zstd-1.5.5.1/0000775000175000017500000000000014413402412013460 5ustar sergeysergey00000000000000zstd-1.5.5.1/setup.py0000664000175000017500000001632714413402042015202 0ustar sergeysergey00000000000000#!/usr/bin/env python import os import sys import subprocess from setuptools import setup, find_packages, Extension from setuptools.command.build_ext import build_ext # ZSTD version VERSION = (1, 5, 5,) VERSION_STR = ".".join([str(x) for x in VERSION]) # Package version PKG_VERSION = VERSION # Minor versions PKG_VERSION += ("1",) PKG_VERSION_STR = ".".join([str(x) for x in PKG_VERSION]) ### # Ugly hacks, I know # SUP_LEGACY="ZSTD_LEGACY" in os.environ if "--legacy" in sys.argv: # Support legacy output format functions SUP_LEGACY=True sys.argv.remove("--legacy") SUP_TRACE="ZSTD_TRACE" in os.environ if "--debug-trace" in sys.argv: # Support tracing for debug SUP_TRACE=True sys.argv.remove("--debug-trace") SUP_EXTERNAL="ZSTD_EXTERNAL" in os.environ ext_libraries=[] if "--external" in sys.argv: # You want use external Zstd library? SUP_EXTERNAL=True sys.argv.remove("--external") if SUP_EXTERNAL: # You should add external library by option: --libraries zstd # And probably include paths by option: --include-dirs /usr/include/zstd # And probably library paths by option: --library-dirs /usr/lib/i386-linux-gnu # We need pkg-config here! pkgconf = "/usr/bin/pkg-config" if os.path.exists(pkgconf): cmd = [pkgconf, "libzstd", "--modversion"] if sys.hexversion >= 0x02070000: VERSION_STR = subprocess.check_output(cmd) else: # Pure Python 2.6 VERSION_STR = subprocess.Popen(cmd, stdout=subprocess.PIPE).communicate()[0] if sys.hexversion >= 0x03000000: # It's bytes in PY3 VERSION_STR = VERSION_STR.decode() VERSION = tuple(int(v) for v in VERSION_STR.split(".")) if "--libraries" not in sys.argv: # Add something default ext_libraries=["zstd"] ### # DVERSION - pass module version string # DDYNAMIC_BMI2 - disable BMI2 amd64 asembler code - can't build it, use CFLAGS with -march= bdver4, znver1/2/3, native # DZSTD_DISABLE_ASM=1 - disable ASM inlines, pypi/pip can't build them # COPT = { 'msvc': [ '/Ox', '/DVERSION=%s' % PKG_VERSION_STR, '/DDYNAMIC_BMI2=0', '/DZSTD_DISABLE_ASM=1' ], 'mingw32': [ '-O2', '-DVERSION=%s' % PKG_VERSION_STR, '-DDYNAMIC_BMI2=0', '-DZSTD_DISABLE_ASM=1' ], 'unix': [ '-O2', '-DVERSION=%s' % PKG_VERSION_STR, '-DDYNAMIC_BMI2=0', '-DZSTD_DISABLE_ASM=1' ], 'clang': [ '-O2', '-DVERSION=%s' % PKG_VERSION_STR, '-DDYNAMIC_BMI2=0', '-DZSTD_DISABLE_ASM=1' ], 'gcc': [ '-O2', '-DVERSION=%s' % PKG_VERSION_STR, '-DDYNAMIC_BMI2=0', '-DZSTD_DISABLE_ASM=1' ] } if not SUP_EXTERNAL: for comp in COPT: if comp == 'msvc': COPT[comp].extend([ '/DZSTD_MULTITHREAD=1', '/Izstd\\lib', '/Izstd\\lib\\common', '/Izstd\\lib\\compress', '/Izstd\\lib\\decompress', ]) else: COPT[comp].extend([ '-DZSTD_MULTITHREAD=1', '-Izstd/lib', '-Izstd/lib/common', '-Izstd/lib/compress', '-Izstd/lib/decompress', ]) else: for comp in COPT: if comp == 'msvc': COPT[comp].extend([ '/DLIBZSTD_EXTERNAL=1' ]) else: COPT[comp].extend([ '-DLIBZSTD_EXTERNAL=1', ]) if SUP_LEGACY: for comp in COPT: if comp == 'msvc': COPT[comp].extend(['/Izstd\\lib\\legacy', '/DZSTD_LEGACY_SUPPORT=1']) else: COPT[comp].extend(['-Izstd/lib/legacy', '-DZSTD_LEGACY_SUPPORT=1']) # Force traceing support or disable if SUP_TRACE: for comp in COPT: if comp == 'msvc': COPT[comp].extend(['/DZSTD_TRACE=1']) else: COPT[comp].extend(['-DZSTD_TRACE=1']) else: for comp in COPT: if comp == 'msvc': COPT[comp].extend(['/DZSTD_TRACE=0']) else: COPT[comp].extend(['-DZSTD_TRACE=0']) class ZstdBuildExt( build_ext ): def build_extensions(self): c = self.compiler.compiler_type if c in COPT: for e in self.extensions: e.extra_compile_args = COPT[c] build_ext.build_extensions(self) zstdFiles = [] if not SUP_EXTERNAL: for f in [ 'compress/zstd_compress.c', 'compress/zstd_compress_literals.c', 'compress/zstd_compress_sequences.c', 'compress/zstd_compress_superblock.c', 'compress/zstdmt_compress.c', 'compress/zstd_fast.c', 'compress/zstd_double_fast.c', 'compress/zstd_lazy.c', 'compress/zstd_opt.c', 'compress/zstd_ldm.c', 'compress/fse_compress.c', 'compress/huf_compress.c', 'compress/hist.c', 'common/fse_decompress.c', 'decompress/zstd_decompress.c', 'decompress/zstd_decompress_block.c', 'decompress/zstd_ddict.c', 'decompress/huf_decompress.c', 'common/entropy_common.c', 'common/zstd_common.c', 'common/xxhash.c', 'common/error_private.c', 'common/pool.c', 'common/threading.c', ]: zstdFiles.append('zstd/lib/'+f) if SUP_LEGACY: for f in [ 'legacy/zstd_v01.c', 'legacy/zstd_v02.c', 'legacy/zstd_v03.c', 'legacy/zstd_v04.c', 'legacy/zstd_v05.c', 'legacy/zstd_v06.c', 'legacy/zstd_v07.c' ]: zstdFiles.append('zstd/lib/'+f) zstdFiles.append('src/util.c') zstdFiles.append('src/python-zstd.c') # Another dirty hack def my_test_suite(): import unittest os.environ["VERSION"] = VERSION_STR os.environ["PKG_VERSION"] = PKG_VERSION_STR test_suite = unittest.TestSuite() test_suite.addTest(unittest.defaultTestLoader.loadTestsFromName("tests.test_compress")) test_suite.addTest(unittest.defaultTestLoader.loadTestsFromName("tests.test_version")) return test_suite test_func_name = "setup.my_test_suite" setup( name='zstd', version=PKG_VERSION_STR, description="ZSTD Bindings for Python", long_description=open('README.rst', 'r').read(), author='Sergey Dryabzhinsky, Anton Stuk', author_email='sergey.dryabzhinsky@gmail.com', maintainer='Sergey Dryabzhinsky', maintainer_email='sergey.dryabzhinsky@gmail.com', url='https://github.com/sergey-dryabzhinsky/python-zstd', keywords=['zstd', 'zstandard', 'compression'], license='BSD', packages=find_packages('src'), package_dir={'': 'src'}, ext_modules=[ Extension('zstd', zstdFiles, libraries=ext_libraries) ], cmdclass = {'build_ext': ZstdBuildExt }, test_suite=test_func_name, classifiers=[ 'License :: OSI Approved :: BSD License', 'Intended Audience :: Developers', 'Development Status :: 5 - Production/Stable', 'Operating System :: POSIX', 'Programming Language :: C', 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Python :: 3.11', ] ) zstd-1.5.5.1/README.rst0000664000175000017500000001710314413402042015150 0ustar sergeysergey00000000000000============= python-zstd ============= .. |releaseW| image:: https://github.com/sergey-dryabzhinsky/python-zstd/actions/workflows/build-wheels.yml/badge.svg?branch=v1.5.5.1 :target: https://github.com/sergey-dryabzhinsky/python-zstd/actions/workflows/build-wheels.yml .. |masterW| image:: https://github.com/sergey-dryabzhinsky/python-zstd/actions/workflows/build-wheels.yml/badge.svg :target: https://github.com/sergey-dryabzhinsky/python-zstd/actions/workflows/build-wheels.yml +---------+------------+ | branch | status | +=========+============+ | Release | |releaseW| | +---------+------------+ | Master | |masterW| | +---------+------------+ Simple python bindings to Yann Collet ZSTD compression library. **Zstd**, short for Zstandard, is a new lossless compression algorithm, which provides both good compression ratio *and* speed for your standard compression needs. "Standard" translates into everyday situations which neither look for highest possible ratio (which LZMA and ZPAQ cover) nor extreme speeds (which LZ4 covers). It is provided as a BSD-license package, hosted on GitHub_. .. _GitHub: https://github.com/facebook/zstd WARNING!!! ---------- If you setup 1.0.0.99.1 version - remove it manualy to able to update. PIP matching version strings not tuple of numbers. Result generated by versions prior to 1.0.0.99.1 is not compatible with orignial Zstd by any means. It generates custom header and can be read only by zstd python module. As of 1.0.0.99.1 version it uses standard Zstd output, not modified. To prevent data loss there is two functions now: ```compress_old``` and ```decompress_old```. They are works just like in old versions prior to 1.0.0.99.1. As of 1.1.4 version module build without them by default. As of 1.3.4 version these functions are deprecated and will be removed in future releases. As of 1.5.0 version these functions are removed. DISCLAIMER __________ These python bindings are kept simple and blunt. Support of dictionaries and streaming is not planned. LINKS ----- * Zstandard: https://github.com/facebook/zstd * More full-featured and compatible with Zstandard python bindings by Gregory Szorc: https://github.com/indygreg/python-zstandard Build from source ----------------- >>> $ git clone https://github.com/sergey-dryabzhinsky/python-zstd >>> $ git submodule update --init >>> $ apt-get install python-dev python3-dev python-setuptools python3-setuptools >>> $ python setup.py build_ext clean >>> $ python3 setup.py build_ext clean Note: Zstd legacy format support disabled by default. To build with Zstd legacy versions support - pass ``--legacy`` option to setup.py script: >>> $ python setup.py build_ext --legacy clean When using a PEP 517 builder you can use ``ZSTD_LEGACY`` environment variable instead: >>> $ ZSTD_LEGACY=1 python -m build -w Note: Python-Zstd legacy format support removed since 1.5.0. If you need to convert old data - checkout 1.4.9.1 module version. Support of it disabled by default. To build with python-zstd legacy format support (pre 1.1.2) - pass ``--pyzstd-legacy`` option to setup.py script: >>> $ python setup.py build_ext --pyzstd-legacy clean If you want to build with existing distribution of libzstd just add ``--external`` option. But beware! Legacy formats support state is unknown in this case. And if your version not equal with python-zstd - tests may not pass. >>> $ python setup.py build_ext --external clean When using a PEP 517 builder you can use ``ZSTD_EXTERNAL`` environment variable instead: >>> $ ZSTD_EXTERNAL=1 python -m build -w If paths to header file ``zstd.h`` and libraries is uncommon - use common ``build`` params: --libraries --include-dirs --library-dirs. >>> $ python setup.py build_ext --external --include-dirs /opt/zstd/usr/include --libraries zstd --library-dirs /opt/zstd/lib clean Install from pypi ----------------- >>> # for Python 2.7+ >>> $ pip install zstd >>> # or for Python 3.4+ >>> $ pip3 install zstd API ___ Error Standard python Exception for zstd module ZSTD_compress (data[, level, threads]): string|bytes Function, compress input data block via mutliple threads, return compressed block, or raises Error. Params: * **data**: string|bytes - input data block, length limited by 2Gb by Python API * **level**: int - compression level, ultra-fast levels from -100 (ultra) to -1 (fast) available since zstd-1.3.4, and from 1 (fast) to 22 (slowest), 0 or unset - means default (3). Default - 3. * **threads**: int - how many threads to use, from 0 to 200, 0 or unset - auto-tune by cpu cores count. Default - 0. Since: 1.4.4.1 Aliases: *compress(...)*, *dumps(...)* Exception if: - level bigger than max level Max number of threads: - 32bit system: 64 - 64bit system: 256 If provided bigger number - silemtly set maximum number (since 1.5.4.1) Since: 0.1 ZSTD_uncompress (data): string|bytes Function, decompress input compressed data block, return decompressed block, or raises Error. Support compressed data with multiple/concatenated frames (blocks) (since 1.5.5.1). Params: * **data**: string|bytes - input compressed data block, length limited by 2Gb by Python API Aliases: *decompress(...)*, *uncompress(...)*, *loads(...)* Since: 0.1 version (): string|bytes Returns this module doted version string. The first three digits are folow libzstd version. Fourth digit - module release number for that version. Since: 1.3.4.3 ZSTD_version (): string|bytes Returns ZSTD library doted version string. Since: 1.3.4.3 ZSTD_version_number (): int Returns ZSTD library version in format: MAJOR*100*100 + MINOR*100 + RELEASE. Since: 1.3.4.3 ZSTD_threads_count (): int Returns ZSTD determined CPU cores count. Since: 1.5.4.1 ZSTD_max_threads_count (): int Returns ZSTD library determined maximum working threads count. Since: 1.5.4.1 ZSTD_external (): int Returns 0 of 1 if ZSTD library build as external. Since: 1.5.0.2 Removed _______ ZSTD_compress_old (data[, level]): string|bytes Function, compress input data block, return compressed block, or raises Error. **DEPRECATED**: Returns not compatible with ZSTD block header **REMOVED**: since 1.5.0 Params: * **data**: string|bytes - input data block, length limited by 2Gb by Python API * **level**: int - compression level, ultra-fast levels from -5 (ultra) to -1 (fast) available since zstd-1.3.4, and from 1 (fast) to 22 (slowest), 0 or unset - means default (3). Default - 3. Since: 1.0.0.99.1 ZSTD_uncompress_old (data): string|bytes Function, decompress input compressed data block, return decompressed block, or raises Error. **DEPRECATED**: Accepts data with not compatible with ZSTD block header **REMOVED**: since 1.5.0 Params: * **data**: string|bytes - input compressed data block, length limited by 2Gb by Python API Since: 1.0.0.99.1 Use ___ Module has simple API: >>> import zstd >>> dir(zstd) ['Error', 'ZSTD_compress', 'ZSTD_external', 'ZSTD_uncompress', 'ZSTD_version', 'ZSTD_version_number', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__spec__', 'compress', 'decompress', 'dumps', 'loads', 'uncompress', 'version'] >>> zstd.version() '1.5.1.0' >>> zstd.ZSTD_version() '1.5.1' >>> zstd.ZSTD_version_number() 10501 >>> zstd.ZSTD_external() 0 In python2 >>> data = "123456qwert" In python3 use bytes >>> data = b"123456qwert" >>> cdata = zstd.compress(data, 1) >>> data == zstd.decompress(cdata) True >>> cdata_mt = zstd.compress(data, 1, 4) >>> cdata == cdata_mt True >>> data == zstd.decompress(cdata_mt) True zstd-1.5.5.1/LICENSE0000664000175000017500000000245014226533363014502 0ustar sergeysergey00000000000000Copyright (c) 2015-2022, Sergey Dryabzhinsky, Anton Stuk All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. zstd-1.5.5.1/setup.cfg0000664000175000017500000000004614413402412015301 0ustar sergeysergey00000000000000[egg_info] tag_build = tag_date = 0 zstd-1.5.5.1/zstd/0000775000175000017500000000000014413402412014444 5ustar sergeysergey00000000000000zstd-1.5.5.1/zstd/lib/0000775000175000017500000000000014413402412015212 5ustar sergeysergey00000000000000zstd-1.5.5.1/zstd/lib/decompress/0000775000175000017500000000000014413402412017356 5ustar sergeysergey00000000000000zstd-1.5.5.1/zstd/lib/decompress/huf_decompress_amd64.S0000664000175000017500000003357714371536763023546 0ustar sergeysergey00000000000000/* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under both the BSD-style license (found in the * LICENSE file in the root directory of this source tree) and the GPLv2 (found * in the COPYING file in the root directory of this source tree). * You may select, at your option, one of the above-listed licenses. */ #include "../common/portability_macros.h" /* Stack marking * ref: https://wiki.gentoo.org/wiki/Hardened/GNU_stack_quickstart */ #if defined(__ELF__) && defined(__GNUC__) .section .note.GNU-stack,"",%progbits #endif #if ZSTD_ENABLE_ASM_X86_64_BMI2 /* Calling convention: * * %rdi contains the first argument: HUF_DecompressAsmArgs*. * %rbp isn't maintained (no frame pointer). * %rsp contains the stack pointer that grows down. * No red-zone is assumed, only addresses >= %rsp are used. * All register contents are preserved. * * TODO: Support Windows calling convention. */ ZSTD_HIDE_ASM_FUNCTION(HUF_decompress4X1_usingDTable_internal_fast_asm_loop) ZSTD_HIDE_ASM_FUNCTION(HUF_decompress4X2_usingDTable_internal_fast_asm_loop) ZSTD_HIDE_ASM_FUNCTION(_HUF_decompress4X2_usingDTable_internal_fast_asm_loop) ZSTD_HIDE_ASM_FUNCTION(_HUF_decompress4X1_usingDTable_internal_fast_asm_loop) .global HUF_decompress4X1_usingDTable_internal_fast_asm_loop .global HUF_decompress4X2_usingDTable_internal_fast_asm_loop .global _HUF_decompress4X1_usingDTable_internal_fast_asm_loop .global _HUF_decompress4X2_usingDTable_internal_fast_asm_loop .text /* Sets up register mappings for clarity. * op[], bits[], dtable & ip[0] each get their own register. * ip[1,2,3] & olimit alias var[]. * %rax is a scratch register. */ #define op0 rsi #define op1 rbx #define op2 rcx #define op3 rdi #define ip0 r8 #define ip1 r9 #define ip2 r10 #define ip3 r11 #define bits0 rbp #define bits1 rdx #define bits2 r12 #define bits3 r13 #define dtable r14 #define olimit r15 /* var[] aliases ip[1,2,3] & olimit * ip[1,2,3] are saved every iteration. * olimit is only used in compute_olimit. */ #define var0 r15 #define var1 r9 #define var2 r10 #define var3 r11 /* 32-bit var registers */ #define vard0 r15d #define vard1 r9d #define vard2 r10d #define vard3 r11d /* Calls X(N) for each stream 0, 1, 2, 3. */ #define FOR_EACH_STREAM(X) \ X(0); \ X(1); \ X(2); \ X(3) /* Calls X(N, idx) for each stream 0, 1, 2, 3. */ #define FOR_EACH_STREAM_WITH_INDEX(X, idx) \ X(0, idx); \ X(1, idx); \ X(2, idx); \ X(3, idx) /* Define both _HUF_* & HUF_* symbols because MacOS * C symbols are prefixed with '_' & Linux symbols aren't. */ _HUF_decompress4X1_usingDTable_internal_fast_asm_loop: HUF_decompress4X1_usingDTable_internal_fast_asm_loop: ZSTD_CET_ENDBRANCH /* Save all registers - even if they are callee saved for simplicity. */ push %rax push %rbx push %rcx push %rdx push %rbp push %rsi push %rdi push %r8 push %r9 push %r10 push %r11 push %r12 push %r13 push %r14 push %r15 /* Read HUF_DecompressAsmArgs* args from %rax */ movq %rdi, %rax movq 0(%rax), %ip0 movq 8(%rax), %ip1 movq 16(%rax), %ip2 movq 24(%rax), %ip3 movq 32(%rax), %op0 movq 40(%rax), %op1 movq 48(%rax), %op2 movq 56(%rax), %op3 movq 64(%rax), %bits0 movq 72(%rax), %bits1 movq 80(%rax), %bits2 movq 88(%rax), %bits3 movq 96(%rax), %dtable push %rax /* argument */ push 104(%rax) /* ilimit */ push 112(%rax) /* oend */ push %olimit /* olimit space */ subq $24, %rsp .L_4X1_compute_olimit: /* Computes how many iterations we can do safely * %r15, %rax may be clobbered * rbx, rdx must be saved * op3 & ip0 mustn't be clobbered */ movq %rbx, 0(%rsp) movq %rdx, 8(%rsp) movq 32(%rsp), %rax /* rax = oend */ subq %op3, %rax /* rax = oend - op3 */ /* r15 = (oend - op3) / 5 */ movabsq $-3689348814741910323, %rdx mulq %rdx movq %rdx, %r15 shrq $2, %r15 movq %ip0, %rax /* rax = ip0 */ movq 40(%rsp), %rdx /* rdx = ilimit */ subq %rdx, %rax /* rax = ip0 - ilimit */ movq %rax, %rbx /* rbx = ip0 - ilimit */ /* rdx = (ip0 - ilimit) / 7 */ movabsq $2635249153387078803, %rdx mulq %rdx subq %rdx, %rbx shrq %rbx addq %rbx, %rdx shrq $2, %rdx /* r15 = min(%rdx, %r15) */ cmpq %rdx, %r15 cmova %rdx, %r15 /* r15 = r15 * 5 */ leaq (%r15, %r15, 4), %r15 /* olimit = op3 + r15 */ addq %op3, %olimit movq 8(%rsp), %rdx movq 0(%rsp), %rbx /* If (op3 + 20 > olimit) */ movq %op3, %rax /* rax = op3 */ addq $20, %rax /* rax = op3 + 20 */ cmpq %rax, %olimit /* op3 + 20 > olimit */ jb .L_4X1_exit /* If (ip1 < ip0) go to exit */ cmpq %ip0, %ip1 jb .L_4X1_exit /* If (ip2 < ip1) go to exit */ cmpq %ip1, %ip2 jb .L_4X1_exit /* If (ip3 < ip2) go to exit */ cmpq %ip2, %ip3 jb .L_4X1_exit /* Reads top 11 bits from bits[n] * Loads dt[bits[n]] into var[n] */ #define GET_NEXT_DELT(n) \ movq $53, %var##n; \ shrxq %var##n, %bits##n, %var##n; \ movzwl (%dtable,%var##n,2),%vard##n /* var[n] must contain the DTable entry computed with GET_NEXT_DELT * Moves var[n] to %rax * bits[n] <<= var[n] & 63 * op[n][idx] = %rax >> 8 * %ah is a way to access bits [8, 16) of %rax */ #define DECODE_FROM_DELT(n, idx) \ movq %var##n, %rax; \ shlxq %var##n, %bits##n, %bits##n; \ movb %ah, idx(%op##n) /* Assumes GET_NEXT_DELT has been called. * Calls DECODE_FROM_DELT then GET_NEXT_DELT */ #define DECODE_AND_GET_NEXT(n, idx) \ DECODE_FROM_DELT(n, idx); \ GET_NEXT_DELT(n) \ /* // ctz & nbBytes is stored in bits[n] * // nbBits is stored in %rax * ctz = CTZ[bits[n]] * nbBits = ctz & 7 * nbBytes = ctz >> 3 * op[n] += 5 * ip[n] -= nbBytes * // Note: x86-64 is little-endian ==> no bswap * bits[n] = MEM_readST(ip[n]) | 1 * bits[n] <<= nbBits */ #define RELOAD_BITS(n) \ bsfq %bits##n, %bits##n; \ movq %bits##n, %rax; \ andq $7, %rax; \ shrq $3, %bits##n; \ leaq 5(%op##n), %op##n; \ subq %bits##n, %ip##n; \ movq (%ip##n), %bits##n; \ orq $1, %bits##n; \ shlx %rax, %bits##n, %bits##n /* Store clobbered variables on the stack */ movq %olimit, 24(%rsp) movq %ip1, 0(%rsp) movq %ip2, 8(%rsp) movq %ip3, 16(%rsp) /* Call GET_NEXT_DELT for each stream */ FOR_EACH_STREAM(GET_NEXT_DELT) .p2align 6 .L_4X1_loop_body: /* Decode 5 symbols in each of the 4 streams (20 total) * Must have called GET_NEXT_DELT for each stream */ FOR_EACH_STREAM_WITH_INDEX(DECODE_AND_GET_NEXT, 0) FOR_EACH_STREAM_WITH_INDEX(DECODE_AND_GET_NEXT, 1) FOR_EACH_STREAM_WITH_INDEX(DECODE_AND_GET_NEXT, 2) FOR_EACH_STREAM_WITH_INDEX(DECODE_AND_GET_NEXT, 3) FOR_EACH_STREAM_WITH_INDEX(DECODE_FROM_DELT, 4) /* Load ip[1,2,3] from stack (var[] aliases them) * ip[] is needed for RELOAD_BITS * Each will be stored back to the stack after RELOAD */ movq 0(%rsp), %ip1 movq 8(%rsp), %ip2 movq 16(%rsp), %ip3 /* Reload each stream & fetch the next table entry * to prepare for the next iteration */ RELOAD_BITS(0) GET_NEXT_DELT(0) RELOAD_BITS(1) movq %ip1, 0(%rsp) GET_NEXT_DELT(1) RELOAD_BITS(2) movq %ip2, 8(%rsp) GET_NEXT_DELT(2) RELOAD_BITS(3) movq %ip3, 16(%rsp) GET_NEXT_DELT(3) /* If op3 < olimit: continue the loop */ cmp %op3, 24(%rsp) ja .L_4X1_loop_body /* Reload ip[1,2,3] from stack */ movq 0(%rsp), %ip1 movq 8(%rsp), %ip2 movq 16(%rsp), %ip3 /* Re-compute olimit */ jmp .L_4X1_compute_olimit #undef GET_NEXT_DELT #undef DECODE_FROM_DELT #undef DECODE #undef RELOAD_BITS .L_4X1_exit: addq $24, %rsp /* Restore stack (oend & olimit) */ pop %rax /* olimit */ pop %rax /* oend */ pop %rax /* ilimit */ pop %rax /* arg */ /* Save ip / op / bits */ movq %ip0, 0(%rax) movq %ip1, 8(%rax) movq %ip2, 16(%rax) movq %ip3, 24(%rax) movq %op0, 32(%rax) movq %op1, 40(%rax) movq %op2, 48(%rax) movq %op3, 56(%rax) movq %bits0, 64(%rax) movq %bits1, 72(%rax) movq %bits2, 80(%rax) movq %bits3, 88(%rax) /* Restore registers */ pop %r15 pop %r14 pop %r13 pop %r12 pop %r11 pop %r10 pop %r9 pop %r8 pop %rdi pop %rsi pop %rbp pop %rdx pop %rcx pop %rbx pop %rax ret _HUF_decompress4X2_usingDTable_internal_fast_asm_loop: HUF_decompress4X2_usingDTable_internal_fast_asm_loop: ZSTD_CET_ENDBRANCH /* Save all registers - even if they are callee saved for simplicity. */ push %rax push %rbx push %rcx push %rdx push %rbp push %rsi push %rdi push %r8 push %r9 push %r10 push %r11 push %r12 push %r13 push %r14 push %r15 movq %rdi, %rax movq 0(%rax), %ip0 movq 8(%rax), %ip1 movq 16(%rax), %ip2 movq 24(%rax), %ip3 movq 32(%rax), %op0 movq 40(%rax), %op1 movq 48(%rax), %op2 movq 56(%rax), %op3 movq 64(%rax), %bits0 movq 72(%rax), %bits1 movq 80(%rax), %bits2 movq 88(%rax), %bits3 movq 96(%rax), %dtable push %rax /* argument */ push %rax /* olimit */ push 104(%rax) /* ilimit */ movq 112(%rax), %rax push %rax /* oend3 */ movq %op3, %rax push %rax /* oend2 */ movq %op2, %rax push %rax /* oend1 */ movq %op1, %rax push %rax /* oend0 */ /* Scratch space */ subq $8, %rsp .L_4X2_compute_olimit: /* Computes how many iterations we can do safely * %r15, %rax may be clobbered * rdx must be saved * op[1,2,3,4] & ip0 mustn't be clobbered */ movq %rdx, 0(%rsp) /* We can consume up to 7 input bytes each iteration. */ movq %ip0, %rax /* rax = ip0 */ movq 40(%rsp), %rdx /* rdx = ilimit */ subq %rdx, %rax /* rax = ip0 - ilimit */ movq %rax, %r15 /* r15 = ip0 - ilimit */ /* rdx = rax / 7 */ movabsq $2635249153387078803, %rdx mulq %rdx subq %rdx, %r15 shrq %r15 addq %r15, %rdx shrq $2, %rdx /* r15 = (ip0 - ilimit) / 7 */ movq %rdx, %r15 /* r15 = min(r15, min(oend0 - op0, oend1 - op1, oend2 - op2, oend3 - op3) / 10) */ movq 8(%rsp), %rax /* rax = oend0 */ subq %op0, %rax /* rax = oend0 - op0 */ movq 16(%rsp), %rdx /* rdx = oend1 */ subq %op1, %rdx /* rdx = oend1 - op1 */ cmpq %rax, %rdx cmova %rax, %rdx /* rdx = min(%rdx, %rax) */ movq 24(%rsp), %rax /* rax = oend2 */ subq %op2, %rax /* rax = oend2 - op2 */ cmpq %rax, %rdx cmova %rax, %rdx /* rdx = min(%rdx, %rax) */ movq 32(%rsp), %rax /* rax = oend3 */ subq %op3, %rax /* rax = oend3 - op3 */ cmpq %rax, %rdx cmova %rax, %rdx /* rdx = min(%rdx, %rax) */ movabsq $-3689348814741910323, %rax mulq %rdx shrq $3, %rdx /* rdx = rdx / 10 */ /* r15 = min(%rdx, %r15) */ cmpq %rdx, %r15 cmova %rdx, %r15 /* olimit = op3 + 5 * r15 */ movq %r15, %rax leaq (%op3, %rax, 4), %olimit addq %rax, %olimit movq 0(%rsp), %rdx /* If (op3 + 10 > olimit) */ movq %op3, %rax /* rax = op3 */ addq $10, %rax /* rax = op3 + 10 */ cmpq %rax, %olimit /* op3 + 10 > olimit */ jb .L_4X2_exit /* If (ip1 < ip0) go to exit */ cmpq %ip0, %ip1 jb .L_4X2_exit /* If (ip2 < ip1) go to exit */ cmpq %ip1, %ip2 jb .L_4X2_exit /* If (ip3 < ip2) go to exit */ cmpq %ip2, %ip3 jb .L_4X2_exit #define DECODE(n, idx) \ movq %bits##n, %rax; \ shrq $53, %rax; \ movzwl 0(%dtable,%rax,4),%r8d; \ movzbl 2(%dtable,%rax,4),%r15d; \ movzbl 3(%dtable,%rax,4),%eax; \ movw %r8w, (%op##n); \ shlxq %r15, %bits##n, %bits##n; \ addq %rax, %op##n #define RELOAD_BITS(n) \ bsfq %bits##n, %bits##n; \ movq %bits##n, %rax; \ shrq $3, %bits##n; \ andq $7, %rax; \ subq %bits##n, %ip##n; \ movq (%ip##n), %bits##n; \ orq $1, %bits##n; \ shlxq %rax, %bits##n, %bits##n movq %olimit, 48(%rsp) .p2align 6 .L_4X2_loop_body: /* We clobber r8, so store it on the stack */ movq %r8, 0(%rsp) /* Decode 5 symbols from each of the 4 streams (20 symbols total). */ FOR_EACH_STREAM_WITH_INDEX(DECODE, 0) FOR_EACH_STREAM_WITH_INDEX(DECODE, 1) FOR_EACH_STREAM_WITH_INDEX(DECODE, 2) FOR_EACH_STREAM_WITH_INDEX(DECODE, 3) FOR_EACH_STREAM_WITH_INDEX(DECODE, 4) /* Reload r8 */ movq 0(%rsp), %r8 FOR_EACH_STREAM(RELOAD_BITS) cmp %op3, 48(%rsp) ja .L_4X2_loop_body jmp .L_4X2_compute_olimit #undef DECODE #undef RELOAD_BITS .L_4X2_exit: addq $8, %rsp /* Restore stack (oend & olimit) */ pop %rax /* oend0 */ pop %rax /* oend1 */ pop %rax /* oend2 */ pop %rax /* oend3 */ pop %rax /* ilimit */ pop %rax /* olimit */ pop %rax /* arg */ /* Save ip / op / bits */ movq %ip0, 0(%rax) movq %ip1, 8(%rax) movq %ip2, 16(%rax) movq %ip3, 24(%rax) movq %op0, 32(%rax) movq %op1, 40(%rax) movq %op2, 48(%rax) movq %op3, 56(%rax) movq %bits0, 64(%rax) movq %bits1, 72(%rax) movq %bits2, 80(%rax) movq %bits3, 88(%rax) /* Restore registers */ pop %r15 pop %r14 pop %r13 pop %r12 pop %r11 pop %r10 pop %r9 pop %r8 pop %rdi pop %rsi pop %rbp pop %rdx pop %rcx pop %rbx pop %rax ret #endif zstd-1.5.5.1/zstd/lib/decompress/zstd_decompress_block.c0000664000175000017500000030247114413353730024123 0ustar sergeysergey00000000000000/* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under both the BSD-style license (found in the * LICENSE file in the root directory of this source tree) and the GPLv2 (found * in the COPYING file in the root directory of this source tree). * You may select, at your option, one of the above-listed licenses. */ /* zstd_decompress_block : * this module takes care of decompressing _compressed_ block */ /*-******************************************************* * Dependencies *********************************************************/ #include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memmove, ZSTD_memset */ #include "../common/compiler.h" /* prefetch */ #include "../common/cpu.h" /* bmi2 */ #include "../common/mem.h" /* low level memory routines */ #define FSE_STATIC_LINKING_ONLY #include "../common/fse.h" #include "../common/huf.h" #include "../common/zstd_internal.h" #include "zstd_decompress_internal.h" /* ZSTD_DCtx */ #include "zstd_ddict.h" /* ZSTD_DDictDictContent */ #include "zstd_decompress_block.h" #include "../common/bits.h" /* ZSTD_highbit32 */ /*_******************************************************* * Macros **********************************************************/ /* These two optional macros force the use one way or another of the two * ZSTD_decompressSequences implementations. You can't force in both directions * at the same time. */ #if defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \ defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG) #error "Cannot force the use of the short and the long ZSTD_decompressSequences variants!" #endif /*_******************************************************* * Memory operations **********************************************************/ static void ZSTD_copy4(void* dst, const void* src) { ZSTD_memcpy(dst, src, 4); } /*-************************************************************* * Block decoding ***************************************************************/ /*! ZSTD_getcBlockSize() : * Provides the size of compressed block from block header `src` */ size_t ZSTD_getcBlockSize(const void* src, size_t srcSize, blockProperties_t* bpPtr) { RETURN_ERROR_IF(srcSize < ZSTD_blockHeaderSize, srcSize_wrong, ""); { U32 const cBlockHeader = MEM_readLE24(src); U32 const cSize = cBlockHeader >> 3; bpPtr->lastBlock = cBlockHeader & 1; bpPtr->blockType = (blockType_e)((cBlockHeader >> 1) & 3); bpPtr->origSize = cSize; /* only useful for RLE */ if (bpPtr->blockType == bt_rle) return 1; RETURN_ERROR_IF(bpPtr->blockType == bt_reserved, corruption_detected, ""); return cSize; } } /* Allocate buffer for literals, either overlapping current dst, or split between dst and litExtraBuffer, or stored entirely within litExtraBuffer */ static void ZSTD_allocateLiteralsBuffer(ZSTD_DCtx* dctx, void* const dst, const size_t dstCapacity, const size_t litSize, const streaming_operation streaming, const size_t expectedWriteSize, const unsigned splitImmediately) { if (streaming == not_streaming && dstCapacity > ZSTD_BLOCKSIZE_MAX + WILDCOPY_OVERLENGTH + litSize + WILDCOPY_OVERLENGTH) { /* room for litbuffer to fit without read faulting */ dctx->litBuffer = (BYTE*)dst + ZSTD_BLOCKSIZE_MAX + WILDCOPY_OVERLENGTH; dctx->litBufferEnd = dctx->litBuffer + litSize; dctx->litBufferLocation = ZSTD_in_dst; } else if (litSize > ZSTD_LITBUFFEREXTRASIZE) { /* won't fit in litExtraBuffer, so it will be split between end of dst and extra buffer */ if (splitImmediately) { /* won't fit in litExtraBuffer, so it will be split between end of dst and extra buffer */ dctx->litBuffer = (BYTE*)dst + expectedWriteSize - litSize + ZSTD_LITBUFFEREXTRASIZE - WILDCOPY_OVERLENGTH; dctx->litBufferEnd = dctx->litBuffer + litSize - ZSTD_LITBUFFEREXTRASIZE; } else { /* initially this will be stored entirely in dst during huffman decoding, it will partially be shifted to litExtraBuffer after */ dctx->litBuffer = (BYTE*)dst + expectedWriteSize - litSize; dctx->litBufferEnd = (BYTE*)dst + expectedWriteSize; } dctx->litBufferLocation = ZSTD_split; } else { /* fits entirely within litExtraBuffer, so no split is necessary */ dctx->litBuffer = dctx->litExtraBuffer; dctx->litBufferEnd = dctx->litBuffer + litSize; dctx->litBufferLocation = ZSTD_not_in_dst; } } /* Hidden declaration for fullbench */ size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx, const void* src, size_t srcSize, void* dst, size_t dstCapacity, const streaming_operation streaming); /*! ZSTD_decodeLiteralsBlock() : * Where it is possible to do so without being stomped by the output during decompression, the literals block will be stored * in the dstBuffer. If there is room to do so, it will be stored in full in the excess dst space after where the current * block will be output. Otherwise it will be stored at the end of the current dst blockspace, with a small portion being * stored in dctx->litExtraBuffer to help keep it "ahead" of the current output write. * * @return : nb of bytes read from src (< srcSize ) * note : symbol not declared but exposed for fullbench */ size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx, const void* src, size_t srcSize, /* note : srcSize < BLOCKSIZE */ void* dst, size_t dstCapacity, const streaming_operation streaming) { DEBUGLOG(5, "ZSTD_decodeLiteralsBlock"); RETURN_ERROR_IF(srcSize < MIN_CBLOCK_SIZE, corruption_detected, ""); { const BYTE* const istart = (const BYTE*) src; symbolEncodingType_e const litEncType = (symbolEncodingType_e)(istart[0] & 3); switch(litEncType) { case set_repeat: DEBUGLOG(5, "set_repeat flag : re-using stats from previous compressed literals block"); RETURN_ERROR_IF(dctx->litEntropy==0, dictionary_corrupted, ""); ZSTD_FALLTHROUGH; case set_compressed: RETURN_ERROR_IF(srcSize < 5, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 2; here we need up to 5 for case 3"); { size_t lhSize, litSize, litCSize; U32 singleStream=0; U32 const lhlCode = (istart[0] >> 2) & 3; U32 const lhc = MEM_readLE32(istart); size_t hufSuccess; size_t expectedWriteSize = MIN(ZSTD_BLOCKSIZE_MAX, dstCapacity); int const flags = 0 | (ZSTD_DCtx_get_bmi2(dctx) ? HUF_flags_bmi2 : 0) | (dctx->disableHufAsm ? HUF_flags_disableAsm : 0); switch(lhlCode) { case 0: case 1: default: /* note : default is impossible, since lhlCode into [0..3] */ /* 2 - 2 - 10 - 10 */ singleStream = !lhlCode; lhSize = 3; litSize = (lhc >> 4) & 0x3FF; litCSize = (lhc >> 14) & 0x3FF; break; case 2: /* 2 - 2 - 14 - 14 */ lhSize = 4; litSize = (lhc >> 4) & 0x3FFF; litCSize = lhc >> 18; break; case 3: /* 2 - 2 - 18 - 18 */ lhSize = 5; litSize = (lhc >> 4) & 0x3FFFF; litCSize = (lhc >> 22) + ((size_t)istart[4] << 10); break; } RETURN_ERROR_IF(litSize > 0 && dst == NULL, dstSize_tooSmall, "NULL not handled"); RETURN_ERROR_IF(litSize > ZSTD_BLOCKSIZE_MAX, corruption_detected, ""); if (!singleStream) RETURN_ERROR_IF(litSize < MIN_LITERALS_FOR_4_STREAMS, literals_headerWrong, "Not enough literals (%zu) for the 4-streams mode (min %u)", litSize, MIN_LITERALS_FOR_4_STREAMS); RETURN_ERROR_IF(litCSize + lhSize > srcSize, corruption_detected, ""); RETURN_ERROR_IF(expectedWriteSize < litSize , dstSize_tooSmall, ""); ZSTD_allocateLiteralsBuffer(dctx, dst, dstCapacity, litSize, streaming, expectedWriteSize, 0); /* prefetch huffman table if cold */ if (dctx->ddictIsCold && (litSize > 768 /* heuristic */)) { PREFETCH_AREA(dctx->HUFptr, sizeof(dctx->entropy.hufTable)); } if (litEncType==set_repeat) { if (singleStream) { hufSuccess = HUF_decompress1X_usingDTable( dctx->litBuffer, litSize, istart+lhSize, litCSize, dctx->HUFptr, flags); } else { assert(litSize >= MIN_LITERALS_FOR_4_STREAMS); hufSuccess = HUF_decompress4X_usingDTable( dctx->litBuffer, litSize, istart+lhSize, litCSize, dctx->HUFptr, flags); } } else { if (singleStream) { #if defined(HUF_FORCE_DECOMPRESS_X2) hufSuccess = HUF_decompress1X_DCtx_wksp( dctx->entropy.hufTable, dctx->litBuffer, litSize, istart+lhSize, litCSize, dctx->workspace, sizeof(dctx->workspace), flags); #else hufSuccess = HUF_decompress1X1_DCtx_wksp( dctx->entropy.hufTable, dctx->litBuffer, litSize, istart+lhSize, litCSize, dctx->workspace, sizeof(dctx->workspace), flags); #endif } else { hufSuccess = HUF_decompress4X_hufOnly_wksp( dctx->entropy.hufTable, dctx->litBuffer, litSize, istart+lhSize, litCSize, dctx->workspace, sizeof(dctx->workspace), flags); } } if (dctx->litBufferLocation == ZSTD_split) { ZSTD_memcpy(dctx->litExtraBuffer, dctx->litBufferEnd - ZSTD_LITBUFFEREXTRASIZE, ZSTD_LITBUFFEREXTRASIZE); ZSTD_memmove(dctx->litBuffer + ZSTD_LITBUFFEREXTRASIZE - WILDCOPY_OVERLENGTH, dctx->litBuffer, litSize - ZSTD_LITBUFFEREXTRASIZE); dctx->litBuffer += ZSTD_LITBUFFEREXTRASIZE - WILDCOPY_OVERLENGTH; dctx->litBufferEnd -= WILDCOPY_OVERLENGTH; } RETURN_ERROR_IF(HUF_isError(hufSuccess), corruption_detected, ""); dctx->litPtr = dctx->litBuffer; dctx->litSize = litSize; dctx->litEntropy = 1; if (litEncType==set_compressed) dctx->HUFptr = dctx->entropy.hufTable; return litCSize + lhSize; } case set_basic: { size_t litSize, lhSize; U32 const lhlCode = ((istart[0]) >> 2) & 3; size_t expectedWriteSize = MIN(ZSTD_BLOCKSIZE_MAX, dstCapacity); switch(lhlCode) { case 0: case 2: default: /* note : default is impossible, since lhlCode into [0..3] */ lhSize = 1; litSize = istart[0] >> 3; break; case 1: lhSize = 2; litSize = MEM_readLE16(istart) >> 4; break; case 3: lhSize = 3; RETURN_ERROR_IF(srcSize<3, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 2; here we need lhSize = 3"); litSize = MEM_readLE24(istart) >> 4; break; } RETURN_ERROR_IF(litSize > 0 && dst == NULL, dstSize_tooSmall, "NULL not handled"); RETURN_ERROR_IF(expectedWriteSize < litSize, dstSize_tooSmall, ""); ZSTD_allocateLiteralsBuffer(dctx, dst, dstCapacity, litSize, streaming, expectedWriteSize, 1); if (lhSize+litSize+WILDCOPY_OVERLENGTH > srcSize) { /* risk reading beyond src buffer with wildcopy */ RETURN_ERROR_IF(litSize+lhSize > srcSize, corruption_detected, ""); if (dctx->litBufferLocation == ZSTD_split) { ZSTD_memcpy(dctx->litBuffer, istart + lhSize, litSize - ZSTD_LITBUFFEREXTRASIZE); ZSTD_memcpy(dctx->litExtraBuffer, istart + lhSize + litSize - ZSTD_LITBUFFEREXTRASIZE, ZSTD_LITBUFFEREXTRASIZE); } else { ZSTD_memcpy(dctx->litBuffer, istart + lhSize, litSize); } dctx->litPtr = dctx->litBuffer; dctx->litSize = litSize; return lhSize+litSize; } /* direct reference into compressed stream */ dctx->litPtr = istart+lhSize; dctx->litSize = litSize; dctx->litBufferEnd = dctx->litPtr + litSize; dctx->litBufferLocation = ZSTD_not_in_dst; return lhSize+litSize; } case set_rle: { U32 const lhlCode = ((istart[0]) >> 2) & 3; size_t litSize, lhSize; size_t expectedWriteSize = MIN(ZSTD_BLOCKSIZE_MAX, dstCapacity); switch(lhlCode) { case 0: case 2: default: /* note : default is impossible, since lhlCode into [0..3] */ lhSize = 1; litSize = istart[0] >> 3; break; case 1: lhSize = 2; RETURN_ERROR_IF(srcSize<3, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 2; here we need lhSize+1 = 3"); litSize = MEM_readLE16(istart) >> 4; break; case 3: lhSize = 3; RETURN_ERROR_IF(srcSize<4, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 2; here we need lhSize+1 = 4"); litSize = MEM_readLE24(istart) >> 4; break; } RETURN_ERROR_IF(litSize > 0 && dst == NULL, dstSize_tooSmall, "NULL not handled"); RETURN_ERROR_IF(litSize > ZSTD_BLOCKSIZE_MAX, corruption_detected, ""); RETURN_ERROR_IF(expectedWriteSize < litSize, dstSize_tooSmall, ""); ZSTD_allocateLiteralsBuffer(dctx, dst, dstCapacity, litSize, streaming, expectedWriteSize, 1); if (dctx->litBufferLocation == ZSTD_split) { ZSTD_memset(dctx->litBuffer, istart[lhSize], litSize - ZSTD_LITBUFFEREXTRASIZE); ZSTD_memset(dctx->litExtraBuffer, istart[lhSize], ZSTD_LITBUFFEREXTRASIZE); } else { ZSTD_memset(dctx->litBuffer, istart[lhSize], litSize); } dctx->litPtr = dctx->litBuffer; dctx->litSize = litSize; return lhSize+1; } default: RETURN_ERROR(corruption_detected, "impossible"); } } } /* Default FSE distribution tables. * These are pre-calculated FSE decoding tables using default distributions as defined in specification : * https://github.com/facebook/zstd/blob/release/doc/zstd_compression_format.md#default-distributions * They were generated programmatically with following method : * - start from default distributions, present in /lib/common/zstd_internal.h * - generate tables normally, using ZSTD_buildFSETable() * - printout the content of tables * - pretify output, report below, test with fuzzer to ensure it's correct */ /* Default FSE distribution table for Literal Lengths */ static const ZSTD_seqSymbol LL_defaultDTable[(1<tableLog = 0; DTableH->fastMode = 0; cell->nbBits = 0; cell->nextState = 0; assert(nbAddBits < 255); cell->nbAdditionalBits = nbAddBits; cell->baseValue = baseValue; } /* ZSTD_buildFSETable() : * generate FSE decoding table for one symbol (ll, ml or off) * cannot fail if input is valid => * all inputs are presumed validated at this stage */ FORCE_INLINE_TEMPLATE void ZSTD_buildFSETable_body(ZSTD_seqSymbol* dt, const short* normalizedCounter, unsigned maxSymbolValue, const U32* baseValue, const U8* nbAdditionalBits, unsigned tableLog, void* wksp, size_t wkspSize) { ZSTD_seqSymbol* const tableDecode = dt+1; U32 const maxSV1 = maxSymbolValue + 1; U32 const tableSize = 1 << tableLog; U16* symbolNext = (U16*)wksp; BYTE* spread = (BYTE*)(symbolNext + MaxSeq + 1); U32 highThreshold = tableSize - 1; /* Sanity Checks */ assert(maxSymbolValue <= MaxSeq); assert(tableLog <= MaxFSELog); assert(wkspSize >= ZSTD_BUILD_FSE_TABLE_WKSP_SIZE); (void)wkspSize; /* Init, lay down lowprob symbols */ { ZSTD_seqSymbol_header DTableH; DTableH.tableLog = tableLog; DTableH.fastMode = 1; { S16 const largeLimit= (S16)(1 << (tableLog-1)); U32 s; for (s=0; s= largeLimit) DTableH.fastMode=0; assert(normalizedCounter[s]>=0); symbolNext[s] = (U16)normalizedCounter[s]; } } } ZSTD_memcpy(dt, &DTableH, sizeof(DTableH)); } /* Spread symbols */ assert(tableSize <= 512); /* Specialized symbol spreading for the case when there are * no low probability (-1 count) symbols. When compressing * small blocks we avoid low probability symbols to hit this * case, since header decoding speed matters more. */ if (highThreshold == tableSize - 1) { size_t const tableMask = tableSize-1; size_t const step = FSE_TABLESTEP(tableSize); /* First lay down the symbols in order. * We use a uint64_t to lay down 8 bytes at a time. This reduces branch * misses since small blocks generally have small table logs, so nearly * all symbols have counts <= 8. We ensure we have 8 bytes at the end of * our buffer to handle the over-write. */ { U64 const add = 0x0101010101010101ull; size_t pos = 0; U64 sv = 0; U32 s; for (s=0; s=0); pos += (size_t)n; } } /* Now we spread those positions across the table. * The benefit of doing it in two stages is that we avoid the * variable size inner loop, which caused lots of branch misses. * Now we can run through all the positions without any branch misses. * We unroll the loop twice, since that is what empirically worked best. */ { size_t position = 0; size_t s; size_t const unroll = 2; assert(tableSize % unroll == 0); /* FSE_MIN_TABLELOG is 5 */ for (s = 0; s < (size_t)tableSize; s += unroll) { size_t u; for (u = 0; u < unroll; ++u) { size_t const uPosition = (position + (u * step)) & tableMask; tableDecode[uPosition].baseValue = spread[s + u]; } position = (position + (unroll * step)) & tableMask; } assert(position == 0); } } else { U32 const tableMask = tableSize-1; U32 const step = FSE_TABLESTEP(tableSize); U32 s, position = 0; for (s=0; s highThreshold)) position = (position + step) & tableMask; /* lowprob area */ } } assert(position == 0); /* position must reach all cells once, otherwise normalizedCounter is incorrect */ } /* Build Decoding table */ { U32 u; for (u=0; u max, corruption_detected, ""); { U32 const symbol = *(const BYTE*)src; U32 const baseline = baseValue[symbol]; U8 const nbBits = nbAdditionalBits[symbol]; ZSTD_buildSeqTable_rle(DTableSpace, baseline, nbBits); } *DTablePtr = DTableSpace; return 1; case set_basic : *DTablePtr = defaultTable; return 0; case set_repeat: RETURN_ERROR_IF(!flagRepeatTable, corruption_detected, ""); /* prefetch FSE table if used */ if (ddictIsCold && (nbSeq > 24 /* heuristic */)) { const void* const pStart = *DTablePtr; size_t const pSize = sizeof(ZSTD_seqSymbol) * (SEQSYMBOL_TABLE_SIZE(maxLog)); PREFETCH_AREA(pStart, pSize); } return 0; case set_compressed : { unsigned tableLog; S16 norm[MaxSeq+1]; size_t const headerSize = FSE_readNCount(norm, &max, &tableLog, src, srcSize); RETURN_ERROR_IF(FSE_isError(headerSize), corruption_detected, ""); RETURN_ERROR_IF(tableLog > maxLog, corruption_detected, ""); ZSTD_buildFSETable(DTableSpace, norm, max, baseValue, nbAdditionalBits, tableLog, wksp, wkspSize, bmi2); *DTablePtr = DTableSpace; return headerSize; } default : assert(0); RETURN_ERROR(GENERIC, "impossible"); } } size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr, const void* src, size_t srcSize) { const BYTE* const istart = (const BYTE*)src; const BYTE* const iend = istart + srcSize; const BYTE* ip = istart; int nbSeq; DEBUGLOG(5, "ZSTD_decodeSeqHeaders"); /* check */ RETURN_ERROR_IF(srcSize < MIN_SEQUENCES_SIZE, srcSize_wrong, ""); /* SeqHead */ nbSeq = *ip++; if (!nbSeq) { *nbSeqPtr=0; RETURN_ERROR_IF(srcSize != 1, srcSize_wrong, ""); return 1; } if (nbSeq > 0x7F) { if (nbSeq == 0xFF) { RETURN_ERROR_IF(ip+2 > iend, srcSize_wrong, ""); nbSeq = MEM_readLE16(ip) + LONGNBSEQ; ip+=2; } else { RETURN_ERROR_IF(ip >= iend, srcSize_wrong, ""); nbSeq = ((nbSeq-0x80)<<8) + *ip++; } } *nbSeqPtr = nbSeq; /* FSE table descriptors */ RETURN_ERROR_IF(ip+1 > iend, srcSize_wrong, ""); /* minimum possible size: 1 byte for symbol encoding types */ { symbolEncodingType_e const LLtype = (symbolEncodingType_e)(*ip >> 6); symbolEncodingType_e const OFtype = (symbolEncodingType_e)((*ip >> 4) & 3); symbolEncodingType_e const MLtype = (symbolEncodingType_e)((*ip >> 2) & 3); ip++; /* Build DTables */ { size_t const llhSize = ZSTD_buildSeqTable(dctx->entropy.LLTable, &dctx->LLTptr, LLtype, MaxLL, LLFSELog, ip, iend-ip, LL_base, LL_bits, LL_defaultDTable, dctx->fseEntropy, dctx->ddictIsCold, nbSeq, dctx->workspace, sizeof(dctx->workspace), ZSTD_DCtx_get_bmi2(dctx)); RETURN_ERROR_IF(ZSTD_isError(llhSize), corruption_detected, "ZSTD_buildSeqTable failed"); ip += llhSize; } { size_t const ofhSize = ZSTD_buildSeqTable(dctx->entropy.OFTable, &dctx->OFTptr, OFtype, MaxOff, OffFSELog, ip, iend-ip, OF_base, OF_bits, OF_defaultDTable, dctx->fseEntropy, dctx->ddictIsCold, nbSeq, dctx->workspace, sizeof(dctx->workspace), ZSTD_DCtx_get_bmi2(dctx)); RETURN_ERROR_IF(ZSTD_isError(ofhSize), corruption_detected, "ZSTD_buildSeqTable failed"); ip += ofhSize; } { size_t const mlhSize = ZSTD_buildSeqTable(dctx->entropy.MLTable, &dctx->MLTptr, MLtype, MaxML, MLFSELog, ip, iend-ip, ML_base, ML_bits, ML_defaultDTable, dctx->fseEntropy, dctx->ddictIsCold, nbSeq, dctx->workspace, sizeof(dctx->workspace), ZSTD_DCtx_get_bmi2(dctx)); RETURN_ERROR_IF(ZSTD_isError(mlhSize), corruption_detected, "ZSTD_buildSeqTable failed"); ip += mlhSize; } } return ip-istart; } typedef struct { size_t litLength; size_t matchLength; size_t offset; } seq_t; typedef struct { size_t state; const ZSTD_seqSymbol* table; } ZSTD_fseState; typedef struct { BIT_DStream_t DStream; ZSTD_fseState stateLL; ZSTD_fseState stateOffb; ZSTD_fseState stateML; size_t prevOffset[ZSTD_REP_NUM]; } seqState_t; /*! ZSTD_overlapCopy8() : * Copies 8 bytes from ip to op and updates op and ip where ip <= op. * If the offset is < 8 then the offset is spread to at least 8 bytes. * * Precondition: *ip <= *op * Postcondition: *op - *op >= 8 */ HINT_INLINE void ZSTD_overlapCopy8(BYTE** op, BYTE const** ip, size_t offset) { assert(*ip <= *op); if (offset < 8) { /* close range match, overlap */ static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; /* added */ static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* subtracted */ int const sub2 = dec64table[offset]; (*op)[0] = (*ip)[0]; (*op)[1] = (*ip)[1]; (*op)[2] = (*ip)[2]; (*op)[3] = (*ip)[3]; *ip += dec32table[offset]; ZSTD_copy4(*op+4, *ip); *ip -= sub2; } else { ZSTD_copy8(*op, *ip); } *ip += 8; *op += 8; assert(*op - *ip >= 8); } /*! ZSTD_safecopy() : * Specialized version of memcpy() that is allowed to READ up to WILDCOPY_OVERLENGTH past the input buffer * and write up to 16 bytes past oend_w (op >= oend_w is allowed). * This function is only called in the uncommon case where the sequence is near the end of the block. It * should be fast for a single long sequence, but can be slow for several short sequences. * * @param ovtype controls the overlap detection * - ZSTD_no_overlap: The source and destination are guaranteed to be at least WILDCOPY_VECLEN bytes apart. * - ZSTD_overlap_src_before_dst: The src and dst may overlap and may be any distance apart. * The src buffer must be before the dst buffer. */ static void ZSTD_safecopy(BYTE* op, const BYTE* const oend_w, BYTE const* ip, ptrdiff_t length, ZSTD_overlap_e ovtype) { ptrdiff_t const diff = op - ip; BYTE* const oend = op + length; assert((ovtype == ZSTD_no_overlap && (diff <= -8 || diff >= 8 || op >= oend_w)) || (ovtype == ZSTD_overlap_src_before_dst && diff >= 0)); if (length < 8) { /* Handle short lengths. */ while (op < oend) *op++ = *ip++; return; } if (ovtype == ZSTD_overlap_src_before_dst) { /* Copy 8 bytes and ensure the offset >= 8 when there can be overlap. */ assert(length >= 8); ZSTD_overlapCopy8(&op, &ip, diff); length -= 8; assert(op - ip >= 8); assert(op <= oend); } if (oend <= oend_w) { /* No risk of overwrite. */ ZSTD_wildcopy(op, ip, length, ovtype); return; } if (op <= oend_w) { /* Wildcopy until we get close to the end. */ assert(oend > oend_w); ZSTD_wildcopy(op, ip, oend_w - op, ovtype); ip += oend_w - op; op += oend_w - op; } /* Handle the leftovers. */ while (op < oend) *op++ = *ip++; } /* ZSTD_safecopyDstBeforeSrc(): * This version allows overlap with dst before src, or handles the non-overlap case with dst after src * Kept separate from more common ZSTD_safecopy case to avoid performance impact to the safecopy common case */ static void ZSTD_safecopyDstBeforeSrc(BYTE* op, BYTE const* ip, ptrdiff_t length) { ptrdiff_t const diff = op - ip; BYTE* const oend = op + length; if (length < 8 || diff > -8) { /* Handle short lengths, close overlaps, and dst not before src. */ while (op < oend) *op++ = *ip++; return; } if (op <= oend - WILDCOPY_OVERLENGTH && diff < -WILDCOPY_VECLEN) { ZSTD_wildcopy(op, ip, oend - WILDCOPY_OVERLENGTH - op, ZSTD_no_overlap); ip += oend - WILDCOPY_OVERLENGTH - op; op += oend - WILDCOPY_OVERLENGTH - op; } /* Handle the leftovers. */ while (op < oend) *op++ = *ip++; } /* ZSTD_execSequenceEnd(): * This version handles cases that are near the end of the output buffer. It requires * more careful checks to make sure there is no overflow. By separating out these hard * and unlikely cases, we can speed up the common cases. * * NOTE: This function needs to be fast for a single long sequence, but doesn't need * to be optimized for many small sequences, since those fall into ZSTD_execSequence(). */ FORCE_NOINLINE size_t ZSTD_execSequenceEnd(BYTE* op, BYTE* const oend, seq_t sequence, const BYTE** litPtr, const BYTE* const litLimit, const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd) { BYTE* const oLitEnd = op + sequence.litLength; size_t const sequenceLength = sequence.litLength + sequence.matchLength; const BYTE* const iLitEnd = *litPtr + sequence.litLength; const BYTE* match = oLitEnd - sequence.offset; BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH; /* bounds checks : careful of address space overflow in 32-bit mode */ RETURN_ERROR_IF(sequenceLength > (size_t)(oend - op), dstSize_tooSmall, "last match must fit within dstBuffer"); RETURN_ERROR_IF(sequence.litLength > (size_t)(litLimit - *litPtr), corruption_detected, "try to read beyond literal buffer"); assert(op < op + sequenceLength); assert(oLitEnd < op + sequenceLength); /* copy literals */ ZSTD_safecopy(op, oend_w, *litPtr, sequence.litLength, ZSTD_no_overlap); op = oLitEnd; *litPtr = iLitEnd; /* copy Match */ if (sequence.offset > (size_t)(oLitEnd - prefixStart)) { /* offset beyond prefix */ RETURN_ERROR_IF(sequence.offset > (size_t)(oLitEnd - virtualStart), corruption_detected, ""); match = dictEnd - (prefixStart - match); if (match + sequence.matchLength <= dictEnd) { ZSTD_memmove(oLitEnd, match, sequence.matchLength); return sequenceLength; } /* span extDict & currentPrefixSegment */ { size_t const length1 = dictEnd - match; ZSTD_memmove(oLitEnd, match, length1); op = oLitEnd + length1; sequence.matchLength -= length1; match = prefixStart; } } ZSTD_safecopy(op, oend_w, match, sequence.matchLength, ZSTD_overlap_src_before_dst); return sequenceLength; } /* ZSTD_execSequenceEndSplitLitBuffer(): * This version is intended to be used during instances where the litBuffer is still split. It is kept separate to avoid performance impact for the good case. */ FORCE_NOINLINE size_t ZSTD_execSequenceEndSplitLitBuffer(BYTE* op, BYTE* const oend, const BYTE* const oend_w, seq_t sequence, const BYTE** litPtr, const BYTE* const litLimit, const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd) { BYTE* const oLitEnd = op + sequence.litLength; size_t const sequenceLength = sequence.litLength + sequence.matchLength; const BYTE* const iLitEnd = *litPtr + sequence.litLength; const BYTE* match = oLitEnd - sequence.offset; /* bounds checks : careful of address space overflow in 32-bit mode */ RETURN_ERROR_IF(sequenceLength > (size_t)(oend - op), dstSize_tooSmall, "last match must fit within dstBuffer"); RETURN_ERROR_IF(sequence.litLength > (size_t)(litLimit - *litPtr), corruption_detected, "try to read beyond literal buffer"); assert(op < op + sequenceLength); assert(oLitEnd < op + sequenceLength); /* copy literals */ RETURN_ERROR_IF(op > *litPtr && op < *litPtr + sequence.litLength, dstSize_tooSmall, "output should not catch up to and overwrite literal buffer"); ZSTD_safecopyDstBeforeSrc(op, *litPtr, sequence.litLength); op = oLitEnd; *litPtr = iLitEnd; /* copy Match */ if (sequence.offset > (size_t)(oLitEnd - prefixStart)) { /* offset beyond prefix */ RETURN_ERROR_IF(sequence.offset > (size_t)(oLitEnd - virtualStart), corruption_detected, ""); match = dictEnd - (prefixStart - match); if (match + sequence.matchLength <= dictEnd) { ZSTD_memmove(oLitEnd, match, sequence.matchLength); return sequenceLength; } /* span extDict & currentPrefixSegment */ { size_t const length1 = dictEnd - match; ZSTD_memmove(oLitEnd, match, length1); op = oLitEnd + length1; sequence.matchLength -= length1; match = prefixStart; } } ZSTD_safecopy(op, oend_w, match, sequence.matchLength, ZSTD_overlap_src_before_dst); return sequenceLength; } HINT_INLINE size_t ZSTD_execSequence(BYTE* op, BYTE* const oend, seq_t sequence, const BYTE** litPtr, const BYTE* const litLimit, const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd) { BYTE* const oLitEnd = op + sequence.litLength; size_t const sequenceLength = sequence.litLength + sequence.matchLength; BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */ BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH; /* risk : address space underflow on oend=NULL */ const BYTE* const iLitEnd = *litPtr + sequence.litLength; const BYTE* match = oLitEnd - sequence.offset; assert(op != NULL /* Precondition */); assert(oend_w < oend /* No underflow */); #if defined(__aarch64__) /* prefetch sequence starting from match that will be used for copy later */ PREFETCH_L1(match); #endif /* Handle edge cases in a slow path: * - Read beyond end of literals * - Match end is within WILDCOPY_OVERLIMIT of oend * - 32-bit mode and the match length overflows */ if (UNLIKELY( iLitEnd > litLimit || oMatchEnd > oend_w || (MEM_32bits() && (size_t)(oend - op) < sequenceLength + WILDCOPY_OVERLENGTH))) return ZSTD_execSequenceEnd(op, oend, sequence, litPtr, litLimit, prefixStart, virtualStart, dictEnd); /* Assumptions (everything else goes into ZSTD_execSequenceEnd()) */ assert(op <= oLitEnd /* No overflow */); assert(oLitEnd < oMatchEnd /* Non-zero match & no overflow */); assert(oMatchEnd <= oend /* No underflow */); assert(iLitEnd <= litLimit /* Literal length is in bounds */); assert(oLitEnd <= oend_w /* Can wildcopy literals */); assert(oMatchEnd <= oend_w /* Can wildcopy matches */); /* Copy Literals: * Split out litLength <= 16 since it is nearly always true. +1.6% on gcc-9. * We likely don't need the full 32-byte wildcopy. */ assert(WILDCOPY_OVERLENGTH >= 16); ZSTD_copy16(op, (*litPtr)); if (UNLIKELY(sequence.litLength > 16)) { ZSTD_wildcopy(op + 16, (*litPtr) + 16, sequence.litLength - 16, ZSTD_no_overlap); } op = oLitEnd; *litPtr = iLitEnd; /* update for next sequence */ /* Copy Match */ if (sequence.offset > (size_t)(oLitEnd - prefixStart)) { /* offset beyond prefix -> go into extDict */ RETURN_ERROR_IF(UNLIKELY(sequence.offset > (size_t)(oLitEnd - virtualStart)), corruption_detected, ""); match = dictEnd + (match - prefixStart); if (match + sequence.matchLength <= dictEnd) { ZSTD_memmove(oLitEnd, match, sequence.matchLength); return sequenceLength; } /* span extDict & currentPrefixSegment */ { size_t const length1 = dictEnd - match; ZSTD_memmove(oLitEnd, match, length1); op = oLitEnd + length1; sequence.matchLength -= length1; match = prefixStart; } } /* Match within prefix of 1 or more bytes */ assert(op <= oMatchEnd); assert(oMatchEnd <= oend_w); assert(match >= prefixStart); assert(sequence.matchLength >= 1); /* Nearly all offsets are >= WILDCOPY_VECLEN bytes, which means we can use wildcopy * without overlap checking. */ if (LIKELY(sequence.offset >= WILDCOPY_VECLEN)) { /* We bet on a full wildcopy for matches, since we expect matches to be * longer than literals (in general). In silesia, ~10% of matches are longer * than 16 bytes. */ ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength, ZSTD_no_overlap); return sequenceLength; } assert(sequence.offset < WILDCOPY_VECLEN); /* Copy 8 bytes and spread the offset to be >= 8. */ ZSTD_overlapCopy8(&op, &match, sequence.offset); /* If the match length is > 8 bytes, then continue with the wildcopy. */ if (sequence.matchLength > 8) { assert(op < oMatchEnd); ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength - 8, ZSTD_overlap_src_before_dst); } return sequenceLength; } HINT_INLINE size_t ZSTD_execSequenceSplitLitBuffer(BYTE* op, BYTE* const oend, const BYTE* const oend_w, seq_t sequence, const BYTE** litPtr, const BYTE* const litLimit, const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd) { BYTE* const oLitEnd = op + sequence.litLength; size_t const sequenceLength = sequence.litLength + sequence.matchLength; BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */ const BYTE* const iLitEnd = *litPtr + sequence.litLength; const BYTE* match = oLitEnd - sequence.offset; assert(op != NULL /* Precondition */); assert(oend_w < oend /* No underflow */); /* Handle edge cases in a slow path: * - Read beyond end of literals * - Match end is within WILDCOPY_OVERLIMIT of oend * - 32-bit mode and the match length overflows */ if (UNLIKELY( iLitEnd > litLimit || oMatchEnd > oend_w || (MEM_32bits() && (size_t)(oend - op) < sequenceLength + WILDCOPY_OVERLENGTH))) return ZSTD_execSequenceEndSplitLitBuffer(op, oend, oend_w, sequence, litPtr, litLimit, prefixStart, virtualStart, dictEnd); /* Assumptions (everything else goes into ZSTD_execSequenceEnd()) */ assert(op <= oLitEnd /* No overflow */); assert(oLitEnd < oMatchEnd /* Non-zero match & no overflow */); assert(oMatchEnd <= oend /* No underflow */); assert(iLitEnd <= litLimit /* Literal length is in bounds */); assert(oLitEnd <= oend_w /* Can wildcopy literals */); assert(oMatchEnd <= oend_w /* Can wildcopy matches */); /* Copy Literals: * Split out litLength <= 16 since it is nearly always true. +1.6% on gcc-9. * We likely don't need the full 32-byte wildcopy. */ assert(WILDCOPY_OVERLENGTH >= 16); ZSTD_copy16(op, (*litPtr)); if (UNLIKELY(sequence.litLength > 16)) { ZSTD_wildcopy(op+16, (*litPtr)+16, sequence.litLength-16, ZSTD_no_overlap); } op = oLitEnd; *litPtr = iLitEnd; /* update for next sequence */ /* Copy Match */ if (sequence.offset > (size_t)(oLitEnd - prefixStart)) { /* offset beyond prefix -> go into extDict */ RETURN_ERROR_IF(UNLIKELY(sequence.offset > (size_t)(oLitEnd - virtualStart)), corruption_detected, ""); match = dictEnd + (match - prefixStart); if (match + sequence.matchLength <= dictEnd) { ZSTD_memmove(oLitEnd, match, sequence.matchLength); return sequenceLength; } /* span extDict & currentPrefixSegment */ { size_t const length1 = dictEnd - match; ZSTD_memmove(oLitEnd, match, length1); op = oLitEnd + length1; sequence.matchLength -= length1; match = prefixStart; } } /* Match within prefix of 1 or more bytes */ assert(op <= oMatchEnd); assert(oMatchEnd <= oend_w); assert(match >= prefixStart); assert(sequence.matchLength >= 1); /* Nearly all offsets are >= WILDCOPY_VECLEN bytes, which means we can use wildcopy * without overlap checking. */ if (LIKELY(sequence.offset >= WILDCOPY_VECLEN)) { /* We bet on a full wildcopy for matches, since we expect matches to be * longer than literals (in general). In silesia, ~10% of matches are longer * than 16 bytes. */ ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength, ZSTD_no_overlap); return sequenceLength; } assert(sequence.offset < WILDCOPY_VECLEN); /* Copy 8 bytes and spread the offset to be >= 8. */ ZSTD_overlapCopy8(&op, &match, sequence.offset); /* If the match length is > 8 bytes, then continue with the wildcopy. */ if (sequence.matchLength > 8) { assert(op < oMatchEnd); ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8, ZSTD_overlap_src_before_dst); } return sequenceLength; } static void ZSTD_initFseState(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, const ZSTD_seqSymbol* dt) { const void* ptr = dt; const ZSTD_seqSymbol_header* const DTableH = (const ZSTD_seqSymbol_header*)ptr; DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog); DEBUGLOG(6, "ZSTD_initFseState : val=%u using %u bits", (U32)DStatePtr->state, DTableH->tableLog); BIT_reloadDStream(bitD); DStatePtr->table = dt + 1; } FORCE_INLINE_TEMPLATE void ZSTD_updateFseStateWithDInfo(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, U16 nextState, U32 nbBits) { size_t const lowBits = BIT_readBits(bitD, nbBits); DStatePtr->state = nextState + lowBits; } /* We need to add at most (ZSTD_WINDOWLOG_MAX_32 - 1) bits to read the maximum * offset bits. But we can only read at most STREAM_ACCUMULATOR_MIN_32 * bits before reloading. This value is the maximum number of bytes we read * after reloading when we are decoding long offsets. */ #define LONG_OFFSETS_MAX_EXTRA_BITS_32 \ (ZSTD_WINDOWLOG_MAX_32 > STREAM_ACCUMULATOR_MIN_32 \ ? ZSTD_WINDOWLOG_MAX_32 - STREAM_ACCUMULATOR_MIN_32 \ : 0) typedef enum { ZSTD_lo_isRegularOffset, ZSTD_lo_isLongOffset=1 } ZSTD_longOffset_e; FORCE_INLINE_TEMPLATE seq_t ZSTD_decodeSequence(seqState_t* seqState, const ZSTD_longOffset_e longOffsets) { seq_t seq; /* * ZSTD_seqSymbol is a structure with a total of 64 bits wide. So it can be * loaded in one operation and extracted its fields by simply shifting or * bit-extracting on aarch64. * GCC doesn't recognize this and generates more unnecessary ldr/ldrb/ldrh * operations that cause performance drop. This can be avoided by using this * ZSTD_memcpy hack. */ #if defined(__aarch64__) && (defined(__GNUC__) && !defined(__clang__)) ZSTD_seqSymbol llDInfoS, mlDInfoS, ofDInfoS; ZSTD_seqSymbol* const llDInfo = &llDInfoS; ZSTD_seqSymbol* const mlDInfo = &mlDInfoS; ZSTD_seqSymbol* const ofDInfo = &ofDInfoS; ZSTD_memcpy(llDInfo, seqState->stateLL.table + seqState->stateLL.state, sizeof(ZSTD_seqSymbol)); ZSTD_memcpy(mlDInfo, seqState->stateML.table + seqState->stateML.state, sizeof(ZSTD_seqSymbol)); ZSTD_memcpy(ofDInfo, seqState->stateOffb.table + seqState->stateOffb.state, sizeof(ZSTD_seqSymbol)); #else const ZSTD_seqSymbol* const llDInfo = seqState->stateLL.table + seqState->stateLL.state; const ZSTD_seqSymbol* const mlDInfo = seqState->stateML.table + seqState->stateML.state; const ZSTD_seqSymbol* const ofDInfo = seqState->stateOffb.table + seqState->stateOffb.state; #endif seq.matchLength = mlDInfo->baseValue; seq.litLength = llDInfo->baseValue; { U32 const ofBase = ofDInfo->baseValue; BYTE const llBits = llDInfo->nbAdditionalBits; BYTE const mlBits = mlDInfo->nbAdditionalBits; BYTE const ofBits = ofDInfo->nbAdditionalBits; BYTE const totalBits = llBits+mlBits+ofBits; U16 const llNext = llDInfo->nextState; U16 const mlNext = mlDInfo->nextState; U16 const ofNext = ofDInfo->nextState; U32 const llnbBits = llDInfo->nbBits; U32 const mlnbBits = mlDInfo->nbBits; U32 const ofnbBits = ofDInfo->nbBits; assert(llBits <= MaxLLBits); assert(mlBits <= MaxMLBits); assert(ofBits <= MaxOff); /* * As gcc has better branch and block analyzers, sometimes it is only * valuable to mark likeliness for clang, it gives around 3-4% of * performance. */ /* sequence */ { size_t offset; if (ofBits > 1) { ZSTD_STATIC_ASSERT(ZSTD_lo_isLongOffset == 1); ZSTD_STATIC_ASSERT(LONG_OFFSETS_MAX_EXTRA_BITS_32 == 5); ZSTD_STATIC_ASSERT(STREAM_ACCUMULATOR_MIN_32 > LONG_OFFSETS_MAX_EXTRA_BITS_32); ZSTD_STATIC_ASSERT(STREAM_ACCUMULATOR_MIN_32 - LONG_OFFSETS_MAX_EXTRA_BITS_32 >= MaxMLBits); if (MEM_32bits() && longOffsets && (ofBits >= STREAM_ACCUMULATOR_MIN_32)) { /* Always read extra bits, this keeps the logic simple, * avoids branches, and avoids accidentally reading 0 bits. */ U32 const extraBits = LONG_OFFSETS_MAX_EXTRA_BITS_32; offset = ofBase + (BIT_readBitsFast(&seqState->DStream, ofBits - extraBits) << extraBits); BIT_reloadDStream(&seqState->DStream); offset += BIT_readBitsFast(&seqState->DStream, extraBits); } else { offset = ofBase + BIT_readBitsFast(&seqState->DStream, ofBits/*>0*/); /* <= (ZSTD_WINDOWLOG_MAX-1) bits */ if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream); } seqState->prevOffset[2] = seqState->prevOffset[1]; seqState->prevOffset[1] = seqState->prevOffset[0]; seqState->prevOffset[0] = offset; } else { U32 const ll0 = (llDInfo->baseValue == 0); if (LIKELY((ofBits == 0))) { offset = seqState->prevOffset[ll0]; seqState->prevOffset[1] = seqState->prevOffset[!ll0]; seqState->prevOffset[0] = offset; } else { offset = ofBase + ll0 + BIT_readBitsFast(&seqState->DStream, 1); { size_t temp = (offset==3) ? seqState->prevOffset[0] - 1 : seqState->prevOffset[offset]; temp += !temp; /* 0 is not valid; input is corrupted; force offset to 1 */ if (offset != 1) seqState->prevOffset[2] = seqState->prevOffset[1]; seqState->prevOffset[1] = seqState->prevOffset[0]; seqState->prevOffset[0] = offset = temp; } } } seq.offset = offset; } if (mlBits > 0) seq.matchLength += BIT_readBitsFast(&seqState->DStream, mlBits/*>0*/); if (MEM_32bits() && (mlBits+llBits >= STREAM_ACCUMULATOR_MIN_32-LONG_OFFSETS_MAX_EXTRA_BITS_32)) BIT_reloadDStream(&seqState->DStream); if (MEM_64bits() && UNLIKELY(totalBits >= STREAM_ACCUMULATOR_MIN_64-(LLFSELog+MLFSELog+OffFSELog))) BIT_reloadDStream(&seqState->DStream); /* Ensure there are enough bits to read the rest of data in 64-bit mode. */ ZSTD_STATIC_ASSERT(16+LLFSELog+MLFSELog+OffFSELog < STREAM_ACCUMULATOR_MIN_64); if (llBits > 0) seq.litLength += BIT_readBitsFast(&seqState->DStream, llBits/*>0*/); if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream); DEBUGLOG(6, "seq: litL=%u, matchL=%u, offset=%u", (U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset); ZSTD_updateFseStateWithDInfo(&seqState->stateLL, &seqState->DStream, llNext, llnbBits); /* <= 9 bits */ ZSTD_updateFseStateWithDInfo(&seqState->stateML, &seqState->DStream, mlNext, mlnbBits); /* <= 9 bits */ if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream); /* <= 18 bits */ ZSTD_updateFseStateWithDInfo(&seqState->stateOffb, &seqState->DStream, ofNext, ofnbBits); /* <= 8 bits */ } return seq; } #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION MEM_STATIC int ZSTD_dictionaryIsActive(ZSTD_DCtx const* dctx, BYTE const* prefixStart, BYTE const* oLitEnd) { size_t const windowSize = dctx->fParams.windowSize; /* No dictionary used. */ if (dctx->dictContentEndForFuzzing == NULL) return 0; /* Dictionary is our prefix. */ if (prefixStart == dctx->dictContentBeginForFuzzing) return 1; /* Dictionary is not our ext-dict. */ if (dctx->dictEnd != dctx->dictContentEndForFuzzing) return 0; /* Dictionary is not within our window size. */ if ((size_t)(oLitEnd - prefixStart) >= windowSize) return 0; /* Dictionary is active. */ return 1; } MEM_STATIC void ZSTD_assertValidSequence( ZSTD_DCtx const* dctx, BYTE const* op, BYTE const* oend, seq_t const seq, BYTE const* prefixStart, BYTE const* virtualStart) { #if DEBUGLEVEL >= 1 size_t const windowSize = dctx->fParams.windowSize; size_t const sequenceSize = seq.litLength + seq.matchLength; BYTE const* const oLitEnd = op + seq.litLength; DEBUGLOG(6, "Checking sequence: litL=%u matchL=%u offset=%u", (U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset); assert(op <= oend); assert((size_t)(oend - op) >= sequenceSize); assert(sequenceSize <= ZSTD_BLOCKSIZE_MAX); if (ZSTD_dictionaryIsActive(dctx, prefixStart, oLitEnd)) { size_t const dictSize = (size_t)((char const*)dctx->dictContentEndForFuzzing - (char const*)dctx->dictContentBeginForFuzzing); /* Offset must be within the dictionary. */ assert(seq.offset <= (size_t)(oLitEnd - virtualStart)); assert(seq.offset <= windowSize + dictSize); } else { /* Offset must be within our window. */ assert(seq.offset <= windowSize); } #else (void)dctx, (void)op, (void)oend, (void)seq, (void)prefixStart, (void)virtualStart; #endif } #endif #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG FORCE_INLINE_TEMPLATE size_t DONT_VECTORIZE ZSTD_decompressSequences_bodySplitLitBuffer( ZSTD_DCtx* dctx, void* dst, size_t maxDstSize, const void* seqStart, size_t seqSize, int nbSeq, const ZSTD_longOffset_e isLongOffset, const int frame) { const BYTE* ip = (const BYTE*)seqStart; const BYTE* const iend = ip + seqSize; BYTE* const ostart = (BYTE*)dst; BYTE* const oend = ostart + maxDstSize; BYTE* op = ostart; const BYTE* litPtr = dctx->litPtr; const BYTE* litBufferEnd = dctx->litBufferEnd; const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart); const BYTE* const vBase = (const BYTE*) (dctx->virtualStart); const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd); DEBUGLOG(5, "ZSTD_decompressSequences_bodySplitLitBuffer"); (void)frame; /* Regen sequences */ if (nbSeq) { seqState_t seqState; dctx->fseEntropy = 1; { U32 i; for (i=0; ientropy.rep[i]; } RETURN_ERROR_IF( ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend-ip)), corruption_detected, ""); ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr); ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr); ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr); assert(dst != NULL); ZSTD_STATIC_ASSERT( BIT_DStream_unfinished < BIT_DStream_completed && BIT_DStream_endOfBuffer < BIT_DStream_completed && BIT_DStream_completed < BIT_DStream_overflow); /* decompress without overrunning litPtr begins */ { seq_t sequence = ZSTD_decodeSequence(&seqState, isLongOffset); /* Align the decompression loop to 32 + 16 bytes. * * zstd compiled with gcc-9 on an Intel i9-9900k shows 10% decompression * speed swings based on the alignment of the decompression loop. This * performance swing is caused by parts of the decompression loop falling * out of the DSB. The entire decompression loop should fit in the DSB, * when it can't we get much worse performance. You can measure if you've * hit the good case or the bad case with this perf command for some * compressed file test.zst: * * perf stat -e cycles -e instructions -e idq.all_dsb_cycles_any_uops \ * -e idq.all_mite_cycles_any_uops -- ./zstd -tq test.zst * * If you see most cycles served out of the MITE you've hit the bad case. * If you see most cycles served out of the DSB you've hit the good case. * If it is pretty even then you may be in an okay case. * * This issue has been reproduced on the following CPUs: * - Kabylake: Macbook Pro (15-inch, 2019) 2.4 GHz Intel Core i9 * Use Instruments->Counters to get DSB/MITE cycles. * I never got performance swings, but I was able to * go from the good case of mostly DSB to half of the * cycles served from MITE. * - Coffeelake: Intel i9-9900k * - Coffeelake: Intel i7-9700k * * I haven't been able to reproduce the instability or DSB misses on any * of the following CPUS: * - Haswell * - Broadwell: Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GH * - Skylake * * Alignment is done for each of the three major decompression loops: * - ZSTD_decompressSequences_bodySplitLitBuffer - presplit section of the literal buffer * - ZSTD_decompressSequences_bodySplitLitBuffer - postsplit section of the literal buffer * - ZSTD_decompressSequences_body * Alignment choices are made to minimize large swings on bad cases and influence on performance * from changes external to this code, rather than to overoptimize on the current commit. * * If you are seeing performance stability this script can help test. * It tests on 4 commits in zstd where I saw performance change. * * https://gist.github.com/terrelln/9889fc06a423fd5ca6e99351564473f4 */ #if defined(__GNUC__) && defined(__x86_64__) __asm__(".p2align 6"); # if __GNUC__ >= 7 /* good for gcc-7, gcc-9, and gcc-11 */ __asm__("nop"); __asm__(".p2align 5"); __asm__("nop"); __asm__(".p2align 4"); # if __GNUC__ == 8 || __GNUC__ == 10 /* good for gcc-8 and gcc-10 */ __asm__("nop"); __asm__(".p2align 3"); # endif # endif #endif /* Handle the initial state where litBuffer is currently split between dst and litExtraBuffer */ for (; litPtr + sequence.litLength <= dctx->litBufferEnd; ) { size_t const oneSeqSize = ZSTD_execSequenceSplitLitBuffer(op, oend, litPtr + sequence.litLength - WILDCOPY_OVERLENGTH, sequence, &litPtr, litBufferEnd, prefixStart, vBase, dictEnd); #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE) assert(!ZSTD_isError(oneSeqSize)); if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase); #endif if (UNLIKELY(ZSTD_isError(oneSeqSize))) return oneSeqSize; DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize); op += oneSeqSize; if (UNLIKELY(!--nbSeq)) break; BIT_reloadDStream(&(seqState.DStream)); sequence = ZSTD_decodeSequence(&seqState, isLongOffset); } /* If there are more sequences, they will need to read literals from litExtraBuffer; copy over the remainder from dst and update litPtr and litEnd */ if (nbSeq > 0) { const size_t leftoverLit = dctx->litBufferEnd - litPtr; if (leftoverLit) { RETURN_ERROR_IF(leftoverLit > (size_t)(oend - op), dstSize_tooSmall, "remaining lit must fit within dstBuffer"); ZSTD_safecopyDstBeforeSrc(op, litPtr, leftoverLit); sequence.litLength -= leftoverLit; op += leftoverLit; } litPtr = dctx->litExtraBuffer; litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE; dctx->litBufferLocation = ZSTD_not_in_dst; { size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litBufferEnd, prefixStart, vBase, dictEnd); #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE) assert(!ZSTD_isError(oneSeqSize)); if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase); #endif if (UNLIKELY(ZSTD_isError(oneSeqSize))) return oneSeqSize; DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize); op += oneSeqSize; if (--nbSeq) BIT_reloadDStream(&(seqState.DStream)); } } } if (nbSeq > 0) /* there is remaining lit from extra buffer */ { #if defined(__GNUC__) && defined(__x86_64__) __asm__(".p2align 6"); __asm__("nop"); # if __GNUC__ != 7 /* worse for gcc-7 better for gcc-8, gcc-9, and gcc-10 and clang */ __asm__(".p2align 4"); __asm__("nop"); __asm__(".p2align 3"); # elif __GNUC__ >= 11 __asm__(".p2align 3"); # else __asm__(".p2align 5"); __asm__("nop"); __asm__(".p2align 3"); # endif #endif for (; ; ) { seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset); size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litBufferEnd, prefixStart, vBase, dictEnd); #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE) assert(!ZSTD_isError(oneSeqSize)); if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase); #endif if (UNLIKELY(ZSTD_isError(oneSeqSize))) return oneSeqSize; DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize); op += oneSeqSize; if (UNLIKELY(!--nbSeq)) break; BIT_reloadDStream(&(seqState.DStream)); } } /* check if reached exact end */ DEBUGLOG(5, "ZSTD_decompressSequences_bodySplitLitBuffer: after decode loop, remaining nbSeq : %i", nbSeq); RETURN_ERROR_IF(nbSeq, corruption_detected, ""); RETURN_ERROR_IF(BIT_reloadDStream(&seqState.DStream) < BIT_DStream_completed, corruption_detected, ""); /* save reps for next block */ { U32 i; for (i=0; ientropy.rep[i] = (U32)(seqState.prevOffset[i]); } } /* last literal segment */ if (dctx->litBufferLocation == ZSTD_split) /* split hasn't been reached yet, first get dst then copy litExtraBuffer */ { size_t const lastLLSize = litBufferEnd - litPtr; RETURN_ERROR_IF(lastLLSize > (size_t)(oend - op), dstSize_tooSmall, ""); if (op != NULL) { ZSTD_memmove(op, litPtr, lastLLSize); op += lastLLSize; } litPtr = dctx->litExtraBuffer; litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE; dctx->litBufferLocation = ZSTD_not_in_dst; } { size_t const lastLLSize = litBufferEnd - litPtr; RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, ""); if (op != NULL) { ZSTD_memcpy(op, litPtr, lastLLSize); op += lastLLSize; } } return op-ostart; } FORCE_INLINE_TEMPLATE size_t DONT_VECTORIZE ZSTD_decompressSequences_body(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize, const void* seqStart, size_t seqSize, int nbSeq, const ZSTD_longOffset_e isLongOffset, const int frame) { const BYTE* ip = (const BYTE*)seqStart; const BYTE* const iend = ip + seqSize; BYTE* const ostart = (BYTE*)dst; BYTE* const oend = dctx->litBufferLocation == ZSTD_not_in_dst ? ostart + maxDstSize : dctx->litBuffer; BYTE* op = ostart; const BYTE* litPtr = dctx->litPtr; const BYTE* const litEnd = litPtr + dctx->litSize; const BYTE* const prefixStart = (const BYTE*)(dctx->prefixStart); const BYTE* const vBase = (const BYTE*)(dctx->virtualStart); const BYTE* const dictEnd = (const BYTE*)(dctx->dictEnd); DEBUGLOG(5, "ZSTD_decompressSequences_body: nbSeq = %d", nbSeq); (void)frame; /* Regen sequences */ if (nbSeq) { seqState_t seqState; dctx->fseEntropy = 1; { U32 i; for (i = 0; i < ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; } RETURN_ERROR_IF( ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend - ip)), corruption_detected, ""); ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr); ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr); ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr); assert(dst != NULL); ZSTD_STATIC_ASSERT( BIT_DStream_unfinished < BIT_DStream_completed && BIT_DStream_endOfBuffer < BIT_DStream_completed && BIT_DStream_completed < BIT_DStream_overflow); #if defined(__GNUC__) && defined(__x86_64__) __asm__(".p2align 6"); __asm__("nop"); # if __GNUC__ >= 7 __asm__(".p2align 5"); __asm__("nop"); __asm__(".p2align 3"); # else __asm__(".p2align 4"); __asm__("nop"); __asm__(".p2align 3"); # endif #endif for ( ; ; ) { seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset); size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litEnd, prefixStart, vBase, dictEnd); #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE) assert(!ZSTD_isError(oneSeqSize)); if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase); #endif if (UNLIKELY(ZSTD_isError(oneSeqSize))) return oneSeqSize; DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize); op += oneSeqSize; if (UNLIKELY(!--nbSeq)) break; BIT_reloadDStream(&(seqState.DStream)); } /* check if reached exact end */ DEBUGLOG(5, "ZSTD_decompressSequences_body: after decode loop, remaining nbSeq : %i", nbSeq); RETURN_ERROR_IF(nbSeq, corruption_detected, ""); RETURN_ERROR_IF(BIT_reloadDStream(&seqState.DStream) < BIT_DStream_completed, corruption_detected, ""); /* save reps for next block */ { U32 i; for (i=0; ientropy.rep[i] = (U32)(seqState.prevOffset[i]); } } /* last literal segment */ { size_t const lastLLSize = litEnd - litPtr; RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, ""); if (op != NULL) { ZSTD_memcpy(op, litPtr, lastLLSize); op += lastLLSize; } } return op-ostart; } static size_t ZSTD_decompressSequences_default(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize, const void* seqStart, size_t seqSize, int nbSeq, const ZSTD_longOffset_e isLongOffset, const int frame) { return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame); } static size_t ZSTD_decompressSequencesSplitLitBuffer_default(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize, const void* seqStart, size_t seqSize, int nbSeq, const ZSTD_longOffset_e isLongOffset, const int frame) { return ZSTD_decompressSequences_bodySplitLitBuffer(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame); } #endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */ #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT FORCE_INLINE_TEMPLATE size_t ZSTD_prefetchMatch(size_t prefetchPos, seq_t const sequence, const BYTE* const prefixStart, const BYTE* const dictEnd) { prefetchPos += sequence.litLength; { const BYTE* const matchBase = (sequence.offset > prefetchPos) ? dictEnd : prefixStart; const BYTE* const match = matchBase + prefetchPos - sequence.offset; /* note : this operation can overflow when seq.offset is really too large, which can only happen when input is corrupted. * No consequence though : memory address is only used for prefetching, not for dereferencing */ PREFETCH_L1(match); PREFETCH_L1(match+CACHELINE_SIZE); /* note : it's safe to invoke PREFETCH() on any memory address, including invalid ones */ } return prefetchPos + sequence.matchLength; } /* This decoding function employs prefetching * to reduce latency impact of cache misses. * It's generally employed when block contains a significant portion of long-distance matches * or when coupled with a "cold" dictionary */ FORCE_INLINE_TEMPLATE size_t ZSTD_decompressSequencesLong_body( ZSTD_DCtx* dctx, void* dst, size_t maxDstSize, const void* seqStart, size_t seqSize, int nbSeq, const ZSTD_longOffset_e isLongOffset, const int frame) { const BYTE* ip = (const BYTE*)seqStart; const BYTE* const iend = ip + seqSize; BYTE* const ostart = (BYTE*)dst; BYTE* const oend = dctx->litBufferLocation == ZSTD_in_dst ? dctx->litBuffer : ostart + maxDstSize; BYTE* op = ostart; const BYTE* litPtr = dctx->litPtr; const BYTE* litBufferEnd = dctx->litBufferEnd; const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart); const BYTE* const dictStart = (const BYTE*) (dctx->virtualStart); const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd); (void)frame; /* Regen sequences */ if (nbSeq) { #define STORED_SEQS 8 #define STORED_SEQS_MASK (STORED_SEQS-1) #define ADVANCED_SEQS STORED_SEQS seq_t sequences[STORED_SEQS]; int const seqAdvance = MIN(nbSeq, ADVANCED_SEQS); seqState_t seqState; int seqNb; size_t prefetchPos = (size_t)(op-prefixStart); /* track position relative to prefixStart */ dctx->fseEntropy = 1; { int i; for (i=0; ientropy.rep[i]; } assert(dst != NULL); assert(iend >= ip); RETURN_ERROR_IF( ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend-ip)), corruption_detected, ""); ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr); ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr); ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr); /* prepare in advance */ for (seqNb=0; (BIT_reloadDStream(&seqState.DStream) <= BIT_DStream_completed) && (seqNblitBufferLocation == ZSTD_split && litPtr + sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK].litLength > dctx->litBufferEnd) { /* lit buffer is reaching split point, empty out the first buffer and transition to litExtraBuffer */ const size_t leftoverLit = dctx->litBufferEnd - litPtr; if (leftoverLit) { RETURN_ERROR_IF(leftoverLit > (size_t)(oend - op), dstSize_tooSmall, "remaining lit must fit within dstBuffer"); ZSTD_safecopyDstBeforeSrc(op, litPtr, leftoverLit); sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK].litLength -= leftoverLit; op += leftoverLit; } litPtr = dctx->litExtraBuffer; litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE; dctx->litBufferLocation = ZSTD_not_in_dst; oneSeqSize = ZSTD_execSequence(op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd); #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE) assert(!ZSTD_isError(oneSeqSize)); if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], prefixStart, dictStart); #endif if (ZSTD_isError(oneSeqSize)) return oneSeqSize; prefetchPos = ZSTD_prefetchMatch(prefetchPos, sequence, prefixStart, dictEnd); sequences[seqNb & STORED_SEQS_MASK] = sequence; op += oneSeqSize; } else { /* lit buffer is either wholly contained in first or second split, or not split at all*/ oneSeqSize = dctx->litBufferLocation == ZSTD_split ? ZSTD_execSequenceSplitLitBuffer(op, oend, litPtr + sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK].litLength - WILDCOPY_OVERLENGTH, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd) : ZSTD_execSequence(op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd); #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE) assert(!ZSTD_isError(oneSeqSize)); if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], prefixStart, dictStart); #endif if (ZSTD_isError(oneSeqSize)) return oneSeqSize; prefetchPos = ZSTD_prefetchMatch(prefetchPos, sequence, prefixStart, dictEnd); sequences[seqNb & STORED_SEQS_MASK] = sequence; op += oneSeqSize; } } RETURN_ERROR_IF(seqNblitBufferLocation == ZSTD_split && litPtr + sequence->litLength > dctx->litBufferEnd) { const size_t leftoverLit = dctx->litBufferEnd - litPtr; if (leftoverLit) { RETURN_ERROR_IF(leftoverLit > (size_t)(oend - op), dstSize_tooSmall, "remaining lit must fit within dstBuffer"); ZSTD_safecopyDstBeforeSrc(op, litPtr, leftoverLit); sequence->litLength -= leftoverLit; op += leftoverLit; } litPtr = dctx->litExtraBuffer; litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE; dctx->litBufferLocation = ZSTD_not_in_dst; { size_t const oneSeqSize = ZSTD_execSequence(op, oend, *sequence, &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd); #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE) assert(!ZSTD_isError(oneSeqSize)); if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequences[seqNb&STORED_SEQS_MASK], prefixStart, dictStart); #endif if (ZSTD_isError(oneSeqSize)) return oneSeqSize; op += oneSeqSize; } } else { size_t const oneSeqSize = dctx->litBufferLocation == ZSTD_split ? ZSTD_execSequenceSplitLitBuffer(op, oend, litPtr + sequence->litLength - WILDCOPY_OVERLENGTH, *sequence, &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd) : ZSTD_execSequence(op, oend, *sequence, &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd); #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE) assert(!ZSTD_isError(oneSeqSize)); if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequences[seqNb&STORED_SEQS_MASK], prefixStart, dictStart); #endif if (ZSTD_isError(oneSeqSize)) return oneSeqSize; op += oneSeqSize; } } /* save reps for next block */ { U32 i; for (i=0; ientropy.rep[i] = (U32)(seqState.prevOffset[i]); } } /* last literal segment */ if (dctx->litBufferLocation == ZSTD_split) /* first deplete literal buffer in dst, then copy litExtraBuffer */ { size_t const lastLLSize = litBufferEnd - litPtr; RETURN_ERROR_IF(lastLLSize > (size_t)(oend - op), dstSize_tooSmall, ""); if (op != NULL) { ZSTD_memmove(op, litPtr, lastLLSize); op += lastLLSize; } litPtr = dctx->litExtraBuffer; litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE; } { size_t const lastLLSize = litBufferEnd - litPtr; RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, ""); if (op != NULL) { ZSTD_memmove(op, litPtr, lastLLSize); op += lastLLSize; } } return op-ostart; } static size_t ZSTD_decompressSequencesLong_default(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize, const void* seqStart, size_t seqSize, int nbSeq, const ZSTD_longOffset_e isLongOffset, const int frame) { return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame); } #endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */ #if DYNAMIC_BMI2 #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG static BMI2_TARGET_ATTRIBUTE size_t DONT_VECTORIZE ZSTD_decompressSequences_bmi2(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize, const void* seqStart, size_t seqSize, int nbSeq, const ZSTD_longOffset_e isLongOffset, const int frame) { return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame); } static BMI2_TARGET_ATTRIBUTE size_t DONT_VECTORIZE ZSTD_decompressSequencesSplitLitBuffer_bmi2(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize, const void* seqStart, size_t seqSize, int nbSeq, const ZSTD_longOffset_e isLongOffset, const int frame) { return ZSTD_decompressSequences_bodySplitLitBuffer(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame); } #endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */ #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT static BMI2_TARGET_ATTRIBUTE size_t ZSTD_decompressSequencesLong_bmi2(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize, const void* seqStart, size_t seqSize, int nbSeq, const ZSTD_longOffset_e isLongOffset, const int frame) { return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame); } #endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */ #endif /* DYNAMIC_BMI2 */ typedef size_t (*ZSTD_decompressSequences_t)( ZSTD_DCtx* dctx, void* dst, size_t maxDstSize, const void* seqStart, size_t seqSize, int nbSeq, const ZSTD_longOffset_e isLongOffset, const int frame); #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG static size_t ZSTD_decompressSequences(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize, const void* seqStart, size_t seqSize, int nbSeq, const ZSTD_longOffset_e isLongOffset, const int frame) { DEBUGLOG(5, "ZSTD_decompressSequences"); #if DYNAMIC_BMI2 if (ZSTD_DCtx_get_bmi2(dctx)) { return ZSTD_decompressSequences_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame); } #endif return ZSTD_decompressSequences_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame); } static size_t ZSTD_decompressSequencesSplitLitBuffer(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize, const void* seqStart, size_t seqSize, int nbSeq, const ZSTD_longOffset_e isLongOffset, const int frame) { DEBUGLOG(5, "ZSTD_decompressSequencesSplitLitBuffer"); #if DYNAMIC_BMI2 if (ZSTD_DCtx_get_bmi2(dctx)) { return ZSTD_decompressSequencesSplitLitBuffer_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame); } #endif return ZSTD_decompressSequencesSplitLitBuffer_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame); } #endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */ #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT /* ZSTD_decompressSequencesLong() : * decompression function triggered when a minimum share of offsets is considered "long", * aka out of cache. * note : "long" definition seems overloaded here, sometimes meaning "wider than bitstream register", and sometimes meaning "farther than memory cache distance". * This function will try to mitigate main memory latency through the use of prefetching */ static size_t ZSTD_decompressSequencesLong(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize, const void* seqStart, size_t seqSize, int nbSeq, const ZSTD_longOffset_e isLongOffset, const int frame) { DEBUGLOG(5, "ZSTD_decompressSequencesLong"); #if DYNAMIC_BMI2 if (ZSTD_DCtx_get_bmi2(dctx)) { return ZSTD_decompressSequencesLong_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame); } #endif return ZSTD_decompressSequencesLong_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame); } #endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */ /** * @returns The total size of the history referenceable by zstd, including * both the prefix and the extDict. At @p op any offset larger than this * is invalid. */ static size_t ZSTD_totalHistorySize(BYTE* op, BYTE const* virtualStart) { return (size_t)(op - virtualStart); } typedef struct { unsigned longOffsetShare; unsigned maxNbAdditionalBits; } ZSTD_OffsetInfo; /* ZSTD_getOffsetInfo() : * condition : offTable must be valid * @return : "share" of long offsets (arbitrarily defined as > (1<<23)) * compared to maximum possible of (1< 22) info.longOffsetShare += 1; } assert(tableLog <= OffFSELog); info.longOffsetShare <<= (OffFSELog - tableLog); /* scale to OffFSELog */ } return info; } /** * @returns The maximum offset we can decode in one read of our bitstream, without * reloading more bits in the middle of the offset bits read. Any offsets larger * than this must use the long offset decoder. */ static size_t ZSTD_maxShortOffset(void) { if (MEM_64bits()) { /* We can decode any offset without reloading bits. * This might change if the max window size grows. */ ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX <= 31); return (size_t)-1; } else { /* The maximum offBase is (1 << (STREAM_ACCUMULATOR_MIN + 1)) - 1. * This offBase would require STREAM_ACCUMULATOR_MIN extra bits. * Then we have to subtract ZSTD_REP_NUM to get the maximum possible offset. */ size_t const maxOffbase = ((size_t)1 << (STREAM_ACCUMULATOR_MIN + 1)) - 1; size_t const maxOffset = maxOffbase - ZSTD_REP_NUM; assert(ZSTD_highbit32((U32)maxOffbase) == STREAM_ACCUMULATOR_MIN); return maxOffset; } } size_t ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const int frame, const streaming_operation streaming) { /* blockType == blockCompressed */ const BYTE* ip = (const BYTE*)src; DEBUGLOG(5, "ZSTD_decompressBlock_internal (size : %u)", (U32)srcSize); /* Note : the wording of the specification * allows compressed block to be sized exactly ZSTD_BLOCKSIZE_MAX. * This generally does not happen, as it makes little sense, * since an uncompressed block would feature same size and have no decompression cost. * Also, note that decoder from reference libzstd before < v1.5.4 * would consider this edge case as an error. * As a consequence, avoid generating compressed blocks of size ZSTD_BLOCKSIZE_MAX * for broader compatibility with the deployed ecosystem of zstd decoders */ RETURN_ERROR_IF(srcSize > ZSTD_BLOCKSIZE_MAX, srcSize_wrong, ""); /* Decode literals section */ { size_t const litCSize = ZSTD_decodeLiteralsBlock(dctx, src, srcSize, dst, dstCapacity, streaming); DEBUGLOG(5, "ZSTD_decodeLiteralsBlock : cSize=%u, nbLiterals=%zu", (U32)litCSize, dctx->litSize); if (ZSTD_isError(litCSize)) return litCSize; ip += litCSize; srcSize -= litCSize; } /* Build Decoding Tables */ { /* Compute the maximum block size, which must also work when !frame and fParams are unset. * Additionally, take the min with dstCapacity to ensure that the totalHistorySize fits in a size_t. */ size_t const blockSizeMax = MIN(dstCapacity, (frame ? dctx->fParams.blockSizeMax : ZSTD_BLOCKSIZE_MAX)); size_t const totalHistorySize = ZSTD_totalHistorySize((BYTE*)dst + blockSizeMax, (BYTE const*)dctx->virtualStart); /* isLongOffset must be true if there are long offsets. * Offsets are long if they are larger than ZSTD_maxShortOffset(). * We don't expect that to be the case in 64-bit mode. * * We check here to see if our history is large enough to allow long offsets. * If it isn't, then we can't possible have (valid) long offsets. If the offset * is invalid, then it is okay to read it incorrectly. * * If isLongOffsets is true, then we will later check our decoding table to see * if it is even possible to generate long offsets. */ ZSTD_longOffset_e isLongOffset = (ZSTD_longOffset_e)(MEM_32bits() && (totalHistorySize > ZSTD_maxShortOffset())); /* These macros control at build-time which decompressor implementation * we use. If neither is defined, we do some inspection and dispatch at * runtime. */ #if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \ !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG) int usePrefetchDecoder = dctx->ddictIsCold; #else /* Set to 1 to avoid computing offset info if we don't need to. * Otherwise this value is ignored. */ int usePrefetchDecoder = 1; #endif int nbSeq; size_t const seqHSize = ZSTD_decodeSeqHeaders(dctx, &nbSeq, ip, srcSize); if (ZSTD_isError(seqHSize)) return seqHSize; ip += seqHSize; srcSize -= seqHSize; RETURN_ERROR_IF((dst == NULL || dstCapacity == 0) && nbSeq > 0, dstSize_tooSmall, "NULL not handled"); RETURN_ERROR_IF(MEM_64bits() && sizeof(size_t) == sizeof(void*) && (size_t)(-1) - (size_t)dst < (size_t)(1 << 20), dstSize_tooSmall, "invalid dst"); /* If we could potentially have long offsets, or we might want to use the prefetch decoder, * compute information about the share of long offsets, and the maximum nbAdditionalBits. * NOTE: could probably use a larger nbSeq limit */ if (isLongOffset || (!usePrefetchDecoder && (totalHistorySize > (1u << 24)) && (nbSeq > 8))) { ZSTD_OffsetInfo const info = ZSTD_getOffsetInfo(dctx->OFTptr, nbSeq); if (isLongOffset && info.maxNbAdditionalBits <= STREAM_ACCUMULATOR_MIN) { /* If isLongOffset, but the maximum number of additional bits that we see in our table is small * enough, then we know it is impossible to have too long an offset in this block, so we can * use the regular offset decoder. */ isLongOffset = ZSTD_lo_isRegularOffset; } if (!usePrefetchDecoder) { U32 const minShare = MEM_64bits() ? 7 : 20; /* heuristic values, correspond to 2.73% and 7.81% */ usePrefetchDecoder = (info.longOffsetShare >= minShare); } } dctx->ddictIsCold = 0; #if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \ !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG) if (usePrefetchDecoder) { #else (void)usePrefetchDecoder; { #endif #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT return ZSTD_decompressSequencesLong(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset, frame); #endif } #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG /* else */ if (dctx->litBufferLocation == ZSTD_split) return ZSTD_decompressSequencesSplitLitBuffer(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset, frame); else return ZSTD_decompressSequences(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset, frame); #endif } } void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst, size_t dstSize) { if (dst != dctx->previousDstEnd && dstSize > 0) { /* not contiguous */ dctx->dictEnd = dctx->previousDstEnd; dctx->virtualStart = (const char*)dst - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->prefixStart)); dctx->prefixStart = dst; dctx->previousDstEnd = dst; } } size_t ZSTD_decompressBlock_deprecated(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) { size_t dSize; ZSTD_checkContinuity(dctx, dst, dstCapacity); dSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize, /* frame */ 0, not_streaming); dctx->previousDstEnd = (char*)dst + dSize; return dSize; } /* NOTE: Must just wrap ZSTD_decompressBlock_deprecated() */ size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) { return ZSTD_decompressBlock_deprecated(dctx, dst, dstCapacity, src, srcSize); } zstd-1.5.5.1/zstd/lib/decompress/zstd_decompress.c0000664000175000017500000030256514413353730022755 0ustar sergeysergey00000000000000/* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under both the BSD-style license (found in the * LICENSE file in the root directory of this source tree) and the GPLv2 (found * in the COPYING file in the root directory of this source tree). * You may select, at your option, one of the above-listed licenses. */ /* *************************************************************** * Tuning parameters *****************************************************************/ /*! * HEAPMODE : * Select how default decompression function ZSTD_decompress() allocates its context, * on stack (0), or into heap (1, default; requires malloc()). * Note that functions with explicit context such as ZSTD_decompressDCtx() are unaffected. */ #ifndef ZSTD_HEAPMODE # define ZSTD_HEAPMODE 1 #endif /*! * LEGACY_SUPPORT : * if set to 1+, ZSTD_decompress() can decode older formats (v0.1+) */ #ifndef ZSTD_LEGACY_SUPPORT # define ZSTD_LEGACY_SUPPORT 0 #endif /*! * MAXWINDOWSIZE_DEFAULT : * maximum window size accepted by DStream __by default__. * Frames requiring more memory will be rejected. * It's possible to set a different limit using ZSTD_DCtx_setMaxWindowSize(). */ #ifndef ZSTD_MAXWINDOWSIZE_DEFAULT # define ZSTD_MAXWINDOWSIZE_DEFAULT (((U32)1 << ZSTD_WINDOWLOG_LIMIT_DEFAULT) + 1) #endif /*! * NO_FORWARD_PROGRESS_MAX : * maximum allowed nb of calls to ZSTD_decompressStream() * without any forward progress * (defined as: no byte read from input, and no byte flushed to output) * before triggering an error. */ #ifndef ZSTD_NO_FORWARD_PROGRESS_MAX # define ZSTD_NO_FORWARD_PROGRESS_MAX 16 #endif /*-******************************************************* * Dependencies *********************************************************/ #include "../common/allocations.h" /* ZSTD_customMalloc, ZSTD_customCalloc, ZSTD_customFree */ #include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memmove, ZSTD_memset */ #include "../common/mem.h" /* low level memory routines */ #define FSE_STATIC_LINKING_ONLY #include "../common/fse.h" #include "../common/huf.h" #include "../common/xxhash.h" /* XXH64_reset, XXH64_update, XXH64_digest, XXH64 */ #include "../common/zstd_internal.h" /* blockProperties_t */ #include "zstd_decompress_internal.h" /* ZSTD_DCtx */ #include "zstd_ddict.h" /* ZSTD_DDictDictContent */ #include "zstd_decompress_block.h" /* ZSTD_decompressBlock_internal */ #include "../common/bits.h" /* ZSTD_highbit32 */ #if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1) # include "../legacy/zstd_legacy.h" #endif /************************************* * Multiple DDicts Hashset internals * *************************************/ #define DDICT_HASHSET_MAX_LOAD_FACTOR_COUNT_MULT 4 #define DDICT_HASHSET_MAX_LOAD_FACTOR_SIZE_MULT 3 /* These two constants represent SIZE_MULT/COUNT_MULT load factor without using a float. * Currently, that means a 0.75 load factor. * So, if count * COUNT_MULT / size * SIZE_MULT != 0, then we've exceeded * the load factor of the ddict hash set. */ #define DDICT_HASHSET_TABLE_BASE_SIZE 64 #define DDICT_HASHSET_RESIZE_FACTOR 2 /* Hash function to determine starting position of dict insertion within the table * Returns an index between [0, hashSet->ddictPtrTableSize] */ static size_t ZSTD_DDictHashSet_getIndex(const ZSTD_DDictHashSet* hashSet, U32 dictID) { const U64 hash = XXH64(&dictID, sizeof(U32), 0); /* DDict ptr table size is a multiple of 2, use size - 1 as mask to get index within [0, hashSet->ddictPtrTableSize) */ return hash & (hashSet->ddictPtrTableSize - 1); } /* Adds DDict to a hashset without resizing it. * If inserting a DDict with a dictID that already exists in the set, replaces the one in the set. * Returns 0 if successful, or a zstd error code if something went wrong. */ static size_t ZSTD_DDictHashSet_emplaceDDict(ZSTD_DDictHashSet* hashSet, const ZSTD_DDict* ddict) { const U32 dictID = ZSTD_getDictID_fromDDict(ddict); size_t idx = ZSTD_DDictHashSet_getIndex(hashSet, dictID); const size_t idxRangeMask = hashSet->ddictPtrTableSize - 1; RETURN_ERROR_IF(hashSet->ddictPtrCount == hashSet->ddictPtrTableSize, GENERIC, "Hash set is full!"); DEBUGLOG(4, "Hashed index: for dictID: %u is %zu", dictID, idx); while (hashSet->ddictPtrTable[idx] != NULL) { /* Replace existing ddict if inserting ddict with same dictID */ if (ZSTD_getDictID_fromDDict(hashSet->ddictPtrTable[idx]) == dictID) { DEBUGLOG(4, "DictID already exists, replacing rather than adding"); hashSet->ddictPtrTable[idx] = ddict; return 0; } idx &= idxRangeMask; idx++; } DEBUGLOG(4, "Final idx after probing for dictID %u is: %zu", dictID, idx); hashSet->ddictPtrTable[idx] = ddict; hashSet->ddictPtrCount++; return 0; } /* Expands hash table by factor of DDICT_HASHSET_RESIZE_FACTOR and * rehashes all values, allocates new table, frees old table. * Returns 0 on success, otherwise a zstd error code. */ static size_t ZSTD_DDictHashSet_expand(ZSTD_DDictHashSet* hashSet, ZSTD_customMem customMem) { size_t newTableSize = hashSet->ddictPtrTableSize * DDICT_HASHSET_RESIZE_FACTOR; const ZSTD_DDict** newTable = (const ZSTD_DDict**)ZSTD_customCalloc(sizeof(ZSTD_DDict*) * newTableSize, customMem); const ZSTD_DDict** oldTable = hashSet->ddictPtrTable; size_t oldTableSize = hashSet->ddictPtrTableSize; size_t i; DEBUGLOG(4, "Expanding DDict hash table! Old size: %zu new size: %zu", oldTableSize, newTableSize); RETURN_ERROR_IF(!newTable, memory_allocation, "Expanded hashset allocation failed!"); hashSet->ddictPtrTable = newTable; hashSet->ddictPtrTableSize = newTableSize; hashSet->ddictPtrCount = 0; for (i = 0; i < oldTableSize; ++i) { if (oldTable[i] != NULL) { FORWARD_IF_ERROR(ZSTD_DDictHashSet_emplaceDDict(hashSet, oldTable[i]), ""); } } ZSTD_customFree((void*)oldTable, customMem); DEBUGLOG(4, "Finished re-hash"); return 0; } /* Fetches a DDict with the given dictID * Returns the ZSTD_DDict* with the requested dictID. If it doesn't exist, then returns NULL. */ static const ZSTD_DDict* ZSTD_DDictHashSet_getDDict(ZSTD_DDictHashSet* hashSet, U32 dictID) { size_t idx = ZSTD_DDictHashSet_getIndex(hashSet, dictID); const size_t idxRangeMask = hashSet->ddictPtrTableSize - 1; DEBUGLOG(4, "Hashed index: for dictID: %u is %zu", dictID, idx); for (;;) { size_t currDictID = ZSTD_getDictID_fromDDict(hashSet->ddictPtrTable[idx]); if (currDictID == dictID || currDictID == 0) { /* currDictID == 0 implies a NULL ddict entry */ break; } else { idx &= idxRangeMask; /* Goes to start of table when we reach the end */ idx++; } } DEBUGLOG(4, "Final idx after probing for dictID %u is: %zu", dictID, idx); return hashSet->ddictPtrTable[idx]; } /* Allocates space for and returns a ddict hash set * The hash set's ZSTD_DDict* table has all values automatically set to NULL to begin with. * Returns NULL if allocation failed. */ static ZSTD_DDictHashSet* ZSTD_createDDictHashSet(ZSTD_customMem customMem) { ZSTD_DDictHashSet* ret = (ZSTD_DDictHashSet*)ZSTD_customMalloc(sizeof(ZSTD_DDictHashSet), customMem); DEBUGLOG(4, "Allocating new hash set"); if (!ret) return NULL; ret->ddictPtrTable = (const ZSTD_DDict**)ZSTD_customCalloc(DDICT_HASHSET_TABLE_BASE_SIZE * sizeof(ZSTD_DDict*), customMem); if (!ret->ddictPtrTable) { ZSTD_customFree(ret, customMem); return NULL; } ret->ddictPtrTableSize = DDICT_HASHSET_TABLE_BASE_SIZE; ret->ddictPtrCount = 0; return ret; } /* Frees the table of ZSTD_DDict* within a hashset, then frees the hashset itself. * Note: The ZSTD_DDict* within the table are NOT freed. */ static void ZSTD_freeDDictHashSet(ZSTD_DDictHashSet* hashSet, ZSTD_customMem customMem) { DEBUGLOG(4, "Freeing ddict hash set"); if (hashSet && hashSet->ddictPtrTable) { ZSTD_customFree((void*)hashSet->ddictPtrTable, customMem); } if (hashSet) { ZSTD_customFree(hashSet, customMem); } } /* Public function: Adds a DDict into the ZSTD_DDictHashSet, possibly triggering a resize of the hash set. * Returns 0 on success, or a ZSTD error. */ static size_t ZSTD_DDictHashSet_addDDict(ZSTD_DDictHashSet* hashSet, const ZSTD_DDict* ddict, ZSTD_customMem customMem) { DEBUGLOG(4, "Adding dict ID: %u to hashset with - Count: %zu Tablesize: %zu", ZSTD_getDictID_fromDDict(ddict), hashSet->ddictPtrCount, hashSet->ddictPtrTableSize); if (hashSet->ddictPtrCount * DDICT_HASHSET_MAX_LOAD_FACTOR_COUNT_MULT / hashSet->ddictPtrTableSize * DDICT_HASHSET_MAX_LOAD_FACTOR_SIZE_MULT != 0) { FORWARD_IF_ERROR(ZSTD_DDictHashSet_expand(hashSet, customMem), ""); } FORWARD_IF_ERROR(ZSTD_DDictHashSet_emplaceDDict(hashSet, ddict), ""); return 0; } /*-************************************************************* * Context management ***************************************************************/ size_t ZSTD_sizeof_DCtx (const ZSTD_DCtx* dctx) { if (dctx==NULL) return 0; /* support sizeof NULL */ return sizeof(*dctx) + ZSTD_sizeof_DDict(dctx->ddictLocal) + dctx->inBuffSize + dctx->outBuffSize; } size_t ZSTD_estimateDCtxSize(void) { return sizeof(ZSTD_DCtx); } static size_t ZSTD_startingInputLength(ZSTD_format_e format) { size_t const startingInputLength = ZSTD_FRAMEHEADERSIZE_PREFIX(format); /* only supports formats ZSTD_f_zstd1 and ZSTD_f_zstd1_magicless */ assert( (format == ZSTD_f_zstd1) || (format == ZSTD_f_zstd1_magicless) ); return startingInputLength; } static void ZSTD_DCtx_resetParameters(ZSTD_DCtx* dctx) { assert(dctx->streamStage == zdss_init); dctx->format = ZSTD_f_zstd1; dctx->maxWindowSize = ZSTD_MAXWINDOWSIZE_DEFAULT; dctx->outBufferMode = ZSTD_bm_buffered; dctx->forceIgnoreChecksum = ZSTD_d_validateChecksum; dctx->refMultipleDDicts = ZSTD_rmd_refSingleDDict; dctx->disableHufAsm = 0; } static void ZSTD_initDCtx_internal(ZSTD_DCtx* dctx) { dctx->staticSize = 0; dctx->ddict = NULL; dctx->ddictLocal = NULL; dctx->dictEnd = NULL; dctx->ddictIsCold = 0; dctx->dictUses = ZSTD_dont_use; dctx->inBuff = NULL; dctx->inBuffSize = 0; dctx->outBuffSize = 0; dctx->streamStage = zdss_init; #if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1) dctx->legacyContext = NULL; dctx->previousLegacyVersion = 0; #endif dctx->noForwardProgress = 0; dctx->oversizedDuration = 0; #if DYNAMIC_BMI2 dctx->bmi2 = ZSTD_cpuSupportsBmi2(); #endif dctx->ddictSet = NULL; ZSTD_DCtx_resetParameters(dctx); #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION dctx->dictContentEndForFuzzing = NULL; #endif } ZSTD_DCtx* ZSTD_initStaticDCtx(void *workspace, size_t workspaceSize) { ZSTD_DCtx* const dctx = (ZSTD_DCtx*) workspace; if ((size_t)workspace & 7) return NULL; /* 8-aligned */ if (workspaceSize < sizeof(ZSTD_DCtx)) return NULL; /* minimum size */ ZSTD_initDCtx_internal(dctx); dctx->staticSize = workspaceSize; dctx->inBuff = (char*)(dctx+1); return dctx; } static ZSTD_DCtx* ZSTD_createDCtx_internal(ZSTD_customMem customMem) { if ((!customMem.customAlloc) ^ (!customMem.customFree)) return NULL; { ZSTD_DCtx* const dctx = (ZSTD_DCtx*)ZSTD_customMalloc(sizeof(*dctx), customMem); if (!dctx) return NULL; dctx->customMem = customMem; ZSTD_initDCtx_internal(dctx); return dctx; } } ZSTD_DCtx* ZSTD_createDCtx_advanced(ZSTD_customMem customMem) { return ZSTD_createDCtx_internal(customMem); } ZSTD_DCtx* ZSTD_createDCtx(void) { DEBUGLOG(3, "ZSTD_createDCtx"); return ZSTD_createDCtx_internal(ZSTD_defaultCMem); } static void ZSTD_clearDict(ZSTD_DCtx* dctx) { ZSTD_freeDDict(dctx->ddictLocal); dctx->ddictLocal = NULL; dctx->ddict = NULL; dctx->dictUses = ZSTD_dont_use; } size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx) { if (dctx==NULL) return 0; /* support free on NULL */ RETURN_ERROR_IF(dctx->staticSize, memory_allocation, "not compatible with static DCtx"); { ZSTD_customMem const cMem = dctx->customMem; ZSTD_clearDict(dctx); ZSTD_customFree(dctx->inBuff, cMem); dctx->inBuff = NULL; #if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1) if (dctx->legacyContext) ZSTD_freeLegacyStreamContext(dctx->legacyContext, dctx->previousLegacyVersion); #endif if (dctx->ddictSet) { ZSTD_freeDDictHashSet(dctx->ddictSet, cMem); dctx->ddictSet = NULL; } ZSTD_customFree(dctx, cMem); return 0; } } /* no longer useful */ void ZSTD_copyDCtx(ZSTD_DCtx* dstDCtx, const ZSTD_DCtx* srcDCtx) { size_t const toCopy = (size_t)((char*)(&dstDCtx->inBuff) - (char*)dstDCtx); ZSTD_memcpy(dstDCtx, srcDCtx, toCopy); /* no need to copy workspace */ } /* Given a dctx with a digested frame params, re-selects the correct ZSTD_DDict based on * the requested dict ID from the frame. If there exists a reference to the correct ZSTD_DDict, then * accordingly sets the ddict to be used to decompress the frame. * * If no DDict is found, then no action is taken, and the ZSTD_DCtx::ddict remains as-is. * * ZSTD_d_refMultipleDDicts must be enabled for this function to be called. */ static void ZSTD_DCtx_selectFrameDDict(ZSTD_DCtx* dctx) { assert(dctx->refMultipleDDicts && dctx->ddictSet); DEBUGLOG(4, "Adjusting DDict based on requested dict ID from frame"); if (dctx->ddict) { const ZSTD_DDict* frameDDict = ZSTD_DDictHashSet_getDDict(dctx->ddictSet, dctx->fParams.dictID); if (frameDDict) { DEBUGLOG(4, "DDict found!"); ZSTD_clearDict(dctx); dctx->dictID = dctx->fParams.dictID; dctx->ddict = frameDDict; dctx->dictUses = ZSTD_use_indefinitely; } } } /*-************************************************************* * Frame header decoding ***************************************************************/ /*! ZSTD_isFrame() : * Tells if the content of `buffer` starts with a valid Frame Identifier. * Note : Frame Identifier is 4 bytes. If `size < 4`, @return will always be 0. * Note 2 : Legacy Frame Identifiers are considered valid only if Legacy Support is enabled. * Note 3 : Skippable Frame Identifiers are considered valid. */ unsigned ZSTD_isFrame(const void* buffer, size_t size) { if (size < ZSTD_FRAMEIDSIZE) return 0; { U32 const magic = MEM_readLE32(buffer); if (magic == ZSTD_MAGICNUMBER) return 1; if ((magic & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) return 1; } #if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1) if (ZSTD_isLegacy(buffer, size)) return 1; #endif return 0; } /*! ZSTD_isSkippableFrame() : * Tells if the content of `buffer` starts with a valid Frame Identifier for a skippable frame. * Note : Frame Identifier is 4 bytes. If `size < 4`, @return will always be 0. */ unsigned ZSTD_isSkippableFrame(const void* buffer, size_t size) { if (size < ZSTD_FRAMEIDSIZE) return 0; { U32 const magic = MEM_readLE32(buffer); if ((magic & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) return 1; } return 0; } /** ZSTD_frameHeaderSize_internal() : * srcSize must be large enough to reach header size fields. * note : only works for formats ZSTD_f_zstd1 and ZSTD_f_zstd1_magicless. * @return : size of the Frame Header * or an error code, which can be tested with ZSTD_isError() */ static size_t ZSTD_frameHeaderSize_internal(const void* src, size_t srcSize, ZSTD_format_e format) { size_t const minInputSize = ZSTD_startingInputLength(format); RETURN_ERROR_IF(srcSize < minInputSize, srcSize_wrong, ""); { BYTE const fhd = ((const BYTE*)src)[minInputSize-1]; U32 const dictID= fhd & 3; U32 const singleSegment = (fhd >> 5) & 1; U32 const fcsId = fhd >> 6; return minInputSize + !singleSegment + ZSTD_did_fieldSize[dictID] + ZSTD_fcs_fieldSize[fcsId] + (singleSegment && !fcsId); } } /** ZSTD_frameHeaderSize() : * srcSize must be >= ZSTD_frameHeaderSize_prefix. * @return : size of the Frame Header, * or an error code (if srcSize is too small) */ size_t ZSTD_frameHeaderSize(const void* src, size_t srcSize) { return ZSTD_frameHeaderSize_internal(src, srcSize, ZSTD_f_zstd1); } /** ZSTD_getFrameHeader_advanced() : * decode Frame Header, or require larger `srcSize`. * note : only works for formats ZSTD_f_zstd1 and ZSTD_f_zstd1_magicless * @return : 0, `zfhPtr` is correctly filled, * >0, `srcSize` is too small, value is wanted `srcSize` amount, ** or an error code, which can be tested using ZSTD_isError() */ size_t ZSTD_getFrameHeader_advanced(ZSTD_frameHeader* zfhPtr, const void* src, size_t srcSize, ZSTD_format_e format) { const BYTE* ip = (const BYTE*)src; size_t const minInputSize = ZSTD_startingInputLength(format); DEBUGLOG(5, "ZSTD_getFrameHeader_advanced: minInputSize = %zu, srcSize = %zu", minInputSize, srcSize); if (srcSize > 0) { /* note : technically could be considered an assert(), since it's an invalid entry */ RETURN_ERROR_IF(src==NULL, GENERIC, "invalid parameter : src==NULL, but srcSize>0"); } if (srcSize < minInputSize) { if (srcSize > 0 && format != ZSTD_f_zstd1_magicless) { /* when receiving less than @minInputSize bytes, * control these bytes at least correspond to a supported magic number * in order to error out early if they don't. **/ size_t const toCopy = MIN(4, srcSize); unsigned char hbuf[4]; MEM_writeLE32(hbuf, ZSTD_MAGICNUMBER); assert(src != NULL); ZSTD_memcpy(hbuf, src, toCopy); if ( MEM_readLE32(hbuf) != ZSTD_MAGICNUMBER ) { /* not a zstd frame : let's check if it's a skippable frame */ MEM_writeLE32(hbuf, ZSTD_MAGIC_SKIPPABLE_START); ZSTD_memcpy(hbuf, src, toCopy); if ((MEM_readLE32(hbuf) & ZSTD_MAGIC_SKIPPABLE_MASK) != ZSTD_MAGIC_SKIPPABLE_START) { RETURN_ERROR(prefix_unknown, "first bytes don't correspond to any supported magic number"); } } } return minInputSize; } ZSTD_memset(zfhPtr, 0, sizeof(*zfhPtr)); /* not strictly necessary, but static analyzers may not understand that zfhPtr will be read only if return value is zero, since they are 2 different signals */ if ( (format != ZSTD_f_zstd1_magicless) && (MEM_readLE32(src) != ZSTD_MAGICNUMBER) ) { if ((MEM_readLE32(src) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { /* skippable frame */ if (srcSize < ZSTD_SKIPPABLEHEADERSIZE) return ZSTD_SKIPPABLEHEADERSIZE; /* magic number + frame length */ ZSTD_memset(zfhPtr, 0, sizeof(*zfhPtr)); zfhPtr->frameContentSize = MEM_readLE32((const char *)src + ZSTD_FRAMEIDSIZE); zfhPtr->frameType = ZSTD_skippableFrame; return 0; } RETURN_ERROR(prefix_unknown, ""); } /* ensure there is enough `srcSize` to fully read/decode frame header */ { size_t const fhsize = ZSTD_frameHeaderSize_internal(src, srcSize, format); if (srcSize < fhsize) return fhsize; zfhPtr->headerSize = (U32)fhsize; } { BYTE const fhdByte = ip[minInputSize-1]; size_t pos = minInputSize; U32 const dictIDSizeCode = fhdByte&3; U32 const checksumFlag = (fhdByte>>2)&1; U32 const singleSegment = (fhdByte>>5)&1; U32 const fcsID = fhdByte>>6; U64 windowSize = 0; U32 dictID = 0; U64 frameContentSize = ZSTD_CONTENTSIZE_UNKNOWN; RETURN_ERROR_IF((fhdByte & 0x08) != 0, frameParameter_unsupported, "reserved bits, must be zero"); if (!singleSegment) { BYTE const wlByte = ip[pos++]; U32 const windowLog = (wlByte >> 3) + ZSTD_WINDOWLOG_ABSOLUTEMIN; RETURN_ERROR_IF(windowLog > ZSTD_WINDOWLOG_MAX, frameParameter_windowTooLarge, ""); windowSize = (1ULL << windowLog); windowSize += (windowSize >> 3) * (wlByte&7); } switch(dictIDSizeCode) { default: assert(0); /* impossible */ ZSTD_FALLTHROUGH; case 0 : break; case 1 : dictID = ip[pos]; pos++; break; case 2 : dictID = MEM_readLE16(ip+pos); pos+=2; break; case 3 : dictID = MEM_readLE32(ip+pos); pos+=4; break; } switch(fcsID) { default: assert(0); /* impossible */ ZSTD_FALLTHROUGH; case 0 : if (singleSegment) frameContentSize = ip[pos]; break; case 1 : frameContentSize = MEM_readLE16(ip+pos)+256; break; case 2 : frameContentSize = MEM_readLE32(ip+pos); break; case 3 : frameContentSize = MEM_readLE64(ip+pos); break; } if (singleSegment) windowSize = frameContentSize; zfhPtr->frameType = ZSTD_frame; zfhPtr->frameContentSize = frameContentSize; zfhPtr->windowSize = windowSize; zfhPtr->blockSizeMax = (unsigned) MIN(windowSize, ZSTD_BLOCKSIZE_MAX); zfhPtr->dictID = dictID; zfhPtr->checksumFlag = checksumFlag; } return 0; } /** ZSTD_getFrameHeader() : * decode Frame Header, or require larger `srcSize`. * note : this function does not consume input, it only reads it. * @return : 0, `zfhPtr` is correctly filled, * >0, `srcSize` is too small, value is wanted `srcSize` amount, * or an error code, which can be tested using ZSTD_isError() */ size_t ZSTD_getFrameHeader(ZSTD_frameHeader* zfhPtr, const void* src, size_t srcSize) { return ZSTD_getFrameHeader_advanced(zfhPtr, src, srcSize, ZSTD_f_zstd1); } /** ZSTD_getFrameContentSize() : * compatible with legacy mode * @return : decompressed size of the single frame pointed to be `src` if known, otherwise * - ZSTD_CONTENTSIZE_UNKNOWN if the size cannot be determined * - ZSTD_CONTENTSIZE_ERROR if an error occurred (e.g. invalid magic number, srcSize too small) */ unsigned long long ZSTD_getFrameContentSize(const void *src, size_t srcSize) { #if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1) if (ZSTD_isLegacy(src, srcSize)) { unsigned long long const ret = ZSTD_getDecompressedSize_legacy(src, srcSize); return ret == 0 ? ZSTD_CONTENTSIZE_UNKNOWN : ret; } #endif { ZSTD_frameHeader zfh; if (ZSTD_getFrameHeader(&zfh, src, srcSize) != 0) return ZSTD_CONTENTSIZE_ERROR; if (zfh.frameType == ZSTD_skippableFrame) { return 0; } else { return zfh.frameContentSize; } } } static size_t readSkippableFrameSize(void const* src, size_t srcSize) { size_t const skippableHeaderSize = ZSTD_SKIPPABLEHEADERSIZE; U32 sizeU32; RETURN_ERROR_IF(srcSize < ZSTD_SKIPPABLEHEADERSIZE, srcSize_wrong, ""); sizeU32 = MEM_readLE32((BYTE const*)src + ZSTD_FRAMEIDSIZE); RETURN_ERROR_IF((U32)(sizeU32 + ZSTD_SKIPPABLEHEADERSIZE) < sizeU32, frameParameter_unsupported, ""); { size_t const skippableSize = skippableHeaderSize + sizeU32; RETURN_ERROR_IF(skippableSize > srcSize, srcSize_wrong, ""); return skippableSize; } } /*! ZSTD_readSkippableFrame() : * Retrieves content of a skippable frame, and writes it to dst buffer. * * The parameter magicVariant will receive the magicVariant that was supplied when the frame was written, * i.e. magicNumber - ZSTD_MAGIC_SKIPPABLE_START. This can be NULL if the caller is not interested * in the magicVariant. * * Returns an error if destination buffer is not large enough, or if this is not a valid skippable frame. * * @return : number of bytes written or a ZSTD error. */ size_t ZSTD_readSkippableFrame(void* dst, size_t dstCapacity, unsigned* magicVariant, /* optional, can be NULL */ const void* src, size_t srcSize) { RETURN_ERROR_IF(srcSize < ZSTD_SKIPPABLEHEADERSIZE, srcSize_wrong, ""); { U32 const magicNumber = MEM_readLE32(src); size_t skippableFrameSize = readSkippableFrameSize(src, srcSize); size_t skippableContentSize = skippableFrameSize - ZSTD_SKIPPABLEHEADERSIZE; /* check input validity */ RETURN_ERROR_IF(!ZSTD_isSkippableFrame(src, srcSize), frameParameter_unsupported, ""); RETURN_ERROR_IF(skippableFrameSize < ZSTD_SKIPPABLEHEADERSIZE || skippableFrameSize > srcSize, srcSize_wrong, ""); RETURN_ERROR_IF(skippableContentSize > dstCapacity, dstSize_tooSmall, ""); /* deliver payload */ if (skippableContentSize > 0 && dst != NULL) ZSTD_memcpy(dst, (const BYTE *)src + ZSTD_SKIPPABLEHEADERSIZE, skippableContentSize); if (magicVariant != NULL) *magicVariant = magicNumber - ZSTD_MAGIC_SKIPPABLE_START; return skippableContentSize; } } /** ZSTD_findDecompressedSize() : * `srcSize` must be the exact length of some number of ZSTD compressed and/or * skippable frames * note: compatible with legacy mode * @return : decompressed size of the frames contained */ unsigned long long ZSTD_findDecompressedSize(const void* src, size_t srcSize) { unsigned long long totalDstSize = 0; while (srcSize >= ZSTD_startingInputLength(ZSTD_f_zstd1)) { U32 const magicNumber = MEM_readLE32(src); if ((magicNumber & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { size_t const skippableSize = readSkippableFrameSize(src, srcSize); if (ZSTD_isError(skippableSize)) return ZSTD_CONTENTSIZE_ERROR; assert(skippableSize <= srcSize); src = (const BYTE *)src + skippableSize; srcSize -= skippableSize; continue; } { unsigned long long const fcs = ZSTD_getFrameContentSize(src, srcSize); if (fcs >= ZSTD_CONTENTSIZE_ERROR) return fcs; if (totalDstSize + fcs < totalDstSize) return ZSTD_CONTENTSIZE_ERROR; /* check for overflow */ totalDstSize += fcs; } /* skip to next frame */ { size_t const frameSrcSize = ZSTD_findFrameCompressedSize(src, srcSize); if (ZSTD_isError(frameSrcSize)) return ZSTD_CONTENTSIZE_ERROR; assert(frameSrcSize <= srcSize); src = (const BYTE *)src + frameSrcSize; srcSize -= frameSrcSize; } } /* while (srcSize >= ZSTD_frameHeaderSize_prefix) */ if (srcSize) return ZSTD_CONTENTSIZE_ERROR; return totalDstSize; } /** ZSTD_getDecompressedSize() : * compatible with legacy mode * @return : decompressed size if known, 0 otherwise note : 0 can mean any of the following : - frame content is empty - decompressed size field is not present in frame header - frame header unknown / not supported - frame header not complete (`srcSize` too small) */ unsigned long long ZSTD_getDecompressedSize(const void* src, size_t srcSize) { unsigned long long const ret = ZSTD_getFrameContentSize(src, srcSize); ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_ERROR < ZSTD_CONTENTSIZE_UNKNOWN); return (ret >= ZSTD_CONTENTSIZE_ERROR) ? 0 : ret; } /** ZSTD_decodeFrameHeader() : * `headerSize` must be the size provided by ZSTD_frameHeaderSize(). * If multiple DDict references are enabled, also will choose the correct DDict to use. * @return : 0 if success, or an error code, which can be tested using ZSTD_isError() */ static size_t ZSTD_decodeFrameHeader(ZSTD_DCtx* dctx, const void* src, size_t headerSize) { size_t const result = ZSTD_getFrameHeader_advanced(&(dctx->fParams), src, headerSize, dctx->format); if (ZSTD_isError(result)) return result; /* invalid header */ RETURN_ERROR_IF(result>0, srcSize_wrong, "headerSize too small"); /* Reference DDict requested by frame if dctx references multiple ddicts */ if (dctx->refMultipleDDicts == ZSTD_rmd_refMultipleDDicts && dctx->ddictSet) { ZSTD_DCtx_selectFrameDDict(dctx); } #ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION /* Skip the dictID check in fuzzing mode, because it makes the search * harder. */ RETURN_ERROR_IF(dctx->fParams.dictID && (dctx->dictID != dctx->fParams.dictID), dictionary_wrong, ""); #endif dctx->validateChecksum = (dctx->fParams.checksumFlag && !dctx->forceIgnoreChecksum) ? 