././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1658312720.9566422 rsa-4.9/CHANGELOG.md0000644000000000000000000002247014265754021010725 0ustar00# Python-RSA changelog ## Version 4.9 - release 2022-07-20 - Remove debug logging from `rsa/key.py` ([#194](https://github.com/sybrenstuvel/python-rsa/issues/194)). - Remove overlapping slots in `PrivateKey` and `PublicKey`. ([#189](https://github.com/sybrenstuvel/python-rsa/pull/189)). - Do not include CHANGELOG/LICENSE/README.md in wheel ([#191](https://github.com/sybrenstuvel/python-rsa/pull/191)). - Fixed Key Generation Unittest: Public and Private keys are assigned the wrong way around ([#188](https://github.com/sybrenstuvel/python-rsa/pull/188)). ## Version 4.8 - released 2021-11-24 - Switch to [Poetry](https://python-poetry.org/) for dependency and release management. - Compatibility with Python 3.10. - Chain exceptions using `raise new_exception from old_exception` ([#157](https://github.com/sybrenstuvel/python-rsa/pull/157)) - Added marker file for PEP 561. This will allow type checking tools in dependent projects to use type annotations from Python-RSA ([#136](https://github.com/sybrenstuvel/python-rsa/pull/136)). - Use the Chinese Remainder Theorem when decrypting with a private key. This makes decryption 2-4x faster ([#163](https://github.com/sybrenstuvel/python-rsa/pull/163)). ## Version 4.7.2 - released 2021-02-24 - Fix picking/unpickling issue introduced in 4.7 ([#173](https://github.com/sybrenstuvel/python-rsa/issues/173)) ## Version 4.7.1 - released 2021-02-15 - Fix threading issue introduced in 4.7 ([#173](https://github.com/sybrenstuvel/python-rsa/issues/173)) ## Version 4.7 - released 2021-01-10 - Fix [#165](https://github.com/sybrenstuvel/python-rsa/issues/165): CVE-2020-25658 - Bleichenbacher-style timing oracle in PKCS#1 v1.5 decryption code - Add padding length check as described by PKCS#1 v1.5 (Fixes [#164](https://github.com/sybrenstuvel/python-rsa/issues/164)) - Reuse of blinding factors to speed up blinding operations. Fixes [#162](https://github.com/sybrenstuvel/python-rsa/issues/162). - Declare & test support for Python 3.9 ## Version 4.4 & 4.6 - released 2020-06-12 Version 4.4 and 4.6 are almost a re-tagged release of version 4.2. It requires Python 3.5+. To avoid older Python installations from trying to upgrade to RSA 4.4, this is now made explicit in the `python_requires` argument in `setup.py`. There was a mistake releasing 4.4 as "3.5+ only", which made it necessary to retag 4.4 as 4.6 as well. No functional changes compared to version 4.2. ## Version 4.3 & 4.5 - released 2020-06-12 Version 4.3 and 4.5 are almost a re-tagged release of version 4.0. It is the last to support Python 2.7. This is now made explicit in the `python_requires` argument in `setup.py`. Python 3.4 is not supported by this release. There was a mistake releasing 4.4 as "3.5+ only", which made it necessary to retag 4.3 as 4.5 as well. Two security fixes have also been backported, so 4.3 = 4.0 + these two fixes. - Choose blinding factor relatively prime to N. Thanks Christian Heimes for pointing this out. - Reject cyphertexts (when decrypting) and signatures (when verifying) that have been modified by prepending zero bytes. This resolves CVE-2020-13757. Thanks Carnil for pointing this out. ## Version 4.2 - released 2020-06-10 - Rolled back the switch to Poetry, and reverted back to using Pipenv + setup.py for dependency management. There apparently is an issue no-binary installs of packages build with Poetry. This fixes [#148](https://github.com/sybrenstuvel/python-rsa/issues/148) - Limited SHA3 support to those Python versions (3.6+) that support it natively. The third-party library that adds support for this to Python 3.5 is a binary package, and thus breaks the pure-Python nature of Python-RSA. This should fix [#147](https://github.com/sybrenstuvel/python-rsa/issues/147). ## Version 4.1 - released 2020-06-10 - Added support for Python 3.8. - Dropped support for Python 2 and 3.4. - Added type annotations to the source code. This will make Python-RSA easier to use in your IDE, and allows better type checking. - Added static type checking via [MyPy](http://mypy-lang.org/). - Fix [#129](https://github.com/sybrenstuvel/python-rsa/issues/129) Installing from source gives UnicodeDecodeError. - Switched to using [Poetry](https://poetry.eustace.io/) for package management. - Added support for SHA3 hashing: SHA3-256, SHA3-384, SHA3-512. This is natively supported by Python 3.6+ and supported via a third-party library on Python 3.5. - Choose blinding factor relatively prime to N. Thanks Christian Heimes for pointing this out. - Reject cyphertexts (when decrypting) and signatures (when verifying) that have been modified by prepending zero bytes. This resolves CVE-2020-13757. Thanks Adelapie for pointing this out. ## Version 4.0 - released 2018-09-16 - Removed deprecated modules: - rsa.varblock - rsa.bigfile - rsa._version133 - rsa._version200 - Removed CLI commands that use the VARBLOCK/bigfile format. - Ensured that PublicKey.save_pkcs1() and PrivateKey.save_pkcs1() always return bytes. - Dropped support for Python 2.6 and 3.3. - Dropped support for Psyco. - Miller-Rabin iterations determined by bitsize of key. [#58](https://github.com/sybrenstuvel/python-rsa/pull/58) - Added function `rsa.find_signature_hash()` to return the name of the hashing algorithm used to sign a message. `rsa.verify()` now also returns that name, instead of always returning `True`. [#78](https://github.com/sybrenstuvel/python-rsa/issues/13) - Add support for SHA-224 for PKCS1 signatures. [#104](https://github.com/sybrenstuvel/python-rsa/pull/104) - Transitioned from `requirements.txt` to Pipenv for package management. ## Version 3.4.2 - released 2016-03-29 - Fixed dates in CHANGELOG.txt ## Version 3.4.1 - released 2016-03-26 - Included tests/private.pem in MANIFEST.in - Included README.md and CHANGELOG.txt in MANIFEST.in ## Version 3.4 - released 2016-03-17 - Moved development to GitHub: https://github.com/sybrenstuvel/python-rsa - Solved side-channel vulnerability by implementing blinding, fixes #19 - Deprecated the VARBLOCK format and rsa.bigfile module due to security issues, see https://github.com/sybrenstuvel/python-rsa/issues/13 - Integration with Travis-CI [1], Coveralls [2] and Code Climate [3] - Deprecated the old rsa._version133 and rsa._version200 submodules, they will be completely removed in version 4.0. - Add an 'exponent' argument to key.newkeys() - Switched from Solovay-Strassen to Miller-Rabin primality testing, to comply with NIST FIPS 186-4 [4] as probabilistic primality test (Appendix C, subsection C.3): - Fixed bugs #12, #14, #27, #30, #49 [1] https://travis-ci.org/sybrenstuvel/python-rsa [2] https://coveralls.io/github/sybrenstuvel/python-rsa [3] https://codeclimate.com/github/sybrenstuvel/python-rsa [4] http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf ## Version 3.3 - released 2016-01-13 - Thanks to Filippo Valsorda: Fix BB'06 attack in verify() by switching from parsing to comparison. See [1] for more information. - Simplified Tox configuration and dropped Python 3.2 support. The coverage package uses a u'' prefix, which was reintroduced in 3.3 for ease of porting. [1] https://blog.filippo.io/bleichenbacher-06-signature-forgery-in-python-rsa/ ## Version 3.2.3 - released 2015-11-05 - Added character encoding markers for Python 2.x ## Version 3.2.1 - released 2015-11-05 - Added per-file licenses - Added support for wheel packages - Made example code more consistent and up to date with Python 3.4 ## Version 3.2 - released 2015-07-29 - Mentioned support for Python 3 in setup.py ## Version 3.1.4 - released 2014-02-22 - Fixed some bugs ## Version 3.1.3 - released 2014-02-02 - Dropped support for Python 2.5 ## Version 3.1.2 - released 2013-09-15 - Added Python 3.3 to the test environment. - Removed dependency on Distribute - Added support for loading public keys from OpenSSL ## Version 3.1.1 - released 2012-06-18 - Fixed doctests for Python 2.7 - Removed obsolete unittest so all tests run fine on Python 3.2 ## Version 3.1 - released 2012-06-17 - Big, big credits to Yesudeep Mangalapilly for all the changes listed below! - Added ability to generate keys on multiple cores simultaneously. - Massive speedup - Partial Python 3.2 compatibility (core functionality works, but saving or loading keys doesn't, for that the pyasn1 package needs to be ported to Python 3 first) - Lots of bug fixes ## Version 3.0.1 - released 2011-08-07 - Removed unused import of abc module ## Version 3.0 - released 2011-08-05 - Changed the meaning of the keysize to mean the size of ``n`` rather than the size of both ``p`` and ``q``. This is the common interpretation of RSA keysize. To get the old behaviour, double the keysize when generating a new key. - Added a lot of doctests - Added random-padded encryption and decryption using PKCS#1 version 1.5 - Added hash-based signatures and verification using PKCS#1v1.5 - Modeling private and public key as real objects rather than dicts. - Support for saving and loading keys as PEM and DER files. - Ability to extract a public key from a private key (PEM+DER) ## Version 2.0 - Security improvements by Barry Mead. ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1517826791.3671756 rsa-4.9/LICENSE0000644000000000000000000000110113236031347010101 0ustar00Copyright 2011 Sybren A. Stüvel Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ././@PaxHeader0000000000000000000000000000003300000000000010211 xustar0027 mtime=1658312939.797419 rsa-4.9/pyproject.toml0000644000000000000000000000344014265754354012035 0ustar00[tool.poetry] name = "rsa" version = "4.9" license = "Apache-2.0" description = "Pure-Python RSA implementation" readme = "README.md" authors = ["Sybren A. Stüvel "] homepage = "https://stuvel.eu/rsa" repository = "https://github.com/sybrenstuvel/python-rsa" classifiers = [ "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "Intended Audience :: Education", "Intended Audience :: Information Technology", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Programming Language :: Python :: Implementation :: CPython", "Programming Language :: Python :: Implementation :: PyPy", "Topic :: Security :: Cryptography", ] include = [ { path = "LICENSE", format = "sdist" }, { path = "README.md", format = "sdist" }, { path = "CHANGELOG.md", format = "sdist" }, ] [tool.poetry.dependencies] python = ">=3.6, <4" pyasn1 = ">=0.1.3" [tool.poetry.dev-dependencies] coveralls = "^3.0.0" Sphinx = "^5.0.0" pytest = "^6.2.2" pytest-cov = "^2.11.1" tox = "^3.22.0" mypy = "^0.910" flake8 = "^3.8.4" [build-system] requires = ["poetry-core>=1.0.0"] build-backend = "poetry.core.masonry.api" [tool.poetry.scripts] "pyrsa-priv2pub" = "rsa.util:private_to_public" "pyrsa-keygen" = "rsa.cli:keygen" "pyrsa-encrypt" = "rsa.cli:encrypt" "pyrsa-decrypt" = "rsa.cli:decrypt" "pyrsa-sign" = "rsa.cli:sign" "pyrsa-verify" = "rsa.cli:verify" [tool.black] line-length = 100 ././@PaxHeader0000000000000000000000000000003300000000000010211 xustar0027 mtime=1658312939.155029 rsa-4.9/README.md0000644000000000000000000000563414265754353010406 0ustar00# Pure Python RSA implementation [![PyPI](https://img.shields.io/pypi/v/rsa.svg)](https://pypi.org/project/rsa/) [![Build Status](https://travis-ci.org/sybrenstuvel/python-rsa.svg?branch=master)](https://travis-ci.org/sybrenstuvel/python-rsa) [![Coverage