU ZsK`&^_fX^Z8߹gayx9W~/ͦA1ƕ%k!++癠G&N³ KK A~FK6<+rt0!!h1u`L[O@m}wa~is/aQC^^/X^XQm 0rp}!b|It)/{K?=Nx$w!OUj'9~@]=%Ȁew- "oI=7 GZY[7W;X]4VVYR^Ā嶻ڗ"2}M[u{^)~m9zH`3"4}ggNn`a$<>gҤ`W>t[Ǐ7ģEΝ\]5G /18.gqi{eB2zA:QZ7=090ׯA\FIDD-QCXl"k-cQQIqՐo66Kz;fv6\>W_Z8 @o%f~5iL93b\^?JK6ΐ ,+ ݿ[?5zqqpeb#[/3NNxKqtEj۷Cfw4rB#p\i ;/%B_b8:^ngS2W! K?ϰbտ~Q1sKXHln]k:%_qt!^Ұ$$4FFZih܌=tЉ#Ȝ&S&!j3%%/W'jH]9;j+O%^2׍lV^FB 'ίQ>ť86X5sx6g(_Vş8Ǐx(n GmEۉ3I~}͒[X,ѥFZMQb-hm-Qelj˓Ë@G Yjb`bD %&8>31S>'e>Az񒲳ggw~9a:?oCBB6O7FFRGOX.-^u\jf8/YO>18CUs}w{ !YrcyB|wz,QGSY}ƨ'^X^~ۥ,,n.(%,8:):vl /!{ހv샵5HL+εk2GH{00dhv-<;AlZ-4444X[=K=fQNP[Ƈ>)RΎ ~ngXbrb&w(/>lr27(E ߫=oJ>"fPr xif2ZBTtvneE W/\kz$Qxa_*Ҿ:Uw7޼>w99cryo_.>zWݲKSR]33c..eʺ+gh|ff:hh3"Og:+X`wjze|PE1gyD{sMEaeҾ5%(+9Jwzon{88uJfdedMp퉨)QRiucS˲-A+gc/]7ۢ$I)tF{ See,<ƒ$_)&^̋}Ԥ6*Lb)M[b4ISGf8jW# @ sPS;}XSll 5-##۵E@3HX5֘;ffwTda!g奣x.`a8Y^}g}^iͅjK@rzpses+$G37 DE:?m,OWnnVUu{ *r+$$K ȹs/^*\{6GEgmhg6$/B/3Y\,KV66ޭBVΆ\ǙC \i}h}]mwwrᯛ77zd- b[))[-^O6}>],&hkXXRW-ڧh~4[$ú Lo`sz>bR44ZKxa뜻qzԏnKUT ?~k.xz[5R XNd|>$~z.q,ooETjcLcIɥ2ijl{} SV /~ePd]UlwʩRI2ؓC}c)(͵~5ik=rdjEdOe\y?=,4h|cBo]@h8=GtN8:T:+i"7[rPS _tKP^ZM}7zymͶ*]m><;xZ.)9ttth=Zݩ4Gs*,GZwv ϲ1#35hnri)B eIqI' x(D$GFm_ͽf)kasO|ଘ̥KRxaū2uGOj Tu*/=˖%T=yyy:@ևNUZgOLy6>'RF'0b3MI;|dm*ήOƴQIzxaHYv6YїFS)9.5ᐱX;%$@}w#O5g%R&\Hu&[KH;NZbG`?b~\dgy):5Oݻ_N9HEڄUqKOŒ_LTr} @/c6o_O,+;<q2'dY]]ϱ\aFA,ř-B+?UT49XLM};G/gJ9M@Exc "\7̇[':N_ {@ȵX7z%mYSMPt~2EO?0uVhR<~DDCeJKIٮp[m+>顲߶ S@g|dtiq>9[ ~BtٱjX΃~պilSӼIYNiWp^劊wwWWgVBn5747eH[j[Qh9RA@`.v"񧵟e=Iϫ6<_9νqsuTMIg6Wpc43 wBT-˾_E 7g`cިHۛGK6QN!=4dl̻Vy~.m)sS ekx>_/n͛S«kt:bbva%_ȤWWkh]<#$ /x<sOj]oJ ёx^ 707BK+NBb1z@/n drP߹ & K{cՀ<ƍM_G}-`иYA1s*ԸW 2Z=Vו<= 'fT?W{!)zD1|^`ϯՂ 3tLj_i7w_aW(}wu˼?Uw56jקoDG׼R$!"r΀ ߴcBt?e#}~]үlE|㒍8~&ɐ4b{)[˛bbVVj=LGEk<0ꩩh :^֟ӏ|%9yJK73R-ϙ*f$$!M//ȋ`$'%)w8ZNscݽ}|~11?GG7z/%Ju}zTQm~j/ݻ# Z]daʁ==|9-?)(>~>[60EOO H'4OA߸ón`WҲTqWG+Sƿ^ѿxq D_ISJ߳?&]9OrƯ)c]K虙Ó][9gMM60E@}+55P2 kys~iʢ=֮jXǏDR/^%uW}`W_RSsO1ԯMMt0vX)73)(76B)k!d YY99- QRv>{Ϊ/22{?$_޲m訝'n!}}Ɇl5ku]/xaxf_13Zl&/soKiQq .pl6)@L WzgG}}s>[㫼9\F]~߸,67Cmm,j_\\$އ73fHp0sYfPPqT˗;vvw?.dgg BǢ {z=e<81q;NP̝'zcU,>?Ϡ9xTtsy'Q&`7JttJo(~`TښSa|LOM,kt998_zPj[Z)shZN4.1:^ׯ,P<>r$0ݕ|\s||5! 癄ŧ6xxx߽͢/l͠VdQqWOtTssS{%Y!J觯:a"uȦr333\#ߤ௶/,u=QÃ^m{Br6xέCso⩽oִrbU$_y, q !b3vIcc6ΦV7)mdVVVVt=Kz3'( ^\Wq[4Ku^%JE)LL~#켮,@5ۓyR}{2 RUYR*}zsHǕ+'w#Tz?k03~$5Pn$96){خWUtO9;ϖt r^Jo  uOϼSӡӾy|AA\U@ϘBM3;;@g~75xVVt0WOwI,@Ǿ~#Rd;|PC:~isN7tNXS?mIf5wsQS8v,ȞL_VȼSuc9>}Sl|]:.'9,̸-*j++QQe}:JG767N}2)]p!rI -nr? +@dP,QhzmM qbT:^ã&\B_ou$'TɅhӓ@v5_١ qO\ɨՖK/jϗtZ-;3K9P2( *]gH$2>/ͺR˿}}axcy&K.|Jd^$ ~gW6_'`uygOO7L32s㙗ǸMOtօNL`Gy0mCpĄIZ +u}=y 2C4*rujIz(^k ^smiiCH("LyG6zH<#dDEk%%Ǐ83!ٗZZM , jmq'Dz選ؚ]Į8Ȥ$TB!+ly^EGX˰93syZETSEQQZPY]>bd݅ pLCn@ xcΞX?>57+HjeeT\l3ZzOWv~W}}ݚLC7#B {Ѱea8` nmQ3SPhJ?[GV:ý7GDO> s6+8֭)xں&'Dee>mN35AGέqy3V#A*/:bCYY 4jl__w~'ΰN09"iζ;EdDiyygiX=*Pǯ̪NP?Yq䇳 qH?"ルk#:bÇ11g䭢^,nSsVs2Q\̪ӗ A%CSC}YL %{%iB般YY丠Ȑ*Ea!^^ND>d2o) 898|s32GF-K:?[gPpJ%xlm; ݙG%%!h*BTrN1oWHdyWEe7tX\n=-=5!ڝzRȷO˪*?$B vk6Z_ꠡq^֯ؠ SQAϳ_]k4pw;.r1H9[E4*3wNWW"s{{N}osWk{:^ϻ;#o̼V)D1#V68D~~*uKt`` $(h%;)i\y7C(r፶:1)JK;#< [X TR|ʩ] /KL/_k`&ʼ304um]ͱ\)gݾM!UhnuԘ @Rn% pb͛)m5_:; #k5{~+>mB5 e]#P [ &7 oeedP>4SL KM%hkhsa+/Ǐ tRREbSml߼z$4L fW ypW'#9wTxe?4mfYwd[Z{5&şY9ſSS_<ڊMϟ#bKU`δ54 ^q{xaYj8,w>uNqŒ{evT{9?~5|=VE@[V0JP>yEXh~gJx&іui28 GLL).^w'Ttxa׮2ov9~uyC KJׯ,:*w'baӇ,)>m\M*+3LaX!\/21ib:[ۂd1 UVW_IOyC%ʶrDXas陑w]=NqWmϤ7UÑtF-YkW)01)yh:*p1'LtcG0=ǭ 51\؏Jm|f#: ;2G\\=ʫgy+)KH&}pr5();6 -x3|V<5id+vmbjʥdnY1f~~Qg4 b5pI qXbݏWi #MNpES(/:^QXE^޻*'^sXB?TyNY,iap%\ǎqK;>3uHKc:E[֪G s`0s,.w&S zMbjOkNZ$]JgB=4ftfvr~ qmm$?PUu/ xPm?᚟Vu O?;/[3=ҽ麍sWA!$MBDy\Gs63sO =rrt0͚Gw F&FT3MO̳zLMe{Dxed߱tw.[ySbsstyV$exر?.kk~ҷtdejpMct<&Z9jiTi@ Cr\~DTgۚ-ZΦ. =GPUQ[ ; %O-50 \d6첱[^٘12Ul"{xV9o,4K#ނGD|˯ +~p}>Ӓu¢'6$#7|Ť-G2 Oښ(sߑp0c9\^ߜZnz!xѾҊUXѥڧUe1;+7iZ89;b!w/{񋇇Mnmuuca9yR%VFF[Ÿ_*}h8 9$-!l`ݡ|αv!H,k収}[<;Lݛ, ~}mаGP1a4+Oѣ 'sZsJ] ot`^.u{$Y{.V7>|xHk<]-.ߏ㑫vtpkC;Pֽ9 vkk:֏%%uuϏ1\Od7:Ck}W7R2++b*շnW|쌌 '٫í<} WW涊lO|{jfTb<\3;b4 kDTOΛ>O8yRɘKXcm),N%e);?Q)O'ʰt*dZxG˷vntsk_{m1~ḻ IPP5'f fog"'66|j/+$ZusKrq3R.\c5蠽{3>>z=PPg28g37ҩRܺuk(it?>)ȋ,G'UkH$i/8sQ1ӞT2a&ܔkJ| ';԰L=ҵ/^jXqu}$~WNXc^jjPYp ]]22!ZN+BB6]A""m999d u)?}2u#$624 #(8m*i w">?w\ynWFoHKv6fTkO͚Y$DyIBRmfB@`|B LP1^QX 11:Y$[QFF)I67ZSk/--LC3ſE.`j|dscNKRksu LVsb3$RH=TǬ@VPi؀!]~Ζ]ו,DDYYD?_H _tTPŚKNL:g;Ӫ_8BX&/\f]uΐ{(b!Z1eJꏮ+* 1zĭ& 3 j>{koouzzFZtWU l$1qzBZ""p>~QL+ eᡑfû퓄!s/&-z-7wRM-&[>ٻr_KJrs7e8#0$-+41(3sIN!R̾߆ɏ# HLJH71PE1JtLIt0R )bV|n .w&}KXrUFϷU],+Rr *cuRRC<) 82&RIF ݍb% rNQt0f6ϩ؞5hh`Ns|*)yyɬZ7f B6o/ߥ7=sÌG-wkfoo%^$ƪ-GݵC6쎎Ɛ4<楍h}+3CB!.1 bYɦ{߼e'NjGC8_Vd kd+D\>q"!CXSHTT:^؋XVRbr $MgszUKR\ܳ~A>9 7)9r ۱ƌ%~B5C ٿ`44ht |{p[/!*J<%[qA"pE;'"yk F>eQ lǏ=U?SY Bj3YOl.px~UʻZ#>gHInuԔ;LzufF""\7í([];hwҏOL 44\⒞VV8ҦHIj& WX1xFk_ 1!uvOTx E;|Ouw~;vS}jڵС+[ovw ^o*dI9rDE6 '9Οw79geueʊϯMM Xњk Ba ,ne*O,- a]M7C@@"tryUޜr,}Id-eocBEccodֿ@{DN58׹5p4::+.jM7Ɏ"dIW%'&iK4O)UL-kp?v p^PisQѱOkX[4&/e9 t X *7<Ⱥً(rET$oĿ)cfVbܦ!+W|SNNgMy?j+wv ̰oSD쬭>DON~GE +/4bE_?K^ k7(bIJ*-XC/U7[ ^>,90UWI37g lj\߼Q=yQ13yEJ'%k7~/Լ;$4[MIJX9GNN<ѧ^(yYR3Gסca '+$H;:$OjF94r4-]e,/mjP AFǢPQr: o[t#$$dYT 00a! c@QM_ A\rHaB(*WQ B# @)z~r͇ ?Uv8wcLV`H7C)t0i (O"AcAGa[xaЇaI7/E sGl/;po :^>-d{Fm} JG ۄ\8v!U 7Mbaf/1^8- ` N & /{]?\8\A mPpAt#,@ %X}X$wz@?"4x@,`ppпaAMІ?z`0y-᧱͈Rا2ݫr,d. d8( @׊C߱>gX{:@yvQ/, ir@\e ª:(?xgnrQ9b|O7^/ pcP)Lx@XؓhvPCa16 t0{ee?;F&\ҾXehmu{5 ! @ہ:^\4R&<:C򑷃[ F s@>w^*6"86)z9 ֻQUD`PX/_`Zxd@3,!e (!ʂ@^t0&rE (t`ӆ `8~Yt0]0!uA0 ej`* '@`C E$cT=(B 05qC3q-:^5ćpqh?#PCqtDpq@\m(89X(@(a`q~ B/xaA~(?@;:^!,@?1E:ا@ |1/ g wT ?2A@8?C*e1xa(?ÆF * I;߅aMnj<@3 8 0Hx:DP5 \ہ %xXH0-0ANcBAP @@ar >P/`X 6u"3wBG <2D?ۇ@t t ,xa0 ;?< `o'﾿ PHCP~ §ҁ9pX 'eQ xȡ9p~`= @DQ (d|@F s`|!,= T?Saas@ ,V>G{ 0|'Q #9EQp0 a֖%6Pz d6p[z@C@+`/7#=59Fi- Av^t0/߂ "}{rb-+ nx.jbXc8^jŜ B5{eoCQ 䕠}XC S$ ;,AdZ=!0f( hw(D7~*$lDYxSKa N@2;9\?Ar x6i("g(QŠ!H~߶x_vo- 1ؗ )/(/6y @f 3( j+<8! rb`!T@ Pwp`*3!O` zVaB05Gg;:b)Hk[Ӆ(df"%5" :b >ӷ<ڂ _߱}P)\-"oNB`z (B- 0` 6B7~p\9Tӄ:XB@4"$C)`p :^þ4,YAll(Ypc*B)?<ԡ, dCo𔀈`G8A='aP   ҈rɁ'm6E: }w@%/:bp3@4CCAuWC8pD!'&8N! foJp%D쿳lDW :8D'. J" sY dB1pA{%T=s:(e,qLW w-y2lhT~=CpԼHJ`&83ʰmã|qdys\"arw\ m-cJ[(AON~]tQfDS#5ŕ]ԐJÅ#]j)z{Q*kbGX(ۙ3/ڸ%^ O]`"C7 ۆ@V13a*1L$3x |;@G>vd}h½<ʰ}yP39"G :'-o0ce>xu^\DjcF-O g=+c_GUJ&\#^Jԇ,FQ*rioxarray-0.18.2/test/test_data/compare/PLANET_SCOPE_3D_INTERPOLATE.nc000066400000000000000000000337031474250745200246510ustar00rootroot00000000000000HDF  7`OHDR " vD __NCProperties7version=1|netcdflibversion=4.6.1|hdf5libversion=1.10.1 Bcreation_date2018-05-10 16:34:33.946542946542z@dOHDR   ?@4 4b P 0CLASSDIMENSION_SCALE "NAMEx4OCHK(U(OCHK 4 _Netcdf4Dimid  P _FillValue ?@4 4 !unitsm B long_namex coordinate of projection ?standard_nameprojection_x_coordinate1BMOHDR  ?@4 4}X O 0CLASSDIMENSION_SCALE %NAMEtimef|OCHKFtime"r%OCHK 4 _Netcdf4Dimid %$ OHDR   ?@4 4 _P 0CLASSDIMENSION_SCALE "NAMEyJOCHKy@OYOCHK 4 _Netcdf4Dimid  P _FillValue ?@4 4 !unitsmimid denuAzuAuAuAuAuAuAuAuAuA#Q*A6^A5^A 5^A`4^A3^A2^A 2^A`1^A0^A/^ALK@RǶ9P@>@x%o>@2عL@U'@\),@ A@z7vJ@` ??7@CP@̱2@b,j>@βQ@sF@ Us'O@BB@?11L@@dLV@@SB@MeC@4?-WN@^3 qL@ں=@zK{J@0P@E{'p2@8|Q<!@`A@)A @N@>@ŏUD@_hl7@ $10@$V=_;@l?!?8|R#@ 5AF@ 6@mk<@Č[B@s*.@x@0Z?X7A@G$B@Da<@Gc:?V 7A@x$@$ICK@PP@q=B@-A1@<-F@鮛$@9!W {M@zkժG@C6P@:N0+B@{B@9>ԑA@nb2@`LA@rm ;@Y*7{*@~H@6pڃL@PSc;@ip5'@ƌ8@B%.@0?}{:@;;X݈mE@wo$@:=U3M@ɽ= B@A٩E@hО@@~30@5VAZK@7>D-@J‘A@ I@ a{L@GeJ@ȾR9#:@ J%ǵr0@7ß@@@/IBS4@ESO@pK"'@%vPC@R$M@PR'@/@w<@Ъ,#@#<7@fIbP@ :%#@js^׃K@JCґI@iRQL@V槻@ #.@@a{1@< ^KqJ@t cKQ@0jC@3֚8L@Bd@ 5@7!@8t7@W&V @0*9[>@.EF@;Ƽ JH@?eP8@3$dV>@?H 5B@ddM@1H@1`M@)aB@I@9*vO@@ i΋:@h7rGN@U* B@ps%@IN@BD@q7XG@4ZE@Ma.@NfF# /@|.>@άq9@?[@A@c.kŐ6H@@g}#F@dQ@:h2@-l2$M@)e4@<ߏO@?GQ@{a0? gS=@?@Eek'A@܀@rYpB@jžPVA@&(,O@(@%JJ@40­P@S8J@:n)@W#O@/MEcd+@p"@8A/0@^lB:@hb>WD@Q2@3P@kշ&7@_LLI@DsN@4'b?@ÖDx7@UF@ <1x1@~cwC@<V@@ 87J@ ]H@:()@ĆP5@J;@C]h2@OCHK0 P _FillValue ?@4 4 Hunits(seconds since 2016-12-19T10:27:29.687763 ; calendarproleptic_gregoriank1OCHK B long_namey coordinate of projection ?standard_nameprojection_y_coordinate"OHDR  @ nbDCtOCHK5? spatial_refa>OCHK 1 spatial_ref PROJCS["UTM Zone 22, Southern Hemisphere",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",-51],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",10000000],UNIT["Meter",1]] )crs_wkt PROJCS["UTM Zone 22, Southern Hemisphere",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",-51],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",10000000],UNIT["Meter",1]]2OHDR 8   ?@4 4 @ "unitsDN^SOCHKygreenmfoOCHK P _FillValue ?@4 4 3 grid_mapping spatial_ref  transform ?@4 4 @huA7^A? 3 coordinates spatial_ref pDIMENSION_LISTmmmOCHK tREFERENCE_LISTdatasetdimension m)2OCHK tREFERENCE_LISTdatasetdimension m)HtREFERENCE_LISTdatasetdimension mOHDR 8   ?@4 4m/* 1@t "unitsDNQTOCHKxjblue)]gOCHK P _FillValue ?@4 4 3 grid_mapping spatial_ref 3 coordinates spatial_refBP MGCOLj    jOCHK  transform ?@4 4 @huA7^A? pDIMENSION_LISTm m m OCHK tREFERENCE_LISTdatasetdimension m)$tq@AL)R@nEa*?v7$l@?%@&xPv @M|"O@BQL@_&@?&S_@^^$@lf?ٕ+@0j @; @$Ehf<@(0 @)X̧?qp??D?׉@,R?%<~@:mG?`9@z-b@m^Z?\ @E ١l?h2F@uYJ@R O@?:@$t@32i@J@|1?&fS_@_`@ iG?8K!R@Pd?(k?@ݵ@xd@CMc+#@^.?=Prk@_@bwھ@X @Jp@'}?.xs@L@o@nK{y@&:-# @0Z@NM]@:X%Q@i?֥r@H=j?>b@XBLh=@IE]f? H"?J}2@E f6?)~@zG|W@,?^@va@^fR@t=@yŶ@eĭ,l@-L@T\@uJ@;.& @uc_@(W?`=?՗^%@f\E?sf\Z?/t@@?CVP@ HvI?ni? ag@k)@̈́j@ V@ʦ<@|8?))@ @Ë4?-W k @ 0@}6F?ԫ_?@1U6]6@߁e@pՁh9 @3w@V4]?-`+ @3D\?@ts|?+э@Gd(@~#;?@>˨?N@R1@Gga%b@`Mzv@J@뷞it@WڏnH@eNc@ߡ@G/{{G@HY @s @\G@EА ?ޔ!1@ŷU?\Tם@7@Ҧw@ @I?H j@ߛk>@jrx! @i[ @} @|%j?NWz@pc'@ΐӓ\@@cB?/a@QAg@%<2@V+hY@,\&@ f?8?"2@0@˙R|@ҍ @uJk@bPF?IW@zݒ5?8Ap?@Pƀ?$7ZqY?'?Ev @v}K@ ޭx@_ @?ƌ@3@b6R@?[Qh@3 @T$+@@Ě?v{@r"7?0%z6 @fj 9@x @rioxarray-0.18.2/test/test_data/compare/PLANET_SCOPE_WGS84.nc000066400000000000000000000323701474250745200233500ustar00rootroot00000000000000HDF  4`OHDR :" D a_NCProperties9version=1|netcdflibversion=4.4.1.1|hdf5libversion=1.10.1 Bcreation_date2018-01-31 14:35:38.630928 3 coordinates spatial_refחkOHDR   ?@4 4b XP 0CLASSDIMENSION_SCALE "NAMEx'tOCHKd ?FOCHK 4 _Netcdf4Dimid  P _FillValue ?@4 4 B long_namex coordinate of projection ?standard_nameprojection_x_coordinate !unitsmlJTI$jlIۅIMVI&I1˝If㜨I@IhI8+I#Q*AkR1 mȩR1X̘R1+iR1܊9R1< R1IڲR11R1 N{R1ljfKR1tq@AL)R@nEa*?v7$l@?%@&xPv @M|"O@BQL@_&@?&S_@^^$@lf?ٕ+@0j @; @$Ehf<@(0 @)X̧?qp??D?׉@,R?%<~@:mG?`9@z-b@m^Z?\ @E ١l?h2F@uYJ@R O@?:@$t@32i@J@|1?&fS_@_`@ iG?8K!R@Pd?(k?@ݵ@xd@CMc+#@^.?=Prk@_@bwھ@X @Jp@'}?.xs@L@o@nK{y@&:-# @0Z@NM]@:X%Q@i?֥r@H=j?>b@XBLh=@IE]f? H"?J}2@E f6?)~@zG|W@,?^@va@^fR@t=@yŶ@eĭ,l@-L@T\@uJ@;.& @uc_@(W?`=?՗^%@f\E?sf\Z?/t@@?CVP@ HvI?ni? ag@k)@̈́j@ V@ʦ<@|8?))@ @Ë4?-W k @ 0@}6F?ԫ_?@1U6]6@߁e@pՁh9 @3w@V4]?-`+ @3D\?@ts|?+э@Gd(@~#;?@>˨?N@R1@Gga%b@`Mzv@J@뷞it@WڏnH@eNc@ߡ@G/{{G@HY @s @\G@EА ?ޔ!1@ŷU?\Tם@7@Ҧw@ @I?H j@ߛk>@jrx! @i[ @} @|%j?NWz@pc'@ΐӓ\@@cB?/a@QAg@%<2@V+hY@,\&@ f?8?"2@0@˙R|@ҍ @uJk@bPF?IW@zݒ5?8Ap?@Pƀ?$7ZqY?'?Ev @v}K@ ޭx@_ @?ƌ@3@b6R@?[Qh@3 @T$+@@Ě?v{@r"7?0%z6 @fj 9@x @OHDR  ?@4 4 =  0CLASSDIMENSION_SCALE %NAMEtime?ZOCHK<timeX R=iOCHK- 4 _Netcdf4Dimid  P _FillValue ?@4 4 Hunits(seconds since 2016-12-19T10:27:29.687763 ; calendarproleptic_gregorian/xWOHDR   ?@4 4(b P 0CLASSDIMENSION_SCALE "NAMEyfOCHKFy5OCHK& 4 _Netcdf4Dimid  P _FillValue ?@4 4 B long_namey coordinate of projection ?standard_nameprojection_y_coordinate !unitsmFOHDR  @ \baBOCHKD? spatial_refOCHK ( spatial_refGEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]] crs_wktGEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]]zOHDR 8   ?@4 4 @ "unitsDNƩJqOCHK@blue8?OCHK P _FillValue ?@4 4 3 grid_mapping spatial_ref  transform ?@4 4 >]ȢIR1? pDIMENSION_LIST888iOCHK tREFERENCE_LISTdatasetdimension 8pSOCHK tREFERENCE_LISTdatasetdimension 8AwtREFERENCE_LISTdatasetdimension 8OHDR 8   ?@4 48- .@- "unitsDNOCHKxgreen'OCHK P _FillValue ?@4 4 3 grid_mapping spatial_ref  transform ?@4 4 >]ȢIR1?}@GCOLX X X X X  X  OCHK pDIMENSION_LIST8 8 8 bOCHK tREFERENCE_LISTdatasetdimension 8QLK@RǶ9P@>@x%o>@2عL@U'@\),@ A@z7vJ@` ??7@CP@̱2@b,j>@βQ@sF@ Us'O@BB@?11L@@dLV@@SB@MeC@4?-WN@^3 qL@ں=@zK{J@0P@E{'p2@8|Q<!@`A@)A @N@>@ŏUD@_hl7@ $10@$V=_;@l?!?8|R#@ 5AF@ 6@mk<@Č[B@s*.@x@0Z?X7A@G$B@Da<@Gc:?V 7A@x$@$ICK@PP@q=B@-A1@<-F@鮛$@9!W {M@zkժG@C6P@:N0+B@{B@9>ԑA@nb2@`LA@rm ;@Y*7{*@~H@6pڃL@PSc;@ip5'@ƌ8@B%.@0?}{:@;;X݈mE@wo$@:=U3M@ɽ= B@A٩E@hО@@~30@5VAZK@7>D-@J‘A@ I@ a{L@GeJ@ȾR9#:@ J%ǵr0@7ß@@@/IBS4@ESO@pK"'@%vPC@R$M@PR'@/@w<@Ъ,#@#<7@fIbP@ :%#@js^׃K@JCґI@iRQL@V槻@ #.@@a{1@< ^KqJ@t cKQ@0jC@3֚8L@Bd@ 5@7!@8t7@W&V @0*9[>@.EF@;Ƽ JH@?eP8@3$dV>@?H 5B@ddM@1H@1`M@)aB@I@9*vO@@ i΋:@h7rGN@U* B@ps%@IN@BD@q7XG@4ZE@Ma.@NfF# /@|.>@άq9@?[@A@c.kŐ6H@@g}#F@dQ@:h2@-l2$M@)e4@<ߏO@?GQ@{a0? gS=@?@Eek'A@܀@rYpB@jžPVA@&(,O@(@%JJ@40­P@S8J@:n)@W#O@/MEcd+@p"@8A/0@^lB:@hb>WD@Q2@3P@kշ&7@_LLI@DsN@4'b?@ÖDx7@UF@ <1x1@~cwC@<V@@ 87J@ ]H@:()@ĆP5@J;@C]h2@rioxarray-0.18.2/test/test_data/compare/sentinel_2_L1C_interpolate_na.nc000066400000000000000000000347561474250745200263370ustar00rootroot00000000000000HDF  9`OHDR "  |  4 timePlatitude longitude\ spatial_ref6redl nir% sOHDR  @  0CLASSDIMENSION_SCALE %NAMEtimef&hfOCHK9 4 _Netcdf4Dimid  Eunits%days since 2016-03-23T14:05:08.463000 ; calendarproleptic_gregorianxOHDR   ?@4 4 X 0CLASSDIMENSION_SCALE )NAME latitudeQIFSSEZ >(3OCHK 4 _Netcdf4Dimid  P _FillValue ?@4 4&#\nOHDR   ?@4 4R$  ` 0CLASSDIMENSION_SCALE *NAME longitude 4 _Netcdf4Dimid  P _FillValue ?@4 4 1 long_name longitude 1standard_name longitude^Z JFRHP>Z  (֕WBTHDd( XGBTHD  d( .QOFSHD>Px(BTLFD#W RMxJl3-3ExTU2<'3H߳.ZqL.gGt06BTLF .D#g.Z'2R3ExJIDFHDB| @bhnameSentinel-2 L1Cversion001 descriptionL1C Sentinel-2A/B data in the native tiling/format/projection/resolution downloaded from the AWS public dataset bucket. references2https://aws.amazon.com/public-datasets/sentinel-2/formatGeoTIFF dataset_name Sentinel-2 keywords*satellite imagery, optical, multi-spectralmetadata_search_fieldslatitude_band, aws_path, data_coverage_percentage, scene_id, cloud_coverage, original_scene_id, product_meta_link, product_path, thumbnail, date, utm_zone, product_id, timestamp, original_tile_meta, version, cloudy_pixel_percentage, satellite_name, grid_square, spacecraft_name_NCProperties"version=2,netcdf=4.7.1,hdf5=1.10.5OCHKf# 0 long_namelatitude 0standard_namelatitude7OHDR  @ l ( spatial_refGEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]] crs_wktGEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]][uռOCHKl8 3 coordinates spatial_refm$<*$_$̂)$٥_5$ƅA$-pM$ZY$2De$Uc/q$(x}$vP="`KB`K3H`K,kM`KiR`KOX`K]`KHc `K\h `Km`KNs`K%x`K?B>BF"7DA:9J8698/*3=@<<>(;-*8@2+8>;54?628>@'<88>/>;.*7?&@:8<<=,1.*(@B7,.:@&*$%2/*) 6?72:!-92&++123*5)+7;)&4(&911,- $-5&" 1C3,9&!0:.E{ G U -k( & U r X C QP[#, $d l J<CS/ < >I7n Z!>,FU 5 0 $ o< q !7 Z ]2)x[lOHDR 8    t T _Netcdf4Coordinates  B _FillValue "unitsDN 3 grid_mapping spatial_ref  transform ?@4 4 .F?ة#`K33F$? 3 coordinates spatial_ref pDIMENSION_LISTl(l(l(7,OCHK tREFERENCE_LISTdatasetdimension l %0K(}OCHK tREFERENCE_LISTdatasetdimension l %tREFERENCE_LISTdatasetdimension l DOHDR ?8    Y T _Netcdf4Coordinates  B _FillValue "unitsDN 3 grid_mapping spatial_ref  transform ?@4 4 .F?ة#`K33F$?o YGCOLPPP\PP  P  \OCHK| pDIMENSION_LISTl( l( l( 2؈NOCHK tREFERENCE_LISTdatasetdimension l %rioxarray-0.18.2/test/test_data/compare/sentinel_2_L1C_utm.nc000066400000000000000000000362171474250745200241320ustar00rootroot00000000000000HDF  <`OHDR "  P v xPytime spatial_refred #nir(rOHDR   ?@4 4; ` 0CLASSDIMENSION_SCALE "NAMEx[aOCHK& 4 _Netcdf4Dimid  P _FillValue ?@4 4 B long_namex coordinate of projection ?standard_nameprojection_x_coordinateGOHDR   ?@4 4 NX 0CLASSDIMENSION_SCALE "NAMEypAFSSE >qLOCHK 4 _Netcdf4Dimid  P _FillValue ?@4 4OHDR  @;  0CLASSDIMENSION_SCALE %NAMEtime 4 _Netcdf4Dimid  Eunits%days since 2016-03-23T14:05:08.463000 ; calendarproleptic_gregoriannI 1 4 _Netcdf4Dimid ) FRHP>  ($BTHDd( p/$BTHD  d( FSHD>Px(#BTLFD#W RMxJl3-3ExTU2<'3H߳.ZqL.gGt06BTLF .D#g.Z'2R3ExJIDFHDB ~ҮnameSentinel-2 L1Cversion001 descriptionL1C Sentinel-2A/B data in the native tiling/format/projection/resolution downloaded from the AWS public dataset bucket. references2https://aws.amazon.com/public-datasets/sentinel-2/formatGeoTIFF dataset_name Sentinel-2 keywords*satellite imagery, optical, multi-spectralmetadata_search_fieldslatitude_band, aws_path, data_coverage_percentage, scene_id, cloud_coverage, original_scene_id, product_meta_link, product_path, thumbnail, date, utm_zone, product_id, timestamp, original_tile_meta, version, cloudy_pixel_percentage, satellite_name, grid_square, spacecraft_name_NCProperties"version=2,netcdf=4.7.1,hdf5=1.10.5OCHK& B long_namey coordinate of projection ?standard_nameprojection_y_coordinate>P2OHDR  @ g  K spatial_ref#PROJCS["UTM Zone 21, Southern Hemisphere",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",-57],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",10000000],UNIT["Meter",1],AUTHORITY["EPSG","32721"]]$EOCHK ; 3 coordinates spatial_refcg&Ag}&Aۼ!&AO$ &Aq(&A7L+3&A&//G&A2[&AB6o&A9&AzV=&Aj@&ABtt$`A;"`A8!`AMY `A`A_Y`AW `A$X`A`Aav`AK>`A?B>BF"7DA:9J8698/*3=@<<>(;-*8@2+8>;54?628>@'<88>/>;.*7?&@:8<<=,1.*(@B7,.:@&*$%2/*) 6?72:!-92&++123*5)+7;)&4(&911,- $-5&" 1C3,9&!0:.E{ G U -k( & U r X C QP[#, $d l J<CS/ < >I7n Z!>,FU 5 0 $ o< q !7 Z ]2)x[lOCHK Ccrs_wkt#PROJCS["UTM Zone 21, Southern Hemisphere",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",-57],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",10000000],UNIT["Meter",1],AUTHORITY["EPSG","32721"]]L!OHDR 8     T _Netcdf4Coordinates  B _FillValue "unitsDN 3 grid_mapping spatial_ref  transform ?@4 4 4sډ$@/&A4sډ$Ð$`A? 3 coordinates spatial_ref pDIMENSION_LIST + + +4 OCHK tREFERENCE_LISTdatasetdimension  #(@OCHK tREFERENCE_LISTdatasetdimension  #(netREFERENCE_LISTdatasetdimension  #iOHDR ?8    xY T _Netcdf4Coordinates  B _FillValue "unitsDN 3 grid_mapping spatial_ref  transform ?@4 4 4sډ$@/&A4sډ$Ð$`A?lGCOLP    POCHK pDIMENSION_LIST +  +  + 'Ts[OCHK tREFERENCE_LISTdatasetdimension  #(vrioxarray-0.18.2/test/test_data/compare/sentinel_2_L1C_utm__auto_nodata.nc000066400000000000000000000362171474250745200266470ustar00rootroot00000000000000HDF  <`OHDR "  P v xPytime spatial_refred #nir(rOHDR   ?@4 4; ` 0CLASSDIMENSION_SCALE "NAMEx[aOCHK& 4 _Netcdf4Dimid  P _FillValue ?@4 4 B long_namex coordinate of projection ?standard_nameprojection_x_coordinateGOHDR   ?@4 4 NX 0CLASSDIMENSION_SCALE "NAMEypAFSSE >qLOCHK 4 _Netcdf4Dimid  P _FillValue ?@4 4OHDR  @;  0CLASSDIMENSION_SCALE %NAMEtime 4 _Netcdf4Dimid  Eunits%days since 2016-03-23T14:05:08.463000 ; calendarproleptic_gregoriannI 1 4 _Netcdf4Dimid ) FRHP>  ($BTHDd( p/$BTHD  d( FSHD>Px(#BTLFD#W RMxJl3-3ExTU2<'3H߳.ZqL.gGt06BTLF .D#g.Z'2R3ExJIDFHDB ~ҮnameSentinel-2 L1Cversion001 descriptionL1C Sentinel-2A/B data in the native tiling/format/projection/resolution downloaded from the AWS public dataset bucket. references2https://aws.amazon.com/public-datasets/sentinel-2/formatGeoTIFF dataset_name Sentinel-2 keywords*satellite imagery, optical, multi-spectralmetadata_search_fieldslatitude_band, aws_path, data_coverage_percentage, scene_id, cloud_coverage, original_scene_id, product_meta_link, product_path, thumbnail, date, utm_zone, product_id, timestamp, original_tile_meta, version, cloudy_pixel_percentage, satellite_name, grid_square, spacecraft_name_NCProperties"version=2,netcdf=4.7.1,hdf5=1.10.5OCHK& B long_namey coordinate of projection ?standard_nameprojection_y_coordinate>P2OHDR  @ g  K spatial_ref#PROJCS["UTM Zone 21, Southern Hemisphere",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",-57],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",10000000],UNIT["Meter",1],AUTHORITY["EPSG","32721"]]$EOCHK ; 3 coordinates spatial_refcg&Ag}&Aۼ!&AO$ &Aq(&A7L+3&A&//G&A2[&AB6o&A9&AzV=&Aj@&ABtt$`A;"`A8!`AMY `A`A_Y`AW `A$X`A`Aav`AK>`A?B>BF"7DA:9J8698/*3=@<<>(;-*8@2+8>;54?628>@'<88>/>;.*7?&@:8<<=,1.*(@B7,.:@&*$%2/*) 6?72:!-92&++123*5)+7;)&4(&911,- $-5&" 1C3,9&!0:.E{ G U -k( & U r X C QP[#, $d l J<CS/ < >I7n Z!>,FU 5 0 $ o< q !7 Z ]2)x[lOCHK Ccrs_wkt#PROJCS["UTM Zone 21, Southern Hemisphere",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",-57],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",10000000],UNIT["Meter",1],AUTHORITY["EPSG","32721"]]L!OHDR 8     T _Netcdf4Coordinates  B _FillValue "unitsDN 3 grid_mapping spatial_ref  transform ?@4 4 4sډ$@/&A4sډ$Ð$`A? 3 coordinates spatial_ref pDIMENSION_LIST + + +S$OCHK tREFERENCE_LISTdatasetdimension  #(@OCHK tREFERENCE_LISTdatasetdimension  #(netREFERENCE_LISTdatasetdimension  #iOHDR ?8    xY T _Netcdf4Coordinates  B _FillValue "unitsDN 3 grid_mapping spatial_ref  transform ?@4 4 4sډ$@/&A4sډ$Ð$`A?"t&GCOLP    POCHK pDIMENSION_LIST +  +  + 'Ts[OCHK tREFERENCE_LISTdatasetdimension  #(vrioxarray-0.18.2/test/test_data/compare/small_dem_3m_merged.tif000066400000000000000000010514161474250745200246040ustar00rootroot00000000000000II*O >##S;v,vvv vvuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu}uwusumugu^uYuYuUuRuOuOuQuTuUuRuMuIuEuBu?uuuCuEuHuPuYu`ubuaudujunuuuuuu:v+vvvv vuuvvvvvuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu{uvuqumuhuduau^u^u^u\uXuUuQuNuJuGuFuEuFuFuDuAu=u:u7u5u2u1u/u/u/u1u4u9u=uAuEuHuKuKuFu:u1u4u:u?uEuJuMuQuXubuiujuiukuputu|uuuu;v-v#vvvv v vvvvvvv v vvvuuuuuuuuuuuuuuuuuuuuuuuuuuuvvvvuuuuuuuuuuuuuuuuuuuuuuuuuu|uvuqulujuhueubu_u[uWuTuQuNuNuNuKuGuCu@u>u:u7u5u5u5u5u7u:u?uEuHuKuOuQuRuNuBu9u;uBuGuLuSuVuYuaukurusuququvu{uuuuuu@uEuKuPuRuVuXuYuUuKuBuCuIuOuVu\u_ucujutuzu{uxuyu~uuuuuu6v0v;vAvKvSvTvSvRvPvOvQvPvKvEv@vvPv_vjvsv}vvvv|vuvnvfv]vSvLvLvNvNvLvIvDv>v7v/v#vvvvuuuuuuuuuuuuuuuuuuuuu}uu|uvurunujufuau]uZuXuXuYu\ubuhujumuouqurupuiudugumuruzuuuuuuuuuuuuuuuuvvvvvvvvvvvvvvvvvvvvvvvPvvuuuv vvvvvvvv,v@vVvivyvvvvvvvvvv|vrvhvbvbvevfvgvevbv\vTvKv?v1v$vvvvuuuuuuuuuuuuuuuuuuuuuuuu|uxutuoujufucubuaudujupusutuvuyuzuwuqumuoutuzuuuuuuuuuuuuuuuuuvvvvvvvvvvvvvvvvvvvvvvv]vvuuvvv v%v&v"v v'v1v@vWvnvvvvvvvvvvvvvv~vyvzv~vvvvv|vuvjv\vMv=v/v"vv vvuuuuuuuuuuuuuuuuuuuuuuuuu{uwusuoulujuluruxu{u}u~uuuuzuvuyu}uuuuuuuuuuuuuuuuuuvvvvvvvvvvvvvvvvvvvvvvvbv"vv vvv(v2v:v:v5v4v;vFvXvpvvvvvvvvvvvvvvvvvvvvvvvvvv}vmv\vKv;v,vvv vvuuuuuuuuuuuuuuuuuuuuuuuuuu{uvusuvu{uuuuuuuuuuuuuuuuuuuuuuuuuuuuuvvvvvvvvvvvvvvvvvvvvvvvhv(v vvv*v8vEvNvOvLvKvOv[vpvvvvvvvvvvvvvvvvvvvvvvvvvvvvv{vhvTvCv4v&vvvvuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuvvvvvvvvvvvvvvvvvvvvvvvgv,vvv(v5vDvSv^vcvbvavdvqvvvvvvvwwwwwwvvvvvvvvvvvvvvvvvvvov[vIv:v+vvv vvuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuvvvvvvvvvvvvvvvvvvvvvvvkv0vvv/v>vNv^vkvsvvvvvyvvvvvv ww)w2w5w3w,w#ww wwvvvvvvw w w wwvvvvvvvvbvPv?v0v#vvv vvuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuvvvvvvvvvvvvvvvvvvvvvvvmv4vvv/vDvTvevtvvvvvvvvvw(w8wFwOwRwOwHw>w3w(wwww www"w*w/w2w/w'wwwvvvvv|vhvUvCv3v)v%v vvv vvuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuvvvvvvvvvvvvvvvvvvvvvvvpvvIvMvGv?vvAv@vvvvvvvvvvvvvvvvvvvvvvvvvyvav]vivvvvvvvvvvw*wIw`wtwwwwwwwwwwwwwwwwwwwwwwwwwwtw\wEw0ww wvvvvvvvvvvvvvvpv_v\vivnvkvev]vUvMvGvBvv7v4v.v(v+v3v4v+vv v vvv/vEvTvcvpv{vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvzvfvovzvvvvvvvvw@w]wrwwwwwwwwwwwwwwx xxx&x+x+x%xx xwwwwww|wmw_wPwAw1wAwMwRwOwFw9w'wwwvvvvvvvvvvvvvvvvvvvwvgvUvKvIvAvvRvavpv~vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvmvqv|vvvvvvvvwEwbwwwwwwwwwwwwwwx xxx%x-x6x:x:x3x)xxxwwwwwwwxwkw_wWw_whwkwhw_wRw@w,wwwvvvvvvvvvvvvvvvvvvvvpvcvbvXvRvWv^v[vPv@v/v'v#v0vEvYvjv{vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvsvzvvvvvvvv wFwdwywwwwwwwwwwwx xxx(x2x;xBxFxEx?x4x%xxwwwwwwwwwzwuwywwwwxwjwWwBw/wwwvvv wwww wwvvvvvvvvvvvv|vpvivlvpviv[vLv?v5v.v8vLv^vqvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvtvuvvvvvvvw"wFwew{wwwwwwwwwwwxxx'x1x;xExLxPxPxIx>x0xx xwwwwwwwwwwwwwwwwnwZwFw3wwwww'w/w1w0w+w%www wvvvvvvvvvvvvvvuvevWvNvEv@vEvTvfvyvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv|vzvvvvvvvw#wFwfw~wwwwwwwwwwx xx#x-x7xCxLxTxXxXxQxFx8x)xxxwwwwwwwwwwwwwwwwuwewTw@w)w2w=wHwNwPwOwKwEw=w2w'wwwwvvvvvvvvvvvvrvcv\vVvQvTvavsvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvw"wFwfwwwwwwwwwwwxxx'x2x=xIxRxZx^x]xWxMx@x2x"xxxwwwwwwwwwwwwwwww~wuwfwVwYwawhwnwqwowjwdw[wQwEw8w+w wwwwvvvvvvvvvvrvhvdvdvhvsvvvvvvvvvvw w wwvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvwEwfw}wwwwwwwwwwxxx(x4x@xKxVx^xbx`x[xRxFx8x+xxxxwwwwwwwwwwwwwwwwwxwrwvw}wwwwwwwxwnwbwVwJw?w5w+wwwvvvvvvvvvvsvpvrvwvvvvvvvvvvw wwww1w'w wwwwww wwwvvvvvvvvvvvvvvvvvvvvvvvvvwBwbwxwwwwwwwwwwx xx%x1x=xIxTx\x`x_xZxRxGx;x0x%xxxxwwwwwwwwwwwwwwwwwwwwwwwwwwww}wqwfw[wPwEw8w'wwwvvvvvvvv~v|v~vvvvvvvvvvv www#w#wwwwwzwqwiwcw\wWwPwGw@w7w(wwwvvvvvvvvvvvvvvvvvvvw>w]wrwwwwwwwwwwwxx x-x9xExPxXx\x[xVxOxFx=x3x)x xx xxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwtwiw]wPw?w-www wvvvvvvvvvvvvvvvvvvww w)w-w.wwwwwwwwwwwwwxwewWww/w!wwwvvvvvvvvvvvvvvvw8wWwjwxwwwwwwwwwwxxx)x6xBxMxUxZx[xXxRxKxEx>x7x0x)x!xxx xxxxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwqw_wPwDw6w*ww wvvvvvvvvvvvvvww!w'w1w:w=w=wwwwwwwwwwwwwwuwbwMw@w7w)wwwwvvvvvvvvvvvvvvw6w]wgwuwwwwwwwwwww xx(x5xBxMxUxZx[xYxTxNxHxBxw/wwvvvvvvvvvvvv ww&w/w4w;wCwIwKwwwwwwwwwwwwwwwwkwXwGw7w+w!wwwvvvvvvvvvvvvvw4wQwcwpwwwwwwwwwww xx(x5xBxMxVxZx[xYxTxNxIxDx?x9x3x-x'x"xxxxxx xxwwwwwwwwwwwwwwx x xxxwwwwwwwww|wmw^wPwAw)w wvvvvvvvvvv ww'w4w=w@wEwKwQwSwwxxwwwwwwwwwwwwsw\wUwHw;w/w"wwwvvvvvvvvvvvww/wJw]wkwywwwwwwwwww xx)x7xCxNxWx\x]xZxVxQxLxGxCx=x8x2x-x(x$x xxxxx xxwwwwwwwwwwwxxxxxxx xxwwwwwwwwwowawSw>wwvvvvvvvvv ww'w6wDwKwOwSwWwXwZwxxxxwwwwwwwwwww}wZw^wYwJw9w+wwwwvvvvvvvvvwww,wGw[wkwywwwwwwwwww xx+x9xFxQxYx^x_x]xYxUxPxLxGxBx=x8x3x.x*x'x#x xxxx xxwwwwwwwwwx xxxxx xxxxxwwwwwwww~wpwawIw$wwvvvvvvvww$w5wFwTw\w`wdwdw\wew/x*x$xx xxxxwwwwwwww{wrwfwPw=w/w#ww wvvvvvvvvvvww)wCwYwkw{wwwwwwwwww xx-xw+ww wwwwvvvvvvvww,wBwXwpwwwwwwwwwwxx+x=xLxYxcxkxoxoxmxjxfxax\xWxSxNxIxDx@xwGwAwKw[wqwwwwwwwwwxx+x>xPx`xoxyxxxxxzxtxoxixcx^xYxUxPxKxGxDx@x=x;x9x6x4x2x0x.x,x,x-x.x/x0x2x3x5x7x8x9x9x9x8x6x2x+x!xxxwwwwwwww}wgwRww?w?wBwEwGwPw^wnwwwwwwwww xx2xFxZxkxyxxxxxx}xxxsxmxhxbx]xYxSxOxKxGxDxBx@x>xsBsEsIsKsKsIsFsBs?s:s5s0s-s*s(s's&s&s&s&s's)s+s+s+s srrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr,x"xx"x*xxx%x)x&x xxxwwwwwuwnw^wSwMwPwawjwnwrwpwbw\wZwPwOwMwKwJwKwRw_wowwwwwwwww x x5xIx]xox|xxxxxx}xyxtxoxjxdx_xZxUxPxLxIxFxDxBx?x>x=xx@x@xBxCxCxBxCxCxBxAx@x?x=x:x7x2x.x(xxx xwwwwwwwww}wlwewcw`wawewywwwwwwwxwwwwwwGsEsDsBsAs?s=s;s:s8s7s5s3s0s.s.s-s+s)s(s(s(s's&s%s$s#s"s!ssssssssssssssssssssssssssssssssssss!s$s(s-s2s8s>sBsHsNsRsWs[s]s]s\sYsTsOsJsEs@s;s7s4s2s1s0s/s/s/s0s2s3s5sssrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr(xxx(x,xx!x(x%xxxxwwwww{wnwcwZwUwUw]wgwkwrwwwwwnwgwcw`w]wYwUwQwRw`wqwwwwwwwww x x5xJx^xpx}xxxxxx~xyxuxpxkxfxax\xWxRxNxKxHxFxCxAx@x?x?x@xBxDxExGxHxHxIxIxHxGxFxExCx@x=x9x4x0x)x!xx xxwwwwwwwww{wwwuwswxwwwwwwwxxxwwwwwwEsCsAs@s?s=s:s9s8s7s6s4s2s/s-s-s,s*s)s's's's&s%s$s#s"s"s!sssssssssssssssssssss sssssssssssss s$s(s,s1s6s;sBsHsNsTsZs`sesjsmsmsmsjsds]sXsRsMsHsCs?s=s;s:s9s9s8s8s:s;s>s%s srrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr"xxx#x$xxxxx xwwwwwwwywpwjwlwpwzwwwwwwwww}wxwtwowiwawVwKw[wqwwwwwwwww x x5xJx^xnx{xxxxxx~xyxtxpxkxgxax\xWxSxOxKxHxFxCxBxAxAxAxBxDxFxHxKxLxLxLxLxKxJxIxGxDxAx>x:x6x1x*x"xxxxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwFsCs@s>s=s;s9s7s6s5s3s2s0s/s-s-s,s+s*s(s's's&s$s$s#s"s!s ssssssssssssssssssssssssssssssss!s#s&s*s/s5s:s?sEsKsRsYs`sgsosus|ssss{stsmsfs_sYsUsPsKsGsEsEsCsCsBsAsBsBsFs/sssrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrxxxxxxxxwwwwwwwwwwzwywwwwwwwwwwwwwwww|wow_wSwVwmwwwwwwwww xx2xFxYxhxux}xxxxx{xvxrxnxjxex`xZxVxQxMxIxExDxBxAx@xAxBxCxExHxKxMxNxNxNxNxLxKxHxExBx@xsx?xAxCxExHxKxNxOxOxOxNxLxJxGxCx@x>x;x7x3x.x(x!xxx xxwwwwwwwwwwwwwwwwwwwwwwwwwwwwKsGsDsAs>s;s9s7s5s3s/s/s.s-s+s+s*s*s(s's&s%s$s#s"s!s s ssssssssssssssssssssssssssss s"s%s(s,s0s5s:s>sDsJsQsXs_sfsnsus~sssssssssssssysrskses_s\sYsVsSsRsPsQsQsWs>s'ssssrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrxxxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwuwqwvwwwwwwwwwxx*x;xKxYxdxlxqxtxsxqxnxkxixfxbx^xYxTxNxIxFxBx?x>xx@xBxExHxKxMxLxLxKxIxFxDxAx>x;x7x4x0x+x%xxxxxxwwwwwwwwwwwwwwwwwwwxxxwwwwwwPsLsHsDsAs?ss;s8s6s4s2s0s-s,s+s*s)s(s's&s%s$s$s$s#s#s"s!s ssssssssssssssssssss!s#s%s's*s-s0s4s8s=sBsFsKsQsWs]sesmsussssssssssssssssssssss|svsqslshsdsasbsdsmsRs;s-s!ss ssrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr"x x xxxwwwwwwwwwwwwwwwwwwwwwwwwwxxxwwwwwwwwwwwwwwwwxx!x0x>xJxTx\x`xbxbxbx`x^x\x\xYxTxOxJxFxBx=x:x8x6x5x6x7x8x:xsCsIsNsSsXs]sdslsts}sssssssssssssssssssssssss~sxstsosksjslsusasHs9s,s ss ssrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr0x+x%xxxx xxxwwwwwwwwwwwwwwwwxxxwx!x$xxwwwwwwwwwwwwwwwwxx"x1x?xIxRxYx]x_x`x_x^x]x[xZxWxSxOxJxFxBx?x=x:x8x8x9x:x;x=x?xAxDxHxJxKxKxKxJxHxExCx@xsBsHsNsUsZs`sgsmsts|ssssssssssssttttttsssssssssss~szsvstsvsslsSsDs7s*s!ss srrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrx>x>x?x@xBxDxFxJxMxPxQxQxQxPxNxLxIxFxBx?x;x7x3x0x,x&x!xxxx xxwwwwxxxxxxx&x-x1x0x,x(x$x"xxx xxwwwiscs^sZsTsPsKsGsCs@sx;x7x4x0x+x'x#xxxx xxx xxxx#x&x"x%x.x?xLxXxUxEx8x1x,x'xxx xxwwqsksfs`s[sVsQsMsIsEsBs?ssBsFsKsPsTsZsashsosvs}ssssssssssssttt,t8tAtEtBt8t)tt tssssssssssssssssms^sOsAs7s,s ss ssrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrQxHx@x>x>x=x9xxx xxxxxxxxxxxxx#x'x+x-x'x#x&x2x;x8x#xwwwwwwwwwwwwwwwxx!x/x;xFxQxWx[x_xax`x^x\x[xZxWxUxSxQxKxHxFxDxBxAx@x@x@xAxCxGxJxMxQxTxVxXxYxVxRxQxQxNxJxFxCx?x;x7x4x2x.x*x&x"xxxxxxxxx"x%x&x&x/xs;s9s7s5s4s3s1s0s/s/s0s1s3s4s3s1s0s/s/s/s0s0s0s0s0s1s2s3s3s5s7s:s=s@sCsGsLsQsVsZs_sgsosvs~sssssssssssss tt't5tBtOtWtZtTtIt;t+tt tsssssssssssssss|sks]sPsEs9s,s ss ssrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrBxDxAx@xAxBx9x*xxxxxxx xxx!xxxx"x'x-x3x4x-x,x4xJxIxJx:xwwwwwwwwwwwwwwwxx$x0xx?xAxCxFxIxMxPxSxUxVxVxTxQxQxOxJxGxDxAx=x9x5x3x1x.x,x(x%x"xxxxxx'x.x4x2x/x+xBxJxdxjxexaxWxLxDx>x6x-x#xxxxxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww~w{wxwswowmwmwnwpwswvwzw}wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwuwewTwBw0w)w-wwwwvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv~vov`vQvAv0vv vuuuuuuuuwuhuZuMuAu4u)uuuuttttttttttttttttttttttttttttu uuuuuttttttrt^tJt8t(tt tsssssssssssssss{stsnshscs^sZsVsQsNsJsFsCs@ssAsEsHsKsPsUs[s`sdsjsrszssssssssssssstt%t2t@tLtXtdtktltetYtJt:t+ttttssssssssssssssxsjs]sRsFs8s+s ss ssrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrExExDxCxCxBx>x7x,x+x'xxxxxxx&x#x*x&x#x/x5x:x9x6x8xAxYxTxKxx;x7x4x0x/x-x,x)x'x%x$x"x x!x'x.x8xIxQxVxUxRxUx_xcxbx_xXxQxJxDx5x/x*x!xxxxwwwwwwww x xxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww|wywuwqwpwqwrwtwwwzw~wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwmwYwFw3w'w wwwwvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv|vnv`vQvBv1v!vvuuuuuuuu}unu`uRuFu:u.u#uu uutttttttttttttuuuuutttttttu uuuuuuuuttttttot\tJt;t+ttttssssssssssssss|svsosisds`s\sWsTsPsKsGsDsAs>ss@sBsFsIsMsPsUsYs_sdsjspsvs~ssssssssssssstt.t>tLtYtdtntwt{tztstftXtGt8t*ttttssssssssssssssxsjs^sRsDs8s-s"sss ssrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrJxKxMxMxLxJxOxQxPxQxSxFx;xx?xKxOxJxLxHx7xwwwwwwwwwwwwwww xx"x-x9xCxJxOxQxRxQxOxNxKxHxFxCx@x=xxBxExHxLxOxQxQxPxLx>xBxDxGxBx>x;x8x5x1x.x,x*x)x'x&x&x&x&x&x)x/x5x9x?x[xcxexaxaxexex`xcx_x[xUxJx7x3x.x'xxx xwwwwwwww xxx xxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww|wzwwwtwswuwvwwwyw}wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwrw^wKw9w+wwwwwwvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvzvmv`vRvDv4v$vvvuuuuuuuuwuhuZuMuAu5u*uuu uttttttttttu uuu u#u"u uuuuuuuuu u&u+u.u.u*u!uuuttttttttbtQtAt1t#tttsssssssssssssssxsrsmshsds_sZsVsRsMsJsGsDsAs?s>ss>s>s@sBsCsFsIsLsOsSsWs[s`sdsjspsvs}ssssssssssssstt$t5tFtWtetrt}ttttttttetUtFt7t*ttttssssssssssssssysmsbsTsHsx)x!x"x+x9xBxDxDxIxHxHxDxExAx1xwwwwwwwwwwwwwww xx#x.x9xBxIxNxPxPxOxLxIxExAx>xx5x1x,x$xxxxwwwwwwwwx xx xxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww|w{wywxwxwywywzw|wwwwwwwwwwwwwwwwwwwwwwwwwwwxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwrw^wMw=w/w#www wwvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvviv]vPvBv3v%vvvuuuuuuuu|unu`uSuGu;u/u$uuuuttttttttuuu%u/u7u;u=uu?u>u9u0u#uuutttttt{titWtFt7t'tt tsssssssssssssss|svsrsmsgsbs^sYsUsQsNsKsIsGsEsBsAsAs@s?s>s>s>s?sAsBsBsCsCsDsDsEsFsHsKsLsPsRsUsYs]sasfslsqsxs}ssssssssssssss tt+t;tMt^tnt~tttttttttrtbtTtEt8t,t!tt tssssssssssssss~srscsVsKs?s5s+s!sssssrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr_xaxgxmxrxwx~xxxxxxxfxRxMxXxFx)x!x%x1x@xGxIxIxHxDx?x=x?xx;x9x7x4x2x/x0x5x5x/x0x1x1x4x5x9x=xAxFxIxMxOxExExOxOxNxLxHxCx?x;x7x3x0x-x+x)x&x$x%x%x&x)x,x7x6x:xCxLxXxdxlxrxqxoxqxrxrxsxqxoxkxbxPx;x7x2x,x#xx xxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww~w}w{wzw{w|w|w}wwwwwwwwwwwwwwwwwwwwwwwwwwwwxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwowZwIw=w1w'www wwvvvvvvvvvvvvvvvvvvvvvvvvvvvvvzvnvbvVvJv=v/v"vvvuuuuuuuu~uquduWuJu>u2u(uuu uuttttttuuu'u4u@uIuQuTuUuTuPuLuHuEuDuGuKuNuPuQuPuMuHu>u2u$uuutttttttnt\tKt:t*ttttsssssssssssssss|svsqslsgsbs^sZsWsTsQsNsKsIsHsGsFsEsCsBsAsBsDsFsHsIsJsJsJsLsNsPsSsVsYs]s`sesisnsssyssssssssssssssstt!t1tBtRtctuttttttttttt}tnt`tQtDt8t-t"tt tsssssssssssssssrsesXsKs@s8s/s&sss sssrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrfxixqx{x}x~xxxxxxxxrx`xZxYxFx:x7x@x@xGxNxOxNxIx?x5x.x/x'xxwwwwwwwwwwwwwwxxx%x/x8x?xFxJxJxHxFxCx?x9x6x4x2x0x.x-x-x1x.x.x0x1x2x3x4x8x=xAxFxJxMxPxOxOxQxRxPxMxHxDx?x:x6x2x.x*x(x&x$x#x#x#x%x(x+x7x9x=xGxQxZxbx]xkxqxpxqxlxrxxxvxuxrxjx\xLxAx;x5x+xxxxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww}w|w}w~wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwlwWwGws5s,s#ssss sssrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrlxpx{xxxxxxxxxxxxsxdxOxLxTxUxKx@xMxGxVxTxJx=x.x"xx xwwwwwwwwwwwwwwwxxx'x1x:xAxFxKxLxJxHxDx@x;x7x3x/x/x/x/x.x-x+x/x2x5x6x7x:x>xCxGxLxOxSxWxZx[xZxXxUxRxLxGxAxxFxKxNxPxMxLxHxCx>x9x5x.x.x1x0x/x/x/x2x6x8x:xxFxOxUx[xaxexjxnxqxsxuxyx}xxx{xqxdxWxOxIxAx6x*xxxxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwowXwIw=w2w(wwwwvvvvvvvvvvvvvv~v}v}vvvvvvvvvvzvqvgv\vRvHv=v2v'vvvvuuuuuuuuuuxuku_uTuIu?u4u*u!uuuutttu uuu(u4uBuQu_uluyuuuuuuuuuuuuuuuu~utuiu]uQuDu6u(uuuttttttqt^tNt?t2t&ttttsssssssssssssssss{svssspslshsescs`s]s\sZsXsVsTsPsLsMsRsWsZs\s_scsgsjsmsqstsysssssssssssssssss tt%t3t?tNt]tmt}tttttttttttttttt{totctYtNtBt6t*ttttsst t%ttsssssssssysmscsZsQsIs?s5s/s(s"sssss s ssssrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrqxvx}xxxxxxxxxxxxxx|xuxoxqxqxixexbx^xUxCx;x0xx xwwwwwwwwwwwwwwwx xx!x-x8xBxKxOxRxSxZxOxJxExAx=x9x3x3x3x3x1x1x3x6x9xxBxFxKxOxTxYx^xdxhxjxkxixfxbx]xXxRxSxFx@x:x6x3x1x.x,x,x-x-x0x3x7xs7s0s*s$s sssss s sssrrrrrrrrrrrrrrrrrrrrrrrrrrrrtxyxxxxxxxxxxxxxxxxxx|x|xmxgxfxaxXxBxtNt^tnt}tttttttttttttttttttttttztotdtYtNtDt:t1t,t,t1t?tXtBt t tsssssssssss}sssgs\sTsNsGs?s8s3s/s*s$ssssss sssssrrrrrrrrrrrrrrrrrrrrrrrbx`xax^x^xcxTxXxcxoxvxzx|x}x~xzxsxnxmxgxexaxbxgxbx[xFx=x+xx xx x xxwwwwwwwwwwx xwwwwwwwwwx xxxxxxxxxxxxxx x%x*x/x1x5x;x@xAxAxDxExCxGxGxIxFxFxIxKxKxIxExAxx@xCxExLxOxWx\x^xZxZxaxbxcxdxcxdxexcxdxex_x[xKxCxLx>x1x$xx xwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwxxxxxxxxxxxxx xxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwpwYwHw;w2w,w#wwwwwwvvvvvvvvvvvxvovhvevevfvbv`v[vWvOvEv;v5v,v vv vvuuuuuuuuuuuuuu{uqumueu[uTuHuAu?uAu3u1u,u'u%u$u'u*u0u:uAuNuYuduruuuuuuuuuuuuuuuuuuuuuuuuu{ujuWuCu/uuutttttttttrtftZtOtCt7t*tttssssssssssssssssssssssss|sxstsoshs]s_sosvszssssssssssssssssss tt#t1t?tOt`tqttttttttttttu u uutttttttttt}trtgt]tStJtBt=t=tBtPt[tLt3tt ttssssssssss|sqsgs_sWsOsGs@st2t&ttttssssssssssssssssssssssss|szsvs}ssssssssssssssssssttt't6tDtRtcttttttttttttuuuu!u$uuutttttttttttvtltct[tStOtOtUt_tft`tKt0ttttssssssssss{sqshs`sWsNsGsBs>s8s4s.s)s$s ssssss ssssssrrrrsssssssrrrrrrr{x{x~xxx~xzx|xvxqxqxlxixhxexax_x^x\xZx\x_xbxfxex^xUxNxGxDx?xDxJxEx>x6x.x3x/x-x+x*x+x,x-x/x/x,x(x&x)x%x*x.x-x/x+x-x$x"x#x!x"x"x#x"x#xxxxxxxxxxxxxx!xxx x!xx x x"x x!xxxxxxxxxxx x x x xxxxxwwwx0x7x,x xwwwwwwwwwwx-x1x*xxwwwwwwwwwwwwwwwwwwwwxxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwx xxxxxxxx!x)x&x"xx xxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwtwDw*www wwvvvvvvvvvvvvvvvvvvvvvvvvvyvtvmvevav\vYvRvLvGvAvs:s5s/s+s's#s ssssss s sssssssssssssssrrrrrrxxxxxxxxxxxxx|x{xxxvxtxrxpxoxnxmxkxixexbx`x^x[xUxTxSxQxOxLxMxNxLxIxFxDxCxBxBxBxBxAxAxDxDx@xCxBxAxCxBxAx?x?x?x?x?xBxFxCxCx@x>xBxExExFxFxCxExGxEx@xAxFxAxAxBxCxBxBxBxBxBxBxAx@x?x>x=xu6u0u*u#u uuu uuttttttttttttt}tvtstjtbtVtMtEt>t8t/t*t!tttttttssssssssssssssssssssssssssssst ttt!t*t3t8tFtWthtutttttttttttttttttttttttttttttttttztrtntntqtrtit\tOt?t.ttttsssssssssusdsYsRsIs@s=s=stDtGtFtEtKtOtUt`tgtqtxt~ttttttttttttttttttt}tvtqtktbt\tXtVtOtItBt:t5t-t#tt ttssssssssss~srsjs^sOsHs=s4s-s(s&s#s"s"s#s s$s!s"s s ssssssss ss sssssssssrrrrrrrrxxxxxxxxxxxxxxxxx|xyxwxuxrxoxmxjxgxfxcx`x^x]x\xZxXxXxWxUxTxSxRxQxOxNxMxMxMxMxMxMxNxOxMxLxKxKxKxLxLxLxMxNxOxOxOxOxPxPxPxPxQxPxQxRxSxSxSxTxTxUxVxVxVxWxWxWxWxWxVxVxVxWxWxWxVxVxUxUxTxSxSxRxQxPxOxMxLxLxKxJxHxGxGxHxGxExCxAx@x@x@x>xw9w4w.w)w%wwwwwwwvvvvvvvvvvvvvvvvvvvvvv|vtvkvev]vWvRvMvFv@v:v4v0v(v#vvvv vvvuuuuuuuuuuuuuuuuuuuzurumuiuauYuSuJuBu9u4u/u)u#u uuuuu uuttttttttttttttttttttttttt}tztxtutttqtltdthtktjththtgtgtithtithtgtgtktotqtrtstutvtwtutzt{twtvtutwtzt}ttttttttttttttttttt~tytttmtftbt^tYtRtKtGtBt?t:t6t0t&ttt ttsssssssssssssusnsfs]sSsMsGsAs>s8s2s)s(s sssssss s sssrrsrrrrrrrrrrrrrrrrxxxxxxxxxxxxxx{xyxzxtxrxqxkxhxgxexcx`x\x[xYxVxUxTxTxSxSxSxQxOxMxKxJxIxIxHxHxJxIxIxKxMxJxHxIxFxGxHxHxHxHxJxKxMxKxMxLxNxOxMxNxNxOxOxOxQxQxNxOxPxQxRxRxSxTxSxSxSxSxSxSxSxSxUxTxSxRxRxQxQxPxPxPxNxMxLxKxIxIxHxGxFxExFxExDxCxAx@x?x>x>xv8v1v*v&v!vvv vvvuuuuuuuuuuuuuuuuuuuuu|uuuqujucu^uWuTuLuJuCux9x6x8x6x4x5x2x0x1x/x,x)x$x!x xxxxxxxx!x>xJxJxGx3xxxxxxxx xxwwwwwwwwwwwwwwwwwwxx x x xxxxxxxxxxxxxxx!x#x&x#x$x%x#x%x$x#x!x$x&x&x&x)x*x&x!x%x#x#x%x$x!xxxxxxxxxxxxxxxxxxx#x$x"x xxxxxxxx x x x x x x x xxx x xx x x x x x x x x xxwwwxxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww~wzwwwrwnwlwgwawYwXwRwQwKwFw@w=w9w4w.w)w%wwww wwwvvvvvvvvvvvvvvvvvvvvvvv{vuvovjvcv]vYvSvOvJvBv;v7v3v-v&v"vvvvvvuuuuuuuuuuuuuuuuuuuuuu}uxuruluguauZuSuMuGu@u=u7u1u+u'u!uuuu uutttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt~twtptktdt[tTtJtCtw8w6w1w,w(w"wwwww wwvvvvvvvvvvvvvvvvvvvvvvvvxvvvpvkvev_vYvUvPvIvAv=v9v2v.v'v"vvvvvvuuuuuuuuuuuuuuuuuuuuuuuzuqumujueu_uXuSuLuGuAu;u5u/u'u$uuuu uuutttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttxtotjtdt]tVtMtDt?t7t.t'ttt ttsssssssssssssssssssssssssssssssssssssssssyxyx{x~xxxxxxxxxxxxxxxxxxxuxfx`x^x[xVxSxLxGxBxGxExDxBxAx9x'xxxxwwxx x xxxwwwwwwwwwwwwwwxx x xxxx$x*x,x/x.x/x0x1x.x0x/x)x*x-x+x'xxxxxxx x"x)x6x'xxxxxxxxxxxxx x x xxxxxx x x xxxwwxxxxxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww|w{w~w}ww}w~w{wywxwwwvwswowmwhwhwdwbw`w\wYwYwTwOwLwIwCw>w:w9w5w0w+w&w$w!wwwwww w wwwvvvvvvvvvvvvvvvvvvvvvvvvvzvvvovivevbv[vUvPvLvGvBv=v8v2v,v'v!vvvv vvvuuuuuuuuuuuuuuuuuuuuuuuu{utunuhuduauYuUuMuHuBu;u7u2u,u'u uuuuuutttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt|twtothtbtZtRtItAt9t2t+t%ttt ttsssssssssssssssssssssssssssssssssssssssss{x}xxxxxxxxxxxxxxxxxxxxxqxjxcx_x]xZxWxPxJxExCxBxCxAx>x;x9x5x/x+x%xxxxx x xxxxwwwwwwwwwwwwwxx xxxxx#x&x)x+x*x*x+x,x,x,x+x)x(x&x$x!xxxxxxxxx x/x xxx x xxxxxx x x xxxxxxxxxxxxxxxxxwxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwxxxwwwwwwwwwwwwwwwwwwwwwwzwkw_wWwOwHwCwAw>w9w5w1w+w&w wwwwww w wwwwwvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv|vuvqvlvfv^vXvUvNvJvEvEvBv=v;v8v1v,v'vvvv vvuuuuuuuuuuuuuuuuuuuuuuuuu{uwurunumujugu`uXuTuPuMuHuAu=u9u5u2u/u+u&u#u uuuu uuttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttztstotgt^tXtQtGt=t3t)t$t!ttt ttssssssssssssssssssssssssssssssssssssssssss~xxxxxxxxxxxxxxxxxxx}xvxoxhxbx\xYxWxSxLxFxCxAxBxCxAx=x9x6x5x3x+x#xxxxxx xxxxwwwwwwwwwwwwwxxxxxxx"x%x'x'x'x'x'x'x(x)x(x&x$x"xxxxxx x x x xxx"xx xxxxxxxxxxxxwwwwwwwxxxxxxxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww|wxwywwwuw{w|wwwwwwwwwwwwwwwwwwwwwwwwwwxwwwwwwwwwwwwwwwwwwwwwwwx%x2x:x=x>xCxx1x xxwwwwww}wnw]wMwAw5w'wwwwwwvvvvvvvvvvvvvvvvvvvvvvvvvv|vvvqvlvgvdv`v\vYvUvRvMvHvAv;v8v2v-v'v"vvvv vvuuuuuuuuuuuuuuuuuuuuuuuuuu|uuuuuuuuuvuhu`uYuTuSuKuBuBu=u:u4u.u'uuuuu uutttttttttttttttttttttttttt}tztwtvtutrtqtotptnththtdtdtgtitltotstrtptkthtetdtbtetitltltltptqtstttvtzt{t|t}t~tttttttttttttttttttttttttttttttt}tytutttptptmtgtet\tVtNtHtBtCtLtOtMtEt9t+tt tsssssssssssssssssssssss|szs~s|sxsusmsnsospslslslsksksmsmsjsisiskshslslsjsxxxxxxxxxxxxxxxxxxx|xvxoxhxbxZxUxQxMxHxDxCxDxFxFxCx=x7x4x4x2x,x&x"xxxxx xxxxwwwwwwwwwwwwwxxxxxxx"x$x%x$x#x#x#x#x#x$x#x!xxxxxx x xxxxxxxx xxwwwwxxwwwwwwwwwwwwwwwwxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww{wwwrwqwpwpwrwuwxw|wwwwwwwwwwwwwwwwwwwwwx xxx&x/x5x5x3x/x+x xxwwwwwwwwwwwwwTxcxYxax[xSxLxExGx:x1x5x8x:xv;v8v3v+v(v%v"v!vvv vvvuuuuuuuuuuuuuuuuuuuuuuuu|usurusuuuwuuuruvu|uuuuuuuuuuuuuuzuuumugu^uZuOuIuDu?u9u5u.u$u!uuu uutttttttttttttttttytttmtftbt]tYtVtPtItGtEtBt?t:t7t7t5t0t/t,t*t(t(t&t%t+t+t.t/t2t3t3t2t3t8t;t?tDtGtCtEtEtHtHtFtGtItHtLtRtPtStRtRtQtStRtPtOtStOtQtRtLtVt[t^t`t`t^tZtStStQtNtHtAt=t;t8t3t.t,t*t't$t"ttttt tt t7tAtDt@t2t ttssssssssszssslsgs`sZsTsTsSsRsQsRsOsOsQsKsHsFsCs@s:s8s3s2s1s/s+s$s#s!s"s%s$s%s's,s-s.s0s4sxxxxxxxxxxxxxxxxxxx{xtxmxgxbx[xTxNxKxHxFxFxIxKxJxFx?x8x6x6x4x1x-x(x"xxxxx xxxwwwwwwwwwwwwwxx xxxx x"x"x"x!x x x x x xxxxxxxx xxxwwwwx xxxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww~wywtwpwmwkwkwlwmwpwrwuwyw}wwwwwwwwwwwwwwwwwwx xxx'x/x7x;xu7u-u&uuuu utttttttttttttttt~tvtmtitct_t]tYtWtRtItEt@ttAtAtFtMtQtWtYt]t^tgtltltptqtptntmtitithtitktjtjtltktitjtjtktltltptqtrtutzt}t~tttttt~tvtptftat[tUtMtDtAt=t8t5t0t*t&t"tttttt ttt1t;t@t=t0tt tsssssss}srsgs^sZsSsNsJsFsDsBs?s?s?s=s@sAsx9x7x7x6xxwwwwwwwwwwx]x[xRxMxJxEx?x;x6x9xx:xSx\xfxfxVx]x\xSxRxUx]x_x\xVxNxCx5x&x xwwwwwwwwxwpwgw]wQwFw:w.w"ww wvvvvvvvvvvvvvxvpvhv\vXvTvNvHvBv6v3v1v/v,v(v$v!vvvvvv vvvvvuuuuuuuuuuuu~uzuvuruoukueuduYuSuVuZuWuWu[u_udulutu~uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuwuiuYuKu;u0u%uuuu uuttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt|txtstmtdt\tRtGt9t0t5t;t?t?t3t%tttssssssssssssssssxstsssqsosmsgsfsdscsdsds`sXsWsTsRsRsMsJsDsCsBs=s=s9s8s8s2s/s,s(sxxxxxxxxxxxxxxxxxxxwxmxcx\xWxSxOxLxHx=x@xCxNxRxTxSxPxLxKxIxEx@x8x1x*x$xxxx xxxxwwwwwwwwwwwwxx xxxx!x"x"x xxxxxxxxxx xxxxxwwwwwwwxxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww~wxwswnwkwgwdwbwcwewhwjwkwmwqwuwyw}wwwwwwwwwwwwwwwwxxx+x5x?xFxHxGxExCx=x8x5x6x#xwwwwwwwwwwwXxXxQxJxEx?x:x1x0x0x;xCxFxExTxcx_xZxVx^xWxUxWx[x]xZxSxJx?x3x'xxwwwwwwww{wrwiw`wUwIw=w/w$ww wwvvvvvvvvvvvv{vrvkv`vYvWvPvIvDv;v4v3v/v+v'v#v!vvvvvvv vvvvuuuuuuuuuuuu}uwurunujufucu_uYuSuTuUuTuRuSuWu\ucukuuu~uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuurubuRuGut=t@t@t8t,t tttsssssssssssssssssssssss~sxswsvsrsosjsisisfsbs\s[sYsWsUsTsTsSsRsQsOsNsJsxxxxxxxxxxxxxxxxx~xzxtxkx`xVxJxOxNxLxJxJxNxSxYx]x^x^x]x\x[xXxQxGx?x7x/x(x"xxxxxxxwwwwwwwwwwwwxxxxx!x#x$x$x#x"xxxxxxxx xxxwwwwwwwwwwwxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww|wvwqwlwhwdwaw`wawcwfwgwiwkwnwrwvwyw~wwwwwwwwwwwwwww xx$x1x>xHxNxNxMxJxFx@x:x3x.x(xwwwwwwwwwwwVxYxQxIxBxxv9v6v3v0v-v+v)v$vvvvvvv vvuuuuuuuuuuu{usulugubu\uXuUuSuQuQuQuPuQuSuWu]ueunuwuuuuuuuuuuuuuuuuzuvuuuwuyu{u~uuuuuuuuuuuuuuuuuuuuuuuuuuu~uou^uOuCu8u.u&uuu uutttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttutft[tQtJtJtMtGt=t4t-t't%t%t%t!ttt tssssssssssssssss}sysvsusssosmsjsgscs_s]s[sYsXsWsTsQsPsPsPsPsMsIsxxxxxxxxxxxx}xxxrxjxdx^xZxXxXxVxQxKxGxFxIxMxOxOxPxSxWx\x`xcxgxhxfxaxZxRxIx@x9x1x*x#xxxx xxwwwwwwwwwwx xxx!x&x(x*x*x)x'x#xxxxx xxxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww~w|wywuwqwlwhwew`w]w]w]wZwZwbwdwewgwiwlwpwvw|wwwwwwwwwwwwwwxx!x1xAxQx^xgxixex\xSxKx@x5x)xxwwwwwwwwwwwExNxJxFx?x:x7x6x7x;x;x0x,x:x@xBxIxJxHxPxRxQxGxExEx9x2x5x1x(xx xwwwwwwwwwwuwjw`wWwMwCw;w3w*w!wwwwvvvvvvvvvvvvvvxvqvjvcv]vWvSvPvKvGvCv@v>v:v7v5v2v/v,v*v'v%v#vvvvvuuuuuuuuuuuxuqujudu^uYuUuRuOuNuNuNuMuOuQuUuZucujusu|uuuuuuuuuu}uyuuuoukuiujulunuputuyu~uuuuuuuuuuuuuuuuuuuuuuuuuuqubuTuHu>u4u)uuuu uuttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttztltatXtRtStUtOtDt:t4t/t,t,t,t(ttt ttssssssssssssssss~szsxswstsqsnsksfscsas_s]s\sZsWsSsSsTsUsSsPsFsxxxxxxxxxxx{xwxrxkxcx\xVxQxOxOxNxIxCxBxCxGxKxMxMxOxRxVxZx^xcxgxixhxex_xXxPxGx?x7x.x'x!xxx xxxwwwwwwwwwx xxx$x(x*x+x+x)x'x#xxxxx xxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww}wywwwswpwlwhwewbw^w\w]w\w[w]wawcwdwfwiwmwrwxw~wwwwwwwwwwwwwwxx"x1xBxRx`xlxoxkxbxWxMxAx5x)xxwwwwwwwwwwx0xx8x5x5x5x9x=x5x*x;x>x>xBxGxCxOxRxQxIxHxCx9x4x=x2x(xxxwwwwwwwwww{wpwgw^wTwLwDwv;v9v6v4v3v0v,v(v"vvvvuuuuuuuuuuuxupuiubu]uXuTuPuNuLuKuKuKuMuQuUuZuauhuquxuuuuuuu|uvurunujueububudufuhukuoutuyuuuuuuuuuuuuuuuuuuuuuuuuuuzuku_uTuJu@u6u-u&uuuu uuuttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttstjtbt[t\t^tWtLtDt=t8t4t2t1t*t!ttt tsssssssssssssssssss}sysvsssqsmsjsfsdscsbsas]sYsWsXsXsVsTsNsxxxxxxxxxxzxuxpxkxex]xUxNxJxHxHxExAx>x=x?xDxGxIxKxLxPxUxXx\xbxgxjxkxhxbx\xTxMxDxx;x6x3x3x5x7xvx?x?x9x8xExFxBxIxJx:xx6x.x&xxxx xxxxwwwxxx xxx#x+x.x-x,x*x(x&x!xxxx xxxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww}wvwowkwjwfwcwaw_w]w[wYwYwYwZw^wbwgwjwlwnwqwww}wwwwwwwwwwwwwwwwxx!x1xAxRxcxsx}xxxxjxYxIxxExEx*x6xFxBxx@x:x1x&xxwwwwwwwwwwwwwwpwjwcw\wVwQwKwEw?w8w0w(www wvvvvvvvvvvvvvvzvvvrvnvjvfvcv`v_v\vZvXvUvRvOvMvLvKvHvCv=v5v+v vvvuuuuuuuuuu|utumuguau\uWuSuOuKuGuEuDuDuGuJuPuVu[u^uaubucubuau^u[uXuTuQuOuMuMuOuQuTuXu]udujuquxuuuuuuuuuuuuuuuuuuuuuuuuuuzupugu_uWuPuIuCu=u6u1u-u(u%u!uuuuuu uuuttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttztwtzt{tptet]tXtStNtJtFt?t6t/t)t!tt tttsssssssssssssssssssssss~s|sxsusqsnskshsescs`s]sxxxxx~x{xxxuxpxixbx[xVxPxIxCx?x;x8x7x6x3x1x1x3x8x>xBxExHxKxPxTxYxaxhxlxnxlxixex`xZxSxJxBx:x2x*x"xxx x xxxxxxxx xxxx#x+x.x-x+x)x&x#xxxx xxxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwxwpwjwfwewcw`w]wZwXwVwVwUwWwYw_wewiwmwpwrwvw{wwwwwwwwwwwwwwwwwxx!x/x?xPxbxsxxxxrx`xNx@x3x)xxwwwwwwwwwwAx@x=x7x.x&xxx%x x)x9xAxBxAxAxAxBxCxGx=xBxFxExBxCx=xu9u4u0u-u)u&u#u uuuu uuuttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt{totgtbt^tZtUtPtIt?t8t2t*t!ttt ttssssssssssssssssssssssss}sysvssspsmsksgsdsasxxxx~xzxxxtxpxjxbx[xTxOxIxCx=x:x6x4x4x3x0x.x/x1x4x:x?xCxExIxNxQxVx]xexkxmxlxjxfxbx\xVxNxFx>x6x-x$xxxx x xxxxxxx xxxx#x*x-x,x)x&x"xxxxxxxxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww|wtwjwdwaw_w_w]wYwVwSwRwRwRwUwYw_wfwkwowswvwzwwwwwwwwwwwwwwwwwwxx x.x>xOx`xrxxxxxxexSxDx7x+xxwwwwwwwwww;x9x5x2x+xxx$x-x.x1x>xExHxFxCxAxAx@x=x:xGxIxFx5x:x4x9x,x%x#xxxwwwwwwwwwwww}wwwpwjwew_wYwTwNwFw>w6w-w#ww wvvvvvvvvvvvvvvvv~vzvvvsvqvovlvivgvevbv_v]v\vZvWvSvNvFvu>uAuDuHuKuMuNuOuNuLuJuGuEuBu@u?u>u@uBuDuGuKuPuVu\ucujuru{uuuuuuuuuuuuuuuuuuuuuuuuuvumufu_uXuRuMuHuBu=u8u4u0u-u*u(u&u"uuuuu uutttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttytrtntktgtbt]tTtJtCt=t5t,t"ttt ttsssssssssssssssssssssssss|sxsussspslsisfsxxxxzxwxtxqxlxdx\xUxNxHxBx=x8x4x0x/x0x0x-x*x+x.x1x7x=x?xCxGxKxOxSxZxbxhxjxixhxfxbx^xXxRxKxDx;x1x'xxxxx x x x xx x x xxxx$x*x,x+x'x#xxxxxxxxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww~wxwpwgwaw]w[w[wYwUwRwOwOwPwQwTwXw_wfwlwpwuwxw}wwwwwwwwwwwwwwwwwwxxx.x=xLx]xpxxxx}xkxXxGx9x-xxwwwwwwwwww2x/x&x,x(x x x+x4x:x?xExJxMxMxCx;xFx=x7x8xBxDx@x6x7x?xFxAx3x*xx xxwwwwwwwwwwww~wxwqwkwfwaw[wUwNwFw=w3w)wwwwvvvvvvvvvvvvvvvvvv|vyvwvtvqvnvlvivgvdvbv`v\vXvSvKvBv7v,vvvvuuuuuuuuuuuzurukudu^uYuUuPuLuFu@uu@uCuDuDuBu@u>u=u;u9u7u7u7u8u;u>uBuFuKuQuVu\ucukutu|uuuuuuuuuuuuuuuuuuuuuuu~uvumueu_uYuRuMuHuCu>u:u5u2u0u.u,u)u%u!uuuuuuuttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt~t{twtstotjtatWtOtItAt7t-t%tttt ttsssssssssssssssssssssssss}szsvsrsoslsx~x}xzxvxrxoxkxfx_xWxPxIxCx=x7x2x.x+x*x,x,x*x(x)x,x.x4x;x=x@xDxHxLxPxWx`xfxhxgxfxexbx^xYxTxOxGx>x4x)x!xxxxxxx x x xxxxxx%x*x+x)x$xxxxx xxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwywswkwdw_wZwXwWwTwQwNwLwKwLwNwRwWw^wdwjwpwuwyw~wwwwwwwwwwwwwwwwwwxxx.x=xKx\xnx}xxxxpx\xJx;x3x%xwwwwwwwwww1x'x x"x"x!x$x,x6x>xBxExIxKxMxOxHxJx:x8x8x;x=x?x>x@xJxNxAx8x.xx x xxwwwwwwwwwwwwwywswnwiwcw]wTwLwCw9w.w#ww wwvvvvvvvvvvvvvvvvvvv~v{vxvvvsvpvmvkvhvevav[vUvNvDv9v.v"vvvuuuuuuuuuuuuzurulueu_uZuUuPuKuFu@u;u6u1u3u5u8u:u:u8u6u5u5u2u0u/u/u0u2u4u8u=uAuFuKuPuVu]ueumuvuuuuuuuuuuuuuuuuuuuuuuu|uuumufu_uXuQuLuGuBu>u9u6u3u0u.u,u)u&u#uuuuu uuuttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttztutmtct\tUtLtBt8t1t*t#ttt tttsssssssssssssssssssssssss~sysvsss|x{xyxvxsxnxkxgxaxZxRxKxCx>x8x2x-x(x&x&x(x)x'x&x(x)x+x1x8xxBxExHxMxUx^xcxexexexcx`x^xZxUxPxIx@x6x,x$x xxxxxxxxxxxxxx$x)x)x%x xxxx xxxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww|wuwnwfw`wZwVwTwRwPwMwJwHwGwHwKwOwTwZwawhwnwrwww}wwwwwwwwwwwwwwwwwwxx x.xx9x3x,x'x#x!x"x$x%x$x%x(x)x+x/x6x;x>xAxDxGxKxSx\xaxbxbxbxax^x\xYxUxPxJxBx9x/x(x$x xxxxxxxxxxxxx#x'x'x#xxxxx xxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwywpwiwbw[wUwRwOwMwKwHwFwEwEwFwHwLwPwVw]wdwjwowtwzwwwwwwwwwwwwwwwwwx xx x,x9xFxUxdxrx~xxxxxfxQx@x3x!xw~wwwwwwwww&xxxxxxx!x,xx-x-x0x(xxx xxwwwwwwwwwwwwwwww}wywswlwcwZwQwHw?w4w)www wvvvvvvvvvvvvvvvvvvvvvv}vyvvvrvovkvfv`vZvRvIv>v2v&vv vuuuuuuuuuuuuuu}uwupujudu`u[uVuQuKuDu>u5u-u&u$u)u)u(u'u$u"uuuu u$u'u+u/u3u7uxKxZxfxpxwxxxsxgxUxEx:x.xwwwwwwwwwwxxxxxxxxxxxxxxxxx#x)x2x:xx7x1x-x(x"xxxxxx"x#x#x&x*x.x3x6x7x:x?xAxDxIxPxVxXxXxWxUxSxSxRxPxMxKxGxBx;x5x0x.x*x%x"x#x#x"x xx x x!x!x"x$x$x xxxx xxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww~wwwowhwawXwQwKwGwEwCwBwAw?w>w?w?wBwFwHwMwQwWw\wawfwlwswzwwwwwwwwwwwwwwwwxxx%x/x;xHxVxbxjxoxpxlxcxTxEx;x-xwwwwwwwwwwxxxx x x xxx x x x x xxxxx#x,x5x4x1x7x/xxxxx xxwwwwwwwwwwwwwwwwwwwwywswmwfw^wVwMwCw8w-w!ww wwvvvvvvvvvvvvvvvvvvvv|vwvsvovjvdv]vVvNvEv8v-v'vvvvuuuuuuuuuuuuuuuyusunufu_uYuTuOuHu@u:u5u0u)u"uuuu u u u u uu uuuuuu"u&u+u1u7u>uEuLuSu[udulutu|uuuuuuuuuuuuuuuu|utumugu`uYuRuKuDu?u9u4u/u*u'u$u!uuuuuuuuuuuu uuutttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttytptitat[tTtMtFt@t8t1t+t$ttt ttsssssssssssssssssssssssxrxnxhxcx^xXxRxKxDxw?wAwCwDwHwMwRwYw\wawhwowuw}wwwwwwwwwwwwwwwxxx$x-x7xCxQx\xcxgxhxfx`xSxEx9x,xwwwwwwwwwwxxx xxxxxwxxxxx x xxxx&x-x.x'x0x)xxxx xxwwwwwwwwwwwwwwwwwwwwww{wuwnwgw`wXwMwBw6w+www wvvvvvvvvvvvvvvvvvvvv}vxvtvovjvcv]vVvNvDv8v.v'vvvvuuuuuuuuuuuuuuuzusumufu_uYuTuNuFu>u8u3u/u)u$uuuuutuuuuuu u uuuuu"u(u.u5uu8u2u,u'u"uuuuuuuu u u u u u uuuuuuttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt}tvtotht`tYtRtJtCtx;x:x9x8x4x0x.x/x0x/x.x-x-x,x*x(x)x)x'x"xxx xxxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww|wuwnwfw`wZwSwLwIwGwDwDwCwBwAwAw@w?w?w>w?wCwHwLwRwVwZw^wcwhwqw|wwwwwwwwwwwwwwxxx x(x2xt7t0t)t"ttttttssssssssssssssssswxsxnxgx`xYxQxKxEx@x;x5x/x*x$xxxxxx x#x!x$x+x/x2x6xxAxExFxIxLxOxRxRxNxLxJxIxGxFxExDxDxBx>xw>w>w?wCwGwJwOwTwWw[w_wewmwxwwwwwwwwwwwwwwxxxx'x0x9xBxKxPxSxRxOxLxExuDuJuPuTuWuYuYuYuYuZuZu[u^u`ubububuau]uYuUuOuHuBux>x>x=x:x8x8x:x;x:x9x8x8x7x6x4x2x2x/x*x"xxx xxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww}wwwpwiwbw[wVwRwOwLwJwGwFwIwCwBwCw@w>w>w>w?wCwFwHwMwRwVw[w_wdwkwtw|wwwwwwwwwwwwwx xxx$x-x6x@xGxKxLxJxGxCxx@x?x?x>x>x=xxCxExFxCx?x:x2x,x%xxwswwwwwwwwwwwwwwwwwwwwwwwwww xx x xxxxxxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwywmwawUwHw=w2w'www wwvvvvvvvvvvvvvvvvvvvzvrvjvbvZvQvHv@v8v0v&vvv vvuuuuuuuuuuuuuu~uvunugubuXuNuDu;u1u)u"uuuu uuuttttttttttttuu uuuu$u+u0u6u:u=u@uAuBuAu?uAuDuGuJuNuQuSuTuTuSuPuLuHuBuuBuGuJuLuMuKuIuFuBu=u8u3u-u(u#uuuuu uuuuutttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt uuuuuuuu uuttttttttttttttt|tttmtgt_tXtQtJtCtxCxIxKxMxOxPxQxSxUxUxRxMxJxHxFxDxCxBxBxDxCxAxBxCxFxFxDxDxFxIxKxKxJxJxJxJxIxExBxAx>x8x.x$xxx xxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww|wxwtwpwkwfwbw_w[wVwQwNwKwJwIwGwEwDwBw@w>w=w=w@wDwGwJwOwTwXw\w_wcwhwnwuw|wwwwwwwwwwwwwxxx x(x1x:x=x=xw3w(www wwvvvvvvvvvvvvvvvvvvzvrvjvbvYvQvIvAv8v/v'vvv vvuuuuuuuuuuuuuuuyuquju`uVuKu@u7u.u%uuuu uuutttttttttttttttttuu uuuuu!u#u%u&u&u&u'u*u-u1u6u;u?uBuDuDuCu@u=u:u5u/u)u%u!uuuu u uuuuttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttuuuu u!u"u uuu uuutttttttttttttt{tttmtet^tXtQtJtDt>t7t1t*t$ttttt ttssssssssssxxzxtxmxfx_xZxSxLxDxx4x)xxxxxxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww}wzwvwswpwlwhwcw_w[wVwRwOwLwKwKwJwHwGwEwBw?w>w>w@wCwFwJwOwSwWw[w`wdwiwowtw{wwwwwwwwwwwwwxxxx(x1x8x:x:x7x0x(x xxx xxwpwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwjw^wRwFw;w1w&www wwvvvvvvvvvvvvvvvvvyvrvjvavYvPvHv@v7v.v&vvv vvuuuuuuuuuuuuuuuyuquiu`uUuJu?u5u,u$uuuu uuutttttttttttttttttttuu uuuuuuuuuuu!u&u*u/u4u8u;uv5v,v#vvvvuuuuuuuuuuuuuuuuxuquhu_uTuHu=u2u)u uuu uuuttttttttttttttttttttttttuuuu u uuuuuuu$u)u-u0u2u3u2u/u,u)u%u!uuuuu uuuutttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttuu uuu'u*u+u'u u$u'u uuuuttttttttttttttttytrtktdt\tVtPtJtDt=t7t1t+t%t ttt tttssssssssxxx{xsxlxfx`xYxSxLxFx@xxCxFxJxQxWxWxXxYxXxXxYxZxYxVxPxLxJxHxGxExCxCxExExFxHxKxNxPxOxQxTxXx]x_x`x_xaxax_x[xWxTxOxIx?x4x*x!xxx xxxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww|wywvwrwowlwiwdwbw^wYwUwRwQwQwPwMwKwIwFwDwCwBwCwGwIwLwOwTwXw\w`wewkwpwvw}wwwwwwwwwwwwwxxxx&x-x3x5x3x/x%xxxxwwwwgwwwwxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwzwowdwYwNwDw:w0w&www wwvvvvvvvvvvvvvvv|vtvkvcvZvQvGv?v5v+v"vvvvuuuuuuuuuuuuuuuuyuquiu_uSuHux9x6x5x6x8xu3u(uuuu uutttttttttttttttttttttttttttttttttuuu uuuuuu!u!u uuuuuuuu uuuutttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttuuuu u#u#u!u uuuuuu uttttttttttttttttttttwtptjtct]tWtPtJtDt?t9t3t.t(t"tttt tttsssssxxxxwxqxlxgxbx[xUxOxKxHxDx?xw7w0w)w!www wvvvvvvvvvvvvv{vqvgv\vRvHv=v3v*v vv vvuuuuuuuuuuuuuuuu|uuunufu^uTuJu?u4u+u#uuu uuttttttttttttttttttttttttttttttttttttttttuuu u u u u u u u u u u u u uuuuuutttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttu uuuuuuuuttt uutttttttttttttttttttttttt|tvtptjtct^tXtRtMtHtCt;t4t/t*t%t tttt tttsxxxx}xwxrxoxkxgxax]xZxYxUxQxOxNxMxNxPxTxVxZx_xaxdxjxoxoxlxkxixgxgxgxex_xXxRxOxKxIxIxIxIxKxLxNxQxTxYx\x_xcxgxmxtxyx|xxxxxxxqxkxdx[xQxFxu3u*u"uuu uutttttttttttttttttttttttttttttttttttttttttttttttttuuuuuuuuuuuuuttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttuuuuu uuuuuttuutttttttttttttttttttttttt}twtqtltet_tYtTtOtJtDt>t7t1t,t(t$ttttt ttsxxxx~xyxtxrxnxixdxax_x]x[xWxUxSxRxSxVxYx\xaxfxhxjxpxtxsxqxoxmxkxjxjxixbxZxTxPxLxKxJxJxKxLxMxNxRxVxZx^xaxdxixpxwx}xxxxxxyxrxkxdx\xSxIx@x8x2x-x&x xxxxxxxxxxxx xxxxxx xxxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwzwswmwiwgwfwdw_wZwVwRwQwPwPwPwRwUwZw^wawdwiwpwuw}wwwwwwwwwwwwwwwwx xxxx"x$xxxxwwwwwwwaw_wwwwwwwwuwwwwwwwwwwwwwwwwwwwwwwwwwvwnwfw`wYwSwNwIwEwAw>w;w:w=wAwEwHwKwLwNwQwTwUwVwVwWwXwZw[w]w`wcwfwiwjwiwfwcw^wYwSwKwBw;w4w-w(w#wwww wwvvvvvvvvvvvvxvnvdvYvMvCv:v0v%vvvvuuuuuuuuuuuuuuuuuzusumuguauXuOuEuw9w5w2w/w.w.w0w3w5w8w:w:ww@wAw@w?w>w=w>w>w?wAwBwDwFwFwFwEwCw?w9w3w,w&w wwww wwwvvvvvvvvvvvvvvzvnvcvXvMvAv6v-v#vvvvuuuuuuuuuuuuuuuuuzutumufu`uYuRuJuAu9u2u*u#uuu uuuttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttuuuuu uuuu uutttttttttttttttttttttttttttttttt}txtrtmthtct^tZtTtOtItCt>t9t4t0t*t%ttttt ttxxxxx{xxxuxsxpxmxjxhxhxgxdxcxcxcxexhxkxoxsxyx|x~xxxxxx}x{xzxxxtxmxcx]xYxVxSxQxQxPxQxSxUxYx\x`xcxfxixoxvx|xxxxxxx{xrxlxfx]xTxJxBxt8t3t/t+t%t tttxx~x}x{xwxvxvxtxqxmxkxjxixixixkxnxrxwx}xxxxxxxxxxxxxxxxx~xuxmxgxbx_x]x[x[x]x]x^x`xexhxjxlxnxtxzx~xxxxx~xyxqxixcx^xVxNxDx>x9x6x2x.x,x*x*x+x-x,x&x xxxxx xxwwwwwxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww}wywuwpwkwfw`w\w[w\w]w`wewkwpwtwyw~wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww@wTwwwwwwwwTwkwwwwwwwwwwwwwwwww|wswiw_wUwJw@w7w/w(w!wwwwwwwww w w wwwwwwwwwwww wwwvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv|vqvevZvOvDv8v-v"vv vvuuuuuuuuuuuuuuu}uwupujudu^uXuRuMuGuBu>u8u3u.u(u#uuuu uuuttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttuuu uuuuuuuuuuuuuuuttttttttttttttttttttttttttttttttttt|txtstotktgtct`t\tWtStOtKtGtCt=t9t5t1t+t&t!tt~x}x{xzxxxuxtxuxsxpxmxjxhxhxhxixlxpxtxzxxxxxxxxxxxxxxxxxxx{xsxlxgxdxax_x^x`x`x_xcxhxlxnxpxsxwx|xxxxx~x|xwxoxgxbx\xTxLxCxt:t6t1t,t&tt{xzxxxwxuxrxrxsxqxnxkxhxgxhxhxixmxrxvx|xxxxxxxxxxxxxxxxxxxxxxrxlxixfxcxbxcxcxcxfxlxpxrxsxuxzxxxxxx}xzxuxlxex`xZxRxJxCxwUwwwwwwwywKwkwowpwswww|wwwwwwwwwzwuwnwfw]wTwKwBw8w/w'w wwww wwwwwwwwwwwww w w w w wwwvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv{vpvevZvPvEv:v/v$vvvvuuuuuuuuuuuuuuu~uxuqukudu^uXuSuMuHuBuv3v(vvv vvuuuuuuuuuuuuuuuzutuouhubu[uUuPuJuEu?u8u2u-u'u!uuuu uuuttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttuuu uuuuuuuuuuuuuuuuttttttttttttttttttttttttttttttttttttt|txtttqtmtjthtetbt_t]tZtVtStPtMtJtFtBtv4v*vvv vvuuuuuuuuuuuuuuu{uuuouhubu\uVuPuJuDu>u6u0u+u$uuuu uuutttttttttttttttttttttttttttttttttttttttttt~t|tztytytztzt|t|t}t~ttttttttttttttttttttttttttttuuuuuuuuuuuuuuutttttttttttttttttuuu uuuuuuuuuuuuuu uu"uutttttttttttttttttttttttttttttttttttttt}tztwtvtutstqtntltithtgtftdtbt_t\tYtTtNtItgxdxbx`x]x\x^x`x`x_x`xaxbxexgxixmxsxzxxxxxxxxxxxxxxxxxxxxxxxxxxx}x|x{x|x~xxxxxxxxxxx~xxxsxlxdx]xXxTxNxHxBxv3v)vvv vvuuuuuuuuuuuuuuuyurukudu^uXuRuLuFu@u9u2u,u&uuuu uuuttttttttttttttttttttttttttttttttttttttttt~t}t{txtvtutststttttutututwtzt|tttttttttttttttttttttttttuuu u uuuuuuuuuuttttttttttttttttttuu uuuuuuuuuuuuuuu u uuutttttttttttttttttttttttttttttttttttttt~t|tztxtwtutstptotmtltltjtitgtetbt_t[tUtOtcxax]x[xYxXxZx\x\x\x]x^xaxdxfxhxmxsx{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}xwxqxkxcx\xXxTxOxIxCx=x9x5x/x*x&x"xxxxx xxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww|w{w|wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwuwkwbw[wTwNwHwOw"wBwwwwwwwBww>w@wAw@w@wAwDwEwDwBw@w>w=w9w4w/w*w%w wwww wwwvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv}vyvvvvvxvzv{v|v}v}v}v|vyvuvpvhv^vTvJv@v5v*vvv vvuuuuuuuuuuuuuuuxuquiucu]uVuOuJuCu=u6u/u)u"uuu uuuttttttttttttttttttttttttttttttttttttttttt~t|tztxtvtttrtotmtktktltmtntptrtttwtzt~tttttttttttttttttttttttuuuuuuuuutttttttttttttttttttttttu u uuuuuuuuuuuuuu u uutttttttttttttttttttttttttttttttttttttttt~t}t{tytxtutststrtqtptotmtltjthtetat[tUt^x\xXxUxTxTxVxWxXxYx[x\x`xdxfxhxlxrxzxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx|xvxpxjxcx\xXxUxPxKxDx>x:x6x1x,x'x#xxxxxxxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwnwew]wUwNwHwEwHww@wwwwwww:ww7w:w9w8w7w9w;wx:x5x/x*x%x!xxxxxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwywpwhw_wXwPwHwCwBwAwwu7u0u)u"uuu uuttttttttttttttttttttttttttttttttttttttttttt}tztxtvtttptntltitetctctetetetfthtltptstutxt|ttttttttttttttttttttttuuuuuuttttttttttttttttttttttttu uuuuuuuuuuuuuu uu uutttttttttttttttttttttttttttttttttttttttttttt}t{tztztztytwtutttttstrtotktft`tUxSxQxOxMxMxOxQxRxUxXx[x^xbxexhxmxsxyxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx{xvxqxjxcx^x[xYxTxOxIxDxBx>x9x3x-x(x$xxxx xwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww~wzwswjwawYwRwKwCw>w=wAw w?wwwwwww4ww%w+w+w)w'w'w*w,w-w-w-w-w-w*w%w!wwwww wwwvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv}vzvwvtvovjvfvcv_vZvVvUvVvYv\v_vavbvdvgvhvivhvev_vVvLvBv8v.v$vvvvuuuuuuuuuuuuuuyuqujubu[uUuNuGuAu;u4u,u%uuuu uuttttttttttttttttttttttttttttttttttttt{tttttt|tztwtvtstqtotmtitftct`t`t`t_t`tbtftjtntqtttxt{t~ttttttttttttttttttttttuuuttttttttttttttttttttttttuu uuuuuuuuuuuuu u uu uutttttttttttttttttttttttttttttttttttttttttttt~t|t|t|t{tztytwtvtvtvtttrtnthtbtRxPxOxMxLxLxMxOxQxSxWxYx]xbxfxixmxsx{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxzxuxqxjxdx`x^x\xXxSxMxIxFxBxw:w:w=ww?wwwwwww3www$w#w"www"w%w&w'w'w(w(w%w!wwwwww wwvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv}vyvvvsvpvmvivdv_v[vWvQvOvKvMvPvSvVvYv\v^vavdvevevbv]vUvLvCv9v.v#vv vvuuuuuuuuuuuuuuxupuhu`uYuRuLuEu?u9u1u+u#uuuuuutttttttttttttttttttttttttttttttttttttttttt}t{txtvtttrtqtotltjtgtct`t]t[t[t\t_tbtftitmtptutyt|tttttttttttttttttttttttttttttttttttttttttttttttttu uuuuuuuuuuuuuuu uu uuttttttttttttttttttttttttttttttttttttttttttttt~t~t}t|t|t{tytxtxtxtwtttotitctOxNxMxKxJxIxLxNxPxRxVxYx]xbxfxixnxux|xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxzxuxqxkxfxbxax^x[xVxQxMxIxEx@x:x4x.x)x%xxx xxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww|wvwqwlwew^wVwNwGwAw9w6w6wwwwwwww/w wwwwwwwwww w!w"w"w wwwwww wwwvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv{vvvrvnvkvivevav]vYvTvOvIvEv=vCvFvJvMvQvTvXv[v_vavbv`vZvTvLvCv9v-v"vv vvuuuuuuuuuuuuu~uvunufu^uWuPuIuCu=u6u0u)u!uuuuuutttttttttttttttttttttttttttttttttttttt}t|t{t{tztxtvtttqtototmtktjthtetat]t[t[t[t]t_tctftjtmtqtutxt}tttttttttttttttttttttttttttttttttttttttttttttttuu uuuuuu"u#u!uuuuuu u uu uuttttttttttttttttttttttttttttttttttttttttttttttt}t}t}t|t{tzt{tztytvtptjtdtMxLxKxJxHxGxJxLxOxRxVxYx^xcxgxjxpxwx~xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx{xuxqxlxgxdxcxax^xYxUxPxMxIxDx>x8x2x-x(x!xxxxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww~wwwpwjwew_wWwPwIwBw;w5w1w2w7ww?wwwwww}w(wwwwwwwwwwwwwwwwwwww wwvvwvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv}vxvsvnvjvevcv_v\vYvVvRvMvHvBv>v:v9vv:v7v2v+v'v'v+v0v3v6v9v=vAvFvIvIvFvBv;v3v)vvv vvuuuuuuuuuuuu{usukucuZuSuLuEu?u9u3u,u&u!uuuu uutttttttttttttttttttttttttttttttttttt}t{tytxtutststttstptmtktithtftdtdtbtat_t]t\t[tYtWtVtVtZt_tbtdtgtjtmtqtutxt}ttttttttttttttttttttttttttttttttttttttttttttu uuuuu!u$u$u$u$u!uuuuuuutuuttttttttttttttttttttttttttttttttttttttttttttttttttttttt~t{tvtptitKxKxJxIxHxHxJxLxOxSxWx\xbxhxlxqxxxxxxxxxxxxxxxxxxxy yyyyyxxxxxxxxxxxxxxxxxxxxx|xxxtxpxlxjxkxlxkxgxdxbx`x]xWxPxHxBx;x4x+x!xxxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww}w|wzwywywywyw}wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwywowhwaw]wYwUwOwIwAw:w4w/w*w&w&w)ww2wwwwwwmwwvwwwwvvvwwwww w w w w w wwwwwwvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv|vwvqvkvevav\vWvTvPvLvHvDvAv=v:v7v4v1v+v%vvv v%v)v,v.v2v7vvw8w1w,w'w#w w$w&w w+w}wwwww_w wvvvvvvvvvvvvvwww w wwwwwvvvvvvvvwvvvvvvvvvvvvvvvvvvvvv{vvvpvjvev_vZvVvQvLvHvEvAv=v8v5v2v.v,v)v$vvvv v vvvvv v%v)v+v+v)v%vvvvvuuuuuuuuuuuuuwunufu_uWuPuIuBu:u4u.u)u#uuuuu uuuttttttttttttttttttttttttttttttttttttt}tztytwtttptntkthtgtgththtftctat^t[tYtWtVtUtTtStRtPtPtRtVtXtZt^tatctftitltptutzt~ttttttttttttttttttttttttttttttttttttttttttu uuuuu u"u#u uuuu uutttttttttttttttttttttttttttttttttttttttttttttttttttttt~t}t|t|tztvtptjtbtYtPtHxHxHxHxGxIxMxQxWx[x_xdxjxpxvx|xxxxxxxxxxxxxxxxxyy yyyy yxxxxxxxxxxxxxxxxxxxxx}x{xzxyxvxtxuxwxwxuxsxqxoxmxhx`xWxNxFx=x4x*xx xxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww|wywwwvwvwvwvwyw}wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwjwawZwTwPwLwHwDw>w9w3w-w(w$w www"w w.w{wwwwwZwwvvvvvvvvvvvvvvvwwwww wvvvvvvvvvwvvvvvvvvvvvvvvvvvvvvv~vyvsvlvfvav[vVvQvLvGvBv>v:v5v1v-v*v&v#vvvv vvvv vvvvv v"v$v"vvvv vvuuuuuuuuuuuu{urujubuZuSuLuEu>u6u/u*u$uuuuu uuutttttttttttttttttttttttttttttttttttt~t|tztwtvtutrtptntjtgtetdtetftetbt_t]t[tYtWtUtTtStQtOtMtMtOtQtUtWtZt^tatctethtmtqtvtyt}tttttttttttttttttttttttttttttttttttttttttuu uuuuu u uuuuuutttttttttttttttttttttttttttttttttttttttttttttttttttttt}t{tytwtutrtltft^tUtLtBtHxGxGxHxHxJxOxSxYx^xbxgxmxtxyxxxxxxxxxxxxxxxxxxyy yyyyyxxxxxxxxxxxxxxxxxxxxx~x}x|x{xyxxxyx{x{xzxxxuxsxrxlxdx[xRxIx@x7x,xxxxxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww{wywxwvwwwywzw}wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwywmwbwZwSwMwIwFwCw?w:w4w0w*w%w wwww w w-wxwwwwwSwvvvvvvvvvvvvvvvvwwwwwwvvvvvvvvvwvvvvvvvvvvvvvvvvvvvvv~vyvrvlvfv`vZvUvPvJvEv@vtu8u1u,u'u"uuuuu uuuutttttttttttttttttttttttttttttttt~t~t}t|tytwtttstrtptntltjthtftdtbtat`t^t\tZtXtWtVtUtRtQtOtMtKtItGtCt=t:t:tw9w4w0w-w+w*w&w#wwwwww wwwwwvvdwwww{w"wvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv{vtvkvbvYvPvFv>v6v/v(v"vvvv vvvuuuuuuuuuuuuuuuuuuuuuuuuuuuuuwumudu\uSuKuCu=u7u1u+u&u!uuuuu uuuuttttttttttttttttttttttttttttttt~t|tztxtvtttstptptotltithtftdtctat_t]t]t\t[tYtWtVtVtTtQtOtNtLtItItHtDt?t:t7t7t:t>tAtCtDtFtJtMtPtStVtYt]tbtgtltrtvt{ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt}tvtntft]tStGt:t,ttttssssBxCxCxDxGxKxQxXx`xgxnxvxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxzxwxrxkxcx]xVxQxKxExv6v.v&vvvv vvuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuwumucuZuQuHuAu;u5u/u)u$u uuuuu uuuutttttttttttttttttttttttttttttt~t}t{txtqtotptotltktjthtetdtbt`t^t]t\tZtZtYtYtVtTtStRtPtNtLtKtHtFtEtEtBt>t9t4t2t4t8tt@tBtEtHtJtLtOtStWt[t`tftktotstxt|ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt{trtit`tVtKt?t1t#tttsssssBxCxCxDxGxKxQxYx`xgxnxwxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx~x}x~xxxxxxxxxx{xvxtxoxhx`xZxSxNxJxFx>x3x(x#x xxxxxxxx xx!x xxxwwwxxxwwwwwwwwwwwwwwwwwwwwww}wxwtwswtwuwzwwwwwwwwwwwwwwwwwwww}w|wzwywxwyw{w{w|w}w~w}wzwvwqwnwnwowqwswvwyw~wwwwww~w}wzwuwrwqwqwpwnwmwjwkwmwowpwrwtwvwzw}w|wxwswowmwkwjwgwcw_w\wWwSwMwIwEwAw>w:w5w1w-w)w&w$w"w!wwwww w wwwvvvvvw_w}wwwvw%wvvvvvvvvvvvvvvvvvvvvvvvvwvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvyvovfv\vRvGv=v4v,v#vvv vvuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuukuauYuPuHuAu:u4u.u(u"uuuuu u uuuttttttttttttttttttttttttttttt}tztytwtutstotktltjtgtftftftdtat_t\tYtWtWtWtWtUtTtRtPtNtLtJtHtFtDtAt?t=ttAtCtFtHtJtNtRtUtZt_tdtitltptutyt}ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt~t~t~t~t~t~t~t~t~t~tttttttttttttttttwtntctZtOtCt6t(tt tssssssCxCxDxFxIxMxRxYx`xgxoxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx~x~x}x|x|x}xxxxxxxx}xvxqxnxjxbx[xUxPxKxIxEx?x5x+x'x%x!xxx xxx xxx*xxx xxxx x x xxxwwwwwwwwwwwwwwwwwwww}wwwswqwqwswxw~wwwwwwwwwwwwwwwwww}w|w{wxwvwvwwwwwxwxwxwywxwvwrwnwkwkwkwmwnwpwswxw{wzwxwwwwwvwtwrwnwkwjwjwiwgwfwcwdwfwhwiwlwmwowswuwtwpwlwgwdwbwaw]wZwVwRwNwJwEw@wt;t9t7t4t,t/t.t,t(t#t(t+t/t4t7t;t@tCtCtBtItMtPtTtYt^tbtethtmtqtutxtzt{t}ttt~ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt~t|t{t{t|t{tztytxtxtytzt{t~ttttttttttttt{trtht]tStGt:t-ttttssssssDxExFxHxKxOxTx[xbxixqxyxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx~x}x|x|xzxyxzx|x|x|x~xxx}xxxrxlxhxcx[xTxOxKxHxFxCx>x5x,x)x(x&x!xxxxxxxx1x#xxxxxxxxxx xxwwwwwwwwwwwwwwwwwwwwzwuwrwqwrwvw|wwwwwwwwwwwwwwwww~w{wywxwvwuwuwtwtwuwuwuwtwswrwnwjwhwgwhwhwhwjwmwqwtwswqwpwpwpwnwlwhwdwdwdwcwbwaw^w^w`wawbwdwfwhwkwlwlwiwew`w]wZwYwVwRwMwIwDw@w;w7w4w2w0w,w)w&w#wwwwwwww wwwvvvvvv wvwZwxw~w}wrw*wvvvvvvvvvvvvvvvvvvvvvvvvwvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvxvnvcvXvMvAv7v-v#vvv vvuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuzupufu]uTuKuEu>u6u/u(u"uuuuu u uuuttttttttttttttttttttttttt~t|tztxtxtwtvtstqtotltjtitgtbtetdtdtctat^t[tYtXtUtRtPtMtLtKtJtHtGtGtEtDtBt@t>t=t;t9t5t5t2t/t(t!t#t&t't)t.t4t:t>tAtDtFtHtKtOtTtXt[t^tatftitmtptstutvtwtwtxtxtyt{t{t|t|t~t}t|t~ttttttttttttttttttttttttttttttttttttt}t|t}t|t|t|t}t|t}t}t~t~t|tztytytxtwtutstqtqtrtstttxt{ttttttttttt{tstit_tUtIt=t0t"tttsssssssFxHxIxKxMxQxWx]xcxjxrxzxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx~x{x{x{xzxxxvxwxxxwxwxzx|x{xwxrxlxfxax\xUxMxIxGxDxBx@xv4v)vvvvvuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuwunueu[uQuIuBu;u4u-u'u!uuuuu u uuuttttttttttttttttttttttttttttttt~t|tytwtutstptotntltjthtgtetctat_t^t[tXtUtRtQtPtNtLtLtMtMtLtJtGtFtJtCtAt?t=t;t9t4t/t,t)t&tt"t+t1t7t;t?tAtDtFtJtNtRtUtXt\t_tctetitltntntotqtrtststututvtwtytytwtyt{t}tttttttttttttttttttttttttttttttttt~t{tztztztytytytytytztztytwtvtvtutttrtotltjththtjtltotstvtzt}tttttt~txtptgt^tTtIt=t0t"tttssssssssHxKxLxMxOxSxYx_xexkxsx{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx|xyxyxyxwxtxsxsxtxrxsxuxwxuxqxkxex_xYxTxNxGxCxAx>x=xt=tw;w8w3w.w*w'w$w!wwwwwwww w wwwwwvvvvwww wwwvwUwswswtwgw"wvvvvvvvvvvvvvvvvvvvvvvvvwvvvvvvvvvvvvvvvv~vvvvvvvvvvvvvvvv}vsvhv\vOvCv7v-v#vvv vvuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu~utukubuYuOuFu>u8u.u,u*u$uuuu uuutttttttttttttttttttttttttttttttttttt}t{tytwtutstptotltithtgtetctat_t^t]t[tYtWtUtTtStRtQtPtLtItHtFtDtBt@t>t=t;t9t7t5t3t.t*t#ttt(t/t4t8tu8u2u-u'u!uuuu uuttttttttttttttttttttttttttttttttttttt~t|tytwtutrtotltjthtgtetctat_t^t]t\tZtXtVtTtStRtPtPtOtLtItGtFtDtBtAt?tx9x3x0x.x-x-x,x+x'x#x%x)x-x-x(x#xx x&x,x5xLx;x5x1x0x1x3x7x7x4x.x&xxxxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww~w{wywwwuwswqwpwmwlwlwlwlwjwiwhwgwfwew`w]w[w[w[w[wZwZwZw[w\w[wXwVwUwTwSwSwRwPwOwMwKwIwGwFwCwBwCwDwDwDwFwHwIwIwFwBw@w>w:w7w3w/w,w(w$w wwwwwwwww wwwvvvvvvww w wwwwwwv wNwjwpwowbwwvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv}vxvwvyv}vvvvvvvvvvvvvyvovevZvNvAv5v+v!vvvvuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu~utukucuZuRuIuBuu5u,u"uuuuttttttttttttttttttttttttttttttttttttttttt}tytwtutrtptmtkthtftctbt`t^t[tZtXtVtUtStRtQtPtNtMtLtKtJtGtFtDtCtDtCtAt>t;t9t6t3t0t/t,t)t't#ttt(t2t9t=tAtDtHtLtOtStWt[t]t`tctdtdtdtetftftetctdtfthtktntrtutwtyt|tttttttttttttttttttttttttttttttt|tvtrtptntltktjtktltltjththtetat_t]t\tZtWtRtMtItEt@t=t;t:t:t9t8t7t5t2t0t,t(t"ttt ttssssssssssssysnsesUxVxWxYx\xaxfxmxrxwx{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx{xuxpxnxmxkxixexbxax_x[xXxXxXxUxPxIxAx:x5x1x+x&x$x#x"x"x"x!xxxx!x%x%x"xxxx#x)x2xLx;x4x1x0x1x3x7x8x5x0x)x xxxxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww~w}w{wzwxwvwswqwownwlwjwiwiwiwiwgwewdwdwcw^w[w[wZwZwZwXwXwYwYwWwUwTwRwRwRwRwQwOwLwKwIwGwFwCw@w>w=w=wt9t5t1t.t-t+t(t%t!ttttt ttssssssssssssssvslscsZsWxXxZx\x_xdxixoxuxyx}xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx~xxxqxmxjxixhxexax]x[xYxVxSxRxQxMxHxBx:x3x.x*x%x xxxxxxxxxxx x!xxxxxx%x-xAx7x1x.x-x/x3x7x7x5x1x*x!xxx xxwwwwwwwwwwwwwwwwwwwwwwwwwwwww~w|w|w{w{wzwywxwwwtwrwpwnwlwkwiwhwhwhwgwfwdwcwcwbw]w[wZwZwYwXwXwXwXwWwVwTwRwQwPwPwPwOwMwKwJwHwFwDwBw?w=w;w9w8w6w5w6w7w8w7w4w1w.w+w(w%w"wwwwww w w wwwwvvvvvvvw wwwwww!w$w%w&w+w%wvwJwawewbwXwwvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv|v{vxvsvovlvjvjvlvnvqvrvtvuvwvwvtvovgv^vTvJv@v5v*v vv vvuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu{uuuouiucu[uSuLuDu;u1u!uuuuuuuuuuu u uuttttttttttttttttttttttttttttttttt}tytutqtntltitgtetct`t^t[tZtYtWtUtStRtQtOtLtHtHtItHtHtFtDtAt?t=tu6u,uuuu u)u+u+u*u'u$uuuuu uuuutttttttttttttttttttttttttttttt|txtutqtntjtgtftctat^t]tZtYtYtWtTtRtPtOtMtJtGtFtFtEtCtBt@t>ttAtEtGtItJtKtMtOtPtRtTtUtVtXtYt[t^tatctfthtktotttxt|tttttttttttttttttttttttttttt|txtstptmtjthtetdtdtctbtat`t_t\tWtUtTtQtMtHtCt>t:t5t/t)t#tttt tttsssssssssssssssss{sssjsbsZsTsMs]x_x_xaxdxhxnxtxzx}xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx|xzxyxwxqxjxfxexdxbx^xZxVxTxQxMxHxFxExBxtw9w4w1w-w*w'w$w$w$w#w wwwwwwwww w wwwvvvvvvvvwwwww!w)w/w2w5w9w;w=w?w>wtAtCtEtFtItKtMtPtStVtZt]tatethtmtrtwt|tttttttttttttttttttttttttttxtstmtitdt`t]tZtWtVtTtRtRtRtPtMtJtHtFtCtAt>t8t1t*t"ttttssssssssssssssssss~svsoshs`sXsPsIsCs=s:s6sdxfxfxgxjxnxsxxx}xxxxxxxxxxxxxxxxxxxxyxxxxxxxxxxxxxxx{xwxvxsxpxoxnxlxhxax]x[xYxVxRxMxIxExBxts9s7s3sgxhxhxixlxoxtxyx~xxxxxxxxxxxxxxxxxxxxyxxxxxxxxxxxxxx~xvxtxsxpxmxlxkxixex^xZxXxVxSxOxJxFxBx>x8x3x1x0x.x)x xxxx x xxxxxxxxwwwwwwwwwwwxxxxx xxxx)x/x2x5x6x5x4x3x0x,x)x(x%xxxxx xxxwwwwwwwwwwwwwwwwwwwwww~wzwvwrwpwpwowlwkwjwhwhwhwfwdwdwbwcwdwcwcwbw_w\w\w[wXwUwTwSwRwRwQwOwLwKwJwKwLwLwLwKwIwIwHwCw>w8w3w-w(w$w wwwwwwwwwww w wwwwvvvvvvvvvw wwww&w-w4w;w?wCwFwHwHwGwDwAwAw.wvwEwTwYwUwJw.wwvvvvvvvvvvvvvvvvvvvvv|vxvtvsvrvrvrvovjvevcvav^v[vYvWvSvMvHvDvCvCv@v=v9v6v3v1v/v+v&v vvvv vvuuuuuuuuuuuuuuuuuuuuuuuuuuuu{uyuqulukukulumukuiuguduau_u\uZuVuSuUuYu]uaudufugueubu^uZuUuPuJuEu@u:u5u/u*u&u"uuuuu uuuuuttttttttttttttttttt}txtttptltgtct`t]tYtWtTtRtOtMtKtJtItHtGtFtEtCtAt?ttAtDtGtJtNtQtTtYt]tbtgtmtrtxt~tttttttttttttttttttttttttttutotitdt_t[tVtRtOtNtLtJtGtFtEtCtAt?tx:x4x/x-x,x*x$xxxxx xxxxwwxxwwwwwwwwwwwwwxxx xx xxx%x+x.x4x7x7x7x8x7x3x1x2x/x*x#xxxxxx xxwwwwwwwwwwwwwwwwwwwww|wxwuwrwrwpwnwkwjwhwgwgwfwewcwbwawcwcwcwbw_w\w\w[wXwVwTwSwRwRwOwLwIwIwIwJwJwKwJwIwHwGwEwAw;w5w/w)w%w!wwwwwwwwww w w wwwwvvvvvvvvvw wwww#w+w2w9w@wEwHwKwLwMwKwFwBwAw-wvwDwTwWwSwEw*w wvvvvvvvvvvvvvvvvvvv~vyvuvpvlvivfvevevcv`v]v[vYvWvSvRvQvMvGvBv?vtCtFtItLtPtTtYt^tctitntstyttttttttttttttttttttttttttttttotitdt_tZtUtPtMtKtHtFtDtCtCtAt>twFwJwMwPwRwQwNwHwCwAw+wvwBwSwTwQwFw,wwvvvvvvvvvvvvvvvv{vwvtvqvmvivgvcv_v\vZvZvYvWvUvSvSvUvMvLvKvGvAvt=t=ttt>t=tx@xAx>x9x7x5x2x,x'x"xxxx xxwwwwwMtJtHtGtFtEtDtCtBtAt@t?t?t?t>t=t;t9t6t4t1t/t+t(t&t$t"t!ttttttttt t tttttttttttttttt"t$t&t)t-t0t4t8ts3s's s s"s's.s3s5sjxmxoxpxqxsxwx}xxxxxxxxxxxxxxxxxxxxyyxxxxxxxxxxxx}xwxoxgxcx`xZxWxVxWxVxPxIxExBxAx=x8x2x-x*x%xxxxxxxxxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwx xxxx!x&x,x1x5x7x;x>x@x>x;x9x9x6x1x+x&xxxx xxwwwwwKtJtHtFtEtDtBtAt@t?t>t=tt=tsEsHsKsNsNsmxoxqxrxsxuxyx~xxxxxxxxxxxxxxxxxxxxyyxxxxxxxxxxxxyxrxkxdx`x^xZxWxUxTxRxMxGxCxAx?x:x4x/x+x'x"xxxxxx xxxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwxx xxxxx"x%x*x0x3x3x3x3x3x1x.x*x$xxxx xxwwwwwNtLtItGtEtCtCtBt@t>t=ttCtItOtUt]tdtktstzttttttttttttttttttttttttttttt{tttltdt[tStLtFt?t6t.t't#t#t#t#t ttt tsssssssssssss~sysusqspsnsjsbsZsSsPsJs>s.s!s%s:sDsKsOsRsSsVsWsnxoxqxsxtxvxzx~xxxxxxxxxxxxxxxxxxxxyyxxxxxxxxxxxxxxpxhxax]xZxWxTxSxQxNxHxBx>xt=tt=ttt1t'ttttssssssssssssssss}sysusrsnsisds]sTsHs7s%s$s+s?sNsZs`seshsisisisisjsisissxtxuxvxwxyx}xxxxxxxxxxxxxxxxxxxyyyyxxxxxxxxxxx|xtxlxcx[xVxRxOxJxFxDxBx>x:x5x1x/x+x&x xxxxx xxxxxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwxx x x x xxx xxxwwwwwwwwwwOtLtItFtCt@t=t:t8t5t3t1t0t/t-t,t,t,t+t)t(t&t$t"tttttttttttt t t ttsttt t t t t t ttttt t t tttttt"t&t+t0t6tttFtOtWt_thtrt|tttttttttttttttttttttttttttttt{trtft[tPtDt6t)ttttsssssssssssssss}swsssosjses^sTsFs/s/sAsPsYsasgslsospsqsqsrsrsqsqsqsrsrsvxxxxxxxyx|xxxxxxxxxxxxxxxxxxxyy yy yyxxxxxxxxxx~xwxoxex_x[xVxPxJxExAx=x9x5x1x-x*x(x#xxxxxx x xxxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwxxxxxxxxwwwwwwwwwwwMtJtFtBt?t=t;t9t7t2t0t.t-t+t)t't%t#t"t!ttttttttttt t t t t t t tttssstttttttttttttttttt ttttt!t't-t3t:tCtKtSt\tetotzttttttttttttttttttttttttttttttytmtatWtJttsEsYsgsqszssssssssssssssssssuxwxyxzx|xxxxxxxxxxxxxxxxxxxy yyyyyyxxxxxxxxxxxxxxoxixcx]xVxRxNxLxHxAx;x5x/x,x'x"xxxxxx x xxxxwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwxxxxxwwwwwwwwwwwOtJtFtCt@tx8x2x,x%x!x!x xxx!x%x&x%x"x xxxxxxxxxxxxx xxxxwwwwwwwwwwwwwwwwwwwwwwwxxxx"x%x)x/x4x7x6x4x1x.x+x*x(x%xxxx xxrxqxpxqxsxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx|xtxnxkxgx`xWxNxFx>x9x4x-x&x#x#x"xxx#x'x(x'x%x#x"x#x"x!x x xxxxxxxxx x xxwwwwwwwwwwwwwwwwwwwwwxxxx"x*x.x2x8x>xAxAx?x=x9x6x4x2x/x*x$xxx xsxrxpxqxsxwx}xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxwxrxnxixbxXxNxGx@x9x4x-x&x#x$x#x x x$x(x*x)x'x&x&x&x&x$x$x&x&x%x%x&x$x xxxxxxxwwwwwwxwwwwwwwwwwwwwx xxx(x1x6x:xAxFxJxJxIxHxExAx>x;x8x3x,x$xxxuxsxqxrxsxux{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxzxtxoxixbxWxMxFx?x9x4x-x&x#x#x#x!x x%x*x+x*x)x(x(x(x(x'x'x*x+x*x+x,x*x'x$x!xxxxxxwwwwwxwwwwwwwwwwwwx xxx!x,x5x;x@xGxMxPxRxQxOxLxHxFxCx?x9x2x*x xxvxtxrxqxqxrxwx|xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx|xvxpxjxbxWxLxEx>x9x3x-x'x$x$x$x"x!x%x*x,x*x)x(x)x)x)x*x+x,x.x/x0x1x0x-x+x(x%x!xxx xwwwww xwwwwwwwwwwwwx xxx"x.x7x>xDxLxRxVxXxXxUxPxLxJxGxBxxExNxTxXxZxYxUxPxMxKxFxAx:x3x+x xxyxwxsxqxoxoxrxtxuxvxuxuxwxzx|x|x|x}xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxyxsxkxbxWxLxDx?x9x4x/x)x&x&x%x#x"x&x)x*x)x(x(x(x*x+x*x+x-x/x1x3x5x4x2x0x.x,x+x&xxxxwwxxxwwwwwwwwwwwwx xxxx*x4xx:x6x1x,x)x)x'x%x%x(x*x+x)x'x&x%x$x%x%x$x%x&x'x*x-x+x)x)x)x'x%x#xxx xxx xxxxwwwwwwwwwwwwxx xxx'x.x4x;x@xCxDxBxx;x6x0x.x/x,x*x)x*x+x,x*x(x%x$x%x#x"x"x"x!x x!x$x#x"x!x!x x xxxx x x x xxxxwwwwwwwwwwwwwwx xxx"x&x+x0x1x1x.x)x$x xxxxxxxxwxxx}xxxtxsxrxoxlxixfxexdxcxaxaxaxcxixlxnxnxoxqxsxxx|x}x{xyxxxyx{x}xxx~x|x|xxxxxxx}xwxqxlxgx`xXxPxIxDxAx=x8x2x0x2x/x,x+x+x,x,x*x(x&x%x%x#x!x!x xxxx!xxxxxxxxxx x x xxxxxwwwwwwwwwwwwwwxxxxxx#x(x)x(x&x!xxxxxx xxxwwxxxxzxvxtxsxpxlxixfxdxcxax_x^x^xaxexixkxlxmxnxoxtxyxzxwxtxsxuxwxyx{x|xyxwxwxzx}x~x~xx~xyxtxoxlxgx`xYxPxJxExBx?x:x5x3x4x2x.x-x.x/x.x+x(x&x%x$x"x!xxxxxxxxxxxxxxxx x xxxxxxwwwwwwwwwwwwwwwx xxxxx x!x xxxxxx x xxxwwwxxxx}xxxvxuxqxmxhxexcxbx`x^x]x]x_xcxfxgxixjxkxlxqxuxvxsxqxpxqxsxtxvxvxtxqxrxuxxxxxxxzxzxwxqxnxkxgx`xYxQxLxHxExBx=x8x7x7x5x2x0x0x1x1x-x)x&x%x$x#x!x x xxxxxxxxxxxxxx x xxxxxxxwwwwwwwwwwwwwwxx xxxxxxxxx x xxxxwwwwwxxxxxzxyxvxqxlxhxexdxbx`x]x[x[x\x`xdxexfxhxixkxoxsxsxpxoxnxnxoxpxqxpxnxmxnxpxsxsxsxuxvxtxpxnxlxhxcx[xTxOxKxIxExAx;x:x;x9x6x3x4x5x4x1x-x*x)x'x%x#x"x!xxxxxxxxxxxxxx xxxxx x xxwwwwwwwwwwwwwwwxx x xxxxx xxxxxxwwwwwwxxxxx|xzxvxrxmxixfxdxbx_x\xZxYxZx^xbxcxcxfxgxixmxpxqxoxmxlxkxlxlxmxlxjxixjxmxnxoxpxrxtxrxpxnxlxjxfx_xWxRxOxLxHxEx@x>x?x>x;x8x9x:x9x5x1x.x,x*x'x%x$x"xxxxxxxxxxxxxxxxxxx!xx xxxwwwwwwwwwwwwwxxxx x x x xxxwwwwwwwwwwxxxxx~x|xyxuxoxjxfxexcx`x\xYxXxZx^xaxaxaxdxexgxkxnxoxlxjxixhxixjxjxixhxgxgxixjxlxlxoxqxpxnxmxmxlxhxaxZxUxRxPxMxIxDxBxDxCx@x=x>x?x>x:x5x3x0x-x+x)x&x%x"xxxxxxxxxxxxxxxxx$x)xxx xxxwwwwwwwwwwwwwxxxxxxxxwwwwwwwwwwwxxxxxx~x|xxxrxlxhxfxdx`x[xXxXxZx]xaxaxaxcxdxfxixlxmxkxhxfxfxgxgxgxfxexdxdxexgxixixmxoxmxlxmxnxmxjxdx^xYxUxSxQxMxHxHxIxHxDxBxDxFxDx@x:x7x5x2x/x-x*x(x%x x x!x xxxxxxxxxxxx x(x+xxx x xxxxwwwwwwwwwwwwwwxxxwwwwwwwwwwwwwxxxxxxxxzxtxnxjxhxexax[xXxWxXx\x_x`xaxcxcxexhxkxlxjxgxexexfxfxexdxcxaxaxbxdxfxgxjxlxlxkxmxoxoxlxfx`x\xYxWxUxQxNxLxNxMxKxJxKxLxJxFx@xx)x"xxxx xxxxwwwwwwwwwwwwwwwwwwwwwwwwwwwwxxxxxxxxxxxqxmxjxhxdx^xZxWxWxZx]x^x`xbxbxdxhxkxlxixfxexcxcxax_x_x`x`x`x`xbxcxdxgxjxjxjxlxpxsxqxkxexbxaxax_x\xYxXxZxZxYxXxZx[xZxVxOxIxFxCx?x;x7x4x0x,x+x,x*x(x'x'x(x)x+x(x$x$x(x-x3x>xAx1x)x"xxxx x xxxwwwwwwwwwwwwwwwwwwwwwwwwwwwxxxxxxxxx{xtxpxlxjxex^xZxWxWxZx]x^x_xaxcxexixlxlxjxgxexcxbx`x\x\x^x_x_x_x`xaxcxgxjxjxjxlxpxsxrxmxgxdxdxdxbx`x]x^x`xax`x`xbxdxcx^xYxRxNxKxGxDx?x:x7x2x0x1x/x-x,x,x-x.x0x.x+x*x.x5xx:x7x7x5x3x1x1x2x4x4x4x2x1x6x?xExPx]xBx:x1x)x xxxx xxwwwwwwwwwwwwwwwwwwwwwwwwwwwxxxxxxxxxxyxtxpxmxgx_xXxSxQxUxXxYx\x_xbxexjxlxmxkxjxgxexdxcxax_x^x^x^x^x_xaxcxfxixixjxlxpxrxrxoxkxhxhxixixhxgxhxlxnxoxpxsxvxvxrxmxhxcx^xZxVxQxKxFx@x>x=x:x8x7x6x8x:x;x;x:x:x?xGxMxZxgxOxCx9x0x(x"xxxx xxwwwwwwwwwwwwwwwwwwwwwwwwwwxxxxxxxxxxzxsxoxlxfx^xVxPxNxRxVxVxYx]x`xcxhxkxlxkxjxhxfxfxexdxbx`x_x_x`xbxcxdxfxhxixjxmxpxrxrxpxmxkxkxmxnxmxmxoxrxuxwxzx}xxx~xxxsxnxixex`xZxSxMxGxDxCxAx>xx@xCxLxTxAx8x4x.x'x xxxx xxxwwwwwwwwwwwwwwwwwwwwwwwwwxxxxxxx~xtxkxcx]xXxSxLxEx@x>x>xAxAx5x@xCxGxNxVx]xbxfxjxnxsxxx}xxxx{xxxwxxxzx{x{xyxwxvxuxwxyxxxxxyxzxzx{x|x~xxxxxxxxxxxxxxxxxxxxzxrxix_xVxNxGxBx>x;x8x6x6x7x8x;xDxFx6x/x+x&x xxxx xxxxxwwwwwwwwwwwwwwwwwwwwwwwwxxxxxxx{xrxixax\xYxTxLxDx>xx8x@xExJxPxVx\xaxexjxoxtxzxxxxxx}x|x|x}x~x}x|x{xzx{x|x}x|xzxzx{x}x~xxxxxxxxxxxxxxxxxxxxxx{xrxjx`xXxOxGx@x;x7x4x1x0x0x1x3x:x=x-x'x"xxxxxx xxxxxxwwwwwwwwwwwwwwwwwwwwwwwxxxxxxxzxqxgx`x\xYxSxKxDx?xx9x;xAxGxNxTxYx^xcxgxlxsxxxxxxxxxxxxxxxxxxxxxxx~xxxxxxxxxxxxxxxxxxxxxxxxx~xuxlxcxZxQxHx@x9x5x3x/x,x*x+x,x2x1x%xxxxxxx x xxxxxxxwwwwwwwwwwwwwwwwwwwwwwxxxxxxxzxqxhxax]xZxUxMxFx@x=x=x@x=x>xCxJxQxVx\xcxixmxsxyxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxzxqxfx\xSxJxBx#M#4MS N O$2O zOOLN0ddddddddddddddddddddddddddddddddddd!r@_:f.;ZZz"N6VzuޔB n16Qpb* , band False @@C9^AOQA# #i )#NAD83 / UTM zone 15N|NAD83|>#Q#PS R R$Q Q R(R0ddddddddddddddddddddddddddddddddddd!r@_:f.;ZZz"N6VzuޔB n16Qpb* ,# #i )#NAD83 / UTM zone 15N|NAD83| band False @@C9^AOQArioxarray-0.18.2/test/test_data/compare/veris_interpolate.nc000066400000000000000000000672131474250745200243020ustar00rootroot00000000000000HDF  n`OHDR " NF J_NCProperties"version=2,netcdf=4.7.4,hdf5=1.10.6yljOHDR O## ?@4 4    " 4 P 1 1 , !OHDR 222 ?@4 4   0H1 " 4ĒWWFSSEn1b6"5x@eW eWǢdW7dWdWaodW#EdWo2dW] AcWKOcW9J^cW'lscWt{IcW cWbW2bWǵbW\wbWMbW#bWaWvaWdE aWR|aW@o*RaW/9(aWG`W .V`Wd`WWs`WV`Wā,`W`W_W@_Wq,E@:,E@,E@t,E@P>,E@-C,E@ m9,E@VC,E@s,E@ꐛ,E@{G,E@W>,E@4h,E@L,E@",E@?,E@]P,E@9z,E@_c,E@;T,E@,E@,E@ Y,E@4),E@^F,E@fc],E@B ,E@ܝ,E@a,E@/ ,E@Y,E@f,E@m/,E@IL,E@&jj,E@+,E@T,E@~n,E@,E@t,E@Ps,E@-&6,E@ PS,E@ypw,E@£#,E@ͪ,E@{{,E@X!',E@4K,E@u,E@FRHP  (9^9BTHDd(5 :*BTHD  d(7 WFSHDPx(98vY,/OHDR  @  [x'pOCHK@ spatial_refB~FSSEUoFHIBpOHDR (2#2# ?@4 4;a  8shuffledeflateA2# beOCHKM>SloperOCHK P _Netcdf4Coordinates  P _FillValue ?@4 4 %nameSlope - long_nameSlope 3 grid_mapping spatial_refaBTHDd(1 DFRHP:  (BTHDd( uBTHD  d( rFSHDfPx(%%+ WBTLFXKX \>$!dP`A[9Jol P` 836_%V ]iBúN'ziBTLF NdPPX\>`936iBV l FHDB/ spatial_ref.GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AXIS["Latitude",NORTH],AXIS["Longitude",EAST],AUTHORITY["EPSG","4326"]] GeoTransform[-94.30306000000002 9.999999999830406e-06 0.0 42.350730000000006 0.0 -1.0000000000128953e-05FHDB)crs_wkt.GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AXIS["Latitude",NORTH],AXIS["Longitude",EAST],AUTHORITY["EPSG","4326"]]semi_major_axis ?@4 4@TXAsemi_minor_axis ?@4 4З?XAinverse_flattening ?@4 4mtr@reference_ellipsoid_nameWGS 84longitude_of_prime_meridian ?@4 4prime_meridian_name Greenwichgeographic_crs_nameWGS 84grid_mapping_namelatitude_longitudeOCHK 3 coordinates spatial_ref `DIMENSION_LIST  yoGCOLKK`FRHPn1 (=i[BTHD  d(3 F;FSHDPx(^BTLF0L P$y!B70<0x/RF"_h4e >L-i 4BTLF 0F"h4P00L-y! ɳ BTLF1L P$z!B70<1x/RF"_h4e >N,i QBTLF 0F"h4P11N,z! \FSSE cRFHDB d9RCLASSDIMENSION_SCALENAMEx _Netcdf4Dimid  _FillValue ?@4 4 long_name longitudestandard_name longitudeunits degrees_eastaxisXtREFERENCE_LISTdatasetdimension LFHDB0Q4CLASSDIMENSION_SCALENAMEy _Netcdf4Dimid  _FillValue ?@4 4 long_namelatitudestandard_namelatitudeunits degrees_northaxisYtREFERENCE_LISTdatasetdimension LTREE YO2#OHDR (2#2# ?@4 4]M  8shuffledeflate[2# OCHKxKRedL;)OCHK P _Netcdf4Coordinates  P _FillValue ?@4 4 #nameRed + long_nameRed 3 grid_mapping spatial_ref 3 coordinates spatial_ref `DIMENSION_LIST  !x^uE7΃8S;"=sNB5fFhlA%;3&F*5C4# m6.  |>mG3 ?de|v\t+.BOػ_I_ȃ̟zV0իs!yC݂['#3hhDbL2sL{OA<ع* L*:q[GG[oe';eLBb-tgĖ yk$ ĩ2Ȋ_N=vudchqu+8zt\~ Zs5+W\U,j봏q*uy"$lюrhlgJ"D4n9d@z۞Ç#s:8$Fp2$x&QYyw{4Ō`"I+i'˥I$e K$Q'19;Ľ0w@VR@brc]o ^e~[<?r?`Ѣ}/KE0}|4 ==s>]U\3`8O*9ĘכB 3˿i'C@Dx \E{΀DTҌxB${E^N<1q<#mψnM[!慡q[JY\ҏZZ 8>@1d{)._O5#f-_յŠ`FrU>K{R6BwC=[ H'+**ܷ ---$rժ @ :UׁH>ڶ`̏o@B'1&iooSK?CL֍N[gfea0ci'z MǘU=رc7# xeؘl1e=Bٺψ yk QNCl8u7JC3VA1`RT38O}V7By\Sq?W*py"'#Ei8 ["3!g!f'"b"{x!3_ ^whi:8c&2cZyzUU@sG,l9 Ot< AdZrAITɾz$}r#nhH&fӑJ:q~BeSgAV~z\_" C*lQjȈjnm?~V4­<ޫhەQkv= Z .U#`ȈLӖl6BK$^00qw:Y$i8]إV;?sIDk jᑛDM p~,6ix#wRRQ҃R;LaI!#r9Db""AΊI0+dR |3{}?#` $A@LDt0Qyę2DF"YlU|b3aV#?H))Ƀ;/;ELDĩl$B>;"1>ČϓD ?DIIV%a5\OY1yr"F^ys o,!q.9Tl,HwىҲ R$ʦ LEJDJ l$bƐ$ D$x H 3f%)H>qST:MjRRTREEO yۛwXi6TݜzEp#`B5n6cEcͥ.z=_Q &[$ 1}iqVEg%ODzG[@67Q{i$v ޴*s Lml<}S5b5ǑqC,'b>x 2)W9acIC밠VDĸd 0_d7铠m+LX6?? hAPbL1ZNVF+)|$f+5tPus9( ĚoQ!9U]cEcͥ.2`"Eb$/-êd#\,=ˣ- Q"i$I=P .&,#3&RBwozCN/+ƉbUYH9xBI#ļHd"Q鰺)EGD7 *D[g"S!Ǵ#\d <;,M|)1],.Pӯ@h10pb>|(dxjj#JXNg|d2ZMю& Ân[U-I+铠m+t:X6?? hAPbL1[NVfŋI>y NW QCD׳ѐ5UXV~U ɩ+k.5p- 1}iqVE|!8ҳ<2) "a=$8/}C7T&4HͺKݽ 9'Ua'"  s_|'kyHW,#ѣRRCL5zk UZ3o9A~yU0?T GƘF_1;GȱWב?a]Inw^YMc^BJhyjBŋK>KJ5&B~ q !qzz|z1apz6C*_;|scc-˃Ti\ x3B|n?(7ߵ^s-WVw ~yVQj_z1{=&/ì=ocyLow\Zh{  v> ^O=,&S*D7 #gF7q^kԏJ >>?M}Խ4 ī-*Q/鞷Rx C1gm X\BSF\'|"{c,OڧgS$oi}U۴4\6(>_^e.hNÅm>%o>}9N> &rioxarray-0.18.2/test/test_data/input/MOD09GA.A2008296.h14v17.006.2015181011753.hdf000066400000000000000000104107101474250745200251010ustar00rootroot00000000000000@\G B&LG %-B rMG 8B MGXB MG}BYMGBMGBMGHDF Version 4.2 Release 5, February 17, 2010: ;  ;  ; ; ; ;  BLGBRLG"B!Lt ^u vIvv5vv!vv" v M: : :" &  originchk_tagchk_ref_HDF_CHK_TBL_702_6_1962_7_HDF_CHK_TBL_0&  originchk_tagchk_ref_HDF_CHK_TBL_702_9_1962_10_HDF_CHK_TBL_0&  originchk_tagchk_ref_HDF_CHK_TBL_702_12_1962_13_HDF_CHK_TBL_0&  originchk_tagchk_ref_HDF_CHK_TBL_702_15_1962_16_HDF_CHK_TBL_0&  originchk_tagchk_ref_HDF_CHK_TBL_702_18_1962_19_HDF_CHK_TBL_0&  originchk_tagchk_ref_HDF_CHK_TBL_702_21_1962_22_HDF_CHK_TBL_0&  originchk_tagchk_ref_HDF_CHK_TBL_702_24_1962_25_HDF_CHK_TBL_0&  originchk_tagchk_ref_HDF_CHK_TBL_702_27_1962_28_HDF_CHK_TBL_0&  originchk_tagchk_ref_HDF_CHK_TBL_702_30_1962_31_HDF_CHK_TBL_0&  originchk_tagchk_ref_HDF_CHK_TBL_702_33_1962_34_HDF_CHK_TBL_0   Data Fields GRID Vgroup  ) ,G(B' LG+ B* 7MG.<B- MG1}B0 MG4gB3 MG7^B6 kMG:=B9 MGrid Attributes GRID VgroupMODIS_Grid_1km_2DGRID:W,( ` ` `;W,+ ` ` `;W,. ` ` `;W,1 ` ` `;W,4 ` ` `;W,7 ` ` `;W,: ` ` `G=|yB< MG@B?OGC<BBgLGFyBEL(v+uv.v1av4v7Mv:v=9v;W,= ` ` `=W,@ ` ` `:W,C ` ` `:W,F ` ` `K  originchk_tagchk_ref_HDF_CHK_TBL_702_39_1962_40_HDF_CHK_TBL_0K  originchk_tagchk_ref_HDF_CHK_TBL_702_42_1962_43_HDF_CHK_TBL_0K  originchk_tagchk_ref_HDF_CHK_TBL_702_45_1962_46_HDF_CHK_TBL_0K  originchk_tagchk_ref_HDF_CHK_TBL_702_48_1962_49_HDF_CHK_TBL_0K  originchk_tagchk_ref_HDF_CHK_TBL_702_51_1962_52_HDF_CHK_TBL_0K  originchk_tagchk_ref_HDF_CHK_TBL_702_54_1962_55_HDF_CHK_TBL_0K  originchk_tagchk_ref_HDF_CHK_TBL_702_57_1962_58_HDF_CHK_TBL_0K  originchk_tagchk_ref_HDF_CHK_TBL_702_60_1962_61_HDF_CHK_TBL_0@uvCvFav$Q%()#Q- 1 1J 1/ 2 2J 2b/ 2 2K 20 3K  originchk_tagchk_ref_HDF_CHK_TBL_702_63_1962_64_HDF_CHK_TBL_0K  originchk_tagchk_ref_HDF_CHK_TBL_702_66_1962_67_HDF_CHK_TBL_0K  originchk_tagchk_ref_HDF_CHK_TBL_702_69_1962_70_HDF_CHK_TBL_0 &),/258;>AD Data Fields GRID VgroupGrid Attributes GRID Vgroup$%MODIS_Grid_500m_2DGRIDValuesYDim:MODIS_Grid_1km_2D DimVal0.1GYDim:MODIS_Grid_1km_2DDim0.0ValuesXDim:MODIS_Grid_1km_2D DimVal0.1IXDim:MODIS_Grid_1km_2DDim0.0 `ValuesYDim:MODIS_Grid_500m_2D DimVal0.1KYDim:MODIS_Grid_500m_2DDim0.0 ` 3K 3_0 3 3U 3: 4" 4&< 4b! 4 4V 4; 5 5= 5Y" 5{ 5;ValuesXDim:MODIS_Grid_500m_2D DimVal0.1MXDim:MODIS_Grid_500m_2DDim0.0 SDS variableSDSVarjPjPjPjPPPjHJOPPnum_observations_1kmVar0.0 SDS variableSDSVarjSjSjS jSSSjHJR SS state_1km_1Var0.0 SDS variableSDSVar 5 57 6 6 = 6F 6G< 67j 6 6 6 6U 79+ 7d; 7  77jVjVjV jVVVjHJU VV SensorZenith_1Var0.0 SDS variableSDSVarjYjYjYjYYYjHJXYYSensorAzimuth_1Var0.0 SDS variableSDSVarj\j\j\j\\\jHJ[\\Range_1Var0.0u 7 7= 8  8"< 8^ 8aG 8 >?:  >y7j > > > >T ?. ?I; SDS variableSDSVarj_j_j_j___jHJ^__ SolarZenith_1Var0.0 SDS variableSDSVarjbjbjbjbbbjHJabbSolarAzimuth_1Var0.0 SDS variableSDSVarjejeje  ? ?7 ? ?= @ @< @@ @H> @7j @ @ @ @S A: AV;jeeejHJdeegflags_1Var0.0 SDS variableSDSVarjhjhjhjhhhjHJghh orbit_pnt_1Var0.0 SDS variableSDSVarjkjkjk!jkkkjHJj!kk granule_pnt_1Var0.0 SDS variableSDSVar#m A A7 A A= B B< BM BU> B7j B B B BT CH% Cm; ` `jnjnjn'jnnnjLNm'nn&num_observations_500mVar0.0 SDS variableSDSVar ` `jqjqjq*jqqqjLNp*qq)sur_refl_b01_1Var0.0 SDS variableSDSVar ` `jtjtjt-jtttjLNs-tt,sur_refl_b02_1Var0.0% C C7! C! C=" D&" D(<# Dd# Dl>$$ D7j% D% D D& E L' EW' Eq; SDS variableSDSVar ` `jwjwjw0jwwwjLNv0ww/sur_refl_b03_1Var0.0 SDS variableSDSVar ` `jzjzjz3jzzzjLNy3zz2sur_refl_b04_1Var0.0 SDS variableSDSVar ` `j}j}j}(P( E( E7) E) E=* F** F,<+ Fh+ Fp>,, F7j- F- F F. GR/ Ga/ G|;6j}}}jLN|6}}5sur_refl_b05_1Var0.0 SDS variableSDSVar ` `jjj9jjLN98sur_refl_b06_1Var0.0 SDS variableSDSVar ` `jjj<jjLN<;sur_refl_b07_1Var0.0 SDS variableSDSVar*0 G0 G71 G1 G=2 H52 H7<3 Hs3 H{>44 H7j5 H5 H I 6 IS7 Im7 I;  ` `jjj?jjLN?> QC_500m_1Var0.0 SDS variableSDSVar ` `jjjBjjLNBA obscov_500m_1Var0.0 SDS variableSDSVar ` `jjjEjjLNED iobs_res_1Var0.0P8 I 8 I79 J9 J =: JFG7B AGDBLAGBAG,GBAGUBAGHDFEOS_V2.17  VALUES HDFEOSVersionAttr0.0GROUP=SwathStructure END_GROUP=SwathStructure GROUP=GridStructure GROUP=GRID_1 GridName="MODIS_Grid_1km_2D" XDim=1200 YDim=1200 UpperLeftPointMtrs=(-4447802.078667,-8895604.157333) LowerRightMtrs=(-3335851.559000,-10007554.677000) Projection=GCTP_SNSOID ProjParams=(6371007.181000,0,0,0,0,0,0,0,0,0,0,0,0) SphereCode=-1 GridOrigin=HDFE_GD_UL GROUP=Dimension END_GROUP=Dimension GROUP=DataField OBJECT=DataField_1 DataFieldName="num_observations_1km" DataType=DFNT_INT8 DimList=("YDim","XDim") END_OBJECT=DataField_1 OBJECT=DataField_2 DataFieldName="state_1km_1" DataType=DFNT_UINT16 DimList=("YDim","XDim") END_OBJECT=DataField_2 OBJECT=DataField_3 DataFieldName="SensorZenith_1" DataType=DFNT_INT16 DimList=("YDim","XDim") END_OBJECT=DataField_3 OBJECT=DataField_4 DataFieldName="SensorAzimuth_1" DataType=DFNT_INT16 DimList=("YDim","XDim") END_OBJECT=DataField_4 OBJECT=DataField_5 DataFieldName="Range_1" DataType=DFNT_UINT16 DimList=("YDim","XDim") END_OBJECT=DataField_5 OBJECT=DataField_6 DataFieldName="SolarZenith_1" DataType=DFNT_INT16 DimList=("YDim","XDim") END_OBJECT=DataField_6 OBJECT=DataField_7 DataFieldName="SolarAzimuth_1" DataType=DFNT_INT16 DimList=("YDim","XDim") END_OBJECT=DataField_7 OBJECT=DataField_8 DataFieldName="gflags_1" DataType=DFNT_UINT8 DimList=("YDim","XDim") END_OBJECT=DataField_8 OBJECT=DataField_9 DataFieldName="orbit_pnt_1" DataType=DFNT_INT8 DimList=("YDim","XDim") END_OBJECT=DataField_9 OBJECT=DataField_10 DataFieldName="granule_pnt_1" DataType=DFNT_UINT8 DimList=("YDim","XDim") END_OBJECT=DataField_10 END_GROUP=DataField GROUP=MergedFields END_GROUP=MergedFields END_GROUP=GRID_1 GROUP=GRID_2 GridName="MODIS_Grid_500m_2D" XDim=2400 YDim=2400 UpperLeftPointMtrs=(-4447802.078667,-8895604.157333) LowerRightMtrs=(-3335851.559000,-10007554.677000) Projection=GCTP_SNSOID ProjParams=(6371007.181000,0,0,0,0,0,0,0,0,0,0,0,0) SphereCode=-1 GridOrigin=HDFE_GD_UL GROUP=Dimension END_GROUP=Dimension GROUP=DataField OBJECT=DataField_1 DataFieldName="num_observations_500m" DataType=DFNT_INT8 DimList=("YDim","XDim") END_OBJECT=DataField_1 OBJECT=DataField_2 DataFieldName="sur_refl_b01_1" DataType=DFNT_INT16 DimList=("YDim","XDim") END_OBJECT=DataField_2 OBJECT=DataField_3 DataFieldName="sur_refl_b02_1" DataType=DFNT_INT16 DimList=("YDim","XDim") END_OBJECT=DataField_3 OBJECT=DataField_4 DataFieldName="sur_refl_b03_1" DataType=DFNT_INT16 DimList=("YDim","XDim") END_OBJECT=DataField_4 OBJECT=DataField_5 DataFieldName="sur_refl_b04_1" DataType=DFNT_INT16 DimList=("YDim","XDim") END_OBJECT=DataField_5 OBJECT=DataField_6 DataFieldName="sur_refl_b05_1" DataType=DFNT_INT16 DimList=("YDim","XDim") END_OBJECT=DataField_6 OBJECT=DataField_7 DataFieldName="sur_refl_b06_1" DataType=DFNT_INT16 DimList=("YDim","XDim") END_OBJECT=DataField_7 OBJECT=DataField_8 DataFieldName="sur_refl_b07_1" DataType=DFNT_INT16 DimList=("YDim","XDim") END_OBJECT=DataField_8 OBJECT=DataField_9 DataFieldName="QC_500m_1" DataType=DFNT_UINT32 DimList=("YDim","XDim") END_OBJECT=DataField_9 OBJECT=DataField_10 DataFieldName="obscov_500m_1" DataType=DFNT_INT8 DimList=("YDim","XDim") END_OBJECT=DataField_10 OBJECT=DataField_11 DataFieldName="iobs_res_1" DataType=DFNT_UINT8 DimList=("YDim","XDim") END_OBJECT=DataField_11 END_GROUP=DataField GROUP=MergedFields END_GROUP=MergedFields END_GROUP=GRID_2 END_GROUP=GridStructure GROUP=PointStructure END_GROUP=PointStructure END }}}VALUESStructMetadata.0Attr0.0HJLNQTWZ]`cfilorux{~/MODAPSx/archive/f5658/ops7/running/AM1M_C6_64_L5lsrm/47289040/MOD09GA.6.2008-296T00:00:00.000000Z.51014017.102373454.213700_1.hdfCDF0.0/////BAGBW@GTB@GB@G KqBAG HsBXAG ABAG&BAG'l/.../ss/ss/ss/ssBAG:1B"AG4BcAGGBCGB@G4B'@g'%'"/ss/ss/ss1ss.ss.ss p [  , }5)j3lbbU&[`^%}M>- ubR@4xcSA3" xdSB-lXC-}fQA-~jX?*ubM4#===!=6=A=V=a=v= = = = = ======!=6=A=V=a=v======== =!="=!#=6$=A%=V&=a'=v(=)=*=+=,=-=.=/=0=1=2=!3=64=A5=V6=a7=v8=9=:=;=<===>=?=@=A=B=!C=6D=AE=VF=aG=vH=I=J=(@=(^'"?@= ?( O0'<" = @=M (M0 ' }" ~@=,xv P#7;ڤOLL͊w*<ߙv )ܔ*O)i&}-lrR}V-u)խzT{+i崞5zzImu_z5i{MbkM<.Ji亵9/g7)TXC+9{+V:/bb(bWAz+[)gFOXqR;Ŋi@Ē#V9MS(_b!<$7c«G,5x֊twB58FXKºh3c(d+b]-c}`|݈7 sfR]aqg}pX- ;jkjX{}d,%+zYN _[h +/疰r9c)kj^=lR;' oPXJx5aBl k|Zأe;8KX!ĔXJ895NR>ߠ3LRXD?Ңi==="=7=B=W=b=w= = = = = ======"=7=B=W=b=w======== =!="="#=7$=B%=W&=b'=w(=)=*=+=,=-=.=/=0=1=2="3=74=B5=W6=b7=w8=9=:=;=<===>=?=@=A=B="C=7D=BE=WF=bG=wH=I=J=Xxź7| aPꪻ+ Qd 30 $Q"yA@$K2 YrRrR0ϻ=Dxm=*10AaT}'X!%B"#%ЙCmex@li=$'Pڕݤx~ -'@nAw)H6E"N#(x /9[o)c{SͥrX(C!&e$Jjb+M4M4M4Mo3~Ÿ_sNaퟱ7vҝtw*bЂQ >>";Ҏ+z2Jѥd"觤+o؟_ D0!#oWMIp<#ěf V7<"|oA*a3{4!fۨ /5[E"8_ɧ2 >;x*:F{T S P%J3n |_^pxACzbkO;EsKxW{d`M*;J4M4M4MӴW`P5Zj-%x |Oq9M-F;;ۭ^#;6m:Za^sv[صc'c'UU}˞]ZZfI=hch:<+ʊB7 #"{̚8H:MIҽ 24FjA^hLK; =R*@Q /c.T]8l&]÷5xXNdtUU"=R)^C3[!a8^a[Nk35d -Q 9eIEڀ6PeZ`Lo7itlE ˎdd!x'<ǾRЛ^몗P .Is'i" X*ƍ5k`څvRR{,Ofo~~0Sxit)~ Ep)_A?WƬ*g{a/1id̻ jbYfu))LɘyR?3BN@qh*OIF< c;Fj }#hX^f< ?5WU_,|NeSzчWy'mIfl.%#b]HrU xtqH$qbTfP^8vKgRK)^tD IEROgtX'bsԧ=](FHYZ䬳eCMsB~BWoa5[jHYd q,f$e cXaI ҸbJ^,dC^|ūsJ\<:O-/]]D[xΦ9h%T~'64 '؞,!ZӁt Xf7RXDfHUl!ŗlNIi*$ T¹wʰo'[` (X[⼧3ÊvP"Tdp;%zž(MUXb}PqZG'4M4M4M4,7Gk'YU%&*NuTeټ*VqSܴް kޚ~p.ߺnn}#5;o֘@sTJdV"SIތ mg.Q* 9yin1'lOV@Hz ʰIБb1'챦{^x[2%W6rOGT6ՊD;T C<(uX;p 1N<ש vĮl2zZ 19U_!pnv*<~VoA@(+2j?n*o%8*ڧc,) d<#Ò8bM  tq{fdXQ}hiii߇gŪ~HUD?ЃNsѹM""3bm¹Ru̮nWy wr{:+>a-Yȕ{S)n/]LV&zw[ͯz1 PֆW}n22,y^9v>VP R|I4z3M~&Q6l8|3t~Bߡi}2\'qU*: i Z #l;LǫJRiUaałmɣ5U# @=h:f|V0]" TNt'8587ΟO EC|E}[$H\H"EW%1!2B SDLĒVyw`3xCzRui qV+᱊ӟa%Vb{]gtD4M4M4MӴ~ ?aIdռ)b1S:jcqDZnFG;w^&I!y֪eբY[TZ2?$*Nga;ɪjU5֛-tbi!=%a?*2ڈ`9{*2VFVRDkʡ =Ot<3C򪼪lj6D$rBwD^û͠c6saKhcq _4&ԦC;6fƷ א q4l:ץX/TS0/@~I'$RbpSdMd *}\ŭ-uWQA%%2])^%/ƹf;yiiiiڿ!~x)MgaȑYN痋̘?jbh&s[Z!E:qЙgYJGH! 3x{UMz]Zc>5oߛEaѿȟd Ǻ^c5Ȱ\%- k YNI{=oCӌFGz^6`~g649~NnIbI7˒C9M(hz 'H{IE2 )tjw%=_ z/*,#x _9*MɢǨU?N|/Ks~ Ւޣy[M"7+&Y+&qMP}:{M(C8cHXpXhHmJSRFțMra2qfSS?f\<'$Ea߽ {*+8[&+ F*ڵ&a_l"E"O|UJr(N iiieyY'JX(k0a;Hn/mm6aIEW|WhM$l4Jho;xl! QVypNicxX3e[[]DGG3+:g*bb5窍Wsķ}iiiiڿ;Ҟ>C\eX B+x 0 zIYQ~엤^Ժ\qK[-Bo{]:n5s&8sJDci%iIZt?9a>7 $Gg4;xq1|jDEE2G2#"/ܭr{j1s9Ie" #R=Qe3W1598JϒCZ*g$ nFn1GZ$#{c ʉXUM)"Ёt نpmhs9ŗ63zTu }hGڑlΩ A9ڇq?T_!$(c!ujE2{äpp[}ׅשDF꺣{*UzY*;'WQKiiii WFPb6^rwl4 D f]9Flt6۳Y'9PI*TdudfmL 6-@׳wy 3ތt}a{Wػi^B~m} UȰ>56WrRMc[hPhW_$f8VL+@=%Md3N1>fFHix[%;Ƃ)^.e wG8\"j|]XK= !1S`Ѝ+J;GnU cCaelu 5c^"ST&xk~cӽ%1%\#\CdٽB5\S b[Jiiii$*łV]7/a#m@.Ks`^iյ;۝jX5g3=/T4RKIޖ;Oj U ZEi];}:=.s~hZ4-2ux fzi?2dyH2q?hGޢ^M/7yLB) ͡y|-5p]0z"w<:iSRĽ~ <[q"C\ ,69)Ͽ.C6yVAOKisc!&c2C7_8sfdX;˟ C/} J`#ЈW wb}xp{Jqœ3)lgEE~K*{ 6a5%^zM4M4M4M'Ⳡݕc+j һ.(l o&@#'_dU%nSRcbɡi2-].=8zl=6c}<^PfNy;NS]kqSeX'!1Imcʰ aR7%Y pfL^q̐10&%T T@U \Zl ӹj{!˪/A]8mײktJ٭fn@+~+6kJ,Oc1guA@+cji^K`MkĜnNFSoF{(wJfn۷}I۫ +qfouyB+(e<6: d#2 ISG㌿H_aȬY:\$N%@)Ix %j+YE.|:M%p.Vd=YOұA\i1=HBQU#|G0 ^f2,i|2DA`˭('n12>/\SZt?oݏ^M\)SCO1iiii0>O4&#^(K_Tij,pn0}*5 h5ETf=ZSv.uub=iC= ׍+ڕ>C5W.?7.8"m"mg9b4FFfSiaM3!ưK O:ejјUj#H& qSJ fgLt$-AK/*s͸NaՖ>\,se*^~N5ZABdbP{= Fc߲oq _W"sSK,ΫM峽7Wiiiii` 4a0ևN3B 7*5%DZ_qg!zZ%Us T$v9atά(+Z99UtkE',;N͞rn$ZxN&G)r8Hnd7;N tkC=o63(%t"#â/1`1Fza}  ih6xx?T1 56b0?9>/gYh7;TGȊ;D96~5D͡RU[~?am,Xv Wcj#t.aU\lTiQ|=E I7Dylb뻾Q%b-SX)ۅZ1t -9L 趌 $EkDk8Ayθf> 򠟴i^e az1:Ln#u*rUSK&b9' ??&C<(Dq:iE WD }Hԑ6S!p],Kw(QaIv\qO'0ZIjN4'*xSTi4=Ur5M4M4M4MFҙЕTXRo\ʪ&㴗{X_8xG Z`/4֝TJP.EF98ἱn eE^ONKNΰeu}Ox!ᅂa~5n2Nm(\ NϬnsCh'QSvz*N *2ƨC $tWy l# MD)J2*M{[;%}+6iE+ѣ84$,eUSp:&6J(z5U&>sOqq85u˫尜{«mUU||Mټ0w|tS-^4M4M4M4?_"ЙP@z^WVB_JyhU74XG{kjcYZ8n篍^MZL/ҷHߢ%t4 w<@nALJ E꓏XUO?'͌0ЮYYvNW{\M @8Zl$U J*$ԕT y6 t.c/%WxJGD.Lw +q4]J=AB.K[JK"rv؎֡]p)BO|Y*%}y~+5'QET 6:xkޛ7ׯiiii;dNVTEGJQQ@; UeKRpX5@DmcV fʼ2iiv[٭ߏV[,/.r>_/.v;|np\8ίsFP KܤkH#V3w3.η^7W+4C[)$t%}F0 VHY)fxIDCt>b% ISΔ~uLJn ix 'q4Zu BBKw2 ABIK_/ )R܃A *o]1Ϩ]<+*1Np{={`K_iiil>w C6 u^zP¬ʨxeքQsT YlC|t1M PM[qV\ɽ{E/h%#;go`k0VYH)R<8)iܷIM%9 PChin(I k1Ys4AJjfW/1MSm&)c`'a3\. T2mC-C<9ANt8=FBWVHp *4AC@٠w711[Ki+J]G<'OYM4M4M4MwOE`z'U-hǰqү[D+Tb=,ޔTܴP6)pN//v=|3eˤeɉѕk~~}aa<2/$|8ll"P 55LNgkja0g-At/jnN2,(@unt&uVE#p85tGHAz(yp,t$jRy1gh^!|z `V˲*\>X +ѣw 0;&ebaP,ոZÕ"c7תiiiieFh W xi1pg&Ė%tnaBX[ *:/}ht2KZ_g ύ]މ<\go>q_'#yMFFV}2 VDDb Qƫkdn1PAi0QULu't<*}i4 -g5ˊ;+lZX!UAFDQb]v8GHWQ:uz :#5 5:TG0(,,,QX٬lUߪ/^DQQV_iiii kM$=2,YwRv"1Џ. KeX J%rJ.8:T~ljfo/ oJg֧GR] SX̋/֐6X拉}zr8?6ج4,V3dw={Na6ʳ@6(1Iei5M4M4M4M26,PG ^wgY*g-zxO ҂,#zհZh-P]0t ݤH^{=Wz%¹5މ %':o_M5j@1d/ + %h߈1ֱܵwVy8JH/aє/Fȥ*. *8Z\z.i.2KZc멏jX cw5l-uBNN*Ct@:h|xW VAPҧ)+;XSW$*qY\5B ===#=8=C=X=c=x= = = = = ======#=8=C=X=c=x======== =!="=##=8$=C%=X&=c'=x(=)=*=+=,=-=.=/=0=1=2=#3=84=C5=X6=c7=x8=9=:=;=<===>=?=@=A=B=#C=8D=CE=XF=cG=xH=I=J=XxǺ/ 3%#0kp 8!@%H$0$@Np'hpw@p AknUϾg?s٧YjT}֘H$I$I$I$?^LA]-fYn1ZͷiW+6ac5ךjV&g1 GSSݴvSʪa0&sZ}>FrOHFM !皕{<\f V l:"\ IҎ{pQg$xq[RF[ 2!E >nO:nn37K0V7(q,+'rvs/7n~;,* ?bu PW#u:e T8z^˝egjSZupSpS;'"]buF #=`ͳzY` laY>6Wr9)ZSMŰAz=NqWA'`o5u[g n0lorsElZ06ۯc+e$I$I$I$l)[ ;`N>uhs54Yv^h/tfs{ⶓG:`m]19[[;fdsGGڇGڄt߸[=EB(ɐL^(↪Y5z!EZl|kIs% L'q# eT#ՔY$Hve*¸ B@A:Cp#x j9zRXE\¯`wvr/᥾F6Xmg`8, ("˂N #HpgF@53+ay*rmB"Ê<XGy/kV$X[gKJ tZ6+ r -GW}H-4 "hZq]%, . 42,!KY,MkALe*tNvn.w8d&i KaL3 n"7!^gF.ʈ F#s9q?UUo}QJ%e`_p"?E~ ]De۾v ƾzȰ~WAܔP  K}]W{il^ٕ ['s\rlŗk-;I$I$I$IҴD};6ԥm&}kϵhNV'\ vmAFFM9˜e4sr/˸VSc6c4 wZԋ4ACG4eWRY T#`JQv24;JLrNL%H'MR5}`49\'n2 "\?Z`q0k31_C8 h7wXi$k~BkGERPkF&WmuZ8-ndem(Xbݶk3 z5SSDpB?3PO_^!\px/se7}}\MA+e[vG_l7OE$I$I$I$W Tn3s9J5hԸ`\}M >pz9Nz'ܖ -v^ԖjKqn; v@h&Yc1S$2,C348O=iJ|rWBb@,B+ *CG(m3pV"5yd}*3,-+ΊRAx8 sY}$ nqwW^:l0YvMEF.(Pg!^353ZN~KBB ܯh#-,x{=By`{z ;+8{es "_JR"rX|.#8~5 5JݯeVNaw&ٓ>Ϯi2;q%NnY}#I$I$I$IډvWk~r8d5g? 1cvCwhG-8/A| }UU pݭVg9Ŝb H҅FZgh'4_CfȌϕ)`:Aw@cŪ]l2;5âԳ=H>#IfuZi-3Гl!Š)4pN7M#y=fǸ1l ,f?s-YK +G1uqx;- .Y}Bx twNdW~$WY/#3P)xMs8 Bj,!VpKq 'TM . +MsVL.SEt ƒHk iek5^.I$I$I$Ik;CȰ̋E_/ Ni\tLn\ǡFOR{$DL&viߙiʤlO4p5Y,Vߧ!9*5Is=R\} 19Q,9&zt%F;x <2ACd҄43)5b:Τ3>'fG\ kYbo!,fYi/xg8 '=`(G h\18ΕrtBk3W·u@8w_}"xJy6wSt SYYo+7Lv-r "r5yL4 ̰"0aٍ;l6wj=#I$I$I$Ivyi^4ݲCN{+R,=Iyzjx=oOύVV+Q4t;{뽵w'X3(m︉]n>i 2I2vI~B_7!#cNIn%Y^E~%ߑy,AA_%~cqG "ƒ􍌃"Sp{|s`X_ / Cƻ9tZC US"" $tVb4q@~{jYgSw(HBCcㅸ9fY"5ތ7͸:NM[-6q awfqyh*ċf~]k,fd'9|v@l5Lw?v?v8CR{!qxϼg;-aK'{;mW4TXqV<!xZGC&{[p Zq.ĵ;P [ fX ŅcBpj O$D$I$I$I~-|KR*h0LiIZ  F;qq'mwրM`N޸龍fcTq;ܡPLp"7i4~\ͅfp8nOѧ KݥBߨdr{*"zF[HNRS!'),Qېޑ~z #zz==+ XXVRb, +`.ԇDӅ/n#}q8$vBOMt.9vmv:kf$Dw"TPXqoDD]|BO]]\0Z,i!/ غ׸ Bx !^=2,Ws _?$I$I$I$IאFo<@=# DdXo?ƶWNV'p1ZƎ..*XiYE#HzuCu& e%'^twnppqN@kZN[]|e,Xȫo7" 2,A*WBR3,Z%UƥfXxP \GD3,rUHe^OgUm} Ka)`?C }Ű7Kmh&t-A  !(=\Aqrt6d->S%zɹ%cd7>ϝ)syG^V$77ފX%V)a~r]_4h]-D&[$I$I$I$k!l 0b҈4B66>+^it$݋ć+fp]$vg3n7GՉC10Hn[{-=E<{].k ]~bu:mV1el3G߹ ڑ"$-8m{@h+5e[p:Um28kcrG$:ZA_*2 5;IJ} -Xe\.pq`0=$avp#q"> 81QU,B[-lsk@~/Nt ]a,7KͅP}_p2~z"cc?a,qZ.BlI!EТU6B+~[{}8;{B$x7=!I$I$I$Iҿ"2dOS LOOEE:,fc`ye_X̿rHF9|=^܁/rt(+6KY4AS;ʽtwS*`g>>fu13О0"\$E/2,G0u F8Vgd)`Vx8GQ5눭Br~$:?V5 W%R#x(R,!wq'd`0}M_|qt.~ա3 CK^+ip^,]!)z[>pV^,9+z6a8̥qՃ/Y2!\$\&WѫhCzm2_T!ZH)$vw$I$I$I$Izo'n`oQ`bu5 'Is8n\dzki_' PFD~N >|ߐfGGn5s=9g2 +9 ,ƍJ',mHj:D}\Ge]DEl < <ᤍ@sj͡9nVDM\\?kߋ^swl-1Oa49bz ]AW 焼PU>z"׹$8p+ `1,v[:à3L4ۛ6Mf1k+aUwK_w8z;x2U Zp-S)=d-7h"M4G#&ccsRy¬aܰs9=L*`|uB<&JO|_ׯvVTl1÷·BB6NUHugKR]NR'Gnz"5â?/rCdXj\G!/!h8[u^#l27 w"wsOŲX%2 —b.}>X &'P3.-%-a}_w;z&9@3{{;/$M@JqcX6yd6Fw7qoRl΋.sk+,o8W8sSN⽌4油Nk $I$I$I$^&eIYV'w|H5!]ڍ+a.s-fXehI˸V &%k'F< $S+\B5 =+{qprpBȩȩP0s[ߺi3;iLͰp#USըE9FGHTG* EHecr!p[ WD*ŊpQ]~p+ Rz(=u_a7K шꉾyNL <O'EH k$:=(mKۺz^pffX[-挀a\:#OphTq2sK9WcCSBSGGBHKnmʱZao\$I$I$I$OO 1{z@6.@ qC7 ,簑5,R`mEQ wll7:[Mbz1jisjfQamvv;p(ɾ>||^.;XO+jka9 5FdX1b꩷q> 3YJW}?h/h&)ɵ׹Ƚdq vYh.krpVCCD3@V;p~P_¸E'H[-vf n@;䊉,;H,- 4} -ҙa?k b,T.P`@p_0FgAkՉ\$I$I$I$E&d0Ÿ{Ȟ$AR:Uh<W4~F:g%mi\j.%p:8hW/$.ZhCYCY&oӋk;Qj1i~&ύ#q v&3{^c1VaPת=EZ+ySI&on':NSSpy:c2q`+P'D埽0 f4: dHƥBlS0f)^]h4ƴ@Ƌ}~hҟۜ)VjE߂[ɷ]DC\[_/ V:=2$N&zG|B#8P~s>?~n\$I$I$Ih)im҉tF% g.t4"hv'od/H W!kvW r}(^k7jRb߫j@Wn3*csEg~e~q;?ByKtiU]4+ }M 8:NɫVQ{EIUZ+san`;YWF:$`4&a`w p݄WwǍYp ȵ/hcbK~a8Qe}@qz|զ4-MF"^\%8u9"NNӔi41|zj=a3;_;W,Nξet.^]!TDqI$I$I$I=*R{IIF+js8@U!+h+ڙHfGTҋ$;r kUVpXw;^u[ *vj;t OGiA3Ҩ1/.6x.Ntp0UP{O8Y~Aa ڪV i#8@LdX6 3,pG].<9J"sxڰ\0\SON\:2\/=Ccq"O@|f!L;B8ȰZ D;rOL:C)^:kz'8#82Y.rQnC/ǝ ׶$I$I$I$INH[rY$Pg!hR3%u:ZV5z;էq6d*J~L\m8*qT]]Hc, R{C?t9ŚiPrYx AXMUgX(5F xzl<9.q/D6טt&7&qKroqA8δ mB.nR܌nFC\lDg`jt^J/Y58Yn:;=3"y0?z\Ւ$I$I$I$!Rr-|_}+y~P; Oㆸ!@wA%@rċ4Bs<"":δ CBu3_τ؄ -${袲7څP_Z֪TjYnxox8k/v{=f.1B_IJͰ .#muȰN^l.ѝ83!pYm ltW1Đ.~L)w0+zEtCs\{Oxaab ah .f BkKқ̦%tPkWgd/BϕrtEE/qGpy\@ M\p>EMy|fX86D sq8Cw:_hy|Tt ]CjOb4 Msjl{=+." 'n$sJTI+\;<*yU`بԸ{oۅ :an+}>"X=X]?&NCȆoP!TVU)juM0c0W*r=r=``9ѬmوBګGEm@I 11o֧ _—HCtgY;vHn>?qXXh#2sЄ< z5$ >wXf-7C(K ݏ܏H%ry>ASmt ~*-Jr8 yV%I$I$I$I-A'S5xJк jUz4n$3 KOOI'҉z#|d@LRo> ZV-Y^^ltltnЫU3Vz+wnNNQ([h*gX?Uh:+Y,ev;[aJ\4S4Tn*T{AS 9k}l .qhV+0)ćEx^^VP+)>x*L*^\ Ms\OP#}(yE^A"^;HÕjh5XvcD[e~d~ƻ @ZQI$I$I$I$r\axTxȰ@Mb M4&cKu\t $Q^R*:mvJjsB"C2]LIN=Q]T7EQ~rG(5P^~n$d$sPyj*9_nFnd'q|VJY.+Z6/u'yI^Xα~hDV S|<1oCҷΕh@VKIcn(d`gcR4Ck5 #dGBRXʊj5DV JtOt$I$I$I$IJEQ9tڄNb7c u1LGz梹IP/mYGLjW.N;/%i,6[l>wgZ`|֫׸-Egj F9. Mcwdv> _ u ut}\y1+JjIa1j1ɡ,qE} -{ޤ [ް;gmReR$? rP+e J|x Cxfg=u4Y㷅474K >o*%ZDMT7tOw?lg ===$=9=D=Y=d=y= = = = = ======$=9=D=Y=d=y======== =!="=$#=9$=D%=Y&=d'=y(=)=*=+=,=-=.=/=0=1=2=$3=94=D5=Y6=d7=y8=9=:=;=<===>=?=@=A=B=$C=9D=DE=YF=dG=yH=I=J=X{(-y 'w"@=̙(̩/'n"@= ( 1G'=">@=N(N)-xTŶ6pAHVUU$J (D@(9 a9ga i(qH,JFs{B tOwOO/g2$8888?3)01L ]/ [*,ț]CP9)?c"E> u=>z%ԏ:C}i[R`,(r=F V2XR,$sp;Z/Oyd^:̒߾.+`|0 cNCcVD7%%YR Ef秃1䠝OfŞq4,J6Mgh9g'] P'uʠ*n#WI&VCj Z ̀2̀osͺFˌ.D6Fڨ:I?,j &ҩ:_q6L3#yMdP>hf*IdȦKw!3J!}OVEx.fV?dO~.?_E/q..~]:mCYzf]~%\FՐFʒIɞfUr(qqqqkiuPu9Uې eCS5 A֕u,q^fJ<~{Zd}d}P bS+( =&@2-d Uvl| X%aaUUaq,[fv81fCpka-XmP 3a&h1?7YlQ+6h ݴW\j37&}*ɬ|@}HeQl2-qUl*[GKXo9#QBkDFEF:@"y#yõ&{OOOF&R̊[,zd,V93,`֯J jgXSa*!~8|6+5;u_մ=[5gЯ|}qqq)#5,l%;1bi,Ԙfn@;SLg;t\Pޅwi&n43DeeZIi&f13uN\#uZ)i!@_]4mfߩކ6v:kްzZu#R+%REǂX[Sa#lM1#`;lWa|5XaԻBvU*e}m:K@~ffjw|ePj4̆۽[ ߠ9B-Gcm]Ҡu5uz} V0΍=TW3GVZRp0 C=zXob4%K#hb3VfD.mY ω8888B)p"N4ɋ!. r2aR*].]> 2gt)O7AŘF~{"nnf3uA262MĞOiZGq9Odyaaa9a" {dXp} {:,dgP"l6P޻[:2X7_-ʎy,E˨-~v&{G[ Ch?A_ɷ;4tj/V&fW AH;#,@mVEFxzA*}00Tv]C0gd"A$ F0ײ]\7"=RuINχ88882xKRL{#8*PAaJtpO'ݔ?4,'˂e1;bvDzb^#%#W#WØ0&(vt[Ê06a k>LJϰV. vQUk;B(DhĚ B9|ȗvͳXi?kA2xٍd(Űw6QEci/%Po:LiӰ[W@TJaV[?$mPllKiiߊQagttYfWQ%F|#|`1U)xbk!ob.AСG ΛLu2" +qqqq`̉a6by |qX,VAEX_l7 J܃ձNSaW:tdՓp$öݪjR wppB8ny0'L,E q0%jEfN%[-W-ԓzA=\ 8] "ŢJ,:KUMyS99+vo㟢MfX\MXpK}o$beX6 2 ;!6a>,e&k/mt߻ M2X/㴙Rih.ڹ4ٻUY}6~:k"Wa]LsbxG"ʺ4YA E:Gޥ^Q3qiQ`G7a"[^7zǓXy KluJ i4\XCl݀ 4^v2n( eiKsk5(H(m ;>MɤaPX q.΅xaJoRG <Ͷj4_m0ٝb=zP]&#T.wA}NƺjfF$?4D^+"Y{qqqq%6*nU0`#Xcp9{ߗهrI2Iu1*rA0"pqJImaZFaUM(d'<'' :J+bT/2^kT?ONel 1a6XPgX; Y Wg!8BG3GuRo;m]tL?ު Y4Kj3-b t:ua(mg):p&n6ܫip2>>janzgXFR:}-d_җP[  -R+T+if섙 YO맩gi!9>rzqqqqX`FZFT|T<$x1Y ~2c?v dd29m)TII%r^¹\*]vW;e|?uRiH|0OSPY kց_m|^ayͼf}m ?7q:o;A=o}C8jHHQ tAh!m lnB-K[M Ɵ04.𵧼JCi̇湨Mja4t#݈E U FiOG#Tx2bcHJ2;Au3ۆRۃ#V~cnwqqq_؃U}IFE{^mhh&+C~ 2k߬x_Wҕ(>=nI/OQR4ۄ-S@6J>sYWG^ swVhW!4BQ8ڂ!|5l wBuo]d5zXZ@:LRMsO.|#!@mOy{G#,egƲ4&@2 d/T s#}Vo+=âqCGtDmnf>mQfI#EQAz&_U*"4l#)-XiC74/888k/q3+e fZdjԭ[5efbiˏ\7+ 7\ew(h l{lzpZk5IMS=wK>LtWN#$x^ Dt?O~! ~Lh̆0[bK1|Şlp3S?=b-~TR_s-ERZk;64&A%,~E@6d{ 7~| IX_%+á4&!1;fCpdXl_WWcͱ&Gl{ P"k?I߲}O hm6' E8888K%l3ae' Kd5Y X}pa^;X/Ψr}.\v [ 1BVUի&UyӚNeDKwk[n,:=(NS, Dj?>w0ͰDY SL( A/|_ph=:E[BKdVݴi1-[d6dmM)T`c`9МZHS8K^ЋyW: pNy ?Ə; 7gVeXA]̖# Y#FޢPmoO9Qk,-Sm_/?HjDVVUێ888;6p(CgLᝅwF=zEXO c]vYɫ>2DQ79_kp {a/UF ҂})qS { EY, C"5˛)&;?4SAސ7hFԈkM#?`;OSa,;|&: /0v“pB"p.'vo4лǩ!E6-,6*h=0/TA29$V^bn`ۥvp X˰C'\R{joSÆnn9PW !6bڰ.MU-ďvl,5/'xvqqq ~obG`?39T4s̅>x17t$>Wp3\V"Wb14eZVec'l-[@-U 6+^`<XaoC7^gBɲyz!W4L%K7=ր}X& ع38Li H/ 5muNS}AiwٻEmJhV|TKjML̄4e w?6!ŢP`if( kɼ#uTQ* cI6w ^Y/ɬxFҷJ=uY{G;888 dIX Y1{|EG-5pˎY fw i8Gp }\Hx$z}1U5r/KB$WXtECMGp.nrXN(rk##l![yhKGo)܄"܀`K4̂Y`䧭yoxcɀRհnMY&XfjklfmZHen,i ~xdOm|ֲzڤf ]Mp-=RiZeK4./E[-^,"lh(^4ýqqq86K1,"~?v.w`7&x /c[8)[{$A%+&-kE]9vZʘaQ?oԉ.G:WdlѽEiF(],9:N7UcXvU9+z&WUMW@5b2,xC=oki; +jm FSt,ul4eHͧͶYG݂x8FKlGU[j &D _j]1f ~V/kj9~tYG]تď܅4YxVxZӉ%V:888826cMc06bD8vbiO+YYKpÑNb\owf~Nʴ$Vv]Wqp1.#e "V`(% gX4?'h97SR:lo.ڦɼ2/m4¶occ Г-`m,e! (|ٴaAl> 7Yt̰fk< akG&ǚHM /a";h.39T|,0fUdᾺ.Q7[jh>WJ -#4W}r"֢{:888%?t, 0JبU*|bU*:xCxɌ"Ķښ4kl1, j#MN>-j@i7nD.(uY=8888-KLA^a}!7X5!'rŋELaOx{_=`=8zp1e }v'=$ X7iX$V6n*,ؔh/@g6 z :zi~Tɰ,>=M!Mwl$4=Xkh( .ڿelO4'oݚM=M(LcM7<򔀣pDS 5 ҰՏ4l7.=y4OVk{qqqqlV)5 VyE^)`(&TffΉ(*>iQҬ< Y5V =8=܁TNSo F Sai&-IL4f@x,/ `!a#$$ruX>, ;zaQ3.QV! LN=tL 2MzVlmdmjjXaٝ=L k`f X\L X+Z$9 T_;n;Ofs.3Uf8888eAɰUŠD\'p/]d<%i8Ī 8V KH5 JEu&nX312EG{MJ~~-Z"Q,cQF6&V법wMmmD 5 r@o3l5fCO$h! [YHbu2ݧP:o~,T ?=ff ===%=:=E=Z=e=z= = = = = ======%=:=E=Z=e=z======== =!="=%#=:$=E%=Z&=e'=z(=)=*=+=,=-=.=/=0=1=2=%3=:4=E5=Z6=e7=z8=9=:=;=<===>=?=@=A=B=%C=:D=EE=ZF=eG=zH=I=J=Xxն7prZj]'%gA dHTP$GAddAAE$#Hݻ瞻S]]T}Z{J)aaaa?x]ͮfu8K<9a\sj^'SKudyKx %~"zKE*D eX!NQɎ:Kgy%C0|Bmx9؏w5*zYqʳ􉲆y*)t:N@l!W 2 0 0 0 5Gy-rS tʉ|ݺitdw1>>rٝXg, v9䐻] ˊb7,XwU4F 9* WEM̕7M>:8NA %Ž<#X9phpW+A0NLy48p,`s{'{q[nHR$"Wy :Uʉ_Ǭi2.PQo$0 0 0 0J/YEh;m<"Y$/:{{Өiimt;ﱎ F~&?sߢʳ&%g4g{=drԍtDqz+_hnč *OVEmE@Ά^k!JuT'jFMUnF{3:*RZZҜSS)@o1M$$fXN%mh3w2i6oΰtݕon*o<.jE@W`f"0 0 0 0+]>bT`9BC#`.h [Jidҋ0.T PB+RVq^L! ՠ̀#xoZjX#'gT4_8HҼ+q߯Ws a)AJ1wQ9% 4=+bEtNK&/jLgfaNK"s-2f|:uG#Ysaaa_Q&jrw>֨j thHn\tjAf`lU*xOx_O8g,2323|[vʮ+S$zx$m|); ݃!X`w -a `G-38Okj7l ua@, R'(ەytGI7CzEG;"xA9-2y⎸);/8j'-2(A͚m"oh+8ha5t>sZ #/:rfpoW$R?6`@X$|@ji`2\7aaaa;yV^R,PMbΰd͒"Sw߅{GJFJ;NĒJOn WV_B)u#";";Ӝ}R\YVGE*ʉ )>뼃RgXmqSh>Y ^Q{Kc*Tƞ*uNeٛ d{ve7EGё2Q&1DtPIVHydg PҊZ * [(L[]&N$WeWt%Ы/"[&#KW\ɭSz`7HM5emEnh?h Ȭ7`Md|3;4Gg6Cˋ8?3zB4&\#~3׌aaaal_ Dʹb==g;io:U/<ΰ/&FeCei2Z(t/}AYR?`EREbu 晷TWxAw*BGȎcG;Ӻ~#=Z(9ty\p.w;9ݓIqa}^1R{[_f.?hq4ޡ3$S.lY˔G\ZTuzeD--~OV3!P?P Mc0 0 0 0;߃~ԏwYJi)u;ǽT1;\52,|8Z)-?f g[V+y?dFr/7"%"E r[G^NfyG3)^bH,®|_138Ӵ w WPra2a2Lf`>tēj2 ]BbcÎM,p۟A7vʳH1] zG7Q/Ⅾ⤮ C#ПPɿ`}:džsͤ n[AB'>^-QdJ>>?,asfL~R=]9qJN%/^Ҭ&k*Okf+M˰~֢a-˭VgT֚0 0 0 0~v -ƫx>mӭt,t )H9It;w8$̽Tګ`ߴ+ܵڸ~96CUK,/ 7 7)ݶn['"GT-{ml#NDZ%z8Vv66`n  V8a$LBК'l%6r8%J( G909NIoRQ*OVt@RikE4QYYiqF-vZzeBJ8SQ%z }NcU \ {E"(!{|/hymuȖ{8W+#%wa"w FMa뱿~ Y= LS0)nby%ETDq,;4O)TJ/8Ld[h\a*ƳUlb߳>(%vG|kA=Xs4r[)Jn+ꮬר4vϹ3@e>79!uߋ奄7͛澫ysB\L\LdFMI_iᷕ4kZj:ME" M-. 0 0 0 WgU;R!pLVÔ _2IK$%Mq˷r,Ogz{%hj%'Gк:|BEDfv^sFI[9;pC9U~_PPcWO˰xm^< MJ3+\vUuK7_'CNAZ@NsYѵXөT)J TFGa !6pV_"0_Dz'`Lp+Sݩb륹je vNr~Ɱ {2ܫQqw;[++ -<&R/΋u'GLN&<[ez{kS),>.Jx%vwnx>_dnc3QGy]w=.xjM! m ݏ}=U Ɔ*7+gX'Y4>!-ԃ)-%$Q'e8P))2BxD+:cÕxU<]X/x ^V}箦s?xXV-%P[1n/Gjz9n ]ft/W٫Η\)$7r\J4]jb~R懄PBIٰ A_4d$Zrzu|<'y#"‡Ǒo3Ù!ԫQ b eAhaallFpN'^ S<d`yEW4 = bCBcW@6Q;JЏXZB9)bUH]|!R;;LI,$6FX?-|?OR3YHE)eSa*g<*=~\v^;ulv0 0 0 0 cilykZl\*jU|__4!9N}U.InR\2J.sْ:x2ջs+^J0N?-gou=ki7W2jEq l3%v. feX"˄dÊ *h=Keb;,v.))_p^R6X_8S,l|PrRŃ9c;Nޒ/4M<CnbeXA%橛DlIP6s^v⎸Yo9ݜ t=5wk~N9saaa?[V}%³`{lT+ڠh{W%0略8A A|M: ƻV9Y+/RjK#emζ`ndqVwe]ͮfcre+U//x ImR\Kf;B,|X&֖%+١7@[NS&$4VDX1IϷ$ͤJG蘒| }(;d;)Fw J ^5̄ݱ  < XXFAlxo"ke=Ϟ c7/^T;坢i2Mtݽlq0 0 0 0=|(N0"k٪Dȓ5<xVAWpc',cqT;vx3䴕Ӽkזſ̏cܼiB5ۚz 0:<'R-Ȫ] w;r$6u{=݃;')XIu5>: uŗM ysHchΞBsBJ4ר9C*Ue绪WXl%x=q0.+SJE`,7^'@?u51J ws#kI\t׋[/EQ߭OEe2|Z桇6 0 0 0 u}b.qb\LYY*"wRFb<<׬VN^ה<'rZk'(Dg ft3ҨcS15oEA@2)5d9^.r7onD;Q(ߊo zTh جPWn^*}hCeim P /AYvdfSs΋4Q UjA-W&)O{8'+-a8PHFjp@s =뢹__bV'^SFTQQy$CՄPqOWZk/6zW6 0 0 0 nāWbPуEtz_<^g((m2n18 .4H xLw?bʓxpn\2xAS:W3:60MTI[rw9N_}b.1t.xDgԆ!k?g'#"+m%2QPPg=So# b(T!vad%U#` 0i#`†Aoa{PLc j]%(E%JO@<c>`f qCW!\W ;r QgXJYq-܁@gSշ2>F5qFU*)n1Bzʣ3,ܜˆaaaa{Jp{A,6g19ݜn~%[Wtd4#]HB8!/rv^l,1}\c>_K<Wjn?w9d)CuZ:%p?c*-3,V~d)¡ұ;c[ǦB#b4~BS QهRmEbՠBl-еX!բZ⡞+**N+qFY6qBPN^NAqOyNm|4pmOxP'NZ41rnI2[. ԧDH(;/FA]UȨȩ!e-<|wCC+t33&mP30>grV(+-eSDɧV RD+X K"U*&uGZuŖx$rc:A-~"b Vp\b[KI bրk޻I0 3bF+AW\_QZw{^ua1?'nx~pTaaaa> l)TgX&d}>K٭|.!zu>Om_bRmWjWhO|%^Ƈŕ+54!_4fuztC.e E:_{8?ß}mm_s8Uh9}pp˰mp.lX ׅ%O3, ďT^ATvyd1Z$Q!ΊԗJ)>γ`}¼W<Y߇bx*R6|8Οpd`g~bK8͋8_$^kn%[w6}br]w[Jketsқz}˜aaaavU~jP N~3#||<,EzvxO&av+vy%- bN yuu:ulG2~I|!>3Lg+V%T*T Par= z095k状ֲwYR*Ʊ)m8^MЖЃ} `fGk`  ;dLJbTSiוbb cWq-zgSv?Pʻ]誜źb@]gŭV ?8Ý~3ȋȔȤhHH(g 6uv /&Xc"Z.%222E]C)uwaƂ`a?a.Pf RguN/n%+'vA=}TVT֊2I8#P%qNC] W*u-&(p41A╎2Sf7IbXyU2 íkv "vl+ iaaa{^|cjOp|kq? Zp Yة܄q1/p$ R/L~ܠ^6gpwqj%ëUeF{#5`!N3I ~;-nppI+q| _PMtbPj' .5P aHgy*+ۃZ 0 nA(6AqPF(&%bTi5|-`A5Qc_ ?uͮaװXD6C?7%(===&=;=F=[=f={= = = = = ======&=;=F=[=f={======== =!="=&#=;$=F%=[&=f'={(=)=*=+=,=-=.=/=0=1=2=&3=;4=F5=[6=f7={8=9=:=;=<===>=?=@=A=B=&C=;D=FE=[F=fG={H=I=J=XxE/p@wUuD A$(9 HN% Ar% HFvy}|5L9ݿ|׮oMJ1IQEQEQEQ <2~&$%d3sM+YtHg$[n+GL#woCW*1X)|?o.fDyn^(jȾcQ&ʂe (K;h&E~#xD4|ZJ ^V@w*CN?C4\ 2ס>@7`K}?C?|#4S}S) ԙsB oP-| u\""89b^cp`?7"^,QnsѺ+x`l064 /_[%Dy<:nO7HJ{%d_rv]|h+9:glh}hL#Ȩc!#IE,3EX -n&)Q#fxEQ 3Nuwwd u])(((Zd+ Qi*paw+#vVPk?)~7j3g,(w;NpǪ#F7j40Ԗn$)>:aG N¯/aNt#-DG'Csp}^RkI[8?n|Re /a'^=ZBKNol8Sԏ|e{^0ée7ށ;9x#/ |:_FXKrmEX oa9޳]=1 w(bG;~fa$FG:deγKMUiD=5ZrKVo:쑒䔒[igm¨k_!F:yLc5NeD}G:aUELzHjP a6MNr1'H?B0 RX rBNtEP*,;(c};(|E\g>}(u(+oj›l{a/1cPm-\&E~xC߬1^5|\17x)%X^Ym5_YQTe%gaBJO?7^ jIȘ8aY%t2k5ѩԵ>he/ݥby?Z$_*REQEQEQ?Cdyd9N Xr;D1<35U*,}ڜfN3(5EIcĚEvќ{<;;!͋Oш7͍dq *Ce &h){*%L ,cX.P6U.,"1# d eP0m t _G}Opt>rbԍDH)CR.&'˗%"-!!Hq3Rdr2>>(ı t h-ln6!^ ^A 'w3 rc]rg3WIQFE-3,k^=d#C +J3I>X;9JrZK>{_,ڞb%g֔D; ˚̓\Udujfi-35d^PW((((yV`%c7}*#ag5dC#sz EuGTd ;VqoggݪnU?u:mό__ynm֋[X؊CYEW = &¬0Nil1 "9bK 8^4IC_(MY)+,ƴn/.iSY-/B)*. .TO -\,:M/D""4ųS5f*BE^a6 EO%ޝw7#{Ž$H^Kor7I1%\䭓SٍRr啑bX8R,êDDf;wO{"9g2ò%Vrɰ.k dEC۬eIzINNu(((( mn8XfXE"]5EMa#cy }>;6u߲,5 !Y;8's 1V)"~zw;7?0SDcY深=eXu܈ec.|D:oRnShxXFI,am8$i'NR8~MK@ h ma X0=3BY(KXvrPQP, xob{4+C/\hLplhsw,J!g|ٿ,VҋHRXA?IAA)yBsO%}%͘M̰USSIdX29.Nɰds1Ir~NrWa9eZe?e%SꥮEQEQEQEQ+tcyQ^)AXNɚC]eHDZNAO3mbꧡl,NS"%3qI㕉p<dzs#B=1n 睍2F*'gX\8PMeEx+<ʰvNZDh K ,_n4<[*|ԟSx}[,ɝh1 ʼ2Nj#~հ$T wfy?_W:> տ;2^E{=xݟOpHG2;JRhwɛ 6.K$wSsK—NQQP.I;Ē%oߢ9V i]R`Kԅ$qҿzYRl"}ΔB6(a%eͥdaY8 DQEQEQEQz)kJE&քЀGEJBX,=K#̩)F獶`ceq8}ΟD3l8w{'λλ^y*?石VUq8d>c*x\n[BrNh?'4 6tV Kl2r1r7镴K 4TYFЈZDo 0&F7ЄFqSCD!*RE>K~Nl;ޥ4&Pek } Ნvh_7͛W{={ R %u28&DOJA+\JB-oH ӥ+|QAVRY) )$yK"I|+uI~ R|1)'j̊y!8bl[{{pw=,`mynft1F^ٙ#ʚ2͓3,v*>z7?aD2vfahLҫ (0p! A3uuQ>$th6% O /bSXcBCDPq&4OPa=#Cb36IGսr+ s<\!y)<7%^:>Opw |-$9%j@mCUj|>tZK~})0RYwGoV&B, -x x,y -^Oq7ί~w+߂)AoQP5s#[4 mJjOc5bq$O/~O&~`?MI?lN6T5XKi(~~dt!3:oPƧƧČbF1W=ۨlFa#2x:E EeedjIpAlfYunyE QCO,; uhvl*_ !;?UU*̋yLEx*4 '+|۫p#nn-dyd xϼgPD$g  5 I޻޻Tw;SrfjGQe_ ;.L.>/y35(((({o4Zva魵ʏ2فp~o[%nF*{=v .h) 0U{VY0 Ƨ=]]h B'u;O : 5r8eU*Mn{٫"@h`)Tb{5Zua-I`j20]Ȗ%еl&t_&\E@-2 9%pp 8p,sU q N @Wɫ$3,C$o0?6rsPx~}E0us9d|(==| =%W9~$*UMGhr/Bc+@QEQEQEQ_ Vh+6 3*ʧ oza%1Ni4wf }A3wnvsBf;e:g|,~AҖ:w ĸPE5M`1(,ɝQ5Y2%D-Qjű8ݡ;c8fj}b}b\5x#Byt]t] 6dX2}2x3L2P+%1jEuyq-pgx",Fn3,܍c4.%gXZHqME[OU42̍)w=8)K?a?N2ITjL,$33>óTA<8n67 a!b)ׯ4FCO2 _4+&Zv_Jΰ${29lqx7e{3~v+fy|vEQEQEQEQГ8 ayĒ#석} K-`-%]0a -"\Jc-OT/~wK/%#y0l=k#x\3 jw./̲u,:힆TȴDZl\i;b>W+wP AIC}"C9((((ʿ#VRKEI31Co$Xh5**[tXvFqZL1|9ku:j|ĿΜ۹r?u?5l+h?էM\8Q?ϓkkQ^`0X]ow[8]Kˤ=fEze>KpHfXy0W'23m̰,-V 0A?&8ZװܯvNS1+~_̔A#1+ nM4^Lh̄TJ =T1B0FŤȰ|N ;bpACE+'NRA]\[r!xoJԗ mmEQEQEQEQB~GˢGދT2Uad`8qyOcqBFj~Vrfވް??Mf2c\d ZG8yyMM?>b6yYlɦ'aEEFZk*:xOI'{C>~~eRcˇCt^/ޣ4"%jg5<((((ʿ)A50-%(Ĵ$/1gv+ixndm6R @U8F6 ݢPvV+TUfq~CWZcYbsXD -& c'`B(nLeL2`904 >>!z"w /+\W(}?eEQEQEQEQh|B񉜫ԍպ.^@oXY4`STq +H91֋>JBf`Nu/0)('aOl¯پ)#S&q"oE¹zJjQ1})hmԷ ۈV9oYϭ碨l:͑8 ݣG ^V7׺FGǭOc\G LxQZP=v + er mrq<" ĕ,?ܠC6(Pj4LOC'7>xռjA렵\=3x&h\(rq¡c=ʏҮP<3nde:EQEQEQEbe.S/2D}Q A!lYQVVIr͕' ѱv!Itz;V/xf=hQGF/+j3RL\3 }Q$}9N,`9p.JѷoQ!ogǣC!V$E )'b, LJYUEQEQEQ$aj͡9kIb@x_VXCA4&\MG ΰ$D.Zk<6;͜fhh ;'׊ZQ}x=oИeXs/ܑGbvW<ĺe)Wg4K %4ah̰"C#9~֦.EYO^ mcxwBըJ QP 3#ZF`'ޓE|>r .7=|{D,H}/F1JC`,e T6 Zka-rY;"JGW$2WzYıZsZ tUEQEQEQ[SlRC~ ]+ j D?7Ml=U `_SSusp2jٞr$= RYOOSܻ4_[ [ЛwE.8w?Zwszfsx xzs@[h+BH71ޏNΰ!ߠ>b"7$QRc W/]L4;RQڋ?[PZq3/ 0eؽ/ 4а47MOq1.f垅Rvߘ307w؀ jx52<'e#ƶW+0˙p~ WL)2lIe:gEQEQEQE)1R(3,VI-D+u165h[ TH0&^ڋ 4̄ s5  _Iil>5}ӷfYX9òlUj-ðT z-B!6&79oQf-DJfk"ѳ`6_'3,HyCLݠ6^?BTG𝡻.T8Ԁ~|0_u7 {&8Ca&evaPU*\WCS6X _׆{TT-,YM6A<_G[F[zWђ}˾5:t,TV\UEQEQEQ}z69?JFha6mEx>&xCPN"AHC|4f nKA4"ZYs_s~*gG03iJKma[05#-$A֮ 7a3lcpx$n&Zn%V-%5 1ͅÑ푧Zo#`ޅ< ؓRe5^ԐEP am\(wkX< ub6`P}g, KCqF؋^HXױ@p;OJ<':e(h,{QJL3rsTQEQEQEQz@ܨ -ر>Tz-ugg# ]ti/=՗`,TVfLxԮrq^^k4tSG?׼^^/vѺj]eGC2 z0CD[ݛMRXf-q_yrB(>. K_/bu,0.tID>\8egi x5^چjԌF8? BJ\ $y0<5G=mX8|A8f(E9x_m=c|;N<_dbOu~*((($GbT̍Z7%(/Y3mvݡ<+י%Rԁ:"7֢>Ƣp\?JQy*?4JZ?Y?O3zgWe ǐ V.+ٛY0VԶ2`tP(֖5k<W˼- zc=C-3DdE"hk딤̀Ԑ8#xN򇲣JP@§WxYbQF,)+֡CUxPg\ _ a:A'Ë%䳒$6F1MTTEFjH9Xh=gd1y39|=+==='=<=G=\=g=|= = = = = ======'=<=G=\=g=|======== =!="='#=<$=G%=\&=g'=|(=)=*=+=,=-=.=/=0=1=2='3=<4=G5=\6=g7=|8=9=:=;=<===>=?=@=A=B='C=<D=GE=\F=gG=|H=I=J=XxTe?pY;PHJSARIPDiPZiDB@B:DE):~5'f3g_>5>x0 0 0 0"2 Vrs).姲+*w?ӟɿZ7C֫v'gU[?MScECqQxC?mlXJȣ(O ͠e9A J" xq"@8!5Kh9*ڀ(CPi-gGVc'#z&hf p:4xsTDN#-(^ܚ$B{у'3"5n'N:BpX%B2K++f)?;݊=\A{=&{w*:Gnyw'$ꣾ_@N{GY|s*8y)0Q95FS0ũ۴q8G]#?cs`Xܖ2.s{V>c'!9EW퐹 0 0 0 x>oLw֢W!됗Qdv&;juIG;UojZdu9nfSߩozX=nq2z-qYChF豶V`J%tJH-UIx+H@/)}gi=B9\A:Kщ#hnyCB^^_ٹ lW1 Mm|>3TcWDW<+p."EdSQVO#8Wį?ƧbwfK i_(NZ}Z֞S˾׎)n,W0i8_EvH&K԰hGc\M$:!h/< :"X**+0 0 0 0.pʰ&?'ҩbϳת*,&OIv{CLk#Y&'ku:w3;9Q/8,ch~\:ũ=QΈw5 }"4 gXBeX]O;E?vhG !r|Z#.Exh,M_tv E+ؑmBkȮKrO/o:ū+4;#)MRn- ~lʳJDGG.F.ƶF)SSnnq-Q+hkʰZPgi)TSdXmx7a9vB)r٣_'ۻGUeAMQ"]!}抁J2 0 0 0 Sp谂~|ow*lv8W`C/SSwsY8}juJ-mtÝ9vB!~+85$c Zm!ԛ+3z*QO'flg6׹1Wvb,͢49E@!Z/fyV~B1R;,*N1\^Jd Z1ݣ/QWO]5=Nz_HRe%6{T)9b˕xQ%B4RT{xyxyhThTd/WO+Eqn3kY'Wgz)sSRGUFZCž~3,V⠢2܊[?S)%- 0 0 0 )*]^ԦVg7]nk.r Sq64xk*RTbu:vgӹ+{a;ӪeDȌtV&tFcE f O0p1t+[i!;tgXt0jRMj)4 &[\NX#&XZsA~^XE܁k]#TUEObMy+o:\'6D|56$HR9sf*[[< R=^&*ؿi7EYa}b.j"SnQMJ~VZ k\a@wtrI.iEn)XZMsaaa?G0tK᧊5E,t?SP0þT{oއBtR]Y+r(3I*\rQSzω\Y4MIx0䵼Ǻ{OuX"NNU%&,)J}Ĵ"mT]]"#<5QEQ*%~~( KdP5<+%zh0 0 0 0Xm@U=NQ "}M rW+ng\MF #K'tg77N6',nXvec'4&:&aa= aj+Q?\UkQWD&t~%͸'dqZO_pi%] UF$`3&rp&ğZBs8:n F]9{l]W4%@ߨ<}%cxL||,vAά~~m"TU{{$M$[ՄXXh,<<ቢsnQB bJ`xZyWABڠlyS2U%HsCj0 0 0 0Y<1F(伌IbQꏒnN7k;wp\z:/X[yrdw?؎Mi-^tf{=Z8O!Y9+N0pzw[9™!u.*âu.205_ XeR;,I===7i@7Di7(\g4GB]d,r\{-͎z#xw;\AF܈B'i|itNDUiw] 3:뚨Wh(Z@ ِt aQzbCOcy9}£GWGP0WZ(%Q\@Tjmz]zq|Ϲh uU?OP7)wmOIJ2]Qle?fULXYu&R*R*P יYjkpJpȤzB^6CkHo 0 0 0 gGyAbN&+^MQF Zn## yGd7;}>#%%nY,K=Bײb!|TWRb?+ }H{5+Ãyptܚ3reԳK)KK󄋇6*%Z)dGv{Oڭpna)@gW"m d%LIb/lYny"GAWjhnXϵ%\]=B Üaaaa+򞣻HFrZM|g}}4f"2M~SwG/ZNЎjnzow7U3?"gcA{K҇R|> 5_T;Ŝ1gS)ow/YU9 UjQlQ2,J$BST& d8=} xNq Wh/5^)~E繫irEQM1 S(&e_PqSo4'AMxE& `N[JROlRY?D:-U nVl6zԗ|-9c99&/.F2.j~V tЭmv0 0 0 0uqy$UzLW(wM&j6ׁ~x oYCO5%GMb=R] ģ55#Gfv3kEc~t& dMGmw[]&q29#&n&w+GqUjP{d؋R2,T9+hn`^SOYT؄.E.wq_BeU_!! ro7E.WPJ}xÇj)p/ E :`]??n..?q{Jo!^b05<o v {k }Q*%hMB(8PLG{alDlAZLאmq6ZCkqP_Cfy/>G k#r#7ӯjd[AM"k&3;@MhRxN)-ʨy[:zEK''bEo(xV}LbOfTb(*"IJN@>?cj0 0 0 0 MhK&FU=T :31hUWlL4!zjz+ d%z!:W}}\Nݕq?uLb4յG>&Vձ+[;E[r*;V k=Wΰj—N"ΰVvf1ܳ< 倮: eN&a8W0 D n+D7yX(*pe[Yy'A{:@l=E|F?j"Z)" IIm)AqV)BWڇu 1<w#}"}8oh0 0 0 0=vڎ$G)Hxv$KG7j,A#d4:$DlsHtV`/ gBV N ^ tV?~~{2^PB&̧T*cYg~.wfoQBkn?PͥxM)j GH9j}E+Ɇ" >/{R] dw/q OT5ZƜ]nxdQ_03y&&c2J'ྡྷ=ȍ>:j̵mQ⹢Nz\VE5GGE)t)4GW} ̹laaaƿ7GK-<9.9r4(ȎΪPU!5M]:W ۴!rjݡ!.2ZyH\7qG⎄] "J_{էLb7{+&%VĝhzM ;E7a uYؖRB9sU]ߔSEw-X+-cLRWA]jVKl3G#*b>~:Z"hN7>->M?ksg)+\OԚ_Wmr8A%TeOI3aaaaR ZdQ(TTq9D<۳S& *UZvJ-yuc@ 6mT]_MhuLEs7mw ^);h{b'p]CcPw},I(@hK|e\i9yqLJtT`Ś \ p:Nx1NWυʮzrw jD0F,bse-(nh.C=ԣ t}ʄ+RqZ2ɎMM\ZocQ/5n+.kڜaaaaߐtPUXNV4'ZF"^ǘ&@!x##NG(>R謿[tRRpp 6$=ݞ$Zn-OEHS2,ͱrKN둽#Zi9tw=]Oh,~ mC{;tM4]t ON:TSVFэs ز2E;:(N5 0 0 0 TSUnziE HK]b62a:bUJ?O("8^舎?BcC KBEEMooN l,)3n,.G/!>dtj:5QQ;G^/79ᜰ=Tߧ# PQC15%h _VAnM#hWt4Q_hr2Q hey[j&cQyQQa~\p;rGR39(j0Y+f~,N=ҢW1 ynlƅ0.+e.~p#Euro/rY%:*vc^ŏ79jaaaa=o=ϻU-u}UeTVũT:KqBU3!sg覩ګYP-R /C?MEfJ`NtjZKvރk>5"/?g.։boy[Gdo}ɾduh W1pqʰ+Ff/97=B"VZ,-qMD5y;)X( "Z*3rF\O%KAT8$z_J䬜5}f~% Uj>*xf嵾b}k5Ԝaaaa)(*ZuB/;gs]tW0g#ӱb*XN h%PC_G#CT:cS߱_T OTԕb!{j^9]Jr$ VC7Ϩj.,>vXU*J =\ 'J6 X+'|"|@=(.'" @=  ( "'L"n@= n( ~'===(===H=]=h=}= = = = = ======(===H=]=h=}======== =!="=(#==$=H%=]&=h'=}(=)=*=+=,=-=.=/=0=1=2=(3==4=H5=]6=h7=}8=9=:=;=<===>=?=@=A=B=(C==D=HE=]F=hG=}H=I=J=Xxw6ֽUs "9( s"AHF dIp@2$ $IQɈ(ﳪ̙09g]MC{WU &aaaa7xH  tr= Bq"p2p27n ܚUuUszE:.1=pG#dZS+܋{t Ii.=v ,bToZ rZa.N&AUx:rYWu'8S(k>֐w@kD(O ijQ-laK4:@i5Fу6kè_$O,@oHi=7K ?=Nih6jE&E&THmrglG*#p_ PkZ3U\ Z{un .L)*Kg Z$7hv1JI)U TZzQg }+4~va?_ Ƈ(jVWuL2 0 0 0  t4}\Cmg9.:9 nVw<7RT@@@=lRMyKKCW=^jZr? X>irjYPQS:ʨL[h8AՕXJ-QߟtOϔS3Y(D LЪ?SA Qô HIwB1JB]h—NȆl4^tmcEs!V4gۃ=tQ[Y A =I/Tf_:_W_5U_ tCM+UV؇Mؽ5N ̠{t險+TA) m cG`&>{udZNsGaaa -)ϰHr$uO8+[^}su9GZCUM /KPuP @iw#qZeNхz/vD>ɶx AG&eX-ȏ5f(4N夿A4%Zȃ4ԋzudbR\Cm%z Ah7>(jmZs5lشjoQVʊoPq>.iG$ H C|1mNk[%) ʹZC?'ˇ|''rrhV{{wPFT@mZi-B?~a 5ԗNu{U7Z#Bߜw2,~  =V}!_ ^VLkEj0}햰__Q̝daaaO i8i}Ȼys :&^J>f[;bnId cc8FC)ZmFMpj%4%Qu0Ff!Hbx!pi^OSVTN~z}4b&vq]E|Ni ~ƒtl}}ohϴ_s8ge־:HxZL ljXOTrc ]Sxq\;4Ly]xkX [))D$bEGˇEqN(R,w>=5DT7j UԚam~eTdX;"pWxfX|Z=cy*J%!iajEw ֿdSo0 0 0 0 XWݼ9&khNr3ஓlwZg]S@Nn_v@m{`znGc.>0Z#道#6iQ T5I5@q^O%4U`a | "O7_W*dX}B?CȚ`M`'(Y2n1 jcרVJ`?a;@PHuH>U\ 83qJM<=bt;^ 0g-O㻣g{/D}}áô{{9%%Sg\8{{Q#%Xj @*n஛2) /Y"JḚx%xϒAtԍ 1X؎Pcaaa~E{U! \kjs\ns2NF㨍܈{MerrMjSUlRZv$.5&hԔFfKdt:aR!hWyN25+)0^}}Ci wh<(>X$茡t#C|O~-6N "ѦtzU DO$NRZD-8wZp.\zhUjKJQsqZCXcA{"#™+@6a3E` BgXli_)]~M/=_2*.{5gIjϟeo3aaaax6*)*4ϰsw=$z9&眗 Wnru@8t%:R$P;Dnh7 tHr0 ?j}QD&=ϱ(O4f#/.'$+/H#rŹpbG'Ər7KV V)m xdGT+TkGV=A>4dF%T2S{ E}C#w-K݉+/FȳƓnSȝȝ5#i}};;ķ]hojOTGaA1'GpHD~ȰTWS㩔VӨ)1 0 0 0 ʋtb< 5$ f9iwһN^uQu@O!] vC yl 2 vgThUxa-!VV U5^&ȿ idX(pv]Z0I.ڕ,ӷpbv%2ٗ8 e֚Ssd+Z4MUpJj.OحC;@} dv*4M@:>?~'~Cz_/;;N0Dˆhh9)&BWp&_ 3mv.!V@ /S$KʰNrwX`\xMai}|/kI Nc0 0 0 0Y>Vu[-G- iYvn6ܾ*qNͩ՟NMf`%%]BF:hjmAVpZ\Rox#LS=OwW!Z )B#._2Ssaaa!Nя##2J^v/sI-u:zveWwhZ s[^` ;ٜl6H=w Zkz|M\ TG= K}r?R)x3Az̢I?QhO[i1G[ExZg3jOc P'' hj˯*XOM>|_weOJ#2rE+_-Igg}Hcŵ\Ongg2+^&zލ^/ /,,١u"^ S-Ѻd] %]n=FsΤ %߅􎪣0 0 0 0 GEL֟ 5KŅ}Ͼe@8Mu/Misy%ÑYu~twV"Wj"ɘ=ўyŹjǥ؄(B AQTUKiO\kJ>—"9b4I bo7*~u}Pcb.luDq-Vhx `m~1LT@zLq rQ*HEfL p&NTBʹX&|&ZWu"z(@3S\YTZҗ\aդxRfit4QeMߛt65]&4*1uYY^^. D{_=s7aaaϋa(kܔOV  lGh99JM'o#߆~ڐhh+z*"XFTP\24𧛝zm }Y[f0 0 0 0QWUAUkdXگ^Ns&jR-*Lug*:︋Fn#/6kvӹMBw:̓Xkx R5UM,Rq\5[v`D`}>Ŵֶ$Elϫ\X]}ފ瓹[8->ֈhhZ>m*[KP*آ94HAJsaaaZ*h1K>nJ +A=ө>wx"q(+8ǡǪ)k5U.h:|<<~{oRN^;frU7f]>)z4˸ ZwmYqylm*MVlZuȃ{#7jя2ϝqNߵΒanǻzG2,.i}W˱˸M;{ZP}鳤ƑǑDtd% ݱ gM1׾aaaaJ$ǾWNJ/TP-g3밎zF5Fj[۹>vKu;6n/3ә}J%Di`!b5U2,TG]T-}QVQSU.Ȅ){[  ]:d/__\_ݤ ܌r1a(>87G!'JsK 7˴Wkcix g&Fk#U BυJhfHro-N-BpMۄT+x6SC)~+=h.oqdR%bXDrEhPu%תRUDbpv=ݴ.6,R7PI-叜 77$Qp>QI'(l0saaaȽJk7"?؟n/d_%ꨅ7 P;FëU o okhhvny`*c?NBmmoGػ<ʪ+Si{a"r=OYdXO8׆U玜a[SgZO ԙ:WJ *ͤX؅uX1S 4fp;5Kt 0=&э}&''NגdzdzG`;McMj"w.XhBhތo@XjhCoo.YM ViGXQE?ً}6_ͷ'^hn x5X*pᬟa}-xV$eX3, coVU8Vb/[W\e_Z&ʄ5&Z:?}-ޘ8=>; ?Oqh?b36m-hJο+dZ=5gg+)âM}]K񆱦Jo~gV QUUUJs NA"r!rAhȊ>Ԫȱ)E0 0 0 0m T*MG:lMBf=zOɺGd[ʡ]Aq>ni4[|_e ['{1EHC{Ψ3y|`m w `hLy%[|1 .gyfܝ~tt~~Gy=%[K!jgͧt. ;ϥRQES3pSn[);e>Om ^h31KZQZp{srBǡ}h HE#a%X|b ~-V3?ME2$渍U38hV.r)!#z0zFMJP4>gq0 0 0 0=8r4V tH$9N_+;7-)^ V%(h7>}Q#Pjݭ-Nh^]@}m\4I;SXU(&hMCQ;?@-Xb*JPVkّV.n)x otoȋiϴJDcZZTWkm%"CEx 0 0 0 wB7"qKݕ=+>9*~wFꤙ(5F[t0M&{żbzzw].Ϊy,--9ϴnn7ja/pÝnMj,HgXp]9K`3^Fokq+[K s2l`:mMF{zMyLi}zK8CV:̙8lj2ix pOײA tV i'/ :Ba?x, .MKt |͍~#ZP y.)HUmaaaƿHD9t^6Y+*Vއ¯PX4 `@X ]&idKap[뤰@S.窽TUzE ͠ˣ<Gjrz9ܘs͝3BI䜘aea^kd=.‹y %365r3ё(XZUSuTuUsj%pxʻVbB t!eڡ]|Q|dX̟&-z8zzJ& 780?>NSޥVqJn]ّ6 0 0 0 Hh?Y*-}ivVTg![-A#{wT:_#&S<4Bw:@(X"Nw8(5 gD9bO4^T\*&011;s28ZN-S=&y&gr!0QG?&UiU/OqOmE\/i;Q $vjG-gDWtMU=p k)Xu^ͧ~w)jh^Ѫ'm;4\+M?a%:t*IZDS.++E~ƃ8)ǐq5i~-D$ÊM5ײaaaaht&uY2 oo0 Da%[Ȕ4a4Bsjcuw9+X{<*ZZ.M 4P5T NhY<i5V~jVkڣ+7=sF'Tc՘N(}=Q@ێ|ϰ.s ߐe"DTeSSiBXV ,7(L6H'(-P2 O{tGfsG>*b֔f!xL8_V*~'Y$B9௸KhG-BEb'Ŭ6 0 0 0 _+ t(4If[[hpnTcKݥ29ct_JN0KP^ T9YcVJwͼ^#“7E@"QWy?|7q8?~_Trb 9+{ }*Zc3IXXxO5zi#] UXǩ>pksaNA4Q&q!d?!Q: HvnJ^*5%ɽdy>OMilᢕXG`ooQjK*R-saaaKBRtyB l膲pox0g0<>3]yzS(jZhE$4=(oa7&H KZ5Ɵ5R1_eR;,92y:"}H+ZO>d*C/Ky)}aݗI耑w>I4 m:O?I$H6yZ=Q4%眪*ʄ.kF!=׌iU0 0 0 0oK(2(C;m*<#r6U*tB's{)s`ABHM4Z.x0nin& x{߇StC=B s.`܌LE)2%R ;[xiS)HT {͚G:S#uC TPlGGzBOTvEx8ϔZ):j{x J#vH?*%v*%:AH7 C0SUXiC!dfbljGy1JfMh$EUT#CBhé=2|*_+1#5jaaav9MR"h S[[ts.w9H+9ny)0EH_j Rԅ^ڋ pyyܷ)uzTa׶k|Ge"\V`2&|\Wۮ%Gg\|N{팶{yj {ׅM2,N-ZLRuV Π ZNd;ϵi/la9tȉ7">5h@Z"i8etJ-"UL>[ MvGI+ ?zꩼj4קaaaaFV irBEbbɰR㔳ZᮓA^m6~Dqj4Gs0 @{VXu {-^=)딵sXͥVT>5?Shi{{.iUT:!q\tџZX-EO&R7r o-؀ )c= ==)=>=I=^=i=~= = = = = ==== ==)=>=I=^=i=~======== = !="=)#=>$=I%=^&=i'=~(=)=*=+=,=-=.=/=0= 1=2=)3=>4=I5=^6=i7=~8=9=:=;=<===>=?=@= A=B=)C=>D=IE=^F=iG=~H=I=J= x=n1Qe*9CΒbu{ A$0 ^i3CU%`a7dnS{6XLy1x=q3fSζKlĭFufKag|@5Kt+dCkN#WڏLBڦr0gg/ w/=3[h Wy-=(:n:E2Q ݓ `S36&S2kM13[>crW_YOI{W5Cj޺ڙސdcMXI{}k2#-XfSCqN֬Q[J OD4c\,@aǣyjOz}IpxEZNJ-֌>s'5ob.'^h:V_Yrwgjbg{]qqmqoGߙuƠgWQjR4h27.tL?~Jq5zVX\lzth0:vXZS5e5Ze]+k*\$lN(tUg>#cV_NXUZl3V;57ͽ{E>sce9j?!N hz"I#6kI-x?xY+uZMzTRT= ==*=?=J=_=j== = = = = ==== ==*=?=J=_=j========= = !="=*#=?$=J%=_&=j'=(=)=*=+=,=-=.=/=0= 1=2=*3=?4=J5=_6=j7=8=9=:=;=<===>=?=@= A=B=*C=?D=JE=_F=jG=H=I=J=, xKʍ3M2 ٞ3=仵%]/,tr\._Pa˒Hukj"cos0=g֪^{.z*{-4?da>Kü6L{i Sx^?5^|TpKCϖs=RRM=ݔ'XsEWLO)RA_ sK(7%0>E9='yxJH!` ⡘O|ƄGf?w~&=%;(5լPcKaL)G=;X1Fxɬ_6lr\QkJUD4gGi̾<2)N16a/D>ZV7h )5>ZtcM3+3R[QG_(셜J 95!E(ex]ħE&A*%X>u]_!﯐еtSO;zr\.ןP,TE+EAT4'W4cϳxwqRԴF/mH|o+moe={UBj`&Tz@KIKQk%-J KSV*\!BDp1gCG"0 G*>G7vnj"WgEWlr\.ןR&-o фӘj.VҢsֲ6!)o) )}ә)kˢ]P"7=EA(-%.ApѮO9xP"򔕮ZP}]bfD*)G*A \Q Y{p?.rfbi'1ZڡF aW#7 >PדKE*&)$ZГs燮JdZE"_Vq0Z/qPUUJLQU޾ٵtoEF0gx`RGaur\?ⓞ#9-5f.bXhw&]!lyJGI Cg(|1T>ZtÞ`)lmA2Ubfem( .r U5G+ޣeP!B9Ôr\.):!j%l{V26av |E̅6X٩oG/u.Ԣ|A@ѕ180R>"??g+)x֫6brgy߫^m JSZhS*!_ K>H|3r\X MmĤ_J ?5ĮcJ?M %}:.Ak VUי4[}:}5`ғIDNKq T>RR~S67~,~S:Glk2zJ9=OQou]W *r\?A!3؆c==Gׇj3q'B~ַIȳP yTdÄSpG;RFen«Ђ*/9P*9aJc*%%\? Y0z'~̂"h+"Y,?.r~BݴⓓU'MS{cUC--'FC=S*_4D/_Hw(͢%Y jWG(cؐG(M81-Et \1L^)(j!_HXchrf{? ")r\z}0V(b-i"ΐ^,9BeT0{{" ɾiUL@*C.lPHMŚa%30d)j兑- <+NȶD/w)՘2b˖/& CIr\.+Lr.=lÄH<̺BWpl!.׀VĊc!ޔQ~ev YEΕOΔ,TlXz;))a zg {GD>CNo].rt%Z5eV,Y{bu3/5X'}O֏H c^,}Y%kѦe;`fY>1CW/ktXHp}뿡%s'U}37Kk &e)=J\YAi?.r~JޫR5-jw y XL(# k͎rg¾>h3 }5$ ,]0LA7]RFՐB!`< s˅ R؆8w\.krkXzޛv*&xm5N+;ٰzcVzG ·IAmXikbF{h%y@ p}-ElA(JmT\WGco+Q&l+5!VoE,_\.jY(`_ZA(v@E@m VwQ!<,~+U;mGEQ [כmFBYU jXr8Jo(Zrs=wxƵ1=焾W ȀPUX,*G W.r~ڃ؆]{EI+xN?cN ~v-@K'QaP0Zȇ_VfQbһg1x T"tpDk.em 2Bws|K/?,O BhD~G(W.r~b<iu,JH4PWB:(bZ} -yY0khCZ%OcB(TMXTK $ K>%XNXc< Y筮֫bPB,k/gp\.9sQJEiUsmXHRc.g!AVߚpa~vBϊQ+p2 MǪUo ">aXX'}Gʂ;o;.SKKh$~nr\GBCe(RJ0dmXP<ܖ>~,q&joGFx -D`aj@jO[-ĺ-Y 3<ټ!XCl dn; fAXXZS >?r\.뷩URՑ g㻢O;6-M Ep z۲ISՙXOǀ Ыw,y,kfw9,(q`C1;W>E+xJc(ea)ݷRCϒF37Ĕ{_)9_\.RNo;8Rd#zʀmlR+?gy ec F @OS A&_Y[C)F]3qB<: br+_r\߮"dPb`"5LKY?Ӄ[a/Čb_U:)K-D EB$<].r*wlƧbI$D-qБh)uNE6cX/}+kɲJIIYlA24)dNhzi 93ҝ )su\.NIѩxߥ䖭h^vnW:omW ?~,fZ'"ėNM J[8@; Xoa<c7v:]dr\._(GS͵<<[֨+,Ylz C`AXSjlV Zy6+i ;cFTfA\F5t&\h Yz~!uW5L4W/\.է*`Ε2mJHT 8fo;ZcѴ5:XW_;e]5D*SE-VZba0Dܰ *5%jl] .rzg0iXDLe$D&y|>ۺAÖTB*xLN9OOdb-$!S蛕^G,gkb,t'! њ u\.ߠҤ~3g ͭ5}vPTKX(bcMkt?0Z8ZtZg :<Ja *u6P]Vh<[}ӎ X0 9 O"!q@= q(  ,"g# "$ @= ( >%g&%="'%_@= 5_( 5og(g)8"!= = =+=@=K=`=k== = = = = ==== = =+=@=K=`=k========= = != "=+#=@$=K%=`&=k'=(=)=*=+=,=-=.=/=0= 1= 2=+3=@4=K5=`6=k7=8=9=:=;=<===>=?=@= A= B=+C=@D=KE=`F=kG=H=I=J=, xے6 D9YrwGy`4?fSylx_tK盧UYon왏O J'Cѥ"Ք.1FҢ}|t\$WLv(l*mU)[/|op''WJP,4. U+P"&Lń6k*b1_=*T^k|QWj?e'kP*t$C]k‘j\h^~_9 tY]׸m׮ZPy[9꾛*;D(7;RBY {XR5ZeԒz%VJO^"K Mɖ'_YMU*R]K VZ뽹+jpA5Vt3CeKΓ6xv̯2Z`z;| # K*jARD]ªE|JuY#Ub"5ߪͼFUI/ӦjYR ,Sڸzo?c[YStK+]֤g]^לR[G͉sڋϫ;ɕv7#PȿMY$*+=Q$̋%% 5j%btb=[iI n%pڔzTj;[XY0Êj(gUg[!=J-V+[.瀏|TMj;˽>H}]оtӶ4av]tRD'vs5R?)I6 U6`k*\[eX-55lϝ./=] G޴FS=VU_{[_ zPtv$ՠ_W`H+*tԫ2ZZUѵQUVgb(MwwUJZR|G'O9mՍ;Ou6 0?| [FVgҥ˶dd77W+Ԭ.Mֲ# ׂRU'=YJ⪪X&WȵSSV*tI8ĴTi|~nT, ů*˝վn] tF^άfh2Rc<TT+jˊҬ e-"6`doԬ*oOXR y tWY[VAzL5/Ókdkuuyux=d`+T=a(WYX Wfqxv-쬬Q9+˶|vyZ-yIr=9vnǾVؖT%+Jg+9*Y B+$I։ce}RWs(}r]AI&K}`8n%}t\ @W5di;ƘU+;RVp0k Yڳ?FOq<>_*˴r?so歘'q}p3@|hE"Pn<((+SEey]A"h&EDUl0DCwF؊:.} 16\Q SZ*L:*kF8-(XAFmzZrNtyL@$4kdME?Z9oΕ \UUu=}+5!t`X=:PV>ߚuUK $]vpOR ѳZRҌph4 ]'U?AN!M )~RZQdz P#@NWf8ǁ{ᩳV]הƿ W^u%|t,VSycgJoi1W5("dQ u:fGg.