1 : 0; if (dctx->validateChecksum) XXH64_reset(&dctx->xxhState, 0); dctx->processedCSize += headerSize; return 0; } static ZSTD_frameSizeInfo ZSTD_errorFrameSizeInfo(size_t ret) { ZSTD_frameSizeInfo frameSizeInfo; frameSizeInfo.compressedSize = ret; frameSizeInfo.decompressedBound = ZSTD_CONTENTSIZE_ERROR; return frameSizeInfo; } static ZSTD_frameSizeInfo ZSTD_findFrameSizeInfo(const void* src, size_t srcSize) { ZSTD_frameSizeInfo frameSizeInfo; ZSTD_memset(&frameSizeInfo, 0, sizeof(ZSTD_frameSizeInfo)); #if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1) if (ZSTD_isLegacy(src, srcSize)) return ZSTD_findFrameSizeInfoLegacy(src, srcSize); #endif if ((srcSize >= ZSTD_SKIPPABLEHEADERSIZE) && (MEM_readLE32(src) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { frameSizeInfo.compressedSize = readSkippableFrameSize(src, srcSize); assert(ZSTD_isError(frameSizeInfo.compressedSize) || frameSizeInfo.compressedSize <= srcSize); return frameSizeInfo; } else { const BYTE* ip = (const BYTE*)src; const BYTE* const ipstart = ip; size_t remainingSize = srcSize; size_t nbBlocks = 0; ZSTD_frameHeader zfh; /* Extract Frame Header */ { size_t const ret = ZSTD_getFrameHeader(&zfh, src, srcSize); if (ZSTD_isError(ret)) return ZSTD_errorFrameSizeInfo(ret); if (ret > 0) return ZSTD_errorFrameSizeInfo(ERROR(srcSize_wrong)); } ip += zfh.headerSize; remainingSize -= zfh.headerSize; /* Iterate over each block */ while (1) { blockProperties_t blockProperties; size_t const cBlockSize = ZSTD_getcBlockSize(ip, remainingSize, &blockProperties); if (ZSTD_isError(cBlockSize)) return ZSTD_errorFrameSizeInfo(cBlockSize); if (ZSTD_blockHeaderSize + cBlockSize > remainingSize) return ZSTD_errorFrameSizeInfo(ERROR(srcSize_wrong)); ip += ZSTD_blockHeaderSize + cBlockSize; remainingSize -= ZSTD_blockHeaderSize + cBlockSize; nbBlocks++; if (blockProperties.lastBlock) break; } /* Final frame content checksum */ if (zfh.checksumFlag) { if (remainingSize < 4) return ZSTD_errorFrameSizeInfo(ERROR(srcSize_wrong)); ip += 4; } frameSizeInfo.nbBlocks = nbBlocks; frameSizeInfo.compressedSize = (size_t)(ip - ipstart); frameSizeInfo.decompressedBound = (zfh.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN) ? zfh.frameContentSize : (unsigned long long)nbBlocks * zfh.blockSizeMax; return frameSizeInfo; } } /** ZSTD_findFrameCompressedSize() : * compatible with legacy mode * `src` must point to the start of a ZSTD frame, ZSTD legacy frame, or skippable frame * `srcSize` must be at least as large as the frame contained * @return : the compressed size of the frame starting at `src` */ size_t ZSTD_findFrameCompressedSize(const void *src, size_t srcSize) { ZSTD_frameSizeInfo const frameSizeInfo = ZSTD_findFrameSizeInfo(src, srcSize); return frameSizeInfo.compressedSize; } /** ZSTD_decompressBound() : * compatible with legacy mode * `src` must point to the start of a ZSTD frame or a skippeable frame * `srcSize` must be at least as large as the frame contained * @return : the maximum decompressed size of the compressed source */ unsigned long long ZSTD_decompressBound(const void* src, size_t srcSize) { unsigned long long bound = 0; /* Iterate over each frame */ while (srcSize > 0) { ZSTD_frameSizeInfo const frameSizeInfo = ZSTD_findFrameSizeInfo(src, srcSize); size_t const compressedSize = frameSizeInfo.compressedSize; unsigned long long const decompressedBound = frameSizeInfo.decompressedBound; if (ZSTD_isError(compressedSize) || decompressedBound == ZSTD_CONTENTSIZE_ERROR) return ZSTD_CONTENTSIZE_ERROR; assert(srcSize >= compressedSize); src = (const BYTE*)src + compressedSize; srcSize -= compressedSize; bound += decompressedBound; } return bound; } size_t ZSTD_decompressionMargin(void const* src, size_t srcSize) { size_t margin = 0; unsigned maxBlockSize = 0; /* Iterate over each frame */ while (srcSize > 0) { ZSTD_frameSizeInfo const frameSizeInfo = ZSTD_findFrameSizeInfo(src, srcSize); size_t const compressedSize = frameSizeInfo.compressedSize; unsigned long long const decompressedBound = frameSizeInfo.decompressedBound; ZSTD_frameHeader zfh; FORWARD_IF_ERROR(ZSTD_getFrameHeader(&zfh, src, srcSize), ""); if (ZSTD_isError(compressedSize) || decompressedBound == ZSTD_CONTENTSIZE_ERROR) return ERROR(corruption_detected); if (zfh.frameType == ZSTD_frame) { /* Add the frame header to our margin */ margin += zfh.headerSize; /* Add the checksum to our margin */ margin += zfh.checksumFlag ? 4 : 0; /* Add 3 bytes per block */ margin += 3 * frameSizeInfo.nbBlocks; /* Compute the max block size */ maxBlockSize = MAX(maxBlockSize, zfh.blockSizeMax); } else { assert(zfh.frameType == ZSTD_skippableFrame); /* Add the entire skippable frame size to our margin. */ margin += compressedSize; } assert(srcSize >= compressedSize); src = (const BYTE*)src + compressedSize; srcSize -= compressedSize; } /* Add the max block size back to the margin. */ margin += maxBlockSize; return margin; } /*-************************************************************* * Frame decoding ***************************************************************/ /** ZSTD_insertBlock() : * insert `src` block into `dctx` history. Useful to track uncompressed blocks. */ size_t ZSTD_insertBlock(ZSTD_DCtx* dctx, const void* blockStart, size_t blockSize) { DEBUGLOG(5, "ZSTD_insertBlock: %u bytes", (unsigned)blockSize); ZSTD_checkContinuity(dctx, blockStart, blockSize); dctx->previousDstEnd = (const char*)blockStart + blockSize; return blockSize; } static size_t ZSTD_copyRawBlock(void* dst, size_t dstCapacity, const void* src, size_t srcSize) { DEBUGLOG(5, "ZSTD_copyRawBlock"); RETURN_ERROR_IF(srcSize > dstCapacity, dstSize_tooSmall, ""); if (dst == NULL) { if (srcSize == 0) return 0; RETURN_ERROR(dstBuffer_null, ""); } ZSTD_memmove(dst, src, srcSize); return srcSize; } static size_t ZSTD_setRleBlock(void* dst, size_t dstCapacity, BYTE b, size_t regenSize) { RETURN_ERROR_IF(regenSize > dstCapacity, dstSize_tooSmall, ""); if (dst == NULL) { if (regenSize == 0) return 0; RETURN_ERROR(dstBuffer_null, ""); } ZSTD_memset(dst, b, regenSize); return regenSize; } static void ZSTD_DCtx_trace_end(ZSTD_DCtx const* dctx, U64 uncompressedSize, U64 compressedSize, unsigned streaming) { #if ZSTD_TRACE if (dctx->traceCtx && ZSTD_trace_decompress_end != NULL) { ZSTD_Trace trace; ZSTD_memset(&trace, 0, sizeof(trace)); trace.version = ZSTD_VERSION_NUMBER; trace.streaming = streaming; if (dctx->ddict) { trace.dictionaryID = ZSTD_getDictID_fromDDict(dctx->ddict); trace.dictionarySize = ZSTD_DDict_dictSize(dctx->ddict); trace.dictionaryIsCold = dctx->ddictIsCold; } trace.uncompressedSize = (size_t)uncompressedSize; trace.compressedSize = (size_t)compressedSize; trace.dctx = dctx; ZSTD_trace_decompress_end(dctx->traceCtx, &trace); } #else (void)dctx; (void)uncompressedSize; (void)compressedSize; (void)streaming; #endif } /*! ZSTD_decompressFrame() : * @dctx must be properly initialized * will update *srcPtr and *srcSizePtr, * to make *srcPtr progress by one frame. */ static size_t ZSTD_decompressFrame(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void** srcPtr, size_t *srcSizePtr) { const BYTE* const istart = (const BYTE*)(*srcPtr); const BYTE* ip = istart; BYTE* const ostart = (BYTE*)dst; BYTE* const oend = dstCapacity != 0 ? ostart + dstCapacity : ostart; BYTE* op = ostart; size_t remainingSrcSize = *srcSizePtr; DEBUGLOG(4, "ZSTD_decompressFrame (srcSize:%i)", (int)*srcSizePtr); /* check */ RETURN_ERROR_IF( remainingSrcSize < ZSTD_FRAMEHEADERSIZE_MIN(dctx->format)+ZSTD_blockHeaderSize, srcSize_wrong, ""); /* Frame Header */ { size_t const frameHeaderSize = ZSTD_frameHeaderSize_internal( ip, ZSTD_FRAMEHEADERSIZE_PREFIX(dctx->format), dctx->format); if (ZSTD_isError(frameHeaderSize)) return frameHeaderSize; RETURN_ERROR_IF(remainingSrcSize < frameHeaderSize+ZSTD_blockHeaderSize, srcSize_wrong, ""); FORWARD_IF_ERROR( ZSTD_decodeFrameHeader(dctx, ip, frameHeaderSize) , ""); ip += frameHeaderSize; remainingSrcSize -= frameHeaderSize; } /* Loop on each block */ while (1) { BYTE* oBlockEnd = oend; size_t decodedSize; blockProperties_t blockProperties; size_t const cBlockSize = ZSTD_getcBlockSize(ip, remainingSrcSize, &blockProperties); if (ZSTD_isError(cBlockSize)) return cBlockSize; ip += ZSTD_blockHeaderSize; remainingSrcSize -= ZSTD_blockHeaderSize; RETURN_ERROR_IF(cBlockSize > remainingSrcSize, srcSize_wrong, ""); if (ip >= op && ip < oBlockEnd) { /* We are decompressing in-place. Limit the output pointer so that we * don't overwrite the block that we are currently reading. This will * fail decompression if the input & output pointers aren't spaced * far enough apart. * * This is important to set, even when the pointers are far enough * apart, because ZSTD_decompressBlock_internal() can decide to store * literals in the output buffer, after the block it is decompressing. * Since we don't want anything to overwrite our input, we have to tell * ZSTD_decompressBlock_internal to never write past ip. * * See ZSTD_allocateLiteralsBuffer() for reference. */ oBlockEnd = op + (ip - op); } switch(blockProperties.blockType) { case bt_compressed: decodedSize = ZSTD_decompressBlock_internal(dctx, op, (size_t)(oBlockEnd-op), ip, cBlockSize, /* frame */ 1, not_streaming); break; case bt_raw : /* Use oend instead of oBlockEnd because this function is safe to overlap. It uses memmove. */ decodedSize = ZSTD_copyRawBlock(op, (size_t)(oend-op), ip, cBlockSize); break; case bt_rle : decodedSize = ZSTD_setRleBlock(op, (size_t)(oBlockEnd-op), *ip, blockProperties.origSize); break; case bt_reserved : default: RETURN_ERROR(corruption_detected, "invalid block type"); } if (ZSTD_isError(decodedSize)) return decodedSize; if (dctx->validateChecksum) XXH64_update(&dctx->xxhState, op, decodedSize); if (decodedSize != 0) op += decodedSize; assert(ip != NULL); ip += cBlockSize; remainingSrcSize -= cBlockSize; if (blockProperties.lastBlock) break; } if (dctx->fParams.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN) { RETURN_ERROR_IF((U64)(op-ostart) != dctx->fParams.frameContentSize, corruption_detected, ""); } if (dctx->fParams.checksumFlag) { /* Frame content checksum verification */ RETURN_ERROR_IF(remainingSrcSize<4, checksum_wrong, ""); if (!dctx->forceIgnoreChecksum) { U32 const checkCalc = (U32)XXH64_digest(&dctx->xxhState); U32 checkRead; checkRead = MEM_readLE32(ip); RETURN_ERROR_IF(checkRead != checkCalc, checksum_wrong, ""); } ip += 4; remainingSrcSize -= 4; } ZSTD_DCtx_trace_end(dctx, (U64)(op-ostart), (U64)(ip-istart), /* streaming */ 0); /* Allow caller to get size read */ DEBUGLOG(4, "ZSTD_decompressFrame: decompressed frame of size %zi, consuming %zi bytes of input", op-ostart, ip - (const BYTE*)*srcPtr); *srcPtr = ip; *srcSizePtr = remainingSrcSize; return (size_t)(op-ostart); } static size_t ZSTD_decompressMultiFrame(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const void* dict, size_t dictSize, const ZSTD_DDict* ddict) { void* const dststart = dst; int moreThan1Frame = 0; DEBUGLOG(5, "ZSTD_decompressMultiFrame"); assert(dict==NULL || ddict==NULL); /* either dict or ddict set, not both */ if (ddict) { dict = ZSTD_DDict_dictContent(ddict); dictSize = ZSTD_DDict_dictSize(ddict); } while (srcSize >= ZSTD_startingInputLength(dctx->format)) { #if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1) if (ZSTD_isLegacy(src, srcSize)) { size_t decodedSize; size_t const frameSize = ZSTD_findFrameCompressedSizeLegacy(src, srcSize); if (ZSTD_isError(frameSize)) return frameSize; RETURN_ERROR_IF(dctx->staticSize, memory_allocation, "legacy support is not compatible with static dctx"); decodedSize = ZSTD_decompressLegacy(dst, dstCapacity, src, frameSize, dict, dictSize); if (ZSTD_isError(decodedSize)) return decodedSize; assert(decodedSize <= dstCapacity); dst = (BYTE*)dst + decodedSize; dstCapacity -= decodedSize; src = (const BYTE*)src + frameSize; srcSize -= frameSize; continue; } #endif if (srcSize >= 4) { U32 const magicNumber = MEM_readLE32(src); DEBUGLOG(5, "reading magic number %08X", (unsigned)magicNumber); if ((magicNumber & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { /* skippable frame detected : skip it */ size_t const skippableSize = readSkippableFrameSize(src, srcSize); FORWARD_IF_ERROR(skippableSize, "invalid skippable frame"); assert(skippableSize <= srcSize); src = (const BYTE *)src + skippableSize; srcSize -= skippableSize; continue; /* check next frame */ } } if (ddict) { /* we were called from ZSTD_decompress_usingDDict */ FORWARD_IF_ERROR(ZSTD_decompressBegin_usingDDict(dctx, ddict), ""); } else { /* this will initialize correctly with no dict if dict == NULL, so * use this in all cases but ddict */ FORWARD_IF_ERROR(ZSTD_decompressBegin_usingDict(dctx, dict, dictSize), ""); } ZSTD_checkContinuity(dctx, dst, dstCapacity); { const size_t res = ZSTD_decompressFrame(dctx, dst, dstCapacity, &src, &srcSize); RETURN_ERROR_IF( (ZSTD_getErrorCode(res) == ZSTD_error_prefix_unknown) && (moreThan1Frame==1), srcSize_wrong, "At least one frame successfully completed, " "but following bytes are garbage: " "it's more likely to be a srcSize error, " "specifying more input bytes than size of frame(s). " "Note: one could be unlucky, it might be a corruption error instead, " "happening right at the place where we expect zstd magic bytes. " "But this is _much_ less likely than a srcSize field error."); if (ZSTD_isError(res)) return res; assert(res <= dstCapacity); if (res != 0) dst = (BYTE*)dst + res; dstCapacity -= res; } moreThan1Frame = 1; } /* while (srcSize >= ZSTD_frameHeaderSize_prefix) */ RETURN_ERROR_IF(srcSize, srcSize_wrong, "input not entirely consumed"); return (size_t)((BYTE*)dst - (BYTE*)dststart); } size_t ZSTD_decompress_usingDict(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const void* dict, size_t dictSize) { return ZSTD_decompressMultiFrame(dctx, dst, dstCapacity, src, srcSize, dict, dictSize, NULL); } static ZSTD_DDict const* ZSTD_getDDict(ZSTD_DCtx* dctx) { switch (dctx->dictUses) { default: assert(0 /* Impossible */); ZSTD_FALLTHROUGH; case ZSTD_dont_use: ZSTD_clearDict(dctx); return NULL; case ZSTD_use_indefinitely: return dctx->ddict; case ZSTD_use_once: dctx->dictUses = ZSTD_dont_use; return dctx->ddict; } } size_t ZSTD_decompressDCtx(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) { return ZSTD_decompress_usingDDict(dctx, dst, dstCapacity, src, srcSize, ZSTD_getDDict(dctx)); } size_t ZSTD_decompress(void* dst, size_t dstCapacity, const void* src, size_t srcSize) { #if defined(ZSTD_HEAPMODE) && (ZSTD_HEAPMODE>=1) size_t regenSize; ZSTD_DCtx* const dctx = ZSTD_createDCtx_internal(ZSTD_defaultCMem); RETURN_ERROR_IF(dctx==NULL, memory_allocation, "NULL pointer!"); regenSize = ZSTD_decompressDCtx(dctx, dst, dstCapacity, src, srcSize); ZSTD_freeDCtx(dctx); return regenSize; #else /* stack mode */ ZSTD_DCtx dctx; ZSTD_initDCtx_internal(&dctx); return ZSTD_decompressDCtx(&dctx, dst, dstCapacity, src, srcSize); #endif } /*-************************************** * Advanced Streaming Decompression API * Bufferless and synchronous ****************************************/ size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx) { return dctx->expected; } /** * Similar to ZSTD_nextSrcSizeToDecompress(), but when a block input can be streamed, we * allow taking a partial block as the input. Currently only raw uncompressed blocks can * be streamed. * * For blocks that can be streamed, this allows us to reduce the latency until we produce * output, and avoid copying the input. * * @param inputSize - The total amount of input that the caller currently has. */ static size_t ZSTD_nextSrcSizeToDecompressWithInputSize(ZSTD_DCtx* dctx, size_t inputSize) { if (!(dctx->stage == ZSTDds_decompressBlock || dctx->stage == ZSTDds_decompressLastBlock)) return dctx->expected; if (dctx->bType != bt_raw) return dctx->expected; return BOUNDED(1, inputSize, dctx->expected); } ZSTD_nextInputType_e ZSTD_nextInputType(ZSTD_DCtx* dctx) { switch(dctx->stage) { default: /* should not happen */ assert(0); ZSTD_FALLTHROUGH; case ZSTDds_getFrameHeaderSize: ZSTD_FALLTHROUGH; case ZSTDds_decodeFrameHeader: return ZSTDnit_frameHeader; case ZSTDds_decodeBlockHeader: return ZSTDnit_blockHeader; case ZSTDds_decompressBlock: return ZSTDnit_block; case ZSTDds_decompressLastBlock: return ZSTDnit_lastBlock; case ZSTDds_checkChecksum: return ZSTDnit_checksum; case ZSTDds_decodeSkippableHeader: ZSTD_FALLTHROUGH; case ZSTDds_skipFrame: return ZSTDnit_skippableFrame; } } static int ZSTD_isSkipFrame(ZSTD_DCtx* dctx) { return dctx->stage == ZSTDds_skipFrame; } /** ZSTD_decompressContinue() : * srcSize : must be the exact nb of bytes expected (see ZSTD_nextSrcSizeToDecompress()) * @return : nb of bytes generated into `dst` (necessarily <= `dstCapacity) * or an error code, which can be tested using ZSTD_isError() */ size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) { DEBUGLOG(5, "ZSTD_decompressContinue (srcSize:%u)", (unsigned)srcSize); /* Sanity check */ RETURN_ERROR_IF(srcSize != ZSTD_nextSrcSizeToDecompressWithInputSize(dctx, srcSize), srcSize_wrong, "not allowed"); ZSTD_checkContinuity(dctx, dst, dstCapacity); dctx->processedCSize += srcSize; switch (dctx->stage) { case ZSTDds_getFrameHeaderSize : assert(src != NULL); if (dctx->format == ZSTD_f_zstd1) { /* allows header */ assert(srcSize >= ZSTD_FRAMEIDSIZE); /* to read skippable magic number */ if ((MEM_readLE32(src) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { /* skippable frame */ ZSTD_memcpy(dctx->headerBuffer, src, srcSize); dctx->expected = ZSTD_SKIPPABLEHEADERSIZE - srcSize; /* remaining to load to get full skippable frame header */ dctx->stage = ZSTDds_decodeSkippableHeader; return 0; } } dctx->headerSize = ZSTD_frameHeaderSize_internal(src, srcSize, dctx->format); if (ZSTD_isError(dctx->headerSize)) return dctx->headerSize; ZSTD_memcpy(dctx->headerBuffer, src, srcSize); dctx->expected = dctx->headerSize - srcSize; dctx->stage = ZSTDds_decodeFrameHeader; return 0; case ZSTDds_decodeFrameHeader: assert(src != NULL); ZSTD_memcpy(dctx->headerBuffer + (dctx->headerSize - srcSize), src, srcSize); FORWARD_IF_ERROR(ZSTD_decodeFrameHeader(dctx, dctx->headerBuffer, dctx->headerSize), ""); dctx->expected = ZSTD_blockHeaderSize; dctx->stage = ZSTDds_decodeBlockHeader; return 0; case ZSTDds_decodeBlockHeader: { blockProperties_t bp; size_t const cBlockSize = ZSTD_getcBlockSize(src, ZSTD_blockHeaderSize, &bp); if (ZSTD_isError(cBlockSize)) return cBlockSize; RETURN_ERROR_IF(cBlockSize > dctx->fParams.blockSizeMax, corruption_detected, "Block Size Exceeds Maximum"); dctx->expected = cBlockSize; dctx->bType = bp.blockType; dctx->rleSize = bp.origSize; if (cBlockSize) { dctx->stage = bp.lastBlock ? ZSTDds_decompressLastBlock : ZSTDds_decompressBlock; return 0; } /* empty block */ if (bp.lastBlock) { if (dctx->fParams.checksumFlag) { dctx->expected = 4; dctx->stage = ZSTDds_checkChecksum; } else { dctx->expected = 0; /* end of frame */ dctx->stage = ZSTDds_getFrameHeaderSize; } } else { dctx->expected = ZSTD_blockHeaderSize; /* jump to next header */ dctx->stage = ZSTDds_decodeBlockHeader; } return 0; } case ZSTDds_decompressLastBlock: case ZSTDds_decompressBlock: DEBUGLOG(5, "ZSTD_decompressContinue: case ZSTDds_decompressBlock"); { size_t rSize; switch(dctx->bType) { case bt_compressed: DEBUGLOG(5, "ZSTD_decompressContinue: case bt_compressed"); rSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize, /* frame */ 1, is_streaming); dctx->expected = 0; /* Streaming not supported */ break; case bt_raw : assert(srcSize <= dctx->expected); rSize = ZSTD_copyRawBlock(dst, dstCapacity, src, srcSize); FORWARD_IF_ERROR(rSize, "ZSTD_copyRawBlock failed"); assert(rSize == srcSize); dctx->expected -= rSize; break; case bt_rle : rSize = ZSTD_setRleBlock(dst, dstCapacity, *(const BYTE*)src, dctx->rleSize); dctx->expected = 0; /* Streaming not supported */ break; case bt_reserved : /* should never happen */ default: RETURN_ERROR(corruption_detected, "invalid block type"); } FORWARD_IF_ERROR(rSize, ""); RETURN_ERROR_IF(rSize > dctx->fParams.blockSizeMax, corruption_detected, "Decompressed Block Size Exceeds Maximum"); DEBUGLOG(5, "ZSTD_decompressContinue: decoded size from block : %u", (unsigned)rSize); dctx->decodedSize += rSize; if (dctx->validateChecksum) XXH64_update(&dctx->xxhState, dst, rSize); dctx->previousDstEnd = (char*)dst + rSize; /* Stay on the same stage until we are finished streaming the block. */ if (dctx->expected > 0) { return rSize; } if (dctx->stage == ZSTDds_decompressLastBlock) { /* end of frame */ DEBUGLOG(4, "ZSTD_decompressContinue: decoded size from frame : %u", (unsigned)dctx->decodedSize); RETURN_ERROR_IF( dctx->fParams.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN && dctx->decodedSize != dctx->fParams.frameContentSize, corruption_detected, ""); if (dctx->fParams.checksumFlag) { /* another round for frame checksum */ dctx->expected = 4; dctx->stage = ZSTDds_checkChecksum; } else { ZSTD_DCtx_trace_end(dctx, dctx->decodedSize, dctx->processedCSize, /* streaming */ 1); dctx->expected = 0; /* ends here */ dctx->stage = ZSTDds_getFrameHeaderSize; } } else { dctx->stage = ZSTDds_decodeBlockHeader; dctx->expected = ZSTD_blockHeaderSize; } return rSize; } case ZSTDds_checkChecksum: assert(srcSize == 4); /* guaranteed by dctx->expected */ { if (dctx->validateChecksum) { U32 const h32 = (U32)XXH64_digest(&dctx->xxhState); U32 const check32 = MEM_readLE32(src); DEBUGLOG(4, "ZSTD_decompressContinue: checksum : calculated %08X :: %08X read", (unsigned)h32, (unsigned)check32); RETURN_ERROR_IF(check32 != h32, checksum_wrong, ""); } ZSTD_DCtx_trace_end(dctx, dctx->decodedSize, dctx->processedCSize, /* streaming */ 1); dctx->expected = 0; dctx->stage = ZSTDds_getFrameHeaderSize; return 0; } case ZSTDds_decodeSkippableHeader: assert(src != NULL); assert(srcSize <= ZSTD_SKIPPABLEHEADERSIZE); ZSTD_memcpy(dctx->headerBuffer + (ZSTD_SKIPPABLEHEADERSIZE - srcSize), src, srcSize); /* complete skippable header */ dctx->expected = MEM_readLE32(dctx->headerBuffer + ZSTD_FRAMEIDSIZE); /* note : dctx->expected can grow seriously large, beyond local buffer size */ dctx->stage = ZSTDds_skipFrame; return 0; case ZSTDds_skipFrame: dctx->expected = 0; dctx->stage = ZSTDds_getFrameHeaderSize; return 0; default: assert(0); /* impossible */ RETURN_ERROR(GENERIC, "impossible to reach"); /* some compilers require default to do something */ } } static size_t ZSTD_refDictContent(ZSTD_DCtx* dctx, const void* dict, size_t dictSize) { dctx->dictEnd = dctx->previousDstEnd; dctx->virtualStart = (const char*)dict - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->prefixStart)); dctx->prefixStart = dict; dctx->previousDstEnd = (const char*)dict + dictSize; #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION dctx->dictContentBeginForFuzzing = dctx->prefixStart; dctx->dictContentEndForFuzzing = dctx->previousDstEnd; #endif return 0; } /*! ZSTD_loadDEntropy() : * dict : must point at beginning of a valid zstd dictionary. * @return : size of entropy tables read */ size_t ZSTD_loadDEntropy(ZSTD_entropyDTables_t* entropy, const void* const dict, size_t const dictSize) { const BYTE* dictPtr = (const BYTE*)dict; const BYTE* const dictEnd = dictPtr + dictSize; RETURN_ERROR_IF(dictSize <= 8, dictionary_corrupted, "dict is too small"); assert(MEM_readLE32(dict) == ZSTD_MAGIC_DICTIONARY); /* dict must be valid */ dictPtr += 8; /* skip header = magic + dictID */ ZSTD_STATIC_ASSERT(offsetof(ZSTD_entropyDTables_t, OFTable) == offsetof(ZSTD_entropyDTables_t, LLTable) + sizeof(entropy->LLTable)); ZSTD_STATIC_ASSERT(offsetof(ZSTD_entropyDTables_t, MLTable) == offsetof(ZSTD_entropyDTables_t, OFTable) + sizeof(entropy->OFTable)); ZSTD_STATIC_ASSERT(sizeof(entropy->LLTable) + sizeof(entropy->OFTable) + sizeof(entropy->MLTable) >= HUF_DECOMPRESS_WORKSPACE_SIZE); { void* const workspace = &entropy->LLTable; /* use fse tables as temporary workspace; implies fse tables are grouped together */ size_t const workspaceSize = sizeof(entropy->LLTable) + sizeof(entropy->OFTable) + sizeof(entropy->MLTable); #ifdef HUF_FORCE_DECOMPRESS_X1 /* in minimal huffman, we always use X1 variants */ size_t const hSize = HUF_readDTableX1_wksp(entropy->hufTable, dictPtr, dictEnd - dictPtr, workspace, workspaceSize, /* flags */ 0); #else size_t const hSize = HUF_readDTableX2_wksp(entropy->hufTable, dictPtr, (size_t)(dictEnd - dictPtr), workspace, workspaceSize, /* flags */ 0); #endif RETURN_ERROR_IF(HUF_isError(hSize), dictionary_corrupted, ""); dictPtr += hSize; } { short offcodeNCount[MaxOff+1]; unsigned offcodeMaxValue = MaxOff, offcodeLog; size_t const offcodeHeaderSize = FSE_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dictPtr, (size_t)(dictEnd-dictPtr)); RETURN_ERROR_IF(FSE_isError(offcodeHeaderSize), dictionary_corrupted, ""); RETURN_ERROR_IF(offcodeMaxValue > MaxOff, dictionary_corrupted, ""); RETURN_ERROR_IF(offcodeLog > OffFSELog, dictionary_corrupted, ""); ZSTD_buildFSETable( entropy->OFTable, offcodeNCount, offcodeMaxValue, OF_base, OF_bits, offcodeLog, entropy->workspace, sizeof(entropy->workspace), /* bmi2 */0); dictPtr += offcodeHeaderSize; } { short matchlengthNCount[MaxML+1]; unsigned matchlengthMaxValue = MaxML, matchlengthLog; size_t const matchlengthHeaderSize = FSE_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dictPtr, (size_t)(dictEnd-dictPtr)); RETURN_ERROR_IF(FSE_isError(matchlengthHeaderSize), dictionary_corrupted, ""); RETURN_ERROR_IF(matchlengthMaxValue > MaxML, dictionary_corrupted, ""); RETURN_ERROR_IF(matchlengthLog > MLFSELog, dictionary_corrupted, ""); ZSTD_buildFSETable( entropy->MLTable, matchlengthNCount, matchlengthMaxValue, ML_base, ML_bits, matchlengthLog, entropy->workspace, sizeof(entropy->workspace), /* bmi2 */ 0); dictPtr += matchlengthHeaderSize; } { short litlengthNCount[MaxLL+1]; unsigned litlengthMaxValue = MaxLL, litlengthLog; size_t const litlengthHeaderSize = FSE_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dictPtr, (size_t)(dictEnd-dictPtr)); RETURN_ERROR_IF(FSE_isError(litlengthHeaderSize), dictionary_corrupted, ""); RETURN_ERROR_IF(litlengthMaxValue > MaxLL, dictionary_corrupted, ""); RETURN_ERROR_IF(litlengthLog > LLFSELog, dictionary_corrupted, ""); ZSTD_buildFSETable( entropy->LLTable, litlengthNCount, litlengthMaxValue, LL_base, LL_bits, litlengthLog, entropy->workspace, sizeof(entropy->workspace), /* bmi2 */ 0); dictPtr += litlengthHeaderSize; } RETURN_ERROR_IF(dictPtr+12 > dictEnd, dictionary_corrupted, ""); { int i; size_t const dictContentSize = (size_t)(dictEnd - (dictPtr+12)); for (i=0; i<3; i++) { U32 const rep = MEM_readLE32(dictPtr); dictPtr += 4; RETURN_ERROR_IF(rep==0 || rep > dictContentSize, dictionary_corrupted, ""); entropy->rep[i] = rep; } } return (size_t)(dictPtr - (const BYTE*)dict); } static size_t ZSTD_decompress_insertDictionary(ZSTD_DCtx* dctx, const void* dict, size_t dictSize) { if (dictSize < 8) return ZSTD_refDictContent(dctx, dict, dictSize); { U32 const magic = MEM_readLE32(dict); if (magic != ZSTD_MAGIC_DICTIONARY) { return ZSTD_refDictContent(dctx, dict, dictSize); /* pure content mode */ } } dctx->dictID = MEM_readLE32((const char*)dict + ZSTD_FRAMEIDSIZE); /* load entropy tables */ { size_t const eSize = ZSTD_loadDEntropy(&dctx->entropy, dict, dictSize); RETURN_ERROR_IF(ZSTD_isError(eSize), dictionary_corrupted, ""); dict = (const char*)dict + eSize; dictSize -= eSize; } dctx->litEntropy = dctx->fseEntropy = 1; /* reference dictionary content */ return ZSTD_refDictContent(dctx, dict, dictSize); } size_t ZSTD_decompressBegin(ZSTD_DCtx* dctx) { assert(dctx != NULL); #if ZSTD_TRACE dctx->traceCtx = (ZSTD_trace_decompress_begin != NULL) ? ZSTD_trace_decompress_begin(dctx) : 0; #endif dctx->expected = ZSTD_startingInputLength(dctx->format); /* dctx->format must be properly set */ dctx->stage = ZSTDds_getFrameHeaderSize; dctx->processedCSize = 0; dctx->decodedSize = 0; dctx->previousDstEnd = NULL; dctx->prefixStart = NULL; dctx->virtualStart = NULL; dctx->dictEnd = NULL; dctx->entropy.hufTable[0] = (HUF_DTable)((ZSTD_HUFFDTABLE_CAPACITY_LOG)*0x1000001); /* cover both little and big endian */ dctx->litEntropy = dctx->fseEntropy = 0; dctx->dictID = 0; dctx->bType = bt_reserved; ZSTD_STATIC_ASSERT(sizeof(dctx->entropy.rep) == sizeof(repStartValue)); ZSTD_memcpy(dctx->entropy.rep, repStartValue, sizeof(repStartValue)); /* initial repcodes */ dctx->LLTptr = dctx->entropy.LLTable; dctx->MLTptr = dctx->entropy.MLTable; dctx->OFTptr = dctx->entropy.OFTable; dctx->HUFptr = dctx->entropy.hufTable; return 0; } size_t ZSTD_decompressBegin_usingDict(ZSTD_DCtx* dctx, const void* dict, size_t dictSize) { FORWARD_IF_ERROR( ZSTD_decompressBegin(dctx) , ""); if (dict && dictSize) RETURN_ERROR_IF( ZSTD_isError(ZSTD_decompress_insertDictionary(dctx, dict, dictSize)), dictionary_corrupted, ""); return 0; } /* ====== ZSTD_DDict ====== */ size_t ZSTD_decompressBegin_usingDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict) { DEBUGLOG(4, "ZSTD_decompressBegin_usingDDict"); assert(dctx != NULL); if (ddict) { const char* const dictStart = (const char*)ZSTD_DDict_dictContent(ddict); size_t const dictSize = ZSTD_DDict_dictSize(ddict); const void* const dictEnd = dictStart + dictSize; dctx->ddictIsCold = (dctx->dictEnd != dictEnd); DEBUGLOG(4, "DDict is %s", dctx->ddictIsCold ? "~cold~" : "hot!"); } FORWARD_IF_ERROR( ZSTD_decompressBegin(dctx) , ""); if (ddict) { /* NULL ddict is equivalent to no dictionary */ ZSTD_copyDDictParameters(dctx, ddict); } return 0; } /*! ZSTD_getDictID_fromDict() : * Provides the dictID stored within dictionary. * if @return == 0, the dictionary is not conformant with Zstandard specification. * It can still be loaded, but as a content-only dictionary. */ unsigned ZSTD_getDictID_fromDict(const void* dict, size_t dictSize) { if (dictSize < 8) return 0; if (MEM_readLE32(dict) != ZSTD_MAGIC_DICTIONARY) return 0; return MEM_readLE32((const char*)dict + ZSTD_FRAMEIDSIZE); } /*! ZSTD_getDictID_fromFrame() : * Provides the dictID required to decompress frame stored within `src`. * If @return == 0, the dictID could not be decoded. * This could for one of the following reasons : * - The frame does not require a dictionary (most common case). * - The frame was built with dictID intentionally removed. * Needed dictionary is a hidden piece of information. * Note : this use case also happens when using a non-conformant dictionary. * - `srcSize` is too small, and as a result, frame header could not be decoded. * Note : possible if `srcSize < ZSTD_FRAMEHEADERSIZE_MAX`. * - This is not a Zstandard frame. * When identifying the exact failure cause, it's possible to use * ZSTD_getFrameHeader(), which will provide a more precise error code. */ unsigned ZSTD_getDictID_fromFrame(const void* src, size_t srcSize) { ZSTD_frameHeader zfp = { 0, 0, 0, ZSTD_frame, 0, 0, 0, 0, 0 }; size_t const hError = ZSTD_getFrameHeader(&zfp, src, srcSize); if (ZSTD_isError(hError)) return 0; return zfp.dictID; } /*! ZSTD_decompress_usingDDict() : * Decompression using a pre-digested Dictionary * Use dictionary without significant overhead. */ size_t ZSTD_decompress_usingDDict(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const ZSTD_DDict* ddict) { /* pass content and size in case legacy frames are encountered */ return ZSTD_decompressMultiFrame(dctx, dst, dstCapacity, src, srcSize, NULL, 0, ddict); } /*===================================== * Streaming decompression *====================================*/ ZSTD_DStream* ZSTD_createDStream(void) { DEBUGLOG(3, "ZSTD_createDStream"); return ZSTD_createDCtx_internal(ZSTD_defaultCMem); } ZSTD_DStream* ZSTD_initStaticDStream(void *workspace, size_t workspaceSize) { return ZSTD_initStaticDCtx(workspace, workspaceSize); } ZSTD_DStream* ZSTD_createDStream_advanced(ZSTD_customMem customMem) { return ZSTD_createDCtx_internal(customMem); } size_t ZSTD_freeDStream(ZSTD_DStream* zds) { return ZSTD_freeDCtx(zds); } /* *** Initialization *** */ size_t ZSTD_DStreamInSize(void) { return ZSTD_BLOCKSIZE_MAX + ZSTD_blockHeaderSize; } size_t ZSTD_DStreamOutSize(void) { return ZSTD_BLOCKSIZE_MAX; } size_t ZSTD_DCtx_loadDictionary_advanced(ZSTD_DCtx* dctx, const void* dict, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType) { RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong, ""); ZSTD_clearDict(dctx); if (dict && dictSize != 0) { dctx->ddictLocal = ZSTD_createDDict_advanced(dict, dictSize, dictLoadMethod, dictContentType, dctx->customMem); RETURN_ERROR_IF(dctx->ddictLocal == NULL, memory_allocation, "NULL pointer!"); dctx->ddict = dctx->ddictLocal; dctx->dictUses = ZSTD_use_indefinitely; } return 0; } size_t ZSTD_DCtx_loadDictionary_byReference(ZSTD_DCtx* dctx, const void* dict, size_t dictSize) { return ZSTD_DCtx_loadDictionary_advanced(dctx, dict, dictSize, ZSTD_dlm_byRef, ZSTD_dct_auto); } size_t ZSTD_DCtx_loadDictionary(ZSTD_DCtx* dctx, const void* dict, size_t dictSize) { return ZSTD_DCtx_loadDictionary_advanced(dctx, dict, dictSize, ZSTD_dlm_byCopy, ZSTD_dct_auto); } size_t ZSTD_DCtx_refPrefix_advanced(ZSTD_DCtx* dctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType) { FORWARD_IF_ERROR(ZSTD_DCtx_loadDictionary_advanced(dctx, prefix, prefixSize, ZSTD_dlm_byRef, dictContentType), ""); dctx->dictUses = ZSTD_use_once; return 0; } size_t ZSTD_DCtx_refPrefix(ZSTD_DCtx* dctx, const void* prefix, size_t prefixSize) { return ZSTD_DCtx_refPrefix_advanced(dctx, prefix, prefixSize, ZSTD_dct_rawContent); } /* ZSTD_initDStream_usingDict() : * return : expected size, aka ZSTD_startingInputLength(). * this function cannot fail */ size_t ZSTD_initDStream_usingDict(ZSTD_DStream* zds, const void* dict, size_t dictSize) { DEBUGLOG(4, "ZSTD_initDStream_usingDict"); FORWARD_IF_ERROR( ZSTD_DCtx_reset(zds, ZSTD_reset_session_only) , ""); FORWARD_IF_ERROR( ZSTD_DCtx_loadDictionary(zds, dict, dictSize) , ""); return ZSTD_startingInputLength(zds->format); } /* note : this variant can't fail */ size_t ZSTD_initDStream(ZSTD_DStream* zds) { DEBUGLOG(4, "ZSTD_initDStream"); FORWARD_IF_ERROR(ZSTD_DCtx_reset(zds, ZSTD_reset_session_only), ""); FORWARD_IF_ERROR(ZSTD_DCtx_refDDict(zds, NULL), ""); return ZSTD_startingInputLength(zds->format); } /* ZSTD_initDStream_usingDDict() : * ddict will just be referenced, and must outlive decompression session * this function cannot fail */ size_t ZSTD_initDStream_usingDDict(ZSTD_DStream* dctx, const ZSTD_DDict* ddict) { DEBUGLOG(4, "ZSTD_initDStream_usingDDict"); FORWARD_IF_ERROR( ZSTD_DCtx_reset(dctx, ZSTD_reset_session_only) , ""); FORWARD_IF_ERROR( ZSTD_DCtx_refDDict(dctx, ddict) , ""); return ZSTD_startingInputLength(dctx->format); } /* ZSTD_resetDStream() : * return : expected size, aka ZSTD_startingInputLength(). * this function cannot fail */ size_t ZSTD_resetDStream(ZSTD_DStream* dctx) { DEBUGLOG(4, "ZSTD_resetDStream"); FORWARD_IF_ERROR(ZSTD_DCtx_reset(dctx, ZSTD_reset_session_only), ""); return ZSTD_startingInputLength(dctx->format); } size_t ZSTD_DCtx_refDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict) { RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong, ""); ZSTD_clearDict(dctx); if (ddict) { dctx->ddict = ddict; dctx->dictUses = ZSTD_use_indefinitely; if (dctx->refMultipleDDicts == ZSTD_rmd_refMultipleDDicts) { if (dctx->ddictSet == NULL) { dctx->ddictSet = ZSTD_createDDictHashSet(dctx->customMem); if (!dctx->ddictSet) { RETURN_ERROR(memory_allocation, "Failed to allocate memory for hash set!"); } } assert(!dctx->staticSize); /* Impossible: ddictSet cannot have been allocated if static dctx */ FORWARD_IF_ERROR(ZSTD_DDictHashSet_addDDict(dctx->ddictSet, ddict, dctx->customMem), ""); } } return 0; } /* ZSTD_DCtx_setMaxWindowSize() : * note : no direct equivalence in ZSTD_DCtx_setParameter, * since this version sets windowSize, and the other sets windowLog */ size_t ZSTD_DCtx_setMaxWindowSize(ZSTD_DCtx* dctx, size_t maxWindowSize) { ZSTD_bounds const bounds = ZSTD_dParam_getBounds(ZSTD_d_windowLogMax); size_t const min = (size_t)1 << bounds.lowerBound; size_t const max = (size_t)1 << bounds.upperBound; RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong, ""); RETURN_ERROR_IF(maxWindowSize < min, parameter_outOfBound, ""); RETURN_ERROR_IF(maxWindowSize > max, parameter_outOfBound, ""); dctx->maxWindowSize = maxWindowSize; return 0; } size_t ZSTD_DCtx_setFormat(ZSTD_DCtx* dctx, ZSTD_format_e format) { return ZSTD_DCtx_setParameter(dctx, ZSTD_d_format, (int)format); } ZSTD_bounds ZSTD_dParam_getBounds(ZSTD_dParameter dParam) { ZSTD_bounds bounds = { 0, 0, 0 }; switch(dParam) { case ZSTD_d_windowLogMax: bounds.lowerBound = ZSTD_WINDOWLOG_ABSOLUTEMIN; bounds.upperBound = ZSTD_WINDOWLOG_MAX; return bounds; case ZSTD_d_format: bounds.lowerBound = (int)ZSTD_f_zstd1; bounds.upperBound = (int)ZSTD_f_zstd1_magicless; ZSTD_STATIC_ASSERT(ZSTD_f_zstd1 < ZSTD_f_zstd1_magicless); return bounds; case ZSTD_d_stableOutBuffer: bounds.lowerBound = (int)ZSTD_bm_buffered; bounds.upperBound = (int)ZSTD_bm_stable; return bounds; case ZSTD_d_forceIgnoreChecksum: bounds.lowerBound = (int)ZSTD_d_validateChecksum; bounds.upperBound = (int)ZSTD_d_ignoreChecksum; return bounds; case ZSTD_d_refMultipleDDicts: bounds.lowerBound = (int)ZSTD_rmd_refSingleDDict; bounds.upperBound = (int)ZSTD_rmd_refMultipleDDicts; return bounds; case ZSTD_d_disableHuffmanAssembly: bounds.lowerBound = 0; bounds.upperBound = 1; return bounds; default:; } bounds.error = ERROR(parameter_unsupported); return bounds; } /* ZSTD_dParam_withinBounds: * @return 1 if value is within dParam bounds, * 0 otherwise */ static int ZSTD_dParam_withinBounds(ZSTD_dParameter dParam, int value) { ZSTD_bounds const bounds = ZSTD_dParam_getBounds(dParam); if (ZSTD_isError(bounds.error)) return 0; if (value < bounds.lowerBound) return 0; if (value > bounds.upperBound) return 0; return 1; } #define CHECK_DBOUNDS(p,v) { \ RETURN_ERROR_IF(!ZSTD_dParam_withinBounds(p, v), parameter_outOfBound, ""); \ } size_t ZSTD_DCtx_getParameter(ZSTD_DCtx* dctx, ZSTD_dParameter param, int* value) { switch (param) { case ZSTD_d_windowLogMax: *value = (int)ZSTD_highbit32((U32)dctx->maxWindowSize); return 0; case ZSTD_d_format: *value = (int)dctx->format; return 0; case ZSTD_d_stableOutBuffer: *value = (int)dctx->outBufferMode; return 0; case ZSTD_d_forceIgnoreChecksum: *value = (int)dctx->forceIgnoreChecksum; return 0; case ZSTD_d_refMultipleDDicts: *value = (int)dctx->refMultipleDDicts; return 0; case ZSTD_d_disableHuffmanAssembly: *value = (int)dctx->disableHufAsm; return 0; default:; } RETURN_ERROR(parameter_unsupported, ""); } size_t ZSTD_DCtx_setParameter(ZSTD_DCtx* dctx, ZSTD_dParameter dParam, int value) { RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong, ""); switch(dParam) { case ZSTD_d_windowLogMax: if (value == 0) value = ZSTD_WINDOWLOG_LIMIT_DEFAULT; CHECK_DBOUNDS(ZSTD_d_windowLogMax, value); dctx->maxWindowSize = ((size_t)1) << value; return 0; case ZSTD_d_format: CHECK_DBOUNDS(ZSTD_d_format, value); dctx->format = (ZSTD_format_e)value; return 0; case ZSTD_d_stableOutBuffer: CHECK_DBOUNDS(ZSTD_d_stableOutBuffer, value); dctx->outBufferMode = (ZSTD_bufferMode_e)value; return 0; case ZSTD_d_forceIgnoreChecksum: CHECK_DBOUNDS(ZSTD_d_forceIgnoreChecksum, value); dctx->forceIgnoreChecksum = (ZSTD_forceIgnoreChecksum_e)value; return 0; case ZSTD_d_refMultipleDDicts: CHECK_DBOUNDS(ZSTD_d_refMultipleDDicts, value); if (dctx->staticSize != 0) { RETURN_ERROR(parameter_unsupported, "Static dctx does not support multiple DDicts!"); } dctx->refMultipleDDicts = (ZSTD_refMultipleDDicts_e)value; return 0; case ZSTD_d_disableHuffmanAssembly: CHECK_DBOUNDS(ZSTD_d_disableHuffmanAssembly, value); dctx->disableHufAsm = value != 0; return 0; default:; } RETURN_ERROR(parameter_unsupported, ""); } size_t ZSTD_DCtx_reset(ZSTD_DCtx* dctx, ZSTD_ResetDirective reset) { if ( (reset == ZSTD_reset_session_only) || (reset == ZSTD_reset_session_and_parameters) ) { dctx->streamStage = zdss_init; dctx->noForwardProgress = 0; } if ( (reset == ZSTD_reset_parameters) || (reset == ZSTD_reset_session_and_parameters) ) { RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong, ""); ZSTD_clearDict(dctx); ZSTD_DCtx_resetParameters(dctx); } return 0; } size_t ZSTD_sizeof_DStream(const ZSTD_DStream* dctx) { return ZSTD_sizeof_DCtx(dctx); } size_t ZSTD_decodingBufferSize_min(unsigned long long windowSize, unsigned long long frameContentSize) { size_t const blockSize = (size_t) MIN(windowSize, ZSTD_BLOCKSIZE_MAX); /* space is needed to store the litbuffer after the output of a given block without stomping the extDict of a previous run, as well as to cover both windows against wildcopy*/ unsigned long long const neededRBSize = windowSize + blockSize + ZSTD_BLOCKSIZE_MAX + (WILDCOPY_OVERLENGTH * 2); unsigned long long const neededSize = MIN(frameContentSize, neededRBSize); size_t const minRBSize = (size_t) neededSize; RETURN_ERROR_IF((unsigned long long)minRBSize != neededSize, frameParameter_windowTooLarge, ""); return minRBSize; } size_t ZSTD_estimateDStreamSize(size_t windowSize) { size_t const blockSize = MIN(windowSize, ZSTD_BLOCKSIZE_MAX); size_t const inBuffSize = blockSize; /* no block can be larger */ size_t const outBuffSize = ZSTD_decodingBufferSize_min(windowSize, ZSTD_CONTENTSIZE_UNKNOWN); return ZSTD_estimateDCtxSize() + inBuffSize + outBuffSize; } size_t ZSTD_estimateDStreamSize_fromFrame(const void* src, size_t srcSize) { U32 const windowSizeMax = 1U << ZSTD_WINDOWLOG_MAX; /* note : should be user-selectable, but requires an additional parameter (or a dctx) */ ZSTD_frameHeader zfh; size_t const err = ZSTD_getFrameHeader(&zfh, src, srcSize); if (ZSTD_isError(err)) return err; RETURN_ERROR_IF(err>0, srcSize_wrong, ""); RETURN_ERROR_IF(zfh.windowSize > windowSizeMax, frameParameter_windowTooLarge, ""); return ZSTD_estimateDStreamSize((size_t)zfh.windowSize); } /* ***** Decompression ***** */ static int ZSTD_DCtx_isOverflow(ZSTD_DStream* zds, size_t const neededInBuffSize, size_t const neededOutBuffSize) { return (zds->inBuffSize + zds->outBuffSize) >= (neededInBuffSize + neededOutBuffSize) * ZSTD_WORKSPACETOOLARGE_FACTOR; } static void ZSTD_DCtx_updateOversizedDuration(ZSTD_DStream* zds, size_t const neededInBuffSize, size_t const neededOutBuffSize) { if (ZSTD_DCtx_isOverflow(zds, neededInBuffSize, neededOutBuffSize)) zds->oversizedDuration++; else zds->oversizedDuration = 0; } static int ZSTD_DCtx_isOversizedTooLong(ZSTD_DStream* zds) { return zds->oversizedDuration >= ZSTD_WORKSPACETOOLARGE_MAXDURATION; } /* Checks that the output buffer hasn't changed if ZSTD_obm_stable is used. */ static size_t ZSTD_checkOutBuffer(ZSTD_DStream const* zds, ZSTD_outBuffer const* output) { ZSTD_outBuffer const expect = zds->expectedOutBuffer; /* No requirement when ZSTD_obm_stable is not enabled. */ if (zds->outBufferMode != ZSTD_bm_stable) return 0; /* Any buffer is allowed in zdss_init, this must be the same for every other call until * the context is reset. */ if (zds->streamStage == zdss_init) return 0; /* The buffer must match our expectation exactly. */ if (expect.dst == output->dst && expect.pos == output->pos && expect.size == output->size) return 0; RETURN_ERROR(dstBuffer_wrong, "ZSTD_d_stableOutBuffer enabled but output differs!"); } /* Calls ZSTD_decompressContinue() with the right parameters for ZSTD_decompressStream() * and updates the stage and the output buffer state. This call is extracted so it can be * used both when reading directly from the ZSTD_inBuffer, and in buffered input mode. * NOTE: You must break after calling this function since the streamStage is modified. */ static size_t ZSTD_decompressContinueStream( ZSTD_DStream* zds, char** op, char* oend, void const* src, size_t srcSize) { int const isSkipFrame = ZSTD_isSkipFrame(zds); if (zds->outBufferMode == ZSTD_bm_buffered) { size_t const dstSize = isSkipFrame ? 0 : zds->outBuffSize - zds->outStart; size_t const decodedSize = ZSTD_decompressContinue(zds, zds->outBuff + zds->outStart, dstSize, src, srcSize); FORWARD_IF_ERROR(decodedSize, ""); if (!decodedSize && !isSkipFrame) { zds->streamStage = zdss_read; } else { zds->outEnd = zds->outStart + decodedSize; zds->streamStage = zdss_flush; } } else { /* Write directly into the output buffer */ size_t const dstSize = isSkipFrame ? 0 : (size_t)(oend - *op); size_t const decodedSize = ZSTD_decompressContinue(zds, *op, dstSize, src, srcSize); FORWARD_IF_ERROR(decodedSize, ""); *op += decodedSize; /* Flushing is not needed. */ zds->streamStage = zdss_read; assert(*op <= oend); assert(zds->outBufferMode == ZSTD_bm_stable); } return 0; } size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inBuffer* input) { const char* const src = (const char*)input->src; const char* const istart = input->pos != 0 ? src + input->pos : src; const char* const iend = input->size != 0 ? src + input->size : src; const char* ip = istart; char* const dst = (char*)output->dst; char* const ostart = output->pos != 0 ? dst + output->pos : dst; char* const oend = output->size != 0 ? dst + output->size : dst; char* op = ostart; U32 someMoreWork = 1; DEBUGLOG(5, "ZSTD_decompressStream"); RETURN_ERROR_IF( input->pos > input->size, srcSize_wrong, "forbidden. in: pos: %u vs size: %u", (U32)input->pos, (U32)input->size); RETURN_ERROR_IF( output->pos > output->size, dstSize_tooSmall, "forbidden. out: pos: %u vs size: %u", (U32)output->pos, (U32)output->size); DEBUGLOG(5, "input size : %u", (U32)(input->size - input->pos)); FORWARD_IF_ERROR(ZSTD_checkOutBuffer(zds, output), ""); while (someMoreWork) { switch(zds->streamStage) { case zdss_init : DEBUGLOG(5, "stage zdss_init => transparent reset "); zds->streamStage = zdss_loadHeader; zds->lhSize = zds->inPos = zds->outStart = zds->outEnd = 0; #if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1) zds->legacyVersion = 0; #endif zds->hostageByte = 0; zds->expectedOutBuffer = *output; ZSTD_FALLTHROUGH; case zdss_loadHeader : DEBUGLOG(5, "stage zdss_loadHeader (srcSize : %u)", (U32)(iend - ip)); #if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1) if (zds->legacyVersion) { RETURN_ERROR_IF(zds->staticSize, memory_allocation, "legacy support is incompatible with static dctx"); { size_t const hint = ZSTD_decompressLegacyStream(zds->legacyContext, zds->legacyVersion, output, input); if (hint==0) zds->streamStage = zdss_init; return hint; } } #endif { size_t const hSize = ZSTD_getFrameHeader_advanced(&zds->fParams, zds->headerBuffer, zds->lhSize, zds->format); if (zds->refMultipleDDicts && zds->ddictSet) { ZSTD_DCtx_selectFrameDDict(zds); } if (ZSTD_isError(hSize)) { #if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1) U32 const legacyVersion = ZSTD_isLegacy(istart, iend-istart); if (legacyVersion) { ZSTD_DDict const* const ddict = ZSTD_getDDict(zds); const void* const dict = ddict ? ZSTD_DDict_dictContent(ddict) : NULL; size_t const dictSize = ddict ? ZSTD_DDict_dictSize(ddict) : 0; DEBUGLOG(5, "ZSTD_decompressStream: detected legacy version v0.%u", legacyVersion); RETURN_ERROR_IF(zds->staticSize, memory_allocation, "legacy support is incompatible with static dctx"); FORWARD_IF_ERROR(ZSTD_initLegacyStream(&zds->legacyContext, zds->previousLegacyVersion, legacyVersion, dict, dictSize), ""); zds->legacyVersion = zds->previousLegacyVersion = legacyVersion; { size_t const hint = ZSTD_decompressLegacyStream(zds->legacyContext, legacyVersion, output, input); if (hint==0) zds->streamStage = zdss_init; /* or stay in stage zdss_loadHeader */ return hint; } } #endif return hSize; /* error */ } if (hSize != 0) { /* need more input */ size_t const toLoad = hSize - zds->lhSize; /* if hSize!=0, hSize > zds->lhSize */ size_t const remainingInput = (size_t)(iend-ip); assert(iend >= ip); if (toLoad > remainingInput) { /* not enough input to load full header */ if (remainingInput > 0) { ZSTD_memcpy(zds->headerBuffer + zds->lhSize, ip, remainingInput); zds->lhSize += remainingInput; } input->pos = input->size; /* check first few bytes */ FORWARD_IF_ERROR( ZSTD_getFrameHeader_advanced(&zds->fParams, zds->headerBuffer, zds->lhSize, zds->format), "First few bytes detected incorrect" ); /* return hint input size */ return (MAX((size_t)ZSTD_FRAMEHEADERSIZE_MIN(zds->format), hSize) - zds->lhSize) + ZSTD_blockHeaderSize; /* remaining header bytes + next block header */ } assert(ip != NULL); ZSTD_memcpy(zds->headerBuffer + zds->lhSize, ip, toLoad); zds->lhSize = hSize; ip += toLoad; break; } } /* check for single-pass mode opportunity */ if (zds->fParams.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN && zds->fParams.frameType != ZSTD_skippableFrame && (U64)(size_t)(oend-op) >= zds->fParams.frameContentSize) { size_t const cSize = ZSTD_findFrameCompressedSize(istart, (size_t)(iend-istart)); if (cSize <= (size_t)(iend-istart)) { /* shortcut : using single-pass mode */ size_t const decompressedSize = ZSTD_decompress_usingDDict(zds, op, (size_t)(oend-op), istart, cSize, ZSTD_getDDict(zds)); if (ZSTD_isError(decompressedSize)) return decompressedSize; DEBUGLOG(4, "shortcut to single-pass ZSTD_decompress_usingDDict()") assert(istart != NULL); ip = istart + cSize; op = op ? op + decompressedSize : op; /* can occur if frameContentSize = 0 (empty frame) */ zds->expected = 0; zds->streamStage = zdss_init; someMoreWork = 0; break; } } /* Check output buffer is large enough for ZSTD_odm_stable. */ if (zds->outBufferMode == ZSTD_bm_stable && zds->fParams.frameType != ZSTD_skippableFrame && zds->fParams.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN && (U64)(size_t)(oend-op) < zds->fParams.frameContentSize) { RETURN_ERROR(dstSize_tooSmall, "ZSTD_obm_stable passed but ZSTD_outBuffer is too small"); } /* Consume header (see ZSTDds_decodeFrameHeader) */ DEBUGLOG(4, "Consume header"); FORWARD_IF_ERROR(ZSTD_decompressBegin_usingDDict(zds, ZSTD_getDDict(zds)), ""); if ((MEM_readLE32(zds->headerBuffer) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { /* skippable frame */ zds->expected = MEM_readLE32(zds->headerBuffer + ZSTD_FRAMEIDSIZE); zds->stage = ZSTDds_skipFrame; } else { FORWARD_IF_ERROR(ZSTD_decodeFrameHeader(zds, zds->headerBuffer, zds->lhSize), ""); zds->expected = ZSTD_blockHeaderSize; zds->stage = ZSTDds_decodeBlockHeader; } /* control buffer memory usage */ DEBUGLOG(4, "Control max memory usage (%u KB <= max %u KB)", (U32)(zds->fParams.windowSize >>10), (U32)(zds->maxWindowSize >> 10) ); zds->fParams.windowSize = MAX(zds->fParams.windowSize, 1U << ZSTD_WINDOWLOG_ABSOLUTEMIN); RETURN_ERROR_IF(zds->fParams.windowSize > zds->maxWindowSize, frameParameter_windowTooLarge, ""); /* Adapt buffer sizes to frame header instructions */ { size_t const neededInBuffSize = MAX(zds->fParams.blockSizeMax, 4 /* frame checksum */); size_t const neededOutBuffSize = zds->outBufferMode == ZSTD_bm_buffered ? ZSTD_decodingBufferSize_min(zds->fParams.windowSize, zds->fParams.frameContentSize) : 0; ZSTD_DCtx_updateOversizedDuration(zds, neededInBuffSize, neededOutBuffSize); { int const tooSmall = (zds->inBuffSize < neededInBuffSize) || (zds->outBuffSize < neededOutBuffSize); int const tooLarge = ZSTD_DCtx_isOversizedTooLong(zds); if (tooSmall || tooLarge) { size_t const bufferSize = neededInBuffSize + neededOutBuffSize; DEBUGLOG(4, "inBuff : from %u to %u", (U32)zds->inBuffSize, (U32)neededInBuffSize); DEBUGLOG(4, "outBuff : from %u to %u", (U32)zds->outBuffSize, (U32)neededOutBuffSize); if (zds->staticSize) { /* static DCtx */ DEBUGLOG(4, "staticSize : %u", (U32)zds->staticSize); assert(zds->staticSize >= sizeof(ZSTD_DCtx)); /* controlled at init */ RETURN_ERROR_IF( bufferSize > zds->staticSize - sizeof(ZSTD_DCtx), memory_allocation, ""); } else { ZSTD_customFree(zds->inBuff, zds->customMem); zds->inBuffSize = 0; zds->outBuffSize = 0; zds->inBuff = (char*)ZSTD_customMalloc(bufferSize, zds->customMem); RETURN_ERROR_IF(zds->inBuff == NULL, memory_allocation, ""); } zds->inBuffSize = neededInBuffSize; zds->outBuff = zds->inBuff + zds->inBuffSize; zds->outBuffSize = neededOutBuffSize; } } } zds->streamStage = zdss_read; ZSTD_FALLTHROUGH; case zdss_read: DEBUGLOG(5, "stage zdss_read"); { size_t const neededInSize = ZSTD_nextSrcSizeToDecompressWithInputSize(zds, (size_t)(iend - ip)); DEBUGLOG(5, "neededInSize = %u", (U32)neededInSize); if (neededInSize==0) { /* end of frame */ zds->streamStage = zdss_init; someMoreWork = 0; break; } if ((size_t)(iend-ip) >= neededInSize) { /* decode directly from src */ FORWARD_IF_ERROR(ZSTD_decompressContinueStream(zds, &op, oend, ip, neededInSize), ""); assert(ip != NULL); ip += neededInSize; /* Function modifies the stage so we must break */ break; } } if (ip==iend) { someMoreWork = 0; break; } /* no more input */ zds->streamStage = zdss_load; ZSTD_FALLTHROUGH; case zdss_load: { size_t const neededInSize = ZSTD_nextSrcSizeToDecompress(zds); size_t const toLoad = neededInSize - zds->inPos; int const isSkipFrame = ZSTD_isSkipFrame(zds); size_t loadedSize; /* At this point we shouldn't be decompressing a block that we can stream. */ assert(neededInSize == ZSTD_nextSrcSizeToDecompressWithInputSize(zds, (size_t)(iend - ip))); if (isSkipFrame) { loadedSize = MIN(toLoad, (size_t)(iend-ip)); } else { RETURN_ERROR_IF(toLoad > zds->inBuffSize - zds->inPos, corruption_detected, "should never happen"); loadedSize = ZSTD_limitCopy(zds->inBuff + zds->inPos, toLoad, ip, (size_t)(iend-ip)); } if (loadedSize != 0) { /* ip may be NULL */ ip += loadedSize; zds->inPos += loadedSize; } if (loadedSize < toLoad) { someMoreWork = 0; break; } /* not enough input, wait for more */ /* decode loaded input */ zds->inPos = 0; /* input is consumed */ FORWARD_IF_ERROR(ZSTD_decompressContinueStream(zds, &op, oend, zds->inBuff, neededInSize), ""); /* Function modifies the stage so we must break */ break; } case zdss_flush: { size_t const toFlushSize = zds->outEnd - zds->outStart; size_t const flushedSize = ZSTD_limitCopy(op, (size_t)(oend-op), zds->outBuff + zds->outStart, toFlushSize); op = op ? op + flushedSize : op; zds->outStart += flushedSize; if (flushedSize == toFlushSize) { /* flush completed */ zds->streamStage = zdss_read; if ( (zds->outBuffSize < zds->fParams.frameContentSize) && (zds->outStart + zds->fParams.blockSizeMax > zds->outBuffSize) ) { DEBUGLOG(5, "restart filling outBuff from beginning (left:%i, needed:%u)", (int)(zds->outBuffSize - zds->outStart), (U32)zds->fParams.blockSizeMax); zds->outStart = zds->outEnd = 0; } break; } } /* cannot complete flush */ someMoreWork = 0; break; default: assert(0); /* impossible */ RETURN_ERROR(GENERIC, "impossible to reach"); /* some compilers require default to do something */ } } /* result */ input->pos = (size_t)(ip - (const char*)(input->src)); output->pos = (size_t)(op - (char*)(output->dst)); /* Update the expected output buffer for ZSTD_obm_stable. */ zds->expectedOutBuffer = *output; if ((ip==istart) && (op==ostart)) { /* no forward progress */ zds->noForwardProgress ++; if (zds->noForwardProgress >= ZSTD_NO_FORWARD_PROGRESS_MAX) { RETURN_ERROR_IF(op==oend, noForwardProgress_destFull, ""); RETURN_ERROR_IF(ip==iend, noForwardProgress_inputEmpty, ""); assert(0); } } else { zds->noForwardProgress = 0; } { size_t nextSrcSizeHint = ZSTD_nextSrcSizeToDecompress(zds); if (!nextSrcSizeHint) { /* frame fully decoded */ if (zds->outEnd == zds->outStart) { /* output fully flushed */ if (zds->hostageByte) { if (input->pos >= input->size) { /* can't release hostage (not present) */ zds->streamStage = zdss_read; return 1; } input->pos++; /* release hostage */ } /* zds->hostageByte */ return 0; } /* zds->outEnd == zds->outStart */ if (!zds->hostageByte) { /* output not fully flushed; keep last byte as hostage; will be released when all output is flushed */ input->pos--; /* note : pos > 0, otherwise, impossible to finish reading last block */ zds->hostageByte=1; } return 1; } /* nextSrcSizeHint==0 */ nextSrcSizeHint += ZSTD_blockHeaderSize * (ZSTD_nextInputType(zds) == ZSTDnit_block); /* preload header of next block */ assert(zds->inPos <= nextSrcSizeHint); nextSrcSizeHint -= zds->inPos; /* part already loaded*/ return nextSrcSizeHint; } } size_t ZSTD_decompressStream_simpleArgs ( ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, size_t* dstPos, const void* src, size_t srcSize, size_t* srcPos) { ZSTD_outBuffer output; ZSTD_inBuffer input; output.dst = dst; output.size = dstCapacity; output.pos = *dstPos; input.src = src; input.size = srcSize; input.pos = *srcPos; { size_t const cErr = ZSTD_decompressStream(dctx, &output, &input); *dstPos = output.pos; *srcPos = input.pos; return cErr; } } zstd-1.5.5.1/zstd/lib/decompress/huf_decompress.c0000664000175000017500000021774514413353730022560 0ustar sergeysergey00000000000000/* ****************************************************************** * huff0 huffman decoder, * part of Finite State Entropy library * Copyright (c) Meta Platforms, Inc. and affiliates. * * You can contact the author at : * - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy * * This source code is licensed under both the BSD-style license (found in the * LICENSE file in the root directory of this source tree) and the GPLv2 (found * in the COPYING file in the root directory of this source tree). * You may select, at your option, one of the above-listed licenses. ****************************************************************** */ /* ************************************************************** * Dependencies ****************************************************************/ #include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset */ #include "../common/compiler.h" #include "../common/bitstream.h" /* BIT_* */ #include "../common/fse.h" /* to compress headers */ #include "../common/huf.h" #include "../common/error_private.h" #include "../common/zstd_internal.h" #include "../common/bits.h" /* ZSTD_highbit32, ZSTD_countTrailingZeros64 */ /* ************************************************************** * Constants ****************************************************************/ #define HUF_DECODER_FAST_TABLELOG 11 /* ************************************************************** * Macros ****************************************************************/ /* These two optional macros force the use one way or another of the two * Huffman decompression implementations. You can't force in both directions * at the same time. */ #if defined(HUF_FORCE_DECOMPRESS_X1) && \ defined(HUF_FORCE_DECOMPRESS_X2) #error "Cannot force the use of the X1 and X2 decoders at the same time!" #endif /* When DYNAMIC_BMI2 is enabled, fast decoders are only called when bmi2 is * supported at runtime, so we can add the BMI2 target attribute. * When it is disabled, we will still get BMI2 if it is enabled statically. */ #if DYNAMIC_BMI2 # define HUF_FAST_BMI2_ATTRS BMI2_TARGET_ATTRIBUTE #else # define HUF_FAST_BMI2_ATTRS #endif #ifdef __cplusplus # define HUF_EXTERN_C extern "C" #else # define HUF_EXTERN_C #endif #define HUF_ASM_DECL HUF_EXTERN_C #if DYNAMIC_BMI2 # define HUF_NEED_BMI2_FUNCTION 1 #else # define HUF_NEED_BMI2_FUNCTION 0 #endif /* ************************************************************** * Error Management ****************************************************************/ #define HUF_isError ERR_isError /* ************************************************************** * Byte alignment for workSpace management ****************************************************************/ #define HUF_ALIGN(x, a) HUF_ALIGN_MASK((x), (a) - 1) #define HUF_ALIGN_MASK(x, mask) (((x) + (mask)) & ~(mask)) /* ************************************************************** * BMI2 Variant Wrappers ****************************************************************/ typedef size_t (*HUF_DecompressUsingDTableFn)(void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, const HUF_DTable *DTable); #if DYNAMIC_BMI2 #define HUF_DGEN(fn) \ \ static size_t fn##_default( \ void* dst, size_t dstSize, \ const void* cSrc, size_t cSrcSize, \ const HUF_DTable* DTable) \ { \ return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \ } \ \ static BMI2_TARGET_ATTRIBUTE size_t fn##_bmi2( \ void* dst, size_t dstSize, \ const void* cSrc, size_t cSrcSize, \ const HUF_DTable* DTable) \ { \ return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \ } \ \ static size_t fn(void* dst, size_t dstSize, void const* cSrc, \ size_t cSrcSize, HUF_DTable const* DTable, int flags) \ { \ if (flags & HUF_flags_bmi2) { \ return fn##_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); \ } \ return fn##_default(dst, dstSize, cSrc, cSrcSize, DTable); \ } #else #define HUF_DGEN(fn) \ static size_t fn(void* dst, size_t dstSize, void const* cSrc, \ size_t cSrcSize, HUF_DTable const* DTable, int flags) \ { \ (void)flags; \ return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \ } #endif /*-***************************/ /* generic DTableDesc */ /*-***************************/ typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc; static DTableDesc HUF_getDTableDesc(const HUF_DTable* table) { DTableDesc dtd; ZSTD_memcpy(&dtd, table, sizeof(dtd)); return dtd; } static size_t HUF_initFastDStream(BYTE const* ip) { BYTE const lastByte = ip[7]; size_t const bitsConsumed = lastByte ? 