Status](https://coveralls.io/repos/github/sybrenstuvel/python-rsa/badge.svg?branch=master)](https://coveralls.io/github/sybrenstuvel/python-rsa?branch=master) [![Code Climate](https://api.codeclimate.com/v1/badges/a99a88d28ad37a79dbf6/maintainability)](https://codeclimate.com/github/codeclimate/codeclimate/maintainability) [Python-RSA](https://stuvel.eu/rsa) is a pure-Python RSA implementation. It supports encryption and decryption, signing and verifying signatures, and key generation according to PKCS#1 version 1.5. It can be used as a Python library as well as on the commandline. The code was mostly written by Sybren A. Stüvel. Documentation can be found at the [Python-RSA homepage](https://stuvel.eu/rsa). For all changes, check [the changelog](https://github.com/sybrenstuvel/python-rsa/blob/master/CHANGELOG.md). Download and install using: pip install rsa or download it from the [Python Package Index](https://pypi.org/project/rsa/). The source code is maintained at [GitHub](https://github.com/sybrenstuvel/python-rsa/) and is licensed under the [Apache License, version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ## Security Because of how Python internally stores numbers, it is very hard (if not impossible) to make a pure-Python program secure against timing attacks. This library is no exception, so use it with care. See https://securitypitfalls.wordpress.com/2018/08/03/constant-time-compare-in-python/ for more info. ## Setup of Development Environment ``` python3 -m venv .venv . ./.venv/bin/activate pip install poetry poetry install ``` ## Publishing a New Release Since this project is considered critical on the Python Package Index, two-factor authentication is required. For uploading packages to PyPi, an API key is required; username+password will not work. First, generate an API token at https://pypi.org/manage/account/token/. Then, use this token when publishing instead of your username and password. As username, use `__token__`. As password, use the token itself, including the `pypi-` prefix. See https://pypi.org/help/#apitoken for help using API tokens to publish. This is what I have in `~/.pypirc`: ``` [distutils] index-servers = rsa # Use `twine upload -r rsa` to upload with this token. [rsa] repository = https://upload.pypi.org/legacy/ username = __token__ password = pypi-token ``` ``` . ./.venv/bin/activate pip install twine poetry build twine check dist/rsa-4.9.tar.gz dist/rsa-4.9-*.whl twine upload -r rsa dist/rsa-4.9.tar.gz dist/rsa-4.9-*.whl ``` The `pip install twine` is necessary as Python-RSA requires Python >= 3.6, and Twine requires at least version 3.7. This means Poetry refuses to add it as dependency. ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1658312939.1391907 rsa-4.9/rsa/__init__.py0000644000000000000000000000310514265754353012014 0ustar00# Copyright 2011 Sybren A. Stüvel # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """RSA module Module for calculating large primes, and RSA encryption, decryption, signing and verification. Includes generating public and private keys. WARNING: this implementation does not use compression of the cleartext input to prevent repetitions, or other common security improvements. Use with care. """ from rsa.key import newkeys, PrivateKey, PublicKey from rsa.pkcs1 import ( encrypt, decrypt, sign, verify, DecryptionError, VerificationError, find_signature_hash, sign_hash, compute_hash, ) __author__ = "Sybren Stuvel, Barry Mead and Yesudeep Mangalapilly" __date__ = "2022-07-20" __version__ = "4.9" # Do doctest if we're run directly if __name__ == "__main__": import doctest doctest.testmod() __all__ = [ "newkeys", "encrypt", "decrypt", "sign", "verify", "PublicKey", "PrivateKey", "DecryptionError", "VerificationError", "find_signature_hash", "compute_hash", "sign_hash", ] ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1617052628.0313957 rsa-4.9/rsa/asn1.py0000644000000000000000000000340014030441724011076 0ustar00# Copyright 2011 Sybren A. Stüvel # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ASN.1 definitions. Not all ASN.1-handling code use these definitions, but when it does, they should be here. """ from pyasn1.type import univ, namedtype, tag class PubKeyHeader(univ.Sequence): componentType = namedtype.NamedTypes( namedtype.NamedType("oid", univ.ObjectIdentifier()), namedtype.NamedType("parameters", univ.Null()), ) class OpenSSLPubKey(univ.Sequence): componentType = namedtype.NamedTypes( namedtype.NamedType("header", PubKeyHeader()), # This little hack (the implicit tag) allows us to get a Bit String as Octet String namedtype.NamedType( "key", univ.OctetString().subtype(implicitTag=tag.Tag(tagClass=0, tagFormat=0, tagId=3)), ), ) class AsnPubKey(univ.Sequence): """ASN.1 contents of DER encoded public key: RSAPublicKey ::= SEQUENCE { modulus INTEGER, -- n publicExponent INTEGER, -- e """ componentType = namedtype.NamedTypes( namedtype.NamedType("modulus", univ.Integer()), namedtype.NamedType("publicExponent", univ.Integer()), ) ././@PaxHeader0000000000000000000000000000003300000000000010211 xustar0027 mtime=1637746748.590934 rsa-4.9/rsa/cli.py0000644000000000000000000002370714147404075011026 0ustar00# Copyright 2011 Sybren A. Stüvel # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Commandline scripts. These scripts are called by the executables defined in setup.py. """ import abc import sys import typing import optparse import rsa import rsa.key import rsa.pkcs1 HASH_METHODS = sorted(rsa.pkcs1.HASH_METHODS.keys()) Indexable = typing.Union[typing.Tuple, typing.List[str]] def keygen() -> None: """Key generator.""" # Parse the CLI options parser = optparse.OptionParser( usage="usage: %prog [options] keysize", description='Generates a new RSA key pair of "keysize" bits.', ) parser.add_option( "--pubout", type="string", help="Output filename for the public key. The public key is " "not saved if this option is not present. You can use " "pyrsa-priv2pub to create the public key file later.", ) parser.add_option( "-o", "--out", type="string", help="Output filename for the private key. The key is " "written to stdout if this option is not present.", ) parser.add_option( "--form", help="key format of the private and public keys - default PEM", choices=("PEM", "DER"), default="PEM", ) (cli, cli_args) = parser.parse_args(sys.argv[1:]) if len(cli_args) != 1: parser.print_help() raise SystemExit(1) try: keysize = int(cli_args[0]) except ValueError as ex: parser.print_help() print("Not a valid number: %s" % cli_args[0], file=sys.stderr) raise SystemExit(1) from ex print("Generating %i-bit key" % keysize, file=sys.stderr) (pub_key, priv_key) = rsa.newkeys(keysize) # Save public key if cli.pubout: print("Writing public key to %s" % cli.pubout, file=sys.stderr) data = pub_key.save_pkcs1(format=cli.form) with open(cli.pubout, "wb") as outfile: outfile.write(data) # Save private key data = priv_key.save_pkcs1(format=cli.form) if cli.out: print("Writing private key to %s" % cli.out, file=sys.stderr) with open(cli.out, "wb") as outfile: outfile.write(data) else: print("Writing private key to stdout", file=sys.stderr) sys.stdout.buffer.write(data) class CryptoOperation(metaclass=abc.ABCMeta): """CLI callable that operates with input, output, and a key.""" keyname = "public" # or 'private' usage = "usage: %%prog [options] %(keyname)s_key" description = "" operation = "decrypt" operation_past = "decrypted" operation_progressive = "decrypting" input_help = "Name of the file to %(operation)s. Reads from stdin if " "not specified." output_help = ( "Name of the file to write the %(operation_past)s file " "to. Written to stdout if this option is not present." ) expected_cli_args = 1 has_output = True key_class = rsa.PublicKey # type: typing.Type[rsa.key.AbstractKey] def __init__(self) -> None: self.usage = self.usage % self.__class__.__dict__ self.input_help = self.input_help % self.__class__.__dict__ self.output_help = self.output_help % self.__class__.__dict__ @abc.abstractmethod def perform_operation( self, indata: bytes, key: rsa.key.AbstractKey, cli_args: Indexable ) -> typing.Any: """Performs the program's operation. Implement in a subclass. :returns: the data to write to the output. """ def __call__(self) -> None: """Runs the program.""" (cli, cli_args) = self.parse_cli() key = self.read_key(cli_args[0], cli.keyform) indata = self.read_infile(cli.input) print(self.operation_progressive.title(), file=sys.stderr) outdata = self.perform_operation(indata, key, cli_args) if self.has_output: self.write_outfile(outdata, cli.output) def parse_cli(self) -> typing.Tuple[optparse.Values, typing.List[str]]: """Parse the CLI options :returns: (cli_opts, cli_args) """ parser = optparse.OptionParser(usage=self.usage, description=self.description) parser.add_option("-i", "--input", type="string", help=self.input_help) if self.has_output: parser.add_option("-o", "--output", type="string", help=self.output_help) parser.add_option( "--keyform", help="Key format of the %s key - default PEM" % self.keyname, choices=("PEM", "DER"), default="PEM", ) (cli, cli_args) = parser.parse_args(sys.argv[1:]) if len(cli_args) != self.expected_cli_args: parser.print_help() raise SystemExit(1) return cli, cli_args def read_key(self, filename: str, keyform: str) -> rsa.key.AbstractKey: """Reads a public or private key.""" print("Reading %s key from %s" % (self.keyname, filename), file=sys.stderr) with open(filename, "rb") as keyfile: keydata = keyfile.read() return self.key_class.load_pkcs1(keydata, keyform) def read_infile(self, inname: str) -> bytes: """Read the input file""" if inname: print("Reading input from %s" % inname, file=sys.stderr) with open(inname, "rb") as infile: return infile.read() print("Reading input from stdin", file=sys.stderr) return sys.stdin.buffer.read() def write_outfile(self, outdata: bytes, outname: str) -> None: """Write the output file""" if outname: print("Writing output to %s" % outname, file=sys.stderr) with open(outname, "wb") as outfile: outfile.write(outdata) else: print("Writing output to stdout", file=sys.stderr) sys.stdout.buffer.write(outdata) class EncryptOperation(CryptoOperation): """Encrypts a file.""" keyname = "public" description = ( "Encrypts a file. The file must be shorter than the key " "length in order to be encrypted." ) operation = "encrypt" operation_past = "encrypted" operation_progressive = "encrypting" def perform_operation( self, indata: bytes, pub_key: rsa.key.AbstractKey, cli_args: Indexable = () ) -> bytes: """Encrypts files.""" assert isinstance(pub_key, rsa.key.PublicKey) return rsa.encrypt(indata, pub_key) class DecryptOperation(CryptoOperation): """Decrypts a file.""" keyname = "private" description = ( "Decrypts a file. The original file must be shorter than " "the key length in order to have been encrypted." ) operation = "decrypt" operation_past = "decrypted" operation_progressive = "decrypting" key_class = rsa.PrivateKey def perform_operation( self, indata: bytes, priv_key: rsa.key.AbstractKey, cli_args: Indexable = () ) -> bytes: """Decrypts files.""" assert isinstance(priv_key, rsa.key.PrivateKey) return rsa.decrypt(indata, priv_key) class SignOperation(CryptoOperation): """Signs a file.""" keyname = "private" usage = "usage: %%prog [options] private_key hash_method" description = ( "Signs a file, outputs the signature. Choose the hash " "method from %s" % ", ".join(HASH_METHODS) ) operation = "sign" operation_past = "signature" operation_progressive = "Signing" key_class = rsa.PrivateKey expected_cli_args = 2 output_help = ( "Name of the file to write the signature to. Written " "to stdout if this option is not present." ) def perform_operation( self, indata: bytes, priv_key: rsa.key.AbstractKey, cli_args: Indexable ) -> bytes: """Signs files.""" assert isinstance(priv_key, rsa.key.PrivateKey) hash_method = cli_args[1] if hash_method not in HASH_METHODS: raise SystemExit("Invalid hash method, choose one of %s" % ", ".join(HASH_METHODS)) return rsa.sign(indata, priv_key, hash_method) class VerifyOperation(CryptoOperation): """Verify a signature.""" keyname = "public" usage = "usage: %%prog [options] public_key signature_file" description = ( "Verifies a signature, exits with status 0 upon success, " "prints an error message and exits with status 1 upon error." ) operation = "verify" operation_past = "verified" operation_progressive = "Verifying" key_class = rsa.PublicKey expected_cli_args = 2 has_output = False def perform_operation( self, indata: bytes, pub_key: rsa.key.AbstractKey, cli_args: Indexable ) -> None: """Verifies files.""" assert isinstance(pub_key, rsa.key.PublicKey) signature_file = cli_args[1] with open(signature_file, "rb") as sigfile: signature = sigfile.read() try: rsa.verify(indata, signature, pub_key) except rsa.VerificationError as ex: raise SystemExit("Verification failed.") from ex print("Verification OK", file=sys.stderr) encrypt = EncryptOperation() decrypt = DecryptOperation() sign = SignOperation() verify = VerifyOperation() ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1637748005.0797615 rsa-4.9/rsa/common.py0000644000000000000000000001137714147406445011552 0ustar00# Copyright 2011 Sybren A. Stüvel # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Common functionality shared by several modules.""" import typing class NotRelativePrimeError(ValueError): def __init__(self, a: int, b: int, d: int, msg: str = "") -> None: super().__init__(msg or "%d and %d are not relatively prime, divider=%i" % (a, b, d)) self.a = a self.b = b self.d = d def bit_size(num: int) -> int: """ Number of bits needed to represent a integer excluding any prefix 0 bits. Usage:: >>> bit_size(1023) 10 >>> bit_size(1024) 11 >>> bit_size(1025) 11 :param num: Integer value. If num is 0, returns 0. Only the absolute value of the number is considered. Therefore, signed integers will be abs(num) before the number's bit length is determined. :returns: Returns the number of bits in the integer. """ try: return num.bit_length() except AttributeError as ex: raise TypeError("bit_size(num) only supports integers, not %r" % type(num)) from ex def byte_size(number: int) -> int: """ Returns the number of bytes required to hold a specific long number. The number of bytes is rounded up. Usage:: >>> byte_size(1 << 1023) 128 >>> byte_size((1 << 1024) - 1) 128 >>> byte_size(1 << 1024) 129 :param number: An unsigned integer :returns: The number of bytes required to hold a specific long number. """ if number == 0: return 1 return ceil_div(bit_size(number), 8) def ceil_div(num: int, div: int) -> int: """ Returns the ceiling function of a division between `num` and `div`. Usage:: >>> ceil_div(100, 7) 15 >>> ceil_div(100, 10) 10 >>> ceil_div(1, 4) 1 :param num: Division's numerator, a number :param div: Division's divisor, a number :return: Rounded up result of the division between the parameters. """ quanta, mod = divmod(num, div) if mod: quanta += 1 return quanta def extended_gcd(a: int, b: int) -> typing.Tuple[int, int, int]: """Returns a tuple (r, i, j) such that r = gcd(a, b) = ia + jb""" # r = gcd(a,b) i = multiplicitive inverse of a mod b # or j = multiplicitive inverse of b mod a # Neg return values for i or j are made positive mod b or a respectively # Iterateive Version is faster and uses much less stack space x = 0 y = 1 lx = 1 ly = 0 oa = a # Remember original a/b to remove ob = b # negative values from return results while b != 0: q = a // b (a, b) = (b, a % b) (x, lx) = ((lx - (q * x)), x) (y, ly) = ((ly - (q * y)), y) if lx < 0: lx += ob # If neg wrap modulo original b if ly < 0: ly += oa # If neg wrap modulo original a return a, lx, ly # Return only positive values def inverse(x: int, n: int) -> int: """Returns the inverse of x % n under multiplication, a.k.a x^-1 (mod n) >>> inverse(7, 4) 3 >>> (inverse(143, 4) * 143) % 4 1 """ (divider, inv, _) = extended_gcd(x, n) if divider != 1: raise NotRelativePrimeError(x, n, divider) return inv def crt(a_values: typing.Iterable[int], modulo_values: typing.Iterable[int]) -> int: """Chinese Remainder Theorem. Calculates x such that x = a[i] (mod m[i]) for each i. :param a_values: the a-values of the above equation :param modulo_values: the m-values of the above equation :returns: x such that x = a[i] (mod m[i]) for each i >>> crt([2, 3], [3, 5]) 8 >>> crt([2, 3, 2], [3, 5, 7]) 23 >>> crt([2, 3, 0], [7, 11, 15]) 135 """ m = 1 x = 0 for modulo in modulo_values: m *= modulo for (m_i, a_i) in zip(modulo_values, a_values): M_i = m // m_i inv = inverse(M_i, m_i) x = (x + a_i * M_i * inv) % m return x if __name__ == "__main__": import doctest doctest.testmod() ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1637748005.0807621 rsa-4.9/rsa/core.py0000644000000000000000000000326214147406445011204 0ustar00# Copyright 2011 Sybren A. Stüvel # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Core mathematical operations. This is the actual core RSA implementation, which is only defined mathematically on integers. """ def assert_int(var: int, name: str) -> None: if isinstance(var, int): return raise TypeError("%s should be an integer, not %s" % (name, var.__class__)) def encrypt_int(message: int, ekey: int, n: int) -> int: """Encrypts a message using encryption key 'ekey', working modulo n""" assert_int(message, "message") assert_int(ekey, "ekey") assert_int(n, "n") if message < 0: raise ValueError("Only non-negative numbers are supported") if message > n: raise OverflowError("The message %i is too long for n=%i" % (message, n)) return pow(message, ekey, n) def decrypt_int(cyphertext: int, dkey: int, n: int) -> int: """Decrypts a cypher text using the decryption key 'dkey', working modulo n""" assert_int(cyphertext, "cyphertext") assert_int(dkey, "dkey") assert_int(n, "n") message = pow(cyphertext, dkey, n) return message ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1649840252.7962675 rsa-4.9/rsa/key.py0000644000000000000000000006717514225510175011052 0ustar00# Copyright 2011 Sybren A. Stüvel # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """RSA key generation code. Create new keys with the newkeys() function. It will give you a PublicKey and a PrivateKey object. Loading and saving keys requires the pyasn1 module. This module is imported as late as possible, such that other functionality will remain working in absence of pyasn1. .. note:: Storing public and private keys via the `pickle` module is possible. However, it is insecure to load a key from an untrusted source. The pickle module is not secure against erroneous or maliciously constructed data. Never unpickle data received from an untrusted or unauthenticated source. """ import threading import typing import warnings import rsa.prime import rsa.pem import rsa.common import rsa.randnum import rsa.core DEFAULT_EXPONENT = 65537 T = typing.TypeVar("T", bound="AbstractKey") class AbstractKey: """Abstract superclass for private and public keys.""" __slots__ = ("n", "e", "blindfac", "blindfac_inverse", "mutex") def __init__(self, n: int, e: int) -> None: self.n = n self.e = e # These will be computed properly on the first call to blind(). self.blindfac = self.blindfac_inverse = -1 # Used to protect updates to the blinding factor in multi-threaded # environments. self.mutex = threading.Lock() @classmethod def _load_pkcs1_pem(cls: typing.Type[T], keyfile: bytes) -> T: """Loads a key in PKCS#1 PEM format, implement in a subclass. :param keyfile: contents of a PEM-encoded file that contains the public key. :type keyfile: bytes :return: the loaded key :rtype: AbstractKey """ @classmethod def _load_pkcs1_der(cls: typing.Type[T], keyfile: bytes) -> T: """Loads a key in PKCS#1 PEM format, implement in a subclass. :param keyfile: contents of a DER-encoded file that contains the public key. :type keyfile: bytes :return: the loaded key :rtype: AbstractKey """ def _save_pkcs1_pem(self) -> bytes: """Saves the key in PKCS#1 PEM format, implement in a subclass. :returns: the PEM-encoded key. :rtype: bytes """ def _save_pkcs1_der(self) -> bytes: """Saves the key in PKCS#1 DER format, implement in a subclass. :returns: the DER-encoded key. :rtype: bytes """ @classmethod def load_pkcs1(cls: typing.Type[T], keyfile: bytes, format: str = "PEM") -> T: """Loads a key in PKCS#1 DER or PEM format. :param keyfile: contents of a DER- or PEM-encoded file that contains the key. :type keyfile: bytes :param format: the format of the file to load; 'PEM' or 'DER' :type format: str :return: the loaded key :rtype: AbstractKey """ methods = { "PEM": cls._load_pkcs1_pem, "DER": cls._load_pkcs1_der, } method = cls._assert_format_exists(format, methods) return method(keyfile) @staticmethod def _assert_format_exists( file_format: str, methods: typing.Mapping[str, typing.Callable] ) -> typing.Callable: """Checks whether the given file format exists in 'methods'.""" try: return methods[file_format] except KeyError as ex: formats = ", ".join(sorted(methods.keys())) raise ValueError( "Unsupported format: %r, try one of %s" % (file_format, formats) ) from ex def save_pkcs1(self, format: str = "PEM") -> bytes: """Saves the key in PKCS#1 DER or PEM format. :param format: the format to save; 'PEM' or 'DER' :type format: str :returns: the DER- or PEM-encoded key. :rtype: bytes """ methods = { "PEM": self._save_pkcs1_pem, "DER": self._save_pkcs1_der, } method = self._assert_format_exists(format, methods) return method() def blind(self, message: int) -> typing.Tuple[int, int]: """Performs blinding on the message. :param message: the message, as integer, to blind. :param r: the random number to blind with. :return: tuple (the blinded message, the inverse of the used blinding factor) The blinding is such that message = unblind(decrypt(blind(encrypt(message))). See https://en.wikipedia.org/wiki/Blinding_%28cryptography%29 """ blindfac, blindfac_inverse = self._update_blinding_factor() blinded = (message * pow(blindfac, self.e, self.n)) % self.n return blinded, blindfac_inverse def unblind(self, blinded: int, blindfac_inverse: int) -> int: """Performs blinding on the message using random number 'blindfac_inverse'. :param blinded: the blinded message, as integer, to unblind. :param blindfac: the factor to unblind with. :return: the original message. The blinding is such that message = unblind(decrypt(blind(encrypt(message))). See https://en.wikipedia.org/wiki/Blinding_%28cryptography%29 """ return (blindfac_inverse * blinded) % self.n def _initial_blinding_factor(self) -> int: for _ in range(1000): blind_r = rsa.randnum.randint(self.n - 1) if rsa.prime.are_relatively_prime(self.n, blind_r): return blind_r raise RuntimeError("unable to find blinding factor") def _update_blinding_factor(self) -> typing.Tuple[int, int]: """Update blinding factors. Computing a blinding factor is expensive, so instead this function does this once, then updates the blinding factor as per section 9 of 'A Timing Attack against RSA with the Chinese Remainder Theorem' by Werner Schindler. See https://tls.mbed.org/public/WSchindler-RSA_Timing_Attack.pdf :return: the new blinding factor and its inverse. """ with self.mutex: if self.blindfac < 0: # Compute initial blinding factor, which is rather slow to do. self.blindfac = self._initial_blinding_factor() self.blindfac_inverse = rsa.common.inverse(self.blindfac, self.n) else: # Reuse previous blinding factor. self.blindfac = pow(self.blindfac, 2, self.n) self.blindfac_inverse = pow(self.blindfac_inverse, 2, self.n) return self.blindfac, self.blindfac_inverse class PublicKey(AbstractKey): """Represents a public RSA key. This key is also known as the 'encryption key'. It contains the 'n' and 'e' values. Supports attributes as well as dictionary-like access. Attribute access is faster, though. >>> PublicKey(5, 3) PublicKey(5, 3) >>> key = PublicKey(5, 3) >>> key.n 5 >>> key['n'] 5 >>> key.e 3 >>> key['e'] 3 """ __slots__ = () def __getitem__(self, key: str) -> int: return getattr(self, key) def __repr__(self) -> str: return "PublicKey(%i, %i)" % (self.n, self.e) def __getstate__(self) -> typing.Tuple[int, int]: """Returns the key as tuple for pickling.""" return self.n, self.e def __setstate__(self, state: typing.Tuple[int, int]) -> None: """Sets the key from tuple.""" self.n, self.e = state AbstractKey.