[I,-[qRt:Un|R,/Ȃ+Vǚ{((:97q<>W]+8ՈÀLӟGIx2cuLj/7kL׭Sj [r8bh|˷1ك206 D&jڟoӳؾ+]aS9%]i^Z =Oh|(^h{Ut ̴nb/tT Dr>(kɂ2ң2uvh|4緹bijj3d]Uf=̊E7Kg4G8ޔ`h4>2FL㰙5Oנ-6S,!q 0нjQ\lh|^. <刘53 Fgat⃣nyR/(l o}h4>ww/WtjU0H:ԷOZ4OENYn+,mfئ냍F3qO/U-;.eYqPAJܱoV)0ڣXجFqM&?lWӪ'jJdFvfFQsIifKw4"js0gV=z-<Gͯo ï6jhUsX9,g4W~{ )~XSoo4 jDP2zZ9KEqQQwT]X<]Gh4~LVU1`y!=TXÖӹ) Bc7ߌmԹ7Lȕgcn*.0hp<<_9Dk:)7l6"0&%'= =-=M=m===== =- =M =m = ==== =-=M=m===== =-=M=m==== = !=-"=M#=m$=%=, x[n0" /_L$[*jD"ïc(aSGGiԝ\#ELu]_? Ur?W5qMXKsf輒PΜ5N]rւ^ V](mw.e `D9H)e-gn n6q,UYw xVN[)d3/rYkJYS`)Yͪaթ2k5Rf:aX{1X VS+=WE*YF|!\foVh+iA(9ZS?NY1iWݡS9+Y >70ꧦZ5qSܛkI@__'7Ce}xVv1='&n VwW_,UU%* 9y̕yM[Zt=O1m-F7 O-d{G{eOJgWJ)gɫ3?&oƕEGά%R͓Qhpe;1,2Y-?LME7,}r0o}SkEs7 l,DSc=yA)f:hHRjS_F]YzוRJ)K=z޼V$2YGVUqaYͿMƚ4W3\UdbMm.+jn }[\[RZښ$% K1!"wO}[]&Yacl+6w]IeVJ)!IUsf-j4Džo)h?&\ kNXKgȳ䅰َ6o{CV V[ēZ \*9d"T2cƪsu!ƸFd duơZKveVJ)WͫIe^g6$%E=Ux~CwcE=Kl9  ' DExkŵՀyn*>ꭿqU^)aqwX#w˸+RWJ+er/ky4˾w÷'4^y<ڃ Z(u_j,5֊^7?@IJ}Տa/im_dZeXx`:*i p܎ p'RJ ,95/rJVSiԄo(j>>wo<]xA4L߆6 n+ ;lxdh j +k|00C\~*^4}UJ)_L}Y)Y>u&'7N6}V }_JV+tTYXn-h!(d/m7*rxG\ZƽG&[1TYT[-nJ~߻QRJ]/Ćهg6N:꫹TYͬ5)/ ܌ߩD*d[{,i?2mCX9c֢BLMUA5Q*FNA$:;+R:cfVED{孅flLj ve$+ly0p{U.dVe/Ra9IC3Vl+\mUTXé ,n-J)f&HUm9Vk d&2S/xE&0ظ;u_ϡ:B+@XTY8i.5VG EX`sx YGƢ!KխM)R;}gXIWI$; kM5gX&kҼ"|O V IN [lo"ųmĭJZ30WeL=TY1xxzǔRJ)uc3Ѻ&seaTYi3M.*:=lj~O>èZduh [ 5ȵu/Im͡cyJ)R7;eIrTY%=%=b:!ϱn3M?CN|:".F49}s ,w*z`E5^D)zRJ)uwQcacuFʢfi2f@EXgхN\9Wx:\YuQc}do҂yt; [:"p{Ξ;RJ+uT}Y=%h00賟;KM+]g9$F%c քœ,VEh1l-/J)il}YRYY*"N]9X?~jal>r, $;CK1[ w[KRJ)nvxXYVcRw 4N8N!w8iю,> iMdҷGRkXJ)[YJ.eǡ4}F [;]Icd}ǩFc!oҒݙORJ)n><+},86箒:n/vcwg B'V=b]B[_)R7ܱRWYYUn6cSGNhdCs$UVHȣxCLž% u8+5v(^3"ԣZ?!N|Eŗ(9u&UVibL)shm`UV9eiH hd ɤ Wd%3>LQs;Ytr(g7OݟgIzz5kwEBB^=|0co;l2*kG>Ց UV-Z dVU-TꉲiR!b8+f(@QX@dlYL֕esoo%/,X?NqY,AË0VEpNZ>hni]sw=esrMf!ϻZW5f1{tLʚj#SOĈTT;x*;:.$󨲆;a9A'B$FtE2^0שDH4F?lȆo,'H`T7x g)",gv3+|4r_͓V8:Aeu"ma7QY~W crҴ9-k5e*+LG$>R*2W3؊*"p51ϭP|Lƨc:!xC#A;xr"ϐ`mHC?wc1 Ž҂\Ƚ>|D 0sXL0ǐ!ajHjfgWK1 ei5w5$Ú2rkK䀯P+q:NjRQL֫(1W{K(M9:R L Yz-7 TYsa9 e铩X/y?tsxZQk% 3?3 6v@'# 36?tJ+lCP fG٥f GVV SY|0c-w(y2zE[FG5tɖkXөrnj2 PL)MI c1%ոt(PXGJ6yu4Ly]59zb%d߲oPa-od_ ZW ԃ Ov޺#P*7L}qM'E4ԟ*ެ 1ZɘJxi,1GE_]ocre,2ŚD:pf2QUwþll7;asb(>AWp}>btTk,KE~ ;a,Bșr[d, :BB稲N'L5ָpvuaዅ ß_2c-JWW߫,8?2XE)*74zO xΉT`H+l%ggb ;B:'n3a1l"Q`Ee=35A@N((/Nlx8yv zd)3ǖCPΌ10-]}NSpvEhDkH1;% QluV]+DB\{| PebXCjXK>"Vr52aj|Rn-s+Vhx{LԸqE㠗n+c_ kC9T[iieӌc? iq]U1h$&J}'xF`2}Ow۲T;=DҽEvi҆7ySPfqWzP !c1~C +aCu4=/"Our@\ Ebp#v1Fc5>8R{|E,o_*F2K~)wAtÒ ep0&_A!̶vH#@{7ލGc1دW'F#k UVSVk<;T`OUbdM I? $ĺx `1gPc=xZ(]}|C6$bʁ|<0]"DF|& |ReUdR16%$ލ96׍1cvlox+jm%[ TYs 2,_v>zh쿌/ʪIj݅XO,h@e{uqgS3 l,;rȀZ=5=5a@|*),kqb1mU*ðQc=OYm vzz o%?(桖ڗF7i * TYD꫞T`! (am]h`ۻ) c`)}>/Sej 9Vf UX\Ncr "\͈N ŪEHvX4rIxr=ttJqq_P-!sdT&u=RS?'Jd4 hZd#-Ң!ƞsn<,R|x-GyԠh!#0F&0m8c0Q̬>u&f}_ν=ǗKAA;}:W+]ݯ>'h };gzFx]iއ'KZ"k` uԋY>| 'anmXt,1:1c[=x,f&}_B?HAL?_ɎVvllo^2#n9kK;I d~x1ڀ6EOIl,[5. +˿+kFs 0+  87e66 ZqZ\[f~<[seƢº&ҝmdΩt6,ۿ.kJ˺e䖓W  |;"T*AVIdi;ɂ]cIUZ_ X`%ԙXU<28we 5Ɣt΃&nZ;l)3WsSKx:FӬ5h)ϲ%weVVt[Y4b?!ce3r;6+AA5l=P`c`Ƣg5ٟ uXUv@l5[lAL($T+TB9: \Z`MHiz+Q CCt +M.cjCOccMfC]eAWVX|LoCAV:N[YWx%Vba=YReXI?BUg\ ꓺʇj,Vd4W\akuDSC+XX3ӭ%0N$svЮ,iڦ;S3Ղ}XoW!  sXmHY~XKƲXcy˕U6M mm ˬeVU:[OkjFZyPhfuc^Z?xC-[Y9ԥT[bStza?qՄ@6reAAXShkXix;z!=QhJM"Xk KM(Z@y2S'ΰX3"]IPHͅ^U,X6ݢ>VsΖtw]1 r!Nl@%AA~h fW~WYX<<ύ{ =oO'+4nn,,n,8Tk*SkjBPosRg݉fZ it W4 M{&1WV3UvV,=m4)t܅6k  z6&F6V+-n&Y'3fXfE4Nv~/WU-[cC*yzeJM@1ci͵yeA!϶ *{leѮ-d=9Tl+=/ڕ)1+kRGcG{AA~LLhWVՎ,;H{QXnj;\eOۦ <3 k>~z)0Z7Sge'L,..^+ZsU 2;JReuse]#w]Ao7XY&ՀuXdBhGǫk pcQeG{FPUc!Bƚ %X[cgYǜHUeg[\Wʂ\bHVdQcRe+ - OĊA\a= k2:nh5Vk`P0N]Aʅe5P_W;h 9ڢƚg‹ Jhז;+ kK PB%XAp{ lkaaw@yn痫m~'W iZEs,X&Y\XX0Z}u +ufd=Fe maMOeqI%XH6;ǒ+ GU;4׊vxPxQc-Gw@Scv5`7»ݼZxoPHŅEmƂ9fҢ ;X+TYɡtvr;V66ҞTWAA~nٿ๰)Y;יB#{_otdwX Bon0oxXYX`]JsU, T=kg eZ.*-X4ٲETY9X[<xō%wTA_ ۝ :X}$VRX_5LcQenqvō :ݤBGX0SusggWVl+7ق|n-Z#α +kzt  PE𴫬z۽$R~VF1PcFŰ8|N&YvޠZ백5f N56ꆇj #]a[帋*kTZrAA%b& h'3?GvUacN>*APNpzRd Na_CЛa=="l:Zne mWuĜ֒' /W>dq"6X^4@Y,,s hE<ƢHMV0' vOł#)& p(.+\kQcgFHy~PA ufXv{lhlH,Š}[ύ¾¢UЅ:IMX0[ \kKS-J:e[WVUXXrAA0P:!l!X.X>"vd?rcpeYTȵ$N Ph[ ]lQeQmٶQ=ݫz^ p&a ˣEZkE?x^EXaP&Y"{J@{3j,*kL$;B"nfesҒAAA.UUfbc*RAfG2w\Y`m,(Rhj&##ZXY AB]?Ʋx:!m}zgk]$ң"yB RliqmQ1  \|t*,}[gY\Y)Z'|.ѻI(v.Nn*N}Aw0YV~,ͳ,_u'̡@LXZȍŕ W$){AA.nQ} zƭ' x KO9X 3޹"EsS,Fo. OU>la(ړEϛe{rY׌1kfC*T`of213==1=Q=q===== =1 =Q =q = =====1=Q=q======1=Q=q==== =!=1"=Q#=q$=%=@=(4g5"6@=̳(7g8"9@=( :g;"<@=,xipXDq*aθ!bHpbPdC;ЊӪδAY%$@d' %s :ө+?y_~?{SWshn07${=nNf3aATg˒shV7TKiRjzeuh5U??QZCAg&ZFc }7tf.\b~kM'bB26O|@9@15^qܗgȯ2Yb¿sZ;]07N17)7a%dc˺/1lZwgi <-+9ǖ.7vv7MqShx<=~UMس*,sX9V&ZΆ%%6]Ϙu,{\j.[ضԱ.6!Q u^Ա1-1,u,CeW$efnN 9ZxֽfQV Kl-SØdɴAyeЍVfB,Zwci92e-0W~#NcϺ' \\{v,&wZTO.:dGPc6/HaJw:jYmN`+ȴЍvekϞz04*Bi#k8Vm7eg*,$/kg lYYH3+Yqgӛ߰e5'ggeY:7lO m1;CY΍hXͱǢUNy6-wҲp˰e.v7hp8,+ԲY#~>`G-g_eIzP=v0lu(-=ȳB >xVDF`Ya%[guh.ikfi\;qfj1Y;;y;ͤFj,+,7>۝zא=j RMgblb}X} zw ߥ# 'dS*VwYl\-zðYux;nڝ=+gFa*iVjaw Fߎs`'9F0Vo75R ͬz7Y-3o0Yp0L m[;CmdO+Ųp"89Hώ5@ꗥZٱصfegU'ig2D5ͪ{Qg˞e,,N&ѲR7;Z;O6)r$ڕugՄ,*mimN>2e{>orRŦf֬i7Mz{J-+QSiYzVG-Y87N4; 4c}̲fjXeXYY;imgYjikfʮ]R>IY2eY)K"W[B!⟡~:!UXe+CSok{ƚ&YE <{7w4Wjݐj)bInX-LsV5uLuS964Ҵ `;wϕUEM)CtC+_0+:GZg3^p,ƢN2nU %TYGXʚfYR6r{ic C!7fDYWV\g5azza&ʺngSxB^v܂qn;Nt" AQPd:v&ͤ8m045M5hT-|:LR֧/h#.ZNe kClcŬ,.1+V?;UkUZYXbn!_ uKWbW`=>em:,Z#,+,[` X螺munǸ Wi_ +KGuNq6l|ih2l*t ^tPih >5ȺVM.u aN '^Y&v}c?T#քB!׵[ cjƻEn+k [7UE4<Ʋ;aWP˂,Cg V*@k}^W b3qfp$1W͝UԶUJK0Q.b  }N6}Q~6g$|o+=` 4F^nHuE(-7ZX׬g,[Y>!Gjz2+WEVXVa ,QWKl{TiU`2qJ-ts.Ϊ2Ǽ\7i+L VŸ)Åu ) a2XZZ_L7ӯ,Hmc.nsj: ~ԍ:R{.˶FV7w-ae{ BX']RZY3n5R ٟ]7إMO0]c`o5]YA&d@n1Ktm]E;|Pz#5m Fv=!~ǮtNR> h+uϰ.W_˭5FQ4V@VwVz$]nje7K!Bg:MUCYunRe79z L r}#\ײtdmt3H:%$NǩA?`G/ @ST4ti4x%XNW_!"5ͥNӒ{mlq7r!r2)3O+R\YrB!O#lJsYbչnPױ>Q*ʚcw9#]#`2Y{CSn7B]6O⼠0( e__U:tb&:@09mf1bn~s?58_ޫt%K$m0+!B| l5#Kub5 UOT]UjZa"wp+Qʺu ZqeiD7ȕr+x\nr LiˍG7u^Ҫ[IncVRlNo*X;ad9Y4z;i" 7V ;r:DS+K[!(XT!kU:"xf٭`Y ;= /B'ΕMNz N.C+\Y]ST0qv0rK5q9zon '6$~om_ ԏ}d_HNZ!߯K7jriesY A:6~~/K79n~WӅ6 4Fgu&q>tp<8acRVZVR`MotZ԰*!IgJ!Ez$Dh ؠ5tej!la bz뫹tF\YƗp:8ٴS]J.Tr}6`et}\z?\hiM{Iyh(*B6] 5#TYYZXeZTEJVwvv{dAɡ5֭ng5YeH\/,;xi_-{c {x_>D;a+JZOuZq;Q_Mӽ,Kɉ !BQsGU;՝I\Vɕ]uߨ6*TT=U;c`4]7~ bVc:$󡠐 D4Q&n%Ƣ&!aJ0[{m0B }E1S&_ $BfECj[ݮnVCa5PUp^q?Vizj U U+.6p ww \ ɸCH?85(0i84ap_7,f8:ۢ[ʱW`%Vs{/i1~3B!VVRHج~ Xo:ezX6DK~V9=!Bpf--QwE֨@ՏUj4USUTD .{A?4\Ǎ |@"/bXh nxif+8иm 3 B5L;0 X/sB!]S&EG˹EhHLe[ՙ\٪U<~140b!_^W/^wD|c440a˔wb*oWXf,GBNL!?L5Mue9f++ܘzb `'p{}C- Y;&դdo55MITLŘp+)6@:iQJ!?y*sZ꤮⧥j)cXUF>Н++Xsre`te(eLWVx9XSo6^x[4WVE@ `@(F圄Bcƍ5eGJ뜛j]ӋU eѿT jSU9<^ԷY< }WV'PqcUe!s v;dҽ&f8X?SՔ v+ibcL/iB!~b WMJpY>TYۭOTjW|jUT<i< ]mASh Ew~1vJɬZW\Yg}IwB!ďC΍V|_o]ϝՆ]SMdn*dV8g􍘇t`X8()~ |{M[hR Vjv_ݱr"B!iurMace; l%[Gݥz<*;}ۢY*WV3hj!Ɨس:v&ͤy[ +3X{Y!$odX` +kiH5t_Ux;xb辺/th͕boKV k>>q:NVƄﬞ܀B!~zq}4]VXY;zVU_ߣokp?&ÔK/ qe9v.k!>p&4W'!B4{Nhbx_4qKB[k݃6Z˕Xn\pnǍЌ%3B+zl1-Ms !M:Fq)CX/&+wwC (} a܆ `.MW >Oh\!d|8/S\Ynw3 +cV!=VUw۸nbu{nO\YuAE2= Vk879==3=S=s===== =3 =S =s = =====3=S=s======3=S=s==== =!=3"=S#=s$=%=xԱ @_ ֗t +ïB (+ įB + į: (+ įB + įB + įB + į: (+ W;:<==4=T=t===== =4 =T =t = =====4=T=t======4=T=t==== =!=4"=T#=t$=%=( =g>"?@=( @=(@=(@=:(:@@=Z/(Z?j@=w(wxv! kI˦}iƉ9s$!ooWDr*r.iǒXC+֮r{@潵  qcm2IMVa{aU\=W[Q+K]]=2b=9)/K\wdvC| Ԧ-#ru5oՋi RDZ5eI wp(*i9VQV`Zm0r< U~\y !*8Zren'Uhk|ucY-jR Ӆcǖa3C]%"1H>hjgKEU$cft$M2Z/0B.=Þ 憳o2joBFlGGi1a8˛kʲ~mQ͒Vǽ,ef[ gOfUcQ cEg7c?!re饺|ճB=evsucYu_|VcM%^!zJXn/KXՅΒEWeyK GXЋ[ƂxtcyK. GY5١CqVDHǨ.﫳zGG|DohLj b7hƊzMJ){w!,V}{=Z#:dywXLx68k:?U' +x7Ҭ:zH[U,#;eIDrXg_U-<m:ӒǠeB^CS_[ ~y*/M:bV 9 _hfxja P`>=?==5=U=u===== =5 =U =u = =====5=U=u======5=U=u==== =!=5"=U#=u$=%=xv! kI˦}iƉ9s$!ooWDr*r.iǒXC+֮r{@潵  qcm2IMVa{aU\=W[Q+K]]=2b=9)/K\wdvC| Ԧ-#ru5oՋi RDZ5eI wp(*i9VQV`Zm0r< U~\y !*8Zren'Uhk|ucY-jR Ӆcǖa3C]%"1H>hjgKEU$cft$M2Z/0B.=Þ 憳o2joBFlGGi1a8˛kʲ~mQ͒Vǽ,ef[ gOfUcQ cEg7c?!re饺|ճB=evsucYu_|VcM%^!zJXn/KXՅΒEWeyK GXЋ[ƂxtcyK. GY5١CqVDHǨ.﫳zGG|DohLj b7hƊzMJ){w!,V}{=Z#:dywXLx68k:?U' +x7Ҭ:zH[U,#;eIDrXg_U-<m:ӒǠeB^CS_[ ~y*/M:bV 9 _hfxja P`,xIr @-4ۢ!2@]*ڛRʭZiL9%M :J95bm0ct\v9ƒ#MX4X~ b-97w+`{>XpMv|TKv@l{*U,X%34/kӯAUe XEZ@?+V.+~)ּSMXs~zEi(d(eZn7rRQcl,fg(4HPE194R1_P/(k vUׇ@w`璾L9[rbj"LcS۞hgA1^5Do+I6M&L{fϣ<*".ⲕR[2YT+EB!B!=* BaY5( :N؉g|(p t?$fY `"; |$°IJ݂Ie$OHx&3@ /F74'Mk$yK_%N-o97NitLf2+ V՘Y:lEbh&'[o[oo+o\3r5_/Yɰ#D>&FʒJYZ9t % ~Wf#`26F|_WdIxʫ~>TMf%vU!!B!BjxzNed)q8 B*䍔ϔ:~A|h& p>۳A8 I4_}x>mk&*,<++6la4yI)!`n /[/t ټt8cK#|Ng ųXk })_yǛƛY9Wx[R^o'-2˭ǬhU>/J]\/G}X(Sas e;FAC+u!NJTx$_zy 2 '$YZƊ.ZXKT.؅榬!#r&vbU!B!Bȿ8 y&zyvܮ,%|uǽ[ kx? 1`Vk8tvgs9Qn%6Jlt5 &`jl3nT1cvsh 8טì]PyVݯJ曾4_P2 }Ѿh-V#\d*{^벵-(uoD-)iP .+ %Ke">E "- BJMف]0ğ TsB!B!~+;[58QfY<{oz ``,}g)r,x~_dٸk`w譮6vҸ a7].oyb=_M|5jbZnX&eV)딅n1'\c~g~R ʧ+cEG^^/]&@|$>3q LaR:5pf{cU@WH. 'R5]s,d%Y ZYdg ¬K@m|^Fe{J+_TccF!B!B_h>XC}.q~b\fxWZo(g< gQTWl5Hiyqlb©$Co7*7igl\?Ofmm6Yƞ=22e4Ѣ?D78^Ca`/a0׶Yp ź!zc [cU*ȉl$&˥9r۰6ʈ2UNX,,P *kdG6`r {GR,+)sB!B!{BG* i?D]wb;qr1rfS5 fx?X YwoF<1THJnȍz{msV΍XXG1L;lG3}d78:WǫtF]~=eF&#nwʎ!=U-gYXRS)eq%;taU]A2y B;ov7-쇅MOyJ &zғA o_<\d[aw(;9,17&ooy낵piQvĎD,]y49Em=v0vvb_UJ ݋;0;oζ~!B!Bs ˼mO_OZLzXPߕ_+!Kc?O v[y)4ɡ62L'b |_`6#UOOw{&_:Qvvk :o]5O {ҙeJ|',ZWxݏr`m0#~~bSӄNK/g)kaT{|2YNP* ɗUr,̒wT9B!B![|,g:S`C\'96Sp 7xTyhLI[-\V 9Sgʂaneckd6b4^k0>g4w_C'cD_!==qW.7r2Xq?u(\<Ci\g3Q.}7:(tܥ=}jmGiPvPjrlp1^@T-B!B!uD^ weO5aOV&b]e2 wrIyOdh9`'R'@<i\:JQ(j7an&lz?+ ^w>=606=oQv;bu)2X^^ 6!]y-8m 9_wrjOuVU^e<;TnQ<2I*!B!B%(s,sK'xO\|Z!Ui uOi#3'IA%ݘ 3eiE< E4ƪP4_W]e2覆W4]+}[[tKNc{3{P;JS xewѮ7e{ٽ-ȅr"kaՔEeQbLbT!B!B!Axo]X}MϻWLLx%k RU}5s|ʰta{VA6{2 #r,r f xܬ7o=Y+nfN+eP,2T9nGi`/ʧ J^us6Dݨl?EYIcs+es/tJʗ|k,,jB!B!< 0;fw&9:2"iN~("5x_v)+t,m0G" (PDn@f!D!Xނ̕> C5V]$Wį<u ދ~M]ᬲ͜kDw"{U}FUJ6f/JG$I<#2~gܦ笗e.fe_ B!B!/u( 1bN 'QBc5(ʒ4sƤ9ռVx?c(!JDVEgX T=vYfadPcٞ6iJ|Иǎ]TCJ w(~.gӲ4g[VY8t]Y,S)(O(etI.'??3agBa55NcX*ʼ&T)hû:2w#+=:Â{RZUXAceKrg;+;}s9/) s+T??1 ä;ɐ̶8Jt_ޒIz\Lo ^7laP%B!B!eYtQtVo"Ӵb|E )VPkEgX94hS,x\|A1fÇh q8TJj}Q4[P rm6nz7io;ɝg]] :sݹA@2,?YgXO`Eߑ)J0ڥtNƄܣ^_ݿQ B!B!8̜f0} f)փPf0꣙{BKӠ-TaBb3:X. VZv89Je7Nx_ ʸcmbm|Ns$|OX4/1uúDV,9o-Yt+]Lx7B!B!^+{-^דψjs5Q`(0&MQ7͠ΰяVhrFUɁ5xQ3?FV$|͏ `9f ԌA^Wrynȝ=;A`Rp8; T}akֱur=uBnPvOB!B!+QY!FEG{VJrh7WU=ZB&: Y7 r" |n2 Pl>7E+Y/ V 0sQ55β2?A'ueA68`;s.;gN?O,g,S{= 0mb[ngC&?پG/1t !B!Buq:7%/#x_(Cͩ3&FG͜dN 3p!6 gq>F`?u"g̖8L4Ȱ0߈<2K߰4oeYPc| .f9II98'^ fśƛwݻ ldUXЃʎv5(/[`!eB!B!uVʋ▸e4qi^?=twzByha`3, {v$$Ƌxﰞΰ,ź0:k42B oV,IBluU J/9\s.7c;m~`3d'B!B!=dˋC5>!xO+χ)4{k@O5ƆjkfgsbMXwf-fl;x?1M4a7D,o^2YaA&2%7B0L5ZD&nk)ujj^x (rIwB!B!^V{)B:Z FC\\5ir*E ld@$CcwtJo|ƗȰʰ00HY-B(t|a_׹6 {Pju~-o#XxwTq@w{gߪ,(HdGF$ ɒ$$ "APP$D@“ $%IsN7k3k7 {uWwu=}9N31c1cpib--&v|OΖ{k1-~xC3Nԁ:='n1.jN8IV"\SEٱ2ʺ׳&.^xlyl[/pBU|SP4.ՂAьT}?jFM߬Lyc"UdPOY RT //لZ9:Z'=ݡ;nҒjQ-1@>|<) J! 8qQP5 )tj^SZӸ[٥QYjGddzELcYe#7 <'+Jxn'ս 2cod޻tլyYbgMtEM.ȩr*Uz{ 턒P2RΩTUUh"p87S8/ϔfanXu 1Dvs(2vx1~nn71V "W/rTR[]H zWI \z+U%ð%^gyG.V&B$r3IڌC5Kqy\y.)k$=iQ􇽆"c1c1ZZ\i5u _Р2RLy~_p9.y9PlR [W;0PXDc8_}z_NVAHswg.Q4>>N8 CP A"UGB'3g7s{Y} hh-cc~ Gu\4G#|,;4ݮoחs͍0F34!:$z@%R P'" %X#U8Ӱ .ƵC)x/ĩ WkP2{hj{uPӓ^Uc1c1ʇ{df+>?akR6dr]&(xBb%<.ߗS. Adf7;?k%A %)ӿN/^I%J'JG/-#w#E"E|8i~":: eTd|_ (iԉ:fa7cU^|:킰Zf`Qk0X@/)h *A'yr4X=zT&JJo8NQr sS֖q+%\k0*& m-cQϠbUc1c1FJz- &P;WWMv76W>"e2YtP%fb+ݦ `#V;q>pn9ܚeۿ+Lb s?)~]a:(q-r(/gUJA?__{*%фS*oF6vhG;Jw%G h%4^I1$:^K%dYG`OZŨ28 (UrLd#)q/7B7BEZQ5zɎL^y1c1cM~!հ G-d1a=PPE.Uʱ(͔T||xCrk-݇*nWFOϟoˉ%Yܘ;o:hr܄/1*:(:)YwA{qL 5V9s|i紳Dv`ag` $ppQԥV zAgD)y ܗVWc1c1ؿ?k^ ,%'d]Y`hfOzj;էF<3eu9XfYIVf+"8ӜjԠ&CɻwҋH\bkbkPPr+c1~+Z `ce.tuJ@hc\5k__bw_Fw6s{t_tjA-jtԟp$PKQadŚ$2yqWȳr\'`tt"P*S'|ߗrޢy/e:-c1c?ww,fV5.9kxN)(-^+}^_!ē)u˫YGͩ(5{3D0?>0}`ADjw#vw]k+ķǷ;#{"{69@I(I% hk\ΎΆ^Ie>6'HWF(Z0_UUR%xӰ!ẈvJezM )8 WI=]x"9Ǿ JURlK==")Cd*Irc1c1}YQ;4&{:s5 +;w*5!pnA:vؖ e= ݤ2"g= ǭtcTrWy,o*j|/KvnrR<&Ɵ xxx/w)< OStYD+nomFJgX b7)'+h-L UDG CĬp Nɚ8`>)Id /*q&Jh+1c1c?GYrF嗩6&kzUhwur)pUs9(=g>"GȮ&X;# xT1N^5ZU-7R+Zs*7g^; Gԍm-V;=%%%ֱ~ }b6712Sf'VƟyÜBXa6l{6uSQ/z:))JQ P,A]{{J$=",y]q= %c1c1\ ²r@(յTPP7kr&)uJШrEd~'~%&N0N:lcZ fyl%"Ɇu.K*א܈wɻl ލ=o7&b3WF,o,rh99_(~Tϱ]bj&cޱX>,77x9Bs*ST[852+Z,,zLWuFӂ?Q3O<eQ])Uc1c1||zJtG)fX%i|6)qܦI&vyeyͼ&_x<UVy5EM9je顕.G=g'5 jPhլ~V?8dw{,u2 ~ ~55&۱ Ax`immTJCiIc{4AbCbCh9z ^> ;\)݂ZSk\>P~03Uc1c1_.|- BɆ5S5ٗ h2>VpQb6Ó27K.ðfk=^ċB%_5D '2J_[-/*EE됨ooe{~g[-9pBJ'O2WfΌ5 lQ'3PSOͩ9v%y^9I̦+1c1cA1L ob9{4@tÂ6aFX*»:Xͼa\3EKnXXL.5SEaQX ] ]qFC9(gPΈUk5#_GBDwK66!6!>Z}}9Pʢ0&i?3< < SWk)?I0ƣw;dFݰmQ] i򏆥 KjK4En!ʣnBiOA+n+8a ,b@ W4 /*:`gr'Q c1c.)al:FtłZ(+Q"zkqM .<9ʤL;MC=QW7,ٔ(t"'[K5E;=Y]4.#0 A>D WϽr^9r"(vE?~G^\kQԠ:TܪnU{=_:MPzeϜ_z{cf̤/Hg=ڒ+1c1cSZvZ6|% kbJJ:W7,b sPb]HڥӢs@+ZVȌʺaYkwQ*!JaAݰqQ8YѨzp:̀F/f53kcn]G 7o3z6VwG@=U-ćA;( 7RMPoh{_<<ώyy+Rz)a$/ mmv L)#e2j1c1cRZZwݶg_+ 4DAyަa%Bo&R Ǥ[֭dڣbMkaCMi,'m -j`~ .%g̚h +~7. v)??y|}tp2'īǫםV*"$B# `xCɎf:hە4FW?+c1c1#eJK|5 hԎv^ggho[U* 4kRX5t kxJ-u2ctڗv"aVwa1E7,ȫlbYO+5? 𔽱c/Vs›X Mb04P]ff,U&1c1cp-Tfڢ6SRJ}?V>$QrYWK;vH7,16p&cMFC! ?+sZk%D oM7~j~L7L5OZųfKs?JW˟t8C`8+"\}䣢}Hɢoi kc1c1 ;"6iw æ%*\2hѠ^P6WUW6N63&6c;OĒ R(:jG>&]PxCV4a@3ZSGJ6崎FFZv<զ0aͦhU0L='c0RWQlˀ wNb{mFu66ZwMhkkkoɉB!B!_y"/ZS-g%+ƪzQ@͍^d/)wb\ Sa*gvVB;r I.$(\pg|uLm13!X}"?{ a!nAvxjz.͆YbJ7iy6u@ K  tJA)zM ET[( h I;h͢YEET.| a=Ȁy= ҡ ti$Bi#7ᘇ8X,V> )U(B!B񿧇r%=gX)^:XWi;X;Ll0fhN۱l/jp,88'qhRVImAjOc ..euCl9j**@>=ǧg+l 6&f{ $dEOj):)3!ңi/K\OiOcԄŴBGi2wQ[B)ul͂X~a2c VXٿf$uɧXEi>^)l4e`JS(B!BGQgqxl#p3˃3K?ڲ!}`<p n/>܅?ט-)6aRMͶ?TJ$V s V{a4F\ԊZhɪ~0JudkCqt36&fPVAm(G: Йl[ *:̦TxDP%h碟4ZCg¢FP#a>J4\+[> ,jDobYHː'B!BoDq9` L)4t9l+N &VIW3a<Z'B\ ˜up*A cHA,NvֶP74X wu:Ai 1 aʶXMf1u$LV5qM/ja5s(H]UW՞kMS:`AFzSГcf5_AVU(}No[}i/5MnG݈i4~&|Gث3FM٫ vbaߤ7KjUB!B!lx%F6D^? x§VWxfkN::>3N%/GgKzS4#Plym^7NX9\Ұ ,q;\Yhmt:, U?ݔV溺/Az85uM\_/JMI8uma?3heR&4 {WYTH 5}L߰s6> g"*_q4}6VG#ױ!Ng !B!Be+g܂[86RރXQ;77\H4 u c~R"Cp G`El<b$-}m_w&p߶ 0M}?c^w;1˘,K:y%wY^IP/|6kOړQco Yv!`i4u-GwYhRj|M}Bh.V#ja/}C,MH)$>-x$܌ !B!B";3,\1{.үb1Fi[u bI,w ]Pw̃Y8>ʲ,?0ւЗ [0B.q&# p)bdj۟Aj( :ᖚv{`5ñ~mYCck8^0\&i4 ,zˠ p/|- 5rCdϖޢԟûl+ltSkK{ACp3!B!B?zPw*'QP@̳c6z\ƞ04܉;v"%L ˡօa.zc| mm[W$'J*Tc嶼kCD:hmڣ>Tu;Y@/hvPTa@3մ.w&/4p|-V k5y#K|6I|Vi FD6@D4+Q7&;Op˱WFaNtl0!B!BXlMq5? {9z\`Fe-}͑`A|M BIq<Sf,0ܞ\JxŵqmG훬i>;΁LTskcC^#کBA(H+iy48tjVxE#3"c}A:g>N=j.6~<] 0^ߓƱQ?̅}IXǩ-!B!Bӱ?!/;pvg!\ ۇ`ԅ]EBXb` ڃZ Anz0$1?;, m~}>䪄=`u.u,W,]⠑iL#˴KzCShW?$F)ֻ.}d@@4MɴIlXQwMxTjE4a=m!S%B!B++-#ǰ~%~^lf,9,҂ tFuKvk,N/:WRYx7ĠSeڻ6҂LN%*VVW6,XQ]c;b;l_[ſ붱>rϸnH3hd-y<܏]'b5C4A1Z%W-?*ZIhPa6ꋥ᦯¸I\Tba79QB!B! އ{z~ڮ + ¦a;4L{^ה6jF6HgS45wGs!6=kY Q5G !B!B2^.t̋W{PU?}UlmR+av8㫯Fh `V@k(.˸z @ ߲d-f3.Ň|x>H 6h'u炧-^{7Kupt8:8NdL{zQ)h ma=zPOi d/SPl:-`h)h8{a/X1D}|%G!B!?Ga]09GF)v,j}BWݧ+7>ÂSX&2vvcI U$z0;MP BVuXZs0b>͘} e]5w:ʪU4ןN;&veY o6G\ku;@ejOݠJqՃA}l. mbh46<&OZJM"B!B_Guy>•p˂p(w S1:\oO}%0*_jAV*f¯Mhx ڲrPN}#F׬\5W-wClT0fybpvvYlHbMbM "ك`UwaYv:[ }&4L7(KSh 䡕l3x_#FZv(+rJB!B!k nx8Tam[Qav`3ՑfP! Vjs*c-hs*v j.l[bK>_P>Q D5d~rhV=.;^E-lhśifc@ 2z]rP6(x*4Mh"iT~~I2MiZ#}B uC`8 !B!B=V7l,էXϰ`d#l2v<5YMY~#4UWa_by$T_BkhRT ,: mOt5ryu.pM]SSvÆa\ؾ-hc /ouEmQWВhhF)l& T_ jZ߁h4Ʊl !B!Bn{XXma^ϧXFa$ayV@ewYj: X TXKU ܄+0Էކ5a3Gwkؤꪽir/AmwΝ vRxM$k;nJҴj[ irQ=9_E̝(h !B!Bu_aM3|NlG"<5ZtWV%EVx#q$ܭ쪅2Z:m|vS݄؎6Ak3BM`%&vMXt;v MOӶm\KWm0? !9Cfl&G)!:&%'%'N\q_h5kLSi&ԡr"B!B!t" z)c#Rq+ Lx3ʰpS+TUȀ wdu=VkEw wueXW2;~dU cu\7mw;X r o8X0e-շ0\WǡA?7!FzS G:_|>a|S Do|ďyKwѾO;g+` «_s M84\,tf[USn||wAj04 YG6M,e^14}Fd= InB!B!xB_u'2VUbROzXϰwpÕj/,2SXE}]ωP6nCf7˴cםm$ ^ :]g7 mnHeaı2TV=߬6i:MQNtzQ}yB!B!5d'zU]02 _ >Ê?$X"& |3,uCwj'f aF[ȼ(ú~\j,v4|l>Y=Ե``~ZeRTH--!Xj)2(ަut]G7Qy!B!BهdǪrJKOWMIOx"8C=aF&ۓSTϰTe>U' 3,uq^a]%f|A7 @:l-dh ܨJ6Aߠ;zymf>ƒr]mR$i;BGLhE"B!B!Ŀ"!3SVF.[q 1j"Lô2=X$%"8K]]UWa5ևp ",%XX=Xʨ] >PzHR' {{- l 6|p>e5n`,V%8^6~7jA!B!Be==G3cI:^w55R#h6ʌ{Yϰ%tT{3c9,u aa=>db?3EH}( m"#xPۧf*J`; Fa#ҮW_kij ]B!B!WyV_Lec1;$We"]L  FVD|Zfi\S?WP(: @?HC`:ASvTut̡f@+.376O3鶺A@p G0ƨ&w JW!B!⿇YxӿBZzlQUހ PA-R۠ u U, Uo 2#7zqߺoÊ+dž1%؁31p$.*&o6g7ʭ``!3*B!B!|7IyO w+ex}\|EfYS`2Oa>U^G$4X-V~e8)W{1kLq=cDkYLNP6 Trґa**e_lYD&[[(̇t,90.(w<\q^V7q/VXW vq&6}~'%ͲfOEB!B!;\jRXAgX4$G|ep^V-̻,z{> p`YYeo /8SJGVs«]::;V==eMd6c2 х cJޅ6u:egNyYB_ yX,ƲTf⮸+sʜ7,a?z|vc6!6MDݥ&ພ;Ib=Ϣ|X n(ϩ!B!Bc _hSP 1| vt8XWc;18 kXfN3'4xq, q>eh'󺇎Jnx{;ǜ56 >yJ3 vFE+*9PhUhUos*U}i =7\9/2+_S^,X&PGux#YXw?@,̆DHHb&zוߣ~w`Qb w $q,d4󛕩!B!B3y]^'julc/1  L)'yTU,,3ڏ1UxGBVZg=o);"^5oW++Xac9r\e5co$>)7*9\=y^w2L7-dw;SVSܶA9L[,M!P< P*P *0Ƌ=bQqrTK쁓5&u_| ab>VBIJ fN#B!BZs&MO򀆅4iO)CvZNs9[,;rY,skfa^l̮,?4c}k+bޜ +)mnnpO{gf x)^ ?`;ޅ=:u6ph@Tg1y @iz]a*40¨nT痕[o˷VD;jws(,d wʝ8cc?u K72$ɂ,bp4!갷Y&)Ac@-Dzi>PVcq CE}_b,/AuF!B!3̗ym%Y+h-o U\ϧiz㕙$^0b,e+u7f!Dveś@8 IA9oz eí)ASb%h d!Y_B8'_/cbVXb Իe1ܮ\we-M+U,3}~TaB!B!|3x)\x\Ex!KD>̊fS_sS]̀ {r]Y aN l( :KtBN}}?N \Ӆ}ϞWҽrigBaq3K-@ S:Pru˻u2A<O`:4Î[:2uN%sR+,ɺ]+֊%VaGxOLQ. /]dVqg,Z[2p!B!Bq(> iA|l7v$Ldo^:=+YckXk!8͟>{B_ 5x5'ItW:W#ʧ5n{֙`XX8_#EP"~0o ֘"ʅPמ\:␽L&ʐx&D1Ѻd27epV ̡xr<&`*br[b,ߋ;t7+3x XjjXz* :[VɁ9Y7 Ѱ`sZ wB}>s-oTj5EB ha tǔ5 v v JMdlp6ݎ^^7솭% ybzXޕw!Q&;J!.. *0ڂa:*Jk=xktܘe`+pHiJ'eWqb^{DXoطV*ʩr*_; ss$+eL_֢h MN)jϠmV99\)e(Dre %7WAqҟL;av"տLHZ"B!BI<ɬ`FkMOV+Z'#=v+1;fC!ߠA,1;ԂZxWc`8~0`NjYx^r^BÝ{cXsxk/l1ZHtM W   w\/ʙ.NKraUJ=G`,owϢZP UK =CbyY.dqF!B!BgX1J6z _Ɨ\Q^Γ8>BGS\(npb}Y_̋ S[XFfS!1lϹZ+-B5ʡ,[tV8+Lwn U VP/-X(ٜ̆[9/w/(Weŷ[N d!!UYϸ7pL _Mb,&.eqp &QB!B! j0_ ˟o&i2rXNPPn ^i|lV*YpcCWW !6v}`vN\IDQAsU^(ϕv6e}dO  6ft.> Bfkp` ~QPf֛UJp׸`3"T4bʲ-PBwλKݥa/Juq}>tSJڋܮ[[r`&@=ShN'zIgdhaha83řbͳ7Ʉv! [i"RzYPyK/V K2*eYY1G*!B!Be^1K|V7de '23aQ( Y5ė7f9ٗu:;B9mXfo7=TKqɆV+LH[V,-lڱzw|xe'd&n+Ί=\Ho~-!B!B_/)>hZZ:2h4b7; KఆKp /;C%eqSXv>Y3|4Aq c1`; 7[ /dk%^w=՞j;nSpW젼 /X)''l,> IB/[oo2\6VV՜\_βbU!B!B_K0,1sf:łZ+ʦM+;kVU44vPG(/j$H3g~uEvf!aE,qCu [!x H[Mdw(}n}ϩ 6{sJ<68n`pK` _34`ukY [C<]M4~avYW+vn-T g^ u uj>,g !b`=07;rLVKrIUdX }䭔X9ֱ!B!BV27X#ϰbo&N/.Oj6: Q0"-z a1[` hV xa<7V}q>Q,~,k}>lt6uSjz_9ܱPP+k5=aOb z._B?ME摦HB!B!6J944m4\jt5A<̟ xȑZ'ş׾`?*ۧa|IgX@9l6`~?3F -ΰ`quawa' VZUhޖv3 Fr{ !YuV.X\0 VZɎlX\_yrx$*Ns8Ce8 g+JnG s]x=n˝mR; L+p%DTX&Z#~/ֻeB!B! sRd7{;uogE{} Uz/ ~~t=?1}X<kK!v#7e`9d1=̄J58[{r]f{ӝ,,^}>q4;9 g2A&);D]kB!B!]|6>gf56A#h8A:%Nv5kAgX/kqΰ}ť;J3,\c f_4VK0wYp5g (0F\Ќfg>Zm#N_o7mǼ7Cɡd' I6M'J۵]u]48@WB!B!_]r<'YD3Zk4{TY4߰p*k\{@@?ê!^gX0F~o6s#|ΰ ݌xhbS?je,e_A?lKl7utavNwNcñ! =f g %T/ 塍2V\B!B!{, oė֜NqSu5g)pf5?7i3,>3F TkJYzTnQu5vm z{"+4gYo-@=Q(a@=( A@=J(Z@=(-k@=( @= ( 7@=!(!@=" (" Xxwն/d{ݿ$i@D(HP z$r$8dɠpAQ!J 9KIDY^w;^ϭ՟ozVIc1c1'ݴoxu!3XҧFmz@4/ Q)7Qԕum$l"cA-XT)0Ӟ_û]ȗ+Ea0V?V߭ 2Bq:M]֢8BJu \aG^UUKղ;aK\;!6 vmEבv.ƳWL F6q)4Va+̇*ܣx@EVKt [ck 3','Ix}O;B,Ÿ'B|W]d1c1_rA3vb8Ցܡ 9A0ę̐3)̐/ߐo@6Fh\E 7ccu)S^L.z>_ٯ&G6{.⽧_7y YK7̄0ѭuˆD&zsy 2wAVEQC 1>%WjuKiFo*BKȃx䓏[q+ToIn8'4ԙyMc*ݡ;Voop <-y^QAA9tTtJs-2c1cZI')=ɰܥ8%NQڏ#qdz0fw:5dY 7."6nAH7# }<i-%ϠbMN?bJػ7Œ %{)R/m{騻\ZO~SSyJ.q4.hdMv;cϸ  w;֨5Xkyz{žMSW;}M%%֗T>XQcdYq ]q֫ɰj(u|ٜscnc3 }a7M,e~ARfY0&Q"+i4 M[p2c1cX5b~56n( S$I#UR;NGSh"l QߩAU'zl"R\RfăP!>82ćTXk) n2ߓ1[-7 8]UUE0REG bA9VnA8}JW(7/ɢ+1c1c߃Jʶ-U4eP%4!LI仪5줝C.i8MP:ZbLrj+oL,r1c1c[GUQ=z+ceg2TUIU20Pait=;մv/BeфObMsPOIq6Ɠ̔\ɳ÷?O 4]{cb^c~5bCuq4LߡYz (}}w) W8'hm?e71jA\d Q$=Gfwu_qLyH5Y.kQ1x=t'\a1c1c I`AxF@4n41dMqSL?3F3RN)K}D'ڙ[fPo%Bv3h\k ŭ|P^w]g {_gm3cKK|pnf9b" 1Utw y8 T?@>xORGkNilُ"S9]C-c1cӋ ;kQBd;ob]ǜ~N?uVgAGv9܆.C >h-nJApwn{(6把!duwZ`s\r+Wa՘t[}MKz]qy\]w.j ey"N~'8["tϹj fcnjI Uc%<Jo⛪]84Im=̩8o` \%>~#gc1c1.ɛ&mx^w*-:c̏f򾼏cq9r]”5k1c1c?N1IAo6ZE&aC}9H?.#.]=;P[7yb|ݰWh!rDЫ aΉb8ݧZ|[E%a_ѯK/~r{ҳPlqNrP.#o&?>>5t+*(/)sR ݅~#WsV)F1 g΁WwkgaFaayZX͊tT+Vw;pF"QV%#G}Wc1c:EMOɰdnYrSFle~R?W#ǜ·2,✘j3 'Yy C. bSQ`),E |L1~Tj0(CdQaWL5[ͦ+ ~ 2kްC!:ݪ. ln6zEUm!gD&DHf O8c1cZr܁]K=MxP.0SƐ/]ݨ!{ȋ"U*baWik:5`h`ffx f,RCZ^0>l#p x;A 7&l2 <"yDF8 _Bn!c_{BAԗR_>zgEn,:K8UOq3nvF&j KIFdZ?,~dw'̭'~w--nS(.ymoU"m5 &3Aӱ)ZS0߽FÌxX-FsU0c1c$UdX[9MN3)61D+dXٸՀI>c9DIR<1]鮴_q3 ZEu7 k}(Ci [) ._ E(}&9V~.k~5K?2l}`3[E?Q=}ӝq^r^ x0\jpG#VRvʮ>tPMX+1c1c))3)S|,M%7p0)VGFґ#ka73Aވ n;INyLo*a=H'T+Pa &Qa_؏[LYx-M=$U*0oXFŲ&3O*tJP;]ēxR5#ݎ4TIY3M#M3c1ckH8)Pv PpNtvnYic2Jv4;ivaZ˭P~Z!zz'|? 7tsqb( %o|gc1c1{Qe(?˟,2^M}}1ey@_ii`a ZA gm]"dX!RLDS{=~o(k:QVDv G/tw;~oQX!aϰnz{p1HXxyM/*j\kVS8NPHJ7Aq"B:$& ]$zA )!WQQKmRR[9w{91gP{fsߴiB!B!B Tw %8 te0%Nu/!:_#JUEAS[[s?E- LQO1=kඟx'۞cϱfaZhRU*Jwb.quTդ L6x5r4tc& Fwtn$6"~r"=p>ćܟk*Up9:HF6tp𛘡ՒL&mz  X\YKuBYB!B!+VC:zlG E+O1_{Zj-(r@omW{oLʄa((L|Dh;m-0xwrw_{cx%u@UBv #9^hK8-dX?V1V)Wu~r( YZt!Z{ )^E# \kLF7t+Vpۅ'|%޴V`‚\P[k͕r_22,zi顾!O`)ZZB!B!ߋ 9fXeB vuvG#(浪!j}ЇNj;ˋ j.eFkDL+OB3~7/ Ãݷܷt}}:`-RpY VY#wx&]+jhUʱhMݪjp&g"@y\h rd+ʡ2pEIi/-}X觭-qy,~p5PP gق-?}Oߣ&jCz}Zoj).^ŋa>xrYG#:7U(B!BQeG iCQe;\ mAW*SOjhzOjZUAISxPխ(4C>Tcl?0f~ .'c1jc*cyKZeM<Qg~\~~ʫꆊSqvWc^JXw@ܦ541_0хr)W_eQ|ݵ&h kp sa|gyS<9Wh1abUBA~H1XuѺG}5\Ed-\'B!BK z謶ux f^g3o;m3Es+zE膗TՀg*A%&̛U&'B_wjоژ4k5kN@p .G[SRg}yyCR|sʶRxXᡲɕ\mVY芮TKsi< k#8ts{CR8?E%Zq11vXV@UQF6?ڣ=m&}>B/YyB!B!3܎1;&x%jOZNs9$mӍv5EM_]BL@Ks=lFZGGa jǺ|t=0џD~kJW_:HVm)St8 iJSi*#5NBGtܱAn?j#7y)/Eɨ S}@G2iCp \گ*3uUܟ+!'hULvt@#ɷ` ;|VpE3)L{%Cd !B!BE=ى%KĹ ӇZ-VEUQg걐W+C1-Nꊆ! ::E%ҐXLhK o櫗ݷUGUʹ֎> ]YʦlLXLk鑖B8Gz)Py'ͮfWȢ~K9a z3h5S{n̍<&\kkgvf<ݣ\ OqUZWpNpGj_- ͵ȃ\ qڄB!B!_u+aa2mxuxK6Cȏ!45`T0ʏՂx_m1JURݦM[ˇ=\+9U| ?s}ݓ5Ϛ?8ZeYMS)0>l<$r9ݔOnQY)%a3o^hܮ38ŪV +{Np5 stCgaOg1ﱃWG֒B!B!?uRx{74EfEf):8j7;Nvk7H%6!6"IZ|Z7CU EZYf3W43xc^IdP?hqj9==7ڝtVǵg=ɞ=UF98N[Np'8oEVu:amUܞhm8{656*= Vkl,ard ~y (H!B!-C;OF)Ԡ^ Uh/8}jZ:)-L8kb(Fٔ4RVq[ 7f1Lʻg`kR7֛jTDQRI<:v+Vq>9N lD~'bÇ׸1Qیܐb7p^pɮ"Wx _B!B!a2ӑ1sQ:Ұj--sʅM7φkU3C3jH q~f(FsetԚlujb ښ`_-\oıˏUc؞ϥt!_ VX/n9{ 50N_u vqwX}q-*mX} $5LjU3Lj۹ѷSJ7QZVB!B!k<{ɰ2]51,W5mjft#4P] wZ*b (B kŴ5~`j0[^7ۛm&t )*Wz?y?9:4g$/:Z nU4^;] oߡ]4zRO"6FRjNɱ液B!B!~ˢ\Kfɰhg2P{äX6x9/S9fc?۟z<,EtXR$zFo1V$ŶS`o&wͿmO٧/n'&j 8W(2T{uDAufYI $m鸅[7B!B!~xv*F_җ>'8%Wikhh tp9 j /"7ENoRwl@O:D+i  ~xM ˦0""_Y/S;O[\Jb븨t:A'y葁zsV qdS~}!B!BQIsOr[ӭI AapbXaEmj 0c`>!4=m2,n!h 6Ch&B %X_њE5ksP x@/40XhÙXH_]!B!{28F̼yN1-^n eڙAds/ɰ~EeW2X58@5o_hiMA X]~ ᎜E Ch:B. (5_if{&vuj?ştQU[)ABLdRF,:jQ8GKB!B!GgY>qIQN+hأ/}vIaܣ_ ̰ #D)˰c%c1үڣ=t,Vt=ԥ43 g+ޕ 7.-V-DݤhK_Wf?J*L'^dXNM&FE12ar.Ih y=FEaʦȦO a b#VY, c:4)Vj)`w0 e /ï(N1(c"_V!B!g):B熳a?6N]?l#2#2vlX pGաX WM@ [~Ͱx_\[-<ʢU#F)avbvc~3u#SPXxgUն'p?kSd Dd- ENJQrEW*YAD(HF@Ɉ%.B}C~}c߀::g=9ה SB!B!-ZX913ϣ}t1S2]5Utvs05v ZHT$^ zvGr:oP3ěƺ  QYEaًB!B!{J; ˻n!5Yl5z7A`L0&΂ _aj/7ÆI%J ^ϯ 2rghUZ3rEstpx8<Ӎtj%-&z[k5V(-T[mMU6h릹i,-gTR䌜 $ؚ,XxV91:G90=Mqz71IFgQ 'y>E-(Ke(Htّ~=xʈF`}tC_,0!dB&CWVBi B!B!O0 rZAʼnЋYFJFQF?2CXi!ȣ% E{iV*[D# τa2թ:5UFm6o/m#A Ί\]=I9kc116H@Cr܁i{1l?t;7g֮2(C/KL';o'B!B]`3R`.lg<ʸbau }ȡ鹘.Gl6.`~58K =9}.tZ!r' kJ~o3t xq.&s2ͭz6n뮺zU6U`}0cQ8ct@nNz :_/ zpG3ZԉێBfc6bHun:7|GndFfk~hO}L)?&:Zx擇Ԃ&@vB!B!Ŀ X>b-hbG{ kq7|έskaD3, 9XJ`4B*R9/`+e  fmacrp(lpuj#yݒ23b9Zmt+Ef/=s eͶܷ(5-Smy56;T*5FFKj<9uC_x$^8 (sXnv%:i$Sc 2Uv8[h0v<9?| ;[4XB!B!Ŀ_Tjg-T5o72('Yp>"(pH| 1;罅1=#FgY)ęs9D.H=jL|Ì*G%Ĕt(Ge#(44FQy܏\ۄB!B!_Nm,tn L˲3Oj\ʹ >qK#bej|mc;Up&mGp9 ksE;A^n/Nww60] |ܘ7,Jri^on9;e,9;Zu2";r>sXanC8D#R|ݼ?LTjg3kY Z~-{ɟ>F) <o[t4wMjݢnn\*RΉ_ -F!rqltӹF-h?N}^mODv7!#|42  ( i]A6TFeC5Q(=4BvB!B!?3o({`C`Gzr.IZpWةzmU3.+40fm@m~߾hW5uDpP8(B%*A[ןp{9\t>u׍ʢ>4ZcԜ;^ۜr|n|oglgs1mkTbql5kmU5T zyQQSu;|[klC[嬠;Uiє(GF^[B!B!</QE?6`b<k&v|.\5+mN GǣA٨ :irlS-7?ʯ3S9U=ݪ^ǣh ns'scnAX1X.me&w4bމQ"`sJuTHT5\5NlgM^tz /+J!B! z!X~ v#t7k 27j[e'Z+|$̍Fae|Ѡhbj܍ϬH7c6a&9&11tDͰ~_wWN{LyO>sXejTjs7Uq#n(Ji~?L5y[ގ EF(ם)sM6`;G /3V:JdJoc50^3%QB!B!lq;{Lfޣ+Bw+@{|!\E^Kù)7fLcE)z0~2 #tJP0(;_pKxxm ƻ [7F=qjfho9gs˹Ń,xt(@tg:C19;-?B!B!9lEi7?O!zZ ׷~A?l|:، اo` ` H?',G+{ qs*ǘ;w?'1 F(u} GGYEݼzjڡ%Z nߨ؏T;os9uGݡR*܁2P60ɞT\f(SD@5&R=q  1PvB!B!>:,G6K;=vOt`c&zKBoct p!q>1qQ(5N fȁr\ ,NqXKFs=,l ( mm}[ksx$TR|Ԩ͏2X-8̎ц׹[gesOg\=gotEi*0!qe!B!Bqr^YAfX~X qޟroy?[㗰(12Bl,vP lnnRQs|T^ D/G/Am}Z_Jx[wrKhq>>[ccql-P p+c#b,?@E!ö 9Ns5u,]"B!B_Kñ؈v>ͰS7-Z-?Y ?ZGCH1san^as>Я\!qE@>,ΆZa]z0 JA%{kl-8~X>qsIE*#vJ;i\]+srg31~CVQ7Q>=FJ÷QhY7ut ^`  4?s8\[-<;lS`287%]Ʒܲ|ڞBcބRYv6;#7B!B!BzIgXm-\l:XWƿeX/̵lTx"L :?*U)4lV~aCZh?r`&U}u]<uT9zS͹,'95f)тZ _s 8g3@w*jzQ9Jb6&B!B!%C+avle^yz>NX4rr3Xw_8υ\4mDm̲}RKѾxtL꜃7v>#=:ja(HJ$黉ffpdT[OSn(\u1=cQkb=ѓ+q%VJ(fg`Q `l0_vv(D.$;B!B! 0qa_X*-^1V\S.8jmcoz9}.LAmw;k]O:qNsxrna0%cw:ESV0іh! h4F׌S~c;@O?wUQc=~*3vzBũ8)g5Ot_vB!B!_Y<\<x}~iܚ^K[EdxҎOL eHh`40|eZEif%mbCh_.lB-:gvҝtjJM1PԽjgΏK5= B!B\6a,oSݱm|kQOKY:KfXv EuKCPڅT,sn {+&WJ ? v6ׅ@UKzΌ 0M<IH銧BB!B!5d];aiolqz\x)qe8+-ta9Rr8kl-wfXAӘ>/?wL, a ?N}k3,rvQWOb/pXT#5D~a~:EOFOzvb2ť3u0\3E&ET eF:cBB!B!Ŀ u3u",/ځN #v86aMG[ @leS, Kc.lE&yȭ O0xUaŧ DnFcm#q7*FkÖa˨ux% fi~?b kO |Ai6~7:mrSB!B!Wee}9lOG TVLF~wpPj_կ:b76u{ -ah6>܆{XȫŸ< 8w1s'ݣW0IURS|(Ѽhf43c [FZ'ֳ(9\$ѿ}}x˜l,UkŚQ%]+Z!B!_b|*rnVIGM&wz6H2[ ˹A,{Ͱ±-d'ZPm.̰~>Kl uVE{ hJT4*N4FkUUpApX:c<6іxFȎW) !B!B07¹\,P,7I3{UIXJ>sݹn3,cy8j4F1ZF15m/ 窸Ͱ0WXQ3c(Bm,T㙪ʉj!<7iLҘpt>BtggxѨzb? !B!B9>cnŽ w.72+n.5VEFu0 l?[d#^5ŏj9:jpa-_̰dERSP:ΰ-FMLs&|]ՀIY:9z9:7]1f6MVdB!B!{3/ZaNyͮ6n#KQs5{^GeK`V(ѝ{fX|{+ƛ?3,9p[y;I](]m-қj}}t*vi"9*Nܔ[xAn1 @9 WY =s Ah:1Ej⭂x|} wxBS49k$_O{XcEFZkVeK{3WBmO$̐Zbu22ɦ=_6a&Ţ!1W1w7a<{gFT<,KE*J9gdx=3bA+;3wl(>Ȋɭ -m*OQL;_37bg?g뺷TpaN֞g*]3춋ƌZ;:ְ=Z>P[Խ_@{EB+]&0b,xKr+9EG]V~HR_g5.A/v/S)Kp WQEQ Ջ}:-^6l,Ɓ1D\YH,_%>T0oHtщm+tI֕_Ė滬+GL|x2χďYNMNEQEg̸buM<85^#%9S<{VԘE,ƓR)_iE2;Imq5Үw'Oϲk/km{Ƣ((Fi@P\.>"j8QVkU~4RHGKg7*] {~RY*WyZNi|@((SIe'dA==˙-Ҳ0!M |j> Y)#!+OPb,S|V$|Yp@ 'oRKIOVEQwat95@?pp4p rŶg86^Jt"&B š%, $4 -_%;.jJf »t7|((~lIݝ.@<뺺='KZSG<"I:XXW{$xX1f6v=l,M]O#ÞTikxSTe30 KvEQE3pѩ)OR8kxtCN#!Ä;>'&c%ӭv+b rwzEjYBDkiQUQEQ?^1꽵~QNF<.YgP'\njeTOk{()fXvv%P-^o1@|,qyIם*(2 T,;F8\_E1_|ǯ0o@shL%NaJxvGSˮɲ|Z{((~J~WtߧI¸͖BT21-gjGf>O">YA0SܚbmmYZEQE7 + ž{,>c:"1-kĒ<s$X tta*jc/%Įd-ykCu-L)_EQE#yaUՎ´_؛^1}#ˑ[K/ʐ,w=Rӓ] TS4ǮiW Sj-ɽKV;EQEQ\&ǁ`{/D<'=GCGH'aG p@}w!2+e+^l?®EQE1W>W~] Y ܭ(AI' ѥ>B+sKG)GRa)!"XҠS<,,O&<C/úC(`xq=)(r]ljp}[W^4h QА$r|O }(A1~CY+-ħ5hsLl{<}V寊( ɯvߟB.<F|J#PHc; G}X`b*%,$EKG${zW~QEQ`\q~jtqH°K< W^ElM?X:XX[<, dԩ1-zU`i݋((~ I6:/|_x~ [ -cGĸwԃuo#XKv.dQ wx yv9((~;u/sU1p׏]r#xkk]Cԯ˷g{"gѽg6|f >Cy:n%Jq#԰X~\ePZb XjM&@QЌRcuf=siTVT϶u\C [֣%4 L]*LgWthR[ᆺmUЭN֡]fR9缚:7kU,0V>)4ԙ4KCe VjVyҨ?*[W`yi6Y(em]c$kmY:\LCk:XrwfѥwW *֧R:}\ВCM9& iMR M'vxWgһt*zg'D~$(Ɍw2 K;%;;*]yUU'Xyt_էL+!k6e]ɑ>P3}v%|,BA^*kjN*ҫ,HpTzltuJZNad[Ţ |;GToG5-/+_ժUƺwӪ #VkEeU#_Tz}e] wr{zZ6 |;G=43dGRu$ƏZBbEg2Y%G%ъ^ѕ0]0f>ZU"+dw{Ϯg:s,}zR aҬ:3+Ljt'WŠUuUՉFi6 򚐕_գ^P+6K|#1tNՅ*л0\X] RM,Sjm|ytnV5m ;i=_zgJcVUITyY_] #zOwGA]5pfuᕊ*(zRi)#?,Ôʂ®(VYWVY#(;+r᫮Ь]Z] ۅ~RtVs/\GهP- XM_Y MP“U]P"*ڵ*+k)Y)YxWj+P*osut<kDmUUD}B.ե8ޛpg),!xQv P4m`W]zg2Wc!SJ< "6be `wŊnwŒ1p,u%cJzbW)ֺ~ְ WPo(WKabvͯF]杖$ ]bzk%Q~)m]2VP(KUX)1V\|tTھ{X(6#?gB8Ұ[x3}+͹xׯP+amCYEXiXYц_ŒV,)bžkǒ3IŒSC_m(c%ްڱn ~0(,RX2WZÒeU.c/ނX"x{pUq" r 999Mt.0@$\D)@-e``2ą #(* 1B ,F D=[553;:St߷޼ -k0o:S b ƱX]8ZL6#2ڡ1? rdy4PΖ(2*ҵ={UXz[qR [|uoDnܬ_E;?jJ?TRFz]:.qv88JXYQ>|AvS#)-]9iG45{nil|{Q։+aɖTxHnlqRET-R=v]ԄqUHH]!626wawv*P$ 4J4 Z\=!AEfQoՉ5wmޔS(u7Ҋ55Ux/հ&::Kg~qZ^P}U9ln󗺏e\/'D;O?&$y9 'srWįȚI^''q*q*]Y_`0K\_ǼQ$EҴ)Dj/K [.zRzI-oV>~“D(Y/԰t$.pe$AI$#v̭N|UU=-{Z8y7:}}9dr)%M@ý@1N jU9IHc\RkTu{#d!J5BS+m2q-˕kX/*FZ[VnSnʹ)1#1#g[[W/9797/;/;u'QȾ}1spWWsb b 1ĜYV[,Su=ŨZ5޻`Y Yœrh"%]. o-vݏ\[[\\VK&%srsfL/܉W8xџOESߓSe Kl.w K͐-'"m!-o'zD5԰_@ 5-[4u +87)oRnƣf~HD:#G~-5S A }gHT s +gmPj \[8D78z{ p&+Mr KLGR>%۶,mLݽUPtװ2SM5j565"#+#+IvSqװ ˙I>+ˍ"LVяq1G8b.r 1AdrC15հz*ZɁTIOȄl4K(sbB _KA=3@ \Ȋx\MhrJk%ޥkt<.[VmNjU\Tr;m%Kпqknmq K qiJ&91|ԉx'd,b6kx%"kTDMS=$6I#vԌ7>[z^7|zYTiX[(StfwB܄Oj)qhXO8<| u+k\b.9Byxq 2o)Ear>z9THdZMN`yIzZ@Vw)cys-b:Dq.hy_56H܎ s֚"ߠ {ٙNװ9yI\A gY:Nj3Wp[;yO?lW( 5]Ŝl3k7S1˥Z%L7װt{AGQoqxZUmN2V1r&W@u wha63"B:GlG)6oW`MwTzQM#dabR=x7'zI`L2=3DD]`Zt=|!wq9깴Qg;N O7,,ߕnb2e SaWr 9LEr?vΥ Nzmh'13 Ϸh[92Go&mv 0MՁ.w=V55~l?ԶT9᫣5N VuK9oϧVb>{*c3X¯_ÅOp9eO@=#k(#{ @=$"($" d@=%. (%. @=&9(&9 B@='F*('F: @=(Q((Q @=)]()]@=*`W(*`gX#xkt՝qN3XB9s= ב-b LP*VIq( N 0g5k͚5ө%ys^zE5|5QB}`xr̒mNt/=R߆8R)b{7ˑ|GjKsMKG:TwލJ^T^bldD|PvzDj% eyB 2QLQ;.8)@]-RFkŮTjn ]eV?+l͚D_][9'k\ūDw] Cnk GWM'ǻ^%]**\ÒRqz {&T,4VRL~k>?R=ي;|ٓZoW{X'&'///׉e^r}79#>.^a|AJ"ȻТ"}LoXBWFWR U䉓UYXV0zpP?2OŞ.iڤMN>*XR!N>Zk00>))^>pdKdKBGN =(z6~Go|aStַ)+/pMXfW&|+:4:&ipcpLfװruΈ缓b+Hb Ppcypr OVmaL?P_C9)c+|Ν[5/22~ȉMM{c)ӫWgdo3Ѱn+[\3 'ȐHM)$V{U4h͕\;\ؒ{ƒ]*輢8Mrz>ϾɊ;hiGGhj4c^4IKܙ;JʑE+M-?^kXb⽉ʢiw,VlN/f4g4ǯw]~5,94hg_DSewr'1ICy S[|vW!r~#fW/f? s-5^Ůae4gnw([mg>"|y%W}Ll7ddlͣx-]òc8EaH4b&Rm#v2\e)HVa]15q2wevlG|((?|.Oi #=܃{SLLj;/"r5uаʕ^W ZrQW8cEbusx|ev=Qc>/>ix.1Zrs0</WB]`yy>UKǽwnfu<7t_6(&Kb$]qYc|ϲACG${4G,wcaas M^KgIjT$n4x !ߧiNr\mΉ>V#'sf2G|C]ҭ8)w2  5ط0V,SmNk[^Kv].~hI):yY*QUvVz#򘨓pN1NXrz#Wi_&S}v-j}@AVɲIu > DBkS/y5,05+D`6/=SP'tby,P?7^M mRIy,4viMA)=̟\ agR<[n{?j;;qƜN os3pe4'bkX?As{_|5,smm[s{x9iNy||ݸ&S;󜨒ޢRl`5AT }{ȥtr8dqTOK~μر:¬w3UaIr}DoKB' B+mKlz:*W嚢xl7Q7l_@jP Vz=Jd#icǨbRh: Q_mG7!0WᴒZSj\#ט*SE܅$}"4ҵ>,ߔKR*vfp'QjHpGM7|e2}X~oӷq2ӝ=WJk}X VéR?3pHs[D^W:ꋕo>7M.#)NxZu':`lBs tb6QH/27|TOxX$xyՙqZYET: y~Ͻy6%*c4 =(`#FD $Z,Y #FV"P"2R?fj*Dcɯ>uVU߷wFDDDDDDDD{Sk  Cx:{]pƳ?7.K00ukyS9N:;Cm] + ]kc dpg8M"^SSx6y}T؛+VA/X^\:8ܹ"l6YRf@c*0e,2Le FU߰*9fJ|,;Uh dI٣?Or[DDDDDDDDa׍XO'V&VFyθfR=dI$5 5 ll77=1M6@)Lyae]B<]7[}Bs4|!Mݣ)h+2y][M=]2~tY7b[''K9q^\dPjP8\(yܰF;de&ʘ/TpCDDDDDDDD^10ًa'dWTv;'v&vFw*\Ή{V*NGkaվY94b߰"HZ#2QM>˴w12/= 7CDDDDDDDD-VC`.6c^5߰|C}Ų=܆ {9*ʵ;udj2BFaRCK?骹S_>3d*iՆ~ y؇ |-Z:7,1#PNl N{x؞ޣ .h9'Vom!|Ge&"C:B3Ƽ 3ڬ616@b߰s&~޺yq]봿cZT):Ag yIƨ\͕sQÚ27hS!+.~Ctkq*3z,'WkYR$5Ka?>%Ds}l[pDDDDDDDDКZntsql'82[9?v'H+(jXe>:2(JFKCMوfrrDDDDDDDD2L4GN ܥ{)/A8u=/P,U:JeHf԰*FkJH!ә:Xz_h_:J_p51Y*d䣫ԝHyºO pJ4&өNm9x'լźlQz]\Q+=ᾨaRgIxZWTgVࢧX:e?`iGi(}pϜNELKPQ??^'bdQkef8^'IDDDDDDDD_t@-Qql5[14(h=)lКEW+vnk0 V;͝Hn3AV7˫iyB됱 ZjWz;v(' ړ'Ϥ4^%cnK+$)I`N!hY֓Վ}2xFI8(%WZ}_ߗ **mMqZDDDDDDDD1O:'MXz;kmJW{2 GlM'/zTd7Cg[Va_:K9""""""""& J#qkr"DDDDDDDDcG} =X%xktUuzqAT,<'}."AL(cTT j! "J8\DN@PS 6☔aTnРG Hhծ5K~zŞj|m( =1vw4-29ȳ^'t/  YNc~[4ڡsz\ɌlRژet ƛӴ&mP[xEυ"ȲȲ[oވ<Tmi/pIhhlzDJ}&N:!PYUWJTZ1;\{cJ1ԋga_tI7 z-f <j7mUZųyM1i5{c1#7[Zͩ4-Nl}2kYx78. GmTu\'MDΟuf\j۰Oep}/nv<\4wɉr}7DEEZ=['&FۉݶTeʥQ!|y2b3NVZBm k7y;5uܚ\,\˟ +@34#| (33ӏ8hm[DHMw2&5g6?k&&s" [e׹QGrS.K!,֌!WV?Q4zҬ+ +w5}N9NҰv+p1ޣ Mp2g__}D79vv;\Wٷgߞ5. 'NqVy"G#G1ȗSoC<˃kx``P`-G85,;޾˩Ic?O6f*[(,G$k\ k|^ǽbװ|eNsxEF뛒5%=$&ץގ=DcXH䈭 䛽RKzFװRO/+X|hDvK(vO%]òTM&gú8 on玗OŅ<{LZYގ-ae̺72ߣUѪxQDﴯeT- =wiɆtlM:7&WEMO:n*q/tYQo$&VD'r!rUNL\'RHWLs5W*Z%]ty5,jZ@tte>Liy7ή96~u&>88]hGœlG]+AGs~u-+};e;'h|#eٓlX}-빔MD5z mh.g(k,^/5ЈZI:T'h'_*v5zε:mmdzߧs+9bGir-ٰнJKa_i [!y;簾#[DH G>Oq3f6ۙh%:5[mY6:' e&y#=4aVfH~ϷZWmaiO%%q0]j)y<1d"9"G5t;ߡ})~J[w'iy\-5wUXzLˤZ^̤=t"-]n4G^'%B)NOe0Lװ9ߤSrscq*tW|ǹLw"W|)YIq{[duߙx9"׹e7pATa=C܅E:9^W)pK^tNTNi}D ci>x ǨIV'4s ߟwx-ER]|Sam^_GZE_732-I;_G\zNtjtgװ#/86//kXHѐl/;odQO.i/Ox-d{kU|ʍHO9ר kX<5,/wӵ`n:о|suQ}~:KlX}m-v?$lXZ1} ΐzO$y.KgGri+wWZ! bQ2.ݭtd}22iV orC! }jlA-)]B{ZZKKDR%ޡwdu8F_fZ]з]m ˕~a`["A9#eiKʴe'?ݵTK|R&Yh}Zl"m9iNK RiڮTpɷv ݄૒2:edkiq{nOsd Մ-K[F2`5ддp= ۰y]5,dA"4(6jcЀ!eBӌ @dud34 ! E=5USSSSL4O=oݷ;/4s(OTj@.עsHa0JQ\\tËy1?sdibq|v ]"{1r?8]/Itrd@H#VWDOf";#;U'y&~tktk0/-ќX[s%wzae6t}}fF r"5+?ˉ>}oD=Ln{Kd:#Gl:I%lg}E/5,C]YۉvqaIS9;C*$j8OCX,&x~##Fo䛲2vX;I);G:ъhErbbfSK3֌^=䈏D/r\03_C%X1ߠ%]D{NH橐 y"ȎBP/h5Z ?:1d>+|ak-|-:VhkDe2$mm癍FP\4Rjn3d;6;ofy_enxDd#JD5,ʹO?ƈ!vTWU z>r!rAmn,ZjiT/Y,Ą:>ibjwR@*vث_ymaHypW`l{_̐ Udda.-g*^W5,Q#jQs=b=kX~41GߦoS=LQnZ(vRR}}C'q&q&ku:d"VYfK'CVd<*M'_$~YRRLFF&z:~Gm^볶fņ7/ \ ˡ4I\Wb6}W{X{S%;JOh@4RnlZ~+5̵`S)]ckX/IN8aNkm㫝o`M&>:>:Xooz zifGӨG s̞gf̤φŏmc dN]â8̓!xp +1::ЉIp;;NW66S[۰4}>d¯ů4N G q+"y,eC+ ؉Z͝kaqhU`Gl'xQwCnef̝l+oJMwװD/'VU?. ]qOd_:+mXǺbm`#}>gڡ2E8 5,:&i/MЅ-1!hxmi7ث͛Mʄ}TA)Pl0D/װ,j7ԕc;OH %Y| 5Op rGdqo.װP#Fxgf3%sy'7fCAa),yx5,*rsM<0%y_`8( 3U;WT>"Z%fE[IT&i;^K=khflijbq]â|>@4#?)TGy=fPkXvIy{V5u@/vl1[\ò"uUxXfe\2}4^S5.<^*K?AQ#rLʤƢev+L[-*[@imzEc^W7 gȏGh8!^6&?tvhX?#;]҃"9= mx5|UMQSq7;ҎUҳbâ?u d%$›`osК=ZAyÂoҏSf>H=-w K_MH.PL1.>`?7’X|*Mr\o_B">W/Kl;[8/ ]2 ؗ EWWx5,A 0_rXa ֳJQ#cM9Wxm#}γ2=GQ}4dm6%~V\uTC_ h,ߛfpt_[f&Gj_wzǼcF#Q{T6UچK2[V>dϱ+%Ʈa٦T{quͱ Lһ]A[jKeӴ1mՖ[n8o[YkODzb, _vXGo;1y tT}Ral [cVڙ G´{)~GbI*Q"Zh=߱hI'qj^otԋME耗"ƟS)m:cb9=g|wi$/::wh7b?&ud4^RWW"oxGN+W|SBC*X*J {{WR Z樹j/c5]|W!oM&Re7b-k ՈݪSgbIf~"/^JF$|3)9A5o#"wJmS:&pdR D_g=Kϋ7_кX'xOuo{{?{-c(fZ")VeM SlRNc#&3Hd!Be6?Zd !$EeGdG{={~=gHM<3wI}o ĆBù;T;錴Oۧjú._vo#181=G oI%|~wc*E_KՂAnySki/gTo{,TA̓洇˺ #!@:e~ R4yyAݠ>γγQò#k$*٠'t8=9n*j8AnA>FqO՞ߏVOڪ~WP&MWk:Uk> Mj Urz|ק(8H^j(e#oIK|ZjoubAb: Y6$C^vpfp_k6pܫܫ(}}*UgqUM\_GR%5 gOJU.oŴ~zN=]@}T\l2ɗ)]soyϪV!m)-:+Rjz?T'8-AQ8-}#.pft7Zdd{55$gG' ie$$^<'e=zxYsU~fL6?J_rO j?iXٗPi>:4,*\\ҿ5"?;8zjP3#$tcxB;rllpv #53539 oACzX:jj}Ɵ4ϱXZr*7RӰ: x1 r'u@MQ|ï%q-3U԰u$o4У };N\\ E yOZ(K_gQ$ym/ՎӸ peqiŏq'e|+O'-6Mk+4D99aj#"sC%;61WAP`g3̣,In(፠*"m3 K]W¥oXX~DF5 KUB`XoKonH[ӰB$/2J6M6 ݑɹo :h5U*nI7 ܈J4*jX)ży瘂Esj=\4ehȅ\,̗Ȓar# a*VPjėq]֥!2Q&ꕔA=@GYaYRzVjfShSԒ۴4,fnFpgV:?O/y, m694,GpͦdJs.N~ԯgYtK :GH:WUӰ8|e{oF_ZTRԕ-v.گݼ+M u7^^gq2X6z=i.Eci s^|Ӱd$mt9_/a5i}2 I*=t_ѝ#~Oʅ'hE'i#yp4:3Xuh{Ml-Myaz4ƔFrP'TZ~mU5,ߐ#m&%$C2hZO3 K^qZhN6n{}15GaJϡh_?ǵjGy1ҵx7mu[(KSY.e?џHez itZoPԡR]<Sgzz %2F HD2oL;MÒ'(fP;Pr]J-<~&9:zN ~KN 1x^- aB2,~Ay6SopӰF.ו_u ZnIE4;dUYY_jyeF7܀ɐ,%wȋWU LMmts)!lZSgb]j:=_ϧ8_ò/4eC*l-Tް~5b)~6=P+|LRE];towowt&x[P3ɒ,\2=:I yl%cQ:pg[JRQ}}_bZaS1w78{"CZu]ڠU:M’StJ-TBu'QdHT'ܓvNsH̰F ??hF!|b@5n7/S7DD=ʗT/X5zgD(Y3B~MC_[!>>J N {c]nZV%X)~~5Wpu"Dm Mjhh;g YQG|b}b}媻n2 Um87;1'= X ->\WS ^_ M$ -Ge`%{v~h*ND n jaaiY;E-g%X{v~{_r6X(xyp$y{{ޫ -A(HDpABH,bP&mQBCp5"ܪHRPT6!"PJ}M;t:\F~$s3y)BGx 6뢉hBI+J^gCCIJRMStw[D\%ylCor .Vrޣg^̋FRu_%o\ߢTZLd m!LULǴaGǚR$Ein c74,UIW|/{eot杖lXc/Ez7=%d)2TuJ5NF8LLu r>nN4,/7s}aJ]V/FԜRj5Xvcո#/Lcu,K-RW۶9~o<[ǫ /%jV%z?BiW/ =?L?ӏΤ3u:?Lof5 KMP81*Қt}7Lv#K62NUQ j&Ů"*RKR rpA:-O}Ƒ2_xvkĉz#y)^d%UuWG]""ΓL=:K}KGԑ=iY\:[/m]âE:>N\'*񎱫+uq9)3e*ZACmPt,?KxSCe * ƶ mP`ΖJ ;(m;* qui+YtE-hMGa=ucSۚhc\ KImmIvRЯIǽ*212Ѱcmq{%T'Ѐ`#2**^quc(WVr*'\lX8ngǵNVafOrkXvعvndddd4fcX0!Oz0tiRnbXAlXQTʹMf:&Vmt=I/뫃j/PoGuK}Ы2]N't,2dUVvv 2>R-~NG63#"װUMZPiSӿ5,N5|F?TӰ4B my+ON27ikXR;pH#Rt ĞK*u݂I BVTOUm|Ts Fh>KyzI{]Rh*[ZEWrg2wrf*lsL-Gs ˪عCbrh&1waŦz! B%j"U=2eʾʱd:Ez֔VS.yT?ٰ\?J^s?kt!υ'׺EzFKy~IcӊXH> J!;92)LװJL}ԛjY鲃|Ch mSy9\J>;|g`skX*gd9NrQY1&{Jr$Vew}]*/f\VɆu!=h*C]R)_w-F]z3@>iEU.';4X}j=sYt7^ r!g ^ʴj U͜cˁ-mQ9~a*}jYg֩KN>u:6LX랋4t0Zp, ɽ֞/@Жސ}v+XCshFgDg97IiGM)At*TwDx9g5H!Qg{!KװdZȍ9?MlӃ4jڢ2YPSj4t/;"]$ذ!y0 ǦwBY62|eaپ iLQ#;U\ i&]{qcnVhcGQ4;sg'oYRߞ)ekǚYfZP |Fi5 Ke);#+%!װ8+%68'ǑvB؟@hmP-d#]A$VAh졡2ܓڹR}N+2P_nA^\#טll5[R!Bg0tIH[`Q6P-\m6Q9-Ʈi:M7ynJC %URYEh, ,(UWD8ܖ?:/h'8JWD"l߮[0t ]L#i gGnNGm\:HKi"':-EkL;w!/ k%% Buu"E68g|. Х҉\~5wnP%v~1+M<3o)x9n0@Qe*>CN#޹BIxbQx Y~̜30 ͐L3x/z%}VƎ+ꌪW}֞z_Ӛ6M[7\-7tT$+`Ӛ>+rXKyT3WphqJ~*]ox$m3+_ӚϛJV?l4w =xcEg_6NZ9mf6)npN{jzpo7 z`RdZ_}y 6s+Z0 8YUmW5M:tKѹV fg9w-VF˙ZXݿ+ʵX8R-nmvXXkrFuX_,*xˎ ᅁJ Rs#gfWWJpu}2JëUZ׵*yHRrmEg:V #܆Jzu{9c\>/|)4y"m'VJRDJ}#T-9ն"Y(RS_jhU^zZw C9gn+GUW*XYrD$WgY &嗥~+z%\j+gI~ayE)jm]]]ֿĽU=~,iuiq>t${{~ay K5c~#(oy`$rតwLg>vp嬧_v0n=gXD^Zwj<ގw[}(y<—l9u4m5F?>u-cLiy3EL=' O-jzDͣgl 7h5~6bMωBo\=\1h^ GUm{Bw;( EKq$sD94sV~;rgڕf+?im\Xv5SJl%\=6l>Q9v!EVJކ?/kV}deG׸fg~;VJqCT?U|Q?rLW1^8޵ -SUCm_VYmeψmP,1boJY&f9spN~yIT-2SI*,{E-fu /ȭVF3 W|"_}+u6#,>BMryQ?\G/t%wZj ۯ8E~VWo#,jW<Y9z u]v/{1 oR._s~#xe{)@=+f(+f%@=,i(,i+@=-j(-j@=.k(.ll@=/nt(/n@=0r(0r@=1t(1t@=2w(2w\,+xr P7;Ѐ<3x7JFɂi>>FiX\z|oΦx+QQkɏ\kc}αN.&[sGh +i:s[vu1xkp>YfxG=ھ!Ȥ:FB5j*f3N^[XWؓXq[6O5>*+iU5+F숕]uc\/Pko񙁙Ja]`~a]U}읲6K+Y_5ʱF6UGRUgNK UFwU",[hP= WO\{2;_䪌#V9W/j˧@ݱW:BSB̬XuXjVgmVGZ&+úuVq_]y0w*GUo*ʋ+)2:{_] G^5f,Xlgw2S__Wg8掅:ƾWe)ѽs K};O _s_̱F?wsSg﫫 + K;a/2'LBv_R2ʵ&wȯ~]߁0E,xR1(dNY=uCH*n碫Zڪ4ם#zXMjڛ5d=bf԰,̊]MŴd˭Jnd64U-+zM~MCd/%=tV: ӯ<\4TY2*?rz..`[mnbi$SP$jN‘{Rkre124"7rs#(tuUmʤ^eRw#ەǠdlrޯUgU[ևd-3<]>BLWUN;T2y_XZ i++eoUpBFG%,-x=@ј=?D]"S}YtQ4LOMlcNv=GsIuslqeqg0pTYM=kUK_Z 3WYI_κ43 PW+ef+õҲA)%UW1,7}ayl `Ͷʲ/2w}-β#fu=+ƺ_d~c`嫡;} +k,.xݿKa|{ʱMhr &NHZ5"hEqPz=qgz<*%dͽopը 'VJa+lxlݰQ,Ks1&A<(l@e֕'TV6'UekB1zV<(.~s/l(;,+>LNJiS$C<,p5Vyܯ~e +pljZ+VX*?囿߫T`UxYV~̍J%uɰ mOMy{~Љ7xTlUSq=We5cACҫ~eM8yzbUnJŰ5o IVsNj- a:Lʚ 3VTY⵪듬pDVk,{0fnI7 c;cTD]K|F̤M˷Y;,FnWݑuRkjÝEbr_Ye7Y/Z"]X,/x_huEV,qIdyF;KP(rczF<9LO$-yWIγ.$BA}Q+.\W}guey՛Ϗ@h_"^gn;nf-v5ݵh}Ns2&SЌf[ãҐݕښ3!wǕW`GK\}%q?^YՖ\X&Wސ++֟vi'>>u#k U\:bo)}nǬt>iuwAh{M$'=^Yʩβ2̬,I3, }q!.ؐW֎.Vw؆miwWJI˞Nɹ,reo PZOWV{:5VZvmZٔo.&":e-ۡ2>\В~bMa{^YJ++#MQf.sGO GLqm\땕tY-I.a ze-efA? h:e=cc^YU]xnvoVP(./Fמ45.+[YG wRojp:!L>aKRYw: c;~ %-6hv\}lYuNwrnFRYZQuҺ*QֺAg«lpj 5hv+k}iuQ;=`k5붥v_yess8+yGeB3j7ͳY;O£/96 wjiZ8viƵYS}SʛVBQ~^{%nZN[k.4޴7}'wָ_}Q6.0pVGZhY해~_(5mTi[o9(Y +^ rgji4֝yr]`f=Keퟨ~y_Ӿh_^>]U M8V qcTqjWwn-DSM\N[lU$+lx;j*>=~R|pT֠ Y}ڎ8.-UZկrc]N5WoO5Ua6m; Reu5uy[8z*+t5Iu5ȕsS巅q;N⸽zj9"+,:5{3>n47va8C|"kѥE~F6+0ۮgYn'7ϛ繵\Z׏s*|ZO^W=ޏAڤT?pP(,1xnUpBPL֚zS*'Rϰla:J[⅙B $E90'3_3 s"~(->)⣩kqP>*ƃ_nvl3p44W kU֍L+s=X]ew(bX;+5/0p^坼iYE۴]+o74V-kd>(wY<;tNZ)4ݳZxU+*kodJc]uUxV=kiu٦ՖV~9ɖVkL:MqO'?aOf|(-ŭ86aU;l8-N5k%'YqŷΪ[֗y}/u?\4oLݲ⧴V*kָNYMcv.Yi=okiT֨zUVM|ߙTVލ8E]inYy3o/wƺ^L7wVXVZ-UfġK4}uVsy4n|/{͛lxjfo⤙-yuwʺ:=^d5W.:5n`ֽ,2xkuqV''w]s`9#FȢ J5t0JՁp "ۜilFmά\QHϧveyɃ?zy4L1uvlȾ]Yz{.Y^CpՕ]st>ԔB_ϋN ϱ3hd嬔a( v_*75Vg5kƺI7]uAJ B`_|.K5 &C_dUMmj 4OkNˣΏƚ*l5ڌ0eD߇}8?)*d$7WVzPn stC4[iBdUI#ʚd?%QYGI ۺڼYuKruf,m?Vߢ z_Wm˶WeZZ^ݥYsYWR]ĎTZ7+ho^ڠuޥNu/KB@κNW ɚ4Tl ;mzUW*S?ꋣ@~r~ҠoQFeիQY?zRj,N}[f߲zCk;Jө?S,]*ZRG"ة|oS0`xw+ڳRvFV}/;1;uRFiٴt-z,*V.UTVS65K5GGVYGSVfWx&@=3{(3{g@=4|f(4|v@=5}y(5}@=6~(6~m@=7 (7@=8(8@=9(9@=:^(:n3x1 0 'aUe! N4`_%~tPW@_!~W@_!~W@_%~W{X4xAn0@Qeo PHY82Y۝lyQZjW D%TXZ21`ZcwjWU Yfz߳ XBVRwj? ^ r+PXǟn2qaD*^X+uXy[f,g*%V\.h <^|_ ۶?v"Xږ2 `yg ΃+ 5xAn0@Qeo PHY82Y۝lyQZjW D%TXZ21`ZcwjWU Yfz߳ XBVRwj? ^ r+PXǟn2qaD*^X+uXy[f,g*%V\.h <^|_ ۶?v"Xږ2 `yg ΃+ ,6xб 0 lkWG8nnp%=cهX7x 0WMm`){YC7FpHBX8x1 0 aqdl@A5pzX9x  sl  HNX[ ɯX:x 0y-b[YC7F%p z@=;(;@=<(<@==x(=@=>>(>NR@=?(?h@=@(@(f@=A(Aa@=B(BX;x1 035ब w ɍX<x1  _SxXЍр-- X=xA0?EHd5ۭ&Nʶ|>x1 JA4̿a xr@jk}Ng,?x1 /"pg0,@x1  v%hIUy,Ax  o7x2wXBx1  _F6@=C(C@=DA(DQ@=E(E@=F(F@=G{(G@=H9(HI@=I(IF@=JM(J]aXCx1  _F6XDx1  _F6XEx1  _F6XFx1  _F6XGx1  _F6XHx1  _F6Ix Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,Jx  o7x2w@=K(Ka@=L(L<@=MA(MQa@=N(Nb@=O$(O4b@=P(Pa@=Q(Qb@=Ry(Rb,Kx  o7x2wLx  or,Mx  o7x2w,Nx  zvM82f,Ox  zvM82f,Px  Om7x2,,Qx  zvM82f,Rx  zvM82f@=S(S<@=T(T <@=UI(UY<@=V(Va@=W(W@=X(X@=Y(Y@=Z@(ZPSx  orTx  orUx  or,Vx  o7x2wXWx1  _F6XXx1  _F6XYx1  _F6XZx1  _F6e@=[([@=\(\@=]@(]P@=^(^F@=_T(_da@=`(`a@=a6(aFa@=b(bX[x1  _F6X\x1  _F6X]x1  _F6^x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,_x  o7x2w,`x  o7x2w,ax  o7x2wXbx1  _F6f@=c+(c;@=d(d@=e(e@=fe(fu@=g#(g3@=h(h@=i(iF@=j(jaXcx1  _F6Xdx1  _F6Xex1  _F6Xfx1  _F6Xgx1  _F6Xhx1  _F6ix Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,jx  o7x2w@=k,(k<a@=l(l<@=m(ma@=nZ(njb@=o(ob@=p>(pNa@=q(qb@=r!(r1b,kx  o7x2wlx  or,mx  o7x2w,nx  zvM82f,ox  zvM82f,px  Om7x2,,qx  zvM82f,rx  zvM82f@=sY(si<@=t(t<@=u(u<@=v=(vMa@=w(w@=xl(x|@=y*(y:@=z(zsx  ortx  orux  or,vx  o7x2wXwx1  _F6Xxx1  _F6Xyx1  _F6Xzx1  _F6 @={l({|@=|*(|:@=}(}@=~(~F@=( a@=m(}a@=(a@=O(_X{x1  _F6X|x1  _F6X}x1  _F6~x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w,x  o7x2w,x  o7x2wXx1  _F6@=(@=(@=O(_@= (@=(@=(@=G(WF@=(aXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w;@=(a@=E(U<@=(a@=(b@=t(b@=(a@=W(gb@=(b,x  o7x2wx  or,x  o7x2w,x  zvM82f,x  zvM82f,x  Om7x2,,x  zvM82f,x  zvM82fN@=(<@=M(]<@=™(©<@=(a@=V(f@=($@=(@=Ő(Šx  orx  orx  or,x  o7x2wXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6̵@=($@=(@=Ȑ(Ƞ@=N(^F@=ʤ(ʴa@=(%a@=ˆ(˖a@=(Xx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w,x  o7x2w,x  o7x2wXx1  _F6Ӷ@={(͋@=9(I@=(@=ϵ(@=s(Ѓ@=1(A@=(F@=E(UaXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w@=|(Ԍa@=(<@=9(Ia@=ժ(պb@=(,b@=֎(֞a@=(b@=q(ׁb,x  o7x2wx  or,x  o7x2w,x  zvM82f,x  zvM82f,x  Om7x2,,x  zvM82f,x  zvM82f@=ة(ع<@=(<@=A(Q<@=ٍ(ٝa@=(@=ڼ(@=z(ۊ@=8(Hx  orx  orx  or,x  o7x2wXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6]@=ݼ(@=z(ފ@=8(H@=(F@=L(\a@=(a@=.(>a@=(Xx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w,x  o7x2w,x  o7x2wXx1  _F6^@=#(3@=(@=(@=](m@=(+@=(@=(F@=(aXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w@=$(4a@=(<@=(a@=R(bb@=(b@=6(Fa@=(b@=()b,x  o7x2wx  or,x  o7x2w,x  zvM82f,x  zvM82f,x  Om7x2,,x  zvM82f,x  zvM82f@=Q(a<@=(<@=(<@=5(Ea@=(@=d(t@="(2@=(x  orx  orx  or,x  o7x2wXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6@=d(t@="(2@=(@=(F@=(a@=e(ua@=(a@=G(WXx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w,x  o7x2w,x  o7x2wXx1  _F6@=(@=(@=G(W@=(@=(@=(@=?(OF@=(aXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w3@=(a@==(M<@=(a@=( b@=l(|b@=(a@=O(_b@=(b,x  o7x2wx  or,x  o7x2w,x  zvM82f,x  zvM82f,x  Om7x2,,x  zvM82f,x  zvM82f F@=( <@=E(U<@=(<@=(a@=N(^@= (@=(@= ( x  orx  orx  or,x  o7x2wXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6@= ( @= ( @= ( @= F( VF@=(a@= (a@=~(a@=(Xx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w,x  o7x2w,x  o7x2wXx1  _F6@=s(@=1(A@=(@=(@=k({@=)(9@= ( F@= =( MaXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6 x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE, x  o7x2w@= t( a@= ( <@= 1( Aa@=(b@=($b@=(a@=(b@=i(yb, x  o7x2w x  or, x  o7x2w,x  zvM82f,x  zvM82f,x  Om7x2,,x  zvM82f,x  zvM82f @=(<@=(<@=9(I<@=(a@=(@=(@=r(@= 0( @x  orx  orx  or,x  o7x2wXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6'U@=!(!@="r("@=#0(#@@=#(#F@=%D(%Ta@= %( %a@=!&&(!&6a@="&("&Xx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w, x  o7x2w,!x  o7x2wX"x1  _F6.V@=#((#(+@=$(($(@=%)(%)@=&*U(&*e@='+('+#@=(+((+@=),(),F@=*-(*-aX#x1  _F6X$x1  _F6X%x1  _F6X&x1  _F6X'x1  _F6X(x1  _F6)x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,*x  o7x2w2@=+/(+/,a@=,/(,/<@=-/(-/a@=.0J(.0Zb@=/0(/0b@=01.(01>a@=11(11b@=22(22!b,+x  o7x2w,x  or,-x  o7x2w,.x  zvM82f,/x  zvM82f,0x  Om7x2,,1x  zvM82f,2x  zvM82f7@=33I(33Y<@=43(43<@=53(53<@=64-(64=a@=74(74@=85\(85l@=96(96*@=:6(:63x  or4x  or5x  or,6x  o7x2wX7x1  _F6X8x1  _F6X9x1  _F6X:x1  _F6=@=;8\(;8l@=<9(<9*@==9(=9@=>:(>:F@=?;(?;a@=@<](@x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,?x  o7x2w,@x  o7x2w,Ax  o7x2wXBx1  _F6D@=C>(C>@=D?(D?@=E@?(E@O@=F@(FA @=GA(GA@=HBy(HB@=IC7(ICGF@=JD(JDaXCx1  _F6XDx1  _F6XEx1  _F6XFx1  _F6XGx1  _F6XHx1  _F6Ix Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,Jx  o7x2wI+@=KE(KEa@=LF5(LFE<@=MF(MFa@=NF(NGb@=OGd(OGtb@=PG(PGa@=QHG(QHWb@=RH(RHb,Kx  o7x2wLx  or,Mx  o7x2w,Nx  zvM82f,Ox  zvM82f,Px  Om7x2,,Qx  zvM82f,Rx  zvM82fN>@=SI(SJ<@=TJ=(TJM<@=UJ(UJ<@=VJ(VJa@=WKF(WKV@=XL(XL@=YL(YL@=ZM(ZMSx  orTx  orUx  or,Vx  o7x2wXWx1  _F6XXx1  _F6XYx1  _F6XZx1  _F6T@=[O([O@=\O(\O@=]P(]P@=^Q>(^QNF@=_R(_Ra@=`S(`Sa@=aSv(aSa@=bS(bSX[x1  _F6X\x1  _F6X]x1  _F6^x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,_x  o7x2w,`x  o7x2w,ax  o7x2wXbx1  _F6[@=cUk(cU{@=dV)(dV9@=eV(eV@=fW(fW@=gXc(gXs@=hY!(hY1@=iY(iYF@=j[5(j[EaXcx1  _F6Xdx1  _F6Xex1  _F6Xfx1  _F6Xgx1  _F6Xhx1  _F6ix Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,jx  o7x2w_@=k\l(k\|a@=l\(l\<@=m])(m]9a@=n](n]b@=o^ (o^b@=p^~(p^a@=q^(q^b@=r_a(r_qb,kx  o7x2wlx  or,mx  o7x2w,nx  zvM82f,ox  zvM82f,px  Om7x2,,qx  zvM82f,rx  zvM82fd@=s`(s`<@=t`(t`<@=ua1(uaA<@=va}(vaa@=wa(wa@=xb(xb@=ycj(ycz@=zd((zd8sx  ortx  orux  or,vx  o7x2wXwx1  _F6Xxx1  _F6Xyx1  _F6Xzx1  _F6kM@={e({e@=|fj(|fz@=}g((}g8@=~g(~gF@=i<(iLa@=i(ia@=j(j.a@=j(jX{x1  _F6X|x1  _F6X}x1  _F6~x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w,x  o7x2w,x  o7x2wXx1  _F6rN@=l(l#@=l(l@=m(m@=nM(n]@=o (o@=o(o@=p(pF@=q(qaXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2wv{@=s(s$a@=s(s<@=s(sa@=tB(tRb@=t(tb@=u&(u6a@=u(ub@=v (vb,x  o7x2wx  or,x  o7x2w,x  zvM82f,x  zvM82f,x  Om7x2,,x  zvM82f,x  zvM82f{@=wA(wQ<@=w(w<@=w(w<@=x%(x5a@=x(x@=yT(yd@=z(z"@=z(zx  orx  orx  or,x  o7x2wXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6@=|T(|d@=}(}"@=}(}@=~(~F@=(a@=U(ea@=(a@=7(GXx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w,x  o7x2w,x  o7x2wXx1  _F6@=(@=y(@=7(G@=(@=(@=q(@=/(?F@=(aXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w#@=(a@=-(=<@=y(a@=(b@=\(lb@=(a@=?(Ob@=(b,x  o7x2wx  or,x  o7x2w,x  zvM82f,x  zvM82f,x  Om7x2,,x  zvM82f,x  zvM82f6@=(<@=5(E<@=(<@=(a@=>(N@=( @=(@=x(x  orx  orx  or,x  o7x2wXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6@=( @=(@=x(@=6(FF@=(a@=( a@=n(~a@=(Xx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w,x  o7x2w,x  o7x2wXx1  _F6@=c(s@=!(1@=(@=(@=[(k@=()@=(F@=-(=aXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w@=d(ta@=(<@=!(1a@=(b@=(b@=v(a@=(b@=Y(ib,x  o7x2wx  or,x  o7x2w,x  zvM82f,x  zvM82f,x  Om7x2,,x  zvM82f,x  zvM82f@=(<@=(<@=)(9<@=u(a@=(@=(@=b(r@= (0x  orx  orx  or,x  o7x2wXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6E@=(@=b(r@= (0@=(F@=4(Da@=(a@=(&a@=(Xx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w,x  o7x2w,x  o7x2wXx1  _F6F@= (@=(@=(@=E(U@=(@=(@=(F@=(aXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2ws@= (a@=}(<@=(a@=:(Jb@=(b@=(.a@=(b@=(b,x  o7x2wx  or,x  o7x2w,x  zvM82f,x  zvM82f,x  Om7x2,,x  zvM82f,x  zvM82f@=9(I<@=(<@=(<@=(-a@=(@=L(\@= (@=(x  orx  orx  or,x  o7x2wXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6@=L(\@= (@=(@=†(–F@=(a@=M(]a@=ľ(a@=/(?Xx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w,x  o7x2w,x  o7x2wXx1  _F6@=Ƴ(@=q(ǁ@=/(?@=(@=ɫ(ɻ@=i(y@= '( 7F@= }( ̍aXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6 x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE, x  o7x2w@= ʹ( a@= %( 5<@= q( ΁a@=(b@=T(db@=(a@=7(Gb@=Щ(йb, x  o7x2w x  or, x  o7x2w,x  zvM82f,x  zvM82f,x  Om7x2,,x  zvM82f,x  zvM82f.@=(<@=-(=<@=y(҉<@=(a@=6(F@=(@=Բ(@=p(Հx  orx  orx  or,x  o7x2wXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6ܕ@=(@=ײ(@=p(؀@=.(>F@=ڄ(ڔa@= ( a@=!f(!va@="("Xx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w, x  o7x2w,!x  o7x2wX"x1  _F6@=#[(#k@=$($)@=%(%@=&ߕ(&ߥ@='S('c@=(((!@=)()F@=*%(*5aX#x1  _F6X$x1  _F6X%x1  _F6X&x1  _F6X'x1  _F6X(x1  _F6)x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,*x  o7x2w@=+\(+la@=,(,<@=-(-)a@=.(.b@=/(/ b@=0n(0~a@=1(1b@=2Q(2ab,+x  o7x2w,x  or,-x  o7x2w,.x  zvM82f,/x  zvM82f,0x  Om7x2,,1x  zvM82f,2x  zvM82f@=3(3<@=4(4<@=5!(51<@=6m(6}a@=7(7@=8(8@=9Z(9j@=:(:(3x  or4x  or5x  or,6x  o7x2wX7x1  _F6X8x1  _F6X9x1  _F6X:x1  _F6=@=;(;@=<Z(<j@==(=(@=>(>F@=?,(?<a@=@(@a@=A(Aa@=B(BX;x1  _F6X<x1  _F6X=x1  _F6>x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,?x  o7x2w,@x  o7x2w,Ax  o7x2wXBx1  _F6>@=C(C@=D(D@=E(E@=F=(FM@=G(G @=H(H@=Iw(IF@=J(JaXCx1  _F6XDx1  _F6XEx1  _F6XFx1  _F6XGx1  _F6XHx1  _F6Ix Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,Jx  o7x2wk@=K(Ka@=Lu(L<@=M(Ma@=N2(NBb@=O(Ob@=P(P&a@=Q(Qb@=R(R b,Kx  o7x2wLx  or,Mx  o7x2w,Nx  zvM82f,Ox  zvM82f,Px  Om7x2,,Qx  zvM82f,Rx  zvM82f~@=S1(SA<@=T}(T<@=U(U<@=V(V%a@=W(W@=XD(XT@=Y(Y@=Z(ZSx  orTx  orUx  or,Vx  o7x2wXWx1  _F6XXx1  _F6XYx1  _F6XZx1  _F6 @=[D([T@=\(\@=](]@=^~(^F@=_(_a@=`E(`Ua@=a(aa@=b '(b 7X[x1  _F6X\x1  _F6X]x1  _F6^x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,_x  o7x2w,`x  o7x2w,ax  o7x2wXbx1  _F6@=c (c @=d i(d y@=e '(e 7@=f (f @=g (g @=ha(hq@=i(i/F@=ju(jaXcx1  _F6Xdx1  _F6Xex1  _F6Xfx1  _F6Xgx1  _F6Xhx1  _F6ix Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,jx  o7x2w@=k(ka@=l(l-<@=mi(mya@=n(nb@=oL(o\b@=p(pa@=q/(q?b@=r(rb,kx  o7x2wlx  or,mx  o7x2w,nx  zvM82f,ox  zvM82f,px  Om7x2,,qx  zvM82f,rx  zvM82f&@=s(s<@=t%(t5<@=uq(u<@=v(va@=w.(w>@=x(x@=y(y@=zh(zxsx  ortx  orux  or,vx  o7x2wXwx1  _F6Xxx1  _F6Xyx1  _F6Xzx1  _F6 @={({@=|(|@=}h(}x@=~&(~6F@=|(a@=(a@=^(na@=(X{x1  _F6X|x1  _F6X}x1  _F6~x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w,x  o7x2w,x  o7x2wXx1  _F6'@=!S(!c@="("!@="("@=#(#@=$K($[@=% (%@=%(%F@='('-aXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w+@=(T((da@=(((<@=)()!a@=)()b@=)(*b@=*f(*va@=*(*b@=+I(+Yb,x  o7x2wx  or,x  o7x2w,x  zvM82f,x  zvM82f,x  Om7x2,,x  zvM82f,x  zvM82f0@=,(,<@=,(,<@=-(-)<@=-e(-ua@=-(-@=.(.@=/R(/b@=0(0 x  orx  orx  or,x  o7x2wXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F675@=1(1@=2R(2b@=3(3 @=3(3F@=5$(54a@=5(5a@=6(6a@=6w(6Xx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w,x  o7x2w,x  o7x2wXx1  _F6>6@=7(8 @=8(8@=9w(9@=:5(:E@=:(;@=;(;@=(? a@=?m(?}<@=?(?a@=@*(@:b@=@(@b@=A(Aa@=A(Ab@=A(Bb,x  o7x2wx  or,x  o7x2w,x  zvM82f,x  zvM82f,x  Om7x2,,x  zvM82f,x  zvM82fGv@=C)(C9<@=Cu(C<@=C(C<@=D (Da@=D~(D@=E<(EL@=E(F @=F(Fx  orx  orx  or,x  o7x2wXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6M@=H<(HL@=H(I @=I(I@=Jv(JF@=K(Ka@=L=(LMa@=L(La@=M(M/Xx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w,x  o7x2w,x  o7x2wXx1  _F6T@=N(N@=Oa(Oq@=P(P/@=P(P@=Q(Q@=RY(Ri@=S(S'F@=Tm(T}aXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2wY @=U(Ua@=V(V%<@=Va(Vqa@=V(Vb@=WD(WTb@=W(Wa@=X'(X7b@=X(Xb,x  o7x2wx  or,x  o7x2w,x  zvM82f,x  zvM82f,x  Om7x2,,x  zvM82f,x  zvM82f^@=Y(Y<@=Z(Z-<@=Zi(Zy<@=Z(Za@=[&([6@=[([@=\(\@=]`(]px  orx  orx  or,x  o7x2wXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6d@=^(^@=_(_@=``(`p@=a(a.F@=bt(ba@=b(ba@=cV(cfa@=c(cXx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w,x  o7x2w,x  o7x2wXx1  _F6k@=eK(e[@=f (f@=f(f@=g(g@=hC(hS@=i(i@=i(iF@=k(k%aXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2wo@=lL(l\a@=l(l<@=m (ma@=mz(mb@=m(mb@=n^(nna@=n(nb@=oA(oQb,x  o7x2wx  or,x  o7x2w,x  zvM82f,x  zvM82f,x  Om7x2,,x  zvM82f,x  zvM82ft@=py(p<@=p(p<@=q(q!<@=q](qma@=q(q@=r(r@=sJ(sZ@=t(tx  orx  orx  or,x  o7x2wXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6{-@=u(u@=vJ(vZ@=w(w@=w(wF@=y(y,a@=y(ya@=y(za@=zo(zXx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w,x  o7x2w,x  o7x2wXx1  _F6.@={(|@=|(|@=}o(}@=~-(~=@=~(~@=(@= g( wF@= ( aXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6 x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE, x  o7x2w[@= ( a@= e( u<@= ( a@="(2b@=(b@=(a@=w(b@=(b, x  o7x2w x  or, x  o7x2w,x  zvM82f,x  zvM82f,x  Om7x2,,x  zvM82f,x  zvM82fn@=!(1<@=m(}<@=(<@=(a@=v(@=4(D@=(@=(x  orx  orx  or,x  o7x2wXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6@=4(D@=(@=(@=n(~F@=(a@= 5( Ea@=!(!a@="("'Xx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w, x  o7x2w,!x  o7x2wX"x1  _F6@=#(#@=$Y($i@=%(%'@=&(&@='('@=(Q((a@=)()F@=*e(*uaX#x1  _F6X$x1  _F6X%x1  _F6X&x1  _F6X'x1  _F6X(x1  _F6)x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,*x  o7x2w@=+(+a@=, (,<@=-Y(-ia@=.(.b@=/<(/Lb@=0(0a@=1(1/b@=2(2b,+x  o7x2w,x  or,-x  o7x2w,.x  zvM82f,/x  zvM82f,0x  Om7x2,,1x  zvM82f,2x  zvM82f@=3(3<@=4(4%<@=5a(5q<@=6(6a@=7(7.@=8(8@=9(9@=:X(:h3x  or4x  or5x  or,6x  o7x2wX7x1  _F6X8x1  _F6X9x1  _F6X:x1  _F6}@=;(;@=<(<@==X(=h@=>(>&F@=?l(?|a@=@(@a@=AN(A^a@=B(BX;x1  _F6X<x1  _F6X=x1  _F6>x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,?x  o7x2w,@x  o7x2w,Ax  o7x2wXBx1  _F6~@=CC(CS@=D(D@=E(E@=F}(F@=G;(GK@=H(H @=I(IF@=J (JaXCx1  _F6XDx1  _F6XEx1  _F6XFx1  _F6XGx1  _F6XHx1  _F6Ix Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,Jx  o7x2w@=KD(KTa@=L(L<@=M(Ma@=Nr(Nb@=O(Ob@=PV(Pfa@=Q(Qb@=R9(RIb,Kx  o7x2wLx  or,Mx  o7x2w,Nx  zvM82f,Ox  zvM82f,Px  Om7x2,,Qx  zvM82f,Rx  zvM82f@=Sq(S<@=T(T<@=U (U<@=VU(Vea@=W(W@=X(X@=YB(YR@=Z(ZSx  orTx  orUx  or,Vx  o7x2wXWx1  _F6XXx1  _F6XYx1  _F6XZx1  _F6%@=[([@=\B(\R@=](]@=^(^F@=_(_$a@=`(`a@=a(aa@=bg(bwX[x1  _F6X\x1  _F6X]x1  _F6^x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,_x  o7x2w,`x  o7x2w,ax  o7x2wXbx1  _F6&@=c(c@=d(d@=eg(ew@=f%(f5@=g(g@=há(hñ@=i_(ioF@=jŵ(jaXcx1  _F6Xdx1  _F6Xex1  _F6Xfx1  _F6Xgx1  _F6Xhx1  _F6ix Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,jx  o7x2wS@=k(ka@=l](lm<@=mǩ(mǹa@=n(n*b@=oȌ(oȜb@=p(pa@=qo(qb@=r(rb,kx  o7x2wlx  or,mx  o7x2w,nx  zvM82f,ox  zvM82f,px  Om7x2,,qx  zvM82f,rx  zvM82ff@=s(s)<@=te(tu<@=u˱(u<@=v(v a@=wn(w~@=x,(x<@=y(y@=zΨ(zθsx  ortx  orux  or,vx  o7x2wXwx1  _F6Xxx1  _F6Xyx1  _F6Xzx1  _F6@={,({<@=|(|@=}Ѩ(}Ѹ@=~f(~vF@=Ӽ(a@=-(=a@=Ԟ(Ԯa@=(X{x1  _F6X|x1  _F6X}x1  _F6~x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w,x  o7x2w,x  o7x2wXx1  _F6@=֓(֣@=Q(a@=(@=(@=ً(ٛ@=I(Y@=(F@=](maXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w@=ݔ(ݤa@=(<@=Q(aa@=(b@=4(Db@=ߦ(߶a@=('b@=(b,x  o7x2wx  or,x  o7x2w,x  zvM82f,x  zvM82f,x  Om7x2,,x  zvM82f,x  zvM82f@=(<@= (<@=Y(i<@=(a@=(&@=(@=(@=P(`x  orx  orx  or,x  o7x2wXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6u@=(@=(@=P(`@=(F@=d(ta@=(a@=F(Va@=(Xx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w,x  o7x2w,x  o7x2wXx1  _F6v@=;(K@=( @=(@=u(@=3(C@=(@=(F@=(aXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w@=<(La@=(<@=( a@=j(zb@=(b@=N(^a@=(b@=1(Ab,x  o7x2wx  or,x  o7x2w,x  zvM82f,x  zvM82f,x  Om7x2,,x  zvM82f,x  zvM82f@=i(y<@=(<@=(<@=M(]a@=(@=|(@=:(J@=(x  orx  orx  or,x  o7x2wXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6@=|(@=:(J@=(@=(F@= (a@=}(a@=(a@=_(oXx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w,x  o7x2w,x  o7x2wXx1  _F6 @=(@=(@=_(o@=(-@=(@=(@=W(gF@= ( aXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2wK@= ( a@= U( e<@= ( a@= ( "b@= ( b@= ( a@= g( wb@= ( b,x  o7x2wx  or,x  o7x2w,x  zvM82f,x  zvM82f,x  Om7x2,,x  zvM82f,x  zvM82f^@=(!<@=](m<@=(<@=(a@=f(v@=$(4@=(@=(x  orx  orx  or,x  o7x2wXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6@=$(4@=(@=(@=^(nF@=(a@=%(5a@=(a@=(Xx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w,x  o7x2w,x  o7x2wXx1  _F6 @=(@=I(Y@=(@=(@=(@=A(Q@=(F@= U( eaXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w$@=!(!a@=!(" <@="I("Ya@="("b@=#,(#<b@=#(#a@=$($b@=$($b,x  o7x2wx  or,x  o7x2w,x  zvM82f,x  zvM82f,x  Om7x2,,x  zvM82f,x  zvM82f*@=%(%<@=&(&<@=&Q(&a<@=&(&a@='('@='('@=(((@=)H()Xx  orx  orx  or,x  o7x2wXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F60m@=*(*@=+(+@=,H(,X@=-(-F@=.\(.la@=.(.a@=/>(/Na@=/(/Xx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w,x  o7x2w,x  o7x2wXx1  _F67n@=13(1C@=1(2@=2(2@=3m(3}@=4+(4;@=4(4@= 5( 5F@= 6( 7 aXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6 x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE, x  o7x2w;@= 84( 8Da@= 8( 8<@= 8( 9a@=9b(9rb@=9(9b@=:F(:Va@=:(:b@=;)(;9b, x  o7x2w x  or, x  o7x2w,x  zvM82f,x  zvM82f,x  Om7x2,,x  zvM82f,x  zvM82f@@=t(>@=?2(?B@=?(@x  orx  orx  or,x  o7x2wXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6G@=At(A@=B2(BB@=B(C@=C(CF@=E(Ea@= Eu( Ea@=!E(!Ea@="FW("FgXx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w, x  o7x2w,!x  o7x2wX"x1  _F6N@=#G(#G@=$H($H@=%IW(%Ig@=&J(&J%@='J('J@=(K((K@=)LO()L_F@=*M(*MaX#x1  _F6X$x1  _F6X%x1  _F6X&x1  _F6X'x1  _F6X(x1  _F6)x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,*x  o7x2wRC@=+N(+Na@=,OM(,O]<@=-O(-Oa@=.P (.Pb@=/P|(/Pb@=0P(0Pa@=1Q_(1Qob@=2Q(2Qb,+x  o7x2w,x  or,-x  o7x2w,.x  zvM82f,/x  zvM82f,0x  Om7x2,,1x  zvM82f,2x  zvM82fWV@=3S (3S<@=4SU(4Se<@=5S(5S<@=6S(6Sa@=7T^(7Tn@=8U(8U,@=9U(9U@=:V(:V3x  or4x  or5x  or,6x  o7x2wX7x1  _F6X8x1  _F6X9x1  _F6X:x1  _F6]@=;X(;X,@=<X(<X@==Y(=Y@=>ZV(>ZfF@=?[(?[a@=@\(@\-a@=A\(A\a@=B\(B]X;x1  _F6X<x1  _F6X=x1  _F6>x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,?x  o7x2w,@x  o7x2w,Ax  o7x2wXBx1  _F6d@=C^(C^@=D_A(D_Q@=E_(E`@=F`(F`@=Ga{(Ga@=Hb9(HbI@=Ib(IcF@=JdM(Jd]aXCx1  _F6XDx1  _F6XEx1  _F6XFx1  _F6XGx1  _F6XHx1  _F6Ix Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,Jx  o7x2wh@=Ke(Kea@=Le(Lf<@=MfA(MfQa@=Nf(Nfb@=Og$(Og4b@=Pg(Pga@=Qh(Qhb@=Rhy(Rhb,Kx  o7x2wLx  or,Mx  o7x2w,Nx  zvM82f,Ox  zvM82f,Px  Om7x2,,Qx  zvM82f,Rx  zvM82fm@=Si(Si<@=Ti(Tj <@=UjI(UjY<@=Vj(Vja@=Wk(Wk@=Xk(Xk@=Yl(Yl@=Zm@(ZmPSx  orTx  orUx  or,Vx  o7x2wXWx1  _F6XXx1  _F6XYx1  _F6XZx1  _F6te@=[n([n@=\o(\o@=]p@(]pP@=^p(^qF@=_rT(_rda@=`r(`ra@=as6(asFa@=bs(bsX[x1  _F6X\x1  _F6X]x1  _F6^x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,_x  o7x2w,`x  o7x2w,ax  o7x2wXbx1  _F6{f@=cu+(cu;@=du(du@=ev(ev@=fwe(fwu@=gx#(gx3@=hx(hx@=iy(iyF@=jz(j{aXcx1  _F6Xdx1  _F6Xex1  _F6Xfx1  _F6Xgx1  _F6Xhx1  _F6ix Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,jx  o7x2w@=k|,(k|<a@=l|(l|<@=m|(m|a@=n}Z(n}jb@=o}(o}b@=p~>(p~Na@=q~(q~b@=r!(r1b,kx  o7x2wlx  or,mx  o7x2w,nx  zvM82f,ox  zvM82f,px  Om7x2,,qx  zvM82f,rx  zvM82f@=sY(si<@=t(t<@=u(u<@=v=(vMa@=w(w@=xl(x|@=y*(y:@=z(zsx  ortx  orux  or,vx  o7x2wXwx1  _F6Xxx1  _F6Xyx1  _F6Xzx1  _F6 @={l({|@=|*(|:@=}(}@=~(~F@=( a@=m(}a@=(a@=O(_X{x1  _F6X|x1  _F6X}x1  _F6~x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w,x  o7x2w,x  o7x2wXx1  _F6@=(@=(@=O(_@= (@=(@=(@=G(WF@=(aXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w;@=(a@=E(U<@=(a@=(b@=t(b@=(a@=W(gb@=(b,x  o7x2wx  or,x  o7x2w,x  zvM82f,x  zvM82f,x  Om7x2,,x  zvM82f,x  zvM82fN@=(<@=M(]<@=(<@=(a@=V(f@=($@=(@=(x  orx  orx  or,x  o7x2wXx1  _F6Xx1  _F6Xx1  _F6Xx1  _F6@=($@=(@=(@=N(^F@=(a@=(%a@=(a@=(Xx1  _F6Xx1  _F6Xx1  _F6x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE,x  o7x2w,x  o7x2w,x  o7x2wXx1  _F6= H@=(@A K"B K@= [( [@= ( C x@= p( @= 6( F-C .D H"x\uTϡĕe{gwHi%nXRDELTBAFs <Ͻgn}wFTj꫖fSAsJVa: %ԘTzC`7F Cʄc*M1VI$wzE(jVd UlZӰ!zd'{4,NTPh;&ZEP!J4;\h)j"}a"RdX+r2pr+%99HCTߠ~YH6{r K*24kz4o{4=8&e!l0r(NV=KyxIΥy¹` FAΟ< 44.xp%qqD!r\Z<+bK Mԥ|kВLYb(y3$f #yiA6Iv~j8NT%:+ʼn%r.R MYFr# +a W[oJ{,_eo%ޤESr%Zyi:35ؚҌri.x㸹G fA"Y@3D'̀$n6cyYVO̚ۦ0<g+`jdwܱQ s&lR o1+MnܚVmLn;Q4 yl 8ϐw(\=iHd!5!ZN!WC,"+Fb vW6aL+@&L摋&Y9އ\\ 6%̠6ofgy%r&E⨵'X[;F i5ٖ0P}PZK]ő:kS< reϩMΎg9.RAQpmro2Fw&g ˡ 8|6O[uȩЫfGpK}lL;epîG rD10~K:#Ǽ"dpM8V9#bO y%ڜCbh,^CuMzOX& gUr/}",υ%#X6F¿=#;3/dy3|UtsTGtçVOqscOI6TOeG<e>oN6ӆA6Fd^{geI܀l6/1}ķcuE+@2(cD?3d} m"oY1\~q]QK-tFYǰLl_30ά^5WQZ&mN+.Yix(XZk,VzYVm&ƶփ26 M򇺩UuW6ʯ8F;_Σxu:8ǣꆭD?Үd)ïGYKdM7 vQW|g-tc{أT4d)|[%hQK_t#,0dU,u_IG}sGyg ~Cϐu 9^G阧g-fiSL_(gML;g8G;zJI4^#2O{ !2$;{z kL^{;HG9z(Uz> ҹ0op'{7֐~p K Gx vՓ5Uay3u#~6v-xYT-Nџd6H::I}LtF$tn5Gz:N;'' yoj18 rjF:n&"*ؿƢ` єuU*dFrv8+v4e>5yjKXyV>ȑ+/^WMUS^{8ˏ{C5w!ƚB +\Es54V+6; :41 ga\|$4GrYSXᕰ\CBѨ%+U<&[ aMlZ 6Jl6( u2)Йhp~teO3AVϛ ތ,͈߸>(XƉLo,4(O^,wgaL 'p0OtDE1-Ğ>\ a^ 兘#GQb,,`l,jh!: ¤J2b/JYJq2ªކ`E="!+C8aq覨UL:EpJ)jKiFgiEAoYB9Eh#1C'aCiM(+Qg2jb h;+zdFĬ>ۇ#jr>Ԋ4ӷA5LvV h7c6o<4U#j3 7e>8b֌l5^ܗ *&vE+$8KزXrKgqUg5YA:\ńX>V]4WԪ"I"/?yY?rŔ>\qAG_;\cVav#E[Y#u:,E]U K`^Uv,j($AymvpVX>Ȼ-ʐSزA^PWI=6U`g0gMvY2kΟ}rVEMS;5)Ι LvгKZeU2̈́chI+1gɡh7]λB M:zi8]oB!= BN$TSUȼVݪp\p<7M 2fe8Dl!/#"7~"'dGDnc |=|kYD-X&z)7Gחk\W>)`[z}ߎS *5Vp}rͱh]%ɮP:ȯeO`[]3QD.&7NjL}p}OXˢ DmeD}+h[^]JF~GǛy?vq(mH~StkmS'L6&okd!x>Oʢ9ڄlc1E"xe'Z'5!hƺ;Aa(˱|"/TbY<=R=Sf#7W-kDlvhZk[Ӧ/ ހ|,ǣ,g ක|YQ8ꎣI `z'2 mᗊ>s eN([a{&DS |g P6ԼOՓLA6σmN%k\}\h9^Vlḽb*$YF[st~1x m3ݝc?8UWRsV|~Ќti_Kr d*+U?gQxff6l`9N|)ϐ_o1K]N˜=pʮwlTw to7$shGy4 E/w?rNn?\,)xASt꫷KI91Τjv:xMӥT),c;'y5B1i`u_׾ZMs< %ޮ{z{XulyOtzκ;_b;E;\{֛=2St94Q]Arz~wYK<朦w{(ҁ7&]Ўv GYg(7lM5\ 7ĸ*~uW--Kh4wtV48JG{~{pw2[Gv5_籮:/xOxu4,gv?w:"7`:Lke{ϢǎdB ljilקo=aG_jHQR?x)$azԢAijh-Eiyf'LAǽe.9Ô =>2e\SĔ^ƱTzUZHﰄ&-RWiUC}N}UOGes4k ZAa4| hTq[" <+T`pVBgD\ V5/eoK޶,j6ۅDGBecyPjI_5P4l 9W"?%΄d-1Ltf챳Ͼg`YiMܓ'hp"prPV_C3ky;yKX}tfI/3&ZA6o,3䮳D"͂>LdI2Nf:Y9ji-/bV2Ξ#j?+qj/gՄ=yզψfbYLL2kѠCiJfJZC gθ>?ieQCZLQhD< ;D^˨|'JWA ǔĊ4 `UzQ"y(y#j|Xekb=h)OκmY{Jo 3g~wc'VwX4FށuFVd3PL]gFU 5rU6 sXw&.;*/:/#Kd&7\.]:*3 &;tM>z>B7QMf"8ļӨ%{slr^q:W1*M gug}ʖa|"= 6GYP֎>W3~栳^?)< }ZGiKМ(NLZ57Zy/5 j_c8%>`Yѧ >_Ymػ51m'WL`Pp֔xqgaW`=yv  `)P'z; zF0Y FQUa;RD^ܚieb-aauItObM41؏1'BUeV)pm{m\JvhumOG.2+l(U|\S_46lbzO#~ 0@V`YBmb4|)[ DgF+y)&'{g!,[ ib~o*e>ȟ`eS?^6ѷ&woB.`qvD~N'{p>,'/e]F0ف&emb+gvuΛ%a:f%7gzm (z0@$>CU/e1tp_"u#6&MD^\6AwAnq+q1m J ј)O%wmc6 +n"ף[uhz4i!?=ƴRLk.xe \R]3:^vˬsKV241*1WI%,|*Em[|Y鸿9nyq5Yn/Ǹ^o~&mJU4}v* Z蔯MDEl]u_cACfFFy x|-1^lcФ.z*_⹭/hE'~~pk]=|Mdy{M~hC?vc1 VSЌI硹腪Љ8Ug\Þ+ct.zg,ޕ3N;`<5XuG7 &,̦9t+p'I4۶Z?d{UQsVԍ=uVT0 cVuR7֩hNNcjMM:#79pyqʨNf/TF]0zFBWf7S|.fM/sh~Lmi2 Ox݇4=94ifh9]{"%]|M:c:ڠKmh16t5&dw=u;<c^N܀,!?p6~&ݏ&}1z\4}]0溉dž>mh h^֢O-s= v&?j&vvqiL䵯#bz_QMjtZ4iC'~C&t[̾tvV,*VvN,S'О+A^\.<EYg|gYrl9v̺#Q)khbMX%Y? 뻾U#}YSջG.Ƭ*'fΎ݇5$OX;q֌wV2Ԗ Ϛi!2ikؙ&-j: } S؉pVۗ6HNڠ̪7ZBѻcv(s:{G +:=j6ބDQM Z!k*]pVz?O'1M5?5BN ˊ'igu=?% Q^|9UzM32Cir59ʿq=T ᯚ`[%iMWy/gT''9%'Qu0?]=ŷ7$6\j8Fx],Ceqצ 9&9yB03=xSlbw8oQLpp;L̿W:? q8qCq<rlq.S>nHxCjJy^qU7!PY^g=]f^a|(Dڔl)4$U."׳;x& dk&LbQ\"uyɟ[WFi552%|l˩B(Mƚ06g0i-oNP&?+ۨk2%,n)mDEA'rs8/>SP9P-CW5o',[_'j[3csI_{yov){rgwS N}`>fUWvwe1pu_e-xsƺ3w62}# ^fn?aCQebI- jnF~iT}r n|B% o@|l'wcSh9ìs^/ .|s8•=C>& pE?NQr禁)S:?SUa3]Y9Z(yx-ϱWuNQʪ;aT!srMՕm>wr3Qq<4=yYJtӲ-4 (N{@]]ᴜ.jڥ?ߠ:ޘ7SL߶~q1NS?6V/o@;onj:TUZ7A>*.b18MǘG鴋, c|A2 +lueZ;wM~0QCAZS-iJ'&f5/_br7/j\  ;.lEFkTwxόwy<2̚LA&2fV}38##9ďꙘ5ݑߛXSQϚۇf숑9cV!j&k8^ߑ˘"K| \/arޚk &=Fi@q`|Jp0֎d`gBgɰX[KiF VmY[86mV8]<'UfyorJ'=хUPAp.knka䢳F9v53>FgyV3A%^EA>a[)Tb y.yblhD yԔ kXNZBXH*Nl(H߼E;rZn2a^U-F}AkoQXu"cV =9g}ьyl%܎<t=YGnGAƫR$9scVW`Gayh Kg /J{c;GWЍub?ywtCp 91){^S7.9.onf:gCǖ-99}!rp}p wl6|35R-7|)?g ӺuFÿc1^󧂣 on >RY7Xv䠷A@+6@Cqc&ߴ۞|q-tAG/b_~EC?09А24@}n~S7h:.'LjљhO=dqkB2h jy]a<uW$'#W*~V3TUJ#"ѐQ6ĸ-3z܂]8S-nJzn(g0Yѐ^zNS i;v.Efn0I 1.S4eې]YX/wWSa2yvun؞V꼞ngn 4z\a3qLۆ.Zj^wrݵ `UWt iU:8U@+_#}\vm-;u!32y9|=YncZ=fۆ<>j{2Q.m:>ij[tf},vSF6#`#?K3OX=gCpW=yµew>Zk4ځ~c2Ջh^ZFf'km:L_$pw/h'S5!#wG^nSTHa˲ ݨ,9C~㷲 fr#T𽪶嗡 TB8Z /A-H9ZǩiA_O,Np~a5ZD"Sy`/;D>Y&򞻚jH`M=)T `*xd GK=gԓ򺅊Pq%DM)[S,wOp9XV(5YkS,]M,)9XבdJэJfr?QщO GUfKVmiB``Gϰ _7sΘA~4&~pƈ2UVY ]UG1+" {O{/ DXXe^3ىfk—9{ V U[X{e~_4DAƉBbG{B8V5<>],Q>2[tb7gQщ`M/2N:+K+!F#y.-aUZL⟋3䁿VZ 䡹2r5`!0}*5J|q#>G^ęa`h@m FyvX~fn`/2V @.3Z_kfͺ eX *{``{`n1KKJrǼj ܒ{͖`6xkp4zYe35}jw1xM|NN} ,ʓ1zo[rAcxq&d.$g|w.9'k TceNYwXއF?C.Q?ӂ]d:J Ou{yaS#D+뉱]Xʮ:j"+5DQ" TJZK}2MsM6vjΏɱhMV,':9Z% 1/(*l,ԒHr\1mUAG%73_2QIŭ/]uM.5j,鬖`1,VG.6"ci{W YtjVշ'E;V6Y]r7{zR^ll+ミl|_l?'g+۲![ӽ n2;?|Gu _Qfs. 쐗__rj&dㆺ)~ڷouSvl7 1&M6;FLP qs6 lN-Bq|!\rN_ cz F6$^p\ξM_f;E[|U(gLWQs5ҕ%{E:Fsu<N?FJ3oˣAE)p#u ӉwAKk]vqc;lMϡ+x}1I}d }EfY bQtЖQ3BWQf\龦{]IO(QJfs[j9J(ō먧w WGk}U/ #]u@)N5>TBv 8g?rvrZʲJ1sW*@)$ (ōO=ѕbjܨaۺ*ĸ'x2K2HPQgRgdNՃt@qlZ끮+ؾ &>^ V_uc7Jύq^sm`nra렅7wjձ/tae'[NsظJgSC)^v]6t&wUNF™olC SQw{MBU.`9 ̫+0|o=R [f->~YƣG;k+,A*:C3T!/C|#Q⬤R)8 |y>6e핛`˞2Y7f/zx{Y<ftu&r/Ś݉Y /D3zX(ƬL ~Fɰ 7Dlb.YH)ZI K93DfqÒL.>?#Dy_YEQUhmkk[O|os8{I|"aH.ZED;h38XUٱ}ml!z?jZ" U8\ :jl9ɦ;+Dzp{<)U̫sWP%{nfމ5yqrW7a?Z$ް밻e9^ƞhd{Zx'ǡ%31j/Z\;%䢜eaPu&N&]591K/b}rwb6bQw-rJW/b[䴳`+d^uR(uXP^ѯWb^:}xKNֳA{`7a_VҢ?9,ŬlIMRbZ :w廭yl%aDN5\Vv,I݁UA!Y=Syp Xtg;0{$'êa*r=b^d{,kϱǪL=gut%VZ/ځRh.9;+gz`}ZQr[7D=V@dbv44-]FK OW]+'ۻYWl.CBob_:(q{(&8ѱl 6>GkmruvDE9l72mDt|(4mr\pQ/;)] ZΉuLshׂfZy( (dQnDx1, hd7ivfe=-@#MYh>uxCw;Od7>>T 4 ixqnDk;n#㘄 _# UUftƄN d ܂lt6%_܂cQ}(~#[Ђ߲1}η/Gõҩo_}kkog}ld#u|ʍo$Î[u*^6E2OX{F,S ܃vw6d{yyPd?ZbBW5\<踃.cg24;S/zH[0ogw@G[i>бH^MWw켙%X^d9hE?_?~/z <lնhw/r/d]uFl@ue_[TYFq]lcX"y4vwvXXJQeׅ'x4} v}v - |Cxw1S7T'Q7\IsW"6j7x^YcۅgтM:{cJ8˼丗yFWowֵ|hZ_{8cKUЂqPhM=&rӓ%NYJo^!ˣ_w-]MVw]WMY h C&S5N3jq֛gA!{!}qyFW'zȆ4[$}17тL[RgL?fchAmltWs\hʮg^AWt.;@=m?SǗ&{(}>;Zlu <-s ,w'U`{W0:ǻP1)7][?^RCtoKFLJ߯ZCm*4s^hXeSGh&z:_jGs8Q3&&U98Ca_*G8?-BGyO נTLWhZzBg9Ż꡼N\dvY,lj/,l>XCC&k;+⬗,`%{E}3rɬb,!0/8,w7KۉG:lXOw Bez~ Ֆ%T_Z<4 @ Cc;kyy:>ICEƾch~ ^4KԼS(I[{$X1ו?`1hVs*-z(ƣNqnb衼LӋ=Vkh$`a>+#S+l-j+z"0dsQ{ l?[VܫGI ;m)Q{jVCdeH_ߴkzY%D߭ۢc/oDzb ; m4GO=껊S~[DEW ԭy k|1~ܹD dsA8{9'z'+KɶAbs&?m.#+eD7UvèUj[ nB+Ư9Q֫waSx:^/w1s"&q;wu3VϋX q.QIZ)z$ޑ"$bu/ͻ'b4~Af6<IV9'?gz) 5#;ʏ٤Ct-p571hOe- <>ԹgEqM*1QuvFVĨf\{Sc!o$ bc9p=[ >ka%?}3ً`~xn;]w̠:w\Ѿ(*DѲmUE g ۉydwq <ɜ7K³MFG;[z ݜ{K_rw]/o: %q[h>9Jc"7:qL>gow{͏~?'|y,|֎PQx~+m"vF +ZpG=|>ׁ8m^;f;({:YkTkYX@'Ɍ \'ʅĽQ?kB-Q_w}gO3޼RM(OWvl ꭗgSRCu%/ e>A>5yh&9 8#qWuQV,]sPdjرwLY6w8:wf(Ϊ=x.̈́KOE' >g+ w %b+Sr_ge$(<0u@*jf ͊ w_w"Mǩv-('u(`;Ϥ@=Q~ODygvd'izc=5_G-t(A gnBOly:W CxP< jo8e~\_o^[512hYV}p^0ѿJ{eE^7`1j(Nu7h,u}|wD7f*l̟5r͖,DqeD 3Z,߇W]/ f̾3bX/+fcd fT%,sHonN>VcXzCka͖a9|tacu*X&X;/fߨ-UucV,cxZ#BW-fV?2Έ25 {rJl lx-> 6"8m{'kk3N/XW| VW5R?ŷrccvN75YpG45[u3\(ꨦgټ/Ew9VZRU@s?/:,INGCq7jh6,+[STp:M7J*lXfk"zb.&o#H畉|={-Ş+kk,tB*l;&P(,duYAYX}6}M.+fw]U f;I_|vY:o *۲%vbR]#QpM1Xka m *%,![8pzX%6̹{j?֋lzp ]V~#ldUfvlў k`]PlɊXC]7*W&"[oB|f#+}!S/`ռXSjcyl׬/B塱;A,J+ơ @V w.d odUe$X|jI6YM1*٪uezR;Il0ɹf*2.*;2{|x6*mV8S(Q\XV[G7m` "}||~9gtalb_kgh0[iM~P~r֠*5򻰅Wo ݺz @&:à  fR|L5tY11maTx\Ϲ%''w2 .$~kLaA@*Pj7f3awzK=&1Zp1j22C|f -s?a.9x+vNT|&6A}'6c?G঺s=5c-t5YnA5'nayR?_sDO:⧉fYnCIp wqF4!n~_(&8[ja qJf6[A,9ag/~ŸPg{(tV:39RQnYH9?Sy^%DX_;;Qpg~iQU-ۖZ⥟liRD(߀4.WR?$ooC Am0y}fy<8']!^3ĭ*nJ}M3D}pO+O;NӒSrv.X}K$"¦$hV{=gBuN'2R4EmE w4h֘7q'o;>:3@ n/p)N!;z`S[s{6̟v~7yCz?# (wGt)ltV%G W%* m$sv|\Y1ua;~j;m}uzxR׉(7- ő T|}^wʯqx7= Kckjq_4uHZKT[e__KhTBt (v:Yat6 >Ts{cj:jJvECs90ѮgPQ(TI,dҜ%QmMM?ǿ:oRnPgQdδ"﫽KcK2| Kq/Y?a&SIu|`{/~@3O9j?C\gFmU >uBOy0-u^qV?>`;V6Qc9Qߤ/תV?j~|;Î unȍ8UTq7D,v>xQIr}X!vT_wr+xQloЕw1zHY{Tl繾u6g *͗N7Ћ]ʫneVvX<:)ch1V.ulD2O]PŐ F-VT CCw`>YPq3Kn*ǜ^bZf(^C)AoYXV$|Xo(3a2oe"&@(,Z9x\•A*? X MUR%EMt!Ll/Oa| e'kXYPngeQ_VP ,;7"\&b%Ül>*hiX2[**gsaCś♛DʐlhXs VVQx*Xv.*ߪ AX97 k,)ҰnVQh(WWEf'DҐDYEPC0Xa7%, kYpX6/.9 (bHf377_j*HKCE0ʬȅKVuS7`E9Y'!_KAVUG7sVݶ2:U ֢ II-v-Ֆi{ңAfXy޹mdX7|믏-q(3m$dMn Z*y9r>칓)*BV73Qf_ڣb͆M[sUfU"3"8WE_Xc<5 J{;s%篲ֹa꫺ז#ɪq9ij\8ŭ gMbc{c_Q|5^MDVtn:,ZlY`BdfyAV#_X-Y-VՖ@%1Ymǚ!qۑpFVqHLF}E!Rx)ג`mĜ$ B&.9E>30VW\B槵gHv #6&/N֎y`-;;M+Q;ϊhg%[=D1zk`5w?5(_b#X-n(ϊZ͸Ļ)@w$~h`x*1I;gp26{f(܉ ZF7>?7De3]4+>@=ve`;J$nvQFjz,ѼwvN345r8/8쎹 nb׉w_'S&oC.{6Yv^l۞F*~!p=ozt>d9ވ+og f:9$;A)QvNp 9um=-v;k ̯n R_-pb}~N/hg2fo^W3JH;wrqpG]F4hDz!5OzߖFҟ%&Kj4 5.4]VW%nϋ4cjf'`;=LC7b4^4>MOfc9z2fFDuݦӊ4{؇h4!pg"#6f SوerGIgRfunWb-+znN'xͱ44G >gۦףfc{\"O+Ѝ3#lϷ4)cѐ^r.D[3=1m=0zdeUCۤnE ^0i`p"ʹ s9lJRzMsgiZm3=6mgn׿//ot}NM3\蔺~D( <]gu7\{&tN =f5豏豏 4ڢ'ٴғL#cbzuTO>ML4EE\k*&Mp[?/!_ֱ<<֟L/vI$3F&sw?ⷴl!Ķ-_Y-nZs*)ӽ Sl8`;sgD}g{z.XoU\M6bc?4{g~\.1o`@#x*)׈<!p +]fY̮}{kk.rs+nV$kL@(9N{|JvtQJ۵rrb5`°∫*vK.Xc}сl Gqp}V 7 ff{=15EK ? kfK(Lű-kU ;.l?, MUgds\׫ ^}wr3j䂈Bb&k2zh?,b?6V( /CqU%d7.5X ECU윈eaI&TĚWQcyL.l%yk: :*O`+Qy7V>Út wQ:iMƪ ; 6S;I0C{$wܞUxmD Z ~'8d |ȉ 5`Uuy&ጰh|)h.uo%W"JiMVv2[\0oya;_'7gzg''YCvΡ R!:5o6jR.J6|iKu;'d*!iHV_?9ܚy4WIl¥>e{Cx>sQ:hGꬋ ?cRn ڴ,G]'\=W-Oy?/Ilv:Lx<%WN܄lr#^9|h!gyݑ6l+nn9v0 M7&>Kl육jvۀw&)\ڶwp1128Fg-Ne2tV /je nk]-qrmJf9GVM#_ҵkI_Yd6bǗ9>?z_>60o9`[  FD4S?Md`wLqv.y|gݡ{,iNMF㠰Ky2keuCOou;8[,L2jf FM?8fXFlkװRbsyE-"a:lZoq̛ϔf@;~~‹ X^]BǚxcWtZ ]$ކlBmBsu0# es{8\">ഢi / _ESNFs]c:?-x@s0ؾ@s}k/҃ f'ӵl"MB/L /WBOJcTW\mg3T)ʶHQU5hiu(UM}:r NI3fDg 71t)XS)z?ܕhui~7oԗKⲪ h? sj_I]UXemVw@s }!5qZOH6$gnzsȤHwUs\o!`^7! b;_ th.˶f/F[%|:Q ,_ U}4\3>k.3ۨz2~_-_Jzh9XњxhS:sq0kCmPqwhmZi,>E|\k_Wk4 vM@%OaQބfϪ94㘗M>f Q"Rxk!{:g?~by $뚩 T^Nut:v88˹'T_}찝b8pe+^fîv'K,f>5Dw \3][I<+݀LQ5?+>JPWrr6,(]f uOXw(kؕ*q'aUE4M͋0A]Q)zZYq&ߤ`?LY?6l Օ`Ye7GPһr岛~tsmb,m/YAETRao(#lAɖ+=Kuc`q1S8Z+!3,!Y6hCN~+:nj6Y֑pýyIouqKzQYa/[ޛ_VK)>gWG2^a79N/[*юl**&,SV6*b UT*ZvV 7\N\b S7auUF~+q3OX:?1[KT/U} 7.?`G_ب5uLJg ZrSU"x U]5MJ5XVXAl,#U(fv<XA 7rn~/hJk.f";w (>e;Wf&Z  `PW J)dy 8g3㛖=i2j2`dj3#?v&2Ҳ)mftd~򟠠dm#ƋB`!1+êqVׄq+zkP^5QW0*jC=UvZ=>f{ :t]4S5 =uM cYvu=(>}jYfm]ƻ;ej5?^wdm5^%zNT ^@k%I=-ߛfTR=5\BÁRb1c9A Ւ7R7V飂֜YTc֨ΆJ zvR$@œ٭f;`Z4Jgc8 _j8^51^01^r:ηAv;J&K* W|YL=p]M=T}F"uo:bG2qCd_2jm5bEm?395If%¶%VDŽ(؇QNMuwj غr΄v~(S^\Hc-?mE<-j2rBdC64uJ؇l>tGEt|]2/7~ŦQlO8BQ>*ZnҪY*j "0m!(5ĭ"'h>m#,&jlB'슙w:T)K&qf5ǀ; {1p'"/,x|7Jh.ۭfĝuiyZ໶k8MVT;iF]4UQ'tk$ӑkbz'q*ۇzZ{_oՕގt&}猪͖i>w:ODz=f#BY=:"]}$mT,)lDa>tOpw)'E١Kb+;BuS0E=ֲކjk[x&o7Tv\nyKz35`6ȁJ[ `US/(?j*ރW(x=Y1x/TVz2ى !> E.jU;_A&^F UT">꫿Aiy&RW`=fmxR7R_tozjE)n~29j^igGQTkP`tίQ.4EЙu~I3(v ʤw`{O:-*} u>ArYb9|rE]uN^Z*UUuRm*QJC/ G|q:8EeV@uF'jEm/ӫ%`[Te=lT1A[TqOkto (*;ܑfHR< gxv@Q[E>NWOS/Q[(l~nk xv-5UB)]7N׋PB xjk/>pyȯhg'W,d=s+U1`#+R[k0e V)^v (7o׻?o8o([&[.*P+tC=_a9l_9$=X0rx5) Q++F5Ugl9ʑPN` z0 VY4&>+``Sekᘿ>7_ [$T_\$Ľ *JLG9utzOgnˍ=dӡʌVy GDm*#^:*#hk}6G^u9drV^YQoZ)΁=+#7lHVe!npX%D\G5g$ Zp75,$a_G(׻kȖ(]d'L"v60\r֔d&|,XV =,3Y P^eI⪒?kM\r4衚<-RQ?j<=4X}^-=ba.*dj{[U o|kVnf*Ƭo Tڭ-Uq*'2MwQGUė,X~m#\}?ZiRa*ʼs]<5ÙD,K&q=o9WiX5kdͻhM/ fRUp,d`BqXs BU:7)X/X#ᘸa("Zudp=b(E+:z'k:Y%~i2Jt #5RM;^%sٿHU]/޿0XMs E t"k J`}VʝlD1ゎ(';aOd+yx}lRљq|Df{5{_3)NHw8gf9S3,X ag*>L;Oz)F"ljψoDȔ sb+):sKVꥋ'C#M5Ev2^7pޏcv;d^}ql! lEF4X_qurf$s'5h,30[ǖuZ493?h6Ulq3rNAY)ւ@|'0qR;y \O`KMu6tFx):9ARuEۢ2VUx`ja1S018*s؎FcC\M?3ǎA۬G/Io"J9i Gn4ON3_۪? ]٫wō^ɴF se5S7=nguYDdV;ķ]=` |sUtKsM:^*}O뉻C6Zzsޖ.:eվ^t_z!;mr; {K6^)"[E"0L-LnZ) S_1o9ҕc>ϩ߂>:^x΀.$= C ~öKɬ?p_SԖ}m<;( e *igb4Tizʤgyg%^vGDセ_ FguA/M. Np3wWӬTI|v]44GY |԰L7Y~M6;,6mߪ}"3ϲEʥ~?t\1vĭv?}j^^Rf q?y-w{D/mF{½-;>ۙ+<4\zA>U]n>76 drj&s +&95({ķm'qOJ's+Q&F6RTi1Lme1|%GTC3!~J3/_a77ی<0eϨ{ݟeY5Ry\d[e`Fr(݀G:,.([0e6RU`,'dix>P,\A<,އ'摡{dY]3Œpc 3jnyA䎯K#˹Qرdu`5tMT.۸ua?šuyjBՆ}"i%Kx`yn=Y_ޑrşʩz_6 갲|\oZXم5nvDk=JW}9IJJ,%rH[4AaQyg Y\9g͹ TeɪxNp'tMsGnCdW[nk݀]o8qf-r]f3 V=6}Q@G+euȡ@]sځY@ˎY_P@BCI: 6̭:ܐa7m*熺\&ێSݦm#xKEԩp\\s!߃ xE>Ag,7zhg޳pͿv:Ik/[$5qQ2#w.kcY 1{-v)Pjk(xdMvѹ?Q@?_1I FILoPP )WIXp k$sQtS=ny9Es;8 o;gɾ)eD7oaM;`dcD3&S=,FXb_r3l/׋sl`H P5Bo,UTL$ ?ZYM(t=6(֩0GQwQwM? wTOCl'73)(^i;S'*,3x-h>װMx_VkHtl4Kdc pi2RXOx*c41xs4QY1 `;JzqqkniyDmp&0n f\r[$nXl;a"/$bʒP@ڨl :neu 5\vPg/q;_$7UP@ -7uAs;, ppgg h hgk%Bvy]73ZQf O;eLJ2((UO;=Q:٢3oV}x6z~LH$p(j;F~۩9`*[5QވۤS!ۢz>ӌY4b;fe8+ [co]GaobX2'ڱlr'c%yQ(ʘ8p{@ifƦYˉ׹=p:u\.(Ľ<~\LQ% Toa`[=w[T=?G;ʨꤷl ݖJ$n(Gamj,!PƢ.y;ܾbՉ`Pծ.:Ag/(_݁=XJmҞnCkMCuFuf-llsS3lͩEUI]uδ(W`;_E3*(cꤞm9)a;4/5+ʽ7T=X_o+}YʍӉnPFBV͵F϶sGr:w}]"Jv[|)v=mUkpUd:ql&hzꚁn/UyU׏LW&+jtgA=خ1~# j%lCF>߅1>u]vnA^SinHL/nO-ʏmtX.+G-J2(*a9D&0*&rSx|8(Z>6S]97g&@X+.6)(%$6jq:I<.`>b c-߇eC׌uu葨wݸP qulĬAk. v|7?8AQqF&3z`L&exs1b0KlCauѵm*l,-~LW/*^G~!٪y JfJ'k&B]SwmᨎqVI9Q?%aYL~.X=TNvN &v*{SG[54[5}*mor5,6V5?u񁡱vEoI,-,Yg^*.Əja"ƪv+j|J:@TbMD9yJV%ɖ!yeS8iM,s#w-@r.s|\͛ͭ$\fW粨k2ݴ3"6Be㏢iVx?F_|by"]\ qzE]$o}fI0R@5K #Ph|,C\5dgP6W` ̎mF M z`./`*;!q~B$OٶM+u.W-/Jv~{t… p Ki^qϢFWpοb^}2<-k''nv n\DG?18ʲ8\l_rQps={Ys\8牋<qp*\DZMPs9ƆX4m)lۦ.z:Rr7?nh=J信,p@3_ǡI68rFC-k*^;*I' $G# np;P3:ƶRx>5nو_vRExn(wwB}Ӂ:?6۫'Qi@?YI\?0;e;2o~d9#gcnz(؀8~ >+9!q]J]J=)ܨo^z;uxwRq6mhSF4kcK[y_=W6/j6t6= m*B[6W:ط~x~u{8 hpop ~w?n=z|?.dCl:Ɵr83wwV.(]/>Svzc\j=zOZdZRУiih6YSFg-G3:#tIZW謷/y"|5 mO sekk_2f[_n錹wpp'bڦ <5M];H9tyh)Q1N~59Zu֢moYjZV?Mmj/x6v]ˌ[ m5vyYd rs[uOX4g q;m/Iڪ&8t];E84Kث6 >ԕl}J@葡 :I[* Ze,@Ȩ} 7ł¢4bһE7m&: G-\"ve`-:榛"`/: 8.J@byfSd1RkƲ)(2I,˄rlGA`yrf0(MRd@}e7  U+d[WGr1j-}VMlJsr6ʅ)GwSgUaxm@r36*5XYȆ"ur0֜VُVMw3-7ZϖE叚;/Ր\sw35wk窱M;1; J&nσ1QFrEaA45cV)tT^#=&"dxYc#6ǰ"l*?!9r_PU{U1,?oJoC(Ӡ'꤆x<#*MdfWaTah U؟Fty66EWUjx.F&JV:[ v_a/kc?|̽g;IҪD"֢TBI#Ak)Z_^ڢZK*ZVBiNZ[lU{L>ϝ;w<;c"tS5 l͓h,V]湰U0e78s*^̒{e2{= HG< ؂^٢NSϘu.h$q^fA˾ڂ^IϦ oe7">[u5+3C#?9?c\=*<>S]z=d1 ZrX+! D6-h#>kBx_WzLyYG"Th9Es"d";ިKL$ 4 N"7jk,}⼘zW<Ùr/K̜X%djY'-"5]fh * 5O+ s&/UJ R1K_ɏspX,v 9T5zK4'Iek V=/F|a]ys+BdRъ VW&`H#@,w(g(K՚ B7W(|ZEsT lſhpIanQp q4 Uh%TI4Vyg mE2FCp]%LdU@xeZʻRdU-Q%TIU&m79Bc >[*@kT!u9-S<6 ؚƸg]P`>{ )jTI-#VV%cx ܯm>U4Jm{0O<6:<-v'6ӭrnkXC6䂱V}jJ^C`VuaX76C蕰+`ϗ:?ix54;I.y>cuyxo(cd'>C20=V5m/6T +'Ric1("UT![߄V%#ڋVbKMc#ziRP=Q*X"žaS4 ٪n;LAݭ, 4HkIJ?pxϤ Ysv ?ima1M#cѬ*wA#wYY{9 5yCyP,isqD)tH :$^ukhK1'd}``}Do9QXkzOD+nXiV]Wس9Dn8 +h] =6|Mlc-=By˺ف7#7zQuUc%Y͋mkmWCdXJxODvBus6m`L]cMy" 6QNUb2U2̓UR(5_k9Žw \Xk>IS5}Kx̦`lTJ*TnS@Ԓ3Ŋt*(ˊt)}րHvqGG%L)6b'ngX<9]Vs:ACOt6T!D dmaaļ ; qO 'i ͇mbwm@XK*v9/2<״ ïȭNyvur-$!kkKnYw.uk` .muBsa\jcgpkvbˮUM7^.w{1bX_9; >Ն{WU-MvW&Y]0j][Ds$ ws,WK>jV5U ;?\9'pR r#S?{`DCV/i4E4txQ ԍBѝxo f5[v@OP«c, 6\ (kE4cΣ"{ԗ~X}i"}e=F%cM]5-"X{ $f~],GĨ>df5|ٓ).Jweqp Y?CH&kK4U060܌;Yc;\f_|IiV7]REUk&UӬt\?F9>ĺu[MͲ9Xo]"ꪱm$k`ޞAcٯVʴGGzYX}5k34JM:U W^v VX#"zXQ'F. թu16]ceS;(P VYf/sQ6ՠ-Ҟ˪șކUDmF0}"MccM]6B_cXX%7sSl aaU'*6' 4,j@,0*'/2`F|0/k岍ʏ-Nd["jgUs[SxOcqxbxjO Xl%F"Ot?uU+ fU"X?$^ji6#hGCo=EL{47 =Fw7t!dx7$J9!`ah%[Q"V;=? vX4Cy*a1|M3<72~%ڈcuMC]Og=Z>,}Ƽx/Es`aJ®NX/c` )*6?F^rFyXD@Fp++e; Þ-< X;HcusÞ +?`Wݕ(n4\7#>8+[%`JnjsB8GK:\yߔH,1}'61j)] K!k)"pwQ?VCRHB,ڔH=c=bYEꫳV?`z t_t)T}b?ߊh)@*+!k}K 9E֛5M{sI/%O#ߩ՚S%ݏVaE/w8[j4ƵC1vqUu4R:`,Aa(#g`]N!CA#yK4E ӳ4O50t MRQY1~2] >>coaMM$%t39NI8K1וNd򰏙s$Y8پ!U眯b3F]p7rN0%gTЫ71y-0Frρfe\ ~m5ePE.zc@Yy7bϪ729pWYlN@sʮ:ݰOo~͑*[_h3uTCa EtP3r%dy>.G8ۧ)@}q kxm\~yD3zbx=K}I՟dVD q'SY60_n}eyYcfqFy$bZkĘ-*y=E]*X("$[L9\<4D$3#Y"|>DWz2WAV]hFAPU|/ ⑦mʉK2M5k4蕹hL!i}>F|fΗvE~G醗y= 1K\9^c.YoGV ˣ+YI:+YOU>O@zVX'Z1sh>ǃFL}MOzk|xFlZ59$Ul$YV`* QKj蒹Lo 1RgQa,%%GVQ`,a0b4DG4rSafv1KEgܴc{ g[\{ےa(O 619#ȵ﯃ס*NXu={vlz#h wwdМz#`P^zHQ%0 ,V!u*zoX`7 1 Zlڜl*=11Zz*Qڜy@wD,(6-ſj c/yM-e<ZM` d` Z*"'Xau3eL9AG`fe-/D͂ Ec+|!kdw?jCGGh9#Yrtg_E$0Tm,Ciֆ<~Enf0>YQ'Pԟ9Պ &WEiX4캱xH(m">G`_766YzOά9{X63?eCrQblLP-<U3Ua;UT"Xl1 tLABM3QeMwr}B t9 ?e s\U@ܕa/a:"v͑ Kc暟[_zU\Y^sهo ;JrbSBϏi7]S czaf6}'gf5W: Yvo^ sk7h7]Y^jJJB3̮i%qh3F#ޣ6x샬jFIY.|9m)O΃둾ɗ_>| ^6z6)bg*\Y >&G;~A B<Lq*Dt1;8C|@`ny[CW4 V'^5vB%i!!{ bӌhmjA;79jvj. rpc#t:F=Fߨ %qr<˳a4cځ⾽(>2Ɣf}F$\t Fo8p~D=C{CvNUYz#ݨ(FmMI$nSVx 㠜>MbeUp}%2r8\\S}@ώϠYAM;`ǜըNV%*a"=vVY#gOrJ㴑ًM(6r+{QArEϩT76Qk.dSN*r/s՛Y9 No7To(s *drZD%k&'A'5*5 1aώ ;%];L>wTT  mF3-\;'JP^w&_FTGA@B==xlyz!;!˜zu朙A)nf0CR*)HQ*Qdw,m,cCky?us:3kV~1M|9-j:BK(X4.Giξ:Xshqs߉)K9C`Zܯa-Ri &j7-[ |-^y ņrv]m jJax/ADGcŻޠ X>\lw[ < Q NKys>f)Ǭ%:Ⱥ欚`epm9uE9kٴ9[knka˦lD&Ҳ@(E@i9vW hbjI_d\VkpR'ú` e') XGL=A wLK'hC ++j.p:6W,A1'֚Ϲץ$6}Rz^6FU:0◂9s?}k b$ڌrwXkVbk~{E[yur1\y_|37Uek~^O< [O39Xc4v8;cazqpsb~c5O=^L),`9+[3Nb'=S+$$`s`3_a9`L=;#+` 7t`a3ο$5껓h+~6vW7ayFN?~5X˷$7\E>)vv\ȷfslƟk.5,=F?TYg:0&_t:$ gHލ5~Dr  ֌9;Ցe%?:T~!XN>LGUCU X9쁵.X;=#BgyOg6!o{BC xGtrmu YGic-UqKcX ݆uw1mm ,w.b:۟FqwS-q>/S}'XwpGppG ;؞#˘ǀ#܆gz >|yVrw;_U݉.lXr t`M*ps: at(JےR[3Yav=?YNS^ uaշ>uu\ m 58xy~@[}ϦQ1ýY>_f+ nC@۫',!F_}sϲݞcCE/)8v$Q#^ l={3US+U>ptO;|pjȗmzHgO/Dx+xTid,zK)ϊIfJNKʯ&^j;;™5lG ߀M6oZ"khx8ۯ4KVU=N+YuX+i>e ?ԫAVО2WQkj aΣ]|^$Z~+tf+VvXga쿻j zOwDO#[*d:ܠr˽|n 7D*:VΖı} ndU(Q_7od𽣇zMՓ%-TWGYVkY=>n^IzCáf8jՏ'|6"jܦ&&dXNኪi>jb̳&TK._́7E5Ϣj*k๴J>KwT+oRx~J]qQ0aUA2Lߒkջ3+=}Pwi(,R[iqE<FXAQV}N#Onq[Br5C0gJrGiSaL4ZQwuA}Zpeyu6U@Р~U-K惨o)g꫱z4HT&4 D *;Qx0ɺyVYݏ@w cl,B]#bhnw`a񂴢g-V٘7/47Shuś{_k G9^c$C~nJῈzBN[Q:~X6D5WDl&G`B l, .$^V0eZ3*ʖ_}?'[c8A݃IXս#~"7S;fcMXOL#i|1LO"7%8܆B_sc\waK{`#^ukI#rZ7?H.yM%fhVzx$,.ƚ.^Ne@ofR`W`I 7T)to3 8mO]8iy&k 7}\S$,VG$,rb8b'\E[1A s+c*a2({#´?('/IlRQ]a(@nχ|R_ z,Ɂ5O4!x; $dUC$!9drg3՚m*6SͷN),v=\v@}_n-O`hI0lyP[;.^af Չ֘ Q9Οv n n<p5Wz]L6Umq1`uݖ +^L];wF9ixܒuea찝*>@f??NrU] \ ׵)+?g`^n˜JjFg`b8&[4d/^s˻yyk$1?GvхPٟdWAΑ;w+f'vMd'?:ߢ@aL]0 iYU̯cOpWE1 lӣ/4r*'>gM(ǘiD˙r:DvX+78):uA  MяA5^cnƢ迲Ӏ*ǘ>P P j5*y7/GMWW L Q4>3_뭼N. ?⯂ m3o8\QdN5Uv*"Yt&Y'w@1MֈSf2@ -wWTw՘z骺XCVQ0ِw>!}=x/(wph7ߨdaX( bJmy(Y*bAgS,&rW lJl/R?%Hh#gR#GyI*gҾd۩6lO#KUKmp2_?caU&x~x@5,\Q=_V۪6x.8ںm_B7ē 4W-T7cKQUiZ=N{oAPzoҪ OÆGr E*me aL\EoDCp/$Zl1 c{*vW4 =^@bi j LkTo?`cQEWDte}DU~;$b8yS]8 {gX_2g}+i/XИCC\1tzv:ak0?־ǑDZu}aJYiPԻO]`u:zyRd1 0LαN3L8W?/Gsw7̂+?pߏprG^EM>o¾"{v>(h#Ń|*3Jhż"_$Ϗ7p&8 6GoW+\^/dy3,Վ#ۡ7Y.*-wGty+?]|ٖ׃d2Կ,Pá:8j$$Y6UѬ,Y!o֘<hVoڨ,/mԯWf^\zihY#t}=. NG(ozjy*YNQӢa^愓DZEKjaxB3ߛn³e vh@հ.l,%Ϣ684}O4}Ky(H+Y ^,*h5llyZe!m^@ 3M<^syi)kUYJz_$OYxgYv`qV5rc4O3WZ~v^G]FşEG x'alYg{֩fG, .yK$&E 1t{aښ^/bb"_ژODփr!OxzBwiXw FT 2ƞj1;ŖO9<4zmc=NZd%JZ_ll$vC"x|`1|l@ZKg15鼪lSUEw QsASCwBY;8u0ֈe d oMs@ü)) ހo%wXsk;y.tgaˬpfnKD: V86uXq~\;xcFg=o-GuYy>l/C.ZK`N5v:3D\gg%CZ;a~68dVcwʈ]E l?|bykINm>\ڦOtjwa;Ns'WrJ le;_Kх%>%aZ%+\XAeORsYv.î'<\qXCZkF׬%H.`WkH.OQCIOӭQmf`Ng^a:,Y@~a^S-݇w竉R+ΐ(Z+YaէGiX\` 9g;Lţ[b2ۡ[AN.7Xx؇oỷ喘[?|M!LOC``-n,z=w7ꖏ1wY?bπ;bS?\ug םdIOg~<0^nk>dwPGմ-x%9~A2(Afz}^w`ep'j33>޻ױop7p~;o=}1+ fOU٪7Gygtq~.7}$h&٢r,+;?h?,wOF8KQKj !$pOY&Oף7#a\[9zWV_e*ް*,CSC0cF}ު}:Oj{0t9PN<_+hwz\jLӫxaZ}GjzM= o%_ǽ젾MkqCؐ5ǿ?GWyUFkֶ#+j,@?QbO(hVa"A6!tw -nY;#PJ~L+1gx4bBY׵߁WN+St16f ݘ;[Ʌ|C_q֝UZ_Bԃ} cXE=ƚbLey9O=U[T0uEּ}1_M[ FM䷩x}ы =a10:+-*QG`UXi{'܂l:wa\cIN ^Z exZ᷅=h[c`Qhр?OՂ}FyzVdm}~-{3|{}=*F->+%ivZ rcnc-r.lmNGyX%:_%獙vCw)JC5h2W+hi-v!Q|gMtwAomL4wRaLJNz{XzA oi9h)qTrܙ_SQA’_T=M䨳BQ^F=oBwe09n${-5nj';,p&x4l'*VKo@nEGݨOBհV$Z|o8> Tq*p*Qҷ-L.RQ3*}nRKuj$bB=^~~C7l|IuU= ^N[Vj8ڰxeM;rzɲyG4Tz2ۍ7_2IcIbjx;Y銸m/Wati+Jo^MUylS֦iwkDxp/F6<+BGCqMBu8yl_PMRU9AVf/C'u~ *=Q%br6FdJϏG\Ycڪ:D?Bwգpp Xe|<ŖǁM᷐-R_;(l|jwP#Q [Q"og#"ϪT+J6l}TR%o}Gc}b jOC4$ cŇb6}>Tڏ|uOfªS#P$L%JU1&v}b q¦?e팥 Vs0'ú" VȍX _A7^sKBEV j;6b] a]#X+B 纩yJha7}&ʢW?48+hk{W%u:,1D;7e3%X=1rvu͇A0lݱr翓` c޿[X6LT `C-j(񙦨;nC>Z&:`W[Kqo?⍱W"ݜ A{n+}s8ߚCl%3+`0ʶ7wc_u4idwGk`Xv먯$쪟)y:V/s@_Q)*X^7ak 7򭕸f{lVZ7u"&g;:ZrfYk^9>r)rZck;M>'9[)(?*ϵւw7 >눲 Bf57:mƿiZq?AF!xC*X;۾>,'C+>N`;uܟ4|=%$ >B}-ʾft{upIp+r2_p[rf{t\ ċ[[>ȎuPq y}}\/gExfrP~Un%٦s6WC% ;7p&$A;DF+*bNlӾ t">Ǫ8NRá U>=;7{Uǒۖ{}p4DpOA g%`uozfJYɨ,8#ؔ5U_\e:p82TK=n;&+ԧx;[~頚Om}Wm~ΫT&x=/xثEVW!}tKNU(+^DAo764khiKG$eKmABWp6Ǩ u1U,Uwlp#TgXai)gu{:fXV S_~0 !gn!'xr,8'?aI \/JU'\Z/ſu\4a&8UU UmqRAQ_[yIϞ)X+ִw켶f}Eca .ꇫ(=9.룭+cpgc]>t j<Ih!E?kW X{e{Иb}YqqUZ$(<1mW(VW0Դgv5ݎu4Ƥx 6 y?Fk$ &Yk!b:)a?HtN"1ϖ{3։;RչX{%BZCn_`ZF_X1]Oc|yW N]%yG`ϸ] 0W~~藇% ͇~ @[7tXGAVv=RAw<,'lOa_[vXm GM7DMKelKt Qƒ`@AEٚY*SZD=kM^X1e֟ZWWaF<{X'ן馦ݎflk:i6Vf巶ʎ OgY$h/K.zVr3G?֘C=/[K|4r*Bΰo`z[KAtlB[h ${49EMO[KUr4ߺHY^5, >_uS9t`ta>1¦Akub)^˰N?6^kOF} b37 r==B 6wGlCu-&gu؞wdO5m~3ԯCZrQ~:M[' ُiymn#Hr1amV=ŋ86yoxC&z7 mp{W G[Gh<.z ^Lȓ5go0Zd>No󊀻Dcr7 sֳ_w'ї6ʞ~ܛlwkǥ߫tGUOAw&+cћ*N#+,P.]LS{mz{5h/cxo8v_ .<+^9od. Vu|ʀ_== }$kUKpITgZS9 u,(/  |k͡UY~op_iQٍWu_(ciyo0_k[9=[I>S#x/l x,Fm4u|VxasicZ~4ƾ@6 O)]݊|1^so+~IúDꨠ4X}v]\љi1Eh}ZMj˨oPWke2QX<-ߺA(D!:=XemT&``M`-e7Q>] zC'W>,W>sus9!uВy&Θ䮗cyh-q&w8kI]|?e[9ItB+G9w4[.mDΊ7m97r}A`vZi-MSIchrqtru6ӑV>eG",։FDr%[]FakCwauq:':tikdZ rؙ˫VS;~XKsAX`߸#|^T\hwp [U AU-s=J(M~(Du兄᮪C-äSZ\Zg)oͧ2dޞ:oA$wFQ,p s hW}y,|WE*OGEQu&/zŵ D }EM!YL{%PKF1=j1[mQImPj{֦V7MVY`#QBͱr <e84괓sx,TO>%<[-/ BoKc9W+zُ+\e9@}-Ǔee4SLqrQ/Zd%7%7;t [5DN6ʠ`֥@efŧcϣzQyꅡskZkOͧ t i9z04jꭏk!m zSAQVXP(ah$ր=N145[ @ 5oe(T)b7l-E_C+ azĦ'EXJ-gű|N3:s[ȣQ c;Zokşv[*u%Qčp-Ɍ1ƿ5SɼyVZn]xlh.[I354p5c I`&67LY_>Nk-JcFt0߃Oh* MSE_hOї_I|ܶƼƻ1ErZ {13Rĉ_r[Dq0Я4vo[Ka1FnxߡeaKٮo)Eo|Egx%OL3b8o9[nUkOkz' WɄ 9vu;`1ɭ.yF:=uokZ ~-Ky#tp-4kO~ω noےslm6hm8FI ^Lp;(bfpc {G/ws"ܑ{atx,#:^^J;+s.r(@^}\ЩlU9p*Fk_^A1mGoYNoכg6=+:n*anE#f%[TQgB{M* D7ùѰ>hXhd^ i;x zbAZ =Ti5 { 5< 72|HCM e,cumpoZ/+<Q4k8܁>Ƈ~l*rHxH@6BW'DGR,U{]SDjxu :.-fFd]4Uq/ul |]p >WCq<\"$}TP, U"tEwǡn,=Zy_I u(94`UCf{)A7&F&jJw#Q}`]Tْ;Z#4qOG*6FqmCWL^=|J!kU#А7&aqax7 ͧ=lheQ=ӠaPX&ׅa( + #Rl39iie ('(@QPEPDe(2]*{Q P}I4i+&*'+JQ\%mWo"BwT[k .T Vw^Xz뮄~q5kT6Eo򞇚(5{5͖Q#I5 ۬<:zwǥ,Mvz4cPG9)"+CWh.gFx?woB]B#Q3!υ*My L-YUr2jMfǩ -%z|l;!2lT(u}dVVA ͿŊ/~*hG645K`߈mն{iY^P|y;.Mun@''F4dC8(D͞g뱈:X3ƈ>·,^3X,D|!74]$9BKJ5|#9ʳXǽ%pPX}GDdw ~+DnH[%UX-㠎axDE>\(!7~\qbdwv Wm["vNOʵ(mk8'5,k^I埣t# Ԃ{PRt@Bunнtٰxy %?(f3^U9 TB602*N[t)YV)QᚵjW놴3o1RGahbbCrF⸰:~W(C}}u;3M_4azxףk)?{WU2>4zy :WW->V%K#\1g0u۽rwY,mqPO or}>ox]b()dcl}֠1<=7l%!nk[*TZ}"< ?V.g%)V (M=E*yPV""ʊdJR}&EЧ:DchΏ4*8U-(z5oT1(cujɒIVeV ڲx\U3T=ICr(媉%FOWAE\+5@5EFz lNmhNƲ]&|5ګ pJ%(X:amErWRF&YU4!NS& V!%{/A[Q{;VVd$ܔ \@B72iՑOArJuyPzVIUrMjk^rEjøC@(/-~SWpQD-h J 8͜"0dJ<5ɹL9HҔY)%DMG-(m :c_nŘS'Ջ~(:agS`-,tEuUJ ٹGƼry_[HSOzqV|@XZ;`kucXog$cUg# "mϒBrDWZM5OXE{t.-.,"M#OV#{b䕳٭u"*^Qݫ\8J?CoV~ޖgJlD.!\죭ǼGE죭!vH>M#X/4 \4yO(Duz%RF/am :>yUSOؙ(پfb=bMS mTjgRb"ؓ1vguw;̣أ?e7rBoB[Us[`wETE,Һv#R)5vsr syoKȲ,R28\fxU%cw!ұ ›||{}kQ\b-Eq/j!Kd~.O.*?t&vOw95r]/ V]$,UE=?S~k̲}>DNu}km^(8 ?kwUp$j{M~QTֻT,y{(JlSG=k6?vWQc U'^m6*8g ěQ֨Ij-I}={M=k6mԓ7Yms zU;}בgP-ْmZ"~ݫWݱcΧZfoGEu5@>I6㺚ZKx32Abb~Mz!tRtk`oߢ^~>+D~D31γz)3z7LQ !o|#k vug [r;ōPQ%Q%yZ'=Nd51wf!96Jx*{, |LMܶ|D+FssMѦQ"Ti1~lʠJsAJE^PUK :(LjAj|HG7sj=0t~ BBikAD: G6E^R.jv ³ZIvѢV_Lg7JeoFxqJ7iF^9NStr U4m楬^Ҍ=LrUcՉ"WL|F><-y"9l4В%J:oR1hk/PZ&r1x߱ʦQN=VhM(p*ւO(47ϴ͎-1;$VӶC;ջ[Cϼ.Pj${RJ^͖q,8ڹw?I6 &n*x;r%\ћz1mSPm65"С=0nC3*UG2:B/ddXhTf^vh۴3T&QAxka{E&Bҿњxg9߳JqEIrWb/9),S>e)5ͳ\AO'SHz:A lCy"4?5MM(wBtWE,|xnC%{݇6Eijꡌl?L&4Kmq^&GR\kQg i`Omʔzuykwk?&˺ԫr3lw&+6ULjfvJM.m_enٸbJs]?Hh+H]TI`eQ-e|cl{-mJߒ^㠇JMO] ~Pfzv7eP#OXwzaW%tݟJd~I{p{b(7:/k+suze]/PE7ScmlX{*@pb^cETNUݪꄏFsp>T_ .BQ7AnD֣L{RףL藱ujlUOu:7xA)O$k4 s6*۔ ꯖTc-C@G{ #wGhoK5폺eBG:L#{~eZl-0;^5{zٍsPgpzGvNp%v#kBrPRzSt_(GO֠(W*M,D5p։cϛKQr~guRўo)Q} GUn34k]Jgў9/tM +%T.eur6b?>i_Aɬ2{@7BQ&9߳*6KD5J~]3C-a1"~31ae:>]Rd@URCrs?9ͱ2}^TSR65Q<(Slp̫j8*nS"GC,ߪ^;GNsV9MrwҔE;p(CcVIo}Գ6~"걳!1Q3M)?)$U?Ź%˄e4MwyPP.ͰJX}NW/_enb^!pP6 eC'DWcsPZ DrHP#{ymM&K5ӾF7[e^=.P 3@Ǽ@qTf$ʘmk3SQ1kv:vgprB;~㿜RnkEvsNo;nwo[zgl}fKB2,'վl٦'cQ*EUO=7@5@MZ!t?!;5\civ(ZX~)ϭPEcRtE FqlS`v8'U*bՉ1}dvcu]؃zjTdϳKeC_(^n>6-*v{ڥfdOZ'u؏?A2z:)zAAk(?kIJ29X[&4u|V|^Lr4bjBkҚ|l-6ٟ=݆TՌVwje1h϶d-XJGTgՀ8n^l;4Nyg7V,? F^ CDkxUjr8GA^=[e.sjZ#4SiU ܎N1nۙ3KJ# yFt"<@coSk$+PM(MUcVJzb< ECv"-` zڲ| B/p~zPXThAƁC| ʲCP4R77SCTFV\Kꂸ nV` ʒ{h>VY=JO+)ft>gߥ[b&,QuP _A[\F?Ưs`kb!JoyS@YҜ"9j()+[┓(mOYAЋFu,~ JCgi9w.6cW$^AYVq'ы` xۯh[,T3OE:YǕ5o.Jo;7~TlbC%2BCΎǼP:o$ђP D笕ct;F˕sP*g1 ߛ=z1- lj>?hZb%UGeQrF t{M+2޽@;#"&A7ķ(=M fQ3c"t]3R.b:sP'g/-=FNG.a쏆>u19X7(UsѠ'fD#jZ`_䪟ej/&HYywItt`:sћ^`U:{\`#Juu3)K09D ]TTr(z3ω 92<4eQ̿:E+ʠECS(C:>ym?+ݝ[RnEI3(KsòxiVFfI[{NT* &'q,', n4[f _ז<oȝq$jf؝fq}lsu~fg:";<ф=r`vDCsU"G CnES4݉"R {2nӍt9܋\rV .]S?S*F݅{7{ (wr Jݍ?uI)c 9tV0pEΚslrP5 Y]&7=zvfW݃H>zr:0GGvOwXOم}jb|Hp»{=Ih1#{fw_5Hp>1u Yo3lRq_o[p):3A Gg%z*Iec׏yiEv?'&T.nsCVCdn]ŜA+gdU]T=lgSB !u/l(X EVͳP{.iJ C_=\%!kEآ4TDvT?A6= :3A5uOQ}5Qnh;\tQp8-Vy-Ɗui5-ر,X %:CЊvcWըXa:o%:JYC#ꥐf/hѨ7M5^u:VufMkS[ڼv%hjE%K\Cqэb2i h2Z>%8wEkBQhUGA\o|Ql5}o,7ߋJV#Mw[{5z؉j댠ڽbuiK6ρAiKL:l)>TFB)[ܧZŢq2+Q\_jgP7 Pܞ]@3Y_r轀[$*F(6+toԍ 8D9j1ԋd?Sϯ)[[T2,oI^Pw>I}سPe(*|  yz7`\Q|z{@y$wҝNh/ЊGOc_eO*{ PTQBנ\ߐ^-(B+E9.D hšAvX`_aUGVŠ I`9jJnw/x[|Yzr|ZO91+Tq 0KEQ\I=TѰPESV]wG <]ڑͧM砕V)Q3芟K",K69y1ӊæ_m[{h=3P&9$Qw[ȾHGwPH9ꆕBeמRhwOa񛺊UȂ䠮 BVZTOȗF!j]xb?ި"j%~;[L93noʷ)v.)ǰsV-UUK |* vZnSQO'eiQ[6%; |lUюVW`%gVA+(^=bkkȯ7;sU䇰G3dxonߍ^lrn؋$=G/=\daj~ogq~.4%c[NQ}1 J w`$;Wb * -_rh-7w0cpϢӹ"vPEPvKU{IpJnM*lVw+},Jr$ eا(fScb fT6UFlkޛ@_'Ⱥ>bi\"{>ƴ@U=ݿGjXdK0K?-qd݃T.jqYñ =T_ǨD`bMޗ 4֧M`_?Si  b&K6ZU?N;P~A<ҋi}2WX]BVΠhhD fOkxEc>?N@1כX7ZUQ~ NB(?1'k/~2Xŋ-4=VqVPeVl xq|mkrF}(4PDF c2UP_F#3MC[U^\ww OY݌*t#E3,1U6'QO϶jzU$ZQw,jIѦ/E5$t1(G=ViT˻cn/O% #2^m96Vo6{oƶP~u&ə|*½PULY3읇+| }eE]2?f/ dڟt Ն=<.*J#T;vtB*S$9{xuC;*TvF,hy|U :S*Hg75kVXu?#C?L^M'^Ī@%U#ܻ eZJzY+zD&w2`V*uSYL$V͡](--F *25D-JFd3}H 'b^_m(?` *gu*Z˻K-oYm@@BˍL18pOW2qT*9k i/KurAY]!U=*:ͿKl%(˺7tivMvDͰǵ!'`>\˛C/.A52@o@=b>pC I>wyN_7x7]<X吃|]ҡ輟jsY^>6=|O4M.BCPFzV9d? -]=d:w]Q8ڝbbg*folt!/;>r8EOs o]-^mؙ{?oF ~ ܆6:)~s-z|y9ئƘ4+g͏z _'?[Z_>mZMg[)+  sTvW|Dlm7a:_]M/pۚh/4Uδ}(mwu^sq4m#Og{a7';M+5lKO_Ђ7]?a~]~<_5oAM7[EV]{P~ (nkrUbwdANF>z!z.Zpz*hAvj`6zܧj-l*6^(oc^/ލlfY|>2ӘtCٍ:1nWj2صyjn_t]+Mtn^95 h1bY؄%GROǮucGU5WPyu܏՘hTSZ%ewPyZ]ε],@ S)'z#GVX;,/ {$5\t@qEPjL/DozP#^vi`d6WO"Fi8GpCN-ZvXl}]׋v @ N(hȹ"fJ4Uh]9RnB=RoAЦ#ͭZЦ-_5~uxB}#^tXh~|%oJ eA^aQS9g"Sj4XGԣh|6Ckzeq ~wOO+R(ՙOҪe:33踣2]q?mm"JkPZ1GK>N^CZ9nFs.Lu.UOC@JǨ#ẉhP6;{xh A I?8Q_'*gŖBKEVZ`mGN<,|B>QE{aY渕f+S?"h7)|K]B_lg *%\tg AfBUCSE'wPYouJe[V=>!7D]Y_چnPJ.řO.ND\oZe *gHf^y(L99\'*;G7Y'lX|!*?bᲜvnO8чs}hL%_E]vM|)_"jtA6mѿ_}T5n7仡bXbqyd`NW-YK{]%|j *l ztYx˦8toUTlX"> 2KU;o ڮ6*VS:rpW0}vFT%u y찖(fwW/E1ueM.:묚ql:P=v-=ג|=` nkݽ>y݇|z;8B6|oⰻqd鿳{l,vy]- woQ)]t[OݟϝƯvO߰b[c>J7٢=:l7=J֦Z`~-kue# j|мg?M^PM:{[g?Ӽ3W.{}TH_Fvm6MXt$*IEyn:Zl/";e{_i-٪SOh-)$iCh ӡ@~IkqV7hg;sռluO@wPnٛr Mg2 Pu8VlwZש)m|_exiLHjh*8mFVìrEe+zx|"11^WxL<$OD20M]~j7u;S5{q-Yc{XmğXeAۘw2wj\Y(>-ٯ[=ZѠKx+'ͽPW 6jɖ*ݓEL%u;okXsZ*cvY 2O ԉhY[n)Χ!tը Cr 7rr>s:5Z,Xth8‹Z?GqoՇ7㧜PSnY5r JZ;߲WzTroa2>ZZ5zehZqci >I%\myWZP%~5CDJZX1rZkltP@8&bղ N+u]?JS%ɵ_B%97s~{[:n(3e.9hڈMҨ>YU{5t3= ]$tF`F Y:-Tv :.=LE#gvRl}みy/D(}ue/Ѵ>Y/ϴZxJ.9zOBr%z'+rCչGXB#uF2PYӠw":{SKԃ;QuAu{C!ѾP~ AY]>T4B\9H%(SDWKvI%Yp)qA9;&UU$oC Oscn[4K8*^VcgQ{q9)6hsB|Tuד$V~i4Y*`ؖ S-޺m;ݝUYf3s[6ncr]Qa^vrD޲{ 8MUiE9跞&5z.ApOQ=&6.Cxͱn ySؽ^*X-w {+vvE ѾLG[D~ f~dnm^劈mz,gvcg:4T#p9< >`n=WrBmP)1ovRETo4^s& l ?Gcg}(g9d16 /Y]Ztw6*YB;[VA&_, 4V|}6I Uu">Yy&8;.U4! y*>g+h]5i-(jb"{ˈ$a-U-xՈ*(*s6|:&PqOCLXQYeWᴚ-EBՅ:j2QH9!1 z >k}E>lLe=j?X#TW Jc5ҜM>=lbXk_Ch՚}, :QkϪzoJ,Pep[rEԝUBS< n9u確>ߋJYu -8CimTu [i ',ޏմ/Ѳ'W (V#V}@Di ꚷJvP]QZN r~l4[i̹KN眻N[4m-YJqsQ[y B< |O 4ч|T*}͹?,g-{\ -̰2me⥠x(tA% |,t78,>_|+++g?x3΁ҁ)?,v7mV9,Za)踈# vVF6[:Gh_{VE%4|U,).@Ҳ@jAX_Ez]-d E}lȃ9PAYY(2&9ӡ <|Wn  yTWV : }-<}},v eCy4g*kGݾp1Tk$y?9vZ_i(x L!%oҼ68KEZ˷iWrR/ 9ALN){)g4VFCs>IA q\&>;C5iшiޏѧ`VPd`9G9!g79A!z4Z=*~MǢL~w(mmdGVU)Z+Zn:NUSȼ⛼Zd`1?rla^e7,˾KxL^֏ʲs69l -3Uh;9)GW`yEvPmkU]~UoGPb_U7]lR*ŋK_}3 o_ +Fr*9cwWw+S y^=>Qe_[/mxݍ*IzQUTܸ`Y ؟a>hww >d|X RڽWlna%;<(cCd-;9ͳr'u]^N_<ڐvZ{U6HaU0jdCv~{{* Y/Ni#3(^7B ]rG!VrwІUx9_ebhQ4®O;{譇Y T؃(b4v/htX'i}]N{ZƅιCi*GiՏ>#OY jʦ⤩4s\w8cAeWZC} .Қ'x5й_&;bUjImiv^BK4W|/?њNkk5qK Dj(yŪimw e ZaSO1VWRgܿБA:Sݼs+㶴:9sd^PgB=n,6YC5swyG"@urŹLeGрݽ<(WhY5o6.]eB#4( W*#PU5'U/3<'V3 )3(U>LYcJV[U5D: 7b*,=Wh)? u+g,{ߪ/q8*zՍ>AMWP<Z:/<s ~UT{7 UiRВJ Rl`c,JY ( ]QĕJ( 53C{@5%u T5SRV3Iщ1c5䉰2vv>#7B%X9M<2#R˼2Q)r> wwxm;r?d?eQC sNx#Quq}7'^Ge3V.9ȶ栳\S6=Mf9!TVH:SܨtőLGx~Єc9(͟@MU0u/i^gKɗzc76k\5%wQPǰucJP5v䌞1+K {9l1A4PM2 ar39TRf W*`bg[Tw>Eٟ>a槑*K\~ //V,=5i(jFx穛>v[lY$uCz/c/Eω1=W;eCo~T#QYLAZ=7((jKoښZ N_E)T_zw6m,~׫XJvCi[RkflBZeh;wjL;>ET{%4i:%⼞}e4Y{hV;ʙ& EmK(%BݬZ3 Bh5OMYdO*@$Z@#UsUܴJ?GT[DϏj<.ƻL%z.jnX$VBD[:F4Nַ>nW8jتEB͜DA` O>]7ė\AGYRy)9OhgOf2+*sy)_`Ou:3r*vA*EG*|clQؿFj`Ւ_Ma{ ͤmܞbhc"Ge],G5Vv\Oe|=@&"Ff%umJ/h]IEMžma: qC>uZ$brw"^3fZK=JFfN6A[RTPkہv =wG[2H/=L`KX9fXTi+6Zv؉vž*j;vE}&m9/OC[@-DY|YŻت; gOتh.sxXyxXMԒU:Jvg!a\KS؝͟yMc,@To$6R@4Jt#] f;9{GQqUHg އ q>2M4]FA""V$(VэhgF #t|ijLA/qx'AqV7/A,ˠ7*QAM[VAtN3DL k^H|!n t**}\wP+L, *gz 4^b >u-DGc5tHԧR-#)[?[ݙ6'1+ԝһgh2P?iU_gtO|u{4uUvX!>/m tZ[6 .cF9]tDV,M *Fth`6˦8ĢpelZ#,TlDQo 2?u溛,+U bO\^(>b*G7U(To6W\QM#'AUYP:4DBYuqϡAyŇη7R[g{rd2]BX{t3eه|ѨzVP;Y&DY[fyg=&QH㛠k!Wؽ/~[T@12 {,W)Cm $ҝ=|}G:kE͠~tq%x^otuDPSu誢1$Fv { ȯ/A[iVY!+`oǸz@> 7gsՋ7CHVPxUtQHTS o(a0VMm2JW+PAgPA}72}>~҉7ԻI+WtU:l%3I/62F>Nk3ԩb+9 *fRlU$j/1؃O.]g69'67lt_>JG}_& Ezv {&ȿߙcU&9c&A37TK.UF˨v_Dkp[=|;E%؃_X}m@1 vP|ad_~H_b_z+D^=4:耗ٗ>=@G"adVKJUE/f+#J%JbD Ӝ-W6{ضi͚<j zDV 56:˱%Qihrj2yD(P_ޣ#Jnbq/ 2^η/d7gQV{'~*(mzB 8#Au6c66 [Q5g~C4J/"!! ll1u%8֓ffDI1'iZ/hgkfHk|tMh̭'*VaU̿z ]E b_L\*%\B!]E16BۘifmQP~)l3wBCZR.w>Tj0Bػil>)6hjx>&~S-nKm(GUrK˕*>Qvd7)[~TՆfSFh+6G?:LkN?5SmscJ'zoCcK|[DAK0~Gb,,?COu.u/_Ah ͈8\a2q}\RUOmy/u]A8F\ӊ;JPttK(cԌ6E[ArWEf~a}ΦMnodJ:gcII @s+Mp+P*Bښ9Ǧhp~-Rɹ=Nd6; qxfQA ŒnI~?ĖN:9~vzߣm=gж`rH2}mU.eه؛SΚ:{f2t܅$ #B'#O<&ɉFA-tH.עZGo?4±Aaޓvޘ.#tO*CUʴm^wlb^_?{$ZU=PK2/=H&㴽KFôĿmtE?;hh;tɇpn|V>e[a%|:I@'*vIڬ47[q~*7`31֙Og.<$|'|F~gg!I: Q/kP/BTZKBh"j/ \K'inm.W7$mil9!K2r.)PViT^K­6-'U֬菽P B[/ |Ւatt5&/ZƆ;Gbj[4{_~-hOȯ^D'YUWR2V~Ʈ-,zA̞B6he>z[`Q_Ehau9i+"Y>mಭ!,g6\_ ^1'jbeӪ΋iӏ>v$c(Wսc(4I$ʇ|@y>4=,z5R; z@i jd$*0smȝ+d e(PP[Q(!wK] %m+4 pIPK{(jƖҪVY&bKQ eP/w_B;wtڈdyKs3 d[Ɗ-+Y;=T/,o;w`Mu2%#b=ʦ$'b=֐ ߱FAP/}oVAK_r9Ѩ5a펉8O\۹M$a||*a9+?F腐2%B(?@yl~B),ꂿC{l֏ׄLF}WM(0oAJb{ >$6*V1eHhl5wCj;Ů@kt+K&YCV :tQ@ƚ;?2w*e \"A -$aZ(h&1:&I2\`ޗW2f{fh4}kxdw`T蠀٫ Bދ+ HD Prl zG(֚!z?\$|QGH__ :Lk/ B  Iŵb41:ȋAɗ˕aSxgQul\}f."<9:$>7@c%<=gU&XGV~mN׍yuإzv0wW'H'm;suRCP3㟗I;t|:v)Y^#YXlSde39ʷ9y7I66zbƯa֘brZ1uϝ**U0'Rg\ha҅'r*Bý !9g BKFiXGrj{A:r e7!w;m!0(SKӊJ2:]Qύ2*7^EL$׽y1pz'[hF뻚;U.WxelT(sD(" b1>~Dd-  xpherq͂r@6(:FiʼQHY윽x[,7n {l 4O#l mԁiE%lu Mn_XWR1(u7;׆2D!y7Z ^[F�N-b(eeAѕ 5 .Z]?])e` !al9:y3o&Fۡaɮ)5А24e3hQll\'g[UF>GtDGBY>jx,"G(k6^ r^5_%Fλ|w3?PQy{Z'[LhU7=suXokY/9lF3̜ek1i6A! Foh}MD@i=EB잤Ə%y*"$C>-{;XQBRKd{l4R(ȖFgAy {O6Gv&S觱_Lb[d*#Iu?1]-l%P=m#;dz-W,!YQ>,_WC 4,`OXE u(j puvW5%n`۸Bqw1Z#߲M C.,} V`30Thw`Wha`\˺/a ܙֱF-#_8>k"dC,o뒷Zi5eO eiPv1tk%ImEk{@HFkč7+*X}Jr d+@0n|1}u^;ph MIZfHeU$Zd_l {|:t;96(^)_Q UdHЛ9oPt2(U 'ը'v4'm£ĵ4ExE4,톚D&e+AQ  1:i"@'|_ki4(Oҝ6^e:3mf_ջ3Stxφ2Ѳhv l~5o<iσ{*<~m`ۈs/&r`8Y~4(|pry_O >s{e[%b=X_ 5:R7_I؆y+(D.ʝv`œqd٘B>O0荃wl៟l_<#ܩ~8: uBs6A|s!giBZ'I$2{DNF%#9*@-9Q˰f9j8Gq2Iv*O6IZS__5RcfU}#9ilM6@[)]aeNBaIP3!&˛geQ,6ka;HUIc9T )Q=FC, 7xeۜ1H^>$ NJsCW*:l]phĈśQĕ?b;HMGjl3 Bk ͵$ɦOQ%c;GF[C!08b0U@5|[7R~vSa9wSEq;I@N!UF>z 袐"wHU{rVR͡jP>>+Kfp+cX;U9 {XO*y#^^*/W]Ylx ~,{DқCLяT1wn4^|TI # z;5d_poحJF8vτ/#"*"˛w ՗bˬP&#W#x"{Qwd <́v (}'j]ߴ!edAG|E$Mk@2JFh0M5:Ga8VFw8)±+Gw^FzsȒdWjo!> t#AxNI8ȟyyu/ik8ޙwij2e1C pۅ±Nx=ϑt.a; -'eCPuevᕍA'gh1d:[zp/AGPFNXYlZTvI+x]B8N, {JD'ߛhwqPQ: dM]!wY/hʟt!hUHF/*ʀfZQhg*<\!sjyx4wz(az;ϧbsȧ:zxvGNyVnd~Eh?/sp{Dm31#||U~sxbh>Rw4<;cGȷ.Bs}4vA$_]0Ϙ1=t$:ډ,׈x3}3B ~mbOh'4S'LO])y71 (%^MRHJ` s*yJ/L>N"9Mܓ8-sEZ dUP밉SYU‘H'{)RB7JEc44@|d[VFzGhk? yv$:UD"%HB-؏.QQEAwT1 ;BRPSj!ib>iBl!Nr) HvH1<1ևoU:#+/r=)f@"A#$: ŎwkwCG#(M'ءf;BJ(8ޑ j=: U </$AU B B F{"H-?'j{'b:&,\9OLގE[ܨk(joRE\l5^=('Yrc& /]b~Q!}%'~5ɦ.h_/*dg,C=b{ŽPT6ac]M2F2?hTś&9|/oKb/Wno]~_aGpIp?ǎ1b(\+Fv]=iWt\U錷8 gN-y-,~cu6 [^L#'62h vZQ$Յ^@QV* Uo~:<(.a?(:(IG5|ʿ;B]FBPMƩ` n f >o+UÖ0h``{z5bĢ TQ6Qv;W,e%ʱ`+:c4ú[gd#'#Bm]~(:gUMC:M+ҝVthAN=?B!"vA=#c~2;dvT{ѫ1{8jǻl9,;QuTl| L`ózcpZ%v,#|j~h|%cXWkKe-jwA3/:*0mVs2?OUP+y`)f]y9D7I~ȓO;j!~I: C⭣ّ*:|èZYOA N5QϩA|UJ 0wkϪ2~sZ`x׷p11sm]b!?\l]T33c]0?Yrbv:b k/P8Wм*|Dտґ1SdxSs92Gluꓦ 700'I=)z $2Q54`-Xs"1KƩ]h)Q?GϪk%b ;TPS|?X'MMKy1UP)ihCl5jx,l.PRPb#_-6o-P L܇-EY}OMHr1=J$}I8,BT=/)HӉ %u+4^,ϢQ;cISZ&5(~U*lܭk#iߩ9ŤԕNQ,)Չ<˓YF#ē<7cH*@~< eT ʴ6bo (3G/xe]yS"tX_oC8? YkȺ-#^]V .]G/Ws )SvAjdiZzkm$ BmT=Ȟʮ+Ӟ*ZeؗFWP5BPqO.ݠYyHz7x.D.Qv꾀n4>.<7K~.LT_)@ =so`h{`6Ŝ{'s0?l2}ܛO4umpAMen̩|qOSZ]&OX-Ԍ$aΑ'ZYBړd,_opb>j>s̯˪KbntVf(wh5<uGSٓ4e;\YQ5w7WMǛ˕J3bqFa:~I"vʪ87FЗuh[@I/~3jmTx># M lģLvXYbuM87UM1W,SyPuh>ƹ4~<*MT""YT!MMg#ԕu+H(*X7Vkz :5cCcwwb^PFE~`4cq U"{S؋v SxRo0̧{_Z~^p2D3b#P"-o%] 91/Edm4shD`; 0!hn|L7c7\R{4dZ72yT]lMr|mF~P:^GWXwv8|| _g9CZ(4YI \ rQ KrDKVΉF-h[Y+Q:o΄WGh:~R&;mBǿz':5NP߉+\X&t( 7G#ΐtTB'2#Fk^H㛬#~yI+mqY7t<_ĺ9ol 9^*5ʳx\(Log8K:`M׭~1*Hg-*)PICѫeXW[ e[d]ky&G%lT֢Uz/`uC@ד@)~P/XGV8֚> Gʮc!1id~LE|6N٫'2s1_8MݟjduƩ(/ =f҂n8ۦ;(\sSGI_ NYRI_ ;bMwp3v.M;nQ\褐b\6(VOUS0ngB]?yqP *MU fmV>mQ.#)QI[^CT0JZKP5IbT*͸.H*-Z(qK-n]þɾPiT>5MFm{p;P};Ȋd [EBz"2^gFL餫T(ͨv]h$ZDsP&?zPSmC"YSk)IڋSrQj"a!, S+Z!LVdC^Am'IwgA:8_ܩ.Qb#=͟ɺD?UA9wBOG{x!| οB_Ѥr UI (ڎUcM(qe80ըѫFQm|WHi!r/# s`?<(<0oV.ރ`k.?Q!J ύ !ec? wiXoQ` ':{ğM6Nd+QEP>Le P}Z0ϊ/bU`<_]}^]y7joG ̓~eP(A?ZQrYZ+~M3ZBS(pΆJ^},^1gp^_QΆ(y(#Đ<iUFف,a J-bY\˞ZDBNJ=:-#kqt!P⡱3B{=kJkʥOȧD=88hV\ 'b.t訟{5/Su{(jS;r#(q~e;eqBQrqa\"fo#kC CZxu0WI^ yA$[cZ a*u+SMmKH%_}Z*jTW{Jcsﴬ2 CCx2CTB3k#Qɽm]|d*0-fW{u`ѿ;PDʼutډ)cj=D4Sgy-L+6ߚ[;INQ-68빺Ѿ|<~3=DoVP@=YS]LkQF^-T[d&NUmeeNv"4CA{y4=-O⼪9(( jM` d IDkS-$=M<_QkjN%I[ή%N SPjw#NH Q[{I`#%-6ŵD6alkH\v:lAk! vN۹E.h _ϗ&wh􏿘PrUVhgؘCG|IlwX WҖ~SKP([e٧uSZ%f4CK(gKh"3<-{4Tu4þ]wro/k?h4{qa+'@{q4Ɏn|0l/ʎ$̰}*fpW Cr|^=DrًkJqd-Un2zV"\NFgDYD=FJP$LWE8 vb85ƪp.zB_4;(Ϣoy.AGn^hw|킢~_}DIucx%rѨ7Dtrݎq-$EcP2IŐn*9^3zqE)_A+GBJb.'U2 z˾-4}8,} G9o/CW|]q~[|~PQ=Ѽ!,OdA۠|{}/U5w/}2ĞKӂ282`tջ*W>{ 2m4iF9>-jhN8#DT~:ݹ3syHH"Jfp*6DdB:N8qŝ_ˏ }F2˞sOrj)W/W HLjGiO9Q'i'[TAn*JŎ*(դ7Ie֙$YMt!zv-{|< p9@S%9h,}N8dRnFF{"5K^uh-kbW7 9nB G hy1>R _%ՠ"-;֍z^QԃFkIRv@qBYb1N㤪-QuzâQp=, <㺍)k^jXXt)i7:_+~(By"{ˋF) F^Z+7HDsQP1Rc-r6a95bwWvm(XMEsh]R|:۲Y/ˣR4+p̓>1mp"ju=2D[gBuVM h#EWY9~J"$E4 TNoп|D4uw"O(SJghmǼjJ=  M{O><<(ה4ٍ"3Tʟ `o|xduMw5"{űwB(^!~RL{R=5_mĝ3 M 67,`sR:e fJ9ԭ!cZ+Pʦ55_+U"=XkKg7so;|Z;̺hxs1Գ}Cڹ78ۣ:^g;%1Ab{h*yFIڡd]NcP7{E^IKՕgQa߂>*&dgy =r%d@q(`IdKc4O+UdkY^6!ř?&2[^Au?Dy-ͨ5Um턲K #}|GTjgnPH?c@YvSblHQA $N}yJƆ}EKIGr}KtE׋,2z~Us֑X3;(!1sZkƮ t)Bok< Z5  xUsD@Ot]W(W!vͻCr7`\7[OCcP ^hyеBنW`otdD;g/XQ>V u/N<CEмzW",}7*_=_A435FɆй4}+`K-zՆ4*`9B24 K'цFW<(]OZ{e]AupЮEwz8UNsx<|DsAɦxQb4NyU> h{okFPb=߇PrFu^ŘBN Jnv?vku z*D VY&>Z!}˞BX'io59"c^PD'4 -BPw _u8Q\|Z%3X=~hٗ e&$bUZ&#2'- gFqvtɽ"K'ٟpM 3Pt5|uٴ00վT{ Ȯ(۫P~`XBǡsAQ:Y| s%JUṬt˼C}M$ބ$' ߓb1T|Z"'B7TZ|D[&]=8V;MO{_PuH:~WQC=黱!ܚ{iR7tC1t{?h'CZֿCay=pv^g=83H)ZuFwJēn/W#Giď~|,pRVvZ|,hfj mئ}yZ#sT˦0@&͡>[:"9gsfz&H "B {("MKQT@" R{\:Ǚ$aֻ&$tѢ}eN8}}]}@#eb%U)R'!CmzO5O&Z P UU˞ -W,o٘I0#f,f(Y$[iM*!;tVdAuIKCshg;)I1.sF݌vX "ZPeCUny'rRsUUgnfx5NbOLnN13)NNa` |}Ll8yM<)Z LD{Lp(}:s%WIѐ̄Қ/c^|Y9$VT]\J0]  Bg$*OY<{:\^B.IAPJ+%rum~#tbĸkN/IW[P {e5ݷ0w}Os= ^ZAC(5>.T#$]C}t_@˴E7UO(v|=ZN%%y崴W@IΩjCH[B7CבĘWv]y&뎽{y`qZ1"KƲn`u/ ]wb@lSIOA|n3&|gDq g3~ z%BzB=JtR̄{W„LJ6 p^i#Nj>8Oe1uSQu!]K* ӘԧŦp]N=Ui$M̝1fP[̝2^jH٦nJbѵoG݀ԏ)o"I- UܷI=*}M_CY^";sX~HPڑ_ Y[Lno:gPKZs s9SIPzKfIgxԁ6۽\KFgÿK(gxMDkE'XSʯF.ԢVT 棄C S̒RՐ4\"=g/ rl˪bPrŬ ʪbΛ1=$Gx3xD0Y}DXō>Zq"4}zZCZQIgX9gkV)|qq$ 0gYOmRBmƜIq-~ ޣ% ⿊GDZjb[Ha(U FHS2YR{*2mwDkWϠ䟐KFZ_bӝMz&k"+1Jb]7Zj:I ҡa NWe=#1;Aڀ< 6Jq7+iuʅ ^_=u])ōТE:&ގ6f=q?dLr9JpE&4;:83m3ȿSgAXIl='R4%Cl ]_r;5=uMZQ;0= N;ArHzOYc~2Y A7C3ԉ9쾞A,/>$zSs hH<]R:a%8 5C/SdY-0u܆QhuE|p4s=8ԹF:am6ij@3t{HX;Aɘ3l{ 7kٝ$2NPL mNLmH_5L?eW@ <&yFSС^w\@I̒xh4,:I{sSx%dj3ᘪ'rD9"2sT24.%OnI+ \inV;]E*|lWqq]nB*U0C;HesT$1k2L9P<5jej$=;d7d -i9_riR 5_-jξOdPKE~9$D>ˮyNT>"lQsd,4lq:DrQ&&>b,b<'4+yox'u^&'kd)10>DKόXĺV(&bf2E'%G03 3OI<A'*4#6KF88:lKO8@}?I ̚$>$,$֎`en (=4b %Z͠/d< XĵavR .ebTM\ =Gj0T3&)] ~s>U̓ ?'hZ"6Ith'Ed44|U6$*jn LDEMra b0]X 乍$N) vLS(ٞiCٵc<YŔw(YE݌n+={~nW|'?]3]DOyE]t~ 0 H <51AL: js$.@`VlT4;Ff" 9) Re(&t+2e=Ah2B?s;V{gpQ`_2wn-D5։^F{0A|Wاճws }K'Z١8 x"Kt^ uk y6&/[_mLDԕ9N"b)A1;mQ;=bTqld]SyU9ߨ+(ݗph 5$rb,Z}|GYA٠Ub0zfd0zsF,#9Idq ]w񞍱P/L6 %JR>r&ȆE  +{w0( sJlH4N1 Ȓf6YrcXl'n+sO|䛜]P-(s(1"r(¦70 lQ&>sT$B+iªbj Hq P1 i%!k5p$OiEM4*'nL!<)_Y8$g憔h(T,G4a?^cHxhїP3)fc})Vad(C=Y EqF=Fk UA384ҳauƹ“ 7lsEҝH^v@0)~U|JC'$B PA(1#L|>lZ4Hφds !}_O0~=tkY/v ܠa~\ӀfWf/E0  Vn{{^174hc'E7K߇&B3i%اl)nINKYvi`9J2V?<iQBQ- fCfj Ep-j.njAPd?Q9ʋ z0]k(fd3 8355an`6tryK|Y D'7ɛn_qۑˢz}{svYH;KZTXv n_pNo rN-Am ]H=+k`V_]uu;K+gXGg oDzl^G~/FWE@]'6ilԈwk^$`W廢 ڮ¶5FvGv'U2b9:DA e(ȷO$Ů3TO:ISuTwdD2Ԉ :Z2;?` Wkx aE/5L}H)K\SKp- **zDҷq-4Bٟbu8'LQRa]5wNFϲ Gw!u4sF^R.d0%T^:ҹM_64 ߵiݾ*ZDZhSHo2_P3 =斚};d~22iX#}OG] 2̿2ѭ MkǾp"9}Cv1@Lʧُ4R)4~lbJhFZw䏡[n q-ID+|9JÐg"_Rc 0YO<3Y38Pz-d_ kwѽ=RJFc|YTS^Jy'눩UV L' Ӿn %YP(wx!ѩ4YI~)|"dwŮ"43ʛdygQJn%Ig9Ȯ*Uxbjnq) 'Τ?' Û¦UM] nU5S+[5jޞv "cI? yޏaԷPv68uԡ4߀ľ.*:mH㲕.ݎ_g=ٔ9tw:Me/>4)+X$?AЇ9fofOjqio+*8}JOd}d{&m2bZ:ۧrA,c5$ 9T<}Ϛh6#$eɢOxv. A ]Y9[ D!ٌs݄=f:)+ۖ|$ qh}W@ r4"2ʲ%NVŌYs&XzBJ iK@MQD~ʘNR=ix3) %keIIYh$Ҽ"GҗϔF_b8T]sz$u4e2YfBau!ӠP _n$;G)$MJ2i>ºC|9|m`{5慚 WºkEuKZ-dٷS5:uA}-YΏ oZ kJsZ+dP#S#N<&lVU<q%AJe˂h 3զE/0}Y;O}7=ONg1-2!.Gw@ Lreoxaa+Ǡ] ktw kưICHKF95ڃfD(TNvkn`W2 j箇}hWsDߴc`5}&["][:mfUC*Z+pTH3k%ƾ݈DzF~3F& 8Y5uRCu]g3NTUICř!*]~kZW*/-c- t8$H 5sI>HȏqYcPkg$X ZNZ[kcP$rZ4UXfH\5يǮv+]V<@"dr8쭓Iȩd |_}&LCsNm,I$C1!LJ5F"D>'+`-IsFPIN$]|$rI"? ېX+V ׊0(F|,-3Բ3Zagbnv]#rvSkȃ@z/Gl BZ@&9cN&13*[ՎDR ? w"Uu%~(y,huJ%cuț %9Sz4 |H&SlgsgvJ!4VrvxƩg}-FG}׽}h4 EMwM"ǵ7YTW$DFZIs4!U4ws_+HH+l][a΢D_!gMڄtg5,jY_-T%L})o꺤7ɏMȏ2ە^e"VVIΞ$vU$6Bә6Ig#K8#W?]'$>-xǎɲnj',TElRv"{*;bc);!6o?%CW#N\C. i@,3Zt<3Z7[qjh8yFi%#4i l·DۉE$Q,V BV R^"^ӕL3Tö7;Udn5tר4 ]SPZ* |ybժS2;o*Yg5;|^ns'm=/ e8ӡF 06r{-G;矀l^ZB2,千oH:eB^O&Wᬑ/_P[q+1G򊲲*\MgUP>%QvWR͵I~%mQ M&2c凾"#\|\ F;iW^N׹j=?L&I|ﮖ$zPj :x=lh꟭R +x ⻭Ej8|9$9ޘ'{ȼ&W;7a%;7D{M2{T)Ķ2[ϔ{v fRl7ޮ3UviMY_uw`(ejzOXH^o*M b٭z;mO\<$`ONÜ y;lO>-e{4{ ~AtN{I{Ҏ&9]uWע4']d8n!AuݔњH^`y]ʻ'WG,+m;ُ zȌ6`QHU7sT@z~N:8ET qD[ 9,4E-mt>_\/|Cz~*+D-g,Tʦ0`}7ŤOx/#ul"]-8H~EBcqEz-y/Lyv24(N8]ee)l.ˊm!BQ$}h ""P-SRޅTT_2لmA}IbKDwxHNC !".a(2܎Cz>"} [Wc[WD@5\"CP!u#'`\JQs:LL IuOĜF.GB6 :G蟡jsY_EȆr.4,ɂ (YF"bnH\FPA8-E}-QC(]K {L^NUs\KuT}?JGgP]TtUO=bBVfHrL INOH!eXG}Y[!~,ۍ,KF +(͉!SkRˇz\ w[ACYmo 3Z|4`{jn~'ݍRrM}ͮfxFcu8yć[:/#}mwev#uzXmFX4Ri/^ V}IM2"mMRH[)ȺJ'M鼣 ;Fw҄LHVޔ@;Al6@ǒax9`} ײېHj dR1Y ՐeTDf7p엕n| (ő\,oASfzR!$b.C7R&QT@ZhV MGz$C߇*qE2rQhR%:M?ql4I;mį.gіG Nhl(ƣk0JrnAr T\|TA*Rʼne9dH*N} j)aaWɞkNdwɔ?TL&c7Αבa?#/Ͳ!ĕc \Zo%NP^) AEH4ڙjDOrM*WfyO P[dY(EK4Vy (9{"˾PMh !*`rp6x*{jȐZr!cRTiτLqj{6#hizw&BɴkR$.N 'fILS6 qȨFB}|wAdH{%? D{x;$BíClnXu\u?H'G,HvT0[⻭TbAWOZoIwHZ,-;aoq8FjMPOc%o5oj잴/}Xgg4JTDM׶oPM#t=쿑tP7׵؍fN[B7KtPqU\#vbf>vY ӐlS"Ug)"}ڈim`_rR97;bm(~ɦUU5vaǪ, ys^̒H]L#k_RoCSrJa46Fi7^|J^LT2Fl|.$ނڨ+n^ŐSqBQTǞ)yHiG B~!SR@\Jgfu|#Kɹl@(T2:=ghsV`TD4ʲPrZd9WAd<aנ,t=N&Xi@y $0 #swF 6CihcjFr5R9wu uUU\KmBךeUm( Gʋ*SG7{&Zj\K@{|y޿o3E?QaR*8u4K8X !!cBٴ!*!fyR ^@z%C:fA,WZ y [au J;Yȉdm¦C2dh"R&>$~hbYW)jq|hXSQ!F qDxXcQR(51"t^mED;d/(Vh5WܕrE%icU9ej, \WD BVPoC2%C!Z|d`CB̀fTL mdg4LltF J.P^h(<(WCVP5K͇!!-]$#i^;y}Oٙ'xԟ$AwyCl[E"=IHnW[ `G\Y|;d{ZQ~tͿ'}7u&A=wtb^`^t;R QQuI'25Wz!zh_#m-RʙQ#:[BA_H- 5F.?ꍍfPB2u@\uVdYg^J WZ-`9 5=mjitC~j,`ԏV>%Zqt)Ji v! !RAuu:957=WCT&TT~cj崴*f(CjuZezAe@-hGW#͐,=AUAјN.?J@/CK׆&SB7q3]^, @( gƴ, 'OeɠWX,+k lO%zEdۣtY$.rf*3"zI$VMfhr*2afjR2E)@(lYT،+IHl3G[NCŐ,w_wO͡F&v6~xQ rt24*L,nm8kA< y?#&8QP{3ʩ/ M"X6J2h. Wm1VwY[zRJ5AZb&0e o?Fciih roxs*JUBE,SYgQ:W\F[}p.(.xA|9$8A=SQB^ԒU˲IFStd"(#3A_W 1]66,txE3E:$z:O-kɋڢaCc-B..H36ܡcqYHvHhɒWc~E&KD@mнȒH݋$,g0ț"iOzF̧@nauX#P;穑NLViQKN~'i${@v&tyy͂nB H9hvDvFPi-&*_I0+"Idni.R!* ~$dٻT@ֆJѶGȮCZdH2\Ŷ"IF3I{|Q\. h8MFf"U$$25cˣ,@vL2ycb;"7:ۍCY#qcsi11F8&yQs] |CL" $ M"ԟ6b-^dZF$c;ZQ g=FAbb2}_aM 7M߀-nZJQ⯪5"R GcdU8|㿯%g2Z>1W!>K%Tu,`\$f9z$zTMc[Vtk#h'P44] &A&FP l3Fb-JᲃU#ҍv(ipCPM k+a BԒt%bn۲/p{m/5Ԧ-vjy|(/c@gK#~Z1u3m@tI3g:ƹ_}1B";xtZ`"Jp~] ɪF!F,F[b:"[i͈ 8jU4jUAyMK/ $ Ks{O:qRL4]b _a.NޖW 7xLGH}Caב$ W)ID:V3@"LcX|Ksb!ZNT,cM߱HN7 "0ڂJ#D DRbW ^=dzȇ:#c_$8/.WFZ!H7$n'0$u$rȃbBKیؽZd,|N,}FKk{!قVh.[C*Wj A_T˾X E'<+@ytOC ͶOs[nN>c{Pmrl.P[R8RyRf!CkX<*:BlRڨSdnh5D)bX y,MiW$EPNꅴN!V *Ղ$l^mђ{*T%S\׼!2_ 3URP,71(I!;'L, oaogC/Vifh5GWNurSٚt#f-@/'_׵cM OCB{kPK^WMBb/Y: dB^>4Юײ& eUمޅ2jEC1qd֜*4hv gRE}Md3R%-- *c:yݚQTdP}MOx#7r:4l>#v/6NnF,$"M,<{ nbJg6ꬒqIa#0FaBj4 bY,P}=QG!hUDړ \5h Oty >f9$P&ɢ)8%",?(ݬUU q!~*FdO-bdYfF1!݃P&CkE&h{2jz{9Hl -tr4ߎugr2h8C?ߊ؆ ɇ!1%Pv2-) m'P!)w8Wš?'۟+:+b)]Uh-luӕKC`N9;H9^ 8;xyTjj9Jbl( LGLp9UgdQtBuVVTlVIT8mu)r"M k!7 d oIDb}_|؄ΛĴ?W]e$JUEk3wiHGHvC|lg&GAӜMƯ*FL>yu z-K]@%6dU74Au+(^P}掀hk3H|Ȇʪ7J=>d$*]xt>29,ȂF5}teAq]J'h(߃{js$+_T (V/PCw):?9yهZ9%UGN.jP-gL@@tlFXUCmRrN`gv,hieP]u^n>|lZ_5p@ۜ<]IUT~@kE_= ꤦz[n2Zl&Ajl&zn0N "4?Z/:C+ZOExM,h HUhQMVi"gQ Ul-{&BN M_-r_ H˛d Cb貭V}VH Z1gLk6mL?R%2oyQ|Սd[s[\ZȢ$gFAՑD-r 5T?<BL"\=elV$/CCE'uĺGsjMg7l۩ eI&/g2&t"E,L!oݹFގ T)Zl5M#Y+*ZJ"L-AY@ia"3mW6- M8WR i-∯D?5'-_\vU>˙a2AF(kleB[[z-}1_x*ţ)9KӰC^~ k iHwwZHsQPiPk3{;Z{cT[}A=6+ |z[YF38-uFPC?3ZDJ\;6}Nh#ZHaB7L簫r2)D$OWa*t&I%/n .DzˎNwt؜:8:3J4WMIGE:,1r4LlT2Cx zjٖRlBU7Z31O^ xhqh5UC/%B'lDOo` ݐ}3* $QuG7j_i+!ѝ\l(:v_~RY<$g~Dgz+:9cug~:hRL苐*i*bвGkF U ᕑ , 1ȭ Mlq]~jڻv}B[Er;NRS$"cC,!jhC蠥RzUuɋʽ߽O} Zg%s$={ by!h$8kZ2L0`OISXb~K{5qm|4_h3 9Sjԏ3ͣ64us|xsy9!&@6| $|oV{lm:)N|J#=jmGS|}wAkZE9ZAVa5 [l)$j|ۜ*i\5pZ'lXmPT ߮P#34vYb|n-r.LB|S~y8 ͯHMZT'dU^ p.x3[}'~(z(-')Κor SAH62$vy_?)5,߂*j"0;E-5#+7/oYFA 0*?9ANS,߂k[aS k;mTeaOb}x"|U:+ӆ@»y!Ҵ隩ke6pGiaJc$]#ew2d2h#>VOj*)>O$/&u?LmcfR.C&JG}#: }wA]^47Bϯ`*XGr? ⟥}'76Yj w.0PkN[u zW$Wjc(>Ie%̥QVB5D8;D3ʕ)xyԠF.;R}Sô_7o Qy7`EWQ1f_PhwlzKImzJg]wDOD}9풽_O2zG^ov# *W)4RsZ贖)0 ] "1'L` $T$z#-N&yiW~(Hv!=]ʼnocJ좀jA !fjYi ~e8e4^)4J)w[ˁ >H=VD=zB?"{cbʆ/!}"zJ. hȔ+V4OtUn=_6Ab/VEkM$NBξ!o[tYb,vY*pB}ɼ0o@K1ފnL؉1wpzl4t&jr9]믅L} ,bE6P'x{1Z-pvգߤ<e+djrz"od(WKOd.-sL8+1.@Xh 8L e(EbfXDŲ_s)<y[u ~Fs* fl 49JG3.D\3hLo`s>T3c]<9I/=ׇ9~Ac|r$ *攁C 4-LSiEx>}|!ɔ Ms*֮%7AmMw5ʩJ|+A-LY*JسBl>iVbjߡ&w՗ @{j i6Dk4cC +WnX!oT[?BZ>|% }̣h42\NIJӫb4f؊G'L3KN=tZ.^iV4SHfSߩ4/> %!aNIy|V<;0_T!\نb/J!7x-q`Ks4CPuXY#4EU9 K|uXnGiHH?ɟSWr\Msz;副 GϚ@&A̚iXw3C8qr=NL]z *F N-7'a7$")II}8|b.EcT[$nbt;KMg*^Wd-Jh`sEꈵ)i_,x5u‰5vȺbBuxP>+n۪zFAX7bTQ*VOU~;픫)ƊOBj#ƋKg(*)7+gfDIՀP S#bh||e}z>,vdX`.*UTܨ8wdE4Wާ2]'MG}$yFUv#5f3@CT9QKi %&%\]hr2[G!'N[(c6S\ck61wSt1R1MA]j)s =TYFc^7ګnfIauC6)G }*XF/5Rn/8_甭N` Npmw}S/a&|*T6_bBI؟\6M5z4=XlD=0or7 R<}h>z(^ ^LVF::JY?tfiL(}4QBicF \Y iW߉QzW{G7yXH07QDw*F6E1'}0_qwPjl>:zMPO#9uD\Sŋf9O)Uc&b5n=U*!>w^aw 8,6[\=B7Pck~Ik.\?J-^7& PΒIfR0>J®Wnd~)*frhPj58^ummΨ)S{Q꺹aLKʄjrQ*veE.(I>XǓ<\;{ǰ6_3ow xҋ:)ryzWD9H2z-Iy&vZN*665ƈ"ņƱhl6{(}Nr؇8aݒ^=p^Z(c z g1E4g^x9uP>3Ӫ3}[[nSٱB=7,jLY`5,w 8|XF˹bD⟁ww>!kBh9d` \_ԥh5,Iò2)#=nN#ZcQ$#K(z-*Z^6 E-Z L%BeGakKKx(QF4W%.FFU<\#ܭۓ ae3-f8XpdyX_,H=F+{;r—Ҭ>ggv및rW,cpª|nǺScz&5? C4VNyv ͠EE=5Q pLxs)311z@ccߡJP̒ZCm(>sp͢rsa\M3;kNn-fO<+f>5.y 5̟fA_W-h&v V6 n˰&kFsȟ47 iV5o&/X[&?M1L1[l44y!;L.TDZ+d<ؒ<47?sd${i-s1-9i`ZFrUUt׽͵CU1W M4{m X)LqnD,mZ ]K[m [Nu9rFu5L 3K+GHLk\6`Kf#<.I7T{"<1xh,*{0cz(+hN83hҜyܵ!Xt,yhF=^XlE0)<4q'D-uU'PoN$p+rg>V]&^Uښ\4^sS9uASrݏoۦs8o,̗CGݭq9x'cx|b u[ͭv!:qcC^m fS{U؎´vv1=ږ7њ; FpH.Zoes^ONA u’O;SW3wsG%+`9 NGULv$GH^>dv;dy;d֙'B ĨrlP'YS j?C~*_*ՙ*]GoAOGN6-F6lҮdb/k7dygIӁb풯_eEӞ"?d'[h%zZOZZcZ_EYElP^~򹽆v"Y@gЬ0#sh2˻Cvdfu4ITؗd.$TWcS@?dQ]ғE'UeIn9R^ TECsjVD+<|NuAgAvGǐ9ɢlqHnFdm=Km>bN زb]lGd:t?:ȿTWd1L_[%UQ[x1r[Eq؇;@?UY2wT}[#O^#cT1:\5qG&i:ͣ0 cHlY!EECFWsP$b0YO"bu@4UPi1jq_.$#Up,WXC d#M /%\F3T9L29Z$L#dCy_&x/Gi$ ˼N2hqTuTYPUOP*].TbNTį2AV#"(˩*p6&df]i$kKӭ(SLo$Bpl4%37#)ٗא}Ilmu6 |AdX>T=C#r7x98 J]UO`*bKEzh#Cfy3p뀼lS2:`S:^,:N,.k!GT.liߊjM3{$~*?%SWhxQ+Ϋ'N(%-Mdɯ_~hhh.Y`K=QL ]%tY|[SYqNg8κ1VulxVnN se5v$CWaOZ겡Tgd8k&v/+Ϊ"xW|;Ys 4dQ'rI[TE 'm.64N԰k4aJK\wxn%~r2F9dThJ[ YdtQ\s0 r<찬Rlm (%mwP~X~_m3Y9mM`b# n!ZJQPt,/+Kzmy޵K77. C+tԖ#Kޠ nFnrj4#7 =LhTH]K4 5;v A 2_ M.+f͇OEVG{%=cVG6&/y;{QAASRAWRE꘶j"62VJl5fW'ݦ(%ȣ;f%hNuz6[JC갶\ڎH|G{?uM,N.P cW].&kIkk]ȭ`hYOE V{2 [6vu "rǿf<",6cK|_Go O#ia]x.PW6ԕAXA5V) L24Wb^]e&4$z{aCx]5!Wx6Ъw*jIoFmMxkևl D6b"+E֩B {xhCՋ ̗f)0V+̫g,/lW>aW(îLVE'XyUM$ūJ4r^ϳ7F_iioTspOϒ/]|fcu C,q^ kMD=k.ps:"2L`flsS{6 jT۝Ijٱɨb4S\p*)0+WT;sTTb'*qzԜ~^ sMl#+?ضq2`cǑEZ{z g8!TmP3hp_Z3l:dłA9{k[dEǣ,!d& ʡ+,>e9%7X-ij5~ER;uEs(kӗ.T=v{{m2oŶۼ{ׯVwbxZ~Ž,6#,ίX`Kߚ[ D}HsC]֜D;qn'ܭ3]PyqhTyT&&_F_6psԜd^A'FyZ&('Qhn B`-) DomC#XOJ+QLEg~Z|/&CƖoEE|ᒴo+S(RX"mh#kVq\t&L&-?mvZymahH$Nuj@ ю6p3#<u]Vڡ%jT+;+LU59 kǒѧ47E>l[]NiSXe:i.5)L=󍼰6hAvaye+z,3\m=A=q/XEVau%wU-%Z;~09HrF̽yu}COV+>T}i L\z[|;_תnOAa6 䚊uIf+o$H7n2潎άfbm]h8oNVkuJe5+5 }B qqXۈXںX yѧ}Sց ['؇fn6gPwדaY%rK5 ?{7r Ej!w&9qEw%^W{%c>n`jC]u`yXJ;t67of4(ϹaLO7974_5U'/ﳋ3 c?Ͱ,(8E7p]e=AsMWs"vћ vkthgthup}pkr>xTs%\>'Al]5+gf mmsX4?FxL6-1}X A,kAdN7wv7v!']}fۜ|{7r:;X!ʥV#HLvw]Vc-orldcX[̜Z~JvopW0]ךy|jWTSfY5buZ۟ |ܬl"iw M}&hMjʂKcz6#+=D7VcYrtk s1Uvѳ n0ФW c_lDYX$ts3x9od|hyC82GZhy}gx^k<v_Y_; sA*4ѤOt}&sc ^\,lϿl7gw.)bڟb]<5T/g/%Y^kJ[U _wf4/owߡb=)bmvhRh)_`v4]6 T);hҩ1@vƘn*4 X-'"xV};!E^;Zuv:tX~'oqbQVuѤ(4iU^ TU@6!jy4Za63R:h vܧVE+ݡi<~??}N2]vP&r'hLNѤT =f\yHZy~L9jt}4Z`(g44AIG'*wN^{јɺI?57Gj&M~Uq88MZ}ߓL/WqI*kA4i%4ijS}D=7e=;B > 'ΫO'gY^k5oj1xqp5{X@f*IƿwXM> ?UGX%ݤ4_un[WUqNkƺqy'"+,ߓUN )`[='a JmhNQpݕ27р30f,-p꒨lgsiTS#gyMc`IUW4Vg>&` {YC6k8/ Rg6SL4_nUhηfv9WS`4's $OBE~hxkv5A[ 43yU- h S\of(jͥ-`'PVko=SbYsE?Q!\k&!? ԱZ&j{#P*&p]@e59)jsn.S4d} WhobUX];gh}m/nF5>GaյCcZ+ Zl3˷[)[%? eDYbQ0oE2[G\ہZ oGg`FDG^[>c&m4d>sUA 37l[ +:kuĖ&"Ӎ]XBm(L6h;J%ZR7: $C[4VVK[kvjÖiА-ϚMk+Z+%ʡx+:l=i|pjO۹5`M{yiQ74d@YX , 湯jEİEA=&|'[] ysi}6VDϋ*\,IqnoWd-VY[ g~̣#4F5hnu@[66SpZ@ϴM^Ԧߞ;٦*ք_RC,8ePBc4hgqfҠ(neZh%-[f{iA;z޶̾4+)lCXc9J ݌ U<ڞz4jӷFReufivXoQ 6Luڧ'SXQmMN-&/L+ 5ao;ܕ/ݫ䆶_bfr v|Xȋ]G{!C\4 5A{ 2Rh񒱿{Xvy _zQ 3Jt('~pwk܃=0 ca5|6at]#|D>gNVE=*VMw׼h7ڿEA4{Ϣqn>`iprDwE};aJ+!N$ 4?gƿ)^g?ku1|^HZOCӿiS[*+57 $pOyu> N|DFtuD>BpuYV| Y̍nMS[(-v2]}kOf>)_9UVkہKO-dx]pbq; yN֣8PXj 7QMeuK|VT?MLQgvQp j:>W؆g8vVkrq;E["TH<$S|䟭؄Lc'i8>Ai-AeֳKhY5E57DMHBU %x؍HDWD.Ry4U,JƌP{\pxm|Hۨ*_a^,߫o]Їr^>eYL`p=4xUǶݖ+pYP|Tn)a~EqzI>QQ8 2 ܨyηV9H̐jNzg8{Inh1I&wAia~W1&ED K."[yJbmY/VyWmQ3^!_;r'xvT5xnU1f P˩X;8b(΍PyW<Ʋ!~U(35)ҰvhstŹ[Wc< \\9CrcHsTm:8H8QWQ~qĂP/)(Qp0g,ۖn>3J/`T^]KU7Ϫcy4&0vt$Lce$ 1go(N5ٺ ku k-nF{RYACǔE|k ZАiLdaHd|&fMɴ`Z@{y*s,FIp=ͰY\2hi@A6f5ҷҴQmJF!G5 i3hW1Xδ8%w FFoJRƊZOP4Xemi.mU#?EAV59(S5·/臡MW4o ݬ/أzno8lUkBnA4$@c`=P # m Ǣ%<;h! /ECl56]q q|u!fڪovN]g9؂*AgNe=yO;4oi`cd>uM4obn6JP[މr™lWS,~q0dE[ӘlB2B2;g~, Fqg AAe]ͨWR#i<@^hu vV dzk( lcCQa3 vNre- [Pހ7Rf Ϩt/V3|^< 2v QqfGr*wWT4jg#miE%`cRW֚\1+jrF3K ݺ'R(3r ,6ak/ʒӼ ۅf]!'Y)vWF7&șm3\oH~|xginYvOp{rZoy}TWDͅ'W|ZI.~Ҹomg2amRQhk|e|v;Ͼf~g_ʬfC&d{7]u%'4EYwE7fX mثI!hA֟2/+2g=dn繼y2,&f]CC<Tئ,Lj e_1g4 TVEs'pYߐiI4WvߍT4d=h6hrZ5GC.5"UkOBkB<,V1'gjCGhYv1oi:1 Tmu%iz#-z/C|GD ݖKѐWdn61ݐbRa'j-gv<1\7pqAeH~yxLDC< mOK 鏧r9.xmHv'r!}]#gK. h_'6x88Ud||"'iN}АTQ\We5WW`o2MuGcE/90)bٴ֡!)t0x* N6D򪛼{* pSc|\ZClhL ~^>rf>) >n֢VE-/!PPh]>}rf{9wCC^gGА5OfG⢜9 E9}B d x>Ȟh#Ni44hη> H1ѐ?8L?U7ONmLMӼTUW9X'QdlN9|H2xvWsF>~2I@Ⲱ:>0g8g0IɓVvfd>Jh2"βZNr,bML{>pe[=`O[s[fXϬhGB`iӜ{hQߙBDsw,w&MDQxM`^ F;Fy1W&h[\"FGgL+Ph,N$}E]weXgpw[V/X-Nu/3тOgcȫi쮵f tra)1%Xɴo b+6p'FuTa5a| \2܉N|e5ڽcĎ{g¶RmVwX moGEi r[Ex-k$w&0׊6зY\jF:k pt>2}RΖjK 7YiL Ƴ7Մմe=Y3%F f׭7VV팀u(x-ۤWVxS[Wa4:-ؘ*6V0Ӭ:Ny-o>cUNQN_紀tC 6-A54vZR;Y`} ]( ۰' Pn 8-C=)\ k|D6(kWq]tbP>mB[+#Ojou1(CC=,Ļm;̴8-Uո 6MhgX#c6Qpl:m쿆.ZL5.<-X͘s?u'FIOZgV7Ж_-~BcO* %me4:q"+:ѣ rVr%l r+r\+N,*ca^ t [}2lZft|e 'Q+L%aed (6(W{QkiJسUNC'ε\p H h&ƅjêKY9[M#WP-B.: 79^&A.~ 6ڔQ#)]qJj@[KF ^7aU-w55B5&iK::߉afKb ܌57@Nzw,@uU@wbv*X d+>]ܕ\Ŭ L.Y=uXjFQMB;x 4|vKODYXEo~k&Kc߳Q4xʚG5'+uhv{C+bE1 hܡg0Yu=~n˂|*O/0} f xTQp o=#5Sba](9b-֣Vky~5/g`kYsj;n@}_:._jiw]ԜDȗtؠ.kTc a8pFUvY2cQ4I4k|y#jm)9

Ř#ثv1s*NQ5/RPL9]E(|+MnF)!l!(ő(*ZA)> $[I񃺠 J1wQ2KOF KKZ2^s,!%g{ȥGґxqUU2G}-Ƚ<GLSdy-o7%e_y@Ppuy@EƊ& Xߥ&cm(QOT=5Zw2Yw뺠Sio:1yK.V/iJ CwEjx0{)3`>֌zP{G0_P[ELϮ `95-5OgItM?x^n$s;0~,ש5YW$?PuN gf>,0&۩NIUuS5oqseͨaGTgQ1W+w@!L;߿څ9 9 ;CA:т`u"gehGv{/WdZ8.:7P--` ~ FC-{90|vOQ!Y}?iE vcpqnyɃs3i&y_ZF4A6`-ЁLT f9Whu~!Fא-Īm-][?ҪڂFNv]=Y~ވB , ,y7DZ[aA"@Vؽ[^`ہkm AiuhEBZQqahsm \tjoe_[f1ijDQͼlD-e [_~-B`s-*|,&r!ΖZ3e#bKgІ:@*ڛWa9M0'2k.-wyfao= [dK1mɸBˠ[7]S4׾&6uV}j9`a^Y]l!D]зVV*UN+hlͳgZl~hfHtGE-h|5l|y-B{a-V O60 >!MM >ruh@;>Ce2 [Pt`At`O]#XDŇ\bv}Cs5n-اF y֠7175=ilvߍE+bMu,PTOkNan͒hҪ*&iw;C`)@~ tbhU&+m3N|{?EhkCXewbK(4ZG6VO<\ %x3Uv R9yʸ`o=Y9l--N=a,>% Cv':01An|C4fu0IYPt [MgluJ[Sr^G6*;y5kEγFlN;aa;glrw`[ͻ f^f `k!Og'F#U8:|b=嵰 3_k[O/UN[s- ?ؕ3٪ .F }W=F,7.+}1a1Lf^+nqDX?%8|bYyT^vJH1GN9E1ưm+cԐ0'ؗYoB#iZ#$LBNԼ*DmE[Jvڕ¼fz]Uv0P 4hLE/`Ɖ*Nw'*n5T5F{Vï Ύ&g]hQDn ~]Y~4gQVƣ|^ n 3dUyNw2}.ǠԌDu%ѣZpܬyl-BjVE_Y\ ߺ,-UR9]4H9lrI<\<< ͑Q{J0Vq {Pm |9X)-V_Ӝl}<f(g`-^6 j]wXQ֗&~doeP{a.WhFm}i qhŨw_oʦ蒭wm>XFKkcceqoy؜O kENr]@9!cˠݜ{ :cZآXpa6re"X0TiJ96{txW`͹mׄ݁=(~.s0NbE= Kw&+黶,ڍ%֞5v h, SCw\OЌaH9Owi\؂lVG*c 9b.Bik@%ڒ97w2p#39ƺJsXCr8SzdrT3 oU9a5Laq \KX3*U>9eur;(,DKa:5=vinAw+֏T%|FQx npr z/Y"ܕOYwesJ^j"G݂"J?P-+8nnpN&u05Kv[,w2z`y1}!X(<}.|N&ývҹ7-q>wѡd3+t%_=Pl id @لtGԞBiހPxPxkε:6:&e֙et[^&w{BV^wOTQxInQ1($3gx4̈x5,*Pud<.*]ccXMs>n+C=&Z\y{;NS}|aAãD켇떮DXy-r&P Qx\s2܉Ǩ7ttƛ{LG}=R j qy !kPaC\CuXA8?RlTxxLfٵ,x<Ӎ,&~(tխOɇC͋B7'Xϙ,=QxI*1Q>4S'h W !~4@k\q2C<gUk^&꨷ K/([ΖUPx O#lX8'[S(܆GׂA T2R\篷@Flx lU57Z}?(-̣YVuTMtWe(Xj s:o,{aj#rtp_.LQ;XtNj<_R*+?XLTtx3ǔ.M׆G;WQxw6qLQr X[9Crs 1}$+'4Zx2SSx+ u4֔EP~䑭Oa*(A5ǠR(އMrDE9 l(+Vl"vm-9Z %Ʊi~چNb=i l0/5wg$ќhYlshW\lG0v ֈi3X|[zN#bt95ݷYͩϋ(Ru+OPt\: y^X`1,N}h og1fms@݀M;oF_SY3Vީ-⠱K+z`@iG[fiCiVU1V!+B^J, "Qc^Lv86]dZX1]h< Cpq[i:-I me7E)3V):?f+Jy `EPp)yX>Ʋg1X2uY(5|χCS 69bo mWY,JۅgMS⌵[wxZ(VoElM_5ɾ 1Ͷ"Pe-kb36? \2h6厃J:wQ[uc`Aj]$J%,KkfdvD[`$͍?2TmrPĦ_h9ȭBr&; M+Ot=D57*=y.?E-wf%kl xsU~Wg6 ׌;|mX P% {sw'Qj஀Kuκ؏tN%w(X'ChwM߹ĭ\ f zR6b_iŊ3nWvO Ppsm=Eys{v۩GOOvY4-{cwwz[/yLw5b>d+/ɾ5ʑ8W}DsOb("^C3Ygopz?ƬPgDx63˙%,,ℓ j揂Sc{$v$b3-B>hV"l*d _jjf Xn3Q"[9Zh}\U۲ZMDi)&y\sЖ?C)Hi4^›Ц**%Ԍo`װYX.Q&a9&wP_i)36X#Y_I^GՀu5Fz9T[.moZZ7(C9|Q6Y-J fZ,&+ ,/JӆnXr2dGiL(W̟ k4J`|DmQ9=b< {;U_c;Yi㰲V,m,mldx>F\#p*E,/ K)O_nXCm洠96! +[Espal+-;iqQ9jobUŴu_i|6Z8֢`/moGZXKa~oyRioE{-a4hxܦ̂֔Q)ZSVK{=?/̺+Æ}B4mlNkm)h4ƌ9QqVVT,>0ՃIX)C8ovh:/3^_{q 4hc`_]b1bl2ev}kkbEqd,ڈ2;zQ`q/mf[< X)Z7"یS-(q`3]+oK?#[fp[uXK~}b6@}5E}5 8 &Vg;yKDmCEE "rS0ɧYI;%næyqcP_ee6ꫩrטE)ƚ[؝Pfi+"oQ핌Yg?[K!򪱮sMG{MևǑ[Xc֛\jC}7VXb_k6U66mf M(>fyb[ڲhǦ%X{5X;9f#qXGZ촶`-)+֩~cS_'=NGchWr* [ kOq`caaJY .`?4{9faTyprݝ+%q/9(9{!x7_m*\F] z g7 ~m3Ksc`pGrÞvۑ{MtrlW/׼:c.hvnʾ6=vJ{/zֿ|zgܙCk;frڞBF{#sý1}[܍ w 24GD_}8~Sb=&A4[%} GTvf3_4$_Y#wf>ߨSlUWi?%p+1ZlwNKC݉d+dL3Ye` 3lsw[=ݥ[^7BwWlv:XQ{NlTCE^^cD@R[|ܵ8Ǿq4QLn?0UL%ccuݑ[tK] .MEm5[g(xn3!WWXM3R(~3kOmP5h~<2|l 5謸hr =ٯ:me+x,Fƅ)`QL/[Ӥ`Qfw22ŝ@/{3XsXNOnsohJmN"[Z0f-gFNT,K.7EꍇV[ L xǗVܿ\hmLr66܉ǫ?$VEs Yhm]æ;.ʶb@gƊ`%yQ߳⛈فE< ]\5m$*_mKX3/:6>-`q/3VXXWcOK1=,mFƢAx^X{ׇ>W%z?J+:۟I4! Vߧ?yG{|48Ǿ- Žk ߂ޏI9P\Fbq;hnfg'B{Ma +~[amvoE_,:D/w`,+E@qŶtusKkϿ̒lb(Vq__D+ʂ0mzP48KVCGX ZBVgr8f9h@ ^o>_ k&O<ׂŢQ\05K~i."s[-XŹO%M%ٹQU}%’tGAMTŌY  >~3Ʋ[|jڃ 5?d"w`IghWU?*k/ Tv`>j,7,< Md`cLcuwFÆFJk4XL5kw~iͬ9/#5v99`ȼN&yC0ZR톬 usY%bvXJ2v5S;c&gyYi 'By/IL9EquUx}a`EYWkG$ec'SXZd-9#E^iS\Ǭ> 弴 r V8暧eyUL;-Tِ+p3Ri=\;|exf4W Z}| ]V|j*X %׬!j,qg7,V%Nv \otTaZ ;~l]wˀY-vp{ |p7>GMs Qu܇BC>3kۭdx^d7{ϝj/XzOrs^׸@}Pל7\ ڡW368+J|ɣNYۙ6wx;Z/UM@sT)q= &eքh,/}]%n5b!;|1h6(q'T sq?#x)L*Wd[d(%@hKP~wF#|.繟c]TɆ.M38:̍EGEBۓzKSAOy3;J8;T&q^ 4 Vp63nܰkh@C^/P꿱%<^J[c ԠJaX_ ;F%]Jm=dV_}6SyBDSI#8̵[|%mZCݒ@4u%eZ1իyE|yZQ1cxvt7XC[,gb,[ѷ9⦠Dn'4U+MhڋM|q6/ ۨ͹nho6G).3 dFh6 8K`CiU v{CE&gHDƊBMFYQW;;^ZKX]~s_7SUel'U +b16]/ªX**M<c=/n@56,>_;4X[WP1+q%h;k +-nJ:Gy) z*DݰB4\W#VKe((bkkթd4vן)p]B!66 ak3u5*A+xgnaɄ|䤠7> N5]"ﮱlข'S( u?& |NF䦱-VG+^P^Cm5\~cpOCZRvUrF8ԄЫμ ç\a%UEn&Zh-+t7{+mi6r4꨿QPGgFc6SzS4s>ؗB7G-aݍu"GK4XVX%cgHic ǬB,M>@9V\9ppGr ܎eYj꽭jjW`Q/*+6]ަڨ6bͫ+nL.YsNĻS`Wc; pwr)!ʤ٪ +d\pT?NC-!z;`omǃ_3:4pv.j?AR^mn;uk~gGE&}'I=vzU<ܟlecye#z.*9~f"xh?GZdFEp3g*+f.+nfnowcĭ[/~[bc$r౫QZ[E"xj(r]/~p>aX tY.G W$\ne}YVVjol(*pL;רfU+9EadjX5psb Np)z\)RߩEQ}ZeS^]:KPT VjbkӖE/QK5뿌ZZі@>qҖr78NU{ :x0yCw8fPEq=l%8z7U:wp~{6vb j l ^"MA 4v^ 0h.\;6mVjr5qsr,뜡M d'`+KG l?jx#I c{ۋW< *hdG(eg7?_ [[F䬂5r:dF[L Z|eyZHU1V Z酕}V*ʲ (_ywgӂ/m&-$ÚyZ{-FZ+i!csrKšжh*Z[ arĖä1j-$͏vm+X,ᥕ;it6;;"|U衎Ve;ZfCBugJmv4N>mh uR 4k:Z >lNt?͎hYSNi6Ri{KL7d j:q.WЬCeD_KIonǦf2߈^u@9D#Dg7gÒ`߸9{̼BknzFX3+<¼}q#h@uXSCؗnQy(J}aVrf)[}![)0-Ò~U.do'mzcr SzcuRG>m11ڢtI(4l5 *rzGv eG \&7Æ_.rַtP1v܁VJԆVj;&zM+=/5/3i6S̈́>rEZZ {;FywcrN4Z钚iV:uԃs&kO3^Z'g{(]}iدb0r#AVCcYY>T1fgp;Lly~iKH7шQ,^V{h7Cti'&3 Tl?ۓ涾wf^=<) lYC.΄&kq_1tp?qN΁n w) k8{(h8 |܋ojp.g?'3_-B#"{KaC8i{ghzHd.u[[ =ECg p?ѐ%TOémjxcժ.x-[M>KM,j8i+i͹1K%ѫ0~m'UѺ6Q[دh*2V-̢slSgJ׉Q3<|"w0^~h[ \{ʮ<[5r}d "x GYjf]樿&+`8٠ǘ~\+{j鼪>">V }4Xt۱jK3ܰ^̷d5=?W¿蹈s!wo d㯩x}SQ?֥~Z7eCEr7;ns<9tiCD.Њ{Ś*Fa7E3񦴑{KcZXi9>ov:<55l0/ff/,0kAE!{Gd_]@'N6Xa*ǿۺ)hmmiaGԇl iρ Dkg];nV$7W-V\}X>PLk/F74ai(X TG;qI35X9JS`Uu, A䱊ÔCuGŌͱGr/P9BuJ-M;;E3biAZ$ǹ a%0C|"ƭ^8ǵeϗ7?CXgkMPe%{"2+ {7ܻfM;[.jM8忡0j>~Unj6bWW$Θێ;m Zi;jW-$6\ uc/D+ tjM߱b)T%\?1ֆoUWo noa#WC58v3 (bi>xg''9OЈUzQ#[!k#QDLt$]/1,i?S˽!Pfw4&;d6v|zrN&M9_LuP5P Q@ /ﱼ* Fُ _ ׫,1>u(*2bx4:X_ap"kD,-9NS73vPV¥uၢuR\TI2u oWhT- < \KkXD%4*(/N뚠ʂ XWZVS4\r/X +-s55Bkx<LL'9xP<&˨J qXss}r|/OQO\(( yO2ܡ !*t K$] v{8 n.}?QMΊhNNQݐ3r.x J6e J>O54'r`lj Vˁʁ9`ULkYZG'VAU||,*G[ X: ۂ&`-ɴ~6cLj%vf^f6 k#J?-V]Jؖ͠$V0Xt9,Z`h^tM 5KilBLh7oQ|i;+;G^ZMk;Zܹ1}r9+`5e`|6/ FKW l6=qhoM!)M[Dfca-fBn#X}|9Oca =̓yv :m{3XWd`9tXDͳ&r~gO\A'kwR`Ō- NqhxL'܍'4?]3\߯4oGגhRI6?YѬRϝR,ƚ[iNk1fJjs7b}[ w#VDHSNmTYinQV+k՚)dc-TD$Β+6>FM T R`y:JƘ1-F]fLGdCm5k"ac#fFi[(kh"*EQ-)O?<D,Q{]|*-P={Ik*oRӺ\VPRߊ]%)^3,53%S/\9Qu.L hbXAnI;Ac]fmrXrժC1X,-kA~fk^쯴-FXv䌿>0]ӓx*kJ9y+bAm~h59ït״&}{d̚ e{]hm4Q# h5+5veS\N%Z:##f!O;UnpWr^ mdW=C!8Dش vnvB-Nr/%{ܬdhڪw<ڏ'wU4@W _UEP)"Wvw^:xA4w5HK!@ҥHD( "M Eݻۄdvgw',<-~ - . (^r±12Zh4xi=lQ f?{qnyh!6s2sm~:ρˀQ][ /{Oeh3~ ǻ"xRyqKh/YlBO2 |2 3ElDL3 M2UN٢Jgr {N5q2 (f.ÓDu@3Y&عt&yM]wFXdˇ"z:T ˉOVmvE+6/,Jf>u-7,42GTy<,qm> Njh.BnDL 纣*yչj*3h7OCU&_mYY2 ʢ$1g۹w! ?h Dw L;mED8UQFzIn՜ )8nNRI|R7׃*^`}=S=F ⸲M}$>,a^\3#SsmbrUKIj)6u,qmSW-DLjUN狣RhtL#PFm&'/d}& xDHP+9|YrWPouʦsș*s$]6W]O#M6+{fdd;kCsI;~#-DfðBvm<7H8&w/4KY&Ɋ4މ՜2K_ \xs9M \F4W5.}'Naj ^l ʂ[&v[UAǔn+OgEgٰ?N,6Ϡc&ȚxJMpiY6ĔK|Ÿv0ՄFIJl"{:bQfL%l=mBE,1,lYV 9ci׬_#AXs'!~]D2ͷ-Ŷ\`Ͳ[oC $:aIU*ʳNN\X`·YCkvk*>w^0*.[Ϳ*b~׆r~˾ KZ?&V[F1{"F9h0DcM#N6Xᜆ%{D0=2DKHr&\:[S<+iwWJZXZ#wu2_VG-%0VeǼ4 Jalnp>C~4V[]Ƌ<֙xݛJKQl-Daߓ!|VcGg-RXQ^Ah|ʁs$Fo^CX|_7ɷQWNK(;ph>n(Xo4ꤛ}Qhz0cUf/XgcEXNU[#?NU҂`\&"d ~E]j,ժ5Y-Zܰ҆17|rK4 3\=x_G:r~1އnfO tXMv&j/E,NJel>3K̉v([Խ"]uǐd.yt<윲O;+^>E\o d8Flr {k.^vJ'[VW!#`17s[ܔ;yez$~\Ws _T~Z$~[A_ɝa_5(8lx&Ykǥ!,>6g5T|Y"V⳷T]pCp($ge:iy4p2x,R?iy^:OŵF,BrU9ʳX9-ǴKNL|+?"0H:2ͱN Qb;T) MTwhhJ*BSU(OUQXs5?eDp68h_ OC-PtpuU;>#NNLEs'^˧*dg \\g.e?~V M+ZڀH%Ym!:.Mp].kLQjN?ڨsB[D_/[T#$&M2 gcrGY=Yd=( :e.87/Юh[hG?cvV=#>b-spKnH[(n04Ur w^kCYOĂA֘Z|pOCKKQ%Ch mg(!q#TIS%/qm\6Z* Dk8o :IQ{ځV~p~192iMX&{/b(fuXKZ=qYkʃu?tfՁU|yA:[k5d:$4X5S_V?ɏ'Z0nChl%}6XK`-M4:d!zb% 1 Ӎ2vRD[,;b(D,>xeC2yk~C+12:'hű:~?k`šJ*æ*]uվa?- ZDmY"[*.-c ,vK+*zֻMBl [_a!Mk;97ؔjtH\X;a(N\Jeh}{(fX[mvEFlvguibNh[vqQ%~;JM/:ТDtHk-`ōel[0/[cYƪ[cq77ߦQX(FI®#y \tH|{.X\cmF=WϷez|Emb9!n9om`)[.turA2mO><:UB(N*y*#}~s'kIΰ`qQ;˾h.TTYy4JRJn%\q 7X.j*y!ovONqr=M`SȮye}x,Ɇy(99[!b"Va_[YxyUڻ K%"HfvL v}8]A5&&oj#spS[ri1:1y-,0S_mcND1Q·{b {PbclݰC5vn)֏cqlbc/R "6لd(DYktIw$8O:I4 :kschkhLB~ɱ$B㏹gc:VoeiTa=&ڱ'`>[+UVpO{?Bjf2]RKm <]VՎK3WT(gYfhQ]X >~S]B6Y.#K>j;8v3y=&'EEYT}&s a=ebƘK:úKu\?8 ] ʟEqU1]bNsYbtI 8]>PUez)6J?}JI`}|*.܎By[K4sfr:~MOt4JZK7/s <|;&Kƪd:^-aB&㳯K('ɲ6 Tv5nL|C%輕X'3]tI;tF6-S^7-2M$R@gQQ֍?]$%]wܥJJf8vi*\LTܖi0̳5}ѴK s^wxcYHvUiUQ-ЙgО}/)OҞpCF?MjYs9vC YxgXVbԞ 0hJuη88FT'ù -0.'h T#;ϘR{BL}F uOFK'6ZYaÚ5QN6 u8 i#wCĬ}K6Q+З}o`"Ab}7epc+y Z_c:e<EQ VXS=6AˇҦf#iYjyca}*6V?^.ӊt*5ΡmZ}ÊkNCDX , ڷu2uQzN=KQ^F9]D :-0, +cw` Ԇ{VcgJ6v V؀p^N@+G/l3=jb@mGV䓼|I1 #gQ"eYiXOZVo!l-+kBÚV`!q6֠=[EF3ͷΡ%M{Ԅ@mTؼ%5pY+FS x1;DGߚ:a%uCdh2E{@_dzN="zb/LǠ5' V;xdZ;86۹ }Q;saU)69}hjM ɵG)vZZVE,6~m ^M0%KM`}KcͶrWlQϢWa{=nE1*H~]JhFG/~Ԇe`^*Ӵ0!6}~)J#7jڔH/%3?vmވXȗhc'`՜FԺXv۞4MMall)~NrL{t3yDN%zu{Xge59]B̵\3t_r\Oα-rU ]DQhRq=n4VL{$9ǪxSޛHaPF5Zc}@/A{S#!7:7@qþMs}=`NarTÆ/䈾6r.P+6fj]. !&:.1IsۃG>&T r*ӹ> KNZ d]U3i:U=\GiaO_Zm]T5U AgtzN I4HrqiFs֧t<\wv95ݱo2^}>./YO9*tr`~!G#r4prPյOUk4c$י&h9c}^0<dw`MdVxS>a|&9&V>St$QC>0\gtIGr5Y'NA<Γ0.KAhF=Uװ't[D[GD{ J[$Kt~1 ǀ뫅M0#&YdUC,0>J}<:' Qe\ b5TdN sY@(ZւWbZϭÒ^iCsLiL^/C!c+(YqFu;m /4l'U\êT'UULG5=PDVs= c\=FmX}%]8zJ.6׳f&x琼+E` ךklYdD6VKXGѪMb(Ѫ[r FG{*k3.SAW%#8Kd<]Uc۲rL NY{4-nGMgbi,{ tzo⹅0NjɆǻhw3jF]QU| 8FJc@Ф@{k>-}L>EŠFzUsq3bV> n sp&>ig=v܁t \6 ZsU5L ۥX118%t% 8E mw5XQk=[f)k=紵ۋE4֜EXWEGdh拆x] G7"ƣD#q"j)!|od9b&4Vg510 =x)V7@h%S= d@=3ާht6vϱgaoXhgi3cVAVP[ ;(kvp;(1[Ohm~Ɗ7=興:l7l㰧X֝> k7X[ѪY5[2hF ;ba4-IĪrh k +w>`P݃;QcG16,hgnG,z&w`s0%wI4HԿcdh\玄Bc}\XC3X{K{`l:{YrTT_h5g`/ic_{ӗJg~6Kuuր}"Wh8'Om-aI"LCK}r#^wX_ 0.{a}a/0&D~=5 .s);{[wqM$.=yXL ]Q{3x;u9XG%^~&ƒ #rEG fZ=+oF?8əjk?/Ù/\q?cA7#c/C:^msQxL־V̑uꜗ7̒?o1X'5 E`zǜz$FQi$ lY(rJYHLwg[>i * ZF[4M|NP!'1MsDaSY>?O~G9U'2kzHb؞Tr-ؐv֧f;訉ή|ē+jwx3NsvzG2NiS^;ɔ5rxw U]%' }vN3 f%/s6~g`ǒ<׭zxv\w;cy)w a,CI|!Tż&:I'DbaEC6X i,@U<0\Bt.^19l4l8eΨG\pyl0Ds,pv13NCU w)Ϻ*Pk2 5i`;Qe:r#?|a$%&( R=2v$jrn5hm= m (f<6[0LSB1r?mN }+]< ~`.|jI;QiWD%tR-UQ4tB:JgymnyX 'U/cx7m>Սd$;ݢԲPU4l!!bXu,<2g6o3?PO 6c_7ŘDCE E Ik@= Yk( Y{P@= ( 7 x@= ( @= P( `F HG B"H B&@= R&( R6@= ==xdw|wD 3s$zoҤHCPB)itw (XIiҋ (>ﹻzaϙΖ$3=/9V%ҲQx Z*b5-R7?,4 G=h%_=Q{v"@׵ޤ70oi]UiS!,:a IMy 1nU%F%왈M- | k_7hy@Fe< ~U֖b>%3UhU: 6c;Oז-ʢI+$ڗVg2=L*~2=\\#MeD+Cz̰Y͐]qgúMbҷ̳iv M3֙y`*X.Tv5YEd[ e.zmX@[mk={?b+s,I/C+6D-GY<nrlh4hQ-i-[Ef jkJ{׬ںץ%w[=`~h: fb~Ͳ<]_RlKrE캶b%:ma%rY>fg`wܽ&́ 9O 9%8n-,BnyEf)59 {cT-!r]R[pM6C.\ kNx࠸Qwjmg 58߈M"HN]`͌9sChwMVaEZ0kO.JS=%?1TԺn Jry4gk*)X1 v\ל3Ѿ>LEcgca|k}F[%jhڸbnb/fOR-XXQڒ1_i~k;df>r ig~wg,t >dI[$v9vkGqYӊ}gcGX_Xݞa_7#.sVNrX)ϧ>&GyY>A}"?y"x)}cQ)\KǑ#Z B5=d7?~4p.{|#gDS\ylFkAϫ p^|pC5^-/k#d&jW@ަ+Ygi.j%YzDϠq+hJiϼE,Ov8W -4f1jǪK75_`zRxXxn%L`iYH+.dZ 6 ?C+ }tuhsd_6&Jr3lo VISEעAd.Hf߈,7a$P$UO-ɸI`SRCZYnR;=&no;>wG|u~ͦͭr@7>{l Gc05AZE}nf$IW`o鴈z<6Khߛyynnd:[/bё՗P3wXZbllLx rK{oՠQU@gDc6VA a3Ms7 d̖ 5zx|~X[3!ߵ4`l?K(m:/_bx<*^xZ#сw3<e^>iCNjՋX*g -P`}8֟hc쿂! ;I`cC`$gCax#`Cpx]i?7~#%q䔱ŀ_=1UP10r,u4Cyh  Prj&i,5A9XPw7権ࡘZAS0U5T)y!r!}\Wc2i}˪;5CM; i`<4 ֤e55\GaҖXe=ȏHplW{L+p1 |{rGw:{y/L ã[6#;gx<Ci'cOkc{R^ ^|ChHdv؉>uE=SMkn5|iE>VXc|寂g@WG巊{*?lY-gc 2ω(ZB͊XK4E(XeXowE+Gy T*y1Vדu<Jn5m}ϳ"VԖ .ʏG5#fN0ji5}f)1_72M%ê{eǒieIu{D;EQU]ߍf]%%o25|m!^WޞY֏XUNn^81VAˤajq͖Glg4$_, SOmiVI^SNA10eYf3q(AVWXQmAiOYZ{* a P0Gu5aa+ح}'#qZ&Soі6ۓGpX(*׶( {6sy(X{soOX8ɯ"'b\ma}+n(Օ+Uvzu:?KN=c9^֫=/io)9'[+ڽo"ͭ KǓ?uHW8}g`Ӎ*a9j ڽGw}F{ˇWf\V]ꙹ [ދX< [ҕ&&OrZ|;:>X~oE~-г}XY,5%h*Q[_6ܼBu{j{knW|gh4y- ӵi/kF`⩉(k9r07~09/f\y#fmC}H{Xyķ;hV>T|%Xbج]9-zWO|fm``#xrS[oSZ)ŧ{ȫxsSg{gWa#a_b2(G.Ξψ#g=|xorMmMv9 j5¶ʣ͓l&k=+Inlk3Jm;['WΆA?D?m>vkK= K |gNE[2;HγN4myu{ GNHrv cҔuEBj-ddj3DQX?)qrA3rK{U6, 3:CfBW|U4!qB=[ + @`4=Vǭ1 z^Nt+砳wґ_z=ߘ)8vjn{cvWY٩MϾp껳+9U4dM{¼ -9/ea䊳>\Yh>dJ{^|-r!lP}}%.)aS\jH8{Bs?oGjYtLvDC~;:D'!/Oǃd34@os59KeMygʦr" Ζ-D,o3hoG5g01s25 psJ_䍧,kb*Ƶh7`.xz; Gڟj~FWO9YWyg/Sjί5:c?dJtOdjHlo||L~S<'7@D[)'&}ѷ8Y :Dٹh}6猎Ghz,n!pYol$_# t/Exf&D]^-Q&ǀuܫƑ[jV2lCgi?4رq͓URh}vUQ44c3'5ϒlyp_e[*Z3;ݦ*x x*i3DTT 4Tp_pEb; ܄d-\0mh;=rk1e5M0U^76Oi/I+x+lH{K /e9Ed3m,}oB /$'4)dQ(&#*<Ȟ0 A>ѝ=Kw{qN}(9)AQ(4<pow(}(lR(rpW{gY xR k+g>[לbtraƺZ]PY+ףw9v;p2jΐ pC$.b oLмw3!xfgE7o~4l=Rg~쳚P(AwѲ J2ZyePN"; !YTB[,8 ޖRUG؞%^i^Fi.X;Qe_Wo7d*c5Ҝ$n~GՊjL~*ٻο! uDD&f-U)7?ڈviw>vF%WmxF\]ůG%i,+8si"lqĺh3㷵4ws2(_hA{ _*v }-|oxg5@ %ꞱMs$Pt-Zma%i݈U3>ЦN@?X=SJUɁ~ξ* 6w[ڮ B+DqЊ!al;X9]+r'ZSP۵wfTeZ7o'4ZGrv~%{&M76&G~&mGa 5r:XMm+fYŔX$l (b|uUc| $d][Uˤ"ڟ7MxeNހmU ўšў_fmuf ,\u!7jΉ rSt>M ǻw^m⼞le˶ְQv i~Psi46}=к!enN'rN+tĬ:qi9Q\M@{ENyEM5 ceجUV;3CQ[P{D64`kKo{dmo`Scoa3ɢ6g=Z?85b6DC.65dm |5lQP`^m'Fv|qQͰ*XՀN66ZEuN[sGms ޹9JHS,K?X́3ڐ_꬛ն"7{<, mPMuxFiOm,F-WS[J)-U3q g"9-:;ôrik?eV!`^mG_Oq0m}k ̗y)Qfl02Nf[.W|Ճ첿6E/SML-EjP|*k{ ٫-]W-zr30<3 GG`^CUFe|v0atp*9n K |LAq'0]S_Oe;Wg.A>ʳoZ0r˾7Qߪ40FU[uvoxlQMփ_փaۘmUXAs=_{|G;<qr2`"N.ݝ@G;u0XI|_pWe/NNь_q> +RK7b N'pFK{'Bsap3A=68S/zHp&$Eg|ĘXf'}ytx1LYH%o9q1B3֑e(k**%(aY ŝZEX~Q!PmQߟkΖOpyUES,p9U?TQS*Q诫V"zΑQ}o{{P~99kHPs1̑:dOV1QcTYw;9߀'y|{25]QEqgvY,-C1_19d\%{dy43$.S퀽,'/;ekݷoEx* ߾}V ?hW`S O_G|/'[Rj)ƚ=m@ՂY4duX)Y&8h"9*hK"$뚖\R%ςFHEuE27ˎٳ<f߱DM 4*9ƿG[B?M{l->@[-./kh{>X''_xӮxgdf6+0Fir`Qӯ8/;_壵VimV+tsm<~A۪Xiu{[VըůRkgԒw{Q4r; VA;=YVšKHyVϵ5zj-|~ BMc^u-Qsak2:oQ/kc&~D:\k;U}I[XjF^}hH7X}7b"꣦s؊4ʭ6cޜZWR ;mjk|GyHUM)yVR,ºY]4 ABt9Z&Vc]Uݚ8VžW6 _ xZue=4g,gt,m=5bi)Sd9{Fy؅`i5P6kFj,lu}-砟=kӂ"v3O\I$,@[m??] /V;#\?yQ~Ĭ`i+zV|K1gJkKNZ#]FNɼgP}[̞zK[oq>’|P{Um hnCXb'䢮iȗ; %aU`{a#AFv(FNDmԆf'{DRn3S\Ϙ9j`:yB?kojm.o3׌|N%Gp"8 }k=rX׳`w6_@'4m׼ߵsh 'ϠIϠ/^}0A}1 5x1ryGk:BV"uv,odG+ =}10hұ#ZnWc֚fx x3zy;8 -~ζ{< ɱwG7w7n{ڏm.4U=ѻͭKd1K6hgxmKok]A 7ye^Tؒ:T>Mlb>&&cKԱZTLK~5 N-D[{N6̅]=< ա 긇֭@ċy 딿mס/cO b%O6ΗrJ(2N5Ա'fA$5l3Gh=Ym)|4긹= \*2Zqщ%FQd7ZxVF-t+z_Kc #ߤ5aaX'Z3NVGm;P|?kþ=anN`gf +Ha[DHk9R( ^W[3n>saݼfj&{*3[4* Ra܁xVn%fJ>aS`E16cEaw`aSD 2׉D,牡t+ -W/Z\[:cM+ٰlvSz7JGБM,ZOG7X::*#mcaL0{*Sf7v#hAXu]ǽ<#֗ ~vfajX>r g:b/hNB|Жhgo?}Fr"h5P{/&u+'0lG&dWsHuiKv[u8t6o-,ݨȋboQ}4k. .Ĩ8A%mɰI \+wQ?Qt+wⴽ-v%z \ :G. ;W;A]&oNEmiy+YY丳L:õ- / fX:?n<~3gnkdZ=1тRܣ~dh=T ; m}QYyXu< &`;Jv4Q @m~@E8U~`m"~Kp!jyTr &L4n0roxk.n)= E~{{J[bSj6 w=9qWAr8@`?Ol<Z^ᬌiE5X\UP w޵+&4ȉyGtRdgɀ*b'pOUEͅ9@FNLjP3Q3UHRbgE4hs3ToZaP[BZ|6NinyAw*;?lFb?m X|USy_[4kI\M5^6Z{fT0[ݪsicйu]mmu]aEmhi[m`-h5{Ix &j/^^e7mZCu`];fo~=X #=C{[<왳1p6VJ:rT%loHh.ɷgwi/h- s]kD],eh$Zu7@2!=JAi9ׄ 3c uƖfh-d}+ǰz[GmK4w=s7VoX)mͯ'Π/YEm+=Dw$KB]߄mfƚXoB$M mHEZBbFܰZ_&4/ZMSvu*T;-ʖ}W|!FEG̼Y2󴀶fL󇋘=̌šPP.z{&Sb5`hK2 XE80 -AhK;Z l)>/= aa_u'j4ɷH`}A,]?[&^ ƫXRekh`ҌLޒo"tv5W[`u"6ϲȯL=| Imw@7Kz[7m}au}uT[oكRG{k)`Z߼CW0E25]K{uxv{3,Y}Ԯ:7+[kԆ𺨠o>1wB9 *Iymr;9ɥgy좻 Xk/?.KuӖ&[.]wX~-Un]YI0Rz?Ӷ< {3[`yXz|/~䀶{/x/rY:@d#,W{Wоi;ӎA;:9}GK Ǿ2lN%XՍ(xo:Gt;TUnU.x@EExR0 \xTE҄dOs朳)t$tT;$!^B] GR"EޫTy]w.͒ [vN 5d6vމݒf9Å{]ݱ9'nAcoa3==e{%/ޏwM|7{XމݙFձGqy'&iMؽhId^e[\{]5'D뽌=Y|}{\XGqU _ze^Įt%G6|kg9^Z\qDz؝琕2Mc[z'6[zfIzI8b/$؉.z7Yd,0rx\,AɰS&eI~Kq[Rwړ+sNUYJ8s,ǪRr"x5/{EgSND'c?.T|2%wTlv{뽑uWK=vհ',sA*#4yѽ ed| {yŽzOvx]"Y7lF8xqp}~*CǑ9Ew_4=%tV6Q^* Jh>$}\ވ,~y55>qf{fIBS|WP/'wހE{ŭNa=Em"t~Mn@XxXF;k fcNZIH¼,")pѯ, B_ItmE9o-N\BRriPjmG*ۓ>%0 V*GBxq|5Ԕghw5 y>_5.:+Mrp\ll]'ill]7_53_j7^ lSTi.^qoTLktk0;Mh /dU9eeK5 #Q֕Wq(#BI6DOZz)"kw>c/ mz{P`jըcX  ܏^NG2% =g%윙O,IP::U e]b.φ'JѶ_m*hy5K\4*$_U?S5[m5+)DdWjhS4F[ YaNU jTѴ kA eXìг03U49K(Je)~u R *C.k8@ED5/`ݤӏj5ѹ(Voih>`(jb\(L1J(d]Qr5M.ڶSTK2P 8ok܆2J7*# gƘ\ 9KVmBMգh[ _[*܌*܌9)Pe蔗Q5 mCW7d|Lnm]Jjy5S[ UPDS{|1bIn[Oจ+P+?U` 4A.EO#mk"g/^h%ǵ@Br{mf/$"Gہz}\V6bi|tT}6/Z۠ ֏%=Kmz}EZ+zlСSJwm]?YQT m˓O#pKm[H-t/DO.4+XU wk/& gבfm:*&=ڬaUVH.N' Y\ &GP}|r8h/;1`BѦ;iv(n h3i61ġIrtRuʟ㰇a<~\ |^ )ǣnֆ&KR ?9-䄗Pr@tC7gF^3O?#V`I؍xw8Vo1v q(q]d^Npz`;}$ʢnbO>>j\$eؓ8|Yew; 8[w;YVn?ǽB\:)(e[UEEYk/'KPOcW"z~)N{rc}G7J0sTˇ$~\4?Wm.M[JTJkr7ڮ u[ǯ8,+Vh1h6$bK|V|X>Ahф-utb"h4aÔPU{8,>@h{试bq7P"}q^6vh!Q6rQqYHrBOjMj3G&j5 -a>Q2v)Kh/ڵ;>셹jl-E R)J6{laZ'oZ˩GfE$Ki4RʻZ36ȓZPs~׻̅fGO޴w7(j/2h+:* ,fEXxUb}ܲ$V:y}ZC4dgUf+keXX J֜ :כq Z&CvIrsn~o/g {kpRPE:ܚg/P;y:^gUi_E4?grIc(iE}PG)7^S[+kT z%C`FWN^jAR ,ph7+bNGBNi?AS͌<93i](5*@>&,OQBN_P~PTVk^jZU;zכ_!g>>|gv}x~NcW&ުXCװ31`Nso#v?.i;wdx#YCc_T1ʞ9xaF^GV(tr* -_Uqa[U9U~w&Ûq΋=^Ca{EOv źFa7QÝ$Ov QUQ;jݨ&[>i:lv=1dHCWsbcJG>+Qx2?^= {:umg(aGQHN[,MVEiTZT^۸:Qu{dWQ零(5[aOCyC/ImܒI4j/bE(Ɵҿ/-7y2 jt|ANiYNm1I#I C N=Yn(z!~6J~pN~ 42׽LqwE|Rln^2{Yt$7^Otq 9?a'oc/Jt6{9Ufo4y5N+vl\ΝȞvԭ)w!:?)xB*Ci,' :UqSY2޴\C~Oǰk'fz74#i_>_TuUyG3<ۥ7T8P_4d#b^ UM2 Z1-GhW/dDsCwh%s:@msjQw x_ !K4. ^8UԡݽKPq6/WMjl-m͗*cTik1J5^ψ(Kӑj?Nb[>7J@8'hCymڢM6~'pcK 5 !NjM+*)ô~@1r;Bivܡ^""k%)U5FXi]cSQ9APȦ#v~m6 B\eZsL>CUaRURjP4x UZY#a0 z]W {UJՃbߤ_J)k} :Ŕ5A_ Z82 V*%lvJ[QCiL: J7ϙ)]XȞKmcuWTJ7IJ (/ѐVOga-GSAh!Hfgl(Uߤ#2nYitdS:cTN~J)k7LUi( >kj[;t:k ǣ[xiAU)sPF ‰\̶Gi"UB"RjPsU`a8wc!'YC4oV?rҪVE';pPQ3VWE84K~#"XL&d?hv-.P=;-he?R: P&/v$SPʸpl޻_rj4tv%@~14ҪH'o1 {z?M M.<>~͗twgc/Vj=7_nZƿ"7R1z2U? 6v&~Q=t: |juZ:̿3;[ɯbgsx8nO{c:qdC8'%g_y؃N*-HI"!2(G' ^G槢;r: *T#k'w +tŞ n9?'Dq FcO//ϼdޓ/@{ 4JV=,5?8|_o ^Yý{s/^d2t7*ebݍ' T>WJ?!s-Q`OqɚM'w:~V:eӜ5{ppY­A&TlH^^^잕}7(j;z/r;cBt ;nU{3ʽ^e9(^;Ýzx6Iʩo>`ߠ@%ڗͥۛ1_aioV|7maCq+ޥ;;}*f}E4tE:,QU 3ZCb3v˧Ŀ]q| 0(>'zJ:DWk|=ZSО5i&+9N +n'ZOAFaC4еٍV1JmZ%D#VtD[^e`n5J[!Ǎi5\=;(Jtmpn-_si+t>*wH|eZPQZꋦz68'ys^%UTiLE#T96YOn.bW=kyC+P@ў eu>'^ѪD瘏wh++,UQO=Z!vF %fM:~V$6ViLc\8.Sg-4SgUTMКhϿjEJOZlJmXf@3p}e޵7CՂ(AfQfp0}Dd\5('BUD{g( mPu˿EQ\G; eıCuVqVYbYBɻ u;(!*0FdRG5:<eĺ@{p +<(#4;Bc}X*.dGim%qcR}qCQ948!o'f)YoJ Khm KnQB}b$QA\ 4 [;DurC3G*;s J;er߭}h|/a)ȓM$kB(\eLPoLV]J(!{RRb3ŀF5yjt_S?Ҭf"TV%^(ш2EI-þ3iP3^|juїCA JZ)ˡy\ 4ppSm&9ËyiheMZU:S K^^cݞͷўʡAĝJd7葀m{Cgd*γdlHIɪ$I'Ive!?@VVBeY ;anY_mK {(gM$v|`~OʖDPQPN _I띊݅ccllt_\C{ɩ { =_{3jrC4'J7Tԏh '䳱Ok.j1M"SvNE5# pzqbn.uL]'Dd:LGHG3E*s=lS?ߑG[ pOM8*A.n=|TXQ\ _EBnD֩?z2?u_eonUũWj=ә$kFDV'ojtTRSm4,HˋS?d[B>`:UFF.=)+y^ɸDz{j'o`Ovz9ț ^a;i/:O[-YpEՈա]ZͭF-Is1v\h#XhJph݄ [ bFP{"3i[mtf7dҶ>6hmm;3zA/sKВ#h\+V6wFE[$Z:tM62o[8sFCƜ~ PJes3h%b%m${"B:hN{(VZcA/d3&Quc7't}ew#( ݒcGiܣl?v3^L 0AOf6 Kx;ٯJ'XމLt [;)ͻT@m1N3%N'r ;;a-*| YoՓx2Oedgh,ޢh. ҇o=\Gpcg;OC2+LրG-C"뱇4N^ wG$q}—ѓY8G4jOuZ[k>$yj+ױ%NP2ht$ڲ {?b jݻb"s΋o'8B湷<{^' n$Ez?#}ted@dZm-pcn>CB\+9$G~ LOfdtslgoĢjҚc._]3_9n;byc8#㱇Y/g'v9#ɝ)ߣBъzǕ5Cъm1ZB_nъ їvw+kUИŽ0vFrT2hWqVסe6sާ}ZU[(ΨPQy PMZmBAkD|'m=wV%@[UfJ?A-b`i+FIUҊs`&NY/%A;hNLB^x\~vWz m5 u ZChs5#">6)ט>oÊ@~6u?Qdx6v/h5د ~I`u5:v"갱7PVmYݟG+֖)>giOsQ鴁]P8i#~[n?&-qEѦA7]~v+Avٟt9.nVv%PtI\aS Ͱ`}ȈP]̃t><*M Z K<,T@+5x?vKIj {[cv5q0RZ~v 핐5x!#>~r|< p1X"340kp ᰞ Uz>}[J5X %x p`u *G+B7X?%Pt/"c JnPS\ZUEGRrUk\3"5TJU1#|8L(u:8uxJ)Q(GIS%!'~9\b sdAW8t'?Kn+Bͧ 4|ʞϖXml)m/s9fORP*oVq-mҡb&s+/lW"(† Y(@"ݢ) R߉OSpRB6|$Rj}M~ A]~V.E=i%NԁRpm!{ޮS/%u9/a8Nv!D_FV{;{Kpf<\wSW%`οڨWCUK^$EO[)7`g;uhrJN'ew!3lv0IdꕋJaT}(F(;zn(3w.ʇ{1 (-c%!jlvGlfNZb&:UbSx<;KqxdTž$—PvQ_={ YT&3q(Ȟ=yZ!q% &˼ӰcžJ TZ\ Y=t{,28C=)nA?.9K_BAwW55TLYґ5(FR)hP /MZ=t?wUZ/tUe}6k*עJ{"Uh5iww'gss'w'Vk.%&:V9-$n--25uvEM|:7 * j;!V5c6jU2C9V0QbGZyxk(B[q(Z4G\U^: O]k~2yz_9(^9|;U?jbEtm|JwjTk0%&Aͭ1jdDCL}޴nDzA=:Jv@Z25ph},i DYAͳr,Y[huJi3_hX:Յޠu#p!@k[bYGTؑV QVoB֗f?ZT*UG3;Wm<ֆ2P @oqmsTD+kg BeyqiiٙzfXYvK Z#Yf63Z0+h}&*%>GUY~=w::L[&K@YI)PJ_3#;GkVJGE$z<,1rWi==pwG;FjIۈ b0+ڐ<,&J;z2ԍ?7~ TaO\gk'Ng/y݂z;q7Qm׃aP:[+u0gaMsvY&QQQRC~b_˞(1šw~teqf)b-6lݑ͂hV] z|=^>))dlAv[v hV7S&bgEp_7J :*3h"grjQ rAvFh+Ld& ^ O%zMU_>ُ6=qyD#_D`tO U۩3Ђ}U/:Wys=qV8NY^==L\q6؍t/vPdZ)} itg54WGa~=Z?#C*h.T-SŋBM\|)ƞM~ϻؓ=wLÞVt3Oj;5*boC~VU,އFzWs~yZ?^[PE&-i#/*/-W[Qy [ƭn .*π-T2*]%Q)Q@}dPVc0'KTՠ-^Kh,1WlPTfko?d|̏A-u%Y E>U|(Aו=!bi U/VL@(at]:ۄz[QMJFyRl͵C窋QkC=cA5wB%hHsJe_Oe7j; v~Sвl0}J|7؟+z7"T(ǔ2흴&{: Xcc%9Gzͪb(-*{V*;*O<@0{ݓύ*j24G6*ʂV%+7KZkh%Pa#|)p"P}C xmfX}jnq*" 5Y,^ ճ| :g͕PZfl}b,Shi c@U{b˩5ȴ6mk:UhAtSD8n:Ѧڽʻ JD}BcPTъ@),O)Kl<К]WMksbi4m!MrzRQȪDnz`e`pJ"P%w5d="UyFCї\wk:*f?hk нĆ4c}↡_ v˰k) 2וP[6}UP[t&hZb\wLqը| 3T4úk|.\rG+~뒛P5^3hT2U:`U3A[ܜNny^v{E5)$;/=r}`09W0LF%w:([+'Mu:2\+ud;/U"GYOo7Xd-b/^-8L3xBoA@Qyտ0#RϓgCn ȀPy/YhLùv+GbwdWwQFDc/b<,3oa[K.RX{/Rdgmrq/qjr؃Q{ 9k7їyegy4b{mNԞvA"פx'gCnɧyob̉n|ރbw gu ky|NY*9ᆭ{59.Vm<%]/]"~8]9=u&a!8"y{%{!.=j5yvvfw^".BNjؓyhqb~&n ?)ؓȧM>udz w(Br/a/FQ&o{Y*m%ܻw0w Y,?3ёaw7Zp;D=J=1*Wf kGȏUL3 KzLCǕaQԔ #r2崃9FU3Z6D)t* (VoX5EBt\b1YgkyuR{F7 WQՍUt Z<؊:?4ξ^FCiuc2e G++tΦ.>Ή): 5}މ݁CWŶ%Ch5uj>B4(vR4F++v>a3P3*_AՙY?t\ Uok eY=sh mq/l7oW5s  ğu7^Hk 9d?7ZBjۦl<.@b*9$gt6:ܯƸ}TkrJ=m"!^(7')W [K^z}H)0_Wd|#0E1|VOV ?C77thRhJTIuM:/h!QלDZ"V`A| T ,\`g]:fϔ{vQA\Tu8/v#pA#'d>trmel|QѽX-LrZ0؃ v#(lY]mU6_]-}#-OvЇלW:^ 9Y\~Y[N_Ch:a[d HrЍfigf!^v2>w7[Ru8E zoS ];GtO'ct`[S@zϠ6zt و{[qn&/|J/?q DXM D)N^bxN^I{re 4&mbwRMyW P^ޯbwDSGw,ZncN|-Cvbe$a7gh|^F|U&t],f($v2Z)>;~Nڡ<%qr$tˢK;E4]'*Ƈ"wPuCGDJñ}ZebrJ~}19ہ&JDPO+A[ђvV'רz6SYWJ /|Di?hH.eo2tMA 鳡*k#2YcjYש%*˂Ruhw:?>{Q2@Q6@e-P5>"TWQ~B[큼pikʯp 85v6X?Xɫلړi(=Z E >CՅBZ?ԎȨlB;Zh05Rz)kVL+ r dɉO3ܪ+;Sz2_ fQs]1JmL2Ws_e7biWjVs Q(&ȓX4Fhe[YP]kyMB^4l{'o~t~vm?]dͫ{{ t@suP9(Bh7PuUq%K` k◎* WQu="˯>RU>{XTWflw6gEz}!9z.zZ}ッٗƥ˶CW[w"r-h]\2tݿesi]r)"Uw`SUsT@{w.(C62DTȬ݋-E-*KB2E(wOOҦMZz)i*66QhϘb\nV~/gN/rD󠘉w!&e'4EtfDz$]6_qjAAI|TexJsh ך֗wJ%?k3EPX3i8{QkJEfbd=Y)%>P:q^-2VRJe#ZWrDYOP5orl1qjf֓u#;ì rGebr \h(brRnel74wūZiڹHf/<Ԉfy>bGGbrzWT4r_H%],v:Bg?uY >y?Z@fkr.efR}I|r*R_kQ\CLz\(#Ś'?7qjvΕ|M(+ m?,Xf qΎR;_=bsiV{yQc;(.&=!m=i;YTž$sX^={(/IEEpڈğYlGD dg<6P ߪ8TnLShc-In%het8*KshSYSBki&bf5\6Md`,M'KVwk7J+1Kˮ 8ble.ff-يyf\E{AMA+]b:.j8',ۊU8ӮzUZ@ S.@_5PՊuYNXn@M=/?r B[d6Uj,K; k2w3%(vasJ/2 +PSO>Q5(xWT hk+ZudmH[JFyBihjUrGª#^C-q$a 4g*%]ikP5XKcS/- _Q6|UjQvp APSSShC}i&M4K9QZ诺e~J/?/m >=O6MGiiUav"4J[bLGy)ZhoMӨִ5c2Ҫ[bR.A|YXwk.~Ae2_~?1,),`xw(Y"b{%_yTFʞtDMeTciJטֹڰ4Witi55:Dc_QZR~lҊXJj7]”xy}By4%,XYc)t BW2ʑN; Oq$',m/Q++Tq ǭbT8B nRcoL !;J4OPS)̀( 5 9K`κ/T)}y+cfsi%mvs (5H(h3z9aiH{ʲOh)D'6> =D&wlA{jN+.d?bVa^?%䈣{6Cid"F(TVB44m{h6Cx%t~(4J0%R2wJ!;e'*d*mգ|y[6{H{R 4^iUX=>Ҟs?Ki_Ʃ&,,1tjxbd[DYfo6l'zi,{;;ҍ!D(I=)>nN d]o7$;4/&O2Ѳe| EN|XA4۬Bё䬬-zb7٤cWK7H] ;]?cZ9\%xꅝ {YnWT_$TX"N!jSl6j/aѨLRhعy6?3v9F r&= 3P =Qإ> k$'WwgFm;dڣ姢l܊=(t>~B6MCP^7l|~:v2DʊkSQUSQ^+}ؓgaښ"?܎EmaGjOߺY.*޵S+^ o]"3]sL=Auzh_'xEJi)9P45k|Ǘ6 4ko#F<@C,=644s]+G Ԕe3=4>SAV{4Jj+e00_XWh6\k~Cӓpk]Av*A{Wl}T',=j=V*,Q3ܟ](_]T;5׳vPG`.vW 1ep.);ڋGKPR;WT+T'3]i zFTW}|tŴ5^TVCۚC4W+ף-O_:[ xNWh ӕFi4 Zva4?vR9_N[ P m k*}4XҺewBN1)tQn_ֱT6N[5.}s{K1%5=GI u~/c;J}ϡ}P`Wzf dzj:R/hEM$%e_paB]7뫠~Y<E)`<^_N!/'E4'txQ1qe43?Ϧ j*+Dj3Vt7}4XvGIƗ|54OBWKȡE, K3"J֢bݎJY}}X<^ ˾%k/|;WVZCi럢)} ,/oz4M?+8"P \m҂_;}Jע.ʫ^F[R7[bwPݍqaE_,?-A- ˲ w`sVR&ElM/+v$|(MkgBG)Z;}/cuϨ=? G[Z<_{— _@nCSa[V^}zeRGC%{PKN8 (UAIq_ً4RJcdM(;Iӌ.h$j|#mo_Ro誫RVV %uջ&M^&{QR}a~.>ڮGje4|.%yi-Qˆ2 Eac5"fd?}3(lfӹ4&*m|s3>_fւ("C^ Z17-֑' ]\ˡgg"6"y{9'EГ8fIQr{o'h*+7eexkcg4!B%b]NMFEfUr2'4O; ; ,.?˛EsLȞor<*Q>rMޅ:l+gV*i4j%Yy#rcV *,'`?gg]7*kx].YcIle 5V?9׼ʪj Vg{7Ӄ=80X7OTUR(%Ak=7mx7]Bߡ_JiG+5D)kBAbR/_Q.7{+5SuF%7?+塋zZK8Wq:+cnA;iV͢-v1ڧGe)kg%N/4J vR$+.eRJkyYtXE)]dPb^9|Y4Ęߠe]KE uFk洝Di>CYe9CɬW]dt RC$\b**~uQI52HbMiE)-h#tQUh `ҡi+_uѲ!#)A0:-eЁv/,qfGBm-E7^A(Ӿ+TvR6NkɷV}r[Uazyq(,G v rr#v͔iLu": 4aBNV(O)sw ʼ> QH=@D'leX\`{*JzVzא-BSz, +]#$MgJbr7~%e޾ᏢzG2.JAPq5 fOD%%N\ ɟfIo%wH[i]JAmk3q}PiH𠱂E'IzMPP)F eׅA.Bl;wE|*錓@J _cNH%e zA)GA(,E"^( J%{=ۆJSlA8CUǰoeq8w"a߻u| ۷[|P!E|=k'[#W;I>1N/7o-~;q^Jչ4y]D|.?wgFkv)bȳ?ѱ5r\,#KN|zQ|};>gEL+zq\ۄy@h _;tX0O`=wN)wگ5y {WH`_5eeva}/gE5 m}Pf9gBa!ǭ9fCsed&O+5Oxfo*Ȑ<=L?=ZOnDWiP~bO&;׽ t,0SN;UQyloݼ&G2Ŷ"?=`Mk~+[{ Yd/j$ByJZY=gi`20m('c}D[cE-e@[DʐBk/wRh-jZzYIdKLH-zt(ڦTNu)kN_.szb,}Jzu.ml`$AdD+DKFVj?.$[<_t)%Xg $ȟn)o6B=%V)=Tx6WI rSGi 8΋ްP,?P/INQκb9U%N$9.ΗjL@rƹR4ҫCsƸxx1S<JSO)@6%nY}U/z_7Xo~]udcE=4,!