8 - ZSTD_highbit32(lastByte) : 0; size_t const value = MEM_readLEST(ip) | 1; assert(bitsConsumed <= 8); assert(sizeof(size_t) == 8); return value << bitsConsumed; } /** * The input/output arguments to the Huffman fast decoding loop: * * ip [in/out] - The input pointers, must be updated to reflect what is consumed. * op [in/out] - The output pointers, must be updated to reflect what is written. * bits [in/out] - The bitstream containers, must be updated to reflect the current state. * dt [in] - The decoding table. * ilimit [in] - The input limit, stop when any input pointer is below ilimit. * oend [in] - The end of the output stream. op[3] must not cross oend. * iend [in] - The end of each input stream. ip[i] may cross iend[i], * as long as it is above ilimit, but that indicates corruption. */ typedef struct { BYTE const* ip[4]; BYTE* op[4]; U64 bits[4]; void const* dt; BYTE const* ilimit; BYTE* oend; BYTE const* iend[4]; } HUF_DecompressFastArgs; typedef void (*HUF_DecompressFastLoopFn)(HUF_DecompressFastArgs*); /** * Initializes args for the fast decoding loop. * @returns 1 on success * 0 if the fallback implementation should be used. * Or an error code on failure. */ static size_t HUF_DecompressFastArgs_init(HUF_DecompressFastArgs* args, void* dst, size_t dstSize, void const* src, size_t srcSize, const HUF_DTable* DTable) { void const* dt = DTable + 1; U32 const dtLog = HUF_getDTableDesc(DTable).tableLog; const BYTE* const ilimit = (const BYTE*)src + 6 + 8; BYTE* const oend = (BYTE*)dst + dstSize; /* The fast decoding loop assumes 64-bit little-endian. * This condition is false on x32. */ if (!MEM_isLittleEndian() || MEM_32bits()) return 0; /* strict minimum : jump table + 1 byte per stream */ if (srcSize < 10) return ERROR(corruption_detected); /* Must have at least 8 bytes per stream because we don't handle initializing smaller bit containers. * If table log is not correct at this point, fallback to the old decoder. * On small inputs we don't have enough data to trigger the fast loop, so use the old decoder. */ if (dtLog != HUF_DECODER_FAST_TABLELOG) return 0; /* Read the jump table. */ { const BYTE* const istart = (const BYTE*)src; size_t const length1 = MEM_readLE16(istart); size_t const length2 = MEM_readLE16(istart+2); size_t const length3 = MEM_readLE16(istart+4); size_t const length4 = srcSize - (length1 + length2 + length3 + 6); args->iend[0] = istart + 6; /* jumpTable */ args->iend[1] = args->iend[0] + length1; args->iend[2] = args->iend[1] + length2; args->iend[3] = args->iend[2] + length3; /* HUF_initFastDStream() requires this, and this small of an input * won't benefit from the ASM loop anyways. * length1 must be >= 16 so that ip[0] >= ilimit before the loop * starts. */ if (length1 < 16 || length2 < 8 || length3 < 8 || length4 < 8) return 0; if (length4 > srcSize) return ERROR(corruption_detected); /* overflow */ } /* ip[] contains the position that is currently loaded into bits[]. */ args->ip[0] = args->iend[1] - sizeof(U64); args->ip[1] = args->iend[2] - sizeof(U64); args->ip[2] = args->iend[3] - sizeof(U64); args->ip[3] = (BYTE const*)src + srcSize - sizeof(U64); /* op[] contains the output pointers. */ args->op[0] = (BYTE*)dst; args->op[1] = args->op[0] + (dstSize+3)/4; args->op[2] = args->op[1] + (dstSize+3)/4; args->op[3] = args->op[2] + (dstSize+3)/4; /* No point to call the ASM loop for tiny outputs. */ if (args->op[3] >= oend) return 0; /* bits[] is the bit container. * It is read from the MSB down to the LSB. * It is shifted left as it is read, and zeros are * shifted in. After the lowest valid bit a 1 is * set, so that CountTrailingZeros(bits[]) can be used * to count how many bits we've consumed. */ args->bits[0] = HUF_initFastDStream(args->ip[0]); args->bits[1] = HUF_initFastDStream(args->ip[1]); args->bits[2] = HUF_initFastDStream(args->ip[2]); args->bits[3] = HUF_initFastDStream(args->ip[3]); /* If ip[] >= ilimit, it is guaranteed to be safe to * reload bits[]. It may be beyond its section, but is * guaranteed to be valid (>= istart). */ args->ilimit = ilimit; args->oend = oend; args->dt = dt; return 1; } static size_t HUF_initRemainingDStream(BIT_DStream_t* bit, HUF_DecompressFastArgs const* args, int stream, BYTE* segmentEnd) { /* Validate that we haven't overwritten. */ if (args->op[stream] > segmentEnd) return ERROR(corruption_detected); /* Validate that we haven't read beyond iend[]. * Note that ip[] may be < iend[] because the MSB is * the next bit to read, and we may have consumed 100% * of the stream, so down to iend[i] - 8 is valid. */ if (args->ip[stream] < args->iend[stream] - 8) return ERROR(corruption_detected); /* Construct the BIT_DStream_t. */ assert(sizeof(size_t) == 8); bit->bitContainer = MEM_readLEST(args->ip[stream]); bit->bitsConsumed = ZSTD_countTrailingZeros64(args->bits[stream]); bit->start = (const char*)args->iend[0]; bit->limitPtr = bit->start + sizeof(size_t); bit->ptr = (const char*)args->ip[stream]; return 0; } #ifndef HUF_FORCE_DECOMPRESS_X2 /*-***************************/ /* single-symbol decoding */ /*-***************************/ typedef struct { BYTE nbBits; BYTE byte; } HUF_DEltX1; /* single-symbol decoding */ /** * Packs 4 HUF_DEltX1 structs into a U64. This is used to lay down 4 entries at * a time. */ static U64 HUF_DEltX1_set4(BYTE symbol, BYTE nbBits) { U64 D4; if (MEM_isLittleEndian()) { D4 = (U64)((symbol << 8) + nbBits); } else { D4 = (U64)(symbol + (nbBits << 8)); } assert(D4 < (1U << 16)); D4 *= 0x0001000100010001ULL; return D4; } /** * Increase the tableLog to targetTableLog and rescales the stats. * If tableLog > targetTableLog this is a no-op. * @returns New tableLog */ static U32 HUF_rescaleStats(BYTE* huffWeight, U32* rankVal, U32 nbSymbols, U32 tableLog, U32 targetTableLog) { if (tableLog > targetTableLog) return tableLog; if (tableLog < targetTableLog) { U32 const scale = targetTableLog - tableLog; U32 s; /* Increase the weight for all non-zero probability symbols by scale. */ for (s = 0; s < nbSymbols; ++s) { huffWeight[s] += (BYTE)((huffWeight[s] == 0) ? 0 : scale); } /* Update rankVal to reflect the new weights. * All weights except 0 get moved to weight + scale. * Weights [1, scale] are empty. */ for (s = targetTableLog; s > scale; --s) { rankVal[s] = rankVal[s - scale]; } for (s = scale; s > 0; --s) { rankVal[s] = 0; } } return targetTableLog; } typedef struct { U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1]; U32 rankStart[HUF_TABLELOG_ABSOLUTEMAX + 1]; U32 statsWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32]; BYTE symbols[HUF_SYMBOLVALUE_MAX + 1]; BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1]; } HUF_ReadDTableX1_Workspace; size_t HUF_readDTableX1_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int flags) { U32 tableLog = 0; U32 nbSymbols = 0; size_t iSize; void* const dtPtr = DTable + 1; HUF_DEltX1* const dt = (HUF_DEltX1*)dtPtr; HUF_ReadDTableX1_Workspace* wksp = (HUF_ReadDTableX1_Workspace*)workSpace; DEBUG_STATIC_ASSERT(HUF_DECOMPRESS_WORKSPACE_SIZE >= sizeof(*wksp)); if (sizeof(*wksp) > wkspSize) return ERROR(tableLog_tooLarge); DEBUG_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable)); /* ZSTD_memset(huffWeight, 0, sizeof(huffWeight)); */ /* is not necessary, even though some analyzer complain ... */ iSize = HUF_readStats_wksp(wksp->huffWeight, HUF_SYMBOLVALUE_MAX + 1, wksp->rankVal, &nbSymbols, &tableLog, src, srcSize, wksp->statsWksp, sizeof(wksp->statsWksp), flags); if (HUF_isError(iSize)) return iSize; /* Table header */ { DTableDesc dtd = HUF_getDTableDesc(DTable); U32 const maxTableLog = dtd.maxTableLog + 1; U32 const targetTableLog = MIN(maxTableLog, HUF_DECODER_FAST_TABLELOG); tableLog = HUF_rescaleStats(wksp->huffWeight, wksp->rankVal, nbSymbols, tableLog, targetTableLog); if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge); /* DTable too small, Huffman tree cannot fit in */ dtd.tableType = 0; dtd.tableLog = (BYTE)tableLog; ZSTD_memcpy(DTable, &dtd, sizeof(dtd)); } /* Compute symbols and rankStart given rankVal: * * rankVal already contains the number of values of each weight. * * symbols contains the symbols ordered by weight. First are the rankVal[0] * weight 0 symbols, followed by the rankVal[1] weight 1 symbols, and so on. * symbols[0] is filled (but unused) to avoid a branch. * * rankStart contains the offset where each rank belongs in the DTable. * rankStart[0] is not filled because there are no entries in the table for * weight 0. */ { int n; U32 nextRankStart = 0; int const unroll = 4; int const nLimit = (int)nbSymbols - unroll + 1; for (n=0; n<(int)tableLog+1; n++) { U32 const curr = nextRankStart; nextRankStart += wksp->rankVal[n]; wksp->rankStart[n] = curr; } for (n=0; n < nLimit; n += unroll) { int u; for (u=0; u < unroll; ++u) { size_t const w = wksp->huffWeight[n+u]; wksp->symbols[wksp->rankStart[w]++] = (BYTE)(n+u); } } for (; n < (int)nbSymbols; ++n) { size_t const w = wksp->huffWeight[n]; wksp->symbols[wksp->rankStart[w]++] = (BYTE)n; } } /* fill DTable * We fill all entries of each weight in order. * That way length is a constant for each iteration of the outer loop. * We can switch based on the length to a different inner loop which is * optimized for that particular case. */ { U32 w; int symbol = wksp->rankVal[0]; int rankStart = 0; for (w=1; wrankVal[w]; int const length = (1 << w) >> 1; int uStart = rankStart; BYTE const nbBits = (BYTE)(tableLog + 1 - w); int s; int u; switch (length) { case 1: for (s=0; ssymbols[symbol + s]; D.nbBits = nbBits; dt[uStart] = D; uStart += 1; } break; case 2: for (s=0; ssymbols[symbol + s]; D.nbBits = nbBits; dt[uStart+0] = D; dt[uStart+1] = D; uStart += 2; } break; case 4: for (s=0; ssymbols[symbol + s], nbBits); MEM_write64(dt + uStart, D4); uStart += 4; } break; case 8: for (s=0; ssymbols[symbol + s], nbBits); MEM_write64(dt + uStart, D4); MEM_write64(dt + uStart + 4, D4); uStart += 8; } break; default: for (s=0; ssymbols[symbol + s], nbBits); for (u=0; u < length; u += 16) { MEM_write64(dt + uStart + u + 0, D4); MEM_write64(dt + uStart + u + 4, D4); MEM_write64(dt + uStart + u + 8, D4); MEM_write64(dt + uStart + u + 12, D4); } assert(u == length); uStart += length; } break; } symbol += symbolCount; rankStart += symbolCount * length; } } return iSize; } FORCE_INLINE_TEMPLATE BYTE HUF_decodeSymbolX1(BIT_DStream_t* Dstream, const HUF_DEltX1* dt, const U32 dtLog) { size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */ BYTE const c = dt[val].byte; BIT_skipBits(Dstream, dt[val].nbBits); return c; } #define HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) \ *ptr++ = HUF_decodeSymbolX1(DStreamPtr, dt, dtLog) #define HUF_DECODE_SYMBOLX1_1(ptr, DStreamPtr) \ if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \ HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) #define HUF_DECODE_SYMBOLX1_2(ptr, DStreamPtr) \ if (MEM_64bits()) \ HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) HINT_INLINE size_t HUF_decodeStreamX1(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX1* const dt, const U32 dtLog) { BYTE* const pStart = p; /* up to 4 symbols at a time */ if ((pEnd - p) > 3) { while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-3)) { HUF_DECODE_SYMBOLX1_2(p, bitDPtr); HUF_DECODE_SYMBOLX1_1(p, bitDPtr); HUF_DECODE_SYMBOLX1_2(p, bitDPtr); HUF_DECODE_SYMBOLX1_0(p, bitDPtr); } } else { BIT_reloadDStream(bitDPtr); } /* [0-3] symbols remaining */ if (MEM_32bits()) while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd)) HUF_DECODE_SYMBOLX1_0(p, bitDPtr); /* no more data to retrieve from bitstream, no need to reload */ while (p < pEnd) HUF_DECODE_SYMBOLX1_0(p, bitDPtr); return (size_t)(pEnd-pStart); } FORCE_INLINE_TEMPLATE size_t HUF_decompress1X1_usingDTable_internal_body( void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable) { BYTE* op = (BYTE*)dst; BYTE* const oend = op + dstSize; const void* dtPtr = DTable + 1; const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr; BIT_DStream_t bitD; DTableDesc const dtd = HUF_getDTableDesc(DTable); U32 const dtLog = dtd.tableLog; CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) ); HUF_decodeStreamX1(op, &bitD, oend, dt, dtLog); if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected); return dstSize; } /* HUF_decompress4X1_usingDTable_internal_body(): * Conditions : * @dstSize >= 6 */ FORCE_INLINE_TEMPLATE size_t HUF_decompress4X1_usingDTable_internal_body( void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable) { /* Check */ if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ { const BYTE* const istart = (const BYTE*) cSrc; BYTE* const ostart = (BYTE*) dst; BYTE* const oend = ostart + dstSize; BYTE* const olimit = oend - 3; const void* const dtPtr = DTable + 1; const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr; /* Init */ BIT_DStream_t bitD1; BIT_DStream_t bitD2; BIT_DStream_t bitD3; BIT_DStream_t bitD4; size_t const length1 = MEM_readLE16(istart); size_t const length2 = MEM_readLE16(istart+2); size_t const length3 = MEM_readLE16(istart+4); size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6); const BYTE* const istart1 = istart + 6; /* jumpTable */ const BYTE* const istart2 = istart1 + length1; const BYTE* const istart3 = istart2 + length2; const BYTE* const istart4 = istart3 + length3; const size_t segmentSize = (dstSize+3) / 4; BYTE* const opStart2 = ostart + segmentSize; BYTE* const opStart3 = opStart2 + segmentSize; BYTE* const opStart4 = opStart3 + segmentSize; BYTE* op1 = ostart; BYTE* op2 = opStart2; BYTE* op3 = opStart3; BYTE* op4 = opStart4; DTableDesc const dtd = HUF_getDTableDesc(DTable); U32 const dtLog = dtd.tableLog; U32 endSignal = 1; if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */ if (dstSize < 6) return ERROR(corruption_detected); /* stream 4-split doesn't work */ CHECK_F( BIT_initDStream(&bitD1, istart1, length1) ); CHECK_F( BIT_initDStream(&bitD2, istart2, length2) ); CHECK_F( BIT_initDStream(&bitD3, istart3, length3) ); CHECK_F( BIT_initDStream(&bitD4, istart4, length4) ); /* up to 16 symbols per loop (4 symbols per stream) in 64-bit mode */ if ((size_t)(oend - op4) >= sizeof(size_t)) { for ( ; (endSignal) & (op4 < olimit) ; ) { HUF_DECODE_SYMBOLX1_2(op1, &bitD1); HUF_DECODE_SYMBOLX1_2(op2, &bitD2); HUF_DECODE_SYMBOLX1_2(op3, &bitD3); HUF_DECODE_SYMBOLX1_2(op4, &bitD4); HUF_DECODE_SYMBOLX1_1(op1, &bitD1); HUF_DECODE_SYMBOLX1_1(op2, &bitD2); HUF_DECODE_SYMBOLX1_1(op3, &bitD3); HUF_DECODE_SYMBOLX1_1(op4, &bitD4); HUF_DECODE_SYMBOLX1_2(op1, &bitD1); HUF_DECODE_SYMBOLX1_2(op2, &bitD2); HUF_DECODE_SYMBOLX1_2(op3, &bitD3); HUF_DECODE_SYMBOLX1_2(op4, &bitD4); HUF_DECODE_SYMBOLX1_0(op1, &bitD1); HUF_DECODE_SYMBOLX1_0(op2, &bitD2); HUF_DECODE_SYMBOLX1_0(op3, &bitD3); HUF_DECODE_SYMBOLX1_0(op4, &bitD4); endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished; endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished; endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished; endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished; } } /* check corruption */ /* note : should not be necessary : op# advance in lock step, and we control op4. * but curiously, binary generated by gcc 7.2 & 7.3 with -mbmi2 runs faster when >=1 test is present */ if (op1 > opStart2) return ERROR(corruption_detected); if (op2 > opStart3) return ERROR(corruption_detected); if (op3 > opStart4) return ERROR(corruption_detected); /* note : op4 supposed already verified within main loop */ /* finish bitStreams one by one */ HUF_decodeStreamX1(op1, &bitD1, opStart2, dt, dtLog); HUF_decodeStreamX1(op2, &bitD2, opStart3, dt, dtLog); HUF_decodeStreamX1(op3, &bitD3, opStart4, dt, dtLog); HUF_decodeStreamX1(op4, &bitD4, oend, dt, dtLog); /* check */ { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4); if (!endCheck) return ERROR(corruption_detected); } /* decoded size */ return dstSize; } } #if HUF_NEED_BMI2_FUNCTION static BMI2_TARGET_ATTRIBUTE size_t HUF_decompress4X1_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc, size_t cSrcSize, HUF_DTable const* DTable) { return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable); } #endif static size_t HUF_decompress4X1_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc, size_t cSrcSize, HUF_DTable const* DTable) { return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable); } #if ZSTD_ENABLE_ASM_X86_64_BMI2 HUF_ASM_DECL void HUF_decompress4X1_usingDTable_internal_fast_asm_loop(HUF_DecompressFastArgs* args) ZSTDLIB_HIDDEN; #endif static HUF_FAST_BMI2_ATTRS void HUF_decompress4X1_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs* args) { U64 bits[4]; BYTE const* ip[4]; BYTE* op[4]; U16 const* const dtable = (U16 const*)args->dt; BYTE* const oend = args->oend; BYTE const* const ilimit = args->ilimit; /* Copy the arguments to local variables */ ZSTD_memcpy(&bits, &args->bits, sizeof(bits)); ZSTD_memcpy((void*)(&ip), &args->ip, sizeof(ip)); ZSTD_memcpy(&op, &args->op, sizeof(op)); assert(MEM_isLittleEndian()); assert(!MEM_32bits()); for (;;) { BYTE* olimit; int stream; int symbol; /* Assert loop preconditions */ #ifndef NDEBUG for (stream = 0; stream < 4; ++stream) { assert(op[stream] <= (stream == 3 ? oend : op[stream + 1])); assert(ip[stream] >= ilimit); } #endif /* Compute olimit */ { /* Each iteration produces 5 output symbols per stream */ size_t const oiters = (size_t)(oend - op[3]) / 5; /* Each iteration consumes up to 11 bits * 5 = 55 bits < 7 bytes * per stream. */ size_t const iiters = (size_t)(ip[0] - ilimit) / 7; /* We can safely run iters iterations before running bounds checks */ size_t const iters = MIN(oiters, iiters); size_t const symbols = iters * 5; /* We can simply check that op[3] < olimit, instead of checking all * of our bounds, since we can't hit the other bounds until we've run * iters iterations, which only happens when op[3] == olimit. */ olimit = op[3] + symbols; /* Exit fast decoding loop once we get close to the end. */ if (op[3] + 20 > olimit) break; /* Exit the decoding loop if any input pointer has crossed the * previous one. This indicates corruption, and a precondition * to our loop is that ip[i] >= ip[0]. */ for (stream = 1; stream < 4; ++stream) { if (ip[stream] < ip[stream - 1]) goto _out; } } #ifndef NDEBUG for (stream = 1; stream < 4; ++stream) { assert(ip[stream] >= ip[stream - 1]); } #endif do { /* Decode 5 symbols in each of the 4 streams */ for (symbol = 0; symbol < 5; ++symbol) { for (stream = 0; stream < 4; ++stream) { int const index = (int)(bits[stream] >> 53); int const entry = (int)dtable[index]; bits[stream] <<= (entry & 63); op[stream][symbol] = (BYTE)((entry >> 8) & 0xFF); } } /* Reload the bitstreams */ for (stream = 0; stream < 4; ++stream) { int const ctz = ZSTD_countTrailingZeros64(bits[stream]); int const nbBits = ctz & 7; int const nbBytes = ctz >> 3; op[stream] += 5; ip[stream] -= nbBytes; bits[stream] = MEM_read64(ip[stream]) | 1; bits[stream] <<= nbBits; } } while (op[3] < olimit); } _out: /* Save the final values of each of the state variables back to args. */ ZSTD_memcpy(&args->bits, &bits, sizeof(bits)); ZSTD_memcpy((void*)(&args->ip), &ip, sizeof(ip)); ZSTD_memcpy(&args->op, &op, sizeof(op)); } /** * @returns @p dstSize on success (>= 6) * 0 if the fallback implementation should be used * An error if an error occurred */ static HUF_FAST_BMI2_ATTRS size_t HUF_decompress4X1_usingDTable_internal_fast( void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, HUF_DecompressFastLoopFn loopFn) { void const* dt = DTable + 1; const BYTE* const iend = (const BYTE*)cSrc + 6; BYTE* const oend = (BYTE*)dst + dstSize; HUF_DecompressFastArgs args; { size_t const ret = HUF_DecompressFastArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable); FORWARD_IF_ERROR(ret, "Failed to init fast loop args"); if (ret == 0) return 0; } assert(args.ip[0] >= args.ilimit); loopFn(&args); /* Our loop guarantees that ip[] >= ilimit and that we haven't * overwritten any op[]. */ assert(args.ip[0] >= iend); assert(args.ip[1] >= iend); assert(args.ip[2] >= iend); assert(args.ip[3] >= iend); assert(args.op[3] <= oend); (void)iend; /* finish bit streams one by one. */ { size_t const segmentSize = (dstSize+3) / 4; BYTE* segmentEnd = (BYTE*)dst; int i; for (i = 0; i < 4; ++i) { BIT_DStream_t bit; if (segmentSize <= (size_t)(oend - segmentEnd)) segmentEnd += segmentSize; else segmentEnd = oend; FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption"); /* Decompress and validate that we've produced exactly the expected length. */ args.op[i] += HUF_decodeStreamX1(args.op[i], &bit, segmentEnd, (HUF_DEltX1 const*)dt, HUF_DECODER_FAST_TABLELOG); if (args.op[i] != segmentEnd) return ERROR(corruption_detected); } } /* decoded size */ assert(dstSize != 0); return dstSize; } HUF_DGEN(HUF_decompress1X1_usingDTable_internal) static size_t HUF_decompress4X1_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc, size_t cSrcSize, HUF_DTable const* DTable, int flags) { HUF_DecompressUsingDTableFn fallbackFn = HUF_decompress4X1_usingDTable_internal_default; HUF_DecompressFastLoopFn loopFn = HUF_decompress4X1_usingDTable_internal_fast_c_loop; #if DYNAMIC_BMI2 if (flags & HUF_flags_bmi2) { fallbackFn = HUF_decompress4X1_usingDTable_internal_bmi2; # if ZSTD_ENABLE_ASM_X86_64_BMI2 if (!(flags & HUF_flags_disableAsm)) { loopFn = HUF_decompress4X1_usingDTable_internal_fast_asm_loop; } # endif } else { return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable); } #endif #if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__) if (!(flags & HUF_flags_disableAsm)) { loopFn = HUF_decompress4X1_usingDTable_internal_fast_asm_loop; } #endif if (!(flags & HUF_flags_disableFast)) { size_t const ret = HUF_decompress4X1_usingDTable_internal_fast(dst, dstSize, cSrc, cSrcSize, DTable, loopFn); if (ret != 0) return ret; } return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable); } static size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags) { const BYTE* ip = (const BYTE*) cSrc; size_t const hSize = HUF_readDTableX1_wksp(dctx, cSrc, cSrcSize, workSpace, wkspSize, flags); if (HUF_isError(hSize)) return hSize; if (hSize >= cSrcSize) return ERROR(srcSize_wrong); ip += hSize; cSrcSize -= hSize; return HUF_decompress4X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags); } #endif /* HUF_FORCE_DECOMPRESS_X2 */ #ifndef HUF_FORCE_DECOMPRESS_X1 /* *************************/ /* double-symbols decoding */ /* *************************/ typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX2; /* double-symbols decoding */ typedef struct { BYTE symbol; } sortedSymbol_t; typedef U32 rankValCol_t[HUF_TABLELOG_MAX + 1]; typedef rankValCol_t rankVal_t[HUF_TABLELOG_MAX]; /** * Constructs a HUF_DEltX2 in a U32. */ static U32 HUF_buildDEltX2U32(U32 symbol, U32 nbBits, U32 baseSeq, int level) { U32 seq; DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, sequence) == 0); DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, nbBits) == 2); DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, length) == 3); DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U32)); if (MEM_isLittleEndian()) { seq = level == 1 ? symbol : (baseSeq + (symbol << 8)); return seq + (nbBits << 16) + ((U32)level << 24); } else { seq = level == 1 ? (symbol << 8) : ((baseSeq << 8) + symbol); return (seq << 16) + (nbBits << 8) + (U32)level; } } /** * Constructs a HUF_DEltX2. */ static HUF_DEltX2 HUF_buildDEltX2(U32 symbol, U32 nbBits, U32 baseSeq, int level) { HUF_DEltX2 DElt; U32 const val = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level); DEBUG_STATIC_ASSERT(sizeof(DElt) == sizeof(val)); ZSTD_memcpy(&DElt, &val, sizeof(val)); return DElt; } /** * Constructs 2 HUF_DEltX2s and packs them into a U64. */ static U64 HUF_buildDEltX2U64(U32 symbol, U32 nbBits, U16 baseSeq, int level) { U32 DElt = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level); return (U64)DElt + ((U64)DElt << 32); } /** * Fills the DTable rank with all the symbols from [begin, end) that are each * nbBits long. * * @param DTableRank The start of the rank in the DTable. * @param begin The first symbol to fill (inclusive). * @param end The last symbol to fill (exclusive). * @param nbBits Each symbol is nbBits long. * @param tableLog The table log. * @param baseSeq If level == 1 { 0 } else { the first level symbol } * @param level The level in the table. Must be 1 or 2. */ static void HUF_fillDTableX2ForWeight( HUF_DEltX2* DTableRank, sortedSymbol_t const* begin, sortedSymbol_t const* end, U32 nbBits, U32 tableLog, U16 baseSeq, int const level) { U32 const length = 1U << ((tableLog - nbBits) & 0x1F /* quiet static-analyzer */); const sortedSymbol_t* ptr; assert(level >= 1 && level <= 2); switch (length) { case 1: for (ptr = begin; ptr != end; ++ptr) { HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level); *DTableRank++ = DElt; } break; case 2: for (ptr = begin; ptr != end; ++ptr) { HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level); DTableRank[0] = DElt; DTableRank[1] = DElt; DTableRank += 2; } break; case 4: for (ptr = begin; ptr != end; ++ptr) { U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level); ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2)); ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2)); DTableRank += 4; } break; case 8: for (ptr = begin; ptr != end; ++ptr) { U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level); ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2)); ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2)); ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2)); ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2)); DTableRank += 8; } break; default: for (ptr = begin; ptr != end; ++ptr) { U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level); HUF_DEltX2* const DTableRankEnd = DTableRank + length; for (; DTableRank != DTableRankEnd; DTableRank += 8) { ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2)); ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2)); ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2)); ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2)); } } break; } } /* HUF_fillDTableX2Level2() : * `rankValOrigin` must be a table of at least (HUF_TABLELOG_MAX + 1) U32 */ static void HUF_fillDTableX2Level2(HUF_DEltX2* DTable, U32 targetLog, const U32 consumedBits, const U32* rankVal, const int minWeight, const int maxWeight1, const sortedSymbol_t* sortedSymbols, U32 const* rankStart, U32 nbBitsBaseline, U16 baseSeq) { /* Fill skipped values (all positions up to rankVal[minWeight]). * These are positions only get a single symbol because the combined weight * is too large. */ if (minWeight>1) { U32 const length = 1U << ((targetLog - consumedBits) & 0x1F /* quiet static-analyzer */); U64 const DEltX2 = HUF_buildDEltX2U64(baseSeq, consumedBits, /* baseSeq */ 0, /* level */ 1); int const skipSize = rankVal[minWeight]; assert(length > 1); assert((U32)skipSize < length); switch (length) { case 2: assert(skipSize == 1); ZSTD_memcpy(DTable, &DEltX2, sizeof(DEltX2)); break; case 4: assert(skipSize <= 4); ZSTD_memcpy(DTable + 0, &DEltX2, sizeof(DEltX2)); ZSTD_memcpy(DTable + 2, &DEltX2, sizeof(DEltX2)); break; default: { int i; for (i = 0; i < skipSize; i += 8) { ZSTD_memcpy(DTable + i + 0, &DEltX2, sizeof(DEltX2)); ZSTD_memcpy(DTable + i + 2, &DEltX2, sizeof(DEltX2)); ZSTD_memcpy(DTable + i + 4, &DEltX2, sizeof(DEltX2)); ZSTD_memcpy(DTable + i + 6, &DEltX2, sizeof(DEltX2)); } } } } /* Fill each of the second level symbols by weight. */ { int w; for (w = minWeight; w < maxWeight1; ++w) { int const begin = rankStart[w]; int const end = rankStart[w+1]; U32 const nbBits = nbBitsBaseline - w; U32 const totalBits = nbBits + consumedBits; HUF_fillDTableX2ForWeight( DTable + rankVal[w], sortedSymbols + begin, sortedSymbols + end, totalBits, targetLog, baseSeq, /* level */ 2); } } } static void HUF_fillDTableX2(HUF_DEltX2* DTable, const U32 targetLog, const sortedSymbol_t* sortedList, const U32* rankStart, rankValCol_t* rankValOrigin, const U32 maxWeight, const U32 nbBitsBaseline) { U32* const rankVal = rankValOrigin[0]; const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */ const U32 minBits = nbBitsBaseline - maxWeight; int w; int const wEnd = (int)maxWeight + 1; /* Fill DTable in order of weight. */ for (w = 1; w < wEnd; ++w) { int const begin = (int)rankStart[w]; int const end = (int)rankStart[w+1]; U32 const nbBits = nbBitsBaseline - w; if (targetLog-nbBits >= minBits) { /* Enough room for a second symbol. */ int start = rankVal[w]; U32 const length = 1U << ((targetLog - nbBits) & 0x1F /* quiet static-analyzer */); int minWeight = nbBits + scaleLog; int s; if (minWeight < 1) minWeight = 1; /* Fill the DTable for every symbol of weight w. * These symbols get at least 1 second symbol. */ for (s = begin; s != end; ++s) { HUF_fillDTableX2Level2( DTable + start, targetLog, nbBits, rankValOrigin[nbBits], minWeight, wEnd, sortedList, rankStart, nbBitsBaseline, sortedList[s].symbol); start += length; } } else { /* Only a single symbol. */ HUF_fillDTableX2ForWeight( DTable + rankVal[w], sortedList + begin, sortedList + end, nbBits, targetLog, /* baseSeq */ 0, /* level */ 1); } } } typedef struct { rankValCol_t rankVal[HUF_TABLELOG_MAX]; U32 rankStats[HUF_TABLELOG_MAX + 1]; U32 rankStart0[HUF_TABLELOG_MAX + 3]; sortedSymbol_t sortedSymbol[HUF_SYMBOLVALUE_MAX + 1]; BYTE weightList[HUF_SYMBOLVALUE_MAX + 1]; U32 calleeWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32]; } HUF_ReadDTableX2_Workspace; size_t HUF_readDTableX2_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int flags) { U32 tableLog, maxW, nbSymbols; DTableDesc dtd = HUF_getDTableDesc(DTable); U32 maxTableLog = dtd.maxTableLog; size_t iSize; void* dtPtr = DTable+1; /* force compiler to avoid strict-aliasing */ HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr; U32 *rankStart; HUF_ReadDTableX2_Workspace* const wksp = (HUF_ReadDTableX2_Workspace*)workSpace; if (sizeof(*wksp) > wkspSize) return ERROR(GENERIC); rankStart = wksp->rankStart0 + 1; ZSTD_memset(wksp->rankStats, 0, sizeof(wksp->rankStats)); ZSTD_memset(wksp->rankStart0, 0, sizeof(wksp->rankStart0)); DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(HUF_DTable)); /* if compiler fails here, assertion is wrong */ if (maxTableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge); /* ZSTD_memset(weightList, 0, sizeof(weightList)); */ /* is not necessary, even though some analyzer complain ... */ iSize = HUF_readStats_wksp(wksp->weightList, HUF_SYMBOLVALUE_MAX + 1, wksp->rankStats, &nbSymbols, &tableLog, src, srcSize, wksp->calleeWksp, sizeof(wksp->calleeWksp), flags); if (HUF_isError(iSize)) return iSize; /* check result */ if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */ if (tableLog <= HUF_DECODER_FAST_TABLELOG && maxTableLog > HUF_DECODER_FAST_TABLELOG) maxTableLog = HUF_DECODER_FAST_TABLELOG; /* find maxWeight */ for (maxW = tableLog; wksp->rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */ /* Get start index of each weight */ { U32 w, nextRankStart = 0; for (w=1; wrankStats[w]; rankStart[w] = curr; } rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/ rankStart[maxW+1] = nextRankStart; } /* sort symbols by weight */ { U32 s; for (s=0; sweightList[s]; U32 const r = rankStart[w]++; wksp->sortedSymbol[r].symbol = (BYTE)s; } rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */ } /* Build rankVal */ { U32* const rankVal0 = wksp->rankVal[0]; { int const rescale = (maxTableLog-tableLog) - 1; /* tableLog <= maxTableLog */ U32 nextRankVal = 0; U32 w; for (w=1; wrankStats[w] << (w+rescale); rankVal0[w] = curr; } } { U32 const minBits = tableLog+1 - maxW; U32 consumed; for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) { U32* const rankValPtr = wksp->rankVal[consumed]; U32 w; for (w = 1; w < maxW+1; w++) { rankValPtr[w] = rankVal0[w] >> consumed; } } } } HUF_fillDTableX2(dt, maxTableLog, wksp->sortedSymbol, wksp->rankStart0, wksp->rankVal, maxW, tableLog+1); dtd.tableLog = (BYTE)maxTableLog; dtd.tableType = 1; ZSTD_memcpy(DTable, &dtd, sizeof(dtd)); return iSize; } FORCE_INLINE_TEMPLATE U32 HUF_decodeSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog) { size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ ZSTD_memcpy(op, &dt[val].sequence, 2); BIT_skipBits(DStream, dt[val].nbBits); return dt[val].length; } FORCE_INLINE_TEMPLATE U32 HUF_decodeLastSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog) { size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ ZSTD_memcpy(op, &dt[val].sequence, 1); if (dt[val].length==1) { BIT_skipBits(DStream, dt[val].nbBits); } else { if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) { BIT_skipBits(DStream, dt[val].nbBits); if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8)) /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */ DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); } } return 1; } #define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \ ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog) #define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \ if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \ ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog) #define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \ if (MEM_64bits()) \ ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog) HINT_INLINE size_t HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, const HUF_DEltX2* const dt, const U32 dtLog) { BYTE* const pStart = p; /* up to 8 symbols at a time */ if ((size_t)(pEnd - p) >= sizeof(bitDPtr->bitContainer)) { if (dtLog <= 11 && MEM_64bits()) { /* up to 10 symbols at a time */ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-9)) { HUF_DECODE_SYMBOLX2_0(p, bitDPtr); HUF_DECODE_SYMBOLX2_0(p, bitDPtr); HUF_DECODE_SYMBOLX2_0(p, bitDPtr); HUF_DECODE_SYMBOLX2_0(p, bitDPtr); HUF_DECODE_SYMBOLX2_0(p, bitDPtr); } } else { /* up to 8 symbols at a time */ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-(sizeof(bitDPtr->bitContainer)-1))) { HUF_DECODE_SYMBOLX2_2(p, bitDPtr); HUF_DECODE_SYMBOLX2_1(p, bitDPtr); HUF_DECODE_SYMBOLX2_2(p, bitDPtr); HUF_DECODE_SYMBOLX2_0(p, bitDPtr); } } } else { BIT_reloadDStream(bitDPtr); } /* closer to end : up to 2 symbols at a time */ if ((size_t)(pEnd - p) >= 2) { while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd-2)) HUF_DECODE_SYMBOLX2_0(p, bitDPtr); while (p <= pEnd-2) HUF_DECODE_SYMBOLX2_0(p, bitDPtr); /* no need to reload : reached the end of DStream */ } if (p < pEnd) p += HUF_decodeLastSymbolX2(p, bitDPtr, dt, dtLog); return p-pStart; } FORCE_INLINE_TEMPLATE size_t HUF_decompress1X2_usingDTable_internal_body( void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable) { BIT_DStream_t bitD; /* Init */ CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) ); /* decode */ { BYTE* const ostart = (BYTE*) dst; BYTE* const oend = ostart + dstSize; const void* const dtPtr = DTable+1; /* force compiler to not use strict-aliasing */ const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr; DTableDesc const dtd = HUF_getDTableDesc(DTable); HUF_decodeStreamX2(ostart, &bitD, oend, dt, dtd.tableLog); } /* check */ if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected); /* decoded size */ return dstSize; } /* HUF_decompress4X2_usingDTable_internal_body(): * Conditions: * @dstSize >= 6 */ FORCE_INLINE_TEMPLATE size_t HUF_decompress4X2_usingDTable_internal_body( void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable) { if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ { const BYTE* const istart = (const BYTE*) cSrc; BYTE* const ostart = (BYTE*) dst; BYTE* const oend = ostart + dstSize; BYTE* const olimit = oend - (sizeof(size_t)-1); const void* const dtPtr = DTable+1; const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr; /* Init */ BIT_DStream_t bitD1; BIT_DStream_t bitD2; BIT_DStream_t bitD3; BIT_DStream_t bitD4; size_t const length1 = MEM_readLE16(istart); size_t const length2 = MEM_readLE16(istart+2); size_t const length3 = MEM_readLE16(istart+4); size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6); const BYTE* const istart1 = istart + 6; /* jumpTable */ const BYTE* const istart2 = istart1 + length1; const BYTE* const istart3 = istart2 + length2; const BYTE* const istart4 = istart3 + length3; size_t const segmentSize = (dstSize+3) / 4; BYTE* const opStart2 = ostart + segmentSize; BYTE* const opStart3 = opStart2 + segmentSize; BYTE* const opStart4 = opStart3 + segmentSize; BYTE* op1 = ostart; BYTE* op2 = opStart2; BYTE* op3 = opStart3; BYTE* op4 = opStart4; U32 endSignal = 1; DTableDesc const dtd = HUF_getDTableDesc(DTable); U32 const dtLog = dtd.tableLog; if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */ if (dstSize < 6) return ERROR(corruption_detected); /* stream 4-split doesn't work */ CHECK_F( BIT_initDStream(&bitD1, istart1, length1) ); CHECK_F( BIT_initDStream(&bitD2, istart2, length2) ); CHECK_F( BIT_initDStream(&bitD3, istart3, length3) ); CHECK_F( BIT_initDStream(&bitD4, istart4, length4) ); /* 16-32 symbols per loop (4-8 symbols per stream) */ if ((size_t)(oend - op4) >= sizeof(size_t)) { for ( ; (endSignal) & (op4 < olimit); ) { #if defined(__clang__) && (defined(__x86_64__) || defined(__i386__)) HUF_DECODE_SYMBOLX2_2(op1, &bitD1); HUF_DECODE_SYMBOLX2_1(op1, &bitD1); HUF_DECODE_SYMBOLX2_2(op1, &bitD1); HUF_DECODE_SYMBOLX2_0(op1, &bitD1); HUF_DECODE_SYMBOLX2_2(op2, &bitD2); HUF_DECODE_SYMBOLX2_1(op2, &bitD2); HUF_DECODE_SYMBOLX2_2(op2, &bitD2); HUF_DECODE_SYMBOLX2_0(op2, &bitD2); endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished; endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished; HUF_DECODE_SYMBOLX2_2(op3, &bitD3); HUF_DECODE_SYMBOLX2_1(op3, &bitD3); HUF_DECODE_SYMBOLX2_2(op3, &bitD3); HUF_DECODE_SYMBOLX2_0(op3, &bitD3); HUF_DECODE_SYMBOLX2_2(op4, &bitD4); HUF_DECODE_SYMBOLX2_1(op4, &bitD4); HUF_DECODE_SYMBOLX2_2(op4, &bitD4); HUF_DECODE_SYMBOLX2_0(op4, &bitD4); endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished; endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished; #else HUF_DECODE_SYMBOLX2_2(op1, &bitD1); HUF_DECODE_SYMBOLX2_2(op2, &bitD2); HUF_DECODE_SYMBOLX2_2(op3, &bitD3); HUF_DECODE_SYMBOLX2_2(op4, &bitD4); HUF_DECODE_SYMBOLX2_1(op1, &bitD1); HUF_DECODE_SYMBOLX2_1(op2, &bitD2); HUF_DECODE_SYMBOLX2_1(op3, &bitD3); HUF_DECODE_SYMBOLX2_1(op4, &bitD4); HUF_DECODE_SYMBOLX2_2(op1, &bitD1); HUF_DECODE_SYMBOLX2_2(op2, &bitD2); HUF_DECODE_SYMBOLX2_2(op3, &bitD3); HUF_DECODE_SYMBOLX2_2(op4, &bitD4); HUF_DECODE_SYMBOLX2_0(op1, &bitD1); HUF_DECODE_SYMBOLX2_0(op2, &bitD2); HUF_DECODE_SYMBOLX2_0(op3, &bitD3); HUF_DECODE_SYMBOLX2_0(op4, &bitD4); endSignal = (U32)LIKELY((U32) (BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished) & (BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished) & (BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished) & (BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished)); #endif } } /* check corruption */ if (op1 > opStart2) return ERROR(corruption_detected); if (op2 > opStart3) return ERROR(corruption_detected); if (op3 > opStart4) return ERROR(corruption_detected); /* note : op4 already verified within main loop */ /* finish bitStreams one by one */ HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog); HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog); HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog); HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog); /* check */ { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4); if (!endCheck) return ERROR(corruption_detected); } /* decoded size */ return dstSize; } } #if HUF_NEED_BMI2_FUNCTION static BMI2_TARGET_ATTRIBUTE size_t HUF_decompress4X2_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc, size_t cSrcSize, HUF_DTable const* DTable) { return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable); } #endif static size_t HUF_decompress4X2_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc, size_t cSrcSize, HUF_DTable const* DTable) { return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable); } #if ZSTD_ENABLE_ASM_X86_64_BMI2 HUF_ASM_DECL void HUF_decompress4X2_usingDTable_internal_fast_asm_loop(HUF_DecompressFastArgs* args) ZSTDLIB_HIDDEN; #endif static HUF_FAST_BMI2_ATTRS void HUF_decompress4X2_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs* args) { U64 bits[4]; BYTE const* ip[4]; BYTE* op[4]; BYTE* oend[4]; HUF_DEltX2 const* const dtable = (HUF_DEltX2 const*)args->dt; BYTE const* const ilimit = args->ilimit; /* Copy the arguments to local registers. */ ZSTD_memcpy(&bits, &args->bits, sizeof(bits)); ZSTD_memcpy((void*)(&ip), &args->ip, sizeof(ip)); ZSTD_memcpy(&op, &args->op, sizeof(op)); oend[0] = op[1]; oend[1] = op[2]; oend[2] = op[3]; oend[3] = args->oend; assert(MEM_isLittleEndian()); assert(!MEM_32bits()); for (;;) { BYTE* olimit; int stream; int symbol; /* Assert loop preconditions */ #ifndef NDEBUG for (stream = 0; stream < 4; ++stream) { assert(op[stream] <= oend[stream]); assert(ip[stream] >= ilimit); } #endif /* Compute olimit */ { /* Each loop does 5 table lookups for each of the 4 streams. * Each table lookup consumes up to 11 bits of input, and produces * up to 2 bytes of output. */ /* We can consume up to 7 bytes of input per iteration per stream. * We also know that each input pointer is >= ip[0]. So we can run * iters loops before running out of input. */ size_t iters = (size_t)(ip[0] - ilimit) / 7; /* Each iteration can produce up to 10 bytes of output per stream. * Each output stream my advance at different rates. So take the * minimum number of safe iterations among all the output streams. */ for (stream = 0; stream < 4; ++stream) { size_t const oiters = (size_t)(oend[stream] - op[stream]) / 10; iters = MIN(iters, oiters); } /* Each iteration produces at least 5 output symbols. So until * op[3] crosses olimit, we know we haven't executed iters * iterations yet. This saves us maintaining an iters counter, * at the expense of computing the remaining # of iterations * more frequently. */ olimit = op[3] + (iters * 5); /* Exit the fast decoding loop if we are too close to the end. */ if (op[3] + 10 > olimit) break; /* Exit the decoding loop if any input pointer has crossed the * previous one. This indicates corruption, and a precondition * to our loop is that ip[i] >= ip[0]. */ for (stream = 1; stream < 4; ++stream) { if (ip[stream] < ip[stream - 1]) goto _out; } } #ifndef NDEBUG for (stream = 1; stream < 4; ++stream) { assert(ip[stream] >= ip[stream - 1]); } #endif do { /* Do 5 table lookups for each of the first 3 streams */ for (symbol = 0; symbol < 5; ++symbol) { for (stream = 0; stream < 3; ++stream) { int const index = (int)(bits[stream] >> 53); HUF_DEltX2 const entry = dtable[index]; MEM_write16(op[stream], entry.sequence); bits[stream] <<= (entry.nbBits); op[stream] += (entry.length); } } /* Do 1 table lookup from the final stream */ { int const index = (int)(bits[3] >> 53); HUF_DEltX2 const entry = dtable[index]; MEM_write16(op[3], entry.sequence); bits[3] <<= (entry.nbBits); op[3] += (entry.length); } /* Do 4 table lookups from the final stream & reload bitstreams */ for (stream = 0; stream < 4; ++stream) { /* Do a table lookup from the final stream. * This is interleaved with the reloading to reduce register * pressure. This shouldn't be necessary, but compilers can * struggle with codegen with high register pressure. */ { int const index = (int)(bits[3] >> 53); HUF_DEltX2 const entry = dtable[index]; MEM_write16(op[3], entry.sequence); bits[3] <<= (entry.nbBits); op[3] += (entry.length); } /* Reload the bistreams. The final bitstream must be reloaded * after the 5th symbol was decoded. */ { int const ctz = ZSTD_countTrailingZeros64(bits[stream]); int const nbBits = ctz & 7; int const nbBytes = ctz >> 3; ip[stream] -= nbBytes; bits[stream] = MEM_read64(ip[stream]) | 1; bits[stream] <<= nbBits; } } } while (op[3] < olimit); } _out: /* Save the final values of each of the state variables back to args. */ ZSTD_memcpy(&args->bits, &bits, sizeof(bits)); ZSTD_memcpy((void*)(&args->ip), &ip, sizeof(ip)); ZSTD_memcpy(&args->op, &op, sizeof(op)); } static HUF_FAST_BMI2_ATTRS size_t HUF_decompress4X2_usingDTable_internal_fast( void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, HUF_DecompressFastLoopFn loopFn) { void const* dt = DTable + 1; const BYTE* const iend = (const BYTE*)cSrc + 6; BYTE* const oend = (BYTE*)dst + dstSize; HUF_DecompressFastArgs args; { size_t const ret = HUF_DecompressFastArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable); FORWARD_IF_ERROR(ret, "Failed to init asm args"); if (ret == 0) return 0; } assert(args.ip[0] >= args.ilimit); loopFn(&args); /* note : op4 already verified within main loop */ assert(args.ip[0] >= iend); assert(args.ip[1] >= iend); assert(args.ip[2] >= iend); assert(args.ip[3] >= iend); assert(args.op[3] <= oend); (void)iend; /* finish bitStreams one by one */ { size_t const segmentSize = (dstSize+3) / 4; BYTE* segmentEnd = (BYTE*)dst; int i; for (i = 0; i < 4; ++i) { BIT_DStream_t bit; if (segmentSize <= (size_t)(oend - segmentEnd)) segmentEnd += segmentSize; else segmentEnd = oend; FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption"); args.op[i] += HUF_decodeStreamX2(args.op[i], &bit, segmentEnd, (HUF_DEltX2 const*)dt, HUF_DECODER_FAST_TABLELOG); if (args.op[i] != segmentEnd) return ERROR(corruption_detected); } } /* decoded size */ return dstSize; } static size_t HUF_decompress4X2_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc, size_t cSrcSize, HUF_DTable const* DTable, int flags) { HUF_DecompressUsingDTableFn fallbackFn = HUF_decompress4X2_usingDTable_internal_default; HUF_DecompressFastLoopFn loopFn = HUF_decompress4X2_usingDTable_internal_fast_c_loop; #if DYNAMIC_BMI2 if (flags & HUF_flags_bmi2) { fallbackFn = HUF_decompress4X2_usingDTable_internal_bmi2; # if ZSTD_ENABLE_ASM_X86_64_BMI2 if (!(flags & HUF_flags_disableAsm)) { loopFn = HUF_decompress4X2_usingDTable_internal_fast_asm_loop; } # endif } else { return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable); } #endif #if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__) if (!(flags & HUF_flags_disableAsm)) { loopFn = HUF_decompress4X2_usingDTable_internal_fast_asm_loop; } #endif if (!(flags & HUF_flags_disableFast)) { size_t const ret = HUF_decompress4X2_usingDTable_internal_fast(dst, dstSize, cSrc, cSrcSize, DTable, loopFn); if (ret != 0) return ret; } return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable); } HUF_DGEN(HUF_decompress1X2_usingDTable_internal) size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags) { const BYTE* ip = (const BYTE*) cSrc; size_t const hSize = HUF_readDTableX2_wksp(DCtx, cSrc, cSrcSize, workSpace, wkspSize, flags); if (HUF_isError(hSize)) return hSize; if (hSize >= cSrcSize) return ERROR(srcSize_wrong); ip += hSize; cSrcSize -= hSize; return HUF_decompress1X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, flags); } static size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags) { const BYTE* ip = (const BYTE*) cSrc; size_t hSize = HUF_readDTableX2_wksp(dctx, cSrc, cSrcSize, workSpace, wkspSize, flags); if (HUF_isError(hSize)) return hSize; if (hSize >= cSrcSize) return ERROR(srcSize_wrong); ip += hSize; cSrcSize -= hSize; return HUF_decompress4X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags); } #endif /* HUF_FORCE_DECOMPRESS_X1 */ /* ***********************************/ /* Universal decompression selectors */ /* ***********************************/ #if !defined(HUF_FORCE_DECOMPRESS_X1) && !defined(HUF_FORCE_DECOMPRESS_X2) typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t; static const algo_time_t algoTime[16 /* Quantization */][2 /* single, double */] = { /* single, double, quad */ {{0,0}, {1,1}}, /* Q==0 : impossible */ {{0,0}, {1,1}}, /* Q==1 : impossible */ {{ 150,216}, { 381,119}}, /* Q == 2 : 12-18% */ {{ 170,205}, { 514,112}}, /* Q == 3 : 18-25% */ {{ 177,199}, { 539,110}}, /* Q == 4 : 25-32% */ {{ 197,194}, { 644,107}}, /* Q == 5 : 32-38% */ {{ 221,192}, { 735,107}}, /* Q == 6 : 38-44% */ {{ 256,189}, { 881,106}}, /* Q == 7 : 44-50% */ {{ 359,188}, {1167,109}}, /* Q == 8 : 50-56% */ {{ 582,187}, {1570,114}}, /* Q == 9 : 56-62% */ {{ 688,187}, {1712,122}}, /* Q ==10 : 62-69% */ {{ 825,186}, {1965,136}}, /* Q ==11 : 69-75% */ {{ 976,185}, {2131,150}}, /* Q ==12 : 75-81% */ {{1180,186}, {2070,175}}, /* Q ==13 : 81-87% */ {{1377,185}, {1731,202}}, /* Q ==14 : 87-93% */ {{1412,185}, {1695,202}}, /* Q ==15 : 93-99% */ }; #endif /** HUF_selectDecoder() : * Tells which decoder is likely to decode faster, * based on a set of pre-computed metrics. * @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 . * Assumption : 0 < dstSize <= 128 KB */ U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize) { assert(dstSize > 0); assert(dstSize <= 128*1024); #if defined(HUF_FORCE_DECOMPRESS_X1) (void)dstSize; (void)cSrcSize; return 0; #elif defined(HUF_FORCE_DECOMPRESS_X2) (void)dstSize; (void)cSrcSize; return 1; #else /* decoder timing evaluation */ { U32 const Q = (cSrcSize >= dstSize) ? 15 : (U32)(cSrcSize * 16 / dstSize); /* Q < 16 */ U32 const D256 = (U32)(dstSize >> 8); U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256); U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256); DTime1 += DTime1 >> 5; /* small advantage to algorithm using less memory, to reduce cache eviction */ return DTime1 < DTime0; } #endif } size_t HUF_decompress1X_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags) { /* validation checks */ if (dstSize == 0) return ERROR(dstSize_tooSmall); if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */ if (cSrcSize == dstSize) { ZSTD_memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */ if (cSrcSize == 1) { ZSTD_memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */ { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize); #if defined(HUF_FORCE_DECOMPRESS_X1) (void)algoNb; assert(algoNb == 0); return HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags); #elif defined(HUF_FORCE_DECOMPRESS_X2) (void)algoNb; assert(algoNb == 1); return HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags); #else return algoNb ? HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags): HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags); #endif } } size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int flags) { DTableDesc const dtd = HUF_getDTableDesc(DTable); #if defined(HUF_FORCE_DECOMPRESS_X1) (void)dtd; assert(dtd.tableType == 0); return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags); #elif defined(HUF_FORCE_DECOMPRESS_X2) (void)dtd; assert(dtd.tableType == 1); return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags); #else return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags) : HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags); #endif } #ifndef HUF_FORCE_DECOMPRESS_X2 size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags) { const BYTE* ip = (const BYTE*) cSrc; size_t const hSize = HUF_readDTableX1_wksp(dctx, cSrc, cSrcSize, workSpace, wkspSize, flags); if (HUF_isError(hSize)) return hSize; if (hSize >= cSrcSize) return ERROR(srcSize_wrong); ip += hSize; cSrcSize -= hSize; return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags); } #endif size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int flags) { DTableDesc const dtd = HUF_getDTableDesc(DTable); #if defined(HUF_FORCE_DECOMPRESS_X1) (void)dtd; assert(dtd.tableType == 0); return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags); #elif defined(HUF_FORCE_DECOMPRESS_X2) (void)dtd; assert(dtd.tableType == 1); return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags); #else return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags) : HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags); #endif } size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags) { /* validation checks */ if (dstSize == 0) return ERROR(dstSize_tooSmall); if (cSrcSize == 0) return ERROR(corruption_detected); { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize); #if defined(HUF_FORCE_DECOMPRESS_X1) (void)algoNb; assert(algoNb == 0); return HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags); #elif defined(HUF_FORCE_DECOMPRESS_X2) (void)algoNb; assert(algoNb == 1); return HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags); #else return algoNb ? HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags) : HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags); #endif } } zstd-1.5.5.1/zstd/lib/decompress/zstd_ddict.h0000664000175000017500000000244714371536763021715 0ustar sergeysergey00000000000000/* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under both the BSD-style license (found in the * LICENSE file in the root directory of this source tree) and the GPLv2 (found * in the COPYING file in the root directory of this source tree). * You may select, at your option, one of the above-listed licenses. */ #ifndef ZSTD_DDICT_H #define ZSTD_DDICT_H /*-******************************************************* * Dependencies *********************************************************/ #include "../common/zstd_deps.h" /* size_t */ #include "../zstd.h" /* ZSTD_DDict, and several public functions */ /*-******************************************************* * Interface *********************************************************/ /* note: several prototypes are already published in `zstd.h` : * ZSTD_createDDict() * ZSTD_createDDict_byReference() * ZSTD_createDDict_advanced() * ZSTD_freeDDict() * ZSTD_initStaticDDict() * ZSTD_sizeof_DDict() * ZSTD_estimateDDictSize() * ZSTD_getDictID_fromDict() */ const void* ZSTD_DDict_dictContent(const ZSTD_DDict* ddict); size_t ZSTD_DDict_dictSize(const ZSTD_DDict* ddict); void ZSTD_copyDDictParameters(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict); #endif /* ZSTD_DDICT_H */ zstd-1.5.5.1/zstd/lib/decompress/zstd_ddict.c0000664000175000017500000002173614413353730021676 0ustar sergeysergey00000000000000/* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under both the BSD-style license (found in the * LICENSE file in the root directory of this source tree) and the GPLv2 (found * in the COPYING file in the root directory of this source tree). * You may select, at your option, one of the above-listed licenses. */ /* zstd_ddict.c : * concentrates all logic that needs to know the internals of ZSTD_DDict object */ /*-******************************************************* * Dependencies *********************************************************/ #include "../common/allocations.h" /* ZSTD_customMalloc, ZSTD_customFree */ #include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memmove, ZSTD_memset */ #include "../common/cpu.h" /* bmi2 */ #include "../common/mem.h" /* low level memory routines */ #define FSE_STATIC_LINKING_ONLY #include "../common/fse.h" #include "../common/huf.h" #include "zstd_decompress_internal.h" #include "zstd_ddict.h" #if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1) # include "../legacy/zstd_legacy.h" #endif /*-******************************************************* * Types *********************************************************/ struct ZSTD_DDict_s { void* dictBuffer; const void* dictContent; size_t dictSize; ZSTD_entropyDTables_t entropy; U32 dictID; U32 entropyPresent; ZSTD_customMem cMem; }; /* typedef'd to ZSTD_DDict within "zstd.h" */ const void* ZSTD_DDict_dictContent(const ZSTD_DDict* ddict) { assert(ddict != NULL); return ddict->dictContent; } size_t ZSTD_DDict_dictSize(const ZSTD_DDict* ddict) { assert(ddict != NULL); return ddict->dictSize; } void ZSTD_copyDDictParameters(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict) { DEBUGLOG(4, "ZSTD_copyDDictParameters"); assert(dctx != NULL); assert(ddict != NULL); dctx->dictID = ddict->dictID; dctx->prefixStart = ddict->dictContent; dctx->virtualStart = ddict->dictContent; dctx->dictEnd = (const BYTE*)ddict->dictContent + ddict->dictSize; dctx->previousDstEnd = dctx->dictEnd; #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION dctx->dictContentBeginForFuzzing = dctx->prefixStart; dctx->dictContentEndForFuzzing = dctx->previousDstEnd; #endif if (ddict->entropyPresent) { dctx->litEntropy = 1; dctx->fseEntropy = 1; dctx->LLTptr = ddict->entropy.LLTable; dctx->MLTptr = ddict->entropy.MLTable; dctx->OFTptr = ddict->entropy.OFTable; dctx->HUFptr = ddict->entropy.hufTable; dctx->entropy.rep[0] = ddict->entropy.rep[0]; dctx->entropy.rep[1] = ddict->entropy.rep[1]; dctx->entropy.rep[2] = ddict->entropy.rep[2]; } else { dctx->litEntropy = 0; dctx->fseEntropy = 0; } } static size_t ZSTD_loadEntropy_intoDDict(ZSTD_DDict* ddict, ZSTD_dictContentType_e dictContentType) { ddict->dictID = 0; ddict->entropyPresent = 0; if (dictContentType == ZSTD_dct_rawContent) return 0; if (ddict->dictSize < 8) { if (dictContentType == ZSTD_dct_fullDict) return ERROR(dictionary_corrupted); /* only accept specified dictionaries */ return 0; /* pure content mode */ } { U32 const magic = MEM_readLE32(ddict->dictContent); if (magic != ZSTD_MAGIC_DICTIONARY) { if (dictContentType == ZSTD_dct_fullDict) return ERROR(dictionary_corrupted); /* only accept specified dictionaries */ return 0; /* pure content mode */ } } ddict->dictID = MEM_readLE32((const char*)ddict->dictContent + ZSTD_FRAMEIDSIZE); /* load entropy tables */ RETURN_ERROR_IF(ZSTD_isError(ZSTD_loadDEntropy( &ddict->entropy, ddict->dictContent, ddict->dictSize)), dictionary_corrupted, ""); ddict->entropyPresent = 1; return 0; } static size_t ZSTD_initDDict_internal(ZSTD_DDict* ddict, const void* dict, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType) { if ((dictLoadMethod == ZSTD_dlm_byRef) || (!dict) || (!dictSize)) { ddict->dictBuffer = NULL; ddict->dictContent = dict; if (!dict) dictSize = 0; } else { void* const internalBuffer = ZSTD_customMalloc(dictSize, ddict->cMem); ddict->dictBuffer = internalBuffer; ddict->dictContent = internalBuffer; if (!internalBuffer) return ERROR(memory_allocation); ZSTD_memcpy(internalBuffer, dict, dictSize); } ddict->dictSize = dictSize; ddict->entropy.hufTable[0] = (HUF_DTable)((ZSTD_HUFFDTABLE_CAPACITY_LOG)*0x1000001); /* cover both little and big endian */ /* parse dictionary content */ FORWARD_IF_ERROR( ZSTD_loadEntropy_intoDDict(ddict, dictContentType) , ""); return 0; } ZSTD_DDict* ZSTD_createDDict_advanced(const void* dict, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType, ZSTD_customMem customMem) { if ((!customMem.customAlloc) ^ (!customMem.customFree)) return NULL; { ZSTD_DDict* const ddict = (ZSTD_DDict*) ZSTD_customMalloc(sizeof(ZSTD_DDict), customMem); if (ddict == NULL) return NULL; ddict->cMem = customMem; { size_t const initResult = ZSTD_initDDict_internal(ddict, dict, dictSize, dictLoadMethod, dictContentType); if (ZSTD_isError(initResult)) { ZSTD_freeDDict(ddict); return NULL; } } return ddict; } } /*! ZSTD_createDDict() : * Create a digested dictionary, to start decompression without startup delay. * `dict` content is copied inside DDict. * Consequently, `dict` can be released after `ZSTD_DDict` creation */ ZSTD_DDict* ZSTD_createDDict(const void* dict, size_t dictSize) { ZSTD_customMem const allocator = { NULL, NULL, NULL }; return ZSTD_createDDict_advanced(dict, dictSize, ZSTD_dlm_byCopy, ZSTD_dct_auto, allocator); } /*! ZSTD_createDDict_byReference() : * Create a digested dictionary, to start decompression without startup delay. * Dictionary content is simply referenced, it will be accessed during decompression. * Warning : dictBuffer must outlive DDict (DDict must be freed before dictBuffer) */ ZSTD_DDict* ZSTD_createDDict_byReference(const void* dictBuffer, size_t dictSize) { ZSTD_customMem const allocator = { NULL, NULL, NULL }; return ZSTD_createDDict_advanced(dictBuffer, dictSize, ZSTD_dlm_byRef, ZSTD_dct_auto, allocator); } const ZSTD_DDict* ZSTD_initStaticDDict( void* sBuffer, size_t sBufferSize, const void* dict, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType) { size_t const neededSpace = sizeof(ZSTD_DDict) + (dictLoadMethod == ZSTD_dlm_byRef ? 0 : dictSize); ZSTD_DDict* const ddict = (ZSTD_DDict*)sBuffer; assert(sBuffer != NULL); assert(dict != NULL); if ((size_t)sBuffer & 7) return NULL; /* 8-aligned */ if (sBufferSize < neededSpace) return NULL; if (dictLoadMethod == ZSTD_dlm_byCopy) { ZSTD_memcpy(ddict+1, dict, dictSize); /* local copy */ dict = ddict+1; } if (ZSTD_isError( ZSTD_initDDict_internal(ddict, dict, dictSize, ZSTD_dlm_byRef, dictContentType) )) return NULL; return ddict; } size_t ZSTD_freeDDict(ZSTD_DDict* ddict) { if (ddict==NULL) return 0; /* support free on NULL */ { ZSTD_customMem const cMem = ddict->cMem; ZSTD_customFree(ddict->dictBuffer, cMem); ZSTD_customFree(ddict, cMem); return 0; } } /*! ZSTD_estimateDDictSize() : * Estimate amount of memory that will be needed to create a dictionary for decompression. * Note : dictionary created by reference using ZSTD_dlm_byRef are smaller */ size_t ZSTD_estimateDDictSize(size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod) { return sizeof(ZSTD_DDict) + (dictLoadMethod == ZSTD_dlm_byRef ? 