__init__(self, self.n, self.e) def __eq__(self, other: typing.Any) -> bool: if other is None: return False if not isinstance(other, PublicKey): return False return self.n == other.n and self.e == other.e def __ne__(self, other: typing.Any) -> bool: return not (self == other) def __hash__(self) -> int: return hash((self.n, self.e)) @classmethod def _load_pkcs1_der(cls, keyfile: bytes) -> "PublicKey": """Loads a key in PKCS#1 DER format. :param keyfile: contents of a DER-encoded file that contains the public key. :return: a PublicKey object First let's construct a DER encoded key: >>> import base64 >>> b64der = 'MAwCBQCNGmYtAgMBAAE=' >>> der = base64.standard_b64decode(b64der) This loads the file: >>> PublicKey._load_pkcs1_der(der) PublicKey(2367317549, 65537) """ from pyasn1.codec.der import decoder from rsa.asn1 import AsnPubKey (priv, _) = decoder.decode(keyfile, asn1Spec=AsnPubKey()) return cls(n=int(priv["modulus"]), e=int(priv["publicExponent"])) def _save_pkcs1_der(self) -> bytes: """Saves the public key in PKCS#1 DER format. :returns: the DER-encoded public key. :rtype: bytes """ from pyasn1.codec.der import encoder from rsa.asn1 import AsnPubKey # Create the ASN object asn_key = AsnPubKey() asn_key.setComponentByName("modulus", self.n) asn_key.setComponentByName("publicExponent", self.e) return encoder.encode(asn_key) @classmethod def _load_pkcs1_pem(cls, keyfile: bytes) -> "PublicKey": """Loads a PKCS#1 PEM-encoded public key file. The contents of the file before the "-----BEGIN RSA PUBLIC KEY-----" and after the "-----END RSA PUBLIC KEY-----" lines is ignored. :param keyfile: contents of a PEM-encoded file that contains the public key. :return: a PublicKey object """ der = rsa.pem.load_pem(keyfile, "RSA PUBLIC KEY") return cls._load_pkcs1_der(der) def _save_pkcs1_pem(self) -> bytes: """Saves a PKCS#1 PEM-encoded public key file. :return: contents of a PEM-encoded file that contains the public key. :rtype: bytes """ der = self._save_pkcs1_der() return rsa.pem.save_pem(der, "RSA PUBLIC KEY") @classmethod def load_pkcs1_openssl_pem(cls, keyfile: bytes) -> "PublicKey": """Loads a PKCS#1.5 PEM-encoded public key file from OpenSSL. These files can be recognised in that they start with BEGIN PUBLIC KEY rather than BEGIN RSA PUBLIC KEY. The contents of the file before the "-----BEGIN PUBLIC KEY-----" and after the "-----END PUBLIC KEY-----" lines is ignored. :param keyfile: contents of a PEM-encoded file that contains the public key, from OpenSSL. :type keyfile: bytes :return: a PublicKey object """ der = rsa.pem.load_pem(keyfile, "PUBLIC KEY") return cls.load_pkcs1_openssl_der(der) @classmethod def load_pkcs1_openssl_der(cls, keyfile: bytes) -> "PublicKey": """Loads a PKCS#1 DER-encoded public key file from OpenSSL. :param keyfile: contents of a DER-encoded file that contains the public key, from OpenSSL. :return: a PublicKey object """ from rsa.asn1 import OpenSSLPubKey from pyasn1.codec.der import decoder from pyasn1.type import univ (keyinfo, _) = decoder.decode(keyfile, asn1Spec=OpenSSLPubKey()) if keyinfo["header"]["oid"] != univ.ObjectIdentifier("1.2.840.113549.1.1.1"): raise TypeError("This is not a DER-encoded OpenSSL-compatible public key") return cls._load_pkcs1_der(keyinfo["key"][1:]) class PrivateKey(AbstractKey): """Represents a private RSA key. This key is also known as the 'decryption key'. It contains the 'n', 'e', 'd', 'p', 'q' and other values. Supports attributes as well as dictionary-like access. Attribute access is faster, though. >>> PrivateKey(3247, 65537, 833, 191, 17) PrivateKey(3247, 65537, 833, 191, 17) exp1, exp2 and coef will be calculated: >>> pk = PrivateKey(3727264081, 65537, 3349121513, 65063, 57287) >>> pk.exp1 55063 >>> pk.exp2 10095 >>> pk.coef 50797 """ __slots__ = ("d", "p", "q", "exp1", "exp2", "coef") def __init__(self, n: int, e: int, d: int, p: int, q: int) -> None: AbstractKey.__init__(self, n, e) self.d = d self.p = p self.q = q # Calculate exponents and coefficient. self.exp1 = int(d % (p - 1)) self.exp2 = int(d % (q - 1)) self.coef = rsa.common.inverse(q, p) def __getitem__(self, key: str) -> int: return getattr(self, key) def __repr__(self) -> str: return "PrivateKey(%i, %i, %i, %i, %i)" % ( self.n, self.e, self.d, self.p, self.q, ) def __getstate__(self) -> typing.Tuple[int, int, int, int, int, int, int, int]: """Returns the key as tuple for pickling.""" return self.n, self.e, self.d, self.p, self.q, self.exp1, self.exp2, self.coef def __setstate__(self, state: typing.Tuple[int, int, int, int, int, int, int, int]) -> None: """Sets the key from tuple.""" self.n, self.e, self.d, self.p, self.q, self.exp1, self.exp2, self.coef = state AbstractKey.__init__(self, self.n, self.e) def __eq__(self, other: typing.Any) -> bool: if other is None: return False if not isinstance(other, PrivateKey): return False return ( self.n == other.n and self.e == other.e and self.d == other.d and self.p == other.p and self.q == other.q and self.exp1 == other.exp1 and self.exp2 == other.exp2 and self.coef == other.coef ) def __ne__(self, other: typing.Any) -> bool: return not (self == other) def __hash__(self) -> int: return hash((self.n, self.e, self.d, self.p, self.q, self.exp1, self.exp2, self.coef)) def blinded_decrypt(self, encrypted: int) -> int: """Decrypts the message using blinding to prevent side-channel attacks. :param encrypted: the encrypted message :type encrypted: int :returns: the decrypted message :rtype: int """ # Blinding and un-blinding should be using the same factor blinded, blindfac_inverse = self.blind(encrypted) # Instead of using the core functionality, use the Chinese Remainder # Theorem and be 2-4x faster. This the same as: # # decrypted = rsa.core.decrypt_int(blinded, self.d, self.n) s1 = pow(blinded, self.exp1, self.p) s2 = pow(blinded, self.exp2, self.q) h = ((s1 - s2) * self.coef) % self.p decrypted = s2 + self.q * h return self.unblind(decrypted, blindfac_inverse) def blinded_encrypt(self, message: int) -> int: """Encrypts the message using blinding to prevent side-channel attacks. :param message: the message to encrypt :type message: int :returns: the encrypted message :rtype: int """ blinded, blindfac_inverse = self.blind(message) encrypted = rsa.core.encrypt_int(blinded, self.d, self.n) return self.unblind(encrypted, blindfac_inverse) @classmethod def _load_pkcs1_der(cls, keyfile: bytes) -> "PrivateKey": """Loads a key in PKCS#1 DER format. :param keyfile: contents of a DER-encoded file that contains the private key. :type keyfile: bytes :return: a PrivateKey object First let's construct a DER encoded key: >>> import base64 >>> b64der = 'MC4CAQACBQDeKYlRAgMBAAECBQDHn4npAgMA/icCAwDfxwIDANcXAgInbwIDAMZt' >>> der = base64.standard_b64decode(b64der) This loads the file: >>> PrivateKey._load_pkcs1_der(der) PrivateKey(3727264081, 65537, 3349121513, 65063, 57287) """ from pyasn1.codec.der import decoder (priv, _) = decoder.decode(keyfile) # ASN.1 contents of DER encoded private key: # # RSAPrivateKey ::= SEQUENCE { # version Version, # modulus INTEGER, -- n # publicExponent INTEGER, -- e # privateExponent INTEGER, -- d # prime1 INTEGER, -- p # prime2 INTEGER, -- q # exponent1 INTEGER, -- d mod (p-1) # exponent2 INTEGER, -- d mod (q-1) # coefficient INTEGER, -- (inverse of q) mod p # otherPrimeInfos OtherPrimeInfos OPTIONAL # } if priv[0] != 0: raise ValueError("Unable to read this file, version %s != 0" % priv[0]) as_ints = map(int, priv[1:6]) key = cls(*as_ints) exp1, exp2, coef = map(int, priv[6:9]) if (key.exp1, key.exp2, key.coef) != (exp1, exp2, coef): warnings.warn( "You have provided a malformed keyfile. Either the exponents " "or the coefficient are incorrect. Using the correct values " "instead.", UserWarning, ) return key def _save_pkcs1_der(self) -> bytes: """Saves the private key in PKCS#1 DER format. :returns: the DER-encoded private key. :rtype: bytes """ from pyasn1.type import univ, namedtype from pyasn1.codec.der import encoder class AsnPrivKey(univ.Sequence): componentType = namedtype.NamedTypes( namedtype.NamedType("version", univ.Integer()), namedtype.NamedType("modulus", univ.Integer()), namedtype.NamedType("publicExponent", univ.Integer()), namedtype.NamedType("privateExponent", univ.Integer()), namedtype.NamedType("prime1", univ.Integer()), namedtype.NamedType("prime2", univ.Integer()), namedtype.NamedType("exponent1", univ.Integer()), namedtype.NamedType("exponent2", univ.Integer()), namedtype.NamedType("coefficient", univ.Integer()), ) # Create the ASN object asn_key = AsnPrivKey() asn_key.setComponentByName("version", 0) asn_key.setComponentByName("modulus", self.n) asn_key.setComponentByName("publicExponent", self.e) asn_key.setComponentByName("privateExponent", self.d) asn_key.setComponentByName("prime1", self.p) asn_key.setComponentByName("prime2", self.q) asn_key.setComponentByName("exponent1", self.exp1) asn_key.setComponentByName("exponent2", self.exp2) asn_key.setComponentByName("coefficient", self.coef) return encoder.encode(asn_key) @classmethod def _load_pkcs1_pem(cls, keyfile: bytes) -> "PrivateKey": """Loads a PKCS#1 PEM-encoded private key file. The contents of the file before the "-----BEGIN RSA PRIVATE KEY-----" and after the "-----END RSA PRIVATE KEY-----" lines is ignored. :param keyfile: contents of a PEM-encoded file that contains the private key. :type keyfile: bytes :return: a PrivateKey object """ der = rsa.pem.load_pem(keyfile, b"RSA PRIVATE KEY") return cls._load_pkcs1_der(der) def _save_pkcs1_pem(self) -> bytes: """Saves a PKCS#1 PEM-encoded private key file. :return: contents of a PEM-encoded file that contains the private key. :rtype: bytes """ der = self._save_pkcs1_der() return rsa.pem.save_pem(der, b"RSA PRIVATE KEY") def find_p_q( nbits: int, getprime_func: typing.Callable[[int], int] = rsa.prime.getprime, accurate: bool = True, ) -> typing.Tuple[int, int]: """Returns a tuple of two different primes of nbits bits each. The resulting p * q has exactly 2 * nbits bits, and the returned p and q will not be equal. :param nbits: the number of bits