*:›*/ϩgl:l 3[)lat6"0d/2w˺{M$&VeR:o/~%{IDKq}~ "{9&J_v6hj7 \nag[f/˼iUOm7k +4 4% 99Gn& uB3[cbo fٔL-dsijo ChW }{ i֔*jϒiLXy^z= {d O[{@ DIOj`oN f&ŬJvVet-i65_.tخvvA=12;G1b UYJK$W~JwQ3ͩJ-Xp̍tXhCGu}\BBfly'x~H}}A>QLiov Ȟ}Z9/b&iM='/RbV͘δV`)0b ^K*emˍYKeha=B;w˦5 o3,xZ (d7,Yiqmݞ2aONCf:Ǝ;H;Cjy g?d=ij`tpF|m*o W3ܘ%zbU3ݘ+@'jX.tKX{OI͊h1^i ϥ9&⼰K4Ʃb:Q`WH+Xܲh2sb/RK|+~ e/{Sբ4T5qX4A,p{(k 0U3ӴDQG2 WPj`>N}(Ji~[P e0UrHhHDOBc75Ef,yHelaX A։!SiJ/YqbcoP3 7Jl,J^<-&m+ Ga=T^<%?uiEQ(1Ԟfktzar|.Fsü8oE*FJ''xd'z[bq CJYbwj&{ʥ4=T_%NXF{Rd>UD:%NZBӗ6RS}ߦ^տI{ Fr}ʃ6x_|M3ÕFT}Nn kLQ8_P7WRfC:3yh/oHFђGH{Z7y䌗 9#,9,UIL9O; WlHX( rׯ* rmSq6[WFXF[ѡJ|%yoY||1%Mmm6NRg#4ל"79/K9$_|<[xT3_dq7K(4yAY8`,U~wz lstkN^m+՜yh2u;ao{a/u_URdg⨈v6&!vKM%Qw-r׃ITӴ7D1fFd4+VϹ_Kn,!^~wV3ǣ{z]qC@ߴC d=ܶQoQ=~:wty<)u{9$u;ݣKޏH*b68 t pךo4M YNZ#ٯ{" 40Zh4riKl4L#r'=%ax)U~Ki\!5cL~kFŮ ˇw`<&[]P3=e۴?dk_tZE-7X'lPmm%Di-). G|zȿ5Ui{y/(5gZ ^.#$MyU)QT?\1;zP;Rn vaceIL '.V(QǝCVu]舸cRFPtV&D*0Oe5vE2L=svBS45J3Yצ}&^_d=pm*}/^FD4&q79&y'>6&%s$/4gK3͈6jkPyzXLm k:@iF A~B\mRj/ g^`7U/ӡƄT^&Ir}GiTͬ2'3;ի MҪJM+z=UG28Zʂ^ F$<+ cshW-^v(\/@|y!^eEGuR22B(I_#_ԀIzuC4Qf۩1ְZ(óqDZfpa5A11PwR.mQ :pmC1<~ Q\a>V-s03h +yQ?EK8z{ ^gYGW (d $Q[y]JN>_v^|=eAL"W܅PfYBu\%AEhJoFZ+|ܢ[P{9& s|ߠsr}m◍H?Cl|=ɾ!%.F{X_D^z7X PCl@~wr!?qb3MyPcJbx>,L,y.),7R 9 3ooNJ|ͫz>v2B-cچq$zm$Y6I2!h>PJ'[D:ѪW2VNAw_ͺxlxE sζ4BUHiAzBM =FyDHoJ#)3s_ݔyQt}$k;oxb?J@Rg J(0UbQb j{?wx}xo_C͙|$?$U;a=flN*m#32)&dHiȶ"2"g>;9>قyuI9[30e8N1XD?ejc%f|.VKb&I΋s1RS+&i'}"0?RcN`^%z'+~*1kT̷,JXI} &_e*)k%Axk2HDD:AbkSLhk+GG[h_~f9J*_aUYvY҃ Ym9 }bˑz?OU$EqjB=p7ʐ=!z5Ҕt)ѫHS7-46޴.dޖn#KJj{~#=BF +3"QPV#BTiBh%ˠ"a]Ntzs$ z b~8掠ۯ4d4(4ޘOY2g>(G_aUp+kDYFYd<%R%\hY~E2f=Gts3yѫ3"TlGI0,ΐ2dIR*4%B hSnсl<)uՋhI%RQ&z>Ȣ~^5Qj&EK%a,nF{oAIJ[1c{qOdP}ۦ]JVҘjt5[UнjPrXqZ$.Zmoxeis:fi_]`47_dv5g#ѧbJRV$kϤX]KYàl\М_uI $A/k&%уv} Ne=N)tBU|q7џԎ ;_\uYk~#}4;DX}Џv&tk)mgFk;Q|[_~%ƈ í.z`63W)J–r5^"5~w+;1b4QeVJ”DfgHG㖍nZEH|p$Mu޺Eb;@?-H@}6 +51 t ۢiF{6ڊ3u[S{P޺m7&Eam~v +}};8M$[t3\ґ+; 2wGF=,Sa"2:朇r}+RR^<펗 뢝;gP璯d(Rxng 2^vӆ4BWɫ6*@BW=Ы^oeJ=\i`)qv"vL Hiovt6"ZJc/ylB9|!HR:J}V6[Lc61O}O-?N֧(CbϒU  oA;D{Bx۸l~q]a8$whd(3v_ZJa f33yc)l)fli;D+GQAnƶDfHDtOsQVBWbHRhVmo׏$>O^J&'"CTPcdlӴG9L[lUQMH=1JPlOk:+d kjH%ؒQ%x-=$+[%? ]9l`mXװm@^Gk6KhndkYhPvƛf MGnw-t:@_j8@c16 6m_x34=ßposm/F9m_l"7A)E-P?l2ۂ_E(nlSlSgO:v1S+39Z뇅bxvSqS#R={ތzj.@&iG!:M< 1@]܆6|Un=̩}kvfh2ݭ拢%یY!fXl׋Y]Wda{nȜ}5OL؇1%SռtkbZdN4}ߍ.:Di#so$ƚWsv*ߴñI &1TgYړ2d6a+CA9VW.bH+Y\ IqTtzKY3[ߓ] $C\!XzmS{K*<A)bo4,R5*ǭkJXik$H;=Zg2\KEBͰaW5!=&!.aG*NXT=9[%}TC?^_RYiIY:#-Ev\oBCV:LvAc344J3IsH'kQkCi.NIg3ע8唋GChtuBff#$ovM F{l*Pve w&;xCǘ7Il=b*D;s^4F;}`Ry~XL_>=bXl6*%iGyثv$aMBUsCIP3?B԰O&P>AMwYµ4\;N_)ӹ=SD ),U寰NRt9MH{nPJAm_Dc-~QOi@b.=#D': ~>cW0w|{;3:,ަ ~g|Oy/b0]!MMຳG~zSKkngz|iw0=C{89⯖82<']O;`G8=pa< 4눚_<3]d/n_̚~TaCm'%ark{»8IͲ1[X 1ufpK%1`JͽI@*-Dj0'FT_d a~9"f WBmÎ 8*/mҡx.8WހG2 XR4šHo묄j@I6;TYPp|%L65E"h~{*O'qt b~"bY)A8Qb. Z?I(t1n؅]qHQtWGfubje4AN~y5Jk8E()GJ"rRGUZLw?h`>1;@qڝxs[*$ށHe>Ƈz|E]W捄>9*_aWUJ 9<*f44=4 = C)RI _"٦Au [n?%>uʉcaw$:O0 TIv@>lԴx'oM1x#ՈM⇒\K_M1TK 6Xmvx}M4G ;BqC)Mv.Ӑ@_@s͆tO&ik,o'5HOCA4 ;BKa {@nhv.W~B+6,kMg#Ial 'pZGKmRcl/<@?k1 ):ŎE*>%n`>~ R(~ -`9@)Q`GH ^(+4]E_Ҡl9F 7#Hk+8JӋv*6 O wJi| [A[oᏅƇ Rvřv7/(w4BB1%6LE<3,}Sicư%Ejc._uN2ڌavɛ%7aGfZ *+cɾ(z_4Z;5~^W5~Rv?4nhnsY#NSͰvwRJ;Є$ E$wR"v9͕R.(^q>Hx :գ{Bx=bŹQŜ[H?0h+qJG`NANk0?Ej֤_${ZgI2y- ;@)h[(|F~Q{ݯdN@9aTזJ5ʺI N@[Pd}M@'QVhW%KD'x=hDvrXQi_?xQĨQQ$yk?H sz&C{ނb7I.Nu/Kjto28 | zN5sQcDScd}O4JsWKrJlK$46TCbGk8Dڙ^B,KE??0 @_*,}=[Gq܌ilc##b#zҡ1d:<"œPN#zCϺQt FH qH{"@J 7`J H zO叆Ƅ\: ! yh\K S+Xج^,!6a|.寗 %k+J=ePiTpyORy!m:3])EӜѫ/f#GbgYR:}7.Crlb3+@}}ԝ)0/[]0?tDR4OP9M;Wלt"O}\)=mOlm ='֊~? k{?y{4m;@?FC$g lMDNzwqg*4}اX{*  =,;D7Po_TQnDc]*~EZRAѓ?r6]$y1A0,gBa[ lD4lYvAP% 820Ơcf;ǾݛpVaNծۅkvW<௹1g`o}Nj9k9ߵV~$d~_Se/l2^CJElSR-qVLdHGkYϊ$Id6O1os!}s?CYUCTU`} [Gէdp쏤T "` Z RBG$=~%TC+(#=ơtDR([q/WoJyE(CzƇX*x/_H7اP︪Re* >9舏^ >`ot{w,$Oqs<32&moN؄tŇsClǃKtKDl3>Maٔ'}!v|l"oe@j&JF Z J;$T}RsD*xcAr<Գ뻅#VW>h򕾒VWF>҃JluN)'YI3ZURn U/BސyOC\*4MIe$i FƯCrӷu$)ǫ+!^Q)X;o^ 4~z 4XT2xd+1w(~TL2{ڨZw*kaUPx59^onv'K&- }GD܉$V+}rO`5*|)"CkL"^5h^ \^ UÆ|U'3lW|,6C; PJcp_:Rq&xsHf' ކBP.fUlK{!i`>=TUO7M:UKҍ t;OkL(x"eu'da=vLm`qO8 |ߍM ]vyG?SGեҡukCկ[(@W7~) '(1ЮڭBg_K1l?RW3],~|?CKb3lqnT'~ <=t4k QJ?Tϔ)mVJµt/!T= iX_[~:>VdjxvMTb]PװOJ^D)[nHeŧsl[)]|'*.czgnot(EUizOÝ}y&C]ݡ VgΜXZk]=hTyR4Q;lS8? ΉǸR9+QLhF;`N~A٫Y(ݙ[o5y/5O܆to$'PBFݶ!n,je9B_yeR/ Bw&|H@447m kU,\?xMM'ijN“m&﷪Yd0i:YUiESR i ˲AR-e"J[Pi)YذYd@|GX(uByC!yt0벵;RzgLRr.pgfhBc)K6;+NQ;XeϿJYn71<vگ&=N²*=.I]*~/Ia=8,V L`ŠDb3QtvZ(b 屪p֬@DC)G'BáyJGm-fv[4oX;\~];mÜ!*{9w T8y:6;7ND1?gB+I 4ia&I4$;B7f4N:~ 9en ls{IbxmhUU|QU46ݺ<+Trp*נ7лfSp3/]IbXtAjn?5⣭ݢNWqzsP}}xWIGhr`*(.7a։BiC\+ =|uC/Y<_8=& TўDͮtK+1D҇2Ul2=2~B441v N5HgkfJ4zŞlndҕZқF2!F&|X Rt8*6-j#>'/!zy9kR2f@F4nH½'e%*{L6tx*I>aw,%P.8hQoXRyo=I4\`|.)Ʒ<=%eLlv_)4[;3  $6g C9JGT\hRdH]uD,o[b;Եi\.Sឌ@s(~Ty9 utf ] tBtWAȋFee;E~YG)׸OM>BǯY*GMiQWH>'ɘ;IJїUOA~jh\]L}6ܟ`B;,jzQjoN-,w<`ΦsQA(:)B] RL.׵vqPT) J5b'nEW TP%>/K N.*TJY"@.H񽒭]y (C3WvYJ;J|)xTrv?:n!(4?hGpbȻI%ԕbڠYQfofj4PPAxyB?]ݹbM@'e 1W:AC K")OIJ<JQPDn/*}v?x(Glq~' euVV %,>ws/ NV/۲R4ݘ:5T}t3|}N]sjFZbjYpY_ $уt%C}eWŔH/#C9Gu )j/KJg@Cy˹cv]s-f4zy(\x9}WIFm /gwkhd3HֵVXVR4Mݔl5<`upg]n]ƭÖP۬8#WZKB+JRzss"$e4JAWz}eEz׺~<˘@Q~ ! ~h^*e%d^/P_^OMEO0ak3[P?EG)5I$;#9 LH%̻> Lgn-ӕLBړEr\;.ZZb#jDszꑧ4c|M:G&F;äh'J+ԇJY߄esH(4Jl$D#|\G Ew~ \KS2Q_G_2K]YB9 cсn?|dفb{J1=؋пz'ڿq Z XY=CPNY^o*wBXh6tM);Ԗ[ap],^EkPޜP :M"46T¬]7֎ 9N<۠\":i饽-a)tL];՗ :FI6N)=qgv Jyo%|Iiv>]eNkv픭M2~FƵL+;HĽDt7?ǿ3Z;).*KITu,:|S:mqPn(GF|UqbFPR3K D]?S:C͠LTy+ĀfAЇENXjm_#ʼn$~* @?Aw":%aϭ<1:9Y  үJsn)}\Tvy혫)eRv 4Vv+"ۋs`Q_lFl^$Ý>rLH?Z!)>Ŷ.9ӷ/qL,O1 WQ;w1##>3ixs8Ü:Vs(Yp"D'*6o6׉ɈؿI Kk|"O+{hsE4t<uHB Ezv ZT+^ơqhW")nGGWt*jgWZMZ#8LEf/X 2$|/g.FCQǝPskNimNQZ=}/(hA-i{|Ds0YpD. .Y/2~dTY-9lzyG[KF/Z9:T}^Fb]z7pZ.<V,D*N :@Ezv~&eR:1Bv餴ĞfBM*BqE=2[03-$=r9[=ي:.62I[MIHܭ6ݪ|~0=HpOk7рs=wgDW@WEë; z3dMi8{Ac' 4o憢ZR>G96 J;\4cOPˊYJ\3Ϊ핁&ZmBUgS7Af]*go|5z+,uyTUO@ [݇Jc1BhXh! @ۥWq ȪʎByWqsL砎ό-S#/tUBkᝆ! MƝz(z$'\ʩ }JhewrugXl4te=:::,Vfr]lOkc񝹙ՆmDY-6e/njB9*FwyCG/i'QExOf㪣R7ň&Ay)PיmEbm$u]3f*Z;'ѝqMQt\,T5Cs: @.!G2ZM#esHD|-t.JbJq@LxWu{E{w~+QՋqrJ}vعQ=,>cCKcm^/9o=,n)5Igx)u ]1!#HW=DOڍl>anK3$5![o`8Jc}8M1<'pOLp3IBb{RZRNS8NI^kjc`נD*+XujG$#Gy"_g{Dq`k*{GWBvwF)WItYUS2(R>Qf(J^t$K8Io:)C 0kXAUUϪ.I5YVu|:;(DqQVgr69HW𓨋[b8Z+euqJ+ QRמ`9&--)i ߇BQV*e, Q5J}p..K*\RY]ŽusY J*CKv#⤶#eXQ4uR[ L1&XIakZACc鯤1QBXT?yA\py}*$d-HE$YR7:AigRޭlCڻ-*c@)oNτdRD岕h5hfT.̓YDYTj8 6ĥmhƟĠսnJ̋l1Є`z=,h2ϒz2_O >Re+[2SGSJ)ZZPJl~(tFSI~xիbJBFQNs.6FL8L`·5L▽ hOC%9I:|%?FOnYn,.(Y3dmqJI*W5aPi2,vjb>8GBzM">!З=Z'n;Kh^!EF[I* 'd7?RnD1&C㌶&U? }gDt݉ 4JXӵlhSy-XUI|v{"M846pX6NQ7h#뒼pEK޷ZX7d̽lvSTrV~;iS۪y![FZrs缍8TnkdJ{Q\m?_*UAy:b(eO;mVE;4V,oB'Uj'Q!q+d_DN1ūDqmv:lRa8(H΁$6I@udʗC-hž ,rO컑; s[d zd-OqgS"ѳ\vV͞mBKE]b9]$N!q":/cuf:ɑIt4WdM"^BOW"~`2*Q]4*B>tG%BM^}`bT||-*b9DDYD)xOgD5 sm:zш޶.C=F#յxd RwFaQCT"}Q^ZYGH[h >F$:gǹIP2O5?(u M`ehYؿX#p<:if0`KM@ѹdqckQNUW":ﲿUe`> 5E=[1V/V]m}E^r@IYRI~N:d>q('DC8Zx  CUnOJJӡPT(YDdZ6hN6G<{;0 2/0la;V(BrR<QJ$8Li9X975ahٚWp-CMp+M 4oمn~(.RjL~!T#֞撀*DGIyPy2,w #.Tap^u`Yd,Fˮl3[N}tTD}W=m,duT?yts9wfCF)DaYX%aFTJTPTg>~?tOz)W}v kx ;MJS'Rn$)z~Eif< I|s,1sf=]5a~5[h˚ ACAl5s7$uYN* +s]V8$ן=j`/`ζ&F8۬dB^ F͖/P&;N_bk~d;V&#[^)[@́~c[`V14;ao ~)GK{>4wzVgm~t"nY_yA!v;D4[RH1Aj-eoHa?7d\Zېl/|y>Rc=Wup%]̜s+0-$k16Im˽Z Jo x_hj2/Etz Ch>.7 tj&774UoIhtjѝw*@[m.iVdeys4T_J=h-_R3tǮ^$o I(sL0{٣8jJ;.mLu26/xfk9T3$)~=6-z"%ӕT$ɆJ`騼+4]SH)fEN 2*Pm؏NڥnZV96;V7U~_j+)³dufMGlh)ZmRmP*$-5u>JVM 5K-H#}D*- IdG{}g\e'X$DGDvLC״n@it9qѹ}7Ih?7 3Tc%E3N Sw8vK gт:Cg@}>ע+֎,=Z(;6˺,F chfN=Ss s!]O=iƶ-Pf[]D&Wy Mc^xM3~)v>.8 Zf֙ngV/$,*D$ *IMx2'AnWQMzWOjQGss ;mesg&/-,T^$>J6uOIC/EWjM*f*u|\E*=7Uu\bN52{\ExcZ4v|Izfu[Goj[S^g,z&EoҚCRS^h9PJћS+gL&WlE E+#3EZ_I%'觳8,aCR>BvЬJ8,+}%t@/e")n;3 h4Svq Mכf p[=6uE󟓚h~an s}!+3Z@-ց= Bd4fjF_#鼽Iiy&+e>^SJ0Ѯ+i(r[(Jo kZG;zuA0Ž%UoY_[̞KCϸz@j39$mϳu4$-yz,[g~l!Dn#w: A!]c#У kVn`;mNx'm?K 9J DOgI9ۯ X7Z(['jwbA4*8 9$7R% B$ۙ;@ug_h$=`fk<'dL\GόH]aG)]r33Kj<Շ$ܒDy;r+[Y%.K 1uYE]rcO!9S>z]H@-Ի4^r"yeᛂH! :wpեal8aFïxw_b.JS#u#TYNIYيNqP;ӗY}Ď _19v_C#1>Q\YukVLKMed Sf6>BHOꆤG CY@3*YvOcQq:Dmcڦ՟hޛsEkQTY<(/;c1ղCݡF}Yjz;WDuxwYތj%ƙxk^Wj2'HUEg|mdك aJeH}^(ZR\T^W('z.}TZTܡQ W apHt|M|uC2W*MKZ S$4)FNTI9XH_r(Q_M%f K%XI5- }B6!i̛ Ԑ3 dJ|vh9d܆^vXk^f@U-׬D>i|W4H#t4dY*y,VaW]&YWlR 1 4Io}Z~;mE<,6gUA?&mfybZ J4&|,2Agxǥy< z.S PUF<g>?@5_9T,'U=*R=fUTkΊOAs, M\2 +Tlq%9$tEv!`g0gC "óNsTKzZjJD4/ f[hĎa,&rƉbGc)#1e`N\I?jD;?D-\s`'Rܷw" hz8{t@= V7uчOCôC>7AP_-7qzm)z5%|44 VJRo2R&(`k+.MRniSWtC@niǸu=cOS{ sBa 6jmT&WRB 6d׶uEjh*h=BEf&c,Ԙ CknX;NX[hy-˹DBôeu(&_'|Xe>IsVl0O/JW[Q1Es(MH\E!fg ASX=@n*nH6K)do\oa6@ގk?[Si ͆<Z96KZ|W"m (r첮iW7%aywf)qճ])Fot:eŏW(v-6IxZu&5\Zg 0twB5ђ&Z)I+Q +c@2юȿ1>zW6R>#,ⶁ>KzxBU(EI2B$}ɦГlۛ+$YLmDuYyBb]O~r]2]EIO<`YLh({gnL}sWp!Aoe7BMMrVI6j$`+4sWh4Mb%yC2ʱSRF902R`aXl@̦'#nm`C7Jn>d9E}0ZUUh$x ‹D%eSi 5u4[#a^!TNgs:0D)'PVN hFa4¨/oҰȟJu>AC/"~H#/qj\jTfOϑ d~RTסW`eӠAl:-;!%uM]?WK"KP8ԐEK^+|}ڇ띡=\|uFo1|Lyl_@Iu& ؟xLM2{cE_WT@7Ꮱ`1U* QaWV5d4m/;dJJ-_{K-<ی3:ThQqq;8ȲRwrc{I>*`O^C ҐrVBvC>Ajz>?2پEfG¹4Ƴ4(7 Im{'$l\mj!jY(hᕥ$:I @9&A˕cf4寝HUG5;3lPTufDz1h:  R~\Ob7tF)^!Hd2S̔ k,HP۸ Tw~EкYyp;)UFYoIsLޞ<֐䱼9dLumX()?Ka=pm?&i'f ;=?[fl$yv|]mCvrI<T5)?'x=DʻS<\Wcl, sg3gspQRae*ZC?[iݒw 3(} e>T}j`aH_򉬎yXAW2+j Ƈd5HG?EW ,EvO˳ ?j?RzS$3A]](ڇ kyLuhkYSћR"M "!wbw"-6zfKQ\?cr55w4b 'IՏXKݑ⬪͇(kV7qTT;KYY:}Nϒ};͌Ka#[{ޘUO sOXӕ BpTMH4>zv&/ؐc Wp|!琉B~#!>5$7LVzQX%Dkr?.;MzMRzA2 Ն`l3lwDbsZKxR#9G$^R9IpvWywyʘ_jBwz4jgQy[R%7[*ZdjFbGP( a 43#n$r}[|~h{D*߾Hiv3ty}YslC+9R\b Dݣ K]P7ލcc0:1+=pu>fm'D)`W%IR_C6 [Z4sןR屽1)S([Hf^ ;.ZdhTr~F}%3MՑ'zjtCcP%ڏFq49C4O !gS4i8&b?M7%JIR H+[l@]]WW+ϏRy%^>T}#ȰNr_#7' -!,$^AYCRe=Og1Zz֚y^s5G!i 8vHFb&Bn"Dofw,Guytyfqh4a>J1oZl$xW?c^òBoe"<`X`jLWl<\|ooůT'-TN9f,w''.6cs*m3;0RyKVÑMz)sh`^jXo_ɍGožAET1^*N)q+UV#7XfM:AnNrJ3`Wz^2ҹ.GJ2s"֏R?r1@oh&Z!j3ωDE)jAeZKuT>vz^C5jNXW?EywHٶtfj!eMTJODi32̀x}q'x*FiOyk$Zg"+pSVNՋ`#n ;Ӡ|PeZN(-|LǏBK ݋/?Bˠ|v#*tUӊR1'z:ixdߔH*=';nVFKp$])+u6'(;Il:#ˊ[JrXE'*&KOC2O!sbg\WlJ V}mnSհO=]fǰB?;WYd]]d&@)NUWj5)[5/R 2ւ`_3Wz%y:YztH1ɸnb%s5M; = kv^hM<);S/6lLfn͞C-dc!R9^Nլ2ܽ-þ\;m(7XzXd,=J,3+yt)bw6Sk}Vm`TM=[0գlSXڴu 1L{(3Xcm>)BUR;#tZ-eB<kWykRDT)vR5hjD^ւBtT8Yb }ak yً%!9Q 8UW6 窨 {9,P|ˬlXlޛYVg'3T2qT8_9?Zmh:f_CɍWWF.|#++e!i Ry$!UtUc9DAqJA4jɛ"W"TɷT/`wG\ٿ5ߨgZY'ʌܠӆR9 ARMQ'$ѱ+a-I4>A؅>0/IRL xvy/Bq [cšj÷JpeF( Z;oH bZmq&:.$=W)ұ''^h:ښ e6\yg${(RM>4ۨynwr9*y'^#Dk},ypt R[76͞ByOJU0|HXQ!Z{XFAW\sRs牳&rӕr&mpcr:X&GzzZ OWNX,<4:+<ṛuG,{i$u"89sQ'cհ-3^hX%_`[d.}EP<20SGXUD~6MS'ܷ ap#$k$6 j.B:DQF{%?Ouznj7MǵM@~_EtCd¾ׄC}2R%~c56Yd`$4NoTXjE =TeۥBRzS:6 YH/IPjHzH4.ظk__^>[][+Uo"4$QD*M``lMW('Ğy Ɯ+^4#hHvVHG{Z 5*<HHwkX1s)GBcsHOLRs!uDHDZ[.!^ʜKUij5%-f?z[k^R}`sȊpv9%dՈy$Ch9Hf𒬖gR+Tnk~<Ų;H=Azj],ssݜ zV+G2粪,%X7wк,Lm5wR]>Tb{%h֖(wr#uF!dmzyAfEJK}7/O|&1ʼnD6D5x9E;kܐhvVJ<fqQG Wkd́z)4Qc mNDžAk}+y굷L*>+3F Y tFʾiagc~7PsODsGwȫ3PHl|31Dz}>Ӷ!VaԶD~WEiEO*ڋ>cw謹@)goq;.퇁KEU;dmc#Ƞ$qWFv ZddgA? i4t9PEo}x6ZϯUvRWJb- & | TQ5D| Ʉ}EjW"':hԙR?Ojߦ"ȫMý6*5RrB W࿉ X_ C4]Ab RSh}`]Ce^I]A+e?DZJĊ_4uÚ9BkiYbӰBBiBz=v Q~i#*UeguG4.Nhoe/q˅mv)_vAOϣaHMH#-Ȥe69ebjqN7bn4%&wfCQd#(^:aފdjw189)mhI_gsr­3e<ILXȣH~c8ϵlS~-\RÃix.2 !2Vّ2Rx5;krOO[ tp]-H R>Ȑ rϬ(Q :5>D4jsM&2@5@Gb2_Fu|$^&T6j&>]G49,H{o'R9/GyG+|}6\RnV;")ٟSiZTSbt3U0V|%"F #)<[eCkT[ 2Գ֐#)&y]1N+ϜJ[9|`߱:Hn>VΊؑb%vۘ:P9Shw/_OIU/o[bLIHzyIF@=dޝmE#Y HHS''di+9L䍤 h$m3d6w@Ƞh`YA5 ӗj grNKaf.hu7j+?䢦0S Rj˟hzC Rg*QO>9I}kd_"!g\sM*D*d\Hz=ȏ*^AT6r&]2;8T93؍EOȏdI`鬗'O1z}q@Hmך]E6tS ܽwq?GvzQ'Zwڢ  E*]RK®"uhP]ZkԠb!*'A_H!~Vy< ϷB顅ʞh,T{~`+Yxc fGJ"~D* mk_bZKy\zR#^Xjov^8PҰ}RO i.Js(Kk)t,G=1NjnpK2a]]]-n[ rs Io ,΋2Z{Z\m K^E F(W/%7ֿN3M"MdfM"bÝ폠:t۷H' :u<.YqXHCeE~^ k*ia_L{}}f5嗨wlZ}[%*!I+Tܙ-P9돁 1 ȣ[$j#d+5ZI&R> i1h60 Pߗk@eDzu{}E q+c2k)` a+~6|p~ ՏIsDJ*4vw/56Wuly aTȂ՝h`'2$&kք2Z=ħ"|镘&X={xj@5j]osq㩍dK+,OI˝,3EiYH4͝c.ƈr oThh9(MSGʹ?aBHH#T[cFXnZt6 2 Xj w(bpȇ4(bv0$p$NCWZ'+ NCZOWLo<~D pg.~ *tYѡM#W/䃟ڙU]?EoQ{=sQ* 8m"jTpސ?W=`\BݦRxG^>;i 4w6JD}A[HJ}PZynS~½/]ځ^KKC"lu|8T#N@_luq!uHϦ[TMnY*!ol@<߉W1!RԀ mG"6GQ aR 8"6r"n"7j *+'*'tķʊ)b#"~16v ,qοB륮-,Tک7eywifA=ZodoӣMGCR Z0Ƭk?bRL8šѹ@E"Gd_4~.9o:d^-t*3#Wtv(pN6D5E.$uB h1=T>KƩoZC*)VbVq2|_cxTAqb-H݈lq?gy2ekZTZ#ԡj}us / gyQRKJt_4 ەo@B4(BP pmjԂٱ )9f#CŠosH\vh(A8@k6 z$FzjnZFqˉԆSwR,} Ys5r9;{6Q;3|z/t%2A_M F'UeAj_>+Q[Ccktռt gBq,gGLor4ݕ|P|4C:хZCNr8'P QZEGl/N-+ݳ jȓҚjγ/*'N2OGDק~G0*TFFP+$* Rl>/hoĹAm|T%$fN 8{VX VRHEqZ'"HłcuItjR'T 7Pv͠" /UPI9U #ٯKED{ N.muKZֶzXo'9q>]URJ3#RBB+o~פ.3wH_UP,/|Pe !+ VSe>r%:AOXݛs\6㶤ԐX&w"mH H@!B%ph ,^|nPuD msmcRk rr➞qhwu1Ne<}ۉS DHWݷ;~PꚎRǽO'3usA߫wL,uvT #vn􃖋|WtL˅FA+UmE- z ŻRN.Uրz!T̖H"qkq~ٿJv%r^fYzIbbXT6{HT)?=RS)N(d=(a[󢒹mөVũ+>xmX ~9DWh3R+DX;j6s#5yfJZ+49AmQ;_PEQM֚d*K;hOOi?^xjvwH tv䩐""[yIKQZb2ŎWu5Q*=CK}TEh!7cxR̰OʢQG}L]xٕcLtDX|$x9?%44Ȱ*`<\CwZ@+,<ʂ2̲Z#O, ס C-﴾c;UBKfU1P3U Qw]AJH=b,UGXF/yVt:lmjs^wg9ιww4jC'ݻXL*N {$#ϊovн5i 2 aBʹ Mߡȁq"AqB  1ZkG j%c?蠯;T)O(t\Ѻi@/';C7s,QˊCUvļzš@=EZ`❌Q?`oT.O}'QAPOɨQh$TOk!#d.tş쇐ՕÅuH[J:DW@X̍jP:2|JaSi4`7%Y|hSy̪,CE+5 Q5`wBTB@ HY&^ǃmw!(F_Ǔ[WTDlM.D/[{_UNx('hWgdU=fx7}#h8DS7u/#Y*e>#*|Eya|߇x[OB̶`ILU S3 SME:F~.UBgT[L~A4{,ΊCuE*w ?Q2rYJֹ\"MZvC嬗Xt %AuלQ߭=~ ]߹'.һY;X\ՅBͰ5{xQ27ԅnS]ayWn)aQ]h.WdS1#pzED:{A>~wosQ:FD˾:shn`HHz H2mFI #Z{bxSmuZ;r#O@/Gksg5X;799zYtDud!/[ xkVPHrʢ»ꆏx3Adq>YME[i*}` -8'O ,8!et+hV`)r1rؿi7{th{=YuGYw>A/ՓBM?qQXepujE)x,lAf.JDۉ =c86tzW gu<5NCYj >\X@wKgyTncVLjTFsDj$Һ`nf*"Ô5bhxq1g%U_xt1KBȷx7AH:-f#oT.bŽsZϰ)PU^Կ8gUprW ^,M痃#B}W Y*{Z+_ER>'t~ȷ9b-%XsqM~ 1Z45O.]-f/E-@琟z2KrM0~3+4uFr#JҚn6,~J$BYfs7OQ6;)Sr~Ro/Z X_D)bJr}(ׄ`V۟Bs'Z̵wZj݂ A O odZogwbW$FuOU%Ep%7jP1 M{3p 3~Zlݩz@)Չ**3,2lL3ywܮ1:2ڻ"VjZ˯f*= 79i+usi7CBUt~Im#bۡtgcD}F}J (O;D^L=z(yoAq&MdތG8||uϮL5DrD8g|G5膻JR1s-T;y*mE.>V;"LN _SzUVUT,u%h24MU}Wyi OCDmW'T6X(.見C5ijl 0Sj6چ }pȢ¡7 O~.V(UR?z1(3=o1⧼ZكZӋQH-b@h>4}'17ŸQ*i9<[ 5]䱪l>Wf![6OjB8d"=p:,)SXy|s2JO[5MT^G&:E>/q zݺJ3 *-1Ed(c?WfDi9# zDNZJɬ?`mOvaWgG 3Eѡ c ȢZ1#+- zd^qC/@gsBlޅ!7?Fj7|w著jT8߂vB-tŒz,v9${Ai M{s[{.XqM+D h$^z׀r+ :M|V}x&FY)ԇut>"NF\X5(#7e4܎MCml+VO&X;å=W F6ʣ"r?}j[]X Y]wNxߊ¨*%⢞QSCs{*,g%N=uh,3q#:?1b]( g(|v2pϦN8H3%^EF0q/uCA4{eV4+C\BwxS[ qK ܫɈ~ n)  #ȣQhF"=K8F5j(EĖ%T}Of#'i;FCp"qj/2Ph䶗u-Xij⽮F8j aWw\S!\ nUٓ»Ww7,O+(aˈpi"x?z":b}qN9J?ܔ/I*+W`|CIxq}n)UD4sF:b68 /mFYNZ:+r,0ĎFbbNP"dkߠZc_ g^K;ʸw vl'On :1{`Q:#ZU쎔;S(͝AE%Yyw-4ȝr DzԔ輸 bBqcddyJ5>ox>p=vUs +ʿ+ʿ+ʿ+ʿ+ʿ+ʿ?rkoriginchk_tagchk_ref_HDF_CHK_TBL_702_177_1962_178_HDF_CHK_TBL_0Xx1  _F6=xdֶM%N0̮Zk2$HQ$Y@@9 9#Ar$gs@Q 3* Z{9_tWWW]J4Rm5ALo‹ LBW &+[2za\䯩ʥ&tہrټSs(q q+D?O6A0 5ԧm`7 C{(DxnKFP6ZO+7H;+9YFx2 {c}Mi]6HJF Llg/ᚴ-oPˤEt+2z"FLH^/$m=M M:-' **ӗGp^^avp6_ܧק>RP1滗Q7ϼv4𽦏4VLK 4xM[ akrVP;LHFӇH4 cSԄn+ޟ/AhUPaƜdZZ:o(W4 W3翝Q J4 };դHRi}i,.w4ATC<Ĕn̕H#q*ؗ5R`FJ%9ьT kf$o@RIX~&ʣ/wu# =&%`JIN)ɌN݈zd8ʍn6# jrkW\,\Leh,W4)|u& w& *8G1,r s R?H?dĝ@;3fӃ> gZɏELLۜ"G=fjkƹ!&{k l^F]L =QN9$76{syMy{C8 [UG(#u;sѦG@ϙ{Q1aU:oR%90vTM 4b&ZL7qsK1?~b*B/0=1tn`|*5 p-.hk\3;_:K8%I9ibu+֐d73QC&rĸ{-LVsW~7.44|Ŏ:娏#31*y*nyƹV~+Z|Vl|V۸Rẓ8zE\lJ{G=_P?Z\ң.]:oB()s%C? ,F{< ?&.nPb;fKzf)A #)ZOS8;f1d%Qbew,ĂF`'&6cY"סOJ{^fS^,͈{- Z)/nY&Ch,1@c-P_zY*mPBBئأߚ<ٔ(;,z<1fV71f%h.Õ4FVJ 2k9 kQi ZMQu¶61ez'~~aM/qxk`Zlzyw) qԵfr;:+6mX'=Ek{YP'g秱Oڠ%լGN,S/|=ͱȫq'bk7/7=KCnB MA]ujn^i'!f MZUr3w2nQNXO*]4%y:s@ÔoS+չ>ڹEp&´q?+AJ/1u(}$~^QV~rmS3[)M%[2Bb.VJ9J?[y9Gv @iڼ ryv)|W0%~Fۖ1wpA6ƠT,0׿)´t~[p!gsΡ(,w}cxx;?F?r)53h|OܓqIt*BX(}ihQNòqXu3Y_v1L]X:wfs|R.N7H5$J?q"Wo#,Dp 6z`۫"OB]t47H|\:wM_ тKy~3\Z^_#Aruѓiu엱|/~˰54m±<(0ȇc:~eʻ`WU=|sp1G6ݸ~Wv M<`Gx*F P6ia*>*9 q8JsOơ?EtӋ1İXv4e2UirwԆzA*TP䮒i7"%f~UHowj2 b~VvG"y7zքhΨaZVyqT5iTUԛEz DBzp-gaJOS7Z`҃=w|)Y6wկQgzÔ Ro$єWo I VٺлyDHNz,ZJ8U 6(+Vy[i ȧ4ty)˝)Z4/ir)-RwB=C6`L|i8:Hir,);"uCj Vi|64VҚ#{EhNi*4r!hX8]i$=DK]y:FlPF[F4BPM9J4 kk,Q3CC4)<]@08?'mr=4M~xqu zc1ᐦ\ØWME#*BךtѥE.PJ]@SE،_?MO,/TMi/cԵNDַGmΧI: 9QZg~9z}v$L>/d$Ȓi"=~~1aM,v^4gߚǹT[~J,6QjeX56ai|~gHqd۽4)nY cjuۏ8;+NHm|jCKmPl7;ZZ(~\n$G2[+gJbSnm q6gI6|2ֵ$xttq& [5t^k-H]]u)!t,}Xo)Wm \`wI~y>`&c}Ze"fg˷A1ﴰvn3oyz%MG~w}e.3q)LCQ;;a'/T<4iݕKra +ϳQ7!͖ںǢ|)lb1/os%p"x u,˘(k7+Ξ%e$C[$p"o/Mu)\]$mٹ`Ew(0DyHs-CIe%ޓt<)  86nJE_9 `a=>ν2! 6 >Z5bvcp/vpKc'-?x|5wXzk0y#F_})J/q.D'=e&Oc]>,@v?=T E]U_\=<݀G@'׹>>G)\VV\6H騳'JD=-x~(X,I0$*~YC߲Ӿ\fS<~Vq{p(A]l埩qNp&]jXn< {f_Fjm7cgirM ğHo,4Z[gK eCUح)t+Eh)IЌ8gS[Ӹ<ӧg\X+G.R7 $ u%LSZ#Ѵ4:i<)R|.RUgU&RzPهK凢iAєūv;aoHJ4NHKyAh~ʭO^ݨ3Mt[M vS"J.op)]V{Ϥ7/9k@7 >i34i3p+e@4%FRpnB]\h=擓{f -jpYGA9QHb\M[2W*jJΕpPprsa>e)DH~{[N7pNwQ|uݲi4ͳu}*"Ւ]HL)x^|9{GxLV/+ΏfznMW{Qg3x^`?Cgc f$^ysly};ȟtx;0|~Y.xv+8v`9O ك=2{]w1 ۘn^EPNF&ڜծS๨s͔S^+Ii8('ۻ}m[ GeMIgHx;74Mv8~^~r)NcUiVoC[ICh˥,g_1IZg5^摶TzWKۯMbRD8.x|m9n[Ͷr3k*̗l_F=+6%ښmxW&(J[*?>P>?a8W7 [q:Ka~5ySpM>ފ̿<ҿxO:5! }5{׽7'K(M*탒!prw:m +ipDN~?mrr D<.F~:h7pL# 4gȰHC )p^&CцA:1 &(W!Sյߌ2[S=It]qBÔDG=?ݠyGi~i7S>p_Dʋ:?mᗗEO4Jtz>yK}ND^~ӍLێW=s1'o gO PU>>c гEKHSh'r8~Ig.z'hKUH Z{^dh#U#=R=+xz%1wRhZ%C!;0΀)^9YRNqOHQEކy)4KF"=0JiDI5_Sw>|MpJWNipH,VSbLMMJ/v/F -7XBh?>Y>tBL. /==cgM쟾>G`Wo`ͿHXtUCQ>&23moh)?HynL ^ [Es/B;]sowaTm}@]Xxoj Aos5.^+_]I m0Ӳ"SL1v?\hPK"LnKD%<^,`Mxڟ/_%Gem' z4 dzwPf82ąOgw9 ]Þrf)xW,Sm>;fo<<mlwj~LbmwGoGA_{ |IB==0 SAl)V3męG ;KM#`${u8͒juG; gVEx/h[!ndS^)%`cI9&| ;8I9sN߆>Ry営4Be*?l0,IpF$|q&;Ae8[_EjM'bym.E86Vm˹W+؎0Σ.W3 f5& a]Y4xߞu}q%hg\&3R'wnKI ħ lN`9Sp( (alO}`7xZl#WNϥcO sU`o9;pqp+Jyy7IF7/Q0N kQH9 QaOV ̯%U>N_EysA؉g? 뽇|[rsݠwaEop-|^6>6̢Ott(6j!=J7d'ڼ&ʛqrmܧ}^qFx,q}t?qk[y7υKD {#Nz8?:xFN'snqg*wsK¨$ӷ). N`oa}kv5f5)0Α >^~D[StQAg`<Âvx'A>{ \)cq]y'<:$+2\/ʻdl*^ƪqz.ᷓ =E_>BݲgIMQ2a%0Ldi>w 48KPqI\ o&\oқkJ@:dW™V*υ\g/} Q0,6|.W=/ѺvSݼ`+ܨ:zDrH}:vog v#e n.OS&tS!e8oaVO6<Ч,4vi,籗O$ĝee:|A 2&|8x)QރH^:~I1x/{4)t7N}R }zAJޠFg鰎l6ؤ>:S|:jϵh4q`Ǒ>5!79 Xv#]u@+e8OC(k&lҍYq1WSk6 jutO#GJrv!#0)ujRi\B=\$ִXr?:ҭOpFMc>*OyK0$iOp8E]]xhSۙ\CSa6 R/5Hڅ4nKtw4M_9{NN|>I^y$lo ؃#g9:HCOWNf M*άHmQ8f e& LӑG*ie};1f2xD_n.Rg\M=4)} 9&-3ZZ;8:~_̎w˽RN|+yetە8;ssЦԵNp~7ӧ[3*'!#~y|aƮ`n3'v0r3pu4Ap78Axi7hK.\qʴb@1F=}Tɶޯ#+tzq ]Q~Y܏>vrц${ ^3+r>9sCH]0&--ɮ$J-} x 5L4(xHWJW[I9QG'ۧ" N=$;\F߫dO>3 1{^* 4(3 ?>$/d<%fI]r<69H }KV֞Ѷ҉ց]+,:k+!`! IE,OʫerUufeb]'/pN$u㮡_5ì/mCt:1:? =Eow|FG$@_3+m n_`zalwNpH~2P^BW9<~{H VlLQh6^m^LC'x g<^%8d?К`Nh/Xx` <}DhF׸4og/|7p s| 5%Q'cw ᐗw6d>Nم2ǕCMoÕӴ6A<ꉡ8]vzFptD?Z-[ts;*{==Mp\{`ߗ1Yz -[+}ͽ~׻'נ{`r0CTEe0>/SIߜmL W,*;W9Q PhrE5"쯏miq듩)K︋O]LvÄOBƲ 쯇ƕ4xvr{ 33ဢ=b24e#.&W< zE6(}Pfԙ%%iR6Dŧ5-coN/WS]: '`#!a*R$X9GiCIo}i ȥhӔCck4^E?%9\ ^[~:<Iy&*(LVPO2M(<K9ΩmR7x. b^'0:Cmh0RCAT ퟉0\Z -}gtV.!TDM08#WwnIt.0ܝ(ja}S4Ml)a_b#\N^˥"MB?(7̣,n)HHS#2vwSR#f/bJYͰ%d$:K"޵n4DLW ,H2ΞRK9M-YoZLJM&iI4$`}ѣRkAE|S* Ru}OpqCIwSgfƲ_Rv8Q><&>_qst%ʉ+{و*_.-t6}`eTxa`)/=֨vh ΋]8Ύ`"Ia j!ߒ㰷ˎ)s\o_1H*0^Y#^+v$`?sWVިϽ-qù-x,1r57PYogʵXZpEP>oo:xO[D< as6lo#]lIsnKyIU52fxc&ߴyLt '񧰴礟 0f-;7 ⍨8|AqzT9Vy(1f=kVv\~YU+RGpMWϙNp5x'x#8Ž)3ͬ;zkû.:gs-"ϟ#\ͽH-dK ۔0Ǻa1X6f9Qap>hOwȃ0X5-MI)r'9I_y S SFY˻Q.ͩ#e2US w\?aPc흽'99;$Cow~*vȨMXȳ.73c/l5v>rQnJ߃kWUa L;ǹ#x'ȅآGEٿCٛ w`~M8 s`\뻳;ym*`ebo܌Q0Ū wr?IBP?!/%uO`uKb 6 Gy20oXo[#Η︤S~.:2~Rϙ0: f(ὸ?;%(Oh-xn{=ΕſWi.x? uO qp;x-/ r`z[F$/':C(:砼t43eMf'L01(L ʽ]ۓx`Y!`wQ5*n)FRt?Rm$?(H"Ib951奶]y~5)[Vg>R49^ $\&=Ke* 8TLmp弘W֥GS_yN!%|vtWBvg*@+OF| Z(=%{u&05Lp+:F,5t7ݳ\&<0ESIw#\-8[Ijur*mvO䭰wNxm@RM-*:@l_qZ k_MHz}de(k>FHe|CjVpQKpHsXTwN)I4΍DҨ`;;5!jzʊH$'֐VSy{%{ۛC4TciMK6ɏjHU1@dtd.97;ɏM2mkqH}4& i2f"=i0&\$qtXq}5 sLۄ^~-9N rLn"tLMH[$&M7cDD c9%&܈hL䮚),-!M 4!y;|2CѴ5VD\!U4 wTwZ-I5e EG1[PSZ\n"dAD !M]?OGzcuD_`=?\ɍA GɉtVQ:&u[={ׂ3{Nzjm>d[7Ggq}G,M){N%r8Uot4C&*3uls>G ls5GţaIiLO$@d=b>͓nk#7%#c}!Ձvc8FZ)ۀga`BU%b˴բ W  #j+m'a*>m6x#\3d,# {x-Q/|–Qn`q:铽Y_4eio>;Tz3Qnϰ.5MЯ.YsBqv; G/]ͳ,WRkI{#HߟLqmX!;񶑌Fc񶻭%GST/SPm| xS?[ݮh:x>åh&ƖT ]wä0x v0t]§ȟLc\&$.FBh$DqlW1hbg\O3Ͳ)/5~ǟgh-Fp5ia1~BsyWrI'L2v布gr<<\:G_my><콐Os(Wݰ@=++KUףǥ]#iGT-mm&\37t7^ac9},qQ^v{.e$x ^q|Co|.W;({GtpPqR@MxwxUmpgmOU8D\ W^ʏՇ K NQLmʾ O Py OmWk ')5rry*Qg`1܏cp˝UN`vG+G`;#uP'c&Fُ} ~_i9QVWu߮ႯZk,:"![%{QMaa0<\L {zd/Ssr]?e}0|Q ӝm70ڔͭIJVg~! 7}HnUS6-],^KvOO~?zL?o6J;9 \ <䰉2t{σi|L^w/,~.3˒ Ԙ>GlsiIQf ˅) @*h=h5U^:DlO656r1R @M[~"tr2e9~>m} FX[L; ؘq x%y~ ))[.MmyD깋Ha{DSS8\DSOHO:)X[Rw|ڄt {}mL[)ڴ %O#8#g7(KMQ v7 k 뽩_ps;4 n-l/R/AN9gCmp}ՑE$`mÐeǧH(N!کvgL . {; .hAJєK>qZ~_3i rhw[wqǍ4i"f;A;g|4W4mtݣy+.2cu}k8.8Qo"MD*4MH!J32g R[uo]HZR}\n_-TҐDS `Mc jixJw04bR Q-L $~})HG )iP|қ~(אƲþ'&iM%/$i0/A̤uf.0F(9Fq>z}4 Cj_YVn;yXs)=[)F#P$k4Mu0R< %Ri> lh1̷gqlHrMW_ {8m[0+SZ U234>Iz"Hmb*^Tpmpn]$"_SY݋4Sj"I=4Ė̀׬cɿҖGdR[O? }k?{YˮU k,Ë_vYJ᥸,%_aoWK* ;] oFnm"㔽51`<F‡h?8{U;}Q+s3-v"nM_eT^_X].;8ʋ}w`d xNy;;yTy #$}eG8>N/YL?Ëby tѲ/uղmMz{Aacn+a>pm[w_{q/L[Y0<+7/ثv$}K2k}J3~_ͻm'ɯ`x~ L?]?(( _Ѹ0oxxI0UCц0*0$S k[ k[:iϹ0 =ʫaTltm]kDu҅=Q-3tT3̙ GI Ҍ qinqWnK#5>ߨ>]].IbОnĖ_ N8 ~\st///Fn 7PѮ_U`uw5f:Urôue*˱|;AM(x[Z%Jg~&?fJ5Nǝma5nnf8#?y7=B\OW,ERP. ^D5\K9T맼\E &]Mrl241ۥ ^q. +;JNKGНw5-7qa}]U#I7`xGax~T^UKMn]̃Dy;}坞 ۣ|lZQ > ^#+. NώVUүy=(ItU<@VPCFop4uzQ}zfwwD,8 DP7,63~}3loN WZi)jϱ~MB!(H52 &%jie$v u狜Ǖ[Z'10UG w.Vc)@5jpU0uהq6Dr^旻y=䢩 MGyFU|m+4HfΙ݄ФH E л t"7)* EQi4E(" *X޻y3@A+U87}Cu+uW;OJ7A*%&VOղ鐐\_My~WK{Yq 5Zw.=ػ V7h*exFi lsp=sHgۉ j^PTc)\H5(X&b1;])؏@m4 '8h=Hx,g2? ('l<vAuz6ʦ2(  v?2 X\9Pm+r29ڋW28[Q  (|eW:p2? *J\o]b({HgSH5daSlZ)AeaM%Pm 4̋Ł"TPI}_B|7S, ߾dXmw^ OثJ2۝4P m55ѶÒ>ՆӴSg;6{/b|J.>طyO!rB^e\$v1G)~ebYodKԡo% iLC\]Qk;2[sg޵/w02PL ]qnM&cq\],m 4Tk!XEWi | gAM`pp6lvS$6ԑlafZ :\Iڴ|Giz!Mn[ .lD(}:]W<Ȳ}\G\݉ k9{/PbfpIlkf[xa|I2L-4<۩mƺ{ɦrHd.bpXg)2N),ok0Q0,l &WV2yXr315m.lkTɍF'[ 6JOm1Sտ.G~yK5pƺ0Qq)&"KJ%2L[aIvMdz#q}L VckmZچd:}SS f<#?E9 y{4=]4Þ\lµolP7ڷ4=5/@f:oҶg_r0-8"Pvxfեcȯ%!g G¤X"HE0m9%&lh @ qLMZ ?.,nj"G{h>`jŤsO"ͯk涰6i\6ްP^ norX Wrj 0qe*K-?5x czM8] :%D\P[ǼթZ:Xm#dV|PSXuo\^m 說JZÐy: {vbU6ϊ8 9/z̑8?xqm_W ?H1Σ4ߤzyE@Mm5Cw^ӼW5!. 'k8p.7&YVDz-Aί}7>pY4F^+O ;< A9`[0~ oi:\~oz`;\Z)Wo e'.t^ _VZc׳-o`m]#=u=(xtWhqYVzx:jqr/Asy.P.|& 0pZL40N;ʿJEaX >Ep,>ݏB3|A?3CGZIoӴl:@?*R:B=rz >dp缾y/H'W שoT  f/ζQJ6fP%bBIv|D? |ٔBb7aXBc.aA7~MP;+׮3\,؛b ՕƕO˦\b PʁsJݵ`LpwfNXű| ʓ˃5UO·>gP* êƹI[m_4(`U6F7L)yu*F)oi!uq%F<,><C`YwWe_(= [}e#9.5#?TojQ{T֧HrEAq,/a(C)]n-}LXXseL2XXEo`e[AA!ry|5}(;/%X恖wshOH+F۵0JEvutz2m!.0pHN(7(er-yM0D"d'v /.6hվ~L^XP28AYf0,<%!? s-A[ۆ:i.JTi]pp!a*JbQOvj_QfTcڃSĽIE] TĤŦI$1l =cg&K~ CYlY8Rvy\IsQ y{V[/<9 yW#KY `Z.yr )3ߙ#Ż>59]Sdi˫9l1*> 6p#xuy 4L}.m'0/$Os/0dW>Ϋ6J1?㺝42 6}ί濵?dG3Ƚ,-yM} z;"WGn8oj#W@v_H QϑO<3uB gI#5`/o>{Wga<%4,x<=e Y'3uiIM gd}d3\'{,n˭ԉ*#?o5Rc.f&=mJm]NEwv'oQg+@lk s@ןZr~_Bsx:RN1_kBfȜ K5uy 2مmq{Wo0ۜj &=Ѓ]KG#LBa| Gإufg\mU/# f.Q6]^n9~nґDamՍG_ ?c 3Ag zAYn2oDm5f0WS8wy|Sv raoܡω]9D;Qss{'|뇲31>v .5.:,'B~_I[:p{%\H<|9PUd֌!7Q\~OKk]>Duԕ2#|,R+_$:Z[%##T3uȥGȜgR>p- eOP?.Ut~?͔>'̈́7 ck5o{.עʓ֦>ҼopAyYkP^ּp>.DX(o:絕.#ǽ{jh^Gj?UːkDX53u^1t j^i=lx^etBI'X.eiAhbvFS)-di4?lF>u]ߞH;5Y]boYt;FЍKg"10/}y> Rne{A^^ l頫nxwseqn<%'9n܍:]!c>eJ3] <qݐ@y;/RSn WwNwOx? ԕznq5$Y/d, Zl *JW9缞]eBo#۫!sS@4V>WP@CPC@)r ZfwX"AC2m O{a$𯟕"`\s8EO4̱]ABVpp.P#XA*(5R0U̦0QGji[P;bտFFc<3T PuJBģ;VJ'K-P.e{@|J)^l[p+Y\ %6}@aXa>",䊸l* 9"T@?لO=4QuܸJ+GUű!WB2[w} #maKmZa*fc}EA߹CXs %)mt5_;P?^:P9 څ/?MԱҩ1%ਟPʤvh-v¿@c4 5v^i7QǺpѠ,x[}EV~w},vJx\u3Qǚડ"> GW5S^s uUovx_0Wŕ Y}?}zѬ=4ݠBJdY!Tх5T%1&Wu).8ܼYܦpSdrSy:Z.n⮘~],i[dŗ9LnkMdh8W(3bߙ:.݊f{ 97N|08ȭٴCX۴$)ӈp3͗L9MqM }2єxMk9g63]M#wZWf 0''"Of%:r.x$/(U._eq&8n u3 k7glke::47̴@1%mKT |5`3}F G}L&G033NSJڞX_ B4GO>ۨyHGm`¹}/[.f y[$=<׏b}؏rj׼֮gb3Ni/)G(Fg"Dr'/#3+&h;V 9 [Sr/F{I6suL1ޅC.{ȫ4vp#t|yq?i͹eudpow }8(8nkvi~y:cA\ς8|/q'α02\h~>"/7 '4CKk"Y^\kqM$'~^kRxkQY^%]*Wč<{9 PRQϯ'Y/[F!-D|Ζ UI#ھU *q{* _\9y\x*Y:͆Z22GhNB.^vm,=b4Gire\YT{gDގ,.Y ҙ 6o!.D_(t׽ ~nFn]]-Bs {+WjLx9|jt:=(m[ ߩ\Ui$K<%>y8Z`/r*cplM ia}n MҚ>Z|F(%aO '/ߣw'pdwA*9P=yvG M;l }W > >T@z&v/UbTlC,޷+eJ@}yn_[lSpnABŧn7 ^ƒy 7>)HZ/,X{ˌ>f §ZÒ.(D14TrÙ.RmR;j |ZàK{X $b^| ɲ݃ձ3T܏eLO:Dyp6NPUeŵ@6Fq*|j.,I(OͅA@O@6򃊋Ar2[6jP#JBdޤx\ f jU*,=0`eq.? c:/檀8 ,)Sj,"Qoò -h8L=:Q\v5l]eP:c8\"!/9JiOAەvvM0;"Xv>ECmZOOf^\+Ε`I!TroFT3\AmbS}*q0.2H| dyQ 5T8{Sa+m~4dlouRu[/=/Z#h7Gl%xx^os!sc@c\=y6ȷA+tWekw,4ѡ&Ʋƺ BS@Alk(s}| .Y5-:n kNȕv%1&?+HJeõ1fmﺮ(Ms9`30'ieۄra6&24aZpdvQ:Ai`w\+͛<7;_AYḳ|1â&Q *jӐOP*b&|ʷ:Ϋa~F2;[-邙)UK~4jc8y>VH^#Ef% q54yC|]m__%ȋN`c/Iv xIdX[R͑LDu/,#yG @-*CPƯ'ș #q߼oqg"]i#JrՐ)gs'jW׊!=]m=?W)& ǯi>VTkyU('ڟ5/uֿ(IG^ty,=0D^Ns]XWy-C?ܶD?o5{kHv\oiO|r]X `K}!I}}r[I+#PfGؐ:bԑs],74FiKt<ڜ먑y?j97Ysڍ,m jTpo^dKficx'lgF>F+v{!_\P#2Ji~.xП {;P SWWT)vݕ+MWv̓(K|Zb ſ+6 Js=Xy\Dw]tVI\;[Z;QWHMp~M@ASL,\mn5X88׼/Qc/4> }Jo>y˶P?}ltzn^t_`P5O/€z7jllR Wv;CᱝTVPyX0jXz~E+sW5FqJxDmO=Cy?ρV^s, 4TZ4JԪ}D g0x2xM2t]S(\)M̉gu4w +h5yc@jsJcJ56Dl'{ jBctT=)E+t/9ERCT!u9YPrrH?JGpddL)PO*ɼn2H.7\ݥ14Rƌ9ģ𷼨=ԜñuELPMGSeL~~.c KmnQ3B} Wz[j ʲ8rQ M  <.2E/1b|N➼v4 / ˋ\(~rB_0!XxTLm\Y!anا`6 dc@\@1oklDq@\cԷA t%g@ex-R4ob@bGb+K3Ri75&8ۏ aNT o6ղusd7{>I{R sCCvOaY_ZB@=c&0Bsyj2߃pEK/hnh|KyM|U^#ykGǑ;mx q~1fi*K_c_2G~H^W.[-( c &T/g dCO?su߫ǹHlK;͕-} +uLa/It'.s|SjK䁺pBɛxm!Z/siKN ۸Ut$<8V{p5ofty/9yz9 NqnAGVOr-_+`}MAO'-F>j୼ۋG>,Ԇڵ.?6VDyډg3|h~R>sowߥym} gutۿ翐2 y3u.J @']2%n9 _QglJ'ZyNP7\ }3| ml h:8{> Qwi_(BH}(DC>tWP=m-z*)65'>ͷ^)%=9hw1p<rZÎӏ42-ȸ25Kgr}wҧ~)O)mp.J}`/zΓ tî̦@{ i-ZS3,K68NzH!C5oFuiĞUJHT 4W/lѳT5O׳Jyl̹oq]z⎏qU2'z ʏB5s=2ԀFXTRɦ8PC1'4 N4\=,E.3v2(P 4>5xEq_= ?>4Ȩ<t[كn 䄭IMP~H'>q&17P˲ (T U ɌXMKx`~$c]ȓ $WaC?wC`@c]C}v>Dsh*dwEv%&~}L-f )n |(b~Zc4\{UMuYJtI*#KS #n5#lٮ$G鮭Dȓ$Vml>t?TbUNDdyY|5_Lz/bg#Mq? y鰛pw) Ʀfs(cUe~'Zy:UyI'4YIqud1ESds dPulA uEލ,tD-Byg3q3zf0pv\16Ȇ'?#+L'MKhR=ehc y\/@+ \fOF^Y{nf s ",}߁ dȰjз yk˄Ɖ_`i0#7/# vEi%_[Ȩo2~צ*y*&ykݴu ,}^rTn /λb:3 0/tr18c p*Ñb,WDc0_G0DēW~7wJ<]Q}fjAt\e!Ź\#=l(7'"oµ-)m 85v\ϱTVzQNIJj7ռ"4 |uh<[|φq5)š#Iu켖YUu:ug<%^6fj% 8Aik ӷt]}K?VL+d矑jGy+sՇ[,U5~ޢ-I,m/㿅Ǽ- )ӽܛgn̏6K&?bXmOI.K=gݵ\3iKmWM^?[ڲQQ=G\&M^Wd[ :ueE3%VrG]ZG!J׭CAT:* 7Z)J-iV6u_X@Zv!OvBtF˹A |j ,>TyΚZF7לQ4/;.yxq,A+*M)]X BcGq86olMorM6 p Ρݚ%d[N$c#ˠ(4 5:(٧tnd/L JF,7SJm=>{pP%\S ~`U?Q4s ^6z4ϧwq~o44d*PD6w j[N=!LT~ˡv6UED})t²g.ùG%(Kh$G+вt|#UA\G;dy%(P{zSUUppJy5F kէ+<(OKݣ(5jg_dc3\@ Y* zDIP_l,;^ppz/߸fJzp(efx#vç@hk$4Gh!Dq@f* 0e4h(weVqmw@uӎ3+I_kb9X#Q2'Z, cZa#4ɹ >d!c.E5S`,-ddlxA5+hCVJ 5hj%)%W ɗ& 0AeJ6ٜ%*溁&x)B:BIJ Rybx>rtu|1 sl!nkc"ጯѭU2PO<ۋ#ғ. y*df.R疨ی#-uKr)1~9"5/w#ys87I ĸp$m1zuy~,e2ׁBbY0[jykMG<[-N45+Lp9ac m$±u;VdMKw#_NM([cͫp!q S*\<4WrkeqKvOm\QDrY\y *JD\>ȫ*Oy|5js;m*68pn@?{IZqsuG[93nb8r5sc~le|ך"lB~J-UK62%-4/_⼴[#ݜ׮ΰ9TDO2a^&5C~CnMW #gC.!=ڼB-vm fg]$=< 8y>^e͛Tgsr !˜i珌~YܿE /g\dy]c];|@~QpP|>9}%'rb;oxM!l>Ň2ܕTԕ6 Xw/\ż‹IWi(^ ;kN:/RW7s!r{t&Dp?); R5!ļt%D^ltG&5j9RC~_wf_PNr*Uzsox)J;A}hU %() 5v[d._PGZ{WΣK}ڨL`73$=fS@/ߟٓnpamQ[ =TS*#>P)C]9jkz\.uPI'7>Z/{+Ut@^Q5ǚox *( ;FS=>hM-sy貗@c2t5HSW JgSlQ)8/اQ;̥1LVP=.cqI1\?S)Oՠ ug#B#SK |Y5mo _lJҹ希9+8څ8v+Aw B=4^%UT `;^hs?z>s\xߙ@ߺ9=DigICtRRq#HzaYoxŇ. QGIG'[b'duZXR]@M]]) kS*h,ɜ xG GQk}k9W8h'h EE]uA X0zo߷_cƀRh:x2(=JU5KDw3q3Db.|ߜa.7`'cA(4wAhi NH+5A0:s`#9xzgR*r @2f\} sɍJ1{znoC|wl%tltMo.ʨȨ %Fl{I7O緽+i1:ȋ\P&A"_v1fy)HK3ca+Tw˿KNG^AWH$O'Q[ La'_QwEJtO:ػ.O,<|u:=2)1TEix!+'MμjQ.B2T\&,P#%ig`'AAW@^?+٣G)-RyPyTo8 R@$7:SaTwVjXF Xʨ$}Ӷ݈^"ٌCZ;sqxO;I) tYlyR h#-JآR z=B]8xLi8[!cq-}c,XXO3(')*ziz4գv5T?g~uh=0lȺ勞 FdbCj",^]vI_]iv!TjcGPn\Yڃm Se x3`%M(P&. #PK "8 F. 0L yH!Q䢔i ޗ>ٔϕi) %EZȳ"@hmRҧ,J޷h4(Cj4& ql7W+ɒY`[F/XV 4اh[ 7a%d/JrU1Z7C{*??T:>~ub8D{ [q,mln}V.rpe+_F@e9ԲI MFv5Pئk,T6%+5q@h@WWC2|؍II; d2 sfiu3K?Bj9LOYɟ:6[<(ͱƚD^VWD? _TCzq?9NgiWGs u ׶Ȼ5[OhF!jcNkŻqvdqr9[)718\L9Eamf\xCo&>ceY :K{NhoNxlӏ|Wi}D;itw2cˤODH<zx;wK/PKɓ?^w$sa/1+ j{ݒOy5ϵ2_<(ty\A^Mɠ{%ܣ.G :NP%~*˧eJ=]>d#YqH /ɳ][;^Ml?-eʸ\J=9*}(`l͗|G@y>tԏ_\Z=DJ9??}M5*(ԟ6:CdUs.?Z5r5p, Z2zFBA} S$1D7T˔@Y+ZM )d=2Dd 7OLU|rHsPbM?<=Op%"@4s4ܧ`#gtԇ('>>\Q^%) ["PQ+hꯔj`;iR&_0h4"rXi-v4=xbPjhM(bw \_l4IP+8#X{XcXi4MP(PsQlGupO$mLs1. !3ņL] 6HJZHQmŚ6ӭ@đ 3/c^чkRY~3Fnve8KZ+>HL$`66XS-~so 0933 LYKTPD2KQ\RMVE[fH=iiRnZfn^}iߌlμs}w}<= QF4^Q,4l9&=h%^-m#:1G)@ֻ(&D )ߥp{o7T)>TaZQSi"N mCG*Ervp9 ƛu4nGxgTwԜnJzܥcH;r{HEHnL0^lMMШOu6e!SnZΟ~|'ܦ"-5ҧ*𺣒= r;GWl%i1*VݣN'c%#8ڝv ꬝(0t;uw2'/y3%EzN ?fV O,'Ye'?x|,4=~[s\"іpz6ʜב[} sx&CL30cu3O\ء-_"MFnMqk^kSe cO(3vyd67|X,l?c鳙Es&0:Zj%L+55^^'tgXc̆sf?rJ/aaFAu a_%muW,q81)QmRP:p ]D|q$7I#ѤӉ9歅O܍kF;B2*Xj4fSlVQn3 4t&x=gʍG4bve߰}q5Ϣtac 8DN6ߦ_f$V#<UyˬG MQ@OKZ!\BwA現jS&ΜgUq%x+}j:3N#j~7vYVZl,#yWd]N9HemUp:&RUʌ=*h(ΨkFa!iY0"iޡ8 Ag:delyA0$$% qp#M|Ws<|w8`ŤOG=tg--"j'u[=V_>x8Q YPJ\o#PO9>.믶(CrPʣ薜#2,R@UxVUD7?K*EuX|Jy25Hψ9KrRtr.VtKk֭tGI2k=tDzgFs@ݞ AH\/G:g)\s3qP#\%=ku~IL"V`1jNB_Dպf:/ru*m0 |AVMSi(x_.*KY{T NՈ>>1T;*@?P[PW9ajiWʪ=F5a{4Y+\\(X fL<\^PY7:ajNyEuI^/; \L lWw٩6ATè35r0( zW#upwX>ŕ+n7]w9{Xi1OHl"k,cٻq\vlb˦4,6U6s>$k/2C`S`Y\g>4gSihΊW(`zeYĦSm #yӼ6PVyьFb8T4kegO椊=L_46b7a²(V6_XiTƔ/qTFŚ3/`T~ l2)R&xf}{bY*^V,j/ړM, zaqXRAǩh>ŧ`Yv7m}˶0-ןfu*6c<6br&,7%֚yShE1-Ki˵o*iwb Er|{sAO/U^5rbQ? |9FbbU@Iu25KUS5 6fo@d"n"uXg./u)[.eSu0ɔVi yl"6x~p X>͕?5L}ĝ1%N_9tP%c:ǘ;_~ࣸ/شǼ|uW.Cng)Ap-i:rp?blTwkT$qbiW(I!<ɭ+G[fjBgN_Nx>2uU4}X^^$|]yf35{λX{~30.P&d:Mގf`/lfeNb~+| YoX pUu3p8VyjZ6c(®'r{1PUۍ9ƺz.4Jr!,tUCjY ѝFwc8*/}wK\~ߌ_3wS"5˸[ hJTIT:ӎfw挆P@:[;aKNӁ*=cPoPV.kT*8~Rsڅp?9n9SDȭ:J4u^X O {=Rm-Ti ˀm{H/!+G,Q3nˤkvJ*bX~ hRʼ,V6kb<99/`Cbay%i]`96 =b! FCauM3vzzd`#aFebmVh&/6 ۼOFS0p66#bp?HsO̞1xȸ0iaNZrCtBJTpOR*3}A07n?F ~ ˆ"`j퍺yaH jWEʴ7Q3|F8;QKɰ}Qa1EʭkM|mq)lwHO9MKe$0ÎҫPKe$3 \" 7.qz5^a}XyqynH 3[M1CsM|L3{C3xFͅřXP b\3G6Y)jIas Q~Q-\4^lQ/',#% ޅH'F:Wa TUkqf+ ppS2F1qA :F d>,;#)뒇u`& >^e:^Fcqy3GDD}~(ܧ)O}酊?GƒH) gz *F%n4ngDU̟!Yօm 0}HӋnԤ7D)GS~kPoh{#BaO%`d* cnƨfƚ" M1JMS^&QTj9F8w/c~l&6#w['b4U~Ngf u`Z'72PmI1;u\fh*FT ;O΂G`0H1O8U85#HǰNCׄwRT T~vv0xa+Ke(EDŽ]WA:c4WZ?}[ ;)_ϫoF% ԙ2wQ}0u8.;#F:0}!l/ V5T:C/-4|JU`Tz ]'TDѰL4tUvtԖfK2Q0e|= k IG`X l0yJ>8>y}`}a'6qTjDZ-Q4 ׎C(Ҩ|m+8v.lA(1`C`?s|{ɮGI'$aOB!|<˯ C`+RUaӜ-_B*x'f OT3R~ܬm<az7m^ds%40k;ߏz)(I(9oTw9z]ʞj:>QlQIS;w;of 6=>5F}(gcQ7z:J[b0eQksҷ0V.oNMG[^%y]?h|,̈ez!+¦?+}0#6+c~Gwqf/H[`GNg4XN)Ѹ_[fڠvFaa/ꃰpۏ(Sگl.QmgY ,[@Yf|>eLڮwv*Fl,[k]'g ~7;`eQ|͹4 {Z;^y8o!hX,*J K[{yRG.4;O0rT,˅Ͷc)e[ E@.4 J~t]b33{_$%f.ʟ4*QVGxY{M=_rP䉲a˅%Iz#\ uL@,ђRyXBS]?ʏy P#h=6OzJl:wqTgczu&{o3L+PTԚ  l &8.s/t7:3q{sӛ\L:}~{ t̫o!{Uta, mqyVѱft~>^Tg7.0t:ã1Z-%<܆6c::wm>S TU`w(7w/><dWGB'|^ ~ޘ[49 ^OhR|!ArX^ U̟nU01g#JI߀W8s@ǡtBxŨ>W+-@X+:o, iC$M-x-Pkk7p 5Mij Dx|U\9A=e,~gzQ8ڙh) ֍v.Do Tq:p5p[Kxp$:Hxp^1iFy#Gq LcUU &TVDÿuҧ>˂ߕZzpX[]z~#csE|Nv]] $6fwIDۻqD,8M*:,NK3X7d4vo؆nTm] -W0VP^nZrjWEnYίvag:c9=o?RiC( T?Q)(N@;Ve$2H4$ Th&0z.M Tdڟewΰ mS5\-RϠuH5@O ݣ}NT:C=diqPôH:⌲1M ôըj' 0T<JmaWUH MOdm!X&eXplS D7RޛscڗT?lwߟ3*Ҹo$Z[l0Nqha8b?¨'3ADn [ N3G]Glb\Mo6/D{j =ea<6Fðꪷa3;UM} ѵfoŸ́UQRk/MM5kQܕ9*ksW!Na ϡa%4xbӤp朄G塿aоiUزa6*d͛(D,/oagabTE}miΦQ_sAu4zѴln)[)[v-<}EGE^JK],*vy⚘F:_J. 7}MY{p5Ƿ,QiL`\OYoS^k{gNXŗWiq|I~uq5Zvxh.G yz'h@szFGZ+pӷo 0p7*XbD gA̎){]:6K.<٥rֻ03|/f  RGpJ8 y"8gEtD yqW"V]z+^  ^eB[t|</^SqpmOeg˸ۯaq}<|Ά`e M#\ۿm~EڽNSc4FnM J`r)ؖ'9qo|QL9FS &8[@!y2kQ]aޏy}=*xA*Zs MqX^/eQx>5/ڵHE׃KP%/~'(0o${m Ľ)ޛDxv ؝/8XWΡWhi"z-փoF4W \yX6lCEj{5ɿywG˫sW`yUf*lv?}crޥTXEڧSԍ_jF@~UAhӪݎ~qIň/ UiL:`ΩT=KNX:jh6csl7z=--= Icmwkx0-}=L6xM"X ػSdЧQvIx?C4yLdG44:`&O>\6C\6+Hbl{؊t[e%i'5/Ol`C%zQc/ 45*| &*[IssQtm҆>PC`Ts%Pz><&|b`mPI=6۲]xDp׷tEoD!m<^]P!`2<Νb1g, }8OTB5B'bMh8ߢ'vѸ*XixMtM&6Z[li{Ny VuKDWD/6~.[,~n4Flgvl87>iUqfeih`6 =BO1el{@Pw&޿61׏[3c , h^1Bk-U½c|8 ۥkhXz jwI1}bwL}ttP^~U8D^^WRg`[f6\sT=ke4ƑY34U4Wc Ggn1 օx>7h2k,3qpyNo}5o1Zs ~X@ d/wiqx0"Dw4#P!Yl$aWϽ`2{򽞨+< ^ HxZ`&5 Cz4]^+쮟VħPew&*=x#wX VDPKuhAUxT`WX~pej/܄*vk-3Iaw}es4 >wXԵg!?؍.Vg7rsT<h;-@VpH`pFRCo砉9zs([/я 2܍fUUp!F+%|dT>r>HaT:HBΪrpl[[ꂋx4*&>}vbDwc4x?a$c=R)6nywG?F2[U3۸?F%Uh|[%*TVEvypuqc]DupKo -_(q-="WQQ@{]Siv!x {z?^,[^3(q]/`;",%Uj{0-B{k>mR`T:j{`gzeRu-ABaשJa㹙j"LL)rVV mؚI{_1VI{ـ"@`C޷d+zG?XjWu,b#M[=ևM%xn"JYm9͏ƢOæmh_FS'sKkP0rVl$MEz`ciq|i†rvp%{J7}a} *Me^tI/ ty"m2%MW&\; +ڠ7ewÞpFUij#s 5R;6l,6jmRPv[c{%>V36V=D:i{7|˦t',EJ<޳5Bhh5Cly$M[6^* v O!VJ=V\ދ09;~X;lӨⷷ9gA-X-4m]ΉuR=]mjĽʈM-6; !m6Xm9BC1ɠx^p-A3l'~ˡ#/8ڛ%'zF[Lؿ,Vdxi4[6ݙ^_m XoN4+b˦R>,%VW@㾊jnp+Xv?j;j{9 k5/'3_s+2./WvU{ vV`K67X 'b'Q]лgSbo>Ktr*mtJ x꠯?EQh|b^,#FfAC 5sƭQ#IF/7*R|z(m7].8E/9|^9xzk WO*5@}E}LJ˥.(Mޯ&o ƨeiX:kK{#Im`PBwZ3= d6Qڭhɮn_q{[V5] vC?UtWf :E?خtȷx%S*VQMTndW3ht!Mvp#h;$X^9ҋm]̻sPO2!(扰k6J*Ƒff;d*}_+ vYKe,ElE%ab`?6R {6-'sHMs!No>QdŶGᝥI,Er8䮗tX3^ ˣVTeai>祘KKxTп8g0| ;b g듾̀`dZ;Xf.p܉Wa9p )5m/opsY6Nk JxP-a4FdNj%s:_vf~,Nkm3"o3Lg R[|Sz8^j&>Yȵfc|UY;rF*9O;%6J1]Mry?|q+!4vf#b}#p4E<{&l.m&; +-62C"QӷhaQӗ^>nd,ؒ*aLj:ʔWy$l%\.93L1H׸wgm 9hX/K7+ $_ݍHJ7l8zr4>ǡ7lh[C>BozFe җq2/%>&.0G| fw;ٱWR~U&KOCǛo4K} 9lnJ܎-; ^-lGw&_8֖k_1*h>^_1w?Wk}c+лρx5<נM5z4]h( 0s678S-|39rgcFuoy$uk5Zcc0c @о{{MeJ_ɡx 9=}*[x ӗcǯr:PJr:P8܄FVEw>[4U\U~fc[ց7pd~A[G}]b݄}BO?fnB3o/{SoRx;zB"4cwz>vZn1݇u;nǼJz{QmIq!<aT}ũ ~Aot'G$|<!t8fO4he1G6׷sZRS=Nh?rlsT:xn2{.r:bmoPg vX,@+װFX_zc,t֗:N[;UuÕWtNL˄#yXf"=KcMsmWڛ(gC!;q[&Q mvx.6i]3a!oh$7(c_IЙ.w-mu<޴k5zxJ" մ+VSo9ecMXa[VNuBrWK5a=PMEI}Ѵ={hJ5DmÒ=,6+wR&R T LmVt)y9$N@wƾ\z|6M%2fzگl49dXQ8}lu/<ʷ,ڵ3 66n%{,:Vv?RVf1l}g:ٞbj ʹ:m} R|f=*٬IJal\ 6ͮPl[nmI:zpM4sF)Ŗ6-Q3q2:·} bmSQIu-$oKWam`QM*3,lsqKq=4NfVttu4\\ٙ_X ; ^QA5`X%,l>7]X>7?`oahW1(gP;MEikxWL0-daw{C*}/$g}v۳Z+˛}cU<ՖBi| C!OxƇP̟(xoz lsG aj9]E*/PDQ0 |XBݙWCj4p >^<>b Iky8)ޛanOTWZxnmx=JmFCsJ7SPi7rC n})E=0lFN!4ZV vmc[HT-xICðE79N/74,g~rjq[^ņFb6^FQ|AT2P9 %-cSܙv 5~?g[*/WW77sj9^G-+4'm!>]iw 5zZ~+:*=L>KPT0ZOFЃhd 6Dø3c+KݥsM-TbQ#غMɴ6aXQfj"hzt&S*qvwv4,7>ŶBZm&/*ۥ#q,*SoP1u66G/lO;&`=&sDT/ R}Q;frhy$waZ,a<˦0Px(6L&,Ql*C8FM1Į{` g'zsU4͆UC)"l8fbؖ MSAAl^gɶs>?\x]ٚ+^ kY1LC{\/tgy8qWg7w#ЎykLEܞ vWLLh_/bѾ |ׂK ?[Ŏe:n竀yri)E1ӮǀH/1Z|z%-/>.)ޯ\~<x)'khD_?qL.y ^KM7˂Xp,yM-x5 8⹫  ^nvx9 (wxNc;ly<8N7@}qTaa9W|@op:۫f:\밽wfX؎?t̍?pUBk (z ^:8nFzw-m[^=л6§њ]}Kx mR r[|.G7t"No=Ww}6 W|ƷSȖ/oP]rv< v(j Zo2耽Pٔ+B;RU5Pc_<®1l`E,տ3(VX9QOð4LkdLUi^%Q7ӵm&',V[zȿѐS{f]޾[{Xղa/a_;bҶs1v\fT7]."`I aaIjUua\D4VMV(i/IT3t$JdLiPQ0Ԭ}{Q&,`t3(,әuv4}iަ ɤ!/^ufϘ*^5ޞT ͂MCI0e$~6 ˶؇ͷKpgYTkt'o6֘yT> RMw-ȷ4|J*PhcKwm#ra]!l,9|m~c\qm{ =-%X ӗ|ODjV%(i+ز舉Gk&zRoeGvX k[[L{m8FFCQ{446 =F`oȜ_s([ݕUo1ʣaC! A -Vh۵(V>;R:}+]jVf>گ?)ϵxԬs5{QosBf~Ѷe}a~ѝ`t='M5똖k膾+tC:[`7Xy1󿦧atg&frh[gѯ95s#5mJ/-~mJ[6G^ϨZrf _;?^_M+O_J΂ qm\G9Ciqpx)׍^k+qWp:=Vijw;wwjWgx)O*lofQR!}8WF1?} Gj̓(l|jV;1C+v`oGkt;n^w&54v7|)ԕ:}i'xmx 쐪* 2FNT2omm^'A:~ ^3mUob-mk4\ӞwQ'󴻮%Zgy Y6aKzЬFߢ3_ vp!xv 4BF"@8*c,'3zmٛ6J~wג ynk<ܖ7R;PҥlC|#;.(?w0H]T-CL-vgtls%; Lz|}QyΎQa`/IfPGb:SU}꬧Ղ |( {Լdj2"9UU1(LڊkZb(4T5iW3ƮrpKVfM GWA])ׄV5ͅуv5-i\3TŒbYZcs(}?Νg<< &A>5?}gUQ( -g}gOB$4Q( ^Ct A7XP EQ{l<={wvwv+c.,SpY⮼֎0@:Q6lbNS(4q ςݡ\G_YJ.le>EhojkSef(uleՀ A]-1j])Ũ yRgQ(EhcoT'l19;4Bjgms{ o'-` ༳@Y|, (Z} ߾iVqvEpƩBc@4V4-q.=(lfؑA\۞υhyӶC egLR@Ja^;4^Ė#S/4/`f(9!w0 TKK !|*3]40UmqWcRyVi_ǔ lتdGz`9j]WL'<JF= (_,j^ T);.=@y5jH x^}|R>oiO*Vs=S&[L ])1@iK?6%ȘX? &S4t_rQ_Am]5W# ff0ܵ΀JjntǡcK}:،2GM3l zd9ykEarBl,~LѻBn0٭X-m '1OzQs6r(ڗ*aN- k<!El}]Wf\Es{&* s5z5\fy-.LWf~#9z^pn&yr5 #O4vQ2 3u"VUyNTVUְĔk@Io ?Fyy9)aww2(sށZ h ½byL{V:bCȂn-4a k{sU^O* Nd/tUJm# J]@S]eVoP}wZ1jꋺPB@Pa}۝z!53%Rc%3id2%d&XGCiPTlY ۛY ߝ c[:J(b̛س@pt*>8V0(2^ob G/r_ӿnzh6ghyReN]>,~.wnډ> ى(BDP.(d>?ȡrkfd"$VJt+ 5PK jVf *g(ïp^&|tV)'TL<,@E"̃63sq!K?i !Vl1"Y0SF^FpGD*=u; ݐ`;yjF/Bf0Jw`˽m$Lh2ikO ,=`A^ Gd2n2%o_O ^-ax{ 9KݏZ&4:+$&8Ro/.^c]8<|( |h8#(wٷiLZv-xNh4=x axT²G=Sa6G h]=ǀRӻ$)i鼝 \nœiMO + WנT :R}& 4[1P8(Oԣj6 ~ #fJhjʀ&E;q}Ɲ|9y@bx+ͭ@i}Z"m sU0r&\ݭDzf`dUt`e^O%4ww_X6=tpe0VxWS/Tf^EM2@.==Ó74&SNŻG(pekJ_ע,)V\UF9Nj19zr\io790iphA:J A|v5p]%mL{s#sXƼ)Fc@}KiPi̹))|sML!W1ep)=Jq6#qt(^]9g.bGbt,o2.A3aXI=9ܺ%R(2P-erudSBh~1? QbﹹQOf׫{>fW2ְyae]=6r5v]k%UC'V#&(!}ۄw+(g)U S=azߋ<;#nE(pʽ!DŽ\w<eJYn2[b]^-=Gu{> l#KpVY4jiZvs[]ɸ)!~2#@DyJ)^ט@QC[z>C/W+^5=#dbݷB&O~-/OvA^  3%F)7֑Ly>>؟kӧ'[޹%.+$jަ `h[Drja8d(3b}%CWM*8Ty-rhA=%h Ϙ`lbc?iFKwY5[{6r%Dߒ<yd[Q2ל m>U="ti,L8"_va; KeK㐏dtyM*('ƶES]M0g0%~iWu< 7?Yeٻnn$zDO5hXp]c+`~#6<enAހ7 Aބ:  ay둍,Вy߆ì_!opu/+39S,>zT5o?Qț_n[Z˸GeP7NaiqՐ7#Sٵ~Saa`xoc}}[xez ދO;w7~D9`%`^w]$wExe|?^kSx8VKU%(W)օ ܭX˽_\3*ڛ7*@ E=,Ir1_N Q(*| ◔o SM4OT(B亚$r!޷/B!nF*w$gK. 9wMhs] ݅F< //A^,Wp?Vf楘8r%"-ռ̵DmPgɄ[♞X*4Gxph\GRx$c;Gaoxo ?lIڍ68IC!߄r[F *=emB^ϿQdvߟ wo r OC!?Bu7"Sgֺ\QS@Cd~Dyt~:'51x_]7"KF{xb8Nϛ7jބyK8FG47*|\vR7x u újsdy[' ЏCpw#uB*6a.[y 7ܟR#'Ȯ3/[}/十S߆ E_88b%<2#1 G`{Iһ[LN,_WԌO2+6ĿBù:/}Νr01|LT %sa9,)G'tL9L ЫOqL3ۑ/pwHo"WQT\Ŵ8ʏXQ7/Pk}J(&8BuPJcApCkb9(IO^Ȋ$j?K,KQ>iUAπ"Lu*VW :,ʈ4h?(1i|Ɓv(Jvj1xUyٴv WJSsA3 b=χ3^kp stP>o* @89ڰe k'Z eYǝ+PCP}uJQ0| xŶ |c6A2+@ryGGsͶ(MW,}OzPm3{lyF\^ԺyMi('إ;;5B%7ylJt;mOwϨ+>Nb2Z#$}~3e c!2Ai)WBw*QEk |{SR #30y  v(翛ﰕ2LK3Ni(#O NSvŴu m_/Qʣ&f` q|Зg!qbvm>U{v/\CPWl{(s6.P;({jmsaq1.P&w0m9qoP-62( q a8[~0 eSV/tOfJ)|>bꛍ8.J昖ˢo=߼ꪻ##Wrp * ~rs u]-ojޓʛ$w70G#ej)9#\~Qk¯jh>{˃ƃ.j.NP˟ 5Gg"XHdFYs…JKJuFsh 2g@}pOPm-RM^I-.ȳo ? d7TݯAn\:Xpi-C{53:0Pd1m1a/{y[KvȏbaO6^by9> En/lxb`@v2no!Qآ[#HFS(9y[cݧy F'$wZ< y [RCH^Erbr}S 4cd X[Z X[]dem{aI=ś^x=CgF( l1ݯr;lj^]^ɛ]O`+0\n%ov~Cmr?hrewAC\E9?;`_69zՂ<Fv˪Eay*m-o 7&#BöI 4'y##ȼ+G"d,/u4'jwWN/ꁇAJ@/r q=,{!5BJh㸚n_7)m|Acap/S±8Շ02JrsQO(*jn#ۨR݅RA#6A]P*+Zyۿ`5T&R>0_f Z%ATDޓ4{Ri,'/8TnJx=5x[*`wՊ v0Y$Wv7GͶ;l#m^[4րB(QF/(c$X=0YI]Rd;}.ine-~ Ͱ" fqݮV4xPsڙTU}W(MZHϰI/mĜsaf:R?dv^]7v)΋ hmV s(+YRƩ#eΡñ*Cs @~1ֶ hUiAu]]_BJP&zN[:,PMSA=4kN%ž~e v2gSC[9QPU }on@)aJy<vs0aZۨ7]zR_PM,wFW+eZJz33[6(XVrNOfg@9t<!:2礗R^nx3{v+~3sv?tFiPL (__SPFF~1ҵQGR Szs30\/P\(do⟕{U]VaOb ^B%gvM^gƇ@n/>gV>3y brkI neHs e4M8Vz $%/uR[o~k2;7[:P >K\2w( }b^W<׼{B<di|[/=7L2"/Llh|J̳drܡ,E,Kѣf-i/RJA^yB[#7W!:eJrw#qe5_U5R hhY5yW^Od3d]sކO,K㘧;e5mr-wh.\O<ո<&הm:' ױ# ~GX`8R 7q:*Gw6<4xLh`Y?ǃFE(^~7a)^#:9;i'Am )\_əfߣO |ODE29,/>s(0%WKu: kķqBWa9JAIƑ0wDP:Ͷb]}|.F-W "i??fpʃ&cî2fҧՠQ,:[ ,:j&('G.lVZʦCըǠ`rTیa0\:v.Zי I(6m]onJ̝%C %ŏoAP_Ƌ_nVXPhȹdq7u p+z5.TM2ʦB23ꉻSWxH:>}c~:<90oP 8!4w/\qmPLźuF 4ߍ (=,|0,/zΗXdZ+P;嵵a}*T6qF2-=,.&~h&8|~Q˨Ѱ.'wB; <]4Ϻ2Ln5 .}~Y>rwB!)]rzT";V'բZwk?߾<_^JC"o@l5~՗QI{m?wPs|±4{5O{w/#7Y*"OIjLQ|dxܧ~HskkuoF갬D!u:(Kn<˨$W׻H8k[R4OXnIOtPzs`pH!)(z{CN9$7D>\<2<ɼ,ghQ>ކw!q%x]˕jx6@  <D& p8И85|7q9XO?W Xsp$Acf=4PK%] 6o[A ї? <2}(Vѣ0BQ3 bk/͠u45;7+Rc: ,,a`LCEj$w+ͤgp 4v1lfIrqF[|@J^#sJ5f㲔?w)5b 7N8B6؇u/q/J][&<.P J6tZߋ~*MD)5 n"cfǁ5eAYnzJeAq<țebʦq5R6r@U<:΄ժ}ԁF ړDcL+P],Zb6Sc5Zz0G1 ˸JyѶQL/r?;fZdA`Gu.M ܌?Wo(g&[/Ni.hR!3QGʤef"J"Hzy'h\m.}cEtLP7Ӯħ^4XWA<_|Z BpIP.7-LW,A^7{i|lExi`%{qJ),CFx2&|c%!iÿ:6 ӐaUaN[n hkPʆn^TXө\,jCh/?JJ22G7d>num=t6Lv36nj誨<7R@En6>HKu|1tYFr + n]SV!'[&}vli"[Ha?A~[2OeUM۹ocNA>S"y $y]B[ %.dDrCL6ߊ,~H = W…J\R(v%6(&SMsHuD7"%۲pI+]GrS*E{#Ei|.guN3h bKA88A\$7v?`]<.]~YhYS2ؓg9YM9޵Լ I똓c8uGR R^7N' ~<;x`=*X ,wuI AxK8e2?Lk\t++xsZ!XTMi r_V^ i J-[K빫RǰS j~6Ҹ)L?PBf@۹ I(Jz{֐K93!Zz zv&Ԯ:a Gx5l&= zo߂%B8$LTu&s-{Kl&4$~6~a]L:K|itΗ^I\W]p0 Xu# P"%sT8 1 %` .gJ ٹ[tYFS(fQ SrmޣU~vϾs]/5D*-!uA߽Fo:,]YVi]5)\n1m`_]vD\Jm'xAK(NơJhmeA{@yt R#{і-&, [=AvTڗnn%ۓ$ T* 6/J<C(4ՕvcAO,v-ZXNsKOx3?TTߥ^&~!d"f u S݀Jc#d=(~)A1J(hodsLºry; Vt´ ǡM[^@̻lR1O+XڇJ981% h4Su4Gr{dw87uͳl&(oyTl _$KhLoz-~{ P4/e-4w;a|)" 3L*EoJbk0l @~cȒn1<ʦ.e:otf<1NJ)p"w*Շ5T?PZ˹^XBؼe]{ZA]IݽU%c uNd7J`})0g}Ԁ AuԳ>-&۶ƣ4s 97(-܃gOWS{4K5L Լµ iWf[<<+pDr2*8 w!GqjԹ;jTJ3l yalkF![-mA9܂#W됷sZ^f1hST亢]A99jkskXkr(&Kjo}ՠ~k?۪yxS0l|UUÑ+dͩ\^CK{;rCo·&r*ܫ6nm5sasczIM%w/Eg3q|khZ SMvKvUim?+\M5*VP-5`Syw fqGOiM,Z),oC2<4αo sIϋe=`0,I L+S,d˜ջviMRLi>蟄(ܛsJh]G_æ@1'[SRh. w6%b `K\CV2+nMe9) J2{_7;h6Lr# 5 $KͽDrջژVJ6hzUMIM-,#J`Zۼpv^{Ki6 8!Q9!;[{²+˯2ԭ2'%o+Pl0,K7 ;  zח{,;աjZr}gs83RQ2b/WwU͗Oy<2F}+/^=O^=IW=dꈈBY2|Hś"L@0.Z:;<&GwlʌMe߶Vb.D B!5VZ{P#$6Dx!qF-MJπh;,l/c4i-IPY Z }z.tZ-ތ vW1=kZc>(NH(yu꾏imk'q[id/"ɖQh~V~w[R +|.tK? *9PSR8T$_qʘ\y%߄ܴv% KI)d^72#dۚ;Z䚚0m3Q|7|J/Cw4w36dpwVsI,]߇Q{),cEka~g;k9yGE )hKy7ETLCEv8qW"P׮>5!A^܃|YEOըÚ ̫EQWm4sm0a 1[ /l.ήm9' b<%!~Wz`da^B7ȫh-Sa`^`pwjx<=ے'J^RX5ĒzfꊜOAn>37vĎnA~l^țPe2¯6w \]%pI j[a[VfyEW56EJPhxX oEͤ6V^YEGJ29OfRīm>}0$X<vr}6t͍yv(%ǜ3VW`K CnXGC?b{:8Ⱦʦ 0X|P_=΅Yg!}[/+1/~x,\u\k]#<~Ю?r`KB;$PKI - |fa)TPT8dA²OtWYW]; jRy&U^RΚu(%}"w:g['#yFY`g.EL]@E>BPRFM<-Gx;Fa)%MQ %$)0g)n̏Ks@x;4=@˿$+H~Nf1l\o_3yf߾ SZLBQlv!+ŦjS\ (A~9f<`5!~%} *̗M!w" Yϐ,wT$9 n},w隟rv¬ \5F!ӫ#߉,O+1v!f(ȫ]w)y"kuUaQ9ld|";}}TJdYۜ`K]{UcaV)FG0U|yaSNt·ME&0zWe8~c3f累D%n ƿp tc5T.[XE*g{MGi'Gy4ͣL9I&ۏ ү0 eřRNл] j}ꪔJC+jsZkp_Q0/3q WmTVi*P: Z4>GWFbB4ԈJE Z:ĥJzV{Sv}E3&jBl(&R\% ʹ&f1٧ċ VF#"GO3%5 ak}) 3Y->X%$w|Ї2{W_gՆyVKr5 ǰDnĶSK e{'wRrw tC)F:[wcK&3|:!iaIB/QijR]gP$%q JYyy^,ȉ%r+F)3Ў;s*}V sMD EE#v\$3ÒS6@r_@PzQf(S(dJ(+&N܇=Jy8z^BڎJՒqe%OR/^Qi(V3c߮HAHP[sDhMi(6Al871`ǻZˋa 2Yzazu6Մ`;ٜU"D8R/!*&d.(}ʥBSP!d *@ԃs[Xz 󩇛 Z?6* /ztm~mGa>G]D~0Sq _ui P ww7} ]m`$P)|XR\;nR$ $x]uY<^mF*r%[P=[mbq_`IF) zJ ^; TKZNPS:{eRw\KK%/1yv:<ѷџmw3W/:ƸA =6KAm[1ӕƘJμ %ISh&bA{O;ޯ0Հ@ʍ%Q'Jdu}̾G1y vDqc6se>'Dp"6 FHg.1Ai GhU (/BM5Jqn;X'UkVk86u@yE,({S)Sez{B *\tK6E_,~jnz$v ζ+pg$(.QfL'^6}Q#p~&J,!Y_WgEakAAD~ם( HȈ &dd1LXCNBUD*308 * 8 u~v8U]UWUŀtK܀65}ꆵE|ɧ:Ofobm;ΘY5Fk}EaA .T'#^oK^S9Ƃb %aA|‰5T1&mITыJo2Tun6)xRNj6)$]e{rd༎g'n`AԂ]Jg>:{Srm5=Ղ,㶣-~3& G6a3n Q.&}bndBvBJxXP&ʁ w,;OTډi ywMAeXB{bO&Q2AǞyeho}9c!͵j,Z5 y9>ŠVW(ckR-yNX8S$,uGn<-m+f4\ َIb:݊3AJ/d5(I ;ozSDxVg]j!7"}y}o'4]=n>h#yA+EڋtF_@B~h~fH6G2x{ȯ-k]-evH?`8ɚpa$cSD˽SN0&9Qܽ"RL`3K q`,A4WKzT܀)ezM}x[nSCƗ5 c9Gt>@}4zb }UC-$\nɝ 9}3.9D0Dw`:p+/mCQ nsfm>R9J,谤2 nBAyOL5挸N=<B^6CΈ_ix4 6 BؖZvR}ڼ|ߺoS#v( Q)F)_ƘR Q~ OtVP;_J[U'Qrmm9q6)!3PRwP_(7hKwufݹ[f/)X gdТlیA<5 iD nsQZ9y(ϋ>۰lGSg3ԑͩ:3k  s-ئfwvnFwTh`Z+ua]G-%PTSo*j?)stm*h}Rd3f%7& Zy h$3Fv2h셿h'#Ή@6B0"3 m"$f86BM GJ$|)괒O#좟qGݘ3hOsh !=0<ܦW"^},QX䅀ԷtΧm!ku}L3t(4Dh8= js[2ۊZ0f\axѴɄpq^]i4C./çv,aWgwfUקA"Whi^jAv1Zҝa~<#؎p+oϓdsfte~Ԕ6 "oҝ۽n۾ye7rw,ӝcUsTV}P]RKh; ;6b~8'if_sR[.`u y uKUpCjM3o&WqIߙ˧\R2_NtBW@Gd .sg]ݵ\(Z{h;{)_<^)CYT4W6it Xi2/>9{y-> 4+e8-^rp:|e u@{{8ɟA@Sn_T@LPDii8I*MHwE>!P6ilyR^9t>w< Ja%Iu0wA Zq AU] RR.;>Z2N+i,qBPl1k2Ȏzز&WEw2k{9-P"Rx hOn r2Wc}eNK^9 rRC_)QZ1^R^ض*PJ\qd޵A|F%7zQ/!*8*W~Ա堡f*p&eyyhΙRCyfL ^5QZ9AGD̽XJ:Xf^$򨙎OGUztWӅBՎi 5eܜ[hj} Ȝ v$d1 G PR5A!%j if4^b}C90"+E@}'(s@['.al^ 邩 |NRJ(r7JP/^2Z"> {b{w91#'p/ZeX9%{t[pc*a;=1k( *;6K=";e&l3=`9ˤ8{€gZ".ڧP?T܂mAj/?`RZd{˸~$ssRE JP|k]*E~ ܏u6>')5Al&)(3m)lzej8IMT\rԨ8'W%r|H'xQo( J~x@=n(~@=4(DI,J&"K'@=7(7 "@=B(RPnx@=o(o*xdxTU>lJaZ{L* -FhX@EK聄NX@"Q쾠bCfz׬;)353 c77Ve+f?ͽnJ)?us[ʅ xt*O ʳErE zi u1^U!`}o5[RV<GbVL٨p1{6E6s*a=[-U c.%yS1C_⎪3__-֪1Ohޖ-J[*S5/uijd|.QޡqgD^}J<(WR (Z)j a([9'@v_DCU!h#]eà HEX3Q#P=Ej1_u,'ӓ:@P'^G~QoEoGfZq*, ۜweYSYM> }^?9e C@1*sQEz[PQj ?D9mDc0\biG> ozPBRs[Iѱ:/t2 ePn?SV AWFo9=hq@vy/$G-1[U(m C6gU1O P$yLP꧟ *O8&o@/:SFgNZ|:twA/BSޫZPmߚ$1*} ځncGu ݆S/ZMO(CLOp.Ð-|@lDECT?&ˎPh ԝVry:L/G>8h?Cc/ ~bu+OGb3-|5jZ>o- (e޳P 1exuC{n/b13k@- l0zF晕GF,[`mq=L5FqZţJ@'jLw6THbMh'bژBW⌞VMl͐}XYTDkZn#tZ5I-N($ZTQ@t^UQu{dyEȮZHma,:$ 1,6!u=d`JiFQc$߾BN|YA;-^$GםQ,25(.0Kp^=Gq[i< uHQ٩DE&t eDDo̪}p8ަ_vBG?HƧm|5@ǜ/vr&_C,j(t@q {Pe: j8Wtnl強@]A h MJߐF5$)#R-8Rm YlrpթN{D :}6~‘Ia|w,ӕeX{wA@;NO9ȵm@z;]*²"[Bl!ѧC7[b߂C<p ݏޣ5 8¾encyOi_U![_ oGux}h/CI^WCj[[݁ƢhcvC׹Śi|@(rm Fj qB4E癒|@Wt ;q8-EG=Km}5?="IkQ?^|,\ԭ^[ڔ %Hrh`M9<ϗj2X0ސ9P{W~W0lǢ#<5Xy*|>#S^nc'ժضz\czIB''_Kr&Na ~4ǯjLK?=Io*^3L4> u:f{PORSx0:uEZb@Q(t^$w}. zBԓ~-z9t'B V .~: QKiX:8'Gԧ* <-H ̈́j`~e9+@>;U̓c9f $t~h!ԊV &@_@YQ>TYG)C|S}D,tUo\ ro8pDpd{ZMG5м:T ^C@`>"qДCD 9BBˡpeO/a@@U 4=E^‘Bגf&ZoM9ks>"&4~ CFUU#L*STAo !c7X;%ĥބṀic(ԡF*Ia*T$MB䞥QwtKL5Pts e΅|T v>=[{+܀luQ 98]BE'@| {ۼDs{H^s7K琊8 tj7@/z rANJ:>B$] =jaMLSU/Ab~䑮"'a>c*zI: ['L?2N\sR/5p'DNNXmg<]E#( y[w 9ca4s[yYWD 7 n]!Z]Xyd>7dNOl3Kcu7I:ޛ`WAʩ> ^Ѡ"hbwcM?T`Oz*ʵ37w+OӼ+`<u""W:lёrlt^@j!"h:cQ>ft+3,WfGS;2zQej ,eC ?ߛ ;|YkCCAmG胣G=j'= qRuKP R%Gt #Wx_3,kPU::z#b 45Z5W?4J֬hz zu гI? ]7x?Oe ej^ƛqG@W o<#,-=SN䣣X!爚=BR:0/B<3c{LǗ SHgK/ M^#p,3kgh(jNL}Q:wOUs>$kmw}b5CclM9szHÇOJi1sJ㪡}S:cU#'d})U@#ter;y]h;t aE UCoZ6 sݩ[Az+# c:S&LKizFAUSOP6)U蹮GRU| G2l.=@Ip'ׂuw_5ʵ=57b=̕Ѣ%*-2]D2sl3kfp/{Н!#\W/P> PM(`2O5!=_&O.A 6NVzN%q^<ң#)Od:$KA lyt@D8ǘ׼f-/|hc^cp${G(4GX$@!}uՋBci?RiQ=*m3zC߈.*JA=Blz0U,ˇ6{r]{5 I\V7\WDo * MeBg=l(=B)›i@v6okVPk #J٦E1o,P<&*oM1/N~g4jfDyߢ[*? Hg6 j\ʏH΢.@<~އ>!wJ  m\d-3vOdl~*̻^yWaWr7e"zR'; f&j[AM11z}?=Ƕ2 ur+ۡH0{xfo|:rØ_+:tj2lIn5oB?~z"Btu5P'KOHզ5E/o2\^P(A5.CTdc.^@+ -c0)?! Vy(_5.@7;aiP[BP 6A淀T#}4M'[S2,U*uo(-'IҠoX_·qQHھ5PmsM B Q"dΉ?P!&nןMDwӳU4)B7)OKX$>#D䝎K4ڡ4tP?I?E:x+}'ju.@;ez-=-݀tyaws%BѶK|%r̗ywkڽAR;HthH(LrlM('Ab}= 75ӗTS9 s@7`2Dle4UtyGidizDZ;eQɮ5!(FGǢLz16$:fv.z?2c(Qa H*6-EQW.Ψ ]Qg$~ ջ \/rY`A`I#ǡF0RW2KӽQ'+_oy*jK-&\T ť#}NFM3Q0lD}ֱ| ԫQM sC:>7\=kGOLU|gJr S9XOB]D4>GD|z]:w.vB;I?TӛPH" ;wMGJzuGVȥ4~djfAz$} ܐzbr?H'0&FO)G6ډ_>j2AE)<{_24y7-!d nTlVzYZ@&j5p.?dy48(i~^,{697У4&@bޡh|.F깦^ h 9^"f(;#6 lI 3 Gy^T_`Dn8lsssQ:7*7CCYKiSt݀ 3JC7m~fޠTsYop2ܩf>5GbZE"_e; m{{72>WT ̖#3W*l(,: U!4T^ d ]uvFbYdW{u}$m5?OA G)Q;|I80Q?C %(b=k^Bey>.{]q*y%ZBȳ49dzj52yW>9|) Ag$ɾ~m ]mض =Oy]`0?>qu1Ꟑc;55[p^u]m#S1USk L-LF$T-U 58F=4ռ ga-{o E]ECO}%ilZq%E%#{8+M$.\4̞h_;ةMM Hi'Ib) Dh6oԖ#QO"#tM@Kqf7(z"N҃PC\mX&4Uv6jSu3I@e@5[  #cN|B4t T<K4j-ZȿR}Mh.挙c$ӒEE 8*c+MO X3E^(7ptrE#8۳HRNoDi:]#H 󂊣]Dt>F.C;Ju5t\ށcy5ғV1|齈kwyt o3ӡ *h oEp}~ _Gg@אD<W֦vIj(TT'o*%  i'dvV~\v 5(Fe#X3?&ڎxÜ> j)~9|M"E/z 2* =@2{lukD*)y; j(6K|X(\CCX)r^f2=2d~ؓeݚ 2_CHv:8/C&"ocK_SNPFQRr} 8uEB<[t5'mHj82SNX3ۢ Ʋz|@H,=+ Dr!ez&j2y05cdvc.sBDPyNU/`&f/DQȷŢlZP=zmlݻҵV$&ƒWq,Kldj$^@O>I'rGRt*РrhhOF #{G7T$ս,doD2MIJ/>7iju^.{}纍Dg_>Mvﲿ>d#flN9WR'?U$KYȘ!eU-uHըz4 ٛGUGQO7ՍLy7ܔE=R<ƭ3PHz&@)P -9y'sނ |SlM<Z!_'WH P m!7m1B;!s8<8e/tvB\!TY4? cx(K5d2zδUAArkBKF(Y+Fhq?vj#)Cs+Tꇭ F]oLK X-3+Y6\#^'A_i94ҝ|3{u wlx7AX}-4uSdq@3<ʼğq Ru><6ǼbhA%8_!yo" &uQ maނ|d`Y&~vwMw(/&T %XAU 6i[hȷ6 HHo͠ A QrcLݛ͂ҼHn*p?&:ײI_BÝ!*21 2GLiZ7{<z e}(6܉kA E鼙e(["{r#B@KxA+P.tݳ*PmMbwY;y.*2HP'&7Z$&\>$3*nEةTH/ilڍDr579 y )] l@ȭ:*/:_.Dڇd M NHa$R\zB/@?d'c~.1:ɿ}6 ZEP3հv߽B[=WC%{dB:=4oYrn=̞m:-2] #yr DqL[*WѯTko ^%ًɚj$h2T@ttK'l6Y 㛆{osb kwh9 Ðd m9ѥ K{lnJY4n($ot?嘡j &AA @32=E$]ӡSGR-w# ȴ'P2lBoa>~fTߕ?Ef<*+X>{Co4tmaʚElu}@$Ո瑢Řyd8$ocey󐧃M̲O!+sWs Dy:C=P&?3:R1͠?>cJzB583]'D56V(?Üi5g ;) ~B)5̼iVBfd0QçJ| uFvHޗͷaAerj{qN(5IOIl:IØ[$jɲL>,Ӳ룞<&(ch7nLX(lBf܆FbwA豾r2烪=_ðf)#E8*.#":7^I"kw݇rtvwdiȇP?y@e}@"D|>mfZl!yMoT@u"}nc7Ax!fp~:0hX Q6BֆP/;kP/"⿊ciaD~΃tZ*2,zW oSYJ#?\<둄o yݲ'< zг{8]bD>6AngEh ~$o!f7u7?PQ+t`t7jyP ;۞zyto$h:1docp',+:j3P>r?^7*eRDH 'Ess)r$g u0'TS} sS G63LO&\5[q:2} T5e\:⬛HVCUu^UĦ\yYP~΢H3|{.GEh (]PPΰ5v(E+wA>[Aq/[4+tX;@ m$g=P(Zג29cx>&a^ry ˂JG5Poqtm f!' ,˅{CchmnGu,9MWX?ي\dt(RO"D q'a6P61'uGh{>.&XApM}6rK7 ښSKNWt2%9!MH߹ yZ0 w+>4 u8&k>'}֚EEɾ ̠t'ǣhG#ueLթC@UP+qЏ|-[N|9mTKL}TśˉG8( . mZX'Nh~S9#_yoa%^Fۈvi>"h%W\fB"#/I"PQsQx}gjxً{ej.ATt]b*pIo~B_e@T$ev@%<FR4\l6]2^J;8_*Zf50ᾄl$8>4|Ƚ3:geN l (nx'Cx~{L$U\ĺu%S t D3@<_#Wvd.ygaH[.In~.鎓V$)iN3"ꠗVJnx]ǥ/~&ɌY^8a5 21@>OE#s6")vI BV8<2Eznal )4AQ(<_hm]D}iRVl9OunpI'#8+6ϻ)eZ ֑t9Sch !thc@H:>)L\6P!T|xĢ};D㻉lI`r1/Eqn׾%7K9: j+   ߭ޫB;NgPC]&IhZiG9)$<DN\j/w ,.e+0ŶwbY4" n߶ۋkP+IH̄&jnK61΢?)*+֩$m~u[;Jv.]D*ρ࿡2A-ld^<+@3eɾU0׵m-UW^*L!C%m&BzQ $Ad vzѭMcs-0OAw뇃zW1F<tDA.S :?fZ B@ P#4 눽ӝD NTVr ki.lyInCHtM>3~tIDB9r}*>HIU*Ti ׈M6sheRKue =oBz kƚPՈ&TD7Q yoRSTr8 j2}\C󹨈G>K0heh Wu%*ZmjJTPTC}D?P$5rvƵ,j@!dkI}5W_Oc2>\d{"2 TʵP}K՚tB>52ch&TkORPE=!e>50[=T6H|Ѝq˥PM'CwL$YY̫5g"r22)ȼm[רyI-?Pn ;Tsz|7T&o#F515u2P*R:VAH}Nt [[i|ŋlmɲ;&C^JW{ ʃCMWQ,2i#. MWNN#CP~`Fm(~;r.(af, H+ ݏ0OP=>(7U~Xs>$LydY Eu Qͥ8 ˸ޫU+ʁ3|K]Hxeא N*U g%LU37qC>[rnP^^t7n3+P+& 2SKȲJm'<֬ BC^ ܬ1*z\zAf/s ˊ3oܿѷ8fWb$r.d$K~I>GO)`JJAPh>m#zNܲ9z-o'{W"ۊcZȥ׻:>`gC\]o*TH/ ԀhdY5 I/̋PH+ݧ: a Dv^_M5QR8\|}#gR"_!ם6Xkb [ܑF5#Ȩ-z) 4cXA=_+5 %æJ ډ_7 wS16&T؜-lu\WN8Hu^՟|> TdKghmyhh:B0{u*ȏRLz"o ~@tAN,;5ݤGCHaJm!1(:eU3蹀L(aXrei@_Ou =+~So@S0M4;¡_B"d|S$.w*X ߫W9#y99͇M'= "2Q5,/H$**\+U5L'N!i~_~W1ghn|,Ʋ"L#&tT!sYwu=YP(:z@v:TD= R-|5{)Wj2{ 5,h>2 *D^U>Oh~6\B-5f[v 4Tޱ>-;K9WYoAe7f'\\/;I3|} gD& ;.V,*>gaYoB&8 Z Vz49P$,ORhea%H5>I(I3oM![<@.\wvk-p:ok'ڏgO;{E5W拼Wާ\$&ӄp5i+Hm@B-\SST|3Ou-Nv,Nd\;Mu~9B)cڡMMm yȾ~xSMJ6x f0; 2 .AՍS4_1tM%;=Ǡ6IjA@ǐ:I&4_F z9s~W}ex#UGT|coTl6adH_.U6$d ě=ʿS`~kʩ&phIT(+@!: rsFi?ɘr[v%ȥN6R yR4_R;VA-P_7"jj>^N93 Yw0x<}gbA*zۈ*A|_ʩٰ>3_:ΗȄG;֤b0GEgP59!gvQWs/3Js "g pFMh&bpݟ[% &I|\C{sv8vc:8Ո2_ *H YP05$Bup$I|bJr7(҉F z.2ތmi ؐF=/7scY=y(TO$9лREJ Jx7 }j7rfjԩG3pdia9X_8FP!utr6RdYJAh"JԱzegdox&T굠jnK_$uM 0kHU S2 ڎԙJaAq}m4!:a{@Ŵ: j-zh}sZN"oRv =>bBܗ8=__a!gMuAa6̀z*Shg1!x{-r&M^['DYK:Ɖ\9%h+q}YJC}yWx/+0R$J5]u\ozaqM]r.D]{sJktH; SknzHfjzQL4)nu"2%ߓ32m0\=5Gci/|:KӸAy*k}g*:t$0nkVСuW–1zEu藬M>"áQ򱧎q-@dmt9t?;=?ZAcڒ%g2[#`{+Ov.*X/_Oj3r,Ps9<ڞ3kJ[st$F.,w&>Os\] ;O<jhWuHRoBע2豣N |h7PdٶJAU}>II#*> %Ei;%k9Oi1gՑP7rO{Z,_|d~ %qzleO3n,~ *eoQKHo}pC)-|K>IB=D2 HGZBK#U8BW2dǑ 6 ֑CYH )SN $_0G^2M/ O8R%CYIS5OuR  rc|E&("dt2*1\OÒ}@'2QX|> Rʾa^5PA8S&Kćs]VVvO/|T=&?1DjmYrNTTQ{*؉ S&yW;{ϑq2̳N;g'`w~`mi7#.RTQ{udq29Ae^\6xsò J0 @k}GN{JCkV}#4%l*)6ۚR=5w>7*Odʱ]geT4U9)]{ |nHjO.7$dA9Od=+i"յ7P1uwMĻ^RWOjّBJ,:w:г3e-*!(EF Ta8nR 1f#=͐1J102['haԁ xJ.!)y#/O߳XKQ'r3E%74gV1:숽/UN˱`Y>@?PpPA0g\ҡyAXnHמr2SurC&u,5vG˖Dw>>e i^ 450>r3t=e?nXnP}R!=&akXZҲg0[C o2,mnkⲗ?giW "ex@fC]6hRә`uIꦕl?jI򶾀7'iyl3uU4CL :jmg~NhYێ uK'[y^ccL8~MX0 Lh/u~vD]+Lh+qm)gvbu  %@t6 M8yf[[O}\=i)}hx]Q 9>MAC;D)9]?~֗Ҝבгw:F3^ס`:2Hi Ja{$ǃN>)Y/\N|sOstJҝ>Qp=Wo@{5q^MT/-"+R,I\o;q;Vd>`Byj )ZhtzT}rơD <޷[Ʊ4OSKCWUO =SD W<߫-#&[S]=xO۠P&]}K {>9}3o}GQǠUC$Wc*]=FP#`xJA}0YAS)F7'zso32CS?#\mۡ8>X7ۃdZt*^#T7Ji7Pm[(:?)>*䩚#ch t,RQ)>;do_9h%"T\RZt=Cre2J~S8/$ԇb+8(F}gzXT1̖usoCk2#ҕ=y2 *e7?j2f»•g?Q S%4)vud!SʆkdVE;Aɦ/CXZZXvzgLFT5sVevtE'ǡ9:)u3v}ЭȻĎ$}:l3Evv%ly}ևmy[{-I;k(t==~n&oT9#>ɃZ Sd9G,@{A4X&FܽU0:CZA޷%L`J}F멽>%!>8^ӵxKb 3GCsLpOgSgۜQ-htTR~ OǑG*KP;h ^ZM"^[Q1ZGT}EȜ;jQ7*G !\u{~HpR*c"#TMADI;eR;C[4݊>C(9KʗA%5)xTg xOTs<Tk|(CKܯIE;wkM5}i"uϬlj]$A^mero}Jwa}͠>;ǻF(MJg4޸fN}(JBa"\]Nk2dz}+2[-4<μL}"jȩ>HP)UfW4ੜ==-9E9 Kyrwk 6x̶R+)uy 2Nb>H@mQ4U(mّ~dRpУ2G-iGX&Czə/SSKIKѡC˹%VOEC)LKbݒv\| sKVv)tevf*} VBYvp +`*0ե2tW\*;qگb<=h9E.&kw3I~z J[J/N}Y|k]|Yo>p]n:;ބ&oζw/ 칶~DT¿o`չh w/2\ҩ{hSҙhgvnTm'}wc}垆>=%Ketu@s=i0Zeꮛe$Q{"g~Uc(.a& >t^ss1|;zn:*$1tqO)ZCD)_<+e%VՕ^Wݼe)j̖l*z^4U7=cWU>}nzBevܯ(8hi<ʺzq䬧8hz|,|MSXKz{rK-ڈWr4v?XQ6ٚ~B&{Mӹ{>v >GoGe? _1Jo5u=w/(i/}: ʔN'v"3Lcv2Ԗd|yZxr9rSwqO-/==H.FP`-u5!hK6XZ_AW0*NQXK&vP'Bi2%G;+ZPA^]tͼ11JJp%Z]4Q2ԟ#>~ʦGoʆ('\$M"]G؇b(C51,FoM1%%t*eZ@B5c[_^15PUD{T d(T~oq>uAm/rŤ6TëlAx'* gNrCǜR#Tϩu~J}9-uVdMџ5j~X-utwlmD}:Juב(*Hg~\W{{g{O̞)ChQ袳{9Z6`?S7V_ݯ?s!t }ޯ-^`/~>5;e^Կ"O T/y} [ԍ }Zit uӾzR0t!:[i]oA[}ϓ^Yk*GTeRtC0LS Y!FAVq]GuI%"˪ edYJT Q|2ɋu(yp4 5VjR b&$ۀhѬ ,9K[[48K덶u*uM+7SȔoFBIm7U=Jc8)F 풞2dii@ 4ĝ,uqOwcj!M3U6o>-J-b}lYƾ 88T %:UeIrFEliy^b$DzK5ϣ&d֖u u(*Me%}봍*]9)YEk6tMϓi[4C{ )wL"J47=)gRnlAնV w+z &b^ΕklX>D=*謧zDŵ+7 ='d_&Cz nਾm%@mi:l4?JZM`#ʓ<:S~dt.K?!(,ӈQGniWPwحP-tqϫw@1ʊKkdI5N4-N(!rӺJjoB^Q=u0 Nv|GEmt.*0PLzr]J5|ܫog/CY^NWgKΎPÕ zKh4݊4^-oEGB!yҺ62 #x.)W]NbY1:;MyT62ӣt,G(1/iCʆFUS.'_,gQb;FzS.I;V=5cZ.}?JAjFj hkzz\Fs2yNG;0ڕngor6UKhmTEwي:9j㩮n67EƘ$GLclTվjd$*%_jq4nbZ:H7}.NٺJ2^"?K\V6Ѝ^͹̖jj㮨\+!?\,reēӖgNp|$#m)O]{-DviGuf-(Y>Bu~Z^5>E+KLB_IFԧbK&QzZj;(6Fe@T:k@e.rw zFo^-߂żdIR=iH BUQPC Pta-j9(I`(^Z$[ ʤ{JMm(;LAWXr'$iZCrЋO[0#ޑ?}@vE{xک:jrSٸ ,, wyJutwIƝӶP<t}K'(ɂ|^7KK(I^G2s4tv8rߗ~x(@~)Gݶ[Y5+\*-vu(yʃSͷC3SMO zs#'H5by,<sЇd/Fr=;]^hm(G~gDENv4#N-H:{y^sW47αu(CߖrXel}'kmH Zgk~,{5`Y%:NP{E2}MM*KCpV>l :5DoxqO ]tk#3QALD/ (k _b)`+ЯQ~NZ~KB {.gDoP0<0ЂyzXj+ca3ч q>>zR}7NWErЕR 1Xn24ry%(rnݓ:.δP&LsKSG6>"%]2S{bdQk:AQ aqO9AAQǪcMklqO(f3Ok5~TDO+Տq|^\"jVDrzt i}9O:;J~)/oIwD:(OD}/v۾F=%)Fҵ&:ʆS=:zZJ=P&@L?3~L_iLD4?Tm5_;obGD7^fR~Mp2TrK=%!|$C3o{^VѣLDV"Z谻G:EQ - )zAY '&?uD-F8Mԟa:Ĩ.nIDzh4$808O׉&ywP iM{OOG6@Y2ʹ)nj}dԄr^o:QvQJk._Ayk@ѥ1ʂ֥td [:2k%K $P? IZ@D-l^rP6O/lsҷ,B4S w%oT`N\IgY!οW8H@/ѭv=mp1LMb+'/!ϼ<ԴO#l_]@"FZN/i%"{]n&rNbtc}Toq$<˅=l<iHRA|`kn[!xHtc*ƝIJ{vv]U.Si05 L}T-n`}:P=3+Jz[Ahg'=3m=S]M%2ug8b-b#mMc16~ 덕ʇKT_{J|.)"nuQMQ#NX-z@\`bYR:zj):sFbLW(SOOb:Aì5D)[2E7t;ң<"ҠCP/ND!ʇ2GrG"|grk|u$y-">2}%v %Y3;(O:AiZjd{#ɿMs:GG=B(_G0b2RZ2rD-qvTM{l!^o_!Zs ]ŝPQ_{,gK*>Zu_4|#m3]k97O#ҞVP{Z'b3WpD>SADr.T@ur5w$ݒRYR }]S@{(+ߘ'ȿzHo/r-1([F(=F|h}gؿ_n=w\*EVQ=?+FhI}] e/)ON-mH#jFDZi|jckL{$FY#9BUj`GZ '޴xZ7_9 A~3!iܛ/BW %T(]y_HRo-M\%f *jFOɶ맩iҺf)Ynl259k%Dه`BJ ӆz2Or ϒƕ\] U68*pzt(F3JeQ;nDlQ5C'jEg1WB'=]kf(Za_'CqwŞF>UlD2oԖT!;ߊ#-ZU"nE$z*yu'ʲe,-2(;û }sOP[:Qb'.ʚq@^_Niü+uyϠ?lrݏ]%IWM2;< j7ˈ[ZUǨ/MKy,YZ%]l9ʓVXՉG-2ZrqEEK];u%=|1;;C?ZKm4GF:\eOεWY>(YHAt@ɁDb}H/{bmǨhX ].}i'Nζ!(K;ՌjU^EۍhH >)ӝ8L Ggh.{3暞f.9'^O<0Ixi"3kv?=i$2Ruv~8*yI'Cely) ӅHXHw}$<>%n!t'c1EBA_%}OZ"Fǡ.1:eBbKgV6U?2}y&OaOwQO7{;N2mq+E]ƚugE]Fk#:It ;L_'beK:^툿G{n^yZD흌o܁W-Ҧ-տ9Wx8DtWڮߗ;08rV!T1]h’u?TL\ٽ:N* NtG)Oiml9W 1}8%iٵ#Ϋjy3T!=m }qC2F'W7hh>FwI={]AAUn!TR%>z:ig;{h*6Yd_VI.vꨀJOG+╜vjWnB<&14_׾>`2tg[]r fKu;qssJO`R$9;t5EʎLHw<{{-^Dz]ZF&p1љ%1Ǩ˰xr%ォn]mA">N+"GDY~= y="SPuX..QZ&WO+=}UxJH̝et(^ƨn?m5&Gl5|^+Mf5%2oo+"Fߓpjzv]\MT O@KaLt٬L?=x6AMs(Ubrt=J]_A-ԗ^Ϙ"m֣e_L=e;聍=xfYw@v }ʬ.eUxfgv{[3zs%GMdsO-tmPZ7YYkK_@IP>U@֑:Νˌ*~^oQ_LaO(o li-h[;^g7w%浅9º:~Z_W)=B˞ Vhi ?z櫟zG=W :VZO)z;=I%)Q zrigÚP%fJ=γnǨ?-uՇ2֖_a'IOf-&s>g x\S&.ao/cP4_g?ܙGozC{<4bXJ>cozJhEXJ9W:_j ]~/hoQh@Cá-u&ytm8nŋ]1ZF3GE3wSϯ#߶BM"HIt/:*t߫5:*GTOj=xy_Ȗ?t+ȝm]= YV7JZxl-ct8+SWhSxjoFo )M㽨N6[wGSɝ΋аKbt7:5V"EW<0;4Ex-Lm㩝+ckWKViYQ}㘻zaԶ`t t#~MƱ#giZ[^ {8Gkd7rBvKZS -F}h=PM7l6G4qS|pI&=!MF؃N+}+Bór{މ]`{jvXIN`ʘ°^dKA 8G_QMz'7oD3eXx}NLO&C[R|q&#RYѻ8ox~xV']`zRx,huk?t۩OW9yÎmSYhzX:'t#{̫I<:i9:Ϻz|-'ըm;Žd;QX6q6fǢopF7^)'\O}cO5)~)i&vz&NwيΒTο9[L[;- GLnO&Òˣ֕i5a];K GxL1b6[OU uI0.3tD6CI[A wLꈝT=gʛuǏWP7ݒ&}hQG PxFvqnuBO;8&~~mhcx(uC`Q}\T^iI>EԞ.)N'zk#;J d)K?Ѕ(mS`/ccDT~ kQ2{rv? M)Tw*_rihB_ T#⿨̶7蛌0dz-z GAh 㖣htQ-hl;ˠCAcfsMKQ,6UOfxג]E>[2`Quu#ej?[C/uhO3ngM;-{8Iqi #/aDBX˸9J qT3kOuzl:, ݕC5y,V_Fb=V>&O1;7<*ٲz؍.~zn8_ٲ&S!,PƏH!ő @g M@{C<ˑs[G[aFd+H])QXZ(歐/B}x1uD :>a*Y>%d+g۠VPG$\1Ɏ(A߂R`6ac*& CtKžTQbOQ43@vkj"qmUW]GNpz;9[}W`OM~b˝'vzG1~j٫<- 4zqO<4]fۛޱ>i{XQNxOXQXq{H;sDKi[gH(I(goӎPeGɕ&Lm\y\șXަP,c|#VLg6z8Squ5㮕FZ?oST=̪zFGǙYq߯ JB'<-伟;{ȬOwh=.ݡcqYu*ov䀧Q⌝FC'}yAqnX m'Ot|P21L9=|VAoi@e ⮐2Vobeef@ظ*}?^gЩ2#sa#ZVE8Ǎ2" (rCޑj}E \?J8:W1z[kxQQco`|69L[Q;CЯ)zLW6>8 ".GM [,?rNs97r:bƮos7E==b*L3Hl\쇵=deYjwbSr֮*eܷ֟1^^^^^^^^^^^^^^^^^^^^^^^^^ڐsoriginchk_tagchk_ref_HDF_CHK_TBL_702_180_1962_181_HDF_CHK_TBL_0Xx1  _F6=xlw|TE߷Х")&zH'M)Q@:"DHH H@B.x?N?g7\}-VdٕX$N/AѬ,R|: 6ʢd%l߱CdoJRVT=XGSTX̤:qE,'}H'+F%Y/,kx9[SGuJY,k`)+:ע ,3jSD7'eU{Tuj^d?.+#Y \p\w#(A(rTge728.S, S#Uw"d9V-0GEeZyAe| bD`*.ȁ?Y WebGJ'9h@_3"Ko.qr<ue-0ʊ49,,JR?M W(d9a} p>p)YvgYWP[,馇/Ǧo .뉝!̪ȁ2Z=u xy&o U)k{K׶}a5SW^,CU岺^d5f(ww/xtq9V_ȥYq3)F{OtIVG.arl=Y-*4:{"K :2U]Y}ӴՕo{/9cۜT}Ev+r6+c^{@为l.7xwg,}_:| {[&c_:Udy>-121sO=EރWi{&oI-AYX ݦaf-20sVS5naBBזQ4d5d<ܻV-Zһm5YM>˻DO6?xLkwSff}wL6UnQ߻AHLf}^2%:J % G8$ E,JǝM_Y<%mRO`27|E2/|w7_EYc>{`TOPZp7K513JX AYAX#6e7Ch?ޫ}D.>,:j3SԻ_5my|#L~oo(ӗVf5;"51۸.>4bi-bnǭ$d>~tWK= {|d~۟,4ӟ{EU%Y4,󃟙KDkn~_u \Ļ,0}\Bg37л53?K@gkpMG-wɗ?7beׄ`}Lğ{zH>b3}Vϕ>' x b-_TK|1&;wQ<@s nO%Ս~{(R~;=CwgBD z՗wu?J_8^.cMoSI8mr;zYgj w=uz0!i]3+MNFzjiunz}7%p'p_ݴַRƶ4 <4Jq47@1 mO $h;gX?=Ay3dGG7ZkLwO| N]O1Ę]`oLU@GtFZd1///^sTNjg=*فR1c\Z,>~z'@<;I+"k&ScLvm>Oa+{CyLT^$=Qտ;OM SbM3KUw*GV3z jԧ;bNaUT;B)}rATSCU yG~ClvSw ∇;RnazSTz6uj}UGhΫ~lT ²2P%lynzG-`JQ 8|Llwx }/TgUA_` s`cRc: 8[{.4hUdsɅ3g^9OLBMhuTtGyL-_,΋Whw|Xz x09S'A>Qc98OFA6;AoP/}9֎>-8 RoC.Pl22h٤d\(&:Cj xi!.A}Ww|w0Eyd<}cFa]ڠOxGEZJwQUB\D4oϴLi3זɦPWue~?%)SRBw, [e`VBf?8ʊBjj ,B"EX,٥~eT1Qyq\#ӲWʃ5P1uLVW-}r*c4 W\Sor;,( <e^{nƢFw3g`P DgR>^:UݐME拾j;ʩ1/DfG/`)2= \`,TOM:(4S确8':"6jr*)izsV{KBѽy%Ֆ5x`E`U)eԵ\MՓ?x_[]gQTqtW+֊]+khtp`ᲓO``#Xl=TߺƊ/\Xga%`ScWuU~ꪞ꡹J-UBgUӝEdLCՂ=%S]FܛSj wC=67k9Ro a4Eֻ/DTqVX}yT2u!fMOX}GpVON`Ül#&Ic7'nA?5s| 謠Eˆ?y|g E8ڤ ÆETuf?Cգ--̛a 5M5C :( kfYs9&ܻͿp4y ^zI֚a+`'CZ\h3\5u:?p$R'f.|#J ܻ֊*< |Td-N73EE\;bGrӷ\B'> q3Z6N2 F -'g_n ƾ6z)->̻W&'/ڰ!69清Y(k^*g_d4Ǐq |}罫`YX{lgm}EiֿۼK<űy[.^VX7+6.|z~DOk~Y?vؗswE/M) ǀxy@A] w>P|Bn)EpMb2ڡGi(5_Da:z-z _#*x wѢ~A1|;4j+ dy_±͐Ci]󭑃|ty'I?:P_'c_By%{3~Nɺh 읎Xe>"^RLO&ݼ9zUׂ/ֶ%~:qϤy|9SE;9^[;-,.yEŀh6h^{.t.:VzQt{rj)_[_f̯cs^My;k^];u>8Lg;Џ tQa_=Y붳Izg{l ͐PИ;#yq?} mƾ?/E̓]i>"!+z>~8j6#:X(PY)3HoAVGdz cQSQ,sơ'ѐ]><~,8a"NBc(cۀcZr=F S=,)WPclPn, w<]z9*a]TCU5j2JsZrfSQtmtQ>观l}l}w &_XD23*Qv,& [lR`,?5P6%&{h:KG4YKyl`>ejV΢aBͲe9k~Όmi<2l"}LȊ|q%\:+%|(ұ/ЙaE~9+҈(12,=l+E>hȪs?,ά,3:b)ZrkЌmMﱳ2.#Ч+љBYZ:B2dG$:g{ZMjq$p%3k0yZ^8 یyӝ5BV;tK*܇OïAbK)u@Ѝ]T j>6ՠ7gb9]q*od31Jrftw ZG? v> [2==?VTǑ őm۽Ǵ;ԧP`Р8NC:ᬚ"CKZk;0 a*CY~{Auf:chГ,20[q3J4`5ջ2e;.DVK4cOvk겳h }EU[ijVkLsT`S4Q_2Pzi`hPِ%j2Ozmd-տUtyά#?TY]gjZk ߜ%cO~Uǣ9:#^[}K~z&֘q9kB9l1i3!J18TШ ߄z;ef[T0Yc(:`ywP>lfl[hU2\Y>"MOW:VVO]6VYK:t5,wñrl58ɾ\c?a-}mOh1.|&=IhdQG~ᢎm#pGפ7Fɴj[5qk^Enȶ;.^MZ/_L.WXqcq܇8_jk[*h98|"KY nab"_ {`OvTҗw4-ьuy/&l3o*2{[,'~AEZm/oӯf\ohW$ׅ Wg-& UFO}=7hWgC36&>toz?GCS2.;S+6-qiWѤwҷѤeѧ+ѕ} >/ǎ+}Yg'Siܫ8}:~wvR_+b;]pKL_ve6܎hTZʋNhC;XREAoCӇw`l`;W[|wi;OƼތӵ4ϢG{yѤYE't:`rOwј=hL||t!S/MjyNn}u_8DbnLCMzMN&- wMvs :x~O'S,xwtKФAISPfGns;@4upxS9ƹ|J~p/w^M*F71?Mpn;*Ss }&I叩ncA*U]ЛhX;F:SXW=kRAP[p_ZdGWXZfzߎע=sb@h68x2?ե440v_p#uh}]5%ړ&ObZ94MvO`;(+K w?qbJY[CMAo^bhOZIV4ig-4 |čWCƣI;#s`Xn'Z^ǂ.FD[c6 Ha .sN)P &Ѥ3Sxf]zYFѤfẓ iy&]b&BI>wUeya6 |Zmi8ogeJ(RniUT0О0z3N+dyPc9M68i6a(78Uۭr4ue*~\N>ȩQ,~E]_fqYQ]QIAS=_[ 41le4d[ENuĩb1"Fee`FPaY`fXUz5E2["D_&њZ 26Y },"[[j`?wkقe,g;su%Z}bȊPqy*o69XFgWRŰvIhKkβƙ, G6c5Ļ`js6ZJ'*BwVIUYijUcsgАU*U[% Y]&86V#4-FeKf]ʠ68}BtvU5ۂvY=XDhwoE=8 g-E7) L/-8 mU?yZ.sox{|ꯊ'*Y3b^MUoGrV_6G`РCC6K&Ho"חD,oYsgC)Px0 "-]OYة8wg~%b䟃(zIbl2 roh:lKJ6Vԥ>!o;ǜ Y/߷ĜA5ھkF LXox!<<:f ٭K^M_3Xx2}କ\OV]m(a2'Y[a,MvdljzI =۲\x] qkLZ≺~uA.|cRbes^KAexDi3Fb}l( +Ή(h&ۙü$TqKuZ?z&&־İbz֦/h%uYٺ"N>ɗ`[âs7]-k2I D ёntEIq[Z{Y+p&LJ/|Q_"'pl}*D9&z'wte}'Oe]~*ɔ4a-8wkP Geڑғ|3oveV?L/SkU_ ~Gq^`U};=pk/MteCre19OQ&?8FGC8/!)&wU=tW{h3i* >zx0CIs(tߢռns1A:~g35*mF ܯ`=zGypp_r&?Bqp3Hdqf4Os"J{=`ԧo\JWsqkW7>P%xPe+o mܳu8V_r } Xy~pe%nrc[]ǩ)jr+Bb{sZF8SLPTq?}ق"z%o('^nCrJ QzS(NˇQUQ8mIF_swDZ::C3WTQ{ܧ+[sƫv:CB<ΨiꖫA<,bGPk>^}:JI( BYrvGh㡘C̩r,i]W=W+}d`|:A73| YHŵLᴟ q ~ Tz:VGQ(Fzmj?8?ԧj sQ]=0cٿ׍jnz{x+?+ʬ8;~EeGP)+65@xWGQx87:es|mGD\ cTUiL>w&3x:> 0Bq8br7;x(1Eɪnw:H i)BʧhhrxePp}ZmUPhr9-we3rjJ ;|E/Ȣ؛G5s͘_͗e""Y.UE|˃f|3dbm%[n8 r?L.ò±Lh^'2 .G/r b~@XɵZmFHu[! W]Y.z.{p!s3 {d6-CAgٜhʪ8;F])Ø$0˚ɯq3t# ;,G7DTo( KkN˾LUY`'eb|3JUAp9Su7Г֪Ȳ*슶{[#mz qAle^[W8.b96|Su?^:ǣ Nš 3SMȷ`kЅQTM>h 1Xif汪!UR Itj4 tz2ଊj FBA>̗ACAZjb'z:셭4'Q L/`fJsg(t,$)4Gle Z#9EWTw3YC j._Ւ];WĻ<*7 9z.Ќa/:̻,ZE%^ Y}9`9g3wv|TCV+me̫%w<_J:b.,u 2ی5=T 7VV)wr,Zijޅ}gV %LIyZTnuj|a8k$cC'ЌuvdŶ ~do͗l͟$ϳ$/5h&?E`q7}=2Ek3 . -E{ɨ&>i˼!k,'Ǣ RB6 ~_VfޢQa% Kuu~6<݄RhYo',ٜ5^YMkͽd[Q)4h[WLEA۞l kv5 l&FrzƪUfa YsX*MэѐW-a*`hJorTQq Y\Tm4mx3:o;֭8>K> E͈F.[c?FQhnz?qx'FͺM;. 4ɽSpDpp_؎ _|q-Z4 <7hyw>u;|DV9/z/Y')yòhY v4Dρ;l+_5xt˧WXw/ EDGy XGD4$_-Otܯ w>܃޴FCXdjzƣuG64&ClX OB_nwo6BC^G9 ԎSJ>> si?9yVYG{7t$OklzgА_К٬)HU'1}ޤ:%|#$L?8hKTMN}I@&`\A;j-FGCƫFnѐ_{\ON!w/k3thȓhT[NQ;k[.C()lߍ/BC2 KQAVO̮>UE@O NTTVۧ@Qnqe@p=yxdG-Mf|Q$r}rZ'fkxONR^v$kvxS:)RM(+RgrӼiuHSI:f΢PCץѐa!;"xjF_/n2cC('%^kۊ9ѐ&!SRZeVw5m#T Zǹ6>lYsFznS9>k5UsO s1z}rdCOw>Zdc7+UBsECV׋QLa:Om3|sWh8D1²; ug0-1TopSٞ UQgQˌj2z$8wuMH|WDwEXqqA>dh%Q&.k }&+ %VUFu:;& 1 RLofY1*2tcnVB7u\DP˗I/)ʳJ< A)5+(ʙ \5敷̨)˷#j3лm`Fr㎗ӟ;r3)lFoX"X ~?O*cAe-͙AK//mi&,Ίj+,fiJ뜨Ձ丐=c%i~!fX2,N|m,0+|N̡rf8*Rm51r5,94erVΈI,bpg.84 hȞMTİUwЉ*q轅*ǹyFUAp6V kUQtͰjCb9%.=1QoI&sA&{Dmb8*d)ItbcgYU:g kx!X;ggIƒU`a`cYzOCX zOCWyNNWꆬH&Wjbwi\%~f TZ5J+Q_EMAXcB.CLy׉t:Kh(#Ca3׉01T0񰚰UspMD;磰h54T#qO^օ5e7d5 {:6NfN;b =rߋcm"[jM>k^ꊿ;r%h^+1Q@+Ur- <8.hQ[*$d$oDvC'}%k ݸ}euH(э z/Rg!,Kw`MD ش|=DY]ЁD{ Xu!¾yMb𵃍@'Nb fQT75ȍRa :tk* ߀jħx7t%Wz8Sws9{gĒոY=W޳6vTD_֔cM5[]_fcZzcMa{wăՈWE;kR:o) n +S~Umqi}uwϤvbCG)x\ uh?y@LM '&PbeE1]wUyoF|6Jqޞ ոoCViaRg o&?c;.[u_:gһ^x FO[R,ɱ}6(߳y[iP?_x[l#*m? -(]rj x wgF߉ZC/q#kQO3 ^ͧzWieGç[.;xguG_Q~R-_;NNz orM"Xu5PTo)cџcBQW(GUǃ/^:*N^|%Ryq;^KmBox◎g4Aws#3[FgR{^8EJ=\]Q?.(ٯΖޏ>^a^?!??]jǧqPtyGu6νۮ#EU.B|Ϸޤŷt +ӌ(d5vo.QWOmertD_j[& xHw5R睌G)N󎇸Jq-9:S !)?ӮҢ }^DU;)VES<ܱ(ţ Jaz} Sը4 54W/(y؁THV\5ǝe[H}ʬ.}FTu ^_n$q+1YŪTe2|k,DV u 4Ȩ CiCzIQ'vl]-BT[j F-Qm,6`qT߲.k&қԇE)vdvjlځR8qTu8]q*ѱjY~ڻ |ԳtT(p(x%JqÓj6է,aC+iv$1cCǩꎧ' 09Ա:odBM7U-ˎ57uqlbk¢i[p򁊈c,,rQ^FO[EFuڱ+j{D"QrmHTacdTr,,P.4hj, j+ bD7,e3OOXn-}hhm<29zR!ԃe5šl)k{Ɗ. 0#WQ;Y?Xf`"a_ךy(̇jXVg 4yͬ4_8 +WUrOX,ڙ/D,, WkX5_Pwޒooٞޖ8%լOѹ{Y/dUPe= +-jbl&!ۈ%wb5cm=C^[^I@1f ̋ނEd`5Tu_ZPB?l,:9^wMn|+YZ}V|+Fh^זּ"n#Bk,Ɏ^,q\Uxᛮxt`#&j ۅ*Qvѻ]#EOr Qtsؗ 6YCGHzcdW^/VGn  FC]@R彇Jܰgp}ˌP&hg" Q20h5. ݴw-]#h0?Rx)iVOЁKh9-{u%k?d_!K㞉V &rVGen LugsUtT`Mm_Fu/۬ۙ?zIdsClM5G>qdSLKX5.5=dud/޽f~lZ'&uNZC5@Xc5G}k+Ma(kG02ZX'J~O^Z FQ;3oZ=slgtedwmR{fZvwi!x-g^|{2(6]5Sh:Y>Z6pup##,Sh֎{T;C!퓧q9o[i_w>JwVcC<+=3iKGxg@v T5E;Σ/V*-r]Mhj,s+0ply:x [NxMh{914=Z9xJ/8ݳtrz>LipnpɅ pAD\0`$.`g3k;o}:nF ˪-j,S-8!MYgz8n2 @TR"OQ(WtaJz1 <ԍGDPN7@sU2xhh4> Miy OYm#t~o*tC}?AK6)uB˰`p)QH ǺA 6=S1xk&-l59>R`~W}yРj+ǿRYW!f3`h1^h>=J00{0MϢP Olz YSJDuAUPre"*8+r1ճl'Dz>³ZG8-so?*΃?S˲"~PiXV|D,v\T2,7UGg8gʊ߻DLeΐ\LiX8-z=$,xr#/*ʚ-b8ˊˆ,~Gz+q;.?XvGEJr )TSkkKɋ,ֻMb!j-ZUFRkqݼ}60;&ӤLNQJ(C*TPNqfLcdsVYuӓ_x51&d-q}ha&-,g>r)'K ;.9Y{7F| 53n#kv-_c:G F4pLg|z Mṡ`|)(f(Q˱bqΈW-<4&~P7po[$|> fz7)a|75vz(#͆w NpwJ-P85h%~~纲3Iuf΀z$mT*VSM?f;8& o#H%F BT]<8!Mչify n c nl΋uB]M}C|SdLǘj 2^{tϯڋsmWYx&%+-k3Ķ>%{EM%{7Km`nnb?PrMP` %7f  -nÜ7Tr.5`?nj/g:fs D?iMp+z+l3v^3j 3quv.RJxv"3RTf7a#\_W%9W :bir[ZlV~X@/;ECLLT , omkqÿG(4)0s3%y2:Rg?ec7 ^I )d[{cvԤRX< ώ}}xb V}5/ʩ hg{ӮGIR<E˹pQfвЬ8~рaTD^n^ҷ43x[\Y) 0ҚH8Ou(y xx^Po Ync 2oQz&Mg1ibO(lG|#Px>eMoqPeowhgLv3Q~Z>ԛ>P⢞ѐpx-HST%ՃzcmXẠlCJoG.v$͡Y69BMVlvdQ܀jfKVʍla~]L(H7,yTjJj&uEs3Ƨ8_~7 n,SqnRn^]Ll* K/FVFjZ`fIՔઢ4eݐI', ї*Le{NUKQg!G hwr, _=nzXMkh6k0j KT%VL@QՒeWH疻`wTK KVBT*[5mC[J,Ցlek9翦=yͶV͖ Wq+˭e)>k/xwݐٶْ[j7\ŸdΐU{lê;b8jG’l\Nr7*m ΧȄ$;.'7VOהBmƧV=wȭl";gFQnr8hXn%حp^_M>F69P{ ={W׺i;/0Ul Y5s{Jޔe' >DUu]4[TN<}MMwFңpa,FHgX M/Q[AQswi(zܰ%%}2ڬxq6WZ8*z+Q",v_Ejs/hlzV]U.ASTpZ*ɜ!VUM9xWlX5%sW?cu.8}@ت_{SMey%l1)*-dC&tRaOw`h҇W&a.fǩ&!k`ʢ\4Sַƹf{]&':wX2&h{ÕVbO]vnl}a} ܝ< ̈$ՓQ1&.x8P`;h;'h&sRU8|r0,dTZ \y<T-_0rP2'|jK;|-$p[" 0l+l\[b[S1"Ĭy%p+:m߿f-/9?č+zbfGdk[8i-\>?Cys175לi񃝳дf璘%ROyPgO!n\@FAND#?_c|g.lr16Yx,kKc`vpp1\GCeö;8Pp[AKt,su$>n@Q;(8w^D@켠(_~qlg k[TzTQ433i(yAfެۀqoSi(Jm{: >"m`#!ʮ<%zh;};K)X6f%*&M)DE?0~<˫G > x#SY̨? \;̨B.̬Q:׀Pw T7MB1my+fVU*J fXo"5NO2WBdRz5RhjuA+{WjL8/ݬnGYIT͋lmo.4JoP̚[4~f26ښ?=Uay[5lR~N֢ӻ%[W-LAߌR8[֦Z᪯2PR^{6cUMM&)Z̚²TRgAF@ƹark^燬,>Σ .?ݴ!۩mQw֊gz'۬ŨK(Z8dbl7gg.J{ j=Pn*5:MnGװx͕ZC@4@vJc3֗KVZ׃,Vn@5ľ|Oހ7[*25̞dU7hkFm Z6.ɪ1ފ {VZX5 븎բ0Z- yϪ̅mbs[eAe[%k2-̶!B Y-ݔҬJ`O9j/nOnkdUp`+ko](^MOkMiz3Z,b avM|ӑnymn/j*7,+Z2*#]>gFu#&?,=e [{fr7zaSyDwb`Pbm#U {3moaYa5Lm9) Ki! ~ue&Lۚ/,3\lUf 4~VME7vn=άT mFGt z,(ڃ0KxpK{(xa_n{ϡQ>.O;2 a"zl gB?g4--H>9ַ<eAs~?sMn^32_؆4ֹ-{kZb$}}7L51R=-؇3vɽ g.m]i>2|mZ0%HϘϸ=hSKV4=҆b圠A*xc5xӼP]z:ǨwF@2k.|A_k Vj-z,ȍZn/uucРi4/;rUT[M$1pf).I豚xoj=?@hpWEr ģt˓Is?pu` ;ϴ,z>5vU_稑z~ rj^eg4yM<9̽q>\ҿS >& ݗ6 5}v2jTRCdnwg kNt贕Xp}@-X?{6렏QE&m$cQ2+=1؎. {G4;R ^ȣn/cff$J4X,#7p^nz 0n>7Tgo^2YrvVEŨ:^fBݬtj U!.@V=\ ZRnRL+,ą)W!pW%Q*TN2=5^-k"7x ɢ/*7vG+n:s͚)(kQ]:fdԇ(cnV,@߸Yo` -q56 =ѓ` =Ls%l,#l(*FMsISg`Cߡt?R{X7Uдm6tT~۪Jldl,][e+ ҅,.sk?kc55Qbyg*, VQkA܂ef+;;VZr?/`(,b_*ĽUvި[qtEG3XYP#Sv)2r\(ϊIkjDeU֝z,R7Q\h5vT?)zo7qkmAP\,^HfzX<>*'[F3>%caC.27V]C16V;Xe-ld-:ˠRa̯^cC:Đef算Z)B9x d5? f[̠U03owmEqyt.쭽x_}`@9k#[/E++u uRklx=t-m%zk[,l D__kz4-^Fw,KKoQ%57, *k0 Pn8N߁m[`^(@ CsD3σo"&`{c_fPK|nW=Μ67ٹo~7CMm4nSo/s+vzFeff:n&ʁW2'04} j77cנjK|EG3Ĺ"sE6}m1׵'6+p 'ALV,es>|5Ur 19@%7})-]2#>c`uU4imtyŧZ^Np.2{h3pӇi.-3Іvhiw7A;5W7 u5P]&"'d4Gfw=_ W]2I-sFrX~5Mc?3o5wh-nc=i_j돣~{qYtU.fx$]g>%Z ;wJ|o x(x.SA~R$ʥ) hк(|b%sW/b%ݷ"#~n}4iny"wtv|N@s~5 oZ`(+s yV }Ü@m.V_# Zk6no/} mk\Cs=?(^N*I/5yl7x _Ѹ壍Ao"7ashA[*uQOBo赛̽?)#ArҀ$7)s2ыc`23uyދ1Ȭ@s ?Ov{~k7s\vh<~n;4'v2-k| ]3\tAߤMj2/u "WmGsŁmmGse>f8AS%JK[۹fekV?q/q~!)qT6 74?;.?a 7Ed7m*]Rp:fD_5} ]<>)gY]Bpls^,c;C_4Ry^# TdtkZȽ>k'u˚kJר+k ˎz 3˷l魩Nx-ޮ'ҿ7%Q4wc Ul#QI vD5GMlnZ]E^~=S{全ðWUu7w8"M~ U%M"jl:5b{C#*Qh‰j)}#U֝+*zlA},IVDO`2[3*RE^c{kYju#'Ǫz~V&]G?׶&}a֪n}_0=uA^tS&YUCsSޠ^* YU-PKj*̶N連hxX~-#uYՏ=^,V\F S yؚ"[3z*oΌ-a& }jd\W PT&5jUng)r*B.vkL#s}SM>aM D'̾vyþZ(Ý'ԛ-F-D^ESꄺ<5 XUSLLLN#hޯXCҤE%Pe^@13=%;a{z _l炦R߼d 5!FS詇43Rº5!R1XuRFO䞪%3hvXy$VlOğ#fG=u V5>~jI7{#j7^;Gyýn}8d`u`>)~u%6,4hsDŽ{9w'ƇZ#XdiU_Xc«!ݬ5GvGv}l U;0;U ֋ !J?{㋘3q5_HآCS˂!#sy잩`;Jzx>I#g"ޞBE5rPTe}}MTTCo0r#|'pi}-;si7~6B|HfW!nJ;<mBQ>, OeZuE9MBӥ h.EwRp/<LW'`7e5Q 7-\7S=gB|i*sUk?_uZMBW"r^CA;M4Z˶DO F[aNzmkvȦK!^#r%.l °lN+Pod%)]}x{s ?1SQE978s[5˟ q}œω%L& DʀHeE H穟(I"ۡ`0,:~u:h8nOkGn:Lj^)J+H}Ae1u.ts;4n/; (NRs]W Y^2zB2I2x##ϹDJcT~:X* Kخĩ(Xo,4"[TT N*%d[T@S-ֽR|$BJޡr֢šJɵ,$2ldzM=BU5u]uH\SߩQ8GV窱fDZi2:Z?VJ#Kq5P5Tj:[2lJff=Yƹ٪ڰeKb]ZjnbnJulª9n &gX_D#eVj|ˋjQGKKuIXG)K*j2*z,(*^еw,N?TU5E81ZEE5/9aaBvmV :,TNT5o>CMFWWLCr6J*ٹ:ԟY/0yW@:,l0)%u'_y`5eiP9)),d5y uTSk[``qA"`CPNuꨦ:< n z"\GiCTXuZduaV"rc vXC+Օ5tt9:zߞ8[~׬=2O#}mХ҅y0|fBvx#u( t5(&r?ב\Ck)pMvY3v%Y!?kh4IX7ѝ;]V!g8wE-< ss˷F4қ,.QYN8.$f18FzyRfs#ۙ 7{ݏ$P̡|7^m8cvj gni 3=n)S^زh;;{o; ; . kDfo.;!čyѿmH˼NU+N^ps\^&dhAS\GxQ/IP^'|Ua/}G'Ч|Y/y9K :gL+hm'j)(ҿb^G,c>MI:s$LAʛ0~ ħNLA GhL<e &7:}o,6$8"#Rt =z]O =|f|aģ34 tZGW-ߊv% ōƿEѪ3Mr;[`G3T^f1!.hJꑗҫJI7k(3NQՓ^A_~tMָy")3*9B32&\X>=Y4TNATR%m83aټfNg<=IFw v hyӡ2ayYL4MVPQ[qUC%T*rE J[qbmRy`%5P}r[VS`MzcSH.gK^bpt}$c C%mXV]ǹvI[@~:TLD6o(o*3.7% z(^wگ\ [4XuJUTB&gZYbᆱUSC3w5Sj*Ua-LI\@Duz`3Xm{=@U'c@Z/nrxPDuk语2.sdR=TGB솭:Vٱd>'QޢA^ TN-uA4*W6NhsA_+FDq X5ڹ'~K~4O5ZdwZJekPNP2ue16ѯ"bYع/hR/.ZXYJj;|e)[]ODAէb\ǧeC]̦ 8us(4ay]bβf%]|^ao{yp5wq6Ol ~ț%<Ò̎N+([=w}I l8I2<+sy+^Ճґ!عn\SG]e}ҷzWQ Oπ⳶L-TOo<>K|-b}" _XEQ.W |=;gf{iʚ3{X&6֫|*=$,ACX^UY!_m.;AG5Ѩk%`'apr8yV̚W 6Wټ}ʥ]"y;C| KDy!p?5Mum51t́5kZp|VAC=j"[..RUGBTV_2j ^;.0Xr~܈זٮQc4j%jʑaGa{.|/a͑,VaiaktErөaXJUĿhFa'C`9&rN"`a5FQ[gqޚz}~~3}5tA7y OE,[sAVDgPye ff&w JkNBbIkCT畗R^a9vQ)*d5Uj-VoSu[ΖKE -,}MEz_'ؘ85_l1la8zd\;j'gi`ue5iy K& Y k쏰;7K>k1BfXg}QKܕͩwV(갺"<ʩ%r8A+X} ]˹ǕSLiJꘉ" 8cw.cbZͭ3 vVP2h.8'¥ EDIcnq41c;x!]tl]X+#Bpr`y?Br/evS[Zwmck-~GLl؂oXa f>SL{)lN^|DekcnAJD]9})ۡaL%L;s7 w=CncCW(ܼA#qܺHeJ;7}E$ޓ|Bm47zhwvh[8oLh;zN~> J',1w*9l8G{ODg*?g,g0gv^sX 9;MW*#K! p 烔W&3i8^`d4ԹjCی`d:2s%\$9WHv[ZRPeB^ }Zܦ)H3YJ:`;3m n2ƉNORT0QsZߍ(γa?,Ǜ B}2&jyJ-]=SI_9ڊ-T`(?KlxG+V0gEc6b}\#+.# ) 4ir"gX_Yن*i_t2mM:s3`èTlhikN٩9>7nE˜ܬn<ΜlMʩSrN?͋* c?ƹ}[^ j>x\Ay }Y!~|JP 3£0pz~ߡUaEB2vf--䞹YKmy=4a1y>㑛3$tN= Ǩq^4cIN!n[12ZяL N䢅s{tIq{s6Pcw{]tpo*:g9ejH(gB|~Aڍ۶ٍƿCvtrA>r gFSC}-O8_[s?F*=psEh<%gAꂸmRY(7:Ng&a}*;P>bRkȄ~~8k",Pm@ԡE/Q.;ԉl,{}d˼ưy SfGt{}8ӝBD\>v UMPgQ#`GވM1Q71x +%Y!O}Q.d1X\иNQ.}qk[#5岁m[敂ĿqFlF},[0xv|T X:꤄+*8 g+T"[W,\! UM*P'e*-[U=S{p} RX6 MR aa^,*U0[5*MN'UbU榰%%1P=[Pߙl^;[VFg˨YM75sWd걛J掱ܚMt)~XmtL$GTo?VBn "dqz%*H#syӸNr4l` XcSUiq"j',X5fj8dt*rHU^(ks-pEpQ P{d)[ '%w>PFoykvKk*kv:S_;{7j@мwp<籦βenYXY,SgMlg3l#XlsԄ=Tdokt H19 *FTW<8W7R'#aauyV彡\U%y@Q.V9SIgac_kPZ~v=b=my`;gBKu>0L`)Y `{x,7&+CCj!nnIOZ~+~WS l_keE,g.gUL8eFʙZgg UJdFTWfl0o"^V׺Cw/%VC-<-CX} Y@ʼnw]o2t@A2Se4}W "Z !&x*|Qj/D]mL"*> %W|:D[Oq{Ɵn3d7XoYY[o ~6+(O7!Qb?c"aK=q˅Mr,BLgxaY|2RD`TM–Q"tWkۀ,^a}QP41!jf{ba grP3"Y @-D$'K[nƇc"y7\׋m , A̕?U`}`ż\lWߐ>|QH(UrUIX[%EΓ؛0{2Z#mDev6,qUR,9,Q̰K!qބmR0tHC 6}$C12q$F kQ$> sHY_R;tF=X :BVgmG\5) aF^쒌707]6Dj2A~KVdosUF`} 6m߀%sv_`v/I}A2`BFXTeH?jn81}H|xa;c՜p*"G#_^mtIۑL }U ^ ;qs!K{"ޑaMv6ZDXp2eZP|q s!x-C5sFA SVqW8eItAjF88nP0} ߶^#ìZhUĸFUf` s(x+zϸ-Esg˘f#ZS .%62am ~Uv=6XnhkdYfw,5G%{\LQ{64]%`x( 82y&Ig.9Nlgmh}>(yV_6z.mcgP> k)}0뎓ߙv 6'7o0cogBʬohVVvX LH3Y2kThզSuP:@kC  Vd.^iaA*GuIJnS{:ⶎ0KTB5kV:Y\ĘU2~U>~:x0` a]f `:H̼n;B`OЊ7`ڂaE csQcDºP"*f6NRtME/zLled)/3 V]dtQfBx,>(X ,-E RqJ$J4>lj}`b Y*6]""^nx.,E]ǔi> `]&D"k|,=|# _+,d ﻭ;z/b&l2}TC6k 5OF;,h]L`d/'{(폲ë%C(Lw']4o:m!3z݂ݶP87M? ^6$)qW<¦X#9TN[w$KE6j7ǀx|4c(~X a蒁C%x,XePzsJwU>ķ(q,E膁Us^;ylVmu7e/Q! ^8*a.2jV?Z%ٵG yfb悏<:X>u,l`!5)x+x8L0S-rNGghqJFsg`}~o:xZ?nc.^6Ub?8;2>xrZ#Qr6>>8/(92 }73]vɪ"K<F#XksǏrg96B1-Ӯ.w xIQ$[85ui[ *;6ƙX2f;E1nT z*ZX44P[CiH%b1/c1(6{(6_g`V&[|>GhNw3HYk{L+YKQdw [mWrYW'k&֊7,B=:&YV6 VGGP7 ;5Y%)j< 36ֺ`!|U2̚dx<`t1]l -`"۹[Į5Ujvx%`X&B0 @w 3_[WXgXX ̞WLm|wQWfw، Jm#"StDT2"Z!L֖i녺"E$ožc׭ z0_dTqi~hnYd4!%dH[a'ˍ4tY"/H44uzUP{0;'{B롂Pa #]֛}ۉPb=qAXeEߑ*ž)?O$%*+nCGD%9|cn /=-&V|%|tDX83#1vW"}c=E| mb]=&_~X@14)rP<:bK>Y1l),FES ɢa%d8'~FաeC 6X7O6b,,l;qX׋(XK-*(d="̚nK_fcH_f1 =#L{R{M\b]apRY~z]+,E+Noh' #/FOD=蕌5[%Q k: 'VzY]B]q\aJ+dnGmM„n͉az+@6wXė4M QMwYT8r|jdQfUfu9qlu&o[~5U2$]Ť<@}%/c5puh6noYOUG+߲!a~]IfBJ O$ 1஢%^ ~"X_ʊqE2]t$~͙iRx8!"Itp,x<-;2iSUJ"XVJX7J+eڇ5l_(T%}YWPnI< ż&=% jT%~*N }Ɔ8)O^CGGsS Zmڊf[X.̖>*(3[Mm0ŠZ}^hEk ˅{Uܠ^hۈHKBJV׿lhډ/-D!R?"߀ea7MX_RT7NY[ߡ%DTBm8fhaVNXw_|6ycovI͠-@ujEs3 dqvP-mka4:#kZn6߰܅J&2K?eJIK==xdw|SaSJ˞͙7eCٛR({R CeȐ!"({" *(2 e-{$>OILs# Pڣ,> 6Oڷm@l#y}ž2ǭM4#"6 $l n:a``:|8K ^yP=5'M)݋meMEk~Vk%./82m-aa~8w,*M_΋cOH{XO1&X8X2}mmŝT2ȱ kad{WW)7>D"?Y1Qv״+Ϣ05YI(N?l ;ϟg)XQqVteTY'.gt>+@Zal6_ )OZ o,CsaE94^mƾaMpQ#+m*ȡ3,<$R%:"y/: Np% J:';Oβ,]%쉱"= vݚy!k=F|֑] E/c'0+X~gm*+S I[~ߺ/2X<:O֢#HzlgWxe5颀 . hҎw,Xͺ?w0^E|XٰvoXޛr`MIoB`5^Y ;jӦ;^aQgMAI5r,n,fY>[Y9kVW["GdeUd43rr&[Y0aU++X<+^x,κMeT]S̤UX?θΒx Yw2,{R+*dOw2amat+.m6ؗt_^G#[ ‚g8w?K0!4UCg4n?-Uoe|`|mv5sYQ`}tG銣v/2T!,rt3eeY[t'78Xgw³}ᴖj Nģi5ƱLf Dz.ma3x;*[=nϐijmPzRws6FPS]aۆ5Fk&)ajfQH_86pW?UWS,.Vs>oXekfmuMEu]rMɼ;$5}ƒUwUM(jZ/KkalWqs *{H6UE ;Ko˽'yúcP&>1 ]#/5S/ X./m0~0xcuA~ڨrxO!4;2xHҌLg oTjޑrI1x5KEvҬt$sayN᧭twql?SEsPXp>H/5lW-)vhgqĶJ4+M6 dӲfw  VL*n SEf=$ˊS{'>&KNSd]D<1f|K-{q Zg( |O+'`?(uSɪOvY}O\8Df&2:!|4xe/pZlS2RŢkΤ섿$ũ"A8C*H=#\ (*XG*jDAW,0V3.) *cR^YWj2[RǢ()N6$nj6*| )lP%ywR2OHIYEy`/IiqIuU1K< j:U$5 Y!j6H\3VGqz";5> ӦT6_yAAXank, ¢X((˧۳ aj e;XIˎY,kDSa[v44~Zb&ƿ``-eO^3m|#MeZ"{@ ,UgOЀ5[gl7; +f,G@XaUZG.A{a&`~PmEkX{>THA2w}K@Q#1$|<,ң7FU53/LzŽb,h(YN5vQLke?HAcE~vo E`"?l,E璂(boE4^E3Q̴?L|n;7b,Je+FM.= Qf f?ƢQyX'X _kM]rG&=wZ 4Xp iuoOD1=3w"Q5ݸo^,;0!{~ Lg:}g,BGj0~;[6kYZhX._+`3H$=ѪmXf#Ѳyw "|)Jo1aQ!ԙKUTͽK[O}KiT@YI;`lXN7/i=`VUYj,vA"Cƣw> Bմ?ӆf^6{Zݹ9A2MD}$,U|NҦ*[Y u].bMҮ#G~E}UjT /f0{IjI?¿3Pd }|pLNe 3qهC Q˜Ajuſ'DZj%x8x*˫0s zZr{ṘČ/ X銳jk;ΩryD<ҺׁS45:gx&-9-1<zf0T!wv/9f8lBY(;^b=,/\ZgpaY~ 68p"JafS0{h!FTf^ez9)#Qz/P#"TJ'# 1g??Ȫ,K:+D)S88\,=RAhAl_[cߊbgf0|dq^ܗɲXqY\VLנʑ$ךO{*DOӿF#b8)IUFEߗC" tcD߯ QL}9w?R  }HyR{9k*zUKɪЦb)ԆǬc,*E/RZ$RVȂ`1 ]_VܑQU>ˇʇE`U 1ՄEEՃ}/VXmX(BI--*@tkXM͋aYcu%OFORQ(iy!oGׂ5Po,GêT²|?Ԑ׎p R_v䂭װzvzM,KHlm 4S{ڽok-~uA%j`[qLƎ? ZY{kv #;yEuK uEy 4j+'I{OX1u:Řϳ[5R9 fxtME:Lz4^kKT#H~U+F{-JFЃFC<(˾03]ăb|;m,BekR-o'Cca21c/QyS7?[@?e =] =MþtAR#LG8o_k,' vbi*YXCGhEE8}j*?XX"o RȳqJAkgQ!(hX+"y k{%,V1YJagi*?8>lLWIehgbx]_?*ȯ/G`LDɓƺȑ!ΚʏCeoٰ7kA{.b~g |zMJTlfֆ0"S%hqmQ${ @5)In{a /:Ad/DWߣ|YJ1WLo}8@+e_%=o~9Fe'V::ge)nus\]qSq //r:x!;:ݪ2ozʈu23>y#q7 wvMhzP3_Rn4voM6ۏuS2\ ot_ㇰGuaEp0R͝0˽=sY j:fќ~p=D3p_2RsF^a,RcF?F'[WU셆rȾg]űC#m6-u MV Sɲ?wy?HFE%zC_bt>F/0Ps4:Jods~h*Ra}Xn `wXMbwP3X,\}$q"[<>EC9`HgY5\_ܧXw0#0Gȇ..9g ::>/ÄSVBϏqJWD}JGϗQ8U>"u.?yP_m? }&0|FF D w M5_D!Y=|]eu?o'&C1?EFY2ϋ\ i _0/XHl?ɯ=.o1ߐ'P~w_1M}txR[GAnTwAJѮb>[*2+*gHRAwo+ Q2׋aC` y/:Xt#aAQ/}ME"t<Ԙn!x:T9J=/XglvW?5X#єŗy&m'ڼ! EXJm5XH~m^㳺l.)jmea-ڰ?𚇣_Uk#7(yZ6tFզyFV:aaf}*w4bX1;ThG:X[Qֱ{փN,ɩ:Ž;ށ>oLC`eX']6K$)'lLQĕj7w$6Y Fh,L +ad{M$yXtm)g^k0Q hJXAuǝFuUBby&ۯt{ȥaa(\;|:}}?z `cb,9M7vT|'f(`i|*^["a[l gXܣQ)3'c= li8O@c5>uaPꃽFa'lRxme) 6T|ÕJl뉦-XV˴EAEKceGOȉ'n1caRѮ ``Ω>ۇohEo"czV~Kضj[I:bw*ҙݪmLɝƢU] 6+Xfog|`Ũ,}jpF532X*^rVvct5f0Z4j5X3oLw{'kd,^²*~G7gcSg){ p{n,єۇLqg8a _eKcJÜϦ1t{0zT"k6?f$ 9vޫM_^M1p|M/ox>RGf*>Z<ʖ4ގ=SpuΣY̏WE|=X,{'9BJjC1t[vV]NVm ǫ6,='CU7Eӄ7#_p;]%+bI0<hd4/y+}[ZfO>a;󃻂{ jGv96ǺNA/x]x|zW[OY{ Nh/EרNIo=xv`aBrPDsoxOĶlW9G_=ljẅMpG kdpiT9(Y^dxz |Yv+ZU)NRkce 'nsKǬ0+;hܑ,t \~w n(;*X/9<OЦ+ESjn8OJ *u^5r˰/x/iVhD=0ub=\ǃjY\(+ #|< kƏh%>NQh˳4[eͮ?gd(." !vOwM KɾV8^5hdpiR֘g NU}y\T(mkp =@d 4-qBJno襬jc!t_Զл$HL%R]Q =ɷ!QIyR_L?D~^]\vK0VX9]r +.6)爫\᡼0TDwX-"XTBw +BV6@E $5RX-Qm]N,uQIIXqCE*lt(M.UHuc%hc!C͖ğ_ ա(2\0)ʨ(zx> oͿCi7Y5ހ%22nkZØ-,EC@Q4X 5g#`+zQc~shIq=ޒFkbx 5HͬKɰv k}HEI1_ЋWzl%2=?˾ɳt'zOBT X_O"zn|cB&,e4cH[>C={B  bc1{:=[m쥱(pTX,& r: {b,fYB9KEz+;K#z Yug#cQb!zУo \5MX HmYGJcu$1]S0$^Ĝ澊2[sU ]#Y$mZ t km1M@=#a9F#Q9\Cq_K—j=k![{]r2e&]q83,n{cbu#J u=Eextw& bg 5?S/^S3N ~ЧM[\ ch0n?c9aWo{Zwyxդp˺J_Jzk'dQ(m=Q%CbP=߱ FXý)[mx *ah>Iw&}zֱ֜W~j/fx!P4<y-X7KArdYQ?9u\pnej{u5EI+9Ӻ֒P߻7rxuU?>Ѵt0~fF/ɚX` ß:zvЃ19Мmo)>1+eCIEGH< =Lqfn׼ՐnS{ji4]2}j*=z.y>.ߢ̇ײoX^e(x%`6z%NF]qאMܓ|:Iƨ{RW NPTwTa}  k*CuAmF]xA4ʉⴻOx4뚲6Vݍo%?. { B*ahyEy Eq[_c,_HEk"{Y ["<?,sv|J*Fa-EV@x܊(RJMxG5`I ?C{'m򎜄N>+i+r5M8@X4%%x<&B ,XsNYưsg-D8+އچbm؆Zm"h-=6i~&EX=,';>O&%:aLE,N0}Y8,=Y1 +eW#;%a(E{_Nvc=Py; X3+hgˏwü%ގ -l߆{*~caRK"<#~ģg9MmwBejb FWߡhϗq̤uUI!n:;l:G曵\{xX_u_a^N+}CSe/wOer{#nB}O=P8ٞ4ĺe^%G7^`i8*98+?u4rW]+Ug}Ȥ0f{+ FzحcIW>X'43k[l 0E1Kᬢ5˾gU"u{|[ [=PY}H[_sFew6ϱgܳP7 'Y7x<뮲dfpuinr bAFkì @5(ۯ vY7Qᩨl뿌2 \A S9D8]YS<uy)]($GrO )TpZ&r*Ƥ9]ֺBQƢPw^bX_O )"wκb+:N/gr?SCTsq  {|< AJw(*ܩY]׌^i&`}=+/k pͣP1+jN7o9(QaHTe8:ڊJk"nEEY_TGYw?k`yL%w؅f.\k ZnjQZ`n\[tW5Y4  ʦ[ %!uY(އP6 X&,˦`Y}PӕQ`Yu5]I=ݻUi糚hEJ*HMXCug x2V7-qUvkC_s}FiRmaU\,bd ;jWQ^W6m=XKD?7?38moljZ-<-tMs'/b.T@Z4).oy *'̳51j:Еh{#@UR&D:E[k(&<-X kc ك1>_Lf/r?$)aE(W([^CMC#qX5֣[x>dQڋv!uX,NpqH 6VXþ̃bgB;#pt*n, 3!{6,ug S mktK5} {˳FGV6;(*XjAnňXV^+{wQe¦,elޔjΪsODMпlg+4> j;zXLL~3`cU kb~%il(f?XC;`ehSNDtq 2}va=ePEu׎trF=ӯ1ˇgγ 0Ëp7fût: 9T~b4] U|< #o|< }f09UE]C4;׺!tg8=";+Jۺ2 z=jfc-ý1uK悻cce`}\l|zOu2|fzu7Bڹ2Kmfh OFp7'8oKrK^y<غ%ݫʄRU]%Уx]JT8eſpy7,j[WU44^fWUɆ?2g2=X͎a cޠ*kKr$8UN.RX\zLBjNRˮqΣd]P&/~~xF&ne~%e|g@Y4@\M.g :*'Uˊ`>+MI<[GhM/2x]AcT j*b"Y$X>S]Xh3VV~| fhxʏzY{/g|*?q:":cӚo=QS6uEc@փ9q)zK?W%Eia(징1 URDZr; Z2R< H,]kjy$j,!Q!x5tEfE 4o,5Xd_wL3y]cu9~`D()!l9q>]u\M5UN^c`-̂ՄE ȳ2x$.Htᡤ2OIe#`{۰Rѱ#_߂DPǵч~By{&ohS3Ǥo:.!zp/'e9|ZQ͟`uRLyc|?COM+OCD;R kZliwoW4֌.`SsSrl*{uRhMJJsx:)cj,J2c=^cm(HɄs5,ca%E 3~ eI!mI꣌ͨ㍤3٣a-Vn߅EE[ZY̍ϒ_ؗXvY2)gQbOz9ٯ>O{Qα?gw2%[XrYs_+G-ҿ`% "_U@bd ZװHˑC+;V; qru?Rt_ #Gk-=9(KD W-2#ϢD,3ˎfsGM cq]6v aXU dOT㑹>dc֛&`t|zbӺO}}ca'l: j==U{]t13hnlX}OX6zQuc4 3;lԆ=O7%zx^,6\ЕedTgխ,Unr-r}̴r&"CѨ`Ts9133N5u&_.˝l?:ʖg\`y,(R^u!s݂Bogm;z#1WC-u4WnI+zLaV.jsh A9.qaDzz7lgyE:W_¿q"^\9 rE%/ò8ק #͵qUٙK]rv%ƺczYwT>G3--ݍ|t)ox!>=٩)OA-DMUØ)79 u Qu(17nz|7Fz 6ƆoZ(d?m +* l+cXeY ,,k#^W PkT Xk˴p-r,V}g#I O!@gQCܯQA|oi۰HII#uObv}$e7MFƨLT4o2 <K'#,R`mYq'?ƫ>. 4 2V7v -6ѥ"b]6JZk1WEޮ X24wX۰ްtϺ~Ϟ.kĦ` a`1xX,O ߝX[# ?|v'i+&lXJio-yK&3%VlJisJ"tX6eZ6Bf=,B+Y4,%)bЦJza8Q-hl eˢ.o,X { u| gPI#њf8 ;_')a3X%%ؗcV]Olahǰx X^5Fxsda-!aX #^1M%Qcú/qJ#Bǒnvĺ'#ʑ3m}V:7(3Uʃhy M<nV.qD= `oHۘo-o4|ObspWli~}(?rٟ`}P}[΃抒~=!Yr?w}pOpc7wXI#Ak-5ݹUSmq39ԇ?**{U0x7g⾿d|SMq*;͙,o/he"wEia!c7m>k\FˆhV./V؟>xۧ迡l1vBciw\Dp_>k<r}eC]pSsdkcܗ}ĺMcMe{`SD_Љ5;Ɇù%"<_PnYܗq;-뼧1jWTe))vEF{b`lGR l#}*hme#Uǜ ,{xs*k8ֳsq-8O5/5QDSYýOQr<];giIERGR ([w(b6x5BF k-/(~X9(H~ˑrh[c(?JJ򉱦v5|V3«!M" 2N*ZAciC%τU lѶ/]1YrcE?ll TO]0}Fw1,'jgȓ8NhJwDOu5W-ju"`N Ei#㳢uQD۩U5q I,Lp*!$^lp46 X[:5zVȎLDa%lzgs5^,e#t:Y8?"жvt7rgOY?1f%?=Y57d{M^7> 5tTsv1󛆑S7-;:^>_CM~A,m2gt=0^erl=~cr0}zMG¬c,^DXk9nyMu7d(kq<(z$p~m+DǞ/Ѷ>K`(]fcgvq1k(~1B,hKkͳZ#5Kw#= {5a8ѐ~{[e\{vM J(EEDDA*"Q_P)(MH@%=svfgg7K̝E|obD>;Z4{W@]&CF s;Զ1ӹmW' V?8xoS[=[Sl-EC:dQж3٘BUKFQ9d-޹Bq?ǩ2a%ٚMͱ ־W:Uۛoغ̓2 {u{T{ m}eQRpi+ކMKxUe(.PgQ=L~U6,f8{jW?\=j܀6ڢ#i]/L- ?QK[-BAB|YXL1(>Y 8x7s^!pk_QQ96q{/?1yYHmHpa (+̱}4xz/] D~mCp?dToCǬ[ zÎ2Wi6clU6^$;cu7y13u3E;Rf9Vzxk<Ռ_RWT<_8#{XS+|ϖ-`s՚dZ0u{ROax-WN `ޛCwTR6TT hT}Cg#6TTxAIO}GE+"rsҎCXUlVpr˩g!Eߋ :nm C,>O;404\l ec0ݹ=φ('<[ VSqVVEFz zEZU<$fN['ɲ]qVKCüzj[k$.[M& ya `CXY!&ZJz#Z+mLς5T>J^dU[XX5YX1X]]Ίh.&o,j}j&Z][om,-?hױ]jXgm0G| âѠj"5ϱVcN߈]TZR +"aZj;,%MwFv  X+AQ=XdNhN5x͊Zr~`: ?+ Z=G4Ӯ-ލw@ƈ+䕅a,^a(x{WD(zˏxOXL[ǒT2>eLň,x{VA<:WEn cY㻹DVU园%DptCG %HTU>[ 5'W9hԙQb2ZrZ kQ2>8lFc?o-J,t*(v^ l#>N6K˹O[U>o1_Scx۹o-6ZXMv?(ah8V~jRY w̢}?" K,V AUt{viku4=c-9hNuГtw=*e(B(x6j~Z<09שne-[yPѢm6h|:mk5%7Y*iCѮ2J綵CT5fk;"M[ƒc2^]46Z.ϐ]ݳ\uR5(X m4XěfiJuGkq,djshhױg]<2VisƸ1)U7[ljҽ? 90Ru\BVPqNp=}eZnUC܉41B{M^CQ f7nsWu;*o 6gȵu[zdb,˪Nxj 9Z'QӨ|j-Uôɹ ~b纊b4(- 3Xqf4=іOV}L[}} \.-)oVeSjN@9ÎrvΉ| ~BΙcD0t zSPts K=L qPgegz;zќR ;'y^OͨUj Jp_ɎXw~D2bEQ-7a-cu0O/&659{,GSwuWW1ͅ]B\@y֯lD/Z`._x[$+!>oX`k3JYq*l15ethgYC^eE=gYּ1,VURWԞxnΘ*ſxXQ 3uVTT5c54.ϱh.JК Кg4{ΫeQaXRx&_EL+9ÖJk"+B]UVbzZSy/_{X_rQi&bh1ôA~wШ `Ѱ|:r%]s2aC2LU1`/;EשX[*iu suZz_ W%645ŹMMt,v3hQn򻺒%{sww4 Sk +%k諷QњQEy}zjgaZ6"֞ǧ{Ckh ּ*E[3WA\ӮejgɰͰW[4CɱnU^ %>B5hk݅W}=Gl;euZQATd[?gi^+w8\]tZzƛa漳Vj8n/tհ7 ~5%?c!fv?T5i?PkPim-;>j4Mk3mQg8U/ p|_ɳk.vyx^ˠ4~|]{ྺ\֭}("ùZNݝ7 5*\n9GW09kf\|~_5 Qtegrjt&5u z9my4EVY;Q.NX3jŪQgToAFS/W]QZۃ 6U}WbQG aK#bfc ^1sH.r3lQ,,X=\mJTɇ<*3hYV^}X~0>ј`x~xQb=19*'imcv/Ef"/Tc-_x RghT硾?Z5VHTo@DQCY[s,>–ajnCšD6%6ZKh;.f[6/hm,F1e}̇X,/n |1}Lݚ6^ o܃(Ѡ%4udZsXzMX5ӹGE"/99o:’&~j7JK/Θg>W '_ƚuf:Tc?kTUK=ZZOƘ=BQz-۞0eC{^Wў97hz C[Y Yj+vnAӋI;:[4uyDQma>РWv|TvK}=5=af5:ɽm eOQ/Sr!v;T˙n;wm0Ez;8MrZK^tK:Wu řU,pWyx,N($\'0\<ʈt[/U( &ޠ-(׎jK{X)bLG[T*،cQf&a[oEQ[CωxB,Q{bW{; A./Ǻ,%; 欇Dg˖{NbsQm3nB]c~? EPgzs_第G~]m1_UaKB7WXJ8gBKA55?xX!z)&z1؏ڻZ&t$E\뫦1]'u0>,w8G,V_ZngPU59ez$9"ڱ1D-d.9Ucd}tU;P}$Q_d\f or/Uq<:FGKUZ^6:a^vdVZ,q ΍ k">D5F4VLD/J+M=ʚt MZ{6VBe^[}0S2eTZ4VL CKF=eZ[Z3zז% YՅE"akŔ~?heYv-Kyi걵΢Z.;, 桷 e3YizDt kqϰ̧%ڲR ^x;hXIkbVacUOzjBŠ+8XM&H[.X*l`&S,,At~:oAmgEoYoH%,JQ0MTQvLK/RZ+,f;5ȱ8ٚ3^e%?]`%Jb^rhqS:m3Mzr_`-RGFDAr2^]Xbyl-y,^Gcb}&`) Z+x,7ן|3dѼ {7ز.{ScN1. \Tg^i}129^h10v+oFPC kk-]AoRk]3>)B9&zXA k1 έx݅< v@+ݷy"}aX<<"*C_~㍡Zbw9q{'dQ,E> Yԕ_t=>=dޗjް,E v(˾%PAKԕi:w!VsCmi0-Ӓm!R>皞b\xߤ[zز$ MhFJco,yѤcՋN|E﬙C`c:M v&4sgY UjAIs%<ٻI,WqgZNj33Q}#!F| NGksK7~ScsMoK (Tp5ǖГQ˦'+x͏Fӝ۴<ù\Њ`:A,wWkFе=yx]n4nOȷ9'ч;}hE'5 c[%0:\,BC^\х}u}@[WCc3ۢ:=o/n[G~_-_1y~zꜵӋzoE7vz NT3<~tZhّ/!Ul6 >l0Ueٌ'PGTuN6osfZ`pO@`=W6UՐKťrۢ3NLx?)_n7%5L>uί2B4JYhDU 7))/.7kEW^mB+ZofhZ''[Cd&m5 CG޴V&c>|j'+c~s^AG~o밖8F3ZkÐ( PFWЊ>I\,f3JmЃ\m'QKuUS2b^yjbEՓ-Nl)gM*asQ.k-~Kb<*RVOQY.MB~΅lXJ>(Z:aXq5*XahŠWxk *`4l 0"h!갸i-2hj֙ъn}̙Mqz= 0?nkkQPutZ$3hT];d-UNu+ѧ KSnV{-,V4wZ%yQup᧰-n' ̙B=콠r;>={¶;r{e ލ:,k/9Oihſg{":xU78ހ~Ŋ9,y-PYZ2=a&Jˢ,ֶ>2ǒ>^س0oj 'Ŗy?oKxZ̘~bPEY?S ?>@]^{x;/Y 2͇Z͵{po&D0ߧ*=0>U#Q~3&j7Y}u7[-SMU /UwH5xx" TaW(O_Z̰|K G}X^zJ? Ct.<ڈ]! P gG7uC{Rus5ȆX'b5Cv?l~]upNZhlrVեz2.+a{yZ%I%#,( vSJdy|*GfeX}oԋh(' e=X5S~Ё$τpdJuB-#jSVWPePwu#c t` k a>.`Z~TaJL`۬5err[{5Yk Iko [2#kE$h-Qz0?̔_?<۹řb'Σ gJ#Eis(+fÂU2Nr,-.V F|[ SS4[?wh6VJY$OgZD7Fݥ4c^uGM0}i-NDa^~cIvE4=ҋx9ʱz WϭЇ;9*~V+vo*eż3.^|i6S'(FZсYakI /ԝ"G՘=ꮋHy>V[l:Plt[ ;ٜ-(m0gJyc. ce@e2Kߋ| b,U׫iLс7Yk)̴zwsss> kie>C ]`yFa1D9,W u/RK ֳ@yz!d30Z>u+Ks%ڠYk{݀S,_gθo~hDy}Pwq']z3煡QüMStEn~Vo͞׼Hk",8ji5n8Tz3yf1[Lion QQ](!r w@vqnZOA~׹ +_V>cQ͹ ڽnLh|6x xG* :\֜r kwD 'y5"exMMt@k6\!T A#G`}&~hJXv\vMj='Q^<:a𿦎0gYy]#K$u沗/Nǚ} /dpYyA|J+TXc\Oףw R #^򞚬a}C}ʸ*~ՕyQyL/s.| DU5Űg7`Ijf VA'sXcQHh3_5IMk-^MxH HNCvՑS(: kBSMYk)R+T d\2v#TS֑v|r.h1z"+ZkcEuTM~O`YZdy֖_'sM)8=l,|9A-ЍkluT{~SrƬ4V ꘵(WJX;KWua>vKԷ":r!*贈6++x:Is,]6_ Qr`"dq;N7 gX~ωHeD%tbXZq2-]vM~j,qȻ}?Y.k1 f>nulQ7aXKn6,7"|Qy`=+Z[ B=Ir,,z&JT=Ϙʣ+Y>ʱD >{ELd-<kY2D$>a` t W}j-XgtZyc*(w!C,y›~#,Ŕtw;h7%/X`wkL玵Xk #:"Po7FGs,Naŋ))W:|$w(o|M`whdGz,AƼj4*KaېESYw0WOþ=Qo$E d37hZc)r+ W N:hD}C/,ѹ#{fD/͍jk:,D}ܘϲ8}wK^woj-xShV)hLk %qt_/7,d=ˍLrܭ|SSܿL=F֡Y,ɞ9}Mw@mcVk4_="V:g|yn-Ź6A7-sN娴"6+l>ކ>f4|̷ms4:z؍l4ܹm2 Ry۹* ,λ{ysϵC|\gx%u]?D-O2xu;tyOE{ 1U炜HETg,{;sO=7_Wte|^**Ho`x܃%hŎ_D_7,c зUM,k%U9+H6Rhh I*hJPh0\cKLR7YW4'd qfXi/| 4*58mEj<6WxUu<&߂U]úd5(7W@\ & PPq1/d2Gϳ'oaMdA {l1,0qM96vvܚ2VZSZ.k"l.>cz֐QAǚ!\Ȫz6+ZR1t9X$hF2:kͧYke-N'PVY{#ʈR~Fb]:s,VBQ;TUVGG4&bYq"V*dAS0c9t[^8X Gaf}mL+n,]0V3|QV~oI_翆:KxeA,AFǕEEӶ֙&S _~kYqW@ťxPgsPE'Qub67Z?:Μrtl~dzbD~tSi=/KE!z創gPg0ɟE!J}W|:q Oj}R芸4[ueEWO峖L]IY^ sVa˭ãOgy K9, CQDfZ+d9EǙ3G)n<˥kLե0F[`j;oXU{/˺x#T5:<q)8:n@=M=>}j<]jpbѲ30Gҭ㞱1ZmY؇.^Z2 yK/@_{Z|!K-Om-s,DM Y , }oTqč:1M2ͼ0ˬ{BVUnka;noR; g,A}FB0aqz![fCXu3/:hk*@ܽ{ˬݐs,VQmՙiX"Z-Q*^E5ێ#kI*7O]MZ^r39ݓc)zIu,Lizc^iX*]AǭPǽףհ/Ǜ#۔vxsxlUj[.rEY񂜎fl=H6ŰsUD5;n"뛖}vy#8ɔ,g~x>h99w;_ zY/פ #[s.=|nGi/^GDp0 f.n3SD*`ys^!m0xT-hKA cU*pCUOP=:%6LCy'EhTE4O~UqS]-w_~Lǎ90Opi 3ٜޕd # V3$Q~jkE=x> |#ĕ+֠vbjc e+ُyʚ~BmH}g[UIXc؍fM<ÔuW{A#?3GoEӧ|'yh-{#X!{/(EsX6l^ܗlq*:cI؂uk,6ajvh֒)ڹ,"|&p~Bcg)'|&)ZTWz ʼnogR`)^o ;pmWvíh4Y] l}`xu wԘN/ЗD>wpL+o-J!snWƜL1j,zK>ƿ0> V{ Q]ELKg7t}3\ H#%YvxdK̇9lkgZc欌Z7f-ݜkTsUZjȺ|3J#sUǠ&'&z*KSJ-4 ~[m%XU;cG?˹-U ;X[ 2 %.c[.,ZB{<`3rmk9KlVj9LC=20po=E*.{Կ6>!>ij͹,Q_*C,0-PP%1D:Ŀ? <|Iu#FPeYU,f"} Uj~LsN=q:+63XZ^Ć`9w}xYI)@@rkQog(٪3Je =W 1i@>FqN(6*d>UK,0]%*w+Fݖoɏh8XAn54\UIhwh&bjI/j+bBՒp{mu Fw5`J[梐%'r3r‘m&6pQtǰD?iXckBߊt3y05Ռڈ~5EB.wnj&jAe-Xy1D05VնlМa(⨵ě-b,#gYL+(=ۘ脥\Q5+ĢKF9+shKi36fQk"]1(0 ,dEc]ԚRMNk˼?܊o].,V. Zj=J̈́QTvVR X>F 7tJ,~RPS3+.^j+ Di-f/Ѽ{o-V-1FxE 5(Sa/,tїk6򆦍Gwme #bTLwa7`ZKadLKMQP?e9~DYxqSa$ σǛR8hQX|Gž"PSIgX.4eUZJRnY.~wOS{F`KwD4w9Oh8^|ufMv)ƼXX|Ȇv(`]쑾a .k{*TwvX,)/69CżM 홰-O-M\U;wE.Q|6ޗg-l=W(-禌^`uv %UZzd4 -qOY;ܳaT"BTDzγ [4jl¿3}q.ˌz(;dUQ[}$1ufPTA ?)T$ FZˠ15ʹl#*,,TRF!ʉVhxkKX{u–$ :RP(ߨ\xGTYZLTMkB`)$WJr:"Z~Z%' H5:G{^݃b+'+:/XF=In|"3%NJĉ:ʱu٬: JiCԒ\Juc[?`a*Nb4VOJ=*ʚ4e ]PRa^J{e xňeEވ灍=ro6+4E̔P]5Cݚ!KWMtjooYk&"uuQUgD slP}S"kn髀(DJA+"***E-Hw }O̝I2Ν_CI?9*;R{ }F~^VXy]7|(FW-] %uζsGj5 >ĝt* 55;3K,?8uZ,<:r(b<;Us)QRKyybp\=?`^TSVը&WV-cs:^sj(2t?g`>p3u7\Lz8̉e]KQ34̓MZKC5E}M1X}T)Q_e51w@MLh-97to'wXgwlD_tD_R/OP;RB ´[X ZV ýiNu[Nꐟug)#?g;~٠}z>Սk%"PwMN./ݦa|A%~ [;q<} >i*]ndWh-;CM[/Yn՗3U@lqR=I~7]Ɇ"H&CE6Bb:̭3T⋢:/,_TD; T[8n<vnQ&n scۮT+LȔ!b=: #ur~]D/UcP.G3P:]t(SiDLsu>lA&"q2Q 7RTyiJ*7ePiE>*_Z^.*1Mo`M}󳓚%ZsOtT(3G̳mC%y%"mp,h"{O|h/*nJq qWTjjS\5B KSʟ0}K Q^A%5V@yT<vyUNrs89\2iɒЕ^=?އ8&oP?GQ%M} j5*+i6=to Ʃ^󡛠&!| ꙰Ĕhڟn` /نq6A@nB%uuBՁ~ZV.R4k{nE}]nz ~/V@-@,D%-B ha,Sr&--4#<*,S㻨$P# 7&EE¬:eA^-sdj*TRMm0-(JXXn4ZM';5o*3+GHxR_IR@fgAJVnru2mEy%4]ߚv-e?2%V}+iwLvYv_vAԉ/w}QQ'=?hic;u]h~vQ+j="\3B]ͧ+@3} l/X*:)nj4[z֌1G?Q1k{p}'}yyfϮuQ>ᛩm'*)_%}j]S\fȵVs\/g}yvpTDSpG碍&a^'bJޫs354td̅ $1֝-I=TEEWn|,6'*<̽R|BMwh:'^i\?B\(3+\&\46T9/ -g|o{Be2.܌ zL"T7M4ʛ艎^x1 /uJȨ/sPA"zrj E+r9^A-W^vrz0Jq#PQrl 94mSLyD^cEs:Πb\ ^j*(Stm "^y@ڡVC 'Sz@lS|͌oD J;h:t ơ#2*-&V&ʗ^R` 4kED'12_fi|(\=23(W)'*TPT"|cm;"NMg&?5T+F%|֝/ʔaj]$\TP|X* T8*HBI)TPjPR6ʽ'N}%:'iKLyJs-vȕ#dxe@(b%s3'^{|^,8 ]  icW@U4Ō+kq>U&*+Vf^`z)TS+heQ'rΛhOۚc.jdow`v0t92-"j) [GPmuK3Q& O>GU.3mH70\;,ȉG}&GӓIL#F&ݵ #*hw;|~ׄ^**X6%AIu5@/HTr~t#_/yhh0jKu5ZhTcP/&f :Kd0thr^ ח$Qɳzw_i O=%Wlu>e 5jPzګ+D4np@;}4>2IiWS}܏&ɢm)702_\dNx&G4/Pczzi oGz_/ I2թDqK*Bq\V^$k&(SíN*erdkʅ8I jswMA8Y&atn핚ޠ֨ğDdںwSQ2P>LNW hC%káNhw UO(Nֶmʓg S;-,HZ|9?Z.yCX|NNfˆ^C6UQGXkL<|~PIdi9֊:di5uCfX[bkIMs:LT6kKhYZB*$BFz@C5 (# +q/-Xkh( ݌C-/)^(SƽqZ,kՁU>BvjOI(Rdljl m-T]6bDPW~`^Vu,Ao0^7|YW~vJb~Jd_BM2]N fa}Kz2r0Gs̃:@4Y\cJ~4H~7gP#vwXev7}*1 u#+_vNC QթDX@gzMXw*b5-GMN],IY m ..GB^b5VH lEm?dtՄsMWV+iEXޏ1̡OYK*甌ˬwg}(S2Q9?q1X Ue!M@YVBz5w V M[*ͱP u}NJOJīJ~?UtJ+CC|j3J |f|wbEk."\<WR_ǡ޾kԕ/Ix3,w"wE7l LbZUnңOD+UyVf0wŋYNJM"*z(K1.{Z)ӠyPM,?zk:Gܧ+W"K2@Tu7JA򛦋rr58Mx>,_^:-){D}gThob)P<iVR;iü=1YY)ΚigDό:zKҰSDѺ)û@{@nNvd7o9@u.FU]lFcE+b6ޝܜz*SL݌g#+c9 s"G;A ¼s6APM=^29WDl&/H4s~͗U褾0qus6jb7U >*6+;w Yx>7o5nQcS99ss?ǯh. TQ}9nTQ¦,?<s-TZvUY9@1-P%2OA;șS}zNҎ'0-=BdwoH527][bOHGqEKH2 2j[n`0*ͩ !G-XG>Y2*ּP**μF(Ct;1'6O+lvOʷ .Q|}Z@E"} v"QNFU`;DB2AF`OP+P/5P%:Օ_=Q^¶!>L_6-V}UŶ" EAoAq%XUh=4PLc v *4/#*8}baV3V*^ghR rSt2$~G}#fM8-ˢ+h"Cl847 @I 7hC@ed𶑢JRQ];.VBNYhN9 bɪ?%{<"M^PxWc%tlw{Pџ{dPtȯ c/ $T)Q6,fPiJ_c"Vح~F$J"QvŶ}ly,Sߛ_Y&'κپ҅#^[a#>v[%#'6u%tc8'Ydo=s+:"ekvif:`.-멧,O&qϵqNSDgdG2!$N^cA$3<3v{ģ4<4^J_y7v`UډP {%e)Ʊ@Nhq@P'9ھO!;esvV!sU3̺{Y9܆ҾCVQq&B=:if~^u d )]E`]J0>Vqb.SzS\`B{z:v㙵tꡧOކCk:.}% InaآOa;H[GUNh\Ge:a MqJ2΁}p4NlBRdA>$b%cb!~ϰUc;/FC%V&0-RyY!E뿢WlP<=):yqVǮP ]g}׽89$eoBpKڋ3+Qamm[@)g!Z4/tSUѾkSmIu5=ŮB +9s5Nj* [@Ld]OCqeD>.t-;+.abzUqd݌̴hdXa;HVbǸVE|V(wIu<ҽfQE=kƧB2|c%׭bA~[A3xݛ e.*/$l}%ycԘO4[a5v.^58Ye+4Z*.1{DY9X-҉nsHvVW_wé,%·i&7)p-ŻW|x_}{#u}3#>]Z<_PR[}7X{;<|ܦ7Ǿӡn+NA#w+v^sj.VJW,rY}+/`9Wݡn9#5v`>i߭POGf6wuerO9d}$DEY,m |}ϣH֓ÝP~h4i%Ni6+#X= 'FP>)G,A%UYE}ک*+:ԋ^Bz1%߲3, ʷh, (-ܑL*̩R7eI =k+ F\tw1ʁA~8즁>'tz;B'#@"SU|ekMTK'$l V/=1igʑ=5|gP`Ϻ< eX6SmGNg'|'D+8zyL;LV.1!;-?"J.BU˨<$U).k`+Ȑe.eBi8O(U*UYL'|WLʟ]Bʊ/UďYN)^ 4>"f⨕ T1Fiew<;>ڬ5,Yk)У><3z϶N?Z:ٟx}vʶ?c ((ӓl ;[ oST]|azb^r ²[ hzYC1$8e@.)ޚ!E# &Xk4֠=$zZz~gRowiO:.ȧA9i=yoygrPsl|%m> z WG=*6M!>KsyWU~,+PL,r})eO>\뉹PL&Q= "Z?C5,.8}5{!A̹f!h6GNt8;Vg*m`v(uMQiRCL@+]0'Mž WcdZm|Hƽ< {ˉrUJPj+*jSz &m ޢǝTjMcl3Ͱ kq͝>i#MdMKP6LG9%Lt{ľG n]u[|\롫97nz|75Ň[y$t)UA iS"TWD涭lym{QAtA^%$g:+|7 ŏ?# b6y1e4O(37y!Er.$W"H42C6Ӻ+~q^IT9P͝pJ_&HN9[ ~D/7 T |E{%*bT}{h'fTێwf> >SDG=}[!̕ c9/hQT2z@6 Ⱗ@+ V+_+x"hS}%y+^Uv՗Qh qJ3%kS)ߨAǭR̈ʡf:mο6Vʠz5Ż\zTBb%c4wLmꁪWUM $TfX P"_] N[bê8muW↜Ȫet{?);77OB9{V+#+[9eȓxlfÆPc6b0P˟fPB`7r0TR3l$o*Ay8#.[.xڈ; șzNY#(wN +Y?*(K!f@ {cP,_]x]VA_FS}Th(J9e(C=N26 `E+1I,Q|^hYj@w༽X; h>njP?`βeɆ6f{ؽC0ϙ7Yٮ^9|%ky y=gJYgˤ#YG g8__EEF`}( {ި9sgAWQnfR%Z{'Y俳ډwT]dqxq8ت[7-z)7.SU:^G\~&Zngw2P+ +KMEBJXLP˸J+&Ix<\ӛA^z3^v@z-CRx8-SXfQ&SDĢ\Rl'[&%NC2-ełP4KtjBp^K3C)W8Ft**]XJ;%wX] mv [I$r_rJɲᔥ˭L9` erhX3[Q,9?{Yui?d}*甯ďT+\w,D!*-B/AI! J f-<3yQ T{u3Bh2v 41M(V)8uz? 6z>+t9@;pt|'`?:t5;zSu%~vL-xjkͷj+NfۿV9e$z~of0\BDѷr|WDO#/(4|u[5;_.O ʂ(t)N\~/s?GS #1wX{/'#=oVhv|8 !QyB~s\O&htCgWP2q?׵&=i*{L<=anހyZ*? .TO.f{wu]<ɽn`SMMztՓsb룲bЫrrZna~~Pԛ,K:MVDK5Y >DoMMnss: S؏WX4( ̢O)lUsjN`9ź;%C_zkgMC(Qջ(J *r]%Ȗ V\9>$dk{G,^9=P)<՜6^hZnڎU6x`&:5%^qCG$%P9l/yGVlB_RŒ j*BYŊ]:VuG_x<]nF4\ ҕTo+ZEɧSLپqՄRY`vLY-&BRKy9V33'*j.NP^xjj:&hT%(Or?oU'VTUVsځSqʺeP\NX´U) ||orSho9Em+-qQhG!BNPMq-o'gam{4 ]KWL>];&m$]_Q5%CNr*mZ(-1b:JwlDS R-m`lNUX t9 8Ye*Mʶ׊p]c/;-2 B튕%|kF-gy.Nݶ+:\h't)] LYe1%~*FR1 }uDݨm䟆ẈNۇ8@_,_嵀ұ tM(U:$nƽH~P,G.8+]_34qx]t砢P(ѣP"I`{J3f i>7o~[Pq]tP^$nM5n$9_hEY|BA躗fSk>Z#pI7WvwQeݵw_i;Du | j5 ֮+~4UwϨ>o(ClyYCxRd&|4% z5Sa%csR WCNP&ċ"7u˺}L{ =;;}z.ȿBjI@5-X(Oq|e^F)|eD̯*9 P.Ndj.7QPukb5AXrkCt#DuSEY%`jBCd;U φ84Pס8D6֚-UU`<4aeDch*%dMz MGCʥZP~?~ʙsV*ALJO6B/FQBר3D(NL Հ2h-Zī fREcQMP푵h,n9ϖO+>GbymGb9+lbaFYoB@a>d˫OS}^_2^qH{Bu}on:eQu; q8W;ϻN G $NvޫPհR[V^<ϩh߇*m-q+n?''vl}|uG(vSSu]5ژUVL/kt#+;b6J}ڟ'V˰gb`kSN/ԐdCʉ@]fCpmX ]@Oi+غBmx" w5٠.jC(^{-Pޢ}ĬG? ikv~3^,oڏ󺣮7m=Z#*P̓Lr}>˼4wQ*PO+oPMNyf?IP8vH}cqrz9xK'0Ű>;vӔTU8zIDjEcu/g]Ѭq]]Cʟ1??rbqu#B#շX/FQA! id[TlSUm:.S~(iYIe_4PN:NgQc,::Iq"-B We)YS>L5 }&kvxf H̖ V2tiB=M*~T7 *eb + :O3VW4Z'z<Uڋ[ ~Z(^mqO ݺHړS)Aa],y)JSr?4H}g<$V-Tuƪ7GXN+-< l݅NNSY]:,υ$ְtX=1o$VUlYV*uC9EIT)稅wˬBB8 QM 3rHEr qhEVg] e+ɏF%y s%:ZSl6:Zw071\9+׌}L OBLj*ZPI]b1rUjk},N^]X/zٛjb1*Z_{}4ͱF4bqJox-G*cj̱hk;TLm4,^g=PWdK-88MM:ʩtKSpY0[Σ%Uc:q%ReMM9䣶P"S IM* I6E[Z\5Y*nh06|| aR [0ܴ7ݡbeB4VRo0͠A[%_)6Z J9Aݬ 94A73ޟEBO9mpAʚmĩoU:NUx+h>.WNscPJ{6c(Y]Qu'[,эA޶QSsh '>Է-% Dw]Efn.AB |Ȳ( M(N2WʂΉFVJ\h >[ <^4wݤݢkAWM_/PQ/lB,^(@W\3y!Nou|1?+myq|0<ΦP&6^{Եi(Z6\ĵ<][]Q`Y\{Fy%l]]Dr.Ds_OQ1M|8^)2Ϝ{}͖Pb$c"#yN';Mr|bda'|L/,BA(u0XuV9*tr=_/ᕳ5yH7c?Yb{=CŇ-e3+T4faRʗ+/_&Cݵ<#Jy=' x+orzh.k{U"=OZrg5>-l+ETc|<1cmh5 ڶ4T}w֭Ɨy3䁐ɪ`.N-h FG:-~gT+qG(D5 !G^x˧<:n]#!9PtTYb FDzݶ(<VeZ)!m?uכ{}h>n#J] ]])tҥ^am( H++$$z.oP>#(NvRV_u} vג@[X`PMK(C&ڲ>~gмLcXt-Cy8!85*V6B*+ǣy\N|%%NTW}:[\'Ľfb=<#'J.I }4vHt4 *WZ/~AF5h#¨l0DjN[s8GrHVqfEVQP n&xax=l7<&x)~ƛ~ rʑ|+NX ʇsL?bʦ-`w&] 0O r(Zt}7H~6+ ?mE1? gx/~wӋѢVYh[)̷ѭx~N1ٙ5ct4N`m1S13Vj:EMU]vIO/i@]:x}e4YCQ~hfXɔ,gC0l/CSpĞQZ\Q {?[Ȗ-ޗcQؠ}3]>N&I^D^G#Ή2!7S- ;]so5mZәJPseEN:~.#:SH`Z e#wzٿU_~'+Qe4CwrePY;NV:j/ꔎtP+m%n Pf(FkjVB3Q6aBhpDRuUuz)>P^9.ʞ*"]cCy.NEmh+DGZʧ4\sBr(Zѫx-Lm/~ӃmUk4Y|Wkt`'^f,:l.B y]FCe eyVB[(O8OAQ8A3Uq-q*a.T! X)1uŹ [z*{y 6K\jda募i,JzYǟVG6B)E жZV-[&+4)_P;C(wPx{׽]뾴Ivڪv.Z$"˛SݐuW%UCꩿm}M#i;ߙJXvDu%9?ݎS'E":US,Br X-%I~VrJQgNX}={3>@)]4%;A^OPoO%>T)2'dR3q+dQ^W8dRzD[MѯxuChxHm(ʡJ;V mP#(&M6P# ٟ^ɏ@eL*-TꈳesF̣uT4QAT wv2RJ7Ncd=> 筨:eeHױB/+#n9ƻWW޽6A0b{Oc һgޓ=*GxhX&&tԊ: s7;]Gj5U#*딥 u>%EL^ 퀦bCbVOuNQJwLq9ev'tuU RTO0uTGR ^gDg>8=f; C)4Q*idn9DR AgI~; %D9Lޢ朕7ͻK+(śs,T#Nyhk\ A)u=8 oWA/!\LTg4Ȼnu BױSo}EgIm])ur$R>h AYxt5B2wd)R(E{-)ދqJ֍ͨK~<އ[ ܳ],q]' :Q3{NbLORHuQX#pR/_ǼCIqH(=" d>fޥx,\Ii%CDtd/9};Τ8%FaJ\d2 kf|Y 6C/v:˿.,V+=e D4´Se3Ӕ19]uԝ,źjȯr=8CT $cG5;|nkuAM#nl9)X)s\騏oesSG<)H%~(J%Ļzy,(FCw㲌DWjaHh:2uKg;Wt2'V\wY~RB[T^GNbGτq7F*GhSðx NUCO4P < :J.n]X PB?(B'd_8%>+3ROLJS5q-In%kTحV''yD]36s>TJU5icwk8 4s]w63WBquPy$ŏJ%yf./3kUʴh"&+|{MR5k-QN]X4>^lä{ a"Z|ށ>$6#]+nj@'8%.Vo 6OJAn(D"?Q(ʠ媸#Jriλ%yf rSC%iW`_',Vv\ ۯOdD']%f.NmJZHV] ]XNckP ?A/PS(b؃8@OWO6,&rCb_ v nHǼ)H$k :ģ;( 8 wJћx7^8On%WLy aj󐨛\d?6ַrTƺ'w`;F}3V5ka6>u'܏]{ߚ,GS):wͽNHt5{s%OJsrt g~iGF3||kq$0:ԇjq/9-qˇH]@i23o#h"fS]td*sU I=*Ot)T@}JQ4HEVv0:ʯ]M`hIact4^h ؍ ~Ád@Di;Jp-Y:O_9NaU'://:nD)_Noi f8CSUB{q:Ū*%UBXUr!oKUfN=q-$աXt h+?{R&BD<~ HKY+X3h%nzC+cH> ^ysAmpm ]>u&>ZMZD~EsuTމp䔆n;K8]Ao5W.7Etͽ~zyJ JTiЂ\qsϲMQ׃=;`L `ݽDsmg0HHg%Mr{.j^C:2~o݉uMmS[7:S]ź#&GS&ϻuOL+|C5!NQ=MՃBe*^KsamXP}@N\%y}95A׼Ԁp%rEUD$(YՅft~LMEY)(JBnj2ZӐN^CLFy[B >RAvsI"BS۴Ar"=fw^,[r{a($AFSHWONGW@DFq~GTRy*?G+}vUviU%SS>Fv6#KLkU+RbNN1T.&wG]õ"kIaDh$3C&-j϶ӥ|F4eF`^Do.+ӑ)4rz#,z R> =JfB?̷9^||ܭWRf N)ҟzR`:ep+c;@DM.__H+_)}6t263xKUNIrlۏ'򩦚~ ASF %LKD]V58$,]䵷 pJ Fu)ʀD]ߊx  k-XQMxx|Z:JaB>ޭHíG-U?o(53J dx@Zeιugs)Of]xMgNG5FW:N#MLmF˜GQNi> ăAU؛"N ЕJGx4K8ԡl/pJ gqq=kEWħ:$ i~q*!viLh%$omR?(ieqv$'VERpc{4K'1pD1ER%D '*x&k +P 4!E۳HВR߁FXb4(5;)9ͥV |sSl$U^y4wӫqT!!MejC{o*Qn PW?J]ZAu6y=&<.Bfre}%hDz_'|Tsz>M*i>=Wq1zlS7DH-(d]r}˘w2 yS;,$򈲸N%F&^[ӏNPܥU8/Y6g[{5.(Wu C Zr6Ô t.YM+O`:'P:&cBiQ1%X%rV%uh(' v⭮ZmV;O50֮(U՛Ney tTc]9*C1V;Gw95e]K[7Tc1K |UAU&7h4A7gTe{'Hw}LYoEtTCʮg%|tQtj3-5z*&1aBq/]fj(?Fq6e=xS 4)h37ӫm(*/Gʾ9⩢S ghfJ5?OFvfޣnq)w8c~78fT? /`:mxk:cF訲[SYps5_fXßR2ڋLLX$fȺ1zXo;H^Lw'F4ntoc-X߁}7Mqa*EޔaJmp y2?nچk M[a_1'D[;t5]#=u/ KҳۼQ5:\2%ca:FPi>ե4P C%hje͡9 M0ZyHϩ|//*S)K^Uʣ g <#=!ZNq!҈:ܵ Mjȡg&L|ꆼ _n ғҼTG;Q( cdZdǩo}"mFzڟxiu0DLIUJ$eP-Y!ӠJHd̟IsȦ$ ARUa@z$WkĵBrU8B'Y@5sʲ{,d]5zkIMZEU-K6!91HL:0SuT]\|j3j>^.Շf-o1eϡzWGBt뿰Mw7Xek>PxU6u"rѮ[͓hh}܋lnmDIby'n(g/1~MEȱR>7:M$z9GͥT|eFB27e6TL{ByISNR1s\+OV+BTf*_ C#sC#rV/3j+i& r&He0:b\ujfE_ 4i\)G_F9-ǡGj~ yNyjUlRfLETL榄HEekT懤uX0+ fTnqTA 琊 _`Y4JEKUSZ%,NlT)yɼ[\(zYuΥbNQ%yݠ_BY~QW|/:uZMnS0}g#ꅠ$[Zh$\+i!Ra[fCR`L4TIJߎd~=th?/WT{KBumxSwHר45 +%{^s5 >T4 ֖LhTyRq߻D&Q:Anb0xVP"Mf37yezU]?T_ڙ yZhbFRE& 8KP]`=Nt >I6ŞGHG7I/f$`C[+tRo85D݁v-~TG) }ٜ{U8:_Nz!nRIԉd5M]T՜ޢM 'zȹl9)[d@/>jŞA^sBc% Jp-럤@n5yXeC Cfq-r}9_秐fGc|u yLr.ܒ˨.R,q8kqڨ?"B&UD>hNAӜS~ĩZnZȲ,ˏ;MCaEr]% ~d`Ttg&T_x3QN{4rwtpʀJBhv\5%ast׬n9ep r9 ,KQLܺ[O4 H/ LFzzYuK`k]TP]*ӴÝi'pmOBy μ}R} ݝښ$ \Wl:ՍdH:P>L̲{@ MDz*z<"C-\BM-HM\hEzp՗+̦+JUhNe穧d3ᙍ|7+:ey/2IG^sf 9*/ B^NQN&CPJ2IHN 0נt},נS 20?"S庴ҭxʤoBuGzAxdH,£~ 1Kϰ]HӴȤQ'tDaQ5+쟬3L̓jU>G0]i$RU$_RWˑe?C#tS!t @Ib42)R7> aJ]QezP%_B2{]-W#;,"ϐBE+')ݠUNL*^!= 4}|hJ_U s(MLO]Odӓ_{ 5_V\U Az@gZ xdocܥ${S9vUʋBl|8(e_t48Z\K@<HdR{FO:38J "+l{ ~f3Ҩ=r(ΔE`M0zAbRXGaz\ N(2]X7IENy4R*i N`5h3HYʨfH VکPm`?,ܲ+akTEܘk frcsc28o-4C3xRvrHՆf0] (8i^!@˪\s*i]_RŸe>MuJyX 6K @t~SY"]Y6{]k)PAd*)pBõ@鉼SJ*U!p-R_@12yg] 8"5y64{(H \i4G4\20:"Ǟ[;?AU@]q{b6WQihSF2f_vNIW飪 sfsKt2Jt2c3+Tt )ƿ MֿZw*ҿR;Xy|wʂY_N\|ƼYg8Nryy4(*8̆Bl:e{^pV9퓇ª3jo *I 䰴5imS+ݩ4C@Y ꩲYU4ur9*Z?UG=cZ3^6qH'[C&YLeYkl)f=:f-nS]U$Y1IfݹT)Ȉ!Sj$ů[&R@Zv>@Dwm4F8J(&CbwN$7#%=1'tPcnbBSL!Ǒ2 ZBșTR4r93Z"A7n"=VKMMjĮ>VkjH0Rg镁j`"[ɪvS0U _zoJCE6BՐ,Yr?@Srw1MQ1P!uyzdv R ~3ч:Ψ5xU_~!Y;eT;ݰ{9 %bzڊksӤ2l񳪚ii:M KMuJCO# zNJ3pyR58Ƶ">4PH`]N.a>F_׽jn`/2"_ֆ2wʁ.)۳g_ ʃ|<,Jq$C9TT*PI̮4O^ȒLu'N#խ̴v Yb%S2jB6gnGi\!77%)ͪc(\7UZ"J6Y-?T h;'-L7>.iz "b5H6C=r9ތq礏hCi,77$oXNUdHj$_0 92\Urjmrjd>4gchnQ7)b>j-oM ~$xBjAߪP¹KyID$9$TJwN!dtt˕@PmyT&(ri1*LhUx;! V^ {c8%a:GI+U*_"IZP[5]"IZ6UʕGG9|]OQNٿ9 ] %+XȎIF[ByNA\@4]i}4QEiHafsc\9r..-1U!WU3uܵ<(Z2MThL+s?`N"I( pLqJ^+dGD< U"dtXBdFYeEOѳ6׊b *9|N3#N-#J#Z{9O=([\@oVQFLre,_2 ITJf[tY⒤?Tt 5\RWxd 9N尨ipU ZA*@N$äNF2tRwRxjgTUY;"ݞ&Ѽ خH4mzjbh>'?a|uS}q0tu###0]s'mUPEM3ˎħ-S mC:3SXs { 6ss\ۉ|VP fIzTm>8@'z-Qsl9&}U-ȇF bVP[<('2K~Dw2k=%G%LRkʜZKR3DD(@*oj~N$=nTE>i*[B\Us4N; SUtC_BهMqLAS9M^.-N/ҹZoT:fC9V%v\;?A\F4>cT$0MRsG 6$T⏝rDӠ8 +7jy锧7&J J~*UUR^r&\ h?H9YφR_&叨;XMGPLyQ߁ϢNNN;L`kddVNyOPߏkNN pL_ >ĥ<$Icpc>4 \*P CRmgՕv n 1A0/tqZ+'Jh/S#WL}mt <]|W~?'9. U ݇!t~W-bU j u+#ih'z}o+Ze Gh %iMs莰tKY3|v.jy&"jBOĵ\h\P):wE&{f{W}O*/y!kp@àN8[!f(Aɮ !sGJ+S>dr%Nx/<މz,4)z)O W hTSVxYx,U5{Pِ"Yʧ:ﰼ*Ce :e7D4.6kf?4[_)sm;@t^#L8rӸJYL_Dsr .ա|j{-%U Ē\kt [y <8ZOGUʛ+;dyɺυ!UAP˹~n j*TNp?~ ̍Oǜ%~M{ QELa@qMB-P͇Ah(mq߱ZfZ#rr7OнP˙n=v#v:v8* ijUuz4JqV54rC(r6qj%Qmi1͇[,h^],PWT^}Z5 rTjYfRˠNM2U#( B "+5WY*N6Acaj>CA]hxW!4\]`3L%Y0=I 2L]Yzu"VL;`#8j{ ٬d7$ETj@3 )KQY5i鶒efqwaɅf"c5^(4WܚXE#P!VdbKU4 ٌ? No N46=BL̮1,2=Pk3Uu]i e0ʁIsSթz8fN@3Jvwo )g-;ZՔ@}X)r6Vڷy92U$Lٜ,fǖW*wZaU1&n*Q1v] u!lV=L0 wTyl" h'V~Mh_ZphRKTd@(UBHFex* yQs3G@"]63 gRל ̈́+Tל[!Sb3ݎhn;ͧVi#5^+)Rs*orWn_{r*ג*"<Uy\,q/VtVzX^哘NM|'mx[V~PÐ7q|i&&NNc';4+kEØtZsddrD?P=Zw;_CMdeS-jn"ETFP=wKC:KOՃZfï - 9fUPfwdujTD[d!\*δNZO.@ dM5b/~>.)5/mVK/W3ܵj!4$y|:jf^ZF6O\;_2Zmuye(Uj-;fBu;{M N $2o<vmf.4T%<K;ToyV`rۦ TZ:ss .ڝxi:`ZZ&eܣqa? {9+omdf+=GTCC/Q5p2䎛ꢯn z]NsUPӌ }2ʭ/h iW>c5Sץ$ZP4aߢ;W]ayבd1mGy6˧p'B[ uVU+/8LVi:kW’5|4v{>?L*N#*aDD5'IRP3;vcG˭—R7Oc۾xɔQWus&d=5z)jofutDt6N;Lv'SҰ'c,obwϦ{U[|.~Or V4J~oz{aOb_Q cRGd36tzWw:͡u4 8~qd?k'+ZU,NKE5qZ)GE) =.GTQ(U=0e aircL4X ̛2iW7_Gf/ۂ% Kڪy5n#3?x2t;_-~_Lob޴wa?pMyG2 }ko}@wU5e7 EW؃;]w'~i.CGCo8UUYj3_-QdL!rɩ  ;<gǻM S:yyq⻡>oy[N-b񴁦I_)tR݉ _ٽrk5tZdwNh7 #؏JtfhT*_Ge^{UڃZ9dt/]$G}SHi|]zA -+t v*(n⽘U|o>}#W`o8s1_.!-w#/b/NNcaMtmMӧPje`nS͠|c_]*7fJ>-8uQ"UL2R 'u73u^|D^NBuP>^K(z["#c=Jp>^/ hJڋ}jtaOWc㥐ۋAyߎgjN@v}\IqMC[<5QNO;5?>x݋y *O"ˬ8Q̟лN1 s5=?kHz?{ +=OV)ӝf9ΫP/ r2I&xAMُǭe[W'ZL1iuwrYv7ud+XgqG v5DZש<֎2QNH^m{_y77檃S:6飚B=@w;@VZ>q\ ;w5T ;8܎ow2^/!:ɻTG!lnJ}wI>V 9z :&9a~wOvz[~rS+'ɡ.j%d^3Τ&qX?:TeZۊ:{ EŮ~"t-B_Y9 SDBA@t;wD@BA)_@xIb lI, ^j&tCuPu4/x*S#?3y'k&zRQ'ȥb_Z'5>NiP r u H*zc r㱆7,Vyځ3Tr)v{t,E]׫|j>6w郝Gr$נ5d U y|ܗBo8bW"+rJ?nTs&TAQUgڣh,eRy-'2T6UzC Mc>qjISefr/5?,U5P* w q'85vʫ2V^,,2)zTu>|K nВIv'MvF55s)*,ũIzixP;&kc$7dR'7#IO Jgo"T}J7C?Z/j<h<3hMa U + |9=QsVqVXz tDiBBFTy--]Q.nQ%h%dq!v^2[/A o#dd9apK)PG>hhz aRLAtw-rcfгԢy*K4.hu9ETgrV:bgΐAͺ UV P?jtxέnO{{0bYozR 3V;*^*I6i8i Qp_q;b} t[Qt`U2~u92bh1|KTwP V"WF"[> 1_DFb]q6t-mi*A&`o#~R In"Ѓ6?[躟H[jq̿6#. N-$g: (HtjDF޹Hz/6ς,A N׎E/ qº[/\`?*,*0w+"DJ-D @_ٞIe<=}A`U\ :r}z (C~d=GY*V40FjyR3\8Ө-j@;d kT=FEdKit-%?XJ~CMN }λjᕈtDȽ ޥFQ2]C!rT9KQ!iub,^O2^~;F 9ޒBU^?Y-c Al:H'01}yġ:+8V"ՠtTJ@Ac" mַ(92}Sՙ#={bA_&뗠kq| q/+go3sYi'ݬ ?{U_jΕbwo/՘aՁ6+= >hw*iGBat 2N0 r᝺ Er=E>B^| wnT)c¸=Ew^@w.+V?E;:zN}'{͝cQ!Hoi gN[i&+ 숲ћWO̪o/Lo΃Ρy0"8C7k#VB:<܀?k 7h z>,O,誸ztbx=);UݡƸዯ]"|6odlDo~7o~7o~7o컽originchk_tagchk_ref_HDF_CHK_TBL_702_183_1962_184_HDF_CHK_TBL_0Xx1  _F6=:c@=p(pLoM'|"N'@=7(7-@=(x@=G(W@= (OP:A"x\u`wgeݝVJK)R\)ZRXqZC N H$GL6Rl'uAi'HGh'tH?)%R =ў }ګ21:#MHU UTi:J (X}Ʀ3aKř^+b(ڏ%~qô9tGB=x=p='S<%j"v8=tiց=׎y*lE'σ]gi\UD`˿1Z8yڪ{,4$6~fSgi"lmdhtX(LD 4; )r{ Gœzh9-]H6J6 ;ha-ƾ4Hw ZSm?S}U)ZNA1k( JuZFZ%[io5DCep^k]r`i: L+hHpx){MsEBS_ljך9IdA+ox+U5i,˟L8>[yzr78x4M~C5K:˕>z@-< 7'}feg|YR{ w< x? gͿETW K2)&گ8hdT!j#D/,= ii2vߥ5)6fLf\O&x!x6~fgk6A}~*5^P]k=A5@T]\@;:{K@ek_~%TkZ`z zdTWm#n ~.| Kᴪ#r 7YBOX؜M-0l1d#GZT]TQ.vb6k߆^ X Bi*H壦xNgW6 SSXqvUYj15 xsH (ˮlC$Rs:M\ W؋8%>ڇ aZ(jrXT<̺7|K_e'o˥Fɧ,;Ss*DzT`yy%W1n0',Jt~Qs0U`K~1`j&Q;նP\%M=Jf@7"S]or qT)T/^Ė.!xQO}N5bj(9)e*vG}㊠Ӫ3tUM1)U?3 QUD,_yʻ/,tFe27UTI^M[\ebz!}%);] MrKf>riI&S0ɩ ? ǹҋ<ʬߚ鼸HUTWw3Or't{.9 㺽+,'8Nr. ޡ:(RN2xG]}(Acj֤c_Ļ5C&STށGQUlqwŲ+T.UpR\7 tA.c6EG>TZ$ݐ>,k(+`E@*Q@*W7P9(Օ=[n ^lVʶ?7QF<@\9Y g 9rTTHI_6[RYR^rfd f>*f>2STnmRYfEcYePVYTݰ&+^=+H,a'RSH$tF1 >blU{Rד[0.φc;Sxz|B稼Rdɧ%%/<.!Xy';tͪ)*e 3TQo\Jt?Ɠ82ApLϫ^o*^ϵ΢ Z]iYl/M\Hw@ACF^ғ){ȣeF*E;XH/.&հw@dgp Ҋ#<=prt?m%Hd z 1^!Mo&PnQơC͛M>!*C]O@1 '7[t<ҽC>MS\.wOKTvjh(;S<쐷h {H`ӼLӫ`*9e7Jj31bxʗWlQ΢6ݵFwy)$OtVMZymYt %V? l N&d{zN]JK/YAEɰͧ2n! UTcgGCy Ł^-?"'PېEǦ%eGYiK.91|ʏVm[αS/顨+r1,ދ4N=+^>px=>ym>}nz{ 6`&Of_mQDaڅ{̶:zgzZ2lMyê=I]k_ xJ""ߡ*eؕ5ԈNQyĸb 5rRYF>,FmH2SDpFPDf*ߎP ޳/`>t8\9r+Z׉95śx]SQd`B0~>*$o ƸpSJ1rbFE1.jjTq MXAe q|+2S@4ҟz/f,CDz .GZCQ~#s1pnKfUazgzfCH}~Y>5O˯#T\9EWhWG+Fٌ*+ &cUܼ+B} :FTP W1܋oj/\4w~:ר\b.z&w1Uj_y4ߣG;G?37QeO]E-w&pk3fR&.>bI 'ZxTIRu=Eƫfue]!U[Q^p 5BymMν6d=\h;m6T 9DUgÓٕ]=ͼ~ lڬ; ˲rcKXvbac /Z5`C= u=}!~Sl-{* ۞bQX+Q\(:slml'Xcy@P#6XX4 k8|^v2ic?OP*sCl12mtlOHayK q>c(ҖtJcFd I#NdQұYC+$A::s/KA>b0och++ sұly{s"tܱ>B7k;jZ/XG職O>m ΗZ4}I%s0*XOHav=4Q7w/?FLǢݝh" gwʪfym _ tm(ᵎmMt,ڨiĺ ,]3nOm6kDk4h,]q_gk/Y;XPtc5E@F P)l[H󇚆G7Vmʳ7Ub"t!vI"}]7:oz{R4Oćڡ3yh~@/NAeLS{0om95 -l Voh5{BD]4 %{HtaX?L"FC Tl:ȆE ڡ3=ajLn86,jwb[{j j/:G$=gpN,.3cm1&rcw'lml0-_:7xBePV~Q67>¶W h^L(8vaR-Ɏ67,7? l ϶BqWyFZqNIf q,:2r #;#/ƪg3bne9,%7{sxg-n LmdBlY f{y9{&`?fA65Ѥ?ԃb7d}X1>%碖r.=tS{O 7x(c/pȻtcD,1˒z#/֙ZM1+b_a5 bq(Ɯl91s/17{`NoDm3BG94îT*=Or]A6M:O9'm(f(]M<^ߖtYʍ>FHqWZO{hR9Vp5ФgФy-R^:!N0K 'Fxx5e6fr'FtTX${2JqcaZ1c2 0ʬʘwpJU/y~`=]2n3abϪ*4+fJ$z8oLŗΟ8\NPqYZ7Yuy}G" ^cq g)*JOʌ LIՉ62P׉hҍ85 MLlyBeOs~+3]r8Fϴ"٤Gw8#я8UZp&:gVUZ4)XE¶t}|.AKmt)tex .I#uCIh3]dtETc5G2}K|K3oKquY{Zt {>Ʊxz2pĕ yėF %0l/$ְlLE g?66_e 9>6mꇧ~8(9?|!RicayZqAl7cټJEАE"c3/.P(Ԯyb&3⻁09# [yXyI mbXC7{fGC Yw/ur ZJm|ǎnb; 9hM5:yLN|mhU,ѱqޱNCmxvo#)c[8ro1Ɣb3 FO`xfbTN/OO`WaO yН"FӁ@N=oxVz/ubhV=i??lX';+ [ۢast9;3*ȅh-js\*c%^L_9yvKN͝ YBS\_g(66 a׌B&;S~i-4NG9v38YF%Ro4:xXcdkՒb}evZJfr!m|kӟkI|JmD{#޼4T }y}*-^(mV7[VO5ֱkl;hFmCm&\RTmB] jJoZt+ڳ*Zu.+$588Si93HІJmCC&y:/ڄxN3LbNu!͖~Od;mzg5o:O/Hj28v6₡M=M UCYmY eECj?Ewb{ϣY6źl6Ti]P1T.gk TH φp5C¿!mY ]04ijlc%Sub%ep%fy:c;hgF+•1n`eiOoFY?!F[ԂٝܮXmJ+.ʘ9bv3AJj,5tEWl1+gbrKtjDE/~3ۉ!7o'c=\ʀp7~fU@5PCltAgT߲Ixh`?-Q}QT?#/W"צ$2EfaʏYGar6Zʬzu,tEMGq0 ʃڞr*-ZB"˷"WL\/$g}]K(ڪ#hZ;ğ5 =*U6NGT&yRj&0̀7\9\Jv̤ T5P\Vdk{y:2n:O- %j633trAz{dFՓYQSu%Xl,*,DqFYY5UVI}m9$LBqڟ.uwD] /?ˠVf)ͩgdvy 2AD{4ۍ*]>lQ *X6ʩL\ƕ)lbTyUN\k6k(*oa ԣ̴許ř G\LT^}LB}U3Ź NW)aQɌsR) ~O>Յy 1TWuY;5q^t8'2CA=4cC>fwIوc |ǘ+}эu9O3:_Y>Gix2K%9L`' t 63w}S=oJF"}^'c_'}'lc ѡtG`&ۼQ=ce_PK<7ˌ…X)Чu\S\0*G``[OV҇Mu?~F o8.+tı?aɡ$,H@A@ ' XVXR8p/+JItPe%XaS`e]zl+Vx;ʮ4}39?wPF3~EjRl7l:k/Ԩ𗴓:!CWeX<Kr;|Q6'ָ 贃4pپnis5YF6qB?{cf'[ ?稂a6Q ~ODy4C ~ESА̓VU}Kp:{zH_>.%3*jɞˌfdyX*@ 8l hxpVaM~ըfS5hs#.cTUf)܎3vf.\mOFUTi#k2F*5(^&VRUӁwɪz)̦f.gl-]։U" -Ͷ6 &2Rpa“]T7 FACu9HonZ5Yx-:j":^44QGՏ{2M6CCk4CU=QM+ x*Ҩs. U2#/ xM1m&*2C$ uɬ~`ڌ1tFA#+C;ѐ_![aW ?A.E0> \TG'3]uBC6ŸYHW3B(fR<!ȞuStu8lN9EOЫWTC rKEHF]2"\^^̪ U3>W|~&tmbr;TE5 ,{TkDO&aĽ5]^"Dgŏrh$mdri/ӏ8˞禔hH?[9 Nߞ7R zm)\Qv#4͕]iEDLKn+s+ZQpw"ؕVˍGgG]F]\>h?X7n*-.- +ֺI_<љV4Z9 =y t4ICY3648<{x,7QYWpVWjc^`4Ip%ӏ,rcАЁ 04OAԏ:$G9LX7ѓDYX13#D<r{ YR~gYuŕ79~p99\wW)}Ev Z>K'ooqљ+$ہHYs=Oݶjⱞgʢ!lZ:hHE"]],JV6*h.{26!8{eesBWV7{z}-M-1-^;lb'zn{i(b?\T}%e8Ƕ8gD `;]9tڡa?%faͷ=+_ͧMb|5s*uO|Vt9tqO*G4\@cX}QU9X{6d Ɵo%+>:ܧniWl^/SWVn~͈w^NY*EK}Sp RK~+8oB%C16F.6FiG󧌥1+ U K>(j V˓a}PM8kNR':ل:a?Gϕ gz Ig39e6c&7&3TiGTuDbCfZF96a@ jƢϪPjTfWvS ¨:x1AN)P]p1. wNbLΨbFu\>QvHCuMՍ3arp_Y̭quQ-8\U1ZQ(t0C6cz ֨S2"D'UB=QlbG)xGbSe%Cxp',F!ʆʌ"3jl"Flt2O **J1P/r}/PR"*R\%Rv 5E1EGO CVƨg󷪆,]ʌЫ)Ls.1LSB~ְK2ڟLZ`[c3U2]Xi#Jq9UOU=(%d*Y頚!*uxP)DGFb2Q4GTQ׻5jbsyu(ίNA*|^%(Őy^,Yce~PGrp1}X[Y9]XUZ>>c{KpQh-FUöltAn)x[0#Mzoi׃kkοb.L/ck(**)8u.-*$+d %҄fOfJT6#y']^(:_ˏfoLNa^wHP1ӂzN${\h uMGN+4/06œYhǞ g?[ήaӱ oh1l Yj*^nU4PT', v%PuQс+fTZ=aפPl+bF-5@aK~(kV>TG,: '1&AUiUsvrc8y1X~e*BtzjDsfɭ?g+.Nn WK]#úZ)| ml}ACV3 tvR~4wS_k;kL4Q σ=61흿s*ߡ5{N;'+ʒZ ZZYy<^*ǬdhlMt_aFMwb0@/Ђ1tT6(uEe-RN.;Ђ!-aOf׫8;U{ {r7umG/ ˺&Q{YzwΪCxk7E֙yPT1{XY@D VtX$U/jϞ|{PN LPb2Z0=ֵUy\UɈz_?jW+rs̼GqC.(xlXfӱYGS>2+ߔZЂ.!XdUu WUtpp%OIGu.Q|L_#~6֋DmlDS-rDm>oԃcYE ˵jrmDN$Miػ9=Ȋ8"ZA4E GSTLLCpJP-Qs:L<+%sR2m4Yy}J/k';ы`Ә [ZKQGS݃MaiP{@X;>ь?}VÁ`/l< D&{t7׺Z\9U][1.)>2GnMø-Q|[tvv6;EެWk+m蔣Qm.ѡ4\֥PMcVE^>@-j%a__g,Tն7EWV k;{ KuѴ˵hލv v:)Z[9||;,;f $?rmJϘ뻡f?j|++?d &®bgbmr7.c>kӤ x |&,֊nX;A~v¶n8XS*nwZSTw!˔QxPb=7fYV/ G(tNV?[ꁟR=߯Eq^=k0}7UmR]?0ȡܞm{[Bg1uVWA/9Py:rf*dQ Qxտx"iFY#( 0GὋ©U^ysf9c P*eybCFym@}FWTn9R{"܌xŲ: PK!ptF]P]E5 OPx˜ڀKaTv_OFtsDschyFqpb[U "(TKE JX1L{EXg*Ԙ 2ƞ2'\RS:x&q 3=Zwf|"7¨::LʅˣO 1Ou {,I)穀)w@Dr@%7x^bG^jaglȕX'j^wđ. )U?Q( (c܏jp㰉z~!oRuX?}[&a[D^>Q.c[jkS^*\dɆ«LO%l(Hp,(8/X.Y@.vJǜe4=?ppCVz#5:wߊ7u<«Mśxresuhδ#.p5:+zCDyaT ttݺ:,sy,WWe8r𿻬:oc|'1MǿU9~>]M4u?ۓc"h5D:X U_({o|)̔˫sc}ye*#PidAKmn 1-ʡ*AK|d.ފ,b,bll7lgv˞Ff]g?Ȟm D}ʳVeos(9z}=X^`lNWWDPp\fz&l.Jɰ;/kć*.Eʟ4'rm z?5 DZO6f"a . kӽ]| @-~f['2)}X[Z-α8J_pm ,;&ƣ&ؙY!Y~ @3TDEMs-)\4Z -oAmC]oJl:@hJd]ؚ w ŋzrBD`[V1NBd1ɰ봓Gg9Nl#F܀lO0 >B)Zk϶1jGijd)X/N_)vٷz$ikqvwdX`,RZa(8\fEa+kP%_,7+JhG"XlkFc=$TԘ՛V7ePSScwb hꭧG> Nl+g7&nrj-R|y&~ \}M6k4b?gL@YI~d/Є [> jL$FRG1+6J츯mkЁlyN[+++γ|d@qSpqrJv] Z;J7%Tv>Z/*9mƴZˀ8nn}+ӯkO'IO`;acD9k ,|hml p*vA{;6k(ˮ""N[4Jp& 'G-4{2MCPAܖf%&KS{*|}P䶧S{y/ÆZJKCL/tz~D/t+m$;!ϰd50.KE!/34V N~tSקbNa&Cl6ZP8ml ESE;qJ&ṧN-\5WowRw[aGSi*WF|caQpPRX_gݝMQTh:&sf  ~D#MubrOj45Lq9Dm%a~|VնgT׳;D#˦3N"jzaXy s-Y2aaTK*R؟0"Ө Cjc}UCCzj+$c':-@, P#OPV-F:зPOYk: -'UߋNIC-1t:gp\"⨜CQm5T:f*ssXj+F8rQqlk)Gt>rn:pL':ʊ+ꡎʊx F 3,X?9oy"3yLF)es)/'y!2Kk+z`ǣȏ|̬hW6@}}IO2[eLl4Z""uKR'krY%cKQ#ZOw<((NGAohmﭰ-ќ\4W"F;]k'_UF_ oޟC?+5u݀maߕNJ2l+[ Ea}zynv;4sflk\+a*/4:dBkoP"( %|LMvo2]7b͜y+46͛c/,r @oDaض@_b|~w\e-%`/X?ytݟWԔ1u_1x v`4Y/ ulymiuHhe0J~e~f?]ml\K: koS`;aۍ+-q " =S$,[ fmRq܂ޢ*q2M[\9is[fEiuJOS:PgoQW֊@`kD]=$|h*ﺶ-VJ M ?xaK^ߠ>šc ,X6i-k-KkP/Zz\զ^cU;:ssʀa]ɺ`T`qAg8 |O̖TW40ؓIuE'1}FKSU GLNq^j{W>y~)y c]5daU Ox=F.oʲH6Zac U2d{lOux>WKT_ F|d]Tt:Z.C*uqz}hzסmtHALIQ}UYk55';UNwL?e>N=ox]Q} *@x\Ǿq2S>U05#~~L5'%|^KsLPs<)tr~bWzד?ȦڽVXl~ӞqRP#l8 ny.6S#yUCͧhboEShk.?叱:J7޾|:ɥdat)#n#)]Rlӧ3`yO^6Z,C, ECGE s \_ZU pAeoTUPKߡC{TwA.:߃n̅6=\~=EWǯ:1oWe*UjڑS{^̚s4%;k`ϕWeR{MjrhKѢDm:Wؗzl}YSWE0uݩS\}Bui(ȂI.z,U[3=@~O86]a[}:#:hؓ  yG(>s6P 빗X3=L v,Uu$UCkVS5Hcot's]ư'7/|Gu]^0TUyCFL{ >qBה]~bOEz9/qSL]].u{*Ulؓ_[f@kyة~)]I >#6x5zl;8㑫=yzjKU1śL7́N~v.Tʡ9= ?J3j*SUKX"%l =ldP^8fWA-cOYSuCkVnh0qPgxgahtH-э̹}/M>h{D&r *4ڎm] /7^/+r폈3}ױTW\qtCI(7"UGd h`]zs[\->IK[B9l/YGm#7PimedG:nv?v6Q3WG3x 6ޗnX}y,kERU-~GGq!keE ZgY`m`TeŔ%3/rm$RBkAV*yc9a?tג\a [Ls\1 Q #tcm1~W| g ,!Qq(M71j&Daa,eym+a[9ǵaQXp]Mu+ܺѪyܶWZa鱯0M7]hq(TE']f|04D3DtpQK|ۦR/MDU5Ui5 x?lœtb钑aqm:M$vvz7PtmT'5vֿV%{Q){jk˭(C-ҍb݄1t:_K|<Cۢ?Ÿq6j Ͱ uツ{kL ôʷm2&6EtFigX/Wj/ V]= \Ͱլ=:ikWLDgypI( aX2C(:6]O ,3 ncݵ8TZ<3Q7Az{][t=m9\[zK}’T!pXĩBncݣ6DgXӳ-`7`KX+׵5'Ee0T/ 4^`4݁w]2e~a9,r}ū[.:k3&blh8X+4i DbT?D&O74ѱvQy| v\ގQk3cz`]{SN窏u4)́ V>OgOT}GYWRTC>ANz.SQ.\cS\'8s hpYlw.?~hK3NBQp\,ԃ?_`|G;MTNvkZ9cc]:gKldVA6@_tISF}1mMz8&JUB>X|hXFB-<4\ cSLyRJO\icu+g=n3v4q]Y/OFkp]͵E< |(! z|\T01R/Bx :Gʟf&!ʅy͵Y%s z.K:(ߓ Lg 3\~n'\ %['1-ߔ'tc,J1ލe!SUw{rsܧ7m&,UZ#Y.}rz"Tczlڙvw.`oaW\/RL-4Q";Rhp )gבTr\.Z(^"V'*b`R.W$VX Gza<rC4:+'^ ~5Xh8!/c#ʋNl:˂zjWEs.;=ƑՏ&[dIJxNA{#XoD19GQ0"OTM1=#-.Syi yiΣ'8zʾb*l+:()jI5S[pD[?B7T3gfU<@\[nƜs`0߾ l; %}îuȒmu݅]vmu'VJ4Nnd5z'ދK$= ԾK:3[@uUMՔ'&H-qvӉ^tXUDQ-6챩 %2Q 9Pmem_ ԝRƞƄc.c1z.;<꧑j®q*jr/VT6WW A١x,K5LDŽ-pGCdfMR4 Z@LQo'[k['(B܆\p GA%].ɲ8~a-8j,r\$j wEkLo .AFU7a]XU9}P<\tPmR젼V&T1* SCTW \ _5lq:Si-06R@bEt{̻ y8]AQePcLߩve2,LCTH6jȤL\~N@ u!q(m~GFD#XtʥϹϩ cOh/` ljFLW@Q 5LǨ&j<㲜&1ytj%jS@-NMĘk歑h]U%^Jv*r"5: f~NCB4g%=(xW$QDFU-r,A)5/f AK0FU6Wr+PTy \Ma񷸪<WaWwMqNBQMs_|B.rOՖ\H)&ꡗ(W̩C| m!57b)AnOͲ9 OJgfl^r _#8oR?cDzi cJa{܇~Z  thfg-mD'-=<}_u덕9G>+63hd4BZ33]NAZVd ٞa]}W\[<Icyrzh y ٘oٳ=ڳg,͵A4׊`Cl* hStF9zb\s[i?~quԞ9=5xm`s[S)>G9vaIW.G%硜b}3D|b- -Fh')MX)Q1n.9ҵhW64[@ MBז|/vKi 6֚oj $c)k#G׮a%i_ !?i_얿" دKl'GQN1ѕ:bn%öv'2Ú[?c =tw  =t˪Ŗ¦ dQVΰ;EN"hs(g  dݷ3gf]coh[z9yװ/i݉ZŁe>Vš8Mާ^*VWvRY]a+`;>LZ+Iy914vSXJTRPS7h [*ɮ3S,n&|ͺb#6:e@gQU =4Uev-1d(*uu,ΘC7X?pķڰV}mLJ]N_ymބ:뷨CE"ut=AV]NjJW5:(.nvi|de-`W.ۍoyz AUo`Xzx+BgP1WE+u:ڃ%ĵѵKڶR4FS%~W_[)a# ]shBO]KlaU :RJш Eͬe3 )]T,^L )nqm66JVMh"|_ڇ()KNDvZWX3g c|,N4x;uR.?qv+ngmm҆R<3aE#_6=;hOϰ}JÝ:-ߙX3Q[1g+=1Oa9tG/6_y [VPAnyJHٟ~eZ=Yr R]9o*;Qmφ1Lo9'It>|lwFcJ-KR Dz4F/UV'j1/iω=^9'(My"$pQ:O&D4 Kp[ag-BGB{ Sć3QUD?Z^GZ䀨Tp UAt3?;'x/~Lv=C/}H`ķGN-V+py@W,m(>+d~Jr?**xUn1[J7UmMT>~Euơ "ƵN }+).aX|}tF~o- b;eϋ^Dʋcގ^#zLT+@ >.X\&kz["ֱaz&YEOs _9{t*r}:j\0Kdq|+oNh+Cz2}:z)$jt 8@}5rl~ UdKH~_Ul:Jw3-C\6<'Su}!.˭G.$'ʧӪ)'KydNRi: f 7=-?Q dg3j@5,(a:&V.Df=G"Xp}JT7pD?I鹽DP]mI|iQ-{rZt&c<4u]uȧ:\"scM;7 cǬ3_%VJ; :P oCX6md=04z .bV-xլXYd9E6_'Z/:A%723`` CBDpLeؗgl)ڨkF"V"`|tCLxVwgƐ4XyؽsXwu^D$Z6GyhELvt%Pm;3o,kֵXB)=_L{"7uiC hCp}f ;_⸴8/xz͓c<X68#^$o%;:r h?lشP(=%l<ׁnN<v^Mv 6Mam ص13|YinX?9Ir*J.gG8̮mQ맑v4O7`ViK}윤u x#;8ʵ66x.kUAqnbMX+{AߣMIOH9pkM'Oi&K+K௩o:S_IԓPFuu QO?Kf} c^%׳2 sjBLs]Y8P2W/"FRE("إS إOP C䓉Ky"ęLRtڥ-ra-}>r H y*LJ97TcyiYm\~|S`d2qoszYG+ }C=ϐ7µ)3!T^_~,: hKt;#yPR'j7LD.h>w&!GIV2*{a . .~k,K+O4 6VL5f,c(Ӳ;Tu%>} >ګyqiI4/n=Z=O4JGޓwr,[ZnUrph,'W -Jes|yWaOQ@->Y_( ⒖&)lJT.d8|8aɪ&z+zE7;] z^bk aZWyڮjȪ:\TMFDU< ^v7 +dqz|:E3|:C`_8.p~MVQ:; CJE,=Oi>+2c~-VnD@@-T'x%qi7Nj}0g<~((mqQ^BTW߉*zT:-t f"mA숖1Q+`Ok[e5עV]d,Z-zI(:3Pѕ}DQ9Oil'kCQo\ޛn``]^+\3TTdT9)7P;(5T(]-*BoS9T(ܐ%t7fceX k,Ym1T{4;Κ(nag,u>%3p]&k,:ۆnu4˵p_֙ _D}%h`o`LXD&ԡea}Q+|1 ~cװe #tnn{Gk^ZOB~P, .2SiS2#W:.o@B30Aϰ[,j ;\ bL:uVʵMlR5ƾ2gf'hiz,1g$:C$'l M |Hݡ)V)v VG]9|B{mo1VvjJ6MSnɤQ}V>&ǃq9fojne®VjζS4Qt%%l_b4z6e3Vߊ/(/v<4;NГ Ro'F"8nvK/VF2mzv N\[m Wxh*YS60%e!=DdqW8jg0x{kqg2a|0wv*2n˧I_+sh@ :遺hUeh˵GBΊp}n{6r g5Y.#\(v>\tk3.=cUQgRhٶuy& g8p9+rm60ԟ%O՛+dޗT_s4U}(b>;E 6=h]A>RgO6]n/{QE5s;A7n w#U.d3~ƅ؊C)f#C芺ꃶRS ˭hK/K9qtD tQTܣNLMTzUQh[kmQ>]ZcUWj9/(s86blo//-Y>O#Yҙph>}j2L_l\> Q1=_[j*bT̓C6[jmedP3\%6 GpE(oSSO ?_+ ="| -WB _oZ}6|QђJ<54rȁ<=ghJz xu}4L%^ A- c*0f캌\(nv/VG03+lkipqMN% m\QmsW5LPn=WdHny.z/{ot mVUMkkXuA, 2s曒GmSNO39ID L˳ajgڹpAQ^!y~(vzy==R|g3&3!?CMNyOq[NQu=|}y ]OVuxHUtWd8jWfzS5l2T+?u;n3kodK UqASYސOf4K<4303OfLpsyAtV<$L @خ~6gp\gKf5AKf{``ߖx{:f8*/;H}=Ú)\oOgo'tOSS]@|:!*\Ze+ [(c]vеmXzAˬlEc:Gh_͂yiZ??Gw9W٬}GVÖ4GMVyˌʶ4k.f.֜֎tC5`VYvv=`sA| Z{ҹV&*fdJ\֠! UĚ3x>vn<|LŻ*/mk'pQ}N>XHC3\;c=Fw_u@1zOHlq[%'tĘ9A`R`1?8=~ Zeq-1pmrTp:%PZ:-ZfX%@ -inM\v~hڇ>ݥW8 [Je؉`mX Mu3 5ʥ.-FXc tpAcpAXMB좟Gr6УB#`%ɷ]-Gm:x&, ]VS}lQ{^PnE ^b*mXEv`_el5:k/emQgqQ8^U%j9? kyud/ĭpR[ȏV[w4:I}Ron#©hZim5֩ b\vL b%X\>JmeX1KVy$$`;iz6e1mE>u)AԒOV1PԲFJ 03Jaq_\`Lki%4jGMTUDE2\lgymqvU}WPē]5uOTl ѾUF rMUUtFi KWԣ쏩<7rjfFV Sqz]hjX~@jjm>*`';g!oJfcy",lΘnU.S"!}l{M,fUf3|_|dsWV6Jx/fU1P*ej$by2Y(kr5&ߪD?.ߤV"݌΄F6(w`u_ Lc辽õ5e=:a}ɨ`\Ѵ`8(DAosݍ@;Dk#mɘwa}h|blm@5C93ZQ,VMHПK%ɘަQzu?caWw9EWF [nGcitȂ@4ë6gG<e)l-?ijRLƱoNc<Y#a3iVLT~y5o hwѡDEr?{hyc-Ոt Cr\`8:lw-a>+3Z)0:d ]g2:%pmtִ"b"_uؿ]KDQָEsLU_vm5漲lUIt$J`$j?\;ojùn:tX:Znd~YszO)i=8N[b!yY2.e >)7X`{nX>ƺv'̷/I7Z"]x9tHGK%j󞰲˴*ȊvSQ)ÎFVs=QM2'ɲ ֕6y4e&/3fٲzV X3ual3c)0'&Ak ĢJ&ªF-Bt]˷۫!-aa?a5YC[Ei>T2;*Rw3e;Dwpa}ѝF~"GkuKcuKMOwxA"SIzi'(vfK7. f;!wu:,Aܧ]v >v^`"\gMd5nwZ?1!u$py34 #O#j/3XC'v*!~[-ioAd6ɤFc{άgp#@직lBy˛eDYh"׹lKhbt4nMuޯbx=RAOt?-lM4!Z$0D̓)CjK:_#st:gSi"]V?'nG?b F,.);P9H%Egh7FNf7vꤳD|}g"p`p%rC >̹֪k$ _DjD 1-=54gPd84OatW7 0)n'oFc>ɜ F˄?hv>>&K3 =.WCu&eG"ǫˎ/ںk8H9^6 _ݖ< x9 ݰt8~tNFU}^} 6'5F_5c!'Pe: .rKX"7e:>_~!Ooť7eAP+z9/8\&o`j{}v~C.C.R*NӍ~[c;FN׷{9|,ۺjeGf].O'ɓ"QߊfqL5L>p*MU˵-o'S 4ĺÎ]]3%?6b ץ43JCQ cC=g]E!~Æ>v͔P6CE;j{6kBtڸ:&A9aeP7 e%(>X+E0G"l@gW6λ]cEm3E}B-ͦ7E$-eiV0 [⟌(Gg;Y;O0k(Dh&_iq֡/{^œ.tÚǬ6+fih-u4˙HN#hwiɮnԘٰުB]KVe`bf;t;ժ Lwu6i.oj tei>-r(XgvÊaK7Em%1a1Px7vAYTPk fbK@v5XNTk<Ѱ*V3Z5mt^YNkg Qm8KoyPf؝@/§dXg^J|-r/m !/D]vŪlټ-ǣ;X`Cᱴ'q}v;00pN9wQ~f0;+/k)ٷ١]>shXs%1/ vP~3 كFt`/npfJd/tr34u 7,J=6T7:>V<\ _Q׮]ǰndڃzO CՄڪpHKz3, 6,;a)F &((ֿ[tm4by}mx_{eA YqLay?rSEQ {P [M_vm5d] {Kr[Ol vRwQCNQS="`{u#k' / G~*cuYvPEakLOS~-RRK@Da`߂+DZF<:IíTXpqȗ=a=g.G[LMFuT q:fZ krIxIBT1=Ǒo58`͑D=_~mI^v݉fYtMG<ɪb8/D.dCE_ؙ|?}!w\i}%,h|e vgQV<͠N'-aՔR 4RYW:b[: bU^˵jèҞ>[mȢ?DTQeYjmsuI.YuKL8N]bñ,Lm 9S;\[ljhμ-P'x/h4U|GvK EydG.leX_DG1/Y>c3]Fʙ-Q4L< 4URa:1l f[ j`͙}$&ߦT*PS;$0 KzH71.2.`ki 8y?i]~uvj*Ԩف&UYQ#pfD<Ã+f,_Krm, Qe 6)g,pyN9=k+K`` cfcMvp;"WR"@Ka)>iiLn}*0v l$)J7iNGwwF([I: ]uB{iE:xD^ !!x6͓51_ccb}6#ޠi vy`,|.t V2 ] KrJk:s_X/| J[ONH-n-pRd ՍpRx9Uq9=v&n9Ƕ7ݎHM)U0MfS a[~N-y͵>N4mA.]wsPnΰ8X);[`ߊv@40X~ ނ=6XѼ!*bzCMWvp1}.|ŝG񖌩!I|Wt6lA튨؆\0*o2i`/?`h֓ %Ώԡx.<4R~Ld<Ǭ#g' X/&lƤzXY5lUSmDRX7bҟ޲v:[Q:Z@Utyhd{ME=x#iP^+wHdp jdSϛ' sabYF1NNGP=LU>;ΰʡ*NlsD dRXEi1d[d']>Ήl( =Qw,7\FeeŴ|]}"[*2X BUR\7FUqŏvLFU3=P=(7R*WDS :{BPE: [k祂* y)J OQ[3a[ GWx[4WC|&ٮt %PE] ((!鬞$\Lj'w0'5Ĩ *0O 7VTg8Br[|༡*(zb1j\cQN]6c7zu:GRzK=;lHXO4x(A`ygGM:a: yXQ=lKYEa .ʋ |:I% 95V8( =S~U0jzql%>}$?Ja(<&Bml ʶJPW`YV70S&sc]QpMQLQ75(?nX7Igjӽ2QJ>8FWe]W@9YO2"Vԓ9N+Jb*g*\S i(QDkݯ~{9<U- o ބ)[#=[tAKxK{Eu YbrKIaոuBسAޛ: [r- 6=]MdP a}mfR\ .-v-Gv =Ͱ;Bѯ:,Y-c1sas͘%\~h"&qXtS]EܵQb<ĕNܛh=!ݦnXK㣌$]Q d?gMLN==xTw`_L{2dLT ^"[lA̲d)˲U6 Tld"3>Iz]ǫ֊8*doIYf;}GdunNG̿f8vGC4:k{+F4аfw?sm +Hgg(!bQѰ^4w,Mw5c +Pka`ӣ/bs?Oa|EW7ߕPt1^6˵9O]aV5'kjȍ- -c_c[| {ب6CmSA{}%*$zG8vPd-DGToJSe증bOdw0f ɞHM]S2&exlk|"CB茙o48$<EA ;#fS4l}!b 7W=aˢ/{y.9kBI|'-r-ɷXmm';eW}7/eWirp':l1ϳ4پ۟f]5b1jx p~]!qd~0xS͢&TVNn^u!Zr_du·-4q|-3lae3/E3D `íiX5Eh" >)omo(cwdEUh&=tLPmi[}-y| GeX-FLu]nB;4gֳ\r8c Q51awa}Wۮ=Q.*';(c%넺žPRg]K&f˙!tfi40SStHgiB^]a"t ؟6F/)~2b8+t, >Oֻ|/T/.өveOt Ų ,/q\7?T*rX{PD&xUVV}k {|]mԲ#&PwU nK':I C0b2\1_:1= zX~*ZK+%IOI]Z-Ypb .'QsU'TΓ8q)Wj12j@ .9UCmXY[C*ާjJ͋GկT><΁ X+^Tuֻd!T.M JQUi(]:SY]Li:ZX;4QHBFQHtWe^{|Gwq\īIrG:DC/*%ׁēd{断bk#:{Ju+z|I5ѹrS*E+BtY>/.z<ο|1|Oo я;0ۂqW6i' h/z47{ ]3FbJi/icT7h[K/rjԌFdn10D[Qaa"s 58o#n`cclk+|s,$lOg*1oMkǢfBیFhh(Ѭۯ;GM3~y#jkSd ? IX]*0E):.EI94;~3tltc4+I `}Q1 F)шݧU_9f-7eff ] o 'Ё薰FYwXk}܈MnKd߲Fuh&<Ύ[fc6Jf :P?Zإ ۺ(+viQ5>z$&+YP?O6ce5$\p.: >$psc+g^R|͙_5 "Jd `FYKYM`XikB9 w wma CnZ+m6E4۾&$Iwɫ j.u&|KtnA kfvQm=$ a|$߱t7<Z1ܸ#Q?[l6x,^ۺmP(kaXpfri5s?5gW&QSMn 0 xX%4ceOwxdkc{֭ES7N%vQU_#_#[AMu15`ri`k#ENX\$nLc`$pǗݬH]A6QWnG96rg/S+74 =Mzh9֟jmp'}\)&`$ڡSͮԐǨTXsJg &eJǖ{ *Fv]p.ӡ٘jF ,/;5_î^kYUMCCa}Xsq7$,u~"%VopsWVoLE~_@G5kJ,̼V`zBM1 xUi`~aҞg<,ǨؼJ >Acp;7J<J3~YP"{]2ٮQa:Hmyyuwu^QZczzҁ?IJ*bGޘJb:U^ #c4oϭvvO&eVke dez"U%0a>[ejώP}ˉmZ|@+M+\a&a1KeU?Y<3T5dVl%YUC\wx'*/Q{QgEb~2&4P֝|Tdc>F9(D_9kW6A PdBjl5zab(:p@ ?U}jaN-tYWa2Tj*(cVs:q=5-=Q:k{L ũ*C PwS!/3G KZt]iGw9UYP1%\Qf4'b}K[8-VE|w@/gVخQuL`v*LE<iU/&rJ1,%GX NN[;P>@H_ޘ 2 j(uY zT׎A҇ OpkgQ ?kD.@Ű&SCAOFvg1O\,dtXUB9(&TtLșm}`ALez&R>x: mnL'u৞,j?Gr:Ƅ_u"&؇Y:Ux-\-py*OFXWEy2 4PMWfr1DVsa*;TXϩ(ahe/0.{8(k*6, ̆}ݯWQߒELEp&dpȰ1OT\9u̗ReISeuc}}j$ķk+̮" ȖHq[[Ua:!MzN7Ghgo-XB'{,o;J~k丈DâFxoIµ5(AF́揵 Kܤ=:_WT.˗bk¬pJ.ODnz(Q|-JD$DQw7.y2f3P1i1(*_e^Jv,[(z9l.MW# 6'h,%Б4[$jWe̍vރv;,Z>6vʓxSw-V(J0]Yl[dׅmȓCo1G |o[]i~`1]~{JD^8[;>{ #a/h%{G1h(mWic%JY^?;fl:b?Jj90ت3O(1cLTyB,+meim0mWM?#25TnFܠ@=#qϮ0|y$ZyAj&Xq_ u{4-WXajE9LػaggԁwF/:|&V"Umʬ,te0uXy=^&qǰ 5Ipamqw_Ys 3GV\7 poo5nb1tFw#<8uWt~ko"owL"JLHa+/gJVk>}F؇V8gC#.m˫NO*ϡ~?)* )x_%S5Hb54at:>+WoXzsZfgpaJ+g75+oP o~Ly}>O<+E rrEx[e1S$׎%s#E}ďtJrmo[IӃQt+%bF~^E6XRw <8MoFWw/Jm1clQRKGIt4:ƲlB}اivTx;8;c캡ruF~=v_Ѻ vLgE.N4Arù<1@tAŧb`3Yk\Sh^ǞGN$vB;=L|Af&cn4=a#Xwf*P.tnƚi Pmܱ8vRwr u~Ze:nM-a߇mv-\.Â5ee/[clbzM|'5ͬ*c4iflhznﰺhd4bhkFfq~COUvю:62xQ}g s&hrWEߞ~p̭qVmw8ƻ\N]X?Y ',Mg!OTPu)`*j=}Y-|ynŧY=f_[ma^w^6lnZ8^fCBfUc k/jfL9ݾKxi%GvG/=1="_K'4B`ITeٱ/ o/\^ʼnr]KD̒,^OwE>8v_ 8Pf;AX׀ͬCjrf*l?N ~wxwO*!gۏHxOBy2 ت~^n#|Ns4BTft>a k&i ~ok0S*jqZ\^cYqC5p٪Ih'2]ϊL>yD&N,WaV3;%)K)V.JU3˓X Lէﰝ ֧W#Ԕ!f8[?G9c69.x-T3 p>bI:;;vT6ce bN@"7Mp/+pBMq?jg\{i2D}_TԘ|-4f9)B^p/zCjjBE+'ȑ8Wr ,s#`<_7v^-ԣA8). >\O_͒:ySw.$"?QcHrm5VǬbd^YO緗1'].7(93u;=|yx?4ѷ=wH!zoh)+sz2*nj9=Ew=/d Jr]xל^_"r'q~vޟn۪7Bo}Yyq^aF3^ܱ*dN=<(tVÚY_z+3Ra#|}WWF }#*;ltCrm|쯀&ߧ'&̎^w,Esmñsc~sYЧ v RhG5^B?-fC*a3~(͉^{y{sw-*.YG燭7Ғ4k h]{׌Yl=1ʁf!^XBoCGf;3hlܟ2|lk{}7$aˍ4st?z} S:ǦDߠv%&YGmv }] /Djj /&Jε/UJ+FG7utmu+m;6Z%\ƦZ#+?F =[֘ Iݝj4^cӨ^6ecKX2cyULP] =ѪC͢Ƭ*Y jjJQp(wVP[Sc+/̊S 2f]Rc1C<UQ0]w1}Qe"q^e[KbQfL`>sTǡUQ2[ ys=~Gcc 갪@;2NQU6ls RMSYCMUe!k:ewe-QWEPD\*RZ"PJ_[QaL.N*[lVgiuؓUS.]?u]V/ƣ"L l:` L4_X0\YPuq6W?uGs#/?re"j4G}{.]Zfn?4tY4\E'yʂ'QKrohclAoz NaefY%cMs9Z󨹞(=<~k(>_.lcta\[ +A 5D.@CTW5a;i ֍0ۋ=ص4[hyYO}kL{C_c.Q6%>6z7x8?ӆ(#}9%sOG,MKͰD#Y`Pw1N[얰j}6H5"365ݵd~П$U0\%۠[x ye`[`7d0ÝvuIX4汍Qam`]r#iWP]7Riv?µ']ѝgq+J0~9]3`+#;j.m 9rp,7)y|c"oP'l)lkwG$rtğv*8j iVhB2J/SⰎbmJ$btf {{y29DX{6rl4ImeЃ3Cmf Ivz|V˵vz1R;.AL%}]/̓idhe/({".8h/Z*AW Y_McwDQ_gxY%~E}-`4Vm6v sl/}Z1֚F}Lfai6X!QmNXиgX)m v/S6ҵͰS;^'n{?JkCYSjm٨?wIr)\[ C'qv Mo&`UX f;gxkGJ:ȞKv *X%"w]KulGpkĿ]o, E ߔϕ]{\ǵ'tPkSs^Qvm oRs+[ۻE5 9jqb;U!:;.䱩L]ep>s Udeb0Ʃm9O:c'Xx lE~:.M_K1y6zsXvc]bpE6[7E!eFDW(Q"dO{cqJ.ǿS`NhL)֨m66X{sL/v/zM1/Gqe埲}'bY`M;,tV22\ KR x'Ux. =9\g0IgE/}a]@ΤesPڋQP&U*X_VtZt}#WzZV;Rkj:I90[R5-a v/ɮS|-ĻS;P߉ယOd.>f*3^¹?UVbBU8lgݱdJd=ݚ,Xɵ  ; !ߊ/ioh\#UqhC*zPӇָlh_a?nyO/`iCvv(jcc>um3 ]ܵ=z!@c]郁b(AY;h>U6ۆITQl5gT@ 6 5Rz-1]0 |м&1>V26@]}ۇF>c F6vם67 ~ : {VFqǬ}ͬsr-zSY瘩omcJ3{+pmh-q=zn&`+wOz9s̞Md;0圵vNZ1Դkh 5*GzVDG6c"ƛ.4ݵSl_el=hc/lcxMfWa{_)A|$FE|ko-_mgn`/>cQ&;u T†x?5 v aٵB7XcjʦU4Ǧꎮ28K1XW겮QK?DByҩ:4.ج$JZ k1m]56E5u'RMEF~:턚>Kp WC5V%P%R jz<`1w]y(<gfvEL]N)VNzHߣ+)3*6@!|,&8lgn|,zAhTC["Nzz ~Lr| { jE.'HoFO2+ O00cV+缪 .T tFOKOO|\:۟tYQ JcXgŹ=fxч֧0x+C Bs ch@#'ZOyL\@_v>Sm+=J]Ěv8j8L' 9j8=cL.zW;= S_UO t -r:9'u՝}otGNz2/LS4B%45.">|}30vsP%\u%XQ >SE 2XoqoQeqyY|M tk\o wx a{]{ ,{k{B*+z`?i8v"@>xx9!=й|wXF5M>)1  }GQ-ݝ pUQTPz)JЫA  HH wB wf<~vCfw;9$9BO-#uG\ %zбZЮf ۵%Jރ(w9| #؊mz.jzfz-PvZ+gk.Keղ.76VTv zeU/4ݞ:26=lŲ'| W {hZ#S}򴶤hs+cKZh2qW-4_i)1C-o<-6LAm҆Ps!TL(\wͦxRʴ`wS=Bg\ wt^^2?j_|%OA(Z;B sD ^wpʞW1BSXV:YQJ:ݽhؒ:7V\B6VM&Bo tuMO{D5މ8oLJdrC\2kKl`[XKh>g | kEyuKyE}>N'cG"h%VP_^,h* hY.=9e9oKs^Pޖ!?u,*^NSo[OpbX'm]!4ߗj`dp,69ɽ>9msۙz暧 fsֆвiQ"u4l%~),:1pCdVJw7ΒC3X'Y+e gZm~w[4 ctKl:whhk]ċ?m=S?6GnG(,Gn};fCyPVbu-(U͖kwhOGh_ӄwzץ"Gh2o ׂвmWjk:CmRKh8Ȗ@mu[z 5ˑB2]u 앾RU4HJUY?h-}=f܏SS=vu~b;CЫ-X7D8L=حlXHIEC4j*Zf{fGB>j*cVgx /1{(afXuU1KC\7x`XM<gb|gӰa7ՌiM\.iFA^X~ƹ# ^f(ߡ爓b#>.9XQ?cOOD:.Ee:h;{ V XlF`&o~˧1Iο‘EVB3uVm:x-zh67.O}6}.:GT.EcIx](DBQt9 »Q5sfص̿qE%S m*G}:<#@ 4:xcVϾ0FȈhשּׂX[0nw֦KY>2G9GUDRu'{4'TX$Vy}En6WEt@M|?gy3 TM \V󙝨_QJrڻ<:C:|#cH0'J`׎pdWB9t;Q8sGإ*JUn,8BeќAe>]yYA65o]0&FܫѶmS+$A[=_giej_ ~r%}Nˡ,+b=쮃Gϋȃ8Wh /*HIy`\w]ak55BNCͱ3WuKW6I!޶A:cDYҒ҈Dt դx6.UFkw*qZ<{NW={Ѷ ztՒ23,$6*Ka.$h3b-+[AQO<qB~LoTm2oA(~Pz>>SCZN33V5C޻(]FN,X]ɽxV 뱞_; sfYaB&9BaOS(ՠz+6[ -dokJhvW/4ْ( -f %Ftz⾅c7hWi8v|=6*u]Xf5[wݛ34K(Twm;ӗݿbSlR8ѶJ=pOφbMqϲ4Џ'Pzjl~Kw"4ֿ x/~ж㩓5F_EzGDS͆.Z +!js|z?!!MlZn~iecfBK3ms:t%K,sOG~E4u0 dH(V+ALX5vƲM4+:ʠv_{+նh:®hrҵ=,X<ֲX蕩4UTj(zbfBB5d m> T 8p th$tBITOzxJ@G_UxYVVLԊg u;^Q+=7{!UE/n~}&4ڨNr~EhOQ'ш'#Pfp5s6ɗ?gg,#;}{(|/im i඘v7F#s. ?Yi4tZޑ=Q?dxsRO6[-Ӱ`'S}qڸ@Q Smhkc_c u9Ji~鏦#ܨюj0]{q?jTuMԗgp۞EaO4kܶ3p;+_ixxxA3:4WgS3:1JP3J`7fٍ{DTᡎ"cmJmMpR9XGeu[NU}j|5{S+{'ՌJ=9Jf(jd<3 5ݼNpc(*PwT|m]@;曕n*=Gp2+%ۊTע'Rvt틊jeQK4 Cw0t;yC[kCT#iP==35[ԓe(8l~ْ-7xW@&%_9WZO7}3tdJyyejju3.WB(% zg!-U}l-w/R[ْvzTyC?-4NzOWjtE.@-t:1_!ZCu_DjJ^ڥ`wQ/}Qq._l=6\#c?GJ+u]BzځOhj-wqJ^x?TZv}¤;oF cЧO\jYW:bO}DG{7 d-qh_Ay-uov}$]pZvdQDEn gY_uEF[fK8Ίo鐷țZ(x[]k(5lClmrf~hwqXz ~=@fɿ^;ۿEfѼ̘Š)P,4l3oDeEX4.h̷ں'ʉWqulh+]JE eT(mÙbyhxg>8bٵ Sw[]=4VZ.hW%;vvr3jW6uӮtQ@^wj}M)}*kLOhZXiiq`#EZ(Zh.uCWanWƱD&:ZCqU,C4͕OlE,BܵPa<墈', Kst+Q?MX&(ۮTK+0Goufr4FӴ i\il3A |%U֒/Gx1]JV31ݬg&QȨϙQA,=ϋbTCU_|5{+:⿄|AΊYB^;]3 oai f-O㩮ֆ]O GЮ_lQ/$)dӨ5H(v;F.N~%nfZ4JfmXGXkzifd0/ߎ{4M`#;ׇg4j ugf-(Z:-fT4sY,㇍á({iR2Iu7`'+8ZmӡIͦ7c{N啌v(-*1 ;s`|̮ݔdCMn_CYk_bjoz?K@^2+F?Y& * ltVOSJnfbse;pX"w;L{Gl ?~|Ľ`AMT :L6ǒ.F4ձFu*<^NEY7=͆{21ᦂShI2֠j0% pk{YVޣ3Ey |"U,b=W9B|zE[eX}!l+v]tn=|U[ !똵mlnvp3^N /G/E,q=aIt됫ʴXCh,y3Ǵ{8-W?mU- }ckbR=]q=!/FRJZī9E!zxJ4x/Qvkgx5/*r8pǣ3S;\1|s8SJmQ9֊C ~EZM=K*= 'x^۪Y_$sf}cUz8mkf Hk]\En] A![2[]`:濓FE/ŸnaRT}55j 9HMQ/X)j^~32 v?y}.ӅrSл!fS{w o[Q/hB5.a'lj cm(?mX{glJݝ |c}=oL6] ExS*6Wxgn)w:}=ba$yZyTjlhWQsNUw,}PUQ])JumEʔY=jDpCaOnFs\./(WC- {isT`ï٬ъnoJIhF]ל#5XK}e+bP(ӝ .GÛ?5 5"88f~Eŭ:n\\D5n/TN}T*hf Y錚T93ދlPx;P.U1#jbtWlD*Pv؎x=Glj8K7f8܅-Z֦2֦ˢ'0|F"2 s1s۵C+fQʪ!>k: sh++r1\Q*^Q_DQvLrW5Ͻ"8%XB%&➋!秬2;N)8B \yq(LDQZFďs,3]Ab| I2xFCisX%U[s["9G*K hMTr>LDJlwk􏼉c F#D;۪?mW@W*ᯚmѫ_q57dP9l]֜ 0g{[ϕLuYG<#ݓ*Ǭ`Lzw=gg=Mmh$co򉾍ЗGy dL'>zywXrE,2Y@K#߂c0Nej 7j~ %y6Pg<{=](Z (3(3^س;,2m-?A l%(xẓӣ^GRAa>K4 ˑLudYvKqh(XQm6_1]#Qta d8;y_Gs1ov`%"- = v-z @QB4ɒ+虎>y)Q~i<#C)hK|DhvJ(ʗz4+&j=+TEk;ZkKQt`%W9*E۶b\XK# GQ-y'cP ep?n#P6J/ XbseoiwesnV\$VRHE\/-W:fh Z.Q6POq K*Q+N4ϡQ-N{Ρna=?ͳJ=Sx(!-r.dQ(Ѱzjي|/82fCߊT%2nI2H:J 5KS{b-y8Z "&,=+%Yˆxc3=6:h;+|ƣ=PTI_%?SO+㹭hN %`KtTefCֿieN~hp iK@/wểUsUFPqkjOh?}OV5u=,=25_o;-%FEkcFз,Ԅjy36z`UXo@eRGr/`yFR3x>Yxv&lv;)yWTkCNN^ QNN߷wQdžtX}sൔ}&ӱa` tD#r;ʢoL~EE/F&%M*"I'φj}&J3sY!]-*f#4^+6svN9v8cm-Tߡ2FY.}>Zǡ>ʫD}ko lj,i6~l/{y;ssݣrl[}&R -x1 YmXMgQg3>b55Iޢ*h?*VtPיcskGAM7PQU;rÍ}e/RI3Q3ӂ5PI8suP&F|pEq;ϭ2rf]p{RNkGzlDz1+7JY^'x 5Ӭ]$x=]ΡV댵֎q볱 G~YɨHMq?|ij'P`Y1px9SKzh|KQv .*prNJ^EQEAߑkņbU7is eYv>rݒ;qrl#Td#4US-ݒ)U|okHɪ-˖|c1nF|B+*ڣRЙwzx8/r2b>=5Cβ;s'Z)^jcEu檨_P8"e8*MvNo=h&tEpj벶:o=_We@¢/7j`> ,׻zEd3_â3r1y9e[EvZ)hL>83Nx_;r@-heXG(hhZ2H[>uϊmVV? j{1e+֟k+IǼCSY]}Zo6h ^<2Y܃Вh;GWK09/郾bpw<XB=hŸلLiz>M o{Bo}V@uЋ[,(x{ArWԢxYiks6:Vv,iOt{o' m?}uM$׷,D+w@(*F;@w-m%ڣ]cmh[|b<4:SkkݐYuK KC|d蒘HK'lx䌡R#8p%* G"[1FZ 9JޖrhMUthڬL3|-ogm8= Ed iI~SϡPG[B=Ju}C`-MF/ZʇjBqO+f9lk;Zb#XkCTG%Y}] nwzQo۲-'|/m,<<^<:FdΗ +`;.Q -+m+IF*^<br(0Cq׈?"r=ֿdxYUVSbXm2.Ơ,l~SM FLgXJscP&L(c\ 8T eN8vʚB~]l2Zi+ǻ4'Ow{7F+kj2ث2ГRZ{?WM8 CUxxVo!:eqypR֖*ѯ4l˳  ̓)^m8KiCOf<0kSC!&*V-;~F[N0 8~yHܛtktfsM,5*`?okeM~m5`R[jlT_4*P5P[qj U=Bha,͗o '54 tNK),F],R1zh>;Ӎ] OW7gvB3m/t.}[*"MM.u(uŔTќ\J95#B*x*I65 *F--稊v8ϫ刣hFhkmROZn#pY;TK FuTXՉ,_,N[GҷLBET1yP]!ȊFi*w>~Gzt04C"-|t}W/T4n($<:U6'otƽp/G۵Ƨ.Vw`-_ۊ RUg4JV+נ9S| K(GK酊p5$#lMjrtsOM(UnL E2~bl-wbsjz3}Q=7{A4iV14V Zǹ-%,A*d1J|Ւ/#r"-狾m.B>@lEncq読Mlt ՙ5Cux1ϣmh^zwEݏkzKg@U$*Cށ&]OK,ڨhc}]$G b9XwG5J3u_sG蔶O䤫a9|jޙ֛msԗ'i?+^ xYу!ZGwe2UZok=nAH^ѭ ]z0[cxIZYM 6B9eh?ݒ;vV|;(O[#Ѭ-i byVlKS|nဃRBll%Kein]2,[BO/*T[I2^E7 0y|ZC?.FQ(=u=ԗZwPY,6Qb34VXZh ; @}SBZʒ# TZVC_i@@rb3)\ a5+>h;`ɪC{`)p*VљA(5wbg4hos|KC#^=dimGbFҥ%3ۉ{)o qJ4{z zvWyJCm{fC![H=%[AˤNs}h4}n : ׶]7T2f]_Nܺ'%V>",ᠷ2#-9(CH߿n#5aLaW0㨭4.{@ z}i;p ^jJ9Zu8RҔ"%jV,Mq\sv9q)۲:8,w2~X by$vs,!eC182lI ՗6 1ZX,N6@ⷲ*zSQՑ]ߧr.?G-6S ^ƱpkFkYxic"l<Ķ~zv UB|EBK~EsyuVއpHe̊X*͕`'c'Ro{gDǬ׃kFsL:{_)*|@q_QO 2U [LE 7Oe"kbovF!&wp>6/{10B4N_(ƸUb-k;ܪ jqj0QԥaTXs50jQCC{Dx>"sWW)bY)?j*l`*/j65jk 6ڬo/xVȗ+Fy[k縁*c?3Qw}msDѼCsiB9,1PG\d)H+yV( [CcE9*m ah;zȅ2?Cf~K0sXV;PamֆBK,9Cw:ᯊvۣc)ZwNM|kQ]'Zmef:ݱs@1t7#Vok,렟5TwY~] Q~i%[mk_ ߟvY hkxΰ䪢l]-ߘn Wl4xTOA{ջu¾חS%^&&@~*hג7k;;phЊ@Wh[1. 5 _+\wȝ_+@Bݽv]V9qDQҝK\GgSm.+{]v=`lxphZ`J~KlX\SW u4W:nހwAWW^ue^:ɢxE1BtRNB3m݃gc.}Kh+%S}d)Zl+ZikA}L#ފXe4R/'c^_磮C1`cAB۪Bʯ150=dץwbk|eDo whS @ց&[B>|jfGs(CR(0XjjS*5?gf~54F7>K45jr{,Qi|pY-(.N~<_wF3c4Ec G'#1݇0L/P7\~&FlQ<^;Am@0Ms)HНsDGY([g_ha4O-rϭ?c~w &v2MB~:b$do.;KVF(?T]Tv!?cj.T-|6V%kd|@y,uRu8*`7R4,@QSu kxhm@oЂͭMWiRWdxA̟ЅBIi)jyMͼ ٟSM k  iE:.Kf3Ђؒ1WQiUP]`TSCy^l0vl4UqzZU*TS0bR0 7K3HwcF!(3NyW+{Dţ./uAjxuOUg Tpssb +fVySzlVBa1{{|DG'V.lp4U]q ՞GBwdͽxm!<ԲLe+鈜ck:kEO2ccZ2Ύ,s`+z-c<*o ngO[}_A\7Y"tݮ}?ě4i1{u ΏE4_Y[bDU }XEAUBzpo}B;`t-vt=;mvFA^hsA&$|Dp^QR]XoNB; O;l6X͇fzf茞K65Je_K=%.SrhxAK Ŏ|L>.Yoy:(B;zxT:[/B_;XhǺcN׹F_4Ѓ:jko>r WdjY\ :P کww?ci[khx})4햡}iKקC泔yY_^&>)=e8j-vC{shYtOfwW_π\[Zw.Qz;i("΢@yL~8e~鋲$W ٺ&.SoaK_<퐇Qy͌ih\3|g 'KGBD㌍^hT@Smi>U2@.`m(Vv}yiG XzFQy F2*//^O~K>JxA>+/z#]ktgP u<םPc.`y+~VHܤ t:q^KO?,:H=uGS{H嶚??/hd_{Id4_n_ovS;tË{ql\JcUv?Cc'1_z;ɾmKo,vLgc1-:r, o7O}'}L~N3}{o |A/4{4޳D/R,v<&rv՗44 5{⩉<NFܱq^;FPu,Z,r8USt^ kUՔ?E \T]~ƙmwNyGMhs4B4_X3BcyuP)[3*CT:/*!ɡmU7D7QyM}rhT8+ eBQrh>7VF U*'cQtUʙEOաfruDuT\ vGד穸=؝.͝TݎZdJNjח] 3t[ng^/>Z+ YblY+o:؝ _eCpwpF!,W9`/M\!HZ _Cg̍=8]DZgZmފ/DՅ5Aorn;n!;a[rdinb.=T]lp/G%&I\ -F gTuL)(ըjw|}3ŊagNfQe*qkkĭJ 7&wXV&/S}FQ}в;3AOQ!*"RD" M@ jhI$t]Dx~g63d슷hS =ۍr[A2v{w4~3zk)~[h OyK:M.'i=`]'BXV'2|hx*uј|1ڄ>V2GsJÏY;C+9.RTJH/A+-WI+/@W.g"'t\A"ͷ7?P]qsuڨ̰ZZ*1y%WԘ@Qgg$Vq^m5@c}5y) нf%3{FxwX|w| &\LqOB5QgJδEIӍ3|q+qnq|gbzh~ O^r/ cB TӶ|Rhd"`fUl[4UqhQ&ʤqY2)t_G:J J04qUQAF˭ZhPv{XR *4PI;#qhf_kL~B_ήughR-џ&r|cPWO*4=4ڤ?b̯NJJ/PgOE)wI- lGQZTa:i.BUB)XZL}^ǵ ?tt8..nF/Ɵ'ꄪ.͠Rp|c.:t>f λ1#i tRo.(a`N5'w#l\_OBUVFf'YUY@%iFų1QxNGRzm^3SgsdZ>UO2gys]]e]{V+j!GGi1v;[ y5ԜjFQl4XW$*MU6ro;E}]n ď?wg7?.GoxͶ%og^U3}m\e50WYp.ֻj-]'Qw?x~#'q9,=8ޑ)CF4V~G ,dq'O%ڬF#іtH.Ki^+cGp_k+Pf h^>JR3گTֱ6\rzg|L;9J:JʡNZPΠvNUuPeȫ(2YmȾfTtPCG[ehΧmA\ 51;-WBJ jY֍DmƜ~KCee\YNl)7]6N& MLj=r:p~16l6LiDrmP?N$,rf8їiL; eM 4 :4BE~MyJ!Art(7+rLqN EvTImlo>o{7/Uy-I]-JƱ:z%^b*U5Azn>z> c`X4_¦E{B`X>(vwO󡵴Q 3F7/ [{Wd/& zgt̯J^3|$s~8*%TM[^zhԣ,yߩՠt^Vwf BQyϾ+'&<4)S%x\nx4;kWUiR<ސbm .2 >G͵z6~VN[%oL텟NUo, vcތkǛР<~aP* 򔣟⣌$ږus6K/-TBu66@es@}{6Џn*}MB:;aoDS@h]/c=&W .閿/P4N},^%T FFޖup2G My(n+DP%*+i(ԋR &F+ucc1բoBg֠s&|u}f,υvgH3^)֏l?MmN.2|oz̧>o 4Rtu1zU>*m:@Sr*q:\5ԄnuE6\kQr| AngPkϩUhgh\D@w&FD$,Z'cN5:BenDu{J_}0ǼncLV{O֎<0{jRʶv UwY}!>*ɞ9D#eMY)rk ^ӈ- B`ifev{7gCLY+FϚj)OG4,i4X 4dT˨߷Gye<(zEC{`şVElbL+l>RUW >jvY5D'zH=]ҝP/V.(j蛟4_LvxgUFt})z0kqk-V7OAe^]įO5M(_Gบ_ډ/ܹ8)hmTgvGj%/3f-jAM8~s57E'iU +otA|L7{s#>HͨHXϢ֎gĞE@`Z(8n«5 U,o*XpP(~im>N-Lg0g֪z%N06N%5NZz*Z3r%f7W z2[GɛG_%o7͘.S;hiz,%!ؽd9bX?jb}WT Qm{0wbc?,%$QOc^iV@MWbFwЫBNM'-HS}#ܟ=PZSU Oq]_N/ .; MK'W^|] BM5{PVf^i>vY:2'E9;4'S*m5$ơDɿG2}QZryJ %{6N^i݁yoC&{h%l]>n 5h3F9S: ǭu.0)VA{woJo\ϩ&_m~St#~5O4sOEmO cntzݕm$r\G.-+CK2I=݅ҙ\s]0.µEZ*=G'd@tf8UcD)8+,8i9~*쑯*ecl?*f\)iQ Gsи5]ߠ`[XcCwO0_ȗ0Oe^`%~=fM`zKn)S#P443i7`ch["ƄGWBw-m2%4MDM׍FLaF+Zȣ\%+qlin'Otk|F\ yLw'+c/Nzf\P*W-x vVP &#*LTX h́~ =m1'dci}0<5u5;B33Jg˰̎hD7C)|چ?WY~YIu^ltGigipToEiVЗqn5,Q-'ݩi*Z5]sRg=q_mjfgX”'jҏ^0vC*iOnf + WŠlvEiwS]o;yRT4v>J t GN$4р:R/ ccT䮌fz1M=l(j$F߅RTz6{&ۃbnFye^O)P`/p(s5}'ܧ\~5]Oo75&E4*F BVa$V՘r˞WɱJөvODVI!Uё﵂Teё|=/FG!ܞrofKp3K'=`ĥEPuIMPQ^wM [5G-l\j-UaJ.Syqr3=+6@gy3ƛC/Sd/Wo,f-}jZSeߝZ!~vscoeUa.z<[[PI(2suoNVnwqMLCE|CmXؓQa`;LVIJԌy,k-[U+@ A%TtWcϵ5 ^8մx?>Fד>FYʫ}*I Su*)wfV)̭dW[fTa%*:⸃@ mgc~>aJCѤ3h?5e>wDMٞna{돰kVB#ڃb,ȟX|m^^i{Vyi9O3DW4)~]X Viz`9YE87UG=+ IP2"I@ɨ$*}n_V`[ChM' z]/tʢ5pnkV!Ow A!'mx2+8T^ OŔh nożvOeiu!TsvmhD}dF=Gi MBzZ~O-W/UJp5:f 2y@`;T5J*;PޭZZ?vehtF-@F8-SGFkKӖDzdižo2J*oJ*ݡwc덣1 4li:aHO Bh% .3xQhDzerUsEօRG@Shc)4I-voXoqN)",i#'ۣ8?S9goS! b7n=Pbp{D6ҼJչj׼jqfP-TiS T 1#Z)ŘcW~}tJVr.,Rͥ#&c9^)Jޢy2{SmԗV ( a/=nrO &ۂ)'M6jn ͠dM>*l4S^iT_1EɿJnwaN2|wҢ*u 5 2"%½\ᜄL|Mxb-t2j*Dg[|*kJ%d tM뢗[%40^NH ݇`SwhpBw*4tJy裫т(8ed110}喙8D8ʊXԓ/aEcJV ^jŤYOTKGC诧O^|}fO$5uA o$ < h^y%Z=_3aj'̨){uteZ5Jf,۹p+I3晲7j6͕W0œ"aB]9U޶V8'}y[YN\ 1wLY>ʚ&jʠb 뻫qw-uTS&jjWj#GFiEM#QPYZk_ [a(oZYy;r컑KC،oWz}1\ɫ5/bsUSZEv>ZUVߡ(򘜃eu06c9CttBgz k/z}7F4n1 %go"7mi; # )f`L0]gsʨ/*7y>5vX1oˠvLS̏>S#A agxJ%:(ÚCskY1O,U=Kc\`X^!5(#)S?EְNxJ,*o (c9*醼4Vo6:5ǽJ{0 &GQfW[/+v`"go,!A}KTq6y*)f}$žS?Mh\3˅^@{:)*a2ֈѨVO%{HUtt9C<0hiT]t<&s f:fg#N\~x_]WIf{bwf{T~m 5T +$/:OlGR{Y>o8Ǥ4{@p@XGT>YǻK#)HC%TVi4qz{, NQ{)t렄+(5x4& JUl\sd4BIJXG(7.w$'GϸdlA{(E=~4S~|d:cC{)heR\y-N͕y98Ey %~ĹFC/I<7GO|S)q(5c _]>hA͡y#q4_i^8>ޙdڹZ1t.>Ʋi{ey#?B]tW&7(Kw4Y]vaQFoĵ2$y}LS@_gRP?UPO]t=~9nAµK@_+iE54bF(.Z,FgTpRO#Xq"C(S|Ò(΁8Y4-*4.tq(Y<=fqƅ.iS7/}oJg柰VHBVvnUOx$} ^e+~ jX@wPr;)2s,RO;M2=U(:h4Ahentvv4Tx &W5Y7-VYvY*XK[%#My8n/ll,V6jm9!ZeMLi++c3Փy|A'uTΉ =.ڍlqzsLyYvěQ_ߏa?'yxN4Ŝm^o^,΋F([E#'Y4Z1Ϥ-4ѹ#FȚ_+y3ˑ]~:Jc"YcZ$}v]wVlj?h6+7|QQuRh͏?FF0egY:_Pd=ֹ`Wj-݇wp qoBKmGj򄽓:ٙ8wմ_K{q٧V0MW3vհ⦊ohMc).{؋fD]y7 z! ؊#H((Vmq)Nm=M˱<ק[vmO}XyˮMJAJ/x^T=]Ы ^nӫmyU+Ӑ*> 4)Vup^?ǡ ԢGmZk׊uQm_~XGؿ&v>˹)Yߋ ӪG7 x1~]sekhVcǟu4 G\bhXm26&UP^[ط&IVu2EYRO_Je`"57Ys1Ͱ_@(]Q9)­~+R5q \)x4&D;WkxvRJjEiFLlQZ ilsV!K3v |%Q jA+C롂* hvfe%w[ +$+24 >fV(iaHRrUB?+#i>F̊4@B{o< g6BI鴊Ľ&Jd:VC)8/ x,6OIkl?{]umaK/%3M.'0g6FJ5SS) O(EOzH0>J3FSgv-V%:cz4u;--+TF֦pTMJAh p4Jn~<JDM=JW6SVW WKxv4X)꟫ROtB5#^m7 @y@ Beg3 4 NPB/CqvX(}'csγ@s[Nlue:ƺGTPWhc5`U6&۰=44f)N+T\O^Y%M~-ȹBjee%gЄԫgE阴VsTP'Zi܋riƄsdw?c\7UTt!^jA4Ey3a:<@yȳQ5WDc&Lh&R4͊bO 1*{y%_0ClrJ{d(V7'ÜJlWTԚ+j},oa#cNYFR֏vN|nwk#[x}΋gۗ0A͑H/qa>l ü0D#atg=f}6=Gì ʢVsPO\7;t~_ YYAu ~\>T:[\f:ˣ|ժcCaڈ f7Zz]E ʼng2/-h|$ʐR91}cc.WGK0gPR|%YKF\C*CY6h>53S6YH'bYYzP'Vzҁ|Y~1I)/h}"7_>6}nYu{g96Yn`j nnzE(m4B .A,D(4F@d%Ǣ$%ZVTAZ~&3t˘&F{%OP,TqQSME+Fp`vB%:˷,he [yCg}[JgC$稙(ӸúJ`66j~f早^l?ehj2uh 9sP%Db +V OtV'j/C@h OcJj-11J=C OhzCs5T(]WS]$.֑v1 W9O} ĩ'D44ljf΍< iZo$>{a[xe/<]ᾇ~e|dtT ͆ܶ9h84"&Va>OkThYvM)Tr^?d>+iJ`4%\=6VQe[%5h! 53Vu`>?>+t[R Pm+f-1~0Fi]eբ~@zhT0)m4?V3?mTCs/M4=_o諘$~ꢤԯnOL ^ԯ!dP4 z5."&__t>ﮯ0M7/ U>~!_Hh|3(?gM4:6O4 M)47W.{HBs@[f,\.فoB[=m,P2 mypJ(aѝZ(2g񄕔#Bhl*+J&&k^\Dp`z@b*"VaLy^shJ1a~y@ +&4$227= DKUx^Rd /Yx>k=/.NHy:LM&!u4^]׺̒c3.fr,`,8բs|jfML&;Wa?8rRs2L2}3ENr|n?y)x0Ff71gX~1 l=MWbΠ212}3]&ˡW[h=]Ii5K>tR،^R^u87Y3߬qVyjcqܱYF#騵rS\H:Lqฆ;# tf|tI^Yz؈IOj ELcU~uEI}좬9)+]tnGb>'fFLp m?`SXckm"NL#sdiSqVho9dg嘰_Hi(E?fbBD3KjLfvI"(4'~m ioy+_,4O!XEZ!猒~ETvYOYZ\;+wBkc_})HwŶ:!r2>s.cg+mb߫D=%P/hHD:ZBOӬ.H-/vӳ3ve%ʀҰJ2;h;R1I~Ak3/u/F=X#T?#vЏPK-N_Ζ<ӗh{~o@Uh*P}9Q|ϲr2ev'^9OQ<<zY:ШpKIc* Q(͡G(z%?2iUs#J#T@Kb IG52h ؀B.sFZ_RMBM6ze/4˼`=ݣ^,K.?h]Vs-3Mg5˕YD^TPmwwqxd|e>{$ݙLP,/Vt,ti4%t{{OB(iRg6{s !ٝ뺁sI;,rI#`'+ⵥO)&eSUGckj*[ԑݡnzmjf}z7-zVy(tQ\[{g>j/vk0βt {}3-%Q%5G{>c[}ls`=ezݟi?4JtȚ Sl5&о[%S_N^Yb{KM/dQSFi}!33isVS[_+`6,sZ͔-Xѫts;jmW3 ƉQz7B5A-ټkMa˕ͨAdr|bx 2sQO"91R0@|f<׍P]8Ϗ9\V:d-"Pkp'|nL1 ՘h6Ih_i`,[a3SR;E[nHWi$"A[hﲘ"҃}8!mN b?Z må%ZkioQZkhIZc mfEW] ;( JNڮ =6)J۩={NT PޘipO"P^ԤmG1m,j $rUEI+(]hUy/Iv{v\(OɿB3TAfȿNz&h5ӦuiMІ.@_|cO3@,.c>+[mF`txĸS%I'ğMe\Ȉvx#$UàWJQYhx<2BסKzycMrڧW*EMH|D*-^ 9tVgqȉZX(~ΛJ[hA}C=JtM'ў+^O~GŠl|&+q;5TVF5ٓ2APHb<"(iFh{POYz۠7Jv)5_ [}EhCB]+ɘN52g9- Uw1(](JGҟsDZ'^RHގM=<-ër֑/x |3ʱ)Єȗ 3F}mYfENߟef>nhc|ڭh[ك. hs؛20 h#ab7BK1c0)ruc0ԼN)5C,QnBנ]P=S1kŋ-d\Y$E<n@1ʿNtgic+ ?#~*6_@+VCL__BdӴHqX4CEX MvRمΣmwN >@tčDgNqfsQSȴ=]N`XVO@el=A|ьnĥY&?ss22ђ* cC\ qXF8ti Þ9rs9E*\0oK\{B?Cl:%EysٕrП9">~MIh; ,MχwC }|)tвhxTܥUJ1aGxŪK;+_)E؅Fo硩]PHG%(F((2wf_N#l/_]Wc=of)!{ W݃P )Qv&hE13Q_Gt&ck8cx̏Z5=FG1w *| [ثb E)߻%N_|~l4LZL6}9F9YyO0#5L16-j4r=g]|v;|'9ʦf{BaM-5G^Q\gE3ÝI\O|\cۇ0 k7- `kygf^pc;ZFsq4nydځwe4<.gߊG򜜌)'Bf1K]iOb `hO<;SRn8_$b}&9(_{Vy],]iM"hcxAcyZϚt] `=np^N{Yڀ0>=qqL7+v%k\7^tW@/J Iw_#o80ۅa?89l5;3ωPvhjl6r.h8D'ee2(y ʠGJMD؇|-n#s=gBҞL/KIzQh@xkC{) s? ktœrTs4t+iA]ޙCJ8ECeC{3h=br\mhgCRN.. r⌨'/iMdRA\- )!~1pFzq!uJHX,GV9$ģPohy Nvojd#>Px5ʚ*=45.vhr  Ǹ1.GdPT`=?: .Gĵ)ҸpilCIV3ܯp| ]F-N=]at~)6uCP-$tsJU< mTB@xQkz[n6PR YXj4:.}z$jⵊ薒[CuWAnWJ8;`gxQmϲxW趹B_&^v%gJQ6Vk( pKbMHt Th]_ȈT# PO{h5wfmYF)}ҵXkGY砈vY}l+zQ]c9HES[W9g4On41.UA~){aDsXlVC3qVB19l*6w*{gVIPΒj4BKoާ#h^l'6skuv@4Zvc/'378YUމF܎NH9|m#j,3EںDjog zs55NG\h]?Bwȶ;{~:6g.b,6OcZ)v3.~cB9=~|KuhǼ Wi/I^z5۲W8f7}0eӿC7h#\sAHc!ü{f' K-ω[ t:B#s(@3r>_)rJ7M*wM ?_WݬY6+<{Raގe:>c+ZA\Fkb;iå,bNpeAt;sX(ږ"H>u| I 4`˷4aZݵD8j}dn7ڣ7cIFaq^Vr?oHisl}OX]kCiF^e6SYWx]B))eL@71z-0KBG1tTVKKTpvׁ9i |%$-؈8I3 ًfZ?MF(L1퐒EY%v; 'G+l5 icrStΊHbjT%7E++Y!Nz?GhH0OI+]UNl,m rk3G#f"m":Ʉ4w92-p@8F- .ZR7!U5_Ѣie(< N|zFEHp"4_`#aN@=lYPOGGE]#MfQ_%vM 2Epe/+GHka-.)ƓX'Zb%Zji~!I)^f}Z(E=5r:*UQdA~g;Jø":M TrCۍ¬@?*i:tNG?6MG9~h\AK;͠ >6kih&|?L w$Z04*CcأO7w%,BTG6"}ֈuӈ;žW>@ Owܴ{(!{ɢsݐvGEJHޢ.nZAUanh {Cq#ܦJh =:`1qݡf9;_yT|]ζŞW{T>1U mCrDP}ȽO`=;n鿋rH 컊7/v%zfH."B#Ox"'ձ.jTשk,~Mj(:u4kdsW4yjf=4֮%z~jmw(_Dkp<ΐwvMjZdjocujvh>'Nqwfg?ny5[D\Ggq̡ X6bI/^eZHElJ0ZŴ'._e4s?+|$=fvR^1?@ē'vCTr:᚜WldGtZ3Cɿ퓞)"]>뵁1iN"roT=&Ywh*:Yf}ڒੲ(d4xJhcŕ>㣡j8˒)u Wp-1PY܂)H QƓ},V?c (C{܃e2F)XDQ7lhw1}4m༖?!q^+MT*;0U`K4>3@h^@lzuHd(@/ysxMR  l z g[xk^Z(3G?mil60!T#i SgT۸Ο wtħF>WWu2.T; 2>wb͡~x^6dۨC,@}x;8Il2TxWBHD>~'hYUD pvvYUq"Ʌ![#ΜS#Yn${:DM 0L"'uLR ZH#xt*i!:Q-yKlfԟ# !tz[vVQGu_vsFGaϰng$}m;ǣC/HanXF {my3<^׭R3RlVB<96o9 6fo_ǼF}=z[VeU3b>Zh7_4)d=/U|?%JT[i DĴ`vVėmyyG*o9ixFv̗he%7}"Ji" Oeo^Os>ȞA ? ]b!RCG!y mvDItY=kILǩ@;P}y~7K* b3'īAVū*dؓ۟viOC<_([?:1v973αOɓ<~YY~'tQɨ/:ƥzhee:κM@57ftʳ? .3f z32hIhdt"ǣ"CK0+!j d\??iRg t-ҿ2~rQ+h2#WC5P -功]9/BYt5DDžTמwe9'e߬?M7Sͣ>ӭڡ릤Έˑ5-pQ .Drߡk7pBD ++羧Zx_{|h 2^>JI/jSB^tU춦+C#[ }:lˣqЯg'=?Яa:cRH7R*-:wH2;X/OR}uWn@u:)W/T_?-bVbyebHѽZ(Z8֋]uegEz~O)]e|< F+iTO&n:rL >;iP dV$d Z&[(1?f?COKy3 "ռ2i>הWw6"5])?wmZ$Vn>>b,4;Д%VwZ_o=R3ɬ9Й!Z"<DI]dͲJ* uͲfڨR ޅ7CJ6k|"f@w$ÓϾNjO y5#X~OG(;cCv~$:%:«&g4}UZ{JvHN8(X,I6_]6yPnD5hRz94/sJLʇcp1ʒe~J-%B߅C'iZz.v<6W@bK船-6AJO2+8l>8#Fc}D%rk}~6_#V1V9CR]BF(!:B" 4ΞAfpvE&n1{G%5Rq'4.~LD=BBܗ]YN\:|NI3u3?tWaZ+]dv!ZZ2JR??4釢wZ$- |u(ͅNRH!y1)$W9( ) }.F3pv00XilsTBF.5\h}J1x0DM?2eз}0 }^ V)M<ބ ~(W•CHECá!*ѝ~f\Rz,nIhwC6*@"?,]8d̡ܸЃ&~+Eu>seO8w,-kHo>˚ #% P}]]@| n Q%dLI>[FݣJ?yNUYk ,3ZXfJq/s6_/{EK?ڼnU\` J\B!7tϚd6Si9 ^RZZ3PO%lƕbbV)1F)Ed|w,!_#JV'ʑD$x.Hs6 אIxq𽌗⥴W>0͸ʮ<Ύfx^W.y(.Vj4r;X]R{rKv4wt` Q4GjECHH |>&ʙ/v^ԩ)Bi'>Ngl8;c>@4|`ļ_ۊ[W-#Ntf.2Y~aE^34o#7_A\R60_-^ږoh\{haϾ^:c/oۯ*!}C2xU2˓兾Hb=Be'q2fj뤸엠CdϘ[Nt=e_я VzlJqI; %(ńYǐ6騾=[f\e#{i׻eVVT%Q1eEE41n@,Dd\}&egJ446?OC?X8(x;.sG I͖Wb&(_^tCh[ue f{Ex%W-4.o|y7|ķxS?8W E{ 7E+M?iNpOd>W )(.*rOHJp~:2i{!auO/k@#$q&ؓ$ewUcF_aoi^h;,_CՍ9Ǎ.- |B0Fg4u||M |>:+U~uf\嬓|:l8Ύ`7jx Ý^_{:4=uWҒ;͌qS]H۽zGt (goLZ11hq%%ۡo#FC-Ad;'/{?BxJԟ3iHE<į(]n\4Jtw]UrA}YhQjNn/[3HSE}̫i-Mgr".N4$lY 4!iҶ=xsmov'^1Z%MCM†,ʆsn.A[aO%LKxciUH^CNJWZ?]B+{!ӲsM :`?=.0˰U֦짋X[nW`=@>AnZ=/b)T}FxZbd {Fh%[yFndO}zV4V3'X+ZC%ks+tv[ړf3gwJTit$hϢmNOhu98))2<_)HJw0v,,:rqYzYDĝ4ҏA~8O!]CJZ(puPMisC闕.Z>v%{>5ByHSrw!O {yI r(~(EtG byK$2})] [{;W`V6қrXv8yEZߥf/K']er6Ss:<-=Ο3%0=Φ]þlf#g#KXiH#V+8)nV6mʂV'M(N)M}ݗ^r=5SfWMڙfW0D:NΚ5h7TLT*a%*oz˗ˋH#2_aE<A:.3>;)3Age\K7i-YjaQZa(O9ݕpnʊ$VgRo4I+$gÕX;c?..vU:j1Eo G?~7rt)neho JQMfYkLH+חS̀AVnJ3nwQ;rho~IbTKRt.QڮtKM{>fxqIfbSJm%G=%Qt^ĥry:|!mւ&[% Ƽ.TvX5m\$gO󑀟9C AGN2 9:z5g2&Ȟ5qJfz W m卭E؊v*;Rt B "U>Oq[Mlm@WC6d'nA!9OBP;$gPkK=B ;_v}ǘΫӼH:ciT.bѶ)Pp%$Q_S4=_S\ZAGl'~]-HD3JZ!V=0WOCL T<@(HN/_7+tПIAY ջQ*U?bRuR'c4>Y)<|E웟?d49+<Yy&h4fExC1*xjޠvV{ї2HWfCcC^ҒԀTr}*]y:W[~AM^^r;|KU]T=?wS}gJOZ1/kqClS~$3m`%EihLSnN٩%.ɹ0**GWoΔmnʃfDIKP ,ec }(R7~ jE74*p= zY5g݌|QՎԟi4vfKmc- %d((Ep"SNrs$CmJ M^݄Ͼ?ɆN1Rih %JJ:xkRk_딢-3hntDI9-E?*,3<%" [ÖNGe>E0c'.rT6") 7S.}#< ?-˻:j|hBBssosxjȟ/ARcoE>(J2q̃xf"Ʃx6kR/6i^ rP%%>s|jLY Jjv4 xD 5qICWEu" :ՑG|moNfg<q r(+k=$Mc0Ͽ/ȀS[|_!c ű נ VE8 I{O֏qXΜqz"2Es R4yyyĮLC I͕GLN7s"("F a[7(՗wLSN+dN64J|X h}'o+&@wS>ú%ȼAbI&=|@d(;n@7[Wўo` IANU.z |nt2gثho1gWeDid f]d^i4YG)mH}G ;*\ F mQ~/NPvjɸ]㿄l\o -tcUTN a;X=yjZȼpeȼ]T5?H]CO> ۥ}HFW~zˢBSmmUDOK۟f󤙾%Hvo uu £"4'P>K&Jt+*Dji`hIc\l"-˭g.ѥt)/Y&|-:5t([ UGFyO{Qw({b% \geBc[i;Qu"h{gZ?>_~//#FL2܊̋놧lLKEqjI2øȧЈp"rm7Fke?[@-"%6MU?CqkҸ2O) x[8%8Dj߇5;ٖ^,X *`CA^DE)(E. b^D齆 ^HGx3| $\׹ $;i?vYmVtՊ>H\Ɍ 9өwxgx, L-Jc4~~AnGvf-zm,R[k SB64?ʋDG7 ^=mt*[ouwٝF:dSV@M{'v7y(Z& p'p&:s/FEFB8OGs^0sryK0ZU_%͒mDC<#"㰷GEe_~:m<-R { -gVYlZᑴG>JJOgi^3 tS=^Ӻ!dKmJW*ȷhמosNx4R򚟰>bFh6ېY}#35NlMG"?K0kf)F V !jIEmc+%BvWit.8/ ]Im w-&I4[a,ޏZ.Ogo|{P5fAy{\c&\gVnq7Chp?&duvӰ@o?oB{MhUhmDcٳ/>>Jw%',tXRi71( 7{_E}l A_=nmBY@=J.[u}\ 8&WFzaZB^HtD} O m'{'ueit24ZNs02bB;հwȬc7n^T%- y~Q]^֊U5WSӜji:T'{")[S0cY^INh|F{ =DAщh/*.;lJ] %՞])TqV4f[5/ĶnGk%:YO˓Kh\4z4LBnWmIsyiE_DR"yx.COGJ-{qEl;Bg$ǕF/of;UsP8hC ٽ+PO4Ş5H{ǝל^Ԍ׍5Ӏ')p4zf|* f{*|{FԂ^gs~^po!VZ)^:+;Cvg)'I#B>vV}ωf3h~Pʠ|" x-$[iTWF6秝Oߣe}0 ^B5Zɥ:{xAe'<^4$ІَP[&N)11}ˈʤ᬴{d*R<ʢ3h) )s[~7gd.Yw?tO.%hnfF5\3ݘ2d#/~5zKˇ(~˩"#C/mMdb[dD+^ :MLIuvhN:_`?4s}u]B}:- UgQmh%zg؊.qw%:cl{AւVRՒcg4Z0˳cbRrC%'Y B )CcfAC}/糍nz' lcL_Yo8xlB h/_Jh h({JHbO.X?Rb&-`mem:d,5dGt-eEUF =h+I,_茹zmRUpF2(SIM%[1q ƫk4+ =f~'WQ+u@'_t6Ql]_䍨?ΤyW}o~EϣQ잛;-inr+{[iN1簗Gsu|//_:Gn Ŵu;.Z2*KKWUz݄ЫH@v+s0m~Nh@7T_p-54JA+P4Ʃq=6:np~t1O{r^2SwphEUY_%%#դ.g2%&z䘿Z蠹̩%{T* րYV{d+jOх$Hq W_} Rjp&:'_L^+}I#c͠fUS%4[k44<{CXQ ix{.E *+4ީSK%MFCcυg :i XuD@x_@Ph.}ACiUU}Uu^1hHWV[4T sl=:v>os;Ppo%jn ip:UP]0yP wWHsy0B- ;==pjQjUGC@ V)^;9:e;Jh wpW#gF5ZC>);)A_E#tR5ۢ/aOȁCrA9P5dLTz7LUn hz7=[x=wf^;׎aʪZ͜yW7z5M^󮴞ߦ 1x< zgIZ˲3hi{n5~=n泭V;Dˑ}O:iuqbݔ~p~9%t;zZqY = k-:%;&+ȒAANyjs|wo Ss]k=k):^fkֹfilN#Wڝ? Dׁ@>UJL'`YԦfG%q{C7`G\p%d|]r(el ]Aw~382/hl={ :G{Vo@6QgF{91kŬ$>- St+}.f:H|-Zn:ZOu:FQ҄~©Jݵg<.~Q¯39}kh>HϬ/2 T9\#-%CwR<gh iyf"ŔAfuAP/+~e|& ;R8A ?H.Y`̈́:J_:ըel zM :0;Jy{vJ$!3d_ӧ᜸2dx#ow2-{%9EVڸ]cL~ [RwQ7iGnl}d.A|VD< UdwLj7|:<; }xOcp1BϸNFzscUԟd픚^3g g:EFg ?u!N{V5vw(i. m읆JZl4{Ǩ+?|' Ư**8,^8@"%4YsO4ל`>uVg.2@E|:Ǽ2Gki~:n7q%ucݱ鴙/>tuR Y!>7ksj1FrS::kbc: r}-if|N7 }i!K "g*ݏ/Sr?մ 2fYEz%ه|T MKڷMJB@ DۡӡVN#ZIWBX@7})pV%њ5 obu=HO K>]) tƅPy޹Bq6S 45u7F 蓦>h UyŹF4JpkK\ɹ8o}7[ei--.Hay&[1z~;!ld'#Uu5}2\f)q3WO}R͏ ~)EH!t*Mg]9“=&}f@G.JvD^SFW=P)*y,&'_]uiJt Ioꌤ vɺ N0}Nu A_7 52W.48WiP3Ehf4t6:څW§pJ+CֆO!s^-ԞmKJt'SFD?Cy#$%= Zb+ 8 rgey?ޱ7CmA-"qQ;N=Jx~iz]8_'2+!gjq?v8O3MFAO*=<󵩽죄2A)V%~NHWG )[~Ev9B-ދvi3Xx/ 놖8Έ8;屙Fpva=R=6^~D6si4\ϧl W߷e`눻q1a &)t[v o4_:x}#GaZf$r-11XHjf4Ū֏ޓ sh~hq^e&Sm3ļ˶ȈфR;Sދeˇ ɖMf>8[#R02!ɢhT>hgrO;EYPV(nH*` QEKLYZeXobʫZ̴7C>T]+lggmfs4NK@cӌ[sX "/qsYrhANHZ%nN;]V qigb|UK+)iybDelD3`ϖ^?%zl4tϚz z`=>^!tF.Ыh4f7>1r\x2 L3\)buAQ/6p8J\RtK%d6H#Rj>U69]h K+S+: _E7 ]5CG]\ԗWT[P"յͦ_ȓWhuDgl\o]4w6)nF&)N6 (žkuq/茕/w>\d aɤ2[]x0[vFEfķq2 dFS<4jݣi/ +*͝4KwEo0=EnF60۝2qFAcG01ASDvep Mp64J[ J)|s^Gm"$8u 2ӪŞ)~xdBlfSOPXOA&B}GA6n@oqB-Ve5H'f{ D3=9MaZBftJ/R_Xl?re6{-:09I y68n,MJN),V(P<؃hHZ~v*aޝ69p@5\wz'4qxsn@u :#Gl2@YGЬotB!G`ꘗ#[bgl;ݸv'O M4VX]XWanEL[V;KrVcP) Sk"y=N7z=񾖃s[l +˂t󾼌[vnV}*/Y!'t*$ɖZklKBgb5:aur]$dc]R!'2qzK,4 jܟ`^Q4hzb$]T$'AuPGf! ME'%\Y0i'~K f瞨'Jy%8 =4۷؇Ab%p?!twikyӍB灖K["}C7&B4QI\wl[&VQgT`/ٞ,-'+)zd.3Vx-Wc'p74?[x$G8= 84sSXS4ꧩ+Q#s ׯgi-ރ-j±|u邾3k $y1&%*4@tOE{"/3iVҊ$$2x%CAz7%wU--.FHSB4(=u9;+gͤzdt #1+PG41 CCu T7R^czWyBȡ3@ {p^nʋҸ05q#'&e7},-Iʐ4mI<<,1[ l,7}iSwY֛aEYB;!ewҿ̏黝PH&|?,!~HGҤ)?>;j@ʫiayX);!6݂?C!)?P|giQ_dilGHd\Twrd1t|H8汫N:ƪ&VIEYi<]1IE8>3-VUr =72c17,^X `Pn ֫BVT.+ձ`S]d7G99HQ$?n-:ľn@b ghq/ACSP-)e7-ңv'M"ލrS(%-Gj 1Y+{jn =8J=ob\Fgmw-E_k9q1m=cLX{ܩjW~$:Tڱ s4;F ďJǫ;xm,M^PuKJ|lE۠[L{#_u$%4?m_~5dC-6RE4g|+"^aH} p&"⡟˛mx CbMEs7Ѯ6++4"Ym-p{}4okPƕfW{bWf|4dy9HyIers3]#Tb[ߠ/h`wM_O!9%.|&)EӊBD~ӵPe(A~?WbϹ[Btwn !&.MM@\ ^lƹ4i1^I%ڛԛ:e+OmYH9?닏< g4 8^w:4ݡ,JZ{[\$6$0CkASo*!Sj9'}ٞ-6ҰV\ye#|; :2 p9aRH/)9Ñme+]g8AmQ#fv&+#kA "!ҧMe/;/Jc/J*iKۮ4<6!뛭X]t}|ݢ?E{I_#ۋqh%Yh=4{=Kr|y{t89Mx-5ϋN׍8 h=#g!&sy NxG e@/eҥ :OA $݉?)j<'twOzhR~tz:G^ 4.-Z-(_Y[#YЙ5_P:y例MҒɄ~jdzNѪ Vi`P jun Sr_)D3y],U,u]UcExݑʱxg@tr rն{#Iϸ㡽zOAEGA"u$dfҔbit^gҴTuJ{nxpqs=&ox6r1~ Q&Ԗ?tYdn2&_iL77 F%s5MK1#e7蘝V=#itSZǕQ{P:gúK"W砟gejRxGB'4-MRIdvsg WjȞJ9gqP+r2 \U9!:.۩RtצI2ݲ4]+npJMK~N&V[Bivq8Wk̶/_1Mn^wwRmBsoM2Xa}Ś%$RT?u/!5ߖc4FKL&^AON:"тIkί0hqr#]$ғh}RSeox{,ƕ<4"=pR8\I}\.>Ii9 iw\K^&]B43ځV.Ǖ(R.hQs?6di|_@R|{~C^6~f݋JtPߟ~EHO%,-|[FƳ>Y $:G>ߣڙ| e.s#+"/ga47:xEMABf.Oz$q# yZIi;o%;¾RJK{ܪsW/$d%2[Uke㵡-5qM[TƛQBBFql[ )_'bn-q" yy?iCx_#/AzV usP\ O  S8V)c:GTszE';/(U%RX 4pCE4~WW\_iu&~HSv\F4ΌTS:gh:Nj9˳Ci .EC+|ƚR[w%,9E+d=.|xTԍE\FQ$dѻ+>|9ߥQYy$̔"fe0īkErBh^KV^ޜH!oyjW#K8P+tfG2q>wB^Fxijғ:iXB Ӝƨ,&*JHL'V7,<~74+y{ ߨ#t5tL`nLO.2Uͺ Ny8uf;&ZZX_ -qznd_q5%W'{=Ϩ ,<3ØAMl+sNՆtڪdv):huźSzJL_q^멞V$@Oj֛FFzZ$n慐SkvG*O*=N󑃗w#g+ۃV,me8Y4K{Zcʇ !688P"4_34);%hu9kGkZ,oZ$QG@S;FM[+iB`^ڀS_4 R߭sܽESMy:j..<]r6fP>׎:~esq#+BcUir>h8F㐃gUmr؋* 4hAF>0bQZbR.=ib])h,T44aZ霐-h|Zt>^{QY}9QO_qԊi!~7&$? 22^+!mԇVKϐJ+ iyԙ"[{X1?OǞk8c55WoAE /B=%IqjMφ˫+CJr\Aj"#=r+`gjlS+i6yxŌl R1S$mCOF㨍wOIKG`n퍏Y O8tiAFDDhV97X5JKj%U0߉u$$Uݮ#IfR#\$Q9m^}>feX qJD;*fEbHH#fk-]jt´+"Ǭ;e8oICoCw>ft6پ+ɗQ-wh3G]ʷr F fy7B5U;tj(n)iECRV^@Ƒz}rh@QҽNv+|ZVX&N+k1עL5厠Ȳz33 =Ӵ^_7CNoHI`Z!~'Sh1\^Ol6[Zldmp6468e|BQU- dn[}w%riڣSgltm+g47KN$$ Rsi>\> ]c ,2P_ M}X!ӨJ^-bI%i=0)dք.+@}ߧ Ī/CM|h8f^7*l$x/BUԁ?@3x_(gt*e;g{ZBG쟑^- H|cKH6j:hfJ6+@w: .}tHu>cݼJ:an"Ri7h_jȣṴ{fK},mHcY6)N_tƳ8E^1999i&2Es=e&O@9pJ*m>MýAV tPN(o҇:9Q_܍.uJ.Y=ߙ!$Mk(upf{1hw T=!Ui?Z ۑNwS t6t4$[C4=_+Yc6 CJt39Sj%=ټh +<MdQbwџ#g `.6=4W1Z]~NjB]>)7)|ߑ3:<=pf]qpg]p~+m"9J'5 Ƞ)lR q9PcwSDcdЏ)4摘̥*4]hF\1ZVWBJP.\8PdH|d'Nʜ|pl(4_crVH4'm%8. *o䡿ҚLHtj2)DCxTtS*y)30q4o|MKDmqt>V|pi%DǠ"5ɿ}sX(X6V.RF$K?++uR?|Jt~&;W|AI]?§~+:jUbߧix߰#K[:6^SVTG%sNIڍs|FȆ 97?VO7=FU:M‰eUzjǬ1], do$4-O}ʗf$E: u -^IrqM6>7[fdG^*_-X=)RH'G $ F5C\ɗ!k%s@;xwi=Z5";GÐCسx1hLBN=9@+kPknZR(: EZ5N#I&a|$Zۧ$u1{\#nk9 묬Rl>3G+s&w"di&H\3?fw ف6kyA}~_H6!;$hγWԲֳalp[) a+{#!W"V)Z$n&DtrF-JeK_7Vm)FQq>>+i &mEC?*m/ Y%J=^`3 |ݵd4!̛ImR7i3^s5=i {&!6u+5Ûxq/hOm-nNᬮ֊tz=xfZqy2H0 rCyX~AfV>Y>WkS;럌vSy(X:<$Zl/ksDj0_DC29OJ-XFӡJ B1*=i:;U)'JAӮPR(E2`7{zB^7%_M!v;9G|m(C){E˿CػnG2JR%1-ZLl=]܄"kRiY0tO} oϡDI#d0a<;(ZK)T=m%- M]D?VnP%6ګ5ϗFJOsD.rl<2~U6 {D:B+N+3i!ҏYzzVʬľ˽$-Lf%>XvC^y_;Ȁ2Ӓv1;п2h^p/f9yC4Κo(BF54| wjO@whwzO;85]PIGZ kqJv3cGځ;QCƫ[)}WUe_rO{@(ґ"E2HQ,(}.}GA+U 8 Q"PiAJ ~}nwyǜɾBk\A *D: 5N5dҹ*EqZAr*"<Szu^@͒Z;)G=ݾҪTZނJIcP絡$K®[C.bCc"9֦|y c5}8MBe+(eS- ۲q&NȤO mi$9Z'PShE$u^d&;=-4cޛI?c +HK9:iEgH(f"[jaujI3-AoW6mdzU?/.:agߛ'J0BKJ̧h:}⿄:mIs U[Jp7Tҟ`Vs[rF_6l-xFz|S0!?jhfFTS$;Zq&{!ZrhlCFpCvWZ zhSAR=GN'{u4zRJIv{mp])l!_렲oTm3a^giTR/-5zFd*WGbo<& E- CyVA(KqbIg[z]!ډ G$?CͿKXJ7bN{UqZTUqNjxP2<_ɪZ[oe|s-x?йW AxAn rաoEz&RebiC7i-!;#=QWO> 3j>+QI^FB%/|=s%*YkrTCUR:rpRJO՗Z,qC3q֨N'ǭ(4).vy%EF;ЪSKvj;x}u] ڮNSqg^h kbT31t +cߠڋե_/y|0jkŋHnukS6.a-B_T2T)cR+`K@uR ﰔڬ-SPe!lJ&P&} n*_˻z}>?ՠ,筹gilxLک~!LW=uVZF=UXDFu=;oKs`LfY:K1AA:uu„{M^ݡc5Hl53HtHaB+GofcoFUPyLCcPR"V,V3(7/ڈ=t+-w*\-؈ @J`ƿ7o=U͠ZTtt/5jL߁~BLꪄ;SZYSk=婧T8qdE:kwfᕟeϥt5b ի^dXE%Ron>/z҄;ox=iMiY.Z5+Fk-:z@MYM5?ҪAth-ڨfq!JYn᧣fh^6N܋SZ%) VZإ?m.buYd{q{QgP1بI[O>rA[Pl!`}D_y?Z@_HPƅ9$Jl-#;jJw+/jkf|ur=M:~I%l,~bbT#+Cxȫu%VH&*-UDV:c~"۳Y*`@T=!`b55Ӷx,">b9긜JEґjs9 g*z~s/k̊ވ mrh v:jjkK[.h/hh3Q-(=q`t'܏PenQei_dNlWiҊc/7Z41G TCyb˟Rs_Jm|Ki4w̝*KP꿧Wj Db"ϝ4Z *kajᲱW߆7jaW%CK5&uUzU *}0$,W:r81~~u|F -G"]Q;UM{! VnbM do1'ݐzJA%F hQ+2~ț75".M"?=*AsJ*%L2U9tG\MUK'ē`j(ei&2o0jG3uul/ITEks'#kQT˘Z%AykRA:-nZ|B+84_A]aS͆!u+mds{@l, Ǡcj#(SMUwj?LөPdmt R Ʈ-SdW37:ϱg*TysTM q-k&[ph*I*X{5֫-bmM}9z*2vٛh~ *SCל_i9qa_:CZ yX+FeGuph Fe+:a{?uƋO['\BGbUCtt+"+Klz:eͲ@_jagvB't=$vNDHX2}VS]MUժjX ciyPќ@mNJ4Odꢍ *=>QFN1ĻO;$nMbHIY l}T>wJE8--~T~_B*Y|0-aTĬ6"'3 5N*4Q V7˔e8;(5ؽdTn*p}x {LkZjZ^ {XW#7DKt8ͤ?+>Ri "TsL!q E%;;Txƛ ok~wWh_env+ƕ<"r68AKScZjZ9{Hr:<>;"F/WcܫjE:!Za:"I (4~ JJ(2*X]'$1Z,^)9+Wfxrޢ>MQxfq)-ZתVkI[rSb9.\& ;O ThhhW}{',LaRS"vai<~E-*F[,j:˸_AFlTbw`'YN;JT,a Vě|aQ߰th_FܙD_78'El?m 2RA 3h4*SF#߯"_~~ޒDd0Wъ@M=nOh52EV<骙^u9Y t f  Oyӡ$ 7=eKr*EDCX>W5X LbU)ij?#}\eIGf}G]101/rC+tg@[CGNo?Jw,~ٿHA&}\1wJBNׁB鑵ӡi8[$ȝ) q+w"a%h)MQʓl&ZxWi[JxA0ZtL9=6<6O~Fb_Խ{!oJ繛j|b6sU+I f:3tݾ+\U0ˮ.K"DaOg6-KP}MWBR-:J斺Ջݐ;N%D^k oG*.hרAfanO:Z>oTEGc6'E:iCԋjH \j2Mq }{2% K?K8ڛP./kJ#V&/\kPHC(?_Kg/KVH0 uRt.3)ޢiAfai-oVM얔R-"?"_K햢_J\8TE~LrU^T:uX]-$g!ױ7S#BD.]'X#Wddb+9ؗ# ʟñY%)Oi/|>r`ohݙ6ٝY 5=fe+6EV2MXfQ]Ykm݊N{XM;^Zx]Nc9̖+õ"jt։{Y]ʷcRد1蘊9 {1g(5A߾$\:,3Yjz#,ϳ=%g[G0۾U1I-:`'DsGy =&D'a>%@.F#"3?=ȅhZw7@{d>"Y(D]݁@% n5jtpl2#6Ac,ϰԊ@>fc_;cZ%eCXk ԛNⲯڟ4_ O7 cZrw6|:ظaʖr2 kiΧqL-Ed D%Lz4V^U-`ha/Af$.ę1^y\(S/F)M G4GW5YJǭ~ךXe< jx0m6Tg:}jĪœovSQ!V9̳W`E U(93,l0X_qbE˧q1OPQMk\noտh}Қ2=lH#4?,Ǭțh~wgKI=h~ )^@uByyZZ\&nEY XN)^8DU TOv^+bqh<226RZ:S]Z|B]/әn*C|~OsZF==G?hq?Y0[ }$2jVn6WjO-:^|Sət젅^%a _trM(Kd9v1KV {{Z%6܀ސԔ 9_O#<DT8lÛfwnȷ!Z @tF6CN30n@ǠC8 2%TY~Ggd.5GPXrXoxn2=bo?v1w#w`UE<#wȠݴڞ~P f.|ƽ*RI5kNWdzQlbe+L{6;M{r:A3hqG-;\Wʯ |m"Fg<c祧<7[˯OS¯9E~kwD-u#r1zȶ@8~Ks>@wpg9禖gѯѯ(ߑ2Fg'YUʼn 6jtWԠ]jjr,b{3MǬk^_zJ,cZݻ%fralgm!H1Sec!n?JZ5tڇiysU(.2f?U6>}l(Cj+:f9K}o/w&~lw߂^󯼉As +}P@<导TyFe6*[eZy 'W1v䭬'57 Y٨+vlwpAGLw } i:nFNE\PR=r(]ݡ" s9i+n\daF j*`E8R1?)=ÏyCUŨ};"ʪshyέa>#V݆В@{5͗ȟhI\N@yP'\Fs#VΔУqb?moa-9E6v+q>Wmb.OlF!; Oե]6fi3Z=/|o__v͔h?泯Hy< G \ .)Rv jeUxuoD¯٩<]bGis#oh1y~M,SVIZxr?$64ާ9Pȩ U lU=%x]vf<T{@Olwidu]4wUvΒ|392Շ#2q*s(tHݟ@\c>^PTyg qn;şsOТYBr>nk kٔ ;Ixbi]TrfN1,NNc 9*.Mo(w)&qZU>o7?<24rk_r? b&>e8[ڳ9R5S pTyz^ . s8'^K9sn8\s8Hy&E_ITT-?Mcs{)O8S/Jڥ EKCT1#i\H=Vohc-XțR }y 5 25s-V:.PR{bd͒j)%5Ҙ?[h^몋Ϥ8yPEI^H5SR4Ī=4wr%x ^)҄Tw>qFYg)'g͟Q2cZP~Jټp\Iz<.d!Vp-y&a๚є'WboEZNHXJFV_lD5(vFp >ϖC4Os)vC>'s)mpԣr#9FP~. gh4JKcJH6-Mi4.qڬ? īݛ03M-'X3(Q| g{jR#cs {Y2b"~n۽$p P?#Y]`RuW Ջý"Eږ`b ۖH%ur:e|uuGchqG:zQmEՒݨ'1͊'7^T<F-@ZN/?~1QA4 +UOa D S}Z~ᵞS&EKCC#52p \7<={& e7tp/p-ÇBCL>9Kch67T[;s( 김5 >8 a`oSO-K7^`;NoPEz0i Gʥn\ρ㌽ʅRਕT! |P}@C4~ĩ>X7 \Y ("UxBi uĒ{\ !m)7(gw֮|Azᵉ*4m߃rA>iy W\@ e4y^Qؑxzv|?zT4'=p=mzoKy4c5҃Q{[\p oQO:UR%_<9vߔB y)ִD.۵sigC"'I]R#+|>}KoϨy -ݚS*qO3BfRN[Rpp} Y)suޭ/e$,3D8'9 B֎>n՗]rH7Xϼ| \g=&H7CοğfT~RzRI/[wσT|Hσ<4Q݉ҟ3>>GT)}s4K.pepI:R(7ksD=ap %19fĐ^ǣ+ȇn5Dda6bNvS1%DLShU *u/b<306)'Չ'S-By.4C4E}=o@.6?pDW^0?^1E{ 1+u}ǬmгO}Cx1c=iŇy:55I Mi7T)>Eבaas>_|<>ݘ} ^J8B9)Ƽ|T o5W=. `>SP٭jP_e{QFكz6K5 -<{$/r|=MgZ;hla u}b&gxMmlhZc|6#CӑFXo/O~#a M٤Hnn{8-^H/}ר"pNTak\ixӨ:Hw 3)CHE0,̺+k0R0Ü^D:R.9ؤDxG_J*LdR5ߣ^)ޚ-S,k}% SiNbozi0FױmRm'؏oâSmj"I8M%Z}/t&W^_e:$?e4f"R E۞( E!M_CJ\EypqhkLQ]ƕl#otjlrJ݅:pmTIY' >E6eX:1tt6{դ(=Am)r/zNwu*ț.LlI4H\&R.i;Me)r~IѶ֝I#mW0;Dx-$^MEׇoc )Eו0^oW1i7}H7}'bzn¿νch#Re*bRRQolDJoT?!0Rəi%"ƙu)6&%2VS gQK𬵨vXZ*yz;!uݦ8gD<#L7ncD`0u?4\H؇;ʗ%dһ)?u>BM՗Iw'Q{܉{JG>Ǿ>3TJ]U<úSKZk+ixvz5v2ɧgCMYn/ 7K,I¾gWv7'= ,2pi⒥Oj .(8ۉ"^?b&-5O%0i a-uိ*> )CŰ!}I: .Kk~gpzB4áv'6<]^::_zicY(4^^@ j>)q*MQC?g\ oc$C4W\ xK:6(W7w- ixM&xs)s܄x5j|"i0jN=w\ICpp LCM3?#np 2{\0kw@u3>Wh\٘O? 7͗< x9N^>K9i j,>0OIXC5YČ6p!Z>|J58[S~={r83 Mp^zSԫcozS}? TU,ؚ2qu,l@=86ԏV&]>A?KVK8(4;}Wx,-H)vP>Feut>y3ˤf>gVpweɆ+M>\h F0HMI#[B Ƀ gTg>@s7aVoXٟNF%P汢zH.#ez{K"- ܃ߪ#<Fj# %}Ih"$i(j,Yd0W5ف lBrE3{XeԗhTǾTM)H*xSIֳ.W3cga:Qs0RIQj(zJ4k?EjT_<]C*sQ9i,<3Rebt6FL U৿ĉS&*`>0[w##%ZM;Q+S/xSܤ"Td5gp^xYdGn4ܤ4  1UG& լ L6ۏˣM6A xS$5':OTzLBJw~a\LK1IV_3) ShxӡIH81$86i(2 ~2޾#R5=MyGvYpbv H;׵Za}*/!en)s=c[j%xQ)1f֙i}K.w!>i$m.[fh~68Ro`_CjBuH;,]{xS[Ig,imʵR$ RboO$K۪@OÙq{X8+IKV܇tG4F̴%"&%ԗ2i5eo w"J@y_5\~/[a:%h?x"[>L5)S_B:OR<>tV&uU^ۀ POL@ ŅTDwMi %lT?pgR%oxgg;]t֤RZ#՘\7;DG:4C׋5p"i>Ma^5|3FR$f3 ȿ UǮJCxx,7*N >Lͱo^if,6u4Kx4왌1N vpZFM{@e8 HEp$!Lʧ\axTSu '\@mz <![!I'R/,8`s`0<u:p.9G jʏʸ`8B-TO>1WO2\oH<4Z.؟Q&F)RUr? x-x Ru(5Z-^j".ãa8f >Isa5 Ke:̛uoWK.+R>.S w,.kDͿN@,8W _c^7\&ge&4Sru.Оe!_稽džz=9)1$E]Tq "uP[V;<[68Bj#W],<4\pIZ&wA=Q\s}p'Kqԑ^N\\+9Wڒ|Mt$B.xm*BB~L~kƸUp_en7pqWÕ?UmU1ƂWPVW?IVYr,>%91<$aXy8Q .Sw?Z^K/mR8u?F>kQ/S7\g[.7 .I_xD];0~E#Y _mNnNb4C_} Nя s6ǩ;|\m0yڙ&P0L p#n;i τxd'g0QMu6O/E^.+u7oB?Ij=8ZmGUj3G yx*ӒD-VX;O7jlvܜob=S)Nc1x9ܰKvRpga[ a?+\@N<5g-ù7|R‡7h r+8cx_Gç sxz9`z p[ppCN$8 g=8r%G{?LpO1'9b0u_-r9la/)Z v5W?þcfQjSNR(4P8`8' e @PMW@aMӝ_`L?U=d-w~' Ԝdho@u2U^UU<"08d^!4kP|ԟnuf&{潔B `} ȀC*NgW/~/#ENSW' M/2H&BzPyhr~iI H5){1_+;Jr!%TS̅KyKPkgk=QuÿrUuF؛|i< <'x 64Τ(z\uT4yK41(A}w2;=u//$5HM}`V?{0rJ'Wg80{R?X۩hHuCVxS{:>BW(~*֎,V>mh-Rm=Gʶ-_&4ozFJ1zkSR')&ב gNW"e&~NjQMػ|)3l3Wߨ盔fdl3i1eJ#opGji\pfj;!`4kR'RE ׉4ϡnFJI{Z$rIìͰ@_Cd Oi\cRI#x?NEvS,i }<}ėS&|sFc_LÔ o3jGܭa:Cz֤\ayw,AʶkEgGVixhI3;0<ׁ$ls/ {{ڍue >FC1): o*mtcMmǐʟ&"MB o2ֶR0L6M j+TJvL10HPkmH=q%W& (Ft%K]˝8#w!:^ilFU/`NH;_4gU1i,H%H#:TH g+^JVmᗸ[p9'pȑH t yzڔ+wH<&ƹlMYّJ=SK'̽TãGؙްNX'$]Xr:V"p.~[_>iv"l8-M^Φ/"V;,sy.;˰0N4P 3p&9NYvVals1FVR28 JzONd8d[W`Q~~5@mXBdH,ڭ\kq 3sUO Z:(yLڂ$ƹحqxrO䧤)uB̩Qd2P0\$p qej S|D|IEHxwR,OzIs"XW<>& ̍ @X+5Cma+LYypSTЧa98ÆOof1PY*s û, ^ny\ ŗ;IYoRt&O^~ }&5zƂxjX`}DT]i68>x<*#PoޒMΓe./-><g njC^ |QMe|wuXb# f.yB[)jˆCp2Yhoǂgcdv*ϧ?Ⳏr9s-J0pTvÇ%Fd0>&o ggF5NBiCY٨>ޭ~7@ l-N8>egeovkZDs[UϠg *=m@2 Om>>8&a>죎8h8I7 q[MB̝Xf֙ IpZ$ط #o|NŒ47߶-q6xicS| X_huJJm5YMuic *Kr SepvSU=Jw2KhjnEPgǨ!?1.w^GԟISiwDEH&%b8Agjd&]k8^8& ЉAtꀔ4e fy/6I|*/ p9ƻ`JL)j̤H`Jh Ap&ü?դvH/S#J j+ߊ54*,IAw13'.@2\MA]& B$UBƻ ᅽjKpƯw2uTdRZ#L˙:qRur/'}4J•EA)HV?SkHírf5 zHɮ}Hyf(\[G!=J{dbߝu()ɺ"Op'sӠ$)chGEJC567x]ݑRW-;.#֙LԗO4j 3)% 2MMZ>_0i߃L{iYrqQH4`ce^u>M]WaGa6, c#ʤk8o7Ze;Ҏ<%{oOI)lmΘ4OzP1)ʦD7!Esw<Tu2$Rq8(o򦥞YU=r(V9ԓqI] )^h>CYʏ[܎ԉ2)E0x6K<6퓶6?MJ@z@'wc3,OcMʱIgqg;0L1Ljdc, äB`<%Z}fT5muE:&ԮN0ޔWnoS7GvHDn 8Hpk>A%Y9 /=+0GSBp8 i_H Rc \\L-h@!}/~p38sd3ԗCodXZnc^ǓCΡn{F5UZwϽ=UT(TEp5f a]Ց0^y=+$F8z/mݹ<:&܄,GU* ƞDH 88?M= Wf9ofOpgn!cTCMᐗx<RZye-1$?j*H