0 : dictSize); } size_t ZSTD_sizeof_DDict(const ZSTD_DDict* ddict) { if (ddict==NULL) return 0; /* support sizeof on NULL */ return sizeof(*ddict) + (ddict->dictBuffer ? ddict->dictSize : 0) ; } /*! ZSTD_getDictID_fromDDict() : * Provides the dictID of the dictionary loaded into `ddict`. * If @return == 0, the dictionary is not conformant to Zstandard specification, or empty. * Non-conformant dictionaries can still be loaded, but as content-only dictionaries. */ unsigned ZSTD_getDictID_fromDDict(const ZSTD_DDict* ddict) { if (ddict==NULL) return 0; return ddict->dictID; } zstd-1.5.5.1/zstd/lib/decompress/zstd_decompress_internal.h0000664000175000017500000002263614371536763024670 0ustar sergeysergey00000000000000/* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under both the BSD-style license (found in the * LICENSE file in the root directory of this source tree) and the GPLv2 (found * in the COPYING file in the root directory of this source tree). * You may select, at your option, one of the above-listed licenses. */ /* zstd_decompress_internal: * objects and definitions shared within lib/decompress modules */ #ifndef ZSTD_DECOMPRESS_INTERNAL_H #define ZSTD_DECOMPRESS_INTERNAL_H /*-******************************************************* * Dependencies *********************************************************/ #include "../common/mem.h" /* BYTE, U16, U32 */ #include "../common/zstd_internal.h" /* constants : MaxLL, MaxML, MaxOff, LLFSELog, etc. */ /*-******************************************************* * Constants *********************************************************/ static UNUSED_ATTR const U32 LL_base[MaxLL+1] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24, 28, 32, 40, 48, 64, 0x80, 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000, 0x10000 }; static UNUSED_ATTR const U32 OF_base[MaxOff+1] = { 0, 1, 1, 5, 0xD, 0x1D, 0x3D, 0x7D, 0xFD, 0x1FD, 0x3FD, 0x7FD, 0xFFD, 0x1FFD, 0x3FFD, 0x7FFD, 0xFFFD, 0x1FFFD, 0x3FFFD, 0x7FFFD, 0xFFFFD, 0x1FFFFD, 0x3FFFFD, 0x7FFFFD, 0xFFFFFD, 0x1FFFFFD, 0x3FFFFFD, 0x7FFFFFD, 0xFFFFFFD, 0x1FFFFFFD, 0x3FFFFFFD, 0x7FFFFFFD }; static UNUSED_ATTR const U8 OF_bits[MaxOff+1] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 }; static UNUSED_ATTR const U32 ML_base[MaxML+1] = { 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 39, 41, 43, 47, 51, 59, 67, 83, 99, 0x83, 0x103, 0x203, 0x403, 0x803, 0x1003, 0x2003, 0x4003, 0x8003, 0x10003 }; /*-******************************************************* * Decompression types *********************************************************/ typedef struct { U32 fastMode; U32 tableLog; } ZSTD_seqSymbol_header; typedef struct { U16 nextState; BYTE nbAdditionalBits; BYTE nbBits; U32 baseValue; } ZSTD_seqSymbol; #define SEQSYMBOL_TABLE_SIZE(log) (1 + (1 << (log))) #define ZSTD_BUILD_FSE_TABLE_WKSP_SIZE (sizeof(S16) * (MaxSeq + 1) + (1u << MaxFSELog) + sizeof(U64)) #define ZSTD_BUILD_FSE_TABLE_WKSP_SIZE_U32 ((ZSTD_BUILD_FSE_TABLE_WKSP_SIZE + sizeof(U32) - 1) / sizeof(U32)) #define ZSTD_HUFFDTABLE_CAPACITY_LOG 12 typedef struct { ZSTD_seqSymbol LLTable[SEQSYMBOL_TABLE_SIZE(LLFSELog)]; /* Note : Space reserved for FSE Tables */ ZSTD_seqSymbol OFTable[SEQSYMBOL_TABLE_SIZE(OffFSELog)]; /* is also used as temporary workspace while building hufTable during DDict creation */ ZSTD_seqSymbol MLTable[SEQSYMBOL_TABLE_SIZE(MLFSELog)]; /* and therefore must be at least HUF_DECOMPRESS_WORKSPACE_SIZE large */ HUF_DTable hufTable[HUF_DTABLE_SIZE(ZSTD_HUFFDTABLE_CAPACITY_LOG)]; /* can accommodate HUF_decompress4X */ U32 rep[ZSTD_REP_NUM]; U32 workspace[ZSTD_BUILD_FSE_TABLE_WKSP_SIZE_U32]; } ZSTD_entropyDTables_t; typedef enum { ZSTDds_getFrameHeaderSize, ZSTDds_decodeFrameHeader, ZSTDds_decodeBlockHeader, ZSTDds_decompressBlock, ZSTDds_decompressLastBlock, ZSTDds_checkChecksum, ZSTDds_decodeSkippableHeader, ZSTDds_skipFrame } ZSTD_dStage; typedef enum { zdss_init=0, zdss_loadHeader, zdss_read, zdss_load, zdss_flush } ZSTD_dStreamStage; typedef enum { ZSTD_use_indefinitely = -1, /* Use the dictionary indefinitely */ ZSTD_dont_use = 0, /* Do not use the dictionary (if one exists free it) */ ZSTD_use_once = 1 /* Use the dictionary once and set to ZSTD_dont_use */ } ZSTD_dictUses_e; /* Hashset for storing references to multiple ZSTD_DDict within ZSTD_DCtx */ typedef struct { const ZSTD_DDict** ddictPtrTable; size_t ddictPtrTableSize; size_t ddictPtrCount; } ZSTD_DDictHashSet; #ifndef ZSTD_DECODER_INTERNAL_BUFFER # define ZSTD_DECODER_INTERNAL_BUFFER (1 << 16) #endif #define ZSTD_LBMIN 64 #define ZSTD_LBMAX (128 << 10) /* extra buffer, compensates when dst is not large enough to store litBuffer */ #define ZSTD_LITBUFFEREXTRASIZE BOUNDED(ZSTD_LBMIN, ZSTD_DECODER_INTERNAL_BUFFER, ZSTD_LBMAX) typedef enum { ZSTD_not_in_dst = 0, /* Stored entirely within litExtraBuffer */ ZSTD_in_dst = 1, /* Stored entirely within dst (in memory after current output write) */ ZSTD_split = 2 /* Split between litExtraBuffer and dst */ } ZSTD_litLocation_e; struct ZSTD_DCtx_s { const ZSTD_seqSymbol* LLTptr; const ZSTD_seqSymbol* MLTptr; const ZSTD_seqSymbol* OFTptr; const HUF_DTable* HUFptr; ZSTD_entropyDTables_t entropy; U32 workspace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32]; /* space needed when building huffman tables */ const void* previousDstEnd; /* detect continuity */ const void* prefixStart; /* start of current segment */ const void* virtualStart; /* virtual start of previous segment if it was just before current one */ const void* dictEnd; /* end of previous segment */ size_t expected; ZSTD_frameHeader fParams; U64 processedCSize; U64 decodedSize; blockType_e bType; /* used in ZSTD_decompressContinue(), store blockType between block header decoding and block decompression stages */ ZSTD_dStage stage; U32 litEntropy; U32 fseEntropy; XXH64_state_t xxhState; size_t headerSize; ZSTD_format_e format; ZSTD_forceIgnoreChecksum_e forceIgnoreChecksum; /* User specified: if == 1, will ignore checksums in compressed frame. Default == 0 */ U32 validateChecksum; /* if == 1, will validate checksum. Is == 1 if (fParams.checksumFlag == 1) and (forceIgnoreChecksum == 0). */ const BYTE* litPtr; ZSTD_customMem customMem; size_t litSize; size_t rleSize; size_t staticSize; #if DYNAMIC_BMI2 != 0 int bmi2; /* == 1 if the CPU supports BMI2 and 0 otherwise. CPU support is determined dynamically once per context lifetime. */ #endif /* dictionary */ ZSTD_DDict* ddictLocal; const ZSTD_DDict* ddict; /* set by ZSTD_initDStream_usingDDict(), or ZSTD_DCtx_refDDict() */ U32 dictID; int ddictIsCold; /* if == 1 : dictionary is "new" for working context, and presumed "cold" (not in cpu cache) */ ZSTD_dictUses_e dictUses; ZSTD_DDictHashSet* ddictSet; /* Hash set for multiple ddicts */ ZSTD_refMultipleDDicts_e refMultipleDDicts; /* User specified: if == 1, will allow references to multiple DDicts. Default == 0 (disabled) */ int disableHufAsm; /* streaming */ ZSTD_dStreamStage streamStage; char* inBuff; size_t inBuffSize; size_t inPos; size_t maxWindowSize; char* outBuff; size_t outBuffSize; size_t outStart; size_t outEnd; size_t lhSize; #if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1) void* legacyContext; U32 previousLegacyVersion; U32 legacyVersion; #endif U32 hostageByte; int noForwardProgress; ZSTD_bufferMode_e outBufferMode; ZSTD_outBuffer expectedOutBuffer; /* workspace */ BYTE* litBuffer; const BYTE* litBufferEnd; ZSTD_litLocation_e litBufferLocation; BYTE litExtraBuffer[ZSTD_LITBUFFEREXTRASIZE + WILDCOPY_OVERLENGTH]; /* literal buffer can be split between storage within dst and within this scratch buffer */ BYTE headerBuffer[ZSTD_FRAMEHEADERSIZE_MAX]; size_t oversizedDuration; #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION void const* dictContentBeginForFuzzing; void const* dictContentEndForFuzzing; #endif /* Tracing */ #if ZSTD_TRACE ZSTD_TraceCtx traceCtx; #endif }; /* typedef'd to ZSTD_DCtx within "zstd.h" */ MEM_STATIC int ZSTD_DCtx_get_bmi2(const struct ZSTD_DCtx_s *dctx) { #if DYNAMIC_BMI2 != 0 return dctx->bmi2; #else (void)dctx; return 0; #endif } /*-******************************************************* * Shared internal functions *********************************************************/ /*! ZSTD_loadDEntropy() : * dict : must point at beginning of a valid zstd dictionary. * @return : size of dictionary header (size of magic number + dict ID + entropy tables) */ size_t ZSTD_loadDEntropy(ZSTD_entropyDTables_t* entropy, const void* const dict, size_t const dictSize); /*! ZSTD_checkContinuity() : * check if next `dst` follows previous position, where decompression ended. * If yes, do nothing (continue on current segment). * If not, classify previous segment as "external dictionary", and start a new segment. * This function cannot fail. */ void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst, size_t dstSize); #endif /* ZSTD_DECOMPRESS_INTERNAL_H */ zstd-1.5.5.1/zstd/lib/decompress/zstd_decompress_block.h0000664000175000017500000000521314413353730024122 0ustar sergeysergey00000000000000/* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under both the BSD-style license (found in the * LICENSE file in the root directory of this source tree) and the GPLv2 (found * in the COPYING file in the root directory of this source tree). * You may select, at your option, one of the above-listed licenses. */ #ifndef ZSTD_DEC_BLOCK_H #define ZSTD_DEC_BLOCK_H /*-******************************************************* * Dependencies *********************************************************/ #include "../common/zstd_deps.h" /* size_t */ #include "../zstd.h" /* DCtx, and some public functions */ #include "../common/zstd_internal.h" /* blockProperties_t, and some public functions */ #include "zstd_decompress_internal.h" /* ZSTD_seqSymbol */ /* === Prototypes === */ /* note: prototypes already published within `zstd.h` : * ZSTD_decompressBlock() */ /* note: prototypes already published within `zstd_internal.h` : * ZSTD_getcBlockSize() * ZSTD_decodeSeqHeaders() */ /* Streaming state is used to inform allocation of the literal buffer */ typedef enum { not_streaming = 0, is_streaming = 1 } streaming_operation; /* ZSTD_decompressBlock_internal() : * decompress block, starting at `src`, * into destination buffer `dst`. * @return : decompressed block size, * or an error code (which can be tested using ZSTD_isError()) */ size_t ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const int frame, const streaming_operation streaming); /* ZSTD_buildFSETable() : * generate FSE decoding table for one symbol (ll, ml or off) * this function must be called with valid parameters only * (dt is large enough, normalizedCounter distribution total is a power of 2, max is within range, etc.) * in which case it cannot fail. * The workspace must be 4-byte aligned and at least ZSTD_BUILD_FSE_TABLE_WKSP_SIZE bytes, which is * defined in zstd_decompress_internal.h. * Internal use only. */ void ZSTD_buildFSETable(ZSTD_seqSymbol* dt, const short* normalizedCounter, unsigned maxSymbolValue, const U32* baseValue, const U8* nbAdditionalBits, unsigned tableLog, void* wksp, size_t wkspSize, int bmi2); /* Internal definition of ZSTD_decompressBlock() to avoid deprecation warnings. */ size_t ZSTD_decompressBlock_deprecated(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize); #endif /* ZSTD_DEC_BLOCK_H */ zstd-1.5.5.1/zstd/lib/zstd_errors.h0000664000175000017500000001066414371536763017776 0ustar sergeysergey00000000000000/* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under both the BSD-style license (found in the * LICENSE file in the root directory of this source tree) and the GPLv2 (found * in the COPYING file in the root directory of this source tree). * You may select, at your option, one of the above-listed licenses. */ #ifndef ZSTD_ERRORS_H_398273423 #define ZSTD_ERRORS_H_398273423 #if defined (__cplusplus) extern "C" { #endif /*===== dependency =====*/ #include /* size_t */ /* ===== ZSTDERRORLIB_API : control library symbols visibility ===== */ #ifndef ZSTDERRORLIB_VISIBLE /* Backwards compatibility with old macro name */ # ifdef ZSTDERRORLIB_VISIBILITY # define ZSTDERRORLIB_VISIBLE ZSTDERRORLIB_VISIBILITY # elif defined(__GNUC__) && (__GNUC__ >= 4) && !defined(__MINGW32__) # define ZSTDERRORLIB_VISIBLE __attribute__ ((visibility ("default"))) # else # define ZSTDERRORLIB_VISIBLE # endif #endif #ifndef ZSTDERRORLIB_HIDDEN # if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(__MINGW32__) # define ZSTDERRORLIB_HIDDEN __attribute__ ((visibility ("hidden"))) # else # define ZSTDERRORLIB_HIDDEN # endif #endif #if defined(ZSTD_DLL_EXPORT) && (ZSTD_DLL_EXPORT==1) # define ZSTDERRORLIB_API __declspec(dllexport) ZSTDERRORLIB_VISIBLE #elif defined(ZSTD_DLL_IMPORT) && (ZSTD_DLL_IMPORT==1) # define ZSTDERRORLIB_API __declspec(dllimport) ZSTDERRORLIB_VISIBLE /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/ #else # define ZSTDERRORLIB_API ZSTDERRORLIB_VISIBLE #endif /*-********************************************* * Error codes list *-********************************************* * Error codes _values_ are pinned down since v1.3.1 only. * Therefore, don't rely on values if you may link to any version < v1.3.1. * * Only values < 100 are considered stable. * * note 1 : this API shall be used with static linking only. * dynamic linking is not yet officially supported. * note 2 : Prefer relying on the enum than on its value whenever possible * This is the only supported way to use the error list < v1.3.1 * note 3 : ZSTD_isError() is always correct, whatever the library version. **********************************************/ typedef enum { ZSTD_error_no_error = 0, ZSTD_error_GENERIC = 1, ZSTD_error_prefix_unknown = 10, ZSTD_error_version_unsupported = 12, ZSTD_error_frameParameter_unsupported = 14, ZSTD_error_frameParameter_windowTooLarge = 16, ZSTD_error_corruption_detected = 20, ZSTD_error_checksum_wrong = 22, ZSTD_error_literals_headerWrong = 24, ZSTD_error_dictionary_corrupted = 30, ZSTD_error_dictionary_wrong = 32, ZSTD_error_dictionaryCreation_failed = 34, ZSTD_error_parameter_unsupported = 40, ZSTD_error_parameter_combination_unsupported = 41, ZSTD_error_parameter_outOfBound = 42, ZSTD_error_tableLog_tooLarge = 44, ZSTD_error_maxSymbolValue_tooLarge = 46, ZSTD_error_maxSymbolValue_tooSmall = 48, ZSTD_error_stabilityCondition_notRespected = 50, ZSTD_error_stage_wrong = 60, ZSTD_error_init_missing = 62, ZSTD_error_memory_allocation = 64, ZSTD_error_workSpace_tooSmall= 66, ZSTD_error_dstSize_tooSmall = 70, ZSTD_error_srcSize_wrong = 72, ZSTD_error_dstBuffer_null = 74, ZSTD_error_noForwardProgress_destFull = 80, ZSTD_error_noForwardProgress_inputEmpty = 82, /* following error codes are __NOT STABLE__, they can be removed or changed in future versions */ ZSTD_error_frameIndex_tooLarge = 100, ZSTD_error_seekableIO = 102, ZSTD_error_dstBuffer_wrong = 104, ZSTD_error_srcBuffer_wrong = 105, ZSTD_error_sequenceProducer_failed = 106, ZSTD_error_externalSequences_invalid = 107, ZSTD_error_maxCode = 120 /* never EVER use this value directly, it can change in future versions! Use ZSTD_isError() instead */ } ZSTD_ErrorCode; /*! ZSTD_getErrorCode() : convert a `size_t` function result into a `ZSTD_ErrorCode` enum type, which can be used to compare with enum list published above */ ZSTDERRORLIB_API ZSTD_ErrorCode ZSTD_getErrorCode(size_t functionResult); ZSTDERRORLIB_API const char* ZSTD_getErrorString(ZSTD_ErrorCode code); /**< Same as ZSTD_getErrorName, but using a `ZSTD_ErrorCode` enum argument */ #if defined (__cplusplus) } #endif #endif /* ZSTD_ERRORS_H_398273423 */ zstd-1.5.5.1/zstd/lib/legacy/0000775000175000017500000000000014413402412016456 5ustar sergeysergey00000000000000zstd-1.5.5.1/zstd/lib/legacy/zstd_v04.c0000664000175000017500000040326714371536763020337 0ustar sergeysergey00000000000000/* * Copyright (c) Yann Collet, Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under both the BSD-style license (found in the * LICENSE file in the root directory of this source tree) and the GPLv2 (found * in the COPYING file in the root directory of this source tree). * You may select, at your option, one of the above-listed licenses. */ /****************************************** * Includes ******************************************/ #include /* size_t, ptrdiff_t */ #include /* memcpy */ #include "zstd_v04.h" #include "../common/error_private.h" /* ****************************************************************** * mem.h *******************************************************************/ #ifndef MEM_H_MODULE #define MEM_H_MODULE #if defined (__cplusplus) extern "C" { #endif /****************************************** * Compiler-specific ******************************************/ #if defined(_MSC_VER) /* Visual Studio */ # include /* _byteswap_ulong */ # include /* _byteswap_* */ #endif #if defined(__GNUC__) # define MEM_STATIC static __attribute__((unused)) #elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) # define MEM_STATIC static inline #elif defined(_MSC_VER) # define MEM_STATIC static __inline #else # define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */ #endif /**************************************************************** * Basic Types *****************************************************************/ #if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) # if defined(_AIX) # include # else # include /* intptr_t */ # endif typedef uint8_t BYTE; typedef uint16_t U16; typedef int16_t S16; typedef uint32_t U32; typedef int32_t S32; typedef uint64_t U64; typedef int64_t S64; #else typedef unsigned char BYTE; typedef unsigned short U16; typedef signed short S16; typedef unsigned int U32; typedef signed int S32; typedef unsigned long long U64; typedef signed long long S64; #endif /*-************************************* * Debug ***************************************/ #include "../common/debug.h" #ifndef assert # define assert(condition) ((void)0) #endif /**************************************************************** * Memory I/O *****************************************************************/ MEM_STATIC unsigned MEM_32bits(void) { return sizeof(void*)==4; } MEM_STATIC unsigned MEM_64bits(void) { return sizeof(void*)==8; } MEM_STATIC unsigned MEM_isLittleEndian(void) { const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */ return one.c[0]; } MEM_STATIC U16 MEM_read16(const void* memPtr) { U16 val; memcpy(&val, memPtr, sizeof(val)); return val; } MEM_STATIC U32 MEM_read32(const void* memPtr) { U32 val; memcpy(&val, memPtr, sizeof(val)); return val; } MEM_STATIC U64 MEM_read64(const void* memPtr) { U64 val; memcpy(&val, memPtr, sizeof(val)); return val; } MEM_STATIC void MEM_write16(void* memPtr, U16 value) { memcpy(memPtr, &value, sizeof(value)); } MEM_STATIC U16 MEM_readLE16(const void* memPtr) { if (MEM_isLittleEndian()) return MEM_read16(memPtr); else { const BYTE* p = (const BYTE*)memPtr; return (U16)(p[0] + (p[1]<<8)); } } MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val) { if (MEM_isLittleEndian()) { MEM_write16(memPtr, val); } else { BYTE* p = (BYTE*)memPtr; p[0] = (BYTE)val; p[1] = (BYTE)(val>>8); } } MEM_STATIC U32 MEM_readLE24(const void* memPtr) { return MEM_readLE16(memPtr) + (((const BYTE*)memPtr)[2] << 16); } MEM_STATIC U32 MEM_readLE32(const void* memPtr) { if (MEM_isLittleEndian()) return MEM_read32(memPtr); else { const BYTE* p = (const BYTE*)memPtr; return (U32)((U32)p[0] + ((U32)p[1]<<8) + ((U32)p[2]<<16) + ((U32)p[3]<<24)); } } MEM_STATIC U64 MEM_readLE64(const void* memPtr) { if (MEM_isLittleEndian()) return MEM_read64(memPtr); else { const BYTE* p = (const BYTE*)memPtr; return (U64)((U64)p[0] + ((U64)p[1]<<8) + ((U64)p[2]<<16) + ((U64)p[3]<<24) + ((U64)p[4]<<32) + ((U64)p[5]<<40) + ((U64)p[6]<<48) + ((U64)p[7]<<56)); } } MEM_STATIC size_t MEM_readLEST(const void* memPtr) { if (MEM_32bits()) return (size_t)MEM_readLE32(memPtr); else return (size_t)MEM_readLE64(memPtr); } #if defined (__cplusplus) } #endif #endif /* MEM_H_MODULE */ /* zstd - standard compression library Header File for static linking only */ #ifndef ZSTD_STATIC_H #define ZSTD_STATIC_H /* ************************************* * Types ***************************************/ #define ZSTD_WINDOWLOG_ABSOLUTEMIN 11 /** from faster to stronger */ typedef enum { ZSTD_fast, ZSTD_greedy, ZSTD_lazy, ZSTD_lazy2, ZSTD_btlazy2 } ZSTD_strategy; typedef struct { U64 srcSize; /* optional : tells how much bytes are present in the frame. Use 0 if not known. */ U32 windowLog; /* largest match distance : larger == more compression, more memory needed during decompression */ U32 contentLog; /* full search segment : larger == more compression, slower, more memory (useless for fast) */ U32 hashLog; /* dispatch table : larger == more memory, faster */ U32 searchLog; /* nb of searches : larger == more compression, slower */ U32 searchLength; /* size of matches : larger == faster decompression, sometimes less compression */ ZSTD_strategy strategy; } ZSTD_parameters; typedef ZSTDv04_Dctx ZSTD_DCtx; /* ************************************* * Advanced functions ***************************************/ /** ZSTD_decompress_usingDict * Same as ZSTD_decompressDCtx, using a Dictionary content as prefix * Note : dict can be NULL, in which case, it's equivalent to ZSTD_decompressDCtx() */ static size_t ZSTD_decompress_usingDict(ZSTD_DCtx* ctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize, const void* dict,size_t dictSize); /* ************************************** * Streaming functions (direct mode) ****************************************/ static size_t ZSTD_resetDCtx(ZSTD_DCtx* dctx); static size_t ZSTD_getFrameParams(ZSTD_parameters* params, const void* src, size_t srcSize); static void ZSTD_decompress_insertDictionary(ZSTD_DCtx* ctx, const void* src, size_t srcSize); static size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx); static size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize); /** Streaming decompression, bufferless mode A ZSTD_DCtx object is required to track streaming operations. Use ZSTD_createDCtx() / ZSTD_freeDCtx() to manage it. A ZSTD_DCtx object can be re-used multiple times. Use ZSTD_resetDCtx() to return to fresh status. First operation is to retrieve frame parameters, using ZSTD_getFrameParams(). This function doesn't consume its input. It needs enough input data to properly decode the frame header. Objective is to retrieve *params.windowlog, to know minimum amount of memory required during decoding. Result : 0 when successful, it means the ZSTD_parameters structure has been filled. >0 : means there is not enough data into src. Provides the expected size to successfully decode header. errorCode, which can be tested using ZSTD_isError() (For example, if it's not a ZSTD header) Then, you can optionally insert a dictionary. This operation must mimic the compressor behavior, otherwise decompression will fail or be corrupted. Then it's possible to start decompression. Use ZSTD_nextSrcSizeToDecompress() and ZSTD_decompressContinue() alternatively. ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue(). ZSTD_decompressContinue() requires this exact amount of bytes, or it will fail. ZSTD_decompressContinue() needs previous data blocks during decompression, up to (1 << windowlog). They should preferably be located contiguously, prior to current block. Alternatively, a round buffer is also possible. @result of ZSTD_decompressContinue() is the number of bytes regenerated within 'dst'. It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header. A frame is fully decoded when ZSTD_nextSrcSizeToDecompress() returns zero. Context can then be reset to start a new decompression. */ #endif /* ZSTD_STATIC_H */ /* zstd_internal - common functions to include Header File for include */ #ifndef ZSTD_CCOMMON_H_MODULE #define ZSTD_CCOMMON_H_MODULE /* ************************************* * Common macros ***************************************/ #define MIN(a,b) ((a)<(b) ? (a) : (b)) #define MAX(a,b) ((a)>(b) ? (a) : (b)) /* ************************************* * Common constants ***************************************/ #define ZSTD_MAGICNUMBER 0xFD2FB524 /* v0.4 */ #define KB *(1 <<10) #define MB *(1 <<20) #define GB *(1U<<30) #define BLOCKSIZE (128 KB) /* define, for static allocation */ static const size_t ZSTD_blockHeaderSize = 3; static const size_t ZSTD_frameHeaderSize_min = 5; #define ZSTD_frameHeaderSize_max 5 /* define, for static allocation */ #define BIT7 128 #define BIT6 64 #define BIT5 32 #define BIT4 16 #define BIT1 2 #define BIT0 1 #define IS_RAW BIT0 #define IS_RLE BIT1 #define MINMATCH 4 #define REPCODE_STARTVALUE 4 #define MLbits 7 #define LLbits 6 #define Offbits 5 #define MaxML ((1< /* size_t, ptrdiff_t */ /* ***************************************** * FSE simple functions ******************************************/ static size_t FSE_decompress(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize); /*! FSE_decompress(): Decompress FSE data from buffer 'cSrc', of size 'cSrcSize', into already allocated destination buffer 'dst', of size 'maxDstSize'. return : size of regenerated data (<= maxDstSize) or an error code, which can be tested using FSE_isError() ** Important ** : FSE_decompress() doesn't decompress non-compressible nor RLE data !!! Why ? : making this distinction requires a header. Header management is intentionally delegated to the user layer, which can better manage special cases. */ /* ***************************************** * Tool functions ******************************************/ /* Error Management */ static unsigned FSE_isError(size_t code); /* tells if a return value is an error code */ /* ***************************************** * FSE detailed API ******************************************/ /*! FSE_compress() does the following: 1. count symbol occurrence from source[] into table count[] 2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog) 3. save normalized counters to memory buffer using writeNCount() 4. build encoding table 'CTable' from normalized counters 5. encode the data stream using encoding table 'CTable' FSE_decompress() does the following: 1. read normalized counters with readNCount() 2. build decoding table 'DTable' from normalized counters 3. decode the data stream using decoding table 'DTable' The following API allows targeting specific sub-functions for advanced tasks. For example, it's possible to compress several blocks using the same 'CTable', or to save and provide normalized distribution using external method. */ /* *** DECOMPRESSION *** */ /*! FSE_readNCount(): Read compactly saved 'normalizedCounter' from 'rBuffer'. return : size read from 'rBuffer' or an errorCode, which can be tested using FSE_isError() maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */ static size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSymbolValuePtr, unsigned* tableLogPtr, const void* rBuffer, size_t rBuffSize); /*! Constructor and Destructor of type FSE_DTable Note that its size depends on 'tableLog' */ typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */ /*! FSE_buildDTable(): Builds 'dt', which must be already allocated, using FSE_createDTable() return : 0, or an errorCode, which can be tested using FSE_isError() */ static size_t FSE_buildDTable ( FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog); /*! FSE_decompress_usingDTable(): Decompress compressed source 'cSrc' of size 'cSrcSize' using 'dt' into 'dst' which must be already allocated. return : size of regenerated data (necessarily <= maxDstSize) or an errorCode, which can be tested using FSE_isError() */ static size_t FSE_decompress_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt); /*! Tutorial : ---------- (Note : these functions only decompress FSE-compressed blocks. If block is uncompressed, use memcpy() instead If block is a single repeated byte, use memset() instead ) The first step is to obtain the normalized frequencies of symbols. This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount(). 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short. In practice, that means it's necessary to know 'maxSymbolValue' beforehand, or size the table to handle worst case situations (typically 256). FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'. The result of FSE_readNCount() is the number of bytes read from 'rBuffer'. Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that. If there is an error, the function will return an error code, which can be tested using FSE_isError(). The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'. This is performed by the function FSE_buildDTable(). The space required by 'FSE_DTable' must be already allocated using FSE_createDTable(). If there is an error, the function will return an error code, which can be tested using FSE_isError(). 'FSE_DTable' can then be used to decompress 'cSrc', with FSE_decompress_usingDTable(). 'cSrcSize' must be strictly correct, otherwise decompression will fail. FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=maxDstSize). If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small) */ #if defined (__cplusplus) } #endif #endif /* FSE_H */ /* ****************************************************************** bitstream Part of NewGen Entropy library header file (to include) Copyright (C) 2013-2015, Yann Collet. BSD 2-Clause License (https://opensource.org/licenses/bsd-license.php) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You can contact the author at : - Source repository : https://github.com/Cyan4973/FiniteStateEntropy - Public forum : https://groups.google.com/forum/#!forum/lz4c ****************************************************************** */ #ifndef BITSTREAM_H_MODULE #define BITSTREAM_H_MODULE #if defined (__cplusplus) extern "C" { #endif /* * This API consists of small unitary functions, which highly benefit from being inlined. * Since link-time-optimization is not available for all compilers, * these functions are defined into a .h to be included. */ /********************************************** * bitStream decompression API (read backward) **********************************************/ typedef struct { size_t bitContainer; unsigned bitsConsumed; const char* ptr; const char* start; } BIT_DStream_t; typedef enum { BIT_DStream_unfinished = 0, BIT_DStream_endOfBuffer = 1, BIT_DStream_completed = 2, BIT_DStream_overflow = 3 } BIT_DStream_status; /* result of BIT_reloadDStream() */ /* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */ MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize); MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits); MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD); MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* bitD); /****************************************** * unsafe API ******************************************/ MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits); /* faster, but works only if nbBits >= 1 */ /**************************************************************** * Helper functions ****************************************************************/ MEM_STATIC unsigned BIT_highbit32 (U32 val) { # if defined(_MSC_VER) /* Visual */ unsigned long r; return _BitScanReverse(&r, val) ? (unsigned)r : 0; # elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */ return __builtin_clz (val) ^ 31; # else /* Software version */ static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 }; U32 v = val; unsigned r; v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; r = DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27]; return r; # endif } /********************************************************** * bitStream decoding **********************************************************/ /*!BIT_initDStream * Initialize a BIT_DStream_t. * @bitD : a pointer to an already allocated BIT_DStream_t structure * @srcBuffer must point at the beginning of a bitStream * @srcSize must be the exact size of the bitStream * @result : size of stream (== srcSize) or an errorCode if a problem is detected */ MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize) { if (srcSize < 1) { memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); } if (srcSize >= sizeof(size_t)) /* normal case */ { U32 contain32; bitD->start = (const char*)srcBuffer; bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(size_t); bitD->bitContainer = MEM_readLEST(bitD->ptr); contain32 = ((const BYTE*)srcBuffer)[srcSize-1]; if (contain32 == 0) return ERROR(GENERIC); /* endMark not present */ bitD->bitsConsumed = 8 - BIT_highbit32(contain32); } else { U32 contain32; bitD->start = (const char*)srcBuffer; bitD->ptr = bitD->start; bitD->bitContainer = *(const BYTE*)(bitD->start); switch(srcSize) { case 7: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[6]) << (sizeof(size_t)*8 - 16);/* fall-through */ case 6: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[5]) << (sizeof(size_t)*8 - 24);/* fall-through */ case 5: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[4]) << (sizeof(size_t)*8 - 32);/* fall-through */ case 4: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[3]) << 24; /* fall-through */ case 3: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[2]) << 16; /* fall-through */ case 2: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[1]) << 8; /* fall-through */ default: break; } contain32 = ((const BYTE*)srcBuffer)[srcSize-1]; if (contain32 == 0) return ERROR(GENERIC); /* endMark not present */ bitD->bitsConsumed = 8 - BIT_highbit32(contain32); bitD->bitsConsumed += (U32)(sizeof(size_t) - srcSize)*8; } return srcSize; } MEM_STATIC size_t BIT_lookBits(BIT_DStream_t* bitD, U32 nbBits) { const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1; return ((bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> 1) >> ((bitMask-nbBits) & bitMask); } /*! BIT_lookBitsFast : * unsafe version; only works if nbBits >= 1 */ MEM_STATIC size_t BIT_lookBitsFast(BIT_DStream_t* bitD, U32 nbBits) { const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1; return (bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> (((bitMask+1)-nbBits) & bitMask); } MEM_STATIC void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits) { bitD->bitsConsumed += nbBits; } MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, U32 nbBits) { size_t value = BIT_lookBits(bitD, nbBits); BIT_skipBits(bitD, nbBits); return value; } /*!BIT_readBitsFast : * unsafe version; only works if nbBits >= 1 */ MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, U32 nbBits) { size_t value = BIT_lookBitsFast(bitD, nbBits); BIT_skipBits(bitD, nbBits); return value; } MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD) { if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* should never happen */ return BIT_DStream_overflow; if (bitD->ptr >= bitD->start + sizeof(bitD->bitContainer)) { bitD->ptr -= bitD->bitsConsumed >> 3; bitD->bitsConsumed &= 7; bitD->bitContainer = MEM_readLEST(bitD->ptr); return BIT_DStream_unfinished; } if (bitD->ptr == bitD->start) { if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BIT_DStream_endOfBuffer; return BIT_DStream_completed; } { U32 nbBytes = bitD->bitsConsumed >> 3; BIT_DStream_status result = BIT_DStream_unfinished; if (bitD->ptr - nbBytes < bitD->start) { nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */ result = BIT_DStream_endOfBuffer; } bitD->ptr -= nbBytes; bitD->bitsConsumed -= nbBytes*8; bitD->bitContainer = MEM_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD) */ return result; } } /*! BIT_endOfDStream * @return Tells if DStream has reached its exact end */ MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* DStream) { return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8)); } #if defined (__cplusplus) } #endif #endif /* BITSTREAM_H_MODULE */ /* ****************************************************************** FSE : Finite State Entropy coder header file for static linking (only) Copyright (C) 2013-2015, Yann Collet BSD 2-Clause License (https://opensource.org/licenses/bsd-license.php) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You can contact the author at : - Source repository : https://github.com/Cyan4973/FiniteStateEntropy - Public forum : https://groups.google.com/forum/#!forum/lz4c ****************************************************************** */ #ifndef FSE_STATIC_H #define FSE_STATIC_H #if defined (__cplusplus) extern "C" { #endif /* ***************************************** * Static allocation *******************************************/ /* FSE buffer bounds */ #define FSE_NCOUNTBOUND 512 #define FSE_BLOCKBOUND(size) (size + (size>>7)) #define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */ /* It is possible to statically allocate FSE CTable/DTable as a table of unsigned using below macros */ #define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1<<(maxTableLog-1)) + ((maxSymbolValue+1)*2)) #define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<= 1 (otherwise, result will be corrupted) */ /* ***************************************** * Implementation of inlined functions *******************************************/ /* decompression */ typedef struct { U16 tableLog; U16 fastMode; } FSE_DTableHeader; /* sizeof U32 */ typedef struct { unsigned short newState; unsigned char symbol; unsigned char nbBits; } FSE_decode_t; /* size == U32 */ MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt) { FSE_DTableHeader DTableH; memcpy(&DTableH, dt, sizeof(DTableH)); DStatePtr->state = BIT_readBits(bitD, DTableH.tableLog); BIT_reloadDStream(bitD); DStatePtr->table = dt + 1; } MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) { const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; const U32 nbBits = DInfo.nbBits; BYTE symbol = DInfo.symbol; size_t lowBits = BIT_readBits(bitD, nbBits); DStatePtr->state = DInfo.newState + lowBits; return symbol; } MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) { const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; const U32 nbBits = DInfo.nbBits; BYTE symbol = DInfo.symbol; size_t lowBits = BIT_readBitsFast(bitD, nbBits); DStatePtr->state = DInfo.newState + lowBits; return symbol; } MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr) { return DStatePtr->state == 0; } #if defined (__cplusplus) } #endif #endif /* FSE_STATIC_H */ /* ****************************************************************** FSE : Finite State Entropy coder Copyright (C) 2013-2015, Yann Collet. BSD 2-Clause License (https://opensource.org/licenses/bsd-license.php) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You can contact the author at : - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy - Public forum : https://groups.google.com/forum/#!forum/lz4c ****************************************************************** */ #ifndef FSE_COMMONDEFS_ONLY /* ************************************************************** * Tuning parameters ****************************************************************/ /*!MEMORY_USAGE : * Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.) * Increasing memory usage improves compression ratio * Reduced memory usage can improve speed, due to cache effect * Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */ #define FSE_MAX_MEMORY_USAGE 14 #define FSE_DEFAULT_MEMORY_USAGE 13 /*!FSE_MAX_SYMBOL_VALUE : * Maximum symbol value authorized. * Required for proper stack allocation */ #define FSE_MAX_SYMBOL_VALUE 255 /* ************************************************************** * template functions type & suffix ****************************************************************/ #define FSE_FUNCTION_TYPE BYTE #define FSE_FUNCTION_EXTENSION #define FSE_DECODE_TYPE FSE_decode_t #endif /* !FSE_COMMONDEFS_ONLY */ /* ************************************************************** * Compiler specifics ****************************************************************/ #ifdef _MSC_VER /* Visual Studio */ # define FORCE_INLINE static __forceinline # include /* For Visual 2005 */ # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ # pragma warning(disable : 4214) /* disable: C4214: non-int bitfields */ #else # if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */ # ifdef __GNUC__ # define FORCE_INLINE static inline __attribute__((always_inline)) # else # define FORCE_INLINE static inline # endif # else # define FORCE_INLINE static # endif /* __STDC_VERSION__ */ #endif /* ************************************************************** * Dependencies ****************************************************************/ #include /* malloc, free, qsort */ #include /* memcpy, memset */ #include /* printf (debug) */ /* *************************************************************** * Constants *****************************************************************/ #define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2) #define FSE_MAX_TABLESIZE (1U< FSE_TABLELOG_ABSOLUTE_MAX #error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported" #endif /* ************************************************************** * Error Management ****************************************************************/ #define FSE_STATIC_ASSERT(c) { enum { FSE_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */ /* ************************************************************** * Complex types ****************************************************************/ typedef U32 DTable_max_t[FSE_DTABLE_SIZE_U32(FSE_MAX_TABLELOG)]; /*-************************************************************** * Templates ****************************************************************/ /* designed to be included for type-specific functions (template emulation in C) Objective is to write these functions only once, for improved maintenance */ /* safety checks */ #ifndef FSE_FUNCTION_EXTENSION # error "FSE_FUNCTION_EXTENSION must be defined" #endif #ifndef FSE_FUNCTION_TYPE # error "FSE_FUNCTION_TYPE must be defined" #endif /* Function names */ #define FSE_CAT(X,Y) X##Y #define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y) #define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y) static U32 FSE_tableStep(U32 tableSize) { return (tableSize>>1) + (tableSize>>3) + 3; } static size_t FSE_buildDTable(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog) { FSE_DTableHeader DTableH; void* const tdPtr = dt+1; /* because dt is unsigned, 32-bits aligned on 32-bits */ FSE_DECODE_TYPE* const tableDecode = (FSE_DECODE_TYPE*) (tdPtr); const U32 tableSize = 1 << tableLog; const U32 tableMask = tableSize-1; const U32 step = FSE_tableStep(tableSize); U16 symbolNext[FSE_MAX_SYMBOL_VALUE+1]; U32 position = 0; U32 highThreshold = tableSize-1; const S16 largeLimit= (S16)(1 << (tableLog-1)); U32 noLarge = 1; U32 s; /* Sanity Checks */ if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge); if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge); /* Init, lay down lowprob symbols */ memset(tableDecode, 0, sizeof(FSE_DECODE_TYPE) * (maxSymbolValue+1) ); /* useless init, but keep static analyzer happy, and we don't need to performance optimize legacy decoders */ DTableH.tableLog = (U16)tableLog; for (s=0; s<=maxSymbolValue; s++) { if (normalizedCounter[s]==-1) { tableDecode[highThreshold--].symbol = (FSE_FUNCTION_TYPE)s; symbolNext[s] = 1; } else { if (normalizedCounter[s] >= largeLimit) noLarge=0; symbolNext[s] = normalizedCounter[s]; } } /* Spread symbols */ for (s=0; s<=maxSymbolValue; s++) { int i; for (i=0; i highThreshold) position = (position + step) & tableMask; /* lowprob area */ } } if (position!=0) return ERROR(GENERIC); /* position must reach all cells once, otherwise normalizedCounter is incorrect */ /* Build Decoding table */ { U32 i; for (i=0; i FSE_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge); bitStream >>= 4; bitCount = 4; *tableLogPtr = nbBits; remaining = (1<1) && (charnum<=*maxSVPtr)) { if (previous0) { unsigned n0 = charnum; while ((bitStream & 0xFFFF) == 0xFFFF) { n0+=24; if (ip < iend-5) { ip+=2; bitStream = MEM_readLE32(ip) >> bitCount; } else { bitStream >>= 16; bitCount+=16; } } while ((bitStream & 3) == 3) { n0+=3; bitStream>>=2; bitCount+=2; } n0 += bitStream & 3; bitCount += 2; if (n0 > *maxSVPtr) return ERROR(maxSymbolValue_tooSmall); while (charnum < n0) normalizedCounter[charnum++] = 0; if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) { ip += bitCount>>3; bitCount &= 7; bitStream = MEM_readLE32(ip) >> bitCount; } else bitStream >>= 2; } { const short max = (short)((2*threshold-1)-remaining); short count; if ((bitStream & (threshold-1)) < (U32)max) { count = (short)(bitStream & (threshold-1)); bitCount += nbBits-1; } else { count = (short)(bitStream & (2*threshold-1)); if (count >= threshold) count -= max; bitCount += nbBits; } count--; /* extra accuracy */ remaining -= FSE_abs(count); normalizedCounter[charnum++] = count; previous0 = !count; while (remaining < threshold) { nbBits--; threshold >>= 1; } { if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) { ip += bitCount>>3; bitCount &= 7; } else { bitCount -= (int)(8 * (iend - 4 - ip)); ip = iend - 4; } bitStream = MEM_readLE32(ip) >> (bitCount & 31); } } } if (remaining != 1) return ERROR(GENERIC); *maxSVPtr = charnum-1; ip += (bitCount+7)>>3; if ((size_t)(ip-istart) > hbSize) return ERROR(srcSize_wrong); return ip-istart; } /********************************************************* * Decompression (Byte symbols) *********************************************************/ static size_t FSE_buildDTable_rle (FSE_DTable* dt, BYTE symbolValue) { void* ptr = dt; FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr; void* dPtr = dt + 1; FSE_decode_t* const cell = (FSE_decode_t*)dPtr; DTableH->tableLog = 0; DTableH->fastMode = 0; cell->newState = 0; cell->symbol = symbolValue; cell->nbBits = 0; return 0; } static size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits) { void* ptr = dt; FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr; void* dPtr = dt + 1; FSE_decode_t* const dinfo = (FSE_decode_t*)dPtr; const unsigned tableSize = 1 << nbBits; const unsigned tableMask = tableSize - 1; const unsigned maxSymbolValue = tableMask; unsigned s; /* Sanity checks */ if (nbBits < 1) return ERROR(GENERIC); /* min size */ /* Build Decoding Table */ DTableH->tableLog = (U16)nbBits; DTableH->fastMode = 1; for (s=0; s<=maxSymbolValue; s++) { dinfo[s].newState = 0; dinfo[s].symbol = (BYTE)s; dinfo[s].nbBits = (BYTE)nbBits; } return 0; } FORCE_INLINE size_t FSE_decompress_usingDTable_generic( void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt, const unsigned fast) { BYTE* const ostart = (BYTE*) dst; BYTE* op = ostart; BYTE* const omax = op + maxDstSize; BYTE* const olimit = omax-3; BIT_DStream_t bitD; FSE_DState_t state1; FSE_DState_t state2; size_t errorCode; /* Init */ errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize); /* replaced last arg by maxCompressed Size */ if (FSE_isError(errorCode)) return errorCode; FSE_initDState(&state1, &bitD, dt); FSE_initDState(&state2, &bitD, dt); #define FSE_GETSYMBOL(statePtr) fast ? FSE_decodeSymbolFast(statePtr, &bitD) : FSE_decodeSymbol(statePtr, &bitD) /* 4 symbols per loop */ for ( ; (BIT_reloadDStream(&bitD)==BIT_DStream_unfinished) && (op sizeof(bitD.bitContainer)*8) /* This test must be static */ BIT_reloadDStream(&bitD); op[1] = FSE_GETSYMBOL(&state2); if (FSE_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */ { if (BIT_reloadDStream(&bitD) > BIT_DStream_unfinished) { op+=2; break; } } op[2] = FSE_GETSYMBOL(&state1); if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */ BIT_reloadDStream(&bitD); op[3] = FSE_GETSYMBOL(&state2); } /* tail */ /* note : BIT_reloadDStream(&bitD) >= FSE_DStream_partiallyFilled; Ends at exactly BIT_DStream_completed */ while (1) { if ( (BIT_reloadDStream(&bitD)>BIT_DStream_completed) || (op==omax) || (BIT_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state1))) ) break; *op++ = FSE_GETSYMBOL(&state1); if ( (BIT_reloadDStream(&bitD)>BIT_DStream_completed) || (op==omax) || (BIT_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state2))) ) break; *op++ = FSE_GETSYMBOL(&state2); } /* end ? */ if (BIT_endOfDStream(&bitD) && FSE_endOfDState(&state1) && FSE_endOfDState(&state2)) return op-ostart; if (op==omax) return ERROR(dstSize_tooSmall); /* dst buffer is full, but cSrc unfinished */ return ERROR(corruption_detected); } static size_t FSE_decompress_usingDTable(void* dst, size_t originalSize, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt) { FSE_DTableHeader DTableH; U32 fastMode; memcpy(&DTableH, dt, sizeof(DTableH)); fastMode = DTableH.fastMode; /* select fast mode (static) */ if (fastMode) return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1); return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0); } static size_t FSE_decompress(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize) { const BYTE* const istart = (const BYTE*)cSrc; const BYTE* ip = istart; short counting[FSE_MAX_SYMBOL_VALUE+1]; DTable_max_t dt; /* Static analyzer seems unable to understand this table will be properly initialized later */ unsigned tableLog; unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE; size_t errorCode; if (cSrcSize<2) return ERROR(srcSize_wrong); /* too small input size */ /* normal FSE decoding mode */ errorCode = FSE_readNCount (counting, &maxSymbolValue, &tableLog, istart, cSrcSize); if (FSE_isError(errorCode)) return errorCode; if (errorCode >= cSrcSize) return ERROR(srcSize_wrong); /* too small input size */ ip += errorCode; cSrcSize -= errorCode; errorCode = FSE_buildDTable (dt, counting, maxSymbolValue, tableLog); if (FSE_isError(errorCode)) return errorCode; /* always return, even if it is an error code */ return FSE_decompress_usingDTable (dst, maxDstSize, ip, cSrcSize, dt); } #endif /* FSE_COMMONDEFS_ONLY */ /* ****************************************************************** Huff0 : Huffman coder, part of New Generation Entropy library header file Copyright (C) 2013-2015, Yann Collet. BSD 2-Clause License (https://opensource.org/licenses/bsd-license.php) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You can contact the author at : - Source repository : https://github.com/Cyan4973/FiniteStateEntropy - Public forum : https://groups.google.com/forum/#!forum/lz4c ****************************************************************** */ #ifndef HUFF0_H #define HUFF0_H #if defined (__cplusplus) extern "C" { #endif /* **************************************** * Dependency ******************************************/ #include /* size_t */ /* **************************************** * Huff0 simple functions ******************************************/ static size_t HUF_decompress(void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /*! HUF_decompress(): Decompress Huff0 data from buffer 'cSrc', of size 'cSrcSize', into already allocated destination buffer 'dst', of size 'dstSize'. 'dstSize' must be the exact size of original (uncompressed) data. Note : in contrast with FSE, HUF_decompress can regenerate RLE (cSrcSize==1) and uncompressed (cSrcSize==dstSize) data, because it knows size to regenerate. @return : size of regenerated data (== dstSize) or an error code, which can be tested using HUF_isError() */ /* **************************************** * Tool functions ******************************************/ /* Error Management */ static unsigned HUF_isError(size_t code); /* tells if a return value is an error code */ #if defined (__cplusplus) } #endif #endif /* HUFF0_H */ /* ****************************************************************** Huff0 : Huffman coder, part of New Generation Entropy library header file for static linking (only) Copyright (C) 2013-2015, Yann Collet BSD 2-Clause License (https://opensource.org/licenses/bsd-license.php) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You can contact the author at : - Source repository : https://github.com/Cyan4973/FiniteStateEntropy - Public forum : https://groups.google.com/forum/#!forum/lz4c ****************************************************************** */ #ifndef HUFF0_STATIC_H #define HUFF0_STATIC_H #if defined (__cplusplus) extern "C" { #endif /* **************************************** * Static allocation macros ******************************************/ /* static allocation of Huff0's DTable */ #define HUF_DTABLE_SIZE(maxTableLog) (1 + (1<= 199901L) /* C99 */) /* inline is defined */ #elif defined(_MSC_VER) # define inline __inline #else # define inline /* disable inline */ #endif #ifdef _MSC_VER /* Visual Studio */ # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ #endif /* ************************************************************** * Includes ****************************************************************/ #include /* malloc, free, qsort */ #include /* memcpy, memset */ #include /* printf (debug) */ /* ************************************************************** * Constants ****************************************************************/ #define HUF_ABSOLUTEMAX_TABLELOG 16 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */ #define HUF_MAX_TABLELOG 12 /* max configured tableLog (for static allocation); can be modified up to HUF_ABSOLUTEMAX_TABLELOG */ #define HUF_DEFAULT_TABLELOG HUF_MAX_TABLELOG /* tableLog by default, when not specified */ #define HUF_MAX_SYMBOL_VALUE 255 #if (HUF_MAX_TABLELOG > HUF_ABSOLUTEMAX_TABLELOG) # error "HUF_MAX_TABLELOG is too large !" #endif /* ************************************************************** * Error Management ****************************************************************/ static unsigned HUF_isError(size_t code) { return ERR_isError(code); } #define HUF_STATIC_ASSERT(c) { enum { HUF_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */ /*-******************************************************* * Huff0 : Huffman block decompression *********************************************************/ typedef struct { BYTE byte; BYTE nbBits; } HUF_DEltX2; /* single-symbol decoding */ typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX4; /* double-symbols decoding */ typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t; /*! HUF_readStats Read compact Huffman tree, saved by HUF_writeCTable @huffWeight : destination buffer @return : size read from `src` */ static size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats, U32* nbSymbolsPtr, U32* tableLogPtr, const void* src, size_t srcSize) { U32 weightTotal; U32 tableLog; const BYTE* ip = (const BYTE*) src; size_t iSize; size_t oSize; U32 n; if (!srcSize) return ERROR(srcSize_wrong); iSize = ip[0]; //memset(huffWeight, 0, hwSize); /* is not necessary, even though some analyzer complain ... */ if (iSize >= 128) /* special header */ { if (iSize >= (242)) /* RLE */ { static int l[14] = { 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 127, 128 }; oSize = l[iSize-242]; memset(huffWeight, 1, hwSize); iSize = 0; } else /* Incompressible */ { oSize = iSize - 127; iSize = ((oSize+1)/2); if (iSize+1 > srcSize) return ERROR(srcSize_wrong); if (oSize >= hwSize) return ERROR(corruption_detected); ip += 1; for (n=0; n> 4; huffWeight[n+1] = ip[n/2] & 15; } } } else /* header compressed with FSE (normal case) */ { if (iSize+1 > srcSize) return ERROR(srcSize_wrong); oSize = FSE_decompress(huffWeight, hwSize-1, ip+1, iSize); /* max (hwSize-1) values decoded, as last one is implied */ if (FSE_isError(oSize)) return oSize; } /* collect weight stats */ memset(rankStats, 0, (HUF_ABSOLUTEMAX_TABLELOG + 1) * sizeof(U32)); weightTotal = 0; for (n=0; n= HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected); rankStats[huffWeight[n]]++; weightTotal += (1 << huffWeight[n]) >> 1; } if (weightTotal == 0) return ERROR(corruption_detected); /* get last non-null symbol weight (implied, total must be 2^n) */ tableLog = BIT_highbit32(weightTotal) + 1; if (tableLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected); { U32 total = 1 << tableLog; U32 rest = total - weightTotal; U32 verif = 1 << BIT_highbit32(rest); U32 lastWeight = BIT_highbit32(rest) + 1; if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */ huffWeight[oSize] = (BYTE)lastWeight; rankStats[lastWeight]++; } /* check tree construction validity */ if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */ /* results */ *nbSymbolsPtr = (U32)(oSize+1); *tableLogPtr = tableLog; return iSize+1; } /**************************/ /* single-symbol decoding */ /**************************/ static size_t HUF_readDTableX2 (U16* DTable, const void* src, size_t srcSize) { BYTE huffWeight[HUF_MAX_SYMBOL_VALUE + 1]; U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1]; /* large enough for values from 0 to 16 */ U32 tableLog = 0; size_t iSize; U32 nbSymbols = 0; U32 n; U32 nextRankStart; void* const dtPtr = DTable + 1; HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr; HUF_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U16)); /* if compilation fails here, assertion is false */ //memset(huffWeight, 0, sizeof(huffWeight)); /* is not necessary, even though some analyzer complain ... */ iSize = HUF_readStats(huffWeight, HUF_MAX_SYMBOL_VALUE + 1, rankVal, &nbSymbols, &tableLog, src, srcSize); if (HUF_isError(iSize)) return iSize; /* check result */ if (tableLog > DTable[0]) return ERROR(tableLog_tooLarge); /* DTable is too small */ DTable[0] = (U16)tableLog; /* maybe should separate sizeof DTable, as allocated, from used size of DTable, in case of DTable re-use */ /* Prepare ranks */ nextRankStart = 0; for (n=1; n<=tableLog; n++) { U32 current = nextRankStart; nextRankStart += (rankVal[n] << (n-1)); rankVal[n] = current; } /* fill DTable */ for (n=0; n> 1; U32 i; HUF_DEltX2 D; D.byte = (BYTE)n; D.nbBits = (BYTE)(tableLog + 1 - w); for (i = rankVal[w]; i < rankVal[w] + length; i++) dt[i] = D; rankVal[w] += length; } return iSize; } static BYTE HUF_decodeSymbolX2(BIT_DStream_t* Dstream, const HUF_DEltX2* dt, const U32 dtLog) { const size_t val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */ const BYTE c = dt[val].byte; BIT_skipBits(Dstream, dt[val].nbBits); return c; } #define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \ *ptr++ = HUF_decodeSymbolX2(DStreamPtr, dt, dtLog) #define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \ if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \ HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) #define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \ if (MEM_64bits()) \ HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) static inline size_t HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX2* const dt, const U32 dtLog) { BYTE* const pStart = p; /* up to 4 symbols at a time */ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-4)) { HUF_DECODE_SYMBOLX2_2(p, bitDPtr); HUF_DECODE_SYMBOLX2_1(p, bitDPtr); HUF_DECODE_SYMBOLX2_2(p, bitDPtr); HUF_DECODE_SYMBOLX2_0(p, bitDPtr); } /* closer to the end */ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd)) HUF_DECODE_SYMBOLX2_0(p, bitDPtr); /* no more data to retrieve from bitstream, hence no need to reload */ while (p < pEnd) HUF_DECODE_SYMBOLX2_0(p, bitDPtr); return pEnd-pStart; } static size_t HUF_decompress4X2_usingDTable( void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, const U16* DTable) { if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ { const BYTE* const istart = (const BYTE*) cSrc; BYTE* const ostart = (BYTE*) dst; BYTE* const oend = ostart + dstSize; const void* const dtPtr = DTable; const HUF_DEltX2* const dt = ((const HUF_DEltX2*)dtPtr) +1; const U32 dtLog = DTable[0]; size_t errorCode; /* Init */ BIT_DStream_t bitD1; BIT_DStream_t bitD2; BIT_DStream_t bitD3; BIT_DStream_t bitD4; const size_t length1 = MEM_readLE16(istart); const size_t length2 = MEM_readLE16(istart+2); const size_t length3 = MEM_readLE16(istart+4); size_t length4; const BYTE* const istart1 = istart + 6; /* jumpTable */ const BYTE* const istart2 = istart1 + length1; const BYTE* const istart3 = istart2 + length2; const BYTE* const istart4 = istart3 + length3; const size_t segmentSize = (dstSize+3) / 4; BYTE* const opStart2 = ostart + segmentSize; BYTE* const opStart3 = opStart2 + segmentSize; BYTE* const opStart4 = opStart3 + segmentSize; BYTE* op1 = ostart; BYTE* op2 = opStart2; BYTE* op3 = opStart3; BYTE* op4 = opStart4; U32 endSignal; length4 = cSrcSize - (length1 + length2 + length3 + 6); if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ errorCode = BIT_initDStream(&bitD1, istart1, length1); if (HUF_isError(errorCode)) return errorCode; errorCode = BIT_initDStream(&bitD2, istart2, length2); if (HUF_isError(errorCode)) return errorCode; errorCode = BIT_initDStream(&bitD3, istart3, length3); if (HUF_isError(errorCode)) return errorCode; errorCode = BIT_initDStream(&bitD4, istart4, length4); if (HUF_isError(errorCode)) return errorCode; /* 16-32 symbols per loop (4-8 symbols per stream) */ endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4); for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; ) { HUF_DECODE_SYMBOLX2_2(op1, &bitD1); HUF_DECODE_SYMBOLX2_2(op2, &bitD2); HUF_DECODE_SYMBOLX2_2(op3, &bitD3); HUF_DECODE_SYMBOLX2_2(op4, &bitD4); HUF_DECODE_SYMBOLX2_1(op1, &bitD1); HUF_DECODE_SYMBOLX2_1(op2, &bitD2); HUF_DECODE_SYMBOLX2_1(op3, &bitD3); HUF_DECODE_SYMBOLX2_1(op4, &bitD4); HUF_DECODE_SYMBOLX2_2(op1, &bitD1); HUF_DECODE_SYMBOLX2_2(op2, &bitD2); HUF_DECODE_SYMBOLX2_2(op3, &bitD3); HUF_DECODE_SYMBOLX2_2(op4, &bitD4); HUF_DECODE_SYMBOLX2_0(op1, &bitD1); HUF_DECODE_SYMBOLX2_0(op2, &bitD2); HUF_DECODE_SYMBOLX2_0(op3, &bitD3); HUF_DECODE_SYMBOLX2_0(op4, &bitD4); endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4); } /* check corruption */ if (op1 > opStart2) return ERROR(corruption_detected); if (op2 > opStart3) return ERROR(corruption_detected); if (op3 > opStart4) return ERROR(corruption_detected); /* note : op4 supposed already verified within main loop */ /* finish bitStreams one by one */ HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog); HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog); HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog); HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog); /* check */ endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4); if (!endSignal) return ERROR(corruption_detected); /* decoded size */ return dstSize; } } static size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) { HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_MAX_TABLELOG); const BYTE* ip = (const BYTE*) cSrc; size_t errorCode; errorCode = HUF_readDTableX2 (DTable, cSrc, cSrcSize); if (HUF_isError(errorCode)) return errorCode; if (errorCode >= cSrcSize) return ERROR(srcSize_wrong); ip += errorCode; cSrcSize -= errorCode; return HUF_decompress4X2_usingDTable (dst, dstSize, ip, cSrcSize, DTable); } /***************************/ /* double-symbols decoding */ /***************************/ static void HUF_fillDTableX4Level2(HUF_DEltX4* DTable, U32 sizeLog, const U32 consumed, const U32* rankValOrigin, const int minWeight, const sortedSymbol_t* sortedSymbols, const U32 sortedListSize, U32 nbBitsBaseline, U16 baseSeq) { HUF_DEltX4 DElt; U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1]; U32 s; /* get pre-calculated rankVal */ memcpy(rankVal, rankValOrigin, sizeof(rankVal)); /* fill skipped values */ if (minWeight>1) { U32 i, skipSize = rankVal[minWeight]; MEM_writeLE16(&(DElt.sequence), baseSeq); DElt.nbBits = (BYTE)(consumed); DElt.length = 1; for (i = 0; i < skipSize; i++) DTable[i] = DElt; } /* fill DTable */ for (s=0; s= 1 */ rankVal[weight] += length; } } typedef U32 rankVal_t[HUF_ABSOLUTEMAX_TABLELOG][HUF_ABSOLUTEMAX_TABLELOG + 1]; static void HUF_fillDTableX4(HUF_DEltX4* DTable, const U32 targetLog, const sortedSymbol_t* sortedList, const U32 sortedListSize, const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight, const U32 nbBitsBaseline) { U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1]; const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */ const U32 minBits = nbBitsBaseline - maxWeight; U32 s; memcpy(rankVal, rankValOrigin, sizeof(rankVal)); /* fill DTable */ for (s=0; s= minBits) /* enough room for a second symbol */ { U32 sortedRank; int minWeight = nbBits + scaleLog; if (minWeight < 1) minWeight = 1; sortedRank = rankStart[minWeight]; HUF_fillDTableX4Level2(DTable+start, targetLog-nbBits, nbBits, rankValOrigin[nbBits], minWeight, sortedList+sortedRank, sortedListSize-sortedRank, nbBitsBaseline, symbol); } else { U32 i; const U32 end = start + length; HUF_DEltX4 DElt; MEM_writeLE16(&(DElt.sequence), symbol); DElt.nbBits = (BYTE)(nbBits); DElt.length = 1; for (i = start; i < end; i++) DTable[i] = DElt; } rankVal[weight] += length; } } static size_t HUF_readDTableX4 (U32* DTable, const void* src, size_t srcSize) { BYTE weightList[HUF_MAX_SYMBOL_VALUE + 1]; sortedSymbol_t sortedSymbol[HUF_MAX_SYMBOL_VALUE + 1]; U32 rankStats[HUF_ABSOLUTEMAX_TABLELOG + 1] = { 0 }; U32 rankStart0[HUF_ABSOLUTEMAX_TABLELOG + 2] = { 0 }; U32* const rankStart = rankStart0+1; rankVal_t rankVal; U32 tableLog, maxW, sizeOfSort, nbSymbols; const U32 memLog = DTable[0]; size_t iSize; void* dtPtr = DTable; HUF_DEltX4* const dt = ((HUF_DEltX4*)dtPtr) + 1; HUF_STATIC_ASSERT(sizeof(HUF_DEltX4) == sizeof(U32)); /* if compilation fails here, assertion is false */ if (memLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(tableLog_tooLarge); //memset(weightList, 0, sizeof(weightList)); /* is not necessary, even though some analyzer complain ... */ iSize = HUF_readStats(weightList, HUF_MAX_SYMBOL_VALUE + 1, rankStats, &nbSymbols, &tableLog, src, srcSize); if (HUF_isError(iSize)) return iSize; /* check result */ if (tableLog > memLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */ /* find maxWeight */ for (maxW = tableLog; rankStats[maxW]==0; maxW--) { if (!maxW) return ERROR(GENERIC); } /* necessarily finds a solution before maxW==0 */ /* Get start index of each weight */ { U32 w, nextRankStart = 0; for (w=1; w<=maxW; w++) { U32 current = nextRankStart; nextRankStart += rankStats[w]; rankStart[w] = current; } rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/ sizeOfSort = nextRankStart; } /* sort symbols by weight */ { U32 s; for (s=0; s> consumed; } } } HUF_fillDTableX4(dt, memLog, sortedSymbol, sizeOfSort, rankStart0, rankVal, maxW, tableLog+1); return iSize; } static U32 HUF_decodeSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog) { const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ memcpy(op, dt+val, 2); BIT_skipBits(DStream, dt[val].nbBits); return dt[val].length; } static U32 HUF_decodeLastSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog) { const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ memcpy(op, dt+val, 1); if (dt[val].length==1) BIT_skipBits(DStream, dt[val].nbBits); else { if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) { BIT_skipBits(DStream, dt[val].nbBits); if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8)) DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */ } } return 1; } #define HUF_DECODE_SYMBOLX4_0(ptr, DStreamPtr) \ ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog) #define HUF_DECODE_SYMBOLX4_1(ptr, DStreamPtr) \ if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \ ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog) #define HUF_DECODE_SYMBOLX4_2(ptr, DStreamPtr) \ if (MEM_64bits()) \ ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog) static inline size_t HUF_decodeStreamX4(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, const HUF_DEltX4* const dt, const U32 dtLog) { BYTE* const pStart = p; /* up to 8 symbols at a time */ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd-7)) { HUF_DECODE_SYMBOLX4_2(p, bitDPtr); HUF_DECODE_SYMBOLX4_1(p, bitDPtr); HUF_DECODE_SYMBOLX4_2(p, bitDPtr); HUF_DECODE_SYMBOLX4_0(p, bitDPtr); } /* closer to the end */ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-2)) HUF_DECODE_SYMBOLX4_0(p, bitDPtr); while (p <= pEnd-2) HUF_DECODE_SYMBOLX4_0(p, bitDPtr); /* no need to reload : reached the end of DStream */ if (p < pEnd) p += HUF_decodeLastSymbolX4(p, bitDPtr, dt, dtLog); return p-pStart; } static size_t HUF_decompress4X4_usingDTable( void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, const U32* DTable) { if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ { const BYTE* const istart = (const BYTE*) cSrc; BYTE* const ostart = (BYTE*) dst; BYTE* const oend = ostart + dstSize; const void* const dtPtr = DTable; const HUF_DEltX4* const dt = ((const HUF_DEltX4*)dtPtr) +1; const U32 dtLog = DTable[0]; size_t errorCode; /* Init */ BIT_DStream_t bitD1; BIT_DStream_t bitD2; BIT_DStream_t bitD3; BIT_DStream_t bitD4; const size_t length1 = MEM_readLE16(istart); const size_t length2 = MEM_readLE16(istart+2); const size_t length3 = MEM_readLE16(istart+4); size_t length4; const BYTE* const istart1 = istart + 6; /* jumpTable */ const BYTE* const istart2 = istart1 + length1; const BYTE* const istart3 = istart2 + length2; const BYTE* const istart4 = istart3 + length3; const size_t segmentSize = (dstSize+3) / 4; BYTE* const opStart2 = ostart + segmentSize; BYTE* const opStart3 = opStart2 + segmentSize; BYTE* const opStart4 = opStart3 + segmentSize; BYTE* op1 = ostart; BYTE* op2 = opStart2; BYTE* op3 = opStart3; BYTE* op4 = opStart4; U32 endSignal; length4 = cSrcSize - (length1 + length2 + length3 + 6); if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ errorCode = BIT_initDStream(&bitD1, istart1, length1); if (HUF_isError(errorCode)) return errorCode; errorCode = BIT_initDStream(&bitD2, istart2, length2); if (HUF_isError(errorCode)) return errorCode; errorCode = BIT_initDStream(&bitD3, istart3, length3); if (HUF_isError(errorCode)) return errorCode; errorCode = BIT_initDStream(&bitD4, istart4, length4); if (HUF_isError(errorCode)) return errorCode; /* 16-32 symbols per loop (4-8 symbols per stream) */ endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4); for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; ) { HUF_DECODE_SYMBOLX4_2(op1, &bitD1); HUF_DECODE_SYMBOLX4_2(op2, &bitD2); HUF_DECODE_SYMBOLX4_2(op3, &bitD3); HUF_DECODE_SYMBOLX4_2(op4, &bitD4); HUF_DECODE_SYMBOLX4_1(op1, &bitD1); HUF_DECODE_SYMBOLX4_1(op2, &bitD2); HUF_DECODE_SYMBOLX4_1(op3, &bitD3); HUF_DECODE_SYMBOLX4_1(op4, &bitD4); HUF_DECODE_SYMBOLX4_2(op1, &bitD1); HUF_DECODE_SYMBOLX4_2(op2, &bitD2); HUF_DECODE_SYMBOLX4_2(op3, &bitD3); HUF_DECODE_SYMBOLX4_2(op4, &bitD4); HUF_DECODE_SYMBOLX4_0(op1, &bitD1); HUF_DECODE_SYMBOLX4_0(op2, &bitD2); HUF_DECODE_SYMBOLX4_0(op3, &bitD3); HUF_DECODE_SYMBOLX4_0(op4, &bitD4); endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4); } /* check corruption */ if (op1 > opStart2) return ERROR(corruption_detected); if (op2 > opStart3) return ERROR(corruption_detected); if (op3 > opStart4) return ERROR(corruption_detected); /* note : op4 supposed already verified within main loop */ /* finish bitStreams one by one */ HUF_decodeStreamX4(op1, &bitD1, opStart2, dt, dtLog); HUF_decodeStreamX4(op2, &bitD2, opStart3, dt, dtLog); HUF_decodeStreamX4(op3, &bitD3, opStart4, dt, dtLog); HUF_decodeStreamX4(op4, &bitD4, oend, dt, dtLog); /* check */ endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4); if (!endSignal) return ERROR(corruption_detected); /* decoded size */ return dstSize; } } static size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) { HUF_CREATE_STATIC_DTABLEX4(DTable, HUF_MAX_TABLELOG); const BYTE* ip = (const BYTE*) cSrc; size_t hSize = HUF_readDTableX4 (DTable, cSrc, cSrcSize); if (HUF_isError(hSize)) return hSize; if (hSize >= cSrcSize) return ERROR(srcSize_wrong); ip += hSize; cSrcSize -= hSize; return HUF_decompress4X4_usingDTable (dst, dstSize, ip, cSrcSize, DTable); } /**********************************/ /* Generic decompression selector */ /**********************************/ typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t; static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] = { /* single, double, quad */ {{0,0}, {1,1}, {2,2}}, /* Q==0 : impossible */ {{0,0}, {1,1}, {2,2}}, /* Q==1 : impossible */ {{ 38,130}, {1313, 74}, {2151, 38}}, /* Q == 2 : 12-18% */ {{ 448,128}, {1353, 74}, {2238, 41}}, /* Q == 3 : 18-25% */ {{ 556,128}, {1353, 74}, {2238, 47}}, /* Q == 4 : 25-32% */ {{ 714,128}, {1418, 74}, {2436, 53}}, /* Q == 5 : 32-38% */ {{ 883,128}, {1437, 74}, {2464, 61}}, /* Q == 6 : 38-44% */ {{ 897,128}, {1515, 75}, {2622, 68}}, /* Q == 7 : 44-50% */ {{ 926,128}, {1613, 75}, {2730, 75}}, /* Q == 8 : 50-56% */ {{ 947,128}, {1729, 77}, {3359, 77}}, /* Q == 9 : 56-62% */ {{1107,128}, {2083, 81}, {4006, 84}}, /* Q ==10 : 62-69% */ {{1177,128}, {2379, 87}, {4785, 88}}, /* Q ==11 : 69-75% */ {{1242,128}, {2415, 93}, {5155, 84}}, /* Q ==12 : 75-81% */ {{1349,128}, {2644,106}, {5260,106}}, /* Q ==13 : 81-87% */ {{1455,128}, {2422,124}, {4174,124}}, /* Q ==14 : 87-93% */ {{ 722,128}, {1891,145}, {1936,146}}, /* Q ==15 : 93-99% */ }; typedef size_t (*decompressionAlgo)(void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); static size_t HUF_decompress (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) { static const decompressionAlgo decompress[3] = { HUF_decompress4X2, HUF_decompress4X4, NULL }; /* estimate decompression time */ U32 Q; const U32 D256 = (U32)(dstSize >> 8); U32 Dtime[3]; U32 algoNb = 0; int n; /* validation checks */ if (dstSize == 0) return ERROR(dstSize_tooSmall); if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */ if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */ if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */ /* decoder timing evaluation */ Q = (U32)(cSrcSize * 16 / dstSize); /* Q < 16 since dstSize > cSrcSize */ for (n=0; n<3; n++) Dtime[n] = algoTime[Q][n].tableTime + (algoTime[Q][n].decode256Time * D256); Dtime[1] += Dtime[1] >> 4; Dtime[2] += Dtime[2] >> 3; /* advantage to algorithms using less memory, for cache eviction */ if (Dtime[1] < Dtime[0]) algoNb = 1; return decompress[algoNb](dst, dstSize, cSrc, cSrcSize); //return HUF_decompress4X2(dst, dstSize, cSrc, cSrcSize); /* multi-streams single-symbol decoding */ //return HUF_decompress4X4(dst, dstSize, cSrc, cSrcSize); /* multi-streams double-symbols decoding */ //return HUF_decompress4X6(dst, dstSize, cSrc, cSrcSize); /* multi-streams quad-symbols decoding */ } #endif /* ZSTD_CCOMMON_H_MODULE */ /* zstd - decompression module fo v0.4 legacy format Copyright (C) 2015-2016, Yann Collet. BSD 2-Clause License (https://opensource.org/licenses/bsd-license.php) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You can contact the author at : - zstd source repository : https://github.com/Cyan4973/zstd - ztsd public forum : https://groups.google.com/forum/#!forum/lz4c */ /* *************************************************************** * Tuning parameters *****************************************************************/ /*! * HEAPMODE : * Select how default decompression function ZSTD_decompress() will allocate memory, * in memory stack (0), or in memory heap (1, requires malloc()) */ #ifndef ZSTD_HEAPMODE # define ZSTD_HEAPMODE 1 #endif /* ******************************************************* * Includes *********************************************************/ #include /* calloc */ #include /* memcpy, memmove */ #include /* debug : printf */ /* ******************************************************* * Compiler specifics *********************************************************/ #ifdef _MSC_VER /* Visual Studio */ # include /* For Visual 2005 */ # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ # pragma warning(disable : 4324) /* disable: C4324: padded structure */ #endif /* ************************************* * Local types ***************************************/ typedef struct { blockType_t blockType; U32 origSize; } blockProperties_t; /* ******************************************************* * Memory operations **********************************************************/ static void ZSTD_copy4(void* dst, const void* src) { memcpy(dst, src, 4); } /* ************************************* * Error Management ***************************************/ /*! ZSTD_isError * tells if a return value is an error code */ static unsigned ZSTD_isError(size_t code) { return ERR_isError(code); } /* ************************************************************* * Context management ***************************************************************/ typedef enum { ZSTDds_getFrameHeaderSize, ZSTDds_decodeFrameHeader, ZSTDds_decodeBlockHeader, ZSTDds_decompressBlock } ZSTD_dStage; struct ZSTDv04_Dctx_s { U32 LLTable[FSE_DTABLE_SIZE_U32(LLFSELog)]; U32 OffTable[FSE_DTABLE_SIZE_U32(OffFSELog)]; U32 MLTable[FSE_DTABLE_SIZE_U32(MLFSELog)]; const void* previousDstEnd; const void* base; const void* vBase; const void* dictEnd; size_t expected; size_t headerSize; ZSTD_parameters params; blockType_t bType; ZSTD_dStage stage; const BYTE* litPtr; size_t litSize; BYTE litBuffer[BLOCKSIZE + 8 /* margin for wildcopy */]; BYTE headerBuffer[ZSTD_frameHeaderSize_max]; }; /* typedef'd to ZSTD_DCtx within "zstd_static.h" */ static size_t ZSTD_resetDCtx(ZSTD_DCtx* dctx) { dctx->expected = ZSTD_frameHeaderSize_min; dctx->stage = ZSTDds_getFrameHeaderSize; dctx->previousDstEnd = NULL; dctx->base = NULL; dctx->vBase = NULL; dctx->dictEnd = NULL; return 0; } static ZSTD_DCtx* ZSTD_createDCtx(void) { ZSTD_DCtx* dctx = (ZSTD_DCtx*)malloc(sizeof(ZSTD_DCtx)); if (dctx==NULL) return NULL; ZSTD_resetDCtx(dctx); return dctx; } static size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx) { free(dctx); return 0; } /* ************************************************************* * Decompression section ***************************************************************/ /** ZSTD_decodeFrameHeader_Part1 * decode the 1st part of the Frame Header, which tells Frame Header size. * srcSize must be == ZSTD_frameHeaderSize_min * @return : the full size of the Frame Header */ static size_t ZSTD_decodeFrameHeader_Part1(ZSTD_DCtx* zc, const void* src, size_t srcSize) { U32 magicNumber; if (srcSize != ZSTD_frameHeaderSize_min) return ERROR(srcSize_wrong); magicNumber = MEM_readLE32(src); if (magicNumber != ZSTD_MAGICNUMBER) return ERROR(prefix_unknown); zc->headerSize = ZSTD_frameHeaderSize_min; return zc->headerSize; } static size_t ZSTD_getFrameParams(ZSTD_parameters* params, const void* src, size_t srcSize) { U32 magicNumber; if (srcSize < ZSTD_frameHeaderSize_min) return ZSTD_frameHeaderSize_max; magicNumber = MEM_readLE32(src); if (magicNumber != ZSTD_MAGICNUMBER) return ERROR(prefix_unknown); memset(params, 0, sizeof(*params)); params->windowLog = (((const BYTE*)src)[4] & 15) + ZSTD_WINDOWLOG_ABSOLUTEMIN; if ((((const BYTE*)src)[4] >> 4) != 0) return ERROR(frameParameter_unsupported); /* reserved bits */ return 0; } /** ZSTD_decodeFrameHeader_Part2 * decode the full Frame Header * srcSize must be the size provided by ZSTD_decodeFrameHeader_Part1 * @return : 0, or an error code, which can be tested using ZSTD_isError() */ static size_t ZSTD_decodeFrameHeader_Part2(ZSTD_DCtx* zc, const void* src, size_t srcSize) { size_t result; if (srcSize != zc->headerSize) return ERROR(srcSize_wrong); result = ZSTD_getFrameParams(&(zc->params), src, srcSize); if ((MEM_32bits()) && (zc->params.windowLog > 25)) return ERROR(frameParameter_unsupported); return result; } static size_t ZSTD_getcBlockSize(const void* src, size_t srcSize, blockProperties_t* bpPtr) { const BYTE* const in = (const BYTE* const)src; BYTE headerFlags; U32 cSize; if (srcSize < 3) return ERROR(srcSize_wrong); headerFlags = *in; cSize = in[2] + (in[1]<<8) + ((in[0] & 7)<<16); bpPtr->blockType = (blockType_t)(headerFlags >> 6); bpPtr->origSize = (bpPtr->blockType == bt_rle) ? cSize : 0; if (bpPtr->blockType == bt_end) return 0; if (bpPtr->blockType == bt_rle) return 1; return cSize; } static size_t ZSTD_copyRawBlock(void* dst, size_t maxDstSize, const void* src, size_t srcSize) { if (srcSize > maxDstSize) return ERROR(dstSize_tooSmall); if (srcSize > 0) { memcpy(dst, src, srcSize); } return srcSize; } /** ZSTD_decompressLiterals @return : nb of bytes read from src, or an error code*/ static size_t ZSTD_decompressLiterals(void* dst, size_t* maxDstSizePtr, const void* src, size_t srcSize) { const BYTE* ip = (const BYTE*)src; const size_t litSize = (MEM_readLE32(src) & 0x1FFFFF) >> 2; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */ const size_t litCSize = (MEM_readLE32(ip+2) & 0xFFFFFF) >> 5; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */ if (litSize > *maxDstSizePtr) return ERROR(corruption_detected); if (litCSize + 5 > srcSize) return ERROR(corruption_detected); if (HUF_isError(HUF_decompress(dst, litSize, ip+5, litCSize))) return ERROR(corruption_detected); *maxDstSizePtr = litSize; return litCSize + 5; } /** ZSTD_decodeLiteralsBlock @return : nb of bytes read from src (< srcSize ) */ static size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx, const void* src, size_t srcSize) /* note : srcSize < BLOCKSIZE */ { const BYTE* const istart = (const BYTE*) src; /* any compressed block with literals segment must be at least this size */ if (srcSize < MIN_CBLOCK_SIZE) return ERROR(corruption_detected); switch(*istart & 3) { /* compressed */ case 0: { size_t litSize = BLOCKSIZE; const size_t readSize = ZSTD_decompressLiterals(dctx->litBuffer, &litSize, src, srcSize); dctx->litPtr = dctx->litBuffer; dctx->litSize = litSize; memset(dctx->litBuffer + dctx->litSize, 0, 8); return readSize; /* works if it's an error too */ } case IS_RAW: { const size_t litSize = (MEM_readLE32(istart) & 0xFFFFFF) >> 2; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */ if (litSize > srcSize-11) /* risk of reading too far with wildcopy */ { if (litSize > BLOCKSIZE) return ERROR(corruption_detected); if (litSize > srcSize-3) return ERROR(corruption_detected); memcpy(dctx->litBuffer, istart, litSize); dctx->litPtr = dctx->litBuffer; dctx->litSize = litSize; memset(dctx->litBuffer + dctx->litSize, 0, 8); return litSize+3; } /* direct reference into compressed stream */ dctx->litPtr = istart+3; dctx->litSize = litSize; return litSize+3; } case IS_RLE: { const size_t litSize = (MEM_readLE32(istart) & 0xFFFFFF) >> 2; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */ if (litSize > BLOCKSIZE) return ERROR(corruption_detected); memset(dctx->litBuffer, istart[3], litSize + 8); dctx->litPtr = dctx->litBuffer; dctx->litSize = litSize; return 4; } default: return ERROR(corruption_detected); /* forbidden nominal case */ } } static size_t ZSTD_decodeSeqHeaders(int* nbSeq, const BYTE** dumpsPtr, size_t* dumpsLengthPtr, FSE_DTable* DTableLL, FSE_DTable* DTableML, FSE_DTable* DTableOffb, const void* src, size_t srcSize) { const BYTE* const istart = (const BYTE* const)src; const BYTE* ip = istart; const BYTE* const iend = istart + srcSize; U32 LLtype, Offtype, MLtype; U32 LLlog, Offlog, MLlog; size_t dumpsLength; /* check */ if (srcSize < 5) return ERROR(srcSize_wrong); /* SeqHead */ *nbSeq = MEM_readLE16(ip); ip+=2; LLtype = *ip >> 6; Offtype = (*ip >> 4) & 3; MLtype = (*ip >> 2) & 3; if (*ip & 2) { dumpsLength = ip[2]; dumpsLength += ip[1] << 8; ip += 3; } else { dumpsLength = ip[1]; dumpsLength += (ip[0] & 1) << 8; ip += 2; } *dumpsPtr = ip; ip += dumpsLength; *dumpsLengthPtr = dumpsLength; /* check */ if (ip > iend-3) return ERROR(srcSize_wrong); /* min : all 3 are "raw", hence no header, but at least xxLog bits per type */ /* sequences */ { S16 norm[MaxML+1]; /* assumption : MaxML >= MaxLL >= MaxOff */ size_t headerSize; /* Build DTables */ switch(LLtype) { case bt_rle : LLlog = 0; FSE_buildDTable_rle(DTableLL, *ip++); break; case bt_raw : LLlog = LLbits; FSE_buildDTable_raw(DTableLL, LLbits); break; default : { U32 max = MaxLL; headerSize = FSE_readNCount(norm, &max, &LLlog, ip, iend-ip); if (FSE_isError(headerSize)) return ERROR(GENERIC); if (LLlog > LLFSELog) return ERROR(corruption_detected); ip += headerSize; FSE_buildDTable(DTableLL, norm, max, LLlog); } } switch(Offtype) { case bt_rle : Offlog = 0; if (ip > iend-2) return ERROR(srcSize_wrong); /* min : "raw", hence no header, but at least xxLog bits */ FSE_buildDTable_rle(DTableOffb, *ip++ & MaxOff); /* if *ip > MaxOff, data is corrupted */ break; case bt_raw : Offlog = Offbits; FSE_buildDTable_raw(DTableOffb, Offbits); break; default : { U32 max = MaxOff; headerSize = FSE_readNCount(norm, &max, &Offlog, ip, iend-ip); if (FSE_isError(headerSize)) return ERROR(GENERIC); if (Offlog > OffFSELog) return ERROR(corruption_detected); ip += headerSize; FSE_buildDTable(DTableOffb, norm, max, Offlog); } } switch(MLtype) { case bt_rle : MLlog = 0; if (ip > iend-2) return ERROR(srcSize_wrong); /* min : "raw", hence no header, but at least xxLog bits */ FSE_buildDTable_rle(DTableML, *ip++); break; case bt_raw : MLlog = MLbits; FSE_buildDTable_raw(DTableML, MLbits); break; default : { U32 max = MaxML; headerSize = FSE_readNCount(norm, &max, &MLlog, ip, iend-ip); if (FSE_isError(headerSize)) return ERROR(GENERIC); if (MLlog > MLFSELog) return ERROR(corruption_detected); ip += headerSize; FSE_buildDTable(DTableML, norm, max, MLlog); } } } return ip-istart; } typedef struct { size_t litLength; size_t offset; size_t matchLength; } seq_t; typedef struct { BIT_DStream_t DStream; FSE_DState_t stateLL; FSE_DState_t stateOffb; FSE_DState_t stateML; size_t prevOffset; const BYTE* dumps; const BYTE* dumpsEnd; } seqState_t; static void ZSTD_decodeSequence(seq_t* seq, seqState_t* seqState) { size_t litLength; size_t prevOffset; size_t offset; size_t matchLength; const BYTE* dumps = seqState->dumps; const BYTE* const de = seqState->dumpsEnd; /* Literal length */ litLength = FSE_decodeSymbol(&(seqState->stateLL), &(seqState->DStream)); prevOffset = litLength ? seq->offset : seqState->prevOffset; if (litLength == MaxLL) { const U32 add = dumps= de) { dumps = de-1; } /* late correction, to avoid read overflow (data is now corrupted anyway) */ } /* Offset */ { static const U32 offsetPrefix[MaxOff+1] = { 1 /*fake*/, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, /*fake*/ 1, 1, 1, 1, 1 }; U32 offsetCode, nbBits; offsetCode = FSE_decodeSymbol(&(seqState->stateOffb), &(seqState->DStream)); /* <= maxOff, by table construction */ if (MEM_32bits()) BIT_reloadDStream(&(seqState->DStream)); nbBits = offsetCode - 1; if (offsetCode==0) nbBits = 0; /* cmove */ offset = offsetPrefix[offsetCode] + BIT_readBits(&(seqState->DStream), nbBits); if (MEM_32bits()) BIT_reloadDStream(&(seqState->DStream)); if (offsetCode==0) offset = prevOffset; /* cmove */ if (offsetCode | !litLength) seqState->prevOffset = seq->offset; /* cmove */ } /* MatchLength */ matchLength = FSE_decodeSymbol(&(seqState->stateML), &(seqState->DStream)); if (matchLength == MaxML) { const U32 add = dumps= de) { dumps = de-1; } /* late correction, to avoid read overflow (data is now corrupted anyway) */ } matchLength += MINMATCH; /* save result */ seq->litLength = litLength; seq->offset = offset; seq->matchLength = matchLength; seqState->dumps = dumps; } static size_t ZSTD_execSequence(BYTE* op, BYTE* const oend, seq_t sequence, const BYTE** litPtr, const BYTE* const litLimit, const BYTE* const base, const BYTE* const vBase, const BYTE* const dictEnd) { static const int dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; /* added */ static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* subtracted */ BYTE* const oLitEnd = op + sequence.litLength; const size_t sequenceLength = sequence.litLength + sequence.matchLength; BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */ BYTE* const oend_8 = oend-8; const BYTE* const litEnd = *litPtr + sequence.litLength; const BYTE* match = oLitEnd - sequence.offset; /* checks */ size_t const seqLength = sequence.litLength + sequence.matchLength; if (seqLength > (size_t)(oend - op)) return ERROR(dstSize_tooSmall); if (sequence.litLength > (size_t)(litLimit - *litPtr)) return ERROR(corruption_detected); /* Now we know there are no overflow in literal nor match lengths, can use pointer checks */ if (oLitEnd > oend_8) return ERROR(dstSize_tooSmall); if (oMatchEnd > oend) return ERROR(dstSize_tooSmall); /* overwrite beyond dst buffer */ if (litEnd > litLimit) return ERROR(corruption_detected); /* overRead beyond lit buffer */ /* copy Literals */ ZSTD_wildcopy(op, *litPtr, (ptrdiff_t)sequence.litLength); /* note : oLitEnd <= oend-8 : no risk of overwrite beyond oend */ op = oLitEnd; *litPtr = litEnd; /* update for next sequence */ /* copy Match */ if (sequence.offset > (size_t)(oLitEnd - base)) { /* offset beyond prefix */ if (sequence.offset > (size_t)(oLitEnd - vBase)) return ERROR(corruption_detected); match = dictEnd - (base-match); if (match + sequence.matchLength <= dictEnd) { memmove(oLitEnd, match, sequence.matchLength); return sequenceLength; } /* span extDict & currentPrefixSegment */ { size_t length1 = dictEnd - match; memmove(oLitEnd, match, length1); op = oLitEnd + length1; sequence.matchLength -= length1; match = base; if (op > oend_8 || sequence.matchLength < MINMATCH) { while (op < oMatchEnd) *op++ = *match++; return sequenceLength; } } } /* Requirement: op <= oend_8 */ /* match within prefix */ if (sequence.offset < 8) { /* close range match, overlap */ const int sub2 = dec64table[sequence.offset]; op[0] = match[0]; op[1] = match[1]; op[2] = match[2]; op[3] = match[3]; match += dec32table[sequence.offset]; ZSTD_copy4(op+4, match); match -= sub2; } else { ZSTD_copy8(op, match); } op += 8; match += 8; if (oMatchEnd > oend-(16-MINMATCH)) { if (op < oend_8) { ZSTD_wildcopy(op, match, oend_8 - op); match += oend_8 - op; op = oend_8; } while (op < oMatchEnd) *op++ = *match++; } else { ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8); /* works even if matchLength < 8, but must be signed */ } return sequenceLength; } static size_t ZSTD_decompressSequences( ZSTD_DCtx* dctx, void* dst, size_t maxDstSize, const void* seqStart, size_t seqSize) { const BYTE* ip = (const BYTE*)seqStart; const BYTE* const iend = ip + seqSize; BYTE* const ostart = (BYTE* const)dst; BYTE* op = ostart; BYTE* const oend = ostart + maxDstSize; size_t errorCode, dumpsLength; const BYTE* litPtr = dctx->litPtr; const BYTE* const litEnd = litPtr + dctx->litSize; int nbSeq; const BYTE* dumps; U32* DTableLL = dctx->LLTable; U32* DTableML = dctx->MLTable; U32* DTableOffb = dctx->OffTable; const BYTE* const base = (const BYTE*) (dctx->base); const BYTE* const vBase = (const BYTE*) (dctx->vBase); const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd); /* Build Decoding Tables */ errorCode = ZSTD_decodeSeqHeaders(&nbSeq, &dumps, &dumpsLength, DTableLL, DTableML, DTableOffb, ip, iend-ip); if (ZSTD_isError(errorCode)) return errorCode; ip += errorCode; /* Regen sequences */ { seq_t sequence; seqState_t seqState; memset(&sequence, 0, sizeof(sequence)); sequence.offset = 4; seqState.dumps = dumps; seqState.dumpsEnd = dumps + dumpsLength; seqState.prevOffset = 4; errorCode = BIT_initDStream(&(seqState.DStream), ip, iend-ip); if (ERR_isError(errorCode)) return ERROR(corruption_detected); FSE_initDState(&(seqState.stateLL), &(seqState.DStream), DTableLL); FSE_initDState(&(seqState.stateOffb), &(seqState.DStream), DTableOffb); FSE_initDState(&(seqState.stateML), &(seqState.DStream), DTableML); for ( ; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && nbSeq ; ) { size_t oneSeqSize; nbSeq--; ZSTD_decodeSequence(&sequence, &seqState); oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litEnd, base, vBase, dictEnd); if (ZSTD_isError(oneSeqSize)) return oneSeqSize; op += oneSeqSize; } /* check if reached exact end */ if ( !BIT_endOfDStream(&(seqState.DStream)) ) return ERROR(corruption_detected); /* DStream should be entirely and exactly consumed; otherwise data is corrupted */ /* last literal segment */ { size_t lastLLSize = litEnd - litPtr; if (litPtr > litEnd) return ERROR(corruption_detected); if (op+lastLLSize > oend) return ERROR(dstSize_tooSmall); if (lastLLSize > 0) { if (op != litPtr) memcpy(op, litPtr, lastLLSize); op += lastLLSize; } } } return op-ostart; } static void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst) { if (dst != dctx->previousDstEnd) /* not contiguous */ { dctx->dictEnd = dctx->previousDstEnd; dctx->vBase = (const char*)dst - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->base)); dctx->base = dst; dctx->previousDstEnd = dst; } } static size_t ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize) { /* blockType == blockCompressed */ const BYTE* ip = (const BYTE*)src; size_t litCSize; if (srcSize > BLOCKSIZE) return ERROR(corruption_detected); /* Decode literals sub-block */ litCSize = ZSTD_decodeLiteralsBlock(dctx, src, srcSize); if (ZSTD_isError(litCSize)) return litCSize; ip += litCSize; srcSize -= litCSize; return ZSTD_decompressSequences(dctx, dst, maxDstSize, ip, srcSize); } static size_t ZSTD_decompress_usingDict(ZSTD_DCtx* ctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize, const void* dict, size_t dictSize) { const BYTE* ip = (const BYTE*)src; const BYTE* iend = ip + srcSize; BYTE* const ostart = (BYTE* const)dst; BYTE* op = ostart; BYTE* const oend = ostart + maxDstSize; size_t remainingSize = srcSize; blockProperties_t blockProperties; /* init */ ZSTD_resetDCtx(ctx); if (dict) { ZSTD_decompress_insertDictionary(ctx, dict, dictSize); ctx->dictEnd = ctx->previousDstEnd; ctx->vBase = (const char*)dst - ((const char*)(ctx->previousDstEnd) - (const char*)(ctx->base)); ctx->base = dst; } else { ctx->vBase = ctx->base = ctx->dictEnd = dst; } /* Frame Header */ { size_t frameHeaderSize; if (srcSize < ZSTD_frameHeaderSize_min+ZSTD_blockHeaderSize) return ERROR(srcSize_wrong); frameHeaderSize = ZSTD_decodeFrameHeader_Part1(ctx, src, ZSTD_frameHeaderSize_min); if (ZSTD_isError(frameHeaderSize)) return frameHeaderSize; if (srcSize < frameHeaderSize+ZSTD_blockHeaderSize) return ERROR(srcSize_wrong); ip += frameHeaderSize; remainingSize -= frameHeaderSize; frameHeaderSize = ZSTD_decodeFrameHeader_Part2(ctx, src, frameHeaderSize); if (ZSTD_isError(frameHeaderSize)) return frameHeaderSize; } /* Loop on each block */ while (1) { size_t decodedSize=0; size_t cBlockSize = ZSTD_getcBlockSize(ip, iend-ip, &blockProperties); if (ZSTD_isError(cBlockSize)) return cBlockSize; ip += ZSTD_blockHeaderSize; remainingSize -= ZSTD_blockHeaderSize; if (cBlockSize > remainingSize) return ERROR(srcSize_wrong); switch(blockProperties.blockType) { case bt_compressed: decodedSize = ZSTD_decompressBlock_internal(ctx, op, oend-op, ip, cBlockSize); break; case bt_raw : decodedSize = ZSTD_copyRawBlock(op, oend-op, ip, cBlockSize); break; case bt_rle : return ERROR(GENERIC); /* not yet supported */ break; case bt_end : /* end of frame */ if (remainingSize) return ERROR(srcSize_wrong); break; default: return ERROR(GENERIC); /* impossible */ } if (cBlockSize == 0) break; /* bt_end */ if (ZSTD_isError(decodedSize)) return decodedSize; op += decodedSize; ip += cBlockSize; remainingSize -= cBlockSize; } return op-ostart; } /* ZSTD_errorFrameSizeInfoLegacy() : assumes `cSize` and `dBound` are _not_ NULL */ static void ZSTD_errorFrameSizeInfoLegacy(size_t* cSize, unsigned long long* dBound, size_t ret) { *cSize = ret; *dBound = ZSTD_CONTENTSIZE_ERROR; } void ZSTDv04_findFrameSizeInfoLegacy(const void *src, size_t srcSize, size_t* cSize, unsigned long long* dBound) { const BYTE* ip = (const BYTE*)src; size_t remainingSize = srcSize; size_t nbBlocks = 0; blockProperties_t blockProperties; /* Frame Header */ if (srcSize < ZSTD_frameHeaderSize_min) { ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong)); return; } if (MEM_readLE32(src) != ZSTD_MAGICNUMBER) { ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(prefix_unknown)); return; } ip += ZSTD_frameHeaderSize_min; remainingSize -= ZSTD_frameHeaderSize_min; /* Loop on each block */ while (1) { size_t cBlockSize = ZSTD_getcBlockSize(ip, remainingSize, &blockProperties); if (ZSTD_isError(cBlockSize)) { ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, cBlockSize); return; } ip += ZSTD_blockHeaderSize; remainingSize -= ZSTD_blockHeaderSize; if (cBlockSize > remainingSize) { ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong)); return; } if (cBlockSize == 0) break; /* bt_end */ ip += cBlockSize; remainingSize -= cBlockSize; nbBlocks++; } *cSize = ip - (const BYTE*)src; *dBound = nbBlocks * BLOCKSIZE; } /* ****************************** * Streaming Decompression API ********************************/ static size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx) { return dctx->expected; } static size_t ZSTD_decompressContinue(ZSTD_DCtx* ctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize) { /* Sanity check */ if (srcSize != ctx->expected) return ERROR(srcSize_wrong); ZSTD_checkContinuity(ctx, dst); /* Decompress : frame header; part 1 */ switch (ctx->stage) { case ZSTDds_getFrameHeaderSize : /* get frame header size */ if (srcSize != ZSTD_frameHeaderSize_min) return ERROR(srcSize_wrong); /* impossible */ ctx->headerSize = ZSTD_decodeFrameHeader_Part1(ctx, src, ZSTD_frameHeaderSize_min); if (ZSTD_isError(ctx->headerSize)) return ctx->headerSize; memcpy(ctx->headerBuffer, src, ZSTD_frameHeaderSize_min); if (ctx->headerSize > ZSTD_frameHeaderSize_min) return ERROR(GENERIC); /* impossible */ ctx->expected = 0; /* not necessary to copy more */ /* fallthrough */ case ZSTDds_decodeFrameHeader: /* get frame header */ { size_t const result = ZSTD_decodeFrameHeader_Part2(ctx, ctx->headerBuffer, ctx->headerSize); if (ZSTD_isError(result)) return result; ctx->expected = ZSTD_blockHeaderSize; ctx->stage = ZSTDds_decodeBlockHeader; return 0; } case ZSTDds_decodeBlockHeader: /* Decode block header */ { blockProperties_t bp; size_t const blockSize = ZSTD_getcBlockSize(src, ZSTD_blockHeaderSize, &bp); if (ZSTD_isError(blockSize)) return blockSize; if (bp.blockType == bt_end) { ctx->expected = 0; ctx->stage = ZSTDds_getFrameHeaderSize; } else { ctx->expected = blockSize; ctx->bType = bp.blockType; ctx->stage = ZSTDds_decompressBlock; } return 0; } case ZSTDds_decompressBlock: { /* Decompress : block content */ size_t rSize; switch(ctx->bType) { case bt_compressed: rSize = ZSTD_decompressBlock_internal(ctx, dst, maxDstSize, src, srcSize); break; case bt_raw : rSize = ZSTD_copyRawBlock(dst, maxDstSize, src, srcSize); break; case bt_rle : return ERROR(GENERIC); /* not yet handled */ break; case bt_end : /* should never happen (filtered at phase 1) */ rSize = 0; break; default: return ERROR(GENERIC); } ctx->stage = ZSTDds_decodeBlockHeader; ctx->expected = ZSTD_blockHeaderSize; ctx->previousDstEnd = (char*)dst + rSize; return rSize; } default: return ERROR(GENERIC); /* impossible */ } } static void ZSTD_decompress_insertDictionary(ZSTD_DCtx* ctx, const void* dict, size_t dictSize) { ctx->dictEnd = ctx->previousDstEnd; ctx->vBase = (const char*)dict - ((const char*)(ctx->previousDstEnd) - (const char*)(ctx->base)); ctx->base = dict; ctx->previousDstEnd = (const char*)dict + dictSize; } /* Buffered version of Zstd compression library Copyright (C) 2015, Yann Collet. BSD 2-Clause License (https://opensource.org/licenses/bsd-license.php) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You can contact the author at : - zstd source repository : https://github.com/Cyan4973/zstd - ztsd public forum : https://groups.google.com/forum/#!forum/lz4c */ /* The objects defined into this file should be considered experimental. * They are not labelled stable, as their prototype may change in the future. * You can use them for tests, provide feedback, or if you can endure risk of future changes. */ /* ************************************* * Includes ***************************************/ #include /** ************************************************ * Streaming decompression * * A ZBUFF_DCtx object is required to track streaming operation. * Use ZBUFF_createDCtx() and ZBUFF_freeDCtx() to create/release resources. * Use ZBUFF_decompressInit() to start a new decompression operation. * ZBUFF_DCtx objects can be reused multiple times. * * Use ZBUFF_decompressContinue() repetitively to consume your input. * *srcSizePtr and *maxDstSizePtr can be any size. * The function will report how many bytes were read or written by modifying *srcSizePtr and *maxDstSizePtr. * Note that it may not consume the entire input, in which case it's up to the caller to call again the function with remaining input. * The content of dst will be overwritten (up to *maxDstSizePtr) at each function call, so save its content if it matters or change dst . * return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to improve latency) * or 0 when a frame is completely decoded * or an error code, which can be tested using ZBUFF_isError(). * * Hint : recommended buffer sizes (not compulsory) * output : 128 KB block size is the internal unit, it ensures it's always possible to write a full block when it's decoded. * input : just follow indications from ZBUFF_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 . * **************************************************/ typedef enum { ZBUFFds_init, ZBUFFds_readHeader, ZBUFFds_loadHeader, ZBUFFds_decodeHeader, ZBUFFds_read, ZBUFFds_load, ZBUFFds_flush } ZBUFF_dStage; /* *** Resource management *** */ #define ZSTD_frameHeaderSize_max 5 /* too magical, should come from reference */ struct ZBUFFv04_DCtx_s { ZSTD_DCtx* zc; ZSTD_parameters params; char* inBuff; size_t inBuffSize; size_t inPos; char* outBuff; size_t outBuffSize; size_t outStart; size_t outEnd; size_t hPos; const char* dict; size_t dictSize; ZBUFF_dStage stage; unsigned char headerBuffer[ZSTD_frameHeaderSize_max]; }; /* typedef'd to ZBUFF_DCtx within "zstd_buffered.h" */ typedef ZBUFFv04_DCtx ZBUFF_DCtx; static ZBUFF_DCtx* ZBUFF_createDCtx(void) { ZBUFF_DCtx* zbc = (ZBUFF_DCtx*)malloc(sizeof(ZBUFF_DCtx)); if (zbc==NULL) return NULL; memset(zbc, 0, sizeof(*zbc)); zbc->zc = ZSTD_createDCtx(); zbc->stage = ZBUFFds_init; return zbc; } static size_t ZBUFF_freeDCtx(ZBUFF_DCtx* zbc) { if (zbc==NULL) return 0; /* support free on null */ ZSTD_freeDCtx(zbc->zc); free(zbc->inBuff); free(zbc->outBuff); free(zbc); return 0; } /* *** Initialization *** */ static size_t ZBUFF_decompressInit(ZBUFF_DCtx* zbc) { zbc->stage = ZBUFFds_readHeader; zbc->hPos = zbc->inPos = zbc->outStart = zbc->outEnd = zbc->dictSize = 0; return ZSTD_resetDCtx(zbc->zc); } static size_t ZBUFF_decompressWithDictionary(ZBUFF_DCtx* zbc, const void* src, size_t srcSize) { zbc->dict = (const char*)src; zbc->dictSize = srcSize; return 0; } static size_t ZBUFF_limitCopy(void* dst, size_t maxDstSize, const void* src, size_t srcSize) { size_t length = MIN(maxDstSize, srcSize); if (length > 0) { memcpy(dst, src, length); } return length; } /* *** Decompression *** */ static size_t ZBUFF_decompressContinue(ZBUFF_DCtx* zbc, void* dst, size_t* maxDstSizePtr, const void* src, size_t* srcSizePtr) { const char* const istart = (const char*)src; const char* ip = istart; const char* const iend = istart + *srcSizePtr; char* const ostart = (char*)dst; char* op = ostart; char* const oend = ostart + *maxDstSizePtr; U32 notDone = 1; DEBUGLOG(5, "ZBUFF_decompressContinue"); while (notDone) { switch(zbc->stage) { case ZBUFFds_init : DEBUGLOG(5, "ZBUFF_decompressContinue: stage==ZBUFFds_init => ERROR(init_missing)"); return ERROR(init_missing); case ZBUFFds_readHeader : /* read header from src */ { size_t const headerSize = ZSTD_getFrameParams(&(zbc->params), src, *srcSizePtr); if (ZSTD_isError(headerSize)) return headerSize; if (headerSize) { /* not enough input to decode header : tell how many bytes would be necessary */ memcpy(zbc->headerBuffer+zbc->hPos, src, *srcSizePtr); zbc->hPos += *srcSizePtr; *maxDstSizePtr = 0; zbc->stage = ZBUFFds_loadHeader; return headerSize - zbc->hPos; } zbc->stage = ZBUFFds_decodeHeader; break; } case ZBUFFds_loadHeader: /* complete header from src */ { size_t headerSize = ZBUFF_limitCopy( zbc->headerBuffer + zbc->hPos, ZSTD_frameHeaderSize_max - zbc->hPos, src, *srcSizePtr); zbc->hPos += headerSize; ip += headerSize; headerSize = ZSTD_getFrameParams(&(zbc->params), zbc->headerBuffer, zbc->hPos); if (ZSTD_isError(headerSize)) return headerSize; if (headerSize) { /* not enough input to decode header : tell how many bytes would be necessary */ *maxDstSizePtr = 0; return headerSize - zbc->hPos; } } /* intentional fallthrough */ case ZBUFFds_decodeHeader: /* apply header to create / resize buffers */ { size_t const neededOutSize = (size_t)1 << zbc->params.windowLog; size_t const neededInSize = BLOCKSIZE; /* a block is never > BLOCKSIZE */ if (zbc->inBuffSize < neededInSize) { free(zbc->inBuff); zbc->inBuffSize = neededInSize; zbc->inBuff = (char*)malloc(neededInSize); if (zbc->inBuff == NULL) return ERROR(memory_allocation); } if (zbc->outBuffSize < neededOutSize) { free(zbc->outBuff); zbc->outBuffSize = neededOutSize; zbc->outBuff = (char*)malloc(neededOutSize); if (zbc->outBuff == NULL) return ERROR(memory_allocation); } } if (zbc->dictSize) ZSTD_decompress_insertDictionary(zbc->zc, zbc->dict, zbc->dictSize); if (zbc->hPos) { /* some data already loaded into headerBuffer : transfer into inBuff */ memcpy(zbc->inBuff, zbc->headerBuffer, zbc->hPos); zbc->inPos = zbc->hPos; zbc->hPos = 0; zbc->stage = ZBUFFds_load; break; } zbc->stage = ZBUFFds_read; /* fall-through */ case ZBUFFds_read: { size_t neededInSize = ZSTD_nextSrcSizeToDecompress(zbc->zc); if (neededInSize==0) /* end of frame */ { zbc->stage = ZBUFFds_init; notDone = 0; break; } if ((size_t)(iend-ip) >= neededInSize) { /* directly decode from src */ size_t decodedSize = ZSTD_decompressContinue(zbc->zc, zbc->outBuff + zbc->outStart, zbc->outBuffSize - zbc->outStart, ip, neededInSize); if (ZSTD_isError(decodedSize)) return decodedSize; ip += neededInSize; if (!decodedSize) break; /* this was just a header */ zbc->outEnd = zbc->outStart + decodedSize; zbc->stage = ZBUFFds_flush; break; } if (ip==iend) { notDone = 0; break; } /* no more input */ zbc->stage = ZBUFFds_load; } /* fall-through */ case ZBUFFds_load: { size_t neededInSize = ZSTD_nextSrcSizeToDecompress(zbc->zc); size_t toLoad = neededInSize - zbc->inPos; /* should always be <= remaining space within inBuff */ size_t loadedSize; if (toLoad > zbc->inBuffSize - zbc->inPos) return ERROR(corruption_detected); /* should never happen */ loadedSize = ZBUFF_limitCopy(zbc->inBuff + zbc->inPos, toLoad, ip, iend-ip); ip += loadedSize; zbc->inPos += loadedSize; if (loadedSize < toLoad) { notDone = 0; break; } /* not enough input, wait for more */ { size_t decodedSize = ZSTD_decompressContinue(zbc->zc, zbc->outBuff + zbc->outStart, zbc->outBuffSize - zbc->outStart, zbc->inBuff, neededInSize); if (ZSTD_isError(decodedSize)) return decodedSize; zbc->inPos = 0; /* input is consumed */ if (!decodedSize) { zbc->stage = ZBUFFds_read; break; } /* this was just a header */ zbc->outEnd = zbc->outStart + decodedSize; zbc->stage = ZBUFFds_flush; /* ZBUFFds_flush follows */ } } /* fall-through */ case ZBUFFds_flush: { size_t toFlushSize = zbc->outEnd - zbc->outStart; size_t flushedSize = ZBUFF_limitCopy(op, oend-op, zbc->outBuff + zbc->outStart, toFlushSize); op += flushedSize; zbc->outStart += flushedSize; if (flushedSize == toFlushSize) { zbc->stage = ZBUFFds_read; if (zbc->outStart + BLOCKSIZE > zbc->outBuffSize) zbc->outStart = zbc->outEnd = 0; break; } /* cannot flush everything */ notDone = 0; break; } default: return ERROR(GENERIC); /* impossible */ } } *srcSizePtr = ip-istart; *maxDstSizePtr = op-ostart; { size_t nextSrcSizeHint = ZSTD_nextSrcSizeToDecompress(zbc->zc); if (nextSrcSizeHint > 3) nextSrcSizeHint+= 3; /* get the next block header while at it */ nextSrcSizeHint -= zbc->inPos; /* already loaded*/ return nextSrcSizeHint; } } /* ************************************* * Tool functions ***************************************/ unsigned ZBUFFv04_isError(size_t errorCode) { return ERR_isError(errorCode); } const char* ZBUFFv04_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); } size_t ZBUFFv04_recommendedDInSize() { return BLOCKSIZE + 3; } size_t ZBUFFv04_recommendedDOutSize() { return BLOCKSIZE; } /*- ========================================================================= -*/ /* final wrapping stage */ size_t ZSTDv04_decompressDCtx(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize) { return ZSTD_decompress_usingDict(dctx, dst, maxDstSize, src, srcSize, NULL, 0); } size_t ZSTDv04_decompress(void* dst, size_t maxDstSize, const void* src, size_t srcSize) { #if defined(ZSTD_HEAPMODE) && (ZSTD_HEAPMODE==1) size_t regenSize; ZSTD_DCtx* dctx = ZSTD_createDCtx(); if (dctx==NULL) return ERROR(memory_allocation); regenSize = ZSTDv04_decompressDCtx(dctx, dst, maxDstSize, src, srcSize); ZSTD_freeDCtx(dctx); return regenSize; #else ZSTD_DCtx dctx; return ZSTDv04_decompressDCtx(&dctx, dst, maxDstSize, src, srcSize); #endif } size_t ZSTDv04_resetDCtx(ZSTDv04_Dctx* dctx) { return ZSTD_resetDCtx(dctx); } size_t ZSTDv04_nextSrcSizeToDecompress(ZSTDv04_Dctx* dctx) { return ZSTD_nextSrcSizeToDecompress(dctx); } size_t ZSTDv04_decompressContinue(ZSTDv04_Dctx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize) { return ZSTD_decompressContinue(dctx, dst, maxDstSize, src, srcSize); } ZBUFFv04_DCtx* ZBUFFv04_createDCtx(void) { return ZBUFF_createDCtx(); } size_t ZBUFFv04_freeDCtx(ZBUFFv04_DCtx* dctx) { return ZBUFF_freeDCtx(dctx); } size_t ZBUFFv04_decompressInit(ZBUFFv04_DCtx* dctx) { return ZBUFF_decompressInit(dctx); } size_t ZBUFFv04_decompressWithDictionary(ZBUFFv04_DCtx* dctx, const void* src, size_t srcSize) { return ZBUFF_decompressWithDictionary(dctx, src, srcSize); } size_t ZBUFFv04_decompressContinue(ZBUFFv04_DCtx* dctx, void* dst, size_t* maxDstSizePtr, const void* src, size_t* srcSizePtr) { DEBUGLOG(5, "ZBUFFv04_decompressContinue"); return ZBUFF_decompressContinue(dctx, dst, maxDstSizePtr, src, srcSizePtr); } ZSTD_DCtx* ZSTDv04_createDCtx(void) { return ZSTD_createDCtx(); } size_t ZSTDv04_freeDCtx(ZSTD_DCtx* dctx) { return ZSTD_freeDCtx(dctx); } zstd-1.5.5.1/zstd/lib/legacy/zstd_v03.c0000664000175000017500000033220514371536763020327 0ustar sergeysergey00000000000000/* * Copyright (c) Yann Collet, Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under both the BSD-style license (found in the * LICENSE file in the root directory of this source tree) and the GPLv2 (found * in the COPYING file in the root directory of this source tree). * You may select, at your option, one of the above-listed licenses. */ #include /* size_t, ptrdiff_t */ #include "zstd_v03.h" #include "../common/error_private.h" /****************************************** * Compiler-specific ******************************************/ #if defined(_MSC_VER) /* Visual Studio */ # include /* _byteswap_ulong */ # include /* _byteswap_* */ #endif /* ****************************************************************** mem.h low-level memory access routines Copyright (C) 2013-2015, Yann Collet. BSD 2-Clause License (https://opensource.org/licenses/bsd-license.php) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You can contact the author at : - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy - Public forum : https://groups.google.com/forum/#!forum/lz4c ****************************************************************** */ #ifndef MEM_H_MODULE #define MEM_H_MODULE #if defined (__cplusplus) extern "C" { #endif /****************************************** * Includes ******************************************/ #include /* size_t, ptrdiff_t */ #include /* memcpy */ /****************************************** * Compiler-specific ******************************************/ #if defined(__GNUC__) # define MEM_STATIC static __attribute__((unused)) #elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) # define MEM_STATIC static inline #elif defined(_MSC_VER) # define MEM_STATIC static __inline #else # define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */ #endif /**************************************************************** * Basic Types *****************************************************************/ #if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) # if defined(_AIX) # include # else # include /* intptr_t */ # endif typedef uint8_t BYTE; typedef uint16_t U16; typedef int16_t S16; typedef uint32_t U32; typedef int32_t S32; typedef uint64_t U64; typedef int64_t S64; #else typedef unsigned char BYTE; typedef unsigned short U16; typedef signed short S16; typedef unsigned int U32; typedef signed int S32; typedef unsigned long long U64; typedef signed long long S64; #endif /**************************************************************** * Memory I/O *****************************************************************/ MEM_STATIC unsigned MEM_32bits(void) { return sizeof(void*)==4; } MEM_STATIC unsigned MEM_64bits(void) { return sizeof(void*)==8; } MEM_STATIC unsigned MEM_isLittleEndian(void) { const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */ return one.c[0]; } MEM_STATIC U16 MEM_read16(const void* memPtr) { U16 val; memcpy(&val, memPtr, sizeof(val)); return val; } MEM_STATIC U32 MEM_read32(const void* memPtr) { U32 val; memcpy(&val, memPtr, sizeof(val)); return val; } MEM_STATIC U64 MEM_read64(const void* memPtr) { U64 val; memcpy(&val, memPtr, sizeof(val)); return val; } MEM_STATIC void MEM_write16(void* memPtr, U16 value) { memcpy(memPtr, &value, sizeof(value)); } MEM_STATIC U16 MEM_readLE16(const void* memPtr) { if (MEM_isLittleEndian()) return MEM_read16(memPtr); else { const BYTE* p = (const BYTE*)memPtr; return (U16)(p[0] + (p[1]<<8)); } } MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val) { if (MEM_isLittleEndian()) { MEM_write16(memPtr, val); } else { BYTE* p = (BYTE*)memPtr; p[0] = (BYTE)val; p[1] = (BYTE)(val>>8); } } MEM_STATIC U32 MEM_readLE24(const void* memPtr) { return MEM_readLE16(memPtr) + (((const BYTE*)memPtr)[2] << 16); } MEM_STATIC U32 MEM_readLE32(const void* memPtr) { if (MEM_isLittleEndian()) return MEM_read32(memPtr); else { const BYTE* p = (const BYTE*)memPtr; return (U32)((U32)p[0] + ((U32)p[1]<<8) + ((U32)p[2]<<16) + ((U32)p[3]<<24)); } } MEM_STATIC U64 MEM_readLE64(const void* memPtr) { if (MEM_isLittleEndian()) return MEM_read64(memPtr); else { const BYTE* p = (const BYTE*)memPtr; return (U64)((U64)p[0] + ((U64)p[1]<<8) + ((U64)p[2]<<16) + ((U64)p[3]<<24) + ((U64)p[4]<<32) + ((U64)p[5]<<40) + ((U64)p[6]<<48) + ((U64)p[7]<<56)); } } MEM_STATIC size_t MEM_readLEST(const void* memPtr) { if (MEM_32bits()) return (size_t)MEM_readLE32(memPtr); else return (size_t)MEM_readLE64(memPtr); } #if defined (__cplusplus) } #endif #endif /* MEM_H_MODULE */ /* ****************************************************************** bitstream Part of NewGen Entropy library header file (to include) Copyright (C) 2013-2015, Yann Collet. BSD 2-Clause License (https://opensource.org/licenses/bsd-license.php) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You can contact the author at : - Source repository : https://github.com/Cyan4973/FiniteStateEntropy - Public forum : https://groups.google.com/forum/#!forum/lz4c ****************************************************************** */ #ifndef BITSTREAM_H_MODULE #define BITSTREAM_H_MODULE #if defined (__cplusplus) extern "C" { #endif /* * This API consists of small unitary functions, which highly benefit from being inlined. * Since link-time-optimization is not available for all compilers, * these functions are defined into a .h to be included. */ /********************************************** * bitStream decompression API (read backward) **********************************************/ typedef struct { size_t bitContainer; unsigned bitsConsumed; const char* ptr; const char* start; } BIT_DStream_t; typedef enum { BIT_DStream_unfinished = 0, BIT_DStream_endOfBuffer = 1, BIT_DStream_completed = 2, BIT_DStream_overflow = 3 } BIT_DStream_status; /* result of BIT_reloadDStream() */ /* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */ MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize); MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits); MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD); MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* bitD); /****************************************** * unsafe API ******************************************/ MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits); /* faster, but works only if nbBits >= 1 */ /**************************************************************** * Helper functions ****************************************************************/ MEM_STATIC unsigned BIT_highbit32 (U32 val) { # if defined(_MSC_VER) /* Visual */ unsigned long r; return _BitScanReverse(&r, val) ? (unsigned)r : 0; # elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */ return __builtin_clz (val) ^ 31; # else /* Software version */ static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 }; U32 v = val; unsigned r; v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; r = DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27]; return r; # endif } /********************************************************** * bitStream decoding **********************************************************/ /*!BIT_initDStream * Initialize a BIT_DStream_t. * @bitD : a pointer to an already allocated BIT_DStream_t structure * @srcBuffer must point at the beginning of a bitStream * @srcSize must be the exact size of the bitStream * @result : size of stream (== srcSize) or an errorCode if a problem is detected */ MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize) { if (srcSize < 1) { memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); } if (srcSize >= sizeof(size_t)) /* normal case */ { U32 contain32; bitD->start = (const char*)srcBuffer; bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(size_t); bitD->bitContainer = MEM_readLEST(bitD->ptr); contain32 = ((const BYTE*)srcBuffer)[srcSize-1]; if (contain32 == 0) return ERROR(GENERIC); /* endMark not present */ bitD->bitsConsumed = 8 - BIT_highbit32(contain32); } else { U32 contain32; bitD->start = (const char*)srcBuffer; bitD->ptr = bitD->start; bitD->bitContainer = *(const BYTE*)(bitD->start); switch(srcSize) { case 7: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[6]) << (sizeof(size_t)*8 - 16); /* fallthrough */ case 6: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[5]) << (sizeof(size_t)*8 - 24); /* fallthrough */ case 5: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[4]) << (sizeof(size_t)*8 - 32); /* fallthrough */ case 4: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[3]) << 24; /* fallthrough */ case 3: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[2]) << 16; /* fallthrough */ case 2: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[1]) << 8; /* fallthrough */ default:; } contain32 = ((const BYTE*)srcBuffer)[srcSize-1]; if (contain32 == 0) return ERROR(GENERIC); /* endMark not present */ bitD->bitsConsumed = 8 - BIT_highbit32(contain32); bitD->bitsConsumed += (U32)(sizeof(size_t) - srcSize)*8; } return srcSize; } MEM_STATIC size_t BIT_lookBits(BIT_DStream_t* bitD, U32 nbBits) { const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1; return ((bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> 1) >> ((bitMask-nbBits) & bitMask); } /*! BIT_lookBitsFast : * unsafe version; only works if nbBits >= 1 */ MEM_STATIC size_t BIT_lookBitsFast(BIT_DStream_t* bitD, U32 nbBits) { const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1; return (bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> (((bitMask+1)-nbBits) & bitMask); } MEM_STATIC void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits) { bitD->bitsConsumed += nbBits; } MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, U32 nbBits) { size_t value = BIT_lookBits(bitD, nbBits); BIT_skipBits(bitD, nbBits); return value; } /*!BIT_readBitsFast : * unsafe version; only works if nbBits >= 1 */ MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, U32 nbBits) { size_t value = BIT_lookBitsFast(bitD, nbBits); BIT_skipBits(bitD, nbBits); return value; } MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD) { if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* should never happen */ return BIT_DStream_overflow; if (bitD->ptr >= bitD->start + sizeof(bitD->bitContainer)) { bitD->ptr -= bitD->bitsConsumed >> 3; bitD->bitsConsumed &= 7; bitD->bitContainer = MEM_readLEST(bitD->ptr); return BIT_DStream_unfinished; } if (bitD->ptr == bitD->start) { if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BIT_DStream_endOfBuffer; return BIT_DStream_completed; } { U32 nbBytes = bitD->bitsConsumed >> 3; BIT_DStream_status result = BIT_DStream_unfinished; if (bitD->ptr - nbBytes < bitD->start) { nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */ result = BIT_DStream_endOfBuffer; } bitD->ptr -= nbBytes; bitD->bitsConsumed -= nbBytes*8; bitD->bitContainer = MEM_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD) */ return result; } } /*! BIT_endOfDStream * @return Tells if DStream has reached its exact end */ MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* DStream) { return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8)); } #if defined (__cplusplus) } #endif #endif /* BITSTREAM_H_MODULE */ /* ****************************************************************** Error codes and messages Copyright (C) 2013-2015, Yann Collet BSD 2-Clause License (https://opensource.org/licenses/bsd-license.php) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You can contact the author at : - Source repository : https://github.com/Cyan4973/FiniteStateEntropy - Public forum : https://groups.google.com/forum/#!forum/lz4c ****************************************************************** */ #ifndef ERROR_H_MODULE #define ERROR_H_MODULE #if defined (__cplusplus) extern "C" { #endif /****************************************** * Compiler-specific ******************************************/ #if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) # define ERR_STATIC static inline #elif defined(_MSC_VER) # define ERR_STATIC static __inline #elif defined(__GNUC__) # define ERR_STATIC static __attribute__((unused)) #else # define ERR_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */ #endif /****************************************** * Error Management ******************************************/ #define PREFIX(name) ZSTD_error_##name #define ERROR(name) (size_t)-PREFIX(name) #define ERROR_LIST(ITEM) \ ITEM(PREFIX(No_Error)) ITEM(PREFIX(GENERIC)) \ ITEM(PREFIX(dstSize_tooSmall)) ITEM(PREFIX(srcSize_wrong)) \ ITEM(PREFIX(prefix_unknown)) ITEM(PREFIX(corruption_detected)) \ ITEM(PREFIX(tableLog_tooLarge)) ITEM(PREFIX(maxSymbolValue_tooLarge)) ITEM(PREFIX(maxSymbolValue_tooSmall)) \ ITEM(PREFIX(maxCode)) #define ERROR_GENERATE_ENUM(ENUM) ENUM, typedef enum { ERROR_LIST(ERROR_GENERATE_ENUM) } ERR_codes; /* enum is exposed, to detect & handle specific errors; compare function result to -enum value */ #define ERROR_CONVERTTOSTRING(STRING) #STRING, #define ERROR_GENERATE_STRING(EXPR) ERROR_CONVERTTOSTRING(EXPR) static const char* ERR_strings[] = { ERROR_LIST(ERROR_GENERATE_STRING) }; ERR_STATIC unsigned ERR_isError(size_t code) { return (code > ERROR(maxCode)); } ERR_STATIC const char* ERR_getErrorName(size_t code) { static const char* codeError = "Unspecified error code"; if (ERR_isError(code)) return ERR_strings[-(int)(code)]; return codeError; } #if defined (__cplusplus) } #endif #endif /* ERROR_H_MODULE */ /* Constructor and Destructor of type FSE_CTable Note that its size depends on 'tableLog' and 'maxSymbolValue' */ typedef unsigned FSE_CTable; /* don't allocate that. It's just a way to be more restrictive than void* */ typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */ /* ****************************************************************** FSE : Finite State Entropy coder header file for static linking (only) Copyright (C) 2013-2015, Yann Collet BSD 2-Clause License (https://opensource.org/licenses/bsd-license.php) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You can contact the author at : - Source repository : https://github.com/Cyan4973/FiniteStateEntropy - Public forum : https://groups.google.com/forum/#!forum/lz4c ****************************************************************** */ #if defined (__cplusplus) extern "C" { #endif /****************************************** * Static allocation ******************************************/ /* FSE buffer bounds */ #define FSE_NCOUNTBOUND 512 #define FSE_BLOCKBOUND(size) (size + (size>>7)) #define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */ /* You can statically allocate FSE CTable/DTable as a table of unsigned using below macro */ #define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1<<(maxTableLog-1)) + ((maxSymbolValue+1)*2)) #define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<= 1 (otherwise, result will be corrupted) */ /****************************************** * Implementation of inline functions ******************************************/ /* decompression */ typedef struct { U16 tableLog; U16 fastMode; } FSE_DTableHeader; /* sizeof U32 */ typedef struct { unsigned short newState; unsigned char symbol; unsigned char nbBits; } FSE_decode_t; /* size == U32 */ MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt) { FSE_DTableHeader DTableH; memcpy(&DTableH, dt, sizeof(DTableH)); DStatePtr->state = BIT_readBits(bitD, DTableH.tableLog); BIT_reloadDStream(bitD); DStatePtr->table = dt + 1; } MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) { const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; const U32 nbBits = DInfo.nbBits; BYTE symbol = DInfo.symbol; size_t lowBits = BIT_readBits(bitD, nbBits); DStatePtr->state = DInfo.newState + lowBits; return symbol; } MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) { const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; const U32 nbBits = DInfo.nbBits; BYTE symbol = DInfo.symbol; size_t lowBits = BIT_readBitsFast(bitD, nbBits); DStatePtr->state = DInfo.newState + lowBits; return symbol; } MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr) { return DStatePtr->state == 0; } #if defined (__cplusplus) } #endif /* ****************************************************************** Huff0 : Huffman coder, part of New Generation Entropy library header file for static linking (only) Copyright (C) 2013-2015, Yann Collet BSD 2-Clause License (https://opensource.org/licenses/bsd-license.php) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You can contact the author at : - Source repository : https://github.com/Cyan4973/FiniteStateEntropy - Public forum : https://groups.google.com/forum/#!forum/lz4c ****************************************************************** */ #if defined (__cplusplus) extern "C" { #endif /****************************************** * Static allocation macros ******************************************/ /* Huff0 buffer bounds */ #define HUF_CTABLEBOUND 129 #define HUF_BLOCKBOUND(size) (size + (size>>8) + 8) /* only true if incompressible pre-filtered with fast heuristic */ #define HUF_COMPRESSBOUND(size) (HUF_CTABLEBOUND + HUF_BLOCKBOUND(size)) /* Macro version, useful for static allocation */ /* static allocation of Huff0's DTable */ #define HUF_DTABLE_SIZE(maxTableLog) (1 + (1< /* size_t */ /* ************************************* * Version ***************************************/ #define ZSTD_VERSION_MAJOR 0 /* for breaking interface changes */ #define ZSTD_VERSION_MINOR 2 /* for new (non-breaking) interface capabilities */ #define ZSTD_VERSION_RELEASE 2 /* for tweaks, bug-fixes, or development */ #define ZSTD_VERSION_NUMBER (ZSTD_VERSION_MAJOR *100*100 + ZSTD_VERSION_MINOR *100 + ZSTD_VERSION_RELEASE) /* ************************************* * Advanced functions ***************************************/ typedef struct ZSTD_CCtx_s ZSTD_CCtx; /* incomplete type */ #if defined (__cplusplus) } #endif /* zstd - standard compression library Header File for static linking only Copyright (C) 2014-2015, Yann Collet. BSD 2-Clause License (https://opensource.org/licenses/bsd-license.php) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You can contact the author at : - zstd source repository : https://github.com/Cyan4973/zstd - ztsd public forum : https://groups.google.com/forum/#!forum/lz4c */ /* The objects defined into this file should be considered experimental. * They are not labelled stable, as their prototype may change in the future. * You can use them for tests, provide feedback, or if you can endure risk of future changes. */ #if defined (__cplusplus) extern "C" { #endif /* ************************************* * Streaming functions ***************************************/ typedef struct ZSTD_DCtx_s ZSTD_DCtx; /* Use above functions alternatively. ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue(). ZSTD_decompressContinue() will use previous data blocks to improve compression if they are located prior to current block. Result is the number of bytes regenerated within 'dst'. It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header. */ /* ************************************* * Prefix - version detection ***************************************/ #define ZSTD_magicNumber 0xFD2FB523 /* v0.3 */ #if defined (__cplusplus) } #endif /* ****************************************************************** FSE : Finite State Entropy coder Copyright (C) 2013-2015, Yann Collet. BSD 2-Clause License (https://opensource.org/licenses/bsd-license.php) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You can contact the author at : - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy - Public forum : https://groups.google.com/forum/#!forum/lz4c ****************************************************************** */ #ifndef FSE_COMMONDEFS_ONLY /**************************************************************** * Tuning parameters ****************************************************************/ /* MEMORY_USAGE : * Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.) * Increasing memory usage improves compression ratio * Reduced memory usage can improve speed, due to cache effect * Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */ #define FSE_MAX_MEMORY_USAGE 14 #define FSE_DEFAULT_MEMORY_USAGE 13 /* FSE_MAX_SYMBOL_VALUE : * Maximum symbol value authorized. * Required for proper stack allocation */ #define FSE_MAX_SYMBOL_VALUE 255 /**************************************************************** * template functions type & suffix ****************************************************************/ #define FSE_FUNCTION_TYPE BYTE #define FSE_FUNCTION_EXTENSION /**************************************************************** * Byte symbol type ****************************************************************/ #endif /* !FSE_COMMONDEFS_ONLY */ /**************************************************************** * Compiler specifics ****************************************************************/ #ifdef _MSC_VER /* Visual Studio */ # define FORCE_INLINE static __forceinline # include /* For Visual 2005 */ # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ # pragma warning(disable : 4214) /* disable: C4214: non-int bitfields */ #else # if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */ # ifdef __GNUC__ # define FORCE_INLINE static inline __attribute__((always_inline)) # else # define FORCE_INLINE static inline # endif # else # define FORCE_INLINE static # endif /* __STDC_VERSION__ */ #endif /**************************************************************** * Includes ****************************************************************/ #include /* malloc, free, qsort */ #include /* memcpy, memset */ #include /* printf (debug) */ /**************************************************************** * Constants *****************************************************************/ #define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2) #define FSE_MAX_TABLESIZE (1U< FSE_TABLELOG_ABSOLUTE_MAX #error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported" #endif /**************************************************************** * Error Management ****************************************************************/ #define FSE_STATIC_ASSERT(c) { enum { FSE_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */ /**************************************************************** * Complex types ****************************************************************/ typedef U32 DTable_max_t[FSE_DTABLE_SIZE_U32(FSE_MAX_TABLELOG)]; /**************************************************************** * Templates ****************************************************************/ /* designed to be included for type-specific functions (template emulation in C) Objective is to write these functions only once, for improved maintenance */ /* safety checks */ #ifndef FSE_FUNCTION_EXTENSION # error "FSE_FUNCTION_EXTENSION must be defined" #endif #ifndef FSE_FUNCTION_TYPE # error "FSE_FUNCTION_TYPE must be defined" #endif /* Function names */ #define FSE_CAT(X,Y) X##Y #define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y) #define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y) /* Function templates */ #define FSE_DECODE_TYPE FSE_decode_t static U32 FSE_tableStep(U32 tableSize) { return (tableSize>>1) + (tableSize>>3) + 3; } static size_t FSE_buildDTable (FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog) { void* ptr = dt+1; FSE_DTableHeader DTableH; FSE_DECODE_TYPE* const tableDecode = (FSE_DECODE_TYPE*)ptr; const U32 tableSize = 1 << tableLog; const U32 tableMask = tableSize-1; const U32 step = FSE_tableStep(tableSize); U16 symbolNext[FSE_MAX_SYMBOL_VALUE+1]; U32 position = 0; U32 highThreshold = tableSize-1; const S16 largeLimit= (S16)(1 << (tableLog-1)); U32 noLarge = 1; U32 s; /* Sanity Checks */ if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge); if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge); /* Init, lay down lowprob symbols */ DTableH.tableLog = (U16)tableLog; for (s=0; s<=maxSymbolValue; s++) { if (normalizedCounter[s]==-1) { tableDecode[highThreshold--].symbol = (FSE_FUNCTION_TYPE)s; symbolNext[s] = 1; } else { if (normalizedCounter[s] >= largeLimit) noLarge=0; symbolNext[s] = normalizedCounter[s]; } } /* Spread symbols */ for (s=0; s<=maxSymbolValue; s++) { int i; for (i=0; i highThreshold) position = (position + step) & tableMask; /* lowprob area */ } } if (position!=0) return ERROR(GENERIC); /* position must reach all cells once, otherwise normalizedCounter is incorrect */ /* Build Decoding table */ { U32 i; for (i=0; i FSE_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge); bitStream >>= 4; bitCount = 4; *tableLogPtr = nbBits; remaining = (1<1) && (charnum<=*maxSVPtr)) { if (previous0) { unsigned n0 = charnum; while ((bitStream & 0xFFFF) == 0xFFFF) { n0+=24; if (ip < iend-5) { ip+=2; bitStream = MEM_readLE32(ip) >> bitCount; } else { bitStream >>= 16; bitCount+=16; } } while ((bitStream & 3) == 3) { n0+=3; bitStream>>=2; bitCount+=2; } n0 += bitStream & 3; bitCount += 2; if (n0 > *maxSVPtr) return ERROR(maxSymbolValue_tooSmall); while (charnum < n0) normalizedCounter[charnum++] = 0; if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) { ip += bitCount>>3; bitCount &= 7; bitStream = MEM_readLE32(ip) >> bitCount; } else bitStream >>= 2; } { const short max = (short)((2*threshold-1)-remaining); short count; if ((bitStream & (threshold-1)) < (U32)max) { count = (short)(bitStream & (threshold-1)); bitCount += nbBits-1; } else { count = (short)(bitStream & (2*threshold-1)); if (count >= threshold) count -= max; bitCount += nbBits; } count--; /* extra accuracy */ remaining -= FSE_abs(count); normalizedCounter[charnum++] = count; previous0 = !count; while (remaining < threshold) { nbBits--; threshold >>= 1; } { if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) { ip += bitCount>>3; bitCount &= 7; } else { bitCount -= (int)(8 * (iend - 4 - ip)); ip = iend - 4; } bitStream = MEM_readLE32(ip) >> (bitCount & 31); } } } if (remaining != 1) return ERROR(GENERIC); *maxSVPtr = charnum-1; ip += (bitCount+7)>>3; if ((size_t)(ip-istart) > hbSize) return ERROR(srcSize_wrong); return ip-istart; } /********************************************************* * Decompression (Byte symbols) *********************************************************/ static size_t FSE_buildDTable_rle (FSE_DTable* dt, BYTE symbolValue) { void* ptr = dt; FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr; FSE_decode_t* const cell = (FSE_decode_t*)(ptr) + 1; DTableH->tableLog = 0; DTableH->fastMode = 0; cell->newState = 0; cell->symbol = symbolValue; cell->nbBits = 0; return 0; } static size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits) { void* ptr = dt; FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr; FSE_decode_t* const dinfo = (FSE_decode_t*)(ptr) + 1; const unsigned tableSize = 1 << nbBits; const unsigned tableMask = tableSize - 1; const unsigned maxSymbolValue = tableMask; unsigned s; /* Sanity checks */ if (nbBits < 1) return ERROR(GENERIC); /* min size */ /* Build Decoding Table */ DTableH->tableLog = (U16)nbBits; DTableH->fastMode = 1; for (s=0; s<=maxSymbolValue; s++) { dinfo[s].newState = 0; dinfo[s].symbol = (BYTE)s; dinfo[s].nbBits = (BYTE)nbBits; } return 0; } FORCE_INLINE size_t FSE_decompress_usingDTable_generic( void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt, const unsigned fast) { BYTE* const ostart = (BYTE*) dst; BYTE* op = ostart; BYTE* const omax = op + maxDstSize; BYTE* const olimit = omax-3; BIT_DStream_t bitD; FSE_DState_t state1; FSE_DState_t state2; size_t errorCode; /* Init */ errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize); /* replaced last arg by maxCompressed Size */ if (FSE_isError(errorCode)) return errorCode; FSE_initDState(&state1, &bitD, dt); FSE_initDState(&state2, &bitD, dt); #define FSE_GETSYMBOL(statePtr) fast ? FSE_decodeSymbolFast(statePtr, &bitD) : FSE_decodeSymbol(statePtr, &bitD) /* 4 symbols per loop */ for ( ; (BIT_reloadDStream(&bitD)==BIT_DStream_unfinished) && (op sizeof(bitD.bitContainer)*8) /* This test must be static */ BIT_reloadDStream(&bitD); op[1] = FSE_GETSYMBOL(&state2); if (FSE_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */ { if (BIT_reloadDStream(&bitD) > BIT_DStream_unfinished) { op+=2; break; } } op[2] = FSE_GETSYMBOL(&state1); if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */ BIT_reloadDStream(&bitD); op[3] = FSE_GETSYMBOL(&state2); } /* tail */ /* note : BIT_reloadDStream(&bitD) >= FSE_DStream_partiallyFilled; Ends at exactly BIT_DStream_completed */ while (1) { if ( (BIT_reloadDStream(&bitD)>BIT_DStream_completed) || (op==omax) || (BIT_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state1))) ) break; *op++ = FSE_GETSYMBOL(&state1); if ( (BIT_reloadDStream(&bitD)>BIT_DStream_completed) || (op==omax) || (BIT_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state2))) ) break; *op++ = FSE_GETSYMBOL(&state2); } /* end ? */ if (BIT_endOfDStream(&bitD) && FSE_endOfDState(&state1) && FSE_endOfDState(&state2)) return op-ostart; if (op==omax) return ERROR(dstSize_tooSmall); /* dst buffer is full, but cSrc unfinished */ return ERROR(corruption_detected); } static size_t FSE_decompress_usingDTable(void* dst, size_t originalSize, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt) { FSE_DTableHeader DTableH; memcpy(&DTableH, dt, sizeof(DTableH)); /* select fast mode (static) */ if (DTableH.fastMode) return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1); return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0); } static size_t FSE_decompress(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize) { const BYTE* const istart = (const BYTE*)cSrc; const BYTE* ip = istart; short counting[FSE_MAX_SYMBOL_VALUE+1]; DTable_max_t dt; /* Static analyzer seems unable to understand this table will be properly initialized later */ unsigned tableLog; unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE; size_t errorCode; if (cSrcSize<2) return ERROR(srcSize_wrong); /* too small input size */ /* normal FSE decoding mode */ errorCode = FSE_readNCount (counting, &maxSymbolValue, &tableLog, istart, cSrcSize); if (FSE_isError(errorCode)) return errorCode; if (errorCode >= cSrcSize) return ERROR(srcSize_wrong); /* too small input size */ ip += errorCode; cSrcSize -= errorCode; errorCode = FSE_buildDTable (dt, counting, maxSymbolValue, tableLog); if (FSE_isError(errorCode)) return errorCode; /* always return, even if it is an error code */ return FSE_decompress_usingDTable (dst, maxDstSize, ip, cSrcSize, dt); } #endif /* FSE_COMMONDEFS_ONLY */ /* ****************************************************************** Huff0 : Huffman coder, part of New Generation Entropy library Copyright (C) 2013-2015, Yann Collet. BSD 2-Clause License (https://opensource.org/licenses/bsd-license.php) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You can contact the author at : - FSE+Huff0 source repository : https://github.com/Cyan4973/FiniteStateEntropy - Public forum : https://groups.google.com/forum/#!forum/lz4c ****************************************************************** */ /**************************************************************** * Compiler specifics ****************************************************************/ #if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) /* inline is defined */ #elif defined(_MSC_VER) # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ # define inline __inline #else # define inline /* disable inline */ #endif /**************************************************************** * Includes ****************************************************************/ #include /* malloc, free, qsort */ #include /* memcpy, memset */ #include /* printf (debug) */ /**************************************************************** * Error Management ****************************************************************/ #define HUF_STATIC_ASSERT(c) { enum { HUF_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */ /****************************************** * Helper functions ******************************************/ static unsigned HUF_isError(size_t code) { return ERR_isError(code); } #define HUF_ABSOLUTEMAX_TABLELOG 16 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */ #define HUF_MAX_TABLELOG 12 /* max configured tableLog (for static allocation); can be modified up to HUF_ABSOLUTEMAX_TABLELOG */ #define HUF_DEFAULT_TABLELOG HUF_MAX_TABLELOG /* tableLog by default, when not specified */ #define HUF_MAX_SYMBOL_VALUE 255 #if (HUF_MAX_TABLELOG > HUF_ABSOLUTEMAX_TABLELOG) # error "HUF_MAX_TABLELOG is too large !" #endif /********************************************************* * Huff0 : Huffman block decompression *********************************************************/ typedef struct { BYTE byte; BYTE nbBits; } HUF_DEltX2; /* single-symbol decoding */ typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX4; /* double-symbols decoding */ typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t; /*! HUF_readStats Read compact Huffman tree, saved by HUF_writeCTable @huffWeight : destination buffer @return : size read from `src` */ static size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats, U32* nbSymbolsPtr, U32* tableLogPtr, const void* src, size_t srcSize) { U32 weightTotal; U32 tableLog; const BYTE* ip = (const BYTE*) src; size_t iSize; size_t oSize; U32 n; if (!srcSize) return ERROR(srcSize_wrong); iSize = ip[0]; //memset(huffWeight, 0, hwSize); /* is not necessary, even though some analyzer complain ... */ if (iSize >= 128) /* special header */ { if (iSize >= (242)) /* RLE */ { static int l[14] = { 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 127, 128 }; oSize = l[iSize-242]; memset(huffWeight, 1, hwSize); iSize = 0; } else /* Incompressible */ { oSize = iSize - 127; iSize = ((oSize+1)/2); if (iSize+1 > srcSize) return ERROR(srcSize_wrong); if (oSize >= hwSize) return ERROR(corruption_detected); ip += 1; for (n=0; n> 4; huffWeight[n+1] = ip[n/2] & 15; } } } else /* header compressed with FSE (normal case) */ { if (iSize+1 > srcSize) return ERROR(srcSize_wrong); oSize = FSE_decompress(huffWeight, hwSize-1, ip+1, iSize); /* max (hwSize-1) values decoded, as last one is implied */ if (FSE_isError(oSize)) return oSize; } /* collect weight stats */ memset(rankStats, 0, (HUF_ABSOLUTEMAX_TABLELOG + 1) * sizeof(U32)); weightTotal = 0; for (n=0; n= HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected); rankStats[huffWeight[n]]++; weightTotal += (1 << huffWeight[n]) >> 1; } if (weightTotal == 0) return ERROR(corruption_detected); /* get last non-null symbol weight (implied, total must be 2^n) */ tableLog = BIT_highbit32(weightTotal) + 1; if (tableLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected); { U32 total = 1 << tableLog; U32 rest = total - weightTotal; U32 verif = 1 << BIT_highbit32(rest); U32 lastWeight = BIT_highbit32(rest) + 1; if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */ huffWeight[oSize] = (BYTE)lastWeight; rankStats[lastWeight]++; } /* check tree construction validity */ if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */ /* results */ *nbSymbolsPtr = (U32)(oSize+1); *tableLogPtr = tableLog; return iSize+1; } /**************************/ /* single-symbol decoding */ /**************************/ static size_t HUF_readDTableX2 (U16* DTable, const void* src, size_t srcSize) { BYTE huffWeight[HUF_MAX_SYMBOL_VALUE + 1]; U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1]; /* large enough for values from 0 to 16 */ U32 tableLog = 0; const BYTE* ip = (const BYTE*) src; size_t iSize = ip[0]; U32 nbSymbols = 0; U32 n; U32 nextRankStart; void* ptr = DTable+1; HUF_DEltX2* const dt = (HUF_DEltX2*)(ptr); HUF_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U16)); /* if compilation fails here, assertion is false */ //memset(huffWeight, 0, sizeof(huffWeight)); /* is not necessary, even though some analyzer complain ... */ iSize = HUF_readStats(huffWeight, HUF_MAX_SYMBOL_VALUE + 1, rankVal, &nbSymbols, &tableLog, src, srcSize); if (HUF_isError(iSize)) return iSize; /* check result */ if (tableLog > DTable[0]) return ERROR(tableLog_tooLarge); /* DTable is too small */ DTable[0] = (U16)tableLog; /* maybe should separate sizeof DTable, as allocated, from used size of DTable, in case of DTable re-use */ /* Prepare ranks */ nextRankStart = 0; for (n=1; n<=tableLog; n++) { U32 current = nextRankStart; nextRankStart += (rankVal[n] << (n-1)); rankVal[n] = current; } /* fill DTable */ for (n=0; n> 1; U32 i; HUF_DEltX2 D; D.byte = (BYTE)n; D.nbBits = (BYTE)(tableLog + 1 - w); for (i = rankVal[w]; i < rankVal[w] + length; i++) dt[i] = D; rankVal[w] += length; } return iSize; } static BYTE HUF_decodeSymbolX2(BIT_DStream_t* Dstream, const HUF_DEltX2* dt, const U32 dtLog) { const size_t val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */ const BYTE c = dt[val].byte; BIT_skipBits(Dstream, dt[val].nbBits); return c; } #define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \ *ptr++ = HUF_decodeSymbolX2(DStreamPtr, dt, dtLog) #define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \ if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \ HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) #define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \ if (MEM_64bits()) \ HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) static inline size_t HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX2* const dt, const U32 dtLog) { BYTE* const pStart = p; /* up to 4 symbols at a time */ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-4)) { HUF_DECODE_SYMBOLX2_2(p, bitDPtr); HUF_DECODE_SYMBOLX2_1(p, bitDPtr); HUF_DECODE_SYMBOLX2_2(p, bitDPtr); HUF_DECODE_SYMBOLX2_0(p, bitDPtr); } /* closer to the end */ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd)) HUF_DECODE_SYMBOLX2_0(p, bitDPtr); /* no more data to retrieve from bitstream, hence no need to reload */ while (p < pEnd) HUF_DECODE_SYMBOLX2_0(p, bitDPtr); return pEnd-pStart; } static size_t HUF_decompress4X2_usingDTable( void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, const U16* DTable) { if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ { const BYTE* const istart = (const BYTE*) cSrc; BYTE* const ostart = (BYTE*) dst; BYTE* const oend = ostart + dstSize; const void* ptr = DTable; const HUF_DEltX2* const dt = ((const HUF_DEltX2*)ptr) +1; const U32 dtLog = DTable[0]; size_t errorCode; /* Init */ BIT_DStream_t bitD1; BIT_DStream_t bitD2; BIT_DStream_t bitD3; BIT_DStream_t bitD4; const size_t length1 = MEM_readLE16(istart); const size_t length2 = MEM_readLE16(istart+2); const size_t length3 = MEM_readLE16(istart+4); size_t length4; const BYTE* const istart1 = istart + 6; /* jumpTable */ const BYTE* const istart2 = istart1 + length1; const BYTE* const istart3 = istart2 + length2; const BYTE* const istart4 = istart3 + length3; const size_t segmentSize = (dstSize+3) / 4; BYTE* const opStart2 = ostart + segmentSize; BYTE* const opStart3 = opStart2 + segmentSize; BYTE* const opStart4 = opStart3 + segmentSize; BYTE* op1 = ostart; BYTE* op2 = opStart2; BYTE* op3 = opStart3; BYTE* op4 = opStart4; U32 endSignal; length4 = cSrcSize - (length1 + length2 + length3 + 6); if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ errorCode = BIT_initDStream(&bitD1, istart1, length1); if (HUF_isError(errorCode)) return errorCode; errorCode = BIT_initDStream(&bitD2, istart2, length2); if (HUF_isError(errorCode)) return errorCode; errorCode = BIT_initDStream(&bitD3, istart3, length3); if (HUF_isError(errorCode)) return errorCode; errorCode = BIT_initDStream(&bitD4, istart4, length4); if (HUF_isError(errorCode)) return errorCode; /* 16-32 symbols per loop (4-8 symbols per stream) */ endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4); for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; ) { HUF_DECODE_SYMBOLX2_2(op1, &bitD1); HUF_DECODE_SYMBOLX2_2(op2, &bitD2); HUF_DECODE_SYMBOLX2_2(op3, &bitD3); HUF_DECODE_SYMBOLX2_2(op4, &bitD4); HUF_DECODE_SYMBOLX2_1(op1, &bitD1); HUF_DECODE_SYMBOLX2_1(op2, &bitD2); HUF_DECODE_SYMBOLX2_1(op3, &bitD3); HUF_DECODE_SYMBOLX2_1(op4, &bitD4); HUF_DECODE_SYMBOLX2_2(op1, &bitD1); HUF_DECODE_SYMBOLX2_2(op2, &bitD2); HUF_DECODE_SYMBOLX2_2(op3, &bitD3); HUF_DECODE_SYMBOLX2_2(op4, &bitD4); HUF_DECODE_SYMBOLX2_0(op1, &bitD1); HUF_DECODE_SYMBOLX2_0(op2, &bitD2); HUF_DECODE_SYMBOLX2_0(op3, &bitD3); HUF_DECODE_SYMBOLX2_0(op4, &bitD4); endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4); } /* check corruption */ if (op1 > opStart2) return ERROR(corruption_detected); if (op2 > opStart3) return ERROR(corruption_detected); if (op3 > opStart4) return ERROR(corruption_detected); /* note : op4 supposed already verified within main loop */ /* finish bitStreams one by one */ HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog); HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog); HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog); HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog); /* check */ endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4); if (!endSignal) return ERROR(corruption_detected); /* decoded size */ return dstSize; } } static size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) { HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_MAX_TABLELOG); const BYTE* ip = (const BYTE*) cSrc; size_t errorCode; errorCode = HUF_readDTableX2 (DTable, cSrc, cSrcSize); if (HUF_isError(errorCode)) return errorCode; if (errorCode >= cSrcSize) return ERROR(srcSize_wrong); ip += errorCode; cSrcSize -= errorCode; return HUF_decompress4X2_usingDTable (dst, dstSize, ip, cSrcSize, DTable); } /***************************/ /* double-symbols decoding */ /***************************/ static void HUF_fillDTableX4Level2(HUF_DEltX4* DTable, U32 sizeLog, const U32 consumed, const U32* rankValOrigin, const int minWeight, const sortedSymbol_t* sortedSymbols, const U32 sortedListSize, U32 nbBitsBaseline, U16 baseSeq) { HUF_DEltX4 DElt; U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1]; U32 s; /* get pre-calculated rankVal */ memcpy(rankVal, rankValOrigin, sizeof(rankVal)); /* fill skipped values */ if (minWeight>1) { U32 i, skipSize = rankVal[minWeight]; MEM_writeLE16(&(DElt.sequence), baseSeq); DElt.nbBits = (BYTE)(consumed); DElt.length = 1; for (i = 0; i < skipSize; i++) DTable[i] = DElt; } /* fill DTable */ for (s=0; s= 1 */ rankVal[weight] += length; } } typedef U32 rankVal_t[HUF_ABSOLUTEMAX_TABLELOG][HUF_ABSOLUTEMAX_TABLELOG + 1]; static void HUF_fillDTableX4(HUF_DEltX4* DTable, const U32 targetLog, const sortedSymbol_t* sortedList, const U32 sortedListSize, const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight, const U32 nbBitsBaseline) { U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1]; const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */ const U32 minBits = nbBitsBaseline - maxWeight; U32 s; memcpy(rankVal, rankValOrigin, sizeof(rankVal)); /* fill DTable */ for (s=0; s= minBits) /* enough room for a second symbol */ { U32 sortedRank; int minWeight = nbBits + scaleLog; if (minWeight < 1) minWeight = 1; sortedRank = rankStart[minWeight]; HUF_fillDTableX4Level2(DTable+start, targetLog-nbBits, nbBits, rankValOrigin[nbBits], minWeight, sortedList+sortedRank, sortedListSize-sortedRank, nbBitsBaseline, symbol); } else { U32 i; const U32 end = start + length; HUF_DEltX4 DElt; MEM_writeLE16(&(DElt.sequence), symbol); DElt.nbBits = (BYTE)(nbBits); DElt.length = 1; for (i = start; i < end; i++) DTable[i] = DElt; } rankVal[weight] += length; } } static size_t HUF_readDTableX4 (U32* DTable, const void* src, size_t srcSize) { BYTE weightList[HUF_MAX_SYMBOL_VALUE + 1]; sortedSymbol_t sortedSymbol[HUF_MAX_SYMBOL_VALUE + 1]; U32 rankStats[HUF_ABSOLUTEMAX_TABLELOG + 1] = { 0 }; U32 rankStart0[HUF_ABSOLUTEMAX_TABLELOG + 2] = { 0 }; U32* const rankStart = rankStart0+1; rankVal_t rankVal; U32 tableLog, maxW, sizeOfSort, nbSymbols; const U32 memLog = DTable[0]; const BYTE* ip = (const BYTE*) src; size_t iSize = ip[0]; void* ptr = DTable; HUF_DEltX4* const dt = ((HUF_DEltX4*)ptr) + 1; HUF_STATIC_ASSERT(sizeof(HUF_DEltX4) == sizeof(U32)); /* if compilation fails here, assertion is false */ if (memLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(tableLog_tooLarge); //memset(weightList, 0, sizeof(weightList)); /* is not necessary, even though some analyzer complain ... */ iSize = HUF_readStats(weightList, HUF_MAX_SYMBOL_VALUE + 1, rankStats, &nbSymbols, &tableLog, src, srcSize); if (HUF_isError(iSize)) return iSize; /* check result */ if (tableLog > memLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */ /* find maxWeight */ for (maxW = tableLog; rankStats[maxW]==0; maxW--) { if (!maxW) return ERROR(GENERIC); } /* necessarily finds a solution before maxW==0 */ /* Get start index of each weight */ { U32 w, nextRankStart = 0; for (w=1; w<=maxW; w++) { U32 current = nextRankStart; nextRankStart += rankStats[w]; rankStart[w] = current; } rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/ sizeOfSort = nextRankStart; } /* sort symbols by weight */ { U32 s; for (s=0; s> consumed; } } } HUF_fillDTableX4(dt, memLog, sortedSymbol, sizeOfSort, rankStart0, rankVal, maxW, tableLog+1); return iSize; } static U32 HUF_decodeSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog) { const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ memcpy(op, dt+val, 2); BIT_skipBits(DStream, dt[val].nbBits); return dt[val].length; } static U32 HUF_decodeLastSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog) { const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ memcpy(op, dt+val, 1); if (dt[val].length==1) BIT_skipBits(DStream, dt[val].nbBits); else { if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) { BIT_skipBits(DStream, dt[val].nbBits); if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8)) DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */ } } return 1; } #define HUF_DECODE_SYMBOLX4_0(ptr, DStreamPtr) \ ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog) #define HUF_DECODE_SYMBOLX4_1(ptr, DStreamPtr) \ if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \ ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog) #define HUF_DECODE_SYMBOLX4_2(ptr, DStreamPtr) \ if (MEM_64bits()) \ ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog) static inline size_t HUF_decodeStreamX4(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, const HUF_DEltX4* const dt, const U32 dtLog) { BYTE* const pStart = p; /* up to 8 symbols at a time */ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd-7)) { HUF_DECODE_SYMBOLX4_2(p, bitDPtr); HUF_DECODE_SYMBOLX4_1(p, bitDPtr); HUF_DECODE_SYMBOLX4_2(p, bitDPtr); HUF_DECODE_SYMBOLX4_0(p, bitDPtr); } /* closer to the end */ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-2)) HUF_DECODE_SYMBOLX4_0(p, bitDPtr); while (p <= pEnd-2) HUF_DECODE_SYMBOLX4_0(p, bitDPtr); /* no need to reload : reached the end of DStream */ if (p < pEnd) p += HUF_decodeLastSymbolX4(p, bitDPtr, dt, dtLog); return p-pStart; } static size_t HUF_decompress4X4_usingDTable( void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, const U32* DTable) { if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ { const BYTE* const istart = (const BYTE*) cSrc; BYTE* const ostart = (BYTE*) dst; BYTE* const oend = ostart + dstSize; const void* ptr = DTable; const HUF_DEltX4* const dt = ((const HUF_DEltX4*)ptr) +1; const U32 dtLog = DTable[0]; size_t errorCode; /* Init */ BIT_DStream_t bitD1; BIT_DStream_t bitD2; BIT_DStream_t bitD3; BIT_DStream_t bitD4; const size_t length1 = MEM_readLE16(istart); const size_t length2 = MEM_readLE16(istart+2); const size_t length3 = MEM_readLE16(istart+4); size_t length4; const BYTE* const istart1 = istart + 6; /* jumpTable */ const BYTE* const istart2 = istart1 + length1; const BYTE* const istart3 = istart2 + length2; const BYTE* const istart4 = istart3 + length3; const size_t segmentSize = (dstSize+3) / 4; BYTE* const opStart2 = ostart + segmentSize; BYTE* const opStart3 = opStart2 + segmentSize; BYTE* const opStart4 = opStart3 + segmentSize; BYTE* op1 = ostart; BYTE* op2 = opStart2; BYTE* op3 = opStart3; BYTE* op4 = opStart4; U32 endSignal; length4 = cSrcSize - (length1 + length2 + length3 + 6); if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ errorCode = BIT_initDStream(&bitD1, istart1, length1); if (HUF_isError(errorCode)) return errorCode; errorCode = BIT_initDStream(&bitD2, istart2, length2); if (HUF_isError(errorCode)) return errorCode; errorCode = BIT_initDStream(&bitD3, istart3, length3); if (HUF_isError(errorCode)) return errorCode; errorCode = BIT_initDStream(&bitD4, istart4, length4); if (HUF_isError(errorCode)) return errorCode; /* 16-32 symbols per loop (4-8 symbols per stream) */ endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4); for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; ) { HUF_DECODE_SYMBOLX4_2(op1, &bitD1); HUF_DECODE_SYMBOLX4_2(op2, &bitD2); HUF_DECODE_SYMBOLX4_2(op3, &bitD3); HUF_DECODE_SYMBOLX4_2(op4, &bitD4); HUF_DECODE_SYMBOLX4_1(op1, &bitD1); HUF_DECODE_SYMBOLX4_1(op2, &bitD2); HUF_DECODE_SYMBOLX4_1(op3, &bitD3); HUF_DECODE_SYMBOLX4_1(op4, &bitD4); HUF_DECODE_SYMBOLX4_2(op1, &bitD1); HUF_DECODE_SYMBOLX4_2(op2, &bitD2); HUF_DECODE_SYMBOLX4_2(op3, &bitD3); HUF_DECODE_SYMBOLX4_2(op4, &bitD4); HUF_DECODE_SYMBOLX4_0(op1, &bitD1); HUF_DECODE_SYMBOLX4_0(op2, &bitD2); HUF_DECODE_SYMBOLX4_0(op3, &bitD3); HUF_DECODE_SYMBOLX4_0(op4, &bitD4); endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4); } /* check corruption */ if (op1 > opStart2) return ERROR(corruption_detected); if (op2 > opStart3) return ERROR(corruption_detected); if (op3 > opStart4) return ERROR(corruption_detected); /* note : op4 supposed already verified within main loop */ /* finish bitStreams one by one */ HUF_decodeStreamX4(op1, &bitD1, opStart2, dt, dtLog); HUF_decodeStreamX4(op2, &bitD2, opStart3, dt, dtLog); HUF_decodeStreamX4(op3, &bitD3, opStart4, dt, dtLog); HUF_decodeStreamX4(op4, &bitD4, oend, dt, dtLog); /* check */ endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4); if (!endSignal) return ERROR(corruption_detected); /* decoded size */ return dstSize; } } static size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) { HUF_CREATE_STATIC_DTABLEX4(DTable, HUF_MAX_TABLELOG); const BYTE* ip = (const BYTE*) cSrc; size_t hSize = HUF_readDTableX4 (DTable, cSrc, cSrcSize); if (HUF_isError(hSize)) return hSize; if (hSize >= cSrcSize) return ERROR(srcSize_wrong); ip += hSize; cSrcSize -= hSize; return HUF_decompress4X4_usingDTable (dst, dstSize, ip, cSrcSize, DTable); } /**********************************/ /* Generic decompression selector */ /**********************************/ typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t; static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] = { /* single, double, quad */ {{0,0}, {1,1}, {2,2}}, /* Q==0 : impossible */ {{0,0}, {1,1}, {2,2}}, /* Q==1 : impossible */ {{ 38,130}, {1313, 74}, {2151, 38}}, /* Q == 2 : 12-18% */ {{ 448,128}, {1353, 74}, {2238, 41}}, /* Q == 3 : 18-25% */ {{ 556,128}, {1353, 74}, {2238, 47}}, /* Q == 4 : 25-32% */ {{ 714,128}, {1418, 74}, {2436, 53}}, /* Q == 5 : 32-38% */ {{ 883,128}, {1437, 74}, {2464, 61}}, /* Q == 6 : 38-44% */ {{ 897,128}, {1515, 75}, {2622, 68}}, /* Q == 7 : 44-50% */ {{ 926,128}, {1613, 75}, {2730, 75}}, /* Q == 8 : 50-56% */ {{ 947,128}, {1729, 77}, {3359, 77}}, /* Q == 9 : 56-62% */ {{1107,128}, {2083, 81}, {4006, 84}}, /* Q ==10 : 62-69% */ {{1177,128}, {2379, 87}, {4785, 88}}, /* Q ==11 : 69-75% */ {{1242,128}, {2415, 93}, {5155, 84}}, /* Q ==12 : 75-81% */ {{1349,128}, {2644,106}, {5260,106}}, /* Q ==13 : 81-87% */ {{1455,128}, {2422,124}, {4174,124}}, /* Q ==14 : 87-93% */ {{ 722,128}, {1891,145}, {1936,146}}, /* Q ==15 : 93-99% */ }; typedef size_t (*decompressionAlgo)(void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); static size_t HUF_decompress (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) { static const decompressionAlgo decompress[3] = { HUF_decompress4X2, HUF_decompress4X4, NULL }; /* estimate decompression time */ U32 Q; const U32 D256 = (U32)(dstSize >> 8); U32 Dtime[3]; U32 algoNb = 0; int n; /* validation checks */ if (dstSize == 0) return ERROR(dstSize_tooSmall); if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */ if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */ if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */ /* decoder timing evaluation */ Q = (U32)(cSrcSize * 16 / dstSize); /* Q < 16 since dstSize > cSrcSize */ for (n=0; n<3; n++) Dtime[n] = algoTime[Q][n].tableTime + (algoTime[Q][n].decode256Time * D256); Dtime[1] += Dtime[1] >> 4; Dtime[2] += Dtime[2] >> 3; /* advantage to algorithms using less memory, for cache eviction */ if (Dtime[1] < Dtime[0]) algoNb = 1; return decompress[algoNb](dst, dstSize, cSrc, cSrcSize); //return HUF_decompress4X2(dst, dstSize, cSrc, cSrcSize); /* multi-streams single-symbol decoding */ //return HUF_decompress4X4(dst, dstSize, cSrc, cSrcSize); /* multi-streams double-symbols decoding */ //return HUF_decompress4X6(dst, dstSize, cSrc, cSrcSize); /* multi-streams quad-symbols decoding */ } /* zstd - standard compression library Copyright (C) 2014-2015, Yann Collet. BSD 2-Clause License (https://opensource.org/licenses/bsd-license.php) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You can contact the author at : - zstd source repository : https://github.com/Cyan4973/zstd - ztsd public forum : https://groups.google.com/forum/#!forum/lz4c */ /* *************************************************************** * Tuning parameters *****************************************************************/ /*! * MEMORY_USAGE : * Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.) * Increasing memory usage improves compression ratio * Reduced memory usage can improve speed, due to cache effect */ #define ZSTD_MEMORY_USAGE 17 /*! * HEAPMODE : * Select how default compression functions will allocate memory for their hash table, * in memory stack (0, fastest), or in memory heap (1, requires malloc()) * Note that compression context is fairly large, as a consequence heap memory is recommended. */ #ifndef ZSTD_HEAPMODE # define ZSTD_HEAPMODE 1 #endif /* ZSTD_HEAPMODE */ /*! * LEGACY_SUPPORT : * decompressor can decode older formats (starting from Zstd 0.1+) */ #ifndef ZSTD_LEGACY_SUPPORT # define ZSTD_LEGACY_SUPPORT 1 #endif /* ******************************************************* * Includes *********************************************************/ #include /* calloc */ #include /* memcpy, memmove */ #include /* debug : printf */ /* ******************************************************* * Compiler specifics *********************************************************/ #ifdef __AVX2__ # include /* AVX2 intrinsics */ #endif #ifdef _MSC_VER /* Visual Studio */ # include /* For Visual 2005 */ # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ # pragma warning(disable : 4324) /* disable: C4324: padded structure */ #else # define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) #endif /* ******************************************************* * Constants *********************************************************/ #define HASH_LOG (ZSTD_MEMORY_USAGE - 2) #define HASH_TABLESIZE (1 << HASH_LOG) #define HASH_MASK (HASH_TABLESIZE - 1) #define KNUTH 2654435761 #define BIT7 128 #define BIT6 64 #define BIT5 32 #define BIT4 16 #define BIT1 2 #define BIT0 1 #define KB *(1 <<10) #define MB *(1 <<20) #define GB *(1U<<30) #define BLOCKSIZE (128 KB) /* define, for static allocation */ #define MIN_SEQUENCES_SIZE (2 /*seqNb*/ + 2 /*dumps*/ + 3 /*seqTables*/ + 1 /*bitStream*/) #define MIN_CBLOCK_SIZE (3 /*litCSize*/ + MIN_SEQUENCES_SIZE) #define IS_RAW BIT0 #define IS_RLE BIT1 #define WORKPLACESIZE (BLOCKSIZE*3) #define MINMATCH 4 #define MLbits 7 #define LLbits 6 #define Offbits 5 #define MaxML ((1<blockType = (blockType_t)(headerFlags >> 6); bpPtr->origSize = (bpPtr->blockType == bt_rle) ? cSize : 0; if (bpPtr->blockType == bt_end) return 0; if (bpPtr->blockType == bt_rle) return 1; return cSize; } static size_t ZSTD_copyUncompressedBlock(void* dst, size_t maxDstSize, const void* src, size_t srcSize) { if (srcSize > maxDstSize) return ERROR(dstSize_tooSmall); if (srcSize > 0) { memcpy(dst, src, srcSize); } return srcSize; } /** ZSTD_decompressLiterals @return : nb of bytes read from src, or an error code*/ static size_t ZSTD_decompressLiterals(void* dst, size_t* maxDstSizePtr, const void* src, size_t srcSize) { const BYTE* ip = (const BYTE*)src; const size_t litSize = (MEM_readLE32(src) & 0x1FFFFF) >> 2; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */ const size_t litCSize = (MEM_readLE32(ip+2) & 0xFFFFFF) >> 5; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */ if (litSize > *maxDstSizePtr) return ERROR(corruption_detected); if (litCSize + 5 > srcSize) return ERROR(corruption_detected); if (HUF_isError(HUF_decompress(dst, litSize, ip+5, litCSize))) return ERROR(corruption_detected); *maxDstSizePtr = litSize; return litCSize + 5; } /** ZSTD_decodeLiteralsBlock @return : nb of bytes read from src (< srcSize )*/ static size_t ZSTD_decodeLiteralsBlock(void* ctx, const void* src, size_t srcSize) { ZSTD_DCtx* dctx = (ZSTD_DCtx*)ctx; const BYTE* const istart = (const BYTE* const)src; /* any compressed block with literals segment must be at least this size */ if (srcSize < MIN_CBLOCK_SIZE) return ERROR(corruption_detected); switch(*istart & 3) { default: case 0: { size_t litSize = BLOCKSIZE; const size_t readSize = ZSTD_decompressLiterals(dctx->litBuffer, &litSize, src, srcSize); dctx->litPtr = dctx->litBuffer; dctx->litSize = litSize; memset(dctx->litBuffer + dctx->litSize, 0, 8); return readSize; /* works if it's an error too */ } case IS_RAW: { const size_t litSize = (MEM_readLE32(istart) & 0xFFFFFF) >> 2; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */ if (litSize > srcSize-11) /* risk of reading too far with wildcopy */ { if (litSize > BLOCKSIZE) return ERROR(corruption_detected); if (litSize > srcSize-3) return ERROR(corruption_detected); memcpy(dctx->litBuffer, istart, litSize); dctx->litPtr = dctx->litBuffer; dctx->litSize = litSize; memset(dctx->litBuffer + dctx->litSize, 0, 8); return litSize+3; } /* direct reference into compressed stream */ dctx->litPtr = istart+3; dctx->litSize = litSize; return litSize+3; } case IS_RLE: { const size_t litSize = (MEM_readLE32(istart) & 0xFFFFFF) >> 2; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */ if (litSize > BLOCKSIZE) return ERROR(corruption_detected); memset(dctx->litBuffer, istart[3], litSize + 8); dctx->litPtr = dctx->litBuffer; dctx->litSize = litSize; return 4; } } } static size_t ZSTD_decodeSeqHeaders(int* nbSeq, const BYTE** dumpsPtr, size_t* dumpsLengthPtr, FSE_DTable* DTableLL, FSE_DTable* DTableML, FSE_DTable* DTableOffb, const void* src, size_t srcSize) { const BYTE* const istart = (const BYTE* const)src; const BYTE* ip = istart; const BYTE* const iend = istart + srcSize; U32 LLtype, Offtype, MLtype; U32 LLlog, Offlog, MLlog; size_t dumpsLength; /* check */ if (srcSize < 5) return ERROR(srcSize_wrong); /* SeqHead */ *nbSeq = MEM_readLE16(ip); ip+=2; LLtype = *ip >> 6; Offtype = (*ip >> 4) & 3; MLtype = (*ip >> 2) & 3; if (*ip & 2) { dumpsLength = ip[2]; dumpsLength += ip[1] << 8; ip += 3; } else { dumpsLength = ip[1]; dumpsLength += (ip[0] & 1) << 8; ip += 2; } *dumpsPtr = ip; ip += dumpsLength; *dumpsLengthPtr = dumpsLength; /* check */ if (ip > iend-3) return ERROR(srcSize_wrong); /* min : all 3 are "raw", hence no header, but at least xxLog bits per type */ /* sequences */ { S16 norm[MaxML+1]; /* assumption : MaxML >= MaxLL and MaxOff */ size_t headerSize; /* Build DTables */ switch(LLtype) { case bt_rle : LLlog = 0; FSE_buildDTable_rle(DTableLL, *ip++); break; case bt_raw : LLlog = LLbits; FSE_buildDTable_raw(DTableLL, LLbits); break; default : { U32 max = MaxLL; headerSize = FSE_readNCount(norm, &max, &LLlog, ip, iend-ip); if (FSE_isError(headerSize)) return ERROR(GENERIC); if (LLlog > LLFSELog) return ERROR(corruption_detected); ip += headerSize; FSE_buildDTable(DTableLL, norm, max, LLlog); } } switch(Offtype) { case bt_rle : Offlog = 0; if (ip > iend-2) return ERROR(srcSize_wrong); /* min : "raw", hence no header, but at least xxLog bits */ FSE_buildDTable_rle(DTableOffb, *ip++ & MaxOff); /* if *ip > MaxOff, data is corrupted */ break; case bt_raw : Offlog = Offbits; FSE_buildDTable_raw(DTableOffb, Offbits); break; default : { U32 max = MaxOff; headerSize = FSE_readNCount(norm, &max, &Offlog, ip, iend-ip); if (FSE_isError(headerSize)) return ERROR(GENERIC); if (Offlog > OffFSELog) return ERROR(corruption_detected); ip += headerSize; FSE_buildDTable(DTableOffb, norm, max, Offlog); } } switch(MLtype) { case bt_rle : MLlog = 0; if (ip > iend-2) return ERROR(srcSize_wrong); /* min : "raw", hence no header, but at least xxLog bits */ FSE_buildDTable_rle(DTableML, *ip++); break; case bt_raw : MLlog = MLbits; FSE_buildDTable_raw(DTableML, MLbits); break; default : { U32 max = MaxML; headerSize = FSE_readNCount(norm, &max, &MLlog, ip, iend-ip); if (FSE_isError(headerSize)) return ERROR(GENERIC); if (MLlog > MLFSELog) return ERROR(corruption_detected); ip += headerSize; FSE_buildDTable(DTableML, norm, max, MLlog); } } } return ip-istart; } typedef struct { size_t litLength; size_t offset; size_t matchLength; } seq_t; typedef struct { BIT_DStream_t DStream; FSE_DState_t stateLL; FSE_DState_t stateOffb; FSE_DState_t stateML; size_t prevOffset; const BYTE* dumps; const BYTE* dumpsEnd; } seqState_t; static void ZSTD_decodeSequence(seq_t* seq, seqState_t* seqState) { size_t litLength; size_t prevOffset; size_t offset; size_t matchLength; const BYTE* dumps = seqState->dumps; const BYTE* const de = seqState->dumpsEnd; /* Literal length */ litLength = FSE_decodeSymbol(&(seqState->stateLL), &(seqState->DStream)); prevOffset = litLength ? seq->offset : seqState->prevOffset; seqState->prevOffset = seq->offset; if (litLength == MaxLL) { const U32 add = dumps= de) dumps = de-1; /* late correction, to avoid read overflow (data is now corrupted anyway) */ } /* Offset */ { static const size_t offsetPrefix[MaxOff+1] = { /* note : size_t faster than U32 */ 1 /*fake*/, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, /*fake*/ 1, 1, 1, 1, 1 }; U32 offsetCode, nbBits; offsetCode = FSE_decodeSymbol(&(seqState->stateOffb), &(seqState->DStream)); /* <= maxOff, by table construction */ if (MEM_32bits()) BIT_reloadDStream(&(seqState->DStream)); nbBits = offsetCode - 1; if (offsetCode==0) nbBits = 0; /* cmove */ offset = offsetPrefix[offsetCode] + BIT_readBits(&(seqState->DStream), nbBits); if (MEM_32bits()) BIT_reloadDStream(&(seqState->DStream)); if (offsetCode==0) offset = prevOffset; /* cmove */ } /* MatchLength */ matchLength = FSE_decodeSymbol(&(seqState->stateML), &(seqState->DStream)); if (matchLength == MaxML) { const U32 add = dumps= de) dumps = de-1; /* late correction, to avoid read overflow (data is now corrupted anyway) */ } matchLength += MINMATCH; /* save result */ seq->litLength = litLength; seq->offset = offset; seq->matchLength = matchLength; seqState->dumps = dumps; } static size_t ZSTD_execSequence(BYTE* op, seq_t sequence, const BYTE** litPtr, const BYTE* const litLimit, BYTE* const base, BYTE* const oend) { static const int dec32table[] = {0, 1, 2, 1, 4, 4, 4, 4}; /* added */ static const int dec64table[] = {8, 8, 8, 7, 8, 9,10,11}; /* subtracted */ const BYTE* const ostart = op; BYTE* const oLitEnd = op + sequence.litLength; BYTE* const oMatchEnd = op + sequence.litLength + sequence.matchLength; /* risk : address space overflow (32-bits) */ BYTE* const oend_8 = oend-8; const BYTE* const litEnd = *litPtr + sequence.litLength; /* checks */ size_t const seqLength = sequence.litLength + sequence.matchLength; if (seqLength > (size_t)(oend - op)) return ERROR(dstSize_tooSmall); if (sequence.litLength > (size_t)(litLimit - *litPtr)) return ERROR(corruption_detected); /* Now we know there are no overflow in literal nor match lengths, can use pointer checks */ if (oLitEnd > oend_8) return ERROR(dstSize_tooSmall); if (sequence.offset > (U32)(oLitEnd - base)) return ERROR(corruption_detected); if (oMatchEnd > oend) return ERROR(dstSize_tooSmall); /* overwrite beyond dst buffer */ if (litEnd > litLimit) return ERROR(corruption_detected); /* overRead beyond lit buffer */ /* copy Literals */ ZSTD_wildcopy(op, *litPtr, (ptrdiff_t)sequence.litLength); /* note : oLitEnd <= oend-8 : no risk of overwrite beyond oend */ op = oLitEnd; *litPtr = litEnd; /* update for next sequence */ /* copy Match */ { const BYTE* match = op - sequence.offset; /* check */ if (sequence.offset > (size_t)op) return ERROR(corruption_detected); /* address space overflow test (this test seems kept by clang optimizer) */ //if (match > op) return ERROR(corruption_detected); /* address space overflow test (is clang optimizer removing this test ?) */ if (match < base) return ERROR(corruption_detected); /* close range match, overlap */ if (sequence.offset < 8) { const int dec64 = dec64table[sequence.offset]; op[0] = match[0]; op[1] = match[1]; op[2] = match[2]; op[3] = match[3]; match += dec32table[sequence.offset]; ZSTD_copy4(op+4, match); match -= dec64; } else { ZSTD_copy8(op, match); } op += 8; match += 8; if (oMatchEnd > oend-(16-MINMATCH)) { if (op < oend_8) { ZSTD_wildcopy(op, match, oend_8 - op); match += oend_8 - op; op = oend_8; } while (op < oMatchEnd) *op++ = *match++; } else { ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8); /* works even if matchLength < 8 */ } } return oMatchEnd - ostart; } static size_t ZSTD_decompressSequences( void* ctx, void* dst, size_t maxDstSize, const void* seqStart, size_t seqSize) { ZSTD_DCtx* dctx = (ZSTD_DCtx*)ctx; const BYTE* ip = (const BYTE*)seqStart; const BYTE* const iend = ip + seqSize; BYTE* const ostart = (BYTE* const)dst; BYTE* op = ostart; BYTE* const oend = ostart + maxDstSize; size_t errorCode, dumpsLength; const BYTE* litPtr = dctx->litPtr; const BYTE* const litEnd = litPtr + dctx->litSize; int nbSeq; const BYTE* dumps; U32* DTableLL = dctx->LLTable; U32* DTableML = dctx->MLTable; U32* DTableOffb = dctx->OffTable; BYTE* const base = (BYTE*) (dctx->base); /* Build Decoding Tables */ errorCode = ZSTD_decodeSeqHeaders(&nbSeq, &dumps, &dumpsLength, DTableLL, DTableML, DTableOffb, ip, iend-ip); if (ZSTD_isError(errorCode)) return errorCode; ip += errorCode; /* Regen sequences */ { seq_t sequence; seqState_t seqState; memset(&sequence, 0, sizeof(sequence)); seqState.dumps = dumps; seqState.dumpsEnd = dumps + dumpsLength; seqState.prevOffset = sequence.offset = 4; errorCode = BIT_initDStream(&(seqState.DStream), ip, iend-ip); if (ERR_isError(errorCode)) return ERROR(corruption_detected); FSE_initDState(&(seqState.stateLL), &(seqState.DStream), DTableLL); FSE_initDState(&(seqState.stateOffb), &(seqState.DStream), DTableOffb); FSE_initDState(&(seqState.stateML), &(seqState.DStream), DTableML); for ( ; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && (nbSeq>0) ; ) { size_t oneSeqSize; nbSeq--; ZSTD_decodeSequence(&sequence, &seqState); oneSeqSize = ZSTD_execSequence(op, sequence, &litPtr, litEnd, base, oend); if (ZSTD_isError(oneSeqSize)) return oneSeqSize; op += oneSeqSize; } /* check if reached exact end */ if ( !BIT_endOfDStream(&(seqState.DStream)) ) return ERROR(corruption_detected); /* requested too much : data is corrupted */ if (nbSeq<0) return ERROR(corruption_detected); /* requested too many sequences : data is corrupted */ /* last literal segment */ { size_t lastLLSize = litEnd - litPtr; if (litPtr > litEnd) return ERROR(corruption_detected); if (op+lastLLSize > oend) return ERROR(dstSize_tooSmall); if (lastLLSize > 0) { if (op != litPtr) memmove(op, litPtr, lastLLSize); op += lastLLSize; } } } return op-ostart; } static size_t ZSTD_decompressBlock( void* ctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize) { /* blockType == blockCompressed */ const BYTE* ip = (const BYTE*)src; /* Decode literals sub-block */ size_t litCSize = ZSTD_decodeLiteralsBlock(ctx, src, srcSize); if (ZSTD_isError(litCSize)) return litCSize; ip += litCSize; srcSize -= litCSize; return ZSTD_decompressSequences(ctx, dst, maxDstSize, ip, srcSize); } static size_t ZSTD_decompressDCtx(void* ctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize) { const BYTE* ip = (const BYTE*)src; const BYTE* iend = ip + srcSize; BYTE* const ostart = (BYTE* const)dst; BYTE* op = ostart; BYTE* const oend = ostart + maxDstSize; size_t remainingSize = srcSize; U32 magicNumber; blockProperties_t blockProperties; /* Frame Header */ if (srcSize < ZSTD_frameHeaderSize+ZSTD_blockHeaderSize) return ERROR(srcSize_wrong); magicNumber = MEM_readLE32(src); if (magicNumber != ZSTD_magicNumber) return ERROR(prefix_unknown); ip += ZSTD_frameHeaderSize; remainingSize -= ZSTD_frameHeaderSize; /* Loop on each block */ while (1) { size_t decodedSize=0; size_t cBlockSize = ZSTD_getcBlockSize(ip, iend-ip, &blockProperties); if (ZSTD_isError(cBlockSize)) return cBlockSize; ip += ZSTD_blockHeaderSize; remainingSize -= ZSTD_blockHeaderSize; if (cBlockSize > remainingSize) return ERROR(srcSize_wrong); switch(blockProperties.blockType) { case bt_compressed: decodedSize = ZSTD_decompressBlock(ctx, op, oend-op, ip, cBlockSize); break; case bt_raw : decodedSize = ZSTD_copyUncompressedBlock(op, oend-op, ip, cBlockSize); break; case bt_rle : return ERROR(GENERIC); /* not yet supported */ break; case bt_end : /* end of frame */ if (remainingSize) return ERROR(srcSize_wrong); break; default: return ERROR(GENERIC); /* impossible */ } if (cBlockSize == 0) break; /* bt_end */ if (ZSTD_isError(decodedSize)) return decodedSize; op += decodedSize; ip += cBlockSize; remainingSize -= cBlockSize; } return op-ostart; } static size_t ZSTD_decompress(void* dst, size_t maxDstSize, const void* src, size_t srcSize) { ZSTD_DCtx ctx; ctx.base = dst; return ZSTD_decompressDCtx(&ctx, dst, maxDstSize, src, srcSize); } /* ZSTD_errorFrameSizeInfoLegacy() : assumes `cSize` and `dBound` are _not_ NULL */ MEM_STATIC void ZSTD_errorFrameSizeInfoLegacy(size_t* cSize, unsigned long long* dBound, size_t ret) { *cSize = ret; *dBound = ZSTD_CONTENTSIZE_ERROR; } void ZSTDv03_findFrameSizeInfoLegacy(const void *src, size_t srcSize, size_t* cSize, unsigned long long* dBound) { const BYTE* ip = (const BYTE*)src; size_t remainingSize = srcSize; size_t nbBlocks = 0; U32 magicNumber; blockProperties_t blockProperties; /* Frame Header */ if (srcSize < ZSTD_frameHeaderSize+ZSTD_blockHeaderSize) { ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong)); return; } magicNumber = MEM_readLE32(src); if (magicNumber != ZSTD_magicNumber) { ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(prefix_unknown)); return; } ip += ZSTD_frameHeaderSize; remainingSize -= ZSTD_frameHeaderSize; /* Loop on each block */ while (1) { size_t cBlockSize = ZSTD_getcBlockSize(ip, remainingSize, &blockProperties); if (ZSTD_isError(cBlockSize)) { ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, cBlockSize); return; } ip += ZSTD_blockHeaderSize; remainingSize -= ZSTD_blockHeaderSize; if (cBlockSize > remainingSize) { ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong)); return; } if (cBlockSize == 0) break; /* bt_end */ ip += cBlockSize; remainingSize -= cBlockSize; nbBlocks++; } *cSize = ip - (const BYTE*)src; *dBound = nbBlocks * BLOCKSIZE; } /******************************* * Streaming Decompression API *******************************/ static size_t ZSTD_resetDCtx(ZSTD_DCtx* dctx) { dctx->expected = ZSTD_frameHeaderSize; dctx->phase = 0; dctx->previousDstEnd = NULL; dctx->base = NULL; return 0; } static ZSTD_DCtx* ZSTD_createDCtx(void) { ZSTD_DCtx* dctx = (ZSTD_DCtx*)malloc(sizeof(ZSTD_DCtx)); if (dctx==NULL) return NULL; ZSTD_resetDCtx(dctx); return dctx; } static size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx) { free(dctx); return 0; } static size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx) { return dctx->expected; } static size_t ZSTD_decompressContinue(ZSTD_DCtx* ctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize) { /* Sanity check */ if (srcSize != ctx->expected) return ERROR(srcSize_wrong); if (dst != ctx->previousDstEnd) /* not contiguous */ ctx->base = dst; /* Decompress : frame header */ if (ctx->phase == 0) { /* Check frame magic header */ U32 magicNumber = MEM_readLE32(src); if (magicNumber != ZSTD_magicNumber) return ERROR(prefix_unknown); ctx->phase = 1; ctx->expected = ZSTD_blockHeaderSize; return 0; } /* Decompress : block header */ if (ctx->phase == 1) { blockProperties_t bp; size_t blockSize = ZSTD_getcBlockSize(src, ZSTD_blockHeaderSize, &bp); if (ZSTD_isError(blockSize)) return blockSize; if (bp.blockType == bt_end) { ctx->expected = 0; ctx->phase = 0; } else { ctx->expected = blockSize; ctx->bType = bp.blockType; ctx->phase = 2; } return 0; } /* Decompress : block content */ { size_t rSize; switch(ctx->bType) { case bt_compressed: rSize = ZSTD_decompressBlock(ctx, dst, maxDstSize, src, srcSize); break; case bt_raw : rSize = ZSTD_copyUncompressedBlock(dst, maxDstSize, src, srcSize); break; case bt_rle : return ERROR(GENERIC); /* not yet handled */ break; case bt_end : /* should never happen (filtered at phase 1) */ rSize = 0; break; default: return ERROR(GENERIC); } ctx->phase = 1; ctx->expected = ZSTD_blockHeaderSize; ctx->previousDstEnd = (void*)( ((char*)dst) + rSize); return rSize; } } /* wrapper layer */ unsigned ZSTDv03_isError(size_t code) { return ZSTD_isError(code); } size_t ZSTDv03_decompress( void* dst, size_t maxOriginalSize, const void* src, size_t compressedSize) { return ZSTD_decompress(dst, maxOriginalSize, src, compressedSize); } ZSTDv03_Dctx* ZSTDv03_createDCtx(void) { return (ZSTDv03_Dctx*)ZSTD_createDCtx(); } size_t ZSTDv03_freeDCtx(ZSTDv03_Dctx* dctx) { return ZSTD_freeDCtx((ZSTD_DCtx*)dctx); } size_t ZSTDv03_resetDCtx(ZSTDv03_Dctx* dctx) { return ZSTD_resetDCtx((ZSTD_DCtx*)dctx); } size_t ZSTDv03_nextSrcSizeToDecompress(ZSTDv03_Dctx* dctx) { return ZSTD_nextSrcSizeToDecompress((ZSTD_DCtx*)dctx); } size_t ZSTDv03_decompressContinue(ZSTDv03_Dctx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize) { return ZSTD_decompressContinue((ZSTD_DCtx*)dctx, dst, maxDstSize, src, srcSize); } zstd-1.5.5.1/zstd/lib/legacy/zstd_legacy.h0000664000175000017500000003375614371536763021201 0ustar sergeysergey00000000000000/* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under both the BSD-style license (found in the * LICENSE file in the root directory of this source tree) and the GPLv2 (found * in the COPYING file in the root directory of this source tree). * You may select, at your option, one of the above-listed licenses. */ #ifndef ZSTD_LEGACY_H #define ZSTD_LEGACY_H #if defined (__cplusplus) extern "C" { #endif /* ************************************* * Includes ***************************************/ #include "../common/mem.h" /* MEM_STATIC */ #include "../common/error_private.h" /* ERROR */ #include "../common/zstd_internal.h" /* ZSTD_inBuffer, ZSTD_outBuffer, ZSTD_frameSizeInfo */ #if !defined (ZSTD_LEGACY_SUPPORT) || (ZSTD_LEGACY_SUPPORT == 0) # undef ZSTD_LEGACY_SUPPORT # define ZSTD_LEGACY_SUPPORT 8 #endif #if (ZSTD_LEGACY_SUPPORT <= 1) # include "zstd_v01.h" #endif #if (ZSTD_LEGACY_SUPPORT <= 2) # include "zstd_v02.h" #endif #if (ZSTD_LEGACY_SUPPORT <= 3) # include "zstd_v03.h" #endif #if (ZSTD_LEGACY_SUPPORT <= 4) # include "zstd_v04.h" #endif #if (ZSTD_LEGACY_SUPPORT <= 5) # include "zstd_v05.h" #endif #if (ZSTD_LEGACY_SUPPORT <= 6) # include "zstd_v06.h" #endif #if (ZSTD_LEGACY_SUPPORT <= 7) # include "zstd_v07.h" #endif /** ZSTD_isLegacy() : @return : > 0 if supported by legacy decoder. 