in each of p and q. :param getprime_func: the getprime function, defaults to :py:func:`rsa.prime.getprime`. *Introduced in Python-RSA 3.1* :param accurate: whether to enable accurate mode or not. :returns: (p, q), where p > q >>> (p, q) = find_p_q(128) >>> from rsa import common >>> common.bit_size(p * q) 256 When not in accurate mode, the number of bits can be slightly less >>> (p, q) = find_p_q(128, accurate=False) >>> from rsa import common >>> common.bit_size(p * q) <= 256 True >>> common.bit_size(p * q) > 240 True """ total_bits = nbits * 2 # Make sure that p and q aren't too close or the factoring programs can # factor n. shift = nbits // 16 pbits = nbits + shift qbits = nbits - shift # Choose the two initial primes p = getprime_func(pbits) q = getprime_func(qbits) def is_acceptable(p: int, q: int) -> bool: """Returns True iff p and q are acceptable: - p and q differ - (p * q) has the right nr of bits (when accurate=True) """ if p == q: return False if not accurate: return True # Make sure we have just the right amount of bits found_size = rsa.common.bit_size(p * q) return total_bits == found_size # Keep choosing other primes until they match our requirements. change_p = False while not is_acceptable(p, q): # Change p on one iteration and q on the other if change_p: p = getprime_func(pbits) else: q = getprime_func(qbits) change_p = not change_p # We want p > q as described on # http://www.di-mgt.com.au/rsa_alg.html#crt return max(p, q), min(p, q) def calculate_keys_custom_exponent(p: int, q: int, exponent: int) -> typing.Tuple[int, int]: """Calculates an encryption and a decryption key given p, q and an exponent, and returns them as a tuple (e, d) :param p: the first large prime :param q: the second large prime :param exponent: the exponent for the key; only change this if you know what you're doing, as the exponent influences how difficult your private key can be cracked. A very common choice for e is 65537. :type exponent: int """ phi_n = (p - 1) * (q - 1) try: d = rsa.common.inverse(exponent, phi_n) except rsa.common.NotRelativePrimeError as ex: raise rsa.common.NotRelativePrimeError( exponent, phi_n, ex.d, msg="e (%d) and phi_n (%d) are not relatively prime (divider=%i)" % (exponent, phi_n, ex.d), ) from ex if (exponent * d) % phi_n != 1: raise ValueError( "e (%d) and d (%d) are not mult. inv. modulo " "phi_n (%d)" % (exponent, d, phi_n) ) return exponent, d def calculate_keys(p: int, q: int) -> typing.Tuple[int, int]: """Calculates an encryption and a decryption key given p and q, and returns them as a tuple (e, d) :param p: the first large prime :param q: the second large prime :return: tuple (e, d) with the encryption and decryption exponents. """ return calculate_keys_custom_exponent(p, q, DEFAULT_EXPONENT) def gen_keys( nbits: int, getprime_func: typing.Callable[[int], int], accurate: bool = True, exponent: int = DEFAULT_EXPONENT, ) -> typing.Tuple[int, int, int, int]: """Generate RSA keys of nbits bits. Returns (p, q, e, d). Note: this can take a long time, depending on the key size. :param nbits: the total number of bits in ``p`` and ``q``. Both ``p`` and ``q`` will use ``nbits/2`` bits. :param getprime_func: either :py:func:`rsa.prime.getprime` or a function with similar signature. :param exponent: the exponent for the key; only change this if you know what you're doing, as the exponent influences how difficult your private key can be cracked. A very common choice for e is 65537. :type exponent: int """ # Regenerate p and q values, until calculate_keys doesn't raise a # ValueError. while True: (p, q) = find_p_q(nbits // 2, getprime_func, accurate) try: (e, d) = calculate_keys_custom_exponent(p, q, exponent=exponent) break except ValueError: pass return p, q, e, d def newkeys( nbits: int, accurate: bool = True, poolsize: int = 1, exponent: int = DEFAULT_EXPONENT, ) -> typing.Tuple[PublicKey, PrivateKey]: """Generates public and private keys, and returns them as (pub, priv). The public key is also known as the 'encryption key', and is a :py:class:`rsa.PublicKey` object. The private key is also known as the 'decryption key' and is a :py:class:`rsa.PrivateKey` object. :param nbits: the number of bits required to store ``n = p*q``. :param accurate: when True, ``n`` will have exactly the number of bits you asked for. However, this makes key generation much slower. When False, `n`` may have slightly less bits. :param poolsize: the number of processes to use to generate the prime numbers. If set to a number > 1, a parallel algorithm will be used. This requires Python 2.6 or newer. :param exponent: the exponent for the key; only change this if you know what you're doing, as the exponent influences how difficult your private key can be cracked. A very common choice for e is 65537. :type exponent: int :returns: a tuple (:py:class:`rsa.PublicKey`, :py:class:`rsa.PrivateKey`) The ``poolsize`` parameter was added in *Python-RSA 3.1* and requires Python 2.6 or newer. """ if nbits < 16: raise ValueError("Key too small") if poolsize < 1: raise ValueError("Pool size (%i) should be >= 1" % poolsize) # Determine which getprime function to use if poolsize > 1: from rsa import parallel def getprime_func(nbits: int) -> int: return parallel.getprime(nbits, poolsize=poolsize) else: getprime_func = rsa.prime.getprime # Generate the key components (p, q, e, d) = gen_keys(nbits, getprime_func, accurate=accurate, exponent=exponent) # Create the key objects n = p * q return (PublicKey(n, e), PrivateKey(n, e, d, p, q)) __all__ = ["PublicKey", "PrivateKey", "newkeys"] if __name__ == "__main__": import doctest try: for count in range(100): (failures, tests) = doctest.testmod() if failures: break if (count % 10 == 0 and count) or count == 1: print("%i times" % count) except KeyboardInterrupt: print("Aborted") else: print("Doctests done") ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1617052628.0593936 rsa-4.9/rsa/parallel.py0000644000000000000000000000454514030441724012043 0ustar00# Copyright 2011 Sybren A. Stüvel # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Functions for parallel computation on multiple cores. Introduced in Python-RSA 3.1. .. note:: Requires Python 2.6 or newer. """ import multiprocessing as mp from multiprocessing.connection import Connection import rsa.prime import rsa.randnum def _find_prime(nbits: int, pipe: Connection) -> None: while True: integer = rsa.randnum.read_random_odd_int(nbits) # Test for primeness if rsa.prime.is_prime(integer): pipe.send(integer) return def getprime(nbits: int, poolsize: int) -> int: """Returns a prime number that can be stored in 'nbits' bits. Works in multiple threads at the same time. >>> p = getprime(128, 3) >>> rsa.prime.is_prime(p-1) False >>> rsa.prime.is_prime(p) True >>> rsa.prime.is_prime(p+1) False >>> from rsa import common >>> common.bit_size(p) == 128 True """ (pipe_recv, pipe_send) = mp.Pipe(duplex=False) # Create processes try: procs = [mp.Process(target=_find_prime, args=(nbits, pipe_send)) for _ in range(poolsize)] # Start processes for p in procs: p.start() result = pipe_recv.recv() finally: pipe_recv.close() pipe_send.close() # Terminate processes for p in procs: p.terminate() return result __all__ = ["getprime"] if __name__ == "__main__": print("Running doctests 1000x or until failure") import doctest for count in range(100): (failures, tests) = doctest.testmod() if failures: break if count % 10 == 0 and count: print("%i times" % count) print("Doctests done") ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1617052628.1033933 rsa-4.9/rsa/pem.py0000644000000000000000000001003314030441724011015 0ustar00# Copyright 2011 Sybren A. Stüvel # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Functions that load and write PEM-encoded files.""" import base64 import typing # Should either be ASCII strings or bytes. FlexiText = typing.Union[str, bytes] def _markers(pem_marker: FlexiText) -> typing.Tuple[bytes, bytes]: """ Returns the start and end PEM markers, as bytes. """ if not isinstance(pem_marker, bytes): pem_marker = pem_marker.encode("ascii") return ( b"-----BEGIN " + pem_marker + b"-----", b"-----END " + pem_marker + b"-----", ) def _pem_lines(contents: bytes, pem_start: bytes, pem_end: bytes) -> typing.Iterator[bytes]: """Generator over PEM lines between pem_start and pem_end.""" in_pem_part = False seen_pem_start = False for line in contents.splitlines(): line = line.strip() # Skip empty lines if not line: continue # Handle start marker if line == pem_start: if in_pem_part: raise ValueError('Seen start marker "%r" twice' % pem_start) in_pem_part = True seen_pem_start = True continue # Skip stuff before first marker if not in_pem_part: continue # Handle end marker if in_pem_part and line == pem_end: in_pem_part = False break # Load fields if b":" in line: continue yield line # Do some sanity checks if not seen_pem_start: raise ValueError('No PEM start marker "%r" found' % pem_start) if in_pem_part: raise ValueError('No PEM end marker "%r" found' % pem_end) def load_pem(contents: FlexiText, pem_marker: FlexiText) -> bytes: """Loads a PEM file. :param contents: the contents of the file to interpret :param pem_marker: the marker of the PEM content, such as 'RSA PRIVATE KEY' when your file has '-----BEGIN RSA PRIVATE KEY-----' and '-----END RSA PRIVATE KEY-----' markers. :return: the base64-decoded content between the start and end markers. @raise ValueError: when the content is invalid, for example when the start marker cannot be found. """ # We want bytes, not text. If it's text, it can be converted to ASCII bytes. if not isinstance(contents, bytes): contents = contents.encode("ascii") (pem_start, pem_end) = _markers(pem_marker) pem_lines = [line for line in _pem_lines(contents, pem_start, pem_end)] # Base64-decode the contents pem = b"".join(pem_lines) return base64.standard_b64decode(pem) def save_pem(contents: bytes, pem_marker: FlexiText) -> bytes: """Saves a PEM file. :param contents: the contents to encode in PEM format :param pem_marker: the marker of the PEM content, such as 'RSA PRIVATE KEY' when your file has '-----BEGIN RSA PRIVATE KEY-----' and '-----END RSA PRIVATE KEY-----' markers. :return: the base64-encoded content between the start and end markers, as bytes. """ (pem_start, pem_end) = _markers(pem_marker) b64 = base64.standard_b64encode(contents).replace(b"\n", b"") pem_lines = [pem_start] for block_start in range(0, len(b64), 64): block = b64[block_start : block_start + 64] pem_lines.append(block) pem_lines.append(pem_end) pem_lines.append(b"") return b"\n".join(pem_lines) ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1658309293.7487721 rsa-4.9/rsa/pkcs1.py0000644000000000000000000004046214265745256011307 0ustar00# Copyright 2011 Sybren A. Stüvel # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Functions for PKCS#1 version 1.5 encryption and signing This module implements certain functionality from PKCS#1 version 1.5. For a very clear example, read http://www.di-mgt.com.au/rsa_alg.html#pkcs1schemes At least 8 bytes of random padding is used when encrypting a message. This makes these methods much more secure than the ones in the ``rsa`` module. WARNING: this module leaks information when decryption fails. The exceptions that are raised contain the Python traceback information, which can be used to deduce where in the process the failure occurred. DO NOT PASS SUCH INFORMATION to your users. """ import hashlib