ø%oO׭䫲3XVq)C;k7u6㛸^_^>+y4zKCԾU8x0OwHީ{=鱆'10vR Zv!Q^*Fu-K;]BُYFE<^Cj^#x ۚ:z9Fux:j;poԃ7Lzλxcw̡ (>} : v:!O֣.FVhpQ[%Sr)_ai2_'p3p=ymxڶ3Id |7˼ّaFpH 8fio@ψs8J<껙#q.pds>P+Nqrj&󕥊>3hg cQ.bx 5lנ'KۢLqJO{&|6ok|1.}>1oE?yᐿr!xAoVԼFKOuTC E(P7>  ؐ_4GoᐇSr:>UG1kn<uc.2 LQ%)T,agaW06[Q}G;ޠ85{=[mw Е 3fu:nƆ҃5cje:J h r5\:s$Y]v\oq,PL v̎?1`矁CQ6TM .PplO6,I]{)C2MnG:GDP/hoB5+)^.1 }/Wl5Q֮MIH-o"[ud# 7=q/" swm]`2%GeR<0/9,e{J"XK SRJ@|k (Rq X0ī(GuF'1i.R8"GZ:іl;(?WʵDu64ZQǛuo=hmkv63϶ f&*Di8[%<1՛邶)5ʅn߸{#%[?b֦TF.,r~Xru\nb<#'iD01V"ʶ-3iIҷؤ]XvP7D5c'LiFC>xݩ7eXVsx9ܺቃ'1<ޏ(ٺ~2mm. H8%QTXo}fHm): 3|HY~G#ngG|.-i :Z̃'hD [0V|g`$Mܗ+C܎Nu]#LW !E tIjNL/s o@Vxz8JU˚֤0}2]U MH?a{ʴ Ww=7QIԑc)~xHZ#u|Ywq4*Gb;}0=wh(Lq.NC(R;,̴+ 80+*X'33|_L+LQ6'8F:3Ђ,;oR w7rṡ WU<8:kP~ 6@i}%0%~ͭ%B GJ#<p5oCe1B~Q]6) 0flh*j قo.Uî.+-gKlŨ:p5\I&пo|Rf¬ŧ<`~jQۥ!o\t).E 0߉[-1 @8<liGxz n!9BPp9u̮_F-ɯJv~_M  F-Q0q:ŷax3yvCR k,7֘ O55?SL!4Yb@ՙk,%r)h@3y]w`g4&;B<#{T%O}.T%Zp_J9'WU=-Y GS t'Akieʓ8RN)ylp?8i qLO*knj-L Ss\"}uevlZIx6)+1*+ {n ߋ&q=Q๲F:M,S׿~6Ln!=wnr SCo兘zZ*Uߜ8X@-ODbscYmE!uφ2f+`;8A4\SJmMqs~'] `8[ 6\nnt[ߓ0~u@0O_ߊ8hXya ڳ<0  N0H_ #2V9CaiKT;|>c4xy3?}a~]]1ڋ`ؤCns:e=ăusQbg'`Qwa;8Igڻx8Cwg8V'I7\j9<|Xc BAgTγ#EQ],ǟI}"gZ?vחW;!Ci߫^I}{IC61#(m,A*   MR"c +AuPyp_H#6dMEvh#n*u evסB"%s@:#YR D>lYN\SMuTaROO>Sg2ho:bi(?WH)I'm~HH Lʉ )Q8ss$h*JR4)3UٓOJc\ Bo2+e [Z8h=鉥,/Eo܈M ˼׉~0ùJz!JMhSES3 (ؘ'ܯ aR 'ẠJO 3|T /bᩇEA\j~jT=|=>\ Ptﶵ+8Y$0P-[Y7m?^i2xP3s>lZ1,Mxy&PdihQԀIpu ݉-;4j *l4+!8=4"Q[ut1&Hg;by\1a;>Gd!x;xD!#:|+ TB Yv.Dz[ x=_ÍVe*i.bp ^;qqU9&)1qԤw#p_]Wy|sLl𐤡VnDtoxY-MgسM2m9;c=a4綻kp\-\P?5:<[ ΦzZ*AԿ[,g O1,n )]^79 ! ,Sވ6[ *á8#[ǵP}%I$}?N Tv|Ís2Uj=|FsG̯և;`d*x̃ؤiٜ>5_$en 동1Á֩OycR=O_4<О7,)Q5Xbh|ј'I?wZlA^m]Cn Nfܮ,yra#..Q^?ӣ7/`=ynwyp vv`,xv8nSE}5W3,b8\/ߡg?}a|Zw'R$KQ=(~r6Y`t)ΤԤlۨY3)mo2TﺿBk9эFN{Sz=5)v~4b0ƊPSfRR?̟miGz5T=p32ӤD:ԕQHky-hsj'9ک祳o ֤͓vnKpSځMx?u6`瞮H9VCӛbSav*t4Fw)Nj/{s>oQ:)[`|YM\+OJCY!)pDQM~iNwc:jSu~|Tj]WcHt ۚzXHSCX)OҤRGyFQ{yϑBȕJJ-zI $B &`;*(vAADPPQPP"g&'}^wΌ'uFlpi{t.ND.r : p. +ؘ*2CV\ 0w*$!v+1w,5XsLwF RFMj [A{>'A4PM.?yP7O?Lx$.pT1v􇂸pZ1BOE_͕%0+pI~ 7#f]=Uc*cf;eMI/IO3W5Q8>-8s̵? Uz O{0f>c1geSڹ^?-6cW& D| Ls>&f?j+pHË>A,?](qDa2-Ui:;zj95|}1u֘8[< k:cx^~]X][83쎩ov5n?h\b C1"2Yk,T:ɧ'~N 8~ug\IeD/2X8}^h͜sfm&/(?cFoC#~)OpWZKq,uiЛs ? _=.S%ymM|]%,OF)Ws@K]01< 1_9})/]+ cfEsR<1o+5: 7yPYޤD;&fzqGĔ+14û)j9߾\ 2l}HSj~W TS#T-Z|iƹ5$_4?Iej}(y'kjs^Dʫ1sIm|K}p~K6g$O?OLLCQZ>߼Q18b+0#)/AjkF$eD_ϪMG%_Hekov$uӣVA{mڸԋY+TJYGzjqgb5qfz&gpt9Lz8&PK%R;tāzQN漵۪=,{H a gjK]8$47g;L͔IԶ8b>PI]J7R&3虤tiDdSk*X5mn" g㽫3S(-o>SylRkC/\&ӳwI0!lo/%EX G!*ͥ6D>/bDasݕ=Us5J"z(*=r@ұx1~9,^B.2-UԀ3܌/ڄ'l%nz8߻ߕž/8JحfaRK(VsrC &Qo#h_*6bm ,YYMUηe lbO2OPjg6g6z;Imөdq5]UڎK؍cyy;&McΘ$pvߍTk['bmE<ʌl-rEFy5^\S8 +lE|W.lﵝ9TWMMcI4[@6Jךjz?_%<9ZUڶ!Tg;q4 ҧ8g>UύR0xtiaYsʸ =wGWlX[msuE9!=H)k9%sBo>Z`$]'.|1j^ x4wgO$^owW 8^󴚫zK's@-nJg1Τ8oPQmjNlCRS._ľNZMV+TjqɁkTiM:iK ^~Ȧ$7%P~R/o.5 3xJtɺX'/*VFk;ۥ^dq1mm "qF =-JQO)R_lm?IeZzbX9sm=LP.5wi\$)'50/zKHSHsUOC>=ҥvb,J2T5Н/p钝/}T+̬& HҀ,RTCMݽ͔ײaٔv3XvIz3fRIK,C ;d晍E=/Rj܀GqS.e.땪oECI$ s36`AA]Mx yKeT>1.p0 ohvЇOP}=+{m, nq6[/<<u3vŊEPor01*7>_*ԏԼYξ.]&T !TkfXEzyޥ/TZ$5#0$oKۥ >!aT5qn2ohR }@!.x9?1t|˦ͤnQԐV.T&|I%-J5IξR}̭zK_CֹXWB4ԫߡ-Q> .֞)MQ-ujb~l+,=~7.)J~Q.Kۋ~Ų%HHOI?ꛊ. 'y.ԍiSx UHʷ(QYV[}ݴv"!4Z"\c] ̬.pVz-qK)~J&&u-cm4IދY6mS)*py$>\sf6}3%g#YKf*z.`Afexw)lG191Xk_%}:LSm[!p3yRosp:\ `c[daٷN9,Iw\EY/N_Sqg|*g(VcNYUc޲X"8MIqRbꇾ.5*bzJafQ-7L3ya{n--vCQtשjy7AUU6Ԉ69 ơjtS'~WL9 O5}iF#J)HT_Q2KU6Wy52\+5W&Qu];[9mjZ)R^afHi GzORW+IM_w-dtNpFyhsJ3L .4OG7e5W0v>|VĦ/>×O,g+dyVj+@!߹{\UY {&ɻ&A`{R[qϷ~q.FD[5za9Hm>YyI G8GIyP9mܾȃCn^Êl9n'Iď}l&Z^l턼ɑgy2WV/lz>VulVf>!r#wˤ<8[o;5jWcYﶣxdחdz ;˗)CtvʖŲй_'8ƣ, h1>vN]rkITT6ͺkp5zى_5z}u<=_㫈۫a]))~yqGx͟DT3y ?~& Q93$ƹ>]H]jA<;SquL[k <[ڞ:f''~S{xMw4W35JI_L_Ռ6# u5J.xx 1FjvU<:f|[qS#]j2ijeKZCi.]ũ:/߅Um26^}äف1W/%C kG֯a\]~z*Ƶd$iKFYIt4>u9&&9_ƪyWقU{w4p\>yCRά.UG$ɦ`SR_I˨{ .uzj`,>ae7H+&{MQ֒rwtΤR? :R>%%^ }j2PE+gv.eo͍{C]呲J#%. &)~/o@ʌٴԇTdK DZ~ ^65 s2~rf'}--U?dc$]Ri9)=_}M ,^&99ReݭU٤OJK}Wيfֱ3#i')-H8NOCzIG[<^E-E:%(tinpi;Si|8(6 (G6],qƺ]xR;T4̥-69JſHe}HEK8GLWp#Kzd=ɒPqX50Bx^!}!nǒ).=]jC-Pz4qCj9IjT![AvαzAΌsiw̸zIm/@oTҼ.٥&ũ}[FR׊%;ak >(9~]_&e:LYl<ߥxgypV|mT)Q>' mKHRtĥvyϦ<̨$$*;n9뒝#3~i+|[M5bO|bY? %yQ8ю]d45K7 ƒr$uț:NW-j%Y0 ,>+usGxIST XvRVϥYʀ5M:Jաk]u ZH$=Uinj&\-e5\UUR9iK}/w{WT3nj4 8*ϤM ;3z]&=Uyyp}ݲIJ=iG- d-uY>)Zp98\Ϭ(ݥWwN۸!{Y~[@>#|[5V Ui|V-ăoH{s+5>3I9&o1.FSyw l75,weJEzqIS2S zeUR娠?fqnr9czD9uMj(PoYVq'o7TyQ=Δw'MeRR1erd{mG-=Y! O=5YKX$6ƍ.OvY΁$3 ᮓU=v#Yp&<n~E8=Μl(QYĦQ 3˙vR-z#G_/5__J}+Qpj̃XRG?Npuٻ6ltNoU]j%_ =Y)eS1}6)< 9+<|jjU^TgWr^D{}}ghgŻdYƼz :j}ӥHcI9,m">56-S)+4ui'oqaliMf TBR?OOas+iL&``"I%vo.+_DTu+١R"iޔkMy vĥrf&msW`I4)؀[PrԤSWaWm~v/XgwOnĮ~~ԜS14@-*˶#L^^u)ڕCR4gS;T5r5T2OƶiTުg [OB:O v닻:Fx}McRgWXlGH۴2j?jתl. eArd`I=}-/ӫ9 {~YOL7ZMإK*7SW H=|&u6kV\sR(ξG%%T¥8YKݙV$sTgE'"+G7vsQbW,ū&4NuO5ΡAW~cd/Pu^^wSx|*{F^i7d}dc?<:DP>ROjazNWq,\1(K0c73B9T/zDCR_]\?Z_b?<(#H֮f|w I=0gҝ%I]_mr>KJNkM"/aPv֖ʸd`նeo¼ҢcP6Eq6ݱrʥTeΜ&&]:QӼ.W&Fb^ӻe)觩>|~LRbƒIy-;1 8Fn^o"?̔S-ߔfzaJcQi-x,6<;fg -킗25 x,WUq4񰝫oJ'먪bTً}*cN2CĮ,۶bWOGxjfh;9bJ8[:1{‰Cci pn-˒/Vj v/ޖXtΪU'*VdngYinKFETe /YytwI9%jm+טxmS)Cռ^^ĸƫQZG fuwMF>ScTle"QG˽z㑲Eٽ-ρoOs ǓTz4RLU<c;] VY3<9*S0,Zgx55? x%Z^ñbΣIU*rs hqvVwi+QI]y#L,vt^QKdzUwFIyvyNJ/}*Xx쒶*qHbTvԊ3XQWwc~3_,q3/2gM fjNsk|>Wy@ wT<M,GcWelyH_pM~|!Kcʫ),OS_˪Q1բljQQය{2=Pп L*eQދjH`iimQŽ{>;sDVs^`N5v#O4.&>4+f\j+%$s*JCIsHH!I}+JHHk)=0qR/t)ԙKtO*qҧQ6JHmcĎz]g$[T]i)k߽ApJĨmF@\6U}y6]c.mtAh)fFzW{6m"}C񵠷$B~GuC MI9v[r;\ǎzzC$:(Y?/fK$zWs% ṴpdaΜ2|IWx$C7t7Qw;G7åIQ\3D!eJQoכ+\AlR_fnroSpgG5ui$}C zۢ4X /Ev4BDRE)^<,Jdz8[.F?DB>`HMzԾq|R՞zzMnS=# Ýۻ~ÎKmy9cu6~59<ϩ$;PæY踚w[rKYFG,Odi:cxꭥ ~իe)*l{x"|ey;y;rT;:dҤe>bD{TA]bQES56Ib@#myH(Rrk"-մHj'ћ ~䇤e3(a9CtLQ m]Z;< iK1Ee?Ej+kzaV:4>U ƀQ3CiIkruj{dM·\sȨ.u&?Dm=>7>ԛ\ryoM6S8OEҵD[Rq]lskSϥo8{bL=ևH%U!=7Ud9iSWRL.} زͥp9*In\4̐jP`iit$.K\0ޓ2ԟԗTbf$exyp~\L ӳ`},vim`JNtRJ1zw񗰎J轑_eRKU갧ke%TQ~T뼗} n(j8@oKRI8 (^l%]r,'WdOx}^4kK' 5IolIևX(}[ M-uk-{q?:{GM ujOXNw1KԠ/a޽.{7xK~HPSo˻PKK/P'ZuYp.n(\J;U+$?cLc@Ux/u HD^qVu>AZKjLPe%ǥ,Zr“H)$bhP2.ZNOaH?&̋ޤF{gܬE(elK8 5R[7ث#՗?)9L&KѹO x7-3 ;Q~pԗ&[.eT?VHTR7TLU򓺑҃?N1&jڎ4\a:Jg*a{`5h]<~Ir3@աӄ]*PpdJR)fJ紐~0>lGg,C,\ =[dC2F_vTlxdS?n_g3L~v5ENP)a wOׇ8]3ЯTob=|W%M~26 i&z>&ҟ&JYnxR8<p= )/zL2g scShjJ[\[-c=We կZomHҪϲ>c$sJ8>j16+d55;9#>dj8W25LEg:YST b39S߅̔Ij4sWq<j*',r3vL33xlƲE_Y׿Tx,Ć*vn؎QKne7]J|n73ws_s7.u1#R Ji?%el*jƶʨyqu7?*gÓTŻj>c^fy*AVHIfn1/P-nf2R1]L4]TKt\괕i2O_0R^e*Wf lU|I!Ё0d^sTux –y6{gi&&_ţ^WRz}FJLqΏP i+ɟRT0'hiۧ_0%ń]o)Sd'֐'}0cf{:ǔ x<홡o"i=y (JuF/, #Mg/RT5ܴߺԊkfoWy:z=^}EGE%o>Co 2d]e%2{Ǣ~WY4t})Edw-Ǧ~eR j4FT|Ild5URo;^] bISWϪ^q^޽ڻ4ki %]<s&6.)t>UZI./٤kSlڴB+=&>M $= I/TѧKԏz9v5@^ר4@մk.ު&WdjD.4z{1`+S\ܥ7}%;rggmHiKu0$y6|-J2VT{NXJ-USJ>Ex}2K?7+pjx6]COH+r 'r ecڗ#$]_ō",Oښv,8ګ"OLJ1S ԣI%-繧DS Ic|(UKc&;b-?QT=ϗp jl+ٲ'OziP6u%pu9>'gnu7S!S#WvOxe|[T?g]WcU21i?OU^-yw3;qOx9e5| {VĔcu|Yτ8nM3ۥKL2K'ƹ1 q%&9.Q;iSkd&ҟt2,Tߒ%$%.LH`117-HjD ^ǷgE1HI\GZ> 2~'ms|Blzf36'7ed|Q{4Jg}sCPg~Ҡnv^}CDt)%k/eJ 瘄ǔNjO֪gQΥV,M**=qROcW9zwUIB]94GaQIZ/1>ߕ^NU H{UFRő]]%FoW=t\bS@>'gHv69YWTIg]{R+!3 i~3entH˨D]2=ߓu*7F8/*?=>L3i{W` nΤ. cOG6N2uUw:{[.̒t ;q.M"BJgGב:^g=S ]IMtR 䪡6y'\4mcN]6c d4GUr(iDj^&3e3Τ{I=.eyF%HGȹha>ZdQ~D}t憤XWbIK$5t4{_t]&u/a.78*N`.a?q?cі'zMGI^ /bD7u 3>Ģ0zws١$<&U>v)XPL8MI}VLKs.ZI}`bV+;12:u0[&+SdD9}\y.T037 S!t_i$(_SXRFN+ZWU !e8穖89x zdUOdTjUxᰚ'd.RN>dGZ!oB0ef _Zvsf<G|1%Fi%D.8?] 1~vō6p40GьcW!36~KڲoSW9~RG5}aFMoup9uR6P$ g'&<η7%ؼ]vlSyWEOqOw}%M5aT?scMT}ބΓeGr_]{d!mx"Ÿ1_šR?Xx sn,3#O!_ qr'fx'0"i|~lLd5vsRY&#X qh{U¿:vO5)%Qa'ITi nR[u^|r*^KMY^Mb;0jkK&ނ =BJ !$Z5" \ `AE*p?; xQi|A=~Ov3sdf=9zW>>c R槿=^R_D0.Ryvywܡ|-KGwwZ(WsP(O!u5qۗ%5)2S;ʂ2嫜0.Pnv4 {rr3w_`~q4kBZz<{nMmVXW^lOs,`K5tQ= v#o ")6mW#Uа"B^JjL׫U0Q]Ы+_ ߢ?5bӲEzLm\=Sɟ;&6e,=y]$M#\d_3W9 te.6ԉI_\Q$4"[GރQexSԧY ^Ui.Er9{-YѲDS?/dy&~oSY61iٲ_.ߑKe~j{[#Xu6qq%y}b[$K&̖3P_{W3߻jsؼ|H{px.'fu\%OHv%I f)$"f>O{[Gq(6l?%+:a "䖸iMG j25{!Ӕ;{PcN521 .' nd.Z-9{N'fjߥi7KʑX;Cc<dd~Je="$daSdDM[-&I.c[ "^bs3U`%GAܮlo|sXhkwȣnYCdy pKo{I熳Y(_ryv9/٠,>*(^TuqLrR䲞Dl鮲jyw,&[1TrP]jvJ{nGFyq 6{¿Tͩ}oT^jmP_}Y(}Gk&w+ 5!t2|z@-f;o+[!r)^kg~`ŭvfTUKz5ڿQGTCŎ>ng1WT(CWV 6J|5T:Gu  edctu7p! u'1eMVAQ~VM FSCPޝFʎi7Q*Z TvcW|YT3ECpK)PJxgHHg5HoܼUbKym3-jJQkma3QUPykXI( ZۤTj1{%;|^$꩑Zʁ^d;*|@<5&~a:h(Q>"PQQdGyb#A|fFFR/րI[GhPnuT}.c-U#b)N%^41Euw@ð 2n7gPD1gP^N?-{9DA_PWGQܨV@PZ`En(/⡾Q{lV%|f3]L aM_X:RukhWHұh0t5n[?ϫ6׈y-Зo@ D+VЇq;xgZTYy;o*:\vau](Ʋ^2x 6b׆B4bcbeߗTuweJ gS/t5 ZN70 Rks4Թ9lc+-G% dG{ |9ZbLHN{ K5,5ͅ):t;xӝ\ȯJa_]b'l/#/d G'kؙޒȣ{DNǸ9"]-Sel\iiĺrYzu9$;pffl8 :=\+e>ui"y$$ӚL23^SU]$o(-BoNjy*ég'bS]X'eمg&qbgoL4EzrV5+59ƑUM*5ͳ'LkI>fYcLmSPHR9)}T(p/'x, GdyH5+h$ϖYL6u|oȎfTh[1:ۿ/yJR7_$cT6p.Bʍ^;!۹FK>E[~q*ڒksiUT8?8~^TZHlʦZ Td IM\$YbJ }&U51gGUau㏐ iS:lS2Cz}Gdcu <EAk/ɹ.וv%-[]g;'kHl#UjR).!-U;l*v(+oMA1aғCalUse]2D%ڴ ߏԨ/p Yz3\}vᯨK!U訟 _4uZ_}#;L7℣Z75?vu<}o9J *ފI:ige(L% GpF~{. &@mOeWs%(-@Ca8}#yDKcAu Vc"·I#|bCN (U#xDgj >F%o)UjP&>(Q.t][ұMbjYb#j(da$GQxGR8(gk4cj W=n"ٟF[1D0Ix 1/EasR.;Ȁa1[R%점KFU^xU ViG7ڎu-]fP ^JMGy} :שmRG0h:$mLd=e?&L'/4FbCsM~ԒHo6b XEp*#ǫl}aYɓTf>Z*1M>lrOr0I[%?L3}D 7}HV %*}笓./P6}RNq,ԣ'lmjn=$<c?0bMPdN3팺H_y<|L3mWE}VaFf_a_'7LjqͲ!,# iNNa5D3J'GP܇%L:[Yߢscܓ|<Ǎ^%ϩgh7c\3ԂxIK۠P9 G)z 7-U3u% d*|S%CejZa) 56O ,kPOQQ;)@=K)(K9j@=( x@=5(E@=( RS4"T5 @=E (E@===xdw`TUׇ9{d&[BBH+-B ( JQQQ,E_TDEl(("x{?<3)gY$|J83])^M1%8n}{h}-`~1GhAa4kg`)&o|Z 8c)M|B"JQxLg#X[Oe{cjrzz괩ij lp-Xو:Kn`m#ԑj~ KVEE`(z[msL}~Xt,]hՑ?v?耟C=<6CQ!<S~ZՖ"wsLy`oY [QWxljB=XuO٫Nl /zS;UKcQ,l=,v œ7iM4L QuaX1s_oD94ytūNܞ76F’K)yB޿rǸXun Pq9xgpXCVƊ@c8w?%^$X q u{66O%z[؁_I#r3܇:Yf.g=)5Q26!{'Shw>owqTGq#mh"MS^L|K픁x\I8jP(>l7\ʅ#'\/, %߃gcZP;w4Wc֜X .+%2pDx ."#SàT^VLV oY5 (\EAV4{5ܝρysw)##7uJ3a~ \@>໨|[IOM" /gh6O@i9U+\¸'ָԌr6NAx,0nߝ[^nu9MT_q c9lix%/xD <_PBP XBxQp ;yfn~S }pl`u^-y9a8_]w\iП9?J`z }yfAAsBhUqUڔ#cC` t*sImrd›c}+l1kIXGXW:ӺI%PB#\Le~[o6R)&=j0 ܶXI kY\@+Lm4>olǫu*%c,Zˣu9,* R5G K l^-1)V1 ܶ[ZqK+q/hl2.4he,-_0i[vaas`d[8n7wOME0ke7ǹ_u*T6ڏ1NGQ8gnw>E_esͰ5fgF'$gՠV$0 ~.P`6֏af܉ uU_=umzq 0@WdX"T{2ra9=X>Nm_A~8_5&3\(- B_QrB'_LOa"(P;ܿ:zM]Bf?JIT[ ˥> O{GJ:/=s}^3\SWqF\^IKL)1 8d8xװ33ؽ g0tö]oq&>bq\bo?B5DT-bp4Ϣ3|X%Ob-Oxu ~q/; ^ 6qܐON>4wB) 0U <0&{\; ab|>`.~f0 9p?WoQa !s`6_R;Qks\ޛb(ヘzi ›0ۢ-p9x$J_lW&Fi4ѯEO\q|uL'4S\_\\֐'LmKlxBE0LPy<_^)wQ(Nx tpuݎRY}l J0wKe4t6ȃs*x +I V8K)+!Ϸ2gWG0 (#fr?N{ӓ|sOJiyP=Y h|^ &Cƿc; 4X6ೆp|MQ>_V/q\Q wU?J"9ǁ=s{ǯC|3_L0 hf-,r3Vޠ~4։-6Fʨ8xZPe)z}_]aMfۤqk}`}/DlaIm_((XK*3g}CwǨ\B).PqUމ*߅sv;k-r6i_xk d8%I[e46BvФghHX "%9:#Qk^-쮕p gl=+\G1XS'a]^M}O^Uu=*35Ϳ|&:V $_-DyNBWP~%カBA>d,ת ډh=/'JiluZohQjJA}Sm '†+|+>TcmQAUڬdΤ@?K-Z: 6v]:Ze8e?˶t뷣ex̏?Q/؋(x6k4B'zkuj,z]mE FT1ٰgmCDן㇃򬓘 Saܝa5*߱1ڂ}P_tFB'b8vYZ:gfݦ`xoMO]w Q7)^ 8SbDZkE`8KE#5\E>|(ʧX#k͜=/y Y/yuOG FqC:p[ý A--`5:7 ytGT ǡ4ar(g9:yifR½A=Iz\r ބ/XC=4Kq nKZFDoJkTH \#!^^ߠ|\߅|ܵʹϡgc.ί<g| CIu@b- ᖼ\@ޗN]m80 \n ,Oyh>-0Glˋ`^FӨ5Pפ m?1g9Í,_&]p|5Fo-ao{4 u_! =-_2ϡwn5wI'0;7~_]ՔGA fSL\4s:.41G9w]4Vj:>zP0YpE㿠AFQݕ(R {94e>zO5H[6 WΫ`* a3^Osa1#3A4mz$@Yy1\pmOlR;@`}ԟҍJ).MPDu^ JEvq m3T|`Ԇǻ[M7$Q6t{ecd#X,,7v[ 5D|O>WS1_#vXz`pzHX8;KR -Jco nƒ\zW)Xjȁx;aG՛o\w1m˂Q#p|R߸z>"Xr' T|c*mT~spilrS^N }+mL5D^4-,~269n*>7Tp?,ա}&*aE;nyTkkl H? Ewl%!-Q+0wmǑqr`itpٍMiTt{a;aV4vVJ7Vl;_^lhXM?qA;n4>JfA;V+ɢXNh,i~Nml Y{`IJb'~ױX@a?bR\9cBQTMRo(wSm*6ݞlhz˳Ch۵Dl8VA+6_ߢ )Z݄-26MLg,,M9Gcq⅞NFZtb/{x O^Vh}{W&0l~ R;:Vz=euF牿cy6w0~t4ʇxo!κ+릿W ?`S^NŚ{}<;jԙo/D ~\c??iDKSlEy!,[YIT5GNc{Qw^"f~khp _l50MCBv>|OKq~4T~M)kČ"U2 Wp* <ã|#5a#S/i WJLp#p õ|%؏ B׸Q3)mOWq Aރ5\!AgK,*EOeQ_Jqkr6i/5:/$]/o2 ɍ5J 27J(z}>/wM/@*)Jy1pX=Srj˧64b[z.V 6ݥAG7Ik%{ 49FڵqYJi`%xw?WIpL E$Zcg yy Jg\Cms98:,kmcH("8 Asih870?c83Jr[ \ʉy]-}DaXU3}\ɗ0=y)G <2 Pܐ_R'  h+9jj+R,3בEᆭH u^N_,Ѵ4Vo%hJJ`nU ‡Ƽk}o-4V #P\6VM້*PrY]|b)9BV*žbluU?d IG%^D?L*s^ǩK4yRqp94y)l)2b,6CS0֤b1c 46K+JB5AOP-x`Caxެ-,$X 攥W<@zcm6X'%9b`ll=^O8\ h$Lε(xՙQ6Sr.e|5Fr7nMQ6NL -Q\Blg )Cف +2ޒ C.bW}֟kkOd繚SM`_iDpOA#7Gw8ᙥ^hMY#҂7F+c,MޘF[rs1io,X5ا>لbo[AXd jv&w֠Яx{=:B&m8_fMX1-2C۶|6V9G`mUu:>6PůH蠇c3tz-Gm(R^6N؃(Aw5d,X<娃F-;wz˂mc(ruwY(r B`PM”; хKhx5m[ʗ'7a,Kb*L^@yxXOZ-QbyhXGe68,GaˌXQSyhJ8FgUmˇPˀ]w5&| w՟[`BŇܟQ5 V[!,MŠ8Rێ.Scj&5g4,Qch:/yB{c܌&z@IQNT+DaTl(t&ܧ`wnmU.nތBߌBBǎ#Li> F5TeR'h&E& <:gx3` Sn>2n^͗&(4S>ՏqXK4g۪:֩#QE^8ڏHgjs41İ]<נgR,L/>MT r8Nc k.1Q"b֜ ~a_w$ d0z9Χ7y N~\C>=,x%qQJ3Կؖ1yrAL5As! `Qj708C2\EJ#˩=+TΟpp&w {gkKN+hvCij$[rK^ ~ۿ%֕"sp)*Bh*רsԌz?8\XsH!-^\ !xP`*%e4H`'ji涆yCLg%pk\W޷eA 1^Kh=ާ7sQ^v9^(CE̻pk}utobs!x5O6JkA,S+۔ܰ0̢(|5 8.46x9ymZSoqahaJ%Y_X竸e< Mhoe @c hWp/<KTVIV7h,4ܵi,4Xަ$:Qzaڻre7由tk֚ {}mf(V,7pۊ>0c W`i"MwQoS X]^ooxf`wlm!GFm/pOÃmP-c鰞}ڧ8ڎAEQ/Jl0xie~ixqLx\ѽL|U*K\GU]4KPO =6N1Qcfjz֐՗8Lo_۵1=wlz^܎οmu"&>clac';G뀜1]i%u4l `k%bPyC {% {OGѵx|i*`OR9M%l ikeRMmOڤ{o6ݫ<)#pߢ" 8u.sw;Ņ]&.T x$*.~`xmY8FWoV>( X[lqF<ɱ<2J<^ .+L<9']B,|^P%>Σ3P[e ~f t$8E0zE}J#MgGr_s+ρuuQ3K/LBmIngSPٓ _=29lx.uUBY/GZj=q .r 73\~yZ%]'ww*Gߥϥ&L!3n9[P%/'[dfwx-5N7&S)P_pv\wEG%Kwxz 7C;FP p uɭ?ÑOߺp罃pi |gS>s{*0M :#Pe|Uqr:i,QܚW༦KCx.p^ M"?MOj.%/^c5ۃp.ñ_}%o5c* ӅZJww=gqk6jtWSnGStzOw$A@+ Mt4u!M R*SwG\&;q߿i*9(̓s:OMMO=d. SKe*`ѰGר]~]E[Ԇ{Y\c݇=Mav m]ۊgvU>Q^ۍ|SG0p6qYB 퍍i}0+BBM7 5uC[[hzG$U~xGP~ j&౓KS)<;y<v gm,%[=k1AqO6AȀՔF{y6 x0X˰V6WQ]}Q%ʆW{R12 KT;1N2c*.h{)IX{iƊT>m/_DK:Ji%\>[ozR-jzBcV;yu~[oNFXq2FrTZ˄hK*T ($k4j:}uh4s"%7K9p]gt5&[P \mG[kKW6Hk,MD[;(ڦϰKUsmSzZCԽ2M1 @c°1(e.^P,@?l??ahdۿh$ݰ(kt4R9눣j<Ȇ^bttǎ¢`[q/.mm# aM?X?cc nL_hLՕW?9FR[4jZ[>,Wp `5u6c %}iiָhh9}ͫMC{~jCMɘTi]qtur\y$,ŖkXt1D_(mh>9}o s JQT/΃v/Yu4rq%z–Wa|t:sǪ^В7zC#vX~jhU^ۉUҨ,05 &R4;^.>m`'(:99=vXjl[=`BuJ|yҩ 3N+ wX/.5 5S^|V)yy qN ΚC,tL_'&O*}U'Iww\Up;1$\^(]Yǭy)Zϡ3T\opKpN8)|Ys tv o7p K"_ЬikyFE}&Qwh^Σ\Eԫ;rT BVLp޳hLlH - \QBlʉ\ۡ1uZ.Ɵgx>$$m == })3=ׇpD2\F&ZR칎} ϐVygxÕ'P|j}&qOx<{Y^P:f7߅xSNxr-Z ]hd9agbkqtW뺭gbiC}oFMT i-QϒP<53MA}5 4d*9 2A[ ^n~-nQw`0,:A{a4~,<c chž>&{VKT:~uȯQq#4rRwK{AGX[~;a}p݊VqkS)W89iQ'c D}VՆצ.hC'9lғf,I D/ԿMwfS}X:FO`o[EP(zr7J1=q$_SPzP5vRKT,!8P׼|eǡ'Z)3hih)XM] 䆥Iʮ(W}Jq+n-KI Ώ]MQ *oQbH[r׍hZy Z {W}Fᦕhl>h[4VWwk^UCVR4cbl , ͛L}aK7LwZu5 ۭ-Yu lM^Vh*iOiS"`퍍czeD&^y/c9cV"DoU#[ؕe!>2Uq'may˷bxPYu6.QU?msX1?ǫ:bXo;}8Xj3hm9\5SGƝ`sA҄{yXi=ST7 /|:E|a'_MGy  06 ]'ӰQ'=2Ka{=OL :.ep:r9KKo,TIxbC{Q]% QDxf]9J1Z0댺lOb:=n~ \}.77<5cx ak Kj *+^΢09/hSbW/]i|#E{1I A(^j*oq,XυwUTv]ԬSOx(Yw y?FE:p4Xz`mj/O=阘sgcQd3 %6} Nd"Ζ\y**8pVf =nTrt mcT:W7pa)p_Z_85e2D-e! SoZ$(p c(̻g%ṼOgzƘOfOa.ǔ>~'pRK9 .<9}e{B;o}#էe/H!!w鿒c8t;U븍[p%<Ohd)wH"9[]2<|S{p%ܞtn)u3uUY![ǠZJ c"p |\4C3|Zn$WPԈᮼ/x+: Gck%0>8Ż a+< |/Ld繘82Xg&?>蹦|<^Ebnio?*&X]u f* Ay^e޾<bx֩uXPhEXX:2^$c`Y.4HkP?sT06H݋n(pL3-od5c|ύ QK*Mꍱ7V?pKaba ɻzSd$6Q P04pccø-fGŞo?)qoc>TxiC&h$PcQ"81f]JRaPYI[e,EFbř>0E4{cQ `? -c3?:R`mS4ǺrX=s?B-13I_*v~R|x[GsXlOk@a, ;Y=-A-^= 6tgY}J_zBii0T~3p7i b;+R9r -;kdoAej(x6_P8҂ay~j7+}%_{*l|ށEXc,VN˄^2IL{w㯀տܗŨ}*aM2$g@cc >͕es)˄-l7&^m>OgPZn,bhrRmsZNhٱ8[m25uv[ɼ#Cs]2 Ѧ'7c1^|X. &k r| ĹM.H(\e9F-RvXj-GoXh;Hq8P04+Uœ؆7XI<7y} M4ETo V2Zb{O[j5LmazcP%*yRfuP&1M~ȽU1:쪧} MW[hCns\mM`WK`_ e4pgWW>Ak%G.cim'm(LvIsO&L%=(ai"*߱h≁o~z- Ę$n|:K%8yO}xn_SI#оY8:q*&_ S6-[w/֠$8Fq[ґozO" tb~@3p;uVHcblϏg%VdQ F1\.1I )">\쩥<) , D3\#y "nun8T~]Ɵ^Tǽ|trO`}IR|罠f4;x*=ʍ /句d3u|5CdYk˳\ي3йnrnin%x-Odnq8r0z/j؇ ĶUK;ܕmTbMU]QL!2O}j6[ Fk X۪h OJNs3mn͆]FuK^܀Jr` M3MEUifߒ]wޥZq8L<dHIp(|\\\e;gclޮ0(n͆AjcX#Y7{ %hȡR(_iCߤJrݙ(]/X,7RیMn \b3}(C> 3(>p=L#%,X,omd?t"76~85 ,0 VbF. nCm-xQx_DTS^y2DXNÜьƽ;׉7=aI#t`24jា-7FbL|[l(Fܖh4sMvq΅bDztP3Kmub- 5>WXN?|g?dz,_WչX\C`eXqcy4P^?Iojk5\݆b=K5"BСOop=McdՖ{s>jѯiK~<0k8α&uŦXgpyAU&fPCtl"9:N\r1r28>pCIOx#Ad#C/ɥ&,+wS*wut0.3'W$k(j |7R (MYXzs[C<ʹ4`I(\Q]ߡ[v(p^`Z\jm9LͷGQoFTqVnި`s?gy ]{~r8^ >CNq.ޯ\-kP!r3e1"CU෯3fq|u.ꚏ ?"OO;:B^,,\y؂J]vw[W˧m0dWŨg7/oi^g$]Vb9,2 `2_3dGp'2尌D}7}^ReaNl%øhlj߃c8džK+.1{TR|G)Ff5蒝"Z6EΣJ}$˿-6cR¹TUY#l'i1Y~,`64v,[Ѯ` &e(-8`iiYfM,?AxENeym. *N+6[eX&ekSU)6:3/`U+Ѯa-D8m rFh1E*\vm"=!kFu\VPZm*OD77uG9w_iϣ<,+|WVfXE(VKBЖg\X?$3MJoDu@7mqX>}ʲ} ei+gm;)UȄ5OS';TY񤜥-ATje<ԙ;a3Mq"{6,˔,~5r4,%]UzewmqFj`N xWfڃQeLѮ)G[|pESRe lqL-M;Yȃ鲑`37 V[Kex4Yui%Wa٩ {%'MkM +1N>ZmM7S-Ct3F|i)x/Nj^j^JSX;h سʌD̏7wAMFSufªsxu{aXÂbK9VrlI'F=&^G}2Qm8/kK4n{va'{j+3x,j: Z;HL#]vӖb+̱VoZY\#(VwHKM{ZTƽ;z^x-%(sUJ7( i#ūxX[c^|V'v)T-dM6ݮe4sɿw( QNіxC?ߠ]Tg2=X?X?TtTpī;yH%:fO[ @.}PY(HŮ^ԧlײKjN x!8B|v<ϩ+Dp)> JO2f:+˩az]ćE8.hhF1ET 0>x"s(91{C) J^Yt6^OXJhMT㵽+Ե2֛њF""ް)FQUNͽY ܩFoR(my tMϠ$Ti*,I(6L[2,` Ա*JL(d z,B77D9jm*thQe3s–8#{ U 5SJ[#: WQ]ʗa3a?_ X4(Xar `KLyKa9CSxS}|.A\31XnࣨC2;y,Gxl> nKӍ oEi5|Ba,y p,){)&)#4+ݩ> K3hʕtnXf |D|@YUfJ`aҖnø %SP}i2`7aChm^+R}$+ %;`c{xƨF=m*}=}B(҇`u7\AaFqP5*, 8~RjzMgLm)<dzڸBCtfr72f:oMf:ﳩ4i+1q%^Grh 6)\>eh /Y2^9{VƸ ġL{iV׭_/{Gفv>Bf?LgWdWhahӗ隣<\u>>maɹ<e.l՜F4s|܊f~, RiTR&?r&;QaCy(*Oq+ָOWB-~ޛ? U Q#"p6WVSoy\ͼBN!.mk 6 Vg{lv>B\ V,D בYp3 D rl5)p\=EIƁ(њxz^uvy5V"Ƶ4>Ek(`N'5/Y(+zd&o:݊͝1SbRj~Jľp<“A=<'_H7?.^#ZC4ňjN>K vs $#D}-m K- zHCK- {`SE"PK/ўPzl@o--=6%_ v,EFu~K:w([qgЖ k4O[,GVnr >/Y=P=r-X[ kC-:S7eT,CMDxmmFrP2`|_7A$K^L[_?[0߾ }k/],];~3߰=|`(_ ǿ˲}82] nj{Tkʷܪ-G 1V\l+fJd/L6%T8&mNm`%˰L"ʡlgQn3nIJUoٻZ'WaSL]wtTEYi( r+x,Q~VF{va!b X'@eb^ge!^JR`N?PtX,2P8P]&-G>vRhGyX' #oQ}2aFdFUpݒclVf,d(m%y3PUY5\IM~҄`/TX6o1\T`,3።LSȴU|aI h=Vj .byz+[܏.i(31E*0ўh3eL6E2ש>leJCU,3I{ed'X9=(me~]PI8T{jaV~Էa ]{ȱ7Y< TQs}h!S/8RL b i փgtI!*D W]QPI(l'1KQ\Ľ0Ҏ3%j>i./tG2A ~| V.^Es_\G6| |kaT /{>wȮy4+vբ8D}~H}㘛t9]:~"MMJPy%5re٦•|voMVoxG}tҜ*~73ptwT 6N5^C%og`Dq)Ӌ`aՋ{ X&sN^1ei U`.""&f. (mk C8r$S TZ(U[*l J/&{2=›Y Ж?z2P%O`*Z(\zGx?d_T~zU5k5ʟ'5 M5Aswq/=Bͪ'2ymXFv >.OC\_Yͳ2g]*YQ g(M?ŽhˍH d# ƞ,O1Oy˱,'$YtqR.p C/ HF3h{EBC[^I0٨Θ <j}$Quf 4A<[6yˤP1IYNpd8\q{jG+hVWϱ¯>k]UFj^?փo׻Pρݝ+ПesA{l~_:9ua 07:fLCclUmF](c {Kb0ň*u-Ydl^'d4FGԢ%6V4\y&\KA gxD??V, V/ɶPXъ4#c5ЊR9Iԕvrw`{[eh2R}Lm[gT9a eʼ_PehjX,\[*JQvt#JyCxBi|j&XZSbXkWӌ2Vt=6_V^]L#PVerS`wêЊ0YK׻elK ,$80omX_;~TKVh:(CyE/hX}ʼnGyQ,걝qb`Ŧ,NdXC+*+1}+HGHL!Uh:Qv v$Zqp0̴?i3i5{Ӽun|/WiӪpvòE9C'OtUeO4D~XXrB%^G Qw:m`>As4,Ya+PhotQMYX;(Y-|J`.^65*a6H]g+SdRJrL߯ et!~.oe R Q]ً3~qYUm1ՀCT8 +>S1|8m) GTB S"xES?9M73Ms ,^m|8@1XA-F˞f98X.߭L\Jmp?b 4׊j?ԂuJ'Gjo}6R;N+Z̙y/*,*oGqVbyxd*ͅAp1`ͷ7`Ml N=P^PW9\x M|p*x'h"Z]њog_s A;൬y Qq+~#~>AI} aJnl~2 *3yd(ݤQ&np64!uA'(5lls,0ΙBrts.gYڜo-j'ʳb-8(0 /yRj!Rk-P~-[:0O< U8/݁imyZ2aaB4cE>F >Gfi˖ogi L#``6.g[Q` huwzEw`?Bj;6הNrT[ jcQ?(7æ¾@nDy,5:mqb|)(%yR* ltcITaJ[ʿo 86/-;0O]-;[< ^j`hX0k\] 3Lm~`;VUi;_ ҴS8! Ee<`a qTn[m+0]`OވQ |[M`_] 6V-꫙7x,Wªuf9΃a{Qw3LxxUxVd'b AT%ZRE^Va}@խ_zc!ʺz,[.tJV [ S^QMV*A~zO`d˿nX駢J`e*,^K60cneޣt{@c9LpŸU|ϠT':^䃺fQ hf/e6VxqJю?| "\Qm_s`/p-f;9EZg >!>7}ל}2Ղ=^/Q-}lW']=d_,Vsq?u˯w4@^ȝ5a -8Zsv4_cೊfXF![XV#d'O*fta4G<ψ ux20(hAhA,Êю\&gSL#gpx:Gȏ+d4b9ݗ ? W )zzwyde[]o ߓUy5~Ƴ(7~6S;.Q|c੖Ϩ7rXg}  R b<ܦ>;&s_i-Ch=S}4F e-TP;*jPym0Ԙ|~"Qy1Uw]a (9r pBqXNór[NXopveޅS6hf^J&BnuղBRnn<,OW^ f7yl9k0]%&Uj]-ϸENf&5y*~ˤc? *6faAu.%/͓goWuML1%Y[*|Ζ Ы#5meUFR'x>#e:֓oԷY4|C [_Rc- ( hoZWʠӿ(/ppeaxة%m|l(΀o4v&1gk\8etC<[@֛tǥ9@Gc~NQc92V[-q-stm~s`e;-JRL>L->';A-m(xq V-Ma1v&qn+3%9݆j$S3:D ?[ m;"mk|6P[=nT@1v.~ s>Dfn7Bʱuc͇ T*7љlctoQn3P`r[bUmy3Y+#}8n:і[s[IM>1Al_tJ ߀:K-Ϣ;sD[5cXZ^)T"Wu/:X(Ve47i/eI^GӖh:\Fqڊt)؂VVnʹLYReW hҿ`1TBfS٩MUH@ejފ{ gR9> 7oE9n)MتQ=eR`6mWeXf& aܰpwÄViZ#dJQi K+)(U694^tۨD9.tA^q>4Y +2HcReyd㚜Vf,aX"i.2cyY*u/6R[)_AK:}|`6; ,),Gd[u&?U&aSQuy V s6זe`>oa=;vqԝ9-uTe;K 89`i4ȼfx(}t}QN,sftt\(OYqc-~6R,va{'lVVQU/{;l&印$7 e0W+yl :.O;.SQ9g* UK]{w<<(2?/]c|nTBF.NYզLcQo vJ˜;Y@ ( $y5_ue;|UFxO0?~k{6M}7-D\@50I>V߇N'b. 0$_d}k"}\FzW(?B-8ͣ:V]GVU!4X YC{vN>%*VDŽFNuݎ N nBY\fMAA8YHr̥r8 P`ޅJ26/We,JeCinQ+ =gy"-Yl}tJVXM{D k C'i5ƶs!;mhj{F|c1!bkh[|7bX-99-d*㕡5>+,ZbMVk6':}~"w/Q|5 +Pw3Q]9&"3G6mUn4lt3>̰Igr>ھDuE!nm1DRAx,ˤ`Tf'p>m|1r .vPA`.T/v$z3y,~c,kC5bqRQdbGdm٦w{x'yf"~LTXپخ Օk=v1Cс2/[.y,6`JLgZ+oB>F S8,m"bmϡf{3)ёP1l.c2A/ga9`b{bџe V~6UkسW;`i<`lC^@?-El6ΕQVeQ:|v~l5c8Y;5Fw=OBX y>RmYGY48K\g(UVQ9 Տao K[,`Y\0'dp#!~ j=\AdO]eup/zjaAV+-2jSwe҃hBml2Q _pVr^sT⊇G\*kR&W5ϐǎTY;d\Px<0GI'x/1A7g1[Qs&o;_8*p[xu~:p_e|5wt<{yVfhUwCenymOy2Mޯ6~~ 7au|?6T&i1)mTizCYQSF:{Jm/[SU9O2 ?9_Y X᧿ T(t9S'xI/YՄG`k٫>hVl7]k` ,G[ǾʌiS*JQEIe^|Jaѩs+F?^%DQlPVcǰ/Lzc0S>( B0PZޓ<,shw"J+V鰑}2ϡhpaF/^͋i \u8`i`1'-[|?ie((qZ]#x[œ(qĢfPTX1W3VejZ3mel;a S kͰ$m343c֪p<Ĺ͊"fX[L%^B*?(͹2`0%_unS{O#@_Y*w:evc vVLWX6 8O9Uj8Min񝣎}׹hmVc)5r~3 3PU'1}\ cumm{؟d,lH`[`FM-{i̥O6ʏIp3v&R9N7qwFQf}niEm3߾A7aŃ7ԱX|#nOقDpxM)#|ة>w7<gMRjj2(mNe-m*X{4? =<7Yo[:T9Z6k}m{r`W|#``aZa)Wc\6?%EGh %UBZtڂ36뙠i_gm#T_3lD̻nJ8֕2fi׆>թc]J$:(t JNBW%餫 E6AY $@B6o$Mv8" ( ,* 08(0* (t{:էyJQ@65M ChjFQ(AEz6*DtZSeAӭUB>ު ?o4&/֊wϥZzn x},䯈4&9fXK];G5F%hԨDܩB&yU]؞\?Uc\?2E$uc_#Ti 65:g&o5w-/e0aR(P ꜗj$4M8 Zq0$k h (0%ơOm(?t/H8Rǚ)?U:^{(-t"G>k])C n>{ʨB]/UL $抷Aޛ CrM9R4U`RH4ZQŻ0󧅵w^UGy8@厍uhm` G#QuTjLgg/jJ8(˱G)ASc6]j1?->"Z䖋@Ci.y [ Z *]SwՔh4)&$IڝaR](ISNr@?=a_Wmoî;\ l{'lq A}48z-ً%Qj%L/%rTrq>{L7ʸ ٭ϻRY2gS{ 2W.rДa [RtaRq2n 0mT+n㟱sKH^Ϙ;=pM fG3k ה$|kPȯv,,b_=[TiC|NևZq+VܧV4iEӍf!hƚy7*Oπ)kj }W+|BBX{@xNSP*flGEr0 =AIɠ8OC硎MT'F\cL TilvMU  /*Cs E^9_.ӔlR\v0\q2 >(SbdJ7r.؎"7Tx XiV%F#5WOՙԠrPcd.醟J6ނj1+윙m㿂F}cci#gi6$ ,i"N7XS\9@F?K, STINjFXpa||Þ0]_4*2ʥmټTg |k|&Z*I|44_ʉse eaA(ԙ}p0P^ iY[|Fd?DxO2<>˯RP9(OQY/9m4mE,⿷НcF}d=}aɠ,w}lwǪETPb`,(9P\X R=O=(n3GԔg,EQP hdx>BF|@ *ڂB4Eܛ@o<{6`]~6i;0#?Iu~[-i0XJ4ޣ-檝AOp*,9Jy"xO.1k+v*_0F=}J-I h18H;iGÉj |oTYpzmAkT̽`AQ|oٙ T8en('9"9н[⫲yjL-=0AJ1:sxA^l`\n73ȓ;,!o{2}0tNK~(E& O pܑ(M#_Ȩ F£2l:=x45*ۋhQ {>Iq9NN^N#ƀ*EÍ|ݗĝ5NJF6`}cޢsroq>Qȋr.۔(]5ˮ<4SS?Tj)_({0FN=n۶Tt  1F@b e^5?nS$e3aK JdkA EmV2cƒכiY~J=[jAsDocα-0B uOyMU'[4.O4ѼK*jtT$9P4Y4bevT#6`lh*`B;=US̏ͤ92tI(D^.Wphx*%cZ.2?G/\ a, "W((_Sfv\c\?Ó(kk4%qr6>B-áRx4 TLcpbJa| z@S[jv%䖄U:OT(M蟅庤&CYɐ)jT9.W 2nSx 632|dN tA^ՋL?Ib(KSqUJ ;cކwr"K-Pl&#by6hAsRA4h\qZ/tNcl)z>KD]Qvb}szHg>'vܴA:Lqn\A ̡I41PLG#ƂGhPعQ葍bsj%r0+t6Pb@MhMO@. YRcthCHe/|;'ܨ3#6sA$pb)q?}~ NrTŷ:tR+ן@i]aesgc.(5"WϻaHWP/),c!t1~1nO]U z~Gl/;hB[@o?j4L{)XSfc)S K%e˞ jナBOE))0s F4nSݛ:=9~Y~6!!bT9PyEr%;zzb| ~sHV)r8r#u$.c=?a~\\$_G:yȥwCX<.}[=O-'q+~e?[]}:(ˑIQ>\%IJtWtC b0[$PG[(W%o- \4fi;!$բ\z*M@khy$C~nIYbХogj7MU#瑐fM꼟f ^UV\/2c+NJ)h /4єKIM^c?t&l7~m/)3_P MTf}$MuDS (YGԈ#jox* z't!%Nn^e_.>Aa \+=y)Bu|qCeh{E+ 0`6 4xOB"gn_ BkgAʏxw qaҔxe"cኴ,kb> uG+.뢵F,2=T<<6gK/2 y4JX2 thʁ\?UR\@Wa/[y:gRh<`P!z1_*0N΁2 I|ԅb4M0AcNúDji j㚲[ۨ wdлKq~QOV#و:FQxc܇]ѳ6Vf\@㔡'xn?r$v^ /vWiZ *5MpZ?4ƖL nMk_}=@ vI|T'a-`{_1}psw`j'@j_C5vBh*8$S uH^'Iq\$% юRjFuG@x^+_YTxdxT>Y$L2% %!!{iBPl PX &6!zc֏dڞ}+$QG>O9ԅd#T,?qi dHTD6%~bO{R5Sҟr>ܪjmZ9 =iC 3=H[ "&Wj>=yܧfVRϩTg*fBk/EcuydSmkFvh MoHDQ?qv6u=BgiscP8CX* 2(chvPl1EΠjv;pDTmgaxo*`mlU&OGELPq(VY(bMıD5NɎ!*%~AɝWCi]K<}¯9&+\.Oޔm?P );r3ey(јc%멯7*3qG(YlAɞJ*5D|GC&i%ɍb tTWmhtV)9[(|.OqR̡u_Pe9FyZu2StI!52NlZUYє{iwQ_UHƯr9j.^q&^@x=160_3 GF7w(h R Wm4wj%p:*A#2G 룾J@>qv_'/LUW>]x/^USJ 8f1~(oG"ScJN$ g"sB)W<'|P/?\V). Ȕ^mPX)B~5AUP-?N A~lqZJ 4bx4}"^Ci7;c _qed:x4.m=-txY} >>>s,W uBh۴."?UD׊9$U#t-[92?Kx-CxAcxztZhktӚ5ZԈr'C.!9tN*2F(\4O4ɵ[8)Cé78gy8%v,oPXh'0wR5:8юHut)d>I FǧF1~"1QP BK XXW %VV9j67;TvL7HFB _ ePYsyS QZ½:$Bs|z;&(Ӝ~#(֨(C$!5;/%3ў29ZMf4qڈc~;ж{:3_ɚNT(q\iY W8קZIB8" X[)}Rl0/3򃒐Zfdwg+p264C3hi"|F_(ELq%M[=>ҡP43\%>= [O_QTr*4hg)*@lB 9([ܜ/)70(^+ #Z(72֠_ +[ R!r/Ҍh4LeqP: =:F2 S_}(\Ļ*G6iw@НTnHq+ew\3cx|_Cf7tKBꏶuZdֆCef#F "lDXCQZ t h&^O(᜕KufFMQC8Ruh:((o6IݴxD6$ ȧH:AnHB/Vr9? ܇B59НP?t ~TOx Ϸ|; ҪGz@9HHcYQ /~[5GB.=Ok: 2Z]T\ AZ4FOC#lr\Z(J*$3 tWj.>T5YՂyVnO9zZ̯cnhј1!Pysx0P_cf|V\=ytdw̵ 4 8_<mbdp'8ql乲bܟ[d(|KyC<Kهck Ga3l3Nj0'+\Ίƽ^9gI >&\h,-4&BCMrιqaMa : NŚkjÖYFZ`.5nB*Iq)?%=~D^OƇh,O;Қ 5PfL2j#hq^v+I>wZڜjdzw O<ݠU"ZULsmU'AgRI=vI*kf?@N0 B/Zk*>ڀ.n; 1n&zs7zD}(nppWٰͳCȤ)JvG;PZqVhi2ߵfQ92W9GgUVc) AeBZ4v1M5bt9빈#Z,%ZG< Ts0h~R9V^&'Rb~ZczJt=<2 C޳ҳi6T~J vzh1eP\pG;8<LZY]eŭ?˄ṟqD;wrh U >&'$ZۍƱCqA 摭픬[E,ₚ/A*P UAQ`|/j3>$g>D8C}?p=GA(hFk-'"CZuFQ"z@܅pjb=6Ȼh:4$?$ܪPP˪T+ eY;P/9$x2pMHTHFF{(xA LgVTs .ˁ6>;zyN^(Ә{/zD1M)gVQc/)>ao1BnE9Gu+%C7)y{T9gvC_Vn˷RCp?ouN9lf !+ -P2?q5::B?'.#Wl߾#x׼&Y7:Z:q>C>z@+vnJ#0pD#}Pޝ:BV/4ԅg.bP5Tݪ\a<ɯT mǠ7&6:1E3ltcc<&_kp^P%oq}S6ģ4cLhF6K Wx&zUzlW)9{SYķP7=Ԝ#Қ }oP__Tm1*|Q9l4{ Ti|"m4H+ZǛ{G#xI2Y;F#CVo.{Rt轾cPQV$RTGiպ#Ԉ.5φ2SP3E߼` j(:جZbXͳЫ ^w/>AYb%g#TR\Y/Cې]Ѽߖ?h![~9zH;31 1PV:n7GV4_Wl=S2"F$n$EZSgWi:,&gj 2{wd^0<5\#AEƄE:wQZjy7N#D.op -~ 9G$~ƹٍ'R.\=C-蹁&"ߩ& OD>y =053@d"̵"Π# a%qVN@浘W쓝0׉8 |d%UoJ%n^ ֪j3yoG|Ŝ`t\ûx^1Feey8 ɘoN{,de$!Ka4U/Zj% 9Nl!x (86<#K(czVnhՓbR*4p'^DUP.pkeQCPS: 91T!1ִ]85dnk߯a^S;_fWA"ܗd/`e=5YlLh+TcN1&k+R=Je6^ZhrCL ֋jM֋ KɎH aangXϼ cJ~LZx䕔k ER-λ Me8z wZ%jfzqm=3T#9 6l|6*_-eHs 9aoX:]Rڳ,'8t>шX-Va:(ѵV(? EC5fMÕ_eonCn/x$%kqEܤ T+nImv~Uy=UrgbvBi7(Q}c?hvR }ʍ( :gD*C<A‡wDa}P._}ftqCZ 2 L~>J*=UV֏a5spi*f?ݥ%U9b!h]+Ru7)| i:U3Jb~H+ Mh, hԃ2F߇{؟[d\Y `ڀSßy]H|̇e|sӥ9r5InGXϝ2:R5V/I 杘k)_"i*Wii*s^"WbNPWUNjgʳ'`/c qӘ'b??~'xU8ʇ5ytklS;*IIs3Z߼WY ?:?CeCNJ1UӌP O {B?mU묞bvhTO2߇nFT*Õr^#9e/nbQ*y_Q0c6"ː7BBNwҍn*:E[I-vRNJv4/M<*:4q& du>xq}vR9vgPo-;J]{|%|b1> 9>S%>ϭ5P|Ng"!s~Oĸ6ol{OWȈ4ʊxJ0FyFܼV>qdu>^? zvP%!K7#RE!(ǨCUii9ݓ~[hJQHj[(ӕez)p qʌ#*]?zG\gp#n7O7dL[o(/&8%iӔBE㞽uµ琥3_<ǐuߪɾb!{KUbSN(v?hchFȗ\ͅH|FgDę_e|ǛpuT^+&C!RlJ,wt+lUjx^r< : ^P2Q&y/bT,EuheBo#Ctƿi*S2\J}GV7>2Er_cX# *0фo&Z5fWu k)'Nk1p\+O37=᾽4l]4G7[&n֪DZr"cqϔʯhB.% H" Y Ҫ4TMxwV M|19kvZz"_eS46݇d'ZUL}8!/?(aUBEz=(RT)?_AYO"Ug"Ծ ɮf#a.>OPl9Wϥ{7Q4I٘05He4Bq~ǯqLTw>nuU%#HQMȘwPV b(˼MPb$*^텊SD-4aG/NWOt"3*(Wr\.!;S[5+VU۹'ۻ0?UyQZ\N7AJ/sIҥk֘U<B;}[C}ufMKhN銐u!mV-F447g~U;ҽB}q{Z2[:(V[G!wc> Χ$pA@o_YXŻ:JV,EJ_RV:ފ^T!r%<7"+tl3}}|'HU9]z#˯~@7]ϯ { _s:IoS?(]!zjWN|"^@To&nZ%гHnHdvv|~NN#Y|g}U)JlU"Q?QNhU fHn '#va>s!P3}[07ag䗘׿%/0okșEi\|OdIfF@a]ΰ^"_tu7 ֳ*5YSO(nWy ȯYt@[hȅ +Xr@KSڗq,r,k35"_L<U9'T]H~?9Hb%mH~֟TM(DR P?$vksBEG*{+P$ΥZ Ԧ D~r>DVSO$qr2W,(& $/oyS iT#y8A)χh^A|IPgu_q˛i8_Ͽ5G%!rJGK/>9~F3;*!{%lнjɻ0|qÔ#?WzVͳ4n<Φfw goeG.z+?֧Hs.#/N\C4l+rCv!a1'*y"mٌ\Wz.I!Qi Z5x@ؐ lP)> to'qV M0>F+l|nAb*\.*ڻ) -YQT jog[5O+mC { kSoS#4E܏x;@CJŏؿS4ˬq* 1Z]{׈|MPY7|گC]$%-jB@?UvVMޢ*櫬/v%+^fB3%W_vq_8a' B)ɺݯm|J΂jUB&A"Uq.J7к7 c!r^P Q}SG3P+5"V~j2H^Z%Pt5BY aC*+)ol:#(uԳj26zjwJ˝ ӐծZM,tMp_ UֺzuAdd1oW{!~cU O:^!Ah'JUF.s_k@EntU.Jn»: ok,>9 gYerjY WsYh/obqZgqZk- o~a9yQzWZ ^F' GVk: $ZH^[a_pN+]J J~- S:ykQqb#8Y$AFmŖP\P>ry#TmyB(^ pYyA0k8A܅׶VX 4L'oS1|X G^ߪ&GϑWU&&If\"\JS̥8[1¼drf9QV`܌,'M6$v\É܎E#xU3vz -vlM܃\%ϱᚭMt,Dʝ9sP~$9lJy~qZDr@q*GIc 騶$3T G<'x 9zIEܑT:fA V8)a䬃2]_[ buMsj*t 8U@t{>TŊOڞ tClJ]8d=Ulo_UO~U ++$٫Uyf9(  =Acr?@ao}J6S")wT鬌h%Z~T"w Ȱhxn1ϸu~4֪6uT }D/[@%v;j́wcB:fB)\l?UkZB?TlZs\Jx́&B#I$W$4HuF =q;1\3Dדs8&DQe,3p8yAFVYm(WBõRKh7/[!J2K % =U evR]E񽌂nҡ;dJUc~dHp4 \ ݌oVGסw܅T}9 -k4dbY ݇W4x 4IGWj9x|HZs7~Jo_5>.3(w=Tcg},4>eSZ)tNN2L $ ZB@[5AE iUb&r|^JKЗᙞHSL'"O[j9_\ (}& 49!9C`\ "!M9yX"JrnYԉb?':l^N2%s"GQV8+6-5FhK4NNFeh>*6&)?^+գ?2O:+P:CIji8NNVoC ^d Ԛ@GyXz3P=}|쉩 ][9@qfa XnӲL,\f̖zƯ;Jf{EaKph|"o,#d1q ٞqj5SԺnXޮ5UmzhkEeO97RyJF>30UIf?GwcM/n} $e0tuP7 ?9RYf(n*=T\5Ȝލ{:N1JS:t7oR?cdVКٮZCi8߰;?l\ 5h-t"*gTawH Jnf9F\zȞ OTfvdqtbZ9xdO+6||ۡJm~$P['m&NgL`%ხ) 3ў J;45v9Rl({)# ʼnvWR>2vGwSz \9ؐ awGUKy5vhUKe5ۂ4,7Z*)F-eV_JmjUg޶H U>;&QiD_ .k@RQ U2I=|],h1G54rqe<4HhO7ﵠjcV}PBO*JQ_3t"7388C=y#Mw҈БZ+hQ׽WeO"dceb@rH>]:^W_NGw/ [r3|GLLO|V<_sn+WMsm)ssoke&_AHn#Ey8~sQ_FRf5gcc6މ[ؗLY/JNrNA)Z>ct.zBlsy_^B7!.26b-^PŅ]M ) eYVM O~g!?@sJuuA}"lTE#.҇S4tc TO;q_B0sZ1ʯ8Y֌iҋ"FمZM4 gǴ?ݾ!oN\ncҔGT#_!2T EL?ğyGO23qAF˷HS!VS1Ru4|HS6 GtR#ri1I|RZ(Hc 6}e.c2Q|z1es<)4[^5΅oU*?d=y<"_e/hs  NV\2)d$l;Qvq,\iAuq5=/*ֺB^$$P?y,w4cm@BYA$V JEkuk ~_ȫ :SxPTidh \P6j;U9CWEqdRk2dR@AH^Aq}y8YPTbv:ٮecC2fLPU@ҀjUh4ϵwXSWgbu/4_re8ε 4VgG\4S-$TNdO6R7cm$Fbr<'_Ԡ@\A(bG}|53IBCU"ؑD$DHdARWpk-]:VѢzΑ$rN2α%\={}=OEGAձ)[h,ɷY]y)R|<]$OyjEQU^As+Tz+%Bb6+:G%8^M!I<=8T[=3ۨToR ~=)8ˠV5~5A}>壠P_45wo_aEP+B/P|*02^zl%t4JRw"K?Pq]Jh9"? tޮȺqP_գnPeP:S+ T5NG(QW>[).N> _+DݡB>:TnoZ"V>j=V7 7U8%S; Zk#[z򱀆@PZPBf궂J:.~I=D [^ NbS4Alׯ u/(tryqG'JKXɮj,U#YZW]V,n:YL7Yb(y1z3_dwґy%Haz]X6F p/?)ʑ_~TTMgc"¡ V$/!8e*"1S0ζ~Xt+V4Eؙ)Ւөap?np-\+ ^aP zIq@Nu Ues񃳓zůh67%l"(.7TΟEs+$X{y8*;Bcj&.ˎ6ΰ^1BGfb.t4Fb)NPSuJ)O[N~|F>a}jB9eZY Z:!J ]RYk8e:aNc.g2Vud -pM}zЃp($Z[By~9ߢLh>[7^q.eT rY8 j4TR?[iMbi _dhN#Dm >ECS&'utiioe=!~PrI}7nU~)yı7QBveHbn4ݨ}QkX.}/Oۢ@Uau_Jb74atU%o"5@gI4F@iZq*PJ~XQzp>*x]ЃzRQS)%U$+)gEXEP:Pg1]t|N$D߅APO^D׹F}n_6AOkxT>p{1LI:Β|J-6^1< ӁDu颻N2:>w%]ԢH_U=^@)-{8 mڣzƎC~8=%R_|̣E}ں$R8̣f[[zрf}ƷkoK.Q;*^WVj~hT3QF/Ʉ.8S)#OՕ򼼂"XQ)UVdyQx[&ٗby//0FNw=`5:Jd3zbEU+֊UkQ4z2`k䚫%F)ͷԚ-BOQ=- K4twEsH6Sl&dCl3J5J҅L>6Lj9Yi(YEe_HՕ$XPLSJ''cXyWTY)Gb:G(Eh|m;׫ #u\w.Xǝi$jd$yeFz P݅P (wG DXt D$kpoQ+E\k{KT?7y~9n|$[ '=҈A8)'tOM5vPWF a5+{go~oUB1O*@?`I?0 ]"u4^y`4\I4pk屋<e`?].P%_)A̹]7fR`E4f'D־O+"` %e8?DK1"]]ŋu%/_=9o T J x` I'Oq2u ZYh B݂MhT86G!e7viA={B%lDcl*4Vz@AT_ODwyJbϋP@D(:8 @~; St|5~{d9Z N6<ݥ Wl':HL6Clv&@eJA^ 8 J|8t"5:x#L|PLGO%*p%/`up(U^|]O3F-2Ir5~DN3Ljeou0S]mN h[S.S$'4W[r)3|@3I>ata-Zz͖#7 bǕBh }VV= PBO0H\tO(T :QkAzMW$ Z&QaZRX~S+&Gzf@E陁WX2$!NZ Lb/*aWɜĘ@Tl}^ a7~93=%> {JIƧUtDJ]4%9"CN B~ kkJ]fs-T7`sv~"'bDc(\oE' ם"wAK2#A9hA4~U5*V]QS EhJJq SgQTµdgǂƙo3j x[$SM-z7Z:;Q֧fXzC;jv8=u;wG!o(ڋp~3`p!TL=DWiYř}z@?|n?UC_AoLtEdրmo veT 'YJU4W]-OpLA%/Y6B%{&Ml-fTɦr cX6eDwqNի_쐵)G g:;LJw3l@Yf ccZaud tu=.2<7!Ӣ΁(8-O 8+E?>EM`g v-ʪ&$hvn=p:DkR 3 (3)_Əb'*!~^)qQW(h2MMk%!gC'Z &B'@\*ъaq.G 9e(/Dvs.֊@wusV~'R:-;ԕߴ9 rq|[Gv۔~O!2yىDACE0tJA^B+b&kժ0=aEK*`/Qhi:'kPs04S5JC_aiD Ig7vLܸ{f"3ql/R^[Oa 05m{ͨTriO1OcoRC-@ƒ:)ܞ t8fpW=SS>8" bRiX7T;(4C:A@e$bhNܡrwwT4668#Am=db*T?AiA 'FBlU?7>Hn(1/kEm߇^KcY_-Ԋt~˩b}ꞸRi^n"0#x-UHo)!?8 !(VI G}KcePbS,R9X# DG()2e u3G'8qbߠD4u[:)4t~pyѪ`B)FM_V9K!y{4<1ėS߳jU=啧nI?ES ^!KqA,Zd.P:lXy&uHws9R MTrT|fTȦbJh"׿s0'aj+b~/Ot6ZɹԷFS5u"t$7Zc  ?>HmxOl9ZYl yuq^_'E+%yFFVOҼ5Ab?nz6|? AFCJ4hէ)xT8RP"m  w]Z55 P&TB"ϵ|`H乶z2\ӶW4_QPk@BjH}^T7扝bNt(oh mJ Sgh|ȓ|BJHh_v[|6{[g(A峱J85H@"g@ "NZ˺ذLTmkuu.A%\v#Ӕd4 *gP j¶ߧtr،3 #d-((,/ϗ?E"uŮ|-t5eCV]DFuPe]P.RIr5D [h TO"C'W-LàjPD>ϲ?0Sd>:Yu}ί*9SgUBCjdA>yyqϐJ4& |fTvo<y%}>Q׌.;nhCնb̦k;`||O%4(_E*Po{V!Uv6ЍFmU)+G =e>HkJS?7"`/B"Dsڭ#p4wbQ/hEC5(4FvV(1]qZ -:n0y@<=Z}ʦpS;| Esn37sNZ^'_NN]w+qcǤt )qkUU ^a~"[lhSG"" :WKxƧ J"W(R?k3wqGqP:=Bkq܂{U)Lldg sSP4ǩS6 Om|*ZϬE){oS:=+7A/ȮU b5XVaՇJz=\f7H}O-J4x<)`A1׫$Zj̲ӰW!5a=3*Wle:Xgbu9Q,$Np4M5.|6SWLRBzN"=ڿ|%YKb݄[AP9 J;#.E`PVu@qP9{_<,r4B+.PtbdT9 u-(iu1zbLJPWB&f|X`wTO{$k>e%#],*BGQ9Ez\\:5OH+|75ívnh6)R&3֭^!t˲!7M_ʃR1 <HsN ƑVj ̷R; ʔUZx^8]?Ak¯p}[.'qG4^j񕢑hi %P_OOSdiC̢>1^gR:Ԉz c."P%Cwn#+DUy e}$d_:= 9C>-cQgi&㣠:!7YJF#4o8zyœngXn^bg0!™j X`eoZ \Y4 :ǸAtb\T4L"+0.S|99Xy_lh&fr!"_ P9 28vXNµv4*sjŌpD帆}TTL kISTU w݉w8?2e B !뜃Y2!8*!з?ru[+vfXS 9XS.b@Fϭyb|-gF@UUZOizkCuq42ޒOhdhsbbql@7R>)+F+rUM`9_"XRt=!Jb@y2'њ`V6&Q?oStb}s-)FAUf/!qZӍ4e-=u=m_HkV5o Zxꪙ|;*d1mބ&ye'Tc\"֧jߡv+{7O)HH+_I/'t¡' 'Q:_L OnDCduKW_#( 5S.@8EP E:#jy"נ,uqV>6"Ai]d|Lb=uOzu7cA/ryλMzz^ַaþdXx}8$&CPlzR+;U+ar Wy%׭r{3<;U)_\}>4BD[cDvZԳך+\)ꎹVHV_1r{ ?nH;XEw@s9~LgM}]AyIi,CzbeHI4El\2_[dÅdR*S^W{1i*5\k)ao?v"h-؉:bwɖnPCmʂ s^ᖅ~1}6y ;-ᬜ5/c2BtYMEgʦ>Y_Xà>!,f(y(Uvo+yk6:+u^ŵx_RKD{ӌ#YKhP֒ .LThߋNYv|;͚J6 UNBR6tPC:͢t,M[+֋c!W6he<< 6H;UX8f#1Y8z)=a?R[n?n>Jrqg34xV)VG xJ9T"WCȕ{ʂv$gjVةX Bgp_jEWׂ&K0F㾢uzж.Jz;tR<^vRG~gx̧1u?P4DIS!1MͰik?$#E42hQ(9eʆ+9#u2qCD+M2_j}2khuH%s%;dLT^z)o + d*g^"uJjN=>OLz+s 4oŽ4*Z.c4 bE+\kd'0/S! E[cbDݎv#K\/;HZYP4ZUOhEIΙ|Zz^m2A92W#iGqNd\!Kr\[#zDddNdT\j ZXJrNWPM> x%!y2!M}BP,,rEtCE Q? I1i@z}HO)=8?~jҹ=bA&Y&X ; 5z#;q|bpMLW9&K$ V4d _XXdG!( ъ>bNsh4C(D?Jw~x>(:@wCG0&a jd}O]wΕA5Қ8ZkEb 뜁)Oj~3g3Wj4 W4vS4FP_1>i|md4B>( @_V+9ݭ$ru|*4b(BtO:kJmN:*9cb9f]6O8Mܵ~ leuoȇZSZel>Rx8:YaH^xWx[-Mշi܄;f_dϱV˹r^:녴*l dr4 953>U[اAj|R ~PeZ-\nh a OPWz"BEwVD\M&@rMkV}10(fV*^& hG\LT je)1R}BpmQ[jũ I- άm?"Π7.FB+?VH:c ڄrZ$_J& V>Iȇ[[**N=oܠ[ %po;BP"dG1,m30H-(I07 UB( B")IJ1H(J$goqB*!JWD@%΂Pzp5Q["BcġW2¡l;W自/ҽ2oi}l-2Z8O)9,zlhB,ȹo)Z;7_8aH`􌏨xj_ ԋ_>qSx_ghȂ*ZYPgg!TF"PJb}?x-M[R@xdZP?[2A9wQ-eZy֑W 4uze]zs0sϲJ}'\X Nͮ@~XDY9A~Q4򩩚P#N˰ Q#P VBJ8w*clV/o/ Cn> j˭vV!߈3˛PO("޴~' t`Md}(NU6[w)1kP?bbx{2|%T2pߏC_\4B>f WנHqZ AF Q{ *"_͇vK}b'EWAiqrs3*Қ7mBflPuň + \bq`53BcsB-gCCϚ 25Üs,녬Ŝ9vYVV-LZQ|l+PV5XcAJ8 /kW1P<lqyV <讵U3Y{p53ŨțhR[|b5gFru o1޻5jhRR+ fvu+Qzl\A%ܱtdxk:ۙ/AEkmi/*ğ'nwEZU9Rk4\S38gv1ZS"ާl+QW{2y-3ZV8_EPZJZ;+L%S>ʃ*ԞnQS폞y 5i^P1ܠd VB%ITR-!4 R߱-a^QfJ e}jk7]1g1zsuwEbOy!AB.Wkq 6f4Bܱ44qx!YR6gw#p%-E'|llR# kךGѬ5Ri񤒹rZzueg1Fc>fPSB,}ԱbFIZMbTrs  T2f;++mݔFEgl-QPx >XX>q+s4o!:vW+CYBZF. giȄ!26ZyF*oDz;}\LQz;P~ cJӪ*l]Yպ]kpprbr)N^=o3Ck4o5KI2XauxOcE~'a`ws֒|U_$6@1pU>tBGY(1 *̟JP/JT^"ˡbAZ~ObgΰWO Y}z*d-!Z%vr] FOR}.fjmaboφ&bGG >k2Rb0ܲpBӴ*3ZfBcJ~ ;0d8]"Y Хjm.52B] k6sQ40S) X=-+mU vj>'Mv)-)|W4uFG}@R31]5W5-:9Y nBb6+D%nK#P&65 %TYC(z"aNjkvF8aJeS'AMRjeAdK'1jU%g]WnH#I"8 gڔ,F8S*+3/{+XƕF]قkG4yV@ )Q Jy(vhxkVWxJӚ`z7kI@v PswT*$'$*{ 50 ڙm,DU_hOkM6#T`,F6T+C՜U$(J>Jg52P;JY=sʻI"\B?Yq@nEMK1"w#KhzXAi.C۱6?Ǻ9͓ z7P 3.H Z*yüU֠"-|wֈZtH4k \DϧLh#:k XC'9FxSN_)Յ2B*yvSL%T-.v:{Vo\Ph ޑl|.UbȒR>4Vl* ҧů5ŻBްd]%P;?Z9]bP?]A:LKTb Z+>ehV`e;B~բF:.iiEͬg˞cOh pqdETSԅlekJ1rmy;%]O3O}>HsIN(f2ެ5JȲ9}4%P#i#Lcr5S=7&><ڣ5PV9+"d[^A{B:5gˑ'#E=w/5Ydiš.ʚ6S(f]iD qCQ$*Q)FY> &D{{4FO8H2'pU2W}J|::Lt.PxF{Q?/XM=$Cr 'hzPTw/Pi{єUmt.'TYAZde3%l"li1D젮Z$TkW~ yP3ӭ8I+mݡRhaoƞn.NiC'h,v8$B/roWG-sDGʕZU#RVۥP44Jbo GPk>/D렺F`C^ [!Z'r+_T{[x%2TG e]eTBUY>V )+ P$C{1 vw`i j 7X\R.N:CÝKh'5Iմ̋Z\=4̎ѪFiWR)RqRle>ekMW„m"h BiW{ݒ[;"5KdRWeag7RWQzaѭ:MB B+yn ^.!P]tG`ޙxWUei|gwω(29PA & @Eb d"#dN dblFK)HmDEl{^뭳xewKҿ qRSG3?]N!'x̪Tq)}d4Nd`Xk|oY;Rߤk離׃r9]B~>/+FdzyAsP:'Pu4Sp+ ˏAqC1>7giJn>uP*%XǷ:.r}wS}a".W}*Gm޻kdȨNVJGQ:Zp_xRBG\Fgn/k4'z\T,ʑь G(CCifPKG]oSl0Q+Sx7+tI(+ X8}si\%;#^w =#^=M O|o"Oe\xOrDR9j-h9^ D'Snej!q2CB6JN=`KQgBu8 hϷ.1 7t=ϿS[ x-M]PusSW̐ԓ)E~ѣ `cӺXHt ;_ލXsėr*S"n͌ZbNp uT>ʥt ( h[u2+UɼWJ/S:]PZNzQ.?bkw;V[S@EWoUV.Nzr-C9nKG9qpo~I9qJ__@ՠMcܰLo UqVg b"[N[/8P8PB.EԈÂT9z]CSG|&D r|ZdV;YCS#bQ*.6z(cxRГvi,D Ѐoσ4s+8/ eڊڃ)W+a#Fxl~[Q\2?#z% !=Ƽ6V5"cu+>!Cb/[8=/J:񆜪Qo8ܰWTZȭA/SOv#TY * Q GPLP6ow54&#>&* r º7TP'@n;@S t"W"t>3 etsx䡲4M}㏇O:?T!lsgMXE uchMT/CU6!7hܓ4{8KP6,V֜"Ejhnm7T;N6Qiqn\|䑲I߄(o/XuDD4֠P"q"cnϴ YC589T<|.h=2Q(wi )*1Vx9SZim]N_bs>3Q VĭO)h4J/:Kۉ<j◸OtIlGP'|WqglȪt*v}+=P.kEYB{%JEC^&vRA?W\jB&rlr!*YоΑ.y1A3Nj'P@D\Zݟ!os)rtV>\gԝSxn=U$tPr~PDg" ej._p2Bjh:H @AW JI]4;1Hb+g4Ƿtr- zt'\SݏlΧWxB~s)j #JOhKPն*M}܅]ޤG(_.˧pT$v U腰sr?g{tP ;j<ץLQB7 0H8׆\ͧdP#GV)I|=ZA cXgAځ (D8P0_&zfY-^L@4[,r8E\-Uv[FUK>ǍZN)|ȾrhصVWcpʥl}/#FYrY]y}ɷr:lrx財 ЍRvPVL"Ab(%Fay!{(qDF*Pi(9DGAk }U*~:> {nͪs#h>5ٱ#0pw(֡48n2_EͶ7K6Aa1qq½WA*: fT~8G'P6TwPQ>#߆2Zn[rE}p=]GN Ȼu tt/@E[JJCT dYYkz6N8JKh`uLvHԆ} V:%/wp/v*vWX[9>!<#<#<#<#<#<#<#<#<#<#<#<#<originchk_tagchk_ref_HDF_CHK_TBL_702_189_1962_190_HDF_CHK_TBL_0Xx1  _F6=x\|T?癓Iv7BB $J ФwTņb (v, VTPW_vKm眙93gM`37a^T`juVnwtɲ^fidSM7ʾkYɳI[f w!.2&*z6QMըbX^nËHv#ӵW8D;\?abn؉mnMf&{=z*dOb㦇γqO4GUٗq=h3}`ud{pI9|$}&7x8jru=^ )|8SjkL9[39r>+7*[0zt8?qI{S˼uVSK*,0n` bܞWL]1k+L.nUX1\3k9ڟFnϔM*:[lbGomL| ^bssL3<8iiw_y(5TkuHNLSSGC c#/D{5!诱Y_YާM+e|OC;y) ۫:qk] e!dN Lb"gCMIu-ٮBÅZ>Z/WWM`}:E@'֛3=I&þb9ޠs3Vc*CܗsQ%cjm>=W+b2/7]b'u8;7{Vc{&Q-?jA;VDJπ :Zӯ{l:Sin ߠL!{Yhl=+4 MBPǚ?5bolB /6K=\WFb_f!k/qHy,SiEi2}͑,0w F(yVXUf&KMLz珱#I4=M5S>6B>5f{D׷4|׉I1tzn1}IF3fwÓӫK Zkq™-yڇB$0M䶻z' xڢWN-&LmTĭXzp (0yt P*nbx&P3eI 4VpIiᑺ\d62P}dΒH'}U4\n28p#tl)Ƙ 3X[{:EaaX?[6ɍr,h#x,f̓X^1b!Ϧ0ܛ^rYZ)r :8Ԯe]vY Á(xK*n`G`a:[FiI;8]bdvH/ƖfTLA~mjzr6d6y*Ce]kZW9Hۻm<멅aLۮuًwa*~Ja YjdQ 8NTf4IDJda8%<7G"&V pm ?a;hc;.sm2@2/GlHߌaZZDs썬?gQwf%{":MjX9Af4^lsTO|iѓ坕&mjYV7'[|hp/o&=e@C 7#< 1CӄLT4T6y8gDvVeE ƹA%Lד|Ҟ 5zh3,[ϱk99 5cvOx03Rs:BktJquL )`E20Z>+e[Uk`i9|,OӿY}cc5$T[ ƲcGaUٱ^HV6F{|s2XFcoR#u[H:&٢6Ķ.us(=عrFgS $_|73>KyK8c]$Ɍr>N1JOyn#SڴB޴\jdDΤv!`^o#c蝌 dNˌ\hi9ve)q>.YN7M=њR#67^74x<3:IBjxgmW2`@K-{V;@3su9uL]V6U̐԰zV[+=g_\CE"x ܅U q  v W؉F&Hڨ@GJ2Wz}Q٣|(`Dd{כx2;ZَǞ+mF&=4v"֧d;GeusnjrM+ k+<6^!y/) |H&;^o˷N ׼8;7R'g 8w1mc6+ &V3lyņ(]93mIfLw3+^s3R9|[;]Odݙb5?A&Z;̷iTWșgh?iɵTj?br}9`2]Ͻ5DGEDa\ f~-i|z Snd ]AqAxuﰆ^&w[c.z Ӱ>n{Ml$ȁkɤm$$'_l;W~əy22_d91Z fbýe:[J>=c%X9v)/RusIAY \` 3- Fo}+a,"m!.hc5~ǭ=TV-z'sS!goޔLjl:7k7 5$7U 2o} |>Ř5gꃽd&o` bYn/cD ZL -;Fw+ɠd…SiAZ bc!V f?6ث8G`^s^st6g讉D~0!2=v!ؑ`@HjI yF,9ʙBBev8N69$>~dz×#I2Fӵѥ ٿBfZEPݴjuٿ?Lg=DE3;cL*㼕y++Pq`y^jP,6IXk–AW2}_0*e)[; +9$I%AJbӾrIc`[-Xh{PoJ<]k2VOU3jUi&5g tj[/Ro{؉loLrCւВȤ+=dҕdL$XE5њ<Y/楬kqv6E9ǽdbN 0d&1ZbiCNk4I_*k-2/x|U"omog nۤ`'ÞDZ79DX J|9IQ^EE\v|Nߘxd̻;&=W佖if6ѳ˞lSxq"(kݺ0ٸ80y?2dNtF0OSu4x+$Sv]M"{!a-Kga ?aZoV3&,XksX+9.ّ|2d gxPGO(0:Y?7δWRWVGnJ#쁌v[v966r+2De?_Ɔȫf[˞D+lxCIҟeLp#I/8#Cbjh g1eVUxYvv7Ȑ1}ή{aڭ$fBw}IB-z;c-0ijB,0C/P=1nvkZtM +a&V0+.{-K'ޑjRUi,]n>3,-$RD|[$*!g>m'[6ֶbggObűl/Oy+czZfWt`gϜ><[E*BTǭZSO歇>FtBx4+9;WJ)oֵlHBmcmI,]MA9q٦Fd~ZCފd@>VMgRrTY F2fN%_֚'ή _ Q'I/0[ɞ;ڿ8On7ѠDVHȗ0x 05Ǎ2%i"snv?o2G[{v>_VH&歗l?ŭRr@6Poچ>$>X}O+I}H4 <@~֑8a=kHK?{;}G%m;޽7]ǏQ4j.va=En{eܵm뫇ɮѤFW+Z*Jȗf=A$ܖ2d,oeކ{Ҳik܆2cQ?z:: [DFMJmq%ln1,zLwRfא.[LIx87Roͤ7cj }^~˱=seO^@M8A-=anKe)%egޭi:nwzo5eQiIFV|oCz}q杉6ۋh^讬7T@GDO{DBNh_\Z._*L7 ? T"j8zɪD⼁TzFu1}᦯V>% I9*6^߳KHEVR3u+3jSdO5 *tw{>PUmTa2tcMluzfM ϐ8MnG}Z􌞥K+H "rя۴\I2Q?$N)'.7|u;brn8y}uĨIߕZ#yr~X+$AES2 6Jy/c)6i+bhRf)`ӁU O^h;ez/l *2z1yWcNrv1VW$YK >ۂ_O\ oMn86ΝKa:R~^F~6'~Z>dMK{K8OuP6!gژs]x+ɊuݲLXirdȺfwt Db?׾-;#{$iglզa7gFV9Bv%=t]i%3&VxKڑVM.4IAҎ/X;쭯 6<25I>U#fb raM8& uiH>t -Xi2 j3eOpߒ2+bW r˓]P$9Y$A[s21ra>vyd 9xRuiJ'?r˙!aԅ`<mp ɓLoN$f;ѺѰȶ9bd5ņFv,0ݰ3b׆ }l<dyxk$<c?m=XaO&otIu[Xzk}魘w43ڴs>%TragﳽUɇ$foq Y3#;,'-\lߦ \-K.ۢh[x +YMPl4]&c3J˽5ʉd-^bURlIO:&Ovǎ\y8V ▯og 4=ϫ:Ȍ'$f*b>XɍM̑7S]d!ַ&3.&s6 =gߞəB꫞g ka΃= h{7Tٶ'͞ö\ٱ^scf$z"B^y2+m҉Z7I:gَ)G-96} nz[edfV%qmyQ@Ǯ6ѓ'mwg9tہ}I,ڙĐcWQdT8}6O ADZKI+Kaҳ<!׳rJMV u lziǨCU2ϨS{cSy# r:fGR^OR }Rwb3ة]usLu ^AD5?6 &m@`җtS8 _O{. h=vQ@ zXS3#rfG& .u|{9T$'KI~N$[7>T{~6Fn/p81Fz: ^'C.=2 8:e2 ʈ)΃=/$Cڱ"[79&O߅7dY˟& Tg>WNf7/QǗ?iƾϙ۹LNt}JیM sT]#CTa9np;Nث|&h=ڕ,H~v$CJ7yB3$ oGsKOMs s_H!qZDyfL&Md2\O+ܧٵ y?R.2^̼w!Gh]-v͑;_}dԦ2Ѝ` rt3o3rdၞ+h١~\O|T;ÅR)c9B03 - [t㶟 {N6;~Y ϻi|d|zk#:r#&I[˓Im Zp9ޡғ}[m\L-#^X!{Npm$C>a?gpoJn<Ȗz]<*,S!'Vi/ə =:6#kKMKX3v\o=o2<^/ɇ%j>N><(me3Q'Qelwy>4qvHZd&u5פ:`’#gfOtPRb,.AOz+4cٕ0WhIu|CɉI_vkCɉMmƅriaȉrKin6t'gGی ,Ŋͺ2[l73."U닶~@j(!ř~.JYeG.ʃ$U}F,`: ;->'/>5K}X5G7V!&MM,%ҟZVc^.B-K q;ɉXd ʝ?F2 ko36Xooɍb(l$7GٯL]KevIJ&6:l*6,rV;Un5i}V!CuU=P%Ͱ[wnݺ\eMzާbvkP,]caqV(iKfc`9ɰ1n9q;-rVkr2ELYq?1' m1;Y>:=<7 "_bj]-telrbf缕y nGIGe$5: zYXv'a;>z]ؙnO}Mdy= 3q$ӝ{cydOص&s̅[l,5zz+ ObyKElnl HeX)ѱ.5ʶp9Youݫȉ[)O햫Q ϱ791_KKwG SaeP_W?RHd"2hoݥQ?Mq97urn(V<"o{ф0xxKNk*eek`=C Oe3>+j7an~OU$H26o/̤Q~U;GDl+-0xlUnkÈ767s~>Tf`=Q9Yk7V;kۍ]ki }}Ko-MH iGIqM5CKLxv,<tbNc xiZiOfj\ 42@~r̔ځ6qsG Hw Qx{"BRF-$/$78ձx5/ִc?㹉4>{G>)2U.94Cv`픯9g{2ڮ UWR0FY;$CvCigd KOEckI0ump_s"*ݤ?1 'yP2(}ڹ-@R*nO}^xv_f}$˛r^MǑL!ɂeN ͡P;*#2n#&eJZM*_<̻"QͶ!@NKUy0YxpXآ=1`U]2yO Wu:tz#q:/){|-nCRvJ;&,;v̄HwfZcIyXo3ٖh礏Ҷx;CoU(o]*zT^T_&7#fS5-i~0pfJ#rv8F?[m?,(̵Lv!3lY<,Uvo=̋+ҾOp<`h$ ːOL#v3rfom*"?'\<~yCLH P8sVV_g2Բ2-j~ɖ,9PsUYY6sͨq룏iX؀yVԁ:r39ΊۋtO` X3,[o}ހ5m}(L3=`jl'w!瞷ȁs'κJL_7fUPc+|o4e"Ung?WdzZje66YUZmꃞRr`.Vǎ徨EUWR#7M1X-Vy#ok;jYHaG/7"}iVuǺ4&8;aqn>$zlާյ$MiX?fq hi8cdv[q[5n=,ocWLem鱫H~t&D 7ϊ4ȸh=>Hfs'\ƫ ޢP j guv>Lv;8Q!P"$ Yҭg gL?;pmj KlςyZϏEY{38W,h$qi Y$9dv΃iz? D:^`{$e.rgO8W'fM d[ezZ  dd\f3ﱂt~Nq`aN"u#fdi,X7Gn=m"nMOBʷXgS;>z|=,9#J9s $M5qp1k) -~ YK=F/Lov;#ȂMN.OͰNikuvKmIIr}ǐ'JCoKٖ1cV=N\)9wq}'hrMzDV5qd,o[Ww4P;|va9A%9Ή@YL9svu~FvpڿR9V)Y}6=LS}rvu=|#}יYS&(sl=#yMn9DZdb𕞻qn"qW<_/7#K}Fr[wVt*C5z*-$.$+h2tՉHfD /2wu,Up2Nd3y~,9} ˞;aVorp #\-HAojn8|<_&MЧoY}\΅3Va9Dor~t֚, ÔȂpS,&[]kUNm.wrN`loڻ+^2Dr7}4+mWxY6m]Ynfph%Jԩ0||Ce͌g&j,Y&f63XRD >ҋme0+O͌jyY^HtNO{W*dp1B뙇yd1o{eA NPvJ󸝮 /S.kL,VZiy̓aC}mapzWMacֺ-kZ*8_ӻ"aqyeBitzR[fZ2 g~5 <8S孛.^Bk`e|76cR/sLzp%q1]up~KF)sph}JR+vˍ+*\__c1ZR;;&+ܻ~f"2,f563n۟}3gב3V},TvWR6$؞6+YErt/A釻Uthi'qw7 ĭz%2,{v|lɔ*}2n̒Uz|[v[_T E>lHdwCO!R $zR;"*V,)] bA.DQlذ (# s[y3hi& Ӟ>r]$'g~O ᦃfGoBۺfYsn~g[#;vނڐ6GЌ؃TCpU{1zѼ=F>'sF ,w lδQ[zcy6S?yu\@s{eU | /~=#md|aԾf_ &=" nY'ˡ*mq'W$3-0\3.aܠ;C MeXq":\=ƵpTܵzvp]v%ی;=Ydl٤.zn{ubS,l|ZD:5P\&\{Fi_CiInNp-jT1nzmӐt &V*i.=sfqgl: ܺs  mK(Ζo쏤,̥n5,4ڧ2=IyJ/- 3RgS_HQ{B~Ks gs)BI#}j+w.qȷĿ>%gpzn`ܚ~%nw#ISKBlO4]u7yiT-dگ?b|*ќM"jm /i!{ fSgK5>puM ?NeD_*zpcQK7멂N\R>Pƨ'Q1̏}S'7K,4H>#u Vs0=o#CHYz̲mH%qp٦7;&R,:ig"zKzj`^."kѴ,_,-p˿)+X>7s s/.L*vI3bۑEZkOjfHnbiH%v(uĪW~<,^+7?vGΉv&z/cHKJ 귤]\٢!]{iGlMoi}euX,UDpoxٱ>U7&.--)vǤ({V[cPrz$i+}!rc擷Rw>k}J|hOՌ:AA!l~)z -)44ݧJ;d]LmS $l%uV==:68FWŤ8}/VEYiVఋί{>Uciƻ{:3V}O]S|>kɺR{[tOa%N'`&~Ԓ|z.:+ɸU¥ȾS˃Wbpv%|2\ϧ۶zr=AMmm\ n٣Wnv#CxTp1>wxiPٯ~dMg…m𭘚mzvcy'GSu 0}pHi5FgSe] 1W|Z{ΣUx35\m'xW^`gL)uiSu 3v6b{toE 8[ mg,N/g5S ƃ&8.5W_6 9l%k0 ? l&R8Jvm06X: Uyحb{ |c}C{.4z>)B!Ƕ/+t+L2!ٴZgS ỳG^s}yx3gc.g'Fq1Gb%gkpE>S6p L9e.=>7cpEdtf)İ`0rqNnmڶT:kk&ykknX8'y,3.˵íR5lyxkˍrutEC d|珰u#L{/up.umpv}x/:ڀmo?H瞺L' Mt}ݺ$qK3Z̗DY׮{WM_Q*1nK~0{#/J*alvLkHmklm#Ws^mZ"Vu8|2tm7y`=Zyx4W zg۶x6-p5&*7*k)&8*`wbmKVI-ČFHOk~vϚd:) kgxZӳWbYѮfyWzq=݇#bܨڎcX&y_*c'Y6bfϛf663GX;)r]U78olBu mT\BMhZ=f4OuN'LwLfhB}RM= ۃ14Z636~NKshFyT@%s00Tof}}W&ZíLtiOeP=}C('n5nx>6hF"\.IK&fuٛ+}jG6bCQom*0 ˥݅8,V_KWS-io'5'qIv_uu,eFN2ld,f\, .!Po9`r}+>MHΧϋ|F̮L=G3H}oIHz@d.wp3%̬HcES*۰Mcx)&Zf}*':2km`X.ZFR%moхSlj3[V%}H!.֑Tw0Ubc|*Li4᭤>oi.u"NÆI\,#:IY֘p^K OI5GLV,}OM;bmW[8@G3)=e,&t|*~"M =>5!>9;)XA/ 8sA=R3r.L}ꃋӗgZ}"Xg+~)=C^oROmcLep'~T!%*FGa_Bzr\lTvE>'qMeLhp>pn'URX6Vn%%HD~ -55ZNZ&IMOξ߰wsM>SüaUKy$SE0ROHjXjБ{4%- PWt!5JjO A 6@WEwR*.՘Tzx=VTgj8VWD^U?i>՘JjzR.I7}}eWk|,`];u\ș)۵T?6:TAپ9Y۾,\LkwQN䚚 S_J>7 viω8XOz2>HwG.O=a| W|~^Im< k,Kx:;N1C8uvƘ+q+7sl 56.ʑzG+F ) <`j\ayވɺ1"f6v9}1GVbjPωp8M5Qϋ1xoMbdŻÿ{d 'K_KGӃ^F۴02N嚥- `l ;4F>׶j{OaYCaK[8{T?C9\-4|cuўNO~͆d1ijcp! ي9}ߪxߞҙIy/U$*CoI &Mz_vgu8f%n]Fr|幜.s_Zczs`=A.Z%MrT&qGMrEk\ $j*BW~zatmdu|3rFR1 3>omIL%ub: LT.*-h*Aak4R}cr*{6ާ*;M}uܡ&YٕXUiW.X/fe l[3(~ [U)wc\m1.CJ;:{Jq 4#}!6¿ǥ^å4zlDK"}w*үo7|LEyΧl:,P;%j_˧-ɾL}I+"LFݺ'lh6IpGzhkHY.ًg "EvLj"brI+u!6v7ނq-4/mnx9j^k~%F:]ԙ]k O3jYUMj?v ѧl\V3zK7IPy_UԄXHH.[;HW<:Ri%.<Qy޿2Wn+&X: &Pox2rKwHA>.Z~+rs,yti,U*ROJ bm%/团@Fo%u?R$⮤-Zd$u: e"Ѹ!0(kI6AU,ocr AlT$}J=v]{~@%}ZQ/FY_DŽ6`w\uԑʳ%őrgv>ޢ3M*YޱrICa+bWy춏6ߧTR\2I3/yw,e˧6tT![hoRHߦ|*IOf9[y|9ޱ v)LJo,^=k5=zJqvZ" *F6YWTյZ˭DОtO=؎ԆwG#%ecR/?l;ԨIj;E;#ػ1sKb8d*Jυ7츖:X9W5WTGz*;yu6I1vu5Tki6^.!,#y^_ 7\Sf5Q*S#Q'FZD>bŸ y~^ĭY pbu\H䜫OR-\LևuRl} |7&$-supI7-xp9}UDGc?k}A!G&ϙq.sD>6Y.ѧ ۹vrީA0-^![iYG3MX|mxm]Zn͸^6J;YgKDvЪ>q{N|)-hK1Jmv35K[6wEޡ]%j9~6 rXxa;H%NZ&,/[<ǭ18^|q-֋p1ws8n9~c{!un J4ŲL~+էY?=i=JFNmѶ/#KouFrvpGLoӝ} {w=8fg&f3VU ŸUV0Ɍ\{(1=yY{s3 ^p<5[> 7I9U>J=G:qn&'xO:ο^p^g/E.|/حΔyNI۱Y6ƠvgtI3 g{QّnT7bK8K.cez=4ʧL=7ѥ4tDhK%XRoF&Ρ<&>ޤkO4CoRWsM§hIޮg&-䱮oҸ|ore&I^Ƨf;"epE RK3A2`*EbvE,"mI]F:cOᣨevK6Ӿ#;`j;:dQ-}`"=HLzOH)Mʌ_LI$Tm[YPOmI> ohK8Q. oygӜ`H[HM2F;V~504 *f@,K#IiO٥0:ғsXdۓ߫AՑxʥ*mɃ<3ʑ6ݧbRE7K~ D%5l! ڲu{2o^cS?"*\S"q.=9IT4'*%ͤ-{HA?Jv56:gOBJ4%SAZMJd ç.1RF.Kezb, $%ܝiRO &ki5Su)_ǧ*0DoIJ}(bW<3nmޖޅO5Hi"֖N™Z}f_t-M;7z n]ѫcc>Ol?*#H "**i{zo+ik_1s˱*HT{|hROe:pō$Ra7Hbw[U{ԏzggJjtϽǧbN}@YtK[Z0[L%GtZR{ҐG} ⓛ붋vi"Oh*)+^$ۋm)P%z~9Uֿ^}+kNߊnrl0?W~M >uk1VF& CAz}:Ά_ps6QѶ -{|SZMr#s*2ԥQSu\+d47rv>\UOϑ=6QBou^Ɯ:zׁmof,B+Z;GvކE(F!p\ U_cKgr|~{LMgO5\!Ԏ8^6.ӏ1ўyE,Xorߥ}ms\oW;~z.ї5hdXfm/MM};yz?@)Qpn'7#S/0lGxߏMg4|c7ZR_€Nzb$j"{0򧮆 'X6*cBߺ5=Y 7Pܯ5 rq8^jMw3Z6s-U x60F.~<3ْ؞ΞGDI[obTL]|~XKg:~Cn-AԵnS+OsIY enY;~+30*ڡ6̐?`!url3<_"W뙲XΆn#U ϑGp)%._p /ɇ_YNVit籜rڱ[O. zc*is&cG`TnrN\6RkqmQeaT^@Ǟ5J+!p2 LNlQC; J424v)NՉ`BWZS %ˏmz`=E&>eS0{I8`_KjȌH|$uǺ͌ wOsd}KMf*+ɡv]0)U ԕ iHҖT6|0ejS)GWcKސ24`Gt)3YxMn]BMS(ΧǕMݱMqM1* w)۾iKtp0чF~6O. MGVtZB㾯Z)"iiCSbi5}>]c:j\RSӥNEWH:}.Sr+eL^cܫH>ԇuߵ éxISObR_ROjId)'u2:A%aGAMq3gN>M~.#x濩ԇ8-P͓_'F}r~SPU_K]Ia ̩W YH%1t#)THFrwaNR D*:+a\ohMRKɤ.2;%mz8P)Dk0*9kɥѤ.'Irۮ^ R`a:`ꮭꃑ1zrҹh|ȥ~ION[*.uןH=ՒZ x];#&rK6C:>z{[ Cű-vt\f""TwHt5py~>*ےhYs[#Np\`8//b\'њƅ"|Z=5osMO}TOubO0^4 Scu8\'sL{w*#m>ϩ+vNudH[yy:Ggq>.oRWg{5Gr0'ĸ>wܜR)UۼK3D3Lixw_p驡vr*nAb2u~rt# LOh/'X1\3t'ڭU'{^(:y.ǢYy>t5k.۟BΔm!=%;Iԩ\e"ӳ%M}$w6#p.Zp3{$/Pﯦ>.yvvG#pQ ? 30=ËF#'24E^:ը\D)p*5h S/W,ǗSOZ#?B7|i$H"=odBp ޕ! &O_#ׂ<7FeƯ?Md,Jr+'lIL3#Sr0ID^7 Ux fN^A[ O\KMd k\'\'16V9rV%l2C 7S(}AN#^5eFd ۼ͖^u4t//ᮧp_—Z8*{o;9MV1Ǥdm#$/x* ~>+-\Skޢrrkk]wL_Ϳ9:ey:1ezƆV JgVj=fL7T6χ'^BԇyrhMTΡg6L9m~ANVe$ޜpIg*Ojk:k#4̧O\SͰċ~cѾhb)"'DS4LNXDZiIXNK'tCr+^G$]>Ȍ f,2v&ק4y^_S}^>\J|H&n}6dG}8!}y}bS)HhԋlX48OKe> Ideѷţ;@ To|['otRNS,=9-'pfL\ ƀ2m;{L?RlOzp7jjyp;Rꫴ>ez'|T`@DžDYuBPs,U|;A)M I V9Z}:ԐI9۹j),sHy;ڣHxp'G׏5u<+ I.tSh8 [+8Vwe.E/M1օz`CN&9Jsϕ_"n>jȫ$ҮOR'Ri6D3IIjmtdd#p58^ղ7zKZhZI$]bj**!: PDG M3}[51ԾpaFF=cRMހ8ByG9"2O{JW7C-P]eWc@`NjY\"7zI"uV}:W%<kʡviqLjk1Έ7sn*MZܡƇjuY5 *_u)A/&)T k ݒL/Z]t~D|,Dߣ'zKF/'Gap$jDZX94*$2GSgw'uybIr+Ē[YHG}˧d;*O"xޫDEz7<`~_&^hlkj۵=TqJ-/~D>=}7J:χ9:WQgp{Fh.3ش+5SsBNF~bL\SHjQ:\/;$@Ds``gXrelYsd Q h tP;g<8^3Ǹo&{N|.iC0Nz\ Q6п̂w̾dJR5n5Ij2\Xt5b@-ܟO驽Gb(ȩґ*5v, RKdMN)Px9|/\~-zVe h΄{sT4H$h~(Ck^IPhK#H}jg/ |Í*oWÍXKSItb1oaCL\t4>5HMaO9'Υd^aR3SEUv:çC MԾ;h - w fErVtn,\ʳexV5w2[ud<ܥl'cx̥yzO lWRO?{I l%ljkULf[Mڙ}?T9ynǀg*dt?$Ѳ.)-zI 6XhOD%$BGuKg:*ñ ^a ڒ Ni}jV ~jkҴXyIRK5:ɴOCtR/>iF=+)mu7N662~s3FR:YXbzO2^ =1v^SΈܒr|a$e\פqBHrH}}tDqL-I$JI'7:NYN\gD!vȻMiWs=dxms|!6"Wq崑-~n-gaGhx8~.깚?lݸVc륞u%ԧaYb-v>#6=l݈ {SA9GO1#Kj^l)]M3mz'XͧQ *Y>fj>m=GqMzyUϊ2gWP,URد 0UMØy|GSǻۦEu36p7}, cL&NGcdz N{\fMvw;}ݚRُK8cz:|'RΗ&[ /G7Οy0}1nSmӧe:u%rTk2sukiJ=T-qp#95YCռ[6n,-}O-)p-ԻiCuvX{p7ϗ6arfY#Wi{xu)碟P,Sp5Kfmף1^Mjԯƿ2xW89wWMI܃vcLm ^-"c<^װ.n:^mVCnx8.bq9߱8KCa'1i9 Op: p`:¹:'q7Ro.-[Lx~ 5g :5ƮnSTh?1cK8q(T$\vP\a'P{\e!i-2$j>Uxk,S-ZRrUb[Ioc'i`cԷy>ƾ0C7&PpNoIH5}^Gm]G8Фx̥S~odҥ-?Yn\7T1vw ;i+i[IURbOe:6?fH㡕nNT@b J%e%J[*M5=7)Ft=ۙMZtérMz-6|)4٫UrHUHWcA@,=5˧ZKwRyl'W:&ȥȧVk j|t!Ώ.vI~i1ckm,L̥S*.3>e<{u~{R7Bf1y.ӣI2Lv`+piq$R1ޭ$Ԥ#)`u{LNsct[曮09vwcrttbDS-NjX>0mt\qS|%S@Ggu?MxbO.D#uriF'՘d/*]@ꌹܩ?DsHr9Z҉$E]ťcI[[jE.yse3ͅOQ}*V]+9#Q&hcrZ_8$탻8m+!o5=-ډկ{^}Jis< m}pE͆}i-<okpy2Dߗ 粍Inu|eE͚@+rM/=_e:x:O049γ7Sfl5m &r:0m+ӕnā'F+l@Lqct [9_5v rحyC`g3ƁpP^G{:1h .םyI&~?ޙq cy|e]u<ܑsG vk+GTr%mRCvhxvP3;.+}Ce_zwp{UK><~24;SrsCy.ՁZli3;/mic7i!{iמݓqp1p蹯>9sCш9.[>,Oo\穛.ϒup[3z3wx@F; wpOO0ŽzB'_O.nŴJR\ůj3PzUXI]K>uQV%MrkZmP@Z^q0 M,n[3<()tKʥPXZI4ݰ%d#mFAًOR镖2RoJI8G!U§d'F> ~'rRETВt8u)R7+rބTgwt9=<֛ 9 +)=FmtC.7UU[M!}l˼\O%ҙJK#8Z~Uy`TE+}Nu; dHBIHBH *À * >AqWGGE ApAEDQ 4̼ұuO_oUi긄^OǑz`mN9 [l*e!W2?4WPm-592RlV xhZ,>}#V%5Y0C}*  /P1jnՓѷIbM؎rM,M~[qtWܺ-ktQ= 'D/bX^lK +[F׵I6& jΡ!L*Vcn4߽Z-ZWȂuʂC̕XJF󭪘tz.M(}B"@cA)`4|q{DWօG\v+T4[FM4с$wmW6Q7Θu3.癝Ɗm:GF'^@,B*4sĔs̜ X|*ұkeY !mS0ۍq6[ RIV)WrH[S؀cTgOCޡƻݣ`bUXlK|* K҄:lo5j ;tG;mwN?~BzӉ{=9"#0> W2GynO]f՞.r/Q,'8r%nd@W]Ż읧9fn\ü,R(O%awhddGA k%;TE7ZEM&l&>r v5OVpLK:lZO$ }.'TK>/ax>gou WsZjZO5̎#L)=̐lN? YYp{sI.ɢw+u%oazx/܇SEIǼBi0N;㺽xǪl/%SwsUE6Ty^1mc34;<7ٯJrL݊\֖ 2\9DƯqcJlȯTГ#grг5ϭDWpRK.{ԒKj2y\9' $T2FvyDx·ǩP$dS5<ί$#dTGH92c5_ҫpcHfsnZS4խzA' Wc+?ZX]~wb9K;vxN F>:܊9V'KfWôsߡ* z7ȩy#sCG4mbL_E22FF5޵Iљ 3}=.3ZN{D;iq`F%=[bb5X|bGa?V5"\j[1+ݣGo4Xj9l=Wq>3}F3cH}ƔG|btsbhoEW8ǜ9in^;o.dO ךM)cG槆ic|$75eFC*e:ik' LK $#>{h|r ɵ#b$ۓ͈޲d0yeIyIq};[&{mcb%h[1l,KoXAMn2C#/f7b;n%v~j*NNfSbcY\u`\f6sD;>29g-0KbP-f=󖣷LI;Eo`uޔWv\ri]SJjX>Yg.$Uߑ˄fә'HYl:IN}-7.h+ASQHhԅ"2,ܭ5_kcb4i#G=N\o7`XD o3Meh% 2].uᾼR2:, >=WLQcf}$>ޣd]gڅ1Q>Kz]IC/~JN6Q KG_ӜAH+mmƐ wm5XoY=t=ge ˔=ʵyk'2?._z.aP Z^nicp~.[XyȭϷؖ$R.ߛ.{d ?ae&zعHzUbvI/&n ֟L XX'ӆqvE ^ͳv٣FOБ>{t6GO3U.3$lcB*Ԑ囨 Vn:էr-'ۼ$se:1D`mcdwAt6Ÿf05c:0O//µp |j.>y ~g8j Hsw=qj+%<#Sg?e۠XrI('著 `:O#V.v>30g]8˵' CoAwfdN8GHo`\(ܬ:eBO.3\FV۞sqrq_['WכaogUf+'Fڵ/Q3~*ceq_x9cn' ^vc-MvQ Gý/G r=cBF I=OaDIq4S ?qIԊn u@yF^΂g cs([]*QeyԶOwIFM_].MxT*{gsu+| kձ.3vWσO 2:^SYgϤ{y$QoȠTg(rH޷d-n?2ӕrɈwV{nw{zy+m;'%wΔo TjjvG%U-dDZtƳj}%ZȞ_GzVJZ~o&u[|ծU_ 4i?9t%Ed$_VFEn/-̆;<^7!e<Ɖ.od_}+SˤV[rS Y:ФÖ1 _8/2f:9VfZ3INnhmʾ;͑MЧr鬥`d;#tj;N3H\YI[` HnמLNV=U@LcQ2Bn٦+foc]ˋs}Rb.[bؔ3!A{M$ӌ\hgՌ"DJ^ u\R)UR;??W3mRc.y[Jh?ot7&d>v.`<:-{rrDr6L$SAoi kcUdmr4z 4SqWי)Yn34u7ЁFϳMdI5Ŧ>jbwcyԝLnJZb爝˛M=y[lYIV-;Mooݰ5T{T{-bSכ~rvFR'I.?f=rUa3r/%GlNXl%9lEXQ^ qϐM9I>Qm9p穲_#D'PF/r^s7Z};W1E ?lįdPzr7T;jk;SQ*w Of =Du{1$8ΔC`Οu!= cc.h؟Kyt=QOzիYҴp瞻B&%حEfWpLܪ9m4 IdRۤ'ycόp:|~rp9vyxN "WNsW gy6D ӒH t"I >|O0x~beg'$U1lxV2Gtasj-@(9?bl0c"?O?%IE~WOI^/O$SG_ *q:sgǘ)kZO -[uN 7-Wv?;Znqz,sH\T+M+IM'$`*m7Mqut-u&'Bbw));W2t+oM cp1H&r3d6(;mPW&0KPδ3# tă^O<ϽyR0nE6jbO\yq5R8ΰVǾ33[߮y?;nO<٠Mn n}M;&gInqWvZqfBOWE>qvB j }IO_8wmIqA=j S^>$Y굃r9&pI\$Iȯn Fa_x  > `/k1Jg}[>Q}Œ)P6N,_ǰ<ޥ^(lXϡ4_v d͚$V:@ȗ ƪ+C ٳƢB,g'rJ Ñ-ׂkqZ J3ls (})G1<}'y8 EJ`nx{W8cG5u 7>@] 2p*^٫8TOKmQE?WS~fyHH8⤿r?9;!*JpQ:p {,hcTq(pW<`Yn7`_p mx6&. Ss4yxpȏS LZ*|P:xDWa\~#,9DQ֗cyR/p ,)''Zx.xˣn(p&/W*L)T yiR&AJɥZǨ#5$^JR4&1m=fT.ׂK3eԄzaݭxC79M9%Sd)Pj|sx6/^ J,k(-|Y!+5kLC <(j>Fa'/l8y8BOJ P+g |LْǹΚ͗8 eg/ΎA|)rPgrjG'px wY:nE 2<̺/\:p>`?(۾k:~z(JNbfwV]BP3 t6aոZ5K/%׹X(EiXFI+XLSGaj~F˟@*\lB~p{px(řr@͢k\<웆~MIWlNav*|&@y/lWTBa'`Y Tڬ7e73Vpi[FոeUacT"C ga6m#Fra5΃a ad-<}_EJcH!lS=Dxf%T@ }&#ϔ ET/nYBŬyCaLMT{ס+vRaKw䉂%"iU~,gen b)bfc'x.[~PY kV_jlu k|yH]PQ[=if_E[ez{Qj??þ@[&_X'cuNvoX5:[G8WPeQUjXx4m8Gy1̛*qa'MX]ؑ=z NUX˰xsSK ra) X5Z4!$m`;N !0ޅUh?͓E󨶷VboXCEN[f9v6U/fB'V{MaLi I^6]lGP,;eAu,ÞH[8*akf <(s Gzpx-5av/b` j=fͮd˃\d8V]rQ6:ɵX'3NEIɓoUdmOaeBLtkc~hv*Zp!kkc) p8̊zP5{𞽊L: n(<}# R xRP.x.xX_@N-e'(.\,9o3eظ\sR;$` Q< x1Hs\tFQztZYNa7"7~<9-/ׁ(Gf;zr̚+(?p{O 7){RE|XZᵬ7F~;hPia0ߕx .~vR7c70FU$d4H[:يj7y)o]:p:xԂ#sBQqxVj尧j5sTJڄ}f B;by\ ĉ) e@y] d`,iwZ@&SqCMhܿa$xpBN=nJV܈` ޯ|>U嚧q茢Ji <7;S>IYns'U!ͥ-2K8I1/w8^/ڡ ()N" f윚 ?ʯNX{8Wk߸/b*~4_ĮΧSy=g  ތIx;nS.3y$psauko6mv$ 2oU(~)|P;3VySMxw,5׻4U-VY*axH ^- J U2q}Ske^T~A縦nJ[sfR)۵XYX:*bJ"`PSP: Oģ;f9~*R:\t}gJ>gG(oA-D9w,Zƣ+o\.ᙽO Q-}h ^ysE5a󔢐K~ź_|SXx f싫 ׿ƢaܶX g_Jc~KK9[^2XlDt|،*zY | ͕P>Tp7 `u%l֗˪Ƞ;P%ܑq)x-R<H|+˪3U7p8 'RgcUHO7pL%Gf S wͲ muQXO,2ۋ/;R1@zƿk /a/&O5/ C珔d̀W5|:? `; ݣ' }r 'DYlF{_Y/1w_T zjAZr?4Źj#6h <_4fԝQlzJ;7rl6n9KuѮ))չRZ鼁 1ۘn:*Ն:M]hg:`Bwվ>t&Z[)l2rNt'VQu-Lc`tꩃx8^9ȧs{),Ť;c5| ?>fXyKO"R)m}d>*#&x@q=%ݞ6jt*l1˨XUՔ %Ḍo1;h37ur5k닦opFߔ&XS=3`Y-6UףReCO\O>,nXjnΰa-Q7Pu+[V;Cq/nEN*V+^qp+cm1KU腳 ώسBKf2:mj~"Iُ[F+vrlY%W, G=P%c3>Ǭұ]!4YD^U?ו:ևâ7Q*z*:f)5*a V͞K܂ocEo^Gxmnͻ0 *`=a~;*d$l2b,gzmw2ڼDv}P;c[xm#y[3IY)Z'%_B]83_l̔ n)ڪ;uWek1I)jW=U *T^)<u+>8&IY ퟓYkj(fQuDӱ>j8 rDjsD'cQgXi"%G8U7?%Yj8[ݭZV'Gm^7"6{x;Z"#nJs/W>}9Ll b6?m Jt?$o%[;8KWXׂ|J $;3[=;x 5OFh}7^c9#X)Ƣ?@S'I BicϬ;+c#P9(eMSo] :T XX;ƪpo,XoXW &IJ1 &W6z=z< ([`Pϓ[w3Vl&IX+krnrW2n }Ŋ1#>g>lOg,}넳?T=/kȶ%YW.Dc!̧NZbXkgMêL LOcgvxyG[z(Vspj9c[0"KT&j e72?;EG tw$2ZBϐ_M(OCcq+V,Dsh1ǭ~ {p>)o&/-ߞe+Ə y'C#DH%Z ݭ?>_DwK4 7/{rճ|FWRqݩq.Xtw5Bq`Yp^/Aۺa`8Rfb߶9Kl혈ye{l(e+(P9*(ZTNGx\K7x:|*H  NA?n/nH}&Z`;I*wGPcfs9*uF]i("IAI|xߣbd4+6t;%{68TNE߇ʭ_D>bE3Zj!zPWTΖ~nsXx\9O;q'r:~|/zIT*P%.9 w?(]W q]4j(G _2r1vV')yZ59pN.j=%9qfc%9w%DI k&K;Q05U:WPl=d 7-*FmGh+y ֆU=1 6MTEa.c*=5:K·A2اo&H٩Vٵ H5z JaT }Gd#5r>e%[\B{Ԧv:4dI"Jyb#vۑ!5ZXx"$ B#=q4_Du_ ]Pѷ^ 䙌ֶBrJwCHoXAmvi1zƑcn;Òu[w> F +-(Eu3yu=Vl`L[op\ | +UObm [[gS!X7mj:f[=[s_"X| #,K=s|r|ij7+% F<ċ.*JUBkTN8\:MNPoX&?nqveu{k=;oeVV RG]ӭ(!ƊF{W|S2aOòՌX!, kkRX*+DK+ʀ@ ~|s/`Řaیn5 `@jgOFQ[Mxʆ(fXr2v,:`/j{ƒg:]<]`)~{\Sx%dXr7,oS4tY(5cgJ'5vWt'kǕ?j;~:cڻXӨ:c^yۻ50GF#^VCnT8- W`5;Rh{Bmk ֽX;XLoiv`T[(+fcDMbc,!c,!fmaK/|=p=Q3(:6xUA$KU#VBit vO6qLc,`E: /wNE{|ˤ`X>+-KJgv5>m7vi#+y2Iv\Tj*Rn88<{X>;{J:%/ 8V}g]ǮYˏ؇/7>K'YjK{ #Fomw(%rS-[ձNk+UU(R/sp'pZs;5]:9XvMs8TtQ[G͐|?'Rl_/XYNJ]+{P(txrWogEa(V7seևLùe̲1ֿA.YI`Q9 :]'uwbZ ^E':#̣1O||"35O1 }o!^aB/ +R!3Q`(vѨj 8oE}?&[Pz0Z2e3(Lu;D@ {Ej'3eA>hx.2~DMPoYj/$gXp9y<|'QS7í .fc].%2#l\V%p3/ޏ' O; D".l{edf޿|o ߎ»e=ޗ$x"7ITul8V7x( )&"Խؽq?}s֫GU)^ α)!*UG:@`̾ꨑ>s\4V+Xsej=,X.F9>˅lܕr[a 2ѹMbƐ/q]<(v=:Ujb'{nk&5{ׁr VvD:k [I\a۹ʝ*l-+<!k8k%w/Q1VawC`Sg~*X.Ӱ͸.eUI?)p0Va݇=oBAPzƪ`iCM:i:Uvm&CbP"RBX&VwVa\Wi_v6NSǰFÞ!/ftwR|XkZY1fZg9sBʽ3e\6k F#b޿ ;ֶJXgmҌhy/bՖ/,˞FNc4'<+E6EK-N,JTX.}_wifRn9EB?k+A/ϑݰPn)_lEqgj*.QٲXVϸb+ƞi8:m={Hmhd5Ms'Â>X~~Y_a}Z,K[2ìyD{7-X kesݎ׾+h,K3ab{J)L햭(1~{[%f~7j-Rc Juw`NuF'e4v?*:S--Ke=VC2ɽ2p;^Hq ic8p`8Kbm߉ϱh) Q fm:9dp-8<~sMrasy n@CWPT/w0w_Xm$_-.|LvoW23mѬӑ|^,^:?Yn q=Xwf댺pvU)S߆1:Y5osgnC"ᚽ nio`ַ&p,qM8=d\ֿ!(4 ބ*=|0:8?38 w?x+3T6_=o=(|^'.Ddw~4t#k2Un硥kIEvwzw(_E8q?{}(G+ mT_ З Hj|QU8= k%*^/9C֠GʇhF2E<;}ݱu󫒫QC%)ֿM=!Y%N T7{5SfՁXР$ߣ(}8QzzD ~x>uM'(HGCk^DsUn/ZzÎM5wgaJ2[s2=?Jb*VwPRTkGP r-etr# "^ꨡ7T0;ZV73 sFcv_$knY(޾ 8t>.Gfg ,f?-tT;Ƣ0rspX@muQU͑ 3guf[_gP_nXtw[nD]A9ׇ:UJ:E+h ,cv?L2V#kPu(p{V[AI6aS)yށpF!|߫*<:.fZC.Ie>;9,b#̎Enm)_8Lq5b3 lok -OD$xeKoT p[!egJeE v:WY-Ϡvڢ21*k5u+w0`n8Pm;!Mvy{TWZjף:/ %?9W~^C!%ΣלԌkȰ.m))Z%Y{(#m|3_\Ă9<S>0{)Dx n<ϩZkNFQlB-;e8&_!uQP]퍨oZ׿wi#XI}!x-6:RDAsWa83=U&?Na( X7FA_,3\%Ўe\G3ԲSEr5MࡆyS$5(]Kpincֈv4F,pH4Rߣ)Ŏ H7>w58~I| x;cn& r ED xe;ӹ܀㡿chok9X%<BGTv5޻SVV大5P/nQ3jǾȧ8sx~H~8'XS^@ 'ǁ1e)9?EFv;c)@>r*ū6 >OCKR5h0I3 ቆ ̧Px  ۂ7?FZܥh૝v~w8_~dX!,w7 쒧%2ժP Y&Pz`X5G^1֟tQ6sfry?kg?,Vw/;X;X8F^YR[$Aks#N4oE(3mm\}ѹ%E<16X:X"U򘱥O `c*΄d}FU}OI01굺ߧ X Dc oFWwSGG~IG+T"VB X;B^ZU9Emʸ;%kˏ*KzQG<}U++6f89szpvjsLp#+)ƖM X$NJ y{eˍab,/[&֢y".X-6K6Sci eL#;Ht*K:ˆo2L~+PNJ_%p_:mh r)cqGS޶KTcX#[)uKI`^uͮ1!UX{ -5V3Mz)b_<t=θ_Nh!,F\!e%2of}Iwkv.FNn1<\+y8+ѾJ#= d5VoGh1l1< J=읇#!q[ spDR.mkzy(JgS^??"MXہP+tp.*GP+ #y2<cqo:2*m>di!^x!kѵБ/#{ n1f08OqTnwUؗNwzNQLPQV*7x*CpWa, 0\G!{w}ӱH0:xERho|O5v0MYU(^iEzP|wU}_dN5%Q{NCAO=kX?j֟x?0)4;<rs '<>^g~Q(?BFR7B ~sp$yw|ى#|ށYnG7~s(~,2@(a5\vf7n+v68qD^ffZ\W"Nӵ?w{Cd-5'OXwcʧp u]2vn`C1ក~-S }pָqPqm;9=$yCG0j>3V!њ\]ܬMEW,vq3HXI$Tb{ݸfӍƙ +aU!=]Q)[Я)<(=$ kcH*7A]p܅{7vw֍*k<9kysSX_ߨSl=l&cUMX75 CۦL~w`U(Rzo 27njg`XfN4N5lY,.X9OA}]M)`ɰ`>c]dE"7],Q$xjP_-㵪j`_ Dp@!M=P]PLY-bM 8㷻,`:}L Xԫ`=~UŔlL>,<6ߐeϼEZwjz݇ZԃV[h4Mq1(VV/+"JSUﱻCwZյbtf|e Fviʇw85= #Pc?0h'gr eZi"Xb<4+H~P5-@AP|qMUbTGJ #^U<sYC9^}cʂgOpZʔ{QAZ)QmAqZ(6O)i5&߇hhq9-l=`Ouz aKai|cR\Gx<[$wha˿a\ |\_m겜 bos2X#|9{3B.wPk479X:HǸ^<N@qLj`b?Gsu)͜q` vM|b;]09hLa&L}4@-S/C7vCF^:*M܁K^ yZrtXٍ 7KqZs8e rue )M4g'\@b&ZEam{%v^X;0?:9 x~;s? {^\v4fK|}OYpnd/i7W2vZ虁u(u>-Zē` B~v{ruihKԗ={@F}܌< fr 1<5|?#'otnK8Bb$NcG 'zmblA8!K翭~'6W, @}E_,\K|Q6iAkY&?ϭ< h|[VF"N}&+j,qLCETc}mQ*AqEp.] k=0H`62RM~jg3ULP'a'̯5FPms,4s:NM%f ڶbA5\ Ã4UQyP|S~K9y"RՃP| ozGwvKS-dUw*ӊ\*W(S]E}ٕ8ܵQuQ {vr4xJMpG0)aἃ<}B6~&'|QH=y=SS9@smC6 wle]zD4{+y"F4WxW5YQy@K&<;daeՆNSa+8@(ePSkA^CJ@'5:]8 FteuS]Ah6[SxI^O6eXk0IӜk|JAboaׄ>5ZM~`qb zg{qFMkQ3M^譊AKF+a祲4U7 |ԨԕA@i~@iwMHXscY(}RK='3M_ ileJp wVGmpOy'u+p+کɣ49ɢjg#n秎x ;^ %^45$QemB y;r%<;Q`@n/!oE .9M"oonVZ/5@BXl3R`YwgR#y7rUDr?O̜o}Fh}gegY1Y{q ޞI L1ưسLg VŶ9mÚ}Sl:AA {QN\8ǢyNQ3OszY(\1~ʝ$φM_VQwaj%H@Vn[oTYVƊQr?G"Հp_Os-B(Jao!ZPWpR1R1ϠKj4GA)n}r A/O6Q R5 p+rV L2չ7'"de_cցT.\f9=9KfO@'ҵxk(fP_nP`C?Uap&t_踰b, J@_t29yʖҢϴzSm"b[ayb[>C>J#4qsÝ5QA92Z.HvE0MPE^*6z:1 zd)_ǑMFE+]GhvZND PxN~k"㴼h3ERMUpyH(t#{@Q1 4M9*,`tw$Pⲟjo=8|T#)< 7GE_,Ϥ2P񋼾B)atVT :pp1'TZR_Q?Aacc4OYc pJSu? *d)mC;Lw|?Q] Ki-S U*@c+j0EܗTJ9? +u\LNfjJk"3h] *S䷰՚Q51ֺA.O |R*[Y dC%/9e*hu m)sk45S&n`@qhtNf:> 9 mv؍: 9I ):c΍I*u,mx'r%z%G:G]*goz.>@!AF- W*.$/\-Z΁ ~Zk%Yg,+r87-ȯȣ:3b{fN^_7TlF1V`FXANй`K?c>+`*#|H"nQFpQO۳0ɷߩs{`7WH3(U=%F nʡZ9yz9(xisȫݳ4E<]a3 Ѥ) T*PSc^($To=kH.2AqK Lt(G2h9ž&z""7;ҵg)uzj.xQK&/Gas~JW0uʸT>A^GYC}-yq_h2рo鎩xK l YzcۗpFGs_?Rr>u M~JH糖}?P=Tsy[͗ȍ~>a3p<ު/9t}sjzcRi ƀApϹha}ыp 3FjkHcjT#~ 4?) S& z)^=5OD{Z:s"⫸ egQq|ܡ)밟6P"xb%=syu8l MG]5%DC+R/`Vց eg=A@@0i>T\y 泞42nb~N&}{W#g(nlyhŹ<9 _j|܅yZ2vYLj^ʗk=û Pi!ʵ +T =Z$_6?ȯZ#? =h7{err,>6Yȭ:9r(0k(\1EkE+?<Ѱb?=+?oB>o Qs|:XBP9Bd3{9"ywcvR #}yQph"s'~_e*v~EaIP4 +aoX;`廐q] Br{|:[ wEAENAz;wVXlVlgYi|X='Ʒy*q$ֈE:GSZgJ/'i*9aebxR!.|#y̤JDO(2$gL9jjxGVP C){|T'ghTl; (ikŨWʕb ҵxƹ;< am3)vY }ٜGնzt m@S%ģ槔h#Um&/`Φ^pIG%G1l-dmX8Z"@Ph@g%xt,}֣}NrAe|W3Hhφo(J-=sg9tSh>|@C]QoOKޅ%WP]yOʯQJr&ޓ2\ AM&h=c2NL3Aj%Tl𑺪c*Y%%e&/{Х ěf uS3g~&| 9#~s` \2jsRTA?a &Z;}(k ~F̅h6~}7USh|wI~0I~ۥ3Gi,E/.7mu7ʮw]k?k0H:J0KN`GfPuu2R4Ãz Tdx|3(rTpo(|AZPmMoa՚n5}o"N: CUˠ`]J(Zuj9*嚊4ŀRyܽcyF\ Q*1*aS+0a~78PMbQSՔ$y<GTdT"AI%dgP cJ/{wA@NՊЋ[A|'rJN4'$HRxY9J/**N J ~Bw姠$ yT׃J@8J6&Y/O8풥P*40we҉bA'c.%ߎT-57A.9Oeh>5e34YAY┟1(A/یǶ,K.ZEs*P #dc9f3<κLm9ᖗ1g-pfqVR|J;-x#/Xner v: I8x9 9q,$]FQ=#PWsU5 (56%R9h5٧惒{9lgẖUS# W+YRЩ6*ؚO[ 5ҎM$sp1Ń*93CU| !䨟`!GYT ZKp, Aj-}%johM)R}svݰÖj0qpM8;PS>,qv\,p+z\9k;ʼn#'PFfM^"`kC@@PX`Ѱ@GS",[t'yZ30t@5Ti<&P܀6x]6P(ĵWUF٠ P&W fY- 8[v (oOڛ2k4y@OXW "y(SS('A^?2x׫Iܣ)KSF<.I2fa6ߠ2#v^Fdy ~@%AӴ)YQL^S2S@`0"];)=`>h?5؟&A~'HS j|g呠uH١ȕcY )z 7vza(a2y|8L P{3d k6yx[VJ2^n 6Φ> 8 08[R|7EA a彁m&[}*ŨRAP*i*x~?_adϛw7^ ۉG-|@Ò6ZcOv+>/@˭ L2^ y:gGjECt&qr=%c4 8 wlMs-( Χ'WSTFxf؀Z[Q=)0\+YPWMI [zja)B,%:^-:g0d*r=awx@xxutrרU7ٍ\0z<\'n-T C̃5/VJjcpaԓHx̧腩*s6l1X.SZZka |?rTm7"ig^+ U۟ù?,%r)j1"-\e|^IA _~I<$clC~PlC r"b^]>{ն(u>uZsg}ÿ 7!^ +\08 YzIY(g6jn4LЗˑad~y"L+ <%2y.r!54FAѳ`U mq^J yV!'@q:묦 qrJ-c?rhSl9ԔԊ\sBJ lusg)Vx)BMpdc,]A!9/b@}5 QS'BQ<~ :{ +OI":PfJS{xf*T{c֍ ]/Ul+0#@ b3FIl}rЯkAv/Pe0*(ASB&,]=6J 2];9 T)^P-^!(UXg.iˮ< V%00JB|Z6U*Q١,E<wTi>OF-foҭ.븅ڃ.jZ @)C<^?"O@ ,%*b'L@B2?c <u<*?FJux::[~@9V<h P7ȍZ<Kk(&᫵pG5N5d5Xt+v':W4Od5iP{clP]QZoIT^'<#c2V:(8i|E5Bj+0=>?7#cA'Ƙ_t7E[|5К|7f(mS~pPe{U E6RgINeZb,ǖm{(gB\fZq\Uv),I$aY5,m?U/X5'1'2/>rp;pVK30/^X{ j|?Թ8A~@9 ,*(޿9y>G*2rW y9Hչ[݈<99Gemo/#i*xf .<ߕә 0wjMi(ZTF!wv~@12 ~J&uTH_n)J[!V~ bw>鉜!=Z')<]:S/ WGU1f;ǙV'*azS FOO=)>2 T 9|:;ۨ0o(+xj$r3uS쯐o<0ad*4U|tRk7aӨB r0ٔ\*x-~Z3XAJSb35D qiLWa_s7( E94/]QEm!z&8w=:MPalq .C8O٠ /lyGOkWZH=G>RWJ7i* ?t^W-]@ g+'nz *5ȵDVJ/:]@?N?m;)]S[C5pTd94?rhrܭ$`8O%CfT**ך!(wP ܟyJt&z*Q/)婠Xs%A`yT[k'YP&99YS$3og zcF,9G.i+3;i;|L0 r0%i*y2%NDfT%Aj= (1/BS)hͿdQ%NrT"L&W /;C`r ;?Ld` qdZA:k.wQG[+X?G+}?墧~KUlQ8r5>E[YR?W{ZG?a6;O‚*]r1xZgO^nд=|[] gJk'o{ȋ#2_uI"+.TkT>|F7+x3? W#g]#QOB]s$ym}g@NC8. G) ^Z ^]&-~E~A\`gvA%Lj^\GxV#+¨Dӹ#u ȃuNeq i:׫Sk+Sgiȍ- [ݢ3z7r+<8۬lx^΅-yrf,*RHMtZ_uܻ#Dr"!t oz[Ц)QlDuE!fZd*c; q n$~9}Mh_;mgƪoՐO wZj߭x.jď0[`{%_`uۑ7G;^-)7u{[ gd_KPw,uǁwGAOSdy)tkstTO=CgKBmi*yAS0<,&-%d"(S6T!)Yr(UkPW;fxyԪ)YLS%#յ~R!G(|z_P~ɏQ K5( v։/Sr#wRxm@F磠0fGMѰ3ExijbhX aSFUHZ=榞ed`ЮfYAޠ@`;f~;Q%IPFzט@uj5sk +>smT= iq ?Hɚ@5M ^ ~1.O7.'`UՒ3NXPum29C;(8EN?ܛbu;+5z9=mUS+"CS1eQ'+[Y㧢kUh% &qP gAeU pP0d,*aUU*<s( KS I}(4E9hHP9r@wauE8e(mrzV jFJQ7a;J>2G߸lQן<5%S y TEf6JhOsomuUOa݃jUc9:ni>hT+`S4=  JPh\ՉU !J`.u>O@q~as,8 y:e-'uX*cljQhǏe_EgxLșmy [L ͸xrd1-G y>ٕ#dr1\(+<Ñ[nl]}Y#߈oDVxOF9eq}P\˱<Vx۬-wh0'JK[7R*\7TKD8z5pv2?]<Ÿx`JI9,xZ`[xS*r;n}<3^&SGĻ$S*r5AbLC+845QH*xc&è4SVwZT )EA x2hF6"5502J$PkqHfO`]PP6_6"M.(T>WT3p>ŊβVӓTiٔ4 (V<EI~}AʄJd9ˑTF u(e+ͧ'k6P;40 @Ҕb [C@P<)H5S6ZB;T">/AEx)T;6ӟBc*~?偖[gt3׹A95% p?E ?KK0fMnQ9F?b7RPGXZ9Pp{@E/SM~^jo =#ί~ Y1l$vʵUEF${9T}y(uKe{5ØR;w D-_5u弍<7x9-$½YYR`eʙvrød6oR~0³uD`lgUcL^^PW&ME) =j0!Ҹ?5ܤUP83ÚR8\Gc9+xF >;BZ#?ըd)'sezlǣ(ij̽bqJtTg + <"ZM>ў٘1dD<VVQr.:낥fӨ<Ҵ6ً!!+oD~ g{9z^ gBXgr#+a#.9TfaI<~'S;xԀޖyƯ8ODu6w/1\`Z%Շ[\3e(G/gr ˋl.qb] CMY3$΂1fjY0v30roVW&\zw:GaeM; 9>Twʚa_3LD.7ŵx_3{^*rr.Ĺh#o" Oy7E`.C!"y0lSNȃ`k/ʮ2z.nȰ K}Fv7tW|lP ~Enkyx׵5Ԟ'PwoOpjd7ߪs!O#!/rL'Lgpxv/ټ?f$?A3Tw`P㩰)X!Qw{7qVDrs MF{Հ,%Tr.|h:|%]T F2T#,8æ*MYTaBZwpU@RX y)>NGn ZH E!j2{aJ"1v)F_ma1 w%kj-њxH!MOv6PqQxG5@c4֦PS( K@RSʙc?`Z}{o+ x|:<):v1*W9uJy8Z5šcċd%>gT2X7O+rɕ4^"Ysuq.[r`%M%"g*i)ʖ[5%xk  VK DP!jjb *"kA]p`S<擩Mk>YQMQ+T9k2$EαvW?$F'֒]AIeM07נxGs]iwVaS\)MĢ´5[e_K)2QXS=HQI+ݍ1'4/N|c u% mbAiy t r׀*AíB4r9Aw7QaPu/loQa`6c̖xjz1k`SRbe"EQwRC=nϧ4RM?S{iеdBe+ZkpljŒXN/PUsہ~T-LQ9er:(BS-_lgrR'*h"եu3oՔ=OQ|Gi+付mVybCV sU0ZъY4"eZF?TAW( >xѓPMwyg(_K,L.VH}s6:))xd& #\)"E?g/DB]^&f;߬~z[;Aa|'GS9W{Zq+ KOɘ+ yN4 橞z5qZɹl6oditd>ك g RBd/Ia[ܞ[$l^%!@9S,JK]+&֩sܩ0qI}il0%UȑnF}7y8Ն-ԿQAo|w=1%s} ]3ʗ%j@}lTlxtIAeƳr%BW)eR+\^1j Ǥ0>/GL,d1J\ͥTF 4tM>Eye ^ uL{Dڝԙ}A|^I* 3ۋ@GGA0ب)&4ʲ(GϵW%1_*5;XMI -RW5nqνf,l6Zwrs8Pe)E++1TSQ}3UNC ;̶Gsb*6j_kj6fbqS+G8_G=ū0fnEq0_J Z2Ur!| Lw T* cr"OƬ9Nav@Ʒr )<ÀI]:Hdr4%^Jy$ՠX9PcpM/&Ubj܇epf({Cpu܈[:P.3})I܌nbr^Tx Yڲ\8) ?0\p(9L*4_-3ϫ{iJ20@1'A#yH}-KTPsoAjۏEH%~) =??GftąuNˢ P"{x!_u-kqz{A\(g2".@UAi;|/yCK98"D5TS怚795~8OK>|ϐyΙR΄MgW(A~03^1rY{M)O Q8ُyO| f /9dlEv_F!f Uܨ>ENJ‚~)R[azE8Jy#$=DԚ@$[ŽZ w3\ٚ!/#tFZq%z9G"ewX?hί͔" `ڠN;K?ȫI(ﻑal~'s6R|++aoOkErNEƇr1*\!E!AG?yNRGy3Qp&)NyJg_l.b;̨: g3}-\fJP@i3eef}H~'*WG#y>i3TMy:# e T)=qJ@ķY%異F3G"ߞg@>/Gy|APokkx|d>Q֩w@Kg$R}^ԖԓSs>/vRH񵌃T%泰yڋruZSSXi'Tc12ZhJZ}5ͤ>8O{RAz#0gj/"Zǀ2A Z'SsNuT ÒzYxuFKʴz+HhJI&PwRk5ڋ\(/Äx)p5`I:LO o?Oxd{b)t::SRS+~2xt=:2;>W|~K8%pYx2tq@9TO7F 9g_]rq;).˕E-DYGufdYlA ڋͦO4."r]DGq\ XI؎"5Oe253C{eXRj*jvgP_ޫȩŃmT}|x\;h߱p1z~"B"`PaIoQ@Tz\cLG;zw򨦣ʙ0M)A{} Ti,F?WqP^lIBژם$'U5(B4I>L~2f]VrTt3 q('܍~acyNN`9zX0ڙbaICB^tVjʐOp"\q pւ*yJ6"wct?/x2ne.-TyHYO|b (4̣PцhK`LT!*&ԅ"`BM.PT,6?j 3,YK6(6(} P?'k~/L7dKf4", *lSylG`&<'4^ j1.`hYܴZ?y}<d5r$gRT3p:ۘr-u΀LWG]lԜ)^akq7gP87gѓѭvC>a=V zJu/jEGj#sF服)f8D6:ODD?Xju^FsgJLت@ ď8G] & 9maGxAN\&>Dp,FcɑM'Áxhb$hA58&G,3~t\mP~N_bBOL|8{n=2"=aXPW1\k90r6X1@ڏZG̵T'KdR#>gGn\s* 3Lw4ntǻP1Dze^aה&mAi"5ur1*U,/AY5/s-NTʃ‡7cr]'ܫ6"RW4c m'L)TL)itI|M %8:) 6^A\wul,#(Z5D2(nSOcļjjk>=h{P%hRyiBG mݭ]ڂޣUX4ZPoDզWi>7,{}TL!y N䷠Q+ʽ(؍3{ EeMysG6>T;֣Z& 5S(=x&oA"HΤDXpE){Q{߉@ױ+xPɲ)@~ ٞJ܋MpS ΂ܦ[͞ eAsQ o| ؅v߂*S֦*AyvP AaA|o3&*@?gd \]j6$@I0`I-̋rs0[E'$@g.s{#StRK-C!:}B۠7(<~ޓ EN[M6EvEluY-.֚鼬|b܀!%|EDYN( cS-*E|4UxO,~n%q,o=v"EkqPǢd/X"ugkn <9FF))Sd1R@u=aj9_7N;,S(hSt3(&OZM]@C6qʂdqx,7H3g=9B>\C.YWs1b O:F-=pnQ?ChYsxUS3o*tTb*Du,Zg 'upy?H's\O[#nbG5w)A((z#S&lR40jqQ(y.ɦ6jYi~č<EPFӠۢFnMM`,1i2׍ڧS0J Pȥ\ Y;]i0pW LM' Y 4-y+L'h ZC=aenraeZM9J:QMEXH4D$';T*m3O)MGG#bŋE>19V^j}yajvq/ܦz3b P6>_SUq[+Y(EzƑ$N)r=vxd3 jZyT\M Ən\%XW(? 7JA[p܁٢fc:-6)b>άi LLX!+eOL'ɭX-SAeD~o *<ƒ P;1Fn/S|vy?D"( sQc2[AI3A8^hai e#6/c0#n\'P'`?yF[qmyFԌt3S 0V'N:L͚Np+2^]x"K] Rcc-(ݹT(%mϜ)P~|7ŻxA M]@4uuYxsxKJxw( P\t-Ҕj$gi@EQ~K$!yB435 œ%ހ,vhZ)3Z]T|Ts8[΂w 43W$N#YlkY>PSh?'0y zJS:h!exSq. ;}kAoEu'7$M@gm\>ȸ$oOdx1(Yl'RJ FnҔ-F(rҔl a_m/wٵ0)Sm_/M1 R#(lTJu0e$Fˎg.hjL:ޕӰE]zjYLɠz5퓰kj _rc"P5e22sA9u؋&8B{T,;uZ*zr5QAFC*"ky(DXާf i*gk ju16^@|.. h'QK+]7QKrPO* PtUxuy쥫X+!zJ?؃q Uc D੷bg@FhOj^Nm6_$P {/Mb M>4$184 6J=JѶ.X6RB>fk$^d<2;h6d e/ib:5g}9sR @Bz'zE,(TPQ )WD("*UPņ #YɔSV2ɕf&ʑU2/F=&\䯧TШ Ԣ传o;yBZ:qY^w%Tu߮"TwޥUCݠx(¹I(kgP)GZ* .nUsGΦrj8;P\O(ףn_ߣʨ#-P7QTϷ:WUƈ!삺QDɟIT}$uW!ƨ:;NBՔi:8">i-damyέ/+;n3u3PpGq%#9"d6R.Y@ Rųcw գB|l$jjX1G9b$S5'q+eAN'~+c_k2 OEF颺QMԓy:R>!wQ9YehL;Z) diETclx^o]C}b+ǷV@T=͛'ipvj5FѼَ1($_ǭ}s eBsqo *ŁQ8kq{)xDnCq9/AxyTTa_h3Q= /V!m )ZYPO)>n Q]U7x4 z7dWiWZGNS>wR)\'}e?$5[o<{,f5z4jxޖq]L|T Қ;zOp&T.[eZ<ϥֲcPXH{2)XFYճ]=wV6aMJ?])M'@Ba + ,ҔxuTc]U. 3?jM%277ٕ;>Ս]sXAy>l k˲e8:R?k|GEa/b֊/!c=;W2+Ed4ʴN;\c/* ;NP.!x <+YEk치hJP4Xk*Z>Ss&WuD_wSnVrvB gp=SV 'Qg>s1T胐Y4ˋśVb-3HCUZȣ;vF/Bing܆0.&1oܜ0$_#kC5bVk~d06(ZaK),/JB9 @m BOS7><*S$G,j ?r`NWɪj0>$庎|jn)>>Tp>N9i<\z!jerq_`7:V^3PP8";Ù^,nF*3Lur4/8kN.Τ[xqd_ԙ\*.X>A“d )NA݀J)NĊ-t#ET(JvC]GOԎD'(~E X'.kuX{Ff%ԑk#Yk\iMJ7QNhc{{7.17zC{$$kh}9^TkD iG؎>iY^UASr*7JdhBY\*SQV.xuFHWq}jCwTnGq)꯶mdywIDPʉ Co%lzrCAg/_8owU^`ݦըZ9H֪V8}].t1kfjaYh(?oZ=[Q8[CcqipHuܑsGkom9j0~M!*!<݉s} z#B"EU u/ކ䜊k2YRoO5vy}P U&(8+m\r !*Rigͽ8Ϟ4ESn_ ӝ8K< dyC$_9R.) Zۻ*]!om&RE}ޣM>\oREHďdEҨ Yǐk\n*r>Fl\$kїF+hW&B(z`Z](VW~3{lFG#l=GSHI$?X+YE1]{=PY^Etn9E :WKVɧ[2k-9*yܤu-r*qOBu!fEM-33_t7!b0J|Vw jtK5 GMqq%?wc?pu/Qw?ћݍ ԼQB g #3P?.+P'^qOt.DJdP}eы#K#?W麞Wzw/:x쫶ХKt܊= -]cec CSş{6C';b:OY^Nb0>cMdc'| HއiWrD]ӲQ.1)1[u Gr+u_oTZNcCXuQ }s2"|w-UB};x=4BD΅y cgP9b潖AE<}D%:z}ˏn^ Gth%|@k Tm2{M(s'T-ҪAJqoAv']< Z4L IjVQ1"pEUBw[ވWWFKVxP3/QwCpjDe=mzGuy @B%T~.No.?RoM9&Lcʎ Cj* \'<{O` Tfu 1.jU j57{R2oAg[?HWզ۫ɑDAeƇxmj:߶8e+6IL d-Yh6ޢ0>RLe3j#Pwg2.Aq593x~^Qu) gYCK1ں4VIVE:thӪG )UB_7^~P3AW# I^^zZO/YUj%s*[mf(Q3mBPn>b2ER'`ti:."G+ae#iS 4bZd򢏘 >HGpd{ fSΐQWgNq@.j!*^4+;p<, {X3Pϖs>}īNB-GdRoϏ"~g3PAԍ(wBԫYnÄ]Wy'.@L_>J)W`ʸ>Twe)8+DS If*s U }Cu/]!O;=j'_W71dzɧE0*,OU3Nf={>zh Gew~ )C.{+!'D_{jV[p5">B;@_Pu &GyX'i`{8nB: p,6<) >Fz_n;Th&9Iꎡ9RF3A4 Zkoul?ZIJHVFw%z|5zWZV,VAA NȏB +h,S*OUa|!PhJePH/wg(K$,:cP1V1,|%$Zy}uJ46KTɏe7ZOfh_+$3 ]AG5?xGhtmլL+ -]Y 3 X Z Vr>9yn((è_Ta,F᜸83<("4 {̉4yPV(G(ADkqݕȇwTvUܟZЯzSݥ\Nur}*(S=, -ĜБ:~11[AWț(Ksq55ԉvʼn@@ݜ|2=B8>Ѕ */ pUujBM2r%fr.89ꠟXg"-2*r >^: eEz vvrѓ!~ZIP wja#g]S+C<(o"Y<u ȧlK]svRW/ʕ0%P!ȕnY8):}'7|9o?b>ރ:{} rC.L7QwA=W7JEtp6,ë.=y쇺+$tj6[Yſ{h^l;qbGr*641zꞨkrU\חqV,<ΑSCu5fg߁nZ+y:)#OX/гmS_ O8l:B;oe<{NlhO~xdP?%FpG|7ٍ+-ԇG˶"oH8^LHy\#CzH&~ j:<>eߡdT@9PRQI7'Q?kV.+Ŋ=}Jµz#  Ѕ= uC*P 8]żnqP1FɚCAz%}BA/4W3 dCVP^30֛]+Xց{B*%P7(ʭV3[i>&<%ʗ$z-r}w` -Rd e9a- H. x?ğcBEr&0C;quol`g$fn1S4+M\)qPXiވGx=5 AJ=@hLkd|S>G2A˔\aVт,[x^ƛnFTį0хLLo}߹+uJFv)7RoĻ9 \S(?oɭP 7tGyqPFSzh4ҹ5P' #n[^j׊x _g^I(A @La7RSs+P:4j!7jˇ)MåTr)~SVw%ZPeU.*"%9:Vg\@ lG9faXvTf'M &J?2#zG SG@^ ?qV 7շ1~R9#x Qce/ia<]-P8oByrutJN(wSnƔG_kKvOCi2YRx :)?~>5XNiSf* @~0 W6!)C^&Y; :3T!.b(_'~&HAn'k+7Q!F4x mۜ)crMK?C}tިD uG@&=P?,dOp.P_Osމ:u̫;XB*}xD|6 ʌ^b|zPUc3:j$V'b/Eop훊˨k~g(g)x]7"sԽE\Aa˅S:P2T׺E/Coˆ^P FXt$duJ޼K?-+d-Oގ:Ar=Y2|eu55ܯ$NrwC3yV7~9e'P3MJ;CCͧ8IS(|JƴkDu>^ZȌ6!!|KcbnTmn;AaOJh9&h9诶~\6!ϵke\IHAz&/аQ?du ~BB8c'ʸA&+<0*5&Pth$c&0]%7w):2Rwe1ɱZɰ{PO9d $&Rׇ<_s: ulFWiŋ O 2ᬜ8%q~G9qBh 98nlxVTo|/"Ǿ)k.yGB/cϟ%m= '}Dq]~CibyXLg@G:o-wiDr'B=M[NZ$'ByZ%f(_ʥ|+uv!kM@lcM*@<T0 oGT)ir6լWdrHѢ- d d΋iUj݈m o$k\W~H ֿ.Lx*7rPE8B)_|)o4kCcHZyv#EhA#]Y[TIv$]PMrYMH29y#։>Rpt/ݮP \h ǻ"07׷I<^AHS_iV:2~\R" 7JF_K&H0Gs%\9bF~9I}7A]*]$ˤ9hp.f{UB|#s#f)HfQvc by {bT=7fWT9elo buH v y8#U(y .}کo0yR8?ދ;V &ARKk0T"YvkST:UϩHi!H 1)=w/ `PwGsw*`kh_AB~TJy CP'AJzk4 J2j V1Wlb>)HjYנ3J2[:{uaZFyCZuVLc9/W2-'Y"rI-NY~DG?X.lr_BJ״$RƻU+8̓#p1Fs{z_kot,)hl7#[ǐviRퟌ^ )bA"NgZ1|@;>P3%nR:[NBW)[f ̋YQu3iHZcitYPki.cx_+\>\Ά2q~㐌j,b]݀9AkbҐ8*2ȏ [+U4B[[J#DgJbhVDgԉb(Fn8?z)=p$qJp8ϧ蔾S3UQV3v%Z)`|5Rp gA7^$*!"7BqNapLD׊wBY:+ĵ|Tq|JT}%ˠX77Z#ݳJBJպjV8@2=>>g(7 ,M ,9D74:#ϪY{AjDfD&qU̦AK%xEy<%|R:W u2[}OD+Uޱ##fiAxY!P,J%+e 2w.%sK)WtI U{\SQg 1mRڶA1P$wN#2|-J|gS靴2!8C !6CJ8qn '6+w<+ Pd!qQ;;'op!KaYeV5:mLֱT }$ϱ rM7D_#X~VJ̽P[_ H4ʒWS64ڡr@WPGd3Z̀nP95MH[1!3*ByVd?վϨ$oʐ]D_7C/y.o-ЪjFѺMsG{*0 qODk!_?TeWys@~yw% MW~![PwNIw}ZuF*LҶH5g!gހHb-1 IlZbf-^zTYTWHQ7d/ۂFoy3零s m{ >uӴ*| B;4$q@~΃@~dr:ų1&~%G:BsH; mE6c7؁O fB1Zu$qE(:*"2S7$*mэ+Zم"(RA.7-Uٛ(%n?Hb9WƳI 9P&륔C+91mp0wR/>tFZxrpcM-|yP5oCU %P.xwCi{M˧\$o|r)EmQA#NAEm {Igo8ӺR-%%#J! Q2A Ǡzh*,zC2RiݙP$:38Ǒ2ME . uurX50YѹW(^!\iY=CqqQBb&)Q=,d&ϨtNavur 0 ށmDgyPC?zwRwqP \ԮOmvJPQ_T-}|#$m+{ׅ i;>?To`j8Hit=kmPL)&xZk+zеv$P+G%RMЗ=éZk@=q_KgY5a!OSh>AUb  ʠ \ǟwU羷 J.NT qRgHW}!}E#UBEb5MxG6hf>,v1W+-@/@,#^b*z+I,!e;ibG fVEPTݮt-2}|Y)yڅ lZb2†%P1,bm/qd'Yɸ¶8("yiD{߂:D{wJz-6k7('8'j6]٫jpW#誆"k"۔rDZRdJRg!)&w+yŪ4nG^9Zmb2 tӧ(y5e|7F\&$o/ëUPaa$ (jDN"KnbǏ"8G ORnR^\ }-5hWju|tLYKUF}U; {_D݄m]59 jB+91MCW~ MTl[wsݯr}Y-xqLVr`ҌO'u&=F@yRHt}Ɏ>lSgwT~ǽHLtnGxox( J<9G m)焲6=@?JZ<隊[%o-*7LtU, } Hhq\"Z*N^~U'odIV8c$0t h4F_^<9IWF)w>PEfj ۟X?xDޏ @2!Yo%g!0bfŏnم,}Z/!I01{.Gr.W3g9\glg܆2<}tEcV3p!Yår 4C-b5)Zڪ둜*U rt'#G#Sg(&AHsx' X̺ΤPsoHc-{ies2 y.Ty!j2^^­!4 øvb{^k{?!U,ލZbo})vlS6ǛD:Y!1[U-N9u}wBSa}q/6(ͻ4ZfGylmO`f>~ hpWkF腻Zeo[rde'T=zŁ2= Z`$#9}i%BLݐ H7?Њ8h?j8m2aBBݡ"{{CJMJH9=*ჾP)TR_wJ7nGјnAG?:*|NTi; )ٞ&q&h$gƿ0: w(HAT$ggЪENG\?G"-{l P^4$07ȍwȻBz+|¿SjyV;}.r_+eAHjJCh]UC ƳWމ4.Fe<se0%QSX?]TS9"8-9m bDir g=n/(y#f=NNHΥ|i"Kurx ZM҅ϊ2G:S~6!+[x/M43J}p j%-Dzs_T/#Ga AsBO_z)YɍpTX]]$"%ICZ8JR9gCZ8#-1JsEVCQb[I B:&@YQIJ';_en|{ 0@#_:9&V|u ~ނ'R]{ RW@7oof4QODe6uIvy f́z ?A66C}m24mաoG5Pxˬ@n^_2-j">$ڎ,~5F%$e fQTQW|LbNPM B$cKqВToWHHvRpoS${|]@-2E n/tr9TB5xlsJyHM}oRP-f78]UnbQ)*ѪG6u(_V&9r)R~ds|R{|s萞6L:ry!R5T͇ ]ne~(ZH8TihL 2Q|r( bQIY3V P 9 1Mk܄:A1TdALLIN]jPfsl(]D(ә,7P&/ڄ^P'6T6x~jPd@ `9YJqNܟiXJ[-Sh|mj[찅%AR-tAQ;Hʢ.<_X( 3 0eOʍE'%=!>~1:C8FL5#o}mt$[}HH Zu EP,s2Ej$4z1mYlFk%:)7+Unb['{ހFPp2캳▕<̖.zQWӒHF|_zo喍Pr 9m|H\M"ϣ|L Me_b7˧yo A{!MDL}FAȂm*s": qsd$`acrp\}RcL_ ]&qLP( v! jهSʋY$,7!2Dcβn*bJgw^1cDe>J4c쟋k?e+Q_ẔV$YaFUyUyU>3n:uZeV&gC_4*W/!^¾R Wl2J7 ɪ 'A \F!);ӐXRTiB1 3Ayd*ZG1T[& 1 wAPqZ)rLGwTă}Cw" PP(vEځƠ$1|:iLGu=)*0j@Ř8s+cHb }:㭑R5-(/AA-gm0RSj.LQ#B5oAN7$Y1M7!yA 88\. RG2 r T ᙍD+yJ#|(acԛAp[l)L|Bނ˄b/ +ajՋ2s r=kf@kBZN_kpF::$`srV%l Sxat5sV5<0G&U~*Y'BY[h0r 5@=F՘vُ[{!ʠǺLOl|/,#&2^C%xȲ6Zu8(y=T 2C 2'W$ƗsV] !ٌ /IMP,kDb}! }rpXȇfJ>o .iRY W( j fc/Z)G40CPִvrnqXGz :%mWݖl\NmτBi*Vr%u} cPȟ 50X6AgY-_k 5AN3Ik(*ADS)Z1﷾Jo}[ vqZʃE)Wj-4W&,}nL@ZG#dYu4ךiI'[b ׻wV ˊcһ˾]V|=K*UͥNf.WS=M۔QLRo5_+\ɦ4\yjl~%COSg#_)#7K֩);C9ۭZPe,K[W <ՋSf r9Yi<"^)UmW(9EHj4ǜ';A#*q`!^nSβjQ,K )]4c!Ntgf&ǩjAj/9]P ;MvHEs;Bcx?+3AgԂ:9JQ"̠ ^B!5!Dz9!_~YNp$1<"i %^bdL:CwR:T5H+7!ٺ:}>%y/ß_㜊8TN1<ׅ:ft٦E>7sGz)%ީ:ˊ(O쑮wj[z<-JBgt줤6}|a-CEݮZ+ʨb cLWxW.ԝwɥv>]0OI5&~oadzb_ajy.ռOs7r1jül-̠ y<,A%CnRv֕rOd7N_$u+z]L Sᐘw[70'ۍj-JNxǴ1l@6P:U@QL=bҺMދLR u{ARo#6qAlۄgV3vAP:2)(#(!F'!W|-ҡz;{>|vo+#P@XO 3> ̴vΫ6zO@_vߋ^@ uHGJz[$nI֛ضkt5s,(S|PFGyYUkOȜ}f&! ! !RD&bA JUREbFgȽ3ɴ6AJRAO(?,'7NP4Q+ݰKQg|Ox;w|G7BK{ͅ1J+NRcoD<1# x#_/a϶ 3H1膀{6&A˨2NQ\[Gqk5b }MEOǂؗ:&o#G(#lWTP9V'SW'ѯҨ⎂R1P]J[e.PWY.F+RPx)DT$. a@ݬP :H nt(~0P[JԇʹvJh/-rxTTwzڠ' {_0*qRnݯgehRp}X%5CĮw?L,7QиWyqBjmv64:Ibjt3K?Wu?==ҠeOv*[;tP?4P#3yJ Gw 'WoNE9f9r$u1,_]e$ʗة?.tA wwr:$?ޯN܇ͺ3\~*v/"{ I^I'{ NO3CNOD#k'{X %q{ Z c, ;^W]']#A" }f vԡp P3&#~NeetAT[V9#2 qAVvPq4*=xV&tzGK~Z|V:jQx4JS`h3N}DKҭS.eaY 8񴸏ZxrLɥxt]gz)pN%/CR"/ ?S78A>}aKBcKt% LlU8asw6 n3EGsT&T";9dr1,;R_-N_Ut!7P5AGH.d*3.BafP>:HS}Рzсwp,GлpToj] >};V92Q7jVQԏc6hENq ?b<vYAV,Q-tztoX>JB z-!FUj[Rr.BPmJ!L O*C~T܄L?i"˝^cv1b?oP8:3Ob&֗*aKWK `yQMF_Qػ<@b~S1v,:iLb$'Z1rdR6PD dDǜkV*8fAib#M?5NjW(;^k=w cFOBuPrQ?}@Q}7uw9bGihdF>([*Ɏ RA jKl}ӯ@+JֲZA46ʷZ~ѿ/iK) z(hv~cWxJi.xq' tXbi>^1!3VP9j!^p~9َ߫Q;+؇:ݠJ":-ϪmPk}jDGD}ZxkXt \1+q)7&(tZ;={w^S'-K}I$C=@ݠp^ѹEt%:3i,-E7_B3ڈiF/`TUXoa(w@M?JϹN V{QQ yngkV,T.Vc ds+t;Y]J*F-S}kj˜5HrHu&,׭q{9Ah%PzOFRz=R(r\뀻1e:mHg(;[L6%~\u4J`Wt_9sP؏{m]F+Yޠk,;!qb@ fVCsӑH5$Cهk^rw/C\U 9RModj,b /xoFЛkz*GnjofMw/G?͙ *:cACocT[f;tLxQ4zk$~,&#.~-ð[׍BT ;-4'lA`*Pc@Cʢ?e Uk![zH҇=0*TjĽ^#4Pʵ,u/ ֿEXɿͺP^|ul%3yNC_f]9_BC<ś-Ti6)Y]G}m2ξiϐivPGd~Uc"?OQdw4ժENjo99\L&׿OɎuoT}/ a@xQj )rV)9|*JwBme[ۤVc[vS Md=D|W{\.f$erQ0Yeb-EmAwX }Yj#81kMZn$Oc\ &ObqY>jB$(q;cbt4d}?S[uܠ!ɿ6b OƬH t<+]&ӬKH (EW_.ߌcBLɩݠгaki$OU3!&Zjo@kx5g(]u$W(Bv2;hs@q{_4-RHdu)MةRjr5/j5Ԋc_xX2ȼ@+Z_~>C1ju]n2TQH-snb+EBr2mtۼ%tQ/% { J9п_9fI8#yc59-|zL|aVc :\/<xog^WO18[0]7&/l*~ݼxy*RiJMqz8OP()ƺ"#cʡPVP {ؓ~mP8C+>R>zx dw fqE#Aܛ:xLǴ7 BRWheqªJ#J]'v[h,24EHcj}*璌z.2T<: 멒SGj*-yĞ e#yݏbݚW95Xs cmҜS;Tl_>9eXJ909? E"@K1=3R~h8T#"c.rAA"}4/Į)֟|VgU~PK-"g>|E3*>䛝dqnP @H'2T $g:IOq!dt2, $!-mgU!9!1?LhNB$õNYŵQEAb.8N\W݉Rq_Z)̚O]Z#-J]Z|ڋδ\f3a/4>y_LYr@HJwеP~)OЉ E IV.jJOu>7]">qY4Iʯ$R0;Z Ԍ'ڠ_&ro_vO4lbs3wo#kYF K\Xs#C@sPgQ>4wdIdT(s Յih-{ ݉xZDahʩi b67&UŨ+P{, @&XCW0&1&kآ: zh*;"PK.-Rl)s!E5Pj xKhn:Hr/+–ACXle;Fcw5_SG|-{"KêU؉Px q:ɼ:{Qrx[eTpK)~RKx^޲V{/2L֫{{e?+ j#U"g^h6yT ɻT"4JB"eDi4 |~sGk5 e!uȗezFل"y#/3G~Թ:DiݼAe#ylldϩk(.lL4dH*C>'dR;nBH*cZM%PgՊD*v˽M R+Js*еP^I}DFKIeb ҺT5rxvZ&9\vRrQ{B8%Xu#:B$TmzFFMҟlg4*68:R!;oTiy~4^h}B^ -eeōcSNrUbD.cqHHIxK1DZjSjI .3`5E>G" 9+}_$NxŹ ȿ*!!]#˱i,W|dpP?D D3SK.'QvG|A(^N* n i9]rnbQk=A9yPznSo2<q~>Yd7Lw:&Xr*z `B~uFV[_g$i4EAUXUH"7-IbLL\Ys{qPsR}@U$ckABp{Z8nEBQ(ջ*(\voPmp^l2jBFc\VzA;śM;YP& e0&Ax|/z^]֢J"Lʶ׿l䘔-~:b=)By#Dv^zRi.+AnXT(v>M4qNMZ{ວWn:FQOCޯ">$^w:^ԼG=ul qz\ ºzC^+ٛ3ӭ7zP%R݉|J5*yO9[Q#(Nlf{'[ dYݘ?4EsI>>W: *TvC\ 3V(y y>ިZ.[ J1/qȚo1]i(ӬV 3 *i ?,:g.`'"FzjEN|wԽLB̽ptCeS k #9!*bed}&/]V&/[/Vf;j@^~DI@ZQƄ1q>(sfz#bUAb ƃqMvB&A1R5'6>C]x">U"je</lI +Y:ِMƐ;Ļ}#j4wW%άo1 ݨ.iq$V P$s~*uèlo=?B! 4?c4Q\Ȇ%Z >,ENa㬃R }`  uԻt~ڨ4Q mZH^G얷9OP*. (Y˺}sy ^+7UHBˍT<[˴z^Q#";oG΋pNBV.d#߷A*BP4Ψk$%q3[$=;rQ>/b-^w Tc MQKYP\PM*Y h }9H>%6gR i]"ڄPȃ3`s(CpUQ{/J JԯtBLl(Fnr!SR3|^y|^Jz Tt[U ;2r;)T J8:U %!BSX(VTlAV&wX)rc,AfNjAA8.:E~#*D#*"09A!*Ab2&0뢼_J"*5fu0rd(5*+Р 19e|Ri.:GYב^%bTjg1Y7Gv3W[ޤHdQ׃N hv;) ʰ"TQ T ,SyW&A\#dtem7HA"Q~$"CW-r!H̩5x^S#f5u A9F)| POg8O)nz*6Jt$fqI$*Ǚu6jr|yST)`.{ͨ"jy\yHg9ThYr#:S]'N)ţ ~#+#L~mHNvzۿ3oHTPb1s:T_Lbsڹ+$ 9P{RP:!35bpƒzbb ^5j [w8g*T&*,qR=G!x(qɐHR7w)t Vuu{ď&c'wqUIM$(ۨބޫҙ3rnJQ=ؖN-C:@QZ&ȈBFꁀ\34P )ryIV7 o;$R; s4zҡlJxՙj.gI6aUGYegf{NO;į)˪D:ieh0S{ j!yZ˗W1$b^p)ڧoy_UJ-}6 p#|8dj$ЏcJyV=y!2gByPwC\U4PaHZ1%#븼 s*ɨyG'BHb|IdP"uۖS~P))NQ@dUe2?;$(,;ٖiA#:F&_4Bս:{_"OPșT+EM8GΔ[Mӊu9hGB@䌖HK6!2 1HHH~̻m&uw7D) S^v)mCgK*9#y% \OyAܝB pw*+:c*| GYM({7usj !w~s$[ydPbd"Q}GU[#` H"l.Rw%ڋi$-߽P5ǦPFS|F|#SP={!ky7Ƞ'=.k6dFј?"uS8BkԇiH#L]ݑ31VIq?MFP6*٨:{w!8UYǵTOTckT{w:Qej}(YG(( R7>kTEj9}*}Npn>7F6gb~LQ@vN9IЗA1!"~#d}ΐ#,Ҝ;c5HwQCvtwa efD Xjܨ vrlDw*b$DDQgI /3WeGjZ,"$IWtaHf44y~S>Aj>ZeHējgt-:?aؙDr SU]#sU]dY K!e ;:S5* nS\5YϔOVg<*;J]C{S-1\.Ť?f0e|#/+,A =lL_ i ݂+9WCH?HfJ$j,:T)"ITxB&x#8<(^j n!CBLȎB{2MJ6* >sq,dG>nGBZL<"eC%`bNjP5X~){]~`9*^HH*\>$y%7<7S!ǪO}s+{w3BeXS+qE ١U&xnuܔ5|$VR>ָ?#*h>_go-[5.CUJZZB-T*6P! jŁw!JZ ȎԉFH< VџSK'S@>T u^4淨 H`κu;IP9&&wM9r%J?kXxqQ4N1AT}n#<9ˬKD;~ k7] ^Y,U_ЭP: 1rp|\m7CiK4C>\TSZlφr[ܫ^Eä& y(z9|r&tƟqͽUIW-Te_BgASr\2CFZ'QԻmf~lSaT9G=a:ʝՠWK/RKkVhj摡1^>(d9:Z1}Y1CnG'QOSߗ:πNdPHWJA?e@54>gU'ws>{nT]#=}L+W24, /;y&\~F-BGm^ :ן-g_wԍo|o7c6GnÄ`kfEu@d3'(^ E}9Bf?Rj2[3Y,? Ša4ejPtD累S "eAF>( t򆠊!s6.AP #ogy1'DeC  evv>Ԋ 6lGF *I&sy a^+]veu|SpYfbb ũ3GPPU:*oT;趶W#W dkW#F}hdOw LFnb3DFbLaBѲ*KV۝ hgs-B-׊ԣȇQ_xZu}=4EY :Z7D,<e74 j9!4]^p|`=ඨaf=jZk ݡ׸$C\^rn/腤ew2r1U|uwP%bȻ&#rBk~ug,2 v<*'S%#/dJ1\) p~\݃JP9nm)PF;ZqnfPƻ0j;Q6}3 6PBN *[Pt2g롺D6QoXHw|⡘Z'7b*X%7.H 'è(Y*,tK|sڙjYQ sXkl }Aך?udJzA[u^,B&PuZ |mMMK}eY>RS| SKR}ʣ-p{p|_ڭb?"$t\z Ym}=+1u$|ШLg]ûM\VDZ2u/Xg݁1h:juF&({:1: Ѧ*D\$_n"4DdiQA,'r개zY'tԅj(OAuU9[Kʩg4@EUPQW*"Pk;NQ8򌲬?yBUI!( 7U%s_#WQLRt^.6{vF+^rND[W?EjaԠXRB j'RڳXѲQ?ކJyk4uBMd~PErLΡsBͤ>.PyyNWJE1F))ߗ:Z҃:6%x-j\gCQH+SEN#HFSZ(ɹwTڶS#[<ލPg(_=Du ZP}MMٜcBCHyZpT%?S0!=;ٯB3zX?ʦW!dEʕrFFTt՟&F.QHVAQA%TBd_y3TVfS' I=whNpP=D%WuPS*`^ uRe j>6*GK%=߱b<ߨ+jA%3L(&6FO" uZȡNQh]xs%Sj闩 ^urbx +)0I w}sѷDJ\F3b8j5ۮP|Ԛ%9 HقI EyQh'ϣ+*vRQ.mc39OcA]Z?I jf<:q'M=MGUrTz z3P:2eT %*2{RvgrE k6>KOX:)NW8^ԭ4]{[ 1'6F3^ wx}(ElBZv,?5*\qjqbP }aQLI+r&8}/jJj1JFs0ҟ9ҭH6oTM(_'$8=g&jpFr .j>~)\T{$* ջpQ{y &g{=*5Jx:< @ ~0[q'-VMMFcqԏ38omW%HmW^p8oN\]DZ<7!!2ެ4\s4\+{PJ9?:x.tJxF9ޯkyn1j}6 6pϦB-Q㨞}8R%.x?jl~Ey|2#BZx\'Fyn/Ө, ՝PG9ZGxQc+T3 ʱPr%Q%KYxmes鹿Y\~)b7uGT # joY-;)e=YLgn)\?A>Te(:P/6(X]MBcx onbzeZ#gW|i:Sp/rNr^C(EFb2ů;pA;?G8 U?"#hHAcUO\l\F|/R8C4 YpzXykOf5tLPfm8.B!-2~V7uAM{2 vQ*b"P:e&M=:5N:9mPgh *3V|ibxBAg(DzGcf2Oi5Bm!Vs8R.4$ ph~@lvGi$Xno}Βm,s8͑]͖ɪtvs;ܽo2{nGTB$61OHBo00$ DH--ЂXW[*XbyXBhk3,tYg͜;9ga2L%PQSln97Tlw%F~gת/AURbh Ar=Ck7\v5'4 j kEQ'ݠrWU> cy4Vb˥ ܅Vanjμ*'wީyOo9)|ʍ=T_X5lIP#5k;A[=lBMuvۆʬ{(MP}ƧY|[^d:`h`*`}z l#ŀ6hR H䭠$MV >{:* ~+%(ٷVƙY6;UnYt?t翓tas}ѺΉ8.1ʓqUꗠZ7ѷ[k=|, hyW$/T\$vԏf6'ckƈ~qcLC G^.up;-7Tz'j4dgyz~GhH6Ph6gls#' 8\3t^lP9(N;~e{ 2 ~9/j ˀÞRC]a5ߡR"N>PucH?t 8,@%C]Xg %rv 7)6M534~枀FYYI[p"yz25憃R$$@pQ]kt먝ϟc>W/3 eK<'YI~;@q )CsJ9[e*PR&Ù@-~Ba *?_*,ǽB؏9A k]h>vx'*%Wyަ B7cI&r\(Н4ճnU)SǞu17X" k'972AeS8VꝫpJ=G eRCT^P7(Bak%Y&RVXeyHP 4Fqx AP,VbK5Nt>0N>Qĝj"~oP~td]H@ɨ@7H7LCG-EiRXJПR^cfz]J!FM߆ IϤj(|Q!x*%{|ꍭ4_B7rѕЗx,T49z ֆK R1h>'JF}1]jD}|Ϩs&q&D|]u7| HzS*b<&j)9ـnoñ. R[)1~N04IS؟9AWRjBU,04N#VoO|;!4Po,̥\Wys7lR QT&7q,*/|`MjPl2}/}9 r`LsVr7Vg쑽Y(/x9 A݅\gMFF4"7tV7ϕUWKeb=ikeĿ@g=P"Wa|Fe7jMlC=[AE RЧfRaR=MS@~{< dH%BV԰=΋AnETh&n5tcAvJC~ɠHM޳Lɐ8H h)j>D\S=QXȥW*=@x]fF gSaԽ!Ys`I@UTN7PsjdT:/JZ_S3A_!6{fy *C4FVs\R(fo7l:EeV`35'X 3DQaB B4, \tbAӐ#7SoR:̙C=oě5\G]{{D \P=o, 3}ٳ鶠-g,:BD%#3De ݀.edT u >V|tCA-coԤZMMnYާ#b1gX8TQs7 h"yy P.M_r΁e!W9wA 4LixŜ^OMv 95ƙd!"'avs(y}&\eƿ |yE:{;FwVp#_5WhQ&B#QV#7K*xt~9@=f݄x/3e'fur&\pQOP-Qub`CA^͐hB\VKs#t\S葠2;g Y UJi@?Q4ҏqMWBʱWA>-N =Zn62|̇ 5FuSm^,qXwqv@2VuT(;~#=݌݃OQ5C=d 9rϟH:Ԋ9$n.P&4.(c>ΓY MIn %U 5ZsB̫ahuRnRlЗ5¦K[0Z35ϗ*L ~ڹl2E.^E }HCUz8|1Qt05T F% u0 +K @AΛU΍0ii6T{Pa>GT?έ)ԋ>~LN@Փn'0Z#x(r[™G)&y~]]ct#*^ H89\ H#A@ A䧸ZPZF]Jױ^^xs 5(Qo2T#} g~ͧ =vJ~'qsVA79yD~ ]ht3nd|ڍR8\7L{j\>78x{ע!8]8jW^]uO֨-?4z%UBSwu;*eً/|*8_M==q)"Yޠ.q$?RJYө#?eMB-B-B-B-B-B-B-B-B-B-B-B-BGoriginchk_tagchk_ref_HDF_CHK_TBL_702_192_1962_193_HDF_CHK_TBL_0x Fj^TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUE=x]KRΨj- +#A:dK $!t8>>B't׸xZ_om6^76͘'^GtT~Ugzb磠ߍO3̓GNOko/˽,O+OzundNO,ͪ,SdU:WZ!ZcȡLi1h̽^zAnEp7R(8ln}տOs|ו13W=ye^]Op)'=Pd[lc>遾um[ N!_P}[{ci`ϚE{}:'xjlZb+L&'̵] =Q:O( .r_ޓk7v y˲2z_:|nƎD}i$]fȽum;l0&c@yw̪Z%=2e h;w GNGNlAƘUgfDvt5߾]3_xHF7e cVtܪ`.xnKG7x %%zt&Zl_g$ N=icQ\z?{ƑRlsjϒB+Hæ0[mSߦAk{v3GgjemQ7ypbR1<} .6;(s<m(=<ᚍ# )e")jt>l%<s{wlUuV QNt⧻{=5ßB?gcXG-j7%v2>v=?ӓ&NlC}6H&ҫ)~$N"}C`GigR)}xsV,}E?.رǑd;zƥŸJ;B|We+em6og_a U-C}cuϳ>O;L-cB'K?dقjr|aQqZ :zo)*\GP(ʧBbCΕDOܴvmyw졗魻]ksAq.'S0 tiOasS|3q܇>ĘmY~>:g ΎEgAv,D'U=1tي=xT}bGI$xIy.ON'l9Y)_: k m<3`YŰKQAf`t r4;xB}xyO~/}"ޮy+oiWp BB ׫u;]?8Emxi~j۪OV{| ұi9^w7D`tUpKzo7Rj'Yϧe{8f V.mvlq3=6ɿ]3FU~FFYڼ/#/:ANͨgIܵOVEnJ< cy]:g<Żup}>qg5_b6 p r;L>ͺޜ_[ZdI܀>e~wPuw朹"D%$kl9z/f9U5Դ>T!*c6o"Y.( *#zKin}N^l̓w[`xKKRa8D1f:a>Ą#VmR,-I+h<ď4 6xWۦc#cӄwf<GlE($n\gnjn2@?w{C| qNb0z6':W@%,z? RX0>? c.Ιz๜;=?,El5Wď[afxS9|t\w7==pi> #g+,<'&G= \Tw\<I]~'dGpJKymqlWF>2N>毰^9ci[cc%| drQnעV>O$5!oߚn@$ۑb]0_ґk*zbtz=ɘ?RA`;<$p<< 2$XGygct0_H>0]j\<||]طj^-ߍ;㶽6W?y ֢ͦ$>9p\`E=/) #΃|ޱayYDuLU%W9YD;q =}( Los֨#`O\m:6? -FQ{[&oz݊ceX Ga@ _CBd^?B ~*Gj M?+u]QgdYFbj_1wYLǺ9vRWztu"w9K,d^Kލ i_Reaދ6~^FWgm;#TVl Vf%2Kjڇ|7l1zU^\:L^]aolǛ;`|vjYs2'O/uU`WJ0(]-8)S?19keC4z,#-l&"f3ڼX98kv.\dUw-Ƌzc0L:~ڨJW@w?W,9@zݔtg6ÏaKi@3Im(x6H6ĕy+aN#\ CM( ^d7d \2b֊Q6uVLuO˞ 0 z0'˺9TZݓ+ãp|#'ˊL؋x~$S̯{dC7gţH:\Jkiޥ\3]%HL; ET-X'wR~cFC 9L'p%T rZ5G0e!|V '6Σdy2> %]CMZgmӃuk*u%[$oJG' ~F} U3Իf2b1It5.쁩zn1qmstF'UhS{S1ⴂ;=%362gj=x͚zjǜ*on[@`9JpHyAqsfԱh^󖩯Y=qq鑐=|ϴl튮sf٪F'}H ۽x0 9M_?SF S>*1/=?@YsoÀ(-Zϙx ɶq(7yJlUȷKS#YS#Q΋ X LNVE 0%mYm~"6fFS\Lb1j>X,Nv^dOIǁ0޳2E!UqlYŹts'$K}iu^,<j FH?9q:9A'~";Gǿ;}3EW_/d(r cGqvkeT_&a%,J1CiѦU}A3#A.kGn[t D|: %qjknP?u}~vS3q9z+h򁎞s=ZWs z)J GAgCȁ[49:{]X1Y MyAg%D{^<'sWy^ءW5xpJhH\(?sßك3|l-#\n?BAoIIw x#\9G/D9h,壟'+8k)D~Κw쉉ƣ^{n*R}Q=Fޡ[5xPyXc5L[?p% v[__m"Yݝ]>3:Ӭ++=f8AeJ%5+y㫬 _*q)<3VUW==xI(9[2Uoнf 1<^?ߟmHsdI!u@wi[9aC>F>2|q!7/|j}_- 4A61x10lTT] {Ipu<ӗwah³}ٯ_x2@?B:r ~M52gȘޞhOa11f{wj>e)ߵe,kY#h3GD{;Ƶ~3b?@6w=E0cGH6@(R6|׹ ':qͪ30 pm^y*; ʰY.8 ij `,r*/+ɞu˵+ʻ _ok&l+Pl b,o :G '7f` @!~V7N*+c\?ɸ/Zk寉9zRk#l5t KxnAa d&[g9e-hkmy_·E!Μ6Q.>lgx~oC`>n'ugF^ݘ>{T0Y47'7s ދsXMpߜԻgww5xiͫ3[q$֧J_o+G;~IGkcS }':P(m~*b`hAx9>{s6ͼj3#l1wWד})9;m=t6ז:2 w]j)֥ܽĦ-{YNtzyR=g: +`\o*/?Nv٭l.#Df/'1akY>SoNu/DgY3<_lY}ǕCP$!-ss9d9T_w׳r58iѺGNi >q cĴ`ƺri}Ú_VM]fSkP+\7OgūپG}fֽK;s 9g.QcFƙ+{!Ā8SM:O×S#^a_}7aFyś8qk4ABirC[N 1T?g8sP_ڰiǗ- w~]ǐ }pFE6Ԝ2qM]0c(IݙxӣKug-Yo#``%0xet,cmd6$Ox~؉xğ19EtgyD3 9K N=z Ԝ7s<]c쇳K@ad #t4:[ {C]~ m.CɾFŶ8ϥ/w+pNJ[a3Q;trS`T&IlYP+OϿ\ăP蓍Ro>I90>8]^Sڊob:?sR48u{nĄabFmlCg;EI- ݞR/!GwZJO;8!j1g|QZl36E?6߳*4]m:j-VzÖOgڮ=?0 Q,hd߰~A;bOaV[$MwyȄ3kp]"Ҍ8_0d5,_u +'d)O'h9D ,")+I ߯@7yBZs`poǨs.}Gvga?| n }~[i݇ mwͺ>_A?&kWM+_zJ[ xcCӍU" koFhft|Ѕj35;a yTL:Y>W޹ZtF'YKY%5Nf-6"v %w}pv.Xlxz,ݩrצ`ek9{Y4a) #wl{7X8R-KqERm|&{a[}s6} 3\|[5cnL?=6?0+.aJtkd|.7}mvlڂ1kK;;jΝ׋/ILjYLc:kӧ2kw~uQ ari>V' , 97l,y"SeY ['4ߟ`f^iIlbvpA"~/e++_:VμSm!gıvjMI~ț\'i)8}u 0ӂX*,U'D#!Yk|2 Ֆ=-{& &jܻ.m'<շ)hO(G2a3CgΜWB<x}qݹO;A}_kT:cxX^:Ow9Jgt+u+d|pAݯϻ§j_-6PT_PuSbS;90}UxtIcXiSCdޜJ[erzsќϗZ_Z.~{:R{'L?]/PQ P+40qq1?D:FTeBK:ƦsORD6i8pKRl0-6auNٜwr/l}S\ϻTy=./rA{[Dc#v/>+Vr2Uu*|S2g ZО8S-܍J}b9?E7 mN?Y}SOo vg 4*cqSJLG=CI@A3kz5yW1Nyz9{aW8:E0.\?4I_qdpZ#Xiߑ0T`n:S{jw;Ն1K; Vxw>S=g3ٞC-~FzwѹguoH1Tu=:v%Kri)'+"Z=I_ۅ7c_{zl%"94O) ?ӖO9U:|x )lmhzVmN]ۘmi}I3?w ,sXp6[;EϦgZ̧Xe CviҴjA_a51a oõ|~<(57UUyYlh,QLZV tbR Ot^>/zlk˗/(9{ۉdtk ގLRF~Ұm3/ۆ&#n%J V$H29|[¤63׶<#sm᷈/i;:BiF}cSF޶Vz3η]mLjme}.׿\lRaii/w~ī,m^.s٤X {nB7[4=VtyjV{2amˣ~ zYFX7>aO-BT%b<Ǻz!31D7aIř9]~^XƶzumMoҦSxcD[jVh4LphmwRˉHNC X}U?uu=2h[]lKOl`eB" hpSFVY7YEbcd=w_#΢Y64@/u=_.ofQvh}pS>_.tExtGj1/# wGomHU:`\H!ן؅VCy 2'NAܦ=sRs@ncϓu}1< ځ%ڨĽ.c{Q&wD=M/'u˱wC7yVfvcX?{V}c 9믕/y#r3vCig"]A3S U @<Y%KFNyrs}^ܹL߭70bK3x]K$7o+/^YxpxuB*-A&ڟ__j?߮XOz=>7|hOڹ/:7^ u\~O1慳7h*CH0 h[?H}On^|OmJn_$v%Rї VogOőϻZ2ӵEFt*ecglAeI:f[PY3WJ]yE8}Q mY=$Zeq(cQ= 1n*+pP6XjOm>^Y$2Y"s7SpNK]9ׯ\qdL_L0Λ2k=Cj|L Lu"$p]+'~e_׋󘈛+7n#8+ѓ> *Lᚨ]j 9)αo'c쮩5H.gҬ/L g>$EԄ+q u01$2lTk_N}R8s{8xW^iNOl=fRy[ e-[:F<d]cU}PYu4?:B^7wn󒐳?t!φq@{kt)Y^%ߪ ~-k-)e dIN9Ϣp|Ʀ2rf!>8R)0dR6c[sSaC~g:;p'<҂ўy57nE&iO[7Voj-skvB= ΠrCx8wMʦSN5f|f u ^E'a0Did5i?q6`-r1??dP!2eڵ].-g 0dUyr6dc怮Y<8X /ޣ6}S>2hoN~MٛzH&8:A"Vy:pG5CIVN,~ |EsCcj {!>$ǀxy,F-K\ɓӻma|-1ܜ-kJr״˯' jZ+2;~5>Rq(L`~P`G1եb1ϐ_2 .@^}8*O&kWjF>xP5}AS\_Mٻ}N6Q%H2~I|s4Ob3{~q{]LN1ul1GdP,=Ɋ?5PWoLoq#,Ŝ1~K+8(9@p_(Nޗ,*^m?ۗ g4}:}23Ö< rvغqhܗlʭ5OrU-6AG07>B|/O~w]Q|BprF\*lGYr [Kpc .PlB0mS"`F?X>5q9ăW\򡘔a3?5a\FI2 Iϼ8ci`lc[㰅Q'`Ӯ?‰ޘ5ȶkqi]LcFS!҉ivĺ^uZ|piO =oa(q~\m?dvsIu<+c}+" VL#>E=g Ѝu8 'cUݱެ}F}`j_>륟Sq5n{?q%9)KLj-YoOSڝS10i~-h^<|XV(qc_ s]?84\kaJ/oIqXq|+ S;c c' g),qՓc7g@`u-LCő}0ԍ=a,uNa}E l##/~ ? 4hiGcf<ϒ+2e!Y)}{\sS8_~v&qk#CRk;T4Ymd˙Yi6\#Wc2+-|>9:4>?\_}=V6cc;P@]SOn/ΘRlDZm܇_XjX#Qc`k䩟RFポ㯋$\Nj$}.ˏW{;wZjO:cg~Wh:hEH=#2 F~4FJ}oHb/:9 A6ɷN6[ p|ͧK~fsRx3hu:h0bKʾ O>ѱ$tOc{}o;,S^uH}5#cz]@\R'ol51,:gY85.ҽwۛgt{+`Ow|Sߝ/)c/p \߲ŢsupMx]=8}51cņ.1b>%^pmcSW͐ҍ.uDgXm/FutpN2<ȵNI8@m-rJ[cHV|4/^]x\A79e; a;Rl)dQ}!ca8qjQNsn^w }-ǑY)c"Sy:Iޡ,jz{Scƽ^bSeW !$7df/b/hxx`,&~F{uZ<~}Hϵ<#CDd暚ou0\A}ϊt˴i(,DNCh i늽{>9cc60{sJnnnnnnnnnnnnn[g=originchk_tagchk_ref_HDF_CHK_TBL_702_195_1962_196_HDF_CHK_TBL_0,x  o7x2w=f@=˦(˶JXY"Z@=%(& I@=o(oAI-x@=(a@=(.5[\D"x5ƮD$dMz$[޵sıf(Pikm:kq=cgmZ-?SS4\iivVn보\ZKե^Vj۞֖gL}zּo=:ߎ-|Zgn;jڶ4\wF\Zen5^3\v/:\>#nu]Y#񿵯yuo:U>Wz}2_s.~9zpl-Gמ̵[}-ngyۦuxzyqYQ. |=MJ ]>^kyeSmMm^oݸ{kcs<⣴gK~|;[ehϭKm-ڟWOet׳/˾Ojizmmc/{/L8ᶷ۰ӛom|S~۟eZ3J^+;5%>tw~]kc3xumˇ5[#޷mus4]ϞOaZ_vFz^Wن^oOm[ZanxN|:z7ٽk{al/V汰Og͟}Lu㧗~XSu} S}魽Xܦ#u6/prRҴGȏsos;OeZk'?ߍKۜK* 9y}R]~2ۖ۰-]ZB͵~KmGzcٛXOqK?Li&S!o[OscəF6V'3ߴgjcKK|<"۩mCY,crm|1Wvz;SS/valc_ۺw}]}wf>ZQGʻ.)弾k89\i|씄QrG OLrbpju߭b괲˽~}vaq`ລLy~W<緙#|]R&z㠦n 4 hfbh |9x*6y66mۖT^ֲyHɥs&VٹTGƭ/L[HQco`Ì0wr6$sqb"1lI˿b2? RA1Npmߘ/´5YX_Z{\?[Slj%M7pX” h#e>]}󔖇NDNL`qi/lZn-Hnz~rr4:߱\eJ tv{NS1=> 8suI~|KV|1a`Ӳ-0޻hm0 X Mr*I-p>FG!=Am6w)y|sҒ &[pTGk0F Yt]4~yVتH7@b`hnQZ|X8Yq:f͌/SN&{ō{YiYl79{{ D dbWM`ӻZ?Wx6qasuhC/ؓMO(9smfd*q5˫!Sc\(wY&</bҊWӽi+3l $a32a?W֥Z].F?7ヘ Gl닝זJWG]gV.b|P sͣ,K4e_֌iK{ol!?{ "/`mڹ/(}'EN-=+'Ic YY>bj u,{!p!Aoq_>k^ؒۮg>n.N%ʡȜ_`!?*Aq게y[:m<f+U% #_L87}%4ez` _EMГ\&`p;v_L/ê%>dgUXQos —\p?&XDX8StصӒņ (MC]NX e3 7l.n;x-V6@dAB?'Ʒ qH23<ph.[ cz\q k* 7]%i3c BpEx>V?.YEyUbq ;fBɜu 2 @٦?[*b-ԅ-ّ%@ xXRAI řL揍i==ePs8X&F\R0ŠW ՗m氼]PrqöMdBcx9< 02v+.5o| Nw Imq}iY'BC8Su6PCUdҴ,sDƥ<Zagf@E4NE[כppB=x 񠀘 `o,]@kbaazp*1c/^nSS&-b|ɑeMx'Fl hZ>  b3u,ߊ6v9DmL!|sZ?}-#\L23WHk73j qO~zRڑũ}{ L|F,M_w|&Sz[ mvֻh;pOd֝ў b7#_eALn'ǘ1!lYO _$12_f ĦZto}ܛ@\.Z\3BK_ RߓKl%!);I0^r1 #?L<^>|dp64RyaS\Av1=H0MqݴEd5KG'cQ}O:fś1 p5U|6Jo);7 @ 3/LT Ge~1X͠u<1dE>K5AA& kxvor `v&4カ+?_kTcB5X8G ɣvVgAgI7 '(W۔uVIx6V-_t@'/.f*e>OI8Zd˕m/k\c[w!d9iHocU jc}+Rzq|Gh!'-=1}\jbG{=W,0p[\'@M^oKMXx5Շw|G9;nնIbT}2 僬0sxt,FKsҰf}2[Y֖K^+Nx"<kMm'3ИؔlE\& qyKsEcKec|u'FR'' ΃νY1Z͖IHԿa9)ꆕ]N.8 - ֝N<) yKpɄr*̱nZՍ}f!cx1tA,?P`eq2qddi2 wP)`15Z8bܑ1k\H|r}U;35dT؜a wlsIQAd[؁̒(ZލJQƵ8÷#2sZldwΰ^Rw3] $~̀`msóC 0ˁ}Olj 0R0Xf@8Y$w-BAyz}PI>~4N}}@dSiJb>3`R@)'Ll ߶4"nrüy>ny9Ю ?P̮ Q"";x-> 7l0@|"~Jr 6y1=ܯX M%22 i\ݦ[ugq'+.F5 AMdsun|ݪ³z!`܁nt(х~a 4_ o 5r98R)\oKF!OH㲀FGB< !f0 Y{/Lv52cvMi8/oCؙ 8/\\E,> Cj<Y|T/g Ior&ZM^X^`3 T'wv5+WngyZoC=62T .M8S`@ԗ*<=K 9 6/%_gjy#Et6&B$G̼1C`>TmΐJN=$uw'97 _P}}B+4 D}9ÝT /04ׂb&s!<VA`]j* O@ T +)i4Me?*fj˅1ۣD&s dO;!v+|Tn'A6#4XQLvp<*|E(%u1zpJ1 o ]x%: kNA録XLꉒbI2;cWsи~yM0)GRl^sJRLy<_WyZcr 0 3Jxd#h^ ı/ی95Fi<pP Bn: π_.6-aPf˕(R `Oeh 3DPs4e5jg`=5HU qAs4mBS*/e✀*< _(yFM^'K`eߊW `Du<jCׯu#P'+%6r@`M`_#*/^\DqzQP^Z8ɁWpxXl9FsF1DL$!1[R|6~RVI;p4GF/VAnR(gpitַv&ʶbL`AyoY ncƴ;̸82"/_ QJzeWdCU7(<3>GOSp=Xx'ޝ1=M1*`D\E6dqwV<\6ΗL"OX[d5KZ"Sc0%$߰lc!eM-|1dtWqE`Ҥ'37J(~BlȌS:#$ =ͩX=JiDK(d6rfea 3Ori  q_*{!A`_Io,9LniE<+ IbSF[\3 b T`z4&f"IޒZ~ȣ=u87lq`; FW㏾]\eujO1O2{2Ǥ|+aUMO3-ib3@2Tm$\x8#pjy--cUzT[fG$>K9^ʹO]YkFv= (P 1WFz8)͂e{lAyA5s&aFXWYFF'ippXw]jO3HK,8HS!KĤd9%3f7Eij>ZM}H`}&^d1$@4s T֓(^*^Q$ ֫6a@2/]̰M }M3̊Kae4S^: \MqF ֐ˊAKXIMjy6g8 /IbOvY zFnk`fv:u.9d2H8^cW.氄*ޝ/{wqF]RoFuX79?WB6y6DzBFT^`0DS8*L 0þ kV3}ĥ+5'ypPhHvKc+1cl yU@P{+[jKs:e1FOuS8 28Y4]*׭5syiXOQ[lѾFv79l-5B-gL90y]Ň BeXsV^L)4U'~L!PưמדG1xhʏKHFciBBfbrӼc,(EtKa4MsJw&[1$@m_q?lVzɀ*9<-bj. m[ *dpكŚ`t>\#&[s͠PvQ2K59j3>UبiCxRXMj@YŢ9]KiTeHo6ab B:4E/cy)/}~uߟlNk4״^:n0$ 'Vi@Cә_ӌ& ì 3pvJR.&kxַb :NCXJÑr" P&ν,`sBt* y}(Ζ QgM FvYPQ32M3rc:8Z9,͒d?+sVN9 }䏫 s7 ˚z>KZ㪪YZVaܥ 7zNmfa1B]W(9~6 #Q/pNvD% ?AY zd e'>iF?>Zt7`:jr$M)j|[eW(@y.7tǚ5Vd-.YFgHS͵Nbe Hk:†Ze%njrt'|K%]o: &X6b/aU"g1qTvTc”#t6ꍔ??oF|8vZmԴ2k܀x )q*4+Rm)Jyl{\sX{ۨEv9|rԈYG-9!kYZ}*fYChJBX0DI^ 9ڬ>TSxt9R2̎2ahwe{sUʘ%\`z}Z͌~$#WP Gw[˪gXYxlj̗6J<ۤUr}f/ƉSFL܏uX\p@Qqkjj F0#9/SaO̦n꼀?jl&qK5k$ xm&Zld頴~ZZh娂52VA% H,AQ>yN*Bf캵L/7oՃ ^ˑfhL(Ξl8HOS 3&ޭ}e9|~P>j j{<>NN$cҁY?e4]ư4Z?mk7.Ԉ\dAh IA২HdR!V?&Vi>q6UG洤ᩝ߲4Uovrw䄦VqEȧҏu2LS,X}1Jab!JlV\jTy2A7Eib ,RSkYdԈ Kh$ye-2ޛCI2f3ZY,FM̢Ԉ+zff"!qI-.裂S{Ό-Nܨ|&҄ +J#cJ+JIz:c KYo4#ǴSC:oFQ~}=g쐣pV;"pphm^浘鎮:ZyP&V+&5W`#'3 J86ϊflMZwF-ښ$-ES{yC&Qc8* W@W"bu~EZͤCX i󓜗;Oj9 Q5~!s_4"8O3~XZ+e+w÷Mqbxþ"ܢڢVԋlqG*K ҙ bk.2m|q/hUCL AeZꊲm# ;:N|/E A(b+BQԇw<$$DĬjR=]2BNxzIGdj*wb(1wb9g!> RMn񨪶EF-NkI.}u](Xl,7솻&;q-?gU (?^ꦭNz}(/rc<ܿ"e,;f+yJ~kb~y0UQ3aX{&z/wS6f|#KZp(z6YF ?1MEF/=| X.X?Gsv8:\j2an*~I R(=XG\ُk,?+J͘qRu' =/7$'5N2NI#` Wg[Nm[A_ 4Xu(Bp;q(QH L!bOx]"ڭWe3X"YW{L>ali}qCR*$fƦPnfѤ~)z2"\rScյRjf1BJ7t- ^[Ռd&<ѻ;RsgKTXZ jqG)CNjL򈫰YBW5jp",Hϩg4*LMMN86Z7/Z/X٘j;sYm'c֤uyalQgr" 2 a\g3m3v9AvozQۺf>-Q%,D+;x}Z:)_qVD.x$nɠXoMI"3LXiq/1F C|KڦWr)1$+W0*`3cz_0$xt&սG SEb jbaI [`U~ΐd^:*"X.h 2 lh:K*)yIW=Dfe62gVn#0zb uڴgl:IU*}%(i|=9zi^-S>c9W9:bA׻=m6=NDDm1#c@{oevڜ>mڥ&_3s_[P_al DL9PI)<7kÓNfe3t{eGVN);AnZG?+y^ٱw0f%J%[(fATCKk4IVpMYM]ƹ7T;U`i;MZTOc9w<)+=EiZj۸M0Piѷ&U7eKqP>jH֥(Zy4a>^50 2ko]/2t=Z֬ Gje0Th; m9ڷMy`4wT,^CM9z=,.lDnS'JIL 5]5`33Ş+Uzib{EX杁Jֳ3:㯬\a^-|]]Ա/"H5E.jڳ4]wB2/hJp:jcLt'Pzۉ`"}S1)@dez+FtWwH^zlŦqfy1*oy2]֩Ht mϾy|).fن‘6"ayqQ|nQ6Z2r(dm M*x ֨`L,\03AǗ@k_.-憪e~593\ 9[ Ku9<ݩ2ꢌxU`ieʢ}^f&p#Or=;En:G{MI ;FqACq؄b_@?ƈAԠ!JMedN ?&̰X)*CA(pRG\g+ɯ,NX2bJd-V(wr{LBҴ'sΖI ڢJ8,B @bQ+63_U`Opl ٭ Z؎^+Pi٤tN6F2FUa4-=̥ BņQGF4CSJ' $1 gؖK D-xbY '5Q=jZŇ*Ђ8Hr]PFȑxEo4D`骨jG{KT)󩺡y8Hbio|vn[-H ?y!`m.OUA7EtTK$עg)G5>y}4lAxDLU֍ax1) fmȬElI9c[.74+ЭnX)bEX&eUɚS O[dF"G-C|8v !#n@Cǥ/Q":T, LcyNCFWsƈ"s7R(m*P&Y^`&Dd, K˩5ˇE1-G-Uv 2nC5hVUUb bΰQqJ5lUZd@F#mO: 01Ȱ^5[f+`@0]">b`]oR4*:uf^}Xh_}U:iG怪r}9=IXڒx?lk|?逛;6q_xT*wy6Ԥքa,hTa'4%Y`Ѥ\TL//Zc;'4AԆmyLY{9u:[=4碷 a ٖ29!9&-~`%-AV玾 m*S,,X͸t())zL8Qnc,Yxv,4}%Jݡ zs`}2K>E"ljϯorKE-t8'rsʤfJO5][p8_e ULet'bh`uډƦ*ڎE2ڊjYeSw:'e͇ 2Ouã *Lz(xS+Fl1,>?nLb4QlDJV.cK}/YiMqrO*H&1N D/|7ou}:}%DN&eU{#Ud l>B*Wyƌe-=mlJ=:PW^%h>J $ S$sQ]&&l :%kj7u 8qTg%eQݰ:Κ׳\@f;ۧ*F=7Qк,F.vإfihj5nlVX>i;?,;YnVKqoMA8ci+"&]6p/wϊ?\X5э;/;K*zNk+Ro. (ӆiL G=@k_;ƺiŌ-=,Kެʳ_vZ.Dί;IH!' #WSK(d꿌fPEvd<]CzƌCH=tړy封X f%a%FVWdgĥbs&V~5SuD(}bq-=(hSWD*;8vD -b y]\@~񱔭s]pay[@ [mƳӒ2a}q&(6gyQ쾦:C~WL%ûG Z aVk˳;(TǬePqblpWV liH۪+c6?Y YQb*Ɔj3'm~< bmBK˹ m#? 츕M7mRIś]%^ϋlcŲlC,G8h1Buk6܅ZR?TU Ì2=q#,&hUv#w%djĘ&(Ta:Yxqks zUi[Rr-X#C&$̋9bK7y(5Vwh-,Gңծ"@ .k~_`Pdmj6+EJѤjG UKI<22I$;PNWrT5qAy IEQ-J,l_ 86KNEө oC8Pz[&3`KΓR]>_90D'F) Qa |awp{ R$ 6XT *MâC'XȏXGWK27 -2Pv%\Z>  m?oe}N1h ?H1je,BDo!Fni̬|nD5ecXRzxL.L5=OӺc^WEPEbmjGɪ_FcfWBbYN _rIXgd]yPմk Yql9ӣ<EgU̡(:񙩪(SԂr̻o) |7ΤBN!T>PY[x9 0e^PWCK$)4MKUi.v beit GF>:K|5GjgѪҝ%{ B;/B¨?#E3^pK`ڏX0_6}jE6U"MqʒCǵwp:<[u~]o{%Rk }dN*bmJ'mQ1H/.(g_Im T]Ec`}oF!ˌR?{$~DkWIWgX{=+콭|uR6aYrdc^[(3Bf%Xs^Lx+OՒǫ~%bŦ@G- )~}a/VfX[M/ ؜z׃Vim5Pz_}>&%}JziL4S_ˠGkJb*%+?^e4ѵ!Zy?朇!`u~ELw>La3feV4Z5z?Pi^uq=rJ N\ lE*cTUXXg;`|nM>g8Uj34Zu]n5zPi˳3v\bu(~㝖CbbŒA"s0ѱ7H25eV[ڿKt3c;|i>Η9Z}[3f[JgNnྍ~AOCvlbl*Lѭ*<\~p؀^aͶqѺXs׈[okqݟaMݢmP.YʶIο)ށ$ŗE+^5?%`,9*H?O7{g4FF3y1]DZ 4)evqŦ c%?KxZM-c8]-ޟRVαqZ#0!揬 ua5E]l3Q"%^ieՅLlM~$HSHPuP6+kd 6˺+׀.?vLuN n_@ߨ 6|~f̻ՆUú?0U;]?""a@|?{KV8 o:͗lj=_ {}ZˎgߝߊS]hp\ uӡݎ7ND.BշG dk3%ҿ< mй6߮Kr"!e)A q'޾}im=">ZrXCj ␦hsM1ceZ&RN-׈F3_e<0-u¯nYjK_)'j3i2*״-ؘx[$Ot^}C\e~ˎbF7TTm"M劉Pߚ3u9͖̟=lߛ8vڜ pDrgUxo.x(3Mu3P1E:m}1H ]~k@WbmfCcE%uʹx- x`Yi=W*l*/`(7o-:/Ե3j7VF G](/Q&kLI *JhL_4>vYQO˾_ViIcb*~cҼ<>bPڦ?(PУxQUr %XX~O]w+~˸8F L6k]J_1Tv fJbӈxUW^ek2 }MBć|ȼ?,ʰ|VU6Y_#?3?̙5!4ђg`iu5ab Ԉu[H!57v6Rf1>;Y6WMPS6N}3Y(:FewnO;>m(3Pvk>4|Z*G’3O`ctzs4ˢɇqт%`.v3c4 >2L\P`e>\rdCny> )Ԋ.Kmo0_,Pn ȒsTϲH5b;Wj|G-Ҧ2T6eK ݃ȿwbKUb(3NjmH/g`"*H-RConSRVI \C}/3R~Ij7blvgӔ [lmTJ w:;$5ES\aS$Gr8_v6[}wR-pY\4{3[ G\_ݲAh*%nOm6uE2D6u-uz_Ԩ 1=p _)6{luYXZ==xEFlc얺"Y'I=/ZO܈ ﱷDUDHR׾wriZihoG[zk1jkH{OU~Ǻ%鹵]mZ=J/|r(ykymᄃ]~{_t9w4>r䶏h9>y{+3mLﶭkn=^ey9?Չ|]N=oq~m6g:ݹ-充1G1UJW.~wZ}^SS`=?d}`m~Zx?̗'kv!}p03aeIO|ma!mӾrMFeE7Anu6/i㨗im5úrsOyYڭOƲ:xu/'k+p㣽[g?ή;u(|0?li;Tnv5c%m}ºEֹ4^(~<_6vz:K=sSA[96c[y,Q} w>kqj{34@ Zzl bc=s1JAր*{=2/Xr5Pf?h$.!kߧ1r;sZB]/56|F^`<{`%Z*c e{/xm=zv"=sg*$KbCxHf q^ @M=N/ָϿĵ)r˹G[*8Ճ@Y SJ'Zw/N:iE e4ᴜx)\g0}1quW*=N`zɱŝ@tmwߠ9d Ʋӓώ{,di,ݻf[ʘGWw_ c>q>:J?F,;jmG߱e< WL̹\ϧgʁ9{A i7.L׶Nez^gȹ|ag,WNGlӦ'kȯy4 `R>~;;.jyx||>2~c31 w_`gt ,2f+MwウAU3 @:1ái|1_4If>.npe^zIv}S/ӫg N3$L~ؗƛCdh'%]/=V-6pᕵJ<[čQ.bm@n8`<nuXs] ,Kk8p 3l`(ӹ |s/(lb3_cu/ *^NY!|Vhl?ftuF0=|m9G|L0Eo 6`HKU|]jR H-5 ?+6w j'ܾIO{pX822z9KZD gkp*>&K&Iy~, hĝf.0ھW?pMg5¥pw>_ Y>ݒƚeͳ֡ _ߏ?nezVu(ë`ݽ5VMCW'W'> üZX_.F$Jsg2k{`x|ܾ\ /ك趏Gi,Pbzp}Iֿ `3qzH/d+-aȁFXr{nsU޷5 '}3߲aKQXjp%.9j{2rsg˟?]^FlO%Z $HS"a|zM;o? r{g_l Wt8t3'Qf짙$Ev^>x=8QAa~ ęY`#Soz J80ϕHO8V#seXQebkjW7 Yy=o5@.&䲻p`d[u8߄cqG, Aʝ9$ra@]up yiS08C6/Φ00"B ܉#olf_&? 2q 4cӺXW== h8{.<WIAޙjS6{Ԝ. oأWF+K pӷ'~"rN0=Y8@q>,0Ycbgt$bl:MĒ@?V\{&.8_y.g]S^8oxlݳ: wgp%qNA>ɋӌ3u6mll67Qx&$; 0D}#_ɨ6x`*O:I,?xkt#ramu5JXMa~`tx9Ϭ'Q[a?FihF=p)Dnͽ8+X۾_ nuK7Xtiq-g,ma0h+zhpڱY |IDO$3b̡o&?{^ p y>so: b9+RXGLoӚ0񀟁 7N!jI?.<%$5L̈́ǶNxk x=s :9sWsҥw `/7l%I8S+DO0֫m[V,n'&t gy G{<+"kp5j+/ {,ν%8 zr:!jL,S'z<4,`Kr=ۏ96= &ft:[V|=2G[ϧ0u%㓆P-a4c8ܦ>o Z^cr=R5~!umIK!$8Pp|La@'1='6YY; HL9v,υ#ݡX&t`бB$cz=Ъ[i nfӠ{s9 2RLƬҖl,8;XCP-6-mi7]rD( '8,YjO+j/s'%U5S9C쎼_?LHaT onD?)Cl`'19}X@!0DlexY)mbHvdZ ޟ;KdC8aޓ<5Y9*ߎs@dչddba%a;ƙ`5j]rڅl8=d0sbYI M=$m ˏ&(~t#ЀGvi<7Unh.wHV-0:T=Hu5ν :)C/A<璕`{ga0, dyՃ: M9| ^LqjDOTa952]pR6W!>igZ!#@hr3')ل 30&$?{eZ7 rxþ5ramݚ.m;0".?GI-[nHIt*4#=wBCѐ,Ds 4cխa4 J/ :,}ٿ-ϰp/FKoJj8 OX BIWw=~ 6| wyYX*@-kٺ (m?M܄jp;&-cU^L J ktk TL ď`/VeyaIUf[6ҥ=Í:c 7Cw$"P-n!2] u<3] I<aBx=q}҄!QR[>F*@05q3m9΅WX)d"`qEJnһ{*=:Е9*,1kO IӂTΟmۧB~G0w7Zu%_htZn0/ƶ<)+Lr !_x{K/˂eO$9֪ܡ%j7)(b+4} PFֳ!&%R5|5+mХӽM[frt#Fic;qcau?MV^B|a+FC࢚2G͏^O; ܼ3X{S ˸(+<  `5Aęw^x2۸뉚&.,odp9m.sǢ@s[wPGPp $.:,Bj5[/bF/>?<dhSrPkN Pܞmy}X- c ]'?g{y{#!z?Y+AN/(XhTRVB ⁅n|#sgx&X0oKDi 4*|⯛U@4xB0vSw+aX!/p,-Y6?r=+[ |̥\^2+< ;?1ܟeەYw~;6JWmbww8sy}ã|;-P; H w7UB'zWmvNnzq9YR'<ïMք_f@}0 Xo,5b%mcYO"t,K'x+vLOPc_$$00rxH?C1Y,, .?9x.mp/MR6 ;P ~` E]-HTX@-peڇȚrmQa$nsB`Z߾H~NVCź-o%ת"߆h>Y]uFob8.2-"ZG,6 S);g>=~ct Eb^1C G8snFȳ ޖbz{[ܙR 7 H*jAte+ifk_]̛jʲEizL)cWe}\s;Yk'PmQ{Ye5DP夐3E= E,W~D~ΡroO#гn쵏V?Yض|Uhk9Etyu dF"OACUDt+\ mx~ b3cmyt7נl;qͫڪBw(9(\k-<6&\8*a`8YV^X!ɅHZ!{IX,W] +{ܢdPG4yXeGbGn '0e04 qKc2 8=Kf}p2 3%6J^04L4-,ϜO|?mS>Kٝ;& wuV&B 3`ւs%eVpDF>1 a -p-htSWUpB.'=uVqB3fԴ!q]bQKay-u<7q5TlSK`uoR&T_~4WkϻU{aA *;X,-\YEā^ ]F[bیaFMN㚹kP)g Gǃ)j%ZL_DYRw~z \שYOf֋U9'C5G;yV T6`HQ͕;(vZrC_Toxgb QK&yLp?PQ],"KjSv-w]HA iV]̶ ~h6] UD(-8l5AbhZMA󮖌ň$CɄ6~]fH8*#ñ7ٍyUL=Nef sru\C܏(*ҲCGPyة4sH0j^ :w{keRVhwvJ&yW$l.nW׈?f7 `"pX܈^>\oLE݇B֮1ңEq>0u`' vM !VJbz0Onh(CF'E>kZ NK{TxQ[yR沥r2[ ƿF4Qol"F8՟h~Av|!Ǐfۡ}+;>Xyv?4fbE oNBElC$,n-a<ՀI'gDrj&d٦ao-QiMT2ڢ#2ƭL~|7U][:$Ff]:S c~ߤfe*_㎶pS&$=\,ٲj ЙWa ,?@ĵ,=mV"!_aRV6[b8_(] xߴ. .J\^~!4P̑\ B k!L,w{h5㿇}bQAfo!q'@\5RgB88i/)4`PUZ!ZMZ]Gkn),O3&pCAYp S8 IX6F1qЏm*dyGi9+jQ_7: ܆1?nOU6v]Ѱc?@{/j.2זmҼea2$bn'x?XWXC@+:Cmv|r2j=MDfΦ\a@qdoV4~sZvwR X9q 2 E<"Xj+/kkY.a ,x^ѩ 3[NW 1/ٿ|,nɹ-d;0D$rDs;1i4\'L[ɔ[K}f%$;1D_a9u]N%G̐Ak]TJgؐ">a/?a*gw~äf-Xp)|)g22Wjkufލ#BIF7qs`:)Rl= 8rU[zّpU֘_d2 ٖE;e⦊h)HѣUỦ~xK6~G 8oj&r.wQTe:yBR•ߦX7I/a"_ΗOzZ|(ʾ h=GiX00. pVҟSūWxtH S+o5Q왬W@sB'1Ou)•y@ ՜j f@ *3ffMVZkb.UΡ ?SdS״w0/1?p9`y$%j&zoS D(t̶mzR\޵ܖV,JQzsByvYesoD?\ +35gU7ks yyΔKұ`EֺJ4LxC \iƳy18RAؿ;aOI𙖯洦ݳu$|(kߑ:$%I(^fRO۔>5RwaHX5wV}P%jL:+J=Kۥ#AY~8jnP ߻@llB㚄p2U b|w3,7N N;03XorP P5j`K8"c:hbBc_/Fe;YH y; Ef9J`j.67D%d?hr扜Qx8;osQng3p\L)z1UX`. Qۀ h:o"' QV ɓ\`8#=-a@ 0)V|)}VBYHRd\:{l.z\G4Yۭ (0k[Ka$0jsMKn/^fZmGtP 3ICK5렐 җ*D  ϸ}"哛Svc@M:CX$eh4$g$VEX מ*f ?n8w[[@ gq2Y ߪ\m.l2Pm K80+)_Trz<8gz/Nq:VuE!աàغW? IJWʯ3IJrڎ=_q򝖹&fFI{[֘)-H)]H E&PY= D0Iy y9B$[jv5a ?thB^NOSJ;ZL6뚝֠!f>8MtgXɑn~rxA-%4Y/W@4PG|m:M)e,z&tp`BooOTA-YOLgUr:jWЬXG=>ZD|"%)h3rV:%Lk o J";m득_kCv#ٲrwº6}FG(I4ϑLjGbJU)[k$.'r KHFa}f&ǝ8f⻄y\^3zY{v N;cɏJ@+?pb;jL ÄG> eڡu,m!!h]cFzQN-8'N\]3F6w^#n9%t'@:r՘?cm$rK;ֶx]GRjnCr׹GᎏcD?N,web>o>Ako/ksz#_ZidP0.H<4.$D""&cZm^b<[EvHڸ蜊jeg?5(i#+< r_,0Y/ƚD>\vbL$2"@Ţ2-A>026Kٵc[noido~LүJEVҏ^d~=L'`0gNU4:ނ?ǨH8'[S;.%T%B()p!& aK<9ݑ>!OSIPҾ\ߞШʼ<gwU@)]|+3l8R>đΩΉ~:gj.IKMѿD()*3c@qtCJp z(XCGpV"8fX>?$;QS>K7?{r: ǰS:bcSuӊmٗP". z cEӣ9YK!N3a;Q1<bT8/^L%5[胅:8xӆLnO[_£jIqElzN#~$nVxN&68jf*[%X\)9dޠ,Ÿ,OQF(La-ȉ6J/5JsڬtGqwŨ0uC12K >DXb> .>tW± ]@^Wcʷw6R$碊#܃zŔ:-xl=Rp'ۿ3| 0!beCiγ:Y& ϰ?$lN]mWV%XﶻwKyYrNviwpե:f[_qJ/@4tlbC殲G K r܉BPhlaڜSGa_f_>V9j>j>LXy25bhe8Z]W Iu '} E08BW ] f4j0oLާӉ*a/- ۵^{{V?sQsL*P`ayLs q6Qۗ16\Vm[b{gۖb!&EgpQQgN} Ւ+bR2-hq0qh4xChJ[ ySd9b?_ƈvX%01q*q{<$5ߍpjPJU͘C}D ue7?mk1QAG۷'y5#W;J԰1ew{&P_=57 ]3# Cըfv]y1Vh} K$n)5׬FVlYWE! Y%U:W[/A%Eʔo\hm3B\sy$K#Wr$WBu͜>Ǥlrrw .LKuMAJNw冧,RCt\nEv< cxBg`Q hj !ygYY.r+Np^\R'q8xmdPRp#FsK4}gM1"}'0e98:zOS#;3<);Z=Υj!.Ɋ fjǀZ0XVgc]lVM;*ӪXnbWS-w#f}oTϟSk֏BoLz9\ل;J4Jf~37N%ddPm4DB+^@XP?Q{z W86'<~cI " X1 (8cB<C(g3P1^NYoWlR*WG6{[b]ξmί1K]c M$TRLf  D:;MկSͿ}4ny>}v] dFYtmG3-*N%_mImvr۶ӎEH&xni5fVf!@M/!ͩw%8(|Q [쳝l9w\O{ݒp~b6lO$=Qrj)6b&:FB-F4W@̲c?._q UP$=m"Yu**P DFSÈ Ube{{ .7Pqc&Hi 6nQ8ȹv,[hļ s;`<91+Qc-xU\bk7]g1(vUf+XeHl +Ar5rNvlb? hBZˁoϘf rյt;4{$붏F)E./ G3'C ǨݯҭM,5*I@>FI]oob=pcu.3ms[N-p8 mC ?XJL8^c& Ob558gvEfߋbit[BoQ!7|5oa$1n<فNvtE %ڡtm,2a1(ʂxIMb+vcwcbʗ>N"'hcDf !ߕniBΗSGFD0G6R# $ip yg1$1+6):l/ Mz)#*Ǻ*( 䀷UA Ծ&gH zbtl9*z2V~~: YL~n2uţ!u?[>[ԛЃZB4&+jME{:uㄢx5B2l A/:Jgax He+UHZ{e=d'N0^W'6en}9ޟWmz9V~OG}<F*e<ۺFג%i3Z󧎽v;h~쵗{K_/>=_#v[7?c}竵km{Zk.?_z~xڗ}^mk[Yxm?c+)mT^=m|4ܗyQmm(sco5zmukUϞZ}M[k99Q/ukVeϜF;7~Jt_96=mkyMwݗkV\Ricj_ym}>Gqz}d,e^'/"-ON\uz9£|q?[=Gu]tm,q>~|R}i->=5>]v:t2ǎX֯?XU'\x'xyoi/ؖӛZϟ/.[}qUv9~4s]yLƛ}Vj@^oi5+?=|[xc+/_Jppcn?XMV,`<v1?ަ3G>~*X㲯p{Z'^rs:x7_I89_ ' e_<8nXkWMY6pvm|z `W[z4^9f9e>=̅ċ>c}@ :<ϾxmeZ3gogގS}9c mئ-[沀>.c +<`VNm<^%_DaWKOn.\C 6'/,?}m g*rZN'N/=aEp}c k/O8gಃqjg!?;7&+c (;f%MGe~yr`aE1.BhgΒ~7gYkc7~޷2Wņy^oLk|V\0?NN[y>[3۴xG'9*Ϳ; ۺ_zZux:V#.K9Ab ;g NW6߸鵋ZA:x!9xS}߀Źk o)9Q-qʕ{ӧIdYDOuR`$Dίx+a‹Gq.[+^eQ1|Jߺl=:AӪـ{ǖ+sė?x*/]:+U6| ?)qT\0 @^ ?84|g,⌇m4pǛ K_"彖}<6͟m8T9hE{=6\A#5l;JpkwϮlAtXB_X b# Xp8: 1:Ke;AwҎ^* 6Xccsi"+¿'(n}`~Mhrdx}xFk8|ˆg./`1?)Cq`͵@-6mB6;4SA'h۸qX@!~`)_`y9wVGq } yn&ᐄš3<#7b!!G }c- 'lUE\@>ǃ3cDoqILa @@!^u5aj ,%C?"yyn(<N :|O{Y7 {r!B1tyhoΟ)|ӗCm0Xr>YdL x׎uwM?EM? Qv']ǟ1z#.c2I`yB/`My v2ޛ偓Y:66"‰rS;TǼ9Uv@`8yM7*3< %|gϽw_,$"c_!s^*0Xpr'}}gڞ{W BUx>'ADh;<yr~y@VJ_o-eϡ}yeh[܃)|B@ޥ'u1c\Y=+`O zr^5rd `BSI'.qVI<8ˋ}uEJH:Pǘj":`, 'Cc} .?~piG\98Ć5my&L^~H* 1%B>L@@ Ĭ\mxyGQ`E zE'f:-gqQϬ%TA` >`2$=VauAQd Y^מ-gd&bgQ`q~0$\,!!} Izr,GSqk"ޗNve9Lc >2`^Gs@y -=V)XT0{^Vc| P .. <,!݋2p\x3(J\Uh7b- -3zG$>G:HPΕ=-hW7 ú:8[]7m,)>ɣ[+\)ד*a\ 2Aybg6b>"o-yM+l0ƒ]&H̸+iۇ#@BOOx]P' Ol<9W2%GQlr^ B`Jg_ǖ˓g2D%7Q@1.~>wp {{iG$H#RbU=CkDLc+W6tr ?((:LCS{@ЏmW`ϟVח~ ]hO u݂XԤ 6~FVp.8MAp1\z+0Ov)~p8֦,hv1Ӯr8/;Ū1q7Xsȯ\Ӗ T@ j\x0Ьq+XBf5걎|PQ:d|(q 9Or&! 0DwSd-[*Oe)7We{80}SDԋ%oқZFPW۴X&[! {ɦiɁղWC-"@X|Dz㑇(}MIHUOl0q pBF,yNCxc!c0hߤ BTIk ;j M+^-<}'%׷m`AUi;H!Rg<<l^_1n T>VᮓνlH/2{}p pkE'̵}:_؅3%_p eZ ]|MN_fd4ym.xv1h ~~V%P69`E\څ%F9JBm7 MFeq\ ]JajnfT>϶eV/x0>f7; C ,4=7:%--GO)L$,?sѬLd"_얂Tr=̬B+Xn& /|Y"w2:_aD_U7<g]̔R|:{Vޑ&G\ T}t MpG:>lS Z5y_E3FC8{ޢ=d{[#rY1$fPWaa 7<0EL6Ʀdd^4 Y$ԓEۡ}8"-*Th(Ǐv,}%f ;%εY-iݭ6ru!:0GN'h@~rI([hUU0ߏ`j|+}5ӲIlhkѐ}rUm:6m\x*Q4WCKbm$\yk授.K@h?pj4p6)z:ơphP>͚ UjYyO#Oo`O&ExFI\e ϟxj>`OV٩A"fdaϘ'_LG6p͊#MˆrvWM0uwI7b9-;Q-rP̮L= <-l-At&i5a]YUDD{S"LBmߟ "DƔoЪ!]-R7 V;\(R}Q<ժޛۣ,T\*s1 ȂSjC`8ߛev].}!kۧwK^/SڍPBhCH'nu 7;6"0އ.4<(_J6wHU;ZX8C *X[6g|WL~e"0Rs>3δb{1F| ͰȳP糉5wTB'$Oor_sGfh7AN,1o?UY`* "f0VUMnH%eB,t8h'j?)U~~ j0~6޷o8ы2 y}XS ܣTY#ש4aa“q o[o3[kzcDm a۱CI\"f#GQ3@G_aost>iݱ.@M7!$Nw{gf/Ҽ[T=9ZD@2wc}S+&&ʖb  oyӟʅZoauj8.MWoro44lhQ~.y[)jy b"KVw/Dv8Z[,b$=u(stai*KJ+G-XvvFIP1̔ ʳW+H2P2|4\F,i7K "G oG&$:|ISδԚdhS aFY`AbyV[QLY˩غ 2vp_%+{kHɓv1FmSP[KU[^G-1 ۚ3537񄅵ՊvjFuyw~T^4e{v)_;<',Nܹ/o^֣OČЁ@f3lY^Wkjl5-]~VBb_Mvr.Dx;)緍 VFc *9W\UkIX0ٮfіKy9I_>|%C  6 ;'0U zYìR2ktzZ)Whl˧fs*&> Nj̖=ZE>c[wG?(G݁/>}nF_!Bs6Śl/N42viH3M[x?&+k٢W9"@xڍD -f2^䬇=+jtc7MX_ݬW+ . cf/Zd͋ަ5?8+f~vw;}G}۪fbi;- R/.Xnャ3w,ٳV!`L b^1Ms [CPv|`Wuw8$Qva2ӷM !r ꚝ>皓f:wkE$6ФbW`Ϩ{D֬bFTm{3״'g`UwtGsxcN{A˗bVۖ&U[n@3¼ci;\谼eGZb).upsA}[jI$Gl=Jh9\["-e N[ ᜲ[T#6$i@Kq *Diϲx6O%tLE_aCqk 0QvCL%Fһ0[9FX;/<_ 13M8-p KziC4b ɖ6c\0R5Uboi63m¾8 %_b5fuu;"oe8"hע3l1kPF}Of L)(Q}9TN\u]cJz9jXQJµ!X>g̑;1Տ hb}w%Rz$ԟbW2R<-:%= h[]:a翌vAE}4a@ZŘ $Z&36I8y%^y c3 Df :J>.CO1}5w1/_}`Ί'Y $Rϑ.:t?&hu9Iӹ,SBCxO"˹b>2V(Y) b͞~(a|+>${b'Lj&WVq+ybޫ' {ߤymf_GŸB,.e t,^5b|$ |ē#t[0YkZ֡85z;վ0ULl,U4L-~jwT3Guͮ$:q-^?+1?pW[,J9Ѩ-bM+2-(v( jWZ{!8BSSۯ];3ْ{2yci3:t#| Bc h6GuFzJf1lgρx͑$O[T-^2u ѿ3~&"Qm]? e\EXAoa sʗv:91CUcLأ&evOuB,Px|~Ӹ{?-깒E Wm|rz;ʠbKzt?f0nYcYD>p$fѿTj)SyhssssD{rFz3{,eWv )OY۪8`m W.y)hzETEg3&VFÈ>Lj5/Fb0Tm# HCVE3Wų}{`q5uk;S))*R8,9s[ 8v!Ȃe'rw`%!/.-VPŖ2bJBX%քckCôiPc6Y!, r8Zg9%MY:qq<:7gYmG6pR֤+6xy78BWVm_r~,};~^bJ֚NPֲluW;{}^ӷ*5Hi5\ 06{j,YY.ry\c >gCt9/j7[&'[ N>֘N羺wIQ-gò>1> h-3=OLva-9:1uXE9!ft0ªns{ZV̮W)c2Pk仭m~!.I}'^EM,!]#b)0~wEau觻 u%\'}tk4nM4VkĚYknTv42CJv]K|D5̋'iZ-"rէn׸ Gp-&rYռ=PIT[pv0G]+w2w &[ӎ'ld8P/ km,2 $B]_-"㜒-q8;ZdE2lftOSq$5b˳2&<ŏK쒉􍵟3-,c^{YGP,7mBɡ-sݮE7:.a1hFOۉ~[RTppw3nkٷFQb&H&$OXO=}\u{$Aʰ# ,XƳlF^ݲcE]{sn̩e Ƚ6bi6h]I Vn1P覒M@bgya=H%ѰbdF~%(R737ЗL۱A cw sQoѠFG(.v ~%;Xw ΔbN`w94Ml;z(1k$vɘ%9r(M$ɳܢOrtJU5ӣ<㘥rEod)!L{6 IaˀhԿ Neo sPîyeۺYbFp[?ߟ%-TЂxV3&[xh QYw x@e+/9r(ɫMq@rr@4di"ǥl!"V\lE`~ۯ5TmC8kO;Q)&ŵdL.C7qٚ$sҎYW+0x-dM 2,ݢ@O>ӑ R{Ff{:]j$%m:FG$>1?ɵ8{ƘZ;myf$ =} d@tO.5m13`˴M6:N3qY zLQCѳ(RA-c-y([ 妫jZYz)H+L݋Cg,ѨsPZQa㲢4 ],P MeY#vlFm3C%wnZ# ikiMSZ6{mSX` h1z'racz4:P<IN`;3U9)[ŒX`kkXDkSw.߳tu#lymF]0 ,s-3TsQ۝~LXs2kTM)[dq-feu:JO_|&{_NQSv:Z5!:\~aJHQZ~oZM l*Q6P̸HEBIܮ{@W7MYޱTǘݯtӒV^| v+\̢M*EnneRRt4i-wWVHrqB79oW)m)Etɼ/䒔cͧ ^uX]g(6v{?\U||gMV~\9d\x^nh^}wh 77 ؐo/re+zlKu/ꈸMܷ83Ufw9)dt-n=Xk׉.nϴVrUm/r`rF2nÖ|;Rcv;.)ZKXˢTWbKG5MXSb"@_{Ѫ)Zwo7}69HXraбgΈ^G Ӑ}}7sk?eO.1t2w ; jpe>7) _Q2﷢?+9c]f%6}r.P_=,WUcX BԈOz%lv/)I&ɐF^9Q-N9T]Fb]a'}Oau%H u(^K @F:甗rV◃lҪsb \#M1-woQ~-N g)Fq -99a D/Vp6vu;*oؙ/JB#PV~jh$#`-G911|ȥލPe&˖K~OH Z߾ksm٢f&~y +Hݵ]lG\uuп6-\wwV= yrV3OYQSWy.P,{uD* O^>uu~bGfqzi1JJv%S>~값h?Q Q~AIIf_\Wa v{׷nNUy7Dž%>g+l5IeNH)f,tg43mZMkb]MD=v0S젏͑8ӫ.C nGsluV{9FWNؙNrMm ytB6rm<]%P9vwwJTzJ"XnUfߗWDca rjW_i=,1T> ~FKKZfY~pmgQ*Uj1%8R-]!3*EKG*NoH3Jerjf!g"nJW%cٕO w,'YrL~MM`\܊rVfSdTsyD8ru)&{zOb_ΖC! Rw3@2f6/i mY]θ~F|z`ޕH= ߗlϿ?Ͽworiginchk_tagchk_ref_HDF_CHK_TBL_702_198_1962_199_HDF_CHK_TBL_0,x  o7x2w=xe]ȪJ>?L(}l HHPkry-KRUm?mu5Oky4\gja٪v-VѾbOq'vV8GeW֫gcۅ茶j_Zn-W]??.a?X~}2ק냛o}w{oٛ1\OcٿV}zؕ g7>7f;ň/κ-g{t+KUۺ/նzlM=ur l ڦ_Yv|?6^*c nS}u pZmh]v~l><3{KC -۵#L]l-W/E\nv^kպLJNr߿fX&cZ ɰ~U9l%>]b0T@4T UrX:uyRqu[rMgapT5`6Onk+;hӎU[xqN1+1cQ(`K*Ae, 㲔V]dvTR1WC>r:Fk!`zTMAهu_aX4^ۥ&qv&;)^jR[(] 6e bI;iknsC}xkk1ЮIg 73QlK[<c9Dگ6[gW;PkM5 i;tz?T ЬaѶ ̍o}kVlxY]f̣:(;Ԧ=MY1Ij썗47-4nv Pdgq_G-w,{=_-458WX4bf`ޡ/LHfbc9x>ԃXf76[ڶ^'w2f~h |.ٯOS}Q5]h~^&å-TMg-a6g+M{7vحl&6V齾C5=h%[d}C6e--vT'ݤpmW0˔ؼ tFezH*01kwh F 2ptLГ)6}:;JW 2<`B,ۭ16AbԴS:aMv;tccnnӃ7Ds#$UEcq^RhQAD i"nm<--apv~6L}-'|#xV؄E~(%vl `׃Ծ.Ѯff1]Nyk,XÅʊfĘzlݰQΓ$"wbmWYuo$j kG O=۩ W&q[׶$+4?S}хy% /t"\d1;K6ZfL^*̏4+2ǐi^229*k<& 26NoGWn$QB |W9 &U4b{ql󊇐z l9p]T[YneK]ݦ=֞Iv&{:}bOH>XWܰS1[EL}vC!>m#l/Ba(ۣ:&%ޒ6"#ߝk턈|!;OPľ-70>&/c@U0 @e(q) 0_”B<澝W7/) |f09[4ߒJWj*<+qux}xt,"O I6L7sH4g#ߴfômct>ǎ͕ksqM,jb'`x?Um1< {Cy%0%: p1h $CI0Gu8`\djoQuKsH34hB{LI]vKUؤo1 ۄ.'H8d@cٛbhXiQV$QB:r pϗ`<}Jps\;N0ku%]zGX7EZpnsg\. e#xy8^&ԈP\a6[űǎl֛w1y+9S;RoiV_;_ëwԒJi6rcp͝@Ca@{GyCI+J/OJTRM 5`ia= nalP,c3J<EzpwG@/X'y.Li.:ƿ<6VCԱ!j!q^Svw[ݶsum Z] l@ =!z>(m ҺV f'#;,9wɋYFA-X,T Ϙڑ MrxSN-tJRN}՟=1S78J:8Qj^FVvnAP|>3}m?9qXq+pnj/-&`1g3XIH ЎulZ=1 I/g:_փvQОҹָi :ցS=°u(mNFՆ4ӞTDE泫A%} 9&T#awdB53[qB^=SZ"q;,@!.TRq+Yt'!yrۥOsA|dCNPt1dfs;+E7)+7e;%PT%dʎ5=w{A5bJk"@Κ MPJ_BZ'akWh$&6nTԎnrŽH|Ci:< j,;O~/D(5ƙ2`89>gwt/UCk|=`RCVrv@s78šhx#UxNUH*G>3CU)y><$C 71 &j#+?avO"0JA:p0 J}48t+ <"g3QW D]u$ 4[fU:ߤt#W Rq9dBeP|_#01)wY<4f)f! )nVdpkS) Ri~-?kI7?/CAVx mtfY({#]2D@Qc # h7*N۾b"ȬJѕ):#Cc2C>}!|l{Q{P"fl-ARɝc2}Vl|c Lp֬1$Cd0GqbHrVqhqSМ.$<7coOvIȌ+9NĄ9Be젍 f_\eųT"漹k^} ]<7A0~T!(x "1F^<>H(gFN+ r\^~)kM9JM7q`gp6V#~̓,gEL&79 E ODDwV~eLqnW&}փVns%߹qWcz33a2G?{;m1aۊ=b y}rˀ-H#Vc"tSyTg̰2,Iue= K `["h˯#]m;E@j-*̩]t2XBuW/M|xGf&?yh{ %'8APqT]Eúk:EHPUyJn7PLgh8es_2p+N&NVX  V w(Ene Sr>_jO:;Ҏ>@$ \™}bXd=0s,@1"XۏOORH0\۬Lb}0S3iW)3d ?$n1fvR.$C l6uR*s vGH3;>˶KG{vN6U.hbt6ʨD)¤#^͎``K.ʃISwְP&'?$CcpJGsD `n"7ˇw+i9Ffސ`)|KeO A ֔dzł~;ͣҭpxcJze*FyWV흀D_)9LyT)DYǜM=|RIXj|R\;^eϦ9. (W<ҫgC^mBÉ /+nF8@RMAXB"삮jI0p&`PI؛[o~cTAbԀyL:4!G0h v:uMeύC13w֎ VSeyk#nM7 Z#SxY5!y? Mox)5&H}橳uytX8[ r7]1l+j5izX3 x'1DbĂNrn=*-tTRB!r} duʖ13BGM,FʄEnWs$21$AiY Rx U'N<"&:1<9&:yTqSt;8qiqnؿp%wԕhK*G: g,Nu3q3&F>S͢$9Magg,X1*&R1:1rr.l+wB-O!#䵊*q/9/&:ԩ}ܨh$4aS7HOڝI*v2:,VLoP@0$XӡJ(jT\r/c\/XjJj3!5=ln7͙LK]?&nUD*9OXB&Ie?{/xTh 55wtrcBdPxuyɦ*FS/yr =Wefc-IiHyy:}Q{<'Əyi݃)-bådL/{z3) vȦ-p &ٻ^·)Q1s]H#=S_gMMVO IvFk8iW"T&O*LZDQ"%1O[3O|x#]xrm{T3^4wecT,܁$njFtT } y&0G*0OЄwbɴ"(5\kVd6Ch= D)]DžmR@+)2tC3+=21B?̒vT0z,C_e&NS;agg9+hiyb̂G<`V$̕[!0TeMDfq^,&b?7 ؊nj[J|#Pw]64رmJ;ZbU1E5_먽QH$+`0f됚qܞF܆ h,ƽ!>ˎ՟̒TY)YcEGY=0"Q%p'>Q!ܔ@T V2)6a?;e4Hn~* ,* 4J}֪yu'L-mNMScjLౢAұ FG.+cQH9V5l1[Dʮ"S,Xڰ#^glh9F}ۡ29dI-vQvߙ+E4yNˋ< O^zά)/ y<ߊ:9JFQ_e߁DN^C@ͺdyWUhG?rN1z<{r)OʒAOD)!NT\gTX#]uZmCV9XvyaޑD͐+r۝ ^9Vq)XB"аc.YVN%' _oRmV2ܟx?a}z14ipa$,T.G\pvnP mC}I28"*ĺ4[@߈$.hQqBM Dq!Jܺ!Lo('T塈[LD=AnXW#"M`3 Q)jz ڼyq=Ӝ uI(huHa.N c<ćN@OAQկH2Լk|f1i,+]!ܘT2ňRУ^B]>WJWz V>a,U!DMdIQcQ̹Wvmũ aܢ`pQ;9tPE:aO1y"*;M2I Iex`jDN -]V3wy|CzR6gR#Xw_YsE`*ƝyygoX FR-qAdGKלj8N~ ټ f.(9{L4A<>?q^p* RV7/肹_ؕf69ƿ] #AX6nejg:cKUKƶ_/9˧H㧼k 0NE5Pg|8`NĖ4#:yfꐪq׉21ϵy>KC-9zúdȸ32Y2O) d_9cV|`Vũ6?N2sV\OS g8Ua9_*(Z"\f;^g~\ 䳃| lT諗‹y|ڴx.*vRMu({uqkE' :rtʽZm^PK +FўfJ៦K zì;ؖ^PJR 3IGcT"wjG+` ;e:`wxtΕ6 (WഄϻȡxbٽPn#ly)LHm;NC!ӏOf$IRn{ i4[Ho_kmps 恵3lΔ~ SYً+ H Bj6ޱD#/~n&Z^声6JD_Bm o5ޕrKC~M0 T(Q1Kȝpn%6 vRP01prI(NMUT񐊧9+5+):W^T]]D}3tj@DMH?u6:=8ɟБ*wTb顟OGڱzTZYu'&uTn5&Z!@d:$>RGi{|j<0./|NnAeh[Xe. b!2f5u6hX^#O!Ê1>rm@a%Ɖ% ~cw1]]lTKex7K )_{^yzWU)질8_'rH j>T{"nv"i0U`w czjd[  I$2>1[tOX/D`꽙l2q%}iV4r΂H}z,J{Vvebu}r}j? PXT{^?ȞtDriQf9FED$Pe֪6f0h}gW'隷e:oJp55ܿ?QQ EPGczEqG*|Zmjxep秠B@Mt@1`>7l۞=^/qJ:߶ dQSv$o&X<L)̝"fVG P*QusDWO(w„M.hp׃(27LʻEA͡}lQT8By/BSO㭮7;YNH|P$,w!2jskk=W.~˞&E{:S ,v)ҫn^71ڭ]iegm[aYfdHB%tw. aӕ[ӌD߭Wkl~"b#닎Wȝz IW'֜)Op49OȻ{7s Ξ׏m!q y"QKQD~*~7x||pP'§g5/nQh}l.sdU[`]}Cn/por ln.I{5u#p}IL|pW~IP{iXK ornb(L(¿ H|)NӣĄ}TAӄRDǛ(V]ƚHJ}k6هb?ԍ&Uq&O3栟 Dij  +:G(~َW핊KF|?xw' P:jɒuzP8ouăد+pS2]nsz%=ܨiZV1"RYtwE~~!)O|_ӶV̰EҗT:vq:#6}aCtFF( _\xZ@DNِ%_%%G_\ȜX_Otv):*dݩt⬇W=WF '4}TO :,{'ی ]T963rD>"UoU$E7& d",G[T*wLNTZOpsdOu8s7P5]OԵ}sXw(#\zu>TWkR ,NRt ݩ݀ayssCt:~cz@[EIKTdڏnZ3,gG[$cja0w?&Jߵy_ Q3j=]L,$eu(}XmYJ'?jnh=Zϗ1AIiy\TӔ}t8Nґx9¹jR7nռa+{|->0FdxF7AS !?臝َuM韠;> ymDzCpq^">{^0m&h SAySJNvV}.do>qKPD 3s&:(\/rX+-l(F7k`n.jnPUӃE&bk\[]y],@=,(<4@=,(,//\x@=\(\>@=\(\d@=]\(]l#^]T_G"`i@=i==xe}:-yH9峫[dAzaΫi?pmozvX6]6op?ôSügou7u7nקr,|n尿tN&; ,yU46\\p0lX݃XQͳܸ#[>laZU/o7 K٨SqUfЮqx׷k1;'ƂpuNf _nvi0uՂ/ulv=Ǧu\D_8lUnXƹ䍍FՏjW]b, 帟w&kbv/o᣶Fv3Rϓ5Ca*.͠: ͈] DOsێ:v-b׽a*,m{;r;n1t0 k;|ݦMʥslv_]݀uv6a;5Q]kl'6JnxN-vf=óc+w]-v\9,a٫ =g\- jl+vmTqd;PI2ڲUR" 6<Vs5O{lOxVU.dsOWx'&D ʓ'+lݷ=zb,u']wqdUW¼Ѧn͊8XNnKV{08xG6>մ"9Ǔ2>"u3qk,M_DZ^]w'MٍQBO $nqW~j ήW*lm]W tُ+~NS.wܘCyôh>W̼/@?{t1D]>BpdnϪ~K$Ohu;MEkcӮ6Sp77NQ*'GHcks`[ ]>ɦF~5S<C–p a|ty; GYthfdйӯVMy%ĭy6OΏT6nUihR [v .t|Jރ6ͽ>jwu/a`Y'e]ؗ:3ӄZWS3*hN:4ih޼Ar&tr 5: r[rL4xCI a# 8\_7O<|/Z#ZۏǬ-.dVo˞?|Qn8@=sBq?2Yw\3v )q]W^AwF׃ ɰ ~8+|rHoW>>as9!(=^ M,*eо7]n@Y޹Qsݿdv_-Mg0/TXPsHs `$pY?3R 楼 G'Gf׺nyg dO HaB |*V:<̚], ǽjay1M)'p붥1|9(jh^O4oiWDk;}.?a9DVBa쉲O 8trFC-~`ícYwLB@+/턉NY(`6;uE"beKR(gqmZ"َϸGދ H Q= _q5 sXb΂qA_)Մ`ma!#:P3h]vqT4Xu0Ao%ζ;KcirrB.g ˥ pߑ;';ۅle'ڭāD OJrX={197G?vj~ #ΎDZ,[ SIOqҶs`0q +vm{ A- =7pB- My{E>hAQOp8[^ǴơPަf}?#io$A΍v:a&O#^_, ,8؜f9sA; =B54vN;%0Ov l9 YZu[3};pFq@NԐEE+%ƪnƌSoH8ˎ+듛MC}$Rs:H5Վ`n.hu? 'Hڈ&[ %c 59@ 6|>p18DrKZfO$EJVc?`JO<9+JJMÍa21}d e;#d̊-: kB>6=L^ Dԃys+x>b~NWVVO=cB&*15CZa5C謥A~Ilnulnj:Yy p2wwz-ƫT0( d@~`T+ODnS/1QbeAņG6%@qƌ{ / |JO8] B_6ld|(ŷ>VS.*SCp=ʒXNm~:b0ej73nM9,;b~霍!mn,# ·u*95k'iRE| rߎ$} y !y$nkg"֭8c``+yy-6WzV Űx8j _h-Zt͡s{UvkYUmOǷ0۪msJ j"[nwR#е35ܞW՜L~oDV]P/O".ϩGW9),Vr_C7x2hٕ_$, sN2ӹC;AͤO8K<7֡ 9grP*{iF h%Z}Վԥ 7/ a48tf%nbӪ&y*}8?ЧVC2'I)|,%14o ? &u.?VDn(L6b>zV NwzC-\6<f/ >&<-*GT[X;X&Iw0CP9:,mj鍡3M$h.1O&'Eh硌xlLЁF.r|Werl6_ u9vpPMZ^qPj߸,2gvbQlӻY'–Ӳ1V QG%fO i>$8J/9KD1) ҫS[{ -`K^O6&#[WCkhw݌3jɂz cm<#u|yǹTH6| yeg^j@V+aԼe>u5b"d_) |vSC\Kr ˴?|}cC,ۣ1#!I1@z7/";q2ZA))^ܕ X3Z >u5" wé~Kh7ߊsog)P|fq$Lo>6;"ʂPQ!+zNVW8 P\sRS|~nz*.c [NI^k?~JkYkG@dPV\Y2ͫӉt9IPO{=2S)܃ g9y#H7g)d{ vxZ!^Hr̞^&Nӯ@&`"sgV8.D҂Y &ݖJ&v@4z>Xseʺ  j^™`4G~,2gG&B8E6r(f{dm*8PF t},sqfh~Ա$ G)|,+ &o 2$JePf=H9.q)k~p]|h5Q.oIT&7J+1ȋAH 4e C1KfT+{.ց6t9P9FeϙQT]'tFY,RJ Be~J{'9 f%,S #Br~.D&k]^gyG;5>/REOagUK⒁?r-*$a̦4 ;r$ʢo[)VkeC>,{OtJ䵉1!;>2U?TmJwV?:giN4l\5RDڮY?,1Oq}"U \m̋MǞ)6dBo]~ZL(Dx:KGg}z.YcZ}*NqpbYeoޯ~Q҄?XBfQucؼ,>M$G^\m70ZR4\v\}OH`WJ*3IDT&YcEn2@)|O45,WPik۱sjOW 0F ^̚AGBuCNtmTA0X↎" ^rUTO=&#+05_jQmga5.K~7!tĞb=ަSG5jT)&[a ɶ"Wu2C,5r8WJPr"(2^""MeRNtdOիdI@fS+z 6K.Wv4dd$>@Sr^f<׸ <Ԝۯ03IvNow0/ k4Y9SWۻG-t 1KD8o/v,^NA! JI<D~V"VpLԀ oƴL2Yն'rqX~ARRɡU~ooJt.㴨Ek78^!`-1CA?!E[(/\G PCP@{:Y_iv,"E dv搈瞂۟f *;lASH,5S.̵U5Qvs [aѺg$q_uƀz]J?]!J*M=9.Fbֲ:U͒JLJ\RuH)%j9m0\_̭}vS@gy.":8 JV:i7]Iۢ+Z|ڇ{2tn lp!@RHO"8\Јʶ{;7ԇ$) Ĭs+SO rʞwM{޽G[yŗmD[T^t,6ar׺e(_EN\tk3"D->Ux%/_t)P{z4INzmgO2~9؅YdG뢮@^q^@En%x hhg{ pL[Od*)0Ye?j}NjrPv%rILmTDeY,*WK S`'d QVH?6|W]ŌX_e-S/V~CBm ы\."ncͦxʷW`wTi*22FOT y9^^BT]/R+[k0~ׯQ̳%#ZLo 4<N?SLi1WKh8T7 %'YC Cfv(wEwck-U85ʜ%šUMиl?:wTW e|D#FB5,; ت;BݒelEe49ɚvL6dubuNm; ʭ& 8UgjW]:K-B; Hǒ!/yr~wJQۘ%fzu>k:{U\ƭ†? CXYv{J,[U&_C)tO5>?9lFԅS@w cU~nP 5R$=Z"fhgXr is_Dc֡YD>M,M}+vEjZ)wt-' 뵷u(y!(bUKNnDCI^G(y(xg=w!/9,{k& ] ~zϹ2]bwa:_dҁn $$k蠦N{A7]6k挛(Gԅ\f1ljI~MZt.Y޷Bl6IԢb{\x{B~[Po[yߗ Pr${?u4F$%T^xb,Yx)w;M$;\sp/ME$<;FNF}}PG%NK̀uZC˅ vAZGdm p2JZQx^\ RcWly'[c?ɜ_e $x" EG+862,Y>MM'yk(@<@R7K@JJ'FʛԨnbٮ5V?MU4u#gsckc\̲k浸%$bf}yr+y$e=؛E% ڊ~2[D׻hbT{gi(#{325Cn2+zdO[ pkVV}҈f^o2|?5ÜY r'W)V٠Pe^"-?S'OS/#ۗn]B1ܡZMOKDD0k0T='lK` vTޞ6KD^u9}n4u0\.\N0r1Zg~^}KEj+q&s) ě6̽]PV1([{nZ 5G3t64TH6iFxoF:m;գ@8#b+^IA.Ju-ۏDA;O_[ tP p!hR}#z5>2wF3 ;xi>jCbM? Mkoҩ|y;JuB omHW_Ra+( ]udϾpBiK|/=7ԓTHT o9/&Vbޠy6?e{mW/\#0_sWQĭBڻRjxk 37}5CW>Ͱv"[8N'U-ˍfNF20K3d^+wJ-ttoՃW)[;(0UJ*_~hafIBƕxIn1]%_Ww#^z =&ZЫtyy{ΐvqYN+HL`QPyx /YѬ0[VMj[yDstkTad{U EՌ !y)WI-YX7WKNg*nTRyIS!z%mUl߇ph"޻f_O/XƔR'ӖCu,EB.䌆]*Z0⬼=L/E`RyʌFW)fj"᷷ivQqD#sitrmɒߊ:u찀xi,8k_QߘECxcm_IўW.* MW%beX %~)[/i 5mq ctAgG (B괎Da IH2*|q7."A8;rkx؅k%1^a @2-R[ wwT:ba'ehh[6CLǹ c DvBuv}˦J2Pw%L3SM'zQx ijXKbnםU Vܿ-o€ͯCxJdtGRO.m K~y9f^D/d{*nҍeM7zG{8=c7oY-~銥~n\l͂c{|p^2UvUv}&]7'bHץƔlxqZN|]냉Oj񬛿<߉+tVt^~fXz=7|ɼ'蕯ƭ#އx閍 nڰk킱JMFxڨg\o٥ &dd1'Xv([3`/iX#7{_oxyQfʂޮ9x´k]J;@Jh񀓢wPl6gU.Y%Io l`$W+|A>@.|V9\u6`%Jxv M ʟ5Kd{ڦxO.dlE]x1(66p1i= (sQrK{:Y[G;L,-B;/ +wC.9/$rhkA^BFD s6LӴ@v;~}v B1$ 6"D͆:MU6x'˾AXzcj;`G-Pz9Mq.KѼA6prN)R[{©Lq"ҍ[.yI?ÞN7X gt{fcND1yf񬙒-K,~iJdXV[`|x 9Ra{676$8Z.g[+\Cmr /TBal]&7Is-ֺj( BnZ+,u Su[H HMK܇!hW~~i*Xnr!yBf7ܚ[b ƥ՘^k,m!fi-ƞPL`km?يPPfbq^tՐd +^=0cԘ2P6;.MkǷڍs:n WSځ_a2%,K>];^Yvy'Mf4HlTkT*I 8$l)'?íhM9Jypaih/ٖKwu{)QuoPFv]n93i3ws%I#S#onNkY qTGݕ-XahVfϸr41$%&kޝ]A\.ɶ| ;70M2!Kʥpd;cl{ܑy6ʗ%=9>趋n 'A.B7߰ZrǾfTF50R -~]ic)9Y|i-.)p/DqX&$}e,oytl ܕSJ9laWE 0kv $=Br7<*{O_я<.w(ʾyM &,X[&|t+1UpDѡY%nI\&nԱfLrˑsyk--tRojRPoy'*;ܱ,{_5+Lǔ̼?to49ãeb?p%h6ʍvF` 0/ѥfٵЕXhcONѷd\+! I_V*Ĭev}+By1=,h-q7#<[[Hd'ˆQ` 2%@UyŒ>1-Ău)':$YKBKZ|/׊<3fמBBl vi6}UP4W}D0q7/ `hȟp X@SB۽V.V(6|s'soWmqmF#;k;"5SJ&!_xV"~]D$TWy %݄^VI-fAy=4™zdx0yj+!i'=37%8Ke㦋XBcj' ^=q/e{(!34,%3^1nKa4j%)\a#Jtb Ƃ- â5wҭ)^:oB/s|AV {xp7>4p(oRSyY^sC+Iͷ&\@j Vzt/OBKw2bOtD"Ylp|ukzA2#|әjԲ g\Bw^={KEC[8wU:QkMT Op3d4~*[])6-FpGpDΊ vUBl0;0N*nPc!:eրlȂO([Zd^!\Sҍiq/w`,ov*9|?mPS@%j/E) [:"kOk1ޅ }s1p PHؖ#"}[̖GI<mme&s>6њKr`ˏ&Ë3ĵ˨3J ;Bֳ~kUp@Jrs Bʋuz^|cakc0o'x!K|` '.Hk?_x8*P=kP0]+wV ɭ$=gY&?XIa+{t/LEoL$Pp1MB嫔Eh(H'-u<DQ#n=bhڃpZJFO> Wn1 RΆE W .?LKE,i!C~I%\\`Dh 3&$*ɱ` (6w8?Ј4)Ֆ8'.z" z*%QqQư="b?#&j$B@:pԺ7 CwMV\jG!ENG;)M$חzZ_~zARJ;".L)4?5YWFJtWWDNGE*8#h*F 2V"MT"{}9M0r>O"7Ϻ+ϑ8Ǖq]!E}cbǣg'726HVؽ$xk|W~젼1B70*ọ̇̄EF$ĩ(L` 3r"; Efц(s)yy$lo-ȱ_&8oDSn2a!X0m ׾?Rͷ&/O6!rE/,yN Rٚx1>/sр#@Xin'}x*@Ż LqJKsZU@^!*yv茜eU uCjl`MUJw\Ic2`0J$S*A/nN \$a`XV}{*eݫv[(k6AK蚦=ldb1idR;499/,{L@E;:|=/nfЃIzrCͼ}wߤ3P:4GvEI9!qA6,,wADL=(r>|/?}u7KkUb~neb fqIQwdhꮊbZj ),2rm/*bCD(goч(tyYD^6D#oFBYUz$/X8T4u\ֹ\3A)f9"bn"x9,@-̽̌kfpif-3x)Rsb%=5iQox| ({Krŗw5ppeYSg$%m(\TYE]yVq(l xl^ɰVEa)܊T6\ÃWLCW`X.N[=U}e}Kmqh:E*>MܸOP*r/W מnpLOr".W޿w~2?([ոcaI$1%nbh 9M3U0B[_ѪHCmHPȢW&entC K bEa)R ߄1f ө#W>%H1 m4 Р2uWmvةJ(BGJSLOPŦ m85٣&_LrW+rB5]dvjjK%wb4*H&?`[{q_aL]Fx!)~ suO2>^>@U|}p./'>iI<+S97)M oefiS!xf0S)~!ˉY543Q.,&fەNOv9'h& }-mIz s*w*߮U~{ 3RPrO$SŲvY(g3-qD9Jdgv]h[RHAiVsErf:d*P<u^[d*4"2 xz UZ<ݒulN("iyqj٨P͹Ug v Zk`/^N Uc(Oȴ}Btlҳq%#haqR"m'%'B)r'_%ûxMD/V]YWxA3SKu[.s1V/Z`@l{7Ui e7ř13H|$$,:Ҩ֋y %mZC4,&HFR"sU,Ĕ%4}UdػB>𖆊lw\л{iG/AƏ+ "W>3O/_{bZTگS;Z++pHzwBT{]~ٽ<5ln}vtTJz#wT-7[r35_*קKӖ5wJjA6b)/B𣧙K`!I%եr$ߜ+R];SRh{@&ƖhPj4# 8I/gpBgݒD<\O{Zhax/]qlURpA4dLOG4wv|Eɸ.b=G_~f V8v(UWa:,KNhN#G z&Whv%DOJ .*AlP@jsIԡ.^RBASPL?wؙâS)Ά'q U >@=6`"8dTק_f]wn^Qg򧜴ocoE/ѹGk*: ѫ/]AJI[4DQI&F0E,Fl/[d^sN \5GQ6>+{g>Lkns\EÏn Ûr=5 %w5QLsjڞʋEpt<&\qW2X"ȝ|S0OW=/ QqFSL E{A vɡ+V0mԾeTxYg??ܖ(#iDШ퇑oXE-ɥQ3!x%|9`f,~DH6g>ץӣ̈́|eۃϮ6^PcD_՝ V3APM}j]K2C:x!gA$G~A+nMR'.+Zl6`7-vHC;R6Y`ԉJuM\.Q3}< Lڞ< UHwB M*sĜ U*WuvK:Vt$&d&E}W/E+Xc Ԝ)(:˳Y~!)w]W^-{x2I$;MO28K'1 \n_MGɵ_:*kE=5H isO0y3'eT,,"S0ϗp䵰)_óz]ď2RΊkR<;MZ9y$qK*vFHx**@(rQ g T{eՇ %> >0dG?y==+jA#Vפrx&={1$Ǐ=kW_4DonԖhgXf[st>-z .T@dۣp<׈"0{+t}J6;Yztޥ5~/zn 7dnx dz?A #ZzY~2rω0l ]Ƌ;,0?,7dpv3Ԝ˂ n#;| +UgޔdBI:+gsazv^)J#gygmlMtG+S4ߞ᩽|-QNZ]J11@#^})mMߣ\xG3@6psryOfv6o6F /;M`EqUo|F(5 |.2Qv 曣'm15j9ˏb? W^[h.j&7P rXHEѴP/{ۉFg]}OGbE Of6{>@A SնA4\d0|åz9yrP38-N{e\ļon=W$Y6GWtL9> y̩ /^S0MjF9eu?yQ>il*8cSOJ?:6Su'kg! J\v^> l Z+bTQH8h2vh O3kbl£f [q wX%('>mV̐k0M뽮 QjR<Gm,}6T!T}CwT*IOkX·Ѯ-+\MүUTt8bE]6u[u }]usʟ\2oWJgQPhY𫐑enF0fi8Ж6uX<sӞ?Mn[8Gg"jL)z`>\_>c9D+[:Y42*=*/VֹIg;S=f܁)K(4P%vYDe-j3Rqr{YgV3~vٯsjy%\H S] [/5fgoJ?3%C(j2537]jx*@.Kh~{ GE8e_}׿_}GEoriginchk_tagchk_ref_HDF_CHK_TBL_702_201_1962_202_HDF_CHK_TBL_0x!.&y,x k$TUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU7T?=xڭI:Eh UWj(t V؎uߟvO~'ӯ=ֿΫN{iwخbw'k-lezZzI/};ֽhK.Y+]nk7)!JtX/eQd׽o=~xPʺϺR[vYK'=_6enEiyَ ,6\6=eCE|ɝSa>{dE^y܊4TwDv:m-\v В 5yy(GԇIߧ 2jw*#Cgo1m>t٧ߤ~ ʬ,[iI?wk-lDmگ3)գKRc$.2O+9DN׶,}ݮ彃YN[jy|-]ٔEW[iKmk˄ScKg]^6o/ܖu=t}&.DZfx>b*5KOץ;^ݑƻJm[k8Ru?fh=Ou+.YN=XSi nA)T6lse̷֤Ϸ+or}ۧ;߿S-l6|dZx-gw6UU66׵܍l?=g &ʱ:ϖNe~zם]G3ՃA?t:_ JԵmir|U+{mʺOGcuuhئ\)UIyeZ֡|wۓ]ohqG+ߕYG3ܟ33Ϙ>Ƶ*}ǪB\ges[QI4%!s;?^^^i146r˛+ mͧ2G-# ֪=%}ļxUCT&r5] ^uoMg;>'Na{zJg}Mv=еU?y[^te3黓&iڵ.=D }V?Sm/MinΚQz-!O{x!J' O_^[>7w7Yͮkƹ= 2%s掬QoDS-g ,qh.;jIL=$HMp"TTNΝMQ.bbqY?oS,[BY#Ɨ?EqJ>}^]-{ILSbG\Qռ/77+b{] 3}Z,hcnp-|v}ZKss9VRSN mΜxx-墉,|0HKIuPxnƑe,jzVikmy]oqđ95Mc]n Bk_5<m\N7>ٮ{Ϟ ;;[c-LyHuM͖uڮ q48;29]ƵԕUev'Ml]w1zg5-VJMC58ũӃyDsL$mee3vRQ=jklEsVKcc=<ȍ%oeUew`O}.JJ=k''5G俦Rȡ&yƶ#[Icbo۱qlDj=HŬkT^_w:ɬJ+ڥFL\a9K%P3l7q5ݤ,x(|)5"[A3ݬd?=%: SKt!BY흖aoزӪ󾮊v-< {m}hO\,q}hi.T;f?99=gR.|V^k;ei^muV|ӦPlM\:[΢!MP[dmYtz]gAuEvh^$9TWT*V[riS'L W{iO9qcvMS\R:xyNu'}qGDt}s\Hkjޕǒ9ikXzsڎ/ωe4"= "(_NkՌהlmpY%%[KѬ߽G4 Ĝ`BB_k."ʷϿյZU-~<)t( ߿C :vQL~`+XGXez'yÏ600sMh磢zfL3[Zrټ_$(0]%w":1֥7|_.;C";T{p$Vm6W=R<US=E:YNW)l0OiN0xڈg Nc  }GsguGmW6gV5\c}= 3"仗GO݇YYw!)ny-Ja:Y}RwlUGo%*odߎސQD EPoޱf-+q F]CyXե^EU^]Koic G-jXKՊL?-QZdQj5y Inb(b*TdTm AUhSm Z4D;Tsl:-n݉8}:R1JtUU3*P[o崒{j =Mm7NĸMx{ebmu*bR"zņeN2ۘ﷢1c^;{]ӽcOu)_;2B.kߗ@߻<ͰO_Oo;]G̝ʘowhmN"iyR063*4{{[sԖJxj}p.שW(L2Jc$:sJlx*yeALKqO.oqLPPǴˀGհqѓ:VʙExu0x$`]zr"!;?z]\(-ݟzeSy`mh) ::4&̱[our;ϻ_7b'&>0y( q?/Pj7 9o:tO>_*AG}e|lvEZWgyTO6.)'\ڜX:OΊ%I8r_oyQi>z&⒤,MX{Y+cۛm혡:W.jv̮jGv^*0s[O|1><'JMLD-QXzWZ9λ{"۱z{g#n-wM0u lz뱌PEOHmz<OCN q;cnX6FFն|(E=?mNQ Q3D*1~ IDFSAZD/0nv4dioKN*8q@M \JkLtM8O=gxB2Ɗɺ%-PRFV]:t~R-I=cE^&c$9!>͋s1nq Mݛ[Χi7{j؞jR:bċ{MuQ̺@i ?SZYzՔE*曲L1V d;b_Xȳx=:0c6E>_bhќW0;-XTFIA~Zeq:d0F1A˭ N6j8hhL翸Z+Zfqԧ23J&I4=I*eQʸMdgdM$woRn>^ଭ)j8~刖$vZsD;Vs z'3C~(jZ Rhv's>g 6HWv* I}V_7@E=ŀGS;psgSF˝gvLB'c[HCcq[wsT:ô 4 E>py(anM k盩g h;%opؾŒJs:`B[B>3!%'tIیCk\#g[ .wm-Lb uiԯ{VIJ='g^JO]Op1/&ܫ6lUg]I]-Lم%X0eHܞ<3ϯIR"_Noԣ>56;=/ʓёmC}QE~}r~ǵoGHV3rՃBikK%RQɧ#BpTumV2e֑Ӏ*P؇O(I߿-r&9X'q(xsh2ntk2WAh3m!NY{8wasќ~\*yoȦz=A~ γbƷ0_jT1| 7bhdQK|=|7vZ%-him Mm`E,@G9^bY )蝍 N"gW^15{hJli' KQ]rܩsl\#ΉG1oDOhim2z4[v{_'b>碳?>?_ڹXHGfKd@-{էl-ePͧ9zӪ0^̖D7s4n5žm_yKNK'cRfz[C'81 mٖ&e5Xl, eoҶfLB;pZ]ju'w*̟߿q+OUՑ|w?.ɔ$;ߺ>OW[)'RHFμ}R=&/ |9*J=#t܅?0Z$_!ş)IQMBdި?)^?ܮ9Y6T=H. Up mj i֚NEsȣ̥}M嶺j;mXj\sꚢRm4v|e'ynrgʵPʞ/mT֕u__'"? ꫾B4"bb5[c>rY9lA9v?9m*.`t?XZTBtҴRq[8ZIEnD75ULi.;u|?w _r=ܓГuahHΝwg(Nt/t'.dy\c<ـ-, ŎYjVPwVhC.dxY3f5+QՖ/t7cj ߰%!C{xm Q ɷql|76ݘs+lS(:8L*~jL-V.I䪻ٳb-u@]W>9'=/AĔ+*eإkS+mgtbD1/Zvu+G^QbFbtwz:ZbMbzivTSm}`!Nryq|٧+Wy}G-`}gItQqRTYq7G|;#ϵFmiFbM3*ͽJ43Ry:'F3"mtM9,)NKU4MU!U W-ַ̎( 注]C7aE,J+gzDL┧  usZt}eFd务ؓ+ITDFɋr=QƆr-X p s./;[&^v_6bƠ "BHes݄?X5VЛ?:z7qc-%!Þ܂)Z-䨘~DŽ(G3۱ܭ~&"CvãF1+^ {xVv*l/=$c&4Bl3٦(JId5/{is^|. ֒E2Oط3FT:#mZݮW>f7kܾZBxo_4KOUyw:{YjVsEy!f59u:a <v-lI>3fi/eVβ"+Mz0b([qJkcy&OQ$>{FExCߟ3Y,Ύ);n`89q-T^!o}eKRCjGARiRaC/=ke_Wl RZ i6iLߓJzÉNshW+#) [Q d\w T-AO橭$0_k`γ ~Z.cHK>r#i/I,UKgTPć21.|SHԷ;. P7_'azwWZ\U7Yhd>R9T,).cM8W֦ʪM߭ӮW[ε[8^װ>%Z̼ cF,AzN,Jbn5( hߞt2zq'$b6lp6eEM"]EfsZM?nD9qSfNoKk_z_XS+kՔщ9 d{׎LHQ$?ɺMPzO:j,5" yk AվJKS өX izx]=S\,@ũ#:{)O$dn.O>.Rdڗ1+I`2%Ekce/n7GM.+N/HkX-ŭ(fؙ}њ<*$JS=l%¬B[͓1[~`w OCWz,k\g l<Hs"nȋJ?D[qݺH5+vh xvksA5PfhY|xQ&! <(B8^a#h,IG8YDEs:N5i¦fR)dR_9 -qzzE$o5-?l{tW_a»k:4E;G4c(ގ_I! [î\(FQxvDphF~tѪϋ YUm)JG'u;/eYFkWbXfИ?jNwMK/z% ^x'[nR[gOEu.MZhMU\<6#iǺt r1rs?-o`ڼ2h;؅b)ŋcKoqZF$-#9ŋkDd 2b1%x ֓+6ՊYoWj)SoCޚSM't' R~R /*fwb!MVDdgiᵿ-aN6j,.'׀lfݡAu|<4j@8s-'a1\$W-L%;٤lᮇ;>BdZ0NQy Z7?:kVm.G"v[z\ԂӽIG- ږOOYY,uH{Gmο@M;ײƟ&UsW\2 qx|B2BQ"Qmxz/4{ϘJod8ǐ+IJX31S#}Hsxj>KGy>/M ]Ed)lљѿ.}bޣ\Kej=﴿qqk3o[ ?flϿyʭ>oTիlny৫?YKڲX3Ll^ɾϽ-@4N&mmQ;#e0ޯc%FUs}iԸG-c *|x*[6cV e^ϲ_?om|vۍo/=Vkڧu]d3YY#iA?n;Z7_YŬQֹ1 =*{y+Ӻ[/4UUgay,uXvgʶ>q}Em5ھ>mInEᄇxB'v?=mO;dmxPDo~8 䜒Z]A2UYѲ knZn;z] 9<^fǝVN9Sc33mXW/<9V ݱPLϾ:YQ#uq7+QO&Ӗ QULX@}l }rp*ds~k0S.Sw+CI$o`C ,plO⊔a_ b ::]b]gsK{<ϚK]ߏ_62˴MK?R-X}Vi[#lxy_w+c0 o\v?O 'bX]1d1g#eUI1rj%to'u#>̹5BʸEzq&za=LuV(ofdPw'>R2L#ߜ], (R6Z,G3xO|jw4@<Bٖ#!)}z_a):skbe6w=Bcs M[ko:"Y8a|\5?m\”F5臤v<Egȟ|϶<Ӧ|'vMږoRվbS\_^+[;-1k={2s+bt͖/Iv9m5oB;!;Y ͏w2brXhj2=<^;wT hF*=~Mb}g眎h0k {\- @{WbYvW?t0mr=d tni1)ia T@"^lE|+k ;NSdiCW\ڊx/s.Ss zdA4FQ`K9w\g͈LF47#r[#WkDO=k&beg$k+62l"kefq}d;K""+E[2O̙vS)Qkits%ߕ?yKߨQhs xkE$cd{r1>KfzFHeٌ gx}7oW֛ 9-dF{^Y+fDQ;E*,?ڦKg?<O8K~Bptf0sxL<{lf¡q;?}jIUë-~[trUH{d⮳ 4mőM.iZZj3$=om1eXuRLШO{s[6[l:4&YA*yūx?Zj,I[i~j;'l{d`\Eox=F>Z=jzwiu]kE"Ks蛲1{exb9n1wfx>FAlo1Ѯ?h&hd2B{*9FJF縣ZuYL.{=G|C!'W\3ڹj^}(p]sq@[/ex1VGh} 3,3YËg2ܿO|c#bdٖ"UtŰ77}OMT]GZ#ELXTֶ,GݼJK]O[zh39Dmp8뜞2N9_exϒ4REf?WWC=T=ZՈ'I֣KDo68aIGᨼ\v"n$G<@wGmFSU'8E< Z{_JCrm`8Rķ+<9r۩OnyGYrt "> `MET>K-̀?fpVy:7XB}c-4SoUƣEUJ?^.^+Ku~l}.UGE<9g #[j.A'REu7H i5Y'W4S/}mՏjX!OjsJ"f5xâvc%)}o1'>+BZh^)꛳LI}{6{ZG6!V6rgI6-潸.D,w)T/m~Wtޤ{vkd)"fֈ owj(yђ1u+8pf eũ"mJښ]g&͌Չ'IR[ELp?,D3/g|&O윖r]DkŶID{F-yq16><eUQVb'әjoB%f. ;97}+}|8 K^&Fq }MUCB2^;mdb3ǕsO%qL\?>G3嬸J|">EZ6dL6uYj"ZҎdk 3FG?N$<;3}vi?vUe+5}%cL?F#6 lo!h&AabĜQ](ʳZ89vFPfa]CװDsOn9 -wNν. |w?PVY9;LyOq\pTWٮ] QqtJL6'zyCNvǏ=X ؼ?m{wjLbN_xgpo0_kNά~@]4j5U {\FU+ÅR:W{ھs x>|%/b YfmG=!_ƍ|X3#znu7+|+_6]'r-/'JA'ra'/~j4Trϣ(WA@F}ɛ8ڊʱ/:'5Ī;e]gboG˫2l95q f}VUa9.eq'cgOrΖãwͿScK#3u|Q oq8qڗŋo;4{a(:kk%6NXX= ވﰴe!/{zvϏo%$q cG"¹ cΑֶ;p+ơ "G C-Xvs6B䟁ny\yxۭX &)811v6vU|c1ꜝ*0Krk8?#͜f.c^ #s<_H =_Y̞ [Nq-$?99xjRCo46, ަzm&7Լضߠ眞a̖|:2ހ5|[ 7rM?"D"LTU_dbʎDwCX0yc,'.