0 otherwise. return value is the version. */ MEM_STATIC unsigned ZSTD_isLegacy(const void* src, size_t srcSize) { U32 magicNumberLE; if (srcSize<4) return 0; magicNumberLE = MEM_readLE32(src); switch(magicNumberLE) { #if (ZSTD_LEGACY_SUPPORT <= 1) case ZSTDv01_magicNumberLE:return 1; #endif #if (ZSTD_LEGACY_SUPPORT <= 2) case ZSTDv02_magicNumber : return 2; #endif #if (ZSTD_LEGACY_SUPPORT <= 3) case ZSTDv03_magicNumber : return 3; #endif #if (ZSTD_LEGACY_SUPPORT <= 4) case ZSTDv04_magicNumber : return 4; #endif #if (ZSTD_LEGACY_SUPPORT <= 5) case ZSTDv05_MAGICNUMBER : return 5; #endif #if (ZSTD_LEGACY_SUPPORT <= 6) case ZSTDv06_MAGICNUMBER : return 6; #endif #if (ZSTD_LEGACY_SUPPORT <= 7) case ZSTDv07_MAGICNUMBER : return 7; #endif default : return 0; } } MEM_STATIC unsigned long long ZSTD_getDecompressedSize_legacy(const void* src, size_t srcSize) { U32 const version = ZSTD_isLegacy(src, srcSize); if (version < 5) return 0; /* no decompressed size in frame header, or not a legacy format */ #if (ZSTD_LEGACY_SUPPORT <= 5) if (version==5) { ZSTDv05_parameters fParams; size_t const frResult = ZSTDv05_getFrameParams(&fParams, src, srcSize); if (frResult != 0) return 0; return fParams.srcSize; } #endif #if (ZSTD_LEGACY_SUPPORT <= 6) if (version==6) { ZSTDv06_frameParams fParams; size_t const frResult = ZSTDv06_getFrameParams(&fParams, src, srcSize); if (frResult != 0) return 0; return fParams.frameContentSize; } #endif #if (ZSTD_LEGACY_SUPPORT <= 7) if (version==7) { ZSTDv07_frameParams fParams; size_t const frResult = ZSTDv07_getFrameParams(&fParams, src, srcSize); if (frResult != 0) return 0; return fParams.frameContentSize; } #endif return 0; /* should not be possible */ } MEM_STATIC size_t ZSTD_decompressLegacy( void* dst, size_t dstCapacity, const void* src, size_t compressedSize, const void* dict,size_t dictSize) { U32 const version = ZSTD_isLegacy(src, compressedSize); (void)dst; (void)dstCapacity; (void)dict; (void)dictSize; /* unused when ZSTD_LEGACY_SUPPORT >= 8 */ switch(version) { #if (ZSTD_LEGACY_SUPPORT <= 1) case 1 : return ZSTDv01_decompress(dst, dstCapacity, src, compressedSize); #endif #if (ZSTD_LEGACY_SUPPORT <= 2) case 2 : return ZSTDv02_decompress(dst, dstCapacity, src, compressedSize); #endif #if (ZSTD_LEGACY_SUPPORT <= 3) case 3 : return ZSTDv03_decompress(dst, dstCapacity, src, compressedSize); #endif #if (ZSTD_LEGACY_SUPPORT <= 4) case 4 : return ZSTDv04_decompress(dst, dstCapacity, src, compressedSize); #endif #if (ZSTD_LEGACY_SUPPORT <= 5) case 5 : { size_t result; ZSTDv05_DCtx* const zd = ZSTDv05_createDCtx(); if (zd==NULL) return ERROR(memory_allocation); result = ZSTDv05_decompress_usingDict(zd, dst, dstCapacity, src, compressedSize, dict, dictSize); ZSTDv05_freeDCtx(zd); return result; } #endif #if (ZSTD_LEGACY_SUPPORT <= 6) case 6 : { size_t result; ZSTDv06_DCtx* const zd = ZSTDv06_createDCtx(); if (zd==NULL) return ERROR(memory_allocation); result = ZSTDv06_decompress_usingDict(zd, dst, dstCapacity, src, compressedSize, dict, dictSize); ZSTDv06_freeDCtx(zd); return result; } #endif #if (ZSTD_LEGACY_SUPPORT <= 7) case 7 : { size_t result; ZSTDv07_DCtx* const zd = ZSTDv07_createDCtx(); if (zd==NULL) return ERROR(memory_allocation); result = ZSTDv07_decompress_usingDict(zd, dst, dstCapacity, src, compressedSize, dict, dictSize); ZSTDv07_freeDCtx(zd); return result; } #endif default : return ERROR(prefix_unknown); } } MEM_STATIC ZSTD_frameSizeInfo ZSTD_findFrameSizeInfoLegacy(const void *src, size_t srcSize) { ZSTD_frameSizeInfo frameSizeInfo; U32 const version = ZSTD_isLegacy(src, srcSize); switch(version) { #if (ZSTD_LEGACY_SUPPORT <= 1) case 1 : ZSTDv01_findFrameSizeInfoLegacy(src, srcSize, &frameSizeInfo.compressedSize, &frameSizeInfo.decompressedBound); break; #endif #if (ZSTD_LEGACY_SUPPORT <= 2) case 2 : ZSTDv02_findFrameSizeInfoLegacy(src, srcSize, &frameSizeInfo.compressedSize, &frameSizeInfo.decompressedBound); break; #endif #if (ZSTD_LEGACY_SUPPORT <= 3) case 3 : ZSTDv03_findFrameSizeInfoLegacy(src, srcSize, &frameSizeInfo.compressedSize, &frameSizeInfo.decompressedBound); break; #endif #if (ZSTD_LEGACY_SUPPORT <= 4) case 4 : ZSTDv04_findFrameSizeInfoLegacy(src, srcSize, &frameSizeInfo.compressedSize, &frameSizeInfo.decompressedBound); break; #endif #if (ZSTD_LEGACY_SUPPORT <= 5) case 5 : ZSTDv05_findFrameSizeInfoLegacy(src, srcSize, &frameSizeInfo.compressedSize, &frameSizeInfo.decompressedBound); break; #endif #if (ZSTD_LEGACY_SUPPORT <= 6) case 6 : ZSTDv06_findFrameSizeInfoLegacy(src, srcSize, &frameSizeInfo.compressedSize, &frameSizeInfo.decompressedBound); break; #endif #if (ZSTD_LEGACY_SUPPORT <= 7) case 7 : ZSTDv07_findFrameSizeInfoLegacy(src, srcSize, &frameSizeInfo.compressedSize, &frameSizeInfo.decompressedBound); break; #endif default : frameSizeInfo.compressedSize = ERROR(prefix_unknown); frameSizeInfo.decompressedBound = ZSTD_CONTENTSIZE_ERROR; break; } if (!ZSTD_isError(frameSizeInfo.compressedSize) && frameSizeInfo.compressedSize > srcSize) { frameSizeInfo.compressedSize = ERROR(srcSize_wrong); frameSizeInfo.decompressedBound = ZSTD_CONTENTSIZE_ERROR; } /* In all cases, decompressedBound == nbBlocks * ZSTD_BLOCKSIZE_MAX. * So we can compute nbBlocks without having to change every function. */ if (frameSizeInfo.decompressedBound != ZSTD_CONTENTSIZE_ERROR) { assert((frameSizeInfo.decompressedBound & (ZSTD_BLOCKSIZE_MAX - 1)) == 0); frameSizeInfo.nbBlocks = (size_t)(frameSizeInfo.decompressedBound / ZSTD_BLOCKSIZE_MAX); } return frameSizeInfo; } MEM_STATIC size_t ZSTD_findFrameCompressedSizeLegacy(const void *src, size_t srcSize) { ZSTD_frameSizeInfo frameSizeInfo = ZSTD_findFrameSizeInfoLegacy(src, srcSize); return frameSizeInfo.compressedSize; } MEM_STATIC size_t ZSTD_freeLegacyStreamContext(void* legacyContext, U32 version) { switch(version) { default : case 1 : case 2 : case 3 : (void)legacyContext; return ERROR(version_unsupported); #if (ZSTD_LEGACY_SUPPORT <= 4) case 4 : return ZBUFFv04_freeDCtx((ZBUFFv04_DCtx*)legacyContext); #endif #if (ZSTD_LEGACY_SUPPORT <= 5) case 5 : return ZBUFFv05_freeDCtx((ZBUFFv05_DCtx*)legacyContext); #endif #if (ZSTD_LEGACY_SUPPORT <= 6) case 6 : return ZBUFFv06_freeDCtx((ZBUFFv06_DCtx*)legacyContext); #endif #if (ZSTD_LEGACY_SUPPORT <= 7) case 7 : return ZBUFFv07_freeDCtx((ZBUFFv07_DCtx*)legacyContext); #endif } } MEM_STATIC size_t ZSTD_initLegacyStream(void** legacyContext, U32 prevVersion, U32 newVersion, const void* dict, size_t dictSize) { DEBUGLOG(5, "ZSTD_initLegacyStream for v0.%u", newVersion); if (prevVersion != newVersion) ZSTD_freeLegacyStreamContext(*legacyContext, prevVersion); switch(newVersion) { default : case 1 : case 2 : case 3 : (void)dict; (void)dictSize; return 0; #if (ZSTD_LEGACY_SUPPORT <= 4) case 4 : { ZBUFFv04_DCtx* dctx = (prevVersion != newVersion) ? ZBUFFv04_createDCtx() : (ZBUFFv04_DCtx*)*legacyContext; if (dctx==NULL) return ERROR(memory_allocation); ZBUFFv04_decompressInit(dctx); ZBUFFv04_decompressWithDictionary(dctx, dict, dictSize); *legacyContext = dctx; return 0; } #endif #if (ZSTD_LEGACY_SUPPORT <= 5) case 5 : { ZBUFFv05_DCtx* dctx = (prevVersion != newVersion) ? ZBUFFv05_createDCtx() : (ZBUFFv05_DCtx*)*legacyContext; if (dctx==NULL) return ERROR(memory_allocation); ZBUFFv05_decompressInitDictionary(dctx, dict, dictSize); *legacyContext = dctx; return 0; } #endif #if (ZSTD_LEGACY_SUPPORT <= 6) case 6 : { ZBUFFv06_DCtx* dctx = (prevVersion != newVersion) ? ZBUFFv06_createDCtx() : (ZBUFFv06_DCtx*)*legacyContext; if (dctx==NULL) return ERROR(memory_allocation); ZBUFFv06_decompressInitDictionary(dctx, dict, dictSize); *legacyContext = dctx; return 0; } #endif #if (ZSTD_LEGACY_SUPPORT <= 7) case 7 : { ZBUFFv07_DCtx* dctx = (prevVersion != newVersion) ? ZBUFFv07_createDCtx() : (ZBUFFv07_DCtx*)*legacyContext; if (dctx==NULL) return ERROR(memory_allocation); ZBUFFv07_decompressInitDictionary(dctx, dict, dictSize); *legacyContext = dctx; return 0; } #endif } } MEM_STATIC size_t ZSTD_decompressLegacyStream(void* legacyContext, U32 version, ZSTD_outBuffer* output, ZSTD_inBuffer* input) { DEBUGLOG(5, "ZSTD_decompressLegacyStream for v0.%u", version); switch(version) { default : case 1 : case 2 : case 3 : (void)legacyContext; (void)output; (void)input; return ERROR(version_unsupported); #if (ZSTD_LEGACY_SUPPORT <= 4) case 4 : { ZBUFFv04_DCtx* dctx = (ZBUFFv04_DCtx*) legacyContext; const void* src = (const char*)input->src + input->pos; size_t readSize = input->size - input->pos; void* dst = (char*)output->dst + output->pos; size_t decodedSize = output->size - output->pos; size_t const hintSize = ZBUFFv04_decompressContinue(dctx, dst, &decodedSize, src, &readSize); output->pos += decodedSize; input->pos += readSize; return hintSize; } #endif #if (ZSTD_LEGACY_SUPPORT <= 5) case 5 : { ZBUFFv05_DCtx* dctx = (ZBUFFv05_DCtx*) legacyContext; const void* src = (const char*)input->src + input->pos; size_t readSize = input->size - input->pos; void* dst = (char*)output->dst + output->pos; size_t decodedSize = output->size - output->pos; size_t const hintSize = ZBUFFv05_decompressContinue(dctx, dst, &decodedSize, src, &readSize); output->pos += decodedSize; input->pos += readSize; return hintSize; } #endif #if (ZSTD_LEGACY_SUPPORT <= 6) case 6 : { ZBUFFv06_DCtx* dctx = (ZBUFFv06_DCtx*) legacyContext; const void* src = (const char*)input->src + input->pos; size_t readSize = input->size - input->pos; void* dst = (char*)output->dst + output->pos; size_t decodedSize = output->size - output->pos; size_t const hintSize = ZBUFFv06_decompressContinue(dctx, dst, &decodedSize, src, &readSize); output->pos += decodedSize; input->pos += readSize; return hintSize; } #endif #if (ZSTD_LEGACY_SUPPORT <= 7) case 7 : { ZBUFFv07_DCtx* dctx = (ZBUFFv07_DCtx*) legacyContext; const void* src = (const char*)input->src + input->pos; size_t readSize = input->size - input->pos; void* dst = (char*)output->dst + output->pos; size_t decodedSize = output->size - output->pos; size_t const hintSize = ZBUFFv07_decompressContinue(dctx, dst, &decodedSize, src, &readSize); output->pos += decodedSize; input->pos += readSize; return hintSize; } #endif } } #if defined (__cplusplus) } #endif #endif /* ZSTD_LEGACY_H */ zstd-1.5.5.1/zstd/lib/legacy/zstd_v02.c0000664000175000017500000036530714371536763020337 0ustar sergeysergey00000000000000/* * Copyright (c) Yann Collet, Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under both the BSD-style license (found in the * LICENSE file in the root directory of this source tree) and the GPLv2 (found * in the COPYING file in the root directory of this source tree). * You may select, at your option, one of the above-listed licenses. */ #include /* size_t, ptrdiff_t */ #include "zstd_v02.h" #include "../common/error_private.h" /****************************************** * Compiler-specific ******************************************/ #if defined(_MSC_VER) /* Visual Studio */ # include /* _byteswap_ulong */ # include /* _byteswap_* */ #endif /* ****************************************************************** mem.h low-level memory access routines Copyright (C) 2013-2015, Yann Collet. BSD 2-Clause License (https://opensource.org/licenses/bsd-license.php) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You can contact the author at : - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy - Public forum : https://groups.google.com/forum/#!forum/lz4c ****************************************************************** */ #ifndef MEM_H_MODULE #define MEM_H_MODULE #if defined (__cplusplus) extern "C" { #endif /****************************************** * Includes ******************************************/ #include /* size_t, ptrdiff_t */ #include /* memcpy */ /****************************************** * Compiler-specific ******************************************/ #if defined(__GNUC__) # define MEM_STATIC static __attribute__((unused)) #elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) # define MEM_STATIC static inline #elif defined(_MSC_VER) # define MEM_STATIC static __inline #else # define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */ #endif /**************************************************************** * Basic Types *****************************************************************/ #if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) # if defined(_AIX) # include # else # include /* intptr_t */ # endif typedef uint8_t BYTE; typedef uint16_t U16; typedef int16_t S16; typedef uint32_t U32; typedef int32_t S32; typedef uint64_t U64; typedef int64_t S64; #else typedef unsigned char BYTE; typedef unsigned short U16; typedef signed short S16; typedef unsigned int U32; typedef signed int S32; typedef unsigned long long U64; typedef signed long long S64; #endif /**************************************************************** * Memory I/O *****************************************************************/ MEM_STATIC unsigned MEM_32bits(void) { return sizeof(void*)==4; } MEM_STATIC unsigned MEM_64bits(void) { return sizeof(void*)==8; } MEM_STATIC unsigned MEM_isLittleEndian(void) { const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */ return one.c[0]; } MEM_STATIC U16 MEM_read16(const void* memPtr) { U16 val; memcpy(&val, memPtr, sizeof(val)); return val; } MEM_STATIC U32 MEM_read32(const void* memPtr) { U32 val; memcpy(&val, memPtr, sizeof(val)); return val; } MEM_STATIC U64 MEM_read64(const void* memPtr) { U64 val; memcpy(&val, memPtr, sizeof(val)); return val; } MEM_STATIC void MEM_write16(void* memPtr, U16 value) { memcpy(memPtr, &value, sizeof(value)); } MEM_STATIC U16 MEM_readLE16(const void* memPtr) { if (MEM_isLittleEndian()) return MEM_read16(memPtr); else { const BYTE* p = (const BYTE*)memPtr; return (U16)(p[0] + (p[1]<<8)); } } MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val) { if (MEM_isLittleEndian()) { MEM_write16(memPtr, val); } else { BYTE* p = (BYTE*)memPtr; p[0] = (BYTE)val; p[1] = (BYTE)(val>>8); } } MEM_STATIC U32 MEM_readLE24(const void* memPtr) { return MEM_readLE16(memPtr) + (((const BYTE*)memPtr)[2] << 16); } MEM_STATIC U32 MEM_readLE32(const void* memPtr) { if (MEM_isLittleEndian()) return MEM_read32(memPtr); else { const BYTE* p = (const BYTE*)memPtr; return (U32)((U32)p[0] + ((U32)p[1]<<8) + ((U32)p[2]<<16) + ((U32)p[3]<<24)); } } MEM_STATIC U64 MEM_readLE64(const void* memPtr) { if (MEM_isLittleEndian()) return MEM_read64(memPtr); else { const BYTE* p = (const BYTE*)memPtr; return (U64)((U64)p[0] + ((U64)p[1]<<8) + ((U64)p[2]<<16) + ((U64)p[3]<<24) + ((U64)p[4]<<32) + ((U64)p[5]<<40) + ((U64)p[6]<<48) + ((U64)p[7]<<56)); } } MEM_STATIC size_t MEM_readLEST(const void* memPtr) { if (MEM_32bits()) return (size_t)MEM_readLE32(memPtr); else return (size_t)MEM_readLE64(memPtr); } #if defined (__cplusplus) } #endif #endif /* MEM_H_MODULE */ /* ****************************************************************** bitstream Part of NewGen Entropy library header file (to include) Copyright (C) 2013-2015, Yann Collet. BSD 2-Clause License (https://opensource.org/licenses/bsd-license.php) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You can contact the author at : - Source repository : https://github.com/Cyan4973/FiniteStateEntropy - Public forum : https://groups.google.com/forum/#!forum/lz4c ****************************************************************** */ #ifndef BITSTREAM_H_MODULE #define BITSTREAM_H_MODULE #if defined (__cplusplus) extern "C" { #endif /* * This API consists of small unitary functions, which highly benefit from being inlined. * Since link-time-optimization is not available for all compilers, * these functions are defined into a .h to be included. */ /********************************************** * bitStream decompression API (read backward) **********************************************/ typedef struct { size_t bitContainer; unsigned bitsConsumed; const char* ptr; const char* start; } BIT_DStream_t; typedef enum { BIT_DStream_unfinished = 0, BIT_DStream_endOfBuffer = 1, BIT_DStream_completed = 2, BIT_DStream_overflow = 3 } BIT_DStream_status; /* result of BIT_reloadDStream() */ /* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */ MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize); MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits); MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD); MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* bitD); /****************************************** * unsafe API ******************************************/ MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits); /* faster, but works only if nbBits >= 1 */ /**************************************************************** * Helper functions ****************************************************************/ MEM_STATIC unsigned BIT_highbit32 (U32 val) { # if defined(_MSC_VER) /* Visual */ unsigned long r; return _BitScanReverse(&r, val) ? (unsigned)r : 0; # elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */ return __builtin_clz (val) ^ 31; # else /* Software version */ static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 }; U32 v = val; unsigned r; v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; r = DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27]; return r; # endif } /********************************************************** * bitStream decoding **********************************************************/ /*!BIT_initDStream * Initialize a BIT_DStream_t. * @bitD : a pointer to an already allocated BIT_DStream_t structure * @srcBuffer must point at the beginning of a bitStream * @srcSize must be the exact size of the bitStream * @result : size of stream (== srcSize) or an errorCode if a problem is detected */ MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize) { if (srcSize < 1) { memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); } if (srcSize >= sizeof(size_t)) /* normal case */ { U32 contain32; bitD->start = (const char*)srcBuffer; bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(size_t); bitD->bitContainer = MEM_readLEST(bitD->ptr); contain32 = ((const BYTE*)srcBuffer)[srcSize-1]; if (contain32 == 0) return ERROR(GENERIC); /* endMark not present */ bitD->bitsConsumed = 8 - BIT_highbit32(contain32); } else { U32 contain32; bitD->start = (const char*)srcBuffer; bitD->ptr = bitD->start; bitD->bitContainer = *(const BYTE*)(bitD->start); switch(srcSize) { case 7: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[6]) << (sizeof(size_t)*8 - 16); /* fallthrough */ case 6: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[5]) << (sizeof(size_t)*8 - 24); /* fallthrough */ case 5: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[4]) << (sizeof(size_t)*8 - 32); /* fallthrough */ case 4: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[3]) << 24; /* fallthrough */ case 3: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[2]) << 16; /* fallthrough */ case 2: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[1]) << 8; /* fallthrough */ default:; } contain32 = ((const BYTE*)srcBuffer)[srcSize-1]; if (contain32 == 0) return ERROR(GENERIC); /* endMark not present */ bitD->bitsConsumed = 8 - BIT_highbit32(contain32); bitD->bitsConsumed += (U32)(sizeof(size_t) - srcSize)*8; } return srcSize; } MEM_STATIC size_t BIT_lookBits(BIT_DStream_t* bitD, U32 nbBits) { const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1; return ((bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> 1) >> ((bitMask-nbBits) & bitMask); } /*! BIT_lookBitsFast : * unsafe version; only works if nbBits >= 1 */ MEM_STATIC size_t BIT_lookBitsFast(BIT_DStream_t* bitD, U32 nbBits) { const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1; return (bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> (((bitMask+1)-nbBits) & bitMask); } MEM_STATIC void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits) { bitD->bitsConsumed += nbBits; } MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, U32 nbBits) { size_t value = BIT_lookBits(bitD, nbBits); BIT_skipBits(bitD, nbBits); return value; } /*!BIT_readBitsFast : * unsafe version; only works if nbBits >= 1 */ MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, U32 nbBits) { size_t value = BIT_lookBitsFast(bitD, nbBits); BIT_skipBits(bitD, nbBits); return value; } MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD) { if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* should never happen */ return BIT_DStream_overflow; if (bitD->ptr >= bitD->start + sizeof(bitD->bitContainer)) { bitD->ptr -= bitD->bitsConsumed >> 3; bitD->bitsConsumed &= 7; bitD->bitContainer = MEM_readLEST(bitD->ptr); return BIT_DStream_unfinished; } if (bitD->ptr == bitD->start) { if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BIT_DStream_endOfBuffer; return BIT_DStream_completed; } { U32 nbBytes = bitD->bitsConsumed >> 3; BIT_DStream_status result = BIT_DStream_unfinished; if (bitD->ptr - nbBytes < bitD->start) { nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */ result = BIT_DStream_endOfBuffer; } bitD->ptr -= nbBytes; bitD->bitsConsumed -= nbBytes*8; bitD->bitContainer = MEM_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD) */ return result; } } /*! BIT_endOfDStream * @return Tells if DStream has reached its exact end */ MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* DStream) { return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8)); } #if defined (__cplusplus) } #endif #endif /* BITSTREAM_H_MODULE */ /* ****************************************************************** Error codes and messages Copyright (C) 2013-2015, Yann Collet BSD 2-Clause License (https://opensource.org/licenses/bsd-license.php) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You can contact the author at : - Source repository : https://github.com/Cyan4973/FiniteStateEntropy - Public forum : https://groups.google.com/forum/#!forum/lz4c ****************************************************************** */ #ifndef ERROR_H_MODULE #define ERROR_H_MODULE #if defined (__cplusplus) extern "C" { #endif /****************************************** * Compiler-specific ******************************************/ #if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) # define ERR_STATIC static inline #elif defined(_MSC_VER) # define ERR_STATIC static __inline #elif defined(__GNUC__) # define ERR_STATIC static __attribute__((unused)) #else # define ERR_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */ #endif /****************************************** * Error Management ******************************************/ #define PREFIX(name) ZSTD_error_##name #define ERROR(name) (size_t)-PREFIX(name) #define ERROR_LIST(ITEM) \ ITEM(PREFIX(No_Error)) ITEM(PREFIX(GENERIC)) \ ITEM(PREFIX(dstSize_tooSmall)) ITEM(PREFIX(srcSize_wrong)) \ ITEM(PREFIX(prefix_unknown)) ITEM(PREFIX(corruption_detected)) \ ITEM(PREFIX(tableLog_tooLarge)) ITEM(PREFIX(maxSymbolValue_tooLarge)) ITEM(PREFIX(maxSymbolValue_tooSmall)) \ ITEM(PREFIX(maxCode)) #define ERROR_GENERATE_ENUM(ENUM) ENUM, typedef enum { ERROR_LIST(ERROR_GENERATE_ENUM) } ERR_codes; /* enum is exposed, to detect & handle specific errors; compare function result to -enum value */ #define ERROR_CONVERTTOSTRING(STRING) #STRING, #define ERROR_GENERATE_STRING(EXPR) ERROR_CONVERTTOSTRING(EXPR) static const char* ERR_strings[] = { ERROR_LIST(ERROR_GENERATE_STRING) }; ERR_STATIC unsigned ERR_isError(size_t code) { return (code > ERROR(maxCode)); } ERR_STATIC const char* ERR_getErrorName(size_t code) { static const char* codeError = "Unspecified error code"; if (ERR_isError(code)) return ERR_strings[-(int)(code)]; return codeError; } #if defined (__cplusplus) } #endif #endif /* ERROR_H_MODULE */ /* Constructor and Destructor of type FSE_CTable Note that its size depends on 'tableLog' and 'maxSymbolValue' */ typedef unsigned FSE_CTable; /* don't allocate that. It's just a way to be more restrictive than void* */ typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */ /* ****************************************************************** FSE : Finite State Entropy coder header file for static linking (only) Copyright (C) 2013-2015, Yann Collet BSD 2-Clause License (https://opensource.org/licenses/bsd-license.php) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You can contact the author at : - Source repository : https://github.com/Cyan4973/FiniteStateEntropy - Public forum : https://groups.google.com/forum/#!forum/lz4c ****************************************************************** */ #if defined (__cplusplus) extern "C" { #endif /****************************************** * Static allocation ******************************************/ /* FSE buffer bounds */ #define FSE_NCOUNTBOUND 512 #define FSE_BLOCKBOUND(size) (size + (size>>7)) #define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */ /* You can statically allocate FSE CTable/DTable as a table of unsigned using below macro */ #define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1<<(maxTableLog-1)) + ((maxSymbolValue+1)*2)) #define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<= 1 (otherwise, result will be corrupted) */ /****************************************** * Implementation of inline functions ******************************************/ /* decompression */ typedef struct { U16 tableLog; U16 fastMode; } FSE_DTableHeader; /* sizeof U32 */ typedef struct { unsigned short newState; unsigned char symbol; unsigned char nbBits; } FSE_decode_t; /* size == U32 */ MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt) { FSE_DTableHeader DTableH; memcpy(&DTableH, dt, sizeof(DTableH)); DStatePtr->state = BIT_readBits(bitD, DTableH.tableLog); BIT_reloadDStream(bitD); DStatePtr->table = dt + 1; } MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) { const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; const U32 nbBits = DInfo.nbBits; BYTE symbol = DInfo.symbol; size_t lowBits = BIT_readBits(bitD, nbBits); DStatePtr->state = DInfo.newState + lowBits; return symbol; } MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) { const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; const U32 nbBits = DInfo.nbBits; BYTE symbol = DInfo.symbol; size_t lowBits = BIT_readBitsFast(bitD, nbBits); DStatePtr->state = DInfo.newState + lowBits; return symbol; } MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr) { return DStatePtr->state == 0; } #if defined (__cplusplus) } #endif /* ****************************************************************** Huff0 : Huffman coder, part of New Generation Entropy library header file for static linking (only) Copyright (C) 2013-2015, Yann Collet BSD 2-Clause License (https://opensource.org/licenses/bsd-license.php) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You can contact the author at : - Source repository : https://github.com/Cyan4973/FiniteStateEntropy - Public forum : https://groups.google.com/forum/#!forum/lz4c ****************************************************************** */ #if defined (__cplusplus) extern "C" { #endif /****************************************** * Static allocation macros ******************************************/ /* Huff0 buffer bounds */ #define HUF_CTABLEBOUND 129 #define HUF_BLOCKBOUND(size) (size + (size>>8) + 8) /* only true if incompressible pre-filtered with fast heuristic */ #define HUF_COMPRESSBOUND(size) (HUF_CTABLEBOUND + HUF_BLOCKBOUND(size)) /* Macro version, useful for static allocation */ /* static allocation of Huff0's DTable */ #define HUF_DTABLE_SIZE(maxTableLog) (1 + (1< /* size_t */ /* ************************************* * Version ***************************************/ #define ZSTD_VERSION_MAJOR 0 /* for breaking interface changes */ #define ZSTD_VERSION_MINOR 2 /* for new (non-breaking) interface capabilities */ #define ZSTD_VERSION_RELEASE 2 /* for tweaks, bug-fixes, or development */ #define ZSTD_VERSION_NUMBER (ZSTD_VERSION_MAJOR *100*100 + ZSTD_VERSION_MINOR *100 + ZSTD_VERSION_RELEASE) /* ************************************* * Advanced functions ***************************************/ typedef struct ZSTD_CCtx_s ZSTD_CCtx; /* incomplete type */ #if defined (__cplusplus) } #endif /* zstd - standard compression library Header File for static linking only Copyright (C) 2014-2015, Yann Collet. BSD 2-Clause License (https://opensource.org/licenses/bsd-license.php) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You can contact the author at : - zstd source repository : https://github.com/Cyan4973/zstd - ztsd public forum : https://groups.google.com/forum/#!forum/lz4c */ /* The objects defined into this file should be considered experimental. * They are not labelled stable, as their prototype may change in the future. * You can use them for tests, provide feedback, or if you can endure risk of future changes. */ #if defined (__cplusplus) extern "C" { #endif /* ************************************* * Streaming functions ***************************************/ typedef struct ZSTD_DCtx_s ZSTD_DCtx; /* Use above functions alternatively. ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue(). ZSTD_decompressContinue() will use previous data blocks to improve compression if they are located prior to current block. Result is the number of bytes regenerated within 'dst'. It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header. */ /* ************************************* * Prefix - version detection ***************************************/ #define ZSTD_magicNumber 0xFD2FB522 /* v0.2 (current)*/ #if defined (__cplusplus) } #endif /* ****************************************************************** FSE : Finite State Entropy coder Copyright (C) 2013-2015, Yann Collet. BSD 2-Clause License (https://opensource.org/licenses/bsd-license.php) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You can contact the author at : - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy - Public forum : https://groups.google.com/forum/#!forum/lz4c ****************************************************************** */ #ifndef FSE_COMMONDEFS_ONLY /**************************************************************** * Tuning parameters ****************************************************************/ /* MEMORY_USAGE : * Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.) * Increasing memory usage improves compression ratio * Reduced memory usage can improve speed, due to cache effect * Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */ #define FSE_MAX_MEMORY_USAGE 14 #define FSE_DEFAULT_MEMORY_USAGE 13 /* FSE_MAX_SYMBOL_VALUE : * Maximum symbol value authorized. * Required for proper stack allocation */ #define FSE_MAX_SYMBOL_VALUE 255 /**************************************************************** * template functions type & suffix ****************************************************************/ #define FSE_FUNCTION_TYPE BYTE #define FSE_FUNCTION_EXTENSION /**************************************************************** * Byte symbol type ****************************************************************/ #endif /* !FSE_COMMONDEFS_ONLY */ /**************************************************************** * Compiler specifics ****************************************************************/ #ifdef _MSC_VER /* Visual Studio */ # define FORCE_INLINE static __forceinline # include /* For Visual 2005 */ # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ # pragma warning(disable : 4214) /* disable: C4214: non-int bitfields */ #else # if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */ # ifdef __GNUC__ # define FORCE_INLINE static inline __attribute__((always_inline)) # else # define FORCE_INLINE static inline # endif # else # define FORCE_INLINE static # endif /* __STDC_VERSION__ */ #endif /**************************************************************** * Includes ****************************************************************/ #include /* malloc, free, qsort */ #include /* memcpy, memset */ #include /* printf (debug) */ /**************************************************************** * Constants *****************************************************************/ #define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2) #define FSE_MAX_TABLESIZE (1U< FSE_TABLELOG_ABSOLUTE_MAX #error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported" #endif /**************************************************************** * Error Management ****************************************************************/ #define FSE_STATIC_ASSERT(c) { enum { FSE_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */ /**************************************************************** * Complex types ****************************************************************/ typedef U32 DTable_max_t[FSE_DTABLE_SIZE_U32(FSE_MAX_TABLELOG)]; /**************************************************************** * Templates ****************************************************************/ /* designed to be included for type-specific functions (template emulation in C) Objective is to write these functions only once, for improved maintenance */ /* safety checks */ #ifndef FSE_FUNCTION_EXTENSION # error "FSE_FUNCTION_EXTENSION must be defined" #endif #ifndef FSE_FUNCTION_TYPE # error "FSE_FUNCTION_TYPE must be defined" #endif /* Function names */ #define FSE_CAT(X,Y) X##Y #define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y) #define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y) /* Function templates */ #define FSE_DECODE_TYPE FSE_decode_t static U32 FSE_tableStep(U32 tableSize) { return (tableSize>>1) + (tableSize>>3) + 3; } static size_t FSE_buildDTable (FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog) { void* ptr = dt+1; FSE_DECODE_TYPE* const tableDecode = (FSE_DECODE_TYPE*)ptr; FSE_DTableHeader DTableH; const U32 tableSize = 1 << tableLog; const U32 tableMask = tableSize-1; const U32 step = FSE_tableStep(tableSize); U16 symbolNext[FSE_MAX_SYMBOL_VALUE+1]; U32 position = 0; U32 highThreshold = tableSize-1; const S16 largeLimit= (S16)(1 << (tableLog-1)); U32 noLarge = 1; U32 s; /* Sanity Checks */ if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge); if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge); /* Init, lay down lowprob symbols */ DTableH.tableLog = (U16)tableLog; for (s=0; s<=maxSymbolValue; s++) { if (normalizedCounter[s]==-1) { tableDecode[highThreshold--].symbol = (FSE_FUNCTION_TYPE)s; symbolNext[s] = 1; } else { if (normalizedCounter[s] >= largeLimit) noLarge=0; symbolNext[s] = normalizedCounter[s]; } } /* Spread symbols */ for (s=0; s<=maxSymbolValue; s++) { int i; for (i=0; i highThreshold) position = (position + step) & tableMask; /* lowprob area */ } } if (position!=0) return ERROR(GENERIC); /* position must reach all cells once, otherwise normalizedCounter is incorrect */ /* Build Decoding table */ { U32 i; for (i=0; i FSE_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge); bitStream >>= 4; bitCount = 4; *tableLogPtr = nbBits; remaining = (1<1) && (charnum<=*maxSVPtr)) { if (previous0) { unsigned n0 = charnum; while ((bitStream & 0xFFFF) == 0xFFFF) { n0+=24; if (ip < iend-5) { ip+=2; bitStream = MEM_readLE32(ip) >> bitCount; } else { bitStream >>= 16; bitCount+=16; } } while ((bitStream & 3) == 3) { n0+=3; bitStream>>=2; bitCount+=2; } n0 += bitStream & 3; bitCount += 2; if (n0 > *maxSVPtr) return ERROR(maxSymbolValue_tooSmall); while (charnum < n0) normalizedCounter[charnum++] = 0; if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) { ip += bitCount>>3; bitCount &= 7; bitStream = MEM_readLE32(ip) >> bitCount; } else bitStream >>= 2; } { const short max = (short)((2*threshold-1)-remaining); short count; if ((bitStream & (threshold-1)) < (U32)max) { count = (short)(bitStream & (threshold-1)); bitCount += nbBits-1; } else { count = (short)(bitStream & (2*threshold-1)); if (count >= threshold) count -= max; bitCount += nbBits; } count--; /* extra accuracy */ remaining -= FSE_abs(count); normalizedCounter[charnum++] = count; previous0 = !count; while (remaining < threshold) { nbBits--; threshold >>= 1; } { if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) { ip += bitCount>>3; bitCount &= 7; } else { bitCount -= (int)(8 * (iend - 4 - ip)); ip = iend - 4; } bitStream = MEM_readLE32(ip) >> (bitCount & 31); } } } if (remaining != 1) return ERROR(GENERIC); *maxSVPtr = charnum-1; ip += (bitCount+7)>>3; if ((size_t)(ip-istart) > hbSize) return ERROR(srcSize_wrong); return ip-istart; } /********************************************************* * Decompression (Byte symbols) *********************************************************/ static size_t FSE_buildDTable_rle (FSE_DTable* dt, BYTE symbolValue) { void* ptr = dt; FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr; FSE_decode_t* const cell = (FSE_decode_t*)(ptr) + 1; /* because dt is unsigned */ DTableH->tableLog = 0; DTableH->fastMode = 0; cell->newState = 0; cell->symbol = symbolValue; cell->nbBits = 0; return 0; } static size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits) { void* ptr = dt; FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr; FSE_decode_t* const dinfo = (FSE_decode_t*)(ptr) + 1; /* because dt is unsigned */ const unsigned tableSize = 1 << nbBits; const unsigned tableMask = tableSize - 1; const unsigned maxSymbolValue = tableMask; unsigned s; /* Sanity checks */ if (nbBits < 1) return ERROR(GENERIC); /* min size */ /* Build Decoding Table */ DTableH->tableLog = (U16)nbBits; DTableH->fastMode = 1; for (s=0; s<=maxSymbolValue; s++) { dinfo[s].newState = 0; dinfo[s].symbol = (BYTE)s; dinfo[s].nbBits = (BYTE)nbBits; } return 0; } FORCE_INLINE size_t FSE_decompress_usingDTable_generic( void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt, const unsigned fast) { BYTE* const ostart = (BYTE*) dst; BYTE* op = ostart; BYTE* const omax = op + maxDstSize; BYTE* const olimit = omax-3; BIT_DStream_t bitD; FSE_DState_t state1; FSE_DState_t state2; size_t errorCode; /* Init */ errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize); /* replaced last arg by maxCompressed Size */ if (FSE_isError(errorCode)) return errorCode; FSE_initDState(&state1, &bitD, dt); FSE_initDState(&state2, &bitD, dt); #define FSE_GETSYMBOL(statePtr) fast ? FSE_decodeSymbolFast(statePtr, &bitD) : FSE_decodeSymbol(statePtr, &bitD) /* 4 symbols per loop */ for ( ; (BIT_reloadDStream(&bitD)==BIT_DStream_unfinished) && (op sizeof(bitD.bitContainer)*8) /* This test must be static */ BIT_reloadDStream(&bitD); op[1] = FSE_GETSYMBOL(&state2); if (FSE_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */ { if (BIT_reloadDStream(&bitD) > BIT_DStream_unfinished) { op+=2; break; } } op[2] = FSE_GETSYMBOL(&state1); if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */ BIT_reloadDStream(&bitD); op[3] = FSE_GETSYMBOL(&state2); } /* tail */ /* note : BIT_reloadDStream(&bitD) >= FSE_DStream_partiallyFilled; Ends at exactly BIT_DStream_completed */ while (1) { if ( (BIT_reloadDStream(&bitD)>BIT_DStream_completed) || (op==omax) || (BIT_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state1))) ) break; *op++ = FSE_GETSYMBOL(&state1); if ( (BIT_reloadDStream(&bitD)>BIT_DStream_completed) || (op==omax) || (BIT_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state2))) ) break; *op++ = FSE_GETSYMBOL(&state2); } /* end ? */ if (BIT_endOfDStream(&bitD) && FSE_endOfDState(&state1) && FSE_endOfDState(&state2)) return op-ostart; if (op==omax) return ERROR(dstSize_tooSmall); /* dst buffer is full, but cSrc unfinished */ return ERROR(corruption_detected); } static size_t FSE_decompress_usingDTable(void* dst, size_t originalSize, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt) { FSE_DTableHeader DTableH; memcpy(&DTableH, dt, sizeof(DTableH)); /* select fast mode (static) */ if (DTableH.fastMode) return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1); return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0); } static size_t FSE_decompress(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize) { const BYTE* const istart = (const BYTE*)cSrc; const BYTE* ip = istart; short counting[FSE_MAX_SYMBOL_VALUE+1]; DTable_max_t dt; /* Static analyzer seems unable to understand this table will be properly initialized later */ unsigned tableLog; unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE; size_t errorCode; if (cSrcSize<2) return ERROR(srcSize_wrong); /* too small input size */ /* normal FSE decoding mode */ errorCode = FSE_readNCount (counting, &maxSymbolValue, &tableLog, istart, cSrcSize); if (FSE_isError(errorCode)) return errorCode; if (errorCode >= cSrcSize) return ERROR(srcSize_wrong); /* too small input size */ ip += errorCode; cSrcSize -= errorCode; errorCode = FSE_buildDTable (dt, counting, maxSymbolValue, tableLog); if (FSE_isError(errorCode)) return errorCode; /* always return, even if it is an error code */ return FSE_decompress_usingDTable (dst, maxDstSize, ip, cSrcSize, dt); } #endif /* FSE_COMMONDEFS_ONLY */ /* ****************************************************************** Huff0 : Huffman coder, part of New Generation Entropy library Copyright (C) 2013-2015, Yann Collet. BSD 2-Clause License (https://opensource.org/licenses/bsd-license.php) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You can contact the author at : - FSE+Huff0 source repository : https://github.com/Cyan4973/FiniteStateEntropy - Public forum : https://groups.google.com/forum/#!forum/lz4c ****************************************************************** */ /**************************************************************** * Compiler specifics ****************************************************************/ #if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) /* inline is defined */ #elif defined(_MSC_VER) # define inline __inline #else # define inline /* disable inline */ #endif #ifdef _MSC_VER /* Visual Studio */ # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ #endif /**************************************************************** * Includes ****************************************************************/ #include /* malloc, free, qsort */ #include /* memcpy, memset */ #include /* printf (debug) */ /**************************************************************** * Error Management ****************************************************************/ #define HUF_STATIC_ASSERT(c) { enum { HUF_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */ /****************************************** * Helper functions ******************************************/ static unsigned HUF_isError(size_t code) { return ERR_isError(code); } #define HUF_ABSOLUTEMAX_TABLELOG 16 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */ #define HUF_MAX_TABLELOG 12 /* max configured tableLog (for static allocation); can be modified up to HUF_ABSOLUTEMAX_TABLELOG */ #define HUF_DEFAULT_TABLELOG HUF_MAX_TABLELOG /* tableLog by default, when not specified */ #define HUF_MAX_SYMBOL_VALUE 255 #if (HUF_MAX_TABLELOG > HUF_ABSOLUTEMAX_TABLELOG) # error "HUF_MAX_TABLELOG is too large !" #endif /********************************************************* * Huff0 : Huffman block decompression *********************************************************/ typedef struct { BYTE byte; BYTE nbBits; } HUF_DEltX2; /* single-symbol decoding */ typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX4; /* double-symbols decoding */ typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t; /*! HUF_readStats Read compact Huffman tree, saved by HUF_writeCTable @huffWeight : destination buffer @return : size read from `src` */ static size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats, U32* nbSymbolsPtr, U32* tableLogPtr, const void* src, size_t srcSize) { U32 weightTotal; U32 tableLog; const BYTE* ip = (const BYTE*) src; size_t iSize; size_t oSize; U32 n; if (!srcSize) return ERROR(srcSize_wrong); iSize = ip[0]; //memset(huffWeight, 0, hwSize); /* is not necessary, even though some analyzer complain ... */ if (iSize >= 128) /* special header */ { if (iSize >= (242)) /* RLE */ { static int l[14] = { 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 127, 128 }; oSize = l[iSize-242]; memset(huffWeight, 1, hwSize); iSize = 0; } else /* Incompressible */ { oSize = iSize - 127; iSize = ((oSize+1)/2); if (iSize+1 > srcSize) return ERROR(srcSize_wrong); if (oSize >= hwSize) return ERROR(corruption_detected); ip += 1; for (n=0; n> 4; huffWeight[n+1] = ip[n/2] & 15; } } } else /* header compressed with FSE (normal case) */ { if (iSize+1 > srcSize) return ERROR(srcSize_wrong); oSize = FSE_decompress(huffWeight, hwSize-1, ip+1, iSize); /* max (hwSize-1) values decoded, as last one is implied */ if (FSE_isError(oSize)) return oSize; } /* collect weight stats */ memset(rankStats, 0, (HUF_ABSOLUTEMAX_TABLELOG + 1) * sizeof(U32)); weightTotal = 0; for (n=0; n= HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected); rankStats[huffWeight[n]]++; weightTotal += (1 << huffWeight[n]) >> 1; } if (weightTotal == 0) return ERROR(corruption_detected); /* get last non-null symbol weight (implied, total must be 2^n) */ tableLog = BIT_highbit32(weightTotal) + 1; if (tableLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected); { U32 total = 1 << tableLog; U32 rest = total - weightTotal; U32 verif = 1 << BIT_highbit32(rest); U32 lastWeight = BIT_highbit32(rest) + 1; if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */ huffWeight[oSize] = (BYTE)lastWeight; rankStats[lastWeight]++; } /* check tree construction validity */ if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */ /* results */ *nbSymbolsPtr = (U32)(oSize+1); *tableLogPtr = tableLog; return iSize+1; } /**************************/ /* single-symbol decoding */ /**************************/ static size_t HUF_readDTableX2 (U16* DTable, const void* src, size_t srcSize) { BYTE huffWeight[HUF_MAX_SYMBOL_VALUE + 1]; U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1]; /* large enough for values from 0 to 16 */ U32 tableLog = 0; const BYTE* ip = (const BYTE*) src; size_t iSize = ip[0]; U32 nbSymbols = 0; U32 n; U32 nextRankStart; void* ptr = DTable+1; HUF_DEltX2* const dt = (HUF_DEltX2*)ptr; HUF_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U16)); /* if compilation fails here, assertion is false */ //memset(huffWeight, 0, sizeof(huffWeight)); /* is not necessary, even though some analyzer complain ... */ iSize = HUF_readStats(huffWeight, HUF_MAX_SYMBOL_VALUE + 1, rankVal, &nbSymbols, &tableLog, src, srcSize); if (HUF_isError(iSize)) return iSize; /* check result */ if (tableLog > DTable[0]) return ERROR(tableLog_tooLarge); /* DTable is too small */ DTable[0] = (U16)tableLog; /* maybe should separate sizeof DTable, as allocated, from used size of DTable, in case of DTable re-use */ /* Prepare ranks */ nextRankStart = 0; for (n=1; n<=tableLog; n++) { U32 current = nextRankStart; nextRankStart += (rankVal[n] << (n-1)); rankVal[n] = current; } /* fill DTable */ for (n=0; n> 1; U32 i; HUF_DEltX2 D; D.byte = (BYTE)n; D.nbBits = (BYTE)(tableLog + 1 - w); for (i = rankVal[w]; i < rankVal[w] + length; i++) dt[i] = D; rankVal[w] += length; } return iSize; } static BYTE HUF_decodeSymbolX2(BIT_DStream_t* Dstream, const HUF_DEltX2* dt, const U32 dtLog) { const size_t val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */ const BYTE c = dt[val].byte; BIT_skipBits(Dstream, dt[val].nbBits); return c; } #define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \ *ptr++ = HUF_decodeSymbolX2(DStreamPtr, dt, dtLog) #define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \ if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \ HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) #define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \ if (MEM_64bits()) \ HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) static inline size_t HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX2* const dt, const U32 dtLog) { BYTE* const pStart = p; /* up to 4 symbols at a time */ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-4)) { HUF_DECODE_SYMBOLX2_2(p, bitDPtr); HUF_DECODE_SYMBOLX2_1(p, bitDPtr); HUF_DECODE_SYMBOLX2_2(p, bitDPtr); HUF_DECODE_SYMBOLX2_0(p, bitDPtr); } /* closer to the end */ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd)) HUF_DECODE_SYMBOLX2_0(p, bitDPtr); /* no more data to retrieve from bitstream, hence no need to reload */ while (p < pEnd) HUF_DECODE_SYMBOLX2_0(p, bitDPtr); return pEnd-pStart; } static size_t HUF_decompress4X2_usingDTable( void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, const U16* DTable) { if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ { const BYTE* const istart = (const BYTE*) cSrc; BYTE* const ostart = (BYTE*) dst; BYTE* const oend = ostart + dstSize; const void* ptr = DTable; const HUF_DEltX2* const dt = ((const HUF_DEltX2*)ptr) +1; const U32 dtLog = DTable[0]; size_t errorCode; /* Init */ BIT_DStream_t bitD1; BIT_DStream_t bitD2; BIT_DStream_t bitD3; BIT_DStream_t bitD4; const size_t length1 = MEM_readLE16(istart); const size_t length2 = MEM_readLE16(istart+2); const size_t length3 = MEM_readLE16(istart+4); size_t length4; const BYTE* const istart1 = istart + 6; /* jumpTable */ const BYTE* const istart2 = istart1 + length1; const BYTE* const istart3 = istart2 + length2; const BYTE* const istart4 = istart3 + length3; const size_t segmentSize = (dstSize+3) / 4; BYTE* const opStart2 = ostart + segmentSize; BYTE* const opStart3 = opStart2 + segmentSize; BYTE* const opStart4 = opStart3 + segmentSize; BYTE* op1 = ostart; BYTE* op2 = opStart2; BYTE* op3 = opStart3; BYTE* op4 = opStart4; U32 endSignal; length4 = cSrcSize - (length1 + length2 + length3 + 6); if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ errorCode = BIT_initDStream(&bitD1, istart1, length1); if (HUF_isError(errorCode)) return errorCode; errorCode = BIT_initDStream(&bitD2, istart2, length2); if (HUF_isError(errorCode)) return errorCode; errorCode = BIT_initDStream(&bitD3, istart3, length3); if (HUF_isError(errorCode)) return errorCode; errorCode = BIT_initDStream(&bitD4, istart4, length4); if (HUF_isError(errorCode)) return errorCode; /* 16-32 symbols per loop (4-8 symbols per stream) */ endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4); for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; ) { HUF_DECODE_SYMBOLX2_2(op1, &bitD1); HUF_DECODE_SYMBOLX2_2(op2, &bitD2); HUF_DECODE_SYMBOLX2_2(op3, &bitD3); HUF_DECODE_SYMBOLX2_2(op4, &bitD4); HUF_DECODE_SYMBOLX2_1(op1, &bitD1); HUF_DECODE_SYMBOLX2_1(op2, &bitD2); HUF_DECODE_SYMBOLX2_1(op3, &bitD3); HUF_DECODE_SYMBOLX2_1(op4, &bitD4); HUF_DECODE_SYMBOLX2_2(op1, &bitD1); HUF_DECODE_SYMBOLX2_2(op2, &bitD2); HUF_DECODE_SYMBOLX2_2(op3, &bitD3); HUF_DECODE_SYMBOLX2_2(op4, &bitD4); HUF_DECODE_SYMBOLX2_0(op1, &bitD1); HUF_DECODE_SYMBOLX2_0(op2, &bitD2); HUF_DECODE_SYMBOLX2_0(op3, &bitD3); HUF_DECODE_SYMBOLX2_0(op4, &bitD4); endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4); } /* check corruption */ if (op1 > opStart2) return ERROR(corruption_detected); if (op2 > opStart3) return ERROR(corruption_detected); if (op3 > opStart4) return ERROR(corruption_detected); /* note : op4 supposed already verified within main loop */ /* finish bitStreams one by one */ HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog); HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog); HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog); HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog); /* check */ endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4); if (!endSignal) return ERROR(corruption_detected); /* decoded size */ return dstSize; } } static size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) { HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_MAX_TABLELOG); const BYTE* ip = (const BYTE*) cSrc; size_t errorCode; errorCode = HUF_readDTableX2 (DTable, cSrc, cSrcSize); if (HUF_isError(errorCode)) return errorCode; if (errorCode >= cSrcSize) return ERROR(srcSize_wrong); ip += errorCode; cSrcSize -= errorCode; return HUF_decompress4X2_usingDTable (dst, dstSize, ip, cSrcSize, DTable); } /***************************/ /* double-symbols decoding */ /***************************/ static void HUF_fillDTableX4Level2(HUF_DEltX4* DTable, U32 sizeLog, const U32 consumed, const U32* rankValOrigin, const int minWeight, const sortedSymbol_t* sortedSymbols, const U32 sortedListSize, U32 nbBitsBaseline, U16 baseSeq) { HUF_DEltX4 DElt; U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1]; U32 s; /* get pre-calculated rankVal */ memcpy(rankVal, rankValOrigin, sizeof(rankVal)); /* fill skipped values */ if (minWeight>1) { U32 i, skipSize = rankVal[minWeight]; MEM_writeLE16(&(DElt.sequence), baseSeq); DElt.nbBits = (BYTE)(consumed); DElt.length = 1; for (i = 0; i < skipSize; i++) DTable[i] = DElt; } /* fill DTable */ for (s=0; s= 1 */ rankVal[weight] += length; } } typedef U32 rankVal_t[HUF_ABSOLUTEMAX_TABLELOG][HUF_ABSOLUTEMAX_TABLELOG + 1]; static void HUF_fillDTableX4(HUF_DEltX4* DTable, const U32 targetLog, const sortedSymbol_t* sortedList, const U32 sortedListSize, const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight, const U32 nbBitsBaseline) { U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1]; const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */ const U32 minBits = nbBitsBaseline - maxWeight; U32 s; memcpy(rankVal, rankValOrigin, sizeof(rankVal)); /* fill DTable */ for (s=0; s= minBits) /* enough room for a second symbol */ { U32 sortedRank; int minWeight = nbBits + scaleLog; if (minWeight < 1) minWeight = 1; sortedRank = rankStart[minWeight]; HUF_fillDTableX4Level2(DTable+start, targetLog-nbBits, nbBits, rankValOrigin[nbBits], minWeight, sortedList+sortedRank, sortedListSize-sortedRank, nbBitsBaseline, symbol); } else { U32 i; const U32 end = start + length; HUF_DEltX4 DElt; MEM_writeLE16(&(DElt.sequence), symbol); DElt.nbBits = (BYTE)(nbBits); DElt.length = 1; for (i = start; i < end; i++) DTable[i] = DElt; } rankVal[weight] += length; } } static size_t HUF_readDTableX4 (U32* DTable, const void* src, size_t srcSize) { BYTE weightList[HUF_MAX_SYMBOL_VALUE + 1]; sortedSymbol_t sortedSymbol[HUF_MAX_SYMBOL_VALUE + 1]; U32 rankStats[HUF_ABSOLUTEMAX_TABLELOG + 1] = { 0 }; U32 rankStart0[HUF_ABSOLUTEMAX_TABLELOG + 2] = { 0 }; U32* const rankStart = rankStart0+1; rankVal_t rankVal; U32 tableLog, maxW, sizeOfSort, nbSymbols; const U32 memLog = DTable[0]; const BYTE* ip = (const BYTE*) src; size_t iSize = ip[0]; void* ptr = DTable; HUF_DEltX4* const dt = ((HUF_DEltX4*)ptr) + 1; HUF_STATIC_ASSERT(sizeof(HUF_DEltX4) == sizeof(U32)); /* if compilation fails here, assertion is false */ if (memLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(tableLog_tooLarge); //memset(weightList, 0, sizeof(weightList)); /* is not necessary, even though some analyzer complain ... */ iSize = HUF_readStats(weightList, HUF_MAX_SYMBOL_VALUE + 1, rankStats, &nbSymbols, &tableLog, src, srcSize); if (HUF_isError(iSize)) return iSize; /* check result */ if (tableLog > memLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */ /* find maxWeight */ for (maxW = tableLog; rankStats[maxW]==0; maxW--) {if (!maxW) return ERROR(GENERIC); } /* necessarily finds a solution before maxW==0 */ /* Get start index of each weight */ { U32 w, nextRankStart = 0; for (w=1; w<=maxW; w++) { U32 current = nextRankStart; nextRankStart += rankStats[w]; rankStart[w] = current; } rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/ sizeOfSort = nextRankStart; } /* sort symbols by weight */ { U32 s; for (s=0; s> consumed; } } } HUF_fillDTableX4(dt, memLog, sortedSymbol, sizeOfSort, rankStart0, rankVal, maxW, tableLog+1); return iSize; } static U32 HUF_decodeSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog) { const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ memcpy(op, dt+val, 2); BIT_skipBits(DStream, dt[val].nbBits); return dt[val].length; } static U32 HUF_decodeLastSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog) { const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ memcpy(op, dt+val, 1); if (dt[val].length==1) BIT_skipBits(DStream, dt[val].nbBits); else { if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) { BIT_skipBits(DStream, dt[val].nbBits); if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8)) DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */ } } return 1; } #define HUF_DECODE_SYMBOLX4_0(ptr, DStreamPtr) \ ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog) #define HUF_DECODE_SYMBOLX4_1(ptr, DStreamPtr) \ if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \ ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog) #define HUF_DECODE_SYMBOLX4_2(ptr, DStreamPtr) \ if (MEM_64bits()) \ ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog) static inline size_t HUF_decodeStreamX4(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, const HUF_DEltX4* const dt, const U32 dtLog) { BYTE* const pStart = p; /* up to 8 symbols at a time */ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd-7)) { HUF_DECODE_SYMBOLX4_2(p, bitDPtr); HUF_DECODE_SYMBOLX4_1(p, bitDPtr); HUF_DECODE_SYMBOLX4_2(p, bitDPtr); HUF_DECODE_SYMBOLX4_0(p, bitDPtr); } /* closer to the end */ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-2)) HUF_DECODE_SYMBOLX4_0(p, bitDPtr); while (p <= pEnd-2) HUF_DECODE_SYMBOLX4_0(p, bitDPtr); /* no need to reload : reached the end of DStream */ if (p < pEnd) p += HUF_decodeLastSymbolX4(p, bitDPtr, dt, dtLog); return p-pStart; } static size_t HUF_decompress4X4_usingDTable( void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, const U32* DTable) { if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ { const BYTE* const istart = (const BYTE*) cSrc; BYTE* const ostart = (BYTE*) dst; BYTE* const oend = ostart + dstSize; const void* ptr = DTable; const HUF_DEltX4* const dt = ((const HUF_DEltX4*)ptr) +1; const U32 dtLog = DTable[0]; size_t errorCode; /* Init */ BIT_DStream_t bitD1; BIT_DStream_t bitD2; BIT_DStream_t bitD3; BIT_DStream_t bitD4; const size_t length1 = MEM_readLE16(istart); const size_t length2 = MEM_readLE16(istart+2); const size_t length3 = MEM_readLE16(istart+4); size_t length4; const BYTE* const istart1 = istart + 6; /* jumpTable */ const BYTE* const istart2 = istart1 + length1; const BYTE* const istart3 = istart2 + length2; const BYTE* const istart4 = istart3 + length3; const size_t segmentSize = (dstSize+3) / 4; BYTE* const opStart2 = ostart + segmentSize; BYTE* const opStart3 = opStart2 + segmentSize; BYTE* const opStart4 = opStart3 + segmentSize; BYTE* op1 = ostart; BYTE* op2 = opStart2; BYTE* op3 = opStart3; BYTE* op4 = opStart4; U32 endSignal; length4 = cSrcSize - (length1 + length2 + length3 + 6); if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ errorCode = BIT_initDStream(&bitD1, istart1, length1); if (HUF_isError(errorCode)) return errorCode; errorCode = BIT_initDStream(&bitD2, istart2, length2); if (HUF_isError(errorCode)) return errorCode; errorCode = BIT_initDStream(&bitD3, istart3, length3); if (HUF_isError(errorCode)) return errorCode; errorCode = BIT_initDStream(&bitD4, istart4, length4); if (HUF_isError(errorCode)) return errorCode; /* 16-32 symbols per loop (4-8 symbols per stream) */ endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4); for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; ) { HUF_DECODE_SYMBOLX4_2(op1, &bitD1); HUF_DECODE_SYMBOLX4_2(op2, &bitD2); HUF_DECODE_SYMBOLX4_2(op3, &bitD3); HUF_DECODE_SYMBOLX4_2(op4, &bitD4); HUF_DECODE_SYMBOLX4_1(op1, &bitD1); HUF_DECODE_SYMBOLX4_1(op2, &bitD2); HUF_DECODE_SYMBOLX4_1(op3, &bitD3); HUF_DECODE_SYMBOLX4_1(op4, &bitD4); HUF_DECODE_SYMBOLX4_2(op1, &bitD1); HUF_DECODE_SYMBOLX4_2(op2, &bitD2); HUF_DECODE_SYMBOLX4_2(op3, &bitD3); HUF_DECODE_SYMBOLX4_2(op4, &bitD4); HUF_DECODE_SYMBOLX4_0(op1, &bitD1); HUF_DECODE_SYMBOLX4_0(op2, &bitD2); HUF_DECODE_SYMBOLX4_0(op3, &bitD3); HUF_DECODE_SYMBOLX4_0(op4, &bitD4); endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4); } /* check corruption */ if (op1 > opStart2) return ERROR(corruption_detected); if (op2 > opStart3) return ERROR(corruption_detected); if (op3 > opStart4) return ERROR(corruption_detected); /* note : op4 supposed already verified within main loop */ /* finish bitStreams one by one */ HUF_decodeStreamX4(op1, &bitD1, opStart2, dt, dtLog); HUF_decodeStreamX4(op2, &bitD2, opStart3, dt, dtLog); HUF_decodeStreamX4(op3, &bitD3, opStart4, dt, dtLog); HUF_decodeStreamX4(op4, &bitD4, oend, dt, dtLog); /* check */ endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4); if (!endSignal) return ERROR(corruption_detected); /* decoded size */ return dstSize; } } static size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) { HUF_CREATE_STATIC_DTABLEX4(DTable, HUF_MAX_TABLELOG); const BYTE* ip = (const BYTE*) cSrc; size_t hSize = HUF_readDTableX4 (DTable, cSrc, cSrcSize); if (HUF_isError(hSize)) return hSize; if (hSize >= cSrcSize) return ERROR(srcSize_wrong); ip += hSize; cSrcSize -= hSize; return HUF_decompress4X4_usingDTable (dst, dstSize, ip, cSrcSize, DTable); } /**********************************/ /* quad-symbol decoding */ /**********************************/ typedef struct { BYTE nbBits; BYTE nbBytes; } HUF_DDescX6; typedef union { BYTE byte[4]; U32 sequence; } HUF_DSeqX6; /* recursive, up to level 3; may benefit from