import os import sys import typing from hmac import compare_digest from . import common, transform, core, key if typing.TYPE_CHECKING: HashType = hashlib._Hash else: HashType = typing.Any # ASN.1 codes that describe the hash algorithm used. HASH_ASN1 = { "MD5": b"\x30\x20\x30\x0c\x06\x08\x2a\x86\x48\x86\xf7\x0d\x02\x05\x05\x00\x04\x10", "SHA-1": b"\x30\x21\x30\x09\x06\x05\x2b\x0e\x03\x02\x1a\x05\x00\x04\x14", "SHA-224": b"\x30\x2d\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x04\x05\x00\x04\x1c", "SHA-256": b"\x30\x31\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x01\x05\x00\x04\x20", "SHA-384": b"\x30\x41\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x02\x05\x00\x04\x30", "SHA-512": b"\x30\x51\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x03\x05\x00\x04\x40", } HASH_METHODS: typing.Dict[str, typing.Callable[[], HashType]] = { "MD5": hashlib.md5, "SHA-1": hashlib.sha1, "SHA-224": hashlib.sha224, "SHA-256": hashlib.sha256, "SHA-384": hashlib.sha384, "SHA-512": hashlib.sha512, } """Hash methods supported by this library.""" if sys.version_info >= (3, 6): # Python 3.6 introduced SHA3 support. HASH_ASN1.update( { "SHA3-256": b"\x30\x31\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x08\x05\x00\x04\x20", "SHA3-384": b"\x30\x41\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x09\x05\x00\x04\x30", "SHA3-512": b"\x30\x51\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x0a\x05\x00\x04\x40", } ) HASH_METHODS.update( { "SHA3-256": hashlib.sha3_256, "SHA3-384": hashlib.sha3_384, "SHA3-512": hashlib.sha3_512, } ) class CryptoError(Exception): """Base class for all exceptions in this module.""" class DecryptionError(CryptoError): """Raised when decryption fails.""" class VerificationError(CryptoError): """Raised when verification fails.""" def _pad_for_encryption(message: bytes, target_length: int) -> bytes: r"""Pads the message for encryption, returning the padded message. :return: 00 02 RANDOM_DATA 00 MESSAGE >>> block = _pad_for_encryption(b'hello', 16) >>> len(block) 16 >>> block[0:2] b'\x00\x02' >>> block[-6:] b'\x00hello' """ max_msglength = target_length - 11 msglength = len(message) if msglength > max_msglength: raise OverflowError( "%i bytes needed for message, but there is only" " space for %i" % (msglength, max_msglength) ) # Get random padding padding = b"" padding_length = target_length - msglength - 3 # We remove 0-bytes, so we'll end up with less padding than we've asked for, # so keep adding data until we're at the correct length. while len(padding) < padding_length: needed_bytes = padding_length - len(padding) # Always read at least 8 bytes more than we need, and trim off the rest # after removing the 0-bytes. This increases the chance of getting # enough bytes, especially when needed_bytes is small new_padding = os.urandom(needed_bytes + 5) new_padding = new_padding.replace(b"\x00", b"") padding = padding + new_padding[:needed_bytes] assert len(padding) == padding_length return b"".join([b"\x00\x02", padding, b"\x00", message]) def _pad_for_signing(message: bytes, target_length: int) -> bytes: r"""Pads the message for signing, returning the padded message. The padding is always a repetition of FF bytes. :return: 00 01 PADDING 00 MESSAGE >>> block = _pad_for_signing(b'hello', 16) >>> len(block) 16 >>> block[0:2] b'\x00\x01' >>> block[-6:] b'\x00hello' >>> block[2:-6] b'\xff\xff\xff\xff\xff\xff\xff\xff' """ max_msglength = target_length - 11 msglength = len(message) if msglength > max_msglength: raise OverflowError( "%i bytes needed for message, but there is only" " space for %i" % (msglength, max_msglength) ) padding_length = target_length - msglength - 3 return b"".join([b"\x00\x01", padding_length * b"\xff", b"\x00", message]) def encrypt(message: bytes, pub_key: key.PublicKey) -> bytes: """Encrypts the given message using PKCS#1 v1.5 :param message: the message to encrypt. Must be a byte string no longer than ``k-11`` bytes, where ``k`` is the number of bytes needed to encode the ``n`` component of the public key. :param pub_key: the :py:class:`rsa.PublicKey` to encrypt with. :raise OverflowError: when the message is too large to fit in the padded block. >>> from rsa import key, common >>> (pub_key, priv_key) = key.newkeys(256) >>> message = b'hello' >>> crypto = encrypt(message, pub_key) The crypto text should be just as long as the public key 'n' component: >>> len(crypto) == common.byte_size(pub_key.n) True """ keylength = common.byte_size(pub_key.n) padded = _pad_for_encryption(message, keylength) payload = transform.bytes2int(padded) encrypted = core.encrypt_int(payload, pub_key.e, pub_key.n) block = transform.int2bytes(encrypted, keylength) return block def decrypt(crypto: bytes, priv_key: key.PrivateKey) -> bytes: r"""Decrypts the given message using PKCS#1 v1.5 The decryption is considered 'failed' when the resulting cleartext doesn't start with the bytes 00 02, or when the 00 byte between the padding and the message cannot be found. :param crypto: the crypto text as returned by :py:func:`rsa.encrypt` :param priv_key: the :py:class:`rsa.PrivateKey` to decrypt with. :raise DecryptionError: when the decryption fails. No details are given as to why the code thinks the decryption fails, as this would leak information about the private key. >>> import rsa >>> (pub_key, priv_key) = rsa.newkeys(256) It works with strings: >>> crypto = encrypt(b'hello', pub_key) >>> decrypt(crypto, priv_key) b'hello' And with binary data: >>> crypto = encrypt(b'\x00\x00\x00\x00\x01', pub_key) >>> decrypt(crypto, priv_key) b'\x00\x00\x00\x00\x01' Altering the encrypted information will *likely* cause a :py:class:`rsa.pkcs1.DecryptionError`. If you want to be *sure*, use :py:func:`rsa.sign`. .. warning:: Never display the stack trace of a :py:class:`rsa.pkcs1.DecryptionError` exception. It shows where in the code the exception occurred, and thus leaks information about the key. It's only a tiny bit of information, but every bit makes cracking the keys easier. >>> crypto = encrypt(b'hello', pub_key) >>> crypto = crypto[0:5] + b'X' + crypto[6:] # change a byte >>> decrypt(crypto, priv_key) Traceback (most recent call last): ... rsa.pkcs1.DecryptionError: Decryption failed """ blocksize = common.byte_size(priv_key.n) encrypted = transform.bytes2int(crypto) decrypted = priv_key.blinded_decrypt(encrypted) cleartext = transform.int2bytes(decrypted, blocksize) # Detect leading zeroes in the crypto. These are not reflected in the # encrypted value (as leading zeroes do not influence the value of an # integer). This fixes CVE-2020-13757. if len(crypto) > blocksize: # This is operating on public information, so doesn't need to be constant-time. raise DecryptionError("Decryption failed") # If we can't find the cleartext marker, decryption failed. cleartext_marker_bad = not compare_digest(cleartext[:2], b"\x00\x02") # Find the 00 separator between the padding and the message sep_idx = cleartext.find(b"\x00", 2) # sep_idx indicates the position of the `\x00` separator that separates the # padding from the actual message. The padding should be at least 8 bytes # long (see https://tools.ietf.org/html/rfc8017#section-7.2.2 step 3), which # means the separator should be at least at index 10 (because of the # `\x00\x02` marker that precedes it). sep_idx_bad = sep_idx < 10 anything_bad = cleartext_marker_bad | sep_idx_bad if anything_bad: raise DecryptionError("Decryption failed") return cleartext[sep_idx + 1 :] def sign_hash(hash_value: bytes, priv_key: key.PrivateKey, hash_method: str) -> bytes: """Signs a precomputed hash with the private key. Hashes the message, then signs the hash with the given key. This is known as a "detached signature", because the message itself isn't altered. :param hash_value: A precomputed hash to sign (ignores message). :param priv_key: the :py:class:`rsa.PrivateKey` to sign with :param hash_method: the hash method used on the message. Use 'MD5', 'SHA-1', 'SHA-224', SHA-256', 'SHA-384' or 'SHA-512'. :return: a message signature block. :raise OverflowError: if the private key is too small to contain the requested hash. """ # Get the ASN1 code for this hash method if hash_method not in HASH_ASN1: raise ValueError("Invalid hash method: %s" % hash_method) asn1code = HASH_ASN1[hash_method] # Encrypt the hash with the private key cleartext = asn1code + hash_value keylength = common.byte_size(priv_key.n) padded = _pad_for_signing(cleartext, keylength) payload = transform.bytes2int(padded) encrypted = priv_key.blinded_encrypt(payload) block = transform.int2bytes(encrypted, keylength) return block def sign(message: bytes, priv_key: key.PrivateKey, hash_method: str) -> bytes: """Signs the message with the private key. Hashes the message, then signs the hash with the given key. This is known as a "detached signature", because the message itself isn't altered. :param message: the message to sign. Can be an 8-bit string or a file-like object. If ``message`` has a ``read()`` method, it is assumed to be a file-like object. :param priv_key: the :py:class:`rsa.PrivateKey` to sign with :param hash_method: the hash method used on the message. Use 'MD5', 'SHA-1', 'SHA-224', SHA-256', 'SHA-384' or 'SHA-512'. :return: a message signature block. :raise OverflowError: if the private key is too small to contain the requested hash. """ msg_hash = compute_hash(message, hash_method) return sign_hash(msg_hash, priv_key, hash_method) def verify(message: bytes, signature: bytes, pub_key: key.PublicKey) -> str: """Verifies that the signature matches the message. The hash method is detected automatically from the signature. :param message: the signed message. Can be an 8-bit string or a file-like object. If ``message`` has a ``read()`` method, it is assumed to be a file-like object. :param signature: the signature block, as created with :py:func:`rsa.sign`. :param pub_key: the :py:class:`rsa.PublicKey` of the person signing the message. :raise VerificationError: when the signature doesn't match the message. :returns: the name of the used hash. """ keylength = common.byte_size(pub_key.n) encrypted = transform.bytes2int(signature) decrypted = core.decrypt_int(encrypted, pub_key.e, pub_key.n) clearsig = transform.int2bytes(decrypted, keylength) # Get the hash method method_name = _find_method_hash(clearsig) message_hash = compute_hash(message, method_name) # Reconstruct the expected padded hash cleartext = HASH_ASN1[method_name] + message_hash expected = _pad_for_signing(cleartext, keylength) if len(signature) != keylength: raise VerificationError("Verification failed") # Compare with the signed one if expected != clearsig: raise VerificationError("Verification failed") return method_name def find_signature_hash(signature: bytes, pub_key: key.PublicKey) -> str: """Returns the hash name detected from the signature. If you also want to verify the message, use :py:func:`rsa.verify()` instead. It also returns the name of the used hash. :param signature: the signature block, as created with :py:func:`rsa.sign`. :param pub_key: the :py:class:`rsa.PublicKey` of the person signing the message. :returns: the name of the used hash. """ keylength = common.byte_size(pub_key.n) encrypted = transform.bytes2int(signature) decrypted = core.decrypt_int(encrypted, pub_key.e, pub_key.n) clearsig = transform.int2bytes(decrypted, keylength) return _find_method_hash(clearsig) def yield_fixedblocks(infile: typing.BinaryIO, blocksize: int) -> typing.Iterator[bytes]: """Generator, yields each block of ``blocksize`` bytes in the input file. :param infile: file to read and separate in blocks. :param blocksize: block size in bytes. :returns: a generator that yields the contents of each block """ while True: block = infile.read(blocksize) read_bytes = len(block) if read_bytes == 0: break yield block if read_bytes < blocksize: break def compute_hash(message: typing.Union[bytes, typing.BinaryIO], method_name: str) -> bytes: """Returns the message digest. :param message: the signed message. Can be an 8-bit string or a file-like object. If ``message`` has a ``read()`` method, it is assumed to be a file-like object. :param method_name: the hash method, must be a key of :py:const:`rsa.pkcs1.HASH_METHODS`. """ if method_name not in HASH_METHODS: raise ValueError("Invalid hash method: %s" % method_name) method = HASH_METHODS[method_name] hasher = method() if isinstance(message, bytes): hasher.update(message) else: assert hasattr(message, "read") and hasattr(message.read, "__call__") # read as 1K blocks for block in yield_fixedblocks(message, 1024): hasher.update(block) return hasher.digest() def _find_method_hash(clearsig: bytes) -> str: """Finds the hash method. :param clearsig: full padded ASN1 and hash. :return: the used hash method. :raise VerificationFailed: when the hash method cannot be found """ for (hashname, asn1code) in HASH_ASN1.items(): if asn1code in clearsig: return hashname raise VerificationError("Verification failed") __all__ = [ "encrypt", "decrypt", "sign", "verify", "DecryptionError", "VerificationError", "CryptoError", ] if __name__ == "__main__": print("Running doctests 1000x or until failure") import doctest for count in range(1000): (failures, tests) = doctest.testmod() if failures: break if count % 100 == 0 and count: print("%i times" % count) print("Doctests done") ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1637748005.0807621 rsa-4.9/rsa/pkcs1_v2.py0000644000000000000000000000673514147406445011714 0ustar00# Copyright 2011 Sybren A. Stüvel # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Functions for PKCS#1 version 2 encryption and signing This module implements certain functionality from PKCS#1 version 2. Main documentation is RFC 2437: https://tools.ietf.org/html/rfc2437 """ from rsa import ( common, pkcs1, transform, ) def mgf1(seed: bytes, length: int, hasher: str = "SHA-1") -> bytes: """ MGF1 is a Mask Generation Function based on a hash function. A mask generation function takes an octet string of variable length and a desired output length as input, and outputs an octet string of the desired length. The plaintext-awareness of RSAES-OAEP relies on the random nature of the output of the mask generation function, which in turn relies on the random nature of the underlying hash. :param bytes seed: seed from which mask is generated, an octet string :param int length: intended length in octets of the mask, at most 2^32(hLen) :param str hasher: hash function (hLen denotes the length in octets of the hash function output) :return: mask, an octet string of length `length` :rtype: bytes :raise OverflowError: when `length` is too large for the specified `hasher` :raise ValueError: when specified `hasher` is invalid """ try: hash_length = pkcs1.HASH_METHODS[hasher]().digest_size except KeyError as ex: raise ValueError( "Invalid `hasher` specified. Please select one of: {hash_list}".format( hash_list=", ".join(sorted(pkcs1.HASH_METHODS.keys())) ) ) from ex # If l > 2^32(hLen), output "mask too long" and stop. if length > (2 ** 32 * hash_length): raise OverflowError( "Desired length should be at most 2**32 times the hasher's output " "length ({hash_length} for {hasher} function)".format( hash_length=hash_length, hasher=hasher, ) ) # Looping `counter` from 0 to ceil(l / hLen)-1, build `output` based on the # hashes formed by (`seed` + C), being `C` an octet string of length 4 # generated by converting `counter` with the primitive I2OSP output = b"".join( pkcs1.compute_hash( seed + transform.int2bytes(counter, fill_size=4), method_name=hasher, ) for counter in range(common.ceil_div(length, hash_length) + 1) ) # Output the leading `length` octets of `output` as the octet string mask. return output[:length] __all__ = [ "mgf1", ] if __name__ == "__main__": print("Running doctests 1000x or until failure") import doctest for count in range(1000): (failures, tests) = doctest.testmod() if failures: break if count % 100 == 0 and count: print("%i times" % count) print("Doctests done") ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1637748005.0817635 rsa-4.9/rsa/prime.py0000644000000000000000000001227014147406445011367 0ustar00# Copyright 2011 Sybren A. Stüvel # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Numerical functions related to primes. Implementation based on the book Algorithm Design by Michael T. Goodrich and Roberto Tamassia, 2002. """ import rsa.common import rsa.randnum __all__ = ["getprime", "are_relatively_prime"] def gcd(p: int, q: int) -> int: """Returns the greatest common divisor of p and q >>> gcd(48, 180) 12 """ while q != 0: (p, q) = (q, p % q) return p def get_primality_testing_rounds(number: int) -> int: """Returns minimum number of rounds for Miller-Rabing primality testing, based on number bitsize. According to NIST FIPS 186-4, Appendix C, Table C.3, minimum number of rounds of M-R testing, using an error probability of 2 ** (-100), for different p, q bitsizes are: * p, q bitsize: 512; rounds: 7 * p, q bitsize: 1024; rounds: 4 * p, q bitsize: 1536; rounds: 3 See: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf """ # Calculate number bitsize. bitsize = rsa.common.bit_size(number) # Set number of rounds. if bitsize >= 1536: return 3 if bitsize >= 1024: return 4 if bitsize >= 512: return 7 # For smaller bitsizes, set arbitrary number of rounds. return 10 def miller_rabin_primality_testing(n: int, k: int) -> bool: """Calculates whether n is composite (which is always correct) or prime (which theoretically is incorrect with error probability 4**-k), by applying Miller-Rabin primality testing. For reference and implementation example, see: https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test :param n: Integer to be tested for primality. :type n: int :param k: Number of rounds (witnesses) of Miller-Rabin testing. :type k: int :return: False if the number is composite, True if it's probably prime. :rtype: bool """ # prevent potential infinite loop when d = 0 if n < 2: return False # Decompose (n - 1) to write it as (2 ** r) * d # While d is even, divide it by 2 and increase the exponent. d = n - 1 r = 0 while not (d & 1): r += 1 d >>= 1 # Test k witnesses. for _ in range(k): # Generate random integer a, where 2 <= a <= (n - 2) a = rsa.randnum.randint(n - 3) + 1 x = pow(a, d, n) if x == 1 or x == n - 1: continue for _ in range(r - 1): x = pow(x, 2, n) if x == 1: # n is composite. return False if x == n - 1: # Exit inner loop and continue with next witness. break else: # If loop doesn't break, n is composite. return False return True def is_prime(number: int) -> bool: """Returns True if the number is prime, and False otherwise. >>> is_prime(2) True >>> is_prime(42) False >>> is_prime(41) True """ # Check for small numbers. if number < 10: return number in {2, 3, 5, 7} # Check for even numbers. if not (number & 1): return False # Calculate minimum number of rounds. k = get_primality_testing_rounds(number) # Run primality testing with (minimum + 1) rounds. return miller_rabin_primality_testing(number, k + 1) def getprime(nbits: int) -> int: """Returns a prime number that can be stored in 'nbits' bits. >>> p = getprime(128) >>> is_prime(p-1) False >>> is_prime(p) True >>> is_prime(p+1) False >>> from rsa import common >>> common.bit_size(p) == 128 True """ assert nbits > 3 # the loop will hang on too small numbers while True: integer = rsa.randnum.read_random_odd_int(nbits) # Test for primeness if is_prime(integer): return integer # Retry if not prime def are_relatively_prime(a: int, b: int) -> bool: """Returns True if a and b are relatively prime, and False if they are not. >>> are_relatively_prime(2, 3) True >>> are_relatively_prime(2, 4) False """ d = gcd(a, b) return d == 1 if __name__ == "__main__": print("Running doctests 1000x or until failure") import doctest for count in range(1000): (failures, tests) = doctest.testmod() if failures: break if count % 100 == 0 and count: print("%i times" % count) print("Doctests done") ././@PaxHeader0000000000000000000000000000003300000000000010211 xustar0027 mtime=1616577969.307814 rsa-4.9/rsa/py.typed0000644000000000000000000000010014026602661011357 0ustar00# Marker file for PEP 561. The rsa package uses inline types. ././@PaxHeader0000000000000000000000000000003300000000000010211 xustar0027 mtime=1617052557.210543 rsa-4.9/rsa/randnum.py0000644000000000000000000000530014030441615011700 0ustar00# Copyright 2011 Sybren A. Stüvel # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Functions for generating random numbers.""" # Source inspired by code by Yesudeep Mangalapilly import os import struct from rsa import common, transform def read_random_bits(nbits: int) -> bytes: """Reads 'nbits' random bits. If nbits isn't a whole number of bytes, an extra byte will be appended with only the lower bits set. """ nbytes, rbits = divmod(nbits, 8) # Get the random bytes randomdata = os.urandom(nbytes) # Add the remaining random bits if rbits > 0: randomvalue = ord(os.urandom(1)) randomvalue >>= 8 - rbits randomdata = struct.pack("B", randomvalue) + randomdata return randomdata def read_random_int(nbits: int) -> int: """Reads a random integer of approximately nbits bits.""" randomdata = read_random_bits(nbits) value = transform.bytes2int(randomdata) # Ensure that the number is large enough to just fill out the required # number of bits. value |= 1 << (nbits - 1) return value def read_random_odd_int(nbits: int) -> int: """Reads a random odd integer of approximately nbits bits. >>> read_random_odd_int(512) & 1 1 """ value = read_random_int(nbits) # Make sure it's odd return value | 1 def randint(maxvalue: int) -> int: """Returns a random integer x with 1 <= x <= maxvalue May take a very long time in specific situations. If maxvalue needs N bits to store, the closer maxvalue is to (2 ** N) - 1, the faster this function is. """ bit_size = common.bit_size(maxvalue) tries = 0 while True: value = read_random_int(bit_size) if value <= maxvalue: break if tries % 10 == 0 and tries: # After a lot of tries to get the right number of bits but still # smaller than maxvalue, decrease the number of bits by 1. That'll # dramatically increase the chances to get a large enough number. bit_size -= 1 tries += 1 return value ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1637748005.0817635 rsa-4.9/rsa/transform.py0000644000000000000000000000434014147406445012265 0ustar00# Copyright 2011 Sybren A. Stüvel # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Data transformation functions. From bytes to a number, number to bytes, etc. """ import math def bytes2int(raw_bytes: bytes) -> int: r"""Converts a list of bytes or an 8-bit string to an integer. When using unicode strings, encode it to some encoding like UTF8 first. >>> (((128 * 256) + 64) * 256) + 15 8405007 >>> bytes2int(b'\x80@\x0f') 8405007 """ return int.from_bytes(raw_bytes, "big", signed=False) def