(h#;bz>'i\ڵ׏UQO9*VDI:m2\}GIh~@ݩ6wuY_jw nх.?9?TX=u,VZOjX~Jm[{8e{&<<E"ظG:N;xUgZT׌2βWFyԭylÓߜJȝr+ofU_o=He |m7JUb# mV+Ǿh=kls*6S ōtʹ4D!z$ZW;ˉΨjk |zyLԫC}Ҽ)h}I̦wΓj7,&}zC"tծ7MQpDI>yd(7y5:<ݓ|,^D[iuWX)j@l|nlŨ;LM:+cfx|95;wjK,56xk9%ʭsXh`PWW.UsPT`V<ȥh ׮V M@snimkx;7Kd>,k\`5+k j T+MD{hIm%2zV?{\PULj훊Y1B9QglNgbb%-~ˣ=Δ+PdR/**IXfl +d|}O}t -ܬʞ5#~M87"Ґ"﵋H5F<93#"$mg>UοژzN\Ý nШ ho?r81͌?ɨ 8^{zD|D31]wJp>9!ى˳:2-8#^Xf!~* XUs#~Z[>~p5Ck)W6ٕ"+"ǫ8!t1^,W3{^,:VV"}*c&r ڕS[oN&rQ1)R~+-4fQ7|u>>;r lYrޙsf%Ϗн|0VHތC{8Ucԛ}+;^k}]Պ-z@Q;UQ9쾓"b5*^u?Lu]9 L l/>Xz@+q%PU6"ZbK;">l1ɋJcnۀ@=B9aꖏ_!Ә%vqqg#>5-[FUl!:ޥ՜\Y'y8;V8u*{şܙweW!um˃?VcsowPw+R/ag˿0|/ۛHΓqacy[ESy~k0aʙ{4ݗڣ ֹϳhǨbGfU]ceP;qڔ̻[Ւ-:wQ1N{e@^b22>=f.N]oyZPװ6WkGQ{q>C[".S|vy)^6۪[nTy}߫y}8=詵bIȽއ_ Z~vl{ Keb{zzWOGVYdu6G?HxM* [μҔ *_̿$;Ƨv[1C=܅:y1VӰ̶n}HV{oGy홻ݽi!NXޥzXG  8*3[r4? R 5efrdּגkMەUwf^D鮾W[:xǮ u4rM+{^R+ǩvΖ&[Kf&vY:&lee۱S>ZO{l*+5|f̎өQZyi '{x>W]liV*݈SzFS_ <243i]3\j\ x*GqGrjMY)>[U{=DUsM44co2vPsVRmnzvy.^Ӫef i_ ˛:˕mUW BzJ+u|ЬL;HQgj^~u1k*f׼3bg>*]=#~Yk]#Y:scQ`W0u/* QA)$T+ B8QUŏԫPr* ZyD+Z$*ZVkk/Vw\vyyݎzWWQ=Ֆq7v12--nyUP6XkVSzNwW-ˠ:Hyl\v"RW:+A=Io7/ NSVLpy>o+LuA=;UꩺԀ9^W. #yyzS]%B]o.5՛,ҩqz컃=>~5tI3ϩ vnxAp0][v 7դKjsU=™,r= o#H`~z.ufInOv?%؞eٚSt5;C_oߒ!u[Lڙ y_ޜ/sg3@'ؔWEz.QN«ğEq :.oM|hڼo N\K:*p+ćǤ[϶t1 +߫{=&>]\; 's /Gš{cb$X;`nP~$~^ݻ}g0-]H !\?kXKK^J??twz`0ëf.^H>.IğL/Hgիp:ENwWbr0#n*(Un9N! 2񧂻y*5蕫[[*]r\ݲn"[}S*^{--г<tq@ǟMҹUy n;\t<Dܑ^1U'\ rPJENw"ꗳG0,ͫHoiԋBm*H'>A`֙MЎ:3-! Z[B TI_4ND?S&ΓBWdy0Ġay+!4w;Q ?#+YaOoB9A5uNkw; 4uR tP :VӺ;tT}ߟJGB>\{?AR'kw+\},:WWƿTGr_%+:g=_ D}2n>L&HQ^Woȸx22菂hz:.MC\wv$AGRf}Fݪnv'='LyfvϺ93{ҟՉz;핻XW敥b" ?w'ZgՎWjG97u6ўD+ܻCmIB^?z):7-DDtz]_[24uj1ݐnLV_uP^]FzѯK.F52W@D7z.q_K]NB/ZԳvKNFx%zFPVޛu6L@Hw] ;SXwk20z^W $aKaA-6 (X=A"߂SiSJTw;-0ۅ-TYof^Oc}ԃ$Tzv *Sԃqu惘UQ3"ĸ>131ZOzE0+R'_'f6I߃"T+pȠ>FAUS'/R0݀Tbe-Яuw7A ԣL0cB 5+&O#QUp Y]"0TCY`aD ,B5P ILԸqFW?U dwT"fnQ8з[&6z\8Pwupw%IwJlT׻{];Aj8Dw½׫>n%_C=$û=$.nJ*tv-[)NbwxTd?U 뽣 U;q8:Rg#:.!U*q>@=syꬺoR~0ѱ-/Y%TA5otPDC8 zIo7|5/TQmUN27SWN] A?PkmunW]_ɯpǓ_ uVua7ڏN~>ӗ#nlO>H~D/q?Ɏj{R Q$eU:;P$U6_Ws$GRݐ I& 7+:V:BPvAddaT[hJ>ҩ/b[{TmPV'{29H&y#VzIU/՟-[ܷ^`5TWYw·߃Y^Jn%CKɑ@r0~ߪVzn# AQI$_cI.CInūVkښ܈x]FajGIuO'_t5B&5_=9gH~W$G#`=GA}>W棺ςKcAA15'^RDk-qʽ2O$._{AܯzyqC[|ßxZ6&NNS: 5yt[ϨǓ:R(SIRg)|LBw`GdH$ГWj0z?^3sZ?4~\VP|s,$(&|l+@-zNC sIom4346F/\J%n4M.c[#͜пyxz[ l9C YER5hCѧ4[Dk|5/xP+ԯmj4|CJciXۤ7 RSѵ !/~Ploo;޳wNG-}!1XRZǵ.69MGd" gTDZ>*\%vT()}sF/*bK֫hR-q~rc}\sGUvi*H˛b_: T <%jTtysy#{#) "v4ݎ"HBk[jqWW{d4Qi?34x jbqWx*@Iʞ]Ui^/+Szvp*8kxmC *d]^Fl_Hf p .1Vӣq]q ޣG`K~nGq|v7 mCRU3,`O$Gсʙ A~sЄ6YSPy EbSlZ~HޤuԻ3[#*~W`*IC?)djP±q$-PxWZFһ!%I\ߵv;Q7rM0_ Nu>8vnpe@Ճ:NCJ Ngu to<SK'O;K?Ґ2A[!]CD"HWRĿ1Lwσ ϛƿ rRJw`?GB&2=jڣѣ*[}ؿV GDDD3ce2vϺARSK}hV&ٮߡ/Z%zSTqYqɯ ZJ0G}z]A<&nL7uDo:8KȘ^XA9HiԒz@=$9R9hվn ز ΀g6v8572Hyid#\sަW Ek_;]dj!rO[g}( 1fAN=Hp7:F˭"%V.5Uz):ZWkα c YQ=uҊ_-9U+BWaj/΁z,RRhbAk+Ag`eͮE0o m*^bu3TZL igL0cpRҸZi㹮o)o,FnLLxILV|o%>b\+'Z"KXnX'b癏 AV9cg}Hc'rKvvZpD=rY֘__-1`:L*kςY,d7k+Ww =kݎbdh =|llEgc\vVl]5U:[v&عҕXelE`5Xϋu`5Md.Ml ?t!bmID jt+-WH}='cG~&+iQIʲ+؎`K%KkAMa֬;;#7&W/;xavgSŕ8W,9k]Ɵ`-׬MZ?*oF_4zGq"i߾n uZMYC9ݱjMOuTRrO芙ѫsǤeLʸٗ\ pݝ ˂a^y0Yy)iuQDGȂtyķ>ɮmQ%tuN]^eU[.eVv0Wjw6j\HUe uF#ۺ#je,arw0[w$/jP'bZ_aao5q1;xRljƸuIfҰMq]y-w}I*L-)/d$ mAP`qUN`Yw"Lf:up_ +8$2U#.zZɲN s&?dX묉ݟ}!yV9ރ~o(?CMD3tHKKX8mbuܿf8WzLYT;/kM$e!ĖNJ*iϤ;zf،y;;+A;KS[%S6^}vV8^7neVmp+&Y֪5&ay gO>kM qu`L)+L=C0O0n]z.6uTkޟ0V'l:O`kuZFׄyL1GM.wPZ㴩d쭦;Lq4Gpr2a -S$K w]0WIua˰P3Gk(1tGTeCMb$c7EoC4 s%5NM1_!úXfokL QjXAt;z:OM6vaQ]\DP*ԝj=++(e`Ht%v5)YcY"jiYJsD%\B[a͸]&OBlTXw}8[X.d]m_ )bS^6놐$vS⊷gB1K*)*w41FUٓ!Tyz} F c=1Vq0CV:t_k&BuRW*Qij1XԤlNĆk'[OIk o .0ƴf=tſDBRgKu"kҩ;ț.1:*}hQQSŐvE񶵸ꤋqZݬz)pڋu,Sڐ`R?H~^VKn/3O}'n}5ƹT~[ޮn~vIM$Wz~njqUr6]bdg^mVg8nK|(߇sw=54a#Iij;dr{1T>Mo=N&7f>P4tI0Ϡ/j{$=|0<a@:ZInD q4ݴ PKj`fXSzg櫇˜NtY 22,ZfL'[dXdPto65W+z,2 5bs{Ŋ#1su̿F&nvRY5h]hjLfTl'sގMj0H>tJ۱%Xީևγ;@j,Mgα;|a5.kDW)ӝ2+.NtѐYZ` UmnMp[ncl#/XO귒mbV=%TTLuu|ovMjE6URԷηOrAovU[#J鸈MV8c?1a b_8S'z֙3., {!؈aͣ54]GױYt$~P݈Ds4ץ$ēpSq~u񊂃6΃mHBgSc› UQ3O{u r;Q]~sBu M~N:dxmuXǥT7r&J4H׀^_O41ŒY#|l^u+u{|[;aӲ]\w V2q@Т 0-mRp\_ @r0s%JI8%C)Si$`ITkN23 ZlZ<0\R\O$lZ^ղݝo9-(8g2/]#d &.B) S@ ƺbSȿB &u9U{06&$Mm͸Ӽ[lHci_P/e>XC!߂LòSNMN K s4IqceUv0:e(ӱܹLq/I5kCXA8ͲD5-qqt;[;pB#73vuY)#T2̺Sj]-/%}?_W t'i)b6SJ+U-b2,+fpNPA}+`po gw~nE SVz!5 j #Y<[ƿ(YEUk^}DגRNrbcA$ϸF;4 !rt&n[Pg[):.iԭzUή88qLz=z}ԭƊhza+tj0ᬊӬumu+iaK&HMԭ[j1XH/t3=bO~T Dtha;zwR)Ns3:sCXc$HLɬnFkA=Fj5R:l׺zOڒq(e] 4z*P7%Q.< [ QCU_D)tH QmTlLj/ᬒ4jt5dnUPlTk3_&ZgS>b6 $?M~)9XԺ>yP)+[GF/T?7ק Zt2/f?Ryb# j"^^ YHʻ$ ImWFVCAvp6e9&9ϐ#)Vߩ.]N'N;IYMl* MibAr}F(OL])ҍɭ5u3A)3j$g($>rM>vct>͋_Ssis|[>|g~YO4kfx29gmjnJx3e 10vHI.4d"S3SSRUoho\*tcn[jrj-[|JȜnIyzɾRmL3nsMTvktΔe.5@] _&_)3Dځ ,Io7j&Car0 SIO䉩O yb[f?EFHR?OW);VYo}Wl%}%dOXv%ؕCb6OˮLӝ^vrԘH3{ЧmMK 2kʤcf5-I|k+Z/8KEGgWU-ƾK:H5ψ4uY&gpo. oLNțM,h q#x&ǛΑrW8vV+H%q'k!/Nn]Hc3 ا'X&N72uwsd*u^l8Gk\pu lIwSduGY}&Fs]}Gdx+u'}'-sI+J}KӼJ㝩5I9eN_WXcy?m Jt346Ҵ9#oJ0X-.)wʄIW@e|WꔋO땡WśtZ2|(wI !S:Iςi* \{ هU2&k̰s5FOvb3nlj3ڝlPcUXŪ15 Cr[&YfGү+36 ،ʼxG|$H݁t~H2yஒ~|0~3 aRS2}˝& LiUf578+Ӂ2dg=NجMvv2:;l^Ӷp|5~x^vF~NS_dzLdk֠Zs^Hbsq9v2^Z.^V4\[[b{@$! ' eQ=wH^;%;_lѤj'N3L&<.45vc2 N% U%s;AޯS}T ff}~~r+^=$9qs8=aJ8n_kjY[ڴ(RMR3a'jtj=$ΤY4/5FIQ;X+Ĩ 8R̬\@z^Bn8*q͒/T[W8T LT]9+jj!*k/+4tvATffi/)7Jjgvi]/vkk\.jYz~͜|beX$I"&e@f8I4U7; ?KRzQTAv~s#lz#9=qѷNgb 7f xw%95j?VҨ]I[e沙VLԻrޓ|+O2ȭTyޭ{93$bCNdf^^=_VzV{a6TlW{5a蹉54+l9-VTM:q.O- (f$[lw1s֝݊ؤ5 d鉺•y1T=YERI(n2D6l:aϢ39/+Pי"]?!rGSe,K^soӣz+Nb(ls!y ;gR~{nF,UPmd;OupTMP7QRmfYuAGE,(7iJZ΂ y?SQ;N RR؀$L(PcP/QhAYG)sLݢߥ\@d l:s|x6flJP:sD'vι{Cٙ%(Fr=s)9\<`je ^Ms9՝ݘ:#q2ȗsŪ!& ml3b˗^-NynWa.YGrE8Vj !4U`7[^os3ރ:.N3חuuWcw6˷޺ܞ:|h0Ln^#Y]>j^CZU 3 ϗd2,˝U-݊^7;J"ƨ!jM~AmbhP;el<൴rq+9 f-_;]a[i-@rtwLL }bk; H׊[,L=U5B nyz]: GW]I&Lgo,tZS:̖4)+~J\_m֗ wMfۙMe>aik^ &_ۡK)]#Y~}bUKc"3!C4KVBEIGPLҡ;*qǑvI< d6驫@Ƅy%ad?M;b_g,HZN٩=+ٰbJWv;d7NHKݚt({'g7y/cޘ4sK֫MO]o34g &űkƱy`N3S#HSƳrql80Lt*HE)ײ,Y,)5] C1qMG&tipA.ڳek S嫴k<Y\x1XlֱE`<5PY]B.~u,3<`&y'b9س][)vrH2u''TJ>9%hɛ6@v=B#uuTnH"WV7 &mҐ#~Z:pXr>Ȳndu草dž$aa2Mk^p}NN[ߕ{ޣYە5^-fjYZҪWDem[Gj:ݛ{|v ۏfO<ج>5tn]7js{_&D{n<¾xj>tZ}ng.ǽƸ24av;Gf尶]ܶ,{p8mafڟ.Tgܮ3Ma{ ?vOV@)t8ܟa#L[ 㞎+Vi<Rnk­ꄰgf&pדqV˦)lܮ?}-qHmwqOuƟS\+]3=(Lvbh3/yɉ3>"=B_R#¡H8ڰEmù߉["M '|-K> 99>fEG)ZCo*]t CMu ǿ鄈ç x\N+wպMvS5qz{wZIw&~;bӝJ/Cs]rvxo&evW5kctݜ?D̠l&ϴ9jZg2?X4WM:9tmRꢴy)uq™=)?a8baiD6$ =Irrlu=[07mtK,a> NlJE~{k܊I<煋e)ۛ}̖=G\Ѫ-q欴Y-hnȼVG616 DqHw?3ި:G=0ro?l<,A# lbFVn.r~&BޭdDL=jxKp`hK)&5~bm.B M:k#gnGf\"Wk r:kf(463/=_ۢ.MY4__%43+ll'g7]:ه<\2 i22!z^&"If3 7ҨMFht2+|W9ۦo4E녋LmeG٨#o1o'\q{ř{C;sDt稛0tmdk*$_O-/ 2^'UFֆ[fE0\3ڹo'V^oRpmeyYO`ܷ Le4Xቲ{mK{紀[ՑG\dn?l$.w/_ffdfggh"Ϳ\DfvfZnJv3|/YWeX431vO|eLxrrt! w`ξB 3m0rNәV͒>͸!rRnP/<8 LƍL3{JNS{EMwv.3>rcA5t:XM=؍W&im!q&@S_zo$2z7[3j7lKM;ӆv,,_¥ BtdzL@!&H3>:>nDL} ߛGksоX9|Q$dmHp%Qpr SPɴ6eJ~N<`Y>,Ȯ$@*3l][Y%f획U#k·=#m 9 'ٕ9_` ܱB ut V.Bho#_A3La`I3֜WЖAV,gZɫ= 3!<]|t[[: _k_M˘ f "sٓOpN .>9Mߐ63-lΒ ٲ|悑@[V`HKܜw0xNx-_^(͸]̵ަXA-h޴ϱۆɝL,Y[ Y/{!>=ˮF$cF/?cr h&%;i6(C+&"̰dk$V/&DO ^%𝰵,.W$א_fǻ—4v YtoHůk2+fM"zkE0(k2.SVq!"!`Rw̷S%eBEO3>^tV2l l7ڱ18a.uΗ5Ϲ?3ecJN'x"דڤDȹ rgEw *3dgN޽閸gx X3d'[ 1RfX'\6*^ Žp 7q'oS#6:1wDoƩa&^`3AoI>BfS0U֜|X 1WO ;faʼnЭd;nS½ՄDax,w /߃݂ ՠi;oRR uaU+4gsV%2MG/SH藸$!B^6]~q/6/4𼜛77]iej@=ͬ= /VA SvU/i=%\7udU\W rǺ!~6)Jޫj-Y0^lh N9W3V~=6%i'.qV]VtQ]x.::EJs 0Ţٍwz]My4SV~=$> G}Y͸rE2X.=Wk֚: GsY-Qz'd.;}&2sVcm p9ɤh $^:&}jN/{>muE~wp a!rjnwߊ[u/o1ړڂ _>lY;K?[6[`nL7MEIhD6ϱ :KY^ t_~-}z˶sSADMkh֗*SmL^=t^F]"b6w5;p..dqGb.Av &6FӲ%.qE5^x%[GӰn ߤM<0?zå̡ilyq[4LjXoŅ\o'ʍ\8\Nhn ؅ #_^\nVKut߂JF=6x1*&~"{"u]cDzsKVgff*άHKa5V9} @Tvڡjy'0C@wklo)Q y<b%?BZ 7fZ$pH wڀAx!khF_;NiHjuLIZ 7Y%zW׮UY71% krrC)2鎆|(^kF c;tSޤP0y+ڢ <ήoB?|@t|wR 'H\ci3P߃wEK Fsl-yR Q'0KtAtFՅLG"d/V? w 9y&_0Kt#=B]"\;z&5oi8^tF n-e8܏/ta.k, Mۆ%'abͩ^4MNYj)D:d1;7s 2qc^:p)73w+u}OSFM?!ERA >>=:,7x5b"BO('Zu\^'6aڨMy߭:60U 1Uq&T9:YB_~o65Bᩜ=!KGU#;X#-=ru0ot#x#獬$^! .{&%;Ω=M{}1A_ro>H? %჊,Ur/?f ᘂ*Ϗ_ވPFu4z su*4AAw%V#T/ VRj ):Y:2W9hJ䟌w OZF+x|;H&j#)ne+S¶|&WCɩJRSlh5sk`?H]LnnmJjdZJtd3Rv#3d #t*Lh4䠬U eOt8 C7ChW}iCLw%99 dM9=VxHw1-+Ipv@lp&ڒjOIR\(sIsS{ ")l\x {iZMRwt AmLRwϽ|R&K^lᅰwr67){vm}"˽W0vH>au8d{0_g !0/S9g{[B]|=MJUȕˍpV~7Ž&A.8!˃+%]ڣع.nꅐ 0UFsO"e)ڰ>(*,W'\iI']K 0II} V$|+8Z[T'Op-?! |!sLB~ϵP&F7<~}1+S,"a5[w!:6EmSTw_"¡8}P/8KNep0a ~I[$=px؄v[H3#>q7N|]CH~谻FiV±5T7; JշfWzsaItz(lvwW } ء"w<7aF/ &7LIHHblkRB;FWYj'}{6iܶ3J υSaN =ȑwz0I5Z(\9ם%$©4X9>3ENVsBvǦ4yjvT4#aELnJR:Ob w 3Kjb('KvW3zHGmO2%zK z\ :EkBΪ8m>m*pi1p@a*v"LD8o&UTdQ4\z/ȍZ:\璋Bwhh.m\SK؎J\J֬J53{-w ߫7kN #aTf3S]LU٨vfnC龮6 X͢fhԭ0?N*LD[)w( i&U iv!5MJi;S@TX&'[HsP)Y޿r:g|]p NmRMI?bcg:'gs8 *k$層l>>I_w+11$HFO~}f\],,,R6;q4!1}gsSwȽHFf-V0ʯPn2Og];;+#-:f9#\_Llp' Kx)R߁ٟ()|Om>[*})qej%3u\na=PZBs jk$w3_ V >*Wvyݹ#3SOb0XI fsK9d77횓$ nsʌRsN4;"^/3lM1;"䂠{48ۆD^V&kAUmUdZ$MQ㦓N.wϿ@2ugi;p`3v2zڊt r!wf8wv -ax5Gj.o`.[6$yװAϱd KmI gB6w1I5-ASЉ;R|x'hFy4!o,wv{3 nGWcI6 ;s ذ{)NYroa\x{Q4d;r4NBcy¥IvQTۂh_dz)dR9:8XͣNja64dSd9~4m [+]|vq%\-%\/:Z#ײ&p[ a¾FkS7APUB]CfPI"DA1XDk vʵ]QXWUx+OarŨ2PKl)i{ A,nKfHV#\תc=fN1kTOSQm"`q]8ky4@5TGǨ?.*lT" >bB2,fa y\ōB ވ~I#B}"TPx!&ޮn47`1jpc;h¦(Σ8IW(^V(7 8[L?ٴ]1fNM?lWFw#TR2KAGmc"I8 023Bã u'n OBcebW~7-qncSjte/!=kج-plI; uN4ʛ&0r^a\/M*?YfjdɄLf>='#N}-2k3h0a39 z8pvSvs$hhv6e.X2t6f$&tWaPC'h-E߁b99NQ:NglvMN'{rtUJ9]F jt돆h{vc\j}r27l'd|&}hB~3ei©O5#t3wB {c'8BLNyϻBr{;1ײ4^EӒfz' @W[|/Mt20(mm'\0H9OnIOҚS.d/r;\2N6 H=:]J7o(LO'(b2-kw*3.sþr^ʝq,g7r')ټwR)dL +/M_J\&>zA?7&ΰ'Rl]&"O+LΜ xLEAa [-͓)4hlr'Iƌ ΅zd@S7„碳6pABJhb*,8MHs w)X~7lV7DŠ!nC谐_s/ȼ룧43f^fw-7D:wp7M9Owq&z&׏^7fq8MoWkfk:lfMFWN3$Xrf{v'8~ĉtО^L_enN춤?oE][Ar`u4-r3M0ٝ)3&"IA0LLLNxy(XքJe3L0J}$QZRZg,s5]Ny9ͨh+N[nWM]ۘ Gnne$6cUaޤwm=4lut* 4 5UCB7ߋ֥$F*%B$KfYh??e{tMYXzu+I7/3Β>59NN>l2CƵkș#B~A?BG!+D- 'lͽ;Ў~kS7T3S,asiQNزCB;;wX/LitW7bv}rY34DzwLtztU~f4As#6ENl/-1)w4>Jq(>~M^mؑs| r/HqO:gG-;e>.P;+Vqs8?*q$!h~0?efl4}p.}f$xViI&5NM, nr\fwRX)ߞ u6{2A,ÌKɳ' -Ɲo,Znbg99cTmR+aвF+Zm#n$ɠ\o7 sn6i&[>oC/{d}Pa-\y, 6.D=Jж`0^Da(n|^%wE@D]LQcOB1T q][1-ʌ` \79ܑ-m5aFe1{c~f?":'ѰLo-#ID~阱Rm˴/+wMo~~y"i;Қ5', p%jKȖ qBߪܝ+5A?^g>$۟di_hMh:{ 9!!Ֆd4љ_jOȐp?8Gҝv8|_$ypnp75qmXM^>ȒCww̰ {oE$ E?wHgޮ;< Xu4ڣ^7*`XF0'an/TO]U\6MamH͖}@Yu STaׁ✙RŮyOFgoNN&pi_$w)i6zɭQg;Vfm#r.YhMMDR*U Rz8UG@%aDsz>1pwoOQ-Uf秺jx?m!LX p^̼A!Q",D\n53{BI=lwtaz Azp`g[p0w™t(`Ejz.p#,1203O5̒Lgg~yxCN^T f9XLہ?^[*;wis2N`Ë/OjJmb1%ۦGrllDXފj6rSrWO$"vM&h\xAQЖ\\r9b  6i)f.757d=1ISߑ5qA6?4I<9$" wO5M׈;R-;Ddԝ _Cclv'݉x_wVdQm?}k *.(qxq`us|7w5[ȼ$樏CPBnYG d=vcQp+K\ I̡x )^ jwԳ%צ$^omȽPV?ȄGxrWoWň@X.ub-6Qt%~P *FQbgn *2u0smaLTr;A{8E[Цm\BS=n{+J7ױ>7+b",tn{dHi>͐gq60 Z:'5|0 Ps\5wHE щl&$ȅrNfp[K7y:D;Wo>$X>wK\-+LB..cef30 Wĕs1&֭xR6̆q/sp;ĭxI@>+*- Y%ٶb_e/ O%ڄnqx1>ɖM./<$"( DQbBPS O)~D34.϶yJ`Snᠸ,3مA[Fs=be mfn>@,~3NaG+.usܬ Ovo>Nt;7w?vW5%8ȩ>7͓ A~Tq঺JPW =t%v7DE`DXo纻XoƧl8[ , 8fЃT18wcGpLאm$Wt]Wxm%Lq3#0 ~\wW |dwA\qI&].AxQSvp?F*: [J|$a6 n҈Qp%LQSLR%gɻ!hd={]( ;pC\Yp08*:\TX 7ven߃͎y${OpnI7RA̎P4#j܀do Į1zP5 -׻w]Ր.-nya)| u#j̹"8|sh[nk [2uIH|@Ef >.`ց ʸC⪋n,\#j`vkTDh1..ZƢx_h-p V_jp^2<;6XOu>{wm\ׅOb~kM.[+%x*usНV\K  `%{s?"ʸd"%֊ LPϑ)c8׳7f'pE /|_7%1cg _r\`<p ~ɔY<=jCᑢq}ݹXOmCf_=E(l(mo]`nf 憔9ʘzGp_6>q]Ù,"z8z͠?ڽYYƟ+ j3MOP=ੂ$:?88*~P W K/(21Q; ^/?W:qG(d"@ܟyTy`.hIBK"->9>iI=NPZLQsttpo@V|:!ޓ* ?];]?OܕKE36F- c\|79<͈x)D7l ד uQ Pʼn;$>]E66lA?D7\YivYl';V+2.Š!>]w܅_geN3[=# z||GS/| NK]\ ?:: M~ 5Za"NY/; ImJߙA\N2*\ 8x17N:QGD#~?$k惮5cxp";rOr7 l\0>M>2^ƿ~eIn>2Daci]ww/V >>ãz+?KbaaO}PX}ЫAW5daI(5%톈F>B ,ߘ-Hdz!u{5'W޾o"r/S{UQ=aU\ŷPvY p  w%W{^(8nsBi`CCqw!≨Mȝ;MN™̨):!'^s]'4%ڃx&#ŕ~`Ux>C[a~v(k^˟&s'{n nTqWsqdw#w@6q_4߹sоCޓF]J7{0<n0 $ȯ]ǃ0@#-:YG +@ qQ; -\SI0&#h ܿ` 1G݅ f &q$hc\Gnw `iAA~]3@`=8RtX{ 6 v@\l}R`͢k_zXЮY0UApWbLYQwpnx/w=]5K( h[@G!;߯vOv]Fd6 FRp<lʎ>j=6ۊ;ﲮh/`8Xpy/!2Nqk/ uPǧ) a낕{ RE?p+uwwv ݃V?;t_s%E C(|$ꋘg] ~8րֈ=O);A]q4t[p;1;1(p pGPr֮9+x*{؄?`; %SJnʬ32Wo~^Dx;2F1x V GŊ# v=_@rah^@ ,~|=3O7"3 L޺gf` Vxz? >(xmef4G>c/_Z"3 *Di+`7I&7 n -Vy*D,ܜ \HmB~| r8 + {0X0VަS eqPm]]%)YO.~k1~+2Ó/O{`-t@vNV$A&qz,ŗ=юh&Nz|Dr}v5x<'יˑy4&Oi4 {Ƃ+T=ܓŷ)7xR_#צE?T9<_yWW>-& +PmErGiwZ޳?ǟ4.sewX> ߈`Z}|%o]6}2Mn_jUӹ#xj\ޚx;֮͛mTSGFy-r{ؗۉuP&:Q=`k@%. pW/?u{YNoYߗCq?3G**l9X2|;|߄xpxPI?tfD̅$ǯsi޾⿁.jn8_ )U}Cց[L7mWU&5GMV%g紲yḧ́ATR/iӀ}3+x03oFfoΨf Ճ9d[WEf/jFICB }7yPppe3pL8qFoh6f4P}m}/f l(%no'~?vvv5{!rR1V]FѾ@b@Mf]Oo`}uo#WI7Q=1Z\wunob)W=Ͽƍs%MMcexwu1dt|0jw7]հQ"|anAsXXtRGX{n̽"50o]$G?8vlclȕO2ހω8znQs|?=q &rsހ'pQtԳ9bu~IEGןHX >}Nlc@V= fܒ;P[{ͳ/-oǽ~ UT _kdzE̮lO؈hkd;=l?S;3`[=ح][U:"]ߧZk%#u apQ ߇[ ]8tX]Tk.5:y=+\Çkg}^.޼rglU~Yx25{?>#1ܫnr`P2V:A>a"{A{MῈ O[ )&۠h8u%vgNU5*)[M%~6rjoxIQ5lv0cLjM+7 3`x0*Hw8\xDN, x'Z3\&/7ÅkZ%~ʗ)ɏ FXU3z^l%I[쀔TMn!Yu/)"6't06+<[mm^{J3vݜ5n ޽UGrSݪo Xf+uk`Ҫэ¥OOm;Hh4ͻŻUiiTVcjn:)FP3*8v޺aã;&HNG|L77cʯm=pvbUO(Z8Oagzu6szZaW}klW<:;lv]|up_ɬFLY.?5#ޯ9`gZRoXZ-zUu DS EHv*¸v. ~.nsDJ{-<O=x캊.^.׊<FL%~ M27\}: "Ww WD{#^bֹ7hFgU\^Y#Ɗ\X%n!*P݆?` Ucx{= esjGG,;0twCn7[Vۗp<1:7ącU1{s*Z=>4ny!e0{-g3nԈȍf|"a+ݢinj7Ǖ$)UKw0^I5 &ɯn{D!uVSEbRo]77;;eac#٦pu1UM\q D1ME閭M=83Uj`x1\7.sSeͽ a4:ǽ`& $ddz+gC7"xMگϬM)So/cLpUͤ2wU޳EqWTEPNZtr7ޤ_=u Frnt6 . EsL9 &E$uo=$895SHY7 {;%6ckrCuT38ɉ8 _7dѝX_h!F0 ?y)ɓe }kdm#~ԎpỈ ]['<9uAǖy 놇gӝi?xf #yI˵{n#%k@"N7s샑Ӣ ;GlphwWLK{o'8Evãe4eW~` l}0=bC -v]ݙ'rxqnXp|z7?37/WYgT3`0]2߻3ۼc'`´*8&m:E7.Vx'GwWpP,M+ fo2B@=huaZ/)x2*}}f`AO}49+WQI{|_yU׍cE̍ᦳἬlˁTY^HnLPx%>OE!Z1xŪ, .:&:È{7h:kZ7[)2>>:Pe"o)7??$؂cJﭣX1)}ac:uۊU {irW#m}`9_NUHXU[A$3|yx:o,2;& YaHur0R^oizQ~(!Zߤ"%FзM!_k-f ejYuYZv 6: n4Z km g3N?~٩/y?5߾ >WW}zfV_{o+2hキ,wWLqYQu:>.qփA*:%|9RlkbpJJ՟Acյ z"w]Rzz.y LǶ2/ҩd sVAfWIǧ95 iT?ƯbRM鹩Ana#>P+\FĪg%`]}+r3)ppZ{O ?eOcvUh[Ռe|]vSh=lNgin g?&\AZ-Y5yVkv0u;  2ŽWW< UnwŚ^V_ɟTuA'.+/"lW_ ku7?XIq"em3jRr vq)kuuܔiuklܫfp\3]ÿ țk5yd5טz`粪 Jlj3 Q WaekdŵdaDtٟw]'G]e<. ;F}xmTV[=Wf|Ÿr2N;'A!MOvK|-b]_\H?metjx[Jc,ԜpN<oO*`I8^X"o3j<9/m6ATc#nFS v^ E4( '[ n+ #n{(G@ VtxÙ^80FNx,ۂ#X(Y- Y>> U^3_R%޴]UQ:qSݔ׎an2(⭣M)x-90_/7T*u`4ob<7~x<,3UCU3xrId3tVǸKra0U_gM"kI)Ϋ&.YzsA5[dŠN2"y[- V63߰a7 ]9s{ȁ\%ӗ\BSNtn캉'+ݰįpl _\ۚ Ov#g\7۞L p}֤q\X/:,Vk+4hbZ, :Ad7BW;eG9?>GdE5kdS) v˝ÊuɊA`̱w[=`~}XVy |;3TMP5o@R=x cëaU+yS 3FeakiބN#g0ktJ[]^3J>+O gl`^ʵe^wPyN}-=πnVZUጴϷd~Dl- nO+7~+KduI9xqx5zfdXW~_bPB ij<~ʞc_G?Fgt#cx2Tϛ咾K&s-X4ce_cfVFaP F"o4:0ʂ/ NzO${KS+[s. eՇUr3S u/xMA 5m 깢= ?d٦0zgU9閞huE_o)JYk&ZYwVP_ѵs[s9eVWxh궬PÄXce/z4jԙf٧ka"8'>s}EYf?2Ῥv7D'r铪>mQ0&X|>KM&Iwu~,U1ڬjunJ+djlu\O.X^)2pYkpQ5ZmUhEsb⃊V,uҤܛ&ۮȭVuv*iTjD⣫M}{|'-*Y9RKi+/a=iVIm=)iTiU]3xmZ/_+FN \J-2=V ܨ^i+O =4j5MډvϹNw8cU}7֋n=IJyTucv80Tdg`g"E^C0!|6!dU;r{5Wi2N &elZm"5yp]ӛ,yi ༬ne` snun#E 稊<._"fT(<ک78"붇C;&$8߬ʭCsVzkxO '&W8 xt)I0ݛZtDoYIÕÜ+}UL f,OxwX_onWwdFX㽉rݦ3وǓdӌo P]mvCV׋G/UDر5ek׸盧LV;2ZvTQc_&罸VЍ3P\2#:hd f92U]zϒE?DBM|<+1;YO fEI}ƞ_{]̾lTM.;^6[h:,~.Y$9lW n1PFӉ(2u*7j3̱HNw2Shl[bU&Zp4T{R}ŻACq=:^R}u1Sak+ƻ k osX*upl{PGT3nXFʪׂ#`>wXZq Ϡ?gZ&l7 wP|7ڦM."V:gzV:hb~mvoFe^l۔-A"ӗ6..󿽍aתB)qřJ/|fۦW Y|ժְRܘ vݑ&* g!|_'*9UE9+6>Qȷ'V}u֨dwokvIܙ04:I a,\Q >ϑ'6./Ӣ;e'-c]p+Uag.}Ϡ4`NSel3I]7o±-(/4j?G[嶁JHޑxV^mOszQ`涐I)?;Z! 'v{Mv]X &NJ !5<)O&V͸:|!aqTݷpf=VqpZ.8K:ͫMRuJG?[?$gya{ky](NZ~ȩ^K𷚄 0G`%nG5Y:_"O,jrA>+C|gU~Fx%h2 QuƔO7I*; Fu V.xFTX0>_jzheTit;,*hC_ق׉3YcÙLz i@^v7*ɻiͪRlU;6ҰEZɤǪtE4S2}M\ۼQ萷 AG#û|e2&_ޕu]wEtD͐Xt7N9w ,CrWppq$| q hxy ~YϾn L872*:%Lר QKXeig.gY k{%k !*N;2څ Һ%r+]ϊ;D͢Ht՗Y3ޝT/0=5Ut3GA᠃}=# f+]U%;f!,<큈f|_.1t鴯몁Zղ,jW[%Vr!u0'-'}5ہq3tUKa`9E$g&YkGnG˓%bqm` |0 mU{P ƒeGEpHxߥZw _2[, -$֖ռN%24̌Svc;3;KKu?Ypkp]=* nPMuVhlX!1:aQkhf*Vd%Ubet!xbR! 6:D*28V؝J'Fl@ >`UP3R͡5dCo fshed6Vlv8Q9j<خOhR2I xb hN{[ NAőjhxV*򕥣ip~5u>:Y9x9A?_%4_ %5@VAV5E~QgDMdYp=3f*W)3 TWrts]zNQn_uJ62?ʳ4^g-g/Ksl֥,?px?%_FU;rp(;%J}8!8wu:F{ke QÁN f~y7K3+ 9Wogg5S0M:RUqOu˽ hh2wer}7`'jV$NO~95;{vWZL:%^1>9^ܯ5٬OAo5KsN|:U ̷z5M\ȕMme}޹3xh^xw4`T5q&un)}'0nCV=-sK4 hmm{{'g7'#{=+3*Lj<3:θ܋vgXr.2`QǞ^0na*!n!kw0u>O'%7gk[shfaMll f5A`rMQpb\٢= 2!Z ȹ.VZIhS[2?W!8c)@gI/ȸ@2D`w$Tf1#)D>\̍5kԬE7ѣ<3ȼNV5sV:3ĢJ/(8 -VTA_sIu4ʡki>hH\dDNr Qa5 HlKqĪB.θ5gs%B4~.A0?)6͵Ru+N=AR7:|rBZ {pj6GA$ԥ GxYM5OG}͌%.)vK3&qƨgg[Yo@8O2噴}᥵%} 9 In=fSs|.0{xsYȏDҦzXKO+}$J_Z~ᶛ/Z4rP%U oMޛr|MbWپߑ6w7,nL OVi4'N͸UUC齢+{(xwUnk;N\-4xd$ ((ѓ_233=kl(':N1^KY|O Tr0;1c'cҤ\vo"z$yn't+ߗJn!izfL!I\jN>xr*Psֳ$U><qlhur+R›}6Qe.[;Rz]Ng ㉚VOq33tFSvBhOfPRse.mh,Ok9un ] 22մ^5<4 qVƌS!aQj}o$d񤟧Ř5щHk8Q5xXWI2"7ӍA=U_9yl^n9]gnTٷ[nUrִ4<5&.\PZPYӕ53݋PsdCy]S!_pvUƉ)}+K;̕iJU`kt)Ď\OX gdspAю\O ހ5Qɑ7${h{hz=J #QֺWL>jFdFUɢG]!eͽRCR\ϙ5øGEx7UʳD;+c|osdb|.X=3jy?8&1T7ecFD {Do9s |w|~>k+@ yV6[2? Y` ov(F՟ D#[C۬$S=gVқ`"|Q̑)FrJ,jEG7)ɻRz e$6OEW˅ȁ jC2э/35xn0Vbfl{&7ZN_ݱ٣K"W~=B:wT7UupZ aUIsiŁre-} KR[8I׌fG+iz*}|mD }QmXN(96ngo/DtJF}uⵢVjjڇ!]0K_V I!{oʀ+z 荢diUy[5qck\+; n{*aK HÓi4#˻'ZlzŸ%~%1 H8@T3}p!>a/8d]jh,*ޠpDt4a<`uMWQ#+U|Y^kg%zP!Q#h,}u˙sm&\[ dei/~ )=^ymBA0+=v7C.^38/'dD sޱB[2eFbYue} XHO|eqwbޖ/P%vSOA!)#l}xjcV1KXr8P}kxڇ#.Bj X,Rt?AӠ?tow߈Q* ő}eܑܭ 5:^8L4lCO/gsD'|d4.9qtߝř6mh- *h_H8ѠuexہN+8 <7l^ !uLD* 0%a!gLwZud?=烌{H"|WzZhO8ir'+%^5F//qf04:H\afBigl7CxʨW>.N(ߦM;ʆ 3p~܁>l/`5!w 8L3b8id7wP|WP{g JZ usm's`FuopB\}pȇ|GG,w[Յng 9pv:͖,SGͳiQ aixg^,Jb"*ma$.j'kUQ={}@6b'\#^PE3=^fWm` JKJ}ӵ-bK.MɟZ<~^ɩ^-s;Ey(l51/E9DmW5qq WNpi_p˼s3O2p,CDE~XcR\˼{ćnN1!c>awv$zV18`*'8jG|l0?#/OG=xDʜ$^~<VơɗzxOHxD@qUID_~)y\Ad3.%p?fbܽtx(ۆo%(^{KH;6Gռ?1ǼTwYຊ$ElĔb:C[>_|hZ@Q~{kvR ڂkgYfgpO4:ܷr' q|yUr'_s/oJH(|={Oy;Fד#>t uQz`:',r:רȼ&0\!r2ˌbF, )wgרj R_.MQ?П9Yֻ{)?yLJܮi>?2z~=r\-"ܝ}gԫh4n'-wdo;|͞cOXa dien>OZC:$Q|0 x=%):Dn~=B+)d!`1DjݻC^giEJV+Yo43Z#[Mgpj+NG[,| z8Qh_<-ا.n70o93KMQ\$n5bܢΓI@3-z:En5(F?ꃷhݖzrO+"gPO٥-< ΢% r'&\4w=33Ԑ3sg * ٽYē>/Zsݬx+d⛛'V%nBh2w#w_'l!7^UVH,|,~n'#㞦Ǽp_☹*sH+8%~shTWZՅh>mw{ᩊ]T5U2fgW1lUw ϶묽?hqADwFU-ƀwyv<o{?.oNo/<]IpV-j\Y2P< Bp̫!'B*,,,? o%-rݒ<Ix\DvW-Or_-72|uV AӍQ1̸&w,ͦK+?YYD̏&̻Ž]ߧWT^ΐa7YΝ<;[Q\=3AKk4B$ŷ3&m3P;̸-30r˝ AKOşy\CXƋt&y>LvY|Հ{@v՞#a 0uNݙ ۯǓnomT2Ŝdw1!w׍~ϷYv[9^{)\j:~Zn'h8O(v }voYu>r[Rq 0ڑY,dkdX=#Sݔ[Ax}M4:W~'s2ڻ'G\ ^?8)Pw.[ v*(7vrq;Mv=&oL4NY Zo+&bٴ혿L#_1eybrϊU,)杧9˽)Dx+܇t ?+fʰ)IG!rs=ɗrl斜9ZGSNtn D:i.Zx#SvwY̚5?NϠsvl`QN?lRfx5@OP/xs>ۼwIꅽuȥoY&eWKdgw/c;Sr3N;27˅%~f#F[QAnuJ킘]~Qߍyψ ϵzc2EVN˄gYOIJ=%\X?yY+~R({C,_Vǐܾ%ݕFOˬCFsvȉ)_ߦM_-Vl{uȮesj-i-}'ʵfw }_i,w1r*;w֓ܣCyuifIsdͱuq-EdJxXfk ynlRțݎ|ԗӫۙ_#+w @QcPVs_Z=I;M7Y1#DT)F>M:P@.-<~k3Vjrg˜齺Wv#' d4^ s;\+;W#w^h`9wnR˜KbyX]i\߻"[AZ)v nUtL0f1PE~L@@2N 3-3:P` v*nkBDF6`7 MQwyL~9{8˿ibQcU׌\щk>tijt*e5gSj- A.!I'ߒZ[)L/O1OZoqlWeN1QVs$۶⛠?[ޚ5J;[Q^m{NFzɽfXL9[uRHJ4s,; -mOݫ":Ttkxk[5UYnR Hjɶ L}w'لWuw|f3VZ+%Woei؜Y n8;ԕ$\j`ʵavY^ 9&VPRYsujNm9ުGB*oXtJsk]xƪ[A_d͑i]\U $vFl2H93Ղ+k3f4.O;SsX1BqvN6ZM"pbmX@u9.3 VM ^lT.S϶7KګA.COw,)n(O\imM1tNCI|:c k'՘RSO&rdO6ZՅLmV)_Q}ta_纯0rRg}ݾ$CQ̉YR+Bc=5HvLڠ9O"Jr˺abiIKKF}_j=`󌗬hABTl0Lyq'ݿf+kp4W 7*q;k-4crTMÑn>]i*51Uyqϊ9>bV M$I5)9GZp0+iV=l9N1ÓaK q"I;^:$Pt'ϗdqiTR!1FΦ0>LXҥçSu̓W6UQ0gĞ}ũsQego$;9ښtU)t ;ĔϧJDitٍB6/:g8M|TJ'8?VܤQu{ '}jcR6OKaO=c4~l$A-'ܥOD|LLVN0VyQY~ܙ3"zM&}79_csn3] Nd,_d>sKI"\9Z1يt~#+ڑ"A.Ѩ{ we]Лꡪ 7ǤXOKGvkXMaxG'\Sz)Yèg:kH=mAKiJfl[rA4Cz\u:σx ums==?]/&`eڎ'f+ޜ\#:75X9hZ5|^ܴ^g4˟:ELL3dKIWSu8KLYTdyHN=8ա^] }?Z %`Kn*jǍmzey s74Ut#7_"/j\tGxxf4'k\.ۧvsE\5Nq6C∱RQ ycZf]~~ඓP)1MV:|7s!JOOԮ嚜7RX<5? JKƂփ|f{Ɠ~H|@-x (-`d)w5vA N-gr- t(0Clܑ-a{xOE ,v -MM] wnkmrNΔg|2K':>)`➅FWd~[ǻb뵍#[Խ:AWOTYZ;rVshbFUz5<}^|J}]x&0LYwËYOjwpn*J/:IOk6hNEzZ`9w1AlNO$8siv }[TSJduzޫsf)at!җ8i|qDP%hi|׆O`:e]oD2Vl&Q/Z)Y$7ʦ-j5bhQp%jԤJwOCUwOOU;OBݜ 7snpSW^O4 1pL7[er!m+h|ףO _'/:c=_/|ݺ48Ss8 QlsfLyAVqj|vEp%LXqUݨX-aOq%xl1RXhXOE5V >t,?bZULSӅsb;(#A\> gJrkIuA7w.0M-v)˝۱iu|:O?V)DClefRI oms=CTIE5P:s=MlӘ )amY&4t{H,N6\O= =('ʦ:,{zmyZ;ah:yԡ{NqD0T?xOQ; pMig= NϽX聓yS$σ,, 4TC, :uMYDtVz02Bfqb))+rO0^ Ot&< 8ezMk~:g^wEoosoQfs~W MDd&{%\Tp۞㵣x_ktPo:.ӷ3!U9҄r|<S9XC*v.㫊B=RʕT\p2hu~`BO\?ga&VgUŧbqpROHEO+tntJ|zK2 ~WrCԟwg:qoO,1ݱpJؑ 2x";f!bVs@p󢭳ғ4ȫ&Ta': \[)m vQQTwD` -Q- }۔lbE`~Ai&1Cﴧ+uc_pU䄵ZQSJɦ]F^z6z߸uNtی |(ʷyKuIZ[$k!u&Ɖ0N>՚*~^"F,3=ulD@&Z}:9 J;DrG+*ɸʥk< ҂P#p:jRP՗GH-hC&!zG ND !W*xNp$|+={stj|{"jzC8<יPZB*S8Nc<6A>$1xnA'rpr [|0? a6 HlhH;̫ %U ӔAœTO'$}0>ÜeR>ERb"h-~dpa8y*pr|R0T  t"u ˵Nctz3yҎQH!**ǔ`ϡ[nY9(-akw&(v- m+2 S(iQ"G. =99Zl E?Rzwߣ³|4_C)J֬Ml>u^>oUEV̽tljgy)U޼hI't:'د5 Ԝp3spZCjZQ괿f7}cI=z싫XntgXǼ3nu*_kkNtϽ`V R;pUrZ{}*ե}ܸ3F;Wn>5|G{r䲔v_ͧs܅o5@&pL 5f3vť< DṈ1lӭm1K]w*ktք)T!Azv+eq>`oK) ^rW&T(ӇRA֪ЙEi2>"[S ڽbP9ͲsnxA?rTA>BΧXݨ5am2Hl`"~}J]T(7wPՙ/TOw5eTPۚws-֔4Tljlt<'7s~b9*Or:ɡRfZN}Pu18p;}5L?DZfϰJjn:Bh:94֫g$)'0羿:Fo?*^KɁBI]`iS[!%׏&NZ!zyjz| NYx_>jϵgǓ95~#*'k`G~ N{rZncmߛsF.u5v=;9[X훩6*?;;l~A1o˱:aQ<<-Miۉ>^OI*bTioxO}uRkkb'>S3[m 3w]=ϥ~>ggsSux*t(}8&+PS (-jGfSqo[ekerT4YUȱ{7B/-Mp5vp XOd^]MMVRvMߛw`4|CMԍ9HK}ϨbkV;:DFI}_/Ju{KGl/aݕ}Kb4k.Tn+TyzA3ycM[*4>A۱Tc & {M.Wm[CKR>$G剀9PSZR|W TLDtg=RL܂'|w?-oiuZ}s_wL:G_Ec4 o]ym]YJ[֑u$E Ȇ! ݟ{m3I[ jQIQEC#T*m鯠6&U>bh>T\m~[1]a]Q^ ϋG>gdG N’{?-gb1AJBC}OTJGF]MVA-N1l4 Y>Q"_!L76~Q[*A5SL_s~ wjo<9WLfo;nY1x\r.{wx:y/ 3|nE$1O0+y1P]ˋbsPq W÷b:ɏ 悝Qc aSd;\G4beQeAmʸ7r,w&*턛_5ɡPeڔE^Mn0HO;kSc/HrlFs憍Өa"L-˗܋j$SD#5@]TVEɍl'܄qwlWNyS][.3zqˌ[cCB3v$S𢷖켒cc->n Ĥirg8o(6vF*Wl;Kv^eueE9(o 6"p0`>q}Fg[l %빊ߒ#[-V1&\ؗwfnbU6 yW zZwxirUmɻo:#`{i-=جveidWpZrՒkևRC5rpBW\!5S&pԋk}2Zѵi3bOsKͻn; nfvI<ҵ+Ͷk>egOY,kWFjL|ۙ.Fp[ obi4/$8.ɺqVדlćP"̸U3WVVg&gdo56w׬m91iqt|Luq9\ WdǚoGv1Yg<%z F\un;x>d*ff1͒ՌL e Ӑ \l6f^Ɛy&f3֙Ǒ?r`>֘TYqqgm0`P iTy KqLcDŀz{niTglLjgfvn{n)m){撄j,+e红Z&9:[-ub;K}jFs]z[_#xRǓ;u8Sɻ1>ܚA}513Vf_/3ljn5{Ȭ}^fW7sJ3fkdҙ˹+QU~6gVo1w:_/Gg5½UvK!/XwhLbS਎d$\4CdRq*6ub&\$cVM^mdz .b[okԜt^Zavhq0iLyC=ʕ'f Ѕb+GsH SvaMg^VFΒPfa8.Nwx-WKߴ;n18#k8^1λ0nد1Ocx^cb+b* U N`&g$v89:gm_О`ƂݭufEfegx%vrm=e;`7$_+D_Xs+X+̱b;+Zۊ >.ӎ93_'F|>NM&NfܻfKbM椉cx7d-=kq͵] Fu*垮؇`OZoNمO|ILy^ /^T֒~_M ^ k f?Wg8IE:da]d6/4&Ɉy~yFɱ,ҧJl7_LNqN~z4]\K#LxR1^uyvt2jg85UsNs3i{"6ب5䀴fNī+}Xȴ/w>g,,2u,qh{6밢pfqcY`٧Tx8^|hHj̬sޜߎڡ}zL9.<GL`{IGSMz6ψg^Z>Ob]/9\WH]P-Wkݳ >(vPLQ5"Vz7]v?j{32Wht-:=WOeדTٓ>:m'xu% =޺72J21Y9CfY <1rU[Xdzvmxܜ)m,f\b _ɤ?TWEnI=^o+\¤U+A<ة`@AU7ZjړVDMsǚj~.9e?fswBOŰ_&SpXhSɠ'mնf1OiSsZɬNUZNѿkezTU)8W`[ٽ횪 R 3q~*gO3*͟ϒ ΉNaj*}5X|Ψ36rN$*R%&k6` jf*\HUjksբ=jFeʪRVeBRqjiڸsVpolAOΗռ5[ o|{B9Rk=^|{=[XݽxvEҤ.LR#KoafO#YBQz=)f8N>'928>n+dS VuVA-vO&XUATAe6E18jŁ3QuF5Yh*gI|U 󳥤NQzNKrzS'ŃEԱXi2XVgIꛎ2V%oi/Y}}YVKgZr%OjbOJ9+(6c=63];l5T|&olXYEmP/̿IEe͌Eݱq7ߜ5SCdOfSod5ld]mbԬji==}"m3ǿgvG9)֫2jϪWo.zX++e\7W\ba^k,_擹י}8k5o5?h> sJħ8fBKPGEJ? CaD3Sd؅ۚgbh12T~F )ꚛQf0#iV9uj|Y\%4m,ͯ/MeVr9r~ao΂DȾ.#FV<{;*g~#&RYu,`3#d`Y|ֱWtd8V|>Ga>u}qXG*Ƭ9HzٮX fB5>ga&Q?^Cr¼d4HAOj>h$G*/9Ҹc4# 9g-VseGYώUk'p˼=|g}O=\5|o߆ՓtfǰdCJ䞯m fx6lО+ W 5Z忤[w0 Mt~{duq\{ `7,Lj'tVHwK$aڎ5dQF={sD=WyS3>0E݊렭qf\cg-H3MZ\kFIw͛HV`.4Y:rk5ymY&mJ&{yKL3OhW=b\}Ӫd/>fb ̨%Mߤd_V(}ZOYd',2 hy"N:uuYLu;ϲb_^x<x<x<x<x<x<x<x<x<x<x<x<x<x<x<x<x<x<x<x<x<x<x<x<x<x<x<loriginchk_tagchk_ref_HDF_CHK_TBL_702_149_1962_150_HDF_CHK_TBL_0+@=8(Hb@=(de"f@=(!@=(dx@=(d@=X(h,x  zvM82f=x_V\7l~Ł*.Mqv_V'#@\hyV/XS0_4k"ߌOGf=<ŚꤦvGȶXG<F[hbZn/oґJ`9ugXHp8obyEnyhHrwD'?fxo= +``'{s5vfYb 0 |o[̼-'gV]UZ k!W%xw-m#<::U߳NƯȕpok&x*~f1?y j.56 }8o)ЮYsMv[U]` ]L&kQ@@m7(p6S4Gh[YVC״wAۅ/f7hA^2x; n:芋1q1vnR=qrgf73 kǵUfU5aWMrgifUVՅ} 9G^$4,Ao kGUGG` 0rw)4" vVkVsGUa#"")U [L4i^,E xf5d6\kb3Qf]&ׅavQeiNV1q̪Ww ؗUk>vhźw#1| D5E%gx$kBDsj=֮H1HLeMFeM-ʒInDbkk7 qo-ʚ j?0n5<3{o& v/֢uk {8ZB}XXq[bX PxҘ|z VG+Xk,Tb?I ps֊܅砣՚_xVsCgnl?ҚA >rW86t+c4<]|n=L:SC]e 66ZkN|҃[%qNz(dc }N$yڂS"}%Fz INE&OXUSRF _V$Lc1)GOERi_{ZUنS y"B2#)ՍB#t=KFjTZLˌxhJV,npO׮)|ju^Wߘj XƷBpWvsAjrW *h!g ߞw:~ k:Fr#Kv.79 D~cc Fqs>~~:rE/ZhwA],7GxCAᩱ2Ihq bf@DSH5Ҙ]/cXvv rr0I5H+_Ϩ3ꀊ&M/rH p/;r>gg;*Ka*5H Hv: БӰJ&A\jEtZGW"{cax|COIb9ZEsf UmSIh%Z( K[ g!jUhdm B$җovu栙аftA)Q"Kiq.4-U_RفfJ'vvѮʨ?$q\PJ&3Ig>I(}'|#TJɳ|(6e_BݕMӨ( zl~Yokg(ڔ5$ޯ((_f 0-'u_6JD=-~^%@Z,x],AdN?iMfٟl3gH-CۆBJ4߶w @NcқM!%4AQ BX= 氒Kfui4b:t2٦';`vHSZkq~Qp}9Gh-ftF9m[,-f5;„ccBteƌZ:#hqf5 $K;mWEʟ~UQ?ڨ#}.@[(BPXT]|4P|3;mH5+gBiP+J?JZ=h{|LI??65 \ҿsퟑciFjcB mꇎrcٖ*1 Ed1!IZ) uqZ(BL$i`|$􏓦O .}phQS()s"kIӥ/l* T*οf#$jrDW5g3!}4ͣ8BAz%x6C= :k/ _ }zAZ_vWbP,U_ﬨg=V-I=R_*W*Ate+!UH=rX1J>C\wWޭkKId@^GU!=\Hs@ !==YAT8+Ar1 Uǝc _ s``\Mo%~ocUj9/b>]+·uX+qsf  +\oZ >o_6 ?/VǪ]]oֹhms0-?cA}$c2t#6X|\Lfњ^Nq=&Xn8f}3MJ.:3G{dB20<fg3`*Aǔ dG{2@(v -[xt?+`\Xh/vr?I \UY#;# ͐oq3gT+Nț ? k JY^Tһͺ0(SJg$@c }غa/ ݳ{({"z;a?zu*`jnNp6NJWWg}lNx'xԿj "?41G@'(mǿn!6lu;aL'S 8pkp#mm\i`ͪfiШvAo}_˝Y{k .'Bg+;AQopij 40Ckw #rN`g{ YzVY#.Ǜ>>`" P?NǛx5ṞexUPS2#g!.[rX%섏 {?-ޟ|ͽuNjزi3m?BpYZ\g&5ǟyx?vZ ]R,ck}ͭ8:o6ijjsZ \~N̺LQoB\Bs< c4eU+T94Xxk~8Z`EԌ>Pg󣘁W ܽp? p Q˝\yn+ΐ[5oe Z۫nUς݆wqvNtw׌0.z~?嶁~nw" l_cFB~]ssCh%YcS'i2x7*Kԇlߕ5mF|CsY$\4RDΩ x*`g\]&L49GmQhƳUKڀdg|T.XT|=|xw/> R M:j y$xp-_8-Kz&_OßF㉩jc]K/'u꒞OcdßǂQ] q]m8w W.SaoMsVSJp?]7NA Z_-Js+RW.Ҭa kQΣu/$i]p[ZvQO'/q:<֧ K®HI_r'i˓AֳK"#FIո\9YV2Z%>t 9&Ap'Oklu.PŗGPуJd !OзDc0 OI: NKDK ~If8Zw$5is%ɛ1h8j ~PU&1l[W95'H ~KMWIu4FvTZ۠{uC/ #?T'MPO0/Sn'ofJ勉~hFqHR]n/c瞘p&?ӆ"*FSNR3zbRn x+4&MgQ:ILyMW'&6&{OPI'ŤKwҕ֡x:T8!ӥaҗi+;4}O\J%tmm!h }O_J~ihS^3Cs}hQNye[ _ШJEHA08DژW`TȷJ>g 4IaT F^O!}q4 $T/aC[ŵ}޶!itP>Qv-|*utS:Թmvq6 5m>}P7`WɀA=)9&ojp1"]VeiiV3K"^g^Zƭ u%˅-K+ BV⨛6ت  J__tY؎}{Pї[J%^?[e vݙMI2 coKMѪ>Jg}l;rI2$Ur.k2V %jj=D? ֒C=Mn2"dm}nCjM>W=xET5ږƬUH+'FIM:vQǐնBg =W;Q?#4?Nuq= tE!$2G٠VJD58,;p2?20b_]/ vʢ~UJ uJ؈w^S=.4 œbHx;*סĿm%I=~|\'U_{^QZ?)l v^AuUyNEPBf6Ҁ Ph4C.R{%|.i>r;4Z\'o=3t{P'%pGqHsqn;Ͻa3zR"ۀo/ם-bAx {IRUz{Y8/n1%1wAC&jɏZPyT*՛ŏ!Qk ?%BJ>+t2U_*A pC{!bXVc#rR(^T3d%Yx@NPnh םt<fYW g2G+Tf[$FlPk{4bxKyDʥzkܯhaBτ}Iipq+c̘"RRnx~BAͺz7n{zn :Z:,ғ-ƌ S(~Wr~q\;CQb=K``b` [dUaN,!`{y\’X! N5-P=X?6 W]U$xGYR_B,  NY! Vp!ϩ]kyB*c > *WZXy|E/:Dl|ҙv f[A+:mm7wvAgc ?O>@kL7rm3BsE=tTgd(`9~{7ѷgo-uE}jz V6`<*Nͺf{jY_1P3@=/6ZNzvnZ'8u!HĂZv8UM[nr5kq{ PݦnY$`cm4ZwWS`kݻn׮1h.[p{\yu; ȵ˝no6U!؂ m'v< \Cҝׁi}L;O9Z 7J}Bax c16K*Oy" ^"jM4| +hFR-4h]cZX]rB-d4G˒{׀i6x\KiV-"D<Oz0c5u^f|׃?ʟV]`U|_9m Zvj|]XUgަ!zX\W|M~"))rMY8ժNC`VWY<&WXQ, r+ AV:WnRnd=DSk!ȣp.<l n®One˸:J=r2n)wƍ\Oq}zi[s5=Gn >Vup}w:dgKVj'J#""#Ar T<ٻϓy *8Zk @(z EL|{^zLc)jT`̜Ї\S@/5Ge怭i%KS:k93YoQM fդm4CZڄw _2D4 Jݪ6IџhtMzV> pq|]~6j':^`p;8u:4uk,N=hj#wUgqqu@9ZkC>Rg\gn'*-qk9񈮡F y0~7l#zCmv ~>̮5 u`Z r=y O O>>`PNydPi3i : Քo$ /{fGs :޿*U^HޕrmԏL& f{+[y]FTT%L\$` `}.S x : G Tu..#+l.x'GhL貰[n;c#` 4iPɰLy`j}343AZ J|y3wPJx <#%$'A f:a+UZbic¹~ =T$T& U؟A6XjSnKF#D_S*Mԓ}{`R;$Ru鷸 +f;elMT#K1ǽ$i2Ee%4U79#t"R 2JQ]Yqԉڋ Lϑ? GHMQNWK,\%5`ҝt)5`DKI[Ph^X,SV6:ŶӶޛ%3@}^y<=RNKZ[mNd4Iq>5Zļ'7琴HwY&ia&! LQۆaUIWe'4q\k_t< &KɶZ0I٩:.ݐmYFl5'_ҋcP0tƆ*PUTܶlt<0ҿX&>G5ocl )?0*BqƸc^Ɣt1J\`:_M@Ui#=ƭs4NV/5nJ?"D#]XvIi4YZҸU5JVu wwƿZpMýcQxD_N Koҙ8g5ި;R UyA78gf=r7W&,W^/C#8&lE%Ncd_AA-us_)9$ %6lm՗ AL 3Qqy xsmO%u3!ls%&kk{%>bKkt([G_] 3{#a3NN-2RBB;#ӨqR{v8:y)AMѵ|'ϒrV]΃:)^? e*;@~ aXJrmYUvD`yWq+ }CUn0_|jքrC??__OC<@@EQ!Igk%w<=J%"s?|K'HCI1K c.Z"]͸c@}!.)װ=V+^2$fJܛ.~ScU]&뼃WUih0QLx}@+eSWt3+fQ#B'eKo8bo]䳨򅿟?! fw-޸ٚKF.^)yq9>_)'m5:F>D))y1Uz6 Lls58@gUf=ZoA('yI2$Phz}^2H H< < ZbXEpL6> >-UG/EɁrk>\qXpeŘ6L_?xj0A Y( l Ã)>b,F ț[%wTyl"8! JMQEp`=qyp o+d]( g"˃k\!yg!/NC]|Ŝٜ/@-yu0[qsNg~>>C[g-;}Vec|m1j7u\ >Pӵ:;m7E5*T@vK:tr6ṟfEё &C_g7Z u2GET_Gp+u8=Y&j ?剬}ଇ|2n\qQx|;XE^:=@h6fs,^JcJ;U^fhXjЛypFm4zBasAeG@m랣U lyfSד7 P'8WRK[/ʫl:'8WgA%2ͼv i:TŶO—݋C:fl'kOQWj }0Ǚ0giԵbj2j6P턧9\kW2ķRש7Бlswo34)}WkwM-uzu!pA.jrK}}䡠ݝ6oa3 ۡ`AsuZa sj+53UG07Λ-`{>Lg؏K:]-,[c|Pݮg Ff}bg1y^ͮtWkqL>%pmd+&w^Pwu0FnNǛV7/2VjH/^i MܽN.*6h9GYױwG[,[}}\$h+*<<ϴZH8`=c\9O~eNn<ǒÒ9' -@=!-oFllg"KxU'uP8d5䰂>&Tyb}Vzmqp)Ɨ+/ ['RV$槀lתҰ4Ԛ-,HS4D[UaVWB4-G渇ڮMsm̧N Tn\葰9 ֚[Qa hᖮ5^S8Gm']:ey|phkXs8h+jp ;<Lh㰓 !OttmeZcm?˓E y1=/Ǡ#VQ>}Se o[0nB_DItP.I?aJU~.QtFΜ.l,=;c|h]/;\tQ#MR|ץK|$t7 69|Sxc)Ԕ< -3)uWg])qHޡԊ46\xՔ;΂|[0'h+n4z^any/;\CS~Iͥ'ڐqle׹%됻(eƄGz2a01$WOP'h1Ƙ|${684;b6 /{?*?.@Vd|bldϲ_GɿR ZDO Y:aonbLC6QP5V'dLV b4]$yNx4O 1icA:~@#& 4Cޏ'읯F[eSa2{[&i#۱hl5fG<YE"rW,C:>Cjs*R]h0lܘ8#A"^КW=HZW*sPGF:[,I4`$J^"եHrc et@n7{IHI/ =ّ4&M&K/R&kn4:if$2cG:h"EK5ddz*ZGfwڇ{Vl,4P2J 2Z(5 i *4ҝa̔-5LJtF4MCs:!4DcxOgH:4aKaKE֡Iׅg DJ*V0_B>,>4eGNAb8po!WDGIAIL(N@ wm}"uGgJR#Pp5 A}h;n.8$)5-p5KJƼ!Q J:75e'%31md2̕&Kޟ!-MDؒiF7`75h͹y6NWmb;5@.&ýMcC;FLWT?J]ʑp-hбw %aJt4N bx׷MS_J+ Xo8NG oGMK|q{טq}hҧFMk86,#7I=Ca;[1j SP]G @Bϊ6(տ֗. e,yf@'V_^ƐgE'&>]̕B37,JYRCgEKB=BU˾տ1$Ɣ2,R?:jc}8%lJZ C f{5c:Z!jK5.-@(-%֦xԕ^l{G?==Ү猴焼 mI2oBGD'F[`45  ,)n[b-QT Ty]njg+d@ҵm LO) /ΔuKy̶ܶD7y6ɑg̿\:c(|`H1B/>s~Xuh`O'd&RT:4r(1B<dVh)|Zj_ea tƺK_=鵂M3Er[c@\dgA 1>#Zm-c)YOG=u+>@(-jw (7iI=dgCHK؟3"FiJ-'!A꓋!=tjr ofqr "!-$ߣۦA+ӬlueV/T ݶ_uEH -ʖYfEf.i%0Z۴WuleO*.y.Qzzi!˱q[?f4}g*[զ.Bnl}˸ izx؜6;l,K]q_g obpD.Vo'lN%$x+&Βef_9"81Kb,X[<)L@^Dz{;:5+Ә"^c~H;|cX4Wؒl.A^Ecft ՛MǺڸNA5QNH±kGrA^s~ #dWH*vH ĝNFpo W`zp ne:s+tg@ HQK5=.L?U 6gWcxYOkUM?1xPMUVl f:ӛM=*dSXl&lS7{3(muVc7fS ޛXl+ck zڝ+K@L:dԳC2U ;#ǦFgna2_}F</ vaFl$DHl.׿ׁ5KI#ax)?wrYvx*Xʿ?Y-c ijR<З@3 *!Y{?ۿݨK5?JVA9cijoPxpMd_>(|8^SԖR ^W9_҂CPu|0Ud񼱤o=WRfz lA#_Gf9ʛJPw|7d;93,i[!>&ɛPGϝ:_?˿֑C\ I(e32v5X\;G·e3Q 6mԮgQ*wj^3 qv$h<ڃvrR"W^5Ⱦ4Sʓf⫌G֕ ݘm1#Z&%Js -ݎC' ʭ[C2=ʔETvܿQF]ۤ%x`*BP(p]F'y)N~nV[wmݿM3C8`rj9z_Y=Xr[͌Xs0Xm o '5@NUAoo|7cAs;_\Tȩ`a%NZǼΩyANÎ ɧwz>ws*=SBzT;Ks1>]pyٛ Pƴ0•im_)}z!1ϒ~9aE wQl0r= Y9M)E٢]6 P!!#Ә2ݕnJɎil=FQss?Ϡ]R;ҝ8'B1NʠtN`NG 7j~;נSqN|Z|w[qO:=Pksť ~& ,iwB!1^r$Y;̩6sL9D/@R@N3u \[%AU窃K)h_fu0Ӹb-G8+):Bme攁It]cV[ȵ@Ml})VS /-eElnwǘ:_o}i5fA[QG lO2PΝ;MrӾ ֗l1Dvp>8oDzaJ3U7@m i  BFѾXg3NiLZǵwfItVsU=WDT]*"#|݄:0E dϤjRut!f22nj7wO"A>5F/6JGߠYPAH~ed\urAjUZCFIĀrQ ȥrA6ցN>Km}\&NjJ8(*\=NBq%%A .D0W{c\9+'TqKK'y  l*Zdz6H@aSZv`f6<$ ՐQCz< )?&wf^s Rgn9f I(L^G5o,G4` !=HۤzTƣQ* *3b$AUzA'<4%0e2t;P?04m<˼a S| [e=/0AS] = QpefIp 'M@@]4оP4A|\y}ɟ CyTy#%{KPu DaPPՕ"VQєZTɶg7X7Յ,V\푾4UѧVu3*?/Kk~3[ʪ .lsψ(_}/z-JⰏ~,.D$q%^dqT'X&FO(GUQq= -e6_:{-aD5nUf/]{\ l* d:l߮O4dLM()#`rHKÒEޱ d\ &Hmk$oϽ7Sb\Ij<[^*xk@m+ȝN,))Q΀['#0VN#$KsD3xC HG?=0*tr>دۯ uˬ*[LaⓇw^H-T_2+M[ &: 6R6I٣if$?Lmڈ^+{y\>tlm߉ yF c{!@.#lRm-ڼ6מ#fx+bo ɩ*_hŎeYcZpDM4y Uz%4MooHmx1 J/]+_ $Xρfvp#TOՏ@ mX+ J|5}1&9qr忚[Zc0_3_M;W g?Π"sud0j5ͦc\:/\_5˂}U;(-v&87btitw/?׸t+=&nr ;F /[cjWm "ꡯh >o>*?a:K}1pxhnz9᙭)7`};AHnfz3lwVWsmY޾zik՛dJm\ n,EJGl΃ʀm;#mxq v tP+糩i7o_pwS!uJ`';J##`ǾrtMݜ\V<i 7ٿX4ڗB.8յrTE-Uu@K\x j1H"-U=2.Vk"5<7 K o-f#Xõ/JqbĩF3q T55\+=ǓAA9 R`Z`[k!]δ }L6NLj[{o=w܊ NyP jk{3B hy^ Uӵ3, Vu[>e &nqV'fU&^(X2X ^隭 ZhMgBs0? 952xI /l1;t<8Pl7o)Ӝ_8O8qFƂYt4fW|UN2!mdJwϧ۝_qR}:$ 8ӕNt'1Q OѥLp•[ LI{1ٙu5VMep\?(zt3p59\F]\C-=y$-1t.՞x&ςH{ۿ:pAW$;pz&卆 +x&\0R.]f A/6GBH!$ *r6PwMCAFQ =ϐ gvdZh4UO,Eks8~Ż:4>KIآ_6L޳8'9^Nx7ֳl:zO'RK里eMowɎ}RHpl=^=K>=7;s,( `t'gď=ۀlwji7!qc]2.m6WRkl- Ҹ'F x9v# Fm7RJ`닫js5ōtsi設?#u 6[L;X n pi\jx?t0U,DqpF9@n'y^ :wD!yɳ68wx-apQ8j#/6䅼c#KPp5t\p6M5GZZZ?h { kǐ?Ѵ/sVsNilMRP KTd)c["-J)B0G1=cgJui23]Y?PuƲKRu 2\ſO :)divχ b/xob:_1Y_ 6l[ 7Ķ`I6K[WtW5p TǨI4_!+iR3aoڪA;@Zi\i^:U2h+Z -,9auH:Ea}V揼JHEw2ySYWl Z4"yjrFry{6`Sa~@c5iqZ S et, Gci&mxxDU5ձG ICXC\#tUu/N^QjqLIwѼC(I\:Y]*߃iZ0S%{S\}f>{V~LmJpgEdEgjCVrFtr'њke]Mkd#:~nْH.FQ՛נ(Qq-,r>hPQ+"b0a`@#FMէhM>UERD?0~ԚZ##Zw ԽQG,!z62hC#ؠPŏi Y'2HUP &GMxHZZ -!M%i#Z<\곭!= {R/i#\)V:mԃՅ%U9`<;?7Z皓ZD)fA=b@ca)Y0Ns~·}U4d;Ϣ%ƧnI2_?8|rA3;ӳm@VIcAP/#2mü>g8 Xy@y t|0rs)aj%$)+OK{2̩ lQݺcICoZ"ae\wGѧ,\.΂DI$ϪwNX N++XvuKɖy$T&=LXҫ7li^`%n(Rzh ib,l[ʛ>Ӟ)ٮ@4JPS4M&Ǵs&n4A`+-P+ʏa *ƕVl:,t.t2!t 5Q[ֳέ⫥@|*AՕKrAܞֲKέ{~]{͊ Yݠ)gm-y?#d-O|p$Y`#+f=b-d gr|Y):&x}vgE-Gog0*/Kknti66m YXX^.lnS"ȗD;<FFuM`@<-z:aѭ,҆bI^6x\^?F=LiaMz1A૰5"e҆4!HmE˕^!=7,~6YlSFFφ>zÛD{M>|,"97_>h$BśpJT}4_@KˊjwwK™S\Yi匼~Cڳ; Be8+ͪ)|D>,xq"l8ƼAljj4B߷^}9tľUR VL|7iƠb5V*ެr%P@@zFf؛/=/< ';FElcH"dL=h(ETU񐖤O>a*4 u@2yQQ2Ab8C` xFMDeT)dH{8iPгЀ+vtUqǻ]Jʻhf{OfcG񯊿}}lLzO^fIO u W?0?Joͮ.[|*av~_N0{{5X'Vce: t:ڌxm<=(sVjpN[ t[#m:B=k݃wmp;ߖjk2[=bih ]0wq|O[M56ŎY`nĖ3'8;*I{"58Ŗ-f7' o<>QMO*0&A_wx[ 65dU~Pդ,_f7yɡ>vf 06H[t7kgW [;x*ܮ-UBv5ss?7Ŷp= ЋĀo|c|Y`х) ƿ-7uW=å[I\M6p-o[8u\Wn/ VDYx#f}`c@0 Oo-[{p5.ݧk~Fm??n'b<(0\6k0n,==/Wq< A54?葶ΕQ _`j_{TϽ?1/|+Սj_u6ykng ?knqKX,}J 5$w7$X˛9Zl+[|tLJFj`%Rjlz 1ؒ4yaʗ3I~TڋJyj~Q {-}/CKxBQ~a'TrzٙR쌟]\F|i ?uwVyY?r]UCMOtVtϜw\H5T>]M)Zn7d@rZ]p2v1Z>p6mEUTL1l=! 2:Ķ-#J]FzZ?P=!)wTɆT8}WY/Nu9ҮCMEj$v e85%Kɘ-CTFjXl#!_O1oNr15%8MzI* ՗Z R `>^$ɪK&GrO>LnY!Fo nuϒ\YXuu *%_r뼯\OG%`]kyҬ&O ly>%l9t#X{aOa&K!H 'IAh[DoV.4ȤZÃr\Ѡ:@IzVfA rIeSS \4B<+2Q+e}KIwe&r_y2QS2 Jtԉס BV^`X]<)T~|{1tɒ [98X}t܋n> a[d0As칺(0,0G`S#dƲb~xwugrXePGQSK/˫+]ݩ"0 YY7VY$+]dz{e5*gXl(0'*_*MQJ<;#="l5o ɛ`[ORi=,jEgeAA曢K+~(zH4!}+"Zi['5^, #|},R+#xGUХ@|n9|]7"b1i.sbeܟ>њ yNXg$Z{Mv))+͍_?:zGk*m_˅-Y p`N7]n}"5c5ݺCr~+PC?}:e#--@O,%ʇ 9Sh?*aQtKg2+sw~ Q(֏@˗Cд.8ZMeң;(T-2DH\ 6h{ W7_ t&>]WͣG;\sWl85<136 O,˾yT\MW13%6_M6`x$d^ש-Z`'mMs96B#;?3mTTNJ]CNO`Td6aPq Vt6  *V\pߖՕ&^[:Vc^nmOE!ݴ\G`lݺxw!i/BŭCs i,hr WX_zj`{;4.}G?fkݺMw9.KŻR1x_[W:[;ρ2v ~{5/ep :y,M{Z#it3]j:Oi3i%QS}kQ8s@I;+-Ue 3JMXћ(x;="H 1D,a/BHLi}p[GpQb u׼#/o 6؊[OpMuNM޲vWx-Sdm8d /ۼ ` p?.nQp2 )aS}ϝOGs[ˇPxåq\wc/Ճ3>7C8ǸJ0ٛM51۾^j]JCb;se"1_^t+=₫8>k?Ҧ]KEXxV2rٱrW=TmF}4_;c~I<PcA?]/^`T˅AWǪA v G}5Hw n-\yB8q6^s)uUlq a-OjM{˧"ppv[{ߠYQF)Tn)so0۶pzS+Mh$tNE)2 Lrp[!l[w=<1LuD7:6rv)p<>7{>kcx_r3? :Stvv΁0R>{2?~Nјg ݃1 ǔZF]d-p@g 1Kt4ܱ}1fs,aoB>Fj:?vݟma6Ѷh"ӓ\ I Kn3zK!j?Pg kk KBnQSp1`j"8/fn186yg# uJ0V\YѾL2%C-.[i6]=/Sn&3"xLul5]R'i۠>d3s-zr3%O~kwLI  ycMMB+@pӱF|gl!w1{)7qoƃ.msp%I=x?@mk3c ]=t|<@g㞷nt$1U\]U<6@Wc}~dڷwqNmN4p&N mfǔ+I"4\_0=籹F}1we޻$W#pgr8;SweFsޕA2,#&a•>O-J突ZΔk Z-եBu ~eA>"MjZ.!M\soԥ^) [EGPƑY3NRcQF-6_ZI{0^M"2{E. :ɂT`D|L/e)o̤y(}hG1tWlEWbl/R-~4[)3&*2|O] b0ߥ1Ů1t)( +/6Np%cbWt̥0)ۦ歛6γBE#!čڙl s@_fCZu !;+Q /(AM/X ;6F_R_7(x+n|I!a0{7WkhxwuPA:#4\o0 I YV fXWZ?,֟YO2R#nyjHh>wtzO`kpIiLÉM6[zb$ Tm\ 5KRD@oyMKZ+r &85Kp"z_36imJ%*/ Cݘ֑tlD~\8=|GAf `vpͅW{8:ΑGq>L:'=R9G98ּSIU|11zmDDb%b(~+L̴x}1Z%2$-TaR)cf3棴,J`] Y6zch~Z|r}yZV6}955gu@ǻ]<Ȋ\ZZޚc] n0Cy f>Q0-"[eKޞv%faNWjKK,J <@ɁK)W-~ou՗eC/!G#$J'jFO6,(QBO! \*ZBPې@nh'dvZxNBC5^nah J/rܭ٨C*iρ;kVar|A12ơɲ.Xm _|q# _z/FL\C.ۣ)+l64D, ?հUfwԛ[u`٨I LYly7]~ܕ2SM]Xlzys+HA5:况Rh>ݐ;0b 8 d%&ubp(t m](n)܄C5DrL9&L&bQM9M.['߽̱^E˫!owT\b=etEV\^-##x9rabEƊ*>:TB5(-ཚz,CY6K~$tD3C?}7l-EG]%guQRvwDި9P` esF]Q*#ZR4!/j>QU $u@/i4VTJֿ펼zQt&VIs㶚$e,1kx7u8P΃F>.ƓpjQ(Ѿ؇'+;HܗL AI~o󹚫O x}THN>%*xxk3pQp%"!\2|&tio%X;bH٧ cCCХHT>'e3k¢Cr#}~BBh?yR諷aKqΖ : Zס]ėK_<o'ʅ'ĝy0?_<\/}]tU;\\Yx:x x@l [fr}J{Oэ] olmTRY˛/2\3@6[!6U`r^RFV l ~[=I`kl(+ i/e G4zӔswde\/CBٱLHRy{%\ @= ΋-[œ\/w\d<3.yA7U.XHs}d}E}]ܖI Mpwyqz1ŇA ip1[G[G. L)5[u75;4QnSVp_ƿA .ww洐g6?\oYo^y?]FpEt?ץ<"<)腼FP୙YJdeIpf3Y24YGӼ)yL3̛.8s3i!ՓIA>i=dyκ~x[jK}1N G{0oVb0e|i+o::;r}GQ$dwf@ $7l@T)HQEi RD0{fi ȆPvHLI~pyN=!}fO:{rd` ]D=3\Q8gpT\Bp$;|2\=g>?r 盃GiH-mnOw.w5sjm:oGcXH^,wk]\˵w8?{$ʿ|i {^z+)A nU׺nKH75</E \x SunKU?x7kV鶴H#+2O-=t%%5@#- h _d?s$K.0l|/PҺAhsG4Xy F] |I.lk[H^XR)ɒviC[U k[VVhZ=/ @tސik[s!sFiCf;MPWeT;ͦtgA:õʛ۵}CAkߤ Uv2>?#D}w_Y۴`}L( ZCm;տ7zt}Z$-q+gk0z[N ~B68ֺT~:-2 PL9l-(ܔlN|쁴󼍺^/!\[.tGZ;u*kԇ|\7 ArwG{lZAFۯ7]h+O1؀xlɍ^ZpxFƽ‡^ $(Iشh- 1FjdTBhS:ZK-ZXEp=>Iy pڈ^V(957d!HޒUMB`%UrhXZce dM Y'ŀΖ@ch V'bhv+~i}čZ0e 'ňLtԏdl=cSϪ%%^Y+IIFGgs[ jXl ~(.p}(l7&ʷdl#a6"ف6](lrMzg |!LaF;I .P+ 4M1!, 0njc#%*yIdd'/ ?A0]qU4h+$;[3Wdc?6* y+A SϤ, 5*u~UVҙ}ƦH_IHYhWIIk]gc6%(PhtJەI] aI_l#Al+`mn v_\ *JF!1] ]i,gY\ΣݠF$tv歚bF~DzHahk2ySRNX'655rRprʯY'DY~[:uM}kh LB_VPj7M}Ƶƺƭ=kSLJkcujVc]%kڃCޠ V4iaX-]O5D&~Xh Ba5"Ԣf^S|<*zH'R8AM(L<&@X赔*ސz ,A,xCB!vj z7 >gxe<7'#rZE5@J D?= )'&IwWL*)on{EdL ;jg@ux+l'g"#ZZTmbU+c#,wT,a^c_1`R{Eh_$juSá,H4 5>بu:)Dl ^Rr =柫SCy~iTTab?[}-~4 }'a4-MGYJ"f?}Y OQPNLԬ& /THi`EKZmƆ~s--;E<)o b?ji 7rĆzu|9a%0?)4ʿ59ͭZC^ƛ, v7nJ e2BY+ w%} 2YP1ژc*=J^.*s+de4F4XKTԻ׻yYY|޽zp' .s)#!$L7| m^.smR?柞y.?MfIe巽ެ)s.9e?԰s9h6T&އoּ{+0'͗\e2| I! oY6pi,/67yt᭗QyT7J}Vx z HR(Fɛ̿#1E3W oe^JN( zH&?ޡW,{"4aHZ$2Y9Bd{猟{ vPkZkd)w/U3X`OmOq88 wI},bʲԷdycSdRFӝ,qpdW.>s>bjm#@M;K79'9Nmb0ȫ99)y~\~GK=S9pDo Tq[ "d'gg8bDoяR@/3_#GW9|*\_{k$.+yc*plR3@5hy+VIAM·}7{pbb ~͛(O:༙Vp[zIgjhgt'W#0Qt>Zp`7̷d|gh'9O8&qWn*n90TSӧ"m-7A0mNx(m?51K*5H f%_p7܂<_7"qC~*`'rվZe7WCjj߃]6jbS!_J`EEW T-~nJML#rų]^hv~ y$RM`ȗ#<<+5V[TY<ћdsZY#1AL~{~ kvp!}m098zAtvF~$Z԰FK)zzb$ggx{;!m'8d{L^1CMW,nV \0hp }! ,]l;m+`_%F`ջqtNtj*=rt7rS, 8'eζ e+.zy)̇Ȼ!.]Nǎζ`H=ppHWwӑ#-ζZp_w5Xy??mJ:V%+UrX^i<''8~cw%9RR>$ BOrRsj=AuWN\I>p'iQ֜Oz89;y` i 5&AfI&5b@CWP![{!4t7>ڇVAH1–EIڮ6[/xen.r5AqaΟ:h(c]AViJV$.t ?:8-a7Ldk\S(Bb @r:Q9XzKOs;rM9YX(Z F wM]eLk +uNnP00߲BmB4`FpJCzRMj ˓5M^1ǒg"lUg=g'h3d3#.; r@E&k@e->0}l_b-}u:Y1>ikX5A 睕I]c@# g I_u \|6!$6\,Eb1?wHжcVB%/+.kr?L#KÊơE gmnxS_uX f1Jɭ<N;S:Yk ~Mn\NDϐ9{|!t_ch=d.9ޝ~m~nƭ=Bd3/ Mr}/ŝע!"AA"fzVRECX׸ǘC$AI}:R  BRU|))L2+De6wEMT48Th*]2L-N?TMDĈn l!-V_PA n0y LO[}En0JS\&IM[xy<5Q \??CmMպjKTΟ} )\ԑpHwW&8Z2\&+Y}2͕ b<&g_md4Yxyj-T E_Ú7c9P%rl?|r ʢESb6CQ$l;uj^ZN]j6,0Z(xurTu./'t 2,,M`֋f4 =}Y 6,03Fyhh?ՉCS;e? Rr:usE&fjQk>I]ĀԞeg$x{@Z95=t"m!$ I )@WKU-6kh%΂SPP/FOzߔʕO%2|a~vuYXZ,50|kLT57ڌ9~ղ sNx f+m)FKd{!g44+21r%{*""! `SO˽[so?2e"Efl{a-2d5SEHIwaTR{͚bm̗!, ?Mw%ނ Uw^yG(Pc0 2m\䥃a>##x[ij 7u~ oBЮP?qVߩNTqjj_PЦP?P ]d2q 'y5%-N, ھ[lX, }NgEG\b׷i;fh uSn8TtNY>?LiMx^ 2Do,՜;j;}ᝠ"W[Y Qs"6cG2U6UWLKDpY:'~DBȼ'_O5Y5$G7{\ʹRhO`*'0U=5843`k\>Fpsd ~ ةR@0MUtطL=J|. c~gR L-O8k8= uE&[vRw@\:MĻANk ~nvq=2LhoMڝTP94ݾ d8fق3x. GA&¦^p1JnM2,Ui~mh7w42ULzq܂ߧF*Г!}o!ajŭ9ؗp<Г`K`6ٙ$e;Hfb#,ȯ{JA#睐YЎOFk].t@w4ǀG;I{Jv-͒G~[$xO*xMko;Krj|qW 5;*E,ȏԞOć }@-ꢟ>rf{'ZPL|o|#kJ85:zd`03Um:M6hvn$sӂGYl+=6H⻭_khuqJQQhqip(Y'V߃*Gs9Oh MXᘰzn]nG!w{mb;..҆qcCTR_龜'4X4mRm% s /VEp䓖KK@ẹp_upX"JvZ+'Bb@@puV➐:8TkE/Mؾ@e=mnH;5_[ qgSUWIWtcSmo'6ViΠ~eo@-=6Lr`'}Uk7bg#xxD:ٛxlylT vYx#S#ۜ#yQ9-UsM/"t#9BtTh#l),bv  k-wM6MzKO.sKS\CG{+pQ Sp /]vdHEHMJW:kvpo sJ֣#P'頯xgfךi>4P/yH+(n`o$L-i%ZO*Y:;+?cZ{nhմfr`m%G[βpiݛTUS_hqMdq7+`#e 8,‰ᶕP)9׋t' < @0m?Y>X]&,grȢ GΎU},UfOwt l%'x A+7Mpb Y%P=.onqH ZJW 3krqd*JwMǕ4\drCZd<̕;ukjar["6& &.ræ%b49 ԄN5s}@bqX»N%ku>?-.sX i3S>zt:q-T\b;:rI'::NG9Tb:E2z(]nrv҉|IV졧xH@CZ:`;V.>vio@jz]TAn\&$Gi|q硙`JE;ϸǘ [?3$@60C1 3;$Fh =\81u@8-.Jڡl161N H4 oxn-k+5+;s:Oһ"P[4BwJxpƳnRgD(褯gR|1K(uf̻HMbfo1-XXu Cb!6pMgQnI®RejF,㭬|hg赐 ?(c\M'j*\ ,T'rW3Z6d{9ʬ&$pКP(0"|͟_YZhOcPh5^1A߀9,  r/O9 gADf1Z }&w<9])/GEyB+,?tհbxϒ3+)jS3~C CYsTYo.AJļ4J 5fl"W%C+j/t^%yϢ.3&7S7(藮I&QU"@9ASh:J%L&;L<6)'-x/JjvEN._U{l1FKVޟS,/4畨 W("~"<2v1瘋y#ĻK g!ݐf1w)o}G{oͷA.Wy]BilP(-43C9Ȧ3" T.n'̷aL7Aދ﮲#6W9/WwL6T1Cd+ۀ:x ދoܿXԑ jm>j>*K]c&Q[6xTz^yQЄЦ.]14p[IF*b~;bހbKY,}}ii.z|}bj'2|bԶiaϏcwYޖ?L;o[S;y܁fэ|m\^,7/18j?sm.zxgxl \twS',P~it}"-t8p5}ɪg宥4W' iOM㻠2O]c͔|1\pOί߃U5B,& >żt -t\/"qXh(b. xT}vOwoDL lMu ^u4GVhqls-u,+>׼ / *iM l-to% v:F[YG FR rµvw: Mz3_nIo 'kCsKi.j8l)!s&o#x.ny߿ O5rUxxiwY@q\7"Ȼ}qKu^TkZɒ}L8UZ~B|" |h\y Ӏ fF|"f/Q(\,syFfu9Z`x`K)by\C#m~L:vm'iZ.+Εv: 73ZL_:\Um['Gg_ [M.=EAT6\ŕ]Զ_'-@L)ZB8w:ZksL@m7s9\q$K;;./'6RSr|BSTuZZ ?NjhoU ?/‘J ݾVP˥|Jij_(%HޘwjŗR뀑QK==\@yau߈/پ!-z}dR%Cߙ ӞYO;ۻB`*x\!yekawt?L 9yKƾruvT3I" ΃ϿCu J[ D@t6!SPL6NO)&tO'@&.KxM$Mؙ ='H%bgeRpҌUtnX'r#߁NuT)(pL=.dOP}vQ| r#ZEF '6N&IzfF9Y΅!2PՇ\njvѯ r; d6JG?vxYJw&2of{(5133d h4`F8{@bMXpN [DdOVzOGnԑ[ԃ-AF,qAix6R-a_ôҋw*bW pl[B yP`{Ġ*t24է=ys/ ؈ۿQs0cՑ\Fͅ;BW `TAGΰ BrܮrB*`r5ҕ|MVț3!9Z覫r5!KVS|wf9zm"0Ġj0R-4M]KY]Ts ԰T'4कO~OB!4 R$'R C烊10w4J=i|AK4 e} 5&4R3{ɻ+=Xt~;Z}ZJOy/N\Q%yl )ID֨eM>7DC>G d#sR:\<"6ln w cs2V{ :v:Ll"Pmҋ^|Tjvg|)s7-#T<ݟƗ.s1"H/"@TW[s#h%s[Y jPZh{Ga!؏cBTչcYCC!°|%R+bG}^"uoxxw]9@_+TEP"!uea{żQ@z9D_6A,j}niiOӂw!݈9kNrߟt#`Z` xS=U/2PS|Yb,uYu>;:^SE-6Z&Zbv#*5ĦTql7#~IVf_+qk^G:>jWCڍtޠVľTÄDgE쵫,q;>0ՐRV{Un7ǯU2OǓlKYmW'*z+8 m pqI]$g{p9XPdo!1w8"6̀{o%_(cr=K ~sٴOzvXh cŹz>e| Z ='Խԙp7i -}Hĝ/Y^-n,]nu*'ˀ.״EvѓnR)AbMY;`>v㍆m5 n?J bMޑ=e:ʾӾ.c!\j87pwgTGkx},QfLM(;;Z;Tӯ3MQG<ޡsÃg&ikRtO>%Hq.wvx* Fzjk3Jm_Ϲ❙ܭMJ3A\+\?*%hږHijM) #p|@ Dk#nPڠh.Zܟb?Sk=p_[)Q^Ek+XO87w G{KxKe녛]ڇC,Ǖ\e zkZWj*yʳ`\Gn-ףp*wQ%]<6._uWsbSK"!r08ދ,U˃'=[pMGлO=X vyjӵ -i4Xy1Yrt7Tc4P 꺼2ֆ㯹S.SH;;i"PfiNVC1j`s`}vzyrD0/ʲ` v~:KgF='nN/ev-:z߸?Fr^nȉJ!@5kl}5g׏~/3Ğjc+@]CqnF*qg+RS Yh4mHHOA^/#W( ڃt6e< Z#uT^b+!ű`chä2 Z|w5?[b$쭞7t_234{TwDwR"F D 7Ai8ӭ3q)SV"6 TmxaEC?G'W؈?/tޡo[#lGUPl dd8CЪ`t*I/7UHjG V&w$I?m nh&ۺTƞƫhk"wdZ&Np8cF"9ݛnHGANs%F]0YR@:jC= (PP.[͐K"ތCm|'ЅPnR{1(a{hޕۤ@>tt/ nbv(lHl:oVZb n%ևՄ}P=1%hVbf} wr:س@>AB[ZVNJtk֏#^qܵyOTc(R+VK< -wPګyXԡU ]H:=Rj^bN= 5.v?cቨATQ,VBW-f wb("e**B_ܽW1UX%ƉE!. (Uwd]?]1HXe,֢Ho?$AV՛z V OzoEb;uG YEi-#=O=k~6v{qV ȷ-׬qKVp:khlfYA80=ehzw |} -1- ߟNo.\ߟ]G4I@ W;6Κ:Y*g$钩A&]ǟs~JWt Nҁ`QWA-zpP"׎R+5ZyZ^5*N;YIV͠|"uڀ*'}Fz9 _v<Ԧ1m ϪLe\0Onm\Yz(o'!r:DmR~Uq':O =nc=[Avo^ͪ nxK8|yaOտo"J]w9C+ă[W[xkb//ZIm8۷~ 䞧BE (S_S#Z9|+-^WhWGVACD˛,2 l?md_Qn,fgSLHgCdB7Y`HEm/%g^$]r1\oKW݃$qwh 7⹼9\" V =@P0jĠEҡ6]—f]=|x[Q݉KUB>pAOesUKbw +f CayF"jAyEf8[k5m\.ùx@{G'jOjӚ܆s9f^- Zp7 JkVv3iC+DBm5E-9F&jYȪ옮m wKU!l2{5|V5蚖⟨Ž8Oaj|7& q0GP/,^;/ X\W4&;aG)r?V>^8WkxU -]=rEYn+\M"ˍ™Oi_Y֚ՅH8G+o41.WRbFʳt#}PH2Ƹ+<䯛OW:D,qEƐO#eP[ᾡtg i:c^(v/w$vpgn'a r2r xGyA22SJ:S};ޏq@@yMQJy3vQL㴴vC|qZ&7' B8 ]ޛt5v?]r_gzBkI<.aG-Z+eݣ) |0Na2fc=*py-ޝVIKJ-wUc4 UxUT'is2q$8XnAvԓ`N9ĸ7\XU0šNyR'6PHGsUu73_QZQ +{H} zjC[R ~5@ۦS{<%L8nw`mp0qwN[xe0ɹ~Ϳ퇛^?Vh۠SC'Sf">Z h爦+"ߒɣ?O/qzD3Wr v\OwN ѠvKF5Xo3k_CħƵؘ<̜d.z j>dEU"akQyKR~2':p.Fp V\Q(J*Z :UR-j$cYH\%eZ]BЉRV4/х Ni0gt⪤0+D[-)kMKnFN60lm˴O\K&u@W+3+=֫+c)L5hwށ~[7/g#ޘf@0ܟ;?33y+#Y݁'ݽ~#٘gBb)U ~0̴Ly1Lq}=a!0mirw!=0c b-&KwƔ9P^~ 1ZumC4ҖBL1CFmiq>94CkN߫ԵPf,:ƚյZs)eM`7X\5c9Z[,ы' 3}c=G¦7ѣ-_[Uؔbfȇ-&=8{D磣y\zh\|GuQuah"/[dC-Q, ²pˢscþob ;+ N KȲ4l'؇? lph3LgU%'Д_G;ɞ}%WɱWaYeF*Ml3ꋶ.Ҟ<دJ(h~\O Tj>z2_=s"6:.J%FZnT`] l'AFb"P$߅ޡ.1?Y[Ath_px_/7drhnҎtxp@+wdY^y􇽙PgId:΢I5}F3E`ŰqٛI,ǜb-@n CN ӰEq6Mr =2sv ?ch] YC/Wn=)Y J ?,h)2]ID\gSH:.Rgw1D0-Gҍ}(u$e"O'?k]m+3-Ƨwʿ)yf ~lɝѢ̢cAhdgb0_׋'qFyC픇B>}YNA^"5;m]mߧA%V &Ъd;I}!+ (x3A#.WeX]qEdsqՠa*JX]ֆiyI)bK&&'UH,'iZ13YEiSb~ 1I)NԶԦ$cJ07Iʑڃpʮ\NjA3m/RO֓}$F}䔹j>͍„_x<%Hezc(q-a"Zk>?͒([&xA e,6i[=ͼTӼ˛-U#DOhx#hZ#1-,0[zGmvVC7juU$/#[jj")PY/sκPN<7̭Y1Q\QPH3G)-G& TYy[ڋ.̫{-HJz-*' 7I8|o #P}J55\i]qT'IP>@ibmaBu8Hl+rt' bAXdWDӉ.Gbۤ?6 AavK>#i߫MƾMQھЫ7;ˁ oa_ՕS0§LuՃ$81Mf.֒iYa]1{3}SJխZ|?FzRB;* 5m.7ϙ{1$V ֡F[f| QIG$&mkyic˨W].>yKGSP-r={ʁMTȈ+&=duc1oVsFHٻQ*B=V RF25g=;;UQj-ZEu|ip aYѶ/ ha>)a۶jjPچG:*ffOQ[}UmCVjLWJ>E_ @UգVWS1rd&RMS~OjW+KJ'f n~Pח{ y:LNn^EJύֻyfT7_DJ:!r*"ZrosdugR%IeUKi5Oڋb/^L9m~|h9v]?Ͽ^Ѯn8'eeEڋr n!wc/%6>tc7]~FtZtEej=#}e/'!_tbØ Bj~0{̰:|`0X7_VDTzn|.-רYڿ~0/kzF} B }:J&6Y}am{{5n1,%8J"Ho[Ua4+Q҅e Kֆk-{dam%^^ AWVU>ؕOnDt%͝>`_W[%c%ݽ,g+_%hXow%]8uuXu:>r WV.c.rEZ#pg\&\&!ftVPu_3C>BBT Eݟ+\V *2'(6`qP`cDO+Ë%/z ?|res!KRʅ*Tb_/Eɇƹh\:y<\m1ۻD,حxH>.'Bbd?U4CΥ(|~(gUOx3@< ~N ϒJڬ80WYo !sX:WdYJCZW E2Z8,Ntű ?/7B/>PU,p%4oL`VQC(;Qo/Og}GF7kВ}P"9DbruS5ݟ;C_ͤF`+laVy!{I9h(Caol7cI9LT! gγ]Ƽh{O%R. oL3EoK$;zګCs|x0 =[c !鉤KxunGOf4դ=KiHo$<9g4mzR6!d#/;z-D{'*Ym#[mUOӟIO]WмmE6\USvZ[HV2=u<9WC&-Wv}hFp(}گޏIhb(29(^ "AQ:O[`&`N±)BWDMO)m~J"]G TODVMZB~_|>]|xV/!7\>1Օ IHoqJХZ_:Q}伮>篛s0Ά -f_?Ťh7<Jlr@o[Giij}݋pQkR^C/zԽ;˹|dqln^Pb EѩS;˟^0s1FDQCEwl\2n?Gߣgt6xgC?T=hy!{ͺ=)9.+Q THll,*}y.aKuD4t L_t0c0Ӝg ըl~UIձdaMR 2겮MRĪ)KD u)f|aٷ-h6T,QˠZ#i~a`j*n UW@vđ¹Q6a]~E [|!B2*%h++zPWMT^ {{Y m7B/iOԽ*wn59_ۀ˞;Fŵ-=9CLEEOS7l2T3hiRPguՁPoԬi {VES pUvs727S//쒊KwS,V]KiC1 _eJ~TL`UtVA !cѱl_f_0~W՜e'Ū^-RKc5êF)1CWV6^MO~׆ ;#EXa+Fةzf6Kme{sFW6bUVĚIĊTEӯ=[`1O8MSL6F)?6lWt}(sjՓחH|ȞEBp0aD P yʥ}{j咲,t۵=<+WꢁEO+V䮣sVpwE7()+P+'tP.-_|es#x%}ރ+jޣ)GFG["3լVze@xච2I9/R`l>@9[`~"zrhڼPj!WL{ďY3MuC {>07j#]{?zuÆ9ײ ~rG{zh[hPk{aMC YwAJ~Z(m`a# k|:omA:_TQz ,UX-z&jBLs&d!v ?}mݔE['y<.|ݎ'J'L3y(tZ8ur(\DW)f 梃=䄻u5zYxDWʇʰݬ>D3hd7n~_+|֝癈./)`cko+0y7lxTq2o[8wy;.Yjnnm|ٚ n4P`kIߐ%Pp>g[KD[%,~|O|P Ph =[La8t6迀X6%Ϳ gvE%ɰ%]r滛J!.ڍѮޮ܃*jkw[ Ѯ?V?,CY6@f'rvr"}Qx"gGQtU'![DB}~ \>eʮU^$ [#~$(Diy炻G&[!gZ={3yuPPޕW‘EmΧJsrCV*n7I9(g!ڢ~L"+ډLOơۆ? 4C7d!u%v(c5xetn*%[rri8Zd^]ȢҨc;=3ѼNR!D`pGqPi}vCHw"m1H^E 57ruyz~}u4Dq- ˇQwtX?7B^1iE2ӱZ]:CZiL`+Գ 38fTiVKڝVO~_cZic1 _M= Te)Y%IRc(fW0U{֯VIYrU֙JMc}ːגV;O'N iQgej<*HZOeU8٤ ;ӓB2y߹]ׅi\/,;^-D #Je=p#r>)Y=@1}> 2q4!OE1)G>ӵL%PΖDf{Rz=Ǡ S`%^)E՗LiiV+yؼ ulH'(01ߺ.Iu]RJ\syتICa'H9VuSo HԛRYi2I ;j 5,fڇsbwLsodDDKem?C'ć>fG~t ~91sfQ]2EmjpP%:GDkPAe«BS/UCg?1*2z e]R\]CۡqO1.auw: JvBW7OZGULIC'~ u Xd#>0 O4L'*}4anI??K_VKLyG+i$*zuqMMRho4% &[=*hĔ&)M[3ahhvn6Sɾͺ2H/Z{0#5ȳo7ڏfFVve5¬+pYŝfXwQF̬RnT94UፗC,|QMA%@G/ov ewRިwZM}E?T+'蝵} t{3 Xۭwvvrav j [ҎޢA=?]cfk3DCy[w \uQn=}CiX3G/d6}7iB bbE:n!#+]?ad1i,O!PztSѳkVfu'~w -f**]\)Q-UKfn5=,Tr)ZL%_NUիg_R;iCQ,3Ȝ.WzMe5j3 wk<9zߎN]4R[iBAͷUYFO3g=oDۡGB('†$ٿ _Fb%x\o ~\XȸO g+Q;E/cHrކPAOgqmcV^~7nyarGqDF>;ͻp9 B.GSs .( Y?w\!Ǝ*ڨ؍0y',|O(38-Ev{!.t+BT묀&yF0ж pyP񌊦YPP9L;_Ƒ!(.EK(5,!T4RobVKTm|h_ѱd%J46.#j-H`do&oA$Z;ž =cD4j IU fB*ܡ<}z4 ue0u-zCA&o`XRFF܆sS|*叇>Lx_Y 1y# ѷ=y{5J#AW^W9o\AUZ7۳M8ﳳly2tL-OIoh*,s9"cb(sȮ,Ma-Y%{H(GVaga1uzݖAb~4SpE<غϜ9])#lF평{˓!-TݺvRDEh=ehIrsaSqbd^]cB:+YS0+:֟-󍇜+d1~hEBF se$uw#Ќdq|!bn˻kF.'xؑh&uۇLA^0-D٣oC΁(1Qݼ2\sGCn#H&]H#1…tʴ26VKA8wV]ΐ'ռ:w[:E s}jU!-qR M pOs~4Vv+'qpgCU8*6ڵL%8vdWCD3#H=Ĉĕ{"ELBhuQDO&gDЦŨɡa/^Cn1uRnh|yIC: P?Ѯ )Z׼'IJ0G(#HRZ} 5sέ#}KN}G`J-(d4'QoԗIVy_K5Y?܃f&NR"M:ɰhwZ Af 29(EH)xNŕ6MpKOR氍?jg<8iCV\s;ib}ItHkXnaٵ9 ԯQIQg8d XH=913+! /h Y8+ 94߅)Ծ~N ha,W% v/A0_gmUsԿN3@ r,3sоL(^@RNh?͈9wAs1< Z&G@R09+CJ奏B L0܏RoN݌9UaоZ|ucʘ<{۶Yaޣho͙VB]a{D$dz 6?jT9F~{a7#3~*W竧h^yu[@ YҖL;%v4Byu=(QJ6Qxm93G9ok4yvRK3֝.N^Z#mLR7[PT5O4f!?/`~;F_IN=\k 4RHcQVKwrXhd恈E ףqhƻ?nYocYE5m`QG [׈op'eoOwhḥ~26md.6qO5 ;8e36mk+z ukD60jHk䑒] tڼ(T3޳- ҵ)Xg narź]<m* 8V_wIjn cBi߫[fI cO=?7Pa.]J;9j;Ќ]rly|=#z71QۓhWXtp'Q}7ZG YSC$ " 's <Έ L˂ r\`U1C(ǬN Oy{k\09(WŽfğgrǪK}׸ D'[ 6JL:4mYw^i.>_==iS%ƪҌ}KN)ֵuPoЩt) G /l'@(Bha9JnUih7اNWPT0.GoNu-Eo FKφMGRYsk@_l0/GYơPiPrUƹb,&?b.YZhOhXRΓņUg޾m= *k)Ňb =q}(JD z@| {(EWw ¹J=gr24%z0[gDǴ)? ʺ@Hw=QkO'ѽIr"287.Q33$PZNb ^J>4 . Zv$g(QZ(p,Q8o8cQ(\3TTJ:]YyC+1lxbxxZeyFq ,m<, xC.ϠZ}l| ?C\,o( 8TzUp u,7( >/U/y]x:eV0u?ۊq[ #M9 ˡN]NmP ytSZ$/PJHwg?*rR? .% =+ IH7?zR1kђШ) $# jwhG4^eU ?DFD4-;}7RA?bb.a֞m1Zj^#-ƐtD4ag{vJ7(5p!Vt8&yw(Q; JMR*:w}=&"M4Gس轷]֔ ^A$MUE+/ϛŧC9}`1z=™s$ŰC';l<  ОaEҸ%4XGw|&ǣ53v;ݝT@ OJM3xjsg 0sre>Dΐ.8&w&\iHz̻(RVYjԇ*#|DlScEA`.$>|R9r^j87Ri:,VEA7&ckt4gnU@u#h3 Nx/H8@j]x29YN,ŲmshTؤ-вnHONTSiK:R~>t.{f!]߳sy⑯pnQz`܁aEV̹~tʳsHC!|`d+i'N'(ɹl} LzH<͢$]PID6{ܯ? U(sBU~wo@QcvιpPr?Deh{ \L4֡iLr}BP3Qtg8&\Saﱷ`{{/IϚvJux 퉦svE+0/`2 h2d+mm'fOwZvrd8u!ݘF h 4E7S5xC BN5'K &tnc0Q=սK!#zKyRFݦRjq-į2͉B`yR)#oD~^]ms8‰9EɭJ;-ʼn ~֝A9^[SߢQހW@Ynڧ5H.~}[lrib?mt;]QgnIzn m ܛ]6BY]Q+ In<Ͻ\ΰB1wՂ9O:Z5,>ȞWVjZ(;Cݳh|n go`>Dyxr_hjn񰉲{qM{Hˑ}|%y]M |so_jb(EDj2 pD}]uJ! M!}P}_' P7q&%g/~(LaSw>ޤS1m 9?Gr-SԐ@P߆vqß>lʻ>vM'Iò1qN&;n%׆st9Ux-bA,.kpk*:ol(BFs,3/,m&us J^"Ldэ"*./.[nц9s c0)  *Mpw\Ɛhf})jлK'afgB$ӒJ 3߸`co9{rO.gwZE3c|}?"{er={݉> [z7'x+M_B/{CgD 7',jA}6M6)x !=)-+$,|7 D☗׵|]2΀C çD-PJ5lj"iஸ{m:\ë*M8gˡ0GG$J]w3Y{st?t]j-mS.mV5{eݯ~Y0n Sr@+S}ZVu1uQT}iR3 s{(I&4AAҤJS齆*]:z/  %tP ?/g~ޙ>O&["'sBpW-/ ٖ~қj1s.߆™oeC4-Ot^p2em`֡ڠo"=Y G[orCVmhIpw|,6T?1Cvd*~ŧAl([ ' ȃ E?Sh?<m  .8>ay`wsp|`\Dup(>^O|% Au{JUy-z ؄஄޼G唤 T$]cvqцR9TxšM@OcPv#^%A1&KD1;x-Ds5ݱ@oDWE;vC˕r e 4pm&ͥV=ݔWd)Eƀ m:A߱e;i>Ӎ l^$!٦h\>; 凹ƄgcLn_"KcQe f(1hEVMr,($֝-Xo _F@!m~bu+SхiKS/2Z@ ̳xF]s+ n<$Zo6NwlҖ;ߍ&'9etO`?-ĝxD+.!ظ=ih̬C!I"^A+'ڏ:nS7 L/k⃄@y9V"˒*8ofp?R-,͑E=r?\u-Ї_UL[j A*(IJ`Muw>D#_i1hö񶰒M&-wwKhLC;C%V=EF'::_MS=:XX_1k!&&}_H VR|s_'KVW>$Ŝc"F%'E%$k%zN># 'х9 [>'D?Qrex&IZ+QtՃZC6ĝLT\p5*h rArDvPۋ.PsS[,ڱ!̰)MDuʱ}\3לj0 nIV;zG Eָ 奦6.}Bn:]\Y 5f,]N(mG,}bi0N_q-k gt +E鉹$oBy_ \0l׮Z~F;>ؼm`K_521WU߸:ۙe9f4D̏B)4a(BٍyQ^3; GVܥrƄ1-Ӛ]D{UhӴ>pGՎAcW}RNi)ߧ=zj00m;*ݨ|NNڱJm83R"LDٕmlU]klT%hmQk`ft^kQՆ'k03,CɍQVU{szXp빤=V7.m0Xj!0<)iKU2Q#zWVWR^bTQ' l}띸ln+4]]RlԘj`&TzEfbNi3l!jQQ R ͉v&~kxglugO6߻jPcX|~vٹY+5jXI/s9^#.|?9*8k^t.^&:tGܞI{PnKzfZ. TDeǼ>(A4v EV PQW^/*nTrOC\$ˢj/?pb+{ ljJ1 fAMmCqPsIFnykQ[ߗ/47 dEľEfj|,ő/N(8lg߰)Dt3+P G8kUr`yG'tM*W{M+1qs &v#A5Gʸΐn޲t%P|t Ҙt%45zq1dL'̓`(~^E 9Ǹ*/ToWq}U]L35 = -*f5YE&)RX7W9D!m[Y~-%]mQ7Ge^guDcajw5k0j7Ƀ((8Z5lGLFG_i`V%/Cs`jC0T?8-4T\]*s CW /F}L(`1_8@KI~RS蔩VMb3s"NCKP!UO5%Meve\j$ Rp4%WERگ2)Xg~^}%Qr a_TۤگqLC~WS .*]mmYަwԣd tn ˵XEC*ZWQF,Q@O{[m)vY}GKΠ.ko5b;TWVKZzww/RiآQT)[||deEO}(Y9iV5O<4b=Ii@\swA^Ac6 'h*@'|貿 gQ]k?- MXصZ-D5Ü KPԦ1)u2߁Umm ~Į^Rwb6s1kmDT/ߖ!C%|akXT׮ B}ےFy "+B>ai-˷%(1<1aF5%b:aZ)ZR tS3TdL1c:,0hSU-Za4$Aze 9A^GVQ)J@Brl@٣%VJ IU:D]UUZ G{K0h 74'ҟZ[s:ZUGU͍n v?|e)zstk{I*`i#(讥|PK)d(70TжXA)TKADIniGlm5A&jJ[-Q+KAgÊbrѡM袖ŴQ/ _#ַIz)d^ _[vAImɗR|/Kk%( 9jD?C+IH#Cz%0|waoDK!.b1:)pOs9/zHBF23 FVꀬҗ韄  H$j'ȋC{=VQHUC=gX}(C}Y%?OehO< ğ vps8$:*V{6ANGO۽UYct(y|+ςQExlkZDb(B'XE6̢(XG76McA`){0kh!殴F0B.'d3zfUGOcO#e0g4hs [b;@ :KkDQ(@;lFX.G`ҽdFFl۪^zhYFHT^6ʎ*wװcwK%D݋zJ2Tt˨6)\wCzJ{L$lqOEyao>T}OAt-{n:/#4B=n_}`ϑ{n[t(:%{ KNe~G&wSӢ;* gq\f;耊EKh/ql߱)¶MFܨo6X)ה; i FN9PiO&VshYχutI@2VoJ)욞 uMg[# IMz.:4-*gxq( 2/Ȗzu=UDiz'83G[/RKmu+p=q_u@2E_HyQFa:l';A@=Z[gG=;}K~?$Q3B¢{I;Gt7_x phC$4M1d < \+VE!TVz6{׃Clbalڠ> }hQ@S0|`+A= (o20=_I/+-#M-AÆS)_d)n%`4!UR}ifd&;eUdQ7|}M|w4GGt"`XcUDU2qC9;,Ha&,,m~ RnrWO8nqM<-yeQKd.<.oQk&FI6Ν5Z`wP.OKg/*zA׆SEMjERbeP#TwPg<-KEZʷXY6i)5it>OCtLp!='K' &b*QNg35B .'V(9L3 nLX:  F3l)=f2iyb8W(LA1-(luWk''ƙI\s!.s`~b\r ȓ i0\Z3Ra.G|Kimp"hbQО8;ý1S3 זfK!SlqݴQ=%P6~5m/Ҏ*O,iF"OyPQ{y6[3M1D,Q<\1*kF!eʹ%ĄmAV O΢B5b1鶠MNEAQ2ĄY}xsJ'oe0ylViġu8!yrG-s rau?j[+H'LeR*ERxr)2qE7T͓*m(۴F(1O:(hR*Q:TEaX7߇]usŔ HΣ)ur}7µ0cz.[ujh24ٜ`[^ kۿ/@ V(Ke|  5K 2-Eہlu 9!-n696'馶S3ԇE,R觞{=meq]Q5deE]qUfA(Zz?0]ŧmd=Q=1cz*hCMnΓ^ۦ=b!y)/QPSYZ S@ f.d?+GP͆-QQ+]ZQɺ=BC5pBEF!%} Vs*P_cjEeOpkn=Fi.i0*:gT6ks0Es)i5g(u e1ųrԓs:Zk24Q6gm[9[.:999J%h/?GlBb5Yh_l}H'a%C%Qͣ}4RfӫK!`jpDI|ogJB/DGkj$*(~(*zKMAJ/ Gk}$h#=rP~"?[C}) rαj+I}(PAj0v7'1(ޞBQ$Vuרg%? 9S;95AtZg ?|%8/QpAI)ξ&huO1eo,J,S]*ZLvyT[L[LGRhQ4> $,325RK(=bGG.<9 YFx8Ti;Z#vh2Qe22;6RKz(vlh)8{?ƃeݕI Bz TS2! ޼pQSM*O3{ Wn IsKW XM/ɻ 2^R~>#$jBngah=a2$4KV\{NPe =jc}gr| 䁨X?B+|'qcoB=P95Q8Y ;Z۷D \Ss&ړ-7Hm|.odΦў蓝;o=;}a T_{(gq`Hu=i`@ "ЁY.kA9Xl^P Ra8e3VSP"ir#oP0kוʇهE"wz6?r|E!G?RClrZ0FtƻQ%`h/ճ%nPw^`FzVz7vB<5b>r}0+,}GQ!nF":150T鮴@/Sl/5Xwp.蛹0һ5 _$)o f.zDZ,]G'?, fY>c䃥&Oگ챸s&;]ТU l6`c +dqaM4 Jdm-[TM_3A R_üMmzXp" 3Eia ,f1:eZBB%鞆3*+ZBpF |>[LЭ,z( P}%hֈUCEseiSߢgTM/q/- 3͗2e}2nچ:(눗$Z'f/S4G_;p 1OGΛG|vclQ ȹ>^4cy}29(qnr 0s\x27fw={ݺhP8q.ҟqҧhVġN%Ӡ0ɕ8\n=WnP%ԶK ų-)chEľOc"!ԩY UCex%HQ<ӯ?Ӹ{A7P[⤺y#Z|QȨl<|[0V)c=;5>KKs/:b련F̦q&ӼI喒K=6Ay2Y/HCTTѼs/0Q0hdDK$ъ4u/>5,^TKk^86k&w$0ާmf0@ͷJJm٣6o kli1*i*HURNn5yjRmi '[dc *vZ!Ut%0Nl3ͼr 40m<~kݡSAf[ӸkԎS&k}E`^SI]Z]hP-)R.eUƃ۫n32K9@žꜺѸٵ1LmA) *Q"q(4vA 3S4m5hE הh"r񩄂 cc~N9EDըϜ#@uh[ VQNF*C$YFXU ~XH􇘔KBt 7K{(qC+bXn^a=o%Q F+¾6$9zxTOk)FZ7VηkBs"?JI#ݒrX;"MaDw,,b> Α?4t e*N>[ԅ̶O z5t l8dO@|doj RS]akEhhm}8}N*NjDLX_Ah?PkQܽ]'ɐPg(5*Xfuď^ :b CkJw~/Z; +(8|tuG5^fǑ5K) WJ 8&(rL:xx)?#9qK#!0.)-f@4Qjz8ₛ}+R\l[Q$ǎ2|%( /) T&YB;vI!0Sz(. dz v̑>J4Rꇗ9WQ0XTr_M!`aR`jR8 hX}׎_~eGI)+fq t 68/g-_ *Ǹ;Mv{7Xq>G:Χh1>ƮPmwWn$OtAf4lHAK]CMA푇/Ӟ:<~ޓp(끺`9`4y'\o YI;Xχ[{{zOp{XO"s̩]8n|Eiib7 : cRW.+(ZfLHE54E5zmP rW zU b(k,di11ͳƕ^.|~%zp^WfmO`b垥 [\P /"KkKOQG=KA$/.^dkO@"uȆ8ɧMg:'|x_WXeQfӔ>~g m{:{:3]ɧ[`EEJG&3PeE2-[g ȸ`#>L.l~:!EEl&Q_%L܉+8a0bTDݡ]&r:jcsްyp᳂Dsmq[;ELLmF sys..kVARuWfB3LJP7jb4QbiKm4!apկ4!-%:!ZE )~kBki"\䛰~E ٻT'uQE ' K_٤fCI:Ë(bgll/E[m?[͋쀙#VZniIu#BIʃH@W6ptESK RʹwAaͽĖC?3/8\k}@g6))@rY Qq6¶ΖMr)=nq L%a#)LtIG_k%|r:huO-z\u p|ih3gtYZA^S , a݃,{(ǘSX?Sk=ZS耯@V Tgfϸ5aQlG8"*BpGÞ:X+**Hm4bH;An> /!QڣL&E@/$t}jRZ>!Q Z(t]%u:-jk1{j;2 ( WxA˶Bʇx5&EA5(N0w-n[f( ԣ6[nW[jļ(>%Үkqԃ83S0ٱEk9K|69ܾV<4bTâ.( pfn ׊-Zkp5hoYE: 7gި5sG+$+gz̎ sZ[p0,/Sb&^TX4n> kJXlW"4JHhj~ de+%K 3֋fHW:v5圯Td*<| l]ߟuJͰsyXBuk^wّd:b@ b^e|<O |~3$A%\(tXMvs<7_][¼2HP$u@~+FCerV0p^ Fbz}Px}hO"/ׇXVݝ [?-Mbe."<η #dTsdi uj=ޟa|!᰷XQ)C1[L,k!⼀k!/'Am*µWoDN;/p?orpA,(l4\-=Y3Et7pXy 8M99 /G F\c'K$d9SHǰ|'a5d;mD>7};<1(8>mL膕0#vns5 jx̻ 2 ~qdmLfz2tAv)sfa H8M&|5|H9l:"{ _"(.FK ERlA 'A῀\,R16zA>=D^h'_  1^vU?\p]E*¯y඄ =F ޺o@z6+یTtBcSVD6 h[뜺R~B)tO&m Ic1 G0ᜢcX;VũiP{gGv[pb^Dg^cYWwc*l$V0 /%=e`V;ׂ\Ƃ= xb0loE`.@i3I|$J) @P$L\gi^hAC/d HuzYz Mw y}tkhuc ,j4,k퀖.hz'5,)|>p/.}ꍶ͠:iym@1<;rX{*|%9;ټ18f@5oh,xXǂE hpXkW1粏Ye5%`jp:p %Xz)7e߳I]R_<5:q!N#)ôaNR_W,<BE#1y!̽5U=ؚ)m; 8oH[apLAڲZkv.:gBb#3rzE֢c^M1/kۗez{]o{ fL[=y+ Ϣ9ge㼋U c7jjy#V*#~SN|,oz:F =/@=Xk(9%1ْ/`N>]"a:kqy>kZHR!8{t $)+]ϴ~Ͷu 0틃Ao:^sVqo1τGI [nS9wT0*z[pu?w AĘc\9LuG*>m\KWCs|09«?õya'h~RXDυy#/<|=yk؇5=yvh;\L}=\$yN=v?9^nO”$32U~k1wߛOvjr܁Sn {lQ^'Oh162[^>Z(hi>!&1F:^`ܵН8-9eWPE%r(xwk!Q'sxa#p}]\}3]:%0s+QbX91[Lzܵ7FIu8鹰ga9/e;-ۃdA~ϥr^0S x Oq4e™1wo)ؽ &YbpH#>'iGާ ?HymQD3'O,|-X6І$,D20kR,6|: SQ^e|LK5ܹ9CtQ+bZ&Z#{]Ås\[w{)dI9`"cՖu{YoD?(عffI7m8ԋ, a¸a:lfͦ@AEu1}l{^)o@$ x+8Lz/*'Ӌd4Ǭw~f6L/*pdGc6 vdU^0籘qvD|bVB ]nnzBYSp,}/9om) _'-nC:<2sRS8lqF Y?a/-[|W>uˠg-9MHq{'T2/Ìad/)a-:8~kDZphL9oQ->K+=+VŅ>u@/pxnXđ{y 3bb^B-žu;YN*XڜCx!Xi(pNKl 9.a2ɽ˄Vwںŵm0:C OI0p]inw3J` Vxl1~;++E\\8/f MU]b! ,.'pMp|Cn .IRoqfh>px1-QH dE ȇD^I;5v6KORr/hļsYQjmuo` ,y[ظ߲hRt>`敖8 i%z'4>;mmwwٲt0x>LW80[bށFa~,] tn mW"kmXNg{J8b3`(=Kg-pֲ|u O#*VyqpL%P6p?jaGSr"'ۤf=8(u10/X} .$On bkfބ֏~^; ><WUB~@~Dlyng1}xJQn;tR.\ù9_Z: -V`g3¿ IPc#Zđ! $T3v 6q%@i%vpв v!+s^o]X9@-] Ȯړ^l|{S1q GǞۮMaeO5F|p<T]hSMaaq_c=mTxkS} t9A4@F=(4R!sS@$ AzapGȠ<j΍d~'Y0W1bʒMւxpy3v}%UKM&kC[xsPF G56zjKKx}Òa އ7t7z¼ycp}3GYZn\66z/zI}pރl.mD!hU'7u xogc#q]U.K#?Ӯ* `-2JwdmA6C~^ATL^U iWyRm=mt ]B5{w {уt] _nҍt$}Xb\/cvo.gv b-A#,HBxBg ύԅ0D^ϱ}I3 ć 0F 23, +"(g4d.ؖ4+<Ί_dϊԧ8+J:]\u-$utR3aS*Óp#a-@T _-jsxLW0g&c_ _ ߅dgƳMgZJ)c_,9o/t+`:c#K,k6[*)u=c,9 *K`Te:&\0 FoɶS0 0+ ]iCIw}fϗpaDm^fP@ ۟2l1VۦM~Ƽ^M`sb xaOK8 m6gk鱤qpc57a#;̀cr'~]Y ?N0̫GH^cU +z\@L]/FJ'*V|vLXv\̨RA5sYZR~PGOz0dwMO`ᷤ0As2:2sH]R*K!:t=̶d[uiȥ›So{X0^]dwzIV2@)RT.^.치WB K6 tDp8-G4nv^Ʋᡘ<'H#wW\: vl3(IPZSpA%wgFצGJVIyNGӎ {Á_>̑דoiF ɰ#!l64<$Мz ' eFhXd ~`χUyCLlilƳ|*=^'L{;)Z.ޓ%gxX @_iIGS%TLv9PZMbN?g38$s,TP~jI;ft`s*]3::ֽO0ѪUsN u4̵.G0`C3>O+%^w  cHح!$ 9%F> ~xH1p]?Cy?;-TuyܹO@* qsKaf9j EPse i& s͇yVS7Y7zoJqpaXgkBv ?ITmJqnz@M5Py%pM#ǛAmKqfu;]`nd ,14 ;>*8H d#I^̹HIS4PfET:" %03, }ܰ59'yl5cfrMH?m1'gau_j|ÿSO7~ŽC`;ePpWQw,NUF6G.Sl'ݒ&;{0k5U)RS(?-κoU8ЖYZCB gH`ZueܡLfG^F[pdl. n Mh|+QB=e?_8|-@VGҙQP=_ќ V@ј,ױpeX%&W7pHFD1¾`>Y)Yߟ ԩq}[%gQԲdEk(|2)wFE)2)pej:%6|?|%2;$VBuswC)!牶czmDH`Sԋ8 t=vH% [ $率yK< i%7{?2UFCjCV+/@׈V:GRSB=Ц#$JA|O'A5DNKxupH2>s G&@ëY]є}o}hϺ(u,$?Dw&e}YIO%Xje%/P{SБq⤠] Cv БKy3Ջ(ɓ)5В yB}?dvj!UN?e=NF W mi%W!۪H&ܞ?sdh4)G ˫D2JrNdJ-KH|zro~(3 Kޟ.XvDJK%;XCM oh5=;HzeI,Ĉ]^-l$GQMN28Mj ]b3wɶQOZvjWr"5g_Et Y˶Wy2j@Uxtn`6ሌ(Cfϲw/*2A6T.&X/w-6,R*8]/2_$nk[M*sE8YbL8$eh!N^Y>_GHxv48**e7濗H/ (~*ϜqQx\J+PL|T孺KEԁeI0WGt8QOVzPHrQ w ]]2,N_nDv1"\e==V^źߛ(z<p28v\SPcufWȢ"c}Qv7zONۍ_[$_|/n:AGCG&X_gugd/ hSj '] sCj7]B)RkY w_ z\G{eZPo@u;ZʔgW@S6(v0}'|HȻ0[aP98/nyTfvZΘ-M!R|m`gp8y8Xhl2-W}Plneq$yEy,ۺ >p%t`R| N2 [XR#H,~ ve[: %ϻ-r %wd- h ojjn!9Zdz81nprsjh9Mŷg[1J'Kv{CM/cI.jl7J#^ǵj=_3qG B9\PY͔s+ڳh2zhrV\9QW{VKB;HK3,A\|]K~Ҟ r=rYsA,]b=]OܻCztzun%*j8$>JҲGd>rROk2cTFOyFy۸WƜr{`+C+$eŪŜ3k XGEoy6ƛ%Yr?;jwvE=LNOx6W˛%ƪAm7.k`fÌX8TSZM ۩྇Y|7l-JLkUʼn"pxA5sTεZJE%LZBM/YRfK~H9BCG9 -bsBpsa6 ŕ:!$l*=& /$GB)Qs[tZйRJL=t~MI ŴVZ6b ZTOk5Mŷ"^dLv/zV7vns2vP=rUyUu|am`:W{|!dzD (;P>GXGp/|ImV]-x:~2oΎCe(m$|Ll @ 8%q^G0,4TN,JGAA]F?a+5XVαG?U wd+CPP`@l!oЪnU++;I gxL9r}$z6讹ײ2监.E ҪgxMϺfQ).eX' _GlP'H~B œ/j.g5u2(|I/bPZDwy % N&OHEX՞l[`m{˯µ`޷Y9MΠYzYW询q*R?帏W@vo[6{yOm T:=- o1K&h| UR dmX0YƪY#e~䴈v>143Y1d"g`v*h Ua:'@h/hPKkCXUJL/ylϓJ\7:+k-O\B;IiKkb>+"7|=["#Dzp;O j1 ?aK͆Grl`UKNFOw /AI%}3 XjEt lF5p^4u{O7J R^$^C}"%l<*x1Ih[1D'q '|Wq̇*9udwk2*ax;j+$B~`xx$3M`ƚlU֋a16h-ZFr~j5rK ~uzyHKV+ƒaAoz%*=G}jy4҆f x4Eci=ϻ>P稳Q)M!7J菚G TJL(Ed@w'*ToJ9?84y6RCM}%U-7r?7zbbYa|7UهZyWlV~L8`i[ǠQWƣFAYlb%~9R^4F}ct_K/ ("}(z(\Wbeэ}^q* j9 'Q[VNX^(Y#{sK^@+p]Yn)7ts<+AEmz%˺QY*A ={b!i=h^?˅l+>9T'B Z%O$sgA$UFK{zj|"?.gɶMtaUVxz;C;Y)F7tYGŲ/ ]'ܚ, nU|EV 6^|{vN0.#L*ԅ *e2B+rEcg\M[{(+Nc"GeKNObYeJJNJwOe㒓%U$_/Z⢒{@=A Qr jtKT@.wɫ4/B^%m6 )͟w~Z?m5Jf=>g!tz%|VVt{`-f6L.}x[ >Za'Q_a<\_ไ+ɱ:LjwpKGއv*ž|P_ @muV_W]WpGuT jŧuGqJuTA#Tk+qB=Gz"U,jr@嗴8+_j8 f$z NKi}pi4$IM`2b([eM'Co4$Bs6#{b6g򃅲Pn.5XPUm1DAuO  {>cfaOثeW:"yrBr4^5ǹr*zBo$ei;YsIcmRVOŪ7uE.ll'ӶoNB};*ɏ]ml4b&}~vIg!>Փ Јѹ*S?KU=K ;{x2H 5`=W~$,[@ݐc*,SCf:|_N$ob!tR^_=l(I(|$f+١*Py ]3O<1l(,jf<= [TS:=b:BrQ )vS-1OkE?\og{;'͆,ZȜv׀#]Lh\o;[ r1lolλk~2қC e<9tu㵱ɠ`ge 64AN7zs2UwdZZCx77P> ʖ il8%UNz&(GķjUalA goʃ2LŰ PU9(V-Ld3 *qd1)1(ȃ `gS`/8ZRN|虖&fOѿCt3>9{, z>͇E'WQV1̄r  iml?+ey 294WF`Y 8W%z>_팏@pܐ1^M-+.q7 ICG@-D:7`ۯb٧yo(}X>%+2Oi/˲o(TQEjH xo2Krdk} KVX:=1uCGw9RUju/G.- Ҟ'$vh̑ ju}yoܗzh*bU[`_p>*oz(lasٙ6W[kH Ŗ?<b[.8]>NE9 {"Xz) uX&=W/K\C Hge`i 3r$M]S_Jrwf9|UOeylr)6e&nN5LSi_qwXX)\gtakk ,w;WSMv3Սbz8y_*+xmgce iJ1_ e -!40l*mqI]KQkb؉qΖؼZbVjk;8w-(<(g3qB?X=MN3Atƹ^Iy 瑍 Sz]=n;ھYUL2֟RQyz^~+\O3vٻP]a:XY>ȸ_=s9*{oXEAU8C,7o$\»*(⫌gH ID Ae}hqdoǔ|xK=[=;]G-3?ݫNS D@'BP?.0Z렬mcg `C3a:LEinJ5VzVzkφfJevY%*el)Yb+ii3obM˖<ޏ^#yl%8-^\˵n5Z{~'#VkQ>;~ KTmVt6=}屒:_3>\wuYy8hKߑF^c4 Dua󰖯aSZY/Ӡ0gͿҞ\s$} wڳX§.;}Vq{[ᓽSp˪6gb!e~{/;&Qث"Z!pO[}(_[zpC[EWvȿ͘cBaj;@Fa:7cN2筲w's+#<yKeIkVAu=g%:ҞnӞCX+}\6t9H8SXJF -w]>l&7sΨT,n:z vv5f;5a#kC}(g9:lvJc,P̓ykC3 UG'BՃ[9rܵwi 9{6+)[gsrEmo3=ޖuߍ1?f-[Y(!lr1-F #cЖZX+rHj>9Psۚϳ$P<,rL J'X2XzYO@4a'В2 d%|> ,d={m"z;]DN5I3Ε[{-%^{@Ke ~qxSZUa?7AqOB ҝ䵴VXjTӓğ!=#y-Т,U~-#ic%zIlyW^+~ul'Bps9b<[ 7joc#,LW%6eZ} \wn>Blt 9Ee7=]F54^5+ Z s"@)R#82lW!5p 犐B_NŞy=߈-++2鯆9~I JAznۡ7iPhJ%+W˼8GGc;1,䳴UZmwK^řZǡY=ȪxQmWfd~,Љ'@]Pc=_J8uLn>Ҟ-XUe̛>ⳒuR?Pd*oʼ'QVSkD~Lorf+-r:N:KxS繛qٵвY"+4^28D?ð4!Z-G SGؖo:QCv< sq$F:{a+L} Nq4z5;5Oq W@XWX_3s^ѾТyG =~DPKϊKf`nBfaeZx߇{.J,3ĞӦ6X//)YXkr5F6X?J?~ b+֪\m@"`UHEbz^RLn@ >]؟lIg>/N>ݪzs5~p4VaU@.#?CW{t]υNGGG"LO{A}J[E5C.;U˰B h3O9jWw|gպC[G-`BO{A8.@x59]67|K[]er2a3,9rMO亨[1<ǰ0O#>^S5}|1e8ٗg. O׫t\}SoBޑZ]٬$&Z`V27U [|y '-RH`ءOUmc6+ϐd91ȴk5|GAӁ/o!\ٖ8*@9<ːdkhe7[H54|!ɯ1ۀ͠}zH_W[h{솨QYJ6m0w&qU ?E]2ɬ!k@^%/ea/qڝq5_5T>ZYk &S4f|b22D /o1HL3_7?72>&{4ћSOڄr՜d.o#zS{i M~(2*p[mz=gQE`,o⌢_vԼTqb1@UjxQ'~;y2Mh`U)-sw5GglԳz uÞ zk}$ŸQnʊ &j%[v f6ݻE6_@Z[Gby_Qz@s;žiVh;~ez0T zQ4gG] xͣu1ъ`fpT@v+=dvTdN~ u#t;ZxDԈjcvk4@.UF2ZE VލOQM f~ndɅ*!0@lF+`~SC(X2j7 r, ]vyjHt. !^VcQ|t{X:O/DmTր]heV]"ISY %# E j8zVEKeW9x:O'깞8 */THS[cPyψKUYiй8?x9b>&>j5+7悄2Gat9]b<{EF+*,k :$YLpzet(n~b>9Ysr<=D(eI>1 ÍNY5o]VrLg^j>+^y]֚ĖU^^e`G!ފ|[̆#q6Z_aIۀ˥$\*fɰ^-c+|- ;⯀G`wW@t=\+ų &f}~ UkXrp+ oO#":/KO ekkl1i5pf \8.׳],Cp8 6Xj_i7jsOg6=ۥ/[_n4jn5t|jg;~\ֳڏ]l0a7VVM_uWy?OMVHr5PzކQS̩DB៍8Z#.9DcvG/Qs*ዞpCqP|+.b<9b_niNOƷ 3Xj Ƽ3=fӳi. $^ve|`ycث8 #ex jsl+Ը]zOeL۳I\I|& sq?ݛˠEHomy`5?Ϸq ueZɴHKW#75T2?i킚JF 0VFRrNw{FKwLj^fz0C3a}>I' I1fޠlHT,~0lxi48s34H2e &SCyougEn`ᝑ6fX w{="76A']O[*y:B,YJXFBj?$=*<mvE!3Օ:<IX qbz$6+IZrK*z8xn\s aouðf2 S|Urx'^7 "O<(z`k{b 'HH?Ѽp@/qWLX_bvE|=yh^Oz|sZdZ"k7I̦S@H/u[܀{Zdnj۵;pTtFF~ynb}AoCv,06}vQ6/pgL9qؠmX,'iJoqf]$ι^ֶ?dn6+Yz23w,}JCpE0NLG9;~kh2p/'1̛,>鷘7]r#Ysƍ[_g7,=XU759Qo<-u+E8#IJA|3Vٗr`+3Yl1-t ƺ &ILt?Afqt zK#@Z0;^~7F5q" ~tFHfh- )y23hҝ&pE=0eHy.(i 2|CN624$ZE\T;j6S [\  3Hp"J+áȃFM"ȁҘ)*"E!vFT'ۃ@T)=La?Vqu 3߇]ɼ?27)u#*sX_OKX[ u$#bd|MGV2P~_U6(߿7ds-Qj@/PX@$sDHf62{(VWzwL0vPV bѹtr3՞uK%g Ҫ/\94 ߛmLm3AVzE+6+q|)L eaO#Z+Zqf^ tFO ic5WJKN-Şp_7{_Ĵq%wvO7>2^ثU#'N]`49yU8(Q f6 _'sCiWE#b(f\Rrw^"^9$sAIk՛.Pڽ 5[:v>^O䉿՛fHir;T^[DLՏ Zo-M^z˙\;SZ$:%f *MWh[qRXw .բ4``dG .u%[cr.QN+cdc%t?"c15fu0~)`Hޱ%KQ)LV6 ଏ=mLɊMԥҗ}Qo[roblNœ~zn0_jG~#%0 s-`y 5 A W&vY9"L#H Wug&CZ.6xjFO7׊]bLdyXm^4ɺ O'2S\ۀ(w?<12>|h84{;o䮫|l&h|hBx8e;1w^r>wQ쾂:0 ^R@E4[mQ Vw&'(d/l5fxnxϸ 'g1 `B~s.XlT ݗ_" E /]pnݴV3b1MVMӋ_„ Hنֱ:tnv.UvBbD4V`mlvՁ} u VxCbRFSir}b8j+fkS%iMO{bzbOA6_/Tp = jk]]x9)p=q^Ԃ#_uj])˘SeXoZlN 9%eS n\)?kt7{gkRݑXԂ}V58p;)x1k2$M 8 h=C8̓cС8 sdLFW$u.O+qIBG.;W2N=)2.&9x gǓ}襺kX-:JQEcODoXC+Q5޽>b;$@ z[ZElzUoQomw,,uz#tnһý3_lB?7FY'N %Cm"I_y:}Jl"̶\ZS>ɈtٹXc,逎mm,$L?G/XpZVj}}/0$iP̻Ov\AۀSFG#=0$_紕lgh憲k~ECwd[N cN`1fFvYAv9 c&ߠk ')1I2H}WPO (0iXkw$(|80&hO'\ ]c]ӑwX> D4tdMaG b3vh[5=:adO;D۩kl[aX/(D7؃ZBd+Xa_O$ꍎ)5`+X/ޡz=K0^hpCpS%첬}ϷOݛ^-f?L:hWHį:Xy;Op;LY{9lgjU$Aϙٟ3:Jҷdq_+Dw\Ag}Bvj.oW;kN#qؿ➮[3~A'I6I[ɣ؟l.//ʱ' ^hBQ= TO[kSw !drAxzG! ~W*74Jp'"p}-Ӗ޳D5pVW7zC˖%>cmjfdwsZV6Ҟ0kirR~6&={Ac$Nzy%73qI~6YOEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEef#originchk_tagchk_ref_HDF_CHK_TBL_702_152_1962_153_HDF_CHK_TBL_0,x  `ӟ ,=xl xU <D3 }* s)ə@ P3!Ъh}NB-NUxN|9}ɹ^;QRO8?: O$FٕgU (p&YJL\)6 ȣ*?I"]OS IXU/V|+$<ӕ^?߉ʟQ/9<1NNO\(_HZLsPF6 kP}1p8ڑ!g9]TjvݯvF}ڒ&88 p]I+]FkywMW_o\jr?H'z)[v娆+f$_8O;Gⓝ?77ɗTjp=9?:q#>*fƗO򥊙kϝ?:OLJ(Uڊd0+fb6^w:\㏪&އ,aɶɗ\ꏫn}cgt\Х/9tM:#IG*}+R9\vV?\& 銿v#Om*cw5ͺ]j{5>I+Vؑ^`F8FGRW*sbVyWFH TYe 0r*S`뼢 hwaRcɱuIw^ 4YC,9b6el2꟣`.f/ALvGm۝WXW9BBkZguj]oWrwd85̺>hcs!Y5]vp\ jXBR4Iw&;Wv$I}ĝjDU5"pggjh:V*k/ UV4}r|[?bv^Ye\V*mEfW܋Ot/UePr֝h7jNÞ֝_ ~?FGGmZC5jWm'W:.p w ktu+qaTNt ?]^=I]u5Y+ cΈuUՓ@ oeVy߳s[dzNBG:GBիcF۪'"߳[F>'{WO=U )k*NVwWO1]'AVh two'=@{1;4O}#1džК{`d_ 3)BwDT@HMwg@WO $<78feqH9. ~|zԇc|f c{Dr+}Csj BHx~]Sêݮc,ϯ]H #`>T{'+gv&af{~2e)ޣ8[ "7ƚ5M=ӻ˺+ =0>hOAe՜Ls=ӅkWH5=M;XUoc{l- U{R{{D-=ssVZ^ ߭v%aZw]8$V/bWwYv8[-A bQwKu^Ĩ¨wv%jQ] uׁÃva+|]U.RrTwUvV{P 5u9uy D5 }:jUvzB׵xo%c•s4q[ZZХ :0M֪.v2T.>򽳼jkf7pB# uk< TP[W=ܺ[UUVih:.Kb.TEȭST~K}Ahdz87G-o.. CnyZ~o\ =Xy/;2'կ?6VPs5e?j~^o+kRtlUI #q5d~ShV WUqCuUq8xnO6=fŪzcOXag<;az< iX!3k&CS@ 07j:$|774djnip[ iR$|+@nxj$!*_ >*W6jJXm0 }{8XaV`^m9Q WPj}' J=:N"8 =0 ?7G4m܁}`p8T{׈Gk0#ʲoxwqkA-W}G[rT3}Nh\ǬOaSE[m`g}5Us~^`#ӁM|ՙ<;h`PT/ ϶G`n6Z 8 `zLnn61| ݎHE&]4nC(c>Gz[.D'%̢EH໡p/D|v?fNPXtYҜms&]x.gH܌jzҞm5TX \6meB&cf?+ yZj긻 QQRV2[.d^BGKx!LoGK?7=fO-Q7@Tÿ]zۛ?mw,9|?\-wY?YlO!& 0gSBr~–պZp_ ^-euږgo~(nY+}Ǫ<ʷ@œySZ8 L00x\=Tr$ɡCN.pAu=a=u{sA h 4Sݖ|Yq{;+p3Ks`\ɗ`>(ԕҒ/VyK>(yWgQ܊ 3UWoWa߁{yRܺgs p18{d+9a(j_n.N WRRR϶q=.ljE'+Z8#0pgT]g_a;zD1 g^W|Zǃ{fLyӚh]fob߈.j=Ց9_Kk]:l;d :ݘ Q[הLud3W͵oA1C< "e߂j6t@sJdLkkF}09dS=AB̯\T%AڵnTgswW*cqIw<vEȑ@_V|qPlZ#~h姪M<%-&>MLLpŏȊw&T C™(zot&m5hq= vB ף ~ܨME.Դ+Rqe2#ٖҙY T\Y14h˕xc4ݩ'vƛ uYN''g*U 9bf%Ň땮zM E6WEk긟'10JU*ז|INKJ>I_;+*zNßey.Gz&mnh>bi'L&bxwv7W,:r鸍^C/r*r~eN;r;pv s Gߑd#k +.P7/h?1x{7hO1ͭ.h6c5tjڢZqLM9P* (-`U GtGzTϔ'u1^~AuiܘdSd;UO^=?_]zZPbj.ug~CUѿF *RU)G?ھѤpɕ Qv`hD;I/~â?X]Ś:kGFzAyqU'W0^/F[q䨍-]"Vz*_/P?Ͼ kIureCKBwX4]q~NҫZi~lt ӄk:kPv?j@NWX{β.W_s # cPy˜N 7ڌqv18S,ʪh\\nLOW'+(/X#W3T^{tk|٧)s;m4Un% SGc 3ƶ >D&zI?{܀2\ 1 25sCMm)z ;1'4pey1< Lj%n!-V>|r҇zi~7ޔ$bv(g&Zk"9,+d&M+gW]s&@trVVM^=fHћ֜3y"x,1"7yN[snŸhx?U~ d_{HdĸM)kﭽ]B Gxװ2iiûuORzV$-0~v .nԛpK=;9#7}e%'ծww=$v | k)>ߥ^E=Ua\{]jZ U^:R7.RhH=_]WwI"I2{M5 r+$ƒ,[FY=IJ.|7yXR:Ttji}1 fֺol+F\#~ֵxb\STʣGj&W 꾣õK&bCGhc*u{[BՁYEs*ִ~ǒZ}hKȭkHЛ9-'?T]D\GoK-ekQ/C[MG+4a5VoI*ᶁKWK_ UIo+[YW/뢎-_~8[iB Xڵq6S.4 3`EVUnLXކ[M`Lh>yg;5/xL- o=z!V^t79_g2j:p+PF'!.7w/70pn[M8H3 MCPk8&4%<V{]Wدlþbh7}yjGj+mYib`/dt0@KҰy Vm 3L0x +|SMk̳l NҔ~?N/+ ڤ:i[}4YmG X`Fc^K JTd\M>IF-X"&mpDN_Ub<%3_LZߛ2*=1=1Yj&j+u:8O%Nù L\ 񺇚By}61pz,X3ٳӖnRM⛇^x ]Rxnl{(큧h^91KP98`aƲh 鴺 : ͦB*]mORs 6J8Hmf捸+!5A_K Fd}}A~ԗj"=cF,޷7i4e8gj1y*m&zD-c]St^׿޿_-ƱD|v! ޿ew[S`{]|-~wj1HCWEgn宽XdvPtN+z-R+aVk/0qBxlUFFSyŹx%G<1hiv>?A_{u_\1:/Q3Ź.rhgu/oP^%a(;LՒ/QxvX 1QJ[%*@HC-~vlr{_X:bG˟Y +QʾOC?Ep~PrWl##KKruUMi^|:uO|>+uvpW8أd6Wdc,IM )k|J2l7~ɬrt!wݙV]bUǺǸTVyTVLULITkJhqiI؅,NW:η!ne֥ ؝%;'W[tMs]^4z*n:Dw8bT#*b fr2qv[A]@ pR`lu[:sv; * F7rd(YB϶3VUC;8e -tКf/Qe6k4NgNķj5UQJџb勎1U3{W;/wc6X[SKN:Y\Wb5OOYSq3{Ni4,]Nߊ/Ԉs憴mBҴ;H }7H۴ƕH0Ԝe]=ħ2E)l)WX5e5M%SK CQX7w8yzbfYՇbJ\l˔>dVMR2ny_V\S{ "p(b\1STLГ.VILSBJ WGn/k .LU2+ NSj9&j+v+n2qM)#Io}=v/ al,;Ͷ+Y &hP=oПֆ{f,͆J.2ª=ݤŀjrHIy%KiRیq\)o_vr4G< 9:վ/ꮣɵ6kʜt޾a^aGoba%罦.WBk)&ZPfPw V0Gn;1 &qk^%]3ۛIB&1$则sNϛҌPڹjFz&eCGYڹҩ{\jߦؔyWeO;ӺzYE7*T ܚNWزI'[jH,(m`AgZ񢴀7ԟ`փyAU2 F$zԓtxߵ|5z.3ne&MCjdm5( ?pK*ik5cS2gg5cn&U4L2na zeWҝt>+ %ǜ&M9SD͆w|Cqe Дl` +j `c/noaߝ + ijRϚ?By0@iQŴo O=wgŢmYt"6c NVɦ&_gE5į  iۋ#2kpFTHOA}B|c\)eRcn''T>Ӷ4GꟀ^ybm9W'"VA"Nf8\YP 7RTŬ(P%;U~4H["Ed0_e!i;J|=n&1[+ԒJ~B,RJ+`w5w.@W$ ْí%[HPgЬCbƙnYmWr]8`_f}!h-F~~'δ?yhzξ )zSZ8V9p 0)0jO:rUàw-*HWycM6ۥiP~uSyS`Ҏ<Ťc17>jlr>WvIu$*SgE'NCM郑o2oC?[2 7ܲPC.3Ep=MOs:zot:'kB 0WBRaX>]xN1 ̛`$|d|+zG3v\,"q_;$W 7nE}zl ŢY.$C &KiS)k׊v~ﶖuRRWPSU;b2p Ht6#䉩Ef;ed`Mqj:hs.s3iMqvQ:)$Qe25T8- N;P:6uUSu1ERerbߣK} Hm.YIuOJF,VtEi۹XB =--SrwFkcj'Y[* y>.̱tqˏwQ{՚6&S@? kͨtjO1JQg|%yzkqkGEh&WCu4C+mp+3jk'l_oo g-&[ʺ6Jb2ObwW;IOO4U +ͺSa3c+x*mp5v-AjTos|;Bb}5&QEhI.X wiՠ+)ԌD+J?Uk@i/ɔ׷1O i+Vr M͆nV$< $(6[jUhS3}K;ƜƗ@\Mh zB լG[4/5]d*F{fMsrL~iR%x NS_Iҁhl Do˴_L%Nqij  cBQ/iF狁gO]^p5^Di*#gJTFeAj߰!E 9Nw?k͡6eJ~Xol? 1[[В[K2W{Fܹ$Sn=4)քY3aeKͤ0b[nG xW9J#ŕX>|âs$eU$F12T-kP_mfbVbM$30Y>u =ޖ.3F'F&%k^'r~Qν B8'.r@_)|ӜcI֋R&OpϑZуFۅ T*ý`GwGO׺}vp,tU~I^p5?]EWYݧ굓nUi8uW<+ծr:zUVt3i3 N{UYKzf]AZ|M1\fIv1bN^eқU=I+tqTn/p?5HEyԳWPVQٸU`b3SqMdvJ_xF>W+xO:ƒkrUkXs }34ٱ] O*I0ƒfSZ:c7aX\Ogbh??UFmF)gEwI^MNI)X)'Iisy[$ddg"zKUcK;ɑv="5_@'MNk H3S' M Vіc5݄^FnR#b,_2M9T: *rf<$9Rz5VN/rtx>LrJ4Sd<2Tb$Լ72TK#}z%5=2'Xg*|%#Laf:A匛:~$YM3]-4k[Y)Z- oK;J2稅ޡdW Powh0[brz_2QyC?[i]'Ao#Υ0e8/E1xތkL`_>^}ii[rB*s|&{wODHE_ooY,O02m*9{[l'L[Gp@Z=2 1d#\B$-_߀N8 ёvDEHJM:XnanST~^VzuJw~1 ń,c'7欄gO=fq'ȥ%$dUnSkO@sj o˜mlg4 x#vt1S(+;QXIǔ&+et8_DZS{ģJהO5Iɝb$khh%IPfh'F40MMVNK\joܛ$3(%{k{Bq1CU8͞?!^ K 24vogbж]#I{ڮwќ\q 8H֦@(9ř%Iiz.ut̕~"ŨRylQJrٵQl%+W\΃)GǛ*s5Q)IS&VJ93xHbḎ?:t ͡cIqBu9r}?;uQCt]BkN5If8t՞1*i] 9;#W U!抗c Kh$s(V0ꎅi;O?aU2|=։5W9% U`ǖ "s6IՐ11 ^<#3ɆŦܙ:yF1wѭj4S{ fr$0ñ_$GC7<힩31iZhw"<@_D'X5] J>R)2ѱ Ag,͠*U(iF}+DNiVx"Gn2W-8;:=-V}#ۜENґW;.*㑫Ldgb0j1Gn2ݍPQ #nҿ6o"]I7ϥ3䀨%;m,J qRoƒK(3o"X&32C\UkTXI4G٥+sJ:&9?ȪL5 N'doFO_'B$ AF>|nooy\2]V 9Ke8=R,04íaZ+!&qεv璑I~p"i1T V .32 Gŏk"l:;YBge2'SV ۄ[(34j "aUɍ@hi},xI&UɌ<դz5gj O@r7SEe$&UϜ'z=T-a͞M:kY zYKY`Ytm$mZ"a\>y,3ȼ(S1s]ő~9SѬM^q9p{Ov| Cä P o 3v|f 69qnq|S%aCI$RO 0H"ɷߍ^n*/ф1|S焇KYBh;bv (Vij-/]elỽ BY f=P9E Ռ^]J6kZiEo{r @5C;_[8C[UY[GO-Vd-.8ZU+l n/HЉsw[I6 kxzJѱ Wݘ dQ,z5O(2|<XUA+tv};lk+2)}g °f}B d.qfV%|-|Y0dn J꬜7Yam]t^10z5T)!tҫ`p͟sYF9d6h-wSxfsگ=-w59$eHbL$}Lnտޖ5-LEߪ`˽2ql_a,L$nc\fRg~0W+(9Jkpev.(*4k+}.2M2iN ұNR&yy/ .321q)?0h1~M`V\( W'Əp"?)]uBT~v1nP{F& Gϭte{T8wicW>U^u8yxFUX!1ni@,hbTb8?wu\_%1MU?\I1OU~MHR~\L=qisr*/ZH2v~gl]S;-L9xR%3:{WCl iSϩz$ۑ\vWHJ9UF}Ɂ-5fodؽ2tdoq|bd@="L-aLfT+LRbb` S~ twG $Ƈs0m(o5l~0JGC)Ώzׁvy m&:&hp )oc"g 3b7Gsb7I=N}9 *!oO3|=b暉RoZy2[g3U9zI:;q\-)+T{\ӳu ܙx]ZĦrk0Lw]'r5/ƊyGʬdU̬]55*dv- }m_ڑӻ]j ۣJ{Tabk^u')\γc8Wʒ/_R;!{8Ȧz~HӰ_ $I;13j:zu$<2ei/w#3sI:bpo[wjzqodiIBz_xg{ݳ}֝VfFۅ!IAI~ O'>槲|)>:>nԖN?]sO!`oF\*dCmL[sX=2.)":ZQz+nvy׻(3tX=Mv!IJ7|PzkVn-ǭuhp"=~/;sD_+:̒@R׳CyϹ~-$峲@Wfgfv~b2{Z@geՉAz<􉸿mVM4)y`C'TC[B[q=:6i7I͕t=](fIkFm,'V[\%XM?jm}`n-{qɹܚގaukٓ^}lv*;iL'TYIy|eLƫep8t^N,YwgT|Mm$d Kճ6Pf>eql*ݝLRD) l ~B+RPM7=cn3|͍/6桏!|0x55 k|)ͭ2YL^-ٯG\g]$tJ҃#XϥF6zX3 tGT_MXAd1iMG__ivw_dwUoHKE['Z͠0tHb^jk>gP?XMϳMF>cR Y?hk^K-T\BqvoM鎟q0wT3t>&g|bbS}j.dN#m P~-- gL%uJ~5D/wVU-rw3fI@2W5 kK^!Z w z?I;,[!~n̄N1g,^!m;[:{_9:l dgc !{/UB79Yi=1}%3u06~;rמ=hbu@(ZG+kxGD-FBbAHR28j.9 M.ІNH47j饒*\|L, TLVvTΑ2B= m1oWu\ġ=ɹΆY'vlqh돮dotLI#/HBNjȉB5'a\'Oխ95!GV&kD}$yAUҬ38[3}WӅB^yz&@Hq0Ŀњ]yEB`tΰJ,Nj>ic]f$w6"1ٮQql\ݰ3)oѯT ][t'cܙ2V87RL(PdSd¾k;6%6YFWi܋hL"ql7\`:fe.eshk51 &tOI݋۹Ͻ_z!o;M ŋ.t{)I{v=]]P1-Z&a1\cBĴ]PZk' & 9I打1Ŋ,XO>mJΟdR!ƍ~lUpsU qƏ38'!2;1n$.M1I x {I8tԫ1g~t¸&ӧȳQ J2^E fGI0~5 [(~+Q]}?hqpS|X:8.<ŬGbEt<8hlX JvQtdf`m0::o }i/S,kK)mwj4}[d+J+j#K.^ȗ[Q9f%k4 >Yngܮ$Oû-Y54q򮿫ezij iElGR.lJp8OR$#6aUj,Hd=kX7%ȃ0v Zam tU)| Ȁbo .rVӁ$!$[O ͹'\DQ9h+t:r*jyIeW<{ÚQ/yʿK}l m>TLwLj$[8Ceʚ}r Znw#'p^ b0\Yp\Yptf $z9#,ۭ+!{?e]dĭcoH.~Zo]dZ=,l7?#Ų0f4Kc{]9TPqkrk\S,n2t~qZsZN<6m=-9r9 y:)NFM ߘw8ϙf֧ cݽBf_\h4ݫ5gVp..}mGSfW:̕ݛ]Fv,tVJnWKW FrtHw;vG&YMyy;js;mk9ҋnPך\0sAjϳv"r 9dڒ͏ytpat W"fny+lKQY܇7ݹN7T󸷵vDyv0zYw)eyvUY/kO}c~0rxB>[Kg5ow'Ȅ+*˞9SLi <[L9a|o/x_&W߸miEp;r'\ɨeX:\, MkfV__|M,c[d[=msiيZK2+#/S3,^2B;svçy^#(mp%MUH-TyFJr6Tp:̝F_yZ"4M5#adson\6ѻy;5ɛH|ҥmZSYO.OtJj̆M8kʐ7_-YCrlʕ,?۟SON(xw8k1GFDIhf}VW V Efu],Y5 i0i_U_oxfҸB(m(uvg]=oR/C,P+5q/=:"mjݛΰoӽ mOjܛv4md"uЌį8Eݿ5ZS͘+xƮA]3E$M|v%(wqj`!8e/uov58Pt2`2GI]t#lU(F#acm]`HQv ^a80dф+?#f-\&՛ kjMw;m5Z;3.Frtn(.LP֒{d=d edo;ga)z1:4)Ppc1+# XN,$Y*`9ۧuIcoS2`ʄ N 7n69e®z1ysB3;VhZ{Y_2}MVE2n:4R>m3(&t23C5,xaߙg aR;Njy.K@b7nM] 5kB,'nk&S5yX0!ȝ~ev'H!#Yٰ!%"7q@/ἬBƬȫ)ҐH&p2kڭ![F4t ~+hsp;W  Hsp%^,\8!#w޺R|rȬ- 6mN3sח( &€:|dz0!FqA?\bT+ߢ ;|6=䩟07*1Ik/;eXr:l#[حZnjtj; I"gA)3f  ,D6朿RN4YdC-1Ls?⌊_0 }PsO͖JST1 S&Ғf'EzSDW{9-9˄NRf"LYz0aWhUƟ&rZҍOUPZBss|e4bKpN]Ķ㵐9\@uaqFtPȑY160T(r5Fuw 3b܉9k"+.kVy2qv^ zTL}P0ZFn:5<S 9]&YMMW3ݧ8WqNM WV=SuWHd%3z=TdszjsRʭ'[A`J ѶVȥ]*פkScLkn F)]o̸LiI}ܧ7rm1]\UkS0\"DyQ+2 twU&úϹwHgYtd^en59u c7W+?c*"|܈&G7j\w*fgwv[N.ɇ;||·ɷ_h*1['&Z^z%LSʿ'[䗰>r*gtMMj}'a~·ǐwLK1v]zHڗHr$璫EWuHdЃiC=.x!kik;9+`24ꘪ2Z+`yt˧Mv/C/%hȳh]#z:m"0JiC[ኘ`x:K:"e oW[%2{yZ* Ix:ΗTtDO u{JHg"5+-€o E`(Y$٫k%pF9pO~ax*!@cԱbw߽g aGk\@gt2䒦 ƈH MpҔ!1sY0F]=DoL #}Jr*pY&HȮAHAcz,cpG t+8iTr.ȦIߵؤZjJ-VH2F/&Խt(]ύ"nB祲/P>aFIJ]'׽ 8h;HH+=6$g)؛P5Fc =Q}($:;GAEotZ/B*pi`z20T(#N:gizZY_ vJnA\=fll% ({$?s4W'7G[胦ZtG:/eaN1&x,.8, [H%LT򦀱@A%uSrT'nQw,nNԯimsP]`4(9٦ɛ6eT ُ_Jiy 79; :E j.j^,Z;P ,Z\DT*q[_k^ bS59-Bz&N$brmbX&!=[5.X+Yԥ=z) Q7~Hh!ޜgXI".rgwtI$KrAj Q6d7 jlw?nSK.I0T ;5.R: ᑂĘi:8'ڦ^*.;GͶԟ'6y5|pB_z'=%wQN)I.S!(̟tZD/g$"S?f`)!yÑv+8f"MA")atStCӹyZ׻Ѧ\;h^uauQtG3x烬;i-{kG~0^h=VbKw4Z&'ձv<%&GгtDg}waŲ)$1ϑNTQ`C|둰uvSOd`r|y'D[TN#1UNHJJ'ƂoATmS];zs f"]%;S &LzͤV'7I=HL}Cx tdi:!$3Qžgj3CN)?ncΩ&Z2 b.sSbu؁_bigL3ÙLWIג8 lZ$X*8"37VhTԭ\G ӝ qKC݋0DMpNpZ4:)b]ag]hq=T7UqyEN;p߃NYjKX>[ѿjuf59f) KE{LSƭ`趬hj%obuMWx 9>R4oY9s,W.3Hbu4$=Y_U-"{%~E$rcJ%E:HG>K❱g;-u^/((۱6IƄځ wl8JNOCPEo'LOKפ&Ri1t7R4JD "wXS(!D (W-<(q0餰EԪ^FgUf-`[ɫ;Z$|{\|/tsngҐG'E.9I8S;s샅j {=3 vFu/ixg=[ymTZGVAw ҶB=kj,ͨY3AZa쳻zL£ &SkbWRa!LқlW&52՗ +; ںI˃c 0O#m]Jc#Pufp}+諴FButGNs \,Oo9jof#YLoZUA:kFO_!צDhtV#u6i}+ڢC'>1{0z=::Rf_UIdKݙ6U6oX񱇑Jrk)~@t xZ.u( !Gr+i-TYDUǨ̜pwMFWNHp1)M9{)5cc`:N/i!S*,G+z1uL &̓<{=BlAw\=6_L )GnOR)Lc@afX8&6$y.}j T 'N- qfx&#v汬)lugz+dBM$1v6ʗN;ތ#Om,0M0ӋGh!aRjY$|w{i/\f/H%2eM#]$u1jZven(c3OmQk`HR;4-/s /e2F'Ƹ炗ٮEiYôY[P[GTe_#,ǃ*EHȾ$Mn(YFJv+9.P,,!x■nW&pAJhjrVp5SViB\8-&i\r.>MEoB*kB$TuN7^#L-Љ/FyoJ?65 Te=HY`@H|aH @:e2P]i!D35@3=q` QVqxD'7mOX)NBjtPg29-%0' 9}L$&DeڠI:ͧpQK4 3h>;`n8CNSONNHpS_ aK厖I'^sucPabgPI#WT$lJ2ʼnޡTpxD/&7lySsӝ: d?pE;[wo; sZj~n`- +yF\37|m?f[ B `ezip6#k?)&R͙+ye' cx4r:)VhM<ẖ`rb%2 MF1$$i b mQ{$4Se')fRkZhF}RxӎS$0Z)7[^7j-iX*686Ǵ72GVԓ1"%u53U,s=;ÄR\ÞAyu4\pQyuaû]R ՜R}R!j9KZ*s @>Is;:JR0\tJM6A4Jsh~ N+sR4BB c4Y'TX3Bj@D0*&TD2Ӡ'iVGS,U<lk"g* vY Lt2KD*t41TșlGG {2L {ҼTdS aJOR#"?Ǵzlv֬ˮ㼼I#\ $d]c*iUB=t-TzZ2R謑Jj"0imsF#]묑=JGwYFRnrΚ$zuP;'O+ E+\p^#1ߓ'isaeЅ%w6ܭ:[W͹\H3@Kſ6^8\j2 Lzʊ!OJíI󚐨.ɽXXPL'Fuza.R&I#L)FjѪ9#uE[nb&BSK)49'cSQk{:IP.HzVx]nF%ٲCYk+Sa'6/i<4ƄGAi2p&RkjoE5MCӬO+ZoԷnj3A5cik۱>7儒փj6 7!w C }ed~5!j"1̻,[½Xd8}4mӻ>V-Kp[5w<~?{qH&Pfl>hTf M!6crs4Nd?f8KI嶰LjYCtQƣJnIe-0/~`9c!d QCij =4yl ,]͏8Jr\eᆿ7'KJGNN* xq$Yv6 z .dI'ѽЦ$gYG0:$?B]`APvƘt3es>KaR+s "}~v8*bN $-t2>+2D-8 {8v2#:L{5rB4-^Np%ꛥ¥ 2BxIQY`707@Üs*M }Coq!6!:uq:dГURhXة9Eѧ4d7{f&9; dRN. yPKQ 3pgb ';Š7!B7H?$)Y`]]7ǴA5N oO ;^L5ɡH!_s<*)m-F 9 s0bn.v)rv`|kIk>yNY~?saޡ YLNSȾ7:`u'pmz$k`0ٹBB~+>H@Hac־ GK#lA8_owAi//Lߴ+Eypu3&vɏ!wrEX/vMi^"z,;A{su7` X/u-p'$L;&D1ó &˨sLc4 s`d9$6'hRYrng#EQ}۲c|L0H2uE6EG6):bqAgYTs%`*&t2E[c.>e"(,[˔rK:1FMϩ6]i*49NY;ietbjBZMH]j- BMKe`"e3ީ#Y:S/:}7l LQgrIz`N z0z,YS;J=Iylnb$2p5+'PDVCONbŦvlҧпa.$6dT_\ \G,OGYQ})In懙~fy[5j;]S/V)1kt+Tɕ.[ b~J]xL? /xkj%k:РT3L;s։t=ك169oeA&F*M/♌bvtvW>΃3chZzZ-s/Á?iYAf ]F&JÙN}G!VCFDFaNcT,@dYfY)G‘[Awqvf ~k3URGF~hU }Ng+Ò4J<2qVq$}*RN!6ywݑRHpjzil㗞!<@SSխ'q׻a6Sj9$McY'ҧr~nwGRV!'ЏXaV QVO0Vi|3߯V&J,-7,cm_"˔AvDj'0}HiIoxONYkCa R}l( y*' m In6c{˄ӍxMMf4^Nj=; 8u2^R>}FGN9/mnC(~L\!n:GƳ" 3Pȫؙ= IXER+BR&cLpӘh;޴BX42od jK#=K`FlcppIrK+P㸭V4߱hEp2I /0GL.*q/dw%\u"c`nwH>뱁ɜn~V|MʜUhﳋJ9 7й2t^NS'KH{У#n2,Z,<_sc_CzV=x03z0iF; SSb;ktS[xN^3QD:7&s3Ĕˡ7MH%8J@>":R=X p'{N9Q1+p+`&N)#ox^Rkng u3|E* nM ):?ƾ;q:)DÅ95'p Eu8 V׹3pS7h1ƷƏ6;{P>HM '}ź|E)!`V)F{(ҎBk?i'w5//"˼@|K>aIsՔЮ7PO 6wN"Q\IZoFhW녶{Zg*$p f0,o[mZ=mSM0j' 7v=mڦa]V0>Q@CrTFgᄠaRj37|9n p6b ́fc}HW:M^m|avkFz`iHП4-~== 7an3u 5}L}[3řW.V1]~.6{b<r>>/r`N.6%)4yEp$CgGC ~ę[{9Hɤc^,LHjOL6P%vT̎N =6vzR'jZfHn.WwzE/tMUh3,Ȟdv\;QBklLEdmWI9%W)O_!kAzT%D3Zmtfhv]U ^_7vfCw(HXcW5(zFUj7wuYS3OJܿ#՜"Ɓh=xNGB¦[/oaU1ʐ)Hrm,&;fC2v0JŬY#X CKMh܊[]qMt.,7"R՜a &gRfm䌐l|Γbl \ | rt!㣧ibhY"Y!nRNTxFvJn+]P#{Fjz;g}>O4n\DsM}zp 'ϛXB#a#1<܆1${<7#T[dz*M8QS4_tVlei?r!S"8'oLd:S#QȏT WCJVeKۂ&vKR):!zT\CϑŤEL]T-?$Gp RwZ w=fE^bɆ_-X"ȾȷLNT)+&K4rEF#ÅۓDO HO^ГQ5gbpLg 1ܱ̽AJ="i*"h.lN\U# &X1_⛯P .{Sc*9HpT) .?ܻziNhmvԑ,6awpmFd1DjY3 %_t 9kߘ&?^@U KƁs׻av,M( Ƹd̝L8[}.R@]Cɘ֫ntNG\nnm6 %eIgPh,W"i,y@==t_Oﹾ?}O`CS{ +[~rMx]Otydε +\_A77kw*~HVMd+o}XD Bep B TN]ڝ-?1 GB\k_׍\~@=t`=/lӕO=Џєl; 'wV^n H>ܕҋtO6'Ɯy]OJ&WzB\W@^d?7"KIF|a''"ׁ\D{X51H^ ru+3 3›旬u"L3 T^rQ")W~j$k[hٛ =3;y9Y?]CRo6n>ɅF$/OE*"맣 oZA&p1,pgʓD`K$ʷvvp m+;D/#݊DAv;9䶗J$F)=2[ d# x;BFU{ HԺ{DƁ߻?qu}!{rr `w 42:*:ȺkO8Л}ק+]@o99: \ߺk?']czӢD'p40 WMUzs; b[40XQ?a<1 bEn >^#pTPWTRu۲~;/A%  ;_4HrAvDn`pP ,;E}@umB.it{y `HD?[?V)~m:_b}i20@bįտd2//~ bihkRìZ~dفn0+C=vx_Z\~74v̕nEp}Ǚ,s_EŦ 7p~ jId@Mۢ\a:w28D2b&V3wS- S3R0 4jQŢ`3LSXUP1Ջ**.[g}*sӺXjMM`**ʢULjWϋQy"Ez|/_4POUM^3eU/y+mşK֪N+5~Tk^h&W* qjOEC iH%BU ^:>2Q *G-2@<XZQG-dUle ).ë5W\uAIQx&XUuQ.gHOV]?eo&|;U{Hx~&SuL5W\VM~{ޓ^*a}pq?TEU9V K}.)fYPY8?MzIA"`Ulcjȶ68i;|u߭ # Uy+ Y9%A >XWjYjG_>j4X}NK˾'rGqp@:N6*M- _.|)"Wϥ~f -^Uh3C,ɡ)`EW S?=*<"0G@>yxTcޱ"T' r5 -UQԽ]E S]*= ` W1xTͳZW{U^=dHWS]jO\ rVxN<0{w;X ſZZ呵yk [i24]w=;g!^ep+_[';AW> uC@tx)8xE>-=YQAH8x%Z9юC^3 ZOgiu[b@W8-c'! oX@4x_cDX;v }lOMPl{:-ĝAPo;mܳ'Tyރ8wKj ^}`8Qj'kC ^o;q@۹= q?K$s}V(p!5@H-# 埇cD1rhM̽ p-c8kNs;N wlQ/i>‡ ~ "&O,/?]" xE;(p+: r%:ucB=ݾHh/;]8ÃW#CSw~t7nwxp{ $'kXh'h;N;+ ^ t`YG5qfC& /[T;Ӟɞx$X7_{bcȓs%D{F)N]{WZ7E/6V*q[kB{)_XE_x{=˯Us]O']=s=w%[^B{P+rj7{]`[ndpxn M%):>;FjLoA|`VU[[T7Y; x9kq$ Fv5oꆧ$uPg.̾ƿ*3G#0:1Wa; 2P1V{SAz/8`_XV$px/xςN -j,w PjAh H.,[}C -嫦Z?Iƾ;((x}xf. ,ўSt-Z:*}@kW 8 st0pG!PIL8Ο?7|#i^f8(:?YqZvb5ogp}k`Ka1|7h|_) ݃I-bKSo{^F?==5"yRp?5T_3jf AkӍE^^QO:/E(*rnv|8^Tv3C .r6{QnX~xq٤l2/\y.O?_ML"[yaCHǹ.c/Zғ}t`\/~B`7ڣpgdOnqAyY7,r߮jkaù_@ >"KҷQYv'- U91ɂ"G:Qqwݹܼ v;z9K?Jۇ'obz=[F*/J+B>,~AKL֦ `~d:<.ղ?W?@ϩX̬,ǞXp"e&#q;{En8P4`Cu8z*e\p&8S A*ϣӹ#`djX;ǧüiXZ/ p&z K"/{ikF`fd 7(F-4qPiAoAoө5Mzɿ}9nnm}s@G{}6/{"8_s'>Ãdo_"807sЕ^﵃ Jfo^h<x?|{maѯ1KIrSEƌ3Mso`W06Oo9j L}Pjf|W?F7 ht8FoTuZN4U0e6zuxw Q)C0u V5_9Z`Ks$a}b@YJ͉ pCs5Y|p51 dHN8Θd>;ܺ#-rQ4DTw+^/gr )|9*a{JeYtz9]7%ͱB0{e۰{:ɤ 7m,½o<|,Y95utc3!2T|3Dj?- e33n3\5 dC/xzZ;hFѺlq;>wrv;`EX'h0ޫ8% 1"Sp}jx=V!}*R8L M~+g96\xY=ߗϘgVl lag_ѐR=Ǟj| &ޯϑE9;F ۵\BTǬrEVw"aPl\"2{WrsƤH4\ۗjUK3f6,6'4xc/2OV}rr,o/b$ꖋ8l"J1+:$:}y_xSSo(!}yb( -N-32ǼJ$3rͭ si5Åa©epᚖ?eRB#R+?oY2S>p%yF6Ô%Oe4<8qrѯpӈעRC¼Y@,tsƀ@ ּI8?d Ӯg;E= Ö9*Si0gzOgwמV\ۛ4yI}-%\6oPܴ$gՙ> /&Q&E,[;Tv m/|-.~,m3qçT hgIϫ,e,û"\ÌKY:Rbo,q7{.?VDv ޅr홪T<5! ]$ ucaC4ms,{o`P`(- p{ ly\ ><7NY/887O w8X1=ԓ``Ƙӳ>ρk׺?͚ӛ:Qͮ}zKkމ}¬yJbϵ|f>w݇YszqY~4K\fkWB0<gj4{1] o2FP!7gxQk+IsXeᖀ{%FC\D:> ޸~35Zo/3OYG6;9֢"'NX44`%d֬s4V>{y|ZNĄaSj[7{"kFn1;7V׮\+M]~[(I{$KWRIk'os>m_=sI';% ẟgt@{b uY8ٓi )`4+A('ҙsg+]ɲ20pfb*Φk11=D2ݙ98]1ӌirbsls ;8be:",ugbny;([Jiupmp7Y~_mL< TB5: `D?W}M㟧/Y)-˕5'p@}%Lan,&^@åʴap>NRdX'xEfo}DѓqG)c oVi\;6v+>O >bja\>OdԄ7ƎĎ={$vd4sqf4jfvr~kIwxtMh=B:،Y˴rCU<#PɳzM}FDa֎a ᚹFX|#u<#?0\eaGwysjiZTs]CU#˽xf^87,T21c4Q0 +,JLq8 ̨F#pmq6Z%uR9B/ͥіHݕΘ(ЁYژ惢·e_kJtip?kRd ,os_l|.ftQ͵:7彟Ҭ /:{땟x ɋs|u0S7h·i\ڐ\@ 9 +߁Fa2k7s'n:bśs6mSty-;6*mv4)3Kpxuq ..4^n{{e`UaUi]ucAP9vԪsqrg{M烁G#e ,aʃnҎCkݚ2ۂd=ԙXx%4%tWZ,wcs5= <ȵB2$km. o)̜6f3#S_CbռsGJA},VK{)ߴ,d2j1+UDj} 5{lI~6v}ܴV9Ӎ{ߖ xI%"af@Ѯv2~جRD=}6{r_GmU[53'5k~/pVsο˒?S4$=w] cYcPwYO492;Qgi4Y" #m8dr gwŧvr|.P0ۋ]֛FiDQpd/)N: Ɗgxr[7zWO=:2EƿfOkjڅZ+ix'2_ْ^I5S#U'jvctV2w9ngn kmwa-gggA2-$Pp)|g7׉Ü:ѼL{8oA)5qL]y08;Mυk0kԻ3KۏgqRAܥ";W w&»gӜ_dn}}2L8_~Ȇ]nü߆/ӂ81zd7ϙw&k-=SZ,_k7sjUN©cGd:}d: 5$dһ\ʲඍ΀h,UxS2_o "b 5METyBta\4>7qvٻat]&K7:LsQE}5"J}\Ybk/*{ ^Y˔j.TKS{)b/ c4H(qsИZz*L՘lPٛ5jɔYvkS5 Vv\V[I@.uWx.͝sGgJm33e}Xb7gq:hq,TAu'Xc4YQO'7ײ#x쎪dҿqC3%^jV)=GtoD%W<-3tw֩Wt'՗yj.+nC݈:14QxJhyn*eY%mMz2]3T'v;0K0_|ege2yUͰ-[ ̗ur_wx<]=7._7cwq:-%%>Sԣ5yhyѨ^]n8%FJ ޡs WWgS9.r |r,uKRw*Z7^.X*Ip<ܭpK>Yh,U賁[5#NQz\vv(W@4Yhx铴XR'FbrG&y ?4 P..U +͜Tu0f\4f?fH;]] W$\gRĝ뿬Sb}d]s9kN~朖^Hab#NC=vzp쵍i6eOk:SUØ%8s,{+/yN{ܙis)\N,JXok[[ur"D>ZoSrvTx0nVD/HPY d]vN^?`[&c& L/ؐ' l&1^߄n8X,|W:}t=ǛtC`dONl̗)r1b7;$Dž0^f_8I] c)8e`Y" *(c&}A,G&3uuNVd׭(O+wrrWvJؙTd?yg<&Y;sbil,-?L9E,_j O?sidAon?)Sv-n8Yp5Sf}Qn5,3 Wek <31T.Y103?j:_֙-ˋh{yy2ͬ?=[C)l>ž3>5^hI^QgҾ`kCBYƚwvc71Lzߎ$.긙ei&]ٯnj6cG'&?yVYrYacO6-6'h)_|wMCrGJu #9c3T;xn-MBta.vVیX`qԨ,'yl7^0 BQ>{D\r_jKx&fĀ`_}o]ڑp}bk*'-<4bR.?eprMU>Xi%[Iv/O^<'VIk&]"/l/̮5%ekjR\sHvv8pFXj{|QHo14!\Ͳ73LM/ՁFdwolM/" q$+,\XlL񲶪{i[<{M$-X3DV9>Y  d.}s?S9b֨YZy_8{,Cn8GnzzA^9 _\VnAc=dnY^Yr|9hgj-ȈfF;ǜ7iegZ蕹*UF*15qIoy;8 n^ dousG k q5G1˃}΃]3mz`j7?uW\|?Y <3  n]x6n~X/ܔ;׹V\ /u(2qrV#QwwMAS^aRw(ЧsԛtDٛP3P3h-WY6g<15T')5gcuǒ&tr%1DP;,=Tu]esg#fq_Yb׌ F.Slj:]UNe_o6-Nhњ $t3+n,:0 4J3krб'Ϋ7jJ)( apOf/WgЕ4gY]ԉǙ1Aou.ډL!HcidLJ3RB2z8_ -S)=١W;[jYà/Ifx3"ulH y\R\ar>~|yxa_y! Vh'x_v5/#ϓYQq,Z_:^qLgu;d;ܽᎷVZ_rXN ^ Yh)_M߶E G$)=@K]4'~6ݤJ%/_ΧF/4~T9R(3\߾խ ӓuߚDs|/q&cz$YY_w%x{6>yӲ'|߳IiW\0rON|IW: \,07W&KCMCxAƓd3y`"&ְ)mClM=OKڝ0;f̰3<d_;-KM[@6o1vՂD=h;`g_(\)۱2ܟ18U|r6Ba !c~;l{%@mX E.;\阬oLYg{eZk7R6yLws:ۻJ^Q9pfE5<dceLT4V*8e֏ct|yͰ#I̱DF7/]ni/f)Q41=_w|TeO=_4MYUVh[؝}awT-_iYp0Lal尻3cIg塺q#&Zx>V;Ҟ b Q7c<#4ڜP{vS9 SFwx{x>ClQθ Uw[a\.N,*Cl0z$,^|1Kz_rJ|+`PK6%[+DoG`^*`V&MtYl7~߄ߎG4|Iw`x抎T^[M>UK;ȱݿ+$Ob 4B8K*A?ΘլPfjoW.' G |"ڏFӪoGu7˫ALddLkʼK j荕UCc%9'm,<:<*u\7ӽg8Inw3YT0&sx/َBphh84y?c~^WFVg쇺w_; *QtԿLΥvqvJ\$ƹYʄf& t'D~257?CufRE*kz=gY, ,Grw5ʣ4TWy<%vGP<-D #DG9J|$]Fw6t%l^:,岼-ZzƱv\T% 1Kq!ߓvKm5ErurvfDMĺx0T5F&jF;vhd0"cbxC78:V!ws"y TVª=^lΦs8 zXރJaep-hܬvʒ@r:%a= 7`fCZN%l*C#eraTW7A%/'4$w]Չ~#rG+Em@vG9eNnLꛓ>˽Cǩ~z{M4)3:22^d50䆟Ш3ybӡ`Fd;% QԃHȍuH3հ{-S C͌IɥFYOB.bi܆UkEw7of$t^V,Ӛ Uw '%x_X#KTwm';K# a2˱dnYSffeg2Sڙf&5NLYn Ymm#''DyZcc[%8re1 ~ 8ɭr :oU 4A%=7IE֝s}C7i)`|_5J ыf pYYϴozch370;nzω;}k9bλۙn,gEmz;]RRj}==7c UҘB +4ҌC35~DOP[ylJ=z \VM*[Vwk-qxfp&p3Px'aIX^&OG_;$02KjxišI0z[K;iUCM;X!cZJnTX3f2z&L)7/~ @98#R9*<>=+պ@F~5TV^ |dHt-QKXYʋxe*[uQ*^{}8lKd.j]DIkҎ£j>cmΕy SiV^Y./3/7J{ d=j s)Գ ^jL*9g j@ ˎa1Wz0#yfLa=W37Ǣʎ`:p:GɊRt:EQ14~)6G)=/'!0+9I*lFv MhjvUXO8M 5w||육n2&=L j)CYG┠%W|&El9(T^%+ 帼LnFjV;9ga0 f;r*1O=/nuTrXH Hvc-r5Gӝ 6#Ma'9]/f=U0ekNъz{ Yq쐯[ 5̺-IcGD3XhWX[k{dѱaPt=|ɏ*v=cCjX(=~^,$f~7D'zH`$rtrn ޽[VYTUN.]4O1F.B[_i>^(n\qY2VCcZk8ޒ%EN4 ?\Ɠ4& +˼h$987_Ηۙ׼ 㩕=ϒ&؉K9QU7s*N\U 9*nzܚ\4^WU9Jx/9 CICK .e@]ͯ9jԂ4]EK)5jɉ$ocr`N^ț;dߕrfNdMGd)Tlj9wa3| ~JergAO+~ Oѹ4&; يcMjf,>C6s.Z0}|zsc2d4Cn/O8OEql?.q lIwpmy k-\H߱3 f(rmkݍ)x^Gh}F^n7ěbNt Ć֜жtԝ]I -EΣ# h D)<$\i3'gvKV~/d]9p7IIn QID;7ew%6J;6Q4=5N73-B O)U$gdh%hgDW䋠|+󅙏0x2<W=O7A~,Ipio:r2~yB'p2}ـ?*F-AB#|* #.Dy;e ?!93N]i_V(QG SC0xJ 5|ަYV>h`Y-$d3 f6lJiѳf |fyy U>U` ^ ??^s ׼bmx9yftf=bfp&'Ì@? ,RrY 3&D5WdfLj[xAZA_10[J5mr3W)}/({xP WݻX1Ax_ GnM$-gA(^"~֧_e.Qw/FH"K=O𴾫vCs mWN8.fRߖ %ysVC>%ӗR0onn SF0~kub8J\WM{Fo)Օ\䃟CWN o. 76 1jgtGv [ZBuԙ zg+m!?B:A Oj$޽00 ۢc@Τݦ5=IfUjPL47 u.F>ߛ>[b]L:K=2p!*}_O0VPCZ”܏*VAY ejU.aX,ɻ CDd,WDgUr2, vw:%ϰK$NA7|y{]Ry:D9ywo6Vw!v!F-AJ]ޖX/2"o8NT=6|ASeD>7f_~? 61.yixD7Mo%C";QN2jj5Bgd0 y2JCvgTpSGe,vv3v'zl `MtagD#Ii45cn3LR\"Vҩ$Ua"J&z#zmCg (H3=w |\2C]C+&8}7 ht 'G/AwA (F7cQ$'y՛$C؎W8J{ /`f7q=:[:KM=>(۳6S 'Fo6}C7XO|;5[4G9DuY2aoۊPPd|3su[<7ӎ̏gOOS(y p[Wwνl˚C@btcz߲W'[O9ԧjzvgzI% ϫ߭bH=.MɇE='OSlɄ1ڟ쒥O,ʲ HAVd}W׷)70Fc3_p9{*~OqX_D5XցvCs}׫'=ͷ{n!l-1AG҃KY#E.v; @ܥ^jK.l4l:/e]۟7'퐦Si/ྵm WQӯ-rw< k%%xx7K{OsO5ۦe;iի\ ({ٹHs'dS堬_z{Y6g[d$L,{i݃@ =<m~y>x٥3Ĕ. xs]a6[]~sbdvr5y,Kֳ? ds;=)WB%bu,N/ҋu>fT `}?F6{4\#kw1%@Oߕ'mNa 1 ~K0$)&6h,vT `]7a38:/2L_g/JRݬ%i<ȩW0O?CWN(uo['k!gmjMvuQ,D]sת_(kW"nl7U^}x=Qol@ Oނ/X>rOtbEH#Eps"=Aay%<<;e2}"n~e/(H=40!ֳi),fm@ Ϛ-O"÷33\:l!{|t[oiGt]hbAw2<7 ^>ؽ{S {̎0vhg xSѻ??{ѕ y/@@Yh>m8UɂݢFl3:3>iͱe)oqޣ{mC=|@{}tn=@Dq.-(U5RK)x:z|bհ6pPhчjY,.ţՉ:j-P5=vphՅTwQ$F$v臷[FwY(qϐ5XoHoORjG^ĺ}4_vlUbk(@Ϻ.M7m;9@q#mjJXYFiгP';ďTZu!V m? KNxT*I2r7Fo;}2?-oi@ptpnﻁ#x]~UֹAItاuNHhݺ\Goݤ|嘈:7;>1e$Qں@b̾EgCd)7z,p3}@6r=}z傚{zS;Q/Kf?|Tg}݅'g-m[[36;b֦m,uнuX@1;Ҏ^[S5vqŸRu:W%撢y3]/`,^qE 6 }nk_9+d;")N{9*ԍ3~tAt}kۻLk?@?L 2 ^<͛@lQo}(w23nSkt m^J}n73:4âN[7[{tnӔНCqźl眵[:j3q}'[8O?D2s"E{᷐FUP{MM&#&n3V11]l{ȮX(&eE4*)uf E #ʎvo}2)'r9~̯I^ kg}O~9q'btR!3κk;m]l2_}yqVv'wtbxNBwz; EvY jG _s zmD]fշ+_HXo̸Dܺ]}?907{AOYHTHuܯͷҮFOKO;u7hg=o$`͢K7FO:_۞<xR\׎V;A~}캍aϝQvSA;;jqv3]@lnv㷉) uћA<'ע#mo`v+jнtnuKr6@. '@ln2t zu8CUKgƳNy .=\纕3e XʽhRF~UռՎ/msqڤۉ ԙIB[C0]ϊkl~޺j;5M{d"7A=uwizV}7{b;xJV{팁c[S;ؽd[n[`IA$utkOkD}8mU{,S Q o<M4ͅ[g^SwkX sgkGm&ų۝`6wP@𰛑שug[Ї%ͮ HE},NEWԭMIhd=vgq癩':-o '|5NpLu ѷZ`v`TWe7v⊌D R̰H 78\ZG9ű8r @:G#/Xk h"]P5eEFP&|tF9ma8ù7ٕ~-]IrJzh=ɺ'#T~5 &WuÕ3Xfȁ55vr W*=E&x*%4_Rw75̈;AhACfuO _;aU5yJW5\!V6„8f!HmBtUpua֜m:x<ת١3aզ#jz1ϥ ˗uPLML|R!4᧽紓`KhU̬裼vN~= V}F{BV,o#ۍѠݎyǿkgW 1[>.RuO{kn+Ѵcxtê{͙w9g2*3|Ү5Ud6n4%9X34|sVeM +jA^x߹fߥ_GV +"7Vy:I_Ԛ ^#4WlC(vrmݝItbfպu xb&jrg3g8jt/Y&IOk ߖJ1uaywFs2^n3]S0E|w ܽۍM-|7Stv"7}y>LwX.Y<벇Du- D6v ce|p-uຜ_s]-TQ>3-F=.82c_9(<J SM} ʂ[aC= fCgi|D"ƫD媪y;Cz 蠪Îk'L9yz|vJ=#{q^OVkk_e0iQ1^| Ryp֍mUh#Sifrh[馳5ʝ 䤬(ZNO˔A+ni݃Gm*V-O 率X#PD6Ş^UYU-膉톑s'5F(jޚ|Bt1S'蘲VnhUrJ[mmջ 'jR\oB *G_ӈu^CGr־,;Xz'j4Osrz@/wmlfjhɵVq})$އrLn ?VVSC[I97gjp]",Wo(}H$C龹7[; 3mQ'.*4]XuOdauzqbC}5X@ˎcZw- [Q5FSMN&Ŋ=DcO-r2&ͭ6Od6"鶪NN֊^)xxh(>,k_ 4I-+Yww[(IÅfwZjUvofZsNEN(u>s,mp: +6fO|-9[#K5O}`iPӤֿb<l c[ŪtPyuD%ٻ;9w^s:-,PSe~gaAZSeu EA(cJt*֚ 0GZf:6k'eV&} v1_[.#n}pEϷn #\>9My~ ֧t=\+fFΑ΢3{WTE[IO[/L>y3|:H_ rڴL#'̳VYgpyfB }08&nzѰ(w RpQُ9y(MjketQ',Ү>Mf9)Z"&ߣW&ky $o9@s>Gyktr5m4P`.lU;vvpg%I*N$;2g6Q$ 6*$mNk$/{ڪtzO> }NGLROq%4Dp&3ԜJG#ZH|}pS2N1R& ÊIC0ι3@\=n&& L# Y*B^)#KObNK&@ד7SGa#[uhUpz3?ye ֮eG$gJ|b~Yx Wȋ"V"GC4;"M6yePN~r;4v[%|QV 6xڻoELMTqu/ 'Yq덚#j+lTMdҦfic[:ժL#;`w߅W˂^h7e hiyu.S o!Xg1>/ _N30IƜ..8&#t=J8΅xwF= JS`lfZ쳠v}^ _sE]Q 1&: +0)<seI4R`Qd'%M >}z%nl*`g(N5W&BiȹjĔ9L^Մ=QUW"ͭ׼S^O=J`~7<2M@xlew4wqWD 3R21M[;TO[LQ٬e`kv.<̯OYsԪxK^3Liτ%˿^m;!8>ͩ'ܰsWŊǜ'ê>w5nWlF%+޹Fesęm>U0k¨)3 o%:Yc2+SӿY͌PUi`F@'09GN5H3D#U LF+NKeR~ؕ[:_HgLȿl:]i<hͦ^'価ۀtG|lp$ہZ~"XbaӷsmYΪ  ?ßhx(XoD{ 26-[,~tu۬ swZHtL햑ݯ끓ʐثZ֑.ٝ.c.X|[*I]|pU2&VZQ}ǎ5L-7ݜP*,F~nN׀`8f&U]Rd̛Dؒz~8S7*u#9S瞓TOTA3eZFt^Q+ frޔF.U&Resf>x9-ZT̤:fҧfN퓝5)iUe)c/l7իuk`Axb3曃V r:y7gj;VyfM0c]O,⿁O@)fO*XݹhGsȤ.å tz}5~WaݟTҾgVl984"֨+?)/͞XOӮGy Qa=aY^$/ +UviEL[l&<'$ç_A >IV~IYp( g%.ӎȠXii▘q?2zzV3T%IW샷L'ZJ`exdE'𪀱Ne538#a"'HVԬBX5tFt{AUSU5<3p a>2V1WG}ɓjGWV<,cÕÁ;23*8UpXnz&V_~z+>/b#(yp;qmai/gfD/ɸh  e~]닃?4ۙ|NNsյ~t8SRz`6|O͑gi-s'"|-$1(޽%d0**y&7Ur) Zsi!gdXc J WY+&9>W]'? R!#Q%HgrŸ$us V`ejS"(y?\󌗚wzo Ń QkFgf3 k:۾X,5n"a4{l^{]W dUv w`-"mҚrc<9wge&s*eL~ W2%RZwmH_$ۙ8i^}lf,mFDβTR%F{\!; 5gՍ5;K7'z %@|Ѭj;uJ̳n U}7NP[hC!R9 O2҈Tz 8;<' ƔDpz7ZG+;xQf>oA-Nr`B9eZOQ봿 Reb1,lS43n(2vY\!6V xK@5J")WNk:8Z35ϸj#/l((3T2N'-'?N։#h.xnP>2 ItixEN26&k8NkP={Y;3_:.KfN9*\Sn1~F@'aR栻Plw{:6o\bASl=$Xc bv< HYK/Uܰ@׀<âx^$!U.P3} "g:Qb T ^#&& HD$:}2@)bTS]-Shw¤OjS2IdgZ݇ !z ?Q5_?IU`\?.% _"!/~Gfrrأqu=]v|Y;jjejF=+$FEFxzo彽jl>#4N}NJ\yv`݅qB*)7W*wG?iJ;g$$ޓtҹi:[n-*b;sC`^Y<;Dy!39wjk'?jMti_hњSy Sځš{6+^6d-Huۄ]SDLLQ~7Xիs' [יXתT@R_jO烹A>., [:`vA#/6o'Mdq;2W|Hv]J9eqY4_}_XY U/27cr8jJҶWO։m6l,uSDJmَ _H]NrUI'H#` n{xb\N7oe~#8:$k6-vvT#hӔ3f*-QKTd~g+w,V֗圱A): ԟ/ٕJ)xR߭NcJi]SZDS2ݓ3,ɕރ4mOoqF5[ Ѻ"!y-ݯviɻRΖph$wE}A~_SIKXmYg髓p4M&[:w&lS\Y\ff33:b?=o*Fw f&&aWj$׆] צF.dd]|\S#ʮ|sRLxX?ݤE$*˩+^C*ޢDw2@< S7~:/,CB*%{ݫ&",{-Uf_7F!wLXVJ0]|Z϶&"O7{K& uO/n$9DNmN#z2&Qsy'k++{ېۥ܎r>gbξbן!o3:f8ǔ\*Ͼ(%aJ}V78#OK 'ױ{ DmkMOŽwsn7Yv\s$|.Zu)X/:PJ7ܪD2UgZ{UJ$`DzD Y*;sts)W.݂t*ҶGҍI{{;OeVx )T&UBj'N)P~-w+3Y"%+_# CR33;**/V>V)?d2í>1iw6­`Ym"UT}pكgd6*]+nAU_V|ӟrns>$64ʅd? &J/)%YMIf⍒rR%wi_3$[w!-CUK';Ku^.u ȪLIMZ7T]ZlXpÚUozԧXupڃ꿕!fhmmw-ϐ>O:{pXm;'qx$}B9#U`HM[5v?F2}Cǚvc@5MiIVȟҗ-5VLYƺ7>[fzY'ֺ;w[;[ZsɇP;37QwGyG eg#xs]}ѮNIX؜@ L+'d P9r~.2jPAqGGq$s:*_P抅l)y(dg7 scr> ƑrP.t{`ƪ -6IdoYOۖ '0Bmn|FКpp' ImInAfw0P]-:9: OjĞ9*  6/g39ܙLC <`:r44HδdL \ė7n;GP_,Psg/3\\fXTO9/+AlR"s k',hf)WΕg5dfΤgWʃM\kªs3Ept x a3`3tɎNa2gFAHM7ALk9(;. dȶX{qwGt [@ X8x9(Q5el8T=WjŠ^׉[=zM=+R4ٷe71;ČRd?:KR{{3@0e?$Nbv#f p{n3rq#WZd}7-&5 G˙/9aU[n}{X?}e"$O`?aad an=--7f)w;GX |o{ab:*1m :@T q)H_&X vGd(7Ӯ/q ݸۏ8k)w;֘IAX \v}${A+ uƮA #4<|qe_;A|~p%`y7($r6_O"3|ƞoniA_g%1+޾'{An _%%\ގè2wprXs8l>}GH =kfte􋄛O;uuZ.[Lg]JovL#NG>z [ c~(̅r<ƾQW1炁Y}\Ye;4,HVW+v4s2sp-#~){icH &Q{G&sV:27G&Kr!vc sN͏#8my͚bu8^oF-H>$[ZџּC/z|?lgfrp8R)6lgeƔMHGŽƧelA㑅Q5ao:@;+ukWÆ,YvSņI k1uF'>SR#.<0–'+ęt!*>p8.k)81el,OXR8L㜙+$y,N5ŋ4hx8 M5dEcGq踹V3u)̫e@p zK3aCLX*aMn,\-m+=H&T}%p}qB&d\tp%IØiMKHs'׍WgKtm7g{^:Qȼ%ޤߺfpRĮt=TyLnc8TW>jZ\ţ% ,ģ/$W9#I+J a$pbG#u*$w}'ka )#O`NX;Wa%1"XSI;i^Ts p+/Lbp08k 녷8+ʿV,R8,c8QRvz*?[6qaPhkP#&lE RPokup ʆOR};Gu0Q\s_tq91T%d= ka dgC3bvj7~\($]擹Fd^&k0;%oďĺ zdY\N[u\>1ک 1c V uIb03k߀+-^Y8ɊB"[p^k)QwjJM}S/y/~90>9eəbBG8^ϮYXbb2e1:m3e1N'9Gd'&p5_8UVxaXF@U`v:78%p$ G08X!DؑQ! 窿rnوt'De&^7uZ,ʉUG*74j &#|yx[yq8 L  "^] ĄtmNq'Tq:+m;rN,h,Lf7ȝ vNT(f=QQ~Ŋv&(}9;*qp8k󛭶T:jYR l^3oK/}W2[+[L/]8{ x\)]JYA U,,=w\̌v3p!&#~I:u]fjY0N yvJD-wΫ\DRX׆݄SDvK<4-7ynHא~gT6#\9~:G[ Ԩytċq_΋Ǘ+kyFT-֋d7nq Z2UA}J6 7m:T&TG/6Mpn?0{רjػ"QGQg]5V=c^ﰂ ٣3 W v-;ՅbMrJDrjX;3R{9o^C`awӜPW EPK*M 5ZS;°q2)o='UQ[M]RBkAEOi+o^<#+x:qdzjL"U]|#jƧ;^U'%d9 w]Se%_:\zA]R+`=` vxʱ&bpzV {\JV` }l` &Pk?vPceFﰹ+[b,Pj&j%pm؄Wo_ů̧oͶ5Os|Z7qu7+I>(>'|->C~X+]7=="191d` o`'Z ?7gcIEOKABFɚ~%}rt;?z{ѯf6ɨА31yXBNV0=} wWܵkxWN(Anל1}rtc7~}FCv#j$8A7l]h-_#8WǟͪF<_51[/bq[AFh4Fh4Fh4Fh4Fh4Fh4Fh4Fh4Fh4Fh4Fh4Fh4Fh4Fh4Fh4Fh4Fh4Fh4Fh4Fh4Fh4Fh4Fh4Fh4Fh4Fh4Fh4惪 3originchk_tagchk_ref_HDF_CHK_TBL_702_155_1962_156_HDF_CHK_TBL_0,x  zvM82f=xlE 9' ,A2H1P̮a͒&0]77I" (HVTP@$|}gn=}T6J;&MëiG^.l^uwW :$Mejsw{] ݁g'M+%M Qi$&eyRQ.iLj?^ i j(ߕ,l Ka^C`x5y Gev $̕<I; QI%anJ,Xb$&A*a? UC^KRG\0 _-~ Muw`IaBrmJCvS7Uֽ(!O Tڀ U`0MqB/X$+ݪI%2TE{"U'mdMH|{C>} huwapKssuB9H[j| #3sbH6B'.P!k.{A.15 yrOY(z-7IѰ%Inu:)R di(%4?5B.6i,Wp%LPUVy0P-&g߆hH:WZMt #Wrf8w$ lCQgH3C.m4X \&-j%ԙPbg>z-1_"%A!npN0;_ɵmk 9g \iaVf ,xcNfR6>87΍aN LYَt1 }HNgsS0ChэOɀh`xݔZB,_Jt(~!-, /)5Ji*kʨOZ-g)YTBJ,/ O%ՄU]!?JzGֶ ܯ!c1wXV azLj}d3i5xw]!tG 'ǠYg29.sKӾL菅U׺KQ=Αw2P ܥijGH#ڣ$9~R`TR! I#.A#2~7V]HZ(WH '0D=@Bx"-!_W12XRk0<,G䰤<K焟ڍk8!Wςw,LR*wvc~UC~G=ʭ*NÃ2hyï(9I;G|a6 /rI-(cp_QnPݣQ7~'J?Fu7@*<+}n_QQ7Teלyo'Z7B!uQ2!O<8kw{/wF]&2ݜ6܅,y/kBJpwE^ͅYr5N}Rki&0_#w,.tã.ޜ:K%0Me&솃)gKP8Lb<7,';SF*ݐpQK輨_Zaj/NnxO[ϐ kE~DNR,`︢0Y~*Bvs9VӭVe]Mj_ 7XQ0  V] Nusu4Lw_ U +=-LOwJNQ︁Rbܿ%p vrFO  5o_79UBFo) j/stpv)01p[M̫\uUz01#7A,u`ɲx ڒ+R2;LH+d9D qRz|&5|ڒ9 TE sc-Do'z' p? 0QP'n@_RWZ"ޖ" uÍ?GD5*c7diDyԚ\x{fD)+2z.訩.ĸs)]+aXϋRxj aZsar5WƫpBH=LF?+qGZyhC[ah?ϕYZiItv$m(7$ s9~kNPMi0$^! _%ՆI5.m/䊴bAr 0Jm&WH~YA!R%}LK|%V%ak'€=55b0LƵ0 +~S D0@e2Cm.]œa/`@e2Z&^;;JBbiZ,JB?2e/b%iQԥ8|RGFk05x^FK}1gh"2?-J㚸&}\gb_Rynqȥ}C?[bDF, K,a{;y%{wKB?S+" WgϙBIȹ؅0^{^†ipBO,?C(Yx{Cl!\YHe3~0>~'^ sMb4t =BwE=rMgxW>#"ԌQ*9B7+p*n\+I.yرB%7p6tqs:"XgJ;.~3tτY9!wrxC7CY<Ϻj:oSBwrg3`Y0t9Jjå ua42YPCv9lOr߇ҹ(XBz dFhӉp~Zhҡ"qn2$\ևnyac%.T希뷅 XF:(^y=`&k-\cmrJ}- Oyn#Jp-gy({ EC(m(>m'h(ʵ4Ywk uV(FM!3*&dy*Q؟!kEWPN5-tf@"Ti$ VNYfR3OTCAfr%t_k8R$>f}j#HvG !OrzAwO x\49Ewwq\t2vRd_ /"_rƺq<)9%&9]%) gm[x6p'VziN kj.UyIxVh|N~># 00Rq0rIN9o:rJ- -tg wP ԵJóH}LhY U M2_ 1 <<-UΦ -}*$̪u *6@iM4\,9r5rG?6v嗼#U w* +4AXVjrهI5B懧uW#l_VTѣcx'4"1 J9rK pÖG᫄]Vկki;LiU|EnaxDsZ.bf!{IŠ䰤Qx!|$ [QG`_*96VqB U&+Q/Fl~cL,j9CR7xYS=nVkTChGMB!/펪p?=iDkvU8Phg*2 RaSa]vW^*> U=FgT+i_{p#a{IʸpwEFn sJEp7-Y:W/Lg*RvSYTwr\ 5ޓs$ yQWyNxo3!-5nTgr͕P,eFœTI+T0_솤R+ Oj䦐ZJ :AnzRGq]B 1G Sxfs\:/& gpʬ×§ƻ pUƻdIJѪvsMIaWj R cLza0oJdk3Dn MBw0gy,A_~$UP;_Z;Ue|'azګӍt}r Ya<¼ ז|d˅'\ow>(yRQJu`dҗ:٭pjeane8yխB)T *- Rs=i{uK%\zw.dY%jz*7 :! #zJ\Rǩ7Ȓ1kAfv3l;6o7 72N*khva֨Bzl9kZ W-#wPǀ7+*\_+Z %LztA+R?. iM {L.7\KGOƕfpyqş sY4\/2kQYTL8PIF-[YKdw+x3+XRwJpu?-d\=oingd:ao?!E4R˵m!Z12km{(U̒hT *p 5Jrʿ*TrX"K}#-GF02bſ,3w6:kO(a]5Ä碖kIs 0 oN;>X`vj?OFx<Ǯߏ?b(u-4lk?W0Dƫ+#{pTJTrJ!0{B # ǖar\Sc.W+U S.u@5+܁~7G5a*8D>vW?-TMe.XRWDRk)0쮐eB5A(O Q,Lp/0`HF |/F2/_$ksay-lኅR7ex1 .x h!χ-d,rL#lwzl8\Ά5Ƌ|4pD3,W vWm4Ӆ)0BypBUG讜0^BYߥ/Hg -+aqSr N:+~G(ڋfFƻv5%nooo Nf{pl-^u7$z@S&* YtǍ]5u #O¤^lkMʘ{ӹHfj_ auݓ΍Эʯ `eHuw)A;8,lվ^IS{%47 Rx?TPF:Qd)Ka^nhɨ$lܪps6ꓻGLsVH\>\'fg%gdWGkeA-XkOiK i_aK /缺Y`·#ƍuK@G烢IäPGjfv,JUYTPJhـ!y_ŬبbWͥƇi%ҭԍʝ+\ ȸfY[U_aRl̷ݜuaeioL?&^9&ev6 7 uhf5 l.})rrD6m6PȎpU$OodΉ_ 9@9)7I*өhAidu`ݑYX0 NBnUFǾea<B[v [x5mK,jԞUˆq6UFENLO{kV6;K[&\;yD޴d2 *F4W+`Rǧ[ u=XOmo.BzBZF'{$z s~Z&dfZY5cn\fu?0zXYMxX~ElKp\0%]F+xfa1.D)=ck8]Vdhb F UJ/Btuݘ,qRY!J9SxԴ4ګmW54Gc5ڮaOiE%c{Eu%Q+S:V2GXX/\hNaa5=9XdsInS3UW؊x ¹Ҹvvr_zR8,] uTTܻZ9=.zUju,LfJUQ ׵X/ZZܵZ[\Lժ*+w\G0*f~6-2 -ұ2>ʿwI]T-R[8WkK]I{!lf[ Y6s#KdZӣ*ܶ$㭘-im@B=p_MǪI]&_aIPf#YQx z"C|5f09c@FMiAiR5C뫐5 w6 (<)L@* ܦU9WJz9P/M ׊-V::ЗmffIKp?H*KZe"mKz68Z"Mҷf>[LIfN닚BJ# 's+K }`h t2/FlYaF:+ I9+^du/MgebE)ܞ|affvV GU…}\& #!Ί"7+ fFWw =TE?[Ht,]a`hIš[}[XEuL2+j B̈́ MtKi+e ٩?0wW~mDZ4TZq$I%m'inEъk|O$NIEEkz7iD2iT3ww3p,zHi5(H6ˆ7?ˮ;H8aȥ mѨhtAMݝtx-alhj?uM.#TөZhPaCyWZZ F4wޒU͹iIv*Vt.h9W&TMwgruGLt&3 *T(5{9~^sn2zK&2e=Ya^u7^ϓnFL&U5YU9a6'iw;Sg ,.$7̕"ZV#%I,lU:[*|&jVoݭf"хHWfi"aҚ4 Dj](Y!: VyBaB=,"@gY4h|5:+d+2C!2 ,W:W)4>'OI`х&VǓ{՛m^|Z[eRM8OO plCMyY+g,;zbr&Q۾2@KivV,3U-$fkkho4{ yR^x>~Ԅg³4fFUfY5t0'g.XO]gv#Yz]U)y¨A#uo@)8{e>K(W'wV3oM_K3#>$V-ORuSV&_\ko3?ujҙ=?rK321щ6 s}‹bҋ̤RBUUίdRr*P ,-ZVІ>$7|(_$[@t(`Օܑb2p~g({m]VдQI'9U:Qf4 w*@ff svF1]]ωfN^Sͼ0*cݤjfͭrj%ə =ͯnfSs\ |/fBi,{{RY_C yqgnzψw(ͨ7DuC S%S3o [Rp1ڕSeMiN1: 2nrKS`4I } vxgv%Bd6i6-_DK5Qi1#,o}.;e" i(?67d@i$jAy8RRMv$ҒE7KeUm%5Ru3m)Wb`&P7Xta%YJvx-7?$̩:va(ҝaR~ ܹB6#@aI_s049yTe1ǹJ,Jα:дwJUZFڜ<)Zk4KjUmf80OZ?ܝ#`3D!iJ]5لnsKugПVIg\J S&}HkH-Gd"ڧIQRKhGkf>3;ڏ~̎* N xS@t8-lrWoeҙBfo3L͕7yעx!өWxau&(Gҙ\~ՙ$DuROSiR÷"*LkRxx14e߷E=etq6#Lќ_E~38SxZF;SA3c N0c9]a_yt4pwk "Xzs^xȁ‰I,dX:gI_9aDz7->6 XR ҂eȀھ>) f,5WŴhtĹi/yK8dt퉇Y< :͑*X4CFMqw&c$lej?twT,e]3mαppS:&,˙ϑf4[21u#6s2b24#8$-4[yM=F^@&c<39yRm3,awvXJgyvβ8߹RO&mNP$Ny~Oʝnqwߜ䷤:y3oZAԔ%m(f'.2TxlFT|\3ٿb23Ky n*~&(*+>4>h_mf7&wA3YsSYKK41Y"ɜ)arI/ ,)e:}@S~*O; DZf]G o[-/2nT(&ryLOܛd3t_ 7[j e-_eMC>N2*3HpZNaB܉]Aט살(Yk86j/-م>SZuj#Gu2-a 9˄=sII)|fZ[B^L,vjlJpEi^2* ke5k)!ZZKxF}WvB-odVʜfZZL$4S 4QKX"r4㾽Ձal&yQ쌷tZj5p_OKYdMiΗ6-[QԜ~Rj5?Y+a(_69"#SlM\aD 4jу-{q)4{hjr3]VE4m^-> L"gs1XZ0K5(<6y+>ھ>"Qah`o^x)ĻQ`Y@J2sGyasPJzeK1a MaC>&VIi0 NC1BM36P.%4&m!-D(Z>5hVmb-uHK)Z e5 H79iH+C㿗7E0~ Ϣn8[N=uLSKnY3-sj o]뎛e Mne)F:AnSs!8!heaTHY‚܅"( ;jU[(PzOHX>昤jz3ۇ"l_FTfPs;C3NN+٣ +s1rTGj_l?ҥ--Mx%_eYhbNP'|rt3 !i|j?NMac~u{ځ0".57KS cvyIZ?${)\z@Jj YWtϤ1WO5͌d/"dr4Ij_.>z2Z{ry dIEQO0N=VԾQO@%ʌJtgv=kvzyƑڛ;ӌeT$Z?ˈL4* (rj;pg[_dRcibQ~^C/-e.o2no0y= }ښe7sz27d{A;5c( mae0ғH`g{7we`QɯYPB6v=C؅Ǔʡ#p%ߒ[IT$u" Sp랝||;!:-(k˲8@;#X ȷsf:!X!&7RF,m^ZSӒBzO e<-f6vv2QgmByI1uccP; ʼnDL2^)6 0\jޱ֍ś3'h1Q]!dͰZc?f:7E핒8(Tޣ~¬ye]9NXTs)(3/qҽ5=85 u.RQk~2{p,Z,8ּ`'BdBf) N썥[cVpiYG#5+0{g bGO(Yx5w櫗d4؞ s Hrsg{`Z2CVVk7])´ȓ0R+ߓp6GzE#PrijQsjgEapL?c5gbQs+,8<%恢EI:BOLX-\94WaYqD_y6!=˘q-n}릌<23T;ƳHgDM,a/RjN/l?"ó fU%iKG?W 6+|Vm]lcpv8g>>-+h0]kHwqvcskbaC;^U4f͒xAOZfPJ0Y"n.jWb8&[S F^ .WP[\+98j2])X/9Ǯ9T:`'f=x.gR*瑩tNwc8TyUkirv~OUƛ_kɉֱ{|U\gLr 0&dz9z>$nkJqYrg.pt^{⎯g/Sx~vܚgбGǗH"':?^der뾦CCg3Nn^b~uvwS4HZ*h?E r~nTPZL˙Y=mJ]u/>7RIWquqZ]C8>1yv8}zl+4#`z#3-a$^ٽf^+v+D>(G֯)㰳y'4W 4X Gj#S~WdA5sef-<)?32#QIݵRcb?ZӃ\+|Nz-xM^?4ţh1]T(L}D&s%j> 3}4ݥ-Һ|N3d|l |Y݇Np_`4|X _WUa4|~Jcpj!WO>א3rY'!k#a =B==5xYO+_δELd7ꩅ}QՒp.eiRC;M}gDs-3#8;1_ ;G/O_"ε+%l_vbHւ;5'2 :\fC?s v\ߚ)K/TlήVo Ѯa8*3?8VdQ&g^p_9mgۤ^IfreD+bV6Ongo뮅x:y|澤:`p~:8W R{2]4;1eJi1w\|];mNC 交|o7+VO2xl'ƴ\\w=.-ߍ2o{zށ\/of q|a:1&q=ڻ>9Le6[ԁ 9Mjµ\`1YoD@׋]Q{3yG+sYm̰!\jei= <#3l'u6Y%۹/xR;^/ueS#?s10QdY<"{𝸋[Y#N;?Zi:59j& 7+^߯ 4JpsU$\{\Wi6v09Jttp IJ!Yv~+ynyWX/iꆳYgn8w{ã{q?[S'tvFj6= Ǿ|u<-'әw-]눦+j.~3p˵;މI@BjajRBIz17zϙofy؞ <֌l!5]%a4JӜPI@ 'L>%b<ϱi2;ԄWK+ % \}:<ОXC="ƒLW0pFw?IKgChl,*c~REc̗6ue;$4F[ǩ|a [vMvª!t~_aMkisfsջѺі^w~OG@Trw13meprHˁL,GVIESː?йuT xe0K⥥fR:kWѤ].qSrY;)KߪҽiѨdL} kX Wf\^La@}1{ka̖,j[ [fɹPS{Y<5q.É%$3a%.Y+; ^2'ߣ1Sׅ˫yx6\/,N K^Q<ǝ-kTevvO8?(i.NO6hoY_̹NI{CQ{il؉oz=C=pGi݅_å2\ENgGvmznpr!È#A^N'?kVN]M`̉S˅Z=XI}vvqpzK5z8dms=D_u]ycHsu:plRy8n4ۦٻ.<B2z>-ksW4 G8kU'_:# +)Yi6mC@ǰYQSyR[򽚹| aәk[|(l adyavHe$2mLᴊډʌ,j%oL4m0.vQ-#kN{Ue\ȧ4V}M/NWϊj~M3sjc'}FEƕ=Ft8 uK5ӳF5 0_g_2iyÓF~ԫբCΌ /M#ug-#Q= 'f2놚a͂!ktnfaY0cwШ} c5ԍŇ5rv7'/AhgX-&Aθ:ϵkyJBڥJL&ߑ%r9 THʬd%ʓL,}pap[]78.~ h_93p[g6%nY>p/|0R}/7i>x-v:z?Ϡ]@ྡྷ]Huqi쁭bO^=+8r4ki48X NDH}Xt>dгmI9N1/VlI3͢ikOdT]y=ˤwB i3+4S-6;y4=GYv gj!O:VmR;̎)XASazYюf2S2%zYX4{֓3ڦC0k:2;ᤎjUY=gZ&l!,s;\ XFm5ˇ)%Mg?\WHZI| Єר}ucf ZKqhf򌊱ui4$>r]WW|%ҙ8Ttul^R˙PZ#<,|մs[vF2%Bv:dB`Kl[LvXExs};OlΣ<47澦*~7:WL&"+8(T_Zh rXѵfyQ#55iM*L^TI qnUQ+ouNx4a᪢v$|%ŎzؔJBDe&֙.媢v\K5 ?t?8Q+ƥ?Yꍖ\+Ke ަ h5 l*5탶Cd<4ٹjuW;_ A:,40IROtk!iiZV#\o~P@:'.kJ<"H+}V]Azԛ}XɠK+gB dB+L7Ɣ'K@|翼=ZΡJ,{W)Yu 3M9Zۍ4giӶ Y]vgF?\N;H.Vvtr9b|f9_\m2@$MӒw]whq7TT**S:t-ңh}So%'S$]X&o޶S(ߝ"S'IbF'o0m> o[$ _Qm*`;EWM$I`?&O n6ڙ^t\zFCWMJ zQ|{&ղ{mpr\KfH$IN'Nأgg9O 2ɫTл6ғ>I^aTc2W `'9c[)쀳bkpiTl,c5 :S.4ӂ @qG oJ XD*>DiXt󖘄%9P,Y$S:;oVuMzS=Z9Dش6NEZ*0ev@Ϯ ̫HZifBxzNq yrҖuzekU{\$.{?w\]FӨ=`s:~{jr+H^ ڌ%꫕rN2[ļrP?V<$y>[;,oGsTT%U6jwO3U9izν7'oo'>tӦgg'HgAxDT>(ԒZ 4jWh1Em<0/hOZn\D"? l,#iz;$6[pjMF'eKԎՌ4_'!5 <S%c"fkw1Qt_SŽ!d@ʻ08KU=>FDltLZ}V{"{ֲVǔQˆ+(\[L q7HQmT6mKY3[Ny;vٓȿ4ʨG1F!aW"r&`ʝJh>D.t>[}3!&&D]BCw3>zɛ.qHH;LEcW|'05Dt5?6W(k IODAң2wt}S WmNb~NJyگ.q@:"uL7™xNHi|~>Brd^l^zȐ7RzoN"h`xlRM =$s=Ͻő?<8V]TB7V8LlrErelw:W<&η_Jtgs:#Pebzo8ML dvPғN#2*_L/YyJJEoתMdWَN#ol턓3ŕI}.>T1][%RLMdJ۽ٱ4Dz%[4NL544äʶs= -[J:UmND=tĬRM.Stb<3hl[DEr'wΦ=̩5؍J9q"}iJt-!Gs5 t1!/:9[<REޖ<N}z>oQCi6b}MN|#舊SCgڲKUQ_v}oQ0U Nă=R%0wwLg1VاrLa2''h^L(֭g5HF iQiPh?7=>ddW4b/ 4 "HY]{{wȦC|NaoUet)H;;\{;O 9 vw>bJ 9;q)zSsڃy",+EN, Hy\u3"Ɏ:Ed[N` xiɑn2"9M#U!S Nlmjϑ5W׼OkEO<_ln'B*>'gz -Y$HshviN3V8Д4sX qe^ ACJ6ܜ>n7NӐN@'jTjoJ6sAX|M',{9g[('[7.-]aGh/?o4yd:_DF4j㝽8'h=:kqnu$4ؗrxBepNr4;{ d4hJd/3#͉r5w y.Q$5+>zy !iZRS!޸Z&I$b9ӵbAmyMҖXo:G8BNS"lī㨝 5%yL̇t:! (Z䜧)Y-{ڑ}Nlƹ st2pȗSޕ4MRqMd2i!iʉL1c+=w> u=At<]r @jz:=:n3o{'(%OgqE3 ins1"yOݕ\T,!%v!GØRJ+MM N4,yœV")P$20-BZ65D2g(1K+'Knx#7YYBNMq!s(ZEW7tR9|Dd"<[HmH^sb'vuz]^"ؾԝcs@wlOES uGt߀C*9Hr\^v!>%-NTpb/'gu $ɗAk|@%K ;ֱEJuvE_ut Xk>>YfD48y)[>n/kMu]z16Ls`N^mS~*/֒p;^U5C;k*@0R>qI9A f8Td<&K^W"2ɝ7k8NO&?g PlFW͙i4#FJ0>CL)'yWi_*5ĄuշSht2\+POB̽*p`Z$2\-̃Jr --&M+8TLiq#hj?7N4Sy$QSE.*J$p/ δӵ`]<)! |M1f$8KzGnHSzB䣇QlU]io44zM$пf:]a 8ۍ}< FЙӾnnc_LЅjH\ZUk>zW:G*["]ظwjRfN;"< ce=/:DH'vU|W;GNo>I{{LNޔ }s:4c(83ߛ, S-· [t>l?۝qQ3 ոT#D9^ jv$<ޡfdP׀t/T%Tԧ1*`&ڳhiI'J=H:YȎtxD:V''cD6%4> vr*Lӥ t2pӴkyS*sw{|)Jr W3ttZ}wwR/"2ڙtӫ &"IFgaչv7\$:76=Fnalza4+]ܡK{f-vVo%jgw!Mٜ:R)$)s>2 x]/h&S%r}2m e8?cۛlaLpm6)U&jrYNK^O6Q>RKOj$J^6i> p|ySfӼ NBrTѩنuf~ 2U&k}geu EHQm=J6od#G3V>^! X>yZx>,8^Hf몗=_TG6 ľW  '^OPkc=,_IZkCeO2Þq_<}d\%v6:`v K>K!^SR~%wqeZh;+ `r&* Ӊ&xXGmwfb3dM?{<|ԃOo۩Gx]&9=5G-d;`mԚ3ǖh^J;kn,d,`(ä =/J{,>k[Nي|Lpwq>JU#WqgNcT_O,$[Ԙ&L54}s$+R^]Ф/x!:j[H SZID20X .l)Tس/ϥTuחFKY*4R.IG'K<]x좓L#=>jr{Gv[n]>A.j> ,E'rݧ7r\Nn5yǓTl xn46ܩr8rWoyW :s`j)gO_XOTm&ݰsGY{Yx*ߧL*Kјh80_#3"*TG9?VlgqSޮʼncgqZP/z;$V $$ȓ/ptۥ!aHV7`&tJn(/.e|SH!&pKQc>WžޞiW`H4_\-Fp@7)uLCNR<9SpꦲFH>OKN9SAI>KU,zU|H)fKn!'B;Ls(9TޏY%)ދyЏ%EgzL ]/׶ȷe(CyW: >F-8G/{6BrJJ|ME[htPIt{ ABOio.y1y }^cPQ7C/ A#G݉Fq&Ҿx)wCwyS*YmjHSW-Sd%xhL4t.uT=ү%e =|7KhT4Z!]w'CQhjrS;U5TZzG#(zC%j-wB]dYaˤנVUVJz},w84Uh׳B o{4<{'K ]ʪ@S:۠0U8FJT[܃Ez9Y^)tra=4EBVj(U}Qez9,J|n!oY@7$ߔx6K-HA4Bg*KK|hiҋ&hXE(yZ=|頼\o~E^&hݗ?"ԝ]hA%T1{Üs::\G}eMuTul>?j@40(PҤYɜd6TF@ܽBY'E TO&A5+z(MzU+zѓ{М.WyF辗=t/T+Rt_2q~EGxP4c1VA#M (!j?/F_CӜPnt2 j_rK P ѽTܿASQ=<뤻qfiLFƿUN~^27| g)n--^БGq^+n-^ѿ?+nV^^+Z:|Nwo*^nKVISSAh4"hJ.fU*zAYOmܰ CT=y3y+&:zJ< 77X3Qx ף:TxF] ZggǼsz憪zۙto1D Pw_|wǬÊѼhtC\y5JoIkʹ݊en=!?n r |9 Z<.CV6CL_@A5 Jm`* Pud#t́dc|Aӵ@ +͂f6st R y;C!cFI;˕ q,O}sVjo)\`e;;:0ƳzӣRR(;QõwY( j]|*:;&I-gigM(]MRB3 hruE3g#5;@Y-iEIPΌf@WiCYE=:#ΠgEQSܚϨxiqɷz:zoŵKOm4M~R@UeRT]ǫ~g}9Ίb~'&'Ux|tuOHÎC,Ż!PA SXA\;TnIQ r?*qhsC@͵R7D: d#U ݆-z |k(W'k@hGh+ixP: `]^_|U}s}A/h[kj}|(e颒~8Uh{ꋟ^n@%"aPsxv~1y})ε~YU{~O]1d}un EujT'yA}r֍umjӯ)Yg4n65FvV$U'1}MɕЌǪϱ9W{ofl4&p2}K=b3)(|@snwB7HSùv.xYg 5u ݯױWG#ؙ@v O=x[/!z]Ļ_N %< ǑHW:v\j z,J[ؗP?!uU6'.$_G ͦ2,3Z!t_ƛp-H/:cah4tfu :S{ /ЃVM̋T'}`L9xw9=DIT'a`4-ڒ9$|箺ն9}Gq{-ɜSp??^0״wS3 O=A觥j?y&v>ɨ?i?woz:FC~TZ; [ =o㹻X'DECGƹAU ~/ H ?ihލ߳ૂbjGFY'!KWna =@򔩩9~׺GTW=bOaQd ^_~ǂKɠ?&ӣ#Q2A?8>j IŽ$|?w[QM`/Az@G@ۡ{ZkĺI'o 8vjh@v2' 毶>B^)Afu'<n=i xcBu _8 oNiKǯ{OuWkPgmx^'K믬F ~c~06TYMz<W˺PSJw?݉?;zhJ9;C ;kRTx|7;J v T)NAzC~33]unP W_ւR=oݦ?]5vPﻹ"['?,ˍXBGG#=b)~Nq,_ˍȍr>7g*0Qdqxf"SৠE,_/vwDRŕ ύDfbqߩ ʟ7zPR^ VK f]M?{ TíWhQHzAuӚd4évP<\ .o727 ʯY;_h]Ał{?oFt@, /]]A?u}́Nޏ24y'wl__vN|kJB`tuNs8__^Z: dN"uV|>@:ۓUUL\]EMT N'83yPh.>&ѮYq@|hX|~h/?'r :|@xED*D}kDE["y\jIL<ȥ~ءlmnT4-i x5+to|[{0 1\?DOڬ *u|V2[ؓ9pT5UGJբ@T2 gW3V`3YnQ>[$yzu8ْz7 ^M lDRӈZN{2q*TCaY 1_oYw*-S3_T8ri9J xs6q*OIsA_3 csgu69J7 ƾ,?wZ0?#ɳTg,9kwДMZĉhV,g*x^k{NsITN (#v??Mju Dsk'<CdS5ó~|uxzB$֔b `/=T2:Wk*0ߩO;o(﷔4O{ N᫩ߓ1t>'ꓻ GW+>QNxSLc 18|P3FrqK9h9ynֹjKr(Ha xC$L:r62yTs`ej\#ٛqβn禣)>_svxHBGWm/'d|HAsxu$.Lg {8N גKLm|jC*"y"$k#g,q=4JAt^4\DA9H=8&;wFlpf[E3J=nLA>Yl7Y[ωE3[m@*g+E'Uy=S{Qy8ےoIك.-ئۖ۹=NwedsV\E6%d,:'ךWn;٧A9cs>!-;MG-ʴFk4}jz"隆[){%pGqpP{[:{}ՙ|z "UOi8j&2gPfg7Tf_JVMLz CBnFXX,8ϸ.uKUFEz(<]בWEIK5Y_^r}D}DH#,F,]p􈎋pEʥl6aʍ*ڻ">an̸- WnͣRݝ՜O^1Msm_PpFʇSꘛOa ^|F*d28]eN"jd&ym6-EƇOʎ?$ŝ҃`mOIЅJ$lNN):9u86~tZa˒s#g{?9y^[y2Ps5[,zK͓qb8gmSBPYqˈk6-ɵo'^0iB[8UK(FσwὋo;z.̗2ɦ_3~RaQhg\ʔ975T)gi3V>k/9c SCuH8-'ENo95РTlCf|'AnCzYkZ\Ŭ @6 pN\3Wʡ3%eQ&sJM5_ȶKI<әWxk6!\]߼h.wWY)Jvw&ڇ_-5ִn*979@iܜ_,^۔vwqQ\Ӱ;/5x %f1e;u[W[ 1V8<.>U Jjesg~cNh.׈4qeؙ&JjIYOc5TظWĽA(#J?+:M׉8sFvms+UĤ3m533 lMWbM=sM[˄ǚ?4$iډwk*>ը4_ }D3~2y&+vOt/hKN4aץĴлz=$%W9v$Y<&dsvW.5(!'ԭb@,[*jfJq/XvK|ˌ9u}IM|QmU=σ}l'Ib>VK>-uTF̗{=?U +]&~\AJ*-~gÕJTb9:wqoPm֝M:ےO?'%+fZ-&%(צB糵̗?%%[2(mRb {w@?w潍]IQվR'>zсaa9-O5mpM+ߓ/c*O+S.6EzJi9}A04<5ίUS0Wٜ 9դ,5vc\#3LW_glݨRt{4t1UslT 9AvC&<_;^t * D-Ey`د6;;no^!oh fqgXu' {9K@;f,[] sेHg$|EnG:j8ٌCu;K|1 >-E;4\ղBR|Q9XvpJ$,bBa5Y|;UZqգ- Z-N5{FMس:wJ7{gdiU^OS3ۊDJjЪ=k9q t9ն!{>9gMf:YW17 Z--wDaLr}Bبj 2&ґn{R42Z  es[|aW|,zT5JGF{{FO'k<4NmF-T*-5͒]IO ׊iq%FKZjЇm` t=sEyTVdgHgSNҚhmLp)\Zk\'Įh)xf5Jݍ05}7ra$𢥡_g)UAL*rsN}>X$SmPn4lii+:4MVs- x+5 ͫ<*KB6-}ǜ\7ΓkY\ykgkbeR5GopU&#ֺgߙy%J)gPlфSqu dSe*R2x֪?:=v\6#Th|TB K-EZ6;,HƧmZ|BQ lyIdTZffGss3챨sWP+5&ZBJE/c3D"NrbT\9Y?i, t".5tEe鶊JIs4%WJsZ[m_/]KUMvmYMk9/Κ ԟMʚjk?s`@iB$w5SA 6{zxgYrz,2s'UAwr@TQ$H<@5#LfjZXM, R P,?BūjQ?t/=qe\tc{_4̍*}rvS,>RYm2 ߓ|ɒ@\JkijDsƻ@5=,$}}t,{ FTbU 5ٴ1^fl==!1}'I Q]MUZϺSrrh}=5sc'SGv9>gȣ%>"3wU576 +!rw Эj&\hoz)yH B%rtayYn4t!?))72]rg,hӪ6-t=k4e,-͍YwFGKt=|7šW/lB47ᵿe̒ҝ`k>*cziׁDi>"w +s*xNEt\hZ L=e:0^4ΐDS6mK*aN,RsR_),w_WTQYZ\ɡ;UAg;i93FPEƋ/9y 6;hwv!^=(ϧgAґɌ\HzMgsWY٤6pɉPkjsx?.>Hǚ&gdϮ9_ަ9ݜj"9A2]UJ<"'SPiN%ʧWO]4D8HDVV;ӳAxO'J&i T9a"DƘ@N*c(J4aTҲ2?ӜڠF^DUZiaKU^ ;tN 5(ZC;zJ`),_MbmJ$Ʉ䙧Evx)Ecb'u)Z|rW_U)Sx0jW&aqaVS>~Pf6vK.dӊ)ZH㤭F4+E(_ |hUAxՁ$drꬦr~"뚑!w~OYfq]3*-T{1|\qPuq٦Kh$en'gzw-L2d j LjTom>V+ @=A20b `=Ngf'V vpOd"V>J΃8D0b9qɌJ'8 z]%?]mw}6 r,׮6˥y=8ӼxV9g˅oh&E+[rׇ%E+􉶾Ӣ2V`oy ~SiVZzfd-~`6PTmq q;sc}`OgZAQ,5U⛠3"󾟂j>JReL)L:jdc$x塞ZPٮ6#?5~7rƴ|on"EK@y'ux} -TI:+#ՂwzOFf17*q#o犵M~@*h`g4mҺ缹Q\R.-4%b)5ᨚ(8.uuz ^ aDOb  rXn|-Zmiٙqk:UĖs͌$N]5gb:ekBwxV$!Z8V;KlqY#38VqYȬƹ;U8J]N ` 0\QcwBiy@r_8w|gfH#Wٴ(HT8=)fjzM⽱[ I\FF1V¾fxS xUXletLiwTESM)rw \9^z<KlvKw^+:he+/Qv<6(R.k-bpWLpURT]K|l*R0U/:"zly}K[KpḾW'AZmnǏkr>AY@2v)Ơ$'rO㐱T݉H1}|^M*eßS >Wʷ@6*9~(kC*:׮l^dDOIIGm%Ou@e#*B:LŵΑ TwqMHV{R)'vU:m:g=_Y$jR;:'tPmNtm̪8*%Lj eXf@&kMڥnIkQp&8 ] 4]׭hWwV 55&AYyUKrܣT$KǴLAY؉h+9u]ezWqX񷴌8}) :1mW &K%I+HLU*E`\-1)W]Qޱ|,m*UZ© )٣:ϞSE liK_j6#Wڝr%aYQGnR^Fv#si绹neF')ޒeKZ}?>6ɺ)]ZI9T|J#TR13yZGzؙlJ1"`u|NX+/ Pt{N:9swٜv3Zd¡~ UD1"O˧l ]*pE̾XΨ-\Jю.,l+ό+TdZo:Ad26*J;!նoZĎh5#RrLa>z:Qh ՞iQA,u6wyf7e|B2U =r2-2M&$T&2d7i8EF%^eNpJ3P&Jz t_sxnBBKt 2^dkv{V ?I)5J<w7%En-Z IQMyG6xv#4/T[ y,jت+M@,vA1O${ʹrp8t$-/)t,H4,uJg;4ZZ,LtSIŹ@)E0d%A\߰@aWcr'NqQ&F[gMwUccxܨPǐx+mn:)y]qF;H' *랗v@7bj(Lrŧ8av{ ,J82g4DŽj+p s=eB9Sьj wBb.dɌMU]*x9,sђpB HJk|ϋ2=*p곚3WqU~2"{ a?%{cB¡*>;wᐷO㹖ÐZUS447$˟-8c|w[kҒ$X%1b6xfxs̟"2R{& EEIYhFUN㤳ήh&S`TQ$Ӣc q@~z=#*bMNiY"H0k i%܋L3( aPbnExGN49)d|ʮ1kਙjk>a|]ɺgWKeD7Jx=^c|3F,HUdnxcrȆIu\׬Z.KJ9YMk0Λ-njV¹-њxU\5Z\Ut<{]&]{H wE`\l]<\5*}FB(WGRvsJ{Q:e,ձ_x8J*Hfq;x*Dw.ʱ '"Pt>#mZAf8Sw&L%X¦6%=&02`B2굝Lt\K/?߈+̌_x [^[ ?hIX]?l[tIzSyj9KK8g<_9#mtG/g⍶-ٔq!#lRa&ŀ0S%"-h'wtQM8R2S 1HS<3 yNT+j:p!eA#$Θ;P(/%ɆcЧԽ.}O;Ύ'$)\c'!p1=nǶ]6?=0pbi)aToOºèWy:3+ yFDL:17p lz1~U-CX:T30[g)j|Tvt{RqO?Ɂo?*e:2N=qǗ|A3e- kɍ{B&"2XA%Lۚ]#8]܄}񾾅+t%qN,͌5׽ag!o7Ӯ$Mbɂ\T<|n/V`fr4E=$јnTu57s*׍I,c ⯝4xMEk*TI3ZJbw),r\qbWE@vpۭuޤMi'F:ze%&]\hrNxPŝTkuT}|%7 GF~gUPpZKVtSy=SԼJ֖o/~`ǹ~́Nz%zh") bSqx!|f02jѮ6/]+.ĆwǍ/lJVuF9&z7sä9\w\LDF٘l A]TI y@oc5y#pE.N&,hךRD%'+Ƶ<\jQZGt:}P7;J͡_I)4f RK5K$tUځ"1D&%W}U5.4_tٞ&rf J:O[O8bVAS`d *(f?4zBA@̡U6$,(y}B? V⍑"ǜGF#}= ݭ'!Kk1i82[G7\kғ [Bm/CͥIx to48^j&eRN*=fE(]yT]luG:GogJ>>vԽPt=c:Z C9Ȉ"pVr`2 !?'pHcJBx5fcJ}|j<(clGl[o#߅vjjcxDH|G ăG<%FV<(n9/JrF#қ'{§?lUѪ|Oyzwj*n9uvy[G' 2o!'w7yRǿR] GM-$ +ҧ{&3'T] U"t7k4TrKMKeL\֓k% ]2V>W[_@#h+E 6dl *0@\M-ë3= $-_E| x'jק :jJ{ }DGu7˫W3C`zhSNSV%n^s#8O6+t[ت^ $woΪ×;ǗlCpVN\|:|otj'{y{"`J]F+yus<=]@=M O^L*5]Y,C9UƝyE|8@sX#v37{*2 St6w 4ÿ3_ ˿$\_ףVYP):LaqiQ:ʨOi 9L5!,gXC<̔BUBUSP]q'ܫ7N3n%%x =KsLzPD`=zc?萦+O̧Mx*8A">> U 9=ԣt0V>Wc7+~Zе/6S>$ATaO/XO?$${MqIu}%qM{{ΝA _4a;) %RoWyF`yB`ۿ滫YZOsX~YIEGŸkW}CW+!j évO2מM2-W/7;1'ˢILZkR? w_&(fؚ~|Ya9ǟ{w4=R0 vM?.tӽK kAGdiK3]l@kB4r346dGt؏~8v^U^/B<=nCGc6vOsc^yw#ޝ-ԪZ>gʛs%%0srup=mVokSt-{<>D7Twxb8I [k?-UYNȯqhcn3'}`ylv7$ןi}}wi{Qg`.)cfϜ8Lh-0xq\yc|~inU*21y.Mv~yپ؝>nS7 cw4ywOZ!%hc+v-;bCA5Pias7|%9qj 7L_{ͧjl%E4@5t5vϡilXw *S-#M~U3Ba&M׫__mCwZ룉2OyRSgw\+OtpAKWgq']2LGmFxov{Q9습Sg۱rû%s!/N;8TFG{-_Jh 쑲bMτ{[he/]n&rl'gfzMi:箘}:*os^wM%u_K_ /EkFuI/=B^yRxr܅kbn붂XÎɛ_J2:Ƨ}K ڵ \yo[xrp#r^ wǭ݋>'ͻ~ Oɟ6U6N0ȓsg̪v~+BGNy6V{w ^Pf}oߵr3֧~T57'Zms@VgVoc xBG]i6\߽Z?˕ J-'jݳ2okz+3}0Wne?lpeojzbJ:Ȯ]6j.#U/lW3w憗kk4̔urKwut'ü$QzqmzQ)yzYwujDm/׬3zWQEkA^^=Y̝enlGfMtrݍܷvR t邥܃k)Z3swIMn\-\l9~Oy\AR~0g[WV2iSW Gy!۶yj:Y kN3o,gk͡Ns& X3,ukye+sӕhw{e)Gh;eJy|ji{Nޗ>fAʹolby%jJ,lsV[.3 \ʹ wZ9n6bv\}c<ݶ0* U-Tk+OP4oH?Z tt8G\4fs{fsWYUj~D=2-{yKY]7i-.bi~>ſ[ރst/۽7冃OmӾ)t LTL ZoZլ+Br8@~sݱ|#^tVZ9cVduNH_ħ/#% S0]d={8bV=.Kzxd=ڬL-f?e[zR>˥gu澹|ߜuV*kӠ&*re4]8dZԈzЎ ]tT<v%#梵R|4[^B_;FNRYvϨ[יnT:\!x}[9*'J=v+Z 43b{䔺y&٧>] wky |d7רW[{ʶ*^V\Z|-=ӘcNOcnE_hO9^=2{|MUgyR?*:]kyN/ z+ksQyݚF(n JZN[[+BY\]pv[hn"/jk!g[jB{=mwt֓]M]]99nQzn.6/YMd*K^kzN\է-/ :謝%O+rRټ4xVtjHg՝ٺ29RQPgvi^E̵iҷ^e >^\4b?jo;bʵ^ *ɳ."r! 1 upre|+Mu=ʹK[T,9}_>5Qݥj'Lϼ(4PSÛņk*(IuQYj ܕFx Usex~Y 9dyO pteewORNi+祥:|qv S;B>[U[RwK;UEB<';콚G{VZY(M,;cwYFMx՜ݬ0%IJ#}j㸂gv4վ ƻ_gdV}ekW rڧS]JY|q: :gX?xgRѤk}OIW>ni\j~ѣ"z[-reMPYr9 /xRJTk,X:׿ѕ=rO{5L1XGzr_ć ~vGYCOF<+ݝ޺[J0jJxPq]wqǵ+mtU݃ݔku~{Ο>.]ZN:[M$*~x7(w$ҵk>qݓeXoݔm-nwo %Rr.C%Kk^#d\<Nkf'ȡRS3P1V'"oOZqm}Nװ;V;!'Wiû{\9M'U/u( 5)='p^CR-@](Gu)iװˉQE?aXUYW# k4[|8*={mS{ EspUk:ZWWrM<'q)T׆{ﵦ?d%3[{HmNOw wLvX4dTJTqke3Ll}TEY~K!'pi Z~~UM*ڛX;B6Ҥ07N.y糱xg:+adټ%kuǻC ܛe^DS.QNCؽ 9>nh 9rܨqgU~eqp v𬟎q2Dzsj;;ؽ5^o4Z ֬U.+~S} 2C`-~WCsZ^ocz2]A9¶vwdv6􀮭!Q-6%p] 'H\`)5Y.c>S.)8׮?˹ŧO= I8lsZ,FTQG47'/|$rf]1d*;|u3m_rTG6Zw~<'kL𭣹fn;ټiXxz'y:*>ntn#5$iG=v!N6 ]:OK.N mWl~0EKA?~Cl9FgM1@^"Un\*uxOsp06ޡS,g=uzcgP\Z% CqК UU3:s쒎٣Knl.~)/I;*8Os[99k?VXgs|•p 'hQ~ױףP&YvZk_ |=n9|AW%o{뎭PjK?W4}{'PZ7 LUH?ɺ+lԳ][XjG-tuMؽɏ]Q$FM \aj'gQƦn5KSgf?CnY:+]y,˜_)o}MtfɲivMWJJGd\uyĉ [A5WIc^}֮f]C~_oU{5viei]T\Xߣ2_'Vj[\ N煲ƕƤDFl&nAzc4h;pk 5ȭu6oʃpa܅ib_U\ނ#u\Z4[ӖފJnVʩ3Bϲ́~ӳ긻AW_̕j#%h?VFl{:>%gg]QrR53fsN<<.'HGKfޙX*~! 툠;7s&9ʻgE1A^ߢ'Gի Bs~07U}9?g@myX|,sz_|ݛ4̴܆MnL=Clb{G܍gtURw~:a5bws I|Oj/Wʳki9߳aP u=- Qz>DHsp6{pf}{.ɛN K(KyWlMFAr J۹|j9x5?ݫ}L''JyN(՚ _ 5^˧DfV5LYh8&g%ؿ.2W{8~~ժKt/;_c s{z%x#䩘Y>1}%_.kd{~UN{:^/rXw#<5zX7M)fSfPJbp/d5"g_ѝp5s!cuJ, \g>qWH.Fp@0rne) 2eC8v︪g%v5'aydiwpqm%:K"C\R^oOIT1I9 bHx5ìM.Dne1NӅْ31V8QCqbR偲1*f@@DY*ҟ'+ՈAYܹr&z5бʑa̍H.~faȳ0 (tK¥(RD J["){l=t!h޲Rh;> kC0&g5Ʌح4KЃ)Aze/wo9Zֹ&4`~5#.ĕ*Zș+r[,nhvjC:Z$H{hc'3|' ukk-=x (R.ZռLuUk5Iomၬ^ʮr++s ON+R1!Of~#pjrb>:i-.I}Iz$)D/'R y|?Tfg,&]qѩ~0V%7COB>0A NvWG%O@k?18W\pĽN6Ņ @LY-; %wqwh^0\8&jig/P9޺1.ٽJɄUʯ0y!)g(+f5j /*x>'gdhw}s]xxxq&iO$e61G*M'hk]3YtZ&F=8Co`U= ^SHů'mGwP.ռpue@:6jdDY t)d2?3?te Yʊi5Twc*}A@h.|*/m_T^馚DewEZ:LxJ~~(_zw Oi_1+%384u'_1{;UrhڵdIzP.;+ϑĢVa~~.aB73H}fӇ e]RI~UN9<~9\E(wzh8Zΐy(uwGCE3DP_ǶodóKO}),WrjE%>(-~%jk%L'IK֏LPϋU<51ߜ5Mr& _k,s"5dX$r_sS3hg7U_ڃV#fxp/ǣPٽWKք*xMp3`t-uO6=Z];Թ+q osfl[ٝ^GnՃәPAϻErQ7 3sȻ;9f]h\NK>&.tLR={g~\RםO'r>tkR7AKgrex%hx~|ǪOuZZu9P0LcJ:ͻ[p#y Y]dkK 2bݨ[?;[_ҵA>oGwum/+Rm[CP:4\9֫=q3]f>{Q>x QpknCʕThAܪ.qOPYhW(s{*o+XQo7\Ke+O@Em߶,ׯY ݋Q?' q+R{W"pTN?|r7/TibJ\,briRb|Kw5oB; ~&y8oCf;V :)W.^܃FŸ~wCzyω|WHVJUzc{w}G`gށ@\Qّg%g=b Fsrj1kw֓4%F 2nS;ukhPr^.q##/+j.Q@%xkWJmia7V1*՝轰v5OAOr?1W:].-q2x&u+Tԧw5Nytyvt͕9J.RUŜVE}Tfi|}3RLuPTtzNwI<r~̩+sbcf)-EozTmNS.N1u>hB,cVc7iߑ]"ٓL=u㝂sP]3G+W'g߁RTEFFX#lgEf "Vo )U6`6F}ڎx=NDN]^c)eݖ谦 ̒ T:Ur+%jIJnRm)͑ٴ.hz??ijġibJYJfś@܇e% kwilOs:}GӨPp1yuug$LZ`TV1,k;ӰL &1,;O~ZKэVW/ ^+ՃUenzGPcLs*rXԕ̀y]PzB#mOj3kGQW ~߹O) ռj>|=TU]4O0pJvI=H;1vS9/:v4^\ J?H j&ݽbx _WeWtUwY2Qcq#jhzc 6"jL4sw~$uZ^ f`^/fooF^^$ uޡ]8zq 7 w?NY6phΡ=8rC+ߋd.Y@] /l`ԹϜYn7CY Ñ\/~+(7' x{>ɼm7 ߷p*f|pFR+,; f5D#GZRV|Q| x2Eܵ?߳Rw<oW+: {:yYgl>y?5 ҘkT|OڎxFW|%:@or;_#mg7? |C7,~fq ~//S|9B̶5mS[  owp_ .{#A-i!3mIn"|Yݐw8CLz1n}&I7>>A:YE>/Aa=PMl.D"+ P%d 8Y!3TƳ af<ԑbٔ\6VKT;m[pSFm:Y#ŗj&|Bu&`YUK9К%㹯8=glS *?}G,}0p笂ԸlZoaLt'y/A'm>s;Ho ߢq;ϼ[kp9I6PmjX1孂׳Icq3b~Z >A:DMK,%A $x? /=P}3&X<Wz!)JPqϨp>eI޴|Ź Xoq490܉1tƨuqtYoO#8դ9(mt.<.0FSֈR^^δwzDHyr" c}*<"9\]pNN^•:z;9 ֜2dYhKȮ: ;H*vp Yfg}$ɒ3`>v'9QquO+Mmctp k0ܧFVh;C!;VjaXѪE,l"%Bvs+Jq[M}` \ճG\n2CGa=a䏢5}p5Yc!#PUk┘hI+V݋]cE^~qǫ \FWtTYW,sG>Sn)kLȌW\xyl 8<[ծL=f#W9gL5ѲoYZd&:`3H'#*Ѥr3Suy9 ? Zak-^ekATݒձ ёpi9,|:@(gtPTFlUU J3/YLk䊾Y|U%k+jV!FU۫. @NaWT՘OOZF1W0bk_)SB7{7|19{@Uiq1g+ad0f"W= g/fxw6;d/bV3aMo9s+bÃ= /sVm";f8o}پn_ ;3U>uM…5i~>PGg 1+LXޕvi/:0ǬBFϕ܅:/FGF~z85w^cB ed|m,SQgd*/LvڸÚ1ܫoBD+<7Ȁ{ruwі9CfA j/xGFtWA)?=#&fU @XId]>pEgUͬc|5hͨΙÙŹ1[֜v}C?Kk-|{^J⁰!+㹿MEoQ_Z-]by1ɳe ,%ՃF]6(wK$80 sg\; L?X?waM3fWfLٰ|[OmtV>v%HO/enJ:ZβE \e>qOZYԷAU˙۬'4q7ÝhB5)~Dp5_9VN +i\4k>l:Eg\#Vz nze<9\2_WȼF\3۴ޖ4>#c]"ѿdr\.r\.r\.r\.r\.r\.r\.r\.r\.r\.r\.r\.r\.r\.r\.r\.r\.r\.r\.r\.r\.r\.r\.r\.r\.r\.r\.*&4Xoriginchk_tagchk_ref_HDF_CHK_TBL_702_158_1962_159_HDF_CHK_TBL_0,x  zvM82f=xLwT=4P4 R&'ԜCɕ2I%A ҋA^K4DiҤAzAO]wX}W&h۸xSo#c4=d޷ظMaM?jj77~,xL8_0NcFW)DZwb vhÎ-Wq~X;Ətvku:|_܀-65mv dTيo)k|[<gzml5j]hՋ󚲕([o|65_/{Vwz^Ce< ipQC>ȷZ)\=E KgUn=_ ^m}~ײEl[Ɨ ||0~-.}j?i3"#ÅEryh^W-4Me ЊNm6sK^)6+;m_2 |czF"ۗF>#7A|RdddX맍DCh:ΆFn#A C$yX0m62|{} `}XC +wtC_V4*/|Ù/I=[j/jX}=TM!}`p_O칬V-RC){ pxM{=Wmr-RCnjd;̷g*V\CR9RRn)ʰJ{ǽaJ&y%4«k`}ئI=S4/_^++ɵr-))({0,{>幃򚭹ZidHIr eq{/>be䊐6:k{N奸J1[+$We"%5[E_s=iYQ4/ɥ| P;`؝MV[p19Y+KGr#Fr\d v{]`MVPAVb|pn4MsnᄜQu[H{8w;1m"yp]]hWH;|;*"am8^['t[=-=pB\&Q4TPǥ+;M0IҞPS e@݂ NJ$m]v` )`0 =a"V7%OGNuU:Ww[ nS-N[ ~#V8H:M;C#5vFKݤŝGl)[GXR ngS]F*MIRCڭz+3X bj>AˤnRzVsuUR t ]A*:u0VzSѭ, VRTTgu֫3 *|b?':%q⓲Du6biκceO܊p?h UV̀Z,S)P[juNWйbRĥ=u[ʭtu)|O陵$N @\wDUS fd#E1hi]vj_:USqɯ#E#xt4'au E`<~vQվ8i4^" r\~F#h*QDrpk5h`d0d$ɦ[ۅpWzhWڋDIRMIjkAWkH{t[_L7*k]m6]A; w=MF nVUAgmASh1ISkͤ6Z.4m j UMp^,V!mDPT _Hmn5ZN뢧QPOS´]EOuZ6R~?hyjʹ#K?j~]AMR '} qyc}g"jUT Zߩ%'5SV/eU/Ԕ%rYw׏JAy4D~95"- bA%5k5$(OK⼫UW*J 8!րBW?A頌TsƬ}-WBͭVJf[]0j )V5}W`eq:E棅6USS2^o򪉒%2՝ez51 85 Yt"9jz5U8)jl[4R_wV:+аj YOj 9Kj}LGAT_Jyh&,mղY;4BiT} djjYdh3rrG7,d,0X>|L#}>)HP(C1Ι MUZ듐O=5ܙdwfJcD9V)W'K3LO;NK莖biSM%pP;,i6X03w)KzZYo]`np8zRFmEWu`ghj<\t^ߦWf) uPwY*@+YN2+_L+)QKة{{i.4KEz2YT#s!D9*': *_zkZģ l=ɶu&F}ogB}Vh2A_[,|sؿΨfB< l%F-m7ˇD|[}jl)b4jΨ-^ ;~m?c RW|9_N}mSt?b -ę|iwӵEG^yǡӠgQڈevg W+uUl1f-:"so^Wu n['[Wҳdu2h6(b0,Ib|kizżBa/Ql `@+ta2gt2 QhV^ZW+O6MCF䃑&U%yy<>ޡT$Q,DȾ9<;TCὍ|+P'6EbAnE֍}zpJ]<( CCc7#hמ˦F|f/go[ź)z]xﷶ^ rw W52jy<$>Ҏ`K/[jmYSމ<JkB_/W 0bE_Kޜ7m˽IJi> oETn>(榉Na셼ۼV[UU%Of@cOoA.ZPi}{=v&*zs>tSpw'3YVΫJ>ǰa?>*K~$$m*&6P|?9hjG * >9ljZ3)bw'.S??xrVoлY){̽ob6t)^eZ Hy`6+w= 5 /K eE؏֝̂<{]%x1ZQ#9"D>dyXcж)T5SN݇&Vnwu26y+?`maBy~-7\Q!7k!L zM2QJd'aV"ok`YіBB[vh${K|eJe7Eʲʨe h t %q%v dVȕe s~p k(O?]-#g, ;jN_CEYz2YOMS_F Lpg ibS"4ZyC 5OSF_A@=K(eu'3a=Om ы d(tNmN4-x]8dw^wi2z#贋Cf@8z!=I*yU$=Vۥa /zR=^ w;o%%}IOȾŞ޿H&!$m!IONŃ(=G:IgpbQmtv{:B$mHgAݣ.HC禄hpGH3#6ڋvnAR{ ҽț)H v?8L꣩1ZutN5Rl`z-Gp 6t;J꫿B*6f[k`BjagD^mlV IUu. >bg %t1]CTRg$g=p5ݪ/OpPyBo^b\Vu?f] SSh[bݵC.Bu:^&-[OXw\BKI 1P%0:-209tr:Fn +:`5.k5VMolPMYۚ&5P5A5k"tEZ~~>P97E$i&&UBC_0;뇅Q-2us,  ŭAO9ǝAik8RGyR9ƩaA58-迆mޠp9X}BA7mC 9`uGQ],j09fuZ=ND5 }!t"Rgi:CEA_4~@aM[ Gг&BY Pj J /Rgg5&kd}!ipUVNw^Q<Ry$àϪcն!@*$F;sÍU&/h&}}#rg3Ù̅j 1M'krMᅣK܄ Q|$zg3b[G}ѢAr^&V]ȗ>a'ZY>->PF:\wq3ڙ茇,{쐷.-4Cі SySҿQ)'/z'z!yfrۿueB6/@qay lS' ݝPLCP&zG9t'u;r/Xxcz v:e?=sFn iDVWotiᴳT+ Wu uGW9RK5w͝ȫ "e6NcŠZYuhQM5lt-7{VztE6TD_or[c/ё\i.3 ',e2/4aTZsf+含j9bOci s Le2N|/WsߩTs<5@aơi(:_S1v;v7f΀R+C 8r)uf9W/ł g4ĵ=S 3)+vo~oN J -q\z/s9*\~NOD{tƜx? vj?U@(p:EaY#`r WG8v!N؟0T= &|?eף{Ju488ɅSuqh)=o\SGBiwvmwwhcvIzgLz%V\m N؆jcl8aҫj{2[_Az)Wm~h'!%O5b5[@\=B)H~$!^(6C)p/͚ד.&݆P)gdc79^!^=7?$xc7M #lB$}$UvfG~[KXŮF].Ck,9Qn%!ϳː=.B]|7(NSFO 3e"'G^A|"B;΋-0y~_NL'8;vhkg4χN^Gׅ:5v\N~0]`=bYeF;#nw$N[-XU bSek FMpb|d?FY4K!wGxi=1\Wk?b]ŷ-k?g].eُF)_lxnygd6YQ}%C^)lVBBZȾl`t4OCS(`xvh7+PS`ȃ>6F[p&@5o4a奡b,#y!l\Qrb!0E'pQˇCg/l(Ra9afn^{}@lРB Pdoo/zQ#Kz~""#F=кud]: i;;~ktBiP!0l*#l+# ?y+V5NR[,vyJqq=ߞi?gX=ޘZ=E+sBsrj sMΞ?V]n&DEOłD{=} )\>y+KK<tބeËpcG>dEAf/Jfjbwٽ^A r"Dѵv}eYa';4#,ӈEֳ, nlˡ ednvuwCcXNŊrdYV-`\WWu' v"lmiaJ~.VWj#0zP 0B`[!jU!~ դᤚ:OOnDeF fYBX\`O"8Qΐ a=v˻eB1fF#>+>̄|fĞNZ*-X7]Ǎ~;v胴B5 &!ٙ:iAbB u:B)v%x06t5A$ؑ ,()h5bI!s]RBw "?̰pÈ^j/똛5Ԡ =o_pZZ!zAЩj;4ZB:ȿ}/4Z;]ՐoFևvA ]5*JݭnWt?J HmZ[n&70&ښ~.AjK=HAcw7p3+ĚJV#!/µWk;Lbk-mO+ L,h H R穛y "h U6 #J%dP(ZI wWVPJm9NӠ@, 0k0_x&*NH->gGj$yZ|aBS hndHӫARwewV9!R4j7XZRl}<H:},ͦ R5R,;|gܪm5I>UH\t3*k4d w8Dn5ob9,n%W ȯ-q3 \0ϛzG}qN/BP+qR Neֿ3 *f5CS!9_C B4O-7*;piMq!eC~To7[\ٌ=?veiV^pkRV(G;VN lVnsyܫ%j;!V;-/N+ fܮ鵡7SiiEl0ka>XS]Qife$ \YoT=+C%Y2׊UX̃Sͩԉ=C\?+ @b!DefYۭBMPf(aV+9 NM2Խ3s9\l.nIGʱ;^]qe2\8uSz~XK9pTŕAH<:q MPCK 5şqRpb}kNɭѩP ht;E`.#AP݀G#1*D'a1FGF:h+No{z؁QmcGob'}!za$=}ᏎBS EE4%W"5v tz]Qԍ /h%芖&BvfWItJMThSG5ͱM0I^T_BՀK$8[\t܇W7-^.i{M&x%f6x>{R4^7xi$\EﱻF1'i](nA 2N_71ڽ0E]vyObDU~51s<yC N 7U~%1v>^zaI3\o~N;]+ {=it4ZkBy6rB;=r ;hϏs#ȉyqvT3=~gbۭ K9 7W֚:Mk>h|]>/ Ӎcc:mkN< [ N6wOh6m+l]I<]G^/oy^m H4N6 mRtBFfEfŵ^qW> l5 9S8mbER#(H=jfh78>rL^L!FN#AhA%A~,Cyb]`"LJ zCaoc=SmŲio׺zĢ{؛}.֑!Zg-JʓڛbolFo7jen0-X yM3=O:ߠ yNj-ڿka6<4ғZ3-K>2ڋ zD!oۋS [9Ch'_V-;ߥ 깏W|{XH!MZZC#>aۈ=6r UrOD%:yV+&:931o^ Ҫf7RgU3Fʇ͟j}We,N;X{4'AVfUXE' B3X=ݫI8ʼVZ 4O ['3O_ap$=^YR8\Oܪ=JL9d'9 YHv,}7J69L~ iPYuG7F.-V,p[3:߰pBZّ+ FR,b;}!]!#*v|d P[.*a6/xrlhSBFtWken?,֤(އ쮁hYN,瑋1Y,3Y.wC6ػh3If(K4.r۵wXfLʈ6Uw՗\w]߮Y:2L!gZ:Y}'+,]h!+ٵ%n>R r }H3ܹpKg%Lsd;ٝ<+"O$KxSoݱqpBwE 'I7nqGulpWM$ϣZ6NCu&GPb L;.lB~^ fy.ԙsm #"Lz)8'Hw-tE y%);Z= a:}?U(vKa u4ku@+].m9IUct=LVuon^3#ov@WMP7l MN}mn6iQWQml v t++VJu2nCMvjܳ5L>ydߵӻ݆`scIuKh6H{'P5OpB'BP]ʡYF>j9G$Pg }:+\=? ['"%I)^7B[),LiG/@'ߡ|03O3nIJcn%ݏhK'i1Ri%vIt M|tu:F)bdƺ3!zhõs61u-䚐I:&:NLO+0B0dW][y[TX0CѐRŶ4H!@vBڇd )h Q3: D:Vfqsl D*$I5EkkjvNВ_bMk6 U[^9hgm6VAgɠ\m*Hfv%k6gHk44Vn&kiЎ6_wcZ_ Rj+Zj>m XG[d.š+9O4UނVsyԲ~gEZV~4 !@}k5VoUOX- R5O\/%!HjR5ks͹vn@UfQ4,& jsֹf#MqR-aJR9ek5o)M+Џ>d+\B++I3Ԧa߾I }eTs$ӢwgJŎw9caja{bTI`,HnP](\Q}0,Iq.VՓV}P _ -n]47ՠ g_ _`ukVk84X_J5R-g\sc`Pf]^yf rJHZͥg8 !QUA/*A=4KVc՜fY!sG k %Y,>hlՃ`&Dl٢ϥw÷,qY5뙯i (HY0sO4+cI0W{PL>8T>gHtQo x? /)η}j(FO>C߷VY+y׼.3E 7 *:"[oTg嚗ECJ}f> WkP_}PףD/:RCG!OA\tz:|VqO,WNe =V!+y<` -mw/荢GpB[Ή#a nXBzPmNg+;^VVDw7|/A-{f-z#l*~o%@*Y&sjz#X:p-mOBgn qlțY+\cnԫ tSi\^E!nWc}BՎP{{^Z/LT(Sě хy/If?94eJ{PB2E(e2by)4sDLit?7:q@]aN2"7J_ew(v; s9]tCg0] USXNaǎ]1z=)|BUؾv:](Pb}NS8v;9mӳ h_<0? v*vkԳw(-Nدf$p:3V~oq:)klG f_=40Ѧ09 b3Nݒ^'LW[ƘMai:Gb}'L8TG%lƈRl8u3=Ob8o"op54-,Mo72^$^4"qG?&z?Hz{ >+$ _K) xA+qMEsp/+rB;1zyD#\xA.OB=_vV;I,8K:{y #FK~GqQ_VX\ՎBEsx.~r/o4چ{-1m;D+Eyb;Dc-hҶA5Bl;B3M(q'k5ǣ|Z3jmP6CՅKB6}:|+_Ay7jϼx4up[l˴5^uxzXbr̫}f?,a /F9J=n!#뵹 mTlQ !=Y3pU[cllZo|;b]d3r12(fx%*d6}g%|X!CU\XZ/ԾƱI0԰ RIlқ+ p7g .#8BśEl8F> l6$\*·OF>Z&އìl|`1r!|5m~HvJ-yIqP]`(l0K Jژ H y lSLzOYi|*Jґf=Sv)[J|1_FA&)43nHL7n#2ЃLx,#_t,Ed2q38S*> yA&ocS$̀ Lkj0򉼽jx얆y$=o_^n1 OQ2SJl*_=qC{r/ds~0 ׹!;#9_A6(>-&81&~N{Tq݂n[ \p.MH9iJs=xq69w.;`ۓ'(}.T'67iTl;1]l#I!IXdN7n&!ODR5rgLf F"ӕo R$Uyec)o*Ql+HhEe^b`6t6cUj_}_:ܴF5TNl[qjbzӺj%c&j#QG4EJj> UũuQQԆN?46Su(eT2Twջ-lLSo3hQ P6Mp:0=nch!z+iSq!})uhw}%c;a:"Te)V ͤwVs@[ ?lV;xQ :LvDzk)TY"1& h ;7fQk"Oouc0碠$0K64 DN>tȿ#WcOci8o7Yhr?Sf8&Mb7c0”G0cuDEΫ7i<+Jb[N>iXfA:`^ôiA/z(z"vj-ɇw`Owf݋ŎY`2I-,rYMT2/v$%THzSvѽVM:-/nwx:/fSt-vtPsAB)k^c!ܚF d5ur~[l̇^krUȄmmCb/Y(Ctc~^~ZLxu'/![a*e"2j?2itAtN\aE+*BaDgͷ2V ygjlnlN7^YσNNwZiE#C###77 <+镅b`/2Ie;J\U*鎜)9^1$ԯ_Uz<;5%+~3'AS=y{g s|d}%k6asDL; F&M(P^DJH@$=>oMZ\ n=P0g YrN_ਦ/\^yG'np'/Ux*tJFO_ ˄ az&8g؝YNpI}_0P:Ca9Rۤ;QvLȖD^hd4~;ygB΄-k7;坜GK-(#Aer6,NːpSB?egUy~rd9a:f VÛQJ=p/R,E3 ÕUyJ!cJv+A]P^U|7?vt{|Ajvm[f>(_oxo.;dvGï9oT e7ߒ*#!+TOC+Ō '/sRj56ݖo.'M]{C!C?J6r7, +=[(;Ebs!uGM#|E7|qOB㞑)d_ wIփ{-ЃlL|zN}Mf8Y|l < )Yg##5$#iPN@Vw:B"Udc=O<{w^ Vww|2X6zq;d,X>-z#xD#95Z6d0:BMp!;d$㶔Kϑ>ḢAO@&#E sd0->>R$%evx$n-H>X$k%..[̥7uA$"8hђ:Kںԍ򮼷8s9O:c~8.w՝ywqBs"Ҋt0vgN}R:1`Z#wA9vʤ ͙oA341V>FP!;mMc7YrB|oו)X'Ai˫0e"gTER͘g,3c krˑl퐶Yj&+sW[,f0H#3fH-z+b2{$pueyi$UsMSf1[ⰻP%yvE,sL1I8[m_+&Lpb1jS߷,RrƋÕ`b3ڙ@"iRQuΑNSo(g3%#RHsd';6 dឨM"y/܆*No8)PMb#py>vC$I4/HK2]Ydmd;ϝvPYHhl_ZZO Hx$RuH 9yj54uY5Z{/gES F}3/{*f?NCl=Ok&S/-c3R޴XɆZm{=eEcy%75jkM\u;Zsj8-g@\-꺗=5$NE+.”'$Ht}e.ZBpVQԀݻFI#:ia=yE6⼗31=NjNH?ӭN'Sb:]TB+q:(`54wQ֝uzۢ[fY?Y5PaMKuFVoCZ|X,\7kr{ka1b7JoܭZ&iͳf[ˬgb Vq^wtހXh͋FE"a4[<98[S7C[oa4-C̈$c< 1B޿>}MY#ȭHr,MfxJ6(Vp5K*0Yb,")W0W"##Wc7()"cwOy^݃;vރ*rJ{/+`>WwVgkWS+0W!^ ر.D?bwW`B>+^oןgՖ Pgē'!:{!ĉi̛Xvx TGخp]c'<xxwW :zm`r7=;bՇZ#D<A)&{D`CmnjYbYpRa {C[ YͱeB]]݀y?\ 9I5u^}WGWALeP!\i0ˤ*4$2L K] "##cĖgK0񏢳-fJB|)e2^91 B"LBx~I4USb£=^!@Xwogx%<s!z5):z .ޑ^1xzWB%OT1MOTY'' zn iLI䲘^d(;+U7z=yV~_18h .A^M n}H U@0{J mTr>旴ry`; W%H֡_Hntw@u_.7;B`6_s7Y]6 Ir}lk~nv@ʦo I#OWO6z]#.we'ARͺfScD{O孏zgU 2?6gO~.~L둻H|4[&3kuM/9w6܂X路;CU U3YS; sh5*`KCׂ [j#4wRg /^7+ɖZNAjA@+S_P5rl aFi@PT'o@? ūp}P U!`~_|;,(pZ&a0 T O)~z/3@7l yg#\ ^-T4T&b(?JqdYUEQj?*v n3T>m^6݅r|r/Bԡ_=T|;st;ӼAYIf|[gz<2JAߥya7[as+֑>^gyiNuxb3tSMd%lDv}=m 7Y 3͟hP5~6pMσ~B :n3<-d! F*lKK52[ ]m  d͜fIu!SӷՑ]c˭ otRyYp\Jc2yVa˖s[-Q3k/;t+Mv=q/]2ne![Ҹ#P>VwId@ql sɹdqƸ=Ҵx9-Pus uYB9w~K8N:g TΥ0d8'.9'ίr;q- n>upIG.rY)3?iOG!mۍ-nv(y1_6u29:5\n)x;0VgR|F:ȍbш3_;fysTZ󓶟Z-s8j,I۬Wr9i^"rg/xu^G,gOZGRTVs1_c^xu)KFHTef$+ d,ufMӌ}R2E~Lg)*㤐}0v /Ϯb3ՙTf1A ;E( W]S,v jj^TTgоeUu K 7Lq&/&iߒb~+g$ 9Qvt%,|n>Z Hc'1+o~dG7C %a:a$dGqG C13N0h=Q<'N;R|!zYfg..N3: 3OsfR EkgD ӏ?v[5!ј-`?AM-1Le#QHxi_jN#Yw a$EciDA=asP5pWr0u `~ Il!DuѺSR~5(&^2!j@Vv'ѩyy%rHL;?ԩqlS d3gǼQ()tlXN~d[ jQC+gB3T.'2k: ."r9o:笕r6-x[mag : O*7-ut5oxrFxSN*VF!̮v3rX:o<,¬BG֜Y]`^e5YC'vL&Z` !*k,oڢSW YY-̧ gn,UEF_`:/[ᗬ,MK=y}j FE.Fa^5|M==cw j8=Vj7:^އN'C&sXj_ΗV?y8r6v `o7HuKsgW'YB {s GO#|J~_YQ(?F2Lw+\IfhX\m^g;͢@`jY١r<.VSu:3LD==N( Q"r=`|yANxkuZg*Sb;gP}HZJ٠mHY/eVE6Y#3#" !vv*QI W uVEFV~6\WX]ibVȔDeV6ևg@VS{ԟǧ@~]jV?)\f.+1$VWp}fdJ!A tc.Tfj&opȕwtȒv`~շJƜlΖ}_Q:v pn0=XBo4[mjB΅,]h9W:;NJM.4C}ӓ%:Nc!M8wpBG|~ay_{Bp@݃lfO gF?hgD[v7;ŽR5ngs{E?mmYVckkfLswhNQvgZ ~䅺RB-xǩmE݀CI!σ6f ِpqw~,6ڌ< ɟAˠq^lC>ߐK%CZ6"w-UL>s uMw) JjyfӻJZп#vP4ow__On(OJ~*&D2dUx\ u* 鎕;4N.a{=~ʯB%Ԡ|,@]4T9>- {FApC=fSG¡UA#!(j2H,O~-MݰMfRda.-Q0ҕio+SM/ޜF2lwB愓͗|;P^3ۙ恳arBљ^N6oԄJnv%fd1շe#in;L36ANգ@~̂z=?tPvd&JY5,;as-#u)۶n |N3Bވ{J6 2Cf#3|r9Y .%J3;ճp? 2;A6όd{}j<\մpi&ٽRTյ)Kf:.sn-'LƓQ$g#pF&[>(2L"RYM]NtiJ=1"^ӹ--MKS,ReX>_n)ĹGp#ɸ۲+K eHn[NʮH]V}->#uH _dE]["ίU݌oƯ|с1n'~ {O\$I7q״[wxӰ;n2fzlelyUΫ潏ZdY)R5rul=ΟNb #oOaSٗG a~?5=Zc2 z>ك|j>̚#k?\p%`~&;[nU&@-[ayU6_C:{eV\ nٽ!ÕHp?e{p yѼ$neT]Z0a"yμ!y<-<:\73[ $1~7H [v~7(CiC'p̓]jmwl~Oy. P5j%dI0]AsбqsZl' vӓ ì{&P&rRwA]Z7׷?u _'QD`Qng}*t]mvrZcW(${ܗB2b!\oxk-}F0򆺟E2\l_ )lNߪ}ZmQZY?HΦ| [JZmNKQeZwɹpEky+.sjBݐ}n "sv0U_<ٜ4'BwALt( VL9-Aw{<*oKcW>~.܃;LATW PP?<.'pRNl G`ʹ y{t>j2ԏ6[&] hC*JסpK-fk?V촐].uWFYs ZxtVX~ Zfpw!%=LzTizm$ >QJ!L]tK~u-–lAEL}W(EQՊpbPߤf>^~ JgQ}X!ZF!ng !a-iAF9ENP6% r/lڂ_K~BF<ôt!Ԧo|nZ]e*sxkR{kՉtcnYs_t܂ z#2n̹?ReaҐˆ ]>Oݲ"-H2jh+-5"Irn:wzkZǝu.:7[--nnIw sҷgC"n!NoGx)sa~sQqR?NA]yG_#9 q؃ģ>;v7ډH?w:'HK+.%hא%-!N׆pð-ƞ o?wٹqRwNi)]aY׀Sq@lvZ~զTPMvk6|j+g?7 oOFg3N>$iԃ(a>X%vjpmcLۢP59K$Fj*ҍ=ej@$~}TP5h+`g01^S,IpUۅK ćdU{ U;b,WRH5j˵ey9!߇Z6 ŷPrKV͘ˈRxD r r aIaBn;1eL3NN.0.;.jxgL_+c4; 6 #1gS~w bT?SLބ &7! X>aa N9}yNN.3;ipa\덷!:D6(YyK5JD)4[-B1m}"C蘯njv~̋,=U| gY) "UffdAlkl?ݟP>4҇dkuB |hiOG<Cbbe`6'{<cRlU=$p7<;I/#w-]0Cp'ldc5/Mf-uiz 3\ Hx')zIBp>$nT709nw<߇9:T{38.OK3'呻 V~;9!gB^i13zVvS͑nGVF{2\T򦱄t{P[9_{kDp`]+kn4(&tخfׅQf%]M7hMτV¼_} 7]FWJjKZsF?(]ήWugPVkw[*ە~rSܿgt>],GwAm %׀HMHΜm~o&ڜ)(J wC^6΢a4 ߛ6.ᗑɐI,8`);c)8%tfK-H M̀rJ$:G;'A~J}e %}=#OGҡ@\D^T{8l>{Beg'{ <1I_([ mdCe7r>2n{=A{Ӂw 7ݡr?y~I9̮JV.w{0L;#[ f}h}-i;w z_nSefG5@r}wW){A!^Ynh3NXw>h|f3dA-s@5h+M5<ٌgv`>'A[> IYlSնyH[LD ?X~.A `"lxBZ>OO r;A"\5WMU݇΢Uh%{ l\3הN+Kk7{f~7_UC|'nڙ%|f2(\"{͇V3S7>$D(BTD9OQCDVcr\Dris:Dz_~t|?^~MuympsKx}ʪMot3`"lтzJ;#獀:17ǫ FyUޓHA^y~:'C^5uqW9{2;p{QRHS̡>ƺ.^%ͫH;LSXGsD^VEօz!LGQ/ڲn5>6$=k{a㕓ܭ5a.rꆲ!^Tf~+u[pnhZc܁aUAn[8o%w(]ƞtPWc *Ks٬{kkxj)V߁ӆpN6dhS?hI<\m4 kYuA=sşr1gxKr9{Jp\g)$k\$RDZYbq#ȹSV=9q)!M6xB WQVU@-g9N"IJ*8x}*+5qPuHì$-pqq(<<7LWZKspLa8.C% zfef&b/Anow {Hc:!-X Sy$6;[^LQ73!25~p]^p)pG8AQub)²9d_&|,:($ʮ0/L2eAd +nw 7[@?p)Avo~OX$mK *׾s YK*O=_M ?nAʦjsnSFo\N&#a[}>NkdS&7s~. }>FͧeCY_6Us+jO;o4(.!s371U6+" )` Ejg@ Fj+BY&#9GjcxPt I_wP/SnZe4OOT}Gf7ki*Jt2]waAnD&+[Brj ,G$zJnm}HO7S~ה.Cek-^tvM81:G|mJm>HvM{&lbmJS{P,݂nQӖY,vTm?d5H'S X,_#|&jCX"&4|iT h;XӘ|/>>h;k/,ݱ?ǪcJ-gDMlviWœ)q*7Pj+=~Ou=jh'b wZpHO\Mf}E&rq?\Hb{g N?R Wpv8 Tj 쇢ێP eN]cbkc[!$NfV3nؗ8%^,=Ame٭6-e%~tDYa'D3EZؑ؞؛#dgbJnL nml9ďD9S gl8!M_߭\g ܸp4"?OPj#jEEV]#zH5 OR3]sZgC}NJ!FBUEzwI)RpؗƫB; Kt::̜ݰ'J ?߆;a;h9)~?: :b4F']Zvyš{]tOuE?H݆̽Fqz'tk5URf8KCovG6C<S4w^ _ [ [NWNG(D ujΪėR _Zw8d[|Wp jRm'_HS - 'ERnj̃y6|.lOZi)\k5AH +OHjgiz&C3`7 ݄'Bφì͓S%ZS͚<>>F4ʻ ?ϊ}'OҲcnNcS9}Y3o#` <]'9h|9nꛎ-@Q8@h<%C&Y[c` wnUv*Dc soT k*BNz! v*8cn z$!>q,FDcpI<eAS'i5A6[}TH4zj:Ɏi}8D"'GMzc|hLOz+|TXୂ|z)[=L fy4a݇bV˴:¢ o_g̬Q{|jja2̷QGޞe!yS{rp_m\ff&feD//=|z&/v oʛ%53UN  XȜ͛DpWzEI]"wi\^7ag/xQ3d֤D.DS^7jffF zjXl\@RTeD fKk5)u,Fyq<w<˧(8K2x-(L}92Z%˷@p883On) dJK{zv45 5T;TVe5Fqζrw<`/;cGVHjjiUW ~CuSMEqwJEU#Zgx{jjB_hB6W>e8 [ AZgō49 (O奃+kݙ'-eVU"ty 8$cs`YEE]^@n;Rl&g%YɪmJRT^s^ZG:elm P+J2ܽQa6&edYPs^pƱd_F >Fܤ\{/"5d^52o(W(Bm{;|L"M͊=63/1)p{ë$&WCQ(k]7Զ̳/^|UyE?{, 6|FA.s*^UwO+o#{.Cg"yWUg r/1H*j y{\u?S$s}y*iW zCY'oO~>io^zlwd{3pJY]]~- *n&.Q-[ n6+a0Tr'mŷkj6v|IvV}ε/l1Fokxl9m"ʗHRo՛ؿ.7 3pǐ֜% 1^>/ۢy>ᙁ7\+Ƌ)Ou!ا#0UIaNi?hw{dM3cadC3pw3+p)P W{4و,G5JH}?,a'\A]6EVxjO ʬ6KzE/{!;e%Sane{,fre΢)j~~[Qr^YY_oL*gg I¤LBJ{jl˘f,u?9, eÔS]DJtp"j KY,,IҞb&DsAt9_zxY eaY-vOӜ6jJ&Oh X t|ߟIMP=aOz˲p5{4$5/aYaM܏]]Hܖ.Gӟ-&S#vjGI/8ڤNܢ=ig9;i#qNޭi^ I>|M<|- `!D D*L|"!ᴒx=vؾSgJs0~a 1#q2q*q>\yQ9qJuKG!;@mMIK>%oCp p+cRڜ8cp=4vۺvFRN׈?%:YE 霞O*伇/Z9蚖 oyF@m Du0i9)*C Oz1~,51{0uNݔ+ppBax5+hcoG%G ![ol,mi )jnER|l-Nةe[ QU.v!|Jf[ ֓f*W+lwS2EO9 8d(K5 rU{Cm6Fs|'9R㍥y6Im%>pϢ)P5>NQ|"TP\c6i}VyGP#PRNY$Q= 6zTCHBqMpyZ_m6>no;09ehc\6i vX&aEhy}brJ9kv& ={JzŒƛ3jToc4wC^b MeE԰)cX]*-7”09,[np ZU[3Z5N_a T\Wrԃwbw^#e "^bAoEމcG]Wl50xY5L;uUm ZP]l+&5*Hj \kބJ?ϼQKޘ~kVNFOjLWQ77ux_oP-፭:Ah&{:HkNsQ㨾o.y)e KDFK%|3h[OgAއodyK@TY54g +EjiHi-Ev8؏cj҇ϛ=TSSݪzyIKakYn xzބ(G> 5:iV+JFחWHBeDF-|4n[僭&rޛYĕ\oӍe ̷"1ȥleEVew)kkMp1Vd JeAbT7 nsTTeY)V2dQ]KaBR^k/Dԋhl͋Nf\sȗfη @2R6 nN&C6-̿BHT&)M79xpT˼e0Sb&"mZi~#kQAyy52ΦS|AbC4WiIj{M >^CjQdʦI߸g8#w8 3!E8/{MyE9R̜Ž F oTe@4cY~2&]N=^2htyV^rWsDSo2S@Xy\^ҩU܏7ux@tO.0=f6y|ne݃^4I,#{Qeث.sZ^W6S?;ث։U?z(ǂ.;PP/5VQT{u; Bk07ģpAm;fB2;*W$h ^ {:Dnb/}mi5lriV51BP 4Sj~rW9b=%;<4 ˥.rAʿY}uKg4jd;r6YB'[/Ñjgq`_%zD 3 3XfCԵcrM;WLȟs>NSiʹ>ŹZ uJ tu'_@ ҃0cTCw?N~4iuMdăt0w!\E5|9@ʱTrAeOGH&G1= F3< '!>TOKIH;(&FC>,yC0nVD3eshȒNY_}ȊBAq%zmjagf(߇ievQ$g=nM[)fW(-Y!>;r[bXW:#rހTO(@p;ȶ0{WnPYP@,YPS1-oؗ}!5xck%^dkDN.2b5*u:nc}>wL7ME<1|N֕/MO4PbPLF:^P0_WoGI>D8RF[ 曚9bpwU)YW|>KZ(Q~/g~zwBp"|TqK t+tr01,ҫ+?N+4g@NL>.f{lo]ǵ 0ߙ^,z}-C^dI{etn/mD7M]1 +ee%i/R7l`˱{j Fm-N %^b/68P5OBܔ,/Ų RH),ff}5՟) &v5{Ys4b?;AIӴۮ&uYrD=YXW~GgITAM4Ag}`  jwRJA(N%}԰ .sRFNcGByޟ nj[GC0>cKV^GA߅|)2^oL'J*zDPnp"3[S(7z{=⭈vS̝ zjK;5LGhrmޢPppDvn6ZkEk=o.ݙMxcފ&kQe:\'bycIp#Kы9f5lct2ށZ<ԕ7?Ω;F05(V-,ܕo7G'"; [%tB͟ r3or5Q#33V== w2FGl(jdPV۪kǔQ虼i;V RM0A FP?m.M(igUKy55agg= V%ԹQ/RWڈ̌(OҬrVjEvSxy^sU2 SUz*dwam5l#\r/>?PY;ms~4O&NU;[a?#uhnwWB;Ԏmjs~'i|t3F]Gֆ]b~o&b^ѠM2.CnUMi r;]p-J[Fw cYSnAg+4 Z­P",A_廿Xor]"X]3--qO܅l* wJL5gi5uFAyJe0tGjr4ZΓ\ΪkNl}8'j0APGD$LgJ,]\ii9S\Ub;]Nfa Nz99Y΀n"39T2 |S*2!DJ,NGAUdw(>cܑ,UMOfřA*mrGq;D6#@-?R{CpV J#[ejoH=7ŧ^>Zob}P6n2kȆQ8Ͱ[6T72G} f"Od}RʧhORojQ&k^C3`NGe5)n:RC}oﳳ-H ?}gg[Ͳꞔ׀jWjj4c㢿^oAZ荴whK[j,"3]Jf1u.a[j1RWE̒bH FuK j^jecUyX_oEW0 9T򲜽 v_/W D4YdVcOE;rrBeqΕfv>9{=_//s !uYRED3O-uLe=*7v[OIGI_Fs$Gwbq|F{D=LK=R>nP+TjQ H دԠE}'"=Xjbp8OH\i!}wcc'' gkkp"6wݴZWQxxz b85LIv>GTAw{yt#~$a@TWӧ]gHvK v޸7,ƏE8f3Pgkg;D^aN[!uFD3Yk7 hj?uށ hq];cSF_݀AOnqݸr^]1,l?w"eSamw^w^]nR3`D{ aw@v)/ɿ[pKl'HX?mIz8_1Z;Ԛ8͜Fa͊Qwys9;- G[HRa}4[͑*^ /ij۪߰԰\4y_r49u+zZzh&{;B2Y(6T JAꊼpoB~l ƻX}k[;"9/wpm ZÂC nmo==xTuTG@t ];$@vutm 4H ']m }f{=S~{_u~JZyޖ܏uGJ |NI;?B,jP{nAp  Hu?ҸX\W7|H_Flf4'+?wں|}{֑Z|&c4@y,zuK*!^5z^ӱT*=r. =ݪ$)m"J6^>Y_&%u(E'ƈbT+jz'B[yyK^7J NcX!CkYxT;QO :NOO!j B.'y2:LHolr\- "DԘP6cxX[ z<*\%I꼁KHƞirn]-Q1S8O>jPQ^(,k:NRijxcI(Q^d:Lhsy u=dQT(R=L0krYNDaQ% s f(ccETED݁`8sSc1QvG,Tw.c+@{p. ><svaȣc7 s]eO9X(r`7N5/;D.mIQgE^ 0;K[K0;u\JvBβ m.6"pe;USO}mDwv8N#c;iZ~/ۉ a{hM2R{߫lCkglUEZd[*9+gMH S[6cgDb΃J e=^|Vbe=Uj {#zeUY[WkVc+%jC ={deYA֐URcs 0Utg3= ?zWFV9̈́+LfQtsb-9G-Bz(-(WWadj16*Hg<*,%y`33׻ Qgc~ tF''\fF1 #xy6 fUCDw w7 b`4Zw;FlPyk+&zhU_x!{GYW @ 4HWvxX,P&N`_v¤{X;uQ?pa/M.9p[0-QN3I?ȠLZ{[qm L'S=LKL%jm:padoUe?QLkPPK!>Ym~?{*|7|[}}}fP߰ڪS٩W3[ o7˛jXFT52*|=i,VK Qp^Jk@܍M1JW7‘20W0L((cF ߐ7[W+*8VƄD/]B|Ŋ0WEeGUξdE»p9Nyp,78z"z;X) Ux[xWx\y?O{=pٗ]NƄ3\?WtxEy FaXxCxd+;ۣ|dcW0'9Vr % TV%pkLn'dν^{eULNY`xat]tDeZ,2*5.nITai3&U0kx6EWyp OQ28kNO ^U> *|!ګΎBbsaIITl~q׹>~%<q1RdLЯ""E?A?!R4"+˟}GDF FCw~%CCQ/#'~nzbg(THeErKn{冺$(ab &/#R w2z?EN] c-_ \+>/ \w@u{ݡ>PJu3\`- .=^lMQ{}-kd))#a7gЭ^[o㷄KIݍՇ!%B]=oE>$nvEY7^UJ~CT|_7Cn\GV]au~ +c+~WEXެ׺URÐ!r _կ׆89Z,СБ*`5+T\B.&sv-w % b nY s %e]T,M bmh;y*없G܃F'od[]O q z<g)z"׆ ,ݼÞ >׳x\1W"#qB_(|WoˡǑQ BB *~ŭ;.A| lV1z 4 dl?7\T!}!`וgs< t=&4-r,KLX&v dg> c^$Hwdmbhnc\ZqŴ@@w M?>6o iaݠvtG NGGkF~ lxcޖG6?ت~R?fX>OFCB QobX+V@5OoTeRGJtX^޿[`[wH5| 5],xU6l  PSkjRVZw\Yiߗt]WLJVk$*=9FLTDobDV冦`/wF_JYEf=̋ܒ`XU%!$8R1^Gx1t?=%sŏbϯKi Iʾ@ x~yXDO,@ .=X={R<} P00#BBww:xVtF `^5;I);P-EgrlehB4]Ƣh O˳ƒ46;ruiufN`$\n|־1uFƚT$y([Lkj8M ҩt7&iKl\.հX[iLy4dt5].Dmu?iJDu+9STet2}`XMZ|f_o7QeS }_3|$|5z.n7IU*ʫpyBM㍰V%!|i)ٹUUþbV,Wx_;EUYoيe, g*̃W?gUa-جwCd)̃?+z*z b6BeVS}#kyWfcx-_1~wֆ7*ʏ5c:Zz?ed١bsQ*} F7FwEuZ9Y` (PkʁJÜ"' 2AdsSGWE7G5eD5-(<7k5Û``O>xѥEѵ^m%ei&gfx Så'럸qr_)ScM7Ο;ԞcmB6C}?"QާL 3֏CBA<$z }J珀ʃ=7r;U][Qa{C!*s\շ1<}peˡRہknwr{ ymoPq(n6~Hg ?~uQ W=6nSta;hT:doa?U$3k{zB@p"iU6"`A6BVsy u?U 2t[ :>Y$&[P+F#), U-7[b "_[яųHU UD/ ,!+ݒ8W[2-OMdqh'Ԓb(Li~~u$8uQ8k>5j" n1 &$lr@+D d,Z_Z =QB'cCpnn|P> qPc?=_}RGKq|j~" n;}ݟ5 W={][-QڃzC:O,(=ʻScM:}bJ7=I慎b7ڴ{Fm4\qiLZֶ3ڛ n]rXن2ݞPuH3Ɣ Xz9~@?w _ߋTr?Qzh;K݌4mB ďsbf6|34|PP@]x Vt=R *%5ȗ)z\]^vyyO>EO3t4y=z^7M hmWT&؛~/+rM7I)_`r4Uz.Q~jh;8='/[?Ayi^]"o\8 "hKP?/Jb8)+$4O\|0CܺJ~In4q> n:ZHChc@7w9,n\ 60IV!{kэgYPj9Ifj>GE(n `=5'iQ[ᛊ6K|͝#Qg'AFMb9-O9t dvLDeymєӘnKH b0 qf@zIGG/EuQIauJ'}<#Á$1wI Du'ESA>2.8Ժir\I(,<2Go򧡧+ Q?؜YVBɿD?A^s'T<=USOԥ~V]s.C>%_d#8|ɮxP=isε9HDWdEv[ū[I5?Z Ƣ>gA9F{A8{WwE41tI;1c0?>QJ[AS({i T}=@:; &s{Q h AgEŧ0eGquwFTGJ %l\urZV騩P;j?m՝JP4V+?DJZfe~g[QeDrSᲱ+bP˱mk (HN@UZmhgzgqp;yMYMĒ!4gvp };-M㲜f~A/b !Z2L\=+ WN-Pal6,2^zɒ(0l6*UÜ{׽藲ZIPƼ0R.΅,&y 6 94' r 0 :??3f-;F E?i0w;̯QPJ?sSTQNG.ԡ$ETql[;]N?~:()!uߑfTw5lx{P63zq#kۃC64ۃO'SbӁjW{1L1:c D:&o ,⚮ 2)[+?ɔ˼M=,VQ-¯P:MïQǐkjTsCtV3)u?\ j{ Mz۪LĻkoG>ݿUa5Q%Q5oPϣOsTMVjl PUo h'ޯMfU X3  _&EoD+MVar 97:B7gQZS!r:1{:3N#ǩQ~B_^YI(|VH} Z oA@ß ux? y`Ӄ8by;9C4W{],;֡`_FѧE{Dy<+^ޤrO7GEǷ:2G/ / ɚ2wCmiAgAd  :;H o3j'1'w4b_g$%CwTP["R_5 $7H44?/xo=M(ce5q'`Oڎ;>7O񣸾hrl&!MKGA}7y9}jkzo7nH茰i}{w !!bU$Im6 f}"t=j6Zޮd#M6k:gzAYCvn5xIU%&tKaJabzxЬeIak1^3^l?i.^hz[̆i8Aejy_MPlFluqx@nq2LA[!Q(OBΧWyD91:tlπ ǚc [B8[3PlzPh+i4Vl6 M邥!f֚^9&o{یL阮]) ykct!O [׈7/} [K<m܈>o3qmuʷD~\kZ>tct+wK፝)hzzЦƦQuIeG%|)d^S`Ѩs4%.VlY8]'( &s Iq]81͗ˢ}&0/>(s0"#t=". U /Z3jL!p !n9?#CE]}$. C@njBYt3DY4l9l&+sU4F?FYIFMrh%΢2CZ^ GRfZ1.RoՍb9IC|6mL|P Gf AIE.P 3t]r7x b:T I?4"禀NUt$Zo-ujRz>PզANEEyQZRO~HU1DQڟ=%UOD!QER`tEf( V-n$jW9JD eQ¯=uVEU' >>Hm=tz}}wig7=$:' *B>s JnCaQ}]PiG[՛Ω+;MY9 e-{5-w@\Lk RvA]}V5e{d[i)ێ®o9jzJx#ɶj5#l7Z[4f(лuh-Tֶn'YLc[MAaah /Zv>*Rv jΗbeNg:-+k6{-pPkγrg.$T%Y{=UkMej9-K0haJ(8_8x6~LAGEY`!3ޙ~.*fgD9n 5VJ¦I0CQ0Sh^E{lGz7+[җ485x'yn顢't YE[6c D:5A%J:;6w;䝄ꍖFZtv,k2`\;{}`;Bffoꍥ!Y/1Mm?5g$vz: 7D֋}ij 귝Ho;a ՚u0}zM]<7 U T1l]&Z;gFͅj`l\Nz43o7,C'>*ڸXo7v?SUƵnc9 ->>>gSИ`9/GߋVJr7->EFGx?yT)V5-~f^.ËEOc<R. *>>`72^6H( d^xGxS@x.}̿aOG+ \X偃r27pYVQ&O0_[')ZQđ"'~?QEp"Qq6QEN4=@~qP?A @=q@}h7ݾ2 D߷ka/ᮘBuEWt46dd?A[jfaSP7|c>?ZP O7 Vl,XYׅ Y]-c!5FþOE֠C`A:[3yY^W` 3!oaNjb*Te^!k*zS0˰u-z^%tL1=RD71OnBWжЮ7PH-\j[&ThxWm% qOqezH4OâLa: av4(B(muOg?ۢBӶ&30Q5*;$3VۻDϐoI]k2wvۈE4)wau:kT(\Z 7tP^iӦUE#;.Yl| !ߡaSP3A~jmHw>J7pA8jvlM3Φ3`҅r^L欥 :ynUZbnb1c;'gCW1 {FH9urؤhTXc/ɳDiQԩms]lP:d:̖dQLǠfz8=܅LIhQX'Gw 0qVޢ}QD@sSlds ccnUደhۦ|a>nOQjnB0-vvT;hW*W݆;Ůq4ջbEE(Ӵek%AӪ hP~}K1ʟh[vPﭺ}"3;q֢]Gy*ZvZ="p؟P5!cMF/(@շ*:6ykm)~(\:нQk6VDVZ DDZ- 3ʙ~+bT9{Li^$q(5L44/`An>QN)\ihѧhΰ]j:g6/j-g#d6c3CS#ѧqdCaǩq8=aƁ K>BePm CYwCUà3)|&Lavl zū%8Y>pk8ԭ:Vy; ~`qÞw6ۂ 29WY+֌j5[m @֩  Y+&S9[}'cdraJ99e4hq[{;! +'4K?GI![e:ejn,~+{#6g5$x~L~Z|d[&9F'PCpq ocQw8[OP^)6O0GI LDО:bvU w\ =3.p 3t_XskOz<ؠMF`60dY>LCr;Pj*>@9OTTETAtfHz]ƺ-"V&%QVTm(XԫyyЁd ~F>k:z>D@_IVdq$]7BmNUmJftުWP;mV0JFC~fL*=2 Ca"*x2-܌+%ݶawwҦy1wJCO|ȩa\\xfWvKz Өn>͗~4u }:!S m+GEA^М|n׃3j ).CF ]7dtlsA 94jP8te )J3(${3tΉ30P0 ..<},ca8.vS?Ts'qޓ)aG5 b;Na7%JVÒ.f{M]/juwԢqI;"UlBSEtrJhwb@@'Қ4Or]+M`?23d,l]dVcYې>*ru5Hj2rh畿7ʚoHRUB~s`joUnd'5Py݀K*&t% W&5}[/3w] zC7 L}ƒR sW+4^5yAJixȱFجD/ӳIJjQ4j + =KO VzUE .m^!jKϒtE E+yYD?V<() Y*@ - r$2M9΄KS9b>89oQsP< "T%Ot4 lJ+n;;͓Z|ީw-t>Tr\Tbsh'޹ kd:PEv}xk;GeC&i?ۧXH%Pcu'>"HTdj(bzj*C:۹||a7c3;J: yK=D!><\FGˡ"C}vxcN_N|P@uѪS2mG;CtNCeGE.V}7Mksosti0͹ eAR uaINKfVit;Bִ)&S;cvDVuj!Ffa7Aov7m("ȊDS]Sъk-X>fKu7nhn([fܩXVvrWnV5O6A7A@TwѪ2:yBZ|pK\r44.--WOIG0VK#wQ{'+XYCl>[BKRhu;%ߢD-DgSi0KZ,lom9A7Bܢ_{QeYtj!|xpVXd{6CY;qF`wuZ\~ccџdV&wPѓ0C6FdS@_qXa1l$hOjTp*MS@EA^Q hvrܴa;j8s4Z'Bӫ43TO~*g?S0(Sќ6hP4 J.c=ii449DڣP{3o4+qK@N]=O.C2=u꠺?ۅ_$F8 P[Id}~Y7PP߄X[ U5k%|Qwo/eo[ Q6C5&|33ojdҬ ۻkSafZǚn UtSU~Y9U), S.|*z (z7t&q 8h`\e5ӬT4o +*0WRRR'эЃ#{HӾFy~Mr%B?2=vIى; y펪b|y uuq;@1~imvG $g ~Okghn uw&t_5C/iWs/ m??byէ!cBt[!{ЊvCn3SBUB턼 {FEҠ}rVu@}B EA!vcl7VTj5_MfC脭%xݵoaKZov$4r9_WL(Un%l-!Q]'LEJUl>3y|^7'srK㪈G^_>σZa͊|^O|T,m EGr+nGW>K2OВ_0Ϲ t˧BL"LREsMpo󑐿͂5ԶQ9/|/y+G[9^)dC7']7GD8|l>E퍰7 (>#g̝a?hsB@ BF3 520Kp G{ !n:7Fv2%3LT!%ѥ&H7(Sd#Is~:g+vpu?cHOhN'=j00}ݕK-bX.MӒ~@uHK޶[F>$:-vӮtPo[j*""lӮMͽBb#1WDձ kSq%UPwb6Zp Yƅc& \mi؝ڼ:6 vA7 ]ބ&&&"]OW'!e`E N4/+nҫ譚yU^}b"5X<)ڃGI ؼ 5NA}mVuIzB7V\z5v=T Eř]S$e$I Iym)B5wHGua?7gzC⺰)*gn"U 0%+vlpH&$]w>y хU:] CSE7$]mj!:*Z 㒌Ƅ8h0MD{C.F+e~n IeDI3g^WŚ'&a*z\+Mg`g&l3]gKq\)oaSBA[CntS\[*Ј:MtRFE|/\YITgoacx:NLC ?8Euty^vzgVsП;yd Ǽs͖3kQIz vlN14,l(C㊱rG[Ss lP2rOpFQ\Q{Ц^'3 92"|v݇\bYf"㠢YSc|7E{ˁ89DؿM'#rýWh![D}ؓhh#G](N q9l^Ev[ЉN<۔-";ma:!-0m]X~'2:":vkO41Ƚث FUa>l?7gӚ ]EX6Tw"$UX\|Iq^Uᵖtqij-h],\uBGAhi)oPb\UYO^y曳qBo(u\[Bg5{jT6 . G$VKo=|3 inXn4rJhA%P'n*^.-u+|vN(QiFs+3ڻF14_Pi4 w|Cp)Bxc~ޏiY'Cկh~l͈rE9.P?/L,4nqw;AS;x%9QCK 4w˰m.꣆:9MFeAP}9+.42)?\5;Ф.Ɨ0!TaF-lf;[qۘOUT#V_F?Ro jښpq% 8Ř~#o檁)<2L`sovA[7[-ߗ s0| }8]5fJ{kaG&~\? 64IDTܘ}4~;]055Jw[-}F9%=`Lx2ji6T3zNЋIg87/QQƜ!--7sW9~sLo^=ˍA8}ƈ~fs}D3l?9uʪf)ܻ Ӭ嶄wJ__ nC BBDeaS4\d qSexlcHF f<[KvF ib>C5Zd؎E%1EƷZh&6ʓ塓0nIH r=ZMc't¯ez~"8[nytT1<-6Z:ڗnAz6/F- ܒd7fQRM[CM&Bҋ2"^܆y1?TgEH>}vIF@!w (H9眏DQH H@$9s {FkZJ?|gK[@3ݨWT_5QEn+f -6PSc>e/M3KLQ9V ㉴~E:!0/0&-C;/&;9@d]DH]|tSs(~fG8^.PiC/' N6YK oCG('rYD"HS#q:!7ȴ:0!ڪ>Ի)wAXtٚHjнGb6ѩV[QUG'1 dΜxi"ݐU3L"bbs pJs*ynޤH|% ߩf!^2T]QD{k" $PKC6ێY{uGwZ;!R dPRAnS;H^J}F7('|2 ɭ`Z LmlK9A$l# ,ʬ>ᆢԜ@e`6<*+e-ZXHFYܔ@-r̾MJޤHJ.&Yf_AplHTK(ˍ(O;@O4iL>AdG%BЕ<)Dj% d˦ٺȝA4uYTWT7Vr+/"/LNpeu re2.SJ@7Ý] I iMDetǂJoP9Ⱦ迌{1"R XOA6 O^o^!u] אƺ#@F.IMJ3(]D6Sk:;sI ȭJ>lAz'2WVf)]oOM1=n0ލG'2Xk>`Oڃe3:+RTO>Lc[^Řx^BvO"m An ,ͻ&o/jymuZ?'m8Ʋ6>L<~ @~#oTGOYSVϷ4x6sEN@r tbԊ& 2W̟LD}V$V"[GɿBt":ZZ%%ei$EgYڭVex鬤,9x;f =ŐBCx3qaOTp¡gHfHf|_fGԭC2HDx?1ݵEPy$F)a3)+';JU[ g\`*#A!N3Ńf=R90xNmF#DnFNQfrnN$WWi@u{\673f)AHb}4HUi!@L.?HnHwe 8:q N&RzcFw!u?v@w`ҸC[޼d2>K)B"wKek7$"3?X4]=N8sd23 Gnr$? @@.M@*[bĔBkg5xWqϑТllS0\FBY9#$ 8tu 3t&RCJjY-^֜$%}xހo7Md=0MR#U] sR BF9.Fmev9ߋ ߂T bJy8Y8ZY4[1w3أ%%Z 0LBR٤ւE .U˫50-!U`9i&ew$HSګP܃YQJGbuLe䞪%|ģV8% f-2NG[SJ[8UwODYl)&qgF JzhNip>1D?`)!@Yr~N$#x'#؃`5& z!4Y&-w٭Ic9Twp64Ad❔GEoI#NJYvnHMBh RuR{t> hk 'JudDfT4%uxKY<@Fy5M}'zy8 F}DN|RJw]OBPSf^7]%NXm}Vα߂\}PTR2I1 [JM~vRnkpt?o 1̽sk9JN?KL9똋S;ݝեH7GlEL,E'/i?iY$++ qHH8#1wHj}|| c "c_' n;mnC™ [~F7=Wdg}>\^!}0y8>8<ɟ&{?<>~;!k !tݧăl?GnBڡI%L{S6ПЙ\j~T̟xwLru{"&t0qmv鐞W9xi:(Mj7TżZ#JVwncN?n nN՘D$+D:)n}o{H SہRQ}a g+vN"[Q!3VRRSIR))UA-1*o@.vRS)適0 .#5M3,]+s$/n}nR9,9C@7Z&O1rOp^p?Wo],)E6zJY S53vq>DvZSH> 3Cd0t[a.Ci2=iY`R/A\  i4>H=c@)&³+ʌ]g}2#1BG)(ScZٽΜ" 3#yF>HA"!D"]L~'!Sʤm ̈́ϻ"!%Ӑ6]߻]ڊ6Z̀2o)c˄K)eJ/-trAfA@F.y@GkD<@H䍤oó+ꁺ:>}\32'\Ӄn!e\iX1c N< csRs< YcFpNuI(j7n!S  thH8: )h9`r:4 q9\kΠRӫH<{fN#pp'(X84FIgTNfS DIl * :;N ^)6]1N6߭Kw#X`WN2 ͎f %e4deD9cH:ļsj1f@YfX$VX f1kWɫ_5G)攍2j0R"YX.F:YdIgnkw4C&VE.|G&92mgYzxf wYL<ўG+qG rYbqb* NHcrCY:-hfԁ2g$e\H=yi2kwYN;_b8f7D`N`F;ٸ>!ܱ"0{=!z#da!qtswFdqχ+N0GM&mU_Ho!INEOӴu`_ĨfI-"L#&0\o3=zTNRf[V<VupQ8|5NWn*:4IPRY7pi%71z4-C*1 ӕ2O?_+Q_ժ<ʴ1M(XAQh2 tOUW]l҆IpH:_#fzCpM55R|5T u\5SjSU@Q? dٔH0 Us!<5COI%"Twʓ8UP$1EM%% RjDsPA'sv)f< J%AͲ_?!K,D|$DO'I8ɼۏAMv>U|r0|>o!YLKO01s$e. a4`!<@#QBf;٣~G/_#k\9'肠p ?B.?O"=\9. /xoWpI&ǜCָ}tow0J'geUv@ ?lpB<mw1 #Hk*CBo`-ƃ\>tq-r6& Γy> Q'$-Aݕ g SKRKBwe.b!hk%t+t)DcN]vd?͟ W).E?֟ jxGA 3̒6(C X%] t`ư4Ix_W$02r  K Gǻ.>2)jbwۂ30\R·=Z=K@IMw-f['9yD!w[N$W=ø$ycy9"0iX8 BPpz*k B/0sNX}O+:@yh8?ƴΚ :3&vnߋ4i fm &pI5pD}0{@g$ gQ;FQtl\PͩfZ`'+^}*ڠ:Ր jA@zGRQ@]ѩT(٩fS߫"9,~Dyjc&9C);8Yt/Q} =&3mITW᦯\?T:M_d!`z.ޢ7蝪``RW'hMd3wDD;dt4Άg06:X}ZQw߹oh^zWSi$M|@፞p (yխɁY #52M5T@ `sUYבИCaQ !BST)& TDQ=#ܩ"_C 7-dA k G/,ѷ(%=TE9b7⦬)kG װ . /@{ +T>8|VK|@8NmwuW@i5JE0S/DVf]}rKS*\ oa䈎m7_ʭ"(泊 !Etm@wUUvV K H@bfnݦ#m|pK@e̓BDv*#Fl #\jǷ"mͣwtGO}F 8M'N72JD69ⵜ_^&#"%(C`+rȅ *)<ż3w1L:N%@6H.& Uk]ZN.ԥ||'GX9$_[I9kya?qgҺI|||0Rt`%ysξw,w.~}"ˑ[ 'p =ҝ?ř|"EUj$BeO9:}CIB !K: &ȮiLy$@@*ʞ>g:0̉0-e'Pt>ero/?d_O\˶(wPgHEp`{#¨?aZrގAL-O]_mvE83] ?WM;v* tj$fx+9R;@[`jd2{U!Ethg?o_"EȊ`R'vbvEYƭvk't^lq4ޯ'V WέU'a2Y_'sKq"nEU_5mHGޒ?(^rO^E+2 Ε!YD玼%@q YLM \hG{n$ 0K{}6bg^H[^Me 1T![N4\N-f\ڵƈ ,\xA/p7CMG;!j`r!|/cZ@`@vR`XS1-1W]s TNM\0T`3"4U6vX#w,' ׂlMDcUD Y5!J~=-a<'ӫ`Ԉ]ߴA|XLp%*ҋnh)'[ʧppz&/W&qVGu@sQQ>p{GW>Si#*6H*jjy.Jx} RTeyԗ4 \|Eiݚƻp+HG /(X}9U&z+4rŵrТ 2iaz4"U)d=QR0Wq0>zH\EL̘O& 2;|͌{$+>ʢSemrɅO_~_$@|gNw՘t6!"NC-@&lV?v7%|2E`2bt{jR)h\d2e"1lTE#n4.X΀';vOI` tEZLj~g%Q  ܕ]3Хkq'1/T#ߐ9O{` Iu9sg!T41s> {%& /b^ɔ @$B$:.Sci`2{̍(y&>Y>i0HFȡ+\Yp?n2nr?A {>{? fC}lid ˎ \b>4i`//V|C=59~ OO] 6{iI7EO:+<{NI{zAT=?g/TU9# i{|LDXc7=S7:: Fn[?@ɴULDYVb^/XLUdMK#N v_QVZ߈9n=65 `KrnF'Cf= -Ⲱ zM`03"eό]JB^pen(C`燞'cJn_ᖀX ׾["tӟ93Y2YۣŽ38\]\'k;[.e{<]QNo5g掠|pgϽ_e13ꍆ)yu pz)Loi7`[ro 3N+^`tzDog gUcNS&vh ja =wZP'P (pD5{Gvm|9mNqn8'Wݩ+ U8&{oU٩|'o}okLw 謏ZC{~|vjI&9}tO u9W]v=AV pBrfE;/Xf3lE~?\XJfye0~_ÖܔK٬e/fZㆠ)8N1p[me WsA{ӭUx2?~r>!j̽ɷn×;0a^p Ⓘ Sof9AU4Z>`duH8*8Oj[w{ =L[pc8<9*kq'7 }>:iL'eSSq54L? LFX}\fwȸT'̢F\=TK' Ɲf5(Z i^I *KK'rLwj5i}ځ n:8 a-0۷1l8*^Ճw 75EcpyEI28j /4a1?ϻ-_G^vb j\ ]4_l؝s#lE{pKV'j2tt@%8yvhmݔJ(cמgák_1u J !AU%|+/V-vk #&83P\'ea*SU >^ .ZA| ?"c0׃V4]U;nfme" }JՃ"f &U LHdV{=k0mrid8YdL9r ` 4QV9rɁY!K[lfQoqwVJ^ S'@-4vƘIݷi h>,}%Yk@W:%WvI҉[Fw=uڂMҘĉ>y/0`ITro:~s+rj9G]N}h{r:N| 6]YWUveS۞d?&vSSZzT F v2><͝΢[?pM .Nߣ]&V26gۺ(jo˾Dڗ`b™^_ѝnx3?/)ٗ쓱oouh> Yd2β}Ҿ0>d:mf}ZN}ecgGv9޾|.ݜn;/åa 8Yl]{3֦[nW-uZޖu@$9Xhoیru nY]6u`0 κU`ۺ-aaƛ| ٬-ܖn36ʕd-Y޻{ XVɐ݆6&ʁYWEd%5܆mz86_``dXpnHߤG =]*ް~.,l fa&f* 8L!Y h(ƛRxl }uv:9K-sOf!xM 0oYaxw3VVNuρczaY6鹺ӗ6a VN꘺kqz9*%2^ԟ Nr3 m9q)3a8/{FZ8N~)8e殁kM/ u! y_0ML6u܆Asيf^;8iZnd:.6`v1M %Ψods=Ŗ,.*85hDWӫN [OTT3pAjSso] F,zP[}*{5/$΅ /s|>>W,nAm+{`PB00q.m5j8&Q!;';vKΟk8as (௰[X+~DR e̽raM 8y 3FZHc ?䄝N!ӅKF:YC3 dGgDvqւh'q8#er)E̘GxwNqjě/4r &&ߥD_k, rGΪ!7N/CIzyiy{0wlXoEt7ævNKo;MՖzLLw? E3A[`-05h,ڋ6d( U['EoP-T#Xp[' h؋zik9uiX݂k}y. oE=XjUF}j^n&i 'Gd@SyCW5olL}c%LB] ,w6&! jJD2[I}-oɩt=F[ԥ~j]7`Z~$y{~lstxr ISTe@d/ߥ&M= dqs pu-\]^qU97$}|EdĹD~6kD)η˃ʁakcEPmO$Y.\x~MZ1s|tj=FZ1'[d7tìg6'C 2GM>OaaaENݎO4hR $ׁg+fw' #8[eU+fo7uS:ߕ*bd98a8w#Lmt3SiV6г]Yd5B.'vO ҦpBli߬_c^Z+92I4 ӵF'b? ? 1w;]c$.#j&8{sZ39]& LFGil#;L ?s;c> g><_m!;]ܽWذa1'v5GY4cS7mNx~YhH]%#feȎ=:]pۆ&87@ZM6FZgTU&bwAia᭳mܦI7V-Ntbpఛ*D 38 . V $xj?yj) ӈb1517{3˳Yj|N 8̜m^EMdt₽uY,͊rVpW=5=45V03V%H 1̵3Ԕpϩϝ mׄsP/'I}9Ndƻ>5@ěT8'ާ;1O0S8'3XxZ 3apϬ{P3?it1/#5;;NJ0U/3 J0J"Ug'5ԝ|=~$rRM?UTMӕf=i^ZD'|%Zm6 sa[6Fhk[N(XG[6`P|-os))w&\z:O {f`n]yǴYEb J +'p73fUk%Uk*Y]3T"g@ sLihE3efY./'oPO*(o|qz&9 ߘ`4$$)܋PFr*򁲢(^FԞ'O+d%0F=^z* K%G4SA o.|>޸Ig+Z.ܳtFZCƺ[nWECnk/8+5# pQ&P7gq;vҽY5l 5 mc5ĭApd"H I-#Oĉ"(:#iHdfpK@f W/̔"%qpUpOK¯l*N0Ebk,J.1(Ebp鈃n]-zuU"eM\:vlpڔ gRWKAFbT";@MG3TrCBMx* `_SsҮMxoBdC%,ղbb7Xw&MԥtsFߘ`PIMyx^Z."c$Pb`+Og>#}ll{'b7t_rcmgw9>o_}W|ϮX8jBT/${0|2%fNσh+˓uX熥wӶM&#ԶOڸI$2Kgas?ؓ -߻$vsL΀OeS>[_},lޡ?2 w(8{lvfo1^ 7mI-t*?VVw 3wO. fGԶH`|wu2Bw7.~M-y0;x/м>DŽѼaUu^gש˼dgtv⮳/Pgg *hn;;]ܷ>iO2|z/S',ys8VוgSܡS[DS29uTM!5ylk6#\;j|ܦN]g'|vw{k6 ޾Gg=d Ο7o㳶Dm S& [GѽUJη7?8%%ՀQ~Nm˘ NSs30KL=_NM]f$zO j>}.Pim`gäw-)]ǂvƀ];@ՏaL'X`t`6@8ox{'^j>e.ld+фHk {`>mKWz^O&/IHB5=djF4uSUws$>M 0Ubuś? %DꞂ.ܯlj{Bh[;$<'ʃl5ǟ.L7'4einjzˌͭ O^K?)*⳧AVƪ ky( ȫSU1"iyX^MQ:4?,[(=v+ښ =:< r87mUF6UMֶb${[hs{!:=K)CT.y=I-[8HVym~S8d.x\9loARJ厞D缳7Z-%Ȝ" ޝI̼}/`v3#k~l$|2VO6f2 %rL`K*8LE2N9CIJK5I&y4Ǡ@gg6lؚ{TJk>6Qv+]-(\2g*%d:+}S+g˩'֕t-4LF~C>c9BN]=diu5m&WFLGč[o_FٷYp1Ou19*ڴRեA>}ɾ~! )\Ebጥy^I-l_5~ &?C|"}싏cQxs-E=π|q>By?y.x~^]엘cy89 sD_<7`iw ]+}D^v;*Fmσ:pu0tVf6.\R5GGg17q;}08ꆂGmmⶹc%>|rw2@ҩ>0KF\@8}N6}0`v08Ia39QX]kEj g3ggMXOUNϘ*ތw:akԆ:ldb_hj'iԇМTNZ>=@%JQUp,>[1xU*3xF hGeKmDA`tSHdRp t@@@65)vF=&wK'!z9֠@@@cUGVM'_I[i/_ҩN|S]SUS ov@npFjjsO"+Rx޷`GH׀\poU #5pxFr~{?zgjo5y4mDUo>`JUUxS]YY%#6Qߎ|ST]DYv2Jޡoao\/c[.25 Vʘ"ՁeGzU2,=T^xXVpXuȞ!X\8.7Y)lIL w%]P )b|PnR{uVT0DOqf$p8t &U`,g^V .BJک9{*krEnI58>RwxrL_m>t>;;\ 8p7xtr- "&y.H@R/OJ099_.}Jg)qr>~0 ˣ볗Kap DB&@o]T*I%oLZ+=~ƸxsB9 <[;d >zc?1i0 1Y@UW mA&`dq7Έ³_5O[k207DV?Vi:1}lG2^;ݢo ȳƹS紡 6J}eM ~´ /,k n=.ap]%w Qyܾhr"Cwcaml'W]8'Ob#% 0aA=D ~ 0SˆbϢSE*.sqOɝ;VE|zj}#. E uriKb^_o QIxQ kQWݸ-j.7ӑF9oOQW!LӑJݳϼ9SZnt6Ĥ7]s[Ao%w4ubR3g-% d:p@dv .>?-Ƶ%X :m 8Gl峀4WkDgyh-d`^0Fp\8 wt[Ʃ"Vè6n8lpKL>5JJ? ǨVAk;Z^U5_y0oXjy`u` r!Fm|p*曥 WWMY| 9bSY ( WDp_`^16!}".UN[鰩L &X#.e&x+1*^M4sp/  4MyB_5a;GHb ӑjl;61 礢hyA0#T_5ȱ3Ό $-K#a<b*ޱP!'INMtpo2+ H/!s03]QF3IqV9X,Hbm+3I RH-@Q $XD&sPR9P~9xӧm{}{k4&Zlmڷ42 ۔>5 )jm!س)r$+L>g9JԾ {Jy5e]}{a Hz$ɸrgEhm[Ĕ|a&&,RĬGNzrA RrEfm l#\d7Y_+PH]:=f;EwGbf$v#Yu>1HQdYǴ[6*vjYlؿKt_U&xﶺM^1iۛ׏%4#@|A o/3zwl6/M9LtSefVun]2!߅[[He1)#l&5d"\4?4fn!ӖYFF{٠YX,H"eM_ r-2ّY\-߉-<,⭇@31Fy%5#4 2K$ c&TfPdqF'fgo7O4EafKZPY>aF9I$xl ~7d2M w!! /C"$^eOPO x5;n̆FNJc&Yec=ǼS]a^qYm)Fʴ>q_+o?!7]m>dqHMR? (]o̼{V-؟KI>+!%ẚNCH* f<қ ߿_/_ˉb^?K v]cM_å} drDlG6 i&"ׅ|٧`[] ١_$ad0LL+'+_rY$V_V2M24[d ڪZ٦" wwədI$-C8Y4{iI:HMkf/u.ݵdA?-p#)W'.i$H:w{m-!tWSpɬRT?!3¡ҋ=>*YkBnh) L-Jjkʾ/*ׄ\R e_\i %dB,ӎ*Rk{f҅Ro}>.UuHX)#.R.UK!y>^&%BS*; +?_W¶ ֓ R}v"7ߴ7X09`گ%-Dcx_J4&VħE)<}NN ƙ\-[ZShw#XM *qFn8!s< .w#7,6-O]<ڷd!=19N֤WCCDx8<- {r~PG>p|ětRv1&(3v&g~2O$_BM]@= ϗkMS?{Kj!,0&^MR ׷mMsSȹ:'(!;~؊0eGDapiqOJ:% @j*ց"զBlSlv'Fʞp=E5 ^a?b.+ U ]WsB9sOlu@VHd9s+&Q%'܃ϗ3sa㎬ M Rn*ʒLƳde"(3%eKiXy]0_hܞScψ6zS\<4W]q%bkݷ!'k3`LeLk޷qU =COq %ʜpg\rYz~^]yAH\Ձ!=7okBލf9['ꮍ~\ovk#">}WFЦsA)GqEe#Sc &KUۙ$C=v cޏpgI{9Z9hgx2yk87 ƬWjDpں f یve>,>oFK }]dVz)MOKIW9 .1\<+|+YyK\ 13 y+#yȜ…ݩe\ k +Gt]OpY6`6.m'pzgۣk󿃐/OtU@Avޓa_]>̻'m?gf%Jr3Jⳋrv,+Cح3Y[(%蝐JYc,P?&xVNHYZi دYi qf;KOGѳ Ԓl-DհVJ,m>]aOpJNV&mIOw2qk 2 ԺN{*ǒPrfe\9Yyi %ߏd6ID8hx(MibŒs=v'lc.N} n^\ 5|z&ɊAA/dF&]:T<9Лkv8LU]wo鎩s+h;%A*G 742ľd_r}=ZFtnF@IzB0L?W0jYy: , 7 5n ? zzE 7P xL{52ϱϛހ%;P=p%-~TJuqPotō~ Ti^lAϋdv]Wc!x* BKb7طÿ*w?OT8|=Uǯ*gͪ!2\cM1$d IPO~ M:ƎȳSSY{aG( LF8 =?pCcŽq3& a>?75MCk 5wQ+S67TSSOMf=pcNzlz[x6e/I̓lrV4st R0SR˖12=>5yt FoS9]nɲ QlC F`#9pY7fcP̱;1\hh#rI0w0p֗=tU_2zO@Jj=Lb-Vޥg+9d0\h ƂS?5EaVT} )6& d*jqUu7(tɕOv|SsЬVHֹ{ct&"#;w.qI>3׈WZ\IdVqFd;ܟh/b56O|>ɾ3'[NJ3\Z * pv~~ Jwb(CJ*Y(x a6~mgF  6-v NګPDX{'bnz+[xXx   cr6L. 𴛪Cm[B\La|5NryB2 o!ʅyC qa7M.{ۛɉ 5C(uTm}r[WOȮ2Rδ!LlFQ< f97jP;Lm ?\1$fpg1P%wl?iM4{+4]7(Eۗ4Ԛ#,$g J3㩮jζ}῔Ilx횉{UE=BI6Sr.9MJ$%ڃHDڀAvZD}_Ul !+ ihAygz~ϣI ΍Eߤ`M46ccc?N^T-XkE`d]; h':B'v굄u`A0;Xn^*sx".I=:$\NWPL+UXKT;jM`IR! #xG%r$T&+JEh1v4Vxr~׈lPW 5!<<+OV/,U"tIBǰ25P].|IJ8PP5"`ڨT47T|, pȏQjbژDmJ45iD=M[dzIz&DsEt9Xe̜WgTIv5ԪG>Js޿WGǬ7VŪ4q- T|e֙ oZKfZVu21_0,'sOj-sTokA/nM|P e|RoVKezspTAMZi+BhTP 1l!&L;oLL{J; 5,{@b|YzSokJ5VMi(JeLbCDA7FY1_/&zx1J?[0fPc[6ЈmpTG;LCL"6bO? 31fj9@}O߭3#M+;D 52^է^, ve?2%ؠS>l )\Wu__?6EGk_ߦKۂMUՈ-zBRpe7ҷ_uPzrjGy;mM ^ux-XNݯc?/ΐ-Wu:ppUWv&.: @u7]x'9+ωyo>z"XI ԓT{弎ꄫXh@PIGb\GC>L &xhKՂ*An5zQK3 ۚ9X4_'KyTox\-%,<WQ1Ǒ[-C/D%EYyTTVD(10h1_@|-I*)ϫPCW߫"ܝ,{'Sjqš}XV*L.媻͡8SaaRT)#gk@{NS` ;^{5<>.Vp7w#;c`ĝ} 0.=.,;o!,Z:Ʈb?vluÚon 㬷!v&l;G5NZMa\+ZV"|o~y)7YbְOb4.yao b[H-.H|_}US_B2ߚNj+<}cl%6<ε 6)l]'epZ63gP'zKt1k3f|X6M|LZNĨ:( ʱLj͗[1f% bnヂL63c#4G1TQc`sW`&cq03j/qil VT1 r7 SCb9;䚱fJ'ƻf?xT1rܶ n WWǦK\[waF636nTڲ\Oªd[}& S⯢e1R`0s u-^5^?XtV=qsoI]cL2d7!$Heߒ7o kˢ#fj5`\WGVCRQ:%\5y`1}R/ꄛFnEyp!OVEzhr#kX4QFqRX@^4gU@%cE֧?QUJ -c.z' aCa3|[ f.;,pYܭ;֋ja߫T[$[zQ|;EQY|I,e"E y3ão,%GفVet*5of֐ۚJsaM#%YXBxslm)wl-IE 5_̅2+}\|&#v #Yf@5Zp7/gLPuf3;nc+,uOoMujoeS3GAZnY>Qc5Rߙb JKaj2t5^pПq^ԟ'D<*8n>53w_ \7TCX Pe,R՘j׃=AfJUe}ySB kd1X}3 Cҧ:JPX~5D=cF:vc/z#L}\&=*ֆzC WQ׳pfbRջҋ]|En@ 6I'z^GxCB"}cqdR!_rfaV8*l%GEgx~zQT[(UeOxxEs\֒D(UqBcHW'8M0R!:Ba 4ꐩ)߅f"dCTM\j)"ߕVXOu90óZ !VB6@R+q8\ ka85&ynwŐJ;a>fau]b#:nK%b~֞悋LKA=*[YbY}\'f#G= Źy\Ƌ) - jHէJffl<(ޙ730NkG;cIjTTlžN+o)CLA&R/jLxp0aFdPᤇ p-F㝹^Gj8̃0f*8rZҟH?Ouo1+Nqd'(@r5)0ONuSas!jFi o>U[jx8j纻opfLژ&?orT\],hqn%Uu01`"%g|?aPn.by"(?aƳyS{=>-k5UɸaucL.~GR;d {-lCɷ BT8;NdF+ɥw- f @֫&럊5bC4+bx7*Yt9}~a-5z*;vkp^<*mc#_n18RXC'Fi溝:lU>%G>#SqyE\! ܄+}ǩ(fQ_[j'ARd9/9̠\1ig.4K0jP>n̈o=?G} rY eM3&C0E^](&fZw䊖A!JTb7&6YpݫKPb,ӻڻoA 읺,1r^b8#ޫcu*T9p?͟g}UX1_GwRŻbTsε}U: ?:l*tQa.sUO*fRn`m$.cPU޹sT US=*ZS d9|`;޵ 1eʃC(y{}~TھUa!\lN0LBT7ܼm Myx Ы+{m*/Am;2 {=UnrL)8z= r'=E}GǼ WLNԫ[t7݋ NmaByU^/U zӌ٪UlO]~OLVbgnY|֒{>2Uby4t\TCV&ge3bZˌbYa˧JU,j~^C0-ނS{3pg:|wpNN&ڊPysI5NRܫS'Yp5}\IW~AdoE7T/U'3R"Th.Rǰ(QE9?(3gzcgfʥ,=P3 zc;~æǙdj:u@(N6A;Gӿ rj=¿@7ZvJNy],UK٩Q/NC4~ Av[珲 Ė𮨋zɇ\v#$uiKٷ喆akvgS{3l[]&|s>X;)uI+z V;|UjLz oQ_1u?k'tP|%e.ao:WC{ZbBo+M,3?[ r虵T}Ba:B́Kș\gnWlfE.pvt&DvY;OSU:?85s\ToOq֮7S[/@$3|zٽ $ޏ ێG9 cmbV!e<_P׺_aW3VCoNRv" l2qkvP }shPcW»-)`M/[sOfח2b ̊v pݱ[dnW`;];F&kWٳs;vS4Yj#Vq؋Pk0-ltM=VZ´`YztBr{\1l3չަVT#Wabkf_CU!*CO3BIuF~)}(b'Bs\*w(b眊Y;. I lqLC|(SE(1pC55k7>é0_q^nNk}υzC#vCF\3W/5u;XMbr+^Mvze7^]9w `w OCrr]+&(/ {̺QY!XR"5N~;7EbX/1W%9BOWgU؂WaTy )aszo.xYM5kiz&[=kxRD^+ sٿ+=!ÐŪW)iwyq7?Fi1g K %ߍ35˼<Sΰ>ޛ{GGx>ynv^NWU|ㄶ-WJ]u]Խ!xLa؊g粽esa mWx.mG=62S֓}Õ!u i8irR68Clw)Ej~<['E)/CǴz/yyΧKeuZw_GS3TБ'G9E+C1xY"WzJ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Ҽnoriginchk_tagchk_ref_HDF_CHK_TBL_702_161_1962_162_HDF_CHK_TBL_0@=Y(i>@=(4pq"r%@=%(54@=i(y8x@=)(9>@=(x!.&y=x qpr==x x!   originchk_tagchk_ref_HDF_CHK_TBL_702_164_1962_165_HDF_CHK_TBL_0x!.&y=xڅY* Dex;nnwi3SCyZDc >׿֙yz3Ӡɣ}]CwO}_%/s|Ds|mUzxw~Nc_ֈfȯR?1ͯQ+Z}%ߝCVnx~]c}5|C-׮Kw]zHnN]ƐgܶGu5k8iL߀݆ƫd7Jm7kfv;Սu䇞1͂4z_SW]տZKNWy׺]kJsh.)#IKmnֺ\KyKJmckޭʾ9Vcs7u&,}WY=r7:0ja}b=lpE߽tkzxݵyLֺoI|aCIf{K%H_[YV^5l Ҵ{ \7]/RXo\|zܻ.6߸Ք[u{ݟ.Lvu箍m 8vW-D~{1U!]F /u[-jg쪿t߻5x<85}- ydҹ{]E=o׎&cCcpߤ_/3AMwF d]r؁ 3֎4c^N]A3Pv{iDn>җ)#]@2^>HbǺغ-@z .'W^; }޾ǚfzYi>{yGfGLs16OvW>0vđ̡)-MIփk(Ά|vE=LگOҝN.zG߾~Us{ohڄr ڽW->"j{hUY]} ܳ*yͳ=cE1{.JGycȾ׃[M<GX,&{ͷ.oԈIeM0*7>grw76gd=7f_p{BqUԹNA7|KNMah7Q u/sAq=Q]TWƭhːn8hwݶU)V!Fg"h4n\pZ^ =r ȩ1}h߅]H܄ f0g +kz~D^KWyaiW.U+eu/"WVmL|HeV,Ru6-3vmiG̣u# %'ji ?,Eol/1bA0av|`Umc=f" ;MJ'lvrQNu>CSK}$ޒ9fQ!Utcخ5.AE~ _vY9 Gz#,xy3όMU<3w tae4Nwo39AX)4uH& ir"/Yp+>)bY Ǩf0˙s3#߸ڍKS݃cROa'2|У}~p4L6{U/gF(pP Wd(]VjB0d>vق_9?V.d~FΌ(}#w{};+տ zIm\h~ՇFcXZs b6()6ʗa;c|BЭ(RhOۡ#:"%+-5! V$cٻUU=!]bSǹƄBؐd9Gcs~ۘZ(@h%Lܛ3Hp8ITkl _` Ƌ$|J$0 K!息$c3},7R^zAQ1,Ɗv}>?H}pMhn\H/79\@3f;1'Â^QZm;CeCLI[dw s5a !mN+ 7U آDFz-X1t.O-s9M*Yp&Di4?t}S)y2`DWr.RV2G lMޣyS5D׆6'rHIڠ%"7B]ɘRS@jG)5׬H J#v@H,oT,i |z((Y6͏=by1pzk]n}X_B`|5Zz*1/ĝ{L-%-͒8|ESu =ˤHN̎ZOXё3 By{@,SlOQix eڡ@Ea !75Л1DOtlC]19ΰy`O[YYē2 牒3 5o˨DJb~Nmo&eũ_=9$J]lxYkd5ڛlޯe\D7s5Ѓf[.L.i4ҳsuֲ 燍lp^5qJX;,V2֧y}'h}ܮ~dτ I7oOԚaw|yP*.xOQv}A=hd&%yI&So?eipX^k},oHg0r+x{]L%R޷ͭ.,}hW OIN:8~ > .27Yz4!5iz&Ok$<뷷GyHhz*2\'j߄Xɛ)d ^|nEc,.iV(~`PݬJd6ewP |ྊ%\ ^oR)e|i (K策hJj* SkVO5W1tVo=ܼürxBK+:‹tb`iKxy%eobۛ ,vT QKw} iCYKţW\4Ae?QwnT*3M)vT /4/qWn{lbS@b>,cNf4:d lQ|t-OL𩾐;xxLbu-T>'0,fKQV\Ŷ}F t6MdKν0-]J (ߎoUnLq2ƗeȌ{94 tH߀IAaTOL( d"w)IυٌO?Q76CT}RwWrƥ3Ms-I)7<@$勤́FղުdLs {7XVgv[ByF̪gJi(j] _Cr${P>˿v~Bz39m$n;PV9Lrݸ+)t@eJPA6pmj ]`(?H˳[n}b9R,cS11|6*['XsL\9p1,8H/He|6&pQj~& RD% -1(n9o[Wk"@/;Qh҂?]Ǎ"nHFz` ZH]t!0Ǣn@r&#og_LxΗ*p"!E`}t ֱۇ#@}t 6`n6n$tqk(V.:~'Mr}]u 0 [vU¨:H!Hr0 02Mn̩)&c54Kk&)UHIA|5 ⼨%y *h K4g=/۬nZ3-2u*:tF85HJ=Ům="=m=d޷$33` b׭Eٝ2[^/NUxH {QI2Cbwbg:lї}c}c5Y:;Dل (y{p̋t~&+ySS d:ԫ}QT=\?'u0yą%M_;Y!Gz h~d1}!Бg~?C{> ; s ఌ!!%l+[hwxYKD߿/e[ྞLWJZ%5ȗrenO* 0h%xۛx 1R>KU\3FVՠTu A29AHvjgTn11@n0>i6]"P#gJ B7@R1ņ`=nR5غ33iYOUй3 VW[+]ihJ]8^(CmiR0OG(bdnNt =L?: S&H1y/Rh< w+UG:ٛ$8k:{M6EbET8\map ]F"[hq }|0Iirl-}\54<7%!)a,[qxkI+mTCPï oN>w}u8o nαŃ/ۆol}$^vr| m:m YLEXr=DKNvL̰{C$]YI"w{,d </Fʽ^Ub[xPT06G~M{P0(ŧk_COB\yǥ& 4Q˟OA 5Y}z#\r1M֞yxLKR=+~aX;͖Sm6iF`>:?}4㝷rc 9s]?ڰ+~[e\~I6Ya'=MƜ0#$,J&@2^{ejB6H@:J|,Z3*V}&NpxM0CTd0FKdI?8iE6ydg&ŭJTngu{V2BP,/h 1U#B~]Pjz/\2(I VM9do1!T y&)BD$KHmfͤ SyrP1\~([`Np9S؆ZAI@C:cFI wlWZo(^IvG.7 "qǰ$)E9u&#$FJVsi=L`ṞǓex|ُ=.GFZSVu!梙k^ HK`~1hK(J+)K:Ŝe66"ͨ,>7+I^ǣO.)!AY:U/k{c%05^4Þ| #싧dfj(VΌӶaZ<$H;&u#kθAKL"D' В儾G2)IA`8ɺN6\[ν˙s9 ~C=U^ ,[#Bu b;ԑD#Q&C9NJ_rĨR.E9x00RȺN@KP{z+ G ̆#ɽ]2Ky!TEhF@>ũt]tBh_n C9%i MlL?x~mBѴ2G 5]I*Ad c,Qn;TC,9.a)fԖ V;<)ym sǥc`0|uFXN;(l?qCucN%wH3y~>Of 2uy!KU,o`IԀR'~W2W |ꂞ4&-B~j^% 3#?nib Lfȕĩ5E { swtd"u@=(L@=(x@=`(p>@=(vw"x@= tsu==xڍ]٢8Ĭǣ K3OssƴRPzc{>6;v pN;c49㉾isOJ}O~ Ŷ\؞]z?zߓKvIMn]F۔[9wi8[!>;1 }N-cg`M<X#ߝ#{sdA;Δoov;jDv}gI7ƒ{ϼ>\incqzdt3ॼe!v>?9ZCvq{]onw1lϩ\ķȏNݺ۵dU[8eO ذܓ&Ȣ!Uw Ƽ3@g~s9#tNe^+>ݭ9JixspYaz'|3{u+-ЎM5zWh@  ({^rch RC1^S)69ؤ1gֳcF ~l=Bs3&L$ /NDEF;]5XλَG *cw7vѓ[M7>9fg=X6;7g>m;k7>Cxe5^ 1 q{1+7zk3%Nx%Q |E?{"6<%3L|ϙ%GlES<첿q\b]g`ֶl71FNWFh5],>9Z/Ʀ)*rSdNr| hŵc8 ]r.zH>#ގ3Bm {|Y\_Zla?ävy\flcKH':5H\;Nc|xG2'y5B!X4 )H{yGXb$ܓkG'n{鑜/;`<~M;=]D&9Q7cjq@}}}+<D溭|kNrzC`vf ClB#K(;SQ 7.U` 5Q8P3{'uHCp?­+Q# `:Q[#6Ĩl<6A%5uJ90iP 6|G[ }ʡ0b/1?ta2JBhjÑ8̃kۼN~[_BX#bEQI&(ª\.#iXxӱnj}WpܫzGC+#?_{M}_nwM5Z^>^ CMDf}`N ӝߩ&%;&  75#NĨ1E.3Aʊ+OeC4dupy\z`ppL]# 4u2j}Ћߴuw%.޺WU@Gh<"!Øa{+{hx| F?!Mp)ÝsTFc}fn&Hk5͇Ȓ@ $ SV BCN?3x]H YW2SEH8FؚmPVLWj %]=<-&}UBF< @j i1〞M[mXyG?< /LKVR{kZt6њ;tDI '~s%̱Zó0wǣ@ &Fzq)1wybawwah፺s6PtOZ(H9]̜C6ȅUEԨBR W=}fY@*F`=@w`,k+Qfɱ-vcR!PO'l,-SZ@,Mɼ Rɹ6c,D6*ɔW)«1܆P;AS haśôp?aH?t Hy2wif6y8|^\:$6B,2$2߁n2$VvQc!:BL vsw8ǐ&!PJ\tvEN#ShiQp Ub7gWW {WK߮Kknkfd_I7vԮXдuέp> nfyw>'oBSr~ j`C?:XLY A%gEDu;$~j}ZC(B%&YB YךUC=Xs&i+b8J*dC xjg-hW? I S1DL]ÌHLr-H&>mi˚d!?M4HPS7A|lxo%`+UOAHX4c*mszs>bQS[,x]6@ʔc0]Fl}[|s9Saث*hN!g^=7Qܺ\B]g eZNDQ >Gt"&<D35+eC& b}8reȞ T W櫨~C 1a# 4%ڑ<>.x~8yA*TL@ŇKO"6~RGGKG"+مW\ F`ҡ+YE͡YwgkUjC @>A? ZBTUsd|֥ w{hXLQr&SEE pK">߿'@<J#YT\`q*YF'D ʘya%#>|.--Bܟr.?psw.,WBy.i]h a+::s8<3ǚbB.A\p"ITix6 դVU!YNn]tUC>BqVbW݅;>lËpGIָ"n"?!*IsAc>ɨr>r1^M l"H1tTU&5p:/aHtBXC-*wa@yA‰}"IR7 _!K ^BzXւ#LZ8}E.,| s!e QUU@g`RnOĪj3aU1c=]u&콣j)u}=8ii>sIJY*5ƣ%dh@̓/QCJ<|g~N-h,Ey@# bɑk*$F8(dDVPOjRL$z@! ؈#',OkX7`).) ò&ڐB% D&α-/jB[dl@1L81lRJl/(0> E잖sm][AK9W##Z[,S{ޜ4S&A߱ "Y%0cE>e@9 )ݎhkXa Xz<梅&6TSZ6,1qՋns?%t !J }5o!T>8k֦ܲ5.4#hv5 5cUuj\ Ҍ悽wOPTuZq||'R$ICfT5 T#BdrXX- fTs!㧺_J긥 ZJs7YZl9l1EKF Bpr9ulps|[m٬vĎv&nۙbE8+tu\z;_2uYm-:\.;VQa*\eO "b|6lɉv$h&~]I#*U\L%Qn7e<}'^vb2  @ aM,zv)gi8G1>k xS޹1f=[-jXQ60~:ruH(P97.$г CDn;,ChqyMޠzgQ'?F<w.z<0)b[:o콝ޙ\E=5V͏A F 6^DS%`聪_DyܐuPTLO LTR>ZY`gNK=/PzF6Muh)R90n(" LyVV Tn*.FCFJ-?8}Cd?U Ց%£Ku*<>KWs){r$)$؅r S#vq jpf\KVW ]tgT'oZ~qNǦ9Ħ7 ⌨xwcMX\/F ~> MY?ퟔ:⠟^9'+u8Odgʠ ˡ f9E'J@;nr9eN{eߟ:ViMZ3]ƲB B&ӲAB8m> 'Zq{b_K J[NPS^m3D$>Զ818. ӛ+mζq)K#l[4)u r+ a - K|`h-WdЎ=MqV %cE/2X]a$gItPOKѥل;mv=}b"Ƞu9LNOpbK&5nU wʣU![-*-E\Q خ/4QhhJ./q[NVD 1⁙ [4Ȝ,\d.Keg4un4<]LW" )v3Ai깵H>7R*/,fԙR &ztaloj7V|xk+]ȳ1~GOzSfw/eݽ[*]+HI eHF4m^'!bf_9{R)FߥfϑrdP0caGca#`OtG`Miȸ?"υ|S3"XF"!G;QB֣vّ!PC ?ŝ϶rl髨rg |w2 ǭ~ۂ*a7Ƣ)lA[ɻ-<u‡!"`O|_+9M dx-H,ޖLO+K /gצy)9toe/NP!{J_`xRal?17Htl/u%eq@?.qc 蕟CܑjipxX%)E?EmR܀k,<5޻ܞ)%"6N1qrgT35b A uK4xԐMg4`cdZOېil7ut8_7`cڶxt%LVfjߛƫi+?w8a:|jJۦrؑZ;&ON:$ ^BrR'S} na3!5.\{96AUEm"zzNSg}2ӯ%wܬd4U:Hx&tCGJ*>"Q+rD³YŌrDfDtoFVSYJ%yܧg#rN?trJieZl[ämf`iRdϻcҷ T?(Ni&RW\E TaY.I6n?a w=K(xYi 'uٿ>J Vў&VrV2$b :ʅ:y,\lwQ0؃RLS3 gzI%Q@zgw>6FƐ{pӡItL{|5_U[CQKiы%_gsZ%V%ZUm*\ۤ%|3-5*?qIOh β셭"˸W,"kƀIC7Vl*IR빽KWE{,nFn:"# G;ԩ5TcȯƷtG7|TsܒA(Ӝ^[U.or&nNX?ThVnk*jq8]"u{C{׍Tr\Of~1'oZi+֔,7>wA9<7<PY:~=mKBLϕz][?k;4{+mRk0;7rbJTq=T>9㖋V⊛ܗk #ν;7IZfQa֯쒱qJ=E孳zޏ|F#ǟAZszk;ᒶC{i;YThJ)Y?vk{?Nj…_H?'tb(K pc"L MFKւS8ߚǔdǧm(-keJqY5originchk_tagchk_ref_HDF_CHK_TBL_702_167_1962_168_HDF_CHK_TBL_0x!.&y=xڅY* Dex;nnwi3SCyZDc >׿֙yz3Ӡɣ}]CwO}_%/s|Ds|mUzxw~Nc_ֈfȯR?1ͯQ+Z}%ߝCVnx~]c}5|C-׮Kw]zHnN]ƐgܶGu5k8iL߀݆ƫd7Jm7kfv;Սu䇞1͂4z_SW]տZKNWy׺]kJsh.)#IKmnֺ\KyKJmckޭʾ9Vcs7u&,}WY=r7:0ja}b=lpE߽tkzxݵyLֺoI|aCIf{K%H_[YV^5l Ҵ{ \7]/RXo\|zܻ.6߸Ք[u{ݟ.Lvu箍m 8vW-D~{1U!]F /u[-jg쪿t߻5x<85}- ydҹ{]E=o׎&cCcpߤ_/3AMwF d]r؁ 3֎4c^N]A3Pv{iDn>җ)#]@2^>HbǺغ-@z .'W^; }޾ǚfzYi>{yGfGLs16OvW>0vđ̡)-MIփk(Ά|vE=LگOҝN.zG߾~Us{ohڄr ڽW->"j{hUY]} ܳ*yͳ=cE1{.JGycȾ׃[M<GX,&{ͷ.oԈIeM0*7>grw76gd=7f_p{BqUԹNA7|KNMah7Q u/sAq=Q]TWƭhːn8hwݶU)V!Fg"h4n\pZ^ =r ȩ1}h߅]H܄ f0g +kz~D^KWyaiW.U+eu/"WVmL|HeV,Ru6-3vmiG̣u# %'ji ?,Eol/1bA0av|`Umc=f" ;MJ'lvrQNu>CSK}$ޒ9fQ!Utcخ5.AE~ _vY9 Gz#,xy3όMU<3w tae4Nwo39AX)4uH& ir"/Yp+>)bY Ǩf0˙s3#߸ڍKS݃cROa'2|У}~p4L6{U/gF(pP Wd(]VjB0d>vق_9?V.d~FΌ(}#w{};+տ zIm\h~ՇFcXZs b6()6ʗa;c|BЭ(RhOۡ#:"%+-5! V$cٻUU=!]bSǹƄBؐd9Gcs~ۘZ(@h%Lܛ3Hp8ITkl _` Ƌ$|J$0 K!息$c3},7R^zAQ1,Ɗv}>?H}pMhn\H/79\@3f;1'Â^QZm;CeCLI[dw s5a !mN+ 7U آDFz-X1t.O-s9M*Yp&Di4?t}S)y2`DWr.RV2G lMޣyS5D׆6'rHIڠ%"7B]ɘRS@jG)5׬H J#v@H,oT,i |z((Y6͏=by1pzk]n}X_B`|5Zz*1/ĝ{L-%-͒8|ESu =ˤHN̎ZOXё3 By{@,SlOQix eڡ@Ea !75Л1DOtlC]19ΰy`O[YYē2 牒3 5o˨DJb~Nmo&eũ_=9$J]lxYkd5ڛlޯe\D7s5Ѓf[.L.i4ҳsuֲ 燍lp^5qJX;,V2֧y}'h}ܮ~dτ I7oOԚaw|yP*.xOQv}A=hd&%yI&So?eipX^k},oHg0r+x{]L%R޷ͭ.,}hW OIN:8~ > .27Yz4!5iz&Ok$<뷷GyHhz*2\'j߄Xɛ)d ^|nEc,.iV(~`PݬJd6ewP |ྊ%\ ^oR)e|i (K策hJj* SkVO5W1tVo=ܼürxBK+:‹tb`iKxy%eobۛ ,vT QKw} iCYKţW\4Ae?QwnT*3M)vT /4/qWn{lbS@b>,cNf4:d lQ|t-OL𩾐;xxLbu-T>'0,fKQV\Ŷ}F t6MdKν0-]J (ߎoUnLq2ƗeȌ{94 tH߀IAaTOL( d"w)IυٌO?Q76CT}RwWrƥ3Ms-I)7<@$勤́FղުdLs {7XVgv[ByF̪gJi(j] _Cr${P>˿v~Bz39m$n;PV9Lrݸ+)t@eJPA6pmj ]`(?H˳[n}b9R,cS11|6*['XsL\9p1,8H/He|6&pQj~& RD% -1(n9o[Wk"@/;Qh҂?]Ǎ"nHFz` ZH]t!0Ǣn@r&#og_LxΗ*p"!E`}t ֱۇ#@}t 6`n6n$tqk(V.:~'Mr}]u 0 [vU¨:H!Hr0 02Mn̩)&c54Kk&)UHIA|5 ⼨%y *h K4g=/۬nZ3-2u*:tF85HJ=Ům="=m=d޷$33` b׭Eٝ2[^/NUxH {QI2Cbwbg:lї}c}c5Y:;Dل (y{p̋t~&+ySS d:ԫ}QT=\?'u0yą%M_;Y!Gz h~d1}!Бg~?C{> ; s ఌ!!%l+[hwxYKD߿/e[ྞLWJZ%5ȗrenO* 0h%xۛx 1R>KU\3FVՠTu A29AHvjgTn11@n0>i6]"P#gJ B7@R1ņ`=nR5غ33iYOUй3 VW[+]ihJ]8^(CmiR0OG(bdnNt =L?: S&H1y/Rh< w+UG:ٛ$8k:{M6EbET8\map ]F"[hq }|0Iirl-}\54<7%!)a,[qxkI+mTCPï oN>w}u8o nαŃ/ۆol}$^vr| m:m YLEXr=DKNvL̰{C$]YI"w{,d </Fʽ^Ub[xPT06G~M{P0(ŧk_COB\yǥ& 4Q˟OA 5Y}z#\r1M֞yxLKR=+~aX;͖Sm6iF`>:?}4㝷rc 9s]?ڰ+~[e\~I6Ya'=MƜ0#$,J&@2^{ejB6H@:J|,Z3*V}&NpxM0CTd0FKdI?8iE6ydg&ŭJTngu{V2BP,/h 1U#B~]Pjz/\2(I VM9do1!T y&)BD$KHmfͤ SyrP1\~([`Np9S؆ZAI@C:cFI wlWZo(^IvG.7 "qǰ$)E9u&#$FJVsi=L`ṞǓex|ُ=.GFZSVu!梙k^ HK`~1hK(J+)K:Ŝe66"ͨ,>7+I^ǣO.)!AY:U/k{c%05^4Þ| #싧dfj(VΌӶaZ<$H;&u#kθAKL"D' В儾G2)IA`8ɺN6\[ν˙s9 ~C=U^ ,[#Bu b;ԑD#Q&C9NJ_rĨR.E9x00RȺN@KP{z+ G ̆#ɽ]2Ky!TEhF@>ũt]tBh_n C9%i MlL?x~mBѴ2G 5]I*Ad c,Qn;TC,9.a)fԖ V;<)ym sǥc`0|uFXN;(l?qCucN%wH3y~>Of 2uy!KU,o`IԀR'~W2W |ꂞ4&-B~j^% 3#?nib Lfȕĩ5E {wvx== K( L@= ,( ,) 1x: JG<;; J7j< J< J J= JI> K-> KH;? K? K7@ Kxڍ]٢8Ĭǣ K3OssƴRPzc{>6;v pN;c49㉾isOJ}O~ Ŷ\؞]z?zߓKvIMn]F۔[9wi8[!>;1 }N-cg`M<X#ߝ#{sdA;Δoov;jDv}gI7ƒ{ϼ>\incqzdt3ॼe!v>?9ZCvq{]onw1lϩ\ķȏNݺ۵dU[8eO ذܓ&Ȣ!Uw Ƽ3@g~s9#tNe^+>ݭ9JixspYaz'|3{u+-ЎM5zWh@  ({^rch RC1^S)69ؤ1gֳcF ~l=Bs3&L$ /NDEF;]5XλَG *cw7vѓ[M7>9fg=X6;7g>m;k7>Cxe5^ 1 q{1+7zk3%Nx%Q |E?{"6<%3L|ϙ%GlES<첿q\b]g`ֶl71FNWFh5],>9Z/Ʀ)*rSdNr| hŵc8 ]r.zH>#ގ3Bm {|Y\_Zla?ävy\flcKH':5H\;Nc|xG2'y5B!X4 )H{yGXb$ܓkG'n{鑜/;`<~M;=]D&9Q7cjq@}}}+<D溭|kNrzC`vf ClB#K(;SQ 7.U` 5Q8P3{'uHCp?­+Q# `:Q[#6Ĩl<6A%5uJ90iP 6|G[ }ʡ0b/1?ta2JBhjÑ8̃kۼN~[_BX#bEQI&(ª\.#iXxӱnj}WpܫzGC+#?_{M}_nwM5Z^>^ CMDf}`N ӝߩ&%;&  75#NĨ1E.3Aʊ+OeC4dupy\z`ppL]# 4u2j}Ћߴuw%.޺WU@Gh<"!Øa{+{hx| F?!Mp)ÝsTFc}fn&Hk5͇Ȓ@ $ SV BCN?3x]H YW2SEH8FؚmPVLWj %]=<-&}UBF< @j i1〞M[mXyG?< /LKVR{kZt6њ;tDI '~s%̱Zó0wǣ@ &Fzq)1wybawwah፺s6PtOZ(H9]̜C6ȅUEԨBR W=}fY@*F`=@w`,k+Qfɱ-vcR!PO'l,-SZ@,Mɼ Rɹ6c,D6*ɔW)«1܆P;AS haśôp?aH?t Hy2wif6y8|^\:$6B,2$2߁n2$VvQc!:BL vsw8ǐ&!PJ\tvEN#ShiQp Ub7gWW {WK߮Kknkfd_I7vԮXдuέp> nfyw>'oBSr~ j`C?:XLY A%gEDu;$~j}ZC(B%&YB YךUC=Xs&i+b8J*dC xjg-hW? I S1DL]ÌHLr-H&>mi˚d!?M4HPS7A|lxo%`+UOAHX4c*mszs>bQS[,x]6@ʔc0]Fl}[|s9Saث*hN!g^=7Qܺ\B]g eZNDQ >Gt"&<D35+eC& b}8reȞ T W櫨~C 1a# 4%ڑ<>.x~8yA*TL@ŇKO"6~RGGKG"+مW\ F`ҡ+YE͡YwgkUjC @>A? ZBTUsd|֥ w{hXLQr&SEE pK">߿'@<J#YT\`q*YF'D ʘya%#>|.--Bܟr.?psw.,WBy.i]h a+::s8<3ǚbB.A\p"ITix6 դVU!YNn]tUC>BqVbW݅;>lËpGIָ"n"?!*IsAc>ɨr>r1^M l"H1tTU&5p:/aHtBXC-*wa@yA‰}"IR7 _!K ^BzXւ#LZ8}E.,| s!e QUU@g`RnOĪj3aU1c=]u&콣j)u}=8ii>sIJY*5ƣ%dh@̓/QCJ<|g~N-h,Ey@# bɑk*$F8(dDVPOjRL$z@! ؈#',OkX7`).) ò&ڐB% D&α-/jB[dl@1L81lRJl/(0> E잖sm][AK9W##Z[,S{ޜ4S&A߱ "Y%0cE>e@9 )ݎhkXa Xz<梅&6TSZ6,1qՋns?%t !J }5o!T>8k֦ܲ5.4#hv5 5cUuj\ Ҍ悽wOPTuZq||'R$ICfT5 T#BdrXX- fTs!㧺_J긥 ZJs7YZl9l1EKF Bpr9ulps|[m٬vĎv&nۙbE8+tu\z;_2uYm-:\.;VQa*\eO "b|6lɉv$h&~]I#*U\L%Qn7e<}'^vb2  @ aM,zv)gi8G1>k xS޹1f=[-jXQ60~:ruH(P97.$г CDn;,ChqyMޠzgQ'?F<w.z<0)b[:o콝ޙ\E=5V͏A F 6^DS%`聪_DyܐuPTLO LTR>ZY`gNK=/PzF6Muh)R90n(" LyVV Tn*.FCFJ-?8}Cd?U Ց%£Ku*<>KWs){r$)$؅r S#vq jpf\KVW ]tgT'oZ~qNǦ9Ħ7 ⌨xwcMX\/F ~> MY?ퟔ:⠟^9'+u8Odgʠ ˡ f9E'J@;nr9eN{eߟ:ViMZ3]ƲB B&ӲAB8m> 'Zq{b_K J[NPS^m3D$>Զ818. ӛ+mζq)K#l[4)u r+ a - K|`h-WdЎ=MqV %cE/2X]a$gItPOKѥل;mv=}b"Ƞu9LNOpbK&5nU wʣU![-*-E\Q خ/4QhhJ./q[NVD 1⁙ [4Ȝ,\d.Keg4un4<]LW" )v3Ai깵H>7R*/,fԙR &ztaloj7V|xk+]ȳ1~GOzSfw/eݽ[*]+HI eHF4m^'!bf_9{R)FߥfϑrdP0caGca#`OtG`Miȸ?"υ|S3"XF"!G;QB֣vّ!PC ?ŝ϶rl髨rg |w2 ǭ~ۂ*a7Ƣ)lA[ɻ-<u‡!"`O|_+9M dx-H,ޖLO+K /gצy)9toe/NP!{J_`xRal?17Htl/u%eq@?.qc 蕟CܑjipxX%)E?EmR܀k,<5޻ܞ)%"6N1qrgT35b A uK4xԐMg4`cdZOېil7ut8_7`cڶxt%LVfjߛƫi+?w8a:|jJۦrؑZ;&ON:$ ^BrR'S} na3!5.\{96AUEm"zzNSg}2ӯ%wܬd4U:Hx&tCGJ*>"Q+rD³YŌrDfDtoFVSYJ%yܧg#rN?trJieZl[ämf`iRdϻcҷ T?(Ni&RW\E TaY.I6n?a w=K(xYi 'uٿ>J Vў&VrV2$b :ʅ:y,\lwQ0؃RLS3 gzI%Q@zgw>6FƐ{pӡItL{|5_U[CQKiы%_gsZ%V%ZUm*\ۤ%|3-5*?qIOh β셭"˸W,"kƀIC7Vl*IR빽KWE{,nFn:"# G;ԩ5TcȯƷtG7|TsܒA(Ӝ^[U.or&nNX?ThVnk*jq8]"u{C{׍Tr\Of~1'oZi+֔,7>wA9<7<PY:~=mKBLϕz][?k;4{+mRk0;7rbJTq=T>9㖋V⊛ܗk #ν;7IZfQa֯쒱qJ=E孳zޏ|F#ǟAZszk;ᒶC{i;YThJ)Y?vk{?Nj…_H?'tb(K pc"L MFKւS8ߚǔdǧm(-keJqY5originchk_tagchk_ref_HDF_CHK_TBL_702_170_1962_171_HDF_CHK_TBL_0ValuesYDim:MODIS_Grid_1km_2D DimVal0.1YDim:MODIS_Grid_1km_2DDim0.0ValuesXDim:MODIS_Grid_1km_2D DimVal0.1XDim:MODIS_Grid_1km_2DDim0.0 `ValuesYDim:MODIS_Grid_500m_2D DimVal0.1YDim:MODIS_Grid_500m_2DDim0.0 `ValuesXDim:MODIS_Grid_500m_2D DimVal0.1XDim:MODIS_Grid_500m_2DDim0.0Values!Total_Additional_Observations_1km DimVal0.1!Total_Additional_Observations_1kmDim0.0ValuesYDim_1km DimVal0.1YDim_1kmDim0.0sValues"Total_Additional_Observations_500m DimVal0.1"Total_Additional_Observations_500mDim0.0 `Values YDim_500m DimVal0.1 YDim_500mDim0.0Number of ObservationsVALUES long_nameAttr0.0noneVALUESunitsAttr0.0VALUES valid_rangeAttr0.0VALUES _FillValueAttr0.0 SDS variableSDSVarjjjj jnum_observations_1kmVar0.01km Reflectance Data State QA - first layer+++VALUES long_nameAttr0.0bit field  VALUESunitsAttr0.0VALUES valid_rangeAttr0.0VALUES _FillValueAttr0.01kmVALUESNadir Data ResolutionAttr0.0 Bits are listed from the MSB (bit 15) to the LSB (bit 0): Bit Description 15 internal snow algorithm flag; 1 -- yes, 0.00% 0 -- no, 100.00% 14 Salt Pan; 1 -- yes, 0.00% 0 -- no, 100.00% 13 Pixel is adjacent to cloud; 1 -- yes, 13.43% 0 -- no, 86.57% 12 MOD35 snow/ice flag; 1 -- yes, 0.96% 0 -- no, 99.04% 11 internal fire algorithm flag; 1 -- fire, 0.00% 0 -- no fire, 100.00% 10 internal cloud algorithm flag; 1 -- cloud, 88.92% 0 -- no cloud, 11.08% 8-9 cirrus detected; 00 -- none, 99.84% 01 -- small, 0.00% 10 -- average, 0.00% 11 -- high, 0.16% 6-7 aerosol quantity; 00 -- climatology, 100.00% 01 -- low, 0.00% 10 -- average, 0.00% 11 -- high, 0.00% 3-5 land/water flag; 000 -- shallow ocean, 56.19% 001 -- land, 0.00% 010 -- ocean coastlines and lake shorelines, 0.00% 011 -- shallow inland water, 0.00% 100 -- ephemeral water, 0.00% 101 -- deep inland water, 0.00% 110 -- continental/moderate ocean, 43.81% 111 -- deep ocean, 0.00% 2 cloud shadow; 1 -- yes, 6.24% 0 -- no, 93.76% 0-1 cloud state; 00 -- clear, 0.92% 01 -- cloudy, 99.05% 10 -- mixed, 0.03% 11 -- not set, assumed clear, 0.00% VALUESQA indexAttr0.0 SDS variableSDSVarj j j  j   j       state_1km_1Var0.0Sensor zenith - first layerVALUES long_nameAttr0.0degreeVALUESunitsAttr0.0FPVALUES valid_rangeAttr0.0VALUES _FillValueAttr0.0?zG{VALUES scale_factorAttr0.0 SDS variableSDSVarjjj j j  SensorZenith_1Var0.0Sensor azimuth - first layerVALUES long_nameAttr0.0degreeVALUESunitsAttr0.0FPVALUES valid_rangeAttr0.0VALUES _FillValueAttr0.0?zG{VALUES scale_factorAttr0.0 SDS variableSDSVarjjjj jSensorAzimuth_1Var0.0Range (pixel to sensor) - first layer%%%VALUES long_nameAttr0.0metersVALUESunitsAttr0.0ixVALUES valid_rangeAttr0.0VALUES _FillValueAttr0.0@9VALUES scale_factorAttr0.0 SDS variableSDSVarj%j%j%j%%% j !"#$%%Range_1Var0.0Solar zenith - first layerVALUES long_nameAttr0.0degreeVALUESunitsAttr0.0FPVALUES valid_rangeAttr0.0VALUES _FillValueAttr0.0?zG{VALUES scale_factorAttr0.0 SDS variableSDSVarj-j-j-j--- j'()*+,-- SolarZenith_1Var0.0Solar azimuth - first layerVALUES long_nameAttr0.0degreeVALUESunitsAttr0.0FPVALUES valid_rangeAttr0.0VALUES _FillValueAttr0.0?zG{VALUES scale_factorAttr0.0 SDS variableSDSVarj5j5j5j555 j/0123455SolarAzimuth_1Var0.0Geolocation flags - first layerVALUES long_nameAttr0.0bit field  VALUESunitsAttr0.0VALUES valid_rangeAttr0.0VALUES _FillValueAttr0.0 SDS variableSDSVarj<j<j<j<<< j789:;<<gflags_1Var0.0Orbit pointer - first layerVALUES long_nameAttr0.0noneVALUESunitsAttr0.0 N@ L=A LA L<BB M7jC M7C M; MQD MaLE ME M;F NF N 7G N@G NB=H NVALUES valid_rangeAttr0.0VALUES _FillValueAttr0.0 SDS variableSDSVarjCjCjCjCCC j>?@ABCC orbit_pnt_1Var0.0Granule Pointer - first layerVALUES long_nameAttr0.0noneVALUESunitsAttr0.0VALUES valid_rangeAttr0.0 Q9H OF<II O7jJ OJ O OK ONL P1L PG;M PM P7N PN P=O PO P<PVALUES _FillValueAttr0.0 SDS variableSDSVarjJjJjJ!jJJJ jEFGHI!JJ granule_pnt_1Var0.0Number of ObservationsVALUES long_nameAttr0.0noneVALUESunitsAttr0.0VALUES valid_rangeAttr0.0VALUES _FillValueAttr0.0 T+P Q7jQ R6Q R:& RPR R`VS R-S R;T S T S)7U S`U Sd=V SV S<W SW S<X T# SDS variableSDSVar ` `jQjQjQ'jQQQ jLMNOP'QQ&num_observations_500mVar0.0500m Surface Reflectance Band 1 - first layer---VALUES long_nameAttr0.0reflectance  VALUESunitsAttr0.0>VALUES valid_rangeAttr0.0VALUES _FillValueAttr0.0VALUES add_offsetAttr0.0 WDX T@Y U1Y U5?Z UtZ U|>[ U[ UB\ V\ VG]] VO7j^ V^ V) V_ Vg` W-VALUESadd_offset_errAttr0.0VALUES calibrated_ntAttr0.0@ÈVALUES scale_factorAttr0.0VALUESscale_factor_errAttr0.0500mVALUESNadir Data ResolutionAttr0.0 SDS variableSDSVar ` `j^j^j^*j^^^jSTUVWXYZ[\]*^^)sur_refl_b01_1Var0.0500m Surface Reflectance Band 2 - first layer Z#` X ;a XE a XP7b Xb X=c Xc X<d Yd Y<e YJe YR@f Yf Y?g Yg Y>h Z---VALUES long_nameAttr0.0reflectance  VALUESunitsAttr0.0>VALUES valid_rangeAttr0.0VALUES _FillValueAttr0.0VALUES add_offsetAttr0.0VALUESadd_offset_errAttr0.0VALUES calibrated_ntAttr0.0@ÈVALUES scale_factorAttr0.0 ]+h ZBi [+i [/Gjj [v7jk [k [, [l [gm \>-m \k;n \ n \7o \o \=p ])VALUESscale_factor_errAttr0.0500mVALUESNadir Data ResolutionAttr0.0 SDS variableSDSVar ` `jkjkjk-jkkkj`abcdefghij-kk,sur_refl_b02_1Var0.0500m Surface Reflectance Band 3 - first layer---VALUES long_nameAttr0.0reflectance  VALUESunitsAttr0.0>VALUES valid_rangeAttr0.0 `p ]<q ^-q ^5<r ^qr ^y@s ^s ^?t ^t _>u _Bu _JBv _v _Gww _7jx `VALUES _FillValueAttr0.0VALUES add_offsetAttr0.0VALUESadd_offset_errAttr0.0VALUES calibrated_ntAttr0.0@ÈVALUES scale_factorAttr0.0VALUESscale_factor_errAttr0.0500mVALUESNadir Data ResolutionAttr0.0 SDS variableSDSVar cx `/ `y `gz ae-z a;{ a { a7| b| b=} bP} bR<~ b~ b< b b@ c ` `jxjxjx0jxxxjmnopqrstuvw0xx/sur_refl_b03_1Var0.0500m Surface Reflectance Band 4 - first layer---VALUES long_nameAttr0.0reflectance  VALUESunitsAttr0.0>VALUES valid_rangeAttr0.0VALUES _FillValueAttr0.0VALUES add_offsetAttr0.0VALUESadd_offset_errAttr0.0 f9 c? d# d+> di dqB d dG d7j e5 e92 eO e_g e- e; f. VALUES calibrated_ntAttr0.0@ÈVALUES scale_factorAttr0.0VALUESscale_factor_errAttr0.0500mVALUESNadir Data ResolutionAttr0.0 SDS variableSDSVar ` `jjj3jjz{|}~32sur_refl_b04_1Var0.0500m Surface Reflectance Band 5 - first layer---VALUES long_nameAttr0.0reflectance i f7 g6 g:= gw gy< g g< g h@ hA hE? h h> h hB i  VALUESunitsAttr0.0>VALUES valid_rangeAttr0.0VALUES _FillValueAttr0.0VALUES add_offsetAttr0.0VALUESadd_offset_errAttr0.0VALUES calibrated_ntAttr0.0@ÈVALUES scale_factorAttr0.0VALUESscale_factor_errAttr0.0500m l iG j%7j j\ j`5 jv jg j- k; kU  k`7 k k= k k< lVALUESNadir Data ResolutionAttr0.0 SDS variableSDSVar ` `jjj6jj65sur_refl_b05_1Var0.0500m Surface Reflectance Band 6 - first layer---VALUES long_nameAttr0.0reflectance  VALUESunitsAttr0.0>VALUES valid_rangeAttr0.0VALUES _FillValueAttr0.0 n l< m  m(@ mh ml? m m> m mB n; n?G n7j n n8 nVALUES add_offsetAttr0.0VALUESadd_offset_errAttr0.0VALUES calibrated_ntAttr0.0@ÈVALUES scale_factorAttr0.0VALUESscale_factor_errAttr0.0500mVALUESNadir Data ResolutionAttr0.0 SDS variableSDSVar ` `jjj9j r og p- pA; p|  p7 p p= p q< q= qE< q q@ q q? r j98sur_refl_b06_1Var0.0500m Surface Reflectance Band 7 - first layer---VALUES long_nameAttr0.0reflectance  VALUESunitsAttr0.0>VALUES valid_rangeAttr0.0VALUES _FillValueAttr0.0VALUES add_offsetAttr0.0VALUESadd_offset_errAttr0.0VALUES calibrated_ntAttr0.0@È u# r> s s B sb sfG s7j s s; s tg tu+ t; t  t7 uVALUES scale_factorAttr0.0VALUESscale_factor_errAttr0.0500mVALUESNadir Data ResolutionAttr0.0 SDS variableSDSVar ` `jjj<jj<;sur_refl_b07_1Var0.0500m Reflectance Band Quality - first layer+++VALUES long_nameAttr0.0bit field  VALUESunitsAttr0.0 ~F u= v& v*< vf vjG vD |: }/7j }f }j> } }R }" ~; ~?VALUES valid_rangeAttr0.0.VALUES _FillValueAttr0.0500mVALUESNadir Data ResolutionAttr0.0 Bits are listed from the MSB (bit 31) to the LSB (bit 0): Bit Description 31 adjacency correction performed; 1 -- yes 0 -- no 30 atmospheric correction performed; 1 -- yes 0 -- no 26-29 band 7 data quality four bit range; 0000 -- highest quality 0111 -- noisy detector 1000 -- dead detector, data interpolated in L1B 1001 -- solar zenith >= 86 degrees 1010 -- solar zenith >= 85 and < 86 degrees 1011 -- missing input 1100 -- internal constant used in place of climatological data for at least one atmospheric constant 1101 -- correction out of bounds pixel constrained to extreme allowable value 1110 -- L1B data faulty 1111 -- not processed due to deep ocean or clouds 22-25 band 6 data quality four bit range; SAME AS ABOVE 18-21 band 5 data quality four bit range; SAME AS ABOVE 14-17 band 4 data quality four bit range; SAME AS ABOVE 10-13 band 3 data quality four bit range; SAME AS ABOVE 6-9 band 2 data quality four bit range; SAME AS ABOVE 2-5 band 1 data quality four bit range; SAME AS ABOVE 0-1 MODLAND QA bits; corrected product produced at 00 -- ideal quality all bands 01 -- less than ideal quality some or all bands corrected product not produced due to 10 -- cloud effects all bands 11 -- other reasons some or all bands may be fill value [Note that a value of (11) overrides a value of (01)]. DDDVALUESQA indexAttr0.0 SDS variableSDSVar  ` `jjj?j j?> QC_500m_1Var0.0Observation coverage - first layer"""VALUES long_nameAttr0.0percent   7 C E=  <  <  @ K O?  >  BVALUESunitsAttr0.0dVALUES valid_rangeAttr0.0VALUES _FillValueAttr0.0VALUES add_offsetAttr0.0VALUESadd_offset_errAttr0.0VALUES calibrated_ntAttr0.0?z@VALUES scale_factorAttr0.0VALUESscale_factor_errAttr0.0  7j  A 5 Eb 0 ;  7 M O=  < 7j  SDS variableSDSVar ` `jjjBjjBA obscov_500m_1Var0.0observation number in coarser grid - first layer000VALUES long_nameAttr0.0noneVALUESunitsAttr0.0VALUES valid_rangeAttr0.0VALUES _FillValueAttr0.0 SDS variableSDSVar  D  K ;: u;  7  = 1 3< o rG  P: ` `jjjEj jED iobs_res_1Var0.01km Reflectance Data State QA - additional layers, compact:::VALUES long_nameAttr0.0bit field  VALUESunitsAttr0.0VALUES valid_rangeAttr0.0VALUES _FillValueAttr0.01kmVALUESNadir Data ResolutionAttr0.0 Bits are listed from the MSB (bit 15) to the LSB (bit 0): Bit Description 15 internal snow algorithm flag; 1 -- yes, 0.00% 0 -- no, 100.00% 14 Salt Pan; 1 -- yes, 0.00% 0 -- no, 100.00% 13 Pixel is adjacent to cloud; 1 -- yes, 13.43% 0 -- no, 86.57% 12 MOD35 snow/ice flag; 1 -- yes, 0.96% 0 -- no, 99.04% 11 internal fire algorithm flag; 1 -- fire, 0.00% 0 -- no fire, 100.00% 10 internal cloud algorithm flag; 1 -- cloud, 88.92% 0 -- no cloud, 11.08% 8-9 cirrus detected; 00 -- none, 99.84% 01 -- small, 0.00% 10 -- average, 0.00% 11 -- high, 0.16% 6-7 aerosol quantity; 00 -- climatology, 100.00% 01 -- low, 0.00% 10 -- average, 0.00% 11 -- high, 0.00% 3-5 land/water flag; 000 -- shallow ocean, 56.19% 001 -- land, 0.00% 010 -- ocean coastlines and lake shorelines, 0.00% 011 -- shallow inland water, 0.00% 100 -- ephemeral water, 0.00% 101 -- deep inland water, 0.00% 110 -- continental/moderate ocean, 43.81% 111 -- deep ocean, 0.00% 2 cloud shadow; 1 -- yes, 6.24% 0 -- no, 93.76% 0-1 cloud state; 00 -- clear, 0.92% 01 -- cloudy, 99.05% 10 -- mixed, 0.03% 11 -- not set, assumed clear, 0.00% VALUESQA indexAttr0.0 ` P7j    P * #; ^ d7  =  <  "> SDS variableSDSVarjjj j state_1km_cVar0.0Sensor zenith - additional layers, compact***VALUES long_nameAttr0.0degreeVALUESunitsAttr0.0FPVALUES valid_rangeAttr0.0VALUES _FillValueAttr0.0?zG{VALUES scale_factorAttr0.0 6 &7j ] a o O + ; 4 :7 q u=  <  > SDS variableSDSVarjjj jSensorZenith_cVar0.0Sensor azimuth - additional layers, compact+++VALUES long_nameAttr0.0degreeVALUESunitsAttr0.0FPVALUES valid_rangeAttr0.0VALUES _FillValueAttr0.0?zG{VALUES scale_factorAttr0.0  7j 3 7 E UP 4 ;  7 Q U=  <  > SDS variableSDSVarjjj jSensorAzimuth_cVar0.0Range (pixel to sensor) - additional layers, compact444VALUES long_nameAttr0.0metersVALUESunitsAttr0.0ixVALUES valid_rangeAttr0.0VALUES _FillValueAttr0.0@9VALUES scale_factorAttr0.0  7j   % 5H }) ;  7  "= _ a<  > SDS variableSDSVarjjj jRange_cVar0.0Solar zenith - additional layers, compact)))VALUES long_nameAttr0.0degreeVALUESunitsAttr0.0FPVALUES valid_rangeAttr0.0VALUES _FillValueAttr0.0?zG{VALUES scale_factorAttr0.0  7j    N P* z;  7  = 3 5< q y> SDS variableSDSVarjjj j SolarZenith_cVar0.0Solar azimuth - additional layers, compact***VALUES long_nameAttr0.0degreeVALUESunitsAttr0.0FPVALUES valid_rangeAttr0.0VALUES _FillValueAttr0.0?zG{VALUES scale_factorAttr0.0  }7j    O %. S;  7  =  < J7j  SDS variableSDSVarjjj jSolarAzimuth_cVar0.0Geolocation flags - additional layers, compact...VALUES long_nameAttr0.0bit field  VALUESunitsAttr0.0VALUES valid_rangeAttr0.0VALUES _FillValueAttr0.0 SDS variableSDSVar # K Y iE * ;  7 N P=  < 7j   jjj jgflags_cVar0.0Orbit pointer - additional layers, compact***VALUES long_nameAttr0.0noneVALUESunitsAttr0.0VALUES valid_rangeAttr0.0VALUES _FillValueAttr0.0 SDS variableSDSVarjjj  H 1, ];  7  =  <  O7j    J ) j orbit_pnt_cVar0.0Granule Pointer - additional layers, compact,,,VALUES long_nameAttr0.0noneVALUESunitsAttr0.0VALUES valid_rangeAttr0.0VALUES _FillValueAttr0.0 SDS variableSDSVarjjj j      granule_pnt_cVar0.0Number of additional observations per row  ;  7 W _=  < 7j   % 5M < ; )))VALUES long_nameAttr0.0noneVALUESunitsAttr0.0VALUES valid_rangeAttr0.0VALUES _FillValueAttr0.0 SDS variableSDSVar jjj jnadd_obs_row_1kmVar0.0500m Surface Reflectance Band 1 - additional layers, compact<<<VALUES long_nameAttr0.0reflectance  7  = B D<  <  @  ? O W>  B   VALUESunitsAttr0.0>VALUES valid_rangeAttr0.0VALUES _FillValueAttr0.0VALUES add_offsetAttr0.0VALUESadd_offset_errAttr0.0VALUES calibrated_ntAttr0.0@ÈVALUES scale_factorAttr0.0VALUESscale_factor_errAttr0.0500m  G!! 7j" '" + 9# Ic$ <$ ;% # % .7& e& i=' ' <( VALUESNadir Data ResolutionAttr0.0 SDS variableSDSVarsj"j"j"""j !""sur_refl_b01_cVar0.0500m Surface Reflectance Band 2 - additional layers, compact<<<VALUES long_nameAttr0.0reflectance  VALUESunitsAttr0.0>VALUES valid_rangeAttr0.0VALUES _FillValueAttr0.0 ( <) ) @* 6* :?+ y+ >, , B- - G.. T7j/ /  VALUES add_offsetAttr0.0VALUESadd_offset_errAttr0.0VALUES calibrated_ntAttr0.0@ÈVALUES scale_factorAttr0.0VALUESscale_factor_errAttr0.0500mVALUESNadir Data ResolutionAttr0.0 SDS variableSDSVarsj/j/j/// 0 sc1 <1 ;2 M 2 X73 3 =4 4 <5 5 <6 R6 Z@7 7 ?8 j$%&'()*+,-.//sur_refl_b02_cVar0.0500m Surface Reflectance Band 3 - additional layers, compact<<<VALUES long_nameAttr0.0reflectance  VALUESunitsAttr0.0>VALUES valid_rangeAttr0.0VALUES _FillValueAttr0.0VALUES add_offsetAttr0.0VALUESadd_offset_errAttr0.0VALUES calibrated_ntAttr0.0@È 8 >9 9 B: 3: 7G;; ~7j< <  = c> :<> v;? ? 7@ VALUES scale_factorAttr0.0VALUESscale_factor_errAttr0.0500mVALUESNadir Data ResolutionAttr0.0 SDS variableSDSVarsj<j<j<<<j123456789:;<<sur_refl_b03_cVar0.0500m Surface Reflectance Band 4 - additional layers, compact<<<VALUES long_nameAttr0.0reflectance  VALUESunitsAttr0.0> @ =A A <B 8B @<C |C @D D ?E E >F MF UBG G GHVALUES valid_rangeAttr0.0VALUES _FillValueAttr0.0VALUES add_offsetAttr0.0VALUESadd_offset_errAttr0.0VALUES calibrated_ntAttr0.0@ÈVALUES scale_factorAttr0.0VALUESscale_factor_errAttr0.0500mVALUESNadir Data ResolutionAttr0.0 H 7jI I  J cK d<K ;L L 7M M !=N ^N `<O O <P  SDS variableSDSVarsjIjIjIIIj>?@ABCDEFGHIIsur_refl_b04_cVar0.0500m Surface Reflectance Band 5 - additional layers, compact<<<VALUES long_nameAttr0.0reflectance  VALUESunitsAttr0.0>VALUES valid_rangeAttr0.0VALUES _FillValueAttr0.0VALUES add_offsetAttr0.0 P @Q Q ?R 1R 9>S wS BT T GUU 7jV CV G UW ecX <VALUESadd_offset_errAttr0.0VALUES calibrated_ntAttr0.0@ÈVALUES scale_factorAttr0.0VALUESscale_factor_errAttr0.0500mVALUESNadir Data ResolutionAttr0.0 SDS variableSDSVarsjVjVjVVVjKLMNOPQRSTUVVsur_refl_b05_cVar0.0500m Surface Reflectance Band 6 - additional layers, compact X ;Y  Y 7Z GZ K=[ [ <\ \ <] ] @^ R^ V?_ _ >` <<<VALUES long_nameAttr0.0reflectance  VALUESunitsAttr0.0>VALUES valid_rangeAttr0.0VALUES _FillValueAttr0.0VALUES add_offsetAttr0.0VALUESadd_offset_errAttr0.0VALUES calibrated_ntAttr0.0@ÈVALUES scale_factorAttr0.0 ` Ba a Gbb 67jc mc q d ce <e .;f i f t7g ëg ï=h VALUESscale_factor_errAttr0.0500mVALUESNadir Data ResolutionAttr0.0 SDS variableSDSVarsjcjcjcccjXYZ[\]^_`abccsur_refl_b06_cVar0.0500m Surface Reflectance Band 7 - additional layers, compact<<<VALUES long_nameAttr0.0reflectance  VALUESunitsAttr0.0>VALUES valid_rangeAttr0.0 h Ĵ<i i <j 4j <@k |k ŀ?l ſl >m m Bn On SGoo ƚ7jp VALUES _FillValueAttr0.0VALUES add_offsetAttr0.0VALUESadd_offset_errAttr0.0VALUES calibrated_ntAttr0.0@ÈVALUES scale_factorAttr0.0VALUESscale_factor_errAttr0.0500mVALUESNadir Data ResolutionAttr0.0 SDS variableSDSVar p Ǜ ǩq ǹcr :r V;s ȑ s Ț7t t =u u <v Vv ZGw ɡDw :xsjpjpjpppjefghijklmnoppsur_refl_b07_cVar0.0500m Reflectance Band Quality - additional layers, compact:::VALUES long_nameAttr0.0bit field  VALUESunitsAttr0.0VALUES valid_rangeAttr0.0.VALUES _FillValueAttr0.0500mVALUESNadir Data ResolutionAttr0.0 Bits are listed from the MSB (bit 31) to the LSB (bit 0): Bit Description 31 adjacency correction performed; 1 -- yes 0 -- no 30 atmospheric correction performed; 1 -- yes 0 -- no 26-29 band 7 data quality four bit range; 0000 -- highest quality 0111 -- noisy detector 1000 -- dead detector, data interpolated in L1B 1001 -- solar zenith >= 86 degrees 1010 -- solar zenith >= 85 and < 86 degrees 1011 -- missing input 1100 -- internal constant used in place of climatological data for at least one atmospheric constant 1101 -- correction out of bounds pixel constrained to extreme allowable value 1110 -- L1B data faulty 1111 -- not processed due to deep ocean or clouds 22-25 band 6 data quality four bit range; SAME AS ABOVE 18-21 band 5 data quality four bit range; SAME AS ABOVE 14-17 band 4 data quality four bit range; SAME AS ABOVE 10-13 band 3 data quality four bit range; SAME AS ABOVE 6-9 band 2 data quality four bit range; SAME AS ABOVE 2-5 band 1 data quality four bit range; SAME AS ABOVE 0-1 MODLAND QA bits; corrected product produced at 00 -- ideal quality all bands 01 -- less than ideal quality some or all bands corrected product not produced due to 10 -- cloud effects all bands 11 -- other reasons some or all bands may be fill value [Note that a value of (11) overrides a value of (01)]. DDDVALUESQA indexAttr0.0 x 7jy y  .z >N{ ь1{ ѽ;| | 7} 6} 8=~ u~ v< Ҳ Һ<  SDS variableSDSVar sjyjyjyyy jrstuvwxyy QC_500m_cVar0.0Observation coverage - additional layers, compact111VALUES long_nameAttr0.0percentVALUESunitsAttr0.0dVALUES valid_rangeAttr0.0VALUES _FillValueAttr0.0VALUES add_offsetAttr0.0  @  ? G O> ԍ ԕB 7j    0^ Վ? ; VALUESadd_offset_errAttr0.0VALUES calibrated_ntAttr0.0?z@VALUES scale_factorAttr0.0VALUESscale_factor_errAttr0.0 SDS variableSDSVarsjjjj{|}~ obscov_500m_cVar0.0observation number in coarser grid - additional layers, compact???VALUES long_nameAttr0.0none  7  = H I< ׅ7j ׼   G %) N; ؉ ؍7 VALUESunitsAttr0.0VALUES valid_rangeAttr0.0VALUES _FillValueAttr0.0 SDS variableSDSVarsjjj j iobs_res_cVar0.0Number of additional observations per row)))VALUES long_nameAttr0.0noneVALUESunitsAttr0.0!X ْ=  < 7j F J X hN ڶ  ? }!XB!XC!XDJ!XVALUES valid_rangeAttr0.0VALUES _FillValueAttr0.0 SDS variableSDSVar  `jjj jnadd_obs_row_500mVar0.0HDFEOS_V2.17  VALUES HDFEOSVersionAttr0.0GROUP=SwathStructure END_GROUP=SwathStructure GROUP=GridStructure GROUP=GRID_1 GridName="MODIS_Grid_1km_2D" XDim=1200 YDim=1200 UpperLeftPointMtrs=(-4447802.078667,-8895604.157333) LowerRightMtrs=(-3335851.559000,-10007554.677000) Projection=GCTP_SNSOID ProjParams=(6371007.181000,0,0,0,0,0,0,0,0,0,0,0,0) SphereCode=-1 GridOrigin=HDFE_GD_UL GROUP=Dimension END_GROUP=Dimension GROUP=DataField OBJECT=DataField_1 DataFieldName="num_observations_1km" DataType=DFNT_INT8 DimList=("YDim","XDim") END_OBJECT=DataField_1 OBJECT=DataField_2 DataFieldName="state_1km_1" DataType=DFNT_UINT16 DimList=("YDim","XDim") END_OBJECT=DataField_2 OBJECT=DataField_3 DataFieldName="SensorZenith_1" DataType=DFNT_INT16 DimList=("YDim","XDim") END_OBJECT=DataField_3 OBJECT=DataField_4 DataFieldName="SensorAzimuth_1" DataType=DFNT_INT16 DimList=("YDim","XDim") END_OBJECT=DataField_4 OBJECT=DataField_5 DataFieldName="Range_1" DataType=DFNT_UINT16 DimList=("YDim","XDim") END_OBJECT=DataField_5 OBJECT=DataField_6 DataFieldName="SolarZenith_1" DataType=DFNT_INT16 DimList=("YDim","XDim") END_OBJECT=DataField_6 OBJECT=DataField_7 DataFieldName="SolarAzimuth_1" DataType=DFNT_INT16 DimList=("YDim","XDim") END_OBJECT=DataField_7 OBJECT=DataField_8 DataFieldName="gflags_1" DataType=DFNT_UINT8 DimList=("YDim","XDim") END_OBJECT=DataField_8 OBJECT=DataField_9 DataFieldName="orbit_pnt_1" DataType=DFNT_INT8 DimList=("YDim","XDim") END_OBJECT=DataField_9 OBJECT=DataField_10 DataFieldName="granule_pnt_1" DataType=DFNT_UINT8 DimList=("YDim","XDim") END_OBJECT=DataField_10 END_GROUP=DataField GROUP=MergedFields END_GROUP=MergedFields END_GROUP=GRID_1 GROUP=GRID_2 GridName="MODIS_Grid_500m_2D" XDim=2400 YDim=2400 UpperLeftPointMtrs=(-4447802.078667,-8895604.157333) LowerRightMtrs=(-3335851.559000,-10007554.677000) Projection=GCTP_SNSOID ProjParams=(6371007.181000,0,0,0,0,0,0,0,0,0,0,0,0) SphereCode=-1 GridOrigin=HDFE_GD_UL GROUP=Dimension END_GROUP=Dimension GROUP=DataField OBJECT=DataField_1 DataFieldName="num_observations_500m" DataType=DFNT_INT8 DimList=("YDim","XDim") END_OBJECT=DataField_1 OBJECT=DataField_2 DataFieldName="sur_refl_b01_1" DataType=DFNT_INT16 DimList=("YDim","XDim") END_OBJECT=DataField_2 OBJECT=DataField_3 DataFieldName="sur_refl_b02_1" DataType=DFNT_INT16 DimList=("YDim","XDim") END_OBJECT=DataField_3 OBJECT=DataField_4 DataFieldName="sur_refl_b03_1" DataType=DFNT_INT16 DimList=("YDim","XDim") END_OBJECT=DataField_4 OBJECT=DataField_5 DataFieldName="sur_refl_b04_1" DataType=DFNT_INT16 DimList=("YDim","XDim") END_OBJECT=DataField_5 OBJECT=DataField_6 DataFieldName="sur_refl_b05_1" DataType=DFNT_INT16 DimList=("YDim","XDim") END_OBJECT=DataField_6 OBJECT=DataField_7 DataFieldName="sur_refl_b06_1" DataType=DFNT_INT16 DimList=("YDim","XDim") END_OBJECT=DataField_7 OBJECT=DataField_8 DataFieldName="sur_refl_b07_1" DataType=DFNT_INT16 DimList=("YDim","XDim") END_OBJECT=DataField_8 OBJECT=DataField_9 DataFieldName="QC_500m_1" DataType=DFNT_UINT32 DimList=("YDim","XDim") END_OBJECT=DataField_9 OBJECT=DataField_10 DataFieldName="obscov_500m_1" DataType=DFNT_INT8 DimList=("YDim","XDim") END_OBJECT=DataField_10 OBJECT=DataField_11 DataFieldName="iobs_res_1" DataType=DFNT_UINT8 DimList=("YDim","XDim") END_OBJECT=DataField_11 END_GROUP=DataField GROUP=MergedFields END_GROUP=MergedFields END_GROUP=GRID_2 END_GROUP=GridStructure GROUP=PointStructure END_GROUP=PointStructure END }}}VALUESStructMetadata.0Attr0.0VALUESmaximum_observations_1kmAttr0.0"c!YXS!Y!YH!Y!YK!ZF!ZJT!Z!ZI!Z$![D![V$![zE![w!@!;\VALUES!total_additional_observations_1kmAttr0.0compactVALUESl2g_storage_format_1kmAttr0.0VALUESmaximum_observations_500mAttr0.0sVALUES"total_additional_observations_500mAttr0.0compactVALUESl2g_storage_format_500mAttr0.0V VALUESNumberLandWater1kmAttr0.0T+Ԭ VALUESNumberLandWater500mAttr0.0 GROUP = INVENTORYMETADATA GROUPTYPE = MASTERGROUP GROUP = ECSDATAGRANULE OBJECT = REPROCESSINGPLANNED NUM_VAL = 1 VALUE = "further update is anticipated" END_OBJECT = REPROCESSINGPLANNED OBJECT = REPROCESSINGACTUAL NUM_VAL = 1 VALUE = "reprocessed" END_OBJECT = REPROCESSINGACTUAL OBJECT = LOCALGRANULEID NUM_VAL = 1 VALUE = "MOD09GA.A2008296.h14v17.006.2015181011753.hdf" END_OBJECT = LOCALGRANULEID OBJECT = DAYNIGHTFLAG NUM_VAL = 1 VALUE = "Both" END_OBJECT = DAYNIGHTFLAG OBJECT = PRODUCTIONDATETIME NUM_VAL = 1 VALUE = "2015-06-30T01:17:53.000Z" END_OBJECT = PRODUCTIONDATETIME OBJECT = LOCALVERSIONID NUM_VAL = 1 VALUE = "6.0.9" END_OBJECT = LOCALVERSIONID END_GROUP = ECSDATAGRANULE GROUP = MEASUREDPARAMETER OBJECT = MEASUREDPARAMETERCONTAINER CLASS = "1" OBJECT = PARAMETERNAME CLASS = "1" NUM_VAL = 1 VALUE = "MOD09G" END_OBJECT = PARAMETERNAME GROUP = QAFLAGS CLASS = "1" OBJECT = AUTOMATICQUALITYFLAG NUM_VAL = 1 CLASS = "1" VALUE = "Passed" END_OBJECT = AUTOMATICQUALITYFLAG OBJECT = AUTOMATICQUALITYFLAGEXPLANATION NUM_VAL = 1 CLASS = "1" VALUE = "No automatic quality assessment is performed in the PGE" END_OBJECT = AUTOMATICQUALITYFLAGEXPLANATION OBJECT = SCIENCEQUALITYFLAG NUM_VAL = 1 VALUE = "Not Investigated" CLASS = "1" END_OBJECT = SCIENCEQUALITYFLAG OBJECT = SCIENCEQUALITYFLAGEXPLANATION NUM_VAL = 1 CLASS = "1" VALUE = "See http://landweb.nascom.nasa.gov/cgi-bin/QA_WWW/qaFlagPage.cgi?sat=terra for the product Science Quality status." END_OBJECT = SCIENCEQUALITYFLAGEXPLANATION END_GROUP = QAFLAGS GROUP = QASTATS CLASS = "1" OBJECT = QAPERCENTMISSINGDATA NUM_VAL = 1 CLASS = "1" VALUE = 0 END_OBJECT = QAPERCENTMISSINGDATA OBJECT = QAPERCENTINTERPOLATEDDATA NUM_VAL = 1 CLASS = "1" VALUE = 0 END_OBJECT = QAPERCENTINTERPOLATEDDATA OBJECT = QAPERCENTOUTOFBOUNDSDATA NUM_VAL = 1 CLASS = "1" VALUE = 0 END_OBJECT = QAPERCENTOUTOFBOUNDSDATA END_GROUP = QASTATS END_OBJECT = MEASUREDPARAMETERCONTAINER END_GROUP = MEASUREDPARAMETER GROUP = ORBITCALCULATEDSPATIALDOMAIN OBJECT = ORBITCALCULATEDSPATIALDOMAINCONTAINER CLASS = "1" OBJECT = ORBITNUMBER CLASS = "1" NUM_VAL = 1 VALUE = 47053 END_OBJECT = ORBITNUMBER OBJECT = EQUATORCROSSINGLONGITUDE CLASS = "1" NUM_VAL = 1 VALUE = -15.1250449097423 END_OBJECT = EQUATORCROSSINGLONGITUDE OBJECT = EQUATORCROSSINGTIME CLASS = "1" NUM_VAL = 1 VALUE = "11:30:33.455540" END_OBJECT = EQUATORCROSSINGTIME OBJECT = EQUATORCROSSINGDATE CLASS = "1" NUM_VAL = 1 VALUE = "2008-10-22" END_OBJECT = EQUATORCROSSINGDATE END_OBJECT = ORBITCALCULATEDSPATIALDOMAINCONTAINER OBJECT = ORBITCALCULATEDSPATIALDOMAINCONTAINER CLASS = "2" OBJECT = ORBITNUMBER CLASS = "2" NUM_VAL = 1 VALUE = 47054 END_OBJECT = ORBITNUMBER OBJECT = EQUATORCROSSINGLONGITUDE CLASS = "2" NUM_VAL = 1 VALUE = -39.8456234514177 END_OBJECT = EQUATORCROSSINGLONGITUDE OBJECT = EQUATORCROSSINGTIME CLASS = "2" NUM_VAL = 1 VALUE = "13:09:26.390561" END_OBJECT = EQUATORCROSSINGTIME OBJECT = EQUATORCROSSINGDATE CLASS = "2" NUM_VAL = 1 VALUE = "2008-10-22" END_OBJECT = EQUATORCROSSINGDATE END_OBJECT = ORBITCALCULATEDSPATIALDOMAINCONTAINER OBJECT = ORBITCALCULATEDSPATIALDOMAINCONTAINER CLASS = "3" OBJECT = ORBITNUMBER CLASS = "3" NUM_VAL = 1 VALUE = 47055 END_OBJECT = ORBITNUMBER OBJECT = EQUATORCROSSINGLONGITUDE CLASS = "3" NUM_VAL = 1 VALUE = -64.5662000916696 END_OBJECT = EQUATORCROSSINGLONGITUDE OBJECT = EQUATORCROSSINGTIME CLASS = "3" NUM_VAL = 1 VALUE = "14:48:19.383950" END_OBJECT = EQUATORCROSSINGTIME OBJECT = EQUATORCROSSINGDATE CLASS = "3" NUM_VAL = 1 VALUE = "2008-10-22" END_OBJECT = EQUATORCROSSINGDATE END_OBJECT = ORBITCALCULATEDSPATIALDOMAINCONTAINER OBJECT = ORBITCALCULATEDSPATIALDOMAINCONTAINER CLASS = "4" OBJECT = ORBITNUMBER CLASS = "4" NUM_VAL = 1 VALUE = 47056 END_OBJECT = ORBITNUMBER OBJECT = EQUATORCROSSINGLONGITUDE CLASS = "4" NUM_VAL = 1 VALUE = -89.2876850230088 END_OBJECT = EQUATORCROSSINGLONGITUDE OBJECT = EQUATORCROSSINGTIME CLASS = "4" NUM_VAL = 1 VALUE = "16:27:12.501137" END_OBJECT = EQUATORCROSSINGTIME OBJECT = EQUATORCROSSINGDATE CLASS = "4" NUM_VAL = 1 VALUE = "2008-10-22" END_OBJECT = EQUATORCROSSINGDATE END_OBJECT = ORBITCALCULATEDSPATIALDOMAINCONTAINER OBJECT = ORBITCALCULATEDSPATIALDOMAINCONTAINER CLASS = "5" OBJECT = ORBITNUMBER CLASS = "5" NUM_VAL = 1 VALUE = 47057 END_OBJECT = ORBITNUMBER OBJECT = EQUATORCROSSINGLONGITUDE CLASS = "5" NUM_VAL = 1 VALUE = -114.029439866586 END_OBJECT = EQUATORCROSSINGLONGITUDE OBJECT = EQUATORCROSSINGTIME CLASS = "5" NUM_VAL = 1 VALUE = "18:06:05.604318" END_OBJECT = EQUATORCROSSINGTIME OBJECT = EQUATORCROSSINGDATE CLASS = "5" NUM_VAL = 1 VALUE = "2008-10-22" END_OBJECT = EQUATORCROSSINGDATE END_OBJECT = ORBITCALCULATEDSPATIALDOMAINCONTAINER OBJECT = ORBITCALCULATEDSPATIALDOMAINCONTAINER CLASS = "6" OBJECT = ORBITNUMBER CLASS = "6" NUM_VAL = 1 VALUE = 47058 END_OBJECT = ORBITNUMBER OBJECT = EQUATORCROSSINGLONGITUDE CLASS = "6" NUM_VAL = 1 VALUE = -138.730937211841 END_OBJECT = EQUATORCROSSINGLONGITUDE OBJECT = EQUATORCROSSINGTIME CLASS = "6" NUM_VAL = 1 VALUE = "19:44:58.688105" END_OBJECT = EQUATORCROSSINGTIME OBJECT = EQUATORCROSSINGDATE CLASS = "6" NUM_VAL = 1 VALUE = "2008-10-22" END_OBJECT = EQUATORCROSSINGDATE END_OBJECT = ORBITCALCULATEDSPATIALDOMAINCONTAINER OBJECT = ORBITCALCULATEDSPATIALDOMAINCONTAINER CLASS = "7" OBJECT = ORBITNUMBER CLASS = "7" NUM_VAL = 1 VALUE = 47059 END_OBJECT = ORBITNUMBER OBJECT = EQUATORCROSSINGLONGITUDE CLASS = "7" NUM_VAL = 1 VALUE = -163.451621223959 END_OBJECT = EQUATORCROSSINGLONGITUDE OBJECT = EQUATORCROSSINGTIME CLASS = "7" NUM_VAL = 1 VALUE = "21:23:51.658448" END_OBJECT = EQUATORCROSSINGTIME OBJECT = EQUATORCROSSINGDATE CLASS = "7" NUM_VAL = 1 VALUE = "2008-10-22" END_OBJECT = EQUATORCROSSINGDATE END_OBJECT = ORBITCALCULATEDSPATIALDOMAINCONTAINER OBJECT = ORBITCALCULATEDSPATIALDOMAINCONTAINER CLASS = "8" OBJECT = ORBITNUMBER CLASS = "8" NUM_VAL = 1 VALUE = 47060 END_OBJECT = ORBITNUMBER OBJECT = EQUATORCROSSINGLONGITUDE CLASS = "8" NUM_VAL = 1 VALUE = 171.828397342907 END_OBJECT = EQUATORCROSSINGLONGITUDE OBJECT = EQUATORCROSSINGTIME CLASS = "8" NUM_VAL = 1 VALUE = "23:02:44.582950" END_OBJECT = EQUATORCROSSINGTIME OBJECT = EQUATORCROSSINGDATE CLASS = "8" NUM_VAL = 1 VALUE = "2008-10-22" END_OBJECT = EQUATORCROSSINGDATE END_OBJECT = ORBITCALCULATEDSPATIALDOMAINCONTAINER END_GROUP = ORBITCALCULATEDSPATIALDOMAIN GROUP = COLLECTIONDESCRIPTIONCLASS OBJECT = SHORTNAME NUM_VAL = 1 VALUE = "MOD09GA" END_OBJECT = SHORTNAME OBJECT = VERSIONID NUM_VAL = 1 VALUE = 6 END_OBJECT = VERSIONID END_GROUP = COLLECTIONDESCRIPTIONCLASS GROUP = INPUTGRANULE OBJECT = INPUTPOINTER NUM_VAL = 100 VALUE = ("MOD09GST.A2008296.h14v17.006.2015181011552.hdf", "MOD09GHK.A2008296.h14v17.006.2015181011635.hdf", "MODPT1KD.A2008296.h14v17.006.2015181010817.hdf", "MODPTHKM.A2008296.h14v17.006.2015181010817.hdf", "MODMGGAD.A2008296.h14v17.006.2015181010825.hdf", " MODTBGD.A2008296.h14v17.006.2015181011652.hdf", "MODOCGD.A2008296.h14v17.006.2015181011706.hdf") END_OBJECT = INPUTPOINTER END_GROUP = INPUTGRANULE GROUP = SPATIALDOMAINCONTAINER GROUP = HORIZONTALSPATIALDOMAINCONTAINER GROUP = ZONEIDENTIFIERCLASS OBJECT = ZONEIDENTIFIER NUM_VAL = 1 VALUE = "Universal Transverse Mercator (UTM)" END_OBJECT = ZONEIDENTIFIER END_GROUP = ZONEIDENTIFIERCLASS GROUP = GPOLYGON OBJECT = GPOLYGONCONTAINER CLASS = "1" GROUP = GRING CLASS = "1" OBJECT = EXCLUSIONGRINGFLAG NUM_VAL = 1 CLASS = "1" VALUE = "N" END_OBJECT = EXCLUSIONGRINGFLAG END_GROUP = GRING GROUP = GRINGPOINT CLASS = "1" OBJECT = GRINGPOINTLONGITUDE NUM_VAL = 4 CLASS = "1" VALUE = (179.847965564778, -179.993019423794, -172.725395483265, -172.564431309976) END_OBJECT = GRINGPOINTLONGITUDE OBJECT = GRINGPOINTLATITUDE NUM_VAL = 4 CLASS = "1" VALUE = (-80.4067206299642, -79.9805031575573, -79.9800210783049, -80.4061969811949) END_OBJECT = GRINGPOINTLATITUDE OBJECT = GRINGPOINTSEQUENCENO NUM_VAL = 4 CLASS = "1" VALUE = (1, 2, 3, 4) END_OBJECT = GRINGPOINTSEQUENCENO END_GROUP = GRINGPOINT END_OBJECT = GPOLYGONCONTAINER END_GROUP = GPOLYGON END_GROUP = HORIZONTALSPATIALDOMAINCONTAINER END_GROUP = SPATIALDOMAINCONTAINER GROUP = RANGEDATETIME OBJECT = RANGEBEGINNINGTIME NUM_VAL = 1 VALUE = "11:55:00.000000" END_OBJECT = RANGEBEGINNINGTIME OBJECT = RANGEENDINGTIME NUM_VAL = 1 VALUE = "23:25:00.000000" END_OBJECT = RANGEENDINGTIME OBJECT = RANGEBEGINNINGDATE NUM_VAL = 1 VALUE = "2008-10-22" END_OBJECT = RANGEBEGINNINGDATE OBJECT = RANGEENDINGDATE NUM_VAL = 1 VALUE = "2008-10-22" END_OBJECT = RANGEENDINGDATE END_GROUP = RANGEDATETIME GROUP = PGEVERSIONCLASS OBJECT = PGEVERSION NUM_VAL = 1 VALUE = "6.0.28" END_OBJECT = PGEVERSION END_GROUP = PGEVERSIONCLASS GROUP = ASSOCIATEDPLATFORMINSTRUMENTSENSOR OBJECT = ASSOCIATEDPLATFORMINSTRUMENTSENSORCONTAINER CLASS = "1" OBJECT = ASSOCIATEDSENSORSHORTNAME CLASS = "1" NUM_VAL = 1 VALUE = "MODIS" END_OBJECT = ASSOCIATEDSENSORSHORTNAME OBJECT = ASSOCIATEDPLATFORMSHORTNAME CLASS = "1" NUM_VAL = 1 VALUE = "Terra" END_OBJECT = ASSOCIATEDPLATFORMSHORTNAME OBJECT = ASSOCIATEDINSTRUMENTSHORTNAME CLASS = "1" NUM_VAL = 1 VALUE = "MODIS" END_OBJECT = ASSOCIATEDINSTRUMENTSHORTNAME END_OBJECT = ASSOCIATEDPLATFORMINSTRUMENTSENSORCONTAINER END_GROUP = ASSOCIATEDPLATFORMINSTRUMENTSENSOR GROUP = ADDITIONALATTRIBUTES OBJECT = ADDITIONALATTRIBUTESCONTAINER CLASS = "1" OBJECT = ADDITIONALATTRIBUTENAME CLASS = "1" NUM_VAL = 1 VALUE = "QAPERCENTGOODQUALITY" END_OBJECT = ADDITIONALATTRIBUTENAME GROUP = INFORMATIONCONTENT CLASS = "1" OBJECT = PARAMETERVALUE NUM_VAL = 1 CLASS = "1" VALUE = "0" END_OBJECT = PARAMETERVALUE END_GROUP = INFORMATIONCONTENT END_OBJECT = ADDITIONALATTRIBUTESCONTAINER OBJECT = ADDITIONALATTRIBUTESCONTAINER CLASS = "2" OBJECT = ADDITIONALATTRIBUTENAME CLASS = "2" NUM_VAL = 1 VALUE = "QAPERCENTOTHERQUALITY" END_OBJECT = ADDITIONALATTRIBUTENAME GROUP = INFORMATIONCONTENT CLASS = "2" OBJECT = PARAMETERVALUE NUM_VAL = 1 CLASS = "2" VALUE = "0" END_OBJECT = PARAMETERVALUE END_GROUP = INFORMATIONCONTENT END_OBJECT = ADDITIONALATTRIBUTESCONTAINER OBJECT = ADDITIONALATTRIBUTESCONTAINER CLASS = "3" OBJECT = ADDITIONALATTRIBUTENAME CLASS = "3" NUM_VAL = 1 VALUE = "QAPERCENTNOTPRODUCEDCLOUD" END_OBJECT = ADDITIONALATTRIBUTENAME GROUP = INFORMATIONCONTENT CLASS = "3" OBJECT = PARAMETERVALUE NUM_VAL = 1 CLASS = "3" VALUE = "0" END_OBJECT = PARAMETERVALUE END_GROUP = INFORMATIONCONTENT END_OBJECT = ADDITIONALATTRIBUTESCONTAINER OBJECT = ADDITIONALATTRIBUTESCONTAINER CLASS = "4" OBJECT = ADDITIONALATTRIBUTENAME CLASS = "4" NUM_VAL = 1 VALUE = "QAPERCENTNOTPRODUCEDOTHER" END_OBJECT = ADDITIONALATTRIBUTENAME GROUP = INFORMATIONCONTENT CLASS = "4" OBJECT = PARAMETERVALUE NUM_VAL = 1 CLASS = "4" VALUE = "0" END_OBJECT = PARAMETERVALUE END_GROUP = INFORMATIONCONTENT END_OBJECT = ADDITIONALATTRIBUTESCONTAINER OBJECT = ADDITIONALATTRIBUTESCONTAINER CLASS = "5" OBJECT = ADDITIONALATTRIBUTENAME CLASS = "5" NUM_VAL = 1 VALUE = "HORIZONTALTILENUMBER" END_OBJECT = ADDITIONALATTRIBUTENAME GROUP = INFORMATIONCONTENT CLASS = "5" OBJECT = PARAMETERVALUE NUM_VAL = 1 CLASS = "5" VALUE = "14" END_OBJECT = PARAMETERVALUE END_GROUP = INFORMATIONCONTENT END_OBJECT = ADDITIONALATTRIBUTESCONTAINER OBJECT = ADDITIONALATTRIBUTESCONTAINER CLASS = "6" OBJECT = ADDITIONALATTRIBUTENAME CLASS = "6" NUM_VAL = 1 VALUE = "VERTICALTILENUMBER" END_OBJECT = ADDITIONALATTRIBUTENAME GROUP = INFORMATIONCONTENT CLASS = "6" OBJECT = PARAMETERVALUE NUM_VAL = 1 CLASS = "6" VALUE = "17" END_OBJECT = PARAMETERVALUE END_GROUP = INFORMATIONCONTENT END_OBJECT = ADDITIONALATTRIBUTESCONTAINER OBJECT = ADDITIONALATTRIBUTESCONTAINER CLASS = "7" OBJECT = ADDITIONALATTRIBUTENAME CLASS = "7" NUM_VAL = 1 VALUE = "TileID" END_OBJECT = ADDITIONALATTRIBUTENAME GROUP = INFORMATIONCONTENT CLASS = "7" OBJECT = PARAMETERVALUE NUM_VAL = 1 CLASS = "7" VALUE = "51014017" END_OBJECT = PARAMETERVALUE END_GROUP = INFORMATIONCONTENT END_OBJECT = ADDITIONALATTRIBUTESCONTAINER OBJECT = ADDITIONALATTRIBUTESCONTAINER CLASS = "8" OBJECT = ADDITIONALATTRIBUTENAME CLASS = "8" NUM_VAL = 1 VALUE = "PROCESSVERSION" END_OBJECT = ADDITIONALATTRIBUTENAME GROUP = INFORMATIONCONTENT CLASS = "8" OBJECT = PARAMETERVALUE NUM_VAL = 1 CLASS = "8" VALUE = "6.0.9" END_OBJECT = PARAMETERVALUE END_GROUP = INFORMATIONCONTENT END_OBJECT = ADDITIONALATTRIBUTESCONTAINER OBJECT = ADDITIONALATTRIBUTESCONTAINER CLASS = "9" OBJECT = ADDITIONALATTRIBUTENAME CLASS = "9" NUM_VAL = 1 VALUE = "QAPERCENTPOOROUTPUT500MBAND1" END_OBJECT = ADDITIONALATTRIBUTENAME GROUP = INFORMATIONCONTENT CLASS = "9" OBJECT = PARAMETERVALUE NUM_VAL = 1 CLASS = "9" VALUE = "0" END_OBJECT = PARAMETERVALUE END_GROUP = INFORMATIONCONTENT END_OBJECT = ADDITIONALATTRIBUTESCONTAINER OBJECT = ADDITIONALATTRIBUTESCONTAINER CLASS = "10" OBJECT = ADDITIONALATTRIBUTENAME CLASS = "10" NUM_VAL = 1 VALUE = "QAPERCENTPOOROUTPUT500MBAND2" END_OBJECT = ADDITIONALATTRIBUTENAME GROUP = INFORMATIONCONTENT CLASS = "10" OBJECT = PARAMETERVALUE NUM_VAL = 1 CLASS = "10" VALUE = "0" END_OBJECT = PARAMETERVALUE END_GROUP = INFORMATIONCONTENT END_OBJECT = ADDITIONALATTRIBUTESCONTAINER OBJECT = ADDITIONALATTRIBUTESCONTAINER CLASS = "11" OBJECT = ADDITIONALATTRIBUTENAME CLASS = "11" NUM_VAL = 1 VALUE = "QAPERCENTPOOROUTPUT500MBAND3" END_OBJECT = ADDITIONALATTRIBUTENAME GROUP = INFORMATIONCONTENT CLASS = "11" OBJECT = PARAMETERVALUE NUM_VAL = 1 CLASS = "11" VALUE = "0" END_OBJECT = PARAMETERVALUE END_GROUP = INFORMATIONCONTENT END_OBJECT = ADDITIONALATTRIBUTESCONTAINER OBJECT = ADDITIONALATTRIBUTESCONTAINER CLASS = "12" OBJECT = ADDITIONALATTRIBUTENAME CLASS = "12" NUM_VAL = 1 VALUE = "QAPERCENTPOOROUTPUT500MBAND4" END_OBJECT = ADDITIONALATTRIBUTENAME GROUP = INFORMATIONCONTENT CLASS = "12" OBJECT = PARAMETERVALUE NUM_VAL = 1 CLASS = "12" VALUE = "0" END_OBJECT = PARAMETERVALUE END_GROUP = INFORMATIONCONTENT END_OBJECT = ADDITIONALATTRIBUTESCONTAINER OBJECT = ADDITIONALATTRIBUTESCONTAINER CLASS = "13" OBJECT = ADDITIONALATTRIBUTENAME CLASS = "13" NUM_VAL = 1 VALUE = "QAPERCENTPOOROUTPUT500MBAND5" END_OBJECT = ADDITIONALATTRIBUTENAME GROUP = INFORMATIONCONTENT CLASS = "13" OBJECT = PARAMETERVALUE NUM_VAL = 1 CLASS = "13" VALUE = "0" END_OBJECT = PARAMETERVALUE END_GROUP = INFORMATIONCONTENT END_OBJECT = ADDITIONALATTRIBUTESCONTAINER OBJECT = ADDITIONALATTRIBUTESCONTAINER CLASS = "14" OBJECT = ADDITIONALATTRIBUTENAME CLASS = "14" NUM_VAL = 1 VALUE = "QAPERCENTPOOROUTPUT500MBAND6" END_OBJECT = ADDITIONALATTRIBUTENAME GROUP = INFORMATIONCONTENT CLASS = "14" OBJECT = PARAMETERVALUE NUM_VAL = 1 CLASS = "14" VALUE = "0" END_OBJECT = PARAMETERVALUE END_GROUP = INFORMATIONCONTENT END_OBJECT = ADDITIONALATTRIBUTESCONTAINER OBJECT = ADDITIONALATTRIBUTESCONTAINER CLASS = "15" OBJECT = ADDITIONALATTRIBUTENAME CLASS = "15" NUM_VAL = 1 VALUE = "QAPERCENTPOOROUTPUT500MBAND7" END_OBJECT = ADDITIONALATTRIBUTENAME GROUP = INFORMATIONCONTENT CLASS = "15" OBJECT = PARAMETERVALUE NUM_VAL = 1 CLASS = "15" VALUE = "0" END_OBJECT = PARAMETERVALUE END_GROUP = INFORMATIONCONTENT END_OBJECT = ADDITIONALATTRIBUTESCONTAINER OBJECT = ADDITIONALATTRIBUTESCONTAINER CLASS = "16" OBJECT = ADDITIONALATTRIBUTENAME CLASS = "16" NUM_VAL = 1 VALUE = "RESOLUTIONBANDS1AND2" END_OBJECT = ADDITIONALATTRIBUTENAME GROUP = INFORMATIONCONTENT CLASS = "16" OBJECT = PARAMETERVALUE NUM_VAL = 1 CLASS = "16" VALUE = "500" END_OBJECT = PARAMETERVALUE END_GROUP = INFORMATIONCONTENT END_OBJECT = ADDITIONALATTRIBUTESCONTAINER OBJECT = ADDITIONALATTRIBUTESCONTAINER CLASS = "17" OBJECT = ADDITIONALATTRIBUTENAME CLASS = "17" NUM_VAL = 1 VALUE = "identifier_product_doi" END_OBJECT = ADDITIONALATTRIBUTENAME GROUP = INFORMATIONCONTENT CLASS = "17" OBJECT = PARAMETERVALUE NUM_VAL = 1 CLASS = "17" VALUE = "10.5067/MODIS/MOD09GA.006" END_OBJECT = PARAMETERVALUE END_GROUP = INFORMATIONCONTENT END_OBJECT = ADDITIONALATTRIBUTESCONTAINER OBJECT = ADDITIONALATTRIBUTESCONTAINER CLASS = "18" OBJECT = ADDITIONALATTRIBUTENAME CLASS = "18" NUM_VAL = 1 VALUE = "identifier_product_doi_authority" END_OBJECT = ADDITIONALATTRIBUTENAME GROUP = INFORMATIONCONTENT CLASS = "18" OBJECT = PARAMETERVALUE NUM_VAL = 1 CLASS = "18" VALUE = "http://dx.doi.org" END_OBJECT = PARAMETERVALUE END_GROUP = INFORMATIONCONTENT END_OBJECT = ADDITIONALATTRIBUTESCONTAINER END_GROUP = ADDITIONALATTRIBUTES END_GROUP = INVENTORYMETADATA END wwwVALUESCoreMetadata.0Attr0.0 GROUP = ARCHIVEDMETADATA GROUPTYPE = MASTERGROUP GROUP = BOUNDINGRECTANGLE OBJECT = NORTHBOUNDINGCOORDINATE NUM_VAL = 1 VALUE = -79.9999999928158 END_OBJECT = NORTHBOUNDINGCOORDINATE OBJECT = SOUTHBOUNDINGCOORDINATE NUM_VAL = 1 VALUE = -80.4083333261124 END_OBJECT = SOUTHBOUNDINGCOORDINATE OBJECT = EASTBOUNDINGCOORDINATE NUM_VAL = 1 VALUE = -172.715124601952 END_OBJECT = EASTBOUNDINGCOORDINATE OBJECT = WESTBOUNDINGCOORDINATE NUM_VAL = 1 VALUE = -179.999999855832 END_OBJECT = WESTBOUNDINGCOORDINATE END_GROUP = BOUNDINGRECTANGLE OBJECT = GEOANYABNORMAL NUM_VAL = 1 VALUE = "False" END_OBJECT = GEOANYABNORMAL OBJECT = GEOESTMAXRMSERROR NUM_VAL = 1 VALUE = 50.0 END_OBJECT = GEOESTMAXRMSERROR OBJECT = LONGNAME NUM_VAL = 1 VALUE = "MODIS/Terra Surface Reflectance Daily L2G Global 1km and 500m SIN Grid" END_OBJECT = LONGNAME OBJECT = SPSOPARAMETERS NUM_VAL = 1 VALUE = "2015" END_OBJECT = SPSOPARAMETERS OBJECT = PROCESSINGCENTER NUM_VAL = 1 VALUE = "MODAPS" END_OBJECT = PROCESSINGCENTER OBJECT = NUMBEROFGRANULES NUM_VAL = 1 VALUE = 1 END_OBJECT = NUMBEROFGRANULES OBJECT = NUMBEROFORBITS NUM_VAL = 1 VALUE = 8 END_OBJECT = NUMBEROFORBITS OBJECT = GRANULEBEGINNINGDATETIME NUM_VAL = 32 VALUE = ("2008-10-22T11:55:00.000000Z") END_OBJECT = GRANULEBEGINNINGDATETIME OBJECT = GRANULEENDINGDATETIME NUM_VAL = 32 VALUE = ("2008-10-22T23:25:00.000000Z") END_OBJECT = GRANULEENDINGDATETIME OBJECT = GRANULEDAYNIGHTFLAG NUM_VAL = 32 VALUE = ("Both") END_OBJECT = GRANULEDAYNIGHTFLAG OBJECT = GRANULEDAYOFYEAR NUM_VAL = 32 VALUE = ("296") END_OBJECT = GRANULEDAYOFYEAR OBJECT = NADIRDATARESOLUTION1KM NUM_VAL = 1 VALUE = "1km" END_OBJECT = NADIRDATARESOLUTION1KM OBJECT = CHARACTERISTICBINANGULARSIZE1KM NUM_VAL = 1 VALUE = 30.0 END_OBJECT = CHARACTERISTICBINANGULARSIZE1KM OBJECT = CHARACTERISTICBINSIZE1KM NUM_VAL = 1 VALUE = 926.625433055556 END_OBJECT = CHARACTERISTICBINSIZE1KM OBJECT = DATACOLUMNS1KM NUM_VAL = 1 VALUE = 1200 END_OBJECT = DATACOLUMNS1KM OBJECT = DATAROWS1KM NUM_VAL = 1 VALUE = 1200 END_OBJECT = DATAROWS1KM OBJECT = GLOBALGRIDCOLUMNS1KM NUM_VAL = 1 VALUE = 43200 END_OBJECT = GLOBALGRIDCOLUMNS1KM OBJECT = GLOBALGRIDROWS1KM NUM_VAL = 1 VALUE = 21600 END_OBJECT = GLOBALGRIDROWS1KM OBJECT = MAXIMUMOBSERVATIONS1KM NUM_VAL = 1 VALUE = 27 END_OBJECT = MAXIMUMOBSERVATIONS1KM OBJECT = ADDITIONALLAYERS1KM NUM_VAL = 1 VALUE = 26 END_OBJECT = ADDITIONALLAYERS1KM OBJECT = TOTALOBSERVATIONS1KM NUM_VAL = 1 VALUE = -1362211 END_OBJECT = TOTALOBSERVATIONS1KM OBJECT = TOTALADDITIONALOBSERVATIONS1KM NUM_VAL = 1 VALUE = 70309 END_OBJECT = TOTALADDITIONALOBSERVATIONS1KM OBJECT = COVERAGECALCULATIONMETHOD NUM_VAL = 1 VALUE = "volume" END_OBJECT = COVERAGECALCULATIONMETHOD OBJECT = FIRSTLAYERSELECTIONCRITERIA NUM_VAL = 1 VALUE = "order of input pointer" END_OBJECT = FIRSTLAYERSELECTIONCRITERIA OBJECT = L2GSTORAGEFORMAT1KM NUM_VAL = 1 VALUE = "compact" END_OBJECT = L2GSTORAGEFORMAT1KM OBJECT = QUALITYCLASSPERCENTAGE500MBAND3 NUM_VAL = 16 VALUE = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) END_OBJECT = QUALITYCLASSPERCENTAGE500MBAND3 OBJECT = QUALITYCLASSPERCENTAGE500MBAND4 NUM_VAL = 16 VALUE = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) END_OBJECT = QUALITYCLASSPERCENTAGE500MBAND4 OBJECT = QUALITYCLASSPERCENTAGE500MBAND5 NUM_VAL = 16 VALUE = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) END_OBJECT = QUALITYCLASSPERCENTAGE500MBAND5 OBJECT = QUALITYCLASSPERCENTAGE500MBAND6 NUM_VAL = 16 VALUE = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) END_OBJECT = QUALITYCLASSPERCENTAGE500MBAND6 OBJECT = QUALITYCLASSPERCENTAGE500MBAND7 NUM_VAL = 16 VALUE = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) END_OBJECT = QUALITYCLASSPERCENTAGE500MBAND7 OBJECT = PROCESSINGENVIRONMENT NUM_VAL = 1 VALUE = "Linux minion5658 2.6.18-404.el5 #1 SMP Tue Apr 7 12:42:54 EDT 2015 x86_64 x86_64 x86_64 GNU/Linux" END_OBJECT = PROCESSINGENVIRONMENT OBJECT = DESCRREVISION NUM_VAL = 1 VALUE = "6.1" END_OBJECT = DESCRREVISION OBJECT = SYSTEMFILENAME NUM_VAL = 100 VALUE = ("MOD09GST.A2008296.h14v17.006.2015181011552.hdf", "MOD09GHK.A2008296.h14v17.006.2015181011635.hdf", "MODPT1KD.A2008296.h14v17.006.2015181010817.hdf", "MODPTHKM.A2008296.h14v17.006.2015181010817.hdf", "MODMGGAD.A2008296.h14v17.006.2015181010825.hdf", " MODTBGD.A2008296.h14v17.006.2015181011652.hdf", "MODOCGD.A2008296.h14v17.006.2015181011706.hdf") END_OBJECT = SYSTEMFILENAME OBJECT = CHARACTERISTICBINANGULARSIZE500M NUM_VAL = 1 VALUE = 15.0 END_OBJECT = CHARACTERISTICBINANGULARSIZE500M OBJECT = CHARACTERISTICBINSIZE500M NUM_VAL = 1 VALUE = 463.312716527778 END_OBJECT = CHARACTERISTICBINSIZE500M OBJECT = DATACOLUMNS500M NUM_VAL = 1 VALUE = 2400 END_OBJECT = DATACOLUMNS500M OBJECT = DATAROWS500M NUM_VAL = 1 VALUE = 2400 END_OBJECT = DATAROWS500M OBJECT = GLOBALGRIDCOLUMNS500M NUM_VAL = 1 VALUE = 86400 END_OBJECT = GLOBALGRIDCOLUMNS500M OBJECT = GLOBALGRIDROWS500M NUM_VAL = 1 VALUE = 43200 END_OBJECT = GLOBALGRIDROWS500M OBJECT = NADIRDATARESOLUTION500M NUM_VAL = 1 VALUE = "500m" END_OBJECT = NADIRDATARESOLUTION500M OBJECT = PERCENTPROCESSED NUM_VAL = 1 VALUE = 0 END_OBJECT = PERCENTPROCESSED OBJECT = PERCENTLAND NUM_VAL = 1 VALUE = 0 END_OBJECT = PERCENTLAND OBJECT = PERCENTLANDSEAMASKCLASS NUM_VAL = 8 VALUE = (0, 0, 0, 0, 0, 0, 0, 0) END_OBJECT = PERCENTLANDSEAMASKCLASS OBJECT = PERCENTCLOUDY NUM_VAL = 1 VALUE = 0 END_OBJECT = PERCENTCLOUDY OBJECT = PERCENTSHADOW NUM_VAL = 1 VALUE = 0 END_OBJECT = PERCENTSHADOW OBJECT = PERCENTLOWSUN NUM_VAL = 1 VALUE = 0 END_OBJECT = PERCENTLOWSUN OBJECT = RANKING NUM_VAL = 1 VALUE = "No" END_OBJECT = RANKING OBJECT = KEEPALL NUM_VAL = 1 VALUE = "No" END_OBJECT = KEEPALL OBJECT = COVERAGEMINIMUM NUM_VAL = 1 VALUE = 0.239999994635582 END_OBJECT = COVERAGEMINIMUM OBJECT = MAXOUTPUTRES NUM_VAL = 1 VALUE = "HKM" END_OBJECT = MAXOUTPUTRES OBJECT = DEEPOCEANFLAG NUM_VAL = 1 VALUE = "Yes" END_OBJECT = DEEPOCEANFLAG OBJECT = MAXIMUMOBSERVATIONS500M NUM_VAL = 1 VALUE = 8 END_OBJECT = MAXIMUMOBSERVATIONS500M OBJECT = ADDITIONALLAYERS500M NUM_VAL = 1 VALUE = 7 END_OBJECT = ADDITIONALLAYERS500M OBJECT = TOTALOBSERVATIONS500M NUM_VAL = 1 VALUE = -5635280 END_OBJECT = TOTALOBSERVATIONS500M OBJECT = TOTALADDITIONALOBSERVATIONS500M NUM_VAL = 1 VALUE = 94981 END_OBJECT = TOTALADDITIONALOBSERVATIONS500M OBJECT = L2GSTORAGEFORMAT500M NUM_VAL = 1 VALUE = "compact" END_OBJECT = L2GSTORAGEFORMAT500M OBJECT = QUALITYCLASSPERCENTAGE500MBAND1 NUM_VAL = 16 VALUE = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) END_OBJECT = QUALITYCLASSPERCENTAGE500MBAND1 OBJECT = QUALITYCLASSPERCENTAGE500MBAND2 NUM_VAL = 16 VALUE = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) END_OBJECT = QUALITYCLASSPERCENTAGE500MBAND2 OBJECT = NUMBEROFOVERLAPGRANULES NUM_VAL = 1 VALUE = 8 END_OBJECT = NUMBEROFOVERLAPGRANULES OBJECT = NUMBEROFINPUTGRANULES NUM_VAL = 1 VALUE = 19 END_OBJECT = NUMBEROFINPUTGRANULES OBJECT = CLOUDOPTION NUM_VAL = 1 VALUE = "MOD09 internally-derived" END_OBJECT = CLOUDOPTION OBJECT = GRANULENUMBERARRAY NUM_VAL = 100 VALUE = (6, 26, 46, 65, 66, 85, 105, 125, 145, 164, 165, 184, 204, 223, 224, 243, 263, 282, 283, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1) END_OBJECT = GRANULENUMBERARRAY OBJECT = GRANULEPOINTERARRAY NUM_VAL = 100 VALUE = (-1, -1, -1, -1, -1, -1, -1, -1, 0, -1, 1, 2, 3, 4, -1, 5, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1) END_OBJECT = GRANULEPOINTERARRAY OBJECT = ORBITNUMBERARRAY NUM_VAL = 100 VALUE = (-1, -1, -1, -1, -1, -1, -1, -1, 47053, -1, 47054, 47055, 47056, 47057, -1, 47058, 47059, 47060, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1) END_OBJECT = ORBITNUMBERARRAY OBJECT = GRANULEBEGINNINGDATETIMEARRAY NUM_VAL = 100 VALUE = ("2008-10-22T00:20:00.000000Z", "2008-10-22T02:00:00.000000Z", "2008-10-22T03:40:00.000000Z", "2008-10-22T05:15:00.000000Z", "2008-10-22T05:20:00.000000Z", "2008-10-22T06:55:00.000000Z", "2008-10-22T08:35:00.000000Z", "2008-10-22T10:15:00.000000Z", " 2008-10-22T11:55:00.000000Z", "2008-10-22T13:30:00.000000Z", "2008-10-22T13:35:00.000000Z", "2008-10-22T15:10:00.000000Z", "2008-10-22T16:50:00.000000Z", "2008-10-22T18:25:00.000000Z", "2008-10-22T18:30:00.000000Z", "2008-10-22T20:05:00.000000Z", "2008-10-22T21:45:00.000000Z", " 2008-10-22T23:20:00.000000Z", "2008-10-22T23:25:00.000000Z") END_OBJECT = GRANULEBEGINNINGDATETIMEARRAY OBJECT = GRANULEENDINGDATETIMEARRAY NUM_VAL = 100 VALUE = ("2008-10-22T00:25:00.000000Z", "2008-10-22T02:05:00.000000Z", "2008-10-22T03:45:00.000000Z", "2008-10-22T05:20:00.000000Z", "2008-10-22T05:25:00.000000Z", "2008-10-22T07:00:00.000000Z", "2008-10-22T08:40:00.000000Z", "2008-10-22T10:20:00.000000Z", " 2008-10-22T12:00:00.000000Z", "2008-10-22T13:35:00.000000Z", "2008-10-22T13:40:00.000000Z", "2008-10-22T15:15:00.000000Z", "2008-10-22T16:55:00.000000Z", "2008-10-22T18:30:00.000000Z", "2008-10-22T18:35:00.000000Z", "2008-10-22T20:10:00.000000Z", "2008-10-22T21:50:00.000000Z", " 2008-10-22T23:25:00.000000Z", "2008-10-22T23:30:00.000000Z") END_OBJECT = GRANULEENDINGDATETIMEARRAY OBJECT = GRANULEDAYNIGHTFLAGARRAY NUM_VAL = 100 VALUE = ("Day", "Both", "Both", "Day", "Both", "Day", "Day", "Both", "Both", "Day", "Both", "Day", "Both", "Day", "Both", "Day", "Day", "Day", "Day") END_OBJECT = GRANULEDAYNIGHTFLAGARRAY END_GROUP = ARCHIVEDMETADATA END ")C"l"H""R"0;\;\;\VALUESArchiveMetadata.0Attr0.010.5067/MODIS/MOD09GA.006VALUESidentifier_product_doiAttr0.0http://dx.doi.orgVALUES identifier_product_doi_authorityAttr0.0@&.6=DKR_ly#0=JWdqz/MODAPSx/archive/f5658/ops7/running/AM1M_C6_64_L5lsrm/47289040/MOD09GA.6.2008-296T00:00:00.000000Z.51014017.102373454.213700_1.hdfCDF0.0rioxarray-0.18.2/test/test_data/input/MODIS_ARRAY.nc000066400000000000000000002015211474250745200220560ustar00rootroot00000000000000HDF  Q0wOHDR " yUSx>_OHDR  ?@4 4*@ >  + D  9 : dǿOHDR % ?@4 4* Hn @@  +  rOCHK E_NCProperties"version=2,netcdf=4.8.0,hdf5=1.10.6M 2CSA HhCSAN^.CSA͈tBSABSABSA6FBSAop BSAXASAAASA* _ASAX#%ASA9@SAO@SAew@SA?{=@SAy@SA?SAo뽏?SAX'U?SA@a?SA)>SA>SA+n>SAHA4>SÂW=SAm=SAۃ=SA0ڙL=SAnjد=SAWU'5SA'4SAɖݳ4SAy4SA< @4SAv4SA53SAK3SA$aX3SAl^w3SAU2SA>҆2SA' p2SAF62SA1SA1SA}1SA-|'O1SAgz=1SAxS0SAlvi0SAUug0SA=Os-0SA&q/SAo/SAm/SA6lE/SApj /SAh.SAf/.SAeE^.SAlXc[$.SATaq-SA=_-SA&^v-SA@\<-SAyZ-SAX,SAV,SA'U U,SAaS!,SAQ7+SAkOM+SATNcm+SA)d)SAkR[u[osʻ[W$rꐻ[@^pW[(n[l,[ kB[EiXo[gn5[e[c[-b[lg`M[T^[=\ٸ[%[[OYf[W4,[UJ[S`[6Rv~[pPD[N [iLж[QKΖ[:XI\["G"[ E[D&[?Bh[<~Ǵ[}';[fa9S[N7[75߳[4쥳[I2l[02[ټ..[,D[0+Z[j)pJ[z'[c%ֱ[K$[4R"b[ ([[ [9 {[s6A[L[bͯ[x!x[`[Y[H[1[ Ы[C q[| 7[Ӷ[(ĭ[*>[dTP[tj[]ܬ[F[.Lh[.[[[3[mG[/ [EӪ[r[[ZUq_[B%[+[泱[Z izlj~BTLF +A]+D9 :Z zlƜ:FRHP (5/BTHDd( BTHD  d(! $:FSHDPx( UϱBTLF9L D$B7+< :x/RA_]+e >Z izlj~BTLF +A]+D9 :Z zlƜ:GCOLFHDB~ovCLASSDIMENSION_SCALENAMEx _Netcdf4Dimid  _FillValue ?@4 4axisX long_namex coordinate of projectionstandard_nameprojection_x_coordinateunitsmetre0REFERENCE_LIST6datasetdimension FHDBVCLASSDIMENSION_SCALENAMEy _Netcdf4Dimid  _FillValue ?@4 4axisY long_namey coordinate of projectionstandard_nameprojection_y_coordinateunitsmetre0REFERENCE_LIST6datasetdimension TREEbGx^uXSm7FwnKA:R)%iEDK[bĨ9F3:}_\۹s}wRB{]UuQCn3mod{hdٕ~Å]Zj #hcfNFqy)CCO-\5$gxl>`Nwu=̊$!IVTBݱ6И׸ikẄA~qJsddDoSĄ r{w8/Og|mXF&!%j7 񲳛ahj1t^ؽmnٻ=:vee>ۡynmȈ2qqp32甑낉uMFmliiϟxX쬾x!֖ kJ3]ʯ_ĠviLVV FϜ A4i?oo?;{~_Z ;;p=7әgy|ɽy󫝞<#,qIЮ.ydJhh('"BKyqrDk$%9kkIW"]C83[wOWGZzhM\ 3>}J o||=f| 1M csD>,OIWfH5p}݉7,,ݘG[\?gY|sk^VIO>pp&&#Cd{||_eVfcGKZD&&O$rGۛznNS3(֖2?o^STo뗰0a}=+ՓtiiŅï_2DD!ƨǧx|$[??ꖖf~5Zo --ݢWLLCe''8k''eo!mBB_v66ϰ=Rd_>atƔ`_HEG cacojj`hhᙙS==|䍍]>?'$dlle*$<;[I뱱3bb;]_459:|yY^I<=1,/?<8;{ A]dI|B?*QV?cގ\Jt-;q[[Cuץ 84dc_ilBeV珆_a'!ݿ'!E oYyps\ݢz9; -^ݝ`c˾H-˫EikBM-%/M끵OR7=;BxeK{\fοV7AE55K܇ׯMLopa9QRx:9+ K 1蟕% !'7+ަ._~>ҒkXV65uskk.)bWe''ǎ^J‚rGE>>KKKmb PԨZ^Χyc螟šBŌNu@B)/_^"ocH_NƊFs8K*i<8 Վx/UX[Ws@QKku9荡azy0.>@]\ͅ $YЎCB!!bݝq,0Iv䡱騢bJ*tBﰗ eta ?~ VW ~}q-^bjzDj!-LYQwOX,FMOW-+w60%`;:擨-Db"&jJ& c,J*\TTbb( 8Z>>/B[[+bb(8DQPZ_/) wt477<;{tdfDLlffo?`]u5۞U}btmcb7oeeBtUyll;;^OކF 1ڧZ22P6 11ЈX򲰤$"P:LnH褤Ǥ> moONnln., P ͍o LOǬ$xzVYX|B3F&srMqsXYe ̨~Yy_nXE tPA^Y*gVww%1g(A::22GGÇ橩׏00DxyYRTTKKt:oIIIionؤPDs ݩ[Z+1mM^Ҡz;(?א#h|<wc띤dmsF+ 322D}'>ޏ -T551`).d5iol1g$T8WYZkg֖ %|O/YBr})EhOޝɉs`tGHM݃ӷ{6z"#OOL]\B <׍"eVF\\_-GZ6,,FƔ$,|<ۆ~WwT ]2gz)x$~2R)wvvbb;FFp[6LL{{===6sӍ<#CAAQ6鬢jeyյޙXۂ" B&nFF2++Wm tyy??Ǩ(rr,,3$RBbg0YAA6Q }߲"|N;TIkf]ϩ漼b_LNONkKJHML>~\qw?;M]A\fFFHD u99IIeLM,pq),((T{{ӡp(IA򝿫Nzzbd"9sZ;D]gOG]A aǏɮS2qAB77Wß?YJJJ!ۣ͋@227GG9UUOr&Gj!Ÿ.b..ϟ[vw'%^]12qO}.r+Ť[XÖWaaAGQT蕕'zK,kK_?v8P"׉`'A21?{ꪬQSPP/m = 4 ־>wxx86D^_;}VS{lr2.ÇO66bb66값>FXԨ|iff 0KHf6'1[^ކS"V,e#upuA?BdJjEyw|9OW@`뵻A=Ce\ޖŜg&$,.RQtt4?:""󋯬5˗DUU2+;C&>>̯KK2Q2eJJ]"GG95p8!&&ހGHH@ڪ$)J;).$ݾ;B9P#kr!j,7ߏ-pyv[V68=D62bcHK#ɢvm??#"rrJJP2P>] {&aa~K/Vk _f`QF@u|uSi)(@h䨫]n*TW) ?=IhjңwRE''SS63'bRl-lOCI Kxͧ '3ZttaXb1I4ҪX]3IIA L-TedZ eAhueUCTZZrrb]]ih&'ǟLMvwo 33!'F1!#5yMMó-1G* 4$ҧCTJKm Sa1164/-, IAW88/*kkhX>{VG@Z&%%0QQQ:55yf~:,*ç'(ufw]4Ww qQQWӇv--!!20(&9oD98v"Ɂ2$!A:U>8edhj_Yտ_6kYXVώW{/\]սhhHnա3sa,>` `c/ߪ]ѱLtצ> Yhi-!\/.Q0>> kwoX=Ɂ.>rv^FN(oEW[۞moON.2r~ ܜGf3&lppxK@FLMMUKBrkkl-%ﹰU> cٯ32%ap:ncYَ)EE}BP46@no @Gݍ!#{ z#7`j'F>iqJxR¦33%Ɉb900`ࡤ"╓)ljg`@ŒC1%w**a||czxYY1 㓒P[R08 Ԓ&m[Un%M?TV^]FVVԠ(^^ ) ШLœmD>(H߽s)f%%AMI)!`Y73```兲A^\\Txx^UbssGM_JYLÇO)*jk GGFBrXP_@-'7n5>NCSZfd$<UH-{yu*8;gḸvv߿44 tui-@XY'q/JKŏ_H#`Oޱ+&&^{LOmkk:A\Xjo beE1NCNnC)z~+껥3J\CC'&=;;<5'=ӵn%eQyEET8b6'gBd[[ZZu5$;sQ-^BBU_6 U~~oUFdAθֆrܧ{ ߾Ue^'%QM!*+iiededq@ŘJ?m. uzbb\:шV^5ӫbfiiwҜ#utG>M@@}奎.dhЦR hhP#:Qtu5mk-]ݸ8BFAdAGwy+,ݽ;60;ZW)S0WTSם&?ͽVTzppy>ڂVL!On%%QmNII훯} RLL99жXCEznn˗餤ŠRR.MMnՌo75-徟(*p4VfmjES/o |..vv&&MwvF]fgk+ȭtt[_XI`v|`zYLY!96mhk+`IʪNJ:Dd-/OIA%paE~r >~۷XXCӷKg ;9efQWNJQ %Kk=6^^6zzFMLnCMM੩U=22`m!Z)Z耯_Add22SOG,ΞMAA ޖDD AA~¥ɂ6nll~~AffCCӷhKϞ[X98Ǘ /,LyyhFıo`ttbb&&B4%n/MIIWTTKuRRAZdd!j++2S``Ϧ웆1NDD~_:; ֢!a>5 OdCggY>>=}w+$d 6W 3556vqVg>yՂx `SzzvKII1>ݜC'9?7r@ 3~?sFA#L?Q..$SS}}1= [ե%#[EtsƆ~O-MFo|ppO_:;n YCN`\\XVvOJJNU_oǵ]>v,+ust 11 U*O;;(\JH8;mQ2--S~ ^II?^]c`U^LNN5[\_Gj<=<4|^Q!>;P]]G/2\7'$8x_ZDDZgO쓵`}w@ 8⊃35_JIYMAܜ˻rl:<\UECc``47WuoWVΖ,,xTDg|QRJ=[,:|;Q:<\YUbJS{cc{@0Ǐ^ br|LҎ@/{{UڑDD{*V.. A|zv߿4,̵?>Ύ߃R_9srTˆvAtq1 ]=^=++*#pwL4;sxXsphm^L-|VPԈ?EE X_@"UDUU :^GG$̰122=QhGFfHK)(xkj>;{B䠒 ӵwvNQZ\XǠ$rpmMK=Ĵ3R#04۫ '7(!V".!)ID%(;βfA @>ɉ9cq* snoߒP$\''.^Q1nhͽ5ܹE`aͮ1yxs:DG|M GrwiIMMYYR&1 55{{Mxy99?^]Ƞ}!!W_5 P$x9?>~L.T)NA90rr!Ჲ055ΟKE uto_< 1ݕ67@$HgDE4ÅuTT׵@`QII{r@]ww_syj4"7gș8ʺ!)g4ED89ى^LMOM &66Z 0gfrG||##%tZm6m#LtnGGR>~uphooBDEEE[_ iLH(5UIIRrpcC_;u7_GMHZ ijJx**lltt7ďff;""q/_JK7ஷ] [ qjvvDVW{]~`fͭ#"5B)J~g)9qc33RR œѣk}) ^C”HKK4!Slhkhps XZnoWoysNŋ_GGqq~p0tŐCr{;*才OlgGRDVVuoovQeuwcb={ūDii1631wv5hhml$*>>BX[a1>JDfFCAqJF-))z➞01?|иXȌ<<4QOO~~x~"\\^""ì99v 44Έ*"H^q1N/X$%u|Deg0ʺq>=|opsc!zyjlF3'c(ܿeH ;9FinQQnnFࠤǏmUU1 0((Pbƚ ?Te75xyUW3 O^^)+7HKwv|奧#"{{!!+Rgg6ݷ3Vn]]O_@g7}}4 2d vvZY]]uwKon\X@l$Eco,k8OOKY07%33u ;{w77e__tkJJooM^gPLWnr@oo MXk[Yٌ +y쨫wAADD{ge^|BYvV,[qgEC2˫7rr Wgg#E홑KKFF?omJ ͙@(sC"-Sùj^wt@ݕޔݽ?:lo/b͠MDabֳ=E(rwto_YICmM`?GrV ;r'zUoB3^tReej !)gF"cc~3b' (_ z|\VB955^10WU5/vwCee;j (C\:mSꆱut|y^NQ4OC x@cf״0++l܇;} ت2jBiF{z743 -wvɁ@2-+G uJJ>aRRQ"l<;][xVbpfֹ:jVg`uxh<)INnNKKP4di) ccc<; #&6‹w%}cYLr C:VXf.džitP9:z|o ۻkEE'>|(>>.(xՍD,-]]뷴(~ӏeedTU56`mAw(B''Œ܊nn..ppp*+<<^/`llnY,N0nw1Y(YbәPҰ{w ]JJS7FW;pl ::ꬾMI10٩*?^##ggBob7tX_J76ȉڦ{zv 666d?~,*kjbckj~(Um *P_Nq5SoD# mniim:ν=*)ADZ!I@́i ?gSV&#kh tu^!!2?c_ML˗y[mm77_KW6ȱ(ھ]^ 67>~B5yc,rg2ܔ0)~I1qQo}6$_baRR.V8TwAbǖƷ0X6J=s>>22Ԩ{=9Y076iIGBCge3$ĩn&:xinKfkk LpZZ{{Hߔhh[885䴴2hC`MpBª6ycuwBrw1ey'OOqn`.*g&&+}}KYlff}ccZTN͛ ܵ(ŬK8\@Ȥ?>mmE~03V(01ړ|L?S ok@YPW8mͅ,,q +Zjִ]wAv@6Ey]Y0 )(EqϽڥ5k}%'!_YYg1;ܔW8=qeb*C`XXE;663(htvam|EȠ\[ۏ775]iig ꊇ _D͍-.ޱ`>9qG-,deW ~`iJᅨ! UV~#q)4lC,(XZ贴ါ--]]yy88SSˍ ]]d _酅 +<+CXXttZBUU]]f_bcӧm?ltu9ϐ F;UU'n\\B]`pmJ3GV8"9<_v|C[l LYo gҒ:(J;?'KY^&###޾芍MM~Fxa\UU^?:zzvjܲ=22i]]x6**? ʢkk3WWiiq {23ed<[`Phg ^W]>7B[O /lnbKA~i)+@FFAt˦j>--'!!""߫TTb"Xjj_.ggwv\ɾ=Ƀ*䯺P~QQu59Y}Zb`FTS5I>}''ϷF[IK؇BdDDj;:~lbc,Z(^LĎ;rrVDNNdd..zԟ?3]DD—(î'6vka!sgaz||iqw_@ DN.obPCBuL!!XFUQS/@σ޼`g^.3/ m*.Le,><) |vu?ooOhhy9nnFFVp^ރ>uffΉѸ8E yRYW|iil7++`b p63[^D0=5c@DdAKkd&J 9:n u6аMO dwwOzlmo"p)ﷶ`޳[?+k^#iQ^ll53 JrŸ?)-D 2 i11;9ᦧ{{{yE#qllH++׿wP9a}\ Mlk#3iq)UkkmdWRXݷoSR赵ֲߣV19>>JCo/=ba᳹CZ E+]KR]8' g>{w9=W6 O(p`53SYǷ$")ugӓVH"QHKGRq [LO7y~Fnh^Z&̇Z|TEM"@KJ5jg[ڮBI"%LA|WC #UX./ꛞR-B-BBRA` +_wwH&.JJ,,ܪkkb6ii~~ee鎏+=z@WW򘵵||**y}}OOmRjOOaxV=!aOP"WU.*oijWWE[[&CSsih`hi D A㺖0/y()i  ?ׇjoky'nnji1$?8FF9c&1ʎz' &뫫{FO_-/.l<@ᢢW.+P|M/B) YY__%1[~~Y Yps/_(MLdd88 hi}}!""uu5X7768{C ׵БJL͍id G_䓡annuRϟ@q!,ĥJ>},=<ܽ34WW-dgCE`:99RpZavtNOr 4+ԋ ꃒ&߾sHKl56  ͭ  //-r-.qkl$"b`,.EE-)QPxl &% !'e0,-53fd:?G # noZY-%&zQcQQsx~6|gi+-"8#F2ç`9fg@GG1Z;s"dd/.ͩB3kzz).rDńySx]Ļw˖22$g{vtƉ@@XRZUef=:jÄ́Ȉ&""%&%u pqy `kkodrrQF%?U~Kj9?O줯ꎕljoh<8*m~bS nzz\[zrDOO۞/e ỻ'uu22OgxNG5ކ u-'r SS9939!8WבW d"g ?lqq9SgGDD>mbGݱeeHH쮮+a M' EF6,,h*} 󵝟x(b?iiMAbhp9- Wx8ך_U]а$3 Ɨbx84OuDDK<8FF88G `c{z\!|&&?8E|zjo'|xp_Y_7940P}М((xs#gёuLGݝѩʉBC::Ch[~~?`6P9e7''8>d32&22'44{CI<טddB?x+645kȿ^'tਪNe9dLڳlm- ~Yǧ X^h>:*)u$ S?+}0_9$%ŦࣔUjHf3P2-r:908 ɹ<33ֿTPYR_C& OueLF\[VƶLml +ᯨ _.'lj}W"IMWf >:_гJJ |]bc"UUMXlp9xxSY`aQ~ԉĈZqcs o-o[X*J&3m+JJ^C٢^kpsqb& 򊎖+*ǷQQS[_[ww'"뭞|[\򢡡YP`ncӘ51_PW~ǧ Wa/ GIGte t~1gkm# AbIQILL zOybVbF92XCtqo/((˧ޮ$~wwU>wG^...fy3+TK\dd46C&O7MM`bg(1PMQPĬhumML M DEʊY)Ջ:Vmmw7Xޔ-(BC?`,(#3$'+qOuwEO>77%Q` py` Dtr5..R7714::**!AJ 0#./.NC60$-mDA =#E)) afm $N昩n,M'ɘKu¯А.gunhгHd;8(*˼gdC64UY#"2QA [)**߿e1FC.<|r INP*% nn:#m켼d7+"U(h+*+#3A /@7utTG3L[#7+nֵiiE2?H99MNVY[GD!"..r2$ddnmIJgeDIG?>_\46 S43 V?>.E@GhbEIᓆFxϮD#lkk5k1K }{{k+0E>]+ :"ACe2˳"mN((q{{8\WWM' fe^^@b9MdR)9yKc! ]ݘAq4DD-X9Zډ=q=%<81d b(^RBCSUoY#'++*:<p KJw58gq1PQQV`'rrmlO|^^Pigt?|RO_k4'e{FL k(T,OTV.)&vg%ѡ>6/TᎃD_Xج##/__O} & n0EoS}}d rEP0 AVVJJ[%9""0Z[@g2=R :=NNOO^I,KP"aa(˛U'Ao"LTqqĞ;;wM ǡ??/wsL&.ϏRO|{۟DB"+kf^6/_ڀP]ݳ3s󉔉 8-vO<Ƿof%Ԓ{/VdRzԤR!i""*YD0U=w7L#3"ύB]]CRRlos_^HHhi]\,78q 5Qђ~-dq_ 398--icb:蝝Oln{DKEwLLX>;3sTL'Bqz)L%EvGGns`Km-|ZyxZ[/نLNGD\\ED"ttZ0kk:;q\\~EG PSKi/INJO7s61up`g\4x.'6isOObbPE.748G[#Oo **svNwt$FG?;;,-`c#gwTnf m‚>Y@vAA\R..=??a|p ffI\*-֯.)iwuRJTN*95}#w`S`01?ppxxlYpݻ??ww,,~8H-)Yst3|xXj366vt|zz}===@#%oomlTVҒↆ<-TT,L־Æ@Ƭ{=Q$%@x5l{_Jʟ> +6m*G^^rr"_3#!Pd$77=}VT94@89MgU̓32V4 l5sqQQ;8TU)愅yMO7#!A ee'xx?$$PI@--7755vv OOށ@cZ,,?S==uuJJqpIH쳳00de[mWWU;:VW'R^qyM1[Q9*]cxy|z00g$%U]88VVo@=+=}"5V]~*J$$]7QQv3O667,?~':9TWP/.30 &K.A[k C 1KDk+ 1ۛLLZZt󳐓cDlV9[CNmOgr!!)Ž(tBµ5iQ^ ηv%k Ax\Xwwfo҃--;;pddbbHWW$%$`lt* ZhǻV~~.~ DOOkk:Cd3? GGqnn'' Skk͒lȟ?]0O A''BBff'ېQPBFyyg\]\껵~ydg;??l\ZzRS3 Fua?Jzt1 ;uSK+0ЭTdNA@F{tuML-Ԛ.'G9ϟ#))({Bw}FM4/W֖ˋ:BBDDp>ߠ͸;:NOAgߠ{j겲;NvvammIaaՅ ǁCCE'&67nnե'CK qddVhbbC݃!E~)]7/S/\\k_$%67#4?*QP|}01~~bADt SO>?#yd$(^13FI *H./6BONkJJý&"LM ~ t.-27//Z2#~5.=%*l!࣒$^RID_q#& 㣂QeFF@k+Ēiiy<cc&% 0mn3rZ? ssrm++S--QgqqҾ~]^ptYtH t f(/Z^ T88SRVV0~|FIIv#srKDDV ~Ng{;:Ϩ̽}dJ?[޶WV|}cb< HUTMRR~XWjjʊsw>z{jX8;[d0oaj:~7ښO|uUS][eb%",$e64Y?AaWޞRҒ\ٙ=ښ0!!Ep0ĵҝ-,z}}2,Ͷ&`pTPR뿽љoz*iigg@j(ߐaDDs99 ]GG#P$..N*(X]} _cYѬ hr2eˡ]=7y]ݹ:)^nLF&-lc\.!UOhh>>ΰ7|qDW**C7[[&6vsټIJ'a9/$%[ZqON]`>z#h E^^BBm8ߏ[Z.a''ƌ%%^4 BHH.UUd?_*1k>RTTr$1$ݝIKWVӓl# P~hhwJp*++*ond(\^;¹`||\lXe~HHc@oxccn.>,OMQ9jhu9Qބ~W?5 ;;mѥY>`tR()9JNO#JI,-=<EF֑z|,Pxh ܽnh6tvVPAs*ok| E#+ZZ _?|ED=úxz., #'X &6t &'w u฽cc!b՝fFF&#OM`ny-,?@ ]BBNꗗ H""Ccc((yyV8n n鷷?NNǿV _^fd`@@5>~$ @@HL,DrTQR21SU=, Ąz5G8-mwR ; 瓻<o8Md`h))ٟ?|J΀掎]pp66NNfO"CC 9lY It_ߏڦPCFa6j20DDqqFH9:CLTT{{~\NN@0w#ﺭ2hB0*ukg_S GCca=dd ۳ '3uҊ__^^YACz:99rqʾi*ED32@hNNii$PIfaK'nҒ+vƠ54TbY!..@ᓓ2?@\o3(;ws31%Ϣ'%--56//ߒY=<k:;xx}mm͌ӵoL߿Xz8;⢥~rsǏNOOqrJi':9Ig{PS}$DDƺ܄'d??b(rDL[[v>rs}\Z!{/6223NNnnii10pG?|z~`fjhܝ//ĵglnHikkiu@LRRyx|i̅@MSWqjjm? SBY|gA&ye''yy?b+Ty3 Oύ 㱚LMCq/&V󙙁i LL-'ƾҮDE2SPd63hi sq'%گ:?08zcUUaW I;:z  P6zeB))ֽ\?8 T89߻mf;;eeiiGGBB߾UThj剎moanIIɍnoirrwܔ|f`,* Afe]~ϤvrSWS=>b oUd_G'o!ť>÷ܻw##EE] 0R@ k0 CS^ݽUQ`Q#(F65P] R5WXO/F32NjÇll!PŅ~OAA?4陚~ELfwtltpsR_YyyY_OKN6?ߩ1km\D$)ʼn>dN@0ėg:됒#ә*`p!TTWn`Z#+ԴWqӣ]Pܾ1 ҲW[;=m{;m/qqs>ׯn%%Cj KKNu៓KjP77|''hh糳NI,<<11RkkXXե~/'::ii**VVՐP F|xfenlw|~^v]V󧁁~QRuǏƠw;:•w9?O@н-o\Qi(,|xnots^X`cɩh'8XLPMn+ Fh2>s뜜 :X]\88LOcb6@о>;;- E߷ !!b땩QXXuv###&A#}{`Zdy BE%+𐘨st=IΞ ppixW,hf33<݂ (- 74$z|N1=;AGˡ[#f\"G},3KU\t_ |>w*24Ilm9800WиavHRrrl,NwwwVWחˍFHґpM|*ia4fwޅX>#"&'iT@ _--9:ԍ[hn.xjvGJJ2 VŌ/X碪*;JL{k+&!ĞJZOV'eLRRoo922WSdH;eMMؒCndSB5$p$99 /nD暭| }|O5tudFSssnn㩩N^^SS 90?ʪ.X'/ݻXX**M n}ʾ~9VVP4nU{[CCJJWW쾾su0\ GDX! dgk]]yzbr^ t0rq)(#%&FDJm7>>e|2$$40웦Lץ]͉vV-RUUX_' w{llvUÄ sspuuQ1OO"">>z1vDfddAATTK.qftd$*)FO|\>,/c$83@vq 'XX:vv@q9WW6ĄL]Sg5D\K*>nz7:44D(cdJJR议TTLJ[Z%"?ٮeejzzמtNNpq}X[cdLc%%A;.,'U #g5 !w))qqַP5 --̌2()yhhED334""r88ki^Vfcvij_zb,]U>T  +AO㓪:'zuuVVm⻻_1!B~C)*VQ XZnQtp{Kv q"%yE!$"bIK88$YYǯ{& 6: ثAJZT~gyHw"* }|`!!@`^Vn}zioOe U &(wݻlaJ_##0 T㢠03C\~xClJNUjkE,~TبKj*66ш GGGx{{!!ℏ{~rRZ:/UDob20wSNRd'T *5dg31JF@ض Wyde]^VgXK |oNJC%9w$$O.2]xQQtt<<,(T́J}bEB^Frr .:,DGGNNtYf};S+Ev ;ӊ 좣mV*5:(TA ZZ-4JJ..%%DsxxF]]\O\\\D1OO'&TUos%xz[Z*qаvEbYQ45͑uu"J%p86ԱtZOXA}}XX:: SUQZ--//44s>vVQщPS_V/-=FGZ_35s-C@aj:0"[]P6==>W]-bnJ*'b&(K } GDDSebMvidr_MѹCq5hWdAHW+hB28؅c` d㲶vF C˧Sgg/99JJm\\S:<(Him$$rq ww'6,.6Vhin{Lϱu0nn::44#L M{/9Z^99 (?ڧOl0G\iJʟ?&&hMRCx$Đ,& ON00]\>+ 02\^u@i>>ttF)[[Vjjnpc7""s^ddAyy$$IIpZZ##*݉ʍKKFFbb„7)4zFHLSM-]HHi|jPϟAIpQB#tLҲⲲ6TN%!}LL"9.u~~ux%**GF쳿_ˍR\%AA')ΦCvvr*|P mv#%FBr 2VVhT DU`_X@C#$GJ׋?PM:%89}uE\XY|;YgףkxAwvXk!*:7EN.QkcL`m+ :ڀxSS!eM''ߺ/hI]ɉy@||~#5AaaTTROd7NNfgaQ*)ihiᣣ\\|Pݕد\{ߣ 20<9+(sţrܜmTry欸ʏQXRVFOLC./@@0摝eWűK V Ćab]Ԁ]%bKDv[ 3G"֬PgBBR~%""o!ͻJ;|87ZWլq*\3/Oxĉ;6&kzݯ_Ŋ ;fWokϏ>^0|x Q-w0f=zTq Wz9E{_Xŋ;6o>ƫIڎhذg7]j[a;{mV?/XpKǏg{L={p#-{g:iaǟ0f̹.{d)RmvvQ?_:m6^F.& ?6f̸qKyXA1&{Gs]^?3f5Sgs<8M<5;VO͛۫WJJӦ>#R֨݇M!,i~kv{~E#wsM[Y=o,|$9]?'N_]]SʕU[4ѣn݊Zֱ))/Z5j*7ɻS.1{Lnޝ[ƾǮ7iܾ}zzKKo GNNQaCj..y07jҫm>}5-liVU%ǎ&lpɝ;xwj+Wi9?ٮW5k"T퀻{LLG_׍}C.yz]"Ł߷ұ GD8EDʮTʕKU*Rر;n޲ʘ+ ^5B7Cׯ_hhrZRS;ֿORСZȑS|\~ wuⷄӸqs3eKWqW>ƽ]Y6m8qW?ѣv st١իϼ 0X1ہ7kr%)]+֮Y%J~6?|ᔝ*;T m`RqsKsg)ۍ9c齽ڻۗx3dHtg͚uMN%5ƍu*UtԩΗv^l&--nm\Vݺ7a7qA1b'Nx~u".}> Rx7 wk>tԲm Soe" yoFZ߿v>;7%KnWW~{ҥ=g8?ȼSֹ j߾r`gۢ^h֡CFb.7Ν.]&N]sEPŋ; J>rd[ʬYVGO֯_ةE,{Vʁ_!>i~jN>ŋ'N|q5Yιua۶ )cWw8{׿t:v)GnۖPt'vʊ~Yz]~ҹҥ;аbK曘nn_|ѿի޽oݪRcƵk*ݾ]V211/_^~\xX͛89 4?GѻQa3_=~{0(`޽f8ڴY{9!*lT ={2}ʔs+w+TuSDD EE 7K׳Ꞹp7w~iRZ6lm[˗wŊ?znuRHUWEq] bEo߆zznޜ9D}3 4iҴiV=89zwN =|»qOf{nW밺ukvٰanݪv \z=-`~1nlطJufMOm/j2Bo'qy…ssS?yfMǎYY.^\_͚۷ ]^ypWWW:uz}/׮MNٔ.￟zؼy^)=u vPh~O3W~0xР۷#Cڝ?_0W׿,X yϢC?m]l'LpiqcAƼ_("":zРQ%ӇZnjj&kָ4 k˻HI2dذG.\W8##2_vzzxH_ߟ߿uSP#uԩѱe]xq.ٳde{wŻ?z.X>kɿ~x_zz֨WGU6/?Z-;9s$ݻoɐ! dIܮ*^ٶmk93tɎm4pL^ *ĉoptӟ"-ְqS{89mD`̇?,pB ={stsojռiN1rdd m=yQGTܾc=w(ySU;k7 ]Ճ<سg/Ϝ ͻ;mנAnnmt)~B5jTfmgQʔzvΜI:{ޞw`ddl㨨p o]d'O,)igϊŋ}[ ]}KӦM>-#Kv8٣mukeʗoeȗ;,q߾*W,^-"*nGo-ZaN׮r-Zq/bC|rsanmtر%|ݼi+/ZIw߽~=oMzٳ][;oީr.,Xɿ/co; ZH߷m{3scW\4qbiÇСjrW>=˕XRg;fKU3"*v>nܹ;6ƍ]Ge[ȑMvsq9Pٳ%kΛ6-4BU RR/\vUƏ?uĉ zйs.Ȉ_=@ÆO?~Ν7nt~XbIRw.y೛7_qΝ[EmdNmgߛ7OF܊+W{#ugK6ilĦM촦ZlȤIeƻ\>{Oyxtp^"j[[NCo{dL#MuGT[?Yrnޓ'33;|NN–tr9iK >_,jxqtҝϟ߹ROwu[*UܹC\XF ܨ{F1:2eڴڵ:ݴi4:}vig YW>+GtTYǐӴGW/"q׾]>rec6EġusgW ..v.R<`Ǿ-[22rr\)2:Zٳ+{]ޢÇW\xNڻ]JI9xUݼF߸q$uĈƌ 3gϴ?훙٥˶m{tkqIo"ʍO拉<{`ѢVuvP۬O?2o=:iҗ!Q?N l,zۨ $'w/[9Û7߾=zRӢwbtt]8kÝ;)4xMK9W=noNV˫rrV3F}3l9y0۲%9RN>;Rxriʕݻ/^Lu έЍqw}Pw*z gϛ7_~<С%'"H-:a*Uw߼yt/8xpѓ'Ww… z'?3; 8kMu4rgGTP/IL3ήmҥ׮%'٩Sγg_ժ=Z 877335lxQ>S~w{xԭ/Zݻ_ݫ^X1W6'Oq-?3gƄ%]2~||ǏCPPz߮/^|4+"l]]%l_^UQ<2 (,lӅ &._Ůmtk..qq;׿G߾&?n}bZ>ܺ5Qr237lqv~{Zj )m_ܬY _w^MPM?-" ߸u&޹s[99\]==7lx<۰;&N֧OoE4kըm>Ν+ժ5n\#oyN`"/ԬYtnnii7=<6m*[vΧOWV`qlo֕,xqץFoe<3^fU7fc_ {Fc-ZiSkuY<%V諯z}{ -T…ϳo ;|xD/hXB[#wyڕyͤiy/!oDK C rq>#JCR"TBơIr2)9K5#@BXC Bln^H|f"C՚X45 dBdL4B2ƑA^rg!N9V%ٔDRD?#;2di5 pő%f$6fw 5 @FYאXHDQdUHh !!Bffabd ,Sd!xC]  >@fe&A(MLr?5c lJ1Y\AL;&eGLjBy<ɖG`S[I֏H~aLqY#4eEj`ƍt)^6EHTP1kqL_sR!80= N,Rn D.$,C\O>z 7o)uvLV kWbQ;=er@9t5HI'㓧@$:S)!f!$GIta:cbJNh1za A9"YYWLH3`>s)O$WL*/x2 I cZqqkT8Q: `%QOq/C-Ôt }!$lM62?&;]g HpI#{{ҒT1[Ř\bp+G*adl De V~hע2iIzFȨ0Xz 3i|i6ϳ)aKDދ7`F ~`'"5|Sq09 8 X YDv I( ~"`' 0 O!  =}Fʊ$G_!O1y^gJ{*06s1'yeNjRlA<$_=#!Y WY1g`%|X-J!Ek (c}xEͤ|+ Xc)07d:'Hłh*-j byʉ DDf8!f:4w ْ #aH"/:/ƍK(!]"%!EeNh0U'T(c &hpe]V0uAvWCAP7lJsS X`U` 2CZV3@[Ljq~!eBP77co$f;!jdBJ(S*VWc=|PL|HkFK  Y.& JSdREq4T OlӇ!f:3EE" ,X#MS#̊ݎ uYlsHHB\?Sb\1f0^*^LTҦ kƈt&a %0D GdH!NS0^`67 W{ؙI qw@d`BOdE1[M^F\C .6 ؁}!!HBd!VN% W*rސBdܐ6!8${MU* W#b=p0 GldJAИ`~ ; pKlPq@8 { ЃEYb1kD&_a|Y*Mɼ)8) UQAFرM^[0nOЧ$B w%L%:y@0)ۼ &M8d-0X&>MbbMcp pD^KSRRYDeCB _Cv\4u~fkV,hsa%*!5Nm-LB9E!2E2dMђa nyci'ΠOd UUU1R"p3C3:@?"RrG8:Md~EXaJQN,PF|*F[b]ŅM ))`4K!]CI9``UJj$J!LDV$m4FL0HH+8yW1#5 %m3LɄeA ӡx'2xcz2ؓ爩\A(rPI +[D > .7`2W %x-I4y*$2-A bjtg" 4 /b*S|xQ>wg80',qG'+fG"N%"v8" p4eaL> &NW ccg0RSdm!w?)yȂ0T)A'ƁFwX agadH2 x&Fg99 Cvf-f Dv\&sfÀ ף_1f<{ P%+&v Hة;6)e m r1fLܰ#H\.Ĉ^o")j0bjpƙIq7}.++X&$5rBzf +F]l9!,;l S@6Gj IqZ569Ӥ1k,gLU &4AGmG `xm@]X3A $B;]ۣLD)yGz-Cv%7 @>HX(FLj coǀ4#A hUC\I=!S+J! +/r%BEI |&cL# l1$IVž}\h r(gbEa^!f&IV?oãR[5 hb$EUV Y͈0REhSM کX!B$!<AEY /mr]`d.*6cP%ڲǘs$ c22B#G6* ?ˉ9 teB,dkQ<M첄Prj ,.Ĩ00JeB&˜m-VE4iI@Q 1=Ltk=9& _O5`bKXHS0k ckTudy_0 _m1F0kHV@Qa^YacZ!eca0a?a߫3:ΒBKjCU CFD`4^|Ĩ!Ň!8oޑc^4H&N3))#NSҙm2vjN1-> C,7["fy& ^'Cה d䗫`pc,Smy ,q43 {n=Ĕ%^Y߸#:?،13"D1 -~m36] Z4b`QU!̠Cz;J/d7~  ; a0:E 2-FT?&FQbD}vy|ϚcBȟ y#`uI.Q5>2燸 k,c0h'/:{DADx̑ sKS-02x`yJ94xfᷧ+B&zE.D% 0A6@eA#YⵆhIibgSIDgS5 P1PRF +03\+4}rQd$h2GTFH#Ң`Nq"1Hr䒐fxX7gL@Ca9?ЗU \Ŧ8%Pm)DQPfn'aHX"2#4# ô®4 43aLޒyA#תf,@-4sdȹ?$bv/Ƅ!2 =4@T@&*2II  QV ,"+B2R9EOQT˄w0!,10ag+IԠ’RExKAx $5 *-IDD=0m/< j(*Fͱ#S nM~ZzSS?! @Q|%eV՞:Y}b3&Iر4,!l/[OJO$>0xQCvZ&K$j`GƁT XM0@k@b9_M ?ߕY)9L @gq#Q2ʘ5AD`&%SB ?<`)ht:" PIޞЌtb "r>  Cz/6(dޞ^}EAi,VsȿO  *v@' `2 F=mh22w<ȅCPϹ5 " )M&HԠƆܘ⃆7/rJXtkDJ/葂zmª  "4 !M Rᒂ ly٭qƫ2' r s%T ͼ#kñ0I18ŐQsIbf=FHK <̆ ʃ>$, )T8#Kd_j'*uo8ĜeE;]& i㏏`*c F6f\P61E'jCVyIԊ.Cf^OaRԚI#*M-xdQODT?p;0rz# &ց`̲MԊTd&xB`Ѷ4b IiaHխ:'(/Cؤ5aQAU G1ڸlgESK+`xi"FtA"HW! 1 2En! 1 l}b.iD\ L nLQ&&FS ΒQx}AM34r,p]H7*U;0pLiF^f81A$PM3K 7ad"ġٌBVNJj` J~ķ`A^nk$dBZ ]ZIi 6u" cT%x'!pYYK/1hIءZ!,hcfpP g)i5iY(\x.P˃uxX&ĸ7536 .]ru2jx0ECl.F br:$ʬrm1 ¨ɟĂ2lBHsiJf 0K K=_b03WmwJf,`׬kGj a-W%)q \Ip` ?EX&Sx, &6FoLQ ƁRf Dʋݬ#D/ľ&T8Đ0(NC fNs0  4K0('GHz*p `$Y'o C  B5jd"lp sˉ\_lX\b ?_ ݆&DPLL)0kqE!%(#GuZX&TA?R`BB&c5WiXQO`5 }cAߐ]p#A8 .A!8A@CAcGMAuvXAcAF[mA6GxA+A)Y|AʆAkA ~MAZAO=5AjA A2SAAt!}AOX$$A|3 *AWZ0A!6Aŏ,<A:3*7BA`{AHA|V`LNA1VTA aZA_0l`AEvfArflAByrATxA/7~A%) ҫAVlAgA˖Aw=֜AJ SA:.sAh A.AÿC ApAvy ALQ+ASz,5AJ@AJA6UA0`Ax^tjAOPuA*A[A ABA>pVAߝrAM!A!(''A&-AcT\3A9A?AFp-EA L LA8'cRA)fXAʓݘ)^Al34dA >jAoiIpAOJJTvAw%^|A:iA2sAo~At. A\mAH@AW#ۨAuAA:@ȸAmFӾA|kAF|A!A_$ARLAABAi(AE2A%6 S=A AHkD Aؑ AUvF߳ A% , A!z A: A Aghjb A8ׯ AE A,J! A $ AzZ' AJ2* Ai- A0 AD3 ALh7 A]: A.z= AP@ AϧhC A>F ApC9#I A@l(L A-O Aᙌ!3R A0n8U Ag=X AS^ C[ A#BWH^ A􋰤Ma A"Rd A?Xg AeP]j A6fbm A~'hp ABums Arv AxBxy AHي]}| Ap Af AE A4A A[ˮ A+b. A{ AOHDR  ?@4 4W b / 0CLASSDIMENSION_SCALE "NAMEx=.OCHKFx ïOCHK 4 _Netcdf4Dimid  P _FillValue ?@4 4 B long_namex coordinate of projection ?standard_nameprojection_x_coordinate !unitsm] OHDR  @   `b5SOCHKwX spatial_refv׊OCHK * spatial_refPROJCS["UTM Zone 15, Northern Hemisphere",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",-93],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",0],UNIT["Meter",1]] "crs_wktPROJCS["UTM Zone 15, Northern Hemisphere",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",-93],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",0],UNIT["Meter",1]]OjOHDR (dd  k40u B _FillValue1v-OCHKy]0__xarray_dataarray_variable__kdOCHK Qcrs1+datum=WGS84 +no_defs +proj=utm +units=m +zone=15 Pres ?@4 4#lk*x@#lk*x@ A is_tiled  transform ?@4 4 #lk*x@mA#lk*x.O0T/SA? 3 grid_mapping spatial_ref `DIMENSION_LISTk$k$ӐPOCHK tREFERENCE_LISTdatasetdimension kaOCHK tREFERENCE_LISTdatasetdimension k$'GCOL]] ^mr?[lQ*EHn$')KQ1_%Lk<6\bI c8 &,6$tjAAYkKwwTfuJ//%<*_&&)"*(Nc`5"k'79?44gTfKy!!MBs))MM,;7nnq_Qn..B4ke-,K% }(``9xg'd.h"C    ..  X<!ntJsI|,[!aqI &/M  W_-T]p~YB))dhhUwM.I  WddXMzQ_2fr7zg<4;!(uu}0Tqq*&&H1KJxxP((+6"+-CsV==66,nn=1 {O0u*-9zijmG,uu:}+k3tHa3n0,e_mT~v\!88..s**}n=Oul;-Jn`))?ivB*&7gHj>A.\\KHHAAiR6 B92Xn2:Hid_WW^^77okf)F );ppz77_AZV* )*<fluJ[Ko6jK 8y JiR^g  Y #FCum{[II},HMMPPFSY:;88rH% +T yjBHI4K b  \-|'6u1 }vW!Wbbcp%]AYF~Xi62EEyaQePgxr0!c/CI9L< --#DDLf  %;G\A  P56&,//~~ p9E+ Sv""^gI7H/wI>J``'DN8?15AAf((.|UZZ&"' ]j8??v%8,RRGb]XiI+rrUU.xlJ M*(0s<UU ZE"'@\\yFFgA"1&&8,~|| VZMcPd`Er Z&1!jR>dFEndF2wgM6=gZ+]   eq#7U3`9aaj?G1TTcDC\r/ O90Cb=! jCC#gh'vz_E_!. \^8< <"8B\16G  jLB3C(Ijv~lb^^CYR ":L??e`x_<#tz??Ea?Zb3/ r^< <011MIGSV??JS6~,g&.=I_\Z X|Q\ BB55Ft=/'G@l_2j |#5jV?'RSc+~|Lt & Y,&g%)  <FC$89+3.(B3cdVb!z<qnMMH"aB/5`Qr->3V*.Qoc66ppDEE.8N p]"2  3hc00Wy]$T@{JUPhWMA1)V3$1@@u@T2#+`W%*hhw2NHwff=z>\;== eOAW{[O@ Qddzz3zdAKK*O}B-c0P6G11^rS% cc33n u| r4 44qqMV]5N|$Y/B/?De& ^MJrS cynF{*` M T33 l/=xAA`rGi9GD('D}2K{  RR@~yA' WW{e  FlY!! 0$KArs)&!!vYlg]LGJXXBBQ #fCc|sR`\$G^?P0k  vooqe  Gt4u^qq{rf|zUYVfz<l2{;^^<YfnK}rvZdzP*h f31_ zWD__c%-2Y7VTggE`8.?D8}7&\9 VG O<ck[/vvuuFT,P* m`3 8zDD_"mU1 RP78"JsK KK:++M0Q)R(1>jdja)\u:!yn#DD',0b-TT|]c<"d,+[E !!)u%U(Jf-  :rxHQ>} $007Uu8?aBeKgjLLjj m`( Vd[\lr?ZKl<lh,3~}y;]u88K g-QT ]g@OyyVj a(m #gC;//q$ t(;YlDE11%4[D;@mIIO4aA  !77 w@;aP`dh*[y!v>7ejRR*  ,)s+{ ,ttu9IVvS-(7<5X';0\PG~~}:d~*44R@3Gmf^mk! :B  G13(1:>>NuODSdg2%?;z >?shyu_n@@`NC'0xYi i-.l :GG;3P:.uD"d22 #SB7wxj`F`VP]J..-@cW55Yh11aK&22B9Pp6k!RI94(D%=uY)5NG">-MSSJ[wKW|A^P8R5Y5HH*2,\iBwHSm-vv 7rI=k(QPk,,%5;lN;yeo3Clt9Zxp"^Qnv&;w~O33==]K G|px`3o7+>5b"CSU{*6c\)x&d__LJJPK//8S8aoEo[WyIR57f> <wMBBE:=kQQ^>J11W|vWm39ufe~#MP]]~Q$nwMP(  n!40hu,,t>Z wEs{22#QQ9_O &1a(!  tt\;;\tSSwa%ZLoWK!^: !1K%;;?{ / z <&x'6 D`QQT&s%(,!00c!+CCjj~~It"~!b@Dt H<*0RPP--F= K cKUAVNiqe"`@!-bDDC*HG5 } ZZ_}-M//qC  {s|k|`x X2"k)Z= Z  ~` \~~CiyL~aF==<<cPbb_DG2 @TA<N!U*@lF eE6W-\7A|Ty?{||T}} Zjj$33Gs[[&>Q[Nm+9![ e4X;sn l1r#7fTTdu4uZj]RmCeeRRP=9mW3RUU &jj Q  '!6kk+ss''jpRU @2B_ ]]k* $-N"S==[.nz!zzWqq ]S;1dd$%J  &l5]$$< ^88>/U7rvO<Y66#yJf1U! ~)$<^^8>M,PFj|7%J 16& Y3<DH{{Mr2L4*pyJ}_Y_I !11_rY=I/W3`I0&oo$eMMOSK9I*zGGjjRgG1d2dhS*DCTe /kROSM**wwxd## Um)qNFROq8aGG ww?7yAs };Eo-dULuXX_%_9|qN`FItBxRdgDs#>&qp%qlHKKCYJJP(// WWRLOGGx|{t]aUgD 6F7Q H<<CiUyJ]dr  ]+XqZ=$(hr((XPAX##azNSnzzm.e4f9W+  .ba??ejJ}C9Q +k 2:Jf9q+tamzyQ::2uuJx##ATyR  j2>*J^^~;Rz}gkNgxD"||wm;R8M uzJ##wXwaa4##'GD#{&nnLJG(B_B!i * &OCC[8x;LdOqtRX%u$v*F t_in,piJJ3dxxJ8Cm  DA::l YoBdu03bdxZJxpII + 5CnAd0KwG88v]=3fMddn,t,A#aBH??9|*+ HH22-d#;@hw  3Y;}} AA9 VVHd>6Og:P><D?k99q$VrJJX {))vvrUUqoo4  . dj,2K:\WD,r IhoK4`((fl${oo2ad=o n\\caQRmz8q%x4&enfSSQTrj3  &nLxF9G}pW'`UbDZcx<D&Fy93wwipqDtnn[s#Q{Dk2#x,,,>\{{a:q_c%6nrLIIa~.UJ{  ,v# .,feXSooxZMff\u)F8MM0hY#C,b!"LuKdGHkk;lLL1lsxbx>=G3[%cj  $0Qq&[GYYHC`CyWe1&lKK;P;@|uT(<<xggjqq,SB[[><4&&?w`\%RhuB.`zOm.7bXp8=[CC+&?Cju*UU6HHw.5YVP&__ZpZW`oDd0.&kk,--}s_pjSSN:=@$&i(z((I\0D]{Z|_et&0.WZj(Qd 33A(9D\0 vMBy\PC ~~-)kff%>cY@@$'3oOU,~i2DVppFze##x!Q77++}BBAnT8p||DVUFzeJ\QQ!ZZ} BNjV>i?!!aadbzzD3P J\zDV))wYY,jj|vaa)PFoyYYm2<A88Opt9W nrrv{)I00oIIpp3ez^nlZWggW!tp}~p,5 n|uuzw//=fn>m ;dQQ+%O~{i]O.yyjjTf>yzYt+BIb<x IhhE% tpMU,K~s$i=R2!:^l815PBB}= <$Nii2OkVfE:Y|;jj]vkVv(8l v-Q%UU#MrrDbp9R`W.FT ]:z5GT-itOO@WQX]F%K z"/M:(`z!%`ShQ{>>xUrioxarray-0.18.2/test/test_data/input/MODIS_POINT.nc000066400000000000000000000402531474250745200220740ustar00rootroot00000000000000HDF  @`OHDR " X J_NCProperties"version=2,netcdf=4.7.4,hdf5=1.10.6xzϣiOHDR g ?@4 4   m " 4 P ! B ? %bOHDR 2 ?@4 4 (  " 4T˖FSSEk8>BSArmG[x^OCHK P _FillValue ?@4 4 !axisX B long_namex coordinate of projection ?standard_nameprojection_x_coordinate %unitsmetre&*OHDR (   8shuffledeflates6 q8OCHKyK0__xarray_dataarray_variable__s{MOCHK P _Netcdf4Coordinates  B _FillValue qcrsQ+a=6371007.181 +b=6371007.181 +lon_0=0 +no_defs +proj=sinu +units=m +x_0=0 +y_0=0 Pres ?@4 4& l@ l@ A is_tiled Hnodata ?@4 4  transform ?@4 4 l@~Pd[ lBSA? `DIMENSION_LISTsspVsJFRHP (s29KBTHDd(  2^|BTHD  d(  %[FSHDPx(͘BTLF BL P$!B70<O?x/RF"_h4e >%iXBTLF 0F"h4P! BO?% FRHP (s.QŁBTHDd(; ے0BTHD  d(; N%UoFSHDPx(;BTLF BL P$!B70<O?x/RF"_h4e >%iXBTLF 0F"h4P! BO?% FSSEk&+ GCOLKKFHDB CLASSDIMENSION_SCALENAMEx _Netcdf4Dimid  _FillValue ?@4 4axisX long_namex coordinate of projectionstandard_nameprojection_x_coordinateunitsmetretREFERENCE_LISTdatasetdimension sFHDBr CLASSDIMENSION_SCALENAMEy _Netcdf4Dimid  _FillValue ?@4 4axisY long_namey coordinate of projectionstandard_nameprojection_y_coordinateunitsmetretREFERENCE_LISTdatasetdimension sTREE 0rioxarray-0.18.2/test/test_data/input/PLANET_SCOPE_3D.nc000066400000000000000000000615401474250745200225140ustar00rootroot00000000000000HDF  `c`OHDR "  3 coordinates spatial_ref}?W%x ,KOHDR  ?@4 4>P H 0CLASSDIMENSION_SCALE %NAMEtimeOCHKtimeK[OHDR   ?@4 4 HP VZZcËOHDR 2  ?@4 4 FHP P{Q6r +`OHDR 8   ?@4 4/X  8shuffledeflate 8XOCHKrblueq!aOCHK T _Netcdf4Coordinates  P _FillValue ?@4 4 "unitsDN Hnodata ?@4 4 3 grid_mapping spatial_ref 3 coordinates spatial_ref pDIMENSION_LIST%&'M>GCOLKKKKK  K   KKKKKK !K"#K$%K&|'(K)|* OCHK( tREFERENCE_LISTdatasetdimension BTHDd(`[ z5'xOCHK+ P _FillValue ?@4 4 ; calendarproleptic_gregorian̸BTHDd(Q k,&OCHK spatial_ref,y|OCHK 4 _Netcdf4Dimid &6lFSSE[{s]rF]9OCHKL)@ J_NCProperties"version=2,netcdf=4.7.4,hdf5=1.10.6KTREE@0 OHDR 8   ?@4 4X  8shuffledeflate96 )8OCHKFgreen@(OCHK T _Netcdf4Coordinates  P _FillValue ?@4 4 "unitsDN Hnodata ?@4 4 3 grid_mapping spatial_ref 3 coordinates spatial_ref pDIMENSION_LIST()*pYOCHK tREFERENCE_LISTdatasetdimension q@(Va@OHDR  @ >H  spatial_ref]PROJCS["WGS 84 / UTM zone 22S",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",-51],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",10000000],UNIT["metre",1,AUTHORITY["EPSG","9001"]],AXIS["Easting",EAST],AXIS["Northing",NORTH],AUTHORITY["EPSG","32722"]]&QOCHK 4 _Netcdf4Dimid &6lFSSEQ{rx^mNy8 0 2b9ZJM!Tq8kɊ2͔-̈!w%:[wUa-Ǩʖ?{{y>Mm=ejZ/b2wUyb8 M#yoeKK?.uԊq M^Z^Y^>g 7R5 UC/nZvΙv=ΰnIX hECۜ]Z6򩮚fn+Sy:߱lC^g/ErgX{4]|lT3ף77 Ke^TOl۰Z<*-'JP]U6:-q56c>YZ.n@ىL/wD8:mcUވ1qv?0ڷCO1.s|+l\"}VϏCVTe2w@aoS={ c[Zo圫iPݟ[@*9:-'8ß[zx"޹MU"?%h@SH˜0QDQ}4U:=#YL1ǡ*{"s m2& 漭wh띦>N\Ɖzx^e Vvd-6PJ[ic`y'*s-}۵s]<\QI?Uj1x$# 7QX=J2'aj:4|ݘ<:)-1N`DNL95DrfL#q.tq:ϡ<BW&6$f+V ܺ%>8g.f6l[~:e*?Nc|'IiśO;kq#.+;z$T _~:㡻U -6> M>7\澉8eZid}=xelHˮfF_i3ySH 0Xk,_9<FI"ɢP$C+.㚉wU4 p(8SBD",D %ܿQ*Ժ; D)y$JJ!#@8MWHD5 hx!*~BXᠠUEB+#+C&|/p5m<{_ [_w=&|TREEyB x^k4 q!͒!rm3tϵ)uqK4Hr%Z£&%OLsIV ssϛ--05Y}p=4QpUTs,-&bUTS ʬ,͢,ybdaEzjzr*'pI`4{XIR`m2?CZrAI;`Dkf&#nIpΓE*~5Aac{.Fɞhnw3W̮]ƿI slZE 3>>@O!|JD9IH^5VPiB63+] gn>xX<tdy?SsPUZnaߠS,9';(T7 &=!~_2ւ\?oZR,u!q k{4zv-lץ֒&\7.N&eLIW8_g}tdyOcF'>!2"5]q{+tv^ӝHkaG{}OœCܟTnuP*+;.U)3^R4}x9Y=!Q-}!wfsCK-؜J- td0PNwHPu%CUI#7Gx݌/a^]Mss)_ܦ>3g9j r9ƑXcNmiELAqaꝨY@=O6cWFY>W_|m5iTQ4qy)8'jҕ4˹U4cz)݃# E=fKM_" x˛ ^yHq֧/ |$kJgy_mSˈ #kst1{/~{em%Ljet\n8Ζq{%|}g}$Ľ G&O>Q{P;Ehԓ_u%Zk')9tL K,iU0)/xY-)v ZG5$Aw9,' 'Rx۳vAëxK}8=q}ݹOĨ2** 9 3`ePH"-1BvF5Hd;C@,+P$;2ٛ O6'E-@$}l1 яǺH6D% L: tRXp%Bl?6DC>4+5$8 Q8 _4sc"?;7anuAzuAuAuAuAuAuAuAuAuA#Q*A6^A5^A 5^A`4^A3^A2^A 2^A`1^A0^A/^AOCHK 4 _Netcdf4Dimid  Hunits(seconds since 2016-12-19T10:27:29.687763TFRHPQ (U~ BTHD  d(S QyFSHDPx(#0xoBTLF2BL P$!B70<t?x/RF"_h4e >%i 7|BTLF 0F"h4P%!2Bt? *7FHDBPCLASSDIMENSION_SCALENAMEx _Netcdf4Dimid  _FillValue ?@4 4unitsmetreaxisX long_namex coordinate of projectionstandard_nameprojection_x_coordinatetREFERENCE_LISTdatasetdimension q@(FRHP[ (`_7dBTHD  d(`] =),FSHDPx(n?BTLF2BL P$!B70<t?x/RF"_h4e >%i 7|BTLF 0F"h4P%!2Bt? *7FHDBVZ CLASSDIMENSION_SCALENAMEy _Netcdf4Dimid  _FillValue ?@4 4unitsmetreaxisY long_namey coordinate of projectionstandard_nameprojection_y_coordinatetREFERENCE_LISTdatasetdimension q@(rioxarray-0.18.2/test/test_data/input/cint16.tif000066400000000000000000000624471474250745200215470ustar00rootroot00000000000000II*dd :1P2&=S f ( ))0 0 t  )5BXO_Z2021:04:01 06:57:06Sentinel-1A IW SLC L1Sentinel-1 IPF 003.31 |YSZ(@a7yƋG@)$@@Y8۴(@~܁G@ (¥@Ț@Yp͔(@lG@'¥@إ@Y Thw(@^G@'@L@YEvZ(@rG@<& @`@YYm]9(@bnG@GP%@@Yd(@bʿG@}$@Ի@Yc'@BG@#0@@Yjay'@Z~G@#.@$@Y8$0'@G@H".@A@YܮJ'@S•G@tǙ@^@YCv'@-v-ϖG@A@{@Y,ti'@ĴȗG@. @@Y;Н{L'@[G@0@@Y}I/'@{ 矙G@@=@@Y'@:mG@<p@w@Y&@³oG@Y;p@@Yy&@'G@@ @@YMO* w&@ŘG@h|@@Y7&@mZѝG@U @@@Y>&@κɞG@բ˖@ |@}(@{vG@ TL@@@ gu(@9*wG@(j@Ț@@Z |(@2exG@''Ң@إ@@k`(@YyG@'Ƣ@L@@tZXiA(@U!zG@?!&Ƣ@`@@B!(@{G@B%8@@@igT(@&|G@o$@Ի@@"'@ݘ~}G@j>@@@ '@Qƨ~G@@$@@ca-'@ G@D@A@@ld'@[޵G@Pi!|@^@@@k'@v=ցG@ |@{@@7eN'@׍ĂG@ (@@@:0]1'@Y籃G@g(@@@bM'@]`G@(@@@q&@GFTG@<@w@@\&@QN'G@@'@@@S&@{ô"G@7:@@@&@^G@9@@@ъψ&@p%G@/@@@@~!l&@YԉG@`@ |@,(@Z{ZaG@S@@@A<](@2pbG@H(x@Ț@@2kk(@NcG@P'x@إ@@Zc,NP(@8ydG@dG@L@@o{k0(@͜VeG@e @`@@!(@qfG@@@@ge'@ FugG@i6@Ի@@4lx'@GbhG@J;@@@P'@m͇XiG@p@$@@7e'@nnjG@@A@@1ev'@lkG@B@^@@<+['@Z>MrlG@AԚ@{@@j;:'@Mݧ܄mG@ Ġ@@@ehd'@rnG@gĠ@@@0qu'@ǸBoG@=Л@@@0R&@o> pG@kO3@w@@{h&@QDbpG@j3@@@ٍO&@LjqG@O@@@a.&@]fdrG@ 9@@@(gu&@7sG@/7@@@@U&@)ptG@x_R@ |3@w.Dޒ(@y(ELG@h)@@3@8ؒ}r(@(}"ZMG@(@Ț@3@.T(@3YNG@O@إ@3@964(@@,LZkOG@0M<@L@3@؅z(@}PG@&b@`@3@h|'@HtQG@P5%b@@3@H'@ƄRG@e$D@Ի@3@ FH'@*dSG@P+@@3@ '@x`TG@QP@$@3@}{'@޷dUG@""@A@3@ud'@s5BVG@@^@3@ʊOK'@3F:WG@?Y‡o@{@3@CoqE-'@v XG@ۆo@@3@^'@0YG@>@@3@x&@ &(ZG@=@@3@A\b&@gP[G@N<@w@3@w}&@[G@ T;@@3@jZ&@n\G@9@@3@m;x&@@V]G@8@@3@p. d&@dZ^G@@@@3@IF&@oH_G@O@ |@ޙ~(@)`A7G@ɜW@@@/Wb(@ 7G@_b@Ț@@2nH=(@A{=29G@ϯO@إ@@(@jG@#Ơ@@@E=Ղ'@zV[?G@W""@$@@KMg'@S8B@G@BDԜ@A@@8H'@Q=AG@?Bĝ@^@@0>{~,'@:k'BG@|A@{@@+4'@BG@$@@@X&@qCG@@@@7&@2kDG@qϼ/@@@J&@EG@@T'@w@@I<&@iFG@A'@@@#S{-&@ۗkGG@%Y@@@/^n&@( Q;3HG@`ί@@@Ew3VR&@-WIG@`R-@@@@E+/&@6&JG@`뽧@ |@ [k(@m5Ea!G@O3r@@@xsPKK(@@$@e@J_8'@4(5G@ D@A@e@HZr'@faG@PB@^@e@&@Dv G@pA@{@e@Ãc[&@YG@?(@@e@jm&@} G@G@@e@u~&@jG@@@e@x~Lˑ&@䲑WVG@O&@w@e@cttw&@ÉM+G@@ݛW@@e@3x[&@\}G@,W@@e@څA&@iG@ܽ@@e@&&@@ξG@nj@@@e@!&@h[G@ O@ |S@2D(@VF@xÞ?|@@S@P(@QYF@`Ֆ@Ț@S@TFmk'@1tòjF@ە@إ@S@iC '@>R{ZF@^q@L@S@ҩ'@BP%uF@'@`@S@'@u-1|F@`н'@@S@z)D'@q)MzF@t@Ի@S@ݰ%h'@xF@C@@S@+3K-D'@rt@F@?ﶳo@$@S@j:?~*'@twMG@Җ@A@S@*-C '@ogwG@@2g@^@S@a4&@l EfG@G@{@S@#L&@rWG@%G@@S@>&@oeYG@/ߐ@@S@ QU&@)#<G@@_@@S@L."{&@Y9&G@zň_@w@S@xܜa&@F=G@g@@S@wH&@tG@-?z@@S@s,&@ bG@v?z@@S@b!f1 &@: G@@@@S@;s%@-t G@'?@ |B@vB®/(@F@?d@@B@HM](@jF@Wm?b@Ț@B@5\@'@aO)F@db@إ@B@.'@ F@ƿ`@L@B@'. '@F@ ſ`@`@B@)Hm'@4$F@"?k@@B@8r'@&4F@ v@Ի@B@̀[T'@U5F@@gv@@B@i3'@M<OF@`@$@B@9Ѳ'@XJoF@s?@A@B@ߍG&@~cF@ =@^@B@J{&@MVWF@@{@B@@.Ӓպ&@[=F@ \@@B@D%Q&@O:F@[@@B@-&@"&F@Ќj[@@B@ _ya&@I F@񪣕@w@B@.G&@|2F@$@@B@) +&@60MF@\@@B@Bc8&@:>1F@-y@@B@1MD%@&ܥF@&O@@@B@7?%@Ftr[F@@RO@ |0@ou(@l& F@-@@0@08<'@ɶ8F@B=@Ț@0@HN'@*JF@ѩ=@إ@0@:-ެ'@7ZF@zA@L@0@'@PyeF@{C@`@0@ft|y'@vв(nF@F@@0@ur['@OrF@vմF@Ի@0@0 m]='@XtF@H@@0@Uk'@Sd[rF@JK@$@0@_*xEUceOrNR1|E'֥= E;q|$P91v %{d?*RI&쳓3$1_e8yW#\rZ7k&}Y֖'#ViS{`:v}BU,fg-A =S~pUt5"~[7kAe"=li橍)ӝB>*qH$hB6O"cREqp8sMgV} _i^&8*~<~,U on 5Rϰwy> O8b٨YfAg,G49*W-ad{mo>Wo #FMaF"xy!D`{mbPՖ"X,vڞnsMrV>zFe_]wg5uҏx%bBI*r3r?juaESjןn"rƩPQڨ/:^ʅW,fhrzۋ^mķ9ZdǨ旎oMd0Pw K =5(.yUwy3 b( ڷpԽ6PQ:V8?d=#MM/4_oj ޞ֓]sjQ-M֩}c ɴ%#.sЋwisao6v< ^J-&2]bc)~kZHx엫-R ?0VuX-@O &ENg^6[wbyP{=h;b:!ڂb j^ck=F~5YxXx>!xl9XQǂ\ &Ron):ӗTa+D4'' @~&xOPzD-lƪ7uJ g;aQwtg?;R9ZFk qP}m8ֲm,2qdb`./er΋ggE`@6Kq\ t{j-}T1OY6?MGf-riNYg쿝+ ̱ﶪTkAE+jȃv6ԚfN2HLmE{ ;.J]aDvIT)88`~J^Mu9Z>OaJn%l sjMx:l6:ޣ6*zɼMoG'(\Ƿ/uoV6P~vk?U%^x"EB*n~Mp'a'ą}DRJF"UG_e>l~G=T3Z >Rn6Uj}DtAo.EoDs禱P8&YMT,9DV5Y@'ۋrVആ)gDiv-WTɅѯ~ESe|>V(j(]HOn2A1C xU'ODƓv7j_0*뿳b[P#?A'x{O̘{tƂb2ozUk4}1e:xL~%H8ۜb*XqD{~$d<9Wuv,<:s;E 6nqXrxo ԏK+\/T]ײz5mzj`I/r:ÉCQ?IE:5Iٖ} ;6P )~g>W@A;m'띍G;Zs v[Ѭ&(QoM/x Meߵq;~;E!i4h"RI(4-D*K4BEET.p4.őD眽gC3f߷y}cяd޽5qKrNR1q /a$Xw11+ qȝoXvqmM^Q}V6VulrQ=:Nv:WU|7"VhBlbMT5*}ěJ]`e667jgʥrfn_3D]|$qEBhj] # @ʷ-k5% [Mf=6=Iwjbt=ګXGnaXs;Ե.S{j\@U|g*=;lޗx(&xˬIo̍DF.v绹+ 鄓zZbTN/&1{E,M}ݱZAֺI7Ufa j zURe뭅du6D~PC*|I*[g\_jڳ<ӭw ZG@ ^;,VPzf5 n _ّ(Oi(Dv5qx~@ɾ,GIEBrln2c>.'`o~OB 2RGv ({sU[/v^Z9ڮ] pףvv#dKFXm}Zח:WoKgp}6~QJf8A5&S5P :X$r< OzoIB.J[AX[:l텓[A!;.YllCaQj;[$>vꆶv6^H7Qi7}3fA*Di8g^퓦<:[Pl9p)źr5QV^3^mc7y67'6)f%;E*tty~IҞ*z"]_w9)WA:q#i垒 ʃ_4ٜ8̈́M'= *az:řyqYwQ 868k8z>-†~+u}Ǯ ౩8pi,9If;N_>c1$w]W]ߊ{E˹}. [Jz'YIOsS+ӎ(ie:9x~gΨw{4\5Mjd <`/@!jvs ~HYqݞ:9.d:3PȆrj8\WZpjӜy 2qwVkGdOY&UkUG{zxgŨD w=Xej:iv9%;n;{%[9=ߙ;tͣ{|z_9󬹄>c:AX~mXpYP v)c.ci>G>N;pc=,:N%WN8:J[ߔ:J+q^~u g?Ɋ{uQ]g|qoj'p(CdjpGUp x`ӮN j*0+eaeC+34 _1N9=qdNHӸώ9^y=HΡ_{1;Nj߆zmڕ N>i[xՙyMk3r!JۨYu#JD%.JPRQKEso*KJP9ߵ^}h}8˻]<~ϻ$Gx? bGb8Eh|)ĕ0#! sÕH,Hca$+:dpclUfjCLwERo;loyjkmTOY`g)Gb[mO2i%tQ5uiDLe޵klk/O|iɲI%ͻTYWABHWYNF󞗏D#a!HPd&a2,2VZ5f%X}n#FglRI<`͸efD2߅LZj35@m*zN7h2ZhHUGK^C07 N\-/&4I7z0?/„ ۱1KBsHw/yab2&ZmݦtfJۭm:j.;zۥ6f~\>jZ`lUk y[huvH [U_٩zÖYZgE!qBDԒx&8Ib3I2?~0g[= pH>6AY[U)G"1DC'mhpP:[Rw2PZc.*I5͵ݬ~IҚObrd} Eg=;kݤY{Ͽ6Z,KPSDL"N#WRˠV _9||u kHD>Pٻv_=]"K5ӚEh^Mj19Ԥ-2RNYIo2[0#x:m|F.ǰ$S߃t*)C3XoŸŸϮ bϩja鍥Ó#jvCk#z }f-jukPXz 5v58szE- 9hQiVʂԱ ;6eiFtO@2y/_(S.{5&GaU 9]biUÉV wmЎj+o:;.lpKpjK~fUWp9KUC?Ym0ͰAiu*FɕBJT RV{N wHwZESFDE`.NWC*h|N&]hREQ&¯KU]QW䵶fm2́c-"lft>g v]g *TY$SXooܘ!; ۆ#9H:p?iڮ\U%11 !bʩ{9-M-(0Nm| #;bY2O~D}mFzU|vz<:9|-pm!Za @>͉w8J";Lt<Gn39@LI^ 9LNYm%Z|6O-̿~NHթ+/{{z=/p|9qr>.ړEպ]cv`Xu눾_v&옓UĺT[`Pg"}"6o,1feFjab"XUcn]GM3іXU،ih<{ԾqDЇќhAsmVcqmvgƮNwg//xQyEM ;~[;:0,= jm8>`b<Rt^w.;7jˢ/o¼t;VT`c}ՑAi]@/SIcz>E5,nnMtDU)1/#,JeKRӝ0krUƍS+z GQww۵^:Qtܧ}Fu7(/VS?ptխIAg@CVϸk%Ynqio `:6!vO;2n1;燏:INebӛHm6+•G@kDBudq3Z i5`jX؎Qu0ZV3xƸ3 Js8I,?I5vRONؙ¹VApM1yEJ%ūPPcN* P/uN ЩjD̦9q6]K+6lxh؇3z i:xnK'UF~l+IO>?u_^^>-pԇyfd*p{*4yUYHyW.Ai)k)'P֛V ԌqO}U8n}1:yf;&hK^ąUo 9^E(|lWCȽH. t~TBcԞ>|vYB=t.;CM‘%ԞmԱcA;>^-ZodzYq]Nk~%h޹E\+7ӯ:H>?}JT8&PpFp# yPMTvVUd_6sZ8!{&:*2}L;o#my2Td3Qz5]څ.AZEaxݙ pUǿ^H&싂BJD,. .`2iDcZ[ZJN20iAFMŢ,v aG @’h $$y^{KHQ˻sν߹"(řM۹^s>k;*⎷K/%Ù NE-QEk^|ZBK-ZS>z[NjIj}jӧ\i1c9+B -ѣ1TZ[Wdl֑V],I;ܻ|S,~2\WOKH_9b_|9/HCg4IםD,&x+IYă~'|TnP,3OX-BqlZUX ubp6c;*X~r/*(0/*։rISd8%%AK<)~Mc̒ům(\љ&ข*^Fp7xDG*ŧ:}nv >Ê}wxfZ~,0f䝏h$j6c6:P(Y%S)s.u\9 |xI"#Ya-aLqV,<#VIyb.7K!RyIvtN |u3j*a8.p% sU {R.{٨W8˺7זްkDl,oECdLA`0P~.i>qǣ|U<)%N1Bȁz]z|  >LSuFwnb|HeL|S*zw՛zV|Kqo{{`T#1 rZG0XO;OON΍s;ZFJah̗$3%y^_)TLl1lM`ьm!_G=ۀ2 2 kDOi8HmчN9BX_U\}Na ]a 'uFQV;F&k+YR'$o= 9iJ-xUF1/fmajTǨY7i)\nêƻn#xWՃGi+{ aV f^lNMo/M$$%Q:CP(لa{| LOaΎd4i7x{=2gG3UkMW|FSҋ[P?y?M(W "ݮɄ8T嚶#d9⏩Y #΃qU]9&\bT/3.KFpZ̛易Ìg |U;ua`yWJe9'ש,IҁȄtZ]5Ndտ/gjwIbONhqԥ m'g@AЏƌ%k` S}EQ] `.Csvv,cT`'&Cq^"WD?g펁S?*[;x9!2k.Xgg1B%^;yT ٥:/|6"sR7QeJ<87Kv~JQ6bx(ѯQu sJ";י Y5덟ei8-;˃ dZY*Õ!t?0˫[yRܻDy ^[ޫ v7'6g9%w2t=8Jvmery|h>\&CRњK f qo9;GxkB0*8{&fm`(,u8c]g0~)Q=ʱT#F&Q- ] Bļi}}GWMe8Q_UZpx T{=8#ð 6dA@b,(RTJRh,%IcY1(EEA5 0L{^0TuwϹ9nxKݘKJm$'~V{ƷHYk:\ִSzO[*_ 훶F-۬,+@kiw,j-U 953gGulΨDuB&[YwHb$[x11.~JŌn,wiw6ѤYW2X u )MVu˷OUq]w/EuoXS>v9lƎQW穝!ܵ-Sk@*հTzL?xmFdk>Qm؄WG?*g̶ y {5 f4-SjY]ۊF&wTM;*Mml^/ю鬊:Qk/ǘe(~VR]4Lzn/rO 5oNJ*2^uzP3 cKR~6}^tkǣ .;̲O]%ǥtΑY E/d=j? {Xc=a_#%+W }P]X?4f9j`ퟂ7z\ a/mdT(tNT^H'[\FآLNee =#KX@6dL}tKa ir g6TGs@G&~p+BGk a~w zx~`o^aaUd#*VV埾ʪccVTp_< [/ߏ%Dۭ ù`XCYG}skG䠍?DM͠ 6:@]5bZ1k!օ磜׀qR3fdU2UqZ0+h7G:ҹ"~گQQaXXO)Nb:}; }nIu3E1hzgſPMaw 4WF'uդؕ"VKBuTv*KE V>Ixhv \\86 *#S`%Z W~OA>n)yȲeda~3Dw->߃'D# ]6k mdj0w[9su'D7q?B?yIr;H#ʭ]2,&+%r9@.=o3/Wx&o:cYU=9ddzٕ\n;tj"e=fU}ݰW9 kDT\JC;w81rTTBu4A$r)&1'r;A31(k1[g-j6u=^OPEĿ5jMMsF۩"-#mwls41੖|9sjkb̝WhRY sUX;d5#ѦJ~ZvFbKS=O' AM%3ۈh|;1kqn -}a\-Dodp7W+dRg Uc;q2:$TTs8h6;X?G J#g}ήsӳ 鷟A}n )}[g\-SNq:\;]I4hVWy)#i\4AeXN.wL5VPc&]\뎠k>L=i>3Kg3QKgC}\Cُ`X 63@S;D> ֚Jrioxarray-0.18.2/test/test_data/input/clip_bbox__out_of_bounds.tif000066400000000000000000000010251474250745200254510ustar00rootroot00000000000000II*   =S  H" M!@9Nm$@Ga&$aE#      )#     pa@?mtr@@TXAunnamed|WGS 84|x۰a:0X/kӦM`=,Drioxarray-0.18.2/test/test_data/input/cog.tif000066400000000000000000011232311474250745200212010ustar00rootroot00000000000000II*=BCDES v L VQp/M҆ NEAREST -9999r@r@o8AZDA#       )#      =@F@7@X0r@TXAAlbers|WGS 84|=BCDpE`S*nU(2K7.-9999xwu$@Bҋ&M@:*Q4E; XE* Uz=g9kxxw30wٓ|$ũV9}eiG TK-LuĖh^ S#?5Adʭj@i.?FFUWQVjĘ2>Q 窣3ޟWq"YX=S.G El1j :{s*AߪtZaK%'u˜Kbşj%6gmf聊:`YSSUU;e~~r^z-U JV ?U]Ѹ`auz`_7_[>*xt=\i%4.&Wa~[=u*zF}ڠ[vjk6%d'zh+S0ꫨnkT:u]'{w2i=A_*tm^g`==m4٧yeKUݣ̾ T#jvvz^? řxrG_?%CK,OtTABt(}@/aylonA4|PC- {ؓbGG)a y(5`T'j/68&BYtA_L.0vM]kmRNX"dCOYO:z/u?rW r]RYW_GY*D6sETA Z  F]/.0N:ꭀ9y)Ǣ,&ﭦT+/,>`@=v `Ym"=SaoF~Οj-~IGya6l?L7oSxg+_3}*f "F ۭ;+~ E^fہIYbjNHs;iOOз*^;o^N͞/9z犊y4(_5)hC0~~ +wBWA@דUJ_0 ѭG2{_ VWx>Q{윽BOKRFsOr?W7A>VEY39[cmCCTu=~>AAme;Ǭw ޑIxgSǀj5ޡ>BS g# ,Ut+XK }3zګ *Az Xř/B)SS[=MCfD%#uHmgz<nh:㴌(_u(}[+/!n` `2nzL:o%uvi_S}?(mV -?вEATmOఽ ؐа{uK4Ny| :G_@7'{Ly8 `Du:1F_G ^E'VG^\cp}G:qߎ4$_DY}peY;tFbz` %?'&.B~kgcU `;&:ysӜ?Hs0m̢Lڹ ~w2ࠍz5WG}xbu~XfA6e4߅ 7/{}4k?Qe~HUy|tr|>\`KjVfmKϙ_xEz`805LEYZ2Sؒ ycLvUS7GkV{ޚX.&6(hٓ93CxAQ{75XUZ7iiЇKFSp3u3z}*p茵&STԊUmMs{ZG!b . Tl οʂ&սWx>> ^fi nKu< ;ֻ̄0`k(9:6k7Ƈ{f8H`UIC.QS{ { Sߩ b,P-^dO3]/IFiT_Sp*]0m9LԇDە7Ӟ.YbE3+o-.c}~,"ډ=R&^oKVg"5n/hՊk['pϼ8 ϾRRDOK 16`P¼K%R!(x]}xT{6/CPtWo-uȎ [dWô>.>aS~RsyesF>{EX5yuCYlM\Q|D}#8{o£v2UV QSGm;u PCY#]C:;WN;\Bm*p\U!]vݲvwʲ uA+MWM<7ܦULI q܎IjYaT[at{l s֯@ϱ6AKje|z>j_BD=%>o8ʂ߫T^7lcZb?\C Լ7(6^]0pwCs5s bߋGXP9i1*(+( t;k,^χbXK( ^p F`At ߻ܞdrXInA?BLWXCZk4dVSeLm KB /'m`6 rvHbK}=i4p#aUw ^Udga?@ýMTer|mcm%ĺ,0}o?ۯM<}c邟m,Ϙl l:-R`1_Qu Ŏ˓+ƿi@wPqʼnj*7r2l 7{8 ('qޱ{^U B 2aGU'w-w& g Oh1LE B :siF8$CpZE]A>WȬ ڡ 0H=UouU|*<(*FTN2r~]`6 aeLUJQ\H/G]CymQY=~K~bcEuf~K9>A{ P*nwDk',@-WS5+= I6̠*p"ʭ7VAö?\8O%7u?U3,?#aT)>MdptB aQuoY/Mg_:xXEG",lPw% :;WcjFQcZp1S? }>E 1U'tt]Xu4,/i Rs JQCI›>kgu/>h Io.zLex"Ǹwk:;5-x,9f5T7ѥMhwqC^>*8}sfكAؿ2f̧ęoZ|%m~˾͓Oe|^"ʀ~URI=J~= 節ZG>D9VgjJ{4݉eDUYz_U_ -&csس(GGPC7m%NEz9v~R yR hy(<_)\O}5 `7 `kUU/(!LWɾ|.G4TL>RF̿&3S~#ރ,D/ԃLǭBZ/Z0W,HUF=kLG u u^A^L ZOy}gKW1.V iM\wNWzU??\cT7ݍłʚ|B :4P_t cg&3I^-8I j-.HO*yQ/qjUpTN+9?/ʯ ]@0^uM[}yOݟK6c?E/1^O [_)kj5UAQ3ORJD|+|Nxoy߬^h; Vk {n\cc„)e7tCQq0:>O*SOX/fԮ/xa1%*CL+r0%՘Lx6.Uw./&%lg .~fY]ܧdd Vg9쮃z[j+kTpY7ߡ@cb@edˡ^$ QvӾ:=\]Ľ%PrY1-|o%h!0%q/[1x=774cV`zhv[^!s閼(QUPꗗHRWh{UmOQkN~ɯYHo[<*gnØ'%LʢQkxogc/{5ˀ_otqToٯs`AvP JVƫ/yG[byގW3!n̠~NTPϫQ E G4[wi[MTIP:bKdlIGKW%<, πJQ;l`VM=Ym_m%:xE}4\'3r_g'88xĎE9өIrU|I>9uwFޑg2?+~*'m\I g_} =#; ΃y09L9\Sk@mӫ0a/-*Ϩ&hKPa_Qyu.5>vӓșN{-lnqU˯8f9,'UO§}KtV'_s fkI1CAlk&\[hșuzQ|).To EyRWc% u;Ua**c07RCmE &ԛxvM-3(.Y#4Y/:k܀LmQU+tdF0q=%jx3Lg^]hNAwo AIoUqsTtz]y?FpwΠ.=ldUd3csU"(F[ r:8W=U.EZ_oYI5k ZUn!ad⟥}&Xt}!^Ts/ƿq"+8ɾA = 7ʙ5^d<4:ck{ףk}lk٬/,z)csV_OP'vqUosP^ O_-fn<~/Xlo.݃S ή?* U'StYkZJdU#ך5ӯ-dw3z_ëxh@ya }FkZ|*BZ9ѭ1kCj)VvX ["Y7dfqs?{.zyuZuEWfn* {*x I>r˻φ\< *NW{v w3=:ej\1/QK*ge$cٷtWuZ6wMD jwiMFXQo}jqxpї(|K؇zV=Uz]T;>PWPpՉ}.giVvfdh~c_kͥ ^q4>E{~= t +W{g𾯃j{QuYawGL=yU-f5?'Pk=Sݲ;ooqot+(6:#/[~4CyT/am\E漘hs\l%mqT?Kى)j ^l Œ4lZj|=hk#[{lM2Mp6I\}A8sYEm-Pȷ^m\7̟#Y<7 nY`ϡMG-&:c?M:~o;QOr :99znjރ~ pt}S%r=(bWBFYE^z '=M\]T@Lg'/2W9g@x^sx墼d>~8t(o2-ud&gզeOyN2Q v{{"c eQ2-g?Wu"~JQSTz? '(gB:E{JǬ4N{tkY>@U]ǿ<{"%D6Hٍ?]?liD$*J5o]d/[x붍Z^'鴴;}‘&RyϢ<ؖ;]F/Ts^ vio?#q2nY9A%ƴΕ ;RevrS:f]~_|f{Άr%7m~' JC>G%WՁ瑋=66*i]TR5[y_*>ú]j߈B}p,5|EΆ fj~B$G-ge~ uw@췋87U]c՜:>컴̄e(|Q~f~ NK>o&|׾c/-96׭!߿"`} oK&:;0U{o". a'f-SP:z\n/ x2 t=]>~`to)*pY}?~aԹQQxRpԿaT6b-ʟG=:`!|^u'GOk*y觐V"_u>6}Nı@Mݸaxmyx]I"Vnc#x'^lML Z@_S"p.%"G7TQ}z<_V/%wY$hm?ފ n6bý#Y䜉DtӺU񗏜 D; bU_'2RNm7HT (zί b-ns}~˦F`2&k}4duA\Txjj_.G T+JG͖g|OrꙘlq.4N.*AA)V^oxWU]Usws9$APDP@TQ@$眓%sЄ&&g38]|{U[o^\gn;tvd=a nl%\(4tO}fS :GcVӦmdݴZ&+J;VPcoZk=hccV0eM&7@[:X_d}l?V۵ nb/5}m--wgk \GaZ.4#7C::~I;PC}!]l- [IY.g4.& y%mStfФW/#YTͯ;&WޚYg$DҳH_3UЉl{H{k]G%p@m=\}וukí-Gon,;Wy5JȾNWVXYY lul<-"6VSI Cʗvi|'vMLnH%>ZB[Iw%7D*t:J[Uh_rt<ju?][ZOvQGq-C,[[(M-h_-~\gYqώa|4 YwVJ3=h"8/(g6#om?4ԞHkUjo},M?Z m'$ݖ-\5KfApwc_G#~i-܆{[AE[-ZkMfṶ }go8zq9R)|L̺:r fptrX (?ktUaz=K )ɣ-_൐]l:wgT:D|r-fC- -a-]↮dI15mXjz #=w:Вhզ`Gm)V?o_.k--߆mR@Y6@FHaArK&w\bWs >MMx.4֭RRN3ǝ_/uXftO'+os++=.׉fvEj{_`f+MomN1'olE+TƈLXL@}\WHR.Z3˭4:DkK6t A.xm` +VVBXi*^j {cWV RCyX1"?ՏAbꢉe-8릓`bkI>fadt5Y:8bD`G\d]|1.;`Y2v\%]YO`=TWr3B-@[p_OJj `B}0(?]lMeስZvëY61*]9qvXۇn+?v*z{؝=D?5~5 ̼|OR*0pKnPR}_zSjh#!V j ڗz^VKK f:zA~c*2('Y@}ilC|1aN!ݧҦYEǚS 5 `-@opc+P/haVV/4SC?j/d9ho dfd2àyܒƖ .z V㯩b ] 0j['|X(֣&'1"h5ز+CO d@kh4uy2Zub9D3cM':v Ց׵"BWd~Ml"29׃2)klUeü'%c;5}[FߴJ~zO C~}3rVß-R2 ߶S-X~B9 _psɶ sL,9zm6N’;uUȆFW)uDd;CW.BN)rk6[A~7E;>ޥ$)a):ٱ,H xo~qhWkx,,,FAx>}KH 6Lޕg_S7CoX<80v}Fl_kk·;6,}׏#6NKT3)G ^HtY^ ;bD66ثct9ez@Cz=RuZ'4E9 |FGѺCgM۲o*Jzh,0E7FT4uЃ#؇=8zflC+E:>]FW߽~F>yU [k,N'ɉ퉩mߑcw,}EKo`QLDtvլN{ߕt镋ywiY^ěs8'ӓ`نm}wP%2V:ƾAV$tKW ;=ay7ևލ7VvaP#t.)ZɄ7 ׃>Kgz}Fe%k d!R `+Xi@ 9pnpmѻ#Ȭmf|$̂ѕ~.&ޗ(-CZ<Ȧ,Tҳ`S"Vu MV|רvʻ_ĪrZy`6= U ʁÜx I/Y, #ϡkT?muԟHqO2Fy >J-C76NB4IY H&$6!K:n 8z58GQ2ˏᡪh̫1]OX˞4eP)t]G k6}dAMjS/M">HgE26&$w~fNdKJ.-V2 $tW:-d`Œ̿Hңj@6*<]*]~IbLoҘNmx Yr3Q5fn]d225%6wavXRK<[/RC8/Jʨ@bA+HXjMK%=`H6b=){5+m{e {8kMnnX;Φn棧<*[mF#j!|gw3ur92?+uV4u, e^o8>}})`mg%fB_];NB=-yWN*ԯhz}l]NY)==n}HdGh'T.YjMw}[$/`"r]w%$pS;dP:}GW[ [oe#>uȖ8usV-2E 溍[M `QF23ć'CիݎLb:;PxkVfpPE1~CwqZK7jݤ&0dX |^K ioG%zH n5r2N0WQi"om6TXT?.}@KѿgE *y$dfQZ?aoNr4+-[v _\R飬L㟴G_LUEC!O˲GةߣoQ˓)ȣ}bකh1})ގ7YAſHG]>C3zP1e#+q( 5 4_*DʠZy"ȀǜRYI*:F:ޮ5YA9v(|Df|}Qgd 'Ը;2MvS ׍e 5C:|n !5 #ÄK`$]W K o?~7΀בP1k= {7%cwQ#1w."p^iD1EiP</$d n!>籈ΐ(7WKkd"}Mp B70gF\[{"c%‹!y/B$,"TI)?W6KaWK?dP@=Ng3l F^VfXP$|ά>ȋOo?r~KiJ`cn8-cn7' %|g$Wڠe s+{fgDɡPG93T,5^yМc65d(h{5l#h޶ր۾5r^P?<5ͥ-&3nH;jO=#u* *Ƚ#uT{**/'4:0hsx*4Dk^Pt auW*YAAue0B|=H5oamgzRqZ֭@]d cԼ}tKd@Sg}OiuT$ta#:7p iAUi,rl<C}h] v NvcAi's|Jj3,)l3[g:- ]67˃?_I_at].zRzv"ͮ wll:zG}K2&izқW=,=la~K-9ArF]e>mIsج }X)lwewb F0q]^MjIw 2 #7oK:P?XňCO?h -r( t\1dV >?2F~6`Ykl@] ˈN91 *WSj~3=Y:ji;,a0Q>Hb1ߣFIr,b~b_Pt䤟HK/ge# usC^[?QwU@W"Yɷgmc^s++ SFɾ xl4p?B'NyU; (Iפ-="R!E}3k<Z/IfQ F»Lc_s bg@w#4HBGs)s?j3ݑQD;9>/[ ? #E&$Fu=B6FS߆d !lfZA=zx&݌BhD?sV<Nȭm> 17!/nΉdfW0^l3sR[ц jy!fIMOx]|NqW͡_kq51qx`}l&/o~{HFEK%ѬHVS{0hsw^Χ݀]RtV*:,)n(YwF*]nOK$[Yc˒?2ԖBBt+nKM %7 #! Zhf;:wms;솏ܰ ,Z:cq=kI=Ib5qJ$!f%$#Ej6vY_Tt?j"[ʓĂ%dulEo6y$mx FQrT}2%2U,t 0H/:ܢIwyw2us}Ql]NaL";Cn?F{_dC,;GE1n:m0h/H]?v$A*O]_kAP6ăS;IaTpf$r8HC}RRϒ l+L.%u\|C?ɖ6FCi=A|ݾYnяR1r75ѿCaЃu% hooӥo3ȀeT[A皝>%\W.2HsFĜ_ҵ AsEQ:X]HVLЊt-Wܥaz6k_#[AzVбVΡtpDZ栗K}-v`i𱉪6% ߂jw %O(31ݦmԚ kœt2QIآ ˯wUƢNxeN[51Ire(oo?wթlg1cakoY<1[i,kڍ +|zJ^Gct ՄAឦ3= G+*cSɛW\'+Q@nc[c_}1XϪ^s_az\;/doKww ѯEl"3?#ð ŧs0G1]l78 Z*4KFG?H .=͏B_oLQu#`0rSJQXyz3I'TP/(TvᥜTV,f|0+Dڋ iiZ*wݰ5RPQHj?-`):ω=JM=p'%MA[1Ԙ6Fț,6ܹ*笺%k6Irپ띧(:z~ڸTdA6?`6R‚x3gȪGRƁ%WoRh6AfD4[b-aJ83lSIMؚ559hcWIP3qĻVg Á_]IFjYzOD~7yt~S+`];l<%BazDCb@>Y'Z0nrԟV[ b}e(@AhhAF"?/$F Zo݄ cG?aW u˭ۏ[FqR6EWbd9yqL1V&E;E{Ha]^_-g}cќTdppg7Ձ}O? _/dff!ՏAGu[Sm[8-아1+9_/ aKV u/Immd!(ze˦tqzI<׽DlN\nܧ#J3 ŌL=b*!7_QAfm%z;>΃VIS+uton!oeu;D6tk)ȴm_夻Zv[nBVBwtI <Q#/{ 篧ņDTw8ʹປT: Vh~-Ⳅ`;]%OxAa~ &': ̘+d`2nUo9QNվ/:&UP=/d9;|9}߶siJCC~~q_FyVnѣ.R~qsg Gw,-8$Iܧ:h#:qr8Y;}lPWA.'f@U~l 'GXll'h@!; Gk@裣fv:9'*!vґD_ïΕץhŰsC2-{Sslr6wo 6[烏"4mӡ FbAgԚ(l ^N kݫ:/Kl @mz:}ij,˂:OˑDm<^j6}h FW|fGC>Lmuan̟Ma` ç]-9oS'huT;ijt>I 8 k4-C@6|`|5œZ yJ1_D$6RO|+?O[ɀ(Ȍ#ģc_?ϤG0;6 ]S/=tb"t㨻}t58#w_GG=zʹ*D&c 淌,?A: Tf"ZtgTs"_\gFKf `"6f%D.-_.z{°hle0qbrd/e]D|Xh rlKbAS YUZI,…payY".ƶc-BYs0٭ GrNo?w.CiI_Nn>ʤkYItvԵ(ز 3K`̿`G]塚8fbc$?uN]"qOP/ _v Xt#_c'~㵴zʚhC4x5hno,PӐ^'Cbu/3Dh>RO! *tKҾj-Rՠehz-hD5~hԨ<ԃndZY6;F+o۟^KR}sY@ɉTlﺇ \ ShWwLZkzѪEdu `!p5e'"zr(YYԾq.-2yҶ'YVFm޵mS4N4v/w^m!Ԍp|zx<2 mwMh鴼KcǟF祳Mu|#]_Yp0V2AB8_PNkB }d%^ome@cswቺrqTzt-㳄X;IvB=l/`|i "ɧ1uf@ý~8mLƤT1՞Qw"jEB[b+_>^vWYrLzm/f*O-PEdvg^mmQ@gnlLP.N<O];=VIew6#_1Ny%# 1hhdr[֊hHɠzZatZU>yD?gFm߶?_g̯$ 9GAkoPnkkG$pV >Øb޻?}F <&j~j-<72CΐW(~:m&W-9H]I-*e젖Lk62ǟi>.c+Օ?ȴr"*D$2j-6g}w6Pa4K [\౤Mwgo dLeqx?M)r,:N$uԛζU]Djnlށ3CLdt9Ăό0^|O#g<k@%M]pVst<,,ꕌ_K Ǩu~yNNe%"= ,Dw+ D4`2ZY*_CB׆xG "w'īCȰitAvrxN_iS/t4y_㋩ٞ(`6{cy?cBXi}Q%稒ۙ_~C[[w*U}jOAzAkIk?^sWސlQ ??΀(/sb8Id{OSoə'*TL6 :W_[uvDa%!F./"SR_2$W+~M5,T%ֿ+ޖvtlw"z (mS_Woy!W^bur_Tuە//*v9YX=:_Yjuc҆O)z.,z&,_ a[PkƶԔE .ӫAE3@v@p0پ|%c^&R;Lڪ?KW} 4Djd@λ;\ Iekw߃|EoFt%OSgi!ň [MreqtQvճc࿴\z[zQ ҥԔwI+_}uzK Zfk}XyG?E \nD_WAm|dW;.'ÿEq;۴%GLN[MpQK /v#'GQطOg:6 ǩs>":~ H*Bz-Llag[&y* '7W<)sz{`'{1N>EKIX-[Mn]Caܫ0,=gZOGj9zq#SG୕;>K?HbtU|0 6jKmiaFexg'9F?<<.ATDz󓫦sɝ(GԻ2RS'uLa뫼Ű?9[klH.[Fu;خ3jp6)|J~JO*FYtbws^)3F`r 0X ֘璧cd1(w8>ޅl!|I `:}>kQ{F:H_2|,}J"F7TW3uDr 'տG*j#@=ea|I2F;R>0y>߇ȯwK]v1 ▍Jju_ћAuK(pfShwX eF-^&_P+_P?;xfK*:Yi(a';V3O->%x k>רl;ȯϗz nBEJ#GfJ쟋*JOPbY2zT:zFד߹,E1?~BdqwpNnql`}]웃QTT"5p5z*hU+{<$ySIDpe9tk 3دajb<9@zư?VMc5>SNs@K8:hcnWl7Y5&Yl9ڶ<5m܎MF7"|8j8%~ gެOߊރ.\ٯSQo;-$`fsVJ+ lWu,K⿜æDDfkcŰQuy%4d <E+K]^$¾hV;r)QgҖG_=Ozɉ跟*E6$ ^㏤(!  \w&/cyDML}ly>FROɻ룦B8|:(X&8N~E{ }KX"86Q]2 x sz_aw5cpN2"DέA BۉOagoȯҞ'a2Zb^OQ;X<jPd >o8V8(ɾ:6be BԪ NJW~`ě;9|^pILaEK6Dg\+ly" ~9UWrey,j+guQ#<6⡒~e YX^*|z3w b$Yx (i^kJ/$aX >o}v>nwN^P/2J4̽%K,؄"@sWnc";l'[@06pMd%JYO8R֪ Q׮l=YSx (b4ߵ-u )x %r+?`A}WKʣvxIrb 3èc_~^ * x4#D^F7]?IU}Q 19\?SgV{<_l3e3} >͌ǧ0{k3Qqxa{~5N3.#0*@-3g:'}BބL'Dø>$cTYlů:þnL5pO|VaU $S-(hnbmؼ`cDf\Kl ygSlBǫVei/DٌW{OԜ _ߴ*!,]t&کxgfˆI:zA݋Hv`yL)k ֮,}.#+;Vm/rk Ίz:_:&ԏK8|VjzX^ =^ZU@"['ɣ%*L (Ɯ*é?c7TB}$8Z v>6n:+s;a 0SeNz O V/> V].f=5e@b~WA5 gL5c~K}2>Oƭ;={I4J6;3Ƭ15-y!o<]Gm wc*w8u`؃h(f7>`cdWkkiv:QHNYO)=ű;UԶBr>hȜng\4A'V@F_â9:]Lɨmɩyk/\~#|]|v̅|mD%̩+YG .<ߡ+P߹/v8l8(kQz¼92Zu6Up!~|~ x%<;R拯9"=lg7'SQ3\jdGoou5 ɋ+'q ;L$3|]!u^Tc|r=!(IY'V?`sdzK qR"NWnķm<7{6DӶ ֣O_/ԄyWSlxI/mK]2 jaj<4"kȂxbK. %i_F0&Xy (|-(C +Bzџ3"ॐ ϑ_eqi]!iAID׸w"ˈ B'n:e?xOZeX|/ub*S?ˉF)k *o=CosPWzoQOKAw~jID~ۯBWXA0do/k3IK}^vy6_>$瘩einj6CUƪ~oz=eC3Oڒ<2],b#bvKt~[OIut瓉X41o י`e~jpϠ00W3Oz4h\ `fƁߜ#V"zX}- UWgK*}/hȒTL{s~Q }9z.ěyo;_kAwYщ: [Θsܯ_=Âd.*d1gJt0g5pm`9D">k0o}rRVJςlxl+;凈i~N2qYG }#|W'Qį{,d_%[J nv@5<75W%3|vX.=x0FsTX10Pj\f} ;? bqfJzHp{1 [rt| N2tk;!!{WX&%w۾ģ*{zT]`Cɽ́:%MPS#˥.Q~:^I~gı`ɾGӆTԊZ^5c.~Clg0CmNj]{7xWMW5ۗ|-ʘ2J9%29ҍ,SX?P=`#Rr<.+e7ow(6{ U~f,ȾF :Adf}FA.LLaάh)_KH,:0 ji)~O;}B碽5Ot=<oS |?N _ O(GeL1B0J}}þ`-u\Z2b ĸ,OC<}2:Sh Tp&un l] 4 Y wAuԌwF-7)#wr2jK?ҝi@_ϻvS9?+&XU%xa⿈9fW+=~E|[&UEUδ33ӒNU:ڹ:^  L Wヵa^_ ͥ*'C%ʥ 8wT0~L|KTҒڛc&Q̯ǿV?Z*S@YJvz{j*'9D,y{'qa"Ad{g6M T8!}9< cQ< gvccZ:qxsgȯaK(y{ʈ{ Fc?xuu1UWa?Dž,@|Qlj5M_75 msF:S6gBu p0ႎepkCXlDn9V}Ocp{899ϿvIẃ3~T#2䦊1{bFO$M kzЉ9/;VS1L}UVM}"He z+ ,z`i1Ƒ PJpƩ.5]fzr &_>XnZ h7o~ո =e|2 Vm6\ pYf]:膼v߳S5hnzRvPQ$L+Y Bk- شN;f؁l^4lfvxdt>ZMg'>Ҙe(/`)݆t2B1nw'xq5 Иp=uaK߉P; jWA*_pݦ._Y~,j*>~sa?=87^5}2Px_rA+Ao@l挝Y0yXc?YD,:Cλ#Xď\;tѶoqU#h'4@5EʝLՠxO }#FerVVyWgǠn5F̰_b|"uKBDI_}҃y?ZhYc2h͒eR:>uֽ|fːһv',gt1y}WIk=tle+n! k#Z;]q_V q+?fY9\l*&/#w8 w.=pQP9Yi2sѭ1y XNGyla}VEϞ*:П%7zHE/ =ؾ]Hꧠ2@̾j_u8"s5RoҿFhoz~ [8o|ojɗKl)A - g?~I)N*+傰%} x]KdL&] zG}YWy)J="(Њ^koC,<8P_RwR͕t@joK1݂˴իlMG%K?=ۗO@D (!\K`:S~9zUt/ϱr~-3t̔¿Sn^OʯzނhFW:^cOތ~H|'?FŲ_*Q6s"t^}~C,7NVV? 3,zCXүtK[='Ps7@t=e:l-/d4`7rB!\eYI~˸Q{Warc`z\vVO ;D[h'Xh| ^, #AoKpCk#8Z(O"vi1i~&/\=ԘO\XT|&-ϱUL w%Z~ $rrXA|g+^7M|6NvpX^#İ¿VH*tsy hr;bMu4q2Lgctȓn_>"rhO2 9,'ԘO݊78ȟԫ/pn\Dr?1ڽMRsÈA>mi۱[nE HYR.r%ph79E!ԘOݾoHHD)tUĸ\%dzХXwRF~N÷ROŠ!41$F)U2Ϲ27'߮'F_ 7z=K'kZ. GĢNYHnOWY?!3,o}+_yYjM5SO ڰBom%S+fݲ-^$/8oH#ZF/}:hd uKXzk F%[1 LFCcX&x~z'~~=1G\ C(g:Q<^&h&9&O>3q2&r^A^^3ԘO&ý=%ZM{;} t }2uUFlt]J>m1oF*˸TTFa+K]XBm M + QLmD[`F=hz'(#OY!v4[wGzs <0dO[#t|+0 MD @%5ZC.R;ӯhMoe'~.do< |D$U.XuC ԘO# ~m3Z~e}=KhXwD`,z3pIs:F  2 YfGc TXw C: XV9WA--dj{=t/i0"^~n:h؆"Qu%m'J}x'Y߈G&S\LRnנr@w18{hN ? g̓%7%T(q) v9u|I]%Xٺ_~R~r@s8zGI9ߋil)C4́ u,bvdDY1[\w%}/:&("\l"ϥg<ĆbE^[9w#S']5\!)p!w>t 1X#M@_ Bcu})־R"AC л&Bl=|'8$-:*b ϱr)6t~\vboq2r'Ľ 'v=>U!,8:Z S74r5MO|/z7-;DfԉEÃXqRy'ert0/µ Pc>u;H?zLiH\\V ~u׀}?)S"YGfv (~v1=HNDebo4~*3ɂ$z2?V:곚KZ=Ī,ʇSx-ԮAYNJ\$9DCo{j*sL%.c9?뒱 \Ƀ͗3ı 4wB"~>8{;peon눦_ë$/U'>O Fݵ]x 0n2}H7׮k~u۾gW+u܋k\<._J#dBk}!k!Vp=Q+M:mz~oo.,y@:Bk?8|r|.XzSC! a < g`u2*_ۋ>ѯ*:GAݟ Sh-މX"6+ $/%XOt)hn߃,_L,ГHd{ݛ>maw !7x֟#f!^W^!#sSZ:'W32Hd2 5m/Z3N_X!jhv ȎCԮW&$ $mx@x"~&[Ydӥ{w"<Ɂee|#^ ާ~O$Ov{|agFAxȱ0V<,'Wcԏv|DͳgIb#G8݉ZS;scd^A[cA=HTD ]6ܯBf4R[2/ҙb2;]Wo߭2Ld ̙G cH<9]B0k=/Ubdqd;H6E&rPF6 x =85XfKd>Mk^r!cDͅ%hy0FDHe1a!؋g8u#N. ލ .t5 6mw SЖĺ8O:&s!۳,y_7K|CA/*$,aW 5ͲN04lh-8߻Rat0jֿLG*e%pNq|EFH$!#PڮV>{ڱd%iϵ5./ƌd< ;KR\>[b~I*x Bks輝̧I ש[|+"n#+qBH#_Y!"H"Dd'Ȇ@7r f뤗^##1P0_) PH+ ( E7IxT6Y Fݵt):=Q(Rh4p9 +ѱ0.ey!S83cI^1Ly%9^rd.ROS^Z%vb>}Q,7/Y `(6Lx=Iv}[>g0 mYdD? +f u=vZ?lZ&dP4aO9h28VSW F [ BXssH߅I2h6W5T|hŬIֺղUyս+1`OJ I0 I1p?j]f] mT6bSfxlVW4>pL`c8;`}e̙+ a05 Yo3V}._0o@Gr7_V~/W.;Lbo)2xSnש||b,rڂ^u9uזFoޭ. ֐QS 7c@3%qbF h}? O{3^&b/ySN7{_ "¯E9 lS)W/:DepK?[+Ӽwv:Э@5x2${&lK*Xګ" >]Թ_al"r9ނ}%,2#soWlJ}=e^+$j&5p 12磧r/i+w[h ԒLRgb{f{~-v1X*vlXQi/id}RQwm a]xaRIeO)>@"֝y<.* P+} 8N҉>d9X™XA:oG\+/Jw&%- 1-wxPx[ VT1oL͕di,bVp+ؘ@k74ӵ5<_J$N|f{<=R}.:a6е1h4}uY)$lj%D$Fů r8iZ|m\4d{h˺ c ,Y`:Hr67އ HzB[V[ 41>h/` lb6 #xra͉`H9em죕)H8 #_fxP"Ry+XsJoˀ*Ԩ/b6x2}z>*A]Quu2<[F 8La b"2MDnCwikЦ [م^b} 4->N3`lcixʣ-çh1,,Ԩ%m#:j3_r, j܅TG龾g+x>lH<|>T4].=c 5ꮭg̏; 3^+ ѵUK`kH`*כƯhq cP$l/oA`kio.xo6_ tW}1r`lƧ&+s l8YK5It_1"?gzt^گ=^%{9(l͢eԪmE&e P rBT*mDX5Rp r]u :m$d'[}-57O_#&R{QU!*9O5P/sT"M8=mw*ពz}pv>2YoǙW#@n;#- U%[ ,}}6\#@<'%j34 \O)#>m [Aasw# {K ϕ+,|پ#j"|bp$S;&qqag\-h5ʳ*͓BMG,ljJ9XЫj>4*)Bkkxm=Z.}}غtPs9?E~*`,$õN}f,f!NG4jbW$˶Mw}egϋ^F}۟8O-65il;-l~Me^4f},hzz̳JZV䫟`-HC/.CNI0FH~-Mj]b}oN^m[Q# cs63 _m拭~G C3l_Gy`54%X|_#|z{n*JD^1<$^ Qf,f?p&9XA:{ <*ǺR/~KVȞu!?rT_R,-?c4{iw Ei:383ԨeqDET36bYV{֐[t_yoߑԅ9fKqy7hU]ZX?5>7tU0Qo@SbVttYRĺXX ~zQ>vPs I>b}59uV_<:-x,7 Y~k*&> Mtt3xL<1+AӴo|>5 k.#':8i i ٜw%{bz> }V|;W⹠'ՐجHФaXB['3| 7g[9^LVy޺ [= SX,x:Z_/}MEQwm@8tׁ~v6gߐAezw1#C<*ji2j}R?fj q7;zl>V,l^=;7o<Y7q)_aGȢ87?s_Sq>5_*{j!1l2ci% <Sj= ;;7x ocVVp=;\2p<uJr aoYl Y6#$G!0#N #AԁM>ޝ=Ӹ*_x*ٙ K'>d'T]6{<j""t"_xD #D8x{h)3u:_1>Dƕ&}=ae W~ /9\6 Z `|w g#Y0H13}<ۓ$߆-C6oSމ 󐏍VYܳ`G^d~vt5 p:Xd`E֏V{߉6=IɞgU(PÖue:83} ]s+m/OBk|W>h;=O'o&R: uD= FFKi<,xӿ@@uF!x<^9<65tko{s~S%^W} Yj:|qzO5C>B<3Ϸ[F.bGg>W\d8yrKD I r߶j4iǵ żh|vH5Cvz׷͡nh}{I;m]E©j\PD3}< -@}W 'ɛS&YF&{l^͆P1,gqw|AsfJLJOq_`W+ #V 㟳QL |r܁ȥ~b|A"{k # G峦%>~f럃>+K;tVe9>73T6mXfmdg<BCzWlPXտk$3gsiW|l{/4Z֧;3<*u$yl5mC B~H186+>Ԩr^}|-&*)|"w#ݛ{A'^9l#gކ'A9MWĐ,AS Ia1˼U]{V1?f#'{|%a>>f)#Uq[/Ky^PH~| As?l+|/œE2=qg}p;#a.X%W+lȪAWջAXk0 ;Q{~wt^l8X,2[UJ S3 D8(u׶:xw1|"6n=C{A69ؘ`? h;zvlcgZ˴7zlCh2upZmg=L~.Oٜܽ>샼?q,XNo\y9Π;rzo/&?Ǡx흇uRjZZ։{ dw @-UUYm$Ev+l cxwZWFV–Hn߄65օ1i?"l 3/lYh ܻ,{BojBsXBka+ L{x.p׏4yaCXVl;VMv=N Ñs[X!PrV.7%4w5UG[v {}ꗄG=<C,k/`[|R$'\cyj_Yr~OE@-\Vr}ᡰ4a-;bնoaP. kN40lx s9/6dé(\lSwp#@^ @Y« j-໑k `W1 ^{+,a`;^[p_q- >և-VyHd~tAuyV&^.Z?_t@ yuAU6=cp Ykσ ֈ%@op}3-^}jHH΅d;VK#/0r}h PYnru E.;~i"o:o?uyऱpbr^d+Yo Or52΁, '0b ~bٟphs+{s.`0P7#oZpP8vtnH} > ޷@."8o^ 4oÌ0E> l{xϣ dczb73s( f$gs-gX"քwgB= ؍GGxL;8ӞoQ@XmDp5*Ky# ^G-k]!{7!!WؿC6,y4܆6/m)4ς.U:g:n^kHwhBd͝Us ) fLW»|28.kgj){| <CQ/=v8FP e0>PgBB0Kë'ƾCSs㑰|rhfZ׀6Ym;7fFe/W]=XbXe%ACD[f5c%@WX z}O Z~4gaxs$n>#~Avvo3|nڮp8)/RE8~,5؃7t~eUlC[z[7tq_ndí~.~2YC&^ ACX粎2AT`MU0{5W"Je,Jn)hJDtώe@?mjBIFthmtG%\fY 71,(9 Oܲ W=im3X9RYР*eYi ,! H& جs78yznD띆9~ QV[6pՁ%@#;3 7WZ tOÇ)|<kjRf)e5@恅h5m& z}toF.4G{x1c{#|4s@VO{XS޽!ZhfpAd8 ?L1J:$p>pޡPuWgCJ*,l{ ee[Kt4~ys^ЊU:*5-_; \|ȕ@8(,K\?t >~fa@(fdEPo{֠Fޑ[j_OK>v("z< w0z z̭?\wkd ֊T@Sm vw1:=ea ?Κv$bb{̱`6d;Lx'߇'Opho?mDvl#9]a @'ґ5ҐߡC,Xwe̒B.:A{og /Aj7([#߷JW5%m!_*q@_wmd ;#r6"ЅD cXMϘ^dzɗҪ& Ƈ]#x fk:G>ZJQoβ:q-p߅ G:|Ns^z/g14xGZT1{r5'iff;lm8&r.Eyd laV?r2{%%@H>5.7 v",e`YŠZ{+kPlnxh!`tϯ-}9|Zè-~[Fţ޽zl(Utw"ݲɭ`4 ǯc@ kН /{O}gxdķw[|>p[>oke:Q/(HFC v\V<-g0f(h9Z:u^C|R_cy7f[ea<:g6kXŊ>oKpYqsm,:h"22pMW > %Lq%(v5YyhWvf)pWK+^ѓ[joY Oǯ;k>osD?)X%p8#Au= 9չnm~;ۥc*WiPges` k+h O<79ף)g5%"iX=|=%^a:;h)fJb֭rtnl\g +rX_0ZbF7|c]E\"Oe!ټ/\ o+6݌Q/4ſl͚ Yn Qκp):{tGF"N٘AC.tu(5k eR k(kӬw`+=J_Mjdrp5P @QJ\gS2p Z3&ʻct)f?Un{mP/n;Z+CN­X|1v>cR73ž^oKWہ9dDF3v>.ۻlQgW%U0eіU~&/J?No kXM3=d5e`ߵ]64G瞟'b XJAy^=U~w,x Zz{"o@UY>ij׵k/H"'pgDރ>87roy lKe=\W"߻FPε_wG+ +&]WTʮuH*V)/1$ryb:Zl*8)W@".&^WRNh9uV0c}gKj,ƅav_5< wa]c%|9e% xj)W$a8mdBEey:,f ዐM찅QޑiwU?ZC^=h{۰;"?ShaHu^۟mP?L*Yb`e)twp8C`w9Z&I6J2)@G .\%G m PPU=p.Lՠ3j,b=(\Ւ9Ү \w-^6?T<X Yfj} j#ȫPւEk_~88TfyMB(%⽸U@TsJ5f^z8# ֒02|peX.zX؊kv7őFղx9q> W {6lnkˤ ˹γfƯVwYl`zhYOg K3J`%Ռ[likte@>f&(< 8ρoyw'zYz1]e)f3+}xۙ+{ЅX6.-yݹqn$ ղ^^l&n9JOԿ\F=jء|m"5f ۑ[M]d':~b)RFmfJƁ_UO埂%U/wj,ty59Xֽ\[Gp1p.l ٥9!~_)WųB*'xJo46ll'^T>\|qrmXzPs5k:8.ե6g, ,g!]>boSm%uSyp{d=~8ee݇~_u"/h,NHd7NݶyVQnKǂó(; 9 kٟ}-VQkr.%F@{l4d%kC%w{篢T3  ^iOFj2u|t-x4rŌs&y]쾀9!zˀ|klN7vO_ȪUj lv''p d7ʔ5 cgQNg>Ϯցю; g;13i8|3 >7cx﯑e9 n=,_d+ᕵ`ymT]q'\ :CA.8*Vmdh[("R$h`e[)4 ف+K@'bj!~tJyb= W iV5m6<>Pm  >Ԫ5Wګjp/FڀNe2U/d- (} ѭG3ß$x@`-^ȧϳ"? 4*3˹vX{gGOxN^{W\I;kl\z8{) Yu.aDό/gkUWtsu8c37F͇{[]W\> *oת wJ5!'uk  =vVTQO'pN2%k6g\f7.hgt@uqG-KgxV60_c=}^դLex'tr|g_cسi~hG軨2eB}'[BԿ=sL]ݡ^l|toOfc{_#ҭ`+AuFl}ΞB޿ ps4y@ ?3k !wG~n+P} RL4_*i¾Ezj>&Ow{%Q/FIpz L0.#6"1%`'pӢhf1nAKmʽ- 2Y_!pfFu^r'^VϫG[A_.ZllrgIV#ۭlcʆWPCNZkZExc^x&<:ϜlpIi8 vewY ϊ9RkC P0ywn <4hLR_"\QwX[+d'a.khx%ͻ: 4OYxE.xB5temj+ǣ]U1ʇNJ_/?(s&>*f :tu? փU_Zk_],W|bejj>_nj7X*&(V.fۈ&rkPboy 'ZSl0jm] <>>v+y#6Fv'B{urqs:bL:k2[qܧ0$wxe UI)CAxp;P:$Yg5zʖpy\]|to/teOgOIGd {?s&uh_P p6&ZtksX~p{m+oeveZjҾ`!>$nMSwZw]hO`?C pVd%{1 5łū@UړQf'W]k+PږFs0hAׅ<,yW@a~eDkx;C"<6U$Y9;7Jp5>Wk_WB va狳U5YVso:'{H*Nim0rUreՌuw-+9xxZ^G"0|'h^kZxsCЛ[͓Ώ;IRm;KLGV1JRmR~qob E=n zd`eCl۸G=Qg:=%)Q̵etaX$z 2V HJӿOSgK-]tm|{pNn'i\8Ϥ5|>Cy6n9yQ1qr%OȦ0Z _ރJa`1p Ȍ^Y- Pϵ-XO^߂]9)R7o(;_ܮCN P_ɐg{y~ǻCҕ7wY)^ŊQdٜjykQw~v=bv|]cMq~Ob=g+CP>O"̽zuࣴ.ZƜ#{kiltD>OkZ'$GE-%Uw MҮڧ{oc)~*q<&M"kj=AիS}?Q /*#XECyNa_b~ҹ}?*UY@= ?B~MuEyХx? y.x~!__zuXP^M} NW߂{RXyp4x LUJggbkXwl^|7C Es'UxU?YR|W{>yGV\l:`5|ܝQe*Q{*W+60FnZ\[Iϱ\p"'mmwxۭ=hgC;3z.2$3SYxI~6g:l<ȕg4]Ю>~l_A_rkEn>eHoj#σۃ =8/I#7AqrXx,Z7: &գ(x ( \<@kOnhXD|F/ 7QO#@Xh+Ifsg,5r'wfn{+`^w_p#5$'^ΥV4֯L+'oQv|zׁGtY9>da$Md%޹4B<. )]3jloutixiMٓ\y-ӊŞ <|jоm{ڠ ֦*£}KTtc ?e[i dYyK ڑ]ZWg>Lzo+cv,m%e憫+]Ui^4H$[|YLzpYc0r56 .{eJgRb"kyODv3+V^Od rP.@ѫҹu{!N8QDdvR' ֱVG=~-o]JA?Oo[d}_'7C')&q#}ݞl %N]@Y1\2IyYz@S;!V(;^V_c)2C6x$ PL5`ԫX}:_RzԠ0[nU0`13e?jwG{ ý2y;tU?n }KS Wq * ?*;-R<+8&ؗGq[cC"1˳Kr,U*z+V-&Cu k:d 2;{Km}`<@-Tf+U9{ ~QlNDga,AXGU,]:a}I0zUUzoFa<I k/מEyY{_ ׼V1X,-+ө|r1*͗Ý P#A{+fho83(3c`^œ7ZsCVWh25<&/ > :SmJ]%HJ zs ,<Qf=ڑs?Bꌟ/Q'wkwC8۩{,c^k)vlVffەY)%Ģ 0?<\lXbfkG4j?pO#R7_'#m^=]=IRVȕl5*㛠C$\0YxS™shczq:+׷ggݨH<~fù_ $bEJ(z~W/{oazU1 ? XVr_ S&/\?jSv\9{)==`/Npe"Y\ =^(XI}q5Fnc*/V~?m`yEM+G^_Y@U2dँze#bm3 =+7ܤ ˦h Gt3[vGS2K[h{(+|їQsݷ=,*ubK3k۩9Iabp梱A ;>ROSgfMu5"t*G?įo&#MOxּ[=Ht 0ϭ:֏OVQ"{)h^ gA6YȞwnP,'3Kiw섳=H䙩瀦rL?ܯT:pa:Z:+Qi&s"u-^ijBFJ霵=Uꪊr]w5:6kتNfOGW3̷FB+z;*N٭oAƎשN+gȭ8ŻU'\%FaۃW))Cu'T9ET/l7`4yS乤iEGU߮Ri1^Mr3df?A5|MV#oE^"H g%ZzlށtAPy 3L3%n.nξuHxjme:ȵ^xeX{(Wi/z[&*;轩3it'UJHʀVu:óhsk^{ҤSw*$`x.