int2bytes(number: int, fill_size: int = 0) -> bytes: """ Convert an unsigned integer to bytes (big-endian):: Does not preserve leading zeros if you don't specify a fill size. :param number: Integer value :param fill_size: If the optional fill size is given the length of the resulting byte string is expected to be the fill size and will be padded with prefix zero bytes to satisfy that length. :returns: Raw bytes (base-256 representation). :raises: ``OverflowError`` when fill_size is given and the number takes up more bytes than fit into the block. This requires the ``overflow`` argument to this function to be set to ``False`` otherwise, no error will be raised. """ if number < 0: raise ValueError("Number must be an unsigned integer: %d" % number) bytes_required = max(1, math.ceil(number.bit_length() / 8)) if fill_size > 0: return number.to_bytes(fill_size, "big") return number.to_bytes(bytes_required, "big") if __name__ == "__main__": import doctest doctest.testmod() ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1617052628.1183965 rsa-4.9/rsa/util.py0000644000000000000000000000602214030441724011214 0ustar00# Copyright 2011 Sybren A. Stüvel # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility functions.""" import sys from optparse import OptionParser import rsa.key def private_to_public() -> None: """Reads a private key and outputs the corresponding public key.""" # Parse the CLI options parser = OptionParser( usage="usage: %prog [options]", description="Reads a private key and outputs the " "corresponding public key. Both private and public keys use " "the format described in PKCS#1 v1.5", ) parser.add_option( "-i", "--input", dest="infilename", type="string", help="Input filename. Reads from stdin if not specified", ) parser.add_option( "-o", "--output", dest="outfilename", type="string", help="Output filename. Writes to stdout of not specified", ) parser.add_option( "--inform", dest="inform", help="key format of input - default PEM", choices=("PEM", "DER"), default="PEM", ) parser.add_option( "--outform", dest="outform", help="key format of output - default PEM", choices=("PEM", "DER"), default="PEM", ) (cli, cli_args) = parser.parse_args(sys.argv) # Read the input data if cli.infilename: print( "Reading private key from %s in %s format" % (cli.infilename, cli.inform), file=sys.stderr, ) with open(cli.infilename, "rb") as infile: in_data = infile.read() else: print("Reading private key from stdin in %s format" % cli.inform, file=sys.stderr) in_data = sys.stdin.read().encode("ascii") assert type(in_data) == bytes, type(in_data) # Take the public fields and create a public key priv_key = rsa.key.PrivateKey.load_pkcs1(in_data, cli.inform) pub_key = rsa.key.PublicKey(priv_key.n, priv_key.e) # Save to the output file out_data = pub_key.save_pkcs1(cli.outform) if cli.outfilename: print( "Writing public key to %s in %s format" % (cli.outfilename, cli.outform), file=sys.stderr, ) with open(cli.outfilename, "wb") as outfile: outfile.write(out_data) else: print("Writing public key to stdout in %s format" % cli.outform, file=sys.stderr) sys.stdout.write(out_data.decode("ascii")) ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1658312974.7014437 rsa-4.9/setup.py0000644000000000000000000000772414265754417010644 0ustar00# -*- coding: utf-8 -*- from setuptools import setup packages = \ ['rsa'] package_data = \ {'': ['*']} install_requires = \ ['pyasn1>=0.1.3'] entry_points = \ {'console_scripts': ['pyrsa-decrypt = rsa.cli:decrypt', 'pyrsa-encrypt = rsa.cli:encrypt', 'pyrsa-keygen = rsa.cli:keygen', 'pyrsa-priv2pub = rsa.util:private_to_public', 'pyrsa-sign = rsa.cli:sign', 'pyrsa-verify = rsa.cli:verify']} setup_kwargs = { 'name': 'rsa', 'version': '4.9', 'description': 'Pure-Python RSA implementation', 'long_description': '# Pure Python RSA implementation\n\n[![PyPI](https://img.shields.io/pypi/v/rsa.svg)](https://pypi.org/project/rsa/)\n[![Build Status](https://travis-ci.org/sybrenstuvel/python-rsa.svg?branch=master)](https://travis-ci.org/sybrenstuvel/python-rsa)\n[![Coverage Status](https://coveralls.io/repos/github/sybrenstuvel/python-rsa/badge.svg?branch=master)](https://coveralls.io/github/sybrenstuvel/python-rsa?branch=master)\n[![Code Climate](https://api.codeclimate.com/v1/badges/a99a88d28ad37a79dbf6/maintainability)](https://codeclimate.com/github/codeclimate/codeclimate/maintainability)\n\n[Python-RSA](https://stuvel.eu/rsa) is a pure-Python RSA implementation. It supports\nencryption and decryption, signing and verifying signatures, and key\ngeneration according to PKCS#1 version 1.5. It can be used as a Python\nlibrary as well as on the commandline. The code was mostly written by\nSybren A. Stüvel.\n\nDocumentation can be found at the [Python-RSA homepage](https://stuvel.eu/rsa). For all changes, check [the changelog](https://github.com/sybrenstuvel/python-rsa/blob/master/CHANGELOG.md).\n\nDownload and install using:\n\n pip install rsa\n\nor download it from the [Python Package Index](https://pypi.org/project/rsa/).\n\nThe source code is maintained at [GitHub](https://github.com/sybrenstuvel/python-rsa/) and is\nlicensed under the [Apache License, version 2.0](https://www.apache.org/licenses/LICENSE-2.0)\n\n## Security\n\nBecause of how Python internally stores numbers, it is very hard (if not impossible) to make a pure-Python program secure against timing attacks. This library is no exception, so use it with care. See https://securitypitfalls.wordpress.com/2018/08/03/constant-time-compare-in-python/ for more info.\n\n## Setup of Development Environment\n\n```\npython3 -m venv .venv\n. ./.venv/bin/activate\npip install poetry\npoetry install\n```\n\n## Publishing a New Release\n\nSince this project is considered critical on the Python Package Index,\ntwo-factor authentication is required. For uploading packages to PyPi, an API\nkey is required; username+password will not work.\n\nFirst, generate an API token at https://pypi.org/manage/account/token/. Then,\nuse this token when publishing instead of your username and password.\n\nAs username, use `__token__`.\nAs password, use the token itself, including the `pypi-` prefix.\n\nSee https://pypi.org/help/#apitoken for help using API tokens to publish. This\nis what I have in `~/.pypirc`:\n\n```\n[distutils]\nindex-servers =\n rsa\n\n# Use `twine upload -r rsa` to upload with this token.\n[rsa]\n repository = https://upload.pypi.org/legacy/\n username = __token__\n password = pypi-token\n```\n\n```\n. ./.venv/bin/activate\npip install twine\n\npoetry build\ntwine check dist/rsa-4.9.tar.gz dist/rsa-4.9-*.whl\ntwine upload -r rsa dist/rsa-4.9.tar.gz dist/rsa-4.9-*.whl\n```\n\nThe `pip install twine` is necessary as Python-RSA requires Python >= 3.6, and\nTwine requires at least version 3.7. This means Poetry refuses to add it as\ndependency.\n', 'author': 'Sybren A. Stüvel', 'author_email': 'sybren@stuvel.eu', 'maintainer': None, 'maintainer_email': None, 'url': 'https://stuvel.eu/rsa', 'packages': packages, 'package_data': package_data, 'install_requires': install_requires, 'entry_points': entry_points, 'python_requires': '>=3.6,<4', } setup(**setup_kwargs) ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1658312974.7014437 rsa-4.9/PKG-INFO0000644000000000000000000001011514265754417010213 0ustar00Metadata-Version: 2.1 Name: rsa Version: 4.9 Summary: Pure-Python RSA implementation Home-page: https://stuvel.eu/rsa License: Apache-2.0 Author: Sybren A. Stüvel Author-email: sybren@stuvel.eu Requires-Python: >=3.6,<4 Classifier: Development Status :: 5 - Production/Stable Classifier: Intended Audience :: Developers Classifier: Intended Audience :: Education Classifier: Intended Audience :: Information Technology Classifier: License :: OSI Approved :: Apache Software License Classifier: Operating System :: OS Independent Classifier: Programming Language :: Python Classifier: Programming Language :: Python :: 3 Classifier: Programming Language :: Python :: 3.10 Classifier: Programming Language :: Python :: 3.6 Classifier: Programming Language :: Python :: 3.7 Classifier: Programming Language :: Python :: 3.8 Classifier: Programming Language :: Python :: 3.9 Classifier: Programming Language :: Python :: Implementation :: CPython Classifier: Programming Language :: Python :: Implementation :: PyPy Classifier: Topic :: Security :: Cryptography Requires-Dist: pyasn1 (>=0.1.3) Project-URL: Repository, https://github.com/sybrenstuvel/python-rsa Description-Content-Type: text/markdown # Pure Python RSA implementation [![PyPI](https://img.shields.io/pypi/v/rsa.svg)](https://pypi.org/project/rsa/) [![Build Status](https://travis-ci.org/sybrenstuvel/python-rsa.svg?branch=master)](https://travis-ci.org/sybrenstuvel/python-rsa) [![Coverage Status](https://coveralls.io/repos/github/sybrenstuvel/python-rsa/badge.svg?branch=master)](https://coveralls.io/github/sybrenstuvel/python-rsa?branch=master) [![Code Climate](https://api.codeclimate.com/v1/badges/a99a88d28ad37a79dbf6/maintainability)](https://codeclimate.com/github/codeclimate/codeclimate/maintainability) [Python-RSA](https://stuvel.eu/rsa) is a pure-Python RSA implementation. It supports encryption and decryption, signing and verifying signatures, and key generation according to PKCS#1 version 1.5. It can be used as a Python library as well as on the commandline. The code was mostly written by Sybren A. Stüvel. Documentation can be found at the [Python-RSA homepage](https://stuvel.eu/rsa). For all changes, check [the changelog](https://github.com/sybrenstuvel/python-rsa/blob/master/CHANGELOG.md). Download and install using: pip install rsa or download it from the [Python Package Index](https://pypi.org/project/rsa/). The source code is maintained at [GitHub](https://github.com/sybrenstuvel/python-rsa/) and is licensed under the [Apache License, version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ## Security Because of how Python internally stores numbers, it is very hard (if not impossible) to make a pure-Python program secure against timing attacks. This library is no exception, so use it with care. See https://securitypitfalls.wordpress.com/2018/08/03/constant-time-compare-in-python/ for more info. ## Setup of Development Environment ``` python3 -m venv .venv . ./.venv/bin/activate pip install poetry poetry install ``` ## Publishing a New Release Since this project is considered critical on the Python Package Index, two-factor authentication is required. For uploading packages to PyPi, an API key is required; username+password will not work. First, generate an API token at https://pypi.org/manage/account/token/. Then, use this token when publishing instead of your username and password. As username, use `__token__`. As password, use the token itself, including the `pypi-` prefix. See https://pypi.org/help/#apitoken for help using API tokens to publish. This is what I have in `~/.pypirc`: ``` [distutils] index-servers = rsa # Use `twine upload -r rsa` to upload with this token. [rsa] repository = https://upload.pypi.org/legacy/ username = __token__ password = pypi-token ``` ``` . ./.venv/bin/activate pip install twine poetry build twine check dist/rsa-4.9.tar.gz dist/rsa-4.9-*.whl twine upload -r rsa dist/rsa-4.9.tar.gz dist/rsa-4.9-*.whl ``` The `pip install twine` is necessary as Python-RSA requires Python >= 3.6, and Twine requires at least version 3.7. This means Poetry refuses to add it as dependency.