$^v%_ ¬sfc5A$(";3{:q!Xdds*(FYWeEZzz;`ai @VT^kz􆾳L΁NiZ!AKyU.G=/QT%s$>~cF):Nvi4+y9=R(>6h9kթrsJ$B݉\TW\u6;ԩ7NX2{ՃmĔɪU;3P'Lg9~@bA5 T;IKT;ć+)tuz}m*w߃G^,?Jugs.]ʨkGI<[Rr> εkcܙ"\v=&IڧYQٞvUnc?cXUx%;t6Mj=t7]⸳QV/YJ6_ k@װ1E]q5bykRz+.YuaUIbw^[hw^;ZЎ"aX#tx${U3B/P~Bf!)<\c#I:Nl;.w,%[Y__KE+Ӊ3X|1S)z~|XOvG~:x{65vsjU߃`5|C?(P)=8?d8 bҵzՉiNFNVgFoN"Um\d7XU;3pK?(W^~_;'-_W)ЪJvO=x>Z|J&ʨϘȿ\A}{O}x9\F]5T1+ ǓpdsBe&˵'`h`u&ݣ\?*,PuUZV忁p<>Q|b3&TR]S*d}Ǽp#j,+0Ѿ K/yKļLcϮTo" `XR"xb' O'j_w5s}ڂk!p:GF [~h7gLE3t\L4e$+{wOpZ^ ;Ԟ2&EUʵ/SbwJUKD8Dֶ E`0&|Y=ljRxw-_d5O*Csy_z Og(#z,VQ.׽~r߸'wFu` Vχ-vk{yvw)[/AE@,鎓Y0nY3,Bz .fESKdz)!> wGՇqw`}ժcsyS$pdt̑- /m.Aj7Q1I>]g̷o͘B[ )r#rC"Tׄ4J" E)~9 &f( LW% rWDgN/흤8u^w'3G3/(LpR5?1пHykԯ]G*:bbU9*U+WtS x&g,+{_Sˈ#3~fg.v-oJ|˜k'Z_otE8ҮkLci+2RE{O"Gvi˺p F矯A:(6W;ѷrfɩdyO:ˑi{*O5N~vv(n(32c>,\lFq /)2ϖtiO̳M^Ucw[xi:eʥp^ޟ]}:FVR 3A3|`tsнsivm ~bH-QFXUbʀH;^8W~˵v;#aRUf UQ*5z>}?2Sgze qOw g>7y2&w?u<>b [;q^BkL{y{loN˽,D=gep.N?7Iducک,Y3?)3=OO@zY3>An!.۾rx-ɘי ]0Y'|T#0&~ֺpD6@5C@~j[gћDxKO3?k |\uJ_N(zgSx]  c~7"8O:rLLDF3=5Y˰WidE6ADI{uM{q]N(V?ZYұsx}/2=ݬ#v~^Wc(s4DHtT?8ʪO G# 4eCY%ò)dGZxBm\w;(^^&ruNc1^~Ǫ)*_ZQQ=Q'V(? U[{Zz__^zX6;`Nҹ컘*TJnNT0S'BvQ詃I[OQ]%hWH|Ӎڥd82u|U>.P^.uOnfͣ݉@^FZ߹'X w{*IVLXxfb0e@=WqۢA++NRԫӽ[Ǯp :y٠Jn&23ϓ\'. *;k֠\YUt u|Ӡx](QmMy:w7K POAŌ=kә>}3>8p'Rp NL4X.Ū|6(>oMeF ʼnT-V?'ȱ_QrxQ[Vnl:v% ÊC37oJ03 *{p2w`+>C2΂SV[lW,|%'FMi_ox:ש65N6?^c^xF/SXuA+_߳ߩՠ`]A]EhWt=u 1~B_J ؈U b}Ժ_*oI8l$&A#UM 3G9vkNC}/lO3WP,XV+3vV'g ?s0ܞXzGmr^F~?c1m\*O!i?*wx_;Tj,}0d ٬|"0.|3JZp9O7w)?V'CgUkMWt*x %+TN)mnE̙P]s߶.[ڶid-ky89oY>o@^ }eD5ɲ,/ևڛu$TX+8<]{7(s2T{ã&(:o&nAZ^ٟUv;UګV(2^օn# /,MY|0_bh2k[Vw)k/-_+@3%Y'<~'ߗ$ NXu2= F8'Ch+F~OnσEu`/ĞiǼ'pwըVt@??d;gQXUWP(?*. U@yHP~ҳ'(~=S,u{g4QJPXu֪~1h ‘g>@yzh)4LeCu>/ l WfJjX^}9$K1O_ YS}%B6)}G};Cd#x.A{ZY8A}908o(w;ZQ~W)>QS1ʭţ\޲T?߭`yAQvrZ VO%?8Ȋsʱzg_ghmJz̟Xtݒ0<*[/ΰi,j9ߨWqN.O Qe%KVxp*{nNCBbIF xC)rgS^Bz⽂">MvĚ߷{m@ $"]U}'hz,CMOhV:~rn3yˊ̂a? gX! usNyS'byH_#p5 -[a7)ġASoUYv:WûGSʍuvw$UO 5˻͑U\q75.]R7b WωG/cS7m3S ?݌-޽b{k}=mUw ];|{cUxK>SY?S,C;9U9WPycn!&gWJeTUsy /Yz&R]އ,TyXu{ߚNRU]E7cxn0ăD`q$,,O)(uYts y_+nEr=IEG_~ac11߯~ϯ6&xeVUخMtwwwww#m H(!H" " Hwww7Z 1ǻ.WyVPTZ7R\OvWeVFKxJ7vTXKe;Qׇ/4Mz_QN#-/ `9J5s-v\]pmlb^NTnp5=VjjB-?i_Y#ݰi KR W^4U\8g;T m]MOj: X}h"xA!rq_z' Htfλn먲[bʀ줅nv?Wn/]Um7]y%Tn8`ʯ JlGYunHk@ԚP]tyTFcSpJ|߷%To;d]x-ŷVZTU_PIs4ԕySKEuP}+*@/kg~il ^7b×1s#馚 ux#.sqqINg)ups,7"{5f҇7&Ym_'ͬ& \ N]O9cM _i=?m6c`( wh-K2:`umu8z~ճA{љu }{[w5셛qP*L2\RҫK,/FM2O~K*;O;ae}hi{P/uWuT@%w lYܒ[0KI@I>Si ;u}c5 yT1 IZtJt!;fS?W} ^J1W\>ጻ[ظR *rx,]a8Zwb8*]#4no<(yi튶Zx୆L5زY֧aBJBKa['|n|Eղ'fY8:.n;2萫dtb;SBZ\ˀ&ѵ j(Up'Ml; O |" V-iFfTZuR9 MzYvpg*Rj%yc%~68 H#TրU^3=Sz6?eoB6Gew~MaW?];cxٍx&bHsIv#8& ^nMԤn*|\c<;N*+b\k+dZݼTik=Jy|bfV?!CӪ(tTCxm8xZfݿ-ovU&KS ]uQ ro'|b\cAt0@,BhznOo5icu+j;̺Yud IJw=={qI1JuAs}_ėU3Zm6W=˯2}*8Gk;bÇM%coΆ'B}KhF臘?oY^,cK;wzj 7Uvn.=siғȋ ˏҞf! R ?qeu7*?ov*5ygCmrWX~ST=8fTTѻk.*ᨫKku;!-V^߉"$Ǻ|2j_䣰"sw`e՝^9e< fjF }_oMW׀'1iٞ}Q38<R}:54T7SZhHማ:IEYTmU!8϶o,-xϭi-j%§R z_QP,mw-ܪ|Ntun>w#\[-v_ n 1ZE$=B|7 Z*S5eQ 9- 'oZTHsM[^d#I~}턧PB>eUv/`VվLdt Ly<}|m+(tWqqt(j9~T{Pk3z[ieU| qm,ߚ\ъ{__)uֆrT| ;?RF&Iw6f½jktr7I}bwݟ8G{·SkcI>h,Vw":Y$qQG:CH6L]@*k =BAWd)RA6%J]#j9KCgBxC|jg9FTZ{Ee--ܰJA4/-F'~#KṪQG:Mhf)~ {^; \W~VA ?PC4otzwn~qwݍ!ӯo!xg"' ɇv H/Sw^ 9ٲuUI6j~l%f0cjۮS9)FLNm}7TB& 77uK+8*n,PܶR9&r`}6ʀ@t橖λ86*Ȯ樟z /TE7Zlg,C=u y%QAI}P4WnIfrCs`?^p};we㿧NM^R9tN ߆M;\6|TDRi,JwLE/ &LސۅGpG952 O7Max56t0oZѨb$͌M՟h3 j.VE?۳yx;,?A_,A" k<\)wK* HGVV7=|D%쪤l,1ǧtx_55Il@9h^oA*߅|"ao]O0Yx}Em up5\tG&s;ͳYuA5:@ǟ iDtgq#[jC1עU;rՆ~pG $DW]%`; v% fOw^| 2{^:v)H|}s{kԤnOGX3kkD?qgvRa]q6WxUqU&},d䢻DxÅJmO$cnAq:zm"0 HBwV35P)xQ.`쌸Jrh:bZlλ޷[L1~c(iD+o:0j5 7EQI؊1qѐ~|o!5R t@'0=`*8_ocQ/t4dWtXt :Iݙ#U>_^I{W7D/v4j"@xy݄Ev0Ca\ErkjX*AOX<XW%-Hsؤ`ڟ>*h|r+GqΠ_/[TBJ9z_8>@Ri}CZMÌ qݝvC ߯$!|> a3%*Dkhb[1+䉾|UK)-*]GiE @Mr.P?y`h jl`K᫞w=.o_Jc2k-aӥtaw9UPKznajClj6PWЈx6ھAS_ 5_E&aT]\D!ʣ:Z[^Oqp9@}c:#?Fa}$}x>d$P,o5qoo{!М2DJ[}B3T[M9ГJF+ =[= HGYQxfoR{i;e M}Mu%kyG0]6qAK"*;z`}YK黀'O4(VߛͽA9'2GRywTya2K$:{^*QhwU;7[|X5]t_l}BfV?>Qa3pq-Od_)}?H>Ŵ/m}bm{Wi 4C}]R t5#bdjwv(E,_peT߂'uҐr(Y)@Xֳ-iG}kc烱*X(#%ruty/ћt~ ݂s+ۧ d0&5W~at>8ʖ޵֕nBv4=tHq',JmO mWݤ ydm*hoE/~Wh\a\+je1כY~}G^z0Ygd}20K>Y.3lPKd j3aV*z;tDߣ N1]@()򨫠,)c%u^/Z`{ǕKZ|jOQ!M1K)R8|,ϑ]tOjWh[$-kkYAfw)Sںkӝy"K.ojS>on7/Rr_  6p E;Ro8c}\_A.|{@y{f"Pld._oP Ńw/PpºVpj2wupz_8 tV"-|q]lp"8o`@&݆EFvml_XC϶9ṞZޠc) =\T<;ON3G(FKI9Pc/"%C㫄W'*HFi::1uP sQ%Y*7HGpfFۧ]lsT]b 1C_ ;\t!FO*Ҋ[)+ʢ.+jy5otA;H3$ 'Y:Lq)nG{qP;zL=E?A3D_u>|U "y<|O^ԢnkG&frSz&:ާ^,c2T KFsph}k9UGC,Aķ້5cuSoq@p&tޙ^C@=otVYJ!f 3DrНp{.$bRQO,J2KfjaЋQG:fkEpux`^汈'=z?> =Hә <߂pRjh8Џp+,œ ={o%iy/q]Cܭ˒E` u& 8v!3'cApZ=Y(1^ퟠR +?3n?3'@ZN8 ||(Rڷ pKtS>A9n_-Fa\m߁4i\A2RS+P|Og2}S(C w]шQG:Ji'JE=S0u$)pIPfd"jĻG1w0Hwg}plеef>|愮Gꞗv-wyszp$/PTp6K%< GIHPP{lx竞wZF=T&8N-sK/ڢak,Ń]}p#-:Z {:><VnΣ2Xv5&o 8mׯu3_ 4ZW]73T)c*[y+29-->18 d擅kW=˯X#߉*AO}8'Q=w]p]\; 7D=Cܻi  ŭޔ~:j[VI7\q^'0H[4:ҋOW*r@rPGK(sz_ܡ' Sǁ&Oeoki,ιx_9\F1ja*Y*}WT9)+Nw6|Fx.Olr%[wss'F*k D`+udbf*r3*P./ͳt֋./o)Ag7kTRO+QA`V-P!?KfN 76]_uBԻ"_FKPa y??uWr|J#a襋AH=࿙$?QXIg@` '%o#ARsc僫{ ߄3&?"?PIm9#%4КON]a@z`\`t{=iqa r_z8>5\ ?&U%' *! zճ#KBb,.>ubn&eEV"fx6Hz G,iϱ\V)崏XN4w?Fx 7v qQ|0p]7}C'Fd)|hIYVۺ@RDF_%+Mϻ#˩;+dP#F z[J>#pW/s9".?.wx,G" U?/ťZ/)4 8CE-͵2<>//:7qӔ¦+4=r|]T/vY{}OP2KG{䢇[ } c+WߧA8dp~f>K=2Py? #FOKs1a(#?e^O} q9G;;왷I:LBocNg] -!5 Rܓ {.> I? \p}J\zH_0 xwg7D?|sLP j1#2KJj)2y8~sC@p^P!go13Rˇ (\曨OGLlYgcхgݏn+G ^;"@49Jkp}<75xeDǶjAAh8zw W<"(}Dk_Oz)ʗ'aV8ˍ Wwۊmg{d&jdݬL 7QD~_Iwf4n ]ݢ'+v᳁8?:u|L.cd-ݯCpvLͬmT{ P$<'5ZG$TTO/p>t^`kUug$U% 0/]pn,.r'yg{G)׬ZG\ڳ}µWj5E?_ǻ쮹$b2~1`'se rCkko[=&P ;U傳~w*:Kߘ]d:"^<#c=,Vtmn+.V!n3VDn`hNq7gQ|1=c)΃ZYFU, mm%&}hyJ|d~T 3 D\Eιct HF^oL)mVx'A(rxHjH 㭊ty>v7IKFI@nNmpsnX$$g]A7Py]-h %ID;诱x˸]$7^;hn̯Xje>t'aeTy6BKrQx\9}qxTH^Y͢LS;u+;]..~ . t/NsP\LU,'`!rͶ)$jگahþsHnYˣ8P8t'.U:op^s| գSr{)zZWL.;O `e-M FϟG&:l ã(Oz*g0 48Ip4-CeMUĵ ji6%t'`~:AEŤ}|iip7dTV?r},cާսp>p 7ǵ⹴t_NMp1;seOLo"G.x{oXKeFg^`}-QJcCp?P2~3 _SՆ&(DChl8}xtx5Z8EQhy~Qɘm۪yS/V{c**{nފ$`tZ 8p݃;x LP\f-<s닺G/A~}Ghz+aSιcPcx&V&zWotZ-JA~ ;5<7Vy:?qFA };yki|w7Z9eO ?T`3 Lö;UǶdRkF`]o V]/T$8%o4JԸvajvEu)`nX}8T㫞uP 46u/_'?p;ɒ[[UF?E11bG>WBM I*q =uIO&mⰌ]ec7ɤ,7?FPgOܻL #]Jk5ta: {ȚC+OYʝW=ϯeXJ[+Ža9l,<㦆b ЗC}Co`8|Gp9<n]9F_v9Mq\ۇ}wE/R5TKG6 (NtDX圤 mm~־eZMX-_Pz_ב2iX{yb5@g,>;7a_eI|F6EE F% ؏]r}\L|,Rޟd(ST8ՏxOmwս  jk ~ sДX UJDueֲ`PiR4[:&W۵V?݃[^0D'<ëu*1k˂1v|UQ^6[ ]׵ >vO>]7IqhT@'/s`@<մdHl#o_sRMi--\k[tdg(=%ɑю8/d}Gׇ6\p^_ lM.7Bvxo38rswႎƙ#3bۅ - eaZ <^W= kSK-*> UZ'/ddʌ:Kh)?/ih$ A >WpДpūu$Fgl}l]`NQŶvj*bKlF5pn_Rpu+-sZA5te|,7&r^RTꢕ|O)0 MަF_&zB;HvhsLz[o5}m@|7dlzq=>>vu`ӯVKhiKlG$Qr_J&K|e~ ƣ8]vkۭh9W_~> } E'E" R0ͧB})țms[]b8vZI%5U;S_dؑ  ҡz_ב;nfF^Qj[Z)TWX'T>~?ϖ,?sh)gGS}GX~ pDhdtٗ8RJ_m =SFPfF꿢9 YwMMȆ ʮ(ݹFG%=IzzƊnHkFj =Ã󊞻wЇ7+ w~z+MΫ,8.@lu^t:O5.YI{H\EU:0; xe8}C7IC [OfQX V 8j`G |pǜ խnx]دگ0RZTpG%2oW,xI#^uIEjr^KOUR ,,[VjQ7D(#U}&E%&ͷ_R[k]fSXz~ZL6PMwc=,e䂁ꂯ :5Wk\ef?k>`p,>领C8no3{azb 3ϿM d$? *u\N5+3[I7i=VUH3zS #i{ܝS6?TN+4#.Kkmt>WOK_x n7OO'5rb0P<+@C*MbIȏ>U n #m e?S/m"UxpǤT~}EedҔgE#n)196޵YBl|~juj胳s(EwgAMےqpwӗHm,+3wg2k-׊hmU|-<hA+ vaS<3 n߂ygvݚ;;]u:T hPB<&Qb p=TЪ AuWW? 'u\f]we =@|W:*ݖ/wTF[QFRC"KJju,XnP<[g+|n˼ .?))Oy I g&Oul0kEɂ\EE^JZ˃k(H٥-ͱp }5DPW=ϯ8咃n[m5xK'ŵ:>"E « g׉W֐f$HQ~_ZRyJji]gODg(/~_V^ Y=GpvŔmİLF jTÛOs*ifx`gefOcst I,/ک_e巺֌YG|s%~ĽZLW&vš϶KE묋W]<̈́?,_u%` |X%wXzj,%tpNw9mx MTZˁS.EO킺Y <Rjkj5|bFpn\_ @]5G7)]wo\n{ 7,[Z.$.z)WNYikBE\峇]: V48a>9VJQ+u\\pk6cet!mV-~]WOCݒq6H&x;|Z5RlM= ̸m%ݼYjx8: kH7 (E{U)Ef;MZFģ:Zl[f<+x]?ˡ֨x0BQnxOy3 !@#{GETP@D)ODE^Jwwy /O}kkF1AϺn]kt6_+hLnEevsun$w;ꝯ\8Gpy"^BCw`m e$s5ܞSNr1>Pͬn"veJҔaX#Y;e]mF'RjՋދˠh =7>7m#uhJDT'?њ6 AeӅ6ҊblR}wd]*ueCk7'mCt?- 1]yQӹtPahp-.X#ɱx^t-%X ~LtQ W815lh7[{+= DYvp}"{H,`qF`C5fϹj6Ki:xf6-odLcQ0^8SIP%4=l'?J;ܬhNK )>{Jk5k*kOgO['ޟafMɣfvCjq(~DE x!ۉj*PkA Z~ǗvkRMkst#/glƯS$"wwъ_&b ziEtAk{yU B0 ƜUX;ok: 枕5]];%^/59n ѥ: ?́tEAS%إZ? cV zGބ/cQ&3̓燵ւDS-zuO-9mh,z}C3=oU M̴ V̾ru% G;w`ħӾ(KED٭ 0/N-.5^YrǭTܼnx?%y] YJS[Oj&?Õ#"l~D [gkBX5"۵mPqa]Y,-'ȻkrT4h[TDP~@ukq^:&iuqD)}^Ške3G?ֆ}:]F&hG~a:yEz*~/ІMn*cI/v }lAZ*oҭ2x:ؗ<D?7= [ ׉k>u>_f r&$'ҹjt?b'uvy+M]wR{f3[z49 Kz o3(`qiZ.q$^>.tK;zSڡJMH>?mGumtMzb:_66kܐ3+>tu#HuEP;}ҡhkŝ3 rG ~Xt0ma5g+m3W`Y{ >*Hl%hW"~ZTAVoe^Fnpſuk Wwu g(Mg ,c74ކ%=IwϹr[Z<){v̊cnWsi*7ObGRgUOb8[*L >4;Zx ӋѾt\Q]AڙN R\ús/X*}9_9\!Y;G`?gh@ xBhN׋lΘri.qtvM禹0ʪвh4Дh"i/l3nZX}ܝl 6P: :}䬌r魎׬`VU3cL~I=-?!{i3wb73VܫP o_}ZD~g{ZUsy0d;6釳M^bӲjGcWllHsVoW^N6/Ϻ_LYk{r8u-Î\kcd8(^dXcx@^f~rF+ۨ[F=O'#<\͈¥3Β#[D3BK[N-Lx4 k]k/uMjkN} 5n~8[$h.kݜme8y4},utkg e9bX};#NEۮ&쮙l1((2_X ÷r]"ڹ mϡϑ-~6叒jϯݷp_t%C wamW d:2yU Ǘ:ٚ7+7vPiAT͖=?.*8q__ fw.$Uq 'ґTG(AAC#"R!&zۺh[L =uVsk p+LwAit zIV{pS ׍łO!3}_`尧l=y-QN[G?(֎_l=k4߿U|F:qɓ"m78KxDx[I?6{~uܮ:$9zJ5{ r@v(?믵`%,H٬8 #J~wt7ήwGplI E\v9M%jnu99 IXo]8⧵dT |nn,5vS}s;eI;_Zwb2$SaMG'vQ^V%7 dE,뀈v&"'TGFjS'@4+xTՃS/+_l>ꦡ#7Hs*7$wROJzA>rLb0w%Ѓ~.EZA X>b]cjJ,``G?P?ݟ%vl'~QO_xBzdKE L"_j8i9u4rxfe=ENakD⫃9 w3o`RA1bd#f,X>A֠a=~^V _2kGQKFW ?ƃs;IZKnio3aQ~ <YhJP4 cf9=a)gߩ}m]'sU_喼nv sE6zyGƒ燵e%g-a'%άDYc,>N77s߁%n7>yB-7.*iF {p X0Jb|h)uܑ2k+>r1K:fgX4w-+-RTgkk׬1=*W%= $0NZZSW[ HΪFEb_4i-RX28d[;ȶO~0.l[PO)X'='oGr@t/ip>x]uΑjTjQ ]a _菑C-,wZ am^ʣdrqTYv=HԮ*`i Y]<{u'm $k< Wfh'H~;" Wg.9)A&WrmMOj\'[EBmxL1-V'&N#5a27u"'25t#A8kk>sѾeϬ/Ie^mCx7]Ӓ3#CV5,;syT!=$I "u4g΀c8xG*[ROh5[Bx3p:Zs%^HvqQ.(K٢}o{AJDZCz8;{aUp{ ݖxVK)Xݲz.hkAaieIMlGgєa}.I*amMte`_Wn32GMb\Qb'JZ*캢 VV¢Q+d:˵GgkUyu\3_]+2q}$c0dDZO/su는'gd랺]FBz\߇zXenqí;L+&'{nD Q !ڽ2t{/}LlGįLe2~fn~<5pNN!Nxl1\?"T~Vq&mhRĚE6Sk ?l [F< ¦n^t}"7@hWZՖkO)s:i#`Ll85ąo:77ceiukqԺ[&V[2}J,.+*<-_8W w744_u9=O̶tVҦ;_3NOd3kXe9=b.^0)Z:~fuгR峅HlldE#g{׎ɨqxXo^!DN=^$JqQ2&$HguiunZ]]^P6ڶj7 Anv{=N6^~c>^p{5AZ>h0ZY+PݲWІbP'##}`{)~ErLr9ߑ B1ljxw2$=U?Xvv&6M$Otַgrpv>;:ZmDo.Mq/%䁜u?/"5Z?Jcidž|-Z<׭"uǧH 7E$ NᣫxGK]sXVw,ʆ0-zrb)mW"g5Ɲ 'X( ᯑ!{0=c4GXפDj8+v҆OU'􆾬qۨ~"޺D| ]Kr%4Xk͏НpZؾw0V{99/KhlXL_#K_ u5{_;ZO ;,3D^++X[eSF8:hTH/kI'2;Ad" \<\IHK\= brocVf>ͪ T%QsZ* uְP_w03<8O)G,Loׂ-En<_j KZ p'OmN -9vsYkkcd;m/ ֎jVR;T}zFS^سa?:TuY?X#A/9&'T*=n 9Mq9=Rսg`Gt@}tH M%&HbU?GGavZ6$;_@oA8kX^J茟7+Z ӣI`PfsrC+%TwI|' 2Fkist??fpӓmq.SCgp㒍OVI+'xL һoшe%ХDlmI>Dڀ~DG|'6//q,vYE|q;L2 d6=0 k.^g.L fUtDkOgmr> omP}̻- AIlX\Èz/I_αKb{?#׏Ƈ;g@cD~1tH3=:J5ݙ@Ja(k,Fw}&o9~V3Zekx$'Үg{T\;:.֍0DY]-`|OPIke="9b9v3G҆9M33|G24?qv?d y?O`1<"%O"xThx#|r"-txKnNUOgzLo%NUtj9gЙVHr]WFZO@Js/nNHlf5Sns%M]&]f/F Orٞ1`;aFt)>w&-x飨(TdS1Oou : &MGH˦[Az@FYRVju+:Hj_[޶n4x9*G-tuki28ؾ{ljXx{ɻmQH@/字W5/^y%+,.BUlGΙhډ:WuHDdtMoepfi\AxQL)h|SR` ָ>hlӔ.99sO[r7h|gljc0Ϗ&s7;Qqz?{3FKENiQmu#9}RA* +oTMkvsoaV +t6uv_m ۛLVp?mxs+p AyoP^юA5].[u䂬p WJ3Z/5u>W ;Õmi~ϬzK[$'Ҷ.~ף}e5EöwzXrm\hƮlF V֎U ~{:GU'<}o]|3Û*r X\ڣI%l{MJ;s`Иv;`"{ٌ(Qtpr 4.k6$"Md.Z=z|eLdzdug-XwdxMIpP^6Kjy8?#ߏ:o?~(X|g>SɊ]rbYkRԆqY˂v06>'po1弶Pam"y>yE:am=Pc2uKz2V?pRn vuuhEtqpFnؠ,1V;ђZGv}?>:'߇@gnX]ׅ f5Rkb:zD / yos\׳'8VF[YHJFh)GGe$k NZ5#?է\yA~(7 .S MP r90e{c=b /^6l񐬖sі_^VZ~FpoC}d(ď푣| 2UOa9SW7vk륕\mg郹YMt|l8S{>ۮQݰ.XeV~UJa0+uxw9 Fyvb-| 6R+ b?}9(o'@[ Y;qa V}zshR4Ce!wt t~hSr3n$:>LfmCvzWA0&u;B1vX0w^_ 9yS?N΋ڏW'󔱶Xn]KGԯ帄]Y𭻲yܢ\6+ogC^]El)e1@vȘi;Nn-ً6,ivl Nm7}AG3Qa?3;.iD8qYw{>MDvvO{ɣ)4^&ktOG𘻜D#l|g ܯ$Vԯ Ȣ}`j^y\WQn[R%?ò#Ymn"s.&Q 5+rvulMj>GxΏ #'z>/}9}=aEU}SijW!~yS]"3-o^WѮvJބ7v~LdSZrVj=J!ay 6"O FLIiqúRz2a^W{>#7\4g p|L|@ 3~>ϱ'&"MѳaˣǠ #7 dW,dw|5c^  |Uo=Cjv]֒fQٗz.NխQY;G{iq]+ -ސ:~G1N1`kKմ-1ցho_7j;?gePW' u7#@t!I~'ke9_y݉(ksۧ#fXAUqy-P]O7 y 9\ur_/.y/A3܅\ thBX;sm!@hieR]o=wȿ.y|%xS,cBfY=aE_s#L<7uKE}ckP//}:Z5C'BX,ɠe@_U]WzD?}/VD[n uϔܨ`ܰj$߷m-0=NbӍ`̓z$5ٯ,GWy09x:HN|fz}t-z]}=%Emtw"T}CMYb]$ syQ|?l 6Q `yXvz"oj^'7= fͽ-OygbnzQȗ_姂VfUNu[cvn6i]*PWZ>^w^朅_.yDy7%+ZM}R]/ J3̗E2N>6s `e-e=?Aa\|=p(xY){-R)ӋWW8bBa_N_ Aҡbg $Ɇe / uW208!A|y!g}u/RIn3:?d-w|HfY`8G,F~0sGb݄_kv53%At⃰q1a]<] e&5EUcEҜ)^Zj7WW/h|>3҃'AJ{%2+:Vr%23Iݷ]6du Q\:ױePVٙW-:'wA9tp]ʑvHBh0O}_*LAzOf:#G~wVP6HO85Xs)d O ,;)nH*9̓^!hPBEޘ0*7ei"[C?+gsnns0Ac!_ ԭZQдdљ6nmD4\p(*ïDI;'pvĺT^Yz!c]&K߶n_S_-s!T5;Rca u{DۯXyVq-KԊvX^V)L6dh~6l?Z ; %\𸾥QYiK"|vl0,$Zi{ގKe,I}[r?B𲕞ʜ sk{uZl݁GU?~f p+]=ˆ;RdY \ΐ~6WOfC~&1?:p }-Ѽz+=Lਅ4_ 5"H%yu^%2_!ToدK?F;NöO}ݞ`%n7y:yx Z6.ǸR1+g7{!$3x!ۗV_?׋F;GH\{lVr.\ ':V^tO?m3\8Gr)Zc/( W8n__եmgo32h> 诟DvAL2ۧhYB|8#zM_5"{_?e+ZIgKh׈~t(CD@|~YJɫ \hCë K,{l2MVjŋM'J&u qXET i9)x<{{ޕn肅+o7La x|KF6,¨_Ig{ F8Ӎ#'$+dLA¯-荷mQ9f=Io&.r9BN_y ? wKKF>.Q? hvYRRϢM Ny]+ nB66gwo^6u P̟ >x@0tc=݃Wү,v*z[NkuO0X3bI>zȄ;x_ .9dN|1.p(u{< 5x51k19կ1KCXF Oy{l]aW{C+!ҍ~C; /IJhbʯJX)}\rtMV/Kأ69 $` ihxe*q0*$q}RZ*DmOt(l~WQܲןY (*ZX[e{ ԝOuI~U] 5أ߻)~~{?[{Up;_ 3j惲eX߀ρ/?P cEw|blUzSde*?Tex&5Ukm[L^N%=+{4|kO[&m𛔖ϐr$߷=J +kc5@҄Lp'K~ " fhC{`hjNxn\~FT]G=o#kl x?I>O].'Ԇ`uvl~Qy("}LV4?!}Vk+= Xhڝȋ䯟vj5w$[ء%U0GzT_'s0;-nYN`aOS1J/e4ѹ&䄶:S=c,Wz o;g^׹vRwe *Y98w|_=/ugK}W|92ig9oa;_s`{/=L !^Cy=9PS,f˲kfV'F#){j=>~8PW3B.O˜艆b~oa9+"vj}~HR x|xe_#]KEc/QQfq96NHxv9\߅O#[aa:6p3-Y,k0wה)m'D\ s3W[S: =#:[z<4+eSa wW;[E."֖PٳΐjհMlR0Zg h^^!V\S'x% L%wGLt~v?%u-*WH\݊ $I7|AEzF {5p~?z@2&a;5|j"P&+D^ Q%Yu,pxyYU߿-)ɟ,?|S>Z$# 6>ls_jWl!s(t׸_ϰsF$޷}P~.>n~Ps|/]Vs@}[wгw!?s|o?la> ]G'CsЈ:&KBA+?}] 5~G멯<0> /_sLFqY*],~&}͉֬.ED~5sJ hj_sU{?7ג P; .wN>9Za䧯8[~ YK,[.1]>rA_Ҩ#Ӝq_For h+c6W=s9R!).XY|^"6i zCz,a5ޞ؍Ub(A>BBTѿ_'vt]-ͽ+mW3{cZ,zY]UkiХr\/tGmxk73I㿉(ͦ~O&?/̢c0KY$򔶰 2Q|d^OR,&O55/?lW?J}.o5n?:1q($qpa^@a5i{Hԭ n? JA+)U\P7_`eDt!):G]'k˪<S_ YN~ٚLgqGNw y ;6`'(m}Fqz~`eD?DfV2nu%#amr- jFvNE!aA)\ԞXt6rO?ʟmV1iG<$?<~Ԏ(~kK|zBOH+Pot\ lK@IoK>] #' r2dQiUܐb ̕٠dP2Xx_@79Vs {i)uC/XW375%D^p16;awsh ;%k5nLa<V|__Qc"Age! ;4E>g&{wkȦ*lv`ay^ݫ۞%GQB$^ԭ)_eփ/t" ƶkNV6Ks aZtp|Ip#RWJa8yT%l7,c%S}_*-|xS۲NGįH҇iԯ]EmAaemi-FO=3 7!r`~_g]nQxa&P7jQL= Mue`0+QY[}t8I}o~V>ĕWMKh i!(ޔxe~|=d63(?"~uV`D^R k!Kb&}&n'k%H-;Ӻn'Ϣk/=y|9bF {ZLNsůB(yuiFrmG '$>AK~mf8_q6Gn/dY` 'j}[6,ew ;'W?~xvCWy⫄ Wu6m >JnAݕ2wSٓFO:FJlt]@+"Ă'er()>o{/8&/VQ#>Su(0N{l9 ɱ>P w"abR;xEۧ7[!`Ty'Q;Odr:d8LwՓ#-8d<Ə@o9{-@7ҝ6~+>kބn';-%W7e2ﭑ]0.魏tvy WݿN^{q4DBfpOLdx?ǏkA"~>]Ya0GۏnplHv~kk+_CsY]0^g%&Q{Wޅpe2 #M:|cHR߷$c4`_iQuS_ke@ |2͏N#AkRTJOYzFb.ʥqt pHxjW_oZMENo?Nw7I|Gu_'h-<ǼNSV9@_gx>Lx_?W\~˪~=ɭ) 9NCI?M6오?N.,lwnŒMtju .Er_3?sLvLG9 y[WtG_N39M1T,`z(LܗJKG-u2gjZfl2K3QS121L\0Y\UQ\CD}r}=yK)LS^`[(a{)у%DuuX%#~a_1E*<@ ~sb}>yiMn9>PmT8 ACK?+np]CXH`'au| _^b e~?tHF1Fi2 U7kǰEtSP>3Z.+}mZf4ﯻ瀺 t׹:ٍQ+Aܱc'>wq+5Ԯh;]UzsԮ̌rh@܅VDBu?)Sx457Vaw/'Bɿa|Rda{YryYGϵ3>U MZU2}WK 'AR׈dY@a;"!\']kN2I8|juU+ZE|5q\k}ycvrjxhk%CMTrAuW*`+.'E:.};?2dh}5ܾZ$JYW.y T_BYD-ÙQ3cNZW/tyH4B>GO!D}`/b#|4)HGCwuu>O ob|$ {>~|,W_ h8\q}:pы.̍B+%zߦDX_}&Gje4iV3Ĝ0 4:4{(|cɂl# $3a'`;)f{W|'B{E~6Z^ɶt$2Tځubí^!w|F}YkobBN>iC}Vg#-0]hD A;U0HBW!ݣئlqԷ8.s4%k充ɿ1 a!ҷko6Be"I"+Н0LEV w+5 t!>\j n81]:l)0rI'~.n>f {3G+(? }όoAu,)S;9bz=W'Z1V;wd2Oa V`3]Ʊ39h8/1")p\kg9߃A.s]`cД.Uc|('H"6}+^v+VixZAU>Vfq̷YGk-WcZarP 'k)UW{aU^K@ڢ?˧]5s f}ȿDCzaM0:M \GdԠE!7Dw., &7M5LJ0} ~qzRLjxm{d!:,¦ѡlx"Y/C[9& ]Q.ss -Kw_. NŃY Wt)sE \}\_Xfd>3u)1Yj%_[qBXŁ&s?76J yw^g+hZ%GC#vjX>>T_lNW0^ksۃb@ކ-Z#fK_dz iX'[׻I]쎻Gtv߄!X7pm7H|Vj*|Na>?]9a!ڌs)<ޮD[Vi< /Yv#`G|W#o/>O-Z ly3뤽ف+o*P,ee\hI ?",Lvg&9<(ð?YC@+-{^#i?Xo}s~RXV.+XnT"_&knǚȯ2yz}EyMO-.Hbfj٭+_ Y%!lퟗ!#њ=X סm[+7Ɨ_Djko6ME kyXˑݵ+ מw#[.{#{~ 8Yyer%%#p E?BlCN]/Ni|j^8ƺq0 W.Z@rHĿӰsr\g`}LQ}H[ #hz3?}Wgk䃱]~p?mϓ([.UOJiD4Ǻ΂?ːa,b\A܊Jz\ 5wބ/ o]'ZGKWNv2@ *5naP5d&j)H>BaŒCy8Cېmw=/x7`CK!l+{"{:d݄yy+tM'SΜ%Ex av&m[թ岘xq\s)zަp^"xetTY\;$[޸;4Nw-Hp'8Ϯs$UZs]nuw_ݷo}w_ݷIjmnoQ=3]THR*%4^?gy 㤶ϩvmK4) 5 Sk'ق _[/ڦSFٚZVI źFK^յzk9,Jb#MSi_wjy[]9t^,U}mvE JŶZFZ\W^irVgsl}ܶ1kŮ :IA6{߫3ZRH}g4^زU~:ke;ޑ><=#v ۜJHj}m"tIV0]jaidu@p)qM&}'vԜ8e_ZK#59^Dps/0TPW4o}V?nj\6@'5͙~Q6QˬK(􍴑VQK7Y,"s|V;KwI^GL臭<&IUDWJNlfg$U:IOSCi9)'%ԒrYVLi <٨i-o[j)b603PƣNoc8ld+=GN:UK;ɬ`r@YAwWsZ#%esYjK|7LuM}Msitӫ&8OQ)?m'/5J#M6NN%qt"4LV*YU*v-iE:gR7c%$oHK9g¤{h&`zhtk]Q8ϵdr-\.dI$ ÜIaM=+m}d-T ج=eN|~]:t='xܾr&QK{NrD"ζyj46]쯟SNk}o[RM!%tݝYÖߧ9+u޷: c5u|]Щl[Ok]s"awf0] 3']D l&1e^Rvk CCM3I_ -4m%1ALlP{+Uuy/+ṧ}z3$G %IdYL]a1+.D2icnŋq~o3Ѐ<(u* 6ϩb25`6yLbf^2E%:qMn_ /mL:E!ѝXl4_۳)6PKv4L 6}/7L, <7_Wi*HYZݹ~[~o30L7I,pyj@@/f)3L =σ2|gAIsy/yD$e6xI%Su>.z\p9m%>M$ YfJ4 42YsJ)}$_ƇsEu:̟fyPgyYjTuD%K3%tn3 htxTJ[!?l/] ]m09-SMeVOC,7˥n 5iS]7j SnZ60nl{\oUKSd,zg&KcJ\k(%T;Y)9i >07_LT~<3L.h]:VMp5|\1/C܆1*F$S'Ŕy[f1M.L7&? )N4$n6!<2h8 g2_~Уk2+~7mћcjp\+D͗_ bn/ӗp=ӌn O$R0C(6pG O7ZDѨC4dqP&a~5*@ݬYJ5I&O%Gb0L0. k̤EP"0Â(ךEJ3QΒ+ Z]^sLsIӷv*=CO暮u_?tf?y#GyBejE2($E&їv$:5UyB!t ܻE3UжrmxVQvdnB8:(~Ê `?+ Ar8\^W5e'(oQ6 Ii%?,]6(DRȦG9,ĤԆq|#o+L~.Aח8uR21gϙ" 9M\i{o>6X3MapxhF[="7[t h &E+U|7%usoHZ Vsv[sh>43泗MgM?cZE}tt(^,9D}:c& ]Ղx~v̈́u.RB3SH(HWk3UKXC)D.ijml>ph&ghmY\V t,]ϘCb/RMOě|fl :Z >4"”0~h1g?yLZX֯}rZIXBFjLвxpXG'L1_y_x2wv$,q#ahA3ܑpOLf+EJqm4\z@{/QRRLZ<.) ̬pQ=*MAL4 .Gە{DHM{ڂL$T̞ؒH"w&qbQ\eJE6 }a.R &%c6غSV[>пHmЕ Lw6~zTQJ:UBJ:L ;0 %:!&n"kga 9^k9Bʌo\X,j O/Yړj8{&#k2Ĺkٙd㦱Ep`}Bn BKH.ֻJ~ӎܮdE8 tx{](h$c5:v,o197S cRq6GfPoUi^ϽЊLtይeu)MǯO`+ ]?vv;ᑤYrKq',-FxJjQ_ԗ:sf^\KR(? TNfugP?֑^-HGONFa|v5LXO=N-pMB0n*VSӡ6֙!yeq5)꿈u#E&1L^H@[IM~zy RR*fEBƾҜ2>t+JgS6BFz,t8nOlJT9TɬO|-=?|ův=6.zl!u 43$yt*<{fN9\({xN*xT~"Xi9 JQ 9nN=f+ O48`=Ǫkoj8[JS;Tҥ86v泏rыRý9llMNC;"k7Ǵ9Zft4:@ O8g|'Yt-yF*lz;cަw[%CASM]EΓۿ45Yd( ыR^yΑ܃n義O%Wkޛ[0]V^3?L! -cvmWO,oW™s|W3qqLP i#l'ᯮwldx R}9jiR"b^&KĻDLKxfr(Iz0;aլT0t25X]Z; IAE{";UdRJ[i:fً,Ak yE=(n̵ \~?ńغh`>e{UBW{%H%6f -p™>7CKyϷMO:YcjpB/Oͽ&`&94%\jL{EW= [f/cN]nCg&t}<ƻ]N2uQ%_`wd2|=7W]i1p5qY@8}z%eRq~YHASvX0Ah6|oӚg=YQ ]CpH3Q L>' QЪ3m0s7t<ݸff}ЩIn]N_Jl-gҏ9P.A)<9uXsaw>N:4qFR&MikÎtX}uKdW'iݤO QV{=ZW/H\u}逸ؘY;YlI t5L s㱲%ZDwƵB/iW+=AɱADO TdnVud0 EF?)Cu2г P250Kshf#G£ԍDFƑyQ&+[k$T>?q_3OE"jC19j.4p5ao\"pI eOWUV ߔ5՜YjU{LB#n7z oB&jY-Om[Z:%ЍtნFiӤzl%)$b7G{MS-K‰xz1Ur kIf X-x1z=SJV^l73IA@ #4'QFߡCR->~80X>9re^18jA6X,B|D hY0N^iŴ4q泹g".-;;}Lдd x?F[& l"یYa,6l2Sit}]a9)~g,T⓽39m:\TFM;\xr{dEh[0˽CB5%n23 MA%SqsfSv], ` n A&4\f`Ћx!N2v̈́cP*&CKǏ DM.{ۊĽ #&1d?}Ss":0^Ǜۯ _ ԠˣQD8QDTЁUϓ ,FF1@'Ul Medγs (bږCm]W=^['ie=6=Z.zԁ {t-]wk yZZϋyi R,f,<wLJDï$j2}֭"m'f/^ =~^-O2չG_h;[6&v3Gh-DJ Y/ri9ݽ*$\Nry'OGvέՋ}.';(aN3)\K&L|1xǺgj fUd_h2N4Ô\[kci(*K5H4[M HuRW󩱰H txi9n+bw5nWysy;jOWӞYV-A l&? +Y @nНrTᨩ[I2@,ǚ~dݩy_!5R(JT+ g,#X 53NCofL0WV9pb fv}QZ ߕ^kc19]N2mӘ0 *{u]Lbx|[a>AvW?A;YY0uBIZ[ɬ:]IlG&@FAsT(MzҥFtl!QF; v;ɍUaoIX+~ dRTQ9rad7L|ӊW1cATu"b^yHk!"- >!^B h2!︾-uVl1 wwՌx=Εކˮgu9{$a浴Si꫎;x?;IG?H3@j;<wa7.{ f3[)6X. MH .z:~>7PGU1%f)7EtFқxr jBeNҟf' շ氉= * DCyH0+XBNO+`d `;{4В#^N?j{/Tf?]wCt$D!'}V͍lb"v^㌭7]:VrzQmɴoqI͎-[4ݫWN톆̽ѳzkFa TƳUxy݅J-AåKt*=^bt$>"H:xϕdyGՊuB}i" Vf~w(;@NȽWzqj:#[E*2aF4̜7/itn0qx+O Ҽ(N~,&TGh0G|~4FkTL'tLyݨ`1^L@ {١OL>0T>T!,FE2~SXkE#5kʄԄ=pycn:G΁Wnm9wI+ц4.^|VEN3Yk/ g'3oTki 9G>N&uB%_N&Ll 8Ǚ6$ w1mI AB~x?7O n|əSˡ+ɳ`{&G6\Bh5f+n;w98rU a;FSӥ-RЦd,zdbzq} ^$FRuYj0? D\NN)COIG\OQEcn&W^H!ͥMz)qqp\Z8^|nQcc*MʮG]J^ ]Zjz[{Dy[b*jLu߭nPw6k, gem5D\0M^+"yb1_n9^%KC7Q'UkzTu_Mt3>4a9UZsrװiU&Y+?Z:^I.cͅ'7XAVr|Cr㾮Ibe"cH0Awz,4W84T!]*ux:kW>W,=g7{Aݤ})u7O!wYfstyÙ{?(MV^ԯΫ6u5[Py1٥]pѵ'LiO[#OǑ;1U\|} [q ~^ݵF8ZZFk-!cX~QKM|⩥ƿgJ4'ΡDӉ3:s.c8ybR}Ľnuj!`LaQ1ЇPwy:J[:!2I\l-7$T}I?;u_]5~}\IL_Xr.4u3'AVl-y=;5$QZxT"HgI)tW%_QTqЪR^Sڹc5Pfbh^QN^-n ? m=;Gzɟ6sl7LhNVb\12?Ivv'd0-i[o`i2w-g{w&8 t} oR[Uu ny>5X$o&)5r&oM^Im`'gUy0E`.!w4bǁx:wM-9ގfY ^@E/v3v{aLi'9=Ev_Ӵk cAGZ{[r06r\dlDPwQj2zANLS\w~2/^>J5&N[߃)mͤ`%h̴x㳮zdNզ$',D{'Sv,(- 'xL2Ii:ۚW2䌙BJnpՉ}%sٜg2=竧m[f5gZڤ܂}Ǧ9J9uc#P7\9Vh-ǵRQvEhemxz_[c4uiY&٥ЏR>.lۥ2 ݅~iM 0*M?i,O}0\p[gP7R#.5s&C3+rR1YOg Sd\sarn;>} [6#o\~P'l<(y:yT ?@+iRY^%wp3l ^_z1mϹ//P_(Y)u)E Ŏ897jplh71Iԑf9a΁|YyПM/˴e/\a2J1yNj}jEa;sut4%8BPՖZT7'%_hUsN/wtju.J.c7M4JӋhXEXc (H/]R[.egRqS'[m\GWՕzFVf*KOdiϹ9u0ڍ`=rOO_=׺6q=Y"]aTV0Emjh0I=_f; >6C ƕO&|T7u)Sюք,o2{t݉Ԕv$ h.xN6]P,{9uK&k9Nx*+ k'`(^s_cqz֪(b&aԦb?YNG`2dzCN,oMYe̝@my@<1 ͋޹&Z$txf7٭+kni38)sҸ.^& xlDs2Mfbi)iC2/J BN񻲖 fQ*'mL0[o U2^=6יG(; 8\6FJsKn{[ͫ,!މ22 /ȩ֮ڭtm'_zFhmNV0q ^8m"U,B !H`ݸ,:d_] 9edKbwjv^W#zq oTYI3u8NgH<\{-`1mFҀ{$Ox |j1=禑 6C55z\ "Gg9oZIg}I8fMu_/Bg;$}78ghS#=8s&Lsa:x %Z<bVvG%+XxJ@2ƧaiX O^?7TD])3t:j>we{:{屯4N6 -Nb|sۂ zhmc[ɽvs[;DT{*=, XH _?Dݣ@{=ϛxhnI=WEcS }9:7u?-F쿒#$@ط\_Z9/}L1#i3?[& 4/´bV]&QtW ٨p9τp&/-}hݫ G ]~f) /~~? ;}"ɺasm0*A&NdP6 E+tz4;ʣ8J=$d 'H' _ľdBR< }3|xmle_v{>f il'~ 8uq5VB|}AN1bqw~f>窿L̘OZ~ޭ>7ṃ/e~Gj 6z4^)+t4{'!E7Smd\ØRE2i)|s{X]p$ZoqT< }0ljv0ASis *"IH,Pkh=3xcp%כ_f3K NƵw㳬8:550CMqz7X ЙN$Ҕl~ʴ>~%y8;&Uo9r٧NRXB;;krZ,mzq:ڕ2Pr9eGӓd-zNTd%ym{@i[h4b8gWvFQx+Tۓyps_u_'{ `",d 'r>OUMu;)U(]8m}"޼W#ctٻgsh X=.7/#hWkR3g;4 rAαNzL44.7n&lyRػ$֤]y7dAr6FOT| )$mמ˪Y׻vvܲti]K@n jD?5Ljz[O:P0t];k^S[[?{L/x`xp|$Ӗf|Szk8i<4dK/ euwb3oyO.a8u_ ytyaI 8gp[qO/7s$ZVSN8Jo<3BٱLd=*#f@q@Ym2z^ajj'/=LdNXKyLJ +3 Mh(ݙ׬>lCL;s&i6КqצzpKA.j i-FW%Y+ħ0bw=Խ4Ovpsf<'}+SlQj:B6)#EvAibP7? v E]0G*br~p_}3+5+ed^~@.KRt Z22a/dg\Yy?bb;w9ris]@$Gmp"ba|^qVW2$BMRcq`\Awy겓E' 6a0O] S.YaWo2s.){:$?ဧ(WrsKbU}%q?{沤f`$LoɪHѝpY*@NZ,H'@Ls)*5z 9:^Z3C-}*N[$WƟ^1@y-ϵ M\F/qF.yT AN-:FڂxP?^&~ }DNS4QT}~Ewl'S 9n¨ -qp;8sre:4!eMqt/Κ$'pcd&Tu*P[O?j?]^/TfZN둈ޓ7ih(rm~_[W߫M }?~2.]c $hPBEiH-)s?LS#Ye 8E4꜐S򘜙Tߘ^q>`Ӗ̺RA9hTDj1H:#2>vw@WF8g$dCG(>型TmE䮳^hW3UirWO/]cဢ(u~A^9L<:uI6MY|TMOYxŮv zciL p-)dHErD/ kdɫg,Šugg԰zO:m \fbhqifg2^s}*޺AIY{RP-3 㲰~ ׸;+s{viR&7չ|~+jLfј~S RxGI0hӟţ|qR"ۄ$q_ծ`MO={dmC:5MN3eqQ͡ǴݝdO}$Ll_ʚ?7c5~d.+ljuZ1}q#[pCuY'LCbpBTi~bm S1l7+{b9яֿ}n&̌GVF`<}{lS$d>,H{նxWnd2Z}IoX6XNNw3p=^Eу4.'=Ӛ=H1=sНX2ZNkYi2x/#Sp{uRx&ĵq0dEy3#q1d34 )J -_L3t9~e`,!]HmK!泯WT P+x^M=VWЗNT&$[Mt8f6p_e/c;I .P29쯲#n1% ӄx2ӗ0)摻IwL(ߝz2]Oq5D\*J4AZqt1VBS >s"vb<&b{#)K{Vϻf1x+oHaVvGlg-H_C|g ½*$/(\'S5:]RB"{|LM=yT.|cPFx} p4אL!Vp qQh'w5אh/jI tb[0 _odNǙIiCPE7yŕ6Vey9)6(Y{t >\D_{>eĿ2?d9Iцc۩kϵJjq{$]xkkGVsk]bq#<(9f|^&f`6;w}>0Ǩ{Er`k~WKE MBj06_,oa]0AV^^ g >7e- 4tmAܫ{"툣"D>=n{˟ $cw?G/BT^.yn'x2x4## :7\e o2;Ɠ_dkIJM(nwe\sS~7%8&H?̼E/2?Ek0Q[6i<ݾ O4[XiU.:0Y42+"@,~.1Wcomw߿HG]Tq׏<c4TWR%d!^uI*૔Կ4;}. uLw"v/k[9(ߟ./# ИS~M[{ ,y`(oP&ʹ`ogL"RV~fy[`${cotO=DYus=U@Q3]YXZsQ8Y*qK,NnRS㸑u xyR-|x|Xa'nv.iӏywgsfmV;e{{u:gt> #H؈O)'rR`Rkh;skF)/^hbnFkMu{HhНDY1Q&񄪼|/ۧ Ώs, Avb%t - ίB-OlG#eEVAK_!V+htXժpZz!b3ч&Ed٭zs,Z'ɜW[iY{U.-Ov(zdW ϶;'0h]WZNn\Ǩw,NX _xz#[$pɝ3IA%2JCEtD@woGRV0g*폋#8 &7"kJ-lw>#$rSS܊+|3g>xLଗ ';>=&}uX 3ؕz iVsoў>$ 5$:Ԁ/} ddH:*2F KO7ŭ\E] 'C߈)v .f`!x|⬽Th}c≛WBS,t4J9ii8ntQ1GxuRA%%$ʼn>~˜mteȬ1i`o@> {IT T4/mi*[Le\ձLfg1yWTz2xXizRmouIk~]P91Ւs>noLn83mry)(Xp\rF!}q{&Nȁ)lMA$BPՇ~a.VmJOa5V|s,gXUŇ2Im,YЁMu憎}C[v%_<78*uޓZSb ֐/ :ǽǼv+e3ߋ.*I=#'0Z2+xq%GmmK;`k.`X`9|P)bm"j  ^{Mry?osd(\Z,Bפnx8zx"/F 7[zUV&ZF?sɅ:,.l)ł:ng~«sNB-W$O12&p ]$ߢs7=ގ _>?Ww-tZ֟'J:_ 0\y­֓EgRocQH\roۛ?bplg`  Ư bu;SUk+bn.~w|wN0R0˯7vC#<;0| vunuSmGf:f@؉o/"337՘]ծK^V$(\Rfwo!ڎW.3V9~|~+ߚR<ڠJ(߉}'ȟO>Y\35C+n f'hĶHN=|J= &l=d;ZfM7 /XMب,5jQ6I]f}V@I]Z,ѧέVNˢk?U,#y2SC_؜E5Hd*i&P+V]^ؓxzFc->)/ gOlotslTkV V U ', ӆץ-6KQ<{ASV?csBKɱc>tz6r1@bzJs{Nedg?q l_,&ڕ$Eftv #Df:K8@qɨm ~_maȒmW.؞GFΫ\RtibYe9ۋIxLo;[xY>TvU{z_#35Iܚ̐~ٿ3]W `!Ot_&0?5j7 V+Pϲ0@<qw R&w.xiC#|$^׃-gw|?4m5/$CVyZUI6AG$ ⾥Ɉ+z=*=m>$v8t 5S /1z!ېbvl%+;Fk<嫑!'M]Y1i$:^:'iUFe .;yEr*b]Vo[6;{zg51sI`CntV`zF<Q1y.1G@L:Ysd\}ouZߙ#~ (rauU\b ;rK"܊>M *GfW*\PK,C(A&x($"7yf{?r vFuC}Sg'G_Ew+"d꟒)7O7zJih2Ƭ4~Ȓ_]ksrB#ivMȗhq?McPSQ1w ff@Pr`㙒#aj<_֠(jL_ {\z^_@_5_ܠݔ~"t{g\5BVz P9b g~4v?dkt5>|P  E}`z+]Xk5lWsIlnkRI|'sW!2: &Ĺ*2/?%wDbURʟ'O!MƼ7%cc"TJ$uW}HcvE/XH.|nF::%2_1.:Lk Oq"e4_M!'V% fѪ=ą,ىlcuU֚'?ȷD#}L|;<ërUQe-@m1m@d3@addbamgj2͡DVuVOpOzA4 W]FPGkHZfa}<%T-s+%B< ^@5%sA W`,5K [8=ülMז=:Zj)XXk,z=qRZOV_wio@RXvaMI8+/Z> Bq렆j"55M/VcNkK݊j*2[RݫO%]z]~#UZضX0ka9-&n;I9ͪ-;lvϵUe{WgVݙV%ӿ1_y& i2loZ1aԿ'T-P&֡b-DpS.iٌVxژ6 opAd3au?q9l x>܉%|; kl2N w{(o8tjЗ]2S$⇁q\}t3_p3_yxJBV3=q,3K*:3PгYt]'N7u%1,gVRS_Fib*~NB뻤5֋RTӪeY?h)w-|GRR 1WoTvUBGglv.OW΀MՍT W&BN \#͂zXkU.xiYn*&?v)TXw( IMy%#Y1zxoQ_z0֔0X\r!_a/HX3㶶+E#=˿)n-V`Uⲁ4>Dߙӄq(<"?oOWmR7@+[{_sʚg~3_B^jϤ66ԵNu GRb,Rb "w8](|Auu2VW/!0KJ`NjkαՋo%%o'<ǃN~uFLju[JLaLً"L<ކc$P-}C3<'وb.o7L!0~[/JSaiw7BGvlMR$Wq6J$%`(v/d#7ot W\*;QK)WV:g/ _y˫o\V)s!&!x={9KAj:{˙r>tcՊb "96yr=;'Lњxx2ԅ,̶YqY9cr<2#,EъofwXX?_:$aRnu+ (}Q{Y _ʸ4Lj̯ՌggλGV[{v Kl?y >wv~5Wߋ&u tQzl@=vQ}c9/]b160 r:UӪ.5fgkr39hx_7Ss _+]w/НGT4KX=6ٗ+S76xԵdLBՑ=)DZj/jJ^SFV*B4L$egb]喡"B3"BfZ(hdxO'~3WśmuC^w>t={5:b$Va19Y}+OB[jyy}T;&?넝#9%;Ls).n>rm+mOALSªۭLm ?'jliƓV& uX:O)A5!¿}m"_*K.F}*]>?k qR& nz1e /1J1zB>:jDL6,tdwQ>shtM,/мR2P*_'@.9{E5diBeз:A/(knXzzJîֿ9lo_yv%V mI@U.C73"_Y־>]槕&@%NKf#ڭM*G&}k8^8x˼:`tҿLz4ƹ"XsL2cgQ^AT'`.rU뛑?dc;QOdƶu|Nӱb+[ r9W;-;=SQ9y5F*O.~ϨRE\` ;Q-I:I# 8f5*q} mpJI)ZMW&L'@dkK-s{fXG[X73-V 5׊Y4<"zYs##NFk֜mo~2C/~ (Ave>Q6l~*[}l~_}E],f{;1zP](86=2GloR>˼n+\ErMcwF";ں/+c|g>YDo'TdPmsYǂpG`XJumZ<È>'NӀk7 ؟^t-6yL=v~+,Kd?_T[nrvX~7&wu@'=cM7AG,-PadІQ5&^v+q0mX2' Et"s"9#6=l\l`m|gl'kcXm9>T=aWC aXr3B^'PrN۬0Z^0C%|k,^Y['DsstRA؞%2Qn%oX\4.t^kuC!<1)c87ǯ}QgZHsc9#}GC3P&~+9Korß넮Ra0/s0AٰZ1>ݥC^\zLv uckd}`® j'Zcnnū| byg4c?nW4sa6\i)WjNxAJ7ԍKBnXmPSfPoT;)aA!"&# $e&Go;b ¿' د"q~:z]ojrGG:x0Ι9vDuuMf63PlZI;ia(i@>=w NkM񀏹'xfJrG \}p<>/RU t[-gCM?UK>֦zS :Y%V1w DaKV_>au 9V2:Y>ݡ2WAXÞp(1}V9TZeುމ0gkWYڄ>@ l {Klg3.YoLw*`,njSHݢڀWlp >o &`YJ9 u):1[h;T0{䬶b]ϝaNjcXQ_|ȕzs;=#V۲>z"G,W;3KuBvz(I(4.NmLF Kvϲ8>%|t.8Ռֽa2nA2(XwI훯*wg2~ں3sqR_l+pomԫbɞb'2?wVd>H'.ڝؒ6nՍ U)~rl` fPb< :h=09Ўr٭%ɀM;>ȥP*w5[Vž%9G#qeƁhD^ t;~3)-wsH^޼ck]T Œd&7(UlEܞE]N!8$÷ mݘkqEKe7ʞ{o9U2\ȼ|}r=gĵ{~ kXFW _"3Yjse;Xv]>߸~Y}d)\{r3ȲS*u&|DhrF,ib~uկ1XIZ'3_O]7Zdfa,?qz $EZ+PVw*`m%6:.8 ˮZ U۠ib**Vhtאؗjk 'j]Flc}gOZF/ڋ<; C{E0e nj>O:+6ӜrjaYe芅xBzYдC'e)|' W+.1fAbZX-J=Pf~?~Lqʥ#1o-<ѫWwN~H?w(놠zߕ /f5{ Ux!.DU;z}qa=Mg;󪅚R%4O@x{d4Q7K>ʡrP@WXn4Wr4j&3 NQz .B){{Ld Jۣ뿺6oVxWoEhJQZYLW, dD1keEmn.] KŹg6ŪO``_ȟDUM#֠$ZHgU>}? O ?se0jDe}2Qa`9URDxO' Bkc`Wˡz~_ﭒg !3X1ƣ(X/՗龬մ~O%qQ&20 D"l`c6B7xk@(.j;9#מ&$֧qai> **i 3Y1Tc8@NE5]Fkq64EƷ8DtC)تΞ"/9{F^2ВY-5ak&(NtnwMubd&ֳ(j1}4x T5!*n -0m`?rm'[Ґ+ܰKKڿ|!%r\ߔL9>_˖ OsM+ݵx*; {Y?ew&s 3v&[.r[-J$-]֡Ψ %FC*7#,1?JH#2cX&!^fGǧvÞS}ɢ63TKp|a-"g-cDe@' z]rqHqy=ߘ˗d9yTֻ0p@.֭>yC6:T xgd a\l_FFTg1i@hoW!l&cims:XrKAۺ횡G o7k[7І[P's5_0~TZLj(ԕ$gW2]5_ *=NFc%`(Z^º[IJ~ݛ:8=SDZ <4TWMz7eNw1m/"Z, q[${#T֚$>^ - 𠫪I}q4Dg/IZo(7iFUQAGm%ƙ&C!p.39E& sn.+`3j:T`Y A[)?<^^խ؊$+]<+g\SǚM7_Vr,h;fȷB]۽kW ]kΩfqn~j ܕ%RBљ?E;[>LS:^Ys_ u=?|Z%]e,[9"w hYgʏ}aRHg~z,; qx8;3 ojtȃol[a!W*^o;SruoMPq{?:r\/H~-hE5';Ϙe[mP>^Lv}|Ϲ_%H(~>q8tebɪgV~\uUFluCfꨛ87姯J_ \ʇ~C%x|&߿vV l]M؊߄:Q~-t&lEC8lXTV;Σg(焚[kfӵ 378Nd(Nhmfwj뻺? u3ĺ?&n8&":? y[3wMe2W\vr|0)~* /f5\f=űT>%WCw⵫j{cuo}yZƸ/cucdkl'juK]PMxqپ͌Am\r%zɺefqSvW%Pw'%8-vc(R¢okA OKjUy"lb "Cb}bduPuva_'ߏe]p`7JN!)Q6 |$KQ`2Qss\w8 M.lي?992`Ix_G82hV,_kj ʁ;XO_PJS&/Waiv})?t?,GŰH-yK0w ]-0J=) H|~@䷒>y#" F߃ߋAK9ʞ4Zַ}?5WI0'&1F5%TXŧGbr8R]b;ofc\=[t"َU} F #s&Yc%Ks|ZtXvH`F;: $ن=NjZ2Y]1nߕ|1Wg**~uE|Sl[e{k*wݛuj`fUE6q]7j)Vvt#d]18lU?buPM7l;5)/)8去$IBd#:'\5\KXoӉ]r D{pUXǟOyԊ:rU2'ڋ,[иladQтU|;?j=&WF')2OQ7v>Eg]x8v 44>~s@ ]{M38lsMC1Ε{UԿ 1=Jarθcd=4=y{׫fb}]ئXV,ԎމO= f5nopZ~a3Tx `:_r#d(P|=#bnY{;9"kP~WK [ 2+^zSY: 7H?<ᚳJ,V^-,Kr%}CڂgCrKYDK9=nLPVhIn8ukeG;N~=SP]1)1 ޒe?лzj3`I |kb]Y+)~ g<\`+8`}gudiKE~P,V<^63Sﻴ6TSm,,*|zpO(ᛡ/;ov-{OS23 ?uxs7uX\^B]t?&z{0rPf]kJ [~|5&Ƀu?`_\_`$b5d;6݉$_GBD6,P$\TF`?5muf)9_1s62 w(Pjoid |}lVNG$Oo1V!RYm "j;z'EDP qʼ7bX'޵øvW5gk:,hJWhꯊgDa [ `F^C2h4Y1) D`M= W>E)$S=km`5:W>c.w3o;Exxw@_BF%+c\^ό?Wumul?ߐY=FV*,R\rhཱ2C"dX+b.֞-3N:\ TfCTɴnPE-1M? :l;iL/kr{1rDv? w!x٢%}ggzcΕA.j%>Vcg<@^^~c;M!.GdZ!acUՑۮ6lI9770 f*U~7נ>%ںuHߵͮk}RK3_& 7e660ϯjR8$?^yoE/"okZX<* mWΟNEzQ.KmkqF#칩V=Ӈ|tl=sЃÐU|M+hduȰ;_oiFe~\E3n/ N|-| ~g+ wi,vD/H/p!XEQ|8[?&ҀY%%o=5eXZVGI.'5QX c+fUݙE~zA K:k47/ͱA" JOQ.i lC>kI ²UV.i:B5Li踅dXzafNz$j"I@ oa b1P}/Ow`YƣK?1CA/k?9hly"cH,Ơ5Uay z]{x5A{K ȬZYmI⏆aqrk?[ ml m S@s_z+]q#MBM%4 ԝ ֏ ݏxVR$ެuż܂Wm Jrv7=l Mu:F~rU;^HZq\OƃʃQ -Qׂ܎o%WL\ vnհ 3iERb%0?6b#'L,f۹#;J[Bα -ak *ͅ5[5d{$CM|Jïľ(tʼ #"ǰgU(JcM=o :dvJz HWq>h_7-ds%&;mox/$a<.7>r82d KNq.T/V+*Wr:I^JtyaٖVjeO11j]$jc==l'KVF"<`T|}n-s(\~Q[ѓCm[A(>L%Î8fzV_~!J¬,l~k^6&ܿ{ >梴!tዋ~A/X<_/ddOZWFi_Rj2y)m‰Se8{{n"G]Ppp\i@Ume@1EfׁK_{ 8VW@ bqcb5k[a gnhvf6a}-YLuX˰wuoGk}f"2 bBhx)TDƹif|%WӴ="fKyk7 vc+ë6hBrv^8e G|x◟3Gd! x,1:|]_P k=% {'Z1򚾂 :IցdUϨQK%c$TbW pj7^.ܑvF%rx>Zf.OGs>q vӎo=dzZ+=-yGoU cJ5}eC]ZdA䏈(VUAnNE=)K \sᓅt~>^l:elvL/E{l ޒg㚷@f_LȦtOkppY@qoJoA ԵDťS?QZO d9ȺV1hɁW,};!jι:Xj[n49ڻT]k1kETCt`;RSbg6YF}1GibhVW'*&aD=G[O{MGF}|g4:`^w\ifp{RŅt+5dJ7CtsuXAJhx]5;f Ӌ2Ͽx߲|tO\GOO]tu?i}:'JZSZ7lzK3||NOKo[K㈏a@mD0PPyXJ '⎹\Äн4G=u}є쳤lBps|r?7 {`MezoS= ችpvZsP߰k"V'gB`UgUW&Vq2|HBN_ȞXe JY}Cܹd}@N uYߙz EA@@"*"XPT &i{ k3+'s{ٳ;:]s^h,~PJw믰!7ܓܺG4| eCh8 =uIpG%/>LfX@tF|T j{_;3W;MYX5 h4x4+ꎦ> Jbi}1XV0}[n'xYLuL9_Jq:SG!uUJv7 mvܱ&@ۉ8W[bOaD ~P۟ \uV)c:UE#jtm:Yj}l#, #X$͖&yBV3/ܯsX}a?Zn5{#PϐՊ<(kކ7u&L9$=ƻNd'/ jkf]=HyA4wK_"l fl )_JV\՞KDӄ!\N:Y[蛼 >HLw%c0k0z#j$d.V,Qh<)* l} qm)08al5(aY_~g>5.d|) %6 k7gd-`|;&n<~Pd&pw0]ke:R 3It&b"7Ţ=vg`J堈]^zğC`P0(b8"&q 9]2MK&gZGk +.,md>N袷-01`U'd;tb\# _; ?uMA(ձʀj=k;V,=j۹?*wxsh)ÂOK XI0c-R Θ+AD:سAxpv5qҵUqY <D!XVI^%Fuv+^u_KVyyZ#>+(ZGwן.%y^$? DF;K绸*=ٞJ9Bh>S5'˛z@ z:ixUzםշ@Z Z 䇜jAWZ*an$KxƢ/SG?$B#D_NĘ]]|.]\.JG"J>H$^7ĺ&`d2FjVgsU"cxkC?lx"B_=[XSF ʜ&%}Et5Pczib;rF::Uc]ĺmĮv^K"Ŵm.YWB_j0=haX`#lz{W_A/ʧZRK_?rpׯE̦<ΖuVSGpK6RXEr%ғ/[*־~[VW(`ZS"u x1<./|O퇒_AEbN&#NZY/VLl"b3#QN{BU=KKxȽ>ү7klA1 uăw}.w+UKgfIweΣr}gg:v:R'>7;WY `]syOMl1 3X끢V^}7āUm*h$'w| Iyt 9zBT|G7wp"w_zfBj \1`\{HXxULaq}G^cJO>)'BY%+hyY sigo@ɳz΍bVuz DyW(TKeD"`]+gweå8m+H`h581>3:ьT$ZU&g= =w̸!B`>GsbOYg'ſ t>$>7 בMZ\!ZJ x*5 Hj$og\.X;x$3̢t 49]OSXVk6<#G (܉\Ҍf>b&75qmTQ vM#M (]E#+_:ω'%nuGG#n1y(kAYgwֹ!~ySه!vbہd|߀Q^ff+c>Zbm+]U4ɉ%d)hNv.knpGH9$ JDJpZdmSr?mBZNq.^b$fh 0TR3hƉ1LjZ+_C FT%ߖG98߉ 6swIGÐgs; Hkݸ*NXt&sTxkY_8FV u(%RL~fNN'&<3E-t߯;{2El)o+lǶOm9:EP|~ 5FgSɈ}Cw"]$/v~4Qд1"on_1 -]F<VZ XA "MA]:W9ߓA7u*W17}K2g& \69(U):׆톃%6=H[HcK;uTӵ[_lMTY￞t-::LZm(sH:q Ngl J`NH :OVJC$ZB棃4X@ fƮ Zr;`2$+Gvudꭈ7KfH96˗"쬹>39lo-s=S%Ҁٞu}e7h۽;27;52Egn`֩yVWƦjUl#;NBdrV?l ~0ȍ$I@|ıZY7.=k]c$;g#ay"zW9%tfU2tq\UCМWe&h Li._%vd")TVֆE?Cu0E Mx=p2[V49M02h'GZyV}ǵĔd*&K7`> ?{mzrkҏ<[cqsd7K;"hlnq$P򊱼Tbkl?sZWÌ@2ۿDɬ1(*¿K |_r2a2}8 KcFm[HuGȆmwE"?Lw֡gG˜US&g p Lwp |Ehb@ V!ډZ+"KfI637Cg]Oy>x)w]}5vAj s]ݍ= NtVߡ!2>a$ 6&V E?n{wZ3>iu. zDogsRbסr$',Bset sFz߿]7i|:ģ}9?YcIveN= NLתM30=}pm36M?E=^vpPkC"E_?-Yo>b!tkLXbCudrccROpV3gwtX5M7--FK6_n+O<`QE'"תAYTOp |9Ꝁv#!`6zG#)d}XUa5.v9$-# Y\/N[|ϗ~̡#^L'TZ5A4>;K3m22A+ku lkB|w~Gķè_~Xַq3p`K2ݯrwǍbD9^ԚB+Q1DLfLr2X[Na%ihֻ1p[b]:3d[QsXQYT_kLwf{ Jz=/b凌b_3"np5k\{VbLg ]3am\pHg'DC8y edbu.Ļc)pYuh(Ъ5QV=#mdF3E'9 sc8vږWp$yBn=}N}-3Sv 7h$. ($كoo_B^Xuq";$:XM YڈUA׸=\+(3 +~FN\2Y _6TİsדԿe1{'#z}iH'1`~09#]ݠ-߀k(ֹpV݃DzVv6XR8g K,#佇A `PZ}KxYEYxxny I ^ۛ3 E'\2pbD[ iY|[5܃vѭ.^ .Q: }O H+fXRpߟ.& ;2 ~ vf=-q]J 6LEO(܂])轻F׹`ATmQp+ýqj|C?_:a&üJF1)o%3%5A6EUH%fΨ Ȳ'uBlOkcđtDݶ DĭQHC+)tEd7pdHPy\搋⯌(Iӣȳ|-xDBXk>4OkI1lgn鿺9lo\0ܳ vMk"5[Fd3h/"ye0%/ <?2gzR*‚n~76'WT`w`?ɦn} z?n=]R1R­r{WϊG7ةW)I=䆳>-ڇ&.&QSWp+'KqA'> Zu\0V۩7ހ3/6n!D=r(qz|bP206JNWLvŝcV p"JeGCDvhq^ߟӛXye1aa9 OO| OI7sS\b/]؞+?\=D_n?W㑯_~xzj4<1<4&:򂂺@ Q֤gT7ZI#l 6+`IR~u7ձs[Cul8VobS:{&/`g}@o۳o[#jX!1jo#w*gb,28,%Nvr|w5K$?I[az]{pENZ D)ohNYډuI#g8;=V`\SbW|%X$۾FSBVNڞǝfn#vJ`5{o`p#dF@F> ð8t3ԲX̒Ӿu8$/ȍtD.G2zHKk d1m-ѱ0}`tvU-pFb;Xs7D]O}/h{,qVO-ϣV̬l[+6`uW ~ C&.Ԕ3DL W6H\݁.{]yO9'-DPw<=N?z>3 >$$PU˩uƘ&"qf#N֬N@y[!F^"$z Ӄw}&VK ?4-#֠p+:g}F#4J `Ӷ{_oxW.Q+\(v|տ-!: ֌~)=ŧ1LNz:@5–;ƽEDV+@VU 58j oLj;9/D5l}L{"Qdy6 +ga#m'\v ])Ci104i~f] }K26PU[xKKr_-=IOK(?ȹHbp%Z׸SbygQ1 GiRryb IZg0H֮m*tWlg?uیt{p&L*hr-!9W~s"j \NR QQGjKIi5 I?1ZrXWO2Ͽ~03hg:󃃓s~kYDizbvz:vsi@wXQn-2r‡ޔ0Ha·l":Y͎_=l/Ryj=~n`ă n{E$ ²Ƌ_4kA|m.Id}DM}u;awE4z=Ld牑ꆼ7tS P7ulY6~7 +^ uOݴ(ͪKG5xM8y rr_O8nVOSmvr9;?_HZEgvyֶhd6QF0YC TUMK,})-/\MЍ`"՞6ݰa:T+tp]KK:9mTѠ:0{u NglٰH2--Ee9vٖ'q!7I%_ _[Xpb_H\ ;paX9~VA|Ņq{~R69`}-cU_Eej5\ut;o}Ԋ)X,ǁWV' 6"]`{Q,j<IM|L1傹Mpe/SEۥ",_?D޻"IgA޿rPaWd|&ql`ՔΧCeA*dU sSŭ=g&|j!ͣ;d]t1ɋ>a02hݠRnkV M{[t,`(~`IJ GYmԗseiXdj,iw^r^$c| +=qVr)i44S.Ya2ladq'e37L)='arSF~*w]w# &fkE{O9O_]y}g vuyOkƒE3©/2qw`4AW*q> )p<_q.ϼTp|:;"/Vm; F0WشVY?'v\s79E6#,r;,qV{"|oVڀ|"*tx>u*a5^`H'e`4 {ں <Fb]]N22ylG`a ]9MF{#_>ܞ&V4 >YYG6Ě΂uaucuiu=c묊GD8P*C0g2Idkk`bNfKR_eL:Kc4ք-ؚ DڢɖsO}/hpkqj O.Yk./8fJ-w*jjo w$Vosa!v#% ˇ'$KJD:i|,r18 mivOct"ȉ? *m7Gwv/a5|<0Y`ac9NʀJO{ F?FWn[s5=ܤ7PgdF ?x:^ú5ա-໺v"1\A158,:LaULfqV]Fs^g=}?;[yb 2K+V{zTK/#9[u~G93 _LdZSלhWsVHTMMOg=ۀWctMjiْuz1nk.*c'aEK"|`jk9scKr.uefe(;Ϸڏ#OP6jsOwkL[)"CM L%7|~q!;HQ>h~V .>w6K1dsէGtd_KEI.v#˾'}9n0:[Gsѷa5 P__qϼNH.MŴ?0xr IB3h'ߩ%)\fopޚr en#DboNOcEzZ~d{F\L%[>S/i}s n~Y=矃ا<aIӀ]v,\d8rSI0ҷ֡,fZZ 4:<('/뚅fZF=Qr]G3Yo_Ulo5~sT,^kM.ićAKk;/@yqY͵@ˮ!8V.y QDۥ,ݺ`4Xg21Se >xfuD;-q.xco7mev[?G@z>YrhNkR}FQ?K$s2:Avڎ^#I3?DZ\9ݻrKm}>_$|Dӕw:B@͢3x'cs&7RωK w39#Ԑf:ZU &Uw&GיU66͕1gs&_t4qM+rt+%nFBy}XDXbb _؞h31 t*!`_!G@(9%?cψW4֙+/A0Βx,u18z;6; %~Zrs_-F!z|ٚu,{;½j303%9vds!%ĺG/0K)'}>9RGBU5WHˉ9}H.R{%U3l|zP%)y S?1>~`0"iv\0XK=j+qldV<o?\7DZ<`NG7dYY=˰ߢy4nHX#k?EO`>n~ xlFb1rTuT!A-wt*]'bܕ.ߜr>~x+ޯ"-drM0DjXڎGDX䄳 A㙥'0w@ HJݐ~ xbk-]5N/|FT<*=*ƼbeFA;H & ʚW'vawbA  6"%9Ɓ3]ۙf_?!wǚ{$<)ذ[lzclId8 tf2k8k=RbSWTXZ.2+bOz g*azp, O9I7\K,&:z owf[n"ˋ~vg3~ Z\]aW܇DsZFڭɊ3WG 2xz $GCNlU}"us+5m]('D{VI]"ӹ׷RPWɊۯAzl519wӭ̕?s>rjyMFl,`ܭŲ~,|#50x[b0h3D1۞x"o,@2r%X@h#7|!vjҞ fݍ2E'S}ƶ>$łKƽ[ugTb32T;P V5L˄\GxNR02d4ɥw =aj`6/kkfzY7rx)_،<.u 8efkʛh.Rxg&'S>(˴>?G{knΌIM#\GT#+\5I4/YNCtD~G +>V{.W[,W0ntg &rV-;bxg Ƽ#xu_<3L|eg'֣-| W(RX'd@]Yul]8_~ZTkXtCVV߁wVa'i6p*/zi=Oy_Լ5gyܡ09@RdOdZװyċ]C2yD7_Z.Ɉ# 9X]·$! H&ql.]`M.3>C3&Aze\lTPgd,3uO=̠bgr\\Yg2\w#(+o}:.Xpd[KNy#H2Z\Ȇc NBG }U<ۉߖGusc !>sȣ2Ua Bk3W&Q&Lz/Z JnCY7kd ֍=_k~C ejd5;vv02ˮn+=2:>:W~.qQ%kҷ` Ȍg n;vg w=]mIO0xfzUmei@h2Z(3׋sP9iS㰄}XuKg]&aC8;Lj}Sр<2{"z ZWd7dy_bid7ȹ!bOtOef":+|d;w%UTgt l"pvؽe z`{Sۗx Hl4;]h.mյXeg@|xw Yc0HRgEAuboZYǥ5Nk([t)oXvq5*[hzzzOdZKZ֗9pq 'g3n~E.-e z nC*[J*:_h =Ymj(٦b|c~OIgV odw+wH/%j$X{%ؗ+ Yc  7Uu$g]!C`5! NDWs{Yl'U4;_bЎ5̆bywC{q+=ZDp77)똺Ʉk3aC}*P\"Q]Cx5\"Qg=bĶ: ZwQ4  GE?4,+itUM#c+01Kݕ Vf=5.Dlg9R(0OXvh}pyWI\ٞH6+Z7RMK|lz }j9t]Azs@+]ʣՂ#MKg;ZG. Xtrp1'Ld֩~oR҃DR0 DNԇ軐Sm_O14 pv*gs g]g33O;WF`2'245'Fo[Sˏ6= u=џ܏GuO6EX} Cdc}]0 cwyqǮ9}Al?^:JT6õ@W;R=t@VwWjf᣽ի{n]!ZDx#y|; {F[ j̅9]."f KJh 뎯7mOz/-ؒt$]tfO:h7|d;HT5H{- $~!yOaĺr| p## p(Vָ_A͠S$3;犓%G)AG"vXE(vgJuG8,KaIxۄ=70w$%'\p-a zOo; Jw3hv1ֺ٩:= LsAhqʞZߍ }9ٺ-t#=xd}6c$4&ֵjF:Q|b =P *uܶ c|x_p+~ VzC=ܡx\2ϋn3n{zXǧDꏑg8KD|+4L4Cr%8eՂvw1MI+:i44iҖ$ IČI,k;[UHk]Kj!}u?LC[0+)dDX%0zL2ōj51o`gȥq1 HQ~2ˡ N4x` }Zwx[C4p~>O+ [ E7,g; |z> LLx0R9>3 $A n,&YS覐 7[kJ̪~U|lc`vl[XLNgFA(Vh:>-=dRMUצBaHvt 1~<i;n/qy{Upw>`:m=vc ]"L5);_29V1%'$CRhCcZ|jR[~;|w3;K+bF0vu-Ë#pV`ckiNבV^e\:d 2ɏ#@82[;ck}zKݟVﺸ!~Mr7s䞙(_$i$)7AZJ,1c A$kޟxJuXm0}BizG=Woc$ViAv凍Nti*+XM2jƓNKvhle*2\W5oy$~c;Lg]+$?RY#Q.Ŋ?~4^fђ ލ‹hE]+4lq h'3ϣCn|m c=&,Z`z Ȇe%) \n]ȷ ćb^43ka@`~)v4*E] .zG3X1ċa`zF#ČA18&o&C)5 hC=8t HP(2swY5=Xe36`O`s概ja1"D׊ө}k,b(q8`)wc<ժegb5<&|l,B lMK2J=.Vhg?9`Nɟ㗻*%i{`:m.h! 0;}GkXeFVq.\riGM$xfzjUX&O@ѯAgo` hzb:;w;vgP :;YQ]ߙ;'ru6$SRC%`M8IS EK_GiA_|u_ ֑џ=/luZ*ve+P$tQc26d6z. -ed1,,6nO7S1Z;{#RKeýc#`ZVj\_牆gy-ƿns2+}"q׌{5HNƒϟpry1zoAOMy#8KYUHl}>v7Kx ,1I.15'qs׋ȷ&e@z׏-t`ݰv^rnPy>}.t։'$绩m^)[[g&}|rYϞAj_YLIrCe4*hn;U%pvM B$|1zE@^Z^Gg|v-F9[on·Iu~;mwh;y䱞lQӑ6 X/-h:}Sd8m{UςFT$%x9|XK3(=촞w/|e, h)v`l3[^wVCW[]Vu FlrxH_YΫ, C;fb]2G!9(nqo:Uh:u!:|&T>:o-B@89qf Rđ Bǹ`GU|jZwc)Ϊu%S&Ȥ@Ĕ~nʌUĂh":"_[y[4iiV0a%,i`d~Qdb>a#ќ!N g]'9| mh!Ʋyu@حt >X܃>3%!HQ~|+ĸ= '|>v[A Et<.R7p{ZMA[#ݑĢ1^L,bhӞO4okZ"g1XŵHo gboV2-nZ̋Yb3;.= DHX =ͭ"$ZU?c:H{3n ?z~́m|˵R6#Jۇ[{Nco算d xD4WGΣqt[Ycbop? Վ57}YqzH_wIkj!h7S֗(@n RXMdۑ/r +X'htHwŻd#@/>CWW}ůG?bޑn\"9r^y&rO=k1|;R-+>^_t*# #d:?"gT>rv{GW~:ۏyj|9^F8 g @e|Z0,/She1<ՕBͱm'~/1+68J=݁Vo0f[a}sݗ~mar=j;ѷ~H 6dDVuO. ~cD($X}t&v&XYۊ\]]3fk1k fB6oYy;-I~r~ܯ >]$Y-sEe}0|*^| J6tz_ 瑳GnSȊ^Lb{jC+ϸb_!h\I"[;wJ^r:2zOñX'3i oHA>[h ϸf]N=j^[vu$VЋ/&w)HGKjSUX>YHtڎ3=H:(QWm\8w~B\ -h0Yl`i#cWso&w]jXU<޳Ydt1e78{Dϻ6ؤu{\WGxl|:\s%Nle,! ~ƺDNvslb_uA`'ltlx&Ӻ3DK4O":v#8V\h|HwH4qXuѮ;Ҟ v\kr)5l?#6 d {GE/u9~amZ\l!s\|~vxzX5Q "X$~Xg62*6co0x\}?0_-ۍ\m?:NcNɩ9j/ϳ1֘M |وYRE_RM-1g^{p-φ*? =%bu G}ݰXI_ps^ʣC«Aj,'OɃ)hN۪i[X~ל_q2b'Ay$ߏՀoY6JHtZnhld-; ބ|\)2(tG?vXѠՊ:.Q;(#d$|F2.{[!Ͽ JB)dUn)h Y$4M}dkM[XT>|.܃G5oX d?DLEWq,XZP|??ځQʗ1X\ˆ"h,p$[o| ֿ&MUR $*ֿږWsV!c='O]Z1_cg=aOd>t\*!g 1v+^+RXCaɰ XUa/-g>G~\ O\ svNNc;BˬX5vF218bVנ9XًV`пpD^o5-d0:v=~>zUz,Z~*}*~ B u.h_AZo*lC] Y@:Vi: Wt\"%҉׍p,'TSe^MyLzFZhq8 zzn|W9Aͣ`3-pڙ؇uH;ĘS ozel]1bXv1a/s,GJgEY9gt g1r'"ta $ۮYzd|39j5/۪BUw4<۞i{̕O=p3+D2bl//m1,Ժe@m ?tjVq <ƙO~#ņr~iNzK,t2;˟\VTQK{DXjd_iw柦l@ 7p4 ܆E1ZHjd7Eª=g@8O0 j ׏WK@slm>ɶg*p{0pYN'9Z0?`]a cxH}l$*z=:G 9$RByOǦRUڌmO#3|K=Wy.C]bI'Tɻl?-?ss'bnVgO$|d]dvL?_XMn{Ƽ@&e>uYmi;?uj5)#g7Yd~'ֹ*B;)Dg]"d#(l0^ס`RgД;,4TFr!&ģ~Qa`=*}U`nJ%2 AX$f]` b=>|_| F^Gɤھ{&y8v*ӒDhp1\Ѧ>%qY~ Оbg=aǾ+L69;YV-GÀ#V/a}gs\gpyKJsYdf⓳@бjVzsJ-ͤ .VJWr:.G#S{23V]4H2~6X4WGuQ*l՞ZA`1*Mr(Wfq?{ƸXHBJIdK}ǏBqK,:unذ}l{Qg3 *KL( C/i ((vı~'y'n=gk=5"M^]oI x?]}hK{sj/t>/Or,]4Q;UyoVHgښs|H\xkdYu"B^@ Md^\tbHߺHgx˜coy[(4M)CU-ۂo3$ 8盀doMy.Ć+74'30}.4Wc _}/Ed$ԳyP V:Tŝx;:|,Ecvyz7+5NNTZofEʢ1!@)F? f]&"z']wۉVk_ !0>UPtJ3C@ٳX=|v~'B/w=?ՙe2q8qXD}#|}zxXT[\˒r\mMc텇5}:tS[X]`g&YsϹF*T?1Vt}oҽ<6,{p6ܻ4gW`OXW͐2լ#>'C;Սv6KJʓo? +v mH+Ж;&-U$ʽ-nH/g zy,;w#WM\οas7y Ox3<9l'|n驲z3 oDPԧds>q[b^yeKtUƞ7mɸ/\sIU/sײZpzY)'#yg+\Le؃2zܥ>%ڄRTXz:uD-Gqns?~q] ~1{|L!V9+wk1Vzdm(tY cf 1N5?!iBtU_&GQe:"?VW$Lᾂg7z޽'Vܩ Y%V3Um9(L5rsQY˲2V+:ߡf\h>hQ6pW=xv>+YWl]wMp-Bf|Mg~ :M{CNgs̻OqwnZO;9Y[ }' r(c?envz+γV( R5!숐C簗I}+c峔ز|\^o#=ϰ(e ̫loA}TKcPͦ$\,V^6iEsFgo^J98PLNIՀ:8]4|z_r=WnT>I猜&_=Y CmNpUpB^)C*G-^lZL MZaށ:Y2kPm]; p1 v tBdtn w됞pmBeeEgz~VKkXҺc5U g>%F34Cz'@)XIpv'oē\*;$" M>F8hzO>G_awM8wc^{UveG #?{>2Mg]BԖV6 wB:XqȚbIUYKwED98K\ډ|o)Vt>^WX{3 qZLBT-EOFeN,+cߌ7`qzBjWDLB*sR5XQ5G὏AfF `%ԳH>IxUWo J'=\nҙķ]ZZo+ KϳwA)yo('OSJZs@VuƙMI1n3svt=Lʊp1&R Z_ЄW Iif9^uRc]_)f|MZ'оNfKYGO#ֵ&iU z9qi6xgl}3~fDYHx?W&{+bHx6)Z]ų̂?{,b9edݍ/q,4`v\B5iY~˓;$(:AHB"7pC1v'+-mawWo†hEBe>AB&U!!! ^}-xckǁJ-J\Lp?UA_VujpWed(|TR]lL;;En>d]7@w7wc.4U~-LKíD OGe1H< ݋hx.+b224^C#ӚfM%}1K_wPPTs PvXUMcL\Ϡ}%XAn4UY'y&1 -.x$K6z&n6{jb>>FRu_|l3b<YڍEDx燲JWGΌKUt_]qQe&{ԮwW#R?־*pN"n-r91p?!Ew'S,W~VRhv{ܧJo!5_3M{?bj,t>%ԚPn$LOvc,Z>[Jx]Hyj13JyױD J9|"jFhxhQ+ۇH虮k!jơcwӇw9P5U=01ιwmP=?Bv_tC; ^$C\t2U)_Gu W|4ZQk؋>ɿsyFOL ̬p&R*&*j_vLa\ 7}X?ܟp1ȯ(F!sf aS,B+p933i6+)GBt9I'!xj9<_tVvx6&6{QHi+zO|n{_'$auw5Gsb褺yȵis4YGî+ yb8I5gNl g^7p|8?Ej[]x:k^O$;n*acWOT\eZS:XA_vxo {Ww* ~<g7[S_Wt3A<lb7RV=|eRuGS妹E>fW_sCPJSkgP\SfN@ǣCX/ygۢ"z8Й`asf5=odΗr+Xwv]ٯ"=ytzwJF |wղ5zR9vl9ҟ4yfbZANHʼ}iԚnw._xg M@7/pY)l\gk1د_1{:ݟח;,{z,>?JR0)+X[t.PƷ=c<!WpE>(Z= Gj_|.HGMx:;ҫx(OgJڽ6dBD Suc=a|V"nή){+Cܖd(^nIG+ې%q:Q5gc54'8IS1xPj]:s!.ݰ^[t6\}^k?wL(f}etujX5{u"z$'7+YkcR'fdT>7k$[[I8e7vu'{==5- SO^=^33pT-w,b(ɵʾ6_^ȞY1ԚltMiVC,PwܩF<idX`/?98Я;lD Gx2=>Un=陶yɩڦs';3U^'uۣlӚ+Y_4z'>y7V`-ݐhp|r$AhZn!w;)BWܶ,~U/TqOY\O7o?C!|{e>ƻf_I=Idˠx^g􉑬uTG,b/[Z5_g_gUus5aza#Z$Mk<7;}<,`{;4;wL֟g-&p׊!i&\ m2&T:&ϵSvM&n _gj'-9uмw+A}=oո'n·\gf98}Wm;߁;6/6 wK^g \3 $~(mSYb{ ivUeE4*8nu,#2JI:ii,) W2}cد7pVVj]ft-x>Qx+s$c!]^:m86nY1Vf=h m;G:9,gۄbi⚜D=.|77q]f1](<-3[/iw4Кs+qif?˜瑥AJ{zpvо#;uĨ@ݗ{k`k4t9ʾ듍V2",hXI:|]G?{߀ŜJa?Uy!c~K2oS҃|>UsVqפ Rud(lO:7gʄlJ_tacjE уJy}pzt6mdl)}qXi,UZiMVqق;NߏPG&Vkz'EavJ1x|`:"+~nÝ7ٳ}"]G-S zwsIBW$4W]lF|ժtV80kܩ؛+܅+0)>8.̇Ai]厸)jt60DCs T[,* ӷT{=9#ܖ<(b'ҏw*N#^Vx 됯bJR?M+fy̥F#}-e?9U3qV|[ySd:*5Eg)cGe"\àN՛%^Y4׎;tBjCmYU_)Rz مJQv,&Tuݤɴ0vtX [8 W;ab&r?tE~\t/p 3czs%]{OgFZ/lfWʞ(O`c)7~\WOgV6yR5h菿r<@D_rׁ|{=/ ^ O-^` ox#]<՚۠pyy3~wgx0T91J~*1hA>gmm;'y;ϓ h`ecOFǣI]/Q{_vZD'wL<#p:Ic#IX+s>d?ڵ,ߍpehSeJ NY?/}g##4uZ{vv5ZA1;1{312}z+ M- V|c|3y ShLǚ4EzaOݬW?^ZxDZCm@~dI*Ngkr5WÓ' P[e[[z8,Q[D^I|w#:WUɵP|3ZK^j&O^:*_ 7CWznTs0gZ!.5 ?vx'CfŲ*]*߲c\4)GfqǞ&@׬Bfb[6^аY{QK?IZ;[ q P>5gp*\.%ҪՎ\Cg_z-OX՗<|phVT2|%NR^`qzWt!FOK7ޅ^QjƧH群驈?$Cm4W[ޑ͹'hsU$n9?*wCIuKWڷN~_k =y{٣=uK=׬AvcЧbW ioÇ8~TVl1GQ6OODǀ]mWژ[Bdcl;no62j }Ot3LgpO!ԊOWVx6\ݑBwnn㉇!OmڧqY[۪-~Sٹ x J͵"w0VY#k,_  vAsXTGCW<5iNCtm1]@168(9:Y\vm:#t-6h. /g;ZGGkgD^wNGMGbyzF;'"dIx= v.'_j?*x3!}`>TC>EBuS5bۊlo:(_B,t,brW uw}* =Yo|ޡ S qO)XHXf'ކק:#1dτα_9 9O4?I^UuCt~mȻ'1ÇR.SFTl]+8G=9脲ډUa$s M:п>TqY/H R}|ΚdƸ/'y4DSbiMIusؾV;8(W֙aQ1 aMu==9%~PP3Ѵ:9, ^|NuI(7BV^.Ѷg*h>ޞM7 w<]W[h{ni bF< Gd4 a7YyD_3ݤ5,+5ų'^^;nb5}H"O6ԧ@Y임u(  ?4?s'[uY*j_;^飵0pJ FBXѴG=8,5Q!d+N*j;*]XnFt6o=܈cYI>JC?צbt=S/Zs|Hie&_v%s yƒEf'BgsX`h|QkU!xVnWqޝ_/'Rh Mvo (}S-9yMcQ]cHIF!;~q_ tEN~Myˌ OnwrHo&xlO_ε.7G.wZJ_*cGF ϷKGƿx蟧ssb;Ҋ}rq~ zAsN aK:soz SA"=uDˌ(ϩk>mǠJ#!J>%yx Gosծong?AKsf(|ү#2S>GQCvzWrA3arG;Du#mN__13F؎>S7(̥/tbð*HmrzN+j%oy?n϶f+]m1VSUZB͎ffsUѿ]z6Vuzlwu5N#"dÌ8O}>R` {'fϐm,ho>!M|\pbқ'|i#5ū!r>K V> ZړРGOG%¬<ڎCWvN‚|FKY]QpįUOxxm 4GbGct1,'<4waNs'b@Th~Ei^z1W$Sh|t|&٬A]MVP4z~JKlw@oʷ3'r_bT},Z<*? Gmxv3:yO1|[9p8qH5a2#▰[~8|ޡߐG(\:׵S}V: {n7ic)ISM@&l(7.vctuv-XcmpV~{-r9,irxcyu4Zinu nSqYXʳrw&h%zG}L0;f5#R>z:vXhWb;MV8M!U)] ;Uҿ%qP׭R/#ه55ÿYC8>84Sx#iˌ0˘ߣAƲ_<8xF|9ەf;K)d2\Z80X*2}%|)fFR^Htq61|i< FV8O^Yf; }7`_6x s]`]|J!p-~qG_ݎu\~m姝/# r8eiZs!NMv?:i{eP@*ʊBQѦJ8Ƹ|Mͱm=x6L,LϜ@5]h`0<|\:xU\NS= iG0:e}V6:%^Q\Q%EjBV{RsFD#緢&q6v3֮ʯj47R88kV3ddǡQk'3b#wJq=QDTlx+W?rf'2 24:'`]igh0H۹R5;t[jvչh@\}ߍU+bbr]k+S؍kgt?PTqc=!TK3Eˌ3'BsǺ JF/ uOcw~Fb;y+Cx'aq5Ai:ћ/4I#Y_;[)^G8wcWBa|={l ٬&8B%(gBr~1_O\_TQZ ?if$|q6{<]xiu|>~0GG·gΏ//dICm?O/%a;&Ksm1=>lj}?sns|/ᷮG=}kr4Znez>>۝瓃ܧ=S!OkBfUhO=U]Q&-4o#iAVa5j*:g 'Fplww {#M8ö/IOf{kDˬkm3ų۷⩞,]Ն]U5G}\澶}o( !uWG7cXϣuy}u Y_##}_%[R|_DʾHS=:,ghwy,3<'ij4gOoĦwg~ϤǰNF5vg_&!HyUhn{kQhmH ϥIkٝWTdn_r@ yjb{];<_3WW-jfȎb3=<:4ZI^:@oUSm+DăOjSehP[5߮wEj5/[7[o M\v{ UXoj1]&y^*lL+bnv{{/ۘd`Vۉoc!)s]Z?xP%:&[oovJ'9:|/4Rb|"( VuJB_bB5x2~KòrdiDMlS9{Y'.\%N5oFtIoeltZk ʓNU P*ߕ];'{2b 7y5[~s6͵,9zv~\}b)?_|]zx&5-3uxz~SnH^@2$Vvb!$',{"3ge[RZk6h>H(:7JEDD3W/Jʓc1 U 7鬤\+ߤ2pbO*]F)јtp6q#c5+M>=򌷦#) +0ɜvZ=E6xn}s2" O,f:6֠-Ga}9k&_bQOmicCS9h;S%OW3btHְpV] uVˍ>8'!j7Ffł١C{mSdrB\M4VNywx!D={[ay}JmTcE:[?>聞hҞtPM@LeqHjfe>1],Uv߳zH<8hiC]'a4 թ/Gڃfx>TGixYx#{,9QMf^ZJuLBUSĤL:O։:=?/G%O!?u/vk?*B5MC1FB9йCSe?9šY\`hS~zMO*3G"W'uwJj~^>oy|g儆ښ֎:q*s%<ۏj77?I:>8Mufh|Ahͼgk/y c૿iNV;/{8x36S['k2M͜YBMݍ9;,F#3uLqMqy&D<ߑNj} N;_Tbx'_>1q{{ rQzQ*EGS5CY]sO> IVq}Ӻ{e)UtWxmϛDU_~O< Pu:ez wVM6`W6 >Ub*4}|VEȣzkP>WhQi/bA:+.r+-Q =N*|4m{Ekc:-*?Q~Ⓤ U6;Nc^lk?6[kD.O&hft*璳Gpq(\h9Ymz*HV'4նԾ2/pުnm|Yt bk \|zW i!6 W1S>:=j)ng:6Ύ\%;?]ͬY=߹zB!u}#^0W 6^FZ7=3N'n}S^F~K3РGaT7^Nqy_&*w.YFS3]ă\(+Rvn*QV@.WgT'7g }*RqF\ʾAGTւv^qg^d+:K )eϮ#TYUu,-kcg\_l3&0 ~u߿u=_WK'-ґ͚!]_glj|xFz{'/ Rsv^&HFp]cn>o ==Z|  XRwh*uI9ӹuZj߹/eRvL o 5nl.<]*2||/tGz?vEPi$c52}}>ZЦ};>3K}Z|u@]Ĕ%Z-|WN|iPĿѧ3y}q*2A,¿뾒N R8|+رB;~O֡&LN021(5EyաYM{ҾvW*;Y1Xk~XGuBwȯ|U Wq翝džlŧ켰繻UUs]xaZήơR"gN=qkKǪ`j/,Y+wğXI5dX^z1^=y} HN1{ٵ<tWnקEJ\O{ KIoh;0*Bc,hۓ0 Պ~bֱT7յB{&>s d_Jku*!Q\x;Wd 8JoqkdG#]+:SݷcJ PqROOWGUeHzxfSx/hGT_bi)ͅ#D0PwǮZ<΄>Geus\~TgTj\Y-ܑ3~FPj:M %P~gҬ).컰l5OKS'̓;fl awYpWy}VD>SAG0>4* z#h&UY n uuO>nF-18n4~jQ3#4)ﰗ6u\X$&VN7%;ݤ> ~+r.L=(z9lZ޲N̞ijӋF;ԗ"sб5йR FB/Yf4F=!?UƢSº (cҘT{}D/\9#n#!7y$ !(v_mx={Ctr{WB%~|rOP)ƤsDZ5" v>>LjκkS^u?}d89u+)iX/^=/]v7)1lO+7mRɞ* 'B>p뤣c'WX| 2߻/5r7GSѩs.+bOܰػ2Lw;A;4bM=MbFW/:ӱ\jO0?K*QC+:]__W$e {HYk=W#?=h*Ʒj]}owgaJktMrW u{8ǔj GP]ǚ剀8@d{s3doEwv[꯰G{OK4s%;T_pu~@[dM>1r㉬>q^[a+<M(ښ6^YۤJR|5iJ6"@U<සWZ`aDӌD!dCd n*5sqhkzO쬢ʡB*b u䁉x6E?‚p1,4?i+lF'Ml?U-G ċڊ^x}7߸)cL_|艽wT=[=lgNrn8nXS#&Zפc}?g|ܩ'Ԯ3ubT|_{ cDދ$t+>3 ͱ[eWϞO9Bx+[ĽmS6J5Ճ\siMZWDoDDƋ{# kO725̧CRw ĎlR'+r|oתD, G>_oM(!H=YhQ**dM9ː5Hmq=V}EhRjA]OBU&S,hwN[M=[Zy -F#q H{3Og?[FG(ʿ4Բ{}wٝSy}\w>Yf߷UϢ>i3k,̎o@?[Yy^AHɜ,'Jس'C]~VGqN p Y,JE/)#8g۰1uk6ڵbӍpY3w1Uq}'7]}[}"f9"r??H Eo+PʽU]qdv~jwU_saOz{dX} 7p1si~'yWĬ8}߷_4ʽOUy{л_{ȫ>(=cCYMhۅʝ輻&^絡Lc>k#s~@#3MCíLߧ']7=*JCZYIg{z5 FwhbIY3PIOh^5;Rḿ+vqqLPMmztW^_ |v7l]d}Д ՐkP9UyQg[%u`1e^ָ/@~ 8dS؏U?뷦ڽYxgZZ94w{*;FfڒB8/n @+YFڅ 5o:zy8{7ݔw4ά4 wn_sO{-t瘪 6Wag3K=I#g'b,>xCp>B[E טּ)+:* XTb滟ks|^We,aUq! +=vzFSgq!4&j/fw!)FkGN%ϻ<)nVLLԉdތj܄ 9ivM8siH܇mQh+r]॓B$yOCt`kF-I ]#!ܡw< (`[}嵅[)o,1bq=}m\9][ Nˡt Qz>MΦ;I:ZoBo'L3VkS/̯Dn݋ƪPe5Vb=Tݨ k654{!U}&&h v> VS\mvCA8B4\ð 8x6C6H?ɔ#X.m?B~K,ߐ(2TJRKQ!#1n:>7FWI.y+aW*CpEM=,;\^? 9 >e,sKa 3x3YӴŶÚvM׉[rCׯ?CǗ*T4>o@2c?IZ*a+؇\p6#U_Mf3pz7Sc~vMo\?-ҝx)E`,urz{OCW/L>ݱb R]2[-t=8.47_Ͽy {:_srX/v]އ|ߦDWZ{O } `:te,~/gg-dtgA94(mzN4{nǗ5O&K}$r728,|-izu/rq+.$`ArD $rۃq@<ǰ{h;t{L] "##U9 1]fOy 3[f! KTxNlD4؍HqL0Gg@Yuu= 7\_ r>]O;i i#46~PP:ŶR iWǎc¥gXۣANvQ*׃AAh*\[6+`jaxs˹!42.8yځ.yp gW'U8~ZO,"n 9HBX$y3?ݎ#YC %;H3mIw ^}ǭ ><ҏ&\;I̿r`VY ykTtAVւ {DN#{{3-_`{2GG}=4?_N qq;@ 5_ bko&BoP?kiHJ =>'O7% NcAWdd`]!nzX,2[ã}D? ca v4]]y+1`xx H|D7cMm!K|\2['/ dld="9aϢa nЭڇX} X֓Oi_|G_IH[ wR"ZYc ԓXAv"O|>H\Kw}VqЎ8r<չsysHWҌOQ9zµUHlIZ<==-~ZG{8]6GÞ{>.7~ AOM~o3,J4w[P%_o j$res0{=Dv iH—0[Ο6SKqO+ y$uxJ,r-|4}xF0P#+ b/xܻm͜ŶAt 4<Y8N}G x/8 0,ZMޤO7ˣA,wtǽ-& GuiDoA4JXX]$ʗ .> ޘB r|aR;y[e)I4#WE6 b,mOLUzX$ՐgbwLSF!g@W|tqNy }RVajO`a=H2tPnq `$| VEDzbRdz'؇Gi}ܣ!L{μ=}e 7ж22|o } h\kgߦ'6.RgJFo7A͢--6ĶꇠSfΑh\HT>ZK)M[uzxy]r?3/a?-^WT `&_"5lA ݉_0L޲.m"yWfn?D6|[5yBb ]t;7#DH6~u3V ,ZuPjˆ`?ߴ!ޗ e1hT-?# G`'ܾRu|P݂켌GؘD+8I_ _a{^.% #c%I¿&Z+O4 ^Uď~F x^p}zNPA~v&d@ި>-%xĉag.4,}.qjbI{lSOtqKr;&:Q՞ё/r)1E7 "=XID :"V$#9'bb9~|H_l;CU&_SG_SE#| W;VڂD5ѹfϚ?*S%Sl&4Yli:KvWmfg %n܁>t =G ~eʳ#7aeQ|vЬ#1ax؈/)G$pcG,DfbkK{g 'Z \¿F6!_>X1WNP[Пhg)8Nwu56,J%j^^P ȖVx\"6[p=˼jxr!o-"à{/KDxFn n o"!d^x*%rD5.xrDm3okt X;{:,x[aѻqP٠\Y iTAfɭ r{^[f@W;Y0xaw@/Vt/mItr =] $"?XQX$O/®Wϴ܍S?Ֆ$28~%D) 1{:Aޠ4z0MHzlA*HFyn&|%41{ lO][_;\Gޣ2N5׿9Tl+h,_ոIiCێ'x=;seJ~®9wTChatDz|>w5CvdͿ)$7nEv'үL?cx,:dj FpׁclN}m9Xk]yVmV܂w9h dmvDoL"܀We>K.4Z4ײuJI,dJߟ*d4Qb9u,6 M߀]B{*߼%F9mRE/P_YC^ؗ<܃)>An{X氏Gu%p=_U )i?! /wO_~ΕDZZi̿ϡ]/aA< #+&';=5}X6nYJĶN? rAV:'0ke29%/'v)g \uR,ME(ĖBk;K?!"3}-r`CVcA2?SF/&κ b6X[%zj:WI;r&^IW2rwH. B:{㑆]4O" 5eb3e,&#-31!?#[^(>!߇T|$w슕?w`?r'A6q{l`vA|hz%z| ҫv8uuB߀?$\n ZGccn7߰hp< *ϔ3Z&XowlɫmD &us؋fp /琍[@yH+ɳ`p:He''3y|ŶOozMM_G;kK틅(C}3,D3Iz,gR+7Cx,`+8čA,Fr'\p1%bHa¶ܪSyhǖDOxla ~çv݊&Z騌mH}u2,`I!g#6+߰Ղbq*+w S:)ڎr]|W_23M!hUH(.DnE>fIrauQ ڪDC2:  |ɑh\tno_;ƑmMap\=x~<$ wD}YQ$m=qޕX?_|iɞTZ ?$1)l6VY]?) -@/`a50xÜu-z}lz㤕 AN ˹:zp]uN&)?Qj/o%lmzdj.y.xE "؁vFI,>&: Q Rid%_|+G =ܯ۝f?YVҋX0V@fan0*p]0E@ y6Zn~=`|~a,X/ɽXd]÷e՘`8bDoRi͇tǬóq"T-wǾO }n[ n@wBogaӐ~hKx#x W:[^l0LbbC_lOVt31y9{^}[M6wU^B1?D~pMWnpt<ߟ1 3VԻHbD+}FFwx:hʱMX9a6{8:%ojgd#.s3R! pn%g "9 _lSaH#\,{YoU[v}F~ErLG:iݫS@ŲsVaJ\_Q?cVtrHAiǂ[\k5&K |ވjA)5a;!v΃tTm_,2U_@r)\]¿vˏ2z_ ӯN?W~Npݏ ވM?_U>Ht:.#v{>7v2T&xWj˟ XjVRzAw{@_J\;4,o|Ӊ\yKt uorN"d'o,M=5ٺ=}e`/ӜJ?=؂@ !r=<^t?a$sϽ+ܦj>l, L Fixजxb`JVJwQ?E`__/&{5<Ϣ^?A[Wf/l(| @l?Z4hi-W7øi\[:Y>6kc{Yvx@l킺6=&JZq5QAгHD<ut=,5ǂ4gҏ+CG9`;H$<s6|)-I%;/>oG*ϡ/c+ǤZn\"4^ <8M^ue>Xv1 ԷE~ ʣ>zv jg-dHOCwTkk؄%7i 11{ 2&La,+r&=XF~2Ŷן5Eb} =:AGg<DZV"p0&JObkk}} /#H>T92D_5Չb yic~A?ǛD"m;=(6?=v}!V*OplZO53.wO_m0=h.mC_M]`G{4IP_|Kn'9ЦqlL`[{ѱ&tvؾ%`w&6jǨW<kۍnJLPYzGceP02Uh@P'ئC0ze+"b2Z: |;bM'nlf= #+`?"JO0?[Oh5Fj ]6x tM>`9HD܎^K4o IyHn s0۰iyp70=}e$pz%){K ˸nm$~kۆ-/້c?\<7<*os;y3Bhk{ c^'>H*7h&q5el~wmKm4ܡ'DazH:GA.>'m Y}V<&ߛ'>^U"ϛ]G{,;j:w;vV~l4tp'{-;jqQ=?%6^8 ،٪<"ZɺׅA6ZW:B4Yܒ % _L{Ya˜`GoZZ7<? o<_ 8x`.Gq\x؋ύ%)hh>_or>âHcݟDw2U`zh Lc.bg"OÉs?/g~*lmbx^\(G뱭gd6p k~8O,Ey(,X"EbaK%< س+΋z(8zI);I/H`ߣyB,( ۃz&X'X3@}%VÒT'T!RAq3Dsgp0OԬzti )I\O5}6<}>TFma9da6 !۽jb4?F[kۺA 6X!AYq| Oal6ql)Fzd4>K0?=ŶXܲz?x02/)DrSr: 0}R{o8,A{\?/vVn>$wSi/"e=P ax8Т^l3Av V'1󎋑ءZ-vvg٘5ڟ\A`6k5% _L;(g*ˈzWsmxzD2֣KE|yK+2г:Do5 )݂{|žcی֍2F<4y#dxZ9'sXG b~LDGyfj_71R*Hla863SP3<1bb^2jݦV[#|v7l7YxⶥEAX>E D">#g p7Ŀ |&gT_ -B IW~ߍl5G&fi^0D#`=IzANhxJRS\$fkc9#OŵђHx+*[k堫hN=VnT*h*0bU7]ƭ` ұ|^o4<׶,-KG&? Ƹx'14]jFza!|gpPPO}̳'{؂0xqIح(,$m{|GF=Ƌ[J,;c +}oL {]Hm>fzc8fgkyiAGk^ZJsk:=wt> W^k+?d<6׆BYH8`!DY.Y\0O 7/FwvlGtzP/CzSB)S#ۙ+8}xSk'3饰J$8 Ɔ#xı5`qB>-:mY- =/-Y*kk4? ?s g:#==4lA-4Tl8(1`/@" Ь9hV}ײjQFn6υ5Lɠz#51v_zp6{>ciçm=4_TsZ0T;E~z^§L Cdou$Mg o\OQ|õ j 9ᙀĶ]瀍̟iA>߱σaO[&1\~w0?>5|Yzj㉝f yL0!6w*`arF|琙[Gx c9"ZEoO,K5@/w__mHUo]jΦU-ΗFϋ:+KĔ ݫLm+_ZoV\.OzW xtL:cya3Jt{,> zs,Kl/+mJxx<bS Yp?ؽ+%/lmg7gH~HBs`}{whtzX'}qVAL_X}}0jsIg[ZT%Xc#hN㑾&+p˵_bK~/7>OzX,Bs^vgb=3 f [\_L]ܚF_TY-ЉFk.l{P Tr~+N9Eozg[ }ړ{T9- g?px<{6>z V 7 0+mg|:gs4Μ;_=7hHd~&:741^8T !i;KXA46J)1RLrV45|Agoȳx 䘔z 2oQU )? nWL$.a ;u'9!S9;O4OZ 5{//tnn5hѠe[![b*40&EHt1XicON='@f /w__m|wq"^9 g,NsG7 kq_EmmMz窺gfݧ^St"; "*ڿSmsNo ujk4m\h-]KBi%wIHYQ4zP^orwm^}"j LK!EX(m?˙kXڮ|#m<|6?S55P?H;boݗR[e}Sv@<#ówߓZ=\q݈,#ZHx?Wa;qG\!mߠ1 ݹUJ-oWoʎ}gR,a%pXdr9{04_\;;;&jevCk8]y]f,4k;C7c瀈 T$G1ؤO48:;){"Vm lE-WZbn<V a ZCj>Lej~mX9!}-$`\ۓt]ϛǴ1m_Brm% K6X5/^bG9:z|Gi/=lIp`"Kd5F6G<ȣh3>ߥK<gy #، Cn$#FpŴ,y=UK6C0iChk8w'Ac_E0<~;<&ʯ9x  7NMc97pw ; i*s,iHEbu䲱.yH}aH$ .ٗ]w'_\OD@W$&_m(^gM'Y4?ZJgu=5%Dsajh?"+OhF=< %9L?I?xg:WfѻDi8)-=<Mn ;\Wy-Y,!x{zWx6Ԍq[)lY<7)A(~*͖%zw$^ ֽ-d&{+@?aX&o^boժzci= :-evݙ/.,EM_(O0{f!){=iXfrxBo01I9Iw"E&Zβ,] CȑЦn{ef;t (OEXpmBT VxX'yUo i}CvXG:\K~)I[83a0fp OCjqfoI>3w68 w.=5o}/0nD3#U3Wbqx#XvgkpEbYk<#˫|wױn;8/餕~}8g4 `>Ā:^wI DQRK-Gf{ݪ8_׎fhlC8 JH +KO+#CaBl/]rP,g[lEBn\Yy.q_'"Dret=u: gb_PWQ?ÃC-6ۏ'9)Flh/d`82V_c ة_6锯G_L @zrZRNh@?nڗGħuC]e`{yۘs|?`<[' 4`'#Uu =Iα6o;L2e+:Gz@9TLH_06O' r\l.w__7%JS+4~cc#yOaBz"=ǯ~7<+0'ߘ]g&/mb4 .",{,1t<1@9_BW+}-U|a<ޝ>؞bz?ðLE>v;̬vRa~_?Z4wh_ lvX~kE k:w# 9:+L~bW|2BŵXl| c9{2R1d*h(PXw"Ao[t/ldяrrYc+DN%NNjZUV_Qrvlqÿ>ٲM[=[k̈́%πۨ:tm߷[ h1Da8`o X`/I%%X w &KCv}L/3djZ6xyRC> %c2Vn؅y=3ሓ*Գ=QseΑHf# 2dc{}z|lj/a؁U՛XUX+er0w$K'2hGґ!ih}I%'5BoQ[W |lR#6" }vl _1K#5յ"ݳr<{g-ں6Dtiz͈pZz69aZ!n w:|^?k*ͤojM&s["Ch_drc/Hy}Qwh&E=*'k@ӏJh hfg6ȏw9y MXgLR}eTwGcs9Ѵ<T{}3#}$RץX9ҕgҘV]ruJlOU0c;1W+%r|J6:zBGVטK'R0ޞ l۩w 2ep؞)/M]劐Du_!vփ}g%f~Ӹ&)Bߊ%lU.w__mfan*U"{]|ӊ(nkf_߾wVXNt#Ar#gd1@~.Gq4VZzx˕@t%,_ѕȧ؂<.}7+,6Zԉ㭐_jG.>闻>4UQJk#Aɽ .IV~ޟ|v"=ҽ(E|M>Z.]|7FqøUnjC8'ZMVq1DOD^90Mp,@Sdk8jぅܹlr,vcYpONFZ/w__h߫_]0heNt6_vC̷~lV:q3ZFӘ**s,|^Vi ^)#0xf|IM4@F}DZ`[.=CVwp{|-n˪ھgq, )}׭`!\qݙmpn#3}Zl~ؗNծ[ZcG"Y->;3]l&VE-+h%YgpEcV|f`-K;|G3[sI >TZ!i`Idֹ=\CBy6og>K=C9zz{mV,OVM׉ih붣6htx8"I,7W~ @;+X-H_;p$$ޣwF F[ {5ExyCŶnþZ w@7LV2z0VS/g#~|ҙX;,> ?4zź [yzc,a3d^-^ŝp ^X@u2Olx.&"#xe.ehט/:ٯ9 _LC\9]z9Un^A} |hXlJbwz^fb:#h+}R@a8֤r!ur=Z΋*jy}^/e%ͫyC[ lEc9z sM9,1,x9] >pGwoe3 Zɞi\4?Wgѿifkw6n(R0;lumfeɷќ 4H@ ŻWUpx w!Xf"c(lO!i||Omu*;<ϤU)wvh,N ‰ ;)yWx֎J? w_ &yD"v,q D-{8 a hGrm! :2C膜O$+_!ig?\;oX2>3g]^.O\60Gta9Z|9Dq³2[^O{&|Q;r=~>xh~:(|O .[ _LUVi5+2|J~u%0 ,ت@|Fsd6ۉ>"cfyW ?kx ψzDG90wql\`m֠9^}<# ;fB{jp_I,[O_|.^]fvv),(}$}㫺liYb9]yX^?YVc~ѾvKX*ぢ<6:RüŴI $xAT߯*sl4k(%X=m>R?^7}&G0&nQ[2sW9}Ag]L^,6G|7# ѫ+*{(8GlvGz9LLZ;BUC{gF!iu)خֿ Z_/a II]봧FF'U }3{&ezeN\t+..crN}<7M^j uhd!gUvGzrjux}]!?q\*Փ;ho}=Nj "*/:6қU+W.8$KOݐAV*=A7qן|c/L -W~:yi@D`&I<#=y{@OŵtyEm7A8TitazUu B0, ƞlh3gƸa*vt~'lLLD4י푂I׼_W|W j{A. 4yAz`2vQ*a lg=$b'׫ed,%g SlX|5o}t2kz9UsTxU3ݏO_ol*(9 !n嵁8Wpc9R3@}^^DAo+Vчb=9ga9ZI J}Wl^&bpVPV3,^,Yl,%)m}Gl^1'%M>^!G O1vf"O}>F[hJcIS^+#2IbL.bUA{ Q^zm x0N}E l^sLӍe׌)[槹Y;; ܍w٣7 } #_l%fshzvg.~Gxԗn+ۇ%[lg,HB;Ic[|-kw}owXwv'_4W1ZM1W峙\Gr|6Bxds{XhJ}}%k#ն_r)i8t삍vz >OhxImwYؕh߁;U}9l(ߡ{8X\2k9 n\9 9X/Oi>֝s I HG_-Cs']BŶOb:s6vsx+OGmlDz;A^ުGfWc՝ŪY`>w*t?GYv_sUc@|ʮ^E׆h vp,7p;,"LIbvϣo߱V;+l2 ^jRLÓL: )ތk;o,'i¿5]ÏНNDz]C>{Y}]sEe \GprPճ|y@I#Wes8Jh߁򽬢6(215/HDPXnZ/Z=~24V[lu,Zv^oc q-jVj5ߥzW|zkH\MԖ!]]FP\6X8af>ƴ1\5#|vOܧAڅmMa{t1āќ1d*7OdE둰>i83Z_U9 }mNg/>kՙ s=>'[csId~[HuV" ,(_J8\h"HRH+ZT#et$?JjiL~>[=~Ms|gYVKXل7&| ${^N-gC?:h+l` wgRg#yan=W24V|l}38+p/sJlg#>?_kDc[fڿkzfx]1d|Ϲey-(le]9gw+O"\zBגqw zzvr6zݳy|饝t51"9] #wJk#,ϟ='g<7,=Lt.Inqr}>3f{E<ҏlLރ~%#>R炾| iY!ijq) KdQ\s)yAKs#Z,v'вy,5 1`+Fbt?u 5~6^ƒp+壄͍~}vWKcG$|,˿#ܣ |(¿fEl٠ǺYz>F4~XmEx!] 4%zY=۷ctƣ*s"|$t Fk#3RQ^îJ}M@W=Gya N8<,17́P9i:NP\+U=l5YAf6| -,+7GPdaۚxU $Dxu\ټGw҉lmߛ2@<$G(,Dw<6ˍu\}^tZ'F?^I*ҫu"ٞA>!ihzys=˼"1L8l~ -[uWy=At?V~ _l"_C@栏 GOL.z8}| j4#m5f_`j?[:xh|P^*=M,%}UV{֡OŶdq-}>[-S=WHO8X0!4۽psۅ4V`.'ُo"˹W/(l(4voj'zfQW1n7%x,$L- -; ?W$?O}+uљj|Lb7򲥉y2\9Yv /Kmg:[$yoXfs/GWz},d\s~ExVg8'-;|>7n르n;,6=>:bϗx[iWlg7Xt_ީgmVO879s'#m Po=e&O$\kI^ l C o<:1(Jomڟ+e yRTXU1nmvYB_5!n]& \7JoZ=0$ -F{xk mՐe m z:LdV&wJ&sg&SnΚܬdڍ=v\qwlɲ,.!  DQ%[V\"۱4'Xw9~wy'C`6d~RQ=X{߫? O&WL.I<34Ai%TWRY^&T1"Ve68%Ys8V[ai5oftQa23:@݃5R$P;@yx%{ HN+T-1*"[gQ*'  Xn_Ϲta];8UN ,I>y > la_5y5[li NRF?SiN뗩/NƱ4i.5ar0GGx1EOUH!w\%O'KiD (蹞 vgW6r ,z@=ƏZYSgAx@ϺfVZb uQeKvV[3+Hԫس^euߢ"cnC+W~E 8]NNx&z'0:sΜmu/!W~k^2jkuqi9{9mOj9!]zB2r-`K{tM/[n->(rvTf)Bwkqt9>&;]g'=逑ZkON~Í2G9VC4Ub5|>&.aI6;ҿIzj?VBpҨp7`,7hu(o?IBVs5G;{%Z<2$tYs:MS;1bp<+@R4b91lVn#z伤dƦV}s8 SVK>71?Yʨ(fok"9~k@zMw:Bնkmp=;dA~ >d($E>@Ʊ28=-Op_h dmZfϥ'r),o4ʏ]N{ӭA!M>^yR,{9.Mb<N~C0vS] yo=<En JT'\LavAakO$ߢfI -! !>8UP4pP"x%VjlkoHCA[6:N7taYz=$Mw7ds):%spOQtb$4z=GSgTY KS@t%Ek5Ӓ_u?uF>=/׽˖64U+,\](/;ϔw x`rUG$wE%!DKv'Qzk>Fct=s=9fz2y$|Rh[+FvT'I-[EmVh79$ԨHraj=^J; û, e,\s1"{CEISI6,V`4"2rψߔNtTؘy8r|Hx&:;3N+F+~ 3{5yL,t]W$;<m3eo'ml g{ˈ/oÒxq"9 %u4Y8῔$]{Lj`]"-n9H\gր̳Nx,A* IJTkԀ^ l;f.N0j LCYw(v3|eČiX!cNU!>{9kbEkaIQ%EZ0; [@ghs4"y+ޗe.c/5zflQY}= weɮa~M<`1~ Yz*?r Nł3Ԣa Ć]YȪߨ]ۤX}`tGwʣF_n_wQ/сx؟I6 bm>{kSWA΄7dC' !\ /Ez"kVM_qĘ9Svv͘9R*_l?FojMk _qy|3.ҎRugQLy7gtQx{đ1BzN K%`L٥#a7PsIuP+c:[%3D⋨i)l%x/<|£ш`ܧ/4&T|g%\>22<11n* فi`fS/ Z-X#LF^[@,*۱bgjycw$.ajjNׂWN8 PcHvVc3o2W)8b3B=ّ0[>gۆGFt+]%vX*?M p6V @ĶopU zvy,Љ0cL}7hu5Cvyly3|^\^D-N"|v8`iz }={Z#]2'ӺzҝpOR+W=${aܟG8:GJ1^@XƀYօ6:R9`7:DdohdJ}viNE{uTUQF@XkrZuw@r4w1Mw]'m9) ]TOv'FymĄ.K5w)3ԊWUi,p;WW=k7Z}>"~zn q?$LrmbA]D r僺ia~7쳒T;s4T#To%td=#&٥ y^k} D2!SPA"2 K:}jXL0 ا&z'O.|x= +0 Kq})䐵\5Z[d ;:$i-'9"zC}j@31|3Ep6Oc~I^Gxa$H?21\}!Cag9EvWͲX\^yp>Ddt$K~rvѼ\k&CM/N\ּ6SƺK٠{2|3Eq Ѫ=;dA]C`vY K{vm߯ d w?!^BLTIg=sϒ#_k]{%;:D2=דq/x[ജ~)PCE`Z W J=nέu_ֹo8Sv]!f:YU9/y{(utlISxFX*Y+ I JP H0S]ئ>[9ꙙz^fµ@f꾫uS]ѧ rR5oٚ%:oDhLJO;m#尰!<7pDw-ۚhעoFjIiDn0l˒I$/W.uAkD`}ulRV`/9ӫzmW2W};gtO#ϚIzעjHYѢJdâĤLlO1DGШu,{W`n±F] pП"Kvt!q k ş%2 Q 5D-.؄jtj~9g~󆽠#_]B^zթҾi_)Gh1n6:jmdAjfi=?NNC;"9/y !I+<&tϤ;u%n p^PGf(k+ҭߋ0{5k|ꛭUSztg{>F0{vOьzܧ^xsTeqV/D1?h ^qS99G$zZ+*e|4cHߣeҊ]zݵuhrS}F]e^Y3ҧ%(,+BG碙z]=HAMw!nJW\+AzL>էL倽*+vJJ@;Vhg{~;up[oՊz^BfuNySO ^|u$͒/7rx#Q`Vhrl\BٚjzAuEsa-H6/>$Q2 .G> 1j8! Z-יm/}=F]ѹ/f*|ue ͔f*s(fj[ps-\[Q9@s|M_'ARA4g? DN?~Й>Vpg{jZ2Y')o4a"9|*\*ٞ|c~~o30?4[Y{li\homNu `?Q2MМI: Ӥ5Sac"Ly Sz~2 aݱ玄ңV=FX5Ap ?aX;+``?eNz<+N}wwx<&kǵ^H{$/jc|9()«ulsܫ;'خ"vE %ҥղ7Ҳ`>̪`Fb\w>.Np\zDZB3x}WN$Kt.}uǴ̔:uȢC?F߶T˸f&ɨOHѷgG]^p\-C_Gi=*E zpg}Zw[Gơ |O;Fm休>.y:Mcf(5tN>o% ||}?*LO~NlOa> 5ң{? Pbl5_n{aVǨÛol ꠕ dua)3ݳZ~FDwqMHvbr-A{q[z?3$v,76vq)_Tl< s=ԉZGQ5|d3O Y{t\yZ5xVUQ.9^ei@dڡwd@QƞV26k z7-[P-^}tTc׎"6Wu&|)0*mof6ݷ,ZJ*Ai7zГ]nE7ZU**P# Av{m֪SF{a6bh9Մ|ڸI`9!*0߫{ 5&L^,>Qn(W ET|su,85x=U|YP`HS8K.Uu~p98D]G'U^`9Ix~"iy8qp,YUh%z̘i^TIO_4K =ٞ|uٚ^Ksyos-C9Ft>XL`*{o(heAzG=OK>َΘgFcluѰlf}𺴰2~!{+߀۝|O ̐R[X;AsA<=gyԦc{$Y=i:*R⫂Vt^i/p1P3Kth>MޮsHQ q?AY_y=ly 5@kODVps9vJ3ufwrS.e'x"5ޒNeiUHZ`$ ԉP!cgFGRJ#r)iuJL׌sف)Ҁ5Z7Ȝ{%UCV/i)/Z}3NѮu鞌u+zfm7׫KlܳyHqQvW|H7YXC/gs>,տ'9- KԭߋQEv;U>-dኛL:ˑZ'hN+ұG*X,Q?}y5#u~}1-|Vs[+AORaVJ?% gt*}G~HQ.d2ud3SYҨ#,lZGTih c:J#N:ٵk0ֳzNpCd/ȟu:$ٟ<9 o}t0Fd?uu>; $&eiCUxCijFܥT t޳އ,: /2MlOQՕAP1mv׷b$Jd-&Y G$=tzbSUTVl*yEbVLf\xE}6u[쭔L6,E_,ad忯Ǿ3 \,l=qLgiD]ݻW6 uF+dn'wD)df[ÿ] /{'z'x\|sN*r~%j/U'{-fI}54׹Q jBݹ|~E8eM;{lP=r b>:?>XF>2E"*9:龄`5?$a3/UI_bߵcr"'ոw@Uu YȗOd4MT "%; dU6U$elBl_64ji?5&>KC6 nmu M"xtBI/9GY%1C$tjҕ}ƪk_WM# "X~X XBdYr.3yͧGHffkXƙ~$0MPL0Z>7nI#DҐ SCɚ* qV"btgźq(eu{EB`.~t|nimҔl*Е.I6v_YP~@m>u0&k0SsߙSeV`S먇J$A0 ;|t5̞uj>|Gkn?_,1(ɽ E/Oa.fr?Uҷ6 uywS:!դfx0|3z@Td~X1K򟫵=G;l,?̥lJXWHZ9~aT6IO5鳴9ΟCt4ip+zC&%|&gxq#85/3ܪ}>j}H }Ҍ;5\-2ѳ=׹/F%O pew) e[ C㙧JOHL. ]գyz`[ ݹxVo^m$wV"xaUs:^I1.ag{YZBKѰ$G vᕚ6սڧ@[4&\~8Aޡ[ 2tLy2L/y)!itAhsʖenV=8j`Nϝ)v(@,ґ{#H!:?8c3a[U=O׬y*I gǃ$ezbB5Ïh{Y(wʿBR)9Bow*#%e35[ Ͼc=O0]()x֗TbCJxxҩƱ^z\"{ԙ!yȈfjPinuqZ 67S# ؽWL~|]oĐY[u?/NGˤcE9i_\dLGBNU8DY>' phdw܋'1kGSFC0' =\;@,zL+@*ۻ]SUU۶TU;>ً#`Ia,A'x2d K.9! {(ͩ/dJzɜ]~4 [ZQ@|PR5V`#J 3,!ofYdSG U<fKȽU"GzGW̅ȨwVvz{615_l=#az3 ~/; ilOYKGdO${|9* FBzG`T,n/8C]Tj 9Bƀe)]OsMdB3Nk2WL$2dtog{6#_ߣ3>}sltӜnJ~<|y|=3uv+@",ؑ[#l OkeL.).3StA`$7}6SYdpҧ^Su'mmSѝ7:ӟGUG=\\G$uviIZlٹhZ{h: wz? ^GPrKuclC<9o>zi7\_ S:S&/Zm'B+}žb_W+}žb_W+}žb_g0ux|g|Uםbuۨet2vD;^Nz'$ A@tTPqEEuO9.{ծU;ZU?]iXhYa}aGGCPBRrlYϺоüpnY~L8&^}l͔hGjG!+,04Zj_)0+ ;cv} 7wnyaEx#el[CG;땇O ^qTRXUyL*䇑B+w1a%WZqa<^ 6L f!$X#oGɺ$P9s8qMk'oÔpͳvJ>m6s:i W:4~gь|4YY0&f8kn6_\3JeQB.\V.2pWG;ۦ2a. ћ^ nVf0W v0L }lS8v- ˙DVhSUg wW/wY-o~ Eƹ4unAv)fRuO U͊_ 4> XQ;ÊD2>no;C^Lj8>$Y PYU;2lfP_X #c gr?lV;M;=W#Wi-vcE*~J.btn64.{__Y;myj1jxmngs$jCf8&,a+B8vgE ܒ&dDŽ6"6skm[Ps|xU W@<8.JGI|43?e@Z8N.NM8fMfsɆtfrϡZ*_mk(Y9-,>2$w~:g(? 2u;`[xv4dB3 w-nQbhECwHlWH/3Y+ u A2)mk}v!OPbx~4ZgYl }.|ppTnl oAE`>?U[f0/XF`4ZVwሱi:g.㧞C+:[>v0.|taZcO`Ğ]$b Å 9k zd 2qfH;p.9zc<rh/6/wn!/pS;W+_ >ɆgGf'/ +N83;+ڋb$6jJdZkkqDc. A ~f'r,ݢ_KK\f%Mi^ |?>i`mo*YɺLȈ'0ҥ zIR2kԱ-]Vn(wWrMAu1Ѿ3-rM~6[[5_Tt=-ZY26Nf [ W|=]0ۿѝvv<,k[8-A ʪ [$ISe[}mkLt-r^ :$h6z?ONF, 1=pptreH\çHy 6YsyG 3h@)Yнpt8ǏO< s2P0˚e@Zre*MD3 =;c4_!i9k|Y\2ڥ&:+p5BCM\{9&Y _n<R|9m c:0 >ϯ@FF6`\7mG𤵷֯b5JDɾR;!ٷ}}D3ChU'x.t#RM>\xxW0J2Vڟ~n3Ŭ|Tt'e33̊`ֻ9p&Οh[YC7CыQF65y3p$FP 3xZe\^[ux`e- s1==Zg,cͼȼj>ʵmF [Fwڤc 7*4*+{'\b;qH[dQ?]LRd(+٣ f]K]̐p1m7|_Co1>Bʣ- #+Mv+-/k3m\i$2q 9{w*8,p(b; Mpn*.UOgj&fٞ6G1SbC4K ef0Ϲc\oa&/æ~ɽDŽ7ʤpt?ё+Ч \Vd0_pB4  VkN6%;B {y kvBjV@l^xjc3相TdIZ}OiB6).a ~/yuX֣,E,|H4CWǕ'(r߆FK ,HәVk㜇=! ,p$;mG5f(v;Iz f[퐱mf kYlE~|o_a l>t1Tױ3H"x"¥ Uǰ |ؿ`kmbsC9VNL<򹠡1e.]d{0Y&H>PevGQuGl%WH07X{: Vx/nHo6+FcJ)|֟_.uoNy>;4\|ekx5&ytF'W;ݲ/Se[W7V뻡Ph7b= %\# fىv T*eY^c#St[2,MH p{:U'E/`cZ0lf7ZoAGMΓeMop'k1=;qua}B:f4ᛯHRO>&(%{T=-| }ݮW˿W23uȣЦTX|sQ'8Eqqy' |cs ,rګ:kUyޕbu!]JƔ'orgIoF;?W.A7 B6\x| r݅+3+4[d?I?].E~YT8?I=̜ 9( ge*fNf.W'a 0O砡ձ6-]b׾9ӑjF?k1+\w R _@Ls^>տ6PūK,W*1Zi2ѼZ>{SJaS+Q4JkJ>f3[ Q|jь3bK쳣{~Z7uF'o {C=;y8NΞ>f-}bYc:5gV2?Z ߜ/ c}Ip"{-b&΋2QV}|>\m)yxohG'lm~]ᕾؐPĨM /+B?8^O ~{l I76uyƺa-m+WrEM4/m0R)@\E"Cn]ߗnzE ޕ%q2j4hϢS@݇ +QS!X,R Zv9kjFղ)%(="|ںk}1us9\8.] ^w1n߳g۲MWy, Or]"1C2{- [_$ Vof__ȝf4A>'=Zz,,5yc|݆%_oG77OL\RfA͕F\s"0߽> V~<fORZN6hocX){Μ2@fnU?Rr;V[0Η&MP˵OJ|W. sZZHg Whu̧7E|D'ڃrt&,nC;zK'2D\89X?Cey,Yq~h}ӿ cSÆBNQ#,.²c6g|J8+'>3^m9dKﶇHW3`2s='A4p6sjm ?0l\4 j +0D&YÍxmS^a6-!Fԅ].nt<'g[C;2-~=[.ْXNOM#r=;kyP-;͕Oo)JFFt W\oŸٝؓo)ky1UYy;q%6?`9غzUOver~!\:^º݄)UsM:$,7V<7lc9OkTIKIkJ`p2U.%7ceUЙf8.hM؋xςJ{,P'-춍y&(Um9Tۥ[*r}DhQ28:v"\X+?/d^u)ڠZ/DS%mSxgVxN%#5^^t KkO+@ױڍV |<5Bfum_ym{7% $'0* $}3qj< s˸տNN4IG@ƹpSt`BJ޻ =GJ*@GY^9Dv_ᡶ8 Mf3@8ݷu!ڃMT+ZTlr3ٖp]c^ Y+=_rPyvճ ,BX/ fJu#gc<#,xÙ҆69Ud>5C<ݪuX>+*Z0+d908p"WjRkvsDd}4GV+3?A#fef`/{tV5_ `C@lьWk#l=w>Y }f!? 9^znOAzM.b_U8^%$}`C!Vo<_<<UV]a XɁxpjۻؒђ{xgz LfϰV7@l^pSy8exl?f fd8 f4T,M#8zUR*<͵59z~œЮ Q+b-'9MEL /a!+}3)]tsMHhkH55{/3މWs`44H΋GxdY4EK, %~.5z<+^\aX7%H׀kɁjRo"m kf/2IrG\vp۾D#f!ý-j^%s/U]Sr$JGҧ+)U)sp SjׁT2{q1xl\ 00a \䵳UE(P+oj ܈=c|6` '-NnwOFKΌa]˭9tg4Vq3n_"Áqͭ~蟪5z  2]r80/:?JHy<+XlEcqoʄO^W#'c& E2x<39x0M}Oěh>wc}ˊ<: Pd6/!#ywϿ;Tv z3T[>\>kP8#2/|7`~k9ka!ᅄ5n(>Y'ճ"c{W׀`@Z+TX$anj{+@[_àb>\9c=\=FkN`eH$79δ&.E^2;ʵ`<^xV^ھl!T}=ܧ}^ 7I#׫F#8hkG=w#$K\7N{nrt j -Άyd㤋'jU JS&{鯾RUiЅB_;%~la<jq<qEIX+6X BF^<U1c rt3@Rzg7w9t&8w~ `䦸OI%s|^  `ٍVPh4!}׷8 r0yJ.g8k0V(QF{3jX_!pxzP7tYѢP]͍a!(捀/sl;rg=I"AJ c~O^c>CGֹ%J.>7*׵`&Gs;xvo@^WYydxx]xqY -Kq=:=Qwv1Hl`,Wݟ~As;= V}U>#?BWWuS6Z,=|pL'R 5lxN{}y6,ev_:Iu>J?P览kh߻50~gwlRdžC :9Z81Crn;#G ӭT5;*xgߵЯlAXo*:赦m-/;r`+n1G<B}g_a@d#LRw꧆2cG\\+P M<wpv8ܪ]ذB u2눪^UU䘁Tdnpe7X0p*K5$n=G~Pm&x(mE_{=[Q_4QhgkO㥹^X-?VB\R!ߠɺbz)ß P&ŊdĦ瘼z}vxXJkdя,f;J//МUa#R#n~ 4CAxS<^x+ tEDXF7bY&C^=w?D;G7HS&.T8EuH1aB![uYmͫzV Z{Io"*z}b2E9^ՋO2P&JmRww|v 3p\:GPmXfYN|o>ok ]KE*{6ZG//\H6W\A|)?FK>"RtNk[^aՋ9Ox͆eqkTq]_ C]6^|}B:DǛXdaxƊy)]VC*8^1ڕ\yu2ľ(9ՠVrОG})Dz| ^Sc|^.u{[J-gfs$Em|+P'T8;Hgh[Op(&pg~ɝ_Wأ G2vk;[re3ٷZir٨Busev4K+p=Qʴ#Utj)!-?hl{c O5vnTr9c(Yw1KU)8<ߑ ]`qXJT)eEyP5MJʊZ*QcK_W]1hڧ;Yy-~ ͬ%giT pTulSP6MX:?r6J~ ފuC>ʄ;4IST%Ɠ.:ZQMWq[[{{FjBXBmI x/c,5^wP#{]y]XYP;n^緐H,G3j^P1 GSklOۇ¾iyN#xʉv56)ށpM[liyHl4v) pП+5}Nf7FPX߬J|sDa%Dr攩kUR:ӴB7cWzx,Jg(h?i,#Dq`8a0^dds8?Qy֣@ ٠r}scڴFM6Vꤑ7tuU{jyet y 5Z Pc?y-Za Yϧq퀗w r֦^\.~>?riӣbh?=5v7ۨ88*V )KΏǎ*Fh*ex)1Jn{/)[}\v _f:UrgI2kԋgCu=wǩ;]YݦwJCxqWxw)N5=yT|GH11qj}!o<WuR`3uǏ•^gWFm*ވ]{VnឮUdk ~?Fq5d%ohMǛZO{jd7EF;f>aT׊ryE|<""cf,$i2ߵv/)S8b+Uw/e$+@JZuob2#m[U:v?R pGߪ (.k&EOEÓާq2y$deds]cb}ffgFm#/AJ!xl4ʗ^iK7+* V;G4IꚛzYT%eJ?*8UҕVȳw\{ = 4xt2|/C.MI~d ):F23k0s=UXxj=p݈+6k 3+00;b}b?Z%ˑ"e#Zɏ"P)Y`92hwmL҉4j[5({t+q?@rUu_=I8†"sy8(?xlu+Q\е_&|qlmMoazێzgJ*UX5KeӛTo~u-ֻʯU//˻px;*Wpۍ!=~x/az]ie {hP/*VLۡx 5~X,ith~؏ئKPvr$%qZrI΅9꾱T+W-/dT|^"2ɹ#i:zClOM7W;S{wxnծ|Uk.n&p$<͒5(r9 =d)O+ǣJ.īiSns'dphgkanru.UVna9 ;O׭";T8Wyk >4/patR)тa8ΞY^j*cX`+)-?+r]43d1֫$hi1P"d UOHa?_9/>{~.zYVW V[Dx3yNjngs)qǾchƐ.dXVGU:Us YꮑxzY QMxOׅņ.Ad{%l0W3Kt{>{3,9af*D2ݳ s\p%2qb=c4]lϰv1r'eUV' (?nwȈby"^ߔd%# Xd7mI8&/Q9!,޶|h[dOS*~isy簗u/7}(tz')p:\IKM~rlU WE@0K6H]^O:Deh_tKgoA'4Ԕp'<#:>Xo|~_|lyv:ŮE[ޞMl=oG%tGXXeIu$w\VbgKKz&t4jkbO ?;$UUp?eg {_-kчY򔲤s[2GQjxغZ>bՒ`vY)~^?}[+>̵:s_e_4,=gɽQG%GaC QNo&R[Rz7OzYYxtP_o MVZ߁#;wXϻYX9:nuQFt@UV"loywhVG%›:ec4X_x|(_q`l,bPߞp]ǞX/[s ط?rB+[WJmZtKL-V?O~ x ]^X{{-i[&nk/Dye8לBoñ[ 8Za2^6zۙ e7Ţ5߱~9c;buA?E5X{>LI3{$EZɲ:3|_J4ݹBjލVcOyZڢ'۫6KO#P?Eֶ'6-T!!q'،ǵ8)K UrA cL Nֱ67EdhgiB`U,ZA;(eo yѠIa*Ctc%Qb)U#%j\w٠;OkX7 Hg鬷ަ) }+ ~5-Um@uz'ܚzҭ^3cgrp.lUķQ٢i|W&vqĒpopv/2ۙ1e6!s(Wz/SzL|Ug24-+ א{] _33E׽v#L[*+he ՅK*ًCƩ@OkZ(x">*眷ӣ Ad;51e}*CK!b~.#zZmOxH>@ɋ!?v_בţ!vCGƅ+cތNKN`vT;6ms䉎JEuv Wzr 1r@{whUgG:+bvn4L뗑e‚IPap%$TEB+$s~S>`:ھ fPT&ټ/{!}k‘_X<+DLgD(i{{[v w]m.u>?zc#؂ZtB6ޭ%q);PYh4h }3,3棱ʰE#6w].po+7gqUvŖ^I:rު7 c}G-`M>믧0`7 S BRlKZ%]Wx3؂Hsn 0INe=rբvk𪛕p2fsk/SĎ<<Ϸl[#v:ro2?O ;RY`64LpSMQh^v9f7[%͏_;CfU^}d' :kem;캄jUYx?xX2 |U2AUGQduZ*V<5,.݃ ֝},bs4Z1<Ϡx]gFwLV+^6H(RMxW{0YKB{=>|R}xDP6(۴ՄpX+c~ԞI,JkI6??L'_?5x)hկsBjک6x{ kv{:h{U߻3ū~ehJU+V-V;;E̟1{4C ^(Ic}>/Y<4uzidEp!6*_Whn?Z,Vp6J:SFb;=rs,6\1Ee{snϩc[BKUUwkGHq4*S"kT}x9}]O=^D T*8s4sWOժp=a3w'鉎gwyW–hCBoqߡv5cmG@j<_۬kqmFנnY8~#!SS.1h.0C}XkWZoݟ0)s$UlzycT )m\di8p}2(Sv}X9$kWWc89W?S^(UKVhu0_Bk/Gk=^ pF^dVӳ6 ~DmVUhۥ =?lCcY{;? LN&o<7E( MH^K& *ZA˴[ӆ&@c3d\Gp͵]} Bu(m@>_ =Ŋj6Xݶ- gٶpƞg?9Ob_Bn5 7Q:.?}!]*9ʪ+:VB.g9§g9OW\U}^)gWW%b?P1B>\`9Zvl{N=Pfdw^|`'uʵ_^K^fe ѾgUS-LF3srY,kssPfnn[e'2KX6g/ֹ'?0#^bɡ+'!=a%v46k;w|Oy[C>XU$:Z$?:wQH?Kh% T T,=;fONb"syB^|MÎx^kc Y'|(0V ^ b!4Ɋt0. ီ\axݡt^EуrKNq>{z|6tƆ6JuLf7Z>Ħ#o3;m[»=)ZWlqXc=wv(ߙ؈6kmڢhIvD6X;k/9C{G.Y~,S-2ߋ\qi؀vv&ڷ5cEUhfmXO_wwc(1ιԨWİ?\!ll:c zK8=z}2a`9fU=b^^Vf97.΀1_0_Qn5PYc8X'hxiv SgO;z{_ٴڃ#/>I|%QZbe!u?,މ6>whG'Y؝Ú'ލ褬2Y S2|4/ ݂f\=xZ^pM?YG%Ez=PS HV OPi6ROiK@sm?0M;9\etODORu_XjJDJ!r ۓn?VadnlA:tZ\>#_۠}T_Uu`y+.%};B=zȯ{|1BueNVzإTQ +I| ;%ix\ZvG!B3e{gQ2d~qY ˯ǕzP(5Pޟo EÏ2vttgs D;V߇lfđ{_V+cZ} ˘f{F̧#,{?BTMWGJ֛9kR>4G]PNgËNЦ;T|QYBy9ԎCϥ$%;5ȱ8ΛXu6:L;ɼ̣pv;\«CLV#Roʈy]&,~fY>_;ig yw3S^wE`og?*b~l] 6c+V|@..7E^,Y Vbd1fsN/yώcw[ ƿӪT+ {wWwE۽~u~OXDjQ.SHx%,Ds<;=ғ3)UH͖>@]ED‡pl~99[ 7WՍFсl^F`,? R7U{cuܾ_u̟ŪYW `fG6׶-Xv7r;y:s pW_ic#EWD}|w[6:%Xk.ƖLaYwv< Wls,֛PY#}Hw']1/`{3^oÚρ!3kTmm"< D[}~r/z"~Hs<~ pC \n=Ðנqxt U8$ϟ&MT$b,V`ꔪ@SMOw^ew-k㵬X`źkłNL={&3I&3I&  HGtA" .='L2yι]~][d8`X -Ugq,lꉴڲ17NdՍᘸ+8fL]ߕxMPݵY[ m1N[:]ᴸ8gv=+b͑^9-k.94ԁHpi-{n uD뵟3pOj||rZb'WYN=n]_ b[~}sҜ9Fuփ)ֿӥQV1SWW)ni IOIvFRbx>|>q_DLN<<3wޥ-<~5aRa{<X-n?Ke|y`jLfzX@U߳tIp\=;dǏ—5NaO;l{bݩԲ {VRĵcyBh%.$[W_l?3Z*j<(k+\υW]_79Q퉯ӱ$n$q7͈p"[կ3qtX|9,O8UJTyuDkti}qQ5աx ޺z%Z"MNo;5Wl{z6GF>4 9pÖ338Ny2Kx4[yh{3z΄fPÝIwU-_p3kXFv& ׍QW]pv\kkZ1G w-{$Z?}FW3x6sKJo ?Y3Ľ:'؎W{R8.& Hzj#X?3><o,#WVTR?yYo/J]Tts=L=U%f|-QP[]mTs)Fhߏ>mVvsȑ&KTju|?Iei|֫ ]Eȅs4Xp'B7 < ?$"C{%ǩYJVFwy*F1hأ`xTP, φ$V5`K7<=?ڤLGXw"Z jg)ùlNLzu}bo:Ku- o+!=vO)'l!Hɉ>pԓn}5I{M׺h%v$!uAH0O%0Y2JzX/I:-}D25^G hQzs?efNץeKd2튩Ix۱MdZe6k|ڪ]Lf:cqbaWŽK\A% `?1bXYN !ߙM;@'G?B>cձNcvϙT<v7㍕yTMIUx83HgFכ ˢ9c%_b#SUGpwG_-?SF'iI̱9i{GT.DOdz RN{:4Īx\b93$:tj۝ڄ 4e먅4cb G{J]{#Q]p8pھ!!2H+gԵm0c7l:7ߖ!F9X_3iƚ\M6bI矄$ Q=@'5;ݠH~)\GN=n ,8AS6֘ 恉t #J[H3 F1Fp㬜n}\Vh?}$.qtEcakTtz]D `?Zm IboW^I䷐ Dz.Gא'|BIxz]<1B^ i9-m]}ܫ]SKeĵt:q P[(`G[ OYHl$uXfF꫈,k5~FSWWLZa&wv|A#1vu+`!I` Co)j64R/r{5,4gMs46]qm^ .Oc# yl;4CzW;`|Nr=E}[ҸoGy ^O#ǶW_IoQS&G^ ~ ՑJjV'a'v, BRE,].DU귧#SnEx䒝K brFZS*@l&CD)쓬bN_]6)h˧: 1NPo?ՌwGwչ{Mkp~בK1e~'h WE 8VƁpylpR4Ǚz0q_)זѽ1>+xT|Kz]y5[[桝>8LWjfNkK:t eck194l>\y[1ww?ǵz5}<>))#$|RV>l7Ϊ%Vfw_4ѝKvNb4ZӒݒX+¦kV%zny<_׾>N-?geyai~X?f~cxIrqD9eYMf؞xss G>hTCS6G$ҰKO ?W^8Sg9_W+ԝka ~%@IM^&FJ\w}݅ޜpʈQ` |B3X^ P5jeK h<:u UQ!0F{h9}Z|N׽S|bt]˥zm'6 7(hH0>{ͷ!\Hpzo?ff;&,gIG)[}u=8$^OWL=Uɹo'^7?+ތL8-p ÏJXimʪfwљE \=t,QɼV\*{z=3Nfn0fU5~u< ۥRitGԾK :]eY0Z:iW0tJcc8p9?:gu;^[d=1Ho( ~3ȾTH''JRp;ZX˴G qw4>ǻ%A5΍c!vnh,ҩqA4JIvНpm_gGB$]КYdA{ʇwDE'=dAu?5I^3yKD\Н^'wFzN~!3N)e&#i]W㠤}'I_|Y=PR^leQl \-+EߚG۵S{oJp *ԣՊ=:>J^h+\~utk&Y V;ؽ5TQGOZ dc2nO1܏-Y?GMbՠ9F>7wс[!#&s_"ޏ~/n|":t~4O]#h*o?KvIwȚulI="RmoI9uEȺ}MvnN)qWi " 5Zia>Lj]&_ ;C.>WɶclHQT]tVt7N]wD2ľd[ïGCiF0?IM1AM jo&}+p_$|7h60 *뉖kY7%Y9 enYߐ6|ݚ-^>Z#H?,wĿl]cR,¡xFf|ݛ>~W{uOt-g`oѯ55Μ裙h~HtiJZqyAj?i'b >rA]Zi􅤗~ғ:_95$pea"~μhA'VK_ڒ-d/[?:bOū[WV% i6c_h;@o9Yf?]any>! A$P3$IXoi=,kql#ZjU%^cyYq\nY:*]=*> &D+Կ I*?&7{ڛK"~jB-:uᓈ9vR'7&^6b%ڄuU(&SAzk̺UoY zSI-/&Z0u,{ufzxO=5iܸ;%FDΐc?E4A^@V5۴7g|KShk?Mt0A6 )}97H#s+<^sIdoZY>3:7m[ _ǛߔĿ:#} 2k-/kVb>Wr*6G\faWSׁ \]Kį,3!ͷ`Yϫ+ ;ZdL%{.Y `:20\\b'=,H+Υt9..\B^k+zà1#t|N܉U m^lol~%G<ݥ73SqO̗\7Ųi<{dbC39+Ekp'w0XY0bc?l 46`-8[nyFW{럅wU6=fu0z]tO+ĊovN_Pkv^@Gu 3[k qc;,It!<xY/*Zg.YlJRv`/n^fn;KV(l1hT. 8X^."B:{>8w׉8,O fYDa:Nk29ѵOIOΊoH+_i$n _"uaR$׆ƧaθOkOFA{׳-oƅjMi%jw%wH?0!8Nexd:M]׈fP`~>7}5g+F^6Ig&sukȞk\u"gjUuY3vr;qw?֙({k o-#?܃ ?85&q r-[/|ޙb;syLٌ=zw)j':6Yy hf%stƷ5,y)|S:ǏK ܡ$PtgK"ʧzR]I{kEgS0IM@}j6I~pvDKUzed׃}A"6βl(}biQ; eZ:nJʘgʩMAy©ǻb%^Vɛf\C+922,:l߄nM^$C\c ^ug]~O(Y{u;PIy#gn2;vwQ/$IТzCOlK@5u? .$0_QJ׉WRCMg*sl2<{D2Z|w~rB' saÖI=vٗ]!0bkub:ypptfYd]Ff!WiDIqR`!&=xSFJR5M&0wn<>pY4IC8)n\sWfs|=Az~k|WS;ƽޒq׸a5m\//cc^Bwr}<ÕX)HN:u,[CQ⅙|nY";ݥ+:ed)ȢtVscRٻq>>`F1µn8ߣ{GOv3^$r#a%/̉9WĿ߹M1cu'ɤu׆oDetJx ?z84z0gS]xmPV~Ԧ̍FaLd[xϩzTbYA|N<tu|ܦq6ϽVﻛt:7vZlJ,:Ҙa <5Sb:uy#v"U:1K栮`X/~1`Naxt|1|;ЬeA5Dڴ6% 5# iV8Fjao9|QJ5eDkڱ*ѿ Yl!Ur{t-jP^ 0X W9=]RH.k !YGs!sr\}Qq4ZelV۴UJ׿MtP/G3Tc &Zz>U#򨮟wbJz֐Dĝ$֮( 3:p?R}R}zD-^bvSKߵE\c= c;6Aݼ*:LVy gHIkyTk*,גݪ`Caꄌ|})udzZO>pS st| ^ȗ#nA$ :}K2oBnАF~$S.$6Dw)^GCc".'Ai~jNm05fg9WXQdz)Z*Lo)_v{Sbks҈߿744"3J5`ef^Cp398I͊ !Yٱxgiy4}{!zs5)>O' ~oh^kee-J<*z>!1ؓzHœ3[EFDT}7_Rhϫe?hdJźpĉMڔ)2L3jz ȂF]ԿF,@owRmo>>:J`T7WRI1L>gpϔ@ >3-J) 갍hv 5 K=bAkvY%dry@WIrqq"ŚjӿOzMMrb%5wj'm"6?);45:KF?I~ n"Kɾ6ч3(C`3N;X]8ڷQݦy0bVxa4K-:S/9L\R-cƦ^JOTE*P8caw ccXBdz[?;Ѹcm'/SHoܩt!]^{M4fNas5wZI] +h3Uxh5Kÿz59sXnxxU;@v;qSXk^FpF.,fֽ{gNn ,gul>U)_G$,Ÿ;Xv)rM:wRK%]c[uta Ȉ!t=˼ ܔCOI̺ z.KV3eN#$:x@sq̗,ѽp|̗=qFC8BOdW/Lքee),Ǧq,|]}gTVRIى/h}3}c4$^{!Sh sHz<6xt(La,WG2#j_=kҁUôh |ˍy9&}b'>=I$P. S?nx;xgƳ*d=Z X0&ħř n1g%<}FG@~Xu onNJO,j2>#%P.4s5xD5U ՖkJ]eRlV 5c]ȨNlEpT/ຘ::u;|%Rx(:GNX"dZ>/>'Vٯ$58n':c!ޯ^z{l"O׻G;ݙMziuP-Hz~e e~Uh>sߖr>DU ζHԢ!33n{;>fWtm6߯+aV uN|mH '>j6<=ƛW-;^6M2굂0~>!oX+;}Id<6PQMfp>%ZVԉ 6\kMGT>/bQnu)>ͧIo-H ףqf(2wŗԜƻ5ТcB?ssOmQϿ w:˂#tl/# EqݛJJ' X:bvHY4y1Ͻˈ2 AfV|Jkae>zp Xrru0ޘ:wLwG SԲg,vbet3H|74Eď^ /k7?ׁ*7c>$c  TyyeB42h|w'E}#\ T<#!FNgFG , Z$ X'\Bg~IAF1.SnmHc %Ic.¿[?|hͩ,7JjW R^HƼLzQ#a~y*ꬶDAd1x7ر) bv쑑:Ű0]׌M_Yvj,YdZr*?o-Alk%Am7ͬ fΏC?; @=Bdپ4n%$[S"xv59dfVmh7‡؄pkfth.ܷmVtO6h! ]圩MRSt8[:-w2I7Ǵէ =છG& ܶ74LճM LI{˴zkYAxW68s,$Jh&=X{̧[pdn~@R#պ|t`V#פjfK̅$7.2FjbCaw;zHnmt&s y>I`9)Qhco p>oT0 ClvVj/rc83ޣv00apr@'N/%i V!0mK!~v2kG=Ge`mb\ףed>C\KTѤ-0¥75a-d1:vxG>A7hnj;Nqzq\&J]øA3ؕVZ}T+%^˼ {+{9{^ߋwmo木щl'$ѩ^jT9 "zt)?̈}=P. kY'6WSߐVԓcS;wl 6+wP{>u߬Om!;9|R3Q+~* wKKN7z9K>4g[p!͠. jN, iqAw܀#ȒNoNKu\8ʩVu]gb(>z^{bajGc7jan_Ɲp(^y.,q퉹qLw~I*_\Lլ{}JsIyp@Nh x k;G_Nqϥ^\^cbGޣ]XZ1!3띫/ Ӄ] h(#w棕3J=O5/WUsuoGB\OXŽ'YOs"lt61n|fs˟ pqxYw] Ry;Lm;/pל$~֌ưL&EErjEVWK˜u?ۚyOT95!g:4pN^Ʀ$% ",'_!mrmL#g1h۴bgjRLx . m"*|͐@'UE6Mzdp?*ls0U$GgݽxTom3L[DTlJ q;j5]rlqdr3^;Fd_b c~sTcۗ\ԽUBgSOj<2=q_O/5T),ޭQ<۬|.R P~} s';i!}dADXZϦhf{Kw.pWB_EU>Y"<<_駤` qT ˰]qK)#o'uR)dgΖ q/fZKPе]r/|@I ވޙUئ;qt헅Q"5BWJClAr #xI)=rp}LcݭsR~VOw/1|50>[E7=WjHs 2 EO>uZY~1='~H?iְB;dmdi:HT1C=1y3Rt[4$Ű4UzHJe@9pvoV-lX3ؙ"@\{^3w#cکNk ,d[*T#n 1 4i}B&y1}mgc4leq<[#~1sh_zm?גM*`Y,#T-s9Uk^"}?_Й\_,?g+̥s],$<5D^&d8WBuP.C38pU[`bjqRLc Vav ~Ty> p!%~-%cm7V`Qgo!"u~L5i´Ȳ*A(6!uINc?sW=ɀ4k8۹  L12fC]c8Ӆ}e+ܔ:=Eɚ|0 :ȍՑMo#rb vz -JY;~y P#x"*4xR%^7Ft:ϞV@5vS۾$bEwIߝ9J}iǗZ.z}W⣄s%XuXۺOVfhSuD05& ښiPΔd2ēw\x y5(:[a]J i~4$%o >;?7`۸ؕwY|75:~{G;ቌt5LM`VbW\%Zb%8QO 9Lml&Żv`HlBܩpu rnEZ\u\k TYIgV Cw*Wb7cRlū7Zj"z43Iۥo9DoxאCiU PIHCRaѫm:s*u6CⒹi"v?Hdn |i#TuI#_ͷ*<*` ײS;Y& to";HT]}w\gǑ#ǾMz3Y\ws$.>YLR-QU9m4g n<2r/$N0KCnc丣Yv]Rfds :ƴ789]1p#z8$]}0{4[i'|jl_ ߑI$m OL$K B"e۲UR6dRkD5@wYM5/s_."57 vnGȩ.$e1!CO֞BB5}SΫV5v7p6[{RR5PFg7뒴uLƜ ƤF,֜X~-jw= G|%h~DG7h݁up.b"RpI#?aK^@͵m_KE5x/?7Tv~X땼>!ր$Зa ڨ֣0. Z7_D%:4TeaVVf-E>z>^!{ֆ3j7&Z˩l\ xʷ8Ǹ,7Υi4}҈o,K.t]ʺ׶' F$Uص0G+ u{̓2*GsqQ[tGb5vjyZ Z? >\W[Hz 33,ש^q^3mg 4uGYCtS@l"3G ;(=[;Q9H|Ϝ2z;4Da7~lt6[~40(0E:xR\͒Oπ(|%욙e -Q]y#dV\t:I/,xIOgG`YH~BO7;{Xr4;Mx޿9Mw=\nDMaO dPB'aBh;2[[^)1n[$$j|X8ϐ9MյW5Y.]T2T+PD=$=;@&-8տZN9e0#hvo]F|@gaC+Oze3ae[]9WkP ~=؍seسq Dݒ{ k{.#s[5\ۛG&Ў A@qd&?y3AA| oչ 6ZbX/ufx/fuZd6YVMi_ Nk05`Vku_lx\7zwǣ9[M9K='NЎQ+ZL_ . vnbޥmw$',w@KL~jP]q/ Gnf"܀8M5f0vFaN'uX }I~&QR~R?߂5\GdyPî[ݴNNdXPO:<+08xNLS{SGRNvk9d%]}jh$ظ$3m[) 41h>9!UT/c֋ݵ VЀ[r˵]mp*2KA1e ֲ3 F q1'h>F_:7<'%m9^eo]w4ikU^USu3龴ۢpfܩgحx3v_%م4702{~>^@7q,ݎo]8&0=؊ڮ5wOjvj?,97,H DrOau%7*+R^7<ğӺaj=Ok< A-"]f 땳34[ٿT,]MbfV>]Kʧh~cёyݲPQW[">uNG^gjX4}^¯<ow3>+hցˢ9o}Ϊ[yVcb<(iWHTPvͺbWq} S1ӈɫF.NbdFAEԃ\O#>8 % klTY"ݸ!|'.b/Ճ":0Ewd7Jfck%/lRVZ:9 9 $Wk."Eޗ띎!/Z>Kwh$X 6S yȹ&tU1fL-F]W2ӪtNN֮ lӥ]1fz)E[bs;jxMɟĪGqGG6U!rMx'<[,} {+>Nw_8I3.+LRmru#f}ؙ0λ#4FR Գ^-c9}W}363zI-{OTuӝ`9\ ȶ$ݑ{@[jogHzn1Xi\3KbLNwQ'_GLﲖ+zMT#u<G."@Nl,  /jp|V*(GV#DC퓍=rڣA Xʄ3ӼK%fI]H\gmfp**WJ֗KPd"z7~'ej=TK ΐtoQMk.P=[_Ytr}Ɏ7NF h!INۻ,V|;gzo@zRr6L-[`\$?{:("0)"\@?AOV^EZ0]^FU>;c%z%(O OQ^$>YZffd sc;%8Vynr.U[+ЄI md0~:]̣QdN%1?i^$t:, > _ӗ^lBP[l.2lcɚ_{'AAfw gdH]n*L*y?]^X_$9lڤRMXsdQA$b'`!Y8_*$\<~fgK8F(R }$V#EMH9يE׭Y,a\=]9fPYS5D_\>Ƅ82Saj}u]+trE wΒww4&X> Bunhv.XntM۬TFh\Yw`39 h+R kVSB?ҪJW͒*%4=˦p^)Oa~e9ZK%]D|Tw[5&/լ5{$e/`YᤋNhԕy܁2/x]fpti8},k.QJ^١^ B3-k}^jhzhN;/.]/" Zx+\kz3Snh]7z_zSWo/ IŠqKb/U!aƢYB\5\VlyeJp˧3}.=țѽ:N{\>]w̢2#l_sW/fd^.$\ҏXP#X]˙l㧑,H`ws6n4iyڑ?-ul\Ԉ\)I/ΖZЉsSt;:ȟCz1/K>qkHJ< oX&'Eb$qўڣ'܉- 2_EHz8Ҳ&dE%6ɕyX[ .:u.e5XzV:S3L~H,jO϶lenU U{03jen*fyZaWT3_,4ز%Qܥ:ot&h X;:]Z%X?o'y3-06_ $rJRyߝX^Y"xuHx0_R!;DCɳnIs:|^W'D:Ә.3l\ӽk8; nSfn.HF h̄L+|4ɀj5vqepdy`hAo$=%oA3y/"gu4Qu.kErKJN{=y}%'YON ly3{ !|8^Z ܻ}}7Vy|i7Yi-\~6w=B_I `u uLtכW{G 8omx7?ru/#XL}g"U0Ig=MyzM4{1HB`BՊRYi0@W'_ad<51L; |? {`\'(E+ڰ@Oڅ?j͜Kk@?kr+[I-(Ak5l3 @>:>ڏ;u:?R)bW_7y. h4.ƛ83+4mYx:hgc;9'S!9$G|UæƔx|OʱEXDw1:V3+(wˆԅgDNMq6d#l)MhNy-jK߻]8'Y'=5 Ոm FAϹCS~*ca:dkx0&16Y^fjVx!IuN(&TO%{ (|kkQ eGW˄}G~53F;^<ן$Qi Eܨ8H xFCU5n]}2;C; OD q27/{o"\OuN Q5õfwB0JV:X% F} e/6;= njWYZ 4+&MNJt]_-ޭg`KWd $Ԃ*<ܦpGoef|IOQے(jK[j=%XVAb ϧ|552Y O*:\p.Z`P~ Eqb%nj=D³x0t'cK0^<':Ne>ݕ9|.Օ~`U62A0 |;~ Fwyr{Yws(qd\N>j6.lOZޓgD- Eh^hT5SQmح_٬s 2I.kv(jeT[F}H~ԃұ3 qcE\' p6 ˒KZ77_=dj`S-Crv?] Q _ ȣ`Nx=9x>s)dBwUҝIJwݻEcRP4}t9g*ȧm$n%gU~~r{?~ަߞ{TY\s}Vb{R+@4Ql}#PՀ(nuV6s՛.$PVTJ.0䍗RVcDs(D5r b2ٺDÏ{,/qthlzZX7sA-]Z8 uaK^^S/\3P 3WY|XOpΝ7:u|r`_ncvRWzRSތSߪ\u{ܭU\Y=p[Ý>]1=梳` *H>y F j9iNk$.Ѽ(6,f.'nO'yF9G+fήt4QkWsXzLJ,I fpKFbJO41tBBT&hұ#|1m?o˿v1GY;:ecUNFٻٰbmΌqd2N]ݚW ؋ :TwՊrJ' Ӗa/+Ah jr"*kh\5jqNXԉ[9Sk߻ l͕/Ë ZQ>wm u2g ?П6,~\߈j6 D](fEik!o߄J7~vV;'@Q.n: obt3th6R^}a;x Vdy~2@di'8׬Wt1.tͺqZdэbrXxΫ/NGn"lq~L_CDL~jviW"n ]ݢzTD5?*'oŞOoVr}Tflg9Hlr˙[?JTCGV㛷Z6Ƅflb` eu/C+)wtB+3deg`ަS4c@^Lȭ1󩺴S-n\s^ FNvI4gO5^I6  fⓦ_:,JVR9*$D!u7C5;gmMGd  (sNGĴX Pv 9:ekx8'Q*0֒B> zޥZY,mT0ȾX,ekH [^ښ/Yk],7?c,W#mn'Zl=5SZ˨Q>rW5zYI|2d5=^|8<vN늲QwڣZ}S?~J~\W.Y1{봂'OgWMY0NVk LJ flFBU?9}3_{sы 4j%:$V7#0usBM]ƕ93!ddj͠!W+[b#K<<>gИڹ0{@&Xu i~߆fmppVG'Pۮk7WDq%Vëijrvusٶ*iɬ.%ƭY̏z?癿NkiֵӢsƠP%D:9eK+jGџ*x6:WNtn$*&ZQj.^k b7g+hd}7̧WY#=grx(9rL4[w`Z1I!==xW2l7@Zw@Dait_͹8^6WVF4mqjM(V><.e˥waEn&ţ;uFބۃ\Y::V0z ZXZ@l3ْ,vETQX]G7n.Zd w[7G܀GZeE3l=ypk@p13?攬 ϾFwOJЛ} 4"XieͽF"fX"*=%ju4z5ZKs#r{j+:{{bJ#P3ud4jVr5}BNd35`?ֳ_M \>٣\DŸDoP&̥evσ,%zXH,Lr-샅 .?c \oB$n W{X"_C\SvpTsgtd:_:h?Xޫfn ٽgTHl}=~3Gvv;5šU-1/vimtG2qEЫ8wPsZ'ڦq\G/`U‘%VK^#.+ZeN8W~ ',ڎpz8Gk/fiKtr)'6?!r.szQ!w4=E/聱>66S삩z ΄^ձU&|)]5Bu4/|,4p iy$ӹ3J<8ucƢ햃@E|ڥ\Jgf)G(#tӏmcsnC7:Ό->=sKW ~Mwfi^4v{4rv4cw5Hmzrc_WRHC%D-u(~Hݺy'(8BG3 .:y G)^/^Id|e0c=/j=9Z xR[f?i Xjg0?]/Oo-3?_B7,$s?Qz8S\t>ګi24}u' kX]!xd8ZN٢߹"فz Q ^E;vl;*ĻAȊ3¿Ty^Yw)zR[YqC@=-ITtb܌=ע㐧5hlrcO=I6Jq%~fYRRb.]Q][(7&PdKAYH,q4TY1:g\RuV9[{e9B3C_ݮ,qf4q[p=qy 5Ps g߹ju/exDQ[\ۃGnc G~+u/&0)/<[Dg5_ q}| JNd r};|by|vo*V?;4 'lJVOC&lٝd«Pm+؟(V sjըȮ#8\j[P{ٜLexٳa7PEB|ows_QcA5y6'y"x1L[J~oMю:|^hF' :Ou'S4Stc4%hr]ẊlK8ʜ8&>c6F\ 1V-_NYמAO1kETPӣuޡ.?V4Cxr W9gc5>IϽ)QyG>L$P7ho56.q]s>aHqo SKjbz >Wi/ӊ}y΀3c3b `:x{^[ZOiЃZŠbCi)aNNlո12NKjwVɏn;No:;R~Llң k.R/ v-VISJ]dKoηÁ*R_66CW@cEWjX?-q>{̡WC{)RHdWQ0=UM}x7s0̜zx-8ȟyK+ƝOST7o'<%Nל#U]>ث vKBQzuـ?lNrk9Oס]^?.8.`IXw.kRv?#'D|wj:jP7< .ѿ*fh}fG g7/ Wg9 =N#x|锘Fګ1;*V nC %0KJ-Phty(s)D 7P OzYتȣn̨䩾y09~]o H:[BbXP/^l72 2v+"{]|^}Q ٿt]g~Zwf*k0s 904S622օ[49$1,jؕ}DauT8jFQrԝӉg J~.EtƳ|~6[MpՏ5*umMCk-n /oRaz^]GwgF$+H7ӴG#*ȕ ф^^ZqyRa Wr ^?_[R7S}#֑W^ anL^=a[TkB6e+(ZҮ$iylۉmA&p6~@ZM^æe=!3׵e3vgKM^mzI\߮׿;GI(vo<'PGxFVi 7F#(A$!E橲& Z~3+yE'j,E5S8C+ޡS}FiVs~TLsvW7:"_azʫJ@Уl^Y%xSξ0-t }'?u|HD KBγVԱj%PaVZ_g^Ɏ:׈fB2t4N>KsV6m-=k$Vh?@APN^k"N37֮Il/J{a~itV,VgvxTLtۍg w^,T0+7סx 8B517|/܎ԮNhuð̡Z*J;'ߙ lJ{ztY5D9Ir(vEy=:sިyo,2`&Oԧ/4AZwV䀦Hz@qԱʪ895_zq2*82>.S6j2_ûeWGc|r|֐"-$+:b3vMNv*I=#eI4䅚d7T1RxUhK թ;Bk,7^0b`-^JjkFYp-| !vhh{@Zדt3imIoHlC/z@2M}|>[{]#zvyd "*;x[|ñXPSeU@e ?gh?.(jx]ૃCx!NVb_WzJB%8q|TYP &-`[̆+4!n,E3m. Dn8.GG;<0'}dӉƄNF}=MkVZy>wЬ@5"\G_^+uZb.czο;JgE#RX}s𶐩3H̋7En<{=n_JO³X*]OЎW/BvYzVvX)Ŧ\* (p>D}uxԖځ~[=*.t 3a>y!|;tMS*{:,g 9 )/H.pC|w o&TK?UԬ98NvgY>lva]EVq&zēxVhuU5o~Iq 2)oȟS,Я•)_E)a~sja4xQR6<+j%<[43e0ډ;m?o =М̟NVyft8ݗ;7BN2Qn[,IEjIVVځ z8 Fb?@~XǙL,~:%[h |tI{b!j?0}Y#Qw,k=L}уibrݸ{h>['ION o e1~+֕D[SKt0 ;u7;9OҺsޭxŚ%=t,STMt엣suZKˣ2oYU.'QRSB'3^lY`%N=\3}ٚ)FQLEW1vjyݱFQgJE1h53`DҔIhe$3Rf襹QMosWSAyϤn=mduPM\}R>;׿}2Yw'55 QJVDwR̿%g`s<= wޠQ0I0/o$JrѿW"FuΧ3(ަ^E<[gkܩhV0RZqkW~Fof,"Qz#}T.VB>LO{]|ϯм_ _ Gj?JRPgf|[+^Q F>t'/Mzɚpt\RHn+=_ sr5(X?EX^)]e&(Mdu7Cz w5JK#DIcKkxVD%؊ް m^4{iGckZmdjLk w4V!'V]5"|7Nݏ,y~'Yg^콡?'?-h c aycב!Juft? ɯ z0f/oԸ}GgtELp1k *T(:C9&3.լxodfm%t=aǧ莊4u@'h* Y\UFeڊ9dR@[g ݁褔~iU&]o;XL/s(~_ޟU u"tJ0:k/EǥOYR{ޞ̼fK,Evh쓯$̔3:bxͦbFuȑ"r ΊԠZ0^5]\HoUr/Ӹh=Jt"MּԄOG?kIfUQ6'r%»-!ONCF;5򠗁 K,}RN#JwrWT(ܟVpF.c٠]ė]cF#۽jUҋWan#:{don+s XK?ӿk/eNL:{9^6uVUUgG݌ Q`]S[u`V ]=@ΈF0:'2lQ$+_-׎i9QwhvEZfi\62< e #|t1]{~2gwt a,tfsuhM;gCmxNk]Xv0fE^Nh)@f<4Kb>o( /=X.gWtV*D . Mkc|IFᨸW3^r񈮤 LӮEe9q.5BstwɤgWjtj97Sc7A6 k z],hm/E2A,F:#Ӻ3_7)9Y:8sy, KQA~Y4jO3dNJ"e.),A5kAwTj'WXD*8cuZB٤\Aͺm`"@'*] _q5 %A Σk 4X~$X5閇Z{ku7D3xjV \y4#lH7J6Z?3&؈ ) t.#\h𗸞JV'XXV)Xk&V90 _٨?gti'UYgn-Ԩv&qW|@ȏֱ#]ޢ=~9x[a/N(Y2Dh̀ @)|e`#Ze0&ooFz`f?OddϢПC'JEit]rKPǣzuSF:h⦂+$W>!ׇKxl4s!4ZE |+}ɲb k}'y2>2pTְKJ} unWCDʺ<}KQ:g-lѨց۹/4vW=;-owOp/лm"63^JhF }"ksO|PNId[gp6ga_hǛх0z޼!CXGz:D],ѹJ(9/[rV`;aYWѕ;57,\ xny^gw IGh\Dr;swMF U=kԕ[=zT eɌVsCaDEt(ۊ.v}"gZ%ЇMNœxn<%ZOdl]Ѱ6F.x7(j%}4Qx?ڢOoP$hқݏԻuOm3~vrY2gʮ6lNl[7s74_lΙ l*WGHk/ZَLT.׬ע]M1@v.^NQZ]Lto])MwRtN}z.Jv}^+5Q=] Ϧz%|76$BƐ4+M_x~[sxc,)_uwkRRC5k'-uXZy#C5U><_@բsSJE'WFa0*:8W]@`8YO_m4^#JjyοNLgOۡy1j*j Sb3VU:ϧs_|pҗ%M8 tzNҵtڪ $_Ыbg|Ou7w- e8Ş[]6ޕ0nYOW[e5RWy5ekѮh9Ls]Ie +:\zFdٹyFc/] ~s73D9(} (.*f꘭N#k]t|M%PZD|PT;8[ ڬ0S+/*X2R|bιT(^.\ۉ$?OM5hYUt h!!>mi?N{/p@ !?:-d֢W?+R=HG+Fox6ש̓xﮥ&ΌMJβ>VrlhVmf 9ghN,f?I0<$DzSZe+LվRݗQù>fQi.a&1o'LJuIT"= +랎$3g)<2-Wh Hεy'XtzYTRAW)|]c++S`E pp+)%sZb-<͙qVi(sc©1m|  &w5c1x2A*bl>0YO{uFFk5j&R+mIg!l N9?jlm~wWu^V qfb a0`TS3uO~ J^D{4X]ﶓ[]z'HgliOUdv.~l %g[jrs[4yKa8c74cصV 0P-$ ᆶr3[{*ݝX4]\;jXe>aFe UDe%򝖂._u7cme!V茓Ϲjj/>Vvi}[(J`MpWFfz7Pw߯t;!nEyl`SrҕpjBs.N. ;c}A[#^) [کքGX͹g~*wd쁗&/Ѭ3cjDh[6 ~߱ԭs@JjUWu>%_֩O;3;'菙6lbT 3WܝK|lѵ|rCu|H[8> 0' 1Ʋil_׾W=ߌ/wپ0'5Phiqh;fRJϮtzSs ? t,'l,Jj;ëN/N3=/dмUQzTουZ+9௲WRY/ ۔Ghl"ZKG` D:ư&}Bn4owi/h4T'xI:mn{&L9Det! l2EI~i[U-:Odѧ?c)Pz">k$|#]Ή_ϠW+6ث/(p"ԯ8v@1&u^V\J/7u7~TN{uz}9*J2 Rj"%rw҃8 E5nh'c-DQoKc›/c؊vi탺}P2/l~nvݚA翉> FiF}`+@oܴ)GG ;z1It^j%`y|"}r&,ȱ ]qcϑMhg~a(x5ڣ1 RM%|X sjLj:Yfwq1R=u6+O3–9ETf[_lӴrt4Nl>Zg *BQaXYy1ߎY}h[7:gnL M=U@,1YDkjoki/s{=J]:Y/k/nB7e#Mn x=SS ({u"j1ʮ|_> ;&k kcT#븡@(6'18 y0'oY'߮ ӵyWkYX{6cgl;,*}!cGR; fpX0pp)FwG'k^XMIZ\Ku OǬ ]3=k\L,_v^%ӨݱO?Sv%vb"d?"/mu[VzT1٭=cRreNӣ;TZmD#ٖ/- MDF\5ӴA?H>[p={&ML5t]u\pE 41G?4*|#,-4$3S.ֻg'gC y Qi0wpZuxN1OYK5\~}μqUx,2t{jkh!p$nZҺOBIRTU~j89\ރY tzd)`GI{.!It%+vt|L"4`fjvFϕ}Gt*ȭ2xuTՊIc3 5֪N8tEgSMCSp^3@ٮ$N6Yzpkq: _4:E> 45Xqs>VWz0nΗh<dC]"1{kP)mV KV@-YaیYlUGYۘs*k"_C,:ثYӓ g*2k `r.$x|WM̝$.|7my$UhPOMq|fjtjFnfZӹk gQÏtO5m?M|T-(Mb [IzZmͫc+D8ՙQ;Եʞmگ a!/-#4]F!Ѿ[cI vi?>Rhy9k}? t^߱"`85~ NJ`8܃6o J_O~FOu}N/pKz..F7+4Tn:a&Y)`:aW<mtRqwgTQ?;=Lߵy0tS`'f΍;tsugsٽ1D93FϑA2_ϺNw= k%ĥD4`Xk&n5$62D@! 5;\2bpuMA.Bn dh5v:OIԣA+_ѱu}~%Tpf|ê!A?! x"pL7 K`LEقP'U0Ujd VYb!xZ=wj$E[/Yҡz;LJuJPTiQw *dzg#(#aY,X 4ǁɞJaeI}%_ gj=>LF8 $G.brx ݫ`H56Dz)zX~#/'nȣ#h*9JN;x~ށ}ݙ {=BpG VPU׮3xlCهa~B9Xa02[VsovL1$:WB_'5h)Yx[j?Ng-ݯCO[+d,뤞4"ccYDՑnXo t#Ka WS@MIp+WY`W>!oEBы053a/"/=DР!I} %V.X}'҃⥫dtʶc׀@a 0UfVV ߄yxG7mb:w{'^U3W430OFʖd-gt<$1^[SjJ٦E5HoB!fyRUXpgn-66[vlS E|/MMop x sSpU"ˌrV~?g7 ɬ|a\ 2zuiEIwPx<#w_17GC]UpgQ#*Z'?|J`=2h!#dϭ72af 'wY3SNjHQ|Jw:k-<+{|Y'um6 :O5.7Nﬦs-(zyTV'}X['hẅA rfžu`sؓE SAeDbr>{׉dA}f!c\LE|3 s!jOj-Km^zڌWnK4KSI<*Oo%yP_mfZ,wwL()q;=7rgKém)uX@ j(fu56%Ӄӓ.iXD_>W頯 6f2Dd.`XwPy$`NŹ^?ԻW"Dei,Q R$*V*x̑ժVPXB{z@WG b+A.U2&ԍaM9z; ZN~aYt+͕ Ve~cbΑz}9,E~ߍ]xLK!9:˴k)8))'Ѹ'_۴ U-<;|:Ƿ0;zN_.IqWpW(f:ӎ7L,Y9F*KJh% G߄m4$U03琡=9Kst+BW|)mp~Xe-V9kWbm[*OȻиUNjRѲ¿T{G[fvе\ډ&(tFh Nm%3aU食r<*=H3A\"oF( EAo}MZA`lhwLW5žpXoxʘ9gz%Uuvs)ҺIm*V~x; g6ړJtNy'蛷^;^ O\𳇂5t=' 4LΎgN!}8]:fτ? dp'SFfZd]kYeX Zi bܹtOv :t"Xs~^+ݱUv >lԉHxn|-(Dʹ^u50' vb,[].G%o5=Ԍb r^~:qYJ/ݚ/imOՌ3hLg_YKc]5@dO, tjDwRRi m:bZZeMè:gG,֛t>u b ndZhcJiUuk*/)MYumLxq''R+O{|{+@/}Qj1 {g]iR2Jl_RuXkP@wTY WэY/NyƉIFjQl f \ۨ LyJ'ǟS `@kۄTyjQ$ճ^!ynQ.!WՂR{IR<6>@Wq_>U,V2D5U@At~\{[ʌxv͝1GFg掻9kuY+_Dž3·V)umrҸŬX, Wݘd~jl"tt LYS ~d5'Ԧl'GG\< ) k.5B$KKPߞKlRy(UpkmwK{t_;b1'{T,kvTC%ı>zAK)t9hKr=kKz;=6ZdkPܘH!~!:YdqւKtkNέ:ءc`h>/G:3V#}Ӷ$n)ކ`q{aYZeC" a=3T*~}'"#`c&C߸cv'l5j&t% 7kOpXU 3K suRrAhזyCv\dzܣ'u|e+0 '`'JQhב+HfyJup×=YO U6><Y"4Yݕi6]%3;|Qe ٕ)GtbO5'b W|03J9צinz_ȷjPytt ( z0[ѣ<6eyݙ$t&iLG,%1_K=*:RGe_HU كTY^tLFKT &_Ҫ}]~d/AVBa̵ j{3-!BeV hU9YY9ߡ=RŠaZi=Ѹ g|[3`/gZ P+9G+pf_qN|$eH2|CurQJS`OůKZ0|COvX.aV%cD &Y^P&;)Ez~w{ {eXGu :pbx1Z[tks}ԑ/oP\\>]-+qȊ 5cc]gt.b#~.>+z8 ܏;-3::'k4^A-4G7m%QeyEȊ0sV:@C^d&^wia+wHi4ŸRrߔ./[,cv8]m(qΧe0Im>=>Pj흸%W$ dimk֥YޮXY n0_c"$續|_1 PK½{;sw#k e>/Fc,<@ ɍ"#_>_$3V2ݧk97YBӵeok- L @HހJ&Wula'&篁O5nx|ۯmv9E+%C=F1/j&I=@mp{hVrf*^p<'OF 4y"~ UyNV[ѝAZ"MIx3,872j=cuZA,L2mTaaX6XhpR pNȣCaj$Њ˧߆E^`-Ht~:]RW{K{D'N--bͭL٠L3'Σ̇/]sȶb%N*F+P2cc4box zI(szC&T+//>2tigf"JOCىh>Z>'7, Nw9͠ {5Ϣ7苴!dx3}!oO0?9Y')\hC/)Aa0;~.ޞ@^RyvQ ;7X68\-G`fvŜf8}?_Z J?BjVv["s*9(JYKTO-z][j;E|M86$Q dy~Q,invNwO% ֥p}}קO_>}}קO_>}}^Z)Zrioxarray-0.18.2/test/test_data/input/nonstandard_dim.nc000066400000000000000000000665271474250745200234300ustar00rootroot00000000000000HDF  Wm`OHDR "  3 grid_mapping spatial_reftimeK tlat>OHDR Y    BhJFRHPX (3 r5BTHDd( 1IBTHD  d( @ܕFSHDXPx( FKjXBTLFCL ; !B70<,x/RF%_k4e >/?/`nGi jۧBTLF 0F%k4C,!/?nG; {DoOHDR U     8shuffledeflate 7$ ~41OHDR  @ j<\b OCHKI spatial_refA j8)OCHK J_NCProperties"version=2,netcdf=4.7.1,hdf5=1.10.5M H!- FSSEX#Ji FHDBoCLASSDIMENSION_SCALENAMEtime _Netcdf4Dimid  long_namereference time of sst fieldstandard_nametimeaxisTcommentNominal time of analyzed fieldsunits'seconds since 1981-01-01T00:00:00+00:00 calendarproleptic_gregoriantREFERENCE_LISTdatasetdimension &@FSSE]E OHDR      8shuffledeflate )4 0gZFSSEH,FbFRHP] ( 1~d3y ɓ'Td$Ip$s`;sv$ggz(@e:#1 &`cc:cg:\0mBTLF0L L QL$J!B70<0x/RF$_j4e >0] /`k-i L>|͝BTLF 0F$j4L00J!k-LL 0]  q1FHDBGCLASSDIMENSION_SCALENAMElat _Netcdf4Dimid  _FillValue   long_namelatitudestandard_namelatitudeaxisYunits degrees_north valid_min   valid_max  Bcomment=geolocations inherited from the input data without correctiontREFERENCE_LISTdatasetdimension &@TREE' FSHDPx(aBTLF1L L QL$L!B70<1x/RF$_j4e >1] /`m,i L>|8CBTLF 0F$j4L11L!m,LL 1]  7-FHDB) CLASSDIMENSION_SCALENAMElon _Netcdf4Dimid  _FillValue   long_name longitudestandard_name longitudeaxisXunits degrees_east valid_min  4 valid_max  4Ccomment=geolocations inherited from the input data without correctiontREFERENCE_LISTdatasetdimension &@TREE'C OCHK  spatial_refGEOGCRS["WGS 84",DATUM["World Geodetic System 1984",ELLIPSOID["WGS 84",6378137,298.257223563,LENGTHUNIT["metre",1]]],PRIMEM["Greenwich",0,ANGLEUNIT["degree",0.0174532925199433]],CS[ellipsoidal,2],AXIS["geodetic latitude (Lat)",north,ORDER[1],ANGLEUNIT["degree",0.0174532925199433]],AXIS["geodetic longitude (Lon)",east,ORDER[2],ANGLEUNIT["degree",0.0174532925199433]],ID["EPSG",4326]] crs_wktGEOGCRS["WGS 84",DATUM["World Geodetic System 1984",ELLIPSOID["WGS 84",6378137,298.257223563,LENGTHUNIT["metre",1]]],PRIMEM["Greenwich",0,ANGLEUNIT["degree",0.0174532925199433]],CS[ellipsoidal,2],AXIS["geodetic latitude (Lat)",north,ORDER[1],ANGLEUNIT["degree",0.0174532925199433]],AXIS["geodetic longitude (Lon)",east,ORDER[2],ANGLEUNIT["degree",0.0174532925199433]],ID["EPSG",4326]];OHDR 8      8shuffledeflatea  CDDQFRHPx jD (`/#BTHD  d(F %FSHDPx(X%%BTLFHL BQjL$+x o4Jx/Rm곁{/`H&i3 ļ3 _}nB>|p cTccRBTLF TjLHJH&nBB{m3 +x 3 p T`@GCOLKKKN`FSSEjD*z8FHDBC LDIMENSION_LISTHHHFHDBC-& _Netcdf4Coordinates  _FillValue   long_name analysed sea surface temperaturestandard_name"sea_surface_foundation_temperatureunitskelvin valid_min valid_maxcomment["Final" version using Multi-Resolution Variational Analysis (MRVA) method for interpolationsourcekMODIS_T-JPL, MODIS_A-JPL, AMSR2-REMSS, AVHRRMTA_G-NAVO, AVHRRMTB_G-NAVO, iQUAM-NOAA/NESDIS, Ice_Conc-OSISAF grid_mapping spatial_ref transform ?@4 4z?333k=Qz?l7 coordinates spatial_refFHIBC\XMTREEr rioxarray-0.18.2/test/test_data/input/nonstandard_dim_geom.json000066400000000000000000000011011474250745200247610ustar00rootroot00000000000000{ "type": "Polygon", "coordinates": [ [ [ -70.48880753750615, -23.780199727400767 ], [ -70.51367964678269, -23.759644674941924 ], [ -70.47168670022451, -23.71896017814794 ], [ -70.44696265820481, -23.746031272271118 ], [ -70.48880753750615, -23.780199727400767 ] ] ] } rioxarray-0.18.2/test/test_data/input/sentinel_2_L1C_geographic.nc000066400000000000000000000321231474250745200251360ustar00rootroot00000000000000HDF  S4`OHDR "  j"timelatitude_  longitude red&nir/ spatial_ref2"FRHP)H (> (BTHDd( .ܸ BTHD  d( DOFSHD)Px(# BTLF#W @RM_l3-ExTU2<'3H߳ZqLu.GNz}BTLF _u.#Z'2@REcObOHDR  @6 # 0CLASSDIMENSION_SCALE %NAMEtime 4 _Netcdf4Dimid  Eunits%days since 2016-03-23 14:05:08.463000 ; calendarproleptic_gregorianTd!OHDR 9  ?@4 4>t +X 0CLASSDIMENSION_SCALE )NAME latitude 4 _Netcdf4Dimid OHDR :  ?@4 4t ` 0CLASSDIMENSION_SCALE *NAME longitude 4 _Netcdf4Dimid N _Netcdf4Dimid xFSSEH)U3FHDBjqn_NCProperties7version=1|netcdflibversion=4.6.1|hdf5libversion=1.10.1nameSentinel-2 L1Cversion001 descriptionL1C Sentinel-2A/B data in the native tiling/format/projection/resolution downloaded from the AWS public dataset bucket. references2https://aws.amazon.com/public-datasets/sentinel-2/formatGeoTIFF dataset_name Sentinel-2 keywords*satellite imagery, optical, multi-spectralmetadata_search_fieldslatitude_band, aws_path, data_coverage_percentage, scene_id, cloud_coverage, original_scene_id, product_meta_link, product_path, thumbnail, date, utm_zone, product_id, timestamp, original_tile_meta, version, cloudy_pixel_percentage, satellite_name, grid_square, spacecraft_nameOCHK1 P _FillValue ?@4 4u%gOCHK% P _FillValue ?@4 4]nDOHDR 8    ' Hnodata ?@4 4 "unitsDN 3 grid_mapping spatial_ref 3 coordinates spatial_ref pDIMENSION_LIST'OCHK tREFERENCE_LISTdatasetdimension &//[$<*$_$̂)$٥_5$ƅA$-pM$ZY$2De$Uc/q$(x}$vP="`KB`K3H`K,kM`KiR`KOX`K]`KHc `K\h `Km`KNs`K%x`KGCOL_ _   _  _  OCHK tREFERENCE_LISTdatasetdimension &/g@ tREFERENCE_LISTdatasetdimension &T?B>BF"7DA:9J8698/*3=@<<>(;-*8@2+8>;54?628>@'<88>/>;.*7?&@:8<<=,1.*(@B7,.:@&*$%2/*) 6?72:!-92&++123*5)+7;)&4(&911,- $-5&" 1C3,9&!0:.E{ G U -k( & U r X C QP[#, $d l J<CS/ < >I7n Z!>,FU 5 0 $ o< q !7 Z ]2)x[lOHDR 8    ( Hnodata ?@4 4 "unitsDN 3 grid_mapping spatial_ref 3 coordinates spatial_ref pDIMENSION_LIST   CfOCHK tREFERENCE_LISTdatasetdimension &/ڹOHDR  @ ) ( spatial_refGEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]]rb޲rioxarray-0.18.2/test/test_data/input/test_find_crs.nc000066400000000000000000002455511474250745200231060ustar00rootroot00000000000000HDF  iK`OHDR " q FblueEXgreenxa'-OHDR 2pp ?@4 4Ct G 0CLASSDIMENSION_SCALE "NAMEy 4 _Netcdf4Dimid ,׉C |OCHK 4 _Netcdf4Dimid 'nOCHKy P _FillValue ?@4 4crm a netCDF variable. 53mOHDR (p5p5 ?@4 4  8shuffledeflate p5 P _FillValue ?@4 4 3 coordinates spatial_ref `DIMENSION_LIST 4 _Netcdf4Dimid CzOHDR 255 ?@4 4t 9F 0CLASSDIMENSION_SCALE "NAMEx 4 _Netcdf4Dimid g _&OCHK J_NCProperties"version=2,netcdf=4.6.2,hdf5=1.10.5[-8OHDR (p5p5 ?@4 4X  8shuffledeflatep5 P _FillValue ?@4 4 3 coordinates spatial_ref `DIMENSION_LISTg_OCHK tREFERENCE_LISTdatasetdimension h OCHK tREFERENCE_LISTdatasetdimension ssOHDR  @ G bQOCHK spatial_refe yKgOCHK ~ spatial_refVPROJCS["WGS 84 / UTM zone 14N",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",-99],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",0],UNIT["metre",1,AUTHORITY["EPSG","9001"]],AXIS["Easting",EAST],AXIS["Northing",NORTH],AUTHORITY["EPSG","32614"]]OCHK P _FillValue ?@4 4FP GCOLKKsKKsKK K  K  KK@TREE8*p5x^UP\]( -?!A'kΝ9TyٵYWwk&&Ku|mH߇m9a%|8c&nSOhĀ4az\f=";u5BwI R Ȅ#a0`>ZzyI1,hى 䐳pIdʃHSvR}<$^զ-1yt(F#i.& AҾB iE*.ǚSHNlVu} AUHz7>?̤3ZNגO"5f.h-%.u2q; KOa?v$j.7aMuM._+Җs-Sep Ԧq+x4,0zLRl6!sǠ<偢U`[b bL}dXVo]%T&ooAw,]]1z,b \(7 O\?U2ӓ-Ғ@zRl@`R2HƘԣYee+aag납'> ,q\TmG顑.1oI+E [bv5l@:d?wɀY!KeT.ɬmlgN)7 b)ɠ ( >,DzLX,נ-q@D'1beEߓH"v!:cxβ̴qyPKS,2ҚÇEvҴb0n9s TXQRIQ '6NQJzz)2b< ?W,cA e7xEj8 HebV2ΤDDdv"ł+V \42LFQ!( $4G248$[ǿtd.[+?x%%o :J̆?)/0/ErIW 3N狰I ,֚#*0$>L.ʀR"5՟&HP[R=4hpM^*4\ߒiRF QS%H9Mp- " (őe__1_fNap+5QB& <)K |$QZAVOO2Ⱥ_Ҁ\RHR]\= Kg81k ~b1G!LeqN$[zR[w.,|jOXJjcE)RwBnXBd| H" ^ ypd7G$xj1Ej\$mS" FR.<ꔺhDyc坦JSlRɣ{xNI:Va@ ;rS|iVħyT/܀g1\(t[c{Vi3FǓO#[LW($cXJ/1&ad4? A%:Q>^@ԅp |Vݗ45栴Q[TUQ?7?~Ok(h7znȴ]LeT= *s$w?lWtd4X1(Na$BI9cAFy2Oщ?aq4cC]iw1:9ߴSUL$B%Q !rHL8WM8MSNIrkaMMtf/0yHVNh,(qTP?UXYr)|@4vܰK;wؓ b.gsk|>֖>?ld5?(ә;5< {) AGߛ!KK+|H2{""[5w#^E1YS%w6(8Sq/핻#_ \ !_lmL_sj$iSe >qR=c;tADY"zr?C9 RR]!HgOG@3C&^IK|!kNv}R:~4 $9%5\E(sDt*_F.g¸?ϻ+ui IY20ԶyMx-u^D,U NhTNR:ŮvT&-߈Wv0Wn`ٔOui|V6GO\`X{UP6⣱VƭI vPBˀ#!尅5Jߵ,@\_&;#vL'Ո1W&ܚ+BǯYC0up#.IΠ.S7#pǷ0`BZ% A)J;qa7[j9G߂`PcH|wI1XΔ>\6`?Ӻ@/ۇL| =$ E"vzzr*rf#f!_΋GnqM7nd%ތ{u+BMe[e)I&,2XxdR_ǎ0 Yi0h$YPvjU  M5|xɿ4u7\<#b Dm`ɹ{u x|;g2{~ro:H+Uȶ­3.Or}y>MY;K4qnKa|~=]244<慯_gg܉+TA=@ΗRY8MAAIo <ԡ>)9 Bc$[澜 jۆsIjDV@Cw:&pń`24y\z*ֲiDi r>J=SD^- fWbWΨl/ "Chݥ3և{0 =<ЁH{Hc9BjOIBn@􌾆ox:cp $F0ilbh\x0pPAS: ::F:u28enNd36}F7NA25c4-LMQAoD uCq<׀f\'4ɇn$OdA~Xd qxdG(cT냭VkM{6^N%<68U2aiܓaAS8abP 󩕏~BGNLxӝ3Ȁ2+3ⅲC ~< ov„A`Vg-?O/C^x|{[?bO,R}z|%޶L#e~ HcJLB55fr/}l2O)ƦBP¿zl?M!k! 9-ێ#V0fqus=:8]!0[Y!  K;ItW>2GW! d;h^WPq)xC!u!.<>(B(*o GdxR!bv~  (] `Hd%/Of`ʚSУޚҍZ7i%6w}at9T564@g { '>m@md8֭!?)&jR/)Lje7X{|ƈ"rr_L 4+!R((,gr^^ЋUN{0Lv^ΤBW@V=胜gþI|fZͿb0C94bq4_S\o4RY!>YMslˬB{ >I*E.Cqg M6!wG 5ܐ<` BlSJLdE[ ̨WF5PZ;=DU31RJ516 * 'd u&'LR:*Ѝs1苧\q[)24 4dB4ٲ 7:;R skfyn-:TDunpcOFiұg7AQ|0֒HGyR\kdJO`;GDӚbkjov.ajϧ}b 0tTU=@aMo (Pס8SKl&yȄtf$֥aG> qKYc< H(OTI# >}.eQK"99 >9eqgn)<, AS)}wʹA{FleQ=U]Z_߽ ((הt5YAgNGm),ā\u%Z#ޜ]n7}r$w,N֧ϥFThub j븘d1bݮœn"e7D\:Q#.FK}1-n fMLm@1J~t5밠TF`d`!WDPEj$ `!BwFoZ . [3p?ۣ&-OQ4 ÜئScZs1N/]druϵ>0Y.oʁ;wЫ%WṴ?-Q2 Aζ=CGjQodBN'w3oU|7J:LhR?D%f hz{ID_Y?dGg#t ԕo ~L9xЍ#/T !0j4BA΍䝀\yxDk~vB^LoEPfZ7RnUv6?j8y] %Ρ]u~?qwe㤎SnM@r "!ɓm`rP_*Y7R3ŗR0wǘnOٓ v޿˫^ uq*Ulh^ VH'5:g)8phbo. ]x$\^H,=Op9&3V4`$LԙXԤ|h!my%bS\&gp-&y/9Y=qDgF= 51gzˀ!G&$|Z7PUo-vm)ETe epD[T(+ۺ44ravw40p|\Jz[ٸjgTod(+̴fߠu cmNE5Zjc_(׸bND`w3UϳB߮!}^_^f棝u2وeh-Mșۘ jZe'gBu̍A[_-s1!n\v*}Y\: IM*gPBˆFH6Uʨ?Ay((gv64WoXfVWf*ݲ9n"P’Y.(?;98 ywYI~:l3S=[wg ֊T n^b %zi{Yȼ*4ޥ@TEJkcLlm7 _AAK y g>* zN{(2]>Z߈}j1C\JGptAP/|>Zc)e)ȱKTs_`YpL$6qBjͅRo8gSD!2\fmX8Y'z:!A$GI6tT 51C8Z.JQ$N}st5J`V@6) dJ+(Y"`:LvԹP_rul]6*r["۴!RzV:5;sXݫصh(n?C&aܦ|.G_;OYblL1=0_8rr *Vkhw3Iȇzud+FH]lߖ0Sdx&Wf94VU*oBQJ kt >}KaG j_3V(LF?vZ'YQ‰ E<vRg+*}1> 3o,d>&e-mpN$ zAQT ̩J`RԦoB$ E.!(:ՇwL7/0T@6/YF*x6]eS WIҴ2?SIN3LXE6g'|&ͿGwl](ccc*9ĩMgVg,Y3[ZlO.;>fs+Ap,n-#_-vۄ~( !XMb|]K:q6s0ZVBm֗l{dx'%0~$2mx}#[BwXqL&]5XB=}ˍwE``YlI|[,ZW븩Gt5ݖsR7&NejH2Ii>TQ 箑-,˫]3JPf% թX*3#ى—?Q0yR ȆFM:w$Di Gy o^!Ka12q+NP\^&]F8B\9 [ l u=՜l$fLPa0p0QiI(1lry,{z uJn&q_aS0l|)McҨԅr987?C`>O`ի1v mL''xv&tov!|5蘝k9U뙠glz#v^čy~zW4G_T8goƧӻnk4,DkreS Um`QxAvTXRw /9~DgY 6J36~tE γxJfWkzɟ̨;ͫYCPNτ|:a?PYH~6~f+ѻ VSjujڅo5ܺHkRqﵒS(?$15[T?b^?15&+d`j2|is k㭫̃i[כoRk3`Q_/)ic#Wd)4DzA+GLwmvj0X4{oGˇ" U <H55"N= >EM]=mCr5_O[~ SK/$5}gVs Dƥ"W&zQ(:}"7UܧnBCLF̧K )-7μr@ą;RTN7ULT 9/ZO~Ԡ~`?V7&)?[E1A1ey C> áUD[V/S4O)fNMHus![0B[M/hbzd]4)|ǩu/n?WCϘ!i)As䄵i oo( PK0Hg*VtkϷkhhoB;Q~K'6sk ځ:zWj\T;[eT;JpO:ΉţgW׶m/)0Ի4~;Xqqnq#َJkoq;S3k8*XC˝YӅKϾKW6"1dfF5VxE|e#P1 b%UỊ9EB7->v 29v= $lL ~ãEZhZ[Ӂ4#BQۧ\)k/҃r{f ^Dtj3zVX$-z$2qxQf\a'{"Tt!h6 N*h UyqTCJ7O:"3˯)2W%ܿ0ȕV,Lҩ)nY5yTSEDU8/YkSN3Ogu/]1#jqtt ;dZĒ4Ll&p@Lc&AziM Fp_v.27ڈ3\wlfr`rJPmBGmr]B@[JdÆ0>z~sZdlb &"kXhX&v ER'K::dYʛkg145!#=6[ɖt~!#5~&*ܜ/ȣ0 CY,7\1~SY4Б\}-:'Z04} ~o;ޥ=󧥤0Z/  Y/jJXilUzڨכ%>$2=s(+eQ́ܪ-dtk'?Κ~d6.Q] ռGJZvy˨w 4ƎD7e6#,l$l!$7KìZB.^d%lǐXs멻e aN@l^'N/ҪFr(5q#gLjN(V,2Ngc<{p JeYr+#^ҊUWK8<"H4.ypG|v,eQB%n~#,;{ 9&ޕ߈mƐy6+-N{$SH2y7k/Wc&k8B;]q4SfաNg9UYs$Q B^C~nD$řTuQC/݅b4}Ջ[7v/V6%rfm,WeK %]Q؟ɋkt24"Tں_I0_w|ͨ ~;Ȗ旌kYGlߚ^iԎXViw:nn22L:2R^ƣTe,{yZ'x &g\Y|%6j>op7/_x^$PST %eq/nOQDŽ\^8s[=JnD]/eପ$ڈA: Ljp*}) ,}"F1 Ji?cI]Q|oW"e;KlU(%MA*X9\N1'y<_aoszaېdnu^jvRW&D ܀JA~e[#ҙNu4/%$j[XB<8,x?]meD-BOnd+ b*H\1/P9C.XUmƘ{+z@Pgz3Yg,1ިuZyI!, E:eXOu!r{Α!``BsgoA Rqؑ٠u` < 7өίuwy.oԙsB51Hh 9!Q517L;q~;%|D&VE3ZB-Bt`y o'r=?GK{|-WU-Ȗ?%BE F):-OK) j,Vz g2W8I«)} 6!Di鸣s&ީeRĘeN{yq B]pv8сLoD6ӧЩ v78dɉ ќūk k|k\SvvZ"mTjJNJ5~k%I.KѠT̚%X]6V{jj-֜f(BB9Z>)VYC^51xhGI%(2N]$=%v '˛5OպJiQؿTӀM zN.mz.>l~Rk(+B 18 ,Avŋɟ67G}= \lE# Q<Ɔ`L(x[盎ͯuپ>x %^n=ty8r@0f[ٿ X!-' =ٺ)Z!@, 1-U9mAr787~ud@cr|Ә,L;ҲkXJA:nNbn_9W簪A|:9\x;C(rޛ$ ڞk-HQ} 4j ;fќ+}wǯy&`wB[4oԼU)º[n[Ts˨(=XJԕ1"* z[ܞ{Y'ΨDthw) 6)w7ZBkZZ{^Ew𔋇as(o2+$^iGŬ}#8wAq z'y^u)V5}ipy ̍?P"b-'u:=]/$e#J0ad ?H VGmڧ,-e%FXq)a{ v(D[uBnR+Fho[Eufi9o- R TO D>1L6R& z( MH/CgG{w;4W|w1׏Ied¯SBYTH00ؠ*¥/ ޓGT[~STnadۨ("Nٮ>GhrlO(LyG$b*Hih~-9k|~ 5)35*yͩ߶d&aUo77KRO~}.GLj6wzO[N`Iu&{ݔɴkh.M6vQ9ֵwwuBTbK3z"/v8}dw ORbh!k,6}R 1i9@5s3 Ya3g\FyICݩD΅^.N;[SX=c7D)T} T]g#_د֦8FŃ>+_q8Ԃ1Jh`)HO5"$HZ;~y+sXa1mqZ`?ߪ3a` W4Ln{N?G*󋚞09e?Ea]_xx Ez8]F #㶥ro7םZy>GFJ.+fmt8{, 5~ZΓNU3Vf!%QDk>Q UoW}.vlopt́w<`U[}GG?GfGm0 Nd}Q1t:-w0[.Krvݱq%8)7\50m@ЫN+. \W.~ a׏vB_fPW%+T4bz|N~Iz~I&v2pĎ_[3&p6?!7QFZm B}geg".f~ҳz?.H 1R$yO=˶Q41_60+M caJU/x2h^@fM >A'3+Wvӫ;#[xJBѶ &~.d48yvs| g{ }?yiϟ$RiHrɓeeڭkAPPO6ޒ):?Axꇰ&rvծ4q8d` 5%kҠ#@?\c~]'m?8ϕKl^Q3M>FD"&},'h)׫J1|)Gkӷs.N~HA:W#iu+AcUMݟ|orsƷ Q߼lomwqoZ]'KFt4F>'m7jmd扌pnAYEnчnw+O˄w*spDLIKݺb -еמ>~:=OǓ֜o/ Dka?'H(A "07r9/4^sc҂& V6nXR(nΧ{}/ $ojYf)#鑪.ɝv H\-ynHUFhƖLVEcoq:r',УO[92S8? )޼GK:+N Lיzb8]_ᓭ;M8R=#g0gnJ[L ꛼2;aT1 p+j->-;YvڵRCPW.]M^X֜Gxso ~>6#*Ym0@-+H4Datӥ2>`$vdsMUXBI#e0F쥢5/Y3T)f]{ѣGIkoɌԥC Q=;x0SDZe#;K"SWa'2>}?eT2T|fGh˼i:tU꧸/Qvl ӷDIolqE!*/x, &I䗄E;\"ꭩ)|N(iC{T S'*aoWVTBkk afc()ӮR% ?JP;haۇվߜn@~$+Lye0I\ld[pzw~LhWmvy@7[7]:S/վa{$tI*ؔX毠Olጃ?JΦTzuʀ_NݏTs4Nw/$ /ѱ;dVwizڋPƴ6M.GXbV46X$ x%b%)bX56iV[wᓆ{IA}]cxF4݉ *fXcnؑ鄟&kB Im  &~/:7ÿQR,be1u~H>~^AwWU2GoLe&Fq6̲R;r㴍K͂)ā:V;uy%3j`?8[LPPs^ pdgAqopRw>AK \os^pSxBzG[j%N{*:p`=s|Nm Fs?`_:nNv]ØRerʎCeX;zYHdaMu|:ppK2n_[ Fc _Y88<}_ EOO­ug^'y9.5[# FXˍ+G^!nrִIkܛ89r^rf{E[/6g٥j#_+Zν?) 4s<M]HF[с^h#0*@fYCӞ &?mZSLw' WB۩+gFFt iڞ֟(oZw[5RSʿMv[rsRjpj8NQLwOaFϡNua/}(nya8?Sw8=Kda8bm3m #]\Ʉ^;nΧ(w/eP|#fL!V0_m-:i•y,-6A*z Ob+nZ3 f@3h]`鹤Er3ۧ8)nv]Y4g.Kk?-0&}i:JHId:I8S/8:Ϝ@rxB$0 /a#j#ָ>!Ӌ#`vIO< "J趷Z{nFVm돞A},"|柢\m%_"' z#cw'5?{]nԛg!$ aC z8>=4=I6c>|,+G32h7|Y1ObHG텾`M|ߍ5EV%%5qB)r [A JW5"e*jzvZgsENUtnL]4$0j!럜PA2駑2mBIm~@NJLj9RH9 DEawY-S|oC !bUp%g`Jcw͝b" (%AAuXG!dVP#xC?ڿ& d? ..c$M ^ BYuhbEge5hKhg\ frEDS?^78I. % PD5 ڌ7(WiV/k蛨^TEHN4dx#= USE=Mb늦oP|0çU蒭.0H8o,h^v|7awN_e_T^;ZlB+E PI:Tm Q˗7* HKfbbЋ%ʔD&Ϊ__2tQLp(lwʻ#\o=Im2L<|1i=ᗐ\og wa""Rb5mMP+Dgy^Mf2ssʛcEb"ݳZ} E' ~+ЇJ|VlKQlԭ"jӀSI\1+UF)[v1\A=cW; F#" J&vSQΒ!%K[B *TCnq,>aeZ%ZO ɻiL T?g0|69GJ 7AN%"_ύ gt\:RmqRexk0Ns^^Q"9/zUe/*^[ML!jg޺RS›_v..tەq8,K[Ԅ⑕DHx񅴲Phf}K;(>:LԌF5.=8 炀hک1y.p33]1:NbHboղvdjr"ӎ,IcכcU~"Px4x6)ܽ|JI%$L|ŽT-dǠbNFys@=|6*<[|W jޙ5vG߳R7jaIL(ZFfD )[8G`޺oˇH֋ ?o/CSQLAr4Ԯ7i:'YY?OabmzTD_q'L j0j@6b.Slu-aY>;U>Pp~W-΀2VZ;؛"l)p..Q|GtyuV]n!̊Qˌ73ʔY09Y~gA9(N?vEH)™dXyY '0ht}:R` HΙ8ss|k)41rg  m#oju`R?_1נBMn&b$u(Sbr#wGu2ͫl%B>B jJ~_j "0>)NF4.vzn36}o kAń%2{,BT1^7mt?Lܖ0c ANS?=(m|7a`>"lL0HpFRR{-klZǸ"uCʷKUY-J7#&R)+fK&ȏߟgTyti$g{5ۧMDL>(WΠĞFόK4(@UHyce_bEe:0&Kf[qu;ֹFw9*9O^p Կ^KNf/~|+{oM'CV~YfDH- Iqbz\N-/慿5=ox8q@h}?k}UijiP0on;6HS:^ϛ>xJA!s&f<*U(!1z^e#^_Kwv=XDkb7˛ LjeNkTa2XmB*}Yh]<;-G*߅qkkMfFCȟC-'FE+ϤzvE@/\8~[@ra6bԺ-3 VׅQ?o:pd{7A3nA(E{j*FWٌD e^Gҹ`|'| 7ل{$LSqߗ#rp>g&8梻<~攋A112(+HǸq?vSs ]DG6YES̿<4>^cWތ/MWFyKvqy<ִz `vɄPwE8 !g5) zVDyLCЊf4EZlEg~}Džd0gtWJ)C$Hy `#03܆^=^5}sseB1=W/ f6PXm lT)I$JM;0žsY,(GQw-QzA.] ˀAOr[t_(>Ku_IkIm 딸ި`fNE 3TKW ܹ/`RYZla&ӧ/ *HƮa@݃Yb"Fup%!6z;Eq!Ё}Ɩ.eƹ+pg0^Pb_HBzg)~Z؇۞$oOzO"@<;{Fd7voK/K$] ,W41.3~AXi)K:6gcU'II~Ny=Ly@kH75q-o}gK뗽VqSLQ(5珲YcNjr>K~pWB17a4z-Ef6`p'WLw b pF{:^O،a=i@HHc=f +fPRXXNj=LW{xG*59h!V_V5 ͏. U?mjMOU+"l!(mtW!G|g2ȁ`4%Lg\=bXY6iIͮxgs7a9) 46'鉔*³҂1*g ƯB+mx8(CM-xCMp>TGg ҺkGC|+{]:B('KaymeSnW\VpXf*9s4,F#~1Rx[#M[ =>qGcq.t3" ~sz6MP[2xGo8כade([9` X rGB7 -r#KC}rEof{aMv6JF`0os4/6ׅy m*RQ5aXpw7{A(24i;8ǎ#$|4wflDՇ **կ˥|>-G#3NKy*Z-B#-dJ(V`M`7DwK%VWğ_$w%0Py^~[GY+.o|pU>zp?CEׅf͐(ί sLYճS,ITe9ضmW۔Ы$AfL/@x"3ٵ(Wl{};d"@Gn2 MYH};=y򱞰b3~xWCѸ¡V-vKɒL ߧߣ(\f[]K? Bs@kT9ODؘ,1}+n;.[_ PC{%ZŸH;Gd@/ y$+Ear6]n--HW8g_}oL 7qB*M+a8}vVVmW#Β?۪i=2Rz ExeC?IV7jm@*R|eiGYmRӋU^]lAvM#{j57 Œde#^Vl:[fOԺ\S&-lnΐ,")'5B\I ~=@I H]pe? 2ޡtձa=!wkM3:ĸb[uDP[ dфj9_YkSFJd <!Hx9tt4ee<-Ǣ[ٷZVzjf_ccx{\~DBQԾϰbz--L_c#mAMhVy}l@'D=&#-nzӅhXYkISc{z ~.*-u@7R)3f<- _+V{dh6\:ߌ4}NSCO51PpM]IpFwJ Kk鲂%iw@H-2{%6ߞA_ɤ:UɃmxk1pt @o/G+M<ڏs(7yqSy <6v۹ǭ12Z|IjC9n:'V{m']܎J,{GMZ5NLsr@J,]$gߦkI #PUfE?_x3`F@eUy7Plz+3<oYhe{L|\enhYc`RHb[V~}j.PN%vW W(.B{7)1* u_f&TWuR'"դ5FG ;53b" ~ }_`$:ϖKk)Yԭ jAs>[GK;tb\ũlʈП>`  [ؖxx6 g~`nLZ=Rnb+9&|{4<y0^ag 63h݊>I#cD&P5]0臱qjc6fAbVbN0vi؉1=D=2u4xz?u؜%-|N1@)l\w Wv_Ö[Iyz|Fb L(G}453'PH/Fbѿyx1MZmX&E~pM 'B]oq3BadP Iۭܬӯ ֎^[v9Ƨ( QmbI>T+t] zt Şw-w 4LfTjq3Ub=2BD!zV,\8-YI* ))M s >5#LaNvHP~6Y%X"6}-I`&$~5R', N2hUz4B$/(L%qINOI`}1%Rx<&+~)ha3,#'\Z3"H4,Ug@ѿ OﰜYB>DE a(QQR%6\闥T@Zkܜ7Z؆ qhBiη>bsz9Q*|WOH6T& Č?-q熟Db(TU]Qx X=a/ݑ%KkF!M8#~nшix \Zx33|HBbJ? 9]2{g\o6ɀ'>,H6{RTQuTdN@dk.#'(jeضOs e4VpX: =$ ~*a= jI$Ն:tG?rz` yKZ748iS8$y)[,Xan\`:t*`}sq p\͓T.C] KvQ x@XAzn7{2bVge1w/6SD>^ss1'{C3N"+$X{Gqd-`{A/sXH"\J!,%^tvl:::U2aQfZGFvۜrAi6J_^2EXQ: 9JUn9'nqX䓼:=|S>nԟ @ǔ0=}22aJsBs?x[f]LI?aisٚ uɺ7h="aسPS'aV bs4$2A!;xhARg?3O:% ]+! ;~(M]-x?_k{f~ǥ O^JҩC{Tt;ITRv: ZQ3]AzA:%]I|IyF,\B,:~cr%#kR2jNb897-vͨ1 ͢]_|I m>+jCCJ\&ִ hrHu~s94dsUםze( /Oj<4̓²oLγVW=.<^VXzȖ'E`Ikw< D)RF"[⊺0[:/ ݰ7uvG4t!`ǷZKˡ~.ˏq6=Eʴmto~Ǧݽ=AcӭY*o><){ +SB\۟R~(" D-D۹Gb}Yj?'ڽQqJ5JͺmU/)MEzŻZ U]\'/8N@~F74=GXJa$:sט-\ˆU˴搓Αo\my}L^'zL1qo!&gݕ{wlyiAlEB9׆=%y06u)b)3GIAzjjX쟴T?bohX8%ڭbha)Qfp葬[=#CgWYy sGГ`R~B(~mB`zF&}&Zcҥ;B@IfyPzr^;;pTOqo=vEA~W¥h>O^ A8?mF'n=BMg0!( =MvVX5-1po͒HHϥGakhU-8Hc?$"tdr·ŋ*F<#lL XI} AO\mJ;Z%?'od.O&vKHΓP@bY+}#'4uMu={זvFqq` v5HO-PG/\ڸ8o:EYQgme DQͼLhT}̚bOA#@ =B ##cb@F||{     domvl83>LC hۄ |{qxx~dkMyIf:)&@JCDx}y<;z~|A"##"EY]]j, wPHDH6No.qАޏwWZ c92ė׷˓ˋw8wh8ͥў2Pfr 7):v.n///no^﯎7[[2] $XE- ,4,DW]}yb '3!4?}z vv KGH@ zuv49QWV_,,<$<)559!:LOcnGf6O 4,<:1- #5%J]~gr\< ?3v~hPp9>0P㢽-tfjȋP`A#OȸD윟?p}be"#@x9_o-N RCnck'0H؄dtL>3S⢿^L4VeY+|c#BG&6ޡaPIqp) >@N deƇ 2<, hkmYz|l`ixhf`h~im`hr}31rytru~~x83:Pdm*/!Y_9><}8ZnOMOHN3(%&oucs f{qqdW_WCM]UV# [YYXYڿx|w0;5:VcoiiP+mL.΃wo0XX /6v6fz* 󓂜l-m ԿsN 4 ãÅ겜?/Ow#@avh|`dff|r~qu <=.7W:*"r ӓÓS+'H(8wkCMe%5e9I*"@46spqyGLO v05=>RW# D][G'Wo/4T4tdX7[s)fJ+< 22 19%5=1hwC~z/ F<తݝ(Ȉh8Ę8$ 4h{+miz*´hLace x}ee!;FOE#%Y9p00h8`sw:75Аa􍛖XO ;WOh80{F'HKx81S_d* PLN,޾BBA!!PRS`".6VńXVd B x<P0pq?? 72"jɈ}#BsgǧݸLto5(=6:2XO'zD0hfq`kg{{s{{g{yr -7r\ xw^N77wg{sscS3C}mu^V߹ Py@HoW{mIzg*t۽nomthgiC=mEnvVfFTC{&OϏNv&Fz:ZkJ"8>YX蝘lhj,Kpq0P&Nt9pf6&f6fmcsmybbhSVrq(,--,LLP[ckkcqv@WO,Q/c%FƦv֖&g:: 2C-t~J pCn-uᶎə՝u2:;1:јh$-JKz> z&f6wWgg&Ƈ3R"lLjHD|9ڶቹ~05>135\Ymgi-+%ErC+(=khnyenldzn|tdxl+@Y9i.֖:y_ϖϷ&;#'kxjxohWE6J<ә~lkRc#\hSᢾ.uS/##35+/!5WThcCI jsvPH&%%%&$$䗔WWddf%%y9X&@p1?ӋKJ@(_W[K}MUeq!~R䇣MMί-/(/-NKMvvq5R*FOz}: 3 K+jkZ[K0'=--#3RO맴.|듵V^YXVUS]=V^TT Z؄̌(_OWkSMEIQnVj\)]X[ZRnc[CI3)&I_0_Լʆ򜔤O/Oۿ|`Ɔ=ZRT~iik(N sKYrwyn84? (*>&)99>T *.+/)KvVV:j*r4Ը;=:!*44>6*~KH{ꫳcÃ<]=}=CCC= 1a>vZL}`&G@Dd(x@mm~|ct-q3716254001437vwp623.!Nu1nf:򟝳?=#?:x(;m̍ԔTztY373珞 )ge"LJ}X1hho-M]6&ƦV:jR 0!O{H&FZνMq7lBBQ1!֕iCw2mm|Kv;qK"#Ex^xH ؤ&'kП }JGV;ᅂ$&+p%Y4['*"u|e=ZfɹT:lfEuFMaJ,WH}~{maҹGN>έՕL_<Ÿ.F͔P(9O mHFUݵDrܻӯ} VDce ZŲYcT\\<}רF11Y&TjeYwlsLٺ8{_64T&KE>`˲8cFعN,.ͽ=}Lt LY*1jTQ`!փ6o;z$/ RXU]S Z$sWf/bM[uKq_7~6VpME86q}m-\ebo:mvf#q5ztڭv/_NLx>: @ƣ&Bo3 #A`E9Djpi@Xr2,i6:Q9\apW7lKĀP~Ud[ 4^'\& E혅A01GvDŽE85P!61{4Hv t<ɨ @SA*;&{wBh!I 4"A # yl&@;@!ј jh8@tQE71ѤDhO:wSPMK7&c6L*0 `ﺤPB E(PBD L ػ.d4PB E(Pr:K* E(PBD18e=\TREE!p5x^eT]ww@p<[pAw ;;s[n]ԠG,? 9:x{#ņ^y ,\ĝءerݬTg#aBQֶ?$S2SPG(n'fѻI~-/\/o>}kn 7YYvA9CaP`_t01Yaęzg9C|u͍%1gGp[OLCxwsuB1sLmH.Ӎr1E tRcr52m^u״ {k b/fb7NUi1T6܆x}8(elO@S =m;Pt}`I'ͻw ]<㳔xܱ;(DK xqseh$:KRQ /nvVcc;EDUBm_wCF)T|ٛFW`j:NϵԵg x2D K՜Ԕ'ú^-2ߛc_DelŬB58 ln0t7QGF|`3;Nlw= \6#MEsFqteh8BL ,yx մ aW6EYgPf]9PCg؛3EO.3g8'LcD(#Zş?v[D'|FF'%X? S9=y6ҙhU1]?20ɼ/~ .FJ17:!Ѧq[Mpi[";a̖ kԞ`d18ɗXci>rޒsg}u*]:{ n/ htGBhRդ_|pbMPWMb0l/I"JH$~\hWI8P@C!Ji]޽{RY_GH!,.H8a92*< B f6xo+SȈ6%.WJSN*t1:jw<`'w 9c_TnnΡ B3R5p2^nNB9\Us%-z$7tC!ondBrVTW^UU1H0U@j˫Xh") 36Li>K!.n|&#]]_/s3oZ+r޳fkçK%"&J3O?Ԙ ؐ%sSX&/;̾72nFj Tolt3 yױ !whWR݆-l:0yC }e~yV޼t;A FǠoNa/2Ocm| )*ΕSڿi1ߴ<0N(3z*07{U<]oz9e-rbtGX}!4%>1JJVqFqޅg9n\#suUDV#aKR^mtKXku gSh?sJȝz ЏP:;ck~Qޕ}'8_ _cCwl=->/5COD"惙5200Þ8,欹8#q+3ۭ);VyЖcK/[QoζݭjjAIyl]@ο+:>>Q ~^IƳ M@nsgǝbjþԔS2&-\ZXrC<:wVBv-*Ɣf` ^ξIc`ԍ͵y,7˶!om䩚֯?&UJdx0F?{t& qM_Qy=׫NlKYFX>qvk,%47[B>V5Gc- >f=&p7fxu:@aSl^-m;3{^oZI~N\蕖W/]W3RD)"ΩfyqK&ܩNQn1v7"}Eaã$4G4b02v5R~@ iҺjL yx33$$Q=w0]h%FbPS}\Dw#k}T]G73LB4u '+ժXN #eH<KKZX l`~|ya=[僯 /85*vRCYrq=iO϶5 #3+1;yD#%\\=os 0t[q#be2TޘV =N׉20Y;粣? YGForbܰkc`Z"T xUFn!!ĸ;\915wb|H02S'{kN1BJ@ҒT Ѝ@) s&'4,n双U>-EI63ꞷdfƽR0 VcA*Mх/# 㪈 :fUlYɢ2J•_+Q9%pkiL#9 ^FKVVʨo˴q2S=^#}s! KqCd.mp汐$ҾAQ>& gglg=0JbS1Y3 aA>qiÊ?)i!iY,gli߭q'uhb Fjr$u$Ol?%M^b<4CQxɿW5AK 4 wVYm8Q($ WxWs bqb&PTK@s6ڈl[,(I^+UC7kq duwJa _d vDyl^OHހaeyKE]x%=4OKI;Tdh0=A9RsEű[N5Gx[a,A@GmmWkTo[t F՝Q: Nڨ]=@oOZEܫ7"$L6[v$VUDq3,0aBf~CSΏ6].j{!2k?!OQ{RuJϏjVߞirNc@/"Jco' _2H_B,kH:D/ t6:h7$V &̄C#h0I5[o1[szح^-{YU:{y7aaەmN)RSŻ&YTq48E cB^Ů H\H ^edT  :طR9B'64BEth ӳ+Rdz趋BB:*{EfZ]3L](BUu\&&WPW86ě?!p"B>|D Fkj͙ͶŽHMՒ0:Tz5,F3E %׺hnϷZsZO)[ܛ/jgw:I`wR/?Ы Rp6+E.NJsn#s3Wxѽpc%wVW7$s/F֥2'FDy}I/Dfw -BMyqR/SF:/K//򞋯 QPm>G}C|hI6wr^aNfrZF>L4fwQcQS=͍Js'xQIS*(!HϕR2}qA9AŖۡwVefIӼ Ⱦdg}4'x>*EԦ߽{jUOh# VEЖO_2%՗?T 3sOV-ձ>CJ*xb^- c)m=n+Ddp BIxD:@vĞB@d TH ^Sۿ /[Q{VGĈTSH=Bܰya8nJ1ʢfy'owd*\ $gT0]L} zR-l#pi/e|jmX:sRB r(JK}RPA2JIO,;F Gof0JC94A/G%5{٘ LD}ܹFq6&ns0$^+#bjg$\t^ i2l;;>fTkleE[E5e䲣 _rvSc_4tnIM|lYpڂU܆ w>AQ ~$ӓ%Y,G0+3Ƈ;9#TL"BH"OqBZMy Mi!SUFۧAb2d/pȱ)%e%xR*n+Q-bJ/`Df$eҩ>|OZ҆zZJ1üM?9x8}2!^}LIR FI|Al/濵uJH `m̳}+54aFJn/9+#K5AG13/A*ҥ[:B~.t $W6n5vJš^h..|%& }n`{+G—i|߾/ UM=R^ Tz,608J#.b*C~X [AgBPm3]5jxUS$ɧ-3]ZOQ:l31@ yteOmrc:Ӊ[XzYL}T7,J%sM9(*jɲoD$O#fgj>?XaNX@RxXw/k9)F&t%P Vk(E^ݚȌB *-WGb+RGMn1])|W+@qLK60z:}K64Z0 ۮH&MAjߥ^J2ܻV-78>yQ(z ~b}u2Meqpc¾lւY ]2ulF3B !1i0ӽgCbOf"vO}4ҵna3-F?&1BHWt\~.q/}׋`iⲧ?ee|!ϋ@x1DCz%Fe ,|ݠrZ*U5.]fVaKؼFvVO Mӥ-D9K؛ R/+ )ylq`ES<m$JY VstQ ]J3?~PpG~nJ| (Cy?Ѯ^nh /LܱST rбT'7 K Fd7GIE hh\Eh$:XT9ێx߄rausFo=w4ummj$=s'z\,=x]-hw l9Gs]kЩz[r9 9>ȷ%%nÈ!UqWf􋛰Kw> sF/O`T󊲭JF}UP!#hlYSq0@MgOb9|wEEV:y"@,G1׽8y$hѾ<q'[UB |u~4}$m]046EX' c/iOX']%il7)[ȹMBnj⯬I)ִK)5엡w%B^H|o*{SLL+V; mtRca<~نX^X٣7l61f<<&S0DC6eW]V1NcDRjlsUP ORˆxlS1^GXfƥ!xR^U_UmR$@ӛ8wB8LhZ" r^N<9007̘lkee—Ib܊jX rRF/ BOcu>ƫ S'SC-2CJ>P9o#τbף&;^E-./L+&T VG`X᧵4,/ڲEqm?\8TR▏=lEb qh^.0B`.5m1{o.%YT:ƀ_VTNTP>JGHB"|C7IA9gbNM͒F},2f|[Gk8T>t2$!7('pՎ(` .vhfο0'=l8xhTWs[OSFEء̙|/8W2*ԟZqjn?@Cd瀑ucY ,e.`_IuW!'ADb: 9[Z; BwoY/I.fjrïc"%RXrN7.ޫ"~X sVnuNFw9WiW<'t+ F}%*4UɖlUJ[ytUaC#aʺL,Bi}&-ln/nnyIxgW(Cq5O`T#isW#G$2qڳfw?eje/ԉ2uK0:Dx~7($q!OKEڧN!2*1H"x2@o_I)eLBl |@ H_-6F?suT>%n<_-wiSQžFVN9 /_"O:5ؒPh(,ay0S?!K%{gEԖЭ"gY^}?Cަ.GlST=Z>,G aA0xӘx @4c?8ےwSvz'lUmwpN) 2oZ~3,m Bab9ˢYg7JQնP\V1?fp3fF+7KLۖBߘ Pb3fDHS3T<\zg!-?2[\J۴芲z+4G r/Y"dvYQ[9ѵMݷJe{ܤFmP}^>B i NfHY6×9 B[>dlo2A:8} 41@|́l#!="2 pv΅F-@6ҡLH I~ԁ%k#}D/\E@n/ dqӼ,LVqZ1LsE_e-Mja0b~.̄&^HBZ [1Bv Tx:H?}j}Ít=-7dMVtDCѮHDQu(ц2Ӏz{#ui]LYh;jsSY]}4q/ 9x"k#6Vv@8 4v/hwc]G >GiKv(vY~cnhGސf⪋Sg$4ݜUYA$;nV#99=]eeDj3AM+1y2IQ\.\ƲHxDp -aPМ%.|dMZ ɪ"F߸[yĴ En͎?FkbE%+\+jq0efxw: (Vz} GMvtjy9~֟1E8 8V%goDlVh#*]-/@%kʦG PTo;_j;[ ϾAr>~؜dE).aHX7*n9}൹$(9xDžY{yPHC}71T("Cx@9_0.lɯ2s(42ON)maiTm^z@Vz7tA0$׃W cxDǔƚ( ĦkPm9ri ƶT 3DҜćWM7B+\j:6_?,y]<|$KQGshmLun` yO_P&WEYgN.`IZ>~5=tێF[0 v#(3i׿?³8R{Xϧo *ΦI뉆)9f7MxK}[U YEv_4+f)wHaXtUPn`DL (|~<4~F?ZV5=H8ʤW8za|uh(#nVtdZBl"BSՐA۰m8qATS< 0zlz 𮧗rr$oوs{_L)|q zf+& J~5㖴'}u;j ٚ:KF57c[:eii+C}RHbgve.ՙl0` Kd՝.gW98{ Sr%NnjZ-1Wf#"QP_V~xsZcr3bзh#3S~1sjաv7He%[$6V wu?T>_Jǝ'0VG9MK_ܷ z C4AyC{w*3*_ѼWK\=,jSw yc6*N"6D \/4&JC \ ŔMD c zZ16hjS{]樟^",RdEڇ뢘jX#[np`Si1qn]3]L[jM簿mQ9FukbV6t(ޝ ;Ar5nOvW.5"f6tPWjB.w.Nj%1VI4DP1DA\s#ٜ*.AoyܸN<&C:6ye XNSm 'LYalVzS/:[z@u:urwfnRT)tb7ɛR?rXkxțӿ m 4*N ڡFY*A՚T!'CKATzW lnCuP#Y9{!J=Xz9_>'t;R^0?O>DBZgc*aCg DS(X5AellQrU4/jȸ{FQG:2hnsP v$*Xic+(7}~!H4/bE.&2?OE):;LxFL8.XLMsp%)u۶jĥ7LQ/art~x/5xly͕-_^~>U[jXo5nEɚ'.V;/QmO_ٹd}Nv?_j`$li)dH zn=LsFlK MU‰!t8G>b/KFiZ ;uQTR5G/"eTۘ>=b(9p ^x~xwѫ+hjKl! FC:zW;b3Q}>Nlˑ1 }Gr !/ʿo΂$Q>+NFՌqO"bk~F$tyzIw+HRSZ#?Ot-rڰ~ήRN2Ƥ@h6K߶;WNj4$|>jyʁûp ' *Y3׋sHxU|0vA8YWlbcvaI WAA&[EGˇܐuM|.^(1-%c?eFmʿ;>\}(Q"HQ VCL]ۤM|R-6rM0Ǫ J,HK8,O!6VxKVI~ĂNOW#ueyY+_B.*;*A4QI6ҳp,J@jl}ϐ3K;TSr˯|blBL4~N@rEv%B{H t6HIpdМ/wJ{S{FQ&Pڐ7Gwue$z^sLੁYCW6=7)Y72x&yf Q50*(<Zs \JFn3Mqt=!G[R"=³fF"'vAӞ.1|]p$u>]l?%}J GsRBo]ry]p"zMr %5 . P/gX3$jiChzx]?Ökȷ'[LgsHo v9aŕN;v*`d֧5D-dpʙCv^7s_cNv6`Zj /7[nc@t}PS۱Ӟ}$Hl 0,N֢`ԁO|ՙ~f'.J"e^Nv<Qv]W 9?Uҫ~%zl6g/]|fe-RdOHV(l>Œ2Vls() fVj*DMr3pQ+? 裵 m(SIg8%ěs?"{ #n5 HTEu8Oeu ׃HGYn-Htr2%ˍ AW;yp;I՛P pN )Ԥ`-%^6u|JCs*w҅m ca!0Mf^*ۦUuE/yP 3) hšЍ`)!RQ%:kx"M0 (ibS;#Ҁ3$q[P{/`]Ouq(Úa5T t9."cQ'*aP>Rt ȿeJCsn /*2>skUImy\+0wJ'`[nwYnYS֧lM\ IX^Tj ,bwOH7œ35I6+{)vjr!I9}6twg?lF0ѠMj<- +@7.$lJ`\fs__7 }P(?Ixa9T3ٍ%>D }~q~}]`ԗ&h[L}kj#G) w̛L$5\EWQ gaȚcsbQ2oiD_{=@Z ?7WP: = DUjzY: R _@dY_vmy/*owa@_ ፉ95`4 /&aVps~LN.573g= )QяNË m[s1Wʐ2;/^TQ -X]XXJ-/>Cby93}K-NG ]ĎB^w3gSf*ّ#}W6o0CX#%P k?(~o_@/_0@kR/Dr~eqg)ջXu"AM䱮U=LDnpWShn2(5 OiȮ4QEgXY,iq9$^nr2~#, qoBv0{BFXHЁkOmaƎpGScIfX9c`QQ`45ƪQ&)l.a,x iNK߱ca0 &}haǠe@raͮ6EqVY.QWQ1RȆukB B\yj5͆nm&$D&-d\#c~A\C.?>Y1*n++BalY6cO-r0)x'r`$Uj@$Y̞ wlcQŔn kAY7e^ުg ٶ|r*E-ioT ͈-/T ٮV!oZq^ggUV6^Ybk|Qx+ߙ/c9EH+ؽ?}烄'YVmGCTd ݢZQl;Y^6Rp#g=Gt .ŵ7>\81wH\mS\>nlen2NZK N֯}r\v ߼R\'V?F0}"B7P\Tx7jR#7n/-oC) :D~P&t9_fU:@(VU::Ȳ%j\Ŝucn%L_7sT Rt~FdZkfDiͬ_w /ہEK*N _&\|Kx&0v^3U Py#ڶwwKp Np <sxcU{s7pSPX?q y+iJHhkNAY!xk}?V* ]p-, yT<ֶ-bY\nCCJP%QVai W[!_ۮYCmi/3hE1+7j,B+A5A A>4JٍRs"X.S|}NIp  G/!b캭m-D~#FG[$⺏Hbo E6I}.ZC񋜾iG'Xx))x[n?6cY:_dV?AK5%0NY2yYrء3]z`{]8V\; Y]!&r vlpKY\O`ؔNWTKĀ-[KhZO\1HtpPȐ\hŇ@Yf2~sç,!k&{ T?o~|^vXz,|_j.=@P+-韥RΠa4GPX`)7oO#EEا9-}lp@4KZ/tF[zDrMT G$!g)k AH{|(REdɮ ,*JS_ITW=zZ|-o.9$/;{Izsmvo%`'; fPx %0H66klݪY$ŵyY3WC{1V>rWj0 `@o{aϡ347ˌsT~sUGv Bd`»M@A83T ʼNb֙=@iB, /<]  &!־M?k֛+GnǤ@FU21hw^9g8y!_q/ 1|,\Kq9DGQm7Ѡ&H'W/3'!NIOGOe%4-5̃Hq^?qD#+}Oy1(: T=c#~XO5'j}]r5 R64Xuui [#(gm|뚎9y3aL^83`(@2Y /CgIu`C|,U-03^vXw 똈/Zh)ijp?{Y@vE;ϑ}XF+5 g~D@K|wzEomxK2D[0&uv2t Cz).ӾAM@`kM Za4\jQڴ2nP5WEfD)K+8OR.Hv.u7\F} Nnj!op@q4]6p_k[[$XL3vC-_F3VpO麯]d_0%z)'C=wn$<ۥr`+/dޕH}3Z#gbnujOiJ̦S;/輦O)ؑtJr*f:"H<N. LzR`U ֐%lU]r@;t^|s9! 쐳.㏹XfJ wmarr~fm~gM)5ni/M|y.uC%S/reRڔ"Xyho .tsǻgDݰ tL޺#xՉ"B ݱwZnᬿQ|\Ds-̱XnO$S6_&lB1/z?pVM<ZzѨנֿOCU6t*W:#iȪ3JSk EJaR>?<ʬYiO_D%kv꽽L=6?Ȭ(K[lJ\ޚ. FřÛP"2)R ƗH>)iNE"*Y.jTs,- nˑ㟅R1 ?_N0ۂMjfE@fP&~Sx2c(Y!.kŻm42 op n+=TxHS;e3 ۢϣ)4]0H!ߔG_eaUüR{8H0x ޏE j0󋥂HJQC}r:$$4`XTTˮ&F*b K;y.; mPԆ&J]^C ̚(Yo+׾Vw,Xc`YRG7yGhY5;\h>s 2X[Az7Ųv;Rv}c!򆄍6䭄MV ca3AԠ^R^8ZK i 9,ܣBt`[g!Xyӛ69[K>E2"(^R-IoRbc}W/W]jwƒ!2Wym"uzm {51uw@ZJ_|wב E_-EfȐ׾ yiS XHfp#3X }J3h#^4.#C;^!YQ䱶K̹U$̜-aZZ"-"Ѐ|_u­?2ۏR 1fsƴz @)kٷahR/v]pG$6$GQ%5VSVI^Qc '@İ `hua$нf7@m:yEzUj1w_ڂjDkJ ;s2dUDTpAۑdl[ eKz~K8lhhc'CHx)hs.5ht%G1hnSJ>txZ /<މSbxaEט8cq6΅IVK#Ř0+=Tjm4|q0× 3Oz2C*KNd~Պ=es20EFp׵Zu)721>iȃI NN Ǯ)nBLq2 41$Gi![F,xۯ ߰z;>_f )a\yybPO)+OXS{ t!boi=7XpFP"B[Y̎q]VI2VX%0y tBV unl,ݸaIC8)T=7J6oSpm^>R>|I2Ћ~[]u|o¼wB $F^$߰ŇjAg_=s| |md${RB%&Oڦ)IlboP[e&Y͟_\nK@0Y7a=RLO6^їĻnPgP0DpuG9-adE͵|G9<m%#OFې0"l; p/E0)kU9WiւCvOVǬ GNHOW\$F薢ܥH%bX_SWoNY[:&t#9?:i)jZ< s>=qSeX!{X VdW̰2҄f<쑄ǍwbH'cs\첔W'V'`<ɐe@Υ$*X5ba"rUCIZ}gzq}yXTSҔB&gP2u>+ˮW'-]`!uwnbh}AtʙizaWlÕJaҵ+c9 "_LylmvUk jvW߆f1|N _cV*J5۠Nvv[PkUL) ۧǓV/`@iHaWpik ( rPj oYmxE@EL$WX*T3:Bː?l*(+]L|5&|H$wB-:Y!fq\:PM||ϴD}DG o= PU.5řOQ68C5I=oqE4AO}N{Hэk1(2](y2sp}!ytۿk5Q7`xLX 5ĈFT/Bapu=[{1x & sS_+m8+{ Rҙŧu@@9$D,4|ǣKA+' WƴCrNn<)b5J뼯Gb]Ν=hѹ3JrTa4:bl `nwxY9iBhR 2dq.4D;Ѡ~7|fDUq rjVZ޸q~BSl zvp]]>1bw2AFZKu^2Qz#>_Jhrl[y,OqE}+j A7Eɜ_XZ?1kȅ0d9i#e/ p6Oӵ2 33B9Ujw[L+;TkBkLkڮMC!cpCCWH)$Z?ڏ)M=!1%Wѐo 0 ~8"Fگ (Fri*JwbPJaݝqR9 {IeH>l!gO.A!F4d%8VPQXeߘ'j|㈩3.adj)u2=2W:C;pja+-۰FHo,֣x>2vYHvhLV=XD-A_!WQ4]fZش35=?x(u8<@ ߯6,~k(Da`SG^TNP=\p "d+*-MKk6@:P&)~.c!=(儱B@-.ѿ(R}_gU[92|yܷBTqkV%(Y=@UZ^=vg𖠣P-ϕ):F(U0z2[sl55VBrQ'O8 DBQe $c˖BZ%1v3' 9&eͨ4Ѕ)O8jDҚJUQ*bŒ(t5`8i7<2élȚRg5H.١2Mf{|.h"c>+yN^ 79|ѤRmhVki-%0׌ ]ܵiBAO/§? K-=&  gs&L2H `pWZY# 5JجpyS}>1Χo%RW U6@A tVOq~Y4¨V5w$n2U ,Igcnwjʕd{S~u'8/DH5 Y9@h /ME"O-Np FxU p~kfHh2D<UZo ^^MVM"Sÿ4{)\AXY hC镶ޞ,kv]ĭ "[7@11)D9:S^wE :Z;]+Ps>/u =JN>'îq@xi .ڇꌖD7 N1h~ZJ[bU prlz{U-JihT >:l'?ț v5EDWN;3YθF[͑g |'*Lz*^z/i&PQÐKI.κ_[k|k|dT\{'sAYW`&#}ۘ̑R_= 7SzDM{F\^dqi{n HR"g+Jz2F;&Y# gF~gN'ŷ2Շa_o4~")Cr`tXTXU}O_V!ͺK'EuUiWG q2hvͼ^.w?l iDn]6+Y749 YY> &X4tAu>): .HQ1}'a7aCg~~;A_'<5w@Z<1*~:.ه.sIa7i>Su^ihRSKK2v>Pt-iG <ӽ&yE.L޸,r|8>*馷N")(H2Uy3V߻c$if XSs5bsyy(otM#CltV:Ad10"1; *Xˬ!d@x̣pՁeG0xNXarv""r?k*?Pu$!2@. ԙN@@T}JX>=A4~TԯRW_VJ'JiIAF[ CԹ q!r縟п''`;fG:- E*(gƭ &!}B;EsV[+oɪ♟s&ǛϾppѳ[6.A ܇YR07?$Uk\c©Z&PN;O{TӃqvQ4\^c8'{ثsIt" F1siB܁+:t:io)~jB֫1V:{?&}dN1: |BnoWJt5W+gU$+SZ,=/q@{n*3 EaC6P z"80,'B_ sƥU%l; 4$^ uN>o H }`U{?|JR% pYMP~66?ZٹDDzZ43_@XTh';s]!f2|t)>Ʋ\6/thmgegdl HN}{>Vm m:Z~43QPb.BK}w6^/!l?+kiiں{8XKQ`>]lMtJrҗR|>4TT45mlml-uե9)0.֦{JJ%yyu-u M5M=}jXZY[I23ᢽ쯌vTe;IJ&=aIq5Mm u]Ssk[GG'D_MJ xOQQ(1egS21145 t5Qg#P18{z!ə_ eLJz;ۂט b0BU 21p[G%f(Q\Tag+ICBD q0-R `)S3[8xŧd)4?3s"?5 b/Ҭd8@/DYPQ30*!::>114 08\ChsK=6㤣aV7stlo壖%pO]Qr 5 IM)$gkhXEFRIWdmjtOiFlGujlx`= /? 1@GCeNB1<0QWLJJNEQY]EARZbwyf_MYzl'Km1 D@KK-(&!.ޱj rb|H/Wk ue>N2L@ϊOPHDDJM@_O]Z d{izGAV - agaTt M,ʹ'rsmaP{}y`O@XNCTSF\dgG~G#$' -> lO{ڊ/>֒&NOTAKGYqnF d۽? `/'33;_/ 9.&dwmamU22t  p,=)1dwunu)H*)6;zE&'DZ33-d{q4`$eUM,<>yĥDFDprsЃ@g_S! "/!.e>n^^AQ^>qN6z`NK;XG=i>1%m}K/_o?_o//Ogg`/W[~n&r<賙h7cIB `U3wh"LO:i)0U$)*e+'7{Ȩ`7'39Z"lvZL$Xl FN6ξaQa~>lip@+9ў5i 4?9رZX;{:ؚkIhe0=L ‚Fz::Zz斖jt+#ݭ5q~VJmz& H*jjk+++*)(H рWrmwIf:/5 5}#] UY Q!>.N6vVBl,_e\%1^x[hʉr0P aN,I UÅy8Yc>^~%yEeU%anV:*2BBB;'3 ).2pOkmianJ(`)I.V3  )) ,pgsMQfJBo`;;/(/9 b/W.Hq4Քޟ rsp (*ˈKRSPb!An-t.J S}9^kc pK+HWlomb43TKU x]@TR^^FB tgyj(%XSUdu|%YRbR*&Naq Yianf:xXSy񁮖ࠂ pi&@Nv22 Ң"\t D8W3?Gzڙi. /$&e``"ǂ:<ښ+Ύr4e^ݾA0Q@/Ϗw'K} )0Ozj3hog}jgqvB$'bo8O{{gȈ ^]lM.+H5b%:XËDTtTx󳣽/IuEO;oów(c`ab@<=^]]l LoWU1&|rpyv KBt}~0X==>*LMdx&HX$,dd( ۓʜwKM)NJl  B@FCOM zs:7S_kk$D7 NNMLHA q{q67=s\,%6BpO!`1X- *twk#Uab>JpwxIBLGMOq4ӽšҼo;# w[C|wg "fbc|vfR"اőΖ62\/{~NwW^ `Qph8XhH qޮgGK3"-eLt}yy  |{XhHg}͵i"oY ,.Jjj2bDxс2ܔG`&.بO7; #Cyiq>,vO/_qI0Q`w&FzZ~d$Fi<- ~ܓŭ3BD?\[hme-I\ g K[{G''p0/盋s}]Uaf 8/-*+ <<g:ۚg{;)3 <ϴ.@{;Gg 8XκҼ_gSU\nޟt{~rr~vqyuw 6K0Ϗw{CC~}ˈ pa|=xm~fO%xʈaO.  |{4(XMCACC<]?"c⡣"@‚_ez, Ԅ^v1 < l!_^ApHhHHϗۋ A&dP@ חW0 0{KcݭX*BW iH HHHww< 2"$>[z0 0|{P'#A`  XOﯟc̴Ę Η#<` ޟ__ aa&d{}~|8Rb.Au>q`v 0O{KC.\T8sV p{un$=6Xt1>L7Og'{G00P`uz43Ra"`. A{{}s{{vp{|z~pwsssp}~ܸ(_-z{ 88][\Z\]<~aAg۳$}'@~HkP'{S '0wW{[PhǣP7S%j<;pq97>33=3rttw{u z3k-}F;;cSsSggl}yiu:֦~Xir|C~Sb=^.m/MMLO/mnsəڊ`un~qqfblxphh`r~qyqsosajtrrjn~%J 7R"G}ޱѱ幩) O4 kB0`hcjld_榦?-]}SS#}m6U&G8+ Dȕޞu?J+*TW_{[@_oGs}}C}Y~z=8nomU_T\ZVVVWEUCӿƺU? Slp +l77Քe~-(/5g]㟦ƺ_%e_R=mLxށg*_|ʊ¼0O;Mq/* `+X}Mg+ۘYfryr>\r4m:& 2|#_L}+H3%y.sR}u<}/y\zG?﮵_5"d *eYPDI֖W5YrEX:2y?;>=y \ M3PRj5$Q,I]01zlݵiOFMY_U'/\[m4uUE_;?֊/VerKmy?3{j K  tt8ST4TTe\ l&:u왱/x򡿭?f`tJ bUEܙS'͛[vZ1 ŀl:W*Ky <ρd䓋N9tgc}꯷ֵR܈gey:1=uѓ^{o>*z6МH$db,4 d.zkh^&R@rX2I Ȫi&,Bf7>re{#G^|n59f @˃t䫪y A*I\N=}bKӽ~4֖j\RQY(U*"+TTmiIsL:~xa|tU 6K+jT.kS~`Ɔᗍ.EvtGvr22DmP #4H6;BtwC`|A(CHm/ v !#AA@(*7AP^G!FzgȐ r"1mH`##B_qPW"XE~H'7[|IJ0nƉ c.d8C O|TwD2OC`o]T "`r($ٚ'41.]׸}@]{CP蘷ޖ[m9 ; p@f4x~wŘMe6o1"1Z5쿩M)=4򎵂aگz;#Dv8w! t v-;;aBfs/.EȄv"\"APoBd'DvBd'DvBd'Dvv'U 쮉+&DvBd'DvBd'DvBdgw"\"APoBd'DvBd'DvaB6AA A$A<ATAlAAAAAAAA,ADA\AtAAAAAAAA4ALAdA|AAAAAA A$A<ATAlAAAAAAAA,ADA\AtAAAALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LALA@LA~LA@}LA{LA@zLAxLA@wLAuLA@tLArLA@qLAoLA@nLAlLA@kLAiLA@hLAfLA@eLAcLA@bLArioxarray-0.18.2/test/test_data/input/tmmx_20190121.nc000066400000000000000000015435241474250745200222260ustar00rootroot00000000000000HDF  T`OHDR 8" 6\lonlatday',crs"air_temperatureUH JFRHPx (#2F=BTHDd(.BTHD  d(8JFSHDPx(\//zBTLF}қ-B=3} p>qE o)Jl3-ZD {\/9 7AqddVk] rIjN@C )mO.0-3_s0 Uy 3!98{B3AZVIzLMTBTLF 9O.}{BAB@CIIE ZD 9 ] s0 Z3 3=3p JQ@ޓOHDR jj ?@4 4  deflate #j h  FRHPzF  (Q. BTHDd( ?vBTHD  d( mfFSHDzPx(BTLFK1L P$!B70<|1x/RF$_j4e >,i 1GXjBTLF 0F$j4P,1K1|1! <7OHDR TII ?@4 4  deflate ?I \--.2YOHDR G   deflate  V?WeW_TzDCFSSE)S̤1FSSEF z[FHDBh ގYCLASSDIMENSION_SCALENAMElon _Netcdf4Dimid  _FillValue ?@4 4units degrees_east description longitude long_name longitudestandard_name longitudeaxisXtREFERENCE_LISTdatasetdimension UFHDBdnote5wDays correspond approximately to calendar days ending at midnight, Mountain Standard Time (7 UTC the next calendar day)FHDBIauthor=John Abatzoglou - University of Idaho, jabatzoglou@uidaho.edudate24 November 2019note1:The projection information for this file is: GCS WGS 1984.note2Citation: Abatzoglou, J.T., 2013, Development of gridded surface meteorological data for ecological applications and modeling, International Journal of Climatology, DOI: 10.1002/joc.3413last_permanent_slice267last_early_slice327last_provisional_slice321note3|Data in slices after last_permanent_slice (1-based) are considered provisional and subject to change with subsequent updatesnote4xData in slices after last_provisional_slice (1-based) are considered early and subject to change with subsequent updates_NCProperties"version=2,netcdf=4.7.1,hdf5=1.10.5FHDBgeospatial_bounds_crs EPSG:4326 ConventionsCF-1.6geospatial_boundsPOLYGON((-124.7666666333333 49.400000000000000, -124.7666666333333 25.066666666666666, -67.058333300000015 25.066666666666666, -67.058333300000015 49.400000000000000, -124.7666666333333 49.400000000000000))geospatial_lat_min25.066666666666666geospatial_lat_max49.40000000000000geospatial_lon_min-124.7666666333333geospatial_lon_max-67.058333300000015geospatial_lon_resolution0.041666666666666geospatial_lat_resolution0.041666666666666geospatial_lat_unitsdecimal_degrees northgeospatial_lon_unitsdecimal_degrees eastcoordinate_system EPSG:4326FHIBTREE$ 2jFSSE:.|OHDR # ?@4 4G L P _FillValue ?@4 4 = descriptiondays since 1900-01-01B FRHP|:. (;^aBTHDd(. Thi@BTHD  d(0 X1FSHD|Px( ,6O7BTLFK0L P$!B70<{0x/RF$_j4e >-i 0G1 BTLF 0F$j4P-0K0{0! xx-qD; `c"7#&"1&"]D"{{#D$"ɈD$"e11ɍs3[8zB\1>̇ Q#'c|'ya>~a{yy/m?x7_3o'uk+2_+~/9?1?=w6|:_|/%^|ygyy9>g4|1>ʓ<|0|Gy?0<ă<{xww6/7o:5^y[~ïS~KC~;|oM|U—/E<dz<<3|OI>Iq>c|A>Gx^A=?;?ow_ MyWy?{^wk~/?g?G}w[|o"_k|e |/<,4Oy>g S|Oq>Gy'xC|(}xxo?;?& ^珼ƫ=/;~o53~Ox#~>|o-7x5W2_xxgx<|O)>'8<x>C<wgϿx'-+ϼɟx#*~~ͯ%^.|o ^|̗x/9)>,|O >(O|<ü___ogOxWe~o W_s~O /c~{|m7/uW _K Os|i>'c|'ya>~a{yy///m?x7_3o'uk+2_+~/9?1?=w6|:_|/%^|ygyy9>g4|1>ʓ<|0|Gy?0<ă<{x7wx̛7x? -_ ~)?%~̏!?|ͷ&E*_|"_yYi|>ͧ$|$O81>̇ Q#g S|Oq>Gy'xC|(}xxO?;?& ^珼ƫ=/;~o53~Ox#~>|o-7x5W2_xxgx<|O)>'8<x>C<wOϿx'-+ϼɟx#*~~ͯ%^.|o ^|̗x/9)>,|O >(O|<üwx̛7x? -_ ~)?%~̏!?|ͷ&E*_|"_yYi|>ͧ$|$O81>̇ Q#|o-7x5W2_xxgx<|O)>'8<x>C<wo/m?x7_3o'uk+~gFHDB\- CLASSDIMENSION_SCALENAMElat _Netcdf4Dimid  _FillValue ?@4 4units degrees_north descriptionlatitude long_namelatitudestandard_namelatitudeaxisYtREFERENCE_LISTdatasetdimension UTREE"HIOCHK , long_nametime ,standard_nametime 5unitsdays since 1900-01-01 1 calendar gregoriani'^x-!h* A,0 b|=0,0 bað$ aXIðwA8,+C?7?nZ}I1K܇>C>}]mMu^U^e^EY) 1Awǻ|Ƿ||ŗ|Oywyy7yyWyyygyx'xxGxy /|Ƿ||ŗ|Oywyy7yyWyyygyx'xxGxy]=-5_%_9S>c>C>}]mMu^U^e^EY) 1Ao[=-5_%_9S>c>C>}]mMu^U^e^EY) 1Ay=-5_%_9S>c>C>}]mMu^U^e^EY) 1As?ןo/ ι[k+K<<œ<<ƣ.6o&o:*2/",OO CN9o/?)1!>.6o&o:*2/",OO rK.y~y 3=_+~/xg)?<̏g?~Ÿ?~-_ ^~O1#?k~Ÿ?~-_ ^~O1#Og>;~o5x~f؟g>;~o5x~~/#~ͯ%0?gf?|wk~// ?'r47p;@xcfFSSEWM>t*OHDR w(IjIj   8shuffledeflateij>jIjUGFRHPMW ([Tg͊BTHDd(W t;BTHD  d(Y CyFSHDMPx(T٢{#BTLF.L XKX 0<@P`A[F$_j4e >u` 8( ]Bú8{ $BTLF 0F$j4B`@P.Xu( *FHDBVW'CLASSDIMENSION_SCALENAMEcrs _Netcdf4Dimid grid_mapping_namelatitude_longitudelongitude_of_prime_meridian ?@4 4semi_major_axis ?@4 4@TXA long_nameWGS 84inverse_flattening ?@4 4mtr@ GeoTransformM-124.7666666333333 0.041666666666666 0 49.400000000000000 -0.041666666666666 spatial_refGEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]]TREE LFSSEdjg&QFRHPgdj(~{Q`BTHDd(jBTHD  d(l?FSHDgPx( hg"+FBTLF ,L P &'4VfB$BP ^2,? 7, HO6,x/RbBD` !i+ļ+ _}9`cPcAGĪBTLF PfB!A ,6,bB4+? BP P , + 9`aAGCOLFHDBi  _Netcdf4Coordinates  _FillValueunitsK descriptionDaily Maximum Temperature long_nametmmxstandard_nametmmx missing_value dimensions lon lat time grid_mappingcrscoordinate_systemWGS84,EPSG:4326 scale_factor ?@4 4? add_offset ?@4 4k@ _Unsignedtrue coordinatesdayDIMENSION_LISTnnTREEf:Ijx^콅{i)f2JLbddLR$)s{{3ITS Cvl~J̙]WN#[dY}ſF"?|upǟPbX*V:}푱UbXtwwt:SUbZ$icUbOD=#mbXYZ$jcNmbX}UGGUbwmX,Ue%%%f.(d&:{vwc|Wo;fxQ6fg2FL8>G( y<BQ\ZDO`3@Hb8I0eFX,Tb2$E[}~p\.+09\6fj}pں8?pĹ7? VY m5$I9511>628ųݽ?~ۏ>|ɳ |;M?|ŋ/_xݓAݿ]G۷_܊֍ׯ]˗/]x…ϝϜ9ӧO:ĉPǠ{$ZZoo/ر'N?MQɤpv8.r"v47^z7߼~>gh/Ϟ>}ɓ'޿@[n޺yƍkz/]t0t:O> =~hﱣÇ]]]]]NttmmM----|mKpo+TK67/ۻ{燧qGWQ:E7zݞ^xW{C_ǣjX#kbƍ_|'|>X^OH2&,ذ+Iu MNO̺!ǴsM <6khtjKZiVvF&Uku$JjF%0h8 imvΘo4)Ṛ17%҈8DIN hic# xwtkUټc󋶅Y>C§cvvh @Xl)HKe2 N19|0!>Aı=EGLGAoD"#"n[X<FG@ /y>;OJ)PBeX._ L: >t#]m#"ֹ鉱Q{K߼yaիW~ Dʳ@;~Dサ{utBgT/^-k^'3CS $rN.x]#v?dg/ (xUEB*2AZֳ<65lxFmzjV)*+6)Ml)]ɈXTiP] 3 Q6y=5pzq)NoiԢ3ӎ.7$sGgC~~(47QOb, ɠ3,!*|i!5 BH"JnXp!A۝noBSdDFJ0"-d8&y.TVDZmXXB|?0% DWWMWP >9XO?zLwnBr7oܼ-._:Z-a?B#G@О.tہ;[ F-]onmmC۰E񸭫@5z@y buGMatCm//> izs"[,NO$ Ӌ~: lsCCq[+ezs=xnhrW\.5._!>Mɒ)$AFk 6c"ɑtt}$5xJ\d^x7cdft ~}ֹhU@>{ Zm@kD}I[}}?zP ͛ׯ߼@W]dٟ@՞"ֲZSǎ8v HJ1g{.)6ډxphRp׶n Јu/bn;&xw7#U$p\L#Kc>}lZӶ)9$jGG_xу?}Wت}3 `*~Ľ_<Gܺm"ܾp{¹0a غ=v \,x !\7ێe&[L֦&g m moi*ql8QlvĽ1P=) :3iic]7odG6nܰik07Xܫ[8"1BSq;Hvϴ}nrh`|dxN:| 09₼U+?h(-qlE'N. a(Le1T"H+7et !=KMe&4F2O*2*Ň2+*'I"S)RS3>?%\#JI`FF=Lcz1䘱M8S8!F N(`QHq> KXt*>'l[`I{ٙwlvv6 v dR(B,EWa,.I*3‘3RN:N$lj޾z>ԃ{aHѾ};-_aҢo}bgdC@ukW]i[$m'N3/:VOX7oZ~۶nZJWɥLMΓ/g)tCJ ^Ȃ/2522ݳ&䧲 +>XRg6FY E,3Ng" e'VW8QIn2T %OaӊJ&&hLrR+ϖL.R22x!Y(ΐeg#E9N4iRxa~.@&!5I 9D!F0 dBt$CA~mT %s:ÁtY(D}-R՟!u Ҷ8#& \Xq>cױj`aBm  jA6+vCK[XXrY~Ç _I ;3$LNɐ)qL{vjt|:GLIcҙx^L+Xtʺ2S>YHL2uzbNeIT"RUSSdL)y|saQq2 ubB@/$jITT 2-R$/ eR%$3S'm9|u4=! %, N)TO!RX<>Iz8IH(~d*`""Q`k%#6bM6Aa&H: B+&Dw\n=.zfcqvbtnݻ{GA> о7@Xyٳ'@-nlquh ڟ^tϞ|ʰ7Q[ SW7 j90z6-,^;uſXڰiӦ>]aƭmٺeg,[հbDu~. &}{Ə8gĴKxF@(A8MgY|EUI̤IS34:^-WB>G$k[ j<["WE i_eȬ.d#sCVhdJeZJzYz$)!Y%ә&+)E,J NV] ΔJYHHN# CL"<æ1@ZR8"qX8HQES)t 9DШp!/Yۋ?]xr< )agjoɔH^ \;7|8֙}O:}}/_F} 6AڗD/-o^{f-ص޽P}H^|W@ŋiw"wv{A"xR/E v E,B~dpB"x% ÃH\mԧŽǠgch ~"p+W._3@/\tE@st3=rPq W8J4%4v`,Z j."Ő΂)+]Âo@p ]8E ٍ8 ]h[x.&8pM`oۏU׭ٴummrm۷oݲ᫯x?;@eqA.%.00}3d:5>>><>c :)+HB) <'jBVK6tJ4NVsdDl42M% PTXtic2J֩Z<^'&ID&%I3ؤA$)%U$JKII9I BÍ'2S rSq::2gͿ,abaҢz;/? TSɀC$kiF = P!c$EPI0m=(;$r,ZR8pLeȐE7 .IEϾhEh}:ގ  "ҎA7oW?CՋgϞ=ypvڛ7>a*¹s.^x#pp4^;8͵F?D<51)!&x2CyFljS6ˍKĩl$,"LcLOM؃.DH8CXq"XHfB_{X$Hs}k-;nټUR.3S&AC̏Q}-D&ggf#BO1 yJQFDU5"CJjvf<ϐk5"=Ds*˫+Kt*UUMu^Zg2eǕVU4WgsRu(+Tb)-T2 r䩂48CO$ E⴬LE$WhuI,c31cq{ Ap ^<p@7`T"4@/-a@d6H_\A gt% ` HtB$: ݿ6~Y``LBDz=^- c##0 †3\A7H4O?_ϟ=}=u/a! #\t(o/ ӧN?~X#z 8 *$< $$c5E[ rQv9ΨTF+°9Kh/ӄf ֖#p3Zk9/1ױ̯!*Vڻs_o'@]{֮۝;wؾu5>_Xd4xY%GHNuq|fvDs-̸Ƞ GĬH.)uA'HYʺRQQ\U[VWSU/W4VWV/[V_a)$pHFSN.K*c TP7F|}e]yaYiMI*IWS)IĄ0/^-WiQ(;!' ³)v MA i6֎+"&Ees`0"aD2Ɇ``t*zn=5uXPn Rxa{Gg{MgYB@m$:~)4:0ZAM8>I1'8xu/L(i0h Ϭ;#y,O77{vmݸ;޶k7w=wܶu ҵ6lX~MRJ֙q=70>cL%զܼ\sqc]Eٔ[__fUj4yuUy9BԚ**kjks+eҚR^XZWPVUTT^XPQRlieƐL%g0Éxm,5Wg\-WT٩)<0A.S@ɤdK3E2s;=n/үnbA Ga \ED<=fdUT>t #˦9,.g,* :"A7$4R&H$JhV8s,cn}Ѷ`]NOLZga$B88 8ɰׯ=/`<&޼yׯ =~!b/`Đ]onF+C m'E  [bW'CsJĬ%v0pXBO߄\=8kk2 :)a 'v~׎=~33X^f6/mK.YP_ظrXr={wk۶۷o޼iӦu>[QbTIerZZZ0"~'ɋ,:4/PP HN7XUS]WR^_X^W_[]\`3UW-i,)+2+2U9X\ZQW_UU+="˪ju9ʚʲB4@7rN7R%0]\Lcqʊ qF)פV'pS B)s6)51bwGyYѣ'[w޾uf-Xa@mu!:>Uѽ]I46W aA5Nqh7B2!:`Јpt}mk!M,r2B¢؁ѡÚ[Aw")&A^M7'CR33wC~{ﮭ۷|ŪO7m^nm[lݲe[m߾cү۽kޏ?t{fޯڱsέ6m޴vmcAaި Ec669467d,L/Zj,)^ .'RSQ^ɳ4%9"iں$ERa-1jsArC!/_%uRI5Č˳ cPjMZ-gH3Qp07wh!{w96;`7kV !!B( aEC H2./^@1l,#tR!$kTjLY_4J !Ôߍ^@+f#a߃'`hI sG!y;ܡqyz=y :>痻yx޽[7 3._:YƅNAw(lAxR7bѳ`ׄ%b"}wCmqqvF BŜ.k6A̶Q2l#іA\@-z Bt' LZl` ýH}}^r,6SN9Ù$.,bz~ܳa՟}U+V,]bz 7lގj׻f=@~ok[7mݺa~:O' yYbJ< fФ:56é!e *kkW \]X^Ra֕fSYinium]}u\ZVYlUМgI3 Td *L6u SИ$|+K%i,KYWHEI٩|$+3K%E} am :0)-Ģ;;pC[qAb[FrAbFD -#LC|&% X>dP Zr k%SI`D੊$ `8DO @^#\Ħaղ:K5?|w|iݍX}6_~.7/WLƋd'mf`nrz6>,,L%<*Y$WY+, Ɗ܊e¼꼒rKPX^VeyiF)ڢQJjs99\R:?Q,(4kSHLJ!'& =]*SȑZm0;jPPB"YGE7}дv)dh`Wt[) &&8Pa2^Wǡsy|.-P4 95BLHi(a"~ABH_JcY@E"!]:7;E1Xt VĆB=x慿CxP{w~}o߻.?=uqa>푣 B`#t!bCN$E[xf"=#])0x"kk3} FhثoIps4F'5u۴o36!:;)`0ܼO'&vċ;rậ-]z㝂n\˝'ZNO#̾w?wnϞm_غ>X^S^Y[VT}Pa*,*4[-k|޽ݷkV0krEI-JR$IpJB"\*/t%UyR!7X_ZZ^n)+2WXr [ZZ T.)R[,KÒRUAaiUeUeu(הk+6 F}N^Aa~Ze4$ǥRS%JhLOf\4>]g0L-L'%)bor"U*=t~<3pݑE :j-&,{ \ 4bW0:t"}b}9q,-#B4&bRI0DSgt/n# f i3l u\.4a΂EEĩo` 6i_^gψ}?Mc7oܸ{kW`A\tj"1IC0X0h۱mV}#=}0eQRQUKГi6_$o{{t-т@l[ۈD9%ðk r !jv@< nC^okd- ޞ?u铽OsWUMO?{=_`k?oݽw>hY$u49>RVj)|O>|]oݷ{vnۼeӦZm.5y"-"sdTFjHفHvqMmA"UUTk*9 KJJJWL5K4e&b)/UnW tjcA ߠØWdIiJz$[Ki$GTeRj%;ȣŹ\V!W)eMxLsѺ05󅽎хYHG~ ! ?b'ci\$JaBgx\XbA_t6brg@_B^8f@+hO^8As39Б%a&#:s9fg&'{vbblb cc#Ю;C ;?ڇp&쵟| Ν3gNF={Pأ դ{ڰMJL-Zȉ6AFxT AdqS. +qo cֲDaa)ׁ]Do'<mF׏8qiHcG:zş|MQ==M?~-X:KQ9S$1/)Q$%rIqmqCc7m؋}|g7۰yukbJmv8Yġ%NjIIPDHS<%Sij 撆jKYeuEyIiIqQ1RK\^d$1U[j4.)/*..-5rF.]˒fhyyH"e+KWh2E24K&&) 69;,H$de*^L1b?A;E O.uzrjZ'g]W'{~D%D*'LJ2L^D^tƠh_CC]rIHfU V0<-.C`Bv, fAT 9a۝偅1cq:;;3395>95=ȅp)_oxkT^x>!6?uW~Ɗ07SĆG O -]nW4yт7h[8?m?lшmN諅}iڢdRbf1ű^/Dtq.+?'ĎgdK /|ёy\~<+-hxX+H ONNs0% #dʥ2 ut*4=PfP>a:b,[ܫus!%4oͻ0urJasG]Z: b3l F/iq48V &v_3Bϗ\Dy">bx @<\- BDn,H;Sg a?O2*i m%-f D-eC Jlx!=j2D]--}w<6  my7 v`ԟ!`?~H{uF-^CbS'uZ #`t-Fɩy;t/}]! p [O=To:f9\Fsq9<6 .EG !#ƈSޅ(Agn'uܫ |\Dchś<޹_ƊƠCX;<{)R^O%x6mb#v)ڟ~<}H{ٱ=4h>B]I$;p,77GO.ڰ} DtP'OE̙s/_<7߾=@}es=I>~8 ؛*݈ٟ`О<~8{Ep )^7љx,Clwwĸx [8EDh& U"> ƃ Zi< Zͷ8xDbLgliiWLN@E;Dtt y^#<\ۏ=vS''~p;_~O+VWol[g?U裕+,*eZkMSe4:Oڳswoۼul^ S$#U*/5e#V(%U-kuҪ*KRkkluᶤ\h6UVTVW jBrrLyF ӸtzyfBZ=MO% 38xQ#ǥH5ehJvR2U)Wj4*YfvBs'g))q~LȮmytn'.ޖ%U]CT*yd39 < `0a,J8L:z cC^)nÃ" d;ݐxe/Zn[@GvVf<Fgy o u al+v>n NKl<ڋG&8Ƈ۸{ 7tYtwH"6@*@&|=<{Pz;Y/јF$a4#0 _܁}W¤ݞn -N>LH(fŠ=zɓǏ;+oܺsn,To56>OV.o,\W/5dURdO<,.wTܕ I]*mmlOh 1BR_1;3aw.񤪒S{sJKK p,w҅%%E9Y99az ]$82L1u_& Jyv"ve}Rv?{i_R&F(f!"+vG1' "; Ȼ< -?~䅪D}ޭZ8$?(?5%9!nVԜnqi9Y)E/-),)J̋5'ޅ/iv,؃`=vA&ƍ>fjDx،)gDL8a´y ##O93 w Ǝ5z# AA~^>ށA~>";sW6Rg߀@o >Oszbx *.>#07kH$J/thnִw({.ͫ.eo7`NGU'HiVcXl.e5a8)W&g4X Q꫑'0X@Y2HXif(.^U-+-Iq$pSf*ΎvXm-q={1˽޹<`zCCCS&y5666466]t@Uϒf\h!dB[^))̹*'p?UlBmuDGDƟf1JuuVjj` j~v (*l2~LMdf m8l5Lnw"DDChBJ s55OHzޭ.ZP\T OKIKLJI9ra (0 yaAAaҒ3fKHJ r ep"3_b=OJ9xLRx`q'FΚ='|ȄY3fDD͊6mIƎ7vL(ȡC Կ_ "zyy{{{zx{^޾^N|.S|:K-x%$2~}a:[|g}ӷ?zꕦCGV(jlGkouX`Dolp.4it"ZY`Ԫ3y\l0g `"^:- (u^ÐJu*wtF n4th{ZFKB5YZWUbϰ!!asL] fuW`Ūjnk˿%`2mxF֒ZѦ¼"HBjI,lK8@$ E~8/]/^ {ۏ[]/-KIϞ>iv'91|܄LyNvvN^~.eG52z1\mI'O; 4,0Z/Ooww/wO`_/?߉gẈh #+Aԫ;zzNک?tܿ4O}:*M@>Wm^.]֢T*T*%.5&zj3Ί8`*,'ef2h{Xci2Ւ3j10.Jk5zRT-G&~D4d$OE^1|y @ax֭7Cڵ8p .TW^p3N8Q2;l4mc@j=z)=th϶T-7%*Վ![BFfjmqT.&f-m[J 8kD -P3 #FU7n! x8s7u|G;w^"yR}'N?Uu7nܺ}.*߿<_vYo/󋊋p (391!.jvTd9$f,//rވ}CΝ5Qd1<@G{? #|G<1<|r(x8+[:U:Rw*UOjYl~uؗJFTRj̣ ̀&0ҝLɴ08hk0uڞnJ7a7++Ȱd$Z̔jTHteЫ!((QFm{݆h=}2w1 '®7S /^N{?F F~'OĂ\@[M ˁCʏKHP7;A~>.R{'7WwWw/@IooOWwg{'ä344bt:Ja"W'* :˞oyq x!}||}]]jC̤*ujI @ Z۫Pt+ ŴZVcԑ*nZI@΁fvѓXpљ8e5[ zmoggOZk$m2&faxaZba}!x}* 0\E<(H+R] O>zHI£իi%X} pZ~S'qV XN=xHm$'{mu xn+0b@kQEv 9Drʷ;hxFED_L *B^[5$"b}7B4`>3&=rDEꆦo{u+.V_oqΝ_Eޭεbի\گ ZxA 1榦ϋ;7&66>!.-#;'+;'@^PPT\Z_X_PX J>\ѿ1ޭ{̿ψ!^ 8ؤȸԘ'MjB43i'O0nLXC7I A dUVk jѹ,C&eN4N`뻽E|>!A"]@pNWo.2[Y`tL1LgĪq/j0?߄KByh{82>~tT훰n47+Ha/]zRZB{4pk0F#dJ|-ƀ@ 6fP%Y$@C6NƾP)Nk7*QCĉk3)J۰fߥABÜttRج$]@h8QqRs?6K/T^ky.{hEײ/WX>/o\~k2,ZX9Q sgMJJNKIɑggI8![c'N?nۀ3&NNL6u Yii)q11QX;322"lɓkG}x{º8{:y9:99\\}vn2'MEm*;-& K$s 1ޝܧTzRR\UeKϞut(8b (ZR`$hfYKK ư2I ^Erub3QB`sY4RBa`bp.@]v@&}h饼:dt+*]O>~_ h>\tˀW^ȋ1O&2b!`9D^p!$9e@pVٵ;m3[*ՉD!ony#RNvR%7oZ +?#~MT`իWqw6R#^qsW1Bzs}]u; ^V}bշYl_Y?ޮ'k>re͍N771>>>11)-##''O%EEEEp}'Ln^F;nЀb̑w 536/m^rrbRRbBTڄy1gϞ93<",lɓ'OOh(Y &SioyTifsD^lmBk1k{n: \֗.bzZn壎uۋ-zU=FBo jpFVgVzZb! ыh"u_4U| H˶jj^K& G1It+N!qČLRRNgYf2F̼kЪ0Vq'2wpJF3I-9`B->p@,ڳΜ;GCZ^~h-СÈEvS\}N/em[m91ϋ2s-TJ:jK߾&^-@wJ 3?چqD5nI =o"BRRk&nVj>3g.64# 7n4T_\W׀@{f.nW._f ?Nي+ k 7l\`RĸyqisRMJNIy~aQaA~4 ?,xؤ{6hV%6cqbH/62|\TfF^FzFffVfVVVvvNVFzzzZjrb訨pSq~lQ#F ?$0(?E&srswwup`%|Dbl Dlo'EBGca,d* ӛ<ެM.ikmt1-m]ݽ RaBil1rXФ7^ bhP7%dVH-Vc\8݂ |`hJZZ0F#*LpJd\&4bj.Ƒ=\ ;{zZ_a y iI8+E8 ;%$2[T.v` 󪼀iD:8wn2 U|)д&3]cdE";Vә\ƪa|ڦfH<ܝze-b5nSLsi󧳬n|l7Yۻ=e[iaGՠc VegOJ} F ɠV˷®^6ꩢE (`!c,OXGگ6_?lD" /-?40U^3%)>>5%x),(,EE$Όowt'N37lР1vcg'dgFLMIMIIJH53"2HGBzZ^oj!: j.ښ Ν=uԙӰ:yĩS'N)x:)L<$TB[RM3 bX*HfFEJgvSq5TM-H+1 Rlزsέ?ǟ<&瀳g,/%e i1 |rOP{;s}q `Wk677^.n3E}'}_/_*D_oۍ7ݺvM "f椥&KLNϕ @|/(^XR/ωs@oG wЄS#cb̌4qiEYٙ@hsr BJJ*JbX,2"<<|ƌр:bؐ 8pЀ>>827g;2;ä"D-UJmd(mOu=\vus♰l&3m@r;zCGN:WStoxp7֍7^oqw@/.^ǟ|Wzźo7]?vwx*..̗dffd&fdx _] %%ژ:s/ EVAZC(f2=bNLysf͊MȒ͆b]vlE6=5%91a^LDڈaaS&:zT#F 4p?_X^4+K"pjnf V+[^^+tLNw٫՛ŶjGaȌt# `נS);1!vqK㇏?Gwܼ|p73T.- :w!?{9ZPD  D6{':`%I RKa{۱Jy Ֆj{ Pdm;ISܴρT-Q-6<^T8%Wl'zzCnG+N]|ݿ ]}֥Knb{(]Pu֭ckѢ%eK[%}{e>r^fW@iׯu7~X } E  ..[tAizҼ<S%O6i\}9z# {^Vc%&$&$%'''f ^]V&1 $%FDϊ >}I'?aQǎ:|@___/o7Wg{Y:I5yFWף(Z4Pnkiט=v<JAl/yKd2-lO(h D,<>GȴeΎNդՈ$f]Wnstq äᛍ-jhTZ 1Қ@ [k0x+"6KY,@p+@ 58V}N YHս= Ex0K_<&[FKZ-rzj8 ê* ={,"Eي ~IGp[8jG@-8em Plv+ [A@= YnCkl$wVBb V&M'nn%Ed6oJ"la^;kXLv8\~4ڛw~h̢]G…,fVx;豪_-+[p~qa>_~QI)+\XVރ|<\:v/Qqժn6[i:z?z(26tdxMHHKKJ/C: h.֑x9sDϚ1cF)&N7aڤSP>hm@oo/w/w#rU* fliR=͢;^2J'TF峗uY A\(9::옰qg4jDWtUW5u QL LU{tLJ%- 8V\jگ,_r_YọoEXtEœ촌L" 8sf' ,R58gA3 |5%955%33=`I'B} b̙=kٳ)S'?v!>n\ev ٠8:63.v2^Ya0|mrm-vtuwpL6ϑ E"@qiB GTm3i.lkA1t+PZ60j\ASVϨS`4D2 \ 4& >b#sR \L:RWRj)]u Qu`Z݅ao_?ѣGB$676^: P|\L<^XKM-&a)*ǰcGB:*'eBA0(-I@S98@Ȅ.XLڽ0bC؎R^RoY2A3Xθe* [*`(-aۨ1 ; kwݻckDGyٚ曷Z嗫w.֢]_O<}Ϛ_H\wKo}GIx ₜ,-`颲%|-ww˖n+VXꫯׯ nnw"Ծ{KìW(=%S^[ //rSfM9zLDYdzf"g^gF:'.:5)!16%5~.\8~II邒\@ڔ$yQѳgŹ܈)gDbהIƎ~2W7{!l|:d,1NJ:MVΞn#KzqWwu[tvOsvvpqacpK+ &&_ xFƶ^,Ueah&OgXtbTȣZddI$|΂r`eb[Ơ&N5舥LS6@g4꜌ $L&u*FjuZRi+E'/>ăCuD C}r"^ ،ɴx4v<;ud*ǰW Q& D=凱 %C]egN.PԔTt8x8K|;H96n"p m6 `N:m0PL]QqrS_  { jjje2T׏_6:) }ŋ/]ù ݹyZíi}5VQA\pq{e-]>O>^˖-_˕+V~foa÷}/*Bl^^Aq^ƼRua lsٙL#3dZ*%pCeC#Μ7/==%1153 t^V\7\QNvN~qBynV:Rysb̉=;j̈&GDGFΘ: j{: `_"V9|@*2=6Q*X&6lUm|LX:US}uq yR+z `@FatnQ s8c wndC\A 32SS32Rs痽W 7Q/ɕ!&JN3{ؘٳfXؔ)SƏ3|8;I% ۽Eb1 DBegLA&4wt|HnJй\:fyKZP(u <:',c 77c"9ھFoma޻2bA`kvy[(SH3. #ƷQa ۉJribڴlݎn]h!51hűc'aޯo TO-<\#WcagO?}Z=`-j+W9ҕd\[]SUUXtW+ 0bW_Y5Zٵk1,yQlfz|RDlV &*'Ϙ1cFLشىscg̎:؃#`jǢ fYl'p ;71=3'9#-hmFZjF?Zh…p!Sefg$`WLLtL\t̰Sa[ĩcqw`'8:99;ub R@G.s綿2ZiN[1w+-/*,ޮX$ hD(؋zT $gLzI1*,R e䴌p<# ?f!>MH:@f61oĹIiy%)b3 ?ŋ/\t>d9tbgGF͜6vX cCCFG3nq3F;8H"/8p g w7W'{{ޞNK4sT=>zu+@N9!^|I'3:Qi/,Fj4JeOoO7lgv{>'x vbnݺ|JHn}N146c[c=_@vhHl/\&K,l*0[H h8cb v?*qv\c5@Gi}Tpm>)qn&ג[CLRIL>m ưֈ=Fʏ8jAE-ơOlKM'*_~}@m g*dVW\Wwbm+Ң">yU]U5kΝ9WY}ZCobmKѤn\">qG!pL.)*.\,~eK?+WXok֭_ vO>pI<'7~<3un|f^A~AQi ᶀ|fe <)tD䜡2lpHа٣, 7d?Y 9ŒԤly~|%%%rtegf֦&%%%FϜ5#:nδ؉gL222?lt#`_/p`__WC/M anhѨ/_=uKv4݁cmplƧ D<-nWhRY|ggWW77w'{;G{{n2q}\_Xu9 ,@Kc292g'g'ˋ%@pUc"'"X #AXL)|(` Kۋ9^ݝ]UW/?~'>xp:Cc֦ùom(jsgЀTjOJ1<;qlp -0;I!5*F`؂X ZTD,N9Uq3 .DŒ82` Z*k۟H7#9"i$Ch +޿od/59}Gjo;>G0˔iʳg_8{)<)ѣ~}71q hP$Y0Cc1E=R|TS nrl@&Id֝P`?BLѮ{-9g*5u %`/;P(c"C}S0/pъgb__[u J&4l#%*_e_@;8=@TKj/[kjkV!/+k55u#`/qra%Q<'?*́wYi rss J,]hQ_|+Z՚VYjͺuk׭v[O}PSX,/),(*2N3{vffJfN^FbFlAbS0uFayEhC7.׌̬Wa\0YgVD Fya9P[0Ы8#–ܸN&`dv|xW]Pu6{ܐ\.ۿqv唪nY|Civ]6E@b$>`LqL[n Ғ6`FxF^´"& &iO>_y嫗.'1$I%jjVMg3)DYʀ&Zӵ*2|Aw.@gzH44X_(Ȱ5 ^ n*Μ;}'*uF؄W4nVAa<0?'W/X%K-\K?wWZ+L@X5׬h+}G ӳS⦎;sTTj-(gggfKMNȐgdS }"V13)9%W^P4I9(R8++3=5969>vvش '4lƴ"'?tPߐE o@C§N2xTQ1d@@@_O7Dh/4xgW{l6`Blm}U+ ?O;v=8n2y|W1|i0FMon  i7{I^R3nv|o+9? L` g3ϞBxCzՈyH.I'O9=Bxm-|:*(F[TEj5WoܰYZIQ4bPoS]% ȟOW=~4<|.t~'=߭X쬼’E d˖,^T:qYǟ}gj5`Wߪn/>yaNVA~~FLTZZtDt198mNzJ\͞1-brtbVȈi}\\\:+iU2u^tbK,,-Y0$:an|d仅QKjws06-y^FJ|ܸ#' 3|dƍ:`Đ!~A :ph+Ή3vCSȡ]eBcUwtj=^D*j/[__wutvE>Ύ"PFSիquVˢe^v8"b)e1hViRFSI%.vm/ut2bLgx<"XR BphDLelZLbщ:l f V*zJޞNRr'<{{޿w6,`9lh"cMH`- ^ cgHS+DTM#X;I-= Qv)Tc$ gڋ-Ӟ8cPs;)E'PBI]BfɄ&H\bמ>'N@ q'6*m~U%W >@zU?"ypw bB#U+oͥxqfk"xja%c . mB_'"QblGc{K+p%K.]pE K1X&''9nVČ㇅%fˑȑsSSҳKJ:r>} 4(;((7pq##g͍9kƄq}a.pw08I$K uOgw/dt^uv<{ڥҫ;TF3]fڮ18Bֻ=WXZ&fZ^PԷl5 $Nkf&̥Ybw=t"XXt+K=}}{x9:KD|e3I 9{of33-332lY̌Lc'NĘt9?Y,3ȒLU*~߯?cɑT%Oo׻G'_e ;4m c6vcfYGBPځ!(9WGG[CC TUzYra:`㧥˰^,[ofaX l/_pu+.@YyB(woZD,8 .P /lgNJͺdQ`cPeP N^Obͩs/\5/^BP;zL0g;z?YhY`k!|Ss "7ܸs8B?()x6RtJ݆kH[Ɂ\nN6j8+]@.7tpl`ߜ+WRZrb\BLDDl|r\Bbz;'Y݇?g_~Wzѧ}vۿ{ߞwD$ZܤKVqӛMfS'̞ѹL;W$dfvgd$%&&Eoݴi0@ڔI0Kn ݹvɬӧϞ={d4z`<|]dƭ!6]r‰&\&kU:,c>&AK:ewei4)R7b7/12{o_]ճq=Hy~m^ؤa,>DѪ H8<&r`Rab6cry rhtwf2Fgqt6MrX6CZ(a1 |`氏:a;gGǠHl,֐נTd= <+^ʨ#7)2W 4 a!/%S"r5ʥMG_Q)_3,Bi~x Ej1܅K@lڋr/8x\C0?3@_qFz\q9P _DN0"E-4B f_PR07/EFg;]`[Q{Ad@l%>׎#iT$|]{.fLkW/aK.` c㒒qj߾>$Pǟ~_|Gt*~xws譬䬬-)ܼ ijzق%*CaN ["RR3U`={ݛNi!m&hWPhXtrR() ֮_793/CV ` kⴥmvUQU\.*To#T*>O$rr|GOGs}cmKHWgS[{S;P[πm0jdBk`OИ\ml-|1%{GzNu|FgtػLJTē 6[2ʜ"RQO,H*#f4hTrH&/!-`vy_4:%D:M `04&c>廐cTeh`phxhp8m-eee^:/KJ?}`U](%6WAE]bX(ms0y}_~Ǐ;q_mÏ>|/C's{3cc׭"4mKV-Y|*(VuQ#g u 3,Љ%&K60ƚx 6بTrHOdžݴXBjUu-a6h1ܧΞ;}WO6s/F'e8,S$Mnvw3hjFDfi*Gg =7G:ZkmIn38l N9o*e ,Fs,3GF .PΤ%@X woHe8)/KJF &ɠi2T*Jf6Y,qҡmC.$c-T ɉX&fc9 mh`\NZa*ʒ2ݗx D!Űu޽_jr].p4ݸqyEW_a>tx^¾\O odlor Q3ԉ)W.aH#8$I4?a(]/3?SfPq5v:*A.^Lr󨓫BJY-BJ*ͣaC`rlS?QBZ1H>8wn{y)FRP p&FP,oiKL"7|oo_"##69) X޳posO>Cj_| ck??~{:԰HDɑ1vڴb& NC%vY"k<7QWȜ\R4vYy.kg7aijnM6J94Zw_{KWɶ:[l|X<muq+tYlR)=̞>jL粹,]oh|J)yЊRRTk*P[NRdR/8X|I^Ć|ZQ&]' :du3Е %1t醴ֶ֦ʊʊ jbeyy ȧSAxcrܾKܤbg t$Z'S3.AG]t54т 5@m- WO@@OAë́KgQƋ7 R%] ?t-9aP*;5;;77.u4uXP?ja15 s)S@ZiFlM| Ç%86q&ܽuoŷ,fH0ξ^PGٝsKf[a1II)IfS O}~ -@1kP{dߟ+8!==11%!696hgxŋ.=u 7Vfy',[9o7._raeϜ=w*Ј؄$yh I999 RScccb!!"4844h׺E+&%lYJ3Fƹ2luZ6]#gMF6`i4D=uwO9[&Ep]]eekoS,2κƮatpvutwq9@>(BmwGQƘvP!Wj@כܨ[aPsjA+H*'RZZT*r1`Z尘L1 p&B cB I1T %qmsS$'[{{;1^MM0X[[ % spqأ`L{}J lw]ӹE9Fd8p* R\?.)Y$-1fF&@,xz^qb#$& .y.?5n{940&=8.+*+W[u@"h;"<~j4Sz:e0FJ@'Y|a~.ʋ aoe:[zQj ܄ol0>zFn{m5͜2~7뷯ȨJK'0c^ǟYKBj򫯏B{د#CBiJݗiIIIQ1 qaWLVzYtԕ͞5[mbz͞~[Ο7 ;"vGE  An`A&ᡁMP\ kkcx2Mdf Lfr$*0uԉS=2DPGkWHkeu?cP^H{kk}c[kcsKKLG0kl`pl"`ƖH5ZXch1p{oCetXm6p6_it&^e`pwzR/yuA52\LJ\&W4ZZ#r ZHL\ f1%b cyB! j@eA"24(g;0`p:248? ùX_[][[[WX[UUUuUY!$XHxp>xoނ"kQtKaq`NzT g))(6=zGϻ /^c PmRZ,!?Q:}a 43ВzOϝp*R_X]A%$'&%$4.oӮ&Yvs|m\7ktS}ge\dڕvnm4imcƭB‚BC#qT!:2`qEbHtEK8A'kGTiN+S J>kw$bDhnn볍;=|quh}pF1Xoxo+!SHw0\Euke(F)%Uuz̦&O`bB2z" \&Ϟ>ٺ-QŌp<~52/6@r_6PM$[?P;A>c!l Tx hOa-Ҟx yLS?Suf,9uΞq;$bߺui - Ū%R+*DZ"CQ븊:U_PS-^ʰ;3#ڟ<}fT<{)(wp'D1_aaaDDF$$"ݝÇbi?'!ѣ:~߄Çwcm޼}{p'?"pg_fN5m‚-?0e7mݼu\P7}U[.^qƵkm OdDuTq 2Bvm\`֛F?ЫVAW*-4 8|OJx- 3'yyh\]f4F*D!!>j ɛK0iw 6fq EcȦ9=dcGzJR(%75Z[kkT*H+<= wFVk%HU&@>P U%_%i liyfU1yl&3LÁqBnʋ >jV;Џ1{TPJ mmE=gHA"%@7t1Bk D`I>a!%lkw>u@-X0k!sLÞ!^h__E|j7A>K%8ÂөB48 glǠ'@L d(^F :/{WaQaa1 F{wopO?(6{W0v7~>Ci)1AwED …+O9zśB7,p wW,8vkV]3Wj'.ۺlg.ZvHwny]AAA сEXmDخuZ?q&0y%Ybr0]fZ=bKl#JUӼ< (Wn9j8O3 [W[k}mOKsao68eq^4T5w t6?6l#>mw<Zfr7zOYպku D!H5>U͠uZ쥑+ VHΒ;h$VI>/BҲ|B79pfkrXl}9ls8X fq:rtpȝ#`nGk 5u64TU*{ӹ/A%ZɑCܤR^QuBogaLKPߩȮヌ XL7x=XZ~p@<6*Bl 5`-Agt{HYA׀tK0 kB ۷]:+Bw1Ca 3ZJ,j* P T"vlݧ4Y8`K(}Y; ^{VQ}A=Q3TY<( ,io^1Q1Q!!!1dd Çz/f -^ړ6w'0ILJNHع3$(6%9=nGhEۢwo\teMZ>sޜ[Yn͟;QyOn4}g[tźAYAcyllTBN4q j WB0τ)S}'X2G'ϖ˗` V-; S U4Má gAfdvt5,nzV\'Rhu[#ڪ>+rĐ&ǁa kpl\"ӔF&rAoxͤ!xI%2YMMf`&X$%Hj BQtnbPbf3,c2fKܹG?$<E) }J#о~Jf+@h.'eQ oL_슊$/6!:2<*&&>&.>b SS3RӒ3fdx|WGp,88~ĉߞ<./J K8Á蘅j7jj\U}'^nR*=N1 5& zAj-D^&qF &Tx|tGV' 0Uúilb@"y,"XGld96FHmS}mMMmSSܵ/_@KhN=~Ob<*ƨ14Æ׳/_ ` ؿR&ah 0ΐZR_p3c! {%REeP3ex<{]r-*Ŀ\ /]Y' hٯbGORn2y{ :% X)o1)2\BCvu:%rB8ntx`'0G "ʂ26*+\P,2 pBj#ܱƦښƖfU^UTT"h[ j-(t̓)OyBZT`@ (׳RZ?Pڿ~.?4ڟ)Ǩ ?>PsWFi/E!"T(łp€^EU4 ZN.vuuhȁs8vAG,r ^ Q%K@K!N\ (ÇPZ)AG>Ҋںj/15*|aV s0_ TeC 0٤KONN;=G~_%گ>z'opy}x۶ok[`LJi1Awn;m3l޲nYs4y^MWZfࠀ[6_zF;nٲ= ".1 ߿=R mt̮ ܱj+Νf<;Sf,Xh: ٍ3pљl>Sqr-f E\b.ny)ZS.whOS(N`SGR2t [Y6CV7-l%*`{٨ OOi&8n zT" Xj<IdJB4J1v2ƒALcƲ l[A[L)ɠɌFw!sb.:P[[zԭ|UYYcdH=}O}&UP\䂚_1.07 3 (- Na+ zlNSݮ3JpXX bDTQY2ҥ^/ؠe:QVOFb -dB N5 :CAԽNA->pav!C, %~a/**_sPlgCիolIFĐ}BrrrjRLBBZFZzVۿ}}BW_}Eގ=r8=Qo؝sghh\b\HpHLF8''o_| &ߴ+8p~[V\oU~;vE߶e㺍[vlXf[HxLbJƞ}fR{7\dB{㞌cbb"oݾuI>Z`" /^8sDOȢ!Cd)Tn$SB6e( QhstTF[_<+]Q68Zc5<.AXhں4Šl,)!z# Bk:J>wFvK*Gn2 iT*Z\Pi5nR! B% -q Q9@PL8X,PrH[B)ɠ+Be2 C8GCnm"@X_WWX1啕T"=T<~|eB*@Nv|Ĕb NyU vRZh:@'+ S4tF4Kg3.a)y32х:˔1<0UZ`6(VW~\:j޿Wr6y,`1Os EyN(ΐ@Cnys`9xƾɥ38 +G"m7А_˯^!?=^ϭ7fFQ}d||LX8׸DBb22ҒS3g}Bc_#.s'~ ҾvhFr\ZJDtԮё;%:yfe,^l`ЎU-m^}[֯YvA[20kf,hkD63+k{3RYzyѴI>Fc{̚ds&L𔩽܌z5]:eٺQ攙subب˓"&#D&VtVW{s{WCH{]]Kr:F:;Rq8<#VI(#azlBZoKb-* $_/wi}LNNWx@nhspptzL>/SUJBԨADKLiZD*DXuQlt:ht:O`V eB!J$B qL*U* cdvjcs:?lhkhnk%cأX|><=ȏhqC iׯ]t*B2Ә͍8Tp"@l/;OPPwwY%=w<n!^2.]ƃ.?l!r RYhPC-.ƸYD\0}a8PP]zl 9x=ĵBZu2U (|z t0>}dtE %VܿOXwq1<;;j0._o?"C#CB¢"bbh&&@Z(gױN?NȱOCCXtf?[(8Bn}kÐJc 5 :ֆqρWPxZ>kfjjM&.)*d *n޾^nf ֤P FIkp30Gf0zQo4 &RE/A[ rJGpW,&:nx<8|D$B.blJr4R 6!R\ąe ЇchƦ憶W55e*@,} H0Iуp~6/Z Xs"*&` A4C_B/׈03HižEh_K\ /;H}kc( r\ppvkWB!n6d]aYa_ D#Qv;x|>Υ ܃\N%PJBA9((f@QK!evsn PYϞpjedK|%$Z;ޫ)r}LXzQ6oֿhEDDFEMHH%]a1 {:O~Dأ'%`{ķߜ8퉓dg$EBLȄ䤰Ȑ]YL _pv.0oid\|TlhxLRJJLLfVFⶥ VYf]pJFF|| ii (Eh,y$fwf!75!2`ǎAYn^|V#'͙5qIa6iUjd`t|=;ٯx>?hllat04Gmi@_f=mdd 0bK]{_suddq6Nj<+oTjaK5kMhzFkp7I P*jQkZd25Z&YO8,h[2\`AU m9,6I~!V$ag9K-ҔAdQR2 ӁZ,l njiii:J/ˁSUZ ~A^Ϡpc vD-*ZRDMBkn6 Ȯ?Zq:R9X _O5g^8,%"%Pn ^x .&%b3;Aue\ ]Yܼ׉yye!Ņ @.A6̽E`,̕CZ9?kuӿ峰J>wν_k)$\fxRFA׬ppFDE''%RЇ}ןNҞZڗG۪˛_s˰`ƭ6XGe6houy|9>d0Lfi˵:DZ^*JI$If*QG.2HPuVQt3 NB>p\L@,-yZ L$)je*ZTȤ؎H|f%ctjjI. >{%0 "oPSxpTP޺Q 胥_*Q58|RfC,_xs\:40C^YJ^-H ^ˆ  })A {…$Tm"y(Xjrr(-ހ(ϥbh! XKJJ`E)4xQF֫rA%:q= Urf;2s d aCVl,b#"Cb~g/>0{]m@}p8LȊKII#(oᆲČƄȐͫb,]Sh&n1oU|+3-5s #7)oF%fdN+ti<|vJ2djB>7A#pR* ywn\2wx!}Y]QS]YZ_Qu@P򢯥ѶWUm沗w5Z6ohnt HKبZc"Xke*H e"\wjӉ;yHn09RZak&LD`<>+'fr PdrT[. Y/V\D.9ń˚ ZX*QBҒߙAU|XrGGm#cLDcoo$/rDzY caRɦwoC l$[p@-(Q;kW.cY(„790u +OjqQH8w01/P 0Aapu]lF-vna1-j&5 7 ]0YpJVD, 2Com&W߼ pA5A M_ŷBJwlūWdu~K܋ghw+mWh aE,sͿqzEDGEGGGC8KTt|R2lGIM<}ffþ"X{cJ{$\G'лIILKIJ  O5oJLwp_bxpBnIk7n]3gJqHOMO L&di3Цf HӃزzkhLJFjFVev^f~ N"RɕJ\1G!-E⦦Һ'ͽ_UtV4u[,Ra a*+;-e Nۘy:bYF,Vsиʓ)c6&Oԍ45Է 31&5A|qR9%*Pm2 4NgbXBl$ ;y7%x<B̰bH˅Bq pRT(3vesBA, pFov+Ą safQL"4izH{ղꡑڪʪJ $+ ՠ܃{u wnQIp[pfqAuKxᗰL-8KA+N"6$ +W8 xgeq4XK=Q/:3 >{ #< ,]YXlF{ @^fQN.4+"`,7 Y M r"~Ƴc4TVbPQYYU5Ϟ=۷ ~Ņwn)$Xf#~VXHpXGDFDAbjJrRR\< 4D'9pO櫣G`Bk=qfĎsoH`|DT}о‚c!̌I'5>ho)<'[#`N7{і kG%GGؾ304<84,:%%5%Sa 7 -ɱ Qq-^dxœf{V˥IRΚ=u OFep 6`dbRPr f0d珵3:+hU5uM5uu #&}ߘnጔݻncEYieYu}S[ϫꖺa63ls:lC1kOi@_d z=`WKc\q3uBBfKC{؈ذ蘸{xw;/+3-)!9!~څ,_4a4GzK._5":66| ۷n۹}怠R\,:0|Ͳ[vlZxڀ{\U|A/ -?[)iV{6i4RY6oY>l9^t qF8a?51ǚ~^qP_[ueu sEؘeakihz wgt4C+حvNs$9Fc:*Ac kHAcL6`6u:P$X*@ ,bl.G$@?9 b*5rŰ9<dD*4:VjVkY0^#VVb iNeЪ`V"7U N.!P3wG>{ν{phvP7 rs`ʎ).a8e -ұaO^x񪲺\[z(-}M=O+]ޝHÃcnA|@ǟ߬߼vl>g_v)'N>{o9~{7f8{ڝmc@fl, ۰|ݲ<})i3.]+" Iwp)8CJŪR ~ =AUkPsQx4 P8' b? "Qx0{pE, /] uTD. e]6)-ޤ2 ~qѢfe uWc @lɆ`)Y(zG%w }oݽ}ν1\k^yd?7 39o(~fa({$2e_?GެB#S"Cc"¢"#SS*&59!&18i /s6-4ڜ$@dz+<&*1%e={RgݝIxϜd0R4y"-6"8p֬i֬])<,:-}{ϛ7kesfy/=gW*/JWɞY W… MtmTּd q=( dC FjOq0qFVY;Rw[]^;ԳFi*n;&տx901q whF-h_ekCШ@6zRH):biILYSԨ4֚kp“5ABVor3g62B:9,E" M8-_*UxE\XTzJ# ٝ56:br% UJFpww#iuZF)EB鴏AظNSMl㴾榦چnVg@{b*f`?)MUrPlp@0IԆ *N^v1P`< cb8`IW@x!L=<*^~ a \C*l [7n~bWRK-A]s@ gds]ϊe(N~K=Fll'̶azA[= xڃK%וWr,82""21 kbRjZ:AȘب}g8ѧ}NϿqPa˸ul2fnUZ}^ɴ:F"IJLJ,kkH^_&S˥ֶ.b{RF1zu&Q5uH& ]fl'c^(./)JNKxV&Jeb9lcbxbRhqRr7܍:ޤ 8l+`2FGFi,d`nokinmkkF[ ĪW/n# ?().wK n].d,Q8hx,@-Ru5Wshh@鰀P 0v5$fsg]{{iY\J6@UGyȀ?qRaxo8d%SsT 8aTEpz ̆=+mhlnjnilh#@[7/~(/ ו{郲kr!ZAOJul7%];"Yuڶk׎)a!qQ1QhwNKKNOHK$'} Bѣ'7Ȼo?S>vV֞䄄ȰB@mr|R䴔mkϝl]6ӠWBH4^ivoٲeV?;V[8nLKJuk{yΛ=aZ=eBm)*Ü̟7ZF~ma'}/s#Bu~x"߾W=ՍMuFZKM:PYYSf`z(tᦊW5-H_W-ã#CCvuh237&Q=<܍ZmT:ꚝ>.B1g` 74n|h{TgͰCdFci!C㛟<4:==?~3운+oe8Ls{}ĴꚚ6O:'&3? ۪kUI E8(qL-j鞢T>c|q~j#hcR 8<.I1t6 I#}$C| _VJdRL,s(34cwQ rxw UZ]N*A$~"?aQɤx\}659640m흝mmXyڊ.55qbpCHwĵG@ w<|pk1%6U))&h{Յ6٬"B }鯿;oxuoY~Nܜ[wٳ TY;w0iI馤 Ar>(%銵IYyY֭\vGFCW (M[q4/ߗ+%|6v!($TH<6&lܨ Ps~m2"t.+ v vT݉HD왬}рDË/ǹS/웙jjmSsqLO=ǨJQQKΕ)}9t2yF{紇ɳ"}T޿#o?| OG[Dʬu6bVD]*@sw==e{Xu` %Zhs N݆X[((B~^HeDkC8nKlo\Ӿ4;~jf˰jf/+uL K\nM-~a+h;So@继mwWw_Q@}o)x%ؚs?W(^Ы#r#q*<;^uBՙ?/{GFzFNNF)9-jraFaVVn^~AQqAƊ-%%[m\ke{}>8'ç㧟"R9BYH𯎜8~ߜ<ͩ'Ϡ=ow֢܂"; Nioߎ8ӔaCZlźTD3MiI)V\0~aذyQɋ,Ơ d:Cf|FN&r T˄A: qG]lLx6}^A:ƝS g&FQBJwZ-6go+7whrMi~r9fM) ёIIT/sn4̣HL{Hݽ.J_$XBq/3i>W$K*!*X"2GUI`@+`2<.aid 6fhɕ*RթT>!- $*%]v<92݃60bu/^5467ī|@xz7^ݿpZHxD]aGnBz7)لQ׳X@K#r<{K 0;늈ݽ ( j窰.VcWٚ\߆k7S@Z^'ZeM -B :0gu1\C8}hg; J;gz-@K`J5~3pj,G 9/ԃ Ϟ9YBSjܒLHm,*.-(+-/۶}ھmzw}~?=:O _>|С/=C#2 "((XFvZm/>uy訝!H 4/L't 5R'ǩq }J<^7W=Fzr!exxIL$SCMqpcf: R.KgR1=n2tЗ;??js2>+枦ɘƮ39<9<<3>>~y?4􌌒>B\-<_'dJ،!Vd\%ITHug$ZDRXe|.ÇäR)L*ƒ0.VȤRR F6z^m !S+qX En1 aj5<AӧO_ 6;XV½ <+soSww,#.]M%]_ ?;έaD慡mx3LL.(ڸ(/+u)' 3''+oӦMe^L_}~'Hg_gG:_Ǐ<}cGU}uwim۶Tn)޼ ;vڱe3{~훋&DcCbUkAQ.X.1Ŕ^jK_l~\5!asB4 EhT !Kl7fRmn/G$ ,yHgEsd}7Lsww4 :콍)Nmw8 M-/_l젌t5wYr?j9fmbMZTJc%8~|?JŝfOy9W̘:&H6:bsڦsp=nvX!爇IzZۚ::T=gjH(a\?O@!O-WZO+ p  y &0XiKg2l:8|X$jѨuzCQ)w0p֗aѼ Q\sڵښZB j)tb-JGqY{DS i"l0Bw5ٟpTFc,-/`R]eaW'Ů߼}=.&R`~ׯdmͥ׮_!\+*\q@ W-h= YmljmA@?︞ֶN/ߋhܿH7c?nsΜ9wE"ÏU-ol_\zy諠[XP+29Yt}nVהb&xSƦgd-xVV)7-++-i)Ô]XQmGŎ=ٽg{ソLg;:rAӧO;vqO|Y;*+7o)(,+,۲}-=oٔ`墘pcA@6肃B%,X`9+W%̝3OXmXJdZW(VRc LS FY$py=,1*.>>2:"844PǤO'S6\_#p}f&G&Ƀ<zz{G;^hjw٧;Y桮 2mO6>L}|옚Nl3=ƝPS@j}E?tL&JqGCccC097ؚGKэO#EkVggp<}|g_Qڏi!lk18P{Uq^l58 p/QB h]ĕ*ƒ ?&1y(N ` uTܫByo8ޝoXF+w3zP{:\Ex]'}9~Nq DՃWpcY@X` ##i[`|ׁy{OJ\}ҕsr)x]U8Dr/]z HϞ慆R7/]]]a5IIIh+WP5=3'?75';+/7+73;Ӕ&5-ÄhJ_>=33۔j2eTeVnymG宽}u7y}?=3򃃘~gq#kAu:u'O➝+rS32rQR0%`cGe)m91!aAhwE Fc`Hl -YtQDl9s͉R.C?P}*Vo(â*9ZK X *mN{d C3'~^xxdplLQ ԸxzP^⃅zT` -D NuBgrrN;[;]S}C^{ˑQ}pfzۺA<ힶX6mj;T>c2:}<͢xN91>0`pE;6{%zap<` |bĠ=)_l$"?\ ZN`*bK!q*^GFW(rP@В< &`py\=U*TJB&BZ/d) ̴nئzm\@xb߽}g  FE==td|B p%㓋/X{WZ!JY@38O`BĒ/4 A#T]L.%\/ pbX(;7g5^GA()?euS\&ZOeB A:v Ӑnܸy,C;~N;8-5ٽtsI^j^^FJfvAA۷UVl/ʲ%+ E P J3!EFCxN sBk F''_ A\LT.T$d:MbH1s# oDDhա:!4"̗}X']N>Na0<('F']bf_{ƸQsk&&-cFѾ1`eR:{$P݀2j L4ss$dllqs|vpWs{]7EVrOA@P@!4ܨgjtr1fyJ6G iZ  OȦ0Y\Kg0}B,B"29PAV hX*U*Đ'X`XT隶MdžioÌs` ;&6 ^hW/ۧ' {lo^W7nh^M<V(P/B߅cƱ 8"=UkfGa[Di1- %bmbivم oc/@WB+6cYC8%/.1Ȱ8Ưkwq0 O=ÕF5mȄylm_{KGwC??nQKj @r! ?#U_xy., EapM…Kܐxaf6jm,/G[n~QA^v.چff3 rrLĦgde%e"mtUZjz)ݔ_Uu{wxy;'|{O/RbOp0OՂ&Ddt\EWx3=Ķ^uoC#Xh]%ڟ崄_*-2l x pDTJg<{t+yBypxA 쫋joܺwZ?b @%¥Khq".Xx.Z"5#&h Z[Z!+w`xtnoH}#J,5vyF c h8b3uvaaavbMXhkS3ssZ̖@NBIƍEŅ٦򜔴,܌,S6B<Ą rrM 27%gLɦĬSNv~QIIYŎ{o`>~?˯9r8?$,bǎ;`Ǐ;//7gKҢ2 oD0c۶’͛+*J Bp\0C >4,.aI5-Y~قyFm”Ջ#*,@*.1:Ѐ6:\S Ƣ>zn/d9 .YdeQhӰxqi3Iroq4cb<{ۙV[Cӈnu9}mC6av'{^D[9102y!Դ}LLXSvFs=t4msR 7i9VY\gNgi*MPimhtrC3? zdUZ!aAPa 3cv l_HASJ!\$d(JF-W2D*W)r65D(AQo ( U`3hM!\SC͈BC6.Bڇ>KU-1$4@y1 xOp)'4@ fG 6V*hcpEا Ξ!~Wf5T_p).tǀJȪq-ܪ>kS [PC /(u\J.Q\s#ϑW^1W-76&*p8~ <@Ęs[Wo_8ٱё6Aw>=~Bv߸sLڢ [0}9`zp~M{M;wx?7'..666 /Yx) 6o,)++--+/+++/(/-+NAl2ea5egff! l/NF7IJOIOIHM*T1rkx7{`9rQ}q?qءVO?yIto%Ҿ7nF|sq^Y鶝hWm(/۔ $$ mGj&_|d2mlT\ⵉi)Ek֮Zp^T༥kV/L\V %ľbZɌa|e\ 7BgR L%mBC܅˖G'E+قEK.Y872r~94"5HRDx4 Ns${q3<10p'GG3Cdyݗ6<3b{,.6iذ6=1fOOONȈT4=mxF̓34㙙z)d2Ňx,66c;&;1IP=DP=7UsԐBHڈȈN ͖ n0^V+5jT, ЊQ yB-dR?\JH1`NX@PTTdASs^9}EB -L$/CW!޿'/^T/?khnmkmDN|` j O<|pٶ naJ CWϝ%PA2 g|OL93^tkGO&Dr,MYUHzFښ+8B~ YؾWbH۽o`^:2:~a <"ǭ7F BWz ~/^՗k.W0&.ZhsE.ǂ/NHXtd">0 s 2Mi22S72MٙP-*(H_)zei馜M켍e[*n|>^xO?C_~(_? "{W';zcǰ;-Ǐ>o/mok;wn)))*ߴpn,-\^Z0?'g݊EBj&bNdXV :)ؔoZx预 O[@9wN\)1earU/W |ACr33,P*<&C _(2066&:z^|k7oXlp) Ɛ`!*S(34 =B3cw6=}c3\P݋i؝iа2f<^C&v븋LIIPs"ȝvXneu.2饱TŒIЦK<]  5Ն9S S(*|& X}`a+Fd^ZZB`7!j#b Ƹ uz^t*ϦSLNrOMY`,cDDd-Z?{ 3eu8}<@K7cx몪EB%~^!B93+< |/ q!ks 1$u #r O<Į^ 3juIz j1bo%ʵi [w`L^px1dA=L+yLKcSC[Wwo1ډ!ǯa }>w6I\Ԑ ժN A(KX=KU0~-[teK#rŊW.[z++_Ypקggm,-rKy>trRME7$LiL (5$mL*T ̬]^QZ4#;vӎW_7z}ۿ>—@i&~洇<8_>~0Ӣ[ N{׿Dڏ>yܻgRDknQ t۷o݊֊⼼%K6 ֺ~XâZ^uJ"cݰambVAƊe׮Yl1! mĜ%Xjzhq([!iB0Et>llA!خ82!.D6BC#i129>LgH) J2$&Lz1+DryV35$,"4Ơ"W- @1<&*4P .A'Scc#g0=yeCf nihl:jq:<t Fwa╰}c"t@ Ug @:nB.< f'N/cyjB*c6=Ü'ʵ+ih ;@ };+XG@DD$7Uym L^7!WM@nPoR[;ZZښzzhO |ݽ}.~ ]p:ZX)5U0o? K.^tr_Yzk׭߰!)i5bKV[g)3xsEm[}۶mE9&SNjbʺM)ii)))t-}rUUVW *+J6mݘr-[`{>iN9x}% G1Ӟc'0~_{-oٺtiB 7pʸ ū. 2+}jcȲkצ[|WmX$>t^tThīC"1DciyшX~rJq 5\i J 6<&"<@o 0g<\eDylBa 9*!"XŸ`Y6мV7fxܮi5Cw<3ooi4=qL٧ÓSc.hujJg1.ҌvhTX*FeX4d<:`ST״鵑d:1bs8,RjtD*|ߠ oА4AʕRJ'2JҪ~@ Ph`CUE!by11sD52?>a9$D#m|^ valkGggWwW{O!^\a ݮA s A kŋYxhEAWZAϞ;spT 栺gϘ+x;ޅsڱY2[eseo,$!ث@]vF%H..0Lp3g."1.c ?| hqWK$uNXкc}=]iwx3}._rHҙò69\Fz96PY@'?oiX+\jUkS-MKMIM^|钕k7$'gdoZm;v[pUh1/#?'=;/-1є1sCNʢRy/ۘ>6o)زqciYN@;v!J[o>#EzCQʞB{x:uĉ1Ξ=сow[T#^V?m[Vl.|e^xX|LdtXhhdLLhT`l?-ڰ"3sʕ+WZ~%Zb~ BqpX"i,lvXBd"6y \Xb\a3B1@ k A!hk  r$:R6BGd<0(Nc7ɚAWM'.{v:5ZgzECjZ,Neb864 a3]q8L._Df $fi 1 `tCstmxbdr83G5TFB.Wkjuꕚ0>8?0(LA8G'HVSSj"T*WTgJ "YZhdE z}@H호,=~|BEb# ؗM'SX zN]=YPl4=]m--MM/_"8ihhjljjhhm1pncDU- f+ *~:O . \mr@`+VYcyl3 |q{ Ū 5Xy`0 %g+^"g1O x~!V1qbh ;ڍ[M9V@g26@gWGrN'z'_CttrW21[il7\ž|[o^}H#.UDU֮[ 5k MR5+VKLް!1)9 ]|Sewڳ{v߱|K8n[\mu/ZFh:4Us';747O"k6mCfbو$P=@QT&ai>LDCXiҙ 2itdl~\K] ?C`pT oVg0u6?$PCCd:ĒUrJ(jRI26 ((80( <,,<2,@VCVC ¢]d%U+VXxn\DA)ڌmlppwx|l:&^(kKGgWW@ثv#-CH@[K8e .bW´eV{1)FXB/\ [Cfl U ~!@ajֽඐ?srkuWlZ\ !Z뱵5xo݅ۘ`x00"pͽA"1چHekkmlj'&dž{ӿ2ޝ-:s5%p!  f:~< ._H'Ђsg2-u֬]jͺIY4S kW]pgjZffnaMlݵgxa,7mTWP:#+Ԕt ISA!)ՔSXXTlKEaIvfrVA^qQqَ[*n߽7~koC'|ǟ"t=y_ة_op>u/<+/ݷ}Wܲ3I meyyIUKcF',Z0'*8okHZjͪU+z҄y$Р0GG>"Lx1IwT6Ϡ($:dKB^B?T]87BJT3 Z# 碸h}ffv<bMXIu|i6T?01RW` ;_ SO_4vǬine69=ea(L>R5;ydQ\LJ:q<>aPEk"YƝ,ej{x!0YZD"B‚t:_eF]`BP@ܞs{>|FDKV)X]XD8 !QQ!aQ!r "aF BeJ='n [d^Yl})mrkp|o!-pqk`fZ&&Кqm[jjm3$`BSSc~YKB Yli+ѧŊ, M .o `B"au}%vب N }.eլWn_ \- ^ǣ ;3, .qQGA ѹY SH&f ,ν=A}B[;zje Y_y=xȱN#H? PhS_5w}vo,T | bgڭ%i̝0wC ZH?oE^reϟ;'B˦x(^*iFe$JN̗ʔJ_W$|L69Z|-ejި)$G_E!Q plRE&n/u:C]vIZ''#mݭ-=NҨvR/""Z^Z@{,3/aerrsr2S֯|ea4 8^c:977ZG˼khGk|:>::440:8.xy8ߴ1 MM0Ƌ)+XkqB-3AV ViAC1Ԟ;w>8H-*+?{b\ڽp6g% T/:˘B< ~6 ^г>"uu! *0bD=[ܫ7n޾f"a-=?hhok -T˟<{Z\4jl5 >?@ëPMԤAsL(VWàrHiJNIJ]5#';';5 j)I&ddfm,T^WEǫvl(-]P8-"ĉܜ7"--,-έ( sd޹}`'H>Aȱ>uo/BH-ӧꫯm0[=ӣl1ynsL t ^4*F346Щ,奲,CAk}rj|2Th52\+RXJڠG3 0 8-^Ш(KY,#NؔɗjFC_ѩjj l6(8( ĨZ^2g¸9Q +7$K7d]p^T^!d3dod1-`S516180<:2<<646;4ՁU-8ue}`9T`1-~;^'\V b5ܝzj K. wUF5-fݵΝ;{^B }EښZLc'fi-`kׯ\X~}Osk68 wĮc]y 7vً02]ݽÃC#}}#ãccv/o'_֡Syue“ _b\#aPž@8JB~Cܼlh~ 8MNLNN3egedfìl.`mɔH S la{^ݻ~m-JHNOO. I 9Yҳ 7n,(,/B?7!>[R\cǞ]{_ko_o}?oG>_|N}so#_ k;*K72 v~uݻvAzXJvޖM-Nʒ9s"C ZrYd%K^yQ0GAa Bl7;'FF("j!*$<4Xj,b? \* [\h WjdB\DD0xJL9 ern9-Èt7htjuRo#ey mmm6mzsxd!㙲xmLO)Lt fp33Nu̢tyf\B3g\CЩLW'J :jߠkTz!0(P 1۟rzgDP1h4+ ^A 4PcccBÂC dŲ9 WONIˀ)qŲ%qQr_ƴJhilnxYoqyG w@Z7k o0ڵ+0@u jo#ĽAx^m|ؓl x-b?Y0Ɲ-U ɐ1ǽHs?'faB1*F]×1l& r ס&pOÐm<xZwրvv76F} y`ހ젳`?ĨM{H1ho߸y*{ m\Z3Xtxbm! k%t<99kfqlvzjJZ) !mVVf)=pa0TP#ddmٺmm۷ڽ_{ e%yEy [HLAW %?1⊒⒒͕Eo{;}|>_>6l[,flI̎cHIM3=1H30fku556cdȖ(&j3W-(VU ;Osw+;+k;;3K 5p<bϣEg.L.LQգh KW'14 \n(8{tV?q%d-H,q($\2{@'B.pZb m;@emA/p\:@p:t@-$c@i EkW/]|6&b>z Ag@C##cs O~-x~S^{[tqxi!J:;-#ݭ`5%&+3=#;3= L0 -'MNM@Z |%Ɔ5Mj+Vfedgf%'$nAnFN1WUVU*"j M׭}jƍ>h /ؾo >#l|}?_$[>~ʪk4jjYWWf%&'&{Y[X9+t[PHh``Xh`dttBBPXopTHDT(EL*Ofb"t |N1lczX1&DgR Yl:Da,]L5VZ w{'w[[`obrAcc%csF:M wNO=x48>5>9oynݫg#N@ <5>ywl~rt|Kz鏏M--0ЊېbnTM̥.N/,---/,.RfosFb y_,U˅Rc LfZ3TCTPYˎZc]KkG'7/o_Z\`c s',*?2.%.10?'37?#%*F%rs@=w vNLLMOڎvu"?|xIM$݃K.gO9y(܇@MgP;G,[,wŞ8$dY H 0{OZtyb}nbS$L 󺑮:Zh1c!@Z8̃ǎQX].C4{m`s:.3D|p9 N_@j;o`hxdbr/=}1؋S: 6Ԡ/9{<=^:gpî3q'UYPgddmjӔTBNI'U[q5y%eeյ55646^Y^RRTZĤ\D\ᜬ’Ҳ*ի֭j7= dv38770>==3;>H=x΍B̃= ONMML_|95o@3t-YePԹE7/Rs :>YhB3*P"UHd8`ncdmgoh%S>]*9*,ʹ[kaei W;;gw__֖@l8kj ܂Pw[S h 5#C}=h?ť9WF1['l9kh:Ξ=s`""u ձ#o(# 8$N:%ؾ$ɱ!^yZuýtMݿBnGlνdFۯ#yD?Mg@}T '?lzGZn6A+>V]5;u8\)/?{@=FRP;8KO~)BepS'> GpȐ]'mΗt葎=:}^Z>>~oy]UYiiiq)9njvif,ңE*KDM/ƌ"_yY9ey)))CT6/ 53 /dMuu^Ӛki7> [NyϿ+oo'~g~чWggV76VDUWc ~]vo~rdRnjo@ {kw[s_ *"x {8i2MgP%2RHBnHe,LD hfI!{nvαy qf;;+kU@lwhl|lpLQ[L| .Ri08:=1?2=2{srblnjNoxdx~21e̍8{}glrݛC7&[[04\A=8~# prK3SS3óFl||]SB.7aN,.`x`gaU5Z[ZwtquuVS'&4:כ裓<|wazjjvzrthxq`ׯ\xPBmP~';cljUqt\'I#tڦ#-޿DAйbglLeyٹ_:@sC|'8~Pw+ֻva< aABdqp8L g"-c't$ .=ƝG8=N7006O@Z4<{̉{mN(Mk-݊z6ow%,]ԉ#[O<>~_remUyyyYiqaAQA~\ܼLiSg`ǥefV`&W}mpڊҲ(RQ PۼšʲZ奕+k׬YvME- X^¨W_ G憕ppy9ٙYյp@N[_Ue魵0f.>!!1>V&R,Ib6͐!DJf 5Z)<n :C1iF3x"@!7Kq50?:6&>!))6((8Ok1sT;i\%1V,M-#C#]Mu3X|`n\]0\9^`W`;CcKzS'Ʀ&'h; hFF4 YTAx,L Q') (KzzK] |H!LX_ l_KL4Vv.^ǓxZ8xxzzy9$;&2,(".*.>19#+/05L&`iFFFz ssH]{ۂXesϿ+/;E?{3U *t3 I +KӢcb}}=|희T/(44<"AkVJ\*P) ƕt +1rE6,XpX,KZИ I11QvZLΦFct6=nD/ ~87qo\wOwoWd}p@PF5{NG sT.L6Jy6/@$ FST"\-&{/͵?7>>=x߀Κqy`~c/QDlT!W*U&* -,,l,흝\<\=\l|Gc LR +sss;S+s++Kww+||Wx8[[Yp{zFFGGħ&gFzYʙzse0[Z2 pȈJǨŅѡAbDщJ^rLu={āˢѓX >t]GHhGZ+}ˣ`8<][2ۢk a{I<$gvu)6~kn u}H(mA;1o8Do>%XKx0X-&^z死::?|zav}hZy8G \Cwv4.wou;e@% |I7;\@P^zU5:̖!-$!m& mFFzjrrNEFDDŽƤd疕 @m ~(ϯZ$''?/;'56!=++ M‹KssS 3*k׭_n5`Fq3nyw^xn _z7_}-?=19x?v=q5mlR[ZV\P]]\Y W$וgF%&%$&&%Gr r (Rlݜ֎fvNV-ԺV𺇂Vm*ӣ0x4=Y(1%c|Lh;{GVZX}ކ4DWwMٮE߻kw #64];Iڻw_?vfuCh8_>9Paged+1))>6:*<,.0""#2,3'-25(y]YYSRް$3 +3+%5)55#~:/6`5jmnn^w /$zW_tƷэOᅬ&zwIڸ0(9VJK(O K*((JI =osdaBaJ͜Vtupsv0583jC @>&*0,L1(4:_fBIZ 3|2DaҎ܌ @o RYIj-~J5V2BLuwȝ ‚Doؘ7Ӻ wܝ15d-u?fߝcq9|!@X)I"9"Dk՘i%JLѨS]ΡEC Ǐ 2ǡMSt}C:#*ZSLkif預RI#XiHKdpW{;W(0uʀNn+<Bֈ ILɂ'p sajfAFD}O"uM U%YE%U55uWTTgGF\Lhp `qdʓk=|##B\iX@p\EU)EkTCC[(psPQ71ˢә,gqBkegQT&VA)qaAy qa~.*7Wk,Uj1͈n03`4}~~CW\3pʈ'n;~8Cٞ%1kndЩ2JT%b2Y&sFX9K Fox S̥P&)| -j)\M-]|||]}<ܽb2vwvs:mC@K!7MpA!3JHK^t EL#-{!$Y-:Q?=]1 {y eP=~Deڷo^4 ?Nz¨U0iOƒRbR3 2Rѥ2.Yp0wQ%ֶ6*@$t,coލ'^;91}$I3wg@1rƒq dC71xR )e<8VL*36uvquqZk,)8unRπΤN,<1swz710 C}hniQ߀AI*SSMs ~~~+|d26pX*737G/Kk[[+xzHA[s[wPȘ 4HJJNKOOΌ/P9/c$FTJXr[-XP_OwgwWcݮbb70%@8{q]{8rmu[G{ B3A '-ZH/Bf [:7֢_\0#ߣGKft=-m[OW\Fi+ڌ$09JZǏ ݃Qq JFհńԒk2sWr`VNRt ML?q>ly" qy<`S(t9.뗟;۶}GtO?/+qKh Wzwp4>mk:mmذuM upUe%e5WWW55WdFG'&'DFٺYۘ\6}⊌myxx8" b>Wj EQ@_iK c 6>=22|JgЍ+SX2S'nN>q hrs2Sb#U>jC_ lDg{_{]݃nwؘ(E"a. ;qo֭^3~C):o8F8&r Delwtr!5 l"nH[\dPh,:o\qc`{'/_ >mffFD5FZDc2q U`@ /w` eZ 6ecgeiaeecH OB/^nnqQ!>AMɀ`|V,7Xm7KsFm, y&_bsÃjmݻ{]Xoƕ_zN_ڣE ֒[ZݺT4z뗟}֯!*ĕf[|U[]UQUjUsSsSjҺ8-mB\\RJJJBbbrBbRdacxBJJv^nnNAaiy9DXVV[V^YRUY"?-%beӚՕ֭}y=4iZ~ݚk7<][ٌ/ꫯ+o1D/}ο:\p +2ӊ*+ Sj+Jj֮-ɉ uvu7Ut OD)3jL\e,PJ<Ē˅!à,M OBYq|KiLLc+%PӅvZS_WWϰ,tFd+LUjf(_?8<8~ڃCO_n>:7>4sn{׽AL"aO<,6/<%"!0jQRj-5jk0u!AeFK#nwP=:w^ϕWKlaQz&_& r xk,X&r4;@I[ gIt7}t}Vx29)"4*.6?<::19 ǜ@we ID*3<J Bj1gh`d;h  Hqb.\8w8v>A52cx9/?{(j!T*AEbE?i cZdnZUrמ TOـT D?L0hgw$M DZt?xG߈1Bϝ=KWܻs֍woL-=v8=I[ٻkn-Ix1}|پҶo}6X|U~Z`VVVUe":w+?)ᡁ޾ HMO/N[Q^RTWPVS_WSR_YRZ\VPQXZZ_YTP\RY]Ӱq}Ӛ7mhj^F`̀qw[_zx7xO壏ޅuN֯ݰau}uyqqqeEeq~nEyANeCQDhDNrHFnTbxgbl {G kR)3ScdZsF+ge21/$2a..NO.-BKB6G13X c/SEb:arE&*;Ę؈hHJOKKIMKHC#@kT$ӪMT%-P,p/6]B?yǃoy}LLkLrP,ʀ᎜B ޾QQ1Q~1IdjffzB'~M5fLո (yl?00\ZQnY(QEM' T!\I9.^>{V:u%^~3db8r? r8q9i#8O+ԒDC=UGV!m]V2ۺ׮{qb>Q;wn9ui'N{i%`%>Z*?(B8m\z]:0pt|jcGPՀ#@L>"2عs9}.tO?:믿O>om?|o_6~7kUuuuMjZ feUYIQ^Nnf:aXBB"QxEeTWf՗í.)(6( W֖gdWdfUԯl\W߸o7>nmcڵԭj^ۼj՚72OZ6mظ~͚5+ў0",;4/8(1/ 1%Ԯ|*)`BZʧPPsy2-b- uyLHjt>̈ әbc`2Yt4JM"TJ%5Ӫj 7xH"=4` ^v.\BQZIerL%U*M$AWo߃ޮۏ>|8xKxΝ3zgXT3`FmfΗ?c-&P\L1Wˤ hâ >;5;6Ocut߹zӝuM,-N<.cvJJRcvN^+Valo*ɤZl:99:Dw>~~; (<<71o %Azl%ʹVة௩R*J͢itjHHm__'u?zx{ {XܫWpٳp wΜA9@KSLh{u 'OĉSgKݡ-dRw΄fleK}:cALL-y^]C+Ye"];vn=ggk[ޝ[8{-8Jֆ t,8_g _H9| Ξ9{^w_~{h?<:19MW_ p 5n٣%qwa+য়~awi/>]yC_}[~W_kǓ߷pkժu޸(/0?' eӒbCB"â3S2 J r3++J j2 K+*VTVT//.-,k]ٮjmu@un7>‹/Gg࣏Gᙧk75*))/(+)./**L_(={_TFhL\PDhXL֧p RRiL-5b.f`@)Z&`XB[dIZ3j@KRF :_*),a)=ӐQjZ"`6y[&&"m*\#|| +3c\ Ti,쨑dclΞavioyܥ냣]cf沱C zËnnNfjTYccBL2˄H{GH؜{p`ޙ)1{(MP`$ňS*GZ Q{!!!jP wrX 6ΎN.N+]\=Hl2GDFEEƥdfHФ@?/ww7g'{[s s Eעv Kx 34Π(3>6<8Myiusbv/\uuLE$@=M/W\tQ% ϡ9+@3;E"މ/)en =HHl%As[u[@؝0ڱsݻ[Ho<~ɝHn-mi#i}pd@<~ۨ|qmή:z{zFΰxp($xiؽs_Ч ww`jmېnȌ}7?W_m/`}~/q6?i]*J˫*/*(HW{jZJJb|tD_HHhhX$0旔VWXܼ⬂¢e% +K +kVׯZiM֯i~ju7l] [^z7|oû2_*޼-7Ԗe87- 9z%\c*=||Vx&E{9;(l>K*@L-,TBՐIeL*`Cb@+T[SǤRXPnt#E\6o28<OfVhMx\Je,i=||"Rrr p<ONLHL 6Qe@l-eO1y|plɞ&ې17zԉc_=ue~7bZ;.VpDd4Z1Q* D<.@하45"enzfƚ|1;0ѧf燦{-"( BX \jXMc-bCSsV6>Ƶk65ozz3>W^-~0rm~n3æҼҊŠ 8U%Q!^QA>Z)[oR_Dabj5Aeҙs),8qIt?K\Z{ٚjUEvtF˓cRݤ J$c v`s`׏?;qh.+-mZH-/n!%^8y,`\bt M>}pxղ݁DR9>?bb?nz+rm>|?W_|lERV)Үm޸y}Ԥʒ"T&&$F{F39/$(+# XbYQAaaiUyquu՚uUuUuW7iuMM7?Wƾ;ok/624/.*<(3ID5b,sBP;*ID@\jo)AmњiMU cqXL.Lje*XT suK)Ga+RN#66 sLLE[tl$e%)=-Uv.Z%OojpB_&S ~Z%Y2b/@K#]W ETFmjC T*RS33 D2X$1|cZ)Mtu/,itĤ!Uk@A⋁ Lyg Y4JPqMcX fakk o;'SL`Yذo_@_w[X_w *< @ 蘄谠@oOOww7w'';7G2komgeih@(c8LgS '&&'{qS j7]xy/՞:Ku_7=9h8Qp'O:$8v嵏h:hiJn+bۖ=G'HEWtiA݁8 8ڲkǞ_v9v;konKۻ#at:|ԅ u `ׯݸі>j ICXweϲ?c?oG"c;6d/(mO16o?'~|Ͽ$/Ѯ8)6lx8 V@شJLA=grr\RBLXpb/Tga1iIyE%eEy5eť%y1Y+kkWm^nYEjV6^ym5k6[vO#̾‹xo_ֳm޼隼⪒ںkk K+ˣ<ýB=¢K -QHѡX.pT(k">#d*W)qE rEdI96S#P6N<3Srt455wTHMm"Sr2s 2R0)驩A֦6.6 P0g"P20uNRf dZ2 h[0XƔkvYZTml \*\)Иj4*LgKEJJ&vOBemDR8ԩEEå6 9< "rXjn.nvNV֖v\mG=wXtPXd? o@7.WXxxb|tT@*"ndDDdXttTd8ڠ:<<*&H-7BB1ܝ1ޖXaxZD?6/ b0;3=9Ƈz;=xw䵫ɞ [L% s] .]Xu Uys<]tmNp'#DJZ?_k:жܫ׶m m!F4]#sXNݺoߑF5= /{ZO IAv;r!s>xux$Loܸ;;zGǟ,SÅ"{Nk,vw}WH oO?| >O>0/>S|++]߼fϬkhl.NMKJMK)FAA.TqQ1 9a@$"C3bRr1h6ċr32"S +jjjVV% +o\P ׯ_Ԧ=/t7|uo{~ˆʊ²r ՅIIY I9I1 AZg(s),==@|\ZjMM6BX*Q2 J ]#bM3ЈAP2k)Mlamm 6X&%yZb,EAqa^j*fga`fRBbBkH_Z&tRV0f&2Zb,!ύM 0Z4~5ǂYU(*.HJ5cD!J#K hýaQ O8|A '!D<W1Q|\-1\f,0֨qsMuH21QK&Z GkkG{Q!!>>烪HcPOȈHX!AyH^A>>^ވn+|ܝmCa 6Vظ53 A4^k,:Eavjzzfbld`º}+ׯ ԁ5D GzI9@joݼqڕ.\$p `| {W.^rSD~{u|py!Ĉ/( $3[#6'ZOKh-H?"}O?~&s mG9ywڳOFؽg{Z1 9;3#9r3.]x-Xw?a+ع{vbC d~yN\v۶o-i"~ggŗ_`nW7/.wyՍnx kjғ{ 6̖,b4ss88;PM0360sf|>Jk}NvuLlKv{ϓ RrFdK pK⊆ڼ246?=.=;799/+5 mJ jQMZڰsmt[KHQAWWOO)3fΞ5s_E ]ݝ+ kkG$FDgT$eƒ""\F1:H~HD RMH)8\ގP-4d0|>镇3WR)q [8(&&ff ]̳SWW_@lhJT=<2RPwGWF*eRiCK÷xrjؖKhi4S+C n>H18`9@,$)S\"-".fmn P)V=𝙩, q3%_Dn4K ':~ ӓ/mq qg0{lߎ[Qf$oѿHڴuۉwXAIu9k`4 ]yx&B'ڟFj;6;~5hm]΂+avPuKO՟>K˖xя++̙6}ڔ;;wkZ_]615rFd'f JHHH #J++Gav8iҲ꺆ںҢ:l;khjm ;jڦ1]X7k֬}?wgڃu774U榌ȫ*I)+ȃh\Ot\brL3"(YG}3hB y,+#5%WuNjt֪ t ZAa(L&ņ`Ƥ"!8N\)P9b-PTN!: *[@Gxp԰ GXơS '%G:tWgJJ6CL 소L9T!LbimΒKT6㭧pAxVα@h A(u*\!ä39?!ͣ[[ZSt;~ >~gˇO^?ygiOB&;071qMTq#lݐ S*`Aӹ{GDEa56 3%$‘z6m6$8$80Q )i)I >ΎNWWQ䂆5^..6Ή\2(F_ {~kk׮\z瀵gqyN+'IÇЊ'F1.ihjLs0z>SVJ9@B.IG^ 7^}Cn/Ʊ\L=M(C8I{G<3h/oDryxg[eǎ f13 m݌ 0^yt$/g>N+dT ?IdÿH+ ƿM[6w_mՏcb3ScR3GW66Uk5Z UPRPTQ]Qb []W_[SWxmkCĶ67톟>s)dgFC*FfK+/L)kU_W] $O Bg{KGMyKB 9rF~': TBXzrxt A!/|).9`6&7't Vfp#=8Wplu JLKD\|||B6](9k4 ŴL*8LJ4,hT{;k2/`=*DO"&pᲩ4P*WͫA++[*瞼84[L >{xݓxmL5d 6Fq"Di.kKW$$rƀ_fT%J4Nή~~~>A!AA!A8Դ z#訰 8B]hHxdLxXFhOc Z wqrwqy]QDVefбo^x{woݽ}fBڕΟ#|8PJv Ms2#Z'\n:J t1X:XRR*áX&KUj܅GcP͕N,_冝F1>:/7_sstx$B‹nJR˗)"leSi# As,{TPT-#,X8 cc$Jn\%4(;=s p|܎nkM56~g/깡W.;֕dž,)+r\=Y?pܞa4{6XY[sArtt  ^$-5mdLT,WQQᡨe\Kf""# ˵gyz{t޾ZQ*{GXf1jkj>(޾u tA) W.?{)vӞ<;x"7xSs|yg.;[eΞ?{ jiCH'O`ZKf{o%Gx!n_m2c>w[;Po>gέep֝nہVlA 1a](`;mg`;y6ݺvX+s.5hprQ/8{jWJ,"`O?UR_k5Y՗_b9sb+ 4%?b9ퟷgN:w|W8dBLN(*@a)iYyÓ33/,jjmkmmU-+++/.YZ0ǺZlcEq(cut׉sBOϤ)GDŽ &N:yBKmIIVUȜڱ ͅ%#R#cüC=]ܽDrJ`ahƒ57L>֖҂rvrrrqsssqwwswwѪe "ck=cID")7$RT;kL;9E$dK,8OVp1)ɉڸh lcCt:WQ%!Ko  `qtuKqlZv\x"V%r3= fv4{ˢ60|6hna6NF/_9|' lr>W8%o/ BE2224ЅΎb;0H pJwXoHXDTD``hXDŽFhccpC,&N98pl8u>=j܁:7P>~Y_7'ZTES,cÛهap{wo߽37n1pns}&?y i{ I TK0 [0wa<'q; 3C8~b9$/TpoOσM_ɰ$hCo۵iF9m3vc`ۖmں8زm>fy!fĄ3w8q܅ ܾ3OU+׭_E 66u%W>EEIgv*P+W,[/._2w؄b_BZTϋ}ob3f̚3/滿~"t-z$f>&5oɓq]@׶47TU:xdQANưĸO?,'=7'#+/ym uU誼%Y#+Օ k*@76444"q[ZF=~BwWWWvɭ6'%ĄwwtTVW&G%K   :JJ-[.s3L̸0GXnjN:\]'r,X8nŇ75P,ÑO`-j[LsX|_0L-`"BeGe2~.jPR)RIp\ha1z.6"4@aB K. |> krM_JdZZ@b&t -)вrRЗ+%l;*ŎulooEBʐ&TscCs33SCcw={maexٙzʽWC,P =K(wS$H rC00P :Fg.6JG~n𰈰HQpILLM\<07N>qk˰pPA>.^ΰ(r S @KDxry$Pfݿw> .=d›(jϟ?M6Njq1q}ix=z"L|.\tw{˽5v洞m=Ź^R=aG |^4ZMvòhHLv " _3'Y:vزmoe &5ؽwop9F޹}n4۹kۖ;fdKl^tn-C qh z@ի׮G̮ەU pN6M fWh.BЊc(lw9&,Y|ժ5|.Y|ɏ?|7 X0o޼9gΘ6i"i/q)Z,iP~AXyg͜7})S&tuwtvk\_[5EyYiə â2%gde\E[֦Z!//**YY%55ʊJtnnijj 2d[ZZFv|O=8o21͕噁Ѿnm=GHI h|~@oߛp/a/Pl #PA:azOV!EA td cZБ(kkJR3U\.|b@*Պr%+ttUy,h7DIN(}ixV\)2+v,wjjj)HQ.<؁4ya_PW+Y5v&NgZPmyt -Z>}a0~`ཕ/>sӁO?b8@)aX8qˠZ=``J$OAwr$ZX xxAy!!!1?ģKۆ㛰Pf{ \\UR0Mw_rłV ~8ggka0wo߾w6)7'˙3dc '8'З\vI-ѯW \z ._ |ڳ2ę]bGOet4uw7vk?qxl"Y qcm=wawF`3=wbݝvٷwPoq>"._2p{:jo\@ή]WZQiOavOZWE{D*[txDےͲXDIKZ͝3̾SL_.z7o|.\/C+U=xtVՕE#I 1ay%E#KZWC]]]mMEiґEY%%Ņye՘XQ mƂQm<;U=SvvӦΝ>wɣJE\t>Uu5MU)bC"";+o(Os`U-)qH̥;Z2Rk\q*U|$JLȆ~ࠕ%٫^<|܃?x^. mk8 лVt_g8\ٯ30.2qXOJJN"~aaS/~ usu)DKAon^:wo8Czy`'VV_X*I7Þbce:ӻE]Rbo\vA{̩SY{NM/‰c?z4IkW]{e4 ]1BSZcD'ؿw؏ 轸 &wڶy6ڢIIl `(r7'M[bn%͸ pwرeӶhj4Vb`ā}XJF׶l߶ +{1[jѸG>ww>zКun 5k׬\ wLW,d!_:Q?-Fe˱x$Dyf͚uk%+sW^W~Zo~Y R3fY…_}}/cWeI@_ xS}}ӦMs~ufN40'+8b\[[{IAe^jTܰp?_[Vͦ;?K ИZV%U*Ո1g@#`LOcX Ua'0g` "iERG[$|"*:C#rWR\AVv7015641|yś7xKמ pE2ZNL`q M"L&vv66T'@0VQ5.n~>Ä舰(8'LMJrR"X 36}}}<=1Y!G gH88h /_OOLݜQßWgA1Y 1K n^uPĨt"VVbccOb ݻ3gi/b(+H{+HZ =wN3Or@ǯ#Gp $r- imRK ݵ}+%'-zUKS@ؽoέ[wGXݥڥ'긕P12SR?u7=~僡5ހvÆR_6Xo,&},[ȱr:¸n hᕠpA"iW^O,ٹsEp3__/\POد|a93M훉3^Tƌninmki*9jdĄaUU XȜWsc]mSc]EEEq~yqⲢ%8WW644P­3c zBռsLQU\T8vڑ)Ó]tQaaJgEhV| Q9qttEj50W77GL@d a*h,@"a L6Id|s&ȊsY*˕)j^f?XW@N/ ˰LPruA(Esrq "q%-jxVK"ǰca3.,XD[ؚW_34t!Sk+ o={+=~h㓗bF+"80m1{Ă qFYÌ0_?0,DǑٯlJFr qtIjqԢuqրVԆۗ://Tvsы~3\<q:٘8 GwH1^@ӧO=yuH{Aуe d"N^8b$.P٧3itX uf}X}1#fimɧ١N 3$[شcǮoۺ}&_w`'C=$Ew7]v"yi`>i޺ٳvuV/W]d"l7ĤzzҮ\zu.5h˼+-[z ?n׹s!khZеs[ŗ_,滿}W8 | ͘9{6!m3gL:yҤɽ;ƌ= qR_SYRS<"0'#996yXBfVqEeYIyum]cc+``Dnv^¢2-QX:uضQcu?qN?s8f7o'wX7bd騖걣S c]Bqe%\\d=+K%N+hZgF7@.7#S0 WebVʄXe'b0drbbjCT!!^>~>2R < ޽39aWRZf&fs^:' ;0 A2q W8:wIflܗ)$\,Ϡ3( F3Xt&VF7,-_25337124341x͛ݺ緮m;ܱ}{4{m;V <a=a|#&a|#|ovhիV]q vX(%`{"l"E?PaYv u6c#hոF W׺g'R.X0.X%;oܹ,م~-(څݍٹs 悐%ћP_=@N >zT1u%E9))YYť%%eUu--c;@4WWT+-(*⼼9%ՕEňѣ;ƍN\'M2 >܃oogO?ofκȊyMyÒ3Ӓ(ǏusUbc%]HG֢jX+eNn:+}RRZ`3t8lm65 O̦L`߈P HZn04kswj8MAEcgSDxDTx(I xbt  \qY+an E bdQlMgXt*E41Z2060zOwpChk`7/>|o4dh<>IŚogmkk) Xe wZ.nAXE&'%&%'' KLHBS%6u-%UZ8xam MA O6:~WDOp#`!vT߹w=ly*ҋ8~bW ?|(VΠ%Cg6& AX^sPО|Yt%4v ߑG^ iᏤ.Jb;A}^$FntmG.tJз(k"x}s,6Wh{޵s>l׮ݤml3X݅7 aًŠlE;|yx>gROW1-m cj*ZA65We/..)-)-6;nQ[kj+JJ Jr Kq+,/odnFfnnaAE]eiIYsg7~wM4yԩSzљs9,8}=&t6Gdge'7,NKI qd~ Z{gu." +D;H SkOoO j^LT*0"X.3|6Z{O ȕB&`H#ccB݁tgZP_£QVϞ<+FĸaI Iq\` :,!^xXXpJ9@-E *t9pJY2\I*ކ&T{=nockinaekkn'fX2y`gOyD%ԂU<k]|%$Y*_RҒe KH@ۈP8&sMZY\]t$̃}VCOp1x0l۰䅗/?{ɓG7ovC i7h9~G\{SӧW^B-hA,!`!i2ƀ9gϞ!_x`wRO!kI^Ρ{p k{`x7a#n߅IhZs}%ADžݶ f;IVoXu]1Ⴧ8}p.3+QnXb大`qj"=l RV ]+c菰ffo4$y٨TgoqclV?y l >/XǼy$n9c)AN?vֶ MmMueM 5 F5WWUUUaIiƌmk5TlɈb m¢Ҫꊢґyyy#jK*ڻ{::'fM2y|awǜ/gOhoo;iTGsIyYqiLllj/5";-9,:O&Opװ^?kq; f]dCEX s,_I@=yjF))dJFt g2,@&A} r2ɜ|Ccc"CeT[kc]eEi‚yEehk˪J+1nuLW 2uSL8a_Kvnoj=~LQvWxRְʶ檜9Y#g$'+eԤ0e7T|n:7wWK ;7D, #wOwOODy Ge,R&l.7 ,kOʕbgg3vÉb#RGDD99yxhU(e"Tf54p EPL|Mqf?oАIQZL5r3W@{d4*MıPL{fgmfancnldbkkan!{/_XaҒ732hW/_|x4`s ktD&۞oÞ)iXVdi\]?mMi]ܽ}'Yٙ9YYÇ5< XM x{'Fc]=\תԤBZd9 &F߽?8D;nݸH:da',qWT?=}FxIPgWI \z s kXKTb?ilb ǎjbG0![ܻ 9{q}plnU9~ܶU.T{wFÞ];~ XMz ȩ#pNdDǰT8•?~$KW$(lr4YE-2ң`KѸ8gv5]n}ӧM7mJt6\,#\AxoX0o3Ϛ?k,XOى{aFnZ[SP]QQ:eήqcǶ3#m;Ƶw>VT-+^>"gDA~IM]mP[<{BIc{'M];wbsk)+Eu{OqlrjPj~qjLjXx҈؄ajw_`-]00Jj ,qiʭB)He"{GH:X+XPxbH<:a=LW&Voxʹ\',&:< T/-#`A t;[*J yuFvxxz{{F$'ǢVhPd +] lDRG%֚Ǥq%|&ݚnGjcdlfabmeefjۯޛX[XZZXXИf3o߽|'/x;&\F϶dc'9ԔWV`<3winQA~:wÞ1W7W''gGܸtuN2P@\&8cJvx vpWo߾|{wo5lB!1 Xl=8EK.8} , |Kv^vMa5l^>/ׯ\cgш#?adhwFZhê&6g ^tI~݁[i+ԝwꋹ{wEbq G _/;wb䃇0~}#" /\vG{R±vuqիh.`?,q~q%t@֘l++pF_|4DJ`/`ؖfkcPv/~ӧ`񣹀ðcpXlF3t&3ΎaeҖ*s:8<}I)٠[QfF܎›ua1QpBtP_A);99b̍>F!Z1$D-\4314۷^zHc MWG/3}?VrO>=sw`Q}pv ܼ=coϚkx;wn|P{JуL.M i8~z~t;xPѢ/ a+ E1|b^۷Jݥ)wݹ~y0X? XA .2[KB'4\ kW$ b|Ý7wޞӧM?gٳ[0cּs_.\kYgΞ7I}'L=z\gGWϸΖƶQ5M5M5u-cǃmokkofخ.igg薖Ҫґ%yy#ʫ뛪kjjjPX_U:wډp:}3s;L5,'4'/?=;/+%4!1%-+)L.tsO3.6%1ݑCh*XxQU2J _ɳZB~F!sX桏 kKBu9j*!ڜ#hԔA sX$(vtjkeieh`becabn##wT ƆbGc0% z'O_xq28La۱8\Ŗ`s<M3~glimie/Q–ZO( mVjbLdxd\bvxVNƈ ;z\TP[F7k|Ow֦⑅yٹ%MM uU5u Mmƍ욀Z&O ob?gVOKc}mil|FzwԈ`/aI1AjG?OW'䜜̬5X JM TJ2pj[35NjLOl1Ηʥ; } ]泆3횙[50[ uwqBQ̧ =cjb`2xb/ڠ``W'TCUX ,T).8C_*,:"(_h4VCq=EF8t[G![@$1ml :jnja`bC233|xoPAQm)c+ [M?~p'O?yۏF4\ Ӟf·43P[W645×Up¢Ⓡ%y{sHRJfJj|DҰԴܜ<дQJOMƞZYsV7rqwg7lܪbTFrm<<`KX8㤲\&KDXr4ч> }nppg߻sK.`n,X1w 9rpyg/ܼ`E#$. e=NݼMd/# w~ z$5Yp4<ڈ<5 Nč* /Yջc.Nc Ew.TU^T8|g>>p@O_7.H}HC?s>b?~ލ֭^|r"4|?ZB< S`*ƫc7brƍۯ>}Ԙ1@nN<}쩳&N7gsi_̛3Μ9 N?oʴtA5v\&=Z=yʌY3v6cvikl,,+/.*(AQXRQQYU ZmMeCӘq@ޞ ='C4'ρG_3;ǵՔGgUTfƇ 3 6%=&(wxlxBAFP RRB k̊a*NbTD[8l4ؖ:L6nʽ6lӷ"lARvpg&Ƞ% vl߁ZTޏa1 vٷ~ӻ{N o_ukW٥6Ͽ%ݴRK~"d_l*гo$y;SLgψ}}vwuwunoj7c┩sL1mݓuΜ8|dW_Ν=w~1 tl2} PW[V^]9_͙<'ڻN3kֺ%#J6=*j[::;{&:-V&M={ܹsgM܃oY}-)>Ëk2ҽuY#rGdw N/,/.͏(C߿3ѺPaYO(qj-ZD*f󸦯{i#ck EAe @F)q"(㱘,6r__wVBf#B@TK,t'FvH+Z L Hh9tVKRX komqt{&jmbT1`deaibۯo~lƖJ,6ێ6.d;ϟ{r&v"ɤӨFZi6Vvt&ݎ?+ ܣstuu qE&&'e@ވ#ii)11$75<:oOwrZQX )Ԏؽ/j4pS&ZI_͎-LMLML ?->~p@@p'a{V_V=IUS8+7@@3-.ZQ;wݹsڵK/L!oX=YS I\?FF6΀dW@t'nsavKw{wɅ80Qx2nq#<$@p{$@]RSCRn iqw{]~wyIfg&9Ϲ:E-ԒWM$q_ b~Sn=|tM/I> cΑÇB7|Sp,] 8P+~MI}Ǯ>|p߁ĩ~?.ufÇV[k(+)*-/\ܢ+euu%MUvTҲ`^^Y_XRRQY]XX^VtU& RQVQUUUi(.K_xY3M>fԩ3Ι5kgddaBfh>o,AbyyyE%vi;zhBmyA^YIӖKz(rpL@|FcybZ.mrS({tqpMz`FD`@xa~F@ܞ~ӞSky Ӣ5pZ*Tw`WQ"LKS*J5Pu'X$ܞyyƣnT̠ !PHRjT <=&@-nHpܐi#ټB"=ÒM0cڌoM|kIO x<8ʁZѢԏdFĒb  Š>A8~`4,wY3YlX* BU 9bϡәtFݍw΋o?% %JZ16@!DϞ=&"T1"HD9ԙ  7dȔ))|ZhDLHԁ)&Ϝ6dkQƌMK;vh∴# oQ8)b=**!a `609`DG#0tW||\OlB1%_߾f|P42 \c4C|qB/04qoV, 9 SBC""BeպZ[L O1)fEL6%[HD\T*`i/X{__>%Qaġ^퀾L0fכx$Bk8UbB%dTw7gowwW3Zܽp[j?{?3ў& ڞr9˩/\rʵ$I!a7%H{^ϣ"@x4GxxK#kk s+' 0HÈ È#\63Ǐ2*/p>tOQLJp)S]$PZ"hQ)Nصh׭A/Aڭv9p+$#go:꿺pӦfE^V^^RRVZX4= iKkiIqiyiiUYUYS[G]SK{U]cSCǪh|P[__S[(^_Z()喔fe.[]TVhmkip44֗W:aQSUYVR fΘ1gʬigL1lYn^n%99K.Z%Kf``JچFwV,_;]m./_87kĉc6wɂ9%3pK,]I#Sc NqZ@EzY/rf VcP Z֨5h{12RA祥t>괅Ň'$% H8x[y/QɅ\#sY *]Qb֨M>eVKiI$8$$ tz0Қ}˓K{I5 &[‘ !ΤL]gIۋ7[OOO罻{.L*F^%Ȱ+属ߺs7n|׭͝%rE"_n &%!Vo`ܡQq8`~!Ap"#Nߚ8 aAWH4*/#>~zꕋ U>Guxr&X^¯?3/W͕Њsᵀ8cdcnkr|%^B`S\[r5#vyxT1 k8FN%9_N|ز%`?C;GxHAc}os8sMHAlݵ{='f-%Ād׭])?7},Hv&9r>Aյf;v~~7<4`-=2Cgs + + KU5um+{QQX_W_郞*v\l/+())/]WRVRDU5œoϙ6gsОv9s/XP vazVv~!=r8p젱U_S;A/I}c6pSRL4}%ϙ=m|54OISBF !P~Y0(Q2uJf2{2-Fٓ'/T=e  )̗bȨĤA&`S"XY)N@*[,LP*S*Uͨ'Y&Ӫ{%' Dwm>(K6۬&!xL顚 Fg-FZ6R>& ;l9nڳ'W]מj9N-{9(:Vۏ_#IExx![ژWxx߁"B"#"BBXj#8$8>iqƌ8'L4.-u1ÓSG n#F>8!6o:濸V^a㎍jhnjXp #+ISHv!cs,D Pkb`0[Fˆ9V]Hl/'թ}lr h2X=|xzJFbZQʄLHh/t:)4MhLxL!TLJؘĸH_褤q1Q!>&opѣƌ iC g1y`⠡CSRR 3T[_?z&׵ F Ѫ4٨ń g Y`ݽ=8NKٓO=yHݻwoߺzW4&1ϸkp Sg 4~nܸ{{wiQ {% uD/lB0# rМq ")91i]7 ǸɓG=pB+2ǀ]#C z#G>lA@cĺ3 _ӯt~) ۽U ۶bV#JmQMp ` qlӖM[ع{ߏw{!LV0nM5x}sm^YPSPX^YZZVRWV_TV騬om\ښj뛚ꪫՎ:GEq8|2˖efb_娩qb$7sY3͞5eҴ3^`eyE%E$$gWikkifO0mcM6nHHܔY; i!I&/^xaFѨOư>a>>z&{ !qrezRm2!_ L MP%r5j1Kpo'%d8*V9ZTJ$BD?}-Uz֬5,Vo%bfP35^>h[QUG2/ҝb:i-i2r_=d:]AHdlIilu޾)G(a:lh[ l^Y2\< 3~!2  ݽ\>W1x`o@pHDt\\ n\tx50_b@fDxDLl8tPA)#RN4(-FL:`)CÈGB?;5F}^O?{׎;ۼy󖏷c7zi 7m۾mݻ#Gؿ~=/UZ{訅̬lePTPPReJ嗕U;j;[W475v4W}#ee%8YNNz^AvI~n~4w̚7{ք)fϝpE-.L$e9pr@h5 -5? msu~&0푃S J:jqc Dڨ~qS,^<3eX(Z*A/z̋ >aA~*@ uP0)BXcLbQI, bB$S2/f帋b[H/, :<,_I*R.ɔ L{8A%΢`/hP~l:ތs-fz-59w潧hƝ3WΥZ,|^^H5]hbՋBLiT)I=LFap(]\|B븽eF?mV9\;BcPTD "1<*夳p.5\0BbGmQ1!Aa!ai1&6.>*>x7i 'N7vi)CSG&4t񉃒 ?!>**<4spvMf|qdy*IlxuqTx}`0i4hztwuubѣG z]x Ge.  ,Z0{\ӿ;b+Kɺ8]sfY;F5x@~ ]mOiDw /(p|C gT|KFkhO$ݿwH =zX-1/v5p2O cDvv ľoNȑp'1qG+ c6n؈#dzL~i@ؿg:x}{߻s}M_W^mƕjjM5eťEi𞛓[bW!-Cr[^]SXXؼ:Rpt4577474aX] g%TUBIYq~^~~^^A>+K 3u@G|0}3sYs-\tA:m~n^~ mVVfKgہVWKsۊ@ W{CEQ^I,>}Rj,\2eФ gMOKK6bۋ7N&JHa  cؼ<Y#4Z]EլWbXK6ԡ|ZըP)ZtPE搘`%ÝjR(l9H"#{)(WmPa|.G ⱸ|DP4  &IҪ=O?j{r.C/cr52{T7KKU Iq4&#bdOvݹFe $2@=ttY J,_ |Dmir idtzPE /EFDDc~c|_TOpe@0Q#GH1jd~ 2xPBBĤh>'R0`IbLt{7kj1lG&bXNPݝHgfg;q;h`pb*]$I.HQLjϜ]c7n&w޹Zd9sW3LN=gw3\俸Ty=mZ'Bu }ahs ĿpN~y_DJ8 891^G B@$(=x>VV̠хzR,q/z p<`,:OBXc֩Tp`2(5 D Lái_=#b<4{ Gh%.Iz46ޠAl<:!OZAwa<@owu h/2LuŔCLäSȘ= .ܔ/ɐ bk GgK6J7xCX Z3((0484v>'a瘕C =C-HF.Dڭ[qo@BqውHiHN4Gܻg~l:|-jJ=o`|:j[ZZZ[j[Z%EeE9YyY%Ҳrd:jj18}E{sS+ƺ润Ʀ:TQRRXXZZ x4?+? 67+#}ŋ,xgՊGq~nAgL:c32K sI!;;cY&+(,,,.jjvڱMZ%م9铆 94ie &O:tИaoM:b[ilGY_\LV7:224<$TF [`3YFC}M^PPfo5Iy\w,6UIImJ)s/{u~jɢRhT6#qTt-|.c0l[!czXD6&MJ٬g+ݍf<=)>AJk:>FOiVɕ|(a=lJ~ŋO<}PǏv>҅Ki]{bPŸ!|i Ƕ)1BN ,З"}w\| /b8kpe[ ;?yd&)0l_ӏ.7]@[/Ĉ~oW_d ԀHɾs 8bt=q[ܱH{>;rwn߾upq , CAGmټe6gd qٵg߾]Gv;w9Uv4 j \+뀶YEE2^QQitGֺFV̿ihkolA=UVeEIy~f r.?ye|wE[[CEYy^EKL6k9 UUe 򳲳0!=-ZqIYEM}}]CcK -tW=s_5e@' M6lVnvi)恣RSgL裥KiSb_WA/>&:**'$*+"::dFAj?`1!Bj *>CaiN,;{z"U<ޗ o`Nw⠿;L$ hy\6h-1Kd\,0 @LsżǏ?tcvn^18G_(unwyf*1O7%BXj|)u/V!\PfJ, md2\<|0ä#2ZE^=L\ V5ZleL&xccBMJOpDd@D$&l@$ƱA@|6mqcRG5"9y`,cbcbbǢ*.$$iY-* *踚+*T*5"4 -~p '>|ٓnEL@ $xg]֒_z+ KhI{յ-Fn{H-+W. 7?]|5Ο^[[] vOdÇ>:ږ>65\#j˪jk%E|6lLyeU9uV7477!$䭭mﴷ5567656VKEiyIE^ZZTEŅ J rjrŻ\xiμYϜ>o 3˱ aEQvlXXTZRjw֠7mCS#mZo_ä86F8("J&,ר|G Ϟ{;_=:lNwWm4*uf .Y0\#\a Ţe;{h:G %"ÒX]n|KR(d P$ˁ<y frZ5xN]F3_DEFƄ4 )#Ɠ 8p萤%&9fF>kǏIMI6 !cbPƈpA<_RLVaܸBds<)it:z_v=gs$=zp,^|+kp/KKNf~ ;ws(ʽr 1Ay;wQqv릋]߸r2 rX4.ׯ]FH2rޒF[%s xvdvGOk0IFdh8GchWts]XK`'8ߥ شq }ч1"6r=;ھu+vPZlVҰMIΝ{=ץݾ}Ç"nw{wWvhXXW H ^Ye-*/l"EEe啕jI-ٺƆZ֖"okm~\UQQ(-W9*K KP k_ZVY6+[͵U59sZ8{^coCWp!3'+;';+''jK+ꪚ*2ھ|廫^?;w|ukW,.+O?}聩3N~ktRLpl|T|D̨q)uvs9 .pZ*.+m3ԗ49AΗj5Gl:2va=sgyJTXTȥM7ܛL-sBBk2yx n%Ը5ZmVZġnP6b  ed\|<4AI8x@c'N;v&̘4*ehRĤFDDDDEDD` Y:2I$jqQo!VJ%RDŭH6aLͽ3q=|.x*X-Zxs ! 5]zP_NE@W߼~&Q!ܺ}ׯaz߸vUW/#^Bnw5Kx3}1Y\V;cWܱ; ?<{\doq4Io _h\ؒ&?-CZ۟+q ػw'olHn?ڼ  d6'cHyܽgCvغ n}/|ڹmӿg)O>پ-ZrVZm[kG J\q'^QQ㨬CAm=JPoP[Ҿmr5=PJ{Yq -jsr3-Z[(oY@U˛V.3m995((++JOC ƼR4=r`?{mk׽mݱybE[Yav֜'?btЀ#$b[tdˆ~c&M8vd@ظ ۯ_x0{wo,8s;Y&k9\v* pt-"Ľs;Dpx߾{u`W/ab؍DKcQ ?BR#d;\4)kyX h|ן\Z2K< 62]eցKZ\ _A#=v觟:u֏Q!,il!b rZݴ ijC{wnݴM[onڸk7,ܸw߁woOkVZn֎mM- 5@KjJ+k+E ‚4-YbG9NS5@^[P[X]YP[ѹ-+W56Tګ++*tv^Q/(/.ZxiYV("kysd}-uTbmUeEINn~ne'֎׮y ׃ߺe>Zϟj(_6oiG?0_jb> f+M3`찔fMүo)((&6 ._bb߸H_o,&liuV@ O˭'r(l]gM~FUPhEbz($`eKY6ܢ`æL& oBc{{{rW&`b|uw,'@nwWRn>kF;7r ,4g *\KT(4,4#~sXZLA[1uLXt8/H MrUtcC6M&ɀ:d6Qx>^m`P$!QC$ \v>bDjja2to3n옴Qc' H;0 -O1ё.Z*mRNMICF1hdCJ&g޻ {wokWb~NmsΒ3u2Zŀ g{K"ɮNn}ܽF"pmoL#$^rx1^&'2@kok]9r2 W2|4$~sdFK2lj;(=cp(;AkH{g>;c㏷n1/Wp$ ٲuΏ?Fi7n-[>wzڵ˰q@lhֽfVv,_rykCCyPPV\ZRZQ^^ZXZP\\@'juu5l `P[mqml]X[?6[Ye/)qTWWV۫%y%8ӐWPSP_б|Ż_?mm)v+K罽pY~Aq^NYlV rsg32 u[:Yf?زe׎6We͞7aD괷|l~G O55_B9 O)SgN:DzbEؿ_|\4. , ëzOo- eXav%2B)T&_#S*>~a:OyF% %fb]' L*NP{===T-R zA Ig׃.7p1?rc3,6b8?~@QhOn_hq0 ZFʕH^jkŨ#Zh/s;Z[@ƍF$w3Rߏ>ڂr]6}Müi{AF4Qضqn?zf{MԖ꒒ƚҒ;`lQq6GK єͶj=ثdhhD-nuMUM}muUyP8/1kYFVnLE%Mu;jڲe/+*ȫĔ0GU%ܜ쬬₂"sojim&f]-۶Hm[cmuΒy O5ea>𺝚2s1icG0lLI)S7(+4DEapAOth q1A~!Pz{1gM>3zUjRAMcl ]@dFVm S[[~Ap|>&{C7[IYʀ:^t[W11%l[zݍ/BQE;뱓aNN˧ndO6{Ƒ,/!-C`ˤpL֚ :j6#qXT&T 0KqlZfO/>h!+,,15%u(!ÓÇԴQ'L6cL;6m'Kv naMD{6# ܽҲ׮i."d9<>~AT8xK߈e@y~v~" T{@n6?ȎN]p}PLsO|u5x顃Uvޝ;vn݊\dLCpIgy>؄n_ ?l޲>̛ރ߿mvl߆akaa9UV4u4MA nl9M`e9 oԱh`jaVW9Vlиp֎rޕYPT^c9.]_ZUU^U7۰~{pB꼂ŋ2skk@q$'hmA^.ܼ07Q dw4w,_λkmToV\Trg 36e@T_\t"3vʌM8`RFO?:֛ǒK?7"&,(*,^1aVߐ@xzzBLzRy*$JӢ\![|EJEF,W,TY,:/TjV=zN}(Y||'0iNw`)K'J~NP,czb>۷O]Rls Eԗ/gc˗n'L#|B}08gLzbuo?&& ˢR Q"I|äBeͤRL %<6EqRh .O.K&CϷxXNP_80Z`Lk4Z<|= 60 C#"£ M1x{wnac&) %;s>~aלMxlp]R N(]# 6+51~Ai#׽/O副 Aړ_~}>믎O>O![|BZ۶lh]rZ4po5}#@떏>[>`ÖMk>;w./۱k6}o5pupwVt,ohkjk]Ҽp^[I橊U1Ӡsjl45574TԣK#z47>[[p[SYveٙ@+А,?7+;c^`5M+]ׯ[UM(-˫,IO**+~{AV^A^^> sJrPbonmkjnjhjhikmXΪ?^JLYy˦M__Օ{InCƦM 4$.uβyҒ'N2`Рؾ)C5~Q#L&-2<,<$0882<$2_±V>>^6ņ=G¦dr8^Z1*1#HP3XLJR25}B=U}Rt&Р _ ʦpqN:0z)<ʽn4.KFӻ;?s!Ņ餰Jt<Fc|w56߀>A}}][Z DdzzyTUkә 2LbH籙T:Ť (>HuwP)\P h(dfJ vuRyR`r$ր%m鶨leldIC 'sjRH`4hff[fġr;3)ʹәN4!I~}f߻~=IVڬ}[Z^R%{& - 8oɰًW,YzŊkV'YrVZfÚ[wۻ{ϮO޾c:[l\feK! :Ξ?XmdxpAG YK% ́7Pt|7sj|ݿG@Qts{NfzINam5azøDDW4z*{wܖ #`h14lffH{‰#bx(Fdd$#~ ; }׿qXm??Ea7>|w;ʅ?~ƿo׮ \:k \=]H0H{-( wή.#kqwe{80p^S[H(mKCss^YR\[`VUv:%| vegd'b@z=F!#|n~qA@]A &Ks2S7MKN9yN>hsgNxOO)( 5TokNmuIFFi^:ϟ=@~̩S/lRN:kE1FJ"rX@_i.\X,EK4$)+jN&X:o% } X${x{oJH$S,ą3!ikWIX.aTVJX~͖]v}Y;m޴i+۶oA\^v>۹sgƽDY}MzL%NHhBeRpr8юђͰ;@4?ً8PŔAv h8 081;e$ (0WBQG@޿740>.0@wZc#u֝5C b8=qoŷdxnQub ڟI'/=h7O\jw6vG |PÏ>>~x^B9 P,nnk $663bDhomiilljno;*kûo\{ݦX[SWYGiAA~qYZfNFnAVFJJzyd8.|>9ILOOOW g <LHOKJ>N9s\rZvzj3gPNJ-)̯jigϺ =(#?ɩg` $y~v3[Ξ@3gΝ>]TVQVQZ _vފ꺺꺦6Thijh^#/KK|`mqsW9fs\):mtp;,KSӃN89KuQClIF_@H;b2ngotk0#V`<6gLx8,ctpzʥJC bJxx%h{h>zZj`.uY} /^maQ1Q׮]zUš W^*t*tumڶ#qOܽ+qǶ-[mن[6[zٲe+.Y`…jd5;~ٱfoJI1}NqX,dT%B N{3M@_1d[0o&|w8Ǐng2 Gu>B0z+Pfs!$O?J~8 |'~yw+ dעw@rfZuĺ9-?F:N*HO~xxf0ռ;xʕWd%4p"ْLZkirMUueyUeuMm-85 6dS Mvv(-m=^;ի۝==@_?76UUWWa_bz~~ffZZ* -p3gϧOJNMK4)p _LM%΃ 畔 l2\&**JJX-oni^U͘[ +?sO;[޸bmZ]|,^uغu,$4""2*2&66l(uzklLdTLB~ZtkHJ-aʽTHqB> m [(j1hlQQQsc#޹=>)Ix N(ĸ`1)#:1:pSC4bs@/T:<4`Q&:1N T pd2[֐t: \pp^[oU(1ϧaR]\0bf]~sd$ HgPTTU"PWJ/Qx`QFK"ש [P-4,*::|لk֮IcժF7l\lժ7{wJܹcv( $Xt/D^Z4|D8 L|ȤQ~8nwk.!"\tXH<^hYWS]QMuI * 88ޯZ{}S7IpVipo憺Ɩv ABJxaX، U5EU9@CӓϥZjMxfeN,݂k֮[vi|5lݲiel t *ԄFEVbJ?@bчe V-㱸:҇̉ _7DEɍ͎ʕF}00W R'1F)tx8\t6d^<6r󘎱i*j`ћL?? SxiVA-dpN&ͦјbXrjeF4Ʌ @/`v+RCU+&RUk B&؍ kҙdB!,}Ǵ-y<~q ֬ZcbK[V$lܙk{w&&ܶmĝ;mٰah[ps渥Ӭ[@N.igœ$L}#bR>spmUoe0shUW_}߿Ý~hM7o~@,w,a#hF%bwq#$?F;H79G4H3n4^=go(I{{믈Y_O˙gv1-F Rf#S `.ܾm?Xb\I }"HڊҁNxm}CSC`c -m`w6PʵmM66wtuwvtuwԌn뫫+kJ`]tlRJzFnnf֊dJ¢bXh 7+ g2q<ZʙS^HNA65#/ `칔j%XWSS}n,(,*)ʲ򒒒"9YiI)i9X?YXUSX[Y^V\ eix`@,QkW<ĭZ̑Ok2qB1k֭^ rYº6_*2@ 5jrpyFFGEBBm_+ZЙj `t0C!sl25͗rj:&..&f Gϧy`Ba{K"2|] :, Es:GN: (%G:^g,6q lSșyyc4 ,}-~Պ'7bD|>[AY &|) &'U <rm& b eV{J\Ȓu*נHrZ;N jN}1l ZF-3jsW$OXlR`W^xٚw{bݳ{.8vl߽gϮ݉[7oX6a% Ο7wF?+6*4ϨPyR, SX011a!-6Hgf nݹs~On;N뛿)y@#?? <~ EUoHǑeOM< Gbãa-F}Bo1hl1ӽyW9fǐKD09O3B/}3'ƼG’/}d3>& w-6  c{đ@>p@{[o)._{eZL2Mm(/8H;y{Kcs3)(ojhkoonpsÿ..ו^yK퀳ںҀk3ih,kimn#k VWV6pGDX'O)b5? pٙi)x$`BVfvqYIQQ)eNV'T䴤Ԃz)5uӭ)(*χJ kVTaMEEYAnNn6{N~܌삊FX TTWVV74?iǩ;d5.ZCڙ۞ݶ;?'<'Q^~Ub^"aڵV.7Q=LR^Hp#QHFEEo Ré  T*rEr`t !9ZoqJ4.&dQzcYfŃQK%RD,0`Eq8rQ)w?rLHc4BK94Ae 8TFdx`5v[q Lf3[h ,'`Uy86H,@cҘ|CvL3X$@-O PbÔR://GxJdrX1x[z V򘭥 am#\bgEtUBCrիb媄o۽'zzݵwwi5%$Zl?67~*A|P`qL3 lDZnD }> Oą>Rܛļ9F po؅lZ%{Q!EK nо{ÑQy8:: ttl0FW N8 cc@ng%١ADA{r06 Rp=$(}|\&0u_NK~'$ |x8>xQ> 8  4}֛2W_ykz/^]Z_g"[]]Y8RUnw;~Ԃd 7vtv= Bukwut\yV]ԈmMm}1#BnQ\YY_WrhF^nV^Q^fjRFzVAiqinN^^Q>99EE%y))3p4LDܙ)Y%UY9Ii&ta៚^XR^[O*/ /A*{Ei=\ʫ*K 3SSΧeÙV5a낦6w%u6H*LIz&ؚCۢ"-Z&Zf ^iaK/^j@oHhu>>?_e4͝d5Gర 7Gk8Tb g't [W,=r@֯7ZNk7(5fFGD7` QDZV+cD;xDqF&?(UjJUy\.:C1s|jtlbFy0āC y\R Y6u|##lB66y2W$wAʤZ|<:/TKUyrO-\,AQ$rY;Ckh֮]xݶ=O>S<ݻg-w%ڕc+EFGaɠijJʰ G:F4pX288F:pG 9DBfq ]wZ}pw_"\?H߿1X#!\{Mi"'>qo>5t#u9S .l|brP(bf.Td~LA2?q-b:fV얡c|=؀GR@GlQB _dUCkI&$[o^p:Rہ .Gz{0 [Z`Վg-`-p2Y|@FDSA!n474b"Դt]r^rW.vwtt6Ït_BB݋.l1禭 ~m,/-.)(-,(-+Mל򒼼Š’R99%ŅCsΜ=wKϥ$cW^nnq) mniQF#>A0eUnR`%ŕpihKQCu9 h*)-,-klyN4kkE6@nԲܵm톝=n7_c4F&lݸ`c^`EsM#opނE ϝ d R_!aj\-)TbT"ITRq&F-$44,"*B'#cbb8E>&h22\bu:iT&=E~4>`?#rBR R!ť%82(2"!!!!/JX{A8HYL4W.b}zb3D<O0đz4>Ťa^c>GP?=ᠰJL!D@%TT{bQj*R*3|mP y'GtwxxtzaڄU'h<9s@ݝk=wl۲3—-YpN|\Ld- l\Pý'a1i.ަ݌v(wk+B&^{_3D+Ἠْx/R17QE8m=O@*w?->É) 菧5u' X gvlGHCo;U[ c20*uU44WUUUTVW5qg G-**Uvk{g\j.k] ZŹi9%GرzϪ [Ͼxr]Vc^7?&]~ɢ%BQ+7 2E.`iŠ ,||"cgd _p&hb=SXxcPHJiɤbRhHA ?vVdtL5O=<̓}{vn۲eӆ5˗a؈Fo//5-(R 1«J#2ED17@S"Ӻo(d=:ɕ%\bb&`r,~ro~H8xs'4L#N9szzBCýq79r>/g?x0J#Pů 10p/ mk8Ā3L'~@% c߽ Ho[˨Ӣ G:oBţ!Y}-! E|YpgigqY$wagn{.|ݽ|r;vjj*kk*ғ22R3 J*+Ya^ t²r4f&f$=͜;P 䉗$/Ϟ?{s Jki9WWNjOUe%p=iEDCkO_WH^S?F!&/pL_$Vx[e]jGFFImfEZosPpddR}tbp,.8*4N/MOw2l>եbXPRXlgp|.'Ijj"#"C[jrZd!FlafϬSL ]TE"<WDPMIѨ M4IpY"B&Er)Iy A NzM BR{z4:KPpP0PH_/5cá)Uk׭[suw:=Cq#ǎ;vڷ{@j׬^s⢣‚$XL: X#KD-3y襽K w>HgjFHl3 pw1?r w}ZNL9PCr8'tkuw r]VH%^8iQ7FDH@ZNDTm| zq3ܡo`t=vPGTN~@gd6-^}/ɇu?]/{8 !v~nEfkbځK==ju-h!|\֍(660Wr!MnfdwsoOG{ =Xg(to?i=j1 mq[[A,p(?+#03;(fY1bEwUw45xGYuUUʋg'KI@17// # ~̋ǎ Յ̂꒬ܲ*{-,k5z{@z45v?\@kmAFWOgkkc^׌7 ؁r4x-/.8w2+?Ю>6}Gh5{&gG" u5=|ö{ػiˊ%+&؂c-X4oaJ/7NZcZ/P_[S#4+x)ܑ 5<,42::bG訨H?.2.$xB,9L + YL6r¿CEg8,_}|_"=N- p=qp)!ܓzdDr\"8t]+j9\ C$[}}LfQxNB`CXlpEDU@O>læk׬]OVmܹ'~CG|6УǏ;~ڷ'qׯ[b¹qёa~f+2Yry@¦`ЫP" 'N/tAbWwΰH{oBf,U?D1Yavwps `-z i: ,64B\08NM#kɾцK.j@ 4P;Y6ν!eEI?Llf2m?>G|c:00;0 zBF믽ʵ+/C {{Pmo#2m}YLJck.#55bE nf `}98Xž/^GmxE"uHm7;:y uՕ%eyťY%Uʆ{YUyEy}yiEYayVR[[S_]VQUJkIQIQa~qccENZS'?w;x oUTdUUkkj1PUS/J}S+ 7y-]}W^ry2D$=Z1|nƄb{|SibPocN˃g͎1DĆ4!6KjR*Lνs{Z \ Jbp\\yH,++r1C".-Vy9>A&C~V|=1?>nh ԫ-FO J)6eS4@xkهãFN9D< >+PrOd-[=I#Ʌ ۨ3>cF ']o_5 nX|: 8 //ty"q6Dڵϟk4x vFQ8T")@ |t  bHtsHm2pg1 q֯?hrVpJA%[w0bD*L&PJro.><]Bj݆  f1pQ#CW[D ʲ{ c 3`[8ZbxIxwj !Nb$RػYR.2`.pZoP_{ꕫիW;C$ĿE [Z݁3ud8C|qﬞhBe'ܕ昩Xp {H Y`|]n/DKSo1ZaIaM˼<41rɩqO'N4#lHt:S䱹JOFct&_퍳*۠E9A'_nRԖШ1bVe+VMoݵ#^8q'͞8KΜygIܾym׭Zh^lEs Y6^!:IHDӁ=)5:Viv0H:q/)[NBO-=!B-n)T54 @_H"?S<!X0ta.1Qn4b X%R@Myb19#fB(81v 2O6[#ŻIX]'*M W uI-j8gO-N/ %0.\}'w{bwS!%PW^r/_zEN5!6cXIFF (@.)@-7mh B. G@Iׁ{z"vbhNۻֈ_S[]ZR\RZVX\U_] P[ZVZ^c,-j8Z[n/kjjkuNQdhjo-LMNN9>w䙔Ԕ̬r{UeEqn~qYIBwÙ.=ˁ슸pq%u /_/b0z D?Q5+:܆]k. Ԛg'^mAi2uLJZc;wڼd3wޚ-[6oRG?'$y6S͖Ō;?J ɽ%IX*Qi`|#26:9;...66D2DϚC"-FSXtQ!FNy jJoPJb9>˝尹LH 24=RP"`bIRUDYQQaA^~~ 4)^Lc2a6%*4o:j֩ĞRI2Xl.5N:H!㘠x|>ΎGR) 4G(` <4"AY7ZFZ/5u!/$2("8Hh :Ǘ._2x߰a=K+ԋ_€G>m۷lݰvɂ98 #"GI8B$`-B%S Hd A " ?wdo}r"K:oo_oF @s{@qPa=06>5횦₄Y3tRΤ!*.`SSSx=6>mC2fF 2w90xx@UK L#7,;hB@~hB-9pO58^}W^~Ur0N v-F2*mdl5^(]lQ%ܛfո lXe@hBA v{pDE ttHށa(++**+*rrr Jrp^nkkg{C NiMGoOoG pnj`V؛k+K2ҒΞ|ţ?wK2fsͥ@Ye5ʺfÅ<Ywt^() ^n '@͎S>9aӑc^<+zv\h1lݚMq!Aq!YlߎmٷiѲG-ݰm_0֤K9!#LNܿw}>"“E79.#]$@d.xX` X ^ &1rB*L7SdƘ @5\WR\Bዹ>'+<:rQsc#׆GE[CG)`FQzosH`Ke< % &1)4$uN:T):ͥ\L@cѦltP.Vj|^lƊ xjx{i|ހzکo-FxXCpvlx k1mfv?yN|WOog/]ji$5; ͭ *{eyUU +;W[Њa5Uյ-=}' ^]^|ǎ:z|F~~fv^QESmAy%NՔeUՖUSji \qB߅W]C}߈lߣoyd$eg=5N=cV?W|—u6m|j˪,_311qǺйDנb!At 8AVF.a(coD,OY~!q8fk=C"lQ1  EVhhVKh\{e<\.KeBN X`LKI2`g@ X%s@fϙa3ۂma6_!Ђ&74 F6Hl>V!S*S9X%g㚞" `|_$r."= nT4\cdH;׈z<> =~{##Hm h| Fs`X|V\z[{aXy"-#=r'՞9uȳ>vӆ5+,V!\ w\e]8t!Xk? $ܾ7B^"UDG~F! PEH8/L"$ ?NK. \t&acEr4wF9,'Nd7N{fnV+04$L }bꝡLzr#ĬF%WX_~? u` "'\'nzwi;$oEb_^}5߿kWM сȤm8E@Rp:)x9 (6;|%lwBʽm4ݲf{BWOgIetuvDhom-+(2;^VgWQﺈn ]p*u}}uY)gO±'OgWԷT#TTWW%{X6 ] ʕW/㞢7z{q =ʿQUt>iWx%lcԋd*]̆ĭk-_{>spʧ2XVʕbU _iLxH*J=UrL+vxtPQXXyfDž͉ 1bI3i5@y!`e|5~?/T.BLƦ:&4(mֱ > d*R?'< J`"RFSbk|8 ``k2X ZZ?+ؓw8j/g>'~X*x-xǁ=zP?8` ~ݹ}Ƅ̉ U E"^9])Biqoi0:z HaB1GSDK4u o(.tǽ |=wPC#$`j 8-dq8\.,& 8m1~ 8[ApgDpuG~,q@۽]6&ݟI8ͷ"Ғ //ϟ^O>Ï5G,a@VqS aͷվ5tؾ[or*k!%MDjՕ 8cn%=3bDE%D@j{a}u戁19fLiÿy mX\_[^Z^mWT56XewMp> յuU5-@ڡtO;Pښ̜܌3g`W쵱^U  D^zj/yfRKW]rxo??2SSw=e2M\tM|׹.x'wZ~G?=O= W>e7mܶy1tjOZ͗zwrL:+)G1ul a͊F !.ߤx{DDD*4~0!f1l@5JDjUr1B1 )qɐh,'O(\,3ѱ!ѳ⢣m!6Ѣ7VoY[/o/0N΋tсVѩ<=EH=\Дc9Yi&PycXj %t[ 508c "|}԰X(cx >7Yl`oغsS;t/;Eǀ:tѣǎ=r q>y`_W-[47&4V穐zq\WiBv ӲIEzE3 f?+.֝d~wr7Fq wn+IXK6 ыXs@gGPYō-mt0ml\Epa)F i˝O^K8[h&8.PANCbu+rH? xă'#c!KR__|ɍ}ѧO€\bBor 03E̿Џth"^|6"궑Doqrk ݸߍEXeQ( `hc__/:;ho^> BB3zo*.*(+UTT5b(MKs0:{uuESK:a Ķk~A^FfzjzF^IyE \KjBRVu85 -p812-rk@ Ş^xBW._%=GUI^ɳv}6a{xQ eU3{'}ϼp];mXn͉֯NXb~VUuj;XXȚr1pN_?Zr C"<#p+,*&vVllDl7E٬!88f2A@6[h4ZR㥕JXwqR ylZDÓCb -],&_.(N1Fąy4؈0-8 b &?dB4enO`F{Gj#pkJaQ9Ctr(sIG0MZ;tX[6[1<d|5{}}>ZN!Q CQ|LQ#mY[~ׁg}@14ТÇY{CXw@9kL!'axhEbKL' 3ݜ/ҍGW'$ӏIg9}߿C{}X,o֛LJ 5Z@Dv'X @/эAbBEWHX8+!l6 3qAÎp%'' DZKήl0fDFH|UR W}]Q2ңX_`wOo?G9{vِ !WiɸU\A…sMӀlGbdZGzDXlc)"]dZ\*Tb@'9v4*P3JY8ac9!(`u8TxQY[p} ^.ؓ'Pމ〵Gv??/taIQ>x(<9YXV]W5j ㅀGay/,)((LbvO,KR{N|KJc])Iq9QRR,:cت8B 8'EI'V/UMZH.`~G[wgkN⺆a c pj?pEϑit9fn+|*ESZ+ӄa}]Ē+u*\){åH'2F&N8{m ޸uӖM7]~]f򕫖͟6atf2)АSIмFИ!=7 DDv"'[?ݽd`%}H!;R^V"z@Sh\~#W1 F.h(`A>@j9:f216Ab!`?zd9FضS Jր32@u %%i  ]#ݻ-nÿ:@&μ;ؽz DX{".\liiFfY]Q}ueIJEp G,&"Jp[LT%ŧI>, i' MVjYlu O 4̈Yêj**K 5=ﮝҁxN? T+>u39q}16>Җۑ~ׯ]ԂJEQΟZ5UUV lqDKC1a"+8FYSo&acl8"-`ҳiqTjlŅnꛨ(Z/乤68z;r`#{e޽᳝/G*w$/`ޫb&gKJN>r ZZ?[x=ÕuDž@O=|4*>;Op$Q_׀;1$ k7pޫ/m۾mS\piMמ{uW{s3\])34|P3HeUL!W$J>>퍌Eqh4[q1NViDy,5:ʩ oڼvؠq.( ѨSY4T+R ib-|`39<$">KX b&`S֨l E"j-^Rgr *Lo:=@Vgtش1>3a F zǽ~;i# `e˦M̮]&'w-ru9WX`f&fZ0P:&Ȭ^jPH~Z(lY+@PmWbZ/NmQwF؇ZF_t5`tp "gNhpJ!-[ Ѐ׆aWP0:À5oDꍑ#nx`w "?zVBWF;@WwHM`ź|gʁ[enZڜe?:w֔3b}pҊ,&2<@U(C%Woҍ'k[I RGBf8OC-׎A䳝K$80TXuQj[%OYE(CrpZ8`2XebR=,$xsqXKgI* rj o`88hI?Z!Up1-dXf ~7r 헔= m~wyӼzMTx]z%]dV - d̓aUUȾpPB\%@.QU /-b͉#8]teD\[XrM5UhVzj2@L--M8 Z VZZpCyǏYdlmpva&kd\-&ٕE5Z*!]p;fHg :B&J.J,V,s}c:| bDz,DEsYcz@ljp9bvaxJJ3."QC=<|z?x=?|{{m?ic\.O "}^k5ۀFDcbb}с@|\IT*+-85jn/ S ҶaQ&0{S[>'xɭ[!|6''(]4 RQn͠\1mh1pm z%NVJG@"~'t#L)=]xHԩB/d3d".=$m(FZ1%o0Z@Y,bÝ˅[)j8e^B1u&4hx$` k{;(,;nO_,Hc5xH␡2`>I>sP;pZ*r4>oE_HK??xoTڼ֛Duxp[.Zϵ\ԂOLBtjHP:[TEEUq&lO;r01)7SZZ^dAm-rsAr&2Ex\}UEue3֜߻󎽶} =?gNTUמ-/(B[TOBlO,*]]vBTp{pֆڪE:VVYUQZ NNR)$Ӗ,G2ⶓև$1loi1*f H ܩYDz8\ 'taX}BrnlԃPtZҺNKȈ o(82pAn,@b[H#TK_G,2|cIg~1:so|Zo޼7cKٖ#kTS D"VVȵG(-'bRXPx:uG8q lusU$} (*CB[__ӈGz[|Bc-v:3~W^qؑ|(-JE$gHlI%em$57 pW|s/{׮^$ߒW.474W76Րfsd[.N-.##mB75W\ڽog7ې;mɢV=17{ӧx݆ǧL1v 1}l{f%Ӓic3@\T?t Л5drx<@Pq1Θ̴D_Lt>dUT"nV6f2{1Vt\E RM$EŴJ{h|դxlM -0:a  Ӣ5)b8h̀?N֜4Vո*5$D{c ,&E)2?"$ CCIpPvhW_``н@Pΐ"ZOx=nD@RLbQ&6&Ri;[a S ԤQyb?SijE]J7kج̔à9X4J E6W hvchI ; Y  ˰* #owL> ) ts|͢I`mH8YGRTc.$!>$e8ԊqA`p iI9/w~P2||cx k }@}筷n!޸FaȤ 戩Z#U [_-TTR} (v--EXɖ)(,p~ ;vt,/dBL j*8mm z:Jw%%e%'O/OZ3lmEUʢچ&[574apsJ OUTK6t%\zW/]jpڵk0`lQq n / ^54 m,{¶mlnSO.9wڄE-;6IX~ռIe/>ޟ`)/?ĦU3f͜4n1v cQMI~\+:٨8n_?'ħgfdd'c~^b5 FҬfl6mJN xCtӮ00$C Ue HAFѠ<1x\qYo;ߴPzxXtNX 7Q\mp&$'h1 vs5΀VmP>E H7Ĥx፳4p2<< P7͠tFGS$"^ V}Vw@hpFy@H DRC|n~'Q)਀@+)uUR9o0zyO?uFl\g.+1|SǍJFD!sC<ԋu09$֕I-F{Zh*NE +54Y<+Xիzu%;k.V.`R ,2 g2Ťli%[,<6!F]YOʸb)zd\CɰƉʊdY@=%@w`88,,<bK7F%8Bࡏ 8e he0[TA .Q DA'u!ޢc.QSHDZRp |0H>.wޣ"%Zo6ٛ7'Ր5WWYjεxKmIBiD$R3 i-g>%DP@2kQՊ3$,.AJUJ0[C;*"~fF@[T{ 2rUi3yٶkWv؁S*6TU774V65mtjJ^Q|P[/_|믿~]/]xb#z(%Jo|e<\p;Nޜ]ݽ-oE O 肔ZV;Y#h\"J VkddןqEeedfrOldWPȤrRХBp}HM7/7gkcˮZ|Ŋ+W]*{eKj)g&xFAnT.&iw⺊ :paL0 Z29 dV q1mũRYuu#a*Ze{Ix(hم6A]LS||'̊B>-cXp &#3T`8@sD{@D];dta}ma}!TSrH.pV/pJmg?I{XR޿>N N 70qMc7_hnt_#uuV~D8uUa<*!!N*G\ZgHCAq gCS S6UummPWsX(yу /l߹}敖Um..+jX[Xp\]=-NI.\PWUVV{\*Σ, bscMEuUuÅ@z L}r7]"jp/٥_vK-cϯ^/姗n\5sʢsɋfN? n޾D9جI1p͉HH+:$lĤHƦj NÐa(4Rb$U퉍C_hXʹVp֢Mpֈ$4guu 2\H"d FтBɕ(J犎H l".8e:EZNgL ) cqi֐`L֫u 2H,ڐtDgN<*shj&d VCGΤ5j-6)VjPwx03e?rmκܵ^ 6{ҥV\ @|ٲE ϛ?{Ǧ'':P9e  %{\$"\jEjI$tLW{Ix0hRP Eai^gbH`x|b0d-/@\+pIv]4<8H4w<"&2r#b%bwHob _}E>8-\= }1=>@Ûo=7n\q \ϣFa))<%)] &2&JEN[H``IH-bC!)M(-$^]|MY 2;'UWI+fjDEW#N0JS H \* \mza0C8G,g Y*`uDct I2ٽ.733#%0YJIbtExA` mⴙpClU׬Y&{+.y|ٲ˖Xb7k'; Ʈ<6aeÃ}DTGFDC[1Lf"1`z("SYY] X0=b,FCBhD;AM+rfѭ ~BD ωo1^戏![HM񏅇"wM0 8R&;27ơFbnDKsx=l+~dP9Q|gO>Ow1 -&_;onv]DT ?7R@ F t -dPWIZFj zQ4ݢ9 0xH.V`mEUe-N'35Uh {j+/`{AUueueEᓥE;ʾ};w}tM’ںE*/|ҥs… .]Bu^މkou@\~\~:yiY2h|~띷n޺yKm]];ٲ[۲gsr= ӓc3f?23+c9 n۳S'bb%?V?6kRZtFڄqƦƸ2RRJÛHLNh1@\RRFjr.H(o-f!ρ3݄OM D9BfLM#U5oპ`Pe1D|mh`s bx(FgC1$,4!28l nH h0cbH P}qm-e2LfiCjQ"1fOKKMIKȄ"V{k+8 h4R&)\&}r\T ~g`_n{}@Bj2j5j1HsVWg̎q4RZ 7)kY >~5rY.Zh WZb/YȼӦL?~LVb[&P`-i>1}Ԕri;:Z)*eXh#ʨVoH:qDvZPh%9DLJCCCi &X}iLQˀ?0@X"1ˍ8f 1V@&v7#?L 7j;Gn4|7HAAtè 6i*;???~W_S  }g4E5{zm`p\"!A-(E3V}HO.kȟk'۩ڪJ*qbE}J:~ԩSgPEd^?g1xxI :[yٕ5$U$VUSÊ @ު2@j^GO翶੼Wvޱc K6T.q\suM^Bڀ^W7ź7no\|:^vոz>[taudϽn9+yg.=7iYR&M؜;;qVOڷΞ+qԘMMnz,G@rZzZfFB\@7#-9)%m5\ɉ1>!JKv) ^MJKITr5N^0٬V 3T1he!,Zk0+"ho$B&#c+S\CHU*jVoq@cc|@kf&&'[zINLqx=dWrFzI !,De>hm lJ2 V2"PK` DR^1.hMfO $&&zc\&gLLb1c͝u{Nb2Y0q\prJI1d.2أ̚6}ʄ1ip/r'qAԈ'me& ܐ tGRK)7Fh#5m](|V\bsjPB>b8{(2ak\>yE,uR- qr0HAȖbdX4CC8B5P69CwE--}=D kAqZza O?~7xag_|Nzק\#~~D&Doq7ꗐ\@A-"-aD' ];:u)YBUvROy7_ s9+<[>hNyf7n69w,2SǏ:fϙ4jԨY)iN ?*6!mX*_JrrJjZf: lb|Brjr\"rBl)n68آöXqb4LV- 1tJv18B@ڠ:"ZB‡ڙl!LHcxL.U! +p\B/ji=uDVe"1JqG5f(j}=+Qb@PRTec+MJ L!a9Y(` I)i)1.pS}nS Hg4"&V }zR*jD*CTiLԙs]v5ppzMeV-_*w9,[SN2n@ͨRȥ.-{gi3`CQՍCA$6q T-`A%xo}ە  AwE; '.Io$.F]/>Y@ 6폱F#3/̭yḐmQ-6"mJJrS ͹*va8=A»N<_PL!`7L('[r47 kH !Hn1w;HbeM%~ʲڪj򩫫 .)9o+zw?VxT35gV]hƖݺꆺ斖7o^_UX>q }_sȸz ޸;[ػvw}-xޱa[Z緭[tsge\s^zc>ʓW,i;+3kLFVF71539ɝksQ驩iIIi)?1%ŤD$IXV_"V/rff'|Q/+4ZAH_T%Q FO[H^hH( ca84GЇ/'bE:B*8,IǤ&'...6.6aczZgtMŭ4vFff`\^&\_{b hlb4栾6,h_Kg^f1yP<a @YfeRCn2TLe Qj#^^l7sBV (!#]Ux(qx~( ej@L mhi#ɏ$$矾W_h>' SÇ}t <Λ^Ǒ$uj5>ۄ~ Er䃷P1_$ i9`ْSN(ؓ1G 8ʥ0HUh@%uU$*++뛪j*1Sܱ{ϞWwؾsCN=s(T~ycs ZꚀ_@76v `10f޸z eWțbr/2\x[[dp w-luסמ]9}ΓOyvYk[c ͙7nLzIkvazb>^ya.dXɓ0jtZZ'5nLDJO|jFzzZjZJ@J+Q%J!*9+3%ΫFR2>YTbJ/1k ܬb"㢤a \09jH&{D< &:K8fOK@PPD3"' $PPJn+Ƥ%' b]^Qm jNUk^Zh[h+0vQMQJ?}>0aIWTbM#"XVQ89H^_Rl6[nol\|`}lי`WLˮIu]F-jAZ1Z,fլHi .AhL9m}bÚħka-7^xт9gN2y㲒cFV'6!NƐʘ B>vvj>IĐNt)P`䍔$#Z_s0EF‹')h7DZ6LTPUpp;%$8ME-0$aI'7:I >BC!, l CCԏ)!C-ٞnA]mhw:uRi}E_|O>/>/"|3t5׻oߺAɜ0 /_`JDӖȌa ] 䏔3:PKQ.[^[*1,j0쀤v"\B֋ %%er `uMPZ^QYx豣G^yy+{^ٷ{_wșeՅ5k~ބ $e(0StY4j$"1fa;Et lO^TԖA4 d4M(WBm2NTQZh'K ~H۷?/f8 qoH[_#aO0 @K-ض$!kIϖ'pTLyEMY,0"r XU]a5$$_FX#)6/-)/fZ`5UgtŜxm]g]d}Κs&L?&sԔϿv8ް7lkbÀqa D"vˍC`-k'C(CUI9bJ%UjLi)&v $4*Z뀘L*==1b̜cUM  uw Ё12Ѡө">r\&CIap7>fT*:] wltt\ %==)!%=5VѨ&DNh%PW5fm6lY UGFa.i7`ؖ6]~'|⩧~͛~|ɂGϞ=g#.9.e7[o<℔0!hfBW+@`&$XN ,Y\j y2³=%8ԢK>!TJ!#ܓdHW|6玠FVj[} I-dS䳑 ~bW "iaT.bnb-y<T"TgCHutw=$h$1_п?~_` /Hg?/ƅ*nxm44w޼Au_W.]RT."AZŊ0V䵨AVKŀ}chW1,V@ؙ`gKq5 eŒ**5U5(K^]A.Cqh1 ` o:~]v_|yO.,,,,))*hjTq]W͛`N?i9g|ج8lrդW92垴̬(kZzV1(QF} m)c܄qR1_p ia0X+0F@֡.0 !@Bi}Aa F8cDIy

gzIsCGHA(`(s I`ݍ-̸s77jW/#F)۳db{l ?bSWNX#TgXg-+_zM[lwmj9o~B.bhCDXĻ{7Cq],}2m۴aS˗.^pYX] <| 쭭?yX}m=*p4ZHu%T:PY (|*&M޺E<MMW4^H6;*Y|7F=rSg5 ;=Ч7dVE H%Xlٺl޴jYg^_,&#ry\hAHOKIvwM fd'M`BRB .9%g9yE=zi\mA}e'tQ*s.'#^FDtaN-BŮ6Z FF܊0|a47\2BV-ľ䄠氫 fTC*ZY=2v̢AEW8%hOYU.Wiu* 6C->OV$3&&%'%[ ZWb\RrЯx_4ɬ R5j5,6N=aK37'L>q;cO2}I3͟?ox?ysޟ(hAy F6ؾp 8Т0(TF1,.|.3Vl 3X x8ZUY\V!tEU@jr9$_B"!N1Nh_""ZYqyA[fShTACZqpҸIމSb[5<2G̒8x}%8~1O?y_}c\>LmnrY\3Ϟ;CyWy9zirAe~Pνw}mS58@شymھ}׾:w]{1f귀ےYR oZ8k0ɰAl;M4vZz5eiK-?g+Vڲi=v3u'Oh5$gu ( 9lٲ~u~%{gb=Rr rV[`Xj٠yf{ܼD=>EA^~NB^~AAAaqIIaI?_Inz|g7jqY*,1ٸbts˳?)aQP["#QpyrM*Ac[# EjD/{Q쌴䄀zvj4-Af:2Az䂜UƓ:B2"ԗv91jAep(H2 w5f+93?+#.55%&ĥg9FOǣ:o~QJ`lt&D(=6Roq.p'j݊2nԫO6s̹ .--]h….]hiǾ=_Գ(7=!p,-T@W*`/ .q`ōeNL¿ҁ"EQJl"BEt&'jXR 7xLP%BMZ5֪T&Uj% qhwJ? C8 LOD"(M`+Ydh:650GI涝DCێ`,%]0Z˟ltDڿII}o {ѣGp/k憏ݾ}ZS3@z˒R1~Z{y֟> =~ƺ%(=eިݻ_سk׎Wa9#jlنڭv Ek^2%a<{q Icc /^,{ dݴveƪҲ6oy WVlpޝo{McӍ᎜alCpAAE<-6]%sC#3g/\|nܼ]fMׯ5^r¹{#Q:sΤF>x؉x}cw >bkVYmxӺ˖N4jރFtJLOMHfdgeeź46^3 zr>7#)=ޟSJRrg:y%S di3ir\; !,9yL<}I"E1B4+2I#L@*Jh:_Z1u n.{}nEõLvѨPj6;39)##&h!A;Þ˯Oڨm]t0Z՛h6M:`LHMF:IIh`TEF{؋_'Rf7 jQ[l25nJ%&K Smd9S'.Xvҥ˖-[lܙƎyC]\VNo8VktjJVeRXDDR`3@/C.ێp^`L{XDx$r]@Lb*M\`$8U$ ٥iuFSR),\mj&Z5a&1/@y. .t3`0yH@ \4c2. 2? ZJ$ABXJj䒂riI1~%E c /C1>N/?f/%_ 3?xLA-"=Y ܰ#dCrٽgpnn؈7[?pv>2E/Lj񃀡hv`͡#qn@P9ԪC$ 6[YUYY|gϙ7{ne+oVh ?T㩳1huT䅋ʖ{/#֒~}ʵUkܲanڸas7jRr`JFAZ/ѕ[6]6ϮX`ZFЫ53ssR]&'''#5 ?[nEݺt+*SY¤~{*p[zƨAJ+MeS,(O<HXrXߨ :53JhlS. c11,Y _)п d 9݋ߩ>䶪M^w;.eYzNmuX@\n{K)T/槮08 [W+U*QFL`XV&$f&$ $Ԭܜ4Tz+AdxΗQ&Ta%N-W+y̨pڝ> l*Q},*]Z(6Ypvk׮*?{ʸwG1_`[ z@6h6c;D4XHau8F'^VtQVmĹ9#m]a@Q4&py!ۇ 61GQgJz=\Lfc 0 ( BZwڭ  -IB`ˢ#Z@$$20܁WJhPϨ6ui %P0:m[G1cP?}k"^Kasr~W_}Wg?wz+{CG~t?=3UN5TӧY=v$`Đ50v'iAƍP~evRܸK/4Qב,\Xn9pRC5aa++**V._UYlܙgYUvU޴iϑ5'םj<{Ɛ$s֞j$`Ѻ| Wq dp{(.\ŬX~ 3"~MdC¿iߟ#_5l踩ǖ(67rɽxwUUn%A׭^z7=ߠ^=3O-!p:vO 6Ŷ,hv2%5;5o4rrr e+/ƋTs:*5:F蜮_[ip^<}> , gJXZb+8QBTK* f0#"X],̐WTwRC 66ί1|{HPVW.j,[h <19VB D &࢒ XwB9(E,0]4"Ѣ '/a/ēcT~E8,-`,,N$DskWp*!yΝ#@a3 Oj)+?E$NCGncGkexc nXݷk^ |A(v;P[ѷP2>@`Ɍj{I1zE5z7!9<؀?.>`:DA"v&fbORJBrnbr\(ݗI 6`Sr9v]|΁u|TSw[,W1'z=&b2Hz^o0LpC1I ėEH P2B`)޲Y4lyݟ.Lt$c賈c92y- C 9/^MC%>d~@vBjcG9b_ _AZpP٧n_oSɦ+dܥo8{L#Ou:x@lc胚#8%~2EF h s+ ECRU^ņ]^,Щ9vP8 G>^{tuXZ6U\|ђKfϙ|euա6[s된^8EV1 BÒ ˄"-f(Sԑz |: t,< ~gkΜ<Yo%$ H*""v V/=acxOIAfZJJf a0*St:[.OZIYi9f e:M׻OivOd@m /Q\I42Zh(V+.-Zߛĸ@0>>?>pbcS21Mxn ;(*Y?bNi6,uRSckq.ߧ7Z"ݟr}NYuLzEy:z٨1tNjUGJ ˊ<ؽů7nՕ[wnZn]U+WX^86U^`G1x@ԔԤؠSRSSFŻ8@q:Y#H!*NZ p Ig" /< Kdr^"r9\Z,US_!Q#paX,Vx6a Ɉ,`0|P> OdD0&7i*x[l$V'J]7h'c#btttN4(z"g]Fy^ - r?ј^kۯ~} @ Ǘ_<ݻ75ht"g Cyw}1'HI9&bAeLuIDz`v+58v|?ۇȌAG v,` i-;|tujN54ԣ]TV" B[aQ[|ٚ -Xda{ۿ'oo@)xY\[ v͚5֮ZY^VVbU՘~fM=z^miɀq9YI~AbbĀW<(&*vtY_* ҈ŖHc-aȤy81EFDuZA& Uffw5tٮٌ q t5ZR*\5`@@f1-Pz ?Mg"Z Q4Z$NF""ШΗi_+pZ[ȬoR;"ؙ~woA·78@x`S.&l(os. .x¢;T]:CFG!ځpfupv`_^f%5?:#GK =valB?q4IH{ɓvƪ5˗]h|Eي Nھرڳ/\mj #(:^ TC(*n޽O~'߻{GwH $&ѰL/3miw̟4q܄7^6⍱S{)%9gWVVڸ$' \]^1kIG[-? yl2S)&ޠFMtyHgw/FYfFdFIq?~{QuNr*Fj5mx[WAG!*lIgPH&×1E-(<E"H"Q[)|ޝ]LB:`%'&%\BRrjrbjZFb%oRb ֪e B&=`HNm5Ȉ?~.iFt^_B'63r"1|!SHeDDF1YJȤ%! &''n e1v1"Yot6=\y,=OtuGiK-0bqٰjͪ+WX^le+V^n]+˗,?kG޷ /+=# s*Ӳs2SnN8b0s'0GQTjd!nFd:B"Z`+12~= AS1DC]Z!jX #(I[VLr+j Keq3NV@D1HJE8}E @\i`bgH`v!oRKb$_N HBI,BXŀu4CR8Tx!`th5qZ+^:@[T!Qv.>p~ pLJ; {8rЮw[NuGm۱ccՋ͛hX4-_|#{;~|s/ba3"ի/49Vw:-Q%@{c`"0>2߽} wn޾}"!mעS&O4vN|}kJ40=g~Iqi֮wE ݸlڕe'>|H^{ewI xtBc"WeҳR q`vn^Aa~!k=-**GP9Eyѝ~שgqEH&Ť4FX`'`G>yvO:#K2>y\2EB@,Jxv;5#/K--*C\\4 z]n_BJZZ2F=&%&'''ǧ$'&1JZdGt>Ͽ["5dql6*ZtJk-6^kҨ\QUG3Q"\9|&4i-̌`"&1N\W)o,]i ͑m,N˟kěoM[r%J/.]tʊUU\jyyYƍ0fk`w#k:Hˉ P  ZD/ZRRF0'DL6Cbd FUez$&p6j1y5 pXj 17f3`A V@ hE.2Egx<Q* I$pgTJ%,"uhD91&=`k1 jQ|X O@kbG4@>_ktQ1LIK͊}솲H?u3=Uj8ycٳs׎mwޅ p2o;wc5c 30@bxQl(;y8K)03+=OSݾ| 'MWSZ8O0mI>fw'=ϠC6o%#ݲiꪊYSG24(;-j5#_RM֣G\rߛiIޤ=z(-)7HUz~jOJ)hp1Y #tDRQ\φUlgGԳ.2(dlΦh/,CT"X""R=(}]SlJ|b|ۨg`TnJRBRJzzzJ ,S22:El1dHo~O JR Wg:d4r8Dh!j}~+Q8tS%袇[0!333=1>!6>1֡x=,d; 6[Ķx mQjQ8ۑT2t[s+*V([RZlK.]zݺ5+-ƽ ^=ff÷M\,ʼnZUlBQ.0C[h8)alL (NkjB!"G:Rjw\N;\,0Vd1N@wJ> 6\CD^ۅh4!ֶuX+v<}H/ᅤ칿k&А!/|#L LH m#I`%͹!=])㪭 T>\#Z E>K:D#&ݮ#'0y:r^FA?zX]S'j4d-$w;7ʗ-/XStVl9xp| MB[^ׯ5_hV 4`ǘy[޽{lmu0i-bkL1yܨxkũ^-2O܁[}hy}uUJCGy퍑 R \>_7i f蕗P'W9R2 %` O%9fz$͛_h>_,sS!g9R>GDc,zd-L$ 2!yeE41 X1lب2#8|Evt._bZ͐ٓX] ]\rj3>@uaY `3I:äey]׎?#娞7.bA՟2`TF@tjaqH6<;ٯ &3Q+P܌d`i)NLH**[G˙ῷQ-Ju*lvG@,re}^yWYJ/)]`+WW][Y]v͚+W-Y0gwƾ=r}ㄼ0//';+!i(E D ٶjʉWN\ `04u4ZߦJA:6 ^z=1&8Aԃau(Hk1*$ ŨI@!F.%2ˈD$pjia"Hfw?H%^< 5Snj!osȞ<1"|>Lqb)̹&I0bV0RSuNaZ=YWy3jmNINܵk޽0 pAړ` GOñA9L9l8pÌGv~s,_leY˗ذuƃO6668WwK_td zbӥ >{͛Hsdxs >¸t>OϿgܾZ<o߽}c '͘1s֬3wKޞ5= N\U]UY=ǘO$z}ҥ;bԯO=N 㰧z!2J-txm:tGѳW=K|KħG- 䯯"R "ŧWT l:ˊ|cJ$F'a\>[zլ`HTZvgL- 9/)| "q-) &ٯƧ$%ԴԌ,BX'-Fhщܨp),2X5 dqNm`挰0*=Z,t.wZz]ЫXbq.N6r\N} #_W-^vD"'BPV2pL\PreKK̟x1VVZx(H3LÇǥDQA~\VAQ2GQ$4:zPc!`X!bqX? |YjkaZm^vx|m}p-ý3Vz/g`M"F$7ˤ12yrrB> ,PXgWFEa88iIi`4x )w}gD@ X]x)9>MVm" Ma+0ɕڳgqzPHS'ֆkў5!cP FĄ#;v4?u:^'kkΟ9^܀! O?ܽ[m)[Y^bظr[ Gk<{ȅKH!95_l~G?y&65߼A?᧤K]@ڻd2 P 8𳇟//K 2Z[ 'O19.>Si3R L[U~Z@ڭ@g `+M\0nܢic>gI_)`q9Q-6O$RicsҴ&^n'w^ؽ +G޽J R.OR|f&L:? 0iKVLt&~$R>7`3LKJ*]ѩLZT餴G8dQ`KOOO PϙMWXoRVc4糎?ølɦ3qh2:Gq]^)5U26ɬ F$ef ^$ZkzE>e\" EٟkK= CŃg*%,PhHn[[кXbgpc~b,x~B~X G7B2&"=`G^dnP>wNq&Ѽb $ j;v!ȃGp{"j%ܓ'j1wSQp6ԞHĀG\9kWYT+睊;sço/6ԝpʵ& W߸v'5mj|@g?0Ůvq}go'116D۷no0/8L7yƔ3wy}܌E}{zdXjʪ7#j8FVfk*`)x- 4앞VZm '"cJRaN햛 lq^V2Y=UHIOL03bSt DLG4Z(.*ʶ-0"ƠE#%HDr8-6N)EaGtrFS0KII42wZfFjrjZK`E[WXUo5Ek.sfYlfp5U ޮY"Z,qyjx3-oOۍ'-[9/KncL9.فRR6 }Q1bvGD{$C6jt%R6+luacN=sҲKΞtɲk*֢dㆪ*U͞o>SRң[AQ~N 4*E4>ĬQ$ ]t:0Z_ +Wڐc,qdUZc0YZP)s xuʬ1oY\tтsgN:X]z vwm7wnj9b0ھ}Jz}ՑvKO Ѓ qB&&Id|@YW){a4:q|D(BZ N\dYh60@vau9~?D]R|߃Zs#z"ۅw|ظ`mNӆHKb(K0:VCjnrE e`pb9``B(KjqQk,md{ѼωS,{9b ?Z?` ƅcR#l!ђ޾ETIի8O @jϜ=uМ%3@q1oNKB;9zckNoD A36P0ƙ$Lt͡{֬p]+.)+/]Vq O>|L 6_NuDHE >Oފ-~ ( IN>g<,bj{wo^o8L5kʴ93g͜֌EUKJ11#z pY7"ݹ/k r֔-Y^l 8d@IVGS)5Z̗P49ݻc:sS"dgg'$&nAH9泅11̟ē".x,vk{`UAiLc[t{RltrtJ, '%*t[zfnvvVfzFfN^AAnyyi) {w-Iyf7Q+S6JH-.ޥUhtRF(טJz>tA:W+HNJ5hHdas(F#aѮ bzG+],at2Ø'T@a1dR.7le \),Xtek1b J޽KgϜ6i{o{(ޣw!#|}@QzbMש/f'vk(#(bM8n)@j_@ܲ&ZLqatv\Axlqbcc`>?,2X H<>X vW8><^pv 8a3 DJ*UF!+D4!P[= f7\(wH],̽{:?m^jΠ¥ 6> \pM &8PsБX?+M!V7m8xW/?(20uYjQH^[G GvVnܲmE Οp+v9V۸̮O4^wc*`0|2kϟ?oɥUkJK:fiזL<~;Vumm[0aúueKΜ<6֣>7*X\F;Wy_MSsge'eg-[I BRZ2BT"dsTN#(]H7»DHZ+őlzYM'@Ji Hl4Y5ڔ 9Yٹ uGRӽgq⢁Ņqf S[#'s٢T:Glu2#)?mȨ41,Zݗ}!C0hȑ#G1oW4_nf⢢\469,.'ީf9%EEи"Xsibȉ':dEsO8L3wQH:6Xܵgm+W,;彷_6d`>({ꝟw[0U *P"!qh-1ws¤'0Kscqܸģ/!.rzk}qiwv@k*lc>|]1wdF=\(ƴ2ɶeC^ךT,Z6 -Ea$Ӂf1!:aq|Xehzyw`Z$>Ggh?|3k?#>#Tݻ-J5Rx4Jm,k  ǸN5LDo0.III gG bN`,\E܍< x6 N๘G FҔC0!Fnf]$ U_/b/ZWGg{' űѱW9Q`z?@e?~8LYGx{Pt '/^ PWk/]6ŇP![0'O<]=d(\bﳤ5';xf\t@Ξi0/ ƞA_?QUQYpE.Pݖc'ٴn3\jxuC0\'.]*wo]{r;~ 8  Q`A ۇ"O= ư>s_u,h3+g0uc 7e+n]nٲe͡᭛1JmS'CN S^}œNA(L8x}ݮ}n~A沸*A=83H҂#> S`%˖U,[bMU5%mرwmWcJ rrrrsRFJ. h, c5x|^$ZWTxh]J((q*XժNשȫo(1r(a34pƀ8LTbE7B 5I-h~$o[VC0nhY LDbmK̋Mv8"Z ئՋ$X} '0; F>{ӹ>%X$Nbb{3ܾ}fDu7_nhx4T!_@D>|$F;=wi0t# jع{mמ`{a7vbGqퟰ}v絛ۺiAڪMӦN4i)VWY6=x̩#'Q΂*xʍ[ͭ%G6Fc7ߺmKrǽg]t\C1fҌɓ=~)e}=}֟bYN8wQUk׬B3/-n-_dYS&>uه%3CLL40M sЩ%8KY rӳs2xKZZ9!y 7Om > qTwχ;9;Q{}]]\]~1FʓNcz\& avi@f@J "ȣ&Xl_o!-ĤdV)QԬ!%C+ajGK>h`DWO;:?5cd ׾8<^Ӟw>4J-a9Q>90ϒ;4/`?~ŷ?:qʴYs/^X` ڼq9QJdeM5EѸ 0/" &[qGn CEM0J"6j k.OLWo4h4ը89315Hr%^ FgO+bdh@6"GpƘ80 ArfH0n #3csnj146ŀ>=$/^}]klb:r{.`VдwA{Ŷ-n޸zgu/pgAמ8z1sgΟƙ2=7`C}Ʌ8\ݻCw\; bx hmmټy5U+M8q'{pkꖭ?r35sEq'N9ˍ[`mztv[-m DIk[r҄I׮\j$s ^w)Z87mڴ~/K><{ܹ'M>̙sYUDkW,_x3N~5pWH3)u>^*Q:IEEkNjr>1ɚdQE18 K$r#}Gz(n^7؁pt)N.N4_;M{CA]@?Pg9.Zٙ`VRe5M hJLIM۔D ͉bbK"}}uCB E˥x Ж,%N)I2alb~AAQqa&F)) J{oȑϟv>yǽO_xIru_ ǭw5_|aKS WڛvN~tpqE"ʚ[yhƤΘ9k+_Dv2X|M[0o}%pa܂l8$$㤢h>&#GE.,gyÇGbڬ|$m,,VX5N@Xb&%Z-&)ARu]8 P Rą/t ڳH,-&qc' (a9዇y3,b'á#GP'#@^L:vv tq^yUWV_8o6c㦣G돝;sr}#gСŋ[@c{@t=@ze,xwZۦ&lɸ܂p2 ׎y姟~ {>oqB) vx~-}/;nDҢ!,`Gn,i t6l][v毪;w~꽇B)M+$ږHP6jN b3B8|UZ` l&?nD9k&-Nfi)IiYٙIfň{lU @k#-Sn8T]IiȶGd1R吴8'@c׆P^6wC24MR}7ǜ\0$g3֖ϻQK]Z@;wn7u[ﴵ2l ?Uҧz8rOO-ڿGN9{ѣ':x㇎Ϝ _DvmrEz&iѣًI͘oy,k78'pu9Sgt4a)O}ϚISNW=톍kIШ\bEI>u¤_>d1j~.r38H0 iiI6?1/]$!``ycp<]zZϷvE N]]]{_кx:P[h7Ǖ*zGFg{;{т ɯ~X^ĤE}+3 ZSb^i0 ɜ3|9QGGxRqbD/ x8yRbzzFV~~aAn:9d`j^~af'%H|4V, ǐ%gX).$,.++Р2&' ![wΎ^/^9yع9uD)^A`VhXph"hMO3*dA~aU^ xي1xŊVPjz%fMooདC sR@2U\,H^Xh01#4F`&'p9@/~T4Y*NoHH0@ ̂$'xd-FcŔH>M|R9pMp4*lc4.|HWըAЪp~!N.WjdSǓ)S(Pn8 hv-h&<k$5>3C[^bk+@a-y7}0JFs1l= # mo'=~;7H' i^+Lz HՈPT'%$gN8}!ҝp3'Cj8=qSz<::9Ǐ?qko@ݹ v޵귢UW/-ܰe[}݁}ΜE}%3.]&&.aAKܹM[=zimvŰD%W/7fsg̜:m?~ۉN+Gc̅sgze 6mX_UUIvY֬܅ fϘ~>*=,'٬W #}}=\}pt(urŤIiI,њb1%$ȼz<@wǾMpwG]\ݗ9:9x8y z=A~L_?o7 $$`67'0MFoTGpN- 2Ac2[*ތb+ɚ ˨bəY)Iz\f8RRIBҙTo>oJ`%#3==3(/DbjfVG%BtℇG1h!켜t5%?##-,tLXN}AqS'߇];@R`_/屢THwf}u՚ X^(u hQn:kW.[0wec R&VIeRCA8b1Yl\,&0ДKbe&*jBC,@bV ~MIIK3Ͱni)3=- u٠kqR{ /!:F|YT&SH; *_2^uRpWb/W*G H:mEEL Q0BB"tޮ!nߡ 0i߼"bϱ'Y Cb~`sy{wA-n;WwX0 kWP^V]PGd<mOb~A|i\z92bN%0`b;-gϜ#=v .fc,رk'4|cMe嚕˪,`E+WUݶɿ6ڷs?.0iѕ+Wqװqnj&дm:4G{;ZbXyyO7bg͘;ִL>s gO}޲VsƢ۲ Tmuu5r*tUşSiϾxE9V:6Esrr􌀥34 c WkF1^#Ri$e|Cu{gϽ3=.7;Q\p./7wO3VC\@?+( ń@7:5/ds8A>n2` a*bz5(1 ThM%nٜfMd@99++"PKE>n.v}^O5JXAN_1) JʆeO7s J u806GD#Iyhe.9#=*ʞzڹqt鷷vvikx-TNI `H2cBnѰaE_qCM:nzeŊV[_Cb[6VgiiOߌ/+Q j!SJ m-hWXo0Aƒ/-1qHZ7M(e`Ul- }I%J7HO#߁vF"`8DFJ^8B%;cdKAqeg͈&B@עP- oI.'$Tb6UJ 2 t::9ú;z޾y6}}85hZ2%3Ϟ1ǘyqN:ݽf5:1spUׯ\$8E#cOhar .= O:{ Ξ>q1O=~/fx]3hOJSر_74Fڝ۷oݶcm۷n޸reUKsqk?x݇8|#^hۈgk}kYpnmMוkIXŲ/(sڤ?~?}9n\xZzYXOoKf&iS*$1Z-O{ﴌ4DRK);6VfpY/^=yޕ;W'7\\<>nT<9͏|)?׋“k JeV)byLV#]+Ӈ.uuulXn͊% jM/Ǎ⣑CJ 2A&Vh;# \ s7̲C9HЅq&i,ٔj"Qj!vBbgz:dfMNMKIE Lm=ٙiIV3ֈ#dZ[Ș!i; _IA'N*D.ɔq8jsDm_|> r6T`,:]P}}^85f7`ùvvv_xa ]1l>yBrlI }w{i7cK{$Dܼ5 p"+"gf+.4\<4Ǐ9vK 셳w!046wM2u{`7[k3xh1˲Nk3̅;-n.XT>|yӧ/v?),_fEU嵛7fukHIbe g>~}:0+ٔI#ivABWo4xVxUZ)0=#a¤0X4sGwW/\\i|=+Utj5XSaիSZ]LTLdpYZ&#*:4B dHURa3(tP"#7tذҒQcF>$5#??ttIAivްVuVgV Yʎ Dňcܼܜd!93͢Ϻ^ˠӜzy^ӣOI/=8䋕)fcΘO>m o筬\_[[SLvsmu[aj 5UW,)=m_q.-hҪ!(7, y\""P,r]T84BS*R3jINNMI&aQgĕiՙC"72p>d&C$@Hkp~luZeRdXu=Y Uc1ɽ(4]YXT7 ĭ:;8;`R`o_/̺A̽Pbؓ'ta~ϟ>#dZm25uelvTjH깳/^)I\/]zV/:q W} A^x(n4=z@Ϯ]w݅`؅P_~k]5+V_dɂ/_[~ז-O=G]:sKWn^[ olnnm2uV;m܆X/ VRƔN-7omm|_7>jV.sg̘xYUMk}9~5WVVՔ1XaƚJV ]%%&M0q_}7(y!n}}a~y>Pj 6Ae!@qbN^h×}4rtX§Y zL`5TX6D6_ aƐAǠ`SSiXkVsss JiP]s.Y)V 0!SzZ4E,I8bb_h6*NgX"р%l'#J2]e !ìs.7o -Z)z{x;l3:"Cw?7tz}CjA͢}@A;ǣO=l/>tEE`Vh&,^~*Z!Q,6^" W^jtK6^qs/ v]?t=vmѕp=vEoQ_c'([]Sf% VXnK 9~xϹ{8wҥ /_k Hm|itv˝--:mo=A*ގۃ;-M$Xcm3gΜ֭Yr+WV1m9,@zvʕk֬ZA/[0s)QYNZE#DS1epЁ@49=/"X.V(^fX4Gzx9xy:ٻy;|it`z 3;d \VHMcs}! ci,,а(A(!U%XL&m+Lz:UF-#"Kz< Sqyko5 "QǨӁHGNK1i-y#?dd>U 0<)@enYBT5jtE8ˏF+]_wz3I tdttʕ1*Dqrdx'_Le/~yƂ+6lx݄`U5Xv Imۼj͊K̚:y҄00fF*jQ bGv3h%@O!zq+ 1 LL<"8Z6tHQn.J,p6eS&Gn^N>@Vzj0^`IV[LPf !j**lJHBF5j 'đJxRc!6t#kqL-@CАbq-sw' d80 ÓdjI-eK' }v <ubw0D1^`p9:ܾ|{mmd qI7[nܸk.x^yz4k#]a]#)\kWoaen"AI":* j1v` fmz8)ڿw˦5`f`6^ɿ?kO8axut˹v  >{vK;&v{ݽ} 1ێ{2x6K UǶO|Ŭy˪k֯-_ri\R[5[7֬Zf%DaXU+̙_}>zhaN^V5NpO tsQ_kzEOLLMZz^ q eQ„ /.^lW ek; DB4#G9w~ ̏) s"cdJ$-f!'tT^.1*6.F˗EŒDK7"i^'{gwJ` 82֪6'e PW>8פ%ʲ%Ib j=ԒK(PתKrСJˊqH0*3H zRv!@Zqe[˥ݼbpwş(Li>a֢K/YYUn-7oۺ-Ơ(Dn޴rgϜ:q/OGdge`^}H?T|a4fKn2oH@ɔԌB8 $uxTEp").R_ڸ ߓߙqہ)f1gMDlMJNC5`IMM4jTqzyI'tplb æ0Y,V KV]c_*N庒Jt+"prcbl$-i%^Ϟ=~l.7EҔigXhxa2{ua7mЇ7n!hotp>4Lowm hTv 56^Ӳ!vDUؑ$b]kܱ~-kᴼmwk W^\y=֟xv>`b㥫ĎƝ۷n!=c00g0ommbݽ{({;--ڶTGʊf/]fEź5͘2{q岅3\rv#_]UvڵkrfŪի͙6 ?|>z4TN hwO7ǁg~/IJ7m-QNOߵS=k}A3`<^cIiNTzQ~(J a{;{zy;Q)T_FeE9Aa0ωI<;- / fc0",%b>1y\dR7(R"CMk+MfMw4:z-+>|!Ɍ8.=yx_7 s<\E L +Q6pXq&,z2`44٬៎-(G;1|i,8Ţ1Dbbz-@$lDوQCB\9ybw't;l}5Cr1')c'͜>{acUk6ndm[wo۰qSO4^_u󦚪+-\|ɿ_;fX2+Fq>""2R(%R' c>ERJjFvnVnIiТ!%Cr j EŅ f7`rN\ۂYi f+nSi[SS,T04^k4X%EcPɞFNA^Fl,C c1q\!]ݼ<==]@p:!aGރ%ScX/Zۨss2t},/P=<]1~D0?y.ȽvtjokU+#1ޗlp^[n+W@64^r ɑiu%/;4ԞSH#ǎ:t`{I'펭[a9vK=wڴq6nݺv}}\z wta]+3`Nkkλ^߶|{a'18ÓJ+~IkqbU:r]m+MRj W.ڸu[ݦīv`-ի*/3|7~҂!I?PNv=ԁ'M-WzĈ^=v21!&\*,T|10fhi<8H!T a<^L,0/z/E$ ,%D V(XFF9ALpVDd ;!6," KeU1~ޞ7g [#W듌ᨑc奧t4:lc>x$ 84wWSh$%cC!(6..AS6j#u0^͗Fwrqrpsx8S}=ݝ39tظ)XWqnoF.<ݾ(ڝ{;aqic͚+-^`aܩ?/?[VHZ8T(DR$FcJ04=Lbrr&2p0LZ:tؐh^n~aAAcd-^@-(,.]mN^NVzZJJ 8V^t1!EXL0cXJZZjILMHi flF[?/jiH \HB`0I /A!l=ebDEwuwpq g3CH8b QiQ</'R6a;/ƌF*Ѩ P%FǪ)NI"x~ށqGu!`Iաۓ-'%[ J>~Ђ#e#Ҭɱ#>aUi"7SW^]JZN a"x\g(eQVX+͋Al76)Ѥ}&>qFyNشq+lێ[hƴc6]{x;oTv .X+~/>;(; 3µJ#4-bIAc| !C ҲaCl6 8;thɰ%b|dl!EEaxumNnvVdkfk1h[L3OJN. H([_%~ȂVL#F&[k zVbm7XF!6-Fy[{{''7OLpsv $'vh=oJ ZRbϺ؆s@SI7Ϻ?%?>#mdܟooA?"VXu].Lu{S nknE5&i цu+._FÁ[Ȉ{ 'zı>z}{v޹nKݖMlۼm붽m޺{= Gwmʯ?>jH.Awr;n "hX5HϏ` $ĵߛ'\\!0}\]]4o/*Z&348}BøaH0Ag AሢP%J#:yƠgk5hAXaJJ4H$p(/[_F"sJbr5f+oV`T\gNL,5/7vTYIN1FGD*sGf%Dmj-j::2jȑÇeÇ+6 Rp[8@  i33$]Y$5,RԚDq32RѶ==-_HcZ[{)vU %"tI*;`bǵmO_aqO$j>G$cN] Wk &8YA1p߾2.y!K܈'VW-qNQMA6ms- m /\|h d@W/^8wCG4Ɵvgߊqd;6mTyMۏaX]ѣG?x~~w4?jہZ`=~s߻nX1 r>{Չ{bm] > 65^owV.Z[z٬ŕ3g,_WSvIeTJ6oPMՕhb©_~}9:NEGyz֟= +"_aK"Y8Ro w{"Ps1QJՋB turtyG行 fD&s8e#8(\vP ^$ ÃXlv(_bFd1X,VQ8ka`Z -0 0Gz<ͼ}?|\2q556mVmǞF{h@-C۽sMjV-YP>ٓ'O~Fgc$H7aN0Q L,(X䴼#G(+{3vnjG(*wXee>1,{ JKP``rzjZFV`Er2?j!MLI&dl%6й׊9vf4_ 5^J_ %tZ az;9{ٹ{y:ޏV5G9أ &е9*nlb^hnZK (6%7^ҖqA 6bw.؛I8^;d(k]ް6Ε]pٳ_vu+W/!l]nl8w$ڊc$…3':r 'uvPu;۵o_G0qOw=tȉ{50m|k{wHvuu34)͝ #O6'·X^zv"?|VVTZW]]S򏩫W_5a6V /5U|eKMϿO|cr34ttC،^OAX_ue!W.I3H ѪÃ"$a"Jq}% Ls|4V&DBU\L,&4 ":*Znr)'T (l67B.2^L,S0hB!4 ˗O:[t7B[+Vz}uMk֯_SSy⍛6ڍEu6n֮[WUvYM:~O>b쨂$C-O{ع {s_+O40=Zq2.#* mJ`l^?*F.1)PP`Cm (PbGFGb6ňy̘Xi $rH&F 0<Ź/(2)Ѳ(OOoOoZh$322R$Vy#1`؏>(;v^!pb)/ϐR6v%/+eἰ`vO0^.NHQssq)ɤa|8FK0<8N`pp03Gqppr?Z G;Jh8|ޟhyźujȩS9?XbJbvⅷiK˧M2yd ?~ s?V`0[ &\a >r F9b{}|<>t>e#FѣF5[VVZZl[vKkKJ "oFjW,2 T+ƞeo&&':/";ъƸ:- .Sk Fd1A٬@owG;{'uEBo *_?P;◸jIl>KвI[B{tbcG耀y[87n!j$ ini~+W.59I 2m߾ 5Lww) b]غv ݮ Hw{|k`awyq~x}ɣ?zznܸu弳H"Ҟ?w g|l]>17_>}/|d,|-F2 i$KqyeUM n,ʺjT g50\[{DuW?~b?3.]z)P=yP=|v [`ެS'ŇUJx` _wGW[cu}yq/ ]WmN&3@*aG!aR.iζ__Wo>66ΞT2LQ|TP~{R9֎JlŔL@X")(^&R'Q r௒:R%철˃LH˲og]m$"_=v1#]0d܈` ʠa#FN8.L*p}HeKXTBa0y0L AdqyBL$c[FqPHxͱ͋@DODCW/]GǍ3nd~og.\ѣw|p;m]C0H>{_vU+/Y6oz HhG$##" y@5 2:^F 41NMNJN0yR$פI)SjM>ujɉ&M4 vD;z4\PG70S(()Dgp$ϸ!C`?mAёH֢#C@8@8 c8l}} >~A跬J` J\6a(ޮN;vھ=86 PY_,Lw0GގfpV#z3eT'$4OѶk,շ/8Bd\? b.8[op._c/^ٲ@Ys >1~ n5_3㧏}9ttu{k7ܸ~śy͓/>"T׏ŕuXłlE nfH][ʫ[Lc Cm?~J?uA$l8v8;wʕ@'A.I#9P?ػv톍kϟhf2:# 4|^io݂kʺʺϕDAR@c0 $?6D6.Nt:F0w.jZv..PȗB\"QT G)) P`B6"9 H$"LN@T%T" djW.xR*l͛Xy5~>qb|ãO=D/dLZ?rx$FjE_?`Q⊔Pī(#B.C k{; {(6x:ԮD"=qwON6E˙~A!C Q7l>~;wnB _v{*6xFMy[7!MvEiΚ8fԈq1tc xiۨCLC9k:]&'OM6uԩSM6%i2RSSS3j 611a ' 8(U-ۑ# F:$DJc#!"b>XG :xXG6Ŗ%q'4"p!ֶ#2^?{!!/V戱91k{LS?\mkk1IY]: e1ن$0 'BS?*׆Ŕp Gop/_A_UiQ/ E  ^Fv߽^?` _ۥW.B4]zfkgnݾَxt_}z{⒒bSG<7~z\0IF/*[])vէUO ĭHތYK<}#93N] $jO/v@Ff[WZ۪'+,,zTWtX#)6?;<42n$jQIjU@ SFCWQlVnv.n$W*͠xR|>5:IahЋ. B's #ԩ4*_@#$*'d |!W*U}u HHJrueD1\=>B}YUjh^$A?J$#cc_kjB2/ 0$B_-Lw@ѿʎѧiwWFxyy ^$7*z*2iX 3^~O_Y0s}kM@-Nwxn_{vlݲiڥ.H[0kƌ>t`(}F[bԆ |Æпĉ PSg͝=|jRN>=ujԙgB6-%eJan'OD$m'ND6n얍`;b؈E p Cd2 #amD|,Z! x %{pF- QVkeRsx<B x<ܜd$[ZYX{[Z`-+]27U 7?a^ Fm&674c{E$e &jDٺچjijs8T2 ij_RgSϟ ˷ߐ,/\mM p.Lpً/_<|޿}ų砆w:}N߹r.{=G/xPQ_K[uM -͸Nr8uaDT;\MO} {zzZPQ_fg:o߾N8kxgE Nk [,Xvf.NN#Uv5?~m]leGp<ȕhb\UԇA{1#6V}- <.ÓIpY<GEʕ%r%$RRD1>`X!b!Wi2# %ՅSl-z~Aozkse+! EjفB?Z. 8 OP<0$46PW( .۝B 䲀 _Je8FAnXYUۥɛA"yR(4w t.NyBL.(WкpxV]ȸeêiK-0v4"];dP\@h48n02H=nbRR驩3.J[tњ5s֜ٳ̜һ)H"NBvbb¤ĉPP1ǎ=H; X0B0c2bę>z-X\:D"б }m,}3+k@-Rف=^5U x+&Z oDjjJUA8&J)Dj&)'P$rb>(f@ E:JQ%2#l\=9RUOGƆֆ>T:xOMwg*ņec*eDGȦR`[TID47OTh JhRQ E2@g%}Ty4XP(6œd$&=G1ŕ^5zJA"2AiN?`0imuuDkn\x"+};wܵck׬^63ix`x|\ ̷a ǎF5vx,H'&N=5V,[xaڂyf͞7g.̙1-iӦLINEPP@?v̸1x ڽ@gm적CPwzg5CzC&T{BCC!Fz) F`ZcЃiB°gɤSѿ4HGuwq xyoq-G#ʚ vv6V31Ul[0m3VMPmii6hi1\mnkbgu '.U79"v|YP~ Bwse_|?8t{n@g.#^Dټ7\~Ƶ7nݼ{>{4 }+(@YPtiko $i[`'2LQ) euH75\6qkj@샵Y}M]uUP7СCػ/s9yΝ9yٳ k U @d- 0g܌-Q uq k[y e1R noz{ܻﯿ=s`ޜg:|I( XP?9M׮ؼegL;&\ A#6w}E L#!Y{P<ݬY:x"6(O  p^.t[&Sd0 l;=RI\:DHkU~FBѕF_WyBX.+%2% %BX3B\,S"YPhN04|7^HkWUKg%:Ittpr%х\A+s8lOwఈaq\=XO#PTN$A`WCfZ ҫD"z[5T:ԧٶƦŕHf hcrH!Pn{\Rq/_yϟeq?ڽk/:5yJjH1'$̘MNĉ&OJ2}Tcg͛hVXjK,\pނ,@v>lY3fkMIZ(& NBB9b'f0D^vǎ?nG87qaǁML05.5<ʴF@}!.7eP4rN [b:5A4롥Oq8,>âS!L\ooo/p@z""ꄗ3]յ&Dھ}Ͱ/h.0q?Dzh2@Al,-)h-涶z#RcM@YkFkޢ"$v!K~ ʇ۷?7_<{G>w&\GWWo\pKw}ϣ^*xq͗߾~𦰨[skmU}cCs} D~XK[G+쐁BEWb llAT-,kj16;:8Tϑc9:z8;7П8t4wMNp'8yj޵vm6oܺv3F iR$=zv6W>)sb o+K'w&"KU"RV3hT(Bd VFw!dF ,YPI.6./JTJ Q) F& II5zBPa)%Z?Cb  0`+dcnob^_֞@B@" `BGGqؠ1IQAz'ˋp4:F!Hl-XaH^VDW{ӷwˋ>[Zi)mVZmǑ@aL>b\A/lD&(G̜+WݾA9u¥אMc.wYِx$}{vܺqҴHNi?yᖝY'?simNCܰ?vؾ~ӪYSS%N r4SsWGK6Ƭ˕J!4" 5 `4mHpFpV%L666;g"i2L篕1',,@/w$Y}z!K QD(7qhURg9ˋBسM{7G;ZO/o/ɕrӄ)AQceJs߾\ܝmm IPF%zRQ$${Vnچ?+:l]mZl;{{k -^2weɒe+V.KZp!6my̙5s&ԩSRY'#""&''OIAR7yrrԔӦL1c =a\BJ% a㐀Ep8 L@J7*ǎ=r8&m\\L FFFEFDcP=-ZAPHDb!e"Ҩ, L~E k 'B-R_P.H:؃{%4AK}d\cn׺on/m}l\+/g~ n4')}W(+:V-Uy{G!o]~_{ؾgEn\Cvżw'Ϟ8~iھyݪ˖-^hq̛;oᢴysfΞ3yK.[2g\tk"벥WZ %PM[`y[Ν5-.N2 EM3pGʴs6gcG89 vhƞe0",,=9 _<>6f`DD_W2 dts6q!uz裑H_qL&F%(e,";MBL֛@ `nnnNHBJ 6,z  `u]$gr5SjDڪJ(ü*\ɵ橪qhv 49bPG,8ˠƫ*L!dPх"\ ?~(mBo_~û T ۛ勅 Ő|`1(dRwfpLm*`w L!"Μ9)L@L&%/.NHb.w2BnbB!&0k3`%a0a!l ʁ?x9@J h%K\6ǡL:T-X$+ u2D&%&Oz"̺A. `;:qlG') 9 :ZZL}^HUՔ` cF^ڠTj ۲*++~TW57B-8CL_K7o?{ًO߽[Wn޹uεܺ˗=|u$i >+}EuE#gUٷO?;57wNd78tj%`k-&XM.KE <փGup#YYٙ9N`Қ@u #هl۲sE f';itxT(2R!ҼUMmJRh"vӔj5E<8n`Ow$!5 Oc*b#Yib@T xb  k}?\!jtF4J,uä;{;8X::yX,glkna~FU_DtQeT" (V 4(UI{wNv4B@ &[a"-Xo O@zX$Jwݯ_?Z:z'gc;ɾqqh0*VgP+QFMhM;}pcqϜvxq5gq*eDs+Ϟ8y6o\nu֬mժߖ.]`+V.[hK1XWZ+W"._@|^P v҅ -fϞ=ss5sma\7u4٩0΋;}ysgO2e҄IH&%MƸYI'ONRM0q10;xpŠ_ @WphX6ZC)TJ+2L$ J!dۛ." -M"SωǞP[te', .lB& 篞^3Nhm `XV\\CXlTK~)ZVPZ JpGSZDr\X@ҷ[16S|>{?ׯ߽yo{Շ'os[yO_+suMsksG[Y▟mOȮā]<yo6Gf?$t_שA:Yهe9r rs8yÇsزy+0%aDt/G$ٷvtӛ 6d!z`\yzM?_ll\Vuuw ZQUcemѷݗqebH6X,W:BƧJ[~{GGxIғg hJ0w/]~ڥ+N;r83cݻv@ݱs۶-ਸzҴŋW[+-_j~mOK[l4x\v֬Zl媕+!.Y( j "U 90̀{Lv< &@i)рG7yrBBuSRd٤twx !>ZD.7|X\\ظA#q G 0])5hoD!bpdI$/" ydn"A=FEw /~#K}!0 >̼oUUUV@FĖ|^DPd!18Š/UU UCn=Đ/0a ~jAWO?yl޾_yO>wO>+󊚺O?7uU5cٺ{AyډM MM-m-ZpIlns֖6S iڢDu$ Xna7nP8ànرiN0bzA"ctPVTTō@DÛ*6e4z@hxpH' ߨ|uRP Tiĩa֡FRaDjJ&pn}zppusptwX3%1!ajaGN4&n`hP ǾVD^#(e\j".(21Φ[[,z:~q[UeW0q쬵Eq=BᇂǏo޽~'/>ލg?||w=w*.sImcKGɷΟ}&s>f0 뇟?5Ys UҊ`ldP_[=?qݝuB`53cݮÙ4l9Gd>c+g.X8sfQ}x4'{KUͿ,Zzz̭]D2+W7_ʩ $J+tQ11Qa":@1k.LC Lۋ$jGDF  :x"jD(S >JHitrӯ>]Cf̘3}Yc}'DjV,2]L"U #.|_+$l/Og"êl韚?̻J4tt6v״XR};:-RJJ EgTִh6L5ws,tqN>™3&.]@(}xޝ[o\=sԉ#Y2ۻooܵȖ/^|MÁs 6lX D"iW!]~ hFE]hA"[׋-7vyai;p-R3SSSM;$ML@lMS+.t%Lv5怭k099q1`Tw0v.Z;8(J#"F2ZU*24Jt aJB[t'T$}^^x  Hkkާ/sꂜ.ȾN$ZՄnAtUg++j! LX@2KVc2grlXܛPR[>_PPzk?DCw޼|w<ǯ>~Ww޸O:SIC{gkScm{wWKkE_lqH%p]?'({$l6л9?q~MGVc'($G >FϨ O^> R)%JH,ۛ;:HގVv,H.S=@f q!A Ъg.Z2oy5`V%BJUO 8X- hzLpEHfs>ɡeK+~EYqEE߆Ƣs77 ;S$*fuz!VCFT$>oڰu3_ʉgN?u3g Bַ/]>|Ϟ=sfefdfffߋt W,Yyƍlz-7o^uيV^f݆M7"]z򥈮KۢK] σy$ns]լ56{E4S<-u:f>s.`d$y'L3jC 8j#hñ xH-jqOx%drJ <\*`0ERJb 0ʀ>#*|'5"4SV]f0,fnf "Yzhk1 b!7"-Fk-^tJ^Z^UЄpWBMWBXi14ži߽_X>+O_ wo>ɫ/+ue! $qsgXCF/d{ N:[K ?/э.c&)2-bDO%Z5\_'/jaP!@Hait| -&$/4X"_SH /KW7~l<  )$8<<&.@h܅ 1C}C\D"ר2'0,08? (z/5j7HΕtowgա[IAE]yusiGSKuog˟?m]iJ$t"kta갈_|9bgd:rӧ̙ .|);ޅWn޹?~.Ϣˉu( H߷7_q㖭_7m޸߶chY ݰq-z&$}׭Y V(eti.bǯ9s̛.8gg"΂CB)̚=jgL͠055u)0S&O#3hP d݄kB))e.QAZ.DBf<:l7 (GoBjjPHTV(@t-.(-QZ^V\\f>Kt~x>w=go_zp^|z<㇢x w==?)loWW/v43 bL.`l7>]x+lZ;Nd L:?Y۟|ƅIL9smd~٣pmwo\fԔi)cen^uOsyUx 5eTXCEDߒ&'%N?lbh@At "R [&bSL{poDVJFztxQ)^͵Ң=]}{!Ot 8fNaAP k"RH̯@B]C;:7lm}`e55u55ЗP+%߰?}_kO0‚/zջg}?7nɋoW|ɯChom)--/jk3px?Le!Gc^t.@!DŽf? ; %C聽9tЁ}7YhwQxRG?q4lY2) &Ǐ ʩ.D!-ѡWtbFOޯkS'Dn4XʙSES(jXl7(̍% ybccT:6f|4&3j/ nNLX $h śI,Ltuʨ֩$2P,T 76.~İ ͙08_/>ZG,CĎ>|𰡓L j5FL"d [CKEh#Q-m\)t`Y޷gSC[}k󯪮~<ޠ7BЫ_D P#F&%NI[r; yy]]l|pwė^<ׯ^4X?v8:IEg׎۷s~شfӦm;صgϮvܹmܾ{z-HnEkտXl9z_p0kF;Щ0!Ҽsf̀AiP=6РHaΜHӦNOaEb@hEC$5 }8krJ`( B"*".O xLEgh$biE&zC*B/&RY2|$%.¬W7d!!k*dr")Yh|jm `e "ITh㯭XضGB5ݿ[fUY投%0PZZ>/*} ~FtL>c7/>~wo^C<}ֳw߽~GҪʒ ]=mn45GMk0é=855==}z~u" xABZ'&rel^GvNZ1{dӎvZSoN<~Ù-<%99qȡ:.+ %:V<Z3dؘӦ oOW ԇ" 1$@2+uj%t# TY[{Jch.6 AqCujĨ!a#C}8l.2"/*', ":*vQCCFyvV<ШI4K!Py\2akL$016434@VWQPQWPUSRܰ^VA: (ҵk׬\ 5YDu밸ZY.IX|ʕK/^ڱ%!yLe"""b!I<;X^P7 brA[f~:ͰY^x5bhthd vu$.Ҵ]}U"ɺi޻~'ܾ+ gj3%;"x ,z!<Υ@/7(Oމ_"};0HȿAqU/SnouMmefd|hzAAvlfZ>zDK3̋ՔmK ppSVXj2[l"]>9+$y1i} GCYv%z&**F6\.\SNJA7Y,9ˈBr djm<[K>NL&fcM4بmAg43]K6 88m,T֯&P-*k)j(j)mܤ!lI71470 5MtU9|@owH//k+lTյ-L'gW{`_wo??9Pb,2TTSq| J*+*^^IUsFō5UJN~%1=cђr*Zf D -)3+6\R).o9r!B.N)s/^tͻ@ǭ޽uqS'NWVnMݶfom]iV{mۣC vV47Z>Լx5ܞhcLޚay+,~5ҕPIv ( cvj&\OOQ_KmҺetW'#I^Jj'(fD:5XQ16 I[۔dC+`bryn^{LP}*kijRt%hMY$# =uX`1l#`Q-tU54t ,hV|/w7?pȈ@Ow{;[3܊iglfK6[*cfן~%YF|iz~"*|X+DVlRR'n^PTXZ|ę焊4iv̹.qʕ+ߺ'wB핋;s̙ a6!> kVWWc/l7:c7BI]U߼ܜ۶ffd8+w$$tMLt?6ĠuXad逗n rt0hӋ@?( 2 ajj*:jjWҮB]VX~ bׂE4% ZYR"~|*""& h/T]_o¸>w 3l$ [>|w>2вc@c0-m twvt?|9[g{{z}ֻܹQ룶Ƿ>n}2xۍ>vOߎ6PI 0b BvB->~!&!=w aR(L?&>F4#(6ͪ]5;GdegUU5;tW

Eّϥ!%hfmgNXWG]DPYkOo~͕YidA1L+HE%IqaYsk[N9ϟ=uYa8b/_zZ&>iC;w_| y8A,'#X[*  Q{@}uUuUMM%l/Ё= trw[N6)dmڲut*^MD"7!!1)%5-usjJ"l%"7΍0Ull\.h3lXjT2cBe uu55c!HUeT6)m+ ӵ+W @a  kףψ@Zm leK-7wΜٳef͂߿O @xߧX~޵0 ɉԆz_c1Z>17>}x̌@`ΞAlڻz}Hvw=}G]qγG#"ض=iWzWI+^+& m$5 !;XTT\Bzμ9g n m;NM1 P=_QZQUQ<=12?" ugIq}Meّ##I҂ zJ㾺m[BC<<>qS3t~F֬U_gN K #i:Gdl,&e ?fiiyV+sN^N:f'w'1 vbYl=licu s8ru0,zp!a[x ->r"a6;';7&В%3;%AgBJr*r&rI t6''A!Zbb`3 j 1Q0&aZoȻqڱńA1H\ۘ mUWQUAo*J覠(EoPի׬[F?PAZ\K/\0oܹ͞=KZBeZ>#7⒢`L}Up N`}5t2wYLZ?'n-e v&o}>}=]C}/ƞ?DboiWO׳wn}pktn{gC_{cд媈Ï?+ )Ip1(^(|'W-9SzlxT Q0e)a< ^FQY^[kYy)U5jk"W|聖C---o:t 67זdgGxy mk֭|o[O<~vqcHE+nwږB LJY؜dcchz.\Z֚a' {05uL=̬u reS)oo幹=T Ę`?Wg;&ɠ,Fdss}-ss#D3Y:nrlaF65ֱ K   p9345"X[86v\wXHxLRjBTtD.I,@FZ3Y,+!aE33ZS|ⅈ¥ -\g`NbsHZDs56gSTR-N:l=s̹gϜ5{=ǥWu;?9=|x;7n\W\'s.yK.u"0UvZZ>zK"3'›2 ;i--*.-ܽ ''7{g90izh376esZ&:326#&oS7MZZ&0XuBbr|lT!ont"x;;s!2CsZ15EY-ZXe%%EଊQ"m\V\ oAB`$y@u T3V\D8)`Yҳ%2sedd%&izv-49-^|[!c1T?#>C(}8$6@o_OW__˱C=:={[n}pG;i諧w}41] M.(: K?b o`1bqQV@ ]IIxoWN!Ԏ7w;WfH-|rsf=%M'[f\Ըi:?gĈ@PORxK_?gnXbcRv&M]I&mqDeCs;^`H_ š'F^I^~ƍ3ĘCtq3m\]\k͝7 qݝx ^< sШ/ɑ/`,,, 9;:8s-*85".", Au`;y3l>4";َ0_o$ĔH?WG'sF"PVT BZXI$݆ʹ&QH$EYxm mPS5"RL1NA\@,#oOIeUM}cӁ}GO N9I{ho@Ѣu''OZ}_vʵ+_K˗\zǏ=y}SǏ9rPˑ#__WS^ZZZ^RR+F v!vtlܚm:=—[zӑLGl݌ ^6[d-cc^nЍ@Ȉ@@_7WG>̊0Y am-M5UUe%EXWyдʊ ƍdb+VaYYLՍִBҮ߀ ۵WbQ;͛3kRRR3g3j+`%&2  SSݯR'n'(Kh؂_?XO - !<}kŋa}9@~ݲU-(tlI1QmXD"CsuװK+56fn8x$t6Ν8| ݸsÇm>}i[;:>n}wp;޹yx}+?.ݸ{E(I㐓 hAPKJvڽ{Wў݅E{ wc{mHnwƭY۷YFpK߲jБ MNJ1P g0 $-$B\cdBD&3c#hA"#*+**(()we&YP Af:,d7 7J5Rts0{֜2fϙ7wޜٳjgJJ!2V<̭B?~bs)49u,6ŏBuw`Ǔ߾CG|i7fGGFv=GZiѱï ">;4~KW_{x{Ovt#Iog(O_(! f譩i_}MUAZJBR|lp&}z[)6g‚yz:־f23ѳ00!xʇy|$op=D]NUFWcGqtiPhz{wn߾yׯ_+/!{ݛH^|;s ǎGjouyE=EV\hwa~NtdOl\Nض5kv̬ aLKۺ Ewsr=,9%&{Iq8?'2ƒ!| H$e3t*DFSc]pTR **)CVQ WNnpv=$F*- F(v/A:캵ofK G8̙5w\=[%pZ(+<\v X@Gp9tNM|CߎAhyo+`_~5?84jt`7̃ݽ|Ν[Zo]{;{zj삩?/ ;\nPt8a,ÄVWl˾NB=h,FvԷC()|0=;J:y ڼ;z 5%9;$Gx"鑌7*\XeOE+gt|CɳDQ3"R)j+Zk>N<6HYM꠯Dr p:qƦ&|3<*Cng˥A11Q)陛8v )Qѱvv<ʔJ65'Svh oMQftʃgk+p @ؤPB-m]-m>̜Af$T96BOPD\Hj(60Nrp cgkqGgW'koðHt@(xOIə2 WXi?[F\ t% &ج]ՕU{v>rԩ3gO:wϿ.]yu$W}9UG YV?zpo ޸~ RoD۷#o\vWBМp葃͍E(+)/--..)--)))ST#dmnv8)Ȇ6 -BoRYxۚe TRRSRrXtdLt0♱ow7Wg=/HDK3#=m-h7PTWQV*ɃT]N)U*jtEE\rv&aaP 虲xhle+V.HΞ>̛;@,tOFf$4"] 3 4ûcF޼}WFt_ u ~<"v~wbKQ1LS\6ģ B3bb0K<Ѓ!lۂo <ܡ9RQX`KSCkhڏCO;rʒ‚mIq޾NV,j?>LBk+_޿q2fHlOSkt̍UT-u+'Q4+1]m=}]T K6ʰ0'0twMڶs{CxZn3A˄9skm QI)Ffql Ff١ӔecmM(<.ɅOGe$F;|4u 4, MMtYV$"Ւdm\V^~ q HmGkrX<wANl;͔lcfdVe,]kF Q kT i+4c[J%4, 9k!igogӾQȭv#wwwtu>~#,{#Uܻ m(.}ޭW._x?ϟ;{$>|jٻ eeŅ pC 1v{68!n߁o!.(mNKۼ]7D`OА@?OZGGaڰiVtjCX_[S]Squ45JUMU@B4.se< ++:1jb ~+ys̚3g9sfKKIKϚ3KJBT*:` =S)ޛCB~Wo߿e&O>zsI?_߽QH1>~~OKӧOjxm\,`w 3$%%\!\qIZ\[@è V 'Dq/섀7wG=zf?8͊o8\XG7655<~4TEmQHw ao~Lϔ3s/JhӚ3q]k{UX)7q$Gz< u mpua `gX[dt\Eؖܜ -y?s=+gT$vl۵+0#%$$4:644<ՙo8I$+ ĤآˊJ17'xi`_#CCz{:$}}}]}}}}]==}O }}Oއް{>ikl/ ^8cǎ&-P_ZU([USWSatOqyZ)ڃmp awwښ,l̀HBBml\<6",<Y Wpk+:RZ>" -$a*oQeakz Xʣ pk,kišV| -?nE7D8 U @ 83~  8Oo 0&mqO߿yj/F>½aC{F>ˑA釺lOgggϞ~w΁Pa|$L"\Gt hZi?PqȑÇzP___3-%*i[~Zd%E2SCBü<,ko͝~U%&pB읱("i%$-0*ik#3<>(̞gϢ#bݬh/Gh@%89b{ >>B5يH"QL,5En鼥 +hi12؊H&Q4- [JKvj<塲ݕUM-N8u?.^v潻w>n1(dW7xhv=yxh۟v޽u9h:wI=y#-ЯrѿJDښZQjAv7H>n^A"ΜmYo%Y[Zh 0޴0""&<]/mTJfz:ZzH 4" źam3`kE5L(q˂%;K]鉅;7S] ^x`3:pՕ%2b=yd"aֆWOI*^hrRϲm[Ff&ZmwjÝl)[2|"=#‚񩩉a ]\$38G U#3S"+}S3s kk˷8`Xl|vlՖ pvFKO(ZKsc]M%MK}M]- jQnnA^\ Z;q7QRU41%Tk[qvw  tXBIޚ#xϞ]9;R2ȈLO؞&GjaI$lbyW2׷$Y@0')olAP_FNE[][Z]V\tؑh0]h({W[K@יHBMVRxGJX5@Ff h 7iEa?|T8z}wT7UgfdlKJ,*CgUc) $ⱺ|O֎@?Ac%V.3eg{BZ,eBҼGbl[=]VtݟnÉHܞuKjxBZrL)$!%9Ӆm`aa U\4?m茮nWSWguc&"۝ <[:f+pqv.,i;Dy.vN$̕7_VvΎp<aL3 t$wGnANjBrZdʶ$j==<\;&Midcђl˵#+_zٍ $ &Sh SӅ2KIqY9 MUM O yy}Ma ,^:L>jm/^yW/_hJP{{7 w_zNVǎ=t.[SUwުM ee7V^ ]wnwlwRpBR"L4`cpan =:8slAJZXk1R[[GK] ZRt(*ama&y%%ֱ<&܄i Fu@.%˰386Qpނ% f/`ޜY3Oor ZRz$CV0чS?~)WIhPe߾~Eu㻏'qWǿ}x3|7{7+0loiۃ'u +,~y$ !!u(jr3၄8|%K \0hE=u1Fc!Q1a<6p p`[j)q|Rs 5ԖWW+{{5IX6.^v66\Q prp:jJ*TIuoHD=plSȤ3D^n*ZHRlkV 7NJrZhRҶl.()-A۞m{j|Bގ0"͆jˠ+ rɢzZTƖΰ&Y$=UMh3gNDF\q;w``[Fl@8^Sodh``pooph3$:; ?w4:A2ԣNm %CjhaSQp O)|["]P+7#BBNNEB!=# j@ aP C8777X,&ÊNHd@ A> (A}&ǔA*<څIF6`ZP+DE -t\ͮ$8\P7wC:AMN)1`arWqc3&N~29G>|. 뀮=OiW{{ϟ}O޹a3%=DӤ۷b˵qtv?\0˃-`W~ζ _/wDȄDozh5YodW^PWa;t8\LF}3x|O`K0UQRTR7$do%t=ْdM#}CK5mkm㱙Lv]<ؖls# {vۑeݹ;RÃ}=<|vocK$k5 R/[FV]Wвfs9l.bI4`Ҙ$WǏ678u i;԰ [w=xf2|`;2| CG]h޾ζw=}҆Ng!˸ @Z06 "bL 0^b"i[W ks2(h5PThB1: qcX0 ;98pmllpPެ scs"D031715576TSGVAF J ʪ`]hW0^q0W?;rjoeK-^d% [0iZ) l uL4Xv&  U䗨B!姿O~/J32Sv'? QHގy{ryO;awdtÇ?!P| " ެt8Fz֬9Ҹ(p!l+.! EV\H 3 }={8h~Өn_KKScQm) {R3Kwfkׄ+k9l**d"&zΘXpk39q_/…:=/1?~BNceEf$EG ,-(nAq1t.I} o\G`JA%"-V LI ZW 8,%ɂd8L;:{xXd- 9 U4t lw3Ō@SvvNN\;o")hX-L(d]}S˷wA'5ܚia+ NNؒ;gG$t?++7o;BHt\R?=i־l&ʥ[3L,Y6,[ ߖQ{zύ.k9v4=wC6V5lA=xi?/_vƭw?xW@!m/^{ P|:;wAmdz`Is_ lBmlzвux?ViAVUVUTbpwQa!.v\<nR;mc0RMH ѱ7AxPŁgDamHkmM%L2G%-,4T1`T4UaAYUM]ʪ`@SUfpścH 4ya0ZV\x%-Xt܅gcV<^˚`R2g͂i]+ ="IJ\RkF^Sߧ&ES_LIׯ/_} _|ݧwoF_Pȗc##}=<>IǓbP΀T.`^T,dgICCJè1:d@I?^/bsq/̬@c/u `W-5; 553Amw~AQvN^FfhmD+Iߋ$MUY‚ܭ>uPMP80HV::;lܻk};s'D%EFGFэ_I⛔杺aoYM%:6H1#ZRh{L< "v [`baF [{.ǖâXZZm,-YI9N^>^Nn^L3HpxDdTDlDHhHĤȸdegDDd/c<Y0adزkV1&XvvrF74YY+Z7>x^8{CM5EՍ-n@F+ W"3ayJBߓ=ho}pz &e-6@`_&hajDBsiRl!"2'7}މCw̌-O<=- 5-6y0C+_wwFXH҈d@idKK%L01ԅe%W%UM]MUĠ0Ajj\i@B2з kACڵkV,[dŋ/Zd;P%$."C;C̝?o\0pJ)5/F% X3~N}/"_,߾c#o_qI\r?y>thG>}AxI̔- 9(Zi\Ƙe(!HJny;{| Eň"M+#455e{smښ=5#%Wp)ZX?A/{EyYIQޮa\ۄbt\)CӶsO ce3]}[o5JcR3v),ݳ{W>RqaA8:6>>JGr cKLꚒ=*R:f~ήN ҂HgYQ4::8 \<|Cts +lXa ݚnaq ƆtmDze髫i=ut̍ts A/OgGpC"#eg$'DG%DEƆ{y{?wrvvg\tk(YlȚkdi˵wtsvvU5\-Ԍ36Kڲ\siOk)m9zH҂[oށAXGF_ yqʷco|(ҽ}==p:tt>sׯ]оǏ}b3yk<܈3 80̀$--J B+]kH>]< x!brND-.ՆG/8.z{yy9 Z58݊NUL #C]M55uQ64VV/0 W]}1RwpR .+aOlҥK,Y͵fIKIΔ[0o!a;-`'43|B0iV3uj)o} 㟾|qA vA?è:1|իw3$$6%Ť%q Ņ*m\R`I(z,)pX O [pk8q>ђRc_]eyEaizphy}E[Ӳrs|# RSv*.Aְ+P_0<_Ņ],,%s=E?GFu{I%CX!bI3Vn} ?8gTVW!=Tώ5[bdkuKAIiEME~FQYچ’HwPxxxN&Q99qm\B]:H|_6La6T}#Kmf)B3NhMdrNޞYT=}sbL@`t_Ik''>ޚb0vT# ]ʞ9\=|b-maMg΂+. cm>zS_Wnܺrνn=|P?0( } AZ j_~k,BNAFjޭ[7_?<9 0P_J¾zFɏ07q-+..))F7A|$fǼ\A= z``,Ji4.FyT򴸄ꆁ1|FӁK92:2;!VP_'g{5Om*+sB|,PDܚt;i_91@Uݏ\̝œ=x?Y^S?8<42P;qӦuUy2Irn~^AďBw\ o?7o*Ng\FHvVڕm yfe֋+fzsEl`T+(MTfP}<<2dbd!aaؘP'aU`zF^VbjֆԨԘ쀈 M}YDxxxXxpH4ϓJEX$sI0ipDx4(8|;$wӓ>?}ώڿw۷DZ8)lZ ?^:  vl]qG??t:0?pD_yǎ>t~ډ}[~)oq1V&kaߋ3("%b/dhm"p 3g0THrrpL,++3nDJCbBP$@@ghtߟ`o~ݺ5:;YGwĠTVX,ʶа@&#,oHkjffjjjfx6@&*jk@ح ijc36f€ZWVRWE ~x  #zᓧOؾz@fcg8 9VB>޽G7o?+U^rwVVTW /ʤzRC h6DC&zp^/"Cj4 򮲲b#lڪc:6WԎVħ nں"I\њ946`v %:Q8ি2?._kc6íw_ߺfQg.gн|f iTLௗ\8Y"ɬkikkk(:ZZr'&3$6HĦ2"sjIBjCec[@Ws}a~VqiiQɉeكƤzzR,g3}BGskt~VwğBsp!~d7pʢd2 P608$(*6yTm|GwzpFVZJR|zIqYiAv\P&J#d129|GxXD4 ɣd!AA Ń e111аp!89SR;v 8}?ٳs]{:B2?鯾׿ᇟ]zbup]'n޼yC_,n^K1믾8qa/ ݶn2qzffmG[?>wI&ZZ#kmklhDZ1KJt<] U,9>.U@)fqBIf0aY¢R)>^N\<=]1 ?ppvqrtò+I'dE%q/'l)nXhmiafjnXkaabjlh3c:US҅#745o ȬGnih+ՀQI18>|w{5@Ϟ YO#|Wo޾z?{nܼ{_W._q \ko@i*Zp90ՄA **ښꈞkUW4*#UEj(>oKk -vuoz*S-1u UE!@\ho\P78:wPll?#ASntzoSoጒgPZZPğKq1.eq9TO'c_|_|ywwO6Tfl Gp;dlo`GSCi<%ʯf=aii{ŪȋJB|tđ#R ?r~6,.@f 5Eiyͭ=#٩캁 ~>t|ndؽ.\s~x5BvuPߟd2| 7V@pŗʄnihD<&1Z,:,[$cr7g$Ƅ!!b_"ǡ7J&GGņƧfee%%ffg$ťeQ|Oo7ǐF9x/N#ģ'>; ާNo?|̙s蝅#Vaܫp4M޸uVo` nVs?_@j|[nB# c d3SccpE pvhH#vZDj+ˁӖd[!# X;9?yX;wotn\U˝'横j"%PDUlu5eY()I"%`d2pZeU5ME m(juw t7(QXVU}rbzHWG@GKy,&r}z,ldᄚ HLmlX_HrXg7O>~1KsvyiԂh1cjntDžK_t+.)- д5*z\SΜИA9tW&gw FƵuu4J%ow''wG/5`'֟ y""q9s^޵Jَpzyy1X40KX D@mb/ww7zHhXXTLL*EA\/ǵh 1I9ť%$beRD -MH.f%iPttJcee+(/+͍c.),3rzO~O_} kb ?pG 7n{]ZoCx1޾}/?qX ~9~g'طo޽{vl_$`b&4@vvGKЄ06k{zNg೭僎ƆZ^D ep*́‚,[HV' ʼn?P I b0 ,<,X2< P I_Np Ү]gv-a/zlްUk!c"7Yz풥mIzEKX/0316376&S14024 >S]#Z3 +Kl47WaxL]M +hkijYJsfxKj0 @>Kgϰw7<{[wouƍJt΃wjFƦL` LK&"*ٰ U=pk |}vv+m(<Ji5k/NK Lok>SSQ9<;08HbE(-熁wUώ }-T2334_VU*+;?\}Z 0RvJK+A_4^VQ\\)s4aŝZ;4<266=02TY0$OwN7I<8;Q$VČ@JDhjtz>w}<|(&OL&峙|'g)3h6Ń) ʥ"A ]W&%$&%cCa>Qeb7,Dbd2 ‚**6TTWM-X*,(~SNq?|ا o?9_H8#wpmEܴAZx7o}CXs޸W ~թajΝ;?޾uB)B=*7nGBE0wd@4zЂU uXY¼ܼ|C:w2ҒjbH)B[$@"aQ@0KI>bP]\n0(ށ,<[b@kWؒ] )kW&΄K%W.omenffbfffjffnbjvRC=-DZ]m}##S3sKk+ K 3c0(ʫ02 0K f5*Еپzo_|Ç=mSa 0cd9-na@wGseYntph6as,헿ygflbl-)賃v?¥ȠyljMSgg{fB5.ٮv[Lj;EgmFeљ(:xcPH." ΜȄx5錈|W߼7typNQX4>J`%pdD) $BIǛ$9xe=~#̞z'w/]ƕxM}#s ss M4004^O<+l[L4CEUDhhhjiw0$Wi{UQVFՂ;S&=d*j :g:RcR=}bKƧf6&-9oVBxX.u6ՖHE,5YBYivpzLϒƶ> [9~rl[Z3۝̒4פHh O{Jx|QUS8P-۶ox扱m[}$"2kbpx56 V޶NyQQJJgɃ"`%ܗ16z vPGm8ORT"K%࠰4 EG%EH6C-gsx 3sr32򲳳s1/-!.6",("&!9)76ZƤxeщIJˮnhnk(̌zx9dwMnx':t#9t较GOs~sz¥c޾s۷H [p/xν{8Z7q ;Q./O}~wm˦ `C#( ajGFGI\-::ئojVX0 n**JhHKP$&$$*\,x/akO  y PbiT?wy W\]ZvkW`bMkq w񞽃ukq `kxBKK3SKK`nbbn,R_G  QG 4|8-KS7VcȀ*U~,RUR Ys>"a޾z݇O_x+^\ɣ?wTt,-G ^ q[ZDZTPj)v\@iV T1@dM2,*2O G2JtWLFOH GQP5<>>59̐ظĴ쬬L@HMLNJHN9{K#$FPHhtti}S[]{[]YiavfTȢ3#89U=c3wɁ>t>9r"U3g1(^vmD{h@Yx!bSս{(>?~W_|ѣngǖM` PE|7!Y8=6I~* C}]MmXqbhQE,,,/O[(`ԤŢ,䑑 b<.[ a0"Ag.V+n^0W,i@IYZgTЌWk{EZ;xjZzW8 Y]dkKsT YX*LFF:Z~ъpk`Ҧ"v`<5XrN3_J@s1@} xO_|^xϞ<~_7>% {SܦfFFF&@ hdH $Ӌ1Gq5I8q얠.Ԫk4'50 dGAxL7%:K1Ed} kG\$` DkrXXU^OZZ]݊[ uSʼ@^rJc9@w ߶˂ӋZk[YmMuseZ\fvUkw0nعkG_qmno6X]Zeyد0N^q34I^X$0;>I_mǥ{S}})~t64&ϟ/bCa4,*04\"G$%$DJlN\%;ħ(lvv~NQ.ggGGR'&'ܼ(! gW7wu5UVf' kWhʲ+7nν?s~R:˯g|__WHd[7o߻}۷nXD{G !)v_ϝ={/OѣG>[NOf&"LNLE G)+6> \ @Bhonڊ3 JƚGmb =܌ԔĤԔd 򊏉OJD\O r " \!`s9L#\<򺻺!uCa՝/[koC hsrXGu:9988ú5HEKW\bBNkmeiafbfnjf VO8LLP30417#J) )zL%1S@}aM󹈱sM6ew/=C sTS}Rza,u`Ц6Vj:f-bfsF UqM/t54(ĺ4+* o-mmuѫBx@<6SӺ*)XZ2002])780<40848?JDԑeUe. 6S]9zA*;vsLDd7 6d75֔M `IJ:{G{Z:63ZjpZql@g/;vppbeS| ߽s/\ jח>;㸇Zټ}'FFώ)pf;ΞF$2cx"ڡan@ilnm#Q7UQ؄U vPK8m`mvfzr*( x<WȡSb1€ňp6YC6txzy{yQ><}}ZGS'4PvvבX'֮Y|X2 8EjXS3++ sekjdlhjnbf pߜ?+MLuI ,xMjD@U̝^HY }m5mo^^Iϟ=b`dnjiijj Hgloj6G_C0!ghhJR.N>Z88Evr-ZEHB|702Pi(N8ٳcKzyn8ezkKkFzښz[קe5t špdtHO c}S=jk/blU_:m" 0_嫜7l3Cs'‚ek7t uB+[J m݃ ]5Mc;fn7\9@CRzVFzNNnln~~^aVvffvV:4 )qIq)iiQHbo:',)kCSgWGs]In`;uꋯ_\sAK(D{=z>vu,FRX(=%/ =ߞy#ۿk6"cS[7`l}:>4w ;8BfAeDzhjkiIf̩UlTW/(HAxMHJIJH訨Аp/rB|8BE|We\8<6ݏBN;0Y77o_ Nj>z๷oT?/_2&v5ٱu$7qq@fq'o'7`bFj8bKmogGksc]Cc3)qh'^ Kںڪ s7/;lcuDNvckO{|g'>#GK^.[eOpb`~ :>:VtV6X(`i_0~L&ǧYAAlaFzy5$|@k񫋓+ޢ.Yf%4X|*_`mminjmcd٢@$-/ k@k,^4{kie%X_6O*@]1PjhUWbgs?<}nda{~mm\` |勁Z ݿf)fፘ̀C._mE$rZD~NFPR@%mTjQ+޾ (*op|Lb!X kiU84OFli,L[nn%V[{Dulٱ`j#;v {w|׺_gJ2GF'+ 5pD$U5fLooֶ,/|~܂ڼ~^YV/]kƛEb Ez勬՛by|DEL azј _$*^*CeB@$ãB^I8Py0O(nrJf^js `Q \,"2>=o}삼ܜ$DZ4TXo'x/Jojn޾k}ݽc?g<|ħǎWpw~9/^x2F\vn%]Ha#[[e<Ǐ>}}p_w_O,i sL?^r,H 0kQu@֝p[t}!2'̣!Durw@w]|ň`ͭ/Zpl]< 9֖6VF:Z*igkVEYQ7*m62&c+|2­2e -#5l?7OJ2[d1.3e[|k]\. 2kMQ965227"YcDWu00WKCKG!hQ"x]M]MRݣL*t5u1pNL>*7_>*ק c;^rH_'?|."-^ / M-M59A떩YEį՚e-\ڳ Jv>+jkd3㱱q@֖8*&7b}mcmS3k*+v4vGKʫˣt?*F NgEW9vs_dX }=)F[8<| 6B+bP, -C*`Db<"< (4$"*2"2rY pc2r Hs2r JJ22QDKKRBrS2+S|<.>e<%b 3<ƁR=41==;۳kÇ8rGOϏ>|7_/\xoi0X}퍫'o>|gqv'O?|ὛrҥΝ9s˓b=?ھuf™[WUl;k,M Z;2MP;@mB -ZkȖX}=0TW]~NjBBrnD_C60 Agq<: I!fXp0`ErxB!a0|EA%yBF 7n.puqqsAsQ2ruTdڑA5j/^hyXSn9zE8pҥm ZYZHj5-L橪SPQV5[ I] d85f)OU]U@MKGMPcb,֟*)i,1Zwc2]QIko묩hu`Wqu&#ЛvkC73jqy ب܂m7)`sBDARG,@-_ ƺ\:- $ qq`,&B. 1Rq,.!)-kvvFjzFzfNV^N.ed/*)mhªʆђ겒H:SD[RVəS[ڳ{Ͼc_~OOEXvgo)ZNnܾq톢'toݹEg/_ >yo_%9wٟ -@ilق5 d@a( L$UD>PY;8 ݝ]]mh9hBmǦP¬Ą,6*F# PY?, /dr#ƲPgQ\6G  x?rZY zx"֒/W!sr"C8ʋuXbemZx~"2\^bfNeմ4UfBV;"VW\k̝n9Jgўeg:tX!ptK.^h)\l*kaea[LBAȀ69'uuut1\[a ÖuZ0@$Q%s=Mi{'&F&'F+ hmwoO{3"[jvú::4-ɍ)H,^a+پc'}lUW482uU O?ƻa5 `M{kDU 砅iqK A-@k*Js 2cFbc"e@Q@HP(434dOs4:O NfՕJ Q/p=cnd]1?i4iՙ82jG0&+6Rw>pIT.Zrsc>m8PA5Ȑ.PIm=-]7/g~5WPe&"B1V',ZV,[jkcpRjL"7> 311552%8&y*V[[W ":8k1V_梑tVUgjtd`x|tzz:[Zja`joKūkxuvu6rMmV:q'lM{>9p辽Deקt5l;qW~է>2>RY^Z*O)hh.F/hj+I*{bgwiC[[ufJ~0/}p&äS,QPf3Xd| G8p488.)-==V"  #XD# IB#"""bR2bp6.>--'';-5#3#+o֞ёޡѭ 3WWZZXP/̌ӓjkF6lظ8O讟tot< %co!dH:f!ܽçc ޽s?.??~7_ƈ@Ovj7mNQGV36|`xzr|rGu`3?؇x m!`dH o6ml4/07%::1 1Pi$H$`tT.Jf"e`z ~bѽ&(3F4?#?o_//o .8C\IJNNn`oҒrk Kk3cSSKk?w0kEms.XH.`Λk5Oe RWhWMG_ q2LMLմ UմjkꪚZ-] ceiղ׭Y[ %򱵕1CXb򂙙>’Gq jKRg0*Ge=#=}Dy}5fjG. NTS4`?JGHKUW ֞.( {{G{{w5 Bm,6$fȼShh9fT Mnٲe9k?<ސ"⧗4mٴO=~';JK 7VIXN¤ܘN.ɮjm--J3q}cqBC㒂Y\6-siY4qp'dsl\sRi; ?Γ!BwPT d'f#qѱQ!v(FGcRd))i)ɩɰ֕'%g'dU4uuLN MLMohcACMc_܁%^)rSRJbC [ZfFɿĶ|wsr,ϟ;pHh1@Q>NZwo޸uw0*;8ɳ/^|/߻}& W.]83g/>?qЁO>ٷwϮؾ -H^HiP/%3Q 'XvdXc3lcS [X(o}VjB\bfbLt|BjBjLTdXhHh4X] <\,>5*΢ \64_`*].'O)/?q@[ E!E/7`':0 ﹻa8*kWX|Eml)B# .^d-* m,TR5,5橡{ -V%CutM?:,4;i`!8www(ʋ(((!@ܓ''=Zoes>y Px*z~_76|%HIE?㷀a7w똘))*5#ƏrѝIuuu<0ueU5hͰap`kbC$:.va*+*(()o~#!Sv[̕;homA MmmH"ʥ9;2,&Uncv.ceX&{xhS&i^ػmawrjbM\?13.4)hWe̔bqCc]aRЌdvE0O0|do7;;ONrf5zNbwP\r&5=""<,,1+;hsxlOHPpBrDhX@Hh``/<\]T/,4066.*Ӓi9Yixdfd64<1LJR ӓ` B7fKuq]ŭc3s#vn:3P17#m, vx߮]v܁YK hI".VZ5361YN?162?O4 @mkC pH İLt׉e,FQ^,M~Sv mBAFa_@_pа?ޞ^^:-r 5Db%I XlG;'&V4xd d*f@Kikhm@Xܠ _GOW,_9׿֩i+u7˿Oܤ9ڙ[n0Cb5 -<*\Ep7x m7`w]X6eᚂ_yu[İAƿ 4_| ikdbrjfj{HNKkL\_U.iniuv;^' oxi)T?W_yDzeӊ"IX(ݱkat T`y*#i$D{{/,.u6 &WkíMfeN{T^V=H̫I$b͢h~nظČܼ8oȄo𰈨`?ogGGGG;G-m!pdžFE&Rsܼܤ̼̔|a8\6 7/#5[`Z"rљɥmwڷw}Ξ?qhq^,vU,IK`W[CS֩3޸~mem Iɣ;ωW?}}/^o}xoo|ǟ>l7J7^>{1޼v9{Ϟ;vhLOa:. g` u8م)ҁ@!1!:2<$42*,,"< ~d~>>!@\A>~~~dz!$~ZҊK˼}}|n8BܿZ١-&b+♘6*ZmPں8$#P*h+l/pH h|  & ~&/^{STV\?A\OD!h(iAt[Z%5 m- VlH ʊJ҃v%_1l=ޯ $gBq&eE_`VĈ<^ v "W?i_$ wypwhKFkK6|utkq t;k3=Ϗ~9 .TzuuvtTq9%b^QB raaKXbG%T*A .hsVW-GU$4`E2)9=???',)!+<8*.16,8$(42"Hkemecca1 )T~1McЙXMMJKNIKIʤ30F/iE :%51%#GOg *jJ|\֥;|mGO\8yζFYm \d奥-cヽ'wpʵ7VVoݼu[>~ֳ߼l2x ޼}@7|~ZLyϞ=GiV]Ҟ>q}{EHyx(66^ãh| `kn3(m}? u`X3^ jHZr.uTZWS.*qqSD3X ZQo2+=!*!!&.%%1.>.2":"482$4<2*23 $8488(/- ?,x }QU2 B|J.94 j[4-kaXG 3X=habdlrmP:1}=}}@.& i}@M[إa㺯VV4 & uoE񨦥i7Hҷ_~oI_V>deeceahjAy0: llhOUUU5ѲVA;G%ԍhh@1i>gLʁ&Lb7DG wS c'/T&;[{ڛe7+\ CL.It_k%; ЌBLD↖:ϩom6Hiə"I0#728'eS b^~ QqI1!aޞ/ܼ?,6!!!.:"*",VLj[a]JKMHH/`p8 z_~|Z1a`s)mv޶s߾{x|C/Ǟ@l;w>%Wo޾zӧ?A { Zx28ÏŻ/ac#zΟ?ݽ{׎Y9kIܞ;i'''{$Mjp 幍nXs3 /<$pWZW'! ŰGL ԴĸXy ޠo0]$z#iPH 2{X>@n2?fmP_g޵s /utttI@GkF4RPް>-sqwUT TSG_>eoVHw@_T7q:CtŹF]n ͖M@ FzZTյՔT%*ή_o!He/6U.PY]CK>}# awFPvQX/&aK81+vJK%˴ª&mTතlimWꮶa&i&ו1 †֖vIIiulrr~RΦP}"^EL$jX>|М/SyUՍJF6^M)LOKNJM [+:KZ)>66 1 i zbNjDvnZTl< sJN~5??7+==3=!=(PD+r LvIYJtO+R;Ʀ={'ϟ<{ޥamtXɁ?w\z7WWWWnݼÇ}Mܹ0%̒n.1Uɋ^}pX}e`=zݵBs۳. sss3Sp͝ SX2qbHe) k28<64#@?HzQ"jM_iIkkjAъŒ*qf>,b2hpLKNt@mLtddTB!Af녎A!I!AXM@.0×py+<N6i Zt\]sc#}]Z]=z  0$.;,Ꮾ&d:OYFWؠuи9eEUmՍo_h(4V_~|#%W_ klf+L k-4,*`/ihh(*cERAPci`a-ۍ򊭼֠e40x vdq<ዟ/ 6[z[DR#Tq2VT]xmmʈ 5p򣗕4vu6Vqe2I̠UW;d!Po_ZXה{R_@$*- /V77KKeKGd2X%"z|BV*-MdEFŧ'%gQBBb2BC|ݝ,,-LGUK-.1qq qQqёQ1EΎH\AI1E\JnVN~^r.A+-K̼֘:㖖>crhE Jkjq~]]>pw'N=~<6K%vu-nq±/__Ysέn\vgO^{{x7$>{ {xٳׯ_S޿'?|U[@OqMR=8{C0|׎[f&QN͢oN\ .A'C p3$wFZ mkk;;Z[> Zm#k'/]SV, wT ry,Z@l2a7OV##Л Řаww &9uwa׮ۗn]B[!)C3X# r+6׏-ތ°GLy:Y[Q^V*b0f24Z! ?̌ب8588,22:"odD$iz|4A#}} p ustÚ-4-؍9P{ S@*gNl @܂.QƍZZJ*XDaƍZʪxpedտ+llgi:&&F:~}muuM5E 5e+\2üIxCm6vv i7_T45`=MsQnº P\S]U+kɹRYJ 78: 2᫤Y#$ҁ'$?ǘ_)웙5%xvM^Զt`W{gg;m@J5p;85S%bDͽt6YR%j)P]@+d%x'P mMTuQcs8?KXS+䤰Kx̐ĄXдY)QT`fB\"(ff \=|CB£caOɤ'f|N@X]&,2Tf1/ y4$tfarLddLbJjjfNV]BeEf1]'O?uaw64665477Jk`]'6M/;z3WXyҕ+ׯ_tq:snX}I*Xx iQܺ'O3m>|EKK}{Wo\xSHڿw;w,o[FNLOKZfbrr\ 59|s(G XnC`a [j:)A*DeZb.QP)Y)IXTCD)rX  @S{$p`n$}AJd-(@, kCQ.p&WYwN[`ij-ڤ 6j a1T7lRvU ,֠D* ::z:FƪƆMll,- zF:E5 m}cKL3 0ۢ9v9`:61jk)./PǪjhlzc?-%rfEy:h_E<CS05lfRWU3ecطp5FCq/ɩI5==zNMNV',JWVU5bηdmv$s`WDl`Y*++d MaUm]D\K{peROC]HAO HswtȡޮFnZ^iwxF^0Q"Ť-2#2(1q9E‚0xylqhxfֶ.n>~ qB#S`EIH(n3\aqX,4:_+8,[EE41scA5mRAQ]X:'>1'>vWyT45T}T ijmiX8tk7[Yr܅/]Y[v{֑Npsoћ> b웷_|cҳu{mn޻s8ԾGO?>y8~={֍kWϝ;{߁C14۾}yq:5=3^؅ $Et.`a`ۏ|A\%M͈Z<!imuueH+.Hb0h\ < Gbyf?֨xFbN`p(π@/@-ڢŃ1oRBpE7Զ =0 !镦.6 `U1NlԒ<]cC -J 6~AEAWMpTI6pSOMԯfC =oM6街N(k[ɽtqrS(ɭ=| ' O8hlR܈Gbě\ :YvKhVII.en1 ME5I7u h\[ghx &ޚȀTX! Ku u, LAmȌ 8kiz&rۺ+S^]#i,jGL\SS%dMS3c33-3Ss[fF;$|fFDRZnnw@j>_JwPYu 'VtV Dbɔl^C3¼H?7OW'g7;&6.n^~XJLJNMZĠ32\NuMasEbIei1 -5[Hp9vhaUI3oTЏL pPIA +ݴhͺz&zʊrbd*g?\ֹNKV (e5؟(YRB8rȡ{vFe<_Xy ;)`.]RE߃Q1<8h^LĚm]h.JGP67a)^R]Y^VSYQ; b8b1s9591)'ƈJ Y@ot o.%%) #Q1QpM_؝%Z;rpEOE''/o/qD]D)y+zwi5653lP8ebn {wJ8U#?-m`fbf:eM]#S s#mm=m}=L8tԲaccYr9`]mZ5ä@5@WvZm4|z3$1sCX XGspX[H_WP’[8SρZ;/O, Ț-E"qSk7t6765d)+|-Bh:IUyyUCskuUpXݽ# 3c['a=7΢Hۛ+s)%QqC/;RMLi^f2OIOJʧddf'FDǥp|znRJdeaiA&3âbS2s)E⺆iccW\^^RFT&( L:TT][W%`( VA$f&wo]XZ饃'~ 1g/g" 1p-{`}KBuO޾~;o^r… X=qwG8ppn@@(nQhh6T>?7;E:0a,侞t'jo!]xY6+>/V\SKK*S16aegcMbBlLmEEGAQH8|5j69 {pS FDɇU,<2"̱`7bHpu"?C 2wrsBR#.:561li7XAYCe5ܤooW{ zچVI[+2Uͺj N6zJ|IGi-&nq'zِhpkϜx;׮X~;=yo߾~:~߾Ɣ9˭g$ٷ iA"j1T^zG[u˗ϟ;رǾ;|x= kQՒ܅%-it_m̐ W\?NvU 'q dh~M2iLZW+HUʚjT"xlag123S dv!2TP&$&Fr7.!1)pR89HEhb8d= 8#G 3cd quqq]{V8jFʟFF&FVSsK3 v}ƺچڪF꛴ZZzZJ*2A}|WZOUAm%&[mbkebS-jX4*r-8b!M>:fnbY88d1D&`5Dރ LL_d0H} 5Q6N3 ľ{kg۶ܹm\ K8|Fvna5]6{%dPBayYeL ʊ) 3t4wuU:{GFGvnnᦔ(JZiE{l~aKZ쯥T MM Ȩ bT$p|]<}ՋgO5Y[߽Y:ZjŲe w.\t+nݺzյkN_ ~o޽~czSCx)O>OÇ7}xMzx"[Lfx3 {gm+S'|w];vm?mKQX8 ִS3(tg3 X<@9OzR ћ^Z_/je*WöG\WtɥS32s s3SӰ Eb'nJJrRb"v*ddZ!ĒPKl ݶ84עx-=b@88a  ϝLaYX55 O t!z (<E>Wml\mVvNf͍-,xɮ; p"#kŽvh&[^R@c#2Lc,jjj #CKL}Y"zIUMķ 4ձРxم-t5SrII.b h y\^E-#n TFqYyBT/)*%qGw}sa(Ό3ݳ*kRxhJF&斖x}łɡHߠdnEMSS #% =-( 8{`tjz|xN723{Op⥫]zꍛ._yGϞ|ׯ=y?~l1)z?{xjxv>||5'qޝ;WWn^z X{ܙS'=zw ]^ZZ^"4.-+3_"^Z]@vc)2L&OC=gx1лq hŵՕ<WP\S!Y9XE6O X1@ꂞMIOG&%ͥQgcD['zpaBDhZRA@3_$Q [ w[vܨF8Zb#9li557 fƺZvchamlBKCGH 8e&&*4,a ,W7wG-nNvv[l(kиܑdC8`ïqvaa{x0^?05ArR1Qb#Tc,s;xuV7F jHwat.w1zM D ~7?_t-L /-m۶8]$O vqdy%BnNX#wEG9%%,!= \> |1A5ۮeY\q`ֽc=c(kbFq]S3w=}Skn^j'ƥj{؉a aY DB~IEE)/bQ.Y||B"⓳X</շvw6ף]u]MMq[VQV\"KEb:UXߑNsr: HEtcl|fǮ>sϜ>y+/8FNP$#1 keRTR[ J6JL(,))1_(G)JKMLQl/ (҈MMK0C|A h҆ hj Q]?AtO22A]p?N]T̵W 8lni:&&Q]mmSM4#i066#X[Y[MKk;'/OG{g//gWkGG;tvvq؏~ClrZ!U1--%} ;@a-#AˇTHw& M]}} >@eyئ_@cMO/,//i'k* WϬB͢ńilvvJ٘;P2b`-I↖n4[\xakhjj[*)1;26P;54{.;qhyjjnQ5g%PrSC}R@m\ayYi_!*.pYa޾^nΞ sOQHDm=m UUkjeB\WJk+<6it*&r^~Q{|מ;1w Μ>{ڍ+OڹXϯi?1(\X{ӗ.\:}[wawoͽk_Zyߏݽ;$hڧ ^>'}ՋWo_<1&??}SQ{Y[YqOΟ=}cǾ;r`{q4ks3S3>% _$l @  Ô;Hy3uIq\x^^[W*aSQ.,s=C6G-p9II^SSqXLTdDTlbJrzZFZFzzzFgii)I>5P9.6ZӧN\~v˘#SsssýM=ãcsG>+7Voߺ@r>|%WVp*a0L*JO- lδ?/׿??޾|_|ѵµkW._tG8~]~KKra{M(l҂Eۅ&MqY!Iu ʲRаr>, e BҙETJn:Ռt)9#&$ŨxX蔀MMbI#H-EZgԒCPbys:ϸy݌=r %A8D`megnmjn`eGTF:F&Z:fMqnl *XmEgG@g,z9w m`pv݂9Kqr.J+V] D`Y[YbJmI~Y5;{(d?WDԬ '[Cu]e 5s| J^6ncLxf5Հ[QM}}hU ʥx;]_R=ScK3CsGNtرkiz<3#n/͋Iͧ2 !AdKxeL.-oo0BNNBWWWt@3b^YUmmck{osEVWT_[.J% 2Iuq* |.e9ha[I/)(qSw\ܶcܞg_x+7.?u`..m鱡᱑񩹥?rⵕ[wVW<{񣇏?~r۷VWWwL2r<{,/ i~__ks7W\tIRr\8'w`>Ymfk~i;^5ʹ8;2088 aх&8# iKRآL]meyY$m ,biY<6EgҨT*I24:JfRӒ28k32H PiIɸRP '.-iS ѝ0ܗGl[@QKrsAۑU;[{Gs3VV^>8:鳳3c}CcC#[w=r7nݾs+@ڻڝ{?z=Vh_hOS_|Cn\ܿO8իW؅gdXݵkkk+7n\|S(?{ٵcFa~a+f)rZÃ8b=D$泦!j$p"n:_a JK،"FK5h4` / ̠X$X`4%ENZxF9NT-|bJkCCe؞:OAx8 2,"jpji $#ti[`+ᧁ5ӷdI M ,̱ gaanidkbk`Pxdh/a=A!AZЏFcn l\pnH ̝XZ[nj`zD`/i[XZ.qڪ58e,8k􃪪۟/g驹=;Zyin>>!q8pIH%<6< >, t/pxB~]NO͖tvvl_޺Zodsh~qnUȫ[u`ޓܳoťّΦRnP36\ʦRҲs,v|W|+NX( ML?сaLYؾQ7=^z\}xy1&a OǞ^~]?| @Wӟ~?~sI.D޾ _qڥ gϜ9 >vjGAua~as arzR.jGGx~8agAqrP+oKjkI_W%UU ETza![D/ hE ZXB Aڦ`SZ)[@0V2hT {c1d@ah Fk/9 p }mYxogGoacX&%QВV@:;[ss+kK SK#b`bd@G'-~A!!dv s:< 2z pO~~ޞ.n[:`]ٖZ ʃ6615!eYBWBZt1[[[[Y آqN0VSQk~|aiK;v,,M ԰ңbCÜm UT54 6E{ڹ8l6P0lssB6CXEeWQ[ںwڳ O4MLm۱8!淎 -,/LOul;zpfKsKSC2qyeqix[)35/.,Sr¤\a1)9C#@&^v|PXD|tlBRJ<l'Vzzzz{:[ۚ0Ue|~Q![\V]-D"aW&U+*[}s]z{Ջ'IӪ;G&&'Q"Lʓfw?zҍ[V=ho^<{kO/Ǐo;(,TUOFFϛk˨*Y{x]{xx#{$~禪g_V̼]$@cx c N{ܹg3\[YbٙIX,FGkcfW4FXh[Md@mL =DŽEf(/ōGt'Յ!)!3a6C=W{c`oϰ![%kag0E1LM `d@&*4!ݯLwO;aRG#qZ%M n4ak~^-`۶o'v[@{]#cZ:DP3==c}]m}CпҪk3{v1.f;v}[co-mtm~Ga}IWiXHgWT~_BWGal?]]}]e1N>&jڹ/8jmmaa|@nMw@=0/((0)80,+*.19!9;9}ox\0:Jcgh?VR?<ݐ_7 Kƺ**jkӒBSd$䗥'̋ :x8(,?5萵Tմ Y9zxxSQSu ˙멸0'+359&7"8n n\Dbj~ARlZnKGň@299JDǎLy[V!E'LKClAV[gШdviɳ\~w<ܸd|҅K]r}^`H{w6 O?tgnl;>}{3/\ǏZ98jeǰ }<A-Hm[+z𸾩j i8X8xe2ii) I_oWO7D|1p|| MXKqy[.Npa y v6 XEl`Y?ceena) &| !_s:A 3 6%%ż0߳s']?n .! =P'T5օ՞Bklfjd &LnqPBxz64  2u+A"۶n;Hw[1ɁoG.?}9wcR?#[&^_S[oGgwow_HmyodR1l,-݃}Y(xvK;0 o"rrRs j jkJڄžԴ|[։ Pl K(n#}mMY?#$2?'?("."2)3)'5sٍX_odkmfI$倚QX:9 JI-n,f>ee5մ)...K71%;-XQ qqQ!i-}}-##GO`a>M>yɋgOz={ds3޼|s'[[Y^^U T$^lxpp3[v2GEy3M[]Urt-D96~Lr#*m )ܘ``P7 Bptvrqqeu C66,i4Zm jهR\K315-cD5] ,B10@YBֽ{ft@y?ڽ({ŐݷOYe{wma۶lQOXNE;ڬ^ep #ۓژu@|}f~B,, ?ly-g%S~-~R<p}wY_kqZ}UM%-Uuy ~ EE)!.Fv~^:*&v ~H/S356x1Y?/qȰԓ * rx9y]==C|,ӓ1)=$k4Jgg'cRk{Z j}vU5֔⥗Ԕմ 3qvru񊌏LHN(ln Xhhܿw6]k`bFL'w7=SK;;*2 2 *k* Ih*⢉iҲy5mtzSsGN8s2Jk`jD/?*_=vĹDPoݾsçO7ݻ{"Qk/_rٻw[7"3%c|7z^@ٸ8Pt¹3'O8v"s33SrB!P?8D/xh)g ژīVUWW//절.Ky< _fSVfJzZrrB Z DІF>zz؛\i9(>:ǁIØhᐽ-"i, טCB>$,cp)Wb+xݏޛ=Jp8};wݣ TFc>0aMHv~'dv*ۻ[YIyjz^(8jh~7фЋAV1A5Z?\pE)+Νۙ;3Sd }%|ê˿b)8d6x&%/!qU7vfV6T''&ED%Di9y&Gd'$DzuuxÓIh S rʲiM͝U7LOKMD&6fF;yT>|ܹk/;*m̾ЩJB1Ѹ@:wd߼ 6>}ͫ&^|7`.&3. 2=|ɓ(!w8t͝C8K?^(ptEK1KpvA'2T1%)=$%NNhud/FoqPf4Eab` r/st8Ę3e 2lgZʉ8L^  JwaZ]۷mqҾ}2g^G-Vn mll^Ԥ6$cS`ٟt9@*WK[*t-@6"oݶD|=q[@.hP 4?}BCqT[ý#⩹9tl\0lQ_[Cuvr|hbp_ , +Oͭ*NOK t4w0ҳ610=&&fep2 3r:z痧dkǎ.L%#aD(˦1@vtuW45W[S\Mtt5v NNs, w3PQQܳWҟ!''W7wo܄ PByaF7)~lSbQ11p0(wphwpejao\pA-m} MieGV_!\ '/o<~0 n0Xu60@쓧Ѣ^A˗߾y #$!Aa2|ӧN֢a8-B d.?GHE m M[UQQVRRN| epPLYi)i qqQdB|[rtCQZr}8!LQfkH/LPȴ_N qa#sdK`fs 1kg0 #UCN~eڽ{Q+sמ{Yܗ5-]] U"JRcS E F;w[IXY@Xy>dfKֈ)itt4díKK]QפAg۶[;601·߳oY@7Ql %gpcB> &e"h|W#)h/k/jjEI!K7;#cmuR۳m!/H}$mZFZR<7!50- W^>~ta¬\2XR7&+Hdɉ)YYVRFǦ'GFfWE&z[vS:Wy =t9Aiŭ=mey)10qJ 3sfrCS"|"bBb㸱e5E5-]}cc#í93޽vq`t'JmmM qdj~Wz@O_xy]yТXP52>|LٳDdξxk{۷޾zG(c (lpԩVX״|VHba-vTplSSS]YR\^RRA,]QCi)fTV$E;@8]p6NdajE6^>Z. 0޲\p51Ua33`KKovr`Q p0܌lnfጌ%MȫP(\ev^UQD.U*YA ubEhvYUaQ deFƆFG zgOJUUizzz:ijhk5*u/~m?lcvLt!eXoF̗_k> }<=$u%Rd65,>&0*#3Bkʟ~U%7 (2!9?'[X1]/?<7!iHeCM i~|vN;>>62XW%,-*Tgg'{ŧƅƄع$rsJsr9fVGyqvruuwu5PVц҆Ҋ.7"4.ˍO,ON&pS0tLMolTfF|d,MaF*('$NlK Gh6ߺq.1*Գo<@cǏ=~Kɾ~W/_оyPryW._<I 86@sa-HmW{G[ 2k5eDg+++Aj-`HCbZ^))\8b"p/0/7[GgGOObdr<`9}r]\فQW8iL..NxINו0?0- oM'31b [u) }a]*j,Ei/zHJعKYU{v&᧝8 CԘ-64@.+PKkh"ًb )hB.*Rm۶|Ǯ;Y¶.jE`v6$@~ ӗ_|GZ|Gooki.M),.HM 2wtsq~ili޾o8zEp*ʪk㳭#9#ӋS +GW& Ix44[=hVIg'Tmdžz+;ʒ3 Ý£¹ 1~ %eeuɮ߀pw''O%=hV k;{G7Ϡd‚0nFvnaZ|lbrBj 7359>&"'8|jrrB\lLWpH|Fb X\Z[X>.Og{S ]#}m퍵uMhlokohklliDʱg?Řƽ[@l>sc=e ܶO>Ǥx`` a-\z#vs;LYgN dRXG?i125լkڃb^`Zi ใ+=59)m6 QAaQ C^?~^^^^n j}|*9ֺz {Ý+ی8;9wù\..^>Enqf`gk,HF`@#A>IM  "w`\5M-ȯTE$\;v%̥+pj]{ܽUi߯1/†U7F:Z dњNX*[m Z 4hҏIO:&UAn~|ςoaKd}AKpqP,IT* 45vw4UUڹj}t=,\=,꫱_aҚڪںޱ1Yw\0./9’]gg'˒R }m%eu-CىY wL9Q_P[[TSR_QUεJo-NJH;—6Vv6zFևIܸEMNpLbubB|bRRbLb\dRb|l'%1*#C  XA]]zbF}myfX&ɗN\y©U1¡fրS[VX^^]YVʈҞ:…29DG ޿}ҙ'Nxoqྡྷ F?cZ V;xx0Kx|ׯ]:k+K 4?Ť2T*x@e#݁55=(*E@[#DvXPGi(INCGc|,""#CBB&q^?U_dw# a h2qZ'ooZ77wb|`eGK *\肴0121?-BZhXQ*ʬApT- UTe_ʲh44t E@CgKсK"[}A45賵8!C񨁡1NXϯ6A󥢄;hC0ػ{P__E؏Ŝ_|KPqxbrbbjJ:)x] hOWSQAr}dbzaGEioTk\4v+'e#ʆzuut񆥃#bɉŅ)AwETRMǘH* Yp.7:IK2B;򺚪̬,?O{N\AFf`FMSgmEyaJ|aWQ~k|DZqq7"2&.00*aOπ@?_/_ogOdˤ%&GErcRcR"=#ɉ)Ս-ũe-%IKg.]:sjmyF*^wSefdV~qqYEYC[0_81v .]#}ӗo^~OHx֥g`p=~Çl\X}AL>h ^z [<n_`xǏm>tj]++GY^e 2L"vxx`A؀0`-q*-&2_XX@PB^~~B}|ILJs3HmQ*$^.a0= ԃ-Θl ; knn`8K?lhuֲ]ɬ,iQ!V>ǎUYUU~%ݫk}$8o2,f .bZz,1XCcb\ i ?APtuu)WCX( @wl֫~XY%7]v1ŨJ/6H` ǝ?nۯ  >OH3r UVQ2&ƆGzj<¼RsK-ekvSYC\Nq}[K#m]ݼqTұAEҜt=gh\*'e?*uKƆ3Sr@w(Bg̳('07># 2;-\"8':m=? '>,,9dgqֳ vq  rs:F{PWZnT``x|bZ|jFzxObTltobTAucskK}nzM_415-=sG&ē2لp748T]S\T^;".x[`:7o߽_t3gY K  _*_͛7x}y$(ƈpv'C.kW\pS'!ߜƲ;04:珍 Fã-5]ãB@ oO ?UÝSZ^SϗMJs+9YhGD>3377xdmuiJwіޞN VeFGE$GuTEEt4x؛9%TdŅxDzDyۻzr! tp4,':%MH1uFz:r#8nQ]CK[{CAy[ИH295+]>+]rKG[ʊ RJ*[yck'_qgg/޾-[^<{h/_8}Dc_~IѓO1,P)F/K_`W/^xDi<W/3=JxCکIL& f j[hWR[S+KK yc j ܲt%$rSrb#"#£h-a_?YzG?!,-BZ_/O0=\ -=9Egg,ݘzp8 c%,D6j #>Z8lB#[ӟe$W_nI7>cFihimon4Q!Ѹ/ͧ@,꬈wĖ76V5VUW5Wֶu􍈤R/fB|ܤhl\([X^];~=RpxdRWъ*ꊒĈ(Xpp[ivzjQnH_Mu{SlD`FTp\ksT_HTPOtBjBLT HGSEԑcGxƦ44NȘhcrnqήN v˗,/NGFF⚆vɥcN F//v56E˹1kkćZYf۲C( J+tY+ =HUU?p[Lz`d*Ӂ6Y8Cf&DFFl`̍Mx- "]E@w7¬V AAʈgQ΃۶o߾cvC4]YiϮmO_ >WFLjH ?|tB$7:x|D$L}CĩH$ s0dWaihrX@ln~qzVRHu_U+`xD>=||^ M'&~rx/]];vtmeA.+B6' G{*S;YkCG{[GkkGc^|bqYZ}zrl=TUO -IL K8q}}B], 5Եu pvDۙr763w7wfB$s *k:z;JVf_&^yp7<22[mv~YcW߰dnqKo\~s 7[|'1`%WoݽU'Ϟ~@l.LdJ1eϟ=ef^<}?mέ׮ z ǎ)&dRs?H`mwW /q@i G`8m>Nɥdq%7qqqh!%" PPP/ s=irЉaXucȁ=s8;$0)Jpjl"mc&FfPͪ ~Z 5T۫-ܿ= ][*s~t~Z27084:G?m[yYUsȸlȉWoݾqaJwgO5sbglH5xB̅,.^f g=|jdYA-Į\<Y.//B@{&V;)IbX8>66f !.@T[]U^QZɼ|5"b<~>>>~Dz=ir,qX7pY7v';xq8X֗ PVFCHH#S#}}=-m,pbGJL WUN uwڭyT-Q ”^BeB0u+sSS`>Wc& (34Z, W[v2Oq~ܩt?ߏ 2@V48Z3 ۫1Sm//:rdi~qy؉%hrXH:!'0F8^X>i$?*!:69w/M2xKD ^\^%j;("ic;59! &ʳ7,+Nle A_Sm}CA^H8\=TKu)VxV4UTpCL44vomhekhenoj ql, p +*NMNI-jFGHWO]uʙgϝt)|ltp ^[;zS^?Cם;o}8}2؛aZ1}qv&)08-CXlz?0"itBhoOW;]#PIր\ZzWx0@WP* mR"V"76-  E[dD0@?Z_?֘O0[1/{-.|>y{xzGG,G"ZX-kB 3ZZQW=lu5`.`,04/WKCUwk1 ٖ)DVVaJRѕnNPkemmafB(& `"µXWGրʂ. z,jh2]$@2*~wekϮ1n%}{ G]ѺԴ:嵶2MS*OMIyC`lpO{GgGkseIqIMpn9QS̩Fc|X"K''^@*[˧WN;XI|B"쭮i!!6?&uOL!((h² xC /oׄ$?gtaw\Uc^zNnZ@DQ%kﷱr}PXMD,Ш,$姥ю8.{P֜'D\-CǛ &woD̅sҋPe@Z?ՉGŭe5 uՕ0/i dp*VW^Nn^6U􈥧+)IɉI& m, Câ  ], %a R 6 9/mx(&b++9[@^+ s +v"I'!>hx$0US#88^@OMm<iTڳ{ATk3u1#ZZlQ1}[ ޠ(-=BZϾ)+OgZZ:6#׃Lx-n0l`Lк8~ڹ{n@?W_kE>WTrPMLN LJzPko(tՋWx#|$Eh ƆEӳ#'O:<77?7+`jZ.kϫOEUo/lWG;$֖yCM5 =cȡa~eb|XPoxnwx>ZRSUSfg_Q10156;t182;(<76!!*&9%.v9Rb#b91q֥W7ܼzW.Z]ҵdJ,w &N])cA󗄝|7pu=w 4ܹ{6$ɳg/rO~7[& gt7H㇘D7&:* zh Li$LmmI F^9 p6JTcxq\Y4V |pD(Mq複1dWU$Hcc(jPS%¸ct ȕ%NwR߿{.UYlaAb-̬6A? ) fƊ~Im0a9_ldž@hҫIMŬV]1Ua=v;%XΝmQ#_[K8B5 (O%sGWxT ݣkNZ]_aF3ri_EuQ±a^}mu7H,"#A"ϯHˊE%4fEӏ`KIC{ lDݖOa b>}X>{΅M:P~ʕK "N{(,XL&%Didžz{:zЊn\X˺ǭ(-.-RXq *@3FHfE|*ňb@.M62 Ȩ(S4$/_\]K~ϼ/Cge8UZzss3;G3VGƊust t!+P3 Sy*T:DCw:3sKK'`0gY`,Y$ZO5:hAq0<pB&Z]) LwbQ{IɚyK?p-MNNM {jzvaNͫ셭0#Oc-#'n_ZMIJ,ZGSsSkSљɩqکӧ`L#O:P14 V' |H"띚ahcI'//5r B444fԗ&u&;`6fB+ CT X^ѩ G:5M,,/ƭWoܺ}7<.L_7WV5 Ų/߼3E_my*{wnŒHOj* 훷l۷_V`#d}=z!pvwŏwn^CgϞ>}cGW,A@iU I@ZiX;qQrq VU]SY^EZXTSnA!P8m&U!Z/6-5cIII\.lc ]nlL ޣ"E rm0V@~e cw7Fk9Z($c~,b\Oe,쐢 6̊`Ҋ>\cCm*0\sA,gh`F 3c] j:8!6iUM-h[!y4 x |-/F a؉.SaBY!(/Wgn2 5D{3軈????5M,.˧䢁ꮶV5xκûץ[^zS 9ummm8_X8 _ x __/Xy)n$PZ>)D֚[XXYCjbjiz"ml,Mh׎v#}Դt܀(&3j諩k"тGhZ:56B.f< Ҍ mP.ii eZAG!=002 1#E )CZb Vtj1/ V_85%2 R{/h*g|)?':Z ùVQm.MOLJL˩mn+OF-ގ.Q)QA)qan iQQQqI'Z44v+Wo]_}Vݾz72"YXN-.ՏE3++N_uc&OҊfd'" '֖}mn(-2ىX^Ղ&'Ü\ -8m8ldTLttL\2pSh9^~Ѣ/\\E+١CnP$`a--覙Ķ6v֖33439953;%+B~4X}暊X?o34kO=yeXmP O<37 WʉG bW+'N<~SkӓsssSaT:IZpD D"d_ OaȀ/RV,-HLj>O K#3ZbD,HmuY)QI y1QQёaQGπ^1[ڊtO )` ͬ./Ȉ䉖^rֽ{nݾWQ-=$mȮ3SK'.߼#:xɧկ~ۿObo:K~XL}=#lHA 爔_Yl8}ߣ eUڋDk{aѣ+̱Dat.Vk{[K3 hkk*i[zZ4A][ [ JMj&,x!i\&Adb11Ia"xot$"B!3(Ǔ%*"P`^>~>~> `|^d7l22]&C; +k68` iZZU(pى\FZ(7!065cV_6`AbfZLAj33t1Q̍ApAN˖:!ehl@L΁ڏ@"N+#-Qu=Ɔ _o=0ux9tXO$_c1o߾{e˖woDˢh0<^'&`$ Bnk=wjֈҲy0y`OgWg'fmmlml2FiKK Dk UX0m 5'beY L I$r0BŠQQ73q#B h@|zr :˓e&YB !}l.ˢᶽކX Yi:~el>} M--CC]}}#S+k&(cHiBìm,Y}Mk5#ck sr c}=]@zwD/B f2˜yW6VmBE WUeB}`3/l/MLLyEm}#C}q!^fv+H~rN_65)5=sS/{Ա)iGm׸X$$)_&9_2o891Ɂ|'_b|dq"1ڹ)d'Ľ} % q!aQqUEa>A1a*,9uYyya)1! qO(j)-w拏|[Wn~@$t;KG^kd,48>jh  -o3'DLByu>VXq_0[(~ A7쥢|G o0uqcn<| O7_ʐ"<~6`=#GnH0珌 ("8#j MmScTWVTڦH[PPMD(8q,hفXLlMAMJr"[MLLү8m ]b1qq11x.o!a 9z0EŘ֋)t bA!a1ΞPyLrp/E{$1-Y;kC|4G#BMM t߭$L-kMյ[bXۀmY!ݡNN68˄9ncadh+;3dN3S 1nY>YKܪ1{܃q^Rppp s/ G:+K|]݃-tro=ۼs~8c|B& 7&3G==}S##8; [XV1&3#Gᮥ9W¤ 0;+ `Ȉ>#`56aSbt|k`?jѠܒLo EQX",li $l+}\lviGωX68/_[i.\]afgl/5+#9M`lml6LY(r`q~>ϙ9gN^?L( (u=Z+rzG*Ngiǜդ{{ꛚ[Em] JeT2"KG *:N+ uX<$u7}x "i1]Au >@#px0 ,c@0J]!,LM9q͍VQފ9m]-PzaP H?M.s!n1C`[.Di4Ԕ ܫ))^]˸m-" {0A;EY6`N$ԎB-vˆNcX80Cm ([t7o/b J\h81LN;##DCGuߡp*E ÇJKg99Z,څk @L3⇏?JQ!C '9貪pi/_QexOz::Ž"kGM޽ZQKC{wgsSs /!}É*?}x*xZTQ[V0;['tIn1G:;4utwwwյKGeL&+y\5(#T ;JZ.xrF޳'꼜'-}IOcSSͳ{!v򅌜{w֗&F?ii>{sџ=xʕ轛QZ񸰱_iv9'. L8C0kwNNlҼKqJ[[;{ek>Tm; ir}DLBzAWӳrN;788g1.eUGE洭Ljk+KKJf ,BA.Ƶe}nnƭ .IGbZi'vYX.#R1J2t_b|]&ul"cT`ڠ LPZQ8;y6epWRXf_mSe֭;w޳˽;o+[?x󋄳+\lRo~ z,>X@&c_x=-ƻHZgannnq~Տ<;paJ;4h˥RJ`WӶoSSSS]Q^R$7//osr>|!l3nQ{ w2&ߺVAm2Ƴ H{)%v3QpaC"DaxvF pVu ?{p6* r.$GGF%%lf\ @{9IH/rc* QF N9Ǐ'>ǡ:o?59:N@~8<)Xca:p cP>$e%>q1Վ>փ-" Ll@dw~ VG[mQsw뿸AQZT_.6.)5G=#df'Çm,*e_kuYm}S[OL1Z'&&VV12܍r^{EM vww4rZ)T[ ZǤVjJVV*ޖŠڢ&QmcS ɤkn+kj.MO*,̽uvii+E-uϞ t5F8ńWo\IrYYVNS7Qgը8\.l4AԸ:<.nuN?_{A뎝~g[>{ٹ1HG&~^@Y!:h YxA D<_\X'=Gdvv>ƉlVېR+ R>2$@h/A-iԖd?(/m>R8qǏ?l/0ff>S`'8^If)g/A v$v J0 bk, ­07AxX(" |"82E!ۀ/_rZs7wÝ(nt:y;~铇 ??ܿ#nt{ѡ V8u1nzll0e%. oGZb {y>N>)fFeねP#@ʄ7˟׿^Jp:Pqm_og(z&F:y=M"N:qtaÇ4;eӋ;56u(T*61a(q?zRQYXQOK@/QVhiRPV.$]z]+-kjmF[>/zx64qa>AI[}E΃[E͝M'D\$H;έ䤤Ęw[j;ZFfcb#} sfI_k~?]ȼVSQ"]|<;/ؾsjߗwn۶mL{@oll\Ѿp922kDbgZXZkmoVm>fub!5:J)EL)]..6.6:M],2KHOωDNMXXpiIg(4S/_M:^=<p?] ;r) ,zP~1bܷs)wO߀ ?;@K&,7C/cA#^W[EQqeBO] c=}=ƖN\t?p#mSuI̼|[sq{EAՖIM/Q I8m|qIMKD24?7$QW'ftjDBhrV!ICM%W%⺖qz^__/j ' +"YĒR;U&˘110;'1H[Cs[]buԸ^\y1"FEiM֝v:囷H/غ}מ/W?۷vOm0b|򿴍CiLW[QZ[^JL`܍}<6eC=ֹܤzw~\3.Ht{U@wgu}gg{gwߠD*z*NgC_BdZh8S+C#jkjE=2tJd=okȺ|IYq{k}A^]Po<(Q^û/E^(t193i9\mE2A [Y.~pJ~l,#Ngiwܾu֏߮Z^[VHڌ );} -oZ5t ؓYLhf{2ZהvؘUH=@FA ]H6Ue%eUK1“< X?*b[fZ~U'Yt.^Jƺ/D}EGG"\X>ƈM8iC(Z_o/`\K7?~>nn^=  wz-D{z% \*(DBUZAPYJaC8-Dу8y)'*;H0Hy:} Au f~hkp:/a菃 fIÓMqӚ)ÑC?#_jk@IsaG$\(׏V^=p /^B8:7i3h K KUFE_.i 2وDjr 1VdԥS$Y'JdZ7*5 jΨҪt: t CrYM%o&=?(umyKڛKj%}y+EMM];wLJJ)}p>2ZM}gD>j']plCm#Ek/5?=&-+9:2,fAESt,;"r{%"{aT 42fK S3Dcgfhn3'o>f5F\+,*+ӧy1khp\[CVKH#[ΟaX 4))?dnh$xbV Qp2ƟE@.rc6q,CmhpH GK0ZN%,V@J!DECwJ{y0xB= a4@`L@&I(G j$N?uoD5| 1p߄aV|F~Fڿ*j{ZXx39!HR;7+ sKЈrBaWV?'PMu#ru̠!0 `}xhXB%WQ:FǾΩ)Rg2j FA-K 2RGJ;z٠tJki Vwtu*[tqQ'YҼ̧墮ΞQϳgi׳oܻqQQw@jML?@ڗwhm^̅IR0BJ7:7`Ǯ]=;Ӿ'~ /h߼ : `oq:ZD5隚&xK33ZQйtZ vptbUՕ h̥˥X }i~gy63"YS+46]+\-t!,迸O$8xfA8Al6&6+q6ly<8󠷰q d9Φ!% Z/?G[3r2cඞ>>'A>z"vOP/y!%ݍ}9bLYYr^ 7d^~|ci2@)w!D,:t8Bw?7縺:zZ[[jE9ӒfXYv 9R3۴{ST5u456f7+ Jܛ*U t{Z6$4VWe^r1d'#Qĸmrvvf© t[W^=f]fI3 )HuE:I;vM`g߽Y_{0uN=ж`o0]cw۬l`vvffjr911t*iiZ-f3{*dR%lo%mmEU%b@٢g g-,+.*YCȽi =6[@[nj"Z*~q-F]6^#ݤqm,p52|Bw@kKpK=k! (xzZ0zTp0 ~Sbt5HܼO$rK@彉nb צ 'Y[.onjGP?!X~a2˒]U v_ccWsKM~qkxM 8~bfj~yC6(Df&VI'1\F)U)uQ˨Fg4tbj霟qEs9&IT%lcaV"5F(jHWDZjSrjD#2.e UHZ^%]~VT1 KD_Yey g2R2˺Vcrq<6fMcFHb~ W8_ވ xzrA-`j QV\K_pI9hBah^o MXG؋.Qډ)˝tCFK&mt,WN"E`OOo/mjnjh mE ,DX%@xVgOr bT+@P-Z M-jo޼u7kW`\t3 s۔+h I¯ IDfb%$\@aԷH[1ho R +/:C 0э$D#9Ʃ4;aCGzy:yAdP03d4bƋG>ud_U@9ҞnnLv=\!"p@k1??|2?kiRoKRY~VX?|wrz:!ڈ`%+DĈo9QZRZ̮ AQHz˘nmNc] iuJxXʭ 4zVFZ^ 6w qgW{}EeëG:̜ӤJmEc[|!UYɆ ZX } 7o\Ң01OANxLf]WHJL8(j,$ք]= 8&+w1 g`n{ ~3쌀 6ϟPȟ9yXOPTa EHPfj|<=N@VC{0!ƀq4gс4Yz %hOLho`Z{=A~'93Qk[sIy Ҝը̼E"`\ Qʱ6^)(N٤'*W)&.TjN jȣ2h2g`H"*2Z GȜ1URqowGgːBhb~tI֪LiQj{_Y^_'T}ݭUDRo{|zRdhXn}ǐXg#hXlbPˤ:+:"}{ZY(!+|b.X,_q{nޅm[>mY tll6"{h}u= 4;?rMN¾09Ed$2::tkgG ZiSN>SȥD.j!* *]*D-+=- F עcL{#5tah {uRDi-7ix+>M W7'#`Z-0:<սt95LxCgyk칳\H&!Y7$4sC7 KoXl=| VXx~&87539I\vjvvfCZ0ްs"-LyzF(QCD8muu A-}UVdiˡym.g`ax(B[7oHMOKOgkS2%v?,ws~\+ɗ*嗒DwMhtå bqyY33>"Ķ'v`Ѝ/F.7/-/Y fv~}kcTc;WL߽>mݱco¹ #_ĕJ\WP50bĸ>66>f%Esj5-&#}*d2 Jzzz{z8:U&jiʋN cVT[[(J YZ$rlZgc\{=jo߼q3K4†,cׯ@u斣h@B`m@0.'\NB@rkx{,.>hm$6} %DFr.6`r& Y ߬31W?oB?!Dp||}=ݐ@ f'` r"X ӄ$9*^ެ>f fӺes{038z ';oC??)ov0+jv=H O51UHeRqg[s|=?,YQ]Y~9&S.5563_?j_0>;|E.ݙEB7o ClC:-YńSO[f6yZ{ #z!%zVml/d2AQֈBvPL@K𶣭MTSZZN([EVTVTR63En!!mA^67GDk>/D%l(cU׸| |)0CƢ˗6qC.n&%pHBfQZb!X6>>.>&*&&6: ],XS#|&804Lxعsc$q2M}  `1 –2OO>œIDUPF_z"U@Uu;'ri7vZv#g_jStwt74g߽v=44fX La[tEuB\(c fB!uðoE @5H;$2}@UAޞ_R {lhoͿv%,$:.:GJRnbavzn~Pљ-OX 9aOߝ ~1#2YB zQ 8$ˁ*No0U9yoDiwԶ 2-.-8JrZ#ljmhll.-iUTtI\x|vb|t>3gWZ{񫵥޼h:nM~}ray(-O^?lݶm;w޽9q "lq]"7}[]Fs >&N}D9x>KyB,tD)*6HAPwZ::;:ZE5<9YPYaQqQ1 8>}0Js޿ZloÞKf¢e-7^t))f UCc ^xE f{pEhLG$zbbcZ+bxگi 2zD f1*@|&DXhPH A~b ͫ\jptU8g=@[ I/{K3>< >Gr!6c0ĸ4k5UzZk䦱qkq /_? .}ĶvύȲʜI>o LΙ(Fqm۷o۱g޽{vض m۷mٲf?1na&ԏNg8jf0<_f`$U*\Nvv7!Ыf2B lcU\EZ{Έi 0VRj5^lxHTЪ9bj~hn1 qWnS=~O&>rns: d6; -:`&A"/{PhPe2[-K}zdvu5X~o~8#-Ӛ֮~~|zǁo۶mDgwBvر[oێK[x; ,ͼxzh UbV"] ȮQVxA8el#C/f{PG.jn᚛Z - C(-cwnYyiI1Kk?}GYdk"6޽ܹu:P1E00HOOc.!$3 a_)H}sYr2R\فNڄD&48 '#q> Ξ EI$ڐst=8\Z(5 {{BAW$HݍD $?,HK->pya͏޸M=`| _ğz~^)U.7%f\p19%'dhhsan@J 1(ފ9"d2G7480(rxrJGLV4f$;tFQ9*'$RPQ\x<>QhS 0cfV:ZYo`ppg==J>sz~vi~["ឝ b1B ʻJ>+.~Z/u*]ZY{]޵g>'bݻw+`v.n#%;ްg <_\A oqz98hbϜK?VIA1PN޾~/t䦥57DipNb(*ji EO#ŠD 6Aa ӱ+v36ALP˂\.]pb^Zbnp)̲7YeMDML0{蘨Jаsg@\n2$yz{Pq F:r >ۀ"a+3[@qg{{&EY8hgBfav}Gi>ˠc˗RDxϛDZ pdZGvV:[z8lrBR uP) 2hQ9隴J%zMiOK[:iUfgw 2zPi٦g3 liܮnj2lh~De$wff-̹ljUBX8M\S[XV߯q8Rsaeƻwo_~wNFڝv",t[@#z+$[˫K(pZf E ڦeN[ H-`_kjEfQscjnjiUiq+JK̶G(-*.,(GMnΣGGY.ܾsՎ!Nyv3*fsΡ~^bHK6 =-pY!gLf~yNa.8ז6"&8GqY?ED^Cwd0Ld!B.appha~hH2,wo_( |x\>%pS @-Ap A6u__ xƴ 1ߜ@g1j.|?=5%9O=\ ZSsd6k r_d@·( nD*K)W*rD ͋(-']1o/mRML.F0jMTeg&hT+$muum=CRt~tԸQ%uͯ,B<31fT_( D;5C=}-cI-Ys+/7oٹk~/~7||v۶n۶pvΝj_|6YP__WGZXrjN̖lypTx %V)0>}#4/dGXV,wnLKOunƝBB͛i7t_j5Ir-T[D [_ iD顼_;4@4q B aK7**L9xCB"cΆy.pυ=Ǿ_ >Cvꤛ|{ZLhaEʁ*`ւ d酂76SaQҮ`A.6`L?jQ (F|>jDB2j2(4*T.WdʞAxN\jtQq˅>pB9r)nwǧ,rQcaKoϠTI#-JlEUZCFR>(ii 8W*~'33vNw/,NS/76P""%gfЄnb0kZlXM:8tF i?_.} {zjCfKKs&%n+mu9!mUg'o=+**@9O9-%Z{L.IKKˀ%邥i7nH&12ԲO8vQi +v:?z*n yؼG 6<$~yb̍Kt)99)1mёFEwٙs1 qgdш ;v&UeD#1eRy2n"AS RăP qm9Zs@`8SBɓ0=Ep밙5!} &@`j~TP (;;ŲN5- ʈLYkifvva~ffjϮi6]V`oms[ېDc!-`ftL֨WVնyVi&vBVdML-x:;Cnr.XbW+&;Li}nu8H~]%o~___}N$`slvV#@Z GXn?q쁱uB1+J4"@ Fj&bRKDv`H-]ԶhmGWCJ[^YI'  <ˡl@`7jf파wН~161^Ap Re5\)o^801MNp>Pk0"|\[C 6ǟGI,>>KFFDsm,tbQC("tlbxR3" R90aĘWpHb {CB! $p{n~0y?_J_q+Zo:Scfj4*j CDg5J JwMN#eʺR;l042qw_Oyeƻ*5=E5̖ə)Y#V2bުNаTIhF7A>9;7r_j#禜Vҫ T-~rҘ:15C|seͭ}~Z1Pl+?mi}~_7_{/؃;xd) ar i)Q acpp6k ' VVdm`"Qs [kZj몸zblK3BU7/]fܹ{6e @֛ nnH ,bR{YX,MA*+vL өׯ"tu^)f Xa {႐Y℩ I;k$`5LcQC /,bl@88ۛg|aE8/V׳ Sӓ3iԤR#ưhZsJM-[>XRɥ#:; 7hMUNךE-6QS}}m5¼n[^Z*qќ[T^Z4eg>y8sQy>#ݻwo߾}}Ԍ\#tۛf*< WXm0fסY |у{Ү"OSd,]^I'æoqb<0'0CI1X0!,,@˄8:::B(CǬ:sa!p;@ -Hh{`GT#fع!wSCBΝC2C8~?>Κ-Ag!"6"l՛ͦQ9JN|L$A֢2Ql55|eiav^541lOi$CCQ** ` j:nLVmT+d!A:̷WF+=7VO۵vkZ}u;v7ooͯb׮/rn{vڵS"R Qi7޼~Ņ4!>˙v4ؘzPkfC6;q19QjR!\"hkwkgOOOKC]  m-{!@<}b%eh}§y腳g#‘K vp$\l!tk`"¼s[k&0:j45Z:W,fiZZR=ZbgX(᚞ոffg^Q2aW ;aHըCCDZ&\.Q1[m6Z7 !f 8ϟc3j~q~/l}˥%̸7oެSz͇WlW{l g6>m۶kϞ=_wo~_0v^8^[@ZAI@Zk+ϗ l!n3 nI@+D1ӋBTz<Ӫ| Vځnbmmm흝:DLj0ELZ.`(Җ!'E1\4B+;pج :tjlؙ0ڀr T "BA#΅GDsnݾ>4fd:̸LGJLn4iJbF)LO9'F'g ggf$-4v+uD6"+*@yi1 Ǎٰ+)6ұ"z^x4cx{^.9mV1bu͛w}~׾}{w[ooٗ{/r/va[ E`ؖf:DKƬ6+Ʊrf2fr }xܻT$#aphjadJMnuLrc ,@ڪraJ[J[\Gn^NN 95Bw5-ga-}]kq7s ܽ]!2#F{+Nw|S \LD- /_m9\s!1/90ܨ(lt q[#4 &:&.pMa%< hŨ c q AWDA4FM`{qoBfg y!ms2|'¿{ߏXϿ t7doCPGa[3pZ3ىW,b!::k.U7 ۫{z-Դj- !fhtd04>ɩqWKh"oA5]1xp=~xvin_&]Y|!,[ns#qvs>{셫]|칳g>{mxa HKy&'&Ď q~.DcFM_$2KhG:f i;ThҶ4767EzFڪrkJKKY~pB(W!slrRR"`V:mu& %.4Tpԍ$\ r܄Wm$Jobcy 㻑\tDqZ+x-`|-P? ( %޽G ˳eBܡAEzi͟~ǯE$[,;̸=W⶿&/(ag,~Oc=xkHL,l4#cl+ oGGF҃ic r:m5O͍4{z]w˲ށQMA,Vf3:G6X][YNdvk ۛ CZꮭ@{sie瘯BkW/]pӧ9w1o7G;h(λwoA +& jQE?88f5 `Pq21f'FY\E5P3!Әy~vd]=jHPۧkJJjqd¥WuFFSS i߼ZX^ypvuieee6wl77v?|x75d&߬LLNsqur;PT?rtuvq>v ?kϜ=y @;e|_#_Z\|5v)f031Az?i,&zбꄑEĦ&\hkk0ƉR̚-- _󕝙 MÂL&N* 9+&$'!6 b~ ,^PYB* \ COG,Ba.Yг  `}1q^_[ɞՅ (}r^@$\\L#.nBGЏ<-4ov-2hB,GL CKr#bio-<7?뱞#Q#Cx0C8?b2&H{y]I}kS7 SDL'0;=7chlSkzu~^tU7v k &Ȝø\#:;i6 o֮_W,@[v7_o`8=^0K.9R A<'k~طuruvrs$N{7^pY|:}IǼܜ˸-0B .Y| $qi&QD m^cVU iaӸ-m/diQ܊ t(B=@G8ʞCELAA^NVv&Ӊ*eii 9$, ޞo ::::yz@,^Yy%= POO@4F$#qg#F:^ֲ|)l*46{U0چZbŵ/,|l1D1'333]?iTYrYcRv~в ! !VB8iH W. {Y XJ@bO@X.[ BB rDC܄7 Oܻ'RbPQv&*iPv.T|[kXa-ҁH&&n^ruр[?}COz_w@yltlrH"ޏ!휹Z=1=7?7SSѨ_Yy=;jzݝхc}J7؊u&]7d""lX\^]YX_~Mq^h|ok9}ݻKSW˛6ַv?z'to/o_?3}~qŋϟ=uYN|:_ q&@y|BZ89i6|blnnaium.xvkfga G{;F=][[w>ǎ$KH2>׾͗/]8sYBZǼ]mGvwa[wѱdkm͍0 0ʼnM8kjhN/ȴtj0Ծ Ғ_|YVVmIQ"chV22`BPHS%)Xcd|AuLL , #((.#W|| ćU?-BfyBs xY buĹ? ĂÃ{}1XtBٳ'" -_-ܳ4 3ӏH%ܲ˘b&6W0Y>|l)Z}?뱞QB\w84=;??iv&f^͌tT6whm9Ʌv0<>:<ԯU=Ox ,jl2͓SFkc^x72!ۭ͍-}nvca.ۣҶ㑋Gt]Ԟpŵ+\pΝ;{)`(k@!uVa=kbba0^ #xFz3ShB р'l+ ˞^jSjomkjjneA#fkW@o]]=l*Pj CY !lazgk sy<7?';3]!IUd*eYyJ*!-\Td%KH mr0#@J  h8o ']<1!ys%|(# zB,$7[|%>qga&ʭ ] W `&lI^Ǐ?zxCZ>עooG-" [r G8FP 1Wz匌 F f ǎLɹ٩)ybnn='.Kt@u؀8l[\Ri{Tm=k4m4y#˟4y=[[]:8um~q~yáݡ+ԃNp׮^t"/^8/.JfZ({xg0FhtlLw,Dc1D8n̵#XeE/L[XX̋XmiQa^n&dKDET2TuzE!\B>t:j$@X B`Ӡ801 ߿&*0JDoAv_ ӷ? I]a}#xtw;Cc1]zԜybꚢnnÀapؙqMco֖Zz:[F`oSj0NΎͭ}sptFvN.n8Ύ΄nNG;{p%<}W^vʕ˗/_p%AkORkE{ј0?;7ac=BEBՎx܏7KHTZ1?ŅN['dۺ*y܂B1rbfggf*iY9iae 4   <!c/B\cAh!&HS0 ק5e bb@_7!T ,$5 q蹉 }lDdP b ۀ]<}, F֊ݾ)L(E; syRoǴ#BZtTD:{@p1D#$sO}Y{Өpux|jfns`bj]ƁAuJ7С1`{PdulZX\y=a0ۻACծu6Zഓm9yxv߾| RKmo^-p`D/p>qg/^|+W.‡pN6:![1N4>c#0~4=.U[ ` A0t'փ6ӂgb\%bn-),dgfe+32rT.S PpĭW,Iɜ 1q"ˆ[ژ$i,U: x o. Rѯ-P vX c  㙳(bo䡌ڌB<K;}bƇ΂_=hٟ~ b [foJ Ś]j{m~ԗXϿ!\5Lh&gMSӓc]#3##~xDѥjQ8>zskuan_ݩV;5Qu߀Hݺbkûk]]wvm<=>쭽Zphu3^5b/]BO:aQqZiWW,vIq ճ3B%n;(f(wCy a)ϨרU1VWVaԆƮ(M]<X[SU WiYIRBG(.'D98=v/y  9 ĤbHa6/n&IBoOjـ!::*&6!Hq2dZ&.s!aTptrr ^z" gCLdHxxdTDLL4&B!< F…  z~eA"}E;X!yugsH=j=t=E9'%Bɓ_>g=p&f&S&󔩧gh'vz:mYyJwktfqWScFC[}ƶ.yA陙O}t\\<ܝl.MN,98bơ{_7o'iϞ@}vAnYGp񬟏m} hxGGF`At> qj'GbF^IPLچ&lEz1Ԣҫ&/-+.+-*p[D5 SػFJ7#=Mk0zП*A6MbE_( K4x %Ns] #aQ@[pΖ0.%߃ܲ ./QܼFUg!!O68TlǜƅºwoJޝ_^ ~\u6F.I? s ևB;sh?˙{=Z3fM^tVHuFl2j:3W_Ϙdž#=*UJjVc429;7!푣vl_OO.;ĸ曙OOg{g}NJ˗U0+.^<ᬟ &lyE i7 LMk! C0yxW^}ȍBWwiPSS[]US[SYzpZ(ܴH2K=/+-{"),)!:ڬҲt ITVW"&oP4hl h2v.\y#/[VK0!$@ߍ Ga*p, Dҳ0!1-`QqDC#" ڐ "ŸDEńa,8,4($40|#b{>D"o/x.|1\ƣw>'2iP}2 "':ӓs' \; sGCݭ-]#fueJ3MsI󐮽CU M̳=:rw#Zk`osnC;{[[; ݒʞ ^xW~tn|FH{( Ξľ-Bbv.yz~8-ƀ}F` @49E61iJ MwW ~Y`*-[nG\UYQ.^Plږ>GWa~ Ǭc^vfvVN^vFrd J)J$#f\T$V\<ΛNG7a7H_>hzc@ΰFGGEFF3B>`oph)@+8p$ѹ 7,:!9)>&"$08od\&!!ϞCC( 6pjqs޼q֭;x/ h]]֟h{w=zzxw[ax^ѡNMGFڄ٭Wh~zն}jBЈy~nnn45?7?7cǽݝmf'Vlllowpws9kc{h}/\ru_@>W\tgOz8aEˋg''ͣQAk4*~Nbh;ƜvhRVۧi]=@6݋v( u5UUk+wKˊK1㘃hQLOKS)ryj*7 m*-^Qzń؈Xg|"(IhIXT."JbccE~\BM(n_D AxK*6*:<.m(D!YXSg(%@YǘA\qadD37޹7{^rn^E? (M޽?0O}Yr&z[TGC}ز Mōyi~qHGU7vG^Mg<'Nts?|v{wno,Θ_9{!bh יg_|5Z`Ηb3~nNjyrH#KIbs#A^qӈٌiA#3h4vU3FlDxcSsOif^AeAڒ,eY9<(nptd2dtSy'>2A/MHlIF!1xhaDE8sƥ` \'%$$p <(PỈ37zK+!-#y7(:%}wͳhA<\ì?]6QY)=]yzPl tv~U礯qO'÷o?mo]^y2 ޾~ jvkW\z"链>^nv{{k\]YYz5?3y sSGJ;<78 Z~9Kk04jA&FZFPs7l_,#&[TRT\F(mn.ql 9d(p &= ^R+U ~2E` NB[xb4s M߀% m"(hiB" 13ȶD'@v$cs,:ppXb2s$h6 ONo"PD͂Cy:!&*kj>&T|/N(+R[9 d { v<"8Fcw> "X_=Ϝqs~spvnzO/='w//~'O9 u܉}v8-KϞԞ=w`kuqimeuylLj}Ei4B`;2k20:]G,7Ai{z:;[VW2 4ϴ6Ve-xix^\TT6'~ܜ 4,΢;Lݴ4RP,_lb,h"/lKhYc(+8nwDf(c^DxJg ؇Koܶa)l͇s(\OE, UG|&x%0&sS"V̅sD߬;<:~smnl{v{[gwo/'Բk"{E͜?{?lqZĸytlrŷ(ⶰ B(Ru 5//4666m ofV['Jkj_XniY/K 'pHm";6I*In +290bQ!%]TA&fnZ^m8M Ixq)/VXvƳ*!OIJ( RK~ql„ n[;#20Z.Gmx+;{/ ST>c#.|$z[FE0/}3=O:X_?N-.:=;}nngk+ >~Ϝ#^{edĮ\&/]x s|Op8xnks}3SfV;ա0FoeATA[(Aq <(< ,6 zMvv7747 @8yk[k #-d^Z8kk+JzeyyEYqQ~AaaAm^vf<S3L=Ng5A!Gb"MU(322S܀Kc%mb$K"pV*MfKB1EISn6ͷx{ ΀d,9 Ll:pdbŵ!AC+RBhŌa/e.<΁1rgM೐ب`4-}䱿ZS {6vv6߿r"h%uqstttrv;oW.CE% 䞿L}\m>Ot::zc M/R8 X#L]}C8 @yvUJաjmnkhlFrlb  aKh5/Qʊ¢\"apn64M1**Kb H %7'th lb27,ߋ¬U"o0 %i3[EK b c11h c ʐ Y דō#X,Dа/r!wx!YPH(>}m\c^E5XP`PUlawr^Lo2AA!xX?{|zn!P%b슢Wt|['Μ;bȶv+ׯ_x̙=]OMej`^h5Z{ 2`P?̳^4}zMmͭMvR MVů6..,A~PS_UUUeŅEeb<+[2zNDL&Gn,Uƣ tRF cز@J0Iw#ń(ˇ/ IEW%!xO, &s!>9APgqP HmTT I_QܽnjlO=GZr& lpD$1AÞXbaѡ!1X: .Dt}NT{eQM{⥫?7_~/qڅ3t=yjvzrŒVZ6'ZFjupW'jy#k@%mWlU674kmkjcS3TmZ$c%R[ oM]muMMU˲Ⲳ⢂¼ bcIlHdtBXY*f(~!`^8o99"aE'H6\M^|A ~а^aI7HR䖯%YTdpBCMN3i-H3g1hFAȈH%} 2b@O/ ` D800 wwɠwnz9~p#\<=]Ys< RΟxʕk7~o嗿ٵ+Ntsr4;;7316WQhqtF'jj 5C\MwU\TWS[zAsGm' s f[Yɭ)k9 Ut|^VZTXD6]PQsUTzdi\%̘BH*i@JSEq#KlMg 60M&K̐lZdf MHQKTd0FXc leqq |2KEdTC"a#T.]Frha @w(h!$,gݹ/3뱞븷wΎͦWNNN.N^Kk+v.>~N9s,sͽ~//gOx{:;x3;>19e6Lz BYj-,&p-pˇo @h]XW[˾6VV e?"m!mkT75֢xmeeŸz6Y) +>Y*C ۼ`񼘜e0* 7Fkq"$p-"0&YdY!ֲ4FǢ2xKYLH-$dʴTT\%>rh mNAh88^فr,H"DSC`]%P"r8F* S!PD*'|`3""*2<ާʬzcN-;g'[g77g֖Wl̾:8:僲BΞ| H~OH{s~^;[˯0314040`@Z^\1\\466ȶuwb.YDg g;1;Ԃ1647**PPZZL@#1h'NsiiY•Zt d$,l u(m2H,LH9UAT7ʥRM$'4$CX=\E!o0 RSga<\m_Z0M8~*,ASG^D đ@n ΰ(aDpU9Mb ŇEV&P^Ex1]\TѻB!YDd؃O}YXq}{ףnNnn.G{; f:;~طsup8w\%~ׯ]x %gɅX!CVGop7N&tuvtw*$Nh*0d;Ђ Yk3TWxsҒLZV(c0TPHeit4;n?9mI/K&ƒ*.}B)@[ XFQ3!Qff)KXoHI@PHJJ&_IB| <A H5D, q D'eQ8lph$]ԒGDe(.x¸y"':`S_`c=փs勞j<=nƑBW/׮^:YYi1]]=jV cdh` 6~zVM5Z,vw4wt`΀ہ[0c (/XiiqIqA~v:JS%I h3ZAZhi-p;&2JŤ )¶d%_+@tU<sM%&KYPgfefd@HLHb?GtML!+I,z¸b4Ec }6 IҔXÅKpbC2 ڨėA cyѧzGOS'Oxz8{xz{C>p~<0wv=?'.]ŨW]|񜟇!LKA t: Ad[gaNCoAZ ̲hPA*lWwpD|Rێ1[QEi1:JK2*=T"C-7|L<,P[: lOZ<{ɢD)YVy±LOSȤlM ,KUddB&Ҳ7)1>j2`/'~[2F.$\ <",""poB/sKXKsE#i!&.m$=e=c=>'/tpr9e5טy"j?z1E4bV'Zܘa֗Zb%Qbe"nYM ʲ뱞|N8}󘽍>^&N{;^>8~NԞ.{˳Nё^buOgRb@V&Z:-cN/ezA&xhoikkRؠ%ۍYOOW7~tuB`JVۡgtۚja* C &ɋ 3XW \2xW9& `l?2*Ә#`q|KMMۏf[zHO/$~ +-#mNnANnNv&>1X&R sQd&$&˒㓓u$ opE$F$Z#ր{-즋t _X@EWX8\ 1(%b7*%![zo;}su>~nurᦝ[OOc>>' ssl]3'0{4hgU; nhiLj>_MtnUJ8d *;5ZtuztvB;oYm:FnQ$}ŋKK JK rnO1*`Tɘ&E:`UJEb ~pVq#YS &yaapÑ =ly^pb-3q3fТPvZVC`6p#"`durb:ۡjkQ#«>Nn(]=pB]1B47VVU?QyY1JJJ Jf*q%oU?w$&KSa:Ug-hNf:b\r}Ag0l <$Je|4һ`s.GѰe_kOڴ,ev^QNjT>)xr2Kom0;)((̧y{n&s>8$<8i3O`Fzr󑄲8$,(d٧z/ɳ>n^^sppsp;:=wppss?|g`gxxxD$`뫵5[iHi!pZo>EGKަjjjmhkljnQsG`{ aEg@- j٢ B85P_[/ Ԗ!-FЗ.mS٢*ABa4<*JܬzR|$bm zn^>n `3l8mʲ2 rerZѧ2W`˄"#+NaaA~n~aQa~v:*$ p(E>8}݀Zh^DE 됰WtDldHPPHxTBj"S_Uc=}mW\=bpvpsq]_{w츺jqݝ͍.9m 0 % H0uֈZ^ C^pݳ]j*`ЕI25{@b;-/"]5!-zx呈m]u2 &-fMc5SXY7.$ p۬/feW.6 )q0R*k rs-Qt$JB2P$I%W0@*ː,kvbl۽Ue=c=p{7gg7:@Zã;om߯L-YZY^\}6759>624.8o߼8wruvvqv?=Wg޼vvt/.^.rL/踚-TwuĔx3XU̖<LcjZwlܭ mB0kuwgf11&f ,MEyj L4׃. cnYͅ6-V萅 ̑́[gQE&IIHDX_2z;.uY^_{e܂ woV^Z}5E@k2 u𮪄[͢8 ,gaӰ'KޡRv:TD86Fʪ/ˉV|`UBTxثcO LyLÂpO c͘QqW;cm] ZȪ_irm9I+˛;v6vDkl׷?nom}ثׯg&'FG 0hڈq6Ant9r^o-KR-X/*+ʫjU]]]]D̠'5N 0L3ª55nU-Wu+U--MDjk1X_WWU񲬸B>q^0c Jncpa:ҡ |,<ϔ3ɊYEC$_)$G +SsSn6_C%K~te7O؜._ KaGBǹ_4q9:|Nm$Y/3)WUUeΛ7g}>vwmWF%KDDS$Hx{ͻ7 xU'"o܈^Dyb G/~On;ݻʺ<={'̽8>=>[??>X[[^ZZanQ$q o!<+=ZvkLڸMGGO_`/` mDuK\dð7|n`mx7L*mfbͲ@λpHM[8ꪊZ??Z7pRo?g6MJ2s:x8?.kx[ָ5 j8(\~o+9xX\rDLEڒ2p>{V_VSY7p}WY^\–?Ik%l0i<V: oxU!Bg[GWW9Erū{g{omloon-LOMv[_Ihl~i.6Aolݝ]`>N釟xbkK[[SsvJ<"ٹlq@ yK 0,ն~ Ssqi SՊ Ap衲-:++ejX$Ygj1da?%e9oO4<a@ qUy㰝cl0My ̎cǪD{#p^U%0/4kr2(?[ͻq3ٻwNޞoo,N<ΑAV.E!0,N:X mf= .SZ< >w(\}=C"Nqz|~arkt;ހOqJjYXpm=g'l{{qj- 45n ukכ֗j*+p]X1 iA?[vxxЖApo.w[bU5J-RYW|joh2U%lǃooJChD)j~ uK1(+6alkoRg mi 0Ͽ'ǻYEEbNN9pzv)|?[_[[\_y ھA\;BZo z`7vvioZ^5w#G~-s{|Qب{?f xs K;زk{MFS_B|_!W%Vl-$}~&wIÛ oW ښOAhpD(jqb6/?OqqYEm0,NA*DmYl2i %?y9{A>Kj^Nr#*_rĬ윬ˬˋݝəhaaiv]<5>_"eDGTq$^g;VooWK˦n9ALj3 vF1\>4+} Jj4sj{z{PHE-/1r\\UY] Ajacv4C"[!V~0eLj+{Mm|RMo{$pp:2܃໿O_G{&tފ*UYM4F~6NN=tJqm_wo~{AqyR#wAX/|x[BN~Q[Aū#\pzpgg{mukinimmiivl9]ik;`[8p,; lǝ @nAP! ilmMMa6qT@wz}>?!Ύ8wڥ6 aǒtݠ]M[Z2Ɨ/_xy|W_ԄRtcdGS =B}QIY%X%.E}掮Ζׯ^< 8fZU2nĄ ȭIpL[Jp;8?)?zq&8O:qۿ _=hGUϞSPKW_~>An?O NO.wﳲ.޽;]ZZ]] W.)^N>ŴW/?à6[_ ޅjG |J˶|SS5116 xG~Zۋ-"3aTZ6#ݽ xNw{kSSs [N=@p_Ip|1[\w NN- nv&TWbuueiC<t3J}ApO%Óqe_7?|RQUj "z>/?O>?'x[wn߾}#,+2[8;>=XYY4Nap=ngpp+N;c[>ӎ hmǣl)U6 e>ZN|6Y@Yws W uw2< hm} @U_646677U%^zj}Tpr8Mg[3Y]]mueuӺJv6l{/nu¸8.YğUUO̞<=> 2\໿ڰ/PݯAiK+//>>?u%fݸE9g/\Q{Hذr dn9]^M? ]l؈ ;\#7#=}]N*g7sGNK:;0zQ^G*6㔖K  ~q} };YLlq%CW4ED^Z&6~wx{{W7lsZZo={^>)c*Y/xCUKߗ{(+vNA2VUYZ,~'iCcC @j㛅f]^]]|tNQd͢>)vĐ=r;Y_'ĝ^mnvz.3:<^pB$ @f'gffg vj'&@kBpكg{p7 'b,p˜m,l EExx}ٿݷWW߀{\ZZQ =]WXKgϟ?^ec?鯥 #e(=)ōmqU1nPQ^7J!lχ -cyrc _(7/OʻwnݸqNA[ss.o~U7^_|[~,vB0C 8@~HǑ `rzr|lp֏ c8talMxǣaшReZPjك&_ ntҪo#qMfS<+)BORW2dg߰8?g㞒O^-yQy_E9u{}Yp۷}Wx_9a@4m1E ೿ #H4SSQY''AegAgAGc 8|=6Æ.n:&֢T6i# gMoCU>3|}Xz[__(FezA&:{*>)lu1.-gCTGxBړG+/AA~|R' 97?ӏ?*q(oGt?>z?@48:19330?707 ;95>9=3;?g@'&'NMM`gɘW2FqjbZ04A- Pǫ|t<~R JUc# ^zSA l;F3T'84˖UUWWٸ8t,091(+-~#Oo|E?W_ɿŸK̩*x`A]HAٹťeggg!uqiwnSN=d/dTQjٸh. 'p/<  hΫyU=eM(/_K(pD(I }uĴn eյl,b toqӆg<A/o~g?On߼z%7A|s?u *8SkbllM%@Օ%E2;35= ۱16 A-z 񮛏-nM5 sĴψlU~魜S>M,B:?'&@]g..,C ,H<9Rˤ'LcclGnۅ> mfm;Wߘ}Ӿn• _7@h_!Ez!šgY췿ïytL-KssxkwF sg@gKEpp((̂>chcP @ Fqղտa;Zg`ppWi_j| ƦfdFC4z7 1Dǖ>)-Ź^Uxn0惻7<)-)++mhJ7A8_w͗?z.@Z #\DZڥyv/3]vyApR(1@6y1|:BXˎ-U4~7biZ:{:;?VB{uΐ,E %ťyyUU%%n#'0myye}AO_o"]eayieedveue.Qgqa& %Xƴe.,J.m!O^/gd(  G?_?D PXյ5&(LDAK1WL`طe~,!]Ge0Ne9x3tn^-BӧO9}uQ )}T\YSW{Z{,)x{iYyEyumuUmC[_o(??ge2|onڮ,/ ^+xluu ceFVVa 1e;" ұ7~vqWZn Nq8ܣ~@)ۯzo/^4<*)y^B[S=pW<{V[SMrfs-+k+Li766@o!]$.c plWX R4*%,.3]O=بr ٙftڴU]Ey!UUOdxz]^4wId bCٵM-#IWi0c!^_wex *^4o-̓JkpE?I&`cX:a6DB mM5UOd:YS[\ŝʚZ;Ij "MXXGF܆v"]ZI` ЮJJa-,B̻6K#Slb-.c'2eg.8Flahiokkj%nBV- lPŋꚧuxW M-o:A 8  Zjb"`Â"8:[C^pZ]e÷ڲfq.w3pZu06p`ՌeC=/^7&e>iݳu ͯ[tvA ( [;;{;B(-fl Zy1lƻ+nrq?;pvаjy"4A@#;sFϟ=Vlëx*st_64wutRTKi$8~J Rr0v]8ug(Ҳ+8xC,,BZ<zݎ<W+ܾi|׃<KOq߲jhQ.Ak8vۅv"-IPY(flKp'kqeFOq7ü^kxyU"ihzھlxRk_젴/_nlky[鴴DTglo8`˦n҂na@ ߙB̻õ+в{clU ۞։3l{ü)q&Gx% "44·W_A?[:[PW_J@__cۈ#]m̰ ҃m;a{{ղ5ٝ E0ec{GG{ q-vl 6>؀Xw{dggskEقLcc~Ǎw*|ztvWWW'*.;Uo Eŷ#4bw`o(! iِ어~ '۲fĺ̇{RDy{}Qo&>>U.Tٮζv[֊mȶBؽzMK"mE=8Pe"m܄-ʹewp. D6Z&8ہO>+7]=]mo:AJ;:߼[T&Uut>yZ>kmZX[X]]ō㣣J'"wO ]MG{ nǛiiA\,=ǐx`8d_lwgo..eJؼ i(ƴh""A@{z{{{{zHetvztvC mOw'"jCL{rϔv_Y-1c4j&nIS6WCX1< wfjzz2+' ]==C6po\X/ؾ!ݝ ãcnQoAPvvv^Lhwc{vw9v8QL"bzQ8A[l#v`-Hm_4.>:>8c+68Օř ?"j TŨ_mvr2#ТtGaZPi߽{LspS_=9hvv67֖x1`Ⴐ!ant; v6I^glhދPh! HUR$Dq{^Z S!u ȅ',ԅX :H9':qhwmcxKv/0<;9Ľp[KB<<>jqy=QPZWQ?ܒB}-'v)-A%bnp}PZp߽;8;akOv7WVVVxXzGAin7ֺPbnȯ.*-kxxN"$'/9?{wp-(9^ 9k66@hWfyXAL?AjnA:6)fN5 dg]e]^f]^{{wxR{Ņ$8-;$dbrjjvQ'2Ee+ uA+nd/)-A#b(duuu~vJ{ߣf!Wl6KJTff&^?}޺p68d69t8pJ̼>O " l`w8x srQ/ߟB2SMM23ӓ @ Y^Lgq 'z;6<Åc ) ҐY۫w;wЂ޿?;9XX]%cj?~ׇb x [ v7057M[D Akv(YWe. /,(A!DTڭ%W">&' MGG}x́@i1umaV. s:]vj=nw  F u҂$D†rs@p˳STګ,A7ofYYY snVyN8ߨx8LBZ6qg]ll7a;[M6CU" ˇy9Wg'gg7+ t -,,.߽=$f̋ӺLi]nO}؇@Ln?6>] "//N޳1[eô7nWov6yNڝnoԇ# ٝ;n0 >#6OD/H; 1d-(@-.N]\] 8FWPPm sOwyN xnQ9CPkw8=G N= ۝NMLNMOДZHC QE‚e֕qn> -|A[ PiE[&Flq_ˋݭmڔP􎍍>v3IJKi;2% yE8+Yg';[sb]NlׅGBD?d;Fprrfim}ccmy kCEy8h <|ggoHOtV^DBh'xp`nqye}}}u k-jk^(m~3y%E$vЎzNtwt @F3ss++ks`bj~a~eueu}}gg k0?/)m4FlnҦQܫk"7m`MLM/.-./nd Bv?U$),(-;|!'  H^x?1==9 n L/,.--LB087N1-Ad9= "Q.//…5P͝S^> "B6@]@kVWWVV7wwޑA$5ޅJ#kk['߯Aw\AD,ִl1DLAD.-juӋ ^& "*WW@gwvNޝ2%G³# bDHj KXiIj )-AD!%H6 %%H AɆ!"D";˘`h\:IСj2)g "c"a%ȩp6VFE\#"xpA-&aК$8NiiD+|n'""<=o4A!V%A`&ZB,DQ8IYpR Wi\&Ϥr$4A:uQVj c)w/S71\ hRE &6\GEMyDP6&D`,0:7)BT* 5#˒2E#jTCoGS+)M]M"J_edHb!ƒY#!떹aVMM]Ʀ H9y!J5o~ Eﯹ@E D*1i +$GZ!``X(H _HFbFXdcfb~y[T ?AX }֢6H1;露Z":`H/6DtzAĉ(ލ 9`~e(T4k4y߳NPCD&, hSM ".}gƕ Ҡ CSQI犫F@M mjo:ABS SEPXQZI4XIl@3 *?&FDgA^/ Plu$b+ȑ0^DcU&~X)ǴqD,7ŬG&DZQ௿q854 q_EfI^"<1'ztEV3T8 F5(cmeW˧uUC'AP φSMt.`b_+;":AIXXwP>SPgTJ+Ʀg:uG}&zA$úf"$0~r-CT͐mIaiߏ\#؃sSzlLPd :dM~Wy!hC=~dIQߏ V %b:,f8JVzUOUg#YH_5߻g3y Fy B4eyFAqEDK"}!+쎸>| ~Zn8bZVa+Xcv]T_A=旈A$qm<·T3 i,JJߌcᄄF.KaXhĵaF? "[ƉT ʪ)t&Pxǒ:#+’NљR:I͇0WU]%TFmv"E uF\3QFju#7^h(NTjF<+l(bHTdUBjK"z uF\3wLWZAHT*(*,3C_Y頨FJBjxǜD"iMFJJBb֘l2$ YCOe׍s&J%jWH)ncJ]i4I9% C Sȑl0WSa/!84+< kʷ2QК@$L$?49Wbec²Q9er҅ⲾٛP4"[2jB++#([4!M> r|j/J KjF+>ލ1J硦)bL%P MqU@%hRԠV״"h R ,u I[HJsDO'&WeY(Ea!(+QTKB&YHdSsX^TcKCaDbcM#GEZn,BHuJfYi ZUbv-1hrh'TT]sD:{;XxS$A'V^9R ,Xsw P jdO}RT%ɩ*Geq:粥ZD{/ v(H}qZQt邢zW2|I|,*qYõQW;fD ROK[Kd7K^7A-E( I8ڲÚ*Z h.hLeѕ4$icQ(%W@#u5 &-4I"I(^4ƺTs*\* OՊpd\3";XZc -/7fo5<LdxFNūIJ(C—9XYD U[c ė7 ۸VjAFsARaޠy8[R6@3oH7x6VIIrU4A(2QZJ?$:"/_}Hw x6)PذF^W%`Yy^Q% M0yȟԓ)?Qaj(D}I\?(X)P\D"^,+xy=AヶQQ=+dN5dݪbFY[aufJ^'sְ"xaP BDe%+.% s Kx= m 1ɫ=grS! qD^hf[꒭͉н+"͔SAP+RPnR0vʭ frmA- DQ+nI҆XlZKE]z`d8MAH'­#uR\0M$6jxFZMOKp0U Pż1Θ ]DܘaY ]O#R#`,/jF0Ijԕ4D|gJT\?DaQeM)3!tɤA4F$\a&iQ6E4}D m\X`^eM5Jl n`H&Bk)>eP H\;~n3W,煍Ӳx6GBHP53,4!t R2p |tlDQws}ԥZ "FyY~Rҥʧ *DXfս AEԤ 'K$`utB >ʛ#K V+.%e]r)*R JԈV͵ެ|FLEׇuIm/5F3xfLfDcDTQ)pq #d4eVgٝ(dh"({qT[a{cƼH^&t%(XZ)렫U0kXDQ9w(q:yreߏ/%5VC(]R 'A: K*jTkP4!7>*B\n-e\ōyѼx" ] 4te3 ͂T55KAD&yD;*Z8^^Bׄ#D6(.j ɯA&$CKT"U F/p%hׄvpk  k( Ԅc Sq[*h6d$:W^bP>=jFE171q)m8#% y=5%bp8@BаRA*`e-O^BnB)zaar%WWPvx7tGz&{QD_8`UՍ a"I"]=tIv.GYpaA\0rA}Q1CDyD)F͑c:tuK U*D`j Pѡr EdU9D` DIH1rih[!Z $t\ȭTZ$WC 'JWU mE$A"]keCיMBb]AN=<0fE39Q:Loʜ@\'w9BG Œ@*^L:abAPȡHi`vUMPVQn,(ĵ}a3yYd êg0$aH*~(,V? a Ǯ*!iE4=%5H.̖Z^2mx3J#̕6M'jH8EC j蹢\Ei:An)D2H &{kYm_&HBjC2]tP~zDÇ De>(a9UJcqDUR@TFBJ-]m.iB$ՊgBiRUJk)S Dy*D蹺*OSTYDk9L Hwx(uIVAM h.*e=SCm_ GK\ac Ʃ Z!ҍș"4mdjP*ж%MFLHEH<$ 5W) a ^L,BHG2[+t$TsE6k h]-k18b4 @aEY MAy2Zx:aEsl謔%^JeP&툂f4 s@UFB4AxY#Ƽפ .=Y Y4_`.Ԑ!CVDNVe픋2[uAJkEY y]2V±`R {,G8MdePڸdRYdl#BR!eMxP3k+"0+9!;!f^BwH")dmuȸQTg W̡dZt(UczJ7luC RZdVcbVF 1!xѧ=,FKb8TcâeP`&ӬV$H=B@ű($%32J Vce|)EbbiX!oQsPPi1vLV%;& IHe!:JxGٰD`BWPfWx!UkGfke^oҪB6E#elj2ŒB6KtX^$\iy9#ƴtאHT!"O13cUɖE) : ĘE3\,AfRXğ0UZ^1s¸E@:GV.aߺD a8t1VuLՈb|b> $#52 Ē'RtE 9C2.#3u'*艢0-ʮ}fp,"z9pbWZ1MMRqDG0!'(jb6"JR(IE+2^XbIIf1 ѽ("Ay)rBYU9.$9DS]H dX}^4T\K1:zB."L!ddepƮ/>ĕy׉ݘ^Q^K$Ẋa]LhCGK4VF-T%-tn2d+'rz9&Y` $\cu}옿Vj֡\Vnh]O] E?i@$d*'rz;6Yb#\_Cx!+;4d}ԛny`ɢ°i 3Yf:X ~%+g Ѣs-@@b/8RxȼðiVM׽9cB#˰Љ&RIteXmD$1幱(0l:qW%eL|OR+`$Z\rUQ]ʼn E "<7%_'Mjr eLj!䎀|_'QKR« J7BiŲy ]ҍi׊y}^#׵LY.bX5'QPEFKKH׈W/\0ŬWWXu,c Jp)ŰL>c&\2ˮuڔ 엓䆴֘}j}ed* 0*퇃ɯ'3~˾6xU&xՎ ^2BH .ޖ(V9:rę`Quxl AYe j-]NI'oj| O9^SJmDD#D>Bh"x DXuE^*=~y(^MNcש X$(^[TS<b͗"V,"/sXіgb9>xʘD L鍪I7K`9 z$"yS~lD[uoBDDԊ!bTCVD$p#/{pʏ^Qx^"8LcoZk]O3~AHuǤkYZNeڐ_im$kpuǤ+hᕗa>eJfIC2^[|L a!lж^wLt^yR )Pk04h[FD C&]xG ̂8u4EHZJ'2}ӈuȤk(YZ Z{4:w-^ңW\Fkly7+=zx%fV3Nr:d"^d"3^#וb'1̳JOe%&VJ"^"&xnWx x^o2'F NńJm9Nd53^3סb&z˳b"/Ԇ+06Re\3+Nd-2^Kסb&z`<ۨOidbqD dŋWx(x^g2/Xo$ȪboM jYfM%"%^W^fkm<:!|bX$0K?J0$~Y kxnrՋWvtJ4x^gD!5# W ̭2 ^,bnyEG̃u1L 郠!VP d,L3m.,-2^וbBFL.aC /AAm#U76^L ^yKF%E5,Wr @6 doE} ~] .%2^ם" :Ոڄ$*$S[CQL"0J{g kx=29*+4:xe݋r(E~3io?lTDlW5I" Ž1əԊJ-ӯA[tojsNXv"KkbL5jITTYJoSsIvƞ(V%I,Zz*uާEk֡E׃f7 )碲P6;OjԩV}.ol F+T\~anf+4 ˩NYjQuZ6yCw' ;mCXQVQ3eQ_b_,*(߹{}sy%+j.QyNS%rQ{@Rpz,SZ}6Lo瓛;c軩钨5>kPz-#H7VL533 AjQMJ()qlMx&P?DGu%;3{quU^S'٫PuݐY)RC*P7< `:/;- .Wly$ӬE9jFQup#uZ[ݑa`ǚKmsx5imڍUZes`qlYmOPv #6^8ٱ:@4Yar0XI=r]v7/eO*W*sT}j# p2]yۦ=QR_^#O>&ؓT}ol/*\w7n?sޖiz;;'UK{aME5/>UuPu;$o++ws"LޡXfwrxqT5/CR;$pN+O] L#7ծ*VbBD+r2*+=dUwJI@䏦`w'.Nͷλ-[Bй_^*`<n’QAgi6hy}2OU%c=Ư2WEVXWn( 9ry5u*P !~]0΢okۍ"5t"Kl|\v2WVcWZx?qoѳ BdALF%7pv-mkz.2溳\_7v/``a< rw7. _rV&ʶ4]Wem?[anEYnVgMj:<ި+ %zO0?U_)c.Z6sV=.87Iz_VI[ +| 7g%'xwe<-yWGu!K? lqdUxCuT>g:ps]^m٣MǮIN M_-::[+WSM ~8%DŹqIvJCuk]۝SIx+wvq%deVtAb.eQvZB|j9iJO}wI[ѭRIPwq) &4O}WLM<ϸ}I8Բg*(j;lDM Rufr'-CRlVP"s"ŪTNsB*QS3+8zbi;R}NݸӇ<*U3=? IՊWQג•Ce9+?kOGL|Y4FE_cjOǔ|'-cb=۫bjT},*ZS3wjhk{]R/C%dXɴ,ymT-NJyە•7fU^zzTz0I?mTCM۞xk/^wˇ;š.-%*- M۬{gMyJ*nl#:*!'mi0.y9)w;1U~LsxUzt-T#!*n&l ]*'J79765gT}5O2x50@R=/?^@sN%̅/]e*/iHWcR;_zs2707\ #[C*"fg쿋^S3\ؑrz.=;T.;Јʶ'gY^ tU΅~cowWܛD?2n/jv#Zݺ5xU}uG7;Wz؊v&U<ʶΈ p/-傫ysr%㔹C; x+cź%wK̟\rGT:{\pP)5(Zak~{^xN^WnO]236DTJnr7RiK3ӵaMd3yn1yd O7P/53eޑ8q}Z /IlKyGGX︳iIo[|[:5^sɽ-}T\tSި{ <ȟr ߺҊ-LR. pr* 3sƫr.vyPPѲv cuO3]*Ş 5p*G,A:ڗƔom깻sa46He3&_ ǒ&N6^tU9_R’q.y`|4")w&r%IB^tUȩ:mpӳ*giMOo-G#*#=NpyDkɞTᆹ^;\HNoIڛzܫh>y0x/\ih?chX_N^:<ONMףލ\|K남QW8W?佾qM~Ck*FMC\i/yvtIZU@:@dfq.q[tK s޹r*١uyoRDh@YvhD)f#iwFU{;}; p![f!q2p/m=]Ӛ=^O]85Tf=gi/9[u>rG̩^ex nÀ84D;&";[3|=i{MyN_\DՓv;Ӑ{ϙc.#ioW4uTZ=Zf7U7夷Iq_. {O4!nu7QKzܜ;o̦iFni%}&̾̑t;$E[D_$(^rpn~f V1?* ypЄS3 ^-I';g j9munX*7?Sa30ܺ-Ҟ:vo=n3AǭM[ TTFx60G[gf^g$23>fxeZ8~ isz**~UQ5vYG4uS0C%OZxʡߗR;}tje]=r6;;uW<4C?ϞLG|{E{iSoK>rYܯZNo\dUFXގ;/{o{g}ʡߗQyn~^{ׇ ]:D݈2;m#m?αz:n`[ZN9=7Ocн9/!>̷湜Co0\b}o^8(` Z%3Qs153ꛩzpV_2}{/a͙gOb=̇}Ӹ13*ϳrת;.Oe;̈́yIaTؘ-Q;l'-Ab'*m/22w.VUցV% Gy.b S`W-X;^2߹nF3D'8^@ԪӢ=I0aټ LԯE#y:Ҫ{ ΃k ;]:7Ecyjy[|*zs^6x)S[ n#,@Imyk$OX.-}s͒kP _.ƚy!cOpM1P~Yli.8k@+٣vPyږ?xuƇ[aeZ'իy15+9^Ṋ`vW\emE͋eTlaOuU4.͙>`Tx /j{p0= Qy^j0KM8>n'\F[ŠZZN *oiU޼VfwrޣrfeOVY'jmկ+SrڷAg9CBEWj $I ~^ey|@{֢Fmy:0w[^T{֢Fm{M}$(uHZƫ|;60{/DҚ԰4]?U{'--7]Վa $I .~}-ƩJ"vr:psQZi5a;ByY-:f6mBԸNL̾+u0,FQDئoMPW[?S[>X0OفMS#>QOqU-Ijss0/{;[qDm]z@$zufgDm]@W_&CnAҦۣϫhJ:?6i45tj:-m75Dm@'hf"#iؕz ƨsCw6MOTܼ;M飑n97/@ ӟ=7ScJWSz*mM[_ʚSVIZ4Py<! L *#=e}z*fG=x01FHZr*cǃTI 1Ri*a0Q 6. ,PC >)Q԰L RD H %R Yj|@5^O$5x磊OAҢ*/T@ˌ4CԢ"/"b,*"E:7Qx8L =wPYS1SAT2"*p!uq@O..S)+Dî.jp#; P7\}L u|aɆ*!S5M>PSp6`@}W(v;ie|}!iQZ|ť^;E5jFaѹ4rzvBbD*PQ>Ψ RkВZ蕺P-=eZ虺TɮDetM]^Hڽ L]ad3:])e0rHZY柚 #MV-upHֵ^eHZXy&m ^JBТ s{'6bӢbœIӨ+IԺӨ+IԺKI˩E'RWSkO:"$-,I]vŵԊC $-*SW0aH.RlSnvܼ㟝Dē.0}nk緟Zj [rvG-S<|}lMR5 J%8ay/V(~ ;eckleIG'8G,eEux9z~J0?U5o9x,M*`}BZaH?bR5,ʩ ~ g1L S7v}-9 ZUAMGsy7h?jQPՍQq{d+eAaab&5]iF6jWR4Ձv p15EQT7;?{Y}Ë4qe&Hkx5FT=H5볂1ܰf`t /ЎG6F0(=Rv7`hߗ$-QhNM}TkM4~=;w}vF퇤}75[[Nddc6Ljws1¶2q+%3==Pxt8;bԆwP x)??oHԔ*S x-/LhjįRS x9:DmJnsբR x)?a°/iR x1Ld)_fzAF&SS*$CP[K߷\5#~b_ZsbR *ӹ셈TOUߧfEIveejjX~,Qf_2?"~9Wsn:6Դ3'AD655D[j!שi 4G&L#f1R @h ߂ Y $O,6ԬsHwjIھxNLr6HHE- .a@ΚDm#lUlJԶ T\K7 /T ږ5,oj.^ 벏j.1?V fZT_Ė\~,_goUGsTWh?qGwuYPNueAC߱_^TRfIA)&mo6 J:}&i[U=¢8ϒMg?WU=J?Z}{/ɵWXY!M΁;&oj 汫YʖI -s~MeʇhxK;-ZYbJ$l6 vpsUVgZyʖ L-xU=mZA}T QSU5ڗgWmLWT aa `:IxWcFDwT,Iwb6"U=e!TCf6/Rk& ڒ=~[QgנZ-$U1OUD[Z:[R}MQHP1[TwRT-&jX:mU+Po:j.AUےk@R>iRzj/IU܎i@N:h%|)Tب۾Q^bj{j4k :[3J(fҪ6ZmLuF;{,jzVI-wE =/:z^Q-;GYjPt_Q`m+f7Pt^P,vT  ՛ 5BMڀ"Vj,c>mz9Ax`n 4TSjЄZWR}CD 薪@j^G 15U%&RԘZTZP+WQ:4T`SjRhB-T֤*ЂZU GIU TQ=AU-&RDuU-&RBub@jVMM ZOS@56U+Vj=KjmVͨzj%('j iQÜАZGvQFs@KjD15IbM%jPN9;CU )dQa5jm5j QuhKr%;G -f,U9Ԛ-NjTRkj!RhK"=G 5j5P*0|>jfpU7OωU59nw[U7Q㞥*p;jTp8iU8J| -+2jTn?l歪ǩRgX}^`w9U9vWUS+QJ l~{U8ǺTKV; U7iI`'msU7(vݭiFRUhS3hIچ-КV~֨UTPUhI{tjnmԎY~"V*F S;gIڶ9 rS$TS ;a%7 RI *c'Q*@E쌕V&KT"vRn*ybwP ;c)7E{֌rZA W#hj-\pdҒP Q W#ij-\p5.GHZI &따lrioxarray-0.18.2/test/test_data/input/unicode.nc000066400000000000000000000432071474250745200217000ustar00rootroot00000000000000HDF  F0MOHDR " 9myLSTw7l>OHDR     *Q A _Netcdf4Coordinates  +CLASSDIMENSION_SCALE NAMEyQOHDR I    *ff A _Netcdf4Coordinates  +CLASSDIMENSION_SCALE NAMEx + _Netcdf4Dimid K# !7AOHDR b$  + & wHxFRHP (%rBTHDd(BTHD  d( xFSHD7Px(%%Fi8 ļv _} 9=N\cEcp]BTLF E[6F6 9Fb? ,v O@ B # 8 N\+k+GCOL333 OCHK90 + _Netcdf4Dimid ROCHK9 @ _FillValue  OğEOCHK)goes_imager_projectionn:} BTHDd(l> .<{OCHK E_NCProperties"version=2,netcdf=4.8.1,hdf5=1.12.2x&XSFSSE ++FHDBEI grid_mappinggoes_imager_projectionDIMENSION_LIST   _Netcdf4Dimid FHDB  _Netcdf4Coordinates  _FillValue long_name'ABI L2+ Land Surface (Skin) Temperaturestandard_namesurface_temperature valid_range#unitsK resolutiony: 0.000056 rad x: 0.000056 rad cell_methodsretrieval_local_zenith_angle: point (good or degraded quality pixel produced) quantitative_local_zenith_angle: point (good quality pixel produced) solar_zenith_angle: point (good quality pixel produced) t: point area: point where landancillary_variablesDQF coordinatesUretrieval_local_zenith_angle quantitative_local_zenith_angle solar_zenith_angle t y x add_offset  >C scale_factor   #; _UnsignedtrueFHIB!@TREE1 OCHK1( @ _FillValue   l0REFERENCE_LIST6datasetdimension wxsC\x;ZkT^Q]oW_Zh}|ݳ:z_ ajCWlzІM ) RU̍\ݚ ϴ| pAѫQsU@6.i kiXկesCjƉ @ѾQQSCv[7khmnX 2 :M^-G@⧛ȝf;mJmJ~lJ.lJ޽lJlJ=lJ_lJ@lJN!lJf_wFWwrOnGo?f7f"0^N(^z OCHK2( l0REFERENCE_LIST6datasetdimension wOHDR    *,2 b==|XKWFRHPq> (BuW;3BTHD  d(l@ 9WFSHDqPx(lB$XBTLFh'j ?L mLKX I`A[Wמ`XY5$IU4úR@ߠP~ BTLF ?U4RI$ImLWXh'CFSSE>qՇeFHDBb=! long_name GOES-R ABI fixed grid projectiongrid_mapping_name geostationaryperspective_point_height ?@4 48iAsemi_major_axis ?@4 4@TXAsemi_minor_axis ?@4 4?XAinverse_flattening ?@4 4r@latitude_of_projection_origin ?@4 4longitude_of_projection_origin ?@4 4Rsweep_angle_axisxrioxarray-0.18.2/test/test_data/input/veris.nc000066400000000000000000001143241474250745200214010ustar00rootroot00000000000000HDF  Ԙ`OHDR " D __NCProperties7version=1|netcdflibversion=4.6.1|hdf5libversion=1.10.1=@x v*ޗOHDR 222 ?@4 4  x 0CLASSDIMENSION_SCALE "NAMEy 4 _Netcdf4Dimid  i*OCHK 1 P _FillValue ?@4 4 B long_namex coordinate of projection M/]OCHK >pOCHK 4 _Netcdf4Dimid Hsriable. 35@OHDR (2#2# ?@4 4}  6 P _FillValue ?@4 4wtOCHKSlope1yKjOCHK %nameSlope - long_nameSlope 3 grid_mapping spatial_ref 3 coordinates spatial_ref `DIMENSION_LIST 4 _Netcdf4Dimid WOHDR Y## ?@4 4 ` 0CLASSDIMENSION_SCALE "NAMEx 4 _Netcdf4Dimid  !unitsmqɁT{OHDR (2#2# ?@4 4 P V6 P _FillValue ?@4 4n fOCHKReduk,OCHKX #nameRed + long_nameRed 3 grid_mapping spatial_ref 3 coordinates spatial_ref `DIMENSION_LISTSOCHK. 1 P _FillValue ?@4 4 B long_namey coordinate of projection !unitsmjlOCHK ?standard_nameprojection_x_coordinate tREFERENCE_LISTdatasetdimension 1uۂOCHK ?standard_nameprojection_y_coordinate tREFERENCE_LISTdatasetdimension 1uՁnOHDR  @ x\bb OCHK spatial_ref_ :GCOLKKsKKsKK K   K     K K @9#J{@Bm@cZB>#@H}@Ԛ@~jt#@I +G@cZB>@Aǘ$@q@`TR'`@Th$@K@@{G$@Q<@ho@H}$@/@|?5@z6$@Y@3@ -$@_L@+ݓ@_Q$@&S@$@QI@1w-!@HP@Oe@+$@ $(~@q -@m4@†Wʲ$@H}@*D@=U_@#4@v$@)\@Aǘ@:#J{/$@m47@ Q@d;OW@ q@-#@eaa@QI@;M @ $(~y#@p= c@o@5;N@#@K46@@A&@ F%u"@:pΈ@fffff@ۗ@@"~ @W21@' @M O@ $(~@(\\@Gz\@fffff\@Q\@\@zG\@)\\@\(\@Gz\@Q\@(\\@Q\@zG\@(\\@Gz\@)\\@Gz\@Gz\@ףp= \@)\\@Q\@fffff\@Q\@Q\@ףp= \@= ףp\@)\\@Q\@fffff\@\(\@Q\@(\]@(\\@R\@\(\@Q ]@Q\@\@(\\@Gz]@Q\@\@zG\@ףp= ]@ ףp=\@\@q= ף\@ ]@Gz\@(\\@p= ׃\@Q\@\@Gz~\@(\\@(\\@)\X\@]@ ףp=z\@Gz]@Hz\@\(<\@(\r\@ ףp=*\@33333]@fffff\@(\"\@Hzg\@\@= ףp\@Q^\@p= \@33333#\@R\@Q.\@Q[\@ ףp=\@ףp= \@Q\@RA\@(\_\@Gz\@Y\@Qe\@Gz\@\(l\@Qh\@)\\@Qu\@)\h\@\@Q\@)\h\@Hzw\@Hzg\@ףp= \@\@Hzw\@p= c\@ ףp=\@Gzt\@{GZ\@= ףpM\@(\\@Qn\@(\\@Gz>\@Q~\@0\@Gz~\@fffff&\@x@eW eWǢdW7dWdWaodW#EdWo2dW] AcWKOcW9J^cW'lscWt{IcW cWbW2bWǵbW\wbWMbW#bWaWvaWdE aWR|aW@o*RaW/9(aWG`W .V`Wd`WWs`WV`Wā,`W`W_W@_Wq,E@:,E@,E@t,E@P>,E@-C,E@ m9,E@VC,E@s,E@ꐛ,E@{G,E@W>,E@4h,E@L,E@",E@?,E@]P,E@9z,E@_c,E@;T,E@,E@,E@ Y,E@4),E@^F,E@fc],E@B ,E@ܝ,E@a,E@/ ,E@Y,E@f,E@m/,E@IL,E@&jj,E@+,E@T,E@~n,E@,E@t,E@Ps,E@-&6,E@ PS,E@ypw,E@£#,E@ͪ,E@{{,E@X!',E@4K,E@u,E@OCHK ( spatial_refGEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]] crs_wktGEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]]९rioxarray-0.18.2/test/unit/000077500000000000000000000000001474250745200155725ustar00rootroot00000000000000rioxarray-0.18.2/test/unit/test_options.py000066400000000000000000000021261474250745200206770ustar00rootroot00000000000000import pytest from rioxarray import set_options from rioxarray._options import EXPORT_GRID_MAPPING, get_option def test_set_options__contextmanager(): assert get_option(EXPORT_GRID_MAPPING) with set_options(**{EXPORT_GRID_MAPPING: False}): assert not get_option(EXPORT_GRID_MAPPING) assert get_option(EXPORT_GRID_MAPPING) def test_set_options__global(): assert get_option(EXPORT_GRID_MAPPING) try: set_options(export_grid_mapping=False) assert not get_option(EXPORT_GRID_MAPPING) finally: set_options(export_grid_mapping=True) assert get_option(EXPORT_GRID_MAPPING) def test_set_options__invalid_argument(): with pytest.raises( ValueError, match="argument name does_not_exist is not in the set of valid options", ): with set_options(does_not_exist=False): pass def test_set_options__invalid_value(): with pytest.raises( ValueError, match="option 'export_grid_mapping' gave an invalid value: 12345.", ): with set_options(export_grid_mapping=12345): pass rioxarray-0.18.2/test/unit/test_show_versions.py000066400000000000000000000017021474250745200221130ustar00rootroot00000000000000from rioxarray._show_versions import ( _get_deps_info, _get_main_info, _get_sys_info, show_versions, ) def test_get_main_info(): pyproj_info = _get_main_info() assert "rasterio" in pyproj_info assert "xarray" in pyproj_info assert "GDAL" in pyproj_info assert "PROJ" in pyproj_info assert "GEOS" in pyproj_info assert "PROJ DATA" in pyproj_info assert "GDAL DATA" in pyproj_info def test_get_sys_info(): sys_info = _get_sys_info() assert "python" in sys_info assert "executable" in sys_info assert "machine" in sys_info def test_get_deps_info(): deps_info = _get_deps_info() assert "scipy" in deps_info assert "pyproj" in deps_info def test_show_versions_with_proj(capsys): show_versions() out, err = capsys.readouterr() assert "System" in out assert "python" in out assert "GDAL" in out assert "rioxarray" in out assert "Other python deps" in out rioxarray-0.18.2/test/unit/test_unit_reproject_match.py000066400000000000000000000034521474250745200234170ustar00rootroot00000000000000import numpy import xarray import rioxarray # noqa: F401 def test_reproject_match__exact(): """ Based on: https://github.com/corteva/rioxarray/issues/298#issue-858511505 """ da1 = xarray.DataArray( numpy.random.rand(2, 3), [ ("y", [-30.25, -30.3], {"id": 1, "random": "random"}), ("x", [149.8, 149.85, 149.9], {"id": 1, "random": "random"}), ], ) da1.rio.write_crs(4326, inplace=True) da2 = xarray.DataArray( numpy.random.rand(4, 11), [ ( "longitude", [-30.25733604, -30.26550543, -30.27367483, -30.28184423], {"id": 2}, {"rasterio_dtype": "int"}, ), ( "latitude", [ 149.82193392, 149.83010332, 149.83827272, 149.84644211, 149.85461151, 149.86278091, 149.87095031, 149.87911971, 149.8872891, 149.8954585, 149.9036279, ], {"id": 2}, {"rasterio_dtype": "int"}, ), ], ) da2.rio.write_crs(4326, inplace=True) resampled = da1.rio.reproject_match(da2) assert resampled.x.attrs == { "axis": "X", "long_name": "longitude", "standard_name": "longitude", "units": "degrees_east", } assert resampled.y.attrs == { "axis": "Y", "long_name": "latitude", "standard_name": "latitude", "units": "degrees_north", } numpy.testing.assert_array_equal(resampled.x, da2.longitude) numpy.testing.assert_array_equal(